1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* 23 ** Extra information appended to the end of sqlite3_index_info but not 24 ** visible to the xBestIndex function, at least not directly. The 25 ** sqlite3_vtab_collation() interface knows how to reach it, however. 26 ** 27 ** This object is not an API and can be changed from one release to the 28 ** next. As long as allocateIndexInfo() and sqlite3_vtab_collation() 29 ** agree on the structure, all will be well. 30 */ 31 typedef struct HiddenIndexInfo HiddenIndexInfo; 32 struct HiddenIndexInfo { 33 WhereClause *pWC; /* The Where clause being analyzed */ 34 Parse *pParse; /* The parsing context */ 35 }; 36 37 /* Forward declaration of methods */ 38 static int whereLoopResize(sqlite3*, WhereLoop*, int); 39 40 /* 41 ** Return the estimated number of output rows from a WHERE clause 42 */ 43 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ 44 return pWInfo->nRowOut; 45 } 46 47 /* 48 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this 49 ** WHERE clause returns outputs for DISTINCT processing. 50 */ 51 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ 52 return pWInfo->eDistinct; 53 } 54 55 /* 56 ** Return the number of ORDER BY terms that are satisfied by the 57 ** WHERE clause. A return of 0 means that the output must be 58 ** completely sorted. A return equal to the number of ORDER BY 59 ** terms means that no sorting is needed at all. A return that 60 ** is positive but less than the number of ORDER BY terms means that 61 ** block sorting is required. 62 */ 63 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ 64 return pWInfo->nOBSat; 65 } 66 67 /* 68 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known 69 ** to emit rows in increasing order, and if the last row emitted by the 70 ** inner-most loop did not fit within the sorter, then we can skip all 71 ** subsequent rows for the current iteration of the inner loop (because they 72 ** will not fit in the sorter either) and continue with the second inner 73 ** loop - the loop immediately outside the inner-most. 74 ** 75 ** When a row does not fit in the sorter (because the sorter already 76 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the 77 ** label returned by this function. 78 ** 79 ** If the ORDER BY LIMIT optimization applies, the jump destination should 80 ** be the continuation for the second-inner-most loop. If the ORDER BY 81 ** LIMIT optimization does not apply, then the jump destination should 82 ** be the continuation for the inner-most loop. 83 ** 84 ** It is always safe for this routine to return the continuation of the 85 ** inner-most loop, in the sense that a correct answer will result. 86 ** Returning the continuation the second inner loop is an optimization 87 ** that might make the code run a little faster, but should not change 88 ** the final answer. 89 */ 90 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){ 91 WhereLevel *pInner; 92 if( !pWInfo->bOrderedInnerLoop ){ 93 /* The ORDER BY LIMIT optimization does not apply. Jump to the 94 ** continuation of the inner-most loop. */ 95 return pWInfo->iContinue; 96 } 97 pInner = &pWInfo->a[pWInfo->nLevel-1]; 98 assert( pInner->addrNxt!=0 ); 99 return pInner->addrNxt; 100 } 101 102 /* 103 ** While generating code for the min/max optimization, after handling 104 ** the aggregate-step call to min() or max(), check to see if any 105 ** additional looping is required. If the output order is such that 106 ** we are certain that the correct answer has already been found, then 107 ** code an OP_Goto to by pass subsequent processing. 108 ** 109 ** Any extra OP_Goto that is coded here is an optimization. The 110 ** correct answer should be obtained regardless. This OP_Goto just 111 ** makes the answer appear faster. 112 */ 113 void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){ 114 WhereLevel *pInner; 115 int i; 116 if( !pWInfo->bOrderedInnerLoop ) return; 117 if( pWInfo->nOBSat==0 ) return; 118 for(i=pWInfo->nLevel-1; i>=0; i--){ 119 pInner = &pWInfo->a[i]; 120 if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){ 121 sqlite3VdbeGoto(v, pInner->addrNxt); 122 return; 123 } 124 } 125 sqlite3VdbeGoto(v, pWInfo->iBreak); 126 } 127 128 /* 129 ** Return the VDBE address or label to jump to in order to continue 130 ** immediately with the next row of a WHERE clause. 131 */ 132 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ 133 assert( pWInfo->iContinue!=0 ); 134 return pWInfo->iContinue; 135 } 136 137 /* 138 ** Return the VDBE address or label to jump to in order to break 139 ** out of a WHERE loop. 140 */ 141 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ 142 return pWInfo->iBreak; 143 } 144 145 /* 146 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to 147 ** operate directly on the rowids returned by a WHERE clause. Return 148 ** ONEPASS_SINGLE (1) if the statement can operation directly because only 149 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass 150 ** optimization can be used on multiple 151 ** 152 ** If the ONEPASS optimization is used (if this routine returns true) 153 ** then also write the indices of open cursors used by ONEPASS 154 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data 155 ** table and iaCur[1] gets the cursor used by an auxiliary index. 156 ** Either value may be -1, indicating that cursor is not used. 157 ** Any cursors returned will have been opened for writing. 158 ** 159 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is 160 ** unable to use the ONEPASS optimization. 161 */ 162 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ 163 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); 164 #ifdef WHERETRACE_ENABLED 165 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){ 166 sqlite3DebugPrintf("%s cursors: %d %d\n", 167 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI", 168 aiCur[0], aiCur[1]); 169 } 170 #endif 171 return pWInfo->eOnePass; 172 } 173 174 /* 175 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move 176 ** the data cursor to the row selected by the index cursor. 177 */ 178 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){ 179 return pWInfo->bDeferredSeek; 180 } 181 182 /* 183 ** Move the content of pSrc into pDest 184 */ 185 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ 186 pDest->n = pSrc->n; 187 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); 188 } 189 190 /* 191 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. 192 ** 193 ** The new entry might overwrite an existing entry, or it might be 194 ** appended, or it might be discarded. Do whatever is the right thing 195 ** so that pSet keeps the N_OR_COST best entries seen so far. 196 */ 197 static int whereOrInsert( 198 WhereOrSet *pSet, /* The WhereOrSet to be updated */ 199 Bitmask prereq, /* Prerequisites of the new entry */ 200 LogEst rRun, /* Run-cost of the new entry */ 201 LogEst nOut /* Number of outputs for the new entry */ 202 ){ 203 u16 i; 204 WhereOrCost *p; 205 for(i=pSet->n, p=pSet->a; i>0; i--, p++){ 206 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ 207 goto whereOrInsert_done; 208 } 209 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ 210 return 0; 211 } 212 } 213 if( pSet->n<N_OR_COST ){ 214 p = &pSet->a[pSet->n++]; 215 p->nOut = nOut; 216 }else{ 217 p = pSet->a; 218 for(i=1; i<pSet->n; i++){ 219 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; 220 } 221 if( p->rRun<=rRun ) return 0; 222 } 223 whereOrInsert_done: 224 p->prereq = prereq; 225 p->rRun = rRun; 226 if( p->nOut>nOut ) p->nOut = nOut; 227 return 1; 228 } 229 230 /* 231 ** Return the bitmask for the given cursor number. Return 0 if 232 ** iCursor is not in the set. 233 */ 234 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ 235 int i; 236 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); 237 for(i=0; i<pMaskSet->n; i++){ 238 if( pMaskSet->ix[i]==iCursor ){ 239 return MASKBIT(i); 240 } 241 } 242 return 0; 243 } 244 245 /* 246 ** Create a new mask for cursor iCursor. 247 ** 248 ** There is one cursor per table in the FROM clause. The number of 249 ** tables in the FROM clause is limited by a test early in the 250 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 251 ** array will never overflow. 252 */ 253 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 254 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 255 pMaskSet->ix[pMaskSet->n++] = iCursor; 256 } 257 258 /* 259 ** If the right-hand branch of the expression is a TK_COLUMN, then return 260 ** a pointer to the right-hand branch. Otherwise, return NULL. 261 */ 262 static Expr *whereRightSubexprIsColumn(Expr *p){ 263 p = sqlite3ExprSkipCollateAndLikely(p->pRight); 264 if( ALWAYS(p!=0) && p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){ 265 return p; 266 } 267 return 0; 268 } 269 270 /* 271 ** Advance to the next WhereTerm that matches according to the criteria 272 ** established when the pScan object was initialized by whereScanInit(). 273 ** Return NULL if there are no more matching WhereTerms. 274 */ 275 static WhereTerm *whereScanNext(WhereScan *pScan){ 276 int iCur; /* The cursor on the LHS of the term */ 277 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */ 278 Expr *pX; /* An expression being tested */ 279 WhereClause *pWC; /* Shorthand for pScan->pWC */ 280 WhereTerm *pTerm; /* The term being tested */ 281 int k = pScan->k; /* Where to start scanning */ 282 283 assert( pScan->iEquiv<=pScan->nEquiv ); 284 pWC = pScan->pWC; 285 while(1){ 286 iColumn = pScan->aiColumn[pScan->iEquiv-1]; 287 iCur = pScan->aiCur[pScan->iEquiv-1]; 288 assert( pWC!=0 ); 289 do{ 290 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ 291 if( pTerm->leftCursor==iCur 292 && pTerm->u.x.leftColumn==iColumn 293 && (iColumn!=XN_EXPR 294 || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft, 295 pScan->pIdxExpr,iCur)==0) 296 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 297 ){ 298 if( (pTerm->eOperator & WO_EQUIV)!=0 299 && pScan->nEquiv<ArraySize(pScan->aiCur) 300 && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0 301 ){ 302 int j; 303 for(j=0; j<pScan->nEquiv; j++){ 304 if( pScan->aiCur[j]==pX->iTable 305 && pScan->aiColumn[j]==pX->iColumn ){ 306 break; 307 } 308 } 309 if( j==pScan->nEquiv ){ 310 pScan->aiCur[j] = pX->iTable; 311 pScan->aiColumn[j] = pX->iColumn; 312 pScan->nEquiv++; 313 } 314 } 315 if( (pTerm->eOperator & pScan->opMask)!=0 ){ 316 /* Verify the affinity and collating sequence match */ 317 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ 318 CollSeq *pColl; 319 Parse *pParse = pWC->pWInfo->pParse; 320 pX = pTerm->pExpr; 321 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ 322 continue; 323 } 324 assert(pX->pLeft); 325 pColl = sqlite3ExprCompareCollSeq(pParse, pX); 326 if( pColl==0 ) pColl = pParse->db->pDfltColl; 327 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ 328 continue; 329 } 330 } 331 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0 332 && (pX = pTerm->pExpr->pRight, ALWAYS(pX!=0)) 333 && pX->op==TK_COLUMN 334 && pX->iTable==pScan->aiCur[0] 335 && pX->iColumn==pScan->aiColumn[0] 336 ){ 337 testcase( pTerm->eOperator & WO_IS ); 338 continue; 339 } 340 pScan->pWC = pWC; 341 pScan->k = k+1; 342 #ifdef WHERETRACE_ENABLED 343 if( sqlite3WhereTrace & 0x20000 ){ 344 int ii; 345 sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d", 346 pTerm, pScan->nEquiv); 347 for(ii=0; ii<pScan->nEquiv; ii++){ 348 sqlite3DebugPrintf(" {%d:%d}", 349 pScan->aiCur[ii], pScan->aiColumn[ii]); 350 } 351 sqlite3DebugPrintf("\n"); 352 } 353 #endif 354 return pTerm; 355 } 356 } 357 } 358 pWC = pWC->pOuter; 359 k = 0; 360 }while( pWC!=0 ); 361 if( pScan->iEquiv>=pScan->nEquiv ) break; 362 pWC = pScan->pOrigWC; 363 k = 0; 364 pScan->iEquiv++; 365 } 366 return 0; 367 } 368 369 /* 370 ** This is whereScanInit() for the case of an index on an expression. 371 ** It is factored out into a separate tail-recursion subroutine so that 372 ** the normal whereScanInit() routine, which is a high-runner, does not 373 ** need to push registers onto the stack as part of its prologue. 374 */ 375 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){ 376 pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr); 377 return whereScanNext(pScan); 378 } 379 380 /* 381 ** Initialize a WHERE clause scanner object. Return a pointer to the 382 ** first match. Return NULL if there are no matches. 383 ** 384 ** The scanner will be searching the WHERE clause pWC. It will look 385 ** for terms of the form "X <op> <expr>" where X is column iColumn of table 386 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx 387 ** must be one of the indexes of table iCur. 388 ** 389 ** The <op> must be one of the operators described by opMask. 390 ** 391 ** If the search is for X and the WHERE clause contains terms of the 392 ** form X=Y then this routine might also return terms of the form 393 ** "Y <op> <expr>". The number of levels of transitivity is limited, 394 ** but is enough to handle most commonly occurring SQL statements. 395 ** 396 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with 397 ** index pIdx. 398 */ 399 static WhereTerm *whereScanInit( 400 WhereScan *pScan, /* The WhereScan object being initialized */ 401 WhereClause *pWC, /* The WHERE clause to be scanned */ 402 int iCur, /* Cursor to scan for */ 403 int iColumn, /* Column to scan for */ 404 u32 opMask, /* Operator(s) to scan for */ 405 Index *pIdx /* Must be compatible with this index */ 406 ){ 407 pScan->pOrigWC = pWC; 408 pScan->pWC = pWC; 409 pScan->pIdxExpr = 0; 410 pScan->idxaff = 0; 411 pScan->zCollName = 0; 412 pScan->opMask = opMask; 413 pScan->k = 0; 414 pScan->aiCur[0] = iCur; 415 pScan->nEquiv = 1; 416 pScan->iEquiv = 1; 417 if( pIdx ){ 418 int j = iColumn; 419 iColumn = pIdx->aiColumn[j]; 420 if( iColumn==XN_EXPR ){ 421 pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr; 422 pScan->zCollName = pIdx->azColl[j]; 423 pScan->aiColumn[0] = XN_EXPR; 424 return whereScanInitIndexExpr(pScan); 425 }else if( iColumn==pIdx->pTable->iPKey ){ 426 iColumn = XN_ROWID; 427 }else if( iColumn>=0 ){ 428 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; 429 pScan->zCollName = pIdx->azColl[j]; 430 } 431 }else if( iColumn==XN_EXPR ){ 432 return 0; 433 } 434 pScan->aiColumn[0] = iColumn; 435 return whereScanNext(pScan); 436 } 437 438 /* 439 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 440 ** where X is a reference to the iColumn of table iCur or of index pIdx 441 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by 442 ** the op parameter. Return a pointer to the term. Return 0 if not found. 443 ** 444 ** If pIdx!=0 then it must be one of the indexes of table iCur. 445 ** Search for terms matching the iColumn-th column of pIdx 446 ** rather than the iColumn-th column of table iCur. 447 ** 448 ** The term returned might by Y=<expr> if there is another constraint in 449 ** the WHERE clause that specifies that X=Y. Any such constraints will be 450 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The 451 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11 452 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10 453 ** other equivalent values. Hence a search for X will return <expr> if X=A1 454 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>. 455 ** 456 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" 457 ** then try for the one with no dependencies on <expr> - in other words where 458 ** <expr> is a constant expression of some kind. Only return entries of 459 ** the form "X <op> Y" where Y is a column in another table if no terms of 460 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS 461 ** exist, try to return a term that does not use WO_EQUIV. 462 */ 463 WhereTerm *sqlite3WhereFindTerm( 464 WhereClause *pWC, /* The WHERE clause to be searched */ 465 int iCur, /* Cursor number of LHS */ 466 int iColumn, /* Column number of LHS */ 467 Bitmask notReady, /* RHS must not overlap with this mask */ 468 u32 op, /* Mask of WO_xx values describing operator */ 469 Index *pIdx /* Must be compatible with this index, if not NULL */ 470 ){ 471 WhereTerm *pResult = 0; 472 WhereTerm *p; 473 WhereScan scan; 474 475 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); 476 op &= WO_EQ|WO_IS; 477 while( p ){ 478 if( (p->prereqRight & notReady)==0 ){ 479 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){ 480 testcase( p->eOperator & WO_IS ); 481 return p; 482 } 483 if( pResult==0 ) pResult = p; 484 } 485 p = whereScanNext(&scan); 486 } 487 return pResult; 488 } 489 490 /* 491 ** This function searches pList for an entry that matches the iCol-th column 492 ** of index pIdx. 493 ** 494 ** If such an expression is found, its index in pList->a[] is returned. If 495 ** no expression is found, -1 is returned. 496 */ 497 static int findIndexCol( 498 Parse *pParse, /* Parse context */ 499 ExprList *pList, /* Expression list to search */ 500 int iBase, /* Cursor for table associated with pIdx */ 501 Index *pIdx, /* Index to match column of */ 502 int iCol /* Column of index to match */ 503 ){ 504 int i; 505 const char *zColl = pIdx->azColl[iCol]; 506 507 for(i=0; i<pList->nExpr; i++){ 508 Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr); 509 if( ALWAYS(p!=0) 510 && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) 511 && p->iColumn==pIdx->aiColumn[iCol] 512 && p->iTable==iBase 513 ){ 514 CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr); 515 if( 0==sqlite3StrICmp(pColl->zName, zColl) ){ 516 return i; 517 } 518 } 519 } 520 521 return -1; 522 } 523 524 /* 525 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL 526 */ 527 static int indexColumnNotNull(Index *pIdx, int iCol){ 528 int j; 529 assert( pIdx!=0 ); 530 assert( iCol>=0 && iCol<pIdx->nColumn ); 531 j = pIdx->aiColumn[iCol]; 532 if( j>=0 ){ 533 return pIdx->pTable->aCol[j].notNull; 534 }else if( j==(-1) ){ 535 return 1; 536 }else{ 537 assert( j==(-2) ); 538 return 0; /* Assume an indexed expression can always yield a NULL */ 539 540 } 541 } 542 543 /* 544 ** Return true if the DISTINCT expression-list passed as the third argument 545 ** is redundant. 546 ** 547 ** A DISTINCT list is redundant if any subset of the columns in the 548 ** DISTINCT list are collectively unique and individually non-null. 549 */ 550 static int isDistinctRedundant( 551 Parse *pParse, /* Parsing context */ 552 SrcList *pTabList, /* The FROM clause */ 553 WhereClause *pWC, /* The WHERE clause */ 554 ExprList *pDistinct /* The result set that needs to be DISTINCT */ 555 ){ 556 Table *pTab; 557 Index *pIdx; 558 int i; 559 int iBase; 560 561 /* If there is more than one table or sub-select in the FROM clause of 562 ** this query, then it will not be possible to show that the DISTINCT 563 ** clause is redundant. */ 564 if( pTabList->nSrc!=1 ) return 0; 565 iBase = pTabList->a[0].iCursor; 566 pTab = pTabList->a[0].pTab; 567 568 /* If any of the expressions is an IPK column on table iBase, then return 569 ** true. Note: The (p->iTable==iBase) part of this test may be false if the 570 ** current SELECT is a correlated sub-query. 571 */ 572 for(i=0; i<pDistinct->nExpr; i++){ 573 Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr); 574 if( NEVER(p==0) ) continue; 575 if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue; 576 if( p->iTable==iBase && p->iColumn<0 ) return 1; 577 } 578 579 /* Loop through all indices on the table, checking each to see if it makes 580 ** the DISTINCT qualifier redundant. It does so if: 581 ** 582 ** 1. The index is itself UNIQUE, and 583 ** 584 ** 2. All of the columns in the index are either part of the pDistinct 585 ** list, or else the WHERE clause contains a term of the form "col=X", 586 ** where X is a constant value. The collation sequences of the 587 ** comparison and select-list expressions must match those of the index. 588 ** 589 ** 3. All of those index columns for which the WHERE clause does not 590 ** contain a "col=X" term are subject to a NOT NULL constraint. 591 */ 592 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 593 if( !IsUniqueIndex(pIdx) ) continue; 594 if( pIdx->pPartIdxWhere ) continue; 595 for(i=0; i<pIdx->nKeyCol; i++){ 596 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){ 597 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break; 598 if( indexColumnNotNull(pIdx, i)==0 ) break; 599 } 600 } 601 if( i==pIdx->nKeyCol ){ 602 /* This index implies that the DISTINCT qualifier is redundant. */ 603 return 1; 604 } 605 } 606 607 return 0; 608 } 609 610 611 /* 612 ** Estimate the logarithm of the input value to base 2. 613 */ 614 static LogEst estLog(LogEst N){ 615 return N<=10 ? 0 : sqlite3LogEst(N) - 33; 616 } 617 618 /* 619 ** Convert OP_Column opcodes to OP_Copy in previously generated code. 620 ** 621 ** This routine runs over generated VDBE code and translates OP_Column 622 ** opcodes into OP_Copy when the table is being accessed via co-routine 623 ** instead of via table lookup. 624 ** 625 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on 626 ** cursor iTabCur are transformed into OP_Sequence opcode for the 627 ** iAutoidxCur cursor, in order to generate unique rowids for the 628 ** automatic index being generated. 629 */ 630 static void translateColumnToCopy( 631 Parse *pParse, /* Parsing context */ 632 int iStart, /* Translate from this opcode to the end */ 633 int iTabCur, /* OP_Column/OP_Rowid references to this table */ 634 int iRegister, /* The first column is in this register */ 635 int iAutoidxCur /* If non-zero, cursor of autoindex being generated */ 636 ){ 637 Vdbe *v = pParse->pVdbe; 638 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart); 639 int iEnd = sqlite3VdbeCurrentAddr(v); 640 if( pParse->db->mallocFailed ) return; 641 for(; iStart<iEnd; iStart++, pOp++){ 642 if( pOp->p1!=iTabCur ) continue; 643 if( pOp->opcode==OP_Column ){ 644 pOp->opcode = OP_Copy; 645 pOp->p1 = pOp->p2 + iRegister; 646 pOp->p2 = pOp->p3; 647 pOp->p3 = 0; 648 }else if( pOp->opcode==OP_Rowid ){ 649 pOp->opcode = OP_Sequence; 650 pOp->p1 = iAutoidxCur; 651 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 652 if( iAutoidxCur==0 ){ 653 pOp->opcode = OP_Null; 654 pOp->p3 = 0; 655 } 656 #endif 657 } 658 } 659 } 660 661 /* 662 ** Two routines for printing the content of an sqlite3_index_info 663 ** structure. Used for testing and debugging only. If neither 664 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 665 ** are no-ops. 666 */ 667 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) 668 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){ 669 int i; 670 if( !sqlite3WhereTrace ) return; 671 for(i=0; i<p->nConstraint; i++){ 672 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 673 i, 674 p->aConstraint[i].iColumn, 675 p->aConstraint[i].iTermOffset, 676 p->aConstraint[i].op, 677 p->aConstraint[i].usable); 678 } 679 for(i=0; i<p->nOrderBy; i++){ 680 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 681 i, 682 p->aOrderBy[i].iColumn, 683 p->aOrderBy[i].desc); 684 } 685 } 686 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){ 687 int i; 688 if( !sqlite3WhereTrace ) return; 689 for(i=0; i<p->nConstraint; i++){ 690 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 691 i, 692 p->aConstraintUsage[i].argvIndex, 693 p->aConstraintUsage[i].omit); 694 } 695 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 696 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 697 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 698 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 699 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); 700 } 701 #else 702 #define whereTraceIndexInfoInputs(A) 703 #define whereTraceIndexInfoOutputs(A) 704 #endif 705 706 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 707 /* 708 ** Return TRUE if the WHERE clause term pTerm is of a form where it 709 ** could be used with an index to access pSrc, assuming an appropriate 710 ** index existed. 711 */ 712 static int termCanDriveIndex( 713 WhereTerm *pTerm, /* WHERE clause term to check */ 714 SrcItem *pSrc, /* Table we are trying to access */ 715 Bitmask notReady /* Tables in outer loops of the join */ 716 ){ 717 char aff; 718 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; 719 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0; 720 if( (pSrc->fg.jointype & JT_LEFT) 721 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 722 && (pTerm->eOperator & WO_IS) 723 ){ 724 /* Cannot use an IS term from the WHERE clause as an index driver for 725 ** the RHS of a LEFT JOIN. Such a term can only be used if it is from 726 ** the ON clause. */ 727 return 0; 728 } 729 if( (pTerm->prereqRight & notReady)!=0 ) return 0; 730 if( pTerm->u.x.leftColumn<0 ) return 0; 731 aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity; 732 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; 733 testcase( pTerm->pExpr->op==TK_IS ); 734 return 1; 735 } 736 #endif 737 738 739 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 740 /* 741 ** Generate code to construct the Index object for an automatic index 742 ** and to set up the WhereLevel object pLevel so that the code generator 743 ** makes use of the automatic index. 744 */ 745 static void constructAutomaticIndex( 746 Parse *pParse, /* The parsing context */ 747 WhereClause *pWC, /* The WHERE clause */ 748 SrcItem *pSrc, /* The FROM clause term to get the next index */ 749 Bitmask notReady, /* Mask of cursors that are not available */ 750 WhereLevel *pLevel /* Write new index here */ 751 ){ 752 int nKeyCol; /* Number of columns in the constructed index */ 753 WhereTerm *pTerm; /* A single term of the WHERE clause */ 754 WhereTerm *pWCEnd; /* End of pWC->a[] */ 755 Index *pIdx; /* Object describing the transient index */ 756 Vdbe *v; /* Prepared statement under construction */ 757 int addrInit; /* Address of the initialization bypass jump */ 758 Table *pTable; /* The table being indexed */ 759 int addrTop; /* Top of the index fill loop */ 760 int regRecord; /* Register holding an index record */ 761 int n; /* Column counter */ 762 int i; /* Loop counter */ 763 int mxBitCol; /* Maximum column in pSrc->colUsed */ 764 CollSeq *pColl; /* Collating sequence to on a column */ 765 WhereLoop *pLoop; /* The Loop object */ 766 char *zNotUsed; /* Extra space on the end of pIdx */ 767 Bitmask idxCols; /* Bitmap of columns used for indexing */ 768 Bitmask extraCols; /* Bitmap of additional columns */ 769 u8 sentWarning = 0; /* True if a warnning has been issued */ 770 Expr *pPartial = 0; /* Partial Index Expression */ 771 int iContinue = 0; /* Jump here to skip excluded rows */ 772 SrcItem *pTabItem; /* FROM clause term being indexed */ 773 int addrCounter = 0; /* Address where integer counter is initialized */ 774 int regBase; /* Array of registers where record is assembled */ 775 776 /* Generate code to skip over the creation and initialization of the 777 ** transient index on 2nd and subsequent iterations of the loop. */ 778 v = pParse->pVdbe; 779 assert( v!=0 ); 780 addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 781 782 /* Count the number of columns that will be added to the index 783 ** and used to match WHERE clause constraints */ 784 nKeyCol = 0; 785 pTable = pSrc->pTab; 786 pWCEnd = &pWC->a[pWC->nTerm]; 787 pLoop = pLevel->pWLoop; 788 idxCols = 0; 789 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 790 Expr *pExpr = pTerm->pExpr; 791 assert( !ExprHasProperty(pExpr, EP_FromJoin) /* prereq always non-zero */ 792 || pExpr->iRightJoinTable!=pSrc->iCursor /* for the right-hand */ 793 || pLoop->prereq!=0 ); /* table of a LEFT JOIN */ 794 if( pLoop->prereq==0 795 && (pTerm->wtFlags & TERM_VIRTUAL)==0 796 && !ExprHasProperty(pExpr, EP_FromJoin) 797 && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){ 798 pPartial = sqlite3ExprAnd(pParse, pPartial, 799 sqlite3ExprDup(pParse->db, pExpr, 0)); 800 } 801 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 802 int iCol = pTerm->u.x.leftColumn; 803 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 804 testcase( iCol==BMS ); 805 testcase( iCol==BMS-1 ); 806 if( !sentWarning ){ 807 sqlite3_log(SQLITE_WARNING_AUTOINDEX, 808 "automatic index on %s(%s)", pTable->zName, 809 pTable->aCol[iCol].zCnName); 810 sentWarning = 1; 811 } 812 if( (idxCols & cMask)==0 ){ 813 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ 814 goto end_auto_index_create; 815 } 816 pLoop->aLTerm[nKeyCol++] = pTerm; 817 idxCols |= cMask; 818 } 819 } 820 } 821 assert( nKeyCol>0 || pParse->db->mallocFailed ); 822 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; 823 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED 824 | WHERE_AUTO_INDEX; 825 826 /* Count the number of additional columns needed to create a 827 ** covering index. A "covering index" is an index that contains all 828 ** columns that are needed by the query. With a covering index, the 829 ** original table never needs to be accessed. Automatic indices must 830 ** be a covering index because the index will not be updated if the 831 ** original table changes and the index and table cannot both be used 832 ** if they go out of sync. 833 */ 834 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); 835 mxBitCol = MIN(BMS-1,pTable->nCol); 836 testcase( pTable->nCol==BMS-1 ); 837 testcase( pTable->nCol==BMS-2 ); 838 for(i=0; i<mxBitCol; i++){ 839 if( extraCols & MASKBIT(i) ) nKeyCol++; 840 } 841 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 842 nKeyCol += pTable->nCol - BMS + 1; 843 } 844 845 /* Construct the Index object to describe this index */ 846 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); 847 if( pIdx==0 ) goto end_auto_index_create; 848 pLoop->u.btree.pIndex = pIdx; 849 pIdx->zName = "auto-index"; 850 pIdx->pTable = pTable; 851 n = 0; 852 idxCols = 0; 853 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 854 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 855 int iCol = pTerm->u.x.leftColumn; 856 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 857 testcase( iCol==BMS-1 ); 858 testcase( iCol==BMS ); 859 if( (idxCols & cMask)==0 ){ 860 Expr *pX = pTerm->pExpr; 861 idxCols |= cMask; 862 pIdx->aiColumn[n] = pTerm->u.x.leftColumn; 863 pColl = sqlite3ExprCompareCollSeq(pParse, pX); 864 assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */ 865 pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY; 866 n++; 867 } 868 } 869 } 870 assert( (u32)n==pLoop->u.btree.nEq ); 871 872 /* Add additional columns needed to make the automatic index into 873 ** a covering index */ 874 for(i=0; i<mxBitCol; i++){ 875 if( extraCols & MASKBIT(i) ){ 876 pIdx->aiColumn[n] = i; 877 pIdx->azColl[n] = sqlite3StrBINARY; 878 n++; 879 } 880 } 881 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 882 for(i=BMS-1; i<pTable->nCol; i++){ 883 pIdx->aiColumn[n] = i; 884 pIdx->azColl[n] = sqlite3StrBINARY; 885 n++; 886 } 887 } 888 assert( n==nKeyCol ); 889 pIdx->aiColumn[n] = XN_ROWID; 890 pIdx->azColl[n] = sqlite3StrBINARY; 891 892 /* Create the automatic index */ 893 assert( pLevel->iIdxCur>=0 ); 894 pLevel->iIdxCur = pParse->nTab++; 895 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); 896 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 897 VdbeComment((v, "for %s", pTable->zName)); 898 899 /* Fill the automatic index with content */ 900 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom]; 901 if( pTabItem->fg.viaCoroutine ){ 902 int regYield = pTabItem->regReturn; 903 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0); 904 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 905 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); 906 VdbeCoverage(v); 907 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 908 }else{ 909 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); 910 } 911 if( pPartial ){ 912 iContinue = sqlite3VdbeMakeLabel(pParse); 913 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); 914 pLoop->wsFlags |= WHERE_PARTIALIDX; 915 } 916 regRecord = sqlite3GetTempReg(pParse); 917 regBase = sqlite3GenerateIndexKey( 918 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0 919 ); 920 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); 921 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 922 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); 923 if( pTabItem->fg.viaCoroutine ){ 924 sqlite3VdbeChangeP2(v, addrCounter, regBase+n); 925 testcase( pParse->db->mallocFailed ); 926 assert( pLevel->iIdxCur>0 ); 927 translateColumnToCopy(pParse, addrTop, pLevel->iTabCur, 928 pTabItem->regResult, pLevel->iIdxCur); 929 sqlite3VdbeGoto(v, addrTop); 930 pTabItem->fg.viaCoroutine = 0; 931 }else{ 932 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); 933 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); 934 } 935 sqlite3VdbeJumpHere(v, addrTop); 936 sqlite3ReleaseTempReg(pParse, regRecord); 937 938 /* Jump here when skipping the initialization */ 939 sqlite3VdbeJumpHere(v, addrInit); 940 941 end_auto_index_create: 942 sqlite3ExprDelete(pParse->db, pPartial); 943 } 944 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 945 946 #ifndef SQLITE_OMIT_VIRTUALTABLE 947 /* 948 ** Allocate and populate an sqlite3_index_info structure. It is the 949 ** responsibility of the caller to eventually release the structure 950 ** by passing the pointer returned by this function to sqlite3_free(). 951 */ 952 static sqlite3_index_info *allocateIndexInfo( 953 Parse *pParse, /* The parsing context */ 954 WhereClause *pWC, /* The WHERE clause being analyzed */ 955 Bitmask mUnusable, /* Ignore terms with these prereqs */ 956 SrcItem *pSrc, /* The FROM clause term that is the vtab */ 957 ExprList *pOrderBy, /* The ORDER BY clause */ 958 u16 *pmNoOmit /* Mask of terms not to omit */ 959 ){ 960 int i, j; 961 int nTerm; 962 struct sqlite3_index_constraint *pIdxCons; 963 struct sqlite3_index_orderby *pIdxOrderBy; 964 struct sqlite3_index_constraint_usage *pUsage; 965 struct HiddenIndexInfo *pHidden; 966 WhereTerm *pTerm; 967 int nOrderBy; 968 sqlite3_index_info *pIdxInfo; 969 u16 mNoOmit = 0; 970 971 /* Count the number of possible WHERE clause constraints referring 972 ** to this virtual table */ 973 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 974 if( pTerm->leftCursor != pSrc->iCursor ) continue; 975 if( pTerm->prereqRight & mUnusable ) continue; 976 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 977 testcase( pTerm->eOperator & WO_IN ); 978 testcase( pTerm->eOperator & WO_ISNULL ); 979 testcase( pTerm->eOperator & WO_IS ); 980 testcase( pTerm->eOperator & WO_ALL ); 981 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue; 982 if( pTerm->wtFlags & TERM_VNULL ) continue; 983 assert( pTerm->u.x.leftColumn>=(-1) ); 984 nTerm++; 985 } 986 987 /* If the ORDER BY clause contains only columns in the current 988 ** virtual table then allocate space for the aOrderBy part of 989 ** the sqlite3_index_info structure. 990 */ 991 nOrderBy = 0; 992 if( pOrderBy ){ 993 int n = pOrderBy->nExpr; 994 for(i=0; i<n; i++){ 995 Expr *pExpr = pOrderBy->a[i].pExpr; 996 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 997 if( pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL ) break; 998 } 999 if( i==n){ 1000 nOrderBy = n; 1001 } 1002 } 1003 1004 /* Allocate the sqlite3_index_info structure 1005 */ 1006 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 1007 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 1008 + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) ); 1009 if( pIdxInfo==0 ){ 1010 sqlite3ErrorMsg(pParse, "out of memory"); 1011 return 0; 1012 } 1013 pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1]; 1014 pIdxCons = (struct sqlite3_index_constraint*)&pHidden[1]; 1015 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 1016 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 1017 pIdxInfo->nOrderBy = nOrderBy; 1018 pIdxInfo->aConstraint = pIdxCons; 1019 pIdxInfo->aOrderBy = pIdxOrderBy; 1020 pIdxInfo->aConstraintUsage = pUsage; 1021 pHidden->pWC = pWC; 1022 pHidden->pParse = pParse; 1023 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1024 u16 op; 1025 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1026 if( pTerm->prereqRight & mUnusable ) continue; 1027 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 1028 testcase( pTerm->eOperator & WO_IN ); 1029 testcase( pTerm->eOperator & WO_IS ); 1030 testcase( pTerm->eOperator & WO_ISNULL ); 1031 testcase( pTerm->eOperator & WO_ALL ); 1032 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue; 1033 if( pTerm->wtFlags & TERM_VNULL ) continue; 1034 1035 /* tag-20191211-002: WHERE-clause constraints are not useful to the 1036 ** right-hand table of a LEFT JOIN. See tag-20191211-001 for the 1037 ** equivalent restriction for ordinary tables. */ 1038 if( (pSrc->fg.jointype & JT_LEFT)!=0 1039 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 1040 ){ 1041 continue; 1042 } 1043 assert( pTerm->u.x.leftColumn>=(-1) ); 1044 pIdxCons[j].iColumn = pTerm->u.x.leftColumn; 1045 pIdxCons[j].iTermOffset = i; 1046 op = pTerm->eOperator & WO_ALL; 1047 if( op==WO_IN ) op = WO_EQ; 1048 if( op==WO_AUX ){ 1049 pIdxCons[j].op = pTerm->eMatchOp; 1050 }else if( op & (WO_ISNULL|WO_IS) ){ 1051 if( op==WO_ISNULL ){ 1052 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL; 1053 }else{ 1054 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS; 1055 } 1056 }else{ 1057 pIdxCons[j].op = (u8)op; 1058 /* The direct assignment in the previous line is possible only because 1059 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 1060 ** following asserts verify this fact. */ 1061 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 1062 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 1063 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 1064 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 1065 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 1066 assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) ); 1067 1068 if( op & (WO_LT|WO_LE|WO_GT|WO_GE) 1069 && sqlite3ExprIsVector(pTerm->pExpr->pRight) 1070 ){ 1071 testcase( j!=i ); 1072 if( j<16 ) mNoOmit |= (1 << j); 1073 if( op==WO_LT ) pIdxCons[j].op = WO_LE; 1074 if( op==WO_GT ) pIdxCons[j].op = WO_GE; 1075 } 1076 } 1077 1078 j++; 1079 } 1080 pIdxInfo->nConstraint = j; 1081 for(i=0; i<nOrderBy; i++){ 1082 Expr *pExpr = pOrderBy->a[i].pExpr; 1083 pIdxOrderBy[i].iColumn = pExpr->iColumn; 1084 pIdxOrderBy[i].desc = pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC; 1085 } 1086 1087 *pmNoOmit = mNoOmit; 1088 return pIdxInfo; 1089 } 1090 1091 /* 1092 ** The table object reference passed as the second argument to this function 1093 ** must represent a virtual table. This function invokes the xBestIndex() 1094 ** method of the virtual table with the sqlite3_index_info object that 1095 ** comes in as the 3rd argument to this function. 1096 ** 1097 ** If an error occurs, pParse is populated with an error message and an 1098 ** appropriate error code is returned. A return of SQLITE_CONSTRAINT from 1099 ** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that 1100 ** the current configuration of "unusable" flags in sqlite3_index_info can 1101 ** not result in a valid plan. 1102 ** 1103 ** Whether or not an error is returned, it is the responsibility of the 1104 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates 1105 ** that this is required. 1106 */ 1107 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ 1108 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; 1109 int rc; 1110 1111 whereTraceIndexInfoInputs(p); 1112 rc = pVtab->pModule->xBestIndex(pVtab, p); 1113 whereTraceIndexInfoOutputs(p); 1114 1115 if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){ 1116 if( rc==SQLITE_NOMEM ){ 1117 sqlite3OomFault(pParse->db); 1118 }else if( !pVtab->zErrMsg ){ 1119 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 1120 }else{ 1121 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 1122 } 1123 } 1124 sqlite3_free(pVtab->zErrMsg); 1125 pVtab->zErrMsg = 0; 1126 return rc; 1127 } 1128 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1129 1130 #ifdef SQLITE_ENABLE_STAT4 1131 /* 1132 ** Estimate the location of a particular key among all keys in an 1133 ** index. Store the results in aStat as follows: 1134 ** 1135 ** aStat[0] Est. number of rows less than pRec 1136 ** aStat[1] Est. number of rows equal to pRec 1137 ** 1138 ** Return the index of the sample that is the smallest sample that 1139 ** is greater than or equal to pRec. Note that this index is not an index 1140 ** into the aSample[] array - it is an index into a virtual set of samples 1141 ** based on the contents of aSample[] and the number of fields in record 1142 ** pRec. 1143 */ 1144 static int whereKeyStats( 1145 Parse *pParse, /* Database connection */ 1146 Index *pIdx, /* Index to consider domain of */ 1147 UnpackedRecord *pRec, /* Vector of values to consider */ 1148 int roundUp, /* Round up if true. Round down if false */ 1149 tRowcnt *aStat /* OUT: stats written here */ 1150 ){ 1151 IndexSample *aSample = pIdx->aSample; 1152 int iCol; /* Index of required stats in anEq[] etc. */ 1153 int i; /* Index of first sample >= pRec */ 1154 int iSample; /* Smallest sample larger than or equal to pRec */ 1155 int iMin = 0; /* Smallest sample not yet tested */ 1156 int iTest; /* Next sample to test */ 1157 int res; /* Result of comparison operation */ 1158 int nField; /* Number of fields in pRec */ 1159 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ 1160 1161 #ifndef SQLITE_DEBUG 1162 UNUSED_PARAMETER( pParse ); 1163 #endif 1164 assert( pRec!=0 ); 1165 assert( pIdx->nSample>0 ); 1166 assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol ); 1167 1168 /* Do a binary search to find the first sample greater than or equal 1169 ** to pRec. If pRec contains a single field, the set of samples to search 1170 ** is simply the aSample[] array. If the samples in aSample[] contain more 1171 ** than one fields, all fields following the first are ignored. 1172 ** 1173 ** If pRec contains N fields, where N is more than one, then as well as the 1174 ** samples in aSample[] (truncated to N fields), the search also has to 1175 ** consider prefixes of those samples. For example, if the set of samples 1176 ** in aSample is: 1177 ** 1178 ** aSample[0] = (a, 5) 1179 ** aSample[1] = (a, 10) 1180 ** aSample[2] = (b, 5) 1181 ** aSample[3] = (c, 100) 1182 ** aSample[4] = (c, 105) 1183 ** 1184 ** Then the search space should ideally be the samples above and the 1185 ** unique prefixes [a], [b] and [c]. But since that is hard to organize, 1186 ** the code actually searches this set: 1187 ** 1188 ** 0: (a) 1189 ** 1: (a, 5) 1190 ** 2: (a, 10) 1191 ** 3: (a, 10) 1192 ** 4: (b) 1193 ** 5: (b, 5) 1194 ** 6: (c) 1195 ** 7: (c, 100) 1196 ** 8: (c, 105) 1197 ** 9: (c, 105) 1198 ** 1199 ** For each sample in the aSample[] array, N samples are present in the 1200 ** effective sample array. In the above, samples 0 and 1 are based on 1201 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. 1202 ** 1203 ** Often, sample i of each block of N effective samples has (i+1) fields. 1204 ** Except, each sample may be extended to ensure that it is greater than or 1205 ** equal to the previous sample in the array. For example, in the above, 1206 ** sample 2 is the first sample of a block of N samples, so at first it 1207 ** appears that it should be 1 field in size. However, that would make it 1208 ** smaller than sample 1, so the binary search would not work. As a result, 1209 ** it is extended to two fields. The duplicates that this creates do not 1210 ** cause any problems. 1211 */ 1212 nField = pRec->nField; 1213 iCol = 0; 1214 iSample = pIdx->nSample * nField; 1215 do{ 1216 int iSamp; /* Index in aSample[] of test sample */ 1217 int n; /* Number of fields in test sample */ 1218 1219 iTest = (iMin+iSample)/2; 1220 iSamp = iTest / nField; 1221 if( iSamp>0 ){ 1222 /* The proposed effective sample is a prefix of sample aSample[iSamp]. 1223 ** Specifically, the shortest prefix of at least (1 + iTest%nField) 1224 ** fields that is greater than the previous effective sample. */ 1225 for(n=(iTest % nField) + 1; n<nField; n++){ 1226 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break; 1227 } 1228 }else{ 1229 n = iTest + 1; 1230 } 1231 1232 pRec->nField = n; 1233 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); 1234 if( res<0 ){ 1235 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; 1236 iMin = iTest+1; 1237 }else if( res==0 && n<nField ){ 1238 iLower = aSample[iSamp].anLt[n-1]; 1239 iMin = iTest+1; 1240 res = -1; 1241 }else{ 1242 iSample = iTest; 1243 iCol = n-1; 1244 } 1245 }while( res && iMin<iSample ); 1246 i = iSample / nField; 1247 1248 #ifdef SQLITE_DEBUG 1249 /* The following assert statements check that the binary search code 1250 ** above found the right answer. This block serves no purpose other 1251 ** than to invoke the asserts. */ 1252 if( pParse->db->mallocFailed==0 ){ 1253 if( res==0 ){ 1254 /* If (res==0) is true, then pRec must be equal to sample i. */ 1255 assert( i<pIdx->nSample ); 1256 assert( iCol==nField-1 ); 1257 pRec->nField = nField; 1258 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) 1259 || pParse->db->mallocFailed 1260 ); 1261 }else{ 1262 /* Unless i==pIdx->nSample, indicating that pRec is larger than 1263 ** all samples in the aSample[] array, pRec must be smaller than the 1264 ** (iCol+1) field prefix of sample i. */ 1265 assert( i<=pIdx->nSample && i>=0 ); 1266 pRec->nField = iCol+1; 1267 assert( i==pIdx->nSample 1268 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 1269 || pParse->db->mallocFailed ); 1270 1271 /* if i==0 and iCol==0, then record pRec is smaller than all samples 1272 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must 1273 ** be greater than or equal to the (iCol) field prefix of sample i. 1274 ** If (i>0), then pRec must also be greater than sample (i-1). */ 1275 if( iCol>0 ){ 1276 pRec->nField = iCol; 1277 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 1278 || pParse->db->mallocFailed ); 1279 } 1280 if( i>0 ){ 1281 pRec->nField = nField; 1282 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 1283 || pParse->db->mallocFailed ); 1284 } 1285 } 1286 } 1287 #endif /* ifdef SQLITE_DEBUG */ 1288 1289 if( res==0 ){ 1290 /* Record pRec is equal to sample i */ 1291 assert( iCol==nField-1 ); 1292 aStat[0] = aSample[i].anLt[iCol]; 1293 aStat[1] = aSample[i].anEq[iCol]; 1294 }else{ 1295 /* At this point, the (iCol+1) field prefix of aSample[i] is the first 1296 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec 1297 ** is larger than all samples in the array. */ 1298 tRowcnt iUpper, iGap; 1299 if( i>=pIdx->nSample ){ 1300 iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); 1301 }else{ 1302 iUpper = aSample[i].anLt[iCol]; 1303 } 1304 1305 if( iLower>=iUpper ){ 1306 iGap = 0; 1307 }else{ 1308 iGap = iUpper - iLower; 1309 } 1310 if( roundUp ){ 1311 iGap = (iGap*2)/3; 1312 }else{ 1313 iGap = iGap/3; 1314 } 1315 aStat[0] = iLower + iGap; 1316 aStat[1] = pIdx->aAvgEq[nField-1]; 1317 } 1318 1319 /* Restore the pRec->nField value before returning. */ 1320 pRec->nField = nField; 1321 return i; 1322 } 1323 #endif /* SQLITE_ENABLE_STAT4 */ 1324 1325 /* 1326 ** If it is not NULL, pTerm is a term that provides an upper or lower 1327 ** bound on a range scan. Without considering pTerm, it is estimated 1328 ** that the scan will visit nNew rows. This function returns the number 1329 ** estimated to be visited after taking pTerm into account. 1330 ** 1331 ** If the user explicitly specified a likelihood() value for this term, 1332 ** then the return value is the likelihood multiplied by the number of 1333 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term 1334 ** has a likelihood of 0.50, and any other term a likelihood of 0.25. 1335 */ 1336 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ 1337 LogEst nRet = nNew; 1338 if( pTerm ){ 1339 if( pTerm->truthProb<=0 ){ 1340 nRet += pTerm->truthProb; 1341 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ 1342 nRet -= 20; assert( 20==sqlite3LogEst(4) ); 1343 } 1344 } 1345 return nRet; 1346 } 1347 1348 1349 #ifdef SQLITE_ENABLE_STAT4 1350 /* 1351 ** Return the affinity for a single column of an index. 1352 */ 1353 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){ 1354 assert( iCol>=0 && iCol<pIdx->nColumn ); 1355 if( !pIdx->zColAff ){ 1356 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB; 1357 } 1358 assert( pIdx->zColAff[iCol]!=0 ); 1359 return pIdx->zColAff[iCol]; 1360 } 1361 #endif 1362 1363 1364 #ifdef SQLITE_ENABLE_STAT4 1365 /* 1366 ** This function is called to estimate the number of rows visited by a 1367 ** range-scan on a skip-scan index. For example: 1368 ** 1369 ** CREATE INDEX i1 ON t1(a, b, c); 1370 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; 1371 ** 1372 ** Value pLoop->nOut is currently set to the estimated number of rows 1373 ** visited for scanning (a=? AND b=?). This function reduces that estimate 1374 ** by some factor to account for the (c BETWEEN ? AND ?) expression based 1375 ** on the stat4 data for the index. this scan will be peformed multiple 1376 ** times (once for each (a,b) combination that matches a=?) is dealt with 1377 ** by the caller. 1378 ** 1379 ** It does this by scanning through all stat4 samples, comparing values 1380 ** extracted from pLower and pUpper with the corresponding column in each 1381 ** sample. If L and U are the number of samples found to be less than or 1382 ** equal to the values extracted from pLower and pUpper respectively, and 1383 ** N is the total number of samples, the pLoop->nOut value is adjusted 1384 ** as follows: 1385 ** 1386 ** nOut = nOut * ( min(U - L, 1) / N ) 1387 ** 1388 ** If pLower is NULL, or a value cannot be extracted from the term, L is 1389 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, 1390 ** U is set to N. 1391 ** 1392 ** Normally, this function sets *pbDone to 1 before returning. However, 1393 ** if no value can be extracted from either pLower or pUpper (and so the 1394 ** estimate of the number of rows delivered remains unchanged), *pbDone 1395 ** is left as is. 1396 ** 1397 ** If an error occurs, an SQLite error code is returned. Otherwise, 1398 ** SQLITE_OK. 1399 */ 1400 static int whereRangeSkipScanEst( 1401 Parse *pParse, /* Parsing & code generating context */ 1402 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1403 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1404 WhereLoop *pLoop, /* Update the .nOut value of this loop */ 1405 int *pbDone /* Set to true if at least one expr. value extracted */ 1406 ){ 1407 Index *p = pLoop->u.btree.pIndex; 1408 int nEq = pLoop->u.btree.nEq; 1409 sqlite3 *db = pParse->db; 1410 int nLower = -1; 1411 int nUpper = p->nSample+1; 1412 int rc = SQLITE_OK; 1413 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq); 1414 CollSeq *pColl; 1415 1416 sqlite3_value *p1 = 0; /* Value extracted from pLower */ 1417 sqlite3_value *p2 = 0; /* Value extracted from pUpper */ 1418 sqlite3_value *pVal = 0; /* Value extracted from record */ 1419 1420 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); 1421 if( pLower ){ 1422 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); 1423 nLower = 0; 1424 } 1425 if( pUpper && rc==SQLITE_OK ){ 1426 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); 1427 nUpper = p2 ? 0 : p->nSample; 1428 } 1429 1430 if( p1 || p2 ){ 1431 int i; 1432 int nDiff; 1433 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ 1434 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); 1435 if( rc==SQLITE_OK && p1 ){ 1436 int res = sqlite3MemCompare(p1, pVal, pColl); 1437 if( res>=0 ) nLower++; 1438 } 1439 if( rc==SQLITE_OK && p2 ){ 1440 int res = sqlite3MemCompare(p2, pVal, pColl); 1441 if( res>=0 ) nUpper++; 1442 } 1443 } 1444 nDiff = (nUpper - nLower); 1445 if( nDiff<=0 ) nDiff = 1; 1446 1447 /* If there is both an upper and lower bound specified, and the 1448 ** comparisons indicate that they are close together, use the fallback 1449 ** method (assume that the scan visits 1/64 of the rows) for estimating 1450 ** the number of rows visited. Otherwise, estimate the number of rows 1451 ** using the method described in the header comment for this function. */ 1452 if( nDiff!=1 || pUpper==0 || pLower==0 ){ 1453 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); 1454 pLoop->nOut -= nAdjust; 1455 *pbDone = 1; 1456 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", 1457 nLower, nUpper, nAdjust*-1, pLoop->nOut)); 1458 } 1459 1460 }else{ 1461 assert( *pbDone==0 ); 1462 } 1463 1464 sqlite3ValueFree(p1); 1465 sqlite3ValueFree(p2); 1466 sqlite3ValueFree(pVal); 1467 1468 return rc; 1469 } 1470 #endif /* SQLITE_ENABLE_STAT4 */ 1471 1472 /* 1473 ** This function is used to estimate the number of rows that will be visited 1474 ** by scanning an index for a range of values. The range may have an upper 1475 ** bound, a lower bound, or both. The WHERE clause terms that set the upper 1476 ** and lower bounds are represented by pLower and pUpper respectively. For 1477 ** example, assuming that index p is on t1(a): 1478 ** 1479 ** ... FROM t1 WHERE a > ? AND a < ? ... 1480 ** |_____| |_____| 1481 ** | | 1482 ** pLower pUpper 1483 ** 1484 ** If either of the upper or lower bound is not present, then NULL is passed in 1485 ** place of the corresponding WhereTerm. 1486 ** 1487 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index 1488 ** column subject to the range constraint. Or, equivalently, the number of 1489 ** equality constraints optimized by the proposed index scan. For example, 1490 ** assuming index p is on t1(a, b), and the SQL query is: 1491 ** 1492 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... 1493 ** 1494 ** then nEq is set to 1 (as the range restricted column, b, is the second 1495 ** left-most column of the index). Or, if the query is: 1496 ** 1497 ** ... FROM t1 WHERE a > ? AND a < ? ... 1498 ** 1499 ** then nEq is set to 0. 1500 ** 1501 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the 1502 ** number of rows that the index scan is expected to visit without 1503 ** considering the range constraints. If nEq is 0, then *pnOut is the number of 1504 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) 1505 ** to account for the range constraints pLower and pUpper. 1506 ** 1507 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be 1508 ** used, a single range inequality reduces the search space by a factor of 4. 1509 ** and a pair of constraints (x>? AND x<?) reduces the expected number of 1510 ** rows visited by a factor of 64. 1511 */ 1512 static int whereRangeScanEst( 1513 Parse *pParse, /* Parsing & code generating context */ 1514 WhereLoopBuilder *pBuilder, 1515 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1516 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1517 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ 1518 ){ 1519 int rc = SQLITE_OK; 1520 int nOut = pLoop->nOut; 1521 LogEst nNew; 1522 1523 #ifdef SQLITE_ENABLE_STAT4 1524 Index *p = pLoop->u.btree.pIndex; 1525 int nEq = pLoop->u.btree.nEq; 1526 1527 if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol) 1528 && OptimizationEnabled(pParse->db, SQLITE_Stat4) 1529 ){ 1530 if( nEq==pBuilder->nRecValid ){ 1531 UnpackedRecord *pRec = pBuilder->pRec; 1532 tRowcnt a[2]; 1533 int nBtm = pLoop->u.btree.nBtm; 1534 int nTop = pLoop->u.btree.nTop; 1535 1536 /* Variable iLower will be set to the estimate of the number of rows in 1537 ** the index that are less than the lower bound of the range query. The 1538 ** lower bound being the concatenation of $P and $L, where $P is the 1539 ** key-prefix formed by the nEq values matched against the nEq left-most 1540 ** columns of the index, and $L is the value in pLower. 1541 ** 1542 ** Or, if pLower is NULL or $L cannot be extracted from it (because it 1543 ** is not a simple variable or literal value), the lower bound of the 1544 ** range is $P. Due to a quirk in the way whereKeyStats() works, even 1545 ** if $L is available, whereKeyStats() is called for both ($P) and 1546 ** ($P:$L) and the larger of the two returned values is used. 1547 ** 1548 ** Similarly, iUpper is to be set to the estimate of the number of rows 1549 ** less than the upper bound of the range query. Where the upper bound 1550 ** is either ($P) or ($P:$U). Again, even if $U is available, both values 1551 ** of iUpper are requested of whereKeyStats() and the smaller used. 1552 ** 1553 ** The number of rows between the two bounds is then just iUpper-iLower. 1554 */ 1555 tRowcnt iLower; /* Rows less than the lower bound */ 1556 tRowcnt iUpper; /* Rows less than the upper bound */ 1557 int iLwrIdx = -2; /* aSample[] for the lower bound */ 1558 int iUprIdx = -1; /* aSample[] for the upper bound */ 1559 1560 if( pRec ){ 1561 testcase( pRec->nField!=pBuilder->nRecValid ); 1562 pRec->nField = pBuilder->nRecValid; 1563 } 1564 /* Determine iLower and iUpper using ($P) only. */ 1565 if( nEq==0 ){ 1566 iLower = 0; 1567 iUpper = p->nRowEst0; 1568 }else{ 1569 /* Note: this call could be optimized away - since the same values must 1570 ** have been requested when testing key $P in whereEqualScanEst(). */ 1571 whereKeyStats(pParse, p, pRec, 0, a); 1572 iLower = a[0]; 1573 iUpper = a[0] + a[1]; 1574 } 1575 1576 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); 1577 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); 1578 assert( p->aSortOrder!=0 ); 1579 if( p->aSortOrder[nEq] ){ 1580 /* The roles of pLower and pUpper are swapped for a DESC index */ 1581 SWAP(WhereTerm*, pLower, pUpper); 1582 SWAP(int, nBtm, nTop); 1583 } 1584 1585 /* If possible, improve on the iLower estimate using ($P:$L). */ 1586 if( pLower ){ 1587 int n; /* Values extracted from pExpr */ 1588 Expr *pExpr = pLower->pExpr->pRight; 1589 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n); 1590 if( rc==SQLITE_OK && n ){ 1591 tRowcnt iNew; 1592 u16 mask = WO_GT|WO_LE; 1593 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1594 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); 1595 iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0); 1596 if( iNew>iLower ) iLower = iNew; 1597 nOut--; 1598 pLower = 0; 1599 } 1600 } 1601 1602 /* If possible, improve on the iUpper estimate using ($P:$U). */ 1603 if( pUpper ){ 1604 int n; /* Values extracted from pExpr */ 1605 Expr *pExpr = pUpper->pExpr->pRight; 1606 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n); 1607 if( rc==SQLITE_OK && n ){ 1608 tRowcnt iNew; 1609 u16 mask = WO_GT|WO_LE; 1610 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1611 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); 1612 iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0); 1613 if( iNew<iUpper ) iUpper = iNew; 1614 nOut--; 1615 pUpper = 0; 1616 } 1617 } 1618 1619 pBuilder->pRec = pRec; 1620 if( rc==SQLITE_OK ){ 1621 if( iUpper>iLower ){ 1622 nNew = sqlite3LogEst(iUpper - iLower); 1623 /* TUNING: If both iUpper and iLower are derived from the same 1624 ** sample, then assume they are 4x more selective. This brings 1625 ** the estimated selectivity more in line with what it would be 1626 ** if estimated without the use of STAT4 tables. */ 1627 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) ); 1628 }else{ 1629 nNew = 10; assert( 10==sqlite3LogEst(2) ); 1630 } 1631 if( nNew<nOut ){ 1632 nOut = nNew; 1633 } 1634 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", 1635 (u32)iLower, (u32)iUpper, nOut)); 1636 } 1637 }else{ 1638 int bDone = 0; 1639 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); 1640 if( bDone ) return rc; 1641 } 1642 } 1643 #else 1644 UNUSED_PARAMETER(pParse); 1645 UNUSED_PARAMETER(pBuilder); 1646 assert( pLower || pUpper ); 1647 #endif 1648 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); 1649 nNew = whereRangeAdjust(pLower, nOut); 1650 nNew = whereRangeAdjust(pUpper, nNew); 1651 1652 /* TUNING: If there is both an upper and lower limit and neither limit 1653 ** has an application-defined likelihood(), assume the range is 1654 ** reduced by an additional 75%. This means that, by default, an open-ended 1655 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the 1656 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to 1657 ** match 1/64 of the index. */ 1658 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ 1659 nNew -= 20; 1660 } 1661 1662 nOut -= (pLower!=0) + (pUpper!=0); 1663 if( nNew<10 ) nNew = 10; 1664 if( nNew<nOut ) nOut = nNew; 1665 #if defined(WHERETRACE_ENABLED) 1666 if( pLoop->nOut>nOut ){ 1667 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", 1668 pLoop->nOut, nOut)); 1669 } 1670 #endif 1671 pLoop->nOut = (LogEst)nOut; 1672 return rc; 1673 } 1674 1675 #ifdef SQLITE_ENABLE_STAT4 1676 /* 1677 ** Estimate the number of rows that will be returned based on 1678 ** an equality constraint x=VALUE and where that VALUE occurs in 1679 ** the histogram data. This only works when x is the left-most 1680 ** column of an index and sqlite_stat4 histogram data is available 1681 ** for that index. When pExpr==NULL that means the constraint is 1682 ** "x IS NULL" instead of "x=VALUE". 1683 ** 1684 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1685 ** If unable to make an estimate, leave *pnRow unchanged and return 1686 ** non-zero. 1687 ** 1688 ** This routine can fail if it is unable to load a collating sequence 1689 ** required for string comparison, or if unable to allocate memory 1690 ** for a UTF conversion required for comparison. The error is stored 1691 ** in the pParse structure. 1692 */ 1693 static int whereEqualScanEst( 1694 Parse *pParse, /* Parsing & code generating context */ 1695 WhereLoopBuilder *pBuilder, 1696 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ 1697 tRowcnt *pnRow /* Write the revised row estimate here */ 1698 ){ 1699 Index *p = pBuilder->pNew->u.btree.pIndex; 1700 int nEq = pBuilder->pNew->u.btree.nEq; 1701 UnpackedRecord *pRec = pBuilder->pRec; 1702 int rc; /* Subfunction return code */ 1703 tRowcnt a[2]; /* Statistics */ 1704 int bOk; 1705 1706 assert( nEq>=1 ); 1707 assert( nEq<=p->nColumn ); 1708 assert( p->aSample!=0 ); 1709 assert( p->nSample>0 ); 1710 assert( pBuilder->nRecValid<nEq ); 1711 1712 /* If values are not available for all fields of the index to the left 1713 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ 1714 if( pBuilder->nRecValid<(nEq-1) ){ 1715 return SQLITE_NOTFOUND; 1716 } 1717 1718 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() 1719 ** below would return the same value. */ 1720 if( nEq>=p->nColumn ){ 1721 *pnRow = 1; 1722 return SQLITE_OK; 1723 } 1724 1725 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk); 1726 pBuilder->pRec = pRec; 1727 if( rc!=SQLITE_OK ) return rc; 1728 if( bOk==0 ) return SQLITE_NOTFOUND; 1729 pBuilder->nRecValid = nEq; 1730 1731 whereKeyStats(pParse, p, pRec, 0, a); 1732 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n", 1733 p->zName, nEq-1, (int)a[1])); 1734 *pnRow = a[1]; 1735 1736 return rc; 1737 } 1738 #endif /* SQLITE_ENABLE_STAT4 */ 1739 1740 #ifdef SQLITE_ENABLE_STAT4 1741 /* 1742 ** Estimate the number of rows that will be returned based on 1743 ** an IN constraint where the right-hand side of the IN operator 1744 ** is a list of values. Example: 1745 ** 1746 ** WHERE x IN (1,2,3,4) 1747 ** 1748 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1749 ** If unable to make an estimate, leave *pnRow unchanged and return 1750 ** non-zero. 1751 ** 1752 ** This routine can fail if it is unable to load a collating sequence 1753 ** required for string comparison, or if unable to allocate memory 1754 ** for a UTF conversion required for comparison. The error is stored 1755 ** in the pParse structure. 1756 */ 1757 static int whereInScanEst( 1758 Parse *pParse, /* Parsing & code generating context */ 1759 WhereLoopBuilder *pBuilder, 1760 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ 1761 tRowcnt *pnRow /* Write the revised row estimate here */ 1762 ){ 1763 Index *p = pBuilder->pNew->u.btree.pIndex; 1764 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); 1765 int nRecValid = pBuilder->nRecValid; 1766 int rc = SQLITE_OK; /* Subfunction return code */ 1767 tRowcnt nEst; /* Number of rows for a single term */ 1768 tRowcnt nRowEst = 0; /* New estimate of the number of rows */ 1769 int i; /* Loop counter */ 1770 1771 assert( p->aSample!=0 ); 1772 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ 1773 nEst = nRow0; 1774 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); 1775 nRowEst += nEst; 1776 pBuilder->nRecValid = nRecValid; 1777 } 1778 1779 if( rc==SQLITE_OK ){ 1780 if( nRowEst > nRow0 ) nRowEst = nRow0; 1781 *pnRow = nRowEst; 1782 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); 1783 } 1784 assert( pBuilder->nRecValid==nRecValid ); 1785 return rc; 1786 } 1787 #endif /* SQLITE_ENABLE_STAT4 */ 1788 1789 1790 #ifdef WHERETRACE_ENABLED 1791 /* 1792 ** Print the content of a WhereTerm object 1793 */ 1794 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){ 1795 if( pTerm==0 ){ 1796 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); 1797 }else{ 1798 char zType[8]; 1799 char zLeft[50]; 1800 memcpy(zType, "....", 5); 1801 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; 1802 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; 1803 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L'; 1804 if( pTerm->wtFlags & TERM_CODED ) zType[3] = 'C'; 1805 if( pTerm->eOperator & WO_SINGLE ){ 1806 sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}", 1807 pTerm->leftCursor, pTerm->u.x.leftColumn); 1808 }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){ 1809 sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx", 1810 pTerm->u.pOrInfo->indexable); 1811 }else{ 1812 sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor); 1813 } 1814 sqlite3DebugPrintf( 1815 "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x", 1816 iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags); 1817 /* The 0x10000 .wheretrace flag causes extra information to be 1818 ** shown about each Term */ 1819 if( sqlite3WhereTrace & 0x10000 ){ 1820 sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx", 1821 pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight); 1822 } 1823 if( pTerm->u.x.iField ){ 1824 sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField); 1825 } 1826 if( pTerm->iParent>=0 ){ 1827 sqlite3DebugPrintf(" iParent=%d", pTerm->iParent); 1828 } 1829 sqlite3DebugPrintf("\n"); 1830 sqlite3TreeViewExpr(0, pTerm->pExpr, 0); 1831 } 1832 } 1833 #endif 1834 1835 #ifdef WHERETRACE_ENABLED 1836 /* 1837 ** Show the complete content of a WhereClause 1838 */ 1839 void sqlite3WhereClausePrint(WhereClause *pWC){ 1840 int i; 1841 for(i=0; i<pWC->nTerm; i++){ 1842 sqlite3WhereTermPrint(&pWC->a[i], i); 1843 } 1844 } 1845 #endif 1846 1847 #ifdef WHERETRACE_ENABLED 1848 /* 1849 ** Print a WhereLoop object for debugging purposes 1850 */ 1851 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){ 1852 WhereInfo *pWInfo = pWC->pWInfo; 1853 int nb = 1+(pWInfo->pTabList->nSrc+3)/4; 1854 SrcItem *pItem = pWInfo->pTabList->a + p->iTab; 1855 Table *pTab = pItem->pTab; 1856 Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1; 1857 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, 1858 p->iTab, nb, p->maskSelf, nb, p->prereq & mAll); 1859 sqlite3DebugPrintf(" %12s", 1860 pItem->zAlias ? pItem->zAlias : pTab->zName); 1861 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 1862 const char *zName; 1863 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ 1864 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ 1865 int i = sqlite3Strlen30(zName) - 1; 1866 while( zName[i]!='_' ) i--; 1867 zName += i; 1868 } 1869 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); 1870 }else{ 1871 sqlite3DebugPrintf("%20s",""); 1872 } 1873 }else{ 1874 char *z; 1875 if( p->u.vtab.idxStr ){ 1876 z = sqlite3_mprintf("(%d,\"%s\",%#x)", 1877 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); 1878 }else{ 1879 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); 1880 } 1881 sqlite3DebugPrintf(" %-19s", z); 1882 sqlite3_free(z); 1883 } 1884 if( p->wsFlags & WHERE_SKIPSCAN ){ 1885 sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); 1886 }else{ 1887 sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm); 1888 } 1889 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); 1890 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ 1891 int i; 1892 for(i=0; i<p->nLTerm; i++){ 1893 sqlite3WhereTermPrint(p->aLTerm[i], i); 1894 } 1895 } 1896 } 1897 #endif 1898 1899 /* 1900 ** Convert bulk memory into a valid WhereLoop that can be passed 1901 ** to whereLoopClear harmlessly. 1902 */ 1903 static void whereLoopInit(WhereLoop *p){ 1904 p->aLTerm = p->aLTermSpace; 1905 p->nLTerm = 0; 1906 p->nLSlot = ArraySize(p->aLTermSpace); 1907 p->wsFlags = 0; 1908 } 1909 1910 /* 1911 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. 1912 */ 1913 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ 1914 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ 1915 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ 1916 sqlite3_free(p->u.vtab.idxStr); 1917 p->u.vtab.needFree = 0; 1918 p->u.vtab.idxStr = 0; 1919 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ 1920 sqlite3DbFree(db, p->u.btree.pIndex->zColAff); 1921 sqlite3DbFreeNN(db, p->u.btree.pIndex); 1922 p->u.btree.pIndex = 0; 1923 } 1924 } 1925 } 1926 1927 /* 1928 ** Deallocate internal memory used by a WhereLoop object 1929 */ 1930 static void whereLoopClear(sqlite3 *db, WhereLoop *p){ 1931 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm); 1932 whereLoopClearUnion(db, p); 1933 whereLoopInit(p); 1934 } 1935 1936 /* 1937 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. 1938 */ 1939 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ 1940 WhereTerm **paNew; 1941 if( p->nLSlot>=n ) return SQLITE_OK; 1942 n = (n+7)&~7; 1943 paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n); 1944 if( paNew==0 ) return SQLITE_NOMEM_BKPT; 1945 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); 1946 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm); 1947 p->aLTerm = paNew; 1948 p->nLSlot = n; 1949 return SQLITE_OK; 1950 } 1951 1952 /* 1953 ** Transfer content from the second pLoop into the first. 1954 */ 1955 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ 1956 whereLoopClearUnion(db, pTo); 1957 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){ 1958 memset(pTo, 0, WHERE_LOOP_XFER_SZ); 1959 return SQLITE_NOMEM_BKPT; 1960 } 1961 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); 1962 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); 1963 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ 1964 pFrom->u.vtab.needFree = 0; 1965 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 1966 pFrom->u.btree.pIndex = 0; 1967 } 1968 return SQLITE_OK; 1969 } 1970 1971 /* 1972 ** Delete a WhereLoop object 1973 */ 1974 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ 1975 whereLoopClear(db, p); 1976 sqlite3DbFreeNN(db, p); 1977 } 1978 1979 /* 1980 ** Free a WhereInfo structure 1981 */ 1982 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 1983 int i; 1984 assert( pWInfo!=0 ); 1985 for(i=0; i<pWInfo->nLevel; i++){ 1986 WhereLevel *pLevel = &pWInfo->a[i]; 1987 if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){ 1988 sqlite3DbFree(db, pLevel->u.in.aInLoop); 1989 } 1990 } 1991 sqlite3WhereClauseClear(&pWInfo->sWC); 1992 while( pWInfo->pLoops ){ 1993 WhereLoop *p = pWInfo->pLoops; 1994 pWInfo->pLoops = p->pNextLoop; 1995 whereLoopDelete(db, p); 1996 } 1997 assert( pWInfo->pExprMods==0 ); 1998 sqlite3DbFreeNN(db, pWInfo); 1999 } 2000 2001 /* Undo all Expr node modifications 2002 */ 2003 static void whereUndoExprMods(WhereInfo *pWInfo){ 2004 while( pWInfo->pExprMods ){ 2005 WhereExprMod *p = pWInfo->pExprMods; 2006 pWInfo->pExprMods = p->pNext; 2007 memcpy(p->pExpr, &p->orig, sizeof(p->orig)); 2008 sqlite3DbFree(pWInfo->pParse->db, p); 2009 } 2010 } 2011 2012 /* 2013 ** Return TRUE if all of the following are true: 2014 ** 2015 ** (1) X has the same or lower cost, or returns the same or fewer rows, 2016 ** than Y. 2017 ** (2) X uses fewer WHERE clause terms than Y 2018 ** (3) Every WHERE clause term used by X is also used by Y 2019 ** (4) X skips at least as many columns as Y 2020 ** (5) If X is a covering index, than Y is too 2021 ** 2022 ** Conditions (2) and (3) mean that X is a "proper subset" of Y. 2023 ** If X is a proper subset of Y then Y is a better choice and ought 2024 ** to have a lower cost. This routine returns TRUE when that cost 2025 ** relationship is inverted and needs to be adjusted. Constraint (4) 2026 ** was added because if X uses skip-scan less than Y it still might 2027 ** deserve a lower cost even if it is a proper subset of Y. Constraint (5) 2028 ** was added because a covering index probably deserves to have a lower cost 2029 ** than a non-covering index even if it is a proper subset. 2030 */ 2031 static int whereLoopCheaperProperSubset( 2032 const WhereLoop *pX, /* First WhereLoop to compare */ 2033 const WhereLoop *pY /* Compare against this WhereLoop */ 2034 ){ 2035 int i, j; 2036 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ 2037 return 0; /* X is not a subset of Y */ 2038 } 2039 if( pX->rRun>pY->rRun && pX->nOut>pY->nOut ) return 0; 2040 if( pY->nSkip > pX->nSkip ) return 0; 2041 for(i=pX->nLTerm-1; i>=0; i--){ 2042 if( pX->aLTerm[i]==0 ) continue; 2043 for(j=pY->nLTerm-1; j>=0; j--){ 2044 if( pY->aLTerm[j]==pX->aLTerm[i] ) break; 2045 } 2046 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ 2047 } 2048 if( (pX->wsFlags&WHERE_IDX_ONLY)!=0 2049 && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){ 2050 return 0; /* Constraint (5) */ 2051 } 2052 return 1; /* All conditions meet */ 2053 } 2054 2055 /* 2056 ** Try to adjust the cost and number of output rows of WhereLoop pTemplate 2057 ** upwards or downwards so that: 2058 ** 2059 ** (1) pTemplate costs less than any other WhereLoops that are a proper 2060 ** subset of pTemplate 2061 ** 2062 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate 2063 ** is a proper subset. 2064 ** 2065 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer 2066 ** WHERE clause terms than Y and that every WHERE clause term used by X is 2067 ** also used by Y. 2068 */ 2069 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ 2070 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; 2071 for(; p; p=p->pNextLoop){ 2072 if( p->iTab!=pTemplate->iTab ) continue; 2073 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; 2074 if( whereLoopCheaperProperSubset(p, pTemplate) ){ 2075 /* Adjust pTemplate cost downward so that it is cheaper than its 2076 ** subset p. */ 2077 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 2078 pTemplate->rRun, pTemplate->nOut, 2079 MIN(p->rRun, pTemplate->rRun), 2080 MIN(p->nOut - 1, pTemplate->nOut))); 2081 pTemplate->rRun = MIN(p->rRun, pTemplate->rRun); 2082 pTemplate->nOut = MIN(p->nOut - 1, pTemplate->nOut); 2083 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ 2084 /* Adjust pTemplate cost upward so that it is costlier than p since 2085 ** pTemplate is a proper subset of p */ 2086 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 2087 pTemplate->rRun, pTemplate->nOut, 2088 MAX(p->rRun, pTemplate->rRun), 2089 MAX(p->nOut + 1, pTemplate->nOut))); 2090 pTemplate->rRun = MAX(p->rRun, pTemplate->rRun); 2091 pTemplate->nOut = MAX(p->nOut + 1, pTemplate->nOut); 2092 } 2093 } 2094 } 2095 2096 /* 2097 ** Search the list of WhereLoops in *ppPrev looking for one that can be 2098 ** replaced by pTemplate. 2099 ** 2100 ** Return NULL if pTemplate does not belong on the WhereLoop list. 2101 ** In other words if pTemplate ought to be dropped from further consideration. 2102 ** 2103 ** If pX is a WhereLoop that pTemplate can replace, then return the 2104 ** link that points to pX. 2105 ** 2106 ** If pTemplate cannot replace any existing element of the list but needs 2107 ** to be added to the list as a new entry, then return a pointer to the 2108 ** tail of the list. 2109 */ 2110 static WhereLoop **whereLoopFindLesser( 2111 WhereLoop **ppPrev, 2112 const WhereLoop *pTemplate 2113 ){ 2114 WhereLoop *p; 2115 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ 2116 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ 2117 /* If either the iTab or iSortIdx values for two WhereLoop are different 2118 ** then those WhereLoops need to be considered separately. Neither is 2119 ** a candidate to replace the other. */ 2120 continue; 2121 } 2122 /* In the current implementation, the rSetup value is either zero 2123 ** or the cost of building an automatic index (NlogN) and the NlogN 2124 ** is the same for compatible WhereLoops. */ 2125 assert( p->rSetup==0 || pTemplate->rSetup==0 2126 || p->rSetup==pTemplate->rSetup ); 2127 2128 /* whereLoopAddBtree() always generates and inserts the automatic index 2129 ** case first. Hence compatible candidate WhereLoops never have a larger 2130 ** rSetup. Call this SETUP-INVARIANT */ 2131 assert( p->rSetup>=pTemplate->rSetup ); 2132 2133 /* Any loop using an appliation-defined index (or PRIMARY KEY or 2134 ** UNIQUE constraint) with one or more == constraints is better 2135 ** than an automatic index. Unless it is a skip-scan. */ 2136 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 2137 && (pTemplate->nSkip)==0 2138 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 2139 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 2140 && (p->prereq & pTemplate->prereq)==pTemplate->prereq 2141 ){ 2142 break; 2143 } 2144 2145 /* If existing WhereLoop p is better than pTemplate, pTemplate can be 2146 ** discarded. WhereLoop p is better if: 2147 ** (1) p has no more dependencies than pTemplate, and 2148 ** (2) p has an equal or lower cost than pTemplate 2149 */ 2150 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ 2151 && p->rSetup<=pTemplate->rSetup /* (2a) */ 2152 && p->rRun<=pTemplate->rRun /* (2b) */ 2153 && p->nOut<=pTemplate->nOut /* (2c) */ 2154 ){ 2155 return 0; /* Discard pTemplate */ 2156 } 2157 2158 /* If pTemplate is always better than p, then cause p to be overwritten 2159 ** with pTemplate. pTemplate is better than p if: 2160 ** (1) pTemplate has no more dependences than p, and 2161 ** (2) pTemplate has an equal or lower cost than p. 2162 */ 2163 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ 2164 && p->rRun>=pTemplate->rRun /* (2a) */ 2165 && p->nOut>=pTemplate->nOut /* (2b) */ 2166 ){ 2167 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ 2168 break; /* Cause p to be overwritten by pTemplate */ 2169 } 2170 } 2171 return ppPrev; 2172 } 2173 2174 /* 2175 ** Insert or replace a WhereLoop entry using the template supplied. 2176 ** 2177 ** An existing WhereLoop entry might be overwritten if the new template 2178 ** is better and has fewer dependencies. Or the template will be ignored 2179 ** and no insert will occur if an existing WhereLoop is faster and has 2180 ** fewer dependencies than the template. Otherwise a new WhereLoop is 2181 ** added based on the template. 2182 ** 2183 ** If pBuilder->pOrSet is not NULL then we care about only the 2184 ** prerequisites and rRun and nOut costs of the N best loops. That 2185 ** information is gathered in the pBuilder->pOrSet object. This special 2186 ** processing mode is used only for OR clause processing. 2187 ** 2188 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we 2189 ** still might overwrite similar loops with the new template if the 2190 ** new template is better. Loops may be overwritten if the following 2191 ** conditions are met: 2192 ** 2193 ** (1) They have the same iTab. 2194 ** (2) They have the same iSortIdx. 2195 ** (3) The template has same or fewer dependencies than the current loop 2196 ** (4) The template has the same or lower cost than the current loop 2197 */ 2198 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ 2199 WhereLoop **ppPrev, *p; 2200 WhereInfo *pWInfo = pBuilder->pWInfo; 2201 sqlite3 *db = pWInfo->pParse->db; 2202 int rc; 2203 2204 /* Stop the search once we hit the query planner search limit */ 2205 if( pBuilder->iPlanLimit==0 ){ 2206 WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n")); 2207 if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0; 2208 return SQLITE_DONE; 2209 } 2210 pBuilder->iPlanLimit--; 2211 2212 whereLoopAdjustCost(pWInfo->pLoops, pTemplate); 2213 2214 /* If pBuilder->pOrSet is defined, then only keep track of the costs 2215 ** and prereqs. 2216 */ 2217 if( pBuilder->pOrSet!=0 ){ 2218 if( pTemplate->nLTerm ){ 2219 #if WHERETRACE_ENABLED 2220 u16 n = pBuilder->pOrSet->n; 2221 int x = 2222 #endif 2223 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, 2224 pTemplate->nOut); 2225 #if WHERETRACE_ENABLED /* 0x8 */ 2226 if( sqlite3WhereTrace & 0x8 ){ 2227 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); 2228 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2229 } 2230 #endif 2231 } 2232 return SQLITE_OK; 2233 } 2234 2235 /* Look for an existing WhereLoop to replace with pTemplate 2236 */ 2237 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); 2238 2239 if( ppPrev==0 ){ 2240 /* There already exists a WhereLoop on the list that is better 2241 ** than pTemplate, so just ignore pTemplate */ 2242 #if WHERETRACE_ENABLED /* 0x8 */ 2243 if( sqlite3WhereTrace & 0x8 ){ 2244 sqlite3DebugPrintf(" skip: "); 2245 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2246 } 2247 #endif 2248 return SQLITE_OK; 2249 }else{ 2250 p = *ppPrev; 2251 } 2252 2253 /* If we reach this point it means that either p[] should be overwritten 2254 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new 2255 ** WhereLoop and insert it. 2256 */ 2257 #if WHERETRACE_ENABLED /* 0x8 */ 2258 if( sqlite3WhereTrace & 0x8 ){ 2259 if( p!=0 ){ 2260 sqlite3DebugPrintf("replace: "); 2261 sqlite3WhereLoopPrint(p, pBuilder->pWC); 2262 sqlite3DebugPrintf(" with: "); 2263 }else{ 2264 sqlite3DebugPrintf(" add: "); 2265 } 2266 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2267 } 2268 #endif 2269 if( p==0 ){ 2270 /* Allocate a new WhereLoop to add to the end of the list */ 2271 *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop)); 2272 if( p==0 ) return SQLITE_NOMEM_BKPT; 2273 whereLoopInit(p); 2274 p->pNextLoop = 0; 2275 }else{ 2276 /* We will be overwriting WhereLoop p[]. But before we do, first 2277 ** go through the rest of the list and delete any other entries besides 2278 ** p[] that are also supplated by pTemplate */ 2279 WhereLoop **ppTail = &p->pNextLoop; 2280 WhereLoop *pToDel; 2281 while( *ppTail ){ 2282 ppTail = whereLoopFindLesser(ppTail, pTemplate); 2283 if( ppTail==0 ) break; 2284 pToDel = *ppTail; 2285 if( pToDel==0 ) break; 2286 *ppTail = pToDel->pNextLoop; 2287 #if WHERETRACE_ENABLED /* 0x8 */ 2288 if( sqlite3WhereTrace & 0x8 ){ 2289 sqlite3DebugPrintf(" delete: "); 2290 sqlite3WhereLoopPrint(pToDel, pBuilder->pWC); 2291 } 2292 #endif 2293 whereLoopDelete(db, pToDel); 2294 } 2295 } 2296 rc = whereLoopXfer(db, p, pTemplate); 2297 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 2298 Index *pIndex = p->u.btree.pIndex; 2299 if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){ 2300 p->u.btree.pIndex = 0; 2301 } 2302 } 2303 return rc; 2304 } 2305 2306 /* 2307 ** Adjust the WhereLoop.nOut value downward to account for terms of the 2308 ** WHERE clause that reference the loop but which are not used by an 2309 ** index. 2310 * 2311 ** For every WHERE clause term that is not used by the index 2312 ** and which has a truth probability assigned by one of the likelihood(), 2313 ** likely(), or unlikely() SQL functions, reduce the estimated number 2314 ** of output rows by the probability specified. 2315 ** 2316 ** TUNING: For every WHERE clause term that is not used by the index 2317 ** and which does not have an assigned truth probability, heuristics 2318 ** described below are used to try to estimate the truth probability. 2319 ** TODO --> Perhaps this is something that could be improved by better 2320 ** table statistics. 2321 ** 2322 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% 2323 ** value corresponds to -1 in LogEst notation, so this means decrement 2324 ** the WhereLoop.nOut field for every such WHERE clause term. 2325 ** 2326 ** Heuristic 2: If there exists one or more WHERE clause terms of the 2327 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the 2328 ** final output row estimate is no greater than 1/4 of the total number 2329 ** of rows in the table. In other words, assume that x==EXPR will filter 2330 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the 2331 ** "x" column is boolean or else -1 or 0 or 1 is a common default value 2332 ** on the "x" column and so in that case only cap the output row estimate 2333 ** at 1/2 instead of 1/4. 2334 */ 2335 static void whereLoopOutputAdjust( 2336 WhereClause *pWC, /* The WHERE clause */ 2337 WhereLoop *pLoop, /* The loop to adjust downward */ 2338 LogEst nRow /* Number of rows in the entire table */ 2339 ){ 2340 WhereTerm *pTerm, *pX; 2341 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); 2342 int i, j; 2343 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ 2344 2345 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2346 for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){ 2347 assert( pTerm!=0 ); 2348 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break; 2349 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; 2350 if( (pTerm->prereqAll & notAllowed)!=0 ) continue; 2351 for(j=pLoop->nLTerm-1; j>=0; j--){ 2352 pX = pLoop->aLTerm[j]; 2353 if( pX==0 ) continue; 2354 if( pX==pTerm ) break; 2355 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; 2356 } 2357 if( j<0 ){ 2358 if( pTerm->truthProb<=0 ){ 2359 /* If a truth probability is specified using the likelihood() hints, 2360 ** then use the probability provided by the application. */ 2361 pLoop->nOut += pTerm->truthProb; 2362 }else{ 2363 /* In the absence of explicit truth probabilities, use heuristics to 2364 ** guess a reasonable truth probability. */ 2365 pLoop->nOut--; 2366 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 2367 && (pTerm->wtFlags & TERM_HIGHTRUTH)==0 /* tag-20200224-1 */ 2368 ){ 2369 Expr *pRight = pTerm->pExpr->pRight; 2370 int k = 0; 2371 testcase( pTerm->pExpr->op==TK_IS ); 2372 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){ 2373 k = 10; 2374 }else{ 2375 k = 20; 2376 } 2377 if( iReduce<k ){ 2378 pTerm->wtFlags |= TERM_HEURTRUTH; 2379 iReduce = k; 2380 } 2381 } 2382 } 2383 } 2384 } 2385 if( pLoop->nOut > nRow-iReduce ) pLoop->nOut = nRow - iReduce; 2386 } 2387 2388 /* 2389 ** Term pTerm is a vector range comparison operation. The first comparison 2390 ** in the vector can be optimized using column nEq of the index. This 2391 ** function returns the total number of vector elements that can be used 2392 ** as part of the range comparison. 2393 ** 2394 ** For example, if the query is: 2395 ** 2396 ** WHERE a = ? AND (b, c, d) > (?, ?, ?) 2397 ** 2398 ** and the index: 2399 ** 2400 ** CREATE INDEX ... ON (a, b, c, d, e) 2401 ** 2402 ** then this function would be invoked with nEq=1. The value returned in 2403 ** this case is 3. 2404 */ 2405 static int whereRangeVectorLen( 2406 Parse *pParse, /* Parsing context */ 2407 int iCur, /* Cursor open on pIdx */ 2408 Index *pIdx, /* The index to be used for a inequality constraint */ 2409 int nEq, /* Number of prior equality constraints on same index */ 2410 WhereTerm *pTerm /* The vector inequality constraint */ 2411 ){ 2412 int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft); 2413 int i; 2414 2415 nCmp = MIN(nCmp, (pIdx->nColumn - nEq)); 2416 for(i=1; i<nCmp; i++){ 2417 /* Test if comparison i of pTerm is compatible with column (i+nEq) 2418 ** of the index. If not, exit the loop. */ 2419 char aff; /* Comparison affinity */ 2420 char idxaff = 0; /* Indexed columns affinity */ 2421 CollSeq *pColl; /* Comparison collation sequence */ 2422 Expr *pLhs, *pRhs; 2423 2424 assert( ExprUseXList(pTerm->pExpr->pLeft) ); 2425 pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr; 2426 pRhs = pTerm->pExpr->pRight; 2427 if( ExprUseXSelect(pRhs) ){ 2428 pRhs = pRhs->x.pSelect->pEList->a[i].pExpr; 2429 }else{ 2430 pRhs = pRhs->x.pList->a[i].pExpr; 2431 } 2432 2433 /* Check that the LHS of the comparison is a column reference to 2434 ** the right column of the right source table. And that the sort 2435 ** order of the index column is the same as the sort order of the 2436 ** leftmost index column. */ 2437 if( pLhs->op!=TK_COLUMN 2438 || pLhs->iTable!=iCur 2439 || pLhs->iColumn!=pIdx->aiColumn[i+nEq] 2440 || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq] 2441 ){ 2442 break; 2443 } 2444 2445 testcase( pLhs->iColumn==XN_ROWID ); 2446 aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs)); 2447 idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn); 2448 if( aff!=idxaff ) break; 2449 2450 pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2451 if( pColl==0 ) break; 2452 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break; 2453 } 2454 return i; 2455 } 2456 2457 /* 2458 ** Adjust the cost C by the costMult facter T. This only occurs if 2459 ** compiled with -DSQLITE_ENABLE_COSTMULT 2460 */ 2461 #ifdef SQLITE_ENABLE_COSTMULT 2462 # define ApplyCostMultiplier(C,T) C += T 2463 #else 2464 # define ApplyCostMultiplier(C,T) 2465 #endif 2466 2467 /* 2468 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the 2469 ** index pIndex. Try to match one more. 2470 ** 2471 ** When this function is called, pBuilder->pNew->nOut contains the 2472 ** number of rows expected to be visited by filtering using the nEq 2473 ** terms only. If it is modified, this value is restored before this 2474 ** function returns. 2475 ** 2476 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is 2477 ** a fake index used for the INTEGER PRIMARY KEY. 2478 */ 2479 static int whereLoopAddBtreeIndex( 2480 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ 2481 SrcItem *pSrc, /* FROM clause term being analyzed */ 2482 Index *pProbe, /* An index on pSrc */ 2483 LogEst nInMul /* log(Number of iterations due to IN) */ 2484 ){ 2485 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ 2486 Parse *pParse = pWInfo->pParse; /* Parsing context */ 2487 sqlite3 *db = pParse->db; /* Database connection malloc context */ 2488 WhereLoop *pNew; /* Template WhereLoop under construction */ 2489 WhereTerm *pTerm; /* A WhereTerm under consideration */ 2490 int opMask; /* Valid operators for constraints */ 2491 WhereScan scan; /* Iterator for WHERE terms */ 2492 Bitmask saved_prereq; /* Original value of pNew->prereq */ 2493 u16 saved_nLTerm; /* Original value of pNew->nLTerm */ 2494 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ 2495 u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */ 2496 u16 saved_nTop; /* Original value of pNew->u.btree.nTop */ 2497 u16 saved_nSkip; /* Original value of pNew->nSkip */ 2498 u32 saved_wsFlags; /* Original value of pNew->wsFlags */ 2499 LogEst saved_nOut; /* Original value of pNew->nOut */ 2500 int rc = SQLITE_OK; /* Return code */ 2501 LogEst rSize; /* Number of rows in the table */ 2502 LogEst rLogSize; /* Logarithm of table size */ 2503 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ 2504 2505 pNew = pBuilder->pNew; 2506 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 2507 WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n", 2508 pProbe->pTable->zName,pProbe->zName, 2509 pNew->u.btree.nEq, pNew->nSkip, pNew->rRun)); 2510 2511 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); 2512 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); 2513 if( pNew->wsFlags & WHERE_BTM_LIMIT ){ 2514 opMask = WO_LT|WO_LE; 2515 }else{ 2516 assert( pNew->u.btree.nBtm==0 ); 2517 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS; 2518 } 2519 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); 2520 2521 assert( pNew->u.btree.nEq<pProbe->nColumn ); 2522 assert( pNew->u.btree.nEq<pProbe->nKeyCol 2523 || pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY ); 2524 2525 saved_nEq = pNew->u.btree.nEq; 2526 saved_nBtm = pNew->u.btree.nBtm; 2527 saved_nTop = pNew->u.btree.nTop; 2528 saved_nSkip = pNew->nSkip; 2529 saved_nLTerm = pNew->nLTerm; 2530 saved_wsFlags = pNew->wsFlags; 2531 saved_prereq = pNew->prereq; 2532 saved_nOut = pNew->nOut; 2533 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq, 2534 opMask, pProbe); 2535 pNew->rSetup = 0; 2536 rSize = pProbe->aiRowLogEst[0]; 2537 rLogSize = estLog(rSize); 2538 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ 2539 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ 2540 LogEst rCostIdx; 2541 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ 2542 int nIn = 0; 2543 #ifdef SQLITE_ENABLE_STAT4 2544 int nRecValid = pBuilder->nRecValid; 2545 #endif 2546 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) 2547 && indexColumnNotNull(pProbe, saved_nEq) 2548 ){ 2549 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ 2550 } 2551 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2552 2553 /* Do not allow the upper bound of a LIKE optimization range constraint 2554 ** to mix with a lower range bound from some other source */ 2555 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; 2556 2557 /* tag-20191211-001: Do not allow constraints from the WHERE clause to 2558 ** be used by the right table of a LEFT JOIN. Only constraints in the 2559 ** ON clause are allowed. See tag-20191211-002 for the vtab equivalent. */ 2560 if( (pSrc->fg.jointype & JT_LEFT)!=0 2561 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 2562 ){ 2563 continue; 2564 } 2565 2566 if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){ 2567 pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE; 2568 }else{ 2569 pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED; 2570 } 2571 pNew->wsFlags = saved_wsFlags; 2572 pNew->u.btree.nEq = saved_nEq; 2573 pNew->u.btree.nBtm = saved_nBtm; 2574 pNew->u.btree.nTop = saved_nTop; 2575 pNew->nLTerm = saved_nLTerm; 2576 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2577 pNew->aLTerm[pNew->nLTerm++] = pTerm; 2578 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; 2579 2580 assert( nInMul==0 2581 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 2582 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 2583 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 2584 ); 2585 2586 if( eOp & WO_IN ){ 2587 Expr *pExpr = pTerm->pExpr; 2588 if( ExprUseXSelect(pExpr) ){ 2589 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ 2590 int i; 2591 nIn = 46; assert( 46==sqlite3LogEst(25) ); 2592 2593 /* The expression may actually be of the form (x, y) IN (SELECT...). 2594 ** In this case there is a separate term for each of (x) and (y). 2595 ** However, the nIn multiplier should only be applied once, not once 2596 ** for each such term. The following loop checks that pTerm is the 2597 ** first such term in use, and sets nIn back to 0 if it is not. */ 2598 for(i=0; i<pNew->nLTerm-1; i++){ 2599 if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0; 2600 } 2601 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ 2602 /* "x IN (value, value, ...)" */ 2603 nIn = sqlite3LogEst(pExpr->x.pList->nExpr); 2604 } 2605 if( pProbe->hasStat1 && rLogSize>=10 ){ 2606 LogEst M, logK, x; 2607 /* Let: 2608 ** N = the total number of rows in the table 2609 ** K = the number of entries on the RHS of the IN operator 2610 ** M = the number of rows in the table that match terms to the 2611 ** to the left in the same index. If the IN operator is on 2612 ** the left-most index column, M==N. 2613 ** 2614 ** Given the definitions above, it is better to omit the IN operator 2615 ** from the index lookup and instead do a scan of the M elements, 2616 ** testing each scanned row against the IN operator separately, if: 2617 ** 2618 ** M*log(K) < K*log(N) 2619 ** 2620 ** Our estimates for M, K, and N might be inaccurate, so we build in 2621 ** a safety margin of 2 (LogEst: 10) that favors using the IN operator 2622 ** with the index, as using an index has better worst-case behavior. 2623 ** If we do not have real sqlite_stat1 data, always prefer to use 2624 ** the index. Do not bother with this optimization on very small 2625 ** tables (less than 2 rows) as it is pointless in that case. 2626 */ 2627 M = pProbe->aiRowLogEst[saved_nEq]; 2628 logK = estLog(nIn); 2629 /* TUNING v----- 10 to bias toward indexed IN */ 2630 x = M + logK + 10 - (nIn + rLogSize); 2631 if( x>=0 ){ 2632 WHERETRACE(0x40, 2633 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) " 2634 "prefers indexed lookup\n", 2635 saved_nEq, M, logK, nIn, rLogSize, x)); 2636 }else if( nInMul<2 && OptimizationEnabled(db, SQLITE_SeekScan) ){ 2637 WHERETRACE(0x40, 2638 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d" 2639 " nInMul=%d) prefers skip-scan\n", 2640 saved_nEq, M, logK, nIn, rLogSize, x, nInMul)); 2641 pNew->wsFlags |= WHERE_IN_SEEKSCAN; 2642 }else{ 2643 WHERETRACE(0x40, 2644 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d" 2645 " nInMul=%d) prefers normal scan\n", 2646 saved_nEq, M, logK, nIn, rLogSize, x, nInMul)); 2647 continue; 2648 } 2649 } 2650 pNew->wsFlags |= WHERE_COLUMN_IN; 2651 }else if( eOp & (WO_EQ|WO_IS) ){ 2652 int iCol = pProbe->aiColumn[saved_nEq]; 2653 pNew->wsFlags |= WHERE_COLUMN_EQ; 2654 assert( saved_nEq==pNew->u.btree.nEq ); 2655 if( iCol==XN_ROWID 2656 || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) 2657 ){ 2658 if( iCol==XN_ROWID || pProbe->uniqNotNull 2659 || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ) 2660 ){ 2661 pNew->wsFlags |= WHERE_ONEROW; 2662 }else{ 2663 pNew->wsFlags |= WHERE_UNQ_WANTED; 2664 } 2665 } 2666 if( scan.iEquiv>1 ) pNew->wsFlags |= WHERE_TRANSCONS; 2667 }else if( eOp & WO_ISNULL ){ 2668 pNew->wsFlags |= WHERE_COLUMN_NULL; 2669 }else if( eOp & (WO_GT|WO_GE) ){ 2670 testcase( eOp & WO_GT ); 2671 testcase( eOp & WO_GE ); 2672 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; 2673 pNew->u.btree.nBtm = whereRangeVectorLen( 2674 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2675 ); 2676 pBtm = pTerm; 2677 pTop = 0; 2678 if( pTerm->wtFlags & TERM_LIKEOPT ){ 2679 /* Range constraints that come from the LIKE optimization are 2680 ** always used in pairs. */ 2681 pTop = &pTerm[1]; 2682 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm ); 2683 assert( pTop->wtFlags & TERM_LIKEOPT ); 2684 assert( pTop->eOperator==WO_LT ); 2685 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2686 pNew->aLTerm[pNew->nLTerm++] = pTop; 2687 pNew->wsFlags |= WHERE_TOP_LIMIT; 2688 pNew->u.btree.nTop = 1; 2689 } 2690 }else{ 2691 assert( eOp & (WO_LT|WO_LE) ); 2692 testcase( eOp & WO_LT ); 2693 testcase( eOp & WO_LE ); 2694 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; 2695 pNew->u.btree.nTop = whereRangeVectorLen( 2696 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2697 ); 2698 pTop = pTerm; 2699 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? 2700 pNew->aLTerm[pNew->nLTerm-2] : 0; 2701 } 2702 2703 /* At this point pNew->nOut is set to the number of rows expected to 2704 ** be visited by the index scan before considering term pTerm, or the 2705 ** values of nIn and nInMul. In other words, assuming that all 2706 ** "x IN(...)" terms are replaced with "x = ?". This block updates 2707 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ 2708 assert( pNew->nOut==saved_nOut ); 2709 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2710 /* Adjust nOut using stat4 data. Or, if there is no stat4 2711 ** data, using some other estimate. */ 2712 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); 2713 }else{ 2714 int nEq = ++pNew->u.btree.nEq; 2715 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) ); 2716 2717 assert( pNew->nOut==saved_nOut ); 2718 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){ 2719 assert( (eOp & WO_IN) || nIn==0 ); 2720 testcase( eOp & WO_IN ); 2721 pNew->nOut += pTerm->truthProb; 2722 pNew->nOut -= nIn; 2723 }else{ 2724 #ifdef SQLITE_ENABLE_STAT4 2725 tRowcnt nOut = 0; 2726 if( nInMul==0 2727 && pProbe->nSample 2728 && ALWAYS(pNew->u.btree.nEq<=pProbe->nSampleCol) 2729 && ((eOp & WO_IN)==0 || ExprUseXList(pTerm->pExpr)) 2730 && OptimizationEnabled(db, SQLITE_Stat4) 2731 ){ 2732 Expr *pExpr = pTerm->pExpr; 2733 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){ 2734 testcase( eOp & WO_EQ ); 2735 testcase( eOp & WO_IS ); 2736 testcase( eOp & WO_ISNULL ); 2737 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); 2738 }else{ 2739 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); 2740 } 2741 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 2742 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ 2743 if( nOut ){ 2744 pNew->nOut = sqlite3LogEst(nOut); 2745 if( nEq==1 2746 /* TUNING: Mark terms as "low selectivity" if they seem likely 2747 ** to be true for half or more of the rows in the table. 2748 ** See tag-202002240-1 */ 2749 && pNew->nOut+10 > pProbe->aiRowLogEst[0] 2750 ){ 2751 #if WHERETRACE_ENABLED /* 0x01 */ 2752 if( sqlite3WhereTrace & 0x01 ){ 2753 sqlite3DebugPrintf( 2754 "STAT4 determines term has low selectivity:\n"); 2755 sqlite3WhereTermPrint(pTerm, 999); 2756 } 2757 #endif 2758 pTerm->wtFlags |= TERM_HIGHTRUTH; 2759 if( pTerm->wtFlags & TERM_HEURTRUTH ){ 2760 /* If the term has previously been used with an assumption of 2761 ** higher selectivity, then set the flag to rerun the 2762 ** loop computations. */ 2763 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS; 2764 } 2765 } 2766 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; 2767 pNew->nOut -= nIn; 2768 } 2769 } 2770 if( nOut==0 ) 2771 #endif 2772 { 2773 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); 2774 if( eOp & WO_ISNULL ){ 2775 /* TUNING: If there is no likelihood() value, assume that a 2776 ** "col IS NULL" expression matches twice as many rows 2777 ** as (col=?). */ 2778 pNew->nOut += 10; 2779 } 2780 } 2781 } 2782 } 2783 2784 /* Set rCostIdx to the cost of visiting selected rows in index. Add 2785 ** it to pNew->rRun, which is currently set to the cost of the index 2786 ** seek only. Then, if this is a non-covering index, add the cost of 2787 ** visiting the rows in the main table. */ 2788 assert( pSrc->pTab->szTabRow>0 ); 2789 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; 2790 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); 2791 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ 2792 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); 2793 } 2794 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); 2795 2796 nOutUnadjusted = pNew->nOut; 2797 pNew->rRun += nInMul + nIn; 2798 pNew->nOut += nInMul + nIn; 2799 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); 2800 rc = whereLoopInsert(pBuilder, pNew); 2801 2802 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2803 pNew->nOut = saved_nOut; 2804 }else{ 2805 pNew->nOut = nOutUnadjusted; 2806 } 2807 2808 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 2809 && pNew->u.btree.nEq<pProbe->nColumn 2810 && (pNew->u.btree.nEq<pProbe->nKeyCol || 2811 pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY) 2812 ){ 2813 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); 2814 } 2815 pNew->nOut = saved_nOut; 2816 #ifdef SQLITE_ENABLE_STAT4 2817 pBuilder->nRecValid = nRecValid; 2818 #endif 2819 } 2820 pNew->prereq = saved_prereq; 2821 pNew->u.btree.nEq = saved_nEq; 2822 pNew->u.btree.nBtm = saved_nBtm; 2823 pNew->u.btree.nTop = saved_nTop; 2824 pNew->nSkip = saved_nSkip; 2825 pNew->wsFlags = saved_wsFlags; 2826 pNew->nOut = saved_nOut; 2827 pNew->nLTerm = saved_nLTerm; 2828 2829 /* Consider using a skip-scan if there are no WHERE clause constraints 2830 ** available for the left-most terms of the index, and if the average 2831 ** number of repeats in the left-most terms is at least 18. 2832 ** 2833 ** The magic number 18 is selected on the basis that scanning 17 rows 2834 ** is almost always quicker than an index seek (even though if the index 2835 ** contains fewer than 2^17 rows we assume otherwise in other parts of 2836 ** the code). And, even if it is not, it should not be too much slower. 2837 ** On the other hand, the extra seeks could end up being significantly 2838 ** more expensive. */ 2839 assert( 42==sqlite3LogEst(18) ); 2840 if( saved_nEq==saved_nSkip 2841 && saved_nEq+1<pProbe->nKeyCol 2842 && saved_nEq==pNew->nLTerm 2843 && pProbe->noSkipScan==0 2844 && pProbe->hasStat1!=0 2845 && OptimizationEnabled(db, SQLITE_SkipScan) 2846 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ 2847 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK 2848 ){ 2849 LogEst nIter; 2850 pNew->u.btree.nEq++; 2851 pNew->nSkip++; 2852 pNew->aLTerm[pNew->nLTerm++] = 0; 2853 pNew->wsFlags |= WHERE_SKIPSCAN; 2854 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; 2855 pNew->nOut -= nIter; 2856 /* TUNING: Because uncertainties in the estimates for skip-scan queries, 2857 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ 2858 nIter += 5; 2859 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); 2860 pNew->nOut = saved_nOut; 2861 pNew->u.btree.nEq = saved_nEq; 2862 pNew->nSkip = saved_nSkip; 2863 pNew->wsFlags = saved_wsFlags; 2864 } 2865 2866 WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n", 2867 pProbe->pTable->zName, pProbe->zName, saved_nEq, rc)); 2868 return rc; 2869 } 2870 2871 /* 2872 ** Return True if it is possible that pIndex might be useful in 2873 ** implementing the ORDER BY clause in pBuilder. 2874 ** 2875 ** Return False if pBuilder does not contain an ORDER BY clause or 2876 ** if there is no way for pIndex to be useful in implementing that 2877 ** ORDER BY clause. 2878 */ 2879 static int indexMightHelpWithOrderBy( 2880 WhereLoopBuilder *pBuilder, 2881 Index *pIndex, 2882 int iCursor 2883 ){ 2884 ExprList *pOB; 2885 ExprList *aColExpr; 2886 int ii, jj; 2887 2888 if( pIndex->bUnordered ) return 0; 2889 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; 2890 for(ii=0; ii<pOB->nExpr; ii++){ 2891 Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr); 2892 if( NEVER(pExpr==0) ) continue; 2893 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){ 2894 if( pExpr->iColumn<0 ) return 1; 2895 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2896 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; 2897 } 2898 }else if( (aColExpr = pIndex->aColExpr)!=0 ){ 2899 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2900 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue; 2901 if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){ 2902 return 1; 2903 } 2904 } 2905 } 2906 } 2907 return 0; 2908 } 2909 2910 /* Check to see if a partial index with pPartIndexWhere can be used 2911 ** in the current query. Return true if it can be and false if not. 2912 */ 2913 static int whereUsablePartialIndex( 2914 int iTab, /* The table for which we want an index */ 2915 int isLeft, /* True if iTab is the right table of a LEFT JOIN */ 2916 WhereClause *pWC, /* The WHERE clause of the query */ 2917 Expr *pWhere /* The WHERE clause from the partial index */ 2918 ){ 2919 int i; 2920 WhereTerm *pTerm; 2921 Parse *pParse = pWC->pWInfo->pParse; 2922 while( pWhere->op==TK_AND ){ 2923 if( !whereUsablePartialIndex(iTab,isLeft,pWC,pWhere->pLeft) ) return 0; 2924 pWhere = pWhere->pRight; 2925 } 2926 if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0; 2927 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 2928 Expr *pExpr; 2929 pExpr = pTerm->pExpr; 2930 if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab) 2931 && (isLeft==0 || ExprHasProperty(pExpr, EP_FromJoin)) 2932 && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab) 2933 && (pTerm->wtFlags & TERM_VNULL)==0 2934 ){ 2935 return 1; 2936 } 2937 } 2938 return 0; 2939 } 2940 2941 /* 2942 ** Add all WhereLoop objects for a single table of the join where the table 2943 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be 2944 ** a b-tree table, not a virtual table. 2945 ** 2946 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function 2947 ** are calculated as follows: 2948 ** 2949 ** For a full scan, assuming the table (or index) contains nRow rows: 2950 ** 2951 ** cost = nRow * 3.0 // full-table scan 2952 ** cost = nRow * K // scan of covering index 2953 ** cost = nRow * (K+3.0) // scan of non-covering index 2954 ** 2955 ** where K is a value between 1.1 and 3.0 set based on the relative 2956 ** estimated average size of the index and table records. 2957 ** 2958 ** For an index scan, where nVisit is the number of index rows visited 2959 ** by the scan, and nSeek is the number of seek operations required on 2960 ** the index b-tree: 2961 ** 2962 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index 2963 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index 2964 ** 2965 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the 2966 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when 2967 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. 2968 ** 2969 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount 2970 ** of uncertainty. For this reason, scoring is designed to pick plans that 2971 ** "do the least harm" if the estimates are inaccurate. For example, a 2972 ** log(nRow) factor is omitted from a non-covering index scan in order to 2973 ** bias the scoring in favor of using an index, since the worst-case 2974 ** performance of using an index is far better than the worst-case performance 2975 ** of a full table scan. 2976 */ 2977 static int whereLoopAddBtree( 2978 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 2979 Bitmask mPrereq /* Extra prerequesites for using this table */ 2980 ){ 2981 WhereInfo *pWInfo; /* WHERE analysis context */ 2982 Index *pProbe; /* An index we are evaluating */ 2983 Index sPk; /* A fake index object for the primary key */ 2984 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ 2985 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ 2986 SrcList *pTabList; /* The FROM clause */ 2987 SrcItem *pSrc; /* The FROM clause btree term to add */ 2988 WhereLoop *pNew; /* Template WhereLoop object */ 2989 int rc = SQLITE_OK; /* Return code */ 2990 int iSortIdx = 1; /* Index number */ 2991 int b; /* A boolean value */ 2992 LogEst rSize; /* number of rows in the table */ 2993 WhereClause *pWC; /* The parsed WHERE clause */ 2994 Table *pTab; /* Table being queried */ 2995 2996 pNew = pBuilder->pNew; 2997 pWInfo = pBuilder->pWInfo; 2998 pTabList = pWInfo->pTabList; 2999 pSrc = pTabList->a + pNew->iTab; 3000 pTab = pSrc->pTab; 3001 pWC = pBuilder->pWC; 3002 assert( !IsVirtual(pSrc->pTab) ); 3003 3004 if( pSrc->fg.isIndexedBy ){ 3005 assert( pSrc->fg.isCte==0 ); 3006 /* An INDEXED BY clause specifies a particular index to use */ 3007 pProbe = pSrc->u2.pIBIndex; 3008 }else if( !HasRowid(pTab) ){ 3009 pProbe = pTab->pIndex; 3010 }else{ 3011 /* There is no INDEXED BY clause. Create a fake Index object in local 3012 ** variable sPk to represent the rowid primary key index. Make this 3013 ** fake index the first in a chain of Index objects with all of the real 3014 ** indices to follow */ 3015 Index *pFirst; /* First of real indices on the table */ 3016 memset(&sPk, 0, sizeof(Index)); 3017 sPk.nKeyCol = 1; 3018 sPk.nColumn = 1; 3019 sPk.aiColumn = &aiColumnPk; 3020 sPk.aiRowLogEst = aiRowEstPk; 3021 sPk.onError = OE_Replace; 3022 sPk.pTable = pTab; 3023 sPk.szIdxRow = pTab->szTabRow; 3024 sPk.idxType = SQLITE_IDXTYPE_IPK; 3025 aiRowEstPk[0] = pTab->nRowLogEst; 3026 aiRowEstPk[1] = 0; 3027 pFirst = pSrc->pTab->pIndex; 3028 if( pSrc->fg.notIndexed==0 ){ 3029 /* The real indices of the table are only considered if the 3030 ** NOT INDEXED qualifier is omitted from the FROM clause */ 3031 sPk.pNext = pFirst; 3032 } 3033 pProbe = &sPk; 3034 } 3035 rSize = pTab->nRowLogEst; 3036 3037 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 3038 /* Automatic indexes */ 3039 if( !pBuilder->pOrSet /* Not part of an OR optimization */ 3040 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 3041 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 3042 && !pSrc->fg.isIndexedBy /* Has no INDEXED BY clause */ 3043 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */ 3044 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */ 3045 && !pSrc->fg.isCorrelated /* Not a correlated subquery */ 3046 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */ 3047 ){ 3048 /* Generate auto-index WhereLoops */ 3049 LogEst rLogSize; /* Logarithm of the number of rows in the table */ 3050 WhereTerm *pTerm; 3051 WhereTerm *pWCEnd = pWC->a + pWC->nTerm; 3052 rLogSize = estLog(rSize); 3053 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ 3054 if( pTerm->prereqRight & pNew->maskSelf ) continue; 3055 if( termCanDriveIndex(pTerm, pSrc, 0) ){ 3056 pNew->u.btree.nEq = 1; 3057 pNew->nSkip = 0; 3058 pNew->u.btree.pIndex = 0; 3059 pNew->nLTerm = 1; 3060 pNew->aLTerm[0] = pTerm; 3061 /* TUNING: One-time cost for computing the automatic index is 3062 ** estimated to be X*N*log2(N) where N is the number of rows in 3063 ** the table being indexed and where X is 7 (LogEst=28) for normal 3064 ** tables or 0.5 (LogEst=-10) for views and subqueries. The value 3065 ** of X is smaller for views and subqueries so that the query planner 3066 ** will be more aggressive about generating automatic indexes for 3067 ** those objects, since there is no opportunity to add schema 3068 ** indexes on subqueries and views. */ 3069 pNew->rSetup = rLogSize + rSize; 3070 if( !IsView(pTab) && (pTab->tabFlags & TF_Ephemeral)==0 ){ 3071 pNew->rSetup += 28; 3072 }else{ 3073 pNew->rSetup -= 10; 3074 } 3075 ApplyCostMultiplier(pNew->rSetup, pTab->costMult); 3076 if( pNew->rSetup<0 ) pNew->rSetup = 0; 3077 /* TUNING: Each index lookup yields 20 rows in the table. This 3078 ** is more than the usual guess of 10 rows, since we have no way 3079 ** of knowing how selective the index will ultimately be. It would 3080 ** not be unreasonable to make this value much larger. */ 3081 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); 3082 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); 3083 pNew->wsFlags = WHERE_AUTO_INDEX; 3084 pNew->prereq = mPrereq | pTerm->prereqRight; 3085 rc = whereLoopInsert(pBuilder, pNew); 3086 } 3087 } 3088 } 3089 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 3090 3091 /* Loop over all indices. If there was an INDEXED BY clause, then only 3092 ** consider index pProbe. */ 3093 for(; rc==SQLITE_OK && pProbe; 3094 pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++ 3095 ){ 3096 int isLeft = (pSrc->fg.jointype & JT_OUTER)!=0; 3097 if( pProbe->pPartIdxWhere!=0 3098 && !whereUsablePartialIndex(pSrc->iCursor, isLeft, pWC, 3099 pProbe->pPartIdxWhere) 3100 ){ 3101 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ 3102 continue; /* Partial index inappropriate for this query */ 3103 } 3104 if( pProbe->bNoQuery ) continue; 3105 rSize = pProbe->aiRowLogEst[0]; 3106 pNew->u.btree.nEq = 0; 3107 pNew->u.btree.nBtm = 0; 3108 pNew->u.btree.nTop = 0; 3109 pNew->nSkip = 0; 3110 pNew->nLTerm = 0; 3111 pNew->iSortIdx = 0; 3112 pNew->rSetup = 0; 3113 pNew->prereq = mPrereq; 3114 pNew->nOut = rSize; 3115 pNew->u.btree.pIndex = pProbe; 3116 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); 3117 3118 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ 3119 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); 3120 if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){ 3121 /* Integer primary key index */ 3122 pNew->wsFlags = WHERE_IPK; 3123 3124 /* Full table scan */ 3125 pNew->iSortIdx = b ? iSortIdx : 0; 3126 /* TUNING: Cost of full table scan is 3.0*N. The 3.0 factor is an 3127 ** extra cost designed to discourage the use of full table scans, 3128 ** since index lookups have better worst-case performance if our 3129 ** stat guesses are wrong. Reduce the 3.0 penalty slightly 3130 ** (to 2.75) if we have valid STAT4 information for the table. 3131 ** At 2.75, a full table scan is preferred over using an index on 3132 ** a column with just two distinct values where each value has about 3133 ** an equal number of appearances. Without STAT4 data, we still want 3134 ** to use an index in that case, since the constraint might be for 3135 ** the scarcer of the two values, and in that case an index lookup is 3136 ** better. 3137 */ 3138 #ifdef SQLITE_ENABLE_STAT4 3139 pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0); 3140 #else 3141 pNew->rRun = rSize + 16; 3142 #endif 3143 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 3144 whereLoopOutputAdjust(pWC, pNew, rSize); 3145 rc = whereLoopInsert(pBuilder, pNew); 3146 pNew->nOut = rSize; 3147 if( rc ) break; 3148 }else{ 3149 Bitmask m; 3150 if( pProbe->isCovering ){ 3151 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; 3152 m = 0; 3153 }else{ 3154 m = pSrc->colUsed & pProbe->colNotIdxed; 3155 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; 3156 } 3157 3158 /* Full scan via index */ 3159 if( b 3160 || !HasRowid(pTab) 3161 || pProbe->pPartIdxWhere!=0 3162 || pSrc->fg.isIndexedBy 3163 || ( m==0 3164 && pProbe->bUnordered==0 3165 && (pProbe->szIdxRow<pTab->szTabRow) 3166 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 3167 && sqlite3GlobalConfig.bUseCis 3168 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) 3169 ) 3170 ){ 3171 pNew->iSortIdx = b ? iSortIdx : 0; 3172 3173 /* The cost of visiting the index rows is N*K, where K is 3174 ** between 1.1 and 3.0, depending on the relative sizes of the 3175 ** index and table rows. */ 3176 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; 3177 if( m!=0 ){ 3178 /* If this is a non-covering index scan, add in the cost of 3179 ** doing table lookups. The cost will be 3x the number of 3180 ** lookups. Take into account WHERE clause terms that can be 3181 ** satisfied using just the index, and that do not require a 3182 ** table lookup. */ 3183 LogEst nLookup = rSize + 16; /* Base cost: N*3 */ 3184 int ii; 3185 int iCur = pSrc->iCursor; 3186 WhereClause *pWC2 = &pWInfo->sWC; 3187 for(ii=0; ii<pWC2->nTerm; ii++){ 3188 WhereTerm *pTerm = &pWC2->a[ii]; 3189 if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){ 3190 break; 3191 } 3192 /* pTerm can be evaluated using just the index. So reduce 3193 ** the expected number of table lookups accordingly */ 3194 if( pTerm->truthProb<=0 ){ 3195 nLookup += pTerm->truthProb; 3196 }else{ 3197 nLookup--; 3198 if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19; 3199 } 3200 } 3201 3202 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup); 3203 } 3204 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 3205 whereLoopOutputAdjust(pWC, pNew, rSize); 3206 rc = whereLoopInsert(pBuilder, pNew); 3207 pNew->nOut = rSize; 3208 if( rc ) break; 3209 } 3210 } 3211 3212 pBuilder->bldFlags1 = 0; 3213 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); 3214 if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){ 3215 /* If a non-unique index is used, or if a prefix of the key for 3216 ** unique index is used (making the index functionally non-unique) 3217 ** then the sqlite_stat1 data becomes important for scoring the 3218 ** plan */ 3219 pTab->tabFlags |= TF_StatsUsed; 3220 } 3221 #ifdef SQLITE_ENABLE_STAT4 3222 sqlite3Stat4ProbeFree(pBuilder->pRec); 3223 pBuilder->nRecValid = 0; 3224 pBuilder->pRec = 0; 3225 #endif 3226 } 3227 return rc; 3228 } 3229 3230 #ifndef SQLITE_OMIT_VIRTUALTABLE 3231 3232 /* 3233 ** Argument pIdxInfo is already populated with all constraints that may 3234 ** be used by the virtual table identified by pBuilder->pNew->iTab. This 3235 ** function marks a subset of those constraints usable, invokes the 3236 ** xBestIndex method and adds the returned plan to pBuilder. 3237 ** 3238 ** A constraint is marked usable if: 3239 ** 3240 ** * Argument mUsable indicates that its prerequisites are available, and 3241 ** 3242 ** * It is not one of the operators specified in the mExclude mask passed 3243 ** as the fourth argument (which in practice is either WO_IN or 0). 3244 ** 3245 ** Argument mPrereq is a mask of tables that must be scanned before the 3246 ** virtual table in question. These are added to the plans prerequisites 3247 ** before it is added to pBuilder. 3248 ** 3249 ** Output parameter *pbIn is set to true if the plan added to pBuilder 3250 ** uses one or more WO_IN terms, or false otherwise. 3251 */ 3252 static int whereLoopAddVirtualOne( 3253 WhereLoopBuilder *pBuilder, 3254 Bitmask mPrereq, /* Mask of tables that must be used. */ 3255 Bitmask mUsable, /* Mask of usable tables */ 3256 u16 mExclude, /* Exclude terms using these operators */ 3257 sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */ 3258 u16 mNoOmit, /* Do not omit these constraints */ 3259 int *pbIn /* OUT: True if plan uses an IN(...) op */ 3260 ){ 3261 WhereClause *pWC = pBuilder->pWC; 3262 struct sqlite3_index_constraint *pIdxCons; 3263 struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage; 3264 int i; 3265 int mxTerm; 3266 int rc = SQLITE_OK; 3267 WhereLoop *pNew = pBuilder->pNew; 3268 Parse *pParse = pBuilder->pWInfo->pParse; 3269 SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab]; 3270 int nConstraint = pIdxInfo->nConstraint; 3271 3272 assert( (mUsable & mPrereq)==mPrereq ); 3273 *pbIn = 0; 3274 pNew->prereq = mPrereq; 3275 3276 /* Set the usable flag on the subset of constraints identified by 3277 ** arguments mUsable and mExclude. */ 3278 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3279 for(i=0; i<nConstraint; i++, pIdxCons++){ 3280 WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset]; 3281 pIdxCons->usable = 0; 3282 if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight 3283 && (pTerm->eOperator & mExclude)==0 3284 ){ 3285 pIdxCons->usable = 1; 3286 } 3287 } 3288 3289 /* Initialize the output fields of the sqlite3_index_info structure */ 3290 memset(pUsage, 0, sizeof(pUsage[0])*nConstraint); 3291 assert( pIdxInfo->needToFreeIdxStr==0 ); 3292 pIdxInfo->idxStr = 0; 3293 pIdxInfo->idxNum = 0; 3294 pIdxInfo->orderByConsumed = 0; 3295 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; 3296 pIdxInfo->estimatedRows = 25; 3297 pIdxInfo->idxFlags = 0; 3298 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed; 3299 3300 /* Invoke the virtual table xBestIndex() method */ 3301 rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo); 3302 if( rc ){ 3303 if( rc==SQLITE_CONSTRAINT ){ 3304 /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means 3305 ** that the particular combination of parameters provided is unusable. 3306 ** Make no entries in the loop table. 3307 */ 3308 WHERETRACE(0xffff, (" ^^^^--- non-viable plan rejected!\n")); 3309 return SQLITE_OK; 3310 } 3311 return rc; 3312 } 3313 3314 mxTerm = -1; 3315 assert( pNew->nLSlot>=nConstraint ); 3316 for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0; 3317 pNew->u.vtab.omitMask = 0; 3318 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3319 for(i=0; i<nConstraint; i++, pIdxCons++){ 3320 int iTerm; 3321 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ 3322 WhereTerm *pTerm; 3323 int j = pIdxCons->iTermOffset; 3324 if( iTerm>=nConstraint 3325 || j<0 3326 || j>=pWC->nTerm 3327 || pNew->aLTerm[iTerm]!=0 3328 || pIdxCons->usable==0 3329 ){ 3330 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3331 testcase( pIdxInfo->needToFreeIdxStr ); 3332 return SQLITE_ERROR; 3333 } 3334 testcase( iTerm==nConstraint-1 ); 3335 testcase( j==0 ); 3336 testcase( j==pWC->nTerm-1 ); 3337 pTerm = &pWC->a[j]; 3338 pNew->prereq |= pTerm->prereqRight; 3339 assert( iTerm<pNew->nLSlot ); 3340 pNew->aLTerm[iTerm] = pTerm; 3341 if( iTerm>mxTerm ) mxTerm = iTerm; 3342 testcase( iTerm==15 ); 3343 testcase( iTerm==16 ); 3344 if( pUsage[i].omit ){ 3345 if( i<16 && ((1<<i)&mNoOmit)==0 ){ 3346 testcase( i!=iTerm ); 3347 pNew->u.vtab.omitMask |= 1<<iTerm; 3348 }else{ 3349 testcase( i!=iTerm ); 3350 } 3351 } 3352 if( (pTerm->eOperator & WO_IN)!=0 ){ 3353 /* A virtual table that is constrained by an IN clause may not 3354 ** consume the ORDER BY clause because (1) the order of IN terms 3355 ** is not necessarily related to the order of output terms and 3356 ** (2) Multiple outputs from a single IN value will not merge 3357 ** together. */ 3358 pIdxInfo->orderByConsumed = 0; 3359 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE; 3360 *pbIn = 1; assert( (mExclude & WO_IN)==0 ); 3361 } 3362 } 3363 } 3364 3365 pNew->nLTerm = mxTerm+1; 3366 for(i=0; i<=mxTerm; i++){ 3367 if( pNew->aLTerm[i]==0 ){ 3368 /* The non-zero argvIdx values must be contiguous. Raise an 3369 ** error if they are not */ 3370 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3371 testcase( pIdxInfo->needToFreeIdxStr ); 3372 return SQLITE_ERROR; 3373 } 3374 } 3375 assert( pNew->nLTerm<=pNew->nLSlot ); 3376 pNew->u.vtab.idxNum = pIdxInfo->idxNum; 3377 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; 3378 pIdxInfo->needToFreeIdxStr = 0; 3379 pNew->u.vtab.idxStr = pIdxInfo->idxStr; 3380 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? 3381 pIdxInfo->nOrderBy : 0); 3382 pNew->rSetup = 0; 3383 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); 3384 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); 3385 3386 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated 3387 ** that the scan will visit at most one row. Clear it otherwise. */ 3388 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){ 3389 pNew->wsFlags |= WHERE_ONEROW; 3390 }else{ 3391 pNew->wsFlags &= ~WHERE_ONEROW; 3392 } 3393 rc = whereLoopInsert(pBuilder, pNew); 3394 if( pNew->u.vtab.needFree ){ 3395 sqlite3_free(pNew->u.vtab.idxStr); 3396 pNew->u.vtab.needFree = 0; 3397 } 3398 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n", 3399 *pbIn, (sqlite3_uint64)mPrereq, 3400 (sqlite3_uint64)(pNew->prereq & ~mPrereq))); 3401 3402 return rc; 3403 } 3404 3405 /* 3406 ** If this function is invoked from within an xBestIndex() callback, it 3407 ** returns a pointer to a buffer containing the name of the collation 3408 ** sequence associated with element iCons of the sqlite3_index_info.aConstraint 3409 ** array. Or, if iCons is out of range or there is no active xBestIndex 3410 ** call, return NULL. 3411 */ 3412 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){ 3413 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3414 const char *zRet = 0; 3415 if( iCons>=0 && iCons<pIdxInfo->nConstraint ){ 3416 CollSeq *pC = 0; 3417 int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset; 3418 Expr *pX = pHidden->pWC->a[iTerm].pExpr; 3419 if( pX->pLeft ){ 3420 pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX); 3421 } 3422 zRet = (pC ? pC->zName : sqlite3StrBINARY); 3423 } 3424 return zRet; 3425 } 3426 3427 /* 3428 ** Add all WhereLoop objects for a table of the join identified by 3429 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. 3430 ** 3431 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and 3432 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause 3433 ** entries that occur before the virtual table in the FROM clause and are 3434 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the 3435 ** mUnusable mask contains all FROM clause entries that occur after the 3436 ** virtual table and are separated from it by at least one LEFT or 3437 ** CROSS JOIN. 3438 ** 3439 ** For example, if the query were: 3440 ** 3441 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; 3442 ** 3443 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6). 3444 ** 3445 ** All the tables in mPrereq must be scanned before the current virtual 3446 ** table. So any terms for which all prerequisites are satisfied by 3447 ** mPrereq may be specified as "usable" in all calls to xBestIndex. 3448 ** Conversely, all tables in mUnusable must be scanned after the current 3449 ** virtual table, so any terms for which the prerequisites overlap with 3450 ** mUnusable should always be configured as "not-usable" for xBestIndex. 3451 */ 3452 static int whereLoopAddVirtual( 3453 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 3454 Bitmask mPrereq, /* Tables that must be scanned before this one */ 3455 Bitmask mUnusable /* Tables that must be scanned after this one */ 3456 ){ 3457 int rc = SQLITE_OK; /* Return code */ 3458 WhereInfo *pWInfo; /* WHERE analysis context */ 3459 Parse *pParse; /* The parsing context */ 3460 WhereClause *pWC; /* The WHERE clause */ 3461 SrcItem *pSrc; /* The FROM clause term to search */ 3462 sqlite3_index_info *p; /* Object to pass to xBestIndex() */ 3463 int nConstraint; /* Number of constraints in p */ 3464 int bIn; /* True if plan uses IN(...) operator */ 3465 WhereLoop *pNew; 3466 Bitmask mBest; /* Tables used by best possible plan */ 3467 u16 mNoOmit; 3468 3469 assert( (mPrereq & mUnusable)==0 ); 3470 pWInfo = pBuilder->pWInfo; 3471 pParse = pWInfo->pParse; 3472 pWC = pBuilder->pWC; 3473 pNew = pBuilder->pNew; 3474 pSrc = &pWInfo->pTabList->a[pNew->iTab]; 3475 assert( IsVirtual(pSrc->pTab) ); 3476 p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy, 3477 &mNoOmit); 3478 if( p==0 ) return SQLITE_NOMEM_BKPT; 3479 pNew->rSetup = 0; 3480 pNew->wsFlags = WHERE_VIRTUALTABLE; 3481 pNew->nLTerm = 0; 3482 pNew->u.vtab.needFree = 0; 3483 nConstraint = p->nConstraint; 3484 if( whereLoopResize(pParse->db, pNew, nConstraint) ){ 3485 sqlite3DbFree(pParse->db, p); 3486 return SQLITE_NOMEM_BKPT; 3487 } 3488 3489 /* First call xBestIndex() with all constraints usable. */ 3490 WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName)); 3491 WHERETRACE(0x40, (" VirtualOne: all usable\n")); 3492 rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn); 3493 3494 /* If the call to xBestIndex() with all terms enabled produced a plan 3495 ** that does not require any source tables (IOW: a plan with mBest==0) 3496 ** and does not use an IN(...) operator, then there is no point in making 3497 ** any further calls to xBestIndex() since they will all return the same 3498 ** result (if the xBestIndex() implementation is sane). */ 3499 if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){ 3500 int seenZero = 0; /* True if a plan with no prereqs seen */ 3501 int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */ 3502 Bitmask mPrev = 0; 3503 Bitmask mBestNoIn = 0; 3504 3505 /* If the plan produced by the earlier call uses an IN(...) term, call 3506 ** xBestIndex again, this time with IN(...) terms disabled. */ 3507 if( bIn ){ 3508 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n")); 3509 rc = whereLoopAddVirtualOne( 3510 pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn); 3511 assert( bIn==0 ); 3512 mBestNoIn = pNew->prereq & ~mPrereq; 3513 if( mBestNoIn==0 ){ 3514 seenZero = 1; 3515 seenZeroNoIN = 1; 3516 } 3517 } 3518 3519 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq) 3520 ** in the set of terms that apply to the current virtual table. */ 3521 while( rc==SQLITE_OK ){ 3522 int i; 3523 Bitmask mNext = ALLBITS; 3524 assert( mNext>0 ); 3525 for(i=0; i<nConstraint; i++){ 3526 Bitmask mThis = ( 3527 pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq 3528 ); 3529 if( mThis>mPrev && mThis<mNext ) mNext = mThis; 3530 } 3531 mPrev = mNext; 3532 if( mNext==ALLBITS ) break; 3533 if( mNext==mBest || mNext==mBestNoIn ) continue; 3534 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n", 3535 (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext)); 3536 rc = whereLoopAddVirtualOne( 3537 pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn); 3538 if( pNew->prereq==mPrereq ){ 3539 seenZero = 1; 3540 if( bIn==0 ) seenZeroNoIN = 1; 3541 } 3542 } 3543 3544 /* If the calls to xBestIndex() in the above loop did not find a plan 3545 ** that requires no source tables at all (i.e. one guaranteed to be 3546 ** usable), make a call here with all source tables disabled */ 3547 if( rc==SQLITE_OK && seenZero==0 ){ 3548 WHERETRACE(0x40, (" VirtualOne: all disabled\n")); 3549 rc = whereLoopAddVirtualOne( 3550 pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn); 3551 if( bIn==0 ) seenZeroNoIN = 1; 3552 } 3553 3554 /* If the calls to xBestIndex() have so far failed to find a plan 3555 ** that requires no source tables at all and does not use an IN(...) 3556 ** operator, make a final call to obtain one here. */ 3557 if( rc==SQLITE_OK && seenZeroNoIN==0 ){ 3558 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n")); 3559 rc = whereLoopAddVirtualOne( 3560 pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn); 3561 } 3562 } 3563 3564 if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr); 3565 sqlite3DbFreeNN(pParse->db, p); 3566 WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc)); 3567 return rc; 3568 } 3569 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3570 3571 /* 3572 ** Add WhereLoop entries to handle OR terms. This works for either 3573 ** btrees or virtual tables. 3574 */ 3575 static int whereLoopAddOr( 3576 WhereLoopBuilder *pBuilder, 3577 Bitmask mPrereq, 3578 Bitmask mUnusable 3579 ){ 3580 WhereInfo *pWInfo = pBuilder->pWInfo; 3581 WhereClause *pWC; 3582 WhereLoop *pNew; 3583 WhereTerm *pTerm, *pWCEnd; 3584 int rc = SQLITE_OK; 3585 int iCur; 3586 WhereClause tempWC; 3587 WhereLoopBuilder sSubBuild; 3588 WhereOrSet sSum, sCur; 3589 SrcItem *pItem; 3590 3591 pWC = pBuilder->pWC; 3592 pWCEnd = pWC->a + pWC->nTerm; 3593 pNew = pBuilder->pNew; 3594 memset(&sSum, 0, sizeof(sSum)); 3595 pItem = pWInfo->pTabList->a + pNew->iTab; 3596 iCur = pItem->iCursor; 3597 3598 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ 3599 if( (pTerm->eOperator & WO_OR)!=0 3600 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 3601 ){ 3602 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; 3603 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; 3604 WhereTerm *pOrTerm; 3605 int once = 1; 3606 int i, j; 3607 3608 sSubBuild = *pBuilder; 3609 sSubBuild.pOrderBy = 0; 3610 sSubBuild.pOrSet = &sCur; 3611 3612 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); 3613 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ 3614 if( (pOrTerm->eOperator & WO_AND)!=0 ){ 3615 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; 3616 }else if( pOrTerm->leftCursor==iCur ){ 3617 tempWC.pWInfo = pWC->pWInfo; 3618 tempWC.pOuter = pWC; 3619 tempWC.op = TK_AND; 3620 tempWC.nTerm = 1; 3621 tempWC.a = pOrTerm; 3622 sSubBuild.pWC = &tempWC; 3623 }else{ 3624 continue; 3625 } 3626 sCur.n = 0; 3627 #ifdef WHERETRACE_ENABLED 3628 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", 3629 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); 3630 if( sqlite3WhereTrace & 0x400 ){ 3631 sqlite3WhereClausePrint(sSubBuild.pWC); 3632 } 3633 #endif 3634 #ifndef SQLITE_OMIT_VIRTUALTABLE 3635 if( IsVirtual(pItem->pTab) ){ 3636 rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable); 3637 }else 3638 #endif 3639 { 3640 rc = whereLoopAddBtree(&sSubBuild, mPrereq); 3641 } 3642 if( rc==SQLITE_OK ){ 3643 rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable); 3644 } 3645 assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0 3646 || rc==SQLITE_NOMEM ); 3647 testcase( rc==SQLITE_NOMEM && sCur.n>0 ); 3648 testcase( rc==SQLITE_DONE ); 3649 if( sCur.n==0 ){ 3650 sSum.n = 0; 3651 break; 3652 }else if( once ){ 3653 whereOrMove(&sSum, &sCur); 3654 once = 0; 3655 }else{ 3656 WhereOrSet sPrev; 3657 whereOrMove(&sPrev, &sSum); 3658 sSum.n = 0; 3659 for(i=0; i<sPrev.n; i++){ 3660 for(j=0; j<sCur.n; j++){ 3661 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, 3662 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), 3663 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); 3664 } 3665 } 3666 } 3667 } 3668 pNew->nLTerm = 1; 3669 pNew->aLTerm[0] = pTerm; 3670 pNew->wsFlags = WHERE_MULTI_OR; 3671 pNew->rSetup = 0; 3672 pNew->iSortIdx = 0; 3673 memset(&pNew->u, 0, sizeof(pNew->u)); 3674 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ 3675 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs 3676 ** of all sub-scans required by the OR-scan. However, due to rounding 3677 ** errors, it may be that the cost of the OR-scan is equal to its 3678 ** most expensive sub-scan. Add the smallest possible penalty 3679 ** (equivalent to multiplying the cost by 1.07) to ensure that 3680 ** this does not happen. Otherwise, for WHERE clauses such as the 3681 ** following where there is an index on "y": 3682 ** 3683 ** WHERE likelihood(x=?, 0.99) OR y=? 3684 ** 3685 ** the planner may elect to "OR" together a full-table scan and an 3686 ** index lookup. And other similarly odd results. */ 3687 pNew->rRun = sSum.a[i].rRun + 1; 3688 pNew->nOut = sSum.a[i].nOut; 3689 pNew->prereq = sSum.a[i].prereq; 3690 rc = whereLoopInsert(pBuilder, pNew); 3691 } 3692 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); 3693 } 3694 } 3695 return rc; 3696 } 3697 3698 /* 3699 ** Add all WhereLoop objects for all tables 3700 */ 3701 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ 3702 WhereInfo *pWInfo = pBuilder->pWInfo; 3703 Bitmask mPrereq = 0; 3704 Bitmask mPrior = 0; 3705 int iTab; 3706 SrcList *pTabList = pWInfo->pTabList; 3707 SrcItem *pItem; 3708 SrcItem *pEnd = &pTabList->a[pWInfo->nLevel]; 3709 sqlite3 *db = pWInfo->pParse->db; 3710 int rc = SQLITE_OK; 3711 WhereLoop *pNew; 3712 3713 /* Loop over the tables in the join, from left to right */ 3714 pNew = pBuilder->pNew; 3715 whereLoopInit(pNew); 3716 pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT; 3717 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){ 3718 Bitmask mUnusable = 0; 3719 pNew->iTab = iTab; 3720 pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR; 3721 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); 3722 if( (pItem->fg.jointype & (JT_LEFT|JT_CROSS))!=0 ){ 3723 /* This condition is true when pItem is the FROM clause term on the 3724 ** right-hand-side of a LEFT or CROSS JOIN. */ 3725 mPrereq = mPrior; 3726 }else{ 3727 mPrereq = 0; 3728 } 3729 #ifndef SQLITE_OMIT_VIRTUALTABLE 3730 if( IsVirtual(pItem->pTab) ){ 3731 SrcItem *p; 3732 for(p=&pItem[1]; p<pEnd; p++){ 3733 if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){ 3734 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); 3735 } 3736 } 3737 rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable); 3738 }else 3739 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3740 { 3741 rc = whereLoopAddBtree(pBuilder, mPrereq); 3742 } 3743 if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){ 3744 rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable); 3745 } 3746 mPrior |= pNew->maskSelf; 3747 if( rc || db->mallocFailed ){ 3748 if( rc==SQLITE_DONE ){ 3749 /* We hit the query planner search limit set by iPlanLimit */ 3750 sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search"); 3751 rc = SQLITE_OK; 3752 }else{ 3753 break; 3754 } 3755 } 3756 } 3757 3758 whereLoopClear(db, pNew); 3759 return rc; 3760 } 3761 3762 /* 3763 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th 3764 ** parameters) to see if it outputs rows in the requested ORDER BY 3765 ** (or GROUP BY) without requiring a separate sort operation. Return N: 3766 ** 3767 ** N>0: N terms of the ORDER BY clause are satisfied 3768 ** N==0: No terms of the ORDER BY clause are satisfied 3769 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. 3770 ** 3771 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as 3772 ** strict. With GROUP BY and DISTINCT the only requirement is that 3773 ** equivalent rows appear immediately adjacent to one another. GROUP BY 3774 ** and DISTINCT do not require rows to appear in any particular order as long 3775 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT 3776 ** the pOrderBy terms can be matched in any order. With ORDER BY, the 3777 ** pOrderBy terms must be matched in strict left-to-right order. 3778 */ 3779 static i8 wherePathSatisfiesOrderBy( 3780 WhereInfo *pWInfo, /* The WHERE clause */ 3781 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ 3782 WherePath *pPath, /* The WherePath to check */ 3783 u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */ 3784 u16 nLoop, /* Number of entries in pPath->aLoop[] */ 3785 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ 3786 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ 3787 ){ 3788 u8 revSet; /* True if rev is known */ 3789 u8 rev; /* Composite sort order */ 3790 u8 revIdx; /* Index sort order */ 3791 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ 3792 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ 3793 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ 3794 u16 eqOpMask; /* Allowed equality operators */ 3795 u16 nKeyCol; /* Number of key columns in pIndex */ 3796 u16 nColumn; /* Total number of ordered columns in the index */ 3797 u16 nOrderBy; /* Number terms in the ORDER BY clause */ 3798 int iLoop; /* Index of WhereLoop in pPath being processed */ 3799 int i, j; /* Loop counters */ 3800 int iCur; /* Cursor number for current WhereLoop */ 3801 int iColumn; /* A column number within table iCur */ 3802 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ 3803 WhereTerm *pTerm; /* A single term of the WHERE clause */ 3804 Expr *pOBExpr; /* An expression from the ORDER BY clause */ 3805 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ 3806 Index *pIndex; /* The index associated with pLoop */ 3807 sqlite3 *db = pWInfo->pParse->db; /* Database connection */ 3808 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ 3809 Bitmask obDone; /* Mask of all ORDER BY terms */ 3810 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ 3811 Bitmask ready; /* Mask of inner loops */ 3812 3813 /* 3814 ** We say the WhereLoop is "one-row" if it generates no more than one 3815 ** row of output. A WhereLoop is one-row if all of the following are true: 3816 ** (a) All index columns match with WHERE_COLUMN_EQ. 3817 ** (b) The index is unique 3818 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. 3819 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. 3820 ** 3821 ** We say the WhereLoop is "order-distinct" if the set of columns from 3822 ** that WhereLoop that are in the ORDER BY clause are different for every 3823 ** row of the WhereLoop. Every one-row WhereLoop is automatically 3824 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause 3825 ** is not order-distinct. To be order-distinct is not quite the same as being 3826 ** UNIQUE since a UNIQUE column or index can have multiple rows that 3827 ** are NULL and NULL values are equivalent for the purpose of order-distinct. 3828 ** To be order-distinct, the columns must be UNIQUE and NOT NULL. 3829 ** 3830 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the 3831 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is 3832 ** automatically order-distinct. 3833 */ 3834 3835 assert( pOrderBy!=0 ); 3836 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; 3837 3838 nOrderBy = pOrderBy->nExpr; 3839 testcase( nOrderBy==BMS-1 ); 3840 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ 3841 isOrderDistinct = 1; 3842 obDone = MASKBIT(nOrderBy)-1; 3843 orderDistinctMask = 0; 3844 ready = 0; 3845 eqOpMask = WO_EQ | WO_IS | WO_ISNULL; 3846 if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){ 3847 eqOpMask |= WO_IN; 3848 } 3849 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ 3850 if( iLoop>0 ) ready |= pLoop->maskSelf; 3851 if( iLoop<nLoop ){ 3852 pLoop = pPath->aLoop[iLoop]; 3853 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue; 3854 }else{ 3855 pLoop = pLast; 3856 } 3857 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ 3858 if( pLoop->u.vtab.isOrdered && (wctrlFlags & WHERE_DISTINCTBY)==0 ){ 3859 obSat = obDone; 3860 } 3861 break; 3862 }else if( wctrlFlags & WHERE_DISTINCTBY ){ 3863 pLoop->u.btree.nDistinctCol = 0; 3864 } 3865 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; 3866 3867 /* Mark off any ORDER BY term X that is a column in the table of 3868 ** the current loop for which there is term in the WHERE 3869 ** clause of the form X IS NULL or X=? that reference only outer 3870 ** loops. 3871 */ 3872 for(i=0; i<nOrderBy; i++){ 3873 if( MASKBIT(i) & obSat ) continue; 3874 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr); 3875 if( NEVER(pOBExpr==0) ) continue; 3876 if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue; 3877 if( pOBExpr->iTable!=iCur ) continue; 3878 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, 3879 ~ready, eqOpMask, 0); 3880 if( pTerm==0 ) continue; 3881 if( pTerm->eOperator==WO_IN ){ 3882 /* IN terms are only valid for sorting in the ORDER BY LIMIT 3883 ** optimization, and then only if they are actually used 3884 ** by the query plan */ 3885 assert( wctrlFlags & 3886 (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) ); 3887 for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){} 3888 if( j>=pLoop->nLTerm ) continue; 3889 } 3890 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ 3891 Parse *pParse = pWInfo->pParse; 3892 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr); 3893 CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr); 3894 assert( pColl1 ); 3895 if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){ 3896 continue; 3897 } 3898 testcase( pTerm->pExpr->op==TK_IS ); 3899 } 3900 obSat |= MASKBIT(i); 3901 } 3902 3903 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ 3904 if( pLoop->wsFlags & WHERE_IPK ){ 3905 pIndex = 0; 3906 nKeyCol = 0; 3907 nColumn = 1; 3908 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ 3909 return 0; 3910 }else{ 3911 nKeyCol = pIndex->nKeyCol; 3912 nColumn = pIndex->nColumn; 3913 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); 3914 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID 3915 || !HasRowid(pIndex->pTable)); 3916 /* All relevant terms of the index must also be non-NULL in order 3917 ** for isOrderDistinct to be true. So the isOrderDistint value 3918 ** computed here might be a false positive. Corrections will be 3919 ** made at tag-20210426-1 below */ 3920 isOrderDistinct = IsUniqueIndex(pIndex) 3921 && (pLoop->wsFlags & WHERE_SKIPSCAN)==0; 3922 } 3923 3924 /* Loop through all columns of the index and deal with the ones 3925 ** that are not constrained by == or IN. 3926 */ 3927 rev = revSet = 0; 3928 distinctColumns = 0; 3929 for(j=0; j<nColumn; j++){ 3930 u8 bOnce = 1; /* True to run the ORDER BY search loop */ 3931 3932 assert( j>=pLoop->u.btree.nEq 3933 || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip) 3934 ); 3935 if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){ 3936 u16 eOp = pLoop->aLTerm[j]->eOperator; 3937 3938 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when 3939 ** doing WHERE_ORDERBY_LIMIT processing). Except, IS and ISNULL 3940 ** terms imply that the index is not UNIQUE NOT NULL in which case 3941 ** the loop need to be marked as not order-distinct because it can 3942 ** have repeated NULL rows. 3943 ** 3944 ** If the current term is a column of an ((?,?) IN (SELECT...)) 3945 ** expression for which the SELECT returns more than one column, 3946 ** check that it is the only column used by this loop. Otherwise, 3947 ** if it is one of two or more, none of the columns can be 3948 ** considered to match an ORDER BY term. 3949 */ 3950 if( (eOp & eqOpMask)!=0 ){ 3951 if( eOp & (WO_ISNULL|WO_IS) ){ 3952 testcase( eOp & WO_ISNULL ); 3953 testcase( eOp & WO_IS ); 3954 testcase( isOrderDistinct ); 3955 isOrderDistinct = 0; 3956 } 3957 continue; 3958 }else if( ALWAYS(eOp & WO_IN) ){ 3959 /* ALWAYS() justification: eOp is an equality operator due to the 3960 ** j<pLoop->u.btree.nEq constraint above. Any equality other 3961 ** than WO_IN is captured by the previous "if". So this one 3962 ** always has to be WO_IN. */ 3963 Expr *pX = pLoop->aLTerm[j]->pExpr; 3964 for(i=j+1; i<pLoop->u.btree.nEq; i++){ 3965 if( pLoop->aLTerm[i]->pExpr==pX ){ 3966 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) ); 3967 bOnce = 0; 3968 break; 3969 } 3970 } 3971 } 3972 } 3973 3974 /* Get the column number in the table (iColumn) and sort order 3975 ** (revIdx) for the j-th column of the index. 3976 */ 3977 if( pIndex ){ 3978 iColumn = pIndex->aiColumn[j]; 3979 revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC; 3980 if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID; 3981 }else{ 3982 iColumn = XN_ROWID; 3983 revIdx = 0; 3984 } 3985 3986 /* An unconstrained column that might be NULL means that this 3987 ** WhereLoop is not well-ordered. tag-20210426-1 3988 */ 3989 if( isOrderDistinct ){ 3990 if( iColumn>=0 3991 && j>=pLoop->u.btree.nEq 3992 && pIndex->pTable->aCol[iColumn].notNull==0 3993 ){ 3994 isOrderDistinct = 0; 3995 } 3996 if( iColumn==XN_EXPR ){ 3997 isOrderDistinct = 0; 3998 } 3999 } 4000 4001 /* Find the ORDER BY term that corresponds to the j-th column 4002 ** of the index and mark that ORDER BY term off 4003 */ 4004 isMatch = 0; 4005 for(i=0; bOnce && i<nOrderBy; i++){ 4006 if( MASKBIT(i) & obSat ) continue; 4007 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr); 4008 testcase( wctrlFlags & WHERE_GROUPBY ); 4009 testcase( wctrlFlags & WHERE_DISTINCTBY ); 4010 if( NEVER(pOBExpr==0) ) continue; 4011 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; 4012 if( iColumn>=XN_ROWID ){ 4013 if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue; 4014 if( pOBExpr->iTable!=iCur ) continue; 4015 if( pOBExpr->iColumn!=iColumn ) continue; 4016 }else{ 4017 Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr; 4018 if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){ 4019 continue; 4020 } 4021 } 4022 if( iColumn!=XN_ROWID ){ 4023 pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 4024 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; 4025 } 4026 if( wctrlFlags & WHERE_DISTINCTBY ){ 4027 pLoop->u.btree.nDistinctCol = j+1; 4028 } 4029 isMatch = 1; 4030 break; 4031 } 4032 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ 4033 /* Make sure the sort order is compatible in an ORDER BY clause. 4034 ** Sort order is irrelevant for a GROUP BY clause. */ 4035 if( revSet ){ 4036 if( (rev ^ revIdx)!=(pOrderBy->a[i].sortFlags&KEYINFO_ORDER_DESC) ){ 4037 isMatch = 0; 4038 } 4039 }else{ 4040 rev = revIdx ^ (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC); 4041 if( rev ) *pRevMask |= MASKBIT(iLoop); 4042 revSet = 1; 4043 } 4044 } 4045 if( isMatch && (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL) ){ 4046 if( j==pLoop->u.btree.nEq ){ 4047 pLoop->wsFlags |= WHERE_BIGNULL_SORT; 4048 }else{ 4049 isMatch = 0; 4050 } 4051 } 4052 if( isMatch ){ 4053 if( iColumn==XN_ROWID ){ 4054 testcase( distinctColumns==0 ); 4055 distinctColumns = 1; 4056 } 4057 obSat |= MASKBIT(i); 4058 }else{ 4059 /* No match found */ 4060 if( j==0 || j<nKeyCol ){ 4061 testcase( isOrderDistinct!=0 ); 4062 isOrderDistinct = 0; 4063 } 4064 break; 4065 } 4066 } /* end Loop over all index columns */ 4067 if( distinctColumns ){ 4068 testcase( isOrderDistinct==0 ); 4069 isOrderDistinct = 1; 4070 } 4071 } /* end-if not one-row */ 4072 4073 /* Mark off any other ORDER BY terms that reference pLoop */ 4074 if( isOrderDistinct ){ 4075 orderDistinctMask |= pLoop->maskSelf; 4076 for(i=0; i<nOrderBy; i++){ 4077 Expr *p; 4078 Bitmask mTerm; 4079 if( MASKBIT(i) & obSat ) continue; 4080 p = pOrderBy->a[i].pExpr; 4081 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); 4082 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; 4083 if( (mTerm&~orderDistinctMask)==0 ){ 4084 obSat |= MASKBIT(i); 4085 } 4086 } 4087 } 4088 } /* End the loop over all WhereLoops from outer-most down to inner-most */ 4089 if( obSat==obDone ) return (i8)nOrderBy; 4090 if( !isOrderDistinct ){ 4091 for(i=nOrderBy-1; i>0; i--){ 4092 Bitmask m = ALWAYS(i<BMS) ? MASKBIT(i) - 1 : 0; 4093 if( (obSat&m)==m ) return i; 4094 } 4095 return 0; 4096 } 4097 return -1; 4098 } 4099 4100 4101 /* 4102 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), 4103 ** the planner assumes that the specified pOrderBy list is actually a GROUP 4104 ** BY clause - and so any order that groups rows as required satisfies the 4105 ** request. 4106 ** 4107 ** Normally, in this case it is not possible for the caller to determine 4108 ** whether or not the rows are really being delivered in sorted order, or 4109 ** just in some other order that provides the required grouping. However, 4110 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then 4111 ** this function may be called on the returned WhereInfo object. It returns 4112 ** true if the rows really will be sorted in the specified order, or false 4113 ** otherwise. 4114 ** 4115 ** For example, assuming: 4116 ** 4117 ** CREATE INDEX i1 ON t1(x, Y); 4118 ** 4119 ** then 4120 ** 4121 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 4122 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 4123 */ 4124 int sqlite3WhereIsSorted(WhereInfo *pWInfo){ 4125 assert( pWInfo->wctrlFlags & WHERE_GROUPBY ); 4126 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); 4127 return pWInfo->sorted; 4128 } 4129 4130 #ifdef WHERETRACE_ENABLED 4131 /* For debugging use only: */ 4132 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ 4133 static char zName[65]; 4134 int i; 4135 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } 4136 if( pLast ) zName[i++] = pLast->cId; 4137 zName[i] = 0; 4138 return zName; 4139 } 4140 #endif 4141 4142 /* 4143 ** Return the cost of sorting nRow rows, assuming that the keys have 4144 ** nOrderby columns and that the first nSorted columns are already in 4145 ** order. 4146 */ 4147 static LogEst whereSortingCost( 4148 WhereInfo *pWInfo, 4149 LogEst nRow, 4150 int nOrderBy, 4151 int nSorted 4152 ){ 4153 /* TUNING: Estimated cost of a full external sort, where N is 4154 ** the number of rows to sort is: 4155 ** 4156 ** cost = (3.0 * N * log(N)). 4157 ** 4158 ** Or, if the order-by clause has X terms but only the last Y 4159 ** terms are out of order, then block-sorting will reduce the 4160 ** sorting cost to: 4161 ** 4162 ** cost = (3.0 * N * log(N)) * (Y/X) 4163 ** 4164 ** The (Y/X) term is implemented using stack variable rScale 4165 ** below. 4166 */ 4167 LogEst rScale, rSortCost; 4168 assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); 4169 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; 4170 rSortCost = nRow + rScale + 16; 4171 4172 /* Multiple by log(M) where M is the number of output rows. 4173 ** Use the LIMIT for M if it is smaller. Or if this sort is for 4174 ** a DISTINCT operator, M will be the number of distinct output 4175 ** rows, so fudge it downwards a bit. 4176 */ 4177 if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){ 4178 nRow = pWInfo->iLimit; 4179 }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){ 4180 /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT 4181 ** reduces the number of output rows by a factor of 2 */ 4182 if( nRow>10 ){ nRow -= 10; assert( 10==sqlite3LogEst(2) ); } 4183 } 4184 rSortCost += estLog(nRow); 4185 return rSortCost; 4186 } 4187 4188 /* 4189 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine 4190 ** attempts to find the lowest cost path that visits each WhereLoop 4191 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. 4192 ** 4193 ** Assume that the total number of output rows that will need to be sorted 4194 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting 4195 ** costs if nRowEst==0. 4196 ** 4197 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation 4198 ** error occurs. 4199 */ 4200 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ 4201 int mxChoice; /* Maximum number of simultaneous paths tracked */ 4202 int nLoop; /* Number of terms in the join */ 4203 Parse *pParse; /* Parsing context */ 4204 sqlite3 *db; /* The database connection */ 4205 int iLoop; /* Loop counter over the terms of the join */ 4206 int ii, jj; /* Loop counters */ 4207 int mxI = 0; /* Index of next entry to replace */ 4208 int nOrderBy; /* Number of ORDER BY clause terms */ 4209 LogEst mxCost = 0; /* Maximum cost of a set of paths */ 4210 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ 4211 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ 4212 WherePath *aFrom; /* All nFrom paths at the previous level */ 4213 WherePath *aTo; /* The nTo best paths at the current level */ 4214 WherePath *pFrom; /* An element of aFrom[] that we are working on */ 4215 WherePath *pTo; /* An element of aTo[] that we are working on */ 4216 WhereLoop *pWLoop; /* One of the WhereLoop objects */ 4217 WhereLoop **pX; /* Used to divy up the pSpace memory */ 4218 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ 4219 char *pSpace; /* Temporary memory used by this routine */ 4220 int nSpace; /* Bytes of space allocated at pSpace */ 4221 4222 pParse = pWInfo->pParse; 4223 db = pParse->db; 4224 nLoop = pWInfo->nLevel; 4225 /* TUNING: For simple queries, only the best path is tracked. 4226 ** For 2-way joins, the 5 best paths are followed. 4227 ** For joins of 3 or more tables, track the 10 best paths */ 4228 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); 4229 assert( nLoop<=pWInfo->pTabList->nSrc ); 4230 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); 4231 4232 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this 4233 ** case the purpose of this call is to estimate the number of rows returned 4234 ** by the overall query. Once this estimate has been obtained, the caller 4235 ** will invoke this function a second time, passing the estimate as the 4236 ** nRowEst parameter. */ 4237 if( pWInfo->pOrderBy==0 || nRowEst==0 ){ 4238 nOrderBy = 0; 4239 }else{ 4240 nOrderBy = pWInfo->pOrderBy->nExpr; 4241 } 4242 4243 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ 4244 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; 4245 nSpace += sizeof(LogEst) * nOrderBy; 4246 pSpace = sqlite3DbMallocRawNN(db, nSpace); 4247 if( pSpace==0 ) return SQLITE_NOMEM_BKPT; 4248 aTo = (WherePath*)pSpace; 4249 aFrom = aTo+mxChoice; 4250 memset(aFrom, 0, sizeof(aFrom[0])); 4251 pX = (WhereLoop**)(aFrom+mxChoice); 4252 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ 4253 pFrom->aLoop = pX; 4254 } 4255 if( nOrderBy ){ 4256 /* If there is an ORDER BY clause and it is not being ignored, set up 4257 ** space for the aSortCost[] array. Each element of the aSortCost array 4258 ** is either zero - meaning it has not yet been initialized - or the 4259 ** cost of sorting nRowEst rows of data where the first X terms of 4260 ** the ORDER BY clause are already in order, where X is the array 4261 ** index. */ 4262 aSortCost = (LogEst*)pX; 4263 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); 4264 } 4265 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); 4266 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); 4267 4268 /* Seed the search with a single WherePath containing zero WhereLoops. 4269 ** 4270 ** TUNING: Do not let the number of iterations go above 28. If the cost 4271 ** of computing an automatic index is not paid back within the first 28 4272 ** rows, then do not use the automatic index. */ 4273 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) ); 4274 nFrom = 1; 4275 assert( aFrom[0].isOrdered==0 ); 4276 if( nOrderBy ){ 4277 /* If nLoop is zero, then there are no FROM terms in the query. Since 4278 ** in this case the query may return a maximum of one row, the results 4279 ** are already in the requested order. Set isOrdered to nOrderBy to 4280 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to 4281 ** -1, indicating that the result set may or may not be ordered, 4282 ** depending on the loops added to the current plan. */ 4283 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; 4284 } 4285 4286 /* Compute successively longer WherePaths using the previous generation 4287 ** of WherePaths as the basis for the next. Keep track of the mxChoice 4288 ** best paths at each generation */ 4289 for(iLoop=0; iLoop<nLoop; iLoop++){ 4290 nTo = 0; 4291 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ 4292 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ 4293 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ 4294 LogEst rCost; /* Cost of path (pFrom+pWLoop) */ 4295 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ 4296 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */ 4297 Bitmask maskNew; /* Mask of src visited by (..) */ 4298 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */ 4299 4300 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; 4301 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; 4302 if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){ 4303 /* Do not use an automatic index if the this loop is expected 4304 ** to run less than 1.25 times. It is tempting to also exclude 4305 ** automatic index usage on an outer loop, but sometimes an automatic 4306 ** index is useful in the outer loop of a correlated subquery. */ 4307 assert( 10==sqlite3LogEst(2) ); 4308 continue; 4309 } 4310 4311 /* At this point, pWLoop is a candidate to be the next loop. 4312 ** Compute its cost */ 4313 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); 4314 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); 4315 nOut = pFrom->nRow + pWLoop->nOut; 4316 maskNew = pFrom->maskLoop | pWLoop->maskSelf; 4317 if( isOrdered<0 ){ 4318 isOrdered = wherePathSatisfiesOrderBy(pWInfo, 4319 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, 4320 iLoop, pWLoop, &revMask); 4321 }else{ 4322 revMask = pFrom->revLoop; 4323 } 4324 if( isOrdered>=0 && isOrdered<nOrderBy ){ 4325 if( aSortCost[isOrdered]==0 ){ 4326 aSortCost[isOrdered] = whereSortingCost( 4327 pWInfo, nRowEst, nOrderBy, isOrdered 4328 ); 4329 } 4330 /* TUNING: Add a small extra penalty (5) to sorting as an 4331 ** extra encouragment to the query planner to select a plan 4332 ** where the rows emerge in the correct order without any sorting 4333 ** required. */ 4334 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5; 4335 4336 WHERETRACE(0x002, 4337 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", 4338 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, 4339 rUnsorted, rCost)); 4340 }else{ 4341 rCost = rUnsorted; 4342 rUnsorted -= 2; /* TUNING: Slight bias in favor of no-sort plans */ 4343 } 4344 4345 /* Check to see if pWLoop should be added to the set of 4346 ** mxChoice best-so-far paths. 4347 ** 4348 ** First look for an existing path among best-so-far paths 4349 ** that covers the same set of loops and has the same isOrdered 4350 ** setting as the current path candidate. 4351 ** 4352 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent 4353 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range 4354 ** of legal values for isOrdered, -1..64. 4355 */ 4356 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ 4357 if( pTo->maskLoop==maskNew 4358 && ((pTo->isOrdered^isOrdered)&0x80)==0 4359 ){ 4360 testcase( jj==nTo-1 ); 4361 break; 4362 } 4363 } 4364 if( jj>=nTo ){ 4365 /* None of the existing best-so-far paths match the candidate. */ 4366 if( nTo>=mxChoice 4367 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) 4368 ){ 4369 /* The current candidate is no better than any of the mxChoice 4370 ** paths currently in the best-so-far buffer. So discard 4371 ** this candidate as not viable. */ 4372 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4373 if( sqlite3WhereTrace&0x4 ){ 4374 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n", 4375 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4376 isOrdered>=0 ? isOrdered+'0' : '?'); 4377 } 4378 #endif 4379 continue; 4380 } 4381 /* If we reach this points it means that the new candidate path 4382 ** needs to be added to the set of best-so-far paths. */ 4383 if( nTo<mxChoice ){ 4384 /* Increase the size of the aTo set by one */ 4385 jj = nTo++; 4386 }else{ 4387 /* New path replaces the prior worst to keep count below mxChoice */ 4388 jj = mxI; 4389 } 4390 pTo = &aTo[jj]; 4391 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4392 if( sqlite3WhereTrace&0x4 ){ 4393 sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n", 4394 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4395 isOrdered>=0 ? isOrdered+'0' : '?'); 4396 } 4397 #endif 4398 }else{ 4399 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the 4400 ** same set of loops and has the same isOrdered setting as the 4401 ** candidate path. Check to see if the candidate should replace 4402 ** pTo or if the candidate should be skipped. 4403 ** 4404 ** The conditional is an expanded vector comparison equivalent to: 4405 ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted) 4406 */ 4407 if( pTo->rCost<rCost 4408 || (pTo->rCost==rCost 4409 && (pTo->nRow<nOut 4410 || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted) 4411 ) 4412 ) 4413 ){ 4414 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4415 if( sqlite3WhereTrace&0x4 ){ 4416 sqlite3DebugPrintf( 4417 "Skip %s cost=%-3d,%3d,%3d order=%c", 4418 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4419 isOrdered>=0 ? isOrdered+'0' : '?'); 4420 sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n", 4421 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4422 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4423 } 4424 #endif 4425 /* Discard the candidate path from further consideration */ 4426 testcase( pTo->rCost==rCost ); 4427 continue; 4428 } 4429 testcase( pTo->rCost==rCost+1 ); 4430 /* Control reaches here if the candidate path is better than the 4431 ** pTo path. Replace pTo with the candidate. */ 4432 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4433 if( sqlite3WhereTrace&0x4 ){ 4434 sqlite3DebugPrintf( 4435 "Update %s cost=%-3d,%3d,%3d order=%c", 4436 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4437 isOrdered>=0 ? isOrdered+'0' : '?'); 4438 sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n", 4439 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4440 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4441 } 4442 #endif 4443 } 4444 /* pWLoop is a winner. Add it to the set of best so far */ 4445 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; 4446 pTo->revLoop = revMask; 4447 pTo->nRow = nOut; 4448 pTo->rCost = rCost; 4449 pTo->rUnsorted = rUnsorted; 4450 pTo->isOrdered = isOrdered; 4451 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); 4452 pTo->aLoop[iLoop] = pWLoop; 4453 if( nTo>=mxChoice ){ 4454 mxI = 0; 4455 mxCost = aTo[0].rCost; 4456 mxUnsorted = aTo[0].nRow; 4457 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ 4458 if( pTo->rCost>mxCost 4459 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) 4460 ){ 4461 mxCost = pTo->rCost; 4462 mxUnsorted = pTo->rUnsorted; 4463 mxI = jj; 4464 } 4465 } 4466 } 4467 } 4468 } 4469 4470 #ifdef WHERETRACE_ENABLED /* >=2 */ 4471 if( sqlite3WhereTrace & 0x02 ){ 4472 sqlite3DebugPrintf("---- after round %d ----\n", iLoop); 4473 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ 4474 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", 4475 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4476 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); 4477 if( pTo->isOrdered>0 ){ 4478 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); 4479 }else{ 4480 sqlite3DebugPrintf("\n"); 4481 } 4482 } 4483 } 4484 #endif 4485 4486 /* Swap the roles of aFrom and aTo for the next generation */ 4487 pFrom = aTo; 4488 aTo = aFrom; 4489 aFrom = pFrom; 4490 nFrom = nTo; 4491 } 4492 4493 if( nFrom==0 ){ 4494 sqlite3ErrorMsg(pParse, "no query solution"); 4495 sqlite3DbFreeNN(db, pSpace); 4496 return SQLITE_ERROR; 4497 } 4498 4499 /* Find the lowest cost path. pFrom will be left pointing to that path */ 4500 pFrom = aFrom; 4501 for(ii=1; ii<nFrom; ii++){ 4502 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; 4503 } 4504 assert( pWInfo->nLevel==nLoop ); 4505 /* Load the lowest cost path into pWInfo */ 4506 for(iLoop=0; iLoop<nLoop; iLoop++){ 4507 WhereLevel *pLevel = pWInfo->a + iLoop; 4508 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; 4509 pLevel->iFrom = pWLoop->iTab; 4510 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; 4511 } 4512 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 4513 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 4514 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP 4515 && nRowEst 4516 ){ 4517 Bitmask notUsed; 4518 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, 4519 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); 4520 if( rc==pWInfo->pResultSet->nExpr ){ 4521 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 4522 } 4523 } 4524 pWInfo->bOrderedInnerLoop = 0; 4525 if( pWInfo->pOrderBy ){ 4526 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ 4527 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ 4528 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 4529 } 4530 }else{ 4531 pWInfo->nOBSat = pFrom->isOrdered; 4532 pWInfo->revMask = pFrom->revLoop; 4533 if( pWInfo->nOBSat<=0 ){ 4534 pWInfo->nOBSat = 0; 4535 if( nLoop>0 ){ 4536 u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags; 4537 if( (wsFlags & WHERE_ONEROW)==0 4538 && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN) 4539 ){ 4540 Bitmask m = 0; 4541 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, 4542 WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m); 4543 testcase( wsFlags & WHERE_IPK ); 4544 testcase( wsFlags & WHERE_COLUMN_IN ); 4545 if( rc==pWInfo->pOrderBy->nExpr ){ 4546 pWInfo->bOrderedInnerLoop = 1; 4547 pWInfo->revMask = m; 4548 } 4549 } 4550 } 4551 }else if( nLoop 4552 && pWInfo->nOBSat==1 4553 && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0 4554 ){ 4555 pWInfo->bOrderedInnerLoop = 1; 4556 } 4557 } 4558 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) 4559 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 4560 ){ 4561 Bitmask revMask = 0; 4562 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, 4563 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask 4564 ); 4565 assert( pWInfo->sorted==0 ); 4566 if( nOrder==pWInfo->pOrderBy->nExpr ){ 4567 pWInfo->sorted = 1; 4568 pWInfo->revMask = revMask; 4569 } 4570 } 4571 } 4572 4573 4574 pWInfo->nRowOut = pFrom->nRow; 4575 4576 /* Free temporary memory and return success */ 4577 sqlite3DbFreeNN(db, pSpace); 4578 return SQLITE_OK; 4579 } 4580 4581 /* 4582 ** Most queries use only a single table (they are not joins) and have 4583 ** simple == constraints against indexed fields. This routine attempts 4584 ** to plan those simple cases using much less ceremony than the 4585 ** general-purpose query planner, and thereby yield faster sqlite3_prepare() 4586 ** times for the common case. 4587 ** 4588 ** Return non-zero on success, if this query can be handled by this 4589 ** no-frills query planner. Return zero if this query needs the 4590 ** general-purpose query planner. 4591 */ 4592 static int whereShortCut(WhereLoopBuilder *pBuilder){ 4593 WhereInfo *pWInfo; 4594 SrcItem *pItem; 4595 WhereClause *pWC; 4596 WhereTerm *pTerm; 4597 WhereLoop *pLoop; 4598 int iCur; 4599 int j; 4600 Table *pTab; 4601 Index *pIdx; 4602 WhereScan scan; 4603 4604 pWInfo = pBuilder->pWInfo; 4605 if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0; 4606 assert( pWInfo->pTabList->nSrc>=1 ); 4607 pItem = pWInfo->pTabList->a; 4608 pTab = pItem->pTab; 4609 if( IsVirtual(pTab) ) return 0; 4610 if( pItem->fg.isIndexedBy ) return 0; 4611 iCur = pItem->iCursor; 4612 pWC = &pWInfo->sWC; 4613 pLoop = pBuilder->pNew; 4614 pLoop->wsFlags = 0; 4615 pLoop->nSkip = 0; 4616 pTerm = whereScanInit(&scan, pWC, iCur, -1, WO_EQ|WO_IS, 0); 4617 while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan); 4618 if( pTerm ){ 4619 testcase( pTerm->eOperator & WO_IS ); 4620 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; 4621 pLoop->aLTerm[0] = pTerm; 4622 pLoop->nLTerm = 1; 4623 pLoop->u.btree.nEq = 1; 4624 /* TUNING: Cost of a rowid lookup is 10 */ 4625 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ 4626 }else{ 4627 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4628 int opMask; 4629 assert( pLoop->aLTermSpace==pLoop->aLTerm ); 4630 if( !IsUniqueIndex(pIdx) 4631 || pIdx->pPartIdxWhere!=0 4632 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) 4633 ) continue; 4634 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; 4635 for(j=0; j<pIdx->nKeyCol; j++){ 4636 pTerm = whereScanInit(&scan, pWC, iCur, j, opMask, pIdx); 4637 while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan); 4638 if( pTerm==0 ) break; 4639 testcase( pTerm->eOperator & WO_IS ); 4640 pLoop->aLTerm[j] = pTerm; 4641 } 4642 if( j!=pIdx->nKeyCol ) continue; 4643 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; 4644 if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){ 4645 pLoop->wsFlags |= WHERE_IDX_ONLY; 4646 } 4647 pLoop->nLTerm = j; 4648 pLoop->u.btree.nEq = j; 4649 pLoop->u.btree.pIndex = pIdx; 4650 /* TUNING: Cost of a unique index lookup is 15 */ 4651 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ 4652 break; 4653 } 4654 } 4655 if( pLoop->wsFlags ){ 4656 pLoop->nOut = (LogEst)1; 4657 pWInfo->a[0].pWLoop = pLoop; 4658 assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] ); 4659 pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */ 4660 pWInfo->a[0].iTabCur = iCur; 4661 pWInfo->nRowOut = 1; 4662 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; 4663 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ 4664 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4665 } 4666 if( scan.iEquiv>1 ) pLoop->wsFlags |= WHERE_TRANSCONS; 4667 #ifdef SQLITE_DEBUG 4668 pLoop->cId = '0'; 4669 #endif 4670 #ifdef WHERETRACE_ENABLED 4671 if( sqlite3WhereTrace ){ 4672 sqlite3DebugPrintf("whereShortCut() used to compute solution\n"); 4673 } 4674 #endif 4675 return 1; 4676 } 4677 return 0; 4678 } 4679 4680 /* 4681 ** Helper function for exprIsDeterministic(). 4682 */ 4683 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){ 4684 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){ 4685 pWalker->eCode = 0; 4686 return WRC_Abort; 4687 } 4688 return WRC_Continue; 4689 } 4690 4691 /* 4692 ** Return true if the expression contains no non-deterministic SQL 4693 ** functions. Do not consider non-deterministic SQL functions that are 4694 ** part of sub-select statements. 4695 */ 4696 static int exprIsDeterministic(Expr *p){ 4697 Walker w; 4698 memset(&w, 0, sizeof(w)); 4699 w.eCode = 1; 4700 w.xExprCallback = exprNodeIsDeterministic; 4701 w.xSelectCallback = sqlite3SelectWalkFail; 4702 sqlite3WalkExpr(&w, p); 4703 return w.eCode; 4704 } 4705 4706 4707 #ifdef WHERETRACE_ENABLED 4708 /* 4709 ** Display all WhereLoops in pWInfo 4710 */ 4711 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){ 4712 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ 4713 WhereLoop *p; 4714 int i; 4715 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" 4716 "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; 4717 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ 4718 p->cId = zLabel[i%(sizeof(zLabel)-1)]; 4719 sqlite3WhereLoopPrint(p, pWC); 4720 } 4721 } 4722 } 4723 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C) 4724 #else 4725 # define WHERETRACE_ALL_LOOPS(W,C) 4726 #endif 4727 4728 /* 4729 ** Generate the beginning of the loop used for WHERE clause processing. 4730 ** The return value is a pointer to an opaque structure that contains 4731 ** information needed to terminate the loop. Later, the calling routine 4732 ** should invoke sqlite3WhereEnd() with the return value of this function 4733 ** in order to complete the WHERE clause processing. 4734 ** 4735 ** If an error occurs, this routine returns NULL. 4736 ** 4737 ** The basic idea is to do a nested loop, one loop for each table in 4738 ** the FROM clause of a select. (INSERT and UPDATE statements are the 4739 ** same as a SELECT with only a single table in the FROM clause.) For 4740 ** example, if the SQL is this: 4741 ** 4742 ** SELECT * FROM t1, t2, t3 WHERE ...; 4743 ** 4744 ** Then the code generated is conceptually like the following: 4745 ** 4746 ** foreach row1 in t1 do \ Code generated 4747 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 4748 ** foreach row3 in t3 do / 4749 ** ... 4750 ** end \ Code generated 4751 ** end |-- by sqlite3WhereEnd() 4752 ** end / 4753 ** 4754 ** Note that the loops might not be nested in the order in which they 4755 ** appear in the FROM clause if a different order is better able to make 4756 ** use of indices. Note also that when the IN operator appears in 4757 ** the WHERE clause, it might result in additional nested loops for 4758 ** scanning through all values on the right-hand side of the IN. 4759 ** 4760 ** There are Btree cursors associated with each table. t1 uses cursor 4761 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 4762 ** And so forth. This routine generates code to open those VDBE cursors 4763 ** and sqlite3WhereEnd() generates the code to close them. 4764 ** 4765 ** The code that sqlite3WhereBegin() generates leaves the cursors named 4766 ** in pTabList pointing at their appropriate entries. The [...] code 4767 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 4768 ** data from the various tables of the loop. 4769 ** 4770 ** If the WHERE clause is empty, the foreach loops must each scan their 4771 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 4772 ** the tables have indices and there are terms in the WHERE clause that 4773 ** refer to those indices, a complete table scan can be avoided and the 4774 ** code will run much faster. Most of the work of this routine is checking 4775 ** to see if there are indices that can be used to speed up the loop. 4776 ** 4777 ** Terms of the WHERE clause are also used to limit which rows actually 4778 ** make it to the "..." in the middle of the loop. After each "foreach", 4779 ** terms of the WHERE clause that use only terms in that loop and outer 4780 ** loops are evaluated and if false a jump is made around all subsequent 4781 ** inner loops (or around the "..." if the test occurs within the inner- 4782 ** most loop) 4783 ** 4784 ** OUTER JOINS 4785 ** 4786 ** An outer join of tables t1 and t2 is conceptally coded as follows: 4787 ** 4788 ** foreach row1 in t1 do 4789 ** flag = 0 4790 ** foreach row2 in t2 do 4791 ** start: 4792 ** ... 4793 ** flag = 1 4794 ** end 4795 ** if flag==0 then 4796 ** move the row2 cursor to a null row 4797 ** goto start 4798 ** fi 4799 ** end 4800 ** 4801 ** ORDER BY CLAUSE PROCESSING 4802 ** 4803 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause 4804 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement 4805 ** if there is one. If there is no ORDER BY clause or if this routine 4806 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. 4807 ** 4808 ** The iIdxCur parameter is the cursor number of an index. If 4809 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index 4810 ** to use for OR clause processing. The WHERE clause should use this 4811 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is 4812 ** the first cursor in an array of cursors for all indices. iIdxCur should 4813 ** be used to compute the appropriate cursor depending on which index is 4814 ** used. 4815 */ 4816 WhereInfo *sqlite3WhereBegin( 4817 Parse *pParse, /* The parser context */ 4818 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ 4819 Expr *pWhere, /* The WHERE clause */ 4820 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ 4821 ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */ 4822 u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */ 4823 int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number 4824 ** If WHERE_USE_LIMIT, then the limit amount */ 4825 ){ 4826 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ 4827 int nTabList; /* Number of elements in pTabList */ 4828 WhereInfo *pWInfo; /* Will become the return value of this function */ 4829 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 4830 Bitmask notReady; /* Cursors that are not yet positioned */ 4831 WhereLoopBuilder sWLB; /* The WhereLoop builder */ 4832 WhereMaskSet *pMaskSet; /* The expression mask set */ 4833 WhereLevel *pLevel; /* A single level in pWInfo->a[] */ 4834 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ 4835 int ii; /* Loop counter */ 4836 sqlite3 *db; /* Database connection */ 4837 int rc; /* Return code */ 4838 u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */ 4839 4840 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || ( 4841 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 4842 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 4843 )); 4844 4845 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */ 4846 assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 4847 || (wctrlFlags & WHERE_USE_LIMIT)==0 ); 4848 4849 /* Variable initialization */ 4850 db = pParse->db; 4851 memset(&sWLB, 0, sizeof(sWLB)); 4852 4853 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ 4854 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); 4855 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; 4856 sWLB.pOrderBy = pOrderBy; 4857 4858 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via 4859 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ 4860 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ 4861 wctrlFlags &= ~WHERE_WANT_DISTINCT; 4862 } 4863 4864 /* The number of tables in the FROM clause is limited by the number of 4865 ** bits in a Bitmask 4866 */ 4867 testcase( pTabList->nSrc==BMS ); 4868 if( pTabList->nSrc>BMS ){ 4869 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 4870 return 0; 4871 } 4872 4873 /* This function normally generates a nested loop for all tables in 4874 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should 4875 ** only generate code for the first table in pTabList and assume that 4876 ** any cursors associated with subsequent tables are uninitialized. 4877 */ 4878 nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc; 4879 4880 /* Allocate and initialize the WhereInfo structure that will become the 4881 ** return value. A single allocation is used to store the WhereInfo 4882 ** struct, the contents of WhereInfo.a[], the WhereClause structure 4883 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte 4884 ** field (type Bitmask) it must be aligned on an 8-byte boundary on 4885 ** some architectures. Hence the ROUND8() below. 4886 */ 4887 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); 4888 pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop)); 4889 if( db->mallocFailed ){ 4890 sqlite3DbFree(db, pWInfo); 4891 pWInfo = 0; 4892 goto whereBeginError; 4893 } 4894 pWInfo->pParse = pParse; 4895 pWInfo->pTabList = pTabList; 4896 pWInfo->pOrderBy = pOrderBy; 4897 pWInfo->pWhere = pWhere; 4898 pWInfo->pResultSet = pResultSet; 4899 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; 4900 pWInfo->nLevel = nTabList; 4901 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse); 4902 pWInfo->wctrlFlags = wctrlFlags; 4903 pWInfo->iLimit = iAuxArg; 4904 pWInfo->savedNQueryLoop = pParse->nQueryLoop; 4905 memset(&pWInfo->nOBSat, 0, 4906 offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat)); 4907 memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel)); 4908 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */ 4909 pMaskSet = &pWInfo->sMaskSet; 4910 sWLB.pWInfo = pWInfo; 4911 sWLB.pWC = &pWInfo->sWC; 4912 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); 4913 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); 4914 whereLoopInit(sWLB.pNew); 4915 #ifdef SQLITE_DEBUG 4916 sWLB.pNew->cId = '*'; 4917 #endif 4918 4919 /* Split the WHERE clause into separate subexpressions where each 4920 ** subexpression is separated by an AND operator. 4921 */ 4922 initMaskSet(pMaskSet); 4923 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); 4924 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); 4925 4926 /* Special case: No FROM clause 4927 */ 4928 if( nTabList==0 ){ 4929 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; 4930 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4931 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4932 } 4933 ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW")); 4934 }else{ 4935 /* Assign a bit from the bitmask to every term in the FROM clause. 4936 ** 4937 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. 4938 ** 4939 ** The rule of the previous sentence ensures thta if X is the bitmask for 4940 ** a table T, then X-1 is the bitmask for all other tables to the left of T. 4941 ** Knowing the bitmask for all tables to the left of a left join is 4942 ** important. Ticket #3015. 4943 ** 4944 ** Note that bitmasks are created for all pTabList->nSrc tables in 4945 ** pTabList, not just the first nTabList tables. nTabList is normally 4946 ** equal to pTabList->nSrc but might be shortened to 1 if the 4947 ** WHERE_OR_SUBCLAUSE flag is set. 4948 */ 4949 ii = 0; 4950 do{ 4951 createMask(pMaskSet, pTabList->a[ii].iCursor); 4952 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC); 4953 }while( (++ii)<pTabList->nSrc ); 4954 #ifdef SQLITE_DEBUG 4955 { 4956 Bitmask mx = 0; 4957 for(ii=0; ii<pTabList->nSrc; ii++){ 4958 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); 4959 assert( m>=mx ); 4960 mx = m; 4961 } 4962 } 4963 #endif 4964 } 4965 4966 /* Analyze all of the subexpressions. */ 4967 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); 4968 if( db->mallocFailed ) goto whereBeginError; 4969 4970 /* Special case: WHERE terms that do not refer to any tables in the join 4971 ** (constant expressions). Evaluate each such term, and jump over all the 4972 ** generated code if the result is not true. 4973 ** 4974 ** Do not do this if the expression contains non-deterministic functions 4975 ** that are not within a sub-select. This is not strictly required, but 4976 ** preserves SQLite's legacy behaviour in the following two cases: 4977 ** 4978 ** FROM ... WHERE random()>0; -- eval random() once per row 4979 ** FROM ... WHERE (SELECT random())>0; -- eval random() once overall 4980 */ 4981 for(ii=0; ii<sWLB.pWC->nTerm; ii++){ 4982 WhereTerm *pT = &sWLB.pWC->a[ii]; 4983 if( pT->wtFlags & TERM_VIRTUAL ) continue; 4984 if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){ 4985 sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL); 4986 pT->wtFlags |= TERM_CODED; 4987 } 4988 } 4989 4990 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4991 if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ 4992 /* The DISTINCT marking is pointless. Ignore it. */ 4993 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4994 }else if( pOrderBy==0 ){ 4995 /* Try to ORDER BY the result set to make distinct processing easier */ 4996 pWInfo->wctrlFlags |= WHERE_DISTINCTBY; 4997 pWInfo->pOrderBy = pResultSet; 4998 } 4999 } 5000 5001 /* Construct the WhereLoop objects */ 5002 #if defined(WHERETRACE_ENABLED) 5003 if( sqlite3WhereTrace & 0xffff ){ 5004 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags); 5005 if( wctrlFlags & WHERE_USE_LIMIT ){ 5006 sqlite3DebugPrintf(", limit: %d", iAuxArg); 5007 } 5008 sqlite3DebugPrintf(")\n"); 5009 if( sqlite3WhereTrace & 0x100 ){ 5010 Select sSelect; 5011 memset(&sSelect, 0, sizeof(sSelect)); 5012 sSelect.selFlags = SF_WhereBegin; 5013 sSelect.pSrc = pTabList; 5014 sSelect.pWhere = pWhere; 5015 sSelect.pOrderBy = pOrderBy; 5016 sSelect.pEList = pResultSet; 5017 sqlite3TreeViewSelect(0, &sSelect, 0); 5018 } 5019 } 5020 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 5021 sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n"); 5022 sqlite3WhereClausePrint(sWLB.pWC); 5023 } 5024 #endif 5025 5026 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ 5027 rc = whereLoopAddAll(&sWLB); 5028 if( rc ) goto whereBeginError; 5029 5030 #ifdef SQLITE_ENABLE_STAT4 5031 /* If one or more WhereTerm.truthProb values were used in estimating 5032 ** loop parameters, but then those truthProb values were subsequently 5033 ** changed based on STAT4 information while computing subsequent loops, 5034 ** then we need to rerun the whole loop building process so that all 5035 ** loops will be built using the revised truthProb values. */ 5036 if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){ 5037 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC); 5038 WHERETRACE(0xffff, 5039 ("**** Redo all loop computations due to" 5040 " TERM_HIGHTRUTH changes ****\n")); 5041 while( pWInfo->pLoops ){ 5042 WhereLoop *p = pWInfo->pLoops; 5043 pWInfo->pLoops = p->pNextLoop; 5044 whereLoopDelete(db, p); 5045 } 5046 rc = whereLoopAddAll(&sWLB); 5047 if( rc ) goto whereBeginError; 5048 } 5049 #endif 5050 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC); 5051 5052 wherePathSolver(pWInfo, 0); 5053 if( db->mallocFailed ) goto whereBeginError; 5054 if( pWInfo->pOrderBy ){ 5055 wherePathSolver(pWInfo, pWInfo->nRowOut+1); 5056 if( db->mallocFailed ) goto whereBeginError; 5057 } 5058 } 5059 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ 5060 pWInfo->revMask = ALLBITS; 5061 } 5062 if( pParse->nErr || db->mallocFailed ){ 5063 goto whereBeginError; 5064 } 5065 #ifdef WHERETRACE_ENABLED 5066 if( sqlite3WhereTrace ){ 5067 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); 5068 if( pWInfo->nOBSat>0 ){ 5069 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); 5070 } 5071 switch( pWInfo->eDistinct ){ 5072 case WHERE_DISTINCT_UNIQUE: { 5073 sqlite3DebugPrintf(" DISTINCT=unique"); 5074 break; 5075 } 5076 case WHERE_DISTINCT_ORDERED: { 5077 sqlite3DebugPrintf(" DISTINCT=ordered"); 5078 break; 5079 } 5080 case WHERE_DISTINCT_UNORDERED: { 5081 sqlite3DebugPrintf(" DISTINCT=unordered"); 5082 break; 5083 } 5084 } 5085 sqlite3DebugPrintf("\n"); 5086 for(ii=0; ii<pWInfo->nLevel; ii++){ 5087 sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); 5088 } 5089 } 5090 #endif 5091 5092 /* Attempt to omit tables from the join that do not affect the result. 5093 ** For a table to not affect the result, the following must be true: 5094 ** 5095 ** 1) The query must not be an aggregate. 5096 ** 2) The table must be the RHS of a LEFT JOIN. 5097 ** 3) Either the query must be DISTINCT, or else the ON or USING clause 5098 ** must contain a constraint that limits the scan of the table to 5099 ** at most a single row. 5100 ** 4) The table must not be referenced by any part of the query apart 5101 ** from its own USING or ON clause. 5102 ** 5103 ** For example, given: 5104 ** 5105 ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1); 5106 ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2); 5107 ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3); 5108 ** 5109 ** then table t2 can be omitted from the following: 5110 ** 5111 ** SELECT v1, v3 FROM t1 5112 ** LEFT JOIN t2 ON (t1.ipk=t2.ipk) 5113 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk) 5114 ** 5115 ** or from: 5116 ** 5117 ** SELECT DISTINCT v1, v3 FROM t1 5118 ** LEFT JOIN t2 5119 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk) 5120 */ 5121 notReady = ~(Bitmask)0; 5122 if( pWInfo->nLevel>=2 5123 && pResultSet!=0 /* these two combine to guarantee */ 5124 && 0==(wctrlFlags & WHERE_AGG_DISTINCT) /* condition (1) above */ 5125 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) 5126 ){ 5127 int i; 5128 Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet); 5129 if( sWLB.pOrderBy ){ 5130 tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy); 5131 } 5132 for(i=pWInfo->nLevel-1; i>=1; i--){ 5133 WhereTerm *pTerm, *pEnd; 5134 SrcItem *pItem; 5135 pLoop = pWInfo->a[i].pWLoop; 5136 pItem = &pWInfo->pTabList->a[pLoop->iTab]; 5137 if( (pItem->fg.jointype & JT_LEFT)==0 ) continue; 5138 if( (wctrlFlags & WHERE_WANT_DISTINCT)==0 5139 && (pLoop->wsFlags & WHERE_ONEROW)==0 5140 ){ 5141 continue; 5142 } 5143 if( (tabUsed & pLoop->maskSelf)!=0 ) continue; 5144 pEnd = sWLB.pWC->a + sWLB.pWC->nTerm; 5145 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ 5146 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 5147 if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 5148 || pTerm->pExpr->iRightJoinTable!=pItem->iCursor 5149 ){ 5150 break; 5151 } 5152 } 5153 } 5154 if( pTerm<pEnd ) continue; 5155 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); 5156 notReady &= ~pLoop->maskSelf; 5157 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ 5158 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 5159 pTerm->wtFlags |= TERM_CODED; 5160 } 5161 } 5162 if( i!=pWInfo->nLevel-1 ){ 5163 int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel); 5164 memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte); 5165 } 5166 pWInfo->nLevel--; 5167 nTabList--; 5168 } 5169 } 5170 #if defined(WHERETRACE_ENABLED) 5171 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 5172 sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n"); 5173 sqlite3WhereClausePrint(sWLB.pWC); 5174 } 5175 WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); 5176 #endif 5177 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; 5178 5179 /* If the caller is an UPDATE or DELETE statement that is requesting 5180 ** to use a one-pass algorithm, determine if this is appropriate. 5181 ** 5182 ** A one-pass approach can be used if the caller has requested one 5183 ** and either (a) the scan visits at most one row or (b) each 5184 ** of the following are true: 5185 ** 5186 ** * the caller has indicated that a one-pass approach can be used 5187 ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and 5188 ** * the table is not a virtual table, and 5189 ** * either the scan does not use the OR optimization or the caller 5190 ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified 5191 ** for DELETE). 5192 ** 5193 ** The last qualification is because an UPDATE statement uses 5194 ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can 5195 ** use a one-pass approach, and this is not set accurately for scans 5196 ** that use the OR optimization. 5197 */ 5198 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 5199 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){ 5200 int wsFlags = pWInfo->a[0].pWLoop->wsFlags; 5201 int bOnerow = (wsFlags & WHERE_ONEROW)!=0; 5202 assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) ); 5203 if( bOnerow || ( 5204 0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW) 5205 && !IsVirtual(pTabList->a[0].pTab) 5206 && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK)) 5207 )){ 5208 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; 5209 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){ 5210 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){ 5211 bFordelete = OPFLAG_FORDELETE; 5212 } 5213 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY); 5214 } 5215 } 5216 } 5217 5218 /* Open all tables in the pTabList and any indices selected for 5219 ** searching those tables. 5220 */ 5221 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ 5222 Table *pTab; /* Table to open */ 5223 int iDb; /* Index of database containing table/index */ 5224 SrcItem *pTabItem; 5225 5226 pTabItem = &pTabList->a[pLevel->iFrom]; 5227 pTab = pTabItem->pTab; 5228 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5229 pLoop = pLevel->pWLoop; 5230 if( (pTab->tabFlags & TF_Ephemeral)!=0 || IsView(pTab) ){ 5231 /* Do nothing */ 5232 }else 5233 #ifndef SQLITE_OMIT_VIRTUALTABLE 5234 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 5235 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 5236 int iCur = pTabItem->iCursor; 5237 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); 5238 }else if( IsVirtual(pTab) ){ 5239 /* noop */ 5240 }else 5241 #endif 5242 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 5243 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){ 5244 int op = OP_OpenRead; 5245 if( pWInfo->eOnePass!=ONEPASS_OFF ){ 5246 op = OP_OpenWrite; 5247 pWInfo->aiCurOnePass[0] = pTabItem->iCursor; 5248 }; 5249 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 5250 assert( pTabItem->iCursor==pLevel->iTabCur ); 5251 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 ); 5252 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS ); 5253 if( pWInfo->eOnePass==ONEPASS_OFF 5254 && pTab->nCol<BMS 5255 && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0 5256 ){ 5257 /* If we know that only a prefix of the record will be used, 5258 ** it is advantageous to reduce the "column count" field in 5259 ** the P4 operand of the OP_OpenRead/Write opcode. */ 5260 Bitmask b = pTabItem->colUsed; 5261 int n = 0; 5262 for(; b; b=b>>1, n++){} 5263 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32); 5264 assert( n<=pTab->nCol ); 5265 } 5266 #ifdef SQLITE_ENABLE_CURSOR_HINTS 5267 if( pLoop->u.btree.pIndex!=0 ){ 5268 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete); 5269 }else 5270 #endif 5271 { 5272 sqlite3VdbeChangeP5(v, bFordelete); 5273 } 5274 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 5275 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, 5276 (const u8*)&pTabItem->colUsed, P4_INT64); 5277 #endif 5278 }else{ 5279 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5280 } 5281 if( pLoop->wsFlags & WHERE_INDEXED ){ 5282 Index *pIx = pLoop->u.btree.pIndex; 5283 int iIndexCur; 5284 int op = OP_OpenRead; 5285 /* iAuxArg is always set to a positive value if ONEPASS is possible */ 5286 assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); 5287 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) 5288 && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 5289 ){ 5290 /* This is one term of an OR-optimization using the PRIMARY KEY of a 5291 ** WITHOUT ROWID table. No need for a separate index */ 5292 iIndexCur = pLevel->iTabCur; 5293 op = 0; 5294 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){ 5295 Index *pJ = pTabItem->pTab->pIndex; 5296 iIndexCur = iAuxArg; 5297 assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); 5298 while( ALWAYS(pJ) && pJ!=pIx ){ 5299 iIndexCur++; 5300 pJ = pJ->pNext; 5301 } 5302 op = OP_OpenWrite; 5303 pWInfo->aiCurOnePass[1] = iIndexCur; 5304 }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){ 5305 iIndexCur = iAuxArg; 5306 op = OP_ReopenIdx; 5307 }else{ 5308 iIndexCur = pParse->nTab++; 5309 } 5310 pLevel->iIdxCur = iIndexCur; 5311 assert( pIx->pSchema==pTab->pSchema ); 5312 assert( iIndexCur>=0 ); 5313 if( op ){ 5314 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); 5315 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 5316 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 5317 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 5318 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0 5319 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 5320 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 5321 && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED 5322 ){ 5323 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); 5324 } 5325 VdbeComment((v, "%s", pIx->zName)); 5326 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 5327 { 5328 u64 colUsed = 0; 5329 int ii, jj; 5330 for(ii=0; ii<pIx->nColumn; ii++){ 5331 jj = pIx->aiColumn[ii]; 5332 if( jj<0 ) continue; 5333 if( jj>63 ) jj = 63; 5334 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue; 5335 colUsed |= ((u64)1)<<(ii<63 ? ii : 63); 5336 } 5337 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, 5338 (u8*)&colUsed, P4_INT64); 5339 } 5340 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ 5341 } 5342 } 5343 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); 5344 } 5345 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 5346 if( db->mallocFailed ) goto whereBeginError; 5347 5348 /* Generate the code to do the search. Each iteration of the for 5349 ** loop below generates code for a single nested loop of the VM 5350 ** program. 5351 */ 5352 for(ii=0; ii<nTabList; ii++){ 5353 int addrExplain; 5354 int wsFlags; 5355 pLevel = &pWInfo->a[ii]; 5356 wsFlags = pLevel->pWLoop->wsFlags; 5357 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 5358 if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 5359 constructAutomaticIndex(pParse, &pWInfo->sWC, 5360 &pTabList->a[pLevel->iFrom], notReady, pLevel); 5361 if( db->mallocFailed ) goto whereBeginError; 5362 } 5363 #endif 5364 addrExplain = sqlite3WhereExplainOneScan( 5365 pParse, pTabList, pLevel, wctrlFlags 5366 ); 5367 pLevel->addrBody = sqlite3VdbeCurrentAddr(v); 5368 notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady); 5369 pWInfo->iContinue = pLevel->addrCont; 5370 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){ 5371 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); 5372 } 5373 } 5374 5375 /* Done. */ 5376 VdbeModuleComment((v, "Begin WHERE-core")); 5377 pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v); 5378 return pWInfo; 5379 5380 /* Jump here if malloc fails */ 5381 whereBeginError: 5382 if( pWInfo ){ 5383 testcase( pWInfo->pExprMods!=0 ); 5384 whereUndoExprMods(pWInfo); 5385 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 5386 whereInfoFree(db, pWInfo); 5387 } 5388 return 0; 5389 } 5390 5391 /* 5392 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the 5393 ** index rather than the main table. In SQLITE_DEBUG mode, we want 5394 ** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine 5395 ** does that. 5396 */ 5397 #ifndef SQLITE_DEBUG 5398 # define OpcodeRewriteTrace(D,K,P) /* no-op */ 5399 #else 5400 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P) 5401 static void sqlite3WhereOpcodeRewriteTrace( 5402 sqlite3 *db, 5403 int pc, 5404 VdbeOp *pOp 5405 ){ 5406 if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return; 5407 sqlite3VdbePrintOp(0, pc, pOp); 5408 } 5409 #endif 5410 5411 /* 5412 ** Generate the end of the WHERE loop. See comments on 5413 ** sqlite3WhereBegin() for additional information. 5414 */ 5415 void sqlite3WhereEnd(WhereInfo *pWInfo){ 5416 Parse *pParse = pWInfo->pParse; 5417 Vdbe *v = pParse->pVdbe; 5418 int i; 5419 WhereLevel *pLevel; 5420 WhereLoop *pLoop; 5421 SrcList *pTabList = pWInfo->pTabList; 5422 sqlite3 *db = pParse->db; 5423 int iEnd = sqlite3VdbeCurrentAddr(v); 5424 5425 /* Generate loop termination code. 5426 */ 5427 VdbeModuleComment((v, "End WHERE-core")); 5428 for(i=pWInfo->nLevel-1; i>=0; i--){ 5429 int addr; 5430 pLevel = &pWInfo->a[i]; 5431 pLoop = pLevel->pWLoop; 5432 if( pLevel->op!=OP_Noop ){ 5433 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 5434 int addrSeek = 0; 5435 Index *pIdx; 5436 int n; 5437 if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED 5438 && i==pWInfo->nLevel-1 /* Ticket [ef9318757b152e3] 2017-10-21 */ 5439 && (pLoop->wsFlags & WHERE_INDEXED)!=0 5440 && (pIdx = pLoop->u.btree.pIndex)->hasStat1 5441 && (n = pLoop->u.btree.nDistinctCol)>0 5442 && pIdx->aiRowLogEst[n]>=36 5443 ){ 5444 int r1 = pParse->nMem+1; 5445 int j, op; 5446 for(j=0; j<n; j++){ 5447 sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j); 5448 } 5449 pParse->nMem += n+1; 5450 op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT; 5451 addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n); 5452 VdbeCoverageIf(v, op==OP_SeekLT); 5453 VdbeCoverageIf(v, op==OP_SeekGT); 5454 sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2); 5455 } 5456 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */ 5457 /* The common case: Advance to the next row */ 5458 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 5459 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); 5460 sqlite3VdbeChangeP5(v, pLevel->p5); 5461 VdbeCoverage(v); 5462 VdbeCoverageIf(v, pLevel->op==OP_Next); 5463 VdbeCoverageIf(v, pLevel->op==OP_Prev); 5464 VdbeCoverageIf(v, pLevel->op==OP_VNext); 5465 if( pLevel->regBignull ){ 5466 sqlite3VdbeResolveLabel(v, pLevel->addrBignull); 5467 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1); 5468 VdbeCoverage(v); 5469 } 5470 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 5471 if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek); 5472 #endif 5473 }else{ 5474 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 5475 } 5476 if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ 5477 struct InLoop *pIn; 5478 int j; 5479 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 5480 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 5481 assert( sqlite3VdbeGetOp(v, pIn->addrInTop+1)->opcode==OP_IsNull 5482 || pParse->db->mallocFailed ); 5483 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 5484 if( pIn->eEndLoopOp!=OP_Noop ){ 5485 if( pIn->nPrefix ){ 5486 int bEarlyOut = 5487 (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 5488 && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0; 5489 if( pLevel->iLeftJoin ){ 5490 /* For LEFT JOIN queries, cursor pIn->iCur may not have been 5491 ** opened yet. This occurs for WHERE clauses such as 5492 ** "a = ? AND b IN (...)", where the index is on (a, b). If 5493 ** the RHS of the (a=?) is NULL, then the "b IN (...)" may 5494 ** never have been coded, but the body of the loop run to 5495 ** return the null-row. So, if the cursor is not open yet, 5496 ** jump over the OP_Next or OP_Prev instruction about to 5497 ** be coded. */ 5498 sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur, 5499 sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut); 5500 VdbeCoverage(v); 5501 } 5502 if( bEarlyOut ){ 5503 sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur, 5504 sqlite3VdbeCurrentAddr(v)+2, 5505 pIn->iBase, pIn->nPrefix); 5506 VdbeCoverage(v); 5507 /* Retarget the OP_IsNull against the left operand of IN so 5508 ** it jumps past the OP_IfNoHope. This is because the 5509 ** OP_IsNull also bypasses the OP_Affinity opcode that is 5510 ** required by OP_IfNoHope. */ 5511 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 5512 } 5513 } 5514 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); 5515 VdbeCoverage(v); 5516 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev); 5517 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next); 5518 } 5519 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 5520 } 5521 } 5522 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 5523 if( pLevel->addrSkip ){ 5524 sqlite3VdbeGoto(v, pLevel->addrSkip); 5525 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); 5526 sqlite3VdbeJumpHere(v, pLevel->addrSkip); 5527 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); 5528 } 5529 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 5530 if( pLevel->addrLikeRep ){ 5531 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1), 5532 pLevel->addrLikeRep); 5533 VdbeCoverage(v); 5534 } 5535 #endif 5536 if( pLevel->iLeftJoin ){ 5537 int ws = pLoop->wsFlags; 5538 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); 5539 assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 ); 5540 if( (ws & WHERE_IDX_ONLY)==0 ){ 5541 assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor ); 5542 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur); 5543 } 5544 if( (ws & WHERE_INDEXED) 5545 || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx) 5546 ){ 5547 if( ws & WHERE_MULTI_OR ){ 5548 Index *pIx = pLevel->u.pCovidx; 5549 int iDb = sqlite3SchemaToIndex(db, pIx->pSchema); 5550 sqlite3VdbeAddOp3(v, OP_ReopenIdx, pLevel->iIdxCur, pIx->tnum, iDb); 5551 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 5552 } 5553 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 5554 } 5555 if( pLevel->op==OP_Return ){ 5556 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); 5557 }else{ 5558 sqlite3VdbeGoto(v, pLevel->addrFirst); 5559 } 5560 sqlite3VdbeJumpHere(v, addr); 5561 } 5562 VdbeModuleComment((v, "End WHERE-loop%d: %s", i, 5563 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); 5564 } 5565 5566 /* The "break" point is here, just past the end of the outer loop. 5567 ** Set it. 5568 */ 5569 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 5570 5571 assert( pWInfo->nLevel<=pTabList->nSrc ); 5572 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ 5573 int k, last; 5574 VdbeOp *pOp, *pLastOp; 5575 Index *pIdx = 0; 5576 SrcItem *pTabItem = &pTabList->a[pLevel->iFrom]; 5577 Table *pTab = pTabItem->pTab; 5578 assert( pTab!=0 ); 5579 pLoop = pLevel->pWLoop; 5580 5581 /* For a co-routine, change all OP_Column references to the table of 5582 ** the co-routine into OP_Copy of result contained in a register. 5583 ** OP_Rowid becomes OP_Null. 5584 */ 5585 if( pTabItem->fg.viaCoroutine ){ 5586 testcase( pParse->db->mallocFailed ); 5587 translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur, 5588 pTabItem->regResult, 0); 5589 continue; 5590 } 5591 5592 #ifdef SQLITE_ENABLE_EARLY_CURSOR_CLOSE 5593 /* Close all of the cursors that were opened by sqlite3WhereBegin. 5594 ** Except, do not close cursors that will be reused by the OR optimization 5595 ** (WHERE_OR_SUBCLAUSE). And do not close the OP_OpenWrite cursors 5596 ** created for the ONEPASS optimization. 5597 */ 5598 if( (pTab->tabFlags & TF_Ephemeral)==0 5599 && !IsView(pTab) 5600 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 5601 ){ 5602 int ws = pLoop->wsFlags; 5603 if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){ 5604 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); 5605 } 5606 if( (ws & WHERE_INDEXED)!=0 5607 && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0 5608 && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1] 5609 ){ 5610 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); 5611 } 5612 } 5613 #endif 5614 5615 /* If this scan uses an index, make VDBE code substitutions to read data 5616 ** from the index instead of from the table where possible. In some cases 5617 ** this optimization prevents the table from ever being read, which can 5618 ** yield a significant performance boost. 5619 ** 5620 ** Calls to the code generator in between sqlite3WhereBegin and 5621 ** sqlite3WhereEnd will have created code that references the table 5622 ** directly. This loop scans all that code looking for opcodes 5623 ** that reference the table and converts them into opcodes that 5624 ** reference the index. 5625 */ 5626 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ 5627 pIdx = pLoop->u.btree.pIndex; 5628 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ 5629 pIdx = pLevel->u.pCovidx; 5630 } 5631 if( pIdx 5632 && !db->mallocFailed 5633 ){ 5634 if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){ 5635 last = iEnd; 5636 }else{ 5637 last = pWInfo->iEndWhere; 5638 } 5639 k = pLevel->addrBody + 1; 5640 #ifdef SQLITE_DEBUG 5641 if( db->flags & SQLITE_VdbeAddopTrace ){ 5642 printf("TRANSLATE opcodes in range %d..%d\n", k, last-1); 5643 } 5644 /* Proof that the "+1" on the k value above is safe */ 5645 pOp = sqlite3VdbeGetOp(v, k - 1); 5646 assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur ); 5647 assert( pOp->opcode!=OP_Rowid || pOp->p1!=pLevel->iTabCur ); 5648 assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur ); 5649 #endif 5650 pOp = sqlite3VdbeGetOp(v, k); 5651 pLastOp = pOp + (last - k); 5652 assert( pOp<=pLastOp ); 5653 do{ 5654 if( pOp->p1!=pLevel->iTabCur ){ 5655 /* no-op */ 5656 }else if( pOp->opcode==OP_Column 5657 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 5658 || pOp->opcode==OP_Offset 5659 #endif 5660 ){ 5661 int x = pOp->p2; 5662 assert( pIdx->pTable==pTab ); 5663 if( !HasRowid(pTab) ){ 5664 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 5665 x = pPk->aiColumn[x]; 5666 assert( x>=0 ); 5667 }else{ 5668 testcase( x!=sqlite3StorageColumnToTable(pTab,x) ); 5669 x = sqlite3StorageColumnToTable(pTab,x); 5670 } 5671 x = sqlite3TableColumnToIndex(pIdx, x); 5672 if( x>=0 ){ 5673 pOp->p2 = x; 5674 pOp->p1 = pLevel->iIdxCur; 5675 OpcodeRewriteTrace(db, k, pOp); 5676 } 5677 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 5678 || pWInfo->eOnePass ); 5679 }else if( pOp->opcode==OP_Rowid ){ 5680 pOp->p1 = pLevel->iIdxCur; 5681 pOp->opcode = OP_IdxRowid; 5682 OpcodeRewriteTrace(db, k, pOp); 5683 }else if( pOp->opcode==OP_IfNullRow ){ 5684 pOp->p1 = pLevel->iIdxCur; 5685 OpcodeRewriteTrace(db, k, pOp); 5686 } 5687 #ifdef SQLITE_DEBUG 5688 k++; 5689 #endif 5690 }while( (++pOp)<pLastOp ); 5691 #ifdef SQLITE_DEBUG 5692 if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n"); 5693 #endif 5694 } 5695 } 5696 5697 /* Final cleanup 5698 */ 5699 if( pWInfo->pExprMods ) whereUndoExprMods(pWInfo); 5700 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 5701 whereInfoFree(db, pWInfo); 5702 return; 5703 } 5704