xref: /sqlite-3.40.0/src/where.c (revision dee0359d)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /*
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly.  The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
26 **
27 ** This object is not an API and can be changed from one release to the
28 ** next.  As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
30 */
31 typedef struct HiddenIndexInfo HiddenIndexInfo;
32 struct HiddenIndexInfo {
33   WhereClause *pWC;   /* The Where clause being analyzed */
34   Parse *pParse;      /* The parsing context */
35 };
36 
37 /* Forward declaration of methods */
38 static int whereLoopResize(sqlite3*, WhereLoop*, int);
39 
40 /*
41 ** Return the estimated number of output rows from a WHERE clause
42 */
43 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
44   return pWInfo->nRowOut;
45 }
46 
47 /*
48 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
49 ** WHERE clause returns outputs for DISTINCT processing.
50 */
51 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
52   return pWInfo->eDistinct;
53 }
54 
55 /*
56 ** Return the number of ORDER BY terms that are satisfied by the
57 ** WHERE clause.  A return of 0 means that the output must be
58 ** completely sorted.  A return equal to the number of ORDER BY
59 ** terms means that no sorting is needed at all.  A return that
60 ** is positive but less than the number of ORDER BY terms means that
61 ** block sorting is required.
62 */
63 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
64   return pWInfo->nOBSat;
65 }
66 
67 /*
68 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known
69 ** to emit rows in increasing order, and if the last row emitted by the
70 ** inner-most loop did not fit within the sorter, then we can skip all
71 ** subsequent rows for the current iteration of the inner loop (because they
72 ** will not fit in the sorter either) and continue with the second inner
73 ** loop - the loop immediately outside the inner-most.
74 **
75 ** When a row does not fit in the sorter (because the sorter already
76 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
77 ** label returned by this function.
78 **
79 ** If the ORDER BY LIMIT optimization applies, the jump destination should
80 ** be the continuation for the second-inner-most loop.  If the ORDER BY
81 ** LIMIT optimization does not apply, then the jump destination should
82 ** be the continuation for the inner-most loop.
83 **
84 ** It is always safe for this routine to return the continuation of the
85 ** inner-most loop, in the sense that a correct answer will result.
86 ** Returning the continuation the second inner loop is an optimization
87 ** that might make the code run a little faster, but should not change
88 ** the final answer.
89 */
90 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){
91   WhereLevel *pInner;
92   if( !pWInfo->bOrderedInnerLoop ){
93     /* The ORDER BY LIMIT optimization does not apply.  Jump to the
94     ** continuation of the inner-most loop. */
95     return pWInfo->iContinue;
96   }
97   pInner = &pWInfo->a[pWInfo->nLevel-1];
98   assert( pInner->addrNxt!=0 );
99   return pInner->addrNxt;
100 }
101 
102 /*
103 ** While generating code for the min/max optimization, after handling
104 ** the aggregate-step call to min() or max(), check to see if any
105 ** additional looping is required.  If the output order is such that
106 ** we are certain that the correct answer has already been found, then
107 ** code an OP_Goto to by pass subsequent processing.
108 **
109 ** Any extra OP_Goto that is coded here is an optimization.  The
110 ** correct answer should be obtained regardless.  This OP_Goto just
111 ** makes the answer appear faster.
112 */
113 void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){
114   WhereLevel *pInner;
115   int i;
116   if( !pWInfo->bOrderedInnerLoop ) return;
117   if( pWInfo->nOBSat==0 ) return;
118   for(i=pWInfo->nLevel-1; i>=0; i--){
119     pInner = &pWInfo->a[i];
120     if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){
121       sqlite3VdbeGoto(v, pInner->addrNxt);
122       return;
123     }
124   }
125   sqlite3VdbeGoto(v, pWInfo->iBreak);
126 }
127 
128 /*
129 ** Return the VDBE address or label to jump to in order to continue
130 ** immediately with the next row of a WHERE clause.
131 */
132 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
133   assert( pWInfo->iContinue!=0 );
134   return pWInfo->iContinue;
135 }
136 
137 /*
138 ** Return the VDBE address or label to jump to in order to break
139 ** out of a WHERE loop.
140 */
141 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
142   return pWInfo->iBreak;
143 }
144 
145 /*
146 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
147 ** operate directly on the rowids returned by a WHERE clause.  Return
148 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
149 ** a single row is to be changed.  Return ONEPASS_MULTI (2) if the one-pass
150 ** optimization can be used on multiple
151 **
152 ** If the ONEPASS optimization is used (if this routine returns true)
153 ** then also write the indices of open cursors used by ONEPASS
154 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
155 ** table and iaCur[1] gets the cursor used by an auxiliary index.
156 ** Either value may be -1, indicating that cursor is not used.
157 ** Any cursors returned will have been opened for writing.
158 **
159 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
160 ** unable to use the ONEPASS optimization.
161 */
162 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
163   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
164 #ifdef WHERETRACE_ENABLED
165   if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
166     sqlite3DebugPrintf("%s cursors: %d %d\n",
167          pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
168          aiCur[0], aiCur[1]);
169   }
170 #endif
171   return pWInfo->eOnePass;
172 }
173 
174 /*
175 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move
176 ** the data cursor to the row selected by the index cursor.
177 */
178 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){
179   return pWInfo->bDeferredSeek;
180 }
181 
182 /*
183 ** Move the content of pSrc into pDest
184 */
185 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
186   pDest->n = pSrc->n;
187   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
188 }
189 
190 /*
191 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
192 **
193 ** The new entry might overwrite an existing entry, or it might be
194 ** appended, or it might be discarded.  Do whatever is the right thing
195 ** so that pSet keeps the N_OR_COST best entries seen so far.
196 */
197 static int whereOrInsert(
198   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
199   Bitmask prereq,        /* Prerequisites of the new entry */
200   LogEst rRun,           /* Run-cost of the new entry */
201   LogEst nOut            /* Number of outputs for the new entry */
202 ){
203   u16 i;
204   WhereOrCost *p;
205   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
206     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
207       goto whereOrInsert_done;
208     }
209     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
210       return 0;
211     }
212   }
213   if( pSet->n<N_OR_COST ){
214     p = &pSet->a[pSet->n++];
215     p->nOut = nOut;
216   }else{
217     p = pSet->a;
218     for(i=1; i<pSet->n; i++){
219       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
220     }
221     if( p->rRun<=rRun ) return 0;
222   }
223 whereOrInsert_done:
224   p->prereq = prereq;
225   p->rRun = rRun;
226   if( p->nOut>nOut ) p->nOut = nOut;
227   return 1;
228 }
229 
230 /*
231 ** Return the bitmask for the given cursor number.  Return 0 if
232 ** iCursor is not in the set.
233 */
234 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
235   int i;
236   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
237   for(i=0; i<pMaskSet->n; i++){
238     if( pMaskSet->ix[i]==iCursor ){
239       return MASKBIT(i);
240     }
241   }
242   return 0;
243 }
244 
245 /*
246 ** Create a new mask for cursor iCursor.
247 **
248 ** There is one cursor per table in the FROM clause.  The number of
249 ** tables in the FROM clause is limited by a test early in the
250 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
251 ** array will never overflow.
252 */
253 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
254   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
255   pMaskSet->ix[pMaskSet->n++] = iCursor;
256 }
257 
258 /*
259 ** If the right-hand branch of the expression is a TK_COLUMN, then return
260 ** a pointer to the right-hand branch.  Otherwise, return NULL.
261 */
262 static Expr *whereRightSubexprIsColumn(Expr *p){
263   p = sqlite3ExprSkipCollateAndLikely(p->pRight);
264   if( ALWAYS(p!=0) && p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){
265     return p;
266   }
267   return 0;
268 }
269 
270 /*
271 ** Advance to the next WhereTerm that matches according to the criteria
272 ** established when the pScan object was initialized by whereScanInit().
273 ** Return NULL if there are no more matching WhereTerms.
274 */
275 static WhereTerm *whereScanNext(WhereScan *pScan){
276   int iCur;            /* The cursor on the LHS of the term */
277   i16 iColumn;         /* The column on the LHS of the term.  -1 for IPK */
278   Expr *pX;            /* An expression being tested */
279   WhereClause *pWC;    /* Shorthand for pScan->pWC */
280   WhereTerm *pTerm;    /* The term being tested */
281   int k = pScan->k;    /* Where to start scanning */
282 
283   assert( pScan->iEquiv<=pScan->nEquiv );
284   pWC = pScan->pWC;
285   while(1){
286     iColumn = pScan->aiColumn[pScan->iEquiv-1];
287     iCur = pScan->aiCur[pScan->iEquiv-1];
288     assert( pWC!=0 );
289     do{
290       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
291         if( pTerm->leftCursor==iCur
292          && pTerm->u.x.leftColumn==iColumn
293          && (iColumn!=XN_EXPR
294              || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
295                                        pScan->pIdxExpr,iCur)==0)
296          && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
297         ){
298           if( (pTerm->eOperator & WO_EQUIV)!=0
299            && pScan->nEquiv<ArraySize(pScan->aiCur)
300            && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0
301           ){
302             int j;
303             for(j=0; j<pScan->nEquiv; j++){
304               if( pScan->aiCur[j]==pX->iTable
305                && pScan->aiColumn[j]==pX->iColumn ){
306                   break;
307               }
308             }
309             if( j==pScan->nEquiv ){
310               pScan->aiCur[j] = pX->iTable;
311               pScan->aiColumn[j] = pX->iColumn;
312               pScan->nEquiv++;
313             }
314           }
315           if( (pTerm->eOperator & pScan->opMask)!=0 ){
316             /* Verify the affinity and collating sequence match */
317             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
318               CollSeq *pColl;
319               Parse *pParse = pWC->pWInfo->pParse;
320               pX = pTerm->pExpr;
321               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
322                 continue;
323               }
324               assert(pX->pLeft);
325               pColl = sqlite3ExprCompareCollSeq(pParse, pX);
326               if( pColl==0 ) pColl = pParse->db->pDfltColl;
327               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
328                 continue;
329               }
330             }
331             if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
332              && (pX = pTerm->pExpr->pRight, ALWAYS(pX!=0))
333              && pX->op==TK_COLUMN
334              && pX->iTable==pScan->aiCur[0]
335              && pX->iColumn==pScan->aiColumn[0]
336             ){
337               testcase( pTerm->eOperator & WO_IS );
338               continue;
339             }
340             pScan->pWC = pWC;
341             pScan->k = k+1;
342 #ifdef WHERETRACE_ENABLED
343             if( sqlite3WhereTrace & 0x20000 ){
344               int ii;
345               sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d",
346                  pTerm, pScan->nEquiv);
347               for(ii=0; ii<pScan->nEquiv; ii++){
348                 sqlite3DebugPrintf(" {%d:%d}",
349                    pScan->aiCur[ii], pScan->aiColumn[ii]);
350               }
351               sqlite3DebugPrintf("\n");
352             }
353 #endif
354             return pTerm;
355           }
356         }
357       }
358       pWC = pWC->pOuter;
359       k = 0;
360     }while( pWC!=0 );
361     if( pScan->iEquiv>=pScan->nEquiv ) break;
362     pWC = pScan->pOrigWC;
363     k = 0;
364     pScan->iEquiv++;
365   }
366   return 0;
367 }
368 
369 /*
370 ** This is whereScanInit() for the case of an index on an expression.
371 ** It is factored out into a separate tail-recursion subroutine so that
372 ** the normal whereScanInit() routine, which is a high-runner, does not
373 ** need to push registers onto the stack as part of its prologue.
374 */
375 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){
376   pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr);
377   return whereScanNext(pScan);
378 }
379 
380 /*
381 ** Initialize a WHERE clause scanner object.  Return a pointer to the
382 ** first match.  Return NULL if there are no matches.
383 **
384 ** The scanner will be searching the WHERE clause pWC.  It will look
385 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
386 ** iCur.   Or if pIdx!=0 then X is column iColumn of index pIdx.  pIdx
387 ** must be one of the indexes of table iCur.
388 **
389 ** The <op> must be one of the operators described by opMask.
390 **
391 ** If the search is for X and the WHERE clause contains terms of the
392 ** form X=Y then this routine might also return terms of the form
393 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
394 ** but is enough to handle most commonly occurring SQL statements.
395 **
396 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
397 ** index pIdx.
398 */
399 static WhereTerm *whereScanInit(
400   WhereScan *pScan,       /* The WhereScan object being initialized */
401   WhereClause *pWC,       /* The WHERE clause to be scanned */
402   int iCur,               /* Cursor to scan for */
403   int iColumn,            /* Column to scan for */
404   u32 opMask,             /* Operator(s) to scan for */
405   Index *pIdx             /* Must be compatible with this index */
406 ){
407   pScan->pOrigWC = pWC;
408   pScan->pWC = pWC;
409   pScan->pIdxExpr = 0;
410   pScan->idxaff = 0;
411   pScan->zCollName = 0;
412   pScan->opMask = opMask;
413   pScan->k = 0;
414   pScan->aiCur[0] = iCur;
415   pScan->nEquiv = 1;
416   pScan->iEquiv = 1;
417   if( pIdx ){
418     int j = iColumn;
419     iColumn = pIdx->aiColumn[j];
420     if( iColumn==XN_EXPR ){
421       pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
422       pScan->zCollName = pIdx->azColl[j];
423       pScan->aiColumn[0] = XN_EXPR;
424       return whereScanInitIndexExpr(pScan);
425     }else if( iColumn==pIdx->pTable->iPKey ){
426       iColumn = XN_ROWID;
427     }else if( iColumn>=0 ){
428       pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
429       pScan->zCollName = pIdx->azColl[j];
430     }
431   }else if( iColumn==XN_EXPR ){
432     return 0;
433   }
434   pScan->aiColumn[0] = iColumn;
435   return whereScanNext(pScan);
436 }
437 
438 /*
439 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
440 ** where X is a reference to the iColumn of table iCur or of index pIdx
441 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
442 ** the op parameter.  Return a pointer to the term.  Return 0 if not found.
443 **
444 ** If pIdx!=0 then it must be one of the indexes of table iCur.
445 ** Search for terms matching the iColumn-th column of pIdx
446 ** rather than the iColumn-th column of table iCur.
447 **
448 ** The term returned might by Y=<expr> if there is another constraint in
449 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
450 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
451 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
452 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
453 ** other equivalent values.  Hence a search for X will return <expr> if X=A1
454 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
455 **
456 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
457 ** then try for the one with no dependencies on <expr> - in other words where
458 ** <expr> is a constant expression of some kind.  Only return entries of
459 ** the form "X <op> Y" where Y is a column in another table if no terms of
460 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
461 ** exist, try to return a term that does not use WO_EQUIV.
462 */
463 WhereTerm *sqlite3WhereFindTerm(
464   WhereClause *pWC,     /* The WHERE clause to be searched */
465   int iCur,             /* Cursor number of LHS */
466   int iColumn,          /* Column number of LHS */
467   Bitmask notReady,     /* RHS must not overlap with this mask */
468   u32 op,               /* Mask of WO_xx values describing operator */
469   Index *pIdx           /* Must be compatible with this index, if not NULL */
470 ){
471   WhereTerm *pResult = 0;
472   WhereTerm *p;
473   WhereScan scan;
474 
475   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
476   op &= WO_EQ|WO_IS;
477   while( p ){
478     if( (p->prereqRight & notReady)==0 ){
479       if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
480         testcase( p->eOperator & WO_IS );
481         return p;
482       }
483       if( pResult==0 ) pResult = p;
484     }
485     p = whereScanNext(&scan);
486   }
487   return pResult;
488 }
489 
490 /*
491 ** This function searches pList for an entry that matches the iCol-th column
492 ** of index pIdx.
493 **
494 ** If such an expression is found, its index in pList->a[] is returned. If
495 ** no expression is found, -1 is returned.
496 */
497 static int findIndexCol(
498   Parse *pParse,                  /* Parse context */
499   ExprList *pList,                /* Expression list to search */
500   int iBase,                      /* Cursor for table associated with pIdx */
501   Index *pIdx,                    /* Index to match column of */
502   int iCol                        /* Column of index to match */
503 ){
504   int i;
505   const char *zColl = pIdx->azColl[iCol];
506 
507   for(i=0; i<pList->nExpr; i++){
508     Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr);
509     if( ALWAYS(p!=0)
510      && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN)
511      && p->iColumn==pIdx->aiColumn[iCol]
512      && p->iTable==iBase
513     ){
514       CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
515       if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
516         return i;
517       }
518     }
519   }
520 
521   return -1;
522 }
523 
524 /*
525 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
526 */
527 static int indexColumnNotNull(Index *pIdx, int iCol){
528   int j;
529   assert( pIdx!=0 );
530   assert( iCol>=0 && iCol<pIdx->nColumn );
531   j = pIdx->aiColumn[iCol];
532   if( j>=0 ){
533     return pIdx->pTable->aCol[j].notNull;
534   }else if( j==(-1) ){
535     return 1;
536   }else{
537     assert( j==(-2) );
538     return 0;  /* Assume an indexed expression can always yield a NULL */
539 
540   }
541 }
542 
543 /*
544 ** Return true if the DISTINCT expression-list passed as the third argument
545 ** is redundant.
546 **
547 ** A DISTINCT list is redundant if any subset of the columns in the
548 ** DISTINCT list are collectively unique and individually non-null.
549 */
550 static int isDistinctRedundant(
551   Parse *pParse,            /* Parsing context */
552   SrcList *pTabList,        /* The FROM clause */
553   WhereClause *pWC,         /* The WHERE clause */
554   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
555 ){
556   Table *pTab;
557   Index *pIdx;
558   int i;
559   int iBase;
560 
561   /* If there is more than one table or sub-select in the FROM clause of
562   ** this query, then it will not be possible to show that the DISTINCT
563   ** clause is redundant. */
564   if( pTabList->nSrc!=1 ) return 0;
565   iBase = pTabList->a[0].iCursor;
566   pTab = pTabList->a[0].pTab;
567 
568   /* If any of the expressions is an IPK column on table iBase, then return
569   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
570   ** current SELECT is a correlated sub-query.
571   */
572   for(i=0; i<pDistinct->nExpr; i++){
573     Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr);
574     if( NEVER(p==0) ) continue;
575     if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue;
576     if( p->iTable==iBase && p->iColumn<0 ) return 1;
577   }
578 
579   /* Loop through all indices on the table, checking each to see if it makes
580   ** the DISTINCT qualifier redundant. It does so if:
581   **
582   **   1. The index is itself UNIQUE, and
583   **
584   **   2. All of the columns in the index are either part of the pDistinct
585   **      list, or else the WHERE clause contains a term of the form "col=X",
586   **      where X is a constant value. The collation sequences of the
587   **      comparison and select-list expressions must match those of the index.
588   **
589   **   3. All of those index columns for which the WHERE clause does not
590   **      contain a "col=X" term are subject to a NOT NULL constraint.
591   */
592   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
593     if( !IsUniqueIndex(pIdx) ) continue;
594     if( pIdx->pPartIdxWhere ) continue;
595     for(i=0; i<pIdx->nKeyCol; i++){
596       if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
597         if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
598         if( indexColumnNotNull(pIdx, i)==0 ) break;
599       }
600     }
601     if( i==pIdx->nKeyCol ){
602       /* This index implies that the DISTINCT qualifier is redundant. */
603       return 1;
604     }
605   }
606 
607   return 0;
608 }
609 
610 
611 /*
612 ** Estimate the logarithm of the input value to base 2.
613 */
614 static LogEst estLog(LogEst N){
615   return N<=10 ? 0 : sqlite3LogEst(N) - 33;
616 }
617 
618 /*
619 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
620 **
621 ** This routine runs over generated VDBE code and translates OP_Column
622 ** opcodes into OP_Copy when the table is being accessed via co-routine
623 ** instead of via table lookup.
624 **
625 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
626 ** cursor iTabCur are transformed into OP_Sequence opcode for the
627 ** iAutoidxCur cursor, in order to generate unique rowids for the
628 ** automatic index being generated.
629 */
630 static void translateColumnToCopy(
631   Parse *pParse,      /* Parsing context */
632   int iStart,         /* Translate from this opcode to the end */
633   int iTabCur,        /* OP_Column/OP_Rowid references to this table */
634   int iRegister,      /* The first column is in this register */
635   int iAutoidxCur     /* If non-zero, cursor of autoindex being generated */
636 ){
637   Vdbe *v = pParse->pVdbe;
638   VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
639   int iEnd = sqlite3VdbeCurrentAddr(v);
640   if( pParse->db->mallocFailed ) return;
641   for(; iStart<iEnd; iStart++, pOp++){
642     if( pOp->p1!=iTabCur ) continue;
643     if( pOp->opcode==OP_Column ){
644       pOp->opcode = OP_Copy;
645       pOp->p1 = pOp->p2 + iRegister;
646       pOp->p2 = pOp->p3;
647       pOp->p3 = 0;
648     }else if( pOp->opcode==OP_Rowid ){
649       pOp->opcode = OP_Sequence;
650       pOp->p1 = iAutoidxCur;
651 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
652       if( iAutoidxCur==0 ){
653         pOp->opcode = OP_Null;
654         pOp->p3 = 0;
655       }
656 #endif
657     }
658   }
659 }
660 
661 /*
662 ** Two routines for printing the content of an sqlite3_index_info
663 ** structure.  Used for testing and debugging only.  If neither
664 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
665 ** are no-ops.
666 */
667 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
668 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){
669   int i;
670   if( !sqlite3WhereTrace ) return;
671   for(i=0; i<p->nConstraint; i++){
672     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
673        i,
674        p->aConstraint[i].iColumn,
675        p->aConstraint[i].iTermOffset,
676        p->aConstraint[i].op,
677        p->aConstraint[i].usable);
678   }
679   for(i=0; i<p->nOrderBy; i++){
680     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
681        i,
682        p->aOrderBy[i].iColumn,
683        p->aOrderBy[i].desc);
684   }
685 }
686 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){
687   int i;
688   if( !sqlite3WhereTrace ) return;
689   for(i=0; i<p->nConstraint; i++){
690     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
691        i,
692        p->aConstraintUsage[i].argvIndex,
693        p->aConstraintUsage[i].omit);
694   }
695   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
696   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
697   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
698   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
699   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
700 }
701 #else
702 #define whereTraceIndexInfoInputs(A)
703 #define whereTraceIndexInfoOutputs(A)
704 #endif
705 
706 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
707 /*
708 ** Return TRUE if the WHERE clause term pTerm is of a form where it
709 ** could be used with an index to access pSrc, assuming an appropriate
710 ** index existed.
711 */
712 static int termCanDriveIndex(
713   WhereTerm *pTerm,              /* WHERE clause term to check */
714   SrcItem *pSrc,                 /* Table we are trying to access */
715   Bitmask notReady               /* Tables in outer loops of the join */
716 ){
717   char aff;
718   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
719   if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
720   if( (pSrc->fg.jointype & JT_LEFT)
721    && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
722    && (pTerm->eOperator & WO_IS)
723   ){
724     /* Cannot use an IS term from the WHERE clause as an index driver for
725     ** the RHS of a LEFT JOIN. Such a term can only be used if it is from
726     ** the ON clause.  */
727     return 0;
728   }
729   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
730   if( pTerm->u.x.leftColumn<0 ) return 0;
731   aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity;
732   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
733   testcase( pTerm->pExpr->op==TK_IS );
734   return 1;
735 }
736 #endif
737 
738 
739 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
740 /*
741 ** Generate code to construct the Index object for an automatic index
742 ** and to set up the WhereLevel object pLevel so that the code generator
743 ** makes use of the automatic index.
744 */
745 static void constructAutomaticIndex(
746   Parse *pParse,              /* The parsing context */
747   WhereClause *pWC,           /* The WHERE clause */
748   SrcItem *pSrc,              /* The FROM clause term to get the next index */
749   Bitmask notReady,           /* Mask of cursors that are not available */
750   WhereLevel *pLevel          /* Write new index here */
751 ){
752   int nKeyCol;                /* Number of columns in the constructed index */
753   WhereTerm *pTerm;           /* A single term of the WHERE clause */
754   WhereTerm *pWCEnd;          /* End of pWC->a[] */
755   Index *pIdx;                /* Object describing the transient index */
756   Vdbe *v;                    /* Prepared statement under construction */
757   int addrInit;               /* Address of the initialization bypass jump */
758   Table *pTable;              /* The table being indexed */
759   int addrTop;                /* Top of the index fill loop */
760   int regRecord;              /* Register holding an index record */
761   int n;                      /* Column counter */
762   int i;                      /* Loop counter */
763   int mxBitCol;               /* Maximum column in pSrc->colUsed */
764   CollSeq *pColl;             /* Collating sequence to on a column */
765   WhereLoop *pLoop;           /* The Loop object */
766   char *zNotUsed;             /* Extra space on the end of pIdx */
767   Bitmask idxCols;            /* Bitmap of columns used for indexing */
768   Bitmask extraCols;          /* Bitmap of additional columns */
769   u8 sentWarning = 0;         /* True if a warnning has been issued */
770   Expr *pPartial = 0;         /* Partial Index Expression */
771   int iContinue = 0;          /* Jump here to skip excluded rows */
772   SrcItem *pTabItem;          /* FROM clause term being indexed */
773   int addrCounter = 0;        /* Address where integer counter is initialized */
774   int regBase;                /* Array of registers where record is assembled */
775 
776   /* Generate code to skip over the creation and initialization of the
777   ** transient index on 2nd and subsequent iterations of the loop. */
778   v = pParse->pVdbe;
779   assert( v!=0 );
780   addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
781 
782   /* Count the number of columns that will be added to the index
783   ** and used to match WHERE clause constraints */
784   nKeyCol = 0;
785   pTable = pSrc->pTab;
786   pWCEnd = &pWC->a[pWC->nTerm];
787   pLoop = pLevel->pWLoop;
788   idxCols = 0;
789   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
790     Expr *pExpr = pTerm->pExpr;
791     assert( !ExprHasProperty(pExpr, EP_FromJoin)    /* prereq always non-zero */
792          || pExpr->iRightJoinTable!=pSrc->iCursor   /*   for the right-hand   */
793          || pLoop->prereq!=0 );                     /*   table of a LEFT JOIN */
794     if( pLoop->prereq==0
795      && (pTerm->wtFlags & TERM_VIRTUAL)==0
796      && !ExprHasProperty(pExpr, EP_FromJoin)
797      && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){
798       pPartial = sqlite3ExprAnd(pParse, pPartial,
799                                 sqlite3ExprDup(pParse->db, pExpr, 0));
800     }
801     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
802       int iCol = pTerm->u.x.leftColumn;
803       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
804       testcase( iCol==BMS );
805       testcase( iCol==BMS-1 );
806       if( !sentWarning ){
807         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
808             "automatic index on %s(%s)", pTable->zName,
809             pTable->aCol[iCol].zCnName);
810         sentWarning = 1;
811       }
812       if( (idxCols & cMask)==0 ){
813         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
814           goto end_auto_index_create;
815         }
816         pLoop->aLTerm[nKeyCol++] = pTerm;
817         idxCols |= cMask;
818       }
819     }
820   }
821   assert( nKeyCol>0 || pParse->db->mallocFailed );
822   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
823   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
824                      | WHERE_AUTO_INDEX;
825 
826   /* Count the number of additional columns needed to create a
827   ** covering index.  A "covering index" is an index that contains all
828   ** columns that are needed by the query.  With a covering index, the
829   ** original table never needs to be accessed.  Automatic indices must
830   ** be a covering index because the index will not be updated if the
831   ** original table changes and the index and table cannot both be used
832   ** if they go out of sync.
833   */
834   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
835   mxBitCol = MIN(BMS-1,pTable->nCol);
836   testcase( pTable->nCol==BMS-1 );
837   testcase( pTable->nCol==BMS-2 );
838   for(i=0; i<mxBitCol; i++){
839     if( extraCols & MASKBIT(i) ) nKeyCol++;
840   }
841   if( pSrc->colUsed & MASKBIT(BMS-1) ){
842     nKeyCol += pTable->nCol - BMS + 1;
843   }
844 
845   /* Construct the Index object to describe this index */
846   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
847   if( pIdx==0 ) goto end_auto_index_create;
848   pLoop->u.btree.pIndex = pIdx;
849   pIdx->zName = "auto-index";
850   pIdx->pTable = pTable;
851   n = 0;
852   idxCols = 0;
853   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
854     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
855       int iCol = pTerm->u.x.leftColumn;
856       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
857       testcase( iCol==BMS-1 );
858       testcase( iCol==BMS );
859       if( (idxCols & cMask)==0 ){
860         Expr *pX = pTerm->pExpr;
861         idxCols |= cMask;
862         pIdx->aiColumn[n] = pTerm->u.x.leftColumn;
863         pColl = sqlite3ExprCompareCollSeq(pParse, pX);
864         assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */
865         pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
866         n++;
867       }
868     }
869   }
870   assert( (u32)n==pLoop->u.btree.nEq );
871 
872   /* Add additional columns needed to make the automatic index into
873   ** a covering index */
874   for(i=0; i<mxBitCol; i++){
875     if( extraCols & MASKBIT(i) ){
876       pIdx->aiColumn[n] = i;
877       pIdx->azColl[n] = sqlite3StrBINARY;
878       n++;
879     }
880   }
881   if( pSrc->colUsed & MASKBIT(BMS-1) ){
882     for(i=BMS-1; i<pTable->nCol; i++){
883       pIdx->aiColumn[n] = i;
884       pIdx->azColl[n] = sqlite3StrBINARY;
885       n++;
886     }
887   }
888   assert( n==nKeyCol );
889   pIdx->aiColumn[n] = XN_ROWID;
890   pIdx->azColl[n] = sqlite3StrBINARY;
891 
892   /* Create the automatic index */
893   assert( pLevel->iIdxCur>=0 );
894   pLevel->iIdxCur = pParse->nTab++;
895   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
896   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
897   VdbeComment((v, "for %s", pTable->zName));
898 
899   /* Fill the automatic index with content */
900   pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
901   if( pTabItem->fg.viaCoroutine ){
902     int regYield = pTabItem->regReturn;
903     addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
904     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
905     addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
906     VdbeCoverage(v);
907     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
908   }else{
909     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
910   }
911   if( pPartial ){
912     iContinue = sqlite3VdbeMakeLabel(pParse);
913     sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
914     pLoop->wsFlags |= WHERE_PARTIALIDX;
915   }
916   regRecord = sqlite3GetTempReg(pParse);
917   regBase = sqlite3GenerateIndexKey(
918       pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
919   );
920   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
921   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
922   if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
923   if( pTabItem->fg.viaCoroutine ){
924     sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
925     testcase( pParse->db->mallocFailed );
926     assert( pLevel->iIdxCur>0 );
927     translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
928                           pTabItem->regResult, pLevel->iIdxCur);
929     sqlite3VdbeGoto(v, addrTop);
930     pTabItem->fg.viaCoroutine = 0;
931   }else{
932     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
933     sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
934   }
935   sqlite3VdbeJumpHere(v, addrTop);
936   sqlite3ReleaseTempReg(pParse, regRecord);
937 
938   /* Jump here when skipping the initialization */
939   sqlite3VdbeJumpHere(v, addrInit);
940 
941 end_auto_index_create:
942   sqlite3ExprDelete(pParse->db, pPartial);
943 }
944 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
945 
946 #ifndef SQLITE_OMIT_VIRTUALTABLE
947 /*
948 ** Allocate and populate an sqlite3_index_info structure. It is the
949 ** responsibility of the caller to eventually release the structure
950 ** by passing the pointer returned by this function to sqlite3_free().
951 */
952 static sqlite3_index_info *allocateIndexInfo(
953   Parse *pParse,                  /* The parsing context */
954   WhereClause *pWC,               /* The WHERE clause being analyzed */
955   Bitmask mUnusable,              /* Ignore terms with these prereqs */
956   SrcItem *pSrc,                  /* The FROM clause term that is the vtab */
957   ExprList *pOrderBy,             /* The ORDER BY clause */
958   u16 *pmNoOmit                   /* Mask of terms not to omit */
959 ){
960   int i, j;
961   int nTerm;
962   struct sqlite3_index_constraint *pIdxCons;
963   struct sqlite3_index_orderby *pIdxOrderBy;
964   struct sqlite3_index_constraint_usage *pUsage;
965   struct HiddenIndexInfo *pHidden;
966   WhereTerm *pTerm;
967   int nOrderBy;
968   sqlite3_index_info *pIdxInfo;
969   u16 mNoOmit = 0;
970 
971   /* Count the number of possible WHERE clause constraints referring
972   ** to this virtual table */
973   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
974     if( pTerm->leftCursor != pSrc->iCursor ) continue;
975     if( pTerm->prereqRight & mUnusable ) continue;
976     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
977     testcase( pTerm->eOperator & WO_IN );
978     testcase( pTerm->eOperator & WO_ISNULL );
979     testcase( pTerm->eOperator & WO_IS );
980     testcase( pTerm->eOperator & WO_ALL );
981     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
982     if( pTerm->wtFlags & TERM_VNULL ) continue;
983     assert( pTerm->u.x.leftColumn>=(-1) );
984     nTerm++;
985   }
986 
987   /* If the ORDER BY clause contains only columns in the current
988   ** virtual table then allocate space for the aOrderBy part of
989   ** the sqlite3_index_info structure.
990   */
991   nOrderBy = 0;
992   if( pOrderBy ){
993     int n = pOrderBy->nExpr;
994     for(i=0; i<n; i++){
995       Expr *pExpr = pOrderBy->a[i].pExpr;
996       if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
997       if( pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL ) break;
998     }
999     if( i==n){
1000       nOrderBy = n;
1001     }
1002   }
1003 
1004   /* Allocate the sqlite3_index_info structure
1005   */
1006   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
1007                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1008                            + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) );
1009   if( pIdxInfo==0 ){
1010     sqlite3ErrorMsg(pParse, "out of memory");
1011     return 0;
1012   }
1013   pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
1014   pIdxCons = (struct sqlite3_index_constraint*)&pHidden[1];
1015   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1016   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1017   pIdxInfo->nOrderBy = nOrderBy;
1018   pIdxInfo->aConstraint = pIdxCons;
1019   pIdxInfo->aOrderBy = pIdxOrderBy;
1020   pIdxInfo->aConstraintUsage = pUsage;
1021   pHidden->pWC = pWC;
1022   pHidden->pParse = pParse;
1023   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1024     u16 op;
1025     if( pTerm->leftCursor != pSrc->iCursor ) continue;
1026     if( pTerm->prereqRight & mUnusable ) continue;
1027     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
1028     testcase( pTerm->eOperator & WO_IN );
1029     testcase( pTerm->eOperator & WO_IS );
1030     testcase( pTerm->eOperator & WO_ISNULL );
1031     testcase( pTerm->eOperator & WO_ALL );
1032     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
1033     if( pTerm->wtFlags & TERM_VNULL ) continue;
1034 
1035     /* tag-20191211-002: WHERE-clause constraints are not useful to the
1036     ** right-hand table of a LEFT JOIN.  See tag-20191211-001 for the
1037     ** equivalent restriction for ordinary tables. */
1038     if( (pSrc->fg.jointype & JT_LEFT)!=0
1039      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
1040     ){
1041       continue;
1042     }
1043     assert( pTerm->u.x.leftColumn>=(-1) );
1044     pIdxCons[j].iColumn = pTerm->u.x.leftColumn;
1045     pIdxCons[j].iTermOffset = i;
1046     op = pTerm->eOperator & WO_ALL;
1047     if( op==WO_IN ) op = WO_EQ;
1048     if( op==WO_AUX ){
1049       pIdxCons[j].op = pTerm->eMatchOp;
1050     }else if( op & (WO_ISNULL|WO_IS) ){
1051       if( op==WO_ISNULL ){
1052         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
1053       }else{
1054         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
1055       }
1056     }else{
1057       pIdxCons[j].op = (u8)op;
1058       /* The direct assignment in the previous line is possible only because
1059       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
1060       ** following asserts verify this fact. */
1061       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1062       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1063       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1064       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1065       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1066       assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
1067 
1068       if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
1069        && sqlite3ExprIsVector(pTerm->pExpr->pRight)
1070       ){
1071         testcase( j!=i );
1072         if( j<16 ) mNoOmit |= (1 << j);
1073         if( op==WO_LT ) pIdxCons[j].op = WO_LE;
1074         if( op==WO_GT ) pIdxCons[j].op = WO_GE;
1075       }
1076     }
1077 
1078     j++;
1079   }
1080   pIdxInfo->nConstraint = j;
1081   for(i=0; i<nOrderBy; i++){
1082     Expr *pExpr = pOrderBy->a[i].pExpr;
1083     pIdxOrderBy[i].iColumn = pExpr->iColumn;
1084     pIdxOrderBy[i].desc = pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC;
1085   }
1086 
1087   *pmNoOmit = mNoOmit;
1088   return pIdxInfo;
1089 }
1090 
1091 /*
1092 ** The table object reference passed as the second argument to this function
1093 ** must represent a virtual table. This function invokes the xBestIndex()
1094 ** method of the virtual table with the sqlite3_index_info object that
1095 ** comes in as the 3rd argument to this function.
1096 **
1097 ** If an error occurs, pParse is populated with an error message and an
1098 ** appropriate error code is returned.  A return of SQLITE_CONSTRAINT from
1099 ** xBestIndex is not considered an error.  SQLITE_CONSTRAINT indicates that
1100 ** the current configuration of "unusable" flags in sqlite3_index_info can
1101 ** not result in a valid plan.
1102 **
1103 ** Whether or not an error is returned, it is the responsibility of the
1104 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1105 ** that this is required.
1106 */
1107 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
1108   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
1109   int rc;
1110 
1111   whereTraceIndexInfoInputs(p);
1112   rc = pVtab->pModule->xBestIndex(pVtab, p);
1113   whereTraceIndexInfoOutputs(p);
1114 
1115   if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){
1116     if( rc==SQLITE_NOMEM ){
1117       sqlite3OomFault(pParse->db);
1118     }else if( !pVtab->zErrMsg ){
1119       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1120     }else{
1121       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1122     }
1123   }
1124   sqlite3_free(pVtab->zErrMsg);
1125   pVtab->zErrMsg = 0;
1126   return rc;
1127 }
1128 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1129 
1130 #ifdef SQLITE_ENABLE_STAT4
1131 /*
1132 ** Estimate the location of a particular key among all keys in an
1133 ** index.  Store the results in aStat as follows:
1134 **
1135 **    aStat[0]      Est. number of rows less than pRec
1136 **    aStat[1]      Est. number of rows equal to pRec
1137 **
1138 ** Return the index of the sample that is the smallest sample that
1139 ** is greater than or equal to pRec. Note that this index is not an index
1140 ** into the aSample[] array - it is an index into a virtual set of samples
1141 ** based on the contents of aSample[] and the number of fields in record
1142 ** pRec.
1143 */
1144 static int whereKeyStats(
1145   Parse *pParse,              /* Database connection */
1146   Index *pIdx,                /* Index to consider domain of */
1147   UnpackedRecord *pRec,       /* Vector of values to consider */
1148   int roundUp,                /* Round up if true.  Round down if false */
1149   tRowcnt *aStat              /* OUT: stats written here */
1150 ){
1151   IndexSample *aSample = pIdx->aSample;
1152   int iCol;                   /* Index of required stats in anEq[] etc. */
1153   int i;                      /* Index of first sample >= pRec */
1154   int iSample;                /* Smallest sample larger than or equal to pRec */
1155   int iMin = 0;               /* Smallest sample not yet tested */
1156   int iTest;                  /* Next sample to test */
1157   int res;                    /* Result of comparison operation */
1158   int nField;                 /* Number of fields in pRec */
1159   tRowcnt iLower = 0;         /* anLt[] + anEq[] of largest sample pRec is > */
1160 
1161 #ifndef SQLITE_DEBUG
1162   UNUSED_PARAMETER( pParse );
1163 #endif
1164   assert( pRec!=0 );
1165   assert( pIdx->nSample>0 );
1166   assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
1167 
1168   /* Do a binary search to find the first sample greater than or equal
1169   ** to pRec. If pRec contains a single field, the set of samples to search
1170   ** is simply the aSample[] array. If the samples in aSample[] contain more
1171   ** than one fields, all fields following the first are ignored.
1172   **
1173   ** If pRec contains N fields, where N is more than one, then as well as the
1174   ** samples in aSample[] (truncated to N fields), the search also has to
1175   ** consider prefixes of those samples. For example, if the set of samples
1176   ** in aSample is:
1177   **
1178   **     aSample[0] = (a, 5)
1179   **     aSample[1] = (a, 10)
1180   **     aSample[2] = (b, 5)
1181   **     aSample[3] = (c, 100)
1182   **     aSample[4] = (c, 105)
1183   **
1184   ** Then the search space should ideally be the samples above and the
1185   ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1186   ** the code actually searches this set:
1187   **
1188   **     0: (a)
1189   **     1: (a, 5)
1190   **     2: (a, 10)
1191   **     3: (a, 10)
1192   **     4: (b)
1193   **     5: (b, 5)
1194   **     6: (c)
1195   **     7: (c, 100)
1196   **     8: (c, 105)
1197   **     9: (c, 105)
1198   **
1199   ** For each sample in the aSample[] array, N samples are present in the
1200   ** effective sample array. In the above, samples 0 and 1 are based on
1201   ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1202   **
1203   ** Often, sample i of each block of N effective samples has (i+1) fields.
1204   ** Except, each sample may be extended to ensure that it is greater than or
1205   ** equal to the previous sample in the array. For example, in the above,
1206   ** sample 2 is the first sample of a block of N samples, so at first it
1207   ** appears that it should be 1 field in size. However, that would make it
1208   ** smaller than sample 1, so the binary search would not work. As a result,
1209   ** it is extended to two fields. The duplicates that this creates do not
1210   ** cause any problems.
1211   */
1212   nField = pRec->nField;
1213   iCol = 0;
1214   iSample = pIdx->nSample * nField;
1215   do{
1216     int iSamp;                    /* Index in aSample[] of test sample */
1217     int n;                        /* Number of fields in test sample */
1218 
1219     iTest = (iMin+iSample)/2;
1220     iSamp = iTest / nField;
1221     if( iSamp>0 ){
1222       /* The proposed effective sample is a prefix of sample aSample[iSamp].
1223       ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1224       ** fields that is greater than the previous effective sample.  */
1225       for(n=(iTest % nField) + 1; n<nField; n++){
1226         if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1227       }
1228     }else{
1229       n = iTest + 1;
1230     }
1231 
1232     pRec->nField = n;
1233     res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1234     if( res<0 ){
1235       iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1236       iMin = iTest+1;
1237     }else if( res==0 && n<nField ){
1238       iLower = aSample[iSamp].anLt[n-1];
1239       iMin = iTest+1;
1240       res = -1;
1241     }else{
1242       iSample = iTest;
1243       iCol = n-1;
1244     }
1245   }while( res && iMin<iSample );
1246   i = iSample / nField;
1247 
1248 #ifdef SQLITE_DEBUG
1249   /* The following assert statements check that the binary search code
1250   ** above found the right answer. This block serves no purpose other
1251   ** than to invoke the asserts.  */
1252   if( pParse->db->mallocFailed==0 ){
1253     if( res==0 ){
1254       /* If (res==0) is true, then pRec must be equal to sample i. */
1255       assert( i<pIdx->nSample );
1256       assert( iCol==nField-1 );
1257       pRec->nField = nField;
1258       assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1259            || pParse->db->mallocFailed
1260       );
1261     }else{
1262       /* Unless i==pIdx->nSample, indicating that pRec is larger than
1263       ** all samples in the aSample[] array, pRec must be smaller than the
1264       ** (iCol+1) field prefix of sample i.  */
1265       assert( i<=pIdx->nSample && i>=0 );
1266       pRec->nField = iCol+1;
1267       assert( i==pIdx->nSample
1268            || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1269            || pParse->db->mallocFailed );
1270 
1271       /* if i==0 and iCol==0, then record pRec is smaller than all samples
1272       ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1273       ** be greater than or equal to the (iCol) field prefix of sample i.
1274       ** If (i>0), then pRec must also be greater than sample (i-1).  */
1275       if( iCol>0 ){
1276         pRec->nField = iCol;
1277         assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1278              || pParse->db->mallocFailed );
1279       }
1280       if( i>0 ){
1281         pRec->nField = nField;
1282         assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1283              || pParse->db->mallocFailed );
1284       }
1285     }
1286   }
1287 #endif /* ifdef SQLITE_DEBUG */
1288 
1289   if( res==0 ){
1290     /* Record pRec is equal to sample i */
1291     assert( iCol==nField-1 );
1292     aStat[0] = aSample[i].anLt[iCol];
1293     aStat[1] = aSample[i].anEq[iCol];
1294   }else{
1295     /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1296     ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1297     ** is larger than all samples in the array. */
1298     tRowcnt iUpper, iGap;
1299     if( i>=pIdx->nSample ){
1300       iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1301     }else{
1302       iUpper = aSample[i].anLt[iCol];
1303     }
1304 
1305     if( iLower>=iUpper ){
1306       iGap = 0;
1307     }else{
1308       iGap = iUpper - iLower;
1309     }
1310     if( roundUp ){
1311       iGap = (iGap*2)/3;
1312     }else{
1313       iGap = iGap/3;
1314     }
1315     aStat[0] = iLower + iGap;
1316     aStat[1] = pIdx->aAvgEq[nField-1];
1317   }
1318 
1319   /* Restore the pRec->nField value before returning.  */
1320   pRec->nField = nField;
1321   return i;
1322 }
1323 #endif /* SQLITE_ENABLE_STAT4 */
1324 
1325 /*
1326 ** If it is not NULL, pTerm is a term that provides an upper or lower
1327 ** bound on a range scan. Without considering pTerm, it is estimated
1328 ** that the scan will visit nNew rows. This function returns the number
1329 ** estimated to be visited after taking pTerm into account.
1330 **
1331 ** If the user explicitly specified a likelihood() value for this term,
1332 ** then the return value is the likelihood multiplied by the number of
1333 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1334 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1335 */
1336 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1337   LogEst nRet = nNew;
1338   if( pTerm ){
1339     if( pTerm->truthProb<=0 ){
1340       nRet += pTerm->truthProb;
1341     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1342       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
1343     }
1344   }
1345   return nRet;
1346 }
1347 
1348 
1349 #ifdef SQLITE_ENABLE_STAT4
1350 /*
1351 ** Return the affinity for a single column of an index.
1352 */
1353 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1354   assert( iCol>=0 && iCol<pIdx->nColumn );
1355   if( !pIdx->zColAff ){
1356     if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1357   }
1358   assert( pIdx->zColAff[iCol]!=0 );
1359   return pIdx->zColAff[iCol];
1360 }
1361 #endif
1362 
1363 
1364 #ifdef SQLITE_ENABLE_STAT4
1365 /*
1366 ** This function is called to estimate the number of rows visited by a
1367 ** range-scan on a skip-scan index. For example:
1368 **
1369 **   CREATE INDEX i1 ON t1(a, b, c);
1370 **   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1371 **
1372 ** Value pLoop->nOut is currently set to the estimated number of rows
1373 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1374 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1375 ** on the stat4 data for the index. this scan will be peformed multiple
1376 ** times (once for each (a,b) combination that matches a=?) is dealt with
1377 ** by the caller.
1378 **
1379 ** It does this by scanning through all stat4 samples, comparing values
1380 ** extracted from pLower and pUpper with the corresponding column in each
1381 ** sample. If L and U are the number of samples found to be less than or
1382 ** equal to the values extracted from pLower and pUpper respectively, and
1383 ** N is the total number of samples, the pLoop->nOut value is adjusted
1384 ** as follows:
1385 **
1386 **   nOut = nOut * ( min(U - L, 1) / N )
1387 **
1388 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1389 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1390 ** U is set to N.
1391 **
1392 ** Normally, this function sets *pbDone to 1 before returning. However,
1393 ** if no value can be extracted from either pLower or pUpper (and so the
1394 ** estimate of the number of rows delivered remains unchanged), *pbDone
1395 ** is left as is.
1396 **
1397 ** If an error occurs, an SQLite error code is returned. Otherwise,
1398 ** SQLITE_OK.
1399 */
1400 static int whereRangeSkipScanEst(
1401   Parse *pParse,       /* Parsing & code generating context */
1402   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1403   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1404   WhereLoop *pLoop,    /* Update the .nOut value of this loop */
1405   int *pbDone          /* Set to true if at least one expr. value extracted */
1406 ){
1407   Index *p = pLoop->u.btree.pIndex;
1408   int nEq = pLoop->u.btree.nEq;
1409   sqlite3 *db = pParse->db;
1410   int nLower = -1;
1411   int nUpper = p->nSample+1;
1412   int rc = SQLITE_OK;
1413   u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1414   CollSeq *pColl;
1415 
1416   sqlite3_value *p1 = 0;          /* Value extracted from pLower */
1417   sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
1418   sqlite3_value *pVal = 0;        /* Value extracted from record */
1419 
1420   pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1421   if( pLower ){
1422     rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1423     nLower = 0;
1424   }
1425   if( pUpper && rc==SQLITE_OK ){
1426     rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1427     nUpper = p2 ? 0 : p->nSample;
1428   }
1429 
1430   if( p1 || p2 ){
1431     int i;
1432     int nDiff;
1433     for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1434       rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1435       if( rc==SQLITE_OK && p1 ){
1436         int res = sqlite3MemCompare(p1, pVal, pColl);
1437         if( res>=0 ) nLower++;
1438       }
1439       if( rc==SQLITE_OK && p2 ){
1440         int res = sqlite3MemCompare(p2, pVal, pColl);
1441         if( res>=0 ) nUpper++;
1442       }
1443     }
1444     nDiff = (nUpper - nLower);
1445     if( nDiff<=0 ) nDiff = 1;
1446 
1447     /* If there is both an upper and lower bound specified, and the
1448     ** comparisons indicate that they are close together, use the fallback
1449     ** method (assume that the scan visits 1/64 of the rows) for estimating
1450     ** the number of rows visited. Otherwise, estimate the number of rows
1451     ** using the method described in the header comment for this function. */
1452     if( nDiff!=1 || pUpper==0 || pLower==0 ){
1453       int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1454       pLoop->nOut -= nAdjust;
1455       *pbDone = 1;
1456       WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n",
1457                            nLower, nUpper, nAdjust*-1, pLoop->nOut));
1458     }
1459 
1460   }else{
1461     assert( *pbDone==0 );
1462   }
1463 
1464   sqlite3ValueFree(p1);
1465   sqlite3ValueFree(p2);
1466   sqlite3ValueFree(pVal);
1467 
1468   return rc;
1469 }
1470 #endif /* SQLITE_ENABLE_STAT4 */
1471 
1472 /*
1473 ** This function is used to estimate the number of rows that will be visited
1474 ** by scanning an index for a range of values. The range may have an upper
1475 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1476 ** and lower bounds are represented by pLower and pUpper respectively. For
1477 ** example, assuming that index p is on t1(a):
1478 **
1479 **   ... FROM t1 WHERE a > ? AND a < ? ...
1480 **                    |_____|   |_____|
1481 **                       |         |
1482 **                     pLower    pUpper
1483 **
1484 ** If either of the upper or lower bound is not present, then NULL is passed in
1485 ** place of the corresponding WhereTerm.
1486 **
1487 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1488 ** column subject to the range constraint. Or, equivalently, the number of
1489 ** equality constraints optimized by the proposed index scan. For example,
1490 ** assuming index p is on t1(a, b), and the SQL query is:
1491 **
1492 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1493 **
1494 ** then nEq is set to 1 (as the range restricted column, b, is the second
1495 ** left-most column of the index). Or, if the query is:
1496 **
1497 **   ... FROM t1 WHERE a > ? AND a < ? ...
1498 **
1499 ** then nEq is set to 0.
1500 **
1501 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1502 ** number of rows that the index scan is expected to visit without
1503 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1504 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1505 ** to account for the range constraints pLower and pUpper.
1506 **
1507 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1508 ** used, a single range inequality reduces the search space by a factor of 4.
1509 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1510 ** rows visited by a factor of 64.
1511 */
1512 static int whereRangeScanEst(
1513   Parse *pParse,       /* Parsing & code generating context */
1514   WhereLoopBuilder *pBuilder,
1515   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1516   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1517   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
1518 ){
1519   int rc = SQLITE_OK;
1520   int nOut = pLoop->nOut;
1521   LogEst nNew;
1522 
1523 #ifdef SQLITE_ENABLE_STAT4
1524   Index *p = pLoop->u.btree.pIndex;
1525   int nEq = pLoop->u.btree.nEq;
1526 
1527   if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol)
1528    && OptimizationEnabled(pParse->db, SQLITE_Stat4)
1529   ){
1530     if( nEq==pBuilder->nRecValid ){
1531       UnpackedRecord *pRec = pBuilder->pRec;
1532       tRowcnt a[2];
1533       int nBtm = pLoop->u.btree.nBtm;
1534       int nTop = pLoop->u.btree.nTop;
1535 
1536       /* Variable iLower will be set to the estimate of the number of rows in
1537       ** the index that are less than the lower bound of the range query. The
1538       ** lower bound being the concatenation of $P and $L, where $P is the
1539       ** key-prefix formed by the nEq values matched against the nEq left-most
1540       ** columns of the index, and $L is the value in pLower.
1541       **
1542       ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1543       ** is not a simple variable or literal value), the lower bound of the
1544       ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1545       ** if $L is available, whereKeyStats() is called for both ($P) and
1546       ** ($P:$L) and the larger of the two returned values is used.
1547       **
1548       ** Similarly, iUpper is to be set to the estimate of the number of rows
1549       ** less than the upper bound of the range query. Where the upper bound
1550       ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1551       ** of iUpper are requested of whereKeyStats() and the smaller used.
1552       **
1553       ** The number of rows between the two bounds is then just iUpper-iLower.
1554       */
1555       tRowcnt iLower;     /* Rows less than the lower bound */
1556       tRowcnt iUpper;     /* Rows less than the upper bound */
1557       int iLwrIdx = -2;   /* aSample[] for the lower bound */
1558       int iUprIdx = -1;   /* aSample[] for the upper bound */
1559 
1560       if( pRec ){
1561         testcase( pRec->nField!=pBuilder->nRecValid );
1562         pRec->nField = pBuilder->nRecValid;
1563       }
1564       /* Determine iLower and iUpper using ($P) only. */
1565       if( nEq==0 ){
1566         iLower = 0;
1567         iUpper = p->nRowEst0;
1568       }else{
1569         /* Note: this call could be optimized away - since the same values must
1570         ** have been requested when testing key $P in whereEqualScanEst().  */
1571         whereKeyStats(pParse, p, pRec, 0, a);
1572         iLower = a[0];
1573         iUpper = a[0] + a[1];
1574       }
1575 
1576       assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1577       assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1578       assert( p->aSortOrder!=0 );
1579       if( p->aSortOrder[nEq] ){
1580         /* The roles of pLower and pUpper are swapped for a DESC index */
1581         SWAP(WhereTerm*, pLower, pUpper);
1582         SWAP(int, nBtm, nTop);
1583       }
1584 
1585       /* If possible, improve on the iLower estimate using ($P:$L). */
1586       if( pLower ){
1587         int n;                    /* Values extracted from pExpr */
1588         Expr *pExpr = pLower->pExpr->pRight;
1589         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1590         if( rc==SQLITE_OK && n ){
1591           tRowcnt iNew;
1592           u16 mask = WO_GT|WO_LE;
1593           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1594           iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1595           iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1596           if( iNew>iLower ) iLower = iNew;
1597           nOut--;
1598           pLower = 0;
1599         }
1600       }
1601 
1602       /* If possible, improve on the iUpper estimate using ($P:$U). */
1603       if( pUpper ){
1604         int n;                    /* Values extracted from pExpr */
1605         Expr *pExpr = pUpper->pExpr->pRight;
1606         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1607         if( rc==SQLITE_OK && n ){
1608           tRowcnt iNew;
1609           u16 mask = WO_GT|WO_LE;
1610           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1611           iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1612           iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1613           if( iNew<iUpper ) iUpper = iNew;
1614           nOut--;
1615           pUpper = 0;
1616         }
1617       }
1618 
1619       pBuilder->pRec = pRec;
1620       if( rc==SQLITE_OK ){
1621         if( iUpper>iLower ){
1622           nNew = sqlite3LogEst(iUpper - iLower);
1623           /* TUNING:  If both iUpper and iLower are derived from the same
1624           ** sample, then assume they are 4x more selective.  This brings
1625           ** the estimated selectivity more in line with what it would be
1626           ** if estimated without the use of STAT4 tables. */
1627           if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
1628         }else{
1629           nNew = 10;        assert( 10==sqlite3LogEst(2) );
1630         }
1631         if( nNew<nOut ){
1632           nOut = nNew;
1633         }
1634         WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
1635                            (u32)iLower, (u32)iUpper, nOut));
1636       }
1637     }else{
1638       int bDone = 0;
1639       rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1640       if( bDone ) return rc;
1641     }
1642   }
1643 #else
1644   UNUSED_PARAMETER(pParse);
1645   UNUSED_PARAMETER(pBuilder);
1646   assert( pLower || pUpper );
1647 #endif
1648   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1649   nNew = whereRangeAdjust(pLower, nOut);
1650   nNew = whereRangeAdjust(pUpper, nNew);
1651 
1652   /* TUNING: If there is both an upper and lower limit and neither limit
1653   ** has an application-defined likelihood(), assume the range is
1654   ** reduced by an additional 75%. This means that, by default, an open-ended
1655   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1656   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1657   ** match 1/64 of the index. */
1658   if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1659     nNew -= 20;
1660   }
1661 
1662   nOut -= (pLower!=0) + (pUpper!=0);
1663   if( nNew<10 ) nNew = 10;
1664   if( nNew<nOut ) nOut = nNew;
1665 #if defined(WHERETRACE_ENABLED)
1666   if( pLoop->nOut>nOut ){
1667     WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1668                     pLoop->nOut, nOut));
1669   }
1670 #endif
1671   pLoop->nOut = (LogEst)nOut;
1672   return rc;
1673 }
1674 
1675 #ifdef SQLITE_ENABLE_STAT4
1676 /*
1677 ** Estimate the number of rows that will be returned based on
1678 ** an equality constraint x=VALUE and where that VALUE occurs in
1679 ** the histogram data.  This only works when x is the left-most
1680 ** column of an index and sqlite_stat4 histogram data is available
1681 ** for that index.  When pExpr==NULL that means the constraint is
1682 ** "x IS NULL" instead of "x=VALUE".
1683 **
1684 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1685 ** If unable to make an estimate, leave *pnRow unchanged and return
1686 ** non-zero.
1687 **
1688 ** This routine can fail if it is unable to load a collating sequence
1689 ** required for string comparison, or if unable to allocate memory
1690 ** for a UTF conversion required for comparison.  The error is stored
1691 ** in the pParse structure.
1692 */
1693 static int whereEqualScanEst(
1694   Parse *pParse,       /* Parsing & code generating context */
1695   WhereLoopBuilder *pBuilder,
1696   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
1697   tRowcnt *pnRow       /* Write the revised row estimate here */
1698 ){
1699   Index *p = pBuilder->pNew->u.btree.pIndex;
1700   int nEq = pBuilder->pNew->u.btree.nEq;
1701   UnpackedRecord *pRec = pBuilder->pRec;
1702   int rc;                   /* Subfunction return code */
1703   tRowcnt a[2];             /* Statistics */
1704   int bOk;
1705 
1706   assert( nEq>=1 );
1707   assert( nEq<=p->nColumn );
1708   assert( p->aSample!=0 );
1709   assert( p->nSample>0 );
1710   assert( pBuilder->nRecValid<nEq );
1711 
1712   /* If values are not available for all fields of the index to the left
1713   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1714   if( pBuilder->nRecValid<(nEq-1) ){
1715     return SQLITE_NOTFOUND;
1716   }
1717 
1718   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1719   ** below would return the same value.  */
1720   if( nEq>=p->nColumn ){
1721     *pnRow = 1;
1722     return SQLITE_OK;
1723   }
1724 
1725   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1726   pBuilder->pRec = pRec;
1727   if( rc!=SQLITE_OK ) return rc;
1728   if( bOk==0 ) return SQLITE_NOTFOUND;
1729   pBuilder->nRecValid = nEq;
1730 
1731   whereKeyStats(pParse, p, pRec, 0, a);
1732   WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1733                    p->zName, nEq-1, (int)a[1]));
1734   *pnRow = a[1];
1735 
1736   return rc;
1737 }
1738 #endif /* SQLITE_ENABLE_STAT4 */
1739 
1740 #ifdef SQLITE_ENABLE_STAT4
1741 /*
1742 ** Estimate the number of rows that will be returned based on
1743 ** an IN constraint where the right-hand side of the IN operator
1744 ** is a list of values.  Example:
1745 **
1746 **        WHERE x IN (1,2,3,4)
1747 **
1748 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1749 ** If unable to make an estimate, leave *pnRow unchanged and return
1750 ** non-zero.
1751 **
1752 ** This routine can fail if it is unable to load a collating sequence
1753 ** required for string comparison, or if unable to allocate memory
1754 ** for a UTF conversion required for comparison.  The error is stored
1755 ** in the pParse structure.
1756 */
1757 static int whereInScanEst(
1758   Parse *pParse,       /* Parsing & code generating context */
1759   WhereLoopBuilder *pBuilder,
1760   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1761   tRowcnt *pnRow       /* Write the revised row estimate here */
1762 ){
1763   Index *p = pBuilder->pNew->u.btree.pIndex;
1764   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1765   int nRecValid = pBuilder->nRecValid;
1766   int rc = SQLITE_OK;     /* Subfunction return code */
1767   tRowcnt nEst;           /* Number of rows for a single term */
1768   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
1769   int i;                  /* Loop counter */
1770 
1771   assert( p->aSample!=0 );
1772   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
1773     nEst = nRow0;
1774     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
1775     nRowEst += nEst;
1776     pBuilder->nRecValid = nRecValid;
1777   }
1778 
1779   if( rc==SQLITE_OK ){
1780     if( nRowEst > nRow0 ) nRowEst = nRow0;
1781     *pnRow = nRowEst;
1782     WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
1783   }
1784   assert( pBuilder->nRecValid==nRecValid );
1785   return rc;
1786 }
1787 #endif /* SQLITE_ENABLE_STAT4 */
1788 
1789 
1790 #ifdef WHERETRACE_ENABLED
1791 /*
1792 ** Print the content of a WhereTerm object
1793 */
1794 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){
1795   if( pTerm==0 ){
1796     sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
1797   }else{
1798     char zType[8];
1799     char zLeft[50];
1800     memcpy(zType, "....", 5);
1801     if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
1802     if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
1803     if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
1804     if( pTerm->wtFlags & TERM_CODED  ) zType[3] = 'C';
1805     if( pTerm->eOperator & WO_SINGLE ){
1806       sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
1807                        pTerm->leftCursor, pTerm->u.x.leftColumn);
1808     }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
1809       sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx",
1810                        pTerm->u.pOrInfo->indexable);
1811     }else{
1812       sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
1813     }
1814     sqlite3DebugPrintf(
1815        "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x",
1816        iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags);
1817     /* The 0x10000 .wheretrace flag causes extra information to be
1818     ** shown about each Term */
1819     if( sqlite3WhereTrace & 0x10000 ){
1820       sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx",
1821         pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight);
1822     }
1823     if( pTerm->u.x.iField ){
1824       sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField);
1825     }
1826     if( pTerm->iParent>=0 ){
1827       sqlite3DebugPrintf(" iParent=%d", pTerm->iParent);
1828     }
1829     sqlite3DebugPrintf("\n");
1830     sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
1831   }
1832 }
1833 #endif
1834 
1835 #ifdef WHERETRACE_ENABLED
1836 /*
1837 ** Show the complete content of a WhereClause
1838 */
1839 void sqlite3WhereClausePrint(WhereClause *pWC){
1840   int i;
1841   for(i=0; i<pWC->nTerm; i++){
1842     sqlite3WhereTermPrint(&pWC->a[i], i);
1843   }
1844 }
1845 #endif
1846 
1847 #ifdef WHERETRACE_ENABLED
1848 /*
1849 ** Print a WhereLoop object for debugging purposes
1850 */
1851 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){
1852   WhereInfo *pWInfo = pWC->pWInfo;
1853   int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
1854   SrcItem *pItem = pWInfo->pTabList->a + p->iTab;
1855   Table *pTab = pItem->pTab;
1856   Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
1857   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
1858                      p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
1859   sqlite3DebugPrintf(" %12s",
1860                      pItem->zAlias ? pItem->zAlias : pTab->zName);
1861   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
1862     const char *zName;
1863     if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
1864       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
1865         int i = sqlite3Strlen30(zName) - 1;
1866         while( zName[i]!='_' ) i--;
1867         zName += i;
1868       }
1869       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
1870     }else{
1871       sqlite3DebugPrintf("%20s","");
1872     }
1873   }else{
1874     char *z;
1875     if( p->u.vtab.idxStr ){
1876       z = sqlite3_mprintf("(%d,\"%s\",%#x)",
1877                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
1878     }else{
1879       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
1880     }
1881     sqlite3DebugPrintf(" %-19s", z);
1882     sqlite3_free(z);
1883   }
1884   if( p->wsFlags & WHERE_SKIPSCAN ){
1885     sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
1886   }else{
1887     sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
1888   }
1889   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
1890   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
1891     int i;
1892     for(i=0; i<p->nLTerm; i++){
1893       sqlite3WhereTermPrint(p->aLTerm[i], i);
1894     }
1895   }
1896 }
1897 #endif
1898 
1899 /*
1900 ** Convert bulk memory into a valid WhereLoop that can be passed
1901 ** to whereLoopClear harmlessly.
1902 */
1903 static void whereLoopInit(WhereLoop *p){
1904   p->aLTerm = p->aLTermSpace;
1905   p->nLTerm = 0;
1906   p->nLSlot = ArraySize(p->aLTermSpace);
1907   p->wsFlags = 0;
1908 }
1909 
1910 /*
1911 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
1912 */
1913 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
1914   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
1915     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
1916       sqlite3_free(p->u.vtab.idxStr);
1917       p->u.vtab.needFree = 0;
1918       p->u.vtab.idxStr = 0;
1919     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
1920       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
1921       sqlite3DbFreeNN(db, p->u.btree.pIndex);
1922       p->u.btree.pIndex = 0;
1923     }
1924   }
1925 }
1926 
1927 /*
1928 ** Deallocate internal memory used by a WhereLoop object
1929 */
1930 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
1931   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1932   whereLoopClearUnion(db, p);
1933   whereLoopInit(p);
1934 }
1935 
1936 /*
1937 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
1938 */
1939 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
1940   WhereTerm **paNew;
1941   if( p->nLSlot>=n ) return SQLITE_OK;
1942   n = (n+7)&~7;
1943   paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
1944   if( paNew==0 ) return SQLITE_NOMEM_BKPT;
1945   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
1946   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1947   p->aLTerm = paNew;
1948   p->nLSlot = n;
1949   return SQLITE_OK;
1950 }
1951 
1952 /*
1953 ** Transfer content from the second pLoop into the first.
1954 */
1955 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
1956   whereLoopClearUnion(db, pTo);
1957   if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
1958     memset(pTo, 0, WHERE_LOOP_XFER_SZ);
1959     return SQLITE_NOMEM_BKPT;
1960   }
1961   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
1962   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
1963   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
1964     pFrom->u.vtab.needFree = 0;
1965   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
1966     pFrom->u.btree.pIndex = 0;
1967   }
1968   return SQLITE_OK;
1969 }
1970 
1971 /*
1972 ** Delete a WhereLoop object
1973 */
1974 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
1975   whereLoopClear(db, p);
1976   sqlite3DbFreeNN(db, p);
1977 }
1978 
1979 /*
1980 ** Free a WhereInfo structure
1981 */
1982 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
1983   int i;
1984   assert( pWInfo!=0 );
1985   for(i=0; i<pWInfo->nLevel; i++){
1986     WhereLevel *pLevel = &pWInfo->a[i];
1987     if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){
1988       sqlite3DbFree(db, pLevel->u.in.aInLoop);
1989     }
1990   }
1991   sqlite3WhereClauseClear(&pWInfo->sWC);
1992   while( pWInfo->pLoops ){
1993     WhereLoop *p = pWInfo->pLoops;
1994     pWInfo->pLoops = p->pNextLoop;
1995     whereLoopDelete(db, p);
1996   }
1997   assert( pWInfo->pExprMods==0 );
1998   sqlite3DbFreeNN(db, pWInfo);
1999 }
2000 
2001 /* Undo all Expr node modifications
2002 */
2003 static void whereUndoExprMods(WhereInfo *pWInfo){
2004   while( pWInfo->pExprMods ){
2005     WhereExprMod *p = pWInfo->pExprMods;
2006     pWInfo->pExprMods = p->pNext;
2007     memcpy(p->pExpr, &p->orig, sizeof(p->orig));
2008     sqlite3DbFree(pWInfo->pParse->db, p);
2009   }
2010 }
2011 
2012 /*
2013 ** Return TRUE if all of the following are true:
2014 **
2015 **   (1)  X has the same or lower cost, or returns the same or fewer rows,
2016 **        than Y.
2017 **   (2)  X uses fewer WHERE clause terms than Y
2018 **   (3)  Every WHERE clause term used by X is also used by Y
2019 **   (4)  X skips at least as many columns as Y
2020 **   (5)  If X is a covering index, than Y is too
2021 **
2022 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
2023 ** If X is a proper subset of Y then Y is a better choice and ought
2024 ** to have a lower cost.  This routine returns TRUE when that cost
2025 ** relationship is inverted and needs to be adjusted.  Constraint (4)
2026 ** was added because if X uses skip-scan less than Y it still might
2027 ** deserve a lower cost even if it is a proper subset of Y.  Constraint (5)
2028 ** was added because a covering index probably deserves to have a lower cost
2029 ** than a non-covering index even if it is a proper subset.
2030 */
2031 static int whereLoopCheaperProperSubset(
2032   const WhereLoop *pX,       /* First WhereLoop to compare */
2033   const WhereLoop *pY        /* Compare against this WhereLoop */
2034 ){
2035   int i, j;
2036   if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
2037     return 0; /* X is not a subset of Y */
2038   }
2039   if( pX->rRun>pY->rRun && pX->nOut>pY->nOut ) return 0;
2040   if( pY->nSkip > pX->nSkip ) return 0;
2041   for(i=pX->nLTerm-1; i>=0; i--){
2042     if( pX->aLTerm[i]==0 ) continue;
2043     for(j=pY->nLTerm-1; j>=0; j--){
2044       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
2045     }
2046     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
2047   }
2048   if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
2049    && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
2050     return 0;  /* Constraint (5) */
2051   }
2052   return 1;  /* All conditions meet */
2053 }
2054 
2055 /*
2056 ** Try to adjust the cost and number of output rows of WhereLoop pTemplate
2057 ** upwards or downwards so that:
2058 **
2059 **   (1) pTemplate costs less than any other WhereLoops that are a proper
2060 **       subset of pTemplate
2061 **
2062 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
2063 **       is a proper subset.
2064 **
2065 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
2066 ** WHERE clause terms than Y and that every WHERE clause term used by X is
2067 ** also used by Y.
2068 */
2069 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
2070   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
2071   for(; p; p=p->pNextLoop){
2072     if( p->iTab!=pTemplate->iTab ) continue;
2073     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
2074     if( whereLoopCheaperProperSubset(p, pTemplate) ){
2075       /* Adjust pTemplate cost downward so that it is cheaper than its
2076       ** subset p. */
2077       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2078                        pTemplate->rRun, pTemplate->nOut,
2079                        MIN(p->rRun, pTemplate->rRun),
2080                        MIN(p->nOut - 1, pTemplate->nOut)));
2081       pTemplate->rRun = MIN(p->rRun, pTemplate->rRun);
2082       pTemplate->nOut = MIN(p->nOut - 1, pTemplate->nOut);
2083     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
2084       /* Adjust pTemplate cost upward so that it is costlier than p since
2085       ** pTemplate is a proper subset of p */
2086       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2087                        pTemplate->rRun, pTemplate->nOut,
2088                        MAX(p->rRun, pTemplate->rRun),
2089                        MAX(p->nOut + 1, pTemplate->nOut)));
2090       pTemplate->rRun = MAX(p->rRun, pTemplate->rRun);
2091       pTemplate->nOut = MAX(p->nOut + 1, pTemplate->nOut);
2092     }
2093   }
2094 }
2095 
2096 /*
2097 ** Search the list of WhereLoops in *ppPrev looking for one that can be
2098 ** replaced by pTemplate.
2099 **
2100 ** Return NULL if pTemplate does not belong on the WhereLoop list.
2101 ** In other words if pTemplate ought to be dropped from further consideration.
2102 **
2103 ** If pX is a WhereLoop that pTemplate can replace, then return the
2104 ** link that points to pX.
2105 **
2106 ** If pTemplate cannot replace any existing element of the list but needs
2107 ** to be added to the list as a new entry, then return a pointer to the
2108 ** tail of the list.
2109 */
2110 static WhereLoop **whereLoopFindLesser(
2111   WhereLoop **ppPrev,
2112   const WhereLoop *pTemplate
2113 ){
2114   WhereLoop *p;
2115   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
2116     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
2117       /* If either the iTab or iSortIdx values for two WhereLoop are different
2118       ** then those WhereLoops need to be considered separately.  Neither is
2119       ** a candidate to replace the other. */
2120       continue;
2121     }
2122     /* In the current implementation, the rSetup value is either zero
2123     ** or the cost of building an automatic index (NlogN) and the NlogN
2124     ** is the same for compatible WhereLoops. */
2125     assert( p->rSetup==0 || pTemplate->rSetup==0
2126                  || p->rSetup==pTemplate->rSetup );
2127 
2128     /* whereLoopAddBtree() always generates and inserts the automatic index
2129     ** case first.  Hence compatible candidate WhereLoops never have a larger
2130     ** rSetup. Call this SETUP-INVARIANT */
2131     assert( p->rSetup>=pTemplate->rSetup );
2132 
2133     /* Any loop using an appliation-defined index (or PRIMARY KEY or
2134     ** UNIQUE constraint) with one or more == constraints is better
2135     ** than an automatic index. Unless it is a skip-scan. */
2136     if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
2137      && (pTemplate->nSkip)==0
2138      && (pTemplate->wsFlags & WHERE_INDEXED)!=0
2139      && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
2140      && (p->prereq & pTemplate->prereq)==pTemplate->prereq
2141     ){
2142       break;
2143     }
2144 
2145     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2146     ** discarded.  WhereLoop p is better if:
2147     **   (1)  p has no more dependencies than pTemplate, and
2148     **   (2)  p has an equal or lower cost than pTemplate
2149     */
2150     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
2151      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
2152      && p->rRun<=pTemplate->rRun                      /* (2b) */
2153      && p->nOut<=pTemplate->nOut                      /* (2c) */
2154     ){
2155       return 0;  /* Discard pTemplate */
2156     }
2157 
2158     /* If pTemplate is always better than p, then cause p to be overwritten
2159     ** with pTemplate.  pTemplate is better than p if:
2160     **   (1)  pTemplate has no more dependences than p, and
2161     **   (2)  pTemplate has an equal or lower cost than p.
2162     */
2163     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
2164      && p->rRun>=pTemplate->rRun                             /* (2a) */
2165      && p->nOut>=pTemplate->nOut                             /* (2b) */
2166     ){
2167       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2168       break;   /* Cause p to be overwritten by pTemplate */
2169     }
2170   }
2171   return ppPrev;
2172 }
2173 
2174 /*
2175 ** Insert or replace a WhereLoop entry using the template supplied.
2176 **
2177 ** An existing WhereLoop entry might be overwritten if the new template
2178 ** is better and has fewer dependencies.  Or the template will be ignored
2179 ** and no insert will occur if an existing WhereLoop is faster and has
2180 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
2181 ** added based on the template.
2182 **
2183 ** If pBuilder->pOrSet is not NULL then we care about only the
2184 ** prerequisites and rRun and nOut costs of the N best loops.  That
2185 ** information is gathered in the pBuilder->pOrSet object.  This special
2186 ** processing mode is used only for OR clause processing.
2187 **
2188 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2189 ** still might overwrite similar loops with the new template if the
2190 ** new template is better.  Loops may be overwritten if the following
2191 ** conditions are met:
2192 **
2193 **    (1)  They have the same iTab.
2194 **    (2)  They have the same iSortIdx.
2195 **    (3)  The template has same or fewer dependencies than the current loop
2196 **    (4)  The template has the same or lower cost than the current loop
2197 */
2198 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2199   WhereLoop **ppPrev, *p;
2200   WhereInfo *pWInfo = pBuilder->pWInfo;
2201   sqlite3 *db = pWInfo->pParse->db;
2202   int rc;
2203 
2204   /* Stop the search once we hit the query planner search limit */
2205   if( pBuilder->iPlanLimit==0 ){
2206     WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
2207     if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0;
2208     return SQLITE_DONE;
2209   }
2210   pBuilder->iPlanLimit--;
2211 
2212   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2213 
2214   /* If pBuilder->pOrSet is defined, then only keep track of the costs
2215   ** and prereqs.
2216   */
2217   if( pBuilder->pOrSet!=0 ){
2218     if( pTemplate->nLTerm ){
2219 #if WHERETRACE_ENABLED
2220       u16 n = pBuilder->pOrSet->n;
2221       int x =
2222 #endif
2223       whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2224                                     pTemplate->nOut);
2225 #if WHERETRACE_ENABLED /* 0x8 */
2226       if( sqlite3WhereTrace & 0x8 ){
2227         sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
2228         sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2229       }
2230 #endif
2231     }
2232     return SQLITE_OK;
2233   }
2234 
2235   /* Look for an existing WhereLoop to replace with pTemplate
2236   */
2237   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2238 
2239   if( ppPrev==0 ){
2240     /* There already exists a WhereLoop on the list that is better
2241     ** than pTemplate, so just ignore pTemplate */
2242 #if WHERETRACE_ENABLED /* 0x8 */
2243     if( sqlite3WhereTrace & 0x8 ){
2244       sqlite3DebugPrintf("   skip: ");
2245       sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2246     }
2247 #endif
2248     return SQLITE_OK;
2249   }else{
2250     p = *ppPrev;
2251   }
2252 
2253   /* If we reach this point it means that either p[] should be overwritten
2254   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2255   ** WhereLoop and insert it.
2256   */
2257 #if WHERETRACE_ENABLED /* 0x8 */
2258   if( sqlite3WhereTrace & 0x8 ){
2259     if( p!=0 ){
2260       sqlite3DebugPrintf("replace: ");
2261       sqlite3WhereLoopPrint(p, pBuilder->pWC);
2262       sqlite3DebugPrintf("   with: ");
2263     }else{
2264       sqlite3DebugPrintf("    add: ");
2265     }
2266     sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2267   }
2268 #endif
2269   if( p==0 ){
2270     /* Allocate a new WhereLoop to add to the end of the list */
2271     *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2272     if( p==0 ) return SQLITE_NOMEM_BKPT;
2273     whereLoopInit(p);
2274     p->pNextLoop = 0;
2275   }else{
2276     /* We will be overwriting WhereLoop p[].  But before we do, first
2277     ** go through the rest of the list and delete any other entries besides
2278     ** p[] that are also supplated by pTemplate */
2279     WhereLoop **ppTail = &p->pNextLoop;
2280     WhereLoop *pToDel;
2281     while( *ppTail ){
2282       ppTail = whereLoopFindLesser(ppTail, pTemplate);
2283       if( ppTail==0 ) break;
2284       pToDel = *ppTail;
2285       if( pToDel==0 ) break;
2286       *ppTail = pToDel->pNextLoop;
2287 #if WHERETRACE_ENABLED /* 0x8 */
2288       if( sqlite3WhereTrace & 0x8 ){
2289         sqlite3DebugPrintf(" delete: ");
2290         sqlite3WhereLoopPrint(pToDel, pBuilder->pWC);
2291       }
2292 #endif
2293       whereLoopDelete(db, pToDel);
2294     }
2295   }
2296   rc = whereLoopXfer(db, p, pTemplate);
2297   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2298     Index *pIndex = p->u.btree.pIndex;
2299     if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){
2300       p->u.btree.pIndex = 0;
2301     }
2302   }
2303   return rc;
2304 }
2305 
2306 /*
2307 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2308 ** WHERE clause that reference the loop but which are not used by an
2309 ** index.
2310 *
2311 ** For every WHERE clause term that is not used by the index
2312 ** and which has a truth probability assigned by one of the likelihood(),
2313 ** likely(), or unlikely() SQL functions, reduce the estimated number
2314 ** of output rows by the probability specified.
2315 **
2316 ** TUNING:  For every WHERE clause term that is not used by the index
2317 ** and which does not have an assigned truth probability, heuristics
2318 ** described below are used to try to estimate the truth probability.
2319 ** TODO --> Perhaps this is something that could be improved by better
2320 ** table statistics.
2321 **
2322 ** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
2323 ** value corresponds to -1 in LogEst notation, so this means decrement
2324 ** the WhereLoop.nOut field for every such WHERE clause term.
2325 **
2326 ** Heuristic 2:  If there exists one or more WHERE clause terms of the
2327 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2328 ** final output row estimate is no greater than 1/4 of the total number
2329 ** of rows in the table.  In other words, assume that x==EXPR will filter
2330 ** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
2331 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2332 ** on the "x" column and so in that case only cap the output row estimate
2333 ** at 1/2 instead of 1/4.
2334 */
2335 static void whereLoopOutputAdjust(
2336   WhereClause *pWC,      /* The WHERE clause */
2337   WhereLoop *pLoop,      /* The loop to adjust downward */
2338   LogEst nRow            /* Number of rows in the entire table */
2339 ){
2340   WhereTerm *pTerm, *pX;
2341   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2342   int i, j;
2343   LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */
2344 
2345   assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2346   for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
2347     assert( pTerm!=0 );
2348     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
2349     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2350     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2351     for(j=pLoop->nLTerm-1; j>=0; j--){
2352       pX = pLoop->aLTerm[j];
2353       if( pX==0 ) continue;
2354       if( pX==pTerm ) break;
2355       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2356     }
2357     if( j<0 ){
2358       if( pTerm->truthProb<=0 ){
2359         /* If a truth probability is specified using the likelihood() hints,
2360         ** then use the probability provided by the application. */
2361         pLoop->nOut += pTerm->truthProb;
2362       }else{
2363         /* In the absence of explicit truth probabilities, use heuristics to
2364         ** guess a reasonable truth probability. */
2365         pLoop->nOut--;
2366         if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0
2367          && (pTerm->wtFlags & TERM_HIGHTRUTH)==0  /* tag-20200224-1 */
2368         ){
2369           Expr *pRight = pTerm->pExpr->pRight;
2370           int k = 0;
2371           testcase( pTerm->pExpr->op==TK_IS );
2372           if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2373             k = 10;
2374           }else{
2375             k = 20;
2376           }
2377           if( iReduce<k ){
2378             pTerm->wtFlags |= TERM_HEURTRUTH;
2379             iReduce = k;
2380           }
2381         }
2382       }
2383     }
2384   }
2385   if( pLoop->nOut > nRow-iReduce )  pLoop->nOut = nRow - iReduce;
2386 }
2387 
2388 /*
2389 ** Term pTerm is a vector range comparison operation. The first comparison
2390 ** in the vector can be optimized using column nEq of the index. This
2391 ** function returns the total number of vector elements that can be used
2392 ** as part of the range comparison.
2393 **
2394 ** For example, if the query is:
2395 **
2396 **   WHERE a = ? AND (b, c, d) > (?, ?, ?)
2397 **
2398 ** and the index:
2399 **
2400 **   CREATE INDEX ... ON (a, b, c, d, e)
2401 **
2402 ** then this function would be invoked with nEq=1. The value returned in
2403 ** this case is 3.
2404 */
2405 static int whereRangeVectorLen(
2406   Parse *pParse,       /* Parsing context */
2407   int iCur,            /* Cursor open on pIdx */
2408   Index *pIdx,         /* The index to be used for a inequality constraint */
2409   int nEq,             /* Number of prior equality constraints on same index */
2410   WhereTerm *pTerm     /* The vector inequality constraint */
2411 ){
2412   int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2413   int i;
2414 
2415   nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2416   for(i=1; i<nCmp; i++){
2417     /* Test if comparison i of pTerm is compatible with column (i+nEq)
2418     ** of the index. If not, exit the loop.  */
2419     char aff;                     /* Comparison affinity */
2420     char idxaff = 0;              /* Indexed columns affinity */
2421     CollSeq *pColl;               /* Comparison collation sequence */
2422     Expr *pLhs, *pRhs;
2423 
2424     assert( ExprUseXList(pTerm->pExpr->pLeft) );
2425     pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2426     pRhs = pTerm->pExpr->pRight;
2427     if( ExprUseXSelect(pRhs) ){
2428       pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2429     }else{
2430       pRhs = pRhs->x.pList->a[i].pExpr;
2431     }
2432 
2433     /* Check that the LHS of the comparison is a column reference to
2434     ** the right column of the right source table. And that the sort
2435     ** order of the index column is the same as the sort order of the
2436     ** leftmost index column.  */
2437     if( pLhs->op!=TK_COLUMN
2438      || pLhs->iTable!=iCur
2439      || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2440      || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2441     ){
2442       break;
2443     }
2444 
2445     testcase( pLhs->iColumn==XN_ROWID );
2446     aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2447     idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2448     if( aff!=idxaff ) break;
2449 
2450     pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2451     if( pColl==0 ) break;
2452     if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2453   }
2454   return i;
2455 }
2456 
2457 /*
2458 ** Adjust the cost C by the costMult facter T.  This only occurs if
2459 ** compiled with -DSQLITE_ENABLE_COSTMULT
2460 */
2461 #ifdef SQLITE_ENABLE_COSTMULT
2462 # define ApplyCostMultiplier(C,T)  C += T
2463 #else
2464 # define ApplyCostMultiplier(C,T)
2465 #endif
2466 
2467 /*
2468 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2469 ** index pIndex. Try to match one more.
2470 **
2471 ** When this function is called, pBuilder->pNew->nOut contains the
2472 ** number of rows expected to be visited by filtering using the nEq
2473 ** terms only. If it is modified, this value is restored before this
2474 ** function returns.
2475 **
2476 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
2477 ** a fake index used for the INTEGER PRIMARY KEY.
2478 */
2479 static int whereLoopAddBtreeIndex(
2480   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
2481   SrcItem *pSrc,                  /* FROM clause term being analyzed */
2482   Index *pProbe,                  /* An index on pSrc */
2483   LogEst nInMul                   /* log(Number of iterations due to IN) */
2484 ){
2485   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
2486   Parse *pParse = pWInfo->pParse;        /* Parsing context */
2487   sqlite3 *db = pParse->db;       /* Database connection malloc context */
2488   WhereLoop *pNew;                /* Template WhereLoop under construction */
2489   WhereTerm *pTerm;               /* A WhereTerm under consideration */
2490   int opMask;                     /* Valid operators for constraints */
2491   WhereScan scan;                 /* Iterator for WHERE terms */
2492   Bitmask saved_prereq;           /* Original value of pNew->prereq */
2493   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
2494   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
2495   u16 saved_nBtm;                 /* Original value of pNew->u.btree.nBtm */
2496   u16 saved_nTop;                 /* Original value of pNew->u.btree.nTop */
2497   u16 saved_nSkip;                /* Original value of pNew->nSkip */
2498   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
2499   LogEst saved_nOut;              /* Original value of pNew->nOut */
2500   int rc = SQLITE_OK;             /* Return code */
2501   LogEst rSize;                   /* Number of rows in the table */
2502   LogEst rLogSize;                /* Logarithm of table size */
2503   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2504 
2505   pNew = pBuilder->pNew;
2506   if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2507   WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n",
2508                      pProbe->pTable->zName,pProbe->zName,
2509                      pNew->u.btree.nEq, pNew->nSkip, pNew->rRun));
2510 
2511   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2512   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2513   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2514     opMask = WO_LT|WO_LE;
2515   }else{
2516     assert( pNew->u.btree.nBtm==0 );
2517     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2518   }
2519   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2520 
2521   assert( pNew->u.btree.nEq<pProbe->nColumn );
2522   assert( pNew->u.btree.nEq<pProbe->nKeyCol
2523        || pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY );
2524 
2525   saved_nEq = pNew->u.btree.nEq;
2526   saved_nBtm = pNew->u.btree.nBtm;
2527   saved_nTop = pNew->u.btree.nTop;
2528   saved_nSkip = pNew->nSkip;
2529   saved_nLTerm = pNew->nLTerm;
2530   saved_wsFlags = pNew->wsFlags;
2531   saved_prereq = pNew->prereq;
2532   saved_nOut = pNew->nOut;
2533   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2534                         opMask, pProbe);
2535   pNew->rSetup = 0;
2536   rSize = pProbe->aiRowLogEst[0];
2537   rLogSize = estLog(rSize);
2538   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2539     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
2540     LogEst rCostIdx;
2541     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
2542     int nIn = 0;
2543 #ifdef SQLITE_ENABLE_STAT4
2544     int nRecValid = pBuilder->nRecValid;
2545 #endif
2546     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2547      && indexColumnNotNull(pProbe, saved_nEq)
2548     ){
2549       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2550     }
2551     if( pTerm->prereqRight & pNew->maskSelf ) continue;
2552 
2553     /* Do not allow the upper bound of a LIKE optimization range constraint
2554     ** to mix with a lower range bound from some other source */
2555     if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2556 
2557     /* tag-20191211-001:  Do not allow constraints from the WHERE clause to
2558     ** be used by the right table of a LEFT JOIN.  Only constraints in the
2559     ** ON clause are allowed.  See tag-20191211-002 for the vtab equivalent. */
2560     if( (pSrc->fg.jointype & JT_LEFT)!=0
2561      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
2562     ){
2563       continue;
2564     }
2565 
2566     if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2567       pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE;
2568     }else{
2569       pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED;
2570     }
2571     pNew->wsFlags = saved_wsFlags;
2572     pNew->u.btree.nEq = saved_nEq;
2573     pNew->u.btree.nBtm = saved_nBtm;
2574     pNew->u.btree.nTop = saved_nTop;
2575     pNew->nLTerm = saved_nLTerm;
2576     if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2577     pNew->aLTerm[pNew->nLTerm++] = pTerm;
2578     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2579 
2580     assert( nInMul==0
2581         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2582         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2583         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2584     );
2585 
2586     if( eOp & WO_IN ){
2587       Expr *pExpr = pTerm->pExpr;
2588       if( ExprUseXSelect(pExpr) ){
2589         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
2590         int i;
2591         nIn = 46;  assert( 46==sqlite3LogEst(25) );
2592 
2593         /* The expression may actually be of the form (x, y) IN (SELECT...).
2594         ** In this case there is a separate term for each of (x) and (y).
2595         ** However, the nIn multiplier should only be applied once, not once
2596         ** for each such term. The following loop checks that pTerm is the
2597         ** first such term in use, and sets nIn back to 0 if it is not. */
2598         for(i=0; i<pNew->nLTerm-1; i++){
2599           if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2600         }
2601       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2602         /* "x IN (value, value, ...)" */
2603         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2604       }
2605       if( pProbe->hasStat1 && rLogSize>=10 ){
2606         LogEst M, logK, x;
2607         /* Let:
2608         **   N = the total number of rows in the table
2609         **   K = the number of entries on the RHS of the IN operator
2610         **   M = the number of rows in the table that match terms to the
2611         **       to the left in the same index.  If the IN operator is on
2612         **       the left-most index column, M==N.
2613         **
2614         ** Given the definitions above, it is better to omit the IN operator
2615         ** from the index lookup and instead do a scan of the M elements,
2616         ** testing each scanned row against the IN operator separately, if:
2617         **
2618         **        M*log(K) < K*log(N)
2619         **
2620         ** Our estimates for M, K, and N might be inaccurate, so we build in
2621         ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
2622         ** with the index, as using an index has better worst-case behavior.
2623         ** If we do not have real sqlite_stat1 data, always prefer to use
2624         ** the index.  Do not bother with this optimization on very small
2625         ** tables (less than 2 rows) as it is pointless in that case.
2626         */
2627         M = pProbe->aiRowLogEst[saved_nEq];
2628         logK = estLog(nIn);
2629         /* TUNING      v-----  10 to bias toward indexed IN */
2630         x = M + logK + 10 - (nIn + rLogSize);
2631         if( x>=0 ){
2632           WHERETRACE(0x40,
2633             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) "
2634              "prefers indexed lookup\n",
2635              saved_nEq, M, logK, nIn, rLogSize, x));
2636         }else if( nInMul<2 && OptimizationEnabled(db, SQLITE_SeekScan) ){
2637           WHERETRACE(0x40,
2638             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2639              " nInMul=%d) prefers skip-scan\n",
2640              saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
2641           pNew->wsFlags |= WHERE_IN_SEEKSCAN;
2642         }else{
2643           WHERETRACE(0x40,
2644             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2645              " nInMul=%d) prefers normal scan\n",
2646              saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
2647           continue;
2648         }
2649       }
2650       pNew->wsFlags |= WHERE_COLUMN_IN;
2651     }else if( eOp & (WO_EQ|WO_IS) ){
2652       int iCol = pProbe->aiColumn[saved_nEq];
2653       pNew->wsFlags |= WHERE_COLUMN_EQ;
2654       assert( saved_nEq==pNew->u.btree.nEq );
2655       if( iCol==XN_ROWID
2656        || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2657       ){
2658         if( iCol==XN_ROWID || pProbe->uniqNotNull
2659          || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
2660         ){
2661           pNew->wsFlags |= WHERE_ONEROW;
2662         }else{
2663           pNew->wsFlags |= WHERE_UNQ_WANTED;
2664         }
2665       }
2666       if( scan.iEquiv>1 ) pNew->wsFlags |= WHERE_TRANSCONS;
2667     }else if( eOp & WO_ISNULL ){
2668       pNew->wsFlags |= WHERE_COLUMN_NULL;
2669     }else if( eOp & (WO_GT|WO_GE) ){
2670       testcase( eOp & WO_GT );
2671       testcase( eOp & WO_GE );
2672       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2673       pNew->u.btree.nBtm = whereRangeVectorLen(
2674           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2675       );
2676       pBtm = pTerm;
2677       pTop = 0;
2678       if( pTerm->wtFlags & TERM_LIKEOPT ){
2679         /* Range constraints that come from the LIKE optimization are
2680         ** always used in pairs. */
2681         pTop = &pTerm[1];
2682         assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2683         assert( pTop->wtFlags & TERM_LIKEOPT );
2684         assert( pTop->eOperator==WO_LT );
2685         if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2686         pNew->aLTerm[pNew->nLTerm++] = pTop;
2687         pNew->wsFlags |= WHERE_TOP_LIMIT;
2688         pNew->u.btree.nTop = 1;
2689       }
2690     }else{
2691       assert( eOp & (WO_LT|WO_LE) );
2692       testcase( eOp & WO_LT );
2693       testcase( eOp & WO_LE );
2694       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2695       pNew->u.btree.nTop = whereRangeVectorLen(
2696           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2697       );
2698       pTop = pTerm;
2699       pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2700                      pNew->aLTerm[pNew->nLTerm-2] : 0;
2701     }
2702 
2703     /* At this point pNew->nOut is set to the number of rows expected to
2704     ** be visited by the index scan before considering term pTerm, or the
2705     ** values of nIn and nInMul. In other words, assuming that all
2706     ** "x IN(...)" terms are replaced with "x = ?". This block updates
2707     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
2708     assert( pNew->nOut==saved_nOut );
2709     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2710       /* Adjust nOut using stat4 data. Or, if there is no stat4
2711       ** data, using some other estimate.  */
2712       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2713     }else{
2714       int nEq = ++pNew->u.btree.nEq;
2715       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2716 
2717       assert( pNew->nOut==saved_nOut );
2718       if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2719         assert( (eOp & WO_IN) || nIn==0 );
2720         testcase( eOp & WO_IN );
2721         pNew->nOut += pTerm->truthProb;
2722         pNew->nOut -= nIn;
2723       }else{
2724 #ifdef SQLITE_ENABLE_STAT4
2725         tRowcnt nOut = 0;
2726         if( nInMul==0
2727          && pProbe->nSample
2728          && ALWAYS(pNew->u.btree.nEq<=pProbe->nSampleCol)
2729          && ((eOp & WO_IN)==0 || ExprUseXList(pTerm->pExpr))
2730          && OptimizationEnabled(db, SQLITE_Stat4)
2731         ){
2732           Expr *pExpr = pTerm->pExpr;
2733           if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2734             testcase( eOp & WO_EQ );
2735             testcase( eOp & WO_IS );
2736             testcase( eOp & WO_ISNULL );
2737             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2738           }else{
2739             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2740           }
2741           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2742           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
2743           if( nOut ){
2744             pNew->nOut = sqlite3LogEst(nOut);
2745             if( nEq==1
2746              /* TUNING: Mark terms as "low selectivity" if they seem likely
2747              ** to be true for half or more of the rows in the table.
2748              ** See tag-202002240-1 */
2749              && pNew->nOut+10 > pProbe->aiRowLogEst[0]
2750             ){
2751 #if WHERETRACE_ENABLED /* 0x01 */
2752               if( sqlite3WhereTrace & 0x01 ){
2753                 sqlite3DebugPrintf(
2754                    "STAT4 determines term has low selectivity:\n");
2755                 sqlite3WhereTermPrint(pTerm, 999);
2756               }
2757 #endif
2758               pTerm->wtFlags |= TERM_HIGHTRUTH;
2759               if( pTerm->wtFlags & TERM_HEURTRUTH ){
2760                 /* If the term has previously been used with an assumption of
2761                 ** higher selectivity, then set the flag to rerun the
2762                 ** loop computations. */
2763                 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS;
2764               }
2765             }
2766             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
2767             pNew->nOut -= nIn;
2768           }
2769         }
2770         if( nOut==0 )
2771 #endif
2772         {
2773           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
2774           if( eOp & WO_ISNULL ){
2775             /* TUNING: If there is no likelihood() value, assume that a
2776             ** "col IS NULL" expression matches twice as many rows
2777             ** as (col=?). */
2778             pNew->nOut += 10;
2779           }
2780         }
2781       }
2782     }
2783 
2784     /* Set rCostIdx to the cost of visiting selected rows in index. Add
2785     ** it to pNew->rRun, which is currently set to the cost of the index
2786     ** seek only. Then, if this is a non-covering index, add the cost of
2787     ** visiting the rows in the main table.  */
2788     assert( pSrc->pTab->szTabRow>0 );
2789     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
2790     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
2791     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
2792       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
2793     }
2794     ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
2795 
2796     nOutUnadjusted = pNew->nOut;
2797     pNew->rRun += nInMul + nIn;
2798     pNew->nOut += nInMul + nIn;
2799     whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
2800     rc = whereLoopInsert(pBuilder, pNew);
2801 
2802     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2803       pNew->nOut = saved_nOut;
2804     }else{
2805       pNew->nOut = nOutUnadjusted;
2806     }
2807 
2808     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
2809      && pNew->u.btree.nEq<pProbe->nColumn
2810      && (pNew->u.btree.nEq<pProbe->nKeyCol ||
2811            pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY)
2812     ){
2813       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
2814     }
2815     pNew->nOut = saved_nOut;
2816 #ifdef SQLITE_ENABLE_STAT4
2817     pBuilder->nRecValid = nRecValid;
2818 #endif
2819   }
2820   pNew->prereq = saved_prereq;
2821   pNew->u.btree.nEq = saved_nEq;
2822   pNew->u.btree.nBtm = saved_nBtm;
2823   pNew->u.btree.nTop = saved_nTop;
2824   pNew->nSkip = saved_nSkip;
2825   pNew->wsFlags = saved_wsFlags;
2826   pNew->nOut = saved_nOut;
2827   pNew->nLTerm = saved_nLTerm;
2828 
2829   /* Consider using a skip-scan if there are no WHERE clause constraints
2830   ** available for the left-most terms of the index, and if the average
2831   ** number of repeats in the left-most terms is at least 18.
2832   **
2833   ** The magic number 18 is selected on the basis that scanning 17 rows
2834   ** is almost always quicker than an index seek (even though if the index
2835   ** contains fewer than 2^17 rows we assume otherwise in other parts of
2836   ** the code). And, even if it is not, it should not be too much slower.
2837   ** On the other hand, the extra seeks could end up being significantly
2838   ** more expensive.  */
2839   assert( 42==sqlite3LogEst(18) );
2840   if( saved_nEq==saved_nSkip
2841    && saved_nEq+1<pProbe->nKeyCol
2842    && saved_nEq==pNew->nLTerm
2843    && pProbe->noSkipScan==0
2844    && pProbe->hasStat1!=0
2845    && OptimizationEnabled(db, SQLITE_SkipScan)
2846    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
2847    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
2848   ){
2849     LogEst nIter;
2850     pNew->u.btree.nEq++;
2851     pNew->nSkip++;
2852     pNew->aLTerm[pNew->nLTerm++] = 0;
2853     pNew->wsFlags |= WHERE_SKIPSCAN;
2854     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
2855     pNew->nOut -= nIter;
2856     /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
2857     ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
2858     nIter += 5;
2859     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
2860     pNew->nOut = saved_nOut;
2861     pNew->u.btree.nEq = saved_nEq;
2862     pNew->nSkip = saved_nSkip;
2863     pNew->wsFlags = saved_wsFlags;
2864   }
2865 
2866   WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
2867                       pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
2868   return rc;
2869 }
2870 
2871 /*
2872 ** Return True if it is possible that pIndex might be useful in
2873 ** implementing the ORDER BY clause in pBuilder.
2874 **
2875 ** Return False if pBuilder does not contain an ORDER BY clause or
2876 ** if there is no way for pIndex to be useful in implementing that
2877 ** ORDER BY clause.
2878 */
2879 static int indexMightHelpWithOrderBy(
2880   WhereLoopBuilder *pBuilder,
2881   Index *pIndex,
2882   int iCursor
2883 ){
2884   ExprList *pOB;
2885   ExprList *aColExpr;
2886   int ii, jj;
2887 
2888   if( pIndex->bUnordered ) return 0;
2889   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
2890   for(ii=0; ii<pOB->nExpr; ii++){
2891     Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr);
2892     if( NEVER(pExpr==0) ) continue;
2893     if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
2894       if( pExpr->iColumn<0 ) return 1;
2895       for(jj=0; jj<pIndex->nKeyCol; jj++){
2896         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
2897       }
2898     }else if( (aColExpr = pIndex->aColExpr)!=0 ){
2899       for(jj=0; jj<pIndex->nKeyCol; jj++){
2900         if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
2901         if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
2902           return 1;
2903         }
2904       }
2905     }
2906   }
2907   return 0;
2908 }
2909 
2910 /* Check to see if a partial index with pPartIndexWhere can be used
2911 ** in the current query.  Return true if it can be and false if not.
2912 */
2913 static int whereUsablePartialIndex(
2914   int iTab,             /* The table for which we want an index */
2915   int isLeft,           /* True if iTab is the right table of a LEFT JOIN */
2916   WhereClause *pWC,     /* The WHERE clause of the query */
2917   Expr *pWhere          /* The WHERE clause from the partial index */
2918 ){
2919   int i;
2920   WhereTerm *pTerm;
2921   Parse *pParse = pWC->pWInfo->pParse;
2922   while( pWhere->op==TK_AND ){
2923     if( !whereUsablePartialIndex(iTab,isLeft,pWC,pWhere->pLeft) ) return 0;
2924     pWhere = pWhere->pRight;
2925   }
2926   if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
2927   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
2928     Expr *pExpr;
2929     pExpr = pTerm->pExpr;
2930     if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
2931      && (isLeft==0 || ExprHasProperty(pExpr, EP_FromJoin))
2932      && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
2933      && (pTerm->wtFlags & TERM_VNULL)==0
2934     ){
2935       return 1;
2936     }
2937   }
2938   return 0;
2939 }
2940 
2941 /*
2942 ** Add all WhereLoop objects for a single table of the join where the table
2943 ** is identified by pBuilder->pNew->iTab.  That table is guaranteed to be
2944 ** a b-tree table, not a virtual table.
2945 **
2946 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
2947 ** are calculated as follows:
2948 **
2949 ** For a full scan, assuming the table (or index) contains nRow rows:
2950 **
2951 **     cost = nRow * 3.0                    // full-table scan
2952 **     cost = nRow * K                      // scan of covering index
2953 **     cost = nRow * (K+3.0)                // scan of non-covering index
2954 **
2955 ** where K is a value between 1.1 and 3.0 set based on the relative
2956 ** estimated average size of the index and table records.
2957 **
2958 ** For an index scan, where nVisit is the number of index rows visited
2959 ** by the scan, and nSeek is the number of seek operations required on
2960 ** the index b-tree:
2961 **
2962 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
2963 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
2964 **
2965 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
2966 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
2967 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
2968 **
2969 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
2970 ** of uncertainty.  For this reason, scoring is designed to pick plans that
2971 ** "do the least harm" if the estimates are inaccurate.  For example, a
2972 ** log(nRow) factor is omitted from a non-covering index scan in order to
2973 ** bias the scoring in favor of using an index, since the worst-case
2974 ** performance of using an index is far better than the worst-case performance
2975 ** of a full table scan.
2976 */
2977 static int whereLoopAddBtree(
2978   WhereLoopBuilder *pBuilder, /* WHERE clause information */
2979   Bitmask mPrereq             /* Extra prerequesites for using this table */
2980 ){
2981   WhereInfo *pWInfo;          /* WHERE analysis context */
2982   Index *pProbe;              /* An index we are evaluating */
2983   Index sPk;                  /* A fake index object for the primary key */
2984   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
2985   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
2986   SrcList *pTabList;          /* The FROM clause */
2987   SrcItem *pSrc;              /* The FROM clause btree term to add */
2988   WhereLoop *pNew;            /* Template WhereLoop object */
2989   int rc = SQLITE_OK;         /* Return code */
2990   int iSortIdx = 1;           /* Index number */
2991   int b;                      /* A boolean value */
2992   LogEst rSize;               /* number of rows in the table */
2993   WhereClause *pWC;           /* The parsed WHERE clause */
2994   Table *pTab;                /* Table being queried */
2995 
2996   pNew = pBuilder->pNew;
2997   pWInfo = pBuilder->pWInfo;
2998   pTabList = pWInfo->pTabList;
2999   pSrc = pTabList->a + pNew->iTab;
3000   pTab = pSrc->pTab;
3001   pWC = pBuilder->pWC;
3002   assert( !IsVirtual(pSrc->pTab) );
3003 
3004   if( pSrc->fg.isIndexedBy ){
3005     assert( pSrc->fg.isCte==0 );
3006     /* An INDEXED BY clause specifies a particular index to use */
3007     pProbe = pSrc->u2.pIBIndex;
3008   }else if( !HasRowid(pTab) ){
3009     pProbe = pTab->pIndex;
3010   }else{
3011     /* There is no INDEXED BY clause.  Create a fake Index object in local
3012     ** variable sPk to represent the rowid primary key index.  Make this
3013     ** fake index the first in a chain of Index objects with all of the real
3014     ** indices to follow */
3015     Index *pFirst;                  /* First of real indices on the table */
3016     memset(&sPk, 0, sizeof(Index));
3017     sPk.nKeyCol = 1;
3018     sPk.nColumn = 1;
3019     sPk.aiColumn = &aiColumnPk;
3020     sPk.aiRowLogEst = aiRowEstPk;
3021     sPk.onError = OE_Replace;
3022     sPk.pTable = pTab;
3023     sPk.szIdxRow = pTab->szTabRow;
3024     sPk.idxType = SQLITE_IDXTYPE_IPK;
3025     aiRowEstPk[0] = pTab->nRowLogEst;
3026     aiRowEstPk[1] = 0;
3027     pFirst = pSrc->pTab->pIndex;
3028     if( pSrc->fg.notIndexed==0 ){
3029       /* The real indices of the table are only considered if the
3030       ** NOT INDEXED qualifier is omitted from the FROM clause */
3031       sPk.pNext = pFirst;
3032     }
3033     pProbe = &sPk;
3034   }
3035   rSize = pTab->nRowLogEst;
3036 
3037 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
3038   /* Automatic indexes */
3039   if( !pBuilder->pOrSet      /* Not part of an OR optimization */
3040    && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
3041    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
3042    && !pSrc->fg.isIndexedBy  /* Has no INDEXED BY clause */
3043    && !pSrc->fg.notIndexed   /* Has no NOT INDEXED clause */
3044    && HasRowid(pTab)         /* Not WITHOUT ROWID table. (FIXME: Why not?) */
3045    && !pSrc->fg.isCorrelated /* Not a correlated subquery */
3046    && !pSrc->fg.isRecursive  /* Not a recursive common table expression. */
3047   ){
3048     /* Generate auto-index WhereLoops */
3049     LogEst rLogSize;         /* Logarithm of the number of rows in the table */
3050     WhereTerm *pTerm;
3051     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
3052     rLogSize = estLog(rSize);
3053     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
3054       if( pTerm->prereqRight & pNew->maskSelf ) continue;
3055       if( termCanDriveIndex(pTerm, pSrc, 0) ){
3056         pNew->u.btree.nEq = 1;
3057         pNew->nSkip = 0;
3058         pNew->u.btree.pIndex = 0;
3059         pNew->nLTerm = 1;
3060         pNew->aLTerm[0] = pTerm;
3061         /* TUNING: One-time cost for computing the automatic index is
3062         ** estimated to be X*N*log2(N) where N is the number of rows in
3063         ** the table being indexed and where X is 7 (LogEst=28) for normal
3064         ** tables or 0.5 (LogEst=-10) for views and subqueries.  The value
3065         ** of X is smaller for views and subqueries so that the query planner
3066         ** will be more aggressive about generating automatic indexes for
3067         ** those objects, since there is no opportunity to add schema
3068         ** indexes on subqueries and views. */
3069         pNew->rSetup = rLogSize + rSize;
3070         if( !IsView(pTab) && (pTab->tabFlags & TF_Ephemeral)==0 ){
3071           pNew->rSetup += 28;
3072         }else{
3073           pNew->rSetup -= 10;
3074         }
3075         ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
3076         if( pNew->rSetup<0 ) pNew->rSetup = 0;
3077         /* TUNING: Each index lookup yields 20 rows in the table.  This
3078         ** is more than the usual guess of 10 rows, since we have no way
3079         ** of knowing how selective the index will ultimately be.  It would
3080         ** not be unreasonable to make this value much larger. */
3081         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
3082         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
3083         pNew->wsFlags = WHERE_AUTO_INDEX;
3084         pNew->prereq = mPrereq | pTerm->prereqRight;
3085         rc = whereLoopInsert(pBuilder, pNew);
3086       }
3087     }
3088   }
3089 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
3090 
3091   /* Loop over all indices. If there was an INDEXED BY clause, then only
3092   ** consider index pProbe.  */
3093   for(; rc==SQLITE_OK && pProbe;
3094       pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++
3095   ){
3096     int isLeft = (pSrc->fg.jointype & JT_OUTER)!=0;
3097     if( pProbe->pPartIdxWhere!=0
3098      && !whereUsablePartialIndex(pSrc->iCursor, isLeft, pWC,
3099                                  pProbe->pPartIdxWhere)
3100     ){
3101       testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
3102       continue;  /* Partial index inappropriate for this query */
3103     }
3104     if( pProbe->bNoQuery ) continue;
3105     rSize = pProbe->aiRowLogEst[0];
3106     pNew->u.btree.nEq = 0;
3107     pNew->u.btree.nBtm = 0;
3108     pNew->u.btree.nTop = 0;
3109     pNew->nSkip = 0;
3110     pNew->nLTerm = 0;
3111     pNew->iSortIdx = 0;
3112     pNew->rSetup = 0;
3113     pNew->prereq = mPrereq;
3114     pNew->nOut = rSize;
3115     pNew->u.btree.pIndex = pProbe;
3116     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
3117 
3118     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
3119     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
3120     if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){
3121       /* Integer primary key index */
3122       pNew->wsFlags = WHERE_IPK;
3123 
3124       /* Full table scan */
3125       pNew->iSortIdx = b ? iSortIdx : 0;
3126       /* TUNING: Cost of full table scan is 3.0*N.  The 3.0 factor is an
3127       ** extra cost designed to discourage the use of full table scans,
3128       ** since index lookups have better worst-case performance if our
3129       ** stat guesses are wrong.  Reduce the 3.0 penalty slightly
3130       ** (to 2.75) if we have valid STAT4 information for the table.
3131       ** At 2.75, a full table scan is preferred over using an index on
3132       ** a column with just two distinct values where each value has about
3133       ** an equal number of appearances.  Without STAT4 data, we still want
3134       ** to use an index in that case, since the constraint might be for
3135       ** the scarcer of the two values, and in that case an index lookup is
3136       ** better.
3137       */
3138 #ifdef SQLITE_ENABLE_STAT4
3139       pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0);
3140 #else
3141       pNew->rRun = rSize + 16;
3142 #endif
3143       ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3144       whereLoopOutputAdjust(pWC, pNew, rSize);
3145       rc = whereLoopInsert(pBuilder, pNew);
3146       pNew->nOut = rSize;
3147       if( rc ) break;
3148     }else{
3149       Bitmask m;
3150       if( pProbe->isCovering ){
3151         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
3152         m = 0;
3153       }else{
3154         m = pSrc->colUsed & pProbe->colNotIdxed;
3155         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
3156       }
3157 
3158       /* Full scan via index */
3159       if( b
3160        || !HasRowid(pTab)
3161        || pProbe->pPartIdxWhere!=0
3162        || pSrc->fg.isIndexedBy
3163        || ( m==0
3164          && pProbe->bUnordered==0
3165          && (pProbe->szIdxRow<pTab->szTabRow)
3166          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
3167          && sqlite3GlobalConfig.bUseCis
3168          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
3169           )
3170       ){
3171         pNew->iSortIdx = b ? iSortIdx : 0;
3172 
3173         /* The cost of visiting the index rows is N*K, where K is
3174         ** between 1.1 and 3.0, depending on the relative sizes of the
3175         ** index and table rows. */
3176         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
3177         if( m!=0 ){
3178           /* If this is a non-covering index scan, add in the cost of
3179           ** doing table lookups.  The cost will be 3x the number of
3180           ** lookups.  Take into account WHERE clause terms that can be
3181           ** satisfied using just the index, and that do not require a
3182           ** table lookup. */
3183           LogEst nLookup = rSize + 16;  /* Base cost:  N*3 */
3184           int ii;
3185           int iCur = pSrc->iCursor;
3186           WhereClause *pWC2 = &pWInfo->sWC;
3187           for(ii=0; ii<pWC2->nTerm; ii++){
3188             WhereTerm *pTerm = &pWC2->a[ii];
3189             if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
3190               break;
3191             }
3192             /* pTerm can be evaluated using just the index.  So reduce
3193             ** the expected number of table lookups accordingly */
3194             if( pTerm->truthProb<=0 ){
3195               nLookup += pTerm->truthProb;
3196             }else{
3197               nLookup--;
3198               if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
3199             }
3200           }
3201 
3202           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
3203         }
3204         ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3205         whereLoopOutputAdjust(pWC, pNew, rSize);
3206         rc = whereLoopInsert(pBuilder, pNew);
3207         pNew->nOut = rSize;
3208         if( rc ) break;
3209       }
3210     }
3211 
3212     pBuilder->bldFlags1 = 0;
3213     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
3214     if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){
3215       /* If a non-unique index is used, or if a prefix of the key for
3216       ** unique index is used (making the index functionally non-unique)
3217       ** then the sqlite_stat1 data becomes important for scoring the
3218       ** plan */
3219       pTab->tabFlags |= TF_StatsUsed;
3220     }
3221 #ifdef SQLITE_ENABLE_STAT4
3222     sqlite3Stat4ProbeFree(pBuilder->pRec);
3223     pBuilder->nRecValid = 0;
3224     pBuilder->pRec = 0;
3225 #endif
3226   }
3227   return rc;
3228 }
3229 
3230 #ifndef SQLITE_OMIT_VIRTUALTABLE
3231 
3232 /*
3233 ** Argument pIdxInfo is already populated with all constraints that may
3234 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3235 ** function marks a subset of those constraints usable, invokes the
3236 ** xBestIndex method and adds the returned plan to pBuilder.
3237 **
3238 ** A constraint is marked usable if:
3239 **
3240 **   * Argument mUsable indicates that its prerequisites are available, and
3241 **
3242 **   * It is not one of the operators specified in the mExclude mask passed
3243 **     as the fourth argument (which in practice is either WO_IN or 0).
3244 **
3245 ** Argument mPrereq is a mask of tables that must be scanned before the
3246 ** virtual table in question. These are added to the plans prerequisites
3247 ** before it is added to pBuilder.
3248 **
3249 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3250 ** uses one or more WO_IN terms, or false otherwise.
3251 */
3252 static int whereLoopAddVirtualOne(
3253   WhereLoopBuilder *pBuilder,
3254   Bitmask mPrereq,                /* Mask of tables that must be used. */
3255   Bitmask mUsable,                /* Mask of usable tables */
3256   u16 mExclude,                   /* Exclude terms using these operators */
3257   sqlite3_index_info *pIdxInfo,   /* Populated object for xBestIndex */
3258   u16 mNoOmit,                    /* Do not omit these constraints */
3259   int *pbIn                       /* OUT: True if plan uses an IN(...) op */
3260 ){
3261   WhereClause *pWC = pBuilder->pWC;
3262   struct sqlite3_index_constraint *pIdxCons;
3263   struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3264   int i;
3265   int mxTerm;
3266   int rc = SQLITE_OK;
3267   WhereLoop *pNew = pBuilder->pNew;
3268   Parse *pParse = pBuilder->pWInfo->pParse;
3269   SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3270   int nConstraint = pIdxInfo->nConstraint;
3271 
3272   assert( (mUsable & mPrereq)==mPrereq );
3273   *pbIn = 0;
3274   pNew->prereq = mPrereq;
3275 
3276   /* Set the usable flag on the subset of constraints identified by
3277   ** arguments mUsable and mExclude. */
3278   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3279   for(i=0; i<nConstraint; i++, pIdxCons++){
3280     WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3281     pIdxCons->usable = 0;
3282     if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3283      && (pTerm->eOperator & mExclude)==0
3284     ){
3285       pIdxCons->usable = 1;
3286     }
3287   }
3288 
3289   /* Initialize the output fields of the sqlite3_index_info structure */
3290   memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3291   assert( pIdxInfo->needToFreeIdxStr==0 );
3292   pIdxInfo->idxStr = 0;
3293   pIdxInfo->idxNum = 0;
3294   pIdxInfo->orderByConsumed = 0;
3295   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3296   pIdxInfo->estimatedRows = 25;
3297   pIdxInfo->idxFlags = 0;
3298   pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3299 
3300   /* Invoke the virtual table xBestIndex() method */
3301   rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3302   if( rc ){
3303     if( rc==SQLITE_CONSTRAINT ){
3304       /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
3305       ** that the particular combination of parameters provided is unusable.
3306       ** Make no entries in the loop table.
3307       */
3308       WHERETRACE(0xffff, ("  ^^^^--- non-viable plan rejected!\n"));
3309       return SQLITE_OK;
3310     }
3311     return rc;
3312   }
3313 
3314   mxTerm = -1;
3315   assert( pNew->nLSlot>=nConstraint );
3316   for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
3317   pNew->u.vtab.omitMask = 0;
3318   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3319   for(i=0; i<nConstraint; i++, pIdxCons++){
3320     int iTerm;
3321     if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3322       WhereTerm *pTerm;
3323       int j = pIdxCons->iTermOffset;
3324       if( iTerm>=nConstraint
3325        || j<0
3326        || j>=pWC->nTerm
3327        || pNew->aLTerm[iTerm]!=0
3328        || pIdxCons->usable==0
3329       ){
3330         sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3331         testcase( pIdxInfo->needToFreeIdxStr );
3332         return SQLITE_ERROR;
3333       }
3334       testcase( iTerm==nConstraint-1 );
3335       testcase( j==0 );
3336       testcase( j==pWC->nTerm-1 );
3337       pTerm = &pWC->a[j];
3338       pNew->prereq |= pTerm->prereqRight;
3339       assert( iTerm<pNew->nLSlot );
3340       pNew->aLTerm[iTerm] = pTerm;
3341       if( iTerm>mxTerm ) mxTerm = iTerm;
3342       testcase( iTerm==15 );
3343       testcase( iTerm==16 );
3344       if( pUsage[i].omit ){
3345         if( i<16 && ((1<<i)&mNoOmit)==0 ){
3346           testcase( i!=iTerm );
3347           pNew->u.vtab.omitMask |= 1<<iTerm;
3348         }else{
3349           testcase( i!=iTerm );
3350         }
3351       }
3352       if( (pTerm->eOperator & WO_IN)!=0 ){
3353         /* A virtual table that is constrained by an IN clause may not
3354         ** consume the ORDER BY clause because (1) the order of IN terms
3355         ** is not necessarily related to the order of output terms and
3356         ** (2) Multiple outputs from a single IN value will not merge
3357         ** together.  */
3358         pIdxInfo->orderByConsumed = 0;
3359         pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3360         *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3361       }
3362     }
3363   }
3364 
3365   pNew->nLTerm = mxTerm+1;
3366   for(i=0; i<=mxTerm; i++){
3367     if( pNew->aLTerm[i]==0 ){
3368       /* The non-zero argvIdx values must be contiguous.  Raise an
3369       ** error if they are not */
3370       sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3371       testcase( pIdxInfo->needToFreeIdxStr );
3372       return SQLITE_ERROR;
3373     }
3374   }
3375   assert( pNew->nLTerm<=pNew->nLSlot );
3376   pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3377   pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3378   pIdxInfo->needToFreeIdxStr = 0;
3379   pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3380   pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3381       pIdxInfo->nOrderBy : 0);
3382   pNew->rSetup = 0;
3383   pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3384   pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3385 
3386   /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3387   ** that the scan will visit at most one row. Clear it otherwise. */
3388   if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3389     pNew->wsFlags |= WHERE_ONEROW;
3390   }else{
3391     pNew->wsFlags &= ~WHERE_ONEROW;
3392   }
3393   rc = whereLoopInsert(pBuilder, pNew);
3394   if( pNew->u.vtab.needFree ){
3395     sqlite3_free(pNew->u.vtab.idxStr);
3396     pNew->u.vtab.needFree = 0;
3397   }
3398   WHERETRACE(0xffff, ("  bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3399                       *pbIn, (sqlite3_uint64)mPrereq,
3400                       (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3401 
3402   return rc;
3403 }
3404 
3405 /*
3406 ** If this function is invoked from within an xBestIndex() callback, it
3407 ** returns a pointer to a buffer containing the name of the collation
3408 ** sequence associated with element iCons of the sqlite3_index_info.aConstraint
3409 ** array. Or, if iCons is out of range or there is no active xBestIndex
3410 ** call, return NULL.
3411 */
3412 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
3413   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3414   const char *zRet = 0;
3415   if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
3416     CollSeq *pC = 0;
3417     int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
3418     Expr *pX = pHidden->pWC->a[iTerm].pExpr;
3419     if( pX->pLeft ){
3420       pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX);
3421     }
3422     zRet = (pC ? pC->zName : sqlite3StrBINARY);
3423   }
3424   return zRet;
3425 }
3426 
3427 /*
3428 ** Add all WhereLoop objects for a table of the join identified by
3429 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
3430 **
3431 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3432 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3433 ** entries that occur before the virtual table in the FROM clause and are
3434 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3435 ** mUnusable mask contains all FROM clause entries that occur after the
3436 ** virtual table and are separated from it by at least one LEFT or
3437 ** CROSS JOIN.
3438 **
3439 ** For example, if the query were:
3440 **
3441 **   ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3442 **
3443 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3444 **
3445 ** All the tables in mPrereq must be scanned before the current virtual
3446 ** table. So any terms for which all prerequisites are satisfied by
3447 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3448 ** Conversely, all tables in mUnusable must be scanned after the current
3449 ** virtual table, so any terms for which the prerequisites overlap with
3450 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3451 */
3452 static int whereLoopAddVirtual(
3453   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
3454   Bitmask mPrereq,             /* Tables that must be scanned before this one */
3455   Bitmask mUnusable            /* Tables that must be scanned after this one */
3456 ){
3457   int rc = SQLITE_OK;          /* Return code */
3458   WhereInfo *pWInfo;           /* WHERE analysis context */
3459   Parse *pParse;               /* The parsing context */
3460   WhereClause *pWC;            /* The WHERE clause */
3461   SrcItem *pSrc;               /* The FROM clause term to search */
3462   sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
3463   int nConstraint;             /* Number of constraints in p */
3464   int bIn;                     /* True if plan uses IN(...) operator */
3465   WhereLoop *pNew;
3466   Bitmask mBest;               /* Tables used by best possible plan */
3467   u16 mNoOmit;
3468 
3469   assert( (mPrereq & mUnusable)==0 );
3470   pWInfo = pBuilder->pWInfo;
3471   pParse = pWInfo->pParse;
3472   pWC = pBuilder->pWC;
3473   pNew = pBuilder->pNew;
3474   pSrc = &pWInfo->pTabList->a[pNew->iTab];
3475   assert( IsVirtual(pSrc->pTab) );
3476   p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy,
3477       &mNoOmit);
3478   if( p==0 ) return SQLITE_NOMEM_BKPT;
3479   pNew->rSetup = 0;
3480   pNew->wsFlags = WHERE_VIRTUALTABLE;
3481   pNew->nLTerm = 0;
3482   pNew->u.vtab.needFree = 0;
3483   nConstraint = p->nConstraint;
3484   if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3485     sqlite3DbFree(pParse->db, p);
3486     return SQLITE_NOMEM_BKPT;
3487   }
3488 
3489   /* First call xBestIndex() with all constraints usable. */
3490   WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
3491   WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
3492   rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn);
3493 
3494   /* If the call to xBestIndex() with all terms enabled produced a plan
3495   ** that does not require any source tables (IOW: a plan with mBest==0)
3496   ** and does not use an IN(...) operator, then there is no point in making
3497   ** any further calls to xBestIndex() since they will all return the same
3498   ** result (if the xBestIndex() implementation is sane). */
3499   if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){
3500     int seenZero = 0;             /* True if a plan with no prereqs seen */
3501     int seenZeroNoIN = 0;         /* Plan with no prereqs and no IN(...) seen */
3502     Bitmask mPrev = 0;
3503     Bitmask mBestNoIn = 0;
3504 
3505     /* If the plan produced by the earlier call uses an IN(...) term, call
3506     ** xBestIndex again, this time with IN(...) terms disabled. */
3507     if( bIn ){
3508       WHERETRACE(0x40, ("  VirtualOne: all usable w/o IN\n"));
3509       rc = whereLoopAddVirtualOne(
3510           pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn);
3511       assert( bIn==0 );
3512       mBestNoIn = pNew->prereq & ~mPrereq;
3513       if( mBestNoIn==0 ){
3514         seenZero = 1;
3515         seenZeroNoIN = 1;
3516       }
3517     }
3518 
3519     /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3520     ** in the set of terms that apply to the current virtual table.  */
3521     while( rc==SQLITE_OK ){
3522       int i;
3523       Bitmask mNext = ALLBITS;
3524       assert( mNext>0 );
3525       for(i=0; i<nConstraint; i++){
3526         Bitmask mThis = (
3527             pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3528         );
3529         if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3530       }
3531       mPrev = mNext;
3532       if( mNext==ALLBITS ) break;
3533       if( mNext==mBest || mNext==mBestNoIn ) continue;
3534       WHERETRACE(0x40, ("  VirtualOne: mPrev=%04llx mNext=%04llx\n",
3535                        (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3536       rc = whereLoopAddVirtualOne(
3537           pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn);
3538       if( pNew->prereq==mPrereq ){
3539         seenZero = 1;
3540         if( bIn==0 ) seenZeroNoIN = 1;
3541       }
3542     }
3543 
3544     /* If the calls to xBestIndex() in the above loop did not find a plan
3545     ** that requires no source tables at all (i.e. one guaranteed to be
3546     ** usable), make a call here with all source tables disabled */
3547     if( rc==SQLITE_OK && seenZero==0 ){
3548       WHERETRACE(0x40, ("  VirtualOne: all disabled\n"));
3549       rc = whereLoopAddVirtualOne(
3550           pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn);
3551       if( bIn==0 ) seenZeroNoIN = 1;
3552     }
3553 
3554     /* If the calls to xBestIndex() have so far failed to find a plan
3555     ** that requires no source tables at all and does not use an IN(...)
3556     ** operator, make a final call to obtain one here.  */
3557     if( rc==SQLITE_OK && seenZeroNoIN==0 ){
3558       WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
3559       rc = whereLoopAddVirtualOne(
3560           pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn);
3561     }
3562   }
3563 
3564   if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
3565   sqlite3DbFreeNN(pParse->db, p);
3566   WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
3567   return rc;
3568 }
3569 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3570 
3571 /*
3572 ** Add WhereLoop entries to handle OR terms.  This works for either
3573 ** btrees or virtual tables.
3574 */
3575 static int whereLoopAddOr(
3576   WhereLoopBuilder *pBuilder,
3577   Bitmask mPrereq,
3578   Bitmask mUnusable
3579 ){
3580   WhereInfo *pWInfo = pBuilder->pWInfo;
3581   WhereClause *pWC;
3582   WhereLoop *pNew;
3583   WhereTerm *pTerm, *pWCEnd;
3584   int rc = SQLITE_OK;
3585   int iCur;
3586   WhereClause tempWC;
3587   WhereLoopBuilder sSubBuild;
3588   WhereOrSet sSum, sCur;
3589   SrcItem *pItem;
3590 
3591   pWC = pBuilder->pWC;
3592   pWCEnd = pWC->a + pWC->nTerm;
3593   pNew = pBuilder->pNew;
3594   memset(&sSum, 0, sizeof(sSum));
3595   pItem = pWInfo->pTabList->a + pNew->iTab;
3596   iCur = pItem->iCursor;
3597 
3598   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
3599     if( (pTerm->eOperator & WO_OR)!=0
3600      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
3601     ){
3602       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
3603       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
3604       WhereTerm *pOrTerm;
3605       int once = 1;
3606       int i, j;
3607 
3608       sSubBuild = *pBuilder;
3609       sSubBuild.pOrderBy = 0;
3610       sSubBuild.pOrSet = &sCur;
3611 
3612       WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
3613       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
3614         if( (pOrTerm->eOperator & WO_AND)!=0 ){
3615           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
3616         }else if( pOrTerm->leftCursor==iCur ){
3617           tempWC.pWInfo = pWC->pWInfo;
3618           tempWC.pOuter = pWC;
3619           tempWC.op = TK_AND;
3620           tempWC.nTerm = 1;
3621           tempWC.a = pOrTerm;
3622           sSubBuild.pWC = &tempWC;
3623         }else{
3624           continue;
3625         }
3626         sCur.n = 0;
3627 #ifdef WHERETRACE_ENABLED
3628         WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3629                    (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
3630         if( sqlite3WhereTrace & 0x400 ){
3631           sqlite3WhereClausePrint(sSubBuild.pWC);
3632         }
3633 #endif
3634 #ifndef SQLITE_OMIT_VIRTUALTABLE
3635         if( IsVirtual(pItem->pTab) ){
3636           rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
3637         }else
3638 #endif
3639         {
3640           rc = whereLoopAddBtree(&sSubBuild, mPrereq);
3641         }
3642         if( rc==SQLITE_OK ){
3643           rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
3644         }
3645         assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0
3646                 || rc==SQLITE_NOMEM );
3647         testcase( rc==SQLITE_NOMEM && sCur.n>0 );
3648         testcase( rc==SQLITE_DONE );
3649         if( sCur.n==0 ){
3650           sSum.n = 0;
3651           break;
3652         }else if( once ){
3653           whereOrMove(&sSum, &sCur);
3654           once = 0;
3655         }else{
3656           WhereOrSet sPrev;
3657           whereOrMove(&sPrev, &sSum);
3658           sSum.n = 0;
3659           for(i=0; i<sPrev.n; i++){
3660             for(j=0; j<sCur.n; j++){
3661               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
3662                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
3663                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
3664             }
3665           }
3666         }
3667       }
3668       pNew->nLTerm = 1;
3669       pNew->aLTerm[0] = pTerm;
3670       pNew->wsFlags = WHERE_MULTI_OR;
3671       pNew->rSetup = 0;
3672       pNew->iSortIdx = 0;
3673       memset(&pNew->u, 0, sizeof(pNew->u));
3674       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
3675         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
3676         ** of all sub-scans required by the OR-scan. However, due to rounding
3677         ** errors, it may be that the cost of the OR-scan is equal to its
3678         ** most expensive sub-scan. Add the smallest possible penalty
3679         ** (equivalent to multiplying the cost by 1.07) to ensure that
3680         ** this does not happen. Otherwise, for WHERE clauses such as the
3681         ** following where there is an index on "y":
3682         **
3683         **     WHERE likelihood(x=?, 0.99) OR y=?
3684         **
3685         ** the planner may elect to "OR" together a full-table scan and an
3686         ** index lookup. And other similarly odd results.  */
3687         pNew->rRun = sSum.a[i].rRun + 1;
3688         pNew->nOut = sSum.a[i].nOut;
3689         pNew->prereq = sSum.a[i].prereq;
3690         rc = whereLoopInsert(pBuilder, pNew);
3691       }
3692       WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
3693     }
3694   }
3695   return rc;
3696 }
3697 
3698 /*
3699 ** Add all WhereLoop objects for all tables
3700 */
3701 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
3702   WhereInfo *pWInfo = pBuilder->pWInfo;
3703   Bitmask mPrereq = 0;
3704   Bitmask mPrior = 0;
3705   int iTab;
3706   SrcList *pTabList = pWInfo->pTabList;
3707   SrcItem *pItem;
3708   SrcItem *pEnd = &pTabList->a[pWInfo->nLevel];
3709   sqlite3 *db = pWInfo->pParse->db;
3710   int rc = SQLITE_OK;
3711   WhereLoop *pNew;
3712 
3713   /* Loop over the tables in the join, from left to right */
3714   pNew = pBuilder->pNew;
3715   whereLoopInit(pNew);
3716   pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT;
3717   for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
3718     Bitmask mUnusable = 0;
3719     pNew->iTab = iTab;
3720     pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR;
3721     pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
3722     if( (pItem->fg.jointype & (JT_LEFT|JT_CROSS))!=0 ){
3723       /* This condition is true when pItem is the FROM clause term on the
3724       ** right-hand-side of a LEFT or CROSS JOIN.  */
3725       mPrereq = mPrior;
3726     }else{
3727       mPrereq = 0;
3728     }
3729 #ifndef SQLITE_OMIT_VIRTUALTABLE
3730     if( IsVirtual(pItem->pTab) ){
3731       SrcItem *p;
3732       for(p=&pItem[1]; p<pEnd; p++){
3733         if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
3734           mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
3735         }
3736       }
3737       rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
3738     }else
3739 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3740     {
3741       rc = whereLoopAddBtree(pBuilder, mPrereq);
3742     }
3743     if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
3744       rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
3745     }
3746     mPrior |= pNew->maskSelf;
3747     if( rc || db->mallocFailed ){
3748       if( rc==SQLITE_DONE ){
3749         /* We hit the query planner search limit set by iPlanLimit */
3750         sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search");
3751         rc = SQLITE_OK;
3752       }else{
3753         break;
3754       }
3755     }
3756   }
3757 
3758   whereLoopClear(db, pNew);
3759   return rc;
3760 }
3761 
3762 /*
3763 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
3764 ** parameters) to see if it outputs rows in the requested ORDER BY
3765 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
3766 **
3767 **   N>0:   N terms of the ORDER BY clause are satisfied
3768 **   N==0:  No terms of the ORDER BY clause are satisfied
3769 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
3770 **
3771 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
3772 ** strict.  With GROUP BY and DISTINCT the only requirement is that
3773 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
3774 ** and DISTINCT do not require rows to appear in any particular order as long
3775 ** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT
3776 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
3777 ** pOrderBy terms must be matched in strict left-to-right order.
3778 */
3779 static i8 wherePathSatisfiesOrderBy(
3780   WhereInfo *pWInfo,    /* The WHERE clause */
3781   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
3782   WherePath *pPath,     /* The WherePath to check */
3783   u16 wctrlFlags,       /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
3784   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
3785   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
3786   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
3787 ){
3788   u8 revSet;            /* True if rev is known */
3789   u8 rev;               /* Composite sort order */
3790   u8 revIdx;            /* Index sort order */
3791   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
3792   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
3793   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
3794   u16 eqOpMask;         /* Allowed equality operators */
3795   u16 nKeyCol;          /* Number of key columns in pIndex */
3796   u16 nColumn;          /* Total number of ordered columns in the index */
3797   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
3798   int iLoop;            /* Index of WhereLoop in pPath being processed */
3799   int i, j;             /* Loop counters */
3800   int iCur;             /* Cursor number for current WhereLoop */
3801   int iColumn;          /* A column number within table iCur */
3802   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
3803   WhereTerm *pTerm;     /* A single term of the WHERE clause */
3804   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
3805   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
3806   Index *pIndex;        /* The index associated with pLoop */
3807   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
3808   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
3809   Bitmask obDone;       /* Mask of all ORDER BY terms */
3810   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
3811   Bitmask ready;              /* Mask of inner loops */
3812 
3813   /*
3814   ** We say the WhereLoop is "one-row" if it generates no more than one
3815   ** row of output.  A WhereLoop is one-row if all of the following are true:
3816   **  (a) All index columns match with WHERE_COLUMN_EQ.
3817   **  (b) The index is unique
3818   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
3819   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
3820   **
3821   ** We say the WhereLoop is "order-distinct" if the set of columns from
3822   ** that WhereLoop that are in the ORDER BY clause are different for every
3823   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
3824   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
3825   ** is not order-distinct. To be order-distinct is not quite the same as being
3826   ** UNIQUE since a UNIQUE column or index can have multiple rows that
3827   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
3828   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
3829   **
3830   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
3831   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
3832   ** automatically order-distinct.
3833   */
3834 
3835   assert( pOrderBy!=0 );
3836   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
3837 
3838   nOrderBy = pOrderBy->nExpr;
3839   testcase( nOrderBy==BMS-1 );
3840   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
3841   isOrderDistinct = 1;
3842   obDone = MASKBIT(nOrderBy)-1;
3843   orderDistinctMask = 0;
3844   ready = 0;
3845   eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
3846   if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){
3847     eqOpMask |= WO_IN;
3848   }
3849   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
3850     if( iLoop>0 ) ready |= pLoop->maskSelf;
3851     if( iLoop<nLoop ){
3852       pLoop = pPath->aLoop[iLoop];
3853       if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
3854     }else{
3855       pLoop = pLast;
3856     }
3857     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
3858       if( pLoop->u.vtab.isOrdered && (wctrlFlags & WHERE_DISTINCTBY)==0 ){
3859         obSat = obDone;
3860       }
3861       break;
3862     }else if( wctrlFlags & WHERE_DISTINCTBY ){
3863       pLoop->u.btree.nDistinctCol = 0;
3864     }
3865     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
3866 
3867     /* Mark off any ORDER BY term X that is a column in the table of
3868     ** the current loop for which there is term in the WHERE
3869     ** clause of the form X IS NULL or X=? that reference only outer
3870     ** loops.
3871     */
3872     for(i=0; i<nOrderBy; i++){
3873       if( MASKBIT(i) & obSat ) continue;
3874       pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
3875       if( NEVER(pOBExpr==0) ) continue;
3876       if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
3877       if( pOBExpr->iTable!=iCur ) continue;
3878       pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
3879                        ~ready, eqOpMask, 0);
3880       if( pTerm==0 ) continue;
3881       if( pTerm->eOperator==WO_IN ){
3882         /* IN terms are only valid for sorting in the ORDER BY LIMIT
3883         ** optimization, and then only if they are actually used
3884         ** by the query plan */
3885         assert( wctrlFlags &
3886                (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) );
3887         for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
3888         if( j>=pLoop->nLTerm ) continue;
3889       }
3890       if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
3891         Parse *pParse = pWInfo->pParse;
3892         CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr);
3893         CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr);
3894         assert( pColl1 );
3895         if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){
3896           continue;
3897         }
3898         testcase( pTerm->pExpr->op==TK_IS );
3899       }
3900       obSat |= MASKBIT(i);
3901     }
3902 
3903     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
3904       if( pLoop->wsFlags & WHERE_IPK ){
3905         pIndex = 0;
3906         nKeyCol = 0;
3907         nColumn = 1;
3908       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
3909         return 0;
3910       }else{
3911         nKeyCol = pIndex->nKeyCol;
3912         nColumn = pIndex->nColumn;
3913         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
3914         assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
3915                           || !HasRowid(pIndex->pTable));
3916         /* All relevant terms of the index must also be non-NULL in order
3917         ** for isOrderDistinct to be true.  So the isOrderDistint value
3918         ** computed here might be a false positive.  Corrections will be
3919         ** made at tag-20210426-1 below */
3920         isOrderDistinct = IsUniqueIndex(pIndex)
3921                           && (pLoop->wsFlags & WHERE_SKIPSCAN)==0;
3922       }
3923 
3924       /* Loop through all columns of the index and deal with the ones
3925       ** that are not constrained by == or IN.
3926       */
3927       rev = revSet = 0;
3928       distinctColumns = 0;
3929       for(j=0; j<nColumn; j++){
3930         u8 bOnce = 1; /* True to run the ORDER BY search loop */
3931 
3932         assert( j>=pLoop->u.btree.nEq
3933             || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
3934         );
3935         if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
3936           u16 eOp = pLoop->aLTerm[j]->eOperator;
3937 
3938           /* Skip over == and IS and ISNULL terms.  (Also skip IN terms when
3939           ** doing WHERE_ORDERBY_LIMIT processing).  Except, IS and ISNULL
3940           ** terms imply that the index is not UNIQUE NOT NULL in which case
3941           ** the loop need to be marked as not order-distinct because it can
3942           ** have repeated NULL rows.
3943           **
3944           ** If the current term is a column of an ((?,?) IN (SELECT...))
3945           ** expression for which the SELECT returns more than one column,
3946           ** check that it is the only column used by this loop. Otherwise,
3947           ** if it is one of two or more, none of the columns can be
3948           ** considered to match an ORDER BY term.
3949           */
3950           if( (eOp & eqOpMask)!=0 ){
3951             if( eOp & (WO_ISNULL|WO_IS) ){
3952               testcase( eOp & WO_ISNULL );
3953               testcase( eOp & WO_IS );
3954               testcase( isOrderDistinct );
3955               isOrderDistinct = 0;
3956             }
3957             continue;
3958           }else if( ALWAYS(eOp & WO_IN) ){
3959             /* ALWAYS() justification: eOp is an equality operator due to the
3960             ** j<pLoop->u.btree.nEq constraint above.  Any equality other
3961             ** than WO_IN is captured by the previous "if".  So this one
3962             ** always has to be WO_IN. */
3963             Expr *pX = pLoop->aLTerm[j]->pExpr;
3964             for(i=j+1; i<pLoop->u.btree.nEq; i++){
3965               if( pLoop->aLTerm[i]->pExpr==pX ){
3966                 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
3967                 bOnce = 0;
3968                 break;
3969               }
3970             }
3971           }
3972         }
3973 
3974         /* Get the column number in the table (iColumn) and sort order
3975         ** (revIdx) for the j-th column of the index.
3976         */
3977         if( pIndex ){
3978           iColumn = pIndex->aiColumn[j];
3979           revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC;
3980           if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
3981         }else{
3982           iColumn = XN_ROWID;
3983           revIdx = 0;
3984         }
3985 
3986         /* An unconstrained column that might be NULL means that this
3987         ** WhereLoop is not well-ordered.  tag-20210426-1
3988         */
3989         if( isOrderDistinct ){
3990           if( iColumn>=0
3991            && j>=pLoop->u.btree.nEq
3992            && pIndex->pTable->aCol[iColumn].notNull==0
3993           ){
3994             isOrderDistinct = 0;
3995           }
3996           if( iColumn==XN_EXPR ){
3997             isOrderDistinct = 0;
3998           }
3999         }
4000 
4001         /* Find the ORDER BY term that corresponds to the j-th column
4002         ** of the index and mark that ORDER BY term off
4003         */
4004         isMatch = 0;
4005         for(i=0; bOnce && i<nOrderBy; i++){
4006           if( MASKBIT(i) & obSat ) continue;
4007           pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
4008           testcase( wctrlFlags & WHERE_GROUPBY );
4009           testcase( wctrlFlags & WHERE_DISTINCTBY );
4010           if( NEVER(pOBExpr==0) ) continue;
4011           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
4012           if( iColumn>=XN_ROWID ){
4013             if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
4014             if( pOBExpr->iTable!=iCur ) continue;
4015             if( pOBExpr->iColumn!=iColumn ) continue;
4016           }else{
4017             Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
4018             if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
4019               continue;
4020             }
4021           }
4022           if( iColumn!=XN_ROWID ){
4023             pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
4024             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
4025           }
4026           if( wctrlFlags & WHERE_DISTINCTBY ){
4027             pLoop->u.btree.nDistinctCol = j+1;
4028           }
4029           isMatch = 1;
4030           break;
4031         }
4032         if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
4033           /* Make sure the sort order is compatible in an ORDER BY clause.
4034           ** Sort order is irrelevant for a GROUP BY clause. */
4035           if( revSet ){
4036             if( (rev ^ revIdx)!=(pOrderBy->a[i].sortFlags&KEYINFO_ORDER_DESC) ){
4037               isMatch = 0;
4038             }
4039           }else{
4040             rev = revIdx ^ (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC);
4041             if( rev ) *pRevMask |= MASKBIT(iLoop);
4042             revSet = 1;
4043           }
4044         }
4045         if( isMatch && (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL) ){
4046           if( j==pLoop->u.btree.nEq ){
4047             pLoop->wsFlags |= WHERE_BIGNULL_SORT;
4048           }else{
4049             isMatch = 0;
4050           }
4051         }
4052         if( isMatch ){
4053           if( iColumn==XN_ROWID ){
4054             testcase( distinctColumns==0 );
4055             distinctColumns = 1;
4056           }
4057           obSat |= MASKBIT(i);
4058         }else{
4059           /* No match found */
4060           if( j==0 || j<nKeyCol ){
4061             testcase( isOrderDistinct!=0 );
4062             isOrderDistinct = 0;
4063           }
4064           break;
4065         }
4066       } /* end Loop over all index columns */
4067       if( distinctColumns ){
4068         testcase( isOrderDistinct==0 );
4069         isOrderDistinct = 1;
4070       }
4071     } /* end-if not one-row */
4072 
4073     /* Mark off any other ORDER BY terms that reference pLoop */
4074     if( isOrderDistinct ){
4075       orderDistinctMask |= pLoop->maskSelf;
4076       for(i=0; i<nOrderBy; i++){
4077         Expr *p;
4078         Bitmask mTerm;
4079         if( MASKBIT(i) & obSat ) continue;
4080         p = pOrderBy->a[i].pExpr;
4081         mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
4082         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
4083         if( (mTerm&~orderDistinctMask)==0 ){
4084           obSat |= MASKBIT(i);
4085         }
4086       }
4087     }
4088   } /* End the loop over all WhereLoops from outer-most down to inner-most */
4089   if( obSat==obDone ) return (i8)nOrderBy;
4090   if( !isOrderDistinct ){
4091     for(i=nOrderBy-1; i>0; i--){
4092       Bitmask m = ALWAYS(i<BMS) ? MASKBIT(i) - 1 : 0;
4093       if( (obSat&m)==m ) return i;
4094     }
4095     return 0;
4096   }
4097   return -1;
4098 }
4099 
4100 
4101 /*
4102 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
4103 ** the planner assumes that the specified pOrderBy list is actually a GROUP
4104 ** BY clause - and so any order that groups rows as required satisfies the
4105 ** request.
4106 **
4107 ** Normally, in this case it is not possible for the caller to determine
4108 ** whether or not the rows are really being delivered in sorted order, or
4109 ** just in some other order that provides the required grouping. However,
4110 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
4111 ** this function may be called on the returned WhereInfo object. It returns
4112 ** true if the rows really will be sorted in the specified order, or false
4113 ** otherwise.
4114 **
4115 ** For example, assuming:
4116 **
4117 **   CREATE INDEX i1 ON t1(x, Y);
4118 **
4119 ** then
4120 **
4121 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
4122 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
4123 */
4124 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
4125   assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
4126   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
4127   return pWInfo->sorted;
4128 }
4129 
4130 #ifdef WHERETRACE_ENABLED
4131 /* For debugging use only: */
4132 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
4133   static char zName[65];
4134   int i;
4135   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
4136   if( pLast ) zName[i++] = pLast->cId;
4137   zName[i] = 0;
4138   return zName;
4139 }
4140 #endif
4141 
4142 /*
4143 ** Return the cost of sorting nRow rows, assuming that the keys have
4144 ** nOrderby columns and that the first nSorted columns are already in
4145 ** order.
4146 */
4147 static LogEst whereSortingCost(
4148   WhereInfo *pWInfo,
4149   LogEst nRow,
4150   int nOrderBy,
4151   int nSorted
4152 ){
4153   /* TUNING: Estimated cost of a full external sort, where N is
4154   ** the number of rows to sort is:
4155   **
4156   **   cost = (3.0 * N * log(N)).
4157   **
4158   ** Or, if the order-by clause has X terms but only the last Y
4159   ** terms are out of order, then block-sorting will reduce the
4160   ** sorting cost to:
4161   **
4162   **   cost = (3.0 * N * log(N)) * (Y/X)
4163   **
4164   ** The (Y/X) term is implemented using stack variable rScale
4165   ** below.
4166   */
4167   LogEst rScale, rSortCost;
4168   assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
4169   rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
4170   rSortCost = nRow + rScale + 16;
4171 
4172   /* Multiple by log(M) where M is the number of output rows.
4173   ** Use the LIMIT for M if it is smaller.  Or if this sort is for
4174   ** a DISTINCT operator, M will be the number of distinct output
4175   ** rows, so fudge it downwards a bit.
4176   */
4177   if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
4178     nRow = pWInfo->iLimit;
4179   }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){
4180     /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT
4181     ** reduces the number of output rows by a factor of 2 */
4182     if( nRow>10 ){ nRow -= 10;  assert( 10==sqlite3LogEst(2) ); }
4183   }
4184   rSortCost += estLog(nRow);
4185   return rSortCost;
4186 }
4187 
4188 /*
4189 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
4190 ** attempts to find the lowest cost path that visits each WhereLoop
4191 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
4192 **
4193 ** Assume that the total number of output rows that will need to be sorted
4194 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
4195 ** costs if nRowEst==0.
4196 **
4197 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
4198 ** error occurs.
4199 */
4200 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
4201   int mxChoice;             /* Maximum number of simultaneous paths tracked */
4202   int nLoop;                /* Number of terms in the join */
4203   Parse *pParse;            /* Parsing context */
4204   sqlite3 *db;              /* The database connection */
4205   int iLoop;                /* Loop counter over the terms of the join */
4206   int ii, jj;               /* Loop counters */
4207   int mxI = 0;              /* Index of next entry to replace */
4208   int nOrderBy;             /* Number of ORDER BY clause terms */
4209   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
4210   LogEst mxUnsorted = 0;    /* Maximum unsorted cost of a set of path */
4211   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
4212   WherePath *aFrom;         /* All nFrom paths at the previous level */
4213   WherePath *aTo;           /* The nTo best paths at the current level */
4214   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
4215   WherePath *pTo;           /* An element of aTo[] that we are working on */
4216   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
4217   WhereLoop **pX;           /* Used to divy up the pSpace memory */
4218   LogEst *aSortCost = 0;    /* Sorting and partial sorting costs */
4219   char *pSpace;             /* Temporary memory used by this routine */
4220   int nSpace;               /* Bytes of space allocated at pSpace */
4221 
4222   pParse = pWInfo->pParse;
4223   db = pParse->db;
4224   nLoop = pWInfo->nLevel;
4225   /* TUNING: For simple queries, only the best path is tracked.
4226   ** For 2-way joins, the 5 best paths are followed.
4227   ** For joins of 3 or more tables, track the 10 best paths */
4228   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
4229   assert( nLoop<=pWInfo->pTabList->nSrc );
4230   WHERETRACE(0x002, ("---- begin solver.  (nRowEst=%d)\n", nRowEst));
4231 
4232   /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
4233   ** case the purpose of this call is to estimate the number of rows returned
4234   ** by the overall query. Once this estimate has been obtained, the caller
4235   ** will invoke this function a second time, passing the estimate as the
4236   ** nRowEst parameter.  */
4237   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
4238     nOrderBy = 0;
4239   }else{
4240     nOrderBy = pWInfo->pOrderBy->nExpr;
4241   }
4242 
4243   /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
4244   nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
4245   nSpace += sizeof(LogEst) * nOrderBy;
4246   pSpace = sqlite3DbMallocRawNN(db, nSpace);
4247   if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
4248   aTo = (WherePath*)pSpace;
4249   aFrom = aTo+mxChoice;
4250   memset(aFrom, 0, sizeof(aFrom[0]));
4251   pX = (WhereLoop**)(aFrom+mxChoice);
4252   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
4253     pFrom->aLoop = pX;
4254   }
4255   if( nOrderBy ){
4256     /* If there is an ORDER BY clause and it is not being ignored, set up
4257     ** space for the aSortCost[] array. Each element of the aSortCost array
4258     ** is either zero - meaning it has not yet been initialized - or the
4259     ** cost of sorting nRowEst rows of data where the first X terms of
4260     ** the ORDER BY clause are already in order, where X is the array
4261     ** index.  */
4262     aSortCost = (LogEst*)pX;
4263     memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
4264   }
4265   assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
4266   assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
4267 
4268   /* Seed the search with a single WherePath containing zero WhereLoops.
4269   **
4270   ** TUNING: Do not let the number of iterations go above 28.  If the cost
4271   ** of computing an automatic index is not paid back within the first 28
4272   ** rows, then do not use the automatic index. */
4273   aFrom[0].nRow = MIN(pParse->nQueryLoop, 48);  assert( 48==sqlite3LogEst(28) );
4274   nFrom = 1;
4275   assert( aFrom[0].isOrdered==0 );
4276   if( nOrderBy ){
4277     /* If nLoop is zero, then there are no FROM terms in the query. Since
4278     ** in this case the query may return a maximum of one row, the results
4279     ** are already in the requested order. Set isOrdered to nOrderBy to
4280     ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
4281     ** -1, indicating that the result set may or may not be ordered,
4282     ** depending on the loops added to the current plan.  */
4283     aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
4284   }
4285 
4286   /* Compute successively longer WherePaths using the previous generation
4287   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
4288   ** best paths at each generation */
4289   for(iLoop=0; iLoop<nLoop; iLoop++){
4290     nTo = 0;
4291     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
4292       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
4293         LogEst nOut;                      /* Rows visited by (pFrom+pWLoop) */
4294         LogEst rCost;                     /* Cost of path (pFrom+pWLoop) */
4295         LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
4296         i8 isOrdered = pFrom->isOrdered;  /* isOrdered for (pFrom+pWLoop) */
4297         Bitmask maskNew;                  /* Mask of src visited by (..) */
4298         Bitmask revMask = 0;              /* Mask of rev-order loops for (..) */
4299 
4300         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
4301         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
4302         if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
4303           /* Do not use an automatic index if the this loop is expected
4304           ** to run less than 1.25 times.  It is tempting to also exclude
4305           ** automatic index usage on an outer loop, but sometimes an automatic
4306           ** index is useful in the outer loop of a correlated subquery. */
4307           assert( 10==sqlite3LogEst(2) );
4308           continue;
4309         }
4310 
4311         /* At this point, pWLoop is a candidate to be the next loop.
4312         ** Compute its cost */
4313         rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
4314         rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
4315         nOut = pFrom->nRow + pWLoop->nOut;
4316         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
4317         if( isOrdered<0 ){
4318           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
4319                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
4320                        iLoop, pWLoop, &revMask);
4321         }else{
4322           revMask = pFrom->revLoop;
4323         }
4324         if( isOrdered>=0 && isOrdered<nOrderBy ){
4325           if( aSortCost[isOrdered]==0 ){
4326             aSortCost[isOrdered] = whereSortingCost(
4327                 pWInfo, nRowEst, nOrderBy, isOrdered
4328             );
4329           }
4330           /* TUNING:  Add a small extra penalty (5) to sorting as an
4331           ** extra encouragment to the query planner to select a plan
4332           ** where the rows emerge in the correct order without any sorting
4333           ** required. */
4334           rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5;
4335 
4336           WHERETRACE(0x002,
4337               ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
4338                aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
4339                rUnsorted, rCost));
4340         }else{
4341           rCost = rUnsorted;
4342           rUnsorted -= 2;  /* TUNING:  Slight bias in favor of no-sort plans */
4343         }
4344 
4345         /* Check to see if pWLoop should be added to the set of
4346         ** mxChoice best-so-far paths.
4347         **
4348         ** First look for an existing path among best-so-far paths
4349         ** that covers the same set of loops and has the same isOrdered
4350         ** setting as the current path candidate.
4351         **
4352         ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4353         ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4354         ** of legal values for isOrdered, -1..64.
4355         */
4356         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
4357           if( pTo->maskLoop==maskNew
4358            && ((pTo->isOrdered^isOrdered)&0x80)==0
4359           ){
4360             testcase( jj==nTo-1 );
4361             break;
4362           }
4363         }
4364         if( jj>=nTo ){
4365           /* None of the existing best-so-far paths match the candidate. */
4366           if( nTo>=mxChoice
4367            && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4368           ){
4369             /* The current candidate is no better than any of the mxChoice
4370             ** paths currently in the best-so-far buffer.  So discard
4371             ** this candidate as not viable. */
4372 #ifdef WHERETRACE_ENABLED /* 0x4 */
4373             if( sqlite3WhereTrace&0x4 ){
4374               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d,%3d order=%c\n",
4375                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4376                   isOrdered>=0 ? isOrdered+'0' : '?');
4377             }
4378 #endif
4379             continue;
4380           }
4381           /* If we reach this points it means that the new candidate path
4382           ** needs to be added to the set of best-so-far paths. */
4383           if( nTo<mxChoice ){
4384             /* Increase the size of the aTo set by one */
4385             jj = nTo++;
4386           }else{
4387             /* New path replaces the prior worst to keep count below mxChoice */
4388             jj = mxI;
4389           }
4390           pTo = &aTo[jj];
4391 #ifdef WHERETRACE_ENABLED /* 0x4 */
4392           if( sqlite3WhereTrace&0x4 ){
4393             sqlite3DebugPrintf("New    %s cost=%-3d,%3d,%3d order=%c\n",
4394                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4395                 isOrdered>=0 ? isOrdered+'0' : '?');
4396           }
4397 #endif
4398         }else{
4399           /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4400           ** same set of loops and has the same isOrdered setting as the
4401           ** candidate path.  Check to see if the candidate should replace
4402           ** pTo or if the candidate should be skipped.
4403           **
4404           ** The conditional is an expanded vector comparison equivalent to:
4405           **   (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4406           */
4407           if( pTo->rCost<rCost
4408            || (pTo->rCost==rCost
4409                && (pTo->nRow<nOut
4410                    || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4411                   )
4412               )
4413           ){
4414 #ifdef WHERETRACE_ENABLED /* 0x4 */
4415             if( sqlite3WhereTrace&0x4 ){
4416               sqlite3DebugPrintf(
4417                   "Skip   %s cost=%-3d,%3d,%3d order=%c",
4418                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4419                   isOrdered>=0 ? isOrdered+'0' : '?');
4420               sqlite3DebugPrintf("   vs %s cost=%-3d,%3d,%3d order=%c\n",
4421                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4422                   pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4423             }
4424 #endif
4425             /* Discard the candidate path from further consideration */
4426             testcase( pTo->rCost==rCost );
4427             continue;
4428           }
4429           testcase( pTo->rCost==rCost+1 );
4430           /* Control reaches here if the candidate path is better than the
4431           ** pTo path.  Replace pTo with the candidate. */
4432 #ifdef WHERETRACE_ENABLED /* 0x4 */
4433           if( sqlite3WhereTrace&0x4 ){
4434             sqlite3DebugPrintf(
4435                 "Update %s cost=%-3d,%3d,%3d order=%c",
4436                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4437                 isOrdered>=0 ? isOrdered+'0' : '?');
4438             sqlite3DebugPrintf("  was %s cost=%-3d,%3d,%3d order=%c\n",
4439                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4440                 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4441           }
4442 #endif
4443         }
4444         /* pWLoop is a winner.  Add it to the set of best so far */
4445         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4446         pTo->revLoop = revMask;
4447         pTo->nRow = nOut;
4448         pTo->rCost = rCost;
4449         pTo->rUnsorted = rUnsorted;
4450         pTo->isOrdered = isOrdered;
4451         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4452         pTo->aLoop[iLoop] = pWLoop;
4453         if( nTo>=mxChoice ){
4454           mxI = 0;
4455           mxCost = aTo[0].rCost;
4456           mxUnsorted = aTo[0].nRow;
4457           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4458             if( pTo->rCost>mxCost
4459              || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4460             ){
4461               mxCost = pTo->rCost;
4462               mxUnsorted = pTo->rUnsorted;
4463               mxI = jj;
4464             }
4465           }
4466         }
4467       }
4468     }
4469 
4470 #ifdef WHERETRACE_ENABLED  /* >=2 */
4471     if( sqlite3WhereTrace & 0x02 ){
4472       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4473       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4474         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4475            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4476            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4477         if( pTo->isOrdered>0 ){
4478           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4479         }else{
4480           sqlite3DebugPrintf("\n");
4481         }
4482       }
4483     }
4484 #endif
4485 
4486     /* Swap the roles of aFrom and aTo for the next generation */
4487     pFrom = aTo;
4488     aTo = aFrom;
4489     aFrom = pFrom;
4490     nFrom = nTo;
4491   }
4492 
4493   if( nFrom==0 ){
4494     sqlite3ErrorMsg(pParse, "no query solution");
4495     sqlite3DbFreeNN(db, pSpace);
4496     return SQLITE_ERROR;
4497   }
4498 
4499   /* Find the lowest cost path.  pFrom will be left pointing to that path */
4500   pFrom = aFrom;
4501   for(ii=1; ii<nFrom; ii++){
4502     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4503   }
4504   assert( pWInfo->nLevel==nLoop );
4505   /* Load the lowest cost path into pWInfo */
4506   for(iLoop=0; iLoop<nLoop; iLoop++){
4507     WhereLevel *pLevel = pWInfo->a + iLoop;
4508     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
4509     pLevel->iFrom = pWLoop->iTab;
4510     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
4511   }
4512   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
4513    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
4514    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
4515    && nRowEst
4516   ){
4517     Bitmask notUsed;
4518     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
4519                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
4520     if( rc==pWInfo->pResultSet->nExpr ){
4521       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4522     }
4523   }
4524   pWInfo->bOrderedInnerLoop = 0;
4525   if( pWInfo->pOrderBy ){
4526     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
4527       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
4528         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4529       }
4530     }else{
4531       pWInfo->nOBSat = pFrom->isOrdered;
4532       pWInfo->revMask = pFrom->revLoop;
4533       if( pWInfo->nOBSat<=0 ){
4534         pWInfo->nOBSat = 0;
4535         if( nLoop>0 ){
4536           u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
4537           if( (wsFlags & WHERE_ONEROW)==0
4538            && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
4539           ){
4540             Bitmask m = 0;
4541             int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
4542                       WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
4543             testcase( wsFlags & WHERE_IPK );
4544             testcase( wsFlags & WHERE_COLUMN_IN );
4545             if( rc==pWInfo->pOrderBy->nExpr ){
4546               pWInfo->bOrderedInnerLoop = 1;
4547               pWInfo->revMask = m;
4548             }
4549           }
4550         }
4551       }else if( nLoop
4552             && pWInfo->nOBSat==1
4553             && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0
4554             ){
4555         pWInfo->bOrderedInnerLoop = 1;
4556       }
4557     }
4558     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
4559         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
4560     ){
4561       Bitmask revMask = 0;
4562       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
4563           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
4564       );
4565       assert( pWInfo->sorted==0 );
4566       if( nOrder==pWInfo->pOrderBy->nExpr ){
4567         pWInfo->sorted = 1;
4568         pWInfo->revMask = revMask;
4569       }
4570     }
4571   }
4572 
4573 
4574   pWInfo->nRowOut = pFrom->nRow;
4575 
4576   /* Free temporary memory and return success */
4577   sqlite3DbFreeNN(db, pSpace);
4578   return SQLITE_OK;
4579 }
4580 
4581 /*
4582 ** Most queries use only a single table (they are not joins) and have
4583 ** simple == constraints against indexed fields.  This routine attempts
4584 ** to plan those simple cases using much less ceremony than the
4585 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4586 ** times for the common case.
4587 **
4588 ** Return non-zero on success, if this query can be handled by this
4589 ** no-frills query planner.  Return zero if this query needs the
4590 ** general-purpose query planner.
4591 */
4592 static int whereShortCut(WhereLoopBuilder *pBuilder){
4593   WhereInfo *pWInfo;
4594   SrcItem *pItem;
4595   WhereClause *pWC;
4596   WhereTerm *pTerm;
4597   WhereLoop *pLoop;
4598   int iCur;
4599   int j;
4600   Table *pTab;
4601   Index *pIdx;
4602   WhereScan scan;
4603 
4604   pWInfo = pBuilder->pWInfo;
4605   if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
4606   assert( pWInfo->pTabList->nSrc>=1 );
4607   pItem = pWInfo->pTabList->a;
4608   pTab = pItem->pTab;
4609   if( IsVirtual(pTab) ) return 0;
4610   if( pItem->fg.isIndexedBy ) return 0;
4611   iCur = pItem->iCursor;
4612   pWC = &pWInfo->sWC;
4613   pLoop = pBuilder->pNew;
4614   pLoop->wsFlags = 0;
4615   pLoop->nSkip = 0;
4616   pTerm = whereScanInit(&scan, pWC, iCur, -1, WO_EQ|WO_IS, 0);
4617   while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
4618   if( pTerm ){
4619     testcase( pTerm->eOperator & WO_IS );
4620     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
4621     pLoop->aLTerm[0] = pTerm;
4622     pLoop->nLTerm = 1;
4623     pLoop->u.btree.nEq = 1;
4624     /* TUNING: Cost of a rowid lookup is 10 */
4625     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
4626   }else{
4627     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4628       int opMask;
4629       assert( pLoop->aLTermSpace==pLoop->aLTerm );
4630       if( !IsUniqueIndex(pIdx)
4631        || pIdx->pPartIdxWhere!=0
4632        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
4633       ) continue;
4634       opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
4635       for(j=0; j<pIdx->nKeyCol; j++){
4636         pTerm = whereScanInit(&scan, pWC, iCur, j, opMask, pIdx);
4637         while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
4638         if( pTerm==0 ) break;
4639         testcase( pTerm->eOperator & WO_IS );
4640         pLoop->aLTerm[j] = pTerm;
4641       }
4642       if( j!=pIdx->nKeyCol ) continue;
4643       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
4644       if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
4645         pLoop->wsFlags |= WHERE_IDX_ONLY;
4646       }
4647       pLoop->nLTerm = j;
4648       pLoop->u.btree.nEq = j;
4649       pLoop->u.btree.pIndex = pIdx;
4650       /* TUNING: Cost of a unique index lookup is 15 */
4651       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
4652       break;
4653     }
4654   }
4655   if( pLoop->wsFlags ){
4656     pLoop->nOut = (LogEst)1;
4657     pWInfo->a[0].pWLoop = pLoop;
4658     assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
4659     pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
4660     pWInfo->a[0].iTabCur = iCur;
4661     pWInfo->nRowOut = 1;
4662     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
4663     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
4664       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4665     }
4666     if( scan.iEquiv>1 ) pLoop->wsFlags |= WHERE_TRANSCONS;
4667 #ifdef SQLITE_DEBUG
4668     pLoop->cId = '0';
4669 #endif
4670 #ifdef WHERETRACE_ENABLED
4671     if( sqlite3WhereTrace ){
4672       sqlite3DebugPrintf("whereShortCut() used to compute solution\n");
4673     }
4674 #endif
4675     return 1;
4676   }
4677   return 0;
4678 }
4679 
4680 /*
4681 ** Helper function for exprIsDeterministic().
4682 */
4683 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
4684   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
4685     pWalker->eCode = 0;
4686     return WRC_Abort;
4687   }
4688   return WRC_Continue;
4689 }
4690 
4691 /*
4692 ** Return true if the expression contains no non-deterministic SQL
4693 ** functions. Do not consider non-deterministic SQL functions that are
4694 ** part of sub-select statements.
4695 */
4696 static int exprIsDeterministic(Expr *p){
4697   Walker w;
4698   memset(&w, 0, sizeof(w));
4699   w.eCode = 1;
4700   w.xExprCallback = exprNodeIsDeterministic;
4701   w.xSelectCallback = sqlite3SelectWalkFail;
4702   sqlite3WalkExpr(&w, p);
4703   return w.eCode;
4704 }
4705 
4706 
4707 #ifdef WHERETRACE_ENABLED
4708 /*
4709 ** Display all WhereLoops in pWInfo
4710 */
4711 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){
4712   if( sqlite3WhereTrace ){    /* Display all of the WhereLoop objects */
4713     WhereLoop *p;
4714     int i;
4715     static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
4716                                            "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
4717     for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
4718       p->cId = zLabel[i%(sizeof(zLabel)-1)];
4719       sqlite3WhereLoopPrint(p, pWC);
4720     }
4721   }
4722 }
4723 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C)
4724 #else
4725 # define WHERETRACE_ALL_LOOPS(W,C)
4726 #endif
4727 
4728 /*
4729 ** Generate the beginning of the loop used for WHERE clause processing.
4730 ** The return value is a pointer to an opaque structure that contains
4731 ** information needed to terminate the loop.  Later, the calling routine
4732 ** should invoke sqlite3WhereEnd() with the return value of this function
4733 ** in order to complete the WHERE clause processing.
4734 **
4735 ** If an error occurs, this routine returns NULL.
4736 **
4737 ** The basic idea is to do a nested loop, one loop for each table in
4738 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
4739 ** same as a SELECT with only a single table in the FROM clause.)  For
4740 ** example, if the SQL is this:
4741 **
4742 **       SELECT * FROM t1, t2, t3 WHERE ...;
4743 **
4744 ** Then the code generated is conceptually like the following:
4745 **
4746 **      foreach row1 in t1 do       \    Code generated
4747 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
4748 **          foreach row3 in t3 do   /
4749 **            ...
4750 **          end                     \    Code generated
4751 **        end                        |-- by sqlite3WhereEnd()
4752 **      end                         /
4753 **
4754 ** Note that the loops might not be nested in the order in which they
4755 ** appear in the FROM clause if a different order is better able to make
4756 ** use of indices.  Note also that when the IN operator appears in
4757 ** the WHERE clause, it might result in additional nested loops for
4758 ** scanning through all values on the right-hand side of the IN.
4759 **
4760 ** There are Btree cursors associated with each table.  t1 uses cursor
4761 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
4762 ** And so forth.  This routine generates code to open those VDBE cursors
4763 ** and sqlite3WhereEnd() generates the code to close them.
4764 **
4765 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4766 ** in pTabList pointing at their appropriate entries.  The [...] code
4767 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4768 ** data from the various tables of the loop.
4769 **
4770 ** If the WHERE clause is empty, the foreach loops must each scan their
4771 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
4772 ** the tables have indices and there are terms in the WHERE clause that
4773 ** refer to those indices, a complete table scan can be avoided and the
4774 ** code will run much faster.  Most of the work of this routine is checking
4775 ** to see if there are indices that can be used to speed up the loop.
4776 **
4777 ** Terms of the WHERE clause are also used to limit which rows actually
4778 ** make it to the "..." in the middle of the loop.  After each "foreach",
4779 ** terms of the WHERE clause that use only terms in that loop and outer
4780 ** loops are evaluated and if false a jump is made around all subsequent
4781 ** inner loops (or around the "..." if the test occurs within the inner-
4782 ** most loop)
4783 **
4784 ** OUTER JOINS
4785 **
4786 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4787 **
4788 **    foreach row1 in t1 do
4789 **      flag = 0
4790 **      foreach row2 in t2 do
4791 **        start:
4792 **          ...
4793 **          flag = 1
4794 **      end
4795 **      if flag==0 then
4796 **        move the row2 cursor to a null row
4797 **        goto start
4798 **      fi
4799 **    end
4800 **
4801 ** ORDER BY CLAUSE PROCESSING
4802 **
4803 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
4804 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
4805 ** if there is one.  If there is no ORDER BY clause or if this routine
4806 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
4807 **
4808 ** The iIdxCur parameter is the cursor number of an index.  If
4809 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
4810 ** to use for OR clause processing.  The WHERE clause should use this
4811 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
4812 ** the first cursor in an array of cursors for all indices.  iIdxCur should
4813 ** be used to compute the appropriate cursor depending on which index is
4814 ** used.
4815 */
4816 WhereInfo *sqlite3WhereBegin(
4817   Parse *pParse,          /* The parser context */
4818   SrcList *pTabList,      /* FROM clause: A list of all tables to be scanned */
4819   Expr *pWhere,           /* The WHERE clause */
4820   ExprList *pOrderBy,     /* An ORDER BY (or GROUP BY) clause, or NULL */
4821   ExprList *pResultSet,   /* Query result set.  Req'd for DISTINCT */
4822   u16 wctrlFlags,         /* The WHERE_* flags defined in sqliteInt.h */
4823   int iAuxArg             /* If WHERE_OR_SUBCLAUSE is set, index cursor number
4824                           ** If WHERE_USE_LIMIT, then the limit amount */
4825 ){
4826   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
4827   int nTabList;              /* Number of elements in pTabList */
4828   WhereInfo *pWInfo;         /* Will become the return value of this function */
4829   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
4830   Bitmask notReady;          /* Cursors that are not yet positioned */
4831   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
4832   WhereMaskSet *pMaskSet;    /* The expression mask set */
4833   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
4834   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
4835   int ii;                    /* Loop counter */
4836   sqlite3 *db;               /* Database connection */
4837   int rc;                    /* Return code */
4838   u8 bFordelete = 0;         /* OPFLAG_FORDELETE or zero, as appropriate */
4839 
4840   assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
4841         (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
4842      && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4843   ));
4844 
4845   /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
4846   assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4847             || (wctrlFlags & WHERE_USE_LIMIT)==0 );
4848 
4849   /* Variable initialization */
4850   db = pParse->db;
4851   memset(&sWLB, 0, sizeof(sWLB));
4852 
4853   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
4854   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
4855   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
4856   sWLB.pOrderBy = pOrderBy;
4857 
4858   /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
4859   ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
4860   if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
4861     wctrlFlags &= ~WHERE_WANT_DISTINCT;
4862   }
4863 
4864   /* The number of tables in the FROM clause is limited by the number of
4865   ** bits in a Bitmask
4866   */
4867   testcase( pTabList->nSrc==BMS );
4868   if( pTabList->nSrc>BMS ){
4869     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
4870     return 0;
4871   }
4872 
4873   /* This function normally generates a nested loop for all tables in
4874   ** pTabList.  But if the WHERE_OR_SUBCLAUSE flag is set, then we should
4875   ** only generate code for the first table in pTabList and assume that
4876   ** any cursors associated with subsequent tables are uninitialized.
4877   */
4878   nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
4879 
4880   /* Allocate and initialize the WhereInfo structure that will become the
4881   ** return value. A single allocation is used to store the WhereInfo
4882   ** struct, the contents of WhereInfo.a[], the WhereClause structure
4883   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4884   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4885   ** some architectures. Hence the ROUND8() below.
4886   */
4887   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
4888   pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
4889   if( db->mallocFailed ){
4890     sqlite3DbFree(db, pWInfo);
4891     pWInfo = 0;
4892     goto whereBeginError;
4893   }
4894   pWInfo->pParse = pParse;
4895   pWInfo->pTabList = pTabList;
4896   pWInfo->pOrderBy = pOrderBy;
4897   pWInfo->pWhere = pWhere;
4898   pWInfo->pResultSet = pResultSet;
4899   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
4900   pWInfo->nLevel = nTabList;
4901   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse);
4902   pWInfo->wctrlFlags = wctrlFlags;
4903   pWInfo->iLimit = iAuxArg;
4904   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
4905   memset(&pWInfo->nOBSat, 0,
4906          offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
4907   memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
4908   assert( pWInfo->eOnePass==ONEPASS_OFF );  /* ONEPASS defaults to OFF */
4909   pMaskSet = &pWInfo->sMaskSet;
4910   sWLB.pWInfo = pWInfo;
4911   sWLB.pWC = &pWInfo->sWC;
4912   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
4913   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
4914   whereLoopInit(sWLB.pNew);
4915 #ifdef SQLITE_DEBUG
4916   sWLB.pNew->cId = '*';
4917 #endif
4918 
4919   /* Split the WHERE clause into separate subexpressions where each
4920   ** subexpression is separated by an AND operator.
4921   */
4922   initMaskSet(pMaskSet);
4923   sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
4924   sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
4925 
4926   /* Special case: No FROM clause
4927   */
4928   if( nTabList==0 ){
4929     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
4930     if( wctrlFlags & WHERE_WANT_DISTINCT ){
4931       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4932     }
4933     ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
4934   }else{
4935     /* Assign a bit from the bitmask to every term in the FROM clause.
4936     **
4937     ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
4938     **
4939     ** The rule of the previous sentence ensures thta if X is the bitmask for
4940     ** a table T, then X-1 is the bitmask for all other tables to the left of T.
4941     ** Knowing the bitmask for all tables to the left of a left join is
4942     ** important.  Ticket #3015.
4943     **
4944     ** Note that bitmasks are created for all pTabList->nSrc tables in
4945     ** pTabList, not just the first nTabList tables.  nTabList is normally
4946     ** equal to pTabList->nSrc but might be shortened to 1 if the
4947     ** WHERE_OR_SUBCLAUSE flag is set.
4948     */
4949     ii = 0;
4950     do{
4951       createMask(pMaskSet, pTabList->a[ii].iCursor);
4952       sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
4953     }while( (++ii)<pTabList->nSrc );
4954   #ifdef SQLITE_DEBUG
4955     {
4956       Bitmask mx = 0;
4957       for(ii=0; ii<pTabList->nSrc; ii++){
4958         Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
4959         assert( m>=mx );
4960         mx = m;
4961       }
4962     }
4963   #endif
4964   }
4965 
4966   /* Analyze all of the subexpressions. */
4967   sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
4968   if( db->mallocFailed ) goto whereBeginError;
4969 
4970   /* Special case: WHERE terms that do not refer to any tables in the join
4971   ** (constant expressions). Evaluate each such term, and jump over all the
4972   ** generated code if the result is not true.
4973   **
4974   ** Do not do this if the expression contains non-deterministic functions
4975   ** that are not within a sub-select. This is not strictly required, but
4976   ** preserves SQLite's legacy behaviour in the following two cases:
4977   **
4978   **   FROM ... WHERE random()>0;           -- eval random() once per row
4979   **   FROM ... WHERE (SELECT random())>0;  -- eval random() once overall
4980   */
4981   for(ii=0; ii<sWLB.pWC->nTerm; ii++){
4982     WhereTerm *pT = &sWLB.pWC->a[ii];
4983     if( pT->wtFlags & TERM_VIRTUAL ) continue;
4984     if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
4985       sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
4986       pT->wtFlags |= TERM_CODED;
4987     }
4988   }
4989 
4990   if( wctrlFlags & WHERE_WANT_DISTINCT ){
4991     if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
4992       /* The DISTINCT marking is pointless.  Ignore it. */
4993       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4994     }else if( pOrderBy==0 ){
4995       /* Try to ORDER BY the result set to make distinct processing easier */
4996       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
4997       pWInfo->pOrderBy = pResultSet;
4998     }
4999   }
5000 
5001   /* Construct the WhereLoop objects */
5002 #if defined(WHERETRACE_ENABLED)
5003   if( sqlite3WhereTrace & 0xffff ){
5004     sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
5005     if( wctrlFlags & WHERE_USE_LIMIT ){
5006       sqlite3DebugPrintf(", limit: %d", iAuxArg);
5007     }
5008     sqlite3DebugPrintf(")\n");
5009     if( sqlite3WhereTrace & 0x100 ){
5010       Select sSelect;
5011       memset(&sSelect, 0, sizeof(sSelect));
5012       sSelect.selFlags = SF_WhereBegin;
5013       sSelect.pSrc = pTabList;
5014       sSelect.pWhere = pWhere;
5015       sSelect.pOrderBy = pOrderBy;
5016       sSelect.pEList = pResultSet;
5017       sqlite3TreeViewSelect(0, &sSelect, 0);
5018     }
5019   }
5020   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5021     sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
5022     sqlite3WhereClausePrint(sWLB.pWC);
5023   }
5024 #endif
5025 
5026   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
5027     rc = whereLoopAddAll(&sWLB);
5028     if( rc ) goto whereBeginError;
5029 
5030 #ifdef SQLITE_ENABLE_STAT4
5031     /* If one or more WhereTerm.truthProb values were used in estimating
5032     ** loop parameters, but then those truthProb values were subsequently
5033     ** changed based on STAT4 information while computing subsequent loops,
5034     ** then we need to rerun the whole loop building process so that all
5035     ** loops will be built using the revised truthProb values. */
5036     if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){
5037       WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
5038       WHERETRACE(0xffff,
5039            ("**** Redo all loop computations due to"
5040             " TERM_HIGHTRUTH changes ****\n"));
5041       while( pWInfo->pLoops ){
5042         WhereLoop *p = pWInfo->pLoops;
5043         pWInfo->pLoops = p->pNextLoop;
5044         whereLoopDelete(db, p);
5045       }
5046       rc = whereLoopAddAll(&sWLB);
5047       if( rc ) goto whereBeginError;
5048     }
5049 #endif
5050     WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
5051 
5052     wherePathSolver(pWInfo, 0);
5053     if( db->mallocFailed ) goto whereBeginError;
5054     if( pWInfo->pOrderBy ){
5055        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
5056        if( db->mallocFailed ) goto whereBeginError;
5057     }
5058   }
5059   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
5060      pWInfo->revMask = ALLBITS;
5061   }
5062   if( pParse->nErr || db->mallocFailed ){
5063     goto whereBeginError;
5064   }
5065 #ifdef WHERETRACE_ENABLED
5066   if( sqlite3WhereTrace ){
5067     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
5068     if( pWInfo->nOBSat>0 ){
5069       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
5070     }
5071     switch( pWInfo->eDistinct ){
5072       case WHERE_DISTINCT_UNIQUE: {
5073         sqlite3DebugPrintf("  DISTINCT=unique");
5074         break;
5075       }
5076       case WHERE_DISTINCT_ORDERED: {
5077         sqlite3DebugPrintf("  DISTINCT=ordered");
5078         break;
5079       }
5080       case WHERE_DISTINCT_UNORDERED: {
5081         sqlite3DebugPrintf("  DISTINCT=unordered");
5082         break;
5083       }
5084     }
5085     sqlite3DebugPrintf("\n");
5086     for(ii=0; ii<pWInfo->nLevel; ii++){
5087       sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
5088     }
5089   }
5090 #endif
5091 
5092   /* Attempt to omit tables from the join that do not affect the result.
5093   ** For a table to not affect the result, the following must be true:
5094   **
5095   **   1) The query must not be an aggregate.
5096   **   2) The table must be the RHS of a LEFT JOIN.
5097   **   3) Either the query must be DISTINCT, or else the ON or USING clause
5098   **      must contain a constraint that limits the scan of the table to
5099   **      at most a single row.
5100   **   4) The table must not be referenced by any part of the query apart
5101   **      from its own USING or ON clause.
5102   **
5103   ** For example, given:
5104   **
5105   **     CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
5106   **     CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
5107   **     CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
5108   **
5109   ** then table t2 can be omitted from the following:
5110   **
5111   **     SELECT v1, v3 FROM t1
5112   **       LEFT JOIN t2 ON (t1.ipk=t2.ipk)
5113   **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5114   **
5115   ** or from:
5116   **
5117   **     SELECT DISTINCT v1, v3 FROM t1
5118   **       LEFT JOIN t2
5119   **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5120   */
5121   notReady = ~(Bitmask)0;
5122   if( pWInfo->nLevel>=2
5123    && pResultSet!=0                         /* these two combine to guarantee */
5124    && 0==(wctrlFlags & WHERE_AGG_DISTINCT)  /* condition (1) above */
5125    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
5126   ){
5127     int i;
5128     Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet);
5129     if( sWLB.pOrderBy ){
5130       tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy);
5131     }
5132     for(i=pWInfo->nLevel-1; i>=1; i--){
5133       WhereTerm *pTerm, *pEnd;
5134       SrcItem *pItem;
5135       pLoop = pWInfo->a[i].pWLoop;
5136       pItem = &pWInfo->pTabList->a[pLoop->iTab];
5137       if( (pItem->fg.jointype & JT_LEFT)==0 ) continue;
5138       if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
5139        && (pLoop->wsFlags & WHERE_ONEROW)==0
5140       ){
5141         continue;
5142       }
5143       if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
5144       pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
5145       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
5146         if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5147           if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
5148            || pTerm->pExpr->iRightJoinTable!=pItem->iCursor
5149           ){
5150             break;
5151           }
5152         }
5153       }
5154       if( pTerm<pEnd ) continue;
5155       WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
5156       notReady &= ~pLoop->maskSelf;
5157       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
5158         if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5159           pTerm->wtFlags |= TERM_CODED;
5160         }
5161       }
5162       if( i!=pWInfo->nLevel-1 ){
5163         int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
5164         memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
5165       }
5166       pWInfo->nLevel--;
5167       nTabList--;
5168     }
5169   }
5170 #if defined(WHERETRACE_ENABLED)
5171   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5172     sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
5173     sqlite3WhereClausePrint(sWLB.pWC);
5174   }
5175   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
5176 #endif
5177   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
5178 
5179   /* If the caller is an UPDATE or DELETE statement that is requesting
5180   ** to use a one-pass algorithm, determine if this is appropriate.
5181   **
5182   ** A one-pass approach can be used if the caller has requested one
5183   ** and either (a) the scan visits at most one row or (b) each
5184   ** of the following are true:
5185   **
5186   **   * the caller has indicated that a one-pass approach can be used
5187   **     with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
5188   **   * the table is not a virtual table, and
5189   **   * either the scan does not use the OR optimization or the caller
5190   **     is a DELETE operation (WHERE_DUPLICATES_OK is only specified
5191   **     for DELETE).
5192   **
5193   ** The last qualification is because an UPDATE statement uses
5194   ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
5195   ** use a one-pass approach, and this is not set accurately for scans
5196   ** that use the OR optimization.
5197   */
5198   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
5199   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
5200     int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
5201     int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
5202     assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) );
5203     if( bOnerow || (
5204         0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
5205      && !IsVirtual(pTabList->a[0].pTab)
5206      && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
5207     )){
5208       pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
5209       if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
5210         if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
5211           bFordelete = OPFLAG_FORDELETE;
5212         }
5213         pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
5214       }
5215     }
5216   }
5217 
5218   /* Open all tables in the pTabList and any indices selected for
5219   ** searching those tables.
5220   */
5221   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
5222     Table *pTab;     /* Table to open */
5223     int iDb;         /* Index of database containing table/index */
5224     SrcItem *pTabItem;
5225 
5226     pTabItem = &pTabList->a[pLevel->iFrom];
5227     pTab = pTabItem->pTab;
5228     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5229     pLoop = pLevel->pWLoop;
5230     if( (pTab->tabFlags & TF_Ephemeral)!=0 || IsView(pTab) ){
5231       /* Do nothing */
5232     }else
5233 #ifndef SQLITE_OMIT_VIRTUALTABLE
5234     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
5235       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
5236       int iCur = pTabItem->iCursor;
5237       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
5238     }else if( IsVirtual(pTab) ){
5239       /* noop */
5240     }else
5241 #endif
5242     if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
5243          && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
5244       int op = OP_OpenRead;
5245       if( pWInfo->eOnePass!=ONEPASS_OFF ){
5246         op = OP_OpenWrite;
5247         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
5248       };
5249       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
5250       assert( pTabItem->iCursor==pLevel->iTabCur );
5251       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
5252       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
5253       if( pWInfo->eOnePass==ONEPASS_OFF
5254        && pTab->nCol<BMS
5255        && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0
5256       ){
5257         /* If we know that only a prefix of the record will be used,
5258         ** it is advantageous to reduce the "column count" field in
5259         ** the P4 operand of the OP_OpenRead/Write opcode. */
5260         Bitmask b = pTabItem->colUsed;
5261         int n = 0;
5262         for(; b; b=b>>1, n++){}
5263         sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
5264         assert( n<=pTab->nCol );
5265       }
5266 #ifdef SQLITE_ENABLE_CURSOR_HINTS
5267       if( pLoop->u.btree.pIndex!=0 ){
5268         sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
5269       }else
5270 #endif
5271       {
5272         sqlite3VdbeChangeP5(v, bFordelete);
5273       }
5274 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5275       sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
5276                             (const u8*)&pTabItem->colUsed, P4_INT64);
5277 #endif
5278     }else{
5279       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5280     }
5281     if( pLoop->wsFlags & WHERE_INDEXED ){
5282       Index *pIx = pLoop->u.btree.pIndex;
5283       int iIndexCur;
5284       int op = OP_OpenRead;
5285       /* iAuxArg is always set to a positive value if ONEPASS is possible */
5286       assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
5287       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
5288        && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
5289       ){
5290         /* This is one term of an OR-optimization using the PRIMARY KEY of a
5291         ** WITHOUT ROWID table.  No need for a separate index */
5292         iIndexCur = pLevel->iTabCur;
5293         op = 0;
5294       }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
5295         Index *pJ = pTabItem->pTab->pIndex;
5296         iIndexCur = iAuxArg;
5297         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
5298         while( ALWAYS(pJ) && pJ!=pIx ){
5299           iIndexCur++;
5300           pJ = pJ->pNext;
5301         }
5302         op = OP_OpenWrite;
5303         pWInfo->aiCurOnePass[1] = iIndexCur;
5304       }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
5305         iIndexCur = iAuxArg;
5306         op = OP_ReopenIdx;
5307       }else{
5308         iIndexCur = pParse->nTab++;
5309       }
5310       pLevel->iIdxCur = iIndexCur;
5311       assert( pIx->pSchema==pTab->pSchema );
5312       assert( iIndexCur>=0 );
5313       if( op ){
5314         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
5315         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
5316         if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
5317          && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
5318          && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0
5319          && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
5320          && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
5321          && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
5322         ){
5323           sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ);
5324         }
5325         VdbeComment((v, "%s", pIx->zName));
5326 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5327         {
5328           u64 colUsed = 0;
5329           int ii, jj;
5330           for(ii=0; ii<pIx->nColumn; ii++){
5331             jj = pIx->aiColumn[ii];
5332             if( jj<0 ) continue;
5333             if( jj>63 ) jj = 63;
5334             if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
5335             colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
5336           }
5337           sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
5338                                 (u8*)&colUsed, P4_INT64);
5339         }
5340 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
5341       }
5342     }
5343     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
5344   }
5345   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
5346   if( db->mallocFailed ) goto whereBeginError;
5347 
5348   /* Generate the code to do the search.  Each iteration of the for
5349   ** loop below generates code for a single nested loop of the VM
5350   ** program.
5351   */
5352   for(ii=0; ii<nTabList; ii++){
5353     int addrExplain;
5354     int wsFlags;
5355     pLevel = &pWInfo->a[ii];
5356     wsFlags = pLevel->pWLoop->wsFlags;
5357 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
5358     if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
5359       constructAutomaticIndex(pParse, &pWInfo->sWC,
5360                 &pTabList->a[pLevel->iFrom], notReady, pLevel);
5361       if( db->mallocFailed ) goto whereBeginError;
5362     }
5363 #endif
5364     addrExplain = sqlite3WhereExplainOneScan(
5365         pParse, pTabList, pLevel, wctrlFlags
5366     );
5367     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
5368     notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady);
5369     pWInfo->iContinue = pLevel->addrCont;
5370     if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
5371       sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
5372     }
5373   }
5374 
5375   /* Done. */
5376   VdbeModuleComment((v, "Begin WHERE-core"));
5377   pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v);
5378   return pWInfo;
5379 
5380   /* Jump here if malloc fails */
5381 whereBeginError:
5382   if( pWInfo ){
5383     testcase( pWInfo->pExprMods!=0 );
5384     whereUndoExprMods(pWInfo);
5385     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5386     whereInfoFree(db, pWInfo);
5387   }
5388   return 0;
5389 }
5390 
5391 /*
5392 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
5393 ** index rather than the main table.  In SQLITE_DEBUG mode, we want
5394 ** to trace those changes if PRAGMA vdbe_addoptrace=on.  This routine
5395 ** does that.
5396 */
5397 #ifndef SQLITE_DEBUG
5398 # define OpcodeRewriteTrace(D,K,P) /* no-op */
5399 #else
5400 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
5401   static void sqlite3WhereOpcodeRewriteTrace(
5402     sqlite3 *db,
5403     int pc,
5404     VdbeOp *pOp
5405   ){
5406     if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
5407     sqlite3VdbePrintOp(0, pc, pOp);
5408   }
5409 #endif
5410 
5411 /*
5412 ** Generate the end of the WHERE loop.  See comments on
5413 ** sqlite3WhereBegin() for additional information.
5414 */
5415 void sqlite3WhereEnd(WhereInfo *pWInfo){
5416   Parse *pParse = pWInfo->pParse;
5417   Vdbe *v = pParse->pVdbe;
5418   int i;
5419   WhereLevel *pLevel;
5420   WhereLoop *pLoop;
5421   SrcList *pTabList = pWInfo->pTabList;
5422   sqlite3 *db = pParse->db;
5423   int iEnd = sqlite3VdbeCurrentAddr(v);
5424 
5425   /* Generate loop termination code.
5426   */
5427   VdbeModuleComment((v, "End WHERE-core"));
5428   for(i=pWInfo->nLevel-1; i>=0; i--){
5429     int addr;
5430     pLevel = &pWInfo->a[i];
5431     pLoop = pLevel->pWLoop;
5432     if( pLevel->op!=OP_Noop ){
5433 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5434       int addrSeek = 0;
5435       Index *pIdx;
5436       int n;
5437       if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
5438        && i==pWInfo->nLevel-1  /* Ticket [ef9318757b152e3] 2017-10-21 */
5439        && (pLoop->wsFlags & WHERE_INDEXED)!=0
5440        && (pIdx = pLoop->u.btree.pIndex)->hasStat1
5441        && (n = pLoop->u.btree.nDistinctCol)>0
5442        && pIdx->aiRowLogEst[n]>=36
5443       ){
5444         int r1 = pParse->nMem+1;
5445         int j, op;
5446         for(j=0; j<n; j++){
5447           sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
5448         }
5449         pParse->nMem += n+1;
5450         op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
5451         addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
5452         VdbeCoverageIf(v, op==OP_SeekLT);
5453         VdbeCoverageIf(v, op==OP_SeekGT);
5454         sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
5455       }
5456 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
5457       /* The common case: Advance to the next row */
5458       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5459       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
5460       sqlite3VdbeChangeP5(v, pLevel->p5);
5461       VdbeCoverage(v);
5462       VdbeCoverageIf(v, pLevel->op==OP_Next);
5463       VdbeCoverageIf(v, pLevel->op==OP_Prev);
5464       VdbeCoverageIf(v, pLevel->op==OP_VNext);
5465       if( pLevel->regBignull ){
5466         sqlite3VdbeResolveLabel(v, pLevel->addrBignull);
5467         sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1);
5468         VdbeCoverage(v);
5469       }
5470 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5471       if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
5472 #endif
5473     }else{
5474       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5475     }
5476     if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
5477       struct InLoop *pIn;
5478       int j;
5479       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
5480       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
5481         assert( sqlite3VdbeGetOp(v, pIn->addrInTop+1)->opcode==OP_IsNull
5482                  || pParse->db->mallocFailed );
5483         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5484         if( pIn->eEndLoopOp!=OP_Noop ){
5485           if( pIn->nPrefix ){
5486             int bEarlyOut =
5487                 (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
5488                  && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0;
5489             if( pLevel->iLeftJoin ){
5490               /* For LEFT JOIN queries, cursor pIn->iCur may not have been
5491               ** opened yet. This occurs for WHERE clauses such as
5492               ** "a = ? AND b IN (...)", where the index is on (a, b). If
5493               ** the RHS of the (a=?) is NULL, then the "b IN (...)" may
5494               ** never have been coded, but the body of the loop run to
5495               ** return the null-row. So, if the cursor is not open yet,
5496               ** jump over the OP_Next or OP_Prev instruction about to
5497               ** be coded.  */
5498               sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur,
5499                   sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut);
5500               VdbeCoverage(v);
5501             }
5502             if( bEarlyOut ){
5503               sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
5504                   sqlite3VdbeCurrentAddr(v)+2,
5505                   pIn->iBase, pIn->nPrefix);
5506               VdbeCoverage(v);
5507               /* Retarget the OP_IsNull against the left operand of IN so
5508               ** it jumps past the OP_IfNoHope.  This is because the
5509               ** OP_IsNull also bypasses the OP_Affinity opcode that is
5510               ** required by OP_IfNoHope. */
5511               sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5512             }
5513           }
5514           sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
5515           VdbeCoverage(v);
5516           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
5517           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
5518         }
5519         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
5520       }
5521     }
5522     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
5523     if( pLevel->addrSkip ){
5524       sqlite3VdbeGoto(v, pLevel->addrSkip);
5525       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
5526       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
5527       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
5528     }
5529 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
5530     if( pLevel->addrLikeRep ){
5531       sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
5532                         pLevel->addrLikeRep);
5533       VdbeCoverage(v);
5534     }
5535 #endif
5536     if( pLevel->iLeftJoin ){
5537       int ws = pLoop->wsFlags;
5538       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
5539       assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
5540       if( (ws & WHERE_IDX_ONLY)==0 ){
5541         assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
5542         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
5543       }
5544       if( (ws & WHERE_INDEXED)
5545        || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx)
5546       ){
5547         if( ws & WHERE_MULTI_OR ){
5548           Index *pIx = pLevel->u.pCovidx;
5549           int iDb = sqlite3SchemaToIndex(db, pIx->pSchema);
5550           sqlite3VdbeAddOp3(v, OP_ReopenIdx, pLevel->iIdxCur, pIx->tnum, iDb);
5551           sqlite3VdbeSetP4KeyInfo(pParse, pIx);
5552         }
5553         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
5554       }
5555       if( pLevel->op==OP_Return ){
5556         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
5557       }else{
5558         sqlite3VdbeGoto(v, pLevel->addrFirst);
5559       }
5560       sqlite3VdbeJumpHere(v, addr);
5561     }
5562     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
5563                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
5564   }
5565 
5566   /* The "break" point is here, just past the end of the outer loop.
5567   ** Set it.
5568   */
5569   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
5570 
5571   assert( pWInfo->nLevel<=pTabList->nSrc );
5572   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
5573     int k, last;
5574     VdbeOp *pOp, *pLastOp;
5575     Index *pIdx = 0;
5576     SrcItem *pTabItem = &pTabList->a[pLevel->iFrom];
5577     Table *pTab = pTabItem->pTab;
5578     assert( pTab!=0 );
5579     pLoop = pLevel->pWLoop;
5580 
5581     /* For a co-routine, change all OP_Column references to the table of
5582     ** the co-routine into OP_Copy of result contained in a register.
5583     ** OP_Rowid becomes OP_Null.
5584     */
5585     if( pTabItem->fg.viaCoroutine ){
5586       testcase( pParse->db->mallocFailed );
5587       translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
5588                             pTabItem->regResult, 0);
5589       continue;
5590     }
5591 
5592 #ifdef SQLITE_ENABLE_EARLY_CURSOR_CLOSE
5593     /* Close all of the cursors that were opened by sqlite3WhereBegin.
5594     ** Except, do not close cursors that will be reused by the OR optimization
5595     ** (WHERE_OR_SUBCLAUSE).  And do not close the OP_OpenWrite cursors
5596     ** created for the ONEPASS optimization.
5597     */
5598     if( (pTab->tabFlags & TF_Ephemeral)==0
5599      && !IsView(pTab)
5600      && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5601     ){
5602       int ws = pLoop->wsFlags;
5603       if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){
5604         sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
5605       }
5606       if( (ws & WHERE_INDEXED)!=0
5607        && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0
5608        && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1]
5609       ){
5610         sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
5611       }
5612     }
5613 #endif
5614 
5615     /* If this scan uses an index, make VDBE code substitutions to read data
5616     ** from the index instead of from the table where possible.  In some cases
5617     ** this optimization prevents the table from ever being read, which can
5618     ** yield a significant performance boost.
5619     **
5620     ** Calls to the code generator in between sqlite3WhereBegin and
5621     ** sqlite3WhereEnd will have created code that references the table
5622     ** directly.  This loop scans all that code looking for opcodes
5623     ** that reference the table and converts them into opcodes that
5624     ** reference the index.
5625     */
5626     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
5627       pIdx = pLoop->u.btree.pIndex;
5628     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
5629       pIdx = pLevel->u.pCovidx;
5630     }
5631     if( pIdx
5632      && !db->mallocFailed
5633     ){
5634       if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){
5635         last = iEnd;
5636       }else{
5637         last = pWInfo->iEndWhere;
5638       }
5639       k = pLevel->addrBody + 1;
5640 #ifdef SQLITE_DEBUG
5641       if( db->flags & SQLITE_VdbeAddopTrace ){
5642         printf("TRANSLATE opcodes in range %d..%d\n", k, last-1);
5643       }
5644       /* Proof that the "+1" on the k value above is safe */
5645       pOp = sqlite3VdbeGetOp(v, k - 1);
5646       assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur );
5647       assert( pOp->opcode!=OP_Rowid  || pOp->p1!=pLevel->iTabCur );
5648       assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur );
5649 #endif
5650       pOp = sqlite3VdbeGetOp(v, k);
5651       pLastOp = pOp + (last - k);
5652       assert( pOp<=pLastOp );
5653       do{
5654         if( pOp->p1!=pLevel->iTabCur ){
5655           /* no-op */
5656         }else if( pOp->opcode==OP_Column
5657 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
5658          || pOp->opcode==OP_Offset
5659 #endif
5660         ){
5661           int x = pOp->p2;
5662           assert( pIdx->pTable==pTab );
5663           if( !HasRowid(pTab) ){
5664             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
5665             x = pPk->aiColumn[x];
5666             assert( x>=0 );
5667           }else{
5668             testcase( x!=sqlite3StorageColumnToTable(pTab,x) );
5669             x = sqlite3StorageColumnToTable(pTab,x);
5670           }
5671           x = sqlite3TableColumnToIndex(pIdx, x);
5672           if( x>=0 ){
5673             pOp->p2 = x;
5674             pOp->p1 = pLevel->iIdxCur;
5675             OpcodeRewriteTrace(db, k, pOp);
5676           }
5677           assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0
5678               || pWInfo->eOnePass );
5679         }else if( pOp->opcode==OP_Rowid ){
5680           pOp->p1 = pLevel->iIdxCur;
5681           pOp->opcode = OP_IdxRowid;
5682           OpcodeRewriteTrace(db, k, pOp);
5683         }else if( pOp->opcode==OP_IfNullRow ){
5684           pOp->p1 = pLevel->iIdxCur;
5685           OpcodeRewriteTrace(db, k, pOp);
5686         }
5687 #ifdef SQLITE_DEBUG
5688         k++;
5689 #endif
5690       }while( (++pOp)<pLastOp );
5691 #ifdef SQLITE_DEBUG
5692       if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
5693 #endif
5694     }
5695   }
5696 
5697   /* Final cleanup
5698   */
5699   if( pWInfo->pExprMods ) whereUndoExprMods(pWInfo);
5700   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5701   whereInfoFree(db, pWInfo);
5702   return;
5703 }
5704