xref: /sqlite-3.40.0/src/where.c (revision cd7274ce)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is reponsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 **
19 ** $Id: where.c,v 1.262 2007/11/05 05:12:53 danielk1977 Exp $
20 */
21 #include "sqliteInt.h"
22 
23 /*
24 ** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
25 */
26 #define BMS  (sizeof(Bitmask)*8)
27 
28 /*
29 ** Trace output macros
30 */
31 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
32 int sqlite3_where_trace = 0;
33 # define WHERETRACE(X)  if(sqlite3_where_trace) sqlite3DebugPrintf X
34 #else
35 # define WHERETRACE(X)
36 #endif
37 
38 /* Forward reference
39 */
40 typedef struct WhereClause WhereClause;
41 typedef struct ExprMaskSet ExprMaskSet;
42 
43 /*
44 ** The query generator uses an array of instances of this structure to
45 ** help it analyze the subexpressions of the WHERE clause.  Each WHERE
46 ** clause subexpression is separated from the others by an AND operator.
47 **
48 ** All WhereTerms are collected into a single WhereClause structure.
49 ** The following identity holds:
50 **
51 **        WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
52 **
53 ** When a term is of the form:
54 **
55 **              X <op> <expr>
56 **
57 ** where X is a column name and <op> is one of certain operators,
58 ** then WhereTerm.leftCursor and WhereTerm.leftColumn record the
59 ** cursor number and column number for X.  WhereTerm.operator records
60 ** the <op> using a bitmask encoding defined by WO_xxx below.  The
61 ** use of a bitmask encoding for the operator allows us to search
62 ** quickly for terms that match any of several different operators.
63 **
64 ** prereqRight and prereqAll record sets of cursor numbers,
65 ** but they do so indirectly.  A single ExprMaskSet structure translates
66 ** cursor number into bits and the translated bit is stored in the prereq
67 ** fields.  The translation is used in order to maximize the number of
68 ** bits that will fit in a Bitmask.  The VDBE cursor numbers might be
69 ** spread out over the non-negative integers.  For example, the cursor
70 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45.  The ExprMaskSet
71 ** translates these sparse cursor numbers into consecutive integers
72 ** beginning with 0 in order to make the best possible use of the available
73 ** bits in the Bitmask.  So, in the example above, the cursor numbers
74 ** would be mapped into integers 0 through 7.
75 */
76 typedef struct WhereTerm WhereTerm;
77 struct WhereTerm {
78   Expr *pExpr;            /* Pointer to the subexpression */
79   i16 iParent;            /* Disable pWC->a[iParent] when this term disabled */
80   i16 leftCursor;         /* Cursor number of X in "X <op> <expr>" */
81   i16 leftColumn;         /* Column number of X in "X <op> <expr>" */
82   u16 eOperator;          /* A WO_xx value describing <op> */
83   u8 flags;               /* Bit flags.  See below */
84   u8 nChild;              /* Number of children that must disable us */
85   WhereClause *pWC;       /* The clause this term is part of */
86   Bitmask prereqRight;    /* Bitmask of tables used by pRight */
87   Bitmask prereqAll;      /* Bitmask of tables referenced by p */
88 };
89 
90 /*
91 ** Allowed values of WhereTerm.flags
92 */
93 #define TERM_DYNAMIC    0x01   /* Need to call sqlite3ExprDelete(pExpr) */
94 #define TERM_VIRTUAL    0x02   /* Added by the optimizer.  Do not code */
95 #define TERM_CODED      0x04   /* This term is already coded */
96 #define TERM_COPIED     0x08   /* Has a child */
97 #define TERM_OR_OK      0x10   /* Used during OR-clause processing */
98 
99 /*
100 ** An instance of the following structure holds all information about a
101 ** WHERE clause.  Mostly this is a container for one or more WhereTerms.
102 */
103 struct WhereClause {
104   Parse *pParse;           /* The parser context */
105   ExprMaskSet *pMaskSet;   /* Mapping of table indices to bitmasks */
106   int nTerm;               /* Number of terms */
107   int nSlot;               /* Number of entries in a[] */
108   WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
109   WhereTerm aStatic[10];   /* Initial static space for a[] */
110 };
111 
112 /*
113 ** An instance of the following structure keeps track of a mapping
114 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
115 **
116 ** The VDBE cursor numbers are small integers contained in
117 ** SrcList_item.iCursor and Expr.iTable fields.  For any given WHERE
118 ** clause, the cursor numbers might not begin with 0 and they might
119 ** contain gaps in the numbering sequence.  But we want to make maximum
120 ** use of the bits in our bitmasks.  This structure provides a mapping
121 ** from the sparse cursor numbers into consecutive integers beginning
122 ** with 0.
123 **
124 ** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
125 ** corresponds VDBE cursor number B.  The A-th bit of a bitmask is 1<<A.
126 **
127 ** For example, if the WHERE clause expression used these VDBE
128 ** cursors:  4, 5, 8, 29, 57, 73.  Then the  ExprMaskSet structure
129 ** would map those cursor numbers into bits 0 through 5.
130 **
131 ** Note that the mapping is not necessarily ordered.  In the example
132 ** above, the mapping might go like this:  4->3, 5->1, 8->2, 29->0,
133 ** 57->5, 73->4.  Or one of 719 other combinations might be used. It
134 ** does not really matter.  What is important is that sparse cursor
135 ** numbers all get mapped into bit numbers that begin with 0 and contain
136 ** no gaps.
137 */
138 struct ExprMaskSet {
139   int n;                        /* Number of assigned cursor values */
140   int ix[sizeof(Bitmask)*8];    /* Cursor assigned to each bit */
141 };
142 
143 
144 /*
145 ** Bitmasks for the operators that indices are able to exploit.  An
146 ** OR-ed combination of these values can be used when searching for
147 ** terms in the where clause.
148 */
149 #define WO_IN     1
150 #define WO_EQ     2
151 #define WO_LT     (WO_EQ<<(TK_LT-TK_EQ))
152 #define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
153 #define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
154 #define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))
155 #define WO_MATCH  64
156 #define WO_ISNULL 128
157 
158 /*
159 ** Value for flags returned by bestIndex().
160 **
161 ** The least significant byte is reserved as a mask for WO_ values above.
162 ** The WhereLevel.flags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
163 ** But if the table is the right table of a left join, WhereLevel.flags
164 ** is set to WO_IN|WO_EQ.  The WhereLevel.flags field can then be used as
165 ** the "op" parameter to findTerm when we are resolving equality constraints.
166 ** ISNULL constraints will then not be used on the right table of a left
167 ** join.  Tickets #2177 and #2189.
168 */
169 #define WHERE_ROWID_EQ     0x000100   /* rowid=EXPR or rowid IN (...) */
170 #define WHERE_ROWID_RANGE  0x000200   /* rowid<EXPR and/or rowid>EXPR */
171 #define WHERE_COLUMN_EQ    0x001000   /* x=EXPR or x IN (...) */
172 #define WHERE_COLUMN_RANGE 0x002000   /* x<EXPR and/or x>EXPR */
173 #define WHERE_COLUMN_IN    0x004000   /* x IN (...) */
174 #define WHERE_TOP_LIMIT    0x010000   /* x<EXPR or x<=EXPR constraint */
175 #define WHERE_BTM_LIMIT    0x020000   /* x>EXPR or x>=EXPR constraint */
176 #define WHERE_IDX_ONLY     0x080000   /* Use index only - omit table */
177 #define WHERE_ORDERBY      0x100000   /* Output will appear in correct order */
178 #define WHERE_REVERSE      0x200000   /* Scan in reverse order */
179 #define WHERE_UNIQUE       0x400000   /* Selects no more than one row */
180 #define WHERE_VIRTUALTABLE 0x800000   /* Use virtual-table processing */
181 
182 /*
183 ** Initialize a preallocated WhereClause structure.
184 */
185 static void whereClauseInit(
186   WhereClause *pWC,        /* The WhereClause to be initialized */
187   Parse *pParse,           /* The parsing context */
188   ExprMaskSet *pMaskSet    /* Mapping from table indices to bitmasks */
189 ){
190   pWC->pParse = pParse;
191   pWC->pMaskSet = pMaskSet;
192   pWC->nTerm = 0;
193   pWC->nSlot = ArraySize(pWC->aStatic);
194   pWC->a = pWC->aStatic;
195 }
196 
197 /*
198 ** Deallocate a WhereClause structure.  The WhereClause structure
199 ** itself is not freed.  This routine is the inverse of whereClauseInit().
200 */
201 static void whereClauseClear(WhereClause *pWC){
202   int i;
203   WhereTerm *a;
204   for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
205     if( a->flags & TERM_DYNAMIC ){
206       sqlite3ExprDelete(a->pExpr);
207     }
208   }
209   if( pWC->a!=pWC->aStatic ){
210     sqlite3_free(pWC->a);
211   }
212 }
213 
214 /*
215 ** Add a new entries to the WhereClause structure.  Increase the allocated
216 ** space as necessary.
217 **
218 ** If the flags argument includes TERM_DYNAMIC, then responsibility
219 ** for freeing the expression p is assumed by the WhereClause object.
220 **
221 ** WARNING:  This routine might reallocate the space used to store
222 ** WhereTerms.  All pointers to WhereTerms should be invalided after
223 ** calling this routine.  Such pointers may be reinitialized by referencing
224 ** the pWC->a[] array.
225 */
226 static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){
227   WhereTerm *pTerm;
228   int idx;
229   if( pWC->nTerm>=pWC->nSlot ){
230     WhereTerm *pOld = pWC->a;
231     pWC->a = sqlite3_malloc( sizeof(pWC->a[0])*pWC->nSlot*2 );
232     if( pWC->a==0 ){
233       pWC->pParse->db->mallocFailed = 1;
234       if( flags & TERM_DYNAMIC ){
235         sqlite3ExprDelete(p);
236       }
237       return 0;
238     }
239     memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
240     if( pOld!=pWC->aStatic ){
241       sqlite3_free(pOld);
242     }
243     pWC->nSlot *= 2;
244   }
245   pTerm = &pWC->a[idx = pWC->nTerm];
246   pWC->nTerm++;
247   pTerm->pExpr = p;
248   pTerm->flags = flags;
249   pTerm->pWC = pWC;
250   pTerm->iParent = -1;
251   return idx;
252 }
253 
254 /*
255 ** This routine identifies subexpressions in the WHERE clause where
256 ** each subexpression is separated by the AND operator or some other
257 ** operator specified in the op parameter.  The WhereClause structure
258 ** is filled with pointers to subexpressions.  For example:
259 **
260 **    WHERE  a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
261 **           \________/     \_______________/     \________________/
262 **            slot[0]            slot[1]               slot[2]
263 **
264 ** The original WHERE clause in pExpr is unaltered.  All this routine
265 ** does is make slot[] entries point to substructure within pExpr.
266 **
267 ** In the previous sentence and in the diagram, "slot[]" refers to
268 ** the WhereClause.a[] array.  This array grows as needed to contain
269 ** all terms of the WHERE clause.
270 */
271 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
272   if( pExpr==0 ) return;
273   if( pExpr->op!=op ){
274     whereClauseInsert(pWC, pExpr, 0);
275   }else{
276     whereSplit(pWC, pExpr->pLeft, op);
277     whereSplit(pWC, pExpr->pRight, op);
278   }
279 }
280 
281 /*
282 ** Initialize an expression mask set
283 */
284 #define initMaskSet(P)  memset(P, 0, sizeof(*P))
285 
286 /*
287 ** Return the bitmask for the given cursor number.  Return 0 if
288 ** iCursor is not in the set.
289 */
290 static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){
291   int i;
292   for(i=0; i<pMaskSet->n; i++){
293     if( pMaskSet->ix[i]==iCursor ){
294       return ((Bitmask)1)<<i;
295     }
296   }
297   return 0;
298 }
299 
300 /*
301 ** Create a new mask for cursor iCursor.
302 **
303 ** There is one cursor per table in the FROM clause.  The number of
304 ** tables in the FROM clause is limited by a test early in the
305 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
306 ** array will never overflow.
307 */
308 static void createMask(ExprMaskSet *pMaskSet, int iCursor){
309   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
310   pMaskSet->ix[pMaskSet->n++] = iCursor;
311 }
312 
313 /*
314 ** This routine walks (recursively) an expression tree and generates
315 ** a bitmask indicating which tables are used in that expression
316 ** tree.
317 **
318 ** In order for this routine to work, the calling function must have
319 ** previously invoked sqlite3ExprResolveNames() on the expression.  See
320 ** the header comment on that routine for additional information.
321 ** The sqlite3ExprResolveNames() routines looks for column names and
322 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
323 ** the VDBE cursor number of the table.  This routine just has to
324 ** translate the cursor numbers into bitmask values and OR all
325 ** the bitmasks together.
326 */
327 static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*);
328 static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*);
329 static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
330   Bitmask mask = 0;
331   if( p==0 ) return 0;
332   if( p->op==TK_COLUMN ){
333     mask = getMask(pMaskSet, p->iTable);
334     return mask;
335   }
336   mask = exprTableUsage(pMaskSet, p->pRight);
337   mask |= exprTableUsage(pMaskSet, p->pLeft);
338   mask |= exprListTableUsage(pMaskSet, p->pList);
339   mask |= exprSelectTableUsage(pMaskSet, p->pSelect);
340   return mask;
341 }
342 static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){
343   int i;
344   Bitmask mask = 0;
345   if( pList ){
346     for(i=0; i<pList->nExpr; i++){
347       mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
348     }
349   }
350   return mask;
351 }
352 static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){
353   Bitmask mask = 0;
354   while( pS ){
355     mask |= exprListTableUsage(pMaskSet, pS->pEList);
356     mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
357     mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
358     mask |= exprTableUsage(pMaskSet, pS->pWhere);
359     mask |= exprTableUsage(pMaskSet, pS->pHaving);
360     pS = pS->pPrior;
361   }
362   return mask;
363 }
364 
365 /*
366 ** Return TRUE if the given operator is one of the operators that is
367 ** allowed for an indexable WHERE clause term.  The allowed operators are
368 ** "=", "<", ">", "<=", ">=", and "IN".
369 */
370 static int allowedOp(int op){
371   assert( TK_GT>TK_EQ && TK_GT<TK_GE );
372   assert( TK_LT>TK_EQ && TK_LT<TK_GE );
373   assert( TK_LE>TK_EQ && TK_LE<TK_GE );
374   assert( TK_GE==TK_EQ+4 );
375   return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
376 }
377 
378 /*
379 ** Swap two objects of type T.
380 */
381 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
382 
383 /*
384 ** Commute a comparision operator.  Expressions of the form "X op Y"
385 ** are converted into "Y op X".
386 **
387 ** If a collation sequence is associated with either the left or right
388 ** side of the comparison, it remains associated with the same side after
389 ** the commutation. So "Y collate NOCASE op X" becomes
390 ** "X collate NOCASE op Y". This is because any collation sequence on
391 ** the left hand side of a comparison overrides any collation sequence
392 ** attached to the right. For the same reason the EP_ExpCollate flag
393 ** is not commuted.
394 */
395 static void exprCommute(Expr *pExpr){
396   u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
397   u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
398   assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
399   SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
400   pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
401   pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
402   SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
403   if( pExpr->op>=TK_GT ){
404     assert( TK_LT==TK_GT+2 );
405     assert( TK_GE==TK_LE+2 );
406     assert( TK_GT>TK_EQ );
407     assert( TK_GT<TK_LE );
408     assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
409     pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
410   }
411 }
412 
413 /*
414 ** Translate from TK_xx operator to WO_xx bitmask.
415 */
416 static int operatorMask(int op){
417   int c;
418   assert( allowedOp(op) );
419   if( op==TK_IN ){
420     c = WO_IN;
421   }else if( op==TK_ISNULL ){
422     c = WO_ISNULL;
423   }else{
424     c = WO_EQ<<(op-TK_EQ);
425   }
426   assert( op!=TK_ISNULL || c==WO_ISNULL );
427   assert( op!=TK_IN || c==WO_IN );
428   assert( op!=TK_EQ || c==WO_EQ );
429   assert( op!=TK_LT || c==WO_LT );
430   assert( op!=TK_LE || c==WO_LE );
431   assert( op!=TK_GT || c==WO_GT );
432   assert( op!=TK_GE || c==WO_GE );
433   return c;
434 }
435 
436 /*
437 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
438 ** where X is a reference to the iColumn of table iCur and <op> is one of
439 ** the WO_xx operator codes specified by the op parameter.
440 ** Return a pointer to the term.  Return 0 if not found.
441 */
442 static WhereTerm *findTerm(
443   WhereClause *pWC,     /* The WHERE clause to be searched */
444   int iCur,             /* Cursor number of LHS */
445   int iColumn,          /* Column number of LHS */
446   Bitmask notReady,     /* RHS must not overlap with this mask */
447   u16 op,               /* Mask of WO_xx values describing operator */
448   Index *pIdx           /* Must be compatible with this index, if not NULL */
449 ){
450   WhereTerm *pTerm;
451   int k;
452   for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
453     if( pTerm->leftCursor==iCur
454        && (pTerm->prereqRight & notReady)==0
455        && pTerm->leftColumn==iColumn
456        && (pTerm->eOperator & op)!=0
457     ){
458       if( iCur>=0 && pIdx && pTerm->eOperator!=WO_ISNULL ){
459         Expr *pX = pTerm->pExpr;
460         CollSeq *pColl;
461         char idxaff;
462         int j;
463         Parse *pParse = pWC->pParse;
464 
465         idxaff = pIdx->pTable->aCol[iColumn].affinity;
466         if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
467 
468         /* Figure out the collation sequence required from an index for
469         ** it to be useful for optimising expression pX. Store this
470         ** value in variable pColl.
471         */
472         assert(pX->pLeft);
473         pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
474         if( !pColl ){
475           pColl = pParse->db->pDfltColl;
476         }
477 
478         for(j=0; j<pIdx->nColumn && pIdx->aiColumn[j]!=iColumn; j++){}
479         assert( j<pIdx->nColumn );
480         if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
481       }
482       return pTerm;
483     }
484   }
485   return 0;
486 }
487 
488 /* Forward reference */
489 static void exprAnalyze(SrcList*, WhereClause*, int);
490 
491 /*
492 ** Call exprAnalyze on all terms in a WHERE clause.
493 **
494 **
495 */
496 static void exprAnalyzeAll(
497   SrcList *pTabList,       /* the FROM clause */
498   WhereClause *pWC         /* the WHERE clause to be analyzed */
499 ){
500   int i;
501   for(i=pWC->nTerm-1; i>=0; i--){
502     exprAnalyze(pTabList, pWC, i);
503   }
504 }
505 
506 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
507 /*
508 ** Check to see if the given expression is a LIKE or GLOB operator that
509 ** can be optimized using inequality constraints.  Return TRUE if it is
510 ** so and false if not.
511 **
512 ** In order for the operator to be optimizible, the RHS must be a string
513 ** literal that does not begin with a wildcard.
514 */
515 static int isLikeOrGlob(
516   sqlite3 *db,      /* The database */
517   Expr *pExpr,      /* Test this expression */
518   int *pnPattern,   /* Number of non-wildcard prefix characters */
519   int *pisComplete  /* True if the only wildcard is % in the last character */
520 ){
521   const char *z;
522   Expr *pRight, *pLeft;
523   ExprList *pList;
524   int c, cnt;
525   int noCase;
526   char wc[3];
527   CollSeq *pColl;
528 
529   if( !sqlite3IsLikeFunction(db, pExpr, &noCase, wc) ){
530     return 0;
531   }
532   pList = pExpr->pList;
533   pRight = pList->a[0].pExpr;
534   if( pRight->op!=TK_STRING ){
535     return 0;
536   }
537   pLeft = pList->a[1].pExpr;
538   if( pLeft->op!=TK_COLUMN ){
539     return 0;
540   }
541   pColl = pLeft->pColl;
542   if( pColl==0 ){
543     /* TODO: Coverage testing doesn't get this case. Is it actually possible
544     ** for an expression of type TK_COLUMN to not have an assigned collation
545     ** sequence at this point?
546     */
547     pColl = db->pDfltColl;
548   }
549   if( (pColl->type!=SQLITE_COLL_BINARY || noCase) &&
550       (pColl->type!=SQLITE_COLL_NOCASE || !noCase) ){
551     return 0;
552   }
553   sqlite3DequoteExpr(db, pRight);
554   z = (char *)pRight->token.z;
555   for(cnt=0; (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2]; cnt++){}
556   if( cnt==0 || 255==(u8)z[cnt] ){
557     return 0;
558   }
559   *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0;
560   *pnPattern = cnt;
561   return 1;
562 }
563 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
564 
565 
566 #ifndef SQLITE_OMIT_VIRTUALTABLE
567 /*
568 ** Check to see if the given expression is of the form
569 **
570 **         column MATCH expr
571 **
572 ** If it is then return TRUE.  If not, return FALSE.
573 */
574 static int isMatchOfColumn(
575   Expr *pExpr      /* Test this expression */
576 ){
577   ExprList *pList;
578 
579   if( pExpr->op!=TK_FUNCTION ){
580     return 0;
581   }
582   if( pExpr->token.n!=5 ||
583        sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){
584     return 0;
585   }
586   pList = pExpr->pList;
587   if( pList->nExpr!=2 ){
588     return 0;
589   }
590   if( pList->a[1].pExpr->op != TK_COLUMN ){
591     return 0;
592   }
593   return 1;
594 }
595 #endif /* SQLITE_OMIT_VIRTUALTABLE */
596 
597 /*
598 ** If the pBase expression originated in the ON or USING clause of
599 ** a join, then transfer the appropriate markings over to derived.
600 */
601 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
602   pDerived->flags |= pBase->flags & EP_FromJoin;
603   pDerived->iRightJoinTable = pBase->iRightJoinTable;
604 }
605 
606 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
607 /*
608 ** Return TRUE if the given term of an OR clause can be converted
609 ** into an IN clause.  The iCursor and iColumn define the left-hand
610 ** side of the IN clause.
611 **
612 ** The context is that we have multiple OR-connected equality terms
613 ** like this:
614 **
615 **           a=<expr1> OR  a=<expr2> OR b=<expr3>  OR ...
616 **
617 ** The pOrTerm input to this routine corresponds to a single term of
618 ** this OR clause.  In order for the term to be a condidate for
619 ** conversion to an IN operator, the following must be true:
620 **
621 **     *  The left-hand side of the term must be the column which
622 **        is identified by iCursor and iColumn.
623 **
624 **     *  If the right-hand side is also a column, then the affinities
625 **        of both right and left sides must be such that no type
626 **        conversions are required on the right.  (Ticket #2249)
627 **
628 ** If both of these conditions are true, then return true.  Otherwise
629 ** return false.
630 */
631 static int orTermIsOptCandidate(WhereTerm *pOrTerm, int iCursor, int iColumn){
632   int affLeft, affRight;
633   assert( pOrTerm->eOperator==WO_EQ );
634   if( pOrTerm->leftCursor!=iCursor ){
635     return 0;
636   }
637   if( pOrTerm->leftColumn!=iColumn ){
638     return 0;
639   }
640   affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
641   if( affRight==0 ){
642     return 1;
643   }
644   affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
645   if( affRight!=affLeft ){
646     return 0;
647   }
648   return 1;
649 }
650 
651 /*
652 ** Return true if the given term of an OR clause can be ignored during
653 ** a check to make sure all OR terms are candidates for optimization.
654 ** In other words, return true if a call to the orTermIsOptCandidate()
655 ** above returned false but it is not necessary to disqualify the
656 ** optimization.
657 **
658 ** Suppose the original OR phrase was this:
659 **
660 **           a=4  OR  a=11  OR  a=b
661 **
662 ** During analysis, the third term gets flipped around and duplicate
663 ** so that we are left with this:
664 **
665 **           a=4  OR  a=11  OR  a=b  OR  b=a
666 **
667 ** Since the last two terms are duplicates, only one of them
668 ** has to qualify in order for the whole phrase to qualify.  When
669 ** this routine is called, we know that pOrTerm did not qualify.
670 ** This routine merely checks to see if pOrTerm has a duplicate that
671 ** might qualify.  If there is a duplicate that has not yet been
672 ** disqualified, then return true.  If there are no duplicates, or
673 ** the duplicate has also been disqualifed, return false.
674 */
675 static int orTermHasOkDuplicate(WhereClause *pOr, WhereTerm *pOrTerm){
676   if( pOrTerm->flags & TERM_COPIED ){
677     /* This is the original term.  The duplicate is to the left had
678     ** has not yet been analyzed and thus has not yet been disqualified. */
679     return 1;
680   }
681   if( (pOrTerm->flags & TERM_VIRTUAL)!=0
682      && (pOr->a[pOrTerm->iParent].flags & TERM_OR_OK)!=0 ){
683     /* This is a duplicate term.  The original qualified so this one
684     ** does not have to. */
685     return 1;
686   }
687   /* This is either a singleton term or else it is a duplicate for
688   ** which the original did not qualify.  Either way we are done for. */
689   return 0;
690 }
691 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
692 
693 /*
694 ** The input to this routine is an WhereTerm structure with only the
695 ** "pExpr" field filled in.  The job of this routine is to analyze the
696 ** subexpression and populate all the other fields of the WhereTerm
697 ** structure.
698 **
699 ** If the expression is of the form "<expr> <op> X" it gets commuted
700 ** to the standard form of "X <op> <expr>".  If the expression is of
701 ** the form "X <op> Y" where both X and Y are columns, then the original
702 ** expression is unchanged and a new virtual expression of the form
703 ** "Y <op> X" is added to the WHERE clause and analyzed separately.
704 */
705 static void exprAnalyze(
706   SrcList *pSrc,            /* the FROM clause */
707   WhereClause *pWC,         /* the WHERE clause */
708   int idxTerm               /* Index of the term to be analyzed */
709 ){
710   WhereTerm *pTerm = &pWC->a[idxTerm];
711   ExprMaskSet *pMaskSet = pWC->pMaskSet;
712   Expr *pExpr = pTerm->pExpr;
713   Bitmask prereqLeft;
714   Bitmask prereqAll;
715   int nPattern;
716   int isComplete;
717   int op;
718   Parse *pParse = pWC->pParse;
719   sqlite3 *db = pParse->db;
720 
721   if( db->mallocFailed ) return;
722   prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
723   op = pExpr->op;
724   if( op==TK_IN ){
725     assert( pExpr->pRight==0 );
726     pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList)
727                           | exprSelectTableUsage(pMaskSet, pExpr->pSelect);
728   }else if( op==TK_ISNULL ){
729     pTerm->prereqRight = 0;
730   }else{
731     pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
732   }
733   prereqAll = exprTableUsage(pMaskSet, pExpr);
734   if( ExprHasProperty(pExpr, EP_FromJoin) ){
735     prereqAll |= getMask(pMaskSet, pExpr->iRightJoinTable);
736   }
737   pTerm->prereqAll = prereqAll;
738   pTerm->leftCursor = -1;
739   pTerm->iParent = -1;
740   pTerm->eOperator = 0;
741   if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
742     Expr *pLeft = pExpr->pLeft;
743     Expr *pRight = pExpr->pRight;
744     if( pLeft->op==TK_COLUMN ){
745       pTerm->leftCursor = pLeft->iTable;
746       pTerm->leftColumn = pLeft->iColumn;
747       pTerm->eOperator = operatorMask(op);
748     }
749     if( pRight && pRight->op==TK_COLUMN ){
750       WhereTerm *pNew;
751       Expr *pDup;
752       if( pTerm->leftCursor>=0 ){
753         int idxNew;
754         pDup = sqlite3ExprDup(db, pExpr);
755         if( db->mallocFailed ){
756           sqlite3ExprDelete(pDup);
757           return;
758         }
759         idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
760         if( idxNew==0 ) return;
761         pNew = &pWC->a[idxNew];
762         pNew->iParent = idxTerm;
763         pTerm = &pWC->a[idxTerm];
764         pTerm->nChild = 1;
765         pTerm->flags |= TERM_COPIED;
766       }else{
767         pDup = pExpr;
768         pNew = pTerm;
769       }
770       exprCommute(pDup);
771       pLeft = pDup->pLeft;
772       pNew->leftCursor = pLeft->iTable;
773       pNew->leftColumn = pLeft->iColumn;
774       pNew->prereqRight = prereqLeft;
775       pNew->prereqAll = prereqAll;
776       pNew->eOperator = operatorMask(pDup->op);
777     }
778   }
779 
780 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
781   /* If a term is the BETWEEN operator, create two new virtual terms
782   ** that define the range that the BETWEEN implements.
783   */
784   else if( pExpr->op==TK_BETWEEN ){
785     ExprList *pList = pExpr->pList;
786     int i;
787     static const u8 ops[] = {TK_GE, TK_LE};
788     assert( pList!=0 );
789     assert( pList->nExpr==2 );
790     for(i=0; i<2; i++){
791       Expr *pNewExpr;
792       int idxNew;
793       pNewExpr = sqlite3Expr(db, ops[i], sqlite3ExprDup(db, pExpr->pLeft),
794                              sqlite3ExprDup(db, pList->a[i].pExpr), 0);
795       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
796       exprAnalyze(pSrc, pWC, idxNew);
797       pTerm = &pWC->a[idxTerm];
798       pWC->a[idxNew].iParent = idxTerm;
799     }
800     pTerm->nChild = 2;
801   }
802 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
803 
804 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
805   /* Attempt to convert OR-connected terms into an IN operator so that
806   ** they can make use of indices.  Example:
807   **
808   **      x = expr1  OR  expr2 = x  OR  x = expr3
809   **
810   ** is converted into
811   **
812   **      x IN (expr1,expr2,expr3)
813   **
814   ** This optimization must be omitted if OMIT_SUBQUERY is defined because
815   ** the compiler for the the IN operator is part of sub-queries.
816   */
817   else if( pExpr->op==TK_OR ){
818     int ok;
819     int i, j;
820     int iColumn, iCursor;
821     WhereClause sOr;
822     WhereTerm *pOrTerm;
823 
824     assert( (pTerm->flags & TERM_DYNAMIC)==0 );
825     whereClauseInit(&sOr, pWC->pParse, pMaskSet);
826     whereSplit(&sOr, pExpr, TK_OR);
827     exprAnalyzeAll(pSrc, &sOr);
828     assert( sOr.nTerm>=2 );
829     j = 0;
830     do{
831       assert( j<sOr.nTerm );
832       iColumn = sOr.a[j].leftColumn;
833       iCursor = sOr.a[j].leftCursor;
834       ok = iCursor>=0;
835       for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
836         if( pOrTerm->eOperator!=WO_EQ ){
837           goto or_not_possible;
838         }
839         if( orTermIsOptCandidate(pOrTerm, iCursor, iColumn) ){
840           pOrTerm->flags |= TERM_OR_OK;
841         }else if( orTermHasOkDuplicate(&sOr, pOrTerm) ){
842           pOrTerm->flags &= ~TERM_OR_OK;
843         }else{
844           ok = 0;
845         }
846       }
847     }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<2 );
848     if( ok ){
849       ExprList *pList = 0;
850       Expr *pNew, *pDup;
851       Expr *pLeft = 0;
852       for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
853         if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue;
854         pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight);
855         pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup, 0);
856         pLeft = pOrTerm->pExpr->pLeft;
857       }
858       assert( pLeft!=0 );
859       pDup = sqlite3ExprDup(db, pLeft);
860       pNew = sqlite3Expr(db, TK_IN, pDup, 0, 0);
861       if( pNew ){
862         int idxNew;
863         transferJoinMarkings(pNew, pExpr);
864         pNew->pList = pList;
865         idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
866         exprAnalyze(pSrc, pWC, idxNew);
867         pTerm = &pWC->a[idxTerm];
868         pWC->a[idxNew].iParent = idxTerm;
869         pTerm->nChild = 1;
870       }else{
871         sqlite3ExprListDelete(pList);
872       }
873     }
874 or_not_possible:
875     whereClauseClear(&sOr);
876   }
877 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
878 
879 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
880   /* Add constraints to reduce the search space on a LIKE or GLOB
881   ** operator.
882   */
883   if( isLikeOrGlob(db, pExpr, &nPattern, &isComplete) ){
884     Expr *pLeft, *pRight;
885     Expr *pStr1, *pStr2;
886     Expr *pNewExpr1, *pNewExpr2;
887     int idxNew1, idxNew2;
888 
889     pLeft = pExpr->pList->a[1].pExpr;
890     pRight = pExpr->pList->a[0].pExpr;
891     pStr1 = sqlite3PExpr(pParse, TK_STRING, 0, 0, 0);
892     if( pStr1 ){
893       sqlite3TokenCopy(db, &pStr1->token, &pRight->token);
894       pStr1->token.n = nPattern;
895       pStr1->flags = EP_Dequoted;
896     }
897     pStr2 = sqlite3ExprDup(db, pStr1);
898     if( pStr2 ){
899       assert( pStr2->token.dyn );
900       ++*(u8*)&pStr2->token.z[nPattern-1];
901     }
902     pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft), pStr1, 0);
903     idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
904     exprAnalyze(pSrc, pWC, idxNew1);
905     pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft), pStr2, 0);
906     idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
907     exprAnalyze(pSrc, pWC, idxNew2);
908     pTerm = &pWC->a[idxTerm];
909     if( isComplete ){
910       pWC->a[idxNew1].iParent = idxTerm;
911       pWC->a[idxNew2].iParent = idxTerm;
912       pTerm->nChild = 2;
913     }
914   }
915 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
916 
917 #ifndef SQLITE_OMIT_VIRTUALTABLE
918   /* Add a WO_MATCH auxiliary term to the constraint set if the
919   ** current expression is of the form:  column MATCH expr.
920   ** This information is used by the xBestIndex methods of
921   ** virtual tables.  The native query optimizer does not attempt
922   ** to do anything with MATCH functions.
923   */
924   if( isMatchOfColumn(pExpr) ){
925     int idxNew;
926     Expr *pRight, *pLeft;
927     WhereTerm *pNewTerm;
928     Bitmask prereqColumn, prereqExpr;
929 
930     pRight = pExpr->pList->a[0].pExpr;
931     pLeft = pExpr->pList->a[1].pExpr;
932     prereqExpr = exprTableUsage(pMaskSet, pRight);
933     prereqColumn = exprTableUsage(pMaskSet, pLeft);
934     if( (prereqExpr & prereqColumn)==0 ){
935       Expr *pNewExpr;
936       pNewExpr = sqlite3Expr(db, TK_MATCH, 0, sqlite3ExprDup(db, pRight), 0);
937       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
938       pNewTerm = &pWC->a[idxNew];
939       pNewTerm->prereqRight = prereqExpr;
940       pNewTerm->leftCursor = pLeft->iTable;
941       pNewTerm->leftColumn = pLeft->iColumn;
942       pNewTerm->eOperator = WO_MATCH;
943       pNewTerm->iParent = idxTerm;
944       pTerm = &pWC->a[idxTerm];
945       pTerm->nChild = 1;
946       pTerm->flags |= TERM_COPIED;
947       pNewTerm->prereqAll = pTerm->prereqAll;
948     }
949   }
950 #endif /* SQLITE_OMIT_VIRTUALTABLE */
951 }
952 
953 /*
954 ** Return TRUE if any of the expressions in pList->a[iFirst...] contain
955 ** a reference to any table other than the iBase table.
956 */
957 static int referencesOtherTables(
958   ExprList *pList,          /* Search expressions in ths list */
959   ExprMaskSet *pMaskSet,    /* Mapping from tables to bitmaps */
960   int iFirst,               /* Be searching with the iFirst-th expression */
961   int iBase                 /* Ignore references to this table */
962 ){
963   Bitmask allowed = ~getMask(pMaskSet, iBase);
964   while( iFirst<pList->nExpr ){
965     if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
966       return 1;
967     }
968   }
969   return 0;
970 }
971 
972 
973 /*
974 ** This routine decides if pIdx can be used to satisfy the ORDER BY
975 ** clause.  If it can, it returns 1.  If pIdx cannot satisfy the
976 ** ORDER BY clause, this routine returns 0.
977 **
978 ** pOrderBy is an ORDER BY clause from a SELECT statement.  pTab is the
979 ** left-most table in the FROM clause of that same SELECT statement and
980 ** the table has a cursor number of "base".  pIdx is an index on pTab.
981 **
982 ** nEqCol is the number of columns of pIdx that are used as equality
983 ** constraints.  Any of these columns may be missing from the ORDER BY
984 ** clause and the match can still be a success.
985 **
986 ** All terms of the ORDER BY that match against the index must be either
987 ** ASC or DESC.  (Terms of the ORDER BY clause past the end of a UNIQUE
988 ** index do not need to satisfy this constraint.)  The *pbRev value is
989 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
990 ** the ORDER BY clause is all ASC.
991 */
992 static int isSortingIndex(
993   Parse *pParse,          /* Parsing context */
994   ExprMaskSet *pMaskSet,  /* Mapping from table indices to bitmaps */
995   Index *pIdx,            /* The index we are testing */
996   int base,               /* Cursor number for the table to be sorted */
997   ExprList *pOrderBy,     /* The ORDER BY clause */
998   int nEqCol,             /* Number of index columns with == constraints */
999   int *pbRev              /* Set to 1 if ORDER BY is DESC */
1000 ){
1001   int i, j;                       /* Loop counters */
1002   int sortOrder = 0;              /* XOR of index and ORDER BY sort direction */
1003   int nTerm;                      /* Number of ORDER BY terms */
1004   struct ExprList_item *pTerm;    /* A term of the ORDER BY clause */
1005   sqlite3 *db = pParse->db;
1006 
1007   assert( pOrderBy!=0 );
1008   nTerm = pOrderBy->nExpr;
1009   assert( nTerm>0 );
1010 
1011   /* Match terms of the ORDER BY clause against columns of
1012   ** the index.
1013   **
1014   ** Note that indices have pIdx->nColumn regular columns plus
1015   ** one additional column containing the rowid.  The rowid column
1016   ** of the index is also allowed to match against the ORDER BY
1017   ** clause.
1018   */
1019   for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
1020     Expr *pExpr;       /* The expression of the ORDER BY pTerm */
1021     CollSeq *pColl;    /* The collating sequence of pExpr */
1022     int termSortOrder; /* Sort order for this term */
1023     int iColumn;       /* The i-th column of the index.  -1 for rowid */
1024     int iSortOrder;    /* 1 for DESC, 0 for ASC on the i-th index term */
1025     const char *zColl; /* Name of the collating sequence for i-th index term */
1026 
1027     pExpr = pTerm->pExpr;
1028     if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
1029       /* Can not use an index sort on anything that is not a column in the
1030       ** left-most table of the FROM clause */
1031       break;
1032     }
1033     pColl = sqlite3ExprCollSeq(pParse, pExpr);
1034     if( !pColl ){
1035       pColl = db->pDfltColl;
1036     }
1037     if( i<pIdx->nColumn ){
1038       iColumn = pIdx->aiColumn[i];
1039       if( iColumn==pIdx->pTable->iPKey ){
1040         iColumn = -1;
1041       }
1042       iSortOrder = pIdx->aSortOrder[i];
1043       zColl = pIdx->azColl[i];
1044     }else{
1045       iColumn = -1;
1046       iSortOrder = 0;
1047       zColl = pColl->zName;
1048     }
1049     if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
1050       /* Term j of the ORDER BY clause does not match column i of the index */
1051       if( i<nEqCol ){
1052         /* If an index column that is constrained by == fails to match an
1053         ** ORDER BY term, that is OK.  Just ignore that column of the index
1054         */
1055         continue;
1056       }else{
1057         /* If an index column fails to match and is not constrained by ==
1058         ** then the index cannot satisfy the ORDER BY constraint.
1059         */
1060         return 0;
1061       }
1062     }
1063     assert( pIdx->aSortOrder!=0 );
1064     assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
1065     assert( iSortOrder==0 || iSortOrder==1 );
1066     termSortOrder = iSortOrder ^ pTerm->sortOrder;
1067     if( i>nEqCol ){
1068       if( termSortOrder!=sortOrder ){
1069         /* Indices can only be used if all ORDER BY terms past the
1070         ** equality constraints are all either DESC or ASC. */
1071         return 0;
1072       }
1073     }else{
1074       sortOrder = termSortOrder;
1075     }
1076     j++;
1077     pTerm++;
1078     if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
1079       /* If the indexed column is the primary key and everything matches
1080       ** so far and none of the ORDER BY terms to the right reference other
1081       ** tables in the join, then we are assured that the index can be used
1082       ** to sort because the primary key is unique and so none of the other
1083       ** columns will make any difference
1084       */
1085       j = nTerm;
1086     }
1087   }
1088 
1089   *pbRev = sortOrder!=0;
1090   if( j>=nTerm ){
1091     /* All terms of the ORDER BY clause are covered by this index so
1092     ** this index can be used for sorting. */
1093     return 1;
1094   }
1095   if( pIdx->onError!=OE_None && i==pIdx->nColumn
1096       && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
1097     /* All terms of this index match some prefix of the ORDER BY clause
1098     ** and the index is UNIQUE and no terms on the tail of the ORDER BY
1099     ** clause reference other tables in a join.  If this is all true then
1100     ** the order by clause is superfluous. */
1101     return 1;
1102   }
1103   return 0;
1104 }
1105 
1106 /*
1107 ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
1108 ** by sorting in order of ROWID.  Return true if so and set *pbRev to be
1109 ** true for reverse ROWID and false for forward ROWID order.
1110 */
1111 static int sortableByRowid(
1112   int base,               /* Cursor number for table to be sorted */
1113   ExprList *pOrderBy,     /* The ORDER BY clause */
1114   ExprMaskSet *pMaskSet,  /* Mapping from tables to bitmaps */
1115   int *pbRev              /* Set to 1 if ORDER BY is DESC */
1116 ){
1117   Expr *p;
1118 
1119   assert( pOrderBy!=0 );
1120   assert( pOrderBy->nExpr>0 );
1121   p = pOrderBy->a[0].pExpr;
1122   if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1
1123     && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){
1124     *pbRev = pOrderBy->a[0].sortOrder;
1125     return 1;
1126   }
1127   return 0;
1128 }
1129 
1130 /*
1131 ** Prepare a crude estimate of the logarithm of the input value.
1132 ** The results need not be exact.  This is only used for estimating
1133 ** the total cost of performing operatings with O(logN) or O(NlogN)
1134 ** complexity.  Because N is just a guess, it is no great tragedy if
1135 ** logN is a little off.
1136 */
1137 static double estLog(double N){
1138   double logN = 1;
1139   double x = 10;
1140   while( N>x ){
1141     logN += 1;
1142     x *= 10;
1143   }
1144   return logN;
1145 }
1146 
1147 /*
1148 ** Two routines for printing the content of an sqlite3_index_info
1149 ** structure.  Used for testing and debugging only.  If neither
1150 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
1151 ** are no-ops.
1152 */
1153 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
1154 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
1155   int i;
1156   if( !sqlite3_where_trace ) return;
1157   for(i=0; i<p->nConstraint; i++){
1158     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
1159        i,
1160        p->aConstraint[i].iColumn,
1161        p->aConstraint[i].iTermOffset,
1162        p->aConstraint[i].op,
1163        p->aConstraint[i].usable);
1164   }
1165   for(i=0; i<p->nOrderBy; i++){
1166     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
1167        i,
1168        p->aOrderBy[i].iColumn,
1169        p->aOrderBy[i].desc);
1170   }
1171 }
1172 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
1173   int i;
1174   if( !sqlite3_where_trace ) return;
1175   for(i=0; i<p->nConstraint; i++){
1176     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
1177        i,
1178        p->aConstraintUsage[i].argvIndex,
1179        p->aConstraintUsage[i].omit);
1180   }
1181   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
1182   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
1183   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
1184   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
1185 }
1186 #else
1187 #define TRACE_IDX_INPUTS(A)
1188 #define TRACE_IDX_OUTPUTS(A)
1189 #endif
1190 
1191 #ifndef SQLITE_OMIT_VIRTUALTABLE
1192 /*
1193 ** Compute the best index for a virtual table.
1194 **
1195 ** The best index is computed by the xBestIndex method of the virtual
1196 ** table module.  This routine is really just a wrapper that sets up
1197 ** the sqlite3_index_info structure that is used to communicate with
1198 ** xBestIndex.
1199 **
1200 ** In a join, this routine might be called multiple times for the
1201 ** same virtual table.  The sqlite3_index_info structure is created
1202 ** and initialized on the first invocation and reused on all subsequent
1203 ** invocations.  The sqlite3_index_info structure is also used when
1204 ** code is generated to access the virtual table.  The whereInfoDelete()
1205 ** routine takes care of freeing the sqlite3_index_info structure after
1206 ** everybody has finished with it.
1207 */
1208 static double bestVirtualIndex(
1209   Parse *pParse,                 /* The parsing context */
1210   WhereClause *pWC,              /* The WHERE clause */
1211   struct SrcList_item *pSrc,     /* The FROM clause term to search */
1212   Bitmask notReady,              /* Mask of cursors that are not available */
1213   ExprList *pOrderBy,            /* The order by clause */
1214   int orderByUsable,             /* True if we can potential sort */
1215   sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */
1216 ){
1217   Table *pTab = pSrc->pTab;
1218   sqlite3_index_info *pIdxInfo;
1219   struct sqlite3_index_constraint *pIdxCons;
1220   struct sqlite3_index_orderby *pIdxOrderBy;
1221   struct sqlite3_index_constraint_usage *pUsage;
1222   WhereTerm *pTerm;
1223   int i, j;
1224   int nOrderBy;
1225   int rc;
1226 
1227   /* If the sqlite3_index_info structure has not been previously
1228   ** allocated and initialized for this virtual table, then allocate
1229   ** and initialize it now
1230   */
1231   pIdxInfo = *ppIdxInfo;
1232   if( pIdxInfo==0 ){
1233     WhereTerm *pTerm;
1234     int nTerm;
1235     WHERETRACE(("Recomputing index info for %s...\n", pTab->zName));
1236 
1237     /* Count the number of possible WHERE clause constraints referring
1238     ** to this virtual table */
1239     for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1240       if( pTerm->leftCursor != pSrc->iCursor ) continue;
1241       if( pTerm->eOperator==WO_IN ) continue;
1242       if( pTerm->eOperator==WO_ISNULL ) continue;
1243       nTerm++;
1244     }
1245 
1246     /* If the ORDER BY clause contains only columns in the current
1247     ** virtual table then allocate space for the aOrderBy part of
1248     ** the sqlite3_index_info structure.
1249     */
1250     nOrderBy = 0;
1251     if( pOrderBy ){
1252       for(i=0; i<pOrderBy->nExpr; i++){
1253         Expr *pExpr = pOrderBy->a[i].pExpr;
1254         if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
1255       }
1256       if( i==pOrderBy->nExpr ){
1257         nOrderBy = pOrderBy->nExpr;
1258       }
1259     }
1260 
1261     /* Allocate the sqlite3_index_info structure
1262     */
1263     pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
1264                              + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1265                              + sizeof(*pIdxOrderBy)*nOrderBy );
1266     if( pIdxInfo==0 ){
1267       sqlite3ErrorMsg(pParse, "out of memory");
1268       return 0.0;
1269     }
1270     *ppIdxInfo = pIdxInfo;
1271 
1272     /* Initialize the structure.  The sqlite3_index_info structure contains
1273     ** many fields that are declared "const" to prevent xBestIndex from
1274     ** changing them.  We have to do some funky casting in order to
1275     ** initialize those fields.
1276     */
1277     pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
1278     pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1279     pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1280     *(int*)&pIdxInfo->nConstraint = nTerm;
1281     *(int*)&pIdxInfo->nOrderBy = nOrderBy;
1282     *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
1283     *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
1284     *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
1285                                                                      pUsage;
1286 
1287     for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1288       if( pTerm->leftCursor != pSrc->iCursor ) continue;
1289       if( pTerm->eOperator==WO_IN ) continue;
1290       if( pTerm->eOperator==WO_ISNULL ) continue;
1291       pIdxCons[j].iColumn = pTerm->leftColumn;
1292       pIdxCons[j].iTermOffset = i;
1293       pIdxCons[j].op = pTerm->eOperator;
1294       /* The direct assignment in the previous line is possible only because
1295       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
1296       ** following asserts verify this fact. */
1297       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1298       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1299       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1300       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1301       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1302       assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
1303       assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
1304       j++;
1305     }
1306     for(i=0; i<nOrderBy; i++){
1307       Expr *pExpr = pOrderBy->a[i].pExpr;
1308       pIdxOrderBy[i].iColumn = pExpr->iColumn;
1309       pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
1310     }
1311   }
1312 
1313   /* At this point, the sqlite3_index_info structure that pIdxInfo points
1314   ** to will have been initialized, either during the current invocation or
1315   ** during some prior invocation.  Now we just have to customize the
1316   ** details of pIdxInfo for the current invocation and pass it to
1317   ** xBestIndex.
1318   */
1319 
1320   /* The module name must be defined. Also, by this point there must
1321   ** be a pointer to an sqlite3_vtab structure. Otherwise
1322   ** sqlite3ViewGetColumnNames() would have picked up the error.
1323   */
1324   assert( pTab->azModuleArg && pTab->azModuleArg[0] );
1325   assert( pTab->pVtab );
1326 #if 0
1327   if( pTab->pVtab==0 ){
1328     sqlite3ErrorMsg(pParse, "undefined module %s for table %s",
1329         pTab->azModuleArg[0], pTab->zName);
1330     return 0.0;
1331   }
1332 #endif
1333 
1334   /* Set the aConstraint[].usable fields and initialize all
1335   ** output variables to zero.
1336   **
1337   ** aConstraint[].usable is true for constraints where the right-hand
1338   ** side contains only references to tables to the left of the current
1339   ** table.  In other words, if the constraint is of the form:
1340   **
1341   **           column = expr
1342   **
1343   ** and we are evaluating a join, then the constraint on column is
1344   ** only valid if all tables referenced in expr occur to the left
1345   ** of the table containing column.
1346   **
1347   ** The aConstraints[] array contains entries for all constraints
1348   ** on the current table.  That way we only have to compute it once
1349   ** even though we might try to pick the best index multiple times.
1350   ** For each attempt at picking an index, the order of tables in the
1351   ** join might be different so we have to recompute the usable flag
1352   ** each time.
1353   */
1354   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
1355   pUsage = pIdxInfo->aConstraintUsage;
1356   for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
1357     j = pIdxCons->iTermOffset;
1358     pTerm = &pWC->a[j];
1359     pIdxCons->usable =  (pTerm->prereqRight & notReady)==0;
1360   }
1361   memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
1362   if( pIdxInfo->needToFreeIdxStr ){
1363     sqlite3_free(pIdxInfo->idxStr);
1364   }
1365   pIdxInfo->idxStr = 0;
1366   pIdxInfo->idxNum = 0;
1367   pIdxInfo->needToFreeIdxStr = 0;
1368   pIdxInfo->orderByConsumed = 0;
1369   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0;
1370   nOrderBy = pIdxInfo->nOrderBy;
1371   if( pIdxInfo->nOrderBy && !orderByUsable ){
1372     *(int*)&pIdxInfo->nOrderBy = 0;
1373   }
1374 
1375   sqlite3SafetyOff(pParse->db);
1376   WHERETRACE(("xBestIndex for %s\n", pTab->zName));
1377   TRACE_IDX_INPUTS(pIdxInfo);
1378   rc = pTab->pVtab->pModule->xBestIndex(pTab->pVtab, pIdxInfo);
1379   TRACE_IDX_OUTPUTS(pIdxInfo);
1380   if( rc!=SQLITE_OK ){
1381     if( rc==SQLITE_NOMEM ){
1382       pParse->db->mallocFailed = 1;
1383     }else {
1384       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1385     }
1386     sqlite3SafetyOn(pParse->db);
1387   }else{
1388     rc = sqlite3SafetyOn(pParse->db);
1389   }
1390   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
1391 
1392   return pIdxInfo->estimatedCost;
1393 }
1394 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1395 
1396 /*
1397 ** Find the best index for accessing a particular table.  Return a pointer
1398 ** to the index, flags that describe how the index should be used, the
1399 ** number of equality constraints, and the "cost" for this index.
1400 **
1401 ** The lowest cost index wins.  The cost is an estimate of the amount of
1402 ** CPU and disk I/O need to process the request using the selected index.
1403 ** Factors that influence cost include:
1404 **
1405 **    *  The estimated number of rows that will be retrieved.  (The
1406 **       fewer the better.)
1407 **
1408 **    *  Whether or not sorting must occur.
1409 **
1410 **    *  Whether or not there must be separate lookups in the
1411 **       index and in the main table.
1412 **
1413 */
1414 static double bestIndex(
1415   Parse *pParse,              /* The parsing context */
1416   WhereClause *pWC,           /* The WHERE clause */
1417   struct SrcList_item *pSrc,  /* The FROM clause term to search */
1418   Bitmask notReady,           /* Mask of cursors that are not available */
1419   ExprList *pOrderBy,         /* The order by clause */
1420   Index **ppIndex,            /* Make *ppIndex point to the best index */
1421   int *pFlags,                /* Put flags describing this choice in *pFlags */
1422   int *pnEq                   /* Put the number of == or IN constraints here */
1423 ){
1424   WhereTerm *pTerm;
1425   Index *bestIdx = 0;         /* Index that gives the lowest cost */
1426   double lowestCost;          /* The cost of using bestIdx */
1427   int bestFlags = 0;          /* Flags associated with bestIdx */
1428   int bestNEq = 0;            /* Best value for nEq */
1429   int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
1430   Index *pProbe;              /* An index we are evaluating */
1431   int rev;                    /* True to scan in reverse order */
1432   int flags;                  /* Flags associated with pProbe */
1433   int nEq;                    /* Number of == or IN constraints */
1434   int eqTermMask;             /* Mask of valid equality operators */
1435   double cost;                /* Cost of using pProbe */
1436 
1437   WHERETRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady));
1438   lowestCost = SQLITE_BIG_DBL;
1439   pProbe = pSrc->pTab->pIndex;
1440 
1441   /* If the table has no indices and there are no terms in the where
1442   ** clause that refer to the ROWID, then we will never be able to do
1443   ** anything other than a full table scan on this table.  We might as
1444   ** well put it first in the join order.  That way, perhaps it can be
1445   ** referenced by other tables in the join.
1446   */
1447   if( pProbe==0 &&
1448      findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 &&
1449      (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){
1450     *pFlags = 0;
1451     *ppIndex = 0;
1452     *pnEq = 0;
1453     return 0.0;
1454   }
1455 
1456   /* Check for a rowid=EXPR or rowid IN (...) constraints
1457   */
1458   pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
1459   if( pTerm ){
1460     Expr *pExpr;
1461     *ppIndex = 0;
1462     bestFlags = WHERE_ROWID_EQ;
1463     if( pTerm->eOperator & WO_EQ ){
1464       /* Rowid== is always the best pick.  Look no further.  Because only
1465       ** a single row is generated, output is always in sorted order */
1466       *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE;
1467       *pnEq = 1;
1468       WHERETRACE(("... best is rowid\n"));
1469       return 0.0;
1470     }else if( (pExpr = pTerm->pExpr)->pList!=0 ){
1471       /* Rowid IN (LIST): cost is NlogN where N is the number of list
1472       ** elements.  */
1473       lowestCost = pExpr->pList->nExpr;
1474       lowestCost *= estLog(lowestCost);
1475     }else{
1476       /* Rowid IN (SELECT): cost is NlogN where N is the number of rows
1477       ** in the result of the inner select.  We have no way to estimate
1478       ** that value so make a wild guess. */
1479       lowestCost = 200;
1480     }
1481     WHERETRACE(("... rowid IN cost: %.9g\n", lowestCost));
1482   }
1483 
1484   /* Estimate the cost of a table scan.  If we do not know how many
1485   ** entries are in the table, use 1 million as a guess.
1486   */
1487   cost = pProbe ? pProbe->aiRowEst[0] : 1000000;
1488   WHERETRACE(("... table scan base cost: %.9g\n", cost));
1489   flags = WHERE_ROWID_RANGE;
1490 
1491   /* Check for constraints on a range of rowids in a table scan.
1492   */
1493   pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0);
1494   if( pTerm ){
1495     if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){
1496       flags |= WHERE_TOP_LIMIT;
1497       cost /= 3;  /* Guess that rowid<EXPR eliminates two-thirds or rows */
1498     }
1499     if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){
1500       flags |= WHERE_BTM_LIMIT;
1501       cost /= 3;  /* Guess that rowid>EXPR eliminates two-thirds of rows */
1502     }
1503     WHERETRACE(("... rowid range reduces cost to %.9g\n", cost));
1504   }else{
1505     flags = 0;
1506   }
1507 
1508   /* If the table scan does not satisfy the ORDER BY clause, increase
1509   ** the cost by NlogN to cover the expense of sorting. */
1510   if( pOrderBy ){
1511     if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){
1512       flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE;
1513       if( rev ){
1514         flags |= WHERE_REVERSE;
1515       }
1516     }else{
1517       cost += cost*estLog(cost);
1518       WHERETRACE(("... sorting increases cost to %.9g\n", cost));
1519     }
1520   }
1521   if( cost<lowestCost ){
1522     lowestCost = cost;
1523     bestFlags = flags;
1524   }
1525 
1526   /* If the pSrc table is the right table of a LEFT JOIN then we may not
1527   ** use an index to satisfy IS NULL constraints on that table.  This is
1528   ** because columns might end up being NULL if the table does not match -
1529   ** a circumstance which the index cannot help us discover.  Ticket #2177.
1530   */
1531   if( (pSrc->jointype & JT_LEFT)!=0 ){
1532     eqTermMask = WO_EQ|WO_IN;
1533   }else{
1534     eqTermMask = WO_EQ|WO_IN|WO_ISNULL;
1535   }
1536 
1537   /* Look at each index.
1538   */
1539   for(; pProbe; pProbe=pProbe->pNext){
1540     int i;                       /* Loop counter */
1541     double inMultiplier = 1;
1542 
1543     WHERETRACE(("... index %s:\n", pProbe->zName));
1544 
1545     /* Count the number of columns in the index that are satisfied
1546     ** by x=EXPR constraints or x IN (...) constraints.
1547     */
1548     flags = 0;
1549     for(i=0; i<pProbe->nColumn; i++){
1550       int j = pProbe->aiColumn[i];
1551       pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe);
1552       if( pTerm==0 ) break;
1553       flags |= WHERE_COLUMN_EQ;
1554       if( pTerm->eOperator & WO_IN ){
1555         Expr *pExpr = pTerm->pExpr;
1556         flags |= WHERE_COLUMN_IN;
1557         if( pExpr->pSelect!=0 ){
1558           inMultiplier *= 25;
1559         }else if( pExpr->pList!=0 ){
1560           inMultiplier *= pExpr->pList->nExpr + 1;
1561         }
1562       }
1563     }
1564     cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier);
1565     nEq = i;
1566     if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0
1567          && nEq==pProbe->nColumn ){
1568       flags |= WHERE_UNIQUE;
1569     }
1570     WHERETRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n",nEq,inMultiplier,cost));
1571 
1572     /* Look for range constraints
1573     */
1574     if( nEq<pProbe->nColumn ){
1575       int j = pProbe->aiColumn[nEq];
1576       pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe);
1577       if( pTerm ){
1578         flags |= WHERE_COLUMN_RANGE;
1579         if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){
1580           flags |= WHERE_TOP_LIMIT;
1581           cost /= 3;
1582         }
1583         if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){
1584           flags |= WHERE_BTM_LIMIT;
1585           cost /= 3;
1586         }
1587         WHERETRACE(("...... range reduces cost to %.9g\n", cost));
1588       }
1589     }
1590 
1591     /* Add the additional cost of sorting if that is a factor.
1592     */
1593     if( pOrderBy ){
1594       if( (flags & WHERE_COLUMN_IN)==0 &&
1595            isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){
1596         if( flags==0 ){
1597           flags = WHERE_COLUMN_RANGE;
1598         }
1599         flags |= WHERE_ORDERBY;
1600         if( rev ){
1601           flags |= WHERE_REVERSE;
1602         }
1603       }else{
1604         cost += cost*estLog(cost);
1605         WHERETRACE(("...... orderby increases cost to %.9g\n", cost));
1606       }
1607     }
1608 
1609     /* Check to see if we can get away with using just the index without
1610     ** ever reading the table.  If that is the case, then halve the
1611     ** cost of this index.
1612     */
1613     if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){
1614       Bitmask m = pSrc->colUsed;
1615       int j;
1616       for(j=0; j<pProbe->nColumn; j++){
1617         int x = pProbe->aiColumn[j];
1618         if( x<BMS-1 ){
1619           m &= ~(((Bitmask)1)<<x);
1620         }
1621       }
1622       if( m==0 ){
1623         flags |= WHERE_IDX_ONLY;
1624         cost /= 2;
1625         WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost));
1626       }
1627     }
1628 
1629     /* If this index has achieved the lowest cost so far, then use it.
1630     */
1631     if( flags && cost < lowestCost ){
1632       bestIdx = pProbe;
1633       lowestCost = cost;
1634       bestFlags = flags;
1635       bestNEq = nEq;
1636     }
1637   }
1638 
1639   /* Report the best result
1640   */
1641   *ppIndex = bestIdx;
1642   WHERETRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n",
1643         bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq));
1644   *pFlags = bestFlags | eqTermMask;
1645   *pnEq = bestNEq;
1646   return lowestCost;
1647 }
1648 
1649 
1650 /*
1651 ** Disable a term in the WHERE clause.  Except, do not disable the term
1652 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
1653 ** or USING clause of that join.
1654 **
1655 ** Consider the term t2.z='ok' in the following queries:
1656 **
1657 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
1658 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
1659 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
1660 **
1661 ** The t2.z='ok' is disabled in the in (2) because it originates
1662 ** in the ON clause.  The term is disabled in (3) because it is not part
1663 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
1664 **
1665 ** Disabling a term causes that term to not be tested in the inner loop
1666 ** of the join.  Disabling is an optimization.  When terms are satisfied
1667 ** by indices, we disable them to prevent redundant tests in the inner
1668 ** loop.  We would get the correct results if nothing were ever disabled,
1669 ** but joins might run a little slower.  The trick is to disable as much
1670 ** as we can without disabling too much.  If we disabled in (1), we'd get
1671 ** the wrong answer.  See ticket #813.
1672 */
1673 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
1674   if( pTerm
1675       && (pTerm->flags & TERM_CODED)==0
1676       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
1677   ){
1678     pTerm->flags |= TERM_CODED;
1679     if( pTerm->iParent>=0 ){
1680       WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
1681       if( (--pOther->nChild)==0 ){
1682         disableTerm(pLevel, pOther);
1683       }
1684     }
1685   }
1686 }
1687 
1688 /*
1689 ** Generate code that builds a probe for an index.
1690 **
1691 ** There should be nColumn values on the stack.  The index
1692 ** to be probed is pIdx.  Pop the values from the stack and
1693 ** replace them all with a single record that is the index
1694 ** problem.
1695 */
1696 static void buildIndexProbe(
1697   Vdbe *v,        /* Generate code into this VM */
1698   int nColumn,    /* The number of columns to check for NULL */
1699   Index *pIdx     /* Index that we will be searching */
1700 ){
1701   sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
1702   sqlite3IndexAffinityStr(v, pIdx);
1703 }
1704 
1705 
1706 /*
1707 ** Generate code for a single equality term of the WHERE clause.  An equality
1708 ** term can be either X=expr or X IN (...).   pTerm is the term to be
1709 ** coded.
1710 **
1711 ** The current value for the constraint is left on the top of the stack.
1712 **
1713 ** For a constraint of the form X=expr, the expression is evaluated and its
1714 ** result is left on the stack.  For constraints of the form X IN (...)
1715 ** this routine sets up a loop that will iterate over all values of X.
1716 */
1717 static void codeEqualityTerm(
1718   Parse *pParse,      /* The parsing context */
1719   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
1720   WhereLevel *pLevel  /* When level of the FROM clause we are working on */
1721 ){
1722   Expr *pX = pTerm->pExpr;
1723   Vdbe *v = pParse->pVdbe;
1724   if( pX->op==TK_EQ ){
1725     sqlite3ExprCode(pParse, pX->pRight);
1726   }else if( pX->op==TK_ISNULL ){
1727     sqlite3VdbeAddOp(v, OP_Null, 0, 0);
1728 #ifndef SQLITE_OMIT_SUBQUERY
1729   }else{
1730     int iTab;
1731     struct InLoop *pIn;
1732 
1733     assert( pX->op==TK_IN );
1734     sqlite3CodeSubselect(pParse, pX);
1735     iTab = pX->iTable;
1736     sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0);
1737     VdbeComment((v, "# %.*s", pX->span.n, pX->span.z));
1738     if( pLevel->nIn==0 ){
1739       pLevel->nxt = sqlite3VdbeMakeLabel(v);
1740     }
1741     pLevel->nIn++;
1742     pLevel->aInLoop = sqlite3DbReallocOrFree(pParse->db, pLevel->aInLoop,
1743                                     sizeof(pLevel->aInLoop[0])*pLevel->nIn);
1744     pIn = pLevel->aInLoop;
1745     if( pIn ){
1746       pIn += pLevel->nIn - 1;
1747       pIn->iCur = iTab;
1748       pIn->topAddr = sqlite3VdbeAddOp(v, OP_Column, iTab, 0);
1749       sqlite3VdbeAddOp(v, OP_IsNull, -1, 0);
1750     }else{
1751       pLevel->nIn = 0;
1752     }
1753 #endif
1754   }
1755   disableTerm(pLevel, pTerm);
1756 }
1757 
1758 /*
1759 ** Generate code that will evaluate all == and IN constraints for an
1760 ** index.  The values for all constraints are left on the stack.
1761 **
1762 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
1763 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
1764 ** The index has as many as three equality constraints, but in this
1765 ** example, the third "c" value is an inequality.  So only two
1766 ** constraints are coded.  This routine will generate code to evaluate
1767 ** a==5 and b IN (1,2,3).  The current values for a and b will be left
1768 ** on the stack - a is the deepest and b the shallowest.
1769 **
1770 ** In the example above nEq==2.  But this subroutine works for any value
1771 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
1772 ** The only thing it does is allocate the pLevel->iMem memory cell.
1773 **
1774 ** This routine always allocates at least one memory cell and puts
1775 ** the address of that memory cell in pLevel->iMem.  The code that
1776 ** calls this routine will use pLevel->iMem to store the termination
1777 ** key value of the loop.  If one or more IN operators appear, then
1778 ** this routine allocates an additional nEq memory cells for internal
1779 ** use.
1780 */
1781 static void codeAllEqualityTerms(
1782   Parse *pParse,        /* Parsing context */
1783   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
1784   WhereClause *pWC,     /* The WHERE clause */
1785   Bitmask notReady      /* Which parts of FROM have not yet been coded */
1786 ){
1787   int nEq = pLevel->nEq;        /* The number of == or IN constraints to code */
1788   int termsInMem = 0;           /* If true, store value in mem[] cells */
1789   Vdbe *v = pParse->pVdbe;      /* The virtual machine under construction */
1790   Index *pIdx = pLevel->pIdx;   /* The index being used for this loop */
1791   int iCur = pLevel->iTabCur;   /* The cursor of the table */
1792   WhereTerm *pTerm;             /* A single constraint term */
1793   int j;                        /* Loop counter */
1794 
1795   /* Figure out how many memory cells we will need then allocate them.
1796   ** We always need at least one used to store the loop terminator
1797   ** value.  If there are IN operators we'll need one for each == or
1798   ** IN constraint.
1799   */
1800   pLevel->iMem = pParse->nMem++;
1801   if( pLevel->flags & WHERE_COLUMN_IN ){
1802     pParse->nMem += pLevel->nEq;
1803     termsInMem = 1;
1804   }
1805 
1806   /* Evaluate the equality constraints
1807   */
1808   assert( pIdx->nColumn>=nEq );
1809   for(j=0; j<nEq; j++){
1810     int k = pIdx->aiColumn[j];
1811     pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx);
1812     if( pTerm==0 ) break;
1813     assert( (pTerm->flags & TERM_CODED)==0 );
1814     codeEqualityTerm(pParse, pTerm, pLevel);
1815     if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
1816       sqlite3VdbeAddOp(v, OP_IsNull, termsInMem ? -1 : -(j+1), pLevel->brk);
1817     }
1818     if( termsInMem ){
1819       sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem+j+1, 1);
1820     }
1821   }
1822 
1823   /* Make sure all the constraint values are on the top of the stack
1824   */
1825   if( termsInMem ){
1826     for(j=0; j<nEq; j++){
1827       sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem+j+1, 0);
1828     }
1829   }
1830 }
1831 
1832 #if defined(SQLITE_TEST)
1833 /*
1834 ** The following variable holds a text description of query plan generated
1835 ** by the most recent call to sqlite3WhereBegin().  Each call to WhereBegin
1836 ** overwrites the previous.  This information is used for testing and
1837 ** analysis only.
1838 */
1839 char sqlite3_query_plan[BMS*2*40];  /* Text of the join */
1840 static int nQPlan = 0;              /* Next free slow in _query_plan[] */
1841 
1842 #endif /* SQLITE_TEST */
1843 
1844 
1845 /*
1846 ** Free a WhereInfo structure
1847 */
1848 static void whereInfoFree(WhereInfo *pWInfo){
1849   if( pWInfo ){
1850     int i;
1851     for(i=0; i<pWInfo->nLevel; i++){
1852       sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
1853       if( pInfo ){
1854         if( pInfo->needToFreeIdxStr ){
1855           /* Coverage: Don't think this can be reached. By the time this
1856           ** function is called, the index-strings have been passed
1857           ** to the vdbe layer for deletion.
1858           */
1859           sqlite3_free(pInfo->idxStr);
1860         }
1861         sqlite3_free(pInfo);
1862       }
1863     }
1864     sqlite3_free(pWInfo);
1865   }
1866 }
1867 
1868 
1869 /*
1870 ** Generate the beginning of the loop used for WHERE clause processing.
1871 ** The return value is a pointer to an opaque structure that contains
1872 ** information needed to terminate the loop.  Later, the calling routine
1873 ** should invoke sqlite3WhereEnd() with the return value of this function
1874 ** in order to complete the WHERE clause processing.
1875 **
1876 ** If an error occurs, this routine returns NULL.
1877 **
1878 ** The basic idea is to do a nested loop, one loop for each table in
1879 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
1880 ** same as a SELECT with only a single table in the FROM clause.)  For
1881 ** example, if the SQL is this:
1882 **
1883 **       SELECT * FROM t1, t2, t3 WHERE ...;
1884 **
1885 ** Then the code generated is conceptually like the following:
1886 **
1887 **      foreach row1 in t1 do       \    Code generated
1888 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
1889 **          foreach row3 in t3 do   /
1890 **            ...
1891 **          end                     \    Code generated
1892 **        end                        |-- by sqlite3WhereEnd()
1893 **      end                         /
1894 **
1895 ** Note that the loops might not be nested in the order in which they
1896 ** appear in the FROM clause if a different order is better able to make
1897 ** use of indices.  Note also that when the IN operator appears in
1898 ** the WHERE clause, it might result in additional nested loops for
1899 ** scanning through all values on the right-hand side of the IN.
1900 **
1901 ** There are Btree cursors associated with each table.  t1 uses cursor
1902 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
1903 ** And so forth.  This routine generates code to open those VDBE cursors
1904 ** and sqlite3WhereEnd() generates the code to close them.
1905 **
1906 ** The code that sqlite3WhereBegin() generates leaves the cursors named
1907 ** in pTabList pointing at their appropriate entries.  The [...] code
1908 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
1909 ** data from the various tables of the loop.
1910 **
1911 ** If the WHERE clause is empty, the foreach loops must each scan their
1912 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
1913 ** the tables have indices and there are terms in the WHERE clause that
1914 ** refer to those indices, a complete table scan can be avoided and the
1915 ** code will run much faster.  Most of the work of this routine is checking
1916 ** to see if there are indices that can be used to speed up the loop.
1917 **
1918 ** Terms of the WHERE clause are also used to limit which rows actually
1919 ** make it to the "..." in the middle of the loop.  After each "foreach",
1920 ** terms of the WHERE clause that use only terms in that loop and outer
1921 ** loops are evaluated and if false a jump is made around all subsequent
1922 ** inner loops (or around the "..." if the test occurs within the inner-
1923 ** most loop)
1924 **
1925 ** OUTER JOINS
1926 **
1927 ** An outer join of tables t1 and t2 is conceptally coded as follows:
1928 **
1929 **    foreach row1 in t1 do
1930 **      flag = 0
1931 **      foreach row2 in t2 do
1932 **        start:
1933 **          ...
1934 **          flag = 1
1935 **      end
1936 **      if flag==0 then
1937 **        move the row2 cursor to a null row
1938 **        goto start
1939 **      fi
1940 **    end
1941 **
1942 ** ORDER BY CLAUSE PROCESSING
1943 **
1944 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
1945 ** if there is one.  If there is no ORDER BY clause or if this routine
1946 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
1947 **
1948 ** If an index can be used so that the natural output order of the table
1949 ** scan is correct for the ORDER BY clause, then that index is used and
1950 ** *ppOrderBy is set to NULL.  This is an optimization that prevents an
1951 ** unnecessary sort of the result set if an index appropriate for the
1952 ** ORDER BY clause already exists.
1953 **
1954 ** If the where clause loops cannot be arranged to provide the correct
1955 ** output order, then the *ppOrderBy is unchanged.
1956 */
1957 WhereInfo *sqlite3WhereBegin(
1958   Parse *pParse,        /* The parser context */
1959   SrcList *pTabList,    /* A list of all tables to be scanned */
1960   Expr *pWhere,         /* The WHERE clause */
1961   ExprList **ppOrderBy  /* An ORDER BY clause, or NULL */
1962 ){
1963   int i;                     /* Loop counter */
1964   WhereInfo *pWInfo;         /* Will become the return value of this function */
1965   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
1966   int brk, cont = 0;         /* Addresses used during code generation */
1967   Bitmask notReady;          /* Cursors that are not yet positioned */
1968   WhereTerm *pTerm;          /* A single term in the WHERE clause */
1969   ExprMaskSet maskSet;       /* The expression mask set */
1970   WhereClause wc;            /* The WHERE clause is divided into these terms */
1971   struct SrcList_item *pTabItem;  /* A single entry from pTabList */
1972   WhereLevel *pLevel;             /* A single level in the pWInfo list */
1973   int iFrom;                      /* First unused FROM clause element */
1974   int andFlags;              /* AND-ed combination of all wc.a[].flags */
1975   sqlite3 *db;               /* Database connection */
1976 
1977   /* The number of tables in the FROM clause is limited by the number of
1978   ** bits in a Bitmask
1979   */
1980   if( pTabList->nSrc>BMS ){
1981     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
1982     return 0;
1983   }
1984 
1985   /* Split the WHERE clause into separate subexpressions where each
1986   ** subexpression is separated by an AND operator.
1987   */
1988   initMaskSet(&maskSet);
1989   whereClauseInit(&wc, pParse, &maskSet);
1990   whereSplit(&wc, pWhere, TK_AND);
1991 
1992   /* Allocate and initialize the WhereInfo structure that will become the
1993   ** return value.
1994   */
1995   db = pParse->db;
1996   pWInfo = sqlite3DbMallocZero(db,
1997                       sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
1998   if( db->mallocFailed ){
1999     goto whereBeginNoMem;
2000   }
2001   pWInfo->nLevel = pTabList->nSrc;
2002   pWInfo->pParse = pParse;
2003   pWInfo->pTabList = pTabList;
2004   pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
2005 
2006   /* Special case: a WHERE clause that is constant.  Evaluate the
2007   ** expression and either jump over all of the code or fall thru.
2008   */
2009   if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
2010     sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
2011     pWhere = 0;
2012   }
2013 
2014   /* Analyze all of the subexpressions.  Note that exprAnalyze() might
2015   ** add new virtual terms onto the end of the WHERE clause.  We do not
2016   ** want to analyze these virtual terms, so start analyzing at the end
2017   ** and work forward so that the added virtual terms are never processed.
2018   */
2019   for(i=0; i<pTabList->nSrc; i++){
2020     createMask(&maskSet, pTabList->a[i].iCursor);
2021   }
2022   exprAnalyzeAll(pTabList, &wc);
2023   if( db->mallocFailed ){
2024     goto whereBeginNoMem;
2025   }
2026 
2027   /* Chose the best index to use for each table in the FROM clause.
2028   **
2029   ** This loop fills in the following fields:
2030   **
2031   **   pWInfo->a[].pIdx      The index to use for this level of the loop.
2032   **   pWInfo->a[].flags     WHERE_xxx flags associated with pIdx
2033   **   pWInfo->a[].nEq       The number of == and IN constraints
2034   **   pWInfo->a[].iFrom     When term of the FROM clause is being coded
2035   **   pWInfo->a[].iTabCur   The VDBE cursor for the database table
2036   **   pWInfo->a[].iIdxCur   The VDBE cursor for the index
2037   **
2038   ** This loop also figures out the nesting order of tables in the FROM
2039   ** clause.
2040   */
2041   notReady = ~(Bitmask)0;
2042   pTabItem = pTabList->a;
2043   pLevel = pWInfo->a;
2044   andFlags = ~0;
2045   WHERETRACE(("*** Optimizer Start ***\n"));
2046   for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
2047     Index *pIdx;                /* Index for FROM table at pTabItem */
2048     int flags;                  /* Flags asssociated with pIdx */
2049     int nEq;                    /* Number of == or IN constraints */
2050     double cost;                /* The cost for pIdx */
2051     int j;                      /* For looping over FROM tables */
2052     Index *pBest = 0;           /* The best index seen so far */
2053     int bestFlags = 0;          /* Flags associated with pBest */
2054     int bestNEq = 0;            /* nEq associated with pBest */
2055     double lowestCost;          /* Cost of the pBest */
2056     int bestJ = 0;              /* The value of j */
2057     Bitmask m;                  /* Bitmask value for j or bestJ */
2058     int once = 0;               /* True when first table is seen */
2059     sqlite3_index_info *pIndex; /* Current virtual index */
2060 
2061     lowestCost = SQLITE_BIG_DBL;
2062     for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){
2063       int doNotReorder;  /* True if this table should not be reordered */
2064 
2065       doNotReorder =  (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
2066       if( once && doNotReorder ) break;
2067       m = getMask(&maskSet, pTabItem->iCursor);
2068       if( (m & notReady)==0 ){
2069         if( j==iFrom ) iFrom++;
2070         continue;
2071       }
2072       assert( pTabItem->pTab );
2073 #ifndef SQLITE_OMIT_VIRTUALTABLE
2074       if( IsVirtual(pTabItem->pTab) ){
2075         sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo;
2076         cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady,
2077                                 ppOrderBy ? *ppOrderBy : 0, i==0,
2078                                 ppIdxInfo);
2079         flags = WHERE_VIRTUALTABLE;
2080         pIndex = *ppIdxInfo;
2081         if( pIndex && pIndex->orderByConsumed ){
2082           flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY;
2083         }
2084         pIdx = 0;
2085         nEq = 0;
2086         if( (SQLITE_BIG_DBL/2.0)<cost ){
2087           /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
2088           ** inital value of lowestCost in this loop. If it is, then
2089           ** the (cost<lowestCost) test below will never be true and
2090           ** pLevel->pBestIdx never set.
2091           */
2092           cost = (SQLITE_BIG_DBL/2.0);
2093         }
2094       }else
2095 #endif
2096       {
2097         cost = bestIndex(pParse, &wc, pTabItem, notReady,
2098                          (i==0 && ppOrderBy) ? *ppOrderBy : 0,
2099                          &pIdx, &flags, &nEq);
2100         pIndex = 0;
2101       }
2102       if( cost<lowestCost ){
2103         once = 1;
2104         lowestCost = cost;
2105         pBest = pIdx;
2106         bestFlags = flags;
2107         bestNEq = nEq;
2108         bestJ = j;
2109         pLevel->pBestIdx = pIndex;
2110       }
2111       if( doNotReorder ) break;
2112     }
2113     WHERETRACE(("*** Optimizer choose table %d for loop %d\n", bestJ,
2114            pLevel-pWInfo->a));
2115     if( (bestFlags & WHERE_ORDERBY)!=0 ){
2116       *ppOrderBy = 0;
2117     }
2118     andFlags &= bestFlags;
2119     pLevel->flags = bestFlags;
2120     pLevel->pIdx = pBest;
2121     pLevel->nEq = bestNEq;
2122     pLevel->aInLoop = 0;
2123     pLevel->nIn = 0;
2124     if( pBest ){
2125       pLevel->iIdxCur = pParse->nTab++;
2126     }else{
2127       pLevel->iIdxCur = -1;
2128     }
2129     notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor);
2130     pLevel->iFrom = bestJ;
2131   }
2132   WHERETRACE(("*** Optimizer Finished ***\n"));
2133 
2134   /* If the total query only selects a single row, then the ORDER BY
2135   ** clause is irrelevant.
2136   */
2137   if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
2138     *ppOrderBy = 0;
2139   }
2140 
2141   /* Open all tables in the pTabList and any indices selected for
2142   ** searching those tables.
2143   */
2144   sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
2145   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
2146     Table *pTab;     /* Table to open */
2147     Index *pIx;      /* Index used to access pTab (if any) */
2148     int iDb;         /* Index of database containing table/index */
2149     int iIdxCur = pLevel->iIdxCur;
2150 
2151 #ifndef SQLITE_OMIT_EXPLAIN
2152     if( pParse->explain==2 ){
2153       char *zMsg;
2154       struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
2155       zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName);
2156       if( pItem->zAlias ){
2157         zMsg = sqlite3MPrintf(db, "%z AS %s", zMsg, pItem->zAlias);
2158       }
2159       if( (pIx = pLevel->pIdx)!=0 ){
2160         zMsg = sqlite3MPrintf(db, "%z WITH INDEX %s", zMsg, pIx->zName);
2161       }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
2162         zMsg = sqlite3MPrintf(db, "%z USING PRIMARY KEY", zMsg);
2163       }
2164 #ifndef SQLITE_OMIT_VIRTUALTABLE
2165       else if( pLevel->pBestIdx ){
2166         sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
2167         zMsg = sqlite3MPrintf(db, "%z VIRTUAL TABLE INDEX %d:%s", zMsg,
2168                     pBestIdx->idxNum, pBestIdx->idxStr);
2169       }
2170 #endif
2171       if( pLevel->flags & WHERE_ORDERBY ){
2172         zMsg = sqlite3MPrintf(db, "%z ORDER BY", zMsg);
2173       }
2174       sqlite3VdbeOp3(v, OP_Explain, i, pLevel->iFrom, zMsg, P3_DYNAMIC);
2175     }
2176 #endif /* SQLITE_OMIT_EXPLAIN */
2177     pTabItem = &pTabList->a[pLevel->iFrom];
2178     pTab = pTabItem->pTab;
2179     iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2180     if( pTab->isEphem || pTab->pSelect ) continue;
2181 #ifndef SQLITE_OMIT_VIRTUALTABLE
2182     if( pLevel->pBestIdx ){
2183       int iCur = pTabItem->iCursor;
2184       sqlite3VdbeOp3(v, OP_VOpen, iCur, 0, (const char*)pTab->pVtab, P3_VTAB);
2185     }else
2186 #endif
2187     if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
2188       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, OP_OpenRead);
2189       if( pTab->nCol<(sizeof(Bitmask)*8) ){
2190         Bitmask b = pTabItem->colUsed;
2191         int n = 0;
2192         for(; b; b=b>>1, n++){}
2193         sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-1, n);
2194         assert( n<=pTab->nCol );
2195       }
2196     }else{
2197       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2198     }
2199     pLevel->iTabCur = pTabItem->iCursor;
2200     if( (pIx = pLevel->pIdx)!=0 ){
2201       KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
2202       assert( pIx->pSchema==pTab->pSchema );
2203       sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
2204       VdbeComment((v, "# %s", pIx->zName));
2205       sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum,
2206                      (char*)pKey, P3_KEYINFO_HANDOFF);
2207     }
2208     if( (pLevel->flags & (WHERE_IDX_ONLY|WHERE_COLUMN_RANGE))!=0 ){
2209       /* Only call OP_SetNumColumns on the index if we might later use
2210       ** OP_Column on the index. */
2211       sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1);
2212     }
2213     sqlite3CodeVerifySchema(pParse, iDb);
2214   }
2215   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
2216 
2217   /* Generate the code to do the search.  Each iteration of the for
2218   ** loop below generates code for a single nested loop of the VM
2219   ** program.
2220   */
2221   notReady = ~(Bitmask)0;
2222   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
2223     int j;
2224     int iCur = pTabItem->iCursor;  /* The VDBE cursor for the table */
2225     Index *pIdx;       /* The index we will be using */
2226     int nxt;           /* Where to jump to continue with the next IN case */
2227     int iIdxCur;       /* The VDBE cursor for the index */
2228     int omitTable;     /* True if we use the index only */
2229     int bRev;          /* True if we need to scan in reverse order */
2230 
2231     pTabItem = &pTabList->a[pLevel->iFrom];
2232     iCur = pTabItem->iCursor;
2233     pIdx = pLevel->pIdx;
2234     iIdxCur = pLevel->iIdxCur;
2235     bRev = (pLevel->flags & WHERE_REVERSE)!=0;
2236     omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0;
2237 
2238     /* Create labels for the "break" and "continue" instructions
2239     ** for the current loop.  Jump to brk to break out of a loop.
2240     ** Jump to cont to go immediately to the next iteration of the
2241     ** loop.
2242     **
2243     ** When there is an IN operator, we also have a "nxt" label that
2244     ** means to continue with the next IN value combination.  When
2245     ** there are no IN operators in the constraints, the "nxt" label
2246     ** is the same as "brk".
2247     */
2248     brk = pLevel->brk = pLevel->nxt = sqlite3VdbeMakeLabel(v);
2249     cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
2250 
2251     /* If this is the right table of a LEFT OUTER JOIN, allocate and
2252     ** initialize a memory cell that records if this table matches any
2253     ** row of the left table of the join.
2254     */
2255     if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
2256       if( !pParse->nMem ) pParse->nMem++;
2257       pLevel->iLeftJoin = pParse->nMem++;
2258       sqlite3VdbeAddOp(v, OP_MemInt, 0, pLevel->iLeftJoin);
2259       VdbeComment((v, "# init LEFT JOIN no-match flag"));
2260     }
2261 
2262 #ifndef SQLITE_OMIT_VIRTUALTABLE
2263     if( pLevel->pBestIdx ){
2264       /* Case 0:  The table is a virtual-table.  Use the VFilter and VNext
2265       **          to access the data.
2266       */
2267       int j;
2268       sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
2269       int nConstraint = pBestIdx->nConstraint;
2270       struct sqlite3_index_constraint_usage *aUsage =
2271                                                   pBestIdx->aConstraintUsage;
2272       const struct sqlite3_index_constraint *aConstraint =
2273                                                   pBestIdx->aConstraint;
2274 
2275       for(j=1; j<=nConstraint; j++){
2276         int k;
2277         for(k=0; k<nConstraint; k++){
2278           if( aUsage[k].argvIndex==j ){
2279             int iTerm = aConstraint[k].iTermOffset;
2280             sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight);
2281             break;
2282           }
2283         }
2284         if( k==nConstraint ) break;
2285       }
2286       sqlite3VdbeAddOp(v, OP_Integer, j-1, 0);
2287       sqlite3VdbeAddOp(v, OP_Integer, pBestIdx->idxNum, 0);
2288       sqlite3VdbeOp3(v, OP_VFilter, iCur, brk, pBestIdx->idxStr,
2289                       pBestIdx->needToFreeIdxStr ? P3_MPRINTF : P3_STATIC);
2290       pBestIdx->needToFreeIdxStr = 0;
2291       for(j=0; j<pBestIdx->nConstraint; j++){
2292         if( aUsage[j].omit ){
2293           int iTerm = aConstraint[j].iTermOffset;
2294           disableTerm(pLevel, &wc.a[iTerm]);
2295         }
2296       }
2297       pLevel->op = OP_VNext;
2298       pLevel->p1 = iCur;
2299       pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2300     }else
2301 #endif /* SQLITE_OMIT_VIRTUALTABLE */
2302 
2303     if( pLevel->flags & WHERE_ROWID_EQ ){
2304       /* Case 1:  We can directly reference a single row using an
2305       **          equality comparison against the ROWID field.  Or
2306       **          we reference multiple rows using a "rowid IN (...)"
2307       **          construct.
2308       */
2309       pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0);
2310       assert( pTerm!=0 );
2311       assert( pTerm->pExpr!=0 );
2312       assert( pTerm->leftCursor==iCur );
2313       assert( omitTable==0 );
2314       codeEqualityTerm(pParse, pTerm, pLevel);
2315       nxt = pLevel->nxt;
2316       sqlite3VdbeAddOp(v, OP_MustBeInt, 1, nxt);
2317       sqlite3VdbeAddOp(v, OP_NotExists, iCur, nxt);
2318       VdbeComment((v, "pk"));
2319       pLevel->op = OP_Noop;
2320     }else if( pLevel->flags & WHERE_ROWID_RANGE ){
2321       /* Case 2:  We have an inequality comparison against the ROWID field.
2322       */
2323       int testOp = OP_Noop;
2324       int start;
2325       WhereTerm *pStart, *pEnd;
2326 
2327       assert( omitTable==0 );
2328       pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0);
2329       pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0);
2330       if( bRev ){
2331         pTerm = pStart;
2332         pStart = pEnd;
2333         pEnd = pTerm;
2334       }
2335       if( pStart ){
2336         Expr *pX;
2337         pX = pStart->pExpr;
2338         assert( pX!=0 );
2339         assert( pStart->leftCursor==iCur );
2340         sqlite3ExprCode(pParse, pX->pRight);
2341         sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk);
2342         sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk);
2343         VdbeComment((v, "pk"));
2344         disableTerm(pLevel, pStart);
2345       }else{
2346         sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
2347       }
2348       if( pEnd ){
2349         Expr *pX;
2350         pX = pEnd->pExpr;
2351         assert( pX!=0 );
2352         assert( pEnd->leftCursor==iCur );
2353         sqlite3ExprCode(pParse, pX->pRight);
2354         pLevel->iMem = pParse->nMem++;
2355         sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
2356         if( pX->op==TK_LT || pX->op==TK_GT ){
2357           testOp = bRev ? OP_Le : OP_Ge;
2358         }else{
2359           testOp = bRev ? OP_Lt : OP_Gt;
2360         }
2361         disableTerm(pLevel, pEnd);
2362       }
2363       start = sqlite3VdbeCurrentAddr(v);
2364       pLevel->op = bRev ? OP_Prev : OP_Next;
2365       pLevel->p1 = iCur;
2366       pLevel->p2 = start;
2367       if( testOp!=OP_Noop ){
2368         sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
2369         sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
2370         sqlite3VdbeAddOp(v, testOp, SQLITE_AFF_NUMERIC|0x100, brk);
2371       }
2372     }else if( pLevel->flags & WHERE_COLUMN_RANGE ){
2373       /* Case 3: The WHERE clause term that refers to the right-most
2374       **         column of the index is an inequality.  For example, if
2375       **         the index is on (x,y,z) and the WHERE clause is of the
2376       **         form "x=5 AND y<10" then this case is used.  Only the
2377       **         right-most column can be an inequality - the rest must
2378       **         use the "==" and "IN" operators.
2379       **
2380       **         This case is also used when there are no WHERE clause
2381       **         constraints but an index is selected anyway, in order
2382       **         to force the output order to conform to an ORDER BY.
2383       */
2384       int start;
2385       int nEq = pLevel->nEq;
2386       int topEq=0;        /* True if top limit uses ==. False is strictly < */
2387       int btmEq=0;        /* True if btm limit uses ==. False if strictly > */
2388       int topOp, btmOp;   /* Operators for the top and bottom search bounds */
2389       int testOp;
2390       int topLimit = (pLevel->flags & WHERE_TOP_LIMIT)!=0;
2391       int btmLimit = (pLevel->flags & WHERE_BTM_LIMIT)!=0;
2392 
2393       /* Generate code to evaluate all constraint terms using == or IN
2394       ** and level the values of those terms on the stack.
2395       */
2396       codeAllEqualityTerms(pParse, pLevel, &wc, notReady);
2397 
2398       /* Duplicate the equality term values because they will all be
2399       ** used twice: once to make the termination key and once to make the
2400       ** start key.
2401       */
2402       for(j=0; j<nEq; j++){
2403         sqlite3VdbeAddOp(v, OP_Dup, nEq-1, 0);
2404       }
2405 
2406       /* Figure out what comparison operators to use for top and bottom
2407       ** search bounds. For an ascending index, the bottom bound is a > or >=
2408       ** operator and the top bound is a < or <= operator.  For a descending
2409       ** index the operators are reversed.
2410       */
2411       if( pIdx->aSortOrder[nEq]==SQLITE_SO_ASC ){
2412         topOp = WO_LT|WO_LE;
2413         btmOp = WO_GT|WO_GE;
2414       }else{
2415         topOp = WO_GT|WO_GE;
2416         btmOp = WO_LT|WO_LE;
2417         SWAP(int, topLimit, btmLimit);
2418       }
2419 
2420       /* Generate the termination key.  This is the key value that
2421       ** will end the search.  There is no termination key if there
2422       ** are no equality terms and no "X<..." term.
2423       **
2424       ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
2425       ** key computed here really ends up being the start key.
2426       */
2427       nxt = pLevel->nxt;
2428       if( topLimit ){
2429         Expr *pX;
2430         int k = pIdx->aiColumn[j];
2431         pTerm = findTerm(&wc, iCur, k, notReady, topOp, pIdx);
2432         assert( pTerm!=0 );
2433         pX = pTerm->pExpr;
2434         assert( (pTerm->flags & TERM_CODED)==0 );
2435         sqlite3ExprCode(pParse, pX->pRight);
2436         sqlite3VdbeAddOp(v, OP_IsNull, -(nEq*2+1), nxt);
2437         topEq = pTerm->eOperator & (WO_LE|WO_GE);
2438         disableTerm(pLevel, pTerm);
2439         testOp = OP_IdxGE;
2440       }else{
2441         testOp = nEq>0 ? OP_IdxGE : OP_Noop;
2442         topEq = 1;
2443       }
2444       if( testOp!=OP_Noop ){
2445         int nCol = nEq + topLimit;
2446         pLevel->iMem = pParse->nMem++;
2447         buildIndexProbe(v, nCol, pIdx);
2448         if( bRev ){
2449           int op = topEq ? OP_MoveLe : OP_MoveLt;
2450           sqlite3VdbeAddOp(v, op, iIdxCur, nxt);
2451         }else{
2452           sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
2453         }
2454       }else if( bRev ){
2455         sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk);
2456       }
2457 
2458       /* Generate the start key.  This is the key that defines the lower
2459       ** bound on the search.  There is no start key if there are no
2460       ** equality terms and if there is no "X>..." term.  In
2461       ** that case, generate a "Rewind" instruction in place of the
2462       ** start key search.
2463       **
2464       ** 2002-Dec-04: In the case of a reverse-order search, the so-called
2465       ** "start" key really ends up being used as the termination key.
2466       */
2467       if( btmLimit ){
2468         Expr *pX;
2469         int k = pIdx->aiColumn[j];
2470         pTerm = findTerm(&wc, iCur, k, notReady, btmOp, pIdx);
2471         assert( pTerm!=0 );
2472         pX = pTerm->pExpr;
2473         assert( (pTerm->flags & TERM_CODED)==0 );
2474         sqlite3ExprCode(pParse, pX->pRight);
2475         sqlite3VdbeAddOp(v, OP_IsNull, -(nEq+1), nxt);
2476         btmEq = pTerm->eOperator & (WO_LE|WO_GE);
2477         disableTerm(pLevel, pTerm);
2478       }else{
2479         btmEq = 1;
2480       }
2481       if( nEq>0 || btmLimit ){
2482         int nCol = nEq + btmLimit;
2483         buildIndexProbe(v, nCol, pIdx);
2484         if( bRev ){
2485           pLevel->iMem = pParse->nMem++;
2486           sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
2487           testOp = OP_IdxLT;
2488         }else{
2489           int op = btmEq ? OP_MoveGe : OP_MoveGt;
2490           sqlite3VdbeAddOp(v, op, iIdxCur, nxt);
2491         }
2492       }else if( bRev ){
2493         testOp = OP_Noop;
2494       }else{
2495         sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk);
2496       }
2497 
2498       /* Generate the the top of the loop.  If there is a termination
2499       ** key we have to test for that key and abort at the top of the
2500       ** loop.
2501       */
2502       start = sqlite3VdbeCurrentAddr(v);
2503       if( testOp!=OP_Noop ){
2504         sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
2505         sqlite3VdbeAddOp(v, testOp, iIdxCur, nxt);
2506         if( (topEq && !bRev) || (!btmEq && bRev) ){
2507           sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC);
2508         }
2509       }
2510       if( topLimit | btmLimit ){
2511         sqlite3VdbeAddOp(v, OP_Column, iIdxCur, nEq);
2512         sqlite3VdbeAddOp(v, OP_IsNull, 1, cont);
2513       }
2514       if( !omitTable ){
2515         sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
2516         sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
2517       }
2518 
2519       /* Record the instruction used to terminate the loop.
2520       */
2521       pLevel->op = bRev ? OP_Prev : OP_Next;
2522       pLevel->p1 = iIdxCur;
2523       pLevel->p2 = start;
2524     }else if( pLevel->flags & WHERE_COLUMN_EQ ){
2525       /* Case 4:  There is an index and all terms of the WHERE clause that
2526       **          refer to the index using the "==" or "IN" operators.
2527       */
2528       int start;
2529       int nEq = pLevel->nEq;
2530 
2531       /* Generate code to evaluate all constraint terms using == or IN
2532       ** and leave the values of those terms on the stack.
2533       */
2534       codeAllEqualityTerms(pParse, pLevel, &wc, notReady);
2535       nxt = pLevel->nxt;
2536 
2537       /* Generate a single key that will be used to both start and terminate
2538       ** the search
2539       */
2540       buildIndexProbe(v, nEq, pIdx);
2541       sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
2542 
2543       /* Generate code (1) to move to the first matching element of the table.
2544       ** Then generate code (2) that jumps to "nxt" after the cursor is past
2545       ** the last matching element of the table.  The code (1) is executed
2546       ** once to initialize the search, the code (2) is executed before each
2547       ** iteration of the scan to see if the scan has finished. */
2548       if( bRev ){
2549         /* Scan in reverse order */
2550         sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, nxt);
2551         start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
2552         sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, nxt);
2553         pLevel->op = OP_Prev;
2554       }else{
2555         /* Scan in the forward order */
2556         sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, nxt);
2557         start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
2558         sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, nxt, "+", P3_STATIC);
2559         pLevel->op = OP_Next;
2560       }
2561       if( !omitTable ){
2562         sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
2563         sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
2564       }
2565       pLevel->p1 = iIdxCur;
2566       pLevel->p2 = start;
2567     }else{
2568       /* Case 5:  There is no usable index.  We must do a complete
2569       **          scan of the entire table.
2570       */
2571       assert( omitTable==0 );
2572       assert( bRev==0 );
2573       pLevel->op = OP_Next;
2574       pLevel->p1 = iCur;
2575       pLevel->p2 = 1 + sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk);
2576     }
2577     notReady &= ~getMask(&maskSet, iCur);
2578 
2579     /* Insert code to test every subexpression that can be completely
2580     ** computed using the current set of tables.
2581     */
2582     for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){
2583       Expr *pE;
2584       if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2585       if( (pTerm->prereqAll & notReady)!=0 ) continue;
2586       pE = pTerm->pExpr;
2587       assert( pE!=0 );
2588       if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
2589         continue;
2590       }
2591       sqlite3ExprIfFalse(pParse, pE, cont, 1);
2592       pTerm->flags |= TERM_CODED;
2593     }
2594 
2595     /* For a LEFT OUTER JOIN, generate code that will record the fact that
2596     ** at least one row of the right table has matched the left table.
2597     */
2598     if( pLevel->iLeftJoin ){
2599       pLevel->top = sqlite3VdbeCurrentAddr(v);
2600       sqlite3VdbeAddOp(v, OP_MemInt, 1, pLevel->iLeftJoin);
2601       VdbeComment((v, "# record LEFT JOIN hit"));
2602       for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){
2603         if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2604         if( (pTerm->prereqAll & notReady)!=0 ) continue;
2605         assert( pTerm->pExpr );
2606         sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, 1);
2607         pTerm->flags |= TERM_CODED;
2608       }
2609     }
2610   }
2611 
2612 #ifdef SQLITE_TEST  /* For testing and debugging use only */
2613   /* Record in the query plan information about the current table
2614   ** and the index used to access it (if any).  If the table itself
2615   ** is not used, its name is just '{}'.  If no index is used
2616   ** the index is listed as "{}".  If the primary key is used the
2617   ** index name is '*'.
2618   */
2619   for(i=0; i<pTabList->nSrc; i++){
2620     char *z;
2621     int n;
2622     pLevel = &pWInfo->a[i];
2623     pTabItem = &pTabList->a[pLevel->iFrom];
2624     z = pTabItem->zAlias;
2625     if( z==0 ) z = pTabItem->pTab->zName;
2626     n = strlen(z);
2627     if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
2628       if( pLevel->flags & WHERE_IDX_ONLY ){
2629         memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
2630         nQPlan += 2;
2631       }else{
2632         memcpy(&sqlite3_query_plan[nQPlan], z, n);
2633         nQPlan += n;
2634       }
2635       sqlite3_query_plan[nQPlan++] = ' ';
2636     }
2637     if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
2638       memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
2639       nQPlan += 2;
2640     }else if( pLevel->pIdx==0 ){
2641       memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
2642       nQPlan += 3;
2643     }else{
2644       n = strlen(pLevel->pIdx->zName);
2645       if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
2646         memcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName, n);
2647         nQPlan += n;
2648         sqlite3_query_plan[nQPlan++] = ' ';
2649       }
2650     }
2651   }
2652   while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
2653     sqlite3_query_plan[--nQPlan] = 0;
2654   }
2655   sqlite3_query_plan[nQPlan] = 0;
2656   nQPlan = 0;
2657 #endif /* SQLITE_TEST // Testing and debugging use only */
2658 
2659   /* Record the continuation address in the WhereInfo structure.  Then
2660   ** clean up and return.
2661   */
2662   pWInfo->iContinue = cont;
2663   whereClauseClear(&wc);
2664   return pWInfo;
2665 
2666   /* Jump here if malloc fails */
2667 whereBeginNoMem:
2668   whereClauseClear(&wc);
2669   whereInfoFree(pWInfo);
2670   return 0;
2671 }
2672 
2673 /*
2674 ** Generate the end of the WHERE loop.  See comments on
2675 ** sqlite3WhereBegin() for additional information.
2676 */
2677 void sqlite3WhereEnd(WhereInfo *pWInfo){
2678   Vdbe *v = pWInfo->pParse->pVdbe;
2679   int i;
2680   WhereLevel *pLevel;
2681   SrcList *pTabList = pWInfo->pTabList;
2682 
2683   /* Generate loop termination code.
2684   */
2685   for(i=pTabList->nSrc-1; i>=0; i--){
2686     pLevel = &pWInfo->a[i];
2687     sqlite3VdbeResolveLabel(v, pLevel->cont);
2688     if( pLevel->op!=OP_Noop ){
2689       sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
2690     }
2691     if( pLevel->nIn ){
2692       struct InLoop *pIn;
2693       int j;
2694       sqlite3VdbeResolveLabel(v, pLevel->nxt);
2695       for(j=pLevel->nIn, pIn=&pLevel->aInLoop[j-1]; j>0; j--, pIn--){
2696         sqlite3VdbeJumpHere(v, pIn->topAddr+1);
2697         sqlite3VdbeAddOp(v, OP_Next, pIn->iCur, pIn->topAddr);
2698         sqlite3VdbeJumpHere(v, pIn->topAddr-1);
2699       }
2700       sqlite3_free(pLevel->aInLoop);
2701     }
2702     sqlite3VdbeResolveLabel(v, pLevel->brk);
2703     if( pLevel->iLeftJoin ){
2704       int addr;
2705       addr = sqlite3VdbeAddOp(v, OP_IfMemPos, pLevel->iLeftJoin, 0);
2706       sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
2707       if( pLevel->iIdxCur>=0 ){
2708         sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0);
2709       }
2710       sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top);
2711       sqlite3VdbeJumpHere(v, addr);
2712     }
2713   }
2714 
2715   /* The "break" point is here, just past the end of the outer loop.
2716   ** Set it.
2717   */
2718   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
2719 
2720   /* Close all of the cursors that were opened by sqlite3WhereBegin.
2721   */
2722   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
2723     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
2724     Table *pTab = pTabItem->pTab;
2725     assert( pTab!=0 );
2726     if( pTab->isEphem || pTab->pSelect ) continue;
2727     if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
2728       sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0);
2729     }
2730     if( pLevel->pIdx!=0 ){
2731       sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0);
2732     }
2733 
2734     /* Make cursor substitutions for cases where we want to use
2735     ** just the index and never reference the table.
2736     **
2737     ** Calls to the code generator in between sqlite3WhereBegin and
2738     ** sqlite3WhereEnd will have created code that references the table
2739     ** directly.  This loop scans all that code looking for opcodes
2740     ** that reference the table and converts them into opcodes that
2741     ** reference the index.
2742     */
2743     if( pLevel->flags & WHERE_IDX_ONLY ){
2744       int k, j, last;
2745       VdbeOp *pOp;
2746       Index *pIdx = pLevel->pIdx;
2747 
2748       assert( pIdx!=0 );
2749       pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
2750       last = sqlite3VdbeCurrentAddr(v);
2751       for(k=pWInfo->iTop; k<last; k++, pOp++){
2752         if( pOp->p1!=pLevel->iTabCur ) continue;
2753         if( pOp->opcode==OP_Column ){
2754           pOp->p1 = pLevel->iIdxCur;
2755           for(j=0; j<pIdx->nColumn; j++){
2756             if( pOp->p2==pIdx->aiColumn[j] ){
2757               pOp->p2 = j;
2758               break;
2759             }
2760           }
2761         }else if( pOp->opcode==OP_Rowid ){
2762           pOp->p1 = pLevel->iIdxCur;
2763           pOp->opcode = OP_IdxRowid;
2764         }else if( pOp->opcode==OP_NullRow ){
2765           pOp->opcode = OP_Noop;
2766         }
2767       }
2768     }
2769   }
2770 
2771   /* Final cleanup
2772   */
2773   whereInfoFree(pWInfo);
2774   return;
2775 }
2776