1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* 23 ** Extra information appended to the end of sqlite3_index_info but not 24 ** visible to the xBestIndex function, at least not directly. The 25 ** sqlite3_vtab_collation() interface knows how to reach it, however. 26 ** 27 ** This object is not an API and can be changed from one release to the 28 ** next. As long as allocateIndexInfo() and sqlite3_vtab_collation() 29 ** agree on the structure, all will be well. 30 */ 31 typedef struct HiddenIndexInfo HiddenIndexInfo; 32 struct HiddenIndexInfo { 33 WhereClause *pWC; /* The Where clause being analyzed */ 34 Parse *pParse; /* The parsing context */ 35 int eDistinct; /* Value to return from sqlite3_vtab_distinct() */ 36 u32 mIn; /* Mask of terms that are <col> IN (...) */ 37 u32 mHandleIn; /* Terms that vtab will handle as <col> IN (...) */ 38 sqlite3_value *aRhs[1]; /* RHS values for constraints. MUST BE LAST 39 ** because extra space is allocated to hold up 40 ** to nTerm such values */ 41 }; 42 43 /* Forward declaration of methods */ 44 static int whereLoopResize(sqlite3*, WhereLoop*, int); 45 46 /* 47 ** Return the estimated number of output rows from a WHERE clause 48 */ 49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ 50 return pWInfo->nRowOut; 51 } 52 53 /* 54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this 55 ** WHERE clause returns outputs for DISTINCT processing. 56 */ 57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ 58 return pWInfo->eDistinct; 59 } 60 61 /* 62 ** Return the number of ORDER BY terms that are satisfied by the 63 ** WHERE clause. A return of 0 means that the output must be 64 ** completely sorted. A return equal to the number of ORDER BY 65 ** terms means that no sorting is needed at all. A return that 66 ** is positive but less than the number of ORDER BY terms means that 67 ** block sorting is required. 68 */ 69 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ 70 return pWInfo->nOBSat; 71 } 72 73 /* 74 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known 75 ** to emit rows in increasing order, and if the last row emitted by the 76 ** inner-most loop did not fit within the sorter, then we can skip all 77 ** subsequent rows for the current iteration of the inner loop (because they 78 ** will not fit in the sorter either) and continue with the second inner 79 ** loop - the loop immediately outside the inner-most. 80 ** 81 ** When a row does not fit in the sorter (because the sorter already 82 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the 83 ** label returned by this function. 84 ** 85 ** If the ORDER BY LIMIT optimization applies, the jump destination should 86 ** be the continuation for the second-inner-most loop. If the ORDER BY 87 ** LIMIT optimization does not apply, then the jump destination should 88 ** be the continuation for the inner-most loop. 89 ** 90 ** It is always safe for this routine to return the continuation of the 91 ** inner-most loop, in the sense that a correct answer will result. 92 ** Returning the continuation the second inner loop is an optimization 93 ** that might make the code run a little faster, but should not change 94 ** the final answer. 95 */ 96 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){ 97 WhereLevel *pInner; 98 if( !pWInfo->bOrderedInnerLoop ){ 99 /* The ORDER BY LIMIT optimization does not apply. Jump to the 100 ** continuation of the inner-most loop. */ 101 return pWInfo->iContinue; 102 } 103 pInner = &pWInfo->a[pWInfo->nLevel-1]; 104 assert( pInner->addrNxt!=0 ); 105 return pInner->pRJ ? pWInfo->iContinue : pInner->addrNxt; 106 } 107 108 /* 109 ** While generating code for the min/max optimization, after handling 110 ** the aggregate-step call to min() or max(), check to see if any 111 ** additional looping is required. If the output order is such that 112 ** we are certain that the correct answer has already been found, then 113 ** code an OP_Goto to by pass subsequent processing. 114 ** 115 ** Any extra OP_Goto that is coded here is an optimization. The 116 ** correct answer should be obtained regardless. This OP_Goto just 117 ** makes the answer appear faster. 118 */ 119 void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){ 120 WhereLevel *pInner; 121 int i; 122 if( !pWInfo->bOrderedInnerLoop ) return; 123 if( pWInfo->nOBSat==0 ) return; 124 for(i=pWInfo->nLevel-1; i>=0; i--){ 125 pInner = &pWInfo->a[i]; 126 if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){ 127 sqlite3VdbeGoto(v, pInner->addrNxt); 128 return; 129 } 130 } 131 sqlite3VdbeGoto(v, pWInfo->iBreak); 132 } 133 134 /* 135 ** Return the VDBE address or label to jump to in order to continue 136 ** immediately with the next row of a WHERE clause. 137 */ 138 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ 139 assert( pWInfo->iContinue!=0 ); 140 return pWInfo->iContinue; 141 } 142 143 /* 144 ** Return the VDBE address or label to jump to in order to break 145 ** out of a WHERE loop. 146 */ 147 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ 148 return pWInfo->iBreak; 149 } 150 151 /* 152 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to 153 ** operate directly on the rowids returned by a WHERE clause. Return 154 ** ONEPASS_SINGLE (1) if the statement can operation directly because only 155 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass 156 ** optimization can be used on multiple 157 ** 158 ** If the ONEPASS optimization is used (if this routine returns true) 159 ** then also write the indices of open cursors used by ONEPASS 160 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data 161 ** table and iaCur[1] gets the cursor used by an auxiliary index. 162 ** Either value may be -1, indicating that cursor is not used. 163 ** Any cursors returned will have been opened for writing. 164 ** 165 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is 166 ** unable to use the ONEPASS optimization. 167 */ 168 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ 169 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); 170 #ifdef WHERETRACE_ENABLED 171 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){ 172 sqlite3DebugPrintf("%s cursors: %d %d\n", 173 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI", 174 aiCur[0], aiCur[1]); 175 } 176 #endif 177 return pWInfo->eOnePass; 178 } 179 180 /* 181 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move 182 ** the data cursor to the row selected by the index cursor. 183 */ 184 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){ 185 return pWInfo->bDeferredSeek; 186 } 187 188 /* 189 ** Move the content of pSrc into pDest 190 */ 191 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ 192 pDest->n = pSrc->n; 193 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); 194 } 195 196 /* 197 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. 198 ** 199 ** The new entry might overwrite an existing entry, or it might be 200 ** appended, or it might be discarded. Do whatever is the right thing 201 ** so that pSet keeps the N_OR_COST best entries seen so far. 202 */ 203 static int whereOrInsert( 204 WhereOrSet *pSet, /* The WhereOrSet to be updated */ 205 Bitmask prereq, /* Prerequisites of the new entry */ 206 LogEst rRun, /* Run-cost of the new entry */ 207 LogEst nOut /* Number of outputs for the new entry */ 208 ){ 209 u16 i; 210 WhereOrCost *p; 211 for(i=pSet->n, p=pSet->a; i>0; i--, p++){ 212 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ 213 goto whereOrInsert_done; 214 } 215 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ 216 return 0; 217 } 218 } 219 if( pSet->n<N_OR_COST ){ 220 p = &pSet->a[pSet->n++]; 221 p->nOut = nOut; 222 }else{ 223 p = pSet->a; 224 for(i=1; i<pSet->n; i++){ 225 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; 226 } 227 if( p->rRun<=rRun ) return 0; 228 } 229 whereOrInsert_done: 230 p->prereq = prereq; 231 p->rRun = rRun; 232 if( p->nOut>nOut ) p->nOut = nOut; 233 return 1; 234 } 235 236 /* 237 ** Return the bitmask for the given cursor number. Return 0 if 238 ** iCursor is not in the set. 239 */ 240 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ 241 int i; 242 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); 243 assert( pMaskSet->n>0 || pMaskSet->ix[0]<0 ); 244 assert( iCursor>=-1 ); 245 if( pMaskSet->ix[0]==iCursor ){ 246 return 1; 247 } 248 for(i=1; i<pMaskSet->n; i++){ 249 if( pMaskSet->ix[i]==iCursor ){ 250 return MASKBIT(i); 251 } 252 } 253 return 0; 254 } 255 256 /* Allocate memory that is automatically freed when pWInfo is freed. 257 */ 258 void *sqlite3WhereMalloc(WhereInfo *pWInfo, u64 nByte){ 259 WhereMemBlock *pBlock; 260 pBlock = sqlite3DbMallocRawNN(pWInfo->pParse->db, nByte+sizeof(*pBlock)); 261 if( pBlock ){ 262 pBlock->pNext = pWInfo->pMemToFree; 263 pBlock->sz = nByte; 264 pWInfo->pMemToFree = pBlock; 265 pBlock++; 266 } 267 return (void*)pBlock; 268 } 269 void *sqlite3WhereRealloc(WhereInfo *pWInfo, void *pOld, u64 nByte){ 270 void *pNew = sqlite3WhereMalloc(pWInfo, nByte); 271 if( pNew && pOld ){ 272 WhereMemBlock *pOldBlk = (WhereMemBlock*)pOld; 273 pOldBlk--; 274 assert( pOldBlk->sz<nByte ); 275 memcpy(pNew, pOld, pOldBlk->sz); 276 } 277 return pNew; 278 } 279 280 /* 281 ** Create a new mask for cursor iCursor. 282 ** 283 ** There is one cursor per table in the FROM clause. The number of 284 ** tables in the FROM clause is limited by a test early in the 285 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 286 ** array will never overflow. 287 */ 288 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 289 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 290 pMaskSet->ix[pMaskSet->n++] = iCursor; 291 } 292 293 /* 294 ** If the right-hand branch of the expression is a TK_COLUMN, then return 295 ** a pointer to the right-hand branch. Otherwise, return NULL. 296 */ 297 static Expr *whereRightSubexprIsColumn(Expr *p){ 298 p = sqlite3ExprSkipCollateAndLikely(p->pRight); 299 if( ALWAYS(p!=0) && p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){ 300 return p; 301 } 302 return 0; 303 } 304 305 /* 306 ** Advance to the next WhereTerm that matches according to the criteria 307 ** established when the pScan object was initialized by whereScanInit(). 308 ** Return NULL if there are no more matching WhereTerms. 309 */ 310 static WhereTerm *whereScanNext(WhereScan *pScan){ 311 int iCur; /* The cursor on the LHS of the term */ 312 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */ 313 Expr *pX; /* An expression being tested */ 314 WhereClause *pWC; /* Shorthand for pScan->pWC */ 315 WhereTerm *pTerm; /* The term being tested */ 316 int k = pScan->k; /* Where to start scanning */ 317 318 assert( pScan->iEquiv<=pScan->nEquiv ); 319 pWC = pScan->pWC; 320 while(1){ 321 iColumn = pScan->aiColumn[pScan->iEquiv-1]; 322 iCur = pScan->aiCur[pScan->iEquiv-1]; 323 assert( pWC!=0 ); 324 assert( iCur>=0 ); 325 do{ 326 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ 327 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 || pTerm->leftCursor<0 ); 328 if( pTerm->leftCursor==iCur 329 && pTerm->u.x.leftColumn==iColumn 330 && (iColumn!=XN_EXPR 331 || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft, 332 pScan->pIdxExpr,iCur)==0) 333 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_OuterON)) 334 ){ 335 if( (pTerm->eOperator & WO_EQUIV)!=0 336 && pScan->nEquiv<ArraySize(pScan->aiCur) 337 && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0 338 ){ 339 int j; 340 for(j=0; j<pScan->nEquiv; j++){ 341 if( pScan->aiCur[j]==pX->iTable 342 && pScan->aiColumn[j]==pX->iColumn ){ 343 break; 344 } 345 } 346 if( j==pScan->nEquiv ){ 347 pScan->aiCur[j] = pX->iTable; 348 pScan->aiColumn[j] = pX->iColumn; 349 pScan->nEquiv++; 350 } 351 } 352 if( (pTerm->eOperator & pScan->opMask)!=0 ){ 353 /* Verify the affinity and collating sequence match */ 354 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ 355 CollSeq *pColl; 356 Parse *pParse = pWC->pWInfo->pParse; 357 pX = pTerm->pExpr; 358 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ 359 continue; 360 } 361 assert(pX->pLeft); 362 pColl = sqlite3ExprCompareCollSeq(pParse, pX); 363 if( pColl==0 ) pColl = pParse->db->pDfltColl; 364 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ 365 continue; 366 } 367 } 368 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0 369 && (pX = pTerm->pExpr->pRight, ALWAYS(pX!=0)) 370 && pX->op==TK_COLUMN 371 && pX->iTable==pScan->aiCur[0] 372 && pX->iColumn==pScan->aiColumn[0] 373 ){ 374 testcase( pTerm->eOperator & WO_IS ); 375 continue; 376 } 377 pScan->pWC = pWC; 378 pScan->k = k+1; 379 #ifdef WHERETRACE_ENABLED 380 if( sqlite3WhereTrace & 0x20000 ){ 381 int ii; 382 sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d", 383 pTerm, pScan->nEquiv); 384 for(ii=0; ii<pScan->nEquiv; ii++){ 385 sqlite3DebugPrintf(" {%d:%d}", 386 pScan->aiCur[ii], pScan->aiColumn[ii]); 387 } 388 sqlite3DebugPrintf("\n"); 389 } 390 #endif 391 return pTerm; 392 } 393 } 394 } 395 pWC = pWC->pOuter; 396 k = 0; 397 }while( pWC!=0 ); 398 if( pScan->iEquiv>=pScan->nEquiv ) break; 399 pWC = pScan->pOrigWC; 400 k = 0; 401 pScan->iEquiv++; 402 } 403 return 0; 404 } 405 406 /* 407 ** This is whereScanInit() for the case of an index on an expression. 408 ** It is factored out into a separate tail-recursion subroutine so that 409 ** the normal whereScanInit() routine, which is a high-runner, does not 410 ** need to push registers onto the stack as part of its prologue. 411 */ 412 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){ 413 pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr); 414 return whereScanNext(pScan); 415 } 416 417 /* 418 ** Initialize a WHERE clause scanner object. Return a pointer to the 419 ** first match. Return NULL if there are no matches. 420 ** 421 ** The scanner will be searching the WHERE clause pWC. It will look 422 ** for terms of the form "X <op> <expr>" where X is column iColumn of table 423 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx 424 ** must be one of the indexes of table iCur. 425 ** 426 ** The <op> must be one of the operators described by opMask. 427 ** 428 ** If the search is for X and the WHERE clause contains terms of the 429 ** form X=Y then this routine might also return terms of the form 430 ** "Y <op> <expr>". The number of levels of transitivity is limited, 431 ** but is enough to handle most commonly occurring SQL statements. 432 ** 433 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with 434 ** index pIdx. 435 */ 436 static WhereTerm *whereScanInit( 437 WhereScan *pScan, /* The WhereScan object being initialized */ 438 WhereClause *pWC, /* The WHERE clause to be scanned */ 439 int iCur, /* Cursor to scan for */ 440 int iColumn, /* Column to scan for */ 441 u32 opMask, /* Operator(s) to scan for */ 442 Index *pIdx /* Must be compatible with this index */ 443 ){ 444 pScan->pOrigWC = pWC; 445 pScan->pWC = pWC; 446 pScan->pIdxExpr = 0; 447 pScan->idxaff = 0; 448 pScan->zCollName = 0; 449 pScan->opMask = opMask; 450 pScan->k = 0; 451 pScan->aiCur[0] = iCur; 452 pScan->nEquiv = 1; 453 pScan->iEquiv = 1; 454 if( pIdx ){ 455 int j = iColumn; 456 iColumn = pIdx->aiColumn[j]; 457 if( iColumn==pIdx->pTable->iPKey ){ 458 iColumn = XN_ROWID; 459 }else if( iColumn>=0 ){ 460 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; 461 pScan->zCollName = pIdx->azColl[j]; 462 }else if( iColumn==XN_EXPR ){ 463 pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr; 464 pScan->zCollName = pIdx->azColl[j]; 465 pScan->aiColumn[0] = XN_EXPR; 466 return whereScanInitIndexExpr(pScan); 467 } 468 }else if( iColumn==XN_EXPR ){ 469 return 0; 470 } 471 pScan->aiColumn[0] = iColumn; 472 return whereScanNext(pScan); 473 } 474 475 /* 476 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 477 ** where X is a reference to the iColumn of table iCur or of index pIdx 478 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by 479 ** the op parameter. Return a pointer to the term. Return 0 if not found. 480 ** 481 ** If pIdx!=0 then it must be one of the indexes of table iCur. 482 ** Search for terms matching the iColumn-th column of pIdx 483 ** rather than the iColumn-th column of table iCur. 484 ** 485 ** The term returned might by Y=<expr> if there is another constraint in 486 ** the WHERE clause that specifies that X=Y. Any such constraints will be 487 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The 488 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11 489 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10 490 ** other equivalent values. Hence a search for X will return <expr> if X=A1 491 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>. 492 ** 493 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" 494 ** then try for the one with no dependencies on <expr> - in other words where 495 ** <expr> is a constant expression of some kind. Only return entries of 496 ** the form "X <op> Y" where Y is a column in another table if no terms of 497 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS 498 ** exist, try to return a term that does not use WO_EQUIV. 499 */ 500 WhereTerm *sqlite3WhereFindTerm( 501 WhereClause *pWC, /* The WHERE clause to be searched */ 502 int iCur, /* Cursor number of LHS */ 503 int iColumn, /* Column number of LHS */ 504 Bitmask notReady, /* RHS must not overlap with this mask */ 505 u32 op, /* Mask of WO_xx values describing operator */ 506 Index *pIdx /* Must be compatible with this index, if not NULL */ 507 ){ 508 WhereTerm *pResult = 0; 509 WhereTerm *p; 510 WhereScan scan; 511 512 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); 513 op &= WO_EQ|WO_IS; 514 while( p ){ 515 if( (p->prereqRight & notReady)==0 ){ 516 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){ 517 testcase( p->eOperator & WO_IS ); 518 return p; 519 } 520 if( pResult==0 ) pResult = p; 521 } 522 p = whereScanNext(&scan); 523 } 524 return pResult; 525 } 526 527 /* 528 ** This function searches pList for an entry that matches the iCol-th column 529 ** of index pIdx. 530 ** 531 ** If such an expression is found, its index in pList->a[] is returned. If 532 ** no expression is found, -1 is returned. 533 */ 534 static int findIndexCol( 535 Parse *pParse, /* Parse context */ 536 ExprList *pList, /* Expression list to search */ 537 int iBase, /* Cursor for table associated with pIdx */ 538 Index *pIdx, /* Index to match column of */ 539 int iCol /* Column of index to match */ 540 ){ 541 int i; 542 const char *zColl = pIdx->azColl[iCol]; 543 544 for(i=0; i<pList->nExpr; i++){ 545 Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr); 546 if( ALWAYS(p!=0) 547 && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) 548 && p->iColumn==pIdx->aiColumn[iCol] 549 && p->iTable==iBase 550 ){ 551 CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr); 552 if( 0==sqlite3StrICmp(pColl->zName, zColl) ){ 553 return i; 554 } 555 } 556 } 557 558 return -1; 559 } 560 561 /* 562 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL 563 */ 564 static int indexColumnNotNull(Index *pIdx, int iCol){ 565 int j; 566 assert( pIdx!=0 ); 567 assert( iCol>=0 && iCol<pIdx->nColumn ); 568 j = pIdx->aiColumn[iCol]; 569 if( j>=0 ){ 570 return pIdx->pTable->aCol[j].notNull; 571 }else if( j==(-1) ){ 572 return 1; 573 }else{ 574 assert( j==(-2) ); 575 return 0; /* Assume an indexed expression can always yield a NULL */ 576 577 } 578 } 579 580 /* 581 ** Return true if the DISTINCT expression-list passed as the third argument 582 ** is redundant. 583 ** 584 ** A DISTINCT list is redundant if any subset of the columns in the 585 ** DISTINCT list are collectively unique and individually non-null. 586 */ 587 static int isDistinctRedundant( 588 Parse *pParse, /* Parsing context */ 589 SrcList *pTabList, /* The FROM clause */ 590 WhereClause *pWC, /* The WHERE clause */ 591 ExprList *pDistinct /* The result set that needs to be DISTINCT */ 592 ){ 593 Table *pTab; 594 Index *pIdx; 595 int i; 596 int iBase; 597 598 /* If there is more than one table or sub-select in the FROM clause of 599 ** this query, then it will not be possible to show that the DISTINCT 600 ** clause is redundant. */ 601 if( pTabList->nSrc!=1 ) return 0; 602 iBase = pTabList->a[0].iCursor; 603 pTab = pTabList->a[0].pTab; 604 605 /* If any of the expressions is an IPK column on table iBase, then return 606 ** true. Note: The (p->iTable==iBase) part of this test may be false if the 607 ** current SELECT is a correlated sub-query. 608 */ 609 for(i=0; i<pDistinct->nExpr; i++){ 610 Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr); 611 if( NEVER(p==0) ) continue; 612 if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue; 613 if( p->iTable==iBase && p->iColumn<0 ) return 1; 614 } 615 616 /* Loop through all indices on the table, checking each to see if it makes 617 ** the DISTINCT qualifier redundant. It does so if: 618 ** 619 ** 1. The index is itself UNIQUE, and 620 ** 621 ** 2. All of the columns in the index are either part of the pDistinct 622 ** list, or else the WHERE clause contains a term of the form "col=X", 623 ** where X is a constant value. The collation sequences of the 624 ** comparison and select-list expressions must match those of the index. 625 ** 626 ** 3. All of those index columns for which the WHERE clause does not 627 ** contain a "col=X" term are subject to a NOT NULL constraint. 628 */ 629 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 630 if( !IsUniqueIndex(pIdx) ) continue; 631 if( pIdx->pPartIdxWhere ) continue; 632 for(i=0; i<pIdx->nKeyCol; i++){ 633 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){ 634 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break; 635 if( indexColumnNotNull(pIdx, i)==0 ) break; 636 } 637 } 638 if( i==pIdx->nKeyCol ){ 639 /* This index implies that the DISTINCT qualifier is redundant. */ 640 return 1; 641 } 642 } 643 644 return 0; 645 } 646 647 648 /* 649 ** Estimate the logarithm of the input value to base 2. 650 */ 651 static LogEst estLog(LogEst N){ 652 return N<=10 ? 0 : sqlite3LogEst(N) - 33; 653 } 654 655 /* 656 ** Convert OP_Column opcodes to OP_Copy in previously generated code. 657 ** 658 ** This routine runs over generated VDBE code and translates OP_Column 659 ** opcodes into OP_Copy when the table is being accessed via co-routine 660 ** instead of via table lookup. 661 ** 662 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on 663 ** cursor iTabCur are transformed into OP_Sequence opcode for the 664 ** iAutoidxCur cursor, in order to generate unique rowids for the 665 ** automatic index being generated. 666 */ 667 static void translateColumnToCopy( 668 Parse *pParse, /* Parsing context */ 669 int iStart, /* Translate from this opcode to the end */ 670 int iTabCur, /* OP_Column/OP_Rowid references to this table */ 671 int iRegister, /* The first column is in this register */ 672 int iAutoidxCur /* If non-zero, cursor of autoindex being generated */ 673 ){ 674 Vdbe *v = pParse->pVdbe; 675 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart); 676 int iEnd = sqlite3VdbeCurrentAddr(v); 677 if( pParse->db->mallocFailed ) return; 678 for(; iStart<iEnd; iStart++, pOp++){ 679 if( pOp->p1!=iTabCur ) continue; 680 if( pOp->opcode==OP_Column ){ 681 pOp->opcode = OP_Copy; 682 pOp->p1 = pOp->p2 + iRegister; 683 pOp->p2 = pOp->p3; 684 pOp->p3 = 0; 685 pOp->p5 = 2; /* Cause the MEM_Subtype flag to be cleared */ 686 }else if( pOp->opcode==OP_Rowid ){ 687 pOp->opcode = OP_Sequence; 688 pOp->p1 = iAutoidxCur; 689 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 690 if( iAutoidxCur==0 ){ 691 pOp->opcode = OP_Null; 692 pOp->p3 = 0; 693 } 694 #endif 695 } 696 } 697 } 698 699 /* 700 ** Two routines for printing the content of an sqlite3_index_info 701 ** structure. Used for testing and debugging only. If neither 702 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 703 ** are no-ops. 704 */ 705 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) 706 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){ 707 int i; 708 if( !sqlite3WhereTrace ) return; 709 for(i=0; i<p->nConstraint; i++){ 710 sqlite3DebugPrintf( 711 " constraint[%d]: col=%d termid=%d op=%d usabled=%d collseq=%s\n", 712 i, 713 p->aConstraint[i].iColumn, 714 p->aConstraint[i].iTermOffset, 715 p->aConstraint[i].op, 716 p->aConstraint[i].usable, 717 sqlite3_vtab_collation(p,i)); 718 } 719 for(i=0; i<p->nOrderBy; i++){ 720 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 721 i, 722 p->aOrderBy[i].iColumn, 723 p->aOrderBy[i].desc); 724 } 725 } 726 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){ 727 int i; 728 if( !sqlite3WhereTrace ) return; 729 for(i=0; i<p->nConstraint; i++){ 730 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 731 i, 732 p->aConstraintUsage[i].argvIndex, 733 p->aConstraintUsage[i].omit); 734 } 735 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 736 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 737 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 738 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 739 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); 740 } 741 #else 742 #define whereTraceIndexInfoInputs(A) 743 #define whereTraceIndexInfoOutputs(A) 744 #endif 745 746 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 747 /* 748 ** Return TRUE if the WHERE clause term pTerm is of a form where it 749 ** could be used with an index to access pSrc, assuming an appropriate 750 ** index existed. 751 */ 752 static int termCanDriveIndex( 753 const WhereTerm *pTerm, /* WHERE clause term to check */ 754 const SrcItem *pSrc, /* Table we are trying to access */ 755 const Bitmask notReady /* Tables in outer loops of the join */ 756 ){ 757 char aff; 758 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; 759 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0; 760 assert( (pSrc->fg.jointype & JT_RIGHT)==0 ); 761 if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ){ 762 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT ); 763 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ ); 764 testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) 765 testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) ); 766 if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON) 767 || pTerm->pExpr->w.iJoin != pSrc->iCursor 768 ){ 769 return 0; /* See tag-20191211-001 */ 770 } 771 } 772 if( (pTerm->prereqRight & notReady)!=0 ) return 0; 773 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 774 if( pTerm->u.x.leftColumn<0 ) return 0; 775 aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity; 776 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; 777 testcase( pTerm->pExpr->op==TK_IS ); 778 return 1; 779 } 780 #endif 781 782 783 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 784 /* 785 ** Generate code to construct the Index object for an automatic index 786 ** and to set up the WhereLevel object pLevel so that the code generator 787 ** makes use of the automatic index. 788 */ 789 static SQLITE_NOINLINE void constructAutomaticIndex( 790 Parse *pParse, /* The parsing context */ 791 const WhereClause *pWC, /* The WHERE clause */ 792 const SrcItem *pSrc, /* The FROM clause term to get the next index */ 793 const Bitmask notReady, /* Mask of cursors that are not available */ 794 WhereLevel *pLevel /* Write new index here */ 795 ){ 796 int nKeyCol; /* Number of columns in the constructed index */ 797 WhereTerm *pTerm; /* A single term of the WHERE clause */ 798 WhereTerm *pWCEnd; /* End of pWC->a[] */ 799 Index *pIdx; /* Object describing the transient index */ 800 Vdbe *v; /* Prepared statement under construction */ 801 int addrInit; /* Address of the initialization bypass jump */ 802 Table *pTable; /* The table being indexed */ 803 int addrTop; /* Top of the index fill loop */ 804 int regRecord; /* Register holding an index record */ 805 int n; /* Column counter */ 806 int i; /* Loop counter */ 807 int mxBitCol; /* Maximum column in pSrc->colUsed */ 808 CollSeq *pColl; /* Collating sequence to on a column */ 809 WhereLoop *pLoop; /* The Loop object */ 810 char *zNotUsed; /* Extra space on the end of pIdx */ 811 Bitmask idxCols; /* Bitmap of columns used for indexing */ 812 Bitmask extraCols; /* Bitmap of additional columns */ 813 u8 sentWarning = 0; /* True if a warnning has been issued */ 814 Expr *pPartial = 0; /* Partial Index Expression */ 815 int iContinue = 0; /* Jump here to skip excluded rows */ 816 SrcItem *pTabItem; /* FROM clause term being indexed */ 817 int addrCounter = 0; /* Address where integer counter is initialized */ 818 int regBase; /* Array of registers where record is assembled */ 819 820 /* Generate code to skip over the creation and initialization of the 821 ** transient index on 2nd and subsequent iterations of the loop. */ 822 v = pParse->pVdbe; 823 assert( v!=0 ); 824 addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 825 826 /* Count the number of columns that will be added to the index 827 ** and used to match WHERE clause constraints */ 828 nKeyCol = 0; 829 pTable = pSrc->pTab; 830 pWCEnd = &pWC->a[pWC->nTerm]; 831 pLoop = pLevel->pWLoop; 832 idxCols = 0; 833 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 834 Expr *pExpr = pTerm->pExpr; 835 /* Make the automatic index a partial index if there are terms in the 836 ** WHERE clause (or the ON clause of a LEFT join) that constrain which 837 ** rows of the target table (pSrc) that can be used. */ 838 if( (pTerm->wtFlags & TERM_VIRTUAL)==0 839 && sqlite3ExprIsTableConstraint(pExpr, pSrc) 840 ){ 841 pPartial = sqlite3ExprAnd(pParse, pPartial, 842 sqlite3ExprDup(pParse->db, pExpr, 0)); 843 } 844 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 845 int iCol; 846 Bitmask cMask; 847 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 848 iCol = pTerm->u.x.leftColumn; 849 cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 850 testcase( iCol==BMS ); 851 testcase( iCol==BMS-1 ); 852 if( !sentWarning ){ 853 sqlite3_log(SQLITE_WARNING_AUTOINDEX, 854 "automatic index on %s(%s)", pTable->zName, 855 pTable->aCol[iCol].zCnName); 856 sentWarning = 1; 857 } 858 if( (idxCols & cMask)==0 ){ 859 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ 860 goto end_auto_index_create; 861 } 862 pLoop->aLTerm[nKeyCol++] = pTerm; 863 idxCols |= cMask; 864 } 865 } 866 } 867 assert( nKeyCol>0 || pParse->db->mallocFailed ); 868 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; 869 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED 870 | WHERE_AUTO_INDEX; 871 872 /* Count the number of additional columns needed to create a 873 ** covering index. A "covering index" is an index that contains all 874 ** columns that are needed by the query. With a covering index, the 875 ** original table never needs to be accessed. Automatic indices must 876 ** be a covering index because the index will not be updated if the 877 ** original table changes and the index and table cannot both be used 878 ** if they go out of sync. 879 */ 880 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); 881 mxBitCol = MIN(BMS-1,pTable->nCol); 882 testcase( pTable->nCol==BMS-1 ); 883 testcase( pTable->nCol==BMS-2 ); 884 for(i=0; i<mxBitCol; i++){ 885 if( extraCols & MASKBIT(i) ) nKeyCol++; 886 } 887 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 888 nKeyCol += pTable->nCol - BMS + 1; 889 } 890 891 /* Construct the Index object to describe this index */ 892 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); 893 if( pIdx==0 ) goto end_auto_index_create; 894 pLoop->u.btree.pIndex = pIdx; 895 pIdx->zName = "auto-index"; 896 pIdx->pTable = pTable; 897 n = 0; 898 idxCols = 0; 899 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 900 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 901 int iCol; 902 Bitmask cMask; 903 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 904 iCol = pTerm->u.x.leftColumn; 905 cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 906 testcase( iCol==BMS-1 ); 907 testcase( iCol==BMS ); 908 if( (idxCols & cMask)==0 ){ 909 Expr *pX = pTerm->pExpr; 910 idxCols |= cMask; 911 pIdx->aiColumn[n] = pTerm->u.x.leftColumn; 912 pColl = sqlite3ExprCompareCollSeq(pParse, pX); 913 assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */ 914 pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY; 915 n++; 916 } 917 } 918 } 919 assert( (u32)n==pLoop->u.btree.nEq ); 920 921 /* Add additional columns needed to make the automatic index into 922 ** a covering index */ 923 for(i=0; i<mxBitCol; i++){ 924 if( extraCols & MASKBIT(i) ){ 925 pIdx->aiColumn[n] = i; 926 pIdx->azColl[n] = sqlite3StrBINARY; 927 n++; 928 } 929 } 930 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 931 for(i=BMS-1; i<pTable->nCol; i++){ 932 pIdx->aiColumn[n] = i; 933 pIdx->azColl[n] = sqlite3StrBINARY; 934 n++; 935 } 936 } 937 assert( n==nKeyCol ); 938 pIdx->aiColumn[n] = XN_ROWID; 939 pIdx->azColl[n] = sqlite3StrBINARY; 940 941 /* Create the automatic index */ 942 assert( pLevel->iIdxCur>=0 ); 943 pLevel->iIdxCur = pParse->nTab++; 944 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); 945 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 946 VdbeComment((v, "for %s", pTable->zName)); 947 if( OptimizationEnabled(pParse->db, SQLITE_BloomFilter) ){ 948 pLevel->regFilter = ++pParse->nMem; 949 sqlite3VdbeAddOp2(v, OP_Blob, 10000, pLevel->regFilter); 950 } 951 952 /* Fill the automatic index with content */ 953 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom]; 954 if( pTabItem->fg.viaCoroutine ){ 955 int regYield = pTabItem->regReturn; 956 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0); 957 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 958 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); 959 VdbeCoverage(v); 960 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 961 }else{ 962 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); 963 } 964 if( pPartial ){ 965 iContinue = sqlite3VdbeMakeLabel(pParse); 966 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); 967 pLoop->wsFlags |= WHERE_PARTIALIDX; 968 } 969 regRecord = sqlite3GetTempReg(pParse); 970 regBase = sqlite3GenerateIndexKey( 971 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0 972 ); 973 if( pLevel->regFilter ){ 974 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, 975 regBase, pLoop->u.btree.nEq); 976 } 977 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); 978 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 979 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); 980 if( pTabItem->fg.viaCoroutine ){ 981 sqlite3VdbeChangeP2(v, addrCounter, regBase+n); 982 testcase( pParse->db->mallocFailed ); 983 assert( pLevel->iIdxCur>0 ); 984 translateColumnToCopy(pParse, addrTop, pLevel->iTabCur, 985 pTabItem->regResult, pLevel->iIdxCur); 986 sqlite3VdbeGoto(v, addrTop); 987 pTabItem->fg.viaCoroutine = 0; 988 }else{ 989 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); 990 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); 991 } 992 sqlite3VdbeJumpHere(v, addrTop); 993 sqlite3ReleaseTempReg(pParse, regRecord); 994 995 /* Jump here when skipping the initialization */ 996 sqlite3VdbeJumpHere(v, addrInit); 997 998 end_auto_index_create: 999 sqlite3ExprDelete(pParse->db, pPartial); 1000 } 1001 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 1002 1003 /* 1004 ** Generate bytecode that will initialize a Bloom filter that is appropriate 1005 ** for pLevel. 1006 ** 1007 ** If there are inner loops within pLevel that have the WHERE_BLOOMFILTER 1008 ** flag set, initialize a Bloomfilter for them as well. Except don't do 1009 ** this recursive initialization if the SQLITE_BloomPulldown optimization has 1010 ** been turned off. 1011 ** 1012 ** When the Bloom filter is initialized, the WHERE_BLOOMFILTER flag is cleared 1013 ** from the loop, but the regFilter value is set to a register that implements 1014 ** the Bloom filter. When regFilter is positive, the 1015 ** sqlite3WhereCodeOneLoopStart() will generate code to test the Bloom filter 1016 ** and skip the subsequence B-Tree seek if the Bloom filter indicates that 1017 ** no matching rows exist. 1018 ** 1019 ** This routine may only be called if it has previously been determined that 1020 ** the loop would benefit from a Bloom filter, and the WHERE_BLOOMFILTER bit 1021 ** is set. 1022 */ 1023 static SQLITE_NOINLINE void sqlite3ConstructBloomFilter( 1024 WhereInfo *pWInfo, /* The WHERE clause */ 1025 int iLevel, /* Index in pWInfo->a[] that is pLevel */ 1026 WhereLevel *pLevel, /* Make a Bloom filter for this FROM term */ 1027 Bitmask notReady /* Loops that are not ready */ 1028 ){ 1029 int addrOnce; /* Address of opening OP_Once */ 1030 int addrTop; /* Address of OP_Rewind */ 1031 int addrCont; /* Jump here to skip a row */ 1032 const WhereTerm *pTerm; /* For looping over WHERE clause terms */ 1033 const WhereTerm *pWCEnd; /* Last WHERE clause term */ 1034 Parse *pParse = pWInfo->pParse; /* Parsing context */ 1035 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 1036 WhereLoop *pLoop = pLevel->pWLoop; /* The loop being coded */ 1037 int iCur; /* Cursor for table getting the filter */ 1038 1039 assert( pLoop!=0 ); 1040 assert( v!=0 ); 1041 assert( pLoop->wsFlags & WHERE_BLOOMFILTER ); 1042 1043 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1044 do{ 1045 const SrcItem *pItem; 1046 const Table *pTab; 1047 u64 sz; 1048 sqlite3WhereExplainBloomFilter(pParse, pWInfo, pLevel); 1049 addrCont = sqlite3VdbeMakeLabel(pParse); 1050 iCur = pLevel->iTabCur; 1051 pLevel->regFilter = ++pParse->nMem; 1052 1053 /* The Bloom filter is a Blob held in a register. Initialize it 1054 ** to zero-filled blob of at least 80K bits, but maybe more if the 1055 ** estimated size of the table is larger. We could actually 1056 ** measure the size of the table at run-time using OP_Count with 1057 ** P3==1 and use that value to initialize the blob. But that makes 1058 ** testing complicated. By basing the blob size on the value in the 1059 ** sqlite_stat1 table, testing is much easier. 1060 */ 1061 pItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1062 assert( pItem!=0 ); 1063 pTab = pItem->pTab; 1064 assert( pTab!=0 ); 1065 sz = sqlite3LogEstToInt(pTab->nRowLogEst); 1066 if( sz<10000 ){ 1067 sz = 10000; 1068 }else if( sz>10000000 ){ 1069 sz = 10000000; 1070 } 1071 sqlite3VdbeAddOp2(v, OP_Blob, (int)sz, pLevel->regFilter); 1072 1073 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 1074 pWCEnd = &pWInfo->sWC.a[pWInfo->sWC.nTerm]; 1075 for(pTerm=pWInfo->sWC.a; pTerm<pWCEnd; pTerm++){ 1076 Expr *pExpr = pTerm->pExpr; 1077 if( (pTerm->wtFlags & TERM_VIRTUAL)==0 1078 && sqlite3ExprIsTableConstraint(pExpr, pItem) 1079 ){ 1080 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 1081 } 1082 } 1083 if( pLoop->wsFlags & WHERE_IPK ){ 1084 int r1 = sqlite3GetTempReg(pParse); 1085 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1); 1086 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, 1); 1087 sqlite3ReleaseTempReg(pParse, r1); 1088 }else{ 1089 Index *pIdx = pLoop->u.btree.pIndex; 1090 int n = pLoop->u.btree.nEq; 1091 int r1 = sqlite3GetTempRange(pParse, n); 1092 int jj; 1093 for(jj=0; jj<n; jj++){ 1094 int iCol = pIdx->aiColumn[jj]; 1095 assert( pIdx->pTable==pItem->pTab ); 1096 sqlite3ExprCodeGetColumnOfTable(v, pIdx->pTable, iCur, iCol,r1+jj); 1097 } 1098 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, n); 1099 sqlite3ReleaseTempRange(pParse, r1, n); 1100 } 1101 sqlite3VdbeResolveLabel(v, addrCont); 1102 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); 1103 VdbeCoverage(v); 1104 sqlite3VdbeJumpHere(v, addrTop); 1105 pLoop->wsFlags &= ~WHERE_BLOOMFILTER; 1106 if( OptimizationDisabled(pParse->db, SQLITE_BloomPulldown) ) break; 1107 while( ++iLevel < pWInfo->nLevel ){ 1108 const SrcItem *pTabItem; 1109 pLevel = &pWInfo->a[iLevel]; 1110 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1111 if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ) ) continue; 1112 pLoop = pLevel->pWLoop; 1113 if( NEVER(pLoop==0) ) continue; 1114 if( pLoop->prereq & notReady ) continue; 1115 if( (pLoop->wsFlags & (WHERE_BLOOMFILTER|WHERE_COLUMN_IN)) 1116 ==WHERE_BLOOMFILTER 1117 ){ 1118 /* This is a candidate for bloom-filter pull-down (early evaluation). 1119 ** The test that WHERE_COLUMN_IN is omitted is important, as we are 1120 ** not able to do early evaluation of bloom filters that make use of 1121 ** the IN operator */ 1122 break; 1123 } 1124 } 1125 }while( iLevel < pWInfo->nLevel ); 1126 sqlite3VdbeJumpHere(v, addrOnce); 1127 } 1128 1129 1130 #ifndef SQLITE_OMIT_VIRTUALTABLE 1131 /* 1132 ** Allocate and populate an sqlite3_index_info structure. It is the 1133 ** responsibility of the caller to eventually release the structure 1134 ** by passing the pointer returned by this function to freeIndexInfo(). 1135 */ 1136 static sqlite3_index_info *allocateIndexInfo( 1137 WhereInfo *pWInfo, /* The WHERE clause */ 1138 WhereClause *pWC, /* The WHERE clause being analyzed */ 1139 Bitmask mUnusable, /* Ignore terms with these prereqs */ 1140 SrcItem *pSrc, /* The FROM clause term that is the vtab */ 1141 u16 *pmNoOmit /* Mask of terms not to omit */ 1142 ){ 1143 int i, j; 1144 int nTerm; 1145 Parse *pParse = pWInfo->pParse; 1146 struct sqlite3_index_constraint *pIdxCons; 1147 struct sqlite3_index_orderby *pIdxOrderBy; 1148 struct sqlite3_index_constraint_usage *pUsage; 1149 struct HiddenIndexInfo *pHidden; 1150 WhereTerm *pTerm; 1151 int nOrderBy; 1152 sqlite3_index_info *pIdxInfo; 1153 u16 mNoOmit = 0; 1154 const Table *pTab; 1155 int eDistinct = 0; 1156 ExprList *pOrderBy = pWInfo->pOrderBy; 1157 1158 assert( pSrc!=0 ); 1159 pTab = pSrc->pTab; 1160 assert( pTab!=0 ); 1161 assert( IsVirtual(pTab) ); 1162 1163 /* Find all WHERE clause constraints referring to this virtual table. 1164 ** Mark each term with the TERM_OK flag. Set nTerm to the number of 1165 ** terms found. 1166 */ 1167 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1168 pTerm->wtFlags &= ~TERM_OK; 1169 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1170 if( pTerm->prereqRight & mUnusable ) continue; 1171 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 1172 testcase( pTerm->eOperator & WO_IN ); 1173 testcase( pTerm->eOperator & WO_ISNULL ); 1174 testcase( pTerm->eOperator & WO_IS ); 1175 testcase( pTerm->eOperator & WO_ALL ); 1176 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue; 1177 if( pTerm->wtFlags & TERM_VNULL ) continue; 1178 1179 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 1180 assert( pTerm->u.x.leftColumn>=XN_ROWID ); 1181 assert( pTerm->u.x.leftColumn<pTab->nCol ); 1182 1183 /* tag-20191211-002: WHERE-clause constraints are not useful to the 1184 ** right-hand table of a LEFT JOIN nor to the either table of a 1185 ** RIGHT JOIN. See tag-20191211-001 for the 1186 ** equivalent restriction for ordinary tables. */ 1187 if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ){ 1188 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT ); 1189 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_RIGHT ); 1190 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ ); 1191 testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) ); 1192 testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) ); 1193 if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON) 1194 || pTerm->pExpr->w.iJoin != pSrc->iCursor 1195 ){ 1196 continue; 1197 } 1198 } 1199 nTerm++; 1200 pTerm->wtFlags |= TERM_OK; 1201 } 1202 1203 /* If the ORDER BY clause contains only columns in the current 1204 ** virtual table then allocate space for the aOrderBy part of 1205 ** the sqlite3_index_info structure. 1206 */ 1207 nOrderBy = 0; 1208 if( pOrderBy ){ 1209 int n = pOrderBy->nExpr; 1210 for(i=0; i<n; i++){ 1211 Expr *pExpr = pOrderBy->a[i].pExpr; 1212 Expr *pE2; 1213 1214 /* Skip over constant terms in the ORDER BY clause */ 1215 if( sqlite3ExprIsConstant(pExpr) ){ 1216 continue; 1217 } 1218 1219 /* Virtual tables are unable to deal with NULLS FIRST */ 1220 if( pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL ) break; 1221 1222 /* First case - a direct column references without a COLLATE operator */ 1223 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSrc->iCursor ){ 1224 assert( pExpr->iColumn>=XN_ROWID && pExpr->iColumn<pTab->nCol ); 1225 continue; 1226 } 1227 1228 /* 2nd case - a column reference with a COLLATE operator. Only match 1229 ** of the COLLATE operator matches the collation of the column. */ 1230 if( pExpr->op==TK_COLLATE 1231 && (pE2 = pExpr->pLeft)->op==TK_COLUMN 1232 && pE2->iTable==pSrc->iCursor 1233 ){ 1234 const char *zColl; /* The collating sequence name */ 1235 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1236 assert( pExpr->u.zToken!=0 ); 1237 assert( pE2->iColumn>=XN_ROWID && pE2->iColumn<pTab->nCol ); 1238 pExpr->iColumn = pE2->iColumn; 1239 if( pE2->iColumn<0 ) continue; /* Collseq does not matter for rowid */ 1240 zColl = sqlite3ColumnColl(&pTab->aCol[pE2->iColumn]); 1241 if( zColl==0 ) zColl = sqlite3StrBINARY; 1242 if( sqlite3_stricmp(pExpr->u.zToken, zColl)==0 ) continue; 1243 } 1244 1245 /* No matches cause a break out of the loop */ 1246 break; 1247 } 1248 if( i==n ){ 1249 nOrderBy = n; 1250 if( (pWInfo->wctrlFlags & WHERE_DISTINCTBY) ){ 1251 eDistinct = 2 + ((pWInfo->wctrlFlags & WHERE_SORTBYGROUP)!=0); 1252 }else if( pWInfo->wctrlFlags & WHERE_GROUPBY ){ 1253 eDistinct = 1; 1254 } 1255 } 1256 } 1257 1258 /* Allocate the sqlite3_index_info structure 1259 */ 1260 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 1261 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 1262 + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) 1263 + sizeof(sqlite3_value*)*nTerm ); 1264 if( pIdxInfo==0 ){ 1265 sqlite3ErrorMsg(pParse, "out of memory"); 1266 return 0; 1267 } 1268 pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1]; 1269 pIdxCons = (struct sqlite3_index_constraint*)&pHidden->aRhs[nTerm]; 1270 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 1271 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 1272 pIdxInfo->aConstraint = pIdxCons; 1273 pIdxInfo->aOrderBy = pIdxOrderBy; 1274 pIdxInfo->aConstraintUsage = pUsage; 1275 pHidden->pWC = pWC; 1276 pHidden->pParse = pParse; 1277 pHidden->eDistinct = eDistinct; 1278 pHidden->mIn = 0; 1279 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1280 u16 op; 1281 if( (pTerm->wtFlags & TERM_OK)==0 ) continue; 1282 pIdxCons[j].iColumn = pTerm->u.x.leftColumn; 1283 pIdxCons[j].iTermOffset = i; 1284 op = pTerm->eOperator & WO_ALL; 1285 if( op==WO_IN ){ 1286 if( (pTerm->wtFlags & TERM_SLICE)==0 ){ 1287 pHidden->mIn |= SMASKBIT32(j); 1288 } 1289 op = WO_EQ; 1290 } 1291 if( op==WO_AUX ){ 1292 pIdxCons[j].op = pTerm->eMatchOp; 1293 }else if( op & (WO_ISNULL|WO_IS) ){ 1294 if( op==WO_ISNULL ){ 1295 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL; 1296 }else{ 1297 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS; 1298 } 1299 }else{ 1300 pIdxCons[j].op = (u8)op; 1301 /* The direct assignment in the previous line is possible only because 1302 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 1303 ** following asserts verify this fact. */ 1304 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 1305 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 1306 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 1307 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 1308 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 1309 assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) ); 1310 1311 if( op & (WO_LT|WO_LE|WO_GT|WO_GE) 1312 && sqlite3ExprIsVector(pTerm->pExpr->pRight) 1313 ){ 1314 testcase( j!=i ); 1315 if( j<16 ) mNoOmit |= (1 << j); 1316 if( op==WO_LT ) pIdxCons[j].op = WO_LE; 1317 if( op==WO_GT ) pIdxCons[j].op = WO_GE; 1318 } 1319 } 1320 1321 j++; 1322 } 1323 assert( j==nTerm ); 1324 pIdxInfo->nConstraint = j; 1325 for(i=j=0; i<nOrderBy; i++){ 1326 Expr *pExpr = pOrderBy->a[i].pExpr; 1327 if( sqlite3ExprIsConstant(pExpr) ) continue; 1328 assert( pExpr->op==TK_COLUMN 1329 || (pExpr->op==TK_COLLATE && pExpr->pLeft->op==TK_COLUMN 1330 && pExpr->iColumn==pExpr->pLeft->iColumn) ); 1331 pIdxOrderBy[j].iColumn = pExpr->iColumn; 1332 pIdxOrderBy[j].desc = pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC; 1333 j++; 1334 } 1335 pIdxInfo->nOrderBy = j; 1336 1337 *pmNoOmit = mNoOmit; 1338 return pIdxInfo; 1339 } 1340 1341 /* 1342 ** Free an sqlite3_index_info structure allocated by allocateIndexInfo() 1343 ** and possibly modified by xBestIndex methods. 1344 */ 1345 static void freeIndexInfo(sqlite3 *db, sqlite3_index_info *pIdxInfo){ 1346 HiddenIndexInfo *pHidden; 1347 int i; 1348 assert( pIdxInfo!=0 ); 1349 pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 1350 assert( pHidden->pParse!=0 ); 1351 assert( pHidden->pParse->db==db ); 1352 for(i=0; i<pIdxInfo->nConstraint; i++){ 1353 sqlite3ValueFree(pHidden->aRhs[i]); /* IMP: R-14553-25174 */ 1354 pHidden->aRhs[i] = 0; 1355 } 1356 sqlite3DbFree(db, pIdxInfo); 1357 } 1358 1359 /* 1360 ** The table object reference passed as the second argument to this function 1361 ** must represent a virtual table. This function invokes the xBestIndex() 1362 ** method of the virtual table with the sqlite3_index_info object that 1363 ** comes in as the 3rd argument to this function. 1364 ** 1365 ** If an error occurs, pParse is populated with an error message and an 1366 ** appropriate error code is returned. A return of SQLITE_CONSTRAINT from 1367 ** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that 1368 ** the current configuration of "unusable" flags in sqlite3_index_info can 1369 ** not result in a valid plan. 1370 ** 1371 ** Whether or not an error is returned, it is the responsibility of the 1372 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates 1373 ** that this is required. 1374 */ 1375 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ 1376 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; 1377 int rc; 1378 1379 whereTraceIndexInfoInputs(p); 1380 pParse->db->nSchemaLock++; 1381 rc = pVtab->pModule->xBestIndex(pVtab, p); 1382 pParse->db->nSchemaLock--; 1383 whereTraceIndexInfoOutputs(p); 1384 1385 if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){ 1386 if( rc==SQLITE_NOMEM ){ 1387 sqlite3OomFault(pParse->db); 1388 }else if( !pVtab->zErrMsg ){ 1389 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 1390 }else{ 1391 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 1392 } 1393 } 1394 sqlite3_free(pVtab->zErrMsg); 1395 pVtab->zErrMsg = 0; 1396 return rc; 1397 } 1398 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1399 1400 #ifdef SQLITE_ENABLE_STAT4 1401 /* 1402 ** Estimate the location of a particular key among all keys in an 1403 ** index. Store the results in aStat as follows: 1404 ** 1405 ** aStat[0] Est. number of rows less than pRec 1406 ** aStat[1] Est. number of rows equal to pRec 1407 ** 1408 ** Return the index of the sample that is the smallest sample that 1409 ** is greater than or equal to pRec. Note that this index is not an index 1410 ** into the aSample[] array - it is an index into a virtual set of samples 1411 ** based on the contents of aSample[] and the number of fields in record 1412 ** pRec. 1413 */ 1414 static int whereKeyStats( 1415 Parse *pParse, /* Database connection */ 1416 Index *pIdx, /* Index to consider domain of */ 1417 UnpackedRecord *pRec, /* Vector of values to consider */ 1418 int roundUp, /* Round up if true. Round down if false */ 1419 tRowcnt *aStat /* OUT: stats written here */ 1420 ){ 1421 IndexSample *aSample = pIdx->aSample; 1422 int iCol; /* Index of required stats in anEq[] etc. */ 1423 int i; /* Index of first sample >= pRec */ 1424 int iSample; /* Smallest sample larger than or equal to pRec */ 1425 int iMin = 0; /* Smallest sample not yet tested */ 1426 int iTest; /* Next sample to test */ 1427 int res; /* Result of comparison operation */ 1428 int nField; /* Number of fields in pRec */ 1429 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ 1430 1431 #ifndef SQLITE_DEBUG 1432 UNUSED_PARAMETER( pParse ); 1433 #endif 1434 assert( pRec!=0 ); 1435 assert( pIdx->nSample>0 ); 1436 assert( pRec->nField>0 ); 1437 1438 /* Do a binary search to find the first sample greater than or equal 1439 ** to pRec. If pRec contains a single field, the set of samples to search 1440 ** is simply the aSample[] array. If the samples in aSample[] contain more 1441 ** than one fields, all fields following the first are ignored. 1442 ** 1443 ** If pRec contains N fields, where N is more than one, then as well as the 1444 ** samples in aSample[] (truncated to N fields), the search also has to 1445 ** consider prefixes of those samples. For example, if the set of samples 1446 ** in aSample is: 1447 ** 1448 ** aSample[0] = (a, 5) 1449 ** aSample[1] = (a, 10) 1450 ** aSample[2] = (b, 5) 1451 ** aSample[3] = (c, 100) 1452 ** aSample[4] = (c, 105) 1453 ** 1454 ** Then the search space should ideally be the samples above and the 1455 ** unique prefixes [a], [b] and [c]. But since that is hard to organize, 1456 ** the code actually searches this set: 1457 ** 1458 ** 0: (a) 1459 ** 1: (a, 5) 1460 ** 2: (a, 10) 1461 ** 3: (a, 10) 1462 ** 4: (b) 1463 ** 5: (b, 5) 1464 ** 6: (c) 1465 ** 7: (c, 100) 1466 ** 8: (c, 105) 1467 ** 9: (c, 105) 1468 ** 1469 ** For each sample in the aSample[] array, N samples are present in the 1470 ** effective sample array. In the above, samples 0 and 1 are based on 1471 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. 1472 ** 1473 ** Often, sample i of each block of N effective samples has (i+1) fields. 1474 ** Except, each sample may be extended to ensure that it is greater than or 1475 ** equal to the previous sample in the array. For example, in the above, 1476 ** sample 2 is the first sample of a block of N samples, so at first it 1477 ** appears that it should be 1 field in size. However, that would make it 1478 ** smaller than sample 1, so the binary search would not work. As a result, 1479 ** it is extended to two fields. The duplicates that this creates do not 1480 ** cause any problems. 1481 */ 1482 nField = MIN(pRec->nField, pIdx->nSample); 1483 iCol = 0; 1484 iSample = pIdx->nSample * nField; 1485 do{ 1486 int iSamp; /* Index in aSample[] of test sample */ 1487 int n; /* Number of fields in test sample */ 1488 1489 iTest = (iMin+iSample)/2; 1490 iSamp = iTest / nField; 1491 if( iSamp>0 ){ 1492 /* The proposed effective sample is a prefix of sample aSample[iSamp]. 1493 ** Specifically, the shortest prefix of at least (1 + iTest%nField) 1494 ** fields that is greater than the previous effective sample. */ 1495 for(n=(iTest % nField) + 1; n<nField; n++){ 1496 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break; 1497 } 1498 }else{ 1499 n = iTest + 1; 1500 } 1501 1502 pRec->nField = n; 1503 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); 1504 if( res<0 ){ 1505 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; 1506 iMin = iTest+1; 1507 }else if( res==0 && n<nField ){ 1508 iLower = aSample[iSamp].anLt[n-1]; 1509 iMin = iTest+1; 1510 res = -1; 1511 }else{ 1512 iSample = iTest; 1513 iCol = n-1; 1514 } 1515 }while( res && iMin<iSample ); 1516 i = iSample / nField; 1517 1518 #ifdef SQLITE_DEBUG 1519 /* The following assert statements check that the binary search code 1520 ** above found the right answer. This block serves no purpose other 1521 ** than to invoke the asserts. */ 1522 if( pParse->db->mallocFailed==0 ){ 1523 if( res==0 ){ 1524 /* If (res==0) is true, then pRec must be equal to sample i. */ 1525 assert( i<pIdx->nSample ); 1526 assert( iCol==nField-1 ); 1527 pRec->nField = nField; 1528 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) 1529 || pParse->db->mallocFailed 1530 ); 1531 }else{ 1532 /* Unless i==pIdx->nSample, indicating that pRec is larger than 1533 ** all samples in the aSample[] array, pRec must be smaller than the 1534 ** (iCol+1) field prefix of sample i. */ 1535 assert( i<=pIdx->nSample && i>=0 ); 1536 pRec->nField = iCol+1; 1537 assert( i==pIdx->nSample 1538 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 1539 || pParse->db->mallocFailed ); 1540 1541 /* if i==0 and iCol==0, then record pRec is smaller than all samples 1542 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must 1543 ** be greater than or equal to the (iCol) field prefix of sample i. 1544 ** If (i>0), then pRec must also be greater than sample (i-1). */ 1545 if( iCol>0 ){ 1546 pRec->nField = iCol; 1547 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 1548 || pParse->db->mallocFailed ); 1549 } 1550 if( i>0 ){ 1551 pRec->nField = nField; 1552 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 1553 || pParse->db->mallocFailed ); 1554 } 1555 } 1556 } 1557 #endif /* ifdef SQLITE_DEBUG */ 1558 1559 if( res==0 ){ 1560 /* Record pRec is equal to sample i */ 1561 assert( iCol==nField-1 ); 1562 aStat[0] = aSample[i].anLt[iCol]; 1563 aStat[1] = aSample[i].anEq[iCol]; 1564 }else{ 1565 /* At this point, the (iCol+1) field prefix of aSample[i] is the first 1566 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec 1567 ** is larger than all samples in the array. */ 1568 tRowcnt iUpper, iGap; 1569 if( i>=pIdx->nSample ){ 1570 iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); 1571 }else{ 1572 iUpper = aSample[i].anLt[iCol]; 1573 } 1574 1575 if( iLower>=iUpper ){ 1576 iGap = 0; 1577 }else{ 1578 iGap = iUpper - iLower; 1579 } 1580 if( roundUp ){ 1581 iGap = (iGap*2)/3; 1582 }else{ 1583 iGap = iGap/3; 1584 } 1585 aStat[0] = iLower + iGap; 1586 aStat[1] = pIdx->aAvgEq[nField-1]; 1587 } 1588 1589 /* Restore the pRec->nField value before returning. */ 1590 pRec->nField = nField; 1591 return i; 1592 } 1593 #endif /* SQLITE_ENABLE_STAT4 */ 1594 1595 /* 1596 ** If it is not NULL, pTerm is a term that provides an upper or lower 1597 ** bound on a range scan. Without considering pTerm, it is estimated 1598 ** that the scan will visit nNew rows. This function returns the number 1599 ** estimated to be visited after taking pTerm into account. 1600 ** 1601 ** If the user explicitly specified a likelihood() value for this term, 1602 ** then the return value is the likelihood multiplied by the number of 1603 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term 1604 ** has a likelihood of 0.50, and any other term a likelihood of 0.25. 1605 */ 1606 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ 1607 LogEst nRet = nNew; 1608 if( pTerm ){ 1609 if( pTerm->truthProb<=0 ){ 1610 nRet += pTerm->truthProb; 1611 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ 1612 nRet -= 20; assert( 20==sqlite3LogEst(4) ); 1613 } 1614 } 1615 return nRet; 1616 } 1617 1618 1619 #ifdef SQLITE_ENABLE_STAT4 1620 /* 1621 ** Return the affinity for a single column of an index. 1622 */ 1623 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){ 1624 assert( iCol>=0 && iCol<pIdx->nColumn ); 1625 if( !pIdx->zColAff ){ 1626 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB; 1627 } 1628 assert( pIdx->zColAff[iCol]!=0 ); 1629 return pIdx->zColAff[iCol]; 1630 } 1631 #endif 1632 1633 1634 #ifdef SQLITE_ENABLE_STAT4 1635 /* 1636 ** This function is called to estimate the number of rows visited by a 1637 ** range-scan on a skip-scan index. For example: 1638 ** 1639 ** CREATE INDEX i1 ON t1(a, b, c); 1640 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; 1641 ** 1642 ** Value pLoop->nOut is currently set to the estimated number of rows 1643 ** visited for scanning (a=? AND b=?). This function reduces that estimate 1644 ** by some factor to account for the (c BETWEEN ? AND ?) expression based 1645 ** on the stat4 data for the index. this scan will be peformed multiple 1646 ** times (once for each (a,b) combination that matches a=?) is dealt with 1647 ** by the caller. 1648 ** 1649 ** It does this by scanning through all stat4 samples, comparing values 1650 ** extracted from pLower and pUpper with the corresponding column in each 1651 ** sample. If L and U are the number of samples found to be less than or 1652 ** equal to the values extracted from pLower and pUpper respectively, and 1653 ** N is the total number of samples, the pLoop->nOut value is adjusted 1654 ** as follows: 1655 ** 1656 ** nOut = nOut * ( min(U - L, 1) / N ) 1657 ** 1658 ** If pLower is NULL, or a value cannot be extracted from the term, L is 1659 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, 1660 ** U is set to N. 1661 ** 1662 ** Normally, this function sets *pbDone to 1 before returning. However, 1663 ** if no value can be extracted from either pLower or pUpper (and so the 1664 ** estimate of the number of rows delivered remains unchanged), *pbDone 1665 ** is left as is. 1666 ** 1667 ** If an error occurs, an SQLite error code is returned. Otherwise, 1668 ** SQLITE_OK. 1669 */ 1670 static int whereRangeSkipScanEst( 1671 Parse *pParse, /* Parsing & code generating context */ 1672 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1673 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1674 WhereLoop *pLoop, /* Update the .nOut value of this loop */ 1675 int *pbDone /* Set to true if at least one expr. value extracted */ 1676 ){ 1677 Index *p = pLoop->u.btree.pIndex; 1678 int nEq = pLoop->u.btree.nEq; 1679 sqlite3 *db = pParse->db; 1680 int nLower = -1; 1681 int nUpper = p->nSample+1; 1682 int rc = SQLITE_OK; 1683 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq); 1684 CollSeq *pColl; 1685 1686 sqlite3_value *p1 = 0; /* Value extracted from pLower */ 1687 sqlite3_value *p2 = 0; /* Value extracted from pUpper */ 1688 sqlite3_value *pVal = 0; /* Value extracted from record */ 1689 1690 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); 1691 if( pLower ){ 1692 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); 1693 nLower = 0; 1694 } 1695 if( pUpper && rc==SQLITE_OK ){ 1696 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); 1697 nUpper = p2 ? 0 : p->nSample; 1698 } 1699 1700 if( p1 || p2 ){ 1701 int i; 1702 int nDiff; 1703 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ 1704 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); 1705 if( rc==SQLITE_OK && p1 ){ 1706 int res = sqlite3MemCompare(p1, pVal, pColl); 1707 if( res>=0 ) nLower++; 1708 } 1709 if( rc==SQLITE_OK && p2 ){ 1710 int res = sqlite3MemCompare(p2, pVal, pColl); 1711 if( res>=0 ) nUpper++; 1712 } 1713 } 1714 nDiff = (nUpper - nLower); 1715 if( nDiff<=0 ) nDiff = 1; 1716 1717 /* If there is both an upper and lower bound specified, and the 1718 ** comparisons indicate that they are close together, use the fallback 1719 ** method (assume that the scan visits 1/64 of the rows) for estimating 1720 ** the number of rows visited. Otherwise, estimate the number of rows 1721 ** using the method described in the header comment for this function. */ 1722 if( nDiff!=1 || pUpper==0 || pLower==0 ){ 1723 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); 1724 pLoop->nOut -= nAdjust; 1725 *pbDone = 1; 1726 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", 1727 nLower, nUpper, nAdjust*-1, pLoop->nOut)); 1728 } 1729 1730 }else{ 1731 assert( *pbDone==0 ); 1732 } 1733 1734 sqlite3ValueFree(p1); 1735 sqlite3ValueFree(p2); 1736 sqlite3ValueFree(pVal); 1737 1738 return rc; 1739 } 1740 #endif /* SQLITE_ENABLE_STAT4 */ 1741 1742 /* 1743 ** This function is used to estimate the number of rows that will be visited 1744 ** by scanning an index for a range of values. The range may have an upper 1745 ** bound, a lower bound, or both. The WHERE clause terms that set the upper 1746 ** and lower bounds are represented by pLower and pUpper respectively. For 1747 ** example, assuming that index p is on t1(a): 1748 ** 1749 ** ... FROM t1 WHERE a > ? AND a < ? ... 1750 ** |_____| |_____| 1751 ** | | 1752 ** pLower pUpper 1753 ** 1754 ** If either of the upper or lower bound is not present, then NULL is passed in 1755 ** place of the corresponding WhereTerm. 1756 ** 1757 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index 1758 ** column subject to the range constraint. Or, equivalently, the number of 1759 ** equality constraints optimized by the proposed index scan. For example, 1760 ** assuming index p is on t1(a, b), and the SQL query is: 1761 ** 1762 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... 1763 ** 1764 ** then nEq is set to 1 (as the range restricted column, b, is the second 1765 ** left-most column of the index). Or, if the query is: 1766 ** 1767 ** ... FROM t1 WHERE a > ? AND a < ? ... 1768 ** 1769 ** then nEq is set to 0. 1770 ** 1771 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the 1772 ** number of rows that the index scan is expected to visit without 1773 ** considering the range constraints. If nEq is 0, then *pnOut is the number of 1774 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) 1775 ** to account for the range constraints pLower and pUpper. 1776 ** 1777 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be 1778 ** used, a single range inequality reduces the search space by a factor of 4. 1779 ** and a pair of constraints (x>? AND x<?) reduces the expected number of 1780 ** rows visited by a factor of 64. 1781 */ 1782 static int whereRangeScanEst( 1783 Parse *pParse, /* Parsing & code generating context */ 1784 WhereLoopBuilder *pBuilder, 1785 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1786 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1787 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ 1788 ){ 1789 int rc = SQLITE_OK; 1790 int nOut = pLoop->nOut; 1791 LogEst nNew; 1792 1793 #ifdef SQLITE_ENABLE_STAT4 1794 Index *p = pLoop->u.btree.pIndex; 1795 int nEq = pLoop->u.btree.nEq; 1796 1797 if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol) 1798 && OptimizationEnabled(pParse->db, SQLITE_Stat4) 1799 ){ 1800 if( nEq==pBuilder->nRecValid ){ 1801 UnpackedRecord *pRec = pBuilder->pRec; 1802 tRowcnt a[2]; 1803 int nBtm = pLoop->u.btree.nBtm; 1804 int nTop = pLoop->u.btree.nTop; 1805 1806 /* Variable iLower will be set to the estimate of the number of rows in 1807 ** the index that are less than the lower bound of the range query. The 1808 ** lower bound being the concatenation of $P and $L, where $P is the 1809 ** key-prefix formed by the nEq values matched against the nEq left-most 1810 ** columns of the index, and $L is the value in pLower. 1811 ** 1812 ** Or, if pLower is NULL or $L cannot be extracted from it (because it 1813 ** is not a simple variable or literal value), the lower bound of the 1814 ** range is $P. Due to a quirk in the way whereKeyStats() works, even 1815 ** if $L is available, whereKeyStats() is called for both ($P) and 1816 ** ($P:$L) and the larger of the two returned values is used. 1817 ** 1818 ** Similarly, iUpper is to be set to the estimate of the number of rows 1819 ** less than the upper bound of the range query. Where the upper bound 1820 ** is either ($P) or ($P:$U). Again, even if $U is available, both values 1821 ** of iUpper are requested of whereKeyStats() and the smaller used. 1822 ** 1823 ** The number of rows between the two bounds is then just iUpper-iLower. 1824 */ 1825 tRowcnt iLower; /* Rows less than the lower bound */ 1826 tRowcnt iUpper; /* Rows less than the upper bound */ 1827 int iLwrIdx = -2; /* aSample[] for the lower bound */ 1828 int iUprIdx = -1; /* aSample[] for the upper bound */ 1829 1830 if( pRec ){ 1831 testcase( pRec->nField!=pBuilder->nRecValid ); 1832 pRec->nField = pBuilder->nRecValid; 1833 } 1834 /* Determine iLower and iUpper using ($P) only. */ 1835 if( nEq==0 ){ 1836 iLower = 0; 1837 iUpper = p->nRowEst0; 1838 }else{ 1839 /* Note: this call could be optimized away - since the same values must 1840 ** have been requested when testing key $P in whereEqualScanEst(). */ 1841 whereKeyStats(pParse, p, pRec, 0, a); 1842 iLower = a[0]; 1843 iUpper = a[0] + a[1]; 1844 } 1845 1846 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); 1847 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); 1848 assert( p->aSortOrder!=0 ); 1849 if( p->aSortOrder[nEq] ){ 1850 /* The roles of pLower and pUpper are swapped for a DESC index */ 1851 SWAP(WhereTerm*, pLower, pUpper); 1852 SWAP(int, nBtm, nTop); 1853 } 1854 1855 /* If possible, improve on the iLower estimate using ($P:$L). */ 1856 if( pLower ){ 1857 int n; /* Values extracted from pExpr */ 1858 Expr *pExpr = pLower->pExpr->pRight; 1859 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n); 1860 if( rc==SQLITE_OK && n ){ 1861 tRowcnt iNew; 1862 u16 mask = WO_GT|WO_LE; 1863 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1864 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); 1865 iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0); 1866 if( iNew>iLower ) iLower = iNew; 1867 nOut--; 1868 pLower = 0; 1869 } 1870 } 1871 1872 /* If possible, improve on the iUpper estimate using ($P:$U). */ 1873 if( pUpper ){ 1874 int n; /* Values extracted from pExpr */ 1875 Expr *pExpr = pUpper->pExpr->pRight; 1876 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n); 1877 if( rc==SQLITE_OK && n ){ 1878 tRowcnt iNew; 1879 u16 mask = WO_GT|WO_LE; 1880 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1881 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); 1882 iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0); 1883 if( iNew<iUpper ) iUpper = iNew; 1884 nOut--; 1885 pUpper = 0; 1886 } 1887 } 1888 1889 pBuilder->pRec = pRec; 1890 if( rc==SQLITE_OK ){ 1891 if( iUpper>iLower ){ 1892 nNew = sqlite3LogEst(iUpper - iLower); 1893 /* TUNING: If both iUpper and iLower are derived from the same 1894 ** sample, then assume they are 4x more selective. This brings 1895 ** the estimated selectivity more in line with what it would be 1896 ** if estimated without the use of STAT4 tables. */ 1897 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) ); 1898 }else{ 1899 nNew = 10; assert( 10==sqlite3LogEst(2) ); 1900 } 1901 if( nNew<nOut ){ 1902 nOut = nNew; 1903 } 1904 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", 1905 (u32)iLower, (u32)iUpper, nOut)); 1906 } 1907 }else{ 1908 int bDone = 0; 1909 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); 1910 if( bDone ) return rc; 1911 } 1912 } 1913 #else 1914 UNUSED_PARAMETER(pParse); 1915 UNUSED_PARAMETER(pBuilder); 1916 assert( pLower || pUpper ); 1917 #endif 1918 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); 1919 nNew = whereRangeAdjust(pLower, nOut); 1920 nNew = whereRangeAdjust(pUpper, nNew); 1921 1922 /* TUNING: If there is both an upper and lower limit and neither limit 1923 ** has an application-defined likelihood(), assume the range is 1924 ** reduced by an additional 75%. This means that, by default, an open-ended 1925 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the 1926 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to 1927 ** match 1/64 of the index. */ 1928 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ 1929 nNew -= 20; 1930 } 1931 1932 nOut -= (pLower!=0) + (pUpper!=0); 1933 if( nNew<10 ) nNew = 10; 1934 if( nNew<nOut ) nOut = nNew; 1935 #if defined(WHERETRACE_ENABLED) 1936 if( pLoop->nOut>nOut ){ 1937 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", 1938 pLoop->nOut, nOut)); 1939 } 1940 #endif 1941 pLoop->nOut = (LogEst)nOut; 1942 return rc; 1943 } 1944 1945 #ifdef SQLITE_ENABLE_STAT4 1946 /* 1947 ** Estimate the number of rows that will be returned based on 1948 ** an equality constraint x=VALUE and where that VALUE occurs in 1949 ** the histogram data. This only works when x is the left-most 1950 ** column of an index and sqlite_stat4 histogram data is available 1951 ** for that index. When pExpr==NULL that means the constraint is 1952 ** "x IS NULL" instead of "x=VALUE". 1953 ** 1954 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1955 ** If unable to make an estimate, leave *pnRow unchanged and return 1956 ** non-zero. 1957 ** 1958 ** This routine can fail if it is unable to load a collating sequence 1959 ** required for string comparison, or if unable to allocate memory 1960 ** for a UTF conversion required for comparison. The error is stored 1961 ** in the pParse structure. 1962 */ 1963 static int whereEqualScanEst( 1964 Parse *pParse, /* Parsing & code generating context */ 1965 WhereLoopBuilder *pBuilder, 1966 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ 1967 tRowcnt *pnRow /* Write the revised row estimate here */ 1968 ){ 1969 Index *p = pBuilder->pNew->u.btree.pIndex; 1970 int nEq = pBuilder->pNew->u.btree.nEq; 1971 UnpackedRecord *pRec = pBuilder->pRec; 1972 int rc; /* Subfunction return code */ 1973 tRowcnt a[2]; /* Statistics */ 1974 int bOk; 1975 1976 assert( nEq>=1 ); 1977 assert( nEq<=p->nColumn ); 1978 assert( p->aSample!=0 ); 1979 assert( p->nSample>0 ); 1980 assert( pBuilder->nRecValid<nEq ); 1981 1982 /* If values are not available for all fields of the index to the left 1983 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ 1984 if( pBuilder->nRecValid<(nEq-1) ){ 1985 return SQLITE_NOTFOUND; 1986 } 1987 1988 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() 1989 ** below would return the same value. */ 1990 if( nEq>=p->nColumn ){ 1991 *pnRow = 1; 1992 return SQLITE_OK; 1993 } 1994 1995 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk); 1996 pBuilder->pRec = pRec; 1997 if( rc!=SQLITE_OK ) return rc; 1998 if( bOk==0 ) return SQLITE_NOTFOUND; 1999 pBuilder->nRecValid = nEq; 2000 2001 whereKeyStats(pParse, p, pRec, 0, a); 2002 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n", 2003 p->zName, nEq-1, (int)a[1])); 2004 *pnRow = a[1]; 2005 2006 return rc; 2007 } 2008 #endif /* SQLITE_ENABLE_STAT4 */ 2009 2010 #ifdef SQLITE_ENABLE_STAT4 2011 /* 2012 ** Estimate the number of rows that will be returned based on 2013 ** an IN constraint where the right-hand side of the IN operator 2014 ** is a list of values. Example: 2015 ** 2016 ** WHERE x IN (1,2,3,4) 2017 ** 2018 ** Write the estimated row count into *pnRow and return SQLITE_OK. 2019 ** If unable to make an estimate, leave *pnRow unchanged and return 2020 ** non-zero. 2021 ** 2022 ** This routine can fail if it is unable to load a collating sequence 2023 ** required for string comparison, or if unable to allocate memory 2024 ** for a UTF conversion required for comparison. The error is stored 2025 ** in the pParse structure. 2026 */ 2027 static int whereInScanEst( 2028 Parse *pParse, /* Parsing & code generating context */ 2029 WhereLoopBuilder *pBuilder, 2030 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ 2031 tRowcnt *pnRow /* Write the revised row estimate here */ 2032 ){ 2033 Index *p = pBuilder->pNew->u.btree.pIndex; 2034 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); 2035 int nRecValid = pBuilder->nRecValid; 2036 int rc = SQLITE_OK; /* Subfunction return code */ 2037 tRowcnt nEst; /* Number of rows for a single term */ 2038 tRowcnt nRowEst = 0; /* New estimate of the number of rows */ 2039 int i; /* Loop counter */ 2040 2041 assert( p->aSample!=0 ); 2042 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ 2043 nEst = nRow0; 2044 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); 2045 nRowEst += nEst; 2046 pBuilder->nRecValid = nRecValid; 2047 } 2048 2049 if( rc==SQLITE_OK ){ 2050 if( nRowEst > nRow0 ) nRowEst = nRow0; 2051 *pnRow = nRowEst; 2052 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); 2053 } 2054 assert( pBuilder->nRecValid==nRecValid ); 2055 return rc; 2056 } 2057 #endif /* SQLITE_ENABLE_STAT4 */ 2058 2059 2060 #ifdef WHERETRACE_ENABLED 2061 /* 2062 ** Print the content of a WhereTerm object 2063 */ 2064 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){ 2065 if( pTerm==0 ){ 2066 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); 2067 }else{ 2068 char zType[8]; 2069 char zLeft[50]; 2070 memcpy(zType, "....", 5); 2071 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; 2072 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; 2073 if( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) zType[2] = 'L'; 2074 if( pTerm->wtFlags & TERM_CODED ) zType[3] = 'C'; 2075 if( pTerm->eOperator & WO_SINGLE ){ 2076 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 2077 sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}", 2078 pTerm->leftCursor, pTerm->u.x.leftColumn); 2079 }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){ 2080 sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx", 2081 pTerm->u.pOrInfo->indexable); 2082 }else{ 2083 sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor); 2084 } 2085 sqlite3DebugPrintf( 2086 "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x", 2087 iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags); 2088 /* The 0x10000 .wheretrace flag causes extra information to be 2089 ** shown about each Term */ 2090 if( sqlite3WhereTrace & 0x10000 ){ 2091 sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx", 2092 pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight); 2093 } 2094 if( (pTerm->eOperator & (WO_OR|WO_AND))==0 && pTerm->u.x.iField ){ 2095 sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField); 2096 } 2097 if( pTerm->iParent>=0 ){ 2098 sqlite3DebugPrintf(" iParent=%d", pTerm->iParent); 2099 } 2100 sqlite3DebugPrintf("\n"); 2101 sqlite3TreeViewExpr(0, pTerm->pExpr, 0); 2102 } 2103 } 2104 #endif 2105 2106 #ifdef WHERETRACE_ENABLED 2107 /* 2108 ** Show the complete content of a WhereClause 2109 */ 2110 void sqlite3WhereClausePrint(WhereClause *pWC){ 2111 int i; 2112 for(i=0; i<pWC->nTerm; i++){ 2113 sqlite3WhereTermPrint(&pWC->a[i], i); 2114 } 2115 } 2116 #endif 2117 2118 #ifdef WHERETRACE_ENABLED 2119 /* 2120 ** Print a WhereLoop object for debugging purposes 2121 */ 2122 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){ 2123 WhereInfo *pWInfo = pWC->pWInfo; 2124 int nb = 1+(pWInfo->pTabList->nSrc+3)/4; 2125 SrcItem *pItem = pWInfo->pTabList->a + p->iTab; 2126 Table *pTab = pItem->pTab; 2127 Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1; 2128 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, 2129 p->iTab, nb, p->maskSelf, nb, p->prereq & mAll); 2130 sqlite3DebugPrintf(" %12s", 2131 pItem->zAlias ? pItem->zAlias : pTab->zName); 2132 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 2133 const char *zName; 2134 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ 2135 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ 2136 int i = sqlite3Strlen30(zName) - 1; 2137 while( zName[i]!='_' ) i--; 2138 zName += i; 2139 } 2140 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); 2141 }else{ 2142 sqlite3DebugPrintf("%20s",""); 2143 } 2144 }else{ 2145 char *z; 2146 if( p->u.vtab.idxStr ){ 2147 z = sqlite3_mprintf("(%d,\"%s\",%#x)", 2148 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); 2149 }else{ 2150 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); 2151 } 2152 sqlite3DebugPrintf(" %-19s", z); 2153 sqlite3_free(z); 2154 } 2155 if( p->wsFlags & WHERE_SKIPSCAN ){ 2156 sqlite3DebugPrintf(" f %06x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); 2157 }else{ 2158 sqlite3DebugPrintf(" f %06x N %d", p->wsFlags, p->nLTerm); 2159 } 2160 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); 2161 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ 2162 int i; 2163 for(i=0; i<p->nLTerm; i++){ 2164 sqlite3WhereTermPrint(p->aLTerm[i], i); 2165 } 2166 } 2167 } 2168 #endif 2169 2170 /* 2171 ** Convert bulk memory into a valid WhereLoop that can be passed 2172 ** to whereLoopClear harmlessly. 2173 */ 2174 static void whereLoopInit(WhereLoop *p){ 2175 p->aLTerm = p->aLTermSpace; 2176 p->nLTerm = 0; 2177 p->nLSlot = ArraySize(p->aLTermSpace); 2178 p->wsFlags = 0; 2179 } 2180 2181 /* 2182 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. 2183 */ 2184 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ 2185 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ 2186 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ 2187 sqlite3_free(p->u.vtab.idxStr); 2188 p->u.vtab.needFree = 0; 2189 p->u.vtab.idxStr = 0; 2190 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ 2191 sqlite3DbFree(db, p->u.btree.pIndex->zColAff); 2192 sqlite3DbFreeNN(db, p->u.btree.pIndex); 2193 p->u.btree.pIndex = 0; 2194 } 2195 } 2196 } 2197 2198 /* 2199 ** Deallocate internal memory used by a WhereLoop object. Leave the 2200 ** object in an initialized state, as if it had been newly allocated. 2201 */ 2202 static void whereLoopClear(sqlite3 *db, WhereLoop *p){ 2203 if( p->aLTerm!=p->aLTermSpace ){ 2204 sqlite3DbFreeNN(db, p->aLTerm); 2205 p->aLTerm = p->aLTermSpace; 2206 p->nLSlot = ArraySize(p->aLTermSpace); 2207 } 2208 whereLoopClearUnion(db, p); 2209 p->nLTerm = 0; 2210 p->wsFlags = 0; 2211 } 2212 2213 /* 2214 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. 2215 */ 2216 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ 2217 WhereTerm **paNew; 2218 if( p->nLSlot>=n ) return SQLITE_OK; 2219 n = (n+7)&~7; 2220 paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n); 2221 if( paNew==0 ) return SQLITE_NOMEM_BKPT; 2222 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); 2223 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm); 2224 p->aLTerm = paNew; 2225 p->nLSlot = n; 2226 return SQLITE_OK; 2227 } 2228 2229 /* 2230 ** Transfer content from the second pLoop into the first. 2231 */ 2232 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ 2233 whereLoopClearUnion(db, pTo); 2234 if( pFrom->nLTerm > pTo->nLSlot 2235 && whereLoopResize(db, pTo, pFrom->nLTerm) 2236 ){ 2237 memset(pTo, 0, WHERE_LOOP_XFER_SZ); 2238 return SQLITE_NOMEM_BKPT; 2239 } 2240 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); 2241 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); 2242 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ 2243 pFrom->u.vtab.needFree = 0; 2244 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 2245 pFrom->u.btree.pIndex = 0; 2246 } 2247 return SQLITE_OK; 2248 } 2249 2250 /* 2251 ** Delete a WhereLoop object 2252 */ 2253 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ 2254 whereLoopClear(db, p); 2255 sqlite3DbFreeNN(db, p); 2256 } 2257 2258 /* 2259 ** Free a WhereInfo structure 2260 */ 2261 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 2262 assert( pWInfo!=0 ); 2263 sqlite3WhereClauseClear(&pWInfo->sWC); 2264 while( pWInfo->pLoops ){ 2265 WhereLoop *p = pWInfo->pLoops; 2266 pWInfo->pLoops = p->pNextLoop; 2267 whereLoopDelete(db, p); 2268 } 2269 assert( pWInfo->pExprMods==0 ); 2270 while( pWInfo->pMemToFree ){ 2271 WhereMemBlock *pNext = pWInfo->pMemToFree->pNext; 2272 sqlite3DbFreeNN(db, pWInfo->pMemToFree); 2273 pWInfo->pMemToFree = pNext; 2274 } 2275 sqlite3DbFreeNN(db, pWInfo); 2276 } 2277 2278 /* Undo all Expr node modifications 2279 */ 2280 static void whereUndoExprMods(WhereInfo *pWInfo){ 2281 while( pWInfo->pExprMods ){ 2282 WhereExprMod *p = pWInfo->pExprMods; 2283 pWInfo->pExprMods = p->pNext; 2284 memcpy(p->pExpr, &p->orig, sizeof(p->orig)); 2285 sqlite3DbFree(pWInfo->pParse->db, p); 2286 } 2287 } 2288 2289 /* 2290 ** Return TRUE if all of the following are true: 2291 ** 2292 ** (1) X has the same or lower cost, or returns the same or fewer rows, 2293 ** than Y. 2294 ** (2) X uses fewer WHERE clause terms than Y 2295 ** (3) Every WHERE clause term used by X is also used by Y 2296 ** (4) X skips at least as many columns as Y 2297 ** (5) If X is a covering index, than Y is too 2298 ** 2299 ** Conditions (2) and (3) mean that X is a "proper subset" of Y. 2300 ** If X is a proper subset of Y then Y is a better choice and ought 2301 ** to have a lower cost. This routine returns TRUE when that cost 2302 ** relationship is inverted and needs to be adjusted. Constraint (4) 2303 ** was added because if X uses skip-scan less than Y it still might 2304 ** deserve a lower cost even if it is a proper subset of Y. Constraint (5) 2305 ** was added because a covering index probably deserves to have a lower cost 2306 ** than a non-covering index even if it is a proper subset. 2307 */ 2308 static int whereLoopCheaperProperSubset( 2309 const WhereLoop *pX, /* First WhereLoop to compare */ 2310 const WhereLoop *pY /* Compare against this WhereLoop */ 2311 ){ 2312 int i, j; 2313 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ 2314 return 0; /* X is not a subset of Y */ 2315 } 2316 if( pX->rRun>pY->rRun && pX->nOut>pY->nOut ) return 0; 2317 if( pY->nSkip > pX->nSkip ) return 0; 2318 for(i=pX->nLTerm-1; i>=0; i--){ 2319 if( pX->aLTerm[i]==0 ) continue; 2320 for(j=pY->nLTerm-1; j>=0; j--){ 2321 if( pY->aLTerm[j]==pX->aLTerm[i] ) break; 2322 } 2323 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ 2324 } 2325 if( (pX->wsFlags&WHERE_IDX_ONLY)!=0 2326 && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){ 2327 return 0; /* Constraint (5) */ 2328 } 2329 return 1; /* All conditions meet */ 2330 } 2331 2332 /* 2333 ** Try to adjust the cost and number of output rows of WhereLoop pTemplate 2334 ** upwards or downwards so that: 2335 ** 2336 ** (1) pTemplate costs less than any other WhereLoops that are a proper 2337 ** subset of pTemplate 2338 ** 2339 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate 2340 ** is a proper subset. 2341 ** 2342 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer 2343 ** WHERE clause terms than Y and that every WHERE clause term used by X is 2344 ** also used by Y. 2345 */ 2346 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ 2347 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; 2348 for(; p; p=p->pNextLoop){ 2349 if( p->iTab!=pTemplate->iTab ) continue; 2350 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; 2351 if( whereLoopCheaperProperSubset(p, pTemplate) ){ 2352 /* Adjust pTemplate cost downward so that it is cheaper than its 2353 ** subset p. */ 2354 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 2355 pTemplate->rRun, pTemplate->nOut, 2356 MIN(p->rRun, pTemplate->rRun), 2357 MIN(p->nOut - 1, pTemplate->nOut))); 2358 pTemplate->rRun = MIN(p->rRun, pTemplate->rRun); 2359 pTemplate->nOut = MIN(p->nOut - 1, pTemplate->nOut); 2360 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ 2361 /* Adjust pTemplate cost upward so that it is costlier than p since 2362 ** pTemplate is a proper subset of p */ 2363 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 2364 pTemplate->rRun, pTemplate->nOut, 2365 MAX(p->rRun, pTemplate->rRun), 2366 MAX(p->nOut + 1, pTemplate->nOut))); 2367 pTemplate->rRun = MAX(p->rRun, pTemplate->rRun); 2368 pTemplate->nOut = MAX(p->nOut + 1, pTemplate->nOut); 2369 } 2370 } 2371 } 2372 2373 /* 2374 ** Search the list of WhereLoops in *ppPrev looking for one that can be 2375 ** replaced by pTemplate. 2376 ** 2377 ** Return NULL if pTemplate does not belong on the WhereLoop list. 2378 ** In other words if pTemplate ought to be dropped from further consideration. 2379 ** 2380 ** If pX is a WhereLoop that pTemplate can replace, then return the 2381 ** link that points to pX. 2382 ** 2383 ** If pTemplate cannot replace any existing element of the list but needs 2384 ** to be added to the list as a new entry, then return a pointer to the 2385 ** tail of the list. 2386 */ 2387 static WhereLoop **whereLoopFindLesser( 2388 WhereLoop **ppPrev, 2389 const WhereLoop *pTemplate 2390 ){ 2391 WhereLoop *p; 2392 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ 2393 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ 2394 /* If either the iTab or iSortIdx values for two WhereLoop are different 2395 ** then those WhereLoops need to be considered separately. Neither is 2396 ** a candidate to replace the other. */ 2397 continue; 2398 } 2399 /* In the current implementation, the rSetup value is either zero 2400 ** or the cost of building an automatic index (NlogN) and the NlogN 2401 ** is the same for compatible WhereLoops. */ 2402 assert( p->rSetup==0 || pTemplate->rSetup==0 2403 || p->rSetup==pTemplate->rSetup ); 2404 2405 /* whereLoopAddBtree() always generates and inserts the automatic index 2406 ** case first. Hence compatible candidate WhereLoops never have a larger 2407 ** rSetup. Call this SETUP-INVARIANT */ 2408 assert( p->rSetup>=pTemplate->rSetup ); 2409 2410 /* Any loop using an appliation-defined index (or PRIMARY KEY or 2411 ** UNIQUE constraint) with one or more == constraints is better 2412 ** than an automatic index. Unless it is a skip-scan. */ 2413 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 2414 && (pTemplate->nSkip)==0 2415 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 2416 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 2417 && (p->prereq & pTemplate->prereq)==pTemplate->prereq 2418 ){ 2419 break; 2420 } 2421 2422 /* If existing WhereLoop p is better than pTemplate, pTemplate can be 2423 ** discarded. WhereLoop p is better if: 2424 ** (1) p has no more dependencies than pTemplate, and 2425 ** (2) p has an equal or lower cost than pTemplate 2426 */ 2427 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ 2428 && p->rSetup<=pTemplate->rSetup /* (2a) */ 2429 && p->rRun<=pTemplate->rRun /* (2b) */ 2430 && p->nOut<=pTemplate->nOut /* (2c) */ 2431 ){ 2432 return 0; /* Discard pTemplate */ 2433 } 2434 2435 /* If pTemplate is always better than p, then cause p to be overwritten 2436 ** with pTemplate. pTemplate is better than p if: 2437 ** (1) pTemplate has no more dependences than p, and 2438 ** (2) pTemplate has an equal or lower cost than p. 2439 */ 2440 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ 2441 && p->rRun>=pTemplate->rRun /* (2a) */ 2442 && p->nOut>=pTemplate->nOut /* (2b) */ 2443 ){ 2444 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ 2445 break; /* Cause p to be overwritten by pTemplate */ 2446 } 2447 } 2448 return ppPrev; 2449 } 2450 2451 /* 2452 ** Insert or replace a WhereLoop entry using the template supplied. 2453 ** 2454 ** An existing WhereLoop entry might be overwritten if the new template 2455 ** is better and has fewer dependencies. Or the template will be ignored 2456 ** and no insert will occur if an existing WhereLoop is faster and has 2457 ** fewer dependencies than the template. Otherwise a new WhereLoop is 2458 ** added based on the template. 2459 ** 2460 ** If pBuilder->pOrSet is not NULL then we care about only the 2461 ** prerequisites and rRun and nOut costs of the N best loops. That 2462 ** information is gathered in the pBuilder->pOrSet object. This special 2463 ** processing mode is used only for OR clause processing. 2464 ** 2465 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we 2466 ** still might overwrite similar loops with the new template if the 2467 ** new template is better. Loops may be overwritten if the following 2468 ** conditions are met: 2469 ** 2470 ** (1) They have the same iTab. 2471 ** (2) They have the same iSortIdx. 2472 ** (3) The template has same or fewer dependencies than the current loop 2473 ** (4) The template has the same or lower cost than the current loop 2474 */ 2475 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ 2476 WhereLoop **ppPrev, *p; 2477 WhereInfo *pWInfo = pBuilder->pWInfo; 2478 sqlite3 *db = pWInfo->pParse->db; 2479 int rc; 2480 2481 /* Stop the search once we hit the query planner search limit */ 2482 if( pBuilder->iPlanLimit==0 ){ 2483 WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n")); 2484 if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0; 2485 return SQLITE_DONE; 2486 } 2487 pBuilder->iPlanLimit--; 2488 2489 whereLoopAdjustCost(pWInfo->pLoops, pTemplate); 2490 2491 /* If pBuilder->pOrSet is defined, then only keep track of the costs 2492 ** and prereqs. 2493 */ 2494 if( pBuilder->pOrSet!=0 ){ 2495 if( pTemplate->nLTerm ){ 2496 #if WHERETRACE_ENABLED 2497 u16 n = pBuilder->pOrSet->n; 2498 int x = 2499 #endif 2500 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, 2501 pTemplate->nOut); 2502 #if WHERETRACE_ENABLED /* 0x8 */ 2503 if( sqlite3WhereTrace & 0x8 ){ 2504 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); 2505 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2506 } 2507 #endif 2508 } 2509 return SQLITE_OK; 2510 } 2511 2512 /* Look for an existing WhereLoop to replace with pTemplate 2513 */ 2514 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); 2515 2516 if( ppPrev==0 ){ 2517 /* There already exists a WhereLoop on the list that is better 2518 ** than pTemplate, so just ignore pTemplate */ 2519 #if WHERETRACE_ENABLED /* 0x8 */ 2520 if( sqlite3WhereTrace & 0x8 ){ 2521 sqlite3DebugPrintf(" skip: "); 2522 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2523 } 2524 #endif 2525 return SQLITE_OK; 2526 }else{ 2527 p = *ppPrev; 2528 } 2529 2530 /* If we reach this point it means that either p[] should be overwritten 2531 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new 2532 ** WhereLoop and insert it. 2533 */ 2534 #if WHERETRACE_ENABLED /* 0x8 */ 2535 if( sqlite3WhereTrace & 0x8 ){ 2536 if( p!=0 ){ 2537 sqlite3DebugPrintf("replace: "); 2538 sqlite3WhereLoopPrint(p, pBuilder->pWC); 2539 sqlite3DebugPrintf(" with: "); 2540 }else{ 2541 sqlite3DebugPrintf(" add: "); 2542 } 2543 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2544 } 2545 #endif 2546 if( p==0 ){ 2547 /* Allocate a new WhereLoop to add to the end of the list */ 2548 *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop)); 2549 if( p==0 ) return SQLITE_NOMEM_BKPT; 2550 whereLoopInit(p); 2551 p->pNextLoop = 0; 2552 }else{ 2553 /* We will be overwriting WhereLoop p[]. But before we do, first 2554 ** go through the rest of the list and delete any other entries besides 2555 ** p[] that are also supplated by pTemplate */ 2556 WhereLoop **ppTail = &p->pNextLoop; 2557 WhereLoop *pToDel; 2558 while( *ppTail ){ 2559 ppTail = whereLoopFindLesser(ppTail, pTemplate); 2560 if( ppTail==0 ) break; 2561 pToDel = *ppTail; 2562 if( pToDel==0 ) break; 2563 *ppTail = pToDel->pNextLoop; 2564 #if WHERETRACE_ENABLED /* 0x8 */ 2565 if( sqlite3WhereTrace & 0x8 ){ 2566 sqlite3DebugPrintf(" delete: "); 2567 sqlite3WhereLoopPrint(pToDel, pBuilder->pWC); 2568 } 2569 #endif 2570 whereLoopDelete(db, pToDel); 2571 } 2572 } 2573 rc = whereLoopXfer(db, p, pTemplate); 2574 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 2575 Index *pIndex = p->u.btree.pIndex; 2576 if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){ 2577 p->u.btree.pIndex = 0; 2578 } 2579 } 2580 return rc; 2581 } 2582 2583 /* 2584 ** Adjust the WhereLoop.nOut value downward to account for terms of the 2585 ** WHERE clause that reference the loop but which are not used by an 2586 ** index. 2587 * 2588 ** For every WHERE clause term that is not used by the index 2589 ** and which has a truth probability assigned by one of the likelihood(), 2590 ** likely(), or unlikely() SQL functions, reduce the estimated number 2591 ** of output rows by the probability specified. 2592 ** 2593 ** TUNING: For every WHERE clause term that is not used by the index 2594 ** and which does not have an assigned truth probability, heuristics 2595 ** described below are used to try to estimate the truth probability. 2596 ** TODO --> Perhaps this is something that could be improved by better 2597 ** table statistics. 2598 ** 2599 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% 2600 ** value corresponds to -1 in LogEst notation, so this means decrement 2601 ** the WhereLoop.nOut field for every such WHERE clause term. 2602 ** 2603 ** Heuristic 2: If there exists one or more WHERE clause terms of the 2604 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the 2605 ** final output row estimate is no greater than 1/4 of the total number 2606 ** of rows in the table. In other words, assume that x==EXPR will filter 2607 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the 2608 ** "x" column is boolean or else -1 or 0 or 1 is a common default value 2609 ** on the "x" column and so in that case only cap the output row estimate 2610 ** at 1/2 instead of 1/4. 2611 */ 2612 static void whereLoopOutputAdjust( 2613 WhereClause *pWC, /* The WHERE clause */ 2614 WhereLoop *pLoop, /* The loop to adjust downward */ 2615 LogEst nRow /* Number of rows in the entire table */ 2616 ){ 2617 WhereTerm *pTerm, *pX; 2618 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); 2619 int i, j; 2620 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ 2621 2622 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2623 for(i=pWC->nBase, pTerm=pWC->a; i>0; i--, pTerm++){ 2624 assert( pTerm!=0 ); 2625 if( (pTerm->prereqAll & notAllowed)!=0 ) continue; 2626 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; 2627 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) continue; 2628 for(j=pLoop->nLTerm-1; j>=0; j--){ 2629 pX = pLoop->aLTerm[j]; 2630 if( pX==0 ) continue; 2631 if( pX==pTerm ) break; 2632 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; 2633 } 2634 if( j<0 ){ 2635 if( pLoop->maskSelf==pTerm->prereqAll ){ 2636 /* If there are extra terms in the WHERE clause not used by an index 2637 ** that depend only on the table being scanned, and that will tend to 2638 ** cause many rows to be omitted, then mark that table as 2639 ** "self-culling". 2640 ** 2641 ** 2022-03-24: Self-culling only applies if either the extra terms 2642 ** are straight comparison operators that are non-true with NULL 2643 ** operand, or if the loop is not an OUTER JOIN. 2644 */ 2645 if( (pTerm->eOperator & 0x3f)!=0 2646 || (pWC->pWInfo->pTabList->a[pLoop->iTab].fg.jointype 2647 & (JT_LEFT|JT_LTORJ))==0 2648 ){ 2649 pLoop->wsFlags |= WHERE_SELFCULL; 2650 } 2651 } 2652 if( pTerm->truthProb<=0 ){ 2653 /* If a truth probability is specified using the likelihood() hints, 2654 ** then use the probability provided by the application. */ 2655 pLoop->nOut += pTerm->truthProb; 2656 }else{ 2657 /* In the absence of explicit truth probabilities, use heuristics to 2658 ** guess a reasonable truth probability. */ 2659 pLoop->nOut--; 2660 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 2661 && (pTerm->wtFlags & TERM_HIGHTRUTH)==0 /* tag-20200224-1 */ 2662 ){ 2663 Expr *pRight = pTerm->pExpr->pRight; 2664 int k = 0; 2665 testcase( pTerm->pExpr->op==TK_IS ); 2666 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){ 2667 k = 10; 2668 }else{ 2669 k = 20; 2670 } 2671 if( iReduce<k ){ 2672 pTerm->wtFlags |= TERM_HEURTRUTH; 2673 iReduce = k; 2674 } 2675 } 2676 } 2677 } 2678 } 2679 if( pLoop->nOut > nRow-iReduce ){ 2680 pLoop->nOut = nRow - iReduce; 2681 } 2682 } 2683 2684 /* 2685 ** Term pTerm is a vector range comparison operation. The first comparison 2686 ** in the vector can be optimized using column nEq of the index. This 2687 ** function returns the total number of vector elements that can be used 2688 ** as part of the range comparison. 2689 ** 2690 ** For example, if the query is: 2691 ** 2692 ** WHERE a = ? AND (b, c, d) > (?, ?, ?) 2693 ** 2694 ** and the index: 2695 ** 2696 ** CREATE INDEX ... ON (a, b, c, d, e) 2697 ** 2698 ** then this function would be invoked with nEq=1. The value returned in 2699 ** this case is 3. 2700 */ 2701 static int whereRangeVectorLen( 2702 Parse *pParse, /* Parsing context */ 2703 int iCur, /* Cursor open on pIdx */ 2704 Index *pIdx, /* The index to be used for a inequality constraint */ 2705 int nEq, /* Number of prior equality constraints on same index */ 2706 WhereTerm *pTerm /* The vector inequality constraint */ 2707 ){ 2708 int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft); 2709 int i; 2710 2711 nCmp = MIN(nCmp, (pIdx->nColumn - nEq)); 2712 for(i=1; i<nCmp; i++){ 2713 /* Test if comparison i of pTerm is compatible with column (i+nEq) 2714 ** of the index. If not, exit the loop. */ 2715 char aff; /* Comparison affinity */ 2716 char idxaff = 0; /* Indexed columns affinity */ 2717 CollSeq *pColl; /* Comparison collation sequence */ 2718 Expr *pLhs, *pRhs; 2719 2720 assert( ExprUseXList(pTerm->pExpr->pLeft) ); 2721 pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr; 2722 pRhs = pTerm->pExpr->pRight; 2723 if( ExprUseXSelect(pRhs) ){ 2724 pRhs = pRhs->x.pSelect->pEList->a[i].pExpr; 2725 }else{ 2726 pRhs = pRhs->x.pList->a[i].pExpr; 2727 } 2728 2729 /* Check that the LHS of the comparison is a column reference to 2730 ** the right column of the right source table. And that the sort 2731 ** order of the index column is the same as the sort order of the 2732 ** leftmost index column. */ 2733 if( pLhs->op!=TK_COLUMN 2734 || pLhs->iTable!=iCur 2735 || pLhs->iColumn!=pIdx->aiColumn[i+nEq] 2736 || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq] 2737 ){ 2738 break; 2739 } 2740 2741 testcase( pLhs->iColumn==XN_ROWID ); 2742 aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs)); 2743 idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn); 2744 if( aff!=idxaff ) break; 2745 2746 pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2747 if( pColl==0 ) break; 2748 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break; 2749 } 2750 return i; 2751 } 2752 2753 /* 2754 ** Adjust the cost C by the costMult facter T. This only occurs if 2755 ** compiled with -DSQLITE_ENABLE_COSTMULT 2756 */ 2757 #ifdef SQLITE_ENABLE_COSTMULT 2758 # define ApplyCostMultiplier(C,T) C += T 2759 #else 2760 # define ApplyCostMultiplier(C,T) 2761 #endif 2762 2763 /* 2764 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the 2765 ** index pIndex. Try to match one more. 2766 ** 2767 ** When this function is called, pBuilder->pNew->nOut contains the 2768 ** number of rows expected to be visited by filtering using the nEq 2769 ** terms only. If it is modified, this value is restored before this 2770 ** function returns. 2771 ** 2772 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is 2773 ** a fake index used for the INTEGER PRIMARY KEY. 2774 */ 2775 static int whereLoopAddBtreeIndex( 2776 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ 2777 SrcItem *pSrc, /* FROM clause term being analyzed */ 2778 Index *pProbe, /* An index on pSrc */ 2779 LogEst nInMul /* log(Number of iterations due to IN) */ 2780 ){ 2781 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ 2782 Parse *pParse = pWInfo->pParse; /* Parsing context */ 2783 sqlite3 *db = pParse->db; /* Database connection malloc context */ 2784 WhereLoop *pNew; /* Template WhereLoop under construction */ 2785 WhereTerm *pTerm; /* A WhereTerm under consideration */ 2786 int opMask; /* Valid operators for constraints */ 2787 WhereScan scan; /* Iterator for WHERE terms */ 2788 Bitmask saved_prereq; /* Original value of pNew->prereq */ 2789 u16 saved_nLTerm; /* Original value of pNew->nLTerm */ 2790 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ 2791 u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */ 2792 u16 saved_nTop; /* Original value of pNew->u.btree.nTop */ 2793 u16 saved_nSkip; /* Original value of pNew->nSkip */ 2794 u32 saved_wsFlags; /* Original value of pNew->wsFlags */ 2795 LogEst saved_nOut; /* Original value of pNew->nOut */ 2796 int rc = SQLITE_OK; /* Return code */ 2797 LogEst rSize; /* Number of rows in the table */ 2798 LogEst rLogSize; /* Logarithm of table size */ 2799 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ 2800 2801 pNew = pBuilder->pNew; 2802 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 2803 WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n", 2804 pProbe->pTable->zName,pProbe->zName, 2805 pNew->u.btree.nEq, pNew->nSkip, pNew->rRun)); 2806 2807 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); 2808 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); 2809 if( pNew->wsFlags & WHERE_BTM_LIMIT ){ 2810 opMask = WO_LT|WO_LE; 2811 }else{ 2812 assert( pNew->u.btree.nBtm==0 ); 2813 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS; 2814 } 2815 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); 2816 2817 assert( pNew->u.btree.nEq<pProbe->nColumn ); 2818 assert( pNew->u.btree.nEq<pProbe->nKeyCol 2819 || pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY ); 2820 2821 saved_nEq = pNew->u.btree.nEq; 2822 saved_nBtm = pNew->u.btree.nBtm; 2823 saved_nTop = pNew->u.btree.nTop; 2824 saved_nSkip = pNew->nSkip; 2825 saved_nLTerm = pNew->nLTerm; 2826 saved_wsFlags = pNew->wsFlags; 2827 saved_prereq = pNew->prereq; 2828 saved_nOut = pNew->nOut; 2829 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq, 2830 opMask, pProbe); 2831 pNew->rSetup = 0; 2832 rSize = pProbe->aiRowLogEst[0]; 2833 rLogSize = estLog(rSize); 2834 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ 2835 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ 2836 LogEst rCostIdx; 2837 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ 2838 int nIn = 0; 2839 #ifdef SQLITE_ENABLE_STAT4 2840 int nRecValid = pBuilder->nRecValid; 2841 #endif 2842 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) 2843 && indexColumnNotNull(pProbe, saved_nEq) 2844 ){ 2845 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ 2846 } 2847 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2848 2849 /* Do not allow the upper bound of a LIKE optimization range constraint 2850 ** to mix with a lower range bound from some other source */ 2851 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; 2852 2853 /* tag-20191211-001: Do not allow constraints from the WHERE clause to 2854 ** be used by the right table of a LEFT JOIN nor by the left table of a 2855 ** RIGHT JOIN. Only constraints in the ON clause are allowed. 2856 ** See tag-20191211-002 for the vtab equivalent. 2857 ** 2858 ** 2022-06-06: See https://sqlite.org/forum/forumpost/206d99a16dd9212f 2859 ** for an example of a WHERE clause constraints that may not be used on 2860 ** the right table of a RIGHT JOIN because the constraint implies a 2861 ** not-NULL condition on the left table of the RIGHT JOIN. 2862 ** 2863 ** 2022-06-10: The same condition applies to termCanDriveIndex() above. 2864 ** https://sqlite.org/forum/forumpost/51e6959f61 2865 */ 2866 if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ){ 2867 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT ); 2868 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_RIGHT ); 2869 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ ); 2870 testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) 2871 testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) ); 2872 if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON) 2873 || pTerm->pExpr->w.iJoin != pSrc->iCursor 2874 ){ 2875 continue; 2876 } 2877 } 2878 2879 if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){ 2880 pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE; 2881 }else{ 2882 pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED; 2883 } 2884 pNew->wsFlags = saved_wsFlags; 2885 pNew->u.btree.nEq = saved_nEq; 2886 pNew->u.btree.nBtm = saved_nBtm; 2887 pNew->u.btree.nTop = saved_nTop; 2888 pNew->nLTerm = saved_nLTerm; 2889 if( pNew->nLTerm>=pNew->nLSlot 2890 && whereLoopResize(db, pNew, pNew->nLTerm+1) 2891 ){ 2892 break; /* OOM while trying to enlarge the pNew->aLTerm array */ 2893 } 2894 pNew->aLTerm[pNew->nLTerm++] = pTerm; 2895 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; 2896 2897 assert( nInMul==0 2898 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 2899 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 2900 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 2901 ); 2902 2903 if( eOp & WO_IN ){ 2904 Expr *pExpr = pTerm->pExpr; 2905 if( ExprUseXSelect(pExpr) ){ 2906 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ 2907 int i; 2908 nIn = 46; assert( 46==sqlite3LogEst(25) ); 2909 2910 /* The expression may actually be of the form (x, y) IN (SELECT...). 2911 ** In this case there is a separate term for each of (x) and (y). 2912 ** However, the nIn multiplier should only be applied once, not once 2913 ** for each such term. The following loop checks that pTerm is the 2914 ** first such term in use, and sets nIn back to 0 if it is not. */ 2915 for(i=0; i<pNew->nLTerm-1; i++){ 2916 if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0; 2917 } 2918 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ 2919 /* "x IN (value, value, ...)" */ 2920 nIn = sqlite3LogEst(pExpr->x.pList->nExpr); 2921 } 2922 if( pProbe->hasStat1 && rLogSize>=10 ){ 2923 LogEst M, logK, x; 2924 /* Let: 2925 ** N = the total number of rows in the table 2926 ** K = the number of entries on the RHS of the IN operator 2927 ** M = the number of rows in the table that match terms to the 2928 ** to the left in the same index. If the IN operator is on 2929 ** the left-most index column, M==N. 2930 ** 2931 ** Given the definitions above, it is better to omit the IN operator 2932 ** from the index lookup and instead do a scan of the M elements, 2933 ** testing each scanned row against the IN operator separately, if: 2934 ** 2935 ** M*log(K) < K*log(N) 2936 ** 2937 ** Our estimates for M, K, and N might be inaccurate, so we build in 2938 ** a safety margin of 2 (LogEst: 10) that favors using the IN operator 2939 ** with the index, as using an index has better worst-case behavior. 2940 ** If we do not have real sqlite_stat1 data, always prefer to use 2941 ** the index. Do not bother with this optimization on very small 2942 ** tables (less than 2 rows) as it is pointless in that case. 2943 */ 2944 M = pProbe->aiRowLogEst[saved_nEq]; 2945 logK = estLog(nIn); 2946 /* TUNING v----- 10 to bias toward indexed IN */ 2947 x = M + logK + 10 - (nIn + rLogSize); 2948 if( x>=0 ){ 2949 WHERETRACE(0x40, 2950 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) " 2951 "prefers indexed lookup\n", 2952 saved_nEq, M, logK, nIn, rLogSize, x)); 2953 }else if( nInMul<2 && OptimizationEnabled(db, SQLITE_SeekScan) ){ 2954 WHERETRACE(0x40, 2955 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d" 2956 " nInMul=%d) prefers skip-scan\n", 2957 saved_nEq, M, logK, nIn, rLogSize, x, nInMul)); 2958 pNew->wsFlags |= WHERE_IN_SEEKSCAN; 2959 }else{ 2960 WHERETRACE(0x40, 2961 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d" 2962 " nInMul=%d) prefers normal scan\n", 2963 saved_nEq, M, logK, nIn, rLogSize, x, nInMul)); 2964 continue; 2965 } 2966 } 2967 pNew->wsFlags |= WHERE_COLUMN_IN; 2968 }else if( eOp & (WO_EQ|WO_IS) ){ 2969 int iCol = pProbe->aiColumn[saved_nEq]; 2970 pNew->wsFlags |= WHERE_COLUMN_EQ; 2971 assert( saved_nEq==pNew->u.btree.nEq ); 2972 if( iCol==XN_ROWID 2973 || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) 2974 ){ 2975 if( iCol==XN_ROWID || pProbe->uniqNotNull 2976 || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ) 2977 ){ 2978 pNew->wsFlags |= WHERE_ONEROW; 2979 }else{ 2980 pNew->wsFlags |= WHERE_UNQ_WANTED; 2981 } 2982 } 2983 if( scan.iEquiv>1 ) pNew->wsFlags |= WHERE_TRANSCONS; 2984 }else if( eOp & WO_ISNULL ){ 2985 pNew->wsFlags |= WHERE_COLUMN_NULL; 2986 }else{ 2987 int nVecLen = whereRangeVectorLen( 2988 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2989 ); 2990 if( eOp & (WO_GT|WO_GE) ){ 2991 testcase( eOp & WO_GT ); 2992 testcase( eOp & WO_GE ); 2993 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; 2994 pNew->u.btree.nBtm = nVecLen; 2995 pBtm = pTerm; 2996 pTop = 0; 2997 if( pTerm->wtFlags & TERM_LIKEOPT ){ 2998 /* Range constraints that come from the LIKE optimization are 2999 ** always used in pairs. */ 3000 pTop = &pTerm[1]; 3001 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm ); 3002 assert( pTop->wtFlags & TERM_LIKEOPT ); 3003 assert( pTop->eOperator==WO_LT ); 3004 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 3005 pNew->aLTerm[pNew->nLTerm++] = pTop; 3006 pNew->wsFlags |= WHERE_TOP_LIMIT; 3007 pNew->u.btree.nTop = 1; 3008 } 3009 }else{ 3010 assert( eOp & (WO_LT|WO_LE) ); 3011 testcase( eOp & WO_LT ); 3012 testcase( eOp & WO_LE ); 3013 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; 3014 pNew->u.btree.nTop = nVecLen; 3015 pTop = pTerm; 3016 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? 3017 pNew->aLTerm[pNew->nLTerm-2] : 0; 3018 } 3019 } 3020 3021 /* At this point pNew->nOut is set to the number of rows expected to 3022 ** be visited by the index scan before considering term pTerm, or the 3023 ** values of nIn and nInMul. In other words, assuming that all 3024 ** "x IN(...)" terms are replaced with "x = ?". This block updates 3025 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ 3026 assert( pNew->nOut==saved_nOut ); 3027 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 3028 /* Adjust nOut using stat4 data. Or, if there is no stat4 3029 ** data, using some other estimate. */ 3030 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); 3031 }else{ 3032 int nEq = ++pNew->u.btree.nEq; 3033 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) ); 3034 3035 assert( pNew->nOut==saved_nOut ); 3036 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){ 3037 assert( (eOp & WO_IN) || nIn==0 ); 3038 testcase( eOp & WO_IN ); 3039 pNew->nOut += pTerm->truthProb; 3040 pNew->nOut -= nIn; 3041 }else{ 3042 #ifdef SQLITE_ENABLE_STAT4 3043 tRowcnt nOut = 0; 3044 if( nInMul==0 3045 && pProbe->nSample 3046 && ALWAYS(pNew->u.btree.nEq<=pProbe->nSampleCol) 3047 && ((eOp & WO_IN)==0 || ExprUseXList(pTerm->pExpr)) 3048 && OptimizationEnabled(db, SQLITE_Stat4) 3049 ){ 3050 Expr *pExpr = pTerm->pExpr; 3051 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){ 3052 testcase( eOp & WO_EQ ); 3053 testcase( eOp & WO_IS ); 3054 testcase( eOp & WO_ISNULL ); 3055 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); 3056 }else{ 3057 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); 3058 } 3059 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 3060 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ 3061 if( nOut ){ 3062 pNew->nOut = sqlite3LogEst(nOut); 3063 if( nEq==1 3064 /* TUNING: Mark terms as "low selectivity" if they seem likely 3065 ** to be true for half or more of the rows in the table. 3066 ** See tag-202002240-1 */ 3067 && pNew->nOut+10 > pProbe->aiRowLogEst[0] 3068 ){ 3069 #if WHERETRACE_ENABLED /* 0x01 */ 3070 if( sqlite3WhereTrace & 0x01 ){ 3071 sqlite3DebugPrintf( 3072 "STAT4 determines term has low selectivity:\n"); 3073 sqlite3WhereTermPrint(pTerm, 999); 3074 } 3075 #endif 3076 pTerm->wtFlags |= TERM_HIGHTRUTH; 3077 if( pTerm->wtFlags & TERM_HEURTRUTH ){ 3078 /* If the term has previously been used with an assumption of 3079 ** higher selectivity, then set the flag to rerun the 3080 ** loop computations. */ 3081 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS; 3082 } 3083 } 3084 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; 3085 pNew->nOut -= nIn; 3086 } 3087 } 3088 if( nOut==0 ) 3089 #endif 3090 { 3091 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); 3092 if( eOp & WO_ISNULL ){ 3093 /* TUNING: If there is no likelihood() value, assume that a 3094 ** "col IS NULL" expression matches twice as many rows 3095 ** as (col=?). */ 3096 pNew->nOut += 10; 3097 } 3098 } 3099 } 3100 } 3101 3102 /* Set rCostIdx to the cost of visiting selected rows in index. Add 3103 ** it to pNew->rRun, which is currently set to the cost of the index 3104 ** seek only. Then, if this is a non-covering index, add the cost of 3105 ** visiting the rows in the main table. */ 3106 assert( pSrc->pTab->szTabRow>0 ); 3107 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; 3108 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); 3109 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ 3110 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); 3111 } 3112 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); 3113 3114 nOutUnadjusted = pNew->nOut; 3115 pNew->rRun += nInMul + nIn; 3116 pNew->nOut += nInMul + nIn; 3117 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); 3118 rc = whereLoopInsert(pBuilder, pNew); 3119 3120 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 3121 pNew->nOut = saved_nOut; 3122 }else{ 3123 pNew->nOut = nOutUnadjusted; 3124 } 3125 3126 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 3127 && pNew->u.btree.nEq<pProbe->nColumn 3128 && (pNew->u.btree.nEq<pProbe->nKeyCol || 3129 pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY) 3130 ){ 3131 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); 3132 } 3133 pNew->nOut = saved_nOut; 3134 #ifdef SQLITE_ENABLE_STAT4 3135 pBuilder->nRecValid = nRecValid; 3136 #endif 3137 } 3138 pNew->prereq = saved_prereq; 3139 pNew->u.btree.nEq = saved_nEq; 3140 pNew->u.btree.nBtm = saved_nBtm; 3141 pNew->u.btree.nTop = saved_nTop; 3142 pNew->nSkip = saved_nSkip; 3143 pNew->wsFlags = saved_wsFlags; 3144 pNew->nOut = saved_nOut; 3145 pNew->nLTerm = saved_nLTerm; 3146 3147 /* Consider using a skip-scan if there are no WHERE clause constraints 3148 ** available for the left-most terms of the index, and if the average 3149 ** number of repeats in the left-most terms is at least 18. 3150 ** 3151 ** The magic number 18 is selected on the basis that scanning 17 rows 3152 ** is almost always quicker than an index seek (even though if the index 3153 ** contains fewer than 2^17 rows we assume otherwise in other parts of 3154 ** the code). And, even if it is not, it should not be too much slower. 3155 ** On the other hand, the extra seeks could end up being significantly 3156 ** more expensive. */ 3157 assert( 42==sqlite3LogEst(18) ); 3158 if( saved_nEq==saved_nSkip 3159 && saved_nEq+1<pProbe->nKeyCol 3160 && saved_nEq==pNew->nLTerm 3161 && pProbe->noSkipScan==0 3162 && pProbe->hasStat1!=0 3163 && OptimizationEnabled(db, SQLITE_SkipScan) 3164 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ 3165 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK 3166 ){ 3167 LogEst nIter; 3168 pNew->u.btree.nEq++; 3169 pNew->nSkip++; 3170 pNew->aLTerm[pNew->nLTerm++] = 0; 3171 pNew->wsFlags |= WHERE_SKIPSCAN; 3172 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; 3173 pNew->nOut -= nIter; 3174 /* TUNING: Because uncertainties in the estimates for skip-scan queries, 3175 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ 3176 nIter += 5; 3177 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); 3178 pNew->nOut = saved_nOut; 3179 pNew->u.btree.nEq = saved_nEq; 3180 pNew->nSkip = saved_nSkip; 3181 pNew->wsFlags = saved_wsFlags; 3182 } 3183 3184 WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n", 3185 pProbe->pTable->zName, pProbe->zName, saved_nEq, rc)); 3186 return rc; 3187 } 3188 3189 /* 3190 ** Return True if it is possible that pIndex might be useful in 3191 ** implementing the ORDER BY clause in pBuilder. 3192 ** 3193 ** Return False if pBuilder does not contain an ORDER BY clause or 3194 ** if there is no way for pIndex to be useful in implementing that 3195 ** ORDER BY clause. 3196 */ 3197 static int indexMightHelpWithOrderBy( 3198 WhereLoopBuilder *pBuilder, 3199 Index *pIndex, 3200 int iCursor 3201 ){ 3202 ExprList *pOB; 3203 ExprList *aColExpr; 3204 int ii, jj; 3205 3206 if( pIndex->bUnordered ) return 0; 3207 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; 3208 for(ii=0; ii<pOB->nExpr; ii++){ 3209 Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr); 3210 if( NEVER(pExpr==0) ) continue; 3211 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){ 3212 if( pExpr->iColumn<0 ) return 1; 3213 for(jj=0; jj<pIndex->nKeyCol; jj++){ 3214 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; 3215 } 3216 }else if( (aColExpr = pIndex->aColExpr)!=0 ){ 3217 for(jj=0; jj<pIndex->nKeyCol; jj++){ 3218 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue; 3219 if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){ 3220 return 1; 3221 } 3222 } 3223 } 3224 } 3225 return 0; 3226 } 3227 3228 /* Check to see if a partial index with pPartIndexWhere can be used 3229 ** in the current query. Return true if it can be and false if not. 3230 */ 3231 static int whereUsablePartialIndex( 3232 int iTab, /* The table for which we want an index */ 3233 u8 jointype, /* The JT_* flags on the join */ 3234 WhereClause *pWC, /* The WHERE clause of the query */ 3235 Expr *pWhere /* The WHERE clause from the partial index */ 3236 ){ 3237 int i; 3238 WhereTerm *pTerm; 3239 Parse *pParse; 3240 3241 if( jointype & JT_LTORJ ) return 0; 3242 pParse = pWC->pWInfo->pParse; 3243 while( pWhere->op==TK_AND ){ 3244 if( !whereUsablePartialIndex(iTab,jointype,pWC,pWhere->pLeft) ) return 0; 3245 pWhere = pWhere->pRight; 3246 } 3247 if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0; 3248 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 3249 Expr *pExpr; 3250 pExpr = pTerm->pExpr; 3251 if( (!ExprHasProperty(pExpr, EP_OuterON) || pExpr->w.iJoin==iTab) 3252 && ((jointype & JT_OUTER)==0 || ExprHasProperty(pExpr, EP_OuterON)) 3253 && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab) 3254 && (pTerm->wtFlags & TERM_VNULL)==0 3255 ){ 3256 return 1; 3257 } 3258 } 3259 return 0; 3260 } 3261 3262 /* 3263 ** Add all WhereLoop objects for a single table of the join where the table 3264 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be 3265 ** a b-tree table, not a virtual table. 3266 ** 3267 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function 3268 ** are calculated as follows: 3269 ** 3270 ** For a full scan, assuming the table (or index) contains nRow rows: 3271 ** 3272 ** cost = nRow * 3.0 // full-table scan 3273 ** cost = nRow * K // scan of covering index 3274 ** cost = nRow * (K+3.0) // scan of non-covering index 3275 ** 3276 ** where K is a value between 1.1 and 3.0 set based on the relative 3277 ** estimated average size of the index and table records. 3278 ** 3279 ** For an index scan, where nVisit is the number of index rows visited 3280 ** by the scan, and nSeek is the number of seek operations required on 3281 ** the index b-tree: 3282 ** 3283 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index 3284 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index 3285 ** 3286 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the 3287 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when 3288 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. 3289 ** 3290 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount 3291 ** of uncertainty. For this reason, scoring is designed to pick plans that 3292 ** "do the least harm" if the estimates are inaccurate. For example, a 3293 ** log(nRow) factor is omitted from a non-covering index scan in order to 3294 ** bias the scoring in favor of using an index, since the worst-case 3295 ** performance of using an index is far better than the worst-case performance 3296 ** of a full table scan. 3297 */ 3298 static int whereLoopAddBtree( 3299 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 3300 Bitmask mPrereq /* Extra prerequesites for using this table */ 3301 ){ 3302 WhereInfo *pWInfo; /* WHERE analysis context */ 3303 Index *pProbe; /* An index we are evaluating */ 3304 Index sPk; /* A fake index object for the primary key */ 3305 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ 3306 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ 3307 SrcList *pTabList; /* The FROM clause */ 3308 SrcItem *pSrc; /* The FROM clause btree term to add */ 3309 WhereLoop *pNew; /* Template WhereLoop object */ 3310 int rc = SQLITE_OK; /* Return code */ 3311 int iSortIdx = 1; /* Index number */ 3312 int b; /* A boolean value */ 3313 LogEst rSize; /* number of rows in the table */ 3314 WhereClause *pWC; /* The parsed WHERE clause */ 3315 Table *pTab; /* Table being queried */ 3316 3317 pNew = pBuilder->pNew; 3318 pWInfo = pBuilder->pWInfo; 3319 pTabList = pWInfo->pTabList; 3320 pSrc = pTabList->a + pNew->iTab; 3321 pTab = pSrc->pTab; 3322 pWC = pBuilder->pWC; 3323 assert( !IsVirtual(pSrc->pTab) ); 3324 3325 if( pSrc->fg.isIndexedBy ){ 3326 assert( pSrc->fg.isCte==0 ); 3327 /* An INDEXED BY clause specifies a particular index to use */ 3328 pProbe = pSrc->u2.pIBIndex; 3329 }else if( !HasRowid(pTab) ){ 3330 pProbe = pTab->pIndex; 3331 }else{ 3332 /* There is no INDEXED BY clause. Create a fake Index object in local 3333 ** variable sPk to represent the rowid primary key index. Make this 3334 ** fake index the first in a chain of Index objects with all of the real 3335 ** indices to follow */ 3336 Index *pFirst; /* First of real indices on the table */ 3337 memset(&sPk, 0, sizeof(Index)); 3338 sPk.nKeyCol = 1; 3339 sPk.nColumn = 1; 3340 sPk.aiColumn = &aiColumnPk; 3341 sPk.aiRowLogEst = aiRowEstPk; 3342 sPk.onError = OE_Replace; 3343 sPk.pTable = pTab; 3344 sPk.szIdxRow = pTab->szTabRow; 3345 sPk.idxType = SQLITE_IDXTYPE_IPK; 3346 aiRowEstPk[0] = pTab->nRowLogEst; 3347 aiRowEstPk[1] = 0; 3348 pFirst = pSrc->pTab->pIndex; 3349 if( pSrc->fg.notIndexed==0 ){ 3350 /* The real indices of the table are only considered if the 3351 ** NOT INDEXED qualifier is omitted from the FROM clause */ 3352 sPk.pNext = pFirst; 3353 } 3354 pProbe = &sPk; 3355 } 3356 rSize = pTab->nRowLogEst; 3357 3358 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 3359 /* Automatic indexes */ 3360 if( !pBuilder->pOrSet /* Not part of an OR optimization */ 3361 && (pWInfo->wctrlFlags & (WHERE_RIGHT_JOIN|WHERE_OR_SUBCLAUSE))==0 3362 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 3363 && !pSrc->fg.isIndexedBy /* Has no INDEXED BY clause */ 3364 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */ 3365 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */ 3366 && !pSrc->fg.isCorrelated /* Not a correlated subquery */ 3367 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */ 3368 && (pSrc->fg.jointype & JT_RIGHT)==0 /* Not the right tab of a RIGHT JOIN */ 3369 ){ 3370 /* Generate auto-index WhereLoops */ 3371 LogEst rLogSize; /* Logarithm of the number of rows in the table */ 3372 WhereTerm *pTerm; 3373 WhereTerm *pWCEnd = pWC->a + pWC->nTerm; 3374 rLogSize = estLog(rSize); 3375 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ 3376 if( pTerm->prereqRight & pNew->maskSelf ) continue; 3377 if( termCanDriveIndex(pTerm, pSrc, 0) ){ 3378 pNew->u.btree.nEq = 1; 3379 pNew->nSkip = 0; 3380 pNew->u.btree.pIndex = 0; 3381 pNew->nLTerm = 1; 3382 pNew->aLTerm[0] = pTerm; 3383 /* TUNING: One-time cost for computing the automatic index is 3384 ** estimated to be X*N*log2(N) where N is the number of rows in 3385 ** the table being indexed and where X is 7 (LogEst=28) for normal 3386 ** tables or 0.5 (LogEst=-10) for views and subqueries. The value 3387 ** of X is smaller for views and subqueries so that the query planner 3388 ** will be more aggressive about generating automatic indexes for 3389 ** those objects, since there is no opportunity to add schema 3390 ** indexes on subqueries and views. */ 3391 pNew->rSetup = rLogSize + rSize; 3392 if( !IsView(pTab) && (pTab->tabFlags & TF_Ephemeral)==0 ){ 3393 pNew->rSetup += 28; 3394 }else{ 3395 pNew->rSetup -= 10; 3396 } 3397 ApplyCostMultiplier(pNew->rSetup, pTab->costMult); 3398 if( pNew->rSetup<0 ) pNew->rSetup = 0; 3399 /* TUNING: Each index lookup yields 20 rows in the table. This 3400 ** is more than the usual guess of 10 rows, since we have no way 3401 ** of knowing how selective the index will ultimately be. It would 3402 ** not be unreasonable to make this value much larger. */ 3403 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); 3404 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); 3405 pNew->wsFlags = WHERE_AUTO_INDEX; 3406 pNew->prereq = mPrereq | pTerm->prereqRight; 3407 rc = whereLoopInsert(pBuilder, pNew); 3408 } 3409 } 3410 } 3411 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 3412 3413 /* Loop over all indices. If there was an INDEXED BY clause, then only 3414 ** consider index pProbe. */ 3415 for(; rc==SQLITE_OK && pProbe; 3416 pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++ 3417 ){ 3418 if( pProbe->pPartIdxWhere!=0 3419 && !whereUsablePartialIndex(pSrc->iCursor, pSrc->fg.jointype, pWC, 3420 pProbe->pPartIdxWhere) 3421 ){ 3422 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ 3423 continue; /* Partial index inappropriate for this query */ 3424 } 3425 if( pProbe->bNoQuery ) continue; 3426 rSize = pProbe->aiRowLogEst[0]; 3427 pNew->u.btree.nEq = 0; 3428 pNew->u.btree.nBtm = 0; 3429 pNew->u.btree.nTop = 0; 3430 pNew->nSkip = 0; 3431 pNew->nLTerm = 0; 3432 pNew->iSortIdx = 0; 3433 pNew->rSetup = 0; 3434 pNew->prereq = mPrereq; 3435 pNew->nOut = rSize; 3436 pNew->u.btree.pIndex = pProbe; 3437 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); 3438 3439 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ 3440 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); 3441 if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){ 3442 /* Integer primary key index */ 3443 pNew->wsFlags = WHERE_IPK; 3444 3445 /* Full table scan */ 3446 pNew->iSortIdx = b ? iSortIdx : 0; 3447 /* TUNING: Cost of full table scan is 3.0*N. The 3.0 factor is an 3448 ** extra cost designed to discourage the use of full table scans, 3449 ** since index lookups have better worst-case performance if our 3450 ** stat guesses are wrong. Reduce the 3.0 penalty slightly 3451 ** (to 2.75) if we have valid STAT4 information for the table. 3452 ** At 2.75, a full table scan is preferred over using an index on 3453 ** a column with just two distinct values where each value has about 3454 ** an equal number of appearances. Without STAT4 data, we still want 3455 ** to use an index in that case, since the constraint might be for 3456 ** the scarcer of the two values, and in that case an index lookup is 3457 ** better. 3458 */ 3459 #ifdef SQLITE_ENABLE_STAT4 3460 pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0); 3461 #else 3462 pNew->rRun = rSize + 16; 3463 #endif 3464 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 3465 whereLoopOutputAdjust(pWC, pNew, rSize); 3466 rc = whereLoopInsert(pBuilder, pNew); 3467 pNew->nOut = rSize; 3468 if( rc ) break; 3469 }else{ 3470 Bitmask m; 3471 if( pProbe->isCovering ){ 3472 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; 3473 m = 0; 3474 }else{ 3475 m = pSrc->colUsed & pProbe->colNotIdxed; 3476 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; 3477 } 3478 3479 /* Full scan via index */ 3480 if( b 3481 || !HasRowid(pTab) 3482 || pProbe->pPartIdxWhere!=0 3483 || pSrc->fg.isIndexedBy 3484 || ( m==0 3485 && pProbe->bUnordered==0 3486 && (pProbe->szIdxRow<pTab->szTabRow) 3487 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 3488 && sqlite3GlobalConfig.bUseCis 3489 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) 3490 ) 3491 ){ 3492 pNew->iSortIdx = b ? iSortIdx : 0; 3493 3494 /* The cost of visiting the index rows is N*K, where K is 3495 ** between 1.1 and 3.0, depending on the relative sizes of the 3496 ** index and table rows. */ 3497 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; 3498 if( m!=0 ){ 3499 /* If this is a non-covering index scan, add in the cost of 3500 ** doing table lookups. The cost will be 3x the number of 3501 ** lookups. Take into account WHERE clause terms that can be 3502 ** satisfied using just the index, and that do not require a 3503 ** table lookup. */ 3504 LogEst nLookup = rSize + 16; /* Base cost: N*3 */ 3505 int ii; 3506 int iCur = pSrc->iCursor; 3507 WhereClause *pWC2 = &pWInfo->sWC; 3508 for(ii=0; ii<pWC2->nTerm; ii++){ 3509 WhereTerm *pTerm = &pWC2->a[ii]; 3510 if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){ 3511 break; 3512 } 3513 /* pTerm can be evaluated using just the index. So reduce 3514 ** the expected number of table lookups accordingly */ 3515 if( pTerm->truthProb<=0 ){ 3516 nLookup += pTerm->truthProb; 3517 }else{ 3518 nLookup--; 3519 if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19; 3520 } 3521 } 3522 3523 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup); 3524 } 3525 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 3526 whereLoopOutputAdjust(pWC, pNew, rSize); 3527 if( (pSrc->fg.jointype & JT_RIGHT)!=0 && pProbe->aColExpr ){ 3528 /* Do not do an SCAN of a index-on-expression in a RIGHT JOIN 3529 ** because the cursor used to access the index might not be 3530 ** positioned to the correct row during the right-join no-match 3531 ** loop. */ 3532 }else{ 3533 rc = whereLoopInsert(pBuilder, pNew); 3534 } 3535 pNew->nOut = rSize; 3536 if( rc ) break; 3537 } 3538 } 3539 3540 pBuilder->bldFlags1 = 0; 3541 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); 3542 if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){ 3543 /* If a non-unique index is used, or if a prefix of the key for 3544 ** unique index is used (making the index functionally non-unique) 3545 ** then the sqlite_stat1 data becomes important for scoring the 3546 ** plan */ 3547 pTab->tabFlags |= TF_StatsUsed; 3548 } 3549 #ifdef SQLITE_ENABLE_STAT4 3550 sqlite3Stat4ProbeFree(pBuilder->pRec); 3551 pBuilder->nRecValid = 0; 3552 pBuilder->pRec = 0; 3553 #endif 3554 } 3555 return rc; 3556 } 3557 3558 #ifndef SQLITE_OMIT_VIRTUALTABLE 3559 3560 /* 3561 ** Return true if pTerm is a virtual table LIMIT or OFFSET term. 3562 */ 3563 static int isLimitTerm(WhereTerm *pTerm){ 3564 assert( pTerm->eOperator==WO_AUX || pTerm->eMatchOp==0 ); 3565 return pTerm->eMatchOp>=SQLITE_INDEX_CONSTRAINT_LIMIT 3566 && pTerm->eMatchOp<=SQLITE_INDEX_CONSTRAINT_OFFSET; 3567 } 3568 3569 /* 3570 ** Argument pIdxInfo is already populated with all constraints that may 3571 ** be used by the virtual table identified by pBuilder->pNew->iTab. This 3572 ** function marks a subset of those constraints usable, invokes the 3573 ** xBestIndex method and adds the returned plan to pBuilder. 3574 ** 3575 ** A constraint is marked usable if: 3576 ** 3577 ** * Argument mUsable indicates that its prerequisites are available, and 3578 ** 3579 ** * It is not one of the operators specified in the mExclude mask passed 3580 ** as the fourth argument (which in practice is either WO_IN or 0). 3581 ** 3582 ** Argument mPrereq is a mask of tables that must be scanned before the 3583 ** virtual table in question. These are added to the plans prerequisites 3584 ** before it is added to pBuilder. 3585 ** 3586 ** Output parameter *pbIn is set to true if the plan added to pBuilder 3587 ** uses one or more WO_IN terms, or false otherwise. 3588 */ 3589 static int whereLoopAddVirtualOne( 3590 WhereLoopBuilder *pBuilder, 3591 Bitmask mPrereq, /* Mask of tables that must be used. */ 3592 Bitmask mUsable, /* Mask of usable tables */ 3593 u16 mExclude, /* Exclude terms using these operators */ 3594 sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */ 3595 u16 mNoOmit, /* Do not omit these constraints */ 3596 int *pbIn, /* OUT: True if plan uses an IN(...) op */ 3597 int *pbRetryLimit /* OUT: Retry without LIMIT/OFFSET */ 3598 ){ 3599 WhereClause *pWC = pBuilder->pWC; 3600 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3601 struct sqlite3_index_constraint *pIdxCons; 3602 struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage; 3603 int i; 3604 int mxTerm; 3605 int rc = SQLITE_OK; 3606 WhereLoop *pNew = pBuilder->pNew; 3607 Parse *pParse = pBuilder->pWInfo->pParse; 3608 SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab]; 3609 int nConstraint = pIdxInfo->nConstraint; 3610 3611 assert( (mUsable & mPrereq)==mPrereq ); 3612 *pbIn = 0; 3613 pNew->prereq = mPrereq; 3614 3615 /* Set the usable flag on the subset of constraints identified by 3616 ** arguments mUsable and mExclude. */ 3617 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3618 for(i=0; i<nConstraint; i++, pIdxCons++){ 3619 WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset]; 3620 pIdxCons->usable = 0; 3621 if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight 3622 && (pTerm->eOperator & mExclude)==0 3623 && (pbRetryLimit || !isLimitTerm(pTerm)) 3624 ){ 3625 pIdxCons->usable = 1; 3626 } 3627 } 3628 3629 /* Initialize the output fields of the sqlite3_index_info structure */ 3630 memset(pUsage, 0, sizeof(pUsage[0])*nConstraint); 3631 assert( pIdxInfo->needToFreeIdxStr==0 ); 3632 pIdxInfo->idxStr = 0; 3633 pIdxInfo->idxNum = 0; 3634 pIdxInfo->orderByConsumed = 0; 3635 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; 3636 pIdxInfo->estimatedRows = 25; 3637 pIdxInfo->idxFlags = 0; 3638 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed; 3639 pHidden->mHandleIn = 0; 3640 3641 /* Invoke the virtual table xBestIndex() method */ 3642 rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo); 3643 if( rc ){ 3644 if( rc==SQLITE_CONSTRAINT ){ 3645 /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means 3646 ** that the particular combination of parameters provided is unusable. 3647 ** Make no entries in the loop table. 3648 */ 3649 WHERETRACE(0xffff, (" ^^^^--- non-viable plan rejected!\n")); 3650 return SQLITE_OK; 3651 } 3652 return rc; 3653 } 3654 3655 mxTerm = -1; 3656 assert( pNew->nLSlot>=nConstraint ); 3657 memset(pNew->aLTerm, 0, sizeof(pNew->aLTerm[0])*nConstraint ); 3658 memset(&pNew->u.vtab, 0, sizeof(pNew->u.vtab)); 3659 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3660 for(i=0; i<nConstraint; i++, pIdxCons++){ 3661 int iTerm; 3662 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ 3663 WhereTerm *pTerm; 3664 int j = pIdxCons->iTermOffset; 3665 if( iTerm>=nConstraint 3666 || j<0 3667 || j>=pWC->nTerm 3668 || pNew->aLTerm[iTerm]!=0 3669 || pIdxCons->usable==0 3670 ){ 3671 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3672 testcase( pIdxInfo->needToFreeIdxStr ); 3673 return SQLITE_ERROR; 3674 } 3675 testcase( iTerm==nConstraint-1 ); 3676 testcase( j==0 ); 3677 testcase( j==pWC->nTerm-1 ); 3678 pTerm = &pWC->a[j]; 3679 pNew->prereq |= pTerm->prereqRight; 3680 assert( iTerm<pNew->nLSlot ); 3681 pNew->aLTerm[iTerm] = pTerm; 3682 if( iTerm>mxTerm ) mxTerm = iTerm; 3683 testcase( iTerm==15 ); 3684 testcase( iTerm==16 ); 3685 if( pUsage[i].omit ){ 3686 if( i<16 && ((1<<i)&mNoOmit)==0 ){ 3687 testcase( i!=iTerm ); 3688 pNew->u.vtab.omitMask |= 1<<iTerm; 3689 }else{ 3690 testcase( i!=iTerm ); 3691 } 3692 if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET ){ 3693 pNew->u.vtab.bOmitOffset = 1; 3694 } 3695 } 3696 if( SMASKBIT32(i) & pHidden->mHandleIn ){ 3697 pNew->u.vtab.mHandleIn |= MASKBIT32(iTerm); 3698 }else if( (pTerm->eOperator & WO_IN)!=0 ){ 3699 /* A virtual table that is constrained by an IN clause may not 3700 ** consume the ORDER BY clause because (1) the order of IN terms 3701 ** is not necessarily related to the order of output terms and 3702 ** (2) Multiple outputs from a single IN value will not merge 3703 ** together. */ 3704 pIdxInfo->orderByConsumed = 0; 3705 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE; 3706 *pbIn = 1; assert( (mExclude & WO_IN)==0 ); 3707 } 3708 3709 assert( pbRetryLimit || !isLimitTerm(pTerm) ); 3710 if( isLimitTerm(pTerm) && *pbIn ){ 3711 /* If there is an IN(...) term handled as an == (separate call to 3712 ** xFilter for each value on the RHS of the IN) and a LIMIT or 3713 ** OFFSET term handled as well, the plan is unusable. Set output 3714 ** variable *pbRetryLimit to true to tell the caller to retry with 3715 ** LIMIT and OFFSET disabled. */ 3716 if( pIdxInfo->needToFreeIdxStr ){ 3717 sqlite3_free(pIdxInfo->idxStr); 3718 pIdxInfo->idxStr = 0; 3719 pIdxInfo->needToFreeIdxStr = 0; 3720 } 3721 *pbRetryLimit = 1; 3722 return SQLITE_OK; 3723 } 3724 } 3725 } 3726 3727 pNew->nLTerm = mxTerm+1; 3728 for(i=0; i<=mxTerm; i++){ 3729 if( pNew->aLTerm[i]==0 ){ 3730 /* The non-zero argvIdx values must be contiguous. Raise an 3731 ** error if they are not */ 3732 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3733 testcase( pIdxInfo->needToFreeIdxStr ); 3734 return SQLITE_ERROR; 3735 } 3736 } 3737 assert( pNew->nLTerm<=pNew->nLSlot ); 3738 pNew->u.vtab.idxNum = pIdxInfo->idxNum; 3739 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; 3740 pIdxInfo->needToFreeIdxStr = 0; 3741 pNew->u.vtab.idxStr = pIdxInfo->idxStr; 3742 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? 3743 pIdxInfo->nOrderBy : 0); 3744 pNew->rSetup = 0; 3745 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); 3746 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); 3747 3748 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated 3749 ** that the scan will visit at most one row. Clear it otherwise. */ 3750 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){ 3751 pNew->wsFlags |= WHERE_ONEROW; 3752 }else{ 3753 pNew->wsFlags &= ~WHERE_ONEROW; 3754 } 3755 rc = whereLoopInsert(pBuilder, pNew); 3756 if( pNew->u.vtab.needFree ){ 3757 sqlite3_free(pNew->u.vtab.idxStr); 3758 pNew->u.vtab.needFree = 0; 3759 } 3760 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n", 3761 *pbIn, (sqlite3_uint64)mPrereq, 3762 (sqlite3_uint64)(pNew->prereq & ~mPrereq))); 3763 3764 return rc; 3765 } 3766 3767 /* 3768 ** Return the collating sequence for a constraint passed into xBestIndex. 3769 ** 3770 ** pIdxInfo must be an sqlite3_index_info structure passed into xBestIndex. 3771 ** This routine depends on there being a HiddenIndexInfo structure immediately 3772 ** following the sqlite3_index_info structure. 3773 ** 3774 ** Return a pointer to the collation name: 3775 ** 3776 ** 1. If there is an explicit COLLATE operator on the constaint, return it. 3777 ** 3778 ** 2. Else, if the column has an alternative collation, return that. 3779 ** 3780 ** 3. Otherwise, return "BINARY". 3781 */ 3782 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){ 3783 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3784 const char *zRet = 0; 3785 if( iCons>=0 && iCons<pIdxInfo->nConstraint ){ 3786 CollSeq *pC = 0; 3787 int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset; 3788 Expr *pX = pHidden->pWC->a[iTerm].pExpr; 3789 if( pX->pLeft ){ 3790 pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX); 3791 } 3792 zRet = (pC ? pC->zName : sqlite3StrBINARY); 3793 } 3794 return zRet; 3795 } 3796 3797 /* 3798 ** Return true if constraint iCons is really an IN(...) constraint, or 3799 ** false otherwise. If iCons is an IN(...) constraint, set (if bHandle!=0) 3800 ** or clear (if bHandle==0) the flag to handle it using an iterator. 3801 */ 3802 int sqlite3_vtab_in(sqlite3_index_info *pIdxInfo, int iCons, int bHandle){ 3803 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3804 u32 m = SMASKBIT32(iCons); 3805 if( m & pHidden->mIn ){ 3806 if( bHandle==0 ){ 3807 pHidden->mHandleIn &= ~m; 3808 }else if( bHandle>0 ){ 3809 pHidden->mHandleIn |= m; 3810 } 3811 return 1; 3812 } 3813 return 0; 3814 } 3815 3816 /* 3817 ** This interface is callable from within the xBestIndex callback only. 3818 ** 3819 ** If possible, set (*ppVal) to point to an object containing the value 3820 ** on the right-hand-side of constraint iCons. 3821 */ 3822 int sqlite3_vtab_rhs_value( 3823 sqlite3_index_info *pIdxInfo, /* Copy of first argument to xBestIndex */ 3824 int iCons, /* Constraint for which RHS is wanted */ 3825 sqlite3_value **ppVal /* Write value extracted here */ 3826 ){ 3827 HiddenIndexInfo *pH = (HiddenIndexInfo*)&pIdxInfo[1]; 3828 sqlite3_value *pVal = 0; 3829 int rc = SQLITE_OK; 3830 if( iCons<0 || iCons>=pIdxInfo->nConstraint ){ 3831 rc = SQLITE_MISUSE; /* EV: R-30545-25046 */ 3832 }else{ 3833 if( pH->aRhs[iCons]==0 ){ 3834 WhereTerm *pTerm = &pH->pWC->a[pIdxInfo->aConstraint[iCons].iTermOffset]; 3835 rc = sqlite3ValueFromExpr( 3836 pH->pParse->db, pTerm->pExpr->pRight, ENC(pH->pParse->db), 3837 SQLITE_AFF_BLOB, &pH->aRhs[iCons] 3838 ); 3839 testcase( rc!=SQLITE_OK ); 3840 } 3841 pVal = pH->aRhs[iCons]; 3842 } 3843 *ppVal = pVal; 3844 3845 if( rc==SQLITE_OK && pVal==0 ){ /* IMP: R-19933-32160 */ 3846 rc = SQLITE_NOTFOUND; /* IMP: R-36424-56542 */ 3847 } 3848 3849 return rc; 3850 } 3851 3852 /* 3853 ** Return true if ORDER BY clause may be handled as DISTINCT. 3854 */ 3855 int sqlite3_vtab_distinct(sqlite3_index_info *pIdxInfo){ 3856 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3857 assert( pHidden->eDistinct>=0 && pHidden->eDistinct<=3 ); 3858 return pHidden->eDistinct; 3859 } 3860 3861 #if (defined(SQLITE_ENABLE_DBPAGE_VTAB) || defined(SQLITE_TEST)) \ 3862 && !defined(SQLITE_OMIT_VIRTUALTABLE) 3863 /* 3864 ** Cause the prepared statement that is associated with a call to 3865 ** xBestIndex to potentiall use all schemas. If the statement being 3866 ** prepared is read-only, then just start read transactions on all 3867 ** schemas. But if this is a write operation, start writes on all 3868 ** schemas. 3869 ** 3870 ** This is used by the (built-in) sqlite_dbpage virtual table. 3871 */ 3872 void sqlite3VtabUsesAllSchemas(sqlite3_index_info *pIdxInfo){ 3873 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3874 Parse *pParse = pHidden->pParse; 3875 int nDb = pParse->db->nDb; 3876 int i; 3877 for(i=0; i<nDb; i++){ 3878 sqlite3CodeVerifySchema(pParse, i); 3879 } 3880 if( pParse->writeMask ){ 3881 for(i=0; i<nDb; i++){ 3882 sqlite3BeginWriteOperation(pParse, 0, i); 3883 } 3884 } 3885 } 3886 #endif 3887 3888 /* 3889 ** Add all WhereLoop objects for a table of the join identified by 3890 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. 3891 ** 3892 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and 3893 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause 3894 ** entries that occur before the virtual table in the FROM clause and are 3895 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the 3896 ** mUnusable mask contains all FROM clause entries that occur after the 3897 ** virtual table and are separated from it by at least one LEFT or 3898 ** CROSS JOIN. 3899 ** 3900 ** For example, if the query were: 3901 ** 3902 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; 3903 ** 3904 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6). 3905 ** 3906 ** All the tables in mPrereq must be scanned before the current virtual 3907 ** table. So any terms for which all prerequisites are satisfied by 3908 ** mPrereq may be specified as "usable" in all calls to xBestIndex. 3909 ** Conversely, all tables in mUnusable must be scanned after the current 3910 ** virtual table, so any terms for which the prerequisites overlap with 3911 ** mUnusable should always be configured as "not-usable" for xBestIndex. 3912 */ 3913 static int whereLoopAddVirtual( 3914 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 3915 Bitmask mPrereq, /* Tables that must be scanned before this one */ 3916 Bitmask mUnusable /* Tables that must be scanned after this one */ 3917 ){ 3918 int rc = SQLITE_OK; /* Return code */ 3919 WhereInfo *pWInfo; /* WHERE analysis context */ 3920 Parse *pParse; /* The parsing context */ 3921 WhereClause *pWC; /* The WHERE clause */ 3922 SrcItem *pSrc; /* The FROM clause term to search */ 3923 sqlite3_index_info *p; /* Object to pass to xBestIndex() */ 3924 int nConstraint; /* Number of constraints in p */ 3925 int bIn; /* True if plan uses IN(...) operator */ 3926 WhereLoop *pNew; 3927 Bitmask mBest; /* Tables used by best possible plan */ 3928 u16 mNoOmit; 3929 int bRetry = 0; /* True to retry with LIMIT/OFFSET disabled */ 3930 3931 assert( (mPrereq & mUnusable)==0 ); 3932 pWInfo = pBuilder->pWInfo; 3933 pParse = pWInfo->pParse; 3934 pWC = pBuilder->pWC; 3935 pNew = pBuilder->pNew; 3936 pSrc = &pWInfo->pTabList->a[pNew->iTab]; 3937 assert( IsVirtual(pSrc->pTab) ); 3938 p = allocateIndexInfo(pWInfo, pWC, mUnusable, pSrc, &mNoOmit); 3939 if( p==0 ) return SQLITE_NOMEM_BKPT; 3940 pNew->rSetup = 0; 3941 pNew->wsFlags = WHERE_VIRTUALTABLE; 3942 pNew->nLTerm = 0; 3943 pNew->u.vtab.needFree = 0; 3944 nConstraint = p->nConstraint; 3945 if( whereLoopResize(pParse->db, pNew, nConstraint) ){ 3946 freeIndexInfo(pParse->db, p); 3947 return SQLITE_NOMEM_BKPT; 3948 } 3949 3950 /* First call xBestIndex() with all constraints usable. */ 3951 WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName)); 3952 WHERETRACE(0x40, (" VirtualOne: all usable\n")); 3953 rc = whereLoopAddVirtualOne( 3954 pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, &bRetry 3955 ); 3956 if( bRetry ){ 3957 assert( rc==SQLITE_OK ); 3958 rc = whereLoopAddVirtualOne( 3959 pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, 0 3960 ); 3961 } 3962 3963 /* If the call to xBestIndex() with all terms enabled produced a plan 3964 ** that does not require any source tables (IOW: a plan with mBest==0) 3965 ** and does not use an IN(...) operator, then there is no point in making 3966 ** any further calls to xBestIndex() since they will all return the same 3967 ** result (if the xBestIndex() implementation is sane). */ 3968 if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){ 3969 int seenZero = 0; /* True if a plan with no prereqs seen */ 3970 int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */ 3971 Bitmask mPrev = 0; 3972 Bitmask mBestNoIn = 0; 3973 3974 /* If the plan produced by the earlier call uses an IN(...) term, call 3975 ** xBestIndex again, this time with IN(...) terms disabled. */ 3976 if( bIn ){ 3977 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n")); 3978 rc = whereLoopAddVirtualOne( 3979 pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn, 0); 3980 assert( bIn==0 ); 3981 mBestNoIn = pNew->prereq & ~mPrereq; 3982 if( mBestNoIn==0 ){ 3983 seenZero = 1; 3984 seenZeroNoIN = 1; 3985 } 3986 } 3987 3988 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq) 3989 ** in the set of terms that apply to the current virtual table. */ 3990 while( rc==SQLITE_OK ){ 3991 int i; 3992 Bitmask mNext = ALLBITS; 3993 assert( mNext>0 ); 3994 for(i=0; i<nConstraint; i++){ 3995 Bitmask mThis = ( 3996 pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq 3997 ); 3998 if( mThis>mPrev && mThis<mNext ) mNext = mThis; 3999 } 4000 mPrev = mNext; 4001 if( mNext==ALLBITS ) break; 4002 if( mNext==mBest || mNext==mBestNoIn ) continue; 4003 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n", 4004 (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext)); 4005 rc = whereLoopAddVirtualOne( 4006 pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn, 0); 4007 if( pNew->prereq==mPrereq ){ 4008 seenZero = 1; 4009 if( bIn==0 ) seenZeroNoIN = 1; 4010 } 4011 } 4012 4013 /* If the calls to xBestIndex() in the above loop did not find a plan 4014 ** that requires no source tables at all (i.e. one guaranteed to be 4015 ** usable), make a call here with all source tables disabled */ 4016 if( rc==SQLITE_OK && seenZero==0 ){ 4017 WHERETRACE(0x40, (" VirtualOne: all disabled\n")); 4018 rc = whereLoopAddVirtualOne( 4019 pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn, 0); 4020 if( bIn==0 ) seenZeroNoIN = 1; 4021 } 4022 4023 /* If the calls to xBestIndex() have so far failed to find a plan 4024 ** that requires no source tables at all and does not use an IN(...) 4025 ** operator, make a final call to obtain one here. */ 4026 if( rc==SQLITE_OK && seenZeroNoIN==0 ){ 4027 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n")); 4028 rc = whereLoopAddVirtualOne( 4029 pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn, 0); 4030 } 4031 } 4032 4033 if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr); 4034 freeIndexInfo(pParse->db, p); 4035 WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc)); 4036 return rc; 4037 } 4038 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4039 4040 /* 4041 ** Add WhereLoop entries to handle OR terms. This works for either 4042 ** btrees or virtual tables. 4043 */ 4044 static int whereLoopAddOr( 4045 WhereLoopBuilder *pBuilder, 4046 Bitmask mPrereq, 4047 Bitmask mUnusable 4048 ){ 4049 WhereInfo *pWInfo = pBuilder->pWInfo; 4050 WhereClause *pWC; 4051 WhereLoop *pNew; 4052 WhereTerm *pTerm, *pWCEnd; 4053 int rc = SQLITE_OK; 4054 int iCur; 4055 WhereClause tempWC; 4056 WhereLoopBuilder sSubBuild; 4057 WhereOrSet sSum, sCur; 4058 SrcItem *pItem; 4059 4060 pWC = pBuilder->pWC; 4061 pWCEnd = pWC->a + pWC->nTerm; 4062 pNew = pBuilder->pNew; 4063 memset(&sSum, 0, sizeof(sSum)); 4064 pItem = pWInfo->pTabList->a + pNew->iTab; 4065 iCur = pItem->iCursor; 4066 4067 /* The multi-index OR optimization does not work for RIGHT and FULL JOIN */ 4068 if( pItem->fg.jointype & JT_RIGHT ) return SQLITE_OK; 4069 4070 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ 4071 if( (pTerm->eOperator & WO_OR)!=0 4072 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 4073 ){ 4074 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; 4075 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; 4076 WhereTerm *pOrTerm; 4077 int once = 1; 4078 int i, j; 4079 4080 sSubBuild = *pBuilder; 4081 sSubBuild.pOrSet = &sCur; 4082 4083 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); 4084 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ 4085 if( (pOrTerm->eOperator & WO_AND)!=0 ){ 4086 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; 4087 }else if( pOrTerm->leftCursor==iCur ){ 4088 tempWC.pWInfo = pWC->pWInfo; 4089 tempWC.pOuter = pWC; 4090 tempWC.op = TK_AND; 4091 tempWC.nTerm = 1; 4092 tempWC.nBase = 1; 4093 tempWC.a = pOrTerm; 4094 sSubBuild.pWC = &tempWC; 4095 }else{ 4096 continue; 4097 } 4098 sCur.n = 0; 4099 #ifdef WHERETRACE_ENABLED 4100 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", 4101 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); 4102 if( sqlite3WhereTrace & 0x400 ){ 4103 sqlite3WhereClausePrint(sSubBuild.pWC); 4104 } 4105 #endif 4106 #ifndef SQLITE_OMIT_VIRTUALTABLE 4107 if( IsVirtual(pItem->pTab) ){ 4108 rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable); 4109 }else 4110 #endif 4111 { 4112 rc = whereLoopAddBtree(&sSubBuild, mPrereq); 4113 } 4114 if( rc==SQLITE_OK ){ 4115 rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable); 4116 } 4117 assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0 4118 || rc==SQLITE_NOMEM ); 4119 testcase( rc==SQLITE_NOMEM && sCur.n>0 ); 4120 testcase( rc==SQLITE_DONE ); 4121 if( sCur.n==0 ){ 4122 sSum.n = 0; 4123 break; 4124 }else if( once ){ 4125 whereOrMove(&sSum, &sCur); 4126 once = 0; 4127 }else{ 4128 WhereOrSet sPrev; 4129 whereOrMove(&sPrev, &sSum); 4130 sSum.n = 0; 4131 for(i=0; i<sPrev.n; i++){ 4132 for(j=0; j<sCur.n; j++){ 4133 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, 4134 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), 4135 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); 4136 } 4137 } 4138 } 4139 } 4140 pNew->nLTerm = 1; 4141 pNew->aLTerm[0] = pTerm; 4142 pNew->wsFlags = WHERE_MULTI_OR; 4143 pNew->rSetup = 0; 4144 pNew->iSortIdx = 0; 4145 memset(&pNew->u, 0, sizeof(pNew->u)); 4146 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ 4147 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs 4148 ** of all sub-scans required by the OR-scan. However, due to rounding 4149 ** errors, it may be that the cost of the OR-scan is equal to its 4150 ** most expensive sub-scan. Add the smallest possible penalty 4151 ** (equivalent to multiplying the cost by 1.07) to ensure that 4152 ** this does not happen. Otherwise, for WHERE clauses such as the 4153 ** following where there is an index on "y": 4154 ** 4155 ** WHERE likelihood(x=?, 0.99) OR y=? 4156 ** 4157 ** the planner may elect to "OR" together a full-table scan and an 4158 ** index lookup. And other similarly odd results. */ 4159 pNew->rRun = sSum.a[i].rRun + 1; 4160 pNew->nOut = sSum.a[i].nOut; 4161 pNew->prereq = sSum.a[i].prereq; 4162 rc = whereLoopInsert(pBuilder, pNew); 4163 } 4164 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); 4165 } 4166 } 4167 return rc; 4168 } 4169 4170 /* 4171 ** Add all WhereLoop objects for all tables 4172 */ 4173 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ 4174 WhereInfo *pWInfo = pBuilder->pWInfo; 4175 Bitmask mPrereq = 0; 4176 Bitmask mPrior = 0; 4177 int iTab; 4178 SrcList *pTabList = pWInfo->pTabList; 4179 SrcItem *pItem; 4180 SrcItem *pEnd = &pTabList->a[pWInfo->nLevel]; 4181 sqlite3 *db = pWInfo->pParse->db; 4182 int rc = SQLITE_OK; 4183 int bFirstPastRJ = 0; 4184 int hasRightJoin = 0; 4185 WhereLoop *pNew; 4186 4187 4188 /* Loop over the tables in the join, from left to right */ 4189 pNew = pBuilder->pNew; 4190 4191 /* Verify that pNew has already been initialized */ 4192 assert( pNew->nLTerm==0 ); 4193 assert( pNew->wsFlags==0 ); 4194 assert( pNew->nLSlot>=ArraySize(pNew->aLTermSpace) ); 4195 assert( pNew->aLTerm!=0 ); 4196 4197 pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT; 4198 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){ 4199 Bitmask mUnusable = 0; 4200 pNew->iTab = iTab; 4201 pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR; 4202 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); 4203 if( bFirstPastRJ 4204 || (pItem->fg.jointype & (JT_OUTER|JT_CROSS|JT_LTORJ))!=0 4205 ){ 4206 /* Add prerequisites to prevent reordering of FROM clause terms 4207 ** across CROSS joins and outer joins. The bFirstPastRJ boolean 4208 ** prevents the right operand of a RIGHT JOIN from being swapped with 4209 ** other elements even further to the right. 4210 ** 4211 ** The JT_LTORJ case and the hasRightJoin flag work together to 4212 ** prevent FROM-clause terms from moving from the right side of 4213 ** a LEFT JOIN over to the left side of that join if the LEFT JOIN 4214 ** is itself on the left side of a RIGHT JOIN. 4215 */ 4216 if( pItem->fg.jointype & JT_LTORJ ) hasRightJoin = 1; 4217 mPrereq |= mPrior; 4218 bFirstPastRJ = (pItem->fg.jointype & JT_RIGHT)!=0; 4219 }else if( !hasRightJoin ){ 4220 mPrereq = 0; 4221 } 4222 #ifndef SQLITE_OMIT_VIRTUALTABLE 4223 if( IsVirtual(pItem->pTab) ){ 4224 SrcItem *p; 4225 for(p=&pItem[1]; p<pEnd; p++){ 4226 if( mUnusable || (p->fg.jointype & (JT_OUTER|JT_CROSS)) ){ 4227 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); 4228 } 4229 } 4230 rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable); 4231 }else 4232 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4233 { 4234 rc = whereLoopAddBtree(pBuilder, mPrereq); 4235 } 4236 if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){ 4237 rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable); 4238 } 4239 mPrior |= pNew->maskSelf; 4240 if( rc || db->mallocFailed ){ 4241 if( rc==SQLITE_DONE ){ 4242 /* We hit the query planner search limit set by iPlanLimit */ 4243 sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search"); 4244 rc = SQLITE_OK; 4245 }else{ 4246 break; 4247 } 4248 } 4249 } 4250 4251 whereLoopClear(db, pNew); 4252 return rc; 4253 } 4254 4255 /* 4256 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th 4257 ** parameters) to see if it outputs rows in the requested ORDER BY 4258 ** (or GROUP BY) without requiring a separate sort operation. Return N: 4259 ** 4260 ** N>0: N terms of the ORDER BY clause are satisfied 4261 ** N==0: No terms of the ORDER BY clause are satisfied 4262 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. 4263 ** 4264 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as 4265 ** strict. With GROUP BY and DISTINCT the only requirement is that 4266 ** equivalent rows appear immediately adjacent to one another. GROUP BY 4267 ** and DISTINCT do not require rows to appear in any particular order as long 4268 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT 4269 ** the pOrderBy terms can be matched in any order. With ORDER BY, the 4270 ** pOrderBy terms must be matched in strict left-to-right order. 4271 */ 4272 static i8 wherePathSatisfiesOrderBy( 4273 WhereInfo *pWInfo, /* The WHERE clause */ 4274 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ 4275 WherePath *pPath, /* The WherePath to check */ 4276 u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */ 4277 u16 nLoop, /* Number of entries in pPath->aLoop[] */ 4278 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ 4279 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ 4280 ){ 4281 u8 revSet; /* True if rev is known */ 4282 u8 rev; /* Composite sort order */ 4283 u8 revIdx; /* Index sort order */ 4284 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ 4285 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ 4286 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ 4287 u16 eqOpMask; /* Allowed equality operators */ 4288 u16 nKeyCol; /* Number of key columns in pIndex */ 4289 u16 nColumn; /* Total number of ordered columns in the index */ 4290 u16 nOrderBy; /* Number terms in the ORDER BY clause */ 4291 int iLoop; /* Index of WhereLoop in pPath being processed */ 4292 int i, j; /* Loop counters */ 4293 int iCur; /* Cursor number for current WhereLoop */ 4294 int iColumn; /* A column number within table iCur */ 4295 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ 4296 WhereTerm *pTerm; /* A single term of the WHERE clause */ 4297 Expr *pOBExpr; /* An expression from the ORDER BY clause */ 4298 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ 4299 Index *pIndex; /* The index associated with pLoop */ 4300 sqlite3 *db = pWInfo->pParse->db; /* Database connection */ 4301 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ 4302 Bitmask obDone; /* Mask of all ORDER BY terms */ 4303 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ 4304 Bitmask ready; /* Mask of inner loops */ 4305 4306 /* 4307 ** We say the WhereLoop is "one-row" if it generates no more than one 4308 ** row of output. A WhereLoop is one-row if all of the following are true: 4309 ** (a) All index columns match with WHERE_COLUMN_EQ. 4310 ** (b) The index is unique 4311 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. 4312 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. 4313 ** 4314 ** We say the WhereLoop is "order-distinct" if the set of columns from 4315 ** that WhereLoop that are in the ORDER BY clause are different for every 4316 ** row of the WhereLoop. Every one-row WhereLoop is automatically 4317 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause 4318 ** is not order-distinct. To be order-distinct is not quite the same as being 4319 ** UNIQUE since a UNIQUE column or index can have multiple rows that 4320 ** are NULL and NULL values are equivalent for the purpose of order-distinct. 4321 ** To be order-distinct, the columns must be UNIQUE and NOT NULL. 4322 ** 4323 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the 4324 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is 4325 ** automatically order-distinct. 4326 */ 4327 4328 assert( pOrderBy!=0 ); 4329 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; 4330 4331 nOrderBy = pOrderBy->nExpr; 4332 testcase( nOrderBy==BMS-1 ); 4333 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ 4334 isOrderDistinct = 1; 4335 obDone = MASKBIT(nOrderBy)-1; 4336 orderDistinctMask = 0; 4337 ready = 0; 4338 eqOpMask = WO_EQ | WO_IS | WO_ISNULL; 4339 if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){ 4340 eqOpMask |= WO_IN; 4341 } 4342 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ 4343 if( iLoop>0 ) ready |= pLoop->maskSelf; 4344 if( iLoop<nLoop ){ 4345 pLoop = pPath->aLoop[iLoop]; 4346 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue; 4347 }else{ 4348 pLoop = pLast; 4349 } 4350 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ 4351 if( pLoop->u.vtab.isOrdered 4352 && ((wctrlFlags&(WHERE_DISTINCTBY|WHERE_SORTBYGROUP))!=WHERE_DISTINCTBY) 4353 ){ 4354 obSat = obDone; 4355 } 4356 break; 4357 }else if( wctrlFlags & WHERE_DISTINCTBY ){ 4358 pLoop->u.btree.nDistinctCol = 0; 4359 } 4360 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; 4361 4362 /* Mark off any ORDER BY term X that is a column in the table of 4363 ** the current loop for which there is term in the WHERE 4364 ** clause of the form X IS NULL or X=? that reference only outer 4365 ** loops. 4366 */ 4367 for(i=0; i<nOrderBy; i++){ 4368 if( MASKBIT(i) & obSat ) continue; 4369 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr); 4370 if( NEVER(pOBExpr==0) ) continue; 4371 if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue; 4372 if( pOBExpr->iTable!=iCur ) continue; 4373 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, 4374 ~ready, eqOpMask, 0); 4375 if( pTerm==0 ) continue; 4376 if( pTerm->eOperator==WO_IN ){ 4377 /* IN terms are only valid for sorting in the ORDER BY LIMIT 4378 ** optimization, and then only if they are actually used 4379 ** by the query plan */ 4380 assert( wctrlFlags & 4381 (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) ); 4382 for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){} 4383 if( j>=pLoop->nLTerm ) continue; 4384 } 4385 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ 4386 Parse *pParse = pWInfo->pParse; 4387 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr); 4388 CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr); 4389 assert( pColl1 ); 4390 if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){ 4391 continue; 4392 } 4393 testcase( pTerm->pExpr->op==TK_IS ); 4394 } 4395 obSat |= MASKBIT(i); 4396 } 4397 4398 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ 4399 if( pLoop->wsFlags & WHERE_IPK ){ 4400 pIndex = 0; 4401 nKeyCol = 0; 4402 nColumn = 1; 4403 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ 4404 return 0; 4405 }else{ 4406 nKeyCol = pIndex->nKeyCol; 4407 nColumn = pIndex->nColumn; 4408 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); 4409 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID 4410 || !HasRowid(pIndex->pTable)); 4411 /* All relevant terms of the index must also be non-NULL in order 4412 ** for isOrderDistinct to be true. So the isOrderDistint value 4413 ** computed here might be a false positive. Corrections will be 4414 ** made at tag-20210426-1 below */ 4415 isOrderDistinct = IsUniqueIndex(pIndex) 4416 && (pLoop->wsFlags & WHERE_SKIPSCAN)==0; 4417 } 4418 4419 /* Loop through all columns of the index and deal with the ones 4420 ** that are not constrained by == or IN. 4421 */ 4422 rev = revSet = 0; 4423 distinctColumns = 0; 4424 for(j=0; j<nColumn; j++){ 4425 u8 bOnce = 1; /* True to run the ORDER BY search loop */ 4426 4427 assert( j>=pLoop->u.btree.nEq 4428 || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip) 4429 ); 4430 if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){ 4431 u16 eOp = pLoop->aLTerm[j]->eOperator; 4432 4433 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when 4434 ** doing WHERE_ORDERBY_LIMIT processing). Except, IS and ISNULL 4435 ** terms imply that the index is not UNIQUE NOT NULL in which case 4436 ** the loop need to be marked as not order-distinct because it can 4437 ** have repeated NULL rows. 4438 ** 4439 ** If the current term is a column of an ((?,?) IN (SELECT...)) 4440 ** expression for which the SELECT returns more than one column, 4441 ** check that it is the only column used by this loop. Otherwise, 4442 ** if it is one of two or more, none of the columns can be 4443 ** considered to match an ORDER BY term. 4444 */ 4445 if( (eOp & eqOpMask)!=0 ){ 4446 if( eOp & (WO_ISNULL|WO_IS) ){ 4447 testcase( eOp & WO_ISNULL ); 4448 testcase( eOp & WO_IS ); 4449 testcase( isOrderDistinct ); 4450 isOrderDistinct = 0; 4451 } 4452 continue; 4453 }else if( ALWAYS(eOp & WO_IN) ){ 4454 /* ALWAYS() justification: eOp is an equality operator due to the 4455 ** j<pLoop->u.btree.nEq constraint above. Any equality other 4456 ** than WO_IN is captured by the previous "if". So this one 4457 ** always has to be WO_IN. */ 4458 Expr *pX = pLoop->aLTerm[j]->pExpr; 4459 for(i=j+1; i<pLoop->u.btree.nEq; i++){ 4460 if( pLoop->aLTerm[i]->pExpr==pX ){ 4461 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) ); 4462 bOnce = 0; 4463 break; 4464 } 4465 } 4466 } 4467 } 4468 4469 /* Get the column number in the table (iColumn) and sort order 4470 ** (revIdx) for the j-th column of the index. 4471 */ 4472 if( pIndex ){ 4473 iColumn = pIndex->aiColumn[j]; 4474 revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC; 4475 if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID; 4476 }else{ 4477 iColumn = XN_ROWID; 4478 revIdx = 0; 4479 } 4480 4481 /* An unconstrained column that might be NULL means that this 4482 ** WhereLoop is not well-ordered. tag-20210426-1 4483 */ 4484 if( isOrderDistinct ){ 4485 if( iColumn>=0 4486 && j>=pLoop->u.btree.nEq 4487 && pIndex->pTable->aCol[iColumn].notNull==0 4488 ){ 4489 isOrderDistinct = 0; 4490 } 4491 if( iColumn==XN_EXPR ){ 4492 isOrderDistinct = 0; 4493 } 4494 } 4495 4496 /* Find the ORDER BY term that corresponds to the j-th column 4497 ** of the index and mark that ORDER BY term off 4498 */ 4499 isMatch = 0; 4500 for(i=0; bOnce && i<nOrderBy; i++){ 4501 if( MASKBIT(i) & obSat ) continue; 4502 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr); 4503 testcase( wctrlFlags & WHERE_GROUPBY ); 4504 testcase( wctrlFlags & WHERE_DISTINCTBY ); 4505 if( NEVER(pOBExpr==0) ) continue; 4506 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; 4507 if( iColumn>=XN_ROWID ){ 4508 if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue; 4509 if( pOBExpr->iTable!=iCur ) continue; 4510 if( pOBExpr->iColumn!=iColumn ) continue; 4511 }else{ 4512 Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr; 4513 if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){ 4514 continue; 4515 } 4516 } 4517 if( iColumn!=XN_ROWID ){ 4518 pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 4519 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; 4520 } 4521 if( wctrlFlags & WHERE_DISTINCTBY ){ 4522 pLoop->u.btree.nDistinctCol = j+1; 4523 } 4524 isMatch = 1; 4525 break; 4526 } 4527 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ 4528 /* Make sure the sort order is compatible in an ORDER BY clause. 4529 ** Sort order is irrelevant for a GROUP BY clause. */ 4530 if( revSet ){ 4531 if( (rev ^ revIdx) 4532 != (pOrderBy->a[i].fg.sortFlags&KEYINFO_ORDER_DESC) 4533 ){ 4534 isMatch = 0; 4535 } 4536 }else{ 4537 rev = revIdx ^ (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC); 4538 if( rev ) *pRevMask |= MASKBIT(iLoop); 4539 revSet = 1; 4540 } 4541 } 4542 if( isMatch && (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL) ){ 4543 if( j==pLoop->u.btree.nEq ){ 4544 pLoop->wsFlags |= WHERE_BIGNULL_SORT; 4545 }else{ 4546 isMatch = 0; 4547 } 4548 } 4549 if( isMatch ){ 4550 if( iColumn==XN_ROWID ){ 4551 testcase( distinctColumns==0 ); 4552 distinctColumns = 1; 4553 } 4554 obSat |= MASKBIT(i); 4555 }else{ 4556 /* No match found */ 4557 if( j==0 || j<nKeyCol ){ 4558 testcase( isOrderDistinct!=0 ); 4559 isOrderDistinct = 0; 4560 } 4561 break; 4562 } 4563 } /* end Loop over all index columns */ 4564 if( distinctColumns ){ 4565 testcase( isOrderDistinct==0 ); 4566 isOrderDistinct = 1; 4567 } 4568 } /* end-if not one-row */ 4569 4570 /* Mark off any other ORDER BY terms that reference pLoop */ 4571 if( isOrderDistinct ){ 4572 orderDistinctMask |= pLoop->maskSelf; 4573 for(i=0; i<nOrderBy; i++){ 4574 Expr *p; 4575 Bitmask mTerm; 4576 if( MASKBIT(i) & obSat ) continue; 4577 p = pOrderBy->a[i].pExpr; 4578 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); 4579 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; 4580 if( (mTerm&~orderDistinctMask)==0 ){ 4581 obSat |= MASKBIT(i); 4582 } 4583 } 4584 } 4585 } /* End the loop over all WhereLoops from outer-most down to inner-most */ 4586 if( obSat==obDone ) return (i8)nOrderBy; 4587 if( !isOrderDistinct ){ 4588 for(i=nOrderBy-1; i>0; i--){ 4589 Bitmask m = ALWAYS(i<BMS) ? MASKBIT(i) - 1 : 0; 4590 if( (obSat&m)==m ) return i; 4591 } 4592 return 0; 4593 } 4594 return -1; 4595 } 4596 4597 4598 /* 4599 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), 4600 ** the planner assumes that the specified pOrderBy list is actually a GROUP 4601 ** BY clause - and so any order that groups rows as required satisfies the 4602 ** request. 4603 ** 4604 ** Normally, in this case it is not possible for the caller to determine 4605 ** whether or not the rows are really being delivered in sorted order, or 4606 ** just in some other order that provides the required grouping. However, 4607 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then 4608 ** this function may be called on the returned WhereInfo object. It returns 4609 ** true if the rows really will be sorted in the specified order, or false 4610 ** otherwise. 4611 ** 4612 ** For example, assuming: 4613 ** 4614 ** CREATE INDEX i1 ON t1(x, Y); 4615 ** 4616 ** then 4617 ** 4618 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 4619 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 4620 */ 4621 int sqlite3WhereIsSorted(WhereInfo *pWInfo){ 4622 assert( pWInfo->wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY) ); 4623 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); 4624 return pWInfo->sorted; 4625 } 4626 4627 #ifdef WHERETRACE_ENABLED 4628 /* For debugging use only: */ 4629 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ 4630 static char zName[65]; 4631 int i; 4632 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } 4633 if( pLast ) zName[i++] = pLast->cId; 4634 zName[i] = 0; 4635 return zName; 4636 } 4637 #endif 4638 4639 /* 4640 ** Return the cost of sorting nRow rows, assuming that the keys have 4641 ** nOrderby columns and that the first nSorted columns are already in 4642 ** order. 4643 */ 4644 static LogEst whereSortingCost( 4645 WhereInfo *pWInfo, 4646 LogEst nRow, 4647 int nOrderBy, 4648 int nSorted 4649 ){ 4650 /* TUNING: Estimated cost of a full external sort, where N is 4651 ** the number of rows to sort is: 4652 ** 4653 ** cost = (3.0 * N * log(N)). 4654 ** 4655 ** Or, if the order-by clause has X terms but only the last Y 4656 ** terms are out of order, then block-sorting will reduce the 4657 ** sorting cost to: 4658 ** 4659 ** cost = (3.0 * N * log(N)) * (Y/X) 4660 ** 4661 ** The (Y/X) term is implemented using stack variable rScale 4662 ** below. 4663 */ 4664 LogEst rScale, rSortCost; 4665 assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); 4666 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; 4667 rSortCost = nRow + rScale + 16; 4668 4669 /* Multiple by log(M) where M is the number of output rows. 4670 ** Use the LIMIT for M if it is smaller. Or if this sort is for 4671 ** a DISTINCT operator, M will be the number of distinct output 4672 ** rows, so fudge it downwards a bit. 4673 */ 4674 if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){ 4675 nRow = pWInfo->iLimit; 4676 }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){ 4677 /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT 4678 ** reduces the number of output rows by a factor of 2 */ 4679 if( nRow>10 ){ nRow -= 10; assert( 10==sqlite3LogEst(2) ); } 4680 } 4681 rSortCost += estLog(nRow); 4682 return rSortCost; 4683 } 4684 4685 /* 4686 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine 4687 ** attempts to find the lowest cost path that visits each WhereLoop 4688 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. 4689 ** 4690 ** Assume that the total number of output rows that will need to be sorted 4691 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting 4692 ** costs if nRowEst==0. 4693 ** 4694 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation 4695 ** error occurs. 4696 */ 4697 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ 4698 int mxChoice; /* Maximum number of simultaneous paths tracked */ 4699 int nLoop; /* Number of terms in the join */ 4700 Parse *pParse; /* Parsing context */ 4701 sqlite3 *db; /* The database connection */ 4702 int iLoop; /* Loop counter over the terms of the join */ 4703 int ii, jj; /* Loop counters */ 4704 int mxI = 0; /* Index of next entry to replace */ 4705 int nOrderBy; /* Number of ORDER BY clause terms */ 4706 LogEst mxCost = 0; /* Maximum cost of a set of paths */ 4707 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ 4708 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ 4709 WherePath *aFrom; /* All nFrom paths at the previous level */ 4710 WherePath *aTo; /* The nTo best paths at the current level */ 4711 WherePath *pFrom; /* An element of aFrom[] that we are working on */ 4712 WherePath *pTo; /* An element of aTo[] that we are working on */ 4713 WhereLoop *pWLoop; /* One of the WhereLoop objects */ 4714 WhereLoop **pX; /* Used to divy up the pSpace memory */ 4715 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ 4716 char *pSpace; /* Temporary memory used by this routine */ 4717 int nSpace; /* Bytes of space allocated at pSpace */ 4718 4719 pParse = pWInfo->pParse; 4720 db = pParse->db; 4721 nLoop = pWInfo->nLevel; 4722 /* TUNING: For simple queries, only the best path is tracked. 4723 ** For 2-way joins, the 5 best paths are followed. 4724 ** For joins of 3 or more tables, track the 10 best paths */ 4725 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); 4726 assert( nLoop<=pWInfo->pTabList->nSrc ); 4727 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); 4728 4729 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this 4730 ** case the purpose of this call is to estimate the number of rows returned 4731 ** by the overall query. Once this estimate has been obtained, the caller 4732 ** will invoke this function a second time, passing the estimate as the 4733 ** nRowEst parameter. */ 4734 if( pWInfo->pOrderBy==0 || nRowEst==0 ){ 4735 nOrderBy = 0; 4736 }else{ 4737 nOrderBy = pWInfo->pOrderBy->nExpr; 4738 } 4739 4740 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ 4741 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; 4742 nSpace += sizeof(LogEst) * nOrderBy; 4743 pSpace = sqlite3DbMallocRawNN(db, nSpace); 4744 if( pSpace==0 ) return SQLITE_NOMEM_BKPT; 4745 aTo = (WherePath*)pSpace; 4746 aFrom = aTo+mxChoice; 4747 memset(aFrom, 0, sizeof(aFrom[0])); 4748 pX = (WhereLoop**)(aFrom+mxChoice); 4749 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ 4750 pFrom->aLoop = pX; 4751 } 4752 if( nOrderBy ){ 4753 /* If there is an ORDER BY clause and it is not being ignored, set up 4754 ** space for the aSortCost[] array. Each element of the aSortCost array 4755 ** is either zero - meaning it has not yet been initialized - or the 4756 ** cost of sorting nRowEst rows of data where the first X terms of 4757 ** the ORDER BY clause are already in order, where X is the array 4758 ** index. */ 4759 aSortCost = (LogEst*)pX; 4760 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); 4761 } 4762 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); 4763 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); 4764 4765 /* Seed the search with a single WherePath containing zero WhereLoops. 4766 ** 4767 ** TUNING: Do not let the number of iterations go above 28. If the cost 4768 ** of computing an automatic index is not paid back within the first 28 4769 ** rows, then do not use the automatic index. */ 4770 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) ); 4771 nFrom = 1; 4772 assert( aFrom[0].isOrdered==0 ); 4773 if( nOrderBy ){ 4774 /* If nLoop is zero, then there are no FROM terms in the query. Since 4775 ** in this case the query may return a maximum of one row, the results 4776 ** are already in the requested order. Set isOrdered to nOrderBy to 4777 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to 4778 ** -1, indicating that the result set may or may not be ordered, 4779 ** depending on the loops added to the current plan. */ 4780 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; 4781 } 4782 4783 /* Compute successively longer WherePaths using the previous generation 4784 ** of WherePaths as the basis for the next. Keep track of the mxChoice 4785 ** best paths at each generation */ 4786 for(iLoop=0; iLoop<nLoop; iLoop++){ 4787 nTo = 0; 4788 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ 4789 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ 4790 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ 4791 LogEst rCost; /* Cost of path (pFrom+pWLoop) */ 4792 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ 4793 i8 isOrdered; /* isOrdered for (pFrom+pWLoop) */ 4794 Bitmask maskNew; /* Mask of src visited by (..) */ 4795 Bitmask revMask; /* Mask of rev-order loops for (..) */ 4796 4797 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; 4798 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; 4799 if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){ 4800 /* Do not use an automatic index if the this loop is expected 4801 ** to run less than 1.25 times. It is tempting to also exclude 4802 ** automatic index usage on an outer loop, but sometimes an automatic 4803 ** index is useful in the outer loop of a correlated subquery. */ 4804 assert( 10==sqlite3LogEst(2) ); 4805 continue; 4806 } 4807 4808 /* At this point, pWLoop is a candidate to be the next loop. 4809 ** Compute its cost */ 4810 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); 4811 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); 4812 nOut = pFrom->nRow + pWLoop->nOut; 4813 maskNew = pFrom->maskLoop | pWLoop->maskSelf; 4814 isOrdered = pFrom->isOrdered; 4815 if( isOrdered<0 ){ 4816 revMask = 0; 4817 isOrdered = wherePathSatisfiesOrderBy(pWInfo, 4818 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, 4819 iLoop, pWLoop, &revMask); 4820 }else{ 4821 revMask = pFrom->revLoop; 4822 } 4823 if( isOrdered>=0 && isOrdered<nOrderBy ){ 4824 if( aSortCost[isOrdered]==0 ){ 4825 aSortCost[isOrdered] = whereSortingCost( 4826 pWInfo, nRowEst, nOrderBy, isOrdered 4827 ); 4828 } 4829 /* TUNING: Add a small extra penalty (5) to sorting as an 4830 ** extra encouragment to the query planner to select a plan 4831 ** where the rows emerge in the correct order without any sorting 4832 ** required. */ 4833 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5; 4834 4835 WHERETRACE(0x002, 4836 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", 4837 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, 4838 rUnsorted, rCost)); 4839 }else{ 4840 rCost = rUnsorted; 4841 rUnsorted -= 2; /* TUNING: Slight bias in favor of no-sort plans */ 4842 } 4843 4844 /* Check to see if pWLoop should be added to the set of 4845 ** mxChoice best-so-far paths. 4846 ** 4847 ** First look for an existing path among best-so-far paths 4848 ** that covers the same set of loops and has the same isOrdered 4849 ** setting as the current path candidate. 4850 ** 4851 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent 4852 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range 4853 ** of legal values for isOrdered, -1..64. 4854 */ 4855 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ 4856 if( pTo->maskLoop==maskNew 4857 && ((pTo->isOrdered^isOrdered)&0x80)==0 4858 ){ 4859 testcase( jj==nTo-1 ); 4860 break; 4861 } 4862 } 4863 if( jj>=nTo ){ 4864 /* None of the existing best-so-far paths match the candidate. */ 4865 if( nTo>=mxChoice 4866 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) 4867 ){ 4868 /* The current candidate is no better than any of the mxChoice 4869 ** paths currently in the best-so-far buffer. So discard 4870 ** this candidate as not viable. */ 4871 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4872 if( sqlite3WhereTrace&0x4 ){ 4873 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n", 4874 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4875 isOrdered>=0 ? isOrdered+'0' : '?'); 4876 } 4877 #endif 4878 continue; 4879 } 4880 /* If we reach this points it means that the new candidate path 4881 ** needs to be added to the set of best-so-far paths. */ 4882 if( nTo<mxChoice ){ 4883 /* Increase the size of the aTo set by one */ 4884 jj = nTo++; 4885 }else{ 4886 /* New path replaces the prior worst to keep count below mxChoice */ 4887 jj = mxI; 4888 } 4889 pTo = &aTo[jj]; 4890 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4891 if( sqlite3WhereTrace&0x4 ){ 4892 sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n", 4893 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4894 isOrdered>=0 ? isOrdered+'0' : '?'); 4895 } 4896 #endif 4897 }else{ 4898 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the 4899 ** same set of loops and has the same isOrdered setting as the 4900 ** candidate path. Check to see if the candidate should replace 4901 ** pTo or if the candidate should be skipped. 4902 ** 4903 ** The conditional is an expanded vector comparison equivalent to: 4904 ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted) 4905 */ 4906 if( pTo->rCost<rCost 4907 || (pTo->rCost==rCost 4908 && (pTo->nRow<nOut 4909 || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted) 4910 ) 4911 ) 4912 ){ 4913 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4914 if( sqlite3WhereTrace&0x4 ){ 4915 sqlite3DebugPrintf( 4916 "Skip %s cost=%-3d,%3d,%3d order=%c", 4917 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4918 isOrdered>=0 ? isOrdered+'0' : '?'); 4919 sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n", 4920 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4921 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4922 } 4923 #endif 4924 /* Discard the candidate path from further consideration */ 4925 testcase( pTo->rCost==rCost ); 4926 continue; 4927 } 4928 testcase( pTo->rCost==rCost+1 ); 4929 /* Control reaches here if the candidate path is better than the 4930 ** pTo path. Replace pTo with the candidate. */ 4931 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4932 if( sqlite3WhereTrace&0x4 ){ 4933 sqlite3DebugPrintf( 4934 "Update %s cost=%-3d,%3d,%3d order=%c", 4935 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4936 isOrdered>=0 ? isOrdered+'0' : '?'); 4937 sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n", 4938 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4939 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4940 } 4941 #endif 4942 } 4943 /* pWLoop is a winner. Add it to the set of best so far */ 4944 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; 4945 pTo->revLoop = revMask; 4946 pTo->nRow = nOut; 4947 pTo->rCost = rCost; 4948 pTo->rUnsorted = rUnsorted; 4949 pTo->isOrdered = isOrdered; 4950 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); 4951 pTo->aLoop[iLoop] = pWLoop; 4952 if( nTo>=mxChoice ){ 4953 mxI = 0; 4954 mxCost = aTo[0].rCost; 4955 mxUnsorted = aTo[0].nRow; 4956 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ 4957 if( pTo->rCost>mxCost 4958 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) 4959 ){ 4960 mxCost = pTo->rCost; 4961 mxUnsorted = pTo->rUnsorted; 4962 mxI = jj; 4963 } 4964 } 4965 } 4966 } 4967 } 4968 4969 #ifdef WHERETRACE_ENABLED /* >=2 */ 4970 if( sqlite3WhereTrace & 0x02 ){ 4971 sqlite3DebugPrintf("---- after round %d ----\n", iLoop); 4972 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ 4973 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", 4974 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4975 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); 4976 if( pTo->isOrdered>0 ){ 4977 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); 4978 }else{ 4979 sqlite3DebugPrintf("\n"); 4980 } 4981 } 4982 } 4983 #endif 4984 4985 /* Swap the roles of aFrom and aTo for the next generation */ 4986 pFrom = aTo; 4987 aTo = aFrom; 4988 aFrom = pFrom; 4989 nFrom = nTo; 4990 } 4991 4992 if( nFrom==0 ){ 4993 sqlite3ErrorMsg(pParse, "no query solution"); 4994 sqlite3DbFreeNN(db, pSpace); 4995 return SQLITE_ERROR; 4996 } 4997 4998 /* Find the lowest cost path. pFrom will be left pointing to that path */ 4999 pFrom = aFrom; 5000 for(ii=1; ii<nFrom; ii++){ 5001 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; 5002 } 5003 assert( pWInfo->nLevel==nLoop ); 5004 /* Load the lowest cost path into pWInfo */ 5005 for(iLoop=0; iLoop<nLoop; iLoop++){ 5006 WhereLevel *pLevel = pWInfo->a + iLoop; 5007 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; 5008 pLevel->iFrom = pWLoop->iTab; 5009 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; 5010 } 5011 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 5012 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 5013 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP 5014 && nRowEst 5015 ){ 5016 Bitmask notUsed; 5017 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, 5018 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); 5019 if( rc==pWInfo->pResultSet->nExpr ){ 5020 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 5021 } 5022 } 5023 pWInfo->bOrderedInnerLoop = 0; 5024 if( pWInfo->pOrderBy ){ 5025 pWInfo->nOBSat = pFrom->isOrdered; 5026 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ 5027 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ 5028 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 5029 } 5030 }else{ 5031 pWInfo->revMask = pFrom->revLoop; 5032 if( pWInfo->nOBSat<=0 ){ 5033 pWInfo->nOBSat = 0; 5034 if( nLoop>0 ){ 5035 u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags; 5036 if( (wsFlags & WHERE_ONEROW)==0 5037 && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN) 5038 ){ 5039 Bitmask m = 0; 5040 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, 5041 WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m); 5042 testcase( wsFlags & WHERE_IPK ); 5043 testcase( wsFlags & WHERE_COLUMN_IN ); 5044 if( rc==pWInfo->pOrderBy->nExpr ){ 5045 pWInfo->bOrderedInnerLoop = 1; 5046 pWInfo->revMask = m; 5047 } 5048 } 5049 } 5050 }else if( nLoop 5051 && pWInfo->nOBSat==1 5052 && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0 5053 ){ 5054 pWInfo->bOrderedInnerLoop = 1; 5055 } 5056 } 5057 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) 5058 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 5059 ){ 5060 Bitmask revMask = 0; 5061 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, 5062 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask 5063 ); 5064 assert( pWInfo->sorted==0 ); 5065 if( nOrder==pWInfo->pOrderBy->nExpr ){ 5066 pWInfo->sorted = 1; 5067 pWInfo->revMask = revMask; 5068 } 5069 } 5070 } 5071 5072 5073 pWInfo->nRowOut = pFrom->nRow; 5074 5075 /* Free temporary memory and return success */ 5076 sqlite3DbFreeNN(db, pSpace); 5077 return SQLITE_OK; 5078 } 5079 5080 /* 5081 ** Most queries use only a single table (they are not joins) and have 5082 ** simple == constraints against indexed fields. This routine attempts 5083 ** to plan those simple cases using much less ceremony than the 5084 ** general-purpose query planner, and thereby yield faster sqlite3_prepare() 5085 ** times for the common case. 5086 ** 5087 ** Return non-zero on success, if this query can be handled by this 5088 ** no-frills query planner. Return zero if this query needs the 5089 ** general-purpose query planner. 5090 */ 5091 static int whereShortCut(WhereLoopBuilder *pBuilder){ 5092 WhereInfo *pWInfo; 5093 SrcItem *pItem; 5094 WhereClause *pWC; 5095 WhereTerm *pTerm; 5096 WhereLoop *pLoop; 5097 int iCur; 5098 int j; 5099 Table *pTab; 5100 Index *pIdx; 5101 WhereScan scan; 5102 5103 pWInfo = pBuilder->pWInfo; 5104 if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0; 5105 assert( pWInfo->pTabList->nSrc>=1 ); 5106 pItem = pWInfo->pTabList->a; 5107 pTab = pItem->pTab; 5108 if( IsVirtual(pTab) ) return 0; 5109 if( pItem->fg.isIndexedBy || pItem->fg.notIndexed ){ 5110 testcase( pItem->fg.isIndexedBy ); 5111 testcase( pItem->fg.notIndexed ); 5112 return 0; 5113 } 5114 iCur = pItem->iCursor; 5115 pWC = &pWInfo->sWC; 5116 pLoop = pBuilder->pNew; 5117 pLoop->wsFlags = 0; 5118 pLoop->nSkip = 0; 5119 pTerm = whereScanInit(&scan, pWC, iCur, -1, WO_EQ|WO_IS, 0); 5120 while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan); 5121 if( pTerm ){ 5122 testcase( pTerm->eOperator & WO_IS ); 5123 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; 5124 pLoop->aLTerm[0] = pTerm; 5125 pLoop->nLTerm = 1; 5126 pLoop->u.btree.nEq = 1; 5127 /* TUNING: Cost of a rowid lookup is 10 */ 5128 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ 5129 }else{ 5130 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5131 int opMask; 5132 assert( pLoop->aLTermSpace==pLoop->aLTerm ); 5133 if( !IsUniqueIndex(pIdx) 5134 || pIdx->pPartIdxWhere!=0 5135 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) 5136 ) continue; 5137 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; 5138 for(j=0; j<pIdx->nKeyCol; j++){ 5139 pTerm = whereScanInit(&scan, pWC, iCur, j, opMask, pIdx); 5140 while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan); 5141 if( pTerm==0 ) break; 5142 testcase( pTerm->eOperator & WO_IS ); 5143 pLoop->aLTerm[j] = pTerm; 5144 } 5145 if( j!=pIdx->nKeyCol ) continue; 5146 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; 5147 if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){ 5148 pLoop->wsFlags |= WHERE_IDX_ONLY; 5149 } 5150 pLoop->nLTerm = j; 5151 pLoop->u.btree.nEq = j; 5152 pLoop->u.btree.pIndex = pIdx; 5153 /* TUNING: Cost of a unique index lookup is 15 */ 5154 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ 5155 break; 5156 } 5157 } 5158 if( pLoop->wsFlags ){ 5159 pLoop->nOut = (LogEst)1; 5160 pWInfo->a[0].pWLoop = pLoop; 5161 assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] ); 5162 pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */ 5163 pWInfo->a[0].iTabCur = iCur; 5164 pWInfo->nRowOut = 1; 5165 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; 5166 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ 5167 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 5168 } 5169 if( scan.iEquiv>1 ) pLoop->wsFlags |= WHERE_TRANSCONS; 5170 #ifdef SQLITE_DEBUG 5171 pLoop->cId = '0'; 5172 #endif 5173 #ifdef WHERETRACE_ENABLED 5174 if( sqlite3WhereTrace ){ 5175 sqlite3DebugPrintf("whereShortCut() used to compute solution\n"); 5176 } 5177 #endif 5178 return 1; 5179 } 5180 return 0; 5181 } 5182 5183 /* 5184 ** Helper function for exprIsDeterministic(). 5185 */ 5186 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){ 5187 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){ 5188 pWalker->eCode = 0; 5189 return WRC_Abort; 5190 } 5191 return WRC_Continue; 5192 } 5193 5194 /* 5195 ** Return true if the expression contains no non-deterministic SQL 5196 ** functions. Do not consider non-deterministic SQL functions that are 5197 ** part of sub-select statements. 5198 */ 5199 static int exprIsDeterministic(Expr *p){ 5200 Walker w; 5201 memset(&w, 0, sizeof(w)); 5202 w.eCode = 1; 5203 w.xExprCallback = exprNodeIsDeterministic; 5204 w.xSelectCallback = sqlite3SelectWalkFail; 5205 sqlite3WalkExpr(&w, p); 5206 return w.eCode; 5207 } 5208 5209 5210 #ifdef WHERETRACE_ENABLED 5211 /* 5212 ** Display all WhereLoops in pWInfo 5213 */ 5214 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){ 5215 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ 5216 WhereLoop *p; 5217 int i; 5218 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" 5219 "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; 5220 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ 5221 p->cId = zLabel[i%(sizeof(zLabel)-1)]; 5222 sqlite3WhereLoopPrint(p, pWC); 5223 } 5224 } 5225 } 5226 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C) 5227 #else 5228 # define WHERETRACE_ALL_LOOPS(W,C) 5229 #endif 5230 5231 /* Attempt to omit tables from a join that do not affect the result. 5232 ** For a table to not affect the result, the following must be true: 5233 ** 5234 ** 1) The query must not be an aggregate. 5235 ** 2) The table must be the RHS of a LEFT JOIN. 5236 ** 3) Either the query must be DISTINCT, or else the ON or USING clause 5237 ** must contain a constraint that limits the scan of the table to 5238 ** at most a single row. 5239 ** 4) The table must not be referenced by any part of the query apart 5240 ** from its own USING or ON clause. 5241 ** 5242 ** For example, given: 5243 ** 5244 ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1); 5245 ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2); 5246 ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3); 5247 ** 5248 ** then table t2 can be omitted from the following: 5249 ** 5250 ** SELECT v1, v3 FROM t1 5251 ** LEFT JOIN t2 ON (t1.ipk=t2.ipk) 5252 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk) 5253 ** 5254 ** or from: 5255 ** 5256 ** SELECT DISTINCT v1, v3 FROM t1 5257 ** LEFT JOIN t2 5258 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk) 5259 */ 5260 static SQLITE_NOINLINE Bitmask whereOmitNoopJoin( 5261 WhereInfo *pWInfo, 5262 Bitmask notReady 5263 ){ 5264 int i; 5265 Bitmask tabUsed; 5266 5267 /* Preconditions checked by the caller */ 5268 assert( pWInfo->nLevel>=2 ); 5269 assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_OmitNoopJoin) ); 5270 5271 /* These two preconditions checked by the caller combine to guarantee 5272 ** condition (1) of the header comment */ 5273 assert( pWInfo->pResultSet!=0 ); 5274 assert( 0==(pWInfo->wctrlFlags & WHERE_AGG_DISTINCT) ); 5275 5276 tabUsed = sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pResultSet); 5277 if( pWInfo->pOrderBy ){ 5278 tabUsed |= sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pOrderBy); 5279 } 5280 for(i=pWInfo->nLevel-1; i>=1; i--){ 5281 WhereTerm *pTerm, *pEnd; 5282 SrcItem *pItem; 5283 WhereLoop *pLoop; 5284 pLoop = pWInfo->a[i].pWLoop; 5285 pItem = &pWInfo->pTabList->a[pLoop->iTab]; 5286 if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ) continue; 5287 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)==0 5288 && (pLoop->wsFlags & WHERE_ONEROW)==0 5289 ){ 5290 continue; 5291 } 5292 if( (tabUsed & pLoop->maskSelf)!=0 ) continue; 5293 pEnd = pWInfo->sWC.a + pWInfo->sWC.nTerm; 5294 for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){ 5295 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 5296 if( !ExprHasProperty(pTerm->pExpr, EP_OuterON) 5297 || pTerm->pExpr->w.iJoin!=pItem->iCursor 5298 ){ 5299 break; 5300 } 5301 } 5302 } 5303 if( pTerm<pEnd ) continue; 5304 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); 5305 notReady &= ~pLoop->maskSelf; 5306 for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){ 5307 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 5308 pTerm->wtFlags |= TERM_CODED; 5309 } 5310 } 5311 if( i!=pWInfo->nLevel-1 ){ 5312 int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel); 5313 memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte); 5314 } 5315 pWInfo->nLevel--; 5316 assert( pWInfo->nLevel>0 ); 5317 } 5318 return notReady; 5319 } 5320 5321 /* 5322 ** Check to see if there are any SEARCH loops that might benefit from 5323 ** using a Bloom filter. Consider a Bloom filter if: 5324 ** 5325 ** (1) The SEARCH happens more than N times where N is the number 5326 ** of rows in the table that is being considered for the Bloom 5327 ** filter. 5328 ** (2) Some searches are expected to find zero rows. (This is determined 5329 ** by the WHERE_SELFCULL flag on the term.) 5330 ** (3) Bloom-filter processing is not disabled. (Checked by the 5331 ** caller.) 5332 ** (4) The size of the table being searched is known by ANALYZE. 5333 ** 5334 ** This block of code merely checks to see if a Bloom filter would be 5335 ** appropriate, and if so sets the WHERE_BLOOMFILTER flag on the 5336 ** WhereLoop. The implementation of the Bloom filter comes further 5337 ** down where the code for each WhereLoop is generated. 5338 */ 5339 static SQLITE_NOINLINE void whereCheckIfBloomFilterIsUseful( 5340 const WhereInfo *pWInfo 5341 ){ 5342 int i; 5343 LogEst nSearch; 5344 5345 assert( pWInfo->nLevel>=2 ); 5346 assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_BloomFilter) ); 5347 nSearch = pWInfo->a[0].pWLoop->nOut; 5348 for(i=1; i<pWInfo->nLevel; i++){ 5349 WhereLoop *pLoop = pWInfo->a[i].pWLoop; 5350 const unsigned int reqFlags = (WHERE_SELFCULL|WHERE_COLUMN_EQ); 5351 if( (pLoop->wsFlags & reqFlags)==reqFlags 5352 /* vvvvvv--- Always the case if WHERE_COLUMN_EQ is defined */ 5353 && ALWAYS((pLoop->wsFlags & (WHERE_IPK|WHERE_INDEXED))!=0) 5354 ){ 5355 SrcItem *pItem = &pWInfo->pTabList->a[pLoop->iTab]; 5356 Table *pTab = pItem->pTab; 5357 pTab->tabFlags |= TF_StatsUsed; 5358 if( nSearch > pTab->nRowLogEst 5359 && (pTab->tabFlags & TF_HasStat1)!=0 5360 ){ 5361 testcase( pItem->fg.jointype & JT_LEFT ); 5362 pLoop->wsFlags |= WHERE_BLOOMFILTER; 5363 pLoop->wsFlags &= ~WHERE_IDX_ONLY; 5364 WHERETRACE(0xffff, ( 5365 "-> use Bloom-filter on loop %c because there are ~%.1e " 5366 "lookups into %s which has only ~%.1e rows\n", 5367 pLoop->cId, (double)sqlite3LogEstToInt(nSearch), pTab->zName, 5368 (double)sqlite3LogEstToInt(pTab->nRowLogEst))); 5369 } 5370 } 5371 nSearch += pLoop->nOut; 5372 } 5373 } 5374 5375 /* 5376 ** Generate the beginning of the loop used for WHERE clause processing. 5377 ** The return value is a pointer to an opaque structure that contains 5378 ** information needed to terminate the loop. Later, the calling routine 5379 ** should invoke sqlite3WhereEnd() with the return value of this function 5380 ** in order to complete the WHERE clause processing. 5381 ** 5382 ** If an error occurs, this routine returns NULL. 5383 ** 5384 ** The basic idea is to do a nested loop, one loop for each table in 5385 ** the FROM clause of a select. (INSERT and UPDATE statements are the 5386 ** same as a SELECT with only a single table in the FROM clause.) For 5387 ** example, if the SQL is this: 5388 ** 5389 ** SELECT * FROM t1, t2, t3 WHERE ...; 5390 ** 5391 ** Then the code generated is conceptually like the following: 5392 ** 5393 ** foreach row1 in t1 do \ Code generated 5394 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 5395 ** foreach row3 in t3 do / 5396 ** ... 5397 ** end \ Code generated 5398 ** end |-- by sqlite3WhereEnd() 5399 ** end / 5400 ** 5401 ** Note that the loops might not be nested in the order in which they 5402 ** appear in the FROM clause if a different order is better able to make 5403 ** use of indices. Note also that when the IN operator appears in 5404 ** the WHERE clause, it might result in additional nested loops for 5405 ** scanning through all values on the right-hand side of the IN. 5406 ** 5407 ** There are Btree cursors associated with each table. t1 uses cursor 5408 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 5409 ** And so forth. This routine generates code to open those VDBE cursors 5410 ** and sqlite3WhereEnd() generates the code to close them. 5411 ** 5412 ** The code that sqlite3WhereBegin() generates leaves the cursors named 5413 ** in pTabList pointing at their appropriate entries. The [...] code 5414 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 5415 ** data from the various tables of the loop. 5416 ** 5417 ** If the WHERE clause is empty, the foreach loops must each scan their 5418 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 5419 ** the tables have indices and there are terms in the WHERE clause that 5420 ** refer to those indices, a complete table scan can be avoided and the 5421 ** code will run much faster. Most of the work of this routine is checking 5422 ** to see if there are indices that can be used to speed up the loop. 5423 ** 5424 ** Terms of the WHERE clause are also used to limit which rows actually 5425 ** make it to the "..." in the middle of the loop. After each "foreach", 5426 ** terms of the WHERE clause that use only terms in that loop and outer 5427 ** loops are evaluated and if false a jump is made around all subsequent 5428 ** inner loops (or around the "..." if the test occurs within the inner- 5429 ** most loop) 5430 ** 5431 ** OUTER JOINS 5432 ** 5433 ** An outer join of tables t1 and t2 is conceptally coded as follows: 5434 ** 5435 ** foreach row1 in t1 do 5436 ** flag = 0 5437 ** foreach row2 in t2 do 5438 ** start: 5439 ** ... 5440 ** flag = 1 5441 ** end 5442 ** if flag==0 then 5443 ** move the row2 cursor to a null row 5444 ** goto start 5445 ** fi 5446 ** end 5447 ** 5448 ** ORDER BY CLAUSE PROCESSING 5449 ** 5450 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause 5451 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement 5452 ** if there is one. If there is no ORDER BY clause or if this routine 5453 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. 5454 ** 5455 ** The iIdxCur parameter is the cursor number of an index. If 5456 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index 5457 ** to use for OR clause processing. The WHERE clause should use this 5458 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is 5459 ** the first cursor in an array of cursors for all indices. iIdxCur should 5460 ** be used to compute the appropriate cursor depending on which index is 5461 ** used. 5462 */ 5463 WhereInfo *sqlite3WhereBegin( 5464 Parse *pParse, /* The parser context */ 5465 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ 5466 Expr *pWhere, /* The WHERE clause */ 5467 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ 5468 ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */ 5469 Select *pLimit, /* Use this LIMIT/OFFSET clause, if any */ 5470 u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */ 5471 int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number 5472 ** If WHERE_USE_LIMIT, then the limit amount */ 5473 ){ 5474 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ 5475 int nTabList; /* Number of elements in pTabList */ 5476 WhereInfo *pWInfo; /* Will become the return value of this function */ 5477 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 5478 Bitmask notReady; /* Cursors that are not yet positioned */ 5479 WhereLoopBuilder sWLB; /* The WhereLoop builder */ 5480 WhereMaskSet *pMaskSet; /* The expression mask set */ 5481 WhereLevel *pLevel; /* A single level in pWInfo->a[] */ 5482 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ 5483 int ii; /* Loop counter */ 5484 sqlite3 *db; /* Database connection */ 5485 int rc; /* Return code */ 5486 u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */ 5487 5488 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || ( 5489 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 5490 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 5491 )); 5492 5493 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */ 5494 assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 5495 || (wctrlFlags & WHERE_USE_LIMIT)==0 ); 5496 5497 /* Variable initialization */ 5498 db = pParse->db; 5499 memset(&sWLB, 0, sizeof(sWLB)); 5500 5501 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ 5502 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); 5503 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; 5504 5505 /* The number of tables in the FROM clause is limited by the number of 5506 ** bits in a Bitmask 5507 */ 5508 testcase( pTabList->nSrc==BMS ); 5509 if( pTabList->nSrc>BMS ){ 5510 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 5511 return 0; 5512 } 5513 5514 /* This function normally generates a nested loop for all tables in 5515 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should 5516 ** only generate code for the first table in pTabList and assume that 5517 ** any cursors associated with subsequent tables are uninitialized. 5518 */ 5519 nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc; 5520 5521 /* Allocate and initialize the WhereInfo structure that will become the 5522 ** return value. A single allocation is used to store the WhereInfo 5523 ** struct, the contents of WhereInfo.a[], the WhereClause structure 5524 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte 5525 ** field (type Bitmask) it must be aligned on an 8-byte boundary on 5526 ** some architectures. Hence the ROUND8() below. 5527 */ 5528 nByteWInfo = ROUND8P(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); 5529 pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop)); 5530 if( db->mallocFailed ){ 5531 sqlite3DbFree(db, pWInfo); 5532 pWInfo = 0; 5533 goto whereBeginError; 5534 } 5535 pWInfo->pParse = pParse; 5536 pWInfo->pTabList = pTabList; 5537 pWInfo->pOrderBy = pOrderBy; 5538 pWInfo->pWhere = pWhere; 5539 pWInfo->pResultSet = pResultSet; 5540 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; 5541 pWInfo->nLevel = nTabList; 5542 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse); 5543 pWInfo->wctrlFlags = wctrlFlags; 5544 pWInfo->iLimit = iAuxArg; 5545 pWInfo->savedNQueryLoop = pParse->nQueryLoop; 5546 #ifndef SQLITE_OMIT_VIRTUALTABLE 5547 pWInfo->pLimit = pLimit; 5548 #endif 5549 memset(&pWInfo->nOBSat, 0, 5550 offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat)); 5551 memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel)); 5552 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */ 5553 pMaskSet = &pWInfo->sMaskSet; 5554 pMaskSet->n = 0; 5555 pMaskSet->ix[0] = -99; /* Initialize ix[0] to a value that can never be 5556 ** a valid cursor number, to avoid an initial 5557 ** test for pMaskSet->n==0 in sqlite3WhereGetMask() */ 5558 sWLB.pWInfo = pWInfo; 5559 sWLB.pWC = &pWInfo->sWC; 5560 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); 5561 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); 5562 whereLoopInit(sWLB.pNew); 5563 #ifdef SQLITE_DEBUG 5564 sWLB.pNew->cId = '*'; 5565 #endif 5566 5567 /* Split the WHERE clause into separate subexpressions where each 5568 ** subexpression is separated by an AND operator. 5569 */ 5570 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); 5571 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); 5572 5573 /* Special case: No FROM clause 5574 */ 5575 if( nTabList==0 ){ 5576 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; 5577 if( (wctrlFlags & WHERE_WANT_DISTINCT)!=0 5578 && OptimizationEnabled(db, SQLITE_DistinctOpt) 5579 ){ 5580 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 5581 } 5582 ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW")); 5583 }else{ 5584 /* Assign a bit from the bitmask to every term in the FROM clause. 5585 ** 5586 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. 5587 ** 5588 ** The rule of the previous sentence ensures thta if X is the bitmask for 5589 ** a table T, then X-1 is the bitmask for all other tables to the left of T. 5590 ** Knowing the bitmask for all tables to the left of a left join is 5591 ** important. Ticket #3015. 5592 ** 5593 ** Note that bitmasks are created for all pTabList->nSrc tables in 5594 ** pTabList, not just the first nTabList tables. nTabList is normally 5595 ** equal to pTabList->nSrc but might be shortened to 1 if the 5596 ** WHERE_OR_SUBCLAUSE flag is set. 5597 */ 5598 ii = 0; 5599 do{ 5600 createMask(pMaskSet, pTabList->a[ii].iCursor); 5601 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC); 5602 }while( (++ii)<pTabList->nSrc ); 5603 #ifdef SQLITE_DEBUG 5604 { 5605 Bitmask mx = 0; 5606 for(ii=0; ii<pTabList->nSrc; ii++){ 5607 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); 5608 assert( m>=mx ); 5609 mx = m; 5610 } 5611 } 5612 #endif 5613 } 5614 5615 /* Analyze all of the subexpressions. */ 5616 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); 5617 sqlite3WhereAddLimit(&pWInfo->sWC, pLimit); 5618 if( pParse->nErr ) goto whereBeginError; 5619 5620 /* Special case: WHERE terms that do not refer to any tables in the join 5621 ** (constant expressions). Evaluate each such term, and jump over all the 5622 ** generated code if the result is not true. 5623 ** 5624 ** Do not do this if the expression contains non-deterministic functions 5625 ** that are not within a sub-select. This is not strictly required, but 5626 ** preserves SQLite's legacy behaviour in the following two cases: 5627 ** 5628 ** FROM ... WHERE random()>0; -- eval random() once per row 5629 ** FROM ... WHERE (SELECT random())>0; -- eval random() once overall 5630 */ 5631 for(ii=0; ii<sWLB.pWC->nBase; ii++){ 5632 WhereTerm *pT = &sWLB.pWC->a[ii]; 5633 if( pT->wtFlags & TERM_VIRTUAL ) continue; 5634 if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){ 5635 sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL); 5636 pT->wtFlags |= TERM_CODED; 5637 } 5638 } 5639 5640 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 5641 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ 5642 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via 5643 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ 5644 wctrlFlags &= ~WHERE_WANT_DISTINCT; 5645 pWInfo->wctrlFlags &= ~WHERE_WANT_DISTINCT; 5646 }else if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ 5647 /* The DISTINCT marking is pointless. Ignore it. */ 5648 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 5649 }else if( pOrderBy==0 ){ 5650 /* Try to ORDER BY the result set to make distinct processing easier */ 5651 pWInfo->wctrlFlags |= WHERE_DISTINCTBY; 5652 pWInfo->pOrderBy = pResultSet; 5653 } 5654 } 5655 5656 /* Construct the WhereLoop objects */ 5657 #if defined(WHERETRACE_ENABLED) 5658 if( sqlite3WhereTrace & 0xffff ){ 5659 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags); 5660 if( wctrlFlags & WHERE_USE_LIMIT ){ 5661 sqlite3DebugPrintf(", limit: %d", iAuxArg); 5662 } 5663 sqlite3DebugPrintf(")\n"); 5664 if( sqlite3WhereTrace & 0x100 ){ 5665 Select sSelect; 5666 memset(&sSelect, 0, sizeof(sSelect)); 5667 sSelect.selFlags = SF_WhereBegin; 5668 sSelect.pSrc = pTabList; 5669 sSelect.pWhere = pWhere; 5670 sSelect.pOrderBy = pOrderBy; 5671 sSelect.pEList = pResultSet; 5672 sqlite3TreeViewSelect(0, &sSelect, 0); 5673 } 5674 } 5675 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 5676 sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n"); 5677 sqlite3WhereClausePrint(sWLB.pWC); 5678 } 5679 #endif 5680 5681 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ 5682 rc = whereLoopAddAll(&sWLB); 5683 if( rc ) goto whereBeginError; 5684 5685 #ifdef SQLITE_ENABLE_STAT4 5686 /* If one or more WhereTerm.truthProb values were used in estimating 5687 ** loop parameters, but then those truthProb values were subsequently 5688 ** changed based on STAT4 information while computing subsequent loops, 5689 ** then we need to rerun the whole loop building process so that all 5690 ** loops will be built using the revised truthProb values. */ 5691 if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){ 5692 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC); 5693 WHERETRACE(0xffff, 5694 ("**** Redo all loop computations due to" 5695 " TERM_HIGHTRUTH changes ****\n")); 5696 while( pWInfo->pLoops ){ 5697 WhereLoop *p = pWInfo->pLoops; 5698 pWInfo->pLoops = p->pNextLoop; 5699 whereLoopDelete(db, p); 5700 } 5701 rc = whereLoopAddAll(&sWLB); 5702 if( rc ) goto whereBeginError; 5703 } 5704 #endif 5705 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC); 5706 5707 wherePathSolver(pWInfo, 0); 5708 if( db->mallocFailed ) goto whereBeginError; 5709 if( pWInfo->pOrderBy ){ 5710 wherePathSolver(pWInfo, pWInfo->nRowOut+1); 5711 if( db->mallocFailed ) goto whereBeginError; 5712 } 5713 } 5714 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ 5715 pWInfo->revMask = ALLBITS; 5716 } 5717 if( pParse->nErr ){ 5718 goto whereBeginError; 5719 } 5720 assert( db->mallocFailed==0 ); 5721 #ifdef WHERETRACE_ENABLED 5722 if( sqlite3WhereTrace ){ 5723 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); 5724 if( pWInfo->nOBSat>0 ){ 5725 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); 5726 } 5727 switch( pWInfo->eDistinct ){ 5728 case WHERE_DISTINCT_UNIQUE: { 5729 sqlite3DebugPrintf(" DISTINCT=unique"); 5730 break; 5731 } 5732 case WHERE_DISTINCT_ORDERED: { 5733 sqlite3DebugPrintf(" DISTINCT=ordered"); 5734 break; 5735 } 5736 case WHERE_DISTINCT_UNORDERED: { 5737 sqlite3DebugPrintf(" DISTINCT=unordered"); 5738 break; 5739 } 5740 } 5741 sqlite3DebugPrintf("\n"); 5742 for(ii=0; ii<pWInfo->nLevel; ii++){ 5743 sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); 5744 } 5745 } 5746 #endif 5747 5748 /* Attempt to omit tables from a join that do not affect the result. 5749 ** See the comment on whereOmitNoopJoin() for further information. 5750 ** 5751 ** This query optimization is factored out into a separate "no-inline" 5752 ** procedure to keep the sqlite3WhereBegin() procedure from becoming 5753 ** too large. If sqlite3WhereBegin() becomes too large, that prevents 5754 ** some C-compiler optimizers from in-lining the 5755 ** sqlite3WhereCodeOneLoopStart() procedure, and it is important to 5756 ** in-line sqlite3WhereCodeOneLoopStart() for performance reasons. 5757 */ 5758 notReady = ~(Bitmask)0; 5759 if( pWInfo->nLevel>=2 5760 && pResultSet!=0 /* these two combine to guarantee */ 5761 && 0==(wctrlFlags & WHERE_AGG_DISTINCT) /* condition (1) above */ 5762 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) 5763 ){ 5764 notReady = whereOmitNoopJoin(pWInfo, notReady); 5765 nTabList = pWInfo->nLevel; 5766 assert( nTabList>0 ); 5767 } 5768 5769 /* Check to see if there are any SEARCH loops that might benefit from 5770 ** using a Bloom filter. 5771 */ 5772 if( pWInfo->nLevel>=2 5773 && OptimizationEnabled(db, SQLITE_BloomFilter) 5774 ){ 5775 whereCheckIfBloomFilterIsUseful(pWInfo); 5776 } 5777 5778 #if defined(WHERETRACE_ENABLED) 5779 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 5780 sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n"); 5781 sqlite3WhereClausePrint(sWLB.pWC); 5782 } 5783 WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); 5784 #endif 5785 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; 5786 5787 /* If the caller is an UPDATE or DELETE statement that is requesting 5788 ** to use a one-pass algorithm, determine if this is appropriate. 5789 ** 5790 ** A one-pass approach can be used if the caller has requested one 5791 ** and either (a) the scan visits at most one row or (b) each 5792 ** of the following are true: 5793 ** 5794 ** * the caller has indicated that a one-pass approach can be used 5795 ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and 5796 ** * the table is not a virtual table, and 5797 ** * either the scan does not use the OR optimization or the caller 5798 ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified 5799 ** for DELETE). 5800 ** 5801 ** The last qualification is because an UPDATE statement uses 5802 ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can 5803 ** use a one-pass approach, and this is not set accurately for scans 5804 ** that use the OR optimization. 5805 */ 5806 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 5807 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){ 5808 int wsFlags = pWInfo->a[0].pWLoop->wsFlags; 5809 int bOnerow = (wsFlags & WHERE_ONEROW)!=0; 5810 assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) ); 5811 if( bOnerow || ( 5812 0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW) 5813 && !IsVirtual(pTabList->a[0].pTab) 5814 && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK)) 5815 )){ 5816 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; 5817 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){ 5818 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){ 5819 bFordelete = OPFLAG_FORDELETE; 5820 } 5821 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY); 5822 } 5823 } 5824 } 5825 5826 /* Open all tables in the pTabList and any indices selected for 5827 ** searching those tables. 5828 */ 5829 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ 5830 Table *pTab; /* Table to open */ 5831 int iDb; /* Index of database containing table/index */ 5832 SrcItem *pTabItem; 5833 5834 pTabItem = &pTabList->a[pLevel->iFrom]; 5835 pTab = pTabItem->pTab; 5836 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5837 pLoop = pLevel->pWLoop; 5838 if( (pTab->tabFlags & TF_Ephemeral)!=0 || IsView(pTab) ){ 5839 /* Do nothing */ 5840 }else 5841 #ifndef SQLITE_OMIT_VIRTUALTABLE 5842 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 5843 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 5844 int iCur = pTabItem->iCursor; 5845 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); 5846 }else if( IsVirtual(pTab) ){ 5847 /* noop */ 5848 }else 5849 #endif 5850 if( ((pLoop->wsFlags & WHERE_IDX_ONLY)==0 5851 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0) 5852 || (pTabItem->fg.jointype & (JT_LTORJ|JT_RIGHT))!=0 5853 ){ 5854 int op = OP_OpenRead; 5855 if( pWInfo->eOnePass!=ONEPASS_OFF ){ 5856 op = OP_OpenWrite; 5857 pWInfo->aiCurOnePass[0] = pTabItem->iCursor; 5858 }; 5859 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 5860 assert( pTabItem->iCursor==pLevel->iTabCur ); 5861 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 ); 5862 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS ); 5863 if( pWInfo->eOnePass==ONEPASS_OFF 5864 && pTab->nCol<BMS 5865 && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0 5866 && (pLoop->wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))==0 5867 ){ 5868 /* If we know that only a prefix of the record will be used, 5869 ** it is advantageous to reduce the "column count" field in 5870 ** the P4 operand of the OP_OpenRead/Write opcode. */ 5871 Bitmask b = pTabItem->colUsed; 5872 int n = 0; 5873 for(; b; b=b>>1, n++){} 5874 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32); 5875 assert( n<=pTab->nCol ); 5876 } 5877 #ifdef SQLITE_ENABLE_CURSOR_HINTS 5878 if( pLoop->u.btree.pIndex!=0 ){ 5879 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete); 5880 }else 5881 #endif 5882 { 5883 sqlite3VdbeChangeP5(v, bFordelete); 5884 } 5885 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 5886 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, 5887 (const u8*)&pTabItem->colUsed, P4_INT64); 5888 #endif 5889 }else{ 5890 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5891 } 5892 if( pLoop->wsFlags & WHERE_INDEXED ){ 5893 Index *pIx = pLoop->u.btree.pIndex; 5894 int iIndexCur; 5895 int op = OP_OpenRead; 5896 /* iAuxArg is always set to a positive value if ONEPASS is possible */ 5897 assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); 5898 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) 5899 && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 5900 ){ 5901 /* This is one term of an OR-optimization using the PRIMARY KEY of a 5902 ** WITHOUT ROWID table. No need for a separate index */ 5903 iIndexCur = pLevel->iTabCur; 5904 op = 0; 5905 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){ 5906 Index *pJ = pTabItem->pTab->pIndex; 5907 iIndexCur = iAuxArg; 5908 assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); 5909 while( ALWAYS(pJ) && pJ!=pIx ){ 5910 iIndexCur++; 5911 pJ = pJ->pNext; 5912 } 5913 op = OP_OpenWrite; 5914 pWInfo->aiCurOnePass[1] = iIndexCur; 5915 }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){ 5916 iIndexCur = iAuxArg; 5917 op = OP_ReopenIdx; 5918 }else{ 5919 iIndexCur = pParse->nTab++; 5920 } 5921 pLevel->iIdxCur = iIndexCur; 5922 assert( pIx!=0 ); 5923 assert( pIx->pSchema==pTab->pSchema ); 5924 assert( iIndexCur>=0 ); 5925 if( op ){ 5926 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); 5927 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 5928 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 5929 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 5930 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0 5931 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 5932 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 5933 && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED 5934 ){ 5935 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); 5936 } 5937 VdbeComment((v, "%s", pIx->zName)); 5938 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 5939 { 5940 u64 colUsed = 0; 5941 int ii, jj; 5942 for(ii=0; ii<pIx->nColumn; ii++){ 5943 jj = pIx->aiColumn[ii]; 5944 if( jj<0 ) continue; 5945 if( jj>63 ) jj = 63; 5946 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue; 5947 colUsed |= ((u64)1)<<(ii<63 ? ii : 63); 5948 } 5949 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, 5950 (u8*)&colUsed, P4_INT64); 5951 } 5952 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ 5953 } 5954 } 5955 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); 5956 if( (pTabItem->fg.jointype & JT_RIGHT)!=0 5957 && (pLevel->pRJ = sqlite3WhereMalloc(pWInfo, sizeof(WhereRightJoin)))!=0 5958 ){ 5959 WhereRightJoin *pRJ = pLevel->pRJ; 5960 pRJ->iMatch = pParse->nTab++; 5961 pRJ->regBloom = ++pParse->nMem; 5962 sqlite3VdbeAddOp2(v, OP_Blob, 65536, pRJ->regBloom); 5963 pRJ->regReturn = ++pParse->nMem; 5964 sqlite3VdbeAddOp2(v, OP_Null, 0, pRJ->regReturn); 5965 assert( pTab==pTabItem->pTab ); 5966 if( HasRowid(pTab) ){ 5967 KeyInfo *pInfo; 5968 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, 1); 5969 pInfo = sqlite3KeyInfoAlloc(pParse->db, 1, 0); 5970 if( pInfo ){ 5971 pInfo->aColl[0] = 0; 5972 pInfo->aSortFlags[0] = 0; 5973 sqlite3VdbeAppendP4(v, pInfo, P4_KEYINFO); 5974 } 5975 }else{ 5976 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 5977 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, pPk->nKeyCol); 5978 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 5979 } 5980 pLoop->wsFlags &= ~WHERE_IDX_ONLY; 5981 /* The nature of RIGHT JOIN processing is such that it messes up 5982 ** the output order. So omit any ORDER BY/GROUP BY elimination 5983 ** optimizations. We need to do an actual sort for RIGHT JOIN. */ 5984 pWInfo->nOBSat = 0; 5985 pWInfo->eDistinct = WHERE_DISTINCT_UNORDERED; 5986 } 5987 } 5988 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 5989 if( db->mallocFailed ) goto whereBeginError; 5990 5991 /* Generate the code to do the search. Each iteration of the for 5992 ** loop below generates code for a single nested loop of the VM 5993 ** program. 5994 */ 5995 for(ii=0; ii<nTabList; ii++){ 5996 int addrExplain; 5997 int wsFlags; 5998 SrcItem *pSrc; 5999 if( pParse->nErr ) goto whereBeginError; 6000 pLevel = &pWInfo->a[ii]; 6001 wsFlags = pLevel->pWLoop->wsFlags; 6002 pSrc = &pTabList->a[pLevel->iFrom]; 6003 if( pSrc->fg.isMaterialized ){ 6004 if( pSrc->fg.isCorrelated ){ 6005 sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub); 6006 }else{ 6007 int iOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 6008 sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub); 6009 sqlite3VdbeJumpHere(v, iOnce); 6010 } 6011 } 6012 if( (wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))!=0 ){ 6013 if( (wsFlags & WHERE_AUTO_INDEX)!=0 ){ 6014 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 6015 constructAutomaticIndex(pParse, &pWInfo->sWC, 6016 &pTabList->a[pLevel->iFrom], notReady, pLevel); 6017 #endif 6018 }else{ 6019 sqlite3ConstructBloomFilter(pWInfo, ii, pLevel, notReady); 6020 } 6021 if( db->mallocFailed ) goto whereBeginError; 6022 } 6023 addrExplain = sqlite3WhereExplainOneScan( 6024 pParse, pTabList, pLevel, wctrlFlags 6025 ); 6026 pLevel->addrBody = sqlite3VdbeCurrentAddr(v); 6027 notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady); 6028 pWInfo->iContinue = pLevel->addrCont; 6029 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){ 6030 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); 6031 } 6032 } 6033 6034 /* Done. */ 6035 VdbeModuleComment((v, "Begin WHERE-core")); 6036 pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v); 6037 return pWInfo; 6038 6039 /* Jump here if malloc fails */ 6040 whereBeginError: 6041 if( pWInfo ){ 6042 testcase( pWInfo->pExprMods!=0 ); 6043 whereUndoExprMods(pWInfo); 6044 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 6045 whereInfoFree(db, pWInfo); 6046 } 6047 return 0; 6048 } 6049 6050 /* 6051 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the 6052 ** index rather than the main table. In SQLITE_DEBUG mode, we want 6053 ** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine 6054 ** does that. 6055 */ 6056 #ifndef SQLITE_DEBUG 6057 # define OpcodeRewriteTrace(D,K,P) /* no-op */ 6058 #else 6059 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P) 6060 static void sqlite3WhereOpcodeRewriteTrace( 6061 sqlite3 *db, 6062 int pc, 6063 VdbeOp *pOp 6064 ){ 6065 if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return; 6066 sqlite3VdbePrintOp(0, pc, pOp); 6067 } 6068 #endif 6069 6070 #ifdef SQLITE_DEBUG 6071 /* 6072 ** Return true if cursor iCur is opened by instruction k of the 6073 ** bytecode. Used inside of assert() only. 6074 */ 6075 static int cursorIsOpen(Vdbe *v, int iCur, int k){ 6076 while( k>=0 ){ 6077 VdbeOp *pOp = sqlite3VdbeGetOp(v,k--); 6078 if( pOp->p1!=iCur ) continue; 6079 if( pOp->opcode==OP_Close ) return 0; 6080 if( pOp->opcode==OP_OpenRead ) return 1; 6081 if( pOp->opcode==OP_OpenWrite ) return 1; 6082 if( pOp->opcode==OP_OpenDup ) return 1; 6083 if( pOp->opcode==OP_OpenAutoindex ) return 1; 6084 if( pOp->opcode==OP_OpenEphemeral ) return 1; 6085 } 6086 return 0; 6087 } 6088 #endif /* SQLITE_DEBUG */ 6089 6090 /* 6091 ** Generate the end of the WHERE loop. See comments on 6092 ** sqlite3WhereBegin() for additional information. 6093 */ 6094 void sqlite3WhereEnd(WhereInfo *pWInfo){ 6095 Parse *pParse = pWInfo->pParse; 6096 Vdbe *v = pParse->pVdbe; 6097 int i; 6098 WhereLevel *pLevel; 6099 WhereLoop *pLoop; 6100 SrcList *pTabList = pWInfo->pTabList; 6101 sqlite3 *db = pParse->db; 6102 int iEnd = sqlite3VdbeCurrentAddr(v); 6103 int nRJ = 0; 6104 6105 /* Generate loop termination code. 6106 */ 6107 VdbeModuleComment((v, "End WHERE-core")); 6108 for(i=pWInfo->nLevel-1; i>=0; i--){ 6109 int addr; 6110 pLevel = &pWInfo->a[i]; 6111 if( pLevel->pRJ ){ 6112 /* Terminate the subroutine that forms the interior of the loop of 6113 ** the RIGHT JOIN table */ 6114 WhereRightJoin *pRJ = pLevel->pRJ; 6115 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 6116 pLevel->addrCont = 0; 6117 pRJ->endSubrtn = sqlite3VdbeCurrentAddr(v); 6118 sqlite3VdbeAddOp3(v, OP_Return, pRJ->regReturn, pRJ->addrSubrtn, 1); 6119 VdbeCoverage(v); 6120 nRJ++; 6121 } 6122 pLoop = pLevel->pWLoop; 6123 if( pLevel->op!=OP_Noop ){ 6124 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 6125 int addrSeek = 0; 6126 Index *pIdx; 6127 int n; 6128 if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED 6129 && i==pWInfo->nLevel-1 /* Ticket [ef9318757b152e3] 2017-10-21 */ 6130 && (pLoop->wsFlags & WHERE_INDEXED)!=0 6131 && (pIdx = pLoop->u.btree.pIndex)->hasStat1 6132 && (n = pLoop->u.btree.nDistinctCol)>0 6133 && pIdx->aiRowLogEst[n]>=36 6134 ){ 6135 int r1 = pParse->nMem+1; 6136 int j, op; 6137 for(j=0; j<n; j++){ 6138 sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j); 6139 } 6140 pParse->nMem += n+1; 6141 op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT; 6142 addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n); 6143 VdbeCoverageIf(v, op==OP_SeekLT); 6144 VdbeCoverageIf(v, op==OP_SeekGT); 6145 sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2); 6146 } 6147 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */ 6148 /* The common case: Advance to the next row */ 6149 if( pLevel->addrCont ) sqlite3VdbeResolveLabel(v, pLevel->addrCont); 6150 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); 6151 sqlite3VdbeChangeP5(v, pLevel->p5); 6152 VdbeCoverage(v); 6153 VdbeCoverageIf(v, pLevel->op==OP_Next); 6154 VdbeCoverageIf(v, pLevel->op==OP_Prev); 6155 VdbeCoverageIf(v, pLevel->op==OP_VNext); 6156 if( pLevel->regBignull ){ 6157 sqlite3VdbeResolveLabel(v, pLevel->addrBignull); 6158 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1); 6159 VdbeCoverage(v); 6160 } 6161 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 6162 if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek); 6163 #endif 6164 }else if( pLevel->addrCont ){ 6165 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 6166 } 6167 if( (pLoop->wsFlags & WHERE_IN_ABLE)!=0 && pLevel->u.in.nIn>0 ){ 6168 struct InLoop *pIn; 6169 int j; 6170 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 6171 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 6172 assert( sqlite3VdbeGetOp(v, pIn->addrInTop+1)->opcode==OP_IsNull 6173 || pParse->db->mallocFailed ); 6174 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 6175 if( pIn->eEndLoopOp!=OP_Noop ){ 6176 if( pIn->nPrefix ){ 6177 int bEarlyOut = 6178 (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 6179 && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0; 6180 if( pLevel->iLeftJoin ){ 6181 /* For LEFT JOIN queries, cursor pIn->iCur may not have been 6182 ** opened yet. This occurs for WHERE clauses such as 6183 ** "a = ? AND b IN (...)", where the index is on (a, b). If 6184 ** the RHS of the (a=?) is NULL, then the "b IN (...)" may 6185 ** never have been coded, but the body of the loop run to 6186 ** return the null-row. So, if the cursor is not open yet, 6187 ** jump over the OP_Next or OP_Prev instruction about to 6188 ** be coded. */ 6189 sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur, 6190 sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut); 6191 VdbeCoverage(v); 6192 } 6193 if( bEarlyOut ){ 6194 sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur, 6195 sqlite3VdbeCurrentAddr(v)+2, 6196 pIn->iBase, pIn->nPrefix); 6197 VdbeCoverage(v); 6198 /* Retarget the OP_IsNull against the left operand of IN so 6199 ** it jumps past the OP_IfNoHope. This is because the 6200 ** OP_IsNull also bypasses the OP_Affinity opcode that is 6201 ** required by OP_IfNoHope. */ 6202 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 6203 } 6204 } 6205 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); 6206 VdbeCoverage(v); 6207 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev); 6208 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next); 6209 } 6210 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 6211 } 6212 } 6213 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 6214 if( pLevel->pRJ ){ 6215 sqlite3VdbeAddOp3(v, OP_Return, pLevel->pRJ->regReturn, 0, 1); 6216 VdbeCoverage(v); 6217 } 6218 if( pLevel->addrSkip ){ 6219 sqlite3VdbeGoto(v, pLevel->addrSkip); 6220 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); 6221 sqlite3VdbeJumpHere(v, pLevel->addrSkip); 6222 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); 6223 } 6224 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 6225 if( pLevel->addrLikeRep ){ 6226 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1), 6227 pLevel->addrLikeRep); 6228 VdbeCoverage(v); 6229 } 6230 #endif 6231 if( pLevel->iLeftJoin ){ 6232 int ws = pLoop->wsFlags; 6233 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); 6234 assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 ); 6235 if( (ws & WHERE_IDX_ONLY)==0 ){ 6236 assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor ); 6237 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur); 6238 } 6239 if( (ws & WHERE_INDEXED) 6240 || ((ws & WHERE_MULTI_OR) && pLevel->u.pCoveringIdx) 6241 ){ 6242 if( ws & WHERE_MULTI_OR ){ 6243 Index *pIx = pLevel->u.pCoveringIdx; 6244 int iDb = sqlite3SchemaToIndex(db, pIx->pSchema); 6245 sqlite3VdbeAddOp3(v, OP_ReopenIdx, pLevel->iIdxCur, pIx->tnum, iDb); 6246 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 6247 } 6248 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 6249 } 6250 if( pLevel->op==OP_Return ){ 6251 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); 6252 }else{ 6253 sqlite3VdbeGoto(v, pLevel->addrFirst); 6254 } 6255 sqlite3VdbeJumpHere(v, addr); 6256 } 6257 VdbeModuleComment((v, "End WHERE-loop%d: %s", i, 6258 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); 6259 } 6260 6261 assert( pWInfo->nLevel<=pTabList->nSrc ); 6262 if( pWInfo->pExprMods ) whereUndoExprMods(pWInfo); 6263 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ 6264 int k, last; 6265 VdbeOp *pOp, *pLastOp; 6266 Index *pIdx = 0; 6267 SrcItem *pTabItem = &pTabList->a[pLevel->iFrom]; 6268 Table *pTab = pTabItem->pTab; 6269 assert( pTab!=0 ); 6270 pLoop = pLevel->pWLoop; 6271 6272 /* Do RIGHT JOIN processing. Generate code that will output the 6273 ** unmatched rows of the right operand of the RIGHT JOIN with 6274 ** all of the columns of the left operand set to NULL. 6275 */ 6276 if( pLevel->pRJ ){ 6277 sqlite3WhereRightJoinLoop(pWInfo, i, pLevel); 6278 continue; 6279 } 6280 6281 /* For a co-routine, change all OP_Column references to the table of 6282 ** the co-routine into OP_Copy of result contained in a register. 6283 ** OP_Rowid becomes OP_Null. 6284 */ 6285 if( pTabItem->fg.viaCoroutine ){ 6286 testcase( pParse->db->mallocFailed ); 6287 translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur, 6288 pTabItem->regResult, 0); 6289 continue; 6290 } 6291 6292 /* If this scan uses an index, make VDBE code substitutions to read data 6293 ** from the index instead of from the table where possible. In some cases 6294 ** this optimization prevents the table from ever being read, which can 6295 ** yield a significant performance boost. 6296 ** 6297 ** Calls to the code generator in between sqlite3WhereBegin and 6298 ** sqlite3WhereEnd will have created code that references the table 6299 ** directly. This loop scans all that code looking for opcodes 6300 ** that reference the table and converts them into opcodes that 6301 ** reference the index. 6302 */ 6303 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ 6304 pIdx = pLoop->u.btree.pIndex; 6305 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ 6306 pIdx = pLevel->u.pCoveringIdx; 6307 } 6308 if( pIdx 6309 && !db->mallocFailed 6310 ){ 6311 if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){ 6312 last = iEnd; 6313 }else{ 6314 last = pWInfo->iEndWhere; 6315 } 6316 k = pLevel->addrBody + 1; 6317 #ifdef SQLITE_DEBUG 6318 if( db->flags & SQLITE_VdbeAddopTrace ){ 6319 printf("TRANSLATE opcodes in range %d..%d\n", k, last-1); 6320 } 6321 /* Proof that the "+1" on the k value above is safe */ 6322 pOp = sqlite3VdbeGetOp(v, k - 1); 6323 assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur ); 6324 assert( pOp->opcode!=OP_Rowid || pOp->p1!=pLevel->iTabCur ); 6325 assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur ); 6326 #endif 6327 pOp = sqlite3VdbeGetOp(v, k); 6328 pLastOp = pOp + (last - k); 6329 assert( pOp<=pLastOp ); 6330 do{ 6331 if( pOp->p1!=pLevel->iTabCur ){ 6332 /* no-op */ 6333 }else if( pOp->opcode==OP_Column 6334 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 6335 || pOp->opcode==OP_Offset 6336 #endif 6337 ){ 6338 int x = pOp->p2; 6339 assert( pIdx->pTable==pTab ); 6340 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 6341 if( pOp->opcode==OP_Offset ){ 6342 /* Do not need to translate the column number */ 6343 }else 6344 #endif 6345 if( !HasRowid(pTab) ){ 6346 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 6347 x = pPk->aiColumn[x]; 6348 assert( x>=0 ); 6349 }else{ 6350 testcase( x!=sqlite3StorageColumnToTable(pTab,x) ); 6351 x = sqlite3StorageColumnToTable(pTab,x); 6352 } 6353 x = sqlite3TableColumnToIndex(pIdx, x); 6354 if( x>=0 ){ 6355 pOp->p2 = x; 6356 pOp->p1 = pLevel->iIdxCur; 6357 OpcodeRewriteTrace(db, k, pOp); 6358 }else{ 6359 /* Unable to translate the table reference into an index 6360 ** reference. Verify that this is harmless - that the 6361 ** table being referenced really is open. 6362 */ 6363 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 6364 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 6365 || cursorIsOpen(v,pOp->p1,k) 6366 || pOp->opcode==OP_Offset 6367 ); 6368 #else 6369 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 6370 || cursorIsOpen(v,pOp->p1,k) 6371 ); 6372 #endif 6373 } 6374 }else if( pOp->opcode==OP_Rowid ){ 6375 pOp->p1 = pLevel->iIdxCur; 6376 pOp->opcode = OP_IdxRowid; 6377 OpcodeRewriteTrace(db, k, pOp); 6378 }else if( pOp->opcode==OP_IfNullRow ){ 6379 pOp->p1 = pLevel->iIdxCur; 6380 OpcodeRewriteTrace(db, k, pOp); 6381 } 6382 #ifdef SQLITE_DEBUG 6383 k++; 6384 #endif 6385 }while( (++pOp)<pLastOp ); 6386 #ifdef SQLITE_DEBUG 6387 if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n"); 6388 #endif 6389 } 6390 } 6391 6392 /* The "break" point is here, just past the end of the outer loop. 6393 ** Set it. 6394 */ 6395 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 6396 6397 /* Final cleanup 6398 */ 6399 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 6400 whereInfoFree(db, pWInfo); 6401 pParse->withinRJSubrtn -= nRJ; 6402 return; 6403 } 6404