1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is reponsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 ** 19 ** $Id: where.c,v 1.262 2007/11/05 05:12:53 danielk1977 Exp $ 20 */ 21 #include "sqliteInt.h" 22 23 /* 24 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 25 */ 26 #define BMS (sizeof(Bitmask)*8) 27 28 /* 29 ** Trace output macros 30 */ 31 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 32 int sqlite3_where_trace = 0; 33 # define WHERETRACE(X) if(sqlite3_where_trace) sqlite3DebugPrintf X 34 #else 35 # define WHERETRACE(X) 36 #endif 37 38 /* Forward reference 39 */ 40 typedef struct WhereClause WhereClause; 41 typedef struct ExprMaskSet ExprMaskSet; 42 43 /* 44 ** The query generator uses an array of instances of this structure to 45 ** help it analyze the subexpressions of the WHERE clause. Each WHERE 46 ** clause subexpression is separated from the others by an AND operator. 47 ** 48 ** All WhereTerms are collected into a single WhereClause structure. 49 ** The following identity holds: 50 ** 51 ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm 52 ** 53 ** When a term is of the form: 54 ** 55 ** X <op> <expr> 56 ** 57 ** where X is a column name and <op> is one of certain operators, 58 ** then WhereTerm.leftCursor and WhereTerm.leftColumn record the 59 ** cursor number and column number for X. WhereTerm.operator records 60 ** the <op> using a bitmask encoding defined by WO_xxx below. The 61 ** use of a bitmask encoding for the operator allows us to search 62 ** quickly for terms that match any of several different operators. 63 ** 64 ** prereqRight and prereqAll record sets of cursor numbers, 65 ** but they do so indirectly. A single ExprMaskSet structure translates 66 ** cursor number into bits and the translated bit is stored in the prereq 67 ** fields. The translation is used in order to maximize the number of 68 ** bits that will fit in a Bitmask. The VDBE cursor numbers might be 69 ** spread out over the non-negative integers. For example, the cursor 70 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The ExprMaskSet 71 ** translates these sparse cursor numbers into consecutive integers 72 ** beginning with 0 in order to make the best possible use of the available 73 ** bits in the Bitmask. So, in the example above, the cursor numbers 74 ** would be mapped into integers 0 through 7. 75 */ 76 typedef struct WhereTerm WhereTerm; 77 struct WhereTerm { 78 Expr *pExpr; /* Pointer to the subexpression */ 79 i16 iParent; /* Disable pWC->a[iParent] when this term disabled */ 80 i16 leftCursor; /* Cursor number of X in "X <op> <expr>" */ 81 i16 leftColumn; /* Column number of X in "X <op> <expr>" */ 82 u16 eOperator; /* A WO_xx value describing <op> */ 83 u8 flags; /* Bit flags. See below */ 84 u8 nChild; /* Number of children that must disable us */ 85 WhereClause *pWC; /* The clause this term is part of */ 86 Bitmask prereqRight; /* Bitmask of tables used by pRight */ 87 Bitmask prereqAll; /* Bitmask of tables referenced by p */ 88 }; 89 90 /* 91 ** Allowed values of WhereTerm.flags 92 */ 93 #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(pExpr) */ 94 #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */ 95 #define TERM_CODED 0x04 /* This term is already coded */ 96 #define TERM_COPIED 0x08 /* Has a child */ 97 #define TERM_OR_OK 0x10 /* Used during OR-clause processing */ 98 99 /* 100 ** An instance of the following structure holds all information about a 101 ** WHERE clause. Mostly this is a container for one or more WhereTerms. 102 */ 103 struct WhereClause { 104 Parse *pParse; /* The parser context */ 105 ExprMaskSet *pMaskSet; /* Mapping of table indices to bitmasks */ 106 int nTerm; /* Number of terms */ 107 int nSlot; /* Number of entries in a[] */ 108 WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */ 109 WhereTerm aStatic[10]; /* Initial static space for a[] */ 110 }; 111 112 /* 113 ** An instance of the following structure keeps track of a mapping 114 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm. 115 ** 116 ** The VDBE cursor numbers are small integers contained in 117 ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE 118 ** clause, the cursor numbers might not begin with 0 and they might 119 ** contain gaps in the numbering sequence. But we want to make maximum 120 ** use of the bits in our bitmasks. This structure provides a mapping 121 ** from the sparse cursor numbers into consecutive integers beginning 122 ** with 0. 123 ** 124 ** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask 125 ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A. 126 ** 127 ** For example, if the WHERE clause expression used these VDBE 128 ** cursors: 4, 5, 8, 29, 57, 73. Then the ExprMaskSet structure 129 ** would map those cursor numbers into bits 0 through 5. 130 ** 131 ** Note that the mapping is not necessarily ordered. In the example 132 ** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0, 133 ** 57->5, 73->4. Or one of 719 other combinations might be used. It 134 ** does not really matter. What is important is that sparse cursor 135 ** numbers all get mapped into bit numbers that begin with 0 and contain 136 ** no gaps. 137 */ 138 struct ExprMaskSet { 139 int n; /* Number of assigned cursor values */ 140 int ix[sizeof(Bitmask)*8]; /* Cursor assigned to each bit */ 141 }; 142 143 144 /* 145 ** Bitmasks for the operators that indices are able to exploit. An 146 ** OR-ed combination of these values can be used when searching for 147 ** terms in the where clause. 148 */ 149 #define WO_IN 1 150 #define WO_EQ 2 151 #define WO_LT (WO_EQ<<(TK_LT-TK_EQ)) 152 #define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) 153 #define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) 154 #define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) 155 #define WO_MATCH 64 156 #define WO_ISNULL 128 157 158 /* 159 ** Value for flags returned by bestIndex(). 160 ** 161 ** The least significant byte is reserved as a mask for WO_ values above. 162 ** The WhereLevel.flags field is usually set to WO_IN|WO_EQ|WO_ISNULL. 163 ** But if the table is the right table of a left join, WhereLevel.flags 164 ** is set to WO_IN|WO_EQ. The WhereLevel.flags field can then be used as 165 ** the "op" parameter to findTerm when we are resolving equality constraints. 166 ** ISNULL constraints will then not be used on the right table of a left 167 ** join. Tickets #2177 and #2189. 168 */ 169 #define WHERE_ROWID_EQ 0x000100 /* rowid=EXPR or rowid IN (...) */ 170 #define WHERE_ROWID_RANGE 0x000200 /* rowid<EXPR and/or rowid>EXPR */ 171 #define WHERE_COLUMN_EQ 0x001000 /* x=EXPR or x IN (...) */ 172 #define WHERE_COLUMN_RANGE 0x002000 /* x<EXPR and/or x>EXPR */ 173 #define WHERE_COLUMN_IN 0x004000 /* x IN (...) */ 174 #define WHERE_TOP_LIMIT 0x010000 /* x<EXPR or x<=EXPR constraint */ 175 #define WHERE_BTM_LIMIT 0x020000 /* x>EXPR or x>=EXPR constraint */ 176 #define WHERE_IDX_ONLY 0x080000 /* Use index only - omit table */ 177 #define WHERE_ORDERBY 0x100000 /* Output will appear in correct order */ 178 #define WHERE_REVERSE 0x200000 /* Scan in reverse order */ 179 #define WHERE_UNIQUE 0x400000 /* Selects no more than one row */ 180 #define WHERE_VIRTUALTABLE 0x800000 /* Use virtual-table processing */ 181 182 /* 183 ** Initialize a preallocated WhereClause structure. 184 */ 185 static void whereClauseInit( 186 WhereClause *pWC, /* The WhereClause to be initialized */ 187 Parse *pParse, /* The parsing context */ 188 ExprMaskSet *pMaskSet /* Mapping from table indices to bitmasks */ 189 ){ 190 pWC->pParse = pParse; 191 pWC->pMaskSet = pMaskSet; 192 pWC->nTerm = 0; 193 pWC->nSlot = ArraySize(pWC->aStatic); 194 pWC->a = pWC->aStatic; 195 } 196 197 /* 198 ** Deallocate a WhereClause structure. The WhereClause structure 199 ** itself is not freed. This routine is the inverse of whereClauseInit(). 200 */ 201 static void whereClauseClear(WhereClause *pWC){ 202 int i; 203 WhereTerm *a; 204 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ 205 if( a->flags & TERM_DYNAMIC ){ 206 sqlite3ExprDelete(a->pExpr); 207 } 208 } 209 if( pWC->a!=pWC->aStatic ){ 210 sqlite3_free(pWC->a); 211 } 212 } 213 214 /* 215 ** Add a new entries to the WhereClause structure. Increase the allocated 216 ** space as necessary. 217 ** 218 ** If the flags argument includes TERM_DYNAMIC, then responsibility 219 ** for freeing the expression p is assumed by the WhereClause object. 220 ** 221 ** WARNING: This routine might reallocate the space used to store 222 ** WhereTerms. All pointers to WhereTerms should be invalided after 223 ** calling this routine. Such pointers may be reinitialized by referencing 224 ** the pWC->a[] array. 225 */ 226 static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){ 227 WhereTerm *pTerm; 228 int idx; 229 if( pWC->nTerm>=pWC->nSlot ){ 230 WhereTerm *pOld = pWC->a; 231 pWC->a = sqlite3_malloc( sizeof(pWC->a[0])*pWC->nSlot*2 ); 232 if( pWC->a==0 ){ 233 pWC->pParse->db->mallocFailed = 1; 234 if( flags & TERM_DYNAMIC ){ 235 sqlite3ExprDelete(p); 236 } 237 return 0; 238 } 239 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); 240 if( pOld!=pWC->aStatic ){ 241 sqlite3_free(pOld); 242 } 243 pWC->nSlot *= 2; 244 } 245 pTerm = &pWC->a[idx = pWC->nTerm]; 246 pWC->nTerm++; 247 pTerm->pExpr = p; 248 pTerm->flags = flags; 249 pTerm->pWC = pWC; 250 pTerm->iParent = -1; 251 return idx; 252 } 253 254 /* 255 ** This routine identifies subexpressions in the WHERE clause where 256 ** each subexpression is separated by the AND operator or some other 257 ** operator specified in the op parameter. The WhereClause structure 258 ** is filled with pointers to subexpressions. For example: 259 ** 260 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) 261 ** \________/ \_______________/ \________________/ 262 ** slot[0] slot[1] slot[2] 263 ** 264 ** The original WHERE clause in pExpr is unaltered. All this routine 265 ** does is make slot[] entries point to substructure within pExpr. 266 ** 267 ** In the previous sentence and in the diagram, "slot[]" refers to 268 ** the WhereClause.a[] array. This array grows as needed to contain 269 ** all terms of the WHERE clause. 270 */ 271 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){ 272 if( pExpr==0 ) return; 273 if( pExpr->op!=op ){ 274 whereClauseInsert(pWC, pExpr, 0); 275 }else{ 276 whereSplit(pWC, pExpr->pLeft, op); 277 whereSplit(pWC, pExpr->pRight, op); 278 } 279 } 280 281 /* 282 ** Initialize an expression mask set 283 */ 284 #define initMaskSet(P) memset(P, 0, sizeof(*P)) 285 286 /* 287 ** Return the bitmask for the given cursor number. Return 0 if 288 ** iCursor is not in the set. 289 */ 290 static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){ 291 int i; 292 for(i=0; i<pMaskSet->n; i++){ 293 if( pMaskSet->ix[i]==iCursor ){ 294 return ((Bitmask)1)<<i; 295 } 296 } 297 return 0; 298 } 299 300 /* 301 ** Create a new mask for cursor iCursor. 302 ** 303 ** There is one cursor per table in the FROM clause. The number of 304 ** tables in the FROM clause is limited by a test early in the 305 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 306 ** array will never overflow. 307 */ 308 static void createMask(ExprMaskSet *pMaskSet, int iCursor){ 309 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 310 pMaskSet->ix[pMaskSet->n++] = iCursor; 311 } 312 313 /* 314 ** This routine walks (recursively) an expression tree and generates 315 ** a bitmask indicating which tables are used in that expression 316 ** tree. 317 ** 318 ** In order for this routine to work, the calling function must have 319 ** previously invoked sqlite3ExprResolveNames() on the expression. See 320 ** the header comment on that routine for additional information. 321 ** The sqlite3ExprResolveNames() routines looks for column names and 322 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to 323 ** the VDBE cursor number of the table. This routine just has to 324 ** translate the cursor numbers into bitmask values and OR all 325 ** the bitmasks together. 326 */ 327 static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*); 328 static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*); 329 static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){ 330 Bitmask mask = 0; 331 if( p==0 ) return 0; 332 if( p->op==TK_COLUMN ){ 333 mask = getMask(pMaskSet, p->iTable); 334 return mask; 335 } 336 mask = exprTableUsage(pMaskSet, p->pRight); 337 mask |= exprTableUsage(pMaskSet, p->pLeft); 338 mask |= exprListTableUsage(pMaskSet, p->pList); 339 mask |= exprSelectTableUsage(pMaskSet, p->pSelect); 340 return mask; 341 } 342 static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){ 343 int i; 344 Bitmask mask = 0; 345 if( pList ){ 346 for(i=0; i<pList->nExpr; i++){ 347 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); 348 } 349 } 350 return mask; 351 } 352 static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){ 353 Bitmask mask = 0; 354 while( pS ){ 355 mask |= exprListTableUsage(pMaskSet, pS->pEList); 356 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); 357 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); 358 mask |= exprTableUsage(pMaskSet, pS->pWhere); 359 mask |= exprTableUsage(pMaskSet, pS->pHaving); 360 pS = pS->pPrior; 361 } 362 return mask; 363 } 364 365 /* 366 ** Return TRUE if the given operator is one of the operators that is 367 ** allowed for an indexable WHERE clause term. The allowed operators are 368 ** "=", "<", ">", "<=", ">=", and "IN". 369 */ 370 static int allowedOp(int op){ 371 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); 372 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); 373 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); 374 assert( TK_GE==TK_EQ+4 ); 375 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; 376 } 377 378 /* 379 ** Swap two objects of type T. 380 */ 381 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 382 383 /* 384 ** Commute a comparision operator. Expressions of the form "X op Y" 385 ** are converted into "Y op X". 386 ** 387 ** If a collation sequence is associated with either the left or right 388 ** side of the comparison, it remains associated with the same side after 389 ** the commutation. So "Y collate NOCASE op X" becomes 390 ** "X collate NOCASE op Y". This is because any collation sequence on 391 ** the left hand side of a comparison overrides any collation sequence 392 ** attached to the right. For the same reason the EP_ExpCollate flag 393 ** is not commuted. 394 */ 395 static void exprCommute(Expr *pExpr){ 396 u16 expRight = (pExpr->pRight->flags & EP_ExpCollate); 397 u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate); 398 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); 399 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl); 400 pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft; 401 pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight; 402 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); 403 if( pExpr->op>=TK_GT ){ 404 assert( TK_LT==TK_GT+2 ); 405 assert( TK_GE==TK_LE+2 ); 406 assert( TK_GT>TK_EQ ); 407 assert( TK_GT<TK_LE ); 408 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); 409 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; 410 } 411 } 412 413 /* 414 ** Translate from TK_xx operator to WO_xx bitmask. 415 */ 416 static int operatorMask(int op){ 417 int c; 418 assert( allowedOp(op) ); 419 if( op==TK_IN ){ 420 c = WO_IN; 421 }else if( op==TK_ISNULL ){ 422 c = WO_ISNULL; 423 }else{ 424 c = WO_EQ<<(op-TK_EQ); 425 } 426 assert( op!=TK_ISNULL || c==WO_ISNULL ); 427 assert( op!=TK_IN || c==WO_IN ); 428 assert( op!=TK_EQ || c==WO_EQ ); 429 assert( op!=TK_LT || c==WO_LT ); 430 assert( op!=TK_LE || c==WO_LE ); 431 assert( op!=TK_GT || c==WO_GT ); 432 assert( op!=TK_GE || c==WO_GE ); 433 return c; 434 } 435 436 /* 437 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 438 ** where X is a reference to the iColumn of table iCur and <op> is one of 439 ** the WO_xx operator codes specified by the op parameter. 440 ** Return a pointer to the term. Return 0 if not found. 441 */ 442 static WhereTerm *findTerm( 443 WhereClause *pWC, /* The WHERE clause to be searched */ 444 int iCur, /* Cursor number of LHS */ 445 int iColumn, /* Column number of LHS */ 446 Bitmask notReady, /* RHS must not overlap with this mask */ 447 u16 op, /* Mask of WO_xx values describing operator */ 448 Index *pIdx /* Must be compatible with this index, if not NULL */ 449 ){ 450 WhereTerm *pTerm; 451 int k; 452 for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){ 453 if( pTerm->leftCursor==iCur 454 && (pTerm->prereqRight & notReady)==0 455 && pTerm->leftColumn==iColumn 456 && (pTerm->eOperator & op)!=0 457 ){ 458 if( iCur>=0 && pIdx && pTerm->eOperator!=WO_ISNULL ){ 459 Expr *pX = pTerm->pExpr; 460 CollSeq *pColl; 461 char idxaff; 462 int j; 463 Parse *pParse = pWC->pParse; 464 465 idxaff = pIdx->pTable->aCol[iColumn].affinity; 466 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue; 467 468 /* Figure out the collation sequence required from an index for 469 ** it to be useful for optimising expression pX. Store this 470 ** value in variable pColl. 471 */ 472 assert(pX->pLeft); 473 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); 474 if( !pColl ){ 475 pColl = pParse->db->pDfltColl; 476 } 477 478 for(j=0; j<pIdx->nColumn && pIdx->aiColumn[j]!=iColumn; j++){} 479 assert( j<pIdx->nColumn ); 480 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue; 481 } 482 return pTerm; 483 } 484 } 485 return 0; 486 } 487 488 /* Forward reference */ 489 static void exprAnalyze(SrcList*, WhereClause*, int); 490 491 /* 492 ** Call exprAnalyze on all terms in a WHERE clause. 493 ** 494 ** 495 */ 496 static void exprAnalyzeAll( 497 SrcList *pTabList, /* the FROM clause */ 498 WhereClause *pWC /* the WHERE clause to be analyzed */ 499 ){ 500 int i; 501 for(i=pWC->nTerm-1; i>=0; i--){ 502 exprAnalyze(pTabList, pWC, i); 503 } 504 } 505 506 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 507 /* 508 ** Check to see if the given expression is a LIKE or GLOB operator that 509 ** can be optimized using inequality constraints. Return TRUE if it is 510 ** so and false if not. 511 ** 512 ** In order for the operator to be optimizible, the RHS must be a string 513 ** literal that does not begin with a wildcard. 514 */ 515 static int isLikeOrGlob( 516 sqlite3 *db, /* The database */ 517 Expr *pExpr, /* Test this expression */ 518 int *pnPattern, /* Number of non-wildcard prefix characters */ 519 int *pisComplete /* True if the only wildcard is % in the last character */ 520 ){ 521 const char *z; 522 Expr *pRight, *pLeft; 523 ExprList *pList; 524 int c, cnt; 525 int noCase; 526 char wc[3]; 527 CollSeq *pColl; 528 529 if( !sqlite3IsLikeFunction(db, pExpr, &noCase, wc) ){ 530 return 0; 531 } 532 pList = pExpr->pList; 533 pRight = pList->a[0].pExpr; 534 if( pRight->op!=TK_STRING ){ 535 return 0; 536 } 537 pLeft = pList->a[1].pExpr; 538 if( pLeft->op!=TK_COLUMN ){ 539 return 0; 540 } 541 pColl = pLeft->pColl; 542 if( pColl==0 ){ 543 /* TODO: Coverage testing doesn't get this case. Is it actually possible 544 ** for an expression of type TK_COLUMN to not have an assigned collation 545 ** sequence at this point? 546 */ 547 pColl = db->pDfltColl; 548 } 549 if( (pColl->type!=SQLITE_COLL_BINARY || noCase) && 550 (pColl->type!=SQLITE_COLL_NOCASE || !noCase) ){ 551 return 0; 552 } 553 sqlite3DequoteExpr(db, pRight); 554 z = (char *)pRight->token.z; 555 for(cnt=0; (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2]; cnt++){} 556 if( cnt==0 || 255==(u8)z[cnt] ){ 557 return 0; 558 } 559 *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0; 560 *pnPattern = cnt; 561 return 1; 562 } 563 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 564 565 566 #ifndef SQLITE_OMIT_VIRTUALTABLE 567 /* 568 ** Check to see if the given expression is of the form 569 ** 570 ** column MATCH expr 571 ** 572 ** If it is then return TRUE. If not, return FALSE. 573 */ 574 static int isMatchOfColumn( 575 Expr *pExpr /* Test this expression */ 576 ){ 577 ExprList *pList; 578 579 if( pExpr->op!=TK_FUNCTION ){ 580 return 0; 581 } 582 if( pExpr->token.n!=5 || 583 sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){ 584 return 0; 585 } 586 pList = pExpr->pList; 587 if( pList->nExpr!=2 ){ 588 return 0; 589 } 590 if( pList->a[1].pExpr->op != TK_COLUMN ){ 591 return 0; 592 } 593 return 1; 594 } 595 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 596 597 /* 598 ** If the pBase expression originated in the ON or USING clause of 599 ** a join, then transfer the appropriate markings over to derived. 600 */ 601 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ 602 pDerived->flags |= pBase->flags & EP_FromJoin; 603 pDerived->iRightJoinTable = pBase->iRightJoinTable; 604 } 605 606 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 607 /* 608 ** Return TRUE if the given term of an OR clause can be converted 609 ** into an IN clause. The iCursor and iColumn define the left-hand 610 ** side of the IN clause. 611 ** 612 ** The context is that we have multiple OR-connected equality terms 613 ** like this: 614 ** 615 ** a=<expr1> OR a=<expr2> OR b=<expr3> OR ... 616 ** 617 ** The pOrTerm input to this routine corresponds to a single term of 618 ** this OR clause. In order for the term to be a condidate for 619 ** conversion to an IN operator, the following must be true: 620 ** 621 ** * The left-hand side of the term must be the column which 622 ** is identified by iCursor and iColumn. 623 ** 624 ** * If the right-hand side is also a column, then the affinities 625 ** of both right and left sides must be such that no type 626 ** conversions are required on the right. (Ticket #2249) 627 ** 628 ** If both of these conditions are true, then return true. Otherwise 629 ** return false. 630 */ 631 static int orTermIsOptCandidate(WhereTerm *pOrTerm, int iCursor, int iColumn){ 632 int affLeft, affRight; 633 assert( pOrTerm->eOperator==WO_EQ ); 634 if( pOrTerm->leftCursor!=iCursor ){ 635 return 0; 636 } 637 if( pOrTerm->leftColumn!=iColumn ){ 638 return 0; 639 } 640 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); 641 if( affRight==0 ){ 642 return 1; 643 } 644 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); 645 if( affRight!=affLeft ){ 646 return 0; 647 } 648 return 1; 649 } 650 651 /* 652 ** Return true if the given term of an OR clause can be ignored during 653 ** a check to make sure all OR terms are candidates for optimization. 654 ** In other words, return true if a call to the orTermIsOptCandidate() 655 ** above returned false but it is not necessary to disqualify the 656 ** optimization. 657 ** 658 ** Suppose the original OR phrase was this: 659 ** 660 ** a=4 OR a=11 OR a=b 661 ** 662 ** During analysis, the third term gets flipped around and duplicate 663 ** so that we are left with this: 664 ** 665 ** a=4 OR a=11 OR a=b OR b=a 666 ** 667 ** Since the last two terms are duplicates, only one of them 668 ** has to qualify in order for the whole phrase to qualify. When 669 ** this routine is called, we know that pOrTerm did not qualify. 670 ** This routine merely checks to see if pOrTerm has a duplicate that 671 ** might qualify. If there is a duplicate that has not yet been 672 ** disqualified, then return true. If there are no duplicates, or 673 ** the duplicate has also been disqualifed, return false. 674 */ 675 static int orTermHasOkDuplicate(WhereClause *pOr, WhereTerm *pOrTerm){ 676 if( pOrTerm->flags & TERM_COPIED ){ 677 /* This is the original term. The duplicate is to the left had 678 ** has not yet been analyzed and thus has not yet been disqualified. */ 679 return 1; 680 } 681 if( (pOrTerm->flags & TERM_VIRTUAL)!=0 682 && (pOr->a[pOrTerm->iParent].flags & TERM_OR_OK)!=0 ){ 683 /* This is a duplicate term. The original qualified so this one 684 ** does not have to. */ 685 return 1; 686 } 687 /* This is either a singleton term or else it is a duplicate for 688 ** which the original did not qualify. Either way we are done for. */ 689 return 0; 690 } 691 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ 692 693 /* 694 ** The input to this routine is an WhereTerm structure with only the 695 ** "pExpr" field filled in. The job of this routine is to analyze the 696 ** subexpression and populate all the other fields of the WhereTerm 697 ** structure. 698 ** 699 ** If the expression is of the form "<expr> <op> X" it gets commuted 700 ** to the standard form of "X <op> <expr>". If the expression is of 701 ** the form "X <op> Y" where both X and Y are columns, then the original 702 ** expression is unchanged and a new virtual expression of the form 703 ** "Y <op> X" is added to the WHERE clause and analyzed separately. 704 */ 705 static void exprAnalyze( 706 SrcList *pSrc, /* the FROM clause */ 707 WhereClause *pWC, /* the WHERE clause */ 708 int idxTerm /* Index of the term to be analyzed */ 709 ){ 710 WhereTerm *pTerm = &pWC->a[idxTerm]; 711 ExprMaskSet *pMaskSet = pWC->pMaskSet; 712 Expr *pExpr = pTerm->pExpr; 713 Bitmask prereqLeft; 714 Bitmask prereqAll; 715 int nPattern; 716 int isComplete; 717 int op; 718 Parse *pParse = pWC->pParse; 719 sqlite3 *db = pParse->db; 720 721 if( db->mallocFailed ) return; 722 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); 723 op = pExpr->op; 724 if( op==TK_IN ){ 725 assert( pExpr->pRight==0 ); 726 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList) 727 | exprSelectTableUsage(pMaskSet, pExpr->pSelect); 728 }else if( op==TK_ISNULL ){ 729 pTerm->prereqRight = 0; 730 }else{ 731 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); 732 } 733 prereqAll = exprTableUsage(pMaskSet, pExpr); 734 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 735 prereqAll |= getMask(pMaskSet, pExpr->iRightJoinTable); 736 } 737 pTerm->prereqAll = prereqAll; 738 pTerm->leftCursor = -1; 739 pTerm->iParent = -1; 740 pTerm->eOperator = 0; 741 if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){ 742 Expr *pLeft = pExpr->pLeft; 743 Expr *pRight = pExpr->pRight; 744 if( pLeft->op==TK_COLUMN ){ 745 pTerm->leftCursor = pLeft->iTable; 746 pTerm->leftColumn = pLeft->iColumn; 747 pTerm->eOperator = operatorMask(op); 748 } 749 if( pRight && pRight->op==TK_COLUMN ){ 750 WhereTerm *pNew; 751 Expr *pDup; 752 if( pTerm->leftCursor>=0 ){ 753 int idxNew; 754 pDup = sqlite3ExprDup(db, pExpr); 755 if( db->mallocFailed ){ 756 sqlite3ExprDelete(pDup); 757 return; 758 } 759 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); 760 if( idxNew==0 ) return; 761 pNew = &pWC->a[idxNew]; 762 pNew->iParent = idxTerm; 763 pTerm = &pWC->a[idxTerm]; 764 pTerm->nChild = 1; 765 pTerm->flags |= TERM_COPIED; 766 }else{ 767 pDup = pExpr; 768 pNew = pTerm; 769 } 770 exprCommute(pDup); 771 pLeft = pDup->pLeft; 772 pNew->leftCursor = pLeft->iTable; 773 pNew->leftColumn = pLeft->iColumn; 774 pNew->prereqRight = prereqLeft; 775 pNew->prereqAll = prereqAll; 776 pNew->eOperator = operatorMask(pDup->op); 777 } 778 } 779 780 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION 781 /* If a term is the BETWEEN operator, create two new virtual terms 782 ** that define the range that the BETWEEN implements. 783 */ 784 else if( pExpr->op==TK_BETWEEN ){ 785 ExprList *pList = pExpr->pList; 786 int i; 787 static const u8 ops[] = {TK_GE, TK_LE}; 788 assert( pList!=0 ); 789 assert( pList->nExpr==2 ); 790 for(i=0; i<2; i++){ 791 Expr *pNewExpr; 792 int idxNew; 793 pNewExpr = sqlite3Expr(db, ops[i], sqlite3ExprDup(db, pExpr->pLeft), 794 sqlite3ExprDup(db, pList->a[i].pExpr), 0); 795 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 796 exprAnalyze(pSrc, pWC, idxNew); 797 pTerm = &pWC->a[idxTerm]; 798 pWC->a[idxNew].iParent = idxTerm; 799 } 800 pTerm->nChild = 2; 801 } 802 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ 803 804 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 805 /* Attempt to convert OR-connected terms into an IN operator so that 806 ** they can make use of indices. Example: 807 ** 808 ** x = expr1 OR expr2 = x OR x = expr3 809 ** 810 ** is converted into 811 ** 812 ** x IN (expr1,expr2,expr3) 813 ** 814 ** This optimization must be omitted if OMIT_SUBQUERY is defined because 815 ** the compiler for the the IN operator is part of sub-queries. 816 */ 817 else if( pExpr->op==TK_OR ){ 818 int ok; 819 int i, j; 820 int iColumn, iCursor; 821 WhereClause sOr; 822 WhereTerm *pOrTerm; 823 824 assert( (pTerm->flags & TERM_DYNAMIC)==0 ); 825 whereClauseInit(&sOr, pWC->pParse, pMaskSet); 826 whereSplit(&sOr, pExpr, TK_OR); 827 exprAnalyzeAll(pSrc, &sOr); 828 assert( sOr.nTerm>=2 ); 829 j = 0; 830 do{ 831 assert( j<sOr.nTerm ); 832 iColumn = sOr.a[j].leftColumn; 833 iCursor = sOr.a[j].leftCursor; 834 ok = iCursor>=0; 835 for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){ 836 if( pOrTerm->eOperator!=WO_EQ ){ 837 goto or_not_possible; 838 } 839 if( orTermIsOptCandidate(pOrTerm, iCursor, iColumn) ){ 840 pOrTerm->flags |= TERM_OR_OK; 841 }else if( orTermHasOkDuplicate(&sOr, pOrTerm) ){ 842 pOrTerm->flags &= ~TERM_OR_OK; 843 }else{ 844 ok = 0; 845 } 846 } 847 }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<2 ); 848 if( ok ){ 849 ExprList *pList = 0; 850 Expr *pNew, *pDup; 851 Expr *pLeft = 0; 852 for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){ 853 if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue; 854 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight); 855 pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup, 0); 856 pLeft = pOrTerm->pExpr->pLeft; 857 } 858 assert( pLeft!=0 ); 859 pDup = sqlite3ExprDup(db, pLeft); 860 pNew = sqlite3Expr(db, TK_IN, pDup, 0, 0); 861 if( pNew ){ 862 int idxNew; 863 transferJoinMarkings(pNew, pExpr); 864 pNew->pList = pList; 865 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 866 exprAnalyze(pSrc, pWC, idxNew); 867 pTerm = &pWC->a[idxTerm]; 868 pWC->a[idxNew].iParent = idxTerm; 869 pTerm->nChild = 1; 870 }else{ 871 sqlite3ExprListDelete(pList); 872 } 873 } 874 or_not_possible: 875 whereClauseClear(&sOr); 876 } 877 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 878 879 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 880 /* Add constraints to reduce the search space on a LIKE or GLOB 881 ** operator. 882 */ 883 if( isLikeOrGlob(db, pExpr, &nPattern, &isComplete) ){ 884 Expr *pLeft, *pRight; 885 Expr *pStr1, *pStr2; 886 Expr *pNewExpr1, *pNewExpr2; 887 int idxNew1, idxNew2; 888 889 pLeft = pExpr->pList->a[1].pExpr; 890 pRight = pExpr->pList->a[0].pExpr; 891 pStr1 = sqlite3PExpr(pParse, TK_STRING, 0, 0, 0); 892 if( pStr1 ){ 893 sqlite3TokenCopy(db, &pStr1->token, &pRight->token); 894 pStr1->token.n = nPattern; 895 pStr1->flags = EP_Dequoted; 896 } 897 pStr2 = sqlite3ExprDup(db, pStr1); 898 if( pStr2 ){ 899 assert( pStr2->token.dyn ); 900 ++*(u8*)&pStr2->token.z[nPattern-1]; 901 } 902 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft), pStr1, 0); 903 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); 904 exprAnalyze(pSrc, pWC, idxNew1); 905 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft), pStr2, 0); 906 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); 907 exprAnalyze(pSrc, pWC, idxNew2); 908 pTerm = &pWC->a[idxTerm]; 909 if( isComplete ){ 910 pWC->a[idxNew1].iParent = idxTerm; 911 pWC->a[idxNew2].iParent = idxTerm; 912 pTerm->nChild = 2; 913 } 914 } 915 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 916 917 #ifndef SQLITE_OMIT_VIRTUALTABLE 918 /* Add a WO_MATCH auxiliary term to the constraint set if the 919 ** current expression is of the form: column MATCH expr. 920 ** This information is used by the xBestIndex methods of 921 ** virtual tables. The native query optimizer does not attempt 922 ** to do anything with MATCH functions. 923 */ 924 if( isMatchOfColumn(pExpr) ){ 925 int idxNew; 926 Expr *pRight, *pLeft; 927 WhereTerm *pNewTerm; 928 Bitmask prereqColumn, prereqExpr; 929 930 pRight = pExpr->pList->a[0].pExpr; 931 pLeft = pExpr->pList->a[1].pExpr; 932 prereqExpr = exprTableUsage(pMaskSet, pRight); 933 prereqColumn = exprTableUsage(pMaskSet, pLeft); 934 if( (prereqExpr & prereqColumn)==0 ){ 935 Expr *pNewExpr; 936 pNewExpr = sqlite3Expr(db, TK_MATCH, 0, sqlite3ExprDup(db, pRight), 0); 937 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 938 pNewTerm = &pWC->a[idxNew]; 939 pNewTerm->prereqRight = prereqExpr; 940 pNewTerm->leftCursor = pLeft->iTable; 941 pNewTerm->leftColumn = pLeft->iColumn; 942 pNewTerm->eOperator = WO_MATCH; 943 pNewTerm->iParent = idxTerm; 944 pTerm = &pWC->a[idxTerm]; 945 pTerm->nChild = 1; 946 pTerm->flags |= TERM_COPIED; 947 pNewTerm->prereqAll = pTerm->prereqAll; 948 } 949 } 950 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 951 } 952 953 /* 954 ** Return TRUE if any of the expressions in pList->a[iFirst...] contain 955 ** a reference to any table other than the iBase table. 956 */ 957 static int referencesOtherTables( 958 ExprList *pList, /* Search expressions in ths list */ 959 ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ 960 int iFirst, /* Be searching with the iFirst-th expression */ 961 int iBase /* Ignore references to this table */ 962 ){ 963 Bitmask allowed = ~getMask(pMaskSet, iBase); 964 while( iFirst<pList->nExpr ){ 965 if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){ 966 return 1; 967 } 968 } 969 return 0; 970 } 971 972 973 /* 974 ** This routine decides if pIdx can be used to satisfy the ORDER BY 975 ** clause. If it can, it returns 1. If pIdx cannot satisfy the 976 ** ORDER BY clause, this routine returns 0. 977 ** 978 ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the 979 ** left-most table in the FROM clause of that same SELECT statement and 980 ** the table has a cursor number of "base". pIdx is an index on pTab. 981 ** 982 ** nEqCol is the number of columns of pIdx that are used as equality 983 ** constraints. Any of these columns may be missing from the ORDER BY 984 ** clause and the match can still be a success. 985 ** 986 ** All terms of the ORDER BY that match against the index must be either 987 ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE 988 ** index do not need to satisfy this constraint.) The *pbRev value is 989 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if 990 ** the ORDER BY clause is all ASC. 991 */ 992 static int isSortingIndex( 993 Parse *pParse, /* Parsing context */ 994 ExprMaskSet *pMaskSet, /* Mapping from table indices to bitmaps */ 995 Index *pIdx, /* The index we are testing */ 996 int base, /* Cursor number for the table to be sorted */ 997 ExprList *pOrderBy, /* The ORDER BY clause */ 998 int nEqCol, /* Number of index columns with == constraints */ 999 int *pbRev /* Set to 1 if ORDER BY is DESC */ 1000 ){ 1001 int i, j; /* Loop counters */ 1002 int sortOrder = 0; /* XOR of index and ORDER BY sort direction */ 1003 int nTerm; /* Number of ORDER BY terms */ 1004 struct ExprList_item *pTerm; /* A term of the ORDER BY clause */ 1005 sqlite3 *db = pParse->db; 1006 1007 assert( pOrderBy!=0 ); 1008 nTerm = pOrderBy->nExpr; 1009 assert( nTerm>0 ); 1010 1011 /* Match terms of the ORDER BY clause against columns of 1012 ** the index. 1013 ** 1014 ** Note that indices have pIdx->nColumn regular columns plus 1015 ** one additional column containing the rowid. The rowid column 1016 ** of the index is also allowed to match against the ORDER BY 1017 ** clause. 1018 */ 1019 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){ 1020 Expr *pExpr; /* The expression of the ORDER BY pTerm */ 1021 CollSeq *pColl; /* The collating sequence of pExpr */ 1022 int termSortOrder; /* Sort order for this term */ 1023 int iColumn; /* The i-th column of the index. -1 for rowid */ 1024 int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */ 1025 const char *zColl; /* Name of the collating sequence for i-th index term */ 1026 1027 pExpr = pTerm->pExpr; 1028 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){ 1029 /* Can not use an index sort on anything that is not a column in the 1030 ** left-most table of the FROM clause */ 1031 break; 1032 } 1033 pColl = sqlite3ExprCollSeq(pParse, pExpr); 1034 if( !pColl ){ 1035 pColl = db->pDfltColl; 1036 } 1037 if( i<pIdx->nColumn ){ 1038 iColumn = pIdx->aiColumn[i]; 1039 if( iColumn==pIdx->pTable->iPKey ){ 1040 iColumn = -1; 1041 } 1042 iSortOrder = pIdx->aSortOrder[i]; 1043 zColl = pIdx->azColl[i]; 1044 }else{ 1045 iColumn = -1; 1046 iSortOrder = 0; 1047 zColl = pColl->zName; 1048 } 1049 if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){ 1050 /* Term j of the ORDER BY clause does not match column i of the index */ 1051 if( i<nEqCol ){ 1052 /* If an index column that is constrained by == fails to match an 1053 ** ORDER BY term, that is OK. Just ignore that column of the index 1054 */ 1055 continue; 1056 }else{ 1057 /* If an index column fails to match and is not constrained by == 1058 ** then the index cannot satisfy the ORDER BY constraint. 1059 */ 1060 return 0; 1061 } 1062 } 1063 assert( pIdx->aSortOrder!=0 ); 1064 assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 ); 1065 assert( iSortOrder==0 || iSortOrder==1 ); 1066 termSortOrder = iSortOrder ^ pTerm->sortOrder; 1067 if( i>nEqCol ){ 1068 if( termSortOrder!=sortOrder ){ 1069 /* Indices can only be used if all ORDER BY terms past the 1070 ** equality constraints are all either DESC or ASC. */ 1071 return 0; 1072 } 1073 }else{ 1074 sortOrder = termSortOrder; 1075 } 1076 j++; 1077 pTerm++; 1078 if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ 1079 /* If the indexed column is the primary key and everything matches 1080 ** so far and none of the ORDER BY terms to the right reference other 1081 ** tables in the join, then we are assured that the index can be used 1082 ** to sort because the primary key is unique and so none of the other 1083 ** columns will make any difference 1084 */ 1085 j = nTerm; 1086 } 1087 } 1088 1089 *pbRev = sortOrder!=0; 1090 if( j>=nTerm ){ 1091 /* All terms of the ORDER BY clause are covered by this index so 1092 ** this index can be used for sorting. */ 1093 return 1; 1094 } 1095 if( pIdx->onError!=OE_None && i==pIdx->nColumn 1096 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ 1097 /* All terms of this index match some prefix of the ORDER BY clause 1098 ** and the index is UNIQUE and no terms on the tail of the ORDER BY 1099 ** clause reference other tables in a join. If this is all true then 1100 ** the order by clause is superfluous. */ 1101 return 1; 1102 } 1103 return 0; 1104 } 1105 1106 /* 1107 ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied 1108 ** by sorting in order of ROWID. Return true if so and set *pbRev to be 1109 ** true for reverse ROWID and false for forward ROWID order. 1110 */ 1111 static int sortableByRowid( 1112 int base, /* Cursor number for table to be sorted */ 1113 ExprList *pOrderBy, /* The ORDER BY clause */ 1114 ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ 1115 int *pbRev /* Set to 1 if ORDER BY is DESC */ 1116 ){ 1117 Expr *p; 1118 1119 assert( pOrderBy!=0 ); 1120 assert( pOrderBy->nExpr>0 ); 1121 p = pOrderBy->a[0].pExpr; 1122 if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1 1123 && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){ 1124 *pbRev = pOrderBy->a[0].sortOrder; 1125 return 1; 1126 } 1127 return 0; 1128 } 1129 1130 /* 1131 ** Prepare a crude estimate of the logarithm of the input value. 1132 ** The results need not be exact. This is only used for estimating 1133 ** the total cost of performing operatings with O(logN) or O(NlogN) 1134 ** complexity. Because N is just a guess, it is no great tragedy if 1135 ** logN is a little off. 1136 */ 1137 static double estLog(double N){ 1138 double logN = 1; 1139 double x = 10; 1140 while( N>x ){ 1141 logN += 1; 1142 x *= 10; 1143 } 1144 return logN; 1145 } 1146 1147 /* 1148 ** Two routines for printing the content of an sqlite3_index_info 1149 ** structure. Used for testing and debugging only. If neither 1150 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 1151 ** are no-ops. 1152 */ 1153 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG) 1154 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ 1155 int i; 1156 if( !sqlite3_where_trace ) return; 1157 for(i=0; i<p->nConstraint; i++){ 1158 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 1159 i, 1160 p->aConstraint[i].iColumn, 1161 p->aConstraint[i].iTermOffset, 1162 p->aConstraint[i].op, 1163 p->aConstraint[i].usable); 1164 } 1165 for(i=0; i<p->nOrderBy; i++){ 1166 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 1167 i, 1168 p->aOrderBy[i].iColumn, 1169 p->aOrderBy[i].desc); 1170 } 1171 } 1172 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ 1173 int i; 1174 if( !sqlite3_where_trace ) return; 1175 for(i=0; i<p->nConstraint; i++){ 1176 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 1177 i, 1178 p->aConstraintUsage[i].argvIndex, 1179 p->aConstraintUsage[i].omit); 1180 } 1181 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 1182 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 1183 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 1184 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 1185 } 1186 #else 1187 #define TRACE_IDX_INPUTS(A) 1188 #define TRACE_IDX_OUTPUTS(A) 1189 #endif 1190 1191 #ifndef SQLITE_OMIT_VIRTUALTABLE 1192 /* 1193 ** Compute the best index for a virtual table. 1194 ** 1195 ** The best index is computed by the xBestIndex method of the virtual 1196 ** table module. This routine is really just a wrapper that sets up 1197 ** the sqlite3_index_info structure that is used to communicate with 1198 ** xBestIndex. 1199 ** 1200 ** In a join, this routine might be called multiple times for the 1201 ** same virtual table. The sqlite3_index_info structure is created 1202 ** and initialized on the first invocation and reused on all subsequent 1203 ** invocations. The sqlite3_index_info structure is also used when 1204 ** code is generated to access the virtual table. The whereInfoDelete() 1205 ** routine takes care of freeing the sqlite3_index_info structure after 1206 ** everybody has finished with it. 1207 */ 1208 static double bestVirtualIndex( 1209 Parse *pParse, /* The parsing context */ 1210 WhereClause *pWC, /* The WHERE clause */ 1211 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1212 Bitmask notReady, /* Mask of cursors that are not available */ 1213 ExprList *pOrderBy, /* The order by clause */ 1214 int orderByUsable, /* True if we can potential sort */ 1215 sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */ 1216 ){ 1217 Table *pTab = pSrc->pTab; 1218 sqlite3_index_info *pIdxInfo; 1219 struct sqlite3_index_constraint *pIdxCons; 1220 struct sqlite3_index_orderby *pIdxOrderBy; 1221 struct sqlite3_index_constraint_usage *pUsage; 1222 WhereTerm *pTerm; 1223 int i, j; 1224 int nOrderBy; 1225 int rc; 1226 1227 /* If the sqlite3_index_info structure has not been previously 1228 ** allocated and initialized for this virtual table, then allocate 1229 ** and initialize it now 1230 */ 1231 pIdxInfo = *ppIdxInfo; 1232 if( pIdxInfo==0 ){ 1233 WhereTerm *pTerm; 1234 int nTerm; 1235 WHERETRACE(("Recomputing index info for %s...\n", pTab->zName)); 1236 1237 /* Count the number of possible WHERE clause constraints referring 1238 ** to this virtual table */ 1239 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1240 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1241 if( pTerm->eOperator==WO_IN ) continue; 1242 if( pTerm->eOperator==WO_ISNULL ) continue; 1243 nTerm++; 1244 } 1245 1246 /* If the ORDER BY clause contains only columns in the current 1247 ** virtual table then allocate space for the aOrderBy part of 1248 ** the sqlite3_index_info structure. 1249 */ 1250 nOrderBy = 0; 1251 if( pOrderBy ){ 1252 for(i=0; i<pOrderBy->nExpr; i++){ 1253 Expr *pExpr = pOrderBy->a[i].pExpr; 1254 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 1255 } 1256 if( i==pOrderBy->nExpr ){ 1257 nOrderBy = pOrderBy->nExpr; 1258 } 1259 } 1260 1261 /* Allocate the sqlite3_index_info structure 1262 */ 1263 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 1264 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 1265 + sizeof(*pIdxOrderBy)*nOrderBy ); 1266 if( pIdxInfo==0 ){ 1267 sqlite3ErrorMsg(pParse, "out of memory"); 1268 return 0.0; 1269 } 1270 *ppIdxInfo = pIdxInfo; 1271 1272 /* Initialize the structure. The sqlite3_index_info structure contains 1273 ** many fields that are declared "const" to prevent xBestIndex from 1274 ** changing them. We have to do some funky casting in order to 1275 ** initialize those fields. 1276 */ 1277 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; 1278 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 1279 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 1280 *(int*)&pIdxInfo->nConstraint = nTerm; 1281 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 1282 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; 1283 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; 1284 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = 1285 pUsage; 1286 1287 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1288 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1289 if( pTerm->eOperator==WO_IN ) continue; 1290 if( pTerm->eOperator==WO_ISNULL ) continue; 1291 pIdxCons[j].iColumn = pTerm->leftColumn; 1292 pIdxCons[j].iTermOffset = i; 1293 pIdxCons[j].op = pTerm->eOperator; 1294 /* The direct assignment in the previous line is possible only because 1295 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 1296 ** following asserts verify this fact. */ 1297 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 1298 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 1299 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 1300 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 1301 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 1302 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); 1303 assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); 1304 j++; 1305 } 1306 for(i=0; i<nOrderBy; i++){ 1307 Expr *pExpr = pOrderBy->a[i].pExpr; 1308 pIdxOrderBy[i].iColumn = pExpr->iColumn; 1309 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; 1310 } 1311 } 1312 1313 /* At this point, the sqlite3_index_info structure that pIdxInfo points 1314 ** to will have been initialized, either during the current invocation or 1315 ** during some prior invocation. Now we just have to customize the 1316 ** details of pIdxInfo for the current invocation and pass it to 1317 ** xBestIndex. 1318 */ 1319 1320 /* The module name must be defined. Also, by this point there must 1321 ** be a pointer to an sqlite3_vtab structure. Otherwise 1322 ** sqlite3ViewGetColumnNames() would have picked up the error. 1323 */ 1324 assert( pTab->azModuleArg && pTab->azModuleArg[0] ); 1325 assert( pTab->pVtab ); 1326 #if 0 1327 if( pTab->pVtab==0 ){ 1328 sqlite3ErrorMsg(pParse, "undefined module %s for table %s", 1329 pTab->azModuleArg[0], pTab->zName); 1330 return 0.0; 1331 } 1332 #endif 1333 1334 /* Set the aConstraint[].usable fields and initialize all 1335 ** output variables to zero. 1336 ** 1337 ** aConstraint[].usable is true for constraints where the right-hand 1338 ** side contains only references to tables to the left of the current 1339 ** table. In other words, if the constraint is of the form: 1340 ** 1341 ** column = expr 1342 ** 1343 ** and we are evaluating a join, then the constraint on column is 1344 ** only valid if all tables referenced in expr occur to the left 1345 ** of the table containing column. 1346 ** 1347 ** The aConstraints[] array contains entries for all constraints 1348 ** on the current table. That way we only have to compute it once 1349 ** even though we might try to pick the best index multiple times. 1350 ** For each attempt at picking an index, the order of tables in the 1351 ** join might be different so we have to recompute the usable flag 1352 ** each time. 1353 */ 1354 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 1355 pUsage = pIdxInfo->aConstraintUsage; 1356 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ 1357 j = pIdxCons->iTermOffset; 1358 pTerm = &pWC->a[j]; 1359 pIdxCons->usable = (pTerm->prereqRight & notReady)==0; 1360 } 1361 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); 1362 if( pIdxInfo->needToFreeIdxStr ){ 1363 sqlite3_free(pIdxInfo->idxStr); 1364 } 1365 pIdxInfo->idxStr = 0; 1366 pIdxInfo->idxNum = 0; 1367 pIdxInfo->needToFreeIdxStr = 0; 1368 pIdxInfo->orderByConsumed = 0; 1369 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0; 1370 nOrderBy = pIdxInfo->nOrderBy; 1371 if( pIdxInfo->nOrderBy && !orderByUsable ){ 1372 *(int*)&pIdxInfo->nOrderBy = 0; 1373 } 1374 1375 sqlite3SafetyOff(pParse->db); 1376 WHERETRACE(("xBestIndex for %s\n", pTab->zName)); 1377 TRACE_IDX_INPUTS(pIdxInfo); 1378 rc = pTab->pVtab->pModule->xBestIndex(pTab->pVtab, pIdxInfo); 1379 TRACE_IDX_OUTPUTS(pIdxInfo); 1380 if( rc!=SQLITE_OK ){ 1381 if( rc==SQLITE_NOMEM ){ 1382 pParse->db->mallocFailed = 1; 1383 }else { 1384 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 1385 } 1386 sqlite3SafetyOn(pParse->db); 1387 }else{ 1388 rc = sqlite3SafetyOn(pParse->db); 1389 } 1390 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 1391 1392 return pIdxInfo->estimatedCost; 1393 } 1394 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1395 1396 /* 1397 ** Find the best index for accessing a particular table. Return a pointer 1398 ** to the index, flags that describe how the index should be used, the 1399 ** number of equality constraints, and the "cost" for this index. 1400 ** 1401 ** The lowest cost index wins. The cost is an estimate of the amount of 1402 ** CPU and disk I/O need to process the request using the selected index. 1403 ** Factors that influence cost include: 1404 ** 1405 ** * The estimated number of rows that will be retrieved. (The 1406 ** fewer the better.) 1407 ** 1408 ** * Whether or not sorting must occur. 1409 ** 1410 ** * Whether or not there must be separate lookups in the 1411 ** index and in the main table. 1412 ** 1413 */ 1414 static double bestIndex( 1415 Parse *pParse, /* The parsing context */ 1416 WhereClause *pWC, /* The WHERE clause */ 1417 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1418 Bitmask notReady, /* Mask of cursors that are not available */ 1419 ExprList *pOrderBy, /* The order by clause */ 1420 Index **ppIndex, /* Make *ppIndex point to the best index */ 1421 int *pFlags, /* Put flags describing this choice in *pFlags */ 1422 int *pnEq /* Put the number of == or IN constraints here */ 1423 ){ 1424 WhereTerm *pTerm; 1425 Index *bestIdx = 0; /* Index that gives the lowest cost */ 1426 double lowestCost; /* The cost of using bestIdx */ 1427 int bestFlags = 0; /* Flags associated with bestIdx */ 1428 int bestNEq = 0; /* Best value for nEq */ 1429 int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ 1430 Index *pProbe; /* An index we are evaluating */ 1431 int rev; /* True to scan in reverse order */ 1432 int flags; /* Flags associated with pProbe */ 1433 int nEq; /* Number of == or IN constraints */ 1434 int eqTermMask; /* Mask of valid equality operators */ 1435 double cost; /* Cost of using pProbe */ 1436 1437 WHERETRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady)); 1438 lowestCost = SQLITE_BIG_DBL; 1439 pProbe = pSrc->pTab->pIndex; 1440 1441 /* If the table has no indices and there are no terms in the where 1442 ** clause that refer to the ROWID, then we will never be able to do 1443 ** anything other than a full table scan on this table. We might as 1444 ** well put it first in the join order. That way, perhaps it can be 1445 ** referenced by other tables in the join. 1446 */ 1447 if( pProbe==0 && 1448 findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 && 1449 (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){ 1450 *pFlags = 0; 1451 *ppIndex = 0; 1452 *pnEq = 0; 1453 return 0.0; 1454 } 1455 1456 /* Check for a rowid=EXPR or rowid IN (...) constraints 1457 */ 1458 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); 1459 if( pTerm ){ 1460 Expr *pExpr; 1461 *ppIndex = 0; 1462 bestFlags = WHERE_ROWID_EQ; 1463 if( pTerm->eOperator & WO_EQ ){ 1464 /* Rowid== is always the best pick. Look no further. Because only 1465 ** a single row is generated, output is always in sorted order */ 1466 *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE; 1467 *pnEq = 1; 1468 WHERETRACE(("... best is rowid\n")); 1469 return 0.0; 1470 }else if( (pExpr = pTerm->pExpr)->pList!=0 ){ 1471 /* Rowid IN (LIST): cost is NlogN where N is the number of list 1472 ** elements. */ 1473 lowestCost = pExpr->pList->nExpr; 1474 lowestCost *= estLog(lowestCost); 1475 }else{ 1476 /* Rowid IN (SELECT): cost is NlogN where N is the number of rows 1477 ** in the result of the inner select. We have no way to estimate 1478 ** that value so make a wild guess. */ 1479 lowestCost = 200; 1480 } 1481 WHERETRACE(("... rowid IN cost: %.9g\n", lowestCost)); 1482 } 1483 1484 /* Estimate the cost of a table scan. If we do not know how many 1485 ** entries are in the table, use 1 million as a guess. 1486 */ 1487 cost = pProbe ? pProbe->aiRowEst[0] : 1000000; 1488 WHERETRACE(("... table scan base cost: %.9g\n", cost)); 1489 flags = WHERE_ROWID_RANGE; 1490 1491 /* Check for constraints on a range of rowids in a table scan. 1492 */ 1493 pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0); 1494 if( pTerm ){ 1495 if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){ 1496 flags |= WHERE_TOP_LIMIT; 1497 cost /= 3; /* Guess that rowid<EXPR eliminates two-thirds or rows */ 1498 } 1499 if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){ 1500 flags |= WHERE_BTM_LIMIT; 1501 cost /= 3; /* Guess that rowid>EXPR eliminates two-thirds of rows */ 1502 } 1503 WHERETRACE(("... rowid range reduces cost to %.9g\n", cost)); 1504 }else{ 1505 flags = 0; 1506 } 1507 1508 /* If the table scan does not satisfy the ORDER BY clause, increase 1509 ** the cost by NlogN to cover the expense of sorting. */ 1510 if( pOrderBy ){ 1511 if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){ 1512 flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE; 1513 if( rev ){ 1514 flags |= WHERE_REVERSE; 1515 } 1516 }else{ 1517 cost += cost*estLog(cost); 1518 WHERETRACE(("... sorting increases cost to %.9g\n", cost)); 1519 } 1520 } 1521 if( cost<lowestCost ){ 1522 lowestCost = cost; 1523 bestFlags = flags; 1524 } 1525 1526 /* If the pSrc table is the right table of a LEFT JOIN then we may not 1527 ** use an index to satisfy IS NULL constraints on that table. This is 1528 ** because columns might end up being NULL if the table does not match - 1529 ** a circumstance which the index cannot help us discover. Ticket #2177. 1530 */ 1531 if( (pSrc->jointype & JT_LEFT)!=0 ){ 1532 eqTermMask = WO_EQ|WO_IN; 1533 }else{ 1534 eqTermMask = WO_EQ|WO_IN|WO_ISNULL; 1535 } 1536 1537 /* Look at each index. 1538 */ 1539 for(; pProbe; pProbe=pProbe->pNext){ 1540 int i; /* Loop counter */ 1541 double inMultiplier = 1; 1542 1543 WHERETRACE(("... index %s:\n", pProbe->zName)); 1544 1545 /* Count the number of columns in the index that are satisfied 1546 ** by x=EXPR constraints or x IN (...) constraints. 1547 */ 1548 flags = 0; 1549 for(i=0; i<pProbe->nColumn; i++){ 1550 int j = pProbe->aiColumn[i]; 1551 pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe); 1552 if( pTerm==0 ) break; 1553 flags |= WHERE_COLUMN_EQ; 1554 if( pTerm->eOperator & WO_IN ){ 1555 Expr *pExpr = pTerm->pExpr; 1556 flags |= WHERE_COLUMN_IN; 1557 if( pExpr->pSelect!=0 ){ 1558 inMultiplier *= 25; 1559 }else if( pExpr->pList!=0 ){ 1560 inMultiplier *= pExpr->pList->nExpr + 1; 1561 } 1562 } 1563 } 1564 cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier); 1565 nEq = i; 1566 if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0 1567 && nEq==pProbe->nColumn ){ 1568 flags |= WHERE_UNIQUE; 1569 } 1570 WHERETRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n",nEq,inMultiplier,cost)); 1571 1572 /* Look for range constraints 1573 */ 1574 if( nEq<pProbe->nColumn ){ 1575 int j = pProbe->aiColumn[nEq]; 1576 pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe); 1577 if( pTerm ){ 1578 flags |= WHERE_COLUMN_RANGE; 1579 if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){ 1580 flags |= WHERE_TOP_LIMIT; 1581 cost /= 3; 1582 } 1583 if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){ 1584 flags |= WHERE_BTM_LIMIT; 1585 cost /= 3; 1586 } 1587 WHERETRACE(("...... range reduces cost to %.9g\n", cost)); 1588 } 1589 } 1590 1591 /* Add the additional cost of sorting if that is a factor. 1592 */ 1593 if( pOrderBy ){ 1594 if( (flags & WHERE_COLUMN_IN)==0 && 1595 isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){ 1596 if( flags==0 ){ 1597 flags = WHERE_COLUMN_RANGE; 1598 } 1599 flags |= WHERE_ORDERBY; 1600 if( rev ){ 1601 flags |= WHERE_REVERSE; 1602 } 1603 }else{ 1604 cost += cost*estLog(cost); 1605 WHERETRACE(("...... orderby increases cost to %.9g\n", cost)); 1606 } 1607 } 1608 1609 /* Check to see if we can get away with using just the index without 1610 ** ever reading the table. If that is the case, then halve the 1611 ** cost of this index. 1612 */ 1613 if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){ 1614 Bitmask m = pSrc->colUsed; 1615 int j; 1616 for(j=0; j<pProbe->nColumn; j++){ 1617 int x = pProbe->aiColumn[j]; 1618 if( x<BMS-1 ){ 1619 m &= ~(((Bitmask)1)<<x); 1620 } 1621 } 1622 if( m==0 ){ 1623 flags |= WHERE_IDX_ONLY; 1624 cost /= 2; 1625 WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost)); 1626 } 1627 } 1628 1629 /* If this index has achieved the lowest cost so far, then use it. 1630 */ 1631 if( flags && cost < lowestCost ){ 1632 bestIdx = pProbe; 1633 lowestCost = cost; 1634 bestFlags = flags; 1635 bestNEq = nEq; 1636 } 1637 } 1638 1639 /* Report the best result 1640 */ 1641 *ppIndex = bestIdx; 1642 WHERETRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n", 1643 bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq)); 1644 *pFlags = bestFlags | eqTermMask; 1645 *pnEq = bestNEq; 1646 return lowestCost; 1647 } 1648 1649 1650 /* 1651 ** Disable a term in the WHERE clause. Except, do not disable the term 1652 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 1653 ** or USING clause of that join. 1654 ** 1655 ** Consider the term t2.z='ok' in the following queries: 1656 ** 1657 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 1658 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 1659 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 1660 ** 1661 ** The t2.z='ok' is disabled in the in (2) because it originates 1662 ** in the ON clause. The term is disabled in (3) because it is not part 1663 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 1664 ** 1665 ** Disabling a term causes that term to not be tested in the inner loop 1666 ** of the join. Disabling is an optimization. When terms are satisfied 1667 ** by indices, we disable them to prevent redundant tests in the inner 1668 ** loop. We would get the correct results if nothing were ever disabled, 1669 ** but joins might run a little slower. The trick is to disable as much 1670 ** as we can without disabling too much. If we disabled in (1), we'd get 1671 ** the wrong answer. See ticket #813. 1672 */ 1673 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 1674 if( pTerm 1675 && (pTerm->flags & TERM_CODED)==0 1676 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 1677 ){ 1678 pTerm->flags |= TERM_CODED; 1679 if( pTerm->iParent>=0 ){ 1680 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; 1681 if( (--pOther->nChild)==0 ){ 1682 disableTerm(pLevel, pOther); 1683 } 1684 } 1685 } 1686 } 1687 1688 /* 1689 ** Generate code that builds a probe for an index. 1690 ** 1691 ** There should be nColumn values on the stack. The index 1692 ** to be probed is pIdx. Pop the values from the stack and 1693 ** replace them all with a single record that is the index 1694 ** problem. 1695 */ 1696 static void buildIndexProbe( 1697 Vdbe *v, /* Generate code into this VM */ 1698 int nColumn, /* The number of columns to check for NULL */ 1699 Index *pIdx /* Index that we will be searching */ 1700 ){ 1701 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 1702 sqlite3IndexAffinityStr(v, pIdx); 1703 } 1704 1705 1706 /* 1707 ** Generate code for a single equality term of the WHERE clause. An equality 1708 ** term can be either X=expr or X IN (...). pTerm is the term to be 1709 ** coded. 1710 ** 1711 ** The current value for the constraint is left on the top of the stack. 1712 ** 1713 ** For a constraint of the form X=expr, the expression is evaluated and its 1714 ** result is left on the stack. For constraints of the form X IN (...) 1715 ** this routine sets up a loop that will iterate over all values of X. 1716 */ 1717 static void codeEqualityTerm( 1718 Parse *pParse, /* The parsing context */ 1719 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 1720 WhereLevel *pLevel /* When level of the FROM clause we are working on */ 1721 ){ 1722 Expr *pX = pTerm->pExpr; 1723 Vdbe *v = pParse->pVdbe; 1724 if( pX->op==TK_EQ ){ 1725 sqlite3ExprCode(pParse, pX->pRight); 1726 }else if( pX->op==TK_ISNULL ){ 1727 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1728 #ifndef SQLITE_OMIT_SUBQUERY 1729 }else{ 1730 int iTab; 1731 struct InLoop *pIn; 1732 1733 assert( pX->op==TK_IN ); 1734 sqlite3CodeSubselect(pParse, pX); 1735 iTab = pX->iTable; 1736 sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0); 1737 VdbeComment((v, "# %.*s", pX->span.n, pX->span.z)); 1738 if( pLevel->nIn==0 ){ 1739 pLevel->nxt = sqlite3VdbeMakeLabel(v); 1740 } 1741 pLevel->nIn++; 1742 pLevel->aInLoop = sqlite3DbReallocOrFree(pParse->db, pLevel->aInLoop, 1743 sizeof(pLevel->aInLoop[0])*pLevel->nIn); 1744 pIn = pLevel->aInLoop; 1745 if( pIn ){ 1746 pIn += pLevel->nIn - 1; 1747 pIn->iCur = iTab; 1748 pIn->topAddr = sqlite3VdbeAddOp(v, OP_Column, iTab, 0); 1749 sqlite3VdbeAddOp(v, OP_IsNull, -1, 0); 1750 }else{ 1751 pLevel->nIn = 0; 1752 } 1753 #endif 1754 } 1755 disableTerm(pLevel, pTerm); 1756 } 1757 1758 /* 1759 ** Generate code that will evaluate all == and IN constraints for an 1760 ** index. The values for all constraints are left on the stack. 1761 ** 1762 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 1763 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 1764 ** The index has as many as three equality constraints, but in this 1765 ** example, the third "c" value is an inequality. So only two 1766 ** constraints are coded. This routine will generate code to evaluate 1767 ** a==5 and b IN (1,2,3). The current values for a and b will be left 1768 ** on the stack - a is the deepest and b the shallowest. 1769 ** 1770 ** In the example above nEq==2. But this subroutine works for any value 1771 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 1772 ** The only thing it does is allocate the pLevel->iMem memory cell. 1773 ** 1774 ** This routine always allocates at least one memory cell and puts 1775 ** the address of that memory cell in pLevel->iMem. The code that 1776 ** calls this routine will use pLevel->iMem to store the termination 1777 ** key value of the loop. If one or more IN operators appear, then 1778 ** this routine allocates an additional nEq memory cells for internal 1779 ** use. 1780 */ 1781 static void codeAllEqualityTerms( 1782 Parse *pParse, /* Parsing context */ 1783 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 1784 WhereClause *pWC, /* The WHERE clause */ 1785 Bitmask notReady /* Which parts of FROM have not yet been coded */ 1786 ){ 1787 int nEq = pLevel->nEq; /* The number of == or IN constraints to code */ 1788 int termsInMem = 0; /* If true, store value in mem[] cells */ 1789 Vdbe *v = pParse->pVdbe; /* The virtual machine under construction */ 1790 Index *pIdx = pLevel->pIdx; /* The index being used for this loop */ 1791 int iCur = pLevel->iTabCur; /* The cursor of the table */ 1792 WhereTerm *pTerm; /* A single constraint term */ 1793 int j; /* Loop counter */ 1794 1795 /* Figure out how many memory cells we will need then allocate them. 1796 ** We always need at least one used to store the loop terminator 1797 ** value. If there are IN operators we'll need one for each == or 1798 ** IN constraint. 1799 */ 1800 pLevel->iMem = pParse->nMem++; 1801 if( pLevel->flags & WHERE_COLUMN_IN ){ 1802 pParse->nMem += pLevel->nEq; 1803 termsInMem = 1; 1804 } 1805 1806 /* Evaluate the equality constraints 1807 */ 1808 assert( pIdx->nColumn>=nEq ); 1809 for(j=0; j<nEq; j++){ 1810 int k = pIdx->aiColumn[j]; 1811 pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx); 1812 if( pTerm==0 ) break; 1813 assert( (pTerm->flags & TERM_CODED)==0 ); 1814 codeEqualityTerm(pParse, pTerm, pLevel); 1815 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ 1816 sqlite3VdbeAddOp(v, OP_IsNull, termsInMem ? -1 : -(j+1), pLevel->brk); 1817 } 1818 if( termsInMem ){ 1819 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem+j+1, 1); 1820 } 1821 } 1822 1823 /* Make sure all the constraint values are on the top of the stack 1824 */ 1825 if( termsInMem ){ 1826 for(j=0; j<nEq; j++){ 1827 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem+j+1, 0); 1828 } 1829 } 1830 } 1831 1832 #if defined(SQLITE_TEST) 1833 /* 1834 ** The following variable holds a text description of query plan generated 1835 ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin 1836 ** overwrites the previous. This information is used for testing and 1837 ** analysis only. 1838 */ 1839 char sqlite3_query_plan[BMS*2*40]; /* Text of the join */ 1840 static int nQPlan = 0; /* Next free slow in _query_plan[] */ 1841 1842 #endif /* SQLITE_TEST */ 1843 1844 1845 /* 1846 ** Free a WhereInfo structure 1847 */ 1848 static void whereInfoFree(WhereInfo *pWInfo){ 1849 if( pWInfo ){ 1850 int i; 1851 for(i=0; i<pWInfo->nLevel; i++){ 1852 sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo; 1853 if( pInfo ){ 1854 if( pInfo->needToFreeIdxStr ){ 1855 /* Coverage: Don't think this can be reached. By the time this 1856 ** function is called, the index-strings have been passed 1857 ** to the vdbe layer for deletion. 1858 */ 1859 sqlite3_free(pInfo->idxStr); 1860 } 1861 sqlite3_free(pInfo); 1862 } 1863 } 1864 sqlite3_free(pWInfo); 1865 } 1866 } 1867 1868 1869 /* 1870 ** Generate the beginning of the loop used for WHERE clause processing. 1871 ** The return value is a pointer to an opaque structure that contains 1872 ** information needed to terminate the loop. Later, the calling routine 1873 ** should invoke sqlite3WhereEnd() with the return value of this function 1874 ** in order to complete the WHERE clause processing. 1875 ** 1876 ** If an error occurs, this routine returns NULL. 1877 ** 1878 ** The basic idea is to do a nested loop, one loop for each table in 1879 ** the FROM clause of a select. (INSERT and UPDATE statements are the 1880 ** same as a SELECT with only a single table in the FROM clause.) For 1881 ** example, if the SQL is this: 1882 ** 1883 ** SELECT * FROM t1, t2, t3 WHERE ...; 1884 ** 1885 ** Then the code generated is conceptually like the following: 1886 ** 1887 ** foreach row1 in t1 do \ Code generated 1888 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 1889 ** foreach row3 in t3 do / 1890 ** ... 1891 ** end \ Code generated 1892 ** end |-- by sqlite3WhereEnd() 1893 ** end / 1894 ** 1895 ** Note that the loops might not be nested in the order in which they 1896 ** appear in the FROM clause if a different order is better able to make 1897 ** use of indices. Note also that when the IN operator appears in 1898 ** the WHERE clause, it might result in additional nested loops for 1899 ** scanning through all values on the right-hand side of the IN. 1900 ** 1901 ** There are Btree cursors associated with each table. t1 uses cursor 1902 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 1903 ** And so forth. This routine generates code to open those VDBE cursors 1904 ** and sqlite3WhereEnd() generates the code to close them. 1905 ** 1906 ** The code that sqlite3WhereBegin() generates leaves the cursors named 1907 ** in pTabList pointing at their appropriate entries. The [...] code 1908 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 1909 ** data from the various tables of the loop. 1910 ** 1911 ** If the WHERE clause is empty, the foreach loops must each scan their 1912 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 1913 ** the tables have indices and there are terms in the WHERE clause that 1914 ** refer to those indices, a complete table scan can be avoided and the 1915 ** code will run much faster. Most of the work of this routine is checking 1916 ** to see if there are indices that can be used to speed up the loop. 1917 ** 1918 ** Terms of the WHERE clause are also used to limit which rows actually 1919 ** make it to the "..." in the middle of the loop. After each "foreach", 1920 ** terms of the WHERE clause that use only terms in that loop and outer 1921 ** loops are evaluated and if false a jump is made around all subsequent 1922 ** inner loops (or around the "..." if the test occurs within the inner- 1923 ** most loop) 1924 ** 1925 ** OUTER JOINS 1926 ** 1927 ** An outer join of tables t1 and t2 is conceptally coded as follows: 1928 ** 1929 ** foreach row1 in t1 do 1930 ** flag = 0 1931 ** foreach row2 in t2 do 1932 ** start: 1933 ** ... 1934 ** flag = 1 1935 ** end 1936 ** if flag==0 then 1937 ** move the row2 cursor to a null row 1938 ** goto start 1939 ** fi 1940 ** end 1941 ** 1942 ** ORDER BY CLAUSE PROCESSING 1943 ** 1944 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, 1945 ** if there is one. If there is no ORDER BY clause or if this routine 1946 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. 1947 ** 1948 ** If an index can be used so that the natural output order of the table 1949 ** scan is correct for the ORDER BY clause, then that index is used and 1950 ** *ppOrderBy is set to NULL. This is an optimization that prevents an 1951 ** unnecessary sort of the result set if an index appropriate for the 1952 ** ORDER BY clause already exists. 1953 ** 1954 ** If the where clause loops cannot be arranged to provide the correct 1955 ** output order, then the *ppOrderBy is unchanged. 1956 */ 1957 WhereInfo *sqlite3WhereBegin( 1958 Parse *pParse, /* The parser context */ 1959 SrcList *pTabList, /* A list of all tables to be scanned */ 1960 Expr *pWhere, /* The WHERE clause */ 1961 ExprList **ppOrderBy /* An ORDER BY clause, or NULL */ 1962 ){ 1963 int i; /* Loop counter */ 1964 WhereInfo *pWInfo; /* Will become the return value of this function */ 1965 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 1966 int brk, cont = 0; /* Addresses used during code generation */ 1967 Bitmask notReady; /* Cursors that are not yet positioned */ 1968 WhereTerm *pTerm; /* A single term in the WHERE clause */ 1969 ExprMaskSet maskSet; /* The expression mask set */ 1970 WhereClause wc; /* The WHERE clause is divided into these terms */ 1971 struct SrcList_item *pTabItem; /* A single entry from pTabList */ 1972 WhereLevel *pLevel; /* A single level in the pWInfo list */ 1973 int iFrom; /* First unused FROM clause element */ 1974 int andFlags; /* AND-ed combination of all wc.a[].flags */ 1975 sqlite3 *db; /* Database connection */ 1976 1977 /* The number of tables in the FROM clause is limited by the number of 1978 ** bits in a Bitmask 1979 */ 1980 if( pTabList->nSrc>BMS ){ 1981 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 1982 return 0; 1983 } 1984 1985 /* Split the WHERE clause into separate subexpressions where each 1986 ** subexpression is separated by an AND operator. 1987 */ 1988 initMaskSet(&maskSet); 1989 whereClauseInit(&wc, pParse, &maskSet); 1990 whereSplit(&wc, pWhere, TK_AND); 1991 1992 /* Allocate and initialize the WhereInfo structure that will become the 1993 ** return value. 1994 */ 1995 db = pParse->db; 1996 pWInfo = sqlite3DbMallocZero(db, 1997 sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel)); 1998 if( db->mallocFailed ){ 1999 goto whereBeginNoMem; 2000 } 2001 pWInfo->nLevel = pTabList->nSrc; 2002 pWInfo->pParse = pParse; 2003 pWInfo->pTabList = pTabList; 2004 pWInfo->iBreak = sqlite3VdbeMakeLabel(v); 2005 2006 /* Special case: a WHERE clause that is constant. Evaluate the 2007 ** expression and either jump over all of the code or fall thru. 2008 */ 2009 if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){ 2010 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1); 2011 pWhere = 0; 2012 } 2013 2014 /* Analyze all of the subexpressions. Note that exprAnalyze() might 2015 ** add new virtual terms onto the end of the WHERE clause. We do not 2016 ** want to analyze these virtual terms, so start analyzing at the end 2017 ** and work forward so that the added virtual terms are never processed. 2018 */ 2019 for(i=0; i<pTabList->nSrc; i++){ 2020 createMask(&maskSet, pTabList->a[i].iCursor); 2021 } 2022 exprAnalyzeAll(pTabList, &wc); 2023 if( db->mallocFailed ){ 2024 goto whereBeginNoMem; 2025 } 2026 2027 /* Chose the best index to use for each table in the FROM clause. 2028 ** 2029 ** This loop fills in the following fields: 2030 ** 2031 ** pWInfo->a[].pIdx The index to use for this level of the loop. 2032 ** pWInfo->a[].flags WHERE_xxx flags associated with pIdx 2033 ** pWInfo->a[].nEq The number of == and IN constraints 2034 ** pWInfo->a[].iFrom When term of the FROM clause is being coded 2035 ** pWInfo->a[].iTabCur The VDBE cursor for the database table 2036 ** pWInfo->a[].iIdxCur The VDBE cursor for the index 2037 ** 2038 ** This loop also figures out the nesting order of tables in the FROM 2039 ** clause. 2040 */ 2041 notReady = ~(Bitmask)0; 2042 pTabItem = pTabList->a; 2043 pLevel = pWInfo->a; 2044 andFlags = ~0; 2045 WHERETRACE(("*** Optimizer Start ***\n")); 2046 for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 2047 Index *pIdx; /* Index for FROM table at pTabItem */ 2048 int flags; /* Flags asssociated with pIdx */ 2049 int nEq; /* Number of == or IN constraints */ 2050 double cost; /* The cost for pIdx */ 2051 int j; /* For looping over FROM tables */ 2052 Index *pBest = 0; /* The best index seen so far */ 2053 int bestFlags = 0; /* Flags associated with pBest */ 2054 int bestNEq = 0; /* nEq associated with pBest */ 2055 double lowestCost; /* Cost of the pBest */ 2056 int bestJ = 0; /* The value of j */ 2057 Bitmask m; /* Bitmask value for j or bestJ */ 2058 int once = 0; /* True when first table is seen */ 2059 sqlite3_index_info *pIndex; /* Current virtual index */ 2060 2061 lowestCost = SQLITE_BIG_DBL; 2062 for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){ 2063 int doNotReorder; /* True if this table should not be reordered */ 2064 2065 doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0; 2066 if( once && doNotReorder ) break; 2067 m = getMask(&maskSet, pTabItem->iCursor); 2068 if( (m & notReady)==0 ){ 2069 if( j==iFrom ) iFrom++; 2070 continue; 2071 } 2072 assert( pTabItem->pTab ); 2073 #ifndef SQLITE_OMIT_VIRTUALTABLE 2074 if( IsVirtual(pTabItem->pTab) ){ 2075 sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo; 2076 cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady, 2077 ppOrderBy ? *ppOrderBy : 0, i==0, 2078 ppIdxInfo); 2079 flags = WHERE_VIRTUALTABLE; 2080 pIndex = *ppIdxInfo; 2081 if( pIndex && pIndex->orderByConsumed ){ 2082 flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY; 2083 } 2084 pIdx = 0; 2085 nEq = 0; 2086 if( (SQLITE_BIG_DBL/2.0)<cost ){ 2087 /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the 2088 ** inital value of lowestCost in this loop. If it is, then 2089 ** the (cost<lowestCost) test below will never be true and 2090 ** pLevel->pBestIdx never set. 2091 */ 2092 cost = (SQLITE_BIG_DBL/2.0); 2093 } 2094 }else 2095 #endif 2096 { 2097 cost = bestIndex(pParse, &wc, pTabItem, notReady, 2098 (i==0 && ppOrderBy) ? *ppOrderBy : 0, 2099 &pIdx, &flags, &nEq); 2100 pIndex = 0; 2101 } 2102 if( cost<lowestCost ){ 2103 once = 1; 2104 lowestCost = cost; 2105 pBest = pIdx; 2106 bestFlags = flags; 2107 bestNEq = nEq; 2108 bestJ = j; 2109 pLevel->pBestIdx = pIndex; 2110 } 2111 if( doNotReorder ) break; 2112 } 2113 WHERETRACE(("*** Optimizer choose table %d for loop %d\n", bestJ, 2114 pLevel-pWInfo->a)); 2115 if( (bestFlags & WHERE_ORDERBY)!=0 ){ 2116 *ppOrderBy = 0; 2117 } 2118 andFlags &= bestFlags; 2119 pLevel->flags = bestFlags; 2120 pLevel->pIdx = pBest; 2121 pLevel->nEq = bestNEq; 2122 pLevel->aInLoop = 0; 2123 pLevel->nIn = 0; 2124 if( pBest ){ 2125 pLevel->iIdxCur = pParse->nTab++; 2126 }else{ 2127 pLevel->iIdxCur = -1; 2128 } 2129 notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor); 2130 pLevel->iFrom = bestJ; 2131 } 2132 WHERETRACE(("*** Optimizer Finished ***\n")); 2133 2134 /* If the total query only selects a single row, then the ORDER BY 2135 ** clause is irrelevant. 2136 */ 2137 if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){ 2138 *ppOrderBy = 0; 2139 } 2140 2141 /* Open all tables in the pTabList and any indices selected for 2142 ** searching those tables. 2143 */ 2144 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ 2145 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 2146 Table *pTab; /* Table to open */ 2147 Index *pIx; /* Index used to access pTab (if any) */ 2148 int iDb; /* Index of database containing table/index */ 2149 int iIdxCur = pLevel->iIdxCur; 2150 2151 #ifndef SQLITE_OMIT_EXPLAIN 2152 if( pParse->explain==2 ){ 2153 char *zMsg; 2154 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 2155 zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName); 2156 if( pItem->zAlias ){ 2157 zMsg = sqlite3MPrintf(db, "%z AS %s", zMsg, pItem->zAlias); 2158 } 2159 if( (pIx = pLevel->pIdx)!=0 ){ 2160 zMsg = sqlite3MPrintf(db, "%z WITH INDEX %s", zMsg, pIx->zName); 2161 }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ 2162 zMsg = sqlite3MPrintf(db, "%z USING PRIMARY KEY", zMsg); 2163 } 2164 #ifndef SQLITE_OMIT_VIRTUALTABLE 2165 else if( pLevel->pBestIdx ){ 2166 sqlite3_index_info *pBestIdx = pLevel->pBestIdx; 2167 zMsg = sqlite3MPrintf(db, "%z VIRTUAL TABLE INDEX %d:%s", zMsg, 2168 pBestIdx->idxNum, pBestIdx->idxStr); 2169 } 2170 #endif 2171 if( pLevel->flags & WHERE_ORDERBY ){ 2172 zMsg = sqlite3MPrintf(db, "%z ORDER BY", zMsg); 2173 } 2174 sqlite3VdbeOp3(v, OP_Explain, i, pLevel->iFrom, zMsg, P3_DYNAMIC); 2175 } 2176 #endif /* SQLITE_OMIT_EXPLAIN */ 2177 pTabItem = &pTabList->a[pLevel->iFrom]; 2178 pTab = pTabItem->pTab; 2179 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2180 if( pTab->isEphem || pTab->pSelect ) continue; 2181 #ifndef SQLITE_OMIT_VIRTUALTABLE 2182 if( pLevel->pBestIdx ){ 2183 int iCur = pTabItem->iCursor; 2184 sqlite3VdbeOp3(v, OP_VOpen, iCur, 0, (const char*)pTab->pVtab, P3_VTAB); 2185 }else 2186 #endif 2187 if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){ 2188 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, OP_OpenRead); 2189 if( pTab->nCol<(sizeof(Bitmask)*8) ){ 2190 Bitmask b = pTabItem->colUsed; 2191 int n = 0; 2192 for(; b; b=b>>1, n++){} 2193 sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-1, n); 2194 assert( n<=pTab->nCol ); 2195 } 2196 }else{ 2197 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2198 } 2199 pLevel->iTabCur = pTabItem->iCursor; 2200 if( (pIx = pLevel->pIdx)!=0 ){ 2201 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx); 2202 assert( pIx->pSchema==pTab->pSchema ); 2203 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); 2204 VdbeComment((v, "# %s", pIx->zName)); 2205 sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum, 2206 (char*)pKey, P3_KEYINFO_HANDOFF); 2207 } 2208 if( (pLevel->flags & (WHERE_IDX_ONLY|WHERE_COLUMN_RANGE))!=0 ){ 2209 /* Only call OP_SetNumColumns on the index if we might later use 2210 ** OP_Column on the index. */ 2211 sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1); 2212 } 2213 sqlite3CodeVerifySchema(pParse, iDb); 2214 } 2215 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 2216 2217 /* Generate the code to do the search. Each iteration of the for 2218 ** loop below generates code for a single nested loop of the VM 2219 ** program. 2220 */ 2221 notReady = ~(Bitmask)0; 2222 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 2223 int j; 2224 int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */ 2225 Index *pIdx; /* The index we will be using */ 2226 int nxt; /* Where to jump to continue with the next IN case */ 2227 int iIdxCur; /* The VDBE cursor for the index */ 2228 int omitTable; /* True if we use the index only */ 2229 int bRev; /* True if we need to scan in reverse order */ 2230 2231 pTabItem = &pTabList->a[pLevel->iFrom]; 2232 iCur = pTabItem->iCursor; 2233 pIdx = pLevel->pIdx; 2234 iIdxCur = pLevel->iIdxCur; 2235 bRev = (pLevel->flags & WHERE_REVERSE)!=0; 2236 omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0; 2237 2238 /* Create labels for the "break" and "continue" instructions 2239 ** for the current loop. Jump to brk to break out of a loop. 2240 ** Jump to cont to go immediately to the next iteration of the 2241 ** loop. 2242 ** 2243 ** When there is an IN operator, we also have a "nxt" label that 2244 ** means to continue with the next IN value combination. When 2245 ** there are no IN operators in the constraints, the "nxt" label 2246 ** is the same as "brk". 2247 */ 2248 brk = pLevel->brk = pLevel->nxt = sqlite3VdbeMakeLabel(v); 2249 cont = pLevel->cont = sqlite3VdbeMakeLabel(v); 2250 2251 /* If this is the right table of a LEFT OUTER JOIN, allocate and 2252 ** initialize a memory cell that records if this table matches any 2253 ** row of the left table of the join. 2254 */ 2255 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ 2256 if( !pParse->nMem ) pParse->nMem++; 2257 pLevel->iLeftJoin = pParse->nMem++; 2258 sqlite3VdbeAddOp(v, OP_MemInt, 0, pLevel->iLeftJoin); 2259 VdbeComment((v, "# init LEFT JOIN no-match flag")); 2260 } 2261 2262 #ifndef SQLITE_OMIT_VIRTUALTABLE 2263 if( pLevel->pBestIdx ){ 2264 /* Case 0: The table is a virtual-table. Use the VFilter and VNext 2265 ** to access the data. 2266 */ 2267 int j; 2268 sqlite3_index_info *pBestIdx = pLevel->pBestIdx; 2269 int nConstraint = pBestIdx->nConstraint; 2270 struct sqlite3_index_constraint_usage *aUsage = 2271 pBestIdx->aConstraintUsage; 2272 const struct sqlite3_index_constraint *aConstraint = 2273 pBestIdx->aConstraint; 2274 2275 for(j=1; j<=nConstraint; j++){ 2276 int k; 2277 for(k=0; k<nConstraint; k++){ 2278 if( aUsage[k].argvIndex==j ){ 2279 int iTerm = aConstraint[k].iTermOffset; 2280 sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight); 2281 break; 2282 } 2283 } 2284 if( k==nConstraint ) break; 2285 } 2286 sqlite3VdbeAddOp(v, OP_Integer, j-1, 0); 2287 sqlite3VdbeAddOp(v, OP_Integer, pBestIdx->idxNum, 0); 2288 sqlite3VdbeOp3(v, OP_VFilter, iCur, brk, pBestIdx->idxStr, 2289 pBestIdx->needToFreeIdxStr ? P3_MPRINTF : P3_STATIC); 2290 pBestIdx->needToFreeIdxStr = 0; 2291 for(j=0; j<pBestIdx->nConstraint; j++){ 2292 if( aUsage[j].omit ){ 2293 int iTerm = aConstraint[j].iTermOffset; 2294 disableTerm(pLevel, &wc.a[iTerm]); 2295 } 2296 } 2297 pLevel->op = OP_VNext; 2298 pLevel->p1 = iCur; 2299 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2300 }else 2301 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 2302 2303 if( pLevel->flags & WHERE_ROWID_EQ ){ 2304 /* Case 1: We can directly reference a single row using an 2305 ** equality comparison against the ROWID field. Or 2306 ** we reference multiple rows using a "rowid IN (...)" 2307 ** construct. 2308 */ 2309 pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0); 2310 assert( pTerm!=0 ); 2311 assert( pTerm->pExpr!=0 ); 2312 assert( pTerm->leftCursor==iCur ); 2313 assert( omitTable==0 ); 2314 codeEqualityTerm(pParse, pTerm, pLevel); 2315 nxt = pLevel->nxt; 2316 sqlite3VdbeAddOp(v, OP_MustBeInt, 1, nxt); 2317 sqlite3VdbeAddOp(v, OP_NotExists, iCur, nxt); 2318 VdbeComment((v, "pk")); 2319 pLevel->op = OP_Noop; 2320 }else if( pLevel->flags & WHERE_ROWID_RANGE ){ 2321 /* Case 2: We have an inequality comparison against the ROWID field. 2322 */ 2323 int testOp = OP_Noop; 2324 int start; 2325 WhereTerm *pStart, *pEnd; 2326 2327 assert( omitTable==0 ); 2328 pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0); 2329 pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0); 2330 if( bRev ){ 2331 pTerm = pStart; 2332 pStart = pEnd; 2333 pEnd = pTerm; 2334 } 2335 if( pStart ){ 2336 Expr *pX; 2337 pX = pStart->pExpr; 2338 assert( pX!=0 ); 2339 assert( pStart->leftCursor==iCur ); 2340 sqlite3ExprCode(pParse, pX->pRight); 2341 sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk); 2342 sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk); 2343 VdbeComment((v, "pk")); 2344 disableTerm(pLevel, pStart); 2345 }else{ 2346 sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk); 2347 } 2348 if( pEnd ){ 2349 Expr *pX; 2350 pX = pEnd->pExpr; 2351 assert( pX!=0 ); 2352 assert( pEnd->leftCursor==iCur ); 2353 sqlite3ExprCode(pParse, pX->pRight); 2354 pLevel->iMem = pParse->nMem++; 2355 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); 2356 if( pX->op==TK_LT || pX->op==TK_GT ){ 2357 testOp = bRev ? OP_Le : OP_Ge; 2358 }else{ 2359 testOp = bRev ? OP_Lt : OP_Gt; 2360 } 2361 disableTerm(pLevel, pEnd); 2362 } 2363 start = sqlite3VdbeCurrentAddr(v); 2364 pLevel->op = bRev ? OP_Prev : OP_Next; 2365 pLevel->p1 = iCur; 2366 pLevel->p2 = start; 2367 if( testOp!=OP_Noop ){ 2368 sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0); 2369 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 2370 sqlite3VdbeAddOp(v, testOp, SQLITE_AFF_NUMERIC|0x100, brk); 2371 } 2372 }else if( pLevel->flags & WHERE_COLUMN_RANGE ){ 2373 /* Case 3: The WHERE clause term that refers to the right-most 2374 ** column of the index is an inequality. For example, if 2375 ** the index is on (x,y,z) and the WHERE clause is of the 2376 ** form "x=5 AND y<10" then this case is used. Only the 2377 ** right-most column can be an inequality - the rest must 2378 ** use the "==" and "IN" operators. 2379 ** 2380 ** This case is also used when there are no WHERE clause 2381 ** constraints but an index is selected anyway, in order 2382 ** to force the output order to conform to an ORDER BY. 2383 */ 2384 int start; 2385 int nEq = pLevel->nEq; 2386 int topEq=0; /* True if top limit uses ==. False is strictly < */ 2387 int btmEq=0; /* True if btm limit uses ==. False if strictly > */ 2388 int topOp, btmOp; /* Operators for the top and bottom search bounds */ 2389 int testOp; 2390 int topLimit = (pLevel->flags & WHERE_TOP_LIMIT)!=0; 2391 int btmLimit = (pLevel->flags & WHERE_BTM_LIMIT)!=0; 2392 2393 /* Generate code to evaluate all constraint terms using == or IN 2394 ** and level the values of those terms on the stack. 2395 */ 2396 codeAllEqualityTerms(pParse, pLevel, &wc, notReady); 2397 2398 /* Duplicate the equality term values because they will all be 2399 ** used twice: once to make the termination key and once to make the 2400 ** start key. 2401 */ 2402 for(j=0; j<nEq; j++){ 2403 sqlite3VdbeAddOp(v, OP_Dup, nEq-1, 0); 2404 } 2405 2406 /* Figure out what comparison operators to use for top and bottom 2407 ** search bounds. For an ascending index, the bottom bound is a > or >= 2408 ** operator and the top bound is a < or <= operator. For a descending 2409 ** index the operators are reversed. 2410 */ 2411 if( pIdx->aSortOrder[nEq]==SQLITE_SO_ASC ){ 2412 topOp = WO_LT|WO_LE; 2413 btmOp = WO_GT|WO_GE; 2414 }else{ 2415 topOp = WO_GT|WO_GE; 2416 btmOp = WO_LT|WO_LE; 2417 SWAP(int, topLimit, btmLimit); 2418 } 2419 2420 /* Generate the termination key. This is the key value that 2421 ** will end the search. There is no termination key if there 2422 ** are no equality terms and no "X<..." term. 2423 ** 2424 ** 2002-Dec-04: On a reverse-order scan, the so-called "termination" 2425 ** key computed here really ends up being the start key. 2426 */ 2427 nxt = pLevel->nxt; 2428 if( topLimit ){ 2429 Expr *pX; 2430 int k = pIdx->aiColumn[j]; 2431 pTerm = findTerm(&wc, iCur, k, notReady, topOp, pIdx); 2432 assert( pTerm!=0 ); 2433 pX = pTerm->pExpr; 2434 assert( (pTerm->flags & TERM_CODED)==0 ); 2435 sqlite3ExprCode(pParse, pX->pRight); 2436 sqlite3VdbeAddOp(v, OP_IsNull, -(nEq*2+1), nxt); 2437 topEq = pTerm->eOperator & (WO_LE|WO_GE); 2438 disableTerm(pLevel, pTerm); 2439 testOp = OP_IdxGE; 2440 }else{ 2441 testOp = nEq>0 ? OP_IdxGE : OP_Noop; 2442 topEq = 1; 2443 } 2444 if( testOp!=OP_Noop ){ 2445 int nCol = nEq + topLimit; 2446 pLevel->iMem = pParse->nMem++; 2447 buildIndexProbe(v, nCol, pIdx); 2448 if( bRev ){ 2449 int op = topEq ? OP_MoveLe : OP_MoveLt; 2450 sqlite3VdbeAddOp(v, op, iIdxCur, nxt); 2451 }else{ 2452 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); 2453 } 2454 }else if( bRev ){ 2455 sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk); 2456 } 2457 2458 /* Generate the start key. This is the key that defines the lower 2459 ** bound on the search. There is no start key if there are no 2460 ** equality terms and if there is no "X>..." term. In 2461 ** that case, generate a "Rewind" instruction in place of the 2462 ** start key search. 2463 ** 2464 ** 2002-Dec-04: In the case of a reverse-order search, the so-called 2465 ** "start" key really ends up being used as the termination key. 2466 */ 2467 if( btmLimit ){ 2468 Expr *pX; 2469 int k = pIdx->aiColumn[j]; 2470 pTerm = findTerm(&wc, iCur, k, notReady, btmOp, pIdx); 2471 assert( pTerm!=0 ); 2472 pX = pTerm->pExpr; 2473 assert( (pTerm->flags & TERM_CODED)==0 ); 2474 sqlite3ExprCode(pParse, pX->pRight); 2475 sqlite3VdbeAddOp(v, OP_IsNull, -(nEq+1), nxt); 2476 btmEq = pTerm->eOperator & (WO_LE|WO_GE); 2477 disableTerm(pLevel, pTerm); 2478 }else{ 2479 btmEq = 1; 2480 } 2481 if( nEq>0 || btmLimit ){ 2482 int nCol = nEq + btmLimit; 2483 buildIndexProbe(v, nCol, pIdx); 2484 if( bRev ){ 2485 pLevel->iMem = pParse->nMem++; 2486 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); 2487 testOp = OP_IdxLT; 2488 }else{ 2489 int op = btmEq ? OP_MoveGe : OP_MoveGt; 2490 sqlite3VdbeAddOp(v, op, iIdxCur, nxt); 2491 } 2492 }else if( bRev ){ 2493 testOp = OP_Noop; 2494 }else{ 2495 sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk); 2496 } 2497 2498 /* Generate the the top of the loop. If there is a termination 2499 ** key we have to test for that key and abort at the top of the 2500 ** loop. 2501 */ 2502 start = sqlite3VdbeCurrentAddr(v); 2503 if( testOp!=OP_Noop ){ 2504 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 2505 sqlite3VdbeAddOp(v, testOp, iIdxCur, nxt); 2506 if( (topEq && !bRev) || (!btmEq && bRev) ){ 2507 sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC); 2508 } 2509 } 2510 if( topLimit | btmLimit ){ 2511 sqlite3VdbeAddOp(v, OP_Column, iIdxCur, nEq); 2512 sqlite3VdbeAddOp(v, OP_IsNull, 1, cont); 2513 } 2514 if( !omitTable ){ 2515 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0); 2516 sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); 2517 } 2518 2519 /* Record the instruction used to terminate the loop. 2520 */ 2521 pLevel->op = bRev ? OP_Prev : OP_Next; 2522 pLevel->p1 = iIdxCur; 2523 pLevel->p2 = start; 2524 }else if( pLevel->flags & WHERE_COLUMN_EQ ){ 2525 /* Case 4: There is an index and all terms of the WHERE clause that 2526 ** refer to the index using the "==" or "IN" operators. 2527 */ 2528 int start; 2529 int nEq = pLevel->nEq; 2530 2531 /* Generate code to evaluate all constraint terms using == or IN 2532 ** and leave the values of those terms on the stack. 2533 */ 2534 codeAllEqualityTerms(pParse, pLevel, &wc, notReady); 2535 nxt = pLevel->nxt; 2536 2537 /* Generate a single key that will be used to both start and terminate 2538 ** the search 2539 */ 2540 buildIndexProbe(v, nEq, pIdx); 2541 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0); 2542 2543 /* Generate code (1) to move to the first matching element of the table. 2544 ** Then generate code (2) that jumps to "nxt" after the cursor is past 2545 ** the last matching element of the table. The code (1) is executed 2546 ** once to initialize the search, the code (2) is executed before each 2547 ** iteration of the scan to see if the scan has finished. */ 2548 if( bRev ){ 2549 /* Scan in reverse order */ 2550 sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, nxt); 2551 start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 2552 sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, nxt); 2553 pLevel->op = OP_Prev; 2554 }else{ 2555 /* Scan in the forward order */ 2556 sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, nxt); 2557 start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 2558 sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, nxt, "+", P3_STATIC); 2559 pLevel->op = OP_Next; 2560 } 2561 if( !omitTable ){ 2562 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0); 2563 sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); 2564 } 2565 pLevel->p1 = iIdxCur; 2566 pLevel->p2 = start; 2567 }else{ 2568 /* Case 5: There is no usable index. We must do a complete 2569 ** scan of the entire table. 2570 */ 2571 assert( omitTable==0 ); 2572 assert( bRev==0 ); 2573 pLevel->op = OP_Next; 2574 pLevel->p1 = iCur; 2575 pLevel->p2 = 1 + sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk); 2576 } 2577 notReady &= ~getMask(&maskSet, iCur); 2578 2579 /* Insert code to test every subexpression that can be completely 2580 ** computed using the current set of tables. 2581 */ 2582 for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){ 2583 Expr *pE; 2584 if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2585 if( (pTerm->prereqAll & notReady)!=0 ) continue; 2586 pE = pTerm->pExpr; 2587 assert( pE!=0 ); 2588 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ 2589 continue; 2590 } 2591 sqlite3ExprIfFalse(pParse, pE, cont, 1); 2592 pTerm->flags |= TERM_CODED; 2593 } 2594 2595 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2596 ** at least one row of the right table has matched the left table. 2597 */ 2598 if( pLevel->iLeftJoin ){ 2599 pLevel->top = sqlite3VdbeCurrentAddr(v); 2600 sqlite3VdbeAddOp(v, OP_MemInt, 1, pLevel->iLeftJoin); 2601 VdbeComment((v, "# record LEFT JOIN hit")); 2602 for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){ 2603 if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2604 if( (pTerm->prereqAll & notReady)!=0 ) continue; 2605 assert( pTerm->pExpr ); 2606 sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, 1); 2607 pTerm->flags |= TERM_CODED; 2608 } 2609 } 2610 } 2611 2612 #ifdef SQLITE_TEST /* For testing and debugging use only */ 2613 /* Record in the query plan information about the current table 2614 ** and the index used to access it (if any). If the table itself 2615 ** is not used, its name is just '{}'. If no index is used 2616 ** the index is listed as "{}". If the primary key is used the 2617 ** index name is '*'. 2618 */ 2619 for(i=0; i<pTabList->nSrc; i++){ 2620 char *z; 2621 int n; 2622 pLevel = &pWInfo->a[i]; 2623 pTabItem = &pTabList->a[pLevel->iFrom]; 2624 z = pTabItem->zAlias; 2625 if( z==0 ) z = pTabItem->pTab->zName; 2626 n = strlen(z); 2627 if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){ 2628 if( pLevel->flags & WHERE_IDX_ONLY ){ 2629 memcpy(&sqlite3_query_plan[nQPlan], "{}", 2); 2630 nQPlan += 2; 2631 }else{ 2632 memcpy(&sqlite3_query_plan[nQPlan], z, n); 2633 nQPlan += n; 2634 } 2635 sqlite3_query_plan[nQPlan++] = ' '; 2636 } 2637 if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ 2638 memcpy(&sqlite3_query_plan[nQPlan], "* ", 2); 2639 nQPlan += 2; 2640 }else if( pLevel->pIdx==0 ){ 2641 memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3); 2642 nQPlan += 3; 2643 }else{ 2644 n = strlen(pLevel->pIdx->zName); 2645 if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){ 2646 memcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName, n); 2647 nQPlan += n; 2648 sqlite3_query_plan[nQPlan++] = ' '; 2649 } 2650 } 2651 } 2652 while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){ 2653 sqlite3_query_plan[--nQPlan] = 0; 2654 } 2655 sqlite3_query_plan[nQPlan] = 0; 2656 nQPlan = 0; 2657 #endif /* SQLITE_TEST // Testing and debugging use only */ 2658 2659 /* Record the continuation address in the WhereInfo structure. Then 2660 ** clean up and return. 2661 */ 2662 pWInfo->iContinue = cont; 2663 whereClauseClear(&wc); 2664 return pWInfo; 2665 2666 /* Jump here if malloc fails */ 2667 whereBeginNoMem: 2668 whereClauseClear(&wc); 2669 whereInfoFree(pWInfo); 2670 return 0; 2671 } 2672 2673 /* 2674 ** Generate the end of the WHERE loop. See comments on 2675 ** sqlite3WhereBegin() for additional information. 2676 */ 2677 void sqlite3WhereEnd(WhereInfo *pWInfo){ 2678 Vdbe *v = pWInfo->pParse->pVdbe; 2679 int i; 2680 WhereLevel *pLevel; 2681 SrcList *pTabList = pWInfo->pTabList; 2682 2683 /* Generate loop termination code. 2684 */ 2685 for(i=pTabList->nSrc-1; i>=0; i--){ 2686 pLevel = &pWInfo->a[i]; 2687 sqlite3VdbeResolveLabel(v, pLevel->cont); 2688 if( pLevel->op!=OP_Noop ){ 2689 sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2); 2690 } 2691 if( pLevel->nIn ){ 2692 struct InLoop *pIn; 2693 int j; 2694 sqlite3VdbeResolveLabel(v, pLevel->nxt); 2695 for(j=pLevel->nIn, pIn=&pLevel->aInLoop[j-1]; j>0; j--, pIn--){ 2696 sqlite3VdbeJumpHere(v, pIn->topAddr+1); 2697 sqlite3VdbeAddOp(v, OP_Next, pIn->iCur, pIn->topAddr); 2698 sqlite3VdbeJumpHere(v, pIn->topAddr-1); 2699 } 2700 sqlite3_free(pLevel->aInLoop); 2701 } 2702 sqlite3VdbeResolveLabel(v, pLevel->brk); 2703 if( pLevel->iLeftJoin ){ 2704 int addr; 2705 addr = sqlite3VdbeAddOp(v, OP_IfMemPos, pLevel->iLeftJoin, 0); 2706 sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0); 2707 if( pLevel->iIdxCur>=0 ){ 2708 sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0); 2709 } 2710 sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top); 2711 sqlite3VdbeJumpHere(v, addr); 2712 } 2713 } 2714 2715 /* The "break" point is here, just past the end of the outer loop. 2716 ** Set it. 2717 */ 2718 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 2719 2720 /* Close all of the cursors that were opened by sqlite3WhereBegin. 2721 */ 2722 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 2723 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 2724 Table *pTab = pTabItem->pTab; 2725 assert( pTab!=0 ); 2726 if( pTab->isEphem || pTab->pSelect ) continue; 2727 if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){ 2728 sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0); 2729 } 2730 if( pLevel->pIdx!=0 ){ 2731 sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0); 2732 } 2733 2734 /* Make cursor substitutions for cases where we want to use 2735 ** just the index and never reference the table. 2736 ** 2737 ** Calls to the code generator in between sqlite3WhereBegin and 2738 ** sqlite3WhereEnd will have created code that references the table 2739 ** directly. This loop scans all that code looking for opcodes 2740 ** that reference the table and converts them into opcodes that 2741 ** reference the index. 2742 */ 2743 if( pLevel->flags & WHERE_IDX_ONLY ){ 2744 int k, j, last; 2745 VdbeOp *pOp; 2746 Index *pIdx = pLevel->pIdx; 2747 2748 assert( pIdx!=0 ); 2749 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop); 2750 last = sqlite3VdbeCurrentAddr(v); 2751 for(k=pWInfo->iTop; k<last; k++, pOp++){ 2752 if( pOp->p1!=pLevel->iTabCur ) continue; 2753 if( pOp->opcode==OP_Column ){ 2754 pOp->p1 = pLevel->iIdxCur; 2755 for(j=0; j<pIdx->nColumn; j++){ 2756 if( pOp->p2==pIdx->aiColumn[j] ){ 2757 pOp->p2 = j; 2758 break; 2759 } 2760 } 2761 }else if( pOp->opcode==OP_Rowid ){ 2762 pOp->p1 = pLevel->iIdxCur; 2763 pOp->opcode = OP_IdxRowid; 2764 }else if( pOp->opcode==OP_NullRow ){ 2765 pOp->opcode = OP_Noop; 2766 } 2767 } 2768 } 2769 } 2770 2771 /* Final cleanup 2772 */ 2773 whereInfoFree(pWInfo); 2774 return; 2775 } 2776