xref: /sqlite-3.40.0/src/where.c (revision dedd51ae)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /*
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly.  The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
26 **
27 ** This object is not an API and can be changed from one release to the
28 ** next.  As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
30 */
31 typedef struct HiddenIndexInfo HiddenIndexInfo;
32 struct HiddenIndexInfo {
33   WhereClause *pWC;        /* The Where clause being analyzed */
34   Parse *pParse;           /* The parsing context */
35   int eDistinct;           /* Value to return from sqlite3_vtab_distinct() */
36   u32 mIn;                 /* Mask of terms that are <col> IN (...) */
37   u32 mHandleIn;           /* Terms that vtab will handle as <col> IN (...) */
38   sqlite3_value *aRhs[1];  /* RHS values for constraints. MUST BE LAST
39                            ** because extra space is allocated to hold up
40                            ** to nTerm such values */
41 };
42 
43 /* Forward declaration of methods */
44 static int whereLoopResize(sqlite3*, WhereLoop*, int);
45 
46 /*
47 ** Return the estimated number of output rows from a WHERE clause
48 */
49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
50   return pWInfo->nRowOut;
51 }
52 
53 /*
54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
55 ** WHERE clause returns outputs for DISTINCT processing.
56 */
57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
58   return pWInfo->eDistinct;
59 }
60 
61 /*
62 ** Return the number of ORDER BY terms that are satisfied by the
63 ** WHERE clause.  A return of 0 means that the output must be
64 ** completely sorted.  A return equal to the number of ORDER BY
65 ** terms means that no sorting is needed at all.  A return that
66 ** is positive but less than the number of ORDER BY terms means that
67 ** block sorting is required.
68 */
69 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
70   return pWInfo->nOBSat;
71 }
72 
73 /*
74 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known
75 ** to emit rows in increasing order, and if the last row emitted by the
76 ** inner-most loop did not fit within the sorter, then we can skip all
77 ** subsequent rows for the current iteration of the inner loop (because they
78 ** will not fit in the sorter either) and continue with the second inner
79 ** loop - the loop immediately outside the inner-most.
80 **
81 ** When a row does not fit in the sorter (because the sorter already
82 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
83 ** label returned by this function.
84 **
85 ** If the ORDER BY LIMIT optimization applies, the jump destination should
86 ** be the continuation for the second-inner-most loop.  If the ORDER BY
87 ** LIMIT optimization does not apply, then the jump destination should
88 ** be the continuation for the inner-most loop.
89 **
90 ** It is always safe for this routine to return the continuation of the
91 ** inner-most loop, in the sense that a correct answer will result.
92 ** Returning the continuation the second inner loop is an optimization
93 ** that might make the code run a little faster, but should not change
94 ** the final answer.
95 */
96 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){
97   WhereLevel *pInner;
98   if( !pWInfo->bOrderedInnerLoop ){
99     /* The ORDER BY LIMIT optimization does not apply.  Jump to the
100     ** continuation of the inner-most loop. */
101     return pWInfo->iContinue;
102   }
103   pInner = &pWInfo->a[pWInfo->nLevel-1];
104   assert( pInner->addrNxt!=0 );
105   return pInner->addrNxt;
106 }
107 
108 /*
109 ** While generating code for the min/max optimization, after handling
110 ** the aggregate-step call to min() or max(), check to see if any
111 ** additional looping is required.  If the output order is such that
112 ** we are certain that the correct answer has already been found, then
113 ** code an OP_Goto to by pass subsequent processing.
114 **
115 ** Any extra OP_Goto that is coded here is an optimization.  The
116 ** correct answer should be obtained regardless.  This OP_Goto just
117 ** makes the answer appear faster.
118 */
119 void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){
120   WhereLevel *pInner;
121   int i;
122   if( !pWInfo->bOrderedInnerLoop ) return;
123   if( pWInfo->nOBSat==0 ) return;
124   for(i=pWInfo->nLevel-1; i>=0; i--){
125     pInner = &pWInfo->a[i];
126     if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){
127       sqlite3VdbeGoto(v, pInner->addrNxt);
128       return;
129     }
130   }
131   sqlite3VdbeGoto(v, pWInfo->iBreak);
132 }
133 
134 /*
135 ** Return the VDBE address or label to jump to in order to continue
136 ** immediately with the next row of a WHERE clause.
137 */
138 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
139   assert( pWInfo->iContinue!=0 );
140   return pWInfo->iContinue;
141 }
142 
143 /*
144 ** Return the VDBE address or label to jump to in order to break
145 ** out of a WHERE loop.
146 */
147 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
148   return pWInfo->iBreak;
149 }
150 
151 /*
152 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
153 ** operate directly on the rowids returned by a WHERE clause.  Return
154 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
155 ** a single row is to be changed.  Return ONEPASS_MULTI (2) if the one-pass
156 ** optimization can be used on multiple
157 **
158 ** If the ONEPASS optimization is used (if this routine returns true)
159 ** then also write the indices of open cursors used by ONEPASS
160 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
161 ** table and iaCur[1] gets the cursor used by an auxiliary index.
162 ** Either value may be -1, indicating that cursor is not used.
163 ** Any cursors returned will have been opened for writing.
164 **
165 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
166 ** unable to use the ONEPASS optimization.
167 */
168 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
169   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
170 #ifdef WHERETRACE_ENABLED
171   if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
172     sqlite3DebugPrintf("%s cursors: %d %d\n",
173          pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
174          aiCur[0], aiCur[1]);
175   }
176 #endif
177   return pWInfo->eOnePass;
178 }
179 
180 /*
181 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move
182 ** the data cursor to the row selected by the index cursor.
183 */
184 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){
185   return pWInfo->bDeferredSeek;
186 }
187 
188 /*
189 ** Move the content of pSrc into pDest
190 */
191 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
192   pDest->n = pSrc->n;
193   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
194 }
195 
196 /*
197 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
198 **
199 ** The new entry might overwrite an existing entry, or it might be
200 ** appended, or it might be discarded.  Do whatever is the right thing
201 ** so that pSet keeps the N_OR_COST best entries seen so far.
202 */
203 static int whereOrInsert(
204   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
205   Bitmask prereq,        /* Prerequisites of the new entry */
206   LogEst rRun,           /* Run-cost of the new entry */
207   LogEst nOut            /* Number of outputs for the new entry */
208 ){
209   u16 i;
210   WhereOrCost *p;
211   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
212     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
213       goto whereOrInsert_done;
214     }
215     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
216       return 0;
217     }
218   }
219   if( pSet->n<N_OR_COST ){
220     p = &pSet->a[pSet->n++];
221     p->nOut = nOut;
222   }else{
223     p = pSet->a;
224     for(i=1; i<pSet->n; i++){
225       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
226     }
227     if( p->rRun<=rRun ) return 0;
228   }
229 whereOrInsert_done:
230   p->prereq = prereq;
231   p->rRun = rRun;
232   if( p->nOut>nOut ) p->nOut = nOut;
233   return 1;
234 }
235 
236 /*
237 ** Return the bitmask for the given cursor number.  Return 0 if
238 ** iCursor is not in the set.
239 */
240 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
241   int i;
242   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
243   assert( pMaskSet->n>0 || pMaskSet->ix[0]<0 );
244   assert( iCursor>=-1 );
245   if( pMaskSet->ix[0]==iCursor ){
246     return 1;
247   }
248   for(i=1; i<pMaskSet->n; i++){
249     if( pMaskSet->ix[i]==iCursor ){
250       return MASKBIT(i);
251     }
252   }
253   return 0;
254 }
255 
256 /*
257 ** Create a new mask for cursor iCursor.
258 **
259 ** There is one cursor per table in the FROM clause.  The number of
260 ** tables in the FROM clause is limited by a test early in the
261 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
262 ** array will never overflow.
263 */
264 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
265   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
266   pMaskSet->ix[pMaskSet->n++] = iCursor;
267 }
268 
269 /*
270 ** If the right-hand branch of the expression is a TK_COLUMN, then return
271 ** a pointer to the right-hand branch.  Otherwise, return NULL.
272 */
273 static Expr *whereRightSubexprIsColumn(Expr *p){
274   p = sqlite3ExprSkipCollateAndLikely(p->pRight);
275   if( ALWAYS(p!=0) && p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){
276     return p;
277   }
278   return 0;
279 }
280 
281 /*
282 ** Advance to the next WhereTerm that matches according to the criteria
283 ** established when the pScan object was initialized by whereScanInit().
284 ** Return NULL if there are no more matching WhereTerms.
285 */
286 static WhereTerm *whereScanNext(WhereScan *pScan){
287   int iCur;            /* The cursor on the LHS of the term */
288   i16 iColumn;         /* The column on the LHS of the term.  -1 for IPK */
289   Expr *pX;            /* An expression being tested */
290   WhereClause *pWC;    /* Shorthand for pScan->pWC */
291   WhereTerm *pTerm;    /* The term being tested */
292   int k = pScan->k;    /* Where to start scanning */
293 
294   assert( pScan->iEquiv<=pScan->nEquiv );
295   pWC = pScan->pWC;
296   while(1){
297     iColumn = pScan->aiColumn[pScan->iEquiv-1];
298     iCur = pScan->aiCur[pScan->iEquiv-1];
299     assert( pWC!=0 );
300     assert( iCur>=0 );
301     do{
302       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
303         assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 || pTerm->leftCursor<0 );
304         if( pTerm->leftCursor==iCur
305          && pTerm->u.x.leftColumn==iColumn
306          && (iColumn!=XN_EXPR
307              || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
308                                        pScan->pIdxExpr,iCur)==0)
309          && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
310         ){
311           if( (pTerm->eOperator & WO_EQUIV)!=0
312            && pScan->nEquiv<ArraySize(pScan->aiCur)
313            && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0
314           ){
315             int j;
316             for(j=0; j<pScan->nEquiv; j++){
317               if( pScan->aiCur[j]==pX->iTable
318                && pScan->aiColumn[j]==pX->iColumn ){
319                   break;
320               }
321             }
322             if( j==pScan->nEquiv ){
323               pScan->aiCur[j] = pX->iTable;
324               pScan->aiColumn[j] = pX->iColumn;
325               pScan->nEquiv++;
326             }
327           }
328           if( (pTerm->eOperator & pScan->opMask)!=0 ){
329             /* Verify the affinity and collating sequence match */
330             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
331               CollSeq *pColl;
332               Parse *pParse = pWC->pWInfo->pParse;
333               pX = pTerm->pExpr;
334               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
335                 continue;
336               }
337               assert(pX->pLeft);
338               pColl = sqlite3ExprCompareCollSeq(pParse, pX);
339               if( pColl==0 ) pColl = pParse->db->pDfltColl;
340               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
341                 continue;
342               }
343             }
344             if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
345              && (pX = pTerm->pExpr->pRight, ALWAYS(pX!=0))
346              && pX->op==TK_COLUMN
347              && pX->iTable==pScan->aiCur[0]
348              && pX->iColumn==pScan->aiColumn[0]
349             ){
350               testcase( pTerm->eOperator & WO_IS );
351               continue;
352             }
353             pScan->pWC = pWC;
354             pScan->k = k+1;
355 #ifdef WHERETRACE_ENABLED
356             if( sqlite3WhereTrace & 0x20000 ){
357               int ii;
358               sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d",
359                  pTerm, pScan->nEquiv);
360               for(ii=0; ii<pScan->nEquiv; ii++){
361                 sqlite3DebugPrintf(" {%d:%d}",
362                    pScan->aiCur[ii], pScan->aiColumn[ii]);
363               }
364               sqlite3DebugPrintf("\n");
365             }
366 #endif
367             return pTerm;
368           }
369         }
370       }
371       pWC = pWC->pOuter;
372       k = 0;
373     }while( pWC!=0 );
374     if( pScan->iEquiv>=pScan->nEquiv ) break;
375     pWC = pScan->pOrigWC;
376     k = 0;
377     pScan->iEquiv++;
378   }
379   return 0;
380 }
381 
382 /*
383 ** This is whereScanInit() for the case of an index on an expression.
384 ** It is factored out into a separate tail-recursion subroutine so that
385 ** the normal whereScanInit() routine, which is a high-runner, does not
386 ** need to push registers onto the stack as part of its prologue.
387 */
388 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){
389   pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr);
390   return whereScanNext(pScan);
391 }
392 
393 /*
394 ** Initialize a WHERE clause scanner object.  Return a pointer to the
395 ** first match.  Return NULL if there are no matches.
396 **
397 ** The scanner will be searching the WHERE clause pWC.  It will look
398 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
399 ** iCur.   Or if pIdx!=0 then X is column iColumn of index pIdx.  pIdx
400 ** must be one of the indexes of table iCur.
401 **
402 ** The <op> must be one of the operators described by opMask.
403 **
404 ** If the search is for X and the WHERE clause contains terms of the
405 ** form X=Y then this routine might also return terms of the form
406 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
407 ** but is enough to handle most commonly occurring SQL statements.
408 **
409 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
410 ** index pIdx.
411 */
412 static WhereTerm *whereScanInit(
413   WhereScan *pScan,       /* The WhereScan object being initialized */
414   WhereClause *pWC,       /* The WHERE clause to be scanned */
415   int iCur,               /* Cursor to scan for */
416   int iColumn,            /* Column to scan for */
417   u32 opMask,             /* Operator(s) to scan for */
418   Index *pIdx             /* Must be compatible with this index */
419 ){
420   pScan->pOrigWC = pWC;
421   pScan->pWC = pWC;
422   pScan->pIdxExpr = 0;
423   pScan->idxaff = 0;
424   pScan->zCollName = 0;
425   pScan->opMask = opMask;
426   pScan->k = 0;
427   pScan->aiCur[0] = iCur;
428   pScan->nEquiv = 1;
429   pScan->iEquiv = 1;
430   if( pIdx ){
431     int j = iColumn;
432     iColumn = pIdx->aiColumn[j];
433     if( iColumn==pIdx->pTable->iPKey ){
434       iColumn = XN_ROWID;
435     }else if( iColumn>=0 ){
436       pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
437       pScan->zCollName = pIdx->azColl[j];
438     }else if( iColumn==XN_EXPR ){
439       pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
440       pScan->zCollName = pIdx->azColl[j];
441       pScan->aiColumn[0] = XN_EXPR;
442       return whereScanInitIndexExpr(pScan);
443     }
444   }else if( iColumn==XN_EXPR ){
445     return 0;
446   }
447   pScan->aiColumn[0] = iColumn;
448   return whereScanNext(pScan);
449 }
450 
451 /*
452 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
453 ** where X is a reference to the iColumn of table iCur or of index pIdx
454 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
455 ** the op parameter.  Return a pointer to the term.  Return 0 if not found.
456 **
457 ** If pIdx!=0 then it must be one of the indexes of table iCur.
458 ** Search for terms matching the iColumn-th column of pIdx
459 ** rather than the iColumn-th column of table iCur.
460 **
461 ** The term returned might by Y=<expr> if there is another constraint in
462 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
463 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
464 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
465 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
466 ** other equivalent values.  Hence a search for X will return <expr> if X=A1
467 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
468 **
469 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
470 ** then try for the one with no dependencies on <expr> - in other words where
471 ** <expr> is a constant expression of some kind.  Only return entries of
472 ** the form "X <op> Y" where Y is a column in another table if no terms of
473 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
474 ** exist, try to return a term that does not use WO_EQUIV.
475 */
476 WhereTerm *sqlite3WhereFindTerm(
477   WhereClause *pWC,     /* The WHERE clause to be searched */
478   int iCur,             /* Cursor number of LHS */
479   int iColumn,          /* Column number of LHS */
480   Bitmask notReady,     /* RHS must not overlap with this mask */
481   u32 op,               /* Mask of WO_xx values describing operator */
482   Index *pIdx           /* Must be compatible with this index, if not NULL */
483 ){
484   WhereTerm *pResult = 0;
485   WhereTerm *p;
486   WhereScan scan;
487 
488   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
489   op &= WO_EQ|WO_IS;
490   while( p ){
491     if( (p->prereqRight & notReady)==0 ){
492       if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
493         testcase( p->eOperator & WO_IS );
494         return p;
495       }
496       if( pResult==0 ) pResult = p;
497     }
498     p = whereScanNext(&scan);
499   }
500   return pResult;
501 }
502 
503 /*
504 ** This function searches pList for an entry that matches the iCol-th column
505 ** of index pIdx.
506 **
507 ** If such an expression is found, its index in pList->a[] is returned. If
508 ** no expression is found, -1 is returned.
509 */
510 static int findIndexCol(
511   Parse *pParse,                  /* Parse context */
512   ExprList *pList,                /* Expression list to search */
513   int iBase,                      /* Cursor for table associated with pIdx */
514   Index *pIdx,                    /* Index to match column of */
515   int iCol                        /* Column of index to match */
516 ){
517   int i;
518   const char *zColl = pIdx->azColl[iCol];
519 
520   for(i=0; i<pList->nExpr; i++){
521     Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr);
522     if( ALWAYS(p!=0)
523      && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN)
524      && p->iColumn==pIdx->aiColumn[iCol]
525      && p->iTable==iBase
526     ){
527       CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
528       if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
529         return i;
530       }
531     }
532   }
533 
534   return -1;
535 }
536 
537 /*
538 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
539 */
540 static int indexColumnNotNull(Index *pIdx, int iCol){
541   int j;
542   assert( pIdx!=0 );
543   assert( iCol>=0 && iCol<pIdx->nColumn );
544   j = pIdx->aiColumn[iCol];
545   if( j>=0 ){
546     return pIdx->pTable->aCol[j].notNull;
547   }else if( j==(-1) ){
548     return 1;
549   }else{
550     assert( j==(-2) );
551     return 0;  /* Assume an indexed expression can always yield a NULL */
552 
553   }
554 }
555 
556 /*
557 ** Return true if the DISTINCT expression-list passed as the third argument
558 ** is redundant.
559 **
560 ** A DISTINCT list is redundant if any subset of the columns in the
561 ** DISTINCT list are collectively unique and individually non-null.
562 */
563 static int isDistinctRedundant(
564   Parse *pParse,            /* Parsing context */
565   SrcList *pTabList,        /* The FROM clause */
566   WhereClause *pWC,         /* The WHERE clause */
567   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
568 ){
569   Table *pTab;
570   Index *pIdx;
571   int i;
572   int iBase;
573 
574   /* If there is more than one table or sub-select in the FROM clause of
575   ** this query, then it will not be possible to show that the DISTINCT
576   ** clause is redundant. */
577   if( pTabList->nSrc!=1 ) return 0;
578   iBase = pTabList->a[0].iCursor;
579   pTab = pTabList->a[0].pTab;
580 
581   /* If any of the expressions is an IPK column on table iBase, then return
582   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
583   ** current SELECT is a correlated sub-query.
584   */
585   for(i=0; i<pDistinct->nExpr; i++){
586     Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr);
587     if( NEVER(p==0) ) continue;
588     if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue;
589     if( p->iTable==iBase && p->iColumn<0 ) return 1;
590   }
591 
592   /* Loop through all indices on the table, checking each to see if it makes
593   ** the DISTINCT qualifier redundant. It does so if:
594   **
595   **   1. The index is itself UNIQUE, and
596   **
597   **   2. All of the columns in the index are either part of the pDistinct
598   **      list, or else the WHERE clause contains a term of the form "col=X",
599   **      where X is a constant value. The collation sequences of the
600   **      comparison and select-list expressions must match those of the index.
601   **
602   **   3. All of those index columns for which the WHERE clause does not
603   **      contain a "col=X" term are subject to a NOT NULL constraint.
604   */
605   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
606     if( !IsUniqueIndex(pIdx) ) continue;
607     if( pIdx->pPartIdxWhere ) continue;
608     for(i=0; i<pIdx->nKeyCol; i++){
609       if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
610         if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
611         if( indexColumnNotNull(pIdx, i)==0 ) break;
612       }
613     }
614     if( i==pIdx->nKeyCol ){
615       /* This index implies that the DISTINCT qualifier is redundant. */
616       return 1;
617     }
618   }
619 
620   return 0;
621 }
622 
623 
624 /*
625 ** Estimate the logarithm of the input value to base 2.
626 */
627 static LogEst estLog(LogEst N){
628   return N<=10 ? 0 : sqlite3LogEst(N) - 33;
629 }
630 
631 /*
632 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
633 **
634 ** This routine runs over generated VDBE code and translates OP_Column
635 ** opcodes into OP_Copy when the table is being accessed via co-routine
636 ** instead of via table lookup.
637 **
638 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
639 ** cursor iTabCur are transformed into OP_Sequence opcode for the
640 ** iAutoidxCur cursor, in order to generate unique rowids for the
641 ** automatic index being generated.
642 */
643 static void translateColumnToCopy(
644   Parse *pParse,      /* Parsing context */
645   int iStart,         /* Translate from this opcode to the end */
646   int iTabCur,        /* OP_Column/OP_Rowid references to this table */
647   int iRegister,      /* The first column is in this register */
648   int iAutoidxCur     /* If non-zero, cursor of autoindex being generated */
649 ){
650   Vdbe *v = pParse->pVdbe;
651   VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
652   int iEnd = sqlite3VdbeCurrentAddr(v);
653   if( pParse->db->mallocFailed ) return;
654   for(; iStart<iEnd; iStart++, pOp++){
655     if( pOp->p1!=iTabCur ) continue;
656     if( pOp->opcode==OP_Column ){
657       pOp->opcode = OP_Copy;
658       pOp->p1 = pOp->p2 + iRegister;
659       pOp->p2 = pOp->p3;
660       pOp->p3 = 0;
661     }else if( pOp->opcode==OP_Rowid ){
662       pOp->opcode = OP_Sequence;
663       pOp->p1 = iAutoidxCur;
664 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
665       if( iAutoidxCur==0 ){
666         pOp->opcode = OP_Null;
667         pOp->p3 = 0;
668       }
669 #endif
670     }
671   }
672 }
673 
674 /*
675 ** Two routines for printing the content of an sqlite3_index_info
676 ** structure.  Used for testing and debugging only.  If neither
677 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
678 ** are no-ops.
679 */
680 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
681 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){
682   int i;
683   if( !sqlite3WhereTrace ) return;
684   for(i=0; i<p->nConstraint; i++){
685     sqlite3DebugPrintf(
686        "  constraint[%d]: col=%d termid=%d op=%d usabled=%d collseq=%s\n",
687        i,
688        p->aConstraint[i].iColumn,
689        p->aConstraint[i].iTermOffset,
690        p->aConstraint[i].op,
691        p->aConstraint[i].usable,
692        sqlite3_vtab_collation(p,i));
693   }
694   for(i=0; i<p->nOrderBy; i++){
695     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
696        i,
697        p->aOrderBy[i].iColumn,
698        p->aOrderBy[i].desc);
699   }
700 }
701 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){
702   int i;
703   if( !sqlite3WhereTrace ) return;
704   for(i=0; i<p->nConstraint; i++){
705     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
706        i,
707        p->aConstraintUsage[i].argvIndex,
708        p->aConstraintUsage[i].omit);
709   }
710   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
711   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
712   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
713   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
714   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
715 }
716 #else
717 #define whereTraceIndexInfoInputs(A)
718 #define whereTraceIndexInfoOutputs(A)
719 #endif
720 
721 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
722 /*
723 ** Return TRUE if the WHERE clause term pTerm is of a form where it
724 ** could be used with an index to access pSrc, assuming an appropriate
725 ** index existed.
726 */
727 static int termCanDriveIndex(
728   const WhereTerm *pTerm,        /* WHERE clause term to check */
729   const SrcItem *pSrc,           /* Table we are trying to access */
730   const Bitmask notReady         /* Tables in outer loops of the join */
731 ){
732   char aff;
733   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
734   if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
735   if( (pSrc->fg.jointype & JT_LEFT)
736    && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
737    && (pTerm->eOperator & WO_IS)
738   ){
739     /* Cannot use an IS term from the WHERE clause as an index driver for
740     ** the RHS of a LEFT JOIN. Such a term can only be used if it is from
741     ** the ON clause.  */
742     return 0;
743   }
744   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
745   assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
746   if( pTerm->u.x.leftColumn<0 ) return 0;
747   aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity;
748   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
749   testcase( pTerm->pExpr->op==TK_IS );
750   return 1;
751 }
752 #endif
753 
754 
755 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
756 /*
757 ** Generate code to construct the Index object for an automatic index
758 ** and to set up the WhereLevel object pLevel so that the code generator
759 ** makes use of the automatic index.
760 */
761 static SQLITE_NOINLINE void constructAutomaticIndex(
762   Parse *pParse,              /* The parsing context */
763   const WhereClause *pWC,     /* The WHERE clause */
764   const SrcItem *pSrc,        /* The FROM clause term to get the next index */
765   const Bitmask notReady,     /* Mask of cursors that are not available */
766   WhereLevel *pLevel          /* Write new index here */
767 ){
768   int nKeyCol;                /* Number of columns in the constructed index */
769   WhereTerm *pTerm;           /* A single term of the WHERE clause */
770   WhereTerm *pWCEnd;          /* End of pWC->a[] */
771   Index *pIdx;                /* Object describing the transient index */
772   Vdbe *v;                    /* Prepared statement under construction */
773   int addrInit;               /* Address of the initialization bypass jump */
774   Table *pTable;              /* The table being indexed */
775   int addrTop;                /* Top of the index fill loop */
776   int regRecord;              /* Register holding an index record */
777   int n;                      /* Column counter */
778   int i;                      /* Loop counter */
779   int mxBitCol;               /* Maximum column in pSrc->colUsed */
780   CollSeq *pColl;             /* Collating sequence to on a column */
781   WhereLoop *pLoop;           /* The Loop object */
782   char *zNotUsed;             /* Extra space on the end of pIdx */
783   Bitmask idxCols;            /* Bitmap of columns used for indexing */
784   Bitmask extraCols;          /* Bitmap of additional columns */
785   u8 sentWarning = 0;         /* True if a warnning has been issued */
786   Expr *pPartial = 0;         /* Partial Index Expression */
787   int iContinue = 0;          /* Jump here to skip excluded rows */
788   SrcItem *pTabItem;          /* FROM clause term being indexed */
789   int addrCounter = 0;        /* Address where integer counter is initialized */
790   int regBase;                /* Array of registers where record is assembled */
791 
792   /* Generate code to skip over the creation and initialization of the
793   ** transient index on 2nd and subsequent iterations of the loop. */
794   v = pParse->pVdbe;
795   assert( v!=0 );
796   addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
797 
798   /* Count the number of columns that will be added to the index
799   ** and used to match WHERE clause constraints */
800   nKeyCol = 0;
801   pTable = pSrc->pTab;
802   pWCEnd = &pWC->a[pWC->nTerm];
803   pLoop = pLevel->pWLoop;
804   idxCols = 0;
805   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
806     Expr *pExpr = pTerm->pExpr;
807     /* Make the automatic index a partial index if there are terms in the
808     ** WHERE clause (or the ON clause of a LEFT join) that constrain which
809     ** rows of the target table (pSrc) that can be used. */
810     if( (pTerm->wtFlags & TERM_VIRTUAL)==0
811      && ((pSrc->fg.jointype&JT_LEFT)==0 || ExprHasProperty(pExpr,EP_FromJoin))
812      && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor)
813     ){
814       pPartial = sqlite3ExprAnd(pParse, pPartial,
815                                 sqlite3ExprDup(pParse->db, pExpr, 0));
816     }
817     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
818       int iCol;
819       Bitmask cMask;
820       assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
821       iCol = pTerm->u.x.leftColumn;
822       cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
823       testcase( iCol==BMS );
824       testcase( iCol==BMS-1 );
825       if( !sentWarning ){
826         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
827             "automatic index on %s(%s)", pTable->zName,
828             pTable->aCol[iCol].zCnName);
829         sentWarning = 1;
830       }
831       if( (idxCols & cMask)==0 ){
832         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
833           goto end_auto_index_create;
834         }
835         pLoop->aLTerm[nKeyCol++] = pTerm;
836         idxCols |= cMask;
837       }
838     }
839   }
840   assert( nKeyCol>0 || pParse->db->mallocFailed );
841   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
842   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
843                      | WHERE_AUTO_INDEX;
844 
845   /* Count the number of additional columns needed to create a
846   ** covering index.  A "covering index" is an index that contains all
847   ** columns that are needed by the query.  With a covering index, the
848   ** original table never needs to be accessed.  Automatic indices must
849   ** be a covering index because the index will not be updated if the
850   ** original table changes and the index and table cannot both be used
851   ** if they go out of sync.
852   */
853   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
854   mxBitCol = MIN(BMS-1,pTable->nCol);
855   testcase( pTable->nCol==BMS-1 );
856   testcase( pTable->nCol==BMS-2 );
857   for(i=0; i<mxBitCol; i++){
858     if( extraCols & MASKBIT(i) ) nKeyCol++;
859   }
860   if( pSrc->colUsed & MASKBIT(BMS-1) ){
861     nKeyCol += pTable->nCol - BMS + 1;
862   }
863 
864   /* Construct the Index object to describe this index */
865   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
866   if( pIdx==0 ) goto end_auto_index_create;
867   pLoop->u.btree.pIndex = pIdx;
868   pIdx->zName = "auto-index";
869   pIdx->pTable = pTable;
870   n = 0;
871   idxCols = 0;
872   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
873     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
874       int iCol;
875       Bitmask cMask;
876       assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
877       iCol = pTerm->u.x.leftColumn;
878       cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
879       testcase( iCol==BMS-1 );
880       testcase( iCol==BMS );
881       if( (idxCols & cMask)==0 ){
882         Expr *pX = pTerm->pExpr;
883         idxCols |= cMask;
884         pIdx->aiColumn[n] = pTerm->u.x.leftColumn;
885         pColl = sqlite3ExprCompareCollSeq(pParse, pX);
886         assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */
887         pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
888         n++;
889       }
890     }
891   }
892   assert( (u32)n==pLoop->u.btree.nEq );
893 
894   /* Add additional columns needed to make the automatic index into
895   ** a covering index */
896   for(i=0; i<mxBitCol; i++){
897     if( extraCols & MASKBIT(i) ){
898       pIdx->aiColumn[n] = i;
899       pIdx->azColl[n] = sqlite3StrBINARY;
900       n++;
901     }
902   }
903   if( pSrc->colUsed & MASKBIT(BMS-1) ){
904     for(i=BMS-1; i<pTable->nCol; i++){
905       pIdx->aiColumn[n] = i;
906       pIdx->azColl[n] = sqlite3StrBINARY;
907       n++;
908     }
909   }
910   assert( n==nKeyCol );
911   pIdx->aiColumn[n] = XN_ROWID;
912   pIdx->azColl[n] = sqlite3StrBINARY;
913 
914   /* Create the automatic index */
915   assert( pLevel->iIdxCur>=0 );
916   pLevel->iIdxCur = pParse->nTab++;
917   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
918   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
919   VdbeComment((v, "for %s", pTable->zName));
920   if( OptimizationEnabled(pParse->db, SQLITE_BloomFilter) ){
921     pLevel->regFilter = ++pParse->nMem;
922     sqlite3VdbeAddOp2(v, OP_Blob, 10000, pLevel->regFilter);
923   }
924 
925   /* Fill the automatic index with content */
926   pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
927   if( pTabItem->fg.viaCoroutine ){
928     int regYield = pTabItem->regReturn;
929     addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
930     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
931     addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
932     VdbeCoverage(v);
933     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
934   }else{
935     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
936   }
937   if( pPartial ){
938     iContinue = sqlite3VdbeMakeLabel(pParse);
939     sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
940     pLoop->wsFlags |= WHERE_PARTIALIDX;
941   }
942   regRecord = sqlite3GetTempReg(pParse);
943   regBase = sqlite3GenerateIndexKey(
944       pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
945   );
946   if( pLevel->regFilter ){
947     sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0,
948                          regBase, pLoop->u.btree.nEq);
949   }
950   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
951   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
952   if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
953   if( pTabItem->fg.viaCoroutine ){
954     sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
955     testcase( pParse->db->mallocFailed );
956     assert( pLevel->iIdxCur>0 );
957     translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
958                           pTabItem->regResult, pLevel->iIdxCur);
959     sqlite3VdbeGoto(v, addrTop);
960     pTabItem->fg.viaCoroutine = 0;
961   }else{
962     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
963     sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
964   }
965   sqlite3VdbeJumpHere(v, addrTop);
966   sqlite3ReleaseTempReg(pParse, regRecord);
967 
968   /* Jump here when skipping the initialization */
969   sqlite3VdbeJumpHere(v, addrInit);
970 
971 end_auto_index_create:
972   sqlite3ExprDelete(pParse->db, pPartial);
973 }
974 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
975 
976 /*
977 ** Generate bytecode that will initialize a Bloom filter that is appropriate
978 ** for pLevel.
979 **
980 ** If there are inner loops within pLevel that have the WHERE_BLOOMFILTER
981 ** flag set, initialize a Bloomfilter for them as well.  Except don't do
982 ** this recursive initialization if the SQLITE_BloomPulldown optimization has
983 ** been turned off.
984 **
985 ** When the Bloom filter is initialized, the WHERE_BLOOMFILTER flag is cleared
986 ** from the loop, but the regFilter value is set to a register that implements
987 ** the Bloom filter.  When regFilter is positive, the
988 ** sqlite3WhereCodeOneLoopStart() will generate code to test the Bloom filter
989 ** and skip the subsequence B-Tree seek if the Bloom filter indicates that
990 ** no matching rows exist.
991 **
992 ** This routine may only be called if it has previously been determined that
993 ** the loop would benefit from a Bloom filter, and the WHERE_BLOOMFILTER bit
994 ** is set.
995 */
996 static SQLITE_NOINLINE void sqlite3ConstructBloomFilter(
997   WhereInfo *pWInfo,    /* The WHERE clause */
998   int iLevel,           /* Index in pWInfo->a[] that is pLevel */
999   WhereLevel *pLevel,   /* Make a Bloom filter for this FROM term */
1000   Bitmask notReady      /* Loops that are not ready */
1001 ){
1002   int addrOnce;                        /* Address of opening OP_Once */
1003   int addrTop;                         /* Address of OP_Rewind */
1004   int addrCont;                        /* Jump here to skip a row */
1005   const WhereTerm *pTerm;              /* For looping over WHERE clause terms */
1006   const WhereTerm *pWCEnd;             /* Last WHERE clause term */
1007   Parse *pParse = pWInfo->pParse;      /* Parsing context */
1008   Vdbe *v = pParse->pVdbe;             /* VDBE under construction */
1009   WhereLoop *pLoop = pLevel->pWLoop;   /* The loop being coded */
1010   int iCur;                            /* Cursor for table getting the filter */
1011 
1012   assert( pLoop!=0 );
1013   assert( v!=0 );
1014   assert( pLoop->wsFlags & WHERE_BLOOMFILTER );
1015 
1016   addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1017   do{
1018     const SrcItem *pItem;
1019     const Table *pTab;
1020     u64 sz;
1021     sqlite3WhereExplainBloomFilter(pParse, pWInfo, pLevel);
1022     addrCont = sqlite3VdbeMakeLabel(pParse);
1023     iCur = pLevel->iTabCur;
1024     pLevel->regFilter = ++pParse->nMem;
1025 
1026     /* The Bloom filter is a Blob held in a register.  Initialize it
1027     ** to zero-filled blob of at least 80K bits, but maybe more if the
1028     ** estimated size of the table is larger.  We could actually
1029     ** measure the size of the table at run-time using OP_Count with
1030     ** P3==1 and use that value to initialize the blob.  But that makes
1031     ** testing complicated.  By basing the blob size on the value in the
1032     ** sqlite_stat1 table, testing is much easier.
1033     */
1034     pItem = &pWInfo->pTabList->a[pLevel->iFrom];
1035     assert( pItem!=0 );
1036     pTab = pItem->pTab;
1037     assert( pTab!=0 );
1038     sz = sqlite3LogEstToInt(pTab->nRowLogEst);
1039     if( sz<10000 ){
1040       sz = 10000;
1041     }else if( sz>10000000 ){
1042       sz = 10000000;
1043     }
1044     sqlite3VdbeAddOp2(v, OP_Blob, (int)sz, pLevel->regFilter);
1045 
1046     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
1047     pWCEnd = &pWInfo->sWC.a[pWInfo->sWC.nTerm];
1048     for(pTerm=pWInfo->sWC.a; pTerm<pWCEnd; pTerm++){
1049       Expr *pExpr = pTerm->pExpr;
1050       if( (pTerm->wtFlags & TERM_VIRTUAL)==0
1051        && sqlite3ExprIsTableConstant(pExpr, iCur)
1052       ){
1053         sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
1054       }
1055     }
1056     if( pLoop->wsFlags & WHERE_IPK ){
1057       int r1 = sqlite3GetTempReg(pParse);
1058       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1);
1059       sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, 1);
1060       sqlite3ReleaseTempReg(pParse, r1);
1061     }else{
1062       Index *pIdx = pLoop->u.btree.pIndex;
1063       int n = pLoop->u.btree.nEq;
1064       int r1 = sqlite3GetTempRange(pParse, n);
1065       int jj;
1066       for(jj=0; jj<n; jj++){
1067         int iCol = pIdx->aiColumn[jj];
1068         assert( pIdx->pTable==pItem->pTab );
1069         sqlite3ExprCodeGetColumnOfTable(v, pIdx->pTable, iCur, iCol,r1+jj);
1070       }
1071       sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, n);
1072       sqlite3ReleaseTempRange(pParse, r1, n);
1073     }
1074     sqlite3VdbeResolveLabel(v, addrCont);
1075     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1);
1076     VdbeCoverage(v);
1077     sqlite3VdbeJumpHere(v, addrTop);
1078     pLoop->wsFlags &= ~WHERE_BLOOMFILTER;
1079     if( OptimizationDisabled(pParse->db, SQLITE_BloomPulldown) ) break;
1080     while( ++iLevel < pWInfo->nLevel ){
1081       pLevel = &pWInfo->a[iLevel];
1082       pLoop = pLevel->pWLoop;
1083       if( NEVER(pLoop==0) ) continue;
1084       if( pLoop->prereq & notReady ) continue;
1085       if( (pLoop->wsFlags & (WHERE_BLOOMFILTER|WHERE_COLUMN_IN))
1086                  ==WHERE_BLOOMFILTER
1087       ){
1088         /* This is a candidate for bloom-filter pull-down (early evaluation).
1089         ** The test that WHERE_COLUMN_IN is omitted is important, as we are
1090         ** not able to do early evaluation of bloom filters that make use of
1091         ** the IN operator */
1092         break;
1093       }
1094     }
1095   }while( iLevel < pWInfo->nLevel );
1096   sqlite3VdbeJumpHere(v, addrOnce);
1097 }
1098 
1099 
1100 #ifndef SQLITE_OMIT_VIRTUALTABLE
1101 /*
1102 ** Allocate and populate an sqlite3_index_info structure. It is the
1103 ** responsibility of the caller to eventually release the structure
1104 ** by passing the pointer returned by this function to freeIndexInfo().
1105 */
1106 static sqlite3_index_info *allocateIndexInfo(
1107   WhereInfo *pWInfo,              /* The WHERE clause */
1108   WhereClause *pWC,               /* The WHERE clause being analyzed */
1109   Bitmask mUnusable,              /* Ignore terms with these prereqs */
1110   SrcItem *pSrc,                  /* The FROM clause term that is the vtab */
1111   u16 *pmNoOmit                   /* Mask of terms not to omit */
1112 ){
1113   int i, j;
1114   int nTerm;
1115   Parse *pParse = pWInfo->pParse;
1116   struct sqlite3_index_constraint *pIdxCons;
1117   struct sqlite3_index_orderby *pIdxOrderBy;
1118   struct sqlite3_index_constraint_usage *pUsage;
1119   struct HiddenIndexInfo *pHidden;
1120   WhereTerm *pTerm;
1121   int nOrderBy;
1122   sqlite3_index_info *pIdxInfo;
1123   u16 mNoOmit = 0;
1124   const Table *pTab;
1125   int eDistinct = 0;
1126   ExprList *pOrderBy = pWInfo->pOrderBy;
1127 
1128   assert( pSrc!=0 );
1129   pTab = pSrc->pTab;
1130   assert( pTab!=0 );
1131   assert( IsVirtual(pTab) );
1132 
1133   /* Find all WHERE clause constraints referring to this virtual table.
1134   ** Mark each term with the TERM_OK flag.  Set nTerm to the number of
1135   ** terms found.
1136   */
1137   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1138     pTerm->wtFlags &= ~TERM_OK;
1139     if( pTerm->leftCursor != pSrc->iCursor ) continue;
1140     if( pTerm->prereqRight & mUnusable ) continue;
1141     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
1142     testcase( pTerm->eOperator & WO_IN );
1143     testcase( pTerm->eOperator & WO_ISNULL );
1144     testcase( pTerm->eOperator & WO_IS );
1145     testcase( pTerm->eOperator & WO_ALL );
1146     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
1147     if( pTerm->wtFlags & TERM_VNULL ) continue;
1148 
1149     assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
1150     assert( pTerm->u.x.leftColumn>=XN_ROWID );
1151     assert( pTerm->u.x.leftColumn<pTab->nCol );
1152 
1153     /* tag-20191211-002: WHERE-clause constraints are not useful to the
1154     ** right-hand table of a LEFT JOIN.  See tag-20191211-001 for the
1155     ** equivalent restriction for ordinary tables. */
1156     if( (pSrc->fg.jointype & JT_LEFT)!=0
1157      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
1158     ){
1159       continue;
1160     }
1161     nTerm++;
1162     pTerm->wtFlags |= TERM_OK;
1163   }
1164 
1165   /* If the ORDER BY clause contains only columns in the current
1166   ** virtual table then allocate space for the aOrderBy part of
1167   ** the sqlite3_index_info structure.
1168   */
1169   nOrderBy = 0;
1170   if( pOrderBy ){
1171     int n = pOrderBy->nExpr;
1172     for(i=0; i<n; i++){
1173       Expr *pExpr = pOrderBy->a[i].pExpr;
1174       Expr *pE2;
1175 
1176       /* Skip over constant terms in the ORDER BY clause */
1177       if( sqlite3ExprIsConstant(pExpr) ){
1178         continue;
1179       }
1180 
1181       /* Virtual tables are unable to deal with NULLS FIRST */
1182       if( pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL ) break;
1183 
1184       /* First case - a direct column references without a COLLATE operator */
1185       if( pExpr->op==TK_COLUMN && pExpr->iTable==pSrc->iCursor ){
1186         assert( pExpr->iColumn>=XN_ROWID && pExpr->iColumn<pTab->nCol );
1187         continue;
1188       }
1189 
1190       /* 2nd case - a column reference with a COLLATE operator.  Only match
1191       ** of the COLLATE operator matches the collation of the column. */
1192       if( pExpr->op==TK_COLLATE
1193        && (pE2 = pExpr->pLeft)->op==TK_COLUMN
1194        && pE2->iTable==pSrc->iCursor
1195       ){
1196         const char *zColl;  /* The collating sequence name */
1197         assert( !ExprHasProperty(pExpr, EP_IntValue) );
1198         assert( pExpr->u.zToken!=0 );
1199         assert( pE2->iColumn>=XN_ROWID && pE2->iColumn<pTab->nCol );
1200         pExpr->iColumn = pE2->iColumn;
1201         if( pE2->iColumn<0 ) continue;  /* Collseq does not matter for rowid */
1202         zColl = sqlite3ColumnColl(&pTab->aCol[pE2->iColumn]);
1203         if( zColl==0 ) zColl = sqlite3StrBINARY;
1204         if( sqlite3_stricmp(pExpr->u.zToken, zColl)==0 ) continue;
1205       }
1206 
1207       /* No matches cause a break out of the loop */
1208       break;
1209     }
1210     if( i==n ){
1211       nOrderBy = n;
1212       if( (pWInfo->wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY)) ){
1213         eDistinct = 1 + ((pWInfo->wctrlFlags & WHERE_DISTINCTBY)!=0);
1214       }
1215     }
1216   }
1217 
1218   /* Allocate the sqlite3_index_info structure
1219   */
1220   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
1221                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1222                            + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden)
1223                            + sizeof(sqlite3_value*)*nTerm );
1224   if( pIdxInfo==0 ){
1225     sqlite3ErrorMsg(pParse, "out of memory");
1226     return 0;
1227   }
1228   pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
1229   pIdxCons = (struct sqlite3_index_constraint*)&pHidden->aRhs[nTerm];
1230   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1231   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1232   pIdxInfo->aConstraint = pIdxCons;
1233   pIdxInfo->aOrderBy = pIdxOrderBy;
1234   pIdxInfo->aConstraintUsage = pUsage;
1235   pHidden->pWC = pWC;
1236   pHidden->pParse = pParse;
1237   pHidden->eDistinct = eDistinct;
1238   pHidden->mIn = 0;
1239   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1240     u16 op;
1241     if( (pTerm->wtFlags & TERM_OK)==0 ) continue;
1242     pIdxCons[j].iColumn = pTerm->u.x.leftColumn;
1243     pIdxCons[j].iTermOffset = i;
1244     op = pTerm->eOperator & WO_ALL;
1245     if( op==WO_IN ){
1246       if( (pTerm->wtFlags & TERM_SLICE)==0 ){
1247         pHidden->mIn |= SMASKBIT32(j);
1248       }
1249       op = WO_EQ;
1250     }
1251     if( op==WO_AUX ){
1252       pIdxCons[j].op = pTerm->eMatchOp;
1253     }else if( op & (WO_ISNULL|WO_IS) ){
1254       if( op==WO_ISNULL ){
1255         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
1256       }else{
1257         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
1258       }
1259     }else{
1260       pIdxCons[j].op = (u8)op;
1261       /* The direct assignment in the previous line is possible only because
1262       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
1263       ** following asserts verify this fact. */
1264       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1265       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1266       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1267       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1268       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1269       assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
1270 
1271       if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
1272        && sqlite3ExprIsVector(pTerm->pExpr->pRight)
1273       ){
1274         testcase( j!=i );
1275         if( j<16 ) mNoOmit |= (1 << j);
1276         if( op==WO_LT ) pIdxCons[j].op = WO_LE;
1277         if( op==WO_GT ) pIdxCons[j].op = WO_GE;
1278       }
1279     }
1280 
1281     j++;
1282   }
1283   assert( j==nTerm );
1284   pIdxInfo->nConstraint = j;
1285   for(i=j=0; i<nOrderBy; i++){
1286     Expr *pExpr = pOrderBy->a[i].pExpr;
1287     if( sqlite3ExprIsConstant(pExpr) ) continue;
1288     assert( pExpr->op==TK_COLUMN
1289          || (pExpr->op==TK_COLLATE && pExpr->pLeft->op==TK_COLUMN
1290               && pExpr->iColumn==pExpr->pLeft->iColumn) );
1291     pIdxOrderBy[j].iColumn = pExpr->iColumn;
1292     pIdxOrderBy[j].desc = pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC;
1293     j++;
1294   }
1295   pIdxInfo->nOrderBy = j;
1296 
1297   *pmNoOmit = mNoOmit;
1298   return pIdxInfo;
1299 }
1300 
1301 /*
1302 ** Free an sqlite3_index_info structure allocated by allocateIndexInfo()
1303 ** and possibly modified by xBestIndex methods.
1304 */
1305 static void freeIndexInfo(sqlite3 *db, sqlite3_index_info *pIdxInfo){
1306   HiddenIndexInfo *pHidden;
1307   int i;
1308   assert( pIdxInfo!=0 );
1309   pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
1310   assert( pHidden->pParse!=0 );
1311   assert( pHidden->pParse->db==db );
1312   for(i=0; i<pIdxInfo->nConstraint; i++){
1313     sqlite3ValueFree(pHidden->aRhs[i]); /* IMP: R-14553-25174 */
1314     pHidden->aRhs[i] = 0;
1315   }
1316   sqlite3DbFree(db, pIdxInfo);
1317 }
1318 
1319 /*
1320 ** The table object reference passed as the second argument to this function
1321 ** must represent a virtual table. This function invokes the xBestIndex()
1322 ** method of the virtual table with the sqlite3_index_info object that
1323 ** comes in as the 3rd argument to this function.
1324 **
1325 ** If an error occurs, pParse is populated with an error message and an
1326 ** appropriate error code is returned.  A return of SQLITE_CONSTRAINT from
1327 ** xBestIndex is not considered an error.  SQLITE_CONSTRAINT indicates that
1328 ** the current configuration of "unusable" flags in sqlite3_index_info can
1329 ** not result in a valid plan.
1330 **
1331 ** Whether or not an error is returned, it is the responsibility of the
1332 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1333 ** that this is required.
1334 */
1335 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
1336   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
1337   int rc;
1338 
1339   whereTraceIndexInfoInputs(p);
1340   pParse->db->nSchemaLock++;
1341   rc = pVtab->pModule->xBestIndex(pVtab, p);
1342   pParse->db->nSchemaLock--;
1343   whereTraceIndexInfoOutputs(p);
1344 
1345   if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){
1346     if( rc==SQLITE_NOMEM ){
1347       sqlite3OomFault(pParse->db);
1348     }else if( !pVtab->zErrMsg ){
1349       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1350     }else{
1351       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1352     }
1353   }
1354   sqlite3_free(pVtab->zErrMsg);
1355   pVtab->zErrMsg = 0;
1356   return rc;
1357 }
1358 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1359 
1360 #ifdef SQLITE_ENABLE_STAT4
1361 /*
1362 ** Estimate the location of a particular key among all keys in an
1363 ** index.  Store the results in aStat as follows:
1364 **
1365 **    aStat[0]      Est. number of rows less than pRec
1366 **    aStat[1]      Est. number of rows equal to pRec
1367 **
1368 ** Return the index of the sample that is the smallest sample that
1369 ** is greater than or equal to pRec. Note that this index is not an index
1370 ** into the aSample[] array - it is an index into a virtual set of samples
1371 ** based on the contents of aSample[] and the number of fields in record
1372 ** pRec.
1373 */
1374 static int whereKeyStats(
1375   Parse *pParse,              /* Database connection */
1376   Index *pIdx,                /* Index to consider domain of */
1377   UnpackedRecord *pRec,       /* Vector of values to consider */
1378   int roundUp,                /* Round up if true.  Round down if false */
1379   tRowcnt *aStat              /* OUT: stats written here */
1380 ){
1381   IndexSample *aSample = pIdx->aSample;
1382   int iCol;                   /* Index of required stats in anEq[] etc. */
1383   int i;                      /* Index of first sample >= pRec */
1384   int iSample;                /* Smallest sample larger than or equal to pRec */
1385   int iMin = 0;               /* Smallest sample not yet tested */
1386   int iTest;                  /* Next sample to test */
1387   int res;                    /* Result of comparison operation */
1388   int nField;                 /* Number of fields in pRec */
1389   tRowcnt iLower = 0;         /* anLt[] + anEq[] of largest sample pRec is > */
1390 
1391 #ifndef SQLITE_DEBUG
1392   UNUSED_PARAMETER( pParse );
1393 #endif
1394   assert( pRec!=0 );
1395   assert( pIdx->nSample>0 );
1396   assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
1397 
1398   /* Do a binary search to find the first sample greater than or equal
1399   ** to pRec. If pRec contains a single field, the set of samples to search
1400   ** is simply the aSample[] array. If the samples in aSample[] contain more
1401   ** than one fields, all fields following the first are ignored.
1402   **
1403   ** If pRec contains N fields, where N is more than one, then as well as the
1404   ** samples in aSample[] (truncated to N fields), the search also has to
1405   ** consider prefixes of those samples. For example, if the set of samples
1406   ** in aSample is:
1407   **
1408   **     aSample[0] = (a, 5)
1409   **     aSample[1] = (a, 10)
1410   **     aSample[2] = (b, 5)
1411   **     aSample[3] = (c, 100)
1412   **     aSample[4] = (c, 105)
1413   **
1414   ** Then the search space should ideally be the samples above and the
1415   ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1416   ** the code actually searches this set:
1417   **
1418   **     0: (a)
1419   **     1: (a, 5)
1420   **     2: (a, 10)
1421   **     3: (a, 10)
1422   **     4: (b)
1423   **     5: (b, 5)
1424   **     6: (c)
1425   **     7: (c, 100)
1426   **     8: (c, 105)
1427   **     9: (c, 105)
1428   **
1429   ** For each sample in the aSample[] array, N samples are present in the
1430   ** effective sample array. In the above, samples 0 and 1 are based on
1431   ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1432   **
1433   ** Often, sample i of each block of N effective samples has (i+1) fields.
1434   ** Except, each sample may be extended to ensure that it is greater than or
1435   ** equal to the previous sample in the array. For example, in the above,
1436   ** sample 2 is the first sample of a block of N samples, so at first it
1437   ** appears that it should be 1 field in size. However, that would make it
1438   ** smaller than sample 1, so the binary search would not work. As a result,
1439   ** it is extended to two fields. The duplicates that this creates do not
1440   ** cause any problems.
1441   */
1442   nField = pRec->nField;
1443   iCol = 0;
1444   iSample = pIdx->nSample * nField;
1445   do{
1446     int iSamp;                    /* Index in aSample[] of test sample */
1447     int n;                        /* Number of fields in test sample */
1448 
1449     iTest = (iMin+iSample)/2;
1450     iSamp = iTest / nField;
1451     if( iSamp>0 ){
1452       /* The proposed effective sample is a prefix of sample aSample[iSamp].
1453       ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1454       ** fields that is greater than the previous effective sample.  */
1455       for(n=(iTest % nField) + 1; n<nField; n++){
1456         if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1457       }
1458     }else{
1459       n = iTest + 1;
1460     }
1461 
1462     pRec->nField = n;
1463     res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1464     if( res<0 ){
1465       iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1466       iMin = iTest+1;
1467     }else if( res==0 && n<nField ){
1468       iLower = aSample[iSamp].anLt[n-1];
1469       iMin = iTest+1;
1470       res = -1;
1471     }else{
1472       iSample = iTest;
1473       iCol = n-1;
1474     }
1475   }while( res && iMin<iSample );
1476   i = iSample / nField;
1477 
1478 #ifdef SQLITE_DEBUG
1479   /* The following assert statements check that the binary search code
1480   ** above found the right answer. This block serves no purpose other
1481   ** than to invoke the asserts.  */
1482   if( pParse->db->mallocFailed==0 ){
1483     if( res==0 ){
1484       /* If (res==0) is true, then pRec must be equal to sample i. */
1485       assert( i<pIdx->nSample );
1486       assert( iCol==nField-1 );
1487       pRec->nField = nField;
1488       assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1489            || pParse->db->mallocFailed
1490       );
1491     }else{
1492       /* Unless i==pIdx->nSample, indicating that pRec is larger than
1493       ** all samples in the aSample[] array, pRec must be smaller than the
1494       ** (iCol+1) field prefix of sample i.  */
1495       assert( i<=pIdx->nSample && i>=0 );
1496       pRec->nField = iCol+1;
1497       assert( i==pIdx->nSample
1498            || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1499            || pParse->db->mallocFailed );
1500 
1501       /* if i==0 and iCol==0, then record pRec is smaller than all samples
1502       ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1503       ** be greater than or equal to the (iCol) field prefix of sample i.
1504       ** If (i>0), then pRec must also be greater than sample (i-1).  */
1505       if( iCol>0 ){
1506         pRec->nField = iCol;
1507         assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1508              || pParse->db->mallocFailed );
1509       }
1510       if( i>0 ){
1511         pRec->nField = nField;
1512         assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1513              || pParse->db->mallocFailed );
1514       }
1515     }
1516   }
1517 #endif /* ifdef SQLITE_DEBUG */
1518 
1519   if( res==0 ){
1520     /* Record pRec is equal to sample i */
1521     assert( iCol==nField-1 );
1522     aStat[0] = aSample[i].anLt[iCol];
1523     aStat[1] = aSample[i].anEq[iCol];
1524   }else{
1525     /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1526     ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1527     ** is larger than all samples in the array. */
1528     tRowcnt iUpper, iGap;
1529     if( i>=pIdx->nSample ){
1530       iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1531     }else{
1532       iUpper = aSample[i].anLt[iCol];
1533     }
1534 
1535     if( iLower>=iUpper ){
1536       iGap = 0;
1537     }else{
1538       iGap = iUpper - iLower;
1539     }
1540     if( roundUp ){
1541       iGap = (iGap*2)/3;
1542     }else{
1543       iGap = iGap/3;
1544     }
1545     aStat[0] = iLower + iGap;
1546     aStat[1] = pIdx->aAvgEq[nField-1];
1547   }
1548 
1549   /* Restore the pRec->nField value before returning.  */
1550   pRec->nField = nField;
1551   return i;
1552 }
1553 #endif /* SQLITE_ENABLE_STAT4 */
1554 
1555 /*
1556 ** If it is not NULL, pTerm is a term that provides an upper or lower
1557 ** bound on a range scan. Without considering pTerm, it is estimated
1558 ** that the scan will visit nNew rows. This function returns the number
1559 ** estimated to be visited after taking pTerm into account.
1560 **
1561 ** If the user explicitly specified a likelihood() value for this term,
1562 ** then the return value is the likelihood multiplied by the number of
1563 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1564 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1565 */
1566 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1567   LogEst nRet = nNew;
1568   if( pTerm ){
1569     if( pTerm->truthProb<=0 ){
1570       nRet += pTerm->truthProb;
1571     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1572       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
1573     }
1574   }
1575   return nRet;
1576 }
1577 
1578 
1579 #ifdef SQLITE_ENABLE_STAT4
1580 /*
1581 ** Return the affinity for a single column of an index.
1582 */
1583 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1584   assert( iCol>=0 && iCol<pIdx->nColumn );
1585   if( !pIdx->zColAff ){
1586     if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1587   }
1588   assert( pIdx->zColAff[iCol]!=0 );
1589   return pIdx->zColAff[iCol];
1590 }
1591 #endif
1592 
1593 
1594 #ifdef SQLITE_ENABLE_STAT4
1595 /*
1596 ** This function is called to estimate the number of rows visited by a
1597 ** range-scan on a skip-scan index. For example:
1598 **
1599 **   CREATE INDEX i1 ON t1(a, b, c);
1600 **   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1601 **
1602 ** Value pLoop->nOut is currently set to the estimated number of rows
1603 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1604 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1605 ** on the stat4 data for the index. this scan will be peformed multiple
1606 ** times (once for each (a,b) combination that matches a=?) is dealt with
1607 ** by the caller.
1608 **
1609 ** It does this by scanning through all stat4 samples, comparing values
1610 ** extracted from pLower and pUpper with the corresponding column in each
1611 ** sample. If L and U are the number of samples found to be less than or
1612 ** equal to the values extracted from pLower and pUpper respectively, and
1613 ** N is the total number of samples, the pLoop->nOut value is adjusted
1614 ** as follows:
1615 **
1616 **   nOut = nOut * ( min(U - L, 1) / N )
1617 **
1618 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1619 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1620 ** U is set to N.
1621 **
1622 ** Normally, this function sets *pbDone to 1 before returning. However,
1623 ** if no value can be extracted from either pLower or pUpper (and so the
1624 ** estimate of the number of rows delivered remains unchanged), *pbDone
1625 ** is left as is.
1626 **
1627 ** If an error occurs, an SQLite error code is returned. Otherwise,
1628 ** SQLITE_OK.
1629 */
1630 static int whereRangeSkipScanEst(
1631   Parse *pParse,       /* Parsing & code generating context */
1632   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1633   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1634   WhereLoop *pLoop,    /* Update the .nOut value of this loop */
1635   int *pbDone          /* Set to true if at least one expr. value extracted */
1636 ){
1637   Index *p = pLoop->u.btree.pIndex;
1638   int nEq = pLoop->u.btree.nEq;
1639   sqlite3 *db = pParse->db;
1640   int nLower = -1;
1641   int nUpper = p->nSample+1;
1642   int rc = SQLITE_OK;
1643   u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1644   CollSeq *pColl;
1645 
1646   sqlite3_value *p1 = 0;          /* Value extracted from pLower */
1647   sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
1648   sqlite3_value *pVal = 0;        /* Value extracted from record */
1649 
1650   pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1651   if( pLower ){
1652     rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1653     nLower = 0;
1654   }
1655   if( pUpper && rc==SQLITE_OK ){
1656     rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1657     nUpper = p2 ? 0 : p->nSample;
1658   }
1659 
1660   if( p1 || p2 ){
1661     int i;
1662     int nDiff;
1663     for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1664       rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1665       if( rc==SQLITE_OK && p1 ){
1666         int res = sqlite3MemCompare(p1, pVal, pColl);
1667         if( res>=0 ) nLower++;
1668       }
1669       if( rc==SQLITE_OK && p2 ){
1670         int res = sqlite3MemCompare(p2, pVal, pColl);
1671         if( res>=0 ) nUpper++;
1672       }
1673     }
1674     nDiff = (nUpper - nLower);
1675     if( nDiff<=0 ) nDiff = 1;
1676 
1677     /* If there is both an upper and lower bound specified, and the
1678     ** comparisons indicate that they are close together, use the fallback
1679     ** method (assume that the scan visits 1/64 of the rows) for estimating
1680     ** the number of rows visited. Otherwise, estimate the number of rows
1681     ** using the method described in the header comment for this function. */
1682     if( nDiff!=1 || pUpper==0 || pLower==0 ){
1683       int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1684       pLoop->nOut -= nAdjust;
1685       *pbDone = 1;
1686       WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n",
1687                            nLower, nUpper, nAdjust*-1, pLoop->nOut));
1688     }
1689 
1690   }else{
1691     assert( *pbDone==0 );
1692   }
1693 
1694   sqlite3ValueFree(p1);
1695   sqlite3ValueFree(p2);
1696   sqlite3ValueFree(pVal);
1697 
1698   return rc;
1699 }
1700 #endif /* SQLITE_ENABLE_STAT4 */
1701 
1702 /*
1703 ** This function is used to estimate the number of rows that will be visited
1704 ** by scanning an index for a range of values. The range may have an upper
1705 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1706 ** and lower bounds are represented by pLower and pUpper respectively. For
1707 ** example, assuming that index p is on t1(a):
1708 **
1709 **   ... FROM t1 WHERE a > ? AND a < ? ...
1710 **                    |_____|   |_____|
1711 **                       |         |
1712 **                     pLower    pUpper
1713 **
1714 ** If either of the upper or lower bound is not present, then NULL is passed in
1715 ** place of the corresponding WhereTerm.
1716 **
1717 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1718 ** column subject to the range constraint. Or, equivalently, the number of
1719 ** equality constraints optimized by the proposed index scan. For example,
1720 ** assuming index p is on t1(a, b), and the SQL query is:
1721 **
1722 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1723 **
1724 ** then nEq is set to 1 (as the range restricted column, b, is the second
1725 ** left-most column of the index). Or, if the query is:
1726 **
1727 **   ... FROM t1 WHERE a > ? AND a < ? ...
1728 **
1729 ** then nEq is set to 0.
1730 **
1731 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1732 ** number of rows that the index scan is expected to visit without
1733 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1734 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1735 ** to account for the range constraints pLower and pUpper.
1736 **
1737 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1738 ** used, a single range inequality reduces the search space by a factor of 4.
1739 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1740 ** rows visited by a factor of 64.
1741 */
1742 static int whereRangeScanEst(
1743   Parse *pParse,       /* Parsing & code generating context */
1744   WhereLoopBuilder *pBuilder,
1745   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1746   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1747   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
1748 ){
1749   int rc = SQLITE_OK;
1750   int nOut = pLoop->nOut;
1751   LogEst nNew;
1752 
1753 #ifdef SQLITE_ENABLE_STAT4
1754   Index *p = pLoop->u.btree.pIndex;
1755   int nEq = pLoop->u.btree.nEq;
1756 
1757   if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol)
1758    && OptimizationEnabled(pParse->db, SQLITE_Stat4)
1759   ){
1760     if( nEq==pBuilder->nRecValid ){
1761       UnpackedRecord *pRec = pBuilder->pRec;
1762       tRowcnt a[2];
1763       int nBtm = pLoop->u.btree.nBtm;
1764       int nTop = pLoop->u.btree.nTop;
1765 
1766       /* Variable iLower will be set to the estimate of the number of rows in
1767       ** the index that are less than the lower bound of the range query. The
1768       ** lower bound being the concatenation of $P and $L, where $P is the
1769       ** key-prefix formed by the nEq values matched against the nEq left-most
1770       ** columns of the index, and $L is the value in pLower.
1771       **
1772       ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1773       ** is not a simple variable or literal value), the lower bound of the
1774       ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1775       ** if $L is available, whereKeyStats() is called for both ($P) and
1776       ** ($P:$L) and the larger of the two returned values is used.
1777       **
1778       ** Similarly, iUpper is to be set to the estimate of the number of rows
1779       ** less than the upper bound of the range query. Where the upper bound
1780       ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1781       ** of iUpper are requested of whereKeyStats() and the smaller used.
1782       **
1783       ** The number of rows between the two bounds is then just iUpper-iLower.
1784       */
1785       tRowcnt iLower;     /* Rows less than the lower bound */
1786       tRowcnt iUpper;     /* Rows less than the upper bound */
1787       int iLwrIdx = -2;   /* aSample[] for the lower bound */
1788       int iUprIdx = -1;   /* aSample[] for the upper bound */
1789 
1790       if( pRec ){
1791         testcase( pRec->nField!=pBuilder->nRecValid );
1792         pRec->nField = pBuilder->nRecValid;
1793       }
1794       /* Determine iLower and iUpper using ($P) only. */
1795       if( nEq==0 ){
1796         iLower = 0;
1797         iUpper = p->nRowEst0;
1798       }else{
1799         /* Note: this call could be optimized away - since the same values must
1800         ** have been requested when testing key $P in whereEqualScanEst().  */
1801         whereKeyStats(pParse, p, pRec, 0, a);
1802         iLower = a[0];
1803         iUpper = a[0] + a[1];
1804       }
1805 
1806       assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1807       assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1808       assert( p->aSortOrder!=0 );
1809       if( p->aSortOrder[nEq] ){
1810         /* The roles of pLower and pUpper are swapped for a DESC index */
1811         SWAP(WhereTerm*, pLower, pUpper);
1812         SWAP(int, nBtm, nTop);
1813       }
1814 
1815       /* If possible, improve on the iLower estimate using ($P:$L). */
1816       if( pLower ){
1817         int n;                    /* Values extracted from pExpr */
1818         Expr *pExpr = pLower->pExpr->pRight;
1819         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1820         if( rc==SQLITE_OK && n ){
1821           tRowcnt iNew;
1822           u16 mask = WO_GT|WO_LE;
1823           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1824           iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1825           iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1826           if( iNew>iLower ) iLower = iNew;
1827           nOut--;
1828           pLower = 0;
1829         }
1830       }
1831 
1832       /* If possible, improve on the iUpper estimate using ($P:$U). */
1833       if( pUpper ){
1834         int n;                    /* Values extracted from pExpr */
1835         Expr *pExpr = pUpper->pExpr->pRight;
1836         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1837         if( rc==SQLITE_OK && n ){
1838           tRowcnt iNew;
1839           u16 mask = WO_GT|WO_LE;
1840           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1841           iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1842           iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1843           if( iNew<iUpper ) iUpper = iNew;
1844           nOut--;
1845           pUpper = 0;
1846         }
1847       }
1848 
1849       pBuilder->pRec = pRec;
1850       if( rc==SQLITE_OK ){
1851         if( iUpper>iLower ){
1852           nNew = sqlite3LogEst(iUpper - iLower);
1853           /* TUNING:  If both iUpper and iLower are derived from the same
1854           ** sample, then assume they are 4x more selective.  This brings
1855           ** the estimated selectivity more in line with what it would be
1856           ** if estimated without the use of STAT4 tables. */
1857           if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
1858         }else{
1859           nNew = 10;        assert( 10==sqlite3LogEst(2) );
1860         }
1861         if( nNew<nOut ){
1862           nOut = nNew;
1863         }
1864         WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
1865                            (u32)iLower, (u32)iUpper, nOut));
1866       }
1867     }else{
1868       int bDone = 0;
1869       rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1870       if( bDone ) return rc;
1871     }
1872   }
1873 #else
1874   UNUSED_PARAMETER(pParse);
1875   UNUSED_PARAMETER(pBuilder);
1876   assert( pLower || pUpper );
1877 #endif
1878   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1879   nNew = whereRangeAdjust(pLower, nOut);
1880   nNew = whereRangeAdjust(pUpper, nNew);
1881 
1882   /* TUNING: If there is both an upper and lower limit and neither limit
1883   ** has an application-defined likelihood(), assume the range is
1884   ** reduced by an additional 75%. This means that, by default, an open-ended
1885   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1886   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1887   ** match 1/64 of the index. */
1888   if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1889     nNew -= 20;
1890   }
1891 
1892   nOut -= (pLower!=0) + (pUpper!=0);
1893   if( nNew<10 ) nNew = 10;
1894   if( nNew<nOut ) nOut = nNew;
1895 #if defined(WHERETRACE_ENABLED)
1896   if( pLoop->nOut>nOut ){
1897     WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1898                     pLoop->nOut, nOut));
1899   }
1900 #endif
1901   pLoop->nOut = (LogEst)nOut;
1902   return rc;
1903 }
1904 
1905 #ifdef SQLITE_ENABLE_STAT4
1906 /*
1907 ** Estimate the number of rows that will be returned based on
1908 ** an equality constraint x=VALUE and where that VALUE occurs in
1909 ** the histogram data.  This only works when x is the left-most
1910 ** column of an index and sqlite_stat4 histogram data is available
1911 ** for that index.  When pExpr==NULL that means the constraint is
1912 ** "x IS NULL" instead of "x=VALUE".
1913 **
1914 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1915 ** If unable to make an estimate, leave *pnRow unchanged and return
1916 ** non-zero.
1917 **
1918 ** This routine can fail if it is unable to load a collating sequence
1919 ** required for string comparison, or if unable to allocate memory
1920 ** for a UTF conversion required for comparison.  The error is stored
1921 ** in the pParse structure.
1922 */
1923 static int whereEqualScanEst(
1924   Parse *pParse,       /* Parsing & code generating context */
1925   WhereLoopBuilder *pBuilder,
1926   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
1927   tRowcnt *pnRow       /* Write the revised row estimate here */
1928 ){
1929   Index *p = pBuilder->pNew->u.btree.pIndex;
1930   int nEq = pBuilder->pNew->u.btree.nEq;
1931   UnpackedRecord *pRec = pBuilder->pRec;
1932   int rc;                   /* Subfunction return code */
1933   tRowcnt a[2];             /* Statistics */
1934   int bOk;
1935 
1936   assert( nEq>=1 );
1937   assert( nEq<=p->nColumn );
1938   assert( p->aSample!=0 );
1939   assert( p->nSample>0 );
1940   assert( pBuilder->nRecValid<nEq );
1941 
1942   /* If values are not available for all fields of the index to the left
1943   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1944   if( pBuilder->nRecValid<(nEq-1) ){
1945     return SQLITE_NOTFOUND;
1946   }
1947 
1948   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1949   ** below would return the same value.  */
1950   if( nEq>=p->nColumn ){
1951     *pnRow = 1;
1952     return SQLITE_OK;
1953   }
1954 
1955   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1956   pBuilder->pRec = pRec;
1957   if( rc!=SQLITE_OK ) return rc;
1958   if( bOk==0 ) return SQLITE_NOTFOUND;
1959   pBuilder->nRecValid = nEq;
1960 
1961   whereKeyStats(pParse, p, pRec, 0, a);
1962   WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1963                    p->zName, nEq-1, (int)a[1]));
1964   *pnRow = a[1];
1965 
1966   return rc;
1967 }
1968 #endif /* SQLITE_ENABLE_STAT4 */
1969 
1970 #ifdef SQLITE_ENABLE_STAT4
1971 /*
1972 ** Estimate the number of rows that will be returned based on
1973 ** an IN constraint where the right-hand side of the IN operator
1974 ** is a list of values.  Example:
1975 **
1976 **        WHERE x IN (1,2,3,4)
1977 **
1978 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1979 ** If unable to make an estimate, leave *pnRow unchanged and return
1980 ** non-zero.
1981 **
1982 ** This routine can fail if it is unable to load a collating sequence
1983 ** required for string comparison, or if unable to allocate memory
1984 ** for a UTF conversion required for comparison.  The error is stored
1985 ** in the pParse structure.
1986 */
1987 static int whereInScanEst(
1988   Parse *pParse,       /* Parsing & code generating context */
1989   WhereLoopBuilder *pBuilder,
1990   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1991   tRowcnt *pnRow       /* Write the revised row estimate here */
1992 ){
1993   Index *p = pBuilder->pNew->u.btree.pIndex;
1994   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1995   int nRecValid = pBuilder->nRecValid;
1996   int rc = SQLITE_OK;     /* Subfunction return code */
1997   tRowcnt nEst;           /* Number of rows for a single term */
1998   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
1999   int i;                  /* Loop counter */
2000 
2001   assert( p->aSample!=0 );
2002   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
2003     nEst = nRow0;
2004     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
2005     nRowEst += nEst;
2006     pBuilder->nRecValid = nRecValid;
2007   }
2008 
2009   if( rc==SQLITE_OK ){
2010     if( nRowEst > nRow0 ) nRowEst = nRow0;
2011     *pnRow = nRowEst;
2012     WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
2013   }
2014   assert( pBuilder->nRecValid==nRecValid );
2015   return rc;
2016 }
2017 #endif /* SQLITE_ENABLE_STAT4 */
2018 
2019 
2020 #ifdef WHERETRACE_ENABLED
2021 /*
2022 ** Print the content of a WhereTerm object
2023 */
2024 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){
2025   if( pTerm==0 ){
2026     sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
2027   }else{
2028     char zType[8];
2029     char zLeft[50];
2030     memcpy(zType, "....", 5);
2031     if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
2032     if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
2033     if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
2034     if( pTerm->wtFlags & TERM_CODED  ) zType[3] = 'C';
2035     if( pTerm->eOperator & WO_SINGLE ){
2036       assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
2037       sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
2038                        pTerm->leftCursor, pTerm->u.x.leftColumn);
2039     }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
2040       sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx",
2041                        pTerm->u.pOrInfo->indexable);
2042     }else{
2043       sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
2044     }
2045     sqlite3DebugPrintf(
2046        "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x",
2047        iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags);
2048     /* The 0x10000 .wheretrace flag causes extra information to be
2049     ** shown about each Term */
2050     if( sqlite3WhereTrace & 0x10000 ){
2051       sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx",
2052         pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight);
2053     }
2054     if( (pTerm->eOperator & (WO_OR|WO_AND))==0 && pTerm->u.x.iField ){
2055       sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField);
2056     }
2057     if( pTerm->iParent>=0 ){
2058       sqlite3DebugPrintf(" iParent=%d", pTerm->iParent);
2059     }
2060     sqlite3DebugPrintf("\n");
2061     sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
2062   }
2063 }
2064 #endif
2065 
2066 #ifdef WHERETRACE_ENABLED
2067 /*
2068 ** Show the complete content of a WhereClause
2069 */
2070 void sqlite3WhereClausePrint(WhereClause *pWC){
2071   int i;
2072   for(i=0; i<pWC->nTerm; i++){
2073     sqlite3WhereTermPrint(&pWC->a[i], i);
2074   }
2075 }
2076 #endif
2077 
2078 #ifdef WHERETRACE_ENABLED
2079 /*
2080 ** Print a WhereLoop object for debugging purposes
2081 */
2082 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){
2083   WhereInfo *pWInfo = pWC->pWInfo;
2084   int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
2085   SrcItem *pItem = pWInfo->pTabList->a + p->iTab;
2086   Table *pTab = pItem->pTab;
2087   Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
2088   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
2089                      p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
2090   sqlite3DebugPrintf(" %12s",
2091                      pItem->zAlias ? pItem->zAlias : pTab->zName);
2092   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2093     const char *zName;
2094     if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
2095       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
2096         int i = sqlite3Strlen30(zName) - 1;
2097         while( zName[i]!='_' ) i--;
2098         zName += i;
2099       }
2100       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
2101     }else{
2102       sqlite3DebugPrintf("%20s","");
2103     }
2104   }else{
2105     char *z;
2106     if( p->u.vtab.idxStr ){
2107       z = sqlite3_mprintf("(%d,\"%s\",%#x)",
2108                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
2109     }else{
2110       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
2111     }
2112     sqlite3DebugPrintf(" %-19s", z);
2113     sqlite3_free(z);
2114   }
2115   if( p->wsFlags & WHERE_SKIPSCAN ){
2116     sqlite3DebugPrintf(" f %06x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
2117   }else{
2118     sqlite3DebugPrintf(" f %06x N %d", p->wsFlags, p->nLTerm);
2119   }
2120   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
2121   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
2122     int i;
2123     for(i=0; i<p->nLTerm; i++){
2124       sqlite3WhereTermPrint(p->aLTerm[i], i);
2125     }
2126   }
2127 }
2128 #endif
2129 
2130 /*
2131 ** Convert bulk memory into a valid WhereLoop that can be passed
2132 ** to whereLoopClear harmlessly.
2133 */
2134 static void whereLoopInit(WhereLoop *p){
2135   p->aLTerm = p->aLTermSpace;
2136   p->nLTerm = 0;
2137   p->nLSlot = ArraySize(p->aLTermSpace);
2138   p->wsFlags = 0;
2139 }
2140 
2141 /*
2142 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
2143 */
2144 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
2145   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
2146     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
2147       sqlite3_free(p->u.vtab.idxStr);
2148       p->u.vtab.needFree = 0;
2149       p->u.vtab.idxStr = 0;
2150     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
2151       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
2152       sqlite3DbFreeNN(db, p->u.btree.pIndex);
2153       p->u.btree.pIndex = 0;
2154     }
2155   }
2156 }
2157 
2158 /*
2159 ** Deallocate internal memory used by a WhereLoop object
2160 */
2161 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
2162   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
2163   whereLoopClearUnion(db, p);
2164   whereLoopInit(p);
2165 }
2166 
2167 /*
2168 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
2169 */
2170 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
2171   WhereTerm **paNew;
2172   if( p->nLSlot>=n ) return SQLITE_OK;
2173   n = (n+7)&~7;
2174   paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
2175   if( paNew==0 ) return SQLITE_NOMEM_BKPT;
2176   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
2177   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
2178   p->aLTerm = paNew;
2179   p->nLSlot = n;
2180   return SQLITE_OK;
2181 }
2182 
2183 /*
2184 ** Transfer content from the second pLoop into the first.
2185 */
2186 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
2187   whereLoopClearUnion(db, pTo);
2188   if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
2189     memset(pTo, 0, WHERE_LOOP_XFER_SZ);
2190     return SQLITE_NOMEM_BKPT;
2191   }
2192   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
2193   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
2194   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
2195     pFrom->u.vtab.needFree = 0;
2196   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
2197     pFrom->u.btree.pIndex = 0;
2198   }
2199   return SQLITE_OK;
2200 }
2201 
2202 /*
2203 ** Delete a WhereLoop object
2204 */
2205 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
2206   whereLoopClear(db, p);
2207   sqlite3DbFreeNN(db, p);
2208 }
2209 
2210 /*
2211 ** Free a WhereInfo structure
2212 */
2213 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
2214   int i;
2215   assert( pWInfo!=0 );
2216   for(i=0; i<pWInfo->nLevel; i++){
2217     WhereLevel *pLevel = &pWInfo->a[i];
2218     if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE)!=0 ){
2219       assert( (pLevel->pWLoop->wsFlags & WHERE_MULTI_OR)==0 );
2220       sqlite3DbFree(db, pLevel->u.in.aInLoop);
2221     }
2222   }
2223   sqlite3WhereClauseClear(&pWInfo->sWC);
2224   while( pWInfo->pLoops ){
2225     WhereLoop *p = pWInfo->pLoops;
2226     pWInfo->pLoops = p->pNextLoop;
2227     whereLoopDelete(db, p);
2228   }
2229   assert( pWInfo->pExprMods==0 );
2230   sqlite3DbFreeNN(db, pWInfo);
2231 }
2232 
2233 /* Undo all Expr node modifications
2234 */
2235 static void whereUndoExprMods(WhereInfo *pWInfo){
2236   while( pWInfo->pExprMods ){
2237     WhereExprMod *p = pWInfo->pExprMods;
2238     pWInfo->pExprMods = p->pNext;
2239     memcpy(p->pExpr, &p->orig, sizeof(p->orig));
2240     sqlite3DbFree(pWInfo->pParse->db, p);
2241   }
2242 }
2243 
2244 /*
2245 ** Return TRUE if all of the following are true:
2246 **
2247 **   (1)  X has the same or lower cost, or returns the same or fewer rows,
2248 **        than Y.
2249 **   (2)  X uses fewer WHERE clause terms than Y
2250 **   (3)  Every WHERE clause term used by X is also used by Y
2251 **   (4)  X skips at least as many columns as Y
2252 **   (5)  If X is a covering index, than Y is too
2253 **
2254 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
2255 ** If X is a proper subset of Y then Y is a better choice and ought
2256 ** to have a lower cost.  This routine returns TRUE when that cost
2257 ** relationship is inverted and needs to be adjusted.  Constraint (4)
2258 ** was added because if X uses skip-scan less than Y it still might
2259 ** deserve a lower cost even if it is a proper subset of Y.  Constraint (5)
2260 ** was added because a covering index probably deserves to have a lower cost
2261 ** than a non-covering index even if it is a proper subset.
2262 */
2263 static int whereLoopCheaperProperSubset(
2264   const WhereLoop *pX,       /* First WhereLoop to compare */
2265   const WhereLoop *pY        /* Compare against this WhereLoop */
2266 ){
2267   int i, j;
2268   if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
2269     return 0; /* X is not a subset of Y */
2270   }
2271   if( pX->rRun>pY->rRun && pX->nOut>pY->nOut ) return 0;
2272   if( pY->nSkip > pX->nSkip ) return 0;
2273   for(i=pX->nLTerm-1; i>=0; i--){
2274     if( pX->aLTerm[i]==0 ) continue;
2275     for(j=pY->nLTerm-1; j>=0; j--){
2276       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
2277     }
2278     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
2279   }
2280   if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
2281    && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
2282     return 0;  /* Constraint (5) */
2283   }
2284   return 1;  /* All conditions meet */
2285 }
2286 
2287 /*
2288 ** Try to adjust the cost and number of output rows of WhereLoop pTemplate
2289 ** upwards or downwards so that:
2290 **
2291 **   (1) pTemplate costs less than any other WhereLoops that are a proper
2292 **       subset of pTemplate
2293 **
2294 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
2295 **       is a proper subset.
2296 **
2297 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
2298 ** WHERE clause terms than Y and that every WHERE clause term used by X is
2299 ** also used by Y.
2300 */
2301 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
2302   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
2303   for(; p; p=p->pNextLoop){
2304     if( p->iTab!=pTemplate->iTab ) continue;
2305     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
2306     if( whereLoopCheaperProperSubset(p, pTemplate) ){
2307       /* Adjust pTemplate cost downward so that it is cheaper than its
2308       ** subset p. */
2309       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2310                        pTemplate->rRun, pTemplate->nOut,
2311                        MIN(p->rRun, pTemplate->rRun),
2312                        MIN(p->nOut - 1, pTemplate->nOut)));
2313       pTemplate->rRun = MIN(p->rRun, pTemplate->rRun);
2314       pTemplate->nOut = MIN(p->nOut - 1, pTemplate->nOut);
2315     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
2316       /* Adjust pTemplate cost upward so that it is costlier than p since
2317       ** pTemplate is a proper subset of p */
2318       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2319                        pTemplate->rRun, pTemplate->nOut,
2320                        MAX(p->rRun, pTemplate->rRun),
2321                        MAX(p->nOut + 1, pTemplate->nOut)));
2322       pTemplate->rRun = MAX(p->rRun, pTemplate->rRun);
2323       pTemplate->nOut = MAX(p->nOut + 1, pTemplate->nOut);
2324     }
2325   }
2326 }
2327 
2328 /*
2329 ** Search the list of WhereLoops in *ppPrev looking for one that can be
2330 ** replaced by pTemplate.
2331 **
2332 ** Return NULL if pTemplate does not belong on the WhereLoop list.
2333 ** In other words if pTemplate ought to be dropped from further consideration.
2334 **
2335 ** If pX is a WhereLoop that pTemplate can replace, then return the
2336 ** link that points to pX.
2337 **
2338 ** If pTemplate cannot replace any existing element of the list but needs
2339 ** to be added to the list as a new entry, then return a pointer to the
2340 ** tail of the list.
2341 */
2342 static WhereLoop **whereLoopFindLesser(
2343   WhereLoop **ppPrev,
2344   const WhereLoop *pTemplate
2345 ){
2346   WhereLoop *p;
2347   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
2348     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
2349       /* If either the iTab or iSortIdx values for two WhereLoop are different
2350       ** then those WhereLoops need to be considered separately.  Neither is
2351       ** a candidate to replace the other. */
2352       continue;
2353     }
2354     /* In the current implementation, the rSetup value is either zero
2355     ** or the cost of building an automatic index (NlogN) and the NlogN
2356     ** is the same for compatible WhereLoops. */
2357     assert( p->rSetup==0 || pTemplate->rSetup==0
2358                  || p->rSetup==pTemplate->rSetup );
2359 
2360     /* whereLoopAddBtree() always generates and inserts the automatic index
2361     ** case first.  Hence compatible candidate WhereLoops never have a larger
2362     ** rSetup. Call this SETUP-INVARIANT */
2363     assert( p->rSetup>=pTemplate->rSetup );
2364 
2365     /* Any loop using an appliation-defined index (or PRIMARY KEY or
2366     ** UNIQUE constraint) with one or more == constraints is better
2367     ** than an automatic index. Unless it is a skip-scan. */
2368     if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
2369      && (pTemplate->nSkip)==0
2370      && (pTemplate->wsFlags & WHERE_INDEXED)!=0
2371      && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
2372      && (p->prereq & pTemplate->prereq)==pTemplate->prereq
2373     ){
2374       break;
2375     }
2376 
2377     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2378     ** discarded.  WhereLoop p is better if:
2379     **   (1)  p has no more dependencies than pTemplate, and
2380     **   (2)  p has an equal or lower cost than pTemplate
2381     */
2382     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
2383      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
2384      && p->rRun<=pTemplate->rRun                      /* (2b) */
2385      && p->nOut<=pTemplate->nOut                      /* (2c) */
2386     ){
2387       return 0;  /* Discard pTemplate */
2388     }
2389 
2390     /* If pTemplate is always better than p, then cause p to be overwritten
2391     ** with pTemplate.  pTemplate is better than p if:
2392     **   (1)  pTemplate has no more dependences than p, and
2393     **   (2)  pTemplate has an equal or lower cost than p.
2394     */
2395     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
2396      && p->rRun>=pTemplate->rRun                             /* (2a) */
2397      && p->nOut>=pTemplate->nOut                             /* (2b) */
2398     ){
2399       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2400       break;   /* Cause p to be overwritten by pTemplate */
2401     }
2402   }
2403   return ppPrev;
2404 }
2405 
2406 /*
2407 ** Insert or replace a WhereLoop entry using the template supplied.
2408 **
2409 ** An existing WhereLoop entry might be overwritten if the new template
2410 ** is better and has fewer dependencies.  Or the template will be ignored
2411 ** and no insert will occur if an existing WhereLoop is faster and has
2412 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
2413 ** added based on the template.
2414 **
2415 ** If pBuilder->pOrSet is not NULL then we care about only the
2416 ** prerequisites and rRun and nOut costs of the N best loops.  That
2417 ** information is gathered in the pBuilder->pOrSet object.  This special
2418 ** processing mode is used only for OR clause processing.
2419 **
2420 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2421 ** still might overwrite similar loops with the new template if the
2422 ** new template is better.  Loops may be overwritten if the following
2423 ** conditions are met:
2424 **
2425 **    (1)  They have the same iTab.
2426 **    (2)  They have the same iSortIdx.
2427 **    (3)  The template has same or fewer dependencies than the current loop
2428 **    (4)  The template has the same or lower cost than the current loop
2429 */
2430 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2431   WhereLoop **ppPrev, *p;
2432   WhereInfo *pWInfo = pBuilder->pWInfo;
2433   sqlite3 *db = pWInfo->pParse->db;
2434   int rc;
2435 
2436   /* Stop the search once we hit the query planner search limit */
2437   if( pBuilder->iPlanLimit==0 ){
2438     WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
2439     if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0;
2440     return SQLITE_DONE;
2441   }
2442   pBuilder->iPlanLimit--;
2443 
2444   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2445 
2446   /* If pBuilder->pOrSet is defined, then only keep track of the costs
2447   ** and prereqs.
2448   */
2449   if( pBuilder->pOrSet!=0 ){
2450     if( pTemplate->nLTerm ){
2451 #if WHERETRACE_ENABLED
2452       u16 n = pBuilder->pOrSet->n;
2453       int x =
2454 #endif
2455       whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2456                                     pTemplate->nOut);
2457 #if WHERETRACE_ENABLED /* 0x8 */
2458       if( sqlite3WhereTrace & 0x8 ){
2459         sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
2460         sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2461       }
2462 #endif
2463     }
2464     return SQLITE_OK;
2465   }
2466 
2467   /* Look for an existing WhereLoop to replace with pTemplate
2468   */
2469   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2470 
2471   if( ppPrev==0 ){
2472     /* There already exists a WhereLoop on the list that is better
2473     ** than pTemplate, so just ignore pTemplate */
2474 #if WHERETRACE_ENABLED /* 0x8 */
2475     if( sqlite3WhereTrace & 0x8 ){
2476       sqlite3DebugPrintf("   skip: ");
2477       sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2478     }
2479 #endif
2480     return SQLITE_OK;
2481   }else{
2482     p = *ppPrev;
2483   }
2484 
2485   /* If we reach this point it means that either p[] should be overwritten
2486   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2487   ** WhereLoop and insert it.
2488   */
2489 #if WHERETRACE_ENABLED /* 0x8 */
2490   if( sqlite3WhereTrace & 0x8 ){
2491     if( p!=0 ){
2492       sqlite3DebugPrintf("replace: ");
2493       sqlite3WhereLoopPrint(p, pBuilder->pWC);
2494       sqlite3DebugPrintf("   with: ");
2495     }else{
2496       sqlite3DebugPrintf("    add: ");
2497     }
2498     sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2499   }
2500 #endif
2501   if( p==0 ){
2502     /* Allocate a new WhereLoop to add to the end of the list */
2503     *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2504     if( p==0 ) return SQLITE_NOMEM_BKPT;
2505     whereLoopInit(p);
2506     p->pNextLoop = 0;
2507   }else{
2508     /* We will be overwriting WhereLoop p[].  But before we do, first
2509     ** go through the rest of the list and delete any other entries besides
2510     ** p[] that are also supplated by pTemplate */
2511     WhereLoop **ppTail = &p->pNextLoop;
2512     WhereLoop *pToDel;
2513     while( *ppTail ){
2514       ppTail = whereLoopFindLesser(ppTail, pTemplate);
2515       if( ppTail==0 ) break;
2516       pToDel = *ppTail;
2517       if( pToDel==0 ) break;
2518       *ppTail = pToDel->pNextLoop;
2519 #if WHERETRACE_ENABLED /* 0x8 */
2520       if( sqlite3WhereTrace & 0x8 ){
2521         sqlite3DebugPrintf(" delete: ");
2522         sqlite3WhereLoopPrint(pToDel, pBuilder->pWC);
2523       }
2524 #endif
2525       whereLoopDelete(db, pToDel);
2526     }
2527   }
2528   rc = whereLoopXfer(db, p, pTemplate);
2529   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2530     Index *pIndex = p->u.btree.pIndex;
2531     if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){
2532       p->u.btree.pIndex = 0;
2533     }
2534   }
2535   return rc;
2536 }
2537 
2538 /*
2539 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2540 ** WHERE clause that reference the loop but which are not used by an
2541 ** index.
2542 *
2543 ** For every WHERE clause term that is not used by the index
2544 ** and which has a truth probability assigned by one of the likelihood(),
2545 ** likely(), or unlikely() SQL functions, reduce the estimated number
2546 ** of output rows by the probability specified.
2547 **
2548 ** TUNING:  For every WHERE clause term that is not used by the index
2549 ** and which does not have an assigned truth probability, heuristics
2550 ** described below are used to try to estimate the truth probability.
2551 ** TODO --> Perhaps this is something that could be improved by better
2552 ** table statistics.
2553 **
2554 ** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
2555 ** value corresponds to -1 in LogEst notation, so this means decrement
2556 ** the WhereLoop.nOut field for every such WHERE clause term.
2557 **
2558 ** Heuristic 2:  If there exists one or more WHERE clause terms of the
2559 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2560 ** final output row estimate is no greater than 1/4 of the total number
2561 ** of rows in the table.  In other words, assume that x==EXPR will filter
2562 ** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
2563 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2564 ** on the "x" column and so in that case only cap the output row estimate
2565 ** at 1/2 instead of 1/4.
2566 */
2567 static void whereLoopOutputAdjust(
2568   WhereClause *pWC,      /* The WHERE clause */
2569   WhereLoop *pLoop,      /* The loop to adjust downward */
2570   LogEst nRow            /* Number of rows in the entire table */
2571 ){
2572   WhereTerm *pTerm, *pX;
2573   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2574   int i, j;
2575   LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */
2576 
2577   assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2578   for(i=pWC->nBase, pTerm=pWC->a; i>0; i--, pTerm++){
2579     assert( pTerm!=0 );
2580     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2581     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2582     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) continue;
2583     for(j=pLoop->nLTerm-1; j>=0; j--){
2584       pX = pLoop->aLTerm[j];
2585       if( pX==0 ) continue;
2586       if( pX==pTerm ) break;
2587       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2588     }
2589     if( j<0 ){
2590       if( pLoop->maskSelf==pTerm->prereqAll ){
2591         /* If there are extra terms in the WHERE clause not used by an index
2592         ** that depend only on the table being scanned, and that will tend to
2593         ** cause many rows to be omitted, then mark that table as
2594         ** "self-culling". */
2595         pLoop->wsFlags |= WHERE_SELFCULL;
2596       }
2597       if( pTerm->truthProb<=0 ){
2598         /* If a truth probability is specified using the likelihood() hints,
2599         ** then use the probability provided by the application. */
2600         pLoop->nOut += pTerm->truthProb;
2601       }else{
2602         /* In the absence of explicit truth probabilities, use heuristics to
2603         ** guess a reasonable truth probability. */
2604         pLoop->nOut--;
2605         if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0
2606          && (pTerm->wtFlags & TERM_HIGHTRUTH)==0  /* tag-20200224-1 */
2607         ){
2608           Expr *pRight = pTerm->pExpr->pRight;
2609           int k = 0;
2610           testcase( pTerm->pExpr->op==TK_IS );
2611           if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2612             k = 10;
2613           }else{
2614             k = 20;
2615           }
2616           if( iReduce<k ){
2617             pTerm->wtFlags |= TERM_HEURTRUTH;
2618             iReduce = k;
2619           }
2620         }
2621       }
2622     }
2623   }
2624   if( pLoop->nOut > nRow-iReduce ){
2625     pLoop->nOut = nRow - iReduce;
2626   }
2627 }
2628 
2629 /*
2630 ** Term pTerm is a vector range comparison operation. The first comparison
2631 ** in the vector can be optimized using column nEq of the index. This
2632 ** function returns the total number of vector elements that can be used
2633 ** as part of the range comparison.
2634 **
2635 ** For example, if the query is:
2636 **
2637 **   WHERE a = ? AND (b, c, d) > (?, ?, ?)
2638 **
2639 ** and the index:
2640 **
2641 **   CREATE INDEX ... ON (a, b, c, d, e)
2642 **
2643 ** then this function would be invoked with nEq=1. The value returned in
2644 ** this case is 3.
2645 */
2646 static int whereRangeVectorLen(
2647   Parse *pParse,       /* Parsing context */
2648   int iCur,            /* Cursor open on pIdx */
2649   Index *pIdx,         /* The index to be used for a inequality constraint */
2650   int nEq,             /* Number of prior equality constraints on same index */
2651   WhereTerm *pTerm     /* The vector inequality constraint */
2652 ){
2653   int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2654   int i;
2655 
2656   nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2657   for(i=1; i<nCmp; i++){
2658     /* Test if comparison i of pTerm is compatible with column (i+nEq)
2659     ** of the index. If not, exit the loop.  */
2660     char aff;                     /* Comparison affinity */
2661     char idxaff = 0;              /* Indexed columns affinity */
2662     CollSeq *pColl;               /* Comparison collation sequence */
2663     Expr *pLhs, *pRhs;
2664 
2665     assert( ExprUseXList(pTerm->pExpr->pLeft) );
2666     pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2667     pRhs = pTerm->pExpr->pRight;
2668     if( ExprUseXSelect(pRhs) ){
2669       pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2670     }else{
2671       pRhs = pRhs->x.pList->a[i].pExpr;
2672     }
2673 
2674     /* Check that the LHS of the comparison is a column reference to
2675     ** the right column of the right source table. And that the sort
2676     ** order of the index column is the same as the sort order of the
2677     ** leftmost index column.  */
2678     if( pLhs->op!=TK_COLUMN
2679      || pLhs->iTable!=iCur
2680      || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2681      || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2682     ){
2683       break;
2684     }
2685 
2686     testcase( pLhs->iColumn==XN_ROWID );
2687     aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2688     idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2689     if( aff!=idxaff ) break;
2690 
2691     pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2692     if( pColl==0 ) break;
2693     if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2694   }
2695   return i;
2696 }
2697 
2698 /*
2699 ** Adjust the cost C by the costMult facter T.  This only occurs if
2700 ** compiled with -DSQLITE_ENABLE_COSTMULT
2701 */
2702 #ifdef SQLITE_ENABLE_COSTMULT
2703 # define ApplyCostMultiplier(C,T)  C += T
2704 #else
2705 # define ApplyCostMultiplier(C,T)
2706 #endif
2707 
2708 /*
2709 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2710 ** index pIndex. Try to match one more.
2711 **
2712 ** When this function is called, pBuilder->pNew->nOut contains the
2713 ** number of rows expected to be visited by filtering using the nEq
2714 ** terms only. If it is modified, this value is restored before this
2715 ** function returns.
2716 **
2717 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
2718 ** a fake index used for the INTEGER PRIMARY KEY.
2719 */
2720 static int whereLoopAddBtreeIndex(
2721   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
2722   SrcItem *pSrc,                  /* FROM clause term being analyzed */
2723   Index *pProbe,                  /* An index on pSrc */
2724   LogEst nInMul                   /* log(Number of iterations due to IN) */
2725 ){
2726   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
2727   Parse *pParse = pWInfo->pParse;        /* Parsing context */
2728   sqlite3 *db = pParse->db;       /* Database connection malloc context */
2729   WhereLoop *pNew;                /* Template WhereLoop under construction */
2730   WhereTerm *pTerm;               /* A WhereTerm under consideration */
2731   int opMask;                     /* Valid operators for constraints */
2732   WhereScan scan;                 /* Iterator for WHERE terms */
2733   Bitmask saved_prereq;           /* Original value of pNew->prereq */
2734   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
2735   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
2736   u16 saved_nBtm;                 /* Original value of pNew->u.btree.nBtm */
2737   u16 saved_nTop;                 /* Original value of pNew->u.btree.nTop */
2738   u16 saved_nSkip;                /* Original value of pNew->nSkip */
2739   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
2740   LogEst saved_nOut;              /* Original value of pNew->nOut */
2741   int rc = SQLITE_OK;             /* Return code */
2742   LogEst rSize;                   /* Number of rows in the table */
2743   LogEst rLogSize;                /* Logarithm of table size */
2744   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2745 
2746   pNew = pBuilder->pNew;
2747   if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2748   WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n",
2749                      pProbe->pTable->zName,pProbe->zName,
2750                      pNew->u.btree.nEq, pNew->nSkip, pNew->rRun));
2751 
2752   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2753   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2754   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2755     opMask = WO_LT|WO_LE;
2756   }else{
2757     assert( pNew->u.btree.nBtm==0 );
2758     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2759   }
2760   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2761 
2762   assert( pNew->u.btree.nEq<pProbe->nColumn );
2763   assert( pNew->u.btree.nEq<pProbe->nKeyCol
2764        || pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY );
2765 
2766   saved_nEq = pNew->u.btree.nEq;
2767   saved_nBtm = pNew->u.btree.nBtm;
2768   saved_nTop = pNew->u.btree.nTop;
2769   saved_nSkip = pNew->nSkip;
2770   saved_nLTerm = pNew->nLTerm;
2771   saved_wsFlags = pNew->wsFlags;
2772   saved_prereq = pNew->prereq;
2773   saved_nOut = pNew->nOut;
2774   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2775                         opMask, pProbe);
2776   pNew->rSetup = 0;
2777   rSize = pProbe->aiRowLogEst[0];
2778   rLogSize = estLog(rSize);
2779   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2780     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
2781     LogEst rCostIdx;
2782     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
2783     int nIn = 0;
2784 #ifdef SQLITE_ENABLE_STAT4
2785     int nRecValid = pBuilder->nRecValid;
2786 #endif
2787     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2788      && indexColumnNotNull(pProbe, saved_nEq)
2789     ){
2790       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2791     }
2792     if( pTerm->prereqRight & pNew->maskSelf ) continue;
2793 
2794     /* Do not allow the upper bound of a LIKE optimization range constraint
2795     ** to mix with a lower range bound from some other source */
2796     if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2797 
2798     /* tag-20191211-001:  Do not allow constraints from the WHERE clause to
2799     ** be used by the right table of a LEFT JOIN.  Only constraints in the
2800     ** ON clause are allowed.  See tag-20191211-002 for the vtab equivalent. */
2801     if( (pSrc->fg.jointype & JT_LEFT)!=0
2802      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
2803     ){
2804       continue;
2805     }
2806 
2807     if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2808       pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE;
2809     }else{
2810       pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED;
2811     }
2812     pNew->wsFlags = saved_wsFlags;
2813     pNew->u.btree.nEq = saved_nEq;
2814     pNew->u.btree.nBtm = saved_nBtm;
2815     pNew->u.btree.nTop = saved_nTop;
2816     pNew->nLTerm = saved_nLTerm;
2817     if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2818     pNew->aLTerm[pNew->nLTerm++] = pTerm;
2819     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2820 
2821     assert( nInMul==0
2822         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2823         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2824         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2825     );
2826 
2827     if( eOp & WO_IN ){
2828       Expr *pExpr = pTerm->pExpr;
2829       if( ExprUseXSelect(pExpr) ){
2830         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
2831         int i;
2832         nIn = 46;  assert( 46==sqlite3LogEst(25) );
2833 
2834         /* The expression may actually be of the form (x, y) IN (SELECT...).
2835         ** In this case there is a separate term for each of (x) and (y).
2836         ** However, the nIn multiplier should only be applied once, not once
2837         ** for each such term. The following loop checks that pTerm is the
2838         ** first such term in use, and sets nIn back to 0 if it is not. */
2839         for(i=0; i<pNew->nLTerm-1; i++){
2840           if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2841         }
2842       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2843         /* "x IN (value, value, ...)" */
2844         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2845       }
2846       if( pProbe->hasStat1 && rLogSize>=10 ){
2847         LogEst M, logK, x;
2848         /* Let:
2849         **   N = the total number of rows in the table
2850         **   K = the number of entries on the RHS of the IN operator
2851         **   M = the number of rows in the table that match terms to the
2852         **       to the left in the same index.  If the IN operator is on
2853         **       the left-most index column, M==N.
2854         **
2855         ** Given the definitions above, it is better to omit the IN operator
2856         ** from the index lookup and instead do a scan of the M elements,
2857         ** testing each scanned row against the IN operator separately, if:
2858         **
2859         **        M*log(K) < K*log(N)
2860         **
2861         ** Our estimates for M, K, and N might be inaccurate, so we build in
2862         ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
2863         ** with the index, as using an index has better worst-case behavior.
2864         ** If we do not have real sqlite_stat1 data, always prefer to use
2865         ** the index.  Do not bother with this optimization on very small
2866         ** tables (less than 2 rows) as it is pointless in that case.
2867         */
2868         M = pProbe->aiRowLogEst[saved_nEq];
2869         logK = estLog(nIn);
2870         /* TUNING      v-----  10 to bias toward indexed IN */
2871         x = M + logK + 10 - (nIn + rLogSize);
2872         if( x>=0 ){
2873           WHERETRACE(0x40,
2874             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) "
2875              "prefers indexed lookup\n",
2876              saved_nEq, M, logK, nIn, rLogSize, x));
2877         }else if( nInMul<2 && OptimizationEnabled(db, SQLITE_SeekScan) ){
2878           WHERETRACE(0x40,
2879             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2880              " nInMul=%d) prefers skip-scan\n",
2881              saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
2882           pNew->wsFlags |= WHERE_IN_SEEKSCAN;
2883         }else{
2884           WHERETRACE(0x40,
2885             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2886              " nInMul=%d) prefers normal scan\n",
2887              saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
2888           continue;
2889         }
2890       }
2891       pNew->wsFlags |= WHERE_COLUMN_IN;
2892     }else if( eOp & (WO_EQ|WO_IS) ){
2893       int iCol = pProbe->aiColumn[saved_nEq];
2894       pNew->wsFlags |= WHERE_COLUMN_EQ;
2895       assert( saved_nEq==pNew->u.btree.nEq );
2896       if( iCol==XN_ROWID
2897        || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2898       ){
2899         if( iCol==XN_ROWID || pProbe->uniqNotNull
2900          || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
2901         ){
2902           pNew->wsFlags |= WHERE_ONEROW;
2903         }else{
2904           pNew->wsFlags |= WHERE_UNQ_WANTED;
2905         }
2906       }
2907       if( scan.iEquiv>1 ) pNew->wsFlags |= WHERE_TRANSCONS;
2908     }else if( eOp & WO_ISNULL ){
2909       pNew->wsFlags |= WHERE_COLUMN_NULL;
2910     }else if( eOp & (WO_GT|WO_GE) ){
2911       testcase( eOp & WO_GT );
2912       testcase( eOp & WO_GE );
2913       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2914       pNew->u.btree.nBtm = whereRangeVectorLen(
2915           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2916       );
2917       pBtm = pTerm;
2918       pTop = 0;
2919       if( pTerm->wtFlags & TERM_LIKEOPT ){
2920         /* Range constraints that come from the LIKE optimization are
2921         ** always used in pairs. */
2922         pTop = &pTerm[1];
2923         assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2924         assert( pTop->wtFlags & TERM_LIKEOPT );
2925         assert( pTop->eOperator==WO_LT );
2926         if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2927         pNew->aLTerm[pNew->nLTerm++] = pTop;
2928         pNew->wsFlags |= WHERE_TOP_LIMIT;
2929         pNew->u.btree.nTop = 1;
2930       }
2931     }else{
2932       assert( eOp & (WO_LT|WO_LE) );
2933       testcase( eOp & WO_LT );
2934       testcase( eOp & WO_LE );
2935       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2936       pNew->u.btree.nTop = whereRangeVectorLen(
2937           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2938       );
2939       pTop = pTerm;
2940       pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2941                      pNew->aLTerm[pNew->nLTerm-2] : 0;
2942     }
2943 
2944     /* At this point pNew->nOut is set to the number of rows expected to
2945     ** be visited by the index scan before considering term pTerm, or the
2946     ** values of nIn and nInMul. In other words, assuming that all
2947     ** "x IN(...)" terms are replaced with "x = ?". This block updates
2948     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
2949     assert( pNew->nOut==saved_nOut );
2950     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2951       /* Adjust nOut using stat4 data. Or, if there is no stat4
2952       ** data, using some other estimate.  */
2953       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2954     }else{
2955       int nEq = ++pNew->u.btree.nEq;
2956       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2957 
2958       assert( pNew->nOut==saved_nOut );
2959       if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2960         assert( (eOp & WO_IN) || nIn==0 );
2961         testcase( eOp & WO_IN );
2962         pNew->nOut += pTerm->truthProb;
2963         pNew->nOut -= nIn;
2964       }else{
2965 #ifdef SQLITE_ENABLE_STAT4
2966         tRowcnt nOut = 0;
2967         if( nInMul==0
2968          && pProbe->nSample
2969          && ALWAYS(pNew->u.btree.nEq<=pProbe->nSampleCol)
2970          && ((eOp & WO_IN)==0 || ExprUseXList(pTerm->pExpr))
2971          && OptimizationEnabled(db, SQLITE_Stat4)
2972         ){
2973           Expr *pExpr = pTerm->pExpr;
2974           if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2975             testcase( eOp & WO_EQ );
2976             testcase( eOp & WO_IS );
2977             testcase( eOp & WO_ISNULL );
2978             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2979           }else{
2980             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2981           }
2982           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2983           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
2984           if( nOut ){
2985             pNew->nOut = sqlite3LogEst(nOut);
2986             if( nEq==1
2987              /* TUNING: Mark terms as "low selectivity" if they seem likely
2988              ** to be true for half or more of the rows in the table.
2989              ** See tag-202002240-1 */
2990              && pNew->nOut+10 > pProbe->aiRowLogEst[0]
2991             ){
2992 #if WHERETRACE_ENABLED /* 0x01 */
2993               if( sqlite3WhereTrace & 0x01 ){
2994                 sqlite3DebugPrintf(
2995                    "STAT4 determines term has low selectivity:\n");
2996                 sqlite3WhereTermPrint(pTerm, 999);
2997               }
2998 #endif
2999               pTerm->wtFlags |= TERM_HIGHTRUTH;
3000               if( pTerm->wtFlags & TERM_HEURTRUTH ){
3001                 /* If the term has previously been used with an assumption of
3002                 ** higher selectivity, then set the flag to rerun the
3003                 ** loop computations. */
3004                 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS;
3005               }
3006             }
3007             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
3008             pNew->nOut -= nIn;
3009           }
3010         }
3011         if( nOut==0 )
3012 #endif
3013         {
3014           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
3015           if( eOp & WO_ISNULL ){
3016             /* TUNING: If there is no likelihood() value, assume that a
3017             ** "col IS NULL" expression matches twice as many rows
3018             ** as (col=?). */
3019             pNew->nOut += 10;
3020           }
3021         }
3022       }
3023     }
3024 
3025     /* Set rCostIdx to the cost of visiting selected rows in index. Add
3026     ** it to pNew->rRun, which is currently set to the cost of the index
3027     ** seek only. Then, if this is a non-covering index, add the cost of
3028     ** visiting the rows in the main table.  */
3029     assert( pSrc->pTab->szTabRow>0 );
3030     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
3031     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
3032     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
3033       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
3034     }
3035     ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
3036 
3037     nOutUnadjusted = pNew->nOut;
3038     pNew->rRun += nInMul + nIn;
3039     pNew->nOut += nInMul + nIn;
3040     whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
3041     rc = whereLoopInsert(pBuilder, pNew);
3042 
3043     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
3044       pNew->nOut = saved_nOut;
3045     }else{
3046       pNew->nOut = nOutUnadjusted;
3047     }
3048 
3049     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
3050      && pNew->u.btree.nEq<pProbe->nColumn
3051      && (pNew->u.btree.nEq<pProbe->nKeyCol ||
3052            pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY)
3053     ){
3054       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
3055     }
3056     pNew->nOut = saved_nOut;
3057 #ifdef SQLITE_ENABLE_STAT4
3058     pBuilder->nRecValid = nRecValid;
3059 #endif
3060   }
3061   pNew->prereq = saved_prereq;
3062   pNew->u.btree.nEq = saved_nEq;
3063   pNew->u.btree.nBtm = saved_nBtm;
3064   pNew->u.btree.nTop = saved_nTop;
3065   pNew->nSkip = saved_nSkip;
3066   pNew->wsFlags = saved_wsFlags;
3067   pNew->nOut = saved_nOut;
3068   pNew->nLTerm = saved_nLTerm;
3069 
3070   /* Consider using a skip-scan if there are no WHERE clause constraints
3071   ** available for the left-most terms of the index, and if the average
3072   ** number of repeats in the left-most terms is at least 18.
3073   **
3074   ** The magic number 18 is selected on the basis that scanning 17 rows
3075   ** is almost always quicker than an index seek (even though if the index
3076   ** contains fewer than 2^17 rows we assume otherwise in other parts of
3077   ** the code). And, even if it is not, it should not be too much slower.
3078   ** On the other hand, the extra seeks could end up being significantly
3079   ** more expensive.  */
3080   assert( 42==sqlite3LogEst(18) );
3081   if( saved_nEq==saved_nSkip
3082    && saved_nEq+1<pProbe->nKeyCol
3083    && saved_nEq==pNew->nLTerm
3084    && pProbe->noSkipScan==0
3085    && pProbe->hasStat1!=0
3086    && OptimizationEnabled(db, SQLITE_SkipScan)
3087    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
3088    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
3089   ){
3090     LogEst nIter;
3091     pNew->u.btree.nEq++;
3092     pNew->nSkip++;
3093     pNew->aLTerm[pNew->nLTerm++] = 0;
3094     pNew->wsFlags |= WHERE_SKIPSCAN;
3095     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
3096     pNew->nOut -= nIter;
3097     /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
3098     ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
3099     nIter += 5;
3100     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
3101     pNew->nOut = saved_nOut;
3102     pNew->u.btree.nEq = saved_nEq;
3103     pNew->nSkip = saved_nSkip;
3104     pNew->wsFlags = saved_wsFlags;
3105   }
3106 
3107   WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
3108                       pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
3109   return rc;
3110 }
3111 
3112 /*
3113 ** Return True if it is possible that pIndex might be useful in
3114 ** implementing the ORDER BY clause in pBuilder.
3115 **
3116 ** Return False if pBuilder does not contain an ORDER BY clause or
3117 ** if there is no way for pIndex to be useful in implementing that
3118 ** ORDER BY clause.
3119 */
3120 static int indexMightHelpWithOrderBy(
3121   WhereLoopBuilder *pBuilder,
3122   Index *pIndex,
3123   int iCursor
3124 ){
3125   ExprList *pOB;
3126   ExprList *aColExpr;
3127   int ii, jj;
3128 
3129   if( pIndex->bUnordered ) return 0;
3130   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
3131   for(ii=0; ii<pOB->nExpr; ii++){
3132     Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr);
3133     if( NEVER(pExpr==0) ) continue;
3134     if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
3135       if( pExpr->iColumn<0 ) return 1;
3136       for(jj=0; jj<pIndex->nKeyCol; jj++){
3137         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
3138       }
3139     }else if( (aColExpr = pIndex->aColExpr)!=0 ){
3140       for(jj=0; jj<pIndex->nKeyCol; jj++){
3141         if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
3142         if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
3143           return 1;
3144         }
3145       }
3146     }
3147   }
3148   return 0;
3149 }
3150 
3151 /* Check to see if a partial index with pPartIndexWhere can be used
3152 ** in the current query.  Return true if it can be and false if not.
3153 */
3154 static int whereUsablePartialIndex(
3155   int iTab,             /* The table for which we want an index */
3156   int isLeft,           /* True if iTab is the right table of a LEFT JOIN */
3157   WhereClause *pWC,     /* The WHERE clause of the query */
3158   Expr *pWhere          /* The WHERE clause from the partial index */
3159 ){
3160   int i;
3161   WhereTerm *pTerm;
3162   Parse *pParse = pWC->pWInfo->pParse;
3163   while( pWhere->op==TK_AND ){
3164     if( !whereUsablePartialIndex(iTab,isLeft,pWC,pWhere->pLeft) ) return 0;
3165     pWhere = pWhere->pRight;
3166   }
3167   if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
3168   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
3169     Expr *pExpr;
3170     pExpr = pTerm->pExpr;
3171     if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->w.iRightJoinTable==iTab)
3172      && (isLeft==0 || ExprHasProperty(pExpr, EP_FromJoin))
3173      && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
3174      && (pTerm->wtFlags & TERM_VNULL)==0
3175     ){
3176       return 1;
3177     }
3178   }
3179   return 0;
3180 }
3181 
3182 /*
3183 ** Add all WhereLoop objects for a single table of the join where the table
3184 ** is identified by pBuilder->pNew->iTab.  That table is guaranteed to be
3185 ** a b-tree table, not a virtual table.
3186 **
3187 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
3188 ** are calculated as follows:
3189 **
3190 ** For a full scan, assuming the table (or index) contains nRow rows:
3191 **
3192 **     cost = nRow * 3.0                    // full-table scan
3193 **     cost = nRow * K                      // scan of covering index
3194 **     cost = nRow * (K+3.0)                // scan of non-covering index
3195 **
3196 ** where K is a value between 1.1 and 3.0 set based on the relative
3197 ** estimated average size of the index and table records.
3198 **
3199 ** For an index scan, where nVisit is the number of index rows visited
3200 ** by the scan, and nSeek is the number of seek operations required on
3201 ** the index b-tree:
3202 **
3203 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
3204 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
3205 **
3206 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
3207 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
3208 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
3209 **
3210 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
3211 ** of uncertainty.  For this reason, scoring is designed to pick plans that
3212 ** "do the least harm" if the estimates are inaccurate.  For example, a
3213 ** log(nRow) factor is omitted from a non-covering index scan in order to
3214 ** bias the scoring in favor of using an index, since the worst-case
3215 ** performance of using an index is far better than the worst-case performance
3216 ** of a full table scan.
3217 */
3218 static int whereLoopAddBtree(
3219   WhereLoopBuilder *pBuilder, /* WHERE clause information */
3220   Bitmask mPrereq             /* Extra prerequesites for using this table */
3221 ){
3222   WhereInfo *pWInfo;          /* WHERE analysis context */
3223   Index *pProbe;              /* An index we are evaluating */
3224   Index sPk;                  /* A fake index object for the primary key */
3225   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
3226   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
3227   SrcList *pTabList;          /* The FROM clause */
3228   SrcItem *pSrc;              /* The FROM clause btree term to add */
3229   WhereLoop *pNew;            /* Template WhereLoop object */
3230   int rc = SQLITE_OK;         /* Return code */
3231   int iSortIdx = 1;           /* Index number */
3232   int b;                      /* A boolean value */
3233   LogEst rSize;               /* number of rows in the table */
3234   WhereClause *pWC;           /* The parsed WHERE clause */
3235   Table *pTab;                /* Table being queried */
3236 
3237   pNew = pBuilder->pNew;
3238   pWInfo = pBuilder->pWInfo;
3239   pTabList = pWInfo->pTabList;
3240   pSrc = pTabList->a + pNew->iTab;
3241   pTab = pSrc->pTab;
3242   pWC = pBuilder->pWC;
3243   assert( !IsVirtual(pSrc->pTab) );
3244 
3245   if( pSrc->fg.isIndexedBy ){
3246     assert( pSrc->fg.isCte==0 );
3247     /* An INDEXED BY clause specifies a particular index to use */
3248     pProbe = pSrc->u2.pIBIndex;
3249   }else if( !HasRowid(pTab) ){
3250     pProbe = pTab->pIndex;
3251   }else{
3252     /* There is no INDEXED BY clause.  Create a fake Index object in local
3253     ** variable sPk to represent the rowid primary key index.  Make this
3254     ** fake index the first in a chain of Index objects with all of the real
3255     ** indices to follow */
3256     Index *pFirst;                  /* First of real indices on the table */
3257     memset(&sPk, 0, sizeof(Index));
3258     sPk.nKeyCol = 1;
3259     sPk.nColumn = 1;
3260     sPk.aiColumn = &aiColumnPk;
3261     sPk.aiRowLogEst = aiRowEstPk;
3262     sPk.onError = OE_Replace;
3263     sPk.pTable = pTab;
3264     sPk.szIdxRow = pTab->szTabRow;
3265     sPk.idxType = SQLITE_IDXTYPE_IPK;
3266     aiRowEstPk[0] = pTab->nRowLogEst;
3267     aiRowEstPk[1] = 0;
3268     pFirst = pSrc->pTab->pIndex;
3269     if( pSrc->fg.notIndexed==0 ){
3270       /* The real indices of the table are only considered if the
3271       ** NOT INDEXED qualifier is omitted from the FROM clause */
3272       sPk.pNext = pFirst;
3273     }
3274     pProbe = &sPk;
3275   }
3276   rSize = pTab->nRowLogEst;
3277 
3278 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
3279   /* Automatic indexes */
3280   if( !pBuilder->pOrSet      /* Not part of an OR optimization */
3281    && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
3282    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
3283    && !pSrc->fg.isIndexedBy  /* Has no INDEXED BY clause */
3284    && !pSrc->fg.notIndexed   /* Has no NOT INDEXED clause */
3285    && HasRowid(pTab)         /* Not WITHOUT ROWID table. (FIXME: Why not?) */
3286    && !pSrc->fg.isCorrelated /* Not a correlated subquery */
3287    && !pSrc->fg.isRecursive  /* Not a recursive common table expression. */
3288   ){
3289     /* Generate auto-index WhereLoops */
3290     LogEst rLogSize;         /* Logarithm of the number of rows in the table */
3291     WhereTerm *pTerm;
3292     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
3293     rLogSize = estLog(rSize);
3294     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
3295       if( pTerm->prereqRight & pNew->maskSelf ) continue;
3296       if( termCanDriveIndex(pTerm, pSrc, 0) ){
3297         pNew->u.btree.nEq = 1;
3298         pNew->nSkip = 0;
3299         pNew->u.btree.pIndex = 0;
3300         pNew->nLTerm = 1;
3301         pNew->aLTerm[0] = pTerm;
3302         /* TUNING: One-time cost for computing the automatic index is
3303         ** estimated to be X*N*log2(N) where N is the number of rows in
3304         ** the table being indexed and where X is 7 (LogEst=28) for normal
3305         ** tables or 0.5 (LogEst=-10) for views and subqueries.  The value
3306         ** of X is smaller for views and subqueries so that the query planner
3307         ** will be more aggressive about generating automatic indexes for
3308         ** those objects, since there is no opportunity to add schema
3309         ** indexes on subqueries and views. */
3310         pNew->rSetup = rLogSize + rSize;
3311         if( !IsView(pTab) && (pTab->tabFlags & TF_Ephemeral)==0 ){
3312           pNew->rSetup += 28;
3313         }else{
3314           pNew->rSetup -= 10;
3315         }
3316         ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
3317         if( pNew->rSetup<0 ) pNew->rSetup = 0;
3318         /* TUNING: Each index lookup yields 20 rows in the table.  This
3319         ** is more than the usual guess of 10 rows, since we have no way
3320         ** of knowing how selective the index will ultimately be.  It would
3321         ** not be unreasonable to make this value much larger. */
3322         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
3323         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
3324         pNew->wsFlags = WHERE_AUTO_INDEX;
3325         pNew->prereq = mPrereq | pTerm->prereqRight;
3326         rc = whereLoopInsert(pBuilder, pNew);
3327       }
3328     }
3329   }
3330 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
3331 
3332   /* Loop over all indices. If there was an INDEXED BY clause, then only
3333   ** consider index pProbe.  */
3334   for(; rc==SQLITE_OK && pProbe;
3335       pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++
3336   ){
3337     int isLeft = (pSrc->fg.jointype & JT_OUTER)!=0;
3338     if( pProbe->pPartIdxWhere!=0
3339      && !whereUsablePartialIndex(pSrc->iCursor, isLeft, pWC,
3340                                  pProbe->pPartIdxWhere)
3341     ){
3342       testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
3343       continue;  /* Partial index inappropriate for this query */
3344     }
3345     if( pProbe->bNoQuery ) continue;
3346     rSize = pProbe->aiRowLogEst[0];
3347     pNew->u.btree.nEq = 0;
3348     pNew->u.btree.nBtm = 0;
3349     pNew->u.btree.nTop = 0;
3350     pNew->nSkip = 0;
3351     pNew->nLTerm = 0;
3352     pNew->iSortIdx = 0;
3353     pNew->rSetup = 0;
3354     pNew->prereq = mPrereq;
3355     pNew->nOut = rSize;
3356     pNew->u.btree.pIndex = pProbe;
3357     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
3358 
3359     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
3360     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
3361     if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){
3362       /* Integer primary key index */
3363       pNew->wsFlags = WHERE_IPK;
3364 
3365       /* Full table scan */
3366       pNew->iSortIdx = b ? iSortIdx : 0;
3367       /* TUNING: Cost of full table scan is 3.0*N.  The 3.0 factor is an
3368       ** extra cost designed to discourage the use of full table scans,
3369       ** since index lookups have better worst-case performance if our
3370       ** stat guesses are wrong.  Reduce the 3.0 penalty slightly
3371       ** (to 2.75) if we have valid STAT4 information for the table.
3372       ** At 2.75, a full table scan is preferred over using an index on
3373       ** a column with just two distinct values where each value has about
3374       ** an equal number of appearances.  Without STAT4 data, we still want
3375       ** to use an index in that case, since the constraint might be for
3376       ** the scarcer of the two values, and in that case an index lookup is
3377       ** better.
3378       */
3379 #ifdef SQLITE_ENABLE_STAT4
3380       pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0);
3381 #else
3382       pNew->rRun = rSize + 16;
3383 #endif
3384       ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3385       whereLoopOutputAdjust(pWC, pNew, rSize);
3386       rc = whereLoopInsert(pBuilder, pNew);
3387       pNew->nOut = rSize;
3388       if( rc ) break;
3389     }else{
3390       Bitmask m;
3391       if( pProbe->isCovering ){
3392         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
3393         m = 0;
3394       }else{
3395         m = pSrc->colUsed & pProbe->colNotIdxed;
3396         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
3397       }
3398 
3399       /* Full scan via index */
3400       if( b
3401        || !HasRowid(pTab)
3402        || pProbe->pPartIdxWhere!=0
3403        || pSrc->fg.isIndexedBy
3404        || ( m==0
3405          && pProbe->bUnordered==0
3406          && (pProbe->szIdxRow<pTab->szTabRow)
3407          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
3408          && sqlite3GlobalConfig.bUseCis
3409          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
3410           )
3411       ){
3412         pNew->iSortIdx = b ? iSortIdx : 0;
3413 
3414         /* The cost of visiting the index rows is N*K, where K is
3415         ** between 1.1 and 3.0, depending on the relative sizes of the
3416         ** index and table rows. */
3417         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
3418         if( m!=0 ){
3419           /* If this is a non-covering index scan, add in the cost of
3420           ** doing table lookups.  The cost will be 3x the number of
3421           ** lookups.  Take into account WHERE clause terms that can be
3422           ** satisfied using just the index, and that do not require a
3423           ** table lookup. */
3424           LogEst nLookup = rSize + 16;  /* Base cost:  N*3 */
3425           int ii;
3426           int iCur = pSrc->iCursor;
3427           WhereClause *pWC2 = &pWInfo->sWC;
3428           for(ii=0; ii<pWC2->nTerm; ii++){
3429             WhereTerm *pTerm = &pWC2->a[ii];
3430             if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
3431               break;
3432             }
3433             /* pTerm can be evaluated using just the index.  So reduce
3434             ** the expected number of table lookups accordingly */
3435             if( pTerm->truthProb<=0 ){
3436               nLookup += pTerm->truthProb;
3437             }else{
3438               nLookup--;
3439               if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
3440             }
3441           }
3442 
3443           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
3444         }
3445         ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3446         whereLoopOutputAdjust(pWC, pNew, rSize);
3447         rc = whereLoopInsert(pBuilder, pNew);
3448         pNew->nOut = rSize;
3449         if( rc ) break;
3450       }
3451     }
3452 
3453     pBuilder->bldFlags1 = 0;
3454     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
3455     if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){
3456       /* If a non-unique index is used, or if a prefix of the key for
3457       ** unique index is used (making the index functionally non-unique)
3458       ** then the sqlite_stat1 data becomes important for scoring the
3459       ** plan */
3460       pTab->tabFlags |= TF_StatsUsed;
3461     }
3462 #ifdef SQLITE_ENABLE_STAT4
3463     sqlite3Stat4ProbeFree(pBuilder->pRec);
3464     pBuilder->nRecValid = 0;
3465     pBuilder->pRec = 0;
3466 #endif
3467   }
3468   return rc;
3469 }
3470 
3471 #ifndef SQLITE_OMIT_VIRTUALTABLE
3472 
3473 /*
3474 ** Return true if pTerm is a virtual table LIMIT or OFFSET term.
3475 */
3476 static int isLimitTerm(WhereTerm *pTerm){
3477   assert( pTerm->eOperator==WO_AUX || pTerm->eMatchOp==0 );
3478   return pTerm->eMatchOp>=SQLITE_INDEX_CONSTRAINT_LIMIT
3479       && pTerm->eMatchOp<=SQLITE_INDEX_CONSTRAINT_OFFSET;
3480 }
3481 
3482 /*
3483 ** Argument pIdxInfo is already populated with all constraints that may
3484 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3485 ** function marks a subset of those constraints usable, invokes the
3486 ** xBestIndex method and adds the returned plan to pBuilder.
3487 **
3488 ** A constraint is marked usable if:
3489 **
3490 **   * Argument mUsable indicates that its prerequisites are available, and
3491 **
3492 **   * It is not one of the operators specified in the mExclude mask passed
3493 **     as the fourth argument (which in practice is either WO_IN or 0).
3494 **
3495 ** Argument mPrereq is a mask of tables that must be scanned before the
3496 ** virtual table in question. These are added to the plans prerequisites
3497 ** before it is added to pBuilder.
3498 **
3499 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3500 ** uses one or more WO_IN terms, or false otherwise.
3501 */
3502 static int whereLoopAddVirtualOne(
3503   WhereLoopBuilder *pBuilder,
3504   Bitmask mPrereq,                /* Mask of tables that must be used. */
3505   Bitmask mUsable,                /* Mask of usable tables */
3506   u16 mExclude,                   /* Exclude terms using these operators */
3507   sqlite3_index_info *pIdxInfo,   /* Populated object for xBestIndex */
3508   u16 mNoOmit,                    /* Do not omit these constraints */
3509   int *pbIn,                      /* OUT: True if plan uses an IN(...) op */
3510   int *pbRetryLimit               /* OUT: Retry without LIMIT/OFFSET */
3511 ){
3512   WhereClause *pWC = pBuilder->pWC;
3513   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3514   struct sqlite3_index_constraint *pIdxCons;
3515   struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3516   int i;
3517   int mxTerm;
3518   int rc = SQLITE_OK;
3519   WhereLoop *pNew = pBuilder->pNew;
3520   Parse *pParse = pBuilder->pWInfo->pParse;
3521   SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3522   int nConstraint = pIdxInfo->nConstraint;
3523 
3524   assert( (mUsable & mPrereq)==mPrereq );
3525   *pbIn = 0;
3526   pNew->prereq = mPrereq;
3527 
3528   /* Set the usable flag on the subset of constraints identified by
3529   ** arguments mUsable and mExclude. */
3530   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3531   for(i=0; i<nConstraint; i++, pIdxCons++){
3532     WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3533     pIdxCons->usable = 0;
3534     if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3535      && (pTerm->eOperator & mExclude)==0
3536      && (pbRetryLimit || !isLimitTerm(pTerm))
3537     ){
3538       pIdxCons->usable = 1;
3539     }
3540   }
3541 
3542   /* Initialize the output fields of the sqlite3_index_info structure */
3543   memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3544   assert( pIdxInfo->needToFreeIdxStr==0 );
3545   pIdxInfo->idxStr = 0;
3546   pIdxInfo->idxNum = 0;
3547   pIdxInfo->orderByConsumed = 0;
3548   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3549   pIdxInfo->estimatedRows = 25;
3550   pIdxInfo->idxFlags = 0;
3551   pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3552   pHidden->mHandleIn = 0;
3553 
3554   /* Invoke the virtual table xBestIndex() method */
3555   rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3556   if( rc ){
3557     if( rc==SQLITE_CONSTRAINT ){
3558       /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
3559       ** that the particular combination of parameters provided is unusable.
3560       ** Make no entries in the loop table.
3561       */
3562       WHERETRACE(0xffff, ("  ^^^^--- non-viable plan rejected!\n"));
3563       return SQLITE_OK;
3564     }
3565     return rc;
3566   }
3567 
3568   mxTerm = -1;
3569   assert( pNew->nLSlot>=nConstraint );
3570   memset(pNew->aLTerm, 0, sizeof(pNew->aLTerm[0])*nConstraint );
3571   memset(&pNew->u.vtab, 0, sizeof(pNew->u.vtab));
3572   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3573   for(i=0; i<nConstraint; i++, pIdxCons++){
3574     int iTerm;
3575     if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3576       WhereTerm *pTerm;
3577       int j = pIdxCons->iTermOffset;
3578       if( iTerm>=nConstraint
3579        || j<0
3580        || j>=pWC->nTerm
3581        || pNew->aLTerm[iTerm]!=0
3582        || pIdxCons->usable==0
3583       ){
3584         sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3585         testcase( pIdxInfo->needToFreeIdxStr );
3586         return SQLITE_ERROR;
3587       }
3588       testcase( iTerm==nConstraint-1 );
3589       testcase( j==0 );
3590       testcase( j==pWC->nTerm-1 );
3591       pTerm = &pWC->a[j];
3592       pNew->prereq |= pTerm->prereqRight;
3593       assert( iTerm<pNew->nLSlot );
3594       pNew->aLTerm[iTerm] = pTerm;
3595       if( iTerm>mxTerm ) mxTerm = iTerm;
3596       testcase( iTerm==15 );
3597       testcase( iTerm==16 );
3598       if( pUsage[i].omit ){
3599         if( i<16 && ((1<<i)&mNoOmit)==0 ){
3600           testcase( i!=iTerm );
3601           pNew->u.vtab.omitMask |= 1<<iTerm;
3602         }else{
3603           testcase( i!=iTerm );
3604         }
3605         if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET ){
3606           pNew->u.vtab.bOmitOffset = 1;
3607         }
3608       }
3609       if( SMASKBIT32(i) & pHidden->mHandleIn ){
3610         pNew->u.vtab.mHandleIn |= MASKBIT32(iTerm);
3611       }else if( (pTerm->eOperator & WO_IN)!=0 ){
3612         /* A virtual table that is constrained by an IN clause may not
3613         ** consume the ORDER BY clause because (1) the order of IN terms
3614         ** is not necessarily related to the order of output terms and
3615         ** (2) Multiple outputs from a single IN value will not merge
3616         ** together.  */
3617         pIdxInfo->orderByConsumed = 0;
3618         pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3619         *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3620       }
3621 
3622       if( isLimitTerm(pTerm) && *pbIn ){
3623         /* If there is an IN(...) term handled as an == (separate call to
3624         ** xFilter for each value on the RHS of the IN) and a LIMIT or
3625         ** OFFSET term handled as well, the plan is unusable. Set output
3626         ** variable *pbRetryLimit to true to tell the caller to retry with
3627         ** LIMIT and OFFSET disabled. */
3628         if( pIdxInfo->needToFreeIdxStr ){
3629           sqlite3_free(pIdxInfo->idxStr);
3630           pIdxInfo->idxStr = 0;
3631           pIdxInfo->needToFreeIdxStr = 0;
3632         }
3633         *pbRetryLimit = 1;
3634         return SQLITE_OK;
3635       }
3636     }
3637   }
3638 
3639   pNew->nLTerm = mxTerm+1;
3640   for(i=0; i<=mxTerm; i++){
3641     if( pNew->aLTerm[i]==0 ){
3642       /* The non-zero argvIdx values must be contiguous.  Raise an
3643       ** error if they are not */
3644       sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3645       testcase( pIdxInfo->needToFreeIdxStr );
3646       return SQLITE_ERROR;
3647     }
3648   }
3649   assert( pNew->nLTerm<=pNew->nLSlot );
3650   pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3651   pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3652   pIdxInfo->needToFreeIdxStr = 0;
3653   pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3654   pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3655       pIdxInfo->nOrderBy : 0);
3656   pNew->rSetup = 0;
3657   pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3658   pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3659 
3660   /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3661   ** that the scan will visit at most one row. Clear it otherwise. */
3662   if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3663     pNew->wsFlags |= WHERE_ONEROW;
3664   }else{
3665     pNew->wsFlags &= ~WHERE_ONEROW;
3666   }
3667   rc = whereLoopInsert(pBuilder, pNew);
3668   if( pNew->u.vtab.needFree ){
3669     sqlite3_free(pNew->u.vtab.idxStr);
3670     pNew->u.vtab.needFree = 0;
3671   }
3672   WHERETRACE(0xffff, ("  bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3673                       *pbIn, (sqlite3_uint64)mPrereq,
3674                       (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3675 
3676   return rc;
3677 }
3678 
3679 /*
3680 ** Return the collating sequence for a constraint passed into xBestIndex.
3681 **
3682 ** pIdxInfo must be an sqlite3_index_info structure passed into xBestIndex.
3683 ** This routine depends on there being a HiddenIndexInfo structure immediately
3684 ** following the sqlite3_index_info structure.
3685 **
3686 ** Return a pointer to the collation name:
3687 **
3688 **    1. If there is an explicit COLLATE operator on the constaint, return it.
3689 **
3690 **    2. Else, if the column has an alternative collation, return that.
3691 **
3692 **    3. Otherwise, return "BINARY".
3693 */
3694 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
3695   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3696   const char *zRet = 0;
3697   if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
3698     CollSeq *pC = 0;
3699     int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
3700     Expr *pX = pHidden->pWC->a[iTerm].pExpr;
3701     if( pX->pLeft ){
3702       pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX);
3703     }
3704     zRet = (pC ? pC->zName : sqlite3StrBINARY);
3705   }
3706   return zRet;
3707 }
3708 
3709 /*
3710 ** Return true if constraint iCons is really an IN(...) constraint, or
3711 ** false otherwise. If iCons is an IN(...) constraint, set (if bHandle!=0)
3712 ** or clear (if bHandle==0) the flag to handle it using an iterator.
3713 */
3714 int sqlite3_vtab_in(sqlite3_index_info *pIdxInfo, int iCons, int bHandle){
3715   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3716   u32 m = SMASKBIT32(iCons);
3717   if( m & pHidden->mIn ){
3718     if( bHandle==0 ){
3719       pHidden->mHandleIn &= ~m;
3720     }else if( bHandle>0 ){
3721       pHidden->mHandleIn |= m;
3722     }
3723     return 1;
3724   }
3725   return 0;
3726 }
3727 
3728 /*
3729 ** This interface is callable from within the xBestIndex callback only.
3730 **
3731 ** If possible, set (*ppVal) to point to an object containing the value
3732 ** on the right-hand-side of constraint iCons.
3733 */
3734 int sqlite3_vtab_rhs_value(
3735   sqlite3_index_info *pIdxInfo,   /* Copy of first argument to xBestIndex */
3736   int iCons,                      /* Constraint for which RHS is wanted */
3737   sqlite3_value **ppVal           /* Write value extracted here */
3738 ){
3739   HiddenIndexInfo *pH = (HiddenIndexInfo*)&pIdxInfo[1];
3740   sqlite3_value *pVal = 0;
3741   int rc = SQLITE_OK;
3742   if( iCons<0 || iCons>=pIdxInfo->nConstraint ){
3743     rc = SQLITE_MISUSE; /* EV: R-30545-25046 */
3744   }else{
3745     if( pH->aRhs[iCons]==0 ){
3746       WhereTerm *pTerm = &pH->pWC->a[pIdxInfo->aConstraint[iCons].iTermOffset];
3747       rc = sqlite3ValueFromExpr(
3748           pH->pParse->db, pTerm->pExpr->pRight, ENC(pH->pParse->db),
3749           SQLITE_AFF_BLOB, &pH->aRhs[iCons]
3750       );
3751       testcase( rc!=SQLITE_OK );
3752     }
3753     pVal = pH->aRhs[iCons];
3754   }
3755   *ppVal = pVal;
3756 
3757   if( rc==SQLITE_OK && pVal==0 ){  /* IMP: R-19933-32160 */
3758     rc = SQLITE_NOTFOUND;          /* IMP: R-36424-56542 */
3759   }
3760 
3761   return rc;
3762 }
3763 
3764 
3765 /*
3766 ** Return true if ORDER BY clause may be handled as DISTINCT.
3767 */
3768 int sqlite3_vtab_distinct(sqlite3_index_info *pIdxInfo){
3769   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3770   assert( pHidden->eDistinct==0
3771        || pHidden->eDistinct==1
3772        || pHidden->eDistinct==2 );
3773   return pHidden->eDistinct;
3774 }
3775 
3776 /*
3777 ** Add all WhereLoop objects for a table of the join identified by
3778 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
3779 **
3780 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3781 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3782 ** entries that occur before the virtual table in the FROM clause and are
3783 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3784 ** mUnusable mask contains all FROM clause entries that occur after the
3785 ** virtual table and are separated from it by at least one LEFT or
3786 ** CROSS JOIN.
3787 **
3788 ** For example, if the query were:
3789 **
3790 **   ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3791 **
3792 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3793 **
3794 ** All the tables in mPrereq must be scanned before the current virtual
3795 ** table. So any terms for which all prerequisites are satisfied by
3796 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3797 ** Conversely, all tables in mUnusable must be scanned after the current
3798 ** virtual table, so any terms for which the prerequisites overlap with
3799 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3800 */
3801 static int whereLoopAddVirtual(
3802   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
3803   Bitmask mPrereq,             /* Tables that must be scanned before this one */
3804   Bitmask mUnusable            /* Tables that must be scanned after this one */
3805 ){
3806   int rc = SQLITE_OK;          /* Return code */
3807   WhereInfo *pWInfo;           /* WHERE analysis context */
3808   Parse *pParse;               /* The parsing context */
3809   WhereClause *pWC;            /* The WHERE clause */
3810   SrcItem *pSrc;               /* The FROM clause term to search */
3811   sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
3812   int nConstraint;             /* Number of constraints in p */
3813   int bIn;                     /* True if plan uses IN(...) operator */
3814   WhereLoop *pNew;
3815   Bitmask mBest;               /* Tables used by best possible plan */
3816   u16 mNoOmit;
3817   int bRetry = 0;              /* True to retry with LIMIT/OFFSET disabled */
3818 
3819   assert( (mPrereq & mUnusable)==0 );
3820   pWInfo = pBuilder->pWInfo;
3821   pParse = pWInfo->pParse;
3822   pWC = pBuilder->pWC;
3823   pNew = pBuilder->pNew;
3824   pSrc = &pWInfo->pTabList->a[pNew->iTab];
3825   assert( IsVirtual(pSrc->pTab) );
3826   p = allocateIndexInfo(pWInfo, pWC, mUnusable, pSrc, &mNoOmit);
3827   if( p==0 ) return SQLITE_NOMEM_BKPT;
3828   pNew->rSetup = 0;
3829   pNew->wsFlags = WHERE_VIRTUALTABLE;
3830   pNew->nLTerm = 0;
3831   pNew->u.vtab.needFree = 0;
3832   nConstraint = p->nConstraint;
3833   if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3834     freeIndexInfo(pParse->db, p);
3835     return SQLITE_NOMEM_BKPT;
3836   }
3837 
3838   /* First call xBestIndex() with all constraints usable. */
3839   WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
3840   WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
3841   rc = whereLoopAddVirtualOne(
3842       pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, &bRetry
3843   );
3844   if( bRetry ){
3845     assert( rc==SQLITE_OK );
3846     rc = whereLoopAddVirtualOne(
3847         pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, 0
3848     );
3849   }
3850 
3851   /* If the call to xBestIndex() with all terms enabled produced a plan
3852   ** that does not require any source tables (IOW: a plan with mBest==0)
3853   ** and does not use an IN(...) operator, then there is no point in making
3854   ** any further calls to xBestIndex() since they will all return the same
3855   ** result (if the xBestIndex() implementation is sane). */
3856   if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){
3857     int seenZero = 0;             /* True if a plan with no prereqs seen */
3858     int seenZeroNoIN = 0;         /* Plan with no prereqs and no IN(...) seen */
3859     Bitmask mPrev = 0;
3860     Bitmask mBestNoIn = 0;
3861 
3862     /* If the plan produced by the earlier call uses an IN(...) term, call
3863     ** xBestIndex again, this time with IN(...) terms disabled. */
3864     if( bIn ){
3865       WHERETRACE(0x40, ("  VirtualOne: all usable w/o IN\n"));
3866       rc = whereLoopAddVirtualOne(
3867           pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn, 0);
3868       assert( bIn==0 );
3869       mBestNoIn = pNew->prereq & ~mPrereq;
3870       if( mBestNoIn==0 ){
3871         seenZero = 1;
3872         seenZeroNoIN = 1;
3873       }
3874     }
3875 
3876     /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3877     ** in the set of terms that apply to the current virtual table.  */
3878     while( rc==SQLITE_OK ){
3879       int i;
3880       Bitmask mNext = ALLBITS;
3881       assert( mNext>0 );
3882       for(i=0; i<nConstraint; i++){
3883         Bitmask mThis = (
3884             pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3885         );
3886         if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3887       }
3888       mPrev = mNext;
3889       if( mNext==ALLBITS ) break;
3890       if( mNext==mBest || mNext==mBestNoIn ) continue;
3891       WHERETRACE(0x40, ("  VirtualOne: mPrev=%04llx mNext=%04llx\n",
3892                        (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3893       rc = whereLoopAddVirtualOne(
3894           pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn, 0);
3895       if( pNew->prereq==mPrereq ){
3896         seenZero = 1;
3897         if( bIn==0 ) seenZeroNoIN = 1;
3898       }
3899     }
3900 
3901     /* If the calls to xBestIndex() in the above loop did not find a plan
3902     ** that requires no source tables at all (i.e. one guaranteed to be
3903     ** usable), make a call here with all source tables disabled */
3904     if( rc==SQLITE_OK && seenZero==0 ){
3905       WHERETRACE(0x40, ("  VirtualOne: all disabled\n"));
3906       rc = whereLoopAddVirtualOne(
3907           pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn, 0);
3908       if( bIn==0 ) seenZeroNoIN = 1;
3909     }
3910 
3911     /* If the calls to xBestIndex() have so far failed to find a plan
3912     ** that requires no source tables at all and does not use an IN(...)
3913     ** operator, make a final call to obtain one here.  */
3914     if( rc==SQLITE_OK && seenZeroNoIN==0 ){
3915       WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
3916       rc = whereLoopAddVirtualOne(
3917           pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn, 0);
3918     }
3919   }
3920 
3921   if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
3922   freeIndexInfo(pParse->db, p);
3923   WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
3924   return rc;
3925 }
3926 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3927 
3928 /*
3929 ** Add WhereLoop entries to handle OR terms.  This works for either
3930 ** btrees or virtual tables.
3931 */
3932 static int whereLoopAddOr(
3933   WhereLoopBuilder *pBuilder,
3934   Bitmask mPrereq,
3935   Bitmask mUnusable
3936 ){
3937   WhereInfo *pWInfo = pBuilder->pWInfo;
3938   WhereClause *pWC;
3939   WhereLoop *pNew;
3940   WhereTerm *pTerm, *pWCEnd;
3941   int rc = SQLITE_OK;
3942   int iCur;
3943   WhereClause tempWC;
3944   WhereLoopBuilder sSubBuild;
3945   WhereOrSet sSum, sCur;
3946   SrcItem *pItem;
3947 
3948   pWC = pBuilder->pWC;
3949   pWCEnd = pWC->a + pWC->nTerm;
3950   pNew = pBuilder->pNew;
3951   memset(&sSum, 0, sizeof(sSum));
3952   pItem = pWInfo->pTabList->a + pNew->iTab;
3953   iCur = pItem->iCursor;
3954 
3955   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
3956     if( (pTerm->eOperator & WO_OR)!=0
3957      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
3958     ){
3959       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
3960       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
3961       WhereTerm *pOrTerm;
3962       int once = 1;
3963       int i, j;
3964 
3965       sSubBuild = *pBuilder;
3966       sSubBuild.pOrSet = &sCur;
3967 
3968       WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
3969       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
3970         if( (pOrTerm->eOperator & WO_AND)!=0 ){
3971           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
3972         }else if( pOrTerm->leftCursor==iCur ){
3973           tempWC.pWInfo = pWC->pWInfo;
3974           tempWC.pOuter = pWC;
3975           tempWC.op = TK_AND;
3976           tempWC.nTerm = 1;
3977           tempWC.nBase = 1;
3978           tempWC.a = pOrTerm;
3979           sSubBuild.pWC = &tempWC;
3980         }else{
3981           continue;
3982         }
3983         sCur.n = 0;
3984 #ifdef WHERETRACE_ENABLED
3985         WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3986                    (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
3987         if( sqlite3WhereTrace & 0x400 ){
3988           sqlite3WhereClausePrint(sSubBuild.pWC);
3989         }
3990 #endif
3991 #ifndef SQLITE_OMIT_VIRTUALTABLE
3992         if( IsVirtual(pItem->pTab) ){
3993           rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
3994         }else
3995 #endif
3996         {
3997           rc = whereLoopAddBtree(&sSubBuild, mPrereq);
3998         }
3999         if( rc==SQLITE_OK ){
4000           rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
4001         }
4002         assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0
4003                 || rc==SQLITE_NOMEM );
4004         testcase( rc==SQLITE_NOMEM && sCur.n>0 );
4005         testcase( rc==SQLITE_DONE );
4006         if( sCur.n==0 ){
4007           sSum.n = 0;
4008           break;
4009         }else if( once ){
4010           whereOrMove(&sSum, &sCur);
4011           once = 0;
4012         }else{
4013           WhereOrSet sPrev;
4014           whereOrMove(&sPrev, &sSum);
4015           sSum.n = 0;
4016           for(i=0; i<sPrev.n; i++){
4017             for(j=0; j<sCur.n; j++){
4018               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
4019                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
4020                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
4021             }
4022           }
4023         }
4024       }
4025       pNew->nLTerm = 1;
4026       pNew->aLTerm[0] = pTerm;
4027       pNew->wsFlags = WHERE_MULTI_OR;
4028       pNew->rSetup = 0;
4029       pNew->iSortIdx = 0;
4030       memset(&pNew->u, 0, sizeof(pNew->u));
4031       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
4032         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
4033         ** of all sub-scans required by the OR-scan. However, due to rounding
4034         ** errors, it may be that the cost of the OR-scan is equal to its
4035         ** most expensive sub-scan. Add the smallest possible penalty
4036         ** (equivalent to multiplying the cost by 1.07) to ensure that
4037         ** this does not happen. Otherwise, for WHERE clauses such as the
4038         ** following where there is an index on "y":
4039         **
4040         **     WHERE likelihood(x=?, 0.99) OR y=?
4041         **
4042         ** the planner may elect to "OR" together a full-table scan and an
4043         ** index lookup. And other similarly odd results.  */
4044         pNew->rRun = sSum.a[i].rRun + 1;
4045         pNew->nOut = sSum.a[i].nOut;
4046         pNew->prereq = sSum.a[i].prereq;
4047         rc = whereLoopInsert(pBuilder, pNew);
4048       }
4049       WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
4050     }
4051   }
4052   return rc;
4053 }
4054 
4055 /*
4056 ** Add all WhereLoop objects for all tables
4057 */
4058 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
4059   WhereInfo *pWInfo = pBuilder->pWInfo;
4060   Bitmask mPrereq = 0;
4061   Bitmask mPrior = 0;
4062   int iTab;
4063   SrcList *pTabList = pWInfo->pTabList;
4064   SrcItem *pItem;
4065   SrcItem *pEnd = &pTabList->a[pWInfo->nLevel];
4066   sqlite3 *db = pWInfo->pParse->db;
4067   int rc = SQLITE_OK;
4068   WhereLoop *pNew;
4069 
4070   /* Loop over the tables in the join, from left to right */
4071   pNew = pBuilder->pNew;
4072   whereLoopInit(pNew);
4073   pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT;
4074   for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
4075     Bitmask mUnusable = 0;
4076     pNew->iTab = iTab;
4077     pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR;
4078     pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
4079     if( (pItem->fg.jointype & (JT_LEFT|JT_CROSS))!=0 ){
4080       /* This condition is true when pItem is the FROM clause term on the
4081       ** right-hand-side of a LEFT or CROSS JOIN.  */
4082       mPrereq = mPrior;
4083     }else{
4084       mPrereq = 0;
4085     }
4086 #ifndef SQLITE_OMIT_VIRTUALTABLE
4087     if( IsVirtual(pItem->pTab) ){
4088       SrcItem *p;
4089       for(p=&pItem[1]; p<pEnd; p++){
4090         if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
4091           mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
4092         }
4093       }
4094       rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
4095     }else
4096 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4097     {
4098       rc = whereLoopAddBtree(pBuilder, mPrereq);
4099     }
4100     if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
4101       rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
4102     }
4103     mPrior |= pNew->maskSelf;
4104     if( rc || db->mallocFailed ){
4105       if( rc==SQLITE_DONE ){
4106         /* We hit the query planner search limit set by iPlanLimit */
4107         sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search");
4108         rc = SQLITE_OK;
4109       }else{
4110         break;
4111       }
4112     }
4113   }
4114 
4115   whereLoopClear(db, pNew);
4116   return rc;
4117 }
4118 
4119 /*
4120 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
4121 ** parameters) to see if it outputs rows in the requested ORDER BY
4122 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
4123 **
4124 **   N>0:   N terms of the ORDER BY clause are satisfied
4125 **   N==0:  No terms of the ORDER BY clause are satisfied
4126 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
4127 **
4128 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
4129 ** strict.  With GROUP BY and DISTINCT the only requirement is that
4130 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
4131 ** and DISTINCT do not require rows to appear in any particular order as long
4132 ** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT
4133 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
4134 ** pOrderBy terms must be matched in strict left-to-right order.
4135 */
4136 static i8 wherePathSatisfiesOrderBy(
4137   WhereInfo *pWInfo,    /* The WHERE clause */
4138   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
4139   WherePath *pPath,     /* The WherePath to check */
4140   u16 wctrlFlags,       /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
4141   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
4142   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
4143   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
4144 ){
4145   u8 revSet;            /* True if rev is known */
4146   u8 rev;               /* Composite sort order */
4147   u8 revIdx;            /* Index sort order */
4148   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
4149   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
4150   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
4151   u16 eqOpMask;         /* Allowed equality operators */
4152   u16 nKeyCol;          /* Number of key columns in pIndex */
4153   u16 nColumn;          /* Total number of ordered columns in the index */
4154   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
4155   int iLoop;            /* Index of WhereLoop in pPath being processed */
4156   int i, j;             /* Loop counters */
4157   int iCur;             /* Cursor number for current WhereLoop */
4158   int iColumn;          /* A column number within table iCur */
4159   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
4160   WhereTerm *pTerm;     /* A single term of the WHERE clause */
4161   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
4162   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
4163   Index *pIndex;        /* The index associated with pLoop */
4164   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
4165   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
4166   Bitmask obDone;       /* Mask of all ORDER BY terms */
4167   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
4168   Bitmask ready;              /* Mask of inner loops */
4169 
4170   /*
4171   ** We say the WhereLoop is "one-row" if it generates no more than one
4172   ** row of output.  A WhereLoop is one-row if all of the following are true:
4173   **  (a) All index columns match with WHERE_COLUMN_EQ.
4174   **  (b) The index is unique
4175   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
4176   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
4177   **
4178   ** We say the WhereLoop is "order-distinct" if the set of columns from
4179   ** that WhereLoop that are in the ORDER BY clause are different for every
4180   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
4181   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
4182   ** is not order-distinct. To be order-distinct is not quite the same as being
4183   ** UNIQUE since a UNIQUE column or index can have multiple rows that
4184   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
4185   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
4186   **
4187   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
4188   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
4189   ** automatically order-distinct.
4190   */
4191 
4192   assert( pOrderBy!=0 );
4193   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
4194 
4195   nOrderBy = pOrderBy->nExpr;
4196   testcase( nOrderBy==BMS-1 );
4197   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
4198   isOrderDistinct = 1;
4199   obDone = MASKBIT(nOrderBy)-1;
4200   orderDistinctMask = 0;
4201   ready = 0;
4202   eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
4203   if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){
4204     eqOpMask |= WO_IN;
4205   }
4206   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
4207     if( iLoop>0 ) ready |= pLoop->maskSelf;
4208     if( iLoop<nLoop ){
4209       pLoop = pPath->aLoop[iLoop];
4210       if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
4211     }else{
4212       pLoop = pLast;
4213     }
4214     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
4215       if( pLoop->u.vtab.isOrdered && (wctrlFlags & WHERE_DISTINCTBY)==0 ){
4216         obSat = obDone;
4217       }
4218       break;
4219     }else if( wctrlFlags & WHERE_DISTINCTBY ){
4220       pLoop->u.btree.nDistinctCol = 0;
4221     }
4222     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
4223 
4224     /* Mark off any ORDER BY term X that is a column in the table of
4225     ** the current loop for which there is term in the WHERE
4226     ** clause of the form X IS NULL or X=? that reference only outer
4227     ** loops.
4228     */
4229     for(i=0; i<nOrderBy; i++){
4230       if( MASKBIT(i) & obSat ) continue;
4231       pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
4232       if( NEVER(pOBExpr==0) ) continue;
4233       if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
4234       if( pOBExpr->iTable!=iCur ) continue;
4235       pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
4236                        ~ready, eqOpMask, 0);
4237       if( pTerm==0 ) continue;
4238       if( pTerm->eOperator==WO_IN ){
4239         /* IN terms are only valid for sorting in the ORDER BY LIMIT
4240         ** optimization, and then only if they are actually used
4241         ** by the query plan */
4242         assert( wctrlFlags &
4243                (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) );
4244         for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
4245         if( j>=pLoop->nLTerm ) continue;
4246       }
4247       if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
4248         Parse *pParse = pWInfo->pParse;
4249         CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr);
4250         CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr);
4251         assert( pColl1 );
4252         if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){
4253           continue;
4254         }
4255         testcase( pTerm->pExpr->op==TK_IS );
4256       }
4257       obSat |= MASKBIT(i);
4258     }
4259 
4260     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
4261       if( pLoop->wsFlags & WHERE_IPK ){
4262         pIndex = 0;
4263         nKeyCol = 0;
4264         nColumn = 1;
4265       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
4266         return 0;
4267       }else{
4268         nKeyCol = pIndex->nKeyCol;
4269         nColumn = pIndex->nColumn;
4270         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
4271         assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
4272                           || !HasRowid(pIndex->pTable));
4273         /* All relevant terms of the index must also be non-NULL in order
4274         ** for isOrderDistinct to be true.  So the isOrderDistint value
4275         ** computed here might be a false positive.  Corrections will be
4276         ** made at tag-20210426-1 below */
4277         isOrderDistinct = IsUniqueIndex(pIndex)
4278                           && (pLoop->wsFlags & WHERE_SKIPSCAN)==0;
4279       }
4280 
4281       /* Loop through all columns of the index and deal with the ones
4282       ** that are not constrained by == or IN.
4283       */
4284       rev = revSet = 0;
4285       distinctColumns = 0;
4286       for(j=0; j<nColumn; j++){
4287         u8 bOnce = 1; /* True to run the ORDER BY search loop */
4288 
4289         assert( j>=pLoop->u.btree.nEq
4290             || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
4291         );
4292         if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
4293           u16 eOp = pLoop->aLTerm[j]->eOperator;
4294 
4295           /* Skip over == and IS and ISNULL terms.  (Also skip IN terms when
4296           ** doing WHERE_ORDERBY_LIMIT processing).  Except, IS and ISNULL
4297           ** terms imply that the index is not UNIQUE NOT NULL in which case
4298           ** the loop need to be marked as not order-distinct because it can
4299           ** have repeated NULL rows.
4300           **
4301           ** If the current term is a column of an ((?,?) IN (SELECT...))
4302           ** expression for which the SELECT returns more than one column,
4303           ** check that it is the only column used by this loop. Otherwise,
4304           ** if it is one of two or more, none of the columns can be
4305           ** considered to match an ORDER BY term.
4306           */
4307           if( (eOp & eqOpMask)!=0 ){
4308             if( eOp & (WO_ISNULL|WO_IS) ){
4309               testcase( eOp & WO_ISNULL );
4310               testcase( eOp & WO_IS );
4311               testcase( isOrderDistinct );
4312               isOrderDistinct = 0;
4313             }
4314             continue;
4315           }else if( ALWAYS(eOp & WO_IN) ){
4316             /* ALWAYS() justification: eOp is an equality operator due to the
4317             ** j<pLoop->u.btree.nEq constraint above.  Any equality other
4318             ** than WO_IN is captured by the previous "if".  So this one
4319             ** always has to be WO_IN. */
4320             Expr *pX = pLoop->aLTerm[j]->pExpr;
4321             for(i=j+1; i<pLoop->u.btree.nEq; i++){
4322               if( pLoop->aLTerm[i]->pExpr==pX ){
4323                 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
4324                 bOnce = 0;
4325                 break;
4326               }
4327             }
4328           }
4329         }
4330 
4331         /* Get the column number in the table (iColumn) and sort order
4332         ** (revIdx) for the j-th column of the index.
4333         */
4334         if( pIndex ){
4335           iColumn = pIndex->aiColumn[j];
4336           revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC;
4337           if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
4338         }else{
4339           iColumn = XN_ROWID;
4340           revIdx = 0;
4341         }
4342 
4343         /* An unconstrained column that might be NULL means that this
4344         ** WhereLoop is not well-ordered.  tag-20210426-1
4345         */
4346         if( isOrderDistinct ){
4347           if( iColumn>=0
4348            && j>=pLoop->u.btree.nEq
4349            && pIndex->pTable->aCol[iColumn].notNull==0
4350           ){
4351             isOrderDistinct = 0;
4352           }
4353           if( iColumn==XN_EXPR ){
4354             isOrderDistinct = 0;
4355           }
4356         }
4357 
4358         /* Find the ORDER BY term that corresponds to the j-th column
4359         ** of the index and mark that ORDER BY term off
4360         */
4361         isMatch = 0;
4362         for(i=0; bOnce && i<nOrderBy; i++){
4363           if( MASKBIT(i) & obSat ) continue;
4364           pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
4365           testcase( wctrlFlags & WHERE_GROUPBY );
4366           testcase( wctrlFlags & WHERE_DISTINCTBY );
4367           if( NEVER(pOBExpr==0) ) continue;
4368           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
4369           if( iColumn>=XN_ROWID ){
4370             if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
4371             if( pOBExpr->iTable!=iCur ) continue;
4372             if( pOBExpr->iColumn!=iColumn ) continue;
4373           }else{
4374             Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
4375             if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
4376               continue;
4377             }
4378           }
4379           if( iColumn!=XN_ROWID ){
4380             pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
4381             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
4382           }
4383           if( wctrlFlags & WHERE_DISTINCTBY ){
4384             pLoop->u.btree.nDistinctCol = j+1;
4385           }
4386           isMatch = 1;
4387           break;
4388         }
4389         if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
4390           /* Make sure the sort order is compatible in an ORDER BY clause.
4391           ** Sort order is irrelevant for a GROUP BY clause. */
4392           if( revSet ){
4393             if( (rev ^ revIdx)!=(pOrderBy->a[i].sortFlags&KEYINFO_ORDER_DESC) ){
4394               isMatch = 0;
4395             }
4396           }else{
4397             rev = revIdx ^ (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC);
4398             if( rev ) *pRevMask |= MASKBIT(iLoop);
4399             revSet = 1;
4400           }
4401         }
4402         if( isMatch && (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL) ){
4403           if( j==pLoop->u.btree.nEq ){
4404             pLoop->wsFlags |= WHERE_BIGNULL_SORT;
4405           }else{
4406             isMatch = 0;
4407           }
4408         }
4409         if( isMatch ){
4410           if( iColumn==XN_ROWID ){
4411             testcase( distinctColumns==0 );
4412             distinctColumns = 1;
4413           }
4414           obSat |= MASKBIT(i);
4415         }else{
4416           /* No match found */
4417           if( j==0 || j<nKeyCol ){
4418             testcase( isOrderDistinct!=0 );
4419             isOrderDistinct = 0;
4420           }
4421           break;
4422         }
4423       } /* end Loop over all index columns */
4424       if( distinctColumns ){
4425         testcase( isOrderDistinct==0 );
4426         isOrderDistinct = 1;
4427       }
4428     } /* end-if not one-row */
4429 
4430     /* Mark off any other ORDER BY terms that reference pLoop */
4431     if( isOrderDistinct ){
4432       orderDistinctMask |= pLoop->maskSelf;
4433       for(i=0; i<nOrderBy; i++){
4434         Expr *p;
4435         Bitmask mTerm;
4436         if( MASKBIT(i) & obSat ) continue;
4437         p = pOrderBy->a[i].pExpr;
4438         mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
4439         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
4440         if( (mTerm&~orderDistinctMask)==0 ){
4441           obSat |= MASKBIT(i);
4442         }
4443       }
4444     }
4445   } /* End the loop over all WhereLoops from outer-most down to inner-most */
4446   if( obSat==obDone ) return (i8)nOrderBy;
4447   if( !isOrderDistinct ){
4448     for(i=nOrderBy-1; i>0; i--){
4449       Bitmask m = ALWAYS(i<BMS) ? MASKBIT(i) - 1 : 0;
4450       if( (obSat&m)==m ) return i;
4451     }
4452     return 0;
4453   }
4454   return -1;
4455 }
4456 
4457 
4458 /*
4459 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
4460 ** the planner assumes that the specified pOrderBy list is actually a GROUP
4461 ** BY clause - and so any order that groups rows as required satisfies the
4462 ** request.
4463 **
4464 ** Normally, in this case it is not possible for the caller to determine
4465 ** whether or not the rows are really being delivered in sorted order, or
4466 ** just in some other order that provides the required grouping. However,
4467 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
4468 ** this function may be called on the returned WhereInfo object. It returns
4469 ** true if the rows really will be sorted in the specified order, or false
4470 ** otherwise.
4471 **
4472 ** For example, assuming:
4473 **
4474 **   CREATE INDEX i1 ON t1(x, Y);
4475 **
4476 ** then
4477 **
4478 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
4479 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
4480 */
4481 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
4482   assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
4483   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
4484   return pWInfo->sorted;
4485 }
4486 
4487 #ifdef WHERETRACE_ENABLED
4488 /* For debugging use only: */
4489 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
4490   static char zName[65];
4491   int i;
4492   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
4493   if( pLast ) zName[i++] = pLast->cId;
4494   zName[i] = 0;
4495   return zName;
4496 }
4497 #endif
4498 
4499 /*
4500 ** Return the cost of sorting nRow rows, assuming that the keys have
4501 ** nOrderby columns and that the first nSorted columns are already in
4502 ** order.
4503 */
4504 static LogEst whereSortingCost(
4505   WhereInfo *pWInfo,
4506   LogEst nRow,
4507   int nOrderBy,
4508   int nSorted
4509 ){
4510   /* TUNING: Estimated cost of a full external sort, where N is
4511   ** the number of rows to sort is:
4512   **
4513   **   cost = (3.0 * N * log(N)).
4514   **
4515   ** Or, if the order-by clause has X terms but only the last Y
4516   ** terms are out of order, then block-sorting will reduce the
4517   ** sorting cost to:
4518   **
4519   **   cost = (3.0 * N * log(N)) * (Y/X)
4520   **
4521   ** The (Y/X) term is implemented using stack variable rScale
4522   ** below.
4523   */
4524   LogEst rScale, rSortCost;
4525   assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
4526   rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
4527   rSortCost = nRow + rScale + 16;
4528 
4529   /* Multiple by log(M) where M is the number of output rows.
4530   ** Use the LIMIT for M if it is smaller.  Or if this sort is for
4531   ** a DISTINCT operator, M will be the number of distinct output
4532   ** rows, so fudge it downwards a bit.
4533   */
4534   if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
4535     nRow = pWInfo->iLimit;
4536   }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){
4537     /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT
4538     ** reduces the number of output rows by a factor of 2 */
4539     if( nRow>10 ){ nRow -= 10;  assert( 10==sqlite3LogEst(2) ); }
4540   }
4541   rSortCost += estLog(nRow);
4542   return rSortCost;
4543 }
4544 
4545 /*
4546 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
4547 ** attempts to find the lowest cost path that visits each WhereLoop
4548 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
4549 **
4550 ** Assume that the total number of output rows that will need to be sorted
4551 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
4552 ** costs if nRowEst==0.
4553 **
4554 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
4555 ** error occurs.
4556 */
4557 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
4558   int mxChoice;             /* Maximum number of simultaneous paths tracked */
4559   int nLoop;                /* Number of terms in the join */
4560   Parse *pParse;            /* Parsing context */
4561   sqlite3 *db;              /* The database connection */
4562   int iLoop;                /* Loop counter over the terms of the join */
4563   int ii, jj;               /* Loop counters */
4564   int mxI = 0;              /* Index of next entry to replace */
4565   int nOrderBy;             /* Number of ORDER BY clause terms */
4566   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
4567   LogEst mxUnsorted = 0;    /* Maximum unsorted cost of a set of path */
4568   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
4569   WherePath *aFrom;         /* All nFrom paths at the previous level */
4570   WherePath *aTo;           /* The nTo best paths at the current level */
4571   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
4572   WherePath *pTo;           /* An element of aTo[] that we are working on */
4573   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
4574   WhereLoop **pX;           /* Used to divy up the pSpace memory */
4575   LogEst *aSortCost = 0;    /* Sorting and partial sorting costs */
4576   char *pSpace;             /* Temporary memory used by this routine */
4577   int nSpace;               /* Bytes of space allocated at pSpace */
4578 
4579   pParse = pWInfo->pParse;
4580   db = pParse->db;
4581   nLoop = pWInfo->nLevel;
4582   /* TUNING: For simple queries, only the best path is tracked.
4583   ** For 2-way joins, the 5 best paths are followed.
4584   ** For joins of 3 or more tables, track the 10 best paths */
4585   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
4586   assert( nLoop<=pWInfo->pTabList->nSrc );
4587   WHERETRACE(0x002, ("---- begin solver.  (nRowEst=%d)\n", nRowEst));
4588 
4589   /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
4590   ** case the purpose of this call is to estimate the number of rows returned
4591   ** by the overall query. Once this estimate has been obtained, the caller
4592   ** will invoke this function a second time, passing the estimate as the
4593   ** nRowEst parameter.  */
4594   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
4595     nOrderBy = 0;
4596   }else{
4597     nOrderBy = pWInfo->pOrderBy->nExpr;
4598   }
4599 
4600   /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
4601   nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
4602   nSpace += sizeof(LogEst) * nOrderBy;
4603   pSpace = sqlite3DbMallocRawNN(db, nSpace);
4604   if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
4605   aTo = (WherePath*)pSpace;
4606   aFrom = aTo+mxChoice;
4607   memset(aFrom, 0, sizeof(aFrom[0]));
4608   pX = (WhereLoop**)(aFrom+mxChoice);
4609   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
4610     pFrom->aLoop = pX;
4611   }
4612   if( nOrderBy ){
4613     /* If there is an ORDER BY clause and it is not being ignored, set up
4614     ** space for the aSortCost[] array. Each element of the aSortCost array
4615     ** is either zero - meaning it has not yet been initialized - or the
4616     ** cost of sorting nRowEst rows of data where the first X terms of
4617     ** the ORDER BY clause are already in order, where X is the array
4618     ** index.  */
4619     aSortCost = (LogEst*)pX;
4620     memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
4621   }
4622   assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
4623   assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
4624 
4625   /* Seed the search with a single WherePath containing zero WhereLoops.
4626   **
4627   ** TUNING: Do not let the number of iterations go above 28.  If the cost
4628   ** of computing an automatic index is not paid back within the first 28
4629   ** rows, then do not use the automatic index. */
4630   aFrom[0].nRow = MIN(pParse->nQueryLoop, 48);  assert( 48==sqlite3LogEst(28) );
4631   nFrom = 1;
4632   assert( aFrom[0].isOrdered==0 );
4633   if( nOrderBy ){
4634     /* If nLoop is zero, then there are no FROM terms in the query. Since
4635     ** in this case the query may return a maximum of one row, the results
4636     ** are already in the requested order. Set isOrdered to nOrderBy to
4637     ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
4638     ** -1, indicating that the result set may or may not be ordered,
4639     ** depending on the loops added to the current plan.  */
4640     aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
4641   }
4642 
4643   /* Compute successively longer WherePaths using the previous generation
4644   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
4645   ** best paths at each generation */
4646   for(iLoop=0; iLoop<nLoop; iLoop++){
4647     nTo = 0;
4648     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
4649       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
4650         LogEst nOut;                      /* Rows visited by (pFrom+pWLoop) */
4651         LogEst rCost;                     /* Cost of path (pFrom+pWLoop) */
4652         LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
4653         i8 isOrdered = pFrom->isOrdered;  /* isOrdered for (pFrom+pWLoop) */
4654         Bitmask maskNew;                  /* Mask of src visited by (..) */
4655         Bitmask revMask = 0;              /* Mask of rev-order loops for (..) */
4656 
4657         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
4658         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
4659         if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
4660           /* Do not use an automatic index if the this loop is expected
4661           ** to run less than 1.25 times.  It is tempting to also exclude
4662           ** automatic index usage on an outer loop, but sometimes an automatic
4663           ** index is useful in the outer loop of a correlated subquery. */
4664           assert( 10==sqlite3LogEst(2) );
4665           continue;
4666         }
4667 
4668         /* At this point, pWLoop is a candidate to be the next loop.
4669         ** Compute its cost */
4670         rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
4671         rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
4672         nOut = pFrom->nRow + pWLoop->nOut;
4673         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
4674         if( isOrdered<0 ){
4675           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
4676                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
4677                        iLoop, pWLoop, &revMask);
4678         }else{
4679           revMask = pFrom->revLoop;
4680         }
4681         if( isOrdered>=0 && isOrdered<nOrderBy ){
4682           if( aSortCost[isOrdered]==0 ){
4683             aSortCost[isOrdered] = whereSortingCost(
4684                 pWInfo, nRowEst, nOrderBy, isOrdered
4685             );
4686           }
4687           /* TUNING:  Add a small extra penalty (5) to sorting as an
4688           ** extra encouragment to the query planner to select a plan
4689           ** where the rows emerge in the correct order without any sorting
4690           ** required. */
4691           rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5;
4692 
4693           WHERETRACE(0x002,
4694               ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
4695                aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
4696                rUnsorted, rCost));
4697         }else{
4698           rCost = rUnsorted;
4699           rUnsorted -= 2;  /* TUNING:  Slight bias in favor of no-sort plans */
4700         }
4701 
4702         /* Check to see if pWLoop should be added to the set of
4703         ** mxChoice best-so-far paths.
4704         **
4705         ** First look for an existing path among best-so-far paths
4706         ** that covers the same set of loops and has the same isOrdered
4707         ** setting as the current path candidate.
4708         **
4709         ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4710         ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4711         ** of legal values for isOrdered, -1..64.
4712         */
4713         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
4714           if( pTo->maskLoop==maskNew
4715            && ((pTo->isOrdered^isOrdered)&0x80)==0
4716           ){
4717             testcase( jj==nTo-1 );
4718             break;
4719           }
4720         }
4721         if( jj>=nTo ){
4722           /* None of the existing best-so-far paths match the candidate. */
4723           if( nTo>=mxChoice
4724            && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4725           ){
4726             /* The current candidate is no better than any of the mxChoice
4727             ** paths currently in the best-so-far buffer.  So discard
4728             ** this candidate as not viable. */
4729 #ifdef WHERETRACE_ENABLED /* 0x4 */
4730             if( sqlite3WhereTrace&0x4 ){
4731               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d,%3d order=%c\n",
4732                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4733                   isOrdered>=0 ? isOrdered+'0' : '?');
4734             }
4735 #endif
4736             continue;
4737           }
4738           /* If we reach this points it means that the new candidate path
4739           ** needs to be added to the set of best-so-far paths. */
4740           if( nTo<mxChoice ){
4741             /* Increase the size of the aTo set by one */
4742             jj = nTo++;
4743           }else{
4744             /* New path replaces the prior worst to keep count below mxChoice */
4745             jj = mxI;
4746           }
4747           pTo = &aTo[jj];
4748 #ifdef WHERETRACE_ENABLED /* 0x4 */
4749           if( sqlite3WhereTrace&0x4 ){
4750             sqlite3DebugPrintf("New    %s cost=%-3d,%3d,%3d order=%c\n",
4751                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4752                 isOrdered>=0 ? isOrdered+'0' : '?');
4753           }
4754 #endif
4755         }else{
4756           /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4757           ** same set of loops and has the same isOrdered setting as the
4758           ** candidate path.  Check to see if the candidate should replace
4759           ** pTo or if the candidate should be skipped.
4760           **
4761           ** The conditional is an expanded vector comparison equivalent to:
4762           **   (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4763           */
4764           if( pTo->rCost<rCost
4765            || (pTo->rCost==rCost
4766                && (pTo->nRow<nOut
4767                    || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4768                   )
4769               )
4770           ){
4771 #ifdef WHERETRACE_ENABLED /* 0x4 */
4772             if( sqlite3WhereTrace&0x4 ){
4773               sqlite3DebugPrintf(
4774                   "Skip   %s cost=%-3d,%3d,%3d order=%c",
4775                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4776                   isOrdered>=0 ? isOrdered+'0' : '?');
4777               sqlite3DebugPrintf("   vs %s cost=%-3d,%3d,%3d order=%c\n",
4778                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4779                   pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4780             }
4781 #endif
4782             /* Discard the candidate path from further consideration */
4783             testcase( pTo->rCost==rCost );
4784             continue;
4785           }
4786           testcase( pTo->rCost==rCost+1 );
4787           /* Control reaches here if the candidate path is better than the
4788           ** pTo path.  Replace pTo with the candidate. */
4789 #ifdef WHERETRACE_ENABLED /* 0x4 */
4790           if( sqlite3WhereTrace&0x4 ){
4791             sqlite3DebugPrintf(
4792                 "Update %s cost=%-3d,%3d,%3d order=%c",
4793                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4794                 isOrdered>=0 ? isOrdered+'0' : '?');
4795             sqlite3DebugPrintf("  was %s cost=%-3d,%3d,%3d order=%c\n",
4796                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4797                 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4798           }
4799 #endif
4800         }
4801         /* pWLoop is a winner.  Add it to the set of best so far */
4802         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4803         pTo->revLoop = revMask;
4804         pTo->nRow = nOut;
4805         pTo->rCost = rCost;
4806         pTo->rUnsorted = rUnsorted;
4807         pTo->isOrdered = isOrdered;
4808         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4809         pTo->aLoop[iLoop] = pWLoop;
4810         if( nTo>=mxChoice ){
4811           mxI = 0;
4812           mxCost = aTo[0].rCost;
4813           mxUnsorted = aTo[0].nRow;
4814           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4815             if( pTo->rCost>mxCost
4816              || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4817             ){
4818               mxCost = pTo->rCost;
4819               mxUnsorted = pTo->rUnsorted;
4820               mxI = jj;
4821             }
4822           }
4823         }
4824       }
4825     }
4826 
4827 #ifdef WHERETRACE_ENABLED  /* >=2 */
4828     if( sqlite3WhereTrace & 0x02 ){
4829       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4830       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4831         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4832            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4833            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4834         if( pTo->isOrdered>0 ){
4835           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4836         }else{
4837           sqlite3DebugPrintf("\n");
4838         }
4839       }
4840     }
4841 #endif
4842 
4843     /* Swap the roles of aFrom and aTo for the next generation */
4844     pFrom = aTo;
4845     aTo = aFrom;
4846     aFrom = pFrom;
4847     nFrom = nTo;
4848   }
4849 
4850   if( nFrom==0 ){
4851     sqlite3ErrorMsg(pParse, "no query solution");
4852     sqlite3DbFreeNN(db, pSpace);
4853     return SQLITE_ERROR;
4854   }
4855 
4856   /* Find the lowest cost path.  pFrom will be left pointing to that path */
4857   pFrom = aFrom;
4858   for(ii=1; ii<nFrom; ii++){
4859     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4860   }
4861   assert( pWInfo->nLevel==nLoop );
4862   /* Load the lowest cost path into pWInfo */
4863   for(iLoop=0; iLoop<nLoop; iLoop++){
4864     WhereLevel *pLevel = pWInfo->a + iLoop;
4865     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
4866     pLevel->iFrom = pWLoop->iTab;
4867     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
4868   }
4869   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
4870    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
4871    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
4872    && nRowEst
4873   ){
4874     Bitmask notUsed;
4875     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
4876                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
4877     if( rc==pWInfo->pResultSet->nExpr ){
4878       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4879     }
4880   }
4881   pWInfo->bOrderedInnerLoop = 0;
4882   if( pWInfo->pOrderBy ){
4883     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
4884       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
4885         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4886       }
4887     }else{
4888       pWInfo->nOBSat = pFrom->isOrdered;
4889       pWInfo->revMask = pFrom->revLoop;
4890       if( pWInfo->nOBSat<=0 ){
4891         pWInfo->nOBSat = 0;
4892         if( nLoop>0 ){
4893           u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
4894           if( (wsFlags & WHERE_ONEROW)==0
4895            && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
4896           ){
4897             Bitmask m = 0;
4898             int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
4899                       WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
4900             testcase( wsFlags & WHERE_IPK );
4901             testcase( wsFlags & WHERE_COLUMN_IN );
4902             if( rc==pWInfo->pOrderBy->nExpr ){
4903               pWInfo->bOrderedInnerLoop = 1;
4904               pWInfo->revMask = m;
4905             }
4906           }
4907         }
4908       }else if( nLoop
4909             && pWInfo->nOBSat==1
4910             && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0
4911             ){
4912         pWInfo->bOrderedInnerLoop = 1;
4913       }
4914     }
4915     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
4916         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
4917     ){
4918       Bitmask revMask = 0;
4919       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
4920           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
4921       );
4922       assert( pWInfo->sorted==0 );
4923       if( nOrder==pWInfo->pOrderBy->nExpr ){
4924         pWInfo->sorted = 1;
4925         pWInfo->revMask = revMask;
4926       }
4927     }
4928   }
4929 
4930 
4931   pWInfo->nRowOut = pFrom->nRow;
4932 
4933   /* Free temporary memory and return success */
4934   sqlite3DbFreeNN(db, pSpace);
4935   return SQLITE_OK;
4936 }
4937 
4938 /*
4939 ** Most queries use only a single table (they are not joins) and have
4940 ** simple == constraints against indexed fields.  This routine attempts
4941 ** to plan those simple cases using much less ceremony than the
4942 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4943 ** times for the common case.
4944 **
4945 ** Return non-zero on success, if this query can be handled by this
4946 ** no-frills query planner.  Return zero if this query needs the
4947 ** general-purpose query planner.
4948 */
4949 static int whereShortCut(WhereLoopBuilder *pBuilder){
4950   WhereInfo *pWInfo;
4951   SrcItem *pItem;
4952   WhereClause *pWC;
4953   WhereTerm *pTerm;
4954   WhereLoop *pLoop;
4955   int iCur;
4956   int j;
4957   Table *pTab;
4958   Index *pIdx;
4959   WhereScan scan;
4960 
4961   pWInfo = pBuilder->pWInfo;
4962   if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
4963   assert( pWInfo->pTabList->nSrc>=1 );
4964   pItem = pWInfo->pTabList->a;
4965   pTab = pItem->pTab;
4966   if( IsVirtual(pTab) ) return 0;
4967   if( pItem->fg.isIndexedBy ) return 0;
4968   iCur = pItem->iCursor;
4969   pWC = &pWInfo->sWC;
4970   pLoop = pBuilder->pNew;
4971   pLoop->wsFlags = 0;
4972   pLoop->nSkip = 0;
4973   pTerm = whereScanInit(&scan, pWC, iCur, -1, WO_EQ|WO_IS, 0);
4974   while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
4975   if( pTerm ){
4976     testcase( pTerm->eOperator & WO_IS );
4977     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
4978     pLoop->aLTerm[0] = pTerm;
4979     pLoop->nLTerm = 1;
4980     pLoop->u.btree.nEq = 1;
4981     /* TUNING: Cost of a rowid lookup is 10 */
4982     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
4983   }else{
4984     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4985       int opMask;
4986       assert( pLoop->aLTermSpace==pLoop->aLTerm );
4987       if( !IsUniqueIndex(pIdx)
4988        || pIdx->pPartIdxWhere!=0
4989        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
4990       ) continue;
4991       opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
4992       for(j=0; j<pIdx->nKeyCol; j++){
4993         pTerm = whereScanInit(&scan, pWC, iCur, j, opMask, pIdx);
4994         while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
4995         if( pTerm==0 ) break;
4996         testcase( pTerm->eOperator & WO_IS );
4997         pLoop->aLTerm[j] = pTerm;
4998       }
4999       if( j!=pIdx->nKeyCol ) continue;
5000       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
5001       if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
5002         pLoop->wsFlags |= WHERE_IDX_ONLY;
5003       }
5004       pLoop->nLTerm = j;
5005       pLoop->u.btree.nEq = j;
5006       pLoop->u.btree.pIndex = pIdx;
5007       /* TUNING: Cost of a unique index lookup is 15 */
5008       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
5009       break;
5010     }
5011   }
5012   if( pLoop->wsFlags ){
5013     pLoop->nOut = (LogEst)1;
5014     pWInfo->a[0].pWLoop = pLoop;
5015     assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
5016     pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
5017     pWInfo->a[0].iTabCur = iCur;
5018     pWInfo->nRowOut = 1;
5019     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
5020     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
5021       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
5022     }
5023     if( scan.iEquiv>1 ) pLoop->wsFlags |= WHERE_TRANSCONS;
5024 #ifdef SQLITE_DEBUG
5025     pLoop->cId = '0';
5026 #endif
5027 #ifdef WHERETRACE_ENABLED
5028     if( sqlite3WhereTrace ){
5029       sqlite3DebugPrintf("whereShortCut() used to compute solution\n");
5030     }
5031 #endif
5032     return 1;
5033   }
5034   return 0;
5035 }
5036 
5037 /*
5038 ** Helper function for exprIsDeterministic().
5039 */
5040 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
5041   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
5042     pWalker->eCode = 0;
5043     return WRC_Abort;
5044   }
5045   return WRC_Continue;
5046 }
5047 
5048 /*
5049 ** Return true if the expression contains no non-deterministic SQL
5050 ** functions. Do not consider non-deterministic SQL functions that are
5051 ** part of sub-select statements.
5052 */
5053 static int exprIsDeterministic(Expr *p){
5054   Walker w;
5055   memset(&w, 0, sizeof(w));
5056   w.eCode = 1;
5057   w.xExprCallback = exprNodeIsDeterministic;
5058   w.xSelectCallback = sqlite3SelectWalkFail;
5059   sqlite3WalkExpr(&w, p);
5060   return w.eCode;
5061 }
5062 
5063 
5064 #ifdef WHERETRACE_ENABLED
5065 /*
5066 ** Display all WhereLoops in pWInfo
5067 */
5068 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){
5069   if( sqlite3WhereTrace ){    /* Display all of the WhereLoop objects */
5070     WhereLoop *p;
5071     int i;
5072     static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
5073                                            "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
5074     for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
5075       p->cId = zLabel[i%(sizeof(zLabel)-1)];
5076       sqlite3WhereLoopPrint(p, pWC);
5077     }
5078   }
5079 }
5080 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C)
5081 #else
5082 # define WHERETRACE_ALL_LOOPS(W,C)
5083 #endif
5084 
5085 /* Attempt to omit tables from a join that do not affect the result.
5086 ** For a table to not affect the result, the following must be true:
5087 **
5088 **   1) The query must not be an aggregate.
5089 **   2) The table must be the RHS of a LEFT JOIN.
5090 **   3) Either the query must be DISTINCT, or else the ON or USING clause
5091 **      must contain a constraint that limits the scan of the table to
5092 **      at most a single row.
5093 **   4) The table must not be referenced by any part of the query apart
5094 **      from its own USING or ON clause.
5095 **
5096 ** For example, given:
5097 **
5098 **     CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
5099 **     CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
5100 **     CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
5101 **
5102 ** then table t2 can be omitted from the following:
5103 **
5104 **     SELECT v1, v3 FROM t1
5105 **       LEFT JOIN t2 ON (t1.ipk=t2.ipk)
5106 **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5107 **
5108 ** or from:
5109 **
5110 **     SELECT DISTINCT v1, v3 FROM t1
5111 **       LEFT JOIN t2
5112 **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5113 */
5114 static SQLITE_NOINLINE Bitmask whereOmitNoopJoin(
5115   WhereInfo *pWInfo,
5116   Bitmask notReady
5117 ){
5118   int i;
5119   Bitmask tabUsed;
5120 
5121   /* Preconditions checked by the caller */
5122   assert( pWInfo->nLevel>=2 );
5123   assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_OmitNoopJoin) );
5124 
5125   /* These two preconditions checked by the caller combine to guarantee
5126   ** condition (1) of the header comment */
5127   assert( pWInfo->pResultSet!=0 );
5128   assert( 0==(pWInfo->wctrlFlags & WHERE_AGG_DISTINCT) );
5129 
5130   tabUsed = sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pResultSet);
5131   if( pWInfo->pOrderBy ){
5132     tabUsed |= sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pOrderBy);
5133   }
5134   for(i=pWInfo->nLevel-1; i>=1; i--){
5135     WhereTerm *pTerm, *pEnd;
5136     SrcItem *pItem;
5137     WhereLoop *pLoop;
5138     pLoop = pWInfo->a[i].pWLoop;
5139     pItem = &pWInfo->pTabList->a[pLoop->iTab];
5140     if( (pItem->fg.jointype & JT_LEFT)==0 ) continue;
5141     if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)==0
5142      && (pLoop->wsFlags & WHERE_ONEROW)==0
5143     ){
5144       continue;
5145     }
5146     if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
5147     pEnd = pWInfo->sWC.a + pWInfo->sWC.nTerm;
5148     for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){
5149       if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5150         if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
5151          || pTerm->pExpr->w.iRightJoinTable!=pItem->iCursor
5152         ){
5153           break;
5154         }
5155       }
5156     }
5157     if( pTerm<pEnd ) continue;
5158     WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
5159     notReady &= ~pLoop->maskSelf;
5160     for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){
5161       if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5162         pTerm->wtFlags |= TERM_CODED;
5163       }
5164     }
5165     if( i!=pWInfo->nLevel-1 ){
5166       int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
5167       memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
5168     }
5169     pWInfo->nLevel--;
5170     assert( pWInfo->nLevel>0 );
5171   }
5172   return notReady;
5173 }
5174 
5175 /*
5176 ** Check to see if there are any SEARCH loops that might benefit from
5177 ** using a Bloom filter.  Consider a Bloom filter if:
5178 **
5179 **   (1)  The SEARCH happens more than N times where N is the number
5180 **        of rows in the table that is being considered for the Bloom
5181 **        filter.
5182 **   (2)  Some searches are expected to find zero rows.  (This is determined
5183 **        by the WHERE_SELFCULL flag on the term.)
5184 **   (3)  Bloom-filter processing is not disabled.  (Checked by the
5185 **        caller.)
5186 **   (4)  The size of the table being searched is known by ANALYZE.
5187 **
5188 ** This block of code merely checks to see if a Bloom filter would be
5189 ** appropriate, and if so sets the WHERE_BLOOMFILTER flag on the
5190 ** WhereLoop.  The implementation of the Bloom filter comes further
5191 ** down where the code for each WhereLoop is generated.
5192 */
5193 static SQLITE_NOINLINE void whereCheckIfBloomFilterIsUseful(
5194   const WhereInfo *pWInfo
5195 ){
5196   int i;
5197   LogEst nSearch;
5198 
5199   assert( pWInfo->nLevel>=2 );
5200   assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_BloomFilter) );
5201   nSearch = pWInfo->a[0].pWLoop->nOut;
5202   for(i=1; i<pWInfo->nLevel; i++){
5203     WhereLoop *pLoop = pWInfo->a[i].pWLoop;
5204     const unsigned int reqFlags = (WHERE_SELFCULL|WHERE_COLUMN_EQ);
5205     if( (pLoop->wsFlags & reqFlags)==reqFlags
5206      /* vvvvvv--- Always the case if WHERE_COLUMN_EQ is defined */
5207      && ALWAYS((pLoop->wsFlags & (WHERE_IPK|WHERE_INDEXED))!=0)
5208     ){
5209       SrcItem *pItem = &pWInfo->pTabList->a[pLoop->iTab];
5210       Table *pTab = pItem->pTab;
5211       pTab->tabFlags |= TF_StatsUsed;
5212       if( nSearch > pTab->nRowLogEst
5213        && (pTab->tabFlags & TF_HasStat1)!=0
5214       ){
5215         testcase( pItem->fg.jointype & JT_LEFT );
5216         pLoop->wsFlags |= WHERE_BLOOMFILTER;
5217         pLoop->wsFlags &= ~WHERE_IDX_ONLY;
5218         WHERETRACE(0xffff, (
5219            "-> use Bloom-filter on loop %c because there are ~%.1e "
5220            "lookups into %s which has only ~%.1e rows\n",
5221            pLoop->cId, (double)sqlite3LogEstToInt(nSearch), pTab->zName,
5222            (double)sqlite3LogEstToInt(pTab->nRowLogEst)));
5223       }
5224     }
5225     nSearch += pLoop->nOut;
5226   }
5227 }
5228 
5229 /*
5230 ** Generate the beginning of the loop used for WHERE clause processing.
5231 ** The return value is a pointer to an opaque structure that contains
5232 ** information needed to terminate the loop.  Later, the calling routine
5233 ** should invoke sqlite3WhereEnd() with the return value of this function
5234 ** in order to complete the WHERE clause processing.
5235 **
5236 ** If an error occurs, this routine returns NULL.
5237 **
5238 ** The basic idea is to do a nested loop, one loop for each table in
5239 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
5240 ** same as a SELECT with only a single table in the FROM clause.)  For
5241 ** example, if the SQL is this:
5242 **
5243 **       SELECT * FROM t1, t2, t3 WHERE ...;
5244 **
5245 ** Then the code generated is conceptually like the following:
5246 **
5247 **      foreach row1 in t1 do       \    Code generated
5248 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
5249 **          foreach row3 in t3 do   /
5250 **            ...
5251 **          end                     \    Code generated
5252 **        end                        |-- by sqlite3WhereEnd()
5253 **      end                         /
5254 **
5255 ** Note that the loops might not be nested in the order in which they
5256 ** appear in the FROM clause if a different order is better able to make
5257 ** use of indices.  Note also that when the IN operator appears in
5258 ** the WHERE clause, it might result in additional nested loops for
5259 ** scanning through all values on the right-hand side of the IN.
5260 **
5261 ** There are Btree cursors associated with each table.  t1 uses cursor
5262 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
5263 ** And so forth.  This routine generates code to open those VDBE cursors
5264 ** and sqlite3WhereEnd() generates the code to close them.
5265 **
5266 ** The code that sqlite3WhereBegin() generates leaves the cursors named
5267 ** in pTabList pointing at their appropriate entries.  The [...] code
5268 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
5269 ** data from the various tables of the loop.
5270 **
5271 ** If the WHERE clause is empty, the foreach loops must each scan their
5272 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
5273 ** the tables have indices and there are terms in the WHERE clause that
5274 ** refer to those indices, a complete table scan can be avoided and the
5275 ** code will run much faster.  Most of the work of this routine is checking
5276 ** to see if there are indices that can be used to speed up the loop.
5277 **
5278 ** Terms of the WHERE clause are also used to limit which rows actually
5279 ** make it to the "..." in the middle of the loop.  After each "foreach",
5280 ** terms of the WHERE clause that use only terms in that loop and outer
5281 ** loops are evaluated and if false a jump is made around all subsequent
5282 ** inner loops (or around the "..." if the test occurs within the inner-
5283 ** most loop)
5284 **
5285 ** OUTER JOINS
5286 **
5287 ** An outer join of tables t1 and t2 is conceptally coded as follows:
5288 **
5289 **    foreach row1 in t1 do
5290 **      flag = 0
5291 **      foreach row2 in t2 do
5292 **        start:
5293 **          ...
5294 **          flag = 1
5295 **      end
5296 **      if flag==0 then
5297 **        move the row2 cursor to a null row
5298 **        goto start
5299 **      fi
5300 **    end
5301 **
5302 ** ORDER BY CLAUSE PROCESSING
5303 **
5304 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
5305 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
5306 ** if there is one.  If there is no ORDER BY clause or if this routine
5307 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
5308 **
5309 ** The iIdxCur parameter is the cursor number of an index.  If
5310 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
5311 ** to use for OR clause processing.  The WHERE clause should use this
5312 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
5313 ** the first cursor in an array of cursors for all indices.  iIdxCur should
5314 ** be used to compute the appropriate cursor depending on which index is
5315 ** used.
5316 */
5317 WhereInfo *sqlite3WhereBegin(
5318   Parse *pParse,          /* The parser context */
5319   SrcList *pTabList,      /* FROM clause: A list of all tables to be scanned */
5320   Expr *pWhere,           /* The WHERE clause */
5321   ExprList *pOrderBy,     /* An ORDER BY (or GROUP BY) clause, or NULL */
5322   ExprList *pResultSet,   /* Query result set.  Req'd for DISTINCT */
5323   Select *pLimit,         /* Use this LIMIT/OFFSET clause, if any */
5324   u16 wctrlFlags,         /* The WHERE_* flags defined in sqliteInt.h */
5325   int iAuxArg             /* If WHERE_OR_SUBCLAUSE is set, index cursor number
5326                           ** If WHERE_USE_LIMIT, then the limit amount */
5327 ){
5328   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
5329   int nTabList;              /* Number of elements in pTabList */
5330   WhereInfo *pWInfo;         /* Will become the return value of this function */
5331   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
5332   Bitmask notReady;          /* Cursors that are not yet positioned */
5333   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
5334   WhereMaskSet *pMaskSet;    /* The expression mask set */
5335   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
5336   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
5337   int ii;                    /* Loop counter */
5338   sqlite3 *db;               /* Database connection */
5339   int rc;                    /* Return code */
5340   u8 bFordelete = 0;         /* OPFLAG_FORDELETE or zero, as appropriate */
5341 
5342   assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
5343         (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
5344      && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5345   ));
5346 
5347   /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
5348   assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5349             || (wctrlFlags & WHERE_USE_LIMIT)==0 );
5350 
5351   /* Variable initialization */
5352   db = pParse->db;
5353   memset(&sWLB, 0, sizeof(sWLB));
5354 
5355   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
5356   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
5357   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
5358 
5359   /* The number of tables in the FROM clause is limited by the number of
5360   ** bits in a Bitmask
5361   */
5362   testcase( pTabList->nSrc==BMS );
5363   if( pTabList->nSrc>BMS ){
5364     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
5365     return 0;
5366   }
5367 
5368   /* This function normally generates a nested loop for all tables in
5369   ** pTabList.  But if the WHERE_OR_SUBCLAUSE flag is set, then we should
5370   ** only generate code for the first table in pTabList and assume that
5371   ** any cursors associated with subsequent tables are uninitialized.
5372   */
5373   nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
5374 
5375   /* Allocate and initialize the WhereInfo structure that will become the
5376   ** return value. A single allocation is used to store the WhereInfo
5377   ** struct, the contents of WhereInfo.a[], the WhereClause structure
5378   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
5379   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
5380   ** some architectures. Hence the ROUND8() below.
5381   */
5382   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
5383   pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
5384   if( db->mallocFailed ){
5385     sqlite3DbFree(db, pWInfo);
5386     pWInfo = 0;
5387     goto whereBeginError;
5388   }
5389   pWInfo->pParse = pParse;
5390   pWInfo->pTabList = pTabList;
5391   pWInfo->pOrderBy = pOrderBy;
5392   pWInfo->pWhere = pWhere;
5393   pWInfo->pResultSet = pResultSet;
5394   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
5395   pWInfo->nLevel = nTabList;
5396   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse);
5397   pWInfo->wctrlFlags = wctrlFlags;
5398   pWInfo->iLimit = iAuxArg;
5399   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
5400 #ifndef SQLITE_OMIT_VIRTUALTABLE
5401   pWInfo->pLimit = pLimit;
5402 #endif
5403   memset(&pWInfo->nOBSat, 0,
5404          offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
5405   memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
5406   assert( pWInfo->eOnePass==ONEPASS_OFF );  /* ONEPASS defaults to OFF */
5407   pMaskSet = &pWInfo->sMaskSet;
5408   pMaskSet->n = 0;
5409   pMaskSet->ix[0] = -99; /* Initialize ix[0] to a value that can never be
5410                          ** a valid cursor number, to avoid an initial
5411                          ** test for pMaskSet->n==0 in sqlite3WhereGetMask() */
5412   sWLB.pWInfo = pWInfo;
5413   sWLB.pWC = &pWInfo->sWC;
5414   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
5415   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
5416   whereLoopInit(sWLB.pNew);
5417 #ifdef SQLITE_DEBUG
5418   sWLB.pNew->cId = '*';
5419 #endif
5420 
5421   /* Split the WHERE clause into separate subexpressions where each
5422   ** subexpression is separated by an AND operator.
5423   */
5424   sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
5425   sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
5426 
5427   /* Special case: No FROM clause
5428   */
5429   if( nTabList==0 ){
5430     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
5431     if( (wctrlFlags & WHERE_WANT_DISTINCT)!=0
5432      && OptimizationEnabled(db, SQLITE_DistinctOpt)
5433     ){
5434       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
5435     }
5436     ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
5437   }else{
5438     /* Assign a bit from the bitmask to every term in the FROM clause.
5439     **
5440     ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
5441     **
5442     ** The rule of the previous sentence ensures thta if X is the bitmask for
5443     ** a table T, then X-1 is the bitmask for all other tables to the left of T.
5444     ** Knowing the bitmask for all tables to the left of a left join is
5445     ** important.  Ticket #3015.
5446     **
5447     ** Note that bitmasks are created for all pTabList->nSrc tables in
5448     ** pTabList, not just the first nTabList tables.  nTabList is normally
5449     ** equal to pTabList->nSrc but might be shortened to 1 if the
5450     ** WHERE_OR_SUBCLAUSE flag is set.
5451     */
5452     ii = 0;
5453     do{
5454       createMask(pMaskSet, pTabList->a[ii].iCursor);
5455       sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
5456     }while( (++ii)<pTabList->nSrc );
5457   #ifdef SQLITE_DEBUG
5458     {
5459       Bitmask mx = 0;
5460       for(ii=0; ii<pTabList->nSrc; ii++){
5461         Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
5462         assert( m>=mx );
5463         mx = m;
5464       }
5465     }
5466   #endif
5467   }
5468 
5469   /* Analyze all of the subexpressions. */
5470   sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
5471   sqlite3WhereAddLimit(&pWInfo->sWC, pLimit);
5472   if( db->mallocFailed ) goto whereBeginError;
5473 
5474   /* Special case: WHERE terms that do not refer to any tables in the join
5475   ** (constant expressions). Evaluate each such term, and jump over all the
5476   ** generated code if the result is not true.
5477   **
5478   ** Do not do this if the expression contains non-deterministic functions
5479   ** that are not within a sub-select. This is not strictly required, but
5480   ** preserves SQLite's legacy behaviour in the following two cases:
5481   **
5482   **   FROM ... WHERE random()>0;           -- eval random() once per row
5483   **   FROM ... WHERE (SELECT random())>0;  -- eval random() once overall
5484   */
5485   for(ii=0; ii<sWLB.pWC->nBase; ii++){
5486     WhereTerm *pT = &sWLB.pWC->a[ii];
5487     if( pT->wtFlags & TERM_VIRTUAL ) continue;
5488     if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
5489       sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
5490       pT->wtFlags |= TERM_CODED;
5491     }
5492   }
5493 
5494   if( wctrlFlags & WHERE_WANT_DISTINCT ){
5495     if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
5496       /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
5497       ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
5498       wctrlFlags &= ~WHERE_WANT_DISTINCT;
5499       pWInfo->wctrlFlags &= ~WHERE_WANT_DISTINCT;
5500     }else if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
5501       /* The DISTINCT marking is pointless.  Ignore it. */
5502       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
5503     }else if( pOrderBy==0 ){
5504       /* Try to ORDER BY the result set to make distinct processing easier */
5505       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
5506       pWInfo->pOrderBy = pResultSet;
5507     }
5508   }
5509 
5510   /* Construct the WhereLoop objects */
5511 #if defined(WHERETRACE_ENABLED)
5512   if( sqlite3WhereTrace & 0xffff ){
5513     sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
5514     if( wctrlFlags & WHERE_USE_LIMIT ){
5515       sqlite3DebugPrintf(", limit: %d", iAuxArg);
5516     }
5517     sqlite3DebugPrintf(")\n");
5518     if( sqlite3WhereTrace & 0x100 ){
5519       Select sSelect;
5520       memset(&sSelect, 0, sizeof(sSelect));
5521       sSelect.selFlags = SF_WhereBegin;
5522       sSelect.pSrc = pTabList;
5523       sSelect.pWhere = pWhere;
5524       sSelect.pOrderBy = pOrderBy;
5525       sSelect.pEList = pResultSet;
5526       sqlite3TreeViewSelect(0, &sSelect, 0);
5527     }
5528   }
5529   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5530     sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
5531     sqlite3WhereClausePrint(sWLB.pWC);
5532   }
5533 #endif
5534 
5535   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
5536     rc = whereLoopAddAll(&sWLB);
5537     if( rc ) goto whereBeginError;
5538 
5539 #ifdef SQLITE_ENABLE_STAT4
5540     /* If one or more WhereTerm.truthProb values were used in estimating
5541     ** loop parameters, but then those truthProb values were subsequently
5542     ** changed based on STAT4 information while computing subsequent loops,
5543     ** then we need to rerun the whole loop building process so that all
5544     ** loops will be built using the revised truthProb values. */
5545     if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){
5546       WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
5547       WHERETRACE(0xffff,
5548            ("**** Redo all loop computations due to"
5549             " TERM_HIGHTRUTH changes ****\n"));
5550       while( pWInfo->pLoops ){
5551         WhereLoop *p = pWInfo->pLoops;
5552         pWInfo->pLoops = p->pNextLoop;
5553         whereLoopDelete(db, p);
5554       }
5555       rc = whereLoopAddAll(&sWLB);
5556       if( rc ) goto whereBeginError;
5557     }
5558 #endif
5559     WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
5560 
5561     wherePathSolver(pWInfo, 0);
5562     if( db->mallocFailed ) goto whereBeginError;
5563     if( pWInfo->pOrderBy ){
5564        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
5565        if( db->mallocFailed ) goto whereBeginError;
5566     }
5567   }
5568   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
5569      pWInfo->revMask = ALLBITS;
5570   }
5571   if( pParse->nErr ){
5572     goto whereBeginError;
5573   }
5574   assert( db->mallocFailed==0 );
5575 #ifdef WHERETRACE_ENABLED
5576   if( sqlite3WhereTrace ){
5577     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
5578     if( pWInfo->nOBSat>0 ){
5579       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
5580     }
5581     switch( pWInfo->eDistinct ){
5582       case WHERE_DISTINCT_UNIQUE: {
5583         sqlite3DebugPrintf("  DISTINCT=unique");
5584         break;
5585       }
5586       case WHERE_DISTINCT_ORDERED: {
5587         sqlite3DebugPrintf("  DISTINCT=ordered");
5588         break;
5589       }
5590       case WHERE_DISTINCT_UNORDERED: {
5591         sqlite3DebugPrintf("  DISTINCT=unordered");
5592         break;
5593       }
5594     }
5595     sqlite3DebugPrintf("\n");
5596     for(ii=0; ii<pWInfo->nLevel; ii++){
5597       sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
5598     }
5599   }
5600 #endif
5601 
5602   /* Attempt to omit tables from a join that do not affect the result.
5603   ** See the comment on whereOmitNoopJoin() for further information.
5604   **
5605   ** This query optimization is factored out into a separate "no-inline"
5606   ** procedure to keep the sqlite3WhereBegin() procedure from becoming
5607   ** too large.  If sqlite3WhereBegin() becomes too large, that prevents
5608   ** some C-compiler optimizers from in-lining the
5609   ** sqlite3WhereCodeOneLoopStart() procedure, and it is important to
5610   ** in-line sqlite3WhereCodeOneLoopStart() for performance reasons.
5611   */
5612   notReady = ~(Bitmask)0;
5613   if( pWInfo->nLevel>=2
5614    && pResultSet!=0                         /* these two combine to guarantee */
5615    && 0==(wctrlFlags & WHERE_AGG_DISTINCT)  /* condition (1) above */
5616    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
5617   ){
5618     notReady = whereOmitNoopJoin(pWInfo, notReady);
5619     nTabList = pWInfo->nLevel;
5620     assert( nTabList>0 );
5621   }
5622 
5623   /* Check to see if there are any SEARCH loops that might benefit from
5624   ** using a Bloom filter.
5625   */
5626   if( pWInfo->nLevel>=2
5627    && OptimizationEnabled(db, SQLITE_BloomFilter)
5628   ){
5629     whereCheckIfBloomFilterIsUseful(pWInfo);
5630   }
5631 
5632 #if defined(WHERETRACE_ENABLED)
5633   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5634     sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
5635     sqlite3WhereClausePrint(sWLB.pWC);
5636   }
5637   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
5638 #endif
5639   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
5640 
5641   /* If the caller is an UPDATE or DELETE statement that is requesting
5642   ** to use a one-pass algorithm, determine if this is appropriate.
5643   **
5644   ** A one-pass approach can be used if the caller has requested one
5645   ** and either (a) the scan visits at most one row or (b) each
5646   ** of the following are true:
5647   **
5648   **   * the caller has indicated that a one-pass approach can be used
5649   **     with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
5650   **   * the table is not a virtual table, and
5651   **   * either the scan does not use the OR optimization or the caller
5652   **     is a DELETE operation (WHERE_DUPLICATES_OK is only specified
5653   **     for DELETE).
5654   **
5655   ** The last qualification is because an UPDATE statement uses
5656   ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
5657   ** use a one-pass approach, and this is not set accurately for scans
5658   ** that use the OR optimization.
5659   */
5660   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
5661   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
5662     int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
5663     int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
5664     assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) );
5665     if( bOnerow || (
5666         0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
5667      && !IsVirtual(pTabList->a[0].pTab)
5668      && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
5669     )){
5670       pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
5671       if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
5672         if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
5673           bFordelete = OPFLAG_FORDELETE;
5674         }
5675         pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
5676       }
5677     }
5678   }
5679 
5680   /* Open all tables in the pTabList and any indices selected for
5681   ** searching those tables.
5682   */
5683   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
5684     Table *pTab;     /* Table to open */
5685     int iDb;         /* Index of database containing table/index */
5686     SrcItem *pTabItem;
5687 
5688     pTabItem = &pTabList->a[pLevel->iFrom];
5689     pTab = pTabItem->pTab;
5690     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5691     pLoop = pLevel->pWLoop;
5692     if( (pTab->tabFlags & TF_Ephemeral)!=0 || IsView(pTab) ){
5693       /* Do nothing */
5694     }else
5695 #ifndef SQLITE_OMIT_VIRTUALTABLE
5696     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
5697       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
5698       int iCur = pTabItem->iCursor;
5699       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
5700     }else if( IsVirtual(pTab) ){
5701       /* noop */
5702     }else
5703 #endif
5704     if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
5705          && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
5706       int op = OP_OpenRead;
5707       if( pWInfo->eOnePass!=ONEPASS_OFF ){
5708         op = OP_OpenWrite;
5709         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
5710       };
5711       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
5712       assert( pTabItem->iCursor==pLevel->iTabCur );
5713       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
5714       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
5715       if( pWInfo->eOnePass==ONEPASS_OFF
5716        && pTab->nCol<BMS
5717        && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0
5718        && (pLoop->wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))==0
5719       ){
5720         /* If we know that only a prefix of the record will be used,
5721         ** it is advantageous to reduce the "column count" field in
5722         ** the P4 operand of the OP_OpenRead/Write opcode. */
5723         Bitmask b = pTabItem->colUsed;
5724         int n = 0;
5725         for(; b; b=b>>1, n++){}
5726         sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
5727         assert( n<=pTab->nCol );
5728       }
5729 #ifdef SQLITE_ENABLE_CURSOR_HINTS
5730       if( pLoop->u.btree.pIndex!=0 ){
5731         sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
5732       }else
5733 #endif
5734       {
5735         sqlite3VdbeChangeP5(v, bFordelete);
5736       }
5737 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5738       sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
5739                             (const u8*)&pTabItem->colUsed, P4_INT64);
5740 #endif
5741     }else{
5742       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5743     }
5744     if( pLoop->wsFlags & WHERE_INDEXED ){
5745       Index *pIx = pLoop->u.btree.pIndex;
5746       int iIndexCur;
5747       int op = OP_OpenRead;
5748       /* iAuxArg is always set to a positive value if ONEPASS is possible */
5749       assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
5750       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
5751        && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
5752       ){
5753         /* This is one term of an OR-optimization using the PRIMARY KEY of a
5754         ** WITHOUT ROWID table.  No need for a separate index */
5755         iIndexCur = pLevel->iTabCur;
5756         op = 0;
5757       }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
5758         Index *pJ = pTabItem->pTab->pIndex;
5759         iIndexCur = iAuxArg;
5760         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
5761         while( ALWAYS(pJ) && pJ!=pIx ){
5762           iIndexCur++;
5763           pJ = pJ->pNext;
5764         }
5765         op = OP_OpenWrite;
5766         pWInfo->aiCurOnePass[1] = iIndexCur;
5767       }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
5768         iIndexCur = iAuxArg;
5769         op = OP_ReopenIdx;
5770       }else{
5771         iIndexCur = pParse->nTab++;
5772       }
5773       pLevel->iIdxCur = iIndexCur;
5774       assert( pIx->pSchema==pTab->pSchema );
5775       assert( iIndexCur>=0 );
5776       if( op ){
5777         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
5778         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
5779         if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
5780          && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
5781          && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0
5782          && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
5783          && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
5784          && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
5785         ){
5786           sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ);
5787         }
5788         VdbeComment((v, "%s", pIx->zName));
5789 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5790         {
5791           u64 colUsed = 0;
5792           int ii, jj;
5793           for(ii=0; ii<pIx->nColumn; ii++){
5794             jj = pIx->aiColumn[ii];
5795             if( jj<0 ) continue;
5796             if( jj>63 ) jj = 63;
5797             if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
5798             colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
5799           }
5800           sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
5801                                 (u8*)&colUsed, P4_INT64);
5802         }
5803 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
5804       }
5805     }
5806     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
5807   }
5808   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
5809   if( db->mallocFailed ) goto whereBeginError;
5810 
5811   /* Generate the code to do the search.  Each iteration of the for
5812   ** loop below generates code for a single nested loop of the VM
5813   ** program.
5814   */
5815   for(ii=0; ii<nTabList; ii++){
5816     int addrExplain;
5817     int wsFlags;
5818     if( pParse->nErr ) goto whereBeginError;
5819     pLevel = &pWInfo->a[ii];
5820     wsFlags = pLevel->pWLoop->wsFlags;
5821     if( (wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))!=0 ){
5822       if( (wsFlags & WHERE_AUTO_INDEX)!=0 ){
5823 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
5824         constructAutomaticIndex(pParse, &pWInfo->sWC,
5825                   &pTabList->a[pLevel->iFrom], notReady, pLevel);
5826 #endif
5827       }else{
5828         sqlite3ConstructBloomFilter(pWInfo, ii, pLevel, notReady);
5829       }
5830       if( db->mallocFailed ) goto whereBeginError;
5831     }
5832     addrExplain = sqlite3WhereExplainOneScan(
5833         pParse, pTabList, pLevel, wctrlFlags
5834     );
5835     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
5836     notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady);
5837     pWInfo->iContinue = pLevel->addrCont;
5838     if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
5839       sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
5840     }
5841   }
5842 
5843   /* Done. */
5844   VdbeModuleComment((v, "Begin WHERE-core"));
5845   pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v);
5846   return pWInfo;
5847 
5848   /* Jump here if malloc fails */
5849 whereBeginError:
5850   if( pWInfo ){
5851     testcase( pWInfo->pExprMods!=0 );
5852     whereUndoExprMods(pWInfo);
5853     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5854     whereInfoFree(db, pWInfo);
5855   }
5856   return 0;
5857 }
5858 
5859 /*
5860 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
5861 ** index rather than the main table.  In SQLITE_DEBUG mode, we want
5862 ** to trace those changes if PRAGMA vdbe_addoptrace=on.  This routine
5863 ** does that.
5864 */
5865 #ifndef SQLITE_DEBUG
5866 # define OpcodeRewriteTrace(D,K,P) /* no-op */
5867 #else
5868 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
5869   static void sqlite3WhereOpcodeRewriteTrace(
5870     sqlite3 *db,
5871     int pc,
5872     VdbeOp *pOp
5873   ){
5874     if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
5875     sqlite3VdbePrintOp(0, pc, pOp);
5876   }
5877 #endif
5878 
5879 /*
5880 ** Generate the end of the WHERE loop.  See comments on
5881 ** sqlite3WhereBegin() for additional information.
5882 */
5883 void sqlite3WhereEnd(WhereInfo *pWInfo){
5884   Parse *pParse = pWInfo->pParse;
5885   Vdbe *v = pParse->pVdbe;
5886   int i;
5887   WhereLevel *pLevel;
5888   WhereLoop *pLoop;
5889   SrcList *pTabList = pWInfo->pTabList;
5890   sqlite3 *db = pParse->db;
5891   int iEnd = sqlite3VdbeCurrentAddr(v);
5892 
5893   /* Generate loop termination code.
5894   */
5895   VdbeModuleComment((v, "End WHERE-core"));
5896   for(i=pWInfo->nLevel-1; i>=0; i--){
5897     int addr;
5898     pLevel = &pWInfo->a[i];
5899     pLoop = pLevel->pWLoop;
5900     if( pLevel->op!=OP_Noop ){
5901 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5902       int addrSeek = 0;
5903       Index *pIdx;
5904       int n;
5905       if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
5906        && i==pWInfo->nLevel-1  /* Ticket [ef9318757b152e3] 2017-10-21 */
5907        && (pLoop->wsFlags & WHERE_INDEXED)!=0
5908        && (pIdx = pLoop->u.btree.pIndex)->hasStat1
5909        && (n = pLoop->u.btree.nDistinctCol)>0
5910        && pIdx->aiRowLogEst[n]>=36
5911       ){
5912         int r1 = pParse->nMem+1;
5913         int j, op;
5914         for(j=0; j<n; j++){
5915           sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
5916         }
5917         pParse->nMem += n+1;
5918         op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
5919         addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
5920         VdbeCoverageIf(v, op==OP_SeekLT);
5921         VdbeCoverageIf(v, op==OP_SeekGT);
5922         sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
5923       }
5924 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
5925       /* The common case: Advance to the next row */
5926       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5927       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
5928       sqlite3VdbeChangeP5(v, pLevel->p5);
5929       VdbeCoverage(v);
5930       VdbeCoverageIf(v, pLevel->op==OP_Next);
5931       VdbeCoverageIf(v, pLevel->op==OP_Prev);
5932       VdbeCoverageIf(v, pLevel->op==OP_VNext);
5933       if( pLevel->regBignull ){
5934         sqlite3VdbeResolveLabel(v, pLevel->addrBignull);
5935         sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1);
5936         VdbeCoverage(v);
5937       }
5938 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5939       if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
5940 #endif
5941     }else{
5942       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5943     }
5944     if( (pLoop->wsFlags & WHERE_IN_ABLE)!=0 && pLevel->u.in.nIn>0 ){
5945       struct InLoop *pIn;
5946       int j;
5947       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
5948       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
5949         assert( sqlite3VdbeGetOp(v, pIn->addrInTop+1)->opcode==OP_IsNull
5950                  || pParse->db->mallocFailed );
5951         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5952         if( pIn->eEndLoopOp!=OP_Noop ){
5953           if( pIn->nPrefix ){
5954             int bEarlyOut =
5955                 (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
5956                  && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0;
5957             if( pLevel->iLeftJoin ){
5958               /* For LEFT JOIN queries, cursor pIn->iCur may not have been
5959               ** opened yet. This occurs for WHERE clauses such as
5960               ** "a = ? AND b IN (...)", where the index is on (a, b). If
5961               ** the RHS of the (a=?) is NULL, then the "b IN (...)" may
5962               ** never have been coded, but the body of the loop run to
5963               ** return the null-row. So, if the cursor is not open yet,
5964               ** jump over the OP_Next or OP_Prev instruction about to
5965               ** be coded.  */
5966               sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur,
5967                   sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut);
5968               VdbeCoverage(v);
5969             }
5970             if( bEarlyOut ){
5971               sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
5972                   sqlite3VdbeCurrentAddr(v)+2,
5973                   pIn->iBase, pIn->nPrefix);
5974               VdbeCoverage(v);
5975               /* Retarget the OP_IsNull against the left operand of IN so
5976               ** it jumps past the OP_IfNoHope.  This is because the
5977               ** OP_IsNull also bypasses the OP_Affinity opcode that is
5978               ** required by OP_IfNoHope. */
5979               sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5980             }
5981           }
5982           sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
5983           VdbeCoverage(v);
5984           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
5985           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
5986         }
5987         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
5988       }
5989     }
5990     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
5991     if( pLevel->addrSkip ){
5992       sqlite3VdbeGoto(v, pLevel->addrSkip);
5993       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
5994       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
5995       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
5996     }
5997 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
5998     if( pLevel->addrLikeRep ){
5999       sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
6000                         pLevel->addrLikeRep);
6001       VdbeCoverage(v);
6002     }
6003 #endif
6004     if( pLevel->iLeftJoin ){
6005       int ws = pLoop->wsFlags;
6006       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
6007       assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
6008       if( (ws & WHERE_IDX_ONLY)==0 ){
6009         assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
6010         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
6011       }
6012       if( (ws & WHERE_INDEXED)
6013        || ((ws & WHERE_MULTI_OR) && pLevel->u.pCoveringIdx)
6014       ){
6015         if( ws & WHERE_MULTI_OR ){
6016           Index *pIx = pLevel->u.pCoveringIdx;
6017           int iDb = sqlite3SchemaToIndex(db, pIx->pSchema);
6018           sqlite3VdbeAddOp3(v, OP_ReopenIdx, pLevel->iIdxCur, pIx->tnum, iDb);
6019           sqlite3VdbeSetP4KeyInfo(pParse, pIx);
6020         }
6021         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
6022       }
6023       if( pLevel->op==OP_Return ){
6024         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
6025       }else{
6026         sqlite3VdbeGoto(v, pLevel->addrFirst);
6027       }
6028       sqlite3VdbeJumpHere(v, addr);
6029     }
6030     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
6031                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
6032   }
6033 
6034   /* The "break" point is here, just past the end of the outer loop.
6035   ** Set it.
6036   */
6037   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
6038 
6039   assert( pWInfo->nLevel<=pTabList->nSrc );
6040   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
6041     int k, last;
6042     VdbeOp *pOp, *pLastOp;
6043     Index *pIdx = 0;
6044     SrcItem *pTabItem = &pTabList->a[pLevel->iFrom];
6045     Table *pTab = pTabItem->pTab;
6046     assert( pTab!=0 );
6047     pLoop = pLevel->pWLoop;
6048 
6049     /* For a co-routine, change all OP_Column references to the table of
6050     ** the co-routine into OP_Copy of result contained in a register.
6051     ** OP_Rowid becomes OP_Null.
6052     */
6053     if( pTabItem->fg.viaCoroutine ){
6054       testcase( pParse->db->mallocFailed );
6055       translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
6056                             pTabItem->regResult, 0);
6057       continue;
6058     }
6059 
6060 #ifdef SQLITE_ENABLE_EARLY_CURSOR_CLOSE
6061     /* Close all of the cursors that were opened by sqlite3WhereBegin.
6062     ** Except, do not close cursors that will be reused by the OR optimization
6063     ** (WHERE_OR_SUBCLAUSE).  And do not close the OP_OpenWrite cursors
6064     ** created for the ONEPASS optimization.
6065     */
6066     if( (pTab->tabFlags & TF_Ephemeral)==0
6067      && !IsView(pTab)
6068      && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
6069     ){
6070       int ws = pLoop->wsFlags;
6071       if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){
6072         sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
6073       }
6074       if( (ws & WHERE_INDEXED)!=0
6075        && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0
6076        && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1]
6077       ){
6078         sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
6079       }
6080     }
6081 #endif
6082 
6083     /* If this scan uses an index, make VDBE code substitutions to read data
6084     ** from the index instead of from the table where possible.  In some cases
6085     ** this optimization prevents the table from ever being read, which can
6086     ** yield a significant performance boost.
6087     **
6088     ** Calls to the code generator in between sqlite3WhereBegin and
6089     ** sqlite3WhereEnd will have created code that references the table
6090     ** directly.  This loop scans all that code looking for opcodes
6091     ** that reference the table and converts them into opcodes that
6092     ** reference the index.
6093     */
6094     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
6095       pIdx = pLoop->u.btree.pIndex;
6096     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
6097       pIdx = pLevel->u.pCoveringIdx;
6098     }
6099     if( pIdx
6100      && !db->mallocFailed
6101     ){
6102       if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){
6103         last = iEnd;
6104       }else{
6105         last = pWInfo->iEndWhere;
6106       }
6107       k = pLevel->addrBody + 1;
6108 #ifdef SQLITE_DEBUG
6109       if( db->flags & SQLITE_VdbeAddopTrace ){
6110         printf("TRANSLATE opcodes in range %d..%d\n", k, last-1);
6111       }
6112       /* Proof that the "+1" on the k value above is safe */
6113       pOp = sqlite3VdbeGetOp(v, k - 1);
6114       assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur );
6115       assert( pOp->opcode!=OP_Rowid  || pOp->p1!=pLevel->iTabCur );
6116       assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur );
6117 #endif
6118       pOp = sqlite3VdbeGetOp(v, k);
6119       pLastOp = pOp + (last - k);
6120       assert( pOp<=pLastOp );
6121       do{
6122         if( pOp->p1!=pLevel->iTabCur ){
6123           /* no-op */
6124         }else if( pOp->opcode==OP_Column
6125 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6126          || pOp->opcode==OP_Offset
6127 #endif
6128         ){
6129           int x = pOp->p2;
6130           assert( pIdx->pTable==pTab );
6131           if( !HasRowid(pTab) ){
6132             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
6133             x = pPk->aiColumn[x];
6134             assert( x>=0 );
6135           }else{
6136             testcase( x!=sqlite3StorageColumnToTable(pTab,x) );
6137             x = sqlite3StorageColumnToTable(pTab,x);
6138           }
6139           x = sqlite3TableColumnToIndex(pIdx, x);
6140           if( x>=0 ){
6141             pOp->p2 = x;
6142             pOp->p1 = pLevel->iIdxCur;
6143             OpcodeRewriteTrace(db, k, pOp);
6144           }
6145           assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0
6146               || pWInfo->eOnePass );
6147         }else if( pOp->opcode==OP_Rowid ){
6148           pOp->p1 = pLevel->iIdxCur;
6149           pOp->opcode = OP_IdxRowid;
6150           OpcodeRewriteTrace(db, k, pOp);
6151         }else if( pOp->opcode==OP_IfNullRow ){
6152           pOp->p1 = pLevel->iIdxCur;
6153           OpcodeRewriteTrace(db, k, pOp);
6154         }
6155 #ifdef SQLITE_DEBUG
6156         k++;
6157 #endif
6158       }while( (++pOp)<pLastOp );
6159 #ifdef SQLITE_DEBUG
6160       if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
6161 #endif
6162     }
6163   }
6164 
6165   /* Final cleanup
6166   */
6167   if( pWInfo->pExprMods ) whereUndoExprMods(pWInfo);
6168   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
6169   whereInfoFree(db, pWInfo);
6170   return;
6171 }
6172