xref: /sqlite-3.40.0/src/where.c (revision cf2ad7ae)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /*
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly.  The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
26 **
27 ** This object is not an API and can be changed from one release to the
28 ** next.  As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
30 */
31 typedef struct HiddenIndexInfo HiddenIndexInfo;
32 struct HiddenIndexInfo {
33   WhereClause *pWC;        /* The Where clause being analyzed */
34   Parse *pParse;           /* The parsing context */
35   int eDistinct;           /* Value to return from sqlite3_vtab_distinct() */
36   u32 mIn;                 /* Mask of terms that are <col> IN (...) */
37   u32 mHandleIn;           /* Terms that vtab will handle as <col> IN (...) */
38   sqlite3_value *aRhs[1];  /* RHS values for constraints. MUST BE LAST
39                            ** because extra space is allocated to hold up
40                            ** to nTerm such values */
41 };
42 
43 /* Forward declaration of methods */
44 static int whereLoopResize(sqlite3*, WhereLoop*, int);
45 
46 /*
47 ** Return the estimated number of output rows from a WHERE clause
48 */
49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
50   return pWInfo->nRowOut;
51 }
52 
53 /*
54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
55 ** WHERE clause returns outputs for DISTINCT processing.
56 */
57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
58   return pWInfo->eDistinct;
59 }
60 
61 /*
62 ** Return the number of ORDER BY terms that are satisfied by the
63 ** WHERE clause.  A return of 0 means that the output must be
64 ** completely sorted.  A return equal to the number of ORDER BY
65 ** terms means that no sorting is needed at all.  A return that
66 ** is positive but less than the number of ORDER BY terms means that
67 ** block sorting is required.
68 */
69 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
70   return pWInfo->nOBSat;
71 }
72 
73 /*
74 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known
75 ** to emit rows in increasing order, and if the last row emitted by the
76 ** inner-most loop did not fit within the sorter, then we can skip all
77 ** subsequent rows for the current iteration of the inner loop (because they
78 ** will not fit in the sorter either) and continue with the second inner
79 ** loop - the loop immediately outside the inner-most.
80 **
81 ** When a row does not fit in the sorter (because the sorter already
82 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
83 ** label returned by this function.
84 **
85 ** If the ORDER BY LIMIT optimization applies, the jump destination should
86 ** be the continuation for the second-inner-most loop.  If the ORDER BY
87 ** LIMIT optimization does not apply, then the jump destination should
88 ** be the continuation for the inner-most loop.
89 **
90 ** It is always safe for this routine to return the continuation of the
91 ** inner-most loop, in the sense that a correct answer will result.
92 ** Returning the continuation the second inner loop is an optimization
93 ** that might make the code run a little faster, but should not change
94 ** the final answer.
95 */
96 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){
97   WhereLevel *pInner;
98   if( !pWInfo->bOrderedInnerLoop ){
99     /* The ORDER BY LIMIT optimization does not apply.  Jump to the
100     ** continuation of the inner-most loop. */
101     return pWInfo->iContinue;
102   }
103   pInner = &pWInfo->a[pWInfo->nLevel-1];
104   assert( pInner->addrNxt!=0 );
105   return pInner->pRJ ? pWInfo->iContinue : pInner->addrNxt;
106 }
107 
108 /*
109 ** While generating code for the min/max optimization, after handling
110 ** the aggregate-step call to min() or max(), check to see if any
111 ** additional looping is required.  If the output order is such that
112 ** we are certain that the correct answer has already been found, then
113 ** code an OP_Goto to by pass subsequent processing.
114 **
115 ** Any extra OP_Goto that is coded here is an optimization.  The
116 ** correct answer should be obtained regardless.  This OP_Goto just
117 ** makes the answer appear faster.
118 */
119 void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){
120   WhereLevel *pInner;
121   int i;
122   if( !pWInfo->bOrderedInnerLoop ) return;
123   if( pWInfo->nOBSat==0 ) return;
124   for(i=pWInfo->nLevel-1; i>=0; i--){
125     pInner = &pWInfo->a[i];
126     if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){
127       sqlite3VdbeGoto(v, pInner->addrNxt);
128       return;
129     }
130   }
131   sqlite3VdbeGoto(v, pWInfo->iBreak);
132 }
133 
134 /*
135 ** Return the VDBE address or label to jump to in order to continue
136 ** immediately with the next row of a WHERE clause.
137 */
138 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
139   assert( pWInfo->iContinue!=0 );
140   return pWInfo->iContinue;
141 }
142 
143 /*
144 ** Return the VDBE address or label to jump to in order to break
145 ** out of a WHERE loop.
146 */
147 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
148   return pWInfo->iBreak;
149 }
150 
151 /*
152 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
153 ** operate directly on the rowids returned by a WHERE clause.  Return
154 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
155 ** a single row is to be changed.  Return ONEPASS_MULTI (2) if the one-pass
156 ** optimization can be used on multiple
157 **
158 ** If the ONEPASS optimization is used (if this routine returns true)
159 ** then also write the indices of open cursors used by ONEPASS
160 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
161 ** table and iaCur[1] gets the cursor used by an auxiliary index.
162 ** Either value may be -1, indicating that cursor is not used.
163 ** Any cursors returned will have been opened for writing.
164 **
165 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
166 ** unable to use the ONEPASS optimization.
167 */
168 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
169   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
170 #ifdef WHERETRACE_ENABLED
171   if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
172     sqlite3DebugPrintf("%s cursors: %d %d\n",
173          pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
174          aiCur[0], aiCur[1]);
175   }
176 #endif
177   return pWInfo->eOnePass;
178 }
179 
180 /*
181 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move
182 ** the data cursor to the row selected by the index cursor.
183 */
184 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){
185   return pWInfo->bDeferredSeek;
186 }
187 
188 /*
189 ** Move the content of pSrc into pDest
190 */
191 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
192   pDest->n = pSrc->n;
193   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
194 }
195 
196 /*
197 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
198 **
199 ** The new entry might overwrite an existing entry, or it might be
200 ** appended, or it might be discarded.  Do whatever is the right thing
201 ** so that pSet keeps the N_OR_COST best entries seen so far.
202 */
203 static int whereOrInsert(
204   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
205   Bitmask prereq,        /* Prerequisites of the new entry */
206   LogEst rRun,           /* Run-cost of the new entry */
207   LogEst nOut            /* Number of outputs for the new entry */
208 ){
209   u16 i;
210   WhereOrCost *p;
211   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
212     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
213       goto whereOrInsert_done;
214     }
215     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
216       return 0;
217     }
218   }
219   if( pSet->n<N_OR_COST ){
220     p = &pSet->a[pSet->n++];
221     p->nOut = nOut;
222   }else{
223     p = pSet->a;
224     for(i=1; i<pSet->n; i++){
225       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
226     }
227     if( p->rRun<=rRun ) return 0;
228   }
229 whereOrInsert_done:
230   p->prereq = prereq;
231   p->rRun = rRun;
232   if( p->nOut>nOut ) p->nOut = nOut;
233   return 1;
234 }
235 
236 /*
237 ** Return the bitmask for the given cursor number.  Return 0 if
238 ** iCursor is not in the set.
239 */
240 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
241   int i;
242   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
243   assert( pMaskSet->n>0 || pMaskSet->ix[0]<0 );
244   assert( iCursor>=-1 );
245   if( pMaskSet->ix[0]==iCursor ){
246     return 1;
247   }
248   for(i=1; i<pMaskSet->n; i++){
249     if( pMaskSet->ix[i]==iCursor ){
250       return MASKBIT(i);
251     }
252   }
253   return 0;
254 }
255 
256 /* Allocate memory that is automatically freed when pWInfo is freed.
257 */
258 void *sqlite3WhereMalloc(WhereInfo *pWInfo, u64 nByte){
259   WhereMemBlock *pBlock;
260   pBlock = sqlite3DbMallocRawNN(pWInfo->pParse->db, nByte+sizeof(*pBlock));
261   if( pBlock ){
262     pBlock->pNext = pWInfo->pMemToFree;
263     pBlock->sz = nByte;
264     pWInfo->pMemToFree = pBlock;
265     pBlock++;
266   }
267   return (void*)pBlock;
268 }
269 void *sqlite3WhereRealloc(WhereInfo *pWInfo, void *pOld, u64 nByte){
270   void *pNew = sqlite3WhereMalloc(pWInfo, nByte);
271   if( pNew && pOld ){
272     WhereMemBlock *pOldBlk = (WhereMemBlock*)pOld;
273     pOldBlk--;
274     assert( pOldBlk->sz<nByte );
275     memcpy(pNew, pOld, pOldBlk->sz);
276   }
277   return pNew;
278 }
279 
280 /*
281 ** Create a new mask for cursor iCursor.
282 **
283 ** There is one cursor per table in the FROM clause.  The number of
284 ** tables in the FROM clause is limited by a test early in the
285 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
286 ** array will never overflow.
287 */
288 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
289   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
290   pMaskSet->ix[pMaskSet->n++] = iCursor;
291 }
292 
293 /*
294 ** If the right-hand branch of the expression is a TK_COLUMN, then return
295 ** a pointer to the right-hand branch.  Otherwise, return NULL.
296 */
297 static Expr *whereRightSubexprIsColumn(Expr *p){
298   p = sqlite3ExprSkipCollateAndLikely(p->pRight);
299   if( ALWAYS(p!=0) && p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){
300     return p;
301   }
302   return 0;
303 }
304 
305 /*
306 ** Advance to the next WhereTerm that matches according to the criteria
307 ** established when the pScan object was initialized by whereScanInit().
308 ** Return NULL if there are no more matching WhereTerms.
309 */
310 static WhereTerm *whereScanNext(WhereScan *pScan){
311   int iCur;            /* The cursor on the LHS of the term */
312   i16 iColumn;         /* The column on the LHS of the term.  -1 for IPK */
313   Expr *pX;            /* An expression being tested */
314   WhereClause *pWC;    /* Shorthand for pScan->pWC */
315   WhereTerm *pTerm;    /* The term being tested */
316   int k = pScan->k;    /* Where to start scanning */
317 
318   assert( pScan->iEquiv<=pScan->nEquiv );
319   pWC = pScan->pWC;
320   while(1){
321     iColumn = pScan->aiColumn[pScan->iEquiv-1];
322     iCur = pScan->aiCur[pScan->iEquiv-1];
323     assert( pWC!=0 );
324     assert( iCur>=0 );
325     do{
326       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
327         assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 || pTerm->leftCursor<0 );
328         if( pTerm->leftCursor==iCur
329          && pTerm->u.x.leftColumn==iColumn
330          && (iColumn!=XN_EXPR
331              || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
332                                        pScan->pIdxExpr,iCur)==0)
333          && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_OuterON))
334         ){
335           if( (pTerm->eOperator & WO_EQUIV)!=0
336            && pScan->nEquiv<ArraySize(pScan->aiCur)
337            && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0
338           ){
339             int j;
340             for(j=0; j<pScan->nEquiv; j++){
341               if( pScan->aiCur[j]==pX->iTable
342                && pScan->aiColumn[j]==pX->iColumn ){
343                   break;
344               }
345             }
346             if( j==pScan->nEquiv ){
347               pScan->aiCur[j] = pX->iTable;
348               pScan->aiColumn[j] = pX->iColumn;
349               pScan->nEquiv++;
350             }
351           }
352           if( (pTerm->eOperator & pScan->opMask)!=0 ){
353             /* Verify the affinity and collating sequence match */
354             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
355               CollSeq *pColl;
356               Parse *pParse = pWC->pWInfo->pParse;
357               pX = pTerm->pExpr;
358               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
359                 continue;
360               }
361               assert(pX->pLeft);
362               pColl = sqlite3ExprCompareCollSeq(pParse, pX);
363               if( pColl==0 ) pColl = pParse->db->pDfltColl;
364               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
365                 continue;
366               }
367             }
368             if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
369              && (pX = pTerm->pExpr->pRight, ALWAYS(pX!=0))
370              && pX->op==TK_COLUMN
371              && pX->iTable==pScan->aiCur[0]
372              && pX->iColumn==pScan->aiColumn[0]
373             ){
374               testcase( pTerm->eOperator & WO_IS );
375               continue;
376             }
377             pScan->pWC = pWC;
378             pScan->k = k+1;
379 #ifdef WHERETRACE_ENABLED
380             if( sqlite3WhereTrace & 0x20000 ){
381               int ii;
382               sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d",
383                  pTerm, pScan->nEquiv);
384               for(ii=0; ii<pScan->nEquiv; ii++){
385                 sqlite3DebugPrintf(" {%d:%d}",
386                    pScan->aiCur[ii], pScan->aiColumn[ii]);
387               }
388               sqlite3DebugPrintf("\n");
389             }
390 #endif
391             return pTerm;
392           }
393         }
394       }
395       pWC = pWC->pOuter;
396       k = 0;
397     }while( pWC!=0 );
398     if( pScan->iEquiv>=pScan->nEquiv ) break;
399     pWC = pScan->pOrigWC;
400     k = 0;
401     pScan->iEquiv++;
402   }
403   return 0;
404 }
405 
406 /*
407 ** This is whereScanInit() for the case of an index on an expression.
408 ** It is factored out into a separate tail-recursion subroutine so that
409 ** the normal whereScanInit() routine, which is a high-runner, does not
410 ** need to push registers onto the stack as part of its prologue.
411 */
412 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){
413   pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr);
414   return whereScanNext(pScan);
415 }
416 
417 /*
418 ** Initialize a WHERE clause scanner object.  Return a pointer to the
419 ** first match.  Return NULL if there are no matches.
420 **
421 ** The scanner will be searching the WHERE clause pWC.  It will look
422 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
423 ** iCur.   Or if pIdx!=0 then X is column iColumn of index pIdx.  pIdx
424 ** must be one of the indexes of table iCur.
425 **
426 ** The <op> must be one of the operators described by opMask.
427 **
428 ** If the search is for X and the WHERE clause contains terms of the
429 ** form X=Y then this routine might also return terms of the form
430 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
431 ** but is enough to handle most commonly occurring SQL statements.
432 **
433 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
434 ** index pIdx.
435 */
436 static WhereTerm *whereScanInit(
437   WhereScan *pScan,       /* The WhereScan object being initialized */
438   WhereClause *pWC,       /* The WHERE clause to be scanned */
439   int iCur,               /* Cursor to scan for */
440   int iColumn,            /* Column to scan for */
441   u32 opMask,             /* Operator(s) to scan for */
442   Index *pIdx             /* Must be compatible with this index */
443 ){
444   pScan->pOrigWC = pWC;
445   pScan->pWC = pWC;
446   pScan->pIdxExpr = 0;
447   pScan->idxaff = 0;
448   pScan->zCollName = 0;
449   pScan->opMask = opMask;
450   pScan->k = 0;
451   pScan->aiCur[0] = iCur;
452   pScan->nEquiv = 1;
453   pScan->iEquiv = 1;
454   if( pIdx ){
455     int j = iColumn;
456     iColumn = pIdx->aiColumn[j];
457     if( iColumn==pIdx->pTable->iPKey ){
458       iColumn = XN_ROWID;
459     }else if( iColumn>=0 ){
460       pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
461       pScan->zCollName = pIdx->azColl[j];
462     }else if( iColumn==XN_EXPR ){
463       pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
464       pScan->zCollName = pIdx->azColl[j];
465       pScan->aiColumn[0] = XN_EXPR;
466       return whereScanInitIndexExpr(pScan);
467     }
468   }else if( iColumn==XN_EXPR ){
469     return 0;
470   }
471   pScan->aiColumn[0] = iColumn;
472   return whereScanNext(pScan);
473 }
474 
475 /*
476 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
477 ** where X is a reference to the iColumn of table iCur or of index pIdx
478 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
479 ** the op parameter.  Return a pointer to the term.  Return 0 if not found.
480 **
481 ** If pIdx!=0 then it must be one of the indexes of table iCur.
482 ** Search for terms matching the iColumn-th column of pIdx
483 ** rather than the iColumn-th column of table iCur.
484 **
485 ** The term returned might by Y=<expr> if there is another constraint in
486 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
487 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
488 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
489 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
490 ** other equivalent values.  Hence a search for X will return <expr> if X=A1
491 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
492 **
493 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
494 ** then try for the one with no dependencies on <expr> - in other words where
495 ** <expr> is a constant expression of some kind.  Only return entries of
496 ** the form "X <op> Y" where Y is a column in another table if no terms of
497 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
498 ** exist, try to return a term that does not use WO_EQUIV.
499 */
500 WhereTerm *sqlite3WhereFindTerm(
501   WhereClause *pWC,     /* The WHERE clause to be searched */
502   int iCur,             /* Cursor number of LHS */
503   int iColumn,          /* Column number of LHS */
504   Bitmask notReady,     /* RHS must not overlap with this mask */
505   u32 op,               /* Mask of WO_xx values describing operator */
506   Index *pIdx           /* Must be compatible with this index, if not NULL */
507 ){
508   WhereTerm *pResult = 0;
509   WhereTerm *p;
510   WhereScan scan;
511 
512   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
513   op &= WO_EQ|WO_IS;
514   while( p ){
515     if( (p->prereqRight & notReady)==0 ){
516       if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
517         testcase( p->eOperator & WO_IS );
518         return p;
519       }
520       if( pResult==0 ) pResult = p;
521     }
522     p = whereScanNext(&scan);
523   }
524   return pResult;
525 }
526 
527 /*
528 ** This function searches pList for an entry that matches the iCol-th column
529 ** of index pIdx.
530 **
531 ** If such an expression is found, its index in pList->a[] is returned. If
532 ** no expression is found, -1 is returned.
533 */
534 static int findIndexCol(
535   Parse *pParse,                  /* Parse context */
536   ExprList *pList,                /* Expression list to search */
537   int iBase,                      /* Cursor for table associated with pIdx */
538   Index *pIdx,                    /* Index to match column of */
539   int iCol                        /* Column of index to match */
540 ){
541   int i;
542   const char *zColl = pIdx->azColl[iCol];
543 
544   for(i=0; i<pList->nExpr; i++){
545     Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr);
546     if( ALWAYS(p!=0)
547      && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN)
548      && p->iColumn==pIdx->aiColumn[iCol]
549      && p->iTable==iBase
550     ){
551       CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
552       if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
553         return i;
554       }
555     }
556   }
557 
558   return -1;
559 }
560 
561 /*
562 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
563 */
564 static int indexColumnNotNull(Index *pIdx, int iCol){
565   int j;
566   assert( pIdx!=0 );
567   assert( iCol>=0 && iCol<pIdx->nColumn );
568   j = pIdx->aiColumn[iCol];
569   if( j>=0 ){
570     return pIdx->pTable->aCol[j].notNull;
571   }else if( j==(-1) ){
572     return 1;
573   }else{
574     assert( j==(-2) );
575     return 0;  /* Assume an indexed expression can always yield a NULL */
576 
577   }
578 }
579 
580 /*
581 ** Return true if the DISTINCT expression-list passed as the third argument
582 ** is redundant.
583 **
584 ** A DISTINCT list is redundant if any subset of the columns in the
585 ** DISTINCT list are collectively unique and individually non-null.
586 */
587 static int isDistinctRedundant(
588   Parse *pParse,            /* Parsing context */
589   SrcList *pTabList,        /* The FROM clause */
590   WhereClause *pWC,         /* The WHERE clause */
591   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
592 ){
593   Table *pTab;
594   Index *pIdx;
595   int i;
596   int iBase;
597 
598   /* If there is more than one table or sub-select in the FROM clause of
599   ** this query, then it will not be possible to show that the DISTINCT
600   ** clause is redundant. */
601   if( pTabList->nSrc!=1 ) return 0;
602   iBase = pTabList->a[0].iCursor;
603   pTab = pTabList->a[0].pTab;
604 
605   /* If any of the expressions is an IPK column on table iBase, then return
606   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
607   ** current SELECT is a correlated sub-query.
608   */
609   for(i=0; i<pDistinct->nExpr; i++){
610     Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr);
611     if( NEVER(p==0) ) continue;
612     if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue;
613     if( p->iTable==iBase && p->iColumn<0 ) return 1;
614   }
615 
616   /* Loop through all indices on the table, checking each to see if it makes
617   ** the DISTINCT qualifier redundant. It does so if:
618   **
619   **   1. The index is itself UNIQUE, and
620   **
621   **   2. All of the columns in the index are either part of the pDistinct
622   **      list, or else the WHERE clause contains a term of the form "col=X",
623   **      where X is a constant value. The collation sequences of the
624   **      comparison and select-list expressions must match those of the index.
625   **
626   **   3. All of those index columns for which the WHERE clause does not
627   **      contain a "col=X" term are subject to a NOT NULL constraint.
628   */
629   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
630     if( !IsUniqueIndex(pIdx) ) continue;
631     if( pIdx->pPartIdxWhere ) continue;
632     for(i=0; i<pIdx->nKeyCol; i++){
633       if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
634         if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
635         if( indexColumnNotNull(pIdx, i)==0 ) break;
636       }
637     }
638     if( i==pIdx->nKeyCol ){
639       /* This index implies that the DISTINCT qualifier is redundant. */
640       return 1;
641     }
642   }
643 
644   return 0;
645 }
646 
647 
648 /*
649 ** Estimate the logarithm of the input value to base 2.
650 */
651 static LogEst estLog(LogEst N){
652   return N<=10 ? 0 : sqlite3LogEst(N) - 33;
653 }
654 
655 /*
656 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
657 **
658 ** This routine runs over generated VDBE code and translates OP_Column
659 ** opcodes into OP_Copy when the table is being accessed via co-routine
660 ** instead of via table lookup.
661 **
662 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
663 ** cursor iTabCur are transformed into OP_Sequence opcode for the
664 ** iAutoidxCur cursor, in order to generate unique rowids for the
665 ** automatic index being generated.
666 */
667 static void translateColumnToCopy(
668   Parse *pParse,      /* Parsing context */
669   int iStart,         /* Translate from this opcode to the end */
670   int iTabCur,        /* OP_Column/OP_Rowid references to this table */
671   int iRegister,      /* The first column is in this register */
672   int iAutoidxCur     /* If non-zero, cursor of autoindex being generated */
673 ){
674   Vdbe *v = pParse->pVdbe;
675   VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
676   int iEnd = sqlite3VdbeCurrentAddr(v);
677   if( pParse->db->mallocFailed ) return;
678   for(; iStart<iEnd; iStart++, pOp++){
679     if( pOp->p1!=iTabCur ) continue;
680     if( pOp->opcode==OP_Column ){
681       pOp->opcode = OP_Copy;
682       pOp->p1 = pOp->p2 + iRegister;
683       pOp->p2 = pOp->p3;
684       pOp->p3 = 0;
685       pOp->p5 = 2;  /* Cause the MEM_Subtype flag to be cleared */
686     }else if( pOp->opcode==OP_Rowid ){
687       pOp->opcode = OP_Sequence;
688       pOp->p1 = iAutoidxCur;
689 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
690       if( iAutoidxCur==0 ){
691         pOp->opcode = OP_Null;
692         pOp->p3 = 0;
693       }
694 #endif
695     }
696   }
697 }
698 
699 /*
700 ** Two routines for printing the content of an sqlite3_index_info
701 ** structure.  Used for testing and debugging only.  If neither
702 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
703 ** are no-ops.
704 */
705 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
706 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){
707   int i;
708   if( !sqlite3WhereTrace ) return;
709   for(i=0; i<p->nConstraint; i++){
710     sqlite3DebugPrintf(
711        "  constraint[%d]: col=%d termid=%d op=%d usabled=%d collseq=%s\n",
712        i,
713        p->aConstraint[i].iColumn,
714        p->aConstraint[i].iTermOffset,
715        p->aConstraint[i].op,
716        p->aConstraint[i].usable,
717        sqlite3_vtab_collation(p,i));
718   }
719   for(i=0; i<p->nOrderBy; i++){
720     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
721        i,
722        p->aOrderBy[i].iColumn,
723        p->aOrderBy[i].desc);
724   }
725 }
726 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){
727   int i;
728   if( !sqlite3WhereTrace ) return;
729   for(i=0; i<p->nConstraint; i++){
730     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
731        i,
732        p->aConstraintUsage[i].argvIndex,
733        p->aConstraintUsage[i].omit);
734   }
735   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
736   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
737   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
738   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
739   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
740 }
741 #else
742 #define whereTraceIndexInfoInputs(A)
743 #define whereTraceIndexInfoOutputs(A)
744 #endif
745 
746 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
747 /*
748 ** Return TRUE if the WHERE clause term pTerm is of a form where it
749 ** could be used with an index to access pSrc, assuming an appropriate
750 ** index existed.
751 */
752 static int termCanDriveIndex(
753   const WhereTerm *pTerm,        /* WHERE clause term to check */
754   const SrcItem *pSrc,           /* Table we are trying to access */
755   const Bitmask notReady         /* Tables in outer loops of the join */
756 ){
757   char aff;
758   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
759   if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
760   assert( (pSrc->fg.jointype & JT_RIGHT)==0 );
761   if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ){
762     testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT );
763     testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ );
764     testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) )
765     testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) );
766     if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON)
767      || pTerm->pExpr->w.iJoin != pSrc->iCursor
768     ){
769       return 0;  /* See tag-20191211-001 */
770     }
771   }
772   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
773   assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
774   if( pTerm->u.x.leftColumn<0 ) return 0;
775   aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity;
776   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
777   testcase( pTerm->pExpr->op==TK_IS );
778   return 1;
779 }
780 #endif
781 
782 
783 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
784 /*
785 ** Generate code to construct the Index object for an automatic index
786 ** and to set up the WhereLevel object pLevel so that the code generator
787 ** makes use of the automatic index.
788 */
789 static SQLITE_NOINLINE void constructAutomaticIndex(
790   Parse *pParse,              /* The parsing context */
791   const WhereClause *pWC,     /* The WHERE clause */
792   const SrcItem *pSrc,        /* The FROM clause term to get the next index */
793   const Bitmask notReady,     /* Mask of cursors that are not available */
794   WhereLevel *pLevel          /* Write new index here */
795 ){
796   int nKeyCol;                /* Number of columns in the constructed index */
797   WhereTerm *pTerm;           /* A single term of the WHERE clause */
798   WhereTerm *pWCEnd;          /* End of pWC->a[] */
799   Index *pIdx;                /* Object describing the transient index */
800   Vdbe *v;                    /* Prepared statement under construction */
801   int addrInit;               /* Address of the initialization bypass jump */
802   Table *pTable;              /* The table being indexed */
803   int addrTop;                /* Top of the index fill loop */
804   int regRecord;              /* Register holding an index record */
805   int n;                      /* Column counter */
806   int i;                      /* Loop counter */
807   int mxBitCol;               /* Maximum column in pSrc->colUsed */
808   CollSeq *pColl;             /* Collating sequence to on a column */
809   WhereLoop *pLoop;           /* The Loop object */
810   char *zNotUsed;             /* Extra space on the end of pIdx */
811   Bitmask idxCols;            /* Bitmap of columns used for indexing */
812   Bitmask extraCols;          /* Bitmap of additional columns */
813   u8 sentWarning = 0;         /* True if a warnning has been issued */
814   Expr *pPartial = 0;         /* Partial Index Expression */
815   int iContinue = 0;          /* Jump here to skip excluded rows */
816   SrcItem *pTabItem;          /* FROM clause term being indexed */
817   int addrCounter = 0;        /* Address where integer counter is initialized */
818   int regBase;                /* Array of registers where record is assembled */
819 
820   /* Generate code to skip over the creation and initialization of the
821   ** transient index on 2nd and subsequent iterations of the loop. */
822   v = pParse->pVdbe;
823   assert( v!=0 );
824   addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
825 
826   /* Count the number of columns that will be added to the index
827   ** and used to match WHERE clause constraints */
828   nKeyCol = 0;
829   pTable = pSrc->pTab;
830   pWCEnd = &pWC->a[pWC->nTerm];
831   pLoop = pLevel->pWLoop;
832   idxCols = 0;
833   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
834     Expr *pExpr = pTerm->pExpr;
835     /* Make the automatic index a partial index if there are terms in the
836     ** WHERE clause (or the ON clause of a LEFT join) that constrain which
837     ** rows of the target table (pSrc) that can be used. */
838     if( (pTerm->wtFlags & TERM_VIRTUAL)==0
839      && sqlite3ExprIsTableConstraint(pExpr, pSrc)
840     ){
841       pPartial = sqlite3ExprAnd(pParse, pPartial,
842                                 sqlite3ExprDup(pParse->db, pExpr, 0));
843     }
844     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
845       int iCol;
846       Bitmask cMask;
847       assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
848       iCol = pTerm->u.x.leftColumn;
849       cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
850       testcase( iCol==BMS );
851       testcase( iCol==BMS-1 );
852       if( !sentWarning ){
853         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
854             "automatic index on %s(%s)", pTable->zName,
855             pTable->aCol[iCol].zCnName);
856         sentWarning = 1;
857       }
858       if( (idxCols & cMask)==0 ){
859         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
860           goto end_auto_index_create;
861         }
862         pLoop->aLTerm[nKeyCol++] = pTerm;
863         idxCols |= cMask;
864       }
865     }
866   }
867   assert( nKeyCol>0 || pParse->db->mallocFailed );
868   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
869   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
870                      | WHERE_AUTO_INDEX;
871 
872   /* Count the number of additional columns needed to create a
873   ** covering index.  A "covering index" is an index that contains all
874   ** columns that are needed by the query.  With a covering index, the
875   ** original table never needs to be accessed.  Automatic indices must
876   ** be a covering index because the index will not be updated if the
877   ** original table changes and the index and table cannot both be used
878   ** if they go out of sync.
879   */
880   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
881   mxBitCol = MIN(BMS-1,pTable->nCol);
882   testcase( pTable->nCol==BMS-1 );
883   testcase( pTable->nCol==BMS-2 );
884   for(i=0; i<mxBitCol; i++){
885     if( extraCols & MASKBIT(i) ) nKeyCol++;
886   }
887   if( pSrc->colUsed & MASKBIT(BMS-1) ){
888     nKeyCol += pTable->nCol - BMS + 1;
889   }
890 
891   /* Construct the Index object to describe this index */
892   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
893   if( pIdx==0 ) goto end_auto_index_create;
894   pLoop->u.btree.pIndex = pIdx;
895   pIdx->zName = "auto-index";
896   pIdx->pTable = pTable;
897   n = 0;
898   idxCols = 0;
899   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
900     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
901       int iCol;
902       Bitmask cMask;
903       assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
904       iCol = pTerm->u.x.leftColumn;
905       cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
906       testcase( iCol==BMS-1 );
907       testcase( iCol==BMS );
908       if( (idxCols & cMask)==0 ){
909         Expr *pX = pTerm->pExpr;
910         idxCols |= cMask;
911         pIdx->aiColumn[n] = pTerm->u.x.leftColumn;
912         pColl = sqlite3ExprCompareCollSeq(pParse, pX);
913         assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */
914         pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
915         n++;
916       }
917     }
918   }
919   assert( (u32)n==pLoop->u.btree.nEq );
920 
921   /* Add additional columns needed to make the automatic index into
922   ** a covering index */
923   for(i=0; i<mxBitCol; i++){
924     if( extraCols & MASKBIT(i) ){
925       pIdx->aiColumn[n] = i;
926       pIdx->azColl[n] = sqlite3StrBINARY;
927       n++;
928     }
929   }
930   if( pSrc->colUsed & MASKBIT(BMS-1) ){
931     for(i=BMS-1; i<pTable->nCol; i++){
932       pIdx->aiColumn[n] = i;
933       pIdx->azColl[n] = sqlite3StrBINARY;
934       n++;
935     }
936   }
937   assert( n==nKeyCol );
938   pIdx->aiColumn[n] = XN_ROWID;
939   pIdx->azColl[n] = sqlite3StrBINARY;
940 
941   /* Create the automatic index */
942   assert( pLevel->iIdxCur>=0 );
943   pLevel->iIdxCur = pParse->nTab++;
944   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
945   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
946   VdbeComment((v, "for %s", pTable->zName));
947   if( OptimizationEnabled(pParse->db, SQLITE_BloomFilter) ){
948     pLevel->regFilter = ++pParse->nMem;
949     sqlite3VdbeAddOp2(v, OP_Blob, 10000, pLevel->regFilter);
950   }
951 
952   /* Fill the automatic index with content */
953   pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
954   if( pTabItem->fg.viaCoroutine ){
955     int regYield = pTabItem->regReturn;
956     addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
957     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
958     addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
959     VdbeCoverage(v);
960     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
961   }else{
962     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
963   }
964   if( pPartial ){
965     iContinue = sqlite3VdbeMakeLabel(pParse);
966     sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
967     pLoop->wsFlags |= WHERE_PARTIALIDX;
968   }
969   regRecord = sqlite3GetTempReg(pParse);
970   regBase = sqlite3GenerateIndexKey(
971       pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
972   );
973   if( pLevel->regFilter ){
974     sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0,
975                          regBase, pLoop->u.btree.nEq);
976   }
977   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
978   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
979   if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
980   if( pTabItem->fg.viaCoroutine ){
981     sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
982     testcase( pParse->db->mallocFailed );
983     assert( pLevel->iIdxCur>0 );
984     translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
985                           pTabItem->regResult, pLevel->iIdxCur);
986     sqlite3VdbeGoto(v, addrTop);
987     pTabItem->fg.viaCoroutine = 0;
988   }else{
989     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
990     sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
991   }
992   sqlite3VdbeJumpHere(v, addrTop);
993   sqlite3ReleaseTempReg(pParse, regRecord);
994 
995   /* Jump here when skipping the initialization */
996   sqlite3VdbeJumpHere(v, addrInit);
997 
998 end_auto_index_create:
999   sqlite3ExprDelete(pParse->db, pPartial);
1000 }
1001 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
1002 
1003 /*
1004 ** Generate bytecode that will initialize a Bloom filter that is appropriate
1005 ** for pLevel.
1006 **
1007 ** If there are inner loops within pLevel that have the WHERE_BLOOMFILTER
1008 ** flag set, initialize a Bloomfilter for them as well.  Except don't do
1009 ** this recursive initialization if the SQLITE_BloomPulldown optimization has
1010 ** been turned off.
1011 **
1012 ** When the Bloom filter is initialized, the WHERE_BLOOMFILTER flag is cleared
1013 ** from the loop, but the regFilter value is set to a register that implements
1014 ** the Bloom filter.  When regFilter is positive, the
1015 ** sqlite3WhereCodeOneLoopStart() will generate code to test the Bloom filter
1016 ** and skip the subsequence B-Tree seek if the Bloom filter indicates that
1017 ** no matching rows exist.
1018 **
1019 ** This routine may only be called if it has previously been determined that
1020 ** the loop would benefit from a Bloom filter, and the WHERE_BLOOMFILTER bit
1021 ** is set.
1022 */
1023 static SQLITE_NOINLINE void sqlite3ConstructBloomFilter(
1024   WhereInfo *pWInfo,    /* The WHERE clause */
1025   int iLevel,           /* Index in pWInfo->a[] that is pLevel */
1026   WhereLevel *pLevel,   /* Make a Bloom filter for this FROM term */
1027   Bitmask notReady      /* Loops that are not ready */
1028 ){
1029   int addrOnce;                        /* Address of opening OP_Once */
1030   int addrTop;                         /* Address of OP_Rewind */
1031   int addrCont;                        /* Jump here to skip a row */
1032   const WhereTerm *pTerm;              /* For looping over WHERE clause terms */
1033   const WhereTerm *pWCEnd;             /* Last WHERE clause term */
1034   Parse *pParse = pWInfo->pParse;      /* Parsing context */
1035   Vdbe *v = pParse->pVdbe;             /* VDBE under construction */
1036   WhereLoop *pLoop = pLevel->pWLoop;   /* The loop being coded */
1037   int iCur;                            /* Cursor for table getting the filter */
1038 
1039   assert( pLoop!=0 );
1040   assert( v!=0 );
1041   assert( pLoop->wsFlags & WHERE_BLOOMFILTER );
1042 
1043   addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1044   do{
1045     const SrcItem *pItem;
1046     const Table *pTab;
1047     u64 sz;
1048     sqlite3WhereExplainBloomFilter(pParse, pWInfo, pLevel);
1049     addrCont = sqlite3VdbeMakeLabel(pParse);
1050     iCur = pLevel->iTabCur;
1051     pLevel->regFilter = ++pParse->nMem;
1052 
1053     /* The Bloom filter is a Blob held in a register.  Initialize it
1054     ** to zero-filled blob of at least 80K bits, but maybe more if the
1055     ** estimated size of the table is larger.  We could actually
1056     ** measure the size of the table at run-time using OP_Count with
1057     ** P3==1 and use that value to initialize the blob.  But that makes
1058     ** testing complicated.  By basing the blob size on the value in the
1059     ** sqlite_stat1 table, testing is much easier.
1060     */
1061     pItem = &pWInfo->pTabList->a[pLevel->iFrom];
1062     assert( pItem!=0 );
1063     pTab = pItem->pTab;
1064     assert( pTab!=0 );
1065     sz = sqlite3LogEstToInt(pTab->nRowLogEst);
1066     if( sz<10000 ){
1067       sz = 10000;
1068     }else if( sz>10000000 ){
1069       sz = 10000000;
1070     }
1071     sqlite3VdbeAddOp2(v, OP_Blob, (int)sz, pLevel->regFilter);
1072 
1073     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
1074     pWCEnd = &pWInfo->sWC.a[pWInfo->sWC.nTerm];
1075     for(pTerm=pWInfo->sWC.a; pTerm<pWCEnd; pTerm++){
1076       Expr *pExpr = pTerm->pExpr;
1077       if( (pTerm->wtFlags & TERM_VIRTUAL)==0
1078        && sqlite3ExprIsTableConstraint(pExpr, pItem)
1079       ){
1080         sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
1081       }
1082     }
1083     if( pLoop->wsFlags & WHERE_IPK ){
1084       int r1 = sqlite3GetTempReg(pParse);
1085       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1);
1086       sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, 1);
1087       sqlite3ReleaseTempReg(pParse, r1);
1088     }else{
1089       Index *pIdx = pLoop->u.btree.pIndex;
1090       int n = pLoop->u.btree.nEq;
1091       int r1 = sqlite3GetTempRange(pParse, n);
1092       int jj;
1093       for(jj=0; jj<n; jj++){
1094         int iCol = pIdx->aiColumn[jj];
1095         assert( pIdx->pTable==pItem->pTab );
1096         sqlite3ExprCodeGetColumnOfTable(v, pIdx->pTable, iCur, iCol,r1+jj);
1097       }
1098       sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, n);
1099       sqlite3ReleaseTempRange(pParse, r1, n);
1100     }
1101     sqlite3VdbeResolveLabel(v, addrCont);
1102     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1);
1103     VdbeCoverage(v);
1104     sqlite3VdbeJumpHere(v, addrTop);
1105     pLoop->wsFlags &= ~WHERE_BLOOMFILTER;
1106     if( OptimizationDisabled(pParse->db, SQLITE_BloomPulldown) ) break;
1107     while( ++iLevel < pWInfo->nLevel ){
1108       const SrcItem *pTabItem;
1109       pLevel = &pWInfo->a[iLevel];
1110       pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1111       if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ) ) continue;
1112       pLoop = pLevel->pWLoop;
1113       if( NEVER(pLoop==0) ) continue;
1114       if( pLoop->prereq & notReady ) continue;
1115       if( (pLoop->wsFlags & (WHERE_BLOOMFILTER|WHERE_COLUMN_IN))
1116                  ==WHERE_BLOOMFILTER
1117       ){
1118         /* This is a candidate for bloom-filter pull-down (early evaluation).
1119         ** The test that WHERE_COLUMN_IN is omitted is important, as we are
1120         ** not able to do early evaluation of bloom filters that make use of
1121         ** the IN operator */
1122         break;
1123       }
1124     }
1125   }while( iLevel < pWInfo->nLevel );
1126   sqlite3VdbeJumpHere(v, addrOnce);
1127 }
1128 
1129 
1130 #ifndef SQLITE_OMIT_VIRTUALTABLE
1131 /*
1132 ** Allocate and populate an sqlite3_index_info structure. It is the
1133 ** responsibility of the caller to eventually release the structure
1134 ** by passing the pointer returned by this function to freeIndexInfo().
1135 */
1136 static sqlite3_index_info *allocateIndexInfo(
1137   WhereInfo *pWInfo,              /* The WHERE clause */
1138   WhereClause *pWC,               /* The WHERE clause being analyzed */
1139   Bitmask mUnusable,              /* Ignore terms with these prereqs */
1140   SrcItem *pSrc,                  /* The FROM clause term that is the vtab */
1141   u16 *pmNoOmit                   /* Mask of terms not to omit */
1142 ){
1143   int i, j;
1144   int nTerm;
1145   Parse *pParse = pWInfo->pParse;
1146   struct sqlite3_index_constraint *pIdxCons;
1147   struct sqlite3_index_orderby *pIdxOrderBy;
1148   struct sqlite3_index_constraint_usage *pUsage;
1149   struct HiddenIndexInfo *pHidden;
1150   WhereTerm *pTerm;
1151   int nOrderBy;
1152   sqlite3_index_info *pIdxInfo;
1153   u16 mNoOmit = 0;
1154   const Table *pTab;
1155   int eDistinct = 0;
1156   ExprList *pOrderBy = pWInfo->pOrderBy;
1157 
1158   assert( pSrc!=0 );
1159   pTab = pSrc->pTab;
1160   assert( pTab!=0 );
1161   assert( IsVirtual(pTab) );
1162 
1163   /* Find all WHERE clause constraints referring to this virtual table.
1164   ** Mark each term with the TERM_OK flag.  Set nTerm to the number of
1165   ** terms found.
1166   */
1167   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1168     pTerm->wtFlags &= ~TERM_OK;
1169     if( pTerm->leftCursor != pSrc->iCursor ) continue;
1170     if( pTerm->prereqRight & mUnusable ) continue;
1171     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
1172     testcase( pTerm->eOperator & WO_IN );
1173     testcase( pTerm->eOperator & WO_ISNULL );
1174     testcase( pTerm->eOperator & WO_IS );
1175     testcase( pTerm->eOperator & WO_ALL );
1176     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
1177     if( pTerm->wtFlags & TERM_VNULL ) continue;
1178 
1179     assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
1180     assert( pTerm->u.x.leftColumn>=XN_ROWID );
1181     assert( pTerm->u.x.leftColumn<pTab->nCol );
1182 
1183     /* tag-20191211-002: WHERE-clause constraints are not useful to the
1184     ** right-hand table of a LEFT JOIN nor to the either table of a
1185     ** RIGHT JOIN.  See tag-20191211-001 for the
1186     ** equivalent restriction for ordinary tables. */
1187     if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ){
1188       testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT );
1189       testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_RIGHT );
1190       testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ );
1191       testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) );
1192       testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) );
1193       if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON)
1194        || pTerm->pExpr->w.iJoin != pSrc->iCursor
1195       ){
1196         continue;
1197       }
1198     }
1199     nTerm++;
1200     pTerm->wtFlags |= TERM_OK;
1201   }
1202 
1203   /* If the ORDER BY clause contains only columns in the current
1204   ** virtual table then allocate space for the aOrderBy part of
1205   ** the sqlite3_index_info structure.
1206   */
1207   nOrderBy = 0;
1208   if( pOrderBy ){
1209     int n = pOrderBy->nExpr;
1210     for(i=0; i<n; i++){
1211       Expr *pExpr = pOrderBy->a[i].pExpr;
1212       Expr *pE2;
1213 
1214       /* Skip over constant terms in the ORDER BY clause */
1215       if( sqlite3ExprIsConstant(pExpr) ){
1216         continue;
1217       }
1218 
1219       /* Virtual tables are unable to deal with NULLS FIRST */
1220       if( pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL ) break;
1221 
1222       /* First case - a direct column references without a COLLATE operator */
1223       if( pExpr->op==TK_COLUMN && pExpr->iTable==pSrc->iCursor ){
1224         assert( pExpr->iColumn>=XN_ROWID && pExpr->iColumn<pTab->nCol );
1225         continue;
1226       }
1227 
1228       /* 2nd case - a column reference with a COLLATE operator.  Only match
1229       ** of the COLLATE operator matches the collation of the column. */
1230       if( pExpr->op==TK_COLLATE
1231        && (pE2 = pExpr->pLeft)->op==TK_COLUMN
1232        && pE2->iTable==pSrc->iCursor
1233       ){
1234         const char *zColl;  /* The collating sequence name */
1235         assert( !ExprHasProperty(pExpr, EP_IntValue) );
1236         assert( pExpr->u.zToken!=0 );
1237         assert( pE2->iColumn>=XN_ROWID && pE2->iColumn<pTab->nCol );
1238         pExpr->iColumn = pE2->iColumn;
1239         if( pE2->iColumn<0 ) continue;  /* Collseq does not matter for rowid */
1240         zColl = sqlite3ColumnColl(&pTab->aCol[pE2->iColumn]);
1241         if( zColl==0 ) zColl = sqlite3StrBINARY;
1242         if( sqlite3_stricmp(pExpr->u.zToken, zColl)==0 ) continue;
1243       }
1244 
1245       /* No matches cause a break out of the loop */
1246       break;
1247     }
1248     if( i==n ){
1249       nOrderBy = n;
1250       if( (pWInfo->wctrlFlags & WHERE_DISTINCTBY) ){
1251         eDistinct = 2 + ((pWInfo->wctrlFlags & WHERE_SORTBYGROUP)!=0);
1252       }else if( pWInfo->wctrlFlags & WHERE_GROUPBY ){
1253         eDistinct = 1;
1254       }
1255     }
1256   }
1257 
1258   /* Allocate the sqlite3_index_info structure
1259   */
1260   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
1261                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1262                            + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden)
1263                            + sizeof(sqlite3_value*)*nTerm );
1264   if( pIdxInfo==0 ){
1265     sqlite3ErrorMsg(pParse, "out of memory");
1266     return 0;
1267   }
1268   pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
1269   pIdxCons = (struct sqlite3_index_constraint*)&pHidden->aRhs[nTerm];
1270   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1271   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1272   pIdxInfo->aConstraint = pIdxCons;
1273   pIdxInfo->aOrderBy = pIdxOrderBy;
1274   pIdxInfo->aConstraintUsage = pUsage;
1275   pHidden->pWC = pWC;
1276   pHidden->pParse = pParse;
1277   pHidden->eDistinct = eDistinct;
1278   pHidden->mIn = 0;
1279   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1280     u16 op;
1281     if( (pTerm->wtFlags & TERM_OK)==0 ) continue;
1282     pIdxCons[j].iColumn = pTerm->u.x.leftColumn;
1283     pIdxCons[j].iTermOffset = i;
1284     op = pTerm->eOperator & WO_ALL;
1285     if( op==WO_IN ){
1286       if( (pTerm->wtFlags & TERM_SLICE)==0 ){
1287         pHidden->mIn |= SMASKBIT32(j);
1288       }
1289       op = WO_EQ;
1290     }
1291     if( op==WO_AUX ){
1292       pIdxCons[j].op = pTerm->eMatchOp;
1293     }else if( op & (WO_ISNULL|WO_IS) ){
1294       if( op==WO_ISNULL ){
1295         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
1296       }else{
1297         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
1298       }
1299     }else{
1300       pIdxCons[j].op = (u8)op;
1301       /* The direct assignment in the previous line is possible only because
1302       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
1303       ** following asserts verify this fact. */
1304       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1305       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1306       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1307       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1308       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1309       assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
1310 
1311       if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
1312        && sqlite3ExprIsVector(pTerm->pExpr->pRight)
1313       ){
1314         testcase( j!=i );
1315         if( j<16 ) mNoOmit |= (1 << j);
1316         if( op==WO_LT ) pIdxCons[j].op = WO_LE;
1317         if( op==WO_GT ) pIdxCons[j].op = WO_GE;
1318       }
1319     }
1320 
1321     j++;
1322   }
1323   assert( j==nTerm );
1324   pIdxInfo->nConstraint = j;
1325   for(i=j=0; i<nOrderBy; i++){
1326     Expr *pExpr = pOrderBy->a[i].pExpr;
1327     if( sqlite3ExprIsConstant(pExpr) ) continue;
1328     assert( pExpr->op==TK_COLUMN
1329          || (pExpr->op==TK_COLLATE && pExpr->pLeft->op==TK_COLUMN
1330               && pExpr->iColumn==pExpr->pLeft->iColumn) );
1331     pIdxOrderBy[j].iColumn = pExpr->iColumn;
1332     pIdxOrderBy[j].desc = pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC;
1333     j++;
1334   }
1335   pIdxInfo->nOrderBy = j;
1336 
1337   *pmNoOmit = mNoOmit;
1338   return pIdxInfo;
1339 }
1340 
1341 /*
1342 ** Free an sqlite3_index_info structure allocated by allocateIndexInfo()
1343 ** and possibly modified by xBestIndex methods.
1344 */
1345 static void freeIndexInfo(sqlite3 *db, sqlite3_index_info *pIdxInfo){
1346   HiddenIndexInfo *pHidden;
1347   int i;
1348   assert( pIdxInfo!=0 );
1349   pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
1350   assert( pHidden->pParse!=0 );
1351   assert( pHidden->pParse->db==db );
1352   for(i=0; i<pIdxInfo->nConstraint; i++){
1353     sqlite3ValueFree(pHidden->aRhs[i]); /* IMP: R-14553-25174 */
1354     pHidden->aRhs[i] = 0;
1355   }
1356   sqlite3DbFree(db, pIdxInfo);
1357 }
1358 
1359 /*
1360 ** The table object reference passed as the second argument to this function
1361 ** must represent a virtual table. This function invokes the xBestIndex()
1362 ** method of the virtual table with the sqlite3_index_info object that
1363 ** comes in as the 3rd argument to this function.
1364 **
1365 ** If an error occurs, pParse is populated with an error message and an
1366 ** appropriate error code is returned.  A return of SQLITE_CONSTRAINT from
1367 ** xBestIndex is not considered an error.  SQLITE_CONSTRAINT indicates that
1368 ** the current configuration of "unusable" flags in sqlite3_index_info can
1369 ** not result in a valid plan.
1370 **
1371 ** Whether or not an error is returned, it is the responsibility of the
1372 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1373 ** that this is required.
1374 */
1375 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
1376   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
1377   int rc;
1378 
1379   whereTraceIndexInfoInputs(p);
1380   pParse->db->nSchemaLock++;
1381   rc = pVtab->pModule->xBestIndex(pVtab, p);
1382   pParse->db->nSchemaLock--;
1383   whereTraceIndexInfoOutputs(p);
1384 
1385   if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){
1386     if( rc==SQLITE_NOMEM ){
1387       sqlite3OomFault(pParse->db);
1388     }else if( !pVtab->zErrMsg ){
1389       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1390     }else{
1391       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1392     }
1393   }
1394   sqlite3_free(pVtab->zErrMsg);
1395   pVtab->zErrMsg = 0;
1396   return rc;
1397 }
1398 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1399 
1400 #ifdef SQLITE_ENABLE_STAT4
1401 /*
1402 ** Estimate the location of a particular key among all keys in an
1403 ** index.  Store the results in aStat as follows:
1404 **
1405 **    aStat[0]      Est. number of rows less than pRec
1406 **    aStat[1]      Est. number of rows equal to pRec
1407 **
1408 ** Return the index of the sample that is the smallest sample that
1409 ** is greater than or equal to pRec. Note that this index is not an index
1410 ** into the aSample[] array - it is an index into a virtual set of samples
1411 ** based on the contents of aSample[] and the number of fields in record
1412 ** pRec.
1413 */
1414 static int whereKeyStats(
1415   Parse *pParse,              /* Database connection */
1416   Index *pIdx,                /* Index to consider domain of */
1417   UnpackedRecord *pRec,       /* Vector of values to consider */
1418   int roundUp,                /* Round up if true.  Round down if false */
1419   tRowcnt *aStat              /* OUT: stats written here */
1420 ){
1421   IndexSample *aSample = pIdx->aSample;
1422   int iCol;                   /* Index of required stats in anEq[] etc. */
1423   int i;                      /* Index of first sample >= pRec */
1424   int iSample;                /* Smallest sample larger than or equal to pRec */
1425   int iMin = 0;               /* Smallest sample not yet tested */
1426   int iTest;                  /* Next sample to test */
1427   int res;                    /* Result of comparison operation */
1428   int nField;                 /* Number of fields in pRec */
1429   tRowcnt iLower = 0;         /* anLt[] + anEq[] of largest sample pRec is > */
1430 
1431 #ifndef SQLITE_DEBUG
1432   UNUSED_PARAMETER( pParse );
1433 #endif
1434   assert( pRec!=0 );
1435   assert( pIdx->nSample>0 );
1436   assert( pRec->nField>0 );
1437 
1438   /* Do a binary search to find the first sample greater than or equal
1439   ** to pRec. If pRec contains a single field, the set of samples to search
1440   ** is simply the aSample[] array. If the samples in aSample[] contain more
1441   ** than one fields, all fields following the first are ignored.
1442   **
1443   ** If pRec contains N fields, where N is more than one, then as well as the
1444   ** samples in aSample[] (truncated to N fields), the search also has to
1445   ** consider prefixes of those samples. For example, if the set of samples
1446   ** in aSample is:
1447   **
1448   **     aSample[0] = (a, 5)
1449   **     aSample[1] = (a, 10)
1450   **     aSample[2] = (b, 5)
1451   **     aSample[3] = (c, 100)
1452   **     aSample[4] = (c, 105)
1453   **
1454   ** Then the search space should ideally be the samples above and the
1455   ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1456   ** the code actually searches this set:
1457   **
1458   **     0: (a)
1459   **     1: (a, 5)
1460   **     2: (a, 10)
1461   **     3: (a, 10)
1462   **     4: (b)
1463   **     5: (b, 5)
1464   **     6: (c)
1465   **     7: (c, 100)
1466   **     8: (c, 105)
1467   **     9: (c, 105)
1468   **
1469   ** For each sample in the aSample[] array, N samples are present in the
1470   ** effective sample array. In the above, samples 0 and 1 are based on
1471   ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1472   **
1473   ** Often, sample i of each block of N effective samples has (i+1) fields.
1474   ** Except, each sample may be extended to ensure that it is greater than or
1475   ** equal to the previous sample in the array. For example, in the above,
1476   ** sample 2 is the first sample of a block of N samples, so at first it
1477   ** appears that it should be 1 field in size. However, that would make it
1478   ** smaller than sample 1, so the binary search would not work. As a result,
1479   ** it is extended to two fields. The duplicates that this creates do not
1480   ** cause any problems.
1481   */
1482   nField = MIN(pRec->nField, pIdx->nSample);
1483   iCol = 0;
1484   iSample = pIdx->nSample * nField;
1485   do{
1486     int iSamp;                    /* Index in aSample[] of test sample */
1487     int n;                        /* Number of fields in test sample */
1488 
1489     iTest = (iMin+iSample)/2;
1490     iSamp = iTest / nField;
1491     if( iSamp>0 ){
1492       /* The proposed effective sample is a prefix of sample aSample[iSamp].
1493       ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1494       ** fields that is greater than the previous effective sample.  */
1495       for(n=(iTest % nField) + 1; n<nField; n++){
1496         if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1497       }
1498     }else{
1499       n = iTest + 1;
1500     }
1501 
1502     pRec->nField = n;
1503     res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1504     if( res<0 ){
1505       iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1506       iMin = iTest+1;
1507     }else if( res==0 && n<nField ){
1508       iLower = aSample[iSamp].anLt[n-1];
1509       iMin = iTest+1;
1510       res = -1;
1511     }else{
1512       iSample = iTest;
1513       iCol = n-1;
1514     }
1515   }while( res && iMin<iSample );
1516   i = iSample / nField;
1517 
1518 #ifdef SQLITE_DEBUG
1519   /* The following assert statements check that the binary search code
1520   ** above found the right answer. This block serves no purpose other
1521   ** than to invoke the asserts.  */
1522   if( pParse->db->mallocFailed==0 ){
1523     if( res==0 ){
1524       /* If (res==0) is true, then pRec must be equal to sample i. */
1525       assert( i<pIdx->nSample );
1526       assert( iCol==nField-1 );
1527       pRec->nField = nField;
1528       assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1529            || pParse->db->mallocFailed
1530       );
1531     }else{
1532       /* Unless i==pIdx->nSample, indicating that pRec is larger than
1533       ** all samples in the aSample[] array, pRec must be smaller than the
1534       ** (iCol+1) field prefix of sample i.  */
1535       assert( i<=pIdx->nSample && i>=0 );
1536       pRec->nField = iCol+1;
1537       assert( i==pIdx->nSample
1538            || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1539            || pParse->db->mallocFailed );
1540 
1541       /* if i==0 and iCol==0, then record pRec is smaller than all samples
1542       ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1543       ** be greater than or equal to the (iCol) field prefix of sample i.
1544       ** If (i>0), then pRec must also be greater than sample (i-1).  */
1545       if( iCol>0 ){
1546         pRec->nField = iCol;
1547         assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1548              || pParse->db->mallocFailed );
1549       }
1550       if( i>0 ){
1551         pRec->nField = nField;
1552         assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1553              || pParse->db->mallocFailed );
1554       }
1555     }
1556   }
1557 #endif /* ifdef SQLITE_DEBUG */
1558 
1559   if( res==0 ){
1560     /* Record pRec is equal to sample i */
1561     assert( iCol==nField-1 );
1562     aStat[0] = aSample[i].anLt[iCol];
1563     aStat[1] = aSample[i].anEq[iCol];
1564   }else{
1565     /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1566     ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1567     ** is larger than all samples in the array. */
1568     tRowcnt iUpper, iGap;
1569     if( i>=pIdx->nSample ){
1570       iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1571     }else{
1572       iUpper = aSample[i].anLt[iCol];
1573     }
1574 
1575     if( iLower>=iUpper ){
1576       iGap = 0;
1577     }else{
1578       iGap = iUpper - iLower;
1579     }
1580     if( roundUp ){
1581       iGap = (iGap*2)/3;
1582     }else{
1583       iGap = iGap/3;
1584     }
1585     aStat[0] = iLower + iGap;
1586     aStat[1] = pIdx->aAvgEq[nField-1];
1587   }
1588 
1589   /* Restore the pRec->nField value before returning.  */
1590   pRec->nField = nField;
1591   return i;
1592 }
1593 #endif /* SQLITE_ENABLE_STAT4 */
1594 
1595 /*
1596 ** If it is not NULL, pTerm is a term that provides an upper or lower
1597 ** bound on a range scan. Without considering pTerm, it is estimated
1598 ** that the scan will visit nNew rows. This function returns the number
1599 ** estimated to be visited after taking pTerm into account.
1600 **
1601 ** If the user explicitly specified a likelihood() value for this term,
1602 ** then the return value is the likelihood multiplied by the number of
1603 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1604 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1605 */
1606 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1607   LogEst nRet = nNew;
1608   if( pTerm ){
1609     if( pTerm->truthProb<=0 ){
1610       nRet += pTerm->truthProb;
1611     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1612       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
1613     }
1614   }
1615   return nRet;
1616 }
1617 
1618 
1619 #ifdef SQLITE_ENABLE_STAT4
1620 /*
1621 ** Return the affinity for a single column of an index.
1622 */
1623 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1624   assert( iCol>=0 && iCol<pIdx->nColumn );
1625   if( !pIdx->zColAff ){
1626     if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1627   }
1628   assert( pIdx->zColAff[iCol]!=0 );
1629   return pIdx->zColAff[iCol];
1630 }
1631 #endif
1632 
1633 
1634 #ifdef SQLITE_ENABLE_STAT4
1635 /*
1636 ** This function is called to estimate the number of rows visited by a
1637 ** range-scan on a skip-scan index. For example:
1638 **
1639 **   CREATE INDEX i1 ON t1(a, b, c);
1640 **   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1641 **
1642 ** Value pLoop->nOut is currently set to the estimated number of rows
1643 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1644 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1645 ** on the stat4 data for the index. this scan will be peformed multiple
1646 ** times (once for each (a,b) combination that matches a=?) is dealt with
1647 ** by the caller.
1648 **
1649 ** It does this by scanning through all stat4 samples, comparing values
1650 ** extracted from pLower and pUpper with the corresponding column in each
1651 ** sample. If L and U are the number of samples found to be less than or
1652 ** equal to the values extracted from pLower and pUpper respectively, and
1653 ** N is the total number of samples, the pLoop->nOut value is adjusted
1654 ** as follows:
1655 **
1656 **   nOut = nOut * ( min(U - L, 1) / N )
1657 **
1658 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1659 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1660 ** U is set to N.
1661 **
1662 ** Normally, this function sets *pbDone to 1 before returning. However,
1663 ** if no value can be extracted from either pLower or pUpper (and so the
1664 ** estimate of the number of rows delivered remains unchanged), *pbDone
1665 ** is left as is.
1666 **
1667 ** If an error occurs, an SQLite error code is returned. Otherwise,
1668 ** SQLITE_OK.
1669 */
1670 static int whereRangeSkipScanEst(
1671   Parse *pParse,       /* Parsing & code generating context */
1672   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1673   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1674   WhereLoop *pLoop,    /* Update the .nOut value of this loop */
1675   int *pbDone          /* Set to true if at least one expr. value extracted */
1676 ){
1677   Index *p = pLoop->u.btree.pIndex;
1678   int nEq = pLoop->u.btree.nEq;
1679   sqlite3 *db = pParse->db;
1680   int nLower = -1;
1681   int nUpper = p->nSample+1;
1682   int rc = SQLITE_OK;
1683   u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1684   CollSeq *pColl;
1685 
1686   sqlite3_value *p1 = 0;          /* Value extracted from pLower */
1687   sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
1688   sqlite3_value *pVal = 0;        /* Value extracted from record */
1689 
1690   pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1691   if( pLower ){
1692     rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1693     nLower = 0;
1694   }
1695   if( pUpper && rc==SQLITE_OK ){
1696     rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1697     nUpper = p2 ? 0 : p->nSample;
1698   }
1699 
1700   if( p1 || p2 ){
1701     int i;
1702     int nDiff;
1703     for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1704       rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1705       if( rc==SQLITE_OK && p1 ){
1706         int res = sqlite3MemCompare(p1, pVal, pColl);
1707         if( res>=0 ) nLower++;
1708       }
1709       if( rc==SQLITE_OK && p2 ){
1710         int res = sqlite3MemCompare(p2, pVal, pColl);
1711         if( res>=0 ) nUpper++;
1712       }
1713     }
1714     nDiff = (nUpper - nLower);
1715     if( nDiff<=0 ) nDiff = 1;
1716 
1717     /* If there is both an upper and lower bound specified, and the
1718     ** comparisons indicate that they are close together, use the fallback
1719     ** method (assume that the scan visits 1/64 of the rows) for estimating
1720     ** the number of rows visited. Otherwise, estimate the number of rows
1721     ** using the method described in the header comment for this function. */
1722     if( nDiff!=1 || pUpper==0 || pLower==0 ){
1723       int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1724       pLoop->nOut -= nAdjust;
1725       *pbDone = 1;
1726       WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n",
1727                            nLower, nUpper, nAdjust*-1, pLoop->nOut));
1728     }
1729 
1730   }else{
1731     assert( *pbDone==0 );
1732   }
1733 
1734   sqlite3ValueFree(p1);
1735   sqlite3ValueFree(p2);
1736   sqlite3ValueFree(pVal);
1737 
1738   return rc;
1739 }
1740 #endif /* SQLITE_ENABLE_STAT4 */
1741 
1742 /*
1743 ** This function is used to estimate the number of rows that will be visited
1744 ** by scanning an index for a range of values. The range may have an upper
1745 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1746 ** and lower bounds are represented by pLower and pUpper respectively. For
1747 ** example, assuming that index p is on t1(a):
1748 **
1749 **   ... FROM t1 WHERE a > ? AND a < ? ...
1750 **                    |_____|   |_____|
1751 **                       |         |
1752 **                     pLower    pUpper
1753 **
1754 ** If either of the upper or lower bound is not present, then NULL is passed in
1755 ** place of the corresponding WhereTerm.
1756 **
1757 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1758 ** column subject to the range constraint. Or, equivalently, the number of
1759 ** equality constraints optimized by the proposed index scan. For example,
1760 ** assuming index p is on t1(a, b), and the SQL query is:
1761 **
1762 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1763 **
1764 ** then nEq is set to 1 (as the range restricted column, b, is the second
1765 ** left-most column of the index). Or, if the query is:
1766 **
1767 **   ... FROM t1 WHERE a > ? AND a < ? ...
1768 **
1769 ** then nEq is set to 0.
1770 **
1771 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1772 ** number of rows that the index scan is expected to visit without
1773 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1774 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1775 ** to account for the range constraints pLower and pUpper.
1776 **
1777 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1778 ** used, a single range inequality reduces the search space by a factor of 4.
1779 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1780 ** rows visited by a factor of 64.
1781 */
1782 static int whereRangeScanEst(
1783   Parse *pParse,       /* Parsing & code generating context */
1784   WhereLoopBuilder *pBuilder,
1785   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1786   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1787   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
1788 ){
1789   int rc = SQLITE_OK;
1790   int nOut = pLoop->nOut;
1791   LogEst nNew;
1792 
1793 #ifdef SQLITE_ENABLE_STAT4
1794   Index *p = pLoop->u.btree.pIndex;
1795   int nEq = pLoop->u.btree.nEq;
1796 
1797   if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol)
1798    && OptimizationEnabled(pParse->db, SQLITE_Stat4)
1799   ){
1800     if( nEq==pBuilder->nRecValid ){
1801       UnpackedRecord *pRec = pBuilder->pRec;
1802       tRowcnt a[2];
1803       int nBtm = pLoop->u.btree.nBtm;
1804       int nTop = pLoop->u.btree.nTop;
1805 
1806       /* Variable iLower will be set to the estimate of the number of rows in
1807       ** the index that are less than the lower bound of the range query. The
1808       ** lower bound being the concatenation of $P and $L, where $P is the
1809       ** key-prefix formed by the nEq values matched against the nEq left-most
1810       ** columns of the index, and $L is the value in pLower.
1811       **
1812       ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1813       ** is not a simple variable or literal value), the lower bound of the
1814       ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1815       ** if $L is available, whereKeyStats() is called for both ($P) and
1816       ** ($P:$L) and the larger of the two returned values is used.
1817       **
1818       ** Similarly, iUpper is to be set to the estimate of the number of rows
1819       ** less than the upper bound of the range query. Where the upper bound
1820       ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1821       ** of iUpper are requested of whereKeyStats() and the smaller used.
1822       **
1823       ** The number of rows between the two bounds is then just iUpper-iLower.
1824       */
1825       tRowcnt iLower;     /* Rows less than the lower bound */
1826       tRowcnt iUpper;     /* Rows less than the upper bound */
1827       int iLwrIdx = -2;   /* aSample[] for the lower bound */
1828       int iUprIdx = -1;   /* aSample[] for the upper bound */
1829 
1830       if( pRec ){
1831         testcase( pRec->nField!=pBuilder->nRecValid );
1832         pRec->nField = pBuilder->nRecValid;
1833       }
1834       /* Determine iLower and iUpper using ($P) only. */
1835       if( nEq==0 ){
1836         iLower = 0;
1837         iUpper = p->nRowEst0;
1838       }else{
1839         /* Note: this call could be optimized away - since the same values must
1840         ** have been requested when testing key $P in whereEqualScanEst().  */
1841         whereKeyStats(pParse, p, pRec, 0, a);
1842         iLower = a[0];
1843         iUpper = a[0] + a[1];
1844       }
1845 
1846       assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1847       assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1848       assert( p->aSortOrder!=0 );
1849       if( p->aSortOrder[nEq] ){
1850         /* The roles of pLower and pUpper are swapped for a DESC index */
1851         SWAP(WhereTerm*, pLower, pUpper);
1852         SWAP(int, nBtm, nTop);
1853       }
1854 
1855       /* If possible, improve on the iLower estimate using ($P:$L). */
1856       if( pLower ){
1857         int n;                    /* Values extracted from pExpr */
1858         Expr *pExpr = pLower->pExpr->pRight;
1859         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1860         if( rc==SQLITE_OK && n ){
1861           tRowcnt iNew;
1862           u16 mask = WO_GT|WO_LE;
1863           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1864           iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1865           iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1866           if( iNew>iLower ) iLower = iNew;
1867           nOut--;
1868           pLower = 0;
1869         }
1870       }
1871 
1872       /* If possible, improve on the iUpper estimate using ($P:$U). */
1873       if( pUpper ){
1874         int n;                    /* Values extracted from pExpr */
1875         Expr *pExpr = pUpper->pExpr->pRight;
1876         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1877         if( rc==SQLITE_OK && n ){
1878           tRowcnt iNew;
1879           u16 mask = WO_GT|WO_LE;
1880           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1881           iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1882           iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1883           if( iNew<iUpper ) iUpper = iNew;
1884           nOut--;
1885           pUpper = 0;
1886         }
1887       }
1888 
1889       pBuilder->pRec = pRec;
1890       if( rc==SQLITE_OK ){
1891         if( iUpper>iLower ){
1892           nNew = sqlite3LogEst(iUpper - iLower);
1893           /* TUNING:  If both iUpper and iLower are derived from the same
1894           ** sample, then assume they are 4x more selective.  This brings
1895           ** the estimated selectivity more in line with what it would be
1896           ** if estimated without the use of STAT4 tables. */
1897           if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
1898         }else{
1899           nNew = 10;        assert( 10==sqlite3LogEst(2) );
1900         }
1901         if( nNew<nOut ){
1902           nOut = nNew;
1903         }
1904         WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
1905                            (u32)iLower, (u32)iUpper, nOut));
1906       }
1907     }else{
1908       int bDone = 0;
1909       rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1910       if( bDone ) return rc;
1911     }
1912   }
1913 #else
1914   UNUSED_PARAMETER(pParse);
1915   UNUSED_PARAMETER(pBuilder);
1916   assert( pLower || pUpper );
1917 #endif
1918   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1919   nNew = whereRangeAdjust(pLower, nOut);
1920   nNew = whereRangeAdjust(pUpper, nNew);
1921 
1922   /* TUNING: If there is both an upper and lower limit and neither limit
1923   ** has an application-defined likelihood(), assume the range is
1924   ** reduced by an additional 75%. This means that, by default, an open-ended
1925   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1926   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1927   ** match 1/64 of the index. */
1928   if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1929     nNew -= 20;
1930   }
1931 
1932   nOut -= (pLower!=0) + (pUpper!=0);
1933   if( nNew<10 ) nNew = 10;
1934   if( nNew<nOut ) nOut = nNew;
1935 #if defined(WHERETRACE_ENABLED)
1936   if( pLoop->nOut>nOut ){
1937     WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1938                     pLoop->nOut, nOut));
1939   }
1940 #endif
1941   pLoop->nOut = (LogEst)nOut;
1942   return rc;
1943 }
1944 
1945 #ifdef SQLITE_ENABLE_STAT4
1946 /*
1947 ** Estimate the number of rows that will be returned based on
1948 ** an equality constraint x=VALUE and where that VALUE occurs in
1949 ** the histogram data.  This only works when x is the left-most
1950 ** column of an index and sqlite_stat4 histogram data is available
1951 ** for that index.  When pExpr==NULL that means the constraint is
1952 ** "x IS NULL" instead of "x=VALUE".
1953 **
1954 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1955 ** If unable to make an estimate, leave *pnRow unchanged and return
1956 ** non-zero.
1957 **
1958 ** This routine can fail if it is unable to load a collating sequence
1959 ** required for string comparison, or if unable to allocate memory
1960 ** for a UTF conversion required for comparison.  The error is stored
1961 ** in the pParse structure.
1962 */
1963 static int whereEqualScanEst(
1964   Parse *pParse,       /* Parsing & code generating context */
1965   WhereLoopBuilder *pBuilder,
1966   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
1967   tRowcnt *pnRow       /* Write the revised row estimate here */
1968 ){
1969   Index *p = pBuilder->pNew->u.btree.pIndex;
1970   int nEq = pBuilder->pNew->u.btree.nEq;
1971   UnpackedRecord *pRec = pBuilder->pRec;
1972   int rc;                   /* Subfunction return code */
1973   tRowcnt a[2];             /* Statistics */
1974   int bOk;
1975 
1976   assert( nEq>=1 );
1977   assert( nEq<=p->nColumn );
1978   assert( p->aSample!=0 );
1979   assert( p->nSample>0 );
1980   assert( pBuilder->nRecValid<nEq );
1981 
1982   /* If values are not available for all fields of the index to the left
1983   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1984   if( pBuilder->nRecValid<(nEq-1) ){
1985     return SQLITE_NOTFOUND;
1986   }
1987 
1988   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1989   ** below would return the same value.  */
1990   if( nEq>=p->nColumn ){
1991     *pnRow = 1;
1992     return SQLITE_OK;
1993   }
1994 
1995   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1996   pBuilder->pRec = pRec;
1997   if( rc!=SQLITE_OK ) return rc;
1998   if( bOk==0 ) return SQLITE_NOTFOUND;
1999   pBuilder->nRecValid = nEq;
2000 
2001   whereKeyStats(pParse, p, pRec, 0, a);
2002   WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
2003                    p->zName, nEq-1, (int)a[1]));
2004   *pnRow = a[1];
2005 
2006   return rc;
2007 }
2008 #endif /* SQLITE_ENABLE_STAT4 */
2009 
2010 #ifdef SQLITE_ENABLE_STAT4
2011 /*
2012 ** Estimate the number of rows that will be returned based on
2013 ** an IN constraint where the right-hand side of the IN operator
2014 ** is a list of values.  Example:
2015 **
2016 **        WHERE x IN (1,2,3,4)
2017 **
2018 ** Write the estimated row count into *pnRow and return SQLITE_OK.
2019 ** If unable to make an estimate, leave *pnRow unchanged and return
2020 ** non-zero.
2021 **
2022 ** This routine can fail if it is unable to load a collating sequence
2023 ** required for string comparison, or if unable to allocate memory
2024 ** for a UTF conversion required for comparison.  The error is stored
2025 ** in the pParse structure.
2026 */
2027 static int whereInScanEst(
2028   Parse *pParse,       /* Parsing & code generating context */
2029   WhereLoopBuilder *pBuilder,
2030   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
2031   tRowcnt *pnRow       /* Write the revised row estimate here */
2032 ){
2033   Index *p = pBuilder->pNew->u.btree.pIndex;
2034   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
2035   int nRecValid = pBuilder->nRecValid;
2036   int rc = SQLITE_OK;     /* Subfunction return code */
2037   tRowcnt nEst;           /* Number of rows for a single term */
2038   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
2039   int i;                  /* Loop counter */
2040 
2041   assert( p->aSample!=0 );
2042   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
2043     nEst = nRow0;
2044     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
2045     nRowEst += nEst;
2046     pBuilder->nRecValid = nRecValid;
2047   }
2048 
2049   if( rc==SQLITE_OK ){
2050     if( nRowEst > nRow0 ) nRowEst = nRow0;
2051     *pnRow = nRowEst;
2052     WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
2053   }
2054   assert( pBuilder->nRecValid==nRecValid );
2055   return rc;
2056 }
2057 #endif /* SQLITE_ENABLE_STAT4 */
2058 
2059 
2060 #ifdef WHERETRACE_ENABLED
2061 /*
2062 ** Print the content of a WhereTerm object
2063 */
2064 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){
2065   if( pTerm==0 ){
2066     sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
2067   }else{
2068     char zType[8];
2069     char zLeft[50];
2070     memcpy(zType, "....", 5);
2071     if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
2072     if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
2073     if( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) zType[2] = 'L';
2074     if( pTerm->wtFlags & TERM_CODED  ) zType[3] = 'C';
2075     if( pTerm->eOperator & WO_SINGLE ){
2076       assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
2077       sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
2078                        pTerm->leftCursor, pTerm->u.x.leftColumn);
2079     }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
2080       sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx",
2081                        pTerm->u.pOrInfo->indexable);
2082     }else{
2083       sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
2084     }
2085     sqlite3DebugPrintf(
2086        "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x",
2087        iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags);
2088     /* The 0x10000 .wheretrace flag causes extra information to be
2089     ** shown about each Term */
2090     if( sqlite3WhereTrace & 0x10000 ){
2091       sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx",
2092         pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight);
2093     }
2094     if( (pTerm->eOperator & (WO_OR|WO_AND))==0 && pTerm->u.x.iField ){
2095       sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField);
2096     }
2097     if( pTerm->iParent>=0 ){
2098       sqlite3DebugPrintf(" iParent=%d", pTerm->iParent);
2099     }
2100     sqlite3DebugPrintf("\n");
2101     sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
2102   }
2103 }
2104 #endif
2105 
2106 #ifdef WHERETRACE_ENABLED
2107 /*
2108 ** Show the complete content of a WhereClause
2109 */
2110 void sqlite3WhereClausePrint(WhereClause *pWC){
2111   int i;
2112   for(i=0; i<pWC->nTerm; i++){
2113     sqlite3WhereTermPrint(&pWC->a[i], i);
2114   }
2115 }
2116 #endif
2117 
2118 #ifdef WHERETRACE_ENABLED
2119 /*
2120 ** Print a WhereLoop object for debugging purposes
2121 */
2122 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){
2123   WhereInfo *pWInfo = pWC->pWInfo;
2124   int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
2125   SrcItem *pItem = pWInfo->pTabList->a + p->iTab;
2126   Table *pTab = pItem->pTab;
2127   Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
2128   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
2129                      p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
2130   sqlite3DebugPrintf(" %12s",
2131                      pItem->zAlias ? pItem->zAlias : pTab->zName);
2132   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2133     const char *zName;
2134     if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
2135       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
2136         int i = sqlite3Strlen30(zName) - 1;
2137         while( zName[i]!='_' ) i--;
2138         zName += i;
2139       }
2140       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
2141     }else{
2142       sqlite3DebugPrintf("%20s","");
2143     }
2144   }else{
2145     char *z;
2146     if( p->u.vtab.idxStr ){
2147       z = sqlite3_mprintf("(%d,\"%s\",%#x)",
2148                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
2149     }else{
2150       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
2151     }
2152     sqlite3DebugPrintf(" %-19s", z);
2153     sqlite3_free(z);
2154   }
2155   if( p->wsFlags & WHERE_SKIPSCAN ){
2156     sqlite3DebugPrintf(" f %06x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
2157   }else{
2158     sqlite3DebugPrintf(" f %06x N %d", p->wsFlags, p->nLTerm);
2159   }
2160   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
2161   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
2162     int i;
2163     for(i=0; i<p->nLTerm; i++){
2164       sqlite3WhereTermPrint(p->aLTerm[i], i);
2165     }
2166   }
2167 }
2168 #endif
2169 
2170 /*
2171 ** Convert bulk memory into a valid WhereLoop that can be passed
2172 ** to whereLoopClear harmlessly.
2173 */
2174 static void whereLoopInit(WhereLoop *p){
2175   p->aLTerm = p->aLTermSpace;
2176   p->nLTerm = 0;
2177   p->nLSlot = ArraySize(p->aLTermSpace);
2178   p->wsFlags = 0;
2179 }
2180 
2181 /*
2182 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
2183 */
2184 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
2185   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
2186     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
2187       sqlite3_free(p->u.vtab.idxStr);
2188       p->u.vtab.needFree = 0;
2189       p->u.vtab.idxStr = 0;
2190     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
2191       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
2192       sqlite3DbFreeNN(db, p->u.btree.pIndex);
2193       p->u.btree.pIndex = 0;
2194     }
2195   }
2196 }
2197 
2198 /*
2199 ** Deallocate internal memory used by a WhereLoop object.  Leave the
2200 ** object in an initialized state, as if it had been newly allocated.
2201 */
2202 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
2203   if( p->aLTerm!=p->aLTermSpace ){
2204     sqlite3DbFreeNN(db, p->aLTerm);
2205     p->aLTerm = p->aLTermSpace;
2206     p->nLSlot = ArraySize(p->aLTermSpace);
2207   }
2208   whereLoopClearUnion(db, p);
2209   p->nLTerm = 0;
2210   p->wsFlags = 0;
2211 }
2212 
2213 /*
2214 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
2215 */
2216 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
2217   WhereTerm **paNew;
2218   if( p->nLSlot>=n ) return SQLITE_OK;
2219   n = (n+7)&~7;
2220   paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
2221   if( paNew==0 ) return SQLITE_NOMEM_BKPT;
2222   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
2223   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
2224   p->aLTerm = paNew;
2225   p->nLSlot = n;
2226   return SQLITE_OK;
2227 }
2228 
2229 /*
2230 ** Transfer content from the second pLoop into the first.
2231 */
2232 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
2233   whereLoopClearUnion(db, pTo);
2234   if( pFrom->nLTerm > pTo->nLSlot
2235    && whereLoopResize(db, pTo, pFrom->nLTerm)
2236   ){
2237     memset(pTo, 0, WHERE_LOOP_XFER_SZ);
2238     return SQLITE_NOMEM_BKPT;
2239   }
2240   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
2241   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
2242   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
2243     pFrom->u.vtab.needFree = 0;
2244   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
2245     pFrom->u.btree.pIndex = 0;
2246   }
2247   return SQLITE_OK;
2248 }
2249 
2250 /*
2251 ** Delete a WhereLoop object
2252 */
2253 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
2254   whereLoopClear(db, p);
2255   sqlite3DbFreeNN(db, p);
2256 }
2257 
2258 /*
2259 ** Free a WhereInfo structure
2260 */
2261 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
2262   assert( pWInfo!=0 );
2263   sqlite3WhereClauseClear(&pWInfo->sWC);
2264   while( pWInfo->pLoops ){
2265     WhereLoop *p = pWInfo->pLoops;
2266     pWInfo->pLoops = p->pNextLoop;
2267     whereLoopDelete(db, p);
2268   }
2269   assert( pWInfo->pExprMods==0 );
2270   while( pWInfo->pMemToFree ){
2271     WhereMemBlock *pNext = pWInfo->pMemToFree->pNext;
2272     sqlite3DbFreeNN(db, pWInfo->pMemToFree);
2273     pWInfo->pMemToFree = pNext;
2274   }
2275   sqlite3DbFreeNN(db, pWInfo);
2276 }
2277 
2278 /* Undo all Expr node modifications
2279 */
2280 static void whereUndoExprMods(WhereInfo *pWInfo){
2281   while( pWInfo->pExprMods ){
2282     WhereExprMod *p = pWInfo->pExprMods;
2283     pWInfo->pExprMods = p->pNext;
2284     memcpy(p->pExpr, &p->orig, sizeof(p->orig));
2285     sqlite3DbFree(pWInfo->pParse->db, p);
2286   }
2287 }
2288 
2289 /*
2290 ** Return TRUE if all of the following are true:
2291 **
2292 **   (1)  X has the same or lower cost, or returns the same or fewer rows,
2293 **        than Y.
2294 **   (2)  X uses fewer WHERE clause terms than Y
2295 **   (3)  Every WHERE clause term used by X is also used by Y
2296 **   (4)  X skips at least as many columns as Y
2297 **   (5)  If X is a covering index, than Y is too
2298 **
2299 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
2300 ** If X is a proper subset of Y then Y is a better choice and ought
2301 ** to have a lower cost.  This routine returns TRUE when that cost
2302 ** relationship is inverted and needs to be adjusted.  Constraint (4)
2303 ** was added because if X uses skip-scan less than Y it still might
2304 ** deserve a lower cost even if it is a proper subset of Y.  Constraint (5)
2305 ** was added because a covering index probably deserves to have a lower cost
2306 ** than a non-covering index even if it is a proper subset.
2307 */
2308 static int whereLoopCheaperProperSubset(
2309   const WhereLoop *pX,       /* First WhereLoop to compare */
2310   const WhereLoop *pY        /* Compare against this WhereLoop */
2311 ){
2312   int i, j;
2313   if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
2314     return 0; /* X is not a subset of Y */
2315   }
2316   if( pX->rRun>pY->rRun && pX->nOut>pY->nOut ) return 0;
2317   if( pY->nSkip > pX->nSkip ) return 0;
2318   for(i=pX->nLTerm-1; i>=0; i--){
2319     if( pX->aLTerm[i]==0 ) continue;
2320     for(j=pY->nLTerm-1; j>=0; j--){
2321       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
2322     }
2323     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
2324   }
2325   if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
2326    && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
2327     return 0;  /* Constraint (5) */
2328   }
2329   return 1;  /* All conditions meet */
2330 }
2331 
2332 /*
2333 ** Try to adjust the cost and number of output rows of WhereLoop pTemplate
2334 ** upwards or downwards so that:
2335 **
2336 **   (1) pTemplate costs less than any other WhereLoops that are a proper
2337 **       subset of pTemplate
2338 **
2339 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
2340 **       is a proper subset.
2341 **
2342 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
2343 ** WHERE clause terms than Y and that every WHERE clause term used by X is
2344 ** also used by Y.
2345 */
2346 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
2347   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
2348   for(; p; p=p->pNextLoop){
2349     if( p->iTab!=pTemplate->iTab ) continue;
2350     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
2351     if( whereLoopCheaperProperSubset(p, pTemplate) ){
2352       /* Adjust pTemplate cost downward so that it is cheaper than its
2353       ** subset p. */
2354       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2355                        pTemplate->rRun, pTemplate->nOut,
2356                        MIN(p->rRun, pTemplate->rRun),
2357                        MIN(p->nOut - 1, pTemplate->nOut)));
2358       pTemplate->rRun = MIN(p->rRun, pTemplate->rRun);
2359       pTemplate->nOut = MIN(p->nOut - 1, pTemplate->nOut);
2360     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
2361       /* Adjust pTemplate cost upward so that it is costlier than p since
2362       ** pTemplate is a proper subset of p */
2363       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2364                        pTemplate->rRun, pTemplate->nOut,
2365                        MAX(p->rRun, pTemplate->rRun),
2366                        MAX(p->nOut + 1, pTemplate->nOut)));
2367       pTemplate->rRun = MAX(p->rRun, pTemplate->rRun);
2368       pTemplate->nOut = MAX(p->nOut + 1, pTemplate->nOut);
2369     }
2370   }
2371 }
2372 
2373 /*
2374 ** Search the list of WhereLoops in *ppPrev looking for one that can be
2375 ** replaced by pTemplate.
2376 **
2377 ** Return NULL if pTemplate does not belong on the WhereLoop list.
2378 ** In other words if pTemplate ought to be dropped from further consideration.
2379 **
2380 ** If pX is a WhereLoop that pTemplate can replace, then return the
2381 ** link that points to pX.
2382 **
2383 ** If pTemplate cannot replace any existing element of the list but needs
2384 ** to be added to the list as a new entry, then return a pointer to the
2385 ** tail of the list.
2386 */
2387 static WhereLoop **whereLoopFindLesser(
2388   WhereLoop **ppPrev,
2389   const WhereLoop *pTemplate
2390 ){
2391   WhereLoop *p;
2392   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
2393     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
2394       /* If either the iTab or iSortIdx values for two WhereLoop are different
2395       ** then those WhereLoops need to be considered separately.  Neither is
2396       ** a candidate to replace the other. */
2397       continue;
2398     }
2399     /* In the current implementation, the rSetup value is either zero
2400     ** or the cost of building an automatic index (NlogN) and the NlogN
2401     ** is the same for compatible WhereLoops. */
2402     assert( p->rSetup==0 || pTemplate->rSetup==0
2403                  || p->rSetup==pTemplate->rSetup );
2404 
2405     /* whereLoopAddBtree() always generates and inserts the automatic index
2406     ** case first.  Hence compatible candidate WhereLoops never have a larger
2407     ** rSetup. Call this SETUP-INVARIANT */
2408     assert( p->rSetup>=pTemplate->rSetup );
2409 
2410     /* Any loop using an appliation-defined index (or PRIMARY KEY or
2411     ** UNIQUE constraint) with one or more == constraints is better
2412     ** than an automatic index. Unless it is a skip-scan. */
2413     if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
2414      && (pTemplate->nSkip)==0
2415      && (pTemplate->wsFlags & WHERE_INDEXED)!=0
2416      && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
2417      && (p->prereq & pTemplate->prereq)==pTemplate->prereq
2418     ){
2419       break;
2420     }
2421 
2422     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2423     ** discarded.  WhereLoop p is better if:
2424     **   (1)  p has no more dependencies than pTemplate, and
2425     **   (2)  p has an equal or lower cost than pTemplate
2426     */
2427     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
2428      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
2429      && p->rRun<=pTemplate->rRun                      /* (2b) */
2430      && p->nOut<=pTemplate->nOut                      /* (2c) */
2431     ){
2432       return 0;  /* Discard pTemplate */
2433     }
2434 
2435     /* If pTemplate is always better than p, then cause p to be overwritten
2436     ** with pTemplate.  pTemplate is better than p if:
2437     **   (1)  pTemplate has no more dependences than p, and
2438     **   (2)  pTemplate has an equal or lower cost than p.
2439     */
2440     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
2441      && p->rRun>=pTemplate->rRun                             /* (2a) */
2442      && p->nOut>=pTemplate->nOut                             /* (2b) */
2443     ){
2444       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2445       break;   /* Cause p to be overwritten by pTemplate */
2446     }
2447   }
2448   return ppPrev;
2449 }
2450 
2451 /*
2452 ** Insert or replace a WhereLoop entry using the template supplied.
2453 **
2454 ** An existing WhereLoop entry might be overwritten if the new template
2455 ** is better and has fewer dependencies.  Or the template will be ignored
2456 ** and no insert will occur if an existing WhereLoop is faster and has
2457 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
2458 ** added based on the template.
2459 **
2460 ** If pBuilder->pOrSet is not NULL then we care about only the
2461 ** prerequisites and rRun and nOut costs of the N best loops.  That
2462 ** information is gathered in the pBuilder->pOrSet object.  This special
2463 ** processing mode is used only for OR clause processing.
2464 **
2465 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2466 ** still might overwrite similar loops with the new template if the
2467 ** new template is better.  Loops may be overwritten if the following
2468 ** conditions are met:
2469 **
2470 **    (1)  They have the same iTab.
2471 **    (2)  They have the same iSortIdx.
2472 **    (3)  The template has same or fewer dependencies than the current loop
2473 **    (4)  The template has the same or lower cost than the current loop
2474 */
2475 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2476   WhereLoop **ppPrev, *p;
2477   WhereInfo *pWInfo = pBuilder->pWInfo;
2478   sqlite3 *db = pWInfo->pParse->db;
2479   int rc;
2480 
2481   /* Stop the search once we hit the query planner search limit */
2482   if( pBuilder->iPlanLimit==0 ){
2483     WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
2484     if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0;
2485     return SQLITE_DONE;
2486   }
2487   pBuilder->iPlanLimit--;
2488 
2489   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2490 
2491   /* If pBuilder->pOrSet is defined, then only keep track of the costs
2492   ** and prereqs.
2493   */
2494   if( pBuilder->pOrSet!=0 ){
2495     if( pTemplate->nLTerm ){
2496 #if WHERETRACE_ENABLED
2497       u16 n = pBuilder->pOrSet->n;
2498       int x =
2499 #endif
2500       whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2501                                     pTemplate->nOut);
2502 #if WHERETRACE_ENABLED /* 0x8 */
2503       if( sqlite3WhereTrace & 0x8 ){
2504         sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
2505         sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2506       }
2507 #endif
2508     }
2509     return SQLITE_OK;
2510   }
2511 
2512   /* Look for an existing WhereLoop to replace with pTemplate
2513   */
2514   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2515 
2516   if( ppPrev==0 ){
2517     /* There already exists a WhereLoop on the list that is better
2518     ** than pTemplate, so just ignore pTemplate */
2519 #if WHERETRACE_ENABLED /* 0x8 */
2520     if( sqlite3WhereTrace & 0x8 ){
2521       sqlite3DebugPrintf("   skip: ");
2522       sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2523     }
2524 #endif
2525     return SQLITE_OK;
2526   }else{
2527     p = *ppPrev;
2528   }
2529 
2530   /* If we reach this point it means that either p[] should be overwritten
2531   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2532   ** WhereLoop and insert it.
2533   */
2534 #if WHERETRACE_ENABLED /* 0x8 */
2535   if( sqlite3WhereTrace & 0x8 ){
2536     if( p!=0 ){
2537       sqlite3DebugPrintf("replace: ");
2538       sqlite3WhereLoopPrint(p, pBuilder->pWC);
2539       sqlite3DebugPrintf("   with: ");
2540     }else{
2541       sqlite3DebugPrintf("    add: ");
2542     }
2543     sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2544   }
2545 #endif
2546   if( p==0 ){
2547     /* Allocate a new WhereLoop to add to the end of the list */
2548     *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2549     if( p==0 ) return SQLITE_NOMEM_BKPT;
2550     whereLoopInit(p);
2551     p->pNextLoop = 0;
2552   }else{
2553     /* We will be overwriting WhereLoop p[].  But before we do, first
2554     ** go through the rest of the list and delete any other entries besides
2555     ** p[] that are also supplated by pTemplate */
2556     WhereLoop **ppTail = &p->pNextLoop;
2557     WhereLoop *pToDel;
2558     while( *ppTail ){
2559       ppTail = whereLoopFindLesser(ppTail, pTemplate);
2560       if( ppTail==0 ) break;
2561       pToDel = *ppTail;
2562       if( pToDel==0 ) break;
2563       *ppTail = pToDel->pNextLoop;
2564 #if WHERETRACE_ENABLED /* 0x8 */
2565       if( sqlite3WhereTrace & 0x8 ){
2566         sqlite3DebugPrintf(" delete: ");
2567         sqlite3WhereLoopPrint(pToDel, pBuilder->pWC);
2568       }
2569 #endif
2570       whereLoopDelete(db, pToDel);
2571     }
2572   }
2573   rc = whereLoopXfer(db, p, pTemplate);
2574   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2575     Index *pIndex = p->u.btree.pIndex;
2576     if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){
2577       p->u.btree.pIndex = 0;
2578     }
2579   }
2580   return rc;
2581 }
2582 
2583 /*
2584 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2585 ** WHERE clause that reference the loop but which are not used by an
2586 ** index.
2587 *
2588 ** For every WHERE clause term that is not used by the index
2589 ** and which has a truth probability assigned by one of the likelihood(),
2590 ** likely(), or unlikely() SQL functions, reduce the estimated number
2591 ** of output rows by the probability specified.
2592 **
2593 ** TUNING:  For every WHERE clause term that is not used by the index
2594 ** and which does not have an assigned truth probability, heuristics
2595 ** described below are used to try to estimate the truth probability.
2596 ** TODO --> Perhaps this is something that could be improved by better
2597 ** table statistics.
2598 **
2599 ** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
2600 ** value corresponds to -1 in LogEst notation, so this means decrement
2601 ** the WhereLoop.nOut field for every such WHERE clause term.
2602 **
2603 ** Heuristic 2:  If there exists one or more WHERE clause terms of the
2604 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2605 ** final output row estimate is no greater than 1/4 of the total number
2606 ** of rows in the table.  In other words, assume that x==EXPR will filter
2607 ** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
2608 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2609 ** on the "x" column and so in that case only cap the output row estimate
2610 ** at 1/2 instead of 1/4.
2611 */
2612 static void whereLoopOutputAdjust(
2613   WhereClause *pWC,      /* The WHERE clause */
2614   WhereLoop *pLoop,      /* The loop to adjust downward */
2615   LogEst nRow            /* Number of rows in the entire table */
2616 ){
2617   WhereTerm *pTerm, *pX;
2618   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2619   int i, j;
2620   LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */
2621 
2622   assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2623   for(i=pWC->nBase, pTerm=pWC->a; i>0; i--, pTerm++){
2624     assert( pTerm!=0 );
2625     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2626     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2627     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) continue;
2628     for(j=pLoop->nLTerm-1; j>=0; j--){
2629       pX = pLoop->aLTerm[j];
2630       if( pX==0 ) continue;
2631       if( pX==pTerm ) break;
2632       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2633     }
2634     if( j<0 ){
2635       if( pLoop->maskSelf==pTerm->prereqAll ){
2636         /* If there are extra terms in the WHERE clause not used by an index
2637         ** that depend only on the table being scanned, and that will tend to
2638         ** cause many rows to be omitted, then mark that table as
2639         ** "self-culling".
2640         **
2641         ** 2022-03-24:  Self-culling only applies if either the extra terms
2642         ** are straight comparison operators that are non-true with NULL
2643         ** operand, or if the loop is not an OUTER JOIN.
2644         */
2645         if( (pTerm->eOperator & 0x3f)!=0
2646          || (pWC->pWInfo->pTabList->a[pLoop->iTab].fg.jointype
2647                   & (JT_LEFT|JT_LTORJ))==0
2648         ){
2649           pLoop->wsFlags |= WHERE_SELFCULL;
2650         }
2651       }
2652       if( pTerm->truthProb<=0 ){
2653         /* If a truth probability is specified using the likelihood() hints,
2654         ** then use the probability provided by the application. */
2655         pLoop->nOut += pTerm->truthProb;
2656       }else{
2657         /* In the absence of explicit truth probabilities, use heuristics to
2658         ** guess a reasonable truth probability. */
2659         pLoop->nOut--;
2660         if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0
2661          && (pTerm->wtFlags & TERM_HIGHTRUTH)==0  /* tag-20200224-1 */
2662         ){
2663           Expr *pRight = pTerm->pExpr->pRight;
2664           int k = 0;
2665           testcase( pTerm->pExpr->op==TK_IS );
2666           if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2667             k = 10;
2668           }else{
2669             k = 20;
2670           }
2671           if( iReduce<k ){
2672             pTerm->wtFlags |= TERM_HEURTRUTH;
2673             iReduce = k;
2674           }
2675         }
2676       }
2677     }
2678   }
2679   if( pLoop->nOut > nRow-iReduce ){
2680     pLoop->nOut = nRow - iReduce;
2681   }
2682 }
2683 
2684 /*
2685 ** Term pTerm is a vector range comparison operation. The first comparison
2686 ** in the vector can be optimized using column nEq of the index. This
2687 ** function returns the total number of vector elements that can be used
2688 ** as part of the range comparison.
2689 **
2690 ** For example, if the query is:
2691 **
2692 **   WHERE a = ? AND (b, c, d) > (?, ?, ?)
2693 **
2694 ** and the index:
2695 **
2696 **   CREATE INDEX ... ON (a, b, c, d, e)
2697 **
2698 ** then this function would be invoked with nEq=1. The value returned in
2699 ** this case is 3.
2700 */
2701 static int whereRangeVectorLen(
2702   Parse *pParse,       /* Parsing context */
2703   int iCur,            /* Cursor open on pIdx */
2704   Index *pIdx,         /* The index to be used for a inequality constraint */
2705   int nEq,             /* Number of prior equality constraints on same index */
2706   WhereTerm *pTerm     /* The vector inequality constraint */
2707 ){
2708   int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2709   int i;
2710 
2711   nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2712   for(i=1; i<nCmp; i++){
2713     /* Test if comparison i of pTerm is compatible with column (i+nEq)
2714     ** of the index. If not, exit the loop.  */
2715     char aff;                     /* Comparison affinity */
2716     char idxaff = 0;              /* Indexed columns affinity */
2717     CollSeq *pColl;               /* Comparison collation sequence */
2718     Expr *pLhs, *pRhs;
2719 
2720     assert( ExprUseXList(pTerm->pExpr->pLeft) );
2721     pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2722     pRhs = pTerm->pExpr->pRight;
2723     if( ExprUseXSelect(pRhs) ){
2724       pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2725     }else{
2726       pRhs = pRhs->x.pList->a[i].pExpr;
2727     }
2728 
2729     /* Check that the LHS of the comparison is a column reference to
2730     ** the right column of the right source table. And that the sort
2731     ** order of the index column is the same as the sort order of the
2732     ** leftmost index column.  */
2733     if( pLhs->op!=TK_COLUMN
2734      || pLhs->iTable!=iCur
2735      || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2736      || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2737     ){
2738       break;
2739     }
2740 
2741     testcase( pLhs->iColumn==XN_ROWID );
2742     aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2743     idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2744     if( aff!=idxaff ) break;
2745 
2746     pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2747     if( pColl==0 ) break;
2748     if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2749   }
2750   return i;
2751 }
2752 
2753 /*
2754 ** Adjust the cost C by the costMult facter T.  This only occurs if
2755 ** compiled with -DSQLITE_ENABLE_COSTMULT
2756 */
2757 #ifdef SQLITE_ENABLE_COSTMULT
2758 # define ApplyCostMultiplier(C,T)  C += T
2759 #else
2760 # define ApplyCostMultiplier(C,T)
2761 #endif
2762 
2763 /*
2764 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2765 ** index pIndex. Try to match one more.
2766 **
2767 ** When this function is called, pBuilder->pNew->nOut contains the
2768 ** number of rows expected to be visited by filtering using the nEq
2769 ** terms only. If it is modified, this value is restored before this
2770 ** function returns.
2771 **
2772 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
2773 ** a fake index used for the INTEGER PRIMARY KEY.
2774 */
2775 static int whereLoopAddBtreeIndex(
2776   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
2777   SrcItem *pSrc,                  /* FROM clause term being analyzed */
2778   Index *pProbe,                  /* An index on pSrc */
2779   LogEst nInMul                   /* log(Number of iterations due to IN) */
2780 ){
2781   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
2782   Parse *pParse = pWInfo->pParse;        /* Parsing context */
2783   sqlite3 *db = pParse->db;       /* Database connection malloc context */
2784   WhereLoop *pNew;                /* Template WhereLoop under construction */
2785   WhereTerm *pTerm;               /* A WhereTerm under consideration */
2786   int opMask;                     /* Valid operators for constraints */
2787   WhereScan scan;                 /* Iterator for WHERE terms */
2788   Bitmask saved_prereq;           /* Original value of pNew->prereq */
2789   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
2790   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
2791   u16 saved_nBtm;                 /* Original value of pNew->u.btree.nBtm */
2792   u16 saved_nTop;                 /* Original value of pNew->u.btree.nTop */
2793   u16 saved_nSkip;                /* Original value of pNew->nSkip */
2794   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
2795   LogEst saved_nOut;              /* Original value of pNew->nOut */
2796   int rc = SQLITE_OK;             /* Return code */
2797   LogEst rSize;                   /* Number of rows in the table */
2798   LogEst rLogSize;                /* Logarithm of table size */
2799   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2800 
2801   pNew = pBuilder->pNew;
2802   if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2803   WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n",
2804                      pProbe->pTable->zName,pProbe->zName,
2805                      pNew->u.btree.nEq, pNew->nSkip, pNew->rRun));
2806 
2807   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2808   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2809   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2810     opMask = WO_LT|WO_LE;
2811   }else{
2812     assert( pNew->u.btree.nBtm==0 );
2813     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2814   }
2815   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2816 
2817   assert( pNew->u.btree.nEq<pProbe->nColumn );
2818   assert( pNew->u.btree.nEq<pProbe->nKeyCol
2819        || pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY );
2820 
2821   saved_nEq = pNew->u.btree.nEq;
2822   saved_nBtm = pNew->u.btree.nBtm;
2823   saved_nTop = pNew->u.btree.nTop;
2824   saved_nSkip = pNew->nSkip;
2825   saved_nLTerm = pNew->nLTerm;
2826   saved_wsFlags = pNew->wsFlags;
2827   saved_prereq = pNew->prereq;
2828   saved_nOut = pNew->nOut;
2829   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2830                         opMask, pProbe);
2831   pNew->rSetup = 0;
2832   rSize = pProbe->aiRowLogEst[0];
2833   rLogSize = estLog(rSize);
2834   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2835     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
2836     LogEst rCostIdx;
2837     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
2838     int nIn = 0;
2839 #ifdef SQLITE_ENABLE_STAT4
2840     int nRecValid = pBuilder->nRecValid;
2841 #endif
2842     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2843      && indexColumnNotNull(pProbe, saved_nEq)
2844     ){
2845       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2846     }
2847     if( pTerm->prereqRight & pNew->maskSelf ) continue;
2848 
2849     /* Do not allow the upper bound of a LIKE optimization range constraint
2850     ** to mix with a lower range bound from some other source */
2851     if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2852 
2853     /* tag-20191211-001:  Do not allow constraints from the WHERE clause to
2854     ** be used by the right table of a LEFT JOIN nor by the left table of a
2855     ** RIGHT JOIN.  Only constraints in the ON clause are allowed.
2856     ** See tag-20191211-002 for the vtab equivalent.
2857     **
2858     ** 2022-06-06: See https://sqlite.org/forum/forumpost/206d99a16dd9212f
2859     ** for an example of a WHERE clause constraints that may not be used on
2860     ** the right table of a RIGHT JOIN because the constraint implies a
2861     ** not-NULL condition on the left table of the RIGHT JOIN.
2862     **
2863     ** 2022-06-10: The same condition applies to termCanDriveIndex() above.
2864     ** https://sqlite.org/forum/forumpost/51e6959f61
2865     */
2866     if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ){
2867       testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT );
2868       testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_RIGHT );
2869       testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ );
2870       testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) )
2871       testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) );
2872       if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON)
2873        || pTerm->pExpr->w.iJoin != pSrc->iCursor
2874       ){
2875         continue;
2876       }
2877     }
2878 
2879     if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2880       pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE;
2881     }else{
2882       pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED;
2883     }
2884     pNew->wsFlags = saved_wsFlags;
2885     pNew->u.btree.nEq = saved_nEq;
2886     pNew->u.btree.nBtm = saved_nBtm;
2887     pNew->u.btree.nTop = saved_nTop;
2888     pNew->nLTerm = saved_nLTerm;
2889     if( pNew->nLTerm>=pNew->nLSlot
2890      && whereLoopResize(db, pNew, pNew->nLTerm+1)
2891     ){
2892        break; /* OOM while trying to enlarge the pNew->aLTerm array */
2893     }
2894     pNew->aLTerm[pNew->nLTerm++] = pTerm;
2895     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2896 
2897     assert( nInMul==0
2898         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2899         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2900         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2901     );
2902 
2903     if( eOp & WO_IN ){
2904       Expr *pExpr = pTerm->pExpr;
2905       if( ExprUseXSelect(pExpr) ){
2906         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
2907         int i;
2908         nIn = 46;  assert( 46==sqlite3LogEst(25) );
2909 
2910         /* The expression may actually be of the form (x, y) IN (SELECT...).
2911         ** In this case there is a separate term for each of (x) and (y).
2912         ** However, the nIn multiplier should only be applied once, not once
2913         ** for each such term. The following loop checks that pTerm is the
2914         ** first such term in use, and sets nIn back to 0 if it is not. */
2915         for(i=0; i<pNew->nLTerm-1; i++){
2916           if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2917         }
2918       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2919         /* "x IN (value, value, ...)" */
2920         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2921       }
2922       if( pProbe->hasStat1 && rLogSize>=10 ){
2923         LogEst M, logK, x;
2924         /* Let:
2925         **   N = the total number of rows in the table
2926         **   K = the number of entries on the RHS of the IN operator
2927         **   M = the number of rows in the table that match terms to the
2928         **       to the left in the same index.  If the IN operator is on
2929         **       the left-most index column, M==N.
2930         **
2931         ** Given the definitions above, it is better to omit the IN operator
2932         ** from the index lookup and instead do a scan of the M elements,
2933         ** testing each scanned row against the IN operator separately, if:
2934         **
2935         **        M*log(K) < K*log(N)
2936         **
2937         ** Our estimates for M, K, and N might be inaccurate, so we build in
2938         ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
2939         ** with the index, as using an index has better worst-case behavior.
2940         ** If we do not have real sqlite_stat1 data, always prefer to use
2941         ** the index.  Do not bother with this optimization on very small
2942         ** tables (less than 2 rows) as it is pointless in that case.
2943         */
2944         M = pProbe->aiRowLogEst[saved_nEq];
2945         logK = estLog(nIn);
2946         /* TUNING      v-----  10 to bias toward indexed IN */
2947         x = M + logK + 10 - (nIn + rLogSize);
2948         if( x>=0 ){
2949           WHERETRACE(0x40,
2950             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) "
2951              "prefers indexed lookup\n",
2952              saved_nEq, M, logK, nIn, rLogSize, x));
2953         }else if( nInMul<2 && OptimizationEnabled(db, SQLITE_SeekScan) ){
2954           WHERETRACE(0x40,
2955             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2956              " nInMul=%d) prefers skip-scan\n",
2957              saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
2958           pNew->wsFlags |= WHERE_IN_SEEKSCAN;
2959         }else{
2960           WHERETRACE(0x40,
2961             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2962              " nInMul=%d) prefers normal scan\n",
2963              saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
2964           continue;
2965         }
2966       }
2967       pNew->wsFlags |= WHERE_COLUMN_IN;
2968     }else if( eOp & (WO_EQ|WO_IS) ){
2969       int iCol = pProbe->aiColumn[saved_nEq];
2970       pNew->wsFlags |= WHERE_COLUMN_EQ;
2971       assert( saved_nEq==pNew->u.btree.nEq );
2972       if( iCol==XN_ROWID
2973        || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2974       ){
2975         if( iCol==XN_ROWID || pProbe->uniqNotNull
2976          || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
2977         ){
2978           pNew->wsFlags |= WHERE_ONEROW;
2979         }else{
2980           pNew->wsFlags |= WHERE_UNQ_WANTED;
2981         }
2982       }
2983       if( scan.iEquiv>1 ) pNew->wsFlags |= WHERE_TRANSCONS;
2984     }else if( eOp & WO_ISNULL ){
2985       pNew->wsFlags |= WHERE_COLUMN_NULL;
2986     }else{
2987       int nVecLen = whereRangeVectorLen(
2988           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2989       );
2990       if( eOp & (WO_GT|WO_GE) ){
2991         testcase( eOp & WO_GT );
2992         testcase( eOp & WO_GE );
2993         pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2994         pNew->u.btree.nBtm = nVecLen;
2995         pBtm = pTerm;
2996         pTop = 0;
2997         if( pTerm->wtFlags & TERM_LIKEOPT ){
2998           /* Range constraints that come from the LIKE optimization are
2999           ** always used in pairs. */
3000           pTop = &pTerm[1];
3001           assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
3002           assert( pTop->wtFlags & TERM_LIKEOPT );
3003           assert( pTop->eOperator==WO_LT );
3004           if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
3005           pNew->aLTerm[pNew->nLTerm++] = pTop;
3006           pNew->wsFlags |= WHERE_TOP_LIMIT;
3007           pNew->u.btree.nTop = 1;
3008         }
3009       }else{
3010         assert( eOp & (WO_LT|WO_LE) );
3011         testcase( eOp & WO_LT );
3012         testcase( eOp & WO_LE );
3013         pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
3014         pNew->u.btree.nTop = nVecLen;
3015         pTop = pTerm;
3016         pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
3017                        pNew->aLTerm[pNew->nLTerm-2] : 0;
3018       }
3019     }
3020 
3021     /* At this point pNew->nOut is set to the number of rows expected to
3022     ** be visited by the index scan before considering term pTerm, or the
3023     ** values of nIn and nInMul. In other words, assuming that all
3024     ** "x IN(...)" terms are replaced with "x = ?". This block updates
3025     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
3026     assert( pNew->nOut==saved_nOut );
3027     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
3028       /* Adjust nOut using stat4 data. Or, if there is no stat4
3029       ** data, using some other estimate.  */
3030       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
3031     }else{
3032       int nEq = ++pNew->u.btree.nEq;
3033       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
3034 
3035       assert( pNew->nOut==saved_nOut );
3036       if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
3037         assert( (eOp & WO_IN) || nIn==0 );
3038         testcase( eOp & WO_IN );
3039         pNew->nOut += pTerm->truthProb;
3040         pNew->nOut -= nIn;
3041       }else{
3042 #ifdef SQLITE_ENABLE_STAT4
3043         tRowcnt nOut = 0;
3044         if( nInMul==0
3045          && pProbe->nSample
3046          && ALWAYS(pNew->u.btree.nEq<=pProbe->nSampleCol)
3047          && ((eOp & WO_IN)==0 || ExprUseXList(pTerm->pExpr))
3048          && OptimizationEnabled(db, SQLITE_Stat4)
3049         ){
3050           Expr *pExpr = pTerm->pExpr;
3051           if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
3052             testcase( eOp & WO_EQ );
3053             testcase( eOp & WO_IS );
3054             testcase( eOp & WO_ISNULL );
3055             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
3056           }else{
3057             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
3058           }
3059           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
3060           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
3061           if( nOut ){
3062             pNew->nOut = sqlite3LogEst(nOut);
3063             if( nEq==1
3064              /* TUNING: Mark terms as "low selectivity" if they seem likely
3065              ** to be true for half or more of the rows in the table.
3066              ** See tag-202002240-1 */
3067              && pNew->nOut+10 > pProbe->aiRowLogEst[0]
3068             ){
3069 #if WHERETRACE_ENABLED /* 0x01 */
3070               if( sqlite3WhereTrace & 0x01 ){
3071                 sqlite3DebugPrintf(
3072                    "STAT4 determines term has low selectivity:\n");
3073                 sqlite3WhereTermPrint(pTerm, 999);
3074               }
3075 #endif
3076               pTerm->wtFlags |= TERM_HIGHTRUTH;
3077               if( pTerm->wtFlags & TERM_HEURTRUTH ){
3078                 /* If the term has previously been used with an assumption of
3079                 ** higher selectivity, then set the flag to rerun the
3080                 ** loop computations. */
3081                 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS;
3082               }
3083             }
3084             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
3085             pNew->nOut -= nIn;
3086           }
3087         }
3088         if( nOut==0 )
3089 #endif
3090         {
3091           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
3092           if( eOp & WO_ISNULL ){
3093             /* TUNING: If there is no likelihood() value, assume that a
3094             ** "col IS NULL" expression matches twice as many rows
3095             ** as (col=?). */
3096             pNew->nOut += 10;
3097           }
3098         }
3099       }
3100     }
3101 
3102     /* Set rCostIdx to the cost of visiting selected rows in index. Add
3103     ** it to pNew->rRun, which is currently set to the cost of the index
3104     ** seek only. Then, if this is a non-covering index, add the cost of
3105     ** visiting the rows in the main table.  */
3106     assert( pSrc->pTab->szTabRow>0 );
3107     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
3108     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
3109     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
3110       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
3111     }
3112     ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
3113 
3114     nOutUnadjusted = pNew->nOut;
3115     pNew->rRun += nInMul + nIn;
3116     pNew->nOut += nInMul + nIn;
3117     whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
3118     rc = whereLoopInsert(pBuilder, pNew);
3119 
3120     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
3121       pNew->nOut = saved_nOut;
3122     }else{
3123       pNew->nOut = nOutUnadjusted;
3124     }
3125 
3126     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
3127      && pNew->u.btree.nEq<pProbe->nColumn
3128      && (pNew->u.btree.nEq<pProbe->nKeyCol ||
3129            pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY)
3130     ){
3131       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
3132     }
3133     pNew->nOut = saved_nOut;
3134 #ifdef SQLITE_ENABLE_STAT4
3135     pBuilder->nRecValid = nRecValid;
3136 #endif
3137   }
3138   pNew->prereq = saved_prereq;
3139   pNew->u.btree.nEq = saved_nEq;
3140   pNew->u.btree.nBtm = saved_nBtm;
3141   pNew->u.btree.nTop = saved_nTop;
3142   pNew->nSkip = saved_nSkip;
3143   pNew->wsFlags = saved_wsFlags;
3144   pNew->nOut = saved_nOut;
3145   pNew->nLTerm = saved_nLTerm;
3146 
3147   /* Consider using a skip-scan if there are no WHERE clause constraints
3148   ** available for the left-most terms of the index, and if the average
3149   ** number of repeats in the left-most terms is at least 18.
3150   **
3151   ** The magic number 18 is selected on the basis that scanning 17 rows
3152   ** is almost always quicker than an index seek (even though if the index
3153   ** contains fewer than 2^17 rows we assume otherwise in other parts of
3154   ** the code). And, even if it is not, it should not be too much slower.
3155   ** On the other hand, the extra seeks could end up being significantly
3156   ** more expensive.  */
3157   assert( 42==sqlite3LogEst(18) );
3158   if( saved_nEq==saved_nSkip
3159    && saved_nEq+1<pProbe->nKeyCol
3160    && saved_nEq==pNew->nLTerm
3161    && pProbe->noSkipScan==0
3162    && pProbe->hasStat1!=0
3163    && OptimizationEnabled(db, SQLITE_SkipScan)
3164    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
3165    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
3166   ){
3167     LogEst nIter;
3168     pNew->u.btree.nEq++;
3169     pNew->nSkip++;
3170     pNew->aLTerm[pNew->nLTerm++] = 0;
3171     pNew->wsFlags |= WHERE_SKIPSCAN;
3172     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
3173     pNew->nOut -= nIter;
3174     /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
3175     ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
3176     nIter += 5;
3177     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
3178     pNew->nOut = saved_nOut;
3179     pNew->u.btree.nEq = saved_nEq;
3180     pNew->nSkip = saved_nSkip;
3181     pNew->wsFlags = saved_wsFlags;
3182   }
3183 
3184   WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
3185                       pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
3186   return rc;
3187 }
3188 
3189 /*
3190 ** Return True if it is possible that pIndex might be useful in
3191 ** implementing the ORDER BY clause in pBuilder.
3192 **
3193 ** Return False if pBuilder does not contain an ORDER BY clause or
3194 ** if there is no way for pIndex to be useful in implementing that
3195 ** ORDER BY clause.
3196 */
3197 static int indexMightHelpWithOrderBy(
3198   WhereLoopBuilder *pBuilder,
3199   Index *pIndex,
3200   int iCursor
3201 ){
3202   ExprList *pOB;
3203   ExprList *aColExpr;
3204   int ii, jj;
3205 
3206   if( pIndex->bUnordered ) return 0;
3207   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
3208   for(ii=0; ii<pOB->nExpr; ii++){
3209     Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr);
3210     if( NEVER(pExpr==0) ) continue;
3211     if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
3212       if( pExpr->iColumn<0 ) return 1;
3213       for(jj=0; jj<pIndex->nKeyCol; jj++){
3214         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
3215       }
3216     }else if( (aColExpr = pIndex->aColExpr)!=0 ){
3217       for(jj=0; jj<pIndex->nKeyCol; jj++){
3218         if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
3219         if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
3220           return 1;
3221         }
3222       }
3223     }
3224   }
3225   return 0;
3226 }
3227 
3228 /* Check to see if a partial index with pPartIndexWhere can be used
3229 ** in the current query.  Return true if it can be and false if not.
3230 */
3231 static int whereUsablePartialIndex(
3232   int iTab,             /* The table for which we want an index */
3233   u8 jointype,          /* The JT_* flags on the join */
3234   WhereClause *pWC,     /* The WHERE clause of the query */
3235   Expr *pWhere          /* The WHERE clause from the partial index */
3236 ){
3237   int i;
3238   WhereTerm *pTerm;
3239   Parse *pParse;
3240 
3241   if( jointype & JT_LTORJ ) return 0;
3242   pParse = pWC->pWInfo->pParse;
3243   while( pWhere->op==TK_AND ){
3244     if( !whereUsablePartialIndex(iTab,jointype,pWC,pWhere->pLeft) ) return 0;
3245     pWhere = pWhere->pRight;
3246   }
3247   if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
3248   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
3249     Expr *pExpr;
3250     pExpr = pTerm->pExpr;
3251     if( (!ExprHasProperty(pExpr, EP_OuterON) || pExpr->w.iJoin==iTab)
3252      && ((jointype & JT_OUTER)==0 || ExprHasProperty(pExpr, EP_OuterON))
3253      && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
3254      && (pTerm->wtFlags & TERM_VNULL)==0
3255     ){
3256       return 1;
3257     }
3258   }
3259   return 0;
3260 }
3261 
3262 /*
3263 ** Add all WhereLoop objects for a single table of the join where the table
3264 ** is identified by pBuilder->pNew->iTab.  That table is guaranteed to be
3265 ** a b-tree table, not a virtual table.
3266 **
3267 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
3268 ** are calculated as follows:
3269 **
3270 ** For a full scan, assuming the table (or index) contains nRow rows:
3271 **
3272 **     cost = nRow * 3.0                    // full-table scan
3273 **     cost = nRow * K                      // scan of covering index
3274 **     cost = nRow * (K+3.0)                // scan of non-covering index
3275 **
3276 ** where K is a value between 1.1 and 3.0 set based on the relative
3277 ** estimated average size of the index and table records.
3278 **
3279 ** For an index scan, where nVisit is the number of index rows visited
3280 ** by the scan, and nSeek is the number of seek operations required on
3281 ** the index b-tree:
3282 **
3283 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
3284 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
3285 **
3286 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
3287 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
3288 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
3289 **
3290 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
3291 ** of uncertainty.  For this reason, scoring is designed to pick plans that
3292 ** "do the least harm" if the estimates are inaccurate.  For example, a
3293 ** log(nRow) factor is omitted from a non-covering index scan in order to
3294 ** bias the scoring in favor of using an index, since the worst-case
3295 ** performance of using an index is far better than the worst-case performance
3296 ** of a full table scan.
3297 */
3298 static int whereLoopAddBtree(
3299   WhereLoopBuilder *pBuilder, /* WHERE clause information */
3300   Bitmask mPrereq             /* Extra prerequesites for using this table */
3301 ){
3302   WhereInfo *pWInfo;          /* WHERE analysis context */
3303   Index *pProbe;              /* An index we are evaluating */
3304   Index sPk;                  /* A fake index object for the primary key */
3305   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
3306   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
3307   SrcList *pTabList;          /* The FROM clause */
3308   SrcItem *pSrc;              /* The FROM clause btree term to add */
3309   WhereLoop *pNew;            /* Template WhereLoop object */
3310   int rc = SQLITE_OK;         /* Return code */
3311   int iSortIdx = 1;           /* Index number */
3312   int b;                      /* A boolean value */
3313   LogEst rSize;               /* number of rows in the table */
3314   WhereClause *pWC;           /* The parsed WHERE clause */
3315   Table *pTab;                /* Table being queried */
3316 
3317   pNew = pBuilder->pNew;
3318   pWInfo = pBuilder->pWInfo;
3319   pTabList = pWInfo->pTabList;
3320   pSrc = pTabList->a + pNew->iTab;
3321   pTab = pSrc->pTab;
3322   pWC = pBuilder->pWC;
3323   assert( !IsVirtual(pSrc->pTab) );
3324 
3325   if( pSrc->fg.isIndexedBy ){
3326     assert( pSrc->fg.isCte==0 );
3327     /* An INDEXED BY clause specifies a particular index to use */
3328     pProbe = pSrc->u2.pIBIndex;
3329   }else if( !HasRowid(pTab) ){
3330     pProbe = pTab->pIndex;
3331   }else{
3332     /* There is no INDEXED BY clause.  Create a fake Index object in local
3333     ** variable sPk to represent the rowid primary key index.  Make this
3334     ** fake index the first in a chain of Index objects with all of the real
3335     ** indices to follow */
3336     Index *pFirst;                  /* First of real indices on the table */
3337     memset(&sPk, 0, sizeof(Index));
3338     sPk.nKeyCol = 1;
3339     sPk.nColumn = 1;
3340     sPk.aiColumn = &aiColumnPk;
3341     sPk.aiRowLogEst = aiRowEstPk;
3342     sPk.onError = OE_Replace;
3343     sPk.pTable = pTab;
3344     sPk.szIdxRow = pTab->szTabRow;
3345     sPk.idxType = SQLITE_IDXTYPE_IPK;
3346     aiRowEstPk[0] = pTab->nRowLogEst;
3347     aiRowEstPk[1] = 0;
3348     pFirst = pSrc->pTab->pIndex;
3349     if( pSrc->fg.notIndexed==0 ){
3350       /* The real indices of the table are only considered if the
3351       ** NOT INDEXED qualifier is omitted from the FROM clause */
3352       sPk.pNext = pFirst;
3353     }
3354     pProbe = &sPk;
3355   }
3356   rSize = pTab->nRowLogEst;
3357 
3358 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
3359   /* Automatic indexes */
3360   if( !pBuilder->pOrSet      /* Not part of an OR optimization */
3361    && (pWInfo->wctrlFlags & (WHERE_RIGHT_JOIN|WHERE_OR_SUBCLAUSE))==0
3362    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
3363    && !pSrc->fg.isIndexedBy  /* Has no INDEXED BY clause */
3364    && !pSrc->fg.notIndexed   /* Has no NOT INDEXED clause */
3365    && HasRowid(pTab)         /* Not WITHOUT ROWID table. (FIXME: Why not?) */
3366    && !pSrc->fg.isCorrelated /* Not a correlated subquery */
3367    && !pSrc->fg.isRecursive  /* Not a recursive common table expression. */
3368    && (pSrc->fg.jointype & JT_RIGHT)==0 /* Not the right tab of a RIGHT JOIN */
3369   ){
3370     /* Generate auto-index WhereLoops */
3371     LogEst rLogSize;         /* Logarithm of the number of rows in the table */
3372     WhereTerm *pTerm;
3373     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
3374     rLogSize = estLog(rSize);
3375     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
3376       if( pTerm->prereqRight & pNew->maskSelf ) continue;
3377       if( termCanDriveIndex(pTerm, pSrc, 0) ){
3378         pNew->u.btree.nEq = 1;
3379         pNew->nSkip = 0;
3380         pNew->u.btree.pIndex = 0;
3381         pNew->nLTerm = 1;
3382         pNew->aLTerm[0] = pTerm;
3383         /* TUNING: One-time cost for computing the automatic index is
3384         ** estimated to be X*N*log2(N) where N is the number of rows in
3385         ** the table being indexed and where X is 7 (LogEst=28) for normal
3386         ** tables or 0.5 (LogEst=-10) for views and subqueries.  The value
3387         ** of X is smaller for views and subqueries so that the query planner
3388         ** will be more aggressive about generating automatic indexes for
3389         ** those objects, since there is no opportunity to add schema
3390         ** indexes on subqueries and views. */
3391         pNew->rSetup = rLogSize + rSize;
3392         if( !IsView(pTab) && (pTab->tabFlags & TF_Ephemeral)==0 ){
3393           pNew->rSetup += 28;
3394         }else{
3395           pNew->rSetup -= 10;
3396         }
3397         ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
3398         if( pNew->rSetup<0 ) pNew->rSetup = 0;
3399         /* TUNING: Each index lookup yields 20 rows in the table.  This
3400         ** is more than the usual guess of 10 rows, since we have no way
3401         ** of knowing how selective the index will ultimately be.  It would
3402         ** not be unreasonable to make this value much larger. */
3403         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
3404         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
3405         pNew->wsFlags = WHERE_AUTO_INDEX;
3406         pNew->prereq = mPrereq | pTerm->prereqRight;
3407         rc = whereLoopInsert(pBuilder, pNew);
3408       }
3409     }
3410   }
3411 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
3412 
3413   /* Loop over all indices. If there was an INDEXED BY clause, then only
3414   ** consider index pProbe.  */
3415   for(; rc==SQLITE_OK && pProbe;
3416       pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++
3417   ){
3418     if( pProbe->pPartIdxWhere!=0
3419      && !whereUsablePartialIndex(pSrc->iCursor, pSrc->fg.jointype, pWC,
3420                                  pProbe->pPartIdxWhere)
3421     ){
3422       testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
3423       continue;  /* Partial index inappropriate for this query */
3424     }
3425     if( pProbe->bNoQuery ) continue;
3426     rSize = pProbe->aiRowLogEst[0];
3427     pNew->u.btree.nEq = 0;
3428     pNew->u.btree.nBtm = 0;
3429     pNew->u.btree.nTop = 0;
3430     pNew->nSkip = 0;
3431     pNew->nLTerm = 0;
3432     pNew->iSortIdx = 0;
3433     pNew->rSetup = 0;
3434     pNew->prereq = mPrereq;
3435     pNew->nOut = rSize;
3436     pNew->u.btree.pIndex = pProbe;
3437     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
3438 
3439     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
3440     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
3441     if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){
3442       /* Integer primary key index */
3443       pNew->wsFlags = WHERE_IPK;
3444 
3445       /* Full table scan */
3446       pNew->iSortIdx = b ? iSortIdx : 0;
3447       /* TUNING: Cost of full table scan is 3.0*N.  The 3.0 factor is an
3448       ** extra cost designed to discourage the use of full table scans,
3449       ** since index lookups have better worst-case performance if our
3450       ** stat guesses are wrong.  Reduce the 3.0 penalty slightly
3451       ** (to 2.75) if we have valid STAT4 information for the table.
3452       ** At 2.75, a full table scan is preferred over using an index on
3453       ** a column with just two distinct values where each value has about
3454       ** an equal number of appearances.  Without STAT4 data, we still want
3455       ** to use an index in that case, since the constraint might be for
3456       ** the scarcer of the two values, and in that case an index lookup is
3457       ** better.
3458       */
3459 #ifdef SQLITE_ENABLE_STAT4
3460       pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0);
3461 #else
3462       pNew->rRun = rSize + 16;
3463 #endif
3464       ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3465       whereLoopOutputAdjust(pWC, pNew, rSize);
3466       rc = whereLoopInsert(pBuilder, pNew);
3467       pNew->nOut = rSize;
3468       if( rc ) break;
3469     }else{
3470       Bitmask m;
3471       if( pProbe->isCovering ){
3472         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
3473         m = 0;
3474       }else{
3475         m = pSrc->colUsed & pProbe->colNotIdxed;
3476         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
3477       }
3478 
3479       /* Full scan via index */
3480       if( b
3481        || !HasRowid(pTab)
3482        || pProbe->pPartIdxWhere!=0
3483        || pSrc->fg.isIndexedBy
3484        || ( m==0
3485          && pProbe->bUnordered==0
3486          && (pProbe->szIdxRow<pTab->szTabRow)
3487          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
3488          && sqlite3GlobalConfig.bUseCis
3489          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
3490           )
3491       ){
3492         pNew->iSortIdx = b ? iSortIdx : 0;
3493 
3494         /* The cost of visiting the index rows is N*K, where K is
3495         ** between 1.1 and 3.0, depending on the relative sizes of the
3496         ** index and table rows. */
3497         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
3498         if( m!=0 ){
3499           /* If this is a non-covering index scan, add in the cost of
3500           ** doing table lookups.  The cost will be 3x the number of
3501           ** lookups.  Take into account WHERE clause terms that can be
3502           ** satisfied using just the index, and that do not require a
3503           ** table lookup. */
3504           LogEst nLookup = rSize + 16;  /* Base cost:  N*3 */
3505           int ii;
3506           int iCur = pSrc->iCursor;
3507           WhereClause *pWC2 = &pWInfo->sWC;
3508           for(ii=0; ii<pWC2->nTerm; ii++){
3509             WhereTerm *pTerm = &pWC2->a[ii];
3510             if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
3511               break;
3512             }
3513             /* pTerm can be evaluated using just the index.  So reduce
3514             ** the expected number of table lookups accordingly */
3515             if( pTerm->truthProb<=0 ){
3516               nLookup += pTerm->truthProb;
3517             }else{
3518               nLookup--;
3519               if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
3520             }
3521           }
3522 
3523           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
3524         }
3525         ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3526         whereLoopOutputAdjust(pWC, pNew, rSize);
3527         if( (pSrc->fg.jointype & JT_RIGHT)!=0 && pProbe->aColExpr ){
3528           /* Do not do an SCAN of a index-on-expression in a RIGHT JOIN
3529           ** because the cursor used to access the index might not be
3530           ** positioned to the correct row during the right-join no-match
3531           ** loop. */
3532         }else{
3533           rc = whereLoopInsert(pBuilder, pNew);
3534         }
3535         pNew->nOut = rSize;
3536         if( rc ) break;
3537       }
3538     }
3539 
3540     pBuilder->bldFlags1 = 0;
3541     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
3542     if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){
3543       /* If a non-unique index is used, or if a prefix of the key for
3544       ** unique index is used (making the index functionally non-unique)
3545       ** then the sqlite_stat1 data becomes important for scoring the
3546       ** plan */
3547       pTab->tabFlags |= TF_StatsUsed;
3548     }
3549 #ifdef SQLITE_ENABLE_STAT4
3550     sqlite3Stat4ProbeFree(pBuilder->pRec);
3551     pBuilder->nRecValid = 0;
3552     pBuilder->pRec = 0;
3553 #endif
3554   }
3555   return rc;
3556 }
3557 
3558 #ifndef SQLITE_OMIT_VIRTUALTABLE
3559 
3560 /*
3561 ** Return true if pTerm is a virtual table LIMIT or OFFSET term.
3562 */
3563 static int isLimitTerm(WhereTerm *pTerm){
3564   assert( pTerm->eOperator==WO_AUX || pTerm->eMatchOp==0 );
3565   return pTerm->eMatchOp>=SQLITE_INDEX_CONSTRAINT_LIMIT
3566       && pTerm->eMatchOp<=SQLITE_INDEX_CONSTRAINT_OFFSET;
3567 }
3568 
3569 /*
3570 ** Argument pIdxInfo is already populated with all constraints that may
3571 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3572 ** function marks a subset of those constraints usable, invokes the
3573 ** xBestIndex method and adds the returned plan to pBuilder.
3574 **
3575 ** A constraint is marked usable if:
3576 **
3577 **   * Argument mUsable indicates that its prerequisites are available, and
3578 **
3579 **   * It is not one of the operators specified in the mExclude mask passed
3580 **     as the fourth argument (which in practice is either WO_IN or 0).
3581 **
3582 ** Argument mPrereq is a mask of tables that must be scanned before the
3583 ** virtual table in question. These are added to the plans prerequisites
3584 ** before it is added to pBuilder.
3585 **
3586 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3587 ** uses one or more WO_IN terms, or false otherwise.
3588 */
3589 static int whereLoopAddVirtualOne(
3590   WhereLoopBuilder *pBuilder,
3591   Bitmask mPrereq,                /* Mask of tables that must be used. */
3592   Bitmask mUsable,                /* Mask of usable tables */
3593   u16 mExclude,                   /* Exclude terms using these operators */
3594   sqlite3_index_info *pIdxInfo,   /* Populated object for xBestIndex */
3595   u16 mNoOmit,                    /* Do not omit these constraints */
3596   int *pbIn,                      /* OUT: True if plan uses an IN(...) op */
3597   int *pbRetryLimit               /* OUT: Retry without LIMIT/OFFSET */
3598 ){
3599   WhereClause *pWC = pBuilder->pWC;
3600   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3601   struct sqlite3_index_constraint *pIdxCons;
3602   struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3603   int i;
3604   int mxTerm;
3605   int rc = SQLITE_OK;
3606   WhereLoop *pNew = pBuilder->pNew;
3607   Parse *pParse = pBuilder->pWInfo->pParse;
3608   SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3609   int nConstraint = pIdxInfo->nConstraint;
3610 
3611   assert( (mUsable & mPrereq)==mPrereq );
3612   *pbIn = 0;
3613   pNew->prereq = mPrereq;
3614 
3615   /* Set the usable flag on the subset of constraints identified by
3616   ** arguments mUsable and mExclude. */
3617   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3618   for(i=0; i<nConstraint; i++, pIdxCons++){
3619     WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3620     pIdxCons->usable = 0;
3621     if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3622      && (pTerm->eOperator & mExclude)==0
3623      && (pbRetryLimit || !isLimitTerm(pTerm))
3624     ){
3625       pIdxCons->usable = 1;
3626     }
3627   }
3628 
3629   /* Initialize the output fields of the sqlite3_index_info structure */
3630   memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3631   assert( pIdxInfo->needToFreeIdxStr==0 );
3632   pIdxInfo->idxStr = 0;
3633   pIdxInfo->idxNum = 0;
3634   pIdxInfo->orderByConsumed = 0;
3635   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3636   pIdxInfo->estimatedRows = 25;
3637   pIdxInfo->idxFlags = 0;
3638   pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3639   pHidden->mHandleIn = 0;
3640 
3641   /* Invoke the virtual table xBestIndex() method */
3642   rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3643   if( rc ){
3644     if( rc==SQLITE_CONSTRAINT ){
3645       /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
3646       ** that the particular combination of parameters provided is unusable.
3647       ** Make no entries in the loop table.
3648       */
3649       WHERETRACE(0xffff, ("  ^^^^--- non-viable plan rejected!\n"));
3650       return SQLITE_OK;
3651     }
3652     return rc;
3653   }
3654 
3655   mxTerm = -1;
3656   assert( pNew->nLSlot>=nConstraint );
3657   memset(pNew->aLTerm, 0, sizeof(pNew->aLTerm[0])*nConstraint );
3658   memset(&pNew->u.vtab, 0, sizeof(pNew->u.vtab));
3659   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3660   for(i=0; i<nConstraint; i++, pIdxCons++){
3661     int iTerm;
3662     if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3663       WhereTerm *pTerm;
3664       int j = pIdxCons->iTermOffset;
3665       if( iTerm>=nConstraint
3666        || j<0
3667        || j>=pWC->nTerm
3668        || pNew->aLTerm[iTerm]!=0
3669        || pIdxCons->usable==0
3670       ){
3671         sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3672         testcase( pIdxInfo->needToFreeIdxStr );
3673         return SQLITE_ERROR;
3674       }
3675       testcase( iTerm==nConstraint-1 );
3676       testcase( j==0 );
3677       testcase( j==pWC->nTerm-1 );
3678       pTerm = &pWC->a[j];
3679       pNew->prereq |= pTerm->prereqRight;
3680       assert( iTerm<pNew->nLSlot );
3681       pNew->aLTerm[iTerm] = pTerm;
3682       if( iTerm>mxTerm ) mxTerm = iTerm;
3683       testcase( iTerm==15 );
3684       testcase( iTerm==16 );
3685       if( pUsage[i].omit ){
3686         if( i<16 && ((1<<i)&mNoOmit)==0 ){
3687           testcase( i!=iTerm );
3688           pNew->u.vtab.omitMask |= 1<<iTerm;
3689         }else{
3690           testcase( i!=iTerm );
3691         }
3692         if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET ){
3693           pNew->u.vtab.bOmitOffset = 1;
3694         }
3695       }
3696       if( SMASKBIT32(i) & pHidden->mHandleIn ){
3697         pNew->u.vtab.mHandleIn |= MASKBIT32(iTerm);
3698       }else if( (pTerm->eOperator & WO_IN)!=0 ){
3699         /* A virtual table that is constrained by an IN clause may not
3700         ** consume the ORDER BY clause because (1) the order of IN terms
3701         ** is not necessarily related to the order of output terms and
3702         ** (2) Multiple outputs from a single IN value will not merge
3703         ** together.  */
3704         pIdxInfo->orderByConsumed = 0;
3705         pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3706         *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3707       }
3708 
3709       assert( pbRetryLimit || !isLimitTerm(pTerm) );
3710       if( isLimitTerm(pTerm) && *pbIn ){
3711         /* If there is an IN(...) term handled as an == (separate call to
3712         ** xFilter for each value on the RHS of the IN) and a LIMIT or
3713         ** OFFSET term handled as well, the plan is unusable. Set output
3714         ** variable *pbRetryLimit to true to tell the caller to retry with
3715         ** LIMIT and OFFSET disabled. */
3716         if( pIdxInfo->needToFreeIdxStr ){
3717           sqlite3_free(pIdxInfo->idxStr);
3718           pIdxInfo->idxStr = 0;
3719           pIdxInfo->needToFreeIdxStr = 0;
3720         }
3721         *pbRetryLimit = 1;
3722         return SQLITE_OK;
3723       }
3724     }
3725   }
3726 
3727   pNew->nLTerm = mxTerm+1;
3728   for(i=0; i<=mxTerm; i++){
3729     if( pNew->aLTerm[i]==0 ){
3730       /* The non-zero argvIdx values must be contiguous.  Raise an
3731       ** error if they are not */
3732       sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3733       testcase( pIdxInfo->needToFreeIdxStr );
3734       return SQLITE_ERROR;
3735     }
3736   }
3737   assert( pNew->nLTerm<=pNew->nLSlot );
3738   pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3739   pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3740   pIdxInfo->needToFreeIdxStr = 0;
3741   pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3742   pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3743       pIdxInfo->nOrderBy : 0);
3744   pNew->rSetup = 0;
3745   pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3746   pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3747 
3748   /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3749   ** that the scan will visit at most one row. Clear it otherwise. */
3750   if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3751     pNew->wsFlags |= WHERE_ONEROW;
3752   }else{
3753     pNew->wsFlags &= ~WHERE_ONEROW;
3754   }
3755   rc = whereLoopInsert(pBuilder, pNew);
3756   if( pNew->u.vtab.needFree ){
3757     sqlite3_free(pNew->u.vtab.idxStr);
3758     pNew->u.vtab.needFree = 0;
3759   }
3760   WHERETRACE(0xffff, ("  bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3761                       *pbIn, (sqlite3_uint64)mPrereq,
3762                       (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3763 
3764   return rc;
3765 }
3766 
3767 /*
3768 ** Return the collating sequence for a constraint passed into xBestIndex.
3769 **
3770 ** pIdxInfo must be an sqlite3_index_info structure passed into xBestIndex.
3771 ** This routine depends on there being a HiddenIndexInfo structure immediately
3772 ** following the sqlite3_index_info structure.
3773 **
3774 ** Return a pointer to the collation name:
3775 **
3776 **    1. If there is an explicit COLLATE operator on the constaint, return it.
3777 **
3778 **    2. Else, if the column has an alternative collation, return that.
3779 **
3780 **    3. Otherwise, return "BINARY".
3781 */
3782 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
3783   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3784   const char *zRet = 0;
3785   if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
3786     CollSeq *pC = 0;
3787     int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
3788     Expr *pX = pHidden->pWC->a[iTerm].pExpr;
3789     if( pX->pLeft ){
3790       pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX);
3791     }
3792     zRet = (pC ? pC->zName : sqlite3StrBINARY);
3793   }
3794   return zRet;
3795 }
3796 
3797 /*
3798 ** Return true if constraint iCons is really an IN(...) constraint, or
3799 ** false otherwise. If iCons is an IN(...) constraint, set (if bHandle!=0)
3800 ** or clear (if bHandle==0) the flag to handle it using an iterator.
3801 */
3802 int sqlite3_vtab_in(sqlite3_index_info *pIdxInfo, int iCons, int bHandle){
3803   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3804   u32 m = SMASKBIT32(iCons);
3805   if( m & pHidden->mIn ){
3806     if( bHandle==0 ){
3807       pHidden->mHandleIn &= ~m;
3808     }else if( bHandle>0 ){
3809       pHidden->mHandleIn |= m;
3810     }
3811     return 1;
3812   }
3813   return 0;
3814 }
3815 
3816 /*
3817 ** This interface is callable from within the xBestIndex callback only.
3818 **
3819 ** If possible, set (*ppVal) to point to an object containing the value
3820 ** on the right-hand-side of constraint iCons.
3821 */
3822 int sqlite3_vtab_rhs_value(
3823   sqlite3_index_info *pIdxInfo,   /* Copy of first argument to xBestIndex */
3824   int iCons,                      /* Constraint for which RHS is wanted */
3825   sqlite3_value **ppVal           /* Write value extracted here */
3826 ){
3827   HiddenIndexInfo *pH = (HiddenIndexInfo*)&pIdxInfo[1];
3828   sqlite3_value *pVal = 0;
3829   int rc = SQLITE_OK;
3830   if( iCons<0 || iCons>=pIdxInfo->nConstraint ){
3831     rc = SQLITE_MISUSE; /* EV: R-30545-25046 */
3832   }else{
3833     if( pH->aRhs[iCons]==0 ){
3834       WhereTerm *pTerm = &pH->pWC->a[pIdxInfo->aConstraint[iCons].iTermOffset];
3835       rc = sqlite3ValueFromExpr(
3836           pH->pParse->db, pTerm->pExpr->pRight, ENC(pH->pParse->db),
3837           SQLITE_AFF_BLOB, &pH->aRhs[iCons]
3838       );
3839       testcase( rc!=SQLITE_OK );
3840     }
3841     pVal = pH->aRhs[iCons];
3842   }
3843   *ppVal = pVal;
3844 
3845   if( rc==SQLITE_OK && pVal==0 ){  /* IMP: R-19933-32160 */
3846     rc = SQLITE_NOTFOUND;          /* IMP: R-36424-56542 */
3847   }
3848 
3849   return rc;
3850 }
3851 
3852 /*
3853 ** Return true if ORDER BY clause may be handled as DISTINCT.
3854 */
3855 int sqlite3_vtab_distinct(sqlite3_index_info *pIdxInfo){
3856   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3857   assert( pHidden->eDistinct>=0 && pHidden->eDistinct<=3 );
3858   return pHidden->eDistinct;
3859 }
3860 
3861 #if (defined(SQLITE_ENABLE_DBPAGE_VTAB) || defined(SQLITE_TEST)) \
3862     && !defined(SQLITE_OMIT_VIRTUALTABLE)
3863 /*
3864 ** Cause the prepared statement that is associated with a call to
3865 ** xBestIndex to potentiall use all schemas.  If the statement being
3866 ** prepared is read-only, then just start read transactions on all
3867 ** schemas.  But if this is a write operation, start writes on all
3868 ** schemas.
3869 **
3870 ** This is used by the (built-in) sqlite_dbpage virtual table.
3871 */
3872 void sqlite3VtabUsesAllSchemas(sqlite3_index_info *pIdxInfo){
3873   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3874   Parse *pParse = pHidden->pParse;
3875   int nDb = pParse->db->nDb;
3876   int i;
3877   for(i=0; i<nDb; i++){
3878     sqlite3CodeVerifySchema(pParse, i);
3879   }
3880   if( pParse->writeMask ){
3881     for(i=0; i<nDb; i++){
3882       sqlite3BeginWriteOperation(pParse, 0, i);
3883     }
3884   }
3885 }
3886 #endif
3887 
3888 /*
3889 ** Add all WhereLoop objects for a table of the join identified by
3890 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
3891 **
3892 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3893 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3894 ** entries that occur before the virtual table in the FROM clause and are
3895 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3896 ** mUnusable mask contains all FROM clause entries that occur after the
3897 ** virtual table and are separated from it by at least one LEFT or
3898 ** CROSS JOIN.
3899 **
3900 ** For example, if the query were:
3901 **
3902 **   ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3903 **
3904 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3905 **
3906 ** All the tables in mPrereq must be scanned before the current virtual
3907 ** table. So any terms for which all prerequisites are satisfied by
3908 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3909 ** Conversely, all tables in mUnusable must be scanned after the current
3910 ** virtual table, so any terms for which the prerequisites overlap with
3911 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3912 */
3913 static int whereLoopAddVirtual(
3914   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
3915   Bitmask mPrereq,             /* Tables that must be scanned before this one */
3916   Bitmask mUnusable            /* Tables that must be scanned after this one */
3917 ){
3918   int rc = SQLITE_OK;          /* Return code */
3919   WhereInfo *pWInfo;           /* WHERE analysis context */
3920   Parse *pParse;               /* The parsing context */
3921   WhereClause *pWC;            /* The WHERE clause */
3922   SrcItem *pSrc;               /* The FROM clause term to search */
3923   sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
3924   int nConstraint;             /* Number of constraints in p */
3925   int bIn;                     /* True if plan uses IN(...) operator */
3926   WhereLoop *pNew;
3927   Bitmask mBest;               /* Tables used by best possible plan */
3928   u16 mNoOmit;
3929   int bRetry = 0;              /* True to retry with LIMIT/OFFSET disabled */
3930 
3931   assert( (mPrereq & mUnusable)==0 );
3932   pWInfo = pBuilder->pWInfo;
3933   pParse = pWInfo->pParse;
3934   pWC = pBuilder->pWC;
3935   pNew = pBuilder->pNew;
3936   pSrc = &pWInfo->pTabList->a[pNew->iTab];
3937   assert( IsVirtual(pSrc->pTab) );
3938   p = allocateIndexInfo(pWInfo, pWC, mUnusable, pSrc, &mNoOmit);
3939   if( p==0 ) return SQLITE_NOMEM_BKPT;
3940   pNew->rSetup = 0;
3941   pNew->wsFlags = WHERE_VIRTUALTABLE;
3942   pNew->nLTerm = 0;
3943   pNew->u.vtab.needFree = 0;
3944   nConstraint = p->nConstraint;
3945   if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3946     freeIndexInfo(pParse->db, p);
3947     return SQLITE_NOMEM_BKPT;
3948   }
3949 
3950   /* First call xBestIndex() with all constraints usable. */
3951   WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
3952   WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
3953   rc = whereLoopAddVirtualOne(
3954       pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, &bRetry
3955   );
3956   if( bRetry ){
3957     assert( rc==SQLITE_OK );
3958     rc = whereLoopAddVirtualOne(
3959         pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, 0
3960     );
3961   }
3962 
3963   /* If the call to xBestIndex() with all terms enabled produced a plan
3964   ** that does not require any source tables (IOW: a plan with mBest==0)
3965   ** and does not use an IN(...) operator, then there is no point in making
3966   ** any further calls to xBestIndex() since they will all return the same
3967   ** result (if the xBestIndex() implementation is sane). */
3968   if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){
3969     int seenZero = 0;             /* True if a plan with no prereqs seen */
3970     int seenZeroNoIN = 0;         /* Plan with no prereqs and no IN(...) seen */
3971     Bitmask mPrev = 0;
3972     Bitmask mBestNoIn = 0;
3973 
3974     /* If the plan produced by the earlier call uses an IN(...) term, call
3975     ** xBestIndex again, this time with IN(...) terms disabled. */
3976     if( bIn ){
3977       WHERETRACE(0x40, ("  VirtualOne: all usable w/o IN\n"));
3978       rc = whereLoopAddVirtualOne(
3979           pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn, 0);
3980       assert( bIn==0 );
3981       mBestNoIn = pNew->prereq & ~mPrereq;
3982       if( mBestNoIn==0 ){
3983         seenZero = 1;
3984         seenZeroNoIN = 1;
3985       }
3986     }
3987 
3988     /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3989     ** in the set of terms that apply to the current virtual table.  */
3990     while( rc==SQLITE_OK ){
3991       int i;
3992       Bitmask mNext = ALLBITS;
3993       assert( mNext>0 );
3994       for(i=0; i<nConstraint; i++){
3995         Bitmask mThis = (
3996             pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3997         );
3998         if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3999       }
4000       mPrev = mNext;
4001       if( mNext==ALLBITS ) break;
4002       if( mNext==mBest || mNext==mBestNoIn ) continue;
4003       WHERETRACE(0x40, ("  VirtualOne: mPrev=%04llx mNext=%04llx\n",
4004                        (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
4005       rc = whereLoopAddVirtualOne(
4006           pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn, 0);
4007       if( pNew->prereq==mPrereq ){
4008         seenZero = 1;
4009         if( bIn==0 ) seenZeroNoIN = 1;
4010       }
4011     }
4012 
4013     /* If the calls to xBestIndex() in the above loop did not find a plan
4014     ** that requires no source tables at all (i.e. one guaranteed to be
4015     ** usable), make a call here with all source tables disabled */
4016     if( rc==SQLITE_OK && seenZero==0 ){
4017       WHERETRACE(0x40, ("  VirtualOne: all disabled\n"));
4018       rc = whereLoopAddVirtualOne(
4019           pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn, 0);
4020       if( bIn==0 ) seenZeroNoIN = 1;
4021     }
4022 
4023     /* If the calls to xBestIndex() have so far failed to find a plan
4024     ** that requires no source tables at all and does not use an IN(...)
4025     ** operator, make a final call to obtain one here.  */
4026     if( rc==SQLITE_OK && seenZeroNoIN==0 ){
4027       WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
4028       rc = whereLoopAddVirtualOne(
4029           pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn, 0);
4030     }
4031   }
4032 
4033   if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
4034   freeIndexInfo(pParse->db, p);
4035   WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
4036   return rc;
4037 }
4038 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4039 
4040 /*
4041 ** Add WhereLoop entries to handle OR terms.  This works for either
4042 ** btrees or virtual tables.
4043 */
4044 static int whereLoopAddOr(
4045   WhereLoopBuilder *pBuilder,
4046   Bitmask mPrereq,
4047   Bitmask mUnusable
4048 ){
4049   WhereInfo *pWInfo = pBuilder->pWInfo;
4050   WhereClause *pWC;
4051   WhereLoop *pNew;
4052   WhereTerm *pTerm, *pWCEnd;
4053   int rc = SQLITE_OK;
4054   int iCur;
4055   WhereClause tempWC;
4056   WhereLoopBuilder sSubBuild;
4057   WhereOrSet sSum, sCur;
4058   SrcItem *pItem;
4059 
4060   pWC = pBuilder->pWC;
4061   pWCEnd = pWC->a + pWC->nTerm;
4062   pNew = pBuilder->pNew;
4063   memset(&sSum, 0, sizeof(sSum));
4064   pItem = pWInfo->pTabList->a + pNew->iTab;
4065   iCur = pItem->iCursor;
4066 
4067   /* The multi-index OR optimization does not work for RIGHT and FULL JOIN */
4068   if( pItem->fg.jointype & JT_RIGHT ) return SQLITE_OK;
4069 
4070   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
4071     if( (pTerm->eOperator & WO_OR)!=0
4072      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
4073     ){
4074       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
4075       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
4076       WhereTerm *pOrTerm;
4077       int once = 1;
4078       int i, j;
4079 
4080       sSubBuild = *pBuilder;
4081       sSubBuild.pOrSet = &sCur;
4082 
4083       WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
4084       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
4085         if( (pOrTerm->eOperator & WO_AND)!=0 ){
4086           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
4087         }else if( pOrTerm->leftCursor==iCur ){
4088           tempWC.pWInfo = pWC->pWInfo;
4089           tempWC.pOuter = pWC;
4090           tempWC.op = TK_AND;
4091           tempWC.nTerm = 1;
4092           tempWC.nBase = 1;
4093           tempWC.a = pOrTerm;
4094           sSubBuild.pWC = &tempWC;
4095         }else{
4096           continue;
4097         }
4098         sCur.n = 0;
4099 #ifdef WHERETRACE_ENABLED
4100         WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
4101                    (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
4102         if( sqlite3WhereTrace & 0x400 ){
4103           sqlite3WhereClausePrint(sSubBuild.pWC);
4104         }
4105 #endif
4106 #ifndef SQLITE_OMIT_VIRTUALTABLE
4107         if( IsVirtual(pItem->pTab) ){
4108           rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
4109         }else
4110 #endif
4111         {
4112           rc = whereLoopAddBtree(&sSubBuild, mPrereq);
4113         }
4114         if( rc==SQLITE_OK ){
4115           rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
4116         }
4117         assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0
4118                 || rc==SQLITE_NOMEM );
4119         testcase( rc==SQLITE_NOMEM && sCur.n>0 );
4120         testcase( rc==SQLITE_DONE );
4121         if( sCur.n==0 ){
4122           sSum.n = 0;
4123           break;
4124         }else if( once ){
4125           whereOrMove(&sSum, &sCur);
4126           once = 0;
4127         }else{
4128           WhereOrSet sPrev;
4129           whereOrMove(&sPrev, &sSum);
4130           sSum.n = 0;
4131           for(i=0; i<sPrev.n; i++){
4132             for(j=0; j<sCur.n; j++){
4133               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
4134                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
4135                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
4136             }
4137           }
4138         }
4139       }
4140       pNew->nLTerm = 1;
4141       pNew->aLTerm[0] = pTerm;
4142       pNew->wsFlags = WHERE_MULTI_OR;
4143       pNew->rSetup = 0;
4144       pNew->iSortIdx = 0;
4145       memset(&pNew->u, 0, sizeof(pNew->u));
4146       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
4147         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
4148         ** of all sub-scans required by the OR-scan. However, due to rounding
4149         ** errors, it may be that the cost of the OR-scan is equal to its
4150         ** most expensive sub-scan. Add the smallest possible penalty
4151         ** (equivalent to multiplying the cost by 1.07) to ensure that
4152         ** this does not happen. Otherwise, for WHERE clauses such as the
4153         ** following where there is an index on "y":
4154         **
4155         **     WHERE likelihood(x=?, 0.99) OR y=?
4156         **
4157         ** the planner may elect to "OR" together a full-table scan and an
4158         ** index lookup. And other similarly odd results.  */
4159         pNew->rRun = sSum.a[i].rRun + 1;
4160         pNew->nOut = sSum.a[i].nOut;
4161         pNew->prereq = sSum.a[i].prereq;
4162         rc = whereLoopInsert(pBuilder, pNew);
4163       }
4164       WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
4165     }
4166   }
4167   return rc;
4168 }
4169 
4170 /*
4171 ** Add all WhereLoop objects for all tables
4172 */
4173 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
4174   WhereInfo *pWInfo = pBuilder->pWInfo;
4175   Bitmask mPrereq = 0;
4176   Bitmask mPrior = 0;
4177   int iTab;
4178   SrcList *pTabList = pWInfo->pTabList;
4179   SrcItem *pItem;
4180   SrcItem *pEnd = &pTabList->a[pWInfo->nLevel];
4181   sqlite3 *db = pWInfo->pParse->db;
4182   int rc = SQLITE_OK;
4183   int bFirstPastRJ = 0;
4184   int hasRightJoin = 0;
4185   WhereLoop *pNew;
4186 
4187 
4188   /* Loop over the tables in the join, from left to right */
4189   pNew = pBuilder->pNew;
4190 
4191   /* Verify that pNew has already been initialized */
4192   assert( pNew->nLTerm==0 );
4193   assert( pNew->wsFlags==0 );
4194   assert( pNew->nLSlot>=ArraySize(pNew->aLTermSpace) );
4195   assert( pNew->aLTerm!=0 );
4196 
4197   pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT;
4198   for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
4199     Bitmask mUnusable = 0;
4200     pNew->iTab = iTab;
4201     pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR;
4202     pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
4203     if( bFirstPastRJ
4204      || (pItem->fg.jointype & (JT_OUTER|JT_CROSS|JT_LTORJ))!=0
4205     ){
4206       /* Add prerequisites to prevent reordering of FROM clause terms
4207       ** across CROSS joins and outer joins.  The bFirstPastRJ boolean
4208       ** prevents the right operand of a RIGHT JOIN from being swapped with
4209       ** other elements even further to the right.
4210       **
4211       ** The JT_LTORJ case and the hasRightJoin flag work together to
4212       ** prevent FROM-clause terms from moving from the right side of
4213       ** a LEFT JOIN over to the left side of that join if the LEFT JOIN
4214       ** is itself on the left side of a RIGHT JOIN.
4215       */
4216       if( pItem->fg.jointype & JT_LTORJ ) hasRightJoin = 1;
4217       mPrereq |= mPrior;
4218       bFirstPastRJ = (pItem->fg.jointype & JT_RIGHT)!=0;
4219     }else if( !hasRightJoin ){
4220       mPrereq = 0;
4221     }
4222 #ifndef SQLITE_OMIT_VIRTUALTABLE
4223     if( IsVirtual(pItem->pTab) ){
4224       SrcItem *p;
4225       for(p=&pItem[1]; p<pEnd; p++){
4226         if( mUnusable || (p->fg.jointype & (JT_OUTER|JT_CROSS)) ){
4227           mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
4228         }
4229       }
4230       rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
4231     }else
4232 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4233     {
4234       rc = whereLoopAddBtree(pBuilder, mPrereq);
4235     }
4236     if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
4237       rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
4238     }
4239     mPrior |= pNew->maskSelf;
4240     if( rc || db->mallocFailed ){
4241       if( rc==SQLITE_DONE ){
4242         /* We hit the query planner search limit set by iPlanLimit */
4243         sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search");
4244         rc = SQLITE_OK;
4245       }else{
4246         break;
4247       }
4248     }
4249   }
4250 
4251   whereLoopClear(db, pNew);
4252   return rc;
4253 }
4254 
4255 /*
4256 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
4257 ** parameters) to see if it outputs rows in the requested ORDER BY
4258 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
4259 **
4260 **   N>0:   N terms of the ORDER BY clause are satisfied
4261 **   N==0:  No terms of the ORDER BY clause are satisfied
4262 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
4263 **
4264 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
4265 ** strict.  With GROUP BY and DISTINCT the only requirement is that
4266 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
4267 ** and DISTINCT do not require rows to appear in any particular order as long
4268 ** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT
4269 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
4270 ** pOrderBy terms must be matched in strict left-to-right order.
4271 */
4272 static i8 wherePathSatisfiesOrderBy(
4273   WhereInfo *pWInfo,    /* The WHERE clause */
4274   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
4275   WherePath *pPath,     /* The WherePath to check */
4276   u16 wctrlFlags,       /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
4277   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
4278   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
4279   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
4280 ){
4281   u8 revSet;            /* True if rev is known */
4282   u8 rev;               /* Composite sort order */
4283   u8 revIdx;            /* Index sort order */
4284   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
4285   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
4286   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
4287   u16 eqOpMask;         /* Allowed equality operators */
4288   u16 nKeyCol;          /* Number of key columns in pIndex */
4289   u16 nColumn;          /* Total number of ordered columns in the index */
4290   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
4291   int iLoop;            /* Index of WhereLoop in pPath being processed */
4292   int i, j;             /* Loop counters */
4293   int iCur;             /* Cursor number for current WhereLoop */
4294   int iColumn;          /* A column number within table iCur */
4295   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
4296   WhereTerm *pTerm;     /* A single term of the WHERE clause */
4297   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
4298   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
4299   Index *pIndex;        /* The index associated with pLoop */
4300   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
4301   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
4302   Bitmask obDone;       /* Mask of all ORDER BY terms */
4303   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
4304   Bitmask ready;              /* Mask of inner loops */
4305 
4306   /*
4307   ** We say the WhereLoop is "one-row" if it generates no more than one
4308   ** row of output.  A WhereLoop is one-row if all of the following are true:
4309   **  (a) All index columns match with WHERE_COLUMN_EQ.
4310   **  (b) The index is unique
4311   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
4312   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
4313   **
4314   ** We say the WhereLoop is "order-distinct" if the set of columns from
4315   ** that WhereLoop that are in the ORDER BY clause are different for every
4316   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
4317   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
4318   ** is not order-distinct. To be order-distinct is not quite the same as being
4319   ** UNIQUE since a UNIQUE column or index can have multiple rows that
4320   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
4321   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
4322   **
4323   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
4324   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
4325   ** automatically order-distinct.
4326   */
4327 
4328   assert( pOrderBy!=0 );
4329   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
4330 
4331   nOrderBy = pOrderBy->nExpr;
4332   testcase( nOrderBy==BMS-1 );
4333   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
4334   isOrderDistinct = 1;
4335   obDone = MASKBIT(nOrderBy)-1;
4336   orderDistinctMask = 0;
4337   ready = 0;
4338   eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
4339   if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){
4340     eqOpMask |= WO_IN;
4341   }
4342   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
4343     if( iLoop>0 ) ready |= pLoop->maskSelf;
4344     if( iLoop<nLoop ){
4345       pLoop = pPath->aLoop[iLoop];
4346       if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
4347     }else{
4348       pLoop = pLast;
4349     }
4350     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
4351       if( pLoop->u.vtab.isOrdered
4352        && ((wctrlFlags&(WHERE_DISTINCTBY|WHERE_SORTBYGROUP))!=WHERE_DISTINCTBY)
4353       ){
4354         obSat = obDone;
4355       }
4356       break;
4357     }else if( wctrlFlags & WHERE_DISTINCTBY ){
4358       pLoop->u.btree.nDistinctCol = 0;
4359     }
4360     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
4361 
4362     /* Mark off any ORDER BY term X that is a column in the table of
4363     ** the current loop for which there is term in the WHERE
4364     ** clause of the form X IS NULL or X=? that reference only outer
4365     ** loops.
4366     */
4367     for(i=0; i<nOrderBy; i++){
4368       if( MASKBIT(i) & obSat ) continue;
4369       pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
4370       if( NEVER(pOBExpr==0) ) continue;
4371       if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
4372       if( pOBExpr->iTable!=iCur ) continue;
4373       pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
4374                        ~ready, eqOpMask, 0);
4375       if( pTerm==0 ) continue;
4376       if( pTerm->eOperator==WO_IN ){
4377         /* IN terms are only valid for sorting in the ORDER BY LIMIT
4378         ** optimization, and then only if they are actually used
4379         ** by the query plan */
4380         assert( wctrlFlags &
4381                (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) );
4382         for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
4383         if( j>=pLoop->nLTerm ) continue;
4384       }
4385       if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
4386         Parse *pParse = pWInfo->pParse;
4387         CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr);
4388         CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr);
4389         assert( pColl1 );
4390         if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){
4391           continue;
4392         }
4393         testcase( pTerm->pExpr->op==TK_IS );
4394       }
4395       obSat |= MASKBIT(i);
4396     }
4397 
4398     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
4399       if( pLoop->wsFlags & WHERE_IPK ){
4400         pIndex = 0;
4401         nKeyCol = 0;
4402         nColumn = 1;
4403       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
4404         return 0;
4405       }else{
4406         nKeyCol = pIndex->nKeyCol;
4407         nColumn = pIndex->nColumn;
4408         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
4409         assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
4410                           || !HasRowid(pIndex->pTable));
4411         /* All relevant terms of the index must also be non-NULL in order
4412         ** for isOrderDistinct to be true.  So the isOrderDistint value
4413         ** computed here might be a false positive.  Corrections will be
4414         ** made at tag-20210426-1 below */
4415         isOrderDistinct = IsUniqueIndex(pIndex)
4416                           && (pLoop->wsFlags & WHERE_SKIPSCAN)==0;
4417       }
4418 
4419       /* Loop through all columns of the index and deal with the ones
4420       ** that are not constrained by == or IN.
4421       */
4422       rev = revSet = 0;
4423       distinctColumns = 0;
4424       for(j=0; j<nColumn; j++){
4425         u8 bOnce = 1; /* True to run the ORDER BY search loop */
4426 
4427         assert( j>=pLoop->u.btree.nEq
4428             || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
4429         );
4430         if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
4431           u16 eOp = pLoop->aLTerm[j]->eOperator;
4432 
4433           /* Skip over == and IS and ISNULL terms.  (Also skip IN terms when
4434           ** doing WHERE_ORDERBY_LIMIT processing).  Except, IS and ISNULL
4435           ** terms imply that the index is not UNIQUE NOT NULL in which case
4436           ** the loop need to be marked as not order-distinct because it can
4437           ** have repeated NULL rows.
4438           **
4439           ** If the current term is a column of an ((?,?) IN (SELECT...))
4440           ** expression for which the SELECT returns more than one column,
4441           ** check that it is the only column used by this loop. Otherwise,
4442           ** if it is one of two or more, none of the columns can be
4443           ** considered to match an ORDER BY term.
4444           */
4445           if( (eOp & eqOpMask)!=0 ){
4446             if( eOp & (WO_ISNULL|WO_IS) ){
4447               testcase( eOp & WO_ISNULL );
4448               testcase( eOp & WO_IS );
4449               testcase( isOrderDistinct );
4450               isOrderDistinct = 0;
4451             }
4452             continue;
4453           }else if( ALWAYS(eOp & WO_IN) ){
4454             /* ALWAYS() justification: eOp is an equality operator due to the
4455             ** j<pLoop->u.btree.nEq constraint above.  Any equality other
4456             ** than WO_IN is captured by the previous "if".  So this one
4457             ** always has to be WO_IN. */
4458             Expr *pX = pLoop->aLTerm[j]->pExpr;
4459             for(i=j+1; i<pLoop->u.btree.nEq; i++){
4460               if( pLoop->aLTerm[i]->pExpr==pX ){
4461                 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
4462                 bOnce = 0;
4463                 break;
4464               }
4465             }
4466           }
4467         }
4468 
4469         /* Get the column number in the table (iColumn) and sort order
4470         ** (revIdx) for the j-th column of the index.
4471         */
4472         if( pIndex ){
4473           iColumn = pIndex->aiColumn[j];
4474           revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC;
4475           if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
4476         }else{
4477           iColumn = XN_ROWID;
4478           revIdx = 0;
4479         }
4480 
4481         /* An unconstrained column that might be NULL means that this
4482         ** WhereLoop is not well-ordered.  tag-20210426-1
4483         */
4484         if( isOrderDistinct ){
4485           if( iColumn>=0
4486            && j>=pLoop->u.btree.nEq
4487            && pIndex->pTable->aCol[iColumn].notNull==0
4488           ){
4489             isOrderDistinct = 0;
4490           }
4491           if( iColumn==XN_EXPR ){
4492             isOrderDistinct = 0;
4493           }
4494         }
4495 
4496         /* Find the ORDER BY term that corresponds to the j-th column
4497         ** of the index and mark that ORDER BY term off
4498         */
4499         isMatch = 0;
4500         for(i=0; bOnce && i<nOrderBy; i++){
4501           if( MASKBIT(i) & obSat ) continue;
4502           pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
4503           testcase( wctrlFlags & WHERE_GROUPBY );
4504           testcase( wctrlFlags & WHERE_DISTINCTBY );
4505           if( NEVER(pOBExpr==0) ) continue;
4506           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
4507           if( iColumn>=XN_ROWID ){
4508             if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
4509             if( pOBExpr->iTable!=iCur ) continue;
4510             if( pOBExpr->iColumn!=iColumn ) continue;
4511           }else{
4512             Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
4513             if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
4514               continue;
4515             }
4516           }
4517           if( iColumn!=XN_ROWID ){
4518             pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
4519             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
4520           }
4521           if( wctrlFlags & WHERE_DISTINCTBY ){
4522             pLoop->u.btree.nDistinctCol = j+1;
4523           }
4524           isMatch = 1;
4525           break;
4526         }
4527         if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
4528           /* Make sure the sort order is compatible in an ORDER BY clause.
4529           ** Sort order is irrelevant for a GROUP BY clause. */
4530           if( revSet ){
4531             if( (rev ^ revIdx)
4532                            != (pOrderBy->a[i].fg.sortFlags&KEYINFO_ORDER_DESC)
4533             ){
4534               isMatch = 0;
4535             }
4536           }else{
4537             rev = revIdx ^ (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC);
4538             if( rev ) *pRevMask |= MASKBIT(iLoop);
4539             revSet = 1;
4540           }
4541         }
4542         if( isMatch && (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL) ){
4543           if( j==pLoop->u.btree.nEq ){
4544             pLoop->wsFlags |= WHERE_BIGNULL_SORT;
4545           }else{
4546             isMatch = 0;
4547           }
4548         }
4549         if( isMatch ){
4550           if( iColumn==XN_ROWID ){
4551             testcase( distinctColumns==0 );
4552             distinctColumns = 1;
4553           }
4554           obSat |= MASKBIT(i);
4555         }else{
4556           /* No match found */
4557           if( j==0 || j<nKeyCol ){
4558             testcase( isOrderDistinct!=0 );
4559             isOrderDistinct = 0;
4560           }
4561           break;
4562         }
4563       } /* end Loop over all index columns */
4564       if( distinctColumns ){
4565         testcase( isOrderDistinct==0 );
4566         isOrderDistinct = 1;
4567       }
4568     } /* end-if not one-row */
4569 
4570     /* Mark off any other ORDER BY terms that reference pLoop */
4571     if( isOrderDistinct ){
4572       orderDistinctMask |= pLoop->maskSelf;
4573       for(i=0; i<nOrderBy; i++){
4574         Expr *p;
4575         Bitmask mTerm;
4576         if( MASKBIT(i) & obSat ) continue;
4577         p = pOrderBy->a[i].pExpr;
4578         mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
4579         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
4580         if( (mTerm&~orderDistinctMask)==0 ){
4581           obSat |= MASKBIT(i);
4582         }
4583       }
4584     }
4585   } /* End the loop over all WhereLoops from outer-most down to inner-most */
4586   if( obSat==obDone ) return (i8)nOrderBy;
4587   if( !isOrderDistinct ){
4588     for(i=nOrderBy-1; i>0; i--){
4589       Bitmask m = ALWAYS(i<BMS) ? MASKBIT(i) - 1 : 0;
4590       if( (obSat&m)==m ) return i;
4591     }
4592     return 0;
4593   }
4594   return -1;
4595 }
4596 
4597 
4598 /*
4599 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
4600 ** the planner assumes that the specified pOrderBy list is actually a GROUP
4601 ** BY clause - and so any order that groups rows as required satisfies the
4602 ** request.
4603 **
4604 ** Normally, in this case it is not possible for the caller to determine
4605 ** whether or not the rows are really being delivered in sorted order, or
4606 ** just in some other order that provides the required grouping. However,
4607 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
4608 ** this function may be called on the returned WhereInfo object. It returns
4609 ** true if the rows really will be sorted in the specified order, or false
4610 ** otherwise.
4611 **
4612 ** For example, assuming:
4613 **
4614 **   CREATE INDEX i1 ON t1(x, Y);
4615 **
4616 ** then
4617 **
4618 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
4619 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
4620 */
4621 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
4622   assert( pWInfo->wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY) );
4623   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
4624   return pWInfo->sorted;
4625 }
4626 
4627 #ifdef WHERETRACE_ENABLED
4628 /* For debugging use only: */
4629 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
4630   static char zName[65];
4631   int i;
4632   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
4633   if( pLast ) zName[i++] = pLast->cId;
4634   zName[i] = 0;
4635   return zName;
4636 }
4637 #endif
4638 
4639 /*
4640 ** Return the cost of sorting nRow rows, assuming that the keys have
4641 ** nOrderby columns and that the first nSorted columns are already in
4642 ** order.
4643 */
4644 static LogEst whereSortingCost(
4645   WhereInfo *pWInfo,
4646   LogEst nRow,
4647   int nOrderBy,
4648   int nSorted
4649 ){
4650   /* TUNING: Estimated cost of a full external sort, where N is
4651   ** the number of rows to sort is:
4652   **
4653   **   cost = (3.0 * N * log(N)).
4654   **
4655   ** Or, if the order-by clause has X terms but only the last Y
4656   ** terms are out of order, then block-sorting will reduce the
4657   ** sorting cost to:
4658   **
4659   **   cost = (3.0 * N * log(N)) * (Y/X)
4660   **
4661   ** The (Y/X) term is implemented using stack variable rScale
4662   ** below.
4663   */
4664   LogEst rScale, rSortCost;
4665   assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
4666   rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
4667   rSortCost = nRow + rScale + 16;
4668 
4669   /* Multiple by log(M) where M is the number of output rows.
4670   ** Use the LIMIT for M if it is smaller.  Or if this sort is for
4671   ** a DISTINCT operator, M will be the number of distinct output
4672   ** rows, so fudge it downwards a bit.
4673   */
4674   if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
4675     nRow = pWInfo->iLimit;
4676   }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){
4677     /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT
4678     ** reduces the number of output rows by a factor of 2 */
4679     if( nRow>10 ){ nRow -= 10;  assert( 10==sqlite3LogEst(2) ); }
4680   }
4681   rSortCost += estLog(nRow);
4682   return rSortCost;
4683 }
4684 
4685 /*
4686 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
4687 ** attempts to find the lowest cost path that visits each WhereLoop
4688 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
4689 **
4690 ** Assume that the total number of output rows that will need to be sorted
4691 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
4692 ** costs if nRowEst==0.
4693 **
4694 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
4695 ** error occurs.
4696 */
4697 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
4698   int mxChoice;             /* Maximum number of simultaneous paths tracked */
4699   int nLoop;                /* Number of terms in the join */
4700   Parse *pParse;            /* Parsing context */
4701   sqlite3 *db;              /* The database connection */
4702   int iLoop;                /* Loop counter over the terms of the join */
4703   int ii, jj;               /* Loop counters */
4704   int mxI = 0;              /* Index of next entry to replace */
4705   int nOrderBy;             /* Number of ORDER BY clause terms */
4706   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
4707   LogEst mxUnsorted = 0;    /* Maximum unsorted cost of a set of path */
4708   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
4709   WherePath *aFrom;         /* All nFrom paths at the previous level */
4710   WherePath *aTo;           /* The nTo best paths at the current level */
4711   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
4712   WherePath *pTo;           /* An element of aTo[] that we are working on */
4713   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
4714   WhereLoop **pX;           /* Used to divy up the pSpace memory */
4715   LogEst *aSortCost = 0;    /* Sorting and partial sorting costs */
4716   char *pSpace;             /* Temporary memory used by this routine */
4717   int nSpace;               /* Bytes of space allocated at pSpace */
4718 
4719   pParse = pWInfo->pParse;
4720   db = pParse->db;
4721   nLoop = pWInfo->nLevel;
4722   /* TUNING: For simple queries, only the best path is tracked.
4723   ** For 2-way joins, the 5 best paths are followed.
4724   ** For joins of 3 or more tables, track the 10 best paths */
4725   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
4726   assert( nLoop<=pWInfo->pTabList->nSrc );
4727   WHERETRACE(0x002, ("---- begin solver.  (nRowEst=%d)\n", nRowEst));
4728 
4729   /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
4730   ** case the purpose of this call is to estimate the number of rows returned
4731   ** by the overall query. Once this estimate has been obtained, the caller
4732   ** will invoke this function a second time, passing the estimate as the
4733   ** nRowEst parameter.  */
4734   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
4735     nOrderBy = 0;
4736   }else{
4737     nOrderBy = pWInfo->pOrderBy->nExpr;
4738   }
4739 
4740   /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
4741   nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
4742   nSpace += sizeof(LogEst) * nOrderBy;
4743   pSpace = sqlite3DbMallocRawNN(db, nSpace);
4744   if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
4745   aTo = (WherePath*)pSpace;
4746   aFrom = aTo+mxChoice;
4747   memset(aFrom, 0, sizeof(aFrom[0]));
4748   pX = (WhereLoop**)(aFrom+mxChoice);
4749   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
4750     pFrom->aLoop = pX;
4751   }
4752   if( nOrderBy ){
4753     /* If there is an ORDER BY clause and it is not being ignored, set up
4754     ** space for the aSortCost[] array. Each element of the aSortCost array
4755     ** is either zero - meaning it has not yet been initialized - or the
4756     ** cost of sorting nRowEst rows of data where the first X terms of
4757     ** the ORDER BY clause are already in order, where X is the array
4758     ** index.  */
4759     aSortCost = (LogEst*)pX;
4760     memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
4761   }
4762   assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
4763   assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
4764 
4765   /* Seed the search with a single WherePath containing zero WhereLoops.
4766   **
4767   ** TUNING: Do not let the number of iterations go above 28.  If the cost
4768   ** of computing an automatic index is not paid back within the first 28
4769   ** rows, then do not use the automatic index. */
4770   aFrom[0].nRow = MIN(pParse->nQueryLoop, 48);  assert( 48==sqlite3LogEst(28) );
4771   nFrom = 1;
4772   assert( aFrom[0].isOrdered==0 );
4773   if( nOrderBy ){
4774     /* If nLoop is zero, then there are no FROM terms in the query. Since
4775     ** in this case the query may return a maximum of one row, the results
4776     ** are already in the requested order. Set isOrdered to nOrderBy to
4777     ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
4778     ** -1, indicating that the result set may or may not be ordered,
4779     ** depending on the loops added to the current plan.  */
4780     aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
4781   }
4782 
4783   /* Compute successively longer WherePaths using the previous generation
4784   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
4785   ** best paths at each generation */
4786   for(iLoop=0; iLoop<nLoop; iLoop++){
4787     nTo = 0;
4788     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
4789       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
4790         LogEst nOut;                      /* Rows visited by (pFrom+pWLoop) */
4791         LogEst rCost;                     /* Cost of path (pFrom+pWLoop) */
4792         LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
4793         i8 isOrdered;                     /* isOrdered for (pFrom+pWLoop) */
4794         Bitmask maskNew;                  /* Mask of src visited by (..) */
4795         Bitmask revMask;                  /* Mask of rev-order loops for (..) */
4796 
4797         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
4798         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
4799         if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
4800           /* Do not use an automatic index if the this loop is expected
4801           ** to run less than 1.25 times.  It is tempting to also exclude
4802           ** automatic index usage on an outer loop, but sometimes an automatic
4803           ** index is useful in the outer loop of a correlated subquery. */
4804           assert( 10==sqlite3LogEst(2) );
4805           continue;
4806         }
4807 
4808         /* At this point, pWLoop is a candidate to be the next loop.
4809         ** Compute its cost */
4810         rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
4811         rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
4812         nOut = pFrom->nRow + pWLoop->nOut;
4813         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
4814         isOrdered = pFrom->isOrdered;
4815         if( isOrdered<0 ){
4816           revMask = 0;
4817           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
4818                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
4819                        iLoop, pWLoop, &revMask);
4820         }else{
4821           revMask = pFrom->revLoop;
4822         }
4823         if( isOrdered>=0 && isOrdered<nOrderBy ){
4824           if( aSortCost[isOrdered]==0 ){
4825             aSortCost[isOrdered] = whereSortingCost(
4826                 pWInfo, nRowEst, nOrderBy, isOrdered
4827             );
4828           }
4829           /* TUNING:  Add a small extra penalty (5) to sorting as an
4830           ** extra encouragment to the query planner to select a plan
4831           ** where the rows emerge in the correct order without any sorting
4832           ** required. */
4833           rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5;
4834 
4835           WHERETRACE(0x002,
4836               ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
4837                aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
4838                rUnsorted, rCost));
4839         }else{
4840           rCost = rUnsorted;
4841           rUnsorted -= 2;  /* TUNING:  Slight bias in favor of no-sort plans */
4842         }
4843 
4844         /* Check to see if pWLoop should be added to the set of
4845         ** mxChoice best-so-far paths.
4846         **
4847         ** First look for an existing path among best-so-far paths
4848         ** that covers the same set of loops and has the same isOrdered
4849         ** setting as the current path candidate.
4850         **
4851         ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4852         ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4853         ** of legal values for isOrdered, -1..64.
4854         */
4855         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
4856           if( pTo->maskLoop==maskNew
4857            && ((pTo->isOrdered^isOrdered)&0x80)==0
4858           ){
4859             testcase( jj==nTo-1 );
4860             break;
4861           }
4862         }
4863         if( jj>=nTo ){
4864           /* None of the existing best-so-far paths match the candidate. */
4865           if( nTo>=mxChoice
4866            && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4867           ){
4868             /* The current candidate is no better than any of the mxChoice
4869             ** paths currently in the best-so-far buffer.  So discard
4870             ** this candidate as not viable. */
4871 #ifdef WHERETRACE_ENABLED /* 0x4 */
4872             if( sqlite3WhereTrace&0x4 ){
4873               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d,%3d order=%c\n",
4874                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4875                   isOrdered>=0 ? isOrdered+'0' : '?');
4876             }
4877 #endif
4878             continue;
4879           }
4880           /* If we reach this points it means that the new candidate path
4881           ** needs to be added to the set of best-so-far paths. */
4882           if( nTo<mxChoice ){
4883             /* Increase the size of the aTo set by one */
4884             jj = nTo++;
4885           }else{
4886             /* New path replaces the prior worst to keep count below mxChoice */
4887             jj = mxI;
4888           }
4889           pTo = &aTo[jj];
4890 #ifdef WHERETRACE_ENABLED /* 0x4 */
4891           if( sqlite3WhereTrace&0x4 ){
4892             sqlite3DebugPrintf("New    %s cost=%-3d,%3d,%3d order=%c\n",
4893                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4894                 isOrdered>=0 ? isOrdered+'0' : '?');
4895           }
4896 #endif
4897         }else{
4898           /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4899           ** same set of loops and has the same isOrdered setting as the
4900           ** candidate path.  Check to see if the candidate should replace
4901           ** pTo or if the candidate should be skipped.
4902           **
4903           ** The conditional is an expanded vector comparison equivalent to:
4904           **   (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4905           */
4906           if( pTo->rCost<rCost
4907            || (pTo->rCost==rCost
4908                && (pTo->nRow<nOut
4909                    || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4910                   )
4911               )
4912           ){
4913 #ifdef WHERETRACE_ENABLED /* 0x4 */
4914             if( sqlite3WhereTrace&0x4 ){
4915               sqlite3DebugPrintf(
4916                   "Skip   %s cost=%-3d,%3d,%3d order=%c",
4917                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4918                   isOrdered>=0 ? isOrdered+'0' : '?');
4919               sqlite3DebugPrintf("   vs %s cost=%-3d,%3d,%3d order=%c\n",
4920                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4921                   pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4922             }
4923 #endif
4924             /* Discard the candidate path from further consideration */
4925             testcase( pTo->rCost==rCost );
4926             continue;
4927           }
4928           testcase( pTo->rCost==rCost+1 );
4929           /* Control reaches here if the candidate path is better than the
4930           ** pTo path.  Replace pTo with the candidate. */
4931 #ifdef WHERETRACE_ENABLED /* 0x4 */
4932           if( sqlite3WhereTrace&0x4 ){
4933             sqlite3DebugPrintf(
4934                 "Update %s cost=%-3d,%3d,%3d order=%c",
4935                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4936                 isOrdered>=0 ? isOrdered+'0' : '?');
4937             sqlite3DebugPrintf("  was %s cost=%-3d,%3d,%3d order=%c\n",
4938                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4939                 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4940           }
4941 #endif
4942         }
4943         /* pWLoop is a winner.  Add it to the set of best so far */
4944         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4945         pTo->revLoop = revMask;
4946         pTo->nRow = nOut;
4947         pTo->rCost = rCost;
4948         pTo->rUnsorted = rUnsorted;
4949         pTo->isOrdered = isOrdered;
4950         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4951         pTo->aLoop[iLoop] = pWLoop;
4952         if( nTo>=mxChoice ){
4953           mxI = 0;
4954           mxCost = aTo[0].rCost;
4955           mxUnsorted = aTo[0].nRow;
4956           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4957             if( pTo->rCost>mxCost
4958              || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4959             ){
4960               mxCost = pTo->rCost;
4961               mxUnsorted = pTo->rUnsorted;
4962               mxI = jj;
4963             }
4964           }
4965         }
4966       }
4967     }
4968 
4969 #ifdef WHERETRACE_ENABLED  /* >=2 */
4970     if( sqlite3WhereTrace & 0x02 ){
4971       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4972       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4973         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4974            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4975            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4976         if( pTo->isOrdered>0 ){
4977           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4978         }else{
4979           sqlite3DebugPrintf("\n");
4980         }
4981       }
4982     }
4983 #endif
4984 
4985     /* Swap the roles of aFrom and aTo for the next generation */
4986     pFrom = aTo;
4987     aTo = aFrom;
4988     aFrom = pFrom;
4989     nFrom = nTo;
4990   }
4991 
4992   if( nFrom==0 ){
4993     sqlite3ErrorMsg(pParse, "no query solution");
4994     sqlite3DbFreeNN(db, pSpace);
4995     return SQLITE_ERROR;
4996   }
4997 
4998   /* Find the lowest cost path.  pFrom will be left pointing to that path */
4999   pFrom = aFrom;
5000   for(ii=1; ii<nFrom; ii++){
5001     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
5002   }
5003   assert( pWInfo->nLevel==nLoop );
5004   /* Load the lowest cost path into pWInfo */
5005   for(iLoop=0; iLoop<nLoop; iLoop++){
5006     WhereLevel *pLevel = pWInfo->a + iLoop;
5007     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
5008     pLevel->iFrom = pWLoop->iTab;
5009     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
5010   }
5011   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
5012    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
5013    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
5014    && nRowEst
5015   ){
5016     Bitmask notUsed;
5017     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
5018                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
5019     if( rc==pWInfo->pResultSet->nExpr ){
5020       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
5021     }
5022   }
5023   pWInfo->bOrderedInnerLoop = 0;
5024   if( pWInfo->pOrderBy ){
5025     pWInfo->nOBSat = pFrom->isOrdered;
5026     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
5027       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
5028         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
5029       }
5030     }else{
5031       pWInfo->revMask = pFrom->revLoop;
5032       if( pWInfo->nOBSat<=0 ){
5033         pWInfo->nOBSat = 0;
5034         if( nLoop>0 ){
5035           u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
5036           if( (wsFlags & WHERE_ONEROW)==0
5037            && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
5038           ){
5039             Bitmask m = 0;
5040             int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
5041                       WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
5042             testcase( wsFlags & WHERE_IPK );
5043             testcase( wsFlags & WHERE_COLUMN_IN );
5044             if( rc==pWInfo->pOrderBy->nExpr ){
5045               pWInfo->bOrderedInnerLoop = 1;
5046               pWInfo->revMask = m;
5047             }
5048           }
5049         }
5050       }else if( nLoop
5051             && pWInfo->nOBSat==1
5052             && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0
5053             ){
5054         pWInfo->bOrderedInnerLoop = 1;
5055       }
5056     }
5057     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
5058         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
5059     ){
5060       Bitmask revMask = 0;
5061       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
5062           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
5063       );
5064       assert( pWInfo->sorted==0 );
5065       if( nOrder==pWInfo->pOrderBy->nExpr ){
5066         pWInfo->sorted = 1;
5067         pWInfo->revMask = revMask;
5068       }
5069     }
5070   }
5071 
5072 
5073   pWInfo->nRowOut = pFrom->nRow;
5074 
5075   /* Free temporary memory and return success */
5076   sqlite3DbFreeNN(db, pSpace);
5077   return SQLITE_OK;
5078 }
5079 
5080 /*
5081 ** Most queries use only a single table (they are not joins) and have
5082 ** simple == constraints against indexed fields.  This routine attempts
5083 ** to plan those simple cases using much less ceremony than the
5084 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
5085 ** times for the common case.
5086 **
5087 ** Return non-zero on success, if this query can be handled by this
5088 ** no-frills query planner.  Return zero if this query needs the
5089 ** general-purpose query planner.
5090 */
5091 static int whereShortCut(WhereLoopBuilder *pBuilder){
5092   WhereInfo *pWInfo;
5093   SrcItem *pItem;
5094   WhereClause *pWC;
5095   WhereTerm *pTerm;
5096   WhereLoop *pLoop;
5097   int iCur;
5098   int j;
5099   Table *pTab;
5100   Index *pIdx;
5101   WhereScan scan;
5102 
5103   pWInfo = pBuilder->pWInfo;
5104   if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
5105   assert( pWInfo->pTabList->nSrc>=1 );
5106   pItem = pWInfo->pTabList->a;
5107   pTab = pItem->pTab;
5108   if( IsVirtual(pTab) ) return 0;
5109   if( pItem->fg.isIndexedBy || pItem->fg.notIndexed ){
5110     testcase( pItem->fg.isIndexedBy );
5111     testcase( pItem->fg.notIndexed );
5112     return 0;
5113   }
5114   iCur = pItem->iCursor;
5115   pWC = &pWInfo->sWC;
5116   pLoop = pBuilder->pNew;
5117   pLoop->wsFlags = 0;
5118   pLoop->nSkip = 0;
5119   pTerm = whereScanInit(&scan, pWC, iCur, -1, WO_EQ|WO_IS, 0);
5120   while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
5121   if( pTerm ){
5122     testcase( pTerm->eOperator & WO_IS );
5123     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
5124     pLoop->aLTerm[0] = pTerm;
5125     pLoop->nLTerm = 1;
5126     pLoop->u.btree.nEq = 1;
5127     /* TUNING: Cost of a rowid lookup is 10 */
5128     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
5129   }else{
5130     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5131       int opMask;
5132       assert( pLoop->aLTermSpace==pLoop->aLTerm );
5133       if( !IsUniqueIndex(pIdx)
5134        || pIdx->pPartIdxWhere!=0
5135        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
5136       ) continue;
5137       opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
5138       for(j=0; j<pIdx->nKeyCol; j++){
5139         pTerm = whereScanInit(&scan, pWC, iCur, j, opMask, pIdx);
5140         while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
5141         if( pTerm==0 ) break;
5142         testcase( pTerm->eOperator & WO_IS );
5143         pLoop->aLTerm[j] = pTerm;
5144       }
5145       if( j!=pIdx->nKeyCol ) continue;
5146       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
5147       if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
5148         pLoop->wsFlags |= WHERE_IDX_ONLY;
5149       }
5150       pLoop->nLTerm = j;
5151       pLoop->u.btree.nEq = j;
5152       pLoop->u.btree.pIndex = pIdx;
5153       /* TUNING: Cost of a unique index lookup is 15 */
5154       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
5155       break;
5156     }
5157   }
5158   if( pLoop->wsFlags ){
5159     pLoop->nOut = (LogEst)1;
5160     pWInfo->a[0].pWLoop = pLoop;
5161     assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
5162     pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
5163     pWInfo->a[0].iTabCur = iCur;
5164     pWInfo->nRowOut = 1;
5165     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
5166     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
5167       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
5168     }
5169     if( scan.iEquiv>1 ) pLoop->wsFlags |= WHERE_TRANSCONS;
5170 #ifdef SQLITE_DEBUG
5171     pLoop->cId = '0';
5172 #endif
5173 #ifdef WHERETRACE_ENABLED
5174     if( sqlite3WhereTrace ){
5175       sqlite3DebugPrintf("whereShortCut() used to compute solution\n");
5176     }
5177 #endif
5178     return 1;
5179   }
5180   return 0;
5181 }
5182 
5183 /*
5184 ** Helper function for exprIsDeterministic().
5185 */
5186 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
5187   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
5188     pWalker->eCode = 0;
5189     return WRC_Abort;
5190   }
5191   return WRC_Continue;
5192 }
5193 
5194 /*
5195 ** Return true if the expression contains no non-deterministic SQL
5196 ** functions. Do not consider non-deterministic SQL functions that are
5197 ** part of sub-select statements.
5198 */
5199 static int exprIsDeterministic(Expr *p){
5200   Walker w;
5201   memset(&w, 0, sizeof(w));
5202   w.eCode = 1;
5203   w.xExprCallback = exprNodeIsDeterministic;
5204   w.xSelectCallback = sqlite3SelectWalkFail;
5205   sqlite3WalkExpr(&w, p);
5206   return w.eCode;
5207 }
5208 
5209 
5210 #ifdef WHERETRACE_ENABLED
5211 /*
5212 ** Display all WhereLoops in pWInfo
5213 */
5214 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){
5215   if( sqlite3WhereTrace ){    /* Display all of the WhereLoop objects */
5216     WhereLoop *p;
5217     int i;
5218     static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
5219                                            "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
5220     for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
5221       p->cId = zLabel[i%(sizeof(zLabel)-1)];
5222       sqlite3WhereLoopPrint(p, pWC);
5223     }
5224   }
5225 }
5226 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C)
5227 #else
5228 # define WHERETRACE_ALL_LOOPS(W,C)
5229 #endif
5230 
5231 /* Attempt to omit tables from a join that do not affect the result.
5232 ** For a table to not affect the result, the following must be true:
5233 **
5234 **   1) The query must not be an aggregate.
5235 **   2) The table must be the RHS of a LEFT JOIN.
5236 **   3) Either the query must be DISTINCT, or else the ON or USING clause
5237 **      must contain a constraint that limits the scan of the table to
5238 **      at most a single row.
5239 **   4) The table must not be referenced by any part of the query apart
5240 **      from its own USING or ON clause.
5241 **
5242 ** For example, given:
5243 **
5244 **     CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
5245 **     CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
5246 **     CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
5247 **
5248 ** then table t2 can be omitted from the following:
5249 **
5250 **     SELECT v1, v3 FROM t1
5251 **       LEFT JOIN t2 ON (t1.ipk=t2.ipk)
5252 **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5253 **
5254 ** or from:
5255 **
5256 **     SELECT DISTINCT v1, v3 FROM t1
5257 **       LEFT JOIN t2
5258 **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5259 */
5260 static SQLITE_NOINLINE Bitmask whereOmitNoopJoin(
5261   WhereInfo *pWInfo,
5262   Bitmask notReady
5263 ){
5264   int i;
5265   Bitmask tabUsed;
5266 
5267   /* Preconditions checked by the caller */
5268   assert( pWInfo->nLevel>=2 );
5269   assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_OmitNoopJoin) );
5270 
5271   /* These two preconditions checked by the caller combine to guarantee
5272   ** condition (1) of the header comment */
5273   assert( pWInfo->pResultSet!=0 );
5274   assert( 0==(pWInfo->wctrlFlags & WHERE_AGG_DISTINCT) );
5275 
5276   tabUsed = sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pResultSet);
5277   if( pWInfo->pOrderBy ){
5278     tabUsed |= sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pOrderBy);
5279   }
5280   for(i=pWInfo->nLevel-1; i>=1; i--){
5281     WhereTerm *pTerm, *pEnd;
5282     SrcItem *pItem;
5283     WhereLoop *pLoop;
5284     pLoop = pWInfo->a[i].pWLoop;
5285     pItem = &pWInfo->pTabList->a[pLoop->iTab];
5286     if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ) continue;
5287     if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)==0
5288      && (pLoop->wsFlags & WHERE_ONEROW)==0
5289     ){
5290       continue;
5291     }
5292     if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
5293     pEnd = pWInfo->sWC.a + pWInfo->sWC.nTerm;
5294     for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){
5295       if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5296         if( !ExprHasProperty(pTerm->pExpr, EP_OuterON)
5297          || pTerm->pExpr->w.iJoin!=pItem->iCursor
5298         ){
5299           break;
5300         }
5301       }
5302     }
5303     if( pTerm<pEnd ) continue;
5304     WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
5305     notReady &= ~pLoop->maskSelf;
5306     for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){
5307       if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5308         pTerm->wtFlags |= TERM_CODED;
5309       }
5310     }
5311     if( i!=pWInfo->nLevel-1 ){
5312       int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
5313       memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
5314     }
5315     pWInfo->nLevel--;
5316     assert( pWInfo->nLevel>0 );
5317   }
5318   return notReady;
5319 }
5320 
5321 /*
5322 ** Check to see if there are any SEARCH loops that might benefit from
5323 ** using a Bloom filter.  Consider a Bloom filter if:
5324 **
5325 **   (1)  The SEARCH happens more than N times where N is the number
5326 **        of rows in the table that is being considered for the Bloom
5327 **        filter.
5328 **   (2)  Some searches are expected to find zero rows.  (This is determined
5329 **        by the WHERE_SELFCULL flag on the term.)
5330 **   (3)  Bloom-filter processing is not disabled.  (Checked by the
5331 **        caller.)
5332 **   (4)  The size of the table being searched is known by ANALYZE.
5333 **
5334 ** This block of code merely checks to see if a Bloom filter would be
5335 ** appropriate, and if so sets the WHERE_BLOOMFILTER flag on the
5336 ** WhereLoop.  The implementation of the Bloom filter comes further
5337 ** down where the code for each WhereLoop is generated.
5338 */
5339 static SQLITE_NOINLINE void whereCheckIfBloomFilterIsUseful(
5340   const WhereInfo *pWInfo
5341 ){
5342   int i;
5343   LogEst nSearch;
5344 
5345   assert( pWInfo->nLevel>=2 );
5346   assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_BloomFilter) );
5347   nSearch = pWInfo->a[0].pWLoop->nOut;
5348   for(i=1; i<pWInfo->nLevel; i++){
5349     WhereLoop *pLoop = pWInfo->a[i].pWLoop;
5350     const unsigned int reqFlags = (WHERE_SELFCULL|WHERE_COLUMN_EQ);
5351     if( (pLoop->wsFlags & reqFlags)==reqFlags
5352      /* vvvvvv--- Always the case if WHERE_COLUMN_EQ is defined */
5353      && ALWAYS((pLoop->wsFlags & (WHERE_IPK|WHERE_INDEXED))!=0)
5354     ){
5355       SrcItem *pItem = &pWInfo->pTabList->a[pLoop->iTab];
5356       Table *pTab = pItem->pTab;
5357       pTab->tabFlags |= TF_StatsUsed;
5358       if( nSearch > pTab->nRowLogEst
5359        && (pTab->tabFlags & TF_HasStat1)!=0
5360       ){
5361         testcase( pItem->fg.jointype & JT_LEFT );
5362         pLoop->wsFlags |= WHERE_BLOOMFILTER;
5363         pLoop->wsFlags &= ~WHERE_IDX_ONLY;
5364         WHERETRACE(0xffff, (
5365            "-> use Bloom-filter on loop %c because there are ~%.1e "
5366            "lookups into %s which has only ~%.1e rows\n",
5367            pLoop->cId, (double)sqlite3LogEstToInt(nSearch), pTab->zName,
5368            (double)sqlite3LogEstToInt(pTab->nRowLogEst)));
5369       }
5370     }
5371     nSearch += pLoop->nOut;
5372   }
5373 }
5374 
5375 /*
5376 ** Generate the beginning of the loop used for WHERE clause processing.
5377 ** The return value is a pointer to an opaque structure that contains
5378 ** information needed to terminate the loop.  Later, the calling routine
5379 ** should invoke sqlite3WhereEnd() with the return value of this function
5380 ** in order to complete the WHERE clause processing.
5381 **
5382 ** If an error occurs, this routine returns NULL.
5383 **
5384 ** The basic idea is to do a nested loop, one loop for each table in
5385 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
5386 ** same as a SELECT with only a single table in the FROM clause.)  For
5387 ** example, if the SQL is this:
5388 **
5389 **       SELECT * FROM t1, t2, t3 WHERE ...;
5390 **
5391 ** Then the code generated is conceptually like the following:
5392 **
5393 **      foreach row1 in t1 do       \    Code generated
5394 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
5395 **          foreach row3 in t3 do   /
5396 **            ...
5397 **          end                     \    Code generated
5398 **        end                        |-- by sqlite3WhereEnd()
5399 **      end                         /
5400 **
5401 ** Note that the loops might not be nested in the order in which they
5402 ** appear in the FROM clause if a different order is better able to make
5403 ** use of indices.  Note also that when the IN operator appears in
5404 ** the WHERE clause, it might result in additional nested loops for
5405 ** scanning through all values on the right-hand side of the IN.
5406 **
5407 ** There are Btree cursors associated with each table.  t1 uses cursor
5408 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
5409 ** And so forth.  This routine generates code to open those VDBE cursors
5410 ** and sqlite3WhereEnd() generates the code to close them.
5411 **
5412 ** The code that sqlite3WhereBegin() generates leaves the cursors named
5413 ** in pTabList pointing at their appropriate entries.  The [...] code
5414 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
5415 ** data from the various tables of the loop.
5416 **
5417 ** If the WHERE clause is empty, the foreach loops must each scan their
5418 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
5419 ** the tables have indices and there are terms in the WHERE clause that
5420 ** refer to those indices, a complete table scan can be avoided and the
5421 ** code will run much faster.  Most of the work of this routine is checking
5422 ** to see if there are indices that can be used to speed up the loop.
5423 **
5424 ** Terms of the WHERE clause are also used to limit which rows actually
5425 ** make it to the "..." in the middle of the loop.  After each "foreach",
5426 ** terms of the WHERE clause that use only terms in that loop and outer
5427 ** loops are evaluated and if false a jump is made around all subsequent
5428 ** inner loops (or around the "..." if the test occurs within the inner-
5429 ** most loop)
5430 **
5431 ** OUTER JOINS
5432 **
5433 ** An outer join of tables t1 and t2 is conceptally coded as follows:
5434 **
5435 **    foreach row1 in t1 do
5436 **      flag = 0
5437 **      foreach row2 in t2 do
5438 **        start:
5439 **          ...
5440 **          flag = 1
5441 **      end
5442 **      if flag==0 then
5443 **        move the row2 cursor to a null row
5444 **        goto start
5445 **      fi
5446 **    end
5447 **
5448 ** ORDER BY CLAUSE PROCESSING
5449 **
5450 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
5451 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
5452 ** if there is one.  If there is no ORDER BY clause or if this routine
5453 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
5454 **
5455 ** The iIdxCur parameter is the cursor number of an index.  If
5456 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
5457 ** to use for OR clause processing.  The WHERE clause should use this
5458 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
5459 ** the first cursor in an array of cursors for all indices.  iIdxCur should
5460 ** be used to compute the appropriate cursor depending on which index is
5461 ** used.
5462 */
5463 WhereInfo *sqlite3WhereBegin(
5464   Parse *pParse,          /* The parser context */
5465   SrcList *pTabList,      /* FROM clause: A list of all tables to be scanned */
5466   Expr *pWhere,           /* The WHERE clause */
5467   ExprList *pOrderBy,     /* An ORDER BY (or GROUP BY) clause, or NULL */
5468   ExprList *pResultSet,   /* Query result set.  Req'd for DISTINCT */
5469   Select *pLimit,         /* Use this LIMIT/OFFSET clause, if any */
5470   u16 wctrlFlags,         /* The WHERE_* flags defined in sqliteInt.h */
5471   int iAuxArg             /* If WHERE_OR_SUBCLAUSE is set, index cursor number
5472                           ** If WHERE_USE_LIMIT, then the limit amount */
5473 ){
5474   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
5475   int nTabList;              /* Number of elements in pTabList */
5476   WhereInfo *pWInfo;         /* Will become the return value of this function */
5477   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
5478   Bitmask notReady;          /* Cursors that are not yet positioned */
5479   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
5480   WhereMaskSet *pMaskSet;    /* The expression mask set */
5481   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
5482   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
5483   int ii;                    /* Loop counter */
5484   sqlite3 *db;               /* Database connection */
5485   int rc;                    /* Return code */
5486   u8 bFordelete = 0;         /* OPFLAG_FORDELETE or zero, as appropriate */
5487 
5488   assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
5489         (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
5490      && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5491   ));
5492 
5493   /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
5494   assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5495             || (wctrlFlags & WHERE_USE_LIMIT)==0 );
5496 
5497   /* Variable initialization */
5498   db = pParse->db;
5499   memset(&sWLB, 0, sizeof(sWLB));
5500 
5501   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
5502   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
5503   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
5504 
5505   /* The number of tables in the FROM clause is limited by the number of
5506   ** bits in a Bitmask
5507   */
5508   testcase( pTabList->nSrc==BMS );
5509   if( pTabList->nSrc>BMS ){
5510     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
5511     return 0;
5512   }
5513 
5514   /* This function normally generates a nested loop for all tables in
5515   ** pTabList.  But if the WHERE_OR_SUBCLAUSE flag is set, then we should
5516   ** only generate code for the first table in pTabList and assume that
5517   ** any cursors associated with subsequent tables are uninitialized.
5518   */
5519   nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
5520 
5521   /* Allocate and initialize the WhereInfo structure that will become the
5522   ** return value. A single allocation is used to store the WhereInfo
5523   ** struct, the contents of WhereInfo.a[], the WhereClause structure
5524   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
5525   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
5526   ** some architectures. Hence the ROUND8() below.
5527   */
5528   nByteWInfo = ROUND8P(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
5529   pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
5530   if( db->mallocFailed ){
5531     sqlite3DbFree(db, pWInfo);
5532     pWInfo = 0;
5533     goto whereBeginError;
5534   }
5535   pWInfo->pParse = pParse;
5536   pWInfo->pTabList = pTabList;
5537   pWInfo->pOrderBy = pOrderBy;
5538   pWInfo->pWhere = pWhere;
5539   pWInfo->pResultSet = pResultSet;
5540   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
5541   pWInfo->nLevel = nTabList;
5542   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse);
5543   pWInfo->wctrlFlags = wctrlFlags;
5544   pWInfo->iLimit = iAuxArg;
5545   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
5546 #ifndef SQLITE_OMIT_VIRTUALTABLE
5547   pWInfo->pLimit = pLimit;
5548 #endif
5549   memset(&pWInfo->nOBSat, 0,
5550          offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
5551   memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
5552   assert( pWInfo->eOnePass==ONEPASS_OFF );  /* ONEPASS defaults to OFF */
5553   pMaskSet = &pWInfo->sMaskSet;
5554   pMaskSet->n = 0;
5555   pMaskSet->ix[0] = -99; /* Initialize ix[0] to a value that can never be
5556                          ** a valid cursor number, to avoid an initial
5557                          ** test for pMaskSet->n==0 in sqlite3WhereGetMask() */
5558   sWLB.pWInfo = pWInfo;
5559   sWLB.pWC = &pWInfo->sWC;
5560   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
5561   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
5562   whereLoopInit(sWLB.pNew);
5563 #ifdef SQLITE_DEBUG
5564   sWLB.pNew->cId = '*';
5565 #endif
5566 
5567   /* Split the WHERE clause into separate subexpressions where each
5568   ** subexpression is separated by an AND operator.
5569   */
5570   sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
5571   sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
5572 
5573   /* Special case: No FROM clause
5574   */
5575   if( nTabList==0 ){
5576     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
5577     if( (wctrlFlags & WHERE_WANT_DISTINCT)!=0
5578      && OptimizationEnabled(db, SQLITE_DistinctOpt)
5579     ){
5580       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
5581     }
5582     ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
5583   }else{
5584     /* Assign a bit from the bitmask to every term in the FROM clause.
5585     **
5586     ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
5587     **
5588     ** The rule of the previous sentence ensures thta if X is the bitmask for
5589     ** a table T, then X-1 is the bitmask for all other tables to the left of T.
5590     ** Knowing the bitmask for all tables to the left of a left join is
5591     ** important.  Ticket #3015.
5592     **
5593     ** Note that bitmasks are created for all pTabList->nSrc tables in
5594     ** pTabList, not just the first nTabList tables.  nTabList is normally
5595     ** equal to pTabList->nSrc but might be shortened to 1 if the
5596     ** WHERE_OR_SUBCLAUSE flag is set.
5597     */
5598     ii = 0;
5599     do{
5600       createMask(pMaskSet, pTabList->a[ii].iCursor);
5601       sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
5602     }while( (++ii)<pTabList->nSrc );
5603   #ifdef SQLITE_DEBUG
5604     {
5605       Bitmask mx = 0;
5606       for(ii=0; ii<pTabList->nSrc; ii++){
5607         Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
5608         assert( m>=mx );
5609         mx = m;
5610       }
5611     }
5612   #endif
5613   }
5614 
5615   /* Analyze all of the subexpressions. */
5616   sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
5617   sqlite3WhereAddLimit(&pWInfo->sWC, pLimit);
5618   if( pParse->nErr ) goto whereBeginError;
5619 
5620   /* Special case: WHERE terms that do not refer to any tables in the join
5621   ** (constant expressions). Evaluate each such term, and jump over all the
5622   ** generated code if the result is not true.
5623   **
5624   ** Do not do this if the expression contains non-deterministic functions
5625   ** that are not within a sub-select. This is not strictly required, but
5626   ** preserves SQLite's legacy behaviour in the following two cases:
5627   **
5628   **   FROM ... WHERE random()>0;           -- eval random() once per row
5629   **   FROM ... WHERE (SELECT random())>0;  -- eval random() once overall
5630   */
5631   for(ii=0; ii<sWLB.pWC->nBase; ii++){
5632     WhereTerm *pT = &sWLB.pWC->a[ii];
5633     if( pT->wtFlags & TERM_VIRTUAL ) continue;
5634     if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
5635       sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
5636       pT->wtFlags |= TERM_CODED;
5637     }
5638   }
5639 
5640   if( wctrlFlags & WHERE_WANT_DISTINCT ){
5641     if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
5642       /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
5643       ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
5644       wctrlFlags &= ~WHERE_WANT_DISTINCT;
5645       pWInfo->wctrlFlags &= ~WHERE_WANT_DISTINCT;
5646     }else if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
5647       /* The DISTINCT marking is pointless.  Ignore it. */
5648       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
5649     }else if( pOrderBy==0 ){
5650       /* Try to ORDER BY the result set to make distinct processing easier */
5651       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
5652       pWInfo->pOrderBy = pResultSet;
5653     }
5654   }
5655 
5656   /* Construct the WhereLoop objects */
5657 #if defined(WHERETRACE_ENABLED)
5658   if( sqlite3WhereTrace & 0xffff ){
5659     sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
5660     if( wctrlFlags & WHERE_USE_LIMIT ){
5661       sqlite3DebugPrintf(", limit: %d", iAuxArg);
5662     }
5663     sqlite3DebugPrintf(")\n");
5664     if( sqlite3WhereTrace & 0x100 ){
5665       Select sSelect;
5666       memset(&sSelect, 0, sizeof(sSelect));
5667       sSelect.selFlags = SF_WhereBegin;
5668       sSelect.pSrc = pTabList;
5669       sSelect.pWhere = pWhere;
5670       sSelect.pOrderBy = pOrderBy;
5671       sSelect.pEList = pResultSet;
5672       sqlite3TreeViewSelect(0, &sSelect, 0);
5673     }
5674   }
5675   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5676     sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
5677     sqlite3WhereClausePrint(sWLB.pWC);
5678   }
5679 #endif
5680 
5681   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
5682     rc = whereLoopAddAll(&sWLB);
5683     if( rc ) goto whereBeginError;
5684 
5685 #ifdef SQLITE_ENABLE_STAT4
5686     /* If one or more WhereTerm.truthProb values were used in estimating
5687     ** loop parameters, but then those truthProb values were subsequently
5688     ** changed based on STAT4 information while computing subsequent loops,
5689     ** then we need to rerun the whole loop building process so that all
5690     ** loops will be built using the revised truthProb values. */
5691     if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){
5692       WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
5693       WHERETRACE(0xffff,
5694            ("**** Redo all loop computations due to"
5695             " TERM_HIGHTRUTH changes ****\n"));
5696       while( pWInfo->pLoops ){
5697         WhereLoop *p = pWInfo->pLoops;
5698         pWInfo->pLoops = p->pNextLoop;
5699         whereLoopDelete(db, p);
5700       }
5701       rc = whereLoopAddAll(&sWLB);
5702       if( rc ) goto whereBeginError;
5703     }
5704 #endif
5705     WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
5706 
5707     wherePathSolver(pWInfo, 0);
5708     if( db->mallocFailed ) goto whereBeginError;
5709     if( pWInfo->pOrderBy ){
5710        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
5711        if( db->mallocFailed ) goto whereBeginError;
5712     }
5713   }
5714   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
5715      pWInfo->revMask = ALLBITS;
5716   }
5717   if( pParse->nErr ){
5718     goto whereBeginError;
5719   }
5720   assert( db->mallocFailed==0 );
5721 #ifdef WHERETRACE_ENABLED
5722   if( sqlite3WhereTrace ){
5723     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
5724     if( pWInfo->nOBSat>0 ){
5725       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
5726     }
5727     switch( pWInfo->eDistinct ){
5728       case WHERE_DISTINCT_UNIQUE: {
5729         sqlite3DebugPrintf("  DISTINCT=unique");
5730         break;
5731       }
5732       case WHERE_DISTINCT_ORDERED: {
5733         sqlite3DebugPrintf("  DISTINCT=ordered");
5734         break;
5735       }
5736       case WHERE_DISTINCT_UNORDERED: {
5737         sqlite3DebugPrintf("  DISTINCT=unordered");
5738         break;
5739       }
5740     }
5741     sqlite3DebugPrintf("\n");
5742     for(ii=0; ii<pWInfo->nLevel; ii++){
5743       sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
5744     }
5745   }
5746 #endif
5747 
5748   /* Attempt to omit tables from a join that do not affect the result.
5749   ** See the comment on whereOmitNoopJoin() for further information.
5750   **
5751   ** This query optimization is factored out into a separate "no-inline"
5752   ** procedure to keep the sqlite3WhereBegin() procedure from becoming
5753   ** too large.  If sqlite3WhereBegin() becomes too large, that prevents
5754   ** some C-compiler optimizers from in-lining the
5755   ** sqlite3WhereCodeOneLoopStart() procedure, and it is important to
5756   ** in-line sqlite3WhereCodeOneLoopStart() for performance reasons.
5757   */
5758   notReady = ~(Bitmask)0;
5759   if( pWInfo->nLevel>=2
5760    && pResultSet!=0                         /* these two combine to guarantee */
5761    && 0==(wctrlFlags & WHERE_AGG_DISTINCT)  /* condition (1) above */
5762    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
5763   ){
5764     notReady = whereOmitNoopJoin(pWInfo, notReady);
5765     nTabList = pWInfo->nLevel;
5766     assert( nTabList>0 );
5767   }
5768 
5769   /* Check to see if there are any SEARCH loops that might benefit from
5770   ** using a Bloom filter.
5771   */
5772   if( pWInfo->nLevel>=2
5773    && OptimizationEnabled(db, SQLITE_BloomFilter)
5774   ){
5775     whereCheckIfBloomFilterIsUseful(pWInfo);
5776   }
5777 
5778 #if defined(WHERETRACE_ENABLED)
5779   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5780     sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
5781     sqlite3WhereClausePrint(sWLB.pWC);
5782   }
5783   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
5784 #endif
5785   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
5786 
5787   /* If the caller is an UPDATE or DELETE statement that is requesting
5788   ** to use a one-pass algorithm, determine if this is appropriate.
5789   **
5790   ** A one-pass approach can be used if the caller has requested one
5791   ** and either (a) the scan visits at most one row or (b) each
5792   ** of the following are true:
5793   **
5794   **   * the caller has indicated that a one-pass approach can be used
5795   **     with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
5796   **   * the table is not a virtual table, and
5797   **   * either the scan does not use the OR optimization or the caller
5798   **     is a DELETE operation (WHERE_DUPLICATES_OK is only specified
5799   **     for DELETE).
5800   **
5801   ** The last qualification is because an UPDATE statement uses
5802   ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
5803   ** use a one-pass approach, and this is not set accurately for scans
5804   ** that use the OR optimization.
5805   */
5806   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
5807   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
5808     int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
5809     int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
5810     assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) );
5811     if( bOnerow || (
5812         0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
5813      && !IsVirtual(pTabList->a[0].pTab)
5814      && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
5815     )){
5816       pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
5817       if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
5818         if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
5819           bFordelete = OPFLAG_FORDELETE;
5820         }
5821         pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
5822       }
5823     }
5824   }
5825 
5826   /* Open all tables in the pTabList and any indices selected for
5827   ** searching those tables.
5828   */
5829   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
5830     Table *pTab;     /* Table to open */
5831     int iDb;         /* Index of database containing table/index */
5832     SrcItem *pTabItem;
5833 
5834     pTabItem = &pTabList->a[pLevel->iFrom];
5835     pTab = pTabItem->pTab;
5836     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5837     pLoop = pLevel->pWLoop;
5838     if( (pTab->tabFlags & TF_Ephemeral)!=0 || IsView(pTab) ){
5839       /* Do nothing */
5840     }else
5841 #ifndef SQLITE_OMIT_VIRTUALTABLE
5842     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
5843       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
5844       int iCur = pTabItem->iCursor;
5845       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
5846     }else if( IsVirtual(pTab) ){
5847       /* noop */
5848     }else
5849 #endif
5850     if( ((pLoop->wsFlags & WHERE_IDX_ONLY)==0
5851          && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0)
5852      || (pTabItem->fg.jointype & (JT_LTORJ|JT_RIGHT))!=0
5853     ){
5854       int op = OP_OpenRead;
5855       if( pWInfo->eOnePass!=ONEPASS_OFF ){
5856         op = OP_OpenWrite;
5857         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
5858       };
5859       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
5860       assert( pTabItem->iCursor==pLevel->iTabCur );
5861       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
5862       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
5863       if( pWInfo->eOnePass==ONEPASS_OFF
5864        && pTab->nCol<BMS
5865        && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0
5866        && (pLoop->wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))==0
5867       ){
5868         /* If we know that only a prefix of the record will be used,
5869         ** it is advantageous to reduce the "column count" field in
5870         ** the P4 operand of the OP_OpenRead/Write opcode. */
5871         Bitmask b = pTabItem->colUsed;
5872         int n = 0;
5873         for(; b; b=b>>1, n++){}
5874         sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
5875         assert( n<=pTab->nCol );
5876       }
5877 #ifdef SQLITE_ENABLE_CURSOR_HINTS
5878       if( pLoop->u.btree.pIndex!=0 ){
5879         sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
5880       }else
5881 #endif
5882       {
5883         sqlite3VdbeChangeP5(v, bFordelete);
5884       }
5885 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5886       sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
5887                             (const u8*)&pTabItem->colUsed, P4_INT64);
5888 #endif
5889     }else{
5890       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5891     }
5892     if( pLoop->wsFlags & WHERE_INDEXED ){
5893       Index *pIx = pLoop->u.btree.pIndex;
5894       int iIndexCur;
5895       int op = OP_OpenRead;
5896       /* iAuxArg is always set to a positive value if ONEPASS is possible */
5897       assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
5898       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
5899        && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
5900       ){
5901         /* This is one term of an OR-optimization using the PRIMARY KEY of a
5902         ** WITHOUT ROWID table.  No need for a separate index */
5903         iIndexCur = pLevel->iTabCur;
5904         op = 0;
5905       }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
5906         Index *pJ = pTabItem->pTab->pIndex;
5907         iIndexCur = iAuxArg;
5908         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
5909         while( ALWAYS(pJ) && pJ!=pIx ){
5910           iIndexCur++;
5911           pJ = pJ->pNext;
5912         }
5913         op = OP_OpenWrite;
5914         pWInfo->aiCurOnePass[1] = iIndexCur;
5915       }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
5916         iIndexCur = iAuxArg;
5917         op = OP_ReopenIdx;
5918       }else{
5919         iIndexCur = pParse->nTab++;
5920       }
5921       pLevel->iIdxCur = iIndexCur;
5922       assert( pIx!=0 );
5923       assert( pIx->pSchema==pTab->pSchema );
5924       assert( iIndexCur>=0 );
5925       if( op ){
5926         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
5927         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
5928         if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
5929          && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
5930          && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0
5931          && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
5932          && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
5933          && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
5934         ){
5935           sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ);
5936         }
5937         VdbeComment((v, "%s", pIx->zName));
5938 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5939         {
5940           u64 colUsed = 0;
5941           int ii, jj;
5942           for(ii=0; ii<pIx->nColumn; ii++){
5943             jj = pIx->aiColumn[ii];
5944             if( jj<0 ) continue;
5945             if( jj>63 ) jj = 63;
5946             if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
5947             colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
5948           }
5949           sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
5950                                 (u8*)&colUsed, P4_INT64);
5951         }
5952 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
5953       }
5954     }
5955     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
5956     if( (pTabItem->fg.jointype & JT_RIGHT)!=0
5957      && (pLevel->pRJ = sqlite3WhereMalloc(pWInfo, sizeof(WhereRightJoin)))!=0
5958     ){
5959       WhereRightJoin *pRJ = pLevel->pRJ;
5960       pRJ->iMatch = pParse->nTab++;
5961       pRJ->regBloom = ++pParse->nMem;
5962       sqlite3VdbeAddOp2(v, OP_Blob, 65536, pRJ->regBloom);
5963       pRJ->regReturn = ++pParse->nMem;
5964       sqlite3VdbeAddOp2(v, OP_Null, 0, pRJ->regReturn);
5965       assert( pTab==pTabItem->pTab );
5966       if( HasRowid(pTab) ){
5967         KeyInfo *pInfo;
5968         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, 1);
5969         pInfo = sqlite3KeyInfoAlloc(pParse->db, 1, 0);
5970         if( pInfo ){
5971           pInfo->aColl[0] = 0;
5972           pInfo->aSortFlags[0] = 0;
5973           sqlite3VdbeAppendP4(v, pInfo, P4_KEYINFO);
5974         }
5975       }else{
5976         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
5977         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, pPk->nKeyCol);
5978         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
5979       }
5980       pLoop->wsFlags &= ~WHERE_IDX_ONLY;
5981       /* The nature of RIGHT JOIN processing is such that it messes up
5982       ** the output order.  So omit any ORDER BY/GROUP BY elimination
5983       ** optimizations.  We need to do an actual sort for RIGHT JOIN. */
5984       pWInfo->nOBSat = 0;
5985       pWInfo->eDistinct = WHERE_DISTINCT_UNORDERED;
5986     }
5987   }
5988   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
5989   if( db->mallocFailed ) goto whereBeginError;
5990 
5991   /* Generate the code to do the search.  Each iteration of the for
5992   ** loop below generates code for a single nested loop of the VM
5993   ** program.
5994   */
5995   for(ii=0; ii<nTabList; ii++){
5996     int addrExplain;
5997     int wsFlags;
5998     SrcItem *pSrc;
5999     if( pParse->nErr ) goto whereBeginError;
6000     pLevel = &pWInfo->a[ii];
6001     wsFlags = pLevel->pWLoop->wsFlags;
6002     pSrc = &pTabList->a[pLevel->iFrom];
6003     if( pSrc->fg.isMaterialized ){
6004       if( pSrc->fg.isCorrelated ){
6005         sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub);
6006       }else{
6007         int iOnce = sqlite3VdbeAddOp0(v, OP_Once);  VdbeCoverage(v);
6008         sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub);
6009         sqlite3VdbeJumpHere(v, iOnce);
6010       }
6011     }
6012     if( (wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))!=0 ){
6013       if( (wsFlags & WHERE_AUTO_INDEX)!=0 ){
6014 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
6015         constructAutomaticIndex(pParse, &pWInfo->sWC,
6016                   &pTabList->a[pLevel->iFrom], notReady, pLevel);
6017 #endif
6018       }else{
6019         sqlite3ConstructBloomFilter(pWInfo, ii, pLevel, notReady);
6020       }
6021       if( db->mallocFailed ) goto whereBeginError;
6022     }
6023     addrExplain = sqlite3WhereExplainOneScan(
6024         pParse, pTabList, pLevel, wctrlFlags
6025     );
6026     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
6027     notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady);
6028     pWInfo->iContinue = pLevel->addrCont;
6029     if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
6030       sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
6031     }
6032   }
6033 
6034   /* Done. */
6035   VdbeModuleComment((v, "Begin WHERE-core"));
6036   pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v);
6037   return pWInfo;
6038 
6039   /* Jump here if malloc fails */
6040 whereBeginError:
6041   if( pWInfo ){
6042     testcase( pWInfo->pExprMods!=0 );
6043     whereUndoExprMods(pWInfo);
6044     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
6045     whereInfoFree(db, pWInfo);
6046   }
6047   return 0;
6048 }
6049 
6050 /*
6051 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
6052 ** index rather than the main table.  In SQLITE_DEBUG mode, we want
6053 ** to trace those changes if PRAGMA vdbe_addoptrace=on.  This routine
6054 ** does that.
6055 */
6056 #ifndef SQLITE_DEBUG
6057 # define OpcodeRewriteTrace(D,K,P) /* no-op */
6058 #else
6059 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
6060   static void sqlite3WhereOpcodeRewriteTrace(
6061     sqlite3 *db,
6062     int pc,
6063     VdbeOp *pOp
6064   ){
6065     if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
6066     sqlite3VdbePrintOp(0, pc, pOp);
6067   }
6068 #endif
6069 
6070 #ifdef SQLITE_DEBUG
6071 /*
6072 ** Return true if cursor iCur is opened by instruction k of the
6073 ** bytecode.  Used inside of assert() only.
6074 */
6075 static int cursorIsOpen(Vdbe *v, int iCur, int k){
6076   while( k>=0 ){
6077     VdbeOp *pOp = sqlite3VdbeGetOp(v,k--);
6078     if( pOp->p1!=iCur ) continue;
6079     if( pOp->opcode==OP_Close ) return 0;
6080     if( pOp->opcode==OP_OpenRead ) return 1;
6081     if( pOp->opcode==OP_OpenWrite ) return 1;
6082     if( pOp->opcode==OP_OpenDup ) return 1;
6083     if( pOp->opcode==OP_OpenAutoindex ) return 1;
6084     if( pOp->opcode==OP_OpenEphemeral ) return 1;
6085   }
6086   return 0;
6087 }
6088 #endif /* SQLITE_DEBUG */
6089 
6090 /*
6091 ** Generate the end of the WHERE loop.  See comments on
6092 ** sqlite3WhereBegin() for additional information.
6093 */
6094 void sqlite3WhereEnd(WhereInfo *pWInfo){
6095   Parse *pParse = pWInfo->pParse;
6096   Vdbe *v = pParse->pVdbe;
6097   int i;
6098   WhereLevel *pLevel;
6099   WhereLoop *pLoop;
6100   SrcList *pTabList = pWInfo->pTabList;
6101   sqlite3 *db = pParse->db;
6102   int iEnd = sqlite3VdbeCurrentAddr(v);
6103   int nRJ = 0;
6104 
6105   /* Generate loop termination code.
6106   */
6107   VdbeModuleComment((v, "End WHERE-core"));
6108   for(i=pWInfo->nLevel-1; i>=0; i--){
6109     int addr;
6110     pLevel = &pWInfo->a[i];
6111     if( pLevel->pRJ ){
6112       /* Terminate the subroutine that forms the interior of the loop of
6113       ** the RIGHT JOIN table */
6114       WhereRightJoin *pRJ = pLevel->pRJ;
6115       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
6116       pLevel->addrCont = 0;
6117       pRJ->endSubrtn = sqlite3VdbeCurrentAddr(v);
6118       sqlite3VdbeAddOp3(v, OP_Return, pRJ->regReturn, pRJ->addrSubrtn, 1);
6119       VdbeCoverage(v);
6120       nRJ++;
6121     }
6122     pLoop = pLevel->pWLoop;
6123     if( pLevel->op!=OP_Noop ){
6124 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
6125       int addrSeek = 0;
6126       Index *pIdx;
6127       int n;
6128       if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
6129        && i==pWInfo->nLevel-1  /* Ticket [ef9318757b152e3] 2017-10-21 */
6130        && (pLoop->wsFlags & WHERE_INDEXED)!=0
6131        && (pIdx = pLoop->u.btree.pIndex)->hasStat1
6132        && (n = pLoop->u.btree.nDistinctCol)>0
6133        && pIdx->aiRowLogEst[n]>=36
6134       ){
6135         int r1 = pParse->nMem+1;
6136         int j, op;
6137         for(j=0; j<n; j++){
6138           sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
6139         }
6140         pParse->nMem += n+1;
6141         op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
6142         addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
6143         VdbeCoverageIf(v, op==OP_SeekLT);
6144         VdbeCoverageIf(v, op==OP_SeekGT);
6145         sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
6146       }
6147 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
6148       /* The common case: Advance to the next row */
6149       if( pLevel->addrCont ) sqlite3VdbeResolveLabel(v, pLevel->addrCont);
6150       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
6151       sqlite3VdbeChangeP5(v, pLevel->p5);
6152       VdbeCoverage(v);
6153       VdbeCoverageIf(v, pLevel->op==OP_Next);
6154       VdbeCoverageIf(v, pLevel->op==OP_Prev);
6155       VdbeCoverageIf(v, pLevel->op==OP_VNext);
6156       if( pLevel->regBignull ){
6157         sqlite3VdbeResolveLabel(v, pLevel->addrBignull);
6158         sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1);
6159         VdbeCoverage(v);
6160       }
6161 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
6162       if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
6163 #endif
6164     }else if( pLevel->addrCont ){
6165       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
6166     }
6167     if( (pLoop->wsFlags & WHERE_IN_ABLE)!=0 && pLevel->u.in.nIn>0 ){
6168       struct InLoop *pIn;
6169       int j;
6170       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
6171       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
6172         assert( sqlite3VdbeGetOp(v, pIn->addrInTop+1)->opcode==OP_IsNull
6173                  || pParse->db->mallocFailed );
6174         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
6175         if( pIn->eEndLoopOp!=OP_Noop ){
6176           if( pIn->nPrefix ){
6177             int bEarlyOut =
6178                 (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
6179                  && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0;
6180             if( pLevel->iLeftJoin ){
6181               /* For LEFT JOIN queries, cursor pIn->iCur may not have been
6182               ** opened yet. This occurs for WHERE clauses such as
6183               ** "a = ? AND b IN (...)", where the index is on (a, b). If
6184               ** the RHS of the (a=?) is NULL, then the "b IN (...)" may
6185               ** never have been coded, but the body of the loop run to
6186               ** return the null-row. So, if the cursor is not open yet,
6187               ** jump over the OP_Next or OP_Prev instruction about to
6188               ** be coded.  */
6189               sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur,
6190                   sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut);
6191               VdbeCoverage(v);
6192             }
6193             if( bEarlyOut ){
6194               sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
6195                   sqlite3VdbeCurrentAddr(v)+2,
6196                   pIn->iBase, pIn->nPrefix);
6197               VdbeCoverage(v);
6198               /* Retarget the OP_IsNull against the left operand of IN so
6199               ** it jumps past the OP_IfNoHope.  This is because the
6200               ** OP_IsNull also bypasses the OP_Affinity opcode that is
6201               ** required by OP_IfNoHope. */
6202               sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
6203             }
6204           }
6205           sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
6206           VdbeCoverage(v);
6207           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
6208           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
6209         }
6210         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
6211       }
6212     }
6213     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
6214     if( pLevel->pRJ ){
6215       sqlite3VdbeAddOp3(v, OP_Return, pLevel->pRJ->regReturn, 0, 1);
6216       VdbeCoverage(v);
6217     }
6218     if( pLevel->addrSkip ){
6219       sqlite3VdbeGoto(v, pLevel->addrSkip);
6220       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
6221       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
6222       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
6223     }
6224 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
6225     if( pLevel->addrLikeRep ){
6226       sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
6227                         pLevel->addrLikeRep);
6228       VdbeCoverage(v);
6229     }
6230 #endif
6231     if( pLevel->iLeftJoin ){
6232       int ws = pLoop->wsFlags;
6233       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
6234       assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
6235       if( (ws & WHERE_IDX_ONLY)==0 ){
6236         assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
6237         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
6238       }
6239       if( (ws & WHERE_INDEXED)
6240        || ((ws & WHERE_MULTI_OR) && pLevel->u.pCoveringIdx)
6241       ){
6242         if( ws & WHERE_MULTI_OR ){
6243           Index *pIx = pLevel->u.pCoveringIdx;
6244           int iDb = sqlite3SchemaToIndex(db, pIx->pSchema);
6245           sqlite3VdbeAddOp3(v, OP_ReopenIdx, pLevel->iIdxCur, pIx->tnum, iDb);
6246           sqlite3VdbeSetP4KeyInfo(pParse, pIx);
6247         }
6248         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
6249       }
6250       if( pLevel->op==OP_Return ){
6251         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
6252       }else{
6253         sqlite3VdbeGoto(v, pLevel->addrFirst);
6254       }
6255       sqlite3VdbeJumpHere(v, addr);
6256     }
6257     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
6258                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
6259   }
6260 
6261   assert( pWInfo->nLevel<=pTabList->nSrc );
6262   if( pWInfo->pExprMods ) whereUndoExprMods(pWInfo);
6263   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
6264     int k, last;
6265     VdbeOp *pOp, *pLastOp;
6266     Index *pIdx = 0;
6267     SrcItem *pTabItem = &pTabList->a[pLevel->iFrom];
6268     Table *pTab = pTabItem->pTab;
6269     assert( pTab!=0 );
6270     pLoop = pLevel->pWLoop;
6271 
6272     /* Do RIGHT JOIN processing.  Generate code that will output the
6273     ** unmatched rows of the right operand of the RIGHT JOIN with
6274     ** all of the columns of the left operand set to NULL.
6275     */
6276     if( pLevel->pRJ ){
6277       sqlite3WhereRightJoinLoop(pWInfo, i, pLevel);
6278       continue;
6279     }
6280 
6281     /* For a co-routine, change all OP_Column references to the table of
6282     ** the co-routine into OP_Copy of result contained in a register.
6283     ** OP_Rowid becomes OP_Null.
6284     */
6285     if( pTabItem->fg.viaCoroutine ){
6286       testcase( pParse->db->mallocFailed );
6287       translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
6288                             pTabItem->regResult, 0);
6289       continue;
6290     }
6291 
6292     /* If this scan uses an index, make VDBE code substitutions to read data
6293     ** from the index instead of from the table where possible.  In some cases
6294     ** this optimization prevents the table from ever being read, which can
6295     ** yield a significant performance boost.
6296     **
6297     ** Calls to the code generator in between sqlite3WhereBegin and
6298     ** sqlite3WhereEnd will have created code that references the table
6299     ** directly.  This loop scans all that code looking for opcodes
6300     ** that reference the table and converts them into opcodes that
6301     ** reference the index.
6302     */
6303     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
6304       pIdx = pLoop->u.btree.pIndex;
6305     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
6306       pIdx = pLevel->u.pCoveringIdx;
6307     }
6308     if( pIdx
6309      && !db->mallocFailed
6310     ){
6311       if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){
6312         last = iEnd;
6313       }else{
6314         last = pWInfo->iEndWhere;
6315       }
6316       k = pLevel->addrBody + 1;
6317 #ifdef SQLITE_DEBUG
6318       if( db->flags & SQLITE_VdbeAddopTrace ){
6319         printf("TRANSLATE opcodes in range %d..%d\n", k, last-1);
6320       }
6321       /* Proof that the "+1" on the k value above is safe */
6322       pOp = sqlite3VdbeGetOp(v, k - 1);
6323       assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur );
6324       assert( pOp->opcode!=OP_Rowid  || pOp->p1!=pLevel->iTabCur );
6325       assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur );
6326 #endif
6327       pOp = sqlite3VdbeGetOp(v, k);
6328       pLastOp = pOp + (last - k);
6329       assert( pOp<=pLastOp );
6330       do{
6331         if( pOp->p1!=pLevel->iTabCur ){
6332           /* no-op */
6333         }else if( pOp->opcode==OP_Column
6334 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6335          || pOp->opcode==OP_Offset
6336 #endif
6337         ){
6338           int x = pOp->p2;
6339           assert( pIdx->pTable==pTab );
6340 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6341           if( pOp->opcode==OP_Offset ){
6342             /* Do not need to translate the column number */
6343           }else
6344 #endif
6345           if( !HasRowid(pTab) ){
6346             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
6347             x = pPk->aiColumn[x];
6348             assert( x>=0 );
6349           }else{
6350             testcase( x!=sqlite3StorageColumnToTable(pTab,x) );
6351             x = sqlite3StorageColumnToTable(pTab,x);
6352           }
6353           x = sqlite3TableColumnToIndex(pIdx, x);
6354           if( x>=0 ){
6355             pOp->p2 = x;
6356             pOp->p1 = pLevel->iIdxCur;
6357             OpcodeRewriteTrace(db, k, pOp);
6358           }else{
6359             /* Unable to translate the table reference into an index
6360             ** reference.  Verify that this is harmless - that the
6361             ** table being referenced really is open.
6362             */
6363 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6364             assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
6365                  || cursorIsOpen(v,pOp->p1,k)
6366                  || pOp->opcode==OP_Offset
6367             );
6368 #else
6369             assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
6370                  || cursorIsOpen(v,pOp->p1,k)
6371             );
6372 #endif
6373           }
6374         }else if( pOp->opcode==OP_Rowid ){
6375           pOp->p1 = pLevel->iIdxCur;
6376           pOp->opcode = OP_IdxRowid;
6377           OpcodeRewriteTrace(db, k, pOp);
6378         }else if( pOp->opcode==OP_IfNullRow ){
6379           pOp->p1 = pLevel->iIdxCur;
6380           OpcodeRewriteTrace(db, k, pOp);
6381         }
6382 #ifdef SQLITE_DEBUG
6383         k++;
6384 #endif
6385       }while( (++pOp)<pLastOp );
6386 #ifdef SQLITE_DEBUG
6387       if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
6388 #endif
6389     }
6390   }
6391 
6392   /* The "break" point is here, just past the end of the outer loop.
6393   ** Set it.
6394   */
6395   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
6396 
6397   /* Final cleanup
6398   */
6399   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
6400   whereInfoFree(db, pWInfo);
6401   pParse->withinRJSubrtn -= nRJ;
6402   return;
6403 }
6404