1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* 23 ** Extra information appended to the end of sqlite3_index_info but not 24 ** visible to the xBestIndex function, at least not directly. The 25 ** sqlite3_vtab_collation() interface knows how to reach it, however. 26 ** 27 ** This object is not an API and can be changed from one release to the 28 ** next. As long as allocateIndexInfo() and sqlite3_vtab_collation() 29 ** agree on the structure, all will be well. 30 */ 31 typedef struct HiddenIndexInfo HiddenIndexInfo; 32 struct HiddenIndexInfo { 33 WhereClause *pWC; /* The Where clause being analyzed */ 34 Parse *pParse; /* The parsing context */ 35 int eDistinct; /* Value to return from sqlite3_vtab_distinct() */ 36 u32 mIn; /* Mask of terms that are <col> IN (...) */ 37 u32 mHandleIn; /* Terms that vtab will handle as <col> IN (...) */ 38 sqlite3_value *aRhs[1]; /* RHS values for constraints. MUST BE LAST 39 ** because extra space is allocated to hold up 40 ** to nTerm such values */ 41 }; 42 43 /* Forward declaration of methods */ 44 static int whereLoopResize(sqlite3*, WhereLoop*, int); 45 46 /* 47 ** Return the estimated number of output rows from a WHERE clause 48 */ 49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ 50 return pWInfo->nRowOut; 51 } 52 53 /* 54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this 55 ** WHERE clause returns outputs for DISTINCT processing. 56 */ 57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ 58 return pWInfo->eDistinct; 59 } 60 61 /* 62 ** Return the number of ORDER BY terms that are satisfied by the 63 ** WHERE clause. A return of 0 means that the output must be 64 ** completely sorted. A return equal to the number of ORDER BY 65 ** terms means that no sorting is needed at all. A return that 66 ** is positive but less than the number of ORDER BY terms means that 67 ** block sorting is required. 68 */ 69 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ 70 return pWInfo->nOBSat; 71 } 72 73 /* 74 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known 75 ** to emit rows in increasing order, and if the last row emitted by the 76 ** inner-most loop did not fit within the sorter, then we can skip all 77 ** subsequent rows for the current iteration of the inner loop (because they 78 ** will not fit in the sorter either) and continue with the second inner 79 ** loop - the loop immediately outside the inner-most. 80 ** 81 ** When a row does not fit in the sorter (because the sorter already 82 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the 83 ** label returned by this function. 84 ** 85 ** If the ORDER BY LIMIT optimization applies, the jump destination should 86 ** be the continuation for the second-inner-most loop. If the ORDER BY 87 ** LIMIT optimization does not apply, then the jump destination should 88 ** be the continuation for the inner-most loop. 89 ** 90 ** It is always safe for this routine to return the continuation of the 91 ** inner-most loop, in the sense that a correct answer will result. 92 ** Returning the continuation the second inner loop is an optimization 93 ** that might make the code run a little faster, but should not change 94 ** the final answer. 95 */ 96 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){ 97 WhereLevel *pInner; 98 if( !pWInfo->bOrderedInnerLoop ){ 99 /* The ORDER BY LIMIT optimization does not apply. Jump to the 100 ** continuation of the inner-most loop. */ 101 return pWInfo->iContinue; 102 } 103 pInner = &pWInfo->a[pWInfo->nLevel-1]; 104 assert( pInner->addrNxt!=0 ); 105 return pInner->addrNxt; 106 } 107 108 /* 109 ** While generating code for the min/max optimization, after handling 110 ** the aggregate-step call to min() or max(), check to see if any 111 ** additional looping is required. If the output order is such that 112 ** we are certain that the correct answer has already been found, then 113 ** code an OP_Goto to by pass subsequent processing. 114 ** 115 ** Any extra OP_Goto that is coded here is an optimization. The 116 ** correct answer should be obtained regardless. This OP_Goto just 117 ** makes the answer appear faster. 118 */ 119 void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){ 120 WhereLevel *pInner; 121 int i; 122 if( !pWInfo->bOrderedInnerLoop ) return; 123 if( pWInfo->nOBSat==0 ) return; 124 for(i=pWInfo->nLevel-1; i>=0; i--){ 125 pInner = &pWInfo->a[i]; 126 if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){ 127 sqlite3VdbeGoto(v, pInner->addrNxt); 128 return; 129 } 130 } 131 sqlite3VdbeGoto(v, pWInfo->iBreak); 132 } 133 134 /* 135 ** Return the VDBE address or label to jump to in order to continue 136 ** immediately with the next row of a WHERE clause. 137 */ 138 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ 139 assert( pWInfo->iContinue!=0 ); 140 return pWInfo->iContinue; 141 } 142 143 /* 144 ** Return the VDBE address or label to jump to in order to break 145 ** out of a WHERE loop. 146 */ 147 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ 148 return pWInfo->iBreak; 149 } 150 151 /* 152 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to 153 ** operate directly on the rowids returned by a WHERE clause. Return 154 ** ONEPASS_SINGLE (1) if the statement can operation directly because only 155 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass 156 ** optimization can be used on multiple 157 ** 158 ** If the ONEPASS optimization is used (if this routine returns true) 159 ** then also write the indices of open cursors used by ONEPASS 160 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data 161 ** table and iaCur[1] gets the cursor used by an auxiliary index. 162 ** Either value may be -1, indicating that cursor is not used. 163 ** Any cursors returned will have been opened for writing. 164 ** 165 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is 166 ** unable to use the ONEPASS optimization. 167 */ 168 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ 169 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); 170 #ifdef WHERETRACE_ENABLED 171 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){ 172 sqlite3DebugPrintf("%s cursors: %d %d\n", 173 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI", 174 aiCur[0], aiCur[1]); 175 } 176 #endif 177 return pWInfo->eOnePass; 178 } 179 180 /* 181 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move 182 ** the data cursor to the row selected by the index cursor. 183 */ 184 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){ 185 return pWInfo->bDeferredSeek; 186 } 187 188 /* 189 ** Move the content of pSrc into pDest 190 */ 191 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ 192 pDest->n = pSrc->n; 193 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); 194 } 195 196 /* 197 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. 198 ** 199 ** The new entry might overwrite an existing entry, or it might be 200 ** appended, or it might be discarded. Do whatever is the right thing 201 ** so that pSet keeps the N_OR_COST best entries seen so far. 202 */ 203 static int whereOrInsert( 204 WhereOrSet *pSet, /* The WhereOrSet to be updated */ 205 Bitmask prereq, /* Prerequisites of the new entry */ 206 LogEst rRun, /* Run-cost of the new entry */ 207 LogEst nOut /* Number of outputs for the new entry */ 208 ){ 209 u16 i; 210 WhereOrCost *p; 211 for(i=pSet->n, p=pSet->a; i>0; i--, p++){ 212 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ 213 goto whereOrInsert_done; 214 } 215 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ 216 return 0; 217 } 218 } 219 if( pSet->n<N_OR_COST ){ 220 p = &pSet->a[pSet->n++]; 221 p->nOut = nOut; 222 }else{ 223 p = pSet->a; 224 for(i=1; i<pSet->n; i++){ 225 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; 226 } 227 if( p->rRun<=rRun ) return 0; 228 } 229 whereOrInsert_done: 230 p->prereq = prereq; 231 p->rRun = rRun; 232 if( p->nOut>nOut ) p->nOut = nOut; 233 return 1; 234 } 235 236 /* 237 ** Return the bitmask for the given cursor number. Return 0 if 238 ** iCursor is not in the set. 239 */ 240 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ 241 int i; 242 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); 243 assert( pMaskSet->n>0 || pMaskSet->ix[0]<0 ); 244 assert( iCursor>=-1 ); 245 if( pMaskSet->ix[0]==iCursor ){ 246 return 1; 247 } 248 for(i=1; i<pMaskSet->n; i++){ 249 if( pMaskSet->ix[i]==iCursor ){ 250 return MASKBIT(i); 251 } 252 } 253 return 0; 254 } 255 256 /* 257 ** Create a new mask for cursor iCursor. 258 ** 259 ** There is one cursor per table in the FROM clause. The number of 260 ** tables in the FROM clause is limited by a test early in the 261 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 262 ** array will never overflow. 263 */ 264 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 265 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 266 pMaskSet->ix[pMaskSet->n++] = iCursor; 267 } 268 269 /* 270 ** If the right-hand branch of the expression is a TK_COLUMN, then return 271 ** a pointer to the right-hand branch. Otherwise, return NULL. 272 */ 273 static Expr *whereRightSubexprIsColumn(Expr *p){ 274 p = sqlite3ExprSkipCollateAndLikely(p->pRight); 275 if( ALWAYS(p!=0) && p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){ 276 return p; 277 } 278 return 0; 279 } 280 281 /* 282 ** Advance to the next WhereTerm that matches according to the criteria 283 ** established when the pScan object was initialized by whereScanInit(). 284 ** Return NULL if there are no more matching WhereTerms. 285 */ 286 static WhereTerm *whereScanNext(WhereScan *pScan){ 287 int iCur; /* The cursor on the LHS of the term */ 288 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */ 289 Expr *pX; /* An expression being tested */ 290 WhereClause *pWC; /* Shorthand for pScan->pWC */ 291 WhereTerm *pTerm; /* The term being tested */ 292 int k = pScan->k; /* Where to start scanning */ 293 294 assert( pScan->iEquiv<=pScan->nEquiv ); 295 pWC = pScan->pWC; 296 while(1){ 297 iColumn = pScan->aiColumn[pScan->iEquiv-1]; 298 iCur = pScan->aiCur[pScan->iEquiv-1]; 299 assert( pWC!=0 ); 300 assert( iCur>=0 ); 301 do{ 302 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ 303 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 || pTerm->leftCursor<0 ); 304 if( pTerm->leftCursor==iCur 305 && pTerm->u.x.leftColumn==iColumn 306 && (iColumn!=XN_EXPR 307 || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft, 308 pScan->pIdxExpr,iCur)==0) 309 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 310 ){ 311 if( (pTerm->eOperator & WO_EQUIV)!=0 312 && pScan->nEquiv<ArraySize(pScan->aiCur) 313 && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0 314 ){ 315 int j; 316 for(j=0; j<pScan->nEquiv; j++){ 317 if( pScan->aiCur[j]==pX->iTable 318 && pScan->aiColumn[j]==pX->iColumn ){ 319 break; 320 } 321 } 322 if( j==pScan->nEquiv ){ 323 pScan->aiCur[j] = pX->iTable; 324 pScan->aiColumn[j] = pX->iColumn; 325 pScan->nEquiv++; 326 } 327 } 328 if( (pTerm->eOperator & pScan->opMask)!=0 ){ 329 /* Verify the affinity and collating sequence match */ 330 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ 331 CollSeq *pColl; 332 Parse *pParse = pWC->pWInfo->pParse; 333 pX = pTerm->pExpr; 334 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ 335 continue; 336 } 337 assert(pX->pLeft); 338 pColl = sqlite3ExprCompareCollSeq(pParse, pX); 339 if( pColl==0 ) pColl = pParse->db->pDfltColl; 340 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ 341 continue; 342 } 343 } 344 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0 345 && (pX = pTerm->pExpr->pRight, ALWAYS(pX!=0)) 346 && pX->op==TK_COLUMN 347 && pX->iTable==pScan->aiCur[0] 348 && pX->iColumn==pScan->aiColumn[0] 349 ){ 350 testcase( pTerm->eOperator & WO_IS ); 351 continue; 352 } 353 pScan->pWC = pWC; 354 pScan->k = k+1; 355 #ifdef WHERETRACE_ENABLED 356 if( sqlite3WhereTrace & 0x20000 ){ 357 int ii; 358 sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d", 359 pTerm, pScan->nEquiv); 360 for(ii=0; ii<pScan->nEquiv; ii++){ 361 sqlite3DebugPrintf(" {%d:%d}", 362 pScan->aiCur[ii], pScan->aiColumn[ii]); 363 } 364 sqlite3DebugPrintf("\n"); 365 } 366 #endif 367 return pTerm; 368 } 369 } 370 } 371 pWC = pWC->pOuter; 372 k = 0; 373 }while( pWC!=0 ); 374 if( pScan->iEquiv>=pScan->nEquiv ) break; 375 pWC = pScan->pOrigWC; 376 k = 0; 377 pScan->iEquiv++; 378 } 379 return 0; 380 } 381 382 /* 383 ** This is whereScanInit() for the case of an index on an expression. 384 ** It is factored out into a separate tail-recursion subroutine so that 385 ** the normal whereScanInit() routine, which is a high-runner, does not 386 ** need to push registers onto the stack as part of its prologue. 387 */ 388 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){ 389 pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr); 390 return whereScanNext(pScan); 391 } 392 393 /* 394 ** Initialize a WHERE clause scanner object. Return a pointer to the 395 ** first match. Return NULL if there are no matches. 396 ** 397 ** The scanner will be searching the WHERE clause pWC. It will look 398 ** for terms of the form "X <op> <expr>" where X is column iColumn of table 399 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx 400 ** must be one of the indexes of table iCur. 401 ** 402 ** The <op> must be one of the operators described by opMask. 403 ** 404 ** If the search is for X and the WHERE clause contains terms of the 405 ** form X=Y then this routine might also return terms of the form 406 ** "Y <op> <expr>". The number of levels of transitivity is limited, 407 ** but is enough to handle most commonly occurring SQL statements. 408 ** 409 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with 410 ** index pIdx. 411 */ 412 static WhereTerm *whereScanInit( 413 WhereScan *pScan, /* The WhereScan object being initialized */ 414 WhereClause *pWC, /* The WHERE clause to be scanned */ 415 int iCur, /* Cursor to scan for */ 416 int iColumn, /* Column to scan for */ 417 u32 opMask, /* Operator(s) to scan for */ 418 Index *pIdx /* Must be compatible with this index */ 419 ){ 420 pScan->pOrigWC = pWC; 421 pScan->pWC = pWC; 422 pScan->pIdxExpr = 0; 423 pScan->idxaff = 0; 424 pScan->zCollName = 0; 425 pScan->opMask = opMask; 426 pScan->k = 0; 427 pScan->aiCur[0] = iCur; 428 pScan->nEquiv = 1; 429 pScan->iEquiv = 1; 430 if( pIdx ){ 431 int j = iColumn; 432 iColumn = pIdx->aiColumn[j]; 433 if( iColumn==pIdx->pTable->iPKey ){ 434 iColumn = XN_ROWID; 435 }else if( iColumn>=0 ){ 436 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; 437 pScan->zCollName = pIdx->azColl[j]; 438 }else if( iColumn==XN_EXPR ){ 439 pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr; 440 pScan->zCollName = pIdx->azColl[j]; 441 pScan->aiColumn[0] = XN_EXPR; 442 return whereScanInitIndexExpr(pScan); 443 } 444 }else if( iColumn==XN_EXPR ){ 445 return 0; 446 } 447 pScan->aiColumn[0] = iColumn; 448 return whereScanNext(pScan); 449 } 450 451 /* 452 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 453 ** where X is a reference to the iColumn of table iCur or of index pIdx 454 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by 455 ** the op parameter. Return a pointer to the term. Return 0 if not found. 456 ** 457 ** If pIdx!=0 then it must be one of the indexes of table iCur. 458 ** Search for terms matching the iColumn-th column of pIdx 459 ** rather than the iColumn-th column of table iCur. 460 ** 461 ** The term returned might by Y=<expr> if there is another constraint in 462 ** the WHERE clause that specifies that X=Y. Any such constraints will be 463 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The 464 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11 465 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10 466 ** other equivalent values. Hence a search for X will return <expr> if X=A1 467 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>. 468 ** 469 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" 470 ** then try for the one with no dependencies on <expr> - in other words where 471 ** <expr> is a constant expression of some kind. Only return entries of 472 ** the form "X <op> Y" where Y is a column in another table if no terms of 473 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS 474 ** exist, try to return a term that does not use WO_EQUIV. 475 */ 476 WhereTerm *sqlite3WhereFindTerm( 477 WhereClause *pWC, /* The WHERE clause to be searched */ 478 int iCur, /* Cursor number of LHS */ 479 int iColumn, /* Column number of LHS */ 480 Bitmask notReady, /* RHS must not overlap with this mask */ 481 u32 op, /* Mask of WO_xx values describing operator */ 482 Index *pIdx /* Must be compatible with this index, if not NULL */ 483 ){ 484 WhereTerm *pResult = 0; 485 WhereTerm *p; 486 WhereScan scan; 487 488 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); 489 op &= WO_EQ|WO_IS; 490 while( p ){ 491 if( (p->prereqRight & notReady)==0 ){ 492 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){ 493 testcase( p->eOperator & WO_IS ); 494 return p; 495 } 496 if( pResult==0 ) pResult = p; 497 } 498 p = whereScanNext(&scan); 499 } 500 return pResult; 501 } 502 503 /* 504 ** This function searches pList for an entry that matches the iCol-th column 505 ** of index pIdx. 506 ** 507 ** If such an expression is found, its index in pList->a[] is returned. If 508 ** no expression is found, -1 is returned. 509 */ 510 static int findIndexCol( 511 Parse *pParse, /* Parse context */ 512 ExprList *pList, /* Expression list to search */ 513 int iBase, /* Cursor for table associated with pIdx */ 514 Index *pIdx, /* Index to match column of */ 515 int iCol /* Column of index to match */ 516 ){ 517 int i; 518 const char *zColl = pIdx->azColl[iCol]; 519 520 for(i=0; i<pList->nExpr; i++){ 521 Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr); 522 if( ALWAYS(p!=0) 523 && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) 524 && p->iColumn==pIdx->aiColumn[iCol] 525 && p->iTable==iBase 526 ){ 527 CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr); 528 if( 0==sqlite3StrICmp(pColl->zName, zColl) ){ 529 return i; 530 } 531 } 532 } 533 534 return -1; 535 } 536 537 /* 538 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL 539 */ 540 static int indexColumnNotNull(Index *pIdx, int iCol){ 541 int j; 542 assert( pIdx!=0 ); 543 assert( iCol>=0 && iCol<pIdx->nColumn ); 544 j = pIdx->aiColumn[iCol]; 545 if( j>=0 ){ 546 return pIdx->pTable->aCol[j].notNull; 547 }else if( j==(-1) ){ 548 return 1; 549 }else{ 550 assert( j==(-2) ); 551 return 0; /* Assume an indexed expression can always yield a NULL */ 552 553 } 554 } 555 556 /* 557 ** Return true if the DISTINCT expression-list passed as the third argument 558 ** is redundant. 559 ** 560 ** A DISTINCT list is redundant if any subset of the columns in the 561 ** DISTINCT list are collectively unique and individually non-null. 562 */ 563 static int isDistinctRedundant( 564 Parse *pParse, /* Parsing context */ 565 SrcList *pTabList, /* The FROM clause */ 566 WhereClause *pWC, /* The WHERE clause */ 567 ExprList *pDistinct /* The result set that needs to be DISTINCT */ 568 ){ 569 Table *pTab; 570 Index *pIdx; 571 int i; 572 int iBase; 573 574 /* If there is more than one table or sub-select in the FROM clause of 575 ** this query, then it will not be possible to show that the DISTINCT 576 ** clause is redundant. */ 577 if( pTabList->nSrc!=1 ) return 0; 578 iBase = pTabList->a[0].iCursor; 579 pTab = pTabList->a[0].pTab; 580 581 /* If any of the expressions is an IPK column on table iBase, then return 582 ** true. Note: The (p->iTable==iBase) part of this test may be false if the 583 ** current SELECT is a correlated sub-query. 584 */ 585 for(i=0; i<pDistinct->nExpr; i++){ 586 Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr); 587 if( NEVER(p==0) ) continue; 588 if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue; 589 if( p->iTable==iBase && p->iColumn<0 ) return 1; 590 } 591 592 /* Loop through all indices on the table, checking each to see if it makes 593 ** the DISTINCT qualifier redundant. It does so if: 594 ** 595 ** 1. The index is itself UNIQUE, and 596 ** 597 ** 2. All of the columns in the index are either part of the pDistinct 598 ** list, or else the WHERE clause contains a term of the form "col=X", 599 ** where X is a constant value. The collation sequences of the 600 ** comparison and select-list expressions must match those of the index. 601 ** 602 ** 3. All of those index columns for which the WHERE clause does not 603 ** contain a "col=X" term are subject to a NOT NULL constraint. 604 */ 605 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 606 if( !IsUniqueIndex(pIdx) ) continue; 607 if( pIdx->pPartIdxWhere ) continue; 608 for(i=0; i<pIdx->nKeyCol; i++){ 609 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){ 610 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break; 611 if( indexColumnNotNull(pIdx, i)==0 ) break; 612 } 613 } 614 if( i==pIdx->nKeyCol ){ 615 /* This index implies that the DISTINCT qualifier is redundant. */ 616 return 1; 617 } 618 } 619 620 return 0; 621 } 622 623 624 /* 625 ** Estimate the logarithm of the input value to base 2. 626 */ 627 static LogEst estLog(LogEst N){ 628 return N<=10 ? 0 : sqlite3LogEst(N) - 33; 629 } 630 631 /* 632 ** Convert OP_Column opcodes to OP_Copy in previously generated code. 633 ** 634 ** This routine runs over generated VDBE code and translates OP_Column 635 ** opcodes into OP_Copy when the table is being accessed via co-routine 636 ** instead of via table lookup. 637 ** 638 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on 639 ** cursor iTabCur are transformed into OP_Sequence opcode for the 640 ** iAutoidxCur cursor, in order to generate unique rowids for the 641 ** automatic index being generated. 642 */ 643 static void translateColumnToCopy( 644 Parse *pParse, /* Parsing context */ 645 int iStart, /* Translate from this opcode to the end */ 646 int iTabCur, /* OP_Column/OP_Rowid references to this table */ 647 int iRegister, /* The first column is in this register */ 648 int iAutoidxCur /* If non-zero, cursor of autoindex being generated */ 649 ){ 650 Vdbe *v = pParse->pVdbe; 651 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart); 652 int iEnd = sqlite3VdbeCurrentAddr(v); 653 if( pParse->db->mallocFailed ) return; 654 for(; iStart<iEnd; iStart++, pOp++){ 655 if( pOp->p1!=iTabCur ) continue; 656 if( pOp->opcode==OP_Column ){ 657 pOp->opcode = OP_Copy; 658 pOp->p1 = pOp->p2 + iRegister; 659 pOp->p2 = pOp->p3; 660 pOp->p3 = 0; 661 }else if( pOp->opcode==OP_Rowid ){ 662 pOp->opcode = OP_Sequence; 663 pOp->p1 = iAutoidxCur; 664 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 665 if( iAutoidxCur==0 ){ 666 pOp->opcode = OP_Null; 667 pOp->p3 = 0; 668 } 669 #endif 670 } 671 } 672 } 673 674 /* 675 ** Two routines for printing the content of an sqlite3_index_info 676 ** structure. Used for testing and debugging only. If neither 677 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 678 ** are no-ops. 679 */ 680 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) 681 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){ 682 int i; 683 if( !sqlite3WhereTrace ) return; 684 for(i=0; i<p->nConstraint; i++){ 685 sqlite3DebugPrintf( 686 " constraint[%d]: col=%d termid=%d op=%d usabled=%d collseq=%s\n", 687 i, 688 p->aConstraint[i].iColumn, 689 p->aConstraint[i].iTermOffset, 690 p->aConstraint[i].op, 691 p->aConstraint[i].usable, 692 sqlite3_vtab_collation(p,i)); 693 } 694 for(i=0; i<p->nOrderBy; i++){ 695 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 696 i, 697 p->aOrderBy[i].iColumn, 698 p->aOrderBy[i].desc); 699 } 700 } 701 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){ 702 int i; 703 if( !sqlite3WhereTrace ) return; 704 for(i=0; i<p->nConstraint; i++){ 705 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 706 i, 707 p->aConstraintUsage[i].argvIndex, 708 p->aConstraintUsage[i].omit); 709 } 710 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 711 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 712 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 713 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 714 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); 715 } 716 #else 717 #define whereTraceIndexInfoInputs(A) 718 #define whereTraceIndexInfoOutputs(A) 719 #endif 720 721 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 722 /* 723 ** Return TRUE if the WHERE clause term pTerm is of a form where it 724 ** could be used with an index to access pSrc, assuming an appropriate 725 ** index existed. 726 */ 727 static int termCanDriveIndex( 728 const WhereTerm *pTerm, /* WHERE clause term to check */ 729 const SrcItem *pSrc, /* Table we are trying to access */ 730 const Bitmask notReady /* Tables in outer loops of the join */ 731 ){ 732 char aff; 733 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; 734 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0; 735 if( (pSrc->fg.jointype & JT_LEFT) 736 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 737 && (pTerm->eOperator & WO_IS) 738 ){ 739 /* Cannot use an IS term from the WHERE clause as an index driver for 740 ** the RHS of a LEFT JOIN. Such a term can only be used if it is from 741 ** the ON clause. */ 742 return 0; 743 } 744 if( (pTerm->prereqRight & notReady)!=0 ) return 0; 745 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 746 if( pTerm->u.x.leftColumn<0 ) return 0; 747 aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity; 748 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; 749 testcase( pTerm->pExpr->op==TK_IS ); 750 return 1; 751 } 752 #endif 753 754 755 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 756 /* 757 ** Generate code to construct the Index object for an automatic index 758 ** and to set up the WhereLevel object pLevel so that the code generator 759 ** makes use of the automatic index. 760 */ 761 static SQLITE_NOINLINE void constructAutomaticIndex( 762 Parse *pParse, /* The parsing context */ 763 const WhereClause *pWC, /* The WHERE clause */ 764 const SrcItem *pSrc, /* The FROM clause term to get the next index */ 765 const Bitmask notReady, /* Mask of cursors that are not available */ 766 WhereLevel *pLevel /* Write new index here */ 767 ){ 768 int nKeyCol; /* Number of columns in the constructed index */ 769 WhereTerm *pTerm; /* A single term of the WHERE clause */ 770 WhereTerm *pWCEnd; /* End of pWC->a[] */ 771 Index *pIdx; /* Object describing the transient index */ 772 Vdbe *v; /* Prepared statement under construction */ 773 int addrInit; /* Address of the initialization bypass jump */ 774 Table *pTable; /* The table being indexed */ 775 int addrTop; /* Top of the index fill loop */ 776 int regRecord; /* Register holding an index record */ 777 int n; /* Column counter */ 778 int i; /* Loop counter */ 779 int mxBitCol; /* Maximum column in pSrc->colUsed */ 780 CollSeq *pColl; /* Collating sequence to on a column */ 781 WhereLoop *pLoop; /* The Loop object */ 782 char *zNotUsed; /* Extra space on the end of pIdx */ 783 Bitmask idxCols; /* Bitmap of columns used for indexing */ 784 Bitmask extraCols; /* Bitmap of additional columns */ 785 u8 sentWarning = 0; /* True if a warnning has been issued */ 786 Expr *pPartial = 0; /* Partial Index Expression */ 787 int iContinue = 0; /* Jump here to skip excluded rows */ 788 SrcItem *pTabItem; /* FROM clause term being indexed */ 789 int addrCounter = 0; /* Address where integer counter is initialized */ 790 int regBase; /* Array of registers where record is assembled */ 791 792 /* Generate code to skip over the creation and initialization of the 793 ** transient index on 2nd and subsequent iterations of the loop. */ 794 v = pParse->pVdbe; 795 assert( v!=0 ); 796 addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 797 798 /* Count the number of columns that will be added to the index 799 ** and used to match WHERE clause constraints */ 800 nKeyCol = 0; 801 pTable = pSrc->pTab; 802 pWCEnd = &pWC->a[pWC->nTerm]; 803 pLoop = pLevel->pWLoop; 804 idxCols = 0; 805 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 806 Expr *pExpr = pTerm->pExpr; 807 /* Make the automatic index a partial index if there are terms in the 808 ** WHERE clause (or the ON clause of a LEFT join) that constrain which 809 ** rows of the target table (pSrc) that can be used. */ 810 if( (pTerm->wtFlags & TERM_VIRTUAL)==0 811 && ((pSrc->fg.jointype&JT_LEFT)==0 || ExprHasProperty(pExpr,EP_FromJoin)) 812 && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) 813 ){ 814 pPartial = sqlite3ExprAnd(pParse, pPartial, 815 sqlite3ExprDup(pParse->db, pExpr, 0)); 816 } 817 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 818 int iCol; 819 Bitmask cMask; 820 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 821 iCol = pTerm->u.x.leftColumn; 822 cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 823 testcase( iCol==BMS ); 824 testcase( iCol==BMS-1 ); 825 if( !sentWarning ){ 826 sqlite3_log(SQLITE_WARNING_AUTOINDEX, 827 "automatic index on %s(%s)", pTable->zName, 828 pTable->aCol[iCol].zCnName); 829 sentWarning = 1; 830 } 831 if( (idxCols & cMask)==0 ){ 832 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ 833 goto end_auto_index_create; 834 } 835 pLoop->aLTerm[nKeyCol++] = pTerm; 836 idxCols |= cMask; 837 } 838 } 839 } 840 assert( nKeyCol>0 || pParse->db->mallocFailed ); 841 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; 842 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED 843 | WHERE_AUTO_INDEX; 844 845 /* Count the number of additional columns needed to create a 846 ** covering index. A "covering index" is an index that contains all 847 ** columns that are needed by the query. With a covering index, the 848 ** original table never needs to be accessed. Automatic indices must 849 ** be a covering index because the index will not be updated if the 850 ** original table changes and the index and table cannot both be used 851 ** if they go out of sync. 852 */ 853 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); 854 mxBitCol = MIN(BMS-1,pTable->nCol); 855 testcase( pTable->nCol==BMS-1 ); 856 testcase( pTable->nCol==BMS-2 ); 857 for(i=0; i<mxBitCol; i++){ 858 if( extraCols & MASKBIT(i) ) nKeyCol++; 859 } 860 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 861 nKeyCol += pTable->nCol - BMS + 1; 862 } 863 864 /* Construct the Index object to describe this index */ 865 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); 866 if( pIdx==0 ) goto end_auto_index_create; 867 pLoop->u.btree.pIndex = pIdx; 868 pIdx->zName = "auto-index"; 869 pIdx->pTable = pTable; 870 n = 0; 871 idxCols = 0; 872 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 873 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 874 int iCol; 875 Bitmask cMask; 876 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 877 iCol = pTerm->u.x.leftColumn; 878 cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 879 testcase( iCol==BMS-1 ); 880 testcase( iCol==BMS ); 881 if( (idxCols & cMask)==0 ){ 882 Expr *pX = pTerm->pExpr; 883 idxCols |= cMask; 884 pIdx->aiColumn[n] = pTerm->u.x.leftColumn; 885 pColl = sqlite3ExprCompareCollSeq(pParse, pX); 886 assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */ 887 pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY; 888 n++; 889 } 890 } 891 } 892 assert( (u32)n==pLoop->u.btree.nEq ); 893 894 /* Add additional columns needed to make the automatic index into 895 ** a covering index */ 896 for(i=0; i<mxBitCol; i++){ 897 if( extraCols & MASKBIT(i) ){ 898 pIdx->aiColumn[n] = i; 899 pIdx->azColl[n] = sqlite3StrBINARY; 900 n++; 901 } 902 } 903 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 904 for(i=BMS-1; i<pTable->nCol; i++){ 905 pIdx->aiColumn[n] = i; 906 pIdx->azColl[n] = sqlite3StrBINARY; 907 n++; 908 } 909 } 910 assert( n==nKeyCol ); 911 pIdx->aiColumn[n] = XN_ROWID; 912 pIdx->azColl[n] = sqlite3StrBINARY; 913 914 /* Create the automatic index */ 915 assert( pLevel->iIdxCur>=0 ); 916 pLevel->iIdxCur = pParse->nTab++; 917 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); 918 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 919 VdbeComment((v, "for %s", pTable->zName)); 920 if( OptimizationEnabled(pParse->db, SQLITE_BloomFilter) ){ 921 pLevel->regFilter = ++pParse->nMem; 922 sqlite3VdbeAddOp2(v, OP_Blob, 10000, pLevel->regFilter); 923 } 924 925 /* Fill the automatic index with content */ 926 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom]; 927 if( pTabItem->fg.viaCoroutine ){ 928 int regYield = pTabItem->regReturn; 929 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0); 930 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 931 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); 932 VdbeCoverage(v); 933 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 934 }else{ 935 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); 936 } 937 if( pPartial ){ 938 iContinue = sqlite3VdbeMakeLabel(pParse); 939 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); 940 pLoop->wsFlags |= WHERE_PARTIALIDX; 941 } 942 regRecord = sqlite3GetTempReg(pParse); 943 regBase = sqlite3GenerateIndexKey( 944 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0 945 ); 946 if( pLevel->regFilter ){ 947 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, 948 regBase, pLoop->u.btree.nEq); 949 } 950 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); 951 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 952 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); 953 if( pTabItem->fg.viaCoroutine ){ 954 sqlite3VdbeChangeP2(v, addrCounter, regBase+n); 955 testcase( pParse->db->mallocFailed ); 956 assert( pLevel->iIdxCur>0 ); 957 translateColumnToCopy(pParse, addrTop, pLevel->iTabCur, 958 pTabItem->regResult, pLevel->iIdxCur); 959 sqlite3VdbeGoto(v, addrTop); 960 pTabItem->fg.viaCoroutine = 0; 961 }else{ 962 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); 963 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); 964 } 965 sqlite3VdbeJumpHere(v, addrTop); 966 sqlite3ReleaseTempReg(pParse, regRecord); 967 968 /* Jump here when skipping the initialization */ 969 sqlite3VdbeJumpHere(v, addrInit); 970 971 end_auto_index_create: 972 sqlite3ExprDelete(pParse->db, pPartial); 973 } 974 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 975 976 /* 977 ** Generate bytecode that will initialize a Bloom filter that is appropriate 978 ** for pLevel. 979 ** 980 ** If there are inner loops within pLevel that have the WHERE_BLOOMFILTER 981 ** flag set, initialize a Bloomfilter for them as well. Except don't do 982 ** this recursive initialization if the SQLITE_BloomPulldown optimization has 983 ** been turned off. 984 ** 985 ** When the Bloom filter is initialized, the WHERE_BLOOMFILTER flag is cleared 986 ** from the loop, but the regFilter value is set to a register that implements 987 ** the Bloom filter. When regFilter is positive, the 988 ** sqlite3WhereCodeOneLoopStart() will generate code to test the Bloom filter 989 ** and skip the subsequence B-Tree seek if the Bloom filter indicates that 990 ** no matching rows exist. 991 ** 992 ** This routine may only be called if it has previously been determined that 993 ** the loop would benefit from a Bloom filter, and the WHERE_BLOOMFILTER bit 994 ** is set. 995 */ 996 static SQLITE_NOINLINE void sqlite3ConstructBloomFilter( 997 WhereInfo *pWInfo, /* The WHERE clause */ 998 int iLevel, /* Index in pWInfo->a[] that is pLevel */ 999 WhereLevel *pLevel, /* Make a Bloom filter for this FROM term */ 1000 Bitmask notReady /* Loops that are not ready */ 1001 ){ 1002 int addrOnce; /* Address of opening OP_Once */ 1003 int addrTop; /* Address of OP_Rewind */ 1004 int addrCont; /* Jump here to skip a row */ 1005 const WhereTerm *pTerm; /* For looping over WHERE clause terms */ 1006 const WhereTerm *pWCEnd; /* Last WHERE clause term */ 1007 Parse *pParse = pWInfo->pParse; /* Parsing context */ 1008 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 1009 WhereLoop *pLoop = pLevel->pWLoop; /* The loop being coded */ 1010 int iCur; /* Cursor for table getting the filter */ 1011 1012 assert( pLoop!=0 ); 1013 assert( v!=0 ); 1014 assert( pLoop->wsFlags & WHERE_BLOOMFILTER ); 1015 1016 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1017 do{ 1018 const SrcItem *pItem; 1019 const Table *pTab; 1020 u64 sz; 1021 sqlite3WhereExplainBloomFilter(pParse, pWInfo, pLevel); 1022 addrCont = sqlite3VdbeMakeLabel(pParse); 1023 iCur = pLevel->iTabCur; 1024 pLevel->regFilter = ++pParse->nMem; 1025 1026 /* The Bloom filter is a Blob held in a register. Initialize it 1027 ** to zero-filled blob of at least 80K bits, but maybe more if the 1028 ** estimated size of the table is larger. We could actually 1029 ** measure the size of the table at run-time using OP_Count with 1030 ** P3==1 and use that value to initialize the blob. But that makes 1031 ** testing complicated. By basing the blob size on the value in the 1032 ** sqlite_stat1 table, testing is much easier. 1033 */ 1034 pItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1035 assert( pItem!=0 ); 1036 pTab = pItem->pTab; 1037 assert( pTab!=0 ); 1038 sz = sqlite3LogEstToInt(pTab->nRowLogEst); 1039 if( sz<10000 ){ 1040 sz = 10000; 1041 }else if( sz>10000000 ){ 1042 sz = 10000000; 1043 } 1044 sqlite3VdbeAddOp2(v, OP_Blob, (int)sz, pLevel->regFilter); 1045 1046 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 1047 pWCEnd = &pWInfo->sWC.a[pWInfo->sWC.nTerm]; 1048 for(pTerm=pWInfo->sWC.a; pTerm<pWCEnd; pTerm++){ 1049 Expr *pExpr = pTerm->pExpr; 1050 if( (pTerm->wtFlags & TERM_VIRTUAL)==0 1051 && sqlite3ExprIsTableConstant(pExpr, iCur) 1052 ){ 1053 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 1054 } 1055 } 1056 if( pLoop->wsFlags & WHERE_IPK ){ 1057 int r1 = sqlite3GetTempReg(pParse); 1058 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1); 1059 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, 1); 1060 sqlite3ReleaseTempReg(pParse, r1); 1061 }else{ 1062 Index *pIdx = pLoop->u.btree.pIndex; 1063 int n = pLoop->u.btree.nEq; 1064 int r1 = sqlite3GetTempRange(pParse, n); 1065 int jj; 1066 for(jj=0; jj<n; jj++){ 1067 int iCol = pIdx->aiColumn[jj]; 1068 assert( pIdx->pTable==pItem->pTab ); 1069 sqlite3ExprCodeGetColumnOfTable(v, pIdx->pTable, iCur, iCol,r1+jj); 1070 } 1071 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, n); 1072 sqlite3ReleaseTempRange(pParse, r1, n); 1073 } 1074 sqlite3VdbeResolveLabel(v, addrCont); 1075 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); 1076 VdbeCoverage(v); 1077 sqlite3VdbeJumpHere(v, addrTop); 1078 pLoop->wsFlags &= ~WHERE_BLOOMFILTER; 1079 if( OptimizationDisabled(pParse->db, SQLITE_BloomPulldown) ) break; 1080 while( ++iLevel < pWInfo->nLevel ){ 1081 pLevel = &pWInfo->a[iLevel]; 1082 pLoop = pLevel->pWLoop; 1083 if( NEVER(pLoop==0) ) continue; 1084 if( pLoop->prereq & notReady ) continue; 1085 if( (pLoop->wsFlags & (WHERE_BLOOMFILTER|WHERE_COLUMN_IN)) 1086 ==WHERE_BLOOMFILTER 1087 ){ 1088 /* This is a candidate for bloom-filter pull-down (early evaluation). 1089 ** The test that WHERE_COLUMN_IN is omitted is important, as we are 1090 ** not able to do early evaluation of bloom filters that make use of 1091 ** the IN operator */ 1092 break; 1093 } 1094 } 1095 }while( iLevel < pWInfo->nLevel ); 1096 sqlite3VdbeJumpHere(v, addrOnce); 1097 } 1098 1099 1100 #ifndef SQLITE_OMIT_VIRTUALTABLE 1101 /* 1102 ** Allocate and populate an sqlite3_index_info structure. It is the 1103 ** responsibility of the caller to eventually release the structure 1104 ** by passing the pointer returned by this function to freeIndexInfo(). 1105 */ 1106 static sqlite3_index_info *allocateIndexInfo( 1107 WhereInfo *pWInfo, /* The WHERE clause */ 1108 WhereClause *pWC, /* The WHERE clause being analyzed */ 1109 Bitmask mUnusable, /* Ignore terms with these prereqs */ 1110 SrcItem *pSrc, /* The FROM clause term that is the vtab */ 1111 u16 *pmNoOmit /* Mask of terms not to omit */ 1112 ){ 1113 int i, j; 1114 int nTerm; 1115 Parse *pParse = pWInfo->pParse; 1116 struct sqlite3_index_constraint *pIdxCons; 1117 struct sqlite3_index_orderby *pIdxOrderBy; 1118 struct sqlite3_index_constraint_usage *pUsage; 1119 struct HiddenIndexInfo *pHidden; 1120 WhereTerm *pTerm; 1121 int nOrderBy; 1122 sqlite3_index_info *pIdxInfo; 1123 u16 mNoOmit = 0; 1124 const Table *pTab; 1125 int eDistinct = 0; 1126 ExprList *pOrderBy = pWInfo->pOrderBy; 1127 1128 assert( pSrc!=0 ); 1129 pTab = pSrc->pTab; 1130 assert( pTab!=0 ); 1131 assert( IsVirtual(pTab) ); 1132 1133 /* Find all WHERE clause constraints referring to this virtual table. 1134 ** Mark each term with the TERM_OK flag. Set nTerm to the number of 1135 ** terms found. 1136 */ 1137 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1138 pTerm->wtFlags &= ~TERM_OK; 1139 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1140 if( pTerm->prereqRight & mUnusable ) continue; 1141 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 1142 testcase( pTerm->eOperator & WO_IN ); 1143 testcase( pTerm->eOperator & WO_ISNULL ); 1144 testcase( pTerm->eOperator & WO_IS ); 1145 testcase( pTerm->eOperator & WO_ALL ); 1146 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue; 1147 if( pTerm->wtFlags & TERM_VNULL ) continue; 1148 1149 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 1150 assert( pTerm->u.x.leftColumn>=XN_ROWID ); 1151 assert( pTerm->u.x.leftColumn<pTab->nCol ); 1152 1153 /* tag-20191211-002: WHERE-clause constraints are not useful to the 1154 ** right-hand table of a LEFT JOIN. See tag-20191211-001 for the 1155 ** equivalent restriction for ordinary tables. */ 1156 if( (pSrc->fg.jointype & JT_LEFT)!=0 1157 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 1158 ){ 1159 continue; 1160 } 1161 nTerm++; 1162 pTerm->wtFlags |= TERM_OK; 1163 } 1164 1165 /* If the ORDER BY clause contains only columns in the current 1166 ** virtual table then allocate space for the aOrderBy part of 1167 ** the sqlite3_index_info structure. 1168 */ 1169 nOrderBy = 0; 1170 if( pOrderBy ){ 1171 int n = pOrderBy->nExpr; 1172 for(i=0; i<n; i++){ 1173 Expr *pExpr = pOrderBy->a[i].pExpr; 1174 Expr *pE2; 1175 1176 /* Skip over constant terms in the ORDER BY clause */ 1177 if( sqlite3ExprIsConstant(pExpr) ){ 1178 continue; 1179 } 1180 1181 /* Virtual tables are unable to deal with NULLS FIRST */ 1182 if( pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL ) break; 1183 1184 /* First case - a direct column references without a COLLATE operator */ 1185 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSrc->iCursor ){ 1186 assert( pExpr->iColumn>=XN_ROWID && pExpr->iColumn<pTab->nCol ); 1187 continue; 1188 } 1189 1190 /* 2nd case - a column reference with a COLLATE operator. Only match 1191 ** of the COLLATE operator matches the collation of the column. */ 1192 if( pExpr->op==TK_COLLATE 1193 && (pE2 = pExpr->pLeft)->op==TK_COLUMN 1194 && pE2->iTable==pSrc->iCursor 1195 ){ 1196 const char *zColl; /* The collating sequence name */ 1197 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1198 assert( pExpr->u.zToken!=0 ); 1199 assert( pE2->iColumn>=XN_ROWID && pE2->iColumn<pTab->nCol ); 1200 pExpr->iColumn = pE2->iColumn; 1201 if( pE2->iColumn<0 ) continue; /* Collseq does not matter for rowid */ 1202 zColl = sqlite3ColumnColl(&pTab->aCol[pE2->iColumn]); 1203 if( zColl==0 ) zColl = sqlite3StrBINARY; 1204 if( sqlite3_stricmp(pExpr->u.zToken, zColl)==0 ) continue; 1205 } 1206 1207 /* No matches cause a break out of the loop */ 1208 break; 1209 } 1210 if( i==n ){ 1211 nOrderBy = n; 1212 if( (pWInfo->wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY)) ){ 1213 eDistinct = 1 + ((pWInfo->wctrlFlags & WHERE_DISTINCTBY)!=0); 1214 } 1215 } 1216 } 1217 1218 /* Allocate the sqlite3_index_info structure 1219 */ 1220 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 1221 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 1222 + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) 1223 + sizeof(sqlite3_value*)*nTerm ); 1224 if( pIdxInfo==0 ){ 1225 sqlite3ErrorMsg(pParse, "out of memory"); 1226 return 0; 1227 } 1228 pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1]; 1229 pIdxCons = (struct sqlite3_index_constraint*)&pHidden->aRhs[nTerm]; 1230 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 1231 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 1232 pIdxInfo->aConstraint = pIdxCons; 1233 pIdxInfo->aOrderBy = pIdxOrderBy; 1234 pIdxInfo->aConstraintUsage = pUsage; 1235 pHidden->pWC = pWC; 1236 pHidden->pParse = pParse; 1237 pHidden->eDistinct = eDistinct; 1238 pHidden->mIn = 0; 1239 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1240 u16 op; 1241 if( (pTerm->wtFlags & TERM_OK)==0 ) continue; 1242 pIdxCons[j].iColumn = pTerm->u.x.leftColumn; 1243 pIdxCons[j].iTermOffset = i; 1244 op = pTerm->eOperator & WO_ALL; 1245 if( op==WO_IN ){ 1246 if( (pTerm->wtFlags & TERM_SLICE)==0 ){ 1247 pHidden->mIn |= SMASKBIT32(j); 1248 } 1249 op = WO_EQ; 1250 } 1251 if( op==WO_AUX ){ 1252 pIdxCons[j].op = pTerm->eMatchOp; 1253 }else if( op & (WO_ISNULL|WO_IS) ){ 1254 if( op==WO_ISNULL ){ 1255 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL; 1256 }else{ 1257 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS; 1258 } 1259 }else{ 1260 pIdxCons[j].op = (u8)op; 1261 /* The direct assignment in the previous line is possible only because 1262 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 1263 ** following asserts verify this fact. */ 1264 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 1265 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 1266 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 1267 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 1268 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 1269 assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) ); 1270 1271 if( op & (WO_LT|WO_LE|WO_GT|WO_GE) 1272 && sqlite3ExprIsVector(pTerm->pExpr->pRight) 1273 ){ 1274 testcase( j!=i ); 1275 if( j<16 ) mNoOmit |= (1 << j); 1276 if( op==WO_LT ) pIdxCons[j].op = WO_LE; 1277 if( op==WO_GT ) pIdxCons[j].op = WO_GE; 1278 } 1279 } 1280 1281 j++; 1282 } 1283 assert( j==nTerm ); 1284 pIdxInfo->nConstraint = j; 1285 for(i=j=0; i<nOrderBy; i++){ 1286 Expr *pExpr = pOrderBy->a[i].pExpr; 1287 if( sqlite3ExprIsConstant(pExpr) ) continue; 1288 assert( pExpr->op==TK_COLUMN 1289 || (pExpr->op==TK_COLLATE && pExpr->pLeft->op==TK_COLUMN 1290 && pExpr->iColumn==pExpr->pLeft->iColumn) ); 1291 pIdxOrderBy[j].iColumn = pExpr->iColumn; 1292 pIdxOrderBy[j].desc = pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC; 1293 j++; 1294 } 1295 pIdxInfo->nOrderBy = j; 1296 1297 *pmNoOmit = mNoOmit; 1298 return pIdxInfo; 1299 } 1300 1301 /* 1302 ** Free an sqlite3_index_info structure allocated by allocateIndexInfo() 1303 ** and possibly modified by xBestIndex methods. 1304 */ 1305 static void freeIndexInfo(sqlite3 *db, sqlite3_index_info *pIdxInfo){ 1306 HiddenIndexInfo *pHidden; 1307 int i; 1308 assert( pIdxInfo!=0 ); 1309 pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 1310 assert( pHidden->pParse!=0 ); 1311 assert( pHidden->pParse->db==db ); 1312 for(i=0; i<pIdxInfo->nConstraint; i++){ 1313 sqlite3ValueFree(pHidden->aRhs[i]); /* IMP: R-14553-25174 */ 1314 pHidden->aRhs[i] = 0; 1315 } 1316 sqlite3DbFree(db, pIdxInfo); 1317 } 1318 1319 /* 1320 ** The table object reference passed as the second argument to this function 1321 ** must represent a virtual table. This function invokes the xBestIndex() 1322 ** method of the virtual table with the sqlite3_index_info object that 1323 ** comes in as the 3rd argument to this function. 1324 ** 1325 ** If an error occurs, pParse is populated with an error message and an 1326 ** appropriate error code is returned. A return of SQLITE_CONSTRAINT from 1327 ** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that 1328 ** the current configuration of "unusable" flags in sqlite3_index_info can 1329 ** not result in a valid plan. 1330 ** 1331 ** Whether or not an error is returned, it is the responsibility of the 1332 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates 1333 ** that this is required. 1334 */ 1335 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ 1336 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; 1337 int rc; 1338 1339 whereTraceIndexInfoInputs(p); 1340 pParse->db->nSchemaLock++; 1341 rc = pVtab->pModule->xBestIndex(pVtab, p); 1342 pParse->db->nSchemaLock--; 1343 whereTraceIndexInfoOutputs(p); 1344 1345 if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){ 1346 if( rc==SQLITE_NOMEM ){ 1347 sqlite3OomFault(pParse->db); 1348 }else if( !pVtab->zErrMsg ){ 1349 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 1350 }else{ 1351 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 1352 } 1353 } 1354 sqlite3_free(pVtab->zErrMsg); 1355 pVtab->zErrMsg = 0; 1356 return rc; 1357 } 1358 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1359 1360 #ifdef SQLITE_ENABLE_STAT4 1361 /* 1362 ** Estimate the location of a particular key among all keys in an 1363 ** index. Store the results in aStat as follows: 1364 ** 1365 ** aStat[0] Est. number of rows less than pRec 1366 ** aStat[1] Est. number of rows equal to pRec 1367 ** 1368 ** Return the index of the sample that is the smallest sample that 1369 ** is greater than or equal to pRec. Note that this index is not an index 1370 ** into the aSample[] array - it is an index into a virtual set of samples 1371 ** based on the contents of aSample[] and the number of fields in record 1372 ** pRec. 1373 */ 1374 static int whereKeyStats( 1375 Parse *pParse, /* Database connection */ 1376 Index *pIdx, /* Index to consider domain of */ 1377 UnpackedRecord *pRec, /* Vector of values to consider */ 1378 int roundUp, /* Round up if true. Round down if false */ 1379 tRowcnt *aStat /* OUT: stats written here */ 1380 ){ 1381 IndexSample *aSample = pIdx->aSample; 1382 int iCol; /* Index of required stats in anEq[] etc. */ 1383 int i; /* Index of first sample >= pRec */ 1384 int iSample; /* Smallest sample larger than or equal to pRec */ 1385 int iMin = 0; /* Smallest sample not yet tested */ 1386 int iTest; /* Next sample to test */ 1387 int res; /* Result of comparison operation */ 1388 int nField; /* Number of fields in pRec */ 1389 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ 1390 1391 #ifndef SQLITE_DEBUG 1392 UNUSED_PARAMETER( pParse ); 1393 #endif 1394 assert( pRec!=0 ); 1395 assert( pIdx->nSample>0 ); 1396 assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol ); 1397 1398 /* Do a binary search to find the first sample greater than or equal 1399 ** to pRec. If pRec contains a single field, the set of samples to search 1400 ** is simply the aSample[] array. If the samples in aSample[] contain more 1401 ** than one fields, all fields following the first are ignored. 1402 ** 1403 ** If pRec contains N fields, where N is more than one, then as well as the 1404 ** samples in aSample[] (truncated to N fields), the search also has to 1405 ** consider prefixes of those samples. For example, if the set of samples 1406 ** in aSample is: 1407 ** 1408 ** aSample[0] = (a, 5) 1409 ** aSample[1] = (a, 10) 1410 ** aSample[2] = (b, 5) 1411 ** aSample[3] = (c, 100) 1412 ** aSample[4] = (c, 105) 1413 ** 1414 ** Then the search space should ideally be the samples above and the 1415 ** unique prefixes [a], [b] and [c]. But since that is hard to organize, 1416 ** the code actually searches this set: 1417 ** 1418 ** 0: (a) 1419 ** 1: (a, 5) 1420 ** 2: (a, 10) 1421 ** 3: (a, 10) 1422 ** 4: (b) 1423 ** 5: (b, 5) 1424 ** 6: (c) 1425 ** 7: (c, 100) 1426 ** 8: (c, 105) 1427 ** 9: (c, 105) 1428 ** 1429 ** For each sample in the aSample[] array, N samples are present in the 1430 ** effective sample array. In the above, samples 0 and 1 are based on 1431 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. 1432 ** 1433 ** Often, sample i of each block of N effective samples has (i+1) fields. 1434 ** Except, each sample may be extended to ensure that it is greater than or 1435 ** equal to the previous sample in the array. For example, in the above, 1436 ** sample 2 is the first sample of a block of N samples, so at first it 1437 ** appears that it should be 1 field in size. However, that would make it 1438 ** smaller than sample 1, so the binary search would not work. As a result, 1439 ** it is extended to two fields. The duplicates that this creates do not 1440 ** cause any problems. 1441 */ 1442 nField = pRec->nField; 1443 iCol = 0; 1444 iSample = pIdx->nSample * nField; 1445 do{ 1446 int iSamp; /* Index in aSample[] of test sample */ 1447 int n; /* Number of fields in test sample */ 1448 1449 iTest = (iMin+iSample)/2; 1450 iSamp = iTest / nField; 1451 if( iSamp>0 ){ 1452 /* The proposed effective sample is a prefix of sample aSample[iSamp]. 1453 ** Specifically, the shortest prefix of at least (1 + iTest%nField) 1454 ** fields that is greater than the previous effective sample. */ 1455 for(n=(iTest % nField) + 1; n<nField; n++){ 1456 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break; 1457 } 1458 }else{ 1459 n = iTest + 1; 1460 } 1461 1462 pRec->nField = n; 1463 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); 1464 if( res<0 ){ 1465 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; 1466 iMin = iTest+1; 1467 }else if( res==0 && n<nField ){ 1468 iLower = aSample[iSamp].anLt[n-1]; 1469 iMin = iTest+1; 1470 res = -1; 1471 }else{ 1472 iSample = iTest; 1473 iCol = n-1; 1474 } 1475 }while( res && iMin<iSample ); 1476 i = iSample / nField; 1477 1478 #ifdef SQLITE_DEBUG 1479 /* The following assert statements check that the binary search code 1480 ** above found the right answer. This block serves no purpose other 1481 ** than to invoke the asserts. */ 1482 if( pParse->db->mallocFailed==0 ){ 1483 if( res==0 ){ 1484 /* If (res==0) is true, then pRec must be equal to sample i. */ 1485 assert( i<pIdx->nSample ); 1486 assert( iCol==nField-1 ); 1487 pRec->nField = nField; 1488 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) 1489 || pParse->db->mallocFailed 1490 ); 1491 }else{ 1492 /* Unless i==pIdx->nSample, indicating that pRec is larger than 1493 ** all samples in the aSample[] array, pRec must be smaller than the 1494 ** (iCol+1) field prefix of sample i. */ 1495 assert( i<=pIdx->nSample && i>=0 ); 1496 pRec->nField = iCol+1; 1497 assert( i==pIdx->nSample 1498 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 1499 || pParse->db->mallocFailed ); 1500 1501 /* if i==0 and iCol==0, then record pRec is smaller than all samples 1502 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must 1503 ** be greater than or equal to the (iCol) field prefix of sample i. 1504 ** If (i>0), then pRec must also be greater than sample (i-1). */ 1505 if( iCol>0 ){ 1506 pRec->nField = iCol; 1507 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 1508 || pParse->db->mallocFailed ); 1509 } 1510 if( i>0 ){ 1511 pRec->nField = nField; 1512 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 1513 || pParse->db->mallocFailed ); 1514 } 1515 } 1516 } 1517 #endif /* ifdef SQLITE_DEBUG */ 1518 1519 if( res==0 ){ 1520 /* Record pRec is equal to sample i */ 1521 assert( iCol==nField-1 ); 1522 aStat[0] = aSample[i].anLt[iCol]; 1523 aStat[1] = aSample[i].anEq[iCol]; 1524 }else{ 1525 /* At this point, the (iCol+1) field prefix of aSample[i] is the first 1526 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec 1527 ** is larger than all samples in the array. */ 1528 tRowcnt iUpper, iGap; 1529 if( i>=pIdx->nSample ){ 1530 iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); 1531 }else{ 1532 iUpper = aSample[i].anLt[iCol]; 1533 } 1534 1535 if( iLower>=iUpper ){ 1536 iGap = 0; 1537 }else{ 1538 iGap = iUpper - iLower; 1539 } 1540 if( roundUp ){ 1541 iGap = (iGap*2)/3; 1542 }else{ 1543 iGap = iGap/3; 1544 } 1545 aStat[0] = iLower + iGap; 1546 aStat[1] = pIdx->aAvgEq[nField-1]; 1547 } 1548 1549 /* Restore the pRec->nField value before returning. */ 1550 pRec->nField = nField; 1551 return i; 1552 } 1553 #endif /* SQLITE_ENABLE_STAT4 */ 1554 1555 /* 1556 ** If it is not NULL, pTerm is a term that provides an upper or lower 1557 ** bound on a range scan. Without considering pTerm, it is estimated 1558 ** that the scan will visit nNew rows. This function returns the number 1559 ** estimated to be visited after taking pTerm into account. 1560 ** 1561 ** If the user explicitly specified a likelihood() value for this term, 1562 ** then the return value is the likelihood multiplied by the number of 1563 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term 1564 ** has a likelihood of 0.50, and any other term a likelihood of 0.25. 1565 */ 1566 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ 1567 LogEst nRet = nNew; 1568 if( pTerm ){ 1569 if( pTerm->truthProb<=0 ){ 1570 nRet += pTerm->truthProb; 1571 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ 1572 nRet -= 20; assert( 20==sqlite3LogEst(4) ); 1573 } 1574 } 1575 return nRet; 1576 } 1577 1578 1579 #ifdef SQLITE_ENABLE_STAT4 1580 /* 1581 ** Return the affinity for a single column of an index. 1582 */ 1583 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){ 1584 assert( iCol>=0 && iCol<pIdx->nColumn ); 1585 if( !pIdx->zColAff ){ 1586 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB; 1587 } 1588 assert( pIdx->zColAff[iCol]!=0 ); 1589 return pIdx->zColAff[iCol]; 1590 } 1591 #endif 1592 1593 1594 #ifdef SQLITE_ENABLE_STAT4 1595 /* 1596 ** This function is called to estimate the number of rows visited by a 1597 ** range-scan on a skip-scan index. For example: 1598 ** 1599 ** CREATE INDEX i1 ON t1(a, b, c); 1600 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; 1601 ** 1602 ** Value pLoop->nOut is currently set to the estimated number of rows 1603 ** visited for scanning (a=? AND b=?). This function reduces that estimate 1604 ** by some factor to account for the (c BETWEEN ? AND ?) expression based 1605 ** on the stat4 data for the index. this scan will be peformed multiple 1606 ** times (once for each (a,b) combination that matches a=?) is dealt with 1607 ** by the caller. 1608 ** 1609 ** It does this by scanning through all stat4 samples, comparing values 1610 ** extracted from pLower and pUpper with the corresponding column in each 1611 ** sample. If L and U are the number of samples found to be less than or 1612 ** equal to the values extracted from pLower and pUpper respectively, and 1613 ** N is the total number of samples, the pLoop->nOut value is adjusted 1614 ** as follows: 1615 ** 1616 ** nOut = nOut * ( min(U - L, 1) / N ) 1617 ** 1618 ** If pLower is NULL, or a value cannot be extracted from the term, L is 1619 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, 1620 ** U is set to N. 1621 ** 1622 ** Normally, this function sets *pbDone to 1 before returning. However, 1623 ** if no value can be extracted from either pLower or pUpper (and so the 1624 ** estimate of the number of rows delivered remains unchanged), *pbDone 1625 ** is left as is. 1626 ** 1627 ** If an error occurs, an SQLite error code is returned. Otherwise, 1628 ** SQLITE_OK. 1629 */ 1630 static int whereRangeSkipScanEst( 1631 Parse *pParse, /* Parsing & code generating context */ 1632 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1633 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1634 WhereLoop *pLoop, /* Update the .nOut value of this loop */ 1635 int *pbDone /* Set to true if at least one expr. value extracted */ 1636 ){ 1637 Index *p = pLoop->u.btree.pIndex; 1638 int nEq = pLoop->u.btree.nEq; 1639 sqlite3 *db = pParse->db; 1640 int nLower = -1; 1641 int nUpper = p->nSample+1; 1642 int rc = SQLITE_OK; 1643 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq); 1644 CollSeq *pColl; 1645 1646 sqlite3_value *p1 = 0; /* Value extracted from pLower */ 1647 sqlite3_value *p2 = 0; /* Value extracted from pUpper */ 1648 sqlite3_value *pVal = 0; /* Value extracted from record */ 1649 1650 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); 1651 if( pLower ){ 1652 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); 1653 nLower = 0; 1654 } 1655 if( pUpper && rc==SQLITE_OK ){ 1656 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); 1657 nUpper = p2 ? 0 : p->nSample; 1658 } 1659 1660 if( p1 || p2 ){ 1661 int i; 1662 int nDiff; 1663 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ 1664 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); 1665 if( rc==SQLITE_OK && p1 ){ 1666 int res = sqlite3MemCompare(p1, pVal, pColl); 1667 if( res>=0 ) nLower++; 1668 } 1669 if( rc==SQLITE_OK && p2 ){ 1670 int res = sqlite3MemCompare(p2, pVal, pColl); 1671 if( res>=0 ) nUpper++; 1672 } 1673 } 1674 nDiff = (nUpper - nLower); 1675 if( nDiff<=0 ) nDiff = 1; 1676 1677 /* If there is both an upper and lower bound specified, and the 1678 ** comparisons indicate that they are close together, use the fallback 1679 ** method (assume that the scan visits 1/64 of the rows) for estimating 1680 ** the number of rows visited. Otherwise, estimate the number of rows 1681 ** using the method described in the header comment for this function. */ 1682 if( nDiff!=1 || pUpper==0 || pLower==0 ){ 1683 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); 1684 pLoop->nOut -= nAdjust; 1685 *pbDone = 1; 1686 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", 1687 nLower, nUpper, nAdjust*-1, pLoop->nOut)); 1688 } 1689 1690 }else{ 1691 assert( *pbDone==0 ); 1692 } 1693 1694 sqlite3ValueFree(p1); 1695 sqlite3ValueFree(p2); 1696 sqlite3ValueFree(pVal); 1697 1698 return rc; 1699 } 1700 #endif /* SQLITE_ENABLE_STAT4 */ 1701 1702 /* 1703 ** This function is used to estimate the number of rows that will be visited 1704 ** by scanning an index for a range of values. The range may have an upper 1705 ** bound, a lower bound, or both. The WHERE clause terms that set the upper 1706 ** and lower bounds are represented by pLower and pUpper respectively. For 1707 ** example, assuming that index p is on t1(a): 1708 ** 1709 ** ... FROM t1 WHERE a > ? AND a < ? ... 1710 ** |_____| |_____| 1711 ** | | 1712 ** pLower pUpper 1713 ** 1714 ** If either of the upper or lower bound is not present, then NULL is passed in 1715 ** place of the corresponding WhereTerm. 1716 ** 1717 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index 1718 ** column subject to the range constraint. Or, equivalently, the number of 1719 ** equality constraints optimized by the proposed index scan. For example, 1720 ** assuming index p is on t1(a, b), and the SQL query is: 1721 ** 1722 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... 1723 ** 1724 ** then nEq is set to 1 (as the range restricted column, b, is the second 1725 ** left-most column of the index). Or, if the query is: 1726 ** 1727 ** ... FROM t1 WHERE a > ? AND a < ? ... 1728 ** 1729 ** then nEq is set to 0. 1730 ** 1731 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the 1732 ** number of rows that the index scan is expected to visit without 1733 ** considering the range constraints. If nEq is 0, then *pnOut is the number of 1734 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) 1735 ** to account for the range constraints pLower and pUpper. 1736 ** 1737 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be 1738 ** used, a single range inequality reduces the search space by a factor of 4. 1739 ** and a pair of constraints (x>? AND x<?) reduces the expected number of 1740 ** rows visited by a factor of 64. 1741 */ 1742 static int whereRangeScanEst( 1743 Parse *pParse, /* Parsing & code generating context */ 1744 WhereLoopBuilder *pBuilder, 1745 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1746 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1747 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ 1748 ){ 1749 int rc = SQLITE_OK; 1750 int nOut = pLoop->nOut; 1751 LogEst nNew; 1752 1753 #ifdef SQLITE_ENABLE_STAT4 1754 Index *p = pLoop->u.btree.pIndex; 1755 int nEq = pLoop->u.btree.nEq; 1756 1757 if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol) 1758 && OptimizationEnabled(pParse->db, SQLITE_Stat4) 1759 ){ 1760 if( nEq==pBuilder->nRecValid ){ 1761 UnpackedRecord *pRec = pBuilder->pRec; 1762 tRowcnt a[2]; 1763 int nBtm = pLoop->u.btree.nBtm; 1764 int nTop = pLoop->u.btree.nTop; 1765 1766 /* Variable iLower will be set to the estimate of the number of rows in 1767 ** the index that are less than the lower bound of the range query. The 1768 ** lower bound being the concatenation of $P and $L, where $P is the 1769 ** key-prefix formed by the nEq values matched against the nEq left-most 1770 ** columns of the index, and $L is the value in pLower. 1771 ** 1772 ** Or, if pLower is NULL or $L cannot be extracted from it (because it 1773 ** is not a simple variable or literal value), the lower bound of the 1774 ** range is $P. Due to a quirk in the way whereKeyStats() works, even 1775 ** if $L is available, whereKeyStats() is called for both ($P) and 1776 ** ($P:$L) and the larger of the two returned values is used. 1777 ** 1778 ** Similarly, iUpper is to be set to the estimate of the number of rows 1779 ** less than the upper bound of the range query. Where the upper bound 1780 ** is either ($P) or ($P:$U). Again, even if $U is available, both values 1781 ** of iUpper are requested of whereKeyStats() and the smaller used. 1782 ** 1783 ** The number of rows between the two bounds is then just iUpper-iLower. 1784 */ 1785 tRowcnt iLower; /* Rows less than the lower bound */ 1786 tRowcnt iUpper; /* Rows less than the upper bound */ 1787 int iLwrIdx = -2; /* aSample[] for the lower bound */ 1788 int iUprIdx = -1; /* aSample[] for the upper bound */ 1789 1790 if( pRec ){ 1791 testcase( pRec->nField!=pBuilder->nRecValid ); 1792 pRec->nField = pBuilder->nRecValid; 1793 } 1794 /* Determine iLower and iUpper using ($P) only. */ 1795 if( nEq==0 ){ 1796 iLower = 0; 1797 iUpper = p->nRowEst0; 1798 }else{ 1799 /* Note: this call could be optimized away - since the same values must 1800 ** have been requested when testing key $P in whereEqualScanEst(). */ 1801 whereKeyStats(pParse, p, pRec, 0, a); 1802 iLower = a[0]; 1803 iUpper = a[0] + a[1]; 1804 } 1805 1806 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); 1807 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); 1808 assert( p->aSortOrder!=0 ); 1809 if( p->aSortOrder[nEq] ){ 1810 /* The roles of pLower and pUpper are swapped for a DESC index */ 1811 SWAP(WhereTerm*, pLower, pUpper); 1812 SWAP(int, nBtm, nTop); 1813 } 1814 1815 /* If possible, improve on the iLower estimate using ($P:$L). */ 1816 if( pLower ){ 1817 int n; /* Values extracted from pExpr */ 1818 Expr *pExpr = pLower->pExpr->pRight; 1819 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n); 1820 if( rc==SQLITE_OK && n ){ 1821 tRowcnt iNew; 1822 u16 mask = WO_GT|WO_LE; 1823 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1824 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); 1825 iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0); 1826 if( iNew>iLower ) iLower = iNew; 1827 nOut--; 1828 pLower = 0; 1829 } 1830 } 1831 1832 /* If possible, improve on the iUpper estimate using ($P:$U). */ 1833 if( pUpper ){ 1834 int n; /* Values extracted from pExpr */ 1835 Expr *pExpr = pUpper->pExpr->pRight; 1836 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n); 1837 if( rc==SQLITE_OK && n ){ 1838 tRowcnt iNew; 1839 u16 mask = WO_GT|WO_LE; 1840 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1841 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); 1842 iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0); 1843 if( iNew<iUpper ) iUpper = iNew; 1844 nOut--; 1845 pUpper = 0; 1846 } 1847 } 1848 1849 pBuilder->pRec = pRec; 1850 if( rc==SQLITE_OK ){ 1851 if( iUpper>iLower ){ 1852 nNew = sqlite3LogEst(iUpper - iLower); 1853 /* TUNING: If both iUpper and iLower are derived from the same 1854 ** sample, then assume they are 4x more selective. This brings 1855 ** the estimated selectivity more in line with what it would be 1856 ** if estimated without the use of STAT4 tables. */ 1857 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) ); 1858 }else{ 1859 nNew = 10; assert( 10==sqlite3LogEst(2) ); 1860 } 1861 if( nNew<nOut ){ 1862 nOut = nNew; 1863 } 1864 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", 1865 (u32)iLower, (u32)iUpper, nOut)); 1866 } 1867 }else{ 1868 int bDone = 0; 1869 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); 1870 if( bDone ) return rc; 1871 } 1872 } 1873 #else 1874 UNUSED_PARAMETER(pParse); 1875 UNUSED_PARAMETER(pBuilder); 1876 assert( pLower || pUpper ); 1877 #endif 1878 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); 1879 nNew = whereRangeAdjust(pLower, nOut); 1880 nNew = whereRangeAdjust(pUpper, nNew); 1881 1882 /* TUNING: If there is both an upper and lower limit and neither limit 1883 ** has an application-defined likelihood(), assume the range is 1884 ** reduced by an additional 75%. This means that, by default, an open-ended 1885 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the 1886 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to 1887 ** match 1/64 of the index. */ 1888 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ 1889 nNew -= 20; 1890 } 1891 1892 nOut -= (pLower!=0) + (pUpper!=0); 1893 if( nNew<10 ) nNew = 10; 1894 if( nNew<nOut ) nOut = nNew; 1895 #if defined(WHERETRACE_ENABLED) 1896 if( pLoop->nOut>nOut ){ 1897 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", 1898 pLoop->nOut, nOut)); 1899 } 1900 #endif 1901 pLoop->nOut = (LogEst)nOut; 1902 return rc; 1903 } 1904 1905 #ifdef SQLITE_ENABLE_STAT4 1906 /* 1907 ** Estimate the number of rows that will be returned based on 1908 ** an equality constraint x=VALUE and where that VALUE occurs in 1909 ** the histogram data. This only works when x is the left-most 1910 ** column of an index and sqlite_stat4 histogram data is available 1911 ** for that index. When pExpr==NULL that means the constraint is 1912 ** "x IS NULL" instead of "x=VALUE". 1913 ** 1914 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1915 ** If unable to make an estimate, leave *pnRow unchanged and return 1916 ** non-zero. 1917 ** 1918 ** This routine can fail if it is unable to load a collating sequence 1919 ** required for string comparison, or if unable to allocate memory 1920 ** for a UTF conversion required for comparison. The error is stored 1921 ** in the pParse structure. 1922 */ 1923 static int whereEqualScanEst( 1924 Parse *pParse, /* Parsing & code generating context */ 1925 WhereLoopBuilder *pBuilder, 1926 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ 1927 tRowcnt *pnRow /* Write the revised row estimate here */ 1928 ){ 1929 Index *p = pBuilder->pNew->u.btree.pIndex; 1930 int nEq = pBuilder->pNew->u.btree.nEq; 1931 UnpackedRecord *pRec = pBuilder->pRec; 1932 int rc; /* Subfunction return code */ 1933 tRowcnt a[2]; /* Statistics */ 1934 int bOk; 1935 1936 assert( nEq>=1 ); 1937 assert( nEq<=p->nColumn ); 1938 assert( p->aSample!=0 ); 1939 assert( p->nSample>0 ); 1940 assert( pBuilder->nRecValid<nEq ); 1941 1942 /* If values are not available for all fields of the index to the left 1943 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ 1944 if( pBuilder->nRecValid<(nEq-1) ){ 1945 return SQLITE_NOTFOUND; 1946 } 1947 1948 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() 1949 ** below would return the same value. */ 1950 if( nEq>=p->nColumn ){ 1951 *pnRow = 1; 1952 return SQLITE_OK; 1953 } 1954 1955 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk); 1956 pBuilder->pRec = pRec; 1957 if( rc!=SQLITE_OK ) return rc; 1958 if( bOk==0 ) return SQLITE_NOTFOUND; 1959 pBuilder->nRecValid = nEq; 1960 1961 whereKeyStats(pParse, p, pRec, 0, a); 1962 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n", 1963 p->zName, nEq-1, (int)a[1])); 1964 *pnRow = a[1]; 1965 1966 return rc; 1967 } 1968 #endif /* SQLITE_ENABLE_STAT4 */ 1969 1970 #ifdef SQLITE_ENABLE_STAT4 1971 /* 1972 ** Estimate the number of rows that will be returned based on 1973 ** an IN constraint where the right-hand side of the IN operator 1974 ** is a list of values. Example: 1975 ** 1976 ** WHERE x IN (1,2,3,4) 1977 ** 1978 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1979 ** If unable to make an estimate, leave *pnRow unchanged and return 1980 ** non-zero. 1981 ** 1982 ** This routine can fail if it is unable to load a collating sequence 1983 ** required for string comparison, or if unable to allocate memory 1984 ** for a UTF conversion required for comparison. The error is stored 1985 ** in the pParse structure. 1986 */ 1987 static int whereInScanEst( 1988 Parse *pParse, /* Parsing & code generating context */ 1989 WhereLoopBuilder *pBuilder, 1990 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ 1991 tRowcnt *pnRow /* Write the revised row estimate here */ 1992 ){ 1993 Index *p = pBuilder->pNew->u.btree.pIndex; 1994 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); 1995 int nRecValid = pBuilder->nRecValid; 1996 int rc = SQLITE_OK; /* Subfunction return code */ 1997 tRowcnt nEst; /* Number of rows for a single term */ 1998 tRowcnt nRowEst = 0; /* New estimate of the number of rows */ 1999 int i; /* Loop counter */ 2000 2001 assert( p->aSample!=0 ); 2002 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ 2003 nEst = nRow0; 2004 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); 2005 nRowEst += nEst; 2006 pBuilder->nRecValid = nRecValid; 2007 } 2008 2009 if( rc==SQLITE_OK ){ 2010 if( nRowEst > nRow0 ) nRowEst = nRow0; 2011 *pnRow = nRowEst; 2012 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); 2013 } 2014 assert( pBuilder->nRecValid==nRecValid ); 2015 return rc; 2016 } 2017 #endif /* SQLITE_ENABLE_STAT4 */ 2018 2019 2020 #ifdef WHERETRACE_ENABLED 2021 /* 2022 ** Print the content of a WhereTerm object 2023 */ 2024 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){ 2025 if( pTerm==0 ){ 2026 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); 2027 }else{ 2028 char zType[8]; 2029 char zLeft[50]; 2030 memcpy(zType, "....", 5); 2031 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; 2032 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; 2033 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L'; 2034 if( pTerm->wtFlags & TERM_CODED ) zType[3] = 'C'; 2035 if( pTerm->eOperator & WO_SINGLE ){ 2036 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 2037 sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}", 2038 pTerm->leftCursor, pTerm->u.x.leftColumn); 2039 }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){ 2040 sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx", 2041 pTerm->u.pOrInfo->indexable); 2042 }else{ 2043 sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor); 2044 } 2045 sqlite3DebugPrintf( 2046 "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x", 2047 iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags); 2048 /* The 0x10000 .wheretrace flag causes extra information to be 2049 ** shown about each Term */ 2050 if( sqlite3WhereTrace & 0x10000 ){ 2051 sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx", 2052 pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight); 2053 } 2054 if( (pTerm->eOperator & (WO_OR|WO_AND))==0 && pTerm->u.x.iField ){ 2055 sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField); 2056 } 2057 if( pTerm->iParent>=0 ){ 2058 sqlite3DebugPrintf(" iParent=%d", pTerm->iParent); 2059 } 2060 sqlite3DebugPrintf("\n"); 2061 sqlite3TreeViewExpr(0, pTerm->pExpr, 0); 2062 } 2063 } 2064 #endif 2065 2066 #ifdef WHERETRACE_ENABLED 2067 /* 2068 ** Show the complete content of a WhereClause 2069 */ 2070 void sqlite3WhereClausePrint(WhereClause *pWC){ 2071 int i; 2072 for(i=0; i<pWC->nTerm; i++){ 2073 sqlite3WhereTermPrint(&pWC->a[i], i); 2074 } 2075 } 2076 #endif 2077 2078 #ifdef WHERETRACE_ENABLED 2079 /* 2080 ** Print a WhereLoop object for debugging purposes 2081 */ 2082 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){ 2083 WhereInfo *pWInfo = pWC->pWInfo; 2084 int nb = 1+(pWInfo->pTabList->nSrc+3)/4; 2085 SrcItem *pItem = pWInfo->pTabList->a + p->iTab; 2086 Table *pTab = pItem->pTab; 2087 Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1; 2088 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, 2089 p->iTab, nb, p->maskSelf, nb, p->prereq & mAll); 2090 sqlite3DebugPrintf(" %12s", 2091 pItem->zAlias ? pItem->zAlias : pTab->zName); 2092 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 2093 const char *zName; 2094 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ 2095 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ 2096 int i = sqlite3Strlen30(zName) - 1; 2097 while( zName[i]!='_' ) i--; 2098 zName += i; 2099 } 2100 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); 2101 }else{ 2102 sqlite3DebugPrintf("%20s",""); 2103 } 2104 }else{ 2105 char *z; 2106 if( p->u.vtab.idxStr ){ 2107 z = sqlite3_mprintf("(%d,\"%s\",%#x)", 2108 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); 2109 }else{ 2110 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); 2111 } 2112 sqlite3DebugPrintf(" %-19s", z); 2113 sqlite3_free(z); 2114 } 2115 if( p->wsFlags & WHERE_SKIPSCAN ){ 2116 sqlite3DebugPrintf(" f %06x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); 2117 }else{ 2118 sqlite3DebugPrintf(" f %06x N %d", p->wsFlags, p->nLTerm); 2119 } 2120 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); 2121 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ 2122 int i; 2123 for(i=0; i<p->nLTerm; i++){ 2124 sqlite3WhereTermPrint(p->aLTerm[i], i); 2125 } 2126 } 2127 } 2128 #endif 2129 2130 /* 2131 ** Convert bulk memory into a valid WhereLoop that can be passed 2132 ** to whereLoopClear harmlessly. 2133 */ 2134 static void whereLoopInit(WhereLoop *p){ 2135 p->aLTerm = p->aLTermSpace; 2136 p->nLTerm = 0; 2137 p->nLSlot = ArraySize(p->aLTermSpace); 2138 p->wsFlags = 0; 2139 } 2140 2141 /* 2142 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. 2143 */ 2144 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ 2145 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ 2146 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ 2147 sqlite3_free(p->u.vtab.idxStr); 2148 p->u.vtab.needFree = 0; 2149 p->u.vtab.idxStr = 0; 2150 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ 2151 sqlite3DbFree(db, p->u.btree.pIndex->zColAff); 2152 sqlite3DbFreeNN(db, p->u.btree.pIndex); 2153 p->u.btree.pIndex = 0; 2154 } 2155 } 2156 } 2157 2158 /* 2159 ** Deallocate internal memory used by a WhereLoop object 2160 */ 2161 static void whereLoopClear(sqlite3 *db, WhereLoop *p){ 2162 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm); 2163 whereLoopClearUnion(db, p); 2164 whereLoopInit(p); 2165 } 2166 2167 /* 2168 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. 2169 */ 2170 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ 2171 WhereTerm **paNew; 2172 if( p->nLSlot>=n ) return SQLITE_OK; 2173 n = (n+7)&~7; 2174 paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n); 2175 if( paNew==0 ) return SQLITE_NOMEM_BKPT; 2176 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); 2177 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm); 2178 p->aLTerm = paNew; 2179 p->nLSlot = n; 2180 return SQLITE_OK; 2181 } 2182 2183 /* 2184 ** Transfer content from the second pLoop into the first. 2185 */ 2186 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ 2187 whereLoopClearUnion(db, pTo); 2188 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){ 2189 memset(pTo, 0, WHERE_LOOP_XFER_SZ); 2190 return SQLITE_NOMEM_BKPT; 2191 } 2192 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); 2193 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); 2194 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ 2195 pFrom->u.vtab.needFree = 0; 2196 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 2197 pFrom->u.btree.pIndex = 0; 2198 } 2199 return SQLITE_OK; 2200 } 2201 2202 /* 2203 ** Delete a WhereLoop object 2204 */ 2205 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ 2206 whereLoopClear(db, p); 2207 sqlite3DbFreeNN(db, p); 2208 } 2209 2210 /* 2211 ** Free a WhereInfo structure 2212 */ 2213 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 2214 int i; 2215 assert( pWInfo!=0 ); 2216 for(i=0; i<pWInfo->nLevel; i++){ 2217 WhereLevel *pLevel = &pWInfo->a[i]; 2218 if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE)!=0 ){ 2219 assert( (pLevel->pWLoop->wsFlags & WHERE_MULTI_OR)==0 ); 2220 sqlite3DbFree(db, pLevel->u.in.aInLoop); 2221 } 2222 } 2223 sqlite3WhereClauseClear(&pWInfo->sWC); 2224 while( pWInfo->pLoops ){ 2225 WhereLoop *p = pWInfo->pLoops; 2226 pWInfo->pLoops = p->pNextLoop; 2227 whereLoopDelete(db, p); 2228 } 2229 assert( pWInfo->pExprMods==0 ); 2230 sqlite3DbFreeNN(db, pWInfo); 2231 } 2232 2233 /* Undo all Expr node modifications 2234 */ 2235 static void whereUndoExprMods(WhereInfo *pWInfo){ 2236 while( pWInfo->pExprMods ){ 2237 WhereExprMod *p = pWInfo->pExprMods; 2238 pWInfo->pExprMods = p->pNext; 2239 memcpy(p->pExpr, &p->orig, sizeof(p->orig)); 2240 sqlite3DbFree(pWInfo->pParse->db, p); 2241 } 2242 } 2243 2244 /* 2245 ** Return TRUE if all of the following are true: 2246 ** 2247 ** (1) X has the same or lower cost, or returns the same or fewer rows, 2248 ** than Y. 2249 ** (2) X uses fewer WHERE clause terms than Y 2250 ** (3) Every WHERE clause term used by X is also used by Y 2251 ** (4) X skips at least as many columns as Y 2252 ** (5) If X is a covering index, than Y is too 2253 ** 2254 ** Conditions (2) and (3) mean that X is a "proper subset" of Y. 2255 ** If X is a proper subset of Y then Y is a better choice and ought 2256 ** to have a lower cost. This routine returns TRUE when that cost 2257 ** relationship is inverted and needs to be adjusted. Constraint (4) 2258 ** was added because if X uses skip-scan less than Y it still might 2259 ** deserve a lower cost even if it is a proper subset of Y. Constraint (5) 2260 ** was added because a covering index probably deserves to have a lower cost 2261 ** than a non-covering index even if it is a proper subset. 2262 */ 2263 static int whereLoopCheaperProperSubset( 2264 const WhereLoop *pX, /* First WhereLoop to compare */ 2265 const WhereLoop *pY /* Compare against this WhereLoop */ 2266 ){ 2267 int i, j; 2268 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ 2269 return 0; /* X is not a subset of Y */ 2270 } 2271 if( pX->rRun>pY->rRun && pX->nOut>pY->nOut ) return 0; 2272 if( pY->nSkip > pX->nSkip ) return 0; 2273 for(i=pX->nLTerm-1; i>=0; i--){ 2274 if( pX->aLTerm[i]==0 ) continue; 2275 for(j=pY->nLTerm-1; j>=0; j--){ 2276 if( pY->aLTerm[j]==pX->aLTerm[i] ) break; 2277 } 2278 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ 2279 } 2280 if( (pX->wsFlags&WHERE_IDX_ONLY)!=0 2281 && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){ 2282 return 0; /* Constraint (5) */ 2283 } 2284 return 1; /* All conditions meet */ 2285 } 2286 2287 /* 2288 ** Try to adjust the cost and number of output rows of WhereLoop pTemplate 2289 ** upwards or downwards so that: 2290 ** 2291 ** (1) pTemplate costs less than any other WhereLoops that are a proper 2292 ** subset of pTemplate 2293 ** 2294 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate 2295 ** is a proper subset. 2296 ** 2297 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer 2298 ** WHERE clause terms than Y and that every WHERE clause term used by X is 2299 ** also used by Y. 2300 */ 2301 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ 2302 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; 2303 for(; p; p=p->pNextLoop){ 2304 if( p->iTab!=pTemplate->iTab ) continue; 2305 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; 2306 if( whereLoopCheaperProperSubset(p, pTemplate) ){ 2307 /* Adjust pTemplate cost downward so that it is cheaper than its 2308 ** subset p. */ 2309 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 2310 pTemplate->rRun, pTemplate->nOut, 2311 MIN(p->rRun, pTemplate->rRun), 2312 MIN(p->nOut - 1, pTemplate->nOut))); 2313 pTemplate->rRun = MIN(p->rRun, pTemplate->rRun); 2314 pTemplate->nOut = MIN(p->nOut - 1, pTemplate->nOut); 2315 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ 2316 /* Adjust pTemplate cost upward so that it is costlier than p since 2317 ** pTemplate is a proper subset of p */ 2318 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 2319 pTemplate->rRun, pTemplate->nOut, 2320 MAX(p->rRun, pTemplate->rRun), 2321 MAX(p->nOut + 1, pTemplate->nOut))); 2322 pTemplate->rRun = MAX(p->rRun, pTemplate->rRun); 2323 pTemplate->nOut = MAX(p->nOut + 1, pTemplate->nOut); 2324 } 2325 } 2326 } 2327 2328 /* 2329 ** Search the list of WhereLoops in *ppPrev looking for one that can be 2330 ** replaced by pTemplate. 2331 ** 2332 ** Return NULL if pTemplate does not belong on the WhereLoop list. 2333 ** In other words if pTemplate ought to be dropped from further consideration. 2334 ** 2335 ** If pX is a WhereLoop that pTemplate can replace, then return the 2336 ** link that points to pX. 2337 ** 2338 ** If pTemplate cannot replace any existing element of the list but needs 2339 ** to be added to the list as a new entry, then return a pointer to the 2340 ** tail of the list. 2341 */ 2342 static WhereLoop **whereLoopFindLesser( 2343 WhereLoop **ppPrev, 2344 const WhereLoop *pTemplate 2345 ){ 2346 WhereLoop *p; 2347 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ 2348 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ 2349 /* If either the iTab or iSortIdx values for two WhereLoop are different 2350 ** then those WhereLoops need to be considered separately. Neither is 2351 ** a candidate to replace the other. */ 2352 continue; 2353 } 2354 /* In the current implementation, the rSetup value is either zero 2355 ** or the cost of building an automatic index (NlogN) and the NlogN 2356 ** is the same for compatible WhereLoops. */ 2357 assert( p->rSetup==0 || pTemplate->rSetup==0 2358 || p->rSetup==pTemplate->rSetup ); 2359 2360 /* whereLoopAddBtree() always generates and inserts the automatic index 2361 ** case first. Hence compatible candidate WhereLoops never have a larger 2362 ** rSetup. Call this SETUP-INVARIANT */ 2363 assert( p->rSetup>=pTemplate->rSetup ); 2364 2365 /* Any loop using an appliation-defined index (or PRIMARY KEY or 2366 ** UNIQUE constraint) with one or more == constraints is better 2367 ** than an automatic index. Unless it is a skip-scan. */ 2368 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 2369 && (pTemplate->nSkip)==0 2370 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 2371 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 2372 && (p->prereq & pTemplate->prereq)==pTemplate->prereq 2373 ){ 2374 break; 2375 } 2376 2377 /* If existing WhereLoop p is better than pTemplate, pTemplate can be 2378 ** discarded. WhereLoop p is better if: 2379 ** (1) p has no more dependencies than pTemplate, and 2380 ** (2) p has an equal or lower cost than pTemplate 2381 */ 2382 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ 2383 && p->rSetup<=pTemplate->rSetup /* (2a) */ 2384 && p->rRun<=pTemplate->rRun /* (2b) */ 2385 && p->nOut<=pTemplate->nOut /* (2c) */ 2386 ){ 2387 return 0; /* Discard pTemplate */ 2388 } 2389 2390 /* If pTemplate is always better than p, then cause p to be overwritten 2391 ** with pTemplate. pTemplate is better than p if: 2392 ** (1) pTemplate has no more dependences than p, and 2393 ** (2) pTemplate has an equal or lower cost than p. 2394 */ 2395 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ 2396 && p->rRun>=pTemplate->rRun /* (2a) */ 2397 && p->nOut>=pTemplate->nOut /* (2b) */ 2398 ){ 2399 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ 2400 break; /* Cause p to be overwritten by pTemplate */ 2401 } 2402 } 2403 return ppPrev; 2404 } 2405 2406 /* 2407 ** Insert or replace a WhereLoop entry using the template supplied. 2408 ** 2409 ** An existing WhereLoop entry might be overwritten if the new template 2410 ** is better and has fewer dependencies. Or the template will be ignored 2411 ** and no insert will occur if an existing WhereLoop is faster and has 2412 ** fewer dependencies than the template. Otherwise a new WhereLoop is 2413 ** added based on the template. 2414 ** 2415 ** If pBuilder->pOrSet is not NULL then we care about only the 2416 ** prerequisites and rRun and nOut costs of the N best loops. That 2417 ** information is gathered in the pBuilder->pOrSet object. This special 2418 ** processing mode is used only for OR clause processing. 2419 ** 2420 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we 2421 ** still might overwrite similar loops with the new template if the 2422 ** new template is better. Loops may be overwritten if the following 2423 ** conditions are met: 2424 ** 2425 ** (1) They have the same iTab. 2426 ** (2) They have the same iSortIdx. 2427 ** (3) The template has same or fewer dependencies than the current loop 2428 ** (4) The template has the same or lower cost than the current loop 2429 */ 2430 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ 2431 WhereLoop **ppPrev, *p; 2432 WhereInfo *pWInfo = pBuilder->pWInfo; 2433 sqlite3 *db = pWInfo->pParse->db; 2434 int rc; 2435 2436 /* Stop the search once we hit the query planner search limit */ 2437 if( pBuilder->iPlanLimit==0 ){ 2438 WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n")); 2439 if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0; 2440 return SQLITE_DONE; 2441 } 2442 pBuilder->iPlanLimit--; 2443 2444 whereLoopAdjustCost(pWInfo->pLoops, pTemplate); 2445 2446 /* If pBuilder->pOrSet is defined, then only keep track of the costs 2447 ** and prereqs. 2448 */ 2449 if( pBuilder->pOrSet!=0 ){ 2450 if( pTemplate->nLTerm ){ 2451 #if WHERETRACE_ENABLED 2452 u16 n = pBuilder->pOrSet->n; 2453 int x = 2454 #endif 2455 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, 2456 pTemplate->nOut); 2457 #if WHERETRACE_ENABLED /* 0x8 */ 2458 if( sqlite3WhereTrace & 0x8 ){ 2459 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); 2460 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2461 } 2462 #endif 2463 } 2464 return SQLITE_OK; 2465 } 2466 2467 /* Look for an existing WhereLoop to replace with pTemplate 2468 */ 2469 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); 2470 2471 if( ppPrev==0 ){ 2472 /* There already exists a WhereLoop on the list that is better 2473 ** than pTemplate, so just ignore pTemplate */ 2474 #if WHERETRACE_ENABLED /* 0x8 */ 2475 if( sqlite3WhereTrace & 0x8 ){ 2476 sqlite3DebugPrintf(" skip: "); 2477 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2478 } 2479 #endif 2480 return SQLITE_OK; 2481 }else{ 2482 p = *ppPrev; 2483 } 2484 2485 /* If we reach this point it means that either p[] should be overwritten 2486 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new 2487 ** WhereLoop and insert it. 2488 */ 2489 #if WHERETRACE_ENABLED /* 0x8 */ 2490 if( sqlite3WhereTrace & 0x8 ){ 2491 if( p!=0 ){ 2492 sqlite3DebugPrintf("replace: "); 2493 sqlite3WhereLoopPrint(p, pBuilder->pWC); 2494 sqlite3DebugPrintf(" with: "); 2495 }else{ 2496 sqlite3DebugPrintf(" add: "); 2497 } 2498 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2499 } 2500 #endif 2501 if( p==0 ){ 2502 /* Allocate a new WhereLoop to add to the end of the list */ 2503 *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop)); 2504 if( p==0 ) return SQLITE_NOMEM_BKPT; 2505 whereLoopInit(p); 2506 p->pNextLoop = 0; 2507 }else{ 2508 /* We will be overwriting WhereLoop p[]. But before we do, first 2509 ** go through the rest of the list and delete any other entries besides 2510 ** p[] that are also supplated by pTemplate */ 2511 WhereLoop **ppTail = &p->pNextLoop; 2512 WhereLoop *pToDel; 2513 while( *ppTail ){ 2514 ppTail = whereLoopFindLesser(ppTail, pTemplate); 2515 if( ppTail==0 ) break; 2516 pToDel = *ppTail; 2517 if( pToDel==0 ) break; 2518 *ppTail = pToDel->pNextLoop; 2519 #if WHERETRACE_ENABLED /* 0x8 */ 2520 if( sqlite3WhereTrace & 0x8 ){ 2521 sqlite3DebugPrintf(" delete: "); 2522 sqlite3WhereLoopPrint(pToDel, pBuilder->pWC); 2523 } 2524 #endif 2525 whereLoopDelete(db, pToDel); 2526 } 2527 } 2528 rc = whereLoopXfer(db, p, pTemplate); 2529 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 2530 Index *pIndex = p->u.btree.pIndex; 2531 if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){ 2532 p->u.btree.pIndex = 0; 2533 } 2534 } 2535 return rc; 2536 } 2537 2538 /* 2539 ** Adjust the WhereLoop.nOut value downward to account for terms of the 2540 ** WHERE clause that reference the loop but which are not used by an 2541 ** index. 2542 * 2543 ** For every WHERE clause term that is not used by the index 2544 ** and which has a truth probability assigned by one of the likelihood(), 2545 ** likely(), or unlikely() SQL functions, reduce the estimated number 2546 ** of output rows by the probability specified. 2547 ** 2548 ** TUNING: For every WHERE clause term that is not used by the index 2549 ** and which does not have an assigned truth probability, heuristics 2550 ** described below are used to try to estimate the truth probability. 2551 ** TODO --> Perhaps this is something that could be improved by better 2552 ** table statistics. 2553 ** 2554 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% 2555 ** value corresponds to -1 in LogEst notation, so this means decrement 2556 ** the WhereLoop.nOut field for every such WHERE clause term. 2557 ** 2558 ** Heuristic 2: If there exists one or more WHERE clause terms of the 2559 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the 2560 ** final output row estimate is no greater than 1/4 of the total number 2561 ** of rows in the table. In other words, assume that x==EXPR will filter 2562 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the 2563 ** "x" column is boolean or else -1 or 0 or 1 is a common default value 2564 ** on the "x" column and so in that case only cap the output row estimate 2565 ** at 1/2 instead of 1/4. 2566 */ 2567 static void whereLoopOutputAdjust( 2568 WhereClause *pWC, /* The WHERE clause */ 2569 WhereLoop *pLoop, /* The loop to adjust downward */ 2570 LogEst nRow /* Number of rows in the entire table */ 2571 ){ 2572 WhereTerm *pTerm, *pX; 2573 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); 2574 int i, j; 2575 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ 2576 2577 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2578 for(i=pWC->nBase, pTerm=pWC->a; i>0; i--, pTerm++){ 2579 assert( pTerm!=0 ); 2580 if( (pTerm->prereqAll & notAllowed)!=0 ) continue; 2581 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; 2582 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) continue; 2583 for(j=pLoop->nLTerm-1; j>=0; j--){ 2584 pX = pLoop->aLTerm[j]; 2585 if( pX==0 ) continue; 2586 if( pX==pTerm ) break; 2587 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; 2588 } 2589 if( j<0 ){ 2590 if( pLoop->maskSelf==pTerm->prereqAll ){ 2591 /* If there are extra terms in the WHERE clause not used by an index 2592 ** that depend only on the table being scanned, and that will tend to 2593 ** cause many rows to be omitted, then mark that table as 2594 ** "self-culling". */ 2595 pLoop->wsFlags |= WHERE_SELFCULL; 2596 } 2597 if( pTerm->truthProb<=0 ){ 2598 /* If a truth probability is specified using the likelihood() hints, 2599 ** then use the probability provided by the application. */ 2600 pLoop->nOut += pTerm->truthProb; 2601 }else{ 2602 /* In the absence of explicit truth probabilities, use heuristics to 2603 ** guess a reasonable truth probability. */ 2604 pLoop->nOut--; 2605 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 2606 && (pTerm->wtFlags & TERM_HIGHTRUTH)==0 /* tag-20200224-1 */ 2607 ){ 2608 Expr *pRight = pTerm->pExpr->pRight; 2609 int k = 0; 2610 testcase( pTerm->pExpr->op==TK_IS ); 2611 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){ 2612 k = 10; 2613 }else{ 2614 k = 20; 2615 } 2616 if( iReduce<k ){ 2617 pTerm->wtFlags |= TERM_HEURTRUTH; 2618 iReduce = k; 2619 } 2620 } 2621 } 2622 } 2623 } 2624 if( pLoop->nOut > nRow-iReduce ){ 2625 pLoop->nOut = nRow - iReduce; 2626 } 2627 } 2628 2629 /* 2630 ** Term pTerm is a vector range comparison operation. The first comparison 2631 ** in the vector can be optimized using column nEq of the index. This 2632 ** function returns the total number of vector elements that can be used 2633 ** as part of the range comparison. 2634 ** 2635 ** For example, if the query is: 2636 ** 2637 ** WHERE a = ? AND (b, c, d) > (?, ?, ?) 2638 ** 2639 ** and the index: 2640 ** 2641 ** CREATE INDEX ... ON (a, b, c, d, e) 2642 ** 2643 ** then this function would be invoked with nEq=1. The value returned in 2644 ** this case is 3. 2645 */ 2646 static int whereRangeVectorLen( 2647 Parse *pParse, /* Parsing context */ 2648 int iCur, /* Cursor open on pIdx */ 2649 Index *pIdx, /* The index to be used for a inequality constraint */ 2650 int nEq, /* Number of prior equality constraints on same index */ 2651 WhereTerm *pTerm /* The vector inequality constraint */ 2652 ){ 2653 int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft); 2654 int i; 2655 2656 nCmp = MIN(nCmp, (pIdx->nColumn - nEq)); 2657 for(i=1; i<nCmp; i++){ 2658 /* Test if comparison i of pTerm is compatible with column (i+nEq) 2659 ** of the index. If not, exit the loop. */ 2660 char aff; /* Comparison affinity */ 2661 char idxaff = 0; /* Indexed columns affinity */ 2662 CollSeq *pColl; /* Comparison collation sequence */ 2663 Expr *pLhs, *pRhs; 2664 2665 assert( ExprUseXList(pTerm->pExpr->pLeft) ); 2666 pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr; 2667 pRhs = pTerm->pExpr->pRight; 2668 if( ExprUseXSelect(pRhs) ){ 2669 pRhs = pRhs->x.pSelect->pEList->a[i].pExpr; 2670 }else{ 2671 pRhs = pRhs->x.pList->a[i].pExpr; 2672 } 2673 2674 /* Check that the LHS of the comparison is a column reference to 2675 ** the right column of the right source table. And that the sort 2676 ** order of the index column is the same as the sort order of the 2677 ** leftmost index column. */ 2678 if( pLhs->op!=TK_COLUMN 2679 || pLhs->iTable!=iCur 2680 || pLhs->iColumn!=pIdx->aiColumn[i+nEq] 2681 || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq] 2682 ){ 2683 break; 2684 } 2685 2686 testcase( pLhs->iColumn==XN_ROWID ); 2687 aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs)); 2688 idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn); 2689 if( aff!=idxaff ) break; 2690 2691 pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2692 if( pColl==0 ) break; 2693 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break; 2694 } 2695 return i; 2696 } 2697 2698 /* 2699 ** Adjust the cost C by the costMult facter T. This only occurs if 2700 ** compiled with -DSQLITE_ENABLE_COSTMULT 2701 */ 2702 #ifdef SQLITE_ENABLE_COSTMULT 2703 # define ApplyCostMultiplier(C,T) C += T 2704 #else 2705 # define ApplyCostMultiplier(C,T) 2706 #endif 2707 2708 /* 2709 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the 2710 ** index pIndex. Try to match one more. 2711 ** 2712 ** When this function is called, pBuilder->pNew->nOut contains the 2713 ** number of rows expected to be visited by filtering using the nEq 2714 ** terms only. If it is modified, this value is restored before this 2715 ** function returns. 2716 ** 2717 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is 2718 ** a fake index used for the INTEGER PRIMARY KEY. 2719 */ 2720 static int whereLoopAddBtreeIndex( 2721 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ 2722 SrcItem *pSrc, /* FROM clause term being analyzed */ 2723 Index *pProbe, /* An index on pSrc */ 2724 LogEst nInMul /* log(Number of iterations due to IN) */ 2725 ){ 2726 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ 2727 Parse *pParse = pWInfo->pParse; /* Parsing context */ 2728 sqlite3 *db = pParse->db; /* Database connection malloc context */ 2729 WhereLoop *pNew; /* Template WhereLoop under construction */ 2730 WhereTerm *pTerm; /* A WhereTerm under consideration */ 2731 int opMask; /* Valid operators for constraints */ 2732 WhereScan scan; /* Iterator for WHERE terms */ 2733 Bitmask saved_prereq; /* Original value of pNew->prereq */ 2734 u16 saved_nLTerm; /* Original value of pNew->nLTerm */ 2735 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ 2736 u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */ 2737 u16 saved_nTop; /* Original value of pNew->u.btree.nTop */ 2738 u16 saved_nSkip; /* Original value of pNew->nSkip */ 2739 u32 saved_wsFlags; /* Original value of pNew->wsFlags */ 2740 LogEst saved_nOut; /* Original value of pNew->nOut */ 2741 int rc = SQLITE_OK; /* Return code */ 2742 LogEst rSize; /* Number of rows in the table */ 2743 LogEst rLogSize; /* Logarithm of table size */ 2744 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ 2745 2746 pNew = pBuilder->pNew; 2747 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 2748 WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n", 2749 pProbe->pTable->zName,pProbe->zName, 2750 pNew->u.btree.nEq, pNew->nSkip, pNew->rRun)); 2751 2752 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); 2753 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); 2754 if( pNew->wsFlags & WHERE_BTM_LIMIT ){ 2755 opMask = WO_LT|WO_LE; 2756 }else{ 2757 assert( pNew->u.btree.nBtm==0 ); 2758 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS; 2759 } 2760 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); 2761 2762 assert( pNew->u.btree.nEq<pProbe->nColumn ); 2763 assert( pNew->u.btree.nEq<pProbe->nKeyCol 2764 || pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY ); 2765 2766 saved_nEq = pNew->u.btree.nEq; 2767 saved_nBtm = pNew->u.btree.nBtm; 2768 saved_nTop = pNew->u.btree.nTop; 2769 saved_nSkip = pNew->nSkip; 2770 saved_nLTerm = pNew->nLTerm; 2771 saved_wsFlags = pNew->wsFlags; 2772 saved_prereq = pNew->prereq; 2773 saved_nOut = pNew->nOut; 2774 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq, 2775 opMask, pProbe); 2776 pNew->rSetup = 0; 2777 rSize = pProbe->aiRowLogEst[0]; 2778 rLogSize = estLog(rSize); 2779 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ 2780 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ 2781 LogEst rCostIdx; 2782 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ 2783 int nIn = 0; 2784 #ifdef SQLITE_ENABLE_STAT4 2785 int nRecValid = pBuilder->nRecValid; 2786 #endif 2787 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) 2788 && indexColumnNotNull(pProbe, saved_nEq) 2789 ){ 2790 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ 2791 } 2792 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2793 2794 /* Do not allow the upper bound of a LIKE optimization range constraint 2795 ** to mix with a lower range bound from some other source */ 2796 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; 2797 2798 /* tag-20191211-001: Do not allow constraints from the WHERE clause to 2799 ** be used by the right table of a LEFT JOIN. Only constraints in the 2800 ** ON clause are allowed. See tag-20191211-002 for the vtab equivalent. */ 2801 if( (pSrc->fg.jointype & JT_LEFT)!=0 2802 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 2803 ){ 2804 continue; 2805 } 2806 2807 if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){ 2808 pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE; 2809 }else{ 2810 pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED; 2811 } 2812 pNew->wsFlags = saved_wsFlags; 2813 pNew->u.btree.nEq = saved_nEq; 2814 pNew->u.btree.nBtm = saved_nBtm; 2815 pNew->u.btree.nTop = saved_nTop; 2816 pNew->nLTerm = saved_nLTerm; 2817 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2818 pNew->aLTerm[pNew->nLTerm++] = pTerm; 2819 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; 2820 2821 assert( nInMul==0 2822 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 2823 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 2824 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 2825 ); 2826 2827 if( eOp & WO_IN ){ 2828 Expr *pExpr = pTerm->pExpr; 2829 if( ExprUseXSelect(pExpr) ){ 2830 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ 2831 int i; 2832 nIn = 46; assert( 46==sqlite3LogEst(25) ); 2833 2834 /* The expression may actually be of the form (x, y) IN (SELECT...). 2835 ** In this case there is a separate term for each of (x) and (y). 2836 ** However, the nIn multiplier should only be applied once, not once 2837 ** for each such term. The following loop checks that pTerm is the 2838 ** first such term in use, and sets nIn back to 0 if it is not. */ 2839 for(i=0; i<pNew->nLTerm-1; i++){ 2840 if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0; 2841 } 2842 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ 2843 /* "x IN (value, value, ...)" */ 2844 nIn = sqlite3LogEst(pExpr->x.pList->nExpr); 2845 } 2846 if( pProbe->hasStat1 && rLogSize>=10 ){ 2847 LogEst M, logK, x; 2848 /* Let: 2849 ** N = the total number of rows in the table 2850 ** K = the number of entries on the RHS of the IN operator 2851 ** M = the number of rows in the table that match terms to the 2852 ** to the left in the same index. If the IN operator is on 2853 ** the left-most index column, M==N. 2854 ** 2855 ** Given the definitions above, it is better to omit the IN operator 2856 ** from the index lookup and instead do a scan of the M elements, 2857 ** testing each scanned row against the IN operator separately, if: 2858 ** 2859 ** M*log(K) < K*log(N) 2860 ** 2861 ** Our estimates for M, K, and N might be inaccurate, so we build in 2862 ** a safety margin of 2 (LogEst: 10) that favors using the IN operator 2863 ** with the index, as using an index has better worst-case behavior. 2864 ** If we do not have real sqlite_stat1 data, always prefer to use 2865 ** the index. Do not bother with this optimization on very small 2866 ** tables (less than 2 rows) as it is pointless in that case. 2867 */ 2868 M = pProbe->aiRowLogEst[saved_nEq]; 2869 logK = estLog(nIn); 2870 /* TUNING v----- 10 to bias toward indexed IN */ 2871 x = M + logK + 10 - (nIn + rLogSize); 2872 if( x>=0 ){ 2873 WHERETRACE(0x40, 2874 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) " 2875 "prefers indexed lookup\n", 2876 saved_nEq, M, logK, nIn, rLogSize, x)); 2877 }else if( nInMul<2 && OptimizationEnabled(db, SQLITE_SeekScan) ){ 2878 WHERETRACE(0x40, 2879 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d" 2880 " nInMul=%d) prefers skip-scan\n", 2881 saved_nEq, M, logK, nIn, rLogSize, x, nInMul)); 2882 pNew->wsFlags |= WHERE_IN_SEEKSCAN; 2883 }else{ 2884 WHERETRACE(0x40, 2885 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d" 2886 " nInMul=%d) prefers normal scan\n", 2887 saved_nEq, M, logK, nIn, rLogSize, x, nInMul)); 2888 continue; 2889 } 2890 } 2891 pNew->wsFlags |= WHERE_COLUMN_IN; 2892 }else if( eOp & (WO_EQ|WO_IS) ){ 2893 int iCol = pProbe->aiColumn[saved_nEq]; 2894 pNew->wsFlags |= WHERE_COLUMN_EQ; 2895 assert( saved_nEq==pNew->u.btree.nEq ); 2896 if( iCol==XN_ROWID 2897 || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) 2898 ){ 2899 if( iCol==XN_ROWID || pProbe->uniqNotNull 2900 || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ) 2901 ){ 2902 pNew->wsFlags |= WHERE_ONEROW; 2903 }else{ 2904 pNew->wsFlags |= WHERE_UNQ_WANTED; 2905 } 2906 } 2907 if( scan.iEquiv>1 ) pNew->wsFlags |= WHERE_TRANSCONS; 2908 }else if( eOp & WO_ISNULL ){ 2909 pNew->wsFlags |= WHERE_COLUMN_NULL; 2910 }else if( eOp & (WO_GT|WO_GE) ){ 2911 testcase( eOp & WO_GT ); 2912 testcase( eOp & WO_GE ); 2913 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; 2914 pNew->u.btree.nBtm = whereRangeVectorLen( 2915 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2916 ); 2917 pBtm = pTerm; 2918 pTop = 0; 2919 if( pTerm->wtFlags & TERM_LIKEOPT ){ 2920 /* Range constraints that come from the LIKE optimization are 2921 ** always used in pairs. */ 2922 pTop = &pTerm[1]; 2923 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm ); 2924 assert( pTop->wtFlags & TERM_LIKEOPT ); 2925 assert( pTop->eOperator==WO_LT ); 2926 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2927 pNew->aLTerm[pNew->nLTerm++] = pTop; 2928 pNew->wsFlags |= WHERE_TOP_LIMIT; 2929 pNew->u.btree.nTop = 1; 2930 } 2931 }else{ 2932 assert( eOp & (WO_LT|WO_LE) ); 2933 testcase( eOp & WO_LT ); 2934 testcase( eOp & WO_LE ); 2935 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; 2936 pNew->u.btree.nTop = whereRangeVectorLen( 2937 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2938 ); 2939 pTop = pTerm; 2940 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? 2941 pNew->aLTerm[pNew->nLTerm-2] : 0; 2942 } 2943 2944 /* At this point pNew->nOut is set to the number of rows expected to 2945 ** be visited by the index scan before considering term pTerm, or the 2946 ** values of nIn and nInMul. In other words, assuming that all 2947 ** "x IN(...)" terms are replaced with "x = ?". This block updates 2948 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ 2949 assert( pNew->nOut==saved_nOut ); 2950 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2951 /* Adjust nOut using stat4 data. Or, if there is no stat4 2952 ** data, using some other estimate. */ 2953 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); 2954 }else{ 2955 int nEq = ++pNew->u.btree.nEq; 2956 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) ); 2957 2958 assert( pNew->nOut==saved_nOut ); 2959 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){ 2960 assert( (eOp & WO_IN) || nIn==0 ); 2961 testcase( eOp & WO_IN ); 2962 pNew->nOut += pTerm->truthProb; 2963 pNew->nOut -= nIn; 2964 }else{ 2965 #ifdef SQLITE_ENABLE_STAT4 2966 tRowcnt nOut = 0; 2967 if( nInMul==0 2968 && pProbe->nSample 2969 && ALWAYS(pNew->u.btree.nEq<=pProbe->nSampleCol) 2970 && ((eOp & WO_IN)==0 || ExprUseXList(pTerm->pExpr)) 2971 && OptimizationEnabled(db, SQLITE_Stat4) 2972 ){ 2973 Expr *pExpr = pTerm->pExpr; 2974 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){ 2975 testcase( eOp & WO_EQ ); 2976 testcase( eOp & WO_IS ); 2977 testcase( eOp & WO_ISNULL ); 2978 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); 2979 }else{ 2980 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); 2981 } 2982 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 2983 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ 2984 if( nOut ){ 2985 pNew->nOut = sqlite3LogEst(nOut); 2986 if( nEq==1 2987 /* TUNING: Mark terms as "low selectivity" if they seem likely 2988 ** to be true for half or more of the rows in the table. 2989 ** See tag-202002240-1 */ 2990 && pNew->nOut+10 > pProbe->aiRowLogEst[0] 2991 ){ 2992 #if WHERETRACE_ENABLED /* 0x01 */ 2993 if( sqlite3WhereTrace & 0x01 ){ 2994 sqlite3DebugPrintf( 2995 "STAT4 determines term has low selectivity:\n"); 2996 sqlite3WhereTermPrint(pTerm, 999); 2997 } 2998 #endif 2999 pTerm->wtFlags |= TERM_HIGHTRUTH; 3000 if( pTerm->wtFlags & TERM_HEURTRUTH ){ 3001 /* If the term has previously been used with an assumption of 3002 ** higher selectivity, then set the flag to rerun the 3003 ** loop computations. */ 3004 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS; 3005 } 3006 } 3007 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; 3008 pNew->nOut -= nIn; 3009 } 3010 } 3011 if( nOut==0 ) 3012 #endif 3013 { 3014 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); 3015 if( eOp & WO_ISNULL ){ 3016 /* TUNING: If there is no likelihood() value, assume that a 3017 ** "col IS NULL" expression matches twice as many rows 3018 ** as (col=?). */ 3019 pNew->nOut += 10; 3020 } 3021 } 3022 } 3023 } 3024 3025 /* Set rCostIdx to the cost of visiting selected rows in index. Add 3026 ** it to pNew->rRun, which is currently set to the cost of the index 3027 ** seek only. Then, if this is a non-covering index, add the cost of 3028 ** visiting the rows in the main table. */ 3029 assert( pSrc->pTab->szTabRow>0 ); 3030 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; 3031 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); 3032 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ 3033 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); 3034 } 3035 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); 3036 3037 nOutUnadjusted = pNew->nOut; 3038 pNew->rRun += nInMul + nIn; 3039 pNew->nOut += nInMul + nIn; 3040 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); 3041 rc = whereLoopInsert(pBuilder, pNew); 3042 3043 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 3044 pNew->nOut = saved_nOut; 3045 }else{ 3046 pNew->nOut = nOutUnadjusted; 3047 } 3048 3049 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 3050 && pNew->u.btree.nEq<pProbe->nColumn 3051 && (pNew->u.btree.nEq<pProbe->nKeyCol || 3052 pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY) 3053 ){ 3054 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); 3055 } 3056 pNew->nOut = saved_nOut; 3057 #ifdef SQLITE_ENABLE_STAT4 3058 pBuilder->nRecValid = nRecValid; 3059 #endif 3060 } 3061 pNew->prereq = saved_prereq; 3062 pNew->u.btree.nEq = saved_nEq; 3063 pNew->u.btree.nBtm = saved_nBtm; 3064 pNew->u.btree.nTop = saved_nTop; 3065 pNew->nSkip = saved_nSkip; 3066 pNew->wsFlags = saved_wsFlags; 3067 pNew->nOut = saved_nOut; 3068 pNew->nLTerm = saved_nLTerm; 3069 3070 /* Consider using a skip-scan if there are no WHERE clause constraints 3071 ** available for the left-most terms of the index, and if the average 3072 ** number of repeats in the left-most terms is at least 18. 3073 ** 3074 ** The magic number 18 is selected on the basis that scanning 17 rows 3075 ** is almost always quicker than an index seek (even though if the index 3076 ** contains fewer than 2^17 rows we assume otherwise in other parts of 3077 ** the code). And, even if it is not, it should not be too much slower. 3078 ** On the other hand, the extra seeks could end up being significantly 3079 ** more expensive. */ 3080 assert( 42==sqlite3LogEst(18) ); 3081 if( saved_nEq==saved_nSkip 3082 && saved_nEq+1<pProbe->nKeyCol 3083 && saved_nEq==pNew->nLTerm 3084 && pProbe->noSkipScan==0 3085 && pProbe->hasStat1!=0 3086 && OptimizationEnabled(db, SQLITE_SkipScan) 3087 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ 3088 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK 3089 ){ 3090 LogEst nIter; 3091 pNew->u.btree.nEq++; 3092 pNew->nSkip++; 3093 pNew->aLTerm[pNew->nLTerm++] = 0; 3094 pNew->wsFlags |= WHERE_SKIPSCAN; 3095 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; 3096 pNew->nOut -= nIter; 3097 /* TUNING: Because uncertainties in the estimates for skip-scan queries, 3098 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ 3099 nIter += 5; 3100 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); 3101 pNew->nOut = saved_nOut; 3102 pNew->u.btree.nEq = saved_nEq; 3103 pNew->nSkip = saved_nSkip; 3104 pNew->wsFlags = saved_wsFlags; 3105 } 3106 3107 WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n", 3108 pProbe->pTable->zName, pProbe->zName, saved_nEq, rc)); 3109 return rc; 3110 } 3111 3112 /* 3113 ** Return True if it is possible that pIndex might be useful in 3114 ** implementing the ORDER BY clause in pBuilder. 3115 ** 3116 ** Return False if pBuilder does not contain an ORDER BY clause or 3117 ** if there is no way for pIndex to be useful in implementing that 3118 ** ORDER BY clause. 3119 */ 3120 static int indexMightHelpWithOrderBy( 3121 WhereLoopBuilder *pBuilder, 3122 Index *pIndex, 3123 int iCursor 3124 ){ 3125 ExprList *pOB; 3126 ExprList *aColExpr; 3127 int ii, jj; 3128 3129 if( pIndex->bUnordered ) return 0; 3130 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; 3131 for(ii=0; ii<pOB->nExpr; ii++){ 3132 Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr); 3133 if( NEVER(pExpr==0) ) continue; 3134 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){ 3135 if( pExpr->iColumn<0 ) return 1; 3136 for(jj=0; jj<pIndex->nKeyCol; jj++){ 3137 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; 3138 } 3139 }else if( (aColExpr = pIndex->aColExpr)!=0 ){ 3140 for(jj=0; jj<pIndex->nKeyCol; jj++){ 3141 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue; 3142 if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){ 3143 return 1; 3144 } 3145 } 3146 } 3147 } 3148 return 0; 3149 } 3150 3151 /* Check to see if a partial index with pPartIndexWhere can be used 3152 ** in the current query. Return true if it can be and false if not. 3153 */ 3154 static int whereUsablePartialIndex( 3155 int iTab, /* The table for which we want an index */ 3156 int isLeft, /* True if iTab is the right table of a LEFT JOIN */ 3157 WhereClause *pWC, /* The WHERE clause of the query */ 3158 Expr *pWhere /* The WHERE clause from the partial index */ 3159 ){ 3160 int i; 3161 WhereTerm *pTerm; 3162 Parse *pParse = pWC->pWInfo->pParse; 3163 while( pWhere->op==TK_AND ){ 3164 if( !whereUsablePartialIndex(iTab,isLeft,pWC,pWhere->pLeft) ) return 0; 3165 pWhere = pWhere->pRight; 3166 } 3167 if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0; 3168 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 3169 Expr *pExpr; 3170 pExpr = pTerm->pExpr; 3171 if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->w.iRightJoinTable==iTab) 3172 && (isLeft==0 || ExprHasProperty(pExpr, EP_FromJoin)) 3173 && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab) 3174 && (pTerm->wtFlags & TERM_VNULL)==0 3175 ){ 3176 return 1; 3177 } 3178 } 3179 return 0; 3180 } 3181 3182 /* 3183 ** Add all WhereLoop objects for a single table of the join where the table 3184 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be 3185 ** a b-tree table, not a virtual table. 3186 ** 3187 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function 3188 ** are calculated as follows: 3189 ** 3190 ** For a full scan, assuming the table (or index) contains nRow rows: 3191 ** 3192 ** cost = nRow * 3.0 // full-table scan 3193 ** cost = nRow * K // scan of covering index 3194 ** cost = nRow * (K+3.0) // scan of non-covering index 3195 ** 3196 ** where K is a value between 1.1 and 3.0 set based on the relative 3197 ** estimated average size of the index and table records. 3198 ** 3199 ** For an index scan, where nVisit is the number of index rows visited 3200 ** by the scan, and nSeek is the number of seek operations required on 3201 ** the index b-tree: 3202 ** 3203 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index 3204 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index 3205 ** 3206 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the 3207 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when 3208 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. 3209 ** 3210 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount 3211 ** of uncertainty. For this reason, scoring is designed to pick plans that 3212 ** "do the least harm" if the estimates are inaccurate. For example, a 3213 ** log(nRow) factor is omitted from a non-covering index scan in order to 3214 ** bias the scoring in favor of using an index, since the worst-case 3215 ** performance of using an index is far better than the worst-case performance 3216 ** of a full table scan. 3217 */ 3218 static int whereLoopAddBtree( 3219 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 3220 Bitmask mPrereq /* Extra prerequesites for using this table */ 3221 ){ 3222 WhereInfo *pWInfo; /* WHERE analysis context */ 3223 Index *pProbe; /* An index we are evaluating */ 3224 Index sPk; /* A fake index object for the primary key */ 3225 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ 3226 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ 3227 SrcList *pTabList; /* The FROM clause */ 3228 SrcItem *pSrc; /* The FROM clause btree term to add */ 3229 WhereLoop *pNew; /* Template WhereLoop object */ 3230 int rc = SQLITE_OK; /* Return code */ 3231 int iSortIdx = 1; /* Index number */ 3232 int b; /* A boolean value */ 3233 LogEst rSize; /* number of rows in the table */ 3234 WhereClause *pWC; /* The parsed WHERE clause */ 3235 Table *pTab; /* Table being queried */ 3236 3237 pNew = pBuilder->pNew; 3238 pWInfo = pBuilder->pWInfo; 3239 pTabList = pWInfo->pTabList; 3240 pSrc = pTabList->a + pNew->iTab; 3241 pTab = pSrc->pTab; 3242 pWC = pBuilder->pWC; 3243 assert( !IsVirtual(pSrc->pTab) ); 3244 3245 if( pSrc->fg.isIndexedBy ){ 3246 assert( pSrc->fg.isCte==0 ); 3247 /* An INDEXED BY clause specifies a particular index to use */ 3248 pProbe = pSrc->u2.pIBIndex; 3249 }else if( !HasRowid(pTab) ){ 3250 pProbe = pTab->pIndex; 3251 }else{ 3252 /* There is no INDEXED BY clause. Create a fake Index object in local 3253 ** variable sPk to represent the rowid primary key index. Make this 3254 ** fake index the first in a chain of Index objects with all of the real 3255 ** indices to follow */ 3256 Index *pFirst; /* First of real indices on the table */ 3257 memset(&sPk, 0, sizeof(Index)); 3258 sPk.nKeyCol = 1; 3259 sPk.nColumn = 1; 3260 sPk.aiColumn = &aiColumnPk; 3261 sPk.aiRowLogEst = aiRowEstPk; 3262 sPk.onError = OE_Replace; 3263 sPk.pTable = pTab; 3264 sPk.szIdxRow = pTab->szTabRow; 3265 sPk.idxType = SQLITE_IDXTYPE_IPK; 3266 aiRowEstPk[0] = pTab->nRowLogEst; 3267 aiRowEstPk[1] = 0; 3268 pFirst = pSrc->pTab->pIndex; 3269 if( pSrc->fg.notIndexed==0 ){ 3270 /* The real indices of the table are only considered if the 3271 ** NOT INDEXED qualifier is omitted from the FROM clause */ 3272 sPk.pNext = pFirst; 3273 } 3274 pProbe = &sPk; 3275 } 3276 rSize = pTab->nRowLogEst; 3277 3278 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 3279 /* Automatic indexes */ 3280 if( !pBuilder->pOrSet /* Not part of an OR optimization */ 3281 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 3282 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 3283 && !pSrc->fg.isIndexedBy /* Has no INDEXED BY clause */ 3284 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */ 3285 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */ 3286 && !pSrc->fg.isCorrelated /* Not a correlated subquery */ 3287 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */ 3288 ){ 3289 /* Generate auto-index WhereLoops */ 3290 LogEst rLogSize; /* Logarithm of the number of rows in the table */ 3291 WhereTerm *pTerm; 3292 WhereTerm *pWCEnd = pWC->a + pWC->nTerm; 3293 rLogSize = estLog(rSize); 3294 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ 3295 if( pTerm->prereqRight & pNew->maskSelf ) continue; 3296 if( termCanDriveIndex(pTerm, pSrc, 0) ){ 3297 pNew->u.btree.nEq = 1; 3298 pNew->nSkip = 0; 3299 pNew->u.btree.pIndex = 0; 3300 pNew->nLTerm = 1; 3301 pNew->aLTerm[0] = pTerm; 3302 /* TUNING: One-time cost for computing the automatic index is 3303 ** estimated to be X*N*log2(N) where N is the number of rows in 3304 ** the table being indexed and where X is 7 (LogEst=28) for normal 3305 ** tables or 0.5 (LogEst=-10) for views and subqueries. The value 3306 ** of X is smaller for views and subqueries so that the query planner 3307 ** will be more aggressive about generating automatic indexes for 3308 ** those objects, since there is no opportunity to add schema 3309 ** indexes on subqueries and views. */ 3310 pNew->rSetup = rLogSize + rSize; 3311 if( !IsView(pTab) && (pTab->tabFlags & TF_Ephemeral)==0 ){ 3312 pNew->rSetup += 28; 3313 }else{ 3314 pNew->rSetup -= 10; 3315 } 3316 ApplyCostMultiplier(pNew->rSetup, pTab->costMult); 3317 if( pNew->rSetup<0 ) pNew->rSetup = 0; 3318 /* TUNING: Each index lookup yields 20 rows in the table. This 3319 ** is more than the usual guess of 10 rows, since we have no way 3320 ** of knowing how selective the index will ultimately be. It would 3321 ** not be unreasonable to make this value much larger. */ 3322 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); 3323 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); 3324 pNew->wsFlags = WHERE_AUTO_INDEX; 3325 pNew->prereq = mPrereq | pTerm->prereqRight; 3326 rc = whereLoopInsert(pBuilder, pNew); 3327 } 3328 } 3329 } 3330 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 3331 3332 /* Loop over all indices. If there was an INDEXED BY clause, then only 3333 ** consider index pProbe. */ 3334 for(; rc==SQLITE_OK && pProbe; 3335 pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++ 3336 ){ 3337 int isLeft = (pSrc->fg.jointype & JT_OUTER)!=0; 3338 if( pProbe->pPartIdxWhere!=0 3339 && !whereUsablePartialIndex(pSrc->iCursor, isLeft, pWC, 3340 pProbe->pPartIdxWhere) 3341 ){ 3342 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ 3343 continue; /* Partial index inappropriate for this query */ 3344 } 3345 if( pProbe->bNoQuery ) continue; 3346 rSize = pProbe->aiRowLogEst[0]; 3347 pNew->u.btree.nEq = 0; 3348 pNew->u.btree.nBtm = 0; 3349 pNew->u.btree.nTop = 0; 3350 pNew->nSkip = 0; 3351 pNew->nLTerm = 0; 3352 pNew->iSortIdx = 0; 3353 pNew->rSetup = 0; 3354 pNew->prereq = mPrereq; 3355 pNew->nOut = rSize; 3356 pNew->u.btree.pIndex = pProbe; 3357 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); 3358 3359 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ 3360 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); 3361 if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){ 3362 /* Integer primary key index */ 3363 pNew->wsFlags = WHERE_IPK; 3364 3365 /* Full table scan */ 3366 pNew->iSortIdx = b ? iSortIdx : 0; 3367 /* TUNING: Cost of full table scan is 3.0*N. The 3.0 factor is an 3368 ** extra cost designed to discourage the use of full table scans, 3369 ** since index lookups have better worst-case performance if our 3370 ** stat guesses are wrong. Reduce the 3.0 penalty slightly 3371 ** (to 2.75) if we have valid STAT4 information for the table. 3372 ** At 2.75, a full table scan is preferred over using an index on 3373 ** a column with just two distinct values where each value has about 3374 ** an equal number of appearances. Without STAT4 data, we still want 3375 ** to use an index in that case, since the constraint might be for 3376 ** the scarcer of the two values, and in that case an index lookup is 3377 ** better. 3378 */ 3379 #ifdef SQLITE_ENABLE_STAT4 3380 pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0); 3381 #else 3382 pNew->rRun = rSize + 16; 3383 #endif 3384 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 3385 whereLoopOutputAdjust(pWC, pNew, rSize); 3386 rc = whereLoopInsert(pBuilder, pNew); 3387 pNew->nOut = rSize; 3388 if( rc ) break; 3389 }else{ 3390 Bitmask m; 3391 if( pProbe->isCovering ){ 3392 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; 3393 m = 0; 3394 }else{ 3395 m = pSrc->colUsed & pProbe->colNotIdxed; 3396 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; 3397 } 3398 3399 /* Full scan via index */ 3400 if( b 3401 || !HasRowid(pTab) 3402 || pProbe->pPartIdxWhere!=0 3403 || pSrc->fg.isIndexedBy 3404 || ( m==0 3405 && pProbe->bUnordered==0 3406 && (pProbe->szIdxRow<pTab->szTabRow) 3407 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 3408 && sqlite3GlobalConfig.bUseCis 3409 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) 3410 ) 3411 ){ 3412 pNew->iSortIdx = b ? iSortIdx : 0; 3413 3414 /* The cost of visiting the index rows is N*K, where K is 3415 ** between 1.1 and 3.0, depending on the relative sizes of the 3416 ** index and table rows. */ 3417 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; 3418 if( m!=0 ){ 3419 /* If this is a non-covering index scan, add in the cost of 3420 ** doing table lookups. The cost will be 3x the number of 3421 ** lookups. Take into account WHERE clause terms that can be 3422 ** satisfied using just the index, and that do not require a 3423 ** table lookup. */ 3424 LogEst nLookup = rSize + 16; /* Base cost: N*3 */ 3425 int ii; 3426 int iCur = pSrc->iCursor; 3427 WhereClause *pWC2 = &pWInfo->sWC; 3428 for(ii=0; ii<pWC2->nTerm; ii++){ 3429 WhereTerm *pTerm = &pWC2->a[ii]; 3430 if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){ 3431 break; 3432 } 3433 /* pTerm can be evaluated using just the index. So reduce 3434 ** the expected number of table lookups accordingly */ 3435 if( pTerm->truthProb<=0 ){ 3436 nLookup += pTerm->truthProb; 3437 }else{ 3438 nLookup--; 3439 if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19; 3440 } 3441 } 3442 3443 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup); 3444 } 3445 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 3446 whereLoopOutputAdjust(pWC, pNew, rSize); 3447 rc = whereLoopInsert(pBuilder, pNew); 3448 pNew->nOut = rSize; 3449 if( rc ) break; 3450 } 3451 } 3452 3453 pBuilder->bldFlags1 = 0; 3454 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); 3455 if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){ 3456 /* If a non-unique index is used, or if a prefix of the key for 3457 ** unique index is used (making the index functionally non-unique) 3458 ** then the sqlite_stat1 data becomes important for scoring the 3459 ** plan */ 3460 pTab->tabFlags |= TF_StatsUsed; 3461 } 3462 #ifdef SQLITE_ENABLE_STAT4 3463 sqlite3Stat4ProbeFree(pBuilder->pRec); 3464 pBuilder->nRecValid = 0; 3465 pBuilder->pRec = 0; 3466 #endif 3467 } 3468 return rc; 3469 } 3470 3471 #ifndef SQLITE_OMIT_VIRTUALTABLE 3472 3473 /* 3474 ** Return true if pTerm is a virtual table LIMIT or OFFSET term. 3475 */ 3476 static int isLimitTerm(WhereTerm *pTerm){ 3477 assert( pTerm->eOperator==WO_AUX || pTerm->eMatchOp==0 ); 3478 return pTerm->eMatchOp>=SQLITE_INDEX_CONSTRAINT_LIMIT 3479 && pTerm->eMatchOp<=SQLITE_INDEX_CONSTRAINT_OFFSET; 3480 } 3481 3482 /* 3483 ** Argument pIdxInfo is already populated with all constraints that may 3484 ** be used by the virtual table identified by pBuilder->pNew->iTab. This 3485 ** function marks a subset of those constraints usable, invokes the 3486 ** xBestIndex method and adds the returned plan to pBuilder. 3487 ** 3488 ** A constraint is marked usable if: 3489 ** 3490 ** * Argument mUsable indicates that its prerequisites are available, and 3491 ** 3492 ** * It is not one of the operators specified in the mExclude mask passed 3493 ** as the fourth argument (which in practice is either WO_IN or 0). 3494 ** 3495 ** Argument mPrereq is a mask of tables that must be scanned before the 3496 ** virtual table in question. These are added to the plans prerequisites 3497 ** before it is added to pBuilder. 3498 ** 3499 ** Output parameter *pbIn is set to true if the plan added to pBuilder 3500 ** uses one or more WO_IN terms, or false otherwise. 3501 */ 3502 static int whereLoopAddVirtualOne( 3503 WhereLoopBuilder *pBuilder, 3504 Bitmask mPrereq, /* Mask of tables that must be used. */ 3505 Bitmask mUsable, /* Mask of usable tables */ 3506 u16 mExclude, /* Exclude terms using these operators */ 3507 sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */ 3508 u16 mNoOmit, /* Do not omit these constraints */ 3509 int *pbIn, /* OUT: True if plan uses an IN(...) op */ 3510 int *pbRetryLimit /* OUT: Retry without LIMIT/OFFSET */ 3511 ){ 3512 WhereClause *pWC = pBuilder->pWC; 3513 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3514 struct sqlite3_index_constraint *pIdxCons; 3515 struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage; 3516 int i; 3517 int mxTerm; 3518 int rc = SQLITE_OK; 3519 WhereLoop *pNew = pBuilder->pNew; 3520 Parse *pParse = pBuilder->pWInfo->pParse; 3521 SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab]; 3522 int nConstraint = pIdxInfo->nConstraint; 3523 3524 assert( (mUsable & mPrereq)==mPrereq ); 3525 *pbIn = 0; 3526 pNew->prereq = mPrereq; 3527 3528 /* Set the usable flag on the subset of constraints identified by 3529 ** arguments mUsable and mExclude. */ 3530 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3531 for(i=0; i<nConstraint; i++, pIdxCons++){ 3532 WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset]; 3533 pIdxCons->usable = 0; 3534 if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight 3535 && (pTerm->eOperator & mExclude)==0 3536 && (pbRetryLimit || !isLimitTerm(pTerm)) 3537 ){ 3538 pIdxCons->usable = 1; 3539 } 3540 } 3541 3542 /* Initialize the output fields of the sqlite3_index_info structure */ 3543 memset(pUsage, 0, sizeof(pUsage[0])*nConstraint); 3544 assert( pIdxInfo->needToFreeIdxStr==0 ); 3545 pIdxInfo->idxStr = 0; 3546 pIdxInfo->idxNum = 0; 3547 pIdxInfo->orderByConsumed = 0; 3548 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; 3549 pIdxInfo->estimatedRows = 25; 3550 pIdxInfo->idxFlags = 0; 3551 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed; 3552 pHidden->mHandleIn = 0; 3553 3554 /* Invoke the virtual table xBestIndex() method */ 3555 rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo); 3556 if( rc ){ 3557 if( rc==SQLITE_CONSTRAINT ){ 3558 /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means 3559 ** that the particular combination of parameters provided is unusable. 3560 ** Make no entries in the loop table. 3561 */ 3562 WHERETRACE(0xffff, (" ^^^^--- non-viable plan rejected!\n")); 3563 return SQLITE_OK; 3564 } 3565 return rc; 3566 } 3567 3568 mxTerm = -1; 3569 assert( pNew->nLSlot>=nConstraint ); 3570 memset(pNew->aLTerm, 0, sizeof(pNew->aLTerm[0])*nConstraint ); 3571 memset(&pNew->u.vtab, 0, sizeof(pNew->u.vtab)); 3572 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3573 for(i=0; i<nConstraint; i++, pIdxCons++){ 3574 int iTerm; 3575 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ 3576 WhereTerm *pTerm; 3577 int j = pIdxCons->iTermOffset; 3578 if( iTerm>=nConstraint 3579 || j<0 3580 || j>=pWC->nTerm 3581 || pNew->aLTerm[iTerm]!=0 3582 || pIdxCons->usable==0 3583 ){ 3584 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3585 testcase( pIdxInfo->needToFreeIdxStr ); 3586 return SQLITE_ERROR; 3587 } 3588 testcase( iTerm==nConstraint-1 ); 3589 testcase( j==0 ); 3590 testcase( j==pWC->nTerm-1 ); 3591 pTerm = &pWC->a[j]; 3592 pNew->prereq |= pTerm->prereqRight; 3593 assert( iTerm<pNew->nLSlot ); 3594 pNew->aLTerm[iTerm] = pTerm; 3595 if( iTerm>mxTerm ) mxTerm = iTerm; 3596 testcase( iTerm==15 ); 3597 testcase( iTerm==16 ); 3598 if( pUsage[i].omit ){ 3599 if( i<16 && ((1<<i)&mNoOmit)==0 ){ 3600 testcase( i!=iTerm ); 3601 pNew->u.vtab.omitMask |= 1<<iTerm; 3602 }else{ 3603 testcase( i!=iTerm ); 3604 } 3605 if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET ){ 3606 pNew->u.vtab.bOmitOffset = 1; 3607 } 3608 } 3609 if( SMASKBIT32(i) & pHidden->mHandleIn ){ 3610 pNew->u.vtab.mHandleIn |= MASKBIT32(iTerm); 3611 }else if( (pTerm->eOperator & WO_IN)!=0 ){ 3612 /* A virtual table that is constrained by an IN clause may not 3613 ** consume the ORDER BY clause because (1) the order of IN terms 3614 ** is not necessarily related to the order of output terms and 3615 ** (2) Multiple outputs from a single IN value will not merge 3616 ** together. */ 3617 pIdxInfo->orderByConsumed = 0; 3618 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE; 3619 *pbIn = 1; assert( (mExclude & WO_IN)==0 ); 3620 } 3621 3622 if( isLimitTerm(pTerm) && *pbIn ){ 3623 /* If there is an IN(...) term handled as an == (separate call to 3624 ** xFilter for each value on the RHS of the IN) and a LIMIT or 3625 ** OFFSET term handled as well, the plan is unusable. Set output 3626 ** variable *pbRetryLimit to true to tell the caller to retry with 3627 ** LIMIT and OFFSET disabled. */ 3628 if( pIdxInfo->needToFreeIdxStr ){ 3629 sqlite3_free(pIdxInfo->idxStr); 3630 pIdxInfo->idxStr = 0; 3631 pIdxInfo->needToFreeIdxStr = 0; 3632 } 3633 *pbRetryLimit = 1; 3634 return SQLITE_OK; 3635 } 3636 } 3637 } 3638 3639 pNew->nLTerm = mxTerm+1; 3640 for(i=0; i<=mxTerm; i++){ 3641 if( pNew->aLTerm[i]==0 ){ 3642 /* The non-zero argvIdx values must be contiguous. Raise an 3643 ** error if they are not */ 3644 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3645 testcase( pIdxInfo->needToFreeIdxStr ); 3646 return SQLITE_ERROR; 3647 } 3648 } 3649 assert( pNew->nLTerm<=pNew->nLSlot ); 3650 pNew->u.vtab.idxNum = pIdxInfo->idxNum; 3651 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; 3652 pIdxInfo->needToFreeIdxStr = 0; 3653 pNew->u.vtab.idxStr = pIdxInfo->idxStr; 3654 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? 3655 pIdxInfo->nOrderBy : 0); 3656 pNew->rSetup = 0; 3657 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); 3658 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); 3659 3660 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated 3661 ** that the scan will visit at most one row. Clear it otherwise. */ 3662 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){ 3663 pNew->wsFlags |= WHERE_ONEROW; 3664 }else{ 3665 pNew->wsFlags &= ~WHERE_ONEROW; 3666 } 3667 rc = whereLoopInsert(pBuilder, pNew); 3668 if( pNew->u.vtab.needFree ){ 3669 sqlite3_free(pNew->u.vtab.idxStr); 3670 pNew->u.vtab.needFree = 0; 3671 } 3672 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n", 3673 *pbIn, (sqlite3_uint64)mPrereq, 3674 (sqlite3_uint64)(pNew->prereq & ~mPrereq))); 3675 3676 return rc; 3677 } 3678 3679 /* 3680 ** Return the collating sequence for a constraint passed into xBestIndex. 3681 ** 3682 ** pIdxInfo must be an sqlite3_index_info structure passed into xBestIndex. 3683 ** This routine depends on there being a HiddenIndexInfo structure immediately 3684 ** following the sqlite3_index_info structure. 3685 ** 3686 ** Return a pointer to the collation name: 3687 ** 3688 ** 1. If there is an explicit COLLATE operator on the constaint, return it. 3689 ** 3690 ** 2. Else, if the column has an alternative collation, return that. 3691 ** 3692 ** 3. Otherwise, return "BINARY". 3693 */ 3694 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){ 3695 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3696 const char *zRet = 0; 3697 if( iCons>=0 && iCons<pIdxInfo->nConstraint ){ 3698 CollSeq *pC = 0; 3699 int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset; 3700 Expr *pX = pHidden->pWC->a[iTerm].pExpr; 3701 if( pX->pLeft ){ 3702 pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX); 3703 } 3704 zRet = (pC ? pC->zName : sqlite3StrBINARY); 3705 } 3706 return zRet; 3707 } 3708 3709 /* 3710 ** Return true if constraint iCons is really an IN(...) constraint, or 3711 ** false otherwise. If iCons is an IN(...) constraint, set (if bHandle!=0) 3712 ** or clear (if bHandle==0) the flag to handle it using an iterator. 3713 */ 3714 int sqlite3_vtab_in(sqlite3_index_info *pIdxInfo, int iCons, int bHandle){ 3715 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3716 u32 m = SMASKBIT32(iCons); 3717 if( m & pHidden->mIn ){ 3718 if( bHandle==0 ){ 3719 pHidden->mHandleIn &= ~m; 3720 }else if( bHandle>0 ){ 3721 pHidden->mHandleIn |= m; 3722 } 3723 return 1; 3724 } 3725 return 0; 3726 } 3727 3728 /* 3729 ** This interface is callable from within the xBestIndex callback only. 3730 ** 3731 ** If possible, set (*ppVal) to point to an object containing the value 3732 ** on the right-hand-side of constraint iCons. 3733 */ 3734 int sqlite3_vtab_rhs_value( 3735 sqlite3_index_info *pIdxInfo, /* Copy of first argument to xBestIndex */ 3736 int iCons, /* Constraint for which RHS is wanted */ 3737 sqlite3_value **ppVal /* Write value extracted here */ 3738 ){ 3739 HiddenIndexInfo *pH = (HiddenIndexInfo*)&pIdxInfo[1]; 3740 sqlite3_value *pVal = 0; 3741 int rc = SQLITE_OK; 3742 if( iCons<0 || iCons>=pIdxInfo->nConstraint ){ 3743 rc = SQLITE_MISUSE; /* EV: R-30545-25046 */ 3744 }else{ 3745 if( pH->aRhs[iCons]==0 ){ 3746 WhereTerm *pTerm = &pH->pWC->a[pIdxInfo->aConstraint[iCons].iTermOffset]; 3747 rc = sqlite3ValueFromExpr( 3748 pH->pParse->db, pTerm->pExpr->pRight, ENC(pH->pParse->db), 3749 SQLITE_AFF_BLOB, &pH->aRhs[iCons] 3750 ); 3751 testcase( rc!=SQLITE_OK ); 3752 } 3753 pVal = pH->aRhs[iCons]; 3754 } 3755 *ppVal = pVal; 3756 3757 if( rc==SQLITE_OK && pVal==0 ){ /* IMP: R-19933-32160 */ 3758 rc = SQLITE_NOTFOUND; /* IMP: R-36424-56542 */ 3759 } 3760 3761 return rc; 3762 } 3763 3764 3765 /* 3766 ** Return true if ORDER BY clause may be handled as DISTINCT. 3767 */ 3768 int sqlite3_vtab_distinct(sqlite3_index_info *pIdxInfo){ 3769 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3770 assert( pHidden->eDistinct==0 3771 || pHidden->eDistinct==1 3772 || pHidden->eDistinct==2 ); 3773 return pHidden->eDistinct; 3774 } 3775 3776 /* 3777 ** Add all WhereLoop objects for a table of the join identified by 3778 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. 3779 ** 3780 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and 3781 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause 3782 ** entries that occur before the virtual table in the FROM clause and are 3783 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the 3784 ** mUnusable mask contains all FROM clause entries that occur after the 3785 ** virtual table and are separated from it by at least one LEFT or 3786 ** CROSS JOIN. 3787 ** 3788 ** For example, if the query were: 3789 ** 3790 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; 3791 ** 3792 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6). 3793 ** 3794 ** All the tables in mPrereq must be scanned before the current virtual 3795 ** table. So any terms for which all prerequisites are satisfied by 3796 ** mPrereq may be specified as "usable" in all calls to xBestIndex. 3797 ** Conversely, all tables in mUnusable must be scanned after the current 3798 ** virtual table, so any terms for which the prerequisites overlap with 3799 ** mUnusable should always be configured as "not-usable" for xBestIndex. 3800 */ 3801 static int whereLoopAddVirtual( 3802 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 3803 Bitmask mPrereq, /* Tables that must be scanned before this one */ 3804 Bitmask mUnusable /* Tables that must be scanned after this one */ 3805 ){ 3806 int rc = SQLITE_OK; /* Return code */ 3807 WhereInfo *pWInfo; /* WHERE analysis context */ 3808 Parse *pParse; /* The parsing context */ 3809 WhereClause *pWC; /* The WHERE clause */ 3810 SrcItem *pSrc; /* The FROM clause term to search */ 3811 sqlite3_index_info *p; /* Object to pass to xBestIndex() */ 3812 int nConstraint; /* Number of constraints in p */ 3813 int bIn; /* True if plan uses IN(...) operator */ 3814 WhereLoop *pNew; 3815 Bitmask mBest; /* Tables used by best possible plan */ 3816 u16 mNoOmit; 3817 int bRetry = 0; /* True to retry with LIMIT/OFFSET disabled */ 3818 3819 assert( (mPrereq & mUnusable)==0 ); 3820 pWInfo = pBuilder->pWInfo; 3821 pParse = pWInfo->pParse; 3822 pWC = pBuilder->pWC; 3823 pNew = pBuilder->pNew; 3824 pSrc = &pWInfo->pTabList->a[pNew->iTab]; 3825 assert( IsVirtual(pSrc->pTab) ); 3826 p = allocateIndexInfo(pWInfo, pWC, mUnusable, pSrc, &mNoOmit); 3827 if( p==0 ) return SQLITE_NOMEM_BKPT; 3828 pNew->rSetup = 0; 3829 pNew->wsFlags = WHERE_VIRTUALTABLE; 3830 pNew->nLTerm = 0; 3831 pNew->u.vtab.needFree = 0; 3832 nConstraint = p->nConstraint; 3833 if( whereLoopResize(pParse->db, pNew, nConstraint) ){ 3834 freeIndexInfo(pParse->db, p); 3835 return SQLITE_NOMEM_BKPT; 3836 } 3837 3838 /* First call xBestIndex() with all constraints usable. */ 3839 WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName)); 3840 WHERETRACE(0x40, (" VirtualOne: all usable\n")); 3841 rc = whereLoopAddVirtualOne( 3842 pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, &bRetry 3843 ); 3844 if( bRetry ){ 3845 assert( rc==SQLITE_OK ); 3846 rc = whereLoopAddVirtualOne( 3847 pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, 0 3848 ); 3849 } 3850 3851 /* If the call to xBestIndex() with all terms enabled produced a plan 3852 ** that does not require any source tables (IOW: a plan with mBest==0) 3853 ** and does not use an IN(...) operator, then there is no point in making 3854 ** any further calls to xBestIndex() since they will all return the same 3855 ** result (if the xBestIndex() implementation is sane). */ 3856 if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){ 3857 int seenZero = 0; /* True if a plan with no prereqs seen */ 3858 int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */ 3859 Bitmask mPrev = 0; 3860 Bitmask mBestNoIn = 0; 3861 3862 /* If the plan produced by the earlier call uses an IN(...) term, call 3863 ** xBestIndex again, this time with IN(...) terms disabled. */ 3864 if( bIn ){ 3865 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n")); 3866 rc = whereLoopAddVirtualOne( 3867 pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn, 0); 3868 assert( bIn==0 ); 3869 mBestNoIn = pNew->prereq & ~mPrereq; 3870 if( mBestNoIn==0 ){ 3871 seenZero = 1; 3872 seenZeroNoIN = 1; 3873 } 3874 } 3875 3876 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq) 3877 ** in the set of terms that apply to the current virtual table. */ 3878 while( rc==SQLITE_OK ){ 3879 int i; 3880 Bitmask mNext = ALLBITS; 3881 assert( mNext>0 ); 3882 for(i=0; i<nConstraint; i++){ 3883 Bitmask mThis = ( 3884 pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq 3885 ); 3886 if( mThis>mPrev && mThis<mNext ) mNext = mThis; 3887 } 3888 mPrev = mNext; 3889 if( mNext==ALLBITS ) break; 3890 if( mNext==mBest || mNext==mBestNoIn ) continue; 3891 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n", 3892 (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext)); 3893 rc = whereLoopAddVirtualOne( 3894 pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn, 0); 3895 if( pNew->prereq==mPrereq ){ 3896 seenZero = 1; 3897 if( bIn==0 ) seenZeroNoIN = 1; 3898 } 3899 } 3900 3901 /* If the calls to xBestIndex() in the above loop did not find a plan 3902 ** that requires no source tables at all (i.e. one guaranteed to be 3903 ** usable), make a call here with all source tables disabled */ 3904 if( rc==SQLITE_OK && seenZero==0 ){ 3905 WHERETRACE(0x40, (" VirtualOne: all disabled\n")); 3906 rc = whereLoopAddVirtualOne( 3907 pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn, 0); 3908 if( bIn==0 ) seenZeroNoIN = 1; 3909 } 3910 3911 /* If the calls to xBestIndex() have so far failed to find a plan 3912 ** that requires no source tables at all and does not use an IN(...) 3913 ** operator, make a final call to obtain one here. */ 3914 if( rc==SQLITE_OK && seenZeroNoIN==0 ){ 3915 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n")); 3916 rc = whereLoopAddVirtualOne( 3917 pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn, 0); 3918 } 3919 } 3920 3921 if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr); 3922 freeIndexInfo(pParse->db, p); 3923 WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc)); 3924 return rc; 3925 } 3926 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3927 3928 /* 3929 ** Add WhereLoop entries to handle OR terms. This works for either 3930 ** btrees or virtual tables. 3931 */ 3932 static int whereLoopAddOr( 3933 WhereLoopBuilder *pBuilder, 3934 Bitmask mPrereq, 3935 Bitmask mUnusable 3936 ){ 3937 WhereInfo *pWInfo = pBuilder->pWInfo; 3938 WhereClause *pWC; 3939 WhereLoop *pNew; 3940 WhereTerm *pTerm, *pWCEnd; 3941 int rc = SQLITE_OK; 3942 int iCur; 3943 WhereClause tempWC; 3944 WhereLoopBuilder sSubBuild; 3945 WhereOrSet sSum, sCur; 3946 SrcItem *pItem; 3947 3948 pWC = pBuilder->pWC; 3949 pWCEnd = pWC->a + pWC->nTerm; 3950 pNew = pBuilder->pNew; 3951 memset(&sSum, 0, sizeof(sSum)); 3952 pItem = pWInfo->pTabList->a + pNew->iTab; 3953 iCur = pItem->iCursor; 3954 3955 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ 3956 if( (pTerm->eOperator & WO_OR)!=0 3957 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 3958 ){ 3959 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; 3960 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; 3961 WhereTerm *pOrTerm; 3962 int once = 1; 3963 int i, j; 3964 3965 sSubBuild = *pBuilder; 3966 sSubBuild.pOrSet = &sCur; 3967 3968 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); 3969 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ 3970 if( (pOrTerm->eOperator & WO_AND)!=0 ){ 3971 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; 3972 }else if( pOrTerm->leftCursor==iCur ){ 3973 tempWC.pWInfo = pWC->pWInfo; 3974 tempWC.pOuter = pWC; 3975 tempWC.op = TK_AND; 3976 tempWC.nTerm = 1; 3977 tempWC.nBase = 1; 3978 tempWC.a = pOrTerm; 3979 sSubBuild.pWC = &tempWC; 3980 }else{ 3981 continue; 3982 } 3983 sCur.n = 0; 3984 #ifdef WHERETRACE_ENABLED 3985 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", 3986 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); 3987 if( sqlite3WhereTrace & 0x400 ){ 3988 sqlite3WhereClausePrint(sSubBuild.pWC); 3989 } 3990 #endif 3991 #ifndef SQLITE_OMIT_VIRTUALTABLE 3992 if( IsVirtual(pItem->pTab) ){ 3993 rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable); 3994 }else 3995 #endif 3996 { 3997 rc = whereLoopAddBtree(&sSubBuild, mPrereq); 3998 } 3999 if( rc==SQLITE_OK ){ 4000 rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable); 4001 } 4002 assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0 4003 || rc==SQLITE_NOMEM ); 4004 testcase( rc==SQLITE_NOMEM && sCur.n>0 ); 4005 testcase( rc==SQLITE_DONE ); 4006 if( sCur.n==0 ){ 4007 sSum.n = 0; 4008 break; 4009 }else if( once ){ 4010 whereOrMove(&sSum, &sCur); 4011 once = 0; 4012 }else{ 4013 WhereOrSet sPrev; 4014 whereOrMove(&sPrev, &sSum); 4015 sSum.n = 0; 4016 for(i=0; i<sPrev.n; i++){ 4017 for(j=0; j<sCur.n; j++){ 4018 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, 4019 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), 4020 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); 4021 } 4022 } 4023 } 4024 } 4025 pNew->nLTerm = 1; 4026 pNew->aLTerm[0] = pTerm; 4027 pNew->wsFlags = WHERE_MULTI_OR; 4028 pNew->rSetup = 0; 4029 pNew->iSortIdx = 0; 4030 memset(&pNew->u, 0, sizeof(pNew->u)); 4031 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ 4032 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs 4033 ** of all sub-scans required by the OR-scan. However, due to rounding 4034 ** errors, it may be that the cost of the OR-scan is equal to its 4035 ** most expensive sub-scan. Add the smallest possible penalty 4036 ** (equivalent to multiplying the cost by 1.07) to ensure that 4037 ** this does not happen. Otherwise, for WHERE clauses such as the 4038 ** following where there is an index on "y": 4039 ** 4040 ** WHERE likelihood(x=?, 0.99) OR y=? 4041 ** 4042 ** the planner may elect to "OR" together a full-table scan and an 4043 ** index lookup. And other similarly odd results. */ 4044 pNew->rRun = sSum.a[i].rRun + 1; 4045 pNew->nOut = sSum.a[i].nOut; 4046 pNew->prereq = sSum.a[i].prereq; 4047 rc = whereLoopInsert(pBuilder, pNew); 4048 } 4049 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); 4050 } 4051 } 4052 return rc; 4053 } 4054 4055 /* 4056 ** Add all WhereLoop objects for all tables 4057 */ 4058 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ 4059 WhereInfo *pWInfo = pBuilder->pWInfo; 4060 Bitmask mPrereq = 0; 4061 Bitmask mPrior = 0; 4062 int iTab; 4063 SrcList *pTabList = pWInfo->pTabList; 4064 SrcItem *pItem; 4065 SrcItem *pEnd = &pTabList->a[pWInfo->nLevel]; 4066 sqlite3 *db = pWInfo->pParse->db; 4067 int rc = SQLITE_OK; 4068 WhereLoop *pNew; 4069 4070 /* Loop over the tables in the join, from left to right */ 4071 pNew = pBuilder->pNew; 4072 whereLoopInit(pNew); 4073 pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT; 4074 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){ 4075 Bitmask mUnusable = 0; 4076 pNew->iTab = iTab; 4077 pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR; 4078 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); 4079 if( (pItem->fg.jointype & (JT_LEFT|JT_CROSS))!=0 ){ 4080 /* This condition is true when pItem is the FROM clause term on the 4081 ** right-hand-side of a LEFT or CROSS JOIN. */ 4082 mPrereq = mPrior; 4083 }else{ 4084 mPrereq = 0; 4085 } 4086 #ifndef SQLITE_OMIT_VIRTUALTABLE 4087 if( IsVirtual(pItem->pTab) ){ 4088 SrcItem *p; 4089 for(p=&pItem[1]; p<pEnd; p++){ 4090 if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){ 4091 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); 4092 } 4093 } 4094 rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable); 4095 }else 4096 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4097 { 4098 rc = whereLoopAddBtree(pBuilder, mPrereq); 4099 } 4100 if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){ 4101 rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable); 4102 } 4103 mPrior |= pNew->maskSelf; 4104 if( rc || db->mallocFailed ){ 4105 if( rc==SQLITE_DONE ){ 4106 /* We hit the query planner search limit set by iPlanLimit */ 4107 sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search"); 4108 rc = SQLITE_OK; 4109 }else{ 4110 break; 4111 } 4112 } 4113 } 4114 4115 whereLoopClear(db, pNew); 4116 return rc; 4117 } 4118 4119 /* 4120 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th 4121 ** parameters) to see if it outputs rows in the requested ORDER BY 4122 ** (or GROUP BY) without requiring a separate sort operation. Return N: 4123 ** 4124 ** N>0: N terms of the ORDER BY clause are satisfied 4125 ** N==0: No terms of the ORDER BY clause are satisfied 4126 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. 4127 ** 4128 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as 4129 ** strict. With GROUP BY and DISTINCT the only requirement is that 4130 ** equivalent rows appear immediately adjacent to one another. GROUP BY 4131 ** and DISTINCT do not require rows to appear in any particular order as long 4132 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT 4133 ** the pOrderBy terms can be matched in any order. With ORDER BY, the 4134 ** pOrderBy terms must be matched in strict left-to-right order. 4135 */ 4136 static i8 wherePathSatisfiesOrderBy( 4137 WhereInfo *pWInfo, /* The WHERE clause */ 4138 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ 4139 WherePath *pPath, /* The WherePath to check */ 4140 u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */ 4141 u16 nLoop, /* Number of entries in pPath->aLoop[] */ 4142 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ 4143 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ 4144 ){ 4145 u8 revSet; /* True if rev is known */ 4146 u8 rev; /* Composite sort order */ 4147 u8 revIdx; /* Index sort order */ 4148 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ 4149 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ 4150 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ 4151 u16 eqOpMask; /* Allowed equality operators */ 4152 u16 nKeyCol; /* Number of key columns in pIndex */ 4153 u16 nColumn; /* Total number of ordered columns in the index */ 4154 u16 nOrderBy; /* Number terms in the ORDER BY clause */ 4155 int iLoop; /* Index of WhereLoop in pPath being processed */ 4156 int i, j; /* Loop counters */ 4157 int iCur; /* Cursor number for current WhereLoop */ 4158 int iColumn; /* A column number within table iCur */ 4159 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ 4160 WhereTerm *pTerm; /* A single term of the WHERE clause */ 4161 Expr *pOBExpr; /* An expression from the ORDER BY clause */ 4162 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ 4163 Index *pIndex; /* The index associated with pLoop */ 4164 sqlite3 *db = pWInfo->pParse->db; /* Database connection */ 4165 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ 4166 Bitmask obDone; /* Mask of all ORDER BY terms */ 4167 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ 4168 Bitmask ready; /* Mask of inner loops */ 4169 4170 /* 4171 ** We say the WhereLoop is "one-row" if it generates no more than one 4172 ** row of output. A WhereLoop is one-row if all of the following are true: 4173 ** (a) All index columns match with WHERE_COLUMN_EQ. 4174 ** (b) The index is unique 4175 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. 4176 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. 4177 ** 4178 ** We say the WhereLoop is "order-distinct" if the set of columns from 4179 ** that WhereLoop that are in the ORDER BY clause are different for every 4180 ** row of the WhereLoop. Every one-row WhereLoop is automatically 4181 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause 4182 ** is not order-distinct. To be order-distinct is not quite the same as being 4183 ** UNIQUE since a UNIQUE column or index can have multiple rows that 4184 ** are NULL and NULL values are equivalent for the purpose of order-distinct. 4185 ** To be order-distinct, the columns must be UNIQUE and NOT NULL. 4186 ** 4187 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the 4188 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is 4189 ** automatically order-distinct. 4190 */ 4191 4192 assert( pOrderBy!=0 ); 4193 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; 4194 4195 nOrderBy = pOrderBy->nExpr; 4196 testcase( nOrderBy==BMS-1 ); 4197 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ 4198 isOrderDistinct = 1; 4199 obDone = MASKBIT(nOrderBy)-1; 4200 orderDistinctMask = 0; 4201 ready = 0; 4202 eqOpMask = WO_EQ | WO_IS | WO_ISNULL; 4203 if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){ 4204 eqOpMask |= WO_IN; 4205 } 4206 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ 4207 if( iLoop>0 ) ready |= pLoop->maskSelf; 4208 if( iLoop<nLoop ){ 4209 pLoop = pPath->aLoop[iLoop]; 4210 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue; 4211 }else{ 4212 pLoop = pLast; 4213 } 4214 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ 4215 if( pLoop->u.vtab.isOrdered && (wctrlFlags & WHERE_DISTINCTBY)==0 ){ 4216 obSat = obDone; 4217 } 4218 break; 4219 }else if( wctrlFlags & WHERE_DISTINCTBY ){ 4220 pLoop->u.btree.nDistinctCol = 0; 4221 } 4222 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; 4223 4224 /* Mark off any ORDER BY term X that is a column in the table of 4225 ** the current loop for which there is term in the WHERE 4226 ** clause of the form X IS NULL or X=? that reference only outer 4227 ** loops. 4228 */ 4229 for(i=0; i<nOrderBy; i++){ 4230 if( MASKBIT(i) & obSat ) continue; 4231 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr); 4232 if( NEVER(pOBExpr==0) ) continue; 4233 if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue; 4234 if( pOBExpr->iTable!=iCur ) continue; 4235 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, 4236 ~ready, eqOpMask, 0); 4237 if( pTerm==0 ) continue; 4238 if( pTerm->eOperator==WO_IN ){ 4239 /* IN terms are only valid for sorting in the ORDER BY LIMIT 4240 ** optimization, and then only if they are actually used 4241 ** by the query plan */ 4242 assert( wctrlFlags & 4243 (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) ); 4244 for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){} 4245 if( j>=pLoop->nLTerm ) continue; 4246 } 4247 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ 4248 Parse *pParse = pWInfo->pParse; 4249 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr); 4250 CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr); 4251 assert( pColl1 ); 4252 if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){ 4253 continue; 4254 } 4255 testcase( pTerm->pExpr->op==TK_IS ); 4256 } 4257 obSat |= MASKBIT(i); 4258 } 4259 4260 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ 4261 if( pLoop->wsFlags & WHERE_IPK ){ 4262 pIndex = 0; 4263 nKeyCol = 0; 4264 nColumn = 1; 4265 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ 4266 return 0; 4267 }else{ 4268 nKeyCol = pIndex->nKeyCol; 4269 nColumn = pIndex->nColumn; 4270 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); 4271 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID 4272 || !HasRowid(pIndex->pTable)); 4273 /* All relevant terms of the index must also be non-NULL in order 4274 ** for isOrderDistinct to be true. So the isOrderDistint value 4275 ** computed here might be a false positive. Corrections will be 4276 ** made at tag-20210426-1 below */ 4277 isOrderDistinct = IsUniqueIndex(pIndex) 4278 && (pLoop->wsFlags & WHERE_SKIPSCAN)==0; 4279 } 4280 4281 /* Loop through all columns of the index and deal with the ones 4282 ** that are not constrained by == or IN. 4283 */ 4284 rev = revSet = 0; 4285 distinctColumns = 0; 4286 for(j=0; j<nColumn; j++){ 4287 u8 bOnce = 1; /* True to run the ORDER BY search loop */ 4288 4289 assert( j>=pLoop->u.btree.nEq 4290 || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip) 4291 ); 4292 if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){ 4293 u16 eOp = pLoop->aLTerm[j]->eOperator; 4294 4295 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when 4296 ** doing WHERE_ORDERBY_LIMIT processing). Except, IS and ISNULL 4297 ** terms imply that the index is not UNIQUE NOT NULL in which case 4298 ** the loop need to be marked as not order-distinct because it can 4299 ** have repeated NULL rows. 4300 ** 4301 ** If the current term is a column of an ((?,?) IN (SELECT...)) 4302 ** expression for which the SELECT returns more than one column, 4303 ** check that it is the only column used by this loop. Otherwise, 4304 ** if it is one of two or more, none of the columns can be 4305 ** considered to match an ORDER BY term. 4306 */ 4307 if( (eOp & eqOpMask)!=0 ){ 4308 if( eOp & (WO_ISNULL|WO_IS) ){ 4309 testcase( eOp & WO_ISNULL ); 4310 testcase( eOp & WO_IS ); 4311 testcase( isOrderDistinct ); 4312 isOrderDistinct = 0; 4313 } 4314 continue; 4315 }else if( ALWAYS(eOp & WO_IN) ){ 4316 /* ALWAYS() justification: eOp is an equality operator due to the 4317 ** j<pLoop->u.btree.nEq constraint above. Any equality other 4318 ** than WO_IN is captured by the previous "if". So this one 4319 ** always has to be WO_IN. */ 4320 Expr *pX = pLoop->aLTerm[j]->pExpr; 4321 for(i=j+1; i<pLoop->u.btree.nEq; i++){ 4322 if( pLoop->aLTerm[i]->pExpr==pX ){ 4323 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) ); 4324 bOnce = 0; 4325 break; 4326 } 4327 } 4328 } 4329 } 4330 4331 /* Get the column number in the table (iColumn) and sort order 4332 ** (revIdx) for the j-th column of the index. 4333 */ 4334 if( pIndex ){ 4335 iColumn = pIndex->aiColumn[j]; 4336 revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC; 4337 if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID; 4338 }else{ 4339 iColumn = XN_ROWID; 4340 revIdx = 0; 4341 } 4342 4343 /* An unconstrained column that might be NULL means that this 4344 ** WhereLoop is not well-ordered. tag-20210426-1 4345 */ 4346 if( isOrderDistinct ){ 4347 if( iColumn>=0 4348 && j>=pLoop->u.btree.nEq 4349 && pIndex->pTable->aCol[iColumn].notNull==0 4350 ){ 4351 isOrderDistinct = 0; 4352 } 4353 if( iColumn==XN_EXPR ){ 4354 isOrderDistinct = 0; 4355 } 4356 } 4357 4358 /* Find the ORDER BY term that corresponds to the j-th column 4359 ** of the index and mark that ORDER BY term off 4360 */ 4361 isMatch = 0; 4362 for(i=0; bOnce && i<nOrderBy; i++){ 4363 if( MASKBIT(i) & obSat ) continue; 4364 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr); 4365 testcase( wctrlFlags & WHERE_GROUPBY ); 4366 testcase( wctrlFlags & WHERE_DISTINCTBY ); 4367 if( NEVER(pOBExpr==0) ) continue; 4368 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; 4369 if( iColumn>=XN_ROWID ){ 4370 if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue; 4371 if( pOBExpr->iTable!=iCur ) continue; 4372 if( pOBExpr->iColumn!=iColumn ) continue; 4373 }else{ 4374 Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr; 4375 if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){ 4376 continue; 4377 } 4378 } 4379 if( iColumn!=XN_ROWID ){ 4380 pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 4381 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; 4382 } 4383 if( wctrlFlags & WHERE_DISTINCTBY ){ 4384 pLoop->u.btree.nDistinctCol = j+1; 4385 } 4386 isMatch = 1; 4387 break; 4388 } 4389 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ 4390 /* Make sure the sort order is compatible in an ORDER BY clause. 4391 ** Sort order is irrelevant for a GROUP BY clause. */ 4392 if( revSet ){ 4393 if( (rev ^ revIdx)!=(pOrderBy->a[i].sortFlags&KEYINFO_ORDER_DESC) ){ 4394 isMatch = 0; 4395 } 4396 }else{ 4397 rev = revIdx ^ (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC); 4398 if( rev ) *pRevMask |= MASKBIT(iLoop); 4399 revSet = 1; 4400 } 4401 } 4402 if( isMatch && (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL) ){ 4403 if( j==pLoop->u.btree.nEq ){ 4404 pLoop->wsFlags |= WHERE_BIGNULL_SORT; 4405 }else{ 4406 isMatch = 0; 4407 } 4408 } 4409 if( isMatch ){ 4410 if( iColumn==XN_ROWID ){ 4411 testcase( distinctColumns==0 ); 4412 distinctColumns = 1; 4413 } 4414 obSat |= MASKBIT(i); 4415 }else{ 4416 /* No match found */ 4417 if( j==0 || j<nKeyCol ){ 4418 testcase( isOrderDistinct!=0 ); 4419 isOrderDistinct = 0; 4420 } 4421 break; 4422 } 4423 } /* end Loop over all index columns */ 4424 if( distinctColumns ){ 4425 testcase( isOrderDistinct==0 ); 4426 isOrderDistinct = 1; 4427 } 4428 } /* end-if not one-row */ 4429 4430 /* Mark off any other ORDER BY terms that reference pLoop */ 4431 if( isOrderDistinct ){ 4432 orderDistinctMask |= pLoop->maskSelf; 4433 for(i=0; i<nOrderBy; i++){ 4434 Expr *p; 4435 Bitmask mTerm; 4436 if( MASKBIT(i) & obSat ) continue; 4437 p = pOrderBy->a[i].pExpr; 4438 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); 4439 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; 4440 if( (mTerm&~orderDistinctMask)==0 ){ 4441 obSat |= MASKBIT(i); 4442 } 4443 } 4444 } 4445 } /* End the loop over all WhereLoops from outer-most down to inner-most */ 4446 if( obSat==obDone ) return (i8)nOrderBy; 4447 if( !isOrderDistinct ){ 4448 for(i=nOrderBy-1; i>0; i--){ 4449 Bitmask m = ALWAYS(i<BMS) ? MASKBIT(i) - 1 : 0; 4450 if( (obSat&m)==m ) return i; 4451 } 4452 return 0; 4453 } 4454 return -1; 4455 } 4456 4457 4458 /* 4459 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), 4460 ** the planner assumes that the specified pOrderBy list is actually a GROUP 4461 ** BY clause - and so any order that groups rows as required satisfies the 4462 ** request. 4463 ** 4464 ** Normally, in this case it is not possible for the caller to determine 4465 ** whether or not the rows are really being delivered in sorted order, or 4466 ** just in some other order that provides the required grouping. However, 4467 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then 4468 ** this function may be called on the returned WhereInfo object. It returns 4469 ** true if the rows really will be sorted in the specified order, or false 4470 ** otherwise. 4471 ** 4472 ** For example, assuming: 4473 ** 4474 ** CREATE INDEX i1 ON t1(x, Y); 4475 ** 4476 ** then 4477 ** 4478 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 4479 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 4480 */ 4481 int sqlite3WhereIsSorted(WhereInfo *pWInfo){ 4482 assert( pWInfo->wctrlFlags & WHERE_GROUPBY ); 4483 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); 4484 return pWInfo->sorted; 4485 } 4486 4487 #ifdef WHERETRACE_ENABLED 4488 /* For debugging use only: */ 4489 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ 4490 static char zName[65]; 4491 int i; 4492 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } 4493 if( pLast ) zName[i++] = pLast->cId; 4494 zName[i] = 0; 4495 return zName; 4496 } 4497 #endif 4498 4499 /* 4500 ** Return the cost of sorting nRow rows, assuming that the keys have 4501 ** nOrderby columns and that the first nSorted columns are already in 4502 ** order. 4503 */ 4504 static LogEst whereSortingCost( 4505 WhereInfo *pWInfo, 4506 LogEst nRow, 4507 int nOrderBy, 4508 int nSorted 4509 ){ 4510 /* TUNING: Estimated cost of a full external sort, where N is 4511 ** the number of rows to sort is: 4512 ** 4513 ** cost = (3.0 * N * log(N)). 4514 ** 4515 ** Or, if the order-by clause has X terms but only the last Y 4516 ** terms are out of order, then block-sorting will reduce the 4517 ** sorting cost to: 4518 ** 4519 ** cost = (3.0 * N * log(N)) * (Y/X) 4520 ** 4521 ** The (Y/X) term is implemented using stack variable rScale 4522 ** below. 4523 */ 4524 LogEst rScale, rSortCost; 4525 assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); 4526 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; 4527 rSortCost = nRow + rScale + 16; 4528 4529 /* Multiple by log(M) where M is the number of output rows. 4530 ** Use the LIMIT for M if it is smaller. Or if this sort is for 4531 ** a DISTINCT operator, M will be the number of distinct output 4532 ** rows, so fudge it downwards a bit. 4533 */ 4534 if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){ 4535 nRow = pWInfo->iLimit; 4536 }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){ 4537 /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT 4538 ** reduces the number of output rows by a factor of 2 */ 4539 if( nRow>10 ){ nRow -= 10; assert( 10==sqlite3LogEst(2) ); } 4540 } 4541 rSortCost += estLog(nRow); 4542 return rSortCost; 4543 } 4544 4545 /* 4546 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine 4547 ** attempts to find the lowest cost path that visits each WhereLoop 4548 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. 4549 ** 4550 ** Assume that the total number of output rows that will need to be sorted 4551 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting 4552 ** costs if nRowEst==0. 4553 ** 4554 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation 4555 ** error occurs. 4556 */ 4557 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ 4558 int mxChoice; /* Maximum number of simultaneous paths tracked */ 4559 int nLoop; /* Number of terms in the join */ 4560 Parse *pParse; /* Parsing context */ 4561 sqlite3 *db; /* The database connection */ 4562 int iLoop; /* Loop counter over the terms of the join */ 4563 int ii, jj; /* Loop counters */ 4564 int mxI = 0; /* Index of next entry to replace */ 4565 int nOrderBy; /* Number of ORDER BY clause terms */ 4566 LogEst mxCost = 0; /* Maximum cost of a set of paths */ 4567 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ 4568 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ 4569 WherePath *aFrom; /* All nFrom paths at the previous level */ 4570 WherePath *aTo; /* The nTo best paths at the current level */ 4571 WherePath *pFrom; /* An element of aFrom[] that we are working on */ 4572 WherePath *pTo; /* An element of aTo[] that we are working on */ 4573 WhereLoop *pWLoop; /* One of the WhereLoop objects */ 4574 WhereLoop **pX; /* Used to divy up the pSpace memory */ 4575 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ 4576 char *pSpace; /* Temporary memory used by this routine */ 4577 int nSpace; /* Bytes of space allocated at pSpace */ 4578 4579 pParse = pWInfo->pParse; 4580 db = pParse->db; 4581 nLoop = pWInfo->nLevel; 4582 /* TUNING: For simple queries, only the best path is tracked. 4583 ** For 2-way joins, the 5 best paths are followed. 4584 ** For joins of 3 or more tables, track the 10 best paths */ 4585 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); 4586 assert( nLoop<=pWInfo->pTabList->nSrc ); 4587 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); 4588 4589 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this 4590 ** case the purpose of this call is to estimate the number of rows returned 4591 ** by the overall query. Once this estimate has been obtained, the caller 4592 ** will invoke this function a second time, passing the estimate as the 4593 ** nRowEst parameter. */ 4594 if( pWInfo->pOrderBy==0 || nRowEst==0 ){ 4595 nOrderBy = 0; 4596 }else{ 4597 nOrderBy = pWInfo->pOrderBy->nExpr; 4598 } 4599 4600 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ 4601 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; 4602 nSpace += sizeof(LogEst) * nOrderBy; 4603 pSpace = sqlite3DbMallocRawNN(db, nSpace); 4604 if( pSpace==0 ) return SQLITE_NOMEM_BKPT; 4605 aTo = (WherePath*)pSpace; 4606 aFrom = aTo+mxChoice; 4607 memset(aFrom, 0, sizeof(aFrom[0])); 4608 pX = (WhereLoop**)(aFrom+mxChoice); 4609 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ 4610 pFrom->aLoop = pX; 4611 } 4612 if( nOrderBy ){ 4613 /* If there is an ORDER BY clause and it is not being ignored, set up 4614 ** space for the aSortCost[] array. Each element of the aSortCost array 4615 ** is either zero - meaning it has not yet been initialized - or the 4616 ** cost of sorting nRowEst rows of data where the first X terms of 4617 ** the ORDER BY clause are already in order, where X is the array 4618 ** index. */ 4619 aSortCost = (LogEst*)pX; 4620 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); 4621 } 4622 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); 4623 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); 4624 4625 /* Seed the search with a single WherePath containing zero WhereLoops. 4626 ** 4627 ** TUNING: Do not let the number of iterations go above 28. If the cost 4628 ** of computing an automatic index is not paid back within the first 28 4629 ** rows, then do not use the automatic index. */ 4630 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) ); 4631 nFrom = 1; 4632 assert( aFrom[0].isOrdered==0 ); 4633 if( nOrderBy ){ 4634 /* If nLoop is zero, then there are no FROM terms in the query. Since 4635 ** in this case the query may return a maximum of one row, the results 4636 ** are already in the requested order. Set isOrdered to nOrderBy to 4637 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to 4638 ** -1, indicating that the result set may or may not be ordered, 4639 ** depending on the loops added to the current plan. */ 4640 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; 4641 } 4642 4643 /* Compute successively longer WherePaths using the previous generation 4644 ** of WherePaths as the basis for the next. Keep track of the mxChoice 4645 ** best paths at each generation */ 4646 for(iLoop=0; iLoop<nLoop; iLoop++){ 4647 nTo = 0; 4648 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ 4649 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ 4650 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ 4651 LogEst rCost; /* Cost of path (pFrom+pWLoop) */ 4652 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ 4653 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */ 4654 Bitmask maskNew; /* Mask of src visited by (..) */ 4655 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */ 4656 4657 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; 4658 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; 4659 if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){ 4660 /* Do not use an automatic index if the this loop is expected 4661 ** to run less than 1.25 times. It is tempting to also exclude 4662 ** automatic index usage on an outer loop, but sometimes an automatic 4663 ** index is useful in the outer loop of a correlated subquery. */ 4664 assert( 10==sqlite3LogEst(2) ); 4665 continue; 4666 } 4667 4668 /* At this point, pWLoop is a candidate to be the next loop. 4669 ** Compute its cost */ 4670 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); 4671 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); 4672 nOut = pFrom->nRow + pWLoop->nOut; 4673 maskNew = pFrom->maskLoop | pWLoop->maskSelf; 4674 if( isOrdered<0 ){ 4675 isOrdered = wherePathSatisfiesOrderBy(pWInfo, 4676 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, 4677 iLoop, pWLoop, &revMask); 4678 }else{ 4679 revMask = pFrom->revLoop; 4680 } 4681 if( isOrdered>=0 && isOrdered<nOrderBy ){ 4682 if( aSortCost[isOrdered]==0 ){ 4683 aSortCost[isOrdered] = whereSortingCost( 4684 pWInfo, nRowEst, nOrderBy, isOrdered 4685 ); 4686 } 4687 /* TUNING: Add a small extra penalty (5) to sorting as an 4688 ** extra encouragment to the query planner to select a plan 4689 ** where the rows emerge in the correct order without any sorting 4690 ** required. */ 4691 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5; 4692 4693 WHERETRACE(0x002, 4694 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", 4695 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, 4696 rUnsorted, rCost)); 4697 }else{ 4698 rCost = rUnsorted; 4699 rUnsorted -= 2; /* TUNING: Slight bias in favor of no-sort plans */ 4700 } 4701 4702 /* Check to see if pWLoop should be added to the set of 4703 ** mxChoice best-so-far paths. 4704 ** 4705 ** First look for an existing path among best-so-far paths 4706 ** that covers the same set of loops and has the same isOrdered 4707 ** setting as the current path candidate. 4708 ** 4709 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent 4710 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range 4711 ** of legal values for isOrdered, -1..64. 4712 */ 4713 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ 4714 if( pTo->maskLoop==maskNew 4715 && ((pTo->isOrdered^isOrdered)&0x80)==0 4716 ){ 4717 testcase( jj==nTo-1 ); 4718 break; 4719 } 4720 } 4721 if( jj>=nTo ){ 4722 /* None of the existing best-so-far paths match the candidate. */ 4723 if( nTo>=mxChoice 4724 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) 4725 ){ 4726 /* The current candidate is no better than any of the mxChoice 4727 ** paths currently in the best-so-far buffer. So discard 4728 ** this candidate as not viable. */ 4729 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4730 if( sqlite3WhereTrace&0x4 ){ 4731 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n", 4732 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4733 isOrdered>=0 ? isOrdered+'0' : '?'); 4734 } 4735 #endif 4736 continue; 4737 } 4738 /* If we reach this points it means that the new candidate path 4739 ** needs to be added to the set of best-so-far paths. */ 4740 if( nTo<mxChoice ){ 4741 /* Increase the size of the aTo set by one */ 4742 jj = nTo++; 4743 }else{ 4744 /* New path replaces the prior worst to keep count below mxChoice */ 4745 jj = mxI; 4746 } 4747 pTo = &aTo[jj]; 4748 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4749 if( sqlite3WhereTrace&0x4 ){ 4750 sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n", 4751 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4752 isOrdered>=0 ? isOrdered+'0' : '?'); 4753 } 4754 #endif 4755 }else{ 4756 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the 4757 ** same set of loops and has the same isOrdered setting as the 4758 ** candidate path. Check to see if the candidate should replace 4759 ** pTo or if the candidate should be skipped. 4760 ** 4761 ** The conditional is an expanded vector comparison equivalent to: 4762 ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted) 4763 */ 4764 if( pTo->rCost<rCost 4765 || (pTo->rCost==rCost 4766 && (pTo->nRow<nOut 4767 || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted) 4768 ) 4769 ) 4770 ){ 4771 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4772 if( sqlite3WhereTrace&0x4 ){ 4773 sqlite3DebugPrintf( 4774 "Skip %s cost=%-3d,%3d,%3d order=%c", 4775 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4776 isOrdered>=0 ? isOrdered+'0' : '?'); 4777 sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n", 4778 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4779 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4780 } 4781 #endif 4782 /* Discard the candidate path from further consideration */ 4783 testcase( pTo->rCost==rCost ); 4784 continue; 4785 } 4786 testcase( pTo->rCost==rCost+1 ); 4787 /* Control reaches here if the candidate path is better than the 4788 ** pTo path. Replace pTo with the candidate. */ 4789 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4790 if( sqlite3WhereTrace&0x4 ){ 4791 sqlite3DebugPrintf( 4792 "Update %s cost=%-3d,%3d,%3d order=%c", 4793 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4794 isOrdered>=0 ? isOrdered+'0' : '?'); 4795 sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n", 4796 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4797 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4798 } 4799 #endif 4800 } 4801 /* pWLoop is a winner. Add it to the set of best so far */ 4802 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; 4803 pTo->revLoop = revMask; 4804 pTo->nRow = nOut; 4805 pTo->rCost = rCost; 4806 pTo->rUnsorted = rUnsorted; 4807 pTo->isOrdered = isOrdered; 4808 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); 4809 pTo->aLoop[iLoop] = pWLoop; 4810 if( nTo>=mxChoice ){ 4811 mxI = 0; 4812 mxCost = aTo[0].rCost; 4813 mxUnsorted = aTo[0].nRow; 4814 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ 4815 if( pTo->rCost>mxCost 4816 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) 4817 ){ 4818 mxCost = pTo->rCost; 4819 mxUnsorted = pTo->rUnsorted; 4820 mxI = jj; 4821 } 4822 } 4823 } 4824 } 4825 } 4826 4827 #ifdef WHERETRACE_ENABLED /* >=2 */ 4828 if( sqlite3WhereTrace & 0x02 ){ 4829 sqlite3DebugPrintf("---- after round %d ----\n", iLoop); 4830 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ 4831 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", 4832 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4833 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); 4834 if( pTo->isOrdered>0 ){ 4835 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); 4836 }else{ 4837 sqlite3DebugPrintf("\n"); 4838 } 4839 } 4840 } 4841 #endif 4842 4843 /* Swap the roles of aFrom and aTo for the next generation */ 4844 pFrom = aTo; 4845 aTo = aFrom; 4846 aFrom = pFrom; 4847 nFrom = nTo; 4848 } 4849 4850 if( nFrom==0 ){ 4851 sqlite3ErrorMsg(pParse, "no query solution"); 4852 sqlite3DbFreeNN(db, pSpace); 4853 return SQLITE_ERROR; 4854 } 4855 4856 /* Find the lowest cost path. pFrom will be left pointing to that path */ 4857 pFrom = aFrom; 4858 for(ii=1; ii<nFrom; ii++){ 4859 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; 4860 } 4861 assert( pWInfo->nLevel==nLoop ); 4862 /* Load the lowest cost path into pWInfo */ 4863 for(iLoop=0; iLoop<nLoop; iLoop++){ 4864 WhereLevel *pLevel = pWInfo->a + iLoop; 4865 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; 4866 pLevel->iFrom = pWLoop->iTab; 4867 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; 4868 } 4869 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 4870 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 4871 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP 4872 && nRowEst 4873 ){ 4874 Bitmask notUsed; 4875 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, 4876 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); 4877 if( rc==pWInfo->pResultSet->nExpr ){ 4878 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 4879 } 4880 } 4881 pWInfo->bOrderedInnerLoop = 0; 4882 if( pWInfo->pOrderBy ){ 4883 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ 4884 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ 4885 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 4886 } 4887 }else{ 4888 pWInfo->nOBSat = pFrom->isOrdered; 4889 pWInfo->revMask = pFrom->revLoop; 4890 if( pWInfo->nOBSat<=0 ){ 4891 pWInfo->nOBSat = 0; 4892 if( nLoop>0 ){ 4893 u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags; 4894 if( (wsFlags & WHERE_ONEROW)==0 4895 && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN) 4896 ){ 4897 Bitmask m = 0; 4898 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, 4899 WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m); 4900 testcase( wsFlags & WHERE_IPK ); 4901 testcase( wsFlags & WHERE_COLUMN_IN ); 4902 if( rc==pWInfo->pOrderBy->nExpr ){ 4903 pWInfo->bOrderedInnerLoop = 1; 4904 pWInfo->revMask = m; 4905 } 4906 } 4907 } 4908 }else if( nLoop 4909 && pWInfo->nOBSat==1 4910 && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0 4911 ){ 4912 pWInfo->bOrderedInnerLoop = 1; 4913 } 4914 } 4915 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) 4916 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 4917 ){ 4918 Bitmask revMask = 0; 4919 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, 4920 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask 4921 ); 4922 assert( pWInfo->sorted==0 ); 4923 if( nOrder==pWInfo->pOrderBy->nExpr ){ 4924 pWInfo->sorted = 1; 4925 pWInfo->revMask = revMask; 4926 } 4927 } 4928 } 4929 4930 4931 pWInfo->nRowOut = pFrom->nRow; 4932 4933 /* Free temporary memory and return success */ 4934 sqlite3DbFreeNN(db, pSpace); 4935 return SQLITE_OK; 4936 } 4937 4938 /* 4939 ** Most queries use only a single table (they are not joins) and have 4940 ** simple == constraints against indexed fields. This routine attempts 4941 ** to plan those simple cases using much less ceremony than the 4942 ** general-purpose query planner, and thereby yield faster sqlite3_prepare() 4943 ** times for the common case. 4944 ** 4945 ** Return non-zero on success, if this query can be handled by this 4946 ** no-frills query planner. Return zero if this query needs the 4947 ** general-purpose query planner. 4948 */ 4949 static int whereShortCut(WhereLoopBuilder *pBuilder){ 4950 WhereInfo *pWInfo; 4951 SrcItem *pItem; 4952 WhereClause *pWC; 4953 WhereTerm *pTerm; 4954 WhereLoop *pLoop; 4955 int iCur; 4956 int j; 4957 Table *pTab; 4958 Index *pIdx; 4959 WhereScan scan; 4960 4961 pWInfo = pBuilder->pWInfo; 4962 if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0; 4963 assert( pWInfo->pTabList->nSrc>=1 ); 4964 pItem = pWInfo->pTabList->a; 4965 pTab = pItem->pTab; 4966 if( IsVirtual(pTab) ) return 0; 4967 if( pItem->fg.isIndexedBy ) return 0; 4968 iCur = pItem->iCursor; 4969 pWC = &pWInfo->sWC; 4970 pLoop = pBuilder->pNew; 4971 pLoop->wsFlags = 0; 4972 pLoop->nSkip = 0; 4973 pTerm = whereScanInit(&scan, pWC, iCur, -1, WO_EQ|WO_IS, 0); 4974 while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan); 4975 if( pTerm ){ 4976 testcase( pTerm->eOperator & WO_IS ); 4977 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; 4978 pLoop->aLTerm[0] = pTerm; 4979 pLoop->nLTerm = 1; 4980 pLoop->u.btree.nEq = 1; 4981 /* TUNING: Cost of a rowid lookup is 10 */ 4982 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ 4983 }else{ 4984 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4985 int opMask; 4986 assert( pLoop->aLTermSpace==pLoop->aLTerm ); 4987 if( !IsUniqueIndex(pIdx) 4988 || pIdx->pPartIdxWhere!=0 4989 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) 4990 ) continue; 4991 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; 4992 for(j=0; j<pIdx->nKeyCol; j++){ 4993 pTerm = whereScanInit(&scan, pWC, iCur, j, opMask, pIdx); 4994 while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan); 4995 if( pTerm==0 ) break; 4996 testcase( pTerm->eOperator & WO_IS ); 4997 pLoop->aLTerm[j] = pTerm; 4998 } 4999 if( j!=pIdx->nKeyCol ) continue; 5000 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; 5001 if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){ 5002 pLoop->wsFlags |= WHERE_IDX_ONLY; 5003 } 5004 pLoop->nLTerm = j; 5005 pLoop->u.btree.nEq = j; 5006 pLoop->u.btree.pIndex = pIdx; 5007 /* TUNING: Cost of a unique index lookup is 15 */ 5008 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ 5009 break; 5010 } 5011 } 5012 if( pLoop->wsFlags ){ 5013 pLoop->nOut = (LogEst)1; 5014 pWInfo->a[0].pWLoop = pLoop; 5015 assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] ); 5016 pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */ 5017 pWInfo->a[0].iTabCur = iCur; 5018 pWInfo->nRowOut = 1; 5019 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; 5020 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ 5021 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 5022 } 5023 if( scan.iEquiv>1 ) pLoop->wsFlags |= WHERE_TRANSCONS; 5024 #ifdef SQLITE_DEBUG 5025 pLoop->cId = '0'; 5026 #endif 5027 #ifdef WHERETRACE_ENABLED 5028 if( sqlite3WhereTrace ){ 5029 sqlite3DebugPrintf("whereShortCut() used to compute solution\n"); 5030 } 5031 #endif 5032 return 1; 5033 } 5034 return 0; 5035 } 5036 5037 /* 5038 ** Helper function for exprIsDeterministic(). 5039 */ 5040 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){ 5041 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){ 5042 pWalker->eCode = 0; 5043 return WRC_Abort; 5044 } 5045 return WRC_Continue; 5046 } 5047 5048 /* 5049 ** Return true if the expression contains no non-deterministic SQL 5050 ** functions. Do not consider non-deterministic SQL functions that are 5051 ** part of sub-select statements. 5052 */ 5053 static int exprIsDeterministic(Expr *p){ 5054 Walker w; 5055 memset(&w, 0, sizeof(w)); 5056 w.eCode = 1; 5057 w.xExprCallback = exprNodeIsDeterministic; 5058 w.xSelectCallback = sqlite3SelectWalkFail; 5059 sqlite3WalkExpr(&w, p); 5060 return w.eCode; 5061 } 5062 5063 5064 #ifdef WHERETRACE_ENABLED 5065 /* 5066 ** Display all WhereLoops in pWInfo 5067 */ 5068 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){ 5069 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ 5070 WhereLoop *p; 5071 int i; 5072 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" 5073 "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; 5074 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ 5075 p->cId = zLabel[i%(sizeof(zLabel)-1)]; 5076 sqlite3WhereLoopPrint(p, pWC); 5077 } 5078 } 5079 } 5080 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C) 5081 #else 5082 # define WHERETRACE_ALL_LOOPS(W,C) 5083 #endif 5084 5085 /* Attempt to omit tables from a join that do not affect the result. 5086 ** For a table to not affect the result, the following must be true: 5087 ** 5088 ** 1) The query must not be an aggregate. 5089 ** 2) The table must be the RHS of a LEFT JOIN. 5090 ** 3) Either the query must be DISTINCT, or else the ON or USING clause 5091 ** must contain a constraint that limits the scan of the table to 5092 ** at most a single row. 5093 ** 4) The table must not be referenced by any part of the query apart 5094 ** from its own USING or ON clause. 5095 ** 5096 ** For example, given: 5097 ** 5098 ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1); 5099 ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2); 5100 ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3); 5101 ** 5102 ** then table t2 can be omitted from the following: 5103 ** 5104 ** SELECT v1, v3 FROM t1 5105 ** LEFT JOIN t2 ON (t1.ipk=t2.ipk) 5106 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk) 5107 ** 5108 ** or from: 5109 ** 5110 ** SELECT DISTINCT v1, v3 FROM t1 5111 ** LEFT JOIN t2 5112 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk) 5113 */ 5114 static SQLITE_NOINLINE Bitmask whereOmitNoopJoin( 5115 WhereInfo *pWInfo, 5116 Bitmask notReady 5117 ){ 5118 int i; 5119 Bitmask tabUsed; 5120 5121 /* Preconditions checked by the caller */ 5122 assert( pWInfo->nLevel>=2 ); 5123 assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_OmitNoopJoin) ); 5124 5125 /* These two preconditions checked by the caller combine to guarantee 5126 ** condition (1) of the header comment */ 5127 assert( pWInfo->pResultSet!=0 ); 5128 assert( 0==(pWInfo->wctrlFlags & WHERE_AGG_DISTINCT) ); 5129 5130 tabUsed = sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pResultSet); 5131 if( pWInfo->pOrderBy ){ 5132 tabUsed |= sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pOrderBy); 5133 } 5134 for(i=pWInfo->nLevel-1; i>=1; i--){ 5135 WhereTerm *pTerm, *pEnd; 5136 SrcItem *pItem; 5137 WhereLoop *pLoop; 5138 pLoop = pWInfo->a[i].pWLoop; 5139 pItem = &pWInfo->pTabList->a[pLoop->iTab]; 5140 if( (pItem->fg.jointype & JT_LEFT)==0 ) continue; 5141 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)==0 5142 && (pLoop->wsFlags & WHERE_ONEROW)==0 5143 ){ 5144 continue; 5145 } 5146 if( (tabUsed & pLoop->maskSelf)!=0 ) continue; 5147 pEnd = pWInfo->sWC.a + pWInfo->sWC.nTerm; 5148 for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){ 5149 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 5150 if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 5151 || pTerm->pExpr->w.iRightJoinTable!=pItem->iCursor 5152 ){ 5153 break; 5154 } 5155 } 5156 } 5157 if( pTerm<pEnd ) continue; 5158 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); 5159 notReady &= ~pLoop->maskSelf; 5160 for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){ 5161 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 5162 pTerm->wtFlags |= TERM_CODED; 5163 } 5164 } 5165 if( i!=pWInfo->nLevel-1 ){ 5166 int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel); 5167 memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte); 5168 } 5169 pWInfo->nLevel--; 5170 assert( pWInfo->nLevel>0 ); 5171 } 5172 return notReady; 5173 } 5174 5175 /* 5176 ** Check to see if there are any SEARCH loops that might benefit from 5177 ** using a Bloom filter. Consider a Bloom filter if: 5178 ** 5179 ** (1) The SEARCH happens more than N times where N is the number 5180 ** of rows in the table that is being considered for the Bloom 5181 ** filter. 5182 ** (2) Some searches are expected to find zero rows. (This is determined 5183 ** by the WHERE_SELFCULL flag on the term.) 5184 ** (3) Bloom-filter processing is not disabled. (Checked by the 5185 ** caller.) 5186 ** (4) The size of the table being searched is known by ANALYZE. 5187 ** 5188 ** This block of code merely checks to see if a Bloom filter would be 5189 ** appropriate, and if so sets the WHERE_BLOOMFILTER flag on the 5190 ** WhereLoop. The implementation of the Bloom filter comes further 5191 ** down where the code for each WhereLoop is generated. 5192 */ 5193 static SQLITE_NOINLINE void whereCheckIfBloomFilterIsUseful( 5194 const WhereInfo *pWInfo 5195 ){ 5196 int i; 5197 LogEst nSearch; 5198 5199 assert( pWInfo->nLevel>=2 ); 5200 assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_BloomFilter) ); 5201 nSearch = pWInfo->a[0].pWLoop->nOut; 5202 for(i=1; i<pWInfo->nLevel; i++){ 5203 WhereLoop *pLoop = pWInfo->a[i].pWLoop; 5204 const unsigned int reqFlags = (WHERE_SELFCULL|WHERE_COLUMN_EQ); 5205 if( (pLoop->wsFlags & reqFlags)==reqFlags 5206 /* vvvvvv--- Always the case if WHERE_COLUMN_EQ is defined */ 5207 && ALWAYS((pLoop->wsFlags & (WHERE_IPK|WHERE_INDEXED))!=0) 5208 ){ 5209 SrcItem *pItem = &pWInfo->pTabList->a[pLoop->iTab]; 5210 Table *pTab = pItem->pTab; 5211 pTab->tabFlags |= TF_StatsUsed; 5212 if( nSearch > pTab->nRowLogEst 5213 && (pTab->tabFlags & TF_HasStat1)!=0 5214 ){ 5215 testcase( pItem->fg.jointype & JT_LEFT ); 5216 pLoop->wsFlags |= WHERE_BLOOMFILTER; 5217 pLoop->wsFlags &= ~WHERE_IDX_ONLY; 5218 WHERETRACE(0xffff, ( 5219 "-> use Bloom-filter on loop %c because there are ~%.1e " 5220 "lookups into %s which has only ~%.1e rows\n", 5221 pLoop->cId, (double)sqlite3LogEstToInt(nSearch), pTab->zName, 5222 (double)sqlite3LogEstToInt(pTab->nRowLogEst))); 5223 } 5224 } 5225 nSearch += pLoop->nOut; 5226 } 5227 } 5228 5229 /* 5230 ** Generate the beginning of the loop used for WHERE clause processing. 5231 ** The return value is a pointer to an opaque structure that contains 5232 ** information needed to terminate the loop. Later, the calling routine 5233 ** should invoke sqlite3WhereEnd() with the return value of this function 5234 ** in order to complete the WHERE clause processing. 5235 ** 5236 ** If an error occurs, this routine returns NULL. 5237 ** 5238 ** The basic idea is to do a nested loop, one loop for each table in 5239 ** the FROM clause of a select. (INSERT and UPDATE statements are the 5240 ** same as a SELECT with only a single table in the FROM clause.) For 5241 ** example, if the SQL is this: 5242 ** 5243 ** SELECT * FROM t1, t2, t3 WHERE ...; 5244 ** 5245 ** Then the code generated is conceptually like the following: 5246 ** 5247 ** foreach row1 in t1 do \ Code generated 5248 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 5249 ** foreach row3 in t3 do / 5250 ** ... 5251 ** end \ Code generated 5252 ** end |-- by sqlite3WhereEnd() 5253 ** end / 5254 ** 5255 ** Note that the loops might not be nested in the order in which they 5256 ** appear in the FROM clause if a different order is better able to make 5257 ** use of indices. Note also that when the IN operator appears in 5258 ** the WHERE clause, it might result in additional nested loops for 5259 ** scanning through all values on the right-hand side of the IN. 5260 ** 5261 ** There are Btree cursors associated with each table. t1 uses cursor 5262 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 5263 ** And so forth. This routine generates code to open those VDBE cursors 5264 ** and sqlite3WhereEnd() generates the code to close them. 5265 ** 5266 ** The code that sqlite3WhereBegin() generates leaves the cursors named 5267 ** in pTabList pointing at their appropriate entries. The [...] code 5268 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 5269 ** data from the various tables of the loop. 5270 ** 5271 ** If the WHERE clause is empty, the foreach loops must each scan their 5272 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 5273 ** the tables have indices and there are terms in the WHERE clause that 5274 ** refer to those indices, a complete table scan can be avoided and the 5275 ** code will run much faster. Most of the work of this routine is checking 5276 ** to see if there are indices that can be used to speed up the loop. 5277 ** 5278 ** Terms of the WHERE clause are also used to limit which rows actually 5279 ** make it to the "..." in the middle of the loop. After each "foreach", 5280 ** terms of the WHERE clause that use only terms in that loop and outer 5281 ** loops are evaluated and if false a jump is made around all subsequent 5282 ** inner loops (or around the "..." if the test occurs within the inner- 5283 ** most loop) 5284 ** 5285 ** OUTER JOINS 5286 ** 5287 ** An outer join of tables t1 and t2 is conceptally coded as follows: 5288 ** 5289 ** foreach row1 in t1 do 5290 ** flag = 0 5291 ** foreach row2 in t2 do 5292 ** start: 5293 ** ... 5294 ** flag = 1 5295 ** end 5296 ** if flag==0 then 5297 ** move the row2 cursor to a null row 5298 ** goto start 5299 ** fi 5300 ** end 5301 ** 5302 ** ORDER BY CLAUSE PROCESSING 5303 ** 5304 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause 5305 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement 5306 ** if there is one. If there is no ORDER BY clause or if this routine 5307 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. 5308 ** 5309 ** The iIdxCur parameter is the cursor number of an index. If 5310 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index 5311 ** to use for OR clause processing. The WHERE clause should use this 5312 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is 5313 ** the first cursor in an array of cursors for all indices. iIdxCur should 5314 ** be used to compute the appropriate cursor depending on which index is 5315 ** used. 5316 */ 5317 WhereInfo *sqlite3WhereBegin( 5318 Parse *pParse, /* The parser context */ 5319 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ 5320 Expr *pWhere, /* The WHERE clause */ 5321 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ 5322 ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */ 5323 Select *pLimit, /* Use this LIMIT/OFFSET clause, if any */ 5324 u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */ 5325 int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number 5326 ** If WHERE_USE_LIMIT, then the limit amount */ 5327 ){ 5328 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ 5329 int nTabList; /* Number of elements in pTabList */ 5330 WhereInfo *pWInfo; /* Will become the return value of this function */ 5331 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 5332 Bitmask notReady; /* Cursors that are not yet positioned */ 5333 WhereLoopBuilder sWLB; /* The WhereLoop builder */ 5334 WhereMaskSet *pMaskSet; /* The expression mask set */ 5335 WhereLevel *pLevel; /* A single level in pWInfo->a[] */ 5336 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ 5337 int ii; /* Loop counter */ 5338 sqlite3 *db; /* Database connection */ 5339 int rc; /* Return code */ 5340 u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */ 5341 5342 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || ( 5343 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 5344 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 5345 )); 5346 5347 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */ 5348 assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 5349 || (wctrlFlags & WHERE_USE_LIMIT)==0 ); 5350 5351 /* Variable initialization */ 5352 db = pParse->db; 5353 memset(&sWLB, 0, sizeof(sWLB)); 5354 5355 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ 5356 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); 5357 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; 5358 5359 /* The number of tables in the FROM clause is limited by the number of 5360 ** bits in a Bitmask 5361 */ 5362 testcase( pTabList->nSrc==BMS ); 5363 if( pTabList->nSrc>BMS ){ 5364 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 5365 return 0; 5366 } 5367 5368 /* This function normally generates a nested loop for all tables in 5369 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should 5370 ** only generate code for the first table in pTabList and assume that 5371 ** any cursors associated with subsequent tables are uninitialized. 5372 */ 5373 nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc; 5374 5375 /* Allocate and initialize the WhereInfo structure that will become the 5376 ** return value. A single allocation is used to store the WhereInfo 5377 ** struct, the contents of WhereInfo.a[], the WhereClause structure 5378 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte 5379 ** field (type Bitmask) it must be aligned on an 8-byte boundary on 5380 ** some architectures. Hence the ROUND8() below. 5381 */ 5382 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); 5383 pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop)); 5384 if( db->mallocFailed ){ 5385 sqlite3DbFree(db, pWInfo); 5386 pWInfo = 0; 5387 goto whereBeginError; 5388 } 5389 pWInfo->pParse = pParse; 5390 pWInfo->pTabList = pTabList; 5391 pWInfo->pOrderBy = pOrderBy; 5392 pWInfo->pWhere = pWhere; 5393 pWInfo->pResultSet = pResultSet; 5394 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; 5395 pWInfo->nLevel = nTabList; 5396 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse); 5397 pWInfo->wctrlFlags = wctrlFlags; 5398 pWInfo->iLimit = iAuxArg; 5399 pWInfo->savedNQueryLoop = pParse->nQueryLoop; 5400 #ifndef SQLITE_OMIT_VIRTUALTABLE 5401 pWInfo->pLimit = pLimit; 5402 #endif 5403 memset(&pWInfo->nOBSat, 0, 5404 offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat)); 5405 memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel)); 5406 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */ 5407 pMaskSet = &pWInfo->sMaskSet; 5408 pMaskSet->n = 0; 5409 pMaskSet->ix[0] = -99; /* Initialize ix[0] to a value that can never be 5410 ** a valid cursor number, to avoid an initial 5411 ** test for pMaskSet->n==0 in sqlite3WhereGetMask() */ 5412 sWLB.pWInfo = pWInfo; 5413 sWLB.pWC = &pWInfo->sWC; 5414 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); 5415 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); 5416 whereLoopInit(sWLB.pNew); 5417 #ifdef SQLITE_DEBUG 5418 sWLB.pNew->cId = '*'; 5419 #endif 5420 5421 /* Split the WHERE clause into separate subexpressions where each 5422 ** subexpression is separated by an AND operator. 5423 */ 5424 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); 5425 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); 5426 5427 /* Special case: No FROM clause 5428 */ 5429 if( nTabList==0 ){ 5430 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; 5431 if( (wctrlFlags & WHERE_WANT_DISTINCT)!=0 5432 && OptimizationEnabled(db, SQLITE_DistinctOpt) 5433 ){ 5434 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 5435 } 5436 ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW")); 5437 }else{ 5438 /* Assign a bit from the bitmask to every term in the FROM clause. 5439 ** 5440 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. 5441 ** 5442 ** The rule of the previous sentence ensures thta if X is the bitmask for 5443 ** a table T, then X-1 is the bitmask for all other tables to the left of T. 5444 ** Knowing the bitmask for all tables to the left of a left join is 5445 ** important. Ticket #3015. 5446 ** 5447 ** Note that bitmasks are created for all pTabList->nSrc tables in 5448 ** pTabList, not just the first nTabList tables. nTabList is normally 5449 ** equal to pTabList->nSrc but might be shortened to 1 if the 5450 ** WHERE_OR_SUBCLAUSE flag is set. 5451 */ 5452 ii = 0; 5453 do{ 5454 createMask(pMaskSet, pTabList->a[ii].iCursor); 5455 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC); 5456 }while( (++ii)<pTabList->nSrc ); 5457 #ifdef SQLITE_DEBUG 5458 { 5459 Bitmask mx = 0; 5460 for(ii=0; ii<pTabList->nSrc; ii++){ 5461 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); 5462 assert( m>=mx ); 5463 mx = m; 5464 } 5465 } 5466 #endif 5467 } 5468 5469 /* Analyze all of the subexpressions. */ 5470 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); 5471 sqlite3WhereAddLimit(&pWInfo->sWC, pLimit); 5472 if( db->mallocFailed ) goto whereBeginError; 5473 5474 /* Special case: WHERE terms that do not refer to any tables in the join 5475 ** (constant expressions). Evaluate each such term, and jump over all the 5476 ** generated code if the result is not true. 5477 ** 5478 ** Do not do this if the expression contains non-deterministic functions 5479 ** that are not within a sub-select. This is not strictly required, but 5480 ** preserves SQLite's legacy behaviour in the following two cases: 5481 ** 5482 ** FROM ... WHERE random()>0; -- eval random() once per row 5483 ** FROM ... WHERE (SELECT random())>0; -- eval random() once overall 5484 */ 5485 for(ii=0; ii<sWLB.pWC->nBase; ii++){ 5486 WhereTerm *pT = &sWLB.pWC->a[ii]; 5487 if( pT->wtFlags & TERM_VIRTUAL ) continue; 5488 if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){ 5489 sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL); 5490 pT->wtFlags |= TERM_CODED; 5491 } 5492 } 5493 5494 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 5495 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ 5496 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via 5497 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ 5498 wctrlFlags &= ~WHERE_WANT_DISTINCT; 5499 pWInfo->wctrlFlags &= ~WHERE_WANT_DISTINCT; 5500 }else if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ 5501 /* The DISTINCT marking is pointless. Ignore it. */ 5502 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 5503 }else if( pOrderBy==0 ){ 5504 /* Try to ORDER BY the result set to make distinct processing easier */ 5505 pWInfo->wctrlFlags |= WHERE_DISTINCTBY; 5506 pWInfo->pOrderBy = pResultSet; 5507 } 5508 } 5509 5510 /* Construct the WhereLoop objects */ 5511 #if defined(WHERETRACE_ENABLED) 5512 if( sqlite3WhereTrace & 0xffff ){ 5513 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags); 5514 if( wctrlFlags & WHERE_USE_LIMIT ){ 5515 sqlite3DebugPrintf(", limit: %d", iAuxArg); 5516 } 5517 sqlite3DebugPrintf(")\n"); 5518 if( sqlite3WhereTrace & 0x100 ){ 5519 Select sSelect; 5520 memset(&sSelect, 0, sizeof(sSelect)); 5521 sSelect.selFlags = SF_WhereBegin; 5522 sSelect.pSrc = pTabList; 5523 sSelect.pWhere = pWhere; 5524 sSelect.pOrderBy = pOrderBy; 5525 sSelect.pEList = pResultSet; 5526 sqlite3TreeViewSelect(0, &sSelect, 0); 5527 } 5528 } 5529 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 5530 sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n"); 5531 sqlite3WhereClausePrint(sWLB.pWC); 5532 } 5533 #endif 5534 5535 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ 5536 rc = whereLoopAddAll(&sWLB); 5537 if( rc ) goto whereBeginError; 5538 5539 #ifdef SQLITE_ENABLE_STAT4 5540 /* If one or more WhereTerm.truthProb values were used in estimating 5541 ** loop parameters, but then those truthProb values were subsequently 5542 ** changed based on STAT4 information while computing subsequent loops, 5543 ** then we need to rerun the whole loop building process so that all 5544 ** loops will be built using the revised truthProb values. */ 5545 if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){ 5546 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC); 5547 WHERETRACE(0xffff, 5548 ("**** Redo all loop computations due to" 5549 " TERM_HIGHTRUTH changes ****\n")); 5550 while( pWInfo->pLoops ){ 5551 WhereLoop *p = pWInfo->pLoops; 5552 pWInfo->pLoops = p->pNextLoop; 5553 whereLoopDelete(db, p); 5554 } 5555 rc = whereLoopAddAll(&sWLB); 5556 if( rc ) goto whereBeginError; 5557 } 5558 #endif 5559 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC); 5560 5561 wherePathSolver(pWInfo, 0); 5562 if( db->mallocFailed ) goto whereBeginError; 5563 if( pWInfo->pOrderBy ){ 5564 wherePathSolver(pWInfo, pWInfo->nRowOut+1); 5565 if( db->mallocFailed ) goto whereBeginError; 5566 } 5567 } 5568 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ 5569 pWInfo->revMask = ALLBITS; 5570 } 5571 if( pParse->nErr ){ 5572 goto whereBeginError; 5573 } 5574 assert( db->mallocFailed==0 ); 5575 #ifdef WHERETRACE_ENABLED 5576 if( sqlite3WhereTrace ){ 5577 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); 5578 if( pWInfo->nOBSat>0 ){ 5579 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); 5580 } 5581 switch( pWInfo->eDistinct ){ 5582 case WHERE_DISTINCT_UNIQUE: { 5583 sqlite3DebugPrintf(" DISTINCT=unique"); 5584 break; 5585 } 5586 case WHERE_DISTINCT_ORDERED: { 5587 sqlite3DebugPrintf(" DISTINCT=ordered"); 5588 break; 5589 } 5590 case WHERE_DISTINCT_UNORDERED: { 5591 sqlite3DebugPrintf(" DISTINCT=unordered"); 5592 break; 5593 } 5594 } 5595 sqlite3DebugPrintf("\n"); 5596 for(ii=0; ii<pWInfo->nLevel; ii++){ 5597 sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); 5598 } 5599 } 5600 #endif 5601 5602 /* Attempt to omit tables from a join that do not affect the result. 5603 ** See the comment on whereOmitNoopJoin() for further information. 5604 ** 5605 ** This query optimization is factored out into a separate "no-inline" 5606 ** procedure to keep the sqlite3WhereBegin() procedure from becoming 5607 ** too large. If sqlite3WhereBegin() becomes too large, that prevents 5608 ** some C-compiler optimizers from in-lining the 5609 ** sqlite3WhereCodeOneLoopStart() procedure, and it is important to 5610 ** in-line sqlite3WhereCodeOneLoopStart() for performance reasons. 5611 */ 5612 notReady = ~(Bitmask)0; 5613 if( pWInfo->nLevel>=2 5614 && pResultSet!=0 /* these two combine to guarantee */ 5615 && 0==(wctrlFlags & WHERE_AGG_DISTINCT) /* condition (1) above */ 5616 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) 5617 ){ 5618 notReady = whereOmitNoopJoin(pWInfo, notReady); 5619 nTabList = pWInfo->nLevel; 5620 assert( nTabList>0 ); 5621 } 5622 5623 /* Check to see if there are any SEARCH loops that might benefit from 5624 ** using a Bloom filter. 5625 */ 5626 if( pWInfo->nLevel>=2 5627 && OptimizationEnabled(db, SQLITE_BloomFilter) 5628 ){ 5629 whereCheckIfBloomFilterIsUseful(pWInfo); 5630 } 5631 5632 #if defined(WHERETRACE_ENABLED) 5633 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 5634 sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n"); 5635 sqlite3WhereClausePrint(sWLB.pWC); 5636 } 5637 WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); 5638 #endif 5639 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; 5640 5641 /* If the caller is an UPDATE or DELETE statement that is requesting 5642 ** to use a one-pass algorithm, determine if this is appropriate. 5643 ** 5644 ** A one-pass approach can be used if the caller has requested one 5645 ** and either (a) the scan visits at most one row or (b) each 5646 ** of the following are true: 5647 ** 5648 ** * the caller has indicated that a one-pass approach can be used 5649 ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and 5650 ** * the table is not a virtual table, and 5651 ** * either the scan does not use the OR optimization or the caller 5652 ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified 5653 ** for DELETE). 5654 ** 5655 ** The last qualification is because an UPDATE statement uses 5656 ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can 5657 ** use a one-pass approach, and this is not set accurately for scans 5658 ** that use the OR optimization. 5659 */ 5660 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 5661 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){ 5662 int wsFlags = pWInfo->a[0].pWLoop->wsFlags; 5663 int bOnerow = (wsFlags & WHERE_ONEROW)!=0; 5664 assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) ); 5665 if( bOnerow || ( 5666 0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW) 5667 && !IsVirtual(pTabList->a[0].pTab) 5668 && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK)) 5669 )){ 5670 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; 5671 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){ 5672 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){ 5673 bFordelete = OPFLAG_FORDELETE; 5674 } 5675 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY); 5676 } 5677 } 5678 } 5679 5680 /* Open all tables in the pTabList and any indices selected for 5681 ** searching those tables. 5682 */ 5683 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ 5684 Table *pTab; /* Table to open */ 5685 int iDb; /* Index of database containing table/index */ 5686 SrcItem *pTabItem; 5687 5688 pTabItem = &pTabList->a[pLevel->iFrom]; 5689 pTab = pTabItem->pTab; 5690 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5691 pLoop = pLevel->pWLoop; 5692 if( (pTab->tabFlags & TF_Ephemeral)!=0 || IsView(pTab) ){ 5693 /* Do nothing */ 5694 }else 5695 #ifndef SQLITE_OMIT_VIRTUALTABLE 5696 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 5697 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 5698 int iCur = pTabItem->iCursor; 5699 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); 5700 }else if( IsVirtual(pTab) ){ 5701 /* noop */ 5702 }else 5703 #endif 5704 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 5705 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){ 5706 int op = OP_OpenRead; 5707 if( pWInfo->eOnePass!=ONEPASS_OFF ){ 5708 op = OP_OpenWrite; 5709 pWInfo->aiCurOnePass[0] = pTabItem->iCursor; 5710 }; 5711 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 5712 assert( pTabItem->iCursor==pLevel->iTabCur ); 5713 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 ); 5714 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS ); 5715 if( pWInfo->eOnePass==ONEPASS_OFF 5716 && pTab->nCol<BMS 5717 && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0 5718 && (pLoop->wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))==0 5719 ){ 5720 /* If we know that only a prefix of the record will be used, 5721 ** it is advantageous to reduce the "column count" field in 5722 ** the P4 operand of the OP_OpenRead/Write opcode. */ 5723 Bitmask b = pTabItem->colUsed; 5724 int n = 0; 5725 for(; b; b=b>>1, n++){} 5726 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32); 5727 assert( n<=pTab->nCol ); 5728 } 5729 #ifdef SQLITE_ENABLE_CURSOR_HINTS 5730 if( pLoop->u.btree.pIndex!=0 ){ 5731 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete); 5732 }else 5733 #endif 5734 { 5735 sqlite3VdbeChangeP5(v, bFordelete); 5736 } 5737 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 5738 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, 5739 (const u8*)&pTabItem->colUsed, P4_INT64); 5740 #endif 5741 }else{ 5742 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5743 } 5744 if( pLoop->wsFlags & WHERE_INDEXED ){ 5745 Index *pIx = pLoop->u.btree.pIndex; 5746 int iIndexCur; 5747 int op = OP_OpenRead; 5748 /* iAuxArg is always set to a positive value if ONEPASS is possible */ 5749 assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); 5750 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) 5751 && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 5752 ){ 5753 /* This is one term of an OR-optimization using the PRIMARY KEY of a 5754 ** WITHOUT ROWID table. No need for a separate index */ 5755 iIndexCur = pLevel->iTabCur; 5756 op = 0; 5757 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){ 5758 Index *pJ = pTabItem->pTab->pIndex; 5759 iIndexCur = iAuxArg; 5760 assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); 5761 while( ALWAYS(pJ) && pJ!=pIx ){ 5762 iIndexCur++; 5763 pJ = pJ->pNext; 5764 } 5765 op = OP_OpenWrite; 5766 pWInfo->aiCurOnePass[1] = iIndexCur; 5767 }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){ 5768 iIndexCur = iAuxArg; 5769 op = OP_ReopenIdx; 5770 }else{ 5771 iIndexCur = pParse->nTab++; 5772 } 5773 pLevel->iIdxCur = iIndexCur; 5774 assert( pIx->pSchema==pTab->pSchema ); 5775 assert( iIndexCur>=0 ); 5776 if( op ){ 5777 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); 5778 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 5779 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 5780 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 5781 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0 5782 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 5783 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 5784 && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED 5785 ){ 5786 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); 5787 } 5788 VdbeComment((v, "%s", pIx->zName)); 5789 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 5790 { 5791 u64 colUsed = 0; 5792 int ii, jj; 5793 for(ii=0; ii<pIx->nColumn; ii++){ 5794 jj = pIx->aiColumn[ii]; 5795 if( jj<0 ) continue; 5796 if( jj>63 ) jj = 63; 5797 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue; 5798 colUsed |= ((u64)1)<<(ii<63 ? ii : 63); 5799 } 5800 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, 5801 (u8*)&colUsed, P4_INT64); 5802 } 5803 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ 5804 } 5805 } 5806 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); 5807 } 5808 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 5809 if( db->mallocFailed ) goto whereBeginError; 5810 5811 /* Generate the code to do the search. Each iteration of the for 5812 ** loop below generates code for a single nested loop of the VM 5813 ** program. 5814 */ 5815 for(ii=0; ii<nTabList; ii++){ 5816 int addrExplain; 5817 int wsFlags; 5818 if( pParse->nErr ) goto whereBeginError; 5819 pLevel = &pWInfo->a[ii]; 5820 wsFlags = pLevel->pWLoop->wsFlags; 5821 if( (wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))!=0 ){ 5822 if( (wsFlags & WHERE_AUTO_INDEX)!=0 ){ 5823 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 5824 constructAutomaticIndex(pParse, &pWInfo->sWC, 5825 &pTabList->a[pLevel->iFrom], notReady, pLevel); 5826 #endif 5827 }else{ 5828 sqlite3ConstructBloomFilter(pWInfo, ii, pLevel, notReady); 5829 } 5830 if( db->mallocFailed ) goto whereBeginError; 5831 } 5832 addrExplain = sqlite3WhereExplainOneScan( 5833 pParse, pTabList, pLevel, wctrlFlags 5834 ); 5835 pLevel->addrBody = sqlite3VdbeCurrentAddr(v); 5836 notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady); 5837 pWInfo->iContinue = pLevel->addrCont; 5838 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){ 5839 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); 5840 } 5841 } 5842 5843 /* Done. */ 5844 VdbeModuleComment((v, "Begin WHERE-core")); 5845 pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v); 5846 return pWInfo; 5847 5848 /* Jump here if malloc fails */ 5849 whereBeginError: 5850 if( pWInfo ){ 5851 testcase( pWInfo->pExprMods!=0 ); 5852 whereUndoExprMods(pWInfo); 5853 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 5854 whereInfoFree(db, pWInfo); 5855 } 5856 return 0; 5857 } 5858 5859 /* 5860 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the 5861 ** index rather than the main table. In SQLITE_DEBUG mode, we want 5862 ** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine 5863 ** does that. 5864 */ 5865 #ifndef SQLITE_DEBUG 5866 # define OpcodeRewriteTrace(D,K,P) /* no-op */ 5867 #else 5868 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P) 5869 static void sqlite3WhereOpcodeRewriteTrace( 5870 sqlite3 *db, 5871 int pc, 5872 VdbeOp *pOp 5873 ){ 5874 if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return; 5875 sqlite3VdbePrintOp(0, pc, pOp); 5876 } 5877 #endif 5878 5879 /* 5880 ** Generate the end of the WHERE loop. See comments on 5881 ** sqlite3WhereBegin() for additional information. 5882 */ 5883 void sqlite3WhereEnd(WhereInfo *pWInfo){ 5884 Parse *pParse = pWInfo->pParse; 5885 Vdbe *v = pParse->pVdbe; 5886 int i; 5887 WhereLevel *pLevel; 5888 WhereLoop *pLoop; 5889 SrcList *pTabList = pWInfo->pTabList; 5890 sqlite3 *db = pParse->db; 5891 int iEnd = sqlite3VdbeCurrentAddr(v); 5892 5893 /* Generate loop termination code. 5894 */ 5895 VdbeModuleComment((v, "End WHERE-core")); 5896 for(i=pWInfo->nLevel-1; i>=0; i--){ 5897 int addr; 5898 pLevel = &pWInfo->a[i]; 5899 pLoop = pLevel->pWLoop; 5900 if( pLevel->op!=OP_Noop ){ 5901 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 5902 int addrSeek = 0; 5903 Index *pIdx; 5904 int n; 5905 if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED 5906 && i==pWInfo->nLevel-1 /* Ticket [ef9318757b152e3] 2017-10-21 */ 5907 && (pLoop->wsFlags & WHERE_INDEXED)!=0 5908 && (pIdx = pLoop->u.btree.pIndex)->hasStat1 5909 && (n = pLoop->u.btree.nDistinctCol)>0 5910 && pIdx->aiRowLogEst[n]>=36 5911 ){ 5912 int r1 = pParse->nMem+1; 5913 int j, op; 5914 for(j=0; j<n; j++){ 5915 sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j); 5916 } 5917 pParse->nMem += n+1; 5918 op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT; 5919 addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n); 5920 VdbeCoverageIf(v, op==OP_SeekLT); 5921 VdbeCoverageIf(v, op==OP_SeekGT); 5922 sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2); 5923 } 5924 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */ 5925 /* The common case: Advance to the next row */ 5926 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 5927 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); 5928 sqlite3VdbeChangeP5(v, pLevel->p5); 5929 VdbeCoverage(v); 5930 VdbeCoverageIf(v, pLevel->op==OP_Next); 5931 VdbeCoverageIf(v, pLevel->op==OP_Prev); 5932 VdbeCoverageIf(v, pLevel->op==OP_VNext); 5933 if( pLevel->regBignull ){ 5934 sqlite3VdbeResolveLabel(v, pLevel->addrBignull); 5935 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1); 5936 VdbeCoverage(v); 5937 } 5938 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 5939 if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek); 5940 #endif 5941 }else{ 5942 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 5943 } 5944 if( (pLoop->wsFlags & WHERE_IN_ABLE)!=0 && pLevel->u.in.nIn>0 ){ 5945 struct InLoop *pIn; 5946 int j; 5947 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 5948 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 5949 assert( sqlite3VdbeGetOp(v, pIn->addrInTop+1)->opcode==OP_IsNull 5950 || pParse->db->mallocFailed ); 5951 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 5952 if( pIn->eEndLoopOp!=OP_Noop ){ 5953 if( pIn->nPrefix ){ 5954 int bEarlyOut = 5955 (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 5956 && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0; 5957 if( pLevel->iLeftJoin ){ 5958 /* For LEFT JOIN queries, cursor pIn->iCur may not have been 5959 ** opened yet. This occurs for WHERE clauses such as 5960 ** "a = ? AND b IN (...)", where the index is on (a, b). If 5961 ** the RHS of the (a=?) is NULL, then the "b IN (...)" may 5962 ** never have been coded, but the body of the loop run to 5963 ** return the null-row. So, if the cursor is not open yet, 5964 ** jump over the OP_Next or OP_Prev instruction about to 5965 ** be coded. */ 5966 sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur, 5967 sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut); 5968 VdbeCoverage(v); 5969 } 5970 if( bEarlyOut ){ 5971 sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur, 5972 sqlite3VdbeCurrentAddr(v)+2, 5973 pIn->iBase, pIn->nPrefix); 5974 VdbeCoverage(v); 5975 /* Retarget the OP_IsNull against the left operand of IN so 5976 ** it jumps past the OP_IfNoHope. This is because the 5977 ** OP_IsNull also bypasses the OP_Affinity opcode that is 5978 ** required by OP_IfNoHope. */ 5979 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 5980 } 5981 } 5982 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); 5983 VdbeCoverage(v); 5984 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev); 5985 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next); 5986 } 5987 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 5988 } 5989 } 5990 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 5991 if( pLevel->addrSkip ){ 5992 sqlite3VdbeGoto(v, pLevel->addrSkip); 5993 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); 5994 sqlite3VdbeJumpHere(v, pLevel->addrSkip); 5995 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); 5996 } 5997 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 5998 if( pLevel->addrLikeRep ){ 5999 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1), 6000 pLevel->addrLikeRep); 6001 VdbeCoverage(v); 6002 } 6003 #endif 6004 if( pLevel->iLeftJoin ){ 6005 int ws = pLoop->wsFlags; 6006 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); 6007 assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 ); 6008 if( (ws & WHERE_IDX_ONLY)==0 ){ 6009 assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor ); 6010 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur); 6011 } 6012 if( (ws & WHERE_INDEXED) 6013 || ((ws & WHERE_MULTI_OR) && pLevel->u.pCoveringIdx) 6014 ){ 6015 if( ws & WHERE_MULTI_OR ){ 6016 Index *pIx = pLevel->u.pCoveringIdx; 6017 int iDb = sqlite3SchemaToIndex(db, pIx->pSchema); 6018 sqlite3VdbeAddOp3(v, OP_ReopenIdx, pLevel->iIdxCur, pIx->tnum, iDb); 6019 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 6020 } 6021 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 6022 } 6023 if( pLevel->op==OP_Return ){ 6024 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); 6025 }else{ 6026 sqlite3VdbeGoto(v, pLevel->addrFirst); 6027 } 6028 sqlite3VdbeJumpHere(v, addr); 6029 } 6030 VdbeModuleComment((v, "End WHERE-loop%d: %s", i, 6031 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); 6032 } 6033 6034 /* The "break" point is here, just past the end of the outer loop. 6035 ** Set it. 6036 */ 6037 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 6038 6039 assert( pWInfo->nLevel<=pTabList->nSrc ); 6040 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ 6041 int k, last; 6042 VdbeOp *pOp, *pLastOp; 6043 Index *pIdx = 0; 6044 SrcItem *pTabItem = &pTabList->a[pLevel->iFrom]; 6045 Table *pTab = pTabItem->pTab; 6046 assert( pTab!=0 ); 6047 pLoop = pLevel->pWLoop; 6048 6049 /* For a co-routine, change all OP_Column references to the table of 6050 ** the co-routine into OP_Copy of result contained in a register. 6051 ** OP_Rowid becomes OP_Null. 6052 */ 6053 if( pTabItem->fg.viaCoroutine ){ 6054 testcase( pParse->db->mallocFailed ); 6055 translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur, 6056 pTabItem->regResult, 0); 6057 continue; 6058 } 6059 6060 #ifdef SQLITE_ENABLE_EARLY_CURSOR_CLOSE 6061 /* Close all of the cursors that were opened by sqlite3WhereBegin. 6062 ** Except, do not close cursors that will be reused by the OR optimization 6063 ** (WHERE_OR_SUBCLAUSE). And do not close the OP_OpenWrite cursors 6064 ** created for the ONEPASS optimization. 6065 */ 6066 if( (pTab->tabFlags & TF_Ephemeral)==0 6067 && !IsView(pTab) 6068 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 6069 ){ 6070 int ws = pLoop->wsFlags; 6071 if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){ 6072 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); 6073 } 6074 if( (ws & WHERE_INDEXED)!=0 6075 && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0 6076 && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1] 6077 ){ 6078 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); 6079 } 6080 } 6081 #endif 6082 6083 /* If this scan uses an index, make VDBE code substitutions to read data 6084 ** from the index instead of from the table where possible. In some cases 6085 ** this optimization prevents the table from ever being read, which can 6086 ** yield a significant performance boost. 6087 ** 6088 ** Calls to the code generator in between sqlite3WhereBegin and 6089 ** sqlite3WhereEnd will have created code that references the table 6090 ** directly. This loop scans all that code looking for opcodes 6091 ** that reference the table and converts them into opcodes that 6092 ** reference the index. 6093 */ 6094 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ 6095 pIdx = pLoop->u.btree.pIndex; 6096 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ 6097 pIdx = pLevel->u.pCoveringIdx; 6098 } 6099 if( pIdx 6100 && !db->mallocFailed 6101 ){ 6102 if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){ 6103 last = iEnd; 6104 }else{ 6105 last = pWInfo->iEndWhere; 6106 } 6107 k = pLevel->addrBody + 1; 6108 #ifdef SQLITE_DEBUG 6109 if( db->flags & SQLITE_VdbeAddopTrace ){ 6110 printf("TRANSLATE opcodes in range %d..%d\n", k, last-1); 6111 } 6112 /* Proof that the "+1" on the k value above is safe */ 6113 pOp = sqlite3VdbeGetOp(v, k - 1); 6114 assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur ); 6115 assert( pOp->opcode!=OP_Rowid || pOp->p1!=pLevel->iTabCur ); 6116 assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur ); 6117 #endif 6118 pOp = sqlite3VdbeGetOp(v, k); 6119 pLastOp = pOp + (last - k); 6120 assert( pOp<=pLastOp ); 6121 do{ 6122 if( pOp->p1!=pLevel->iTabCur ){ 6123 /* no-op */ 6124 }else if( pOp->opcode==OP_Column 6125 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 6126 || pOp->opcode==OP_Offset 6127 #endif 6128 ){ 6129 int x = pOp->p2; 6130 assert( pIdx->pTable==pTab ); 6131 if( !HasRowid(pTab) ){ 6132 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 6133 x = pPk->aiColumn[x]; 6134 assert( x>=0 ); 6135 }else{ 6136 testcase( x!=sqlite3StorageColumnToTable(pTab,x) ); 6137 x = sqlite3StorageColumnToTable(pTab,x); 6138 } 6139 x = sqlite3TableColumnToIndex(pIdx, x); 6140 if( x>=0 ){ 6141 pOp->p2 = x; 6142 pOp->p1 = pLevel->iIdxCur; 6143 OpcodeRewriteTrace(db, k, pOp); 6144 } 6145 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 6146 || pWInfo->eOnePass ); 6147 }else if( pOp->opcode==OP_Rowid ){ 6148 pOp->p1 = pLevel->iIdxCur; 6149 pOp->opcode = OP_IdxRowid; 6150 OpcodeRewriteTrace(db, k, pOp); 6151 }else if( pOp->opcode==OP_IfNullRow ){ 6152 pOp->p1 = pLevel->iIdxCur; 6153 OpcodeRewriteTrace(db, k, pOp); 6154 } 6155 #ifdef SQLITE_DEBUG 6156 k++; 6157 #endif 6158 }while( (++pOp)<pLastOp ); 6159 #ifdef SQLITE_DEBUG 6160 if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n"); 6161 #endif 6162 } 6163 } 6164 6165 /* Final cleanup 6166 */ 6167 if( pWInfo->pExprMods ) whereUndoExprMods(pWInfo); 6168 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 6169 whereInfoFree(db, pWInfo); 6170 return; 6171 } 6172