xref: /sqlite-3.40.0/src/where.c (revision de033d07)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /*
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly.  The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
26 **
27 ** This object is not an API and can be changed from one release to the
28 ** next.  As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
30 */
31 typedef struct HiddenIndexInfo HiddenIndexInfo;
32 struct HiddenIndexInfo {
33   WhereClause *pWC;        /* The Where clause being analyzed */
34   Parse *pParse;           /* The parsing context */
35   int eDistinct;           /* Value to return from sqlite3_vtab_distinct() */
36   u32 mIn;                 /* Mask of terms that are <col> IN (...) */
37   u32 mHandleIn;           /* Terms that vtab will handle as <col> IN (...) */
38   sqlite3_value *aRhs[1];  /* RHS values for constraints. MUST BE LAST
39                            ** because extra space is allocated to hold up
40                            ** to nTerm such values */
41 };
42 
43 /* Forward declaration of methods */
44 static int whereLoopResize(sqlite3*, WhereLoop*, int);
45 
46 /*
47 ** Return the estimated number of output rows from a WHERE clause
48 */
49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
50   return pWInfo->nRowOut;
51 }
52 
53 /*
54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
55 ** WHERE clause returns outputs for DISTINCT processing.
56 */
57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
58   return pWInfo->eDistinct;
59 }
60 
61 /*
62 ** Return the number of ORDER BY terms that are satisfied by the
63 ** WHERE clause.  A return of 0 means that the output must be
64 ** completely sorted.  A return equal to the number of ORDER BY
65 ** terms means that no sorting is needed at all.  A return that
66 ** is positive but less than the number of ORDER BY terms means that
67 ** block sorting is required.
68 */
69 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
70   return pWInfo->nOBSat;
71 }
72 
73 /*
74 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known
75 ** to emit rows in increasing order, and if the last row emitted by the
76 ** inner-most loop did not fit within the sorter, then we can skip all
77 ** subsequent rows for the current iteration of the inner loop (because they
78 ** will not fit in the sorter either) and continue with the second inner
79 ** loop - the loop immediately outside the inner-most.
80 **
81 ** When a row does not fit in the sorter (because the sorter already
82 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
83 ** label returned by this function.
84 **
85 ** If the ORDER BY LIMIT optimization applies, the jump destination should
86 ** be the continuation for the second-inner-most loop.  If the ORDER BY
87 ** LIMIT optimization does not apply, then the jump destination should
88 ** be the continuation for the inner-most loop.
89 **
90 ** It is always safe for this routine to return the continuation of the
91 ** inner-most loop, in the sense that a correct answer will result.
92 ** Returning the continuation the second inner loop is an optimization
93 ** that might make the code run a little faster, but should not change
94 ** the final answer.
95 */
96 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){
97   WhereLevel *pInner;
98   if( !pWInfo->bOrderedInnerLoop ){
99     /* The ORDER BY LIMIT optimization does not apply.  Jump to the
100     ** continuation of the inner-most loop. */
101     return pWInfo->iContinue;
102   }
103   pInner = &pWInfo->a[pWInfo->nLevel-1];
104   assert( pInner->addrNxt!=0 );
105   return pInner->pRJ ? pWInfo->iContinue : pInner->addrNxt;
106 }
107 
108 /*
109 ** While generating code for the min/max optimization, after handling
110 ** the aggregate-step call to min() or max(), check to see if any
111 ** additional looping is required.  If the output order is such that
112 ** we are certain that the correct answer has already been found, then
113 ** code an OP_Goto to by pass subsequent processing.
114 **
115 ** Any extra OP_Goto that is coded here is an optimization.  The
116 ** correct answer should be obtained regardless.  This OP_Goto just
117 ** makes the answer appear faster.
118 */
119 void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){
120   WhereLevel *pInner;
121   int i;
122   if( !pWInfo->bOrderedInnerLoop ) return;
123   if( pWInfo->nOBSat==0 ) return;
124   for(i=pWInfo->nLevel-1; i>=0; i--){
125     pInner = &pWInfo->a[i];
126     if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){
127       sqlite3VdbeGoto(v, pInner->addrNxt);
128       return;
129     }
130   }
131   sqlite3VdbeGoto(v, pWInfo->iBreak);
132 }
133 
134 /*
135 ** Return the VDBE address or label to jump to in order to continue
136 ** immediately with the next row of a WHERE clause.
137 */
138 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
139   assert( pWInfo->iContinue!=0 );
140   return pWInfo->iContinue;
141 }
142 
143 /*
144 ** Return the VDBE address or label to jump to in order to break
145 ** out of a WHERE loop.
146 */
147 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
148   return pWInfo->iBreak;
149 }
150 
151 /*
152 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
153 ** operate directly on the rowids returned by a WHERE clause.  Return
154 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
155 ** a single row is to be changed.  Return ONEPASS_MULTI (2) if the one-pass
156 ** optimization can be used on multiple
157 **
158 ** If the ONEPASS optimization is used (if this routine returns true)
159 ** then also write the indices of open cursors used by ONEPASS
160 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
161 ** table and iaCur[1] gets the cursor used by an auxiliary index.
162 ** Either value may be -1, indicating that cursor is not used.
163 ** Any cursors returned will have been opened for writing.
164 **
165 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
166 ** unable to use the ONEPASS optimization.
167 */
168 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
169   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
170 #ifdef WHERETRACE_ENABLED
171   if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
172     sqlite3DebugPrintf("%s cursors: %d %d\n",
173          pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
174          aiCur[0], aiCur[1]);
175   }
176 #endif
177   return pWInfo->eOnePass;
178 }
179 
180 /*
181 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move
182 ** the data cursor to the row selected by the index cursor.
183 */
184 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){
185   return pWInfo->bDeferredSeek;
186 }
187 
188 /*
189 ** Move the content of pSrc into pDest
190 */
191 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
192   pDest->n = pSrc->n;
193   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
194 }
195 
196 /*
197 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
198 **
199 ** The new entry might overwrite an existing entry, or it might be
200 ** appended, or it might be discarded.  Do whatever is the right thing
201 ** so that pSet keeps the N_OR_COST best entries seen so far.
202 */
203 static int whereOrInsert(
204   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
205   Bitmask prereq,        /* Prerequisites of the new entry */
206   LogEst rRun,           /* Run-cost of the new entry */
207   LogEst nOut            /* Number of outputs for the new entry */
208 ){
209   u16 i;
210   WhereOrCost *p;
211   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
212     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
213       goto whereOrInsert_done;
214     }
215     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
216       return 0;
217     }
218   }
219   if( pSet->n<N_OR_COST ){
220     p = &pSet->a[pSet->n++];
221     p->nOut = nOut;
222   }else{
223     p = pSet->a;
224     for(i=1; i<pSet->n; i++){
225       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
226     }
227     if( p->rRun<=rRun ) return 0;
228   }
229 whereOrInsert_done:
230   p->prereq = prereq;
231   p->rRun = rRun;
232   if( p->nOut>nOut ) p->nOut = nOut;
233   return 1;
234 }
235 
236 /*
237 ** Return the bitmask for the given cursor number.  Return 0 if
238 ** iCursor is not in the set.
239 */
240 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
241   int i;
242   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
243   assert( pMaskSet->n>0 || pMaskSet->ix[0]<0 );
244   assert( iCursor>=-1 );
245   if( pMaskSet->ix[0]==iCursor ){
246     return 1;
247   }
248   for(i=1; i<pMaskSet->n; i++){
249     if( pMaskSet->ix[i]==iCursor ){
250       return MASKBIT(i);
251     }
252   }
253   return 0;
254 }
255 
256 /* Allocate memory that is automatically freed when pWInfo is freed.
257 */
258 void *sqlite3WhereMalloc(WhereInfo *pWInfo, u64 nByte){
259   WhereMemBlock *pBlock;
260   pBlock = sqlite3DbMallocRawNN(pWInfo->pParse->db, nByte+sizeof(*pBlock));
261   if( pBlock ){
262     pBlock->pNext = pWInfo->pMemToFree;
263     pBlock->sz = nByte;
264     pWInfo->pMemToFree = pBlock;
265     pBlock++;
266   }
267   return (void*)pBlock;
268 }
269 void *sqlite3WhereRealloc(WhereInfo *pWInfo, void *pOld, u64 nByte){
270   void *pNew = sqlite3WhereMalloc(pWInfo, nByte);
271   if( pNew && pOld ){
272     WhereMemBlock *pOldBlk = (WhereMemBlock*)pOld;
273     pOldBlk--;
274     assert( pOldBlk->sz<nByte );
275     memcpy(pNew, pOld, pOldBlk->sz);
276   }
277   return pNew;
278 }
279 
280 /*
281 ** Create a new mask for cursor iCursor.
282 **
283 ** There is one cursor per table in the FROM clause.  The number of
284 ** tables in the FROM clause is limited by a test early in the
285 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
286 ** array will never overflow.
287 */
288 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
289   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
290   pMaskSet->ix[pMaskSet->n++] = iCursor;
291 }
292 
293 /*
294 ** If the right-hand branch of the expression is a TK_COLUMN, then return
295 ** a pointer to the right-hand branch.  Otherwise, return NULL.
296 */
297 static Expr *whereRightSubexprIsColumn(Expr *p){
298   p = sqlite3ExprSkipCollateAndLikely(p->pRight);
299   if( ALWAYS(p!=0) && p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){
300     return p;
301   }
302   return 0;
303 }
304 
305 /*
306 ** Advance to the next WhereTerm that matches according to the criteria
307 ** established when the pScan object was initialized by whereScanInit().
308 ** Return NULL if there are no more matching WhereTerms.
309 */
310 static WhereTerm *whereScanNext(WhereScan *pScan){
311   int iCur;            /* The cursor on the LHS of the term */
312   i16 iColumn;         /* The column on the LHS of the term.  -1 for IPK */
313   Expr *pX;            /* An expression being tested */
314   WhereClause *pWC;    /* Shorthand for pScan->pWC */
315   WhereTerm *pTerm;    /* The term being tested */
316   int k = pScan->k;    /* Where to start scanning */
317 
318   assert( pScan->iEquiv<=pScan->nEquiv );
319   pWC = pScan->pWC;
320   while(1){
321     iColumn = pScan->aiColumn[pScan->iEquiv-1];
322     iCur = pScan->aiCur[pScan->iEquiv-1];
323     assert( pWC!=0 );
324     assert( iCur>=0 );
325     do{
326       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
327         assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 || pTerm->leftCursor<0 );
328         if( pTerm->leftCursor==iCur
329          && pTerm->u.x.leftColumn==iColumn
330          && (iColumn!=XN_EXPR
331              || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
332                                        pScan->pIdxExpr,iCur)==0)
333          && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_OuterON))
334         ){
335           if( (pTerm->eOperator & WO_EQUIV)!=0
336            && pScan->nEquiv<ArraySize(pScan->aiCur)
337            && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0
338           ){
339             int j;
340             for(j=0; j<pScan->nEquiv; j++){
341               if( pScan->aiCur[j]==pX->iTable
342                && pScan->aiColumn[j]==pX->iColumn ){
343                   break;
344               }
345             }
346             if( j==pScan->nEquiv ){
347               pScan->aiCur[j] = pX->iTable;
348               pScan->aiColumn[j] = pX->iColumn;
349               pScan->nEquiv++;
350             }
351           }
352           if( (pTerm->eOperator & pScan->opMask)!=0 ){
353             /* Verify the affinity and collating sequence match */
354             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
355               CollSeq *pColl;
356               Parse *pParse = pWC->pWInfo->pParse;
357               pX = pTerm->pExpr;
358               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
359                 continue;
360               }
361               assert(pX->pLeft);
362               pColl = sqlite3ExprCompareCollSeq(pParse, pX);
363               if( pColl==0 ) pColl = pParse->db->pDfltColl;
364               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
365                 continue;
366               }
367             }
368             if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
369              && (pX = pTerm->pExpr->pRight, ALWAYS(pX!=0))
370              && pX->op==TK_COLUMN
371              && pX->iTable==pScan->aiCur[0]
372              && pX->iColumn==pScan->aiColumn[0]
373             ){
374               testcase( pTerm->eOperator & WO_IS );
375               continue;
376             }
377             pScan->pWC = pWC;
378             pScan->k = k+1;
379 #ifdef WHERETRACE_ENABLED
380             if( sqlite3WhereTrace & 0x20000 ){
381               int ii;
382               sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d",
383                  pTerm, pScan->nEquiv);
384               for(ii=0; ii<pScan->nEquiv; ii++){
385                 sqlite3DebugPrintf(" {%d:%d}",
386                    pScan->aiCur[ii], pScan->aiColumn[ii]);
387               }
388               sqlite3DebugPrintf("\n");
389             }
390 #endif
391             return pTerm;
392           }
393         }
394       }
395       pWC = pWC->pOuter;
396       k = 0;
397     }while( pWC!=0 );
398     if( pScan->iEquiv>=pScan->nEquiv ) break;
399     pWC = pScan->pOrigWC;
400     k = 0;
401     pScan->iEquiv++;
402   }
403   return 0;
404 }
405 
406 /*
407 ** This is whereScanInit() for the case of an index on an expression.
408 ** It is factored out into a separate tail-recursion subroutine so that
409 ** the normal whereScanInit() routine, which is a high-runner, does not
410 ** need to push registers onto the stack as part of its prologue.
411 */
412 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){
413   pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr);
414   return whereScanNext(pScan);
415 }
416 
417 /*
418 ** Initialize a WHERE clause scanner object.  Return a pointer to the
419 ** first match.  Return NULL if there are no matches.
420 **
421 ** The scanner will be searching the WHERE clause pWC.  It will look
422 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
423 ** iCur.   Or if pIdx!=0 then X is column iColumn of index pIdx.  pIdx
424 ** must be one of the indexes of table iCur.
425 **
426 ** The <op> must be one of the operators described by opMask.
427 **
428 ** If the search is for X and the WHERE clause contains terms of the
429 ** form X=Y then this routine might also return terms of the form
430 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
431 ** but is enough to handle most commonly occurring SQL statements.
432 **
433 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
434 ** index pIdx.
435 */
436 static WhereTerm *whereScanInit(
437   WhereScan *pScan,       /* The WhereScan object being initialized */
438   WhereClause *pWC,       /* The WHERE clause to be scanned */
439   int iCur,               /* Cursor to scan for */
440   int iColumn,            /* Column to scan for */
441   u32 opMask,             /* Operator(s) to scan for */
442   Index *pIdx             /* Must be compatible with this index */
443 ){
444   pScan->pOrigWC = pWC;
445   pScan->pWC = pWC;
446   pScan->pIdxExpr = 0;
447   pScan->idxaff = 0;
448   pScan->zCollName = 0;
449   pScan->opMask = opMask;
450   pScan->k = 0;
451   pScan->aiCur[0] = iCur;
452   pScan->nEquiv = 1;
453   pScan->iEquiv = 1;
454   if( pIdx ){
455     int j = iColumn;
456     iColumn = pIdx->aiColumn[j];
457     if( iColumn==pIdx->pTable->iPKey ){
458       iColumn = XN_ROWID;
459     }else if( iColumn>=0 ){
460       pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
461       pScan->zCollName = pIdx->azColl[j];
462     }else if( iColumn==XN_EXPR ){
463       pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
464       pScan->zCollName = pIdx->azColl[j];
465       pScan->aiColumn[0] = XN_EXPR;
466       return whereScanInitIndexExpr(pScan);
467     }
468   }else if( iColumn==XN_EXPR ){
469     return 0;
470   }
471   pScan->aiColumn[0] = iColumn;
472   return whereScanNext(pScan);
473 }
474 
475 /*
476 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
477 ** where X is a reference to the iColumn of table iCur or of index pIdx
478 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
479 ** the op parameter.  Return a pointer to the term.  Return 0 if not found.
480 **
481 ** If pIdx!=0 then it must be one of the indexes of table iCur.
482 ** Search for terms matching the iColumn-th column of pIdx
483 ** rather than the iColumn-th column of table iCur.
484 **
485 ** The term returned might by Y=<expr> if there is another constraint in
486 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
487 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
488 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
489 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
490 ** other equivalent values.  Hence a search for X will return <expr> if X=A1
491 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
492 **
493 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
494 ** then try for the one with no dependencies on <expr> - in other words where
495 ** <expr> is a constant expression of some kind.  Only return entries of
496 ** the form "X <op> Y" where Y is a column in another table if no terms of
497 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
498 ** exist, try to return a term that does not use WO_EQUIV.
499 */
500 WhereTerm *sqlite3WhereFindTerm(
501   WhereClause *pWC,     /* The WHERE clause to be searched */
502   int iCur,             /* Cursor number of LHS */
503   int iColumn,          /* Column number of LHS */
504   Bitmask notReady,     /* RHS must not overlap with this mask */
505   u32 op,               /* Mask of WO_xx values describing operator */
506   Index *pIdx           /* Must be compatible with this index, if not NULL */
507 ){
508   WhereTerm *pResult = 0;
509   WhereTerm *p;
510   WhereScan scan;
511 
512   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
513   op &= WO_EQ|WO_IS;
514   while( p ){
515     if( (p->prereqRight & notReady)==0 ){
516       if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
517         testcase( p->eOperator & WO_IS );
518         return p;
519       }
520       if( pResult==0 ) pResult = p;
521     }
522     p = whereScanNext(&scan);
523   }
524   return pResult;
525 }
526 
527 /*
528 ** This function searches pList for an entry that matches the iCol-th column
529 ** of index pIdx.
530 **
531 ** If such an expression is found, its index in pList->a[] is returned. If
532 ** no expression is found, -1 is returned.
533 */
534 static int findIndexCol(
535   Parse *pParse,                  /* Parse context */
536   ExprList *pList,                /* Expression list to search */
537   int iBase,                      /* Cursor for table associated with pIdx */
538   Index *pIdx,                    /* Index to match column of */
539   int iCol                        /* Column of index to match */
540 ){
541   int i;
542   const char *zColl = pIdx->azColl[iCol];
543 
544   for(i=0; i<pList->nExpr; i++){
545     Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr);
546     if( ALWAYS(p!=0)
547      && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN)
548      && p->iColumn==pIdx->aiColumn[iCol]
549      && p->iTable==iBase
550     ){
551       CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
552       if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
553         return i;
554       }
555     }
556   }
557 
558   return -1;
559 }
560 
561 /*
562 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
563 */
564 static int indexColumnNotNull(Index *pIdx, int iCol){
565   int j;
566   assert( pIdx!=0 );
567   assert( iCol>=0 && iCol<pIdx->nColumn );
568   j = pIdx->aiColumn[iCol];
569   if( j>=0 ){
570     return pIdx->pTable->aCol[j].notNull;
571   }else if( j==(-1) ){
572     return 1;
573   }else{
574     assert( j==(-2) );
575     return 0;  /* Assume an indexed expression can always yield a NULL */
576 
577   }
578 }
579 
580 /*
581 ** Return true if the DISTINCT expression-list passed as the third argument
582 ** is redundant.
583 **
584 ** A DISTINCT list is redundant if any subset of the columns in the
585 ** DISTINCT list are collectively unique and individually non-null.
586 */
587 static int isDistinctRedundant(
588   Parse *pParse,            /* Parsing context */
589   SrcList *pTabList,        /* The FROM clause */
590   WhereClause *pWC,         /* The WHERE clause */
591   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
592 ){
593   Table *pTab;
594   Index *pIdx;
595   int i;
596   int iBase;
597 
598   /* If there is more than one table or sub-select in the FROM clause of
599   ** this query, then it will not be possible to show that the DISTINCT
600   ** clause is redundant. */
601   if( pTabList->nSrc!=1 ) return 0;
602   iBase = pTabList->a[0].iCursor;
603   pTab = pTabList->a[0].pTab;
604 
605   /* If any of the expressions is an IPK column on table iBase, then return
606   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
607   ** current SELECT is a correlated sub-query.
608   */
609   for(i=0; i<pDistinct->nExpr; i++){
610     Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr);
611     if( NEVER(p==0) ) continue;
612     if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue;
613     if( p->iTable==iBase && p->iColumn<0 ) return 1;
614   }
615 
616   /* Loop through all indices on the table, checking each to see if it makes
617   ** the DISTINCT qualifier redundant. It does so if:
618   **
619   **   1. The index is itself UNIQUE, and
620   **
621   **   2. All of the columns in the index are either part of the pDistinct
622   **      list, or else the WHERE clause contains a term of the form "col=X",
623   **      where X is a constant value. The collation sequences of the
624   **      comparison and select-list expressions must match those of the index.
625   **
626   **   3. All of those index columns for which the WHERE clause does not
627   **      contain a "col=X" term are subject to a NOT NULL constraint.
628   */
629   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
630     if( !IsUniqueIndex(pIdx) ) continue;
631     if( pIdx->pPartIdxWhere ) continue;
632     for(i=0; i<pIdx->nKeyCol; i++){
633       if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
634         if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
635         if( indexColumnNotNull(pIdx, i)==0 ) break;
636       }
637     }
638     if( i==pIdx->nKeyCol ){
639       /* This index implies that the DISTINCT qualifier is redundant. */
640       return 1;
641     }
642   }
643 
644   return 0;
645 }
646 
647 
648 /*
649 ** Estimate the logarithm of the input value to base 2.
650 */
651 static LogEst estLog(LogEst N){
652   return N<=10 ? 0 : sqlite3LogEst(N) - 33;
653 }
654 
655 /*
656 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
657 **
658 ** This routine runs over generated VDBE code and translates OP_Column
659 ** opcodes into OP_Copy when the table is being accessed via co-routine
660 ** instead of via table lookup.
661 **
662 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
663 ** cursor iTabCur are transformed into OP_Sequence opcode for the
664 ** iAutoidxCur cursor, in order to generate unique rowids for the
665 ** automatic index being generated.
666 */
667 static void translateColumnToCopy(
668   Parse *pParse,      /* Parsing context */
669   int iStart,         /* Translate from this opcode to the end */
670   int iTabCur,        /* OP_Column/OP_Rowid references to this table */
671   int iRegister,      /* The first column is in this register */
672   int iAutoidxCur     /* If non-zero, cursor of autoindex being generated */
673 ){
674   Vdbe *v = pParse->pVdbe;
675   VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
676   int iEnd = sqlite3VdbeCurrentAddr(v);
677   if( pParse->db->mallocFailed ) return;
678   for(; iStart<iEnd; iStart++, pOp++){
679     if( pOp->p1!=iTabCur ) continue;
680     if( pOp->opcode==OP_Column ){
681       pOp->opcode = OP_Copy;
682       pOp->p1 = pOp->p2 + iRegister;
683       pOp->p2 = pOp->p3;
684       pOp->p3 = 0;
685       pOp->p5 = 2;  /* Cause the MEM_Subtype flag to be cleared */
686     }else if( pOp->opcode==OP_Rowid ){
687       pOp->opcode = OP_Sequence;
688       pOp->p1 = iAutoidxCur;
689 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
690       if( iAutoidxCur==0 ){
691         pOp->opcode = OP_Null;
692         pOp->p3 = 0;
693       }
694 #endif
695     }
696   }
697 }
698 
699 /*
700 ** Two routines for printing the content of an sqlite3_index_info
701 ** structure.  Used for testing and debugging only.  If neither
702 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
703 ** are no-ops.
704 */
705 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
706 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){
707   int i;
708   if( !sqlite3WhereTrace ) return;
709   for(i=0; i<p->nConstraint; i++){
710     sqlite3DebugPrintf(
711        "  constraint[%d]: col=%d termid=%d op=%d usabled=%d collseq=%s\n",
712        i,
713        p->aConstraint[i].iColumn,
714        p->aConstraint[i].iTermOffset,
715        p->aConstraint[i].op,
716        p->aConstraint[i].usable,
717        sqlite3_vtab_collation(p,i));
718   }
719   for(i=0; i<p->nOrderBy; i++){
720     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
721        i,
722        p->aOrderBy[i].iColumn,
723        p->aOrderBy[i].desc);
724   }
725 }
726 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){
727   int i;
728   if( !sqlite3WhereTrace ) return;
729   for(i=0; i<p->nConstraint; i++){
730     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
731        i,
732        p->aConstraintUsage[i].argvIndex,
733        p->aConstraintUsage[i].omit);
734   }
735   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
736   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
737   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
738   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
739   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
740 }
741 #else
742 #define whereTraceIndexInfoInputs(A)
743 #define whereTraceIndexInfoOutputs(A)
744 #endif
745 
746 /*
747 ** We know that pSrc is an operand of an outer join.  Return true if
748 ** pTerm is a constraint that is compatible with that join.
749 **
750 ** pTerm must be EP_OuterON if pSrc is the right operand of an
751 ** outer join.  pTerm can be either EP_OuterON or EP_InnerON if pSrc
752 ** is the left operand of a RIGHT join.
753 **
754 ** See https://sqlite.org/forum/forumpost/206d99a16dd9212f
755 ** for an example of a WHERE clause constraints that may not be used on
756 ** the right table of a RIGHT JOIN because the constraint implies a
757 ** not-NULL condition on the left table of the RIGHT JOIN.
758 */
759 static int constraintCompatibleWithOuterJoin(
760   const WhereTerm *pTerm,       /* WHERE clause term to check */
761   const SrcItem *pSrc           /* Table we are trying to access */
762 ){
763   assert( (pSrc->fg.jointype&(JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ); /* By caller */
764   testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT );
765   testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ );
766   testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) )
767   testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) );
768   if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON)
769    || pTerm->pExpr->w.iJoin != pSrc->iCursor
770   ){
771     return 0;
772   }
773   if( (pSrc->fg.jointype & (JT_LEFT|JT_RIGHT))!=0
774    && ExprHasProperty(pTerm->pExpr, EP_InnerON)
775   ){
776     return 0;
777   }
778   return 1;
779 }
780 
781 
782 
783 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
784 /*
785 ** Return TRUE if the WHERE clause term pTerm is of a form where it
786 ** could be used with an index to access pSrc, assuming an appropriate
787 ** index existed.
788 */
789 static int termCanDriveIndex(
790   const WhereTerm *pTerm,        /* WHERE clause term to check */
791   const SrcItem *pSrc,           /* Table we are trying to access */
792   const Bitmask notReady         /* Tables in outer loops of the join */
793 ){
794   char aff;
795   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
796   if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
797   assert( (pSrc->fg.jointype & JT_RIGHT)==0 );
798   if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0
799    && !constraintCompatibleWithOuterJoin(pTerm,pSrc)
800   ){
801     return 0;  /* See https://sqlite.org/forum/forumpost/51e6959f61 */
802   }
803   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
804   assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
805   if( pTerm->u.x.leftColumn<0 ) return 0;
806   aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity;
807   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
808   testcase( pTerm->pExpr->op==TK_IS );
809   return 1;
810 }
811 #endif
812 
813 
814 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
815 /*
816 ** Generate code to construct the Index object for an automatic index
817 ** and to set up the WhereLevel object pLevel so that the code generator
818 ** makes use of the automatic index.
819 */
820 static SQLITE_NOINLINE void constructAutomaticIndex(
821   Parse *pParse,              /* The parsing context */
822   const WhereClause *pWC,     /* The WHERE clause */
823   const SrcItem *pSrc,        /* The FROM clause term to get the next index */
824   const Bitmask notReady,     /* Mask of cursors that are not available */
825   WhereLevel *pLevel          /* Write new index here */
826 ){
827   int nKeyCol;                /* Number of columns in the constructed index */
828   WhereTerm *pTerm;           /* A single term of the WHERE clause */
829   WhereTerm *pWCEnd;          /* End of pWC->a[] */
830   Index *pIdx;                /* Object describing the transient index */
831   Vdbe *v;                    /* Prepared statement under construction */
832   int addrInit;               /* Address of the initialization bypass jump */
833   Table *pTable;              /* The table being indexed */
834   int addrTop;                /* Top of the index fill loop */
835   int regRecord;              /* Register holding an index record */
836   int n;                      /* Column counter */
837   int i;                      /* Loop counter */
838   int mxBitCol;               /* Maximum column in pSrc->colUsed */
839   CollSeq *pColl;             /* Collating sequence to on a column */
840   WhereLoop *pLoop;           /* The Loop object */
841   char *zNotUsed;             /* Extra space on the end of pIdx */
842   Bitmask idxCols;            /* Bitmap of columns used for indexing */
843   Bitmask extraCols;          /* Bitmap of additional columns */
844   u8 sentWarning = 0;         /* True if a warnning has been issued */
845   Expr *pPartial = 0;         /* Partial Index Expression */
846   int iContinue = 0;          /* Jump here to skip excluded rows */
847   SrcItem *pTabItem;          /* FROM clause term being indexed */
848   int addrCounter = 0;        /* Address where integer counter is initialized */
849   int regBase;                /* Array of registers where record is assembled */
850 
851   /* Generate code to skip over the creation and initialization of the
852   ** transient index on 2nd and subsequent iterations of the loop. */
853   v = pParse->pVdbe;
854   assert( v!=0 );
855   addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
856 
857   /* Count the number of columns that will be added to the index
858   ** and used to match WHERE clause constraints */
859   nKeyCol = 0;
860   pTable = pSrc->pTab;
861   pWCEnd = &pWC->a[pWC->nTerm];
862   pLoop = pLevel->pWLoop;
863   idxCols = 0;
864   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
865     Expr *pExpr = pTerm->pExpr;
866     /* Make the automatic index a partial index if there are terms in the
867     ** WHERE clause (or the ON clause of a LEFT join) that constrain which
868     ** rows of the target table (pSrc) that can be used. */
869     if( (pTerm->wtFlags & TERM_VIRTUAL)==0
870      && sqlite3ExprIsTableConstraint(pExpr, pSrc)
871     ){
872       pPartial = sqlite3ExprAnd(pParse, pPartial,
873                                 sqlite3ExprDup(pParse->db, pExpr, 0));
874     }
875     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
876       int iCol;
877       Bitmask cMask;
878       assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
879       iCol = pTerm->u.x.leftColumn;
880       cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
881       testcase( iCol==BMS );
882       testcase( iCol==BMS-1 );
883       if( !sentWarning ){
884         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
885             "automatic index on %s(%s)", pTable->zName,
886             pTable->aCol[iCol].zCnName);
887         sentWarning = 1;
888       }
889       if( (idxCols & cMask)==0 ){
890         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
891           goto end_auto_index_create;
892         }
893         pLoop->aLTerm[nKeyCol++] = pTerm;
894         idxCols |= cMask;
895       }
896     }
897   }
898   assert( nKeyCol>0 || pParse->db->mallocFailed );
899   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
900   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
901                      | WHERE_AUTO_INDEX;
902 
903   /* Count the number of additional columns needed to create a
904   ** covering index.  A "covering index" is an index that contains all
905   ** columns that are needed by the query.  With a covering index, the
906   ** original table never needs to be accessed.  Automatic indices must
907   ** be a covering index because the index will not be updated if the
908   ** original table changes and the index and table cannot both be used
909   ** if they go out of sync.
910   */
911   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
912   mxBitCol = MIN(BMS-1,pTable->nCol);
913   testcase( pTable->nCol==BMS-1 );
914   testcase( pTable->nCol==BMS-2 );
915   for(i=0; i<mxBitCol; i++){
916     if( extraCols & MASKBIT(i) ) nKeyCol++;
917   }
918   if( pSrc->colUsed & MASKBIT(BMS-1) ){
919     nKeyCol += pTable->nCol - BMS + 1;
920   }
921 
922   /* Construct the Index object to describe this index */
923   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
924   if( pIdx==0 ) goto end_auto_index_create;
925   pLoop->u.btree.pIndex = pIdx;
926   pIdx->zName = "auto-index";
927   pIdx->pTable = pTable;
928   n = 0;
929   idxCols = 0;
930   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
931     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
932       int iCol;
933       Bitmask cMask;
934       assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
935       iCol = pTerm->u.x.leftColumn;
936       cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
937       testcase( iCol==BMS-1 );
938       testcase( iCol==BMS );
939       if( (idxCols & cMask)==0 ){
940         Expr *pX = pTerm->pExpr;
941         idxCols |= cMask;
942         pIdx->aiColumn[n] = pTerm->u.x.leftColumn;
943         pColl = sqlite3ExprCompareCollSeq(pParse, pX);
944         assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */
945         pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
946         n++;
947       }
948     }
949   }
950   assert( (u32)n==pLoop->u.btree.nEq );
951 
952   /* Add additional columns needed to make the automatic index into
953   ** a covering index */
954   for(i=0; i<mxBitCol; i++){
955     if( extraCols & MASKBIT(i) ){
956       pIdx->aiColumn[n] = i;
957       pIdx->azColl[n] = sqlite3StrBINARY;
958       n++;
959     }
960   }
961   if( pSrc->colUsed & MASKBIT(BMS-1) ){
962     for(i=BMS-1; i<pTable->nCol; i++){
963       pIdx->aiColumn[n] = i;
964       pIdx->azColl[n] = sqlite3StrBINARY;
965       n++;
966     }
967   }
968   assert( n==nKeyCol );
969   pIdx->aiColumn[n] = XN_ROWID;
970   pIdx->azColl[n] = sqlite3StrBINARY;
971 
972   /* Create the automatic index */
973   assert( pLevel->iIdxCur>=0 );
974   pLevel->iIdxCur = pParse->nTab++;
975   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
976   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
977   VdbeComment((v, "for %s", pTable->zName));
978   if( OptimizationEnabled(pParse->db, SQLITE_BloomFilter) ){
979     pLevel->regFilter = ++pParse->nMem;
980     sqlite3VdbeAddOp2(v, OP_Blob, 10000, pLevel->regFilter);
981   }
982 
983   /* Fill the automatic index with content */
984   pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
985   if( pTabItem->fg.viaCoroutine ){
986     int regYield = pTabItem->regReturn;
987     addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
988     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
989     addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
990     VdbeCoverage(v);
991     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
992   }else{
993     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
994   }
995   if( pPartial ){
996     iContinue = sqlite3VdbeMakeLabel(pParse);
997     sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
998     pLoop->wsFlags |= WHERE_PARTIALIDX;
999   }
1000   regRecord = sqlite3GetTempReg(pParse);
1001   regBase = sqlite3GenerateIndexKey(
1002       pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
1003   );
1004   if( pLevel->regFilter ){
1005     sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0,
1006                          regBase, pLoop->u.btree.nEq);
1007   }
1008   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
1009   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1010   if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
1011   if( pTabItem->fg.viaCoroutine ){
1012     sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
1013     testcase( pParse->db->mallocFailed );
1014     assert( pLevel->iIdxCur>0 );
1015     translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
1016                           pTabItem->regResult, pLevel->iIdxCur);
1017     sqlite3VdbeGoto(v, addrTop);
1018     pTabItem->fg.viaCoroutine = 0;
1019   }else{
1020     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
1021     sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
1022   }
1023   sqlite3VdbeJumpHere(v, addrTop);
1024   sqlite3ReleaseTempReg(pParse, regRecord);
1025 
1026   /* Jump here when skipping the initialization */
1027   sqlite3VdbeJumpHere(v, addrInit);
1028 
1029 end_auto_index_create:
1030   sqlite3ExprDelete(pParse->db, pPartial);
1031 }
1032 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
1033 
1034 /*
1035 ** Generate bytecode that will initialize a Bloom filter that is appropriate
1036 ** for pLevel.
1037 **
1038 ** If there are inner loops within pLevel that have the WHERE_BLOOMFILTER
1039 ** flag set, initialize a Bloomfilter for them as well.  Except don't do
1040 ** this recursive initialization if the SQLITE_BloomPulldown optimization has
1041 ** been turned off.
1042 **
1043 ** When the Bloom filter is initialized, the WHERE_BLOOMFILTER flag is cleared
1044 ** from the loop, but the regFilter value is set to a register that implements
1045 ** the Bloom filter.  When regFilter is positive, the
1046 ** sqlite3WhereCodeOneLoopStart() will generate code to test the Bloom filter
1047 ** and skip the subsequence B-Tree seek if the Bloom filter indicates that
1048 ** no matching rows exist.
1049 **
1050 ** This routine may only be called if it has previously been determined that
1051 ** the loop would benefit from a Bloom filter, and the WHERE_BLOOMFILTER bit
1052 ** is set.
1053 */
1054 static SQLITE_NOINLINE void sqlite3ConstructBloomFilter(
1055   WhereInfo *pWInfo,    /* The WHERE clause */
1056   int iLevel,           /* Index in pWInfo->a[] that is pLevel */
1057   WhereLevel *pLevel,   /* Make a Bloom filter for this FROM term */
1058   Bitmask notReady      /* Loops that are not ready */
1059 ){
1060   int addrOnce;                        /* Address of opening OP_Once */
1061   int addrTop;                         /* Address of OP_Rewind */
1062   int addrCont;                        /* Jump here to skip a row */
1063   const WhereTerm *pTerm;              /* For looping over WHERE clause terms */
1064   const WhereTerm *pWCEnd;             /* Last WHERE clause term */
1065   Parse *pParse = pWInfo->pParse;      /* Parsing context */
1066   Vdbe *v = pParse->pVdbe;             /* VDBE under construction */
1067   WhereLoop *pLoop = pLevel->pWLoop;   /* The loop being coded */
1068   int iCur;                            /* Cursor for table getting the filter */
1069 
1070   assert( pLoop!=0 );
1071   assert( v!=0 );
1072   assert( pLoop->wsFlags & WHERE_BLOOMFILTER );
1073 
1074   addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1075   do{
1076     const SrcItem *pItem;
1077     const Table *pTab;
1078     u64 sz;
1079     sqlite3WhereExplainBloomFilter(pParse, pWInfo, pLevel);
1080     addrCont = sqlite3VdbeMakeLabel(pParse);
1081     iCur = pLevel->iTabCur;
1082     pLevel->regFilter = ++pParse->nMem;
1083 
1084     /* The Bloom filter is a Blob held in a register.  Initialize it
1085     ** to zero-filled blob of at least 80K bits, but maybe more if the
1086     ** estimated size of the table is larger.  We could actually
1087     ** measure the size of the table at run-time using OP_Count with
1088     ** P3==1 and use that value to initialize the blob.  But that makes
1089     ** testing complicated.  By basing the blob size on the value in the
1090     ** sqlite_stat1 table, testing is much easier.
1091     */
1092     pItem = &pWInfo->pTabList->a[pLevel->iFrom];
1093     assert( pItem!=0 );
1094     pTab = pItem->pTab;
1095     assert( pTab!=0 );
1096     sz = sqlite3LogEstToInt(pTab->nRowLogEst);
1097     if( sz<10000 ){
1098       sz = 10000;
1099     }else if( sz>10000000 ){
1100       sz = 10000000;
1101     }
1102     sqlite3VdbeAddOp2(v, OP_Blob, (int)sz, pLevel->regFilter);
1103 
1104     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
1105     pWCEnd = &pWInfo->sWC.a[pWInfo->sWC.nTerm];
1106     for(pTerm=pWInfo->sWC.a; pTerm<pWCEnd; pTerm++){
1107       Expr *pExpr = pTerm->pExpr;
1108       if( (pTerm->wtFlags & TERM_VIRTUAL)==0
1109        && sqlite3ExprIsTableConstraint(pExpr, pItem)
1110       ){
1111         sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
1112       }
1113     }
1114     if( pLoop->wsFlags & WHERE_IPK ){
1115       int r1 = sqlite3GetTempReg(pParse);
1116       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1);
1117       sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, 1);
1118       sqlite3ReleaseTempReg(pParse, r1);
1119     }else{
1120       Index *pIdx = pLoop->u.btree.pIndex;
1121       int n = pLoop->u.btree.nEq;
1122       int r1 = sqlite3GetTempRange(pParse, n);
1123       int jj;
1124       for(jj=0; jj<n; jj++){
1125         int iCol = pIdx->aiColumn[jj];
1126         assert( pIdx->pTable==pItem->pTab );
1127         sqlite3ExprCodeGetColumnOfTable(v, pIdx->pTable, iCur, iCol,r1+jj);
1128       }
1129       sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, n);
1130       sqlite3ReleaseTempRange(pParse, r1, n);
1131     }
1132     sqlite3VdbeResolveLabel(v, addrCont);
1133     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1);
1134     VdbeCoverage(v);
1135     sqlite3VdbeJumpHere(v, addrTop);
1136     pLoop->wsFlags &= ~WHERE_BLOOMFILTER;
1137     if( OptimizationDisabled(pParse->db, SQLITE_BloomPulldown) ) break;
1138     while( ++iLevel < pWInfo->nLevel ){
1139       const SrcItem *pTabItem;
1140       pLevel = &pWInfo->a[iLevel];
1141       pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1142       if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ) ) continue;
1143       pLoop = pLevel->pWLoop;
1144       if( NEVER(pLoop==0) ) continue;
1145       if( pLoop->prereq & notReady ) continue;
1146       if( (pLoop->wsFlags & (WHERE_BLOOMFILTER|WHERE_COLUMN_IN))
1147                  ==WHERE_BLOOMFILTER
1148       ){
1149         /* This is a candidate for bloom-filter pull-down (early evaluation).
1150         ** The test that WHERE_COLUMN_IN is omitted is important, as we are
1151         ** not able to do early evaluation of bloom filters that make use of
1152         ** the IN operator */
1153         break;
1154       }
1155     }
1156   }while( iLevel < pWInfo->nLevel );
1157   sqlite3VdbeJumpHere(v, addrOnce);
1158 }
1159 
1160 
1161 #ifndef SQLITE_OMIT_VIRTUALTABLE
1162 /*
1163 ** Allocate and populate an sqlite3_index_info structure. It is the
1164 ** responsibility of the caller to eventually release the structure
1165 ** by passing the pointer returned by this function to freeIndexInfo().
1166 */
1167 static sqlite3_index_info *allocateIndexInfo(
1168   WhereInfo *pWInfo,              /* The WHERE clause */
1169   WhereClause *pWC,               /* The WHERE clause being analyzed */
1170   Bitmask mUnusable,              /* Ignore terms with these prereqs */
1171   SrcItem *pSrc,                  /* The FROM clause term that is the vtab */
1172   u16 *pmNoOmit                   /* Mask of terms not to omit */
1173 ){
1174   int i, j;
1175   int nTerm;
1176   Parse *pParse = pWInfo->pParse;
1177   struct sqlite3_index_constraint *pIdxCons;
1178   struct sqlite3_index_orderby *pIdxOrderBy;
1179   struct sqlite3_index_constraint_usage *pUsage;
1180   struct HiddenIndexInfo *pHidden;
1181   WhereTerm *pTerm;
1182   int nOrderBy;
1183   sqlite3_index_info *pIdxInfo;
1184   u16 mNoOmit = 0;
1185   const Table *pTab;
1186   int eDistinct = 0;
1187   ExprList *pOrderBy = pWInfo->pOrderBy;
1188 
1189   assert( pSrc!=0 );
1190   pTab = pSrc->pTab;
1191   assert( pTab!=0 );
1192   assert( IsVirtual(pTab) );
1193 
1194   /* Find all WHERE clause constraints referring to this virtual table.
1195   ** Mark each term with the TERM_OK flag.  Set nTerm to the number of
1196   ** terms found.
1197   */
1198   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1199     pTerm->wtFlags &= ~TERM_OK;
1200     if( pTerm->leftCursor != pSrc->iCursor ) continue;
1201     if( pTerm->prereqRight & mUnusable ) continue;
1202     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
1203     testcase( pTerm->eOperator & WO_IN );
1204     testcase( pTerm->eOperator & WO_ISNULL );
1205     testcase( pTerm->eOperator & WO_IS );
1206     testcase( pTerm->eOperator & WO_ALL );
1207     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
1208     if( pTerm->wtFlags & TERM_VNULL ) continue;
1209 
1210     assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
1211     assert( pTerm->u.x.leftColumn>=XN_ROWID );
1212     assert( pTerm->u.x.leftColumn<pTab->nCol );
1213     if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0
1214      && !constraintCompatibleWithOuterJoin(pTerm,pSrc)
1215     ){
1216       continue;
1217     }
1218     nTerm++;
1219     pTerm->wtFlags |= TERM_OK;
1220   }
1221 
1222   /* If the ORDER BY clause contains only columns in the current
1223   ** virtual table then allocate space for the aOrderBy part of
1224   ** the sqlite3_index_info structure.
1225   */
1226   nOrderBy = 0;
1227   if( pOrderBy ){
1228     int n = pOrderBy->nExpr;
1229     for(i=0; i<n; i++){
1230       Expr *pExpr = pOrderBy->a[i].pExpr;
1231       Expr *pE2;
1232 
1233       /* Skip over constant terms in the ORDER BY clause */
1234       if( sqlite3ExprIsConstant(pExpr) ){
1235         continue;
1236       }
1237 
1238       /* Virtual tables are unable to deal with NULLS FIRST */
1239       if( pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL ) break;
1240 
1241       /* First case - a direct column references without a COLLATE operator */
1242       if( pExpr->op==TK_COLUMN && pExpr->iTable==pSrc->iCursor ){
1243         assert( pExpr->iColumn>=XN_ROWID && pExpr->iColumn<pTab->nCol );
1244         continue;
1245       }
1246 
1247       /* 2nd case - a column reference with a COLLATE operator.  Only match
1248       ** of the COLLATE operator matches the collation of the column. */
1249       if( pExpr->op==TK_COLLATE
1250        && (pE2 = pExpr->pLeft)->op==TK_COLUMN
1251        && pE2->iTable==pSrc->iCursor
1252       ){
1253         const char *zColl;  /* The collating sequence name */
1254         assert( !ExprHasProperty(pExpr, EP_IntValue) );
1255         assert( pExpr->u.zToken!=0 );
1256         assert( pE2->iColumn>=XN_ROWID && pE2->iColumn<pTab->nCol );
1257         pExpr->iColumn = pE2->iColumn;
1258         if( pE2->iColumn<0 ) continue;  /* Collseq does not matter for rowid */
1259         zColl = sqlite3ColumnColl(&pTab->aCol[pE2->iColumn]);
1260         if( zColl==0 ) zColl = sqlite3StrBINARY;
1261         if( sqlite3_stricmp(pExpr->u.zToken, zColl)==0 ) continue;
1262       }
1263 
1264       /* No matches cause a break out of the loop */
1265       break;
1266     }
1267     if( i==n ){
1268       nOrderBy = n;
1269       if( (pWInfo->wctrlFlags & WHERE_DISTINCTBY) ){
1270         eDistinct = 2 + ((pWInfo->wctrlFlags & WHERE_SORTBYGROUP)!=0);
1271       }else if( pWInfo->wctrlFlags & WHERE_GROUPBY ){
1272         eDistinct = 1;
1273       }
1274     }
1275   }
1276 
1277   /* Allocate the sqlite3_index_info structure
1278   */
1279   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
1280                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1281                            + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden)
1282                            + sizeof(sqlite3_value*)*nTerm );
1283   if( pIdxInfo==0 ){
1284     sqlite3ErrorMsg(pParse, "out of memory");
1285     return 0;
1286   }
1287   pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
1288   pIdxCons = (struct sqlite3_index_constraint*)&pHidden->aRhs[nTerm];
1289   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1290   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1291   pIdxInfo->aConstraint = pIdxCons;
1292   pIdxInfo->aOrderBy = pIdxOrderBy;
1293   pIdxInfo->aConstraintUsage = pUsage;
1294   pHidden->pWC = pWC;
1295   pHidden->pParse = pParse;
1296   pHidden->eDistinct = eDistinct;
1297   pHidden->mIn = 0;
1298   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1299     u16 op;
1300     if( (pTerm->wtFlags & TERM_OK)==0 ) continue;
1301     pIdxCons[j].iColumn = pTerm->u.x.leftColumn;
1302     pIdxCons[j].iTermOffset = i;
1303     op = pTerm->eOperator & WO_ALL;
1304     if( op==WO_IN ){
1305       if( (pTerm->wtFlags & TERM_SLICE)==0 ){
1306         pHidden->mIn |= SMASKBIT32(j);
1307       }
1308       op = WO_EQ;
1309     }
1310     if( op==WO_AUX ){
1311       pIdxCons[j].op = pTerm->eMatchOp;
1312     }else if( op & (WO_ISNULL|WO_IS) ){
1313       if( op==WO_ISNULL ){
1314         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
1315       }else{
1316         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
1317       }
1318     }else{
1319       pIdxCons[j].op = (u8)op;
1320       /* The direct assignment in the previous line is possible only because
1321       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
1322       ** following asserts verify this fact. */
1323       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1324       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1325       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1326       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1327       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1328       assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
1329 
1330       if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
1331        && sqlite3ExprIsVector(pTerm->pExpr->pRight)
1332       ){
1333         testcase( j!=i );
1334         if( j<16 ) mNoOmit |= (1 << j);
1335         if( op==WO_LT ) pIdxCons[j].op = WO_LE;
1336         if( op==WO_GT ) pIdxCons[j].op = WO_GE;
1337       }
1338     }
1339 
1340     j++;
1341   }
1342   assert( j==nTerm );
1343   pIdxInfo->nConstraint = j;
1344   for(i=j=0; i<nOrderBy; i++){
1345     Expr *pExpr = pOrderBy->a[i].pExpr;
1346     if( sqlite3ExprIsConstant(pExpr) ) continue;
1347     assert( pExpr->op==TK_COLUMN
1348          || (pExpr->op==TK_COLLATE && pExpr->pLeft->op==TK_COLUMN
1349               && pExpr->iColumn==pExpr->pLeft->iColumn) );
1350     pIdxOrderBy[j].iColumn = pExpr->iColumn;
1351     pIdxOrderBy[j].desc = pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC;
1352     j++;
1353   }
1354   pIdxInfo->nOrderBy = j;
1355 
1356   *pmNoOmit = mNoOmit;
1357   return pIdxInfo;
1358 }
1359 
1360 /*
1361 ** Free an sqlite3_index_info structure allocated by allocateIndexInfo()
1362 ** and possibly modified by xBestIndex methods.
1363 */
1364 static void freeIndexInfo(sqlite3 *db, sqlite3_index_info *pIdxInfo){
1365   HiddenIndexInfo *pHidden;
1366   int i;
1367   assert( pIdxInfo!=0 );
1368   pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
1369   assert( pHidden->pParse!=0 );
1370   assert( pHidden->pParse->db==db );
1371   for(i=0; i<pIdxInfo->nConstraint; i++){
1372     sqlite3ValueFree(pHidden->aRhs[i]); /* IMP: R-14553-25174 */
1373     pHidden->aRhs[i] = 0;
1374   }
1375   sqlite3DbFree(db, pIdxInfo);
1376 }
1377 
1378 /*
1379 ** The table object reference passed as the second argument to this function
1380 ** must represent a virtual table. This function invokes the xBestIndex()
1381 ** method of the virtual table with the sqlite3_index_info object that
1382 ** comes in as the 3rd argument to this function.
1383 **
1384 ** If an error occurs, pParse is populated with an error message and an
1385 ** appropriate error code is returned.  A return of SQLITE_CONSTRAINT from
1386 ** xBestIndex is not considered an error.  SQLITE_CONSTRAINT indicates that
1387 ** the current configuration of "unusable" flags in sqlite3_index_info can
1388 ** not result in a valid plan.
1389 **
1390 ** Whether or not an error is returned, it is the responsibility of the
1391 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1392 ** that this is required.
1393 */
1394 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
1395   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
1396   int rc;
1397 
1398   whereTraceIndexInfoInputs(p);
1399   pParse->db->nSchemaLock++;
1400   rc = pVtab->pModule->xBestIndex(pVtab, p);
1401   pParse->db->nSchemaLock--;
1402   whereTraceIndexInfoOutputs(p);
1403 
1404   if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){
1405     if( rc==SQLITE_NOMEM ){
1406       sqlite3OomFault(pParse->db);
1407     }else if( !pVtab->zErrMsg ){
1408       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1409     }else{
1410       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1411     }
1412   }
1413   sqlite3_free(pVtab->zErrMsg);
1414   pVtab->zErrMsg = 0;
1415   return rc;
1416 }
1417 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1418 
1419 #ifdef SQLITE_ENABLE_STAT4
1420 /*
1421 ** Estimate the location of a particular key among all keys in an
1422 ** index.  Store the results in aStat as follows:
1423 **
1424 **    aStat[0]      Est. number of rows less than pRec
1425 **    aStat[1]      Est. number of rows equal to pRec
1426 **
1427 ** Return the index of the sample that is the smallest sample that
1428 ** is greater than or equal to pRec. Note that this index is not an index
1429 ** into the aSample[] array - it is an index into a virtual set of samples
1430 ** based on the contents of aSample[] and the number of fields in record
1431 ** pRec.
1432 */
1433 static int whereKeyStats(
1434   Parse *pParse,              /* Database connection */
1435   Index *pIdx,                /* Index to consider domain of */
1436   UnpackedRecord *pRec,       /* Vector of values to consider */
1437   int roundUp,                /* Round up if true.  Round down if false */
1438   tRowcnt *aStat              /* OUT: stats written here */
1439 ){
1440   IndexSample *aSample = pIdx->aSample;
1441   int iCol;                   /* Index of required stats in anEq[] etc. */
1442   int i;                      /* Index of first sample >= pRec */
1443   int iSample;                /* Smallest sample larger than or equal to pRec */
1444   int iMin = 0;               /* Smallest sample not yet tested */
1445   int iTest;                  /* Next sample to test */
1446   int res;                    /* Result of comparison operation */
1447   int nField;                 /* Number of fields in pRec */
1448   tRowcnt iLower = 0;         /* anLt[] + anEq[] of largest sample pRec is > */
1449 
1450 #ifndef SQLITE_DEBUG
1451   UNUSED_PARAMETER( pParse );
1452 #endif
1453   assert( pRec!=0 );
1454   assert( pIdx->nSample>0 );
1455   assert( pRec->nField>0 );
1456 
1457   /* Do a binary search to find the first sample greater than or equal
1458   ** to pRec. If pRec contains a single field, the set of samples to search
1459   ** is simply the aSample[] array. If the samples in aSample[] contain more
1460   ** than one fields, all fields following the first are ignored.
1461   **
1462   ** If pRec contains N fields, where N is more than one, then as well as the
1463   ** samples in aSample[] (truncated to N fields), the search also has to
1464   ** consider prefixes of those samples. For example, if the set of samples
1465   ** in aSample is:
1466   **
1467   **     aSample[0] = (a, 5)
1468   **     aSample[1] = (a, 10)
1469   **     aSample[2] = (b, 5)
1470   **     aSample[3] = (c, 100)
1471   **     aSample[4] = (c, 105)
1472   **
1473   ** Then the search space should ideally be the samples above and the
1474   ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1475   ** the code actually searches this set:
1476   **
1477   **     0: (a)
1478   **     1: (a, 5)
1479   **     2: (a, 10)
1480   **     3: (a, 10)
1481   **     4: (b)
1482   **     5: (b, 5)
1483   **     6: (c)
1484   **     7: (c, 100)
1485   **     8: (c, 105)
1486   **     9: (c, 105)
1487   **
1488   ** For each sample in the aSample[] array, N samples are present in the
1489   ** effective sample array. In the above, samples 0 and 1 are based on
1490   ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1491   **
1492   ** Often, sample i of each block of N effective samples has (i+1) fields.
1493   ** Except, each sample may be extended to ensure that it is greater than or
1494   ** equal to the previous sample in the array. For example, in the above,
1495   ** sample 2 is the first sample of a block of N samples, so at first it
1496   ** appears that it should be 1 field in size. However, that would make it
1497   ** smaller than sample 1, so the binary search would not work. As a result,
1498   ** it is extended to two fields. The duplicates that this creates do not
1499   ** cause any problems.
1500   */
1501   nField = MIN(pRec->nField, pIdx->nSample);
1502   iCol = 0;
1503   iSample = pIdx->nSample * nField;
1504   do{
1505     int iSamp;                    /* Index in aSample[] of test sample */
1506     int n;                        /* Number of fields in test sample */
1507 
1508     iTest = (iMin+iSample)/2;
1509     iSamp = iTest / nField;
1510     if( iSamp>0 ){
1511       /* The proposed effective sample is a prefix of sample aSample[iSamp].
1512       ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1513       ** fields that is greater than the previous effective sample.  */
1514       for(n=(iTest % nField) + 1; n<nField; n++){
1515         if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1516       }
1517     }else{
1518       n = iTest + 1;
1519     }
1520 
1521     pRec->nField = n;
1522     res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1523     if( res<0 ){
1524       iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1525       iMin = iTest+1;
1526     }else if( res==0 && n<nField ){
1527       iLower = aSample[iSamp].anLt[n-1];
1528       iMin = iTest+1;
1529       res = -1;
1530     }else{
1531       iSample = iTest;
1532       iCol = n-1;
1533     }
1534   }while( res && iMin<iSample );
1535   i = iSample / nField;
1536 
1537 #ifdef SQLITE_DEBUG
1538   /* The following assert statements check that the binary search code
1539   ** above found the right answer. This block serves no purpose other
1540   ** than to invoke the asserts.  */
1541   if( pParse->db->mallocFailed==0 ){
1542     if( res==0 ){
1543       /* If (res==0) is true, then pRec must be equal to sample i. */
1544       assert( i<pIdx->nSample );
1545       assert( iCol==nField-1 );
1546       pRec->nField = nField;
1547       assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1548            || pParse->db->mallocFailed
1549       );
1550     }else{
1551       /* Unless i==pIdx->nSample, indicating that pRec is larger than
1552       ** all samples in the aSample[] array, pRec must be smaller than the
1553       ** (iCol+1) field prefix of sample i.  */
1554       assert( i<=pIdx->nSample && i>=0 );
1555       pRec->nField = iCol+1;
1556       assert( i==pIdx->nSample
1557            || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1558            || pParse->db->mallocFailed );
1559 
1560       /* if i==0 and iCol==0, then record pRec is smaller than all samples
1561       ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1562       ** be greater than or equal to the (iCol) field prefix of sample i.
1563       ** If (i>0), then pRec must also be greater than sample (i-1).  */
1564       if( iCol>0 ){
1565         pRec->nField = iCol;
1566         assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1567              || pParse->db->mallocFailed );
1568       }
1569       if( i>0 ){
1570         pRec->nField = nField;
1571         assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1572              || pParse->db->mallocFailed );
1573       }
1574     }
1575   }
1576 #endif /* ifdef SQLITE_DEBUG */
1577 
1578   if( res==0 ){
1579     /* Record pRec is equal to sample i */
1580     assert( iCol==nField-1 );
1581     aStat[0] = aSample[i].anLt[iCol];
1582     aStat[1] = aSample[i].anEq[iCol];
1583   }else{
1584     /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1585     ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1586     ** is larger than all samples in the array. */
1587     tRowcnt iUpper, iGap;
1588     if( i>=pIdx->nSample ){
1589       iUpper = pIdx->nRowEst0;
1590     }else{
1591       iUpper = aSample[i].anLt[iCol];
1592     }
1593 
1594     if( iLower>=iUpper ){
1595       iGap = 0;
1596     }else{
1597       iGap = iUpper - iLower;
1598     }
1599     if( roundUp ){
1600       iGap = (iGap*2)/3;
1601     }else{
1602       iGap = iGap/3;
1603     }
1604     aStat[0] = iLower + iGap;
1605     aStat[1] = pIdx->aAvgEq[nField-1];
1606   }
1607 
1608   /* Restore the pRec->nField value before returning.  */
1609   pRec->nField = nField;
1610   return i;
1611 }
1612 #endif /* SQLITE_ENABLE_STAT4 */
1613 
1614 /*
1615 ** If it is not NULL, pTerm is a term that provides an upper or lower
1616 ** bound on a range scan. Without considering pTerm, it is estimated
1617 ** that the scan will visit nNew rows. This function returns the number
1618 ** estimated to be visited after taking pTerm into account.
1619 **
1620 ** If the user explicitly specified a likelihood() value for this term,
1621 ** then the return value is the likelihood multiplied by the number of
1622 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1623 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1624 */
1625 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1626   LogEst nRet = nNew;
1627   if( pTerm ){
1628     if( pTerm->truthProb<=0 ){
1629       nRet += pTerm->truthProb;
1630     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1631       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
1632     }
1633   }
1634   return nRet;
1635 }
1636 
1637 
1638 #ifdef SQLITE_ENABLE_STAT4
1639 /*
1640 ** Return the affinity for a single column of an index.
1641 */
1642 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1643   assert( iCol>=0 && iCol<pIdx->nColumn );
1644   if( !pIdx->zColAff ){
1645     if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1646   }
1647   assert( pIdx->zColAff[iCol]!=0 );
1648   return pIdx->zColAff[iCol];
1649 }
1650 #endif
1651 
1652 
1653 #ifdef SQLITE_ENABLE_STAT4
1654 /*
1655 ** This function is called to estimate the number of rows visited by a
1656 ** range-scan on a skip-scan index. For example:
1657 **
1658 **   CREATE INDEX i1 ON t1(a, b, c);
1659 **   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1660 **
1661 ** Value pLoop->nOut is currently set to the estimated number of rows
1662 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1663 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1664 ** on the stat4 data for the index. this scan will be peformed multiple
1665 ** times (once for each (a,b) combination that matches a=?) is dealt with
1666 ** by the caller.
1667 **
1668 ** It does this by scanning through all stat4 samples, comparing values
1669 ** extracted from pLower and pUpper with the corresponding column in each
1670 ** sample. If L and U are the number of samples found to be less than or
1671 ** equal to the values extracted from pLower and pUpper respectively, and
1672 ** N is the total number of samples, the pLoop->nOut value is adjusted
1673 ** as follows:
1674 **
1675 **   nOut = nOut * ( min(U - L, 1) / N )
1676 **
1677 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1678 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1679 ** U is set to N.
1680 **
1681 ** Normally, this function sets *pbDone to 1 before returning. However,
1682 ** if no value can be extracted from either pLower or pUpper (and so the
1683 ** estimate of the number of rows delivered remains unchanged), *pbDone
1684 ** is left as is.
1685 **
1686 ** If an error occurs, an SQLite error code is returned. Otherwise,
1687 ** SQLITE_OK.
1688 */
1689 static int whereRangeSkipScanEst(
1690   Parse *pParse,       /* Parsing & code generating context */
1691   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1692   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1693   WhereLoop *pLoop,    /* Update the .nOut value of this loop */
1694   int *pbDone          /* Set to true if at least one expr. value extracted */
1695 ){
1696   Index *p = pLoop->u.btree.pIndex;
1697   int nEq = pLoop->u.btree.nEq;
1698   sqlite3 *db = pParse->db;
1699   int nLower = -1;
1700   int nUpper = p->nSample+1;
1701   int rc = SQLITE_OK;
1702   u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1703   CollSeq *pColl;
1704 
1705   sqlite3_value *p1 = 0;          /* Value extracted from pLower */
1706   sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
1707   sqlite3_value *pVal = 0;        /* Value extracted from record */
1708 
1709   pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1710   if( pLower ){
1711     rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1712     nLower = 0;
1713   }
1714   if( pUpper && rc==SQLITE_OK ){
1715     rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1716     nUpper = p2 ? 0 : p->nSample;
1717   }
1718 
1719   if( p1 || p2 ){
1720     int i;
1721     int nDiff;
1722     for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1723       rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1724       if( rc==SQLITE_OK && p1 ){
1725         int res = sqlite3MemCompare(p1, pVal, pColl);
1726         if( res>=0 ) nLower++;
1727       }
1728       if( rc==SQLITE_OK && p2 ){
1729         int res = sqlite3MemCompare(p2, pVal, pColl);
1730         if( res>=0 ) nUpper++;
1731       }
1732     }
1733     nDiff = (nUpper - nLower);
1734     if( nDiff<=0 ) nDiff = 1;
1735 
1736     /* If there is both an upper and lower bound specified, and the
1737     ** comparisons indicate that they are close together, use the fallback
1738     ** method (assume that the scan visits 1/64 of the rows) for estimating
1739     ** the number of rows visited. Otherwise, estimate the number of rows
1740     ** using the method described in the header comment for this function. */
1741     if( nDiff!=1 || pUpper==0 || pLower==0 ){
1742       int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1743       pLoop->nOut -= nAdjust;
1744       *pbDone = 1;
1745       WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n",
1746                            nLower, nUpper, nAdjust*-1, pLoop->nOut));
1747     }
1748 
1749   }else{
1750     assert( *pbDone==0 );
1751   }
1752 
1753   sqlite3ValueFree(p1);
1754   sqlite3ValueFree(p2);
1755   sqlite3ValueFree(pVal);
1756 
1757   return rc;
1758 }
1759 #endif /* SQLITE_ENABLE_STAT4 */
1760 
1761 /*
1762 ** This function is used to estimate the number of rows that will be visited
1763 ** by scanning an index for a range of values. The range may have an upper
1764 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1765 ** and lower bounds are represented by pLower and pUpper respectively. For
1766 ** example, assuming that index p is on t1(a):
1767 **
1768 **   ... FROM t1 WHERE a > ? AND a < ? ...
1769 **                    |_____|   |_____|
1770 **                       |         |
1771 **                     pLower    pUpper
1772 **
1773 ** If either of the upper or lower bound is not present, then NULL is passed in
1774 ** place of the corresponding WhereTerm.
1775 **
1776 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1777 ** column subject to the range constraint. Or, equivalently, the number of
1778 ** equality constraints optimized by the proposed index scan. For example,
1779 ** assuming index p is on t1(a, b), and the SQL query is:
1780 **
1781 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1782 **
1783 ** then nEq is set to 1 (as the range restricted column, b, is the second
1784 ** left-most column of the index). Or, if the query is:
1785 **
1786 **   ... FROM t1 WHERE a > ? AND a < ? ...
1787 **
1788 ** then nEq is set to 0.
1789 **
1790 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1791 ** number of rows that the index scan is expected to visit without
1792 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1793 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1794 ** to account for the range constraints pLower and pUpper.
1795 **
1796 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1797 ** used, a single range inequality reduces the search space by a factor of 4.
1798 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1799 ** rows visited by a factor of 64.
1800 */
1801 static int whereRangeScanEst(
1802   Parse *pParse,       /* Parsing & code generating context */
1803   WhereLoopBuilder *pBuilder,
1804   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1805   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1806   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
1807 ){
1808   int rc = SQLITE_OK;
1809   int nOut = pLoop->nOut;
1810   LogEst nNew;
1811 
1812 #ifdef SQLITE_ENABLE_STAT4
1813   Index *p = pLoop->u.btree.pIndex;
1814   int nEq = pLoop->u.btree.nEq;
1815 
1816   if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol)
1817    && OptimizationEnabled(pParse->db, SQLITE_Stat4)
1818   ){
1819     if( nEq==pBuilder->nRecValid ){
1820       UnpackedRecord *pRec = pBuilder->pRec;
1821       tRowcnt a[2];
1822       int nBtm = pLoop->u.btree.nBtm;
1823       int nTop = pLoop->u.btree.nTop;
1824 
1825       /* Variable iLower will be set to the estimate of the number of rows in
1826       ** the index that are less than the lower bound of the range query. The
1827       ** lower bound being the concatenation of $P and $L, where $P is the
1828       ** key-prefix formed by the nEq values matched against the nEq left-most
1829       ** columns of the index, and $L is the value in pLower.
1830       **
1831       ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1832       ** is not a simple variable or literal value), the lower bound of the
1833       ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1834       ** if $L is available, whereKeyStats() is called for both ($P) and
1835       ** ($P:$L) and the larger of the two returned values is used.
1836       **
1837       ** Similarly, iUpper is to be set to the estimate of the number of rows
1838       ** less than the upper bound of the range query. Where the upper bound
1839       ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1840       ** of iUpper are requested of whereKeyStats() and the smaller used.
1841       **
1842       ** The number of rows between the two bounds is then just iUpper-iLower.
1843       */
1844       tRowcnt iLower;     /* Rows less than the lower bound */
1845       tRowcnt iUpper;     /* Rows less than the upper bound */
1846       int iLwrIdx = -2;   /* aSample[] for the lower bound */
1847       int iUprIdx = -1;   /* aSample[] for the upper bound */
1848 
1849       if( pRec ){
1850         testcase( pRec->nField!=pBuilder->nRecValid );
1851         pRec->nField = pBuilder->nRecValid;
1852       }
1853       /* Determine iLower and iUpper using ($P) only. */
1854       if( nEq==0 ){
1855         iLower = 0;
1856         iUpper = p->nRowEst0;
1857       }else{
1858         /* Note: this call could be optimized away - since the same values must
1859         ** have been requested when testing key $P in whereEqualScanEst().  */
1860         whereKeyStats(pParse, p, pRec, 0, a);
1861         iLower = a[0];
1862         iUpper = a[0] + a[1];
1863       }
1864 
1865       assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1866       assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1867       assert( p->aSortOrder!=0 );
1868       if( p->aSortOrder[nEq] ){
1869         /* The roles of pLower and pUpper are swapped for a DESC index */
1870         SWAP(WhereTerm*, pLower, pUpper);
1871         SWAP(int, nBtm, nTop);
1872       }
1873 
1874       /* If possible, improve on the iLower estimate using ($P:$L). */
1875       if( pLower ){
1876         int n;                    /* Values extracted from pExpr */
1877         Expr *pExpr = pLower->pExpr->pRight;
1878         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1879         if( rc==SQLITE_OK && n ){
1880           tRowcnt iNew;
1881           u16 mask = WO_GT|WO_LE;
1882           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1883           iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1884           iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1885           if( iNew>iLower ) iLower = iNew;
1886           nOut--;
1887           pLower = 0;
1888         }
1889       }
1890 
1891       /* If possible, improve on the iUpper estimate using ($P:$U). */
1892       if( pUpper ){
1893         int n;                    /* Values extracted from pExpr */
1894         Expr *pExpr = pUpper->pExpr->pRight;
1895         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1896         if( rc==SQLITE_OK && n ){
1897           tRowcnt iNew;
1898           u16 mask = WO_GT|WO_LE;
1899           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1900           iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1901           iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1902           if( iNew<iUpper ) iUpper = iNew;
1903           nOut--;
1904           pUpper = 0;
1905         }
1906       }
1907 
1908       pBuilder->pRec = pRec;
1909       if( rc==SQLITE_OK ){
1910         if( iUpper>iLower ){
1911           nNew = sqlite3LogEst(iUpper - iLower);
1912           /* TUNING:  If both iUpper and iLower are derived from the same
1913           ** sample, then assume they are 4x more selective.  This brings
1914           ** the estimated selectivity more in line with what it would be
1915           ** if estimated without the use of STAT4 tables. */
1916           if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
1917         }else{
1918           nNew = 10;        assert( 10==sqlite3LogEst(2) );
1919         }
1920         if( nNew<nOut ){
1921           nOut = nNew;
1922         }
1923         WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
1924                            (u32)iLower, (u32)iUpper, nOut));
1925       }
1926     }else{
1927       int bDone = 0;
1928       rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1929       if( bDone ) return rc;
1930     }
1931   }
1932 #else
1933   UNUSED_PARAMETER(pParse);
1934   UNUSED_PARAMETER(pBuilder);
1935   assert( pLower || pUpper );
1936 #endif
1937   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1938   nNew = whereRangeAdjust(pLower, nOut);
1939   nNew = whereRangeAdjust(pUpper, nNew);
1940 
1941   /* TUNING: If there is both an upper and lower limit and neither limit
1942   ** has an application-defined likelihood(), assume the range is
1943   ** reduced by an additional 75%. This means that, by default, an open-ended
1944   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1945   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1946   ** match 1/64 of the index. */
1947   if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1948     nNew -= 20;
1949   }
1950 
1951   nOut -= (pLower!=0) + (pUpper!=0);
1952   if( nNew<10 ) nNew = 10;
1953   if( nNew<nOut ) nOut = nNew;
1954 #if defined(WHERETRACE_ENABLED)
1955   if( pLoop->nOut>nOut ){
1956     WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1957                     pLoop->nOut, nOut));
1958   }
1959 #endif
1960   pLoop->nOut = (LogEst)nOut;
1961   return rc;
1962 }
1963 
1964 #ifdef SQLITE_ENABLE_STAT4
1965 /*
1966 ** Estimate the number of rows that will be returned based on
1967 ** an equality constraint x=VALUE and where that VALUE occurs in
1968 ** the histogram data.  This only works when x is the left-most
1969 ** column of an index and sqlite_stat4 histogram data is available
1970 ** for that index.  When pExpr==NULL that means the constraint is
1971 ** "x IS NULL" instead of "x=VALUE".
1972 **
1973 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1974 ** If unable to make an estimate, leave *pnRow unchanged and return
1975 ** non-zero.
1976 **
1977 ** This routine can fail if it is unable to load a collating sequence
1978 ** required for string comparison, or if unable to allocate memory
1979 ** for a UTF conversion required for comparison.  The error is stored
1980 ** in the pParse structure.
1981 */
1982 static int whereEqualScanEst(
1983   Parse *pParse,       /* Parsing & code generating context */
1984   WhereLoopBuilder *pBuilder,
1985   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
1986   tRowcnt *pnRow       /* Write the revised row estimate here */
1987 ){
1988   Index *p = pBuilder->pNew->u.btree.pIndex;
1989   int nEq = pBuilder->pNew->u.btree.nEq;
1990   UnpackedRecord *pRec = pBuilder->pRec;
1991   int rc;                   /* Subfunction return code */
1992   tRowcnt a[2];             /* Statistics */
1993   int bOk;
1994 
1995   assert( nEq>=1 );
1996   assert( nEq<=p->nColumn );
1997   assert( p->aSample!=0 );
1998   assert( p->nSample>0 );
1999   assert( pBuilder->nRecValid<nEq );
2000 
2001   /* If values are not available for all fields of the index to the left
2002   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
2003   if( pBuilder->nRecValid<(nEq-1) ){
2004     return SQLITE_NOTFOUND;
2005   }
2006 
2007   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
2008   ** below would return the same value.  */
2009   if( nEq>=p->nColumn ){
2010     *pnRow = 1;
2011     return SQLITE_OK;
2012   }
2013 
2014   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
2015   pBuilder->pRec = pRec;
2016   if( rc!=SQLITE_OK ) return rc;
2017   if( bOk==0 ) return SQLITE_NOTFOUND;
2018   pBuilder->nRecValid = nEq;
2019 
2020   whereKeyStats(pParse, p, pRec, 0, a);
2021   WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
2022                    p->zName, nEq-1, (int)a[1]));
2023   *pnRow = a[1];
2024 
2025   return rc;
2026 }
2027 #endif /* SQLITE_ENABLE_STAT4 */
2028 
2029 #ifdef SQLITE_ENABLE_STAT4
2030 /*
2031 ** Estimate the number of rows that will be returned based on
2032 ** an IN constraint where the right-hand side of the IN operator
2033 ** is a list of values.  Example:
2034 **
2035 **        WHERE x IN (1,2,3,4)
2036 **
2037 ** Write the estimated row count into *pnRow and return SQLITE_OK.
2038 ** If unable to make an estimate, leave *pnRow unchanged and return
2039 ** non-zero.
2040 **
2041 ** This routine can fail if it is unable to load a collating sequence
2042 ** required for string comparison, or if unable to allocate memory
2043 ** for a UTF conversion required for comparison.  The error is stored
2044 ** in the pParse structure.
2045 */
2046 static int whereInScanEst(
2047   Parse *pParse,       /* Parsing & code generating context */
2048   WhereLoopBuilder *pBuilder,
2049   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
2050   tRowcnt *pnRow       /* Write the revised row estimate here */
2051 ){
2052   Index *p = pBuilder->pNew->u.btree.pIndex;
2053   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
2054   int nRecValid = pBuilder->nRecValid;
2055   int rc = SQLITE_OK;     /* Subfunction return code */
2056   tRowcnt nEst;           /* Number of rows for a single term */
2057   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
2058   int i;                  /* Loop counter */
2059 
2060   assert( p->aSample!=0 );
2061   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
2062     nEst = nRow0;
2063     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
2064     nRowEst += nEst;
2065     pBuilder->nRecValid = nRecValid;
2066   }
2067 
2068   if( rc==SQLITE_OK ){
2069     if( nRowEst > nRow0 ) nRowEst = nRow0;
2070     *pnRow = nRowEst;
2071     WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
2072   }
2073   assert( pBuilder->nRecValid==nRecValid );
2074   return rc;
2075 }
2076 #endif /* SQLITE_ENABLE_STAT4 */
2077 
2078 
2079 #ifdef WHERETRACE_ENABLED
2080 /*
2081 ** Print the content of a WhereTerm object
2082 */
2083 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){
2084   if( pTerm==0 ){
2085     sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
2086   }else{
2087     char zType[8];
2088     char zLeft[50];
2089     memcpy(zType, "....", 5);
2090     if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
2091     if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
2092     if( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) zType[2] = 'L';
2093     if( pTerm->wtFlags & TERM_CODED  ) zType[3] = 'C';
2094     if( pTerm->eOperator & WO_SINGLE ){
2095       assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
2096       sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
2097                        pTerm->leftCursor, pTerm->u.x.leftColumn);
2098     }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
2099       sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx",
2100                        pTerm->u.pOrInfo->indexable);
2101     }else{
2102       sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
2103     }
2104     sqlite3DebugPrintf(
2105        "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x",
2106        iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags);
2107     /* The 0x10000 .wheretrace flag causes extra information to be
2108     ** shown about each Term */
2109     if( sqlite3WhereTrace & 0x10000 ){
2110       sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx",
2111         pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight);
2112     }
2113     if( (pTerm->eOperator & (WO_OR|WO_AND))==0 && pTerm->u.x.iField ){
2114       sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField);
2115     }
2116     if( pTerm->iParent>=0 ){
2117       sqlite3DebugPrintf(" iParent=%d", pTerm->iParent);
2118     }
2119     sqlite3DebugPrintf("\n");
2120     sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
2121   }
2122 }
2123 #endif
2124 
2125 #ifdef WHERETRACE_ENABLED
2126 /*
2127 ** Show the complete content of a WhereClause
2128 */
2129 void sqlite3WhereClausePrint(WhereClause *pWC){
2130   int i;
2131   for(i=0; i<pWC->nTerm; i++){
2132     sqlite3WhereTermPrint(&pWC->a[i], i);
2133   }
2134 }
2135 #endif
2136 
2137 #ifdef WHERETRACE_ENABLED
2138 /*
2139 ** Print a WhereLoop object for debugging purposes
2140 */
2141 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){
2142   WhereInfo *pWInfo = pWC->pWInfo;
2143   int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
2144   SrcItem *pItem = pWInfo->pTabList->a + p->iTab;
2145   Table *pTab = pItem->pTab;
2146   Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
2147   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
2148                      p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
2149   sqlite3DebugPrintf(" %12s",
2150                      pItem->zAlias ? pItem->zAlias : pTab->zName);
2151   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2152     const char *zName;
2153     if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
2154       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
2155         int i = sqlite3Strlen30(zName) - 1;
2156         while( zName[i]!='_' ) i--;
2157         zName += i;
2158       }
2159       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
2160     }else{
2161       sqlite3DebugPrintf("%20s","");
2162     }
2163   }else{
2164     char *z;
2165     if( p->u.vtab.idxStr ){
2166       z = sqlite3_mprintf("(%d,\"%s\",%#x)",
2167                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
2168     }else{
2169       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
2170     }
2171     sqlite3DebugPrintf(" %-19s", z);
2172     sqlite3_free(z);
2173   }
2174   if( p->wsFlags & WHERE_SKIPSCAN ){
2175     sqlite3DebugPrintf(" f %06x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
2176   }else{
2177     sqlite3DebugPrintf(" f %06x N %d", p->wsFlags, p->nLTerm);
2178   }
2179   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
2180   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
2181     int i;
2182     for(i=0; i<p->nLTerm; i++){
2183       sqlite3WhereTermPrint(p->aLTerm[i], i);
2184     }
2185   }
2186 }
2187 #endif
2188 
2189 /*
2190 ** Convert bulk memory into a valid WhereLoop that can be passed
2191 ** to whereLoopClear harmlessly.
2192 */
2193 static void whereLoopInit(WhereLoop *p){
2194   p->aLTerm = p->aLTermSpace;
2195   p->nLTerm = 0;
2196   p->nLSlot = ArraySize(p->aLTermSpace);
2197   p->wsFlags = 0;
2198 }
2199 
2200 /*
2201 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
2202 */
2203 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
2204   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
2205     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
2206       sqlite3_free(p->u.vtab.idxStr);
2207       p->u.vtab.needFree = 0;
2208       p->u.vtab.idxStr = 0;
2209     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
2210       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
2211       sqlite3DbFreeNN(db, p->u.btree.pIndex);
2212       p->u.btree.pIndex = 0;
2213     }
2214   }
2215 }
2216 
2217 /*
2218 ** Deallocate internal memory used by a WhereLoop object.  Leave the
2219 ** object in an initialized state, as if it had been newly allocated.
2220 */
2221 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
2222   if( p->aLTerm!=p->aLTermSpace ){
2223     sqlite3DbFreeNN(db, p->aLTerm);
2224     p->aLTerm = p->aLTermSpace;
2225     p->nLSlot = ArraySize(p->aLTermSpace);
2226   }
2227   whereLoopClearUnion(db, p);
2228   p->nLTerm = 0;
2229   p->wsFlags = 0;
2230 }
2231 
2232 /*
2233 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
2234 */
2235 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
2236   WhereTerm **paNew;
2237   if( p->nLSlot>=n ) return SQLITE_OK;
2238   n = (n+7)&~7;
2239   paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
2240   if( paNew==0 ) return SQLITE_NOMEM_BKPT;
2241   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
2242   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
2243   p->aLTerm = paNew;
2244   p->nLSlot = n;
2245   return SQLITE_OK;
2246 }
2247 
2248 /*
2249 ** Transfer content from the second pLoop into the first.
2250 */
2251 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
2252   whereLoopClearUnion(db, pTo);
2253   if( pFrom->nLTerm > pTo->nLSlot
2254    && whereLoopResize(db, pTo, pFrom->nLTerm)
2255   ){
2256     memset(pTo, 0, WHERE_LOOP_XFER_SZ);
2257     return SQLITE_NOMEM_BKPT;
2258   }
2259   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
2260   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
2261   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
2262     pFrom->u.vtab.needFree = 0;
2263   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
2264     pFrom->u.btree.pIndex = 0;
2265   }
2266   return SQLITE_OK;
2267 }
2268 
2269 /*
2270 ** Delete a WhereLoop object
2271 */
2272 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
2273   assert( db!=0 );
2274   whereLoopClear(db, p);
2275   sqlite3DbNNFreeNN(db, p);
2276 }
2277 
2278 /*
2279 ** Free a WhereInfo structure
2280 */
2281 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
2282   assert( pWInfo!=0 );
2283   assert( db!=0 );
2284   sqlite3WhereClauseClear(&pWInfo->sWC);
2285   while( pWInfo->pLoops ){
2286     WhereLoop *p = pWInfo->pLoops;
2287     pWInfo->pLoops = p->pNextLoop;
2288     whereLoopDelete(db, p);
2289   }
2290   while( pWInfo->pMemToFree ){
2291     WhereMemBlock *pNext = pWInfo->pMemToFree->pNext;
2292     sqlite3DbNNFreeNN(db, pWInfo->pMemToFree);
2293     pWInfo->pMemToFree = pNext;
2294   }
2295   sqlite3DbNNFreeNN(db, pWInfo);
2296 }
2297 
2298 /*
2299 ** Return TRUE if all of the following are true:
2300 **
2301 **   (1)  X has the same or lower cost, or returns the same or fewer rows,
2302 **        than Y.
2303 **   (2)  X uses fewer WHERE clause terms than Y
2304 **   (3)  Every WHERE clause term used by X is also used by Y
2305 **   (4)  X skips at least as many columns as Y
2306 **   (5)  If X is a covering index, than Y is too
2307 **
2308 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
2309 ** If X is a proper subset of Y then Y is a better choice and ought
2310 ** to have a lower cost.  This routine returns TRUE when that cost
2311 ** relationship is inverted and needs to be adjusted.  Constraint (4)
2312 ** was added because if X uses skip-scan less than Y it still might
2313 ** deserve a lower cost even if it is a proper subset of Y.  Constraint (5)
2314 ** was added because a covering index probably deserves to have a lower cost
2315 ** than a non-covering index even if it is a proper subset.
2316 */
2317 static int whereLoopCheaperProperSubset(
2318   const WhereLoop *pX,       /* First WhereLoop to compare */
2319   const WhereLoop *pY        /* Compare against this WhereLoop */
2320 ){
2321   int i, j;
2322   if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
2323     return 0; /* X is not a subset of Y */
2324   }
2325   if( pX->rRun>pY->rRun && pX->nOut>pY->nOut ) return 0;
2326   if( pY->nSkip > pX->nSkip ) return 0;
2327   for(i=pX->nLTerm-1; i>=0; i--){
2328     if( pX->aLTerm[i]==0 ) continue;
2329     for(j=pY->nLTerm-1; j>=0; j--){
2330       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
2331     }
2332     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
2333   }
2334   if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
2335    && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
2336     return 0;  /* Constraint (5) */
2337   }
2338   return 1;  /* All conditions meet */
2339 }
2340 
2341 /*
2342 ** Try to adjust the cost and number of output rows of WhereLoop pTemplate
2343 ** upwards or downwards so that:
2344 **
2345 **   (1) pTemplate costs less than any other WhereLoops that are a proper
2346 **       subset of pTemplate
2347 **
2348 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
2349 **       is a proper subset.
2350 **
2351 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
2352 ** WHERE clause terms than Y and that every WHERE clause term used by X is
2353 ** also used by Y.
2354 */
2355 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
2356   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
2357   for(; p; p=p->pNextLoop){
2358     if( p->iTab!=pTemplate->iTab ) continue;
2359     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
2360     if( whereLoopCheaperProperSubset(p, pTemplate) ){
2361       /* Adjust pTemplate cost downward so that it is cheaper than its
2362       ** subset p. */
2363       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2364                        pTemplate->rRun, pTemplate->nOut,
2365                        MIN(p->rRun, pTemplate->rRun),
2366                        MIN(p->nOut - 1, pTemplate->nOut)));
2367       pTemplate->rRun = MIN(p->rRun, pTemplate->rRun);
2368       pTemplate->nOut = MIN(p->nOut - 1, pTemplate->nOut);
2369     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
2370       /* Adjust pTemplate cost upward so that it is costlier than p since
2371       ** pTemplate is a proper subset of p */
2372       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2373                        pTemplate->rRun, pTemplate->nOut,
2374                        MAX(p->rRun, pTemplate->rRun),
2375                        MAX(p->nOut + 1, pTemplate->nOut)));
2376       pTemplate->rRun = MAX(p->rRun, pTemplate->rRun);
2377       pTemplate->nOut = MAX(p->nOut + 1, pTemplate->nOut);
2378     }
2379   }
2380 }
2381 
2382 /*
2383 ** Search the list of WhereLoops in *ppPrev looking for one that can be
2384 ** replaced by pTemplate.
2385 **
2386 ** Return NULL if pTemplate does not belong on the WhereLoop list.
2387 ** In other words if pTemplate ought to be dropped from further consideration.
2388 **
2389 ** If pX is a WhereLoop that pTemplate can replace, then return the
2390 ** link that points to pX.
2391 **
2392 ** If pTemplate cannot replace any existing element of the list but needs
2393 ** to be added to the list as a new entry, then return a pointer to the
2394 ** tail of the list.
2395 */
2396 static WhereLoop **whereLoopFindLesser(
2397   WhereLoop **ppPrev,
2398   const WhereLoop *pTemplate
2399 ){
2400   WhereLoop *p;
2401   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
2402     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
2403       /* If either the iTab or iSortIdx values for two WhereLoop are different
2404       ** then those WhereLoops need to be considered separately.  Neither is
2405       ** a candidate to replace the other. */
2406       continue;
2407     }
2408     /* In the current implementation, the rSetup value is either zero
2409     ** or the cost of building an automatic index (NlogN) and the NlogN
2410     ** is the same for compatible WhereLoops. */
2411     assert( p->rSetup==0 || pTemplate->rSetup==0
2412                  || p->rSetup==pTemplate->rSetup );
2413 
2414     /* whereLoopAddBtree() always generates and inserts the automatic index
2415     ** case first.  Hence compatible candidate WhereLoops never have a larger
2416     ** rSetup. Call this SETUP-INVARIANT */
2417     assert( p->rSetup>=pTemplate->rSetup );
2418 
2419     /* Any loop using an appliation-defined index (or PRIMARY KEY or
2420     ** UNIQUE constraint) with one or more == constraints is better
2421     ** than an automatic index. Unless it is a skip-scan. */
2422     if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
2423      && (pTemplate->nSkip)==0
2424      && (pTemplate->wsFlags & WHERE_INDEXED)!=0
2425      && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
2426      && (p->prereq & pTemplate->prereq)==pTemplate->prereq
2427     ){
2428       break;
2429     }
2430 
2431     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2432     ** discarded.  WhereLoop p is better if:
2433     **   (1)  p has no more dependencies than pTemplate, and
2434     **   (2)  p has an equal or lower cost than pTemplate
2435     */
2436     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
2437      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
2438      && p->rRun<=pTemplate->rRun                      /* (2b) */
2439      && p->nOut<=pTemplate->nOut                      /* (2c) */
2440     ){
2441       return 0;  /* Discard pTemplate */
2442     }
2443 
2444     /* If pTemplate is always better than p, then cause p to be overwritten
2445     ** with pTemplate.  pTemplate is better than p if:
2446     **   (1)  pTemplate has no more dependences than p, and
2447     **   (2)  pTemplate has an equal or lower cost than p.
2448     */
2449     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
2450      && p->rRun>=pTemplate->rRun                             /* (2a) */
2451      && p->nOut>=pTemplate->nOut                             /* (2b) */
2452     ){
2453       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2454       break;   /* Cause p to be overwritten by pTemplate */
2455     }
2456   }
2457   return ppPrev;
2458 }
2459 
2460 /*
2461 ** Insert or replace a WhereLoop entry using the template supplied.
2462 **
2463 ** An existing WhereLoop entry might be overwritten if the new template
2464 ** is better and has fewer dependencies.  Or the template will be ignored
2465 ** and no insert will occur if an existing WhereLoop is faster and has
2466 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
2467 ** added based on the template.
2468 **
2469 ** If pBuilder->pOrSet is not NULL then we care about only the
2470 ** prerequisites and rRun and nOut costs of the N best loops.  That
2471 ** information is gathered in the pBuilder->pOrSet object.  This special
2472 ** processing mode is used only for OR clause processing.
2473 **
2474 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2475 ** still might overwrite similar loops with the new template if the
2476 ** new template is better.  Loops may be overwritten if the following
2477 ** conditions are met:
2478 **
2479 **    (1)  They have the same iTab.
2480 **    (2)  They have the same iSortIdx.
2481 **    (3)  The template has same or fewer dependencies than the current loop
2482 **    (4)  The template has the same or lower cost than the current loop
2483 */
2484 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2485   WhereLoop **ppPrev, *p;
2486   WhereInfo *pWInfo = pBuilder->pWInfo;
2487   sqlite3 *db = pWInfo->pParse->db;
2488   int rc;
2489 
2490   /* Stop the search once we hit the query planner search limit */
2491   if( pBuilder->iPlanLimit==0 ){
2492     WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
2493     if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0;
2494     return SQLITE_DONE;
2495   }
2496   pBuilder->iPlanLimit--;
2497 
2498   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2499 
2500   /* If pBuilder->pOrSet is defined, then only keep track of the costs
2501   ** and prereqs.
2502   */
2503   if( pBuilder->pOrSet!=0 ){
2504     if( pTemplate->nLTerm ){
2505 #if WHERETRACE_ENABLED
2506       u16 n = pBuilder->pOrSet->n;
2507       int x =
2508 #endif
2509       whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2510                                     pTemplate->nOut);
2511 #if WHERETRACE_ENABLED /* 0x8 */
2512       if( sqlite3WhereTrace & 0x8 ){
2513         sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
2514         sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2515       }
2516 #endif
2517     }
2518     return SQLITE_OK;
2519   }
2520 
2521   /* Look for an existing WhereLoop to replace with pTemplate
2522   */
2523   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2524 
2525   if( ppPrev==0 ){
2526     /* There already exists a WhereLoop on the list that is better
2527     ** than pTemplate, so just ignore pTemplate */
2528 #if WHERETRACE_ENABLED /* 0x8 */
2529     if( sqlite3WhereTrace & 0x8 ){
2530       sqlite3DebugPrintf("   skip: ");
2531       sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2532     }
2533 #endif
2534     return SQLITE_OK;
2535   }else{
2536     p = *ppPrev;
2537   }
2538 
2539   /* If we reach this point it means that either p[] should be overwritten
2540   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2541   ** WhereLoop and insert it.
2542   */
2543 #if WHERETRACE_ENABLED /* 0x8 */
2544   if( sqlite3WhereTrace & 0x8 ){
2545     if( p!=0 ){
2546       sqlite3DebugPrintf("replace: ");
2547       sqlite3WhereLoopPrint(p, pBuilder->pWC);
2548       sqlite3DebugPrintf("   with: ");
2549     }else{
2550       sqlite3DebugPrintf("    add: ");
2551     }
2552     sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2553   }
2554 #endif
2555   if( p==0 ){
2556     /* Allocate a new WhereLoop to add to the end of the list */
2557     *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2558     if( p==0 ) return SQLITE_NOMEM_BKPT;
2559     whereLoopInit(p);
2560     p->pNextLoop = 0;
2561   }else{
2562     /* We will be overwriting WhereLoop p[].  But before we do, first
2563     ** go through the rest of the list and delete any other entries besides
2564     ** p[] that are also supplated by pTemplate */
2565     WhereLoop **ppTail = &p->pNextLoop;
2566     WhereLoop *pToDel;
2567     while( *ppTail ){
2568       ppTail = whereLoopFindLesser(ppTail, pTemplate);
2569       if( ppTail==0 ) break;
2570       pToDel = *ppTail;
2571       if( pToDel==0 ) break;
2572       *ppTail = pToDel->pNextLoop;
2573 #if WHERETRACE_ENABLED /* 0x8 */
2574       if( sqlite3WhereTrace & 0x8 ){
2575         sqlite3DebugPrintf(" delete: ");
2576         sqlite3WhereLoopPrint(pToDel, pBuilder->pWC);
2577       }
2578 #endif
2579       whereLoopDelete(db, pToDel);
2580     }
2581   }
2582   rc = whereLoopXfer(db, p, pTemplate);
2583   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2584     Index *pIndex = p->u.btree.pIndex;
2585     if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){
2586       p->u.btree.pIndex = 0;
2587     }
2588   }
2589   return rc;
2590 }
2591 
2592 /*
2593 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2594 ** WHERE clause that reference the loop but which are not used by an
2595 ** index.
2596 *
2597 ** For every WHERE clause term that is not used by the index
2598 ** and which has a truth probability assigned by one of the likelihood(),
2599 ** likely(), or unlikely() SQL functions, reduce the estimated number
2600 ** of output rows by the probability specified.
2601 **
2602 ** TUNING:  For every WHERE clause term that is not used by the index
2603 ** and which does not have an assigned truth probability, heuristics
2604 ** described below are used to try to estimate the truth probability.
2605 ** TODO --> Perhaps this is something that could be improved by better
2606 ** table statistics.
2607 **
2608 ** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
2609 ** value corresponds to -1 in LogEst notation, so this means decrement
2610 ** the WhereLoop.nOut field for every such WHERE clause term.
2611 **
2612 ** Heuristic 2:  If there exists one or more WHERE clause terms of the
2613 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2614 ** final output row estimate is no greater than 1/4 of the total number
2615 ** of rows in the table.  In other words, assume that x==EXPR will filter
2616 ** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
2617 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2618 ** on the "x" column and so in that case only cap the output row estimate
2619 ** at 1/2 instead of 1/4.
2620 */
2621 static void whereLoopOutputAdjust(
2622   WhereClause *pWC,      /* The WHERE clause */
2623   WhereLoop *pLoop,      /* The loop to adjust downward */
2624   LogEst nRow            /* Number of rows in the entire table */
2625 ){
2626   WhereTerm *pTerm, *pX;
2627   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2628   int i, j;
2629   LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */
2630 
2631   assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2632   for(i=pWC->nBase, pTerm=pWC->a; i>0; i--, pTerm++){
2633     assert( pTerm!=0 );
2634     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2635     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2636     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) continue;
2637     for(j=pLoop->nLTerm-1; j>=0; j--){
2638       pX = pLoop->aLTerm[j];
2639       if( pX==0 ) continue;
2640       if( pX==pTerm ) break;
2641       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2642     }
2643     if( j<0 ){
2644       if( pLoop->maskSelf==pTerm->prereqAll ){
2645         /* If there are extra terms in the WHERE clause not used by an index
2646         ** that depend only on the table being scanned, and that will tend to
2647         ** cause many rows to be omitted, then mark that table as
2648         ** "self-culling".
2649         **
2650         ** 2022-03-24:  Self-culling only applies if either the extra terms
2651         ** are straight comparison operators that are non-true with NULL
2652         ** operand, or if the loop is not an OUTER JOIN.
2653         */
2654         if( (pTerm->eOperator & 0x3f)!=0
2655          || (pWC->pWInfo->pTabList->a[pLoop->iTab].fg.jointype
2656                   & (JT_LEFT|JT_LTORJ))==0
2657         ){
2658           pLoop->wsFlags |= WHERE_SELFCULL;
2659         }
2660       }
2661       if( pTerm->truthProb<=0 ){
2662         /* If a truth probability is specified using the likelihood() hints,
2663         ** then use the probability provided by the application. */
2664         pLoop->nOut += pTerm->truthProb;
2665       }else{
2666         /* In the absence of explicit truth probabilities, use heuristics to
2667         ** guess a reasonable truth probability. */
2668         pLoop->nOut--;
2669         if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0
2670          && (pTerm->wtFlags & TERM_HIGHTRUTH)==0  /* tag-20200224-1 */
2671         ){
2672           Expr *pRight = pTerm->pExpr->pRight;
2673           int k = 0;
2674           testcase( pTerm->pExpr->op==TK_IS );
2675           if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2676             k = 10;
2677           }else{
2678             k = 20;
2679           }
2680           if( iReduce<k ){
2681             pTerm->wtFlags |= TERM_HEURTRUTH;
2682             iReduce = k;
2683           }
2684         }
2685       }
2686     }
2687   }
2688   if( pLoop->nOut > nRow-iReduce ){
2689     pLoop->nOut = nRow - iReduce;
2690   }
2691 }
2692 
2693 /*
2694 ** Term pTerm is a vector range comparison operation. The first comparison
2695 ** in the vector can be optimized using column nEq of the index. This
2696 ** function returns the total number of vector elements that can be used
2697 ** as part of the range comparison.
2698 **
2699 ** For example, if the query is:
2700 **
2701 **   WHERE a = ? AND (b, c, d) > (?, ?, ?)
2702 **
2703 ** and the index:
2704 **
2705 **   CREATE INDEX ... ON (a, b, c, d, e)
2706 **
2707 ** then this function would be invoked with nEq=1. The value returned in
2708 ** this case is 3.
2709 */
2710 static int whereRangeVectorLen(
2711   Parse *pParse,       /* Parsing context */
2712   int iCur,            /* Cursor open on pIdx */
2713   Index *pIdx,         /* The index to be used for a inequality constraint */
2714   int nEq,             /* Number of prior equality constraints on same index */
2715   WhereTerm *pTerm     /* The vector inequality constraint */
2716 ){
2717   int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2718   int i;
2719 
2720   nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2721   for(i=1; i<nCmp; i++){
2722     /* Test if comparison i of pTerm is compatible with column (i+nEq)
2723     ** of the index. If not, exit the loop.  */
2724     char aff;                     /* Comparison affinity */
2725     char idxaff = 0;              /* Indexed columns affinity */
2726     CollSeq *pColl;               /* Comparison collation sequence */
2727     Expr *pLhs, *pRhs;
2728 
2729     assert( ExprUseXList(pTerm->pExpr->pLeft) );
2730     pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2731     pRhs = pTerm->pExpr->pRight;
2732     if( ExprUseXSelect(pRhs) ){
2733       pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2734     }else{
2735       pRhs = pRhs->x.pList->a[i].pExpr;
2736     }
2737 
2738     /* Check that the LHS of the comparison is a column reference to
2739     ** the right column of the right source table. And that the sort
2740     ** order of the index column is the same as the sort order of the
2741     ** leftmost index column.  */
2742     if( pLhs->op!=TK_COLUMN
2743      || pLhs->iTable!=iCur
2744      || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2745      || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2746     ){
2747       break;
2748     }
2749 
2750     testcase( pLhs->iColumn==XN_ROWID );
2751     aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2752     idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2753     if( aff!=idxaff ) break;
2754 
2755     pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2756     if( pColl==0 ) break;
2757     if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2758   }
2759   return i;
2760 }
2761 
2762 /*
2763 ** Adjust the cost C by the costMult facter T.  This only occurs if
2764 ** compiled with -DSQLITE_ENABLE_COSTMULT
2765 */
2766 #ifdef SQLITE_ENABLE_COSTMULT
2767 # define ApplyCostMultiplier(C,T)  C += T
2768 #else
2769 # define ApplyCostMultiplier(C,T)
2770 #endif
2771 
2772 /*
2773 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2774 ** index pIndex. Try to match one more.
2775 **
2776 ** When this function is called, pBuilder->pNew->nOut contains the
2777 ** number of rows expected to be visited by filtering using the nEq
2778 ** terms only. If it is modified, this value is restored before this
2779 ** function returns.
2780 **
2781 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
2782 ** a fake index used for the INTEGER PRIMARY KEY.
2783 */
2784 static int whereLoopAddBtreeIndex(
2785   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
2786   SrcItem *pSrc,                  /* FROM clause term being analyzed */
2787   Index *pProbe,                  /* An index on pSrc */
2788   LogEst nInMul                   /* log(Number of iterations due to IN) */
2789 ){
2790   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
2791   Parse *pParse = pWInfo->pParse;        /* Parsing context */
2792   sqlite3 *db = pParse->db;       /* Database connection malloc context */
2793   WhereLoop *pNew;                /* Template WhereLoop under construction */
2794   WhereTerm *pTerm;               /* A WhereTerm under consideration */
2795   int opMask;                     /* Valid operators for constraints */
2796   WhereScan scan;                 /* Iterator for WHERE terms */
2797   Bitmask saved_prereq;           /* Original value of pNew->prereq */
2798   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
2799   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
2800   u16 saved_nBtm;                 /* Original value of pNew->u.btree.nBtm */
2801   u16 saved_nTop;                 /* Original value of pNew->u.btree.nTop */
2802   u16 saved_nSkip;                /* Original value of pNew->nSkip */
2803   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
2804   LogEst saved_nOut;              /* Original value of pNew->nOut */
2805   int rc = SQLITE_OK;             /* Return code */
2806   LogEst rSize;                   /* Number of rows in the table */
2807   LogEst rLogSize;                /* Logarithm of table size */
2808   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2809 
2810   pNew = pBuilder->pNew;
2811   if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2812   WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n",
2813                      pProbe->pTable->zName,pProbe->zName,
2814                      pNew->u.btree.nEq, pNew->nSkip, pNew->rRun));
2815 
2816   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2817   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2818   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2819     opMask = WO_LT|WO_LE;
2820   }else{
2821     assert( pNew->u.btree.nBtm==0 );
2822     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2823   }
2824   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2825 
2826   assert( pNew->u.btree.nEq<pProbe->nColumn );
2827   assert( pNew->u.btree.nEq<pProbe->nKeyCol
2828        || pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY );
2829 
2830   saved_nEq = pNew->u.btree.nEq;
2831   saved_nBtm = pNew->u.btree.nBtm;
2832   saved_nTop = pNew->u.btree.nTop;
2833   saved_nSkip = pNew->nSkip;
2834   saved_nLTerm = pNew->nLTerm;
2835   saved_wsFlags = pNew->wsFlags;
2836   saved_prereq = pNew->prereq;
2837   saved_nOut = pNew->nOut;
2838   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2839                         opMask, pProbe);
2840   pNew->rSetup = 0;
2841   rSize = pProbe->aiRowLogEst[0];
2842   rLogSize = estLog(rSize);
2843   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2844     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
2845     LogEst rCostIdx;
2846     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
2847     int nIn = 0;
2848 #ifdef SQLITE_ENABLE_STAT4
2849     int nRecValid = pBuilder->nRecValid;
2850 #endif
2851     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2852      && indexColumnNotNull(pProbe, saved_nEq)
2853     ){
2854       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2855     }
2856     if( pTerm->prereqRight & pNew->maskSelf ) continue;
2857 
2858     /* Do not allow the upper bound of a LIKE optimization range constraint
2859     ** to mix with a lower range bound from some other source */
2860     if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2861 
2862     if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0
2863      && !constraintCompatibleWithOuterJoin(pTerm,pSrc)
2864     ){
2865       continue;
2866     }
2867     if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2868       pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE;
2869     }else{
2870       pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED;
2871     }
2872     pNew->wsFlags = saved_wsFlags;
2873     pNew->u.btree.nEq = saved_nEq;
2874     pNew->u.btree.nBtm = saved_nBtm;
2875     pNew->u.btree.nTop = saved_nTop;
2876     pNew->nLTerm = saved_nLTerm;
2877     if( pNew->nLTerm>=pNew->nLSlot
2878      && whereLoopResize(db, pNew, pNew->nLTerm+1)
2879     ){
2880        break; /* OOM while trying to enlarge the pNew->aLTerm array */
2881     }
2882     pNew->aLTerm[pNew->nLTerm++] = pTerm;
2883     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2884 
2885     assert( nInMul==0
2886         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2887         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2888         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2889     );
2890 
2891     if( eOp & WO_IN ){
2892       Expr *pExpr = pTerm->pExpr;
2893       if( ExprUseXSelect(pExpr) ){
2894         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
2895         int i;
2896         nIn = 46;  assert( 46==sqlite3LogEst(25) );
2897 
2898         /* The expression may actually be of the form (x, y) IN (SELECT...).
2899         ** In this case there is a separate term for each of (x) and (y).
2900         ** However, the nIn multiplier should only be applied once, not once
2901         ** for each such term. The following loop checks that pTerm is the
2902         ** first such term in use, and sets nIn back to 0 if it is not. */
2903         for(i=0; i<pNew->nLTerm-1; i++){
2904           if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2905         }
2906       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2907         /* "x IN (value, value, ...)" */
2908         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2909       }
2910       if( pProbe->hasStat1 && rLogSize>=10 ){
2911         LogEst M, logK, x;
2912         /* Let:
2913         **   N = the total number of rows in the table
2914         **   K = the number of entries on the RHS of the IN operator
2915         **   M = the number of rows in the table that match terms to the
2916         **       to the left in the same index.  If the IN operator is on
2917         **       the left-most index column, M==N.
2918         **
2919         ** Given the definitions above, it is better to omit the IN operator
2920         ** from the index lookup and instead do a scan of the M elements,
2921         ** testing each scanned row against the IN operator separately, if:
2922         **
2923         **        M*log(K) < K*log(N)
2924         **
2925         ** Our estimates for M, K, and N might be inaccurate, so we build in
2926         ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
2927         ** with the index, as using an index has better worst-case behavior.
2928         ** If we do not have real sqlite_stat1 data, always prefer to use
2929         ** the index.  Do not bother with this optimization on very small
2930         ** tables (less than 2 rows) as it is pointless in that case.
2931         */
2932         M = pProbe->aiRowLogEst[saved_nEq];
2933         logK = estLog(nIn);
2934         /* TUNING      v-----  10 to bias toward indexed IN */
2935         x = M + logK + 10 - (nIn + rLogSize);
2936         if( x>=0 ){
2937           WHERETRACE(0x40,
2938             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) "
2939              "prefers indexed lookup\n",
2940              saved_nEq, M, logK, nIn, rLogSize, x));
2941         }else if( nInMul<2 && OptimizationEnabled(db, SQLITE_SeekScan) ){
2942           WHERETRACE(0x40,
2943             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2944              " nInMul=%d) prefers skip-scan\n",
2945              saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
2946           pNew->wsFlags |= WHERE_IN_SEEKSCAN;
2947         }else{
2948           WHERETRACE(0x40,
2949             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2950              " nInMul=%d) prefers normal scan\n",
2951              saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
2952           continue;
2953         }
2954       }
2955       pNew->wsFlags |= WHERE_COLUMN_IN;
2956     }else if( eOp & (WO_EQ|WO_IS) ){
2957       int iCol = pProbe->aiColumn[saved_nEq];
2958       pNew->wsFlags |= WHERE_COLUMN_EQ;
2959       assert( saved_nEq==pNew->u.btree.nEq );
2960       if( iCol==XN_ROWID
2961        || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2962       ){
2963         if( iCol==XN_ROWID || pProbe->uniqNotNull
2964          || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
2965         ){
2966           pNew->wsFlags |= WHERE_ONEROW;
2967         }else{
2968           pNew->wsFlags |= WHERE_UNQ_WANTED;
2969         }
2970       }
2971       if( scan.iEquiv>1 ) pNew->wsFlags |= WHERE_TRANSCONS;
2972     }else if( eOp & WO_ISNULL ){
2973       pNew->wsFlags |= WHERE_COLUMN_NULL;
2974     }else{
2975       int nVecLen = whereRangeVectorLen(
2976           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2977       );
2978       if( eOp & (WO_GT|WO_GE) ){
2979         testcase( eOp & WO_GT );
2980         testcase( eOp & WO_GE );
2981         pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2982         pNew->u.btree.nBtm = nVecLen;
2983         pBtm = pTerm;
2984         pTop = 0;
2985         if( pTerm->wtFlags & TERM_LIKEOPT ){
2986           /* Range constraints that come from the LIKE optimization are
2987           ** always used in pairs. */
2988           pTop = &pTerm[1];
2989           assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2990           assert( pTop->wtFlags & TERM_LIKEOPT );
2991           assert( pTop->eOperator==WO_LT );
2992           if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2993           pNew->aLTerm[pNew->nLTerm++] = pTop;
2994           pNew->wsFlags |= WHERE_TOP_LIMIT;
2995           pNew->u.btree.nTop = 1;
2996         }
2997       }else{
2998         assert( eOp & (WO_LT|WO_LE) );
2999         testcase( eOp & WO_LT );
3000         testcase( eOp & WO_LE );
3001         pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
3002         pNew->u.btree.nTop = nVecLen;
3003         pTop = pTerm;
3004         pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
3005                        pNew->aLTerm[pNew->nLTerm-2] : 0;
3006       }
3007     }
3008 
3009     /* At this point pNew->nOut is set to the number of rows expected to
3010     ** be visited by the index scan before considering term pTerm, or the
3011     ** values of nIn and nInMul. In other words, assuming that all
3012     ** "x IN(...)" terms are replaced with "x = ?". This block updates
3013     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
3014     assert( pNew->nOut==saved_nOut );
3015     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
3016       /* Adjust nOut using stat4 data. Or, if there is no stat4
3017       ** data, using some other estimate.  */
3018       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
3019     }else{
3020       int nEq = ++pNew->u.btree.nEq;
3021       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
3022 
3023       assert( pNew->nOut==saved_nOut );
3024       if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
3025         assert( (eOp & WO_IN) || nIn==0 );
3026         testcase( eOp & WO_IN );
3027         pNew->nOut += pTerm->truthProb;
3028         pNew->nOut -= nIn;
3029       }else{
3030 #ifdef SQLITE_ENABLE_STAT4
3031         tRowcnt nOut = 0;
3032         if( nInMul==0
3033          && pProbe->nSample
3034          && ALWAYS(pNew->u.btree.nEq<=pProbe->nSampleCol)
3035          && ((eOp & WO_IN)==0 || ExprUseXList(pTerm->pExpr))
3036          && OptimizationEnabled(db, SQLITE_Stat4)
3037         ){
3038           Expr *pExpr = pTerm->pExpr;
3039           if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
3040             testcase( eOp & WO_EQ );
3041             testcase( eOp & WO_IS );
3042             testcase( eOp & WO_ISNULL );
3043             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
3044           }else{
3045             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
3046           }
3047           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
3048           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
3049           if( nOut ){
3050             pNew->nOut = sqlite3LogEst(nOut);
3051             if( nEq==1
3052              /* TUNING: Mark terms as "low selectivity" if they seem likely
3053              ** to be true for half or more of the rows in the table.
3054              ** See tag-202002240-1 */
3055              && pNew->nOut+10 > pProbe->aiRowLogEst[0]
3056             ){
3057 #if WHERETRACE_ENABLED /* 0x01 */
3058               if( sqlite3WhereTrace & 0x01 ){
3059                 sqlite3DebugPrintf(
3060                    "STAT4 determines term has low selectivity:\n");
3061                 sqlite3WhereTermPrint(pTerm, 999);
3062               }
3063 #endif
3064               pTerm->wtFlags |= TERM_HIGHTRUTH;
3065               if( pTerm->wtFlags & TERM_HEURTRUTH ){
3066                 /* If the term has previously been used with an assumption of
3067                 ** higher selectivity, then set the flag to rerun the
3068                 ** loop computations. */
3069                 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS;
3070               }
3071             }
3072             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
3073             pNew->nOut -= nIn;
3074           }
3075         }
3076         if( nOut==0 )
3077 #endif
3078         {
3079           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
3080           if( eOp & WO_ISNULL ){
3081             /* TUNING: If there is no likelihood() value, assume that a
3082             ** "col IS NULL" expression matches twice as many rows
3083             ** as (col=?). */
3084             pNew->nOut += 10;
3085           }
3086         }
3087       }
3088     }
3089 
3090     /* Set rCostIdx to the cost of visiting selected rows in index. Add
3091     ** it to pNew->rRun, which is currently set to the cost of the index
3092     ** seek only. Then, if this is a non-covering index, add the cost of
3093     ** visiting the rows in the main table.  */
3094     assert( pSrc->pTab->szTabRow>0 );
3095     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
3096     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
3097     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
3098       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
3099     }
3100     ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
3101 
3102     nOutUnadjusted = pNew->nOut;
3103     pNew->rRun += nInMul + nIn;
3104     pNew->nOut += nInMul + nIn;
3105     whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
3106     rc = whereLoopInsert(pBuilder, pNew);
3107 
3108     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
3109       pNew->nOut = saved_nOut;
3110     }else{
3111       pNew->nOut = nOutUnadjusted;
3112     }
3113 
3114     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
3115      && pNew->u.btree.nEq<pProbe->nColumn
3116      && (pNew->u.btree.nEq<pProbe->nKeyCol ||
3117            pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY)
3118     ){
3119       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
3120     }
3121     pNew->nOut = saved_nOut;
3122 #ifdef SQLITE_ENABLE_STAT4
3123     pBuilder->nRecValid = nRecValid;
3124 #endif
3125   }
3126   pNew->prereq = saved_prereq;
3127   pNew->u.btree.nEq = saved_nEq;
3128   pNew->u.btree.nBtm = saved_nBtm;
3129   pNew->u.btree.nTop = saved_nTop;
3130   pNew->nSkip = saved_nSkip;
3131   pNew->wsFlags = saved_wsFlags;
3132   pNew->nOut = saved_nOut;
3133   pNew->nLTerm = saved_nLTerm;
3134 
3135   /* Consider using a skip-scan if there are no WHERE clause constraints
3136   ** available for the left-most terms of the index, and if the average
3137   ** number of repeats in the left-most terms is at least 18.
3138   **
3139   ** The magic number 18 is selected on the basis that scanning 17 rows
3140   ** is almost always quicker than an index seek (even though if the index
3141   ** contains fewer than 2^17 rows we assume otherwise in other parts of
3142   ** the code). And, even if it is not, it should not be too much slower.
3143   ** On the other hand, the extra seeks could end up being significantly
3144   ** more expensive.  */
3145   assert( 42==sqlite3LogEst(18) );
3146   if( saved_nEq==saved_nSkip
3147    && saved_nEq+1<pProbe->nKeyCol
3148    && saved_nEq==pNew->nLTerm
3149    && pProbe->noSkipScan==0
3150    && pProbe->hasStat1!=0
3151    && OptimizationEnabled(db, SQLITE_SkipScan)
3152    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
3153    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
3154   ){
3155     LogEst nIter;
3156     pNew->u.btree.nEq++;
3157     pNew->nSkip++;
3158     pNew->aLTerm[pNew->nLTerm++] = 0;
3159     pNew->wsFlags |= WHERE_SKIPSCAN;
3160     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
3161     pNew->nOut -= nIter;
3162     /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
3163     ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
3164     nIter += 5;
3165     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
3166     pNew->nOut = saved_nOut;
3167     pNew->u.btree.nEq = saved_nEq;
3168     pNew->nSkip = saved_nSkip;
3169     pNew->wsFlags = saved_wsFlags;
3170   }
3171 
3172   WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
3173                       pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
3174   return rc;
3175 }
3176 
3177 /*
3178 ** Return True if it is possible that pIndex might be useful in
3179 ** implementing the ORDER BY clause in pBuilder.
3180 **
3181 ** Return False if pBuilder does not contain an ORDER BY clause or
3182 ** if there is no way for pIndex to be useful in implementing that
3183 ** ORDER BY clause.
3184 */
3185 static int indexMightHelpWithOrderBy(
3186   WhereLoopBuilder *pBuilder,
3187   Index *pIndex,
3188   int iCursor
3189 ){
3190   ExprList *pOB;
3191   ExprList *aColExpr;
3192   int ii, jj;
3193 
3194   if( pIndex->bUnordered ) return 0;
3195   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
3196   for(ii=0; ii<pOB->nExpr; ii++){
3197     Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr);
3198     if( NEVER(pExpr==0) ) continue;
3199     if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
3200       if( pExpr->iColumn<0 ) return 1;
3201       for(jj=0; jj<pIndex->nKeyCol; jj++){
3202         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
3203       }
3204     }else if( (aColExpr = pIndex->aColExpr)!=0 ){
3205       for(jj=0; jj<pIndex->nKeyCol; jj++){
3206         if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
3207         if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
3208           return 1;
3209         }
3210       }
3211     }
3212   }
3213   return 0;
3214 }
3215 
3216 /* Check to see if a partial index with pPartIndexWhere can be used
3217 ** in the current query.  Return true if it can be and false if not.
3218 */
3219 static int whereUsablePartialIndex(
3220   int iTab,             /* The table for which we want an index */
3221   u8 jointype,          /* The JT_* flags on the join */
3222   WhereClause *pWC,     /* The WHERE clause of the query */
3223   Expr *pWhere          /* The WHERE clause from the partial index */
3224 ){
3225   int i;
3226   WhereTerm *pTerm;
3227   Parse *pParse;
3228 
3229   if( jointype & JT_LTORJ ) return 0;
3230   pParse = pWC->pWInfo->pParse;
3231   while( pWhere->op==TK_AND ){
3232     if( !whereUsablePartialIndex(iTab,jointype,pWC,pWhere->pLeft) ) return 0;
3233     pWhere = pWhere->pRight;
3234   }
3235   if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
3236   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
3237     Expr *pExpr;
3238     pExpr = pTerm->pExpr;
3239     if( (!ExprHasProperty(pExpr, EP_OuterON) || pExpr->w.iJoin==iTab)
3240      && ((jointype & JT_OUTER)==0 || ExprHasProperty(pExpr, EP_OuterON))
3241      && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
3242      && (pTerm->wtFlags & TERM_VNULL)==0
3243     ){
3244       return 1;
3245     }
3246   }
3247   return 0;
3248 }
3249 
3250 /*
3251 ** Add all WhereLoop objects for a single table of the join where the table
3252 ** is identified by pBuilder->pNew->iTab.  That table is guaranteed to be
3253 ** a b-tree table, not a virtual table.
3254 **
3255 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
3256 ** are calculated as follows:
3257 **
3258 ** For a full scan, assuming the table (or index) contains nRow rows:
3259 **
3260 **     cost = nRow * 3.0                    // full-table scan
3261 **     cost = nRow * K                      // scan of covering index
3262 **     cost = nRow * (K+3.0)                // scan of non-covering index
3263 **
3264 ** where K is a value between 1.1 and 3.0 set based on the relative
3265 ** estimated average size of the index and table records.
3266 **
3267 ** For an index scan, where nVisit is the number of index rows visited
3268 ** by the scan, and nSeek is the number of seek operations required on
3269 ** the index b-tree:
3270 **
3271 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
3272 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
3273 **
3274 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
3275 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
3276 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
3277 **
3278 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
3279 ** of uncertainty.  For this reason, scoring is designed to pick plans that
3280 ** "do the least harm" if the estimates are inaccurate.  For example, a
3281 ** log(nRow) factor is omitted from a non-covering index scan in order to
3282 ** bias the scoring in favor of using an index, since the worst-case
3283 ** performance of using an index is far better than the worst-case performance
3284 ** of a full table scan.
3285 */
3286 static int whereLoopAddBtree(
3287   WhereLoopBuilder *pBuilder, /* WHERE clause information */
3288   Bitmask mPrereq             /* Extra prerequesites for using this table */
3289 ){
3290   WhereInfo *pWInfo;          /* WHERE analysis context */
3291   Index *pProbe;              /* An index we are evaluating */
3292   Index sPk;                  /* A fake index object for the primary key */
3293   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
3294   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
3295   SrcList *pTabList;          /* The FROM clause */
3296   SrcItem *pSrc;              /* The FROM clause btree term to add */
3297   WhereLoop *pNew;            /* Template WhereLoop object */
3298   int rc = SQLITE_OK;         /* Return code */
3299   int iSortIdx = 1;           /* Index number */
3300   int b;                      /* A boolean value */
3301   LogEst rSize;               /* number of rows in the table */
3302   WhereClause *pWC;           /* The parsed WHERE clause */
3303   Table *pTab;                /* Table being queried */
3304 
3305   pNew = pBuilder->pNew;
3306   pWInfo = pBuilder->pWInfo;
3307   pTabList = pWInfo->pTabList;
3308   pSrc = pTabList->a + pNew->iTab;
3309   pTab = pSrc->pTab;
3310   pWC = pBuilder->pWC;
3311   assert( !IsVirtual(pSrc->pTab) );
3312 
3313   if( pSrc->fg.isIndexedBy ){
3314     assert( pSrc->fg.isCte==0 );
3315     /* An INDEXED BY clause specifies a particular index to use */
3316     pProbe = pSrc->u2.pIBIndex;
3317   }else if( !HasRowid(pTab) ){
3318     pProbe = pTab->pIndex;
3319   }else{
3320     /* There is no INDEXED BY clause.  Create a fake Index object in local
3321     ** variable sPk to represent the rowid primary key index.  Make this
3322     ** fake index the first in a chain of Index objects with all of the real
3323     ** indices to follow */
3324     Index *pFirst;                  /* First of real indices on the table */
3325     memset(&sPk, 0, sizeof(Index));
3326     sPk.nKeyCol = 1;
3327     sPk.nColumn = 1;
3328     sPk.aiColumn = &aiColumnPk;
3329     sPk.aiRowLogEst = aiRowEstPk;
3330     sPk.onError = OE_Replace;
3331     sPk.pTable = pTab;
3332     sPk.szIdxRow = pTab->szTabRow;
3333     sPk.idxType = SQLITE_IDXTYPE_IPK;
3334     aiRowEstPk[0] = pTab->nRowLogEst;
3335     aiRowEstPk[1] = 0;
3336     pFirst = pSrc->pTab->pIndex;
3337     if( pSrc->fg.notIndexed==0 ){
3338       /* The real indices of the table are only considered if the
3339       ** NOT INDEXED qualifier is omitted from the FROM clause */
3340       sPk.pNext = pFirst;
3341     }
3342     pProbe = &sPk;
3343   }
3344   rSize = pTab->nRowLogEst;
3345 
3346 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
3347   /* Automatic indexes */
3348   if( !pBuilder->pOrSet      /* Not part of an OR optimization */
3349    && (pWInfo->wctrlFlags & (WHERE_RIGHT_JOIN|WHERE_OR_SUBCLAUSE))==0
3350    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
3351    && !pSrc->fg.isIndexedBy  /* Has no INDEXED BY clause */
3352    && !pSrc->fg.notIndexed   /* Has no NOT INDEXED clause */
3353    && HasRowid(pTab)         /* Not WITHOUT ROWID table. (FIXME: Why not?) */
3354    && !pSrc->fg.isCorrelated /* Not a correlated subquery */
3355    && !pSrc->fg.isRecursive  /* Not a recursive common table expression. */
3356    && (pSrc->fg.jointype & JT_RIGHT)==0 /* Not the right tab of a RIGHT JOIN */
3357   ){
3358     /* Generate auto-index WhereLoops */
3359     LogEst rLogSize;         /* Logarithm of the number of rows in the table */
3360     WhereTerm *pTerm;
3361     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
3362     rLogSize = estLog(rSize);
3363     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
3364       if( pTerm->prereqRight & pNew->maskSelf ) continue;
3365       if( termCanDriveIndex(pTerm, pSrc, 0) ){
3366         pNew->u.btree.nEq = 1;
3367         pNew->nSkip = 0;
3368         pNew->u.btree.pIndex = 0;
3369         pNew->nLTerm = 1;
3370         pNew->aLTerm[0] = pTerm;
3371         /* TUNING: One-time cost for computing the automatic index is
3372         ** estimated to be X*N*log2(N) where N is the number of rows in
3373         ** the table being indexed and where X is 7 (LogEst=28) for normal
3374         ** tables or 0.5 (LogEst=-10) for views and subqueries.  The value
3375         ** of X is smaller for views and subqueries so that the query planner
3376         ** will be more aggressive about generating automatic indexes for
3377         ** those objects, since there is no opportunity to add schema
3378         ** indexes on subqueries and views. */
3379         pNew->rSetup = rLogSize + rSize;
3380         if( !IsView(pTab) && (pTab->tabFlags & TF_Ephemeral)==0 ){
3381           pNew->rSetup += 28;
3382         }else{
3383           pNew->rSetup -= 10;
3384         }
3385         ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
3386         if( pNew->rSetup<0 ) pNew->rSetup = 0;
3387         /* TUNING: Each index lookup yields 20 rows in the table.  This
3388         ** is more than the usual guess of 10 rows, since we have no way
3389         ** of knowing how selective the index will ultimately be.  It would
3390         ** not be unreasonable to make this value much larger. */
3391         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
3392         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
3393         pNew->wsFlags = WHERE_AUTO_INDEX;
3394         pNew->prereq = mPrereq | pTerm->prereqRight;
3395         rc = whereLoopInsert(pBuilder, pNew);
3396       }
3397     }
3398   }
3399 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
3400 
3401   /* Loop over all indices. If there was an INDEXED BY clause, then only
3402   ** consider index pProbe.  */
3403   for(; rc==SQLITE_OK && pProbe;
3404       pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++
3405   ){
3406     if( pProbe->pPartIdxWhere!=0
3407      && !whereUsablePartialIndex(pSrc->iCursor, pSrc->fg.jointype, pWC,
3408                                  pProbe->pPartIdxWhere)
3409     ){
3410       testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
3411       continue;  /* Partial index inappropriate for this query */
3412     }
3413     if( pProbe->bNoQuery ) continue;
3414     rSize = pProbe->aiRowLogEst[0];
3415     pNew->u.btree.nEq = 0;
3416     pNew->u.btree.nBtm = 0;
3417     pNew->u.btree.nTop = 0;
3418     pNew->nSkip = 0;
3419     pNew->nLTerm = 0;
3420     pNew->iSortIdx = 0;
3421     pNew->rSetup = 0;
3422     pNew->prereq = mPrereq;
3423     pNew->nOut = rSize;
3424     pNew->u.btree.pIndex = pProbe;
3425     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
3426 
3427     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
3428     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
3429     if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){
3430       /* Integer primary key index */
3431       pNew->wsFlags = WHERE_IPK;
3432 
3433       /* Full table scan */
3434       pNew->iSortIdx = b ? iSortIdx : 0;
3435       /* TUNING: Cost of full table scan is 3.0*N.  The 3.0 factor is an
3436       ** extra cost designed to discourage the use of full table scans,
3437       ** since index lookups have better worst-case performance if our
3438       ** stat guesses are wrong.  Reduce the 3.0 penalty slightly
3439       ** (to 2.75) if we have valid STAT4 information for the table.
3440       ** At 2.75, a full table scan is preferred over using an index on
3441       ** a column with just two distinct values where each value has about
3442       ** an equal number of appearances.  Without STAT4 data, we still want
3443       ** to use an index in that case, since the constraint might be for
3444       ** the scarcer of the two values, and in that case an index lookup is
3445       ** better.
3446       */
3447 #ifdef SQLITE_ENABLE_STAT4
3448       pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0);
3449 #else
3450       pNew->rRun = rSize + 16;
3451 #endif
3452       if( IsView(pTab) || (pTab->tabFlags & TF_Ephemeral)!=0 ){
3453         pNew->wsFlags |= WHERE_VIEWSCAN;
3454       }
3455       ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3456       whereLoopOutputAdjust(pWC, pNew, rSize);
3457       rc = whereLoopInsert(pBuilder, pNew);
3458       pNew->nOut = rSize;
3459       if( rc ) break;
3460     }else{
3461       Bitmask m;
3462       if( pProbe->isCovering ){
3463         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
3464         m = 0;
3465       }else{
3466         m = pSrc->colUsed & pProbe->colNotIdxed;
3467         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
3468       }
3469 
3470       /* Full scan via index */
3471       if( b
3472        || !HasRowid(pTab)
3473        || pProbe->pPartIdxWhere!=0
3474        || pSrc->fg.isIndexedBy
3475        || ( m==0
3476          && pProbe->bUnordered==0
3477          && (pProbe->szIdxRow<pTab->szTabRow)
3478          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
3479          && sqlite3GlobalConfig.bUseCis
3480          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
3481           )
3482       ){
3483         pNew->iSortIdx = b ? iSortIdx : 0;
3484 
3485         /* The cost of visiting the index rows is N*K, where K is
3486         ** between 1.1 and 3.0, depending on the relative sizes of the
3487         ** index and table rows. */
3488         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
3489         if( m!=0 ){
3490           /* If this is a non-covering index scan, add in the cost of
3491           ** doing table lookups.  The cost will be 3x the number of
3492           ** lookups.  Take into account WHERE clause terms that can be
3493           ** satisfied using just the index, and that do not require a
3494           ** table lookup. */
3495           LogEst nLookup = rSize + 16;  /* Base cost:  N*3 */
3496           int ii;
3497           int iCur = pSrc->iCursor;
3498           WhereClause *pWC2 = &pWInfo->sWC;
3499           for(ii=0; ii<pWC2->nTerm; ii++){
3500             WhereTerm *pTerm = &pWC2->a[ii];
3501             if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
3502               break;
3503             }
3504             /* pTerm can be evaluated using just the index.  So reduce
3505             ** the expected number of table lookups accordingly */
3506             if( pTerm->truthProb<=0 ){
3507               nLookup += pTerm->truthProb;
3508             }else{
3509               nLookup--;
3510               if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
3511             }
3512           }
3513 
3514           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
3515         }
3516         ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3517         whereLoopOutputAdjust(pWC, pNew, rSize);
3518         if( (pSrc->fg.jointype & JT_RIGHT)!=0 && pProbe->aColExpr ){
3519           /* Do not do an SCAN of a index-on-expression in a RIGHT JOIN
3520           ** because the cursor used to access the index might not be
3521           ** positioned to the correct row during the right-join no-match
3522           ** loop. */
3523         }else{
3524           rc = whereLoopInsert(pBuilder, pNew);
3525         }
3526         pNew->nOut = rSize;
3527         if( rc ) break;
3528       }
3529     }
3530 
3531     pBuilder->bldFlags1 = 0;
3532     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
3533     if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){
3534       /* If a non-unique index is used, or if a prefix of the key for
3535       ** unique index is used (making the index functionally non-unique)
3536       ** then the sqlite_stat1 data becomes important for scoring the
3537       ** plan */
3538       pTab->tabFlags |= TF_StatsUsed;
3539     }
3540 #ifdef SQLITE_ENABLE_STAT4
3541     sqlite3Stat4ProbeFree(pBuilder->pRec);
3542     pBuilder->nRecValid = 0;
3543     pBuilder->pRec = 0;
3544 #endif
3545   }
3546   return rc;
3547 }
3548 
3549 #ifndef SQLITE_OMIT_VIRTUALTABLE
3550 
3551 /*
3552 ** Return true if pTerm is a virtual table LIMIT or OFFSET term.
3553 */
3554 static int isLimitTerm(WhereTerm *pTerm){
3555   assert( pTerm->eOperator==WO_AUX || pTerm->eMatchOp==0 );
3556   return pTerm->eMatchOp>=SQLITE_INDEX_CONSTRAINT_LIMIT
3557       && pTerm->eMatchOp<=SQLITE_INDEX_CONSTRAINT_OFFSET;
3558 }
3559 
3560 /*
3561 ** Argument pIdxInfo is already populated with all constraints that may
3562 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3563 ** function marks a subset of those constraints usable, invokes the
3564 ** xBestIndex method and adds the returned plan to pBuilder.
3565 **
3566 ** A constraint is marked usable if:
3567 **
3568 **   * Argument mUsable indicates that its prerequisites are available, and
3569 **
3570 **   * It is not one of the operators specified in the mExclude mask passed
3571 **     as the fourth argument (which in practice is either WO_IN or 0).
3572 **
3573 ** Argument mPrereq is a mask of tables that must be scanned before the
3574 ** virtual table in question. These are added to the plans prerequisites
3575 ** before it is added to pBuilder.
3576 **
3577 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3578 ** uses one or more WO_IN terms, or false otherwise.
3579 */
3580 static int whereLoopAddVirtualOne(
3581   WhereLoopBuilder *pBuilder,
3582   Bitmask mPrereq,                /* Mask of tables that must be used. */
3583   Bitmask mUsable,                /* Mask of usable tables */
3584   u16 mExclude,                   /* Exclude terms using these operators */
3585   sqlite3_index_info *pIdxInfo,   /* Populated object for xBestIndex */
3586   u16 mNoOmit,                    /* Do not omit these constraints */
3587   int *pbIn,                      /* OUT: True if plan uses an IN(...) op */
3588   int *pbRetryLimit               /* OUT: Retry without LIMIT/OFFSET */
3589 ){
3590   WhereClause *pWC = pBuilder->pWC;
3591   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3592   struct sqlite3_index_constraint *pIdxCons;
3593   struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3594   int i;
3595   int mxTerm;
3596   int rc = SQLITE_OK;
3597   WhereLoop *pNew = pBuilder->pNew;
3598   Parse *pParse = pBuilder->pWInfo->pParse;
3599   SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3600   int nConstraint = pIdxInfo->nConstraint;
3601 
3602   assert( (mUsable & mPrereq)==mPrereq );
3603   *pbIn = 0;
3604   pNew->prereq = mPrereq;
3605 
3606   /* Set the usable flag on the subset of constraints identified by
3607   ** arguments mUsable and mExclude. */
3608   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3609   for(i=0; i<nConstraint; i++, pIdxCons++){
3610     WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3611     pIdxCons->usable = 0;
3612     if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3613      && (pTerm->eOperator & mExclude)==0
3614      && (pbRetryLimit || !isLimitTerm(pTerm))
3615     ){
3616       pIdxCons->usable = 1;
3617     }
3618   }
3619 
3620   /* Initialize the output fields of the sqlite3_index_info structure */
3621   memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3622   assert( pIdxInfo->needToFreeIdxStr==0 );
3623   pIdxInfo->idxStr = 0;
3624   pIdxInfo->idxNum = 0;
3625   pIdxInfo->orderByConsumed = 0;
3626   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3627   pIdxInfo->estimatedRows = 25;
3628   pIdxInfo->idxFlags = 0;
3629   pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3630   pHidden->mHandleIn = 0;
3631 
3632   /* Invoke the virtual table xBestIndex() method */
3633   rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3634   if( rc ){
3635     if( rc==SQLITE_CONSTRAINT ){
3636       /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
3637       ** that the particular combination of parameters provided is unusable.
3638       ** Make no entries in the loop table.
3639       */
3640       WHERETRACE(0xffff, ("  ^^^^--- non-viable plan rejected!\n"));
3641       return SQLITE_OK;
3642     }
3643     return rc;
3644   }
3645 
3646   mxTerm = -1;
3647   assert( pNew->nLSlot>=nConstraint );
3648   memset(pNew->aLTerm, 0, sizeof(pNew->aLTerm[0])*nConstraint );
3649   memset(&pNew->u.vtab, 0, sizeof(pNew->u.vtab));
3650   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3651   for(i=0; i<nConstraint; i++, pIdxCons++){
3652     int iTerm;
3653     if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3654       WhereTerm *pTerm;
3655       int j = pIdxCons->iTermOffset;
3656       if( iTerm>=nConstraint
3657        || j<0
3658        || j>=pWC->nTerm
3659        || pNew->aLTerm[iTerm]!=0
3660        || pIdxCons->usable==0
3661       ){
3662         sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3663         testcase( pIdxInfo->needToFreeIdxStr );
3664         return SQLITE_ERROR;
3665       }
3666       testcase( iTerm==nConstraint-1 );
3667       testcase( j==0 );
3668       testcase( j==pWC->nTerm-1 );
3669       pTerm = &pWC->a[j];
3670       pNew->prereq |= pTerm->prereqRight;
3671       assert( iTerm<pNew->nLSlot );
3672       pNew->aLTerm[iTerm] = pTerm;
3673       if( iTerm>mxTerm ) mxTerm = iTerm;
3674       testcase( iTerm==15 );
3675       testcase( iTerm==16 );
3676       if( pUsage[i].omit ){
3677         if( i<16 && ((1<<i)&mNoOmit)==0 ){
3678           testcase( i!=iTerm );
3679           pNew->u.vtab.omitMask |= 1<<iTerm;
3680         }else{
3681           testcase( i!=iTerm );
3682         }
3683         if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET ){
3684           pNew->u.vtab.bOmitOffset = 1;
3685         }
3686       }
3687       if( SMASKBIT32(i) & pHidden->mHandleIn ){
3688         pNew->u.vtab.mHandleIn |= MASKBIT32(iTerm);
3689       }else if( (pTerm->eOperator & WO_IN)!=0 ){
3690         /* A virtual table that is constrained by an IN clause may not
3691         ** consume the ORDER BY clause because (1) the order of IN terms
3692         ** is not necessarily related to the order of output terms and
3693         ** (2) Multiple outputs from a single IN value will not merge
3694         ** together.  */
3695         pIdxInfo->orderByConsumed = 0;
3696         pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3697         *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3698       }
3699 
3700       assert( pbRetryLimit || !isLimitTerm(pTerm) );
3701       if( isLimitTerm(pTerm) && *pbIn ){
3702         /* If there is an IN(...) term handled as an == (separate call to
3703         ** xFilter for each value on the RHS of the IN) and a LIMIT or
3704         ** OFFSET term handled as well, the plan is unusable. Set output
3705         ** variable *pbRetryLimit to true to tell the caller to retry with
3706         ** LIMIT and OFFSET disabled. */
3707         if( pIdxInfo->needToFreeIdxStr ){
3708           sqlite3_free(pIdxInfo->idxStr);
3709           pIdxInfo->idxStr = 0;
3710           pIdxInfo->needToFreeIdxStr = 0;
3711         }
3712         *pbRetryLimit = 1;
3713         return SQLITE_OK;
3714       }
3715     }
3716   }
3717 
3718   pNew->nLTerm = mxTerm+1;
3719   for(i=0; i<=mxTerm; i++){
3720     if( pNew->aLTerm[i]==0 ){
3721       /* The non-zero argvIdx values must be contiguous.  Raise an
3722       ** error if they are not */
3723       sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3724       testcase( pIdxInfo->needToFreeIdxStr );
3725       return SQLITE_ERROR;
3726     }
3727   }
3728   assert( pNew->nLTerm<=pNew->nLSlot );
3729   pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3730   pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3731   pIdxInfo->needToFreeIdxStr = 0;
3732   pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3733   pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3734       pIdxInfo->nOrderBy : 0);
3735   pNew->rSetup = 0;
3736   pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3737   pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3738 
3739   /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3740   ** that the scan will visit at most one row. Clear it otherwise. */
3741   if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3742     pNew->wsFlags |= WHERE_ONEROW;
3743   }else{
3744     pNew->wsFlags &= ~WHERE_ONEROW;
3745   }
3746   rc = whereLoopInsert(pBuilder, pNew);
3747   if( pNew->u.vtab.needFree ){
3748     sqlite3_free(pNew->u.vtab.idxStr);
3749     pNew->u.vtab.needFree = 0;
3750   }
3751   WHERETRACE(0xffff, ("  bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3752                       *pbIn, (sqlite3_uint64)mPrereq,
3753                       (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3754 
3755   return rc;
3756 }
3757 
3758 /*
3759 ** Return the collating sequence for a constraint passed into xBestIndex.
3760 **
3761 ** pIdxInfo must be an sqlite3_index_info structure passed into xBestIndex.
3762 ** This routine depends on there being a HiddenIndexInfo structure immediately
3763 ** following the sqlite3_index_info structure.
3764 **
3765 ** Return a pointer to the collation name:
3766 **
3767 **    1. If there is an explicit COLLATE operator on the constaint, return it.
3768 **
3769 **    2. Else, if the column has an alternative collation, return that.
3770 **
3771 **    3. Otherwise, return "BINARY".
3772 */
3773 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
3774   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3775   const char *zRet = 0;
3776   if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
3777     CollSeq *pC = 0;
3778     int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
3779     Expr *pX = pHidden->pWC->a[iTerm].pExpr;
3780     if( pX->pLeft ){
3781       pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX);
3782     }
3783     zRet = (pC ? pC->zName : sqlite3StrBINARY);
3784   }
3785   return zRet;
3786 }
3787 
3788 /*
3789 ** Return true if constraint iCons is really an IN(...) constraint, or
3790 ** false otherwise. If iCons is an IN(...) constraint, set (if bHandle!=0)
3791 ** or clear (if bHandle==0) the flag to handle it using an iterator.
3792 */
3793 int sqlite3_vtab_in(sqlite3_index_info *pIdxInfo, int iCons, int bHandle){
3794   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3795   u32 m = SMASKBIT32(iCons);
3796   if( m & pHidden->mIn ){
3797     if( bHandle==0 ){
3798       pHidden->mHandleIn &= ~m;
3799     }else if( bHandle>0 ){
3800       pHidden->mHandleIn |= m;
3801     }
3802     return 1;
3803   }
3804   return 0;
3805 }
3806 
3807 /*
3808 ** This interface is callable from within the xBestIndex callback only.
3809 **
3810 ** If possible, set (*ppVal) to point to an object containing the value
3811 ** on the right-hand-side of constraint iCons.
3812 */
3813 int sqlite3_vtab_rhs_value(
3814   sqlite3_index_info *pIdxInfo,   /* Copy of first argument to xBestIndex */
3815   int iCons,                      /* Constraint for which RHS is wanted */
3816   sqlite3_value **ppVal           /* Write value extracted here */
3817 ){
3818   HiddenIndexInfo *pH = (HiddenIndexInfo*)&pIdxInfo[1];
3819   sqlite3_value *pVal = 0;
3820   int rc = SQLITE_OK;
3821   if( iCons<0 || iCons>=pIdxInfo->nConstraint ){
3822     rc = SQLITE_MISUSE; /* EV: R-30545-25046 */
3823   }else{
3824     if( pH->aRhs[iCons]==0 ){
3825       WhereTerm *pTerm = &pH->pWC->a[pIdxInfo->aConstraint[iCons].iTermOffset];
3826       rc = sqlite3ValueFromExpr(
3827           pH->pParse->db, pTerm->pExpr->pRight, ENC(pH->pParse->db),
3828           SQLITE_AFF_BLOB, &pH->aRhs[iCons]
3829       );
3830       testcase( rc!=SQLITE_OK );
3831     }
3832     pVal = pH->aRhs[iCons];
3833   }
3834   *ppVal = pVal;
3835 
3836   if( rc==SQLITE_OK && pVal==0 ){  /* IMP: R-19933-32160 */
3837     rc = SQLITE_NOTFOUND;          /* IMP: R-36424-56542 */
3838   }
3839 
3840   return rc;
3841 }
3842 
3843 /*
3844 ** Return true if ORDER BY clause may be handled as DISTINCT.
3845 */
3846 int sqlite3_vtab_distinct(sqlite3_index_info *pIdxInfo){
3847   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3848   assert( pHidden->eDistinct>=0 && pHidden->eDistinct<=3 );
3849   return pHidden->eDistinct;
3850 }
3851 
3852 #if (defined(SQLITE_ENABLE_DBPAGE_VTAB) || defined(SQLITE_TEST)) \
3853     && !defined(SQLITE_OMIT_VIRTUALTABLE)
3854 /*
3855 ** Cause the prepared statement that is associated with a call to
3856 ** xBestIndex to potentiall use all schemas.  If the statement being
3857 ** prepared is read-only, then just start read transactions on all
3858 ** schemas.  But if this is a write operation, start writes on all
3859 ** schemas.
3860 **
3861 ** This is used by the (built-in) sqlite_dbpage virtual table.
3862 */
3863 void sqlite3VtabUsesAllSchemas(sqlite3_index_info *pIdxInfo){
3864   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3865   Parse *pParse = pHidden->pParse;
3866   int nDb = pParse->db->nDb;
3867   int i;
3868   for(i=0; i<nDb; i++){
3869     sqlite3CodeVerifySchema(pParse, i);
3870   }
3871   if( pParse->writeMask ){
3872     for(i=0; i<nDb; i++){
3873       sqlite3BeginWriteOperation(pParse, 0, i);
3874     }
3875   }
3876 }
3877 #endif
3878 
3879 /*
3880 ** Add all WhereLoop objects for a table of the join identified by
3881 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
3882 **
3883 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3884 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3885 ** entries that occur before the virtual table in the FROM clause and are
3886 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3887 ** mUnusable mask contains all FROM clause entries that occur after the
3888 ** virtual table and are separated from it by at least one LEFT or
3889 ** CROSS JOIN.
3890 **
3891 ** For example, if the query were:
3892 **
3893 **   ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3894 **
3895 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3896 **
3897 ** All the tables in mPrereq must be scanned before the current virtual
3898 ** table. So any terms for which all prerequisites are satisfied by
3899 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3900 ** Conversely, all tables in mUnusable must be scanned after the current
3901 ** virtual table, so any terms for which the prerequisites overlap with
3902 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3903 */
3904 static int whereLoopAddVirtual(
3905   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
3906   Bitmask mPrereq,             /* Tables that must be scanned before this one */
3907   Bitmask mUnusable            /* Tables that must be scanned after this one */
3908 ){
3909   int rc = SQLITE_OK;          /* Return code */
3910   WhereInfo *pWInfo;           /* WHERE analysis context */
3911   Parse *pParse;               /* The parsing context */
3912   WhereClause *pWC;            /* The WHERE clause */
3913   SrcItem *pSrc;               /* The FROM clause term to search */
3914   sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
3915   int nConstraint;             /* Number of constraints in p */
3916   int bIn;                     /* True if plan uses IN(...) operator */
3917   WhereLoop *pNew;
3918   Bitmask mBest;               /* Tables used by best possible plan */
3919   u16 mNoOmit;
3920   int bRetry = 0;              /* True to retry with LIMIT/OFFSET disabled */
3921 
3922   assert( (mPrereq & mUnusable)==0 );
3923   pWInfo = pBuilder->pWInfo;
3924   pParse = pWInfo->pParse;
3925   pWC = pBuilder->pWC;
3926   pNew = pBuilder->pNew;
3927   pSrc = &pWInfo->pTabList->a[pNew->iTab];
3928   assert( IsVirtual(pSrc->pTab) );
3929   p = allocateIndexInfo(pWInfo, pWC, mUnusable, pSrc, &mNoOmit);
3930   if( p==0 ) return SQLITE_NOMEM_BKPT;
3931   pNew->rSetup = 0;
3932   pNew->wsFlags = WHERE_VIRTUALTABLE;
3933   pNew->nLTerm = 0;
3934   pNew->u.vtab.needFree = 0;
3935   nConstraint = p->nConstraint;
3936   if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3937     freeIndexInfo(pParse->db, p);
3938     return SQLITE_NOMEM_BKPT;
3939   }
3940 
3941   /* First call xBestIndex() with all constraints usable. */
3942   WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
3943   WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
3944   rc = whereLoopAddVirtualOne(
3945       pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, &bRetry
3946   );
3947   if( bRetry ){
3948     assert( rc==SQLITE_OK );
3949     rc = whereLoopAddVirtualOne(
3950         pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, 0
3951     );
3952   }
3953 
3954   /* If the call to xBestIndex() with all terms enabled produced a plan
3955   ** that does not require any source tables (IOW: a plan with mBest==0)
3956   ** and does not use an IN(...) operator, then there is no point in making
3957   ** any further calls to xBestIndex() since they will all return the same
3958   ** result (if the xBestIndex() implementation is sane). */
3959   if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){
3960     int seenZero = 0;             /* True if a plan with no prereqs seen */
3961     int seenZeroNoIN = 0;         /* Plan with no prereqs and no IN(...) seen */
3962     Bitmask mPrev = 0;
3963     Bitmask mBestNoIn = 0;
3964 
3965     /* If the plan produced by the earlier call uses an IN(...) term, call
3966     ** xBestIndex again, this time with IN(...) terms disabled. */
3967     if( bIn ){
3968       WHERETRACE(0x40, ("  VirtualOne: all usable w/o IN\n"));
3969       rc = whereLoopAddVirtualOne(
3970           pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn, 0);
3971       assert( bIn==0 );
3972       mBestNoIn = pNew->prereq & ~mPrereq;
3973       if( mBestNoIn==0 ){
3974         seenZero = 1;
3975         seenZeroNoIN = 1;
3976       }
3977     }
3978 
3979     /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3980     ** in the set of terms that apply to the current virtual table.  */
3981     while( rc==SQLITE_OK ){
3982       int i;
3983       Bitmask mNext = ALLBITS;
3984       assert( mNext>0 );
3985       for(i=0; i<nConstraint; i++){
3986         Bitmask mThis = (
3987             pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3988         );
3989         if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3990       }
3991       mPrev = mNext;
3992       if( mNext==ALLBITS ) break;
3993       if( mNext==mBest || mNext==mBestNoIn ) continue;
3994       WHERETRACE(0x40, ("  VirtualOne: mPrev=%04llx mNext=%04llx\n",
3995                        (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3996       rc = whereLoopAddVirtualOne(
3997           pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn, 0);
3998       if( pNew->prereq==mPrereq ){
3999         seenZero = 1;
4000         if( bIn==0 ) seenZeroNoIN = 1;
4001       }
4002     }
4003 
4004     /* If the calls to xBestIndex() in the above loop did not find a plan
4005     ** that requires no source tables at all (i.e. one guaranteed to be
4006     ** usable), make a call here with all source tables disabled */
4007     if( rc==SQLITE_OK && seenZero==0 ){
4008       WHERETRACE(0x40, ("  VirtualOne: all disabled\n"));
4009       rc = whereLoopAddVirtualOne(
4010           pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn, 0);
4011       if( bIn==0 ) seenZeroNoIN = 1;
4012     }
4013 
4014     /* If the calls to xBestIndex() have so far failed to find a plan
4015     ** that requires no source tables at all and does not use an IN(...)
4016     ** operator, make a final call to obtain one here.  */
4017     if( rc==SQLITE_OK && seenZeroNoIN==0 ){
4018       WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
4019       rc = whereLoopAddVirtualOne(
4020           pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn, 0);
4021     }
4022   }
4023 
4024   if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
4025   freeIndexInfo(pParse->db, p);
4026   WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
4027   return rc;
4028 }
4029 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4030 
4031 /*
4032 ** Add WhereLoop entries to handle OR terms.  This works for either
4033 ** btrees or virtual tables.
4034 */
4035 static int whereLoopAddOr(
4036   WhereLoopBuilder *pBuilder,
4037   Bitmask mPrereq,
4038   Bitmask mUnusable
4039 ){
4040   WhereInfo *pWInfo = pBuilder->pWInfo;
4041   WhereClause *pWC;
4042   WhereLoop *pNew;
4043   WhereTerm *pTerm, *pWCEnd;
4044   int rc = SQLITE_OK;
4045   int iCur;
4046   WhereClause tempWC;
4047   WhereLoopBuilder sSubBuild;
4048   WhereOrSet sSum, sCur;
4049   SrcItem *pItem;
4050 
4051   pWC = pBuilder->pWC;
4052   pWCEnd = pWC->a + pWC->nTerm;
4053   pNew = pBuilder->pNew;
4054   memset(&sSum, 0, sizeof(sSum));
4055   pItem = pWInfo->pTabList->a + pNew->iTab;
4056   iCur = pItem->iCursor;
4057 
4058   /* The multi-index OR optimization does not work for RIGHT and FULL JOIN */
4059   if( pItem->fg.jointype & JT_RIGHT ) return SQLITE_OK;
4060 
4061   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
4062     if( (pTerm->eOperator & WO_OR)!=0
4063      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
4064     ){
4065       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
4066       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
4067       WhereTerm *pOrTerm;
4068       int once = 1;
4069       int i, j;
4070 
4071       sSubBuild = *pBuilder;
4072       sSubBuild.pOrSet = &sCur;
4073 
4074       WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
4075       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
4076         if( (pOrTerm->eOperator & WO_AND)!=0 ){
4077           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
4078         }else if( pOrTerm->leftCursor==iCur ){
4079           tempWC.pWInfo = pWC->pWInfo;
4080           tempWC.pOuter = pWC;
4081           tempWC.op = TK_AND;
4082           tempWC.nTerm = 1;
4083           tempWC.nBase = 1;
4084           tempWC.a = pOrTerm;
4085           sSubBuild.pWC = &tempWC;
4086         }else{
4087           continue;
4088         }
4089         sCur.n = 0;
4090 #ifdef WHERETRACE_ENABLED
4091         WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
4092                    (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
4093         if( sqlite3WhereTrace & 0x400 ){
4094           sqlite3WhereClausePrint(sSubBuild.pWC);
4095         }
4096 #endif
4097 #ifndef SQLITE_OMIT_VIRTUALTABLE
4098         if( IsVirtual(pItem->pTab) ){
4099           rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
4100         }else
4101 #endif
4102         {
4103           rc = whereLoopAddBtree(&sSubBuild, mPrereq);
4104         }
4105         if( rc==SQLITE_OK ){
4106           rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
4107         }
4108         assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0
4109                 || rc==SQLITE_NOMEM );
4110         testcase( rc==SQLITE_NOMEM && sCur.n>0 );
4111         testcase( rc==SQLITE_DONE );
4112         if( sCur.n==0 ){
4113           sSum.n = 0;
4114           break;
4115         }else if( once ){
4116           whereOrMove(&sSum, &sCur);
4117           once = 0;
4118         }else{
4119           WhereOrSet sPrev;
4120           whereOrMove(&sPrev, &sSum);
4121           sSum.n = 0;
4122           for(i=0; i<sPrev.n; i++){
4123             for(j=0; j<sCur.n; j++){
4124               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
4125                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
4126                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
4127             }
4128           }
4129         }
4130       }
4131       pNew->nLTerm = 1;
4132       pNew->aLTerm[0] = pTerm;
4133       pNew->wsFlags = WHERE_MULTI_OR;
4134       pNew->rSetup = 0;
4135       pNew->iSortIdx = 0;
4136       memset(&pNew->u, 0, sizeof(pNew->u));
4137       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
4138         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
4139         ** of all sub-scans required by the OR-scan. However, due to rounding
4140         ** errors, it may be that the cost of the OR-scan is equal to its
4141         ** most expensive sub-scan. Add the smallest possible penalty
4142         ** (equivalent to multiplying the cost by 1.07) to ensure that
4143         ** this does not happen. Otherwise, for WHERE clauses such as the
4144         ** following where there is an index on "y":
4145         **
4146         **     WHERE likelihood(x=?, 0.99) OR y=?
4147         **
4148         ** the planner may elect to "OR" together a full-table scan and an
4149         ** index lookup. And other similarly odd results.  */
4150         pNew->rRun = sSum.a[i].rRun + 1;
4151         pNew->nOut = sSum.a[i].nOut;
4152         pNew->prereq = sSum.a[i].prereq;
4153         rc = whereLoopInsert(pBuilder, pNew);
4154       }
4155       WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
4156     }
4157   }
4158   return rc;
4159 }
4160 
4161 /*
4162 ** Add all WhereLoop objects for all tables
4163 */
4164 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
4165   WhereInfo *pWInfo = pBuilder->pWInfo;
4166   Bitmask mPrereq = 0;
4167   Bitmask mPrior = 0;
4168   int iTab;
4169   SrcList *pTabList = pWInfo->pTabList;
4170   SrcItem *pItem;
4171   SrcItem *pEnd = &pTabList->a[pWInfo->nLevel];
4172   sqlite3 *db = pWInfo->pParse->db;
4173   int rc = SQLITE_OK;
4174   int bFirstPastRJ = 0;
4175   int hasRightJoin = 0;
4176   WhereLoop *pNew;
4177 
4178 
4179   /* Loop over the tables in the join, from left to right */
4180   pNew = pBuilder->pNew;
4181 
4182   /* Verify that pNew has already been initialized */
4183   assert( pNew->nLTerm==0 );
4184   assert( pNew->wsFlags==0 );
4185   assert( pNew->nLSlot>=ArraySize(pNew->aLTermSpace) );
4186   assert( pNew->aLTerm!=0 );
4187 
4188   pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT;
4189   for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
4190     Bitmask mUnusable = 0;
4191     pNew->iTab = iTab;
4192     pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR;
4193     pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
4194     if( bFirstPastRJ
4195      || (pItem->fg.jointype & (JT_OUTER|JT_CROSS|JT_LTORJ))!=0
4196     ){
4197       /* Add prerequisites to prevent reordering of FROM clause terms
4198       ** across CROSS joins and outer joins.  The bFirstPastRJ boolean
4199       ** prevents the right operand of a RIGHT JOIN from being swapped with
4200       ** other elements even further to the right.
4201       **
4202       ** The JT_LTORJ case and the hasRightJoin flag work together to
4203       ** prevent FROM-clause terms from moving from the right side of
4204       ** a LEFT JOIN over to the left side of that join if the LEFT JOIN
4205       ** is itself on the left side of a RIGHT JOIN.
4206       */
4207       if( pItem->fg.jointype & JT_LTORJ ) hasRightJoin = 1;
4208       mPrereq |= mPrior;
4209       bFirstPastRJ = (pItem->fg.jointype & JT_RIGHT)!=0;
4210     }else if( !hasRightJoin ){
4211       mPrereq = 0;
4212     }
4213 #ifndef SQLITE_OMIT_VIRTUALTABLE
4214     if( IsVirtual(pItem->pTab) ){
4215       SrcItem *p;
4216       for(p=&pItem[1]; p<pEnd; p++){
4217         if( mUnusable || (p->fg.jointype & (JT_OUTER|JT_CROSS)) ){
4218           mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
4219         }
4220       }
4221       rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
4222     }else
4223 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4224     {
4225       rc = whereLoopAddBtree(pBuilder, mPrereq);
4226     }
4227     if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
4228       rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
4229     }
4230     mPrior |= pNew->maskSelf;
4231     if( rc || db->mallocFailed ){
4232       if( rc==SQLITE_DONE ){
4233         /* We hit the query planner search limit set by iPlanLimit */
4234         sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search");
4235         rc = SQLITE_OK;
4236       }else{
4237         break;
4238       }
4239     }
4240   }
4241 
4242   whereLoopClear(db, pNew);
4243   return rc;
4244 }
4245 
4246 /*
4247 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
4248 ** parameters) to see if it outputs rows in the requested ORDER BY
4249 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
4250 **
4251 **   N>0:   N terms of the ORDER BY clause are satisfied
4252 **   N==0:  No terms of the ORDER BY clause are satisfied
4253 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
4254 **
4255 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
4256 ** strict.  With GROUP BY and DISTINCT the only requirement is that
4257 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
4258 ** and DISTINCT do not require rows to appear in any particular order as long
4259 ** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT
4260 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
4261 ** pOrderBy terms must be matched in strict left-to-right order.
4262 */
4263 static i8 wherePathSatisfiesOrderBy(
4264   WhereInfo *pWInfo,    /* The WHERE clause */
4265   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
4266   WherePath *pPath,     /* The WherePath to check */
4267   u16 wctrlFlags,       /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
4268   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
4269   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
4270   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
4271 ){
4272   u8 revSet;            /* True if rev is known */
4273   u8 rev;               /* Composite sort order */
4274   u8 revIdx;            /* Index sort order */
4275   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
4276   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
4277   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
4278   u16 eqOpMask;         /* Allowed equality operators */
4279   u16 nKeyCol;          /* Number of key columns in pIndex */
4280   u16 nColumn;          /* Total number of ordered columns in the index */
4281   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
4282   int iLoop;            /* Index of WhereLoop in pPath being processed */
4283   int i, j;             /* Loop counters */
4284   int iCur;             /* Cursor number for current WhereLoop */
4285   int iColumn;          /* A column number within table iCur */
4286   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
4287   WhereTerm *pTerm;     /* A single term of the WHERE clause */
4288   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
4289   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
4290   Index *pIndex;        /* The index associated with pLoop */
4291   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
4292   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
4293   Bitmask obDone;       /* Mask of all ORDER BY terms */
4294   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
4295   Bitmask ready;              /* Mask of inner loops */
4296 
4297   /*
4298   ** We say the WhereLoop is "one-row" if it generates no more than one
4299   ** row of output.  A WhereLoop is one-row if all of the following are true:
4300   **  (a) All index columns match with WHERE_COLUMN_EQ.
4301   **  (b) The index is unique
4302   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
4303   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
4304   **
4305   ** We say the WhereLoop is "order-distinct" if the set of columns from
4306   ** that WhereLoop that are in the ORDER BY clause are different for every
4307   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
4308   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
4309   ** is not order-distinct. To be order-distinct is not quite the same as being
4310   ** UNIQUE since a UNIQUE column or index can have multiple rows that
4311   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
4312   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
4313   **
4314   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
4315   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
4316   ** automatically order-distinct.
4317   */
4318 
4319   assert( pOrderBy!=0 );
4320   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
4321 
4322   nOrderBy = pOrderBy->nExpr;
4323   testcase( nOrderBy==BMS-1 );
4324   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
4325   isOrderDistinct = 1;
4326   obDone = MASKBIT(nOrderBy)-1;
4327   orderDistinctMask = 0;
4328   ready = 0;
4329   eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
4330   if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){
4331     eqOpMask |= WO_IN;
4332   }
4333   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
4334     if( iLoop>0 ) ready |= pLoop->maskSelf;
4335     if( iLoop<nLoop ){
4336       pLoop = pPath->aLoop[iLoop];
4337       if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
4338     }else{
4339       pLoop = pLast;
4340     }
4341     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
4342       if( pLoop->u.vtab.isOrdered
4343        && ((wctrlFlags&(WHERE_DISTINCTBY|WHERE_SORTBYGROUP))!=WHERE_DISTINCTBY)
4344       ){
4345         obSat = obDone;
4346       }
4347       break;
4348     }else if( wctrlFlags & WHERE_DISTINCTBY ){
4349       pLoop->u.btree.nDistinctCol = 0;
4350     }
4351     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
4352 
4353     /* Mark off any ORDER BY term X that is a column in the table of
4354     ** the current loop for which there is term in the WHERE
4355     ** clause of the form X IS NULL or X=? that reference only outer
4356     ** loops.
4357     */
4358     for(i=0; i<nOrderBy; i++){
4359       if( MASKBIT(i) & obSat ) continue;
4360       pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
4361       if( NEVER(pOBExpr==0) ) continue;
4362       if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
4363       if( pOBExpr->iTable!=iCur ) continue;
4364       pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
4365                        ~ready, eqOpMask, 0);
4366       if( pTerm==0 ) continue;
4367       if( pTerm->eOperator==WO_IN ){
4368         /* IN terms are only valid for sorting in the ORDER BY LIMIT
4369         ** optimization, and then only if they are actually used
4370         ** by the query plan */
4371         assert( wctrlFlags &
4372                (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) );
4373         for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
4374         if( j>=pLoop->nLTerm ) continue;
4375       }
4376       if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
4377         Parse *pParse = pWInfo->pParse;
4378         CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr);
4379         CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr);
4380         assert( pColl1 );
4381         if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){
4382           continue;
4383         }
4384         testcase( pTerm->pExpr->op==TK_IS );
4385       }
4386       obSat |= MASKBIT(i);
4387     }
4388 
4389     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
4390       if( pLoop->wsFlags & WHERE_IPK ){
4391         pIndex = 0;
4392         nKeyCol = 0;
4393         nColumn = 1;
4394       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
4395         return 0;
4396       }else{
4397         nKeyCol = pIndex->nKeyCol;
4398         nColumn = pIndex->nColumn;
4399         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
4400         assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
4401                           || !HasRowid(pIndex->pTable));
4402         /* All relevant terms of the index must also be non-NULL in order
4403         ** for isOrderDistinct to be true.  So the isOrderDistint value
4404         ** computed here might be a false positive.  Corrections will be
4405         ** made at tag-20210426-1 below */
4406         isOrderDistinct = IsUniqueIndex(pIndex)
4407                           && (pLoop->wsFlags & WHERE_SKIPSCAN)==0;
4408       }
4409 
4410       /* Loop through all columns of the index and deal with the ones
4411       ** that are not constrained by == or IN.
4412       */
4413       rev = revSet = 0;
4414       distinctColumns = 0;
4415       for(j=0; j<nColumn; j++){
4416         u8 bOnce = 1; /* True to run the ORDER BY search loop */
4417 
4418         assert( j>=pLoop->u.btree.nEq
4419             || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
4420         );
4421         if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
4422           u16 eOp = pLoop->aLTerm[j]->eOperator;
4423 
4424           /* Skip over == and IS and ISNULL terms.  (Also skip IN terms when
4425           ** doing WHERE_ORDERBY_LIMIT processing).  Except, IS and ISNULL
4426           ** terms imply that the index is not UNIQUE NOT NULL in which case
4427           ** the loop need to be marked as not order-distinct because it can
4428           ** have repeated NULL rows.
4429           **
4430           ** If the current term is a column of an ((?,?) IN (SELECT...))
4431           ** expression for which the SELECT returns more than one column,
4432           ** check that it is the only column used by this loop. Otherwise,
4433           ** if it is one of two or more, none of the columns can be
4434           ** considered to match an ORDER BY term.
4435           */
4436           if( (eOp & eqOpMask)!=0 ){
4437             if( eOp & (WO_ISNULL|WO_IS) ){
4438               testcase( eOp & WO_ISNULL );
4439               testcase( eOp & WO_IS );
4440               testcase( isOrderDistinct );
4441               isOrderDistinct = 0;
4442             }
4443             continue;
4444           }else if( ALWAYS(eOp & WO_IN) ){
4445             /* ALWAYS() justification: eOp is an equality operator due to the
4446             ** j<pLoop->u.btree.nEq constraint above.  Any equality other
4447             ** than WO_IN is captured by the previous "if".  So this one
4448             ** always has to be WO_IN. */
4449             Expr *pX = pLoop->aLTerm[j]->pExpr;
4450             for(i=j+1; i<pLoop->u.btree.nEq; i++){
4451               if( pLoop->aLTerm[i]->pExpr==pX ){
4452                 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
4453                 bOnce = 0;
4454                 break;
4455               }
4456             }
4457           }
4458         }
4459 
4460         /* Get the column number in the table (iColumn) and sort order
4461         ** (revIdx) for the j-th column of the index.
4462         */
4463         if( pIndex ){
4464           iColumn = pIndex->aiColumn[j];
4465           revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC;
4466           if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
4467         }else{
4468           iColumn = XN_ROWID;
4469           revIdx = 0;
4470         }
4471 
4472         /* An unconstrained column that might be NULL means that this
4473         ** WhereLoop is not well-ordered.  tag-20210426-1
4474         */
4475         if( isOrderDistinct ){
4476           if( iColumn>=0
4477            && j>=pLoop->u.btree.nEq
4478            && pIndex->pTable->aCol[iColumn].notNull==0
4479           ){
4480             isOrderDistinct = 0;
4481           }
4482           if( iColumn==XN_EXPR ){
4483             isOrderDistinct = 0;
4484           }
4485         }
4486 
4487         /* Find the ORDER BY term that corresponds to the j-th column
4488         ** of the index and mark that ORDER BY term off
4489         */
4490         isMatch = 0;
4491         for(i=0; bOnce && i<nOrderBy; i++){
4492           if( MASKBIT(i) & obSat ) continue;
4493           pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
4494           testcase( wctrlFlags & WHERE_GROUPBY );
4495           testcase( wctrlFlags & WHERE_DISTINCTBY );
4496           if( NEVER(pOBExpr==0) ) continue;
4497           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
4498           if( iColumn>=XN_ROWID ){
4499             if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
4500             if( pOBExpr->iTable!=iCur ) continue;
4501             if( pOBExpr->iColumn!=iColumn ) continue;
4502           }else{
4503             Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
4504             if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
4505               continue;
4506             }
4507           }
4508           if( iColumn!=XN_ROWID ){
4509             pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
4510             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
4511           }
4512           if( wctrlFlags & WHERE_DISTINCTBY ){
4513             pLoop->u.btree.nDistinctCol = j+1;
4514           }
4515           isMatch = 1;
4516           break;
4517         }
4518         if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
4519           /* Make sure the sort order is compatible in an ORDER BY clause.
4520           ** Sort order is irrelevant for a GROUP BY clause. */
4521           if( revSet ){
4522             if( (rev ^ revIdx)
4523                            != (pOrderBy->a[i].fg.sortFlags&KEYINFO_ORDER_DESC)
4524             ){
4525               isMatch = 0;
4526             }
4527           }else{
4528             rev = revIdx ^ (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC);
4529             if( rev ) *pRevMask |= MASKBIT(iLoop);
4530             revSet = 1;
4531           }
4532         }
4533         if( isMatch && (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL) ){
4534           if( j==pLoop->u.btree.nEq ){
4535             pLoop->wsFlags |= WHERE_BIGNULL_SORT;
4536           }else{
4537             isMatch = 0;
4538           }
4539         }
4540         if( isMatch ){
4541           if( iColumn==XN_ROWID ){
4542             testcase( distinctColumns==0 );
4543             distinctColumns = 1;
4544           }
4545           obSat |= MASKBIT(i);
4546         }else{
4547           /* No match found */
4548           if( j==0 || j<nKeyCol ){
4549             testcase( isOrderDistinct!=0 );
4550             isOrderDistinct = 0;
4551           }
4552           break;
4553         }
4554       } /* end Loop over all index columns */
4555       if( distinctColumns ){
4556         testcase( isOrderDistinct==0 );
4557         isOrderDistinct = 1;
4558       }
4559     } /* end-if not one-row */
4560 
4561     /* Mark off any other ORDER BY terms that reference pLoop */
4562     if( isOrderDistinct ){
4563       orderDistinctMask |= pLoop->maskSelf;
4564       for(i=0; i<nOrderBy; i++){
4565         Expr *p;
4566         Bitmask mTerm;
4567         if( MASKBIT(i) & obSat ) continue;
4568         p = pOrderBy->a[i].pExpr;
4569         mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
4570         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
4571         if( (mTerm&~orderDistinctMask)==0 ){
4572           obSat |= MASKBIT(i);
4573         }
4574       }
4575     }
4576   } /* End the loop over all WhereLoops from outer-most down to inner-most */
4577   if( obSat==obDone ) return (i8)nOrderBy;
4578   if( !isOrderDistinct ){
4579     for(i=nOrderBy-1; i>0; i--){
4580       Bitmask m = ALWAYS(i<BMS) ? MASKBIT(i) - 1 : 0;
4581       if( (obSat&m)==m ) return i;
4582     }
4583     return 0;
4584   }
4585   return -1;
4586 }
4587 
4588 
4589 /*
4590 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
4591 ** the planner assumes that the specified pOrderBy list is actually a GROUP
4592 ** BY clause - and so any order that groups rows as required satisfies the
4593 ** request.
4594 **
4595 ** Normally, in this case it is not possible for the caller to determine
4596 ** whether or not the rows are really being delivered in sorted order, or
4597 ** just in some other order that provides the required grouping. However,
4598 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
4599 ** this function may be called on the returned WhereInfo object. It returns
4600 ** true if the rows really will be sorted in the specified order, or false
4601 ** otherwise.
4602 **
4603 ** For example, assuming:
4604 **
4605 **   CREATE INDEX i1 ON t1(x, Y);
4606 **
4607 ** then
4608 **
4609 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
4610 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
4611 */
4612 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
4613   assert( pWInfo->wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY) );
4614   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
4615   return pWInfo->sorted;
4616 }
4617 
4618 #ifdef WHERETRACE_ENABLED
4619 /* For debugging use only: */
4620 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
4621   static char zName[65];
4622   int i;
4623   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
4624   if( pLast ) zName[i++] = pLast->cId;
4625   zName[i] = 0;
4626   return zName;
4627 }
4628 #endif
4629 
4630 /*
4631 ** Return the cost of sorting nRow rows, assuming that the keys have
4632 ** nOrderby columns and that the first nSorted columns are already in
4633 ** order.
4634 */
4635 static LogEst whereSortingCost(
4636   WhereInfo *pWInfo,
4637   LogEst nRow,
4638   int nOrderBy,
4639   int nSorted
4640 ){
4641   /* TUNING: Estimated cost of a full external sort, where N is
4642   ** the number of rows to sort is:
4643   **
4644   **   cost = (3.0 * N * log(N)).
4645   **
4646   ** Or, if the order-by clause has X terms but only the last Y
4647   ** terms are out of order, then block-sorting will reduce the
4648   ** sorting cost to:
4649   **
4650   **   cost = (3.0 * N * log(N)) * (Y/X)
4651   **
4652   ** The (Y/X) term is implemented using stack variable rScale
4653   ** below.
4654   */
4655   LogEst rScale, rSortCost;
4656   assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
4657   rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
4658   rSortCost = nRow + rScale + 16;
4659 
4660   /* Multiple by log(M) where M is the number of output rows.
4661   ** Use the LIMIT for M if it is smaller.  Or if this sort is for
4662   ** a DISTINCT operator, M will be the number of distinct output
4663   ** rows, so fudge it downwards a bit.
4664   */
4665   if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
4666     nRow = pWInfo->iLimit;
4667   }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){
4668     /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT
4669     ** reduces the number of output rows by a factor of 2 */
4670     if( nRow>10 ){ nRow -= 10;  assert( 10==sqlite3LogEst(2) ); }
4671   }
4672   rSortCost += estLog(nRow);
4673   return rSortCost;
4674 }
4675 
4676 /*
4677 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
4678 ** attempts to find the lowest cost path that visits each WhereLoop
4679 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
4680 **
4681 ** Assume that the total number of output rows that will need to be sorted
4682 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
4683 ** costs if nRowEst==0.
4684 **
4685 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
4686 ** error occurs.
4687 */
4688 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
4689   int mxChoice;             /* Maximum number of simultaneous paths tracked */
4690   int nLoop;                /* Number of terms in the join */
4691   Parse *pParse;            /* Parsing context */
4692   int iLoop;                /* Loop counter over the terms of the join */
4693   int ii, jj;               /* Loop counters */
4694   int mxI = 0;              /* Index of next entry to replace */
4695   int nOrderBy;             /* Number of ORDER BY clause terms */
4696   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
4697   LogEst mxUnsorted = 0;    /* Maximum unsorted cost of a set of path */
4698   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
4699   WherePath *aFrom;         /* All nFrom paths at the previous level */
4700   WherePath *aTo;           /* The nTo best paths at the current level */
4701   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
4702   WherePath *pTo;           /* An element of aTo[] that we are working on */
4703   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
4704   WhereLoop **pX;           /* Used to divy up the pSpace memory */
4705   LogEst *aSortCost = 0;    /* Sorting and partial sorting costs */
4706   char *pSpace;             /* Temporary memory used by this routine */
4707   int nSpace;               /* Bytes of space allocated at pSpace */
4708 
4709   pParse = pWInfo->pParse;
4710   nLoop = pWInfo->nLevel;
4711   /* TUNING: For simple queries, only the best path is tracked.
4712   ** For 2-way joins, the 5 best paths are followed.
4713   ** For joins of 3 or more tables, track the 10 best paths */
4714   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
4715   assert( nLoop<=pWInfo->pTabList->nSrc );
4716   WHERETRACE(0x002, ("---- begin solver.  (nRowEst=%d)\n", nRowEst));
4717 
4718   /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
4719   ** case the purpose of this call is to estimate the number of rows returned
4720   ** by the overall query. Once this estimate has been obtained, the caller
4721   ** will invoke this function a second time, passing the estimate as the
4722   ** nRowEst parameter.  */
4723   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
4724     nOrderBy = 0;
4725   }else{
4726     nOrderBy = pWInfo->pOrderBy->nExpr;
4727   }
4728 
4729   /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
4730   nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
4731   nSpace += sizeof(LogEst) * nOrderBy;
4732   pSpace = sqlite3StackAllocRawNN(pParse->db, nSpace);
4733   if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
4734   aTo = (WherePath*)pSpace;
4735   aFrom = aTo+mxChoice;
4736   memset(aFrom, 0, sizeof(aFrom[0]));
4737   pX = (WhereLoop**)(aFrom+mxChoice);
4738   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
4739     pFrom->aLoop = pX;
4740   }
4741   if( nOrderBy ){
4742     /* If there is an ORDER BY clause and it is not being ignored, set up
4743     ** space for the aSortCost[] array. Each element of the aSortCost array
4744     ** is either zero - meaning it has not yet been initialized - or the
4745     ** cost of sorting nRowEst rows of data where the first X terms of
4746     ** the ORDER BY clause are already in order, where X is the array
4747     ** index.  */
4748     aSortCost = (LogEst*)pX;
4749     memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
4750   }
4751   assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
4752   assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
4753 
4754   /* Seed the search with a single WherePath containing zero WhereLoops.
4755   **
4756   ** TUNING: Do not let the number of iterations go above 28.  If the cost
4757   ** of computing an automatic index is not paid back within the first 28
4758   ** rows, then do not use the automatic index. */
4759   aFrom[0].nRow = MIN(pParse->nQueryLoop, 48);  assert( 48==sqlite3LogEst(28) );
4760   nFrom = 1;
4761   assert( aFrom[0].isOrdered==0 );
4762   if( nOrderBy ){
4763     /* If nLoop is zero, then there are no FROM terms in the query. Since
4764     ** in this case the query may return a maximum of one row, the results
4765     ** are already in the requested order. Set isOrdered to nOrderBy to
4766     ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
4767     ** -1, indicating that the result set may or may not be ordered,
4768     ** depending on the loops added to the current plan.  */
4769     aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
4770   }
4771 
4772   /* Compute successively longer WherePaths using the previous generation
4773   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
4774   ** best paths at each generation */
4775   for(iLoop=0; iLoop<nLoop; iLoop++){
4776     nTo = 0;
4777     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
4778       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
4779         LogEst nOut;                      /* Rows visited by (pFrom+pWLoop) */
4780         LogEst rCost;                     /* Cost of path (pFrom+pWLoop) */
4781         LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
4782         i8 isOrdered;                     /* isOrdered for (pFrom+pWLoop) */
4783         Bitmask maskNew;                  /* Mask of src visited by (..) */
4784         Bitmask revMask;                  /* Mask of rev-order loops for (..) */
4785 
4786         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
4787         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
4788         if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
4789           /* Do not use an automatic index if the this loop is expected
4790           ** to run less than 1.25 times.  It is tempting to also exclude
4791           ** automatic index usage on an outer loop, but sometimes an automatic
4792           ** index is useful in the outer loop of a correlated subquery. */
4793           assert( 10==sqlite3LogEst(2) );
4794           continue;
4795         }
4796 
4797         /* At this point, pWLoop is a candidate to be the next loop.
4798         ** Compute its cost */
4799         rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
4800         rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
4801         nOut = pFrom->nRow + pWLoop->nOut;
4802         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
4803         isOrdered = pFrom->isOrdered;
4804         if( isOrdered<0 ){
4805           revMask = 0;
4806           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
4807                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
4808                        iLoop, pWLoop, &revMask);
4809         }else{
4810           revMask = pFrom->revLoop;
4811         }
4812         if( isOrdered>=0 && isOrdered<nOrderBy ){
4813           if( aSortCost[isOrdered]==0 ){
4814             aSortCost[isOrdered] = whereSortingCost(
4815                 pWInfo, nRowEst, nOrderBy, isOrdered
4816             );
4817           }
4818           /* TUNING:  Add a small extra penalty (5) to sorting as an
4819           ** extra encouragment to the query planner to select a plan
4820           ** where the rows emerge in the correct order without any sorting
4821           ** required. */
4822           rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5;
4823 
4824           WHERETRACE(0x002,
4825               ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
4826                aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
4827                rUnsorted, rCost));
4828         }else{
4829           rCost = rUnsorted;
4830           rUnsorted -= 2;  /* TUNING:  Slight bias in favor of no-sort plans */
4831         }
4832 
4833         /* TUNING:  A full-scan of a VIEW or subquery in the outer loop
4834         ** is not so bad. */
4835         if( iLoop==0 && (pWLoop->wsFlags & WHERE_VIEWSCAN)!=0 ){
4836           rCost += -10;
4837           nOut += -30;
4838         }
4839 
4840         /* Check to see if pWLoop should be added to the set of
4841         ** mxChoice best-so-far paths.
4842         **
4843         ** First look for an existing path among best-so-far paths
4844         ** that covers the same set of loops and has the same isOrdered
4845         ** setting as the current path candidate.
4846         **
4847         ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4848         ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4849         ** of legal values for isOrdered, -1..64.
4850         */
4851         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
4852           if( pTo->maskLoop==maskNew
4853            && ((pTo->isOrdered^isOrdered)&0x80)==0
4854           ){
4855             testcase( jj==nTo-1 );
4856             break;
4857           }
4858         }
4859         if( jj>=nTo ){
4860           /* None of the existing best-so-far paths match the candidate. */
4861           if( nTo>=mxChoice
4862            && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4863           ){
4864             /* The current candidate is no better than any of the mxChoice
4865             ** paths currently in the best-so-far buffer.  So discard
4866             ** this candidate as not viable. */
4867 #ifdef WHERETRACE_ENABLED /* 0x4 */
4868             if( sqlite3WhereTrace&0x4 ){
4869               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d,%3d order=%c\n",
4870                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4871                   isOrdered>=0 ? isOrdered+'0' : '?');
4872             }
4873 #endif
4874             continue;
4875           }
4876           /* If we reach this points it means that the new candidate path
4877           ** needs to be added to the set of best-so-far paths. */
4878           if( nTo<mxChoice ){
4879             /* Increase the size of the aTo set by one */
4880             jj = nTo++;
4881           }else{
4882             /* New path replaces the prior worst to keep count below mxChoice */
4883             jj = mxI;
4884           }
4885           pTo = &aTo[jj];
4886 #ifdef WHERETRACE_ENABLED /* 0x4 */
4887           if( sqlite3WhereTrace&0x4 ){
4888             sqlite3DebugPrintf("New    %s cost=%-3d,%3d,%3d order=%c\n",
4889                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4890                 isOrdered>=0 ? isOrdered+'0' : '?');
4891           }
4892 #endif
4893         }else{
4894           /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4895           ** same set of loops and has the same isOrdered setting as the
4896           ** candidate path.  Check to see if the candidate should replace
4897           ** pTo or if the candidate should be skipped.
4898           **
4899           ** The conditional is an expanded vector comparison equivalent to:
4900           **   (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4901           */
4902           if( pTo->rCost<rCost
4903            || (pTo->rCost==rCost
4904                && (pTo->nRow<nOut
4905                    || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4906                   )
4907               )
4908           ){
4909 #ifdef WHERETRACE_ENABLED /* 0x4 */
4910             if( sqlite3WhereTrace&0x4 ){
4911               sqlite3DebugPrintf(
4912                   "Skip   %s cost=%-3d,%3d,%3d order=%c",
4913                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4914                   isOrdered>=0 ? isOrdered+'0' : '?');
4915               sqlite3DebugPrintf("   vs %s cost=%-3d,%3d,%3d order=%c\n",
4916                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4917                   pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4918             }
4919 #endif
4920             /* Discard the candidate path from further consideration */
4921             testcase( pTo->rCost==rCost );
4922             continue;
4923           }
4924           testcase( pTo->rCost==rCost+1 );
4925           /* Control reaches here if the candidate path is better than the
4926           ** pTo path.  Replace pTo with the candidate. */
4927 #ifdef WHERETRACE_ENABLED /* 0x4 */
4928           if( sqlite3WhereTrace&0x4 ){
4929             sqlite3DebugPrintf(
4930                 "Update %s cost=%-3d,%3d,%3d order=%c",
4931                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4932                 isOrdered>=0 ? isOrdered+'0' : '?');
4933             sqlite3DebugPrintf("  was %s cost=%-3d,%3d,%3d order=%c\n",
4934                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4935                 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4936           }
4937 #endif
4938         }
4939         /* pWLoop is a winner.  Add it to the set of best so far */
4940         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4941         pTo->revLoop = revMask;
4942         pTo->nRow = nOut;
4943         pTo->rCost = rCost;
4944         pTo->rUnsorted = rUnsorted;
4945         pTo->isOrdered = isOrdered;
4946         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4947         pTo->aLoop[iLoop] = pWLoop;
4948         if( nTo>=mxChoice ){
4949           mxI = 0;
4950           mxCost = aTo[0].rCost;
4951           mxUnsorted = aTo[0].nRow;
4952           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4953             if( pTo->rCost>mxCost
4954              || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4955             ){
4956               mxCost = pTo->rCost;
4957               mxUnsorted = pTo->rUnsorted;
4958               mxI = jj;
4959             }
4960           }
4961         }
4962       }
4963     }
4964 
4965 #ifdef WHERETRACE_ENABLED  /* >=2 */
4966     if( sqlite3WhereTrace & 0x02 ){
4967       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4968       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4969         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4970            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4971            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4972         if( pTo->isOrdered>0 ){
4973           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4974         }else{
4975           sqlite3DebugPrintf("\n");
4976         }
4977       }
4978     }
4979 #endif
4980 
4981     /* Swap the roles of aFrom and aTo for the next generation */
4982     pFrom = aTo;
4983     aTo = aFrom;
4984     aFrom = pFrom;
4985     nFrom = nTo;
4986   }
4987 
4988   if( nFrom==0 ){
4989     sqlite3ErrorMsg(pParse, "no query solution");
4990     sqlite3StackFreeNN(pParse->db, pSpace);
4991     return SQLITE_ERROR;
4992   }
4993 
4994   /* Find the lowest cost path.  pFrom will be left pointing to that path */
4995   pFrom = aFrom;
4996   for(ii=1; ii<nFrom; ii++){
4997     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4998   }
4999   assert( pWInfo->nLevel==nLoop );
5000   /* Load the lowest cost path into pWInfo */
5001   for(iLoop=0; iLoop<nLoop; iLoop++){
5002     WhereLevel *pLevel = pWInfo->a + iLoop;
5003     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
5004     pLevel->iFrom = pWLoop->iTab;
5005     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
5006   }
5007   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
5008    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
5009    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
5010    && nRowEst
5011   ){
5012     Bitmask notUsed;
5013     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
5014                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
5015     if( rc==pWInfo->pResultSet->nExpr ){
5016       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
5017     }
5018   }
5019   pWInfo->bOrderedInnerLoop = 0;
5020   if( pWInfo->pOrderBy ){
5021     pWInfo->nOBSat = pFrom->isOrdered;
5022     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
5023       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
5024         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
5025       }
5026     }else{
5027       pWInfo->revMask = pFrom->revLoop;
5028       if( pWInfo->nOBSat<=0 ){
5029         pWInfo->nOBSat = 0;
5030         if( nLoop>0 ){
5031           u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
5032           if( (wsFlags & WHERE_ONEROW)==0
5033            && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
5034           ){
5035             Bitmask m = 0;
5036             int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
5037                       WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
5038             testcase( wsFlags & WHERE_IPK );
5039             testcase( wsFlags & WHERE_COLUMN_IN );
5040             if( rc==pWInfo->pOrderBy->nExpr ){
5041               pWInfo->bOrderedInnerLoop = 1;
5042               pWInfo->revMask = m;
5043             }
5044           }
5045         }
5046       }else if( nLoop
5047             && pWInfo->nOBSat==1
5048             && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0
5049             ){
5050         pWInfo->bOrderedInnerLoop = 1;
5051       }
5052     }
5053     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
5054         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
5055     ){
5056       Bitmask revMask = 0;
5057       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
5058           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
5059       );
5060       assert( pWInfo->sorted==0 );
5061       if( nOrder==pWInfo->pOrderBy->nExpr ){
5062         pWInfo->sorted = 1;
5063         pWInfo->revMask = revMask;
5064       }
5065     }
5066   }
5067 
5068 
5069   pWInfo->nRowOut = pFrom->nRow;
5070 
5071   /* Free temporary memory and return success */
5072   sqlite3StackFreeNN(pParse->db, pSpace);
5073   return SQLITE_OK;
5074 }
5075 
5076 /*
5077 ** Most queries use only a single table (they are not joins) and have
5078 ** simple == constraints against indexed fields.  This routine attempts
5079 ** to plan those simple cases using much less ceremony than the
5080 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
5081 ** times for the common case.
5082 **
5083 ** Return non-zero on success, if this query can be handled by this
5084 ** no-frills query planner.  Return zero if this query needs the
5085 ** general-purpose query planner.
5086 */
5087 static int whereShortCut(WhereLoopBuilder *pBuilder){
5088   WhereInfo *pWInfo;
5089   SrcItem *pItem;
5090   WhereClause *pWC;
5091   WhereTerm *pTerm;
5092   WhereLoop *pLoop;
5093   int iCur;
5094   int j;
5095   Table *pTab;
5096   Index *pIdx;
5097   WhereScan scan;
5098 
5099   pWInfo = pBuilder->pWInfo;
5100   if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
5101   assert( pWInfo->pTabList->nSrc>=1 );
5102   pItem = pWInfo->pTabList->a;
5103   pTab = pItem->pTab;
5104   if( IsVirtual(pTab) ) return 0;
5105   if( pItem->fg.isIndexedBy || pItem->fg.notIndexed ){
5106     testcase( pItem->fg.isIndexedBy );
5107     testcase( pItem->fg.notIndexed );
5108     return 0;
5109   }
5110   iCur = pItem->iCursor;
5111   pWC = &pWInfo->sWC;
5112   pLoop = pBuilder->pNew;
5113   pLoop->wsFlags = 0;
5114   pLoop->nSkip = 0;
5115   pTerm = whereScanInit(&scan, pWC, iCur, -1, WO_EQ|WO_IS, 0);
5116   while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
5117   if( pTerm ){
5118     testcase( pTerm->eOperator & WO_IS );
5119     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
5120     pLoop->aLTerm[0] = pTerm;
5121     pLoop->nLTerm = 1;
5122     pLoop->u.btree.nEq = 1;
5123     /* TUNING: Cost of a rowid lookup is 10 */
5124     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
5125   }else{
5126     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5127       int opMask;
5128       assert( pLoop->aLTermSpace==pLoop->aLTerm );
5129       if( !IsUniqueIndex(pIdx)
5130        || pIdx->pPartIdxWhere!=0
5131        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
5132       ) continue;
5133       opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
5134       for(j=0; j<pIdx->nKeyCol; j++){
5135         pTerm = whereScanInit(&scan, pWC, iCur, j, opMask, pIdx);
5136         while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
5137         if( pTerm==0 ) break;
5138         testcase( pTerm->eOperator & WO_IS );
5139         pLoop->aLTerm[j] = pTerm;
5140       }
5141       if( j!=pIdx->nKeyCol ) continue;
5142       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
5143       if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
5144         pLoop->wsFlags |= WHERE_IDX_ONLY;
5145       }
5146       pLoop->nLTerm = j;
5147       pLoop->u.btree.nEq = j;
5148       pLoop->u.btree.pIndex = pIdx;
5149       /* TUNING: Cost of a unique index lookup is 15 */
5150       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
5151       break;
5152     }
5153   }
5154   if( pLoop->wsFlags ){
5155     pLoop->nOut = (LogEst)1;
5156     pWInfo->a[0].pWLoop = pLoop;
5157     assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
5158     pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
5159     pWInfo->a[0].iTabCur = iCur;
5160     pWInfo->nRowOut = 1;
5161     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
5162     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
5163       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
5164     }
5165     if( scan.iEquiv>1 ) pLoop->wsFlags |= WHERE_TRANSCONS;
5166 #ifdef SQLITE_DEBUG
5167     pLoop->cId = '0';
5168 #endif
5169 #ifdef WHERETRACE_ENABLED
5170     if( sqlite3WhereTrace ){
5171       sqlite3DebugPrintf("whereShortCut() used to compute solution\n");
5172     }
5173 #endif
5174     return 1;
5175   }
5176   return 0;
5177 }
5178 
5179 /*
5180 ** Helper function for exprIsDeterministic().
5181 */
5182 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
5183   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
5184     pWalker->eCode = 0;
5185     return WRC_Abort;
5186   }
5187   return WRC_Continue;
5188 }
5189 
5190 /*
5191 ** Return true if the expression contains no non-deterministic SQL
5192 ** functions. Do not consider non-deterministic SQL functions that are
5193 ** part of sub-select statements.
5194 */
5195 static int exprIsDeterministic(Expr *p){
5196   Walker w;
5197   memset(&w, 0, sizeof(w));
5198   w.eCode = 1;
5199   w.xExprCallback = exprNodeIsDeterministic;
5200   w.xSelectCallback = sqlite3SelectWalkFail;
5201   sqlite3WalkExpr(&w, p);
5202   return w.eCode;
5203 }
5204 
5205 
5206 #ifdef WHERETRACE_ENABLED
5207 /*
5208 ** Display all WhereLoops in pWInfo
5209 */
5210 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){
5211   if( sqlite3WhereTrace ){    /* Display all of the WhereLoop objects */
5212     WhereLoop *p;
5213     int i;
5214     static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
5215                                            "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
5216     for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
5217       p->cId = zLabel[i%(sizeof(zLabel)-1)];
5218       sqlite3WhereLoopPrint(p, pWC);
5219     }
5220   }
5221 }
5222 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C)
5223 #else
5224 # define WHERETRACE_ALL_LOOPS(W,C)
5225 #endif
5226 
5227 /* Attempt to omit tables from a join that do not affect the result.
5228 ** For a table to not affect the result, the following must be true:
5229 **
5230 **   1) The query must not be an aggregate.
5231 **   2) The table must be the RHS of a LEFT JOIN.
5232 **   3) Either the query must be DISTINCT, or else the ON or USING clause
5233 **      must contain a constraint that limits the scan of the table to
5234 **      at most a single row.
5235 **   4) The table must not be referenced by any part of the query apart
5236 **      from its own USING or ON clause.
5237 **
5238 ** For example, given:
5239 **
5240 **     CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
5241 **     CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
5242 **     CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
5243 **
5244 ** then table t2 can be omitted from the following:
5245 **
5246 **     SELECT v1, v3 FROM t1
5247 **       LEFT JOIN t2 ON (t1.ipk=t2.ipk)
5248 **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5249 **
5250 ** or from:
5251 **
5252 **     SELECT DISTINCT v1, v3 FROM t1
5253 **       LEFT JOIN t2
5254 **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5255 */
5256 static SQLITE_NOINLINE Bitmask whereOmitNoopJoin(
5257   WhereInfo *pWInfo,
5258   Bitmask notReady
5259 ){
5260   int i;
5261   Bitmask tabUsed;
5262 
5263   /* Preconditions checked by the caller */
5264   assert( pWInfo->nLevel>=2 );
5265   assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_OmitNoopJoin) );
5266 
5267   /* These two preconditions checked by the caller combine to guarantee
5268   ** condition (1) of the header comment */
5269   assert( pWInfo->pResultSet!=0 );
5270   assert( 0==(pWInfo->wctrlFlags & WHERE_AGG_DISTINCT) );
5271 
5272   tabUsed = sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pResultSet);
5273   if( pWInfo->pOrderBy ){
5274     tabUsed |= sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pOrderBy);
5275   }
5276   for(i=pWInfo->nLevel-1; i>=1; i--){
5277     WhereTerm *pTerm, *pEnd;
5278     SrcItem *pItem;
5279     WhereLoop *pLoop;
5280     pLoop = pWInfo->a[i].pWLoop;
5281     pItem = &pWInfo->pTabList->a[pLoop->iTab];
5282     if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ) continue;
5283     if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)==0
5284      && (pLoop->wsFlags & WHERE_ONEROW)==0
5285     ){
5286       continue;
5287     }
5288     if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
5289     pEnd = pWInfo->sWC.a + pWInfo->sWC.nTerm;
5290     for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){
5291       if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5292         if( !ExprHasProperty(pTerm->pExpr, EP_OuterON)
5293          || pTerm->pExpr->w.iJoin!=pItem->iCursor
5294         ){
5295           break;
5296         }
5297       }
5298     }
5299     if( pTerm<pEnd ) continue;
5300     WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
5301     notReady &= ~pLoop->maskSelf;
5302     for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){
5303       if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5304         pTerm->wtFlags |= TERM_CODED;
5305       }
5306     }
5307     if( i!=pWInfo->nLevel-1 ){
5308       int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
5309       memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
5310     }
5311     pWInfo->nLevel--;
5312     assert( pWInfo->nLevel>0 );
5313   }
5314   return notReady;
5315 }
5316 
5317 /*
5318 ** Check to see if there are any SEARCH loops that might benefit from
5319 ** using a Bloom filter.  Consider a Bloom filter if:
5320 **
5321 **   (1)  The SEARCH happens more than N times where N is the number
5322 **        of rows in the table that is being considered for the Bloom
5323 **        filter.
5324 **   (2)  Some searches are expected to find zero rows.  (This is determined
5325 **        by the WHERE_SELFCULL flag on the term.)
5326 **   (3)  Bloom-filter processing is not disabled.  (Checked by the
5327 **        caller.)
5328 **   (4)  The size of the table being searched is known by ANALYZE.
5329 **
5330 ** This block of code merely checks to see if a Bloom filter would be
5331 ** appropriate, and if so sets the WHERE_BLOOMFILTER flag on the
5332 ** WhereLoop.  The implementation of the Bloom filter comes further
5333 ** down where the code for each WhereLoop is generated.
5334 */
5335 static SQLITE_NOINLINE void whereCheckIfBloomFilterIsUseful(
5336   const WhereInfo *pWInfo
5337 ){
5338   int i;
5339   LogEst nSearch;
5340 
5341   assert( pWInfo->nLevel>=2 );
5342   assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_BloomFilter) );
5343   nSearch = pWInfo->a[0].pWLoop->nOut;
5344   for(i=1; i<pWInfo->nLevel; i++){
5345     WhereLoop *pLoop = pWInfo->a[i].pWLoop;
5346     const unsigned int reqFlags = (WHERE_SELFCULL|WHERE_COLUMN_EQ);
5347     if( (pLoop->wsFlags & reqFlags)==reqFlags
5348      /* vvvvvv--- Always the case if WHERE_COLUMN_EQ is defined */
5349      && ALWAYS((pLoop->wsFlags & (WHERE_IPK|WHERE_INDEXED))!=0)
5350     ){
5351       SrcItem *pItem = &pWInfo->pTabList->a[pLoop->iTab];
5352       Table *pTab = pItem->pTab;
5353       pTab->tabFlags |= TF_StatsUsed;
5354       if( nSearch > pTab->nRowLogEst
5355        && (pTab->tabFlags & TF_HasStat1)!=0
5356       ){
5357         testcase( pItem->fg.jointype & JT_LEFT );
5358         pLoop->wsFlags |= WHERE_BLOOMFILTER;
5359         pLoop->wsFlags &= ~WHERE_IDX_ONLY;
5360         WHERETRACE(0xffff, (
5361            "-> use Bloom-filter on loop %c because there are ~%.1e "
5362            "lookups into %s which has only ~%.1e rows\n",
5363            pLoop->cId, (double)sqlite3LogEstToInt(nSearch), pTab->zName,
5364            (double)sqlite3LogEstToInt(pTab->nRowLogEst)));
5365       }
5366     }
5367     nSearch += pLoop->nOut;
5368   }
5369 }
5370 
5371 /*
5372 ** This is an sqlite3ParserAddCleanup() callback that is invoked to
5373 ** free the Parse->pIdxExpr list when the Parse object is destroyed.
5374 */
5375 static void whereIndexedExprCleanup(sqlite3 *db, void *pObject){
5376   Parse *pParse = (Parse*)pObject;
5377   while( pParse->pIdxExpr!=0 ){
5378     IndexedExpr *p = pParse->pIdxExpr;
5379     pParse->pIdxExpr = p->pIENext;
5380     sqlite3ExprDelete(db, p->pExpr);
5381     sqlite3DbFreeNN(db, p);
5382   }
5383 }
5384 
5385 /*
5386 ** The index pIdx is used by a query and contains one or more expressions.
5387 ** In other words pIdx is an index on an expression.  iIdxCur is the cursor
5388 ** number for the index and iDataCur is the cursor number for the corresponding
5389 ** table.
5390 **
5391 ** This routine adds IndexedExpr entries to the Parse->pIdxExpr field for
5392 ** each of the expressions in the index so that the expression code generator
5393 ** will know to replace occurrences of the indexed expression with
5394 ** references to the corresponding column of the index.
5395 */
5396 static SQLITE_NOINLINE void whereAddIndexedExpr(
5397   Parse *pParse,     /* Add IndexedExpr entries to pParse->pIdxExpr */
5398   Index *pIdx,       /* The index-on-expression that contains the expressions */
5399   int iIdxCur,       /* Cursor number for pIdx */
5400   SrcItem *pTabItem  /* The FROM clause entry for the table */
5401 ){
5402   int i;
5403   IndexedExpr *p;
5404   Table *pTab;
5405   assert( pIdx->bHasExpr );
5406   pTab = pIdx->pTable;
5407   for(i=0; i<pIdx->nColumn; i++){
5408     Expr *pExpr;
5409     int j = pIdx->aiColumn[i];
5410     int bMaybeNullRow;
5411     if( j==XN_EXPR ){
5412       pExpr = pIdx->aColExpr->a[i].pExpr;
5413       testcase( pTabItem->fg.jointype & JT_LEFT );
5414       testcase( pTabItem->fg.jointype & JT_RIGHT );
5415       testcase( pTabItem->fg.jointype & JT_LTORJ );
5416       bMaybeNullRow = (pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0;
5417     }else if( j>=0 && (pTab->aCol[j].colFlags & COLFLAG_VIRTUAL)!=0 ){
5418       pExpr = sqlite3ColumnExpr(pTab, &pTab->aCol[j]);
5419       bMaybeNullRow = 0;
5420     }else{
5421       continue;
5422     }
5423     if( sqlite3ExprIsConstant(pExpr) ) continue;
5424     p = sqlite3DbMallocRaw(pParse->db,  sizeof(IndexedExpr));
5425     if( p==0 ) break;
5426     p->pIENext = pParse->pIdxExpr;
5427     p->pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
5428     p->iDataCur = pTabItem->iCursor;
5429     p->iIdxCur = iIdxCur;
5430     p->iIdxCol = i;
5431     p->bMaybeNullRow = bMaybeNullRow;
5432 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
5433     p->zIdxName = pIdx->zName;
5434 #endif
5435     pParse->pIdxExpr = p;
5436     if( p->pIENext==0 ){
5437       sqlite3ParserAddCleanup(pParse, whereIndexedExprCleanup, pParse);
5438     }
5439   }
5440 }
5441 
5442 /*
5443 ** Generate the beginning of the loop used for WHERE clause processing.
5444 ** The return value is a pointer to an opaque structure that contains
5445 ** information needed to terminate the loop.  Later, the calling routine
5446 ** should invoke sqlite3WhereEnd() with the return value of this function
5447 ** in order to complete the WHERE clause processing.
5448 **
5449 ** If an error occurs, this routine returns NULL.
5450 **
5451 ** The basic idea is to do a nested loop, one loop for each table in
5452 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
5453 ** same as a SELECT with only a single table in the FROM clause.)  For
5454 ** example, if the SQL is this:
5455 **
5456 **       SELECT * FROM t1, t2, t3 WHERE ...;
5457 **
5458 ** Then the code generated is conceptually like the following:
5459 **
5460 **      foreach row1 in t1 do       \    Code generated
5461 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
5462 **          foreach row3 in t3 do   /
5463 **            ...
5464 **          end                     \    Code generated
5465 **        end                        |-- by sqlite3WhereEnd()
5466 **      end                         /
5467 **
5468 ** Note that the loops might not be nested in the order in which they
5469 ** appear in the FROM clause if a different order is better able to make
5470 ** use of indices.  Note also that when the IN operator appears in
5471 ** the WHERE clause, it might result in additional nested loops for
5472 ** scanning through all values on the right-hand side of the IN.
5473 **
5474 ** There are Btree cursors associated with each table.  t1 uses cursor
5475 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
5476 ** And so forth.  This routine generates code to open those VDBE cursors
5477 ** and sqlite3WhereEnd() generates the code to close them.
5478 **
5479 ** The code that sqlite3WhereBegin() generates leaves the cursors named
5480 ** in pTabList pointing at their appropriate entries.  The [...] code
5481 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
5482 ** data from the various tables of the loop.
5483 **
5484 ** If the WHERE clause is empty, the foreach loops must each scan their
5485 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
5486 ** the tables have indices and there are terms in the WHERE clause that
5487 ** refer to those indices, a complete table scan can be avoided and the
5488 ** code will run much faster.  Most of the work of this routine is checking
5489 ** to see if there are indices that can be used to speed up the loop.
5490 **
5491 ** Terms of the WHERE clause are also used to limit which rows actually
5492 ** make it to the "..." in the middle of the loop.  After each "foreach",
5493 ** terms of the WHERE clause that use only terms in that loop and outer
5494 ** loops are evaluated and if false a jump is made around all subsequent
5495 ** inner loops (or around the "..." if the test occurs within the inner-
5496 ** most loop)
5497 **
5498 ** OUTER JOINS
5499 **
5500 ** An outer join of tables t1 and t2 is conceptally coded as follows:
5501 **
5502 **    foreach row1 in t1 do
5503 **      flag = 0
5504 **      foreach row2 in t2 do
5505 **        start:
5506 **          ...
5507 **          flag = 1
5508 **      end
5509 **      if flag==0 then
5510 **        move the row2 cursor to a null row
5511 **        goto start
5512 **      fi
5513 **    end
5514 **
5515 ** ORDER BY CLAUSE PROCESSING
5516 **
5517 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
5518 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
5519 ** if there is one.  If there is no ORDER BY clause or if this routine
5520 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
5521 **
5522 ** The iIdxCur parameter is the cursor number of an index.  If
5523 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
5524 ** to use for OR clause processing.  The WHERE clause should use this
5525 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
5526 ** the first cursor in an array of cursors for all indices.  iIdxCur should
5527 ** be used to compute the appropriate cursor depending on which index is
5528 ** used.
5529 */
5530 WhereInfo *sqlite3WhereBegin(
5531   Parse *pParse,          /* The parser context */
5532   SrcList *pTabList,      /* FROM clause: A list of all tables to be scanned */
5533   Expr *pWhere,           /* The WHERE clause */
5534   ExprList *pOrderBy,     /* An ORDER BY (or GROUP BY) clause, or NULL */
5535   ExprList *pResultSet,   /* Query result set.  Req'd for DISTINCT */
5536   Select *pLimit,         /* Use this LIMIT/OFFSET clause, if any */
5537   u16 wctrlFlags,         /* The WHERE_* flags defined in sqliteInt.h */
5538   int iAuxArg             /* If WHERE_OR_SUBCLAUSE is set, index cursor number
5539                           ** If WHERE_USE_LIMIT, then the limit amount */
5540 ){
5541   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
5542   int nTabList;              /* Number of elements in pTabList */
5543   WhereInfo *pWInfo;         /* Will become the return value of this function */
5544   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
5545   Bitmask notReady;          /* Cursors that are not yet positioned */
5546   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
5547   WhereMaskSet *pMaskSet;    /* The expression mask set */
5548   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
5549   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
5550   int ii;                    /* Loop counter */
5551   sqlite3 *db;               /* Database connection */
5552   int rc;                    /* Return code */
5553   u8 bFordelete = 0;         /* OPFLAG_FORDELETE or zero, as appropriate */
5554 
5555   assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
5556         (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
5557      && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5558   ));
5559 
5560   /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
5561   assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5562             || (wctrlFlags & WHERE_USE_LIMIT)==0 );
5563 
5564   /* Variable initialization */
5565   db = pParse->db;
5566   memset(&sWLB, 0, sizeof(sWLB));
5567 
5568   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
5569   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
5570   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
5571 
5572   /* The number of tables in the FROM clause is limited by the number of
5573   ** bits in a Bitmask
5574   */
5575   testcase( pTabList->nSrc==BMS );
5576   if( pTabList->nSrc>BMS ){
5577     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
5578     return 0;
5579   }
5580 
5581   /* This function normally generates a nested loop for all tables in
5582   ** pTabList.  But if the WHERE_OR_SUBCLAUSE flag is set, then we should
5583   ** only generate code for the first table in pTabList and assume that
5584   ** any cursors associated with subsequent tables are uninitialized.
5585   */
5586   nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
5587 
5588   /* Allocate and initialize the WhereInfo structure that will become the
5589   ** return value. A single allocation is used to store the WhereInfo
5590   ** struct, the contents of WhereInfo.a[], the WhereClause structure
5591   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
5592   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
5593   ** some architectures. Hence the ROUND8() below.
5594   */
5595   nByteWInfo = ROUND8P(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
5596   pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
5597   if( db->mallocFailed ){
5598     sqlite3DbFree(db, pWInfo);
5599     pWInfo = 0;
5600     goto whereBeginError;
5601   }
5602   pWInfo->pParse = pParse;
5603   pWInfo->pTabList = pTabList;
5604   pWInfo->pOrderBy = pOrderBy;
5605 #if WHERETRACE_ENABLED
5606   pWInfo->pWhere = pWhere;
5607 #endif
5608   pWInfo->pResultSet = pResultSet;
5609   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
5610   pWInfo->nLevel = nTabList;
5611   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse);
5612   pWInfo->wctrlFlags = wctrlFlags;
5613   pWInfo->iLimit = iAuxArg;
5614   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
5615 #ifndef SQLITE_OMIT_VIRTUALTABLE
5616   pWInfo->pLimit = pLimit;
5617 #endif
5618   memset(&pWInfo->nOBSat, 0,
5619          offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
5620   memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
5621   assert( pWInfo->eOnePass==ONEPASS_OFF );  /* ONEPASS defaults to OFF */
5622   pMaskSet = &pWInfo->sMaskSet;
5623   pMaskSet->n = 0;
5624   pMaskSet->ix[0] = -99; /* Initialize ix[0] to a value that can never be
5625                          ** a valid cursor number, to avoid an initial
5626                          ** test for pMaskSet->n==0 in sqlite3WhereGetMask() */
5627   sWLB.pWInfo = pWInfo;
5628   sWLB.pWC = &pWInfo->sWC;
5629   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
5630   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
5631   whereLoopInit(sWLB.pNew);
5632 #ifdef SQLITE_DEBUG
5633   sWLB.pNew->cId = '*';
5634 #endif
5635 
5636   /* Split the WHERE clause into separate subexpressions where each
5637   ** subexpression is separated by an AND operator.
5638   */
5639   sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
5640   sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
5641 
5642   /* Special case: No FROM clause
5643   */
5644   if( nTabList==0 ){
5645     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
5646     if( (wctrlFlags & WHERE_WANT_DISTINCT)!=0
5647      && OptimizationEnabled(db, SQLITE_DistinctOpt)
5648     ){
5649       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
5650     }
5651     ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
5652   }else{
5653     /* Assign a bit from the bitmask to every term in the FROM clause.
5654     **
5655     ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
5656     **
5657     ** The rule of the previous sentence ensures thta if X is the bitmask for
5658     ** a table T, then X-1 is the bitmask for all other tables to the left of T.
5659     ** Knowing the bitmask for all tables to the left of a left join is
5660     ** important.  Ticket #3015.
5661     **
5662     ** Note that bitmasks are created for all pTabList->nSrc tables in
5663     ** pTabList, not just the first nTabList tables.  nTabList is normally
5664     ** equal to pTabList->nSrc but might be shortened to 1 if the
5665     ** WHERE_OR_SUBCLAUSE flag is set.
5666     */
5667     ii = 0;
5668     do{
5669       createMask(pMaskSet, pTabList->a[ii].iCursor);
5670       sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
5671     }while( (++ii)<pTabList->nSrc );
5672   #ifdef SQLITE_DEBUG
5673     {
5674       Bitmask mx = 0;
5675       for(ii=0; ii<pTabList->nSrc; ii++){
5676         Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
5677         assert( m>=mx );
5678         mx = m;
5679       }
5680     }
5681   #endif
5682   }
5683 
5684   /* Analyze all of the subexpressions. */
5685   sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
5686   sqlite3WhereAddLimit(&pWInfo->sWC, pLimit);
5687   if( pParse->nErr ) goto whereBeginError;
5688 
5689   /* Special case: WHERE terms that do not refer to any tables in the join
5690   ** (constant expressions). Evaluate each such term, and jump over all the
5691   ** generated code if the result is not true.
5692   **
5693   ** Do not do this if the expression contains non-deterministic functions
5694   ** that are not within a sub-select. This is not strictly required, but
5695   ** preserves SQLite's legacy behaviour in the following two cases:
5696   **
5697   **   FROM ... WHERE random()>0;           -- eval random() once per row
5698   **   FROM ... WHERE (SELECT random())>0;  -- eval random() once overall
5699   */
5700   for(ii=0; ii<sWLB.pWC->nBase; ii++){
5701     WhereTerm *pT = &sWLB.pWC->a[ii];
5702     if( pT->wtFlags & TERM_VIRTUAL ) continue;
5703     if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
5704       sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
5705       pT->wtFlags |= TERM_CODED;
5706     }
5707   }
5708 
5709   if( wctrlFlags & WHERE_WANT_DISTINCT ){
5710     if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
5711       /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
5712       ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
5713       wctrlFlags &= ~WHERE_WANT_DISTINCT;
5714       pWInfo->wctrlFlags &= ~WHERE_WANT_DISTINCT;
5715     }else if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
5716       /* The DISTINCT marking is pointless.  Ignore it. */
5717       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
5718     }else if( pOrderBy==0 ){
5719       /* Try to ORDER BY the result set to make distinct processing easier */
5720       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
5721       pWInfo->pOrderBy = pResultSet;
5722     }
5723   }
5724 
5725   /* Construct the WhereLoop objects */
5726 #if defined(WHERETRACE_ENABLED)
5727   if( sqlite3WhereTrace & 0xffff ){
5728     sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
5729     if( wctrlFlags & WHERE_USE_LIMIT ){
5730       sqlite3DebugPrintf(", limit: %d", iAuxArg);
5731     }
5732     sqlite3DebugPrintf(")\n");
5733     if( sqlite3WhereTrace & 0x100 ){
5734       Select sSelect;
5735       memset(&sSelect, 0, sizeof(sSelect));
5736       sSelect.selFlags = SF_WhereBegin;
5737       sSelect.pSrc = pTabList;
5738       sSelect.pWhere = pWhere;
5739       sSelect.pOrderBy = pOrderBy;
5740       sSelect.pEList = pResultSet;
5741       sqlite3TreeViewSelect(0, &sSelect, 0);
5742     }
5743   }
5744   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5745     sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
5746     sqlite3WhereClausePrint(sWLB.pWC);
5747   }
5748 #endif
5749 
5750   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
5751     rc = whereLoopAddAll(&sWLB);
5752     if( rc ) goto whereBeginError;
5753 
5754 #ifdef SQLITE_ENABLE_STAT4
5755     /* If one or more WhereTerm.truthProb values were used in estimating
5756     ** loop parameters, but then those truthProb values were subsequently
5757     ** changed based on STAT4 information while computing subsequent loops,
5758     ** then we need to rerun the whole loop building process so that all
5759     ** loops will be built using the revised truthProb values. */
5760     if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){
5761       WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
5762       WHERETRACE(0xffff,
5763            ("**** Redo all loop computations due to"
5764             " TERM_HIGHTRUTH changes ****\n"));
5765       while( pWInfo->pLoops ){
5766         WhereLoop *p = pWInfo->pLoops;
5767         pWInfo->pLoops = p->pNextLoop;
5768         whereLoopDelete(db, p);
5769       }
5770       rc = whereLoopAddAll(&sWLB);
5771       if( rc ) goto whereBeginError;
5772     }
5773 #endif
5774     WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
5775 
5776     wherePathSolver(pWInfo, 0);
5777     if( db->mallocFailed ) goto whereBeginError;
5778     if( pWInfo->pOrderBy ){
5779        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
5780        if( db->mallocFailed ) goto whereBeginError;
5781     }
5782   }
5783   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
5784      pWInfo->revMask = ALLBITS;
5785   }
5786   if( pParse->nErr ){
5787     goto whereBeginError;
5788   }
5789   assert( db->mallocFailed==0 );
5790 #ifdef WHERETRACE_ENABLED
5791   if( sqlite3WhereTrace ){
5792     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
5793     if( pWInfo->nOBSat>0 ){
5794       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
5795     }
5796     switch( pWInfo->eDistinct ){
5797       case WHERE_DISTINCT_UNIQUE: {
5798         sqlite3DebugPrintf("  DISTINCT=unique");
5799         break;
5800       }
5801       case WHERE_DISTINCT_ORDERED: {
5802         sqlite3DebugPrintf("  DISTINCT=ordered");
5803         break;
5804       }
5805       case WHERE_DISTINCT_UNORDERED: {
5806         sqlite3DebugPrintf("  DISTINCT=unordered");
5807         break;
5808       }
5809     }
5810     sqlite3DebugPrintf("\n");
5811     for(ii=0; ii<pWInfo->nLevel; ii++){
5812       sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
5813     }
5814   }
5815 #endif
5816 
5817   /* Attempt to omit tables from a join that do not affect the result.
5818   ** See the comment on whereOmitNoopJoin() for further information.
5819   **
5820   ** This query optimization is factored out into a separate "no-inline"
5821   ** procedure to keep the sqlite3WhereBegin() procedure from becoming
5822   ** too large.  If sqlite3WhereBegin() becomes too large, that prevents
5823   ** some C-compiler optimizers from in-lining the
5824   ** sqlite3WhereCodeOneLoopStart() procedure, and it is important to
5825   ** in-line sqlite3WhereCodeOneLoopStart() for performance reasons.
5826   */
5827   notReady = ~(Bitmask)0;
5828   if( pWInfo->nLevel>=2
5829    && pResultSet!=0                         /* these two combine to guarantee */
5830    && 0==(wctrlFlags & WHERE_AGG_DISTINCT)  /* condition (1) above */
5831    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
5832   ){
5833     notReady = whereOmitNoopJoin(pWInfo, notReady);
5834     nTabList = pWInfo->nLevel;
5835     assert( nTabList>0 );
5836   }
5837 
5838   /* Check to see if there are any SEARCH loops that might benefit from
5839   ** using a Bloom filter.
5840   */
5841   if( pWInfo->nLevel>=2
5842    && OptimizationEnabled(db, SQLITE_BloomFilter)
5843   ){
5844     whereCheckIfBloomFilterIsUseful(pWInfo);
5845   }
5846 
5847 #if defined(WHERETRACE_ENABLED)
5848   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5849     sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
5850     sqlite3WhereClausePrint(sWLB.pWC);
5851   }
5852   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
5853 #endif
5854   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
5855 
5856   /* If the caller is an UPDATE or DELETE statement that is requesting
5857   ** to use a one-pass algorithm, determine if this is appropriate.
5858   **
5859   ** A one-pass approach can be used if the caller has requested one
5860   ** and either (a) the scan visits at most one row or (b) each
5861   ** of the following are true:
5862   **
5863   **   * the caller has indicated that a one-pass approach can be used
5864   **     with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
5865   **   * the table is not a virtual table, and
5866   **   * either the scan does not use the OR optimization or the caller
5867   **     is a DELETE operation (WHERE_DUPLICATES_OK is only specified
5868   **     for DELETE).
5869   **
5870   ** The last qualification is because an UPDATE statement uses
5871   ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
5872   ** use a one-pass approach, and this is not set accurately for scans
5873   ** that use the OR optimization.
5874   */
5875   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
5876   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
5877     int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
5878     int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
5879     assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) );
5880     if( bOnerow || (
5881         0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
5882      && !IsVirtual(pTabList->a[0].pTab)
5883      && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
5884     )){
5885       pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
5886       if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
5887         if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
5888           bFordelete = OPFLAG_FORDELETE;
5889         }
5890         pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
5891       }
5892     }
5893   }
5894 
5895   /* Open all tables in the pTabList and any indices selected for
5896   ** searching those tables.
5897   */
5898   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
5899     Table *pTab;     /* Table to open */
5900     int iDb;         /* Index of database containing table/index */
5901     SrcItem *pTabItem;
5902 
5903     pTabItem = &pTabList->a[pLevel->iFrom];
5904     pTab = pTabItem->pTab;
5905     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5906     pLoop = pLevel->pWLoop;
5907     if( (pTab->tabFlags & TF_Ephemeral)!=0 || IsView(pTab) ){
5908       /* Do nothing */
5909     }else
5910 #ifndef SQLITE_OMIT_VIRTUALTABLE
5911     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
5912       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
5913       int iCur = pTabItem->iCursor;
5914       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
5915     }else if( IsVirtual(pTab) ){
5916       /* noop */
5917     }else
5918 #endif
5919     if( ((pLoop->wsFlags & WHERE_IDX_ONLY)==0
5920          && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0)
5921      || (pTabItem->fg.jointype & (JT_LTORJ|JT_RIGHT))!=0
5922     ){
5923       int op = OP_OpenRead;
5924       if( pWInfo->eOnePass!=ONEPASS_OFF ){
5925         op = OP_OpenWrite;
5926         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
5927       };
5928       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
5929       assert( pTabItem->iCursor==pLevel->iTabCur );
5930       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
5931       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
5932       if( pWInfo->eOnePass==ONEPASS_OFF
5933        && pTab->nCol<BMS
5934        && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0
5935        && (pLoop->wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))==0
5936       ){
5937         /* If we know that only a prefix of the record will be used,
5938         ** it is advantageous to reduce the "column count" field in
5939         ** the P4 operand of the OP_OpenRead/Write opcode. */
5940         Bitmask b = pTabItem->colUsed;
5941         int n = 0;
5942         for(; b; b=b>>1, n++){}
5943         sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
5944         assert( n<=pTab->nCol );
5945       }
5946 #ifdef SQLITE_ENABLE_CURSOR_HINTS
5947       if( pLoop->u.btree.pIndex!=0 ){
5948         sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
5949       }else
5950 #endif
5951       {
5952         sqlite3VdbeChangeP5(v, bFordelete);
5953       }
5954 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5955       sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
5956                             (const u8*)&pTabItem->colUsed, P4_INT64);
5957 #endif
5958     }else{
5959       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5960     }
5961     if( pLoop->wsFlags & WHERE_INDEXED ){
5962       Index *pIx = pLoop->u.btree.pIndex;
5963       int iIndexCur;
5964       int op = OP_OpenRead;
5965       /* iAuxArg is always set to a positive value if ONEPASS is possible */
5966       assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
5967       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
5968        && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
5969       ){
5970         /* This is one term of an OR-optimization using the PRIMARY KEY of a
5971         ** WITHOUT ROWID table.  No need for a separate index */
5972         iIndexCur = pLevel->iTabCur;
5973         op = 0;
5974       }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
5975         Index *pJ = pTabItem->pTab->pIndex;
5976         iIndexCur = iAuxArg;
5977         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
5978         while( ALWAYS(pJ) && pJ!=pIx ){
5979           iIndexCur++;
5980           pJ = pJ->pNext;
5981         }
5982         op = OP_OpenWrite;
5983         pWInfo->aiCurOnePass[1] = iIndexCur;
5984       }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
5985         iIndexCur = iAuxArg;
5986         op = OP_ReopenIdx;
5987       }else{
5988         iIndexCur = pParse->nTab++;
5989         if( pIx->bHasExpr && OptimizationEnabled(db, SQLITE_IndexedExpr) ){
5990           whereAddIndexedExpr(pParse, pIx, iIndexCur, pTabItem);
5991         }
5992       }
5993       pLevel->iIdxCur = iIndexCur;
5994       assert( pIx!=0 );
5995       assert( pIx->pSchema==pTab->pSchema );
5996       assert( iIndexCur>=0 );
5997       if( op ){
5998         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
5999         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
6000         if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
6001          && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
6002          && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0
6003          && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
6004          && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
6005          && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
6006         ){
6007           sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ);
6008         }
6009         VdbeComment((v, "%s", pIx->zName));
6010 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
6011         {
6012           u64 colUsed = 0;
6013           int ii, jj;
6014           for(ii=0; ii<pIx->nColumn; ii++){
6015             jj = pIx->aiColumn[ii];
6016             if( jj<0 ) continue;
6017             if( jj>63 ) jj = 63;
6018             if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
6019             colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
6020           }
6021           sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
6022                                 (u8*)&colUsed, P4_INT64);
6023         }
6024 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
6025       }
6026     }
6027     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
6028     if( (pTabItem->fg.jointype & JT_RIGHT)!=0
6029      && (pLevel->pRJ = sqlite3WhereMalloc(pWInfo, sizeof(WhereRightJoin)))!=0
6030     ){
6031       WhereRightJoin *pRJ = pLevel->pRJ;
6032       pRJ->iMatch = pParse->nTab++;
6033       pRJ->regBloom = ++pParse->nMem;
6034       sqlite3VdbeAddOp2(v, OP_Blob, 65536, pRJ->regBloom);
6035       pRJ->regReturn = ++pParse->nMem;
6036       sqlite3VdbeAddOp2(v, OP_Null, 0, pRJ->regReturn);
6037       assert( pTab==pTabItem->pTab );
6038       if( HasRowid(pTab) ){
6039         KeyInfo *pInfo;
6040         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, 1);
6041         pInfo = sqlite3KeyInfoAlloc(pParse->db, 1, 0);
6042         if( pInfo ){
6043           pInfo->aColl[0] = 0;
6044           pInfo->aSortFlags[0] = 0;
6045           sqlite3VdbeAppendP4(v, pInfo, P4_KEYINFO);
6046         }
6047       }else{
6048         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
6049         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, pPk->nKeyCol);
6050         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
6051       }
6052       pLoop->wsFlags &= ~WHERE_IDX_ONLY;
6053       /* The nature of RIGHT JOIN processing is such that it messes up
6054       ** the output order.  So omit any ORDER BY/GROUP BY elimination
6055       ** optimizations.  We need to do an actual sort for RIGHT JOIN. */
6056       pWInfo->nOBSat = 0;
6057       pWInfo->eDistinct = WHERE_DISTINCT_UNORDERED;
6058     }
6059   }
6060   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
6061   if( db->mallocFailed ) goto whereBeginError;
6062 
6063   /* Generate the code to do the search.  Each iteration of the for
6064   ** loop below generates code for a single nested loop of the VM
6065   ** program.
6066   */
6067   for(ii=0; ii<nTabList; ii++){
6068     int addrExplain;
6069     int wsFlags;
6070     SrcItem *pSrc;
6071     if( pParse->nErr ) goto whereBeginError;
6072     pLevel = &pWInfo->a[ii];
6073     wsFlags = pLevel->pWLoop->wsFlags;
6074     pSrc = &pTabList->a[pLevel->iFrom];
6075     if( pSrc->fg.isMaterialized ){
6076       if( pSrc->fg.isCorrelated ){
6077         sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub);
6078       }else{
6079         int iOnce = sqlite3VdbeAddOp0(v, OP_Once);  VdbeCoverage(v);
6080         sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub);
6081         sqlite3VdbeJumpHere(v, iOnce);
6082       }
6083     }
6084     if( (wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))!=0 ){
6085       if( (wsFlags & WHERE_AUTO_INDEX)!=0 ){
6086 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
6087         constructAutomaticIndex(pParse, &pWInfo->sWC,
6088                   &pTabList->a[pLevel->iFrom], notReady, pLevel);
6089 #endif
6090       }else{
6091         sqlite3ConstructBloomFilter(pWInfo, ii, pLevel, notReady);
6092       }
6093       if( db->mallocFailed ) goto whereBeginError;
6094     }
6095     addrExplain = sqlite3WhereExplainOneScan(
6096         pParse, pTabList, pLevel, wctrlFlags
6097     );
6098     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
6099     notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady);
6100     pWInfo->iContinue = pLevel->addrCont;
6101     if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
6102       sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
6103     }
6104   }
6105 
6106   /* Done. */
6107   VdbeModuleComment((v, "Begin WHERE-core"));
6108   pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v);
6109   return pWInfo;
6110 
6111   /* Jump here if malloc fails */
6112 whereBeginError:
6113   if( pWInfo ){
6114     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
6115     whereInfoFree(db, pWInfo);
6116   }
6117   return 0;
6118 }
6119 
6120 /*
6121 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
6122 ** index rather than the main table.  In SQLITE_DEBUG mode, we want
6123 ** to trace those changes if PRAGMA vdbe_addoptrace=on.  This routine
6124 ** does that.
6125 */
6126 #ifndef SQLITE_DEBUG
6127 # define OpcodeRewriteTrace(D,K,P) /* no-op */
6128 #else
6129 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
6130   static void sqlite3WhereOpcodeRewriteTrace(
6131     sqlite3 *db,
6132     int pc,
6133     VdbeOp *pOp
6134   ){
6135     if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
6136     sqlite3VdbePrintOp(0, pc, pOp);
6137   }
6138 #endif
6139 
6140 #ifdef SQLITE_DEBUG
6141 /*
6142 ** Return true if cursor iCur is opened by instruction k of the
6143 ** bytecode.  Used inside of assert() only.
6144 */
6145 static int cursorIsOpen(Vdbe *v, int iCur, int k){
6146   while( k>=0 ){
6147     VdbeOp *pOp = sqlite3VdbeGetOp(v,k--);
6148     if( pOp->p1!=iCur ) continue;
6149     if( pOp->opcode==OP_Close ) return 0;
6150     if( pOp->opcode==OP_OpenRead ) return 1;
6151     if( pOp->opcode==OP_OpenWrite ) return 1;
6152     if( pOp->opcode==OP_OpenDup ) return 1;
6153     if( pOp->opcode==OP_OpenAutoindex ) return 1;
6154     if( pOp->opcode==OP_OpenEphemeral ) return 1;
6155   }
6156   return 0;
6157 }
6158 #endif /* SQLITE_DEBUG */
6159 
6160 /*
6161 ** Generate the end of the WHERE loop.  See comments on
6162 ** sqlite3WhereBegin() for additional information.
6163 */
6164 void sqlite3WhereEnd(WhereInfo *pWInfo){
6165   Parse *pParse = pWInfo->pParse;
6166   Vdbe *v = pParse->pVdbe;
6167   int i;
6168   WhereLevel *pLevel;
6169   WhereLoop *pLoop;
6170   SrcList *pTabList = pWInfo->pTabList;
6171   sqlite3 *db = pParse->db;
6172   int iEnd = sqlite3VdbeCurrentAddr(v);
6173   int nRJ = 0;
6174 
6175   /* Generate loop termination code.
6176   */
6177   VdbeModuleComment((v, "End WHERE-core"));
6178   for(i=pWInfo->nLevel-1; i>=0; i--){
6179     int addr;
6180     pLevel = &pWInfo->a[i];
6181     if( pLevel->pRJ ){
6182       /* Terminate the subroutine that forms the interior of the loop of
6183       ** the RIGHT JOIN table */
6184       WhereRightJoin *pRJ = pLevel->pRJ;
6185       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
6186       pLevel->addrCont = 0;
6187       pRJ->endSubrtn = sqlite3VdbeCurrentAddr(v);
6188       sqlite3VdbeAddOp3(v, OP_Return, pRJ->regReturn, pRJ->addrSubrtn, 1);
6189       VdbeCoverage(v);
6190       nRJ++;
6191     }
6192     pLoop = pLevel->pWLoop;
6193     if( pLevel->op!=OP_Noop ){
6194 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
6195       int addrSeek = 0;
6196       Index *pIdx;
6197       int n;
6198       if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
6199        && i==pWInfo->nLevel-1  /* Ticket [ef9318757b152e3] 2017-10-21 */
6200        && (pLoop->wsFlags & WHERE_INDEXED)!=0
6201        && (pIdx = pLoop->u.btree.pIndex)->hasStat1
6202        && (n = pLoop->u.btree.nDistinctCol)>0
6203        && pIdx->aiRowLogEst[n]>=36
6204       ){
6205         int r1 = pParse->nMem+1;
6206         int j, op;
6207         for(j=0; j<n; j++){
6208           sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
6209         }
6210         pParse->nMem += n+1;
6211         op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
6212         addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
6213         VdbeCoverageIf(v, op==OP_SeekLT);
6214         VdbeCoverageIf(v, op==OP_SeekGT);
6215         sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
6216       }
6217 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
6218       /* The common case: Advance to the next row */
6219       if( pLevel->addrCont ) sqlite3VdbeResolveLabel(v, pLevel->addrCont);
6220       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
6221       sqlite3VdbeChangeP5(v, pLevel->p5);
6222       VdbeCoverage(v);
6223       VdbeCoverageIf(v, pLevel->op==OP_Next);
6224       VdbeCoverageIf(v, pLevel->op==OP_Prev);
6225       VdbeCoverageIf(v, pLevel->op==OP_VNext);
6226       if( pLevel->regBignull ){
6227         sqlite3VdbeResolveLabel(v, pLevel->addrBignull);
6228         sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1);
6229         VdbeCoverage(v);
6230       }
6231 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
6232       if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
6233 #endif
6234     }else if( pLevel->addrCont ){
6235       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
6236     }
6237     if( (pLoop->wsFlags & WHERE_IN_ABLE)!=0 && pLevel->u.in.nIn>0 ){
6238       struct InLoop *pIn;
6239       int j;
6240       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
6241       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
6242         assert( sqlite3VdbeGetOp(v, pIn->addrInTop+1)->opcode==OP_IsNull
6243                  || pParse->db->mallocFailed );
6244         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
6245         if( pIn->eEndLoopOp!=OP_Noop ){
6246           if( pIn->nPrefix ){
6247             int bEarlyOut =
6248                 (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
6249                  && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0;
6250             if( pLevel->iLeftJoin ){
6251               /* For LEFT JOIN queries, cursor pIn->iCur may not have been
6252               ** opened yet. This occurs for WHERE clauses such as
6253               ** "a = ? AND b IN (...)", where the index is on (a, b). If
6254               ** the RHS of the (a=?) is NULL, then the "b IN (...)" may
6255               ** never have been coded, but the body of the loop run to
6256               ** return the null-row. So, if the cursor is not open yet,
6257               ** jump over the OP_Next or OP_Prev instruction about to
6258               ** be coded.  */
6259               sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur,
6260                   sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut);
6261               VdbeCoverage(v);
6262             }
6263             if( bEarlyOut ){
6264               sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
6265                   sqlite3VdbeCurrentAddr(v)+2,
6266                   pIn->iBase, pIn->nPrefix);
6267               VdbeCoverage(v);
6268               /* Retarget the OP_IsNull against the left operand of IN so
6269               ** it jumps past the OP_IfNoHope.  This is because the
6270               ** OP_IsNull also bypasses the OP_Affinity opcode that is
6271               ** required by OP_IfNoHope. */
6272               sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
6273             }
6274           }
6275           sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
6276           VdbeCoverage(v);
6277           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
6278           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
6279         }
6280         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
6281       }
6282     }
6283     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
6284     if( pLevel->pRJ ){
6285       sqlite3VdbeAddOp3(v, OP_Return, pLevel->pRJ->regReturn, 0, 1);
6286       VdbeCoverage(v);
6287     }
6288     if( pLevel->addrSkip ){
6289       sqlite3VdbeGoto(v, pLevel->addrSkip);
6290       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
6291       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
6292       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
6293     }
6294 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
6295     if( pLevel->addrLikeRep ){
6296       sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
6297                         pLevel->addrLikeRep);
6298       VdbeCoverage(v);
6299     }
6300 #endif
6301     if( pLevel->iLeftJoin ){
6302       int ws = pLoop->wsFlags;
6303       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
6304       assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
6305       if( (ws & WHERE_IDX_ONLY)==0 ){
6306         assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
6307         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
6308       }
6309       if( (ws & WHERE_INDEXED)
6310        || ((ws & WHERE_MULTI_OR) && pLevel->u.pCoveringIdx)
6311       ){
6312         if( ws & WHERE_MULTI_OR ){
6313           Index *pIx = pLevel->u.pCoveringIdx;
6314           int iDb = sqlite3SchemaToIndex(db, pIx->pSchema);
6315           sqlite3VdbeAddOp3(v, OP_ReopenIdx, pLevel->iIdxCur, pIx->tnum, iDb);
6316           sqlite3VdbeSetP4KeyInfo(pParse, pIx);
6317         }
6318         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
6319       }
6320       if( pLevel->op==OP_Return ){
6321         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
6322       }else{
6323         sqlite3VdbeGoto(v, pLevel->addrFirst);
6324       }
6325       sqlite3VdbeJumpHere(v, addr);
6326     }
6327     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
6328                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
6329   }
6330 
6331   assert( pWInfo->nLevel<=pTabList->nSrc );
6332   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
6333     int k, last;
6334     VdbeOp *pOp, *pLastOp;
6335     Index *pIdx = 0;
6336     SrcItem *pTabItem = &pTabList->a[pLevel->iFrom];
6337     Table *pTab = pTabItem->pTab;
6338     assert( pTab!=0 );
6339     pLoop = pLevel->pWLoop;
6340 
6341     /* Do RIGHT JOIN processing.  Generate code that will output the
6342     ** unmatched rows of the right operand of the RIGHT JOIN with
6343     ** all of the columns of the left operand set to NULL.
6344     */
6345     if( pLevel->pRJ ){
6346       sqlite3WhereRightJoinLoop(pWInfo, i, pLevel);
6347       continue;
6348     }
6349 
6350     /* For a co-routine, change all OP_Column references to the table of
6351     ** the co-routine into OP_Copy of result contained in a register.
6352     ** OP_Rowid becomes OP_Null.
6353     */
6354     if( pTabItem->fg.viaCoroutine ){
6355       testcase( pParse->db->mallocFailed );
6356       translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
6357                             pTabItem->regResult, 0);
6358       continue;
6359     }
6360 
6361     /* If this scan uses an index, make VDBE code substitutions to read data
6362     ** from the index instead of from the table where possible.  In some cases
6363     ** this optimization prevents the table from ever being read, which can
6364     ** yield a significant performance boost.
6365     **
6366     ** Calls to the code generator in between sqlite3WhereBegin and
6367     ** sqlite3WhereEnd will have created code that references the table
6368     ** directly.  This loop scans all that code looking for opcodes
6369     ** that reference the table and converts them into opcodes that
6370     ** reference the index.
6371     */
6372     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
6373       pIdx = pLoop->u.btree.pIndex;
6374     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
6375       pIdx = pLevel->u.pCoveringIdx;
6376     }
6377     if( pIdx
6378      && !db->mallocFailed
6379     ){
6380       if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){
6381         last = iEnd;
6382       }else{
6383         last = pWInfo->iEndWhere;
6384       }
6385       if( pIdx->bHasExpr ){
6386         IndexedExpr *p = pParse->pIdxExpr;
6387         while( p ){
6388           if( p->iIdxCur==pLevel->iIdxCur ){
6389             p->iDataCur = -1;
6390             p->iIdxCur = -1;
6391           }
6392           p = p->pIENext;
6393         }
6394       }
6395       k = pLevel->addrBody + 1;
6396 #ifdef SQLITE_DEBUG
6397       if( db->flags & SQLITE_VdbeAddopTrace ){
6398         printf("TRANSLATE opcodes in range %d..%d\n", k, last-1);
6399       }
6400       /* Proof that the "+1" on the k value above is safe */
6401       pOp = sqlite3VdbeGetOp(v, k - 1);
6402       assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur );
6403       assert( pOp->opcode!=OP_Rowid  || pOp->p1!=pLevel->iTabCur );
6404       assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur );
6405 #endif
6406       pOp = sqlite3VdbeGetOp(v, k);
6407       pLastOp = pOp + (last - k);
6408       assert( pOp<=pLastOp );
6409       do{
6410         if( pOp->p1!=pLevel->iTabCur ){
6411           /* no-op */
6412         }else if( pOp->opcode==OP_Column
6413 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6414          || pOp->opcode==OP_Offset
6415 #endif
6416         ){
6417           int x = pOp->p2;
6418           assert( pIdx->pTable==pTab );
6419 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6420           if( pOp->opcode==OP_Offset ){
6421             /* Do not need to translate the column number */
6422           }else
6423 #endif
6424           if( !HasRowid(pTab) ){
6425             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
6426             x = pPk->aiColumn[x];
6427             assert( x>=0 );
6428           }else{
6429             testcase( x!=sqlite3StorageColumnToTable(pTab,x) );
6430             x = sqlite3StorageColumnToTable(pTab,x);
6431           }
6432           x = sqlite3TableColumnToIndex(pIdx, x);
6433           if( x>=0 ){
6434             pOp->p2 = x;
6435             pOp->p1 = pLevel->iIdxCur;
6436             OpcodeRewriteTrace(db, k, pOp);
6437           }else{
6438             /* Unable to translate the table reference into an index
6439             ** reference.  Verify that this is harmless - that the
6440             ** table being referenced really is open.
6441             */
6442 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6443             assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
6444                  || cursorIsOpen(v,pOp->p1,k)
6445                  || pOp->opcode==OP_Offset
6446             );
6447 #else
6448             assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
6449                  || cursorIsOpen(v,pOp->p1,k)
6450             );
6451 #endif
6452           }
6453         }else if( pOp->opcode==OP_Rowid ){
6454           pOp->p1 = pLevel->iIdxCur;
6455           pOp->opcode = OP_IdxRowid;
6456           OpcodeRewriteTrace(db, k, pOp);
6457         }else if( pOp->opcode==OP_IfNullRow ){
6458           pOp->p1 = pLevel->iIdxCur;
6459           OpcodeRewriteTrace(db, k, pOp);
6460         }
6461 #ifdef SQLITE_DEBUG
6462         k++;
6463 #endif
6464       }while( (++pOp)<pLastOp );
6465 #ifdef SQLITE_DEBUG
6466       if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
6467 #endif
6468     }
6469   }
6470 
6471   /* The "break" point is here, just past the end of the outer loop.
6472   ** Set it.
6473   */
6474   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
6475 
6476   /* Final cleanup
6477   */
6478   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
6479   whereInfoFree(db, pWInfo);
6480   pParse->withinRJSubrtn -= nRJ;
6481   return;
6482 }
6483