1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* 23 ** Return the estimated number of output rows from a WHERE clause 24 */ 25 u64 sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ 26 return sqlite3LogEstToInt(pWInfo->nRowOut); 27 } 28 29 /* 30 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this 31 ** WHERE clause returns outputs for DISTINCT processing. 32 */ 33 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ 34 return pWInfo->eDistinct; 35 } 36 37 /* 38 ** Return TRUE if the WHERE clause returns rows in ORDER BY order. 39 ** Return FALSE if the output needs to be sorted. 40 */ 41 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ 42 return pWInfo->nOBSat; 43 } 44 45 /* 46 ** Return the VDBE address or label to jump to in order to continue 47 ** immediately with the next row of a WHERE clause. 48 */ 49 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ 50 assert( pWInfo->iContinue!=0 ); 51 return pWInfo->iContinue; 52 } 53 54 /* 55 ** Return the VDBE address or label to jump to in order to break 56 ** out of a WHERE loop. 57 */ 58 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ 59 return pWInfo->iBreak; 60 } 61 62 /* 63 ** Return TRUE if an UPDATE or DELETE statement can operate directly on 64 ** the rowids returned by a WHERE clause. Return FALSE if doing an 65 ** UPDATE or DELETE might change subsequent WHERE clause results. 66 ** 67 ** If the ONEPASS optimization is used (if this routine returns true) 68 ** then also write the indices of open cursors used by ONEPASS 69 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data 70 ** table and iaCur[1] gets the cursor used by an auxiliary index. 71 ** Either value may be -1, indicating that cursor is not used. 72 ** Any cursors returned will have been opened for writing. 73 ** 74 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is 75 ** unable to use the ONEPASS optimization. 76 */ 77 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ 78 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); 79 return pWInfo->okOnePass; 80 } 81 82 /* 83 ** Move the content of pSrc into pDest 84 */ 85 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ 86 pDest->n = pSrc->n; 87 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); 88 } 89 90 /* 91 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. 92 ** 93 ** The new entry might overwrite an existing entry, or it might be 94 ** appended, or it might be discarded. Do whatever is the right thing 95 ** so that pSet keeps the N_OR_COST best entries seen so far. 96 */ 97 static int whereOrInsert( 98 WhereOrSet *pSet, /* The WhereOrSet to be updated */ 99 Bitmask prereq, /* Prerequisites of the new entry */ 100 LogEst rRun, /* Run-cost of the new entry */ 101 LogEst nOut /* Number of outputs for the new entry */ 102 ){ 103 u16 i; 104 WhereOrCost *p; 105 for(i=pSet->n, p=pSet->a; i>0; i--, p++){ 106 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ 107 goto whereOrInsert_done; 108 } 109 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ 110 return 0; 111 } 112 } 113 if( pSet->n<N_OR_COST ){ 114 p = &pSet->a[pSet->n++]; 115 p->nOut = nOut; 116 }else{ 117 p = pSet->a; 118 for(i=1; i<pSet->n; i++){ 119 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; 120 } 121 if( p->rRun<=rRun ) return 0; 122 } 123 whereOrInsert_done: 124 p->prereq = prereq; 125 p->rRun = rRun; 126 if( p->nOut>nOut ) p->nOut = nOut; 127 return 1; 128 } 129 130 /* 131 ** Initialize a preallocated WhereClause structure. 132 */ 133 static void whereClauseInit( 134 WhereClause *pWC, /* The WhereClause to be initialized */ 135 WhereInfo *pWInfo /* The WHERE processing context */ 136 ){ 137 pWC->pWInfo = pWInfo; 138 pWC->pOuter = 0; 139 pWC->nTerm = 0; 140 pWC->nSlot = ArraySize(pWC->aStatic); 141 pWC->a = pWC->aStatic; 142 } 143 144 /* Forward reference */ 145 static void whereClauseClear(WhereClause*); 146 147 /* 148 ** Deallocate all memory associated with a WhereOrInfo object. 149 */ 150 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ 151 whereClauseClear(&p->wc); 152 sqlite3DbFree(db, p); 153 } 154 155 /* 156 ** Deallocate all memory associated with a WhereAndInfo object. 157 */ 158 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ 159 whereClauseClear(&p->wc); 160 sqlite3DbFree(db, p); 161 } 162 163 /* 164 ** Deallocate a WhereClause structure. The WhereClause structure 165 ** itself is not freed. This routine is the inverse of whereClauseInit(). 166 */ 167 static void whereClauseClear(WhereClause *pWC){ 168 int i; 169 WhereTerm *a; 170 sqlite3 *db = pWC->pWInfo->pParse->db; 171 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ 172 if( a->wtFlags & TERM_DYNAMIC ){ 173 sqlite3ExprDelete(db, a->pExpr); 174 } 175 if( a->wtFlags & TERM_ORINFO ){ 176 whereOrInfoDelete(db, a->u.pOrInfo); 177 }else if( a->wtFlags & TERM_ANDINFO ){ 178 whereAndInfoDelete(db, a->u.pAndInfo); 179 } 180 } 181 if( pWC->a!=pWC->aStatic ){ 182 sqlite3DbFree(db, pWC->a); 183 } 184 } 185 186 /* 187 ** Add a single new WhereTerm entry to the WhereClause object pWC. 188 ** The new WhereTerm object is constructed from Expr p and with wtFlags. 189 ** The index in pWC->a[] of the new WhereTerm is returned on success. 190 ** 0 is returned if the new WhereTerm could not be added due to a memory 191 ** allocation error. The memory allocation failure will be recorded in 192 ** the db->mallocFailed flag so that higher-level functions can detect it. 193 ** 194 ** This routine will increase the size of the pWC->a[] array as necessary. 195 ** 196 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility 197 ** for freeing the expression p is assumed by the WhereClause object pWC. 198 ** This is true even if this routine fails to allocate a new WhereTerm. 199 ** 200 ** WARNING: This routine might reallocate the space used to store 201 ** WhereTerms. All pointers to WhereTerms should be invalidated after 202 ** calling this routine. Such pointers may be reinitialized by referencing 203 ** the pWC->a[] array. 204 */ 205 static int whereClauseInsert(WhereClause *pWC, Expr *p, u16 wtFlags){ 206 WhereTerm *pTerm; 207 int idx; 208 testcase( wtFlags & TERM_VIRTUAL ); 209 if( pWC->nTerm>=pWC->nSlot ){ 210 WhereTerm *pOld = pWC->a; 211 sqlite3 *db = pWC->pWInfo->pParse->db; 212 pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); 213 if( pWC->a==0 ){ 214 if( wtFlags & TERM_DYNAMIC ){ 215 sqlite3ExprDelete(db, p); 216 } 217 pWC->a = pOld; 218 return 0; 219 } 220 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); 221 if( pOld!=pWC->aStatic ){ 222 sqlite3DbFree(db, pOld); 223 } 224 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); 225 memset(&pWC->a[pWC->nTerm], 0, sizeof(pWC->a[0])*(pWC->nSlot-pWC->nTerm)); 226 } 227 pTerm = &pWC->a[idx = pWC->nTerm++]; 228 if( p && ExprHasProperty(p, EP_Unlikely) ){ 229 pTerm->truthProb = sqlite3LogEst(p->iTable) - 270; 230 }else{ 231 pTerm->truthProb = 1; 232 } 233 pTerm->pExpr = sqlite3ExprSkipCollate(p); 234 pTerm->wtFlags = wtFlags; 235 pTerm->pWC = pWC; 236 pTerm->iParent = -1; 237 return idx; 238 } 239 240 /* 241 ** This routine identifies subexpressions in the WHERE clause where 242 ** each subexpression is separated by the AND operator or some other 243 ** operator specified in the op parameter. The WhereClause structure 244 ** is filled with pointers to subexpressions. For example: 245 ** 246 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) 247 ** \________/ \_______________/ \________________/ 248 ** slot[0] slot[1] slot[2] 249 ** 250 ** The original WHERE clause in pExpr is unaltered. All this routine 251 ** does is make slot[] entries point to substructure within pExpr. 252 ** 253 ** In the previous sentence and in the diagram, "slot[]" refers to 254 ** the WhereClause.a[] array. The slot[] array grows as needed to contain 255 ** all terms of the WHERE clause. 256 */ 257 static void whereSplit(WhereClause *pWC, Expr *pExpr, u8 op){ 258 pWC->op = op; 259 if( pExpr==0 ) return; 260 if( pExpr->op!=op ){ 261 whereClauseInsert(pWC, pExpr, 0); 262 }else{ 263 whereSplit(pWC, pExpr->pLeft, op); 264 whereSplit(pWC, pExpr->pRight, op); 265 } 266 } 267 268 /* 269 ** Initialize a WhereMaskSet object 270 */ 271 #define initMaskSet(P) (P)->n=0 272 273 /* 274 ** Return the bitmask for the given cursor number. Return 0 if 275 ** iCursor is not in the set. 276 */ 277 static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){ 278 int i; 279 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); 280 for(i=0; i<pMaskSet->n; i++){ 281 if( pMaskSet->ix[i]==iCursor ){ 282 return MASKBIT(i); 283 } 284 } 285 return 0; 286 } 287 288 /* 289 ** Create a new mask for cursor iCursor. 290 ** 291 ** There is one cursor per table in the FROM clause. The number of 292 ** tables in the FROM clause is limited by a test early in the 293 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 294 ** array will never overflow. 295 */ 296 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 297 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 298 pMaskSet->ix[pMaskSet->n++] = iCursor; 299 } 300 301 /* 302 ** These routines walk (recursively) an expression tree and generate 303 ** a bitmask indicating which tables are used in that expression 304 ** tree. 305 */ 306 static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*); 307 static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*); 308 static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){ 309 Bitmask mask = 0; 310 if( p==0 ) return 0; 311 if( p->op==TK_COLUMN ){ 312 mask = getMask(pMaskSet, p->iTable); 313 return mask; 314 } 315 mask = exprTableUsage(pMaskSet, p->pRight); 316 mask |= exprTableUsage(pMaskSet, p->pLeft); 317 if( ExprHasProperty(p, EP_xIsSelect) ){ 318 mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect); 319 }else{ 320 mask |= exprListTableUsage(pMaskSet, p->x.pList); 321 } 322 return mask; 323 } 324 static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){ 325 int i; 326 Bitmask mask = 0; 327 if( pList ){ 328 for(i=0; i<pList->nExpr; i++){ 329 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); 330 } 331 } 332 return mask; 333 } 334 static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){ 335 Bitmask mask = 0; 336 while( pS ){ 337 SrcList *pSrc = pS->pSrc; 338 mask |= exprListTableUsage(pMaskSet, pS->pEList); 339 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); 340 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); 341 mask |= exprTableUsage(pMaskSet, pS->pWhere); 342 mask |= exprTableUsage(pMaskSet, pS->pHaving); 343 if( ALWAYS(pSrc!=0) ){ 344 int i; 345 for(i=0; i<pSrc->nSrc; i++){ 346 mask |= exprSelectTableUsage(pMaskSet, pSrc->a[i].pSelect); 347 mask |= exprTableUsage(pMaskSet, pSrc->a[i].pOn); 348 } 349 } 350 pS = pS->pPrior; 351 } 352 return mask; 353 } 354 355 /* 356 ** Return TRUE if the given operator is one of the operators that is 357 ** allowed for an indexable WHERE clause term. The allowed operators are 358 ** "=", "<", ">", "<=", ">=", "IN", and "IS NULL" 359 */ 360 static int allowedOp(int op){ 361 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); 362 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); 363 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); 364 assert( TK_GE==TK_EQ+4 ); 365 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; 366 } 367 368 /* 369 ** Commute a comparison operator. Expressions of the form "X op Y" 370 ** are converted into "Y op X". 371 ** 372 ** If left/right precedence rules come into play when determining the 373 ** collating sequence, then COLLATE operators are adjusted to ensure 374 ** that the collating sequence does not change. For example: 375 ** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on 376 ** the left hand side of a comparison overrides any collation sequence 377 ** attached to the right. For the same reason the EP_Collate flag 378 ** is not commuted. 379 */ 380 static void exprCommute(Parse *pParse, Expr *pExpr){ 381 u16 expRight = (pExpr->pRight->flags & EP_Collate); 382 u16 expLeft = (pExpr->pLeft->flags & EP_Collate); 383 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); 384 if( expRight==expLeft ){ 385 /* Either X and Y both have COLLATE operator or neither do */ 386 if( expRight ){ 387 /* Both X and Y have COLLATE operators. Make sure X is always 388 ** used by clearing the EP_Collate flag from Y. */ 389 pExpr->pRight->flags &= ~EP_Collate; 390 }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){ 391 /* Neither X nor Y have COLLATE operators, but X has a non-default 392 ** collating sequence. So add the EP_Collate marker on X to cause 393 ** it to be searched first. */ 394 pExpr->pLeft->flags |= EP_Collate; 395 } 396 } 397 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); 398 if( pExpr->op>=TK_GT ){ 399 assert( TK_LT==TK_GT+2 ); 400 assert( TK_GE==TK_LE+2 ); 401 assert( TK_GT>TK_EQ ); 402 assert( TK_GT<TK_LE ); 403 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); 404 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; 405 } 406 } 407 408 /* 409 ** Translate from TK_xx operator to WO_xx bitmask. 410 */ 411 static u16 operatorMask(int op){ 412 u16 c; 413 assert( allowedOp(op) ); 414 if( op==TK_IN ){ 415 c = WO_IN; 416 }else if( op==TK_ISNULL ){ 417 c = WO_ISNULL; 418 }else{ 419 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); 420 c = (u16)(WO_EQ<<(op-TK_EQ)); 421 } 422 assert( op!=TK_ISNULL || c==WO_ISNULL ); 423 assert( op!=TK_IN || c==WO_IN ); 424 assert( op!=TK_EQ || c==WO_EQ ); 425 assert( op!=TK_LT || c==WO_LT ); 426 assert( op!=TK_LE || c==WO_LE ); 427 assert( op!=TK_GT || c==WO_GT ); 428 assert( op!=TK_GE || c==WO_GE ); 429 return c; 430 } 431 432 /* 433 ** Advance to the next WhereTerm that matches according to the criteria 434 ** established when the pScan object was initialized by whereScanInit(). 435 ** Return NULL if there are no more matching WhereTerms. 436 */ 437 static WhereTerm *whereScanNext(WhereScan *pScan){ 438 int iCur; /* The cursor on the LHS of the term */ 439 int iColumn; /* The column on the LHS of the term. -1 for IPK */ 440 Expr *pX; /* An expression being tested */ 441 WhereClause *pWC; /* Shorthand for pScan->pWC */ 442 WhereTerm *pTerm; /* The term being tested */ 443 int k = pScan->k; /* Where to start scanning */ 444 445 while( pScan->iEquiv<=pScan->nEquiv ){ 446 iCur = pScan->aEquiv[pScan->iEquiv-2]; 447 iColumn = pScan->aEquiv[pScan->iEquiv-1]; 448 while( (pWC = pScan->pWC)!=0 ){ 449 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ 450 if( pTerm->leftCursor==iCur 451 && pTerm->u.leftColumn==iColumn 452 && (pScan->iEquiv<=2 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 453 ){ 454 if( (pTerm->eOperator & WO_EQUIV)!=0 455 && pScan->nEquiv<ArraySize(pScan->aEquiv) 456 ){ 457 int j; 458 pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight); 459 assert( pX->op==TK_COLUMN ); 460 for(j=0; j<pScan->nEquiv; j+=2){ 461 if( pScan->aEquiv[j]==pX->iTable 462 && pScan->aEquiv[j+1]==pX->iColumn ){ 463 break; 464 } 465 } 466 if( j==pScan->nEquiv ){ 467 pScan->aEquiv[j] = pX->iTable; 468 pScan->aEquiv[j+1] = pX->iColumn; 469 pScan->nEquiv += 2; 470 } 471 } 472 if( (pTerm->eOperator & pScan->opMask)!=0 ){ 473 /* Verify the affinity and collating sequence match */ 474 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ 475 CollSeq *pColl; 476 Parse *pParse = pWC->pWInfo->pParse; 477 pX = pTerm->pExpr; 478 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ 479 continue; 480 } 481 assert(pX->pLeft); 482 pColl = sqlite3BinaryCompareCollSeq(pParse, 483 pX->pLeft, pX->pRight); 484 if( pColl==0 ) pColl = pParse->db->pDfltColl; 485 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ 486 continue; 487 } 488 } 489 if( (pTerm->eOperator & WO_EQ)!=0 490 && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN 491 && pX->iTable==pScan->aEquiv[0] 492 && pX->iColumn==pScan->aEquiv[1] 493 ){ 494 continue; 495 } 496 pScan->k = k+1; 497 return pTerm; 498 } 499 } 500 } 501 pScan->pWC = pScan->pWC->pOuter; 502 k = 0; 503 } 504 pScan->pWC = pScan->pOrigWC; 505 k = 0; 506 pScan->iEquiv += 2; 507 } 508 return 0; 509 } 510 511 /* 512 ** Initialize a WHERE clause scanner object. Return a pointer to the 513 ** first match. Return NULL if there are no matches. 514 ** 515 ** The scanner will be searching the WHERE clause pWC. It will look 516 ** for terms of the form "X <op> <expr>" where X is column iColumn of table 517 ** iCur. The <op> must be one of the operators described by opMask. 518 ** 519 ** If the search is for X and the WHERE clause contains terms of the 520 ** form X=Y then this routine might also return terms of the form 521 ** "Y <op> <expr>". The number of levels of transitivity is limited, 522 ** but is enough to handle most commonly occurring SQL statements. 523 ** 524 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with 525 ** index pIdx. 526 */ 527 static WhereTerm *whereScanInit( 528 WhereScan *pScan, /* The WhereScan object being initialized */ 529 WhereClause *pWC, /* The WHERE clause to be scanned */ 530 int iCur, /* Cursor to scan for */ 531 int iColumn, /* Column to scan for */ 532 u32 opMask, /* Operator(s) to scan for */ 533 Index *pIdx /* Must be compatible with this index */ 534 ){ 535 int j; 536 537 /* memset(pScan, 0, sizeof(*pScan)); */ 538 pScan->pOrigWC = pWC; 539 pScan->pWC = pWC; 540 if( pIdx && iColumn>=0 ){ 541 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; 542 for(j=0; pIdx->aiColumn[j]!=iColumn; j++){ 543 if( NEVER(j>pIdx->nColumn) ) return 0; 544 } 545 pScan->zCollName = pIdx->azColl[j]; 546 }else{ 547 pScan->idxaff = 0; 548 pScan->zCollName = 0; 549 } 550 pScan->opMask = opMask; 551 pScan->k = 0; 552 pScan->aEquiv[0] = iCur; 553 pScan->aEquiv[1] = iColumn; 554 pScan->nEquiv = 2; 555 pScan->iEquiv = 2; 556 return whereScanNext(pScan); 557 } 558 559 /* 560 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 561 ** where X is a reference to the iColumn of table iCur and <op> is one of 562 ** the WO_xx operator codes specified by the op parameter. 563 ** Return a pointer to the term. Return 0 if not found. 564 ** 565 ** The term returned might by Y=<expr> if there is another constraint in 566 ** the WHERE clause that specifies that X=Y. Any such constraints will be 567 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The 568 ** aEquiv[] array holds X and all its equivalents, with each SQL variable 569 ** taking up two slots in aEquiv[]. The first slot is for the cursor number 570 ** and the second is for the column number. There are 22 slots in aEquiv[] 571 ** so that means we can look for X plus up to 10 other equivalent values. 572 ** Hence a search for X will return <expr> if X=A1 and A1=A2 and A2=A3 573 ** and ... and A9=A10 and A10=<expr>. 574 ** 575 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" 576 ** then try for the one with no dependencies on <expr> - in other words where 577 ** <expr> is a constant expression of some kind. Only return entries of 578 ** the form "X <op> Y" where Y is a column in another table if no terms of 579 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS 580 ** exist, try to return a term that does not use WO_EQUIV. 581 */ 582 static WhereTerm *findTerm( 583 WhereClause *pWC, /* The WHERE clause to be searched */ 584 int iCur, /* Cursor number of LHS */ 585 int iColumn, /* Column number of LHS */ 586 Bitmask notReady, /* RHS must not overlap with this mask */ 587 u32 op, /* Mask of WO_xx values describing operator */ 588 Index *pIdx /* Must be compatible with this index, if not NULL */ 589 ){ 590 WhereTerm *pResult = 0; 591 WhereTerm *p; 592 WhereScan scan; 593 594 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); 595 while( p ){ 596 if( (p->prereqRight & notReady)==0 ){ 597 if( p->prereqRight==0 && (p->eOperator&WO_EQ)!=0 ){ 598 return p; 599 } 600 if( pResult==0 ) pResult = p; 601 } 602 p = whereScanNext(&scan); 603 } 604 return pResult; 605 } 606 607 /* Forward reference */ 608 static void exprAnalyze(SrcList*, WhereClause*, int); 609 610 /* 611 ** Call exprAnalyze on all terms in a WHERE clause. 612 */ 613 static void exprAnalyzeAll( 614 SrcList *pTabList, /* the FROM clause */ 615 WhereClause *pWC /* the WHERE clause to be analyzed */ 616 ){ 617 int i; 618 for(i=pWC->nTerm-1; i>=0; i--){ 619 exprAnalyze(pTabList, pWC, i); 620 } 621 } 622 623 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 624 /* 625 ** Check to see if the given expression is a LIKE or GLOB operator that 626 ** can be optimized using inequality constraints. Return TRUE if it is 627 ** so and false if not. 628 ** 629 ** In order for the operator to be optimizible, the RHS must be a string 630 ** literal that does not begin with a wildcard. The LHS must be a column 631 ** that may only be NULL, a string, or a BLOB, never a number. (This means 632 ** that virtual tables cannot participate in the LIKE optimization.) If the 633 ** collating sequence for the column on the LHS must be appropriate for 634 ** the operator. 635 */ 636 static int isLikeOrGlob( 637 Parse *pParse, /* Parsing and code generating context */ 638 Expr *pExpr, /* Test this expression */ 639 Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ 640 int *pisComplete, /* True if the only wildcard is % in the last character */ 641 int *pnoCase /* True if uppercase is equivalent to lowercase */ 642 ){ 643 const char *z = 0; /* String on RHS of LIKE operator */ 644 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ 645 ExprList *pList; /* List of operands to the LIKE operator */ 646 int c; /* One character in z[] */ 647 int cnt; /* Number of non-wildcard prefix characters */ 648 char wc[3]; /* Wildcard characters */ 649 sqlite3 *db = pParse->db; /* Database connection */ 650 sqlite3_value *pVal = 0; 651 int op; /* Opcode of pRight */ 652 653 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ 654 return 0; 655 } 656 #ifdef SQLITE_EBCDIC 657 if( *pnoCase ) return 0; 658 #endif 659 pList = pExpr->x.pList; 660 pLeft = pList->a[1].pExpr; 661 if( pLeft->op!=TK_COLUMN 662 || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT 663 || IsVirtual(pLeft->pTab) /* Value might be numeric */ 664 ){ 665 /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must 666 ** be the name of an indexed column with TEXT affinity. */ 667 return 0; 668 } 669 assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */ 670 671 pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr); 672 op = pRight->op; 673 if( op==TK_VARIABLE ){ 674 Vdbe *pReprepare = pParse->pReprepare; 675 int iCol = pRight->iColumn; 676 pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_NONE); 677 if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ 678 z = (char *)sqlite3_value_text(pVal); 679 } 680 sqlite3VdbeSetVarmask(pParse->pVdbe, iCol); 681 assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); 682 }else if( op==TK_STRING ){ 683 z = pRight->u.zToken; 684 } 685 if( z ){ 686 cnt = 0; 687 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ 688 cnt++; 689 } 690 if( cnt!=0 && 255!=(u8)z[cnt-1] ){ 691 Expr *pPrefix; 692 *pisComplete = c==wc[0] && z[cnt+1]==0; 693 pPrefix = sqlite3Expr(db, TK_STRING, z); 694 if( pPrefix ) pPrefix->u.zToken[cnt] = 0; 695 *ppPrefix = pPrefix; 696 if( op==TK_VARIABLE ){ 697 Vdbe *v = pParse->pVdbe; 698 sqlite3VdbeSetVarmask(v, pRight->iColumn); 699 if( *pisComplete && pRight->u.zToken[1] ){ 700 /* If the rhs of the LIKE expression is a variable, and the current 701 ** value of the variable means there is no need to invoke the LIKE 702 ** function, then no OP_Variable will be added to the program. 703 ** This causes problems for the sqlite3_bind_parameter_name() 704 ** API. To work around them, add a dummy OP_Variable here. 705 */ 706 int r1 = sqlite3GetTempReg(pParse); 707 sqlite3ExprCodeTarget(pParse, pRight, r1); 708 sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); 709 sqlite3ReleaseTempReg(pParse, r1); 710 } 711 } 712 }else{ 713 z = 0; 714 } 715 } 716 717 sqlite3ValueFree(pVal); 718 return (z!=0); 719 } 720 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 721 722 723 #ifndef SQLITE_OMIT_VIRTUALTABLE 724 /* 725 ** Check to see if the given expression is of the form 726 ** 727 ** column MATCH expr 728 ** 729 ** If it is then return TRUE. If not, return FALSE. 730 */ 731 static int isMatchOfColumn( 732 Expr *pExpr /* Test this expression */ 733 ){ 734 ExprList *pList; 735 736 if( pExpr->op!=TK_FUNCTION ){ 737 return 0; 738 } 739 if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){ 740 return 0; 741 } 742 pList = pExpr->x.pList; 743 if( pList->nExpr!=2 ){ 744 return 0; 745 } 746 if( pList->a[1].pExpr->op != TK_COLUMN ){ 747 return 0; 748 } 749 return 1; 750 } 751 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 752 753 /* 754 ** If the pBase expression originated in the ON or USING clause of 755 ** a join, then transfer the appropriate markings over to derived. 756 */ 757 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ 758 if( pDerived ){ 759 pDerived->flags |= pBase->flags & EP_FromJoin; 760 pDerived->iRightJoinTable = pBase->iRightJoinTable; 761 } 762 } 763 764 /* 765 ** Mark term iChild as being a child of term iParent 766 */ 767 static void markTermAsChild(WhereClause *pWC, int iChild, int iParent){ 768 pWC->a[iChild].iParent = iParent; 769 pWC->a[iChild].truthProb = pWC->a[iParent].truthProb; 770 pWC->a[iParent].nChild++; 771 } 772 773 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 774 /* 775 ** Analyze a term that consists of two or more OR-connected 776 ** subterms. So in: 777 ** 778 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) 779 ** ^^^^^^^^^^^^^^^^^^^^ 780 ** 781 ** This routine analyzes terms such as the middle term in the above example. 782 ** A WhereOrTerm object is computed and attached to the term under 783 ** analysis, regardless of the outcome of the analysis. Hence: 784 ** 785 ** WhereTerm.wtFlags |= TERM_ORINFO 786 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object 787 ** 788 ** The term being analyzed must have two or more of OR-connected subterms. 789 ** A single subterm might be a set of AND-connected sub-subterms. 790 ** Examples of terms under analysis: 791 ** 792 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 793 ** (B) x=expr1 OR expr2=x OR x=expr3 794 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) 795 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') 796 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) 797 ** 798 ** CASE 1: 799 ** 800 ** If all subterms are of the form T.C=expr for some single column of C and 801 ** a single table T (as shown in example B above) then create a new virtual 802 ** term that is an equivalent IN expression. In other words, if the term 803 ** being analyzed is: 804 ** 805 ** x = expr1 OR expr2 = x OR x = expr3 806 ** 807 ** then create a new virtual term like this: 808 ** 809 ** x IN (expr1,expr2,expr3) 810 ** 811 ** CASE 2: 812 ** 813 ** If all subterms are indexable by a single table T, then set 814 ** 815 ** WhereTerm.eOperator = WO_OR 816 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T 817 ** 818 ** A subterm is "indexable" if it is of the form 819 ** "T.C <op> <expr>" where C is any column of table T and 820 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". 821 ** A subterm is also indexable if it is an AND of two or more 822 ** subsubterms at least one of which is indexable. Indexable AND 823 ** subterms have their eOperator set to WO_AND and they have 824 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. 825 ** 826 ** From another point of view, "indexable" means that the subterm could 827 ** potentially be used with an index if an appropriate index exists. 828 ** This analysis does not consider whether or not the index exists; that 829 ** is decided elsewhere. This analysis only looks at whether subterms 830 ** appropriate for indexing exist. 831 ** 832 ** All examples A through E above satisfy case 2. But if a term 833 ** also satisfies case 1 (such as B) we know that the optimizer will 834 ** always prefer case 1, so in that case we pretend that case 2 is not 835 ** satisfied. 836 ** 837 ** It might be the case that multiple tables are indexable. For example, 838 ** (E) above is indexable on tables P, Q, and R. 839 ** 840 ** Terms that satisfy case 2 are candidates for lookup by using 841 ** separate indices to find rowids for each subterm and composing 842 ** the union of all rowids using a RowSet object. This is similar 843 ** to "bitmap indices" in other database engines. 844 ** 845 ** OTHERWISE: 846 ** 847 ** If neither case 1 nor case 2 apply, then leave the eOperator set to 848 ** zero. This term is not useful for search. 849 */ 850 static void exprAnalyzeOrTerm( 851 SrcList *pSrc, /* the FROM clause */ 852 WhereClause *pWC, /* the complete WHERE clause */ 853 int idxTerm /* Index of the OR-term to be analyzed */ 854 ){ 855 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ 856 Parse *pParse = pWInfo->pParse; /* Parser context */ 857 sqlite3 *db = pParse->db; /* Database connection */ 858 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ 859 Expr *pExpr = pTerm->pExpr; /* The expression of the term */ 860 int i; /* Loop counters */ 861 WhereClause *pOrWc; /* Breakup of pTerm into subterms */ 862 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ 863 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ 864 Bitmask chngToIN; /* Tables that might satisfy case 1 */ 865 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ 866 867 /* 868 ** Break the OR clause into its separate subterms. The subterms are 869 ** stored in a WhereClause structure containing within the WhereOrInfo 870 ** object that is attached to the original OR clause term. 871 */ 872 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); 873 assert( pExpr->op==TK_OR ); 874 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); 875 if( pOrInfo==0 ) return; 876 pTerm->wtFlags |= TERM_ORINFO; 877 pOrWc = &pOrInfo->wc; 878 whereClauseInit(pOrWc, pWInfo); 879 whereSplit(pOrWc, pExpr, TK_OR); 880 exprAnalyzeAll(pSrc, pOrWc); 881 if( db->mallocFailed ) return; 882 assert( pOrWc->nTerm>=2 ); 883 884 /* 885 ** Compute the set of tables that might satisfy cases 1 or 2. 886 */ 887 indexable = ~(Bitmask)0; 888 chngToIN = ~(Bitmask)0; 889 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ 890 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ 891 WhereAndInfo *pAndInfo; 892 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); 893 chngToIN = 0; 894 pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo)); 895 if( pAndInfo ){ 896 WhereClause *pAndWC; 897 WhereTerm *pAndTerm; 898 int j; 899 Bitmask b = 0; 900 pOrTerm->u.pAndInfo = pAndInfo; 901 pOrTerm->wtFlags |= TERM_ANDINFO; 902 pOrTerm->eOperator = WO_AND; 903 pAndWC = &pAndInfo->wc; 904 whereClauseInit(pAndWC, pWC->pWInfo); 905 whereSplit(pAndWC, pOrTerm->pExpr, TK_AND); 906 exprAnalyzeAll(pSrc, pAndWC); 907 pAndWC->pOuter = pWC; 908 testcase( db->mallocFailed ); 909 if( !db->mallocFailed ){ 910 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ 911 assert( pAndTerm->pExpr ); 912 if( allowedOp(pAndTerm->pExpr->op) ){ 913 b |= getMask(&pWInfo->sMaskSet, pAndTerm->leftCursor); 914 } 915 } 916 } 917 indexable &= b; 918 } 919 }else if( pOrTerm->wtFlags & TERM_COPIED ){ 920 /* Skip this term for now. We revisit it when we process the 921 ** corresponding TERM_VIRTUAL term */ 922 }else{ 923 Bitmask b; 924 b = getMask(&pWInfo->sMaskSet, pOrTerm->leftCursor); 925 if( pOrTerm->wtFlags & TERM_VIRTUAL ){ 926 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; 927 b |= getMask(&pWInfo->sMaskSet, pOther->leftCursor); 928 } 929 indexable &= b; 930 if( (pOrTerm->eOperator & WO_EQ)==0 ){ 931 chngToIN = 0; 932 }else{ 933 chngToIN &= b; 934 } 935 } 936 } 937 938 /* 939 ** Record the set of tables that satisfy case 2. The set might be 940 ** empty. 941 */ 942 pOrInfo->indexable = indexable; 943 pTerm->eOperator = indexable==0 ? 0 : WO_OR; 944 945 /* 946 ** chngToIN holds a set of tables that *might* satisfy case 1. But 947 ** we have to do some additional checking to see if case 1 really 948 ** is satisfied. 949 ** 950 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means 951 ** that there is no possibility of transforming the OR clause into an 952 ** IN operator because one or more terms in the OR clause contain 953 ** something other than == on a column in the single table. The 1-bit 954 ** case means that every term of the OR clause is of the form 955 ** "table.column=expr" for some single table. The one bit that is set 956 ** will correspond to the common table. We still need to check to make 957 ** sure the same column is used on all terms. The 2-bit case is when 958 ** the all terms are of the form "table1.column=table2.column". It 959 ** might be possible to form an IN operator with either table1.column 960 ** or table2.column as the LHS if either is common to every term of 961 ** the OR clause. 962 ** 963 ** Note that terms of the form "table.column1=table.column2" (the 964 ** same table on both sizes of the ==) cannot be optimized. 965 */ 966 if( chngToIN ){ 967 int okToChngToIN = 0; /* True if the conversion to IN is valid */ 968 int iColumn = -1; /* Column index on lhs of IN operator */ 969 int iCursor = -1; /* Table cursor common to all terms */ 970 int j = 0; /* Loop counter */ 971 972 /* Search for a table and column that appears on one side or the 973 ** other of the == operator in every subterm. That table and column 974 ** will be recorded in iCursor and iColumn. There might not be any 975 ** such table and column. Set okToChngToIN if an appropriate table 976 ** and column is found but leave okToChngToIN false if not found. 977 */ 978 for(j=0; j<2 && !okToChngToIN; j++){ 979 pOrTerm = pOrWc->a; 980 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ 981 assert( pOrTerm->eOperator & WO_EQ ); 982 pOrTerm->wtFlags &= ~TERM_OR_OK; 983 if( pOrTerm->leftCursor==iCursor ){ 984 /* This is the 2-bit case and we are on the second iteration and 985 ** current term is from the first iteration. So skip this term. */ 986 assert( j==1 ); 987 continue; 988 } 989 if( (chngToIN & getMask(&pWInfo->sMaskSet, pOrTerm->leftCursor))==0 ){ 990 /* This term must be of the form t1.a==t2.b where t2 is in the 991 ** chngToIN set but t1 is not. This term will be either preceded 992 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term 993 ** and use its inversion. */ 994 testcase( pOrTerm->wtFlags & TERM_COPIED ); 995 testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); 996 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); 997 continue; 998 } 999 iColumn = pOrTerm->u.leftColumn; 1000 iCursor = pOrTerm->leftCursor; 1001 break; 1002 } 1003 if( i<0 ){ 1004 /* No candidate table+column was found. This can only occur 1005 ** on the second iteration */ 1006 assert( j==1 ); 1007 assert( IsPowerOfTwo(chngToIN) ); 1008 assert( chngToIN==getMask(&pWInfo->sMaskSet, iCursor) ); 1009 break; 1010 } 1011 testcase( j==1 ); 1012 1013 /* We have found a candidate table and column. Check to see if that 1014 ** table and column is common to every term in the OR clause */ 1015 okToChngToIN = 1; 1016 for(; i>=0 && okToChngToIN; i--, pOrTerm++){ 1017 assert( pOrTerm->eOperator & WO_EQ ); 1018 if( pOrTerm->leftCursor!=iCursor ){ 1019 pOrTerm->wtFlags &= ~TERM_OR_OK; 1020 }else if( pOrTerm->u.leftColumn!=iColumn ){ 1021 okToChngToIN = 0; 1022 }else{ 1023 int affLeft, affRight; 1024 /* If the right-hand side is also a column, then the affinities 1025 ** of both right and left sides must be such that no type 1026 ** conversions are required on the right. (Ticket #2249) 1027 */ 1028 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); 1029 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); 1030 if( affRight!=0 && affRight!=affLeft ){ 1031 okToChngToIN = 0; 1032 }else{ 1033 pOrTerm->wtFlags |= TERM_OR_OK; 1034 } 1035 } 1036 } 1037 } 1038 1039 /* At this point, okToChngToIN is true if original pTerm satisfies 1040 ** case 1. In that case, construct a new virtual term that is 1041 ** pTerm converted into an IN operator. 1042 */ 1043 if( okToChngToIN ){ 1044 Expr *pDup; /* A transient duplicate expression */ 1045 ExprList *pList = 0; /* The RHS of the IN operator */ 1046 Expr *pLeft = 0; /* The LHS of the IN operator */ 1047 Expr *pNew; /* The complete IN operator */ 1048 1049 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ 1050 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; 1051 assert( pOrTerm->eOperator & WO_EQ ); 1052 assert( pOrTerm->leftCursor==iCursor ); 1053 assert( pOrTerm->u.leftColumn==iColumn ); 1054 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); 1055 pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup); 1056 pLeft = pOrTerm->pExpr->pLeft; 1057 } 1058 assert( pLeft!=0 ); 1059 pDup = sqlite3ExprDup(db, pLeft, 0); 1060 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0); 1061 if( pNew ){ 1062 int idxNew; 1063 transferJoinMarkings(pNew, pExpr); 1064 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 1065 pNew->x.pList = pList; 1066 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 1067 testcase( idxNew==0 ); 1068 exprAnalyze(pSrc, pWC, idxNew); 1069 pTerm = &pWC->a[idxTerm]; 1070 markTermAsChild(pWC, idxNew, idxTerm); 1071 }else{ 1072 sqlite3ExprListDelete(db, pList); 1073 } 1074 pTerm->eOperator = WO_NOOP; /* case 1 trumps case 2 */ 1075 } 1076 } 1077 } 1078 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ 1079 1080 /* 1081 ** The input to this routine is an WhereTerm structure with only the 1082 ** "pExpr" field filled in. The job of this routine is to analyze the 1083 ** subexpression and populate all the other fields of the WhereTerm 1084 ** structure. 1085 ** 1086 ** If the expression is of the form "<expr> <op> X" it gets commuted 1087 ** to the standard form of "X <op> <expr>". 1088 ** 1089 ** If the expression is of the form "X <op> Y" where both X and Y are 1090 ** columns, then the original expression is unchanged and a new virtual 1091 ** term of the form "Y <op> X" is added to the WHERE clause and 1092 ** analyzed separately. The original term is marked with TERM_COPIED 1093 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr 1094 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it 1095 ** is a commuted copy of a prior term.) The original term has nChild=1 1096 ** and the copy has idxParent set to the index of the original term. 1097 */ 1098 static void exprAnalyze( 1099 SrcList *pSrc, /* the FROM clause */ 1100 WhereClause *pWC, /* the WHERE clause */ 1101 int idxTerm /* Index of the term to be analyzed */ 1102 ){ 1103 WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */ 1104 WhereTerm *pTerm; /* The term to be analyzed */ 1105 WhereMaskSet *pMaskSet; /* Set of table index masks */ 1106 Expr *pExpr; /* The expression to be analyzed */ 1107 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ 1108 Bitmask prereqAll; /* Prerequesites of pExpr */ 1109 Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ 1110 Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ 1111 int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ 1112 int noCase = 0; /* uppercase equivalent to lowercase */ 1113 int op; /* Top-level operator. pExpr->op */ 1114 Parse *pParse = pWInfo->pParse; /* Parsing context */ 1115 sqlite3 *db = pParse->db; /* Database connection */ 1116 1117 if( db->mallocFailed ){ 1118 return; 1119 } 1120 pTerm = &pWC->a[idxTerm]; 1121 pMaskSet = &pWInfo->sMaskSet; 1122 pExpr = pTerm->pExpr; 1123 assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE ); 1124 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); 1125 op = pExpr->op; 1126 if( op==TK_IN ){ 1127 assert( pExpr->pRight==0 ); 1128 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1129 pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect); 1130 }else{ 1131 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList); 1132 } 1133 }else if( op==TK_ISNULL ){ 1134 pTerm->prereqRight = 0; 1135 }else{ 1136 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); 1137 } 1138 prereqAll = exprTableUsage(pMaskSet, pExpr); 1139 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 1140 Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable); 1141 prereqAll |= x; 1142 extraRight = x-1; /* ON clause terms may not be used with an index 1143 ** on left table of a LEFT JOIN. Ticket #3015 */ 1144 } 1145 pTerm->prereqAll = prereqAll; 1146 pTerm->leftCursor = -1; 1147 pTerm->iParent = -1; 1148 pTerm->eOperator = 0; 1149 if( allowedOp(op) ){ 1150 Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft); 1151 Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight); 1152 u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV; 1153 if( pLeft->op==TK_COLUMN ){ 1154 pTerm->leftCursor = pLeft->iTable; 1155 pTerm->u.leftColumn = pLeft->iColumn; 1156 pTerm->eOperator = operatorMask(op) & opMask; 1157 } 1158 if( pRight && pRight->op==TK_COLUMN ){ 1159 WhereTerm *pNew; 1160 Expr *pDup; 1161 u16 eExtraOp = 0; /* Extra bits for pNew->eOperator */ 1162 if( pTerm->leftCursor>=0 ){ 1163 int idxNew; 1164 pDup = sqlite3ExprDup(db, pExpr, 0); 1165 if( db->mallocFailed ){ 1166 sqlite3ExprDelete(db, pDup); 1167 return; 1168 } 1169 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); 1170 if( idxNew==0 ) return; 1171 pNew = &pWC->a[idxNew]; 1172 markTermAsChild(pWC, idxNew, idxTerm); 1173 pTerm = &pWC->a[idxTerm]; 1174 pTerm->wtFlags |= TERM_COPIED; 1175 if( pExpr->op==TK_EQ 1176 && !ExprHasProperty(pExpr, EP_FromJoin) 1177 && OptimizationEnabled(db, SQLITE_Transitive) 1178 ){ 1179 pTerm->eOperator |= WO_EQUIV; 1180 eExtraOp = WO_EQUIV; 1181 } 1182 }else{ 1183 pDup = pExpr; 1184 pNew = pTerm; 1185 } 1186 exprCommute(pParse, pDup); 1187 pLeft = sqlite3ExprSkipCollate(pDup->pLeft); 1188 pNew->leftCursor = pLeft->iTable; 1189 pNew->u.leftColumn = pLeft->iColumn; 1190 testcase( (prereqLeft | extraRight) != prereqLeft ); 1191 pNew->prereqRight = prereqLeft | extraRight; 1192 pNew->prereqAll = prereqAll; 1193 pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask; 1194 } 1195 } 1196 1197 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION 1198 /* If a term is the BETWEEN operator, create two new virtual terms 1199 ** that define the range that the BETWEEN implements. For example: 1200 ** 1201 ** a BETWEEN b AND c 1202 ** 1203 ** is converted into: 1204 ** 1205 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) 1206 ** 1207 ** The two new terms are added onto the end of the WhereClause object. 1208 ** The new terms are "dynamic" and are children of the original BETWEEN 1209 ** term. That means that if the BETWEEN term is coded, the children are 1210 ** skipped. Or, if the children are satisfied by an index, the original 1211 ** BETWEEN term is skipped. 1212 */ 1213 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ 1214 ExprList *pList = pExpr->x.pList; 1215 int i; 1216 static const u8 ops[] = {TK_GE, TK_LE}; 1217 assert( pList!=0 ); 1218 assert( pList->nExpr==2 ); 1219 for(i=0; i<2; i++){ 1220 Expr *pNewExpr; 1221 int idxNew; 1222 pNewExpr = sqlite3PExpr(pParse, ops[i], 1223 sqlite3ExprDup(db, pExpr->pLeft, 0), 1224 sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0); 1225 transferJoinMarkings(pNewExpr, pExpr); 1226 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1227 testcase( idxNew==0 ); 1228 exprAnalyze(pSrc, pWC, idxNew); 1229 pTerm = &pWC->a[idxTerm]; 1230 markTermAsChild(pWC, idxNew, idxTerm); 1231 } 1232 } 1233 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ 1234 1235 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 1236 /* Analyze a term that is composed of two or more subterms connected by 1237 ** an OR operator. 1238 */ 1239 else if( pExpr->op==TK_OR ){ 1240 assert( pWC->op==TK_AND ); 1241 exprAnalyzeOrTerm(pSrc, pWC, idxTerm); 1242 pTerm = &pWC->a[idxTerm]; 1243 } 1244 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1245 1246 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 1247 /* Add constraints to reduce the search space on a LIKE or GLOB 1248 ** operator. 1249 ** 1250 ** A like pattern of the form "x LIKE 'aBc%'" is changed into constraints 1251 ** 1252 ** x>='ABC' AND x<'abd' AND x LIKE 'aBc%' 1253 ** 1254 ** The last character of the prefix "abc" is incremented to form the 1255 ** termination condition "abd". If case is not significant (the default 1256 ** for LIKE) then the lower-bound is made all uppercase and the upper- 1257 ** bound is made all lowercase so that the bounds also work when comparing 1258 ** BLOBs. 1259 */ 1260 if( pWC->op==TK_AND 1261 && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) 1262 ){ 1263 Expr *pLeft; /* LHS of LIKE/GLOB operator */ 1264 Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ 1265 Expr *pNewExpr1; 1266 Expr *pNewExpr2; 1267 int idxNew1; 1268 int idxNew2; 1269 Token sCollSeqName; /* Name of collating sequence */ 1270 const u16 wtFlags = TERM_LIKEOPT | TERM_VIRTUAL | TERM_DYNAMIC; 1271 1272 pLeft = pExpr->x.pList->a[1].pExpr; 1273 pStr2 = sqlite3ExprDup(db, pStr1, 0); 1274 1275 /* Convert the lower bound to upper-case and the upper bound to 1276 ** lower-case (upper-case is less than lower-case in ASCII) so that 1277 ** the range constraints also work for BLOBs 1278 */ 1279 if( noCase && !pParse->db->mallocFailed ){ 1280 int i; 1281 char c; 1282 pTerm->wtFlags |= TERM_LIKE; 1283 for(i=0; (c = pStr1->u.zToken[i])!=0; i++){ 1284 pStr1->u.zToken[i] = sqlite3Toupper(c); 1285 pStr2->u.zToken[i] = sqlite3Tolower(c); 1286 } 1287 } 1288 1289 if( !db->mallocFailed ){ 1290 u8 c, *pC; /* Last character before the first wildcard */ 1291 pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; 1292 c = *pC; 1293 if( noCase ){ 1294 /* The point is to increment the last character before the first 1295 ** wildcard. But if we increment '@', that will push it into the 1296 ** alphabetic range where case conversions will mess up the 1297 ** inequality. To avoid this, make sure to also run the full 1298 ** LIKE on all candidate expressions by clearing the isComplete flag 1299 */ 1300 if( c=='A'-1 ) isComplete = 0; 1301 c = sqlite3UpperToLower[c]; 1302 } 1303 *pC = c + 1; 1304 } 1305 sCollSeqName.z = noCase ? "NOCASE" : "BINARY"; 1306 sCollSeqName.n = 6; 1307 pNewExpr1 = sqlite3ExprDup(db, pLeft, 0); 1308 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, 1309 sqlite3ExprAddCollateToken(pParse,pNewExpr1,&sCollSeqName), 1310 pStr1, 0); 1311 transferJoinMarkings(pNewExpr1, pExpr); 1312 idxNew1 = whereClauseInsert(pWC, pNewExpr1, wtFlags); 1313 testcase( idxNew1==0 ); 1314 exprAnalyze(pSrc, pWC, idxNew1); 1315 pNewExpr2 = sqlite3ExprDup(db, pLeft, 0); 1316 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, 1317 sqlite3ExprAddCollateToken(pParse,pNewExpr2,&sCollSeqName), 1318 pStr2, 0); 1319 transferJoinMarkings(pNewExpr2, pExpr); 1320 idxNew2 = whereClauseInsert(pWC, pNewExpr2, wtFlags); 1321 testcase( idxNew2==0 ); 1322 exprAnalyze(pSrc, pWC, idxNew2); 1323 pTerm = &pWC->a[idxTerm]; 1324 if( isComplete ){ 1325 markTermAsChild(pWC, idxNew1, idxTerm); 1326 markTermAsChild(pWC, idxNew2, idxTerm); 1327 } 1328 } 1329 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 1330 1331 #ifndef SQLITE_OMIT_VIRTUALTABLE 1332 /* Add a WO_MATCH auxiliary term to the constraint set if the 1333 ** current expression is of the form: column MATCH expr. 1334 ** This information is used by the xBestIndex methods of 1335 ** virtual tables. The native query optimizer does not attempt 1336 ** to do anything with MATCH functions. 1337 */ 1338 if( isMatchOfColumn(pExpr) ){ 1339 int idxNew; 1340 Expr *pRight, *pLeft; 1341 WhereTerm *pNewTerm; 1342 Bitmask prereqColumn, prereqExpr; 1343 1344 pRight = pExpr->x.pList->a[0].pExpr; 1345 pLeft = pExpr->x.pList->a[1].pExpr; 1346 prereqExpr = exprTableUsage(pMaskSet, pRight); 1347 prereqColumn = exprTableUsage(pMaskSet, pLeft); 1348 if( (prereqExpr & prereqColumn)==0 ){ 1349 Expr *pNewExpr; 1350 pNewExpr = sqlite3PExpr(pParse, TK_MATCH, 1351 0, sqlite3ExprDup(db, pRight, 0), 0); 1352 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1353 testcase( idxNew==0 ); 1354 pNewTerm = &pWC->a[idxNew]; 1355 pNewTerm->prereqRight = prereqExpr; 1356 pNewTerm->leftCursor = pLeft->iTable; 1357 pNewTerm->u.leftColumn = pLeft->iColumn; 1358 pNewTerm->eOperator = WO_MATCH; 1359 markTermAsChild(pWC, idxNew, idxTerm); 1360 pTerm = &pWC->a[idxTerm]; 1361 pTerm->wtFlags |= TERM_COPIED; 1362 pNewTerm->prereqAll = pTerm->prereqAll; 1363 } 1364 } 1365 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1366 1367 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1368 /* When sqlite_stat3 histogram data is available an operator of the 1369 ** form "x IS NOT NULL" can sometimes be evaluated more efficiently 1370 ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a 1371 ** virtual term of that form. 1372 ** 1373 ** Note that the virtual term must be tagged with TERM_VNULL. This 1374 ** TERM_VNULL tag will suppress the not-null check at the beginning 1375 ** of the loop. Without the TERM_VNULL flag, the not-null check at 1376 ** the start of the loop will prevent any results from being returned. 1377 */ 1378 if( pExpr->op==TK_NOTNULL 1379 && pExpr->pLeft->op==TK_COLUMN 1380 && pExpr->pLeft->iColumn>=0 1381 && OptimizationEnabled(db, SQLITE_Stat34) 1382 ){ 1383 Expr *pNewExpr; 1384 Expr *pLeft = pExpr->pLeft; 1385 int idxNew; 1386 WhereTerm *pNewTerm; 1387 1388 pNewExpr = sqlite3PExpr(pParse, TK_GT, 1389 sqlite3ExprDup(db, pLeft, 0), 1390 sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0); 1391 1392 idxNew = whereClauseInsert(pWC, pNewExpr, 1393 TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL); 1394 if( idxNew ){ 1395 pNewTerm = &pWC->a[idxNew]; 1396 pNewTerm->prereqRight = 0; 1397 pNewTerm->leftCursor = pLeft->iTable; 1398 pNewTerm->u.leftColumn = pLeft->iColumn; 1399 pNewTerm->eOperator = WO_GT; 1400 markTermAsChild(pWC, idxNew, idxTerm); 1401 pTerm = &pWC->a[idxTerm]; 1402 pTerm->wtFlags |= TERM_COPIED; 1403 pNewTerm->prereqAll = pTerm->prereqAll; 1404 } 1405 } 1406 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1407 1408 /* Prevent ON clause terms of a LEFT JOIN from being used to drive 1409 ** an index for tables to the left of the join. 1410 */ 1411 pTerm->prereqRight |= extraRight; 1412 } 1413 1414 /* 1415 ** This function searches pList for an entry that matches the iCol-th column 1416 ** of index pIdx. 1417 ** 1418 ** If such an expression is found, its index in pList->a[] is returned. If 1419 ** no expression is found, -1 is returned. 1420 */ 1421 static int findIndexCol( 1422 Parse *pParse, /* Parse context */ 1423 ExprList *pList, /* Expression list to search */ 1424 int iBase, /* Cursor for table associated with pIdx */ 1425 Index *pIdx, /* Index to match column of */ 1426 int iCol /* Column of index to match */ 1427 ){ 1428 int i; 1429 const char *zColl = pIdx->azColl[iCol]; 1430 1431 for(i=0; i<pList->nExpr; i++){ 1432 Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr); 1433 if( p->op==TK_COLUMN 1434 && p->iColumn==pIdx->aiColumn[iCol] 1435 && p->iTable==iBase 1436 ){ 1437 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); 1438 if( ALWAYS(pColl) && 0==sqlite3StrICmp(pColl->zName, zColl) ){ 1439 return i; 1440 } 1441 } 1442 } 1443 1444 return -1; 1445 } 1446 1447 /* 1448 ** Return true if the DISTINCT expression-list passed as the third argument 1449 ** is redundant. 1450 ** 1451 ** A DISTINCT list is redundant if the database contains some subset of 1452 ** columns that are unique and non-null. 1453 */ 1454 static int isDistinctRedundant( 1455 Parse *pParse, /* Parsing context */ 1456 SrcList *pTabList, /* The FROM clause */ 1457 WhereClause *pWC, /* The WHERE clause */ 1458 ExprList *pDistinct /* The result set that needs to be DISTINCT */ 1459 ){ 1460 Table *pTab; 1461 Index *pIdx; 1462 int i; 1463 int iBase; 1464 1465 /* If there is more than one table or sub-select in the FROM clause of 1466 ** this query, then it will not be possible to show that the DISTINCT 1467 ** clause is redundant. */ 1468 if( pTabList->nSrc!=1 ) return 0; 1469 iBase = pTabList->a[0].iCursor; 1470 pTab = pTabList->a[0].pTab; 1471 1472 /* If any of the expressions is an IPK column on table iBase, then return 1473 ** true. Note: The (p->iTable==iBase) part of this test may be false if the 1474 ** current SELECT is a correlated sub-query. 1475 */ 1476 for(i=0; i<pDistinct->nExpr; i++){ 1477 Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr); 1478 if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1; 1479 } 1480 1481 /* Loop through all indices on the table, checking each to see if it makes 1482 ** the DISTINCT qualifier redundant. It does so if: 1483 ** 1484 ** 1. The index is itself UNIQUE, and 1485 ** 1486 ** 2. All of the columns in the index are either part of the pDistinct 1487 ** list, or else the WHERE clause contains a term of the form "col=X", 1488 ** where X is a constant value. The collation sequences of the 1489 ** comparison and select-list expressions must match those of the index. 1490 ** 1491 ** 3. All of those index columns for which the WHERE clause does not 1492 ** contain a "col=X" term are subject to a NOT NULL constraint. 1493 */ 1494 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 1495 if( !IsUniqueIndex(pIdx) ) continue; 1496 for(i=0; i<pIdx->nKeyCol; i++){ 1497 i16 iCol = pIdx->aiColumn[i]; 1498 if( 0==findTerm(pWC, iBase, iCol, ~(Bitmask)0, WO_EQ, pIdx) ){ 1499 int iIdxCol = findIndexCol(pParse, pDistinct, iBase, pIdx, i); 1500 if( iIdxCol<0 || pTab->aCol[iCol].notNull==0 ){ 1501 break; 1502 } 1503 } 1504 } 1505 if( i==pIdx->nKeyCol ){ 1506 /* This index implies that the DISTINCT qualifier is redundant. */ 1507 return 1; 1508 } 1509 } 1510 1511 return 0; 1512 } 1513 1514 1515 /* 1516 ** Estimate the logarithm of the input value to base 2. 1517 */ 1518 static LogEst estLog(LogEst N){ 1519 return N<=10 ? 0 : sqlite3LogEst(N) - 33; 1520 } 1521 1522 /* 1523 ** Two routines for printing the content of an sqlite3_index_info 1524 ** structure. Used for testing and debugging only. If neither 1525 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 1526 ** are no-ops. 1527 */ 1528 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) 1529 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ 1530 int i; 1531 if( !sqlite3WhereTrace ) return; 1532 for(i=0; i<p->nConstraint; i++){ 1533 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 1534 i, 1535 p->aConstraint[i].iColumn, 1536 p->aConstraint[i].iTermOffset, 1537 p->aConstraint[i].op, 1538 p->aConstraint[i].usable); 1539 } 1540 for(i=0; i<p->nOrderBy; i++){ 1541 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 1542 i, 1543 p->aOrderBy[i].iColumn, 1544 p->aOrderBy[i].desc); 1545 } 1546 } 1547 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ 1548 int i; 1549 if( !sqlite3WhereTrace ) return; 1550 for(i=0; i<p->nConstraint; i++){ 1551 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 1552 i, 1553 p->aConstraintUsage[i].argvIndex, 1554 p->aConstraintUsage[i].omit); 1555 } 1556 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 1557 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 1558 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 1559 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 1560 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); 1561 } 1562 #else 1563 #define TRACE_IDX_INPUTS(A) 1564 #define TRACE_IDX_OUTPUTS(A) 1565 #endif 1566 1567 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 1568 /* 1569 ** Return TRUE if the WHERE clause term pTerm is of a form where it 1570 ** could be used with an index to access pSrc, assuming an appropriate 1571 ** index existed. 1572 */ 1573 static int termCanDriveIndex( 1574 WhereTerm *pTerm, /* WHERE clause term to check */ 1575 struct SrcList_item *pSrc, /* Table we are trying to access */ 1576 Bitmask notReady /* Tables in outer loops of the join */ 1577 ){ 1578 char aff; 1579 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; 1580 if( (pTerm->eOperator & WO_EQ)==0 ) return 0; 1581 if( (pTerm->prereqRight & notReady)!=0 ) return 0; 1582 if( pTerm->u.leftColumn<0 ) return 0; 1583 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; 1584 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; 1585 return 1; 1586 } 1587 #endif 1588 1589 1590 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 1591 /* 1592 ** Generate code to construct the Index object for an automatic index 1593 ** and to set up the WhereLevel object pLevel so that the code generator 1594 ** makes use of the automatic index. 1595 */ 1596 static void constructAutomaticIndex( 1597 Parse *pParse, /* The parsing context */ 1598 WhereClause *pWC, /* The WHERE clause */ 1599 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */ 1600 Bitmask notReady, /* Mask of cursors that are not available */ 1601 WhereLevel *pLevel /* Write new index here */ 1602 ){ 1603 int nKeyCol; /* Number of columns in the constructed index */ 1604 WhereTerm *pTerm; /* A single term of the WHERE clause */ 1605 WhereTerm *pWCEnd; /* End of pWC->a[] */ 1606 Index *pIdx; /* Object describing the transient index */ 1607 Vdbe *v; /* Prepared statement under construction */ 1608 int addrInit; /* Address of the initialization bypass jump */ 1609 Table *pTable; /* The table being indexed */ 1610 int addrTop; /* Top of the index fill loop */ 1611 int regRecord; /* Register holding an index record */ 1612 int n; /* Column counter */ 1613 int i; /* Loop counter */ 1614 int mxBitCol; /* Maximum column in pSrc->colUsed */ 1615 CollSeq *pColl; /* Collating sequence to on a column */ 1616 WhereLoop *pLoop; /* The Loop object */ 1617 char *zNotUsed; /* Extra space on the end of pIdx */ 1618 Bitmask idxCols; /* Bitmap of columns used for indexing */ 1619 Bitmask extraCols; /* Bitmap of additional columns */ 1620 u8 sentWarning = 0; /* True if a warnning has been issued */ 1621 Expr *pPartial = 0; /* Partial Index Expression */ 1622 int iContinue = 0; /* Jump here to skip excluded rows */ 1623 1624 /* Generate code to skip over the creation and initialization of the 1625 ** transient index on 2nd and subsequent iterations of the loop. */ 1626 v = pParse->pVdbe; 1627 assert( v!=0 ); 1628 addrInit = sqlite3CodeOnce(pParse); VdbeCoverage(v); 1629 1630 /* Count the number of columns that will be added to the index 1631 ** and used to match WHERE clause constraints */ 1632 nKeyCol = 0; 1633 pTable = pSrc->pTab; 1634 pWCEnd = &pWC->a[pWC->nTerm]; 1635 pLoop = pLevel->pWLoop; 1636 idxCols = 0; 1637 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 1638 Expr *pExpr = pTerm->pExpr; 1639 assert( !ExprHasProperty(pExpr, EP_FromJoin) /* prereq always non-zero */ 1640 || pExpr->iRightJoinTable!=pSrc->iCursor /* for the right-hand */ 1641 || pLoop->prereq!=0 ); /* table of a LEFT JOIN */ 1642 if( pLoop->prereq==0 1643 && (pTerm->wtFlags & TERM_VIRTUAL)==0 1644 && !ExprHasProperty(pExpr, EP_FromJoin) 1645 && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){ 1646 pPartial = sqlite3ExprAnd(pParse->db, pPartial, 1647 sqlite3ExprDup(pParse->db, pExpr, 0)); 1648 } 1649 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 1650 int iCol = pTerm->u.leftColumn; 1651 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 1652 testcase( iCol==BMS ); 1653 testcase( iCol==BMS-1 ); 1654 if( !sentWarning ){ 1655 sqlite3_log(SQLITE_WARNING_AUTOINDEX, 1656 "automatic index on %s(%s)", pTable->zName, 1657 pTable->aCol[iCol].zName); 1658 sentWarning = 1; 1659 } 1660 if( (idxCols & cMask)==0 ){ 1661 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ 1662 goto end_auto_index_create; 1663 } 1664 pLoop->aLTerm[nKeyCol++] = pTerm; 1665 idxCols |= cMask; 1666 } 1667 } 1668 } 1669 assert( nKeyCol>0 ); 1670 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; 1671 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED 1672 | WHERE_AUTO_INDEX; 1673 1674 /* Count the number of additional columns needed to create a 1675 ** covering index. A "covering index" is an index that contains all 1676 ** columns that are needed by the query. With a covering index, the 1677 ** original table never needs to be accessed. Automatic indices must 1678 ** be a covering index because the index will not be updated if the 1679 ** original table changes and the index and table cannot both be used 1680 ** if they go out of sync. 1681 */ 1682 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); 1683 mxBitCol = MIN(BMS-1,pTable->nCol); 1684 testcase( pTable->nCol==BMS-1 ); 1685 testcase( pTable->nCol==BMS-2 ); 1686 for(i=0; i<mxBitCol; i++){ 1687 if( extraCols & MASKBIT(i) ) nKeyCol++; 1688 } 1689 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 1690 nKeyCol += pTable->nCol - BMS + 1; 1691 } 1692 1693 /* Construct the Index object to describe this index */ 1694 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); 1695 if( pIdx==0 ) goto end_auto_index_create; 1696 pLoop->u.btree.pIndex = pIdx; 1697 pIdx->zName = "auto-index"; 1698 pIdx->pTable = pTable; 1699 n = 0; 1700 idxCols = 0; 1701 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 1702 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 1703 int iCol = pTerm->u.leftColumn; 1704 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 1705 testcase( iCol==BMS-1 ); 1706 testcase( iCol==BMS ); 1707 if( (idxCols & cMask)==0 ){ 1708 Expr *pX = pTerm->pExpr; 1709 idxCols |= cMask; 1710 pIdx->aiColumn[n] = pTerm->u.leftColumn; 1711 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); 1712 pIdx->azColl[n] = ALWAYS(pColl) ? pColl->zName : "BINARY"; 1713 n++; 1714 } 1715 } 1716 } 1717 assert( (u32)n==pLoop->u.btree.nEq ); 1718 1719 /* Add additional columns needed to make the automatic index into 1720 ** a covering index */ 1721 for(i=0; i<mxBitCol; i++){ 1722 if( extraCols & MASKBIT(i) ){ 1723 pIdx->aiColumn[n] = i; 1724 pIdx->azColl[n] = "BINARY"; 1725 n++; 1726 } 1727 } 1728 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 1729 for(i=BMS-1; i<pTable->nCol; i++){ 1730 pIdx->aiColumn[n] = i; 1731 pIdx->azColl[n] = "BINARY"; 1732 n++; 1733 } 1734 } 1735 assert( n==nKeyCol ); 1736 pIdx->aiColumn[n] = -1; 1737 pIdx->azColl[n] = "BINARY"; 1738 1739 /* Create the automatic index */ 1740 assert( pLevel->iIdxCur>=0 ); 1741 pLevel->iIdxCur = pParse->nTab++; 1742 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); 1743 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 1744 VdbeComment((v, "for %s", pTable->zName)); 1745 1746 /* Fill the automatic index with content */ 1747 sqlite3ExprCachePush(pParse); 1748 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); 1749 if( pPartial ){ 1750 iContinue = sqlite3VdbeMakeLabel(v); 1751 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); 1752 pLoop->wsFlags |= WHERE_PARTIALIDX; 1753 } 1754 regRecord = sqlite3GetTempReg(pParse); 1755 sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0); 1756 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); 1757 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1758 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); 1759 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); 1760 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); 1761 sqlite3VdbeJumpHere(v, addrTop); 1762 sqlite3ReleaseTempReg(pParse, regRecord); 1763 sqlite3ExprCachePop(pParse); 1764 1765 /* Jump here when skipping the initialization */ 1766 sqlite3VdbeJumpHere(v, addrInit); 1767 1768 end_auto_index_create: 1769 sqlite3ExprDelete(pParse->db, pPartial); 1770 } 1771 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 1772 1773 #ifndef SQLITE_OMIT_VIRTUALTABLE 1774 /* 1775 ** Allocate and populate an sqlite3_index_info structure. It is the 1776 ** responsibility of the caller to eventually release the structure 1777 ** by passing the pointer returned by this function to sqlite3_free(). 1778 */ 1779 static sqlite3_index_info *allocateIndexInfo( 1780 Parse *pParse, 1781 WhereClause *pWC, 1782 struct SrcList_item *pSrc, 1783 ExprList *pOrderBy 1784 ){ 1785 int i, j; 1786 int nTerm; 1787 struct sqlite3_index_constraint *pIdxCons; 1788 struct sqlite3_index_orderby *pIdxOrderBy; 1789 struct sqlite3_index_constraint_usage *pUsage; 1790 WhereTerm *pTerm; 1791 int nOrderBy; 1792 sqlite3_index_info *pIdxInfo; 1793 1794 /* Count the number of possible WHERE clause constraints referring 1795 ** to this virtual table */ 1796 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1797 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1798 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 1799 testcase( pTerm->eOperator & WO_IN ); 1800 testcase( pTerm->eOperator & WO_ISNULL ); 1801 testcase( pTerm->eOperator & WO_ALL ); 1802 if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV))==0 ) continue; 1803 if( pTerm->wtFlags & TERM_VNULL ) continue; 1804 nTerm++; 1805 } 1806 1807 /* If the ORDER BY clause contains only columns in the current 1808 ** virtual table then allocate space for the aOrderBy part of 1809 ** the sqlite3_index_info structure. 1810 */ 1811 nOrderBy = 0; 1812 if( pOrderBy ){ 1813 int n = pOrderBy->nExpr; 1814 for(i=0; i<n; i++){ 1815 Expr *pExpr = pOrderBy->a[i].pExpr; 1816 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 1817 } 1818 if( i==n){ 1819 nOrderBy = n; 1820 } 1821 } 1822 1823 /* Allocate the sqlite3_index_info structure 1824 */ 1825 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 1826 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 1827 + sizeof(*pIdxOrderBy)*nOrderBy ); 1828 if( pIdxInfo==0 ){ 1829 sqlite3ErrorMsg(pParse, "out of memory"); 1830 return 0; 1831 } 1832 1833 /* Initialize the structure. The sqlite3_index_info structure contains 1834 ** many fields that are declared "const" to prevent xBestIndex from 1835 ** changing them. We have to do some funky casting in order to 1836 ** initialize those fields. 1837 */ 1838 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; 1839 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 1840 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 1841 *(int*)&pIdxInfo->nConstraint = nTerm; 1842 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 1843 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; 1844 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; 1845 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = 1846 pUsage; 1847 1848 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1849 u8 op; 1850 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1851 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 1852 testcase( pTerm->eOperator & WO_IN ); 1853 testcase( pTerm->eOperator & WO_ISNULL ); 1854 testcase( pTerm->eOperator & WO_ALL ); 1855 if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV))==0 ) continue; 1856 if( pTerm->wtFlags & TERM_VNULL ) continue; 1857 pIdxCons[j].iColumn = pTerm->u.leftColumn; 1858 pIdxCons[j].iTermOffset = i; 1859 op = (u8)pTerm->eOperator & WO_ALL; 1860 if( op==WO_IN ) op = WO_EQ; 1861 pIdxCons[j].op = op; 1862 /* The direct assignment in the previous line is possible only because 1863 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 1864 ** following asserts verify this fact. */ 1865 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 1866 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 1867 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 1868 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 1869 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 1870 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); 1871 assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); 1872 j++; 1873 } 1874 for(i=0; i<nOrderBy; i++){ 1875 Expr *pExpr = pOrderBy->a[i].pExpr; 1876 pIdxOrderBy[i].iColumn = pExpr->iColumn; 1877 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; 1878 } 1879 1880 return pIdxInfo; 1881 } 1882 1883 /* 1884 ** The table object reference passed as the second argument to this function 1885 ** must represent a virtual table. This function invokes the xBestIndex() 1886 ** method of the virtual table with the sqlite3_index_info object that 1887 ** comes in as the 3rd argument to this function. 1888 ** 1889 ** If an error occurs, pParse is populated with an error message and a 1890 ** non-zero value is returned. Otherwise, 0 is returned and the output 1891 ** part of the sqlite3_index_info structure is left populated. 1892 ** 1893 ** Whether or not an error is returned, it is the responsibility of the 1894 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates 1895 ** that this is required. 1896 */ 1897 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ 1898 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; 1899 int i; 1900 int rc; 1901 1902 TRACE_IDX_INPUTS(p); 1903 rc = pVtab->pModule->xBestIndex(pVtab, p); 1904 TRACE_IDX_OUTPUTS(p); 1905 1906 if( rc!=SQLITE_OK ){ 1907 if( rc==SQLITE_NOMEM ){ 1908 pParse->db->mallocFailed = 1; 1909 }else if( !pVtab->zErrMsg ){ 1910 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 1911 }else{ 1912 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 1913 } 1914 } 1915 sqlite3_free(pVtab->zErrMsg); 1916 pVtab->zErrMsg = 0; 1917 1918 for(i=0; i<p->nConstraint; i++){ 1919 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){ 1920 sqlite3ErrorMsg(pParse, 1921 "table %s: xBestIndex returned an invalid plan", pTab->zName); 1922 } 1923 } 1924 1925 return pParse->nErr; 1926 } 1927 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1928 1929 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1930 /* 1931 ** Estimate the location of a particular key among all keys in an 1932 ** index. Store the results in aStat as follows: 1933 ** 1934 ** aStat[0] Est. number of rows less than pVal 1935 ** aStat[1] Est. number of rows equal to pVal 1936 ** 1937 ** Return the index of the sample that is the smallest sample that 1938 ** is greater than or equal to pRec. 1939 */ 1940 static int whereKeyStats( 1941 Parse *pParse, /* Database connection */ 1942 Index *pIdx, /* Index to consider domain of */ 1943 UnpackedRecord *pRec, /* Vector of values to consider */ 1944 int roundUp, /* Round up if true. Round down if false */ 1945 tRowcnt *aStat /* OUT: stats written here */ 1946 ){ 1947 IndexSample *aSample = pIdx->aSample; 1948 int iCol; /* Index of required stats in anEq[] etc. */ 1949 int iMin = 0; /* Smallest sample not yet tested */ 1950 int i = pIdx->nSample; /* Smallest sample larger than or equal to pRec */ 1951 int iTest; /* Next sample to test */ 1952 int res; /* Result of comparison operation */ 1953 1954 #ifndef SQLITE_DEBUG 1955 UNUSED_PARAMETER( pParse ); 1956 #endif 1957 assert( pRec!=0 ); 1958 iCol = pRec->nField - 1; 1959 assert( pIdx->nSample>0 ); 1960 assert( pRec->nField>0 && iCol<pIdx->nSampleCol ); 1961 do{ 1962 iTest = (iMin+i)/2; 1963 res = sqlite3VdbeRecordCompare(aSample[iTest].n, aSample[iTest].p, pRec); 1964 if( res<0 ){ 1965 iMin = iTest+1; 1966 }else{ 1967 i = iTest; 1968 } 1969 }while( res && iMin<i ); 1970 1971 #ifdef SQLITE_DEBUG 1972 /* The following assert statements check that the binary search code 1973 ** above found the right answer. This block serves no purpose other 1974 ** than to invoke the asserts. */ 1975 if( res==0 ){ 1976 /* If (res==0) is true, then sample $i must be equal to pRec */ 1977 assert( i<pIdx->nSample ); 1978 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) 1979 || pParse->db->mallocFailed ); 1980 }else{ 1981 /* Otherwise, pRec must be smaller than sample $i and larger than 1982 ** sample ($i-1). */ 1983 assert( i==pIdx->nSample 1984 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 1985 || pParse->db->mallocFailed ); 1986 assert( i==0 1987 || sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 1988 || pParse->db->mallocFailed ); 1989 } 1990 #endif /* ifdef SQLITE_DEBUG */ 1991 1992 /* At this point, aSample[i] is the first sample that is greater than 1993 ** or equal to pVal. Or if i==pIdx->nSample, then all samples are less 1994 ** than pVal. If aSample[i]==pVal, then res==0. 1995 */ 1996 if( res==0 ){ 1997 aStat[0] = aSample[i].anLt[iCol]; 1998 aStat[1] = aSample[i].anEq[iCol]; 1999 }else{ 2000 tRowcnt iLower, iUpper, iGap; 2001 if( i==0 ){ 2002 iLower = 0; 2003 iUpper = aSample[0].anLt[iCol]; 2004 }else{ 2005 i64 nRow0 = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); 2006 iUpper = i>=pIdx->nSample ? nRow0 : aSample[i].anLt[iCol]; 2007 iLower = aSample[i-1].anEq[iCol] + aSample[i-1].anLt[iCol]; 2008 } 2009 aStat[1] = pIdx->aAvgEq[iCol]; 2010 if( iLower>=iUpper ){ 2011 iGap = 0; 2012 }else{ 2013 iGap = iUpper - iLower; 2014 } 2015 if( roundUp ){ 2016 iGap = (iGap*2)/3; 2017 }else{ 2018 iGap = iGap/3; 2019 } 2020 aStat[0] = iLower + iGap; 2021 } 2022 return i; 2023 } 2024 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 2025 2026 /* 2027 ** If it is not NULL, pTerm is a term that provides an upper or lower 2028 ** bound on a range scan. Without considering pTerm, it is estimated 2029 ** that the scan will visit nNew rows. This function returns the number 2030 ** estimated to be visited after taking pTerm into account. 2031 ** 2032 ** If the user explicitly specified a likelihood() value for this term, 2033 ** then the return value is the likelihood multiplied by the number of 2034 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term 2035 ** has a likelihood of 0.50, and any other term a likelihood of 0.25. 2036 */ 2037 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ 2038 LogEst nRet = nNew; 2039 if( pTerm ){ 2040 if( pTerm->truthProb<=0 ){ 2041 nRet += pTerm->truthProb; 2042 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ 2043 nRet -= 20; assert( 20==sqlite3LogEst(4) ); 2044 } 2045 } 2046 return nRet; 2047 } 2048 2049 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2050 /* 2051 ** This function is called to estimate the number of rows visited by a 2052 ** range-scan on a skip-scan index. For example: 2053 ** 2054 ** CREATE INDEX i1 ON t1(a, b, c); 2055 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; 2056 ** 2057 ** Value pLoop->nOut is currently set to the estimated number of rows 2058 ** visited for scanning (a=? AND b=?). This function reduces that estimate 2059 ** by some factor to account for the (c BETWEEN ? AND ?) expression based 2060 ** on the stat4 data for the index. this scan will be peformed multiple 2061 ** times (once for each (a,b) combination that matches a=?) is dealt with 2062 ** by the caller. 2063 ** 2064 ** It does this by scanning through all stat4 samples, comparing values 2065 ** extracted from pLower and pUpper with the corresponding column in each 2066 ** sample. If L and U are the number of samples found to be less than or 2067 ** equal to the values extracted from pLower and pUpper respectively, and 2068 ** N is the total number of samples, the pLoop->nOut value is adjusted 2069 ** as follows: 2070 ** 2071 ** nOut = nOut * ( min(U - L, 1) / N ) 2072 ** 2073 ** If pLower is NULL, or a value cannot be extracted from the term, L is 2074 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, 2075 ** U is set to N. 2076 ** 2077 ** Normally, this function sets *pbDone to 1 before returning. However, 2078 ** if no value can be extracted from either pLower or pUpper (and so the 2079 ** estimate of the number of rows delivered remains unchanged), *pbDone 2080 ** is left as is. 2081 ** 2082 ** If an error occurs, an SQLite error code is returned. Otherwise, 2083 ** SQLITE_OK. 2084 */ 2085 static int whereRangeSkipScanEst( 2086 Parse *pParse, /* Parsing & code generating context */ 2087 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 2088 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 2089 WhereLoop *pLoop, /* Update the .nOut value of this loop */ 2090 int *pbDone /* Set to true if at least one expr. value extracted */ 2091 ){ 2092 Index *p = pLoop->u.btree.pIndex; 2093 int nEq = pLoop->u.btree.nEq; 2094 sqlite3 *db = pParse->db; 2095 int nLower = -1; 2096 int nUpper = p->nSample+1; 2097 int rc = SQLITE_OK; 2098 int iCol = p->aiColumn[nEq]; 2099 u8 aff = iCol>=0 ? p->pTable->aCol[iCol].affinity : SQLITE_AFF_INTEGER; 2100 CollSeq *pColl; 2101 2102 sqlite3_value *p1 = 0; /* Value extracted from pLower */ 2103 sqlite3_value *p2 = 0; /* Value extracted from pUpper */ 2104 sqlite3_value *pVal = 0; /* Value extracted from record */ 2105 2106 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); 2107 if( pLower ){ 2108 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); 2109 nLower = 0; 2110 } 2111 if( pUpper && rc==SQLITE_OK ){ 2112 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); 2113 nUpper = p2 ? 0 : p->nSample; 2114 } 2115 2116 if( p1 || p2 ){ 2117 int i; 2118 int nDiff; 2119 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ 2120 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); 2121 if( rc==SQLITE_OK && p1 ){ 2122 int res = sqlite3MemCompare(p1, pVal, pColl); 2123 if( res>=0 ) nLower++; 2124 } 2125 if( rc==SQLITE_OK && p2 ){ 2126 int res = sqlite3MemCompare(p2, pVal, pColl); 2127 if( res>=0 ) nUpper++; 2128 } 2129 } 2130 nDiff = (nUpper - nLower); 2131 if( nDiff<=0 ) nDiff = 1; 2132 2133 /* If there is both an upper and lower bound specified, and the 2134 ** comparisons indicate that they are close together, use the fallback 2135 ** method (assume that the scan visits 1/64 of the rows) for estimating 2136 ** the number of rows visited. Otherwise, estimate the number of rows 2137 ** using the method described in the header comment for this function. */ 2138 if( nDiff!=1 || pUpper==0 || pLower==0 ){ 2139 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); 2140 pLoop->nOut -= nAdjust; 2141 *pbDone = 1; 2142 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", 2143 nLower, nUpper, nAdjust*-1, pLoop->nOut)); 2144 } 2145 2146 }else{ 2147 assert( *pbDone==0 ); 2148 } 2149 2150 sqlite3ValueFree(p1); 2151 sqlite3ValueFree(p2); 2152 sqlite3ValueFree(pVal); 2153 2154 return rc; 2155 } 2156 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 2157 2158 /* 2159 ** This function is used to estimate the number of rows that will be visited 2160 ** by scanning an index for a range of values. The range may have an upper 2161 ** bound, a lower bound, or both. The WHERE clause terms that set the upper 2162 ** and lower bounds are represented by pLower and pUpper respectively. For 2163 ** example, assuming that index p is on t1(a): 2164 ** 2165 ** ... FROM t1 WHERE a > ? AND a < ? ... 2166 ** |_____| |_____| 2167 ** | | 2168 ** pLower pUpper 2169 ** 2170 ** If either of the upper or lower bound is not present, then NULL is passed in 2171 ** place of the corresponding WhereTerm. 2172 ** 2173 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index 2174 ** column subject to the range constraint. Or, equivalently, the number of 2175 ** equality constraints optimized by the proposed index scan. For example, 2176 ** assuming index p is on t1(a, b), and the SQL query is: 2177 ** 2178 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... 2179 ** 2180 ** then nEq is set to 1 (as the range restricted column, b, is the second 2181 ** left-most column of the index). Or, if the query is: 2182 ** 2183 ** ... FROM t1 WHERE a > ? AND a < ? ... 2184 ** 2185 ** then nEq is set to 0. 2186 ** 2187 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the 2188 ** number of rows that the index scan is expected to visit without 2189 ** considering the range constraints. If nEq is 0, then *pnOut is the number of 2190 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) 2191 ** to account for the range constraints pLower and pUpper. 2192 ** 2193 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be 2194 ** used, a single range inequality reduces the search space by a factor of 4. 2195 ** and a pair of constraints (x>? AND x<?) reduces the expected number of 2196 ** rows visited by a factor of 64. 2197 */ 2198 static int whereRangeScanEst( 2199 Parse *pParse, /* Parsing & code generating context */ 2200 WhereLoopBuilder *pBuilder, 2201 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 2202 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 2203 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ 2204 ){ 2205 int rc = SQLITE_OK; 2206 int nOut = pLoop->nOut; 2207 LogEst nNew; 2208 2209 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2210 Index *p = pLoop->u.btree.pIndex; 2211 int nEq = pLoop->u.btree.nEq; 2212 2213 if( p->nSample>0 && nEq<p->nSampleCol ){ 2214 if( nEq==pBuilder->nRecValid ){ 2215 UnpackedRecord *pRec = pBuilder->pRec; 2216 tRowcnt a[2]; 2217 u8 aff; 2218 2219 /* Variable iLower will be set to the estimate of the number of rows in 2220 ** the index that are less than the lower bound of the range query. The 2221 ** lower bound being the concatenation of $P and $L, where $P is the 2222 ** key-prefix formed by the nEq values matched against the nEq left-most 2223 ** columns of the index, and $L is the value in pLower. 2224 ** 2225 ** Or, if pLower is NULL or $L cannot be extracted from it (because it 2226 ** is not a simple variable or literal value), the lower bound of the 2227 ** range is $P. Due to a quirk in the way whereKeyStats() works, even 2228 ** if $L is available, whereKeyStats() is called for both ($P) and 2229 ** ($P:$L) and the larger of the two returned values is used. 2230 ** 2231 ** Similarly, iUpper is to be set to the estimate of the number of rows 2232 ** less than the upper bound of the range query. Where the upper bound 2233 ** is either ($P) or ($P:$U). Again, even if $U is available, both values 2234 ** of iUpper are requested of whereKeyStats() and the smaller used. 2235 ** 2236 ** The number of rows between the two bounds is then just iUpper-iLower. 2237 */ 2238 tRowcnt iLower; /* Rows less than the lower bound */ 2239 tRowcnt iUpper; /* Rows less than the upper bound */ 2240 int iLwrIdx = -2; /* aSample[] for the lower bound */ 2241 int iUprIdx = -1; /* aSample[] for the upper bound */ 2242 2243 if( pRec ){ 2244 testcase( pRec->nField!=pBuilder->nRecValid ); 2245 pRec->nField = pBuilder->nRecValid; 2246 } 2247 if( nEq==p->nKeyCol ){ 2248 aff = SQLITE_AFF_INTEGER; 2249 }else{ 2250 aff = p->pTable->aCol[p->aiColumn[nEq]].affinity; 2251 } 2252 /* Determine iLower and iUpper using ($P) only. */ 2253 if( nEq==0 ){ 2254 iLower = 0; 2255 iUpper = p->nRowEst0; 2256 }else{ 2257 /* Note: this call could be optimized away - since the same values must 2258 ** have been requested when testing key $P in whereEqualScanEst(). */ 2259 whereKeyStats(pParse, p, pRec, 0, a); 2260 iLower = a[0]; 2261 iUpper = a[0] + a[1]; 2262 } 2263 2264 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); 2265 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); 2266 assert( p->aSortOrder!=0 ); 2267 if( p->aSortOrder[nEq] ){ 2268 /* The roles of pLower and pUpper are swapped for a DESC index */ 2269 SWAP(WhereTerm*, pLower, pUpper); 2270 } 2271 2272 /* If possible, improve on the iLower estimate using ($P:$L). */ 2273 if( pLower ){ 2274 int bOk; /* True if value is extracted from pExpr */ 2275 Expr *pExpr = pLower->pExpr->pRight; 2276 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk); 2277 if( rc==SQLITE_OK && bOk ){ 2278 tRowcnt iNew; 2279 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); 2280 iNew = a[0] + ((pLower->eOperator & (WO_GT|WO_LE)) ? a[1] : 0); 2281 if( iNew>iLower ) iLower = iNew; 2282 nOut--; 2283 pLower = 0; 2284 } 2285 } 2286 2287 /* If possible, improve on the iUpper estimate using ($P:$U). */ 2288 if( pUpper ){ 2289 int bOk; /* True if value is extracted from pExpr */ 2290 Expr *pExpr = pUpper->pExpr->pRight; 2291 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk); 2292 if( rc==SQLITE_OK && bOk ){ 2293 tRowcnt iNew; 2294 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); 2295 iNew = a[0] + ((pUpper->eOperator & (WO_GT|WO_LE)) ? a[1] : 0); 2296 if( iNew<iUpper ) iUpper = iNew; 2297 nOut--; 2298 pUpper = 0; 2299 } 2300 } 2301 2302 pBuilder->pRec = pRec; 2303 if( rc==SQLITE_OK ){ 2304 if( iUpper>iLower ){ 2305 nNew = sqlite3LogEst(iUpper - iLower); 2306 /* TUNING: If both iUpper and iLower are derived from the same 2307 ** sample, then assume they are 4x more selective. This brings 2308 ** the estimated selectivity more in line with what it would be 2309 ** if estimated without the use of STAT3/4 tables. */ 2310 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) ); 2311 }else{ 2312 nNew = 10; assert( 10==sqlite3LogEst(2) ); 2313 } 2314 if( nNew<nOut ){ 2315 nOut = nNew; 2316 } 2317 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", 2318 (u32)iLower, (u32)iUpper, nOut)); 2319 } 2320 }else{ 2321 int bDone = 0; 2322 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); 2323 if( bDone ) return rc; 2324 } 2325 } 2326 #else 2327 UNUSED_PARAMETER(pParse); 2328 UNUSED_PARAMETER(pBuilder); 2329 assert( pLower || pUpper ); 2330 #endif 2331 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); 2332 nNew = whereRangeAdjust(pLower, nOut); 2333 nNew = whereRangeAdjust(pUpper, nNew); 2334 2335 /* TUNING: If there is both an upper and lower limit and neither limit 2336 ** has an application-defined likelihood(), assume the range is 2337 ** reduced by an additional 75%. This means that, by default, an open-ended 2338 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the 2339 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to 2340 ** match 1/64 of the index. */ 2341 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ 2342 nNew -= 20; 2343 } 2344 2345 nOut -= (pLower!=0) + (pUpper!=0); 2346 if( nNew<10 ) nNew = 10; 2347 if( nNew<nOut ) nOut = nNew; 2348 #if defined(WHERETRACE_ENABLED) 2349 if( pLoop->nOut>nOut ){ 2350 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", 2351 pLoop->nOut, nOut)); 2352 } 2353 #endif 2354 pLoop->nOut = (LogEst)nOut; 2355 return rc; 2356 } 2357 2358 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2359 /* 2360 ** Estimate the number of rows that will be returned based on 2361 ** an equality constraint x=VALUE and where that VALUE occurs in 2362 ** the histogram data. This only works when x is the left-most 2363 ** column of an index and sqlite_stat3 histogram data is available 2364 ** for that index. When pExpr==NULL that means the constraint is 2365 ** "x IS NULL" instead of "x=VALUE". 2366 ** 2367 ** Write the estimated row count into *pnRow and return SQLITE_OK. 2368 ** If unable to make an estimate, leave *pnRow unchanged and return 2369 ** non-zero. 2370 ** 2371 ** This routine can fail if it is unable to load a collating sequence 2372 ** required for string comparison, or if unable to allocate memory 2373 ** for a UTF conversion required for comparison. The error is stored 2374 ** in the pParse structure. 2375 */ 2376 static int whereEqualScanEst( 2377 Parse *pParse, /* Parsing & code generating context */ 2378 WhereLoopBuilder *pBuilder, 2379 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ 2380 tRowcnt *pnRow /* Write the revised row estimate here */ 2381 ){ 2382 Index *p = pBuilder->pNew->u.btree.pIndex; 2383 int nEq = pBuilder->pNew->u.btree.nEq; 2384 UnpackedRecord *pRec = pBuilder->pRec; 2385 u8 aff; /* Column affinity */ 2386 int rc; /* Subfunction return code */ 2387 tRowcnt a[2]; /* Statistics */ 2388 int bOk; 2389 2390 assert( nEq>=1 ); 2391 assert( nEq<=p->nColumn ); 2392 assert( p->aSample!=0 ); 2393 assert( p->nSample>0 ); 2394 assert( pBuilder->nRecValid<nEq ); 2395 2396 /* If values are not available for all fields of the index to the left 2397 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ 2398 if( pBuilder->nRecValid<(nEq-1) ){ 2399 return SQLITE_NOTFOUND; 2400 } 2401 2402 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() 2403 ** below would return the same value. */ 2404 if( nEq>=p->nColumn ){ 2405 *pnRow = 1; 2406 return SQLITE_OK; 2407 } 2408 2409 aff = p->pTable->aCol[p->aiColumn[nEq-1]].affinity; 2410 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq-1, &bOk); 2411 pBuilder->pRec = pRec; 2412 if( rc!=SQLITE_OK ) return rc; 2413 if( bOk==0 ) return SQLITE_NOTFOUND; 2414 pBuilder->nRecValid = nEq; 2415 2416 whereKeyStats(pParse, p, pRec, 0, a); 2417 WHERETRACE(0x10,("equality scan regions: %d\n", (int)a[1])); 2418 *pnRow = a[1]; 2419 2420 return rc; 2421 } 2422 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 2423 2424 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2425 /* 2426 ** Estimate the number of rows that will be returned based on 2427 ** an IN constraint where the right-hand side of the IN operator 2428 ** is a list of values. Example: 2429 ** 2430 ** WHERE x IN (1,2,3,4) 2431 ** 2432 ** Write the estimated row count into *pnRow and return SQLITE_OK. 2433 ** If unable to make an estimate, leave *pnRow unchanged and return 2434 ** non-zero. 2435 ** 2436 ** This routine can fail if it is unable to load a collating sequence 2437 ** required for string comparison, or if unable to allocate memory 2438 ** for a UTF conversion required for comparison. The error is stored 2439 ** in the pParse structure. 2440 */ 2441 static int whereInScanEst( 2442 Parse *pParse, /* Parsing & code generating context */ 2443 WhereLoopBuilder *pBuilder, 2444 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ 2445 tRowcnt *pnRow /* Write the revised row estimate here */ 2446 ){ 2447 Index *p = pBuilder->pNew->u.btree.pIndex; 2448 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); 2449 int nRecValid = pBuilder->nRecValid; 2450 int rc = SQLITE_OK; /* Subfunction return code */ 2451 tRowcnt nEst; /* Number of rows for a single term */ 2452 tRowcnt nRowEst = 0; /* New estimate of the number of rows */ 2453 int i; /* Loop counter */ 2454 2455 assert( p->aSample!=0 ); 2456 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ 2457 nEst = nRow0; 2458 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); 2459 nRowEst += nEst; 2460 pBuilder->nRecValid = nRecValid; 2461 } 2462 2463 if( rc==SQLITE_OK ){ 2464 if( nRowEst > nRow0 ) nRowEst = nRow0; 2465 *pnRow = nRowEst; 2466 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); 2467 } 2468 assert( pBuilder->nRecValid==nRecValid ); 2469 return rc; 2470 } 2471 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 2472 2473 /* 2474 ** Disable a term in the WHERE clause. Except, do not disable the term 2475 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 2476 ** or USING clause of that join. 2477 ** 2478 ** Consider the term t2.z='ok' in the following queries: 2479 ** 2480 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 2481 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 2482 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 2483 ** 2484 ** The t2.z='ok' is disabled in the in (2) because it originates 2485 ** in the ON clause. The term is disabled in (3) because it is not part 2486 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 2487 ** 2488 ** Disabling a term causes that term to not be tested in the inner loop 2489 ** of the join. Disabling is an optimization. When terms are satisfied 2490 ** by indices, we disable them to prevent redundant tests in the inner 2491 ** loop. We would get the correct results if nothing were ever disabled, 2492 ** but joins might run a little slower. The trick is to disable as much 2493 ** as we can without disabling too much. If we disabled in (1), we'd get 2494 ** the wrong answer. See ticket #813. 2495 ** 2496 ** If all the children of a term are disabled, then that term is also 2497 ** automatically disabled. In this way, terms get disabled if derived 2498 ** virtual terms are tested first. For example: 2499 ** 2500 ** x GLOB 'abc*' AND x>='abc' AND x<'acd' 2501 ** \___________/ \______/ \_____/ 2502 ** parent child1 child2 2503 ** 2504 ** Only the parent term was in the original WHERE clause. The child1 2505 ** and child2 terms were added by the LIKE optimization. If both of 2506 ** the virtual child terms are valid, then testing of the parent can be 2507 ** skipped. 2508 ** 2509 ** Usually the parent term is marked as TERM_CODED. But if the parent 2510 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead. 2511 ** The TERM_LIKECOND marking indicates that the term should be coded inside 2512 ** a conditional such that is only evaluated on the second pass of a 2513 ** LIKE-optimization loop, when scanning BLOBs instead of strings. 2514 */ 2515 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 2516 int nLoop = 0; 2517 while( pTerm 2518 && (pTerm->wtFlags & TERM_CODED)==0 2519 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 2520 && (pLevel->notReady & pTerm->prereqAll)==0 2521 ){ 2522 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){ 2523 pTerm->wtFlags |= TERM_LIKECOND; 2524 }else{ 2525 pTerm->wtFlags |= TERM_CODED; 2526 } 2527 if( pTerm->iParent<0 ) break; 2528 pTerm = &pTerm->pWC->a[pTerm->iParent]; 2529 pTerm->nChild--; 2530 if( pTerm->nChild!=0 ) break; 2531 nLoop++; 2532 } 2533 } 2534 2535 /* 2536 ** Code an OP_Affinity opcode to apply the column affinity string zAff 2537 ** to the n registers starting at base. 2538 ** 2539 ** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the 2540 ** beginning and end of zAff are ignored. If all entries in zAff are 2541 ** SQLITE_AFF_NONE, then no code gets generated. 2542 ** 2543 ** This routine makes its own copy of zAff so that the caller is free 2544 ** to modify zAff after this routine returns. 2545 */ 2546 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 2547 Vdbe *v = pParse->pVdbe; 2548 if( zAff==0 ){ 2549 assert( pParse->db->mallocFailed ); 2550 return; 2551 } 2552 assert( v!=0 ); 2553 2554 /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning 2555 ** and end of the affinity string. 2556 */ 2557 while( n>0 && zAff[0]==SQLITE_AFF_NONE ){ 2558 n--; 2559 base++; 2560 zAff++; 2561 } 2562 while( n>1 && zAff[n-1]==SQLITE_AFF_NONE ){ 2563 n--; 2564 } 2565 2566 /* Code the OP_Affinity opcode if there is anything left to do. */ 2567 if( n>0 ){ 2568 sqlite3VdbeAddOp2(v, OP_Affinity, base, n); 2569 sqlite3VdbeChangeP4(v, -1, zAff, n); 2570 sqlite3ExprCacheAffinityChange(pParse, base, n); 2571 } 2572 } 2573 2574 2575 /* 2576 ** Generate code for a single equality term of the WHERE clause. An equality 2577 ** term can be either X=expr or X IN (...). pTerm is the term to be 2578 ** coded. 2579 ** 2580 ** The current value for the constraint is left in register iReg. 2581 ** 2582 ** For a constraint of the form X=expr, the expression is evaluated and its 2583 ** result is left on the stack. For constraints of the form X IN (...) 2584 ** this routine sets up a loop that will iterate over all values of X. 2585 */ 2586 static int codeEqualityTerm( 2587 Parse *pParse, /* The parsing context */ 2588 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 2589 WhereLevel *pLevel, /* The level of the FROM clause we are working on */ 2590 int iEq, /* Index of the equality term within this level */ 2591 int bRev, /* True for reverse-order IN operations */ 2592 int iTarget /* Attempt to leave results in this register */ 2593 ){ 2594 Expr *pX = pTerm->pExpr; 2595 Vdbe *v = pParse->pVdbe; 2596 int iReg; /* Register holding results */ 2597 2598 assert( iTarget>0 ); 2599 if( pX->op==TK_EQ ){ 2600 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 2601 }else if( pX->op==TK_ISNULL ){ 2602 iReg = iTarget; 2603 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 2604 #ifndef SQLITE_OMIT_SUBQUERY 2605 }else{ 2606 int eType; 2607 int iTab; 2608 struct InLoop *pIn; 2609 WhereLoop *pLoop = pLevel->pWLoop; 2610 2611 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 2612 && pLoop->u.btree.pIndex!=0 2613 && pLoop->u.btree.pIndex->aSortOrder[iEq] 2614 ){ 2615 testcase( iEq==0 ); 2616 testcase( bRev ); 2617 bRev = !bRev; 2618 } 2619 assert( pX->op==TK_IN ); 2620 iReg = iTarget; 2621 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0); 2622 if( eType==IN_INDEX_INDEX_DESC ){ 2623 testcase( bRev ); 2624 bRev = !bRev; 2625 } 2626 iTab = pX->iTable; 2627 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0); 2628 VdbeCoverageIf(v, bRev); 2629 VdbeCoverageIf(v, !bRev); 2630 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 ); 2631 pLoop->wsFlags |= WHERE_IN_ABLE; 2632 if( pLevel->u.in.nIn==0 ){ 2633 pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 2634 } 2635 pLevel->u.in.nIn++; 2636 pLevel->u.in.aInLoop = 2637 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, 2638 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 2639 pIn = pLevel->u.in.aInLoop; 2640 if( pIn ){ 2641 pIn += pLevel->u.in.nIn - 1; 2642 pIn->iCur = iTab; 2643 if( eType==IN_INDEX_ROWID ){ 2644 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); 2645 }else{ 2646 pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); 2647 } 2648 pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen; 2649 sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v); 2650 }else{ 2651 pLevel->u.in.nIn = 0; 2652 } 2653 #endif 2654 } 2655 disableTerm(pLevel, pTerm); 2656 return iReg; 2657 } 2658 2659 /* 2660 ** Generate code that will evaluate all == and IN constraints for an 2661 ** index scan. 2662 ** 2663 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 2664 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 2665 ** The index has as many as three equality constraints, but in this 2666 ** example, the third "c" value is an inequality. So only two 2667 ** constraints are coded. This routine will generate code to evaluate 2668 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 2669 ** in consecutive registers and the index of the first register is returned. 2670 ** 2671 ** In the example above nEq==2. But this subroutine works for any value 2672 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 2673 ** The only thing it does is allocate the pLevel->iMem memory cell and 2674 ** compute the affinity string. 2675 ** 2676 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints 2677 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is 2678 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that 2679 ** occurs after the nEq quality constraints. 2680 ** 2681 ** This routine allocates a range of nEq+nExtraReg memory cells and returns 2682 ** the index of the first memory cell in that range. The code that 2683 ** calls this routine will use that memory range to store keys for 2684 ** start and termination conditions of the loop. 2685 ** key value of the loop. If one or more IN operators appear, then 2686 ** this routine allocates an additional nEq memory cells for internal 2687 ** use. 2688 ** 2689 ** Before returning, *pzAff is set to point to a buffer containing a 2690 ** copy of the column affinity string of the index allocated using 2691 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 2692 ** with equality constraints that use NONE affinity are set to 2693 ** SQLITE_AFF_NONE. This is to deal with SQL such as the following: 2694 ** 2695 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 2696 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 2697 ** 2698 ** In the example above, the index on t1(a) has TEXT affinity. But since 2699 ** the right hand side of the equality constraint (t2.b) has NONE affinity, 2700 ** no conversion should be attempted before using a t2.b value as part of 2701 ** a key to search the index. Hence the first byte in the returned affinity 2702 ** string in this example would be set to SQLITE_AFF_NONE. 2703 */ 2704 static int codeAllEqualityTerms( 2705 Parse *pParse, /* Parsing context */ 2706 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 2707 int bRev, /* Reverse the order of IN operators */ 2708 int nExtraReg, /* Number of extra registers to allocate */ 2709 char **pzAff /* OUT: Set to point to affinity string */ 2710 ){ 2711 u16 nEq; /* The number of == or IN constraints to code */ 2712 u16 nSkip; /* Number of left-most columns to skip */ 2713 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 2714 Index *pIdx; /* The index being used for this loop */ 2715 WhereTerm *pTerm; /* A single constraint term */ 2716 WhereLoop *pLoop; /* The WhereLoop object */ 2717 int j; /* Loop counter */ 2718 int regBase; /* Base register */ 2719 int nReg; /* Number of registers to allocate */ 2720 char *zAff; /* Affinity string to return */ 2721 2722 /* This module is only called on query plans that use an index. */ 2723 pLoop = pLevel->pWLoop; 2724 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ); 2725 nEq = pLoop->u.btree.nEq; 2726 nSkip = pLoop->nSkip; 2727 pIdx = pLoop->u.btree.pIndex; 2728 assert( pIdx!=0 ); 2729 2730 /* Figure out how many memory cells we will need then allocate them. 2731 */ 2732 regBase = pParse->nMem + 1; 2733 nReg = pLoop->u.btree.nEq + nExtraReg; 2734 pParse->nMem += nReg; 2735 2736 zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx)); 2737 if( !zAff ){ 2738 pParse->db->mallocFailed = 1; 2739 } 2740 2741 if( nSkip ){ 2742 int iIdxCur = pLevel->iIdxCur; 2743 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur); 2744 VdbeCoverageIf(v, bRev==0); 2745 VdbeCoverageIf(v, bRev!=0); 2746 VdbeComment((v, "begin skip-scan on %s", pIdx->zName)); 2747 j = sqlite3VdbeAddOp0(v, OP_Goto); 2748 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT), 2749 iIdxCur, 0, regBase, nSkip); 2750 VdbeCoverageIf(v, bRev==0); 2751 VdbeCoverageIf(v, bRev!=0); 2752 sqlite3VdbeJumpHere(v, j); 2753 for(j=0; j<nSkip; j++){ 2754 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j); 2755 assert( pIdx->aiColumn[j]>=0 ); 2756 VdbeComment((v, "%s", pIdx->pTable->aCol[pIdx->aiColumn[j]].zName)); 2757 } 2758 } 2759 2760 /* Evaluate the equality constraints 2761 */ 2762 assert( zAff==0 || (int)strlen(zAff)>=nEq ); 2763 for(j=nSkip; j<nEq; j++){ 2764 int r1; 2765 pTerm = pLoop->aLTerm[j]; 2766 assert( pTerm!=0 ); 2767 /* The following testcase is true for indices with redundant columns. 2768 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 2769 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 2770 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2771 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j); 2772 if( r1!=regBase+j ){ 2773 if( nReg==1 ){ 2774 sqlite3ReleaseTempReg(pParse, regBase); 2775 regBase = r1; 2776 }else{ 2777 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); 2778 } 2779 } 2780 testcase( pTerm->eOperator & WO_ISNULL ); 2781 testcase( pTerm->eOperator & WO_IN ); 2782 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ 2783 Expr *pRight = pTerm->pExpr->pRight; 2784 if( sqlite3ExprCanBeNull(pRight) ){ 2785 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 2786 VdbeCoverage(v); 2787 } 2788 if( zAff ){ 2789 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_NONE ){ 2790 zAff[j] = SQLITE_AFF_NONE; 2791 } 2792 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 2793 zAff[j] = SQLITE_AFF_NONE; 2794 } 2795 } 2796 } 2797 } 2798 *pzAff = zAff; 2799 return regBase; 2800 } 2801 2802 #ifndef SQLITE_OMIT_EXPLAIN 2803 /* 2804 ** This routine is a helper for explainIndexRange() below 2805 ** 2806 ** pStr holds the text of an expression that we are building up one term 2807 ** at a time. This routine adds a new term to the end of the expression. 2808 ** Terms are separated by AND so add the "AND" text for second and subsequent 2809 ** terms only. 2810 */ 2811 static void explainAppendTerm( 2812 StrAccum *pStr, /* The text expression being built */ 2813 int iTerm, /* Index of this term. First is zero */ 2814 const char *zColumn, /* Name of the column */ 2815 const char *zOp /* Name of the operator */ 2816 ){ 2817 if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5); 2818 sqlite3StrAccumAppendAll(pStr, zColumn); 2819 sqlite3StrAccumAppend(pStr, zOp, 1); 2820 sqlite3StrAccumAppend(pStr, "?", 1); 2821 } 2822 2823 /* 2824 ** Argument pLevel describes a strategy for scanning table pTab. This 2825 ** function appends text to pStr that describes the subset of table 2826 ** rows scanned by the strategy in the form of an SQL expression. 2827 ** 2828 ** For example, if the query: 2829 ** 2830 ** SELECT * FROM t1 WHERE a=1 AND b>2; 2831 ** 2832 ** is run and there is an index on (a, b), then this function returns a 2833 ** string similar to: 2834 ** 2835 ** "a=? AND b>?" 2836 */ 2837 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop, Table *pTab){ 2838 Index *pIndex = pLoop->u.btree.pIndex; 2839 u16 nEq = pLoop->u.btree.nEq; 2840 u16 nSkip = pLoop->nSkip; 2841 int i, j; 2842 Column *aCol = pTab->aCol; 2843 i16 *aiColumn = pIndex->aiColumn; 2844 2845 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return; 2846 sqlite3StrAccumAppend(pStr, " (", 2); 2847 for(i=0; i<nEq; i++){ 2848 char *z = aiColumn[i] < 0 ? "rowid" : aCol[aiColumn[i]].zName; 2849 if( i>=nSkip ){ 2850 explainAppendTerm(pStr, i, z, "="); 2851 }else{ 2852 if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5); 2853 sqlite3XPrintf(pStr, 0, "ANY(%s)", z); 2854 } 2855 } 2856 2857 j = i; 2858 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){ 2859 char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName; 2860 explainAppendTerm(pStr, i++, z, ">"); 2861 } 2862 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){ 2863 char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName; 2864 explainAppendTerm(pStr, i, z, "<"); 2865 } 2866 sqlite3StrAccumAppend(pStr, ")", 1); 2867 } 2868 2869 /* 2870 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN 2871 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was 2872 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode 2873 ** is added to the output to describe the table scan strategy in pLevel. 2874 ** 2875 ** If an OP_Explain opcode is added to the VM, its address is returned. 2876 ** Otherwise, if no OP_Explain is coded, zero is returned. 2877 */ 2878 static int explainOneScan( 2879 Parse *pParse, /* Parse context */ 2880 SrcList *pTabList, /* Table list this loop refers to */ 2881 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */ 2882 int iLevel, /* Value for "level" column of output */ 2883 int iFrom, /* Value for "from" column of output */ 2884 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */ 2885 ){ 2886 int ret = 0; 2887 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS) 2888 if( pParse->explain==2 ) 2889 #endif 2890 { 2891 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 2892 Vdbe *v = pParse->pVdbe; /* VM being constructed */ 2893 sqlite3 *db = pParse->db; /* Database handle */ 2894 int iId = pParse->iSelectId; /* Select id (left-most output column) */ 2895 int isSearch; /* True for a SEARCH. False for SCAN. */ 2896 WhereLoop *pLoop; /* The controlling WhereLoop object */ 2897 u32 flags; /* Flags that describe this loop */ 2898 char *zMsg; /* Text to add to EQP output */ 2899 StrAccum str; /* EQP output string */ 2900 char zBuf[100]; /* Initial space for EQP output string */ 2901 2902 pLoop = pLevel->pWLoop; 2903 flags = pLoop->wsFlags; 2904 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return 0; 2905 2906 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0 2907 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0)) 2908 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX)); 2909 2910 sqlite3StrAccumInit(&str, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH); 2911 str.db = db; 2912 sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN"); 2913 if( pItem->pSelect ){ 2914 sqlite3XPrintf(&str, 0, " SUBQUERY %d", pItem->iSelectId); 2915 }else{ 2916 sqlite3XPrintf(&str, 0, " TABLE %s", pItem->zName); 2917 } 2918 2919 if( pItem->zAlias ){ 2920 sqlite3XPrintf(&str, 0, " AS %s", pItem->zAlias); 2921 } 2922 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){ 2923 const char *zFmt = 0; 2924 Index *pIdx; 2925 2926 assert( pLoop->u.btree.pIndex!=0 ); 2927 pIdx = pLoop->u.btree.pIndex; 2928 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) ); 2929 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){ 2930 if( isSearch ){ 2931 zFmt = "PRIMARY KEY"; 2932 } 2933 }else if( flags & WHERE_PARTIALIDX ){ 2934 zFmt = "AUTOMATIC PARTIAL COVERING INDEX"; 2935 }else if( flags & WHERE_AUTO_INDEX ){ 2936 zFmt = "AUTOMATIC COVERING INDEX"; 2937 }else if( flags & WHERE_IDX_ONLY ){ 2938 zFmt = "COVERING INDEX %s"; 2939 }else{ 2940 zFmt = "INDEX %s"; 2941 } 2942 if( zFmt ){ 2943 sqlite3StrAccumAppend(&str, " USING ", 7); 2944 sqlite3XPrintf(&str, 0, zFmt, pIdx->zName); 2945 explainIndexRange(&str, pLoop, pItem->pTab); 2946 } 2947 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){ 2948 const char *zRange; 2949 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){ 2950 zRange = "(rowid=?)"; 2951 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){ 2952 zRange = "(rowid>? AND rowid<?)"; 2953 }else if( flags&WHERE_BTM_LIMIT ){ 2954 zRange = "(rowid>?)"; 2955 }else{ 2956 assert( flags&WHERE_TOP_LIMIT); 2957 zRange = "(rowid<?)"; 2958 } 2959 sqlite3StrAccumAppendAll(&str, " USING INTEGER PRIMARY KEY "); 2960 sqlite3StrAccumAppendAll(&str, zRange); 2961 } 2962 #ifndef SQLITE_OMIT_VIRTUALTABLE 2963 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){ 2964 sqlite3XPrintf(&str, 0, " VIRTUAL TABLE INDEX %d:%s", 2965 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr); 2966 } 2967 #endif 2968 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS 2969 if( pLoop->nOut>=10 ){ 2970 sqlite3XPrintf(&str, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut)); 2971 }else{ 2972 sqlite3StrAccumAppend(&str, " (~1 row)", 9); 2973 } 2974 #endif 2975 zMsg = sqlite3StrAccumFinish(&str); 2976 ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC); 2977 } 2978 return ret; 2979 } 2980 #else 2981 # define explainOneScan(u,v,w,x,y,z) 0 2982 #endif /* SQLITE_OMIT_EXPLAIN */ 2983 2984 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 2985 /* 2986 ** Configure the VM passed as the first argument with an 2987 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to 2988 ** implement level pLvl. Argument pSrclist is a pointer to the FROM 2989 ** clause that the scan reads data from. 2990 ** 2991 ** If argument addrExplain is not 0, it must be the address of an 2992 ** OP_Explain instruction that describes the same loop. 2993 */ 2994 static void addScanStatus( 2995 Vdbe *v, /* Vdbe to add scanstatus entry to */ 2996 SrcList *pSrclist, /* FROM clause pLvl reads data from */ 2997 WhereLevel *pLvl, /* Level to add scanstatus() entry for */ 2998 int addrExplain /* Address of OP_Explain (or 0) */ 2999 ){ 3000 const char *zObj = 0; 3001 WhereLoop *pLoop = pLvl->pWLoop; 3002 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){ 3003 zObj = pLoop->u.btree.pIndex->zName; 3004 }else{ 3005 zObj = pSrclist->a[pLvl->iFrom].zName; 3006 } 3007 sqlite3VdbeScanStatus( 3008 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj 3009 ); 3010 } 3011 #else 3012 # define addScanStatus(a, b, c, d) ((void)d) 3013 #endif 3014 3015 /* 3016 ** If the most recently coded instruction is a constant range contraint 3017 ** that originated from the LIKE optimization, then change the P3 to be 3018 ** pLoop->iLikeRepCntr and set P5. 3019 ** 3020 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range 3021 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range 3022 ** scan loop run twice, once for strings and a second time for BLOBs. 3023 ** The OP_String opcodes on the second pass convert the upper and lower 3024 ** bound string contants to blobs. This routine makes the necessary changes 3025 ** to the OP_String opcodes for that to happen. 3026 */ 3027 static void whereLikeOptimizationStringFixup( 3028 Vdbe *v, /* prepared statement under construction */ 3029 WhereLevel *pLevel, /* The loop that contains the LIKE operator */ 3030 WhereTerm *pTerm /* The upper or lower bound just coded */ 3031 ){ 3032 if( pTerm->wtFlags & TERM_LIKEOPT ){ 3033 VdbeOp *pOp; 3034 assert( pLevel->iLikeRepCntr>0 ); 3035 pOp = sqlite3VdbeGetOp(v, -1); 3036 assert( pOp!=0 ); 3037 assert( pOp->opcode==OP_String8 3038 || pTerm->pWC->pWInfo->pParse->db->mallocFailed ); 3039 pOp->p3 = pLevel->iLikeRepCntr; 3040 pOp->p5 = 1; 3041 } 3042 } 3043 3044 /* 3045 ** Generate code for the start of the iLevel-th loop in the WHERE clause 3046 ** implementation described by pWInfo. 3047 */ 3048 static Bitmask codeOneLoopStart( 3049 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 3050 int iLevel, /* Which level of pWInfo->a[] should be coded */ 3051 Bitmask notReady /* Which tables are currently available */ 3052 ){ 3053 int j, k; /* Loop counters */ 3054 int iCur; /* The VDBE cursor for the table */ 3055 int addrNxt; /* Where to jump to continue with the next IN case */ 3056 int omitTable; /* True if we use the index only */ 3057 int bRev; /* True if we need to scan in reverse order */ 3058 WhereLevel *pLevel; /* The where level to be coded */ 3059 WhereLoop *pLoop; /* The WhereLoop object being coded */ 3060 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 3061 WhereTerm *pTerm; /* A WHERE clause term */ 3062 Parse *pParse; /* Parsing context */ 3063 sqlite3 *db; /* Database connection */ 3064 Vdbe *v; /* The prepared stmt under constructions */ 3065 struct SrcList_item *pTabItem; /* FROM clause term being coded */ 3066 int addrBrk; /* Jump here to break out of the loop */ 3067 int addrCont; /* Jump here to continue with next cycle */ 3068 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 3069 int iReleaseReg = 0; /* Temp register to free before returning */ 3070 3071 pParse = pWInfo->pParse; 3072 v = pParse->pVdbe; 3073 pWC = &pWInfo->sWC; 3074 db = pParse->db; 3075 pLevel = &pWInfo->a[iLevel]; 3076 pLoop = pLevel->pWLoop; 3077 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 3078 iCur = pTabItem->iCursor; 3079 pLevel->notReady = notReady & ~getMask(&pWInfo->sMaskSet, iCur); 3080 bRev = (pWInfo->revMask>>iLevel)&1; 3081 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0 3082 && (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)==0; 3083 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName)); 3084 3085 /* Create labels for the "break" and "continue" instructions 3086 ** for the current loop. Jump to addrBrk to break out of a loop. 3087 ** Jump to cont to go immediately to the next iteration of the 3088 ** loop. 3089 ** 3090 ** When there is an IN operator, we also have a "addrNxt" label that 3091 ** means to continue with the next IN value combination. When 3092 ** there are no IN operators in the constraints, the "addrNxt" label 3093 ** is the same as "addrBrk". 3094 */ 3095 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 3096 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); 3097 3098 /* If this is the right table of a LEFT OUTER JOIN, allocate and 3099 ** initialize a memory cell that records if this table matches any 3100 ** row of the left table of the join. 3101 */ 3102 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ 3103 pLevel->iLeftJoin = ++pParse->nMem; 3104 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 3105 VdbeComment((v, "init LEFT JOIN no-match flag")); 3106 } 3107 3108 /* Special case of a FROM clause subquery implemented as a co-routine */ 3109 if( pTabItem->viaCoroutine ){ 3110 int regYield = pTabItem->regReturn; 3111 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 3112 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk); 3113 VdbeCoverage(v); 3114 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); 3115 pLevel->op = OP_Goto; 3116 }else 3117 3118 #ifndef SQLITE_OMIT_VIRTUALTABLE 3119 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 3120 /* Case 1: The table is a virtual-table. Use the VFilter and VNext 3121 ** to access the data. 3122 */ 3123 int iReg; /* P3 Value for OP_VFilter */ 3124 int addrNotFound; 3125 int nConstraint = pLoop->nLTerm; 3126 3127 sqlite3ExprCachePush(pParse); 3128 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 3129 addrNotFound = pLevel->addrBrk; 3130 for(j=0; j<nConstraint; j++){ 3131 int iTarget = iReg+j+2; 3132 pTerm = pLoop->aLTerm[j]; 3133 if( pTerm==0 ) continue; 3134 if( pTerm->eOperator & WO_IN ){ 3135 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget); 3136 addrNotFound = pLevel->addrNxt; 3137 }else{ 3138 sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget); 3139 } 3140 } 3141 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg); 3142 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1); 3143 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg, 3144 pLoop->u.vtab.idxStr, 3145 pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC); 3146 VdbeCoverage(v); 3147 pLoop->u.vtab.needFree = 0; 3148 for(j=0; j<nConstraint && j<16; j++){ 3149 if( (pLoop->u.vtab.omitMask>>j)&1 ){ 3150 disableTerm(pLevel, pLoop->aLTerm[j]); 3151 } 3152 } 3153 pLevel->op = OP_VNext; 3154 pLevel->p1 = iCur; 3155 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 3156 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 3157 sqlite3ExprCachePop(pParse); 3158 }else 3159 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3160 3161 if( (pLoop->wsFlags & WHERE_IPK)!=0 3162 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0 3163 ){ 3164 /* Case 2: We can directly reference a single row using an 3165 ** equality comparison against the ROWID field. Or 3166 ** we reference multiple rows using a "rowid IN (...)" 3167 ** construct. 3168 */ 3169 assert( pLoop->u.btree.nEq==1 ); 3170 pTerm = pLoop->aLTerm[0]; 3171 assert( pTerm!=0 ); 3172 assert( pTerm->pExpr!=0 ); 3173 assert( omitTable==0 ); 3174 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 3175 iReleaseReg = ++pParse->nMem; 3176 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg); 3177 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg); 3178 addrNxt = pLevel->addrNxt; 3179 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v); 3180 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg); 3181 VdbeCoverage(v); 3182 sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1); 3183 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 3184 VdbeComment((v, "pk")); 3185 pLevel->op = OP_Noop; 3186 }else if( (pLoop->wsFlags & WHERE_IPK)!=0 3187 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0 3188 ){ 3189 /* Case 3: We have an inequality comparison against the ROWID field. 3190 */ 3191 int testOp = OP_Noop; 3192 int start; 3193 int memEndValue = 0; 3194 WhereTerm *pStart, *pEnd; 3195 3196 assert( omitTable==0 ); 3197 j = 0; 3198 pStart = pEnd = 0; 3199 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++]; 3200 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++]; 3201 assert( pStart!=0 || pEnd!=0 ); 3202 if( bRev ){ 3203 pTerm = pStart; 3204 pStart = pEnd; 3205 pEnd = pTerm; 3206 } 3207 if( pStart ){ 3208 Expr *pX; /* The expression that defines the start bound */ 3209 int r1, rTemp; /* Registers for holding the start boundary */ 3210 3211 /* The following constant maps TK_xx codes into corresponding 3212 ** seek opcodes. It depends on a particular ordering of TK_xx 3213 */ 3214 const u8 aMoveOp[] = { 3215 /* TK_GT */ OP_SeekGT, 3216 /* TK_LE */ OP_SeekLE, 3217 /* TK_LT */ OP_SeekLT, 3218 /* TK_GE */ OP_SeekGE 3219 }; 3220 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 3221 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 3222 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 3223 3224 assert( (pStart->wtFlags & TERM_VNULL)==0 ); 3225 testcase( pStart->wtFlags & TERM_VIRTUAL ); 3226 pX = pStart->pExpr; 3227 assert( pX!=0 ); 3228 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */ 3229 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 3230 sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1); 3231 VdbeComment((v, "pk")); 3232 VdbeCoverageIf(v, pX->op==TK_GT); 3233 VdbeCoverageIf(v, pX->op==TK_LE); 3234 VdbeCoverageIf(v, pX->op==TK_LT); 3235 VdbeCoverageIf(v, pX->op==TK_GE); 3236 sqlite3ExprCacheAffinityChange(pParse, r1, 1); 3237 sqlite3ReleaseTempReg(pParse, rTemp); 3238 disableTerm(pLevel, pStart); 3239 }else{ 3240 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); 3241 VdbeCoverageIf(v, bRev==0); 3242 VdbeCoverageIf(v, bRev!=0); 3243 } 3244 if( pEnd ){ 3245 Expr *pX; 3246 pX = pEnd->pExpr; 3247 assert( pX!=0 ); 3248 assert( (pEnd->wtFlags & TERM_VNULL)==0 ); 3249 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */ 3250 testcase( pEnd->wtFlags & TERM_VIRTUAL ); 3251 memEndValue = ++pParse->nMem; 3252 sqlite3ExprCode(pParse, pX->pRight, memEndValue); 3253 if( pX->op==TK_LT || pX->op==TK_GT ){ 3254 testOp = bRev ? OP_Le : OP_Ge; 3255 }else{ 3256 testOp = bRev ? OP_Lt : OP_Gt; 3257 } 3258 disableTerm(pLevel, pEnd); 3259 } 3260 start = sqlite3VdbeCurrentAddr(v); 3261 pLevel->op = bRev ? OP_Prev : OP_Next; 3262 pLevel->p1 = iCur; 3263 pLevel->p2 = start; 3264 assert( pLevel->p5==0 ); 3265 if( testOp!=OP_Noop ){ 3266 iRowidReg = ++pParse->nMem; 3267 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 3268 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 3269 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 3270 VdbeCoverageIf(v, testOp==OP_Le); 3271 VdbeCoverageIf(v, testOp==OP_Lt); 3272 VdbeCoverageIf(v, testOp==OP_Ge); 3273 VdbeCoverageIf(v, testOp==OP_Gt); 3274 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 3275 } 3276 }else if( pLoop->wsFlags & WHERE_INDEXED ){ 3277 /* Case 4: A scan using an index. 3278 ** 3279 ** The WHERE clause may contain zero or more equality 3280 ** terms ("==" or "IN" operators) that refer to the N 3281 ** left-most columns of the index. It may also contain 3282 ** inequality constraints (>, <, >= or <=) on the indexed 3283 ** column that immediately follows the N equalities. Only 3284 ** the right-most column can be an inequality - the rest must 3285 ** use the "==" and "IN" operators. For example, if the 3286 ** index is on (x,y,z), then the following clauses are all 3287 ** optimized: 3288 ** 3289 ** x=5 3290 ** x=5 AND y=10 3291 ** x=5 AND y<10 3292 ** x=5 AND y>5 AND y<10 3293 ** x=5 AND y=5 AND z<=10 3294 ** 3295 ** The z<10 term of the following cannot be used, only 3296 ** the x=5 term: 3297 ** 3298 ** x=5 AND z<10 3299 ** 3300 ** N may be zero if there are inequality constraints. 3301 ** If there are no inequality constraints, then N is at 3302 ** least one. 3303 ** 3304 ** This case is also used when there are no WHERE clause 3305 ** constraints but an index is selected anyway, in order 3306 ** to force the output order to conform to an ORDER BY. 3307 */ 3308 static const u8 aStartOp[] = { 3309 0, 3310 0, 3311 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 3312 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 3313 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */ 3314 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */ 3315 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */ 3316 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */ 3317 }; 3318 static const u8 aEndOp[] = { 3319 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */ 3320 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */ 3321 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */ 3322 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */ 3323 }; 3324 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */ 3325 int regBase; /* Base register holding constraint values */ 3326 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 3327 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 3328 int startEq; /* True if range start uses ==, >= or <= */ 3329 int endEq; /* True if range end uses ==, >= or <= */ 3330 int start_constraints; /* Start of range is constrained */ 3331 int nConstraint; /* Number of constraint terms */ 3332 Index *pIdx; /* The index we will be using */ 3333 int iIdxCur; /* The VDBE cursor for the index */ 3334 int nExtraReg = 0; /* Number of extra registers needed */ 3335 int op; /* Instruction opcode */ 3336 char *zStartAff; /* Affinity for start of range constraint */ 3337 char cEndAff = 0; /* Affinity for end of range constraint */ 3338 u8 bSeekPastNull = 0; /* True to seek past initial nulls */ 3339 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */ 3340 3341 pIdx = pLoop->u.btree.pIndex; 3342 iIdxCur = pLevel->iIdxCur; 3343 assert( nEq>=pLoop->nSkip ); 3344 3345 /* If this loop satisfies a sort order (pOrderBy) request that 3346 ** was passed to this function to implement a "SELECT min(x) ..." 3347 ** query, then the caller will only allow the loop to run for 3348 ** a single iteration. This means that the first row returned 3349 ** should not have a NULL value stored in 'x'. If column 'x' is 3350 ** the first one after the nEq equality constraints in the index, 3351 ** this requires some special handling. 3352 */ 3353 assert( pWInfo->pOrderBy==0 3354 || pWInfo->pOrderBy->nExpr==1 3355 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 ); 3356 if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0 3357 && pWInfo->nOBSat>0 3358 && (pIdx->nKeyCol>nEq) 3359 ){ 3360 assert( pLoop->nSkip==0 ); 3361 bSeekPastNull = 1; 3362 nExtraReg = 1; 3363 } 3364 3365 /* Find any inequality constraint terms for the start and end 3366 ** of the range. 3367 */ 3368 j = nEq; 3369 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){ 3370 pRangeStart = pLoop->aLTerm[j++]; 3371 nExtraReg = 1; 3372 /* Like optimization range constraints always occur in pairs */ 3373 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 || 3374 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 ); 3375 } 3376 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){ 3377 pRangeEnd = pLoop->aLTerm[j++]; 3378 nExtraReg = 1; 3379 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){ 3380 assert( pRangeStart!=0 ); /* LIKE opt constraints */ 3381 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */ 3382 pLevel->iLikeRepCntr = ++pParse->nMem; 3383 testcase( bRev ); 3384 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC ); 3385 sqlite3VdbeAddOp2(v, OP_Integer, 3386 bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC), 3387 pLevel->iLikeRepCntr); 3388 VdbeComment((v, "LIKE loop counter")); 3389 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v); 3390 } 3391 if( pRangeStart==0 3392 && (j = pIdx->aiColumn[nEq])>=0 3393 && pIdx->pTable->aCol[j].notNull==0 3394 ){ 3395 bSeekPastNull = 1; 3396 } 3397 } 3398 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 ); 3399 3400 /* Generate code to evaluate all constraint terms using == or IN 3401 ** and store the values of those terms in an array of registers 3402 ** starting at regBase. 3403 */ 3404 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff); 3405 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq ); 3406 if( zStartAff ) cEndAff = zStartAff[nEq]; 3407 addrNxt = pLevel->addrNxt; 3408 3409 /* If we are doing a reverse order scan on an ascending index, or 3410 ** a forward order scan on a descending index, interchange the 3411 ** start and end terms (pRangeStart and pRangeEnd). 3412 */ 3413 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) 3414 || (bRev && pIdx->nKeyCol==nEq) 3415 ){ 3416 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 3417 SWAP(u8, bSeekPastNull, bStopAtNull); 3418 } 3419 3420 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 ); 3421 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 ); 3422 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 ); 3423 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 ); 3424 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 3425 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 3426 start_constraints = pRangeStart || nEq>0; 3427 3428 /* Seek the index cursor to the start of the range. */ 3429 nConstraint = nEq; 3430 if( pRangeStart ){ 3431 Expr *pRight = pRangeStart->pExpr->pRight; 3432 sqlite3ExprCode(pParse, pRight, regBase+nEq); 3433 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart); 3434 if( (pRangeStart->wtFlags & TERM_VNULL)==0 3435 && sqlite3ExprCanBeNull(pRight) 3436 ){ 3437 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 3438 VdbeCoverage(v); 3439 } 3440 if( zStartAff ){ 3441 if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_NONE){ 3442 /* Since the comparison is to be performed with no conversions 3443 ** applied to the operands, set the affinity to apply to pRight to 3444 ** SQLITE_AFF_NONE. */ 3445 zStartAff[nEq] = SQLITE_AFF_NONE; 3446 } 3447 if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){ 3448 zStartAff[nEq] = SQLITE_AFF_NONE; 3449 } 3450 } 3451 nConstraint++; 3452 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); 3453 }else if( bSeekPastNull ){ 3454 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 3455 nConstraint++; 3456 startEq = 0; 3457 start_constraints = 1; 3458 } 3459 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff); 3460 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 3461 assert( op!=0 ); 3462 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 3463 VdbeCoverage(v); 3464 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind ); 3465 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last ); 3466 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT ); 3467 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE ); 3468 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE ); 3469 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT ); 3470 3471 /* Load the value for the inequality constraint at the end of the 3472 ** range (if any). 3473 */ 3474 nConstraint = nEq; 3475 if( pRangeEnd ){ 3476 Expr *pRight = pRangeEnd->pExpr->pRight; 3477 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); 3478 sqlite3ExprCode(pParse, pRight, regBase+nEq); 3479 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd); 3480 if( (pRangeEnd->wtFlags & TERM_VNULL)==0 3481 && sqlite3ExprCanBeNull(pRight) 3482 ){ 3483 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 3484 VdbeCoverage(v); 3485 } 3486 if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_NONE 3487 && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff) 3488 ){ 3489 codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff); 3490 } 3491 nConstraint++; 3492 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); 3493 }else if( bStopAtNull ){ 3494 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 3495 endEq = 0; 3496 nConstraint++; 3497 } 3498 sqlite3DbFree(db, zStartAff); 3499 3500 /* Top of the loop body */ 3501 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 3502 3503 /* Check if the index cursor is past the end of the range. */ 3504 if( nConstraint ){ 3505 op = aEndOp[bRev*2 + endEq]; 3506 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 3507 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT ); 3508 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE ); 3509 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT ); 3510 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE ); 3511 } 3512 3513 /* Seek the table cursor, if required */ 3514 disableTerm(pLevel, pRangeStart); 3515 disableTerm(pLevel, pRangeEnd); 3516 if( omitTable ){ 3517 /* pIdx is a covering index. No need to access the main table. */ 3518 }else if( HasRowid(pIdx->pTable) ){ 3519 iRowidReg = ++pParse->nMem; 3520 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); 3521 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 3522 sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */ 3523 }else if( iCur!=iIdxCur ){ 3524 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable); 3525 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol); 3526 for(j=0; j<pPk->nKeyCol; j++){ 3527 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]); 3528 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j); 3529 } 3530 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont, 3531 iRowidReg, pPk->nKeyCol); VdbeCoverage(v); 3532 } 3533 3534 /* Record the instruction used to terminate the loop. Disable 3535 ** WHERE clause terms made redundant by the index range scan. 3536 */ 3537 if( pLoop->wsFlags & WHERE_ONEROW ){ 3538 pLevel->op = OP_Noop; 3539 }else if( bRev ){ 3540 pLevel->op = OP_Prev; 3541 }else{ 3542 pLevel->op = OP_Next; 3543 } 3544 pLevel->p1 = iIdxCur; 3545 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0; 3546 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){ 3547 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 3548 }else{ 3549 assert( pLevel->p5==0 ); 3550 } 3551 }else 3552 3553 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 3554 if( pLoop->wsFlags & WHERE_MULTI_OR ){ 3555 /* Case 5: Two or more separately indexed terms connected by OR 3556 ** 3557 ** Example: 3558 ** 3559 ** CREATE TABLE t1(a,b,c,d); 3560 ** CREATE INDEX i1 ON t1(a); 3561 ** CREATE INDEX i2 ON t1(b); 3562 ** CREATE INDEX i3 ON t1(c); 3563 ** 3564 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 3565 ** 3566 ** In the example, there are three indexed terms connected by OR. 3567 ** The top of the loop looks like this: 3568 ** 3569 ** Null 1 # Zero the rowset in reg 1 3570 ** 3571 ** Then, for each indexed term, the following. The arguments to 3572 ** RowSetTest are such that the rowid of the current row is inserted 3573 ** into the RowSet. If it is already present, control skips the 3574 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 3575 ** 3576 ** sqlite3WhereBegin(<term>) 3577 ** RowSetTest # Insert rowid into rowset 3578 ** Gosub 2 A 3579 ** sqlite3WhereEnd() 3580 ** 3581 ** Following the above, code to terminate the loop. Label A, the target 3582 ** of the Gosub above, jumps to the instruction right after the Goto. 3583 ** 3584 ** Null 1 # Zero the rowset in reg 1 3585 ** Goto B # The loop is finished. 3586 ** 3587 ** A: <loop body> # Return data, whatever. 3588 ** 3589 ** Return 2 # Jump back to the Gosub 3590 ** 3591 ** B: <after the loop> 3592 ** 3593 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then 3594 ** use an ephemeral index instead of a RowSet to record the primary 3595 ** keys of the rows we have already seen. 3596 ** 3597 */ 3598 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 3599 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 3600 Index *pCov = 0; /* Potential covering index (or NULL) */ 3601 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */ 3602 3603 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 3604 int regRowset = 0; /* Register for RowSet object */ 3605 int regRowid = 0; /* Register holding rowid */ 3606 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ 3607 int iRetInit; /* Address of regReturn init */ 3608 int untestedTerms = 0; /* Some terms not completely tested */ 3609 int ii; /* Loop counter */ 3610 u16 wctrlFlags; /* Flags for sub-WHERE clause */ 3611 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */ 3612 Table *pTab = pTabItem->pTab; 3613 3614 pTerm = pLoop->aLTerm[0]; 3615 assert( pTerm!=0 ); 3616 assert( pTerm->eOperator & WO_OR ); 3617 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 3618 pOrWc = &pTerm->u.pOrInfo->wc; 3619 pLevel->op = OP_Return; 3620 pLevel->p1 = regReturn; 3621 3622 /* Set up a new SrcList in pOrTab containing the table being scanned 3623 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 3624 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 3625 */ 3626 if( pWInfo->nLevel>1 ){ 3627 int nNotReady; /* The number of notReady tables */ 3628 struct SrcList_item *origSrc; /* Original list of tables */ 3629 nNotReady = pWInfo->nLevel - iLevel - 1; 3630 pOrTab = sqlite3StackAllocRaw(db, 3631 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 3632 if( pOrTab==0 ) return notReady; 3633 pOrTab->nAlloc = (u8)(nNotReady + 1); 3634 pOrTab->nSrc = pOrTab->nAlloc; 3635 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 3636 origSrc = pWInfo->pTabList->a; 3637 for(k=1; k<=nNotReady; k++){ 3638 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 3639 } 3640 }else{ 3641 pOrTab = pWInfo->pTabList; 3642 } 3643 3644 /* Initialize the rowset register to contain NULL. An SQL NULL is 3645 ** equivalent to an empty rowset. Or, create an ephemeral index 3646 ** capable of holding primary keys in the case of a WITHOUT ROWID. 3647 ** 3648 ** Also initialize regReturn to contain the address of the instruction 3649 ** immediately following the OP_Return at the bottom of the loop. This 3650 ** is required in a few obscure LEFT JOIN cases where control jumps 3651 ** over the top of the loop into the body of it. In this case the 3652 ** correct response for the end-of-loop code (the OP_Return) is to 3653 ** fall through to the next instruction, just as an OP_Next does if 3654 ** called on an uninitialized cursor. 3655 */ 3656 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 3657 if( HasRowid(pTab) ){ 3658 regRowset = ++pParse->nMem; 3659 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 3660 }else{ 3661 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 3662 regRowset = pParse->nTab++; 3663 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol); 3664 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 3665 } 3666 regRowid = ++pParse->nMem; 3667 } 3668 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 3669 3670 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y 3671 ** Then for every term xN, evaluate as the subexpression: xN AND z 3672 ** That way, terms in y that are factored into the disjunction will 3673 ** be picked up by the recursive calls to sqlite3WhereBegin() below. 3674 ** 3675 ** Actually, each subexpression is converted to "xN AND w" where w is 3676 ** the "interesting" terms of z - terms that did not originate in the 3677 ** ON or USING clause of a LEFT JOIN, and terms that are usable as 3678 ** indices. 3679 ** 3680 ** This optimization also only applies if the (x1 OR x2 OR ...) term 3681 ** is not contained in the ON clause of a LEFT JOIN. 3682 ** See ticket http://www.sqlite.org/src/info/f2369304e4 3683 */ 3684 if( pWC->nTerm>1 ){ 3685 int iTerm; 3686 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){ 3687 Expr *pExpr = pWC->a[iTerm].pExpr; 3688 if( &pWC->a[iTerm] == pTerm ) continue; 3689 if( ExprHasProperty(pExpr, EP_FromJoin) ) continue; 3690 if( (pWC->a[iTerm].wtFlags & TERM_VIRTUAL)!=0 ) continue; 3691 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue; 3692 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO ); 3693 pExpr = sqlite3ExprDup(db, pExpr, 0); 3694 pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr); 3695 } 3696 if( pAndExpr ){ 3697 pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0); 3698 } 3699 } 3700 3701 /* Run a separate WHERE clause for each term of the OR clause. After 3702 ** eliminating duplicates from other WHERE clauses, the action for each 3703 ** sub-WHERE clause is to to invoke the main loop body as a subroutine. 3704 */ 3705 wctrlFlags = WHERE_OMIT_OPEN_CLOSE 3706 | WHERE_FORCE_TABLE 3707 | WHERE_ONETABLE_ONLY 3708 | WHERE_NO_AUTOINDEX; 3709 for(ii=0; ii<pOrWc->nTerm; ii++){ 3710 WhereTerm *pOrTerm = &pOrWc->a[ii]; 3711 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){ 3712 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 3713 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */ 3714 int j1 = 0; /* Address of jump operation */ 3715 if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){ 3716 pAndExpr->pLeft = pOrExpr; 3717 pOrExpr = pAndExpr; 3718 } 3719 /* Loop through table entries that match term pOrTerm. */ 3720 WHERETRACE(0xffff, ("Subplan for OR-clause:\n")); 3721 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 3722 wctrlFlags, iCovCur); 3723 assert( pSubWInfo || pParse->nErr || db->mallocFailed ); 3724 if( pSubWInfo ){ 3725 WhereLoop *pSubLoop; 3726 int addrExplain = explainOneScan( 3727 pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0 3728 ); 3729 addScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain); 3730 3731 /* This is the sub-WHERE clause body. First skip over 3732 ** duplicate rows from prior sub-WHERE clauses, and record the 3733 ** rowid (or PRIMARY KEY) for the current row so that the same 3734 ** row will be skipped in subsequent sub-WHERE clauses. 3735 */ 3736 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 3737 int r; 3738 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 3739 if( HasRowid(pTab) ){ 3740 r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0); 3741 j1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, r,iSet); 3742 VdbeCoverage(v); 3743 }else{ 3744 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 3745 int nPk = pPk->nKeyCol; 3746 int iPk; 3747 3748 /* Read the PK into an array of temp registers. */ 3749 r = sqlite3GetTempRange(pParse, nPk); 3750 for(iPk=0; iPk<nPk; iPk++){ 3751 int iCol = pPk->aiColumn[iPk]; 3752 sqlite3ExprCodeGetColumn(pParse, pTab, iCol, iCur, r+iPk, 0); 3753 } 3754 3755 /* Check if the temp table already contains this key. If so, 3756 ** the row has already been included in the result set and 3757 ** can be ignored (by jumping past the Gosub below). Otherwise, 3758 ** insert the key into the temp table and proceed with processing 3759 ** the row. 3760 ** 3761 ** Use some of the same optimizations as OP_RowSetTest: If iSet 3762 ** is zero, assume that the key cannot already be present in 3763 ** the temp table. And if iSet is -1, assume that there is no 3764 ** need to insert the key into the temp table, as it will never 3765 ** be tested for. */ 3766 if( iSet ){ 3767 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk); 3768 VdbeCoverage(v); 3769 } 3770 if( iSet>=0 ){ 3771 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid); 3772 sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0); 3773 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 3774 } 3775 3776 /* Release the array of temp registers */ 3777 sqlite3ReleaseTempRange(pParse, r, nPk); 3778 } 3779 } 3780 3781 /* Invoke the main loop body as a subroutine */ 3782 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 3783 3784 /* Jump here (skipping the main loop body subroutine) if the 3785 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */ 3786 if( j1 ) sqlite3VdbeJumpHere(v, j1); 3787 3788 /* The pSubWInfo->untestedTerms flag means that this OR term 3789 ** contained one or more AND term from a notReady table. The 3790 ** terms from the notReady table could not be tested and will 3791 ** need to be tested later. 3792 */ 3793 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 3794 3795 /* If all of the OR-connected terms are optimized using the same 3796 ** index, and the index is opened using the same cursor number 3797 ** by each call to sqlite3WhereBegin() made by this loop, it may 3798 ** be possible to use that index as a covering index. 3799 ** 3800 ** If the call to sqlite3WhereBegin() above resulted in a scan that 3801 ** uses an index, and this is either the first OR-connected term 3802 ** processed or the index is the same as that used by all previous 3803 ** terms, set pCov to the candidate covering index. Otherwise, set 3804 ** pCov to NULL to indicate that no candidate covering index will 3805 ** be available. 3806 */ 3807 pSubLoop = pSubWInfo->a[0].pWLoop; 3808 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 3809 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0 3810 && (ii==0 || pSubLoop->u.btree.pIndex==pCov) 3811 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex)) 3812 ){ 3813 assert( pSubWInfo->a[0].iIdxCur==iCovCur ); 3814 pCov = pSubLoop->u.btree.pIndex; 3815 wctrlFlags |= WHERE_REOPEN_IDX; 3816 }else{ 3817 pCov = 0; 3818 } 3819 3820 /* Finish the loop through table entries that match term pOrTerm. */ 3821 sqlite3WhereEnd(pSubWInfo); 3822 } 3823 } 3824 } 3825 pLevel->u.pCovidx = pCov; 3826 if( pCov ) pLevel->iIdxCur = iCovCur; 3827 if( pAndExpr ){ 3828 pAndExpr->pLeft = 0; 3829 sqlite3ExprDelete(db, pAndExpr); 3830 } 3831 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 3832 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk); 3833 sqlite3VdbeResolveLabel(v, iLoopBody); 3834 3835 if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab); 3836 if( !untestedTerms ) disableTerm(pLevel, pTerm); 3837 }else 3838 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 3839 3840 { 3841 /* Case 6: There is no usable index. We must do a complete 3842 ** scan of the entire table. 3843 */ 3844 static const u8 aStep[] = { OP_Next, OP_Prev }; 3845 static const u8 aStart[] = { OP_Rewind, OP_Last }; 3846 assert( bRev==0 || bRev==1 ); 3847 if( pTabItem->isRecursive ){ 3848 /* Tables marked isRecursive have only a single row that is stored in 3849 ** a pseudo-cursor. No need to Rewind or Next such cursors. */ 3850 pLevel->op = OP_Noop; 3851 }else{ 3852 pLevel->op = aStep[bRev]; 3853 pLevel->p1 = iCur; 3854 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); 3855 VdbeCoverageIf(v, bRev==0); 3856 VdbeCoverageIf(v, bRev!=0); 3857 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 3858 } 3859 } 3860 3861 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS 3862 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v); 3863 #endif 3864 3865 /* Insert code to test every subexpression that can be completely 3866 ** computed using the current set of tables. 3867 */ 3868 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 3869 Expr *pE; 3870 int skipLikeAddr = 0; 3871 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 3872 testcase( pTerm->wtFlags & TERM_CODED ); 3873 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 3874 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 3875 testcase( pWInfo->untestedTerms==0 3876 && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ); 3877 pWInfo->untestedTerms = 1; 3878 continue; 3879 } 3880 pE = pTerm->pExpr; 3881 assert( pE!=0 ); 3882 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ 3883 continue; 3884 } 3885 if( pTerm->wtFlags & TERM_LIKECOND ){ 3886 assert( pLevel->iLikeRepCntr>0 ); 3887 skipLikeAddr = sqlite3VdbeAddOp1(v, OP_IfNot, pLevel->iLikeRepCntr); 3888 VdbeCoverage(v); 3889 } 3890 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 3891 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr); 3892 pTerm->wtFlags |= TERM_CODED; 3893 } 3894 3895 /* Insert code to test for implied constraints based on transitivity 3896 ** of the "==" operator. 3897 ** 3898 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123" 3899 ** and we are coding the t1 loop and the t2 loop has not yet coded, 3900 ** then we cannot use the "t1.a=t2.b" constraint, but we can code 3901 ** the implied "t1.a=123" constraint. 3902 */ 3903 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 3904 Expr *pE, *pEAlt; 3905 WhereTerm *pAlt; 3906 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 3907 if( pTerm->eOperator!=(WO_EQUIV|WO_EQ) ) continue; 3908 if( pTerm->leftCursor!=iCur ) continue; 3909 if( pLevel->iLeftJoin ) continue; 3910 pE = pTerm->pExpr; 3911 assert( !ExprHasProperty(pE, EP_FromJoin) ); 3912 assert( (pTerm->prereqRight & pLevel->notReady)!=0 ); 3913 pAlt = findTerm(pWC, iCur, pTerm->u.leftColumn, notReady, WO_EQ|WO_IN, 0); 3914 if( pAlt==0 ) continue; 3915 if( pAlt->wtFlags & (TERM_CODED) ) continue; 3916 testcase( pAlt->eOperator & WO_EQ ); 3917 testcase( pAlt->eOperator & WO_IN ); 3918 VdbeModuleComment((v, "begin transitive constraint")); 3919 pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt)); 3920 if( pEAlt ){ 3921 *pEAlt = *pAlt->pExpr; 3922 pEAlt->pLeft = pE->pLeft; 3923 sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL); 3924 sqlite3StackFree(db, pEAlt); 3925 } 3926 } 3927 3928 /* For a LEFT OUTER JOIN, generate code that will record the fact that 3929 ** at least one row of the right table has matched the left table. 3930 */ 3931 if( pLevel->iLeftJoin ){ 3932 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 3933 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 3934 VdbeComment((v, "record LEFT JOIN hit")); 3935 sqlite3ExprCacheClear(pParse); 3936 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ 3937 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 3938 testcase( pTerm->wtFlags & TERM_CODED ); 3939 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 3940 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){ 3941 assert( pWInfo->untestedTerms ); 3942 continue; 3943 } 3944 assert( pTerm->pExpr ); 3945 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 3946 pTerm->wtFlags |= TERM_CODED; 3947 } 3948 } 3949 3950 return pLevel->notReady; 3951 } 3952 3953 #ifdef WHERETRACE_ENABLED 3954 /* 3955 ** Print the content of a WhereTerm object 3956 */ 3957 static void whereTermPrint(WhereTerm *pTerm, int iTerm){ 3958 if( pTerm==0 ){ 3959 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); 3960 }else{ 3961 char zType[4]; 3962 memcpy(zType, "...", 4); 3963 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; 3964 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; 3965 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L'; 3966 sqlite3DebugPrintf("TERM-%-3d %p %s cursor=%-3d prob=%-3d op=0x%03x\n", 3967 iTerm, pTerm, zType, pTerm->leftCursor, pTerm->truthProb, 3968 pTerm->eOperator); 3969 sqlite3TreeViewExpr(0, pTerm->pExpr, 0); 3970 } 3971 } 3972 #endif 3973 3974 #ifdef WHERETRACE_ENABLED 3975 /* 3976 ** Print a WhereLoop object for debugging purposes 3977 */ 3978 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){ 3979 WhereInfo *pWInfo = pWC->pWInfo; 3980 int nb = 1+(pWInfo->pTabList->nSrc+7)/8; 3981 struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab; 3982 Table *pTab = pItem->pTab; 3983 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, 3984 p->iTab, nb, p->maskSelf, nb, p->prereq); 3985 sqlite3DebugPrintf(" %12s", 3986 pItem->zAlias ? pItem->zAlias : pTab->zName); 3987 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 3988 const char *zName; 3989 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ 3990 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ 3991 int i = sqlite3Strlen30(zName) - 1; 3992 while( zName[i]!='_' ) i--; 3993 zName += i; 3994 } 3995 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); 3996 }else{ 3997 sqlite3DebugPrintf("%20s",""); 3998 } 3999 }else{ 4000 char *z; 4001 if( p->u.vtab.idxStr ){ 4002 z = sqlite3_mprintf("(%d,\"%s\",%x)", 4003 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); 4004 }else{ 4005 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); 4006 } 4007 sqlite3DebugPrintf(" %-19s", z); 4008 sqlite3_free(z); 4009 } 4010 if( p->wsFlags & WHERE_SKIPSCAN ){ 4011 sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); 4012 }else{ 4013 sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm); 4014 } 4015 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); 4016 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ 4017 int i; 4018 for(i=0; i<p->nLTerm; i++){ 4019 whereTermPrint(p->aLTerm[i], i); 4020 } 4021 } 4022 } 4023 #endif 4024 4025 /* 4026 ** Convert bulk memory into a valid WhereLoop that can be passed 4027 ** to whereLoopClear harmlessly. 4028 */ 4029 static void whereLoopInit(WhereLoop *p){ 4030 p->aLTerm = p->aLTermSpace; 4031 p->nLTerm = 0; 4032 p->nLSlot = ArraySize(p->aLTermSpace); 4033 p->wsFlags = 0; 4034 } 4035 4036 /* 4037 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. 4038 */ 4039 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ 4040 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ 4041 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ 4042 sqlite3_free(p->u.vtab.idxStr); 4043 p->u.vtab.needFree = 0; 4044 p->u.vtab.idxStr = 0; 4045 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ 4046 sqlite3DbFree(db, p->u.btree.pIndex->zColAff); 4047 sqlite3DbFree(db, p->u.btree.pIndex); 4048 p->u.btree.pIndex = 0; 4049 } 4050 } 4051 } 4052 4053 /* 4054 ** Deallocate internal memory used by a WhereLoop object 4055 */ 4056 static void whereLoopClear(sqlite3 *db, WhereLoop *p){ 4057 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); 4058 whereLoopClearUnion(db, p); 4059 whereLoopInit(p); 4060 } 4061 4062 /* 4063 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. 4064 */ 4065 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ 4066 WhereTerm **paNew; 4067 if( p->nLSlot>=n ) return SQLITE_OK; 4068 n = (n+7)&~7; 4069 paNew = sqlite3DbMallocRaw(db, sizeof(p->aLTerm[0])*n); 4070 if( paNew==0 ) return SQLITE_NOMEM; 4071 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); 4072 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); 4073 p->aLTerm = paNew; 4074 p->nLSlot = n; 4075 return SQLITE_OK; 4076 } 4077 4078 /* 4079 ** Transfer content from the second pLoop into the first. 4080 */ 4081 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ 4082 whereLoopClearUnion(db, pTo); 4083 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){ 4084 memset(&pTo->u, 0, sizeof(pTo->u)); 4085 return SQLITE_NOMEM; 4086 } 4087 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); 4088 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); 4089 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ 4090 pFrom->u.vtab.needFree = 0; 4091 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 4092 pFrom->u.btree.pIndex = 0; 4093 } 4094 return SQLITE_OK; 4095 } 4096 4097 /* 4098 ** Delete a WhereLoop object 4099 */ 4100 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ 4101 whereLoopClear(db, p); 4102 sqlite3DbFree(db, p); 4103 } 4104 4105 /* 4106 ** Free a WhereInfo structure 4107 */ 4108 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 4109 if( ALWAYS(pWInfo) ){ 4110 whereClauseClear(&pWInfo->sWC); 4111 while( pWInfo->pLoops ){ 4112 WhereLoop *p = pWInfo->pLoops; 4113 pWInfo->pLoops = p->pNextLoop; 4114 whereLoopDelete(db, p); 4115 } 4116 sqlite3DbFree(db, pWInfo); 4117 } 4118 } 4119 4120 /* 4121 ** Return TRUE if all of the following are true: 4122 ** 4123 ** (1) X has the same or lower cost that Y 4124 ** (2) X is a proper subset of Y 4125 ** (3) X skips at least as many columns as Y 4126 ** 4127 ** By "proper subset" we mean that X uses fewer WHERE clause terms 4128 ** than Y and that every WHERE clause term used by X is also used 4129 ** by Y. 4130 ** 4131 ** If X is a proper subset of Y then Y is a better choice and ought 4132 ** to have a lower cost. This routine returns TRUE when that cost 4133 ** relationship is inverted and needs to be adjusted. The third rule 4134 ** was added because if X uses skip-scan less than Y it still might 4135 ** deserve a lower cost even if it is a proper subset of Y. 4136 */ 4137 static int whereLoopCheaperProperSubset( 4138 const WhereLoop *pX, /* First WhereLoop to compare */ 4139 const WhereLoop *pY /* Compare against this WhereLoop */ 4140 ){ 4141 int i, j; 4142 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ 4143 return 0; /* X is not a subset of Y */ 4144 } 4145 if( pY->nSkip > pX->nSkip ) return 0; 4146 if( pX->rRun >= pY->rRun ){ 4147 if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */ 4148 if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */ 4149 } 4150 for(i=pX->nLTerm-1; i>=0; i--){ 4151 if( pX->aLTerm[i]==0 ) continue; 4152 for(j=pY->nLTerm-1; j>=0; j--){ 4153 if( pY->aLTerm[j]==pX->aLTerm[i] ) break; 4154 } 4155 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ 4156 } 4157 return 1; /* All conditions meet */ 4158 } 4159 4160 /* 4161 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so 4162 ** that: 4163 ** 4164 ** (1) pTemplate costs less than any other WhereLoops that are a proper 4165 ** subset of pTemplate 4166 ** 4167 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate 4168 ** is a proper subset. 4169 ** 4170 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer 4171 ** WHERE clause terms than Y and that every WHERE clause term used by X is 4172 ** also used by Y. 4173 */ 4174 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ 4175 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; 4176 for(; p; p=p->pNextLoop){ 4177 if( p->iTab!=pTemplate->iTab ) continue; 4178 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; 4179 if( whereLoopCheaperProperSubset(p, pTemplate) ){ 4180 /* Adjust pTemplate cost downward so that it is cheaper than its 4181 ** subset p. */ 4182 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 4183 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1)); 4184 pTemplate->rRun = p->rRun; 4185 pTemplate->nOut = p->nOut - 1; 4186 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ 4187 /* Adjust pTemplate cost upward so that it is costlier than p since 4188 ** pTemplate is a proper subset of p */ 4189 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 4190 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1)); 4191 pTemplate->rRun = p->rRun; 4192 pTemplate->nOut = p->nOut + 1; 4193 } 4194 } 4195 } 4196 4197 /* 4198 ** Search the list of WhereLoops in *ppPrev looking for one that can be 4199 ** supplanted by pTemplate. 4200 ** 4201 ** Return NULL if the WhereLoop list contains an entry that can supplant 4202 ** pTemplate, in other words if pTemplate does not belong on the list. 4203 ** 4204 ** If pX is a WhereLoop that pTemplate can supplant, then return the 4205 ** link that points to pX. 4206 ** 4207 ** If pTemplate cannot supplant any existing element of the list but needs 4208 ** to be added to the list, then return a pointer to the tail of the list. 4209 */ 4210 static WhereLoop **whereLoopFindLesser( 4211 WhereLoop **ppPrev, 4212 const WhereLoop *pTemplate 4213 ){ 4214 WhereLoop *p; 4215 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ 4216 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ 4217 /* If either the iTab or iSortIdx values for two WhereLoop are different 4218 ** then those WhereLoops need to be considered separately. Neither is 4219 ** a candidate to replace the other. */ 4220 continue; 4221 } 4222 /* In the current implementation, the rSetup value is either zero 4223 ** or the cost of building an automatic index (NlogN) and the NlogN 4224 ** is the same for compatible WhereLoops. */ 4225 assert( p->rSetup==0 || pTemplate->rSetup==0 4226 || p->rSetup==pTemplate->rSetup ); 4227 4228 /* whereLoopAddBtree() always generates and inserts the automatic index 4229 ** case first. Hence compatible candidate WhereLoops never have a larger 4230 ** rSetup. Call this SETUP-INVARIANT */ 4231 assert( p->rSetup>=pTemplate->rSetup ); 4232 4233 /* Any loop using an appliation-defined index (or PRIMARY KEY or 4234 ** UNIQUE constraint) with one or more == constraints is better 4235 ** than an automatic index. Unless it is a skip-scan. */ 4236 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 4237 && (pTemplate->nSkip)==0 4238 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 4239 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 4240 && (p->prereq & pTemplate->prereq)==pTemplate->prereq 4241 ){ 4242 break; 4243 } 4244 4245 /* If existing WhereLoop p is better than pTemplate, pTemplate can be 4246 ** discarded. WhereLoop p is better if: 4247 ** (1) p has no more dependencies than pTemplate, and 4248 ** (2) p has an equal or lower cost than pTemplate 4249 */ 4250 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ 4251 && p->rSetup<=pTemplate->rSetup /* (2a) */ 4252 && p->rRun<=pTemplate->rRun /* (2b) */ 4253 && p->nOut<=pTemplate->nOut /* (2c) */ 4254 ){ 4255 return 0; /* Discard pTemplate */ 4256 } 4257 4258 /* If pTemplate is always better than p, then cause p to be overwritten 4259 ** with pTemplate. pTemplate is better than p if: 4260 ** (1) pTemplate has no more dependences than p, and 4261 ** (2) pTemplate has an equal or lower cost than p. 4262 */ 4263 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ 4264 && p->rRun>=pTemplate->rRun /* (2a) */ 4265 && p->nOut>=pTemplate->nOut /* (2b) */ 4266 ){ 4267 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ 4268 break; /* Cause p to be overwritten by pTemplate */ 4269 } 4270 } 4271 return ppPrev; 4272 } 4273 4274 /* 4275 ** Insert or replace a WhereLoop entry using the template supplied. 4276 ** 4277 ** An existing WhereLoop entry might be overwritten if the new template 4278 ** is better and has fewer dependencies. Or the template will be ignored 4279 ** and no insert will occur if an existing WhereLoop is faster and has 4280 ** fewer dependencies than the template. Otherwise a new WhereLoop is 4281 ** added based on the template. 4282 ** 4283 ** If pBuilder->pOrSet is not NULL then we care about only the 4284 ** prerequisites and rRun and nOut costs of the N best loops. That 4285 ** information is gathered in the pBuilder->pOrSet object. This special 4286 ** processing mode is used only for OR clause processing. 4287 ** 4288 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we 4289 ** still might overwrite similar loops with the new template if the 4290 ** new template is better. Loops may be overwritten if the following 4291 ** conditions are met: 4292 ** 4293 ** (1) They have the same iTab. 4294 ** (2) They have the same iSortIdx. 4295 ** (3) The template has same or fewer dependencies than the current loop 4296 ** (4) The template has the same or lower cost than the current loop 4297 */ 4298 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ 4299 WhereLoop **ppPrev, *p; 4300 WhereInfo *pWInfo = pBuilder->pWInfo; 4301 sqlite3 *db = pWInfo->pParse->db; 4302 4303 /* If pBuilder->pOrSet is defined, then only keep track of the costs 4304 ** and prereqs. 4305 */ 4306 if( pBuilder->pOrSet!=0 ){ 4307 #if WHERETRACE_ENABLED 4308 u16 n = pBuilder->pOrSet->n; 4309 int x = 4310 #endif 4311 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, 4312 pTemplate->nOut); 4313 #if WHERETRACE_ENABLED /* 0x8 */ 4314 if( sqlite3WhereTrace & 0x8 ){ 4315 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); 4316 whereLoopPrint(pTemplate, pBuilder->pWC); 4317 } 4318 #endif 4319 return SQLITE_OK; 4320 } 4321 4322 /* Look for an existing WhereLoop to replace with pTemplate 4323 */ 4324 whereLoopAdjustCost(pWInfo->pLoops, pTemplate); 4325 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); 4326 4327 if( ppPrev==0 ){ 4328 /* There already exists a WhereLoop on the list that is better 4329 ** than pTemplate, so just ignore pTemplate */ 4330 #if WHERETRACE_ENABLED /* 0x8 */ 4331 if( sqlite3WhereTrace & 0x8 ){ 4332 sqlite3DebugPrintf(" skip: "); 4333 whereLoopPrint(pTemplate, pBuilder->pWC); 4334 } 4335 #endif 4336 return SQLITE_OK; 4337 }else{ 4338 p = *ppPrev; 4339 } 4340 4341 /* If we reach this point it means that either p[] should be overwritten 4342 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new 4343 ** WhereLoop and insert it. 4344 */ 4345 #if WHERETRACE_ENABLED /* 0x8 */ 4346 if( sqlite3WhereTrace & 0x8 ){ 4347 if( p!=0 ){ 4348 sqlite3DebugPrintf("replace: "); 4349 whereLoopPrint(p, pBuilder->pWC); 4350 } 4351 sqlite3DebugPrintf(" add: "); 4352 whereLoopPrint(pTemplate, pBuilder->pWC); 4353 } 4354 #endif 4355 if( p==0 ){ 4356 /* Allocate a new WhereLoop to add to the end of the list */ 4357 *ppPrev = p = sqlite3DbMallocRaw(db, sizeof(WhereLoop)); 4358 if( p==0 ) return SQLITE_NOMEM; 4359 whereLoopInit(p); 4360 p->pNextLoop = 0; 4361 }else{ 4362 /* We will be overwriting WhereLoop p[]. But before we do, first 4363 ** go through the rest of the list and delete any other entries besides 4364 ** p[] that are also supplated by pTemplate */ 4365 WhereLoop **ppTail = &p->pNextLoop; 4366 WhereLoop *pToDel; 4367 while( *ppTail ){ 4368 ppTail = whereLoopFindLesser(ppTail, pTemplate); 4369 if( ppTail==0 ) break; 4370 pToDel = *ppTail; 4371 if( pToDel==0 ) break; 4372 *ppTail = pToDel->pNextLoop; 4373 #if WHERETRACE_ENABLED /* 0x8 */ 4374 if( sqlite3WhereTrace & 0x8 ){ 4375 sqlite3DebugPrintf(" delete: "); 4376 whereLoopPrint(pToDel, pBuilder->pWC); 4377 } 4378 #endif 4379 whereLoopDelete(db, pToDel); 4380 } 4381 } 4382 whereLoopXfer(db, p, pTemplate); 4383 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 4384 Index *pIndex = p->u.btree.pIndex; 4385 if( pIndex && pIndex->tnum==0 ){ 4386 p->u.btree.pIndex = 0; 4387 } 4388 } 4389 return SQLITE_OK; 4390 } 4391 4392 /* 4393 ** Adjust the WhereLoop.nOut value downward to account for terms of the 4394 ** WHERE clause that reference the loop but which are not used by an 4395 ** index. 4396 * 4397 ** For every WHERE clause term that is not used by the index 4398 ** and which has a truth probability assigned by one of the likelihood(), 4399 ** likely(), or unlikely() SQL functions, reduce the estimated number 4400 ** of output rows by the probability specified. 4401 ** 4402 ** TUNING: For every WHERE clause term that is not used by the index 4403 ** and which does not have an assigned truth probability, heuristics 4404 ** described below are used to try to estimate the truth probability. 4405 ** TODO --> Perhaps this is something that could be improved by better 4406 ** table statistics. 4407 ** 4408 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% 4409 ** value corresponds to -1 in LogEst notation, so this means decrement 4410 ** the WhereLoop.nOut field for every such WHERE clause term. 4411 ** 4412 ** Heuristic 2: If there exists one or more WHERE clause terms of the 4413 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the 4414 ** final output row estimate is no greater than 1/4 of the total number 4415 ** of rows in the table. In other words, assume that x==EXPR will filter 4416 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the 4417 ** "x" column is boolean or else -1 or 0 or 1 is a common default value 4418 ** on the "x" column and so in that case only cap the output row estimate 4419 ** at 1/2 instead of 1/4. 4420 */ 4421 static void whereLoopOutputAdjust( 4422 WhereClause *pWC, /* The WHERE clause */ 4423 WhereLoop *pLoop, /* The loop to adjust downward */ 4424 LogEst nRow /* Number of rows in the entire table */ 4425 ){ 4426 WhereTerm *pTerm, *pX; 4427 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); 4428 int i, j, k; 4429 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ 4430 4431 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 4432 for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){ 4433 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break; 4434 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; 4435 if( (pTerm->prereqAll & notAllowed)!=0 ) continue; 4436 for(j=pLoop->nLTerm-1; j>=0; j--){ 4437 pX = pLoop->aLTerm[j]; 4438 if( pX==0 ) continue; 4439 if( pX==pTerm ) break; 4440 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; 4441 } 4442 if( j<0 ){ 4443 if( pTerm->truthProb<=0 ){ 4444 /* If a truth probability is specified using the likelihood() hints, 4445 ** then use the probability provided by the application. */ 4446 pLoop->nOut += pTerm->truthProb; 4447 }else{ 4448 /* In the absence of explicit truth probabilities, use heuristics to 4449 ** guess a reasonable truth probability. */ 4450 pLoop->nOut--; 4451 if( pTerm->eOperator&WO_EQ ){ 4452 Expr *pRight = pTerm->pExpr->pRight; 4453 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){ 4454 k = 10; 4455 }else{ 4456 k = 20; 4457 } 4458 if( iReduce<k ) iReduce = k; 4459 } 4460 } 4461 } 4462 } 4463 if( pLoop->nOut > nRow-iReduce ) pLoop->nOut = nRow - iReduce; 4464 } 4465 4466 /* 4467 ** Adjust the cost C by the costMult facter T. This only occurs if 4468 ** compiled with -DSQLITE_ENABLE_COSTMULT 4469 */ 4470 #ifdef SQLITE_ENABLE_COSTMULT 4471 # define ApplyCostMultiplier(C,T) C += T 4472 #else 4473 # define ApplyCostMultiplier(C,T) 4474 #endif 4475 4476 /* 4477 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the 4478 ** index pIndex. Try to match one more. 4479 ** 4480 ** When this function is called, pBuilder->pNew->nOut contains the 4481 ** number of rows expected to be visited by filtering using the nEq 4482 ** terms only. If it is modified, this value is restored before this 4483 ** function returns. 4484 ** 4485 ** If pProbe->tnum==0, that means pIndex is a fake index used for the 4486 ** INTEGER PRIMARY KEY. 4487 */ 4488 static int whereLoopAddBtreeIndex( 4489 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ 4490 struct SrcList_item *pSrc, /* FROM clause term being analyzed */ 4491 Index *pProbe, /* An index on pSrc */ 4492 LogEst nInMul /* log(Number of iterations due to IN) */ 4493 ){ 4494 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ 4495 Parse *pParse = pWInfo->pParse; /* Parsing context */ 4496 sqlite3 *db = pParse->db; /* Database connection malloc context */ 4497 WhereLoop *pNew; /* Template WhereLoop under construction */ 4498 WhereTerm *pTerm; /* A WhereTerm under consideration */ 4499 int opMask; /* Valid operators for constraints */ 4500 WhereScan scan; /* Iterator for WHERE terms */ 4501 Bitmask saved_prereq; /* Original value of pNew->prereq */ 4502 u16 saved_nLTerm; /* Original value of pNew->nLTerm */ 4503 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ 4504 u16 saved_nSkip; /* Original value of pNew->nSkip */ 4505 u32 saved_wsFlags; /* Original value of pNew->wsFlags */ 4506 LogEst saved_nOut; /* Original value of pNew->nOut */ 4507 int iCol; /* Index of the column in the table */ 4508 int rc = SQLITE_OK; /* Return code */ 4509 LogEst rSize; /* Number of rows in the table */ 4510 LogEst rLogSize; /* Logarithm of table size */ 4511 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ 4512 4513 pNew = pBuilder->pNew; 4514 if( db->mallocFailed ) return SQLITE_NOMEM; 4515 4516 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); 4517 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); 4518 if( pNew->wsFlags & WHERE_BTM_LIMIT ){ 4519 opMask = WO_LT|WO_LE; 4520 }else if( pProbe->tnum<=0 || (pSrc->jointype & JT_LEFT)!=0 ){ 4521 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE; 4522 }else{ 4523 opMask = WO_EQ|WO_IN|WO_ISNULL|WO_GT|WO_GE|WO_LT|WO_LE; 4524 } 4525 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); 4526 4527 assert( pNew->u.btree.nEq<pProbe->nColumn ); 4528 iCol = pProbe->aiColumn[pNew->u.btree.nEq]; 4529 4530 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, iCol, 4531 opMask, pProbe); 4532 saved_nEq = pNew->u.btree.nEq; 4533 saved_nSkip = pNew->nSkip; 4534 saved_nLTerm = pNew->nLTerm; 4535 saved_wsFlags = pNew->wsFlags; 4536 saved_prereq = pNew->prereq; 4537 saved_nOut = pNew->nOut; 4538 pNew->rSetup = 0; 4539 rSize = pProbe->aiRowLogEst[0]; 4540 rLogSize = estLog(rSize); 4541 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ 4542 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ 4543 LogEst rCostIdx; 4544 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ 4545 int nIn = 0; 4546 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 4547 int nRecValid = pBuilder->nRecValid; 4548 #endif 4549 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) 4550 && (iCol<0 || pSrc->pTab->aCol[iCol].notNull) 4551 ){ 4552 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ 4553 } 4554 if( pTerm->prereqRight & pNew->maskSelf ) continue; 4555 4556 /* Do not allow the upper bound of a LIKE optimization range constraint 4557 ** to mix with a lower range bound from some other source */ 4558 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; 4559 4560 pNew->wsFlags = saved_wsFlags; 4561 pNew->u.btree.nEq = saved_nEq; 4562 pNew->nLTerm = saved_nLTerm; 4563 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 4564 pNew->aLTerm[pNew->nLTerm++] = pTerm; 4565 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; 4566 4567 assert( nInMul==0 4568 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 4569 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 4570 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 4571 ); 4572 4573 if( eOp & WO_IN ){ 4574 Expr *pExpr = pTerm->pExpr; 4575 pNew->wsFlags |= WHERE_COLUMN_IN; 4576 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 4577 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ 4578 nIn = 46; assert( 46==sqlite3LogEst(25) ); 4579 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ 4580 /* "x IN (value, value, ...)" */ 4581 nIn = sqlite3LogEst(pExpr->x.pList->nExpr); 4582 } 4583 assert( nIn>0 ); /* RHS always has 2 or more terms... The parser 4584 ** changes "x IN (?)" into "x=?". */ 4585 4586 }else if( eOp & (WO_EQ) ){ 4587 pNew->wsFlags |= WHERE_COLUMN_EQ; 4588 if( iCol<0 || (nInMul==0 && pNew->u.btree.nEq==pProbe->nKeyCol-1) ){ 4589 if( iCol>=0 && !IsUniqueIndex(pProbe) ){ 4590 pNew->wsFlags |= WHERE_UNQ_WANTED; 4591 }else{ 4592 pNew->wsFlags |= WHERE_ONEROW; 4593 } 4594 } 4595 }else if( eOp & WO_ISNULL ){ 4596 pNew->wsFlags |= WHERE_COLUMN_NULL; 4597 }else if( eOp & (WO_GT|WO_GE) ){ 4598 testcase( eOp & WO_GT ); 4599 testcase( eOp & WO_GE ); 4600 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; 4601 pBtm = pTerm; 4602 pTop = 0; 4603 if( pTerm->wtFlags & TERM_LIKEOPT ){ 4604 /* Range contraints that come from the LIKE optimization are 4605 ** always used in pairs. */ 4606 pTop = &pTerm[1]; 4607 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm ); 4608 assert( pTop->wtFlags & TERM_LIKEOPT ); 4609 assert( pTop->eOperator==WO_LT ); 4610 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 4611 pNew->aLTerm[pNew->nLTerm++] = pTop; 4612 pNew->wsFlags |= WHERE_TOP_LIMIT; 4613 } 4614 }else{ 4615 assert( eOp & (WO_LT|WO_LE) ); 4616 testcase( eOp & WO_LT ); 4617 testcase( eOp & WO_LE ); 4618 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; 4619 pTop = pTerm; 4620 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? 4621 pNew->aLTerm[pNew->nLTerm-2] : 0; 4622 } 4623 4624 /* At this point pNew->nOut is set to the number of rows expected to 4625 ** be visited by the index scan before considering term pTerm, or the 4626 ** values of nIn and nInMul. In other words, assuming that all 4627 ** "x IN(...)" terms are replaced with "x = ?". This block updates 4628 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ 4629 assert( pNew->nOut==saved_nOut ); 4630 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 4631 /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4 4632 ** data, using some other estimate. */ 4633 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); 4634 }else{ 4635 int nEq = ++pNew->u.btree.nEq; 4636 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN) ); 4637 4638 assert( pNew->nOut==saved_nOut ); 4639 if( pTerm->truthProb<=0 && iCol>=0 ){ 4640 assert( (eOp & WO_IN) || nIn==0 ); 4641 testcase( eOp & WO_IN ); 4642 pNew->nOut += pTerm->truthProb; 4643 pNew->nOut -= nIn; 4644 }else{ 4645 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 4646 tRowcnt nOut = 0; 4647 if( nInMul==0 4648 && pProbe->nSample 4649 && pNew->u.btree.nEq<=pProbe->nSampleCol 4650 && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect)) 4651 ){ 4652 Expr *pExpr = pTerm->pExpr; 4653 if( (eOp & (WO_EQ|WO_ISNULL))!=0 ){ 4654 testcase( eOp & WO_EQ ); 4655 testcase( eOp & WO_ISNULL ); 4656 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); 4657 }else{ 4658 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); 4659 } 4660 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 4661 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ 4662 if( nOut ){ 4663 pNew->nOut = sqlite3LogEst(nOut); 4664 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; 4665 pNew->nOut -= nIn; 4666 } 4667 } 4668 if( nOut==0 ) 4669 #endif 4670 { 4671 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); 4672 if( eOp & WO_ISNULL ){ 4673 /* TUNING: If there is no likelihood() value, assume that a 4674 ** "col IS NULL" expression matches twice as many rows 4675 ** as (col=?). */ 4676 pNew->nOut += 10; 4677 } 4678 } 4679 } 4680 } 4681 4682 /* Set rCostIdx to the cost of visiting selected rows in index. Add 4683 ** it to pNew->rRun, which is currently set to the cost of the index 4684 ** seek only. Then, if this is a non-covering index, add the cost of 4685 ** visiting the rows in the main table. */ 4686 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; 4687 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); 4688 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ 4689 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); 4690 } 4691 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); 4692 4693 nOutUnadjusted = pNew->nOut; 4694 pNew->rRun += nInMul + nIn; 4695 pNew->nOut += nInMul + nIn; 4696 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); 4697 rc = whereLoopInsert(pBuilder, pNew); 4698 4699 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 4700 pNew->nOut = saved_nOut; 4701 }else{ 4702 pNew->nOut = nOutUnadjusted; 4703 } 4704 4705 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 4706 && pNew->u.btree.nEq<pProbe->nColumn 4707 ){ 4708 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); 4709 } 4710 pNew->nOut = saved_nOut; 4711 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 4712 pBuilder->nRecValid = nRecValid; 4713 #endif 4714 } 4715 pNew->prereq = saved_prereq; 4716 pNew->u.btree.nEq = saved_nEq; 4717 pNew->nSkip = saved_nSkip; 4718 pNew->wsFlags = saved_wsFlags; 4719 pNew->nOut = saved_nOut; 4720 pNew->nLTerm = saved_nLTerm; 4721 4722 /* Consider using a skip-scan if there are no WHERE clause constraints 4723 ** available for the left-most terms of the index, and if the average 4724 ** number of repeats in the left-most terms is at least 18. 4725 ** 4726 ** The magic number 18 is selected on the basis that scanning 17 rows 4727 ** is almost always quicker than an index seek (even though if the index 4728 ** contains fewer than 2^17 rows we assume otherwise in other parts of 4729 ** the code). And, even if it is not, it should not be too much slower. 4730 ** On the other hand, the extra seeks could end up being significantly 4731 ** more expensive. */ 4732 assert( 42==sqlite3LogEst(18) ); 4733 if( saved_nEq==saved_nSkip 4734 && saved_nEq+1<pProbe->nKeyCol 4735 && pProbe->noSkipScan==0 4736 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ 4737 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK 4738 ){ 4739 LogEst nIter; 4740 pNew->u.btree.nEq++; 4741 pNew->nSkip++; 4742 pNew->aLTerm[pNew->nLTerm++] = 0; 4743 pNew->wsFlags |= WHERE_SKIPSCAN; 4744 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; 4745 pNew->nOut -= nIter; 4746 /* TUNING: Because uncertainties in the estimates for skip-scan queries, 4747 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ 4748 nIter += 5; 4749 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); 4750 pNew->nOut = saved_nOut; 4751 pNew->u.btree.nEq = saved_nEq; 4752 pNew->nSkip = saved_nSkip; 4753 pNew->wsFlags = saved_wsFlags; 4754 } 4755 4756 return rc; 4757 } 4758 4759 /* 4760 ** Return True if it is possible that pIndex might be useful in 4761 ** implementing the ORDER BY clause in pBuilder. 4762 ** 4763 ** Return False if pBuilder does not contain an ORDER BY clause or 4764 ** if there is no way for pIndex to be useful in implementing that 4765 ** ORDER BY clause. 4766 */ 4767 static int indexMightHelpWithOrderBy( 4768 WhereLoopBuilder *pBuilder, 4769 Index *pIndex, 4770 int iCursor 4771 ){ 4772 ExprList *pOB; 4773 int ii, jj; 4774 4775 if( pIndex->bUnordered ) return 0; 4776 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; 4777 for(ii=0; ii<pOB->nExpr; ii++){ 4778 Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr); 4779 if( pExpr->op!=TK_COLUMN ) return 0; 4780 if( pExpr->iTable==iCursor ){ 4781 if( pExpr->iColumn<0 ) return 1; 4782 for(jj=0; jj<pIndex->nKeyCol; jj++){ 4783 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; 4784 } 4785 } 4786 } 4787 return 0; 4788 } 4789 4790 /* 4791 ** Return a bitmask where 1s indicate that the corresponding column of 4792 ** the table is used by an index. Only the first 63 columns are considered. 4793 */ 4794 static Bitmask columnsInIndex(Index *pIdx){ 4795 Bitmask m = 0; 4796 int j; 4797 for(j=pIdx->nColumn-1; j>=0; j--){ 4798 int x = pIdx->aiColumn[j]; 4799 if( x>=0 ){ 4800 testcase( x==BMS-1 ); 4801 testcase( x==BMS-2 ); 4802 if( x<BMS-1 ) m |= MASKBIT(x); 4803 } 4804 } 4805 return m; 4806 } 4807 4808 /* Check to see if a partial index with pPartIndexWhere can be used 4809 ** in the current query. Return true if it can be and false if not. 4810 */ 4811 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){ 4812 int i; 4813 WhereTerm *pTerm; 4814 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 4815 Expr *pExpr = pTerm->pExpr; 4816 if( sqlite3ExprImpliesExpr(pExpr, pWhere, iTab) 4817 && (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab) 4818 ){ 4819 return 1; 4820 } 4821 } 4822 return 0; 4823 } 4824 4825 /* 4826 ** Add all WhereLoop objects for a single table of the join where the table 4827 ** is idenfied by pBuilder->pNew->iTab. That table is guaranteed to be 4828 ** a b-tree table, not a virtual table. 4829 ** 4830 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function 4831 ** are calculated as follows: 4832 ** 4833 ** For a full scan, assuming the table (or index) contains nRow rows: 4834 ** 4835 ** cost = nRow * 3.0 // full-table scan 4836 ** cost = nRow * K // scan of covering index 4837 ** cost = nRow * (K+3.0) // scan of non-covering index 4838 ** 4839 ** where K is a value between 1.1 and 3.0 set based on the relative 4840 ** estimated average size of the index and table records. 4841 ** 4842 ** For an index scan, where nVisit is the number of index rows visited 4843 ** by the scan, and nSeek is the number of seek operations required on 4844 ** the index b-tree: 4845 ** 4846 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index 4847 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index 4848 ** 4849 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the 4850 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when 4851 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. 4852 ** 4853 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount 4854 ** of uncertainty. For this reason, scoring is designed to pick plans that 4855 ** "do the least harm" if the estimates are inaccurate. For example, a 4856 ** log(nRow) factor is omitted from a non-covering index scan in order to 4857 ** bias the scoring in favor of using an index, since the worst-case 4858 ** performance of using an index is far better than the worst-case performance 4859 ** of a full table scan. 4860 */ 4861 static int whereLoopAddBtree( 4862 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 4863 Bitmask mExtra /* Extra prerequesites for using this table */ 4864 ){ 4865 WhereInfo *pWInfo; /* WHERE analysis context */ 4866 Index *pProbe; /* An index we are evaluating */ 4867 Index sPk; /* A fake index object for the primary key */ 4868 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ 4869 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ 4870 SrcList *pTabList; /* The FROM clause */ 4871 struct SrcList_item *pSrc; /* The FROM clause btree term to add */ 4872 WhereLoop *pNew; /* Template WhereLoop object */ 4873 int rc = SQLITE_OK; /* Return code */ 4874 int iSortIdx = 1; /* Index number */ 4875 int b; /* A boolean value */ 4876 LogEst rSize; /* number of rows in the table */ 4877 LogEst rLogSize; /* Logarithm of the number of rows in the table */ 4878 WhereClause *pWC; /* The parsed WHERE clause */ 4879 Table *pTab; /* Table being queried */ 4880 4881 pNew = pBuilder->pNew; 4882 pWInfo = pBuilder->pWInfo; 4883 pTabList = pWInfo->pTabList; 4884 pSrc = pTabList->a + pNew->iTab; 4885 pTab = pSrc->pTab; 4886 pWC = pBuilder->pWC; 4887 assert( !IsVirtual(pSrc->pTab) ); 4888 4889 if( pSrc->pIndex ){ 4890 /* An INDEXED BY clause specifies a particular index to use */ 4891 pProbe = pSrc->pIndex; 4892 }else if( !HasRowid(pTab) ){ 4893 pProbe = pTab->pIndex; 4894 }else{ 4895 /* There is no INDEXED BY clause. Create a fake Index object in local 4896 ** variable sPk to represent the rowid primary key index. Make this 4897 ** fake index the first in a chain of Index objects with all of the real 4898 ** indices to follow */ 4899 Index *pFirst; /* First of real indices on the table */ 4900 memset(&sPk, 0, sizeof(Index)); 4901 sPk.nKeyCol = 1; 4902 sPk.nColumn = 1; 4903 sPk.aiColumn = &aiColumnPk; 4904 sPk.aiRowLogEst = aiRowEstPk; 4905 sPk.onError = OE_Replace; 4906 sPk.pTable = pTab; 4907 sPk.szIdxRow = pTab->szTabRow; 4908 aiRowEstPk[0] = pTab->nRowLogEst; 4909 aiRowEstPk[1] = 0; 4910 pFirst = pSrc->pTab->pIndex; 4911 if( pSrc->notIndexed==0 ){ 4912 /* The real indices of the table are only considered if the 4913 ** NOT INDEXED qualifier is omitted from the FROM clause */ 4914 sPk.pNext = pFirst; 4915 } 4916 pProbe = &sPk; 4917 } 4918 rSize = pTab->nRowLogEst; 4919 rLogSize = estLog(rSize); 4920 4921 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 4922 /* Automatic indexes */ 4923 if( !pBuilder->pOrSet 4924 && (pWInfo->wctrlFlags & WHERE_NO_AUTOINDEX)==0 4925 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 4926 && pSrc->pIndex==0 4927 && !pSrc->viaCoroutine 4928 && !pSrc->notIndexed 4929 && HasRowid(pTab) 4930 && !pSrc->isCorrelated 4931 && !pSrc->isRecursive 4932 ){ 4933 /* Generate auto-index WhereLoops */ 4934 WhereTerm *pTerm; 4935 WhereTerm *pWCEnd = pWC->a + pWC->nTerm; 4936 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ 4937 if( pTerm->prereqRight & pNew->maskSelf ) continue; 4938 if( termCanDriveIndex(pTerm, pSrc, 0) ){ 4939 pNew->u.btree.nEq = 1; 4940 pNew->nSkip = 0; 4941 pNew->u.btree.pIndex = 0; 4942 pNew->nLTerm = 1; 4943 pNew->aLTerm[0] = pTerm; 4944 /* TUNING: One-time cost for computing the automatic index is 4945 ** estimated to be X*N*log2(N) where N is the number of rows in 4946 ** the table being indexed and where X is 7 (LogEst=28) for normal 4947 ** tables or 1.375 (LogEst=4) for views and subqueries. The value 4948 ** of X is smaller for views and subqueries so that the query planner 4949 ** will be more aggressive about generating automatic indexes for 4950 ** those objects, since there is no opportunity to add schema 4951 ** indexes on subqueries and views. */ 4952 pNew->rSetup = rLogSize + rSize + 4; 4953 if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){ 4954 pNew->rSetup += 24; 4955 } 4956 ApplyCostMultiplier(pNew->rSetup, pTab->costMult); 4957 /* TUNING: Each index lookup yields 20 rows in the table. This 4958 ** is more than the usual guess of 10 rows, since we have no way 4959 ** of knowing how selective the index will ultimately be. It would 4960 ** not be unreasonable to make this value much larger. */ 4961 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); 4962 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); 4963 pNew->wsFlags = WHERE_AUTO_INDEX; 4964 pNew->prereq = mExtra | pTerm->prereqRight; 4965 rc = whereLoopInsert(pBuilder, pNew); 4966 } 4967 } 4968 } 4969 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 4970 4971 /* Loop over all indices 4972 */ 4973 for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){ 4974 if( pProbe->pPartIdxWhere!=0 4975 && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){ 4976 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ 4977 continue; /* Partial index inappropriate for this query */ 4978 } 4979 rSize = pProbe->aiRowLogEst[0]; 4980 pNew->u.btree.nEq = 0; 4981 pNew->nSkip = 0; 4982 pNew->nLTerm = 0; 4983 pNew->iSortIdx = 0; 4984 pNew->rSetup = 0; 4985 pNew->prereq = mExtra; 4986 pNew->nOut = rSize; 4987 pNew->u.btree.pIndex = pProbe; 4988 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); 4989 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ 4990 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); 4991 if( pProbe->tnum<=0 ){ 4992 /* Integer primary key index */ 4993 pNew->wsFlags = WHERE_IPK; 4994 4995 /* Full table scan */ 4996 pNew->iSortIdx = b ? iSortIdx : 0; 4997 /* TUNING: Cost of full table scan is (N*3.0). */ 4998 pNew->rRun = rSize + 16; 4999 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 5000 whereLoopOutputAdjust(pWC, pNew, rSize); 5001 rc = whereLoopInsert(pBuilder, pNew); 5002 pNew->nOut = rSize; 5003 if( rc ) break; 5004 }else{ 5005 Bitmask m; 5006 if( pProbe->isCovering ){ 5007 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; 5008 m = 0; 5009 }else{ 5010 m = pSrc->colUsed & ~columnsInIndex(pProbe); 5011 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; 5012 } 5013 5014 /* Full scan via index */ 5015 if( b 5016 || !HasRowid(pTab) 5017 || ( m==0 5018 && pProbe->bUnordered==0 5019 && (pProbe->szIdxRow<pTab->szTabRow) 5020 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 5021 && sqlite3GlobalConfig.bUseCis 5022 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) 5023 ) 5024 ){ 5025 pNew->iSortIdx = b ? iSortIdx : 0; 5026 5027 /* The cost of visiting the index rows is N*K, where K is 5028 ** between 1.1 and 3.0, depending on the relative sizes of the 5029 ** index and table rows. If this is a non-covering index scan, 5030 ** also add the cost of visiting table rows (N*3.0). */ 5031 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; 5032 if( m!=0 ){ 5033 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, rSize+16); 5034 } 5035 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 5036 whereLoopOutputAdjust(pWC, pNew, rSize); 5037 rc = whereLoopInsert(pBuilder, pNew); 5038 pNew->nOut = rSize; 5039 if( rc ) break; 5040 } 5041 } 5042 5043 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); 5044 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 5045 sqlite3Stat4ProbeFree(pBuilder->pRec); 5046 pBuilder->nRecValid = 0; 5047 pBuilder->pRec = 0; 5048 #endif 5049 5050 /* If there was an INDEXED BY clause, then only that one index is 5051 ** considered. */ 5052 if( pSrc->pIndex ) break; 5053 } 5054 return rc; 5055 } 5056 5057 #ifndef SQLITE_OMIT_VIRTUALTABLE 5058 /* 5059 ** Add all WhereLoop objects for a table of the join identified by 5060 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. 5061 */ 5062 static int whereLoopAddVirtual( 5063 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 5064 Bitmask mExtra 5065 ){ 5066 WhereInfo *pWInfo; /* WHERE analysis context */ 5067 Parse *pParse; /* The parsing context */ 5068 WhereClause *pWC; /* The WHERE clause */ 5069 struct SrcList_item *pSrc; /* The FROM clause term to search */ 5070 Table *pTab; 5071 sqlite3 *db; 5072 sqlite3_index_info *pIdxInfo; 5073 struct sqlite3_index_constraint *pIdxCons; 5074 struct sqlite3_index_constraint_usage *pUsage; 5075 WhereTerm *pTerm; 5076 int i, j; 5077 int iTerm, mxTerm; 5078 int nConstraint; 5079 int seenIn = 0; /* True if an IN operator is seen */ 5080 int seenVar = 0; /* True if a non-constant constraint is seen */ 5081 int iPhase; /* 0: const w/o IN, 1: const, 2: no IN, 2: IN */ 5082 WhereLoop *pNew; 5083 int rc = SQLITE_OK; 5084 5085 pWInfo = pBuilder->pWInfo; 5086 pParse = pWInfo->pParse; 5087 db = pParse->db; 5088 pWC = pBuilder->pWC; 5089 pNew = pBuilder->pNew; 5090 pSrc = &pWInfo->pTabList->a[pNew->iTab]; 5091 pTab = pSrc->pTab; 5092 assert( IsVirtual(pTab) ); 5093 pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pBuilder->pOrderBy); 5094 if( pIdxInfo==0 ) return SQLITE_NOMEM; 5095 pNew->prereq = 0; 5096 pNew->rSetup = 0; 5097 pNew->wsFlags = WHERE_VIRTUALTABLE; 5098 pNew->nLTerm = 0; 5099 pNew->u.vtab.needFree = 0; 5100 pUsage = pIdxInfo->aConstraintUsage; 5101 nConstraint = pIdxInfo->nConstraint; 5102 if( whereLoopResize(db, pNew, nConstraint) ){ 5103 sqlite3DbFree(db, pIdxInfo); 5104 return SQLITE_NOMEM; 5105 } 5106 5107 for(iPhase=0; iPhase<=3; iPhase++){ 5108 if( !seenIn && (iPhase&1)!=0 ){ 5109 iPhase++; 5110 if( iPhase>3 ) break; 5111 } 5112 if( !seenVar && iPhase>1 ) break; 5113 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 5114 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ 5115 j = pIdxCons->iTermOffset; 5116 pTerm = &pWC->a[j]; 5117 switch( iPhase ){ 5118 case 0: /* Constants without IN operator */ 5119 pIdxCons->usable = 0; 5120 if( (pTerm->eOperator & WO_IN)!=0 ){ 5121 seenIn = 1; 5122 } 5123 if( pTerm->prereqRight!=0 ){ 5124 seenVar = 1; 5125 }else if( (pTerm->eOperator & WO_IN)==0 ){ 5126 pIdxCons->usable = 1; 5127 } 5128 break; 5129 case 1: /* Constants with IN operators */ 5130 assert( seenIn ); 5131 pIdxCons->usable = (pTerm->prereqRight==0); 5132 break; 5133 case 2: /* Variables without IN */ 5134 assert( seenVar ); 5135 pIdxCons->usable = (pTerm->eOperator & WO_IN)==0; 5136 break; 5137 default: /* Variables with IN */ 5138 assert( seenVar && seenIn ); 5139 pIdxCons->usable = 1; 5140 break; 5141 } 5142 } 5143 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); 5144 if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr); 5145 pIdxInfo->idxStr = 0; 5146 pIdxInfo->idxNum = 0; 5147 pIdxInfo->needToFreeIdxStr = 0; 5148 pIdxInfo->orderByConsumed = 0; 5149 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; 5150 pIdxInfo->estimatedRows = 25; 5151 rc = vtabBestIndex(pParse, pTab, pIdxInfo); 5152 if( rc ) goto whereLoopAddVtab_exit; 5153 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 5154 pNew->prereq = mExtra; 5155 mxTerm = -1; 5156 assert( pNew->nLSlot>=nConstraint ); 5157 for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0; 5158 pNew->u.vtab.omitMask = 0; 5159 for(i=0; i<nConstraint; i++, pIdxCons++){ 5160 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ 5161 j = pIdxCons->iTermOffset; 5162 if( iTerm>=nConstraint 5163 || j<0 5164 || j>=pWC->nTerm 5165 || pNew->aLTerm[iTerm]!=0 5166 ){ 5167 rc = SQLITE_ERROR; 5168 sqlite3ErrorMsg(pParse, "%s.xBestIndex() malfunction", pTab->zName); 5169 goto whereLoopAddVtab_exit; 5170 } 5171 testcase( iTerm==nConstraint-1 ); 5172 testcase( j==0 ); 5173 testcase( j==pWC->nTerm-1 ); 5174 pTerm = &pWC->a[j]; 5175 pNew->prereq |= pTerm->prereqRight; 5176 assert( iTerm<pNew->nLSlot ); 5177 pNew->aLTerm[iTerm] = pTerm; 5178 if( iTerm>mxTerm ) mxTerm = iTerm; 5179 testcase( iTerm==15 ); 5180 testcase( iTerm==16 ); 5181 if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm; 5182 if( (pTerm->eOperator & WO_IN)!=0 ){ 5183 if( pUsage[i].omit==0 ){ 5184 /* Do not attempt to use an IN constraint if the virtual table 5185 ** says that the equivalent EQ constraint cannot be safely omitted. 5186 ** If we do attempt to use such a constraint, some rows might be 5187 ** repeated in the output. */ 5188 break; 5189 } 5190 /* A virtual table that is constrained by an IN clause may not 5191 ** consume the ORDER BY clause because (1) the order of IN terms 5192 ** is not necessarily related to the order of output terms and 5193 ** (2) Multiple outputs from a single IN value will not merge 5194 ** together. */ 5195 pIdxInfo->orderByConsumed = 0; 5196 } 5197 } 5198 } 5199 if( i>=nConstraint ){ 5200 pNew->nLTerm = mxTerm+1; 5201 assert( pNew->nLTerm<=pNew->nLSlot ); 5202 pNew->u.vtab.idxNum = pIdxInfo->idxNum; 5203 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; 5204 pIdxInfo->needToFreeIdxStr = 0; 5205 pNew->u.vtab.idxStr = pIdxInfo->idxStr; 5206 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? 5207 pIdxInfo->nOrderBy : 0); 5208 pNew->rSetup = 0; 5209 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); 5210 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); 5211 whereLoopInsert(pBuilder, pNew); 5212 if( pNew->u.vtab.needFree ){ 5213 sqlite3_free(pNew->u.vtab.idxStr); 5214 pNew->u.vtab.needFree = 0; 5215 } 5216 } 5217 } 5218 5219 whereLoopAddVtab_exit: 5220 if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr); 5221 sqlite3DbFree(db, pIdxInfo); 5222 return rc; 5223 } 5224 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 5225 5226 /* 5227 ** Add WhereLoop entries to handle OR terms. This works for either 5228 ** btrees or virtual tables. 5229 */ 5230 static int whereLoopAddOr(WhereLoopBuilder *pBuilder, Bitmask mExtra){ 5231 WhereInfo *pWInfo = pBuilder->pWInfo; 5232 WhereClause *pWC; 5233 WhereLoop *pNew; 5234 WhereTerm *pTerm, *pWCEnd; 5235 int rc = SQLITE_OK; 5236 int iCur; 5237 WhereClause tempWC; 5238 WhereLoopBuilder sSubBuild; 5239 WhereOrSet sSum, sCur; 5240 struct SrcList_item *pItem; 5241 5242 pWC = pBuilder->pWC; 5243 pWCEnd = pWC->a + pWC->nTerm; 5244 pNew = pBuilder->pNew; 5245 memset(&sSum, 0, sizeof(sSum)); 5246 pItem = pWInfo->pTabList->a + pNew->iTab; 5247 iCur = pItem->iCursor; 5248 5249 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ 5250 if( (pTerm->eOperator & WO_OR)!=0 5251 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 5252 ){ 5253 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; 5254 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; 5255 WhereTerm *pOrTerm; 5256 int once = 1; 5257 int i, j; 5258 5259 sSubBuild = *pBuilder; 5260 sSubBuild.pOrderBy = 0; 5261 sSubBuild.pOrSet = &sCur; 5262 5263 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); 5264 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ 5265 if( (pOrTerm->eOperator & WO_AND)!=0 ){ 5266 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; 5267 }else if( pOrTerm->leftCursor==iCur ){ 5268 tempWC.pWInfo = pWC->pWInfo; 5269 tempWC.pOuter = pWC; 5270 tempWC.op = TK_AND; 5271 tempWC.nTerm = 1; 5272 tempWC.a = pOrTerm; 5273 sSubBuild.pWC = &tempWC; 5274 }else{ 5275 continue; 5276 } 5277 sCur.n = 0; 5278 #ifdef WHERETRACE_ENABLED 5279 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", 5280 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); 5281 if( sqlite3WhereTrace & 0x400 ){ 5282 for(i=0; i<sSubBuild.pWC->nTerm; i++){ 5283 whereTermPrint(&sSubBuild.pWC->a[i], i); 5284 } 5285 } 5286 #endif 5287 #ifndef SQLITE_OMIT_VIRTUALTABLE 5288 if( IsVirtual(pItem->pTab) ){ 5289 rc = whereLoopAddVirtual(&sSubBuild, mExtra); 5290 }else 5291 #endif 5292 { 5293 rc = whereLoopAddBtree(&sSubBuild, mExtra); 5294 } 5295 if( rc==SQLITE_OK ){ 5296 rc = whereLoopAddOr(&sSubBuild, mExtra); 5297 } 5298 assert( rc==SQLITE_OK || sCur.n==0 ); 5299 if( sCur.n==0 ){ 5300 sSum.n = 0; 5301 break; 5302 }else if( once ){ 5303 whereOrMove(&sSum, &sCur); 5304 once = 0; 5305 }else{ 5306 WhereOrSet sPrev; 5307 whereOrMove(&sPrev, &sSum); 5308 sSum.n = 0; 5309 for(i=0; i<sPrev.n; i++){ 5310 for(j=0; j<sCur.n; j++){ 5311 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, 5312 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), 5313 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); 5314 } 5315 } 5316 } 5317 } 5318 pNew->nLTerm = 1; 5319 pNew->aLTerm[0] = pTerm; 5320 pNew->wsFlags = WHERE_MULTI_OR; 5321 pNew->rSetup = 0; 5322 pNew->iSortIdx = 0; 5323 memset(&pNew->u, 0, sizeof(pNew->u)); 5324 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ 5325 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs 5326 ** of all sub-scans required by the OR-scan. However, due to rounding 5327 ** errors, it may be that the cost of the OR-scan is equal to its 5328 ** most expensive sub-scan. Add the smallest possible penalty 5329 ** (equivalent to multiplying the cost by 1.07) to ensure that 5330 ** this does not happen. Otherwise, for WHERE clauses such as the 5331 ** following where there is an index on "y": 5332 ** 5333 ** WHERE likelihood(x=?, 0.99) OR y=? 5334 ** 5335 ** the planner may elect to "OR" together a full-table scan and an 5336 ** index lookup. And other similarly odd results. */ 5337 pNew->rRun = sSum.a[i].rRun + 1; 5338 pNew->nOut = sSum.a[i].nOut; 5339 pNew->prereq = sSum.a[i].prereq; 5340 rc = whereLoopInsert(pBuilder, pNew); 5341 } 5342 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); 5343 } 5344 } 5345 return rc; 5346 } 5347 5348 /* 5349 ** Add all WhereLoop objects for all tables 5350 */ 5351 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ 5352 WhereInfo *pWInfo = pBuilder->pWInfo; 5353 Bitmask mExtra = 0; 5354 Bitmask mPrior = 0; 5355 int iTab; 5356 SrcList *pTabList = pWInfo->pTabList; 5357 struct SrcList_item *pItem; 5358 sqlite3 *db = pWInfo->pParse->db; 5359 int nTabList = pWInfo->nLevel; 5360 int rc = SQLITE_OK; 5361 u8 priorJoinType = 0; 5362 WhereLoop *pNew; 5363 5364 /* Loop over the tables in the join, from left to right */ 5365 pNew = pBuilder->pNew; 5366 whereLoopInit(pNew); 5367 for(iTab=0, pItem=pTabList->a; iTab<nTabList; iTab++, pItem++){ 5368 pNew->iTab = iTab; 5369 pNew->maskSelf = getMask(&pWInfo->sMaskSet, pItem->iCursor); 5370 if( ((pItem->jointype|priorJoinType) & (JT_LEFT|JT_CROSS))!=0 ){ 5371 mExtra = mPrior; 5372 } 5373 priorJoinType = pItem->jointype; 5374 if( IsVirtual(pItem->pTab) ){ 5375 rc = whereLoopAddVirtual(pBuilder, mExtra); 5376 }else{ 5377 rc = whereLoopAddBtree(pBuilder, mExtra); 5378 } 5379 if( rc==SQLITE_OK ){ 5380 rc = whereLoopAddOr(pBuilder, mExtra); 5381 } 5382 mPrior |= pNew->maskSelf; 5383 if( rc || db->mallocFailed ) break; 5384 } 5385 whereLoopClear(db, pNew); 5386 return rc; 5387 } 5388 5389 /* 5390 ** Examine a WherePath (with the addition of the extra WhereLoop of the 5th 5391 ** parameters) to see if it outputs rows in the requested ORDER BY 5392 ** (or GROUP BY) without requiring a separate sort operation. Return N: 5393 ** 5394 ** N>0: N terms of the ORDER BY clause are satisfied 5395 ** N==0: No terms of the ORDER BY clause are satisfied 5396 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. 5397 ** 5398 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as 5399 ** strict. With GROUP BY and DISTINCT the only requirement is that 5400 ** equivalent rows appear immediately adjacent to one another. GROUP BY 5401 ** and DISTINCT do not require rows to appear in any particular order as long 5402 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT 5403 ** the pOrderBy terms can be matched in any order. With ORDER BY, the 5404 ** pOrderBy terms must be matched in strict left-to-right order. 5405 */ 5406 static i8 wherePathSatisfiesOrderBy( 5407 WhereInfo *pWInfo, /* The WHERE clause */ 5408 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ 5409 WherePath *pPath, /* The WherePath to check */ 5410 u16 wctrlFlags, /* Might contain WHERE_GROUPBY or WHERE_DISTINCTBY */ 5411 u16 nLoop, /* Number of entries in pPath->aLoop[] */ 5412 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ 5413 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ 5414 ){ 5415 u8 revSet; /* True if rev is known */ 5416 u8 rev; /* Composite sort order */ 5417 u8 revIdx; /* Index sort order */ 5418 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ 5419 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ 5420 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ 5421 u16 nKeyCol; /* Number of key columns in pIndex */ 5422 u16 nColumn; /* Total number of ordered columns in the index */ 5423 u16 nOrderBy; /* Number terms in the ORDER BY clause */ 5424 int iLoop; /* Index of WhereLoop in pPath being processed */ 5425 int i, j; /* Loop counters */ 5426 int iCur; /* Cursor number for current WhereLoop */ 5427 int iColumn; /* A column number within table iCur */ 5428 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ 5429 WhereTerm *pTerm; /* A single term of the WHERE clause */ 5430 Expr *pOBExpr; /* An expression from the ORDER BY clause */ 5431 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ 5432 Index *pIndex; /* The index associated with pLoop */ 5433 sqlite3 *db = pWInfo->pParse->db; /* Database connection */ 5434 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ 5435 Bitmask obDone; /* Mask of all ORDER BY terms */ 5436 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ 5437 Bitmask ready; /* Mask of inner loops */ 5438 5439 /* 5440 ** We say the WhereLoop is "one-row" if it generates no more than one 5441 ** row of output. A WhereLoop is one-row if all of the following are true: 5442 ** (a) All index columns match with WHERE_COLUMN_EQ. 5443 ** (b) The index is unique 5444 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. 5445 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. 5446 ** 5447 ** We say the WhereLoop is "order-distinct" if the set of columns from 5448 ** that WhereLoop that are in the ORDER BY clause are different for every 5449 ** row of the WhereLoop. Every one-row WhereLoop is automatically 5450 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause 5451 ** is not order-distinct. To be order-distinct is not quite the same as being 5452 ** UNIQUE since a UNIQUE column or index can have multiple rows that 5453 ** are NULL and NULL values are equivalent for the purpose of order-distinct. 5454 ** To be order-distinct, the columns must be UNIQUE and NOT NULL. 5455 ** 5456 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the 5457 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is 5458 ** automatically order-distinct. 5459 */ 5460 5461 assert( pOrderBy!=0 ); 5462 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; 5463 5464 nOrderBy = pOrderBy->nExpr; 5465 testcase( nOrderBy==BMS-1 ); 5466 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ 5467 isOrderDistinct = 1; 5468 obDone = MASKBIT(nOrderBy)-1; 5469 orderDistinctMask = 0; 5470 ready = 0; 5471 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ 5472 if( iLoop>0 ) ready |= pLoop->maskSelf; 5473 pLoop = iLoop<nLoop ? pPath->aLoop[iLoop] : pLast; 5474 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ 5475 if( pLoop->u.vtab.isOrdered ) obSat = obDone; 5476 break; 5477 } 5478 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; 5479 5480 /* Mark off any ORDER BY term X that is a column in the table of 5481 ** the current loop for which there is term in the WHERE 5482 ** clause of the form X IS NULL or X=? that reference only outer 5483 ** loops. 5484 */ 5485 for(i=0; i<nOrderBy; i++){ 5486 if( MASKBIT(i) & obSat ) continue; 5487 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); 5488 if( pOBExpr->op!=TK_COLUMN ) continue; 5489 if( pOBExpr->iTable!=iCur ) continue; 5490 pTerm = findTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, 5491 ~ready, WO_EQ|WO_ISNULL, 0); 5492 if( pTerm==0 ) continue; 5493 if( (pTerm->eOperator&WO_EQ)!=0 && pOBExpr->iColumn>=0 ){ 5494 const char *z1, *z2; 5495 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 5496 if( !pColl ) pColl = db->pDfltColl; 5497 z1 = pColl->zName; 5498 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pTerm->pExpr); 5499 if( !pColl ) pColl = db->pDfltColl; 5500 z2 = pColl->zName; 5501 if( sqlite3StrICmp(z1, z2)!=0 ) continue; 5502 } 5503 obSat |= MASKBIT(i); 5504 } 5505 5506 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ 5507 if( pLoop->wsFlags & WHERE_IPK ){ 5508 pIndex = 0; 5509 nKeyCol = 0; 5510 nColumn = 1; 5511 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ 5512 return 0; 5513 }else{ 5514 nKeyCol = pIndex->nKeyCol; 5515 nColumn = pIndex->nColumn; 5516 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); 5517 assert( pIndex->aiColumn[nColumn-1]==(-1) || !HasRowid(pIndex->pTable)); 5518 isOrderDistinct = IsUniqueIndex(pIndex); 5519 } 5520 5521 /* Loop through all columns of the index and deal with the ones 5522 ** that are not constrained by == or IN. 5523 */ 5524 rev = revSet = 0; 5525 distinctColumns = 0; 5526 for(j=0; j<nColumn; j++){ 5527 u8 bOnce; /* True to run the ORDER BY search loop */ 5528 5529 /* Skip over == and IS NULL terms */ 5530 if( j<pLoop->u.btree.nEq 5531 && pLoop->nSkip==0 5532 && ((i = pLoop->aLTerm[j]->eOperator) & (WO_EQ|WO_ISNULL))!=0 5533 ){ 5534 if( i & WO_ISNULL ){ 5535 testcase( isOrderDistinct ); 5536 isOrderDistinct = 0; 5537 } 5538 continue; 5539 } 5540 5541 /* Get the column number in the table (iColumn) and sort order 5542 ** (revIdx) for the j-th column of the index. 5543 */ 5544 if( pIndex ){ 5545 iColumn = pIndex->aiColumn[j]; 5546 revIdx = pIndex->aSortOrder[j]; 5547 if( iColumn==pIndex->pTable->iPKey ) iColumn = -1; 5548 }else{ 5549 iColumn = -1; 5550 revIdx = 0; 5551 } 5552 5553 /* An unconstrained column that might be NULL means that this 5554 ** WhereLoop is not well-ordered 5555 */ 5556 if( isOrderDistinct 5557 && iColumn>=0 5558 && j>=pLoop->u.btree.nEq 5559 && pIndex->pTable->aCol[iColumn].notNull==0 5560 ){ 5561 isOrderDistinct = 0; 5562 } 5563 5564 /* Find the ORDER BY term that corresponds to the j-th column 5565 ** of the index and mark that ORDER BY term off 5566 */ 5567 bOnce = 1; 5568 isMatch = 0; 5569 for(i=0; bOnce && i<nOrderBy; i++){ 5570 if( MASKBIT(i) & obSat ) continue; 5571 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); 5572 testcase( wctrlFlags & WHERE_GROUPBY ); 5573 testcase( wctrlFlags & WHERE_DISTINCTBY ); 5574 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; 5575 if( pOBExpr->op!=TK_COLUMN ) continue; 5576 if( pOBExpr->iTable!=iCur ) continue; 5577 if( pOBExpr->iColumn!=iColumn ) continue; 5578 if( iColumn>=0 ){ 5579 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 5580 if( !pColl ) pColl = db->pDfltColl; 5581 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; 5582 } 5583 isMatch = 1; 5584 break; 5585 } 5586 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ 5587 /* Make sure the sort order is compatible in an ORDER BY clause. 5588 ** Sort order is irrelevant for a GROUP BY clause. */ 5589 if( revSet ){ 5590 if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0; 5591 }else{ 5592 rev = revIdx ^ pOrderBy->a[i].sortOrder; 5593 if( rev ) *pRevMask |= MASKBIT(iLoop); 5594 revSet = 1; 5595 } 5596 } 5597 if( isMatch ){ 5598 if( iColumn<0 ){ 5599 testcase( distinctColumns==0 ); 5600 distinctColumns = 1; 5601 } 5602 obSat |= MASKBIT(i); 5603 }else{ 5604 /* No match found */ 5605 if( j==0 || j<nKeyCol ){ 5606 testcase( isOrderDistinct!=0 ); 5607 isOrderDistinct = 0; 5608 } 5609 break; 5610 } 5611 } /* end Loop over all index columns */ 5612 if( distinctColumns ){ 5613 testcase( isOrderDistinct==0 ); 5614 isOrderDistinct = 1; 5615 } 5616 } /* end-if not one-row */ 5617 5618 /* Mark off any other ORDER BY terms that reference pLoop */ 5619 if( isOrderDistinct ){ 5620 orderDistinctMask |= pLoop->maskSelf; 5621 for(i=0; i<nOrderBy; i++){ 5622 Expr *p; 5623 Bitmask mTerm; 5624 if( MASKBIT(i) & obSat ) continue; 5625 p = pOrderBy->a[i].pExpr; 5626 mTerm = exprTableUsage(&pWInfo->sMaskSet,p); 5627 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; 5628 if( (mTerm&~orderDistinctMask)==0 ){ 5629 obSat |= MASKBIT(i); 5630 } 5631 } 5632 } 5633 } /* End the loop over all WhereLoops from outer-most down to inner-most */ 5634 if( obSat==obDone ) return (i8)nOrderBy; 5635 if( !isOrderDistinct ){ 5636 for(i=nOrderBy-1; i>0; i--){ 5637 Bitmask m = MASKBIT(i) - 1; 5638 if( (obSat&m)==m ) return i; 5639 } 5640 return 0; 5641 } 5642 return -1; 5643 } 5644 5645 5646 /* 5647 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), 5648 ** the planner assumes that the specified pOrderBy list is actually a GROUP 5649 ** BY clause - and so any order that groups rows as required satisfies the 5650 ** request. 5651 ** 5652 ** Normally, in this case it is not possible for the caller to determine 5653 ** whether or not the rows are really being delivered in sorted order, or 5654 ** just in some other order that provides the required grouping. However, 5655 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then 5656 ** this function may be called on the returned WhereInfo object. It returns 5657 ** true if the rows really will be sorted in the specified order, or false 5658 ** otherwise. 5659 ** 5660 ** For example, assuming: 5661 ** 5662 ** CREATE INDEX i1 ON t1(x, Y); 5663 ** 5664 ** then 5665 ** 5666 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 5667 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 5668 */ 5669 int sqlite3WhereIsSorted(WhereInfo *pWInfo){ 5670 assert( pWInfo->wctrlFlags & WHERE_GROUPBY ); 5671 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); 5672 return pWInfo->sorted; 5673 } 5674 5675 #ifdef WHERETRACE_ENABLED 5676 /* For debugging use only: */ 5677 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ 5678 static char zName[65]; 5679 int i; 5680 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } 5681 if( pLast ) zName[i++] = pLast->cId; 5682 zName[i] = 0; 5683 return zName; 5684 } 5685 #endif 5686 5687 /* 5688 ** Return the cost of sorting nRow rows, assuming that the keys have 5689 ** nOrderby columns and that the first nSorted columns are already in 5690 ** order. 5691 */ 5692 static LogEst whereSortingCost( 5693 WhereInfo *pWInfo, 5694 LogEst nRow, 5695 int nOrderBy, 5696 int nSorted 5697 ){ 5698 /* TUNING: Estimated cost of a full external sort, where N is 5699 ** the number of rows to sort is: 5700 ** 5701 ** cost = (3.0 * N * log(N)). 5702 ** 5703 ** Or, if the order-by clause has X terms but only the last Y 5704 ** terms are out of order, then block-sorting will reduce the 5705 ** sorting cost to: 5706 ** 5707 ** cost = (3.0 * N * log(N)) * (Y/X) 5708 ** 5709 ** The (Y/X) term is implemented using stack variable rScale 5710 ** below. */ 5711 LogEst rScale, rSortCost; 5712 assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); 5713 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; 5714 rSortCost = nRow + estLog(nRow) + rScale + 16; 5715 5716 /* TUNING: The cost of implementing DISTINCT using a B-TREE is 5717 ** similar but with a larger constant of proportionality. 5718 ** Multiply by an additional factor of 3.0. */ 5719 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ 5720 rSortCost += 16; 5721 } 5722 5723 return rSortCost; 5724 } 5725 5726 /* 5727 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine 5728 ** attempts to find the lowest cost path that visits each WhereLoop 5729 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. 5730 ** 5731 ** Assume that the total number of output rows that will need to be sorted 5732 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting 5733 ** costs if nRowEst==0. 5734 ** 5735 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation 5736 ** error occurs. 5737 */ 5738 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ 5739 int mxChoice; /* Maximum number of simultaneous paths tracked */ 5740 int nLoop; /* Number of terms in the join */ 5741 Parse *pParse; /* Parsing context */ 5742 sqlite3 *db; /* The database connection */ 5743 int iLoop; /* Loop counter over the terms of the join */ 5744 int ii, jj; /* Loop counters */ 5745 int mxI = 0; /* Index of next entry to replace */ 5746 int nOrderBy; /* Number of ORDER BY clause terms */ 5747 LogEst mxCost = 0; /* Maximum cost of a set of paths */ 5748 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ 5749 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ 5750 WherePath *aFrom; /* All nFrom paths at the previous level */ 5751 WherePath *aTo; /* The nTo best paths at the current level */ 5752 WherePath *pFrom; /* An element of aFrom[] that we are working on */ 5753 WherePath *pTo; /* An element of aTo[] that we are working on */ 5754 WhereLoop *pWLoop; /* One of the WhereLoop objects */ 5755 WhereLoop **pX; /* Used to divy up the pSpace memory */ 5756 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ 5757 char *pSpace; /* Temporary memory used by this routine */ 5758 int nSpace; /* Bytes of space allocated at pSpace */ 5759 5760 pParse = pWInfo->pParse; 5761 db = pParse->db; 5762 nLoop = pWInfo->nLevel; 5763 /* TUNING: For simple queries, only the best path is tracked. 5764 ** For 2-way joins, the 5 best paths are followed. 5765 ** For joins of 3 or more tables, track the 10 best paths */ 5766 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); 5767 assert( nLoop<=pWInfo->pTabList->nSrc ); 5768 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); 5769 5770 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this 5771 ** case the purpose of this call is to estimate the number of rows returned 5772 ** by the overall query. Once this estimate has been obtained, the caller 5773 ** will invoke this function a second time, passing the estimate as the 5774 ** nRowEst parameter. */ 5775 if( pWInfo->pOrderBy==0 || nRowEst==0 ){ 5776 nOrderBy = 0; 5777 }else{ 5778 nOrderBy = pWInfo->pOrderBy->nExpr; 5779 } 5780 5781 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ 5782 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; 5783 nSpace += sizeof(LogEst) * nOrderBy; 5784 pSpace = sqlite3DbMallocRaw(db, nSpace); 5785 if( pSpace==0 ) return SQLITE_NOMEM; 5786 aTo = (WherePath*)pSpace; 5787 aFrom = aTo+mxChoice; 5788 memset(aFrom, 0, sizeof(aFrom[0])); 5789 pX = (WhereLoop**)(aFrom+mxChoice); 5790 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ 5791 pFrom->aLoop = pX; 5792 } 5793 if( nOrderBy ){ 5794 /* If there is an ORDER BY clause and it is not being ignored, set up 5795 ** space for the aSortCost[] array. Each element of the aSortCost array 5796 ** is either zero - meaning it has not yet been initialized - or the 5797 ** cost of sorting nRowEst rows of data where the first X terms of 5798 ** the ORDER BY clause are already in order, where X is the array 5799 ** index. */ 5800 aSortCost = (LogEst*)pX; 5801 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); 5802 } 5803 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); 5804 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); 5805 5806 /* Seed the search with a single WherePath containing zero WhereLoops. 5807 ** 5808 ** TUNING: Do not let the number of iterations go above 25. If the cost 5809 ** of computing an automatic index is not paid back within the first 25 5810 ** rows, then do not use the automatic index. */ 5811 aFrom[0].nRow = MIN(pParse->nQueryLoop, 46); assert( 46==sqlite3LogEst(25) ); 5812 nFrom = 1; 5813 assert( aFrom[0].isOrdered==0 ); 5814 if( nOrderBy ){ 5815 /* If nLoop is zero, then there are no FROM terms in the query. Since 5816 ** in this case the query may return a maximum of one row, the results 5817 ** are already in the requested order. Set isOrdered to nOrderBy to 5818 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to 5819 ** -1, indicating that the result set may or may not be ordered, 5820 ** depending on the loops added to the current plan. */ 5821 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; 5822 } 5823 5824 /* Compute successively longer WherePaths using the previous generation 5825 ** of WherePaths as the basis for the next. Keep track of the mxChoice 5826 ** best paths at each generation */ 5827 for(iLoop=0; iLoop<nLoop; iLoop++){ 5828 nTo = 0; 5829 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ 5830 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ 5831 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ 5832 LogEst rCost; /* Cost of path (pFrom+pWLoop) */ 5833 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ 5834 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */ 5835 Bitmask maskNew; /* Mask of src visited by (..) */ 5836 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */ 5837 5838 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; 5839 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; 5840 /* At this point, pWLoop is a candidate to be the next loop. 5841 ** Compute its cost */ 5842 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); 5843 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); 5844 nOut = pFrom->nRow + pWLoop->nOut; 5845 maskNew = pFrom->maskLoop | pWLoop->maskSelf; 5846 if( isOrdered<0 ){ 5847 isOrdered = wherePathSatisfiesOrderBy(pWInfo, 5848 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, 5849 iLoop, pWLoop, &revMask); 5850 }else{ 5851 revMask = pFrom->revLoop; 5852 } 5853 if( isOrdered>=0 && isOrdered<nOrderBy ){ 5854 if( aSortCost[isOrdered]==0 ){ 5855 aSortCost[isOrdered] = whereSortingCost( 5856 pWInfo, nRowEst, nOrderBy, isOrdered 5857 ); 5858 } 5859 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]); 5860 5861 WHERETRACE(0x002, 5862 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", 5863 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, 5864 rUnsorted, rCost)); 5865 }else{ 5866 rCost = rUnsorted; 5867 } 5868 5869 /* Check to see if pWLoop should be added to the set of 5870 ** mxChoice best-so-far paths. 5871 ** 5872 ** First look for an existing path among best-so-far paths 5873 ** that covers the same set of loops and has the same isOrdered 5874 ** setting as the current path candidate. 5875 ** 5876 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent 5877 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range 5878 ** of legal values for isOrdered, -1..64. 5879 */ 5880 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ 5881 if( pTo->maskLoop==maskNew 5882 && ((pTo->isOrdered^isOrdered)&0x80)==0 5883 ){ 5884 testcase( jj==nTo-1 ); 5885 break; 5886 } 5887 } 5888 if( jj>=nTo ){ 5889 /* None of the existing best-so-far paths match the candidate. */ 5890 if( nTo>=mxChoice 5891 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) 5892 ){ 5893 /* The current candidate is no better than any of the mxChoice 5894 ** paths currently in the best-so-far buffer. So discard 5895 ** this candidate as not viable. */ 5896 #ifdef WHERETRACE_ENABLED /* 0x4 */ 5897 if( sqlite3WhereTrace&0x4 ){ 5898 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d order=%c\n", 5899 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 5900 isOrdered>=0 ? isOrdered+'0' : '?'); 5901 } 5902 #endif 5903 continue; 5904 } 5905 /* If we reach this points it means that the new candidate path 5906 ** needs to be added to the set of best-so-far paths. */ 5907 if( nTo<mxChoice ){ 5908 /* Increase the size of the aTo set by one */ 5909 jj = nTo++; 5910 }else{ 5911 /* New path replaces the prior worst to keep count below mxChoice */ 5912 jj = mxI; 5913 } 5914 pTo = &aTo[jj]; 5915 #ifdef WHERETRACE_ENABLED /* 0x4 */ 5916 if( sqlite3WhereTrace&0x4 ){ 5917 sqlite3DebugPrintf("New %s cost=%-3d,%3d order=%c\n", 5918 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 5919 isOrdered>=0 ? isOrdered+'0' : '?'); 5920 } 5921 #endif 5922 }else{ 5923 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the 5924 ** same set of loops and has the sam isOrdered setting as the 5925 ** candidate path. Check to see if the candidate should replace 5926 ** pTo or if the candidate should be skipped */ 5927 if( pTo->rCost<rCost || (pTo->rCost==rCost && pTo->nRow<=nOut) ){ 5928 #ifdef WHERETRACE_ENABLED /* 0x4 */ 5929 if( sqlite3WhereTrace&0x4 ){ 5930 sqlite3DebugPrintf( 5931 "Skip %s cost=%-3d,%3d order=%c", 5932 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 5933 isOrdered>=0 ? isOrdered+'0' : '?'); 5934 sqlite3DebugPrintf(" vs %s cost=%-3d,%d order=%c\n", 5935 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 5936 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 5937 } 5938 #endif 5939 /* Discard the candidate path from further consideration */ 5940 testcase( pTo->rCost==rCost ); 5941 continue; 5942 } 5943 testcase( pTo->rCost==rCost+1 ); 5944 /* Control reaches here if the candidate path is better than the 5945 ** pTo path. Replace pTo with the candidate. */ 5946 #ifdef WHERETRACE_ENABLED /* 0x4 */ 5947 if( sqlite3WhereTrace&0x4 ){ 5948 sqlite3DebugPrintf( 5949 "Update %s cost=%-3d,%3d order=%c", 5950 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 5951 isOrdered>=0 ? isOrdered+'0' : '?'); 5952 sqlite3DebugPrintf(" was %s cost=%-3d,%3d order=%c\n", 5953 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 5954 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 5955 } 5956 #endif 5957 } 5958 /* pWLoop is a winner. Add it to the set of best so far */ 5959 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; 5960 pTo->revLoop = revMask; 5961 pTo->nRow = nOut; 5962 pTo->rCost = rCost; 5963 pTo->rUnsorted = rUnsorted; 5964 pTo->isOrdered = isOrdered; 5965 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); 5966 pTo->aLoop[iLoop] = pWLoop; 5967 if( nTo>=mxChoice ){ 5968 mxI = 0; 5969 mxCost = aTo[0].rCost; 5970 mxUnsorted = aTo[0].nRow; 5971 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ 5972 if( pTo->rCost>mxCost 5973 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) 5974 ){ 5975 mxCost = pTo->rCost; 5976 mxUnsorted = pTo->rUnsorted; 5977 mxI = jj; 5978 } 5979 } 5980 } 5981 } 5982 } 5983 5984 #ifdef WHERETRACE_ENABLED /* >=2 */ 5985 if( sqlite3WhereTrace & 0x02 ){ 5986 sqlite3DebugPrintf("---- after round %d ----\n", iLoop); 5987 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ 5988 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", 5989 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 5990 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); 5991 if( pTo->isOrdered>0 ){ 5992 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); 5993 }else{ 5994 sqlite3DebugPrintf("\n"); 5995 } 5996 } 5997 } 5998 #endif 5999 6000 /* Swap the roles of aFrom and aTo for the next generation */ 6001 pFrom = aTo; 6002 aTo = aFrom; 6003 aFrom = pFrom; 6004 nFrom = nTo; 6005 } 6006 6007 if( nFrom==0 ){ 6008 sqlite3ErrorMsg(pParse, "no query solution"); 6009 sqlite3DbFree(db, pSpace); 6010 return SQLITE_ERROR; 6011 } 6012 6013 /* Find the lowest cost path. pFrom will be left pointing to that path */ 6014 pFrom = aFrom; 6015 for(ii=1; ii<nFrom; ii++){ 6016 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; 6017 } 6018 assert( pWInfo->nLevel==nLoop ); 6019 /* Load the lowest cost path into pWInfo */ 6020 for(iLoop=0; iLoop<nLoop; iLoop++){ 6021 WhereLevel *pLevel = pWInfo->a + iLoop; 6022 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; 6023 pLevel->iFrom = pWLoop->iTab; 6024 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; 6025 } 6026 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 6027 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 6028 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP 6029 && nRowEst 6030 ){ 6031 Bitmask notUsed; 6032 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, 6033 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); 6034 if( rc==pWInfo->pResultSet->nExpr ){ 6035 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 6036 } 6037 } 6038 if( pWInfo->pOrderBy ){ 6039 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ 6040 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ 6041 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 6042 } 6043 }else{ 6044 pWInfo->nOBSat = pFrom->isOrdered; 6045 if( pWInfo->nOBSat<0 ) pWInfo->nOBSat = 0; 6046 pWInfo->revMask = pFrom->revLoop; 6047 } 6048 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) 6049 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr 6050 ){ 6051 Bitmask revMask = 0; 6052 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, 6053 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask 6054 ); 6055 assert( pWInfo->sorted==0 ); 6056 if( nOrder==pWInfo->pOrderBy->nExpr ){ 6057 pWInfo->sorted = 1; 6058 pWInfo->revMask = revMask; 6059 } 6060 } 6061 } 6062 6063 6064 pWInfo->nRowOut = pFrom->nRow; 6065 6066 /* Free temporary memory and return success */ 6067 sqlite3DbFree(db, pSpace); 6068 return SQLITE_OK; 6069 } 6070 6071 /* 6072 ** Most queries use only a single table (they are not joins) and have 6073 ** simple == constraints against indexed fields. This routine attempts 6074 ** to plan those simple cases using much less ceremony than the 6075 ** general-purpose query planner, and thereby yield faster sqlite3_prepare() 6076 ** times for the common case. 6077 ** 6078 ** Return non-zero on success, if this query can be handled by this 6079 ** no-frills query planner. Return zero if this query needs the 6080 ** general-purpose query planner. 6081 */ 6082 static int whereShortCut(WhereLoopBuilder *pBuilder){ 6083 WhereInfo *pWInfo; 6084 struct SrcList_item *pItem; 6085 WhereClause *pWC; 6086 WhereTerm *pTerm; 6087 WhereLoop *pLoop; 6088 int iCur; 6089 int j; 6090 Table *pTab; 6091 Index *pIdx; 6092 6093 pWInfo = pBuilder->pWInfo; 6094 if( pWInfo->wctrlFlags & WHERE_FORCE_TABLE ) return 0; 6095 assert( pWInfo->pTabList->nSrc>=1 ); 6096 pItem = pWInfo->pTabList->a; 6097 pTab = pItem->pTab; 6098 if( IsVirtual(pTab) ) return 0; 6099 if( pItem->zIndex ) return 0; 6100 iCur = pItem->iCursor; 6101 pWC = &pWInfo->sWC; 6102 pLoop = pBuilder->pNew; 6103 pLoop->wsFlags = 0; 6104 pLoop->nSkip = 0; 6105 pTerm = findTerm(pWC, iCur, -1, 0, WO_EQ, 0); 6106 if( pTerm ){ 6107 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; 6108 pLoop->aLTerm[0] = pTerm; 6109 pLoop->nLTerm = 1; 6110 pLoop->u.btree.nEq = 1; 6111 /* TUNING: Cost of a rowid lookup is 10 */ 6112 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ 6113 }else{ 6114 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 6115 assert( pLoop->aLTermSpace==pLoop->aLTerm ); 6116 if( !IsUniqueIndex(pIdx) 6117 || pIdx->pPartIdxWhere!=0 6118 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) 6119 ) continue; 6120 for(j=0; j<pIdx->nKeyCol; j++){ 6121 pTerm = findTerm(pWC, iCur, pIdx->aiColumn[j], 0, WO_EQ, pIdx); 6122 if( pTerm==0 ) break; 6123 pLoop->aLTerm[j] = pTerm; 6124 } 6125 if( j!=pIdx->nKeyCol ) continue; 6126 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; 6127 if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){ 6128 pLoop->wsFlags |= WHERE_IDX_ONLY; 6129 } 6130 pLoop->nLTerm = j; 6131 pLoop->u.btree.nEq = j; 6132 pLoop->u.btree.pIndex = pIdx; 6133 /* TUNING: Cost of a unique index lookup is 15 */ 6134 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ 6135 break; 6136 } 6137 } 6138 if( pLoop->wsFlags ){ 6139 pLoop->nOut = (LogEst)1; 6140 pWInfo->a[0].pWLoop = pLoop; 6141 pLoop->maskSelf = getMask(&pWInfo->sMaskSet, iCur); 6142 pWInfo->a[0].iTabCur = iCur; 6143 pWInfo->nRowOut = 1; 6144 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; 6145 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ 6146 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 6147 } 6148 #ifdef SQLITE_DEBUG 6149 pLoop->cId = '0'; 6150 #endif 6151 return 1; 6152 } 6153 return 0; 6154 } 6155 6156 /* 6157 ** Generate the beginning of the loop used for WHERE clause processing. 6158 ** The return value is a pointer to an opaque structure that contains 6159 ** information needed to terminate the loop. Later, the calling routine 6160 ** should invoke sqlite3WhereEnd() with the return value of this function 6161 ** in order to complete the WHERE clause processing. 6162 ** 6163 ** If an error occurs, this routine returns NULL. 6164 ** 6165 ** The basic idea is to do a nested loop, one loop for each table in 6166 ** the FROM clause of a select. (INSERT and UPDATE statements are the 6167 ** same as a SELECT with only a single table in the FROM clause.) For 6168 ** example, if the SQL is this: 6169 ** 6170 ** SELECT * FROM t1, t2, t3 WHERE ...; 6171 ** 6172 ** Then the code generated is conceptually like the following: 6173 ** 6174 ** foreach row1 in t1 do \ Code generated 6175 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 6176 ** foreach row3 in t3 do / 6177 ** ... 6178 ** end \ Code generated 6179 ** end |-- by sqlite3WhereEnd() 6180 ** end / 6181 ** 6182 ** Note that the loops might not be nested in the order in which they 6183 ** appear in the FROM clause if a different order is better able to make 6184 ** use of indices. Note also that when the IN operator appears in 6185 ** the WHERE clause, it might result in additional nested loops for 6186 ** scanning through all values on the right-hand side of the IN. 6187 ** 6188 ** There are Btree cursors associated with each table. t1 uses cursor 6189 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 6190 ** And so forth. This routine generates code to open those VDBE cursors 6191 ** and sqlite3WhereEnd() generates the code to close them. 6192 ** 6193 ** The code that sqlite3WhereBegin() generates leaves the cursors named 6194 ** in pTabList pointing at their appropriate entries. The [...] code 6195 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 6196 ** data from the various tables of the loop. 6197 ** 6198 ** If the WHERE clause is empty, the foreach loops must each scan their 6199 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 6200 ** the tables have indices and there are terms in the WHERE clause that 6201 ** refer to those indices, a complete table scan can be avoided and the 6202 ** code will run much faster. Most of the work of this routine is checking 6203 ** to see if there are indices that can be used to speed up the loop. 6204 ** 6205 ** Terms of the WHERE clause are also used to limit which rows actually 6206 ** make it to the "..." in the middle of the loop. After each "foreach", 6207 ** terms of the WHERE clause that use only terms in that loop and outer 6208 ** loops are evaluated and if false a jump is made around all subsequent 6209 ** inner loops (or around the "..." if the test occurs within the inner- 6210 ** most loop) 6211 ** 6212 ** OUTER JOINS 6213 ** 6214 ** An outer join of tables t1 and t2 is conceptally coded as follows: 6215 ** 6216 ** foreach row1 in t1 do 6217 ** flag = 0 6218 ** foreach row2 in t2 do 6219 ** start: 6220 ** ... 6221 ** flag = 1 6222 ** end 6223 ** if flag==0 then 6224 ** move the row2 cursor to a null row 6225 ** goto start 6226 ** fi 6227 ** end 6228 ** 6229 ** ORDER BY CLAUSE PROCESSING 6230 ** 6231 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause 6232 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement 6233 ** if there is one. If there is no ORDER BY clause or if this routine 6234 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. 6235 ** 6236 ** The iIdxCur parameter is the cursor number of an index. If 6237 ** WHERE_ONETABLE_ONLY is set, iIdxCur is the cursor number of an index 6238 ** to use for OR clause processing. The WHERE clause should use this 6239 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is 6240 ** the first cursor in an array of cursors for all indices. iIdxCur should 6241 ** be used to compute the appropriate cursor depending on which index is 6242 ** used. 6243 */ 6244 WhereInfo *sqlite3WhereBegin( 6245 Parse *pParse, /* The parser context */ 6246 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ 6247 Expr *pWhere, /* The WHERE clause */ 6248 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ 6249 ExprList *pResultSet, /* Result set of the query */ 6250 u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */ 6251 int iIdxCur /* If WHERE_ONETABLE_ONLY is set, index cursor number */ 6252 ){ 6253 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ 6254 int nTabList; /* Number of elements in pTabList */ 6255 WhereInfo *pWInfo; /* Will become the return value of this function */ 6256 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 6257 Bitmask notReady; /* Cursors that are not yet positioned */ 6258 WhereLoopBuilder sWLB; /* The WhereLoop builder */ 6259 WhereMaskSet *pMaskSet; /* The expression mask set */ 6260 WhereLevel *pLevel; /* A single level in pWInfo->a[] */ 6261 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ 6262 int ii; /* Loop counter */ 6263 sqlite3 *db; /* Database connection */ 6264 int rc; /* Return code */ 6265 6266 6267 /* Variable initialization */ 6268 db = pParse->db; 6269 memset(&sWLB, 0, sizeof(sWLB)); 6270 6271 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ 6272 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); 6273 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; 6274 sWLB.pOrderBy = pOrderBy; 6275 6276 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via 6277 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ 6278 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ 6279 wctrlFlags &= ~WHERE_WANT_DISTINCT; 6280 } 6281 6282 /* The number of tables in the FROM clause is limited by the number of 6283 ** bits in a Bitmask 6284 */ 6285 testcase( pTabList->nSrc==BMS ); 6286 if( pTabList->nSrc>BMS ){ 6287 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 6288 return 0; 6289 } 6290 6291 /* This function normally generates a nested loop for all tables in 6292 ** pTabList. But if the WHERE_ONETABLE_ONLY flag is set, then we should 6293 ** only generate code for the first table in pTabList and assume that 6294 ** any cursors associated with subsequent tables are uninitialized. 6295 */ 6296 nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc; 6297 6298 /* Allocate and initialize the WhereInfo structure that will become the 6299 ** return value. A single allocation is used to store the WhereInfo 6300 ** struct, the contents of WhereInfo.a[], the WhereClause structure 6301 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte 6302 ** field (type Bitmask) it must be aligned on an 8-byte boundary on 6303 ** some architectures. Hence the ROUND8() below. 6304 */ 6305 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); 6306 pWInfo = sqlite3DbMallocZero(db, nByteWInfo + sizeof(WhereLoop)); 6307 if( db->mallocFailed ){ 6308 sqlite3DbFree(db, pWInfo); 6309 pWInfo = 0; 6310 goto whereBeginError; 6311 } 6312 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; 6313 pWInfo->nLevel = nTabList; 6314 pWInfo->pParse = pParse; 6315 pWInfo->pTabList = pTabList; 6316 pWInfo->pOrderBy = pOrderBy; 6317 pWInfo->pResultSet = pResultSet; 6318 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v); 6319 pWInfo->wctrlFlags = wctrlFlags; 6320 pWInfo->savedNQueryLoop = pParse->nQueryLoop; 6321 pMaskSet = &pWInfo->sMaskSet; 6322 sWLB.pWInfo = pWInfo; 6323 sWLB.pWC = &pWInfo->sWC; 6324 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); 6325 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); 6326 whereLoopInit(sWLB.pNew); 6327 #ifdef SQLITE_DEBUG 6328 sWLB.pNew->cId = '*'; 6329 #endif 6330 6331 /* Split the WHERE clause into separate subexpressions where each 6332 ** subexpression is separated by an AND operator. 6333 */ 6334 initMaskSet(pMaskSet); 6335 whereClauseInit(&pWInfo->sWC, pWInfo); 6336 whereSplit(&pWInfo->sWC, pWhere, TK_AND); 6337 6338 /* Special case: a WHERE clause that is constant. Evaluate the 6339 ** expression and either jump over all of the code or fall thru. 6340 */ 6341 for(ii=0; ii<sWLB.pWC->nTerm; ii++){ 6342 if( nTabList==0 || sqlite3ExprIsConstantNotJoin(sWLB.pWC->a[ii].pExpr) ){ 6343 sqlite3ExprIfFalse(pParse, sWLB.pWC->a[ii].pExpr, pWInfo->iBreak, 6344 SQLITE_JUMPIFNULL); 6345 sWLB.pWC->a[ii].wtFlags |= TERM_CODED; 6346 } 6347 } 6348 6349 /* Special case: No FROM clause 6350 */ 6351 if( nTabList==0 ){ 6352 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; 6353 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 6354 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 6355 } 6356 } 6357 6358 /* Assign a bit from the bitmask to every term in the FROM clause. 6359 ** 6360 ** When assigning bitmask values to FROM clause cursors, it must be 6361 ** the case that if X is the bitmask for the N-th FROM clause term then 6362 ** the bitmask for all FROM clause terms to the left of the N-th term 6363 ** is (X-1). An expression from the ON clause of a LEFT JOIN can use 6364 ** its Expr.iRightJoinTable value to find the bitmask of the right table 6365 ** of the join. Subtracting one from the right table bitmask gives a 6366 ** bitmask for all tables to the left of the join. Knowing the bitmask 6367 ** for all tables to the left of a left join is important. Ticket #3015. 6368 ** 6369 ** Note that bitmasks are created for all pTabList->nSrc tables in 6370 ** pTabList, not just the first nTabList tables. nTabList is normally 6371 ** equal to pTabList->nSrc but might be shortened to 1 if the 6372 ** WHERE_ONETABLE_ONLY flag is set. 6373 */ 6374 for(ii=0; ii<pTabList->nSrc; ii++){ 6375 createMask(pMaskSet, pTabList->a[ii].iCursor); 6376 } 6377 #ifndef NDEBUG 6378 { 6379 Bitmask toTheLeft = 0; 6380 for(ii=0; ii<pTabList->nSrc; ii++){ 6381 Bitmask m = getMask(pMaskSet, pTabList->a[ii].iCursor); 6382 assert( (m-1)==toTheLeft ); 6383 toTheLeft |= m; 6384 } 6385 } 6386 #endif 6387 6388 /* Analyze all of the subexpressions. Note that exprAnalyze() might 6389 ** add new virtual terms onto the end of the WHERE clause. We do not 6390 ** want to analyze these virtual terms, so start analyzing at the end 6391 ** and work forward so that the added virtual terms are never processed. 6392 */ 6393 exprAnalyzeAll(pTabList, &pWInfo->sWC); 6394 if( db->mallocFailed ){ 6395 goto whereBeginError; 6396 } 6397 6398 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 6399 if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ 6400 /* The DISTINCT marking is pointless. Ignore it. */ 6401 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 6402 }else if( pOrderBy==0 ){ 6403 /* Try to ORDER BY the result set to make distinct processing easier */ 6404 pWInfo->wctrlFlags |= WHERE_DISTINCTBY; 6405 pWInfo->pOrderBy = pResultSet; 6406 } 6407 } 6408 6409 /* Construct the WhereLoop objects */ 6410 WHERETRACE(0xffff,("*** Optimizer Start ***\n")); 6411 #if defined(WHERETRACE_ENABLED) 6412 /* Display all terms of the WHERE clause */ 6413 if( sqlite3WhereTrace & 0x100 ){ 6414 int i; 6415 for(i=0; i<sWLB.pWC->nTerm; i++){ 6416 whereTermPrint(&sWLB.pWC->a[i], i); 6417 } 6418 } 6419 #endif 6420 6421 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ 6422 rc = whereLoopAddAll(&sWLB); 6423 if( rc ) goto whereBeginError; 6424 6425 /* Display all of the WhereLoop objects if wheretrace is enabled */ 6426 #ifdef WHERETRACE_ENABLED /* !=0 */ 6427 if( sqlite3WhereTrace ){ 6428 WhereLoop *p; 6429 int i; 6430 static char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" 6431 "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; 6432 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ 6433 p->cId = zLabel[i%sizeof(zLabel)]; 6434 whereLoopPrint(p, sWLB.pWC); 6435 } 6436 } 6437 #endif 6438 6439 wherePathSolver(pWInfo, 0); 6440 if( db->mallocFailed ) goto whereBeginError; 6441 if( pWInfo->pOrderBy ){ 6442 wherePathSolver(pWInfo, pWInfo->nRowOut+1); 6443 if( db->mallocFailed ) goto whereBeginError; 6444 } 6445 } 6446 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ 6447 pWInfo->revMask = (Bitmask)(-1); 6448 } 6449 if( pParse->nErr || NEVER(db->mallocFailed) ){ 6450 goto whereBeginError; 6451 } 6452 #ifdef WHERETRACE_ENABLED /* !=0 */ 6453 if( sqlite3WhereTrace ){ 6454 int ii; 6455 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); 6456 if( pWInfo->nOBSat>0 ){ 6457 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); 6458 } 6459 switch( pWInfo->eDistinct ){ 6460 case WHERE_DISTINCT_UNIQUE: { 6461 sqlite3DebugPrintf(" DISTINCT=unique"); 6462 break; 6463 } 6464 case WHERE_DISTINCT_ORDERED: { 6465 sqlite3DebugPrintf(" DISTINCT=ordered"); 6466 break; 6467 } 6468 case WHERE_DISTINCT_UNORDERED: { 6469 sqlite3DebugPrintf(" DISTINCT=unordered"); 6470 break; 6471 } 6472 } 6473 sqlite3DebugPrintf("\n"); 6474 for(ii=0; ii<pWInfo->nLevel; ii++){ 6475 whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); 6476 } 6477 } 6478 #endif 6479 /* Attempt to omit tables from the join that do not effect the result */ 6480 if( pWInfo->nLevel>=2 6481 && pResultSet!=0 6482 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) 6483 ){ 6484 Bitmask tabUsed = exprListTableUsage(pMaskSet, pResultSet); 6485 if( sWLB.pOrderBy ) tabUsed |= exprListTableUsage(pMaskSet, sWLB.pOrderBy); 6486 while( pWInfo->nLevel>=2 ){ 6487 WhereTerm *pTerm, *pEnd; 6488 pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop; 6489 if( (pWInfo->pTabList->a[pLoop->iTab].jointype & JT_LEFT)==0 ) break; 6490 if( (wctrlFlags & WHERE_WANT_DISTINCT)==0 6491 && (pLoop->wsFlags & WHERE_ONEROW)==0 6492 ){ 6493 break; 6494 } 6495 if( (tabUsed & pLoop->maskSelf)!=0 ) break; 6496 pEnd = sWLB.pWC->a + sWLB.pWC->nTerm; 6497 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ 6498 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 6499 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 6500 ){ 6501 break; 6502 } 6503 } 6504 if( pTerm<pEnd ) break; 6505 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); 6506 pWInfo->nLevel--; 6507 nTabList--; 6508 } 6509 } 6510 WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); 6511 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; 6512 6513 /* If the caller is an UPDATE or DELETE statement that is requesting 6514 ** to use a one-pass algorithm, determine if this is appropriate. 6515 ** The one-pass algorithm only works if the WHERE clause constrains 6516 ** the statement to update a single row. 6517 */ 6518 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 6519 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 6520 && (pWInfo->a[0].pWLoop->wsFlags & WHERE_ONEROW)!=0 ){ 6521 pWInfo->okOnePass = 1; 6522 if( HasRowid(pTabList->a[0].pTab) ){ 6523 pWInfo->a[0].pWLoop->wsFlags &= ~WHERE_IDX_ONLY; 6524 } 6525 } 6526 6527 /* Open all tables in the pTabList and any indices selected for 6528 ** searching those tables. 6529 */ 6530 notReady = ~(Bitmask)0; 6531 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ 6532 Table *pTab; /* Table to open */ 6533 int iDb; /* Index of database containing table/index */ 6534 struct SrcList_item *pTabItem; 6535 6536 pTabItem = &pTabList->a[pLevel->iFrom]; 6537 pTab = pTabItem->pTab; 6538 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 6539 pLoop = pLevel->pWLoop; 6540 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){ 6541 /* Do nothing */ 6542 }else 6543 #ifndef SQLITE_OMIT_VIRTUALTABLE 6544 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 6545 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 6546 int iCur = pTabItem->iCursor; 6547 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); 6548 }else if( IsVirtual(pTab) ){ 6549 /* noop */ 6550 }else 6551 #endif 6552 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 6553 && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){ 6554 int op = OP_OpenRead; 6555 if( pWInfo->okOnePass ){ 6556 op = OP_OpenWrite; 6557 pWInfo->aiCurOnePass[0] = pTabItem->iCursor; 6558 }; 6559 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 6560 assert( pTabItem->iCursor==pLevel->iTabCur ); 6561 testcase( !pWInfo->okOnePass && pTab->nCol==BMS-1 ); 6562 testcase( !pWInfo->okOnePass && pTab->nCol==BMS ); 6563 if( !pWInfo->okOnePass && pTab->nCol<BMS && HasRowid(pTab) ){ 6564 Bitmask b = pTabItem->colUsed; 6565 int n = 0; 6566 for(; b; b=b>>1, n++){} 6567 sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, 6568 SQLITE_INT_TO_PTR(n), P4_INT32); 6569 assert( n<=pTab->nCol ); 6570 } 6571 }else{ 6572 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 6573 } 6574 if( pLoop->wsFlags & WHERE_INDEXED ){ 6575 Index *pIx = pLoop->u.btree.pIndex; 6576 int iIndexCur; 6577 int op = OP_OpenRead; 6578 /* iIdxCur is always set if to a positive value if ONEPASS is possible */ 6579 assert( iIdxCur!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); 6580 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) 6581 && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 6582 ){ 6583 /* This is one term of an OR-optimization using the PRIMARY KEY of a 6584 ** WITHOUT ROWID table. No need for a separate index */ 6585 iIndexCur = pLevel->iTabCur; 6586 op = 0; 6587 }else if( pWInfo->okOnePass ){ 6588 Index *pJ = pTabItem->pTab->pIndex; 6589 iIndexCur = iIdxCur; 6590 assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); 6591 while( ALWAYS(pJ) && pJ!=pIx ){ 6592 iIndexCur++; 6593 pJ = pJ->pNext; 6594 } 6595 op = OP_OpenWrite; 6596 pWInfo->aiCurOnePass[1] = iIndexCur; 6597 }else if( iIdxCur && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ){ 6598 iIndexCur = iIdxCur; 6599 if( wctrlFlags & WHERE_REOPEN_IDX ) op = OP_ReopenIdx; 6600 }else{ 6601 iIndexCur = pParse->nTab++; 6602 } 6603 pLevel->iIdxCur = iIndexCur; 6604 assert( pIx->pSchema==pTab->pSchema ); 6605 assert( iIndexCur>=0 ); 6606 if( op ){ 6607 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); 6608 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 6609 VdbeComment((v, "%s", pIx->zName)); 6610 } 6611 } 6612 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); 6613 notReady &= ~getMask(&pWInfo->sMaskSet, pTabItem->iCursor); 6614 } 6615 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 6616 if( db->mallocFailed ) goto whereBeginError; 6617 6618 /* Generate the code to do the search. Each iteration of the for 6619 ** loop below generates code for a single nested loop of the VM 6620 ** program. 6621 */ 6622 notReady = ~(Bitmask)0; 6623 for(ii=0; ii<nTabList; ii++){ 6624 int addrExplain; 6625 int wsFlags; 6626 pLevel = &pWInfo->a[ii]; 6627 wsFlags = pLevel->pWLoop->wsFlags; 6628 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 6629 if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 6630 constructAutomaticIndex(pParse, &pWInfo->sWC, 6631 &pTabList->a[pLevel->iFrom], notReady, pLevel); 6632 if( db->mallocFailed ) goto whereBeginError; 6633 } 6634 #endif 6635 addrExplain = explainOneScan( 6636 pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags 6637 ); 6638 pLevel->addrBody = sqlite3VdbeCurrentAddr(v); 6639 notReady = codeOneLoopStart(pWInfo, ii, notReady); 6640 pWInfo->iContinue = pLevel->addrCont; 6641 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_ONETABLE_ONLY)==0 ){ 6642 addScanStatus(v, pTabList, pLevel, addrExplain); 6643 } 6644 } 6645 6646 /* Done. */ 6647 VdbeModuleComment((v, "Begin WHERE-core")); 6648 return pWInfo; 6649 6650 /* Jump here if malloc fails */ 6651 whereBeginError: 6652 if( pWInfo ){ 6653 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 6654 whereInfoFree(db, pWInfo); 6655 } 6656 return 0; 6657 } 6658 6659 /* 6660 ** Generate the end of the WHERE loop. See comments on 6661 ** sqlite3WhereBegin() for additional information. 6662 */ 6663 void sqlite3WhereEnd(WhereInfo *pWInfo){ 6664 Parse *pParse = pWInfo->pParse; 6665 Vdbe *v = pParse->pVdbe; 6666 int i; 6667 WhereLevel *pLevel; 6668 WhereLoop *pLoop; 6669 SrcList *pTabList = pWInfo->pTabList; 6670 sqlite3 *db = pParse->db; 6671 6672 /* Generate loop termination code. 6673 */ 6674 VdbeModuleComment((v, "End WHERE-core")); 6675 sqlite3ExprCacheClear(pParse); 6676 for(i=pWInfo->nLevel-1; i>=0; i--){ 6677 int addr; 6678 pLevel = &pWInfo->a[i]; 6679 pLoop = pLevel->pWLoop; 6680 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 6681 if( pLevel->op!=OP_Noop ){ 6682 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); 6683 sqlite3VdbeChangeP5(v, pLevel->p5); 6684 VdbeCoverage(v); 6685 VdbeCoverageIf(v, pLevel->op==OP_Next); 6686 VdbeCoverageIf(v, pLevel->op==OP_Prev); 6687 VdbeCoverageIf(v, pLevel->op==OP_VNext); 6688 } 6689 if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ 6690 struct InLoop *pIn; 6691 int j; 6692 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 6693 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 6694 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 6695 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); 6696 VdbeCoverage(v); 6697 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen); 6698 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen); 6699 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 6700 } 6701 sqlite3DbFree(db, pLevel->u.in.aInLoop); 6702 } 6703 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 6704 if( pLevel->addrSkip ){ 6705 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrSkip); 6706 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); 6707 sqlite3VdbeJumpHere(v, pLevel->addrSkip); 6708 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); 6709 } 6710 if( pLevel->addrLikeRep ){ 6711 int op; 6712 if( sqlite3VdbeGetOp(v, pLevel->addrLikeRep-1)->p1 ){ 6713 op = OP_DecrJumpZero; 6714 }else{ 6715 op = OP_JumpZeroIncr; 6716 } 6717 sqlite3VdbeAddOp2(v, op, pLevel->iLikeRepCntr, pLevel->addrLikeRep); 6718 VdbeCoverage(v); 6719 } 6720 if( pLevel->iLeftJoin ){ 6721 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); 6722 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 6723 || (pLoop->wsFlags & WHERE_INDEXED)!=0 ); 6724 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){ 6725 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); 6726 } 6727 if( pLoop->wsFlags & WHERE_INDEXED ){ 6728 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 6729 } 6730 if( pLevel->op==OP_Return ){ 6731 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); 6732 }else{ 6733 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst); 6734 } 6735 sqlite3VdbeJumpHere(v, addr); 6736 } 6737 VdbeModuleComment((v, "End WHERE-loop%d: %s", i, 6738 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); 6739 } 6740 6741 /* The "break" point is here, just past the end of the outer loop. 6742 ** Set it. 6743 */ 6744 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 6745 6746 assert( pWInfo->nLevel<=pTabList->nSrc ); 6747 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ 6748 int k, last; 6749 VdbeOp *pOp; 6750 Index *pIdx = 0; 6751 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 6752 Table *pTab = pTabItem->pTab; 6753 assert( pTab!=0 ); 6754 pLoop = pLevel->pWLoop; 6755 6756 /* For a co-routine, change all OP_Column references to the table of 6757 ** the co-routine into OP_SCopy of result contained in a register. 6758 ** OP_Rowid becomes OP_Null. 6759 */ 6760 if( pTabItem->viaCoroutine && !db->mallocFailed ){ 6761 last = sqlite3VdbeCurrentAddr(v); 6762 k = pLevel->addrBody; 6763 pOp = sqlite3VdbeGetOp(v, k); 6764 for(; k<last; k++, pOp++){ 6765 if( pOp->p1!=pLevel->iTabCur ) continue; 6766 if( pOp->opcode==OP_Column ){ 6767 pOp->opcode = OP_Copy; 6768 pOp->p1 = pOp->p2 + pTabItem->regResult; 6769 pOp->p2 = pOp->p3; 6770 pOp->p3 = 0; 6771 }else if( pOp->opcode==OP_Rowid ){ 6772 pOp->opcode = OP_Null; 6773 pOp->p1 = 0; 6774 pOp->p3 = 0; 6775 } 6776 } 6777 continue; 6778 } 6779 6780 /* Close all of the cursors that were opened by sqlite3WhereBegin. 6781 ** Except, do not close cursors that will be reused by the OR optimization 6782 ** (WHERE_OMIT_OPEN_CLOSE). And do not close the OP_OpenWrite cursors 6783 ** created for the ONEPASS optimization. 6784 */ 6785 if( (pTab->tabFlags & TF_Ephemeral)==0 6786 && pTab->pSelect==0 6787 && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 6788 ){ 6789 int ws = pLoop->wsFlags; 6790 if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){ 6791 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); 6792 } 6793 if( (ws & WHERE_INDEXED)!=0 6794 && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0 6795 && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1] 6796 ){ 6797 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); 6798 } 6799 } 6800 6801 /* If this scan uses an index, make VDBE code substitutions to read data 6802 ** from the index instead of from the table where possible. In some cases 6803 ** this optimization prevents the table from ever being read, which can 6804 ** yield a significant performance boost. 6805 ** 6806 ** Calls to the code generator in between sqlite3WhereBegin and 6807 ** sqlite3WhereEnd will have created code that references the table 6808 ** directly. This loop scans all that code looking for opcodes 6809 ** that reference the table and converts them into opcodes that 6810 ** reference the index. 6811 */ 6812 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ 6813 pIdx = pLoop->u.btree.pIndex; 6814 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ 6815 pIdx = pLevel->u.pCovidx; 6816 } 6817 if( pIdx && !db->mallocFailed ){ 6818 last = sqlite3VdbeCurrentAddr(v); 6819 k = pLevel->addrBody; 6820 pOp = sqlite3VdbeGetOp(v, k); 6821 for(; k<last; k++, pOp++){ 6822 if( pOp->p1!=pLevel->iTabCur ) continue; 6823 if( pOp->opcode==OP_Column ){ 6824 int x = pOp->p2; 6825 assert( pIdx->pTable==pTab ); 6826 if( !HasRowid(pTab) ){ 6827 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 6828 x = pPk->aiColumn[x]; 6829 } 6830 x = sqlite3ColumnOfIndex(pIdx, x); 6831 if( x>=0 ){ 6832 pOp->p2 = x; 6833 pOp->p1 = pLevel->iIdxCur; 6834 } 6835 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 ); 6836 }else if( pOp->opcode==OP_Rowid ){ 6837 pOp->p1 = pLevel->iIdxCur; 6838 pOp->opcode = OP_IdxRowid; 6839 } 6840 } 6841 } 6842 } 6843 6844 /* Final cleanup 6845 */ 6846 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 6847 whereInfoFree(db, pWInfo); 6848 return; 6849 } 6850