xref: /sqlite-3.40.0/src/where.c (revision c56fac74)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /* Forward declaration of methods */
23 static int whereLoopResize(sqlite3*, WhereLoop*, int);
24 
25 /* Test variable that can be set to enable WHERE tracing */
26 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
27 /***/ int sqlite3WhereTrace = 0;
28 #endif
29 
30 
31 /*
32 ** Return the estimated number of output rows from a WHERE clause
33 */
34 u64 sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
35   return sqlite3LogEstToInt(pWInfo->nRowOut);
36 }
37 
38 /*
39 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
40 ** WHERE clause returns outputs for DISTINCT processing.
41 */
42 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
43   return pWInfo->eDistinct;
44 }
45 
46 /*
47 ** Return TRUE if the WHERE clause returns rows in ORDER BY order.
48 ** Return FALSE if the output needs to be sorted.
49 */
50 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
51   return pWInfo->nOBSat;
52 }
53 
54 /*
55 ** Return the VDBE address or label to jump to in order to continue
56 ** immediately with the next row of a WHERE clause.
57 */
58 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
59   assert( pWInfo->iContinue!=0 );
60   return pWInfo->iContinue;
61 }
62 
63 /*
64 ** Return the VDBE address or label to jump to in order to break
65 ** out of a WHERE loop.
66 */
67 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
68   return pWInfo->iBreak;
69 }
70 
71 /*
72 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
73 ** operate directly on the rowis returned by a WHERE clause.  Return
74 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
75 ** a single row is to be changed.  Return ONEPASS_MULTI (2) if the one-pass
76 ** optimization can be used on multiple
77 **
78 ** If the ONEPASS optimization is used (if this routine returns true)
79 ** then also write the indices of open cursors used by ONEPASS
80 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
81 ** table and iaCur[1] gets the cursor used by an auxiliary index.
82 ** Either value may be -1, indicating that cursor is not used.
83 ** Any cursors returned will have been opened for writing.
84 **
85 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
86 ** unable to use the ONEPASS optimization.
87 */
88 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
89   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
90 #ifdef WHERETRACE_ENABLED
91   if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
92     sqlite3DebugPrintf("%s cursors: %d %d\n",
93          pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
94          aiCur[0], aiCur[1]);
95   }
96 #endif
97   return pWInfo->eOnePass;
98 }
99 
100 /*
101 ** Move the content of pSrc into pDest
102 */
103 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
104   pDest->n = pSrc->n;
105   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
106 }
107 
108 /*
109 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
110 **
111 ** The new entry might overwrite an existing entry, or it might be
112 ** appended, or it might be discarded.  Do whatever is the right thing
113 ** so that pSet keeps the N_OR_COST best entries seen so far.
114 */
115 static int whereOrInsert(
116   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
117   Bitmask prereq,        /* Prerequisites of the new entry */
118   LogEst rRun,           /* Run-cost of the new entry */
119   LogEst nOut            /* Number of outputs for the new entry */
120 ){
121   u16 i;
122   WhereOrCost *p;
123   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
124     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
125       goto whereOrInsert_done;
126     }
127     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
128       return 0;
129     }
130   }
131   if( pSet->n<N_OR_COST ){
132     p = &pSet->a[pSet->n++];
133     p->nOut = nOut;
134   }else{
135     p = pSet->a;
136     for(i=1; i<pSet->n; i++){
137       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
138     }
139     if( p->rRun<=rRun ) return 0;
140   }
141 whereOrInsert_done:
142   p->prereq = prereq;
143   p->rRun = rRun;
144   if( p->nOut>nOut ) p->nOut = nOut;
145   return 1;
146 }
147 
148 /*
149 ** Return the bitmask for the given cursor number.  Return 0 if
150 ** iCursor is not in the set.
151 */
152 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
153   int i;
154   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
155   for(i=0; i<pMaskSet->n; i++){
156     if( pMaskSet->ix[i]==iCursor ){
157       return MASKBIT(i);
158     }
159   }
160   return 0;
161 }
162 
163 /*
164 ** Create a new mask for cursor iCursor.
165 **
166 ** There is one cursor per table in the FROM clause.  The number of
167 ** tables in the FROM clause is limited by a test early in the
168 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
169 ** array will never overflow.
170 */
171 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
172   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
173   pMaskSet->ix[pMaskSet->n++] = iCursor;
174 }
175 
176 /*
177 ** Advance to the next WhereTerm that matches according to the criteria
178 ** established when the pScan object was initialized by whereScanInit().
179 ** Return NULL if there are no more matching WhereTerms.
180 */
181 static WhereTerm *whereScanNext(WhereScan *pScan){
182   int iCur;            /* The cursor on the LHS of the term */
183   i16 iColumn;         /* The column on the LHS of the term.  -1 for IPK */
184   Expr *pX;            /* An expression being tested */
185   WhereClause *pWC;    /* Shorthand for pScan->pWC */
186   WhereTerm *pTerm;    /* The term being tested */
187   int k = pScan->k;    /* Where to start scanning */
188 
189   while( pScan->iEquiv<=pScan->nEquiv ){
190     iCur = pScan->aiCur[pScan->iEquiv-1];
191     iColumn = pScan->aiColumn[pScan->iEquiv-1];
192     if( iColumn==XN_EXPR && pScan->pIdxExpr==0 ) return 0;
193     while( (pWC = pScan->pWC)!=0 ){
194       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
195         if( pTerm->leftCursor==iCur
196          && pTerm->u.leftColumn==iColumn
197          && (iColumn!=XN_EXPR
198              || sqlite3ExprCompare(pTerm->pExpr->pLeft,pScan->pIdxExpr,iCur)==0)
199          && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
200         ){
201           if( (pTerm->eOperator & WO_EQUIV)!=0
202            && pScan->nEquiv<ArraySize(pScan->aiCur)
203            && (pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight))->op==TK_COLUMN
204           ){
205             int j;
206             for(j=0; j<pScan->nEquiv; j++){
207               if( pScan->aiCur[j]==pX->iTable
208                && pScan->aiColumn[j]==pX->iColumn ){
209                   break;
210               }
211             }
212             if( j==pScan->nEquiv ){
213               pScan->aiCur[j] = pX->iTable;
214               pScan->aiColumn[j] = pX->iColumn;
215               pScan->nEquiv++;
216             }
217           }
218           if( (pTerm->eOperator & pScan->opMask)!=0 ){
219             /* Verify the affinity and collating sequence match */
220             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
221               CollSeq *pColl;
222               Parse *pParse = pWC->pWInfo->pParse;
223               pX = pTerm->pExpr;
224               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
225                 continue;
226               }
227               assert(pX->pLeft);
228               pColl = sqlite3BinaryCompareCollSeq(pParse,
229                                                   pX->pLeft, pX->pRight);
230               if( pColl==0 ) pColl = pParse->db->pDfltColl;
231               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
232                 continue;
233               }
234             }
235             if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
236              && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
237              && pX->iTable==pScan->aiCur[0]
238              && pX->iColumn==pScan->aiColumn[0]
239             ){
240               testcase( pTerm->eOperator & WO_IS );
241               continue;
242             }
243             pScan->k = k+1;
244             return pTerm;
245           }
246         }
247       }
248       pScan->pWC = pScan->pWC->pOuter;
249       k = 0;
250     }
251     pScan->pWC = pScan->pOrigWC;
252     k = 0;
253     pScan->iEquiv++;
254   }
255   return 0;
256 }
257 
258 /*
259 ** Initialize a WHERE clause scanner object.  Return a pointer to the
260 ** first match.  Return NULL if there are no matches.
261 **
262 ** The scanner will be searching the WHERE clause pWC.  It will look
263 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
264 ** iCur.  The <op> must be one of the operators described by opMask.
265 **
266 ** If the search is for X and the WHERE clause contains terms of the
267 ** form X=Y then this routine might also return terms of the form
268 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
269 ** but is enough to handle most commonly occurring SQL statements.
270 **
271 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
272 ** index pIdx.
273 */
274 static WhereTerm *whereScanInit(
275   WhereScan *pScan,       /* The WhereScan object being initialized */
276   WhereClause *pWC,       /* The WHERE clause to be scanned */
277   int iCur,               /* Cursor to scan for */
278   int iColumn,            /* Column to scan for */
279   u32 opMask,             /* Operator(s) to scan for */
280   Index *pIdx             /* Must be compatible with this index */
281 ){
282   int j = 0;
283 
284   /* memset(pScan, 0, sizeof(*pScan)); */
285   pScan->pOrigWC = pWC;
286   pScan->pWC = pWC;
287   pScan->pIdxExpr = 0;
288   if( pIdx ){
289     j = iColumn;
290     iColumn = pIdx->aiColumn[j];
291     if( iColumn==XN_EXPR ) pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
292   }
293   if( pIdx && iColumn>=0 ){
294     pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
295     pScan->zCollName = pIdx->azColl[j];
296   }else{
297     pScan->idxaff = 0;
298     pScan->zCollName = 0;
299   }
300   pScan->opMask = opMask;
301   pScan->k = 0;
302   pScan->aiCur[0] = iCur;
303   pScan->aiColumn[0] = iColumn;
304   pScan->nEquiv = 1;
305   pScan->iEquiv = 1;
306   return whereScanNext(pScan);
307 }
308 
309 /*
310 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
311 ** where X is a reference to the iColumn of table iCur and <op> is one of
312 ** the WO_xx operator codes specified by the op parameter.
313 ** Return a pointer to the term.  Return 0 if not found.
314 **
315 ** If pIdx!=0 then search for terms matching the iColumn-th column of pIdx
316 ** rather than the iColumn-th column of table iCur.
317 **
318 ** The term returned might by Y=<expr> if there is another constraint in
319 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
320 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
321 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
322 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
323 ** other equivalent values.  Hence a search for X will return <expr> if X=A1
324 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
325 **
326 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
327 ** then try for the one with no dependencies on <expr> - in other words where
328 ** <expr> is a constant expression of some kind.  Only return entries of
329 ** the form "X <op> Y" where Y is a column in another table if no terms of
330 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
331 ** exist, try to return a term that does not use WO_EQUIV.
332 */
333 WhereTerm *sqlite3WhereFindTerm(
334   WhereClause *pWC,     /* The WHERE clause to be searched */
335   int iCur,             /* Cursor number of LHS */
336   int iColumn,          /* Column number of LHS */
337   Bitmask notReady,     /* RHS must not overlap with this mask */
338   u32 op,               /* Mask of WO_xx values describing operator */
339   Index *pIdx           /* Must be compatible with this index, if not NULL */
340 ){
341   WhereTerm *pResult = 0;
342   WhereTerm *p;
343   WhereScan scan;
344 
345   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
346   op &= WO_EQ|WO_IS;
347   while( p ){
348     if( (p->prereqRight & notReady)==0 ){
349       if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
350         testcase( p->eOperator & WO_IS );
351         return p;
352       }
353       if( pResult==0 ) pResult = p;
354     }
355     p = whereScanNext(&scan);
356   }
357   return pResult;
358 }
359 
360 /*
361 ** This function searches pList for an entry that matches the iCol-th column
362 ** of index pIdx.
363 **
364 ** If such an expression is found, its index in pList->a[] is returned. If
365 ** no expression is found, -1 is returned.
366 */
367 static int findIndexCol(
368   Parse *pParse,                  /* Parse context */
369   ExprList *pList,                /* Expression list to search */
370   int iBase,                      /* Cursor for table associated with pIdx */
371   Index *pIdx,                    /* Index to match column of */
372   int iCol                        /* Column of index to match */
373 ){
374   int i;
375   const char *zColl = pIdx->azColl[iCol];
376 
377   for(i=0; i<pList->nExpr; i++){
378     Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr);
379     if( p->op==TK_COLUMN
380      && p->iColumn==pIdx->aiColumn[iCol]
381      && p->iTable==iBase
382     ){
383       CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
384       if( pColl && 0==sqlite3StrICmp(pColl->zName, zColl) ){
385         return i;
386       }
387     }
388   }
389 
390   return -1;
391 }
392 
393 /*
394 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
395 */
396 static int indexColumnNotNull(Index *pIdx, int iCol){
397   int j;
398   assert( pIdx!=0 );
399   assert( iCol>=0 && iCol<pIdx->nColumn );
400   j = pIdx->aiColumn[iCol];
401   if( j>=0 ){
402     return pIdx->pTable->aCol[j].notNull;
403   }else if( j==(-1) ){
404     return 1;
405   }else{
406     assert( j==(-2) );
407     return 0;  /* Assume an indexed expression can always yield a NULL */
408 
409   }
410 }
411 
412 /*
413 ** Return true if the DISTINCT expression-list passed as the third argument
414 ** is redundant.
415 **
416 ** A DISTINCT list is redundant if any subset of the columns in the
417 ** DISTINCT list are collectively unique and individually non-null.
418 */
419 static int isDistinctRedundant(
420   Parse *pParse,            /* Parsing context */
421   SrcList *pTabList,        /* The FROM clause */
422   WhereClause *pWC,         /* The WHERE clause */
423   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
424 ){
425   Table *pTab;
426   Index *pIdx;
427   int i;
428   int iBase;
429 
430   /* If there is more than one table or sub-select in the FROM clause of
431   ** this query, then it will not be possible to show that the DISTINCT
432   ** clause is redundant. */
433   if( pTabList->nSrc!=1 ) return 0;
434   iBase = pTabList->a[0].iCursor;
435   pTab = pTabList->a[0].pTab;
436 
437   /* If any of the expressions is an IPK column on table iBase, then return
438   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
439   ** current SELECT is a correlated sub-query.
440   */
441   for(i=0; i<pDistinct->nExpr; i++){
442     Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr);
443     if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1;
444   }
445 
446   /* Loop through all indices on the table, checking each to see if it makes
447   ** the DISTINCT qualifier redundant. It does so if:
448   **
449   **   1. The index is itself UNIQUE, and
450   **
451   **   2. All of the columns in the index are either part of the pDistinct
452   **      list, or else the WHERE clause contains a term of the form "col=X",
453   **      where X is a constant value. The collation sequences of the
454   **      comparison and select-list expressions must match those of the index.
455   **
456   **   3. All of those index columns for which the WHERE clause does not
457   **      contain a "col=X" term are subject to a NOT NULL constraint.
458   */
459   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
460     if( !IsUniqueIndex(pIdx) ) continue;
461     for(i=0; i<pIdx->nKeyCol; i++){
462       if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
463         if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
464         if( indexColumnNotNull(pIdx, i)==0 ) break;
465       }
466     }
467     if( i==pIdx->nKeyCol ){
468       /* This index implies that the DISTINCT qualifier is redundant. */
469       return 1;
470     }
471   }
472 
473   return 0;
474 }
475 
476 
477 /*
478 ** Estimate the logarithm of the input value to base 2.
479 */
480 static LogEst estLog(LogEst N){
481   return N<=10 ? 0 : sqlite3LogEst(N) - 33;
482 }
483 
484 /*
485 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
486 **
487 ** This routine runs over generated VDBE code and translates OP_Column
488 ** opcodes into OP_Copy when the table is being accessed via co-routine
489 ** instead of via table lookup.
490 **
491 ** If the bIncrRowid parameter is 0, then any OP_Rowid instructions on
492 ** cursor iTabCur are transformed into OP_Null. Or, if bIncrRowid is non-zero,
493 ** then each OP_Rowid is transformed into an instruction to increment the
494 ** value stored in its output register.
495 */
496 static void translateColumnToCopy(
497   Vdbe *v,            /* The VDBE containing code to translate */
498   int iStart,         /* Translate from this opcode to the end */
499   int iTabCur,        /* OP_Column/OP_Rowid references to this table */
500   int iRegister,      /* The first column is in this register */
501   int bIncrRowid      /* If non-zero, transform OP_rowid to OP_AddImm(1) */
502 ){
503   VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
504   int iEnd = sqlite3VdbeCurrentAddr(v);
505   for(; iStart<iEnd; iStart++, pOp++){
506     if( pOp->p1!=iTabCur ) continue;
507     if( pOp->opcode==OP_Column ){
508       pOp->opcode = OP_Copy;
509       pOp->p1 = pOp->p2 + iRegister;
510       pOp->p2 = pOp->p3;
511       pOp->p3 = 0;
512     }else if( pOp->opcode==OP_Rowid ){
513       if( bIncrRowid ){
514         /* Increment the value stored in the P2 operand of the OP_Rowid. */
515         pOp->opcode = OP_AddImm;
516         pOp->p1 = pOp->p2;
517         pOp->p2 = 1;
518       }else{
519         pOp->opcode = OP_Null;
520         pOp->p1 = 0;
521         pOp->p3 = 0;
522       }
523     }
524   }
525 }
526 
527 /*
528 ** Two routines for printing the content of an sqlite3_index_info
529 ** structure.  Used for testing and debugging only.  If neither
530 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
531 ** are no-ops.
532 */
533 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
534 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
535   int i;
536   if( !sqlite3WhereTrace ) return;
537   for(i=0; i<p->nConstraint; i++){
538     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
539        i,
540        p->aConstraint[i].iColumn,
541        p->aConstraint[i].iTermOffset,
542        p->aConstraint[i].op,
543        p->aConstraint[i].usable);
544   }
545   for(i=0; i<p->nOrderBy; i++){
546     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
547        i,
548        p->aOrderBy[i].iColumn,
549        p->aOrderBy[i].desc);
550   }
551 }
552 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
553   int i;
554   if( !sqlite3WhereTrace ) return;
555   for(i=0; i<p->nConstraint; i++){
556     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
557        i,
558        p->aConstraintUsage[i].argvIndex,
559        p->aConstraintUsage[i].omit);
560   }
561   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
562   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
563   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
564   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
565   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
566 }
567 #else
568 #define TRACE_IDX_INPUTS(A)
569 #define TRACE_IDX_OUTPUTS(A)
570 #endif
571 
572 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
573 /*
574 ** Return TRUE if the WHERE clause term pTerm is of a form where it
575 ** could be used with an index to access pSrc, assuming an appropriate
576 ** index existed.
577 */
578 static int termCanDriveIndex(
579   WhereTerm *pTerm,              /* WHERE clause term to check */
580   struct SrcList_item *pSrc,     /* Table we are trying to access */
581   Bitmask notReady               /* Tables in outer loops of the join */
582 ){
583   char aff;
584   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
585   if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
586   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
587   if( pTerm->u.leftColumn<0 ) return 0;
588   aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
589   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
590   testcase( pTerm->pExpr->op==TK_IS );
591   return 1;
592 }
593 #endif
594 
595 
596 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
597 /*
598 ** Generate code to construct the Index object for an automatic index
599 ** and to set up the WhereLevel object pLevel so that the code generator
600 ** makes use of the automatic index.
601 */
602 static void constructAutomaticIndex(
603   Parse *pParse,              /* The parsing context */
604   WhereClause *pWC,           /* The WHERE clause */
605   struct SrcList_item *pSrc,  /* The FROM clause term to get the next index */
606   Bitmask notReady,           /* Mask of cursors that are not available */
607   WhereLevel *pLevel          /* Write new index here */
608 ){
609   int nKeyCol;                /* Number of columns in the constructed index */
610   WhereTerm *pTerm;           /* A single term of the WHERE clause */
611   WhereTerm *pWCEnd;          /* End of pWC->a[] */
612   Index *pIdx;                /* Object describing the transient index */
613   Vdbe *v;                    /* Prepared statement under construction */
614   int addrInit;               /* Address of the initialization bypass jump */
615   Table *pTable;              /* The table being indexed */
616   int addrTop;                /* Top of the index fill loop */
617   int regRecord;              /* Register holding an index record */
618   int n;                      /* Column counter */
619   int i;                      /* Loop counter */
620   int mxBitCol;               /* Maximum column in pSrc->colUsed */
621   CollSeq *pColl;             /* Collating sequence to on a column */
622   WhereLoop *pLoop;           /* The Loop object */
623   char *zNotUsed;             /* Extra space on the end of pIdx */
624   Bitmask idxCols;            /* Bitmap of columns used for indexing */
625   Bitmask extraCols;          /* Bitmap of additional columns */
626   u8 sentWarning = 0;         /* True if a warnning has been issued */
627   Expr *pPartial = 0;         /* Partial Index Expression */
628   int iContinue = 0;          /* Jump here to skip excluded rows */
629   struct SrcList_item *pTabItem;  /* FROM clause term being indexed */
630   int addrCounter = 0;        /* Address where integer counter is initialized */
631   int regBase;                /* Array of registers where record is assembled */
632 
633   /* Generate code to skip over the creation and initialization of the
634   ** transient index on 2nd and subsequent iterations of the loop. */
635   v = pParse->pVdbe;
636   assert( v!=0 );
637   addrInit = sqlite3CodeOnce(pParse); VdbeCoverage(v);
638 
639   /* Count the number of columns that will be added to the index
640   ** and used to match WHERE clause constraints */
641   nKeyCol = 0;
642   pTable = pSrc->pTab;
643   pWCEnd = &pWC->a[pWC->nTerm];
644   pLoop = pLevel->pWLoop;
645   idxCols = 0;
646   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
647     Expr *pExpr = pTerm->pExpr;
648     assert( !ExprHasProperty(pExpr, EP_FromJoin)    /* prereq always non-zero */
649          || pExpr->iRightJoinTable!=pSrc->iCursor   /*   for the right-hand   */
650          || pLoop->prereq!=0 );                     /*   table of a LEFT JOIN */
651     if( pLoop->prereq==0
652      && (pTerm->wtFlags & TERM_VIRTUAL)==0
653      && !ExprHasProperty(pExpr, EP_FromJoin)
654      && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){
655       pPartial = sqlite3ExprAnd(pParse->db, pPartial,
656                                 sqlite3ExprDup(pParse->db, pExpr, 0));
657     }
658     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
659       int iCol = pTerm->u.leftColumn;
660       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
661       testcase( iCol==BMS );
662       testcase( iCol==BMS-1 );
663       if( !sentWarning ){
664         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
665             "automatic index on %s(%s)", pTable->zName,
666             pTable->aCol[iCol].zName);
667         sentWarning = 1;
668       }
669       if( (idxCols & cMask)==0 ){
670         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
671           goto end_auto_index_create;
672         }
673         pLoop->aLTerm[nKeyCol++] = pTerm;
674         idxCols |= cMask;
675       }
676     }
677   }
678   assert( nKeyCol>0 );
679   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
680   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
681                      | WHERE_AUTO_INDEX;
682 
683   /* Count the number of additional columns needed to create a
684   ** covering index.  A "covering index" is an index that contains all
685   ** columns that are needed by the query.  With a covering index, the
686   ** original table never needs to be accessed.  Automatic indices must
687   ** be a covering index because the index will not be updated if the
688   ** original table changes and the index and table cannot both be used
689   ** if they go out of sync.
690   */
691   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
692   mxBitCol = MIN(BMS-1,pTable->nCol);
693   testcase( pTable->nCol==BMS-1 );
694   testcase( pTable->nCol==BMS-2 );
695   for(i=0; i<mxBitCol; i++){
696     if( extraCols & MASKBIT(i) ) nKeyCol++;
697   }
698   if( pSrc->colUsed & MASKBIT(BMS-1) ){
699     nKeyCol += pTable->nCol - BMS + 1;
700   }
701 
702   /* Construct the Index object to describe this index */
703   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
704   if( pIdx==0 ) goto end_auto_index_create;
705   pLoop->u.btree.pIndex = pIdx;
706   pIdx->zName = "auto-index";
707   pIdx->pTable = pTable;
708   n = 0;
709   idxCols = 0;
710   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
711     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
712       int iCol = pTerm->u.leftColumn;
713       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
714       testcase( iCol==BMS-1 );
715       testcase( iCol==BMS );
716       if( (idxCols & cMask)==0 ){
717         Expr *pX = pTerm->pExpr;
718         idxCols |= cMask;
719         pIdx->aiColumn[n] = pTerm->u.leftColumn;
720         pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
721         pIdx->azColl[n] = pColl ? pColl->zName : "BINARY";
722         n++;
723       }
724     }
725   }
726   assert( (u32)n==pLoop->u.btree.nEq );
727 
728   /* Add additional columns needed to make the automatic index into
729   ** a covering index */
730   for(i=0; i<mxBitCol; i++){
731     if( extraCols & MASKBIT(i) ){
732       pIdx->aiColumn[n] = i;
733       pIdx->azColl[n] = "BINARY";
734       n++;
735     }
736   }
737   if( pSrc->colUsed & MASKBIT(BMS-1) ){
738     for(i=BMS-1; i<pTable->nCol; i++){
739       pIdx->aiColumn[n] = i;
740       pIdx->azColl[n] = "BINARY";
741       n++;
742     }
743   }
744   assert( n==nKeyCol );
745   pIdx->aiColumn[n] = XN_ROWID;
746   pIdx->azColl[n] = "BINARY";
747 
748   /* Create the automatic index */
749   assert( pLevel->iIdxCur>=0 );
750   pLevel->iIdxCur = pParse->nTab++;
751   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
752   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
753   VdbeComment((v, "for %s", pTable->zName));
754 
755   /* Fill the automatic index with content */
756   sqlite3ExprCachePush(pParse);
757   pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
758   if( pTabItem->fg.viaCoroutine ){
759     int regYield = pTabItem->regReturn;
760     addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
761     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
762     addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
763     VdbeCoverage(v);
764     VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
765   }else{
766     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
767   }
768   if( pPartial ){
769     iContinue = sqlite3VdbeMakeLabel(v);
770     sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
771     pLoop->wsFlags |= WHERE_PARTIALIDX;
772   }
773   regRecord = sqlite3GetTempReg(pParse);
774   regBase = sqlite3GenerateIndexKey(
775       pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
776   );
777   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
778   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
779   if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
780   if( pTabItem->fg.viaCoroutine ){
781     sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
782     translateColumnToCopy(v, addrTop, pLevel->iTabCur, pTabItem->regResult, 1);
783     sqlite3VdbeGoto(v, addrTop);
784     pTabItem->fg.viaCoroutine = 0;
785   }else{
786     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
787   }
788   sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
789   sqlite3VdbeJumpHere(v, addrTop);
790   sqlite3ReleaseTempReg(pParse, regRecord);
791   sqlite3ExprCachePop(pParse);
792 
793   /* Jump here when skipping the initialization */
794   sqlite3VdbeJumpHere(v, addrInit);
795 
796 end_auto_index_create:
797   sqlite3ExprDelete(pParse->db, pPartial);
798 }
799 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
800 
801 #ifndef SQLITE_OMIT_VIRTUALTABLE
802 /*
803 ** Allocate and populate an sqlite3_index_info structure. It is the
804 ** responsibility of the caller to eventually release the structure
805 ** by passing the pointer returned by this function to sqlite3_free().
806 */
807 static sqlite3_index_info *allocateIndexInfo(
808   Parse *pParse,
809   WhereClause *pWC,
810   Bitmask mUnusable,              /* Ignore terms with these prereqs */
811   struct SrcList_item *pSrc,
812   ExprList *pOrderBy
813 ){
814   int i, j;
815   int nTerm;
816   struct sqlite3_index_constraint *pIdxCons;
817   struct sqlite3_index_orderby *pIdxOrderBy;
818   struct sqlite3_index_constraint_usage *pUsage;
819   WhereTerm *pTerm;
820   int nOrderBy;
821   sqlite3_index_info *pIdxInfo;
822 
823   /* Count the number of possible WHERE clause constraints referring
824   ** to this virtual table */
825   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
826     if( pTerm->leftCursor != pSrc->iCursor ) continue;
827     if( pTerm->prereqRight & mUnusable ) continue;
828     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
829     testcase( pTerm->eOperator & WO_IN );
830     testcase( pTerm->eOperator & WO_ISNULL );
831     testcase( pTerm->eOperator & WO_IS );
832     testcase( pTerm->eOperator & WO_ALL );
833     if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue;
834     if( pTerm->wtFlags & TERM_VNULL ) continue;
835     assert( pTerm->u.leftColumn>=(-1) );
836     nTerm++;
837   }
838 
839   /* If the ORDER BY clause contains only columns in the current
840   ** virtual table then allocate space for the aOrderBy part of
841   ** the sqlite3_index_info structure.
842   */
843   nOrderBy = 0;
844   if( pOrderBy ){
845     int n = pOrderBy->nExpr;
846     for(i=0; i<n; i++){
847       Expr *pExpr = pOrderBy->a[i].pExpr;
848       if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
849     }
850     if( i==n){
851       nOrderBy = n;
852     }
853   }
854 
855   /* Allocate the sqlite3_index_info structure
856   */
857   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
858                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
859                            + sizeof(*pIdxOrderBy)*nOrderBy );
860   if( pIdxInfo==0 ){
861     sqlite3ErrorMsg(pParse, "out of memory");
862     return 0;
863   }
864 
865   /* Initialize the structure.  The sqlite3_index_info structure contains
866   ** many fields that are declared "const" to prevent xBestIndex from
867   ** changing them.  We have to do some funky casting in order to
868   ** initialize those fields.
869   */
870   pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
871   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
872   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
873   *(int*)&pIdxInfo->nConstraint = nTerm;
874   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
875   *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
876   *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
877   *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
878                                                                    pUsage;
879 
880   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
881     u8 op;
882     if( pTerm->leftCursor != pSrc->iCursor ) continue;
883     if( pTerm->prereqRight & mUnusable ) continue;
884     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
885     testcase( pTerm->eOperator & WO_IN );
886     testcase( pTerm->eOperator & WO_IS );
887     testcase( pTerm->eOperator & WO_ISNULL );
888     testcase( pTerm->eOperator & WO_ALL );
889     if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue;
890     if( pTerm->wtFlags & TERM_VNULL ) continue;
891     assert( pTerm->u.leftColumn>=(-1) );
892     pIdxCons[j].iColumn = pTerm->u.leftColumn;
893     pIdxCons[j].iTermOffset = i;
894     op = (u8)pTerm->eOperator & WO_ALL;
895     if( op==WO_IN ) op = WO_EQ;
896     pIdxCons[j].op = op;
897     /* The direct assignment in the previous line is possible only because
898     ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
899     ** following asserts verify this fact. */
900     assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
901     assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
902     assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
903     assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
904     assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
905     assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
906     assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
907     j++;
908   }
909   for(i=0; i<nOrderBy; i++){
910     Expr *pExpr = pOrderBy->a[i].pExpr;
911     pIdxOrderBy[i].iColumn = pExpr->iColumn;
912     pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
913   }
914 
915   return pIdxInfo;
916 }
917 
918 /*
919 ** The table object reference passed as the second argument to this function
920 ** must represent a virtual table. This function invokes the xBestIndex()
921 ** method of the virtual table with the sqlite3_index_info object that
922 ** comes in as the 3rd argument to this function.
923 **
924 ** If an error occurs, pParse is populated with an error message and a
925 ** non-zero value is returned. Otherwise, 0 is returned and the output
926 ** part of the sqlite3_index_info structure is left populated.
927 **
928 ** Whether or not an error is returned, it is the responsibility of the
929 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
930 ** that this is required.
931 */
932 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
933   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
934   int i;
935   int rc;
936 
937   TRACE_IDX_INPUTS(p);
938   rc = pVtab->pModule->xBestIndex(pVtab, p);
939   TRACE_IDX_OUTPUTS(p);
940 
941   if( rc!=SQLITE_OK ){
942     if( rc==SQLITE_NOMEM ){
943       pParse->db->mallocFailed = 1;
944     }else if( !pVtab->zErrMsg ){
945       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
946     }else{
947       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
948     }
949   }
950   sqlite3_free(pVtab->zErrMsg);
951   pVtab->zErrMsg = 0;
952 
953   for(i=0; i<p->nConstraint; i++){
954     if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
955       sqlite3ErrorMsg(pParse,
956           "table %s: xBestIndex returned an invalid plan", pTab->zName);
957     }
958   }
959 
960   return pParse->nErr;
961 }
962 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
963 
964 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
965 /*
966 ** Estimate the location of a particular key among all keys in an
967 ** index.  Store the results in aStat as follows:
968 **
969 **    aStat[0]      Est. number of rows less than pRec
970 **    aStat[1]      Est. number of rows equal to pRec
971 **
972 ** Return the index of the sample that is the smallest sample that
973 ** is greater than or equal to pRec. Note that this index is not an index
974 ** into the aSample[] array - it is an index into a virtual set of samples
975 ** based on the contents of aSample[] and the number of fields in record
976 ** pRec.
977 */
978 static int whereKeyStats(
979   Parse *pParse,              /* Database connection */
980   Index *pIdx,                /* Index to consider domain of */
981   UnpackedRecord *pRec,       /* Vector of values to consider */
982   int roundUp,                /* Round up if true.  Round down if false */
983   tRowcnt *aStat              /* OUT: stats written here */
984 ){
985   IndexSample *aSample = pIdx->aSample;
986   int iCol;                   /* Index of required stats in anEq[] etc. */
987   int i;                      /* Index of first sample >= pRec */
988   int iSample;                /* Smallest sample larger than or equal to pRec */
989   int iMin = 0;               /* Smallest sample not yet tested */
990   int iTest;                  /* Next sample to test */
991   int res;                    /* Result of comparison operation */
992   int nField;                 /* Number of fields in pRec */
993   tRowcnt iLower = 0;         /* anLt[] + anEq[] of largest sample pRec is > */
994 
995 #ifndef SQLITE_DEBUG
996   UNUSED_PARAMETER( pParse );
997 #endif
998   assert( pRec!=0 );
999   assert( pIdx->nSample>0 );
1000   assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
1001 
1002   /* Do a binary search to find the first sample greater than or equal
1003   ** to pRec. If pRec contains a single field, the set of samples to search
1004   ** is simply the aSample[] array. If the samples in aSample[] contain more
1005   ** than one fields, all fields following the first are ignored.
1006   **
1007   ** If pRec contains N fields, where N is more than one, then as well as the
1008   ** samples in aSample[] (truncated to N fields), the search also has to
1009   ** consider prefixes of those samples. For example, if the set of samples
1010   ** in aSample is:
1011   **
1012   **     aSample[0] = (a, 5)
1013   **     aSample[1] = (a, 10)
1014   **     aSample[2] = (b, 5)
1015   **     aSample[3] = (c, 100)
1016   **     aSample[4] = (c, 105)
1017   **
1018   ** Then the search space should ideally be the samples above and the
1019   ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1020   ** the code actually searches this set:
1021   **
1022   **     0: (a)
1023   **     1: (a, 5)
1024   **     2: (a, 10)
1025   **     3: (a, 10)
1026   **     4: (b)
1027   **     5: (b, 5)
1028   **     6: (c)
1029   **     7: (c, 100)
1030   **     8: (c, 105)
1031   **     9: (c, 105)
1032   **
1033   ** For each sample in the aSample[] array, N samples are present in the
1034   ** effective sample array. In the above, samples 0 and 1 are based on
1035   ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1036   **
1037   ** Often, sample i of each block of N effective samples has (i+1) fields.
1038   ** Except, each sample may be extended to ensure that it is greater than or
1039   ** equal to the previous sample in the array. For example, in the above,
1040   ** sample 2 is the first sample of a block of N samples, so at first it
1041   ** appears that it should be 1 field in size. However, that would make it
1042   ** smaller than sample 1, so the binary search would not work. As a result,
1043   ** it is extended to two fields. The duplicates that this creates do not
1044   ** cause any problems.
1045   */
1046   nField = pRec->nField;
1047   iCol = 0;
1048   iSample = pIdx->nSample * nField;
1049   do{
1050     int iSamp;                    /* Index in aSample[] of test sample */
1051     int n;                        /* Number of fields in test sample */
1052 
1053     iTest = (iMin+iSample)/2;
1054     iSamp = iTest / nField;
1055     if( iSamp>0 ){
1056       /* The proposed effective sample is a prefix of sample aSample[iSamp].
1057       ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1058       ** fields that is greater than the previous effective sample.  */
1059       for(n=(iTest % nField) + 1; n<nField; n++){
1060         if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1061       }
1062     }else{
1063       n = iTest + 1;
1064     }
1065 
1066     pRec->nField = n;
1067     res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1068     if( res<0 ){
1069       iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1070       iMin = iTest+1;
1071     }else if( res==0 && n<nField ){
1072       iLower = aSample[iSamp].anLt[n-1];
1073       iMin = iTest+1;
1074       res = -1;
1075     }else{
1076       iSample = iTest;
1077       iCol = n-1;
1078     }
1079   }while( res && iMin<iSample );
1080   i = iSample / nField;
1081 
1082 #ifdef SQLITE_DEBUG
1083   /* The following assert statements check that the binary search code
1084   ** above found the right answer. This block serves no purpose other
1085   ** than to invoke the asserts.  */
1086   if( pParse->db->mallocFailed==0 ){
1087     if( res==0 ){
1088       /* If (res==0) is true, then pRec must be equal to sample i. */
1089       assert( i<pIdx->nSample );
1090       assert( iCol==nField-1 );
1091       pRec->nField = nField;
1092       assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1093            || pParse->db->mallocFailed
1094       );
1095     }else{
1096       /* Unless i==pIdx->nSample, indicating that pRec is larger than
1097       ** all samples in the aSample[] array, pRec must be smaller than the
1098       ** (iCol+1) field prefix of sample i.  */
1099       assert( i<=pIdx->nSample && i>=0 );
1100       pRec->nField = iCol+1;
1101       assert( i==pIdx->nSample
1102            || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1103            || pParse->db->mallocFailed );
1104 
1105       /* if i==0 and iCol==0, then record pRec is smaller than all samples
1106       ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1107       ** be greater than or equal to the (iCol) field prefix of sample i.
1108       ** If (i>0), then pRec must also be greater than sample (i-1).  */
1109       if( iCol>0 ){
1110         pRec->nField = iCol;
1111         assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1112              || pParse->db->mallocFailed );
1113       }
1114       if( i>0 ){
1115         pRec->nField = nField;
1116         assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1117              || pParse->db->mallocFailed );
1118       }
1119     }
1120   }
1121 #endif /* ifdef SQLITE_DEBUG */
1122 
1123   if( res==0 ){
1124     /* Record pRec is equal to sample i */
1125     assert( iCol==nField-1 );
1126     aStat[0] = aSample[i].anLt[iCol];
1127     aStat[1] = aSample[i].anEq[iCol];
1128   }else{
1129     /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1130     ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1131     ** is larger than all samples in the array. */
1132     tRowcnt iUpper, iGap;
1133     if( i>=pIdx->nSample ){
1134       iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1135     }else{
1136       iUpper = aSample[i].anLt[iCol];
1137     }
1138 
1139     if( iLower>=iUpper ){
1140       iGap = 0;
1141     }else{
1142       iGap = iUpper - iLower;
1143     }
1144     if( roundUp ){
1145       iGap = (iGap*2)/3;
1146     }else{
1147       iGap = iGap/3;
1148     }
1149     aStat[0] = iLower + iGap;
1150     aStat[1] = pIdx->aAvgEq[iCol];
1151   }
1152 
1153   /* Restore the pRec->nField value before returning.  */
1154   pRec->nField = nField;
1155   return i;
1156 }
1157 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1158 
1159 /*
1160 ** If it is not NULL, pTerm is a term that provides an upper or lower
1161 ** bound on a range scan. Without considering pTerm, it is estimated
1162 ** that the scan will visit nNew rows. This function returns the number
1163 ** estimated to be visited after taking pTerm into account.
1164 **
1165 ** If the user explicitly specified a likelihood() value for this term,
1166 ** then the return value is the likelihood multiplied by the number of
1167 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1168 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1169 */
1170 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1171   LogEst nRet = nNew;
1172   if( pTerm ){
1173     if( pTerm->truthProb<=0 ){
1174       nRet += pTerm->truthProb;
1175     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1176       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
1177     }
1178   }
1179   return nRet;
1180 }
1181 
1182 
1183 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1184 /*
1185 ** Return the affinity for a single column of an index.
1186 */
1187 static char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1188   assert( iCol>=0 && iCol<pIdx->nColumn );
1189   if( !pIdx->zColAff ){
1190     if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1191   }
1192   return pIdx->zColAff[iCol];
1193 }
1194 #endif
1195 
1196 
1197 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1198 /*
1199 ** This function is called to estimate the number of rows visited by a
1200 ** range-scan on a skip-scan index. For example:
1201 **
1202 **   CREATE INDEX i1 ON t1(a, b, c);
1203 **   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1204 **
1205 ** Value pLoop->nOut is currently set to the estimated number of rows
1206 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1207 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1208 ** on the stat4 data for the index. this scan will be peformed multiple
1209 ** times (once for each (a,b) combination that matches a=?) is dealt with
1210 ** by the caller.
1211 **
1212 ** It does this by scanning through all stat4 samples, comparing values
1213 ** extracted from pLower and pUpper with the corresponding column in each
1214 ** sample. If L and U are the number of samples found to be less than or
1215 ** equal to the values extracted from pLower and pUpper respectively, and
1216 ** N is the total number of samples, the pLoop->nOut value is adjusted
1217 ** as follows:
1218 **
1219 **   nOut = nOut * ( min(U - L, 1) / N )
1220 **
1221 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1222 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1223 ** U is set to N.
1224 **
1225 ** Normally, this function sets *pbDone to 1 before returning. However,
1226 ** if no value can be extracted from either pLower or pUpper (and so the
1227 ** estimate of the number of rows delivered remains unchanged), *pbDone
1228 ** is left as is.
1229 **
1230 ** If an error occurs, an SQLite error code is returned. Otherwise,
1231 ** SQLITE_OK.
1232 */
1233 static int whereRangeSkipScanEst(
1234   Parse *pParse,       /* Parsing & code generating context */
1235   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1236   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1237   WhereLoop *pLoop,    /* Update the .nOut value of this loop */
1238   int *pbDone          /* Set to true if at least one expr. value extracted */
1239 ){
1240   Index *p = pLoop->u.btree.pIndex;
1241   int nEq = pLoop->u.btree.nEq;
1242   sqlite3 *db = pParse->db;
1243   int nLower = -1;
1244   int nUpper = p->nSample+1;
1245   int rc = SQLITE_OK;
1246   u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1247   CollSeq *pColl;
1248 
1249   sqlite3_value *p1 = 0;          /* Value extracted from pLower */
1250   sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
1251   sqlite3_value *pVal = 0;        /* Value extracted from record */
1252 
1253   pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1254   if( pLower ){
1255     rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1256     nLower = 0;
1257   }
1258   if( pUpper && rc==SQLITE_OK ){
1259     rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1260     nUpper = p2 ? 0 : p->nSample;
1261   }
1262 
1263   if( p1 || p2 ){
1264     int i;
1265     int nDiff;
1266     for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1267       rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1268       if( rc==SQLITE_OK && p1 ){
1269         int res = sqlite3MemCompare(p1, pVal, pColl);
1270         if( res>=0 ) nLower++;
1271       }
1272       if( rc==SQLITE_OK && p2 ){
1273         int res = sqlite3MemCompare(p2, pVal, pColl);
1274         if( res>=0 ) nUpper++;
1275       }
1276     }
1277     nDiff = (nUpper - nLower);
1278     if( nDiff<=0 ) nDiff = 1;
1279 
1280     /* If there is both an upper and lower bound specified, and the
1281     ** comparisons indicate that they are close together, use the fallback
1282     ** method (assume that the scan visits 1/64 of the rows) for estimating
1283     ** the number of rows visited. Otherwise, estimate the number of rows
1284     ** using the method described in the header comment for this function. */
1285     if( nDiff!=1 || pUpper==0 || pLower==0 ){
1286       int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1287       pLoop->nOut -= nAdjust;
1288       *pbDone = 1;
1289       WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n",
1290                            nLower, nUpper, nAdjust*-1, pLoop->nOut));
1291     }
1292 
1293   }else{
1294     assert( *pbDone==0 );
1295   }
1296 
1297   sqlite3ValueFree(p1);
1298   sqlite3ValueFree(p2);
1299   sqlite3ValueFree(pVal);
1300 
1301   return rc;
1302 }
1303 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1304 
1305 /*
1306 ** This function is used to estimate the number of rows that will be visited
1307 ** by scanning an index for a range of values. The range may have an upper
1308 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1309 ** and lower bounds are represented by pLower and pUpper respectively. For
1310 ** example, assuming that index p is on t1(a):
1311 **
1312 **   ... FROM t1 WHERE a > ? AND a < ? ...
1313 **                    |_____|   |_____|
1314 **                       |         |
1315 **                     pLower    pUpper
1316 **
1317 ** If either of the upper or lower bound is not present, then NULL is passed in
1318 ** place of the corresponding WhereTerm.
1319 **
1320 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1321 ** column subject to the range constraint. Or, equivalently, the number of
1322 ** equality constraints optimized by the proposed index scan. For example,
1323 ** assuming index p is on t1(a, b), and the SQL query is:
1324 **
1325 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1326 **
1327 ** then nEq is set to 1 (as the range restricted column, b, is the second
1328 ** left-most column of the index). Or, if the query is:
1329 **
1330 **   ... FROM t1 WHERE a > ? AND a < ? ...
1331 **
1332 ** then nEq is set to 0.
1333 **
1334 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1335 ** number of rows that the index scan is expected to visit without
1336 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1337 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1338 ** to account for the range constraints pLower and pUpper.
1339 **
1340 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1341 ** used, a single range inequality reduces the search space by a factor of 4.
1342 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1343 ** rows visited by a factor of 64.
1344 */
1345 static int whereRangeScanEst(
1346   Parse *pParse,       /* Parsing & code generating context */
1347   WhereLoopBuilder *pBuilder,
1348   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1349   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1350   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
1351 ){
1352   int rc = SQLITE_OK;
1353   int nOut = pLoop->nOut;
1354   LogEst nNew;
1355 
1356 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1357   Index *p = pLoop->u.btree.pIndex;
1358   int nEq = pLoop->u.btree.nEq;
1359 
1360   if( p->nSample>0 && nEq<p->nSampleCol ){
1361     if( nEq==pBuilder->nRecValid ){
1362       UnpackedRecord *pRec = pBuilder->pRec;
1363       tRowcnt a[2];
1364       u8 aff;
1365 
1366       /* Variable iLower will be set to the estimate of the number of rows in
1367       ** the index that are less than the lower bound of the range query. The
1368       ** lower bound being the concatenation of $P and $L, where $P is the
1369       ** key-prefix formed by the nEq values matched against the nEq left-most
1370       ** columns of the index, and $L is the value in pLower.
1371       **
1372       ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1373       ** is not a simple variable or literal value), the lower bound of the
1374       ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1375       ** if $L is available, whereKeyStats() is called for both ($P) and
1376       ** ($P:$L) and the larger of the two returned values is used.
1377       **
1378       ** Similarly, iUpper is to be set to the estimate of the number of rows
1379       ** less than the upper bound of the range query. Where the upper bound
1380       ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1381       ** of iUpper are requested of whereKeyStats() and the smaller used.
1382       **
1383       ** The number of rows between the two bounds is then just iUpper-iLower.
1384       */
1385       tRowcnt iLower;     /* Rows less than the lower bound */
1386       tRowcnt iUpper;     /* Rows less than the upper bound */
1387       int iLwrIdx = -2;   /* aSample[] for the lower bound */
1388       int iUprIdx = -1;   /* aSample[] for the upper bound */
1389 
1390       if( pRec ){
1391         testcase( pRec->nField!=pBuilder->nRecValid );
1392         pRec->nField = pBuilder->nRecValid;
1393       }
1394       aff = sqlite3IndexColumnAffinity(pParse->db, p, nEq);
1395       assert( nEq!=p->nKeyCol || aff==SQLITE_AFF_INTEGER );
1396       /* Determine iLower and iUpper using ($P) only. */
1397       if( nEq==0 ){
1398         iLower = 0;
1399         iUpper = p->nRowEst0;
1400       }else{
1401         /* Note: this call could be optimized away - since the same values must
1402         ** have been requested when testing key $P in whereEqualScanEst().  */
1403         whereKeyStats(pParse, p, pRec, 0, a);
1404         iLower = a[0];
1405         iUpper = a[0] + a[1];
1406       }
1407 
1408       assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1409       assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1410       assert( p->aSortOrder!=0 );
1411       if( p->aSortOrder[nEq] ){
1412         /* The roles of pLower and pUpper are swapped for a DESC index */
1413         SWAP(WhereTerm*, pLower, pUpper);
1414       }
1415 
1416       /* If possible, improve on the iLower estimate using ($P:$L). */
1417       if( pLower ){
1418         int bOk;                    /* True if value is extracted from pExpr */
1419         Expr *pExpr = pLower->pExpr->pRight;
1420         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
1421         if( rc==SQLITE_OK && bOk ){
1422           tRowcnt iNew;
1423           iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1424           iNew = a[0] + ((pLower->eOperator & (WO_GT|WO_LE)) ? a[1] : 0);
1425           if( iNew>iLower ) iLower = iNew;
1426           nOut--;
1427           pLower = 0;
1428         }
1429       }
1430 
1431       /* If possible, improve on the iUpper estimate using ($P:$U). */
1432       if( pUpper ){
1433         int bOk;                    /* True if value is extracted from pExpr */
1434         Expr *pExpr = pUpper->pExpr->pRight;
1435         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
1436         if( rc==SQLITE_OK && bOk ){
1437           tRowcnt iNew;
1438           iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1439           iNew = a[0] + ((pUpper->eOperator & (WO_GT|WO_LE)) ? a[1] : 0);
1440           if( iNew<iUpper ) iUpper = iNew;
1441           nOut--;
1442           pUpper = 0;
1443         }
1444       }
1445 
1446       pBuilder->pRec = pRec;
1447       if( rc==SQLITE_OK ){
1448         if( iUpper>iLower ){
1449           nNew = sqlite3LogEst(iUpper - iLower);
1450           /* TUNING:  If both iUpper and iLower are derived from the same
1451           ** sample, then assume they are 4x more selective.  This brings
1452           ** the estimated selectivity more in line with what it would be
1453           ** if estimated without the use of STAT3/4 tables. */
1454           if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
1455         }else{
1456           nNew = 10;        assert( 10==sqlite3LogEst(2) );
1457         }
1458         if( nNew<nOut ){
1459           nOut = nNew;
1460         }
1461         WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
1462                            (u32)iLower, (u32)iUpper, nOut));
1463       }
1464     }else{
1465       int bDone = 0;
1466       rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1467       if( bDone ) return rc;
1468     }
1469   }
1470 #else
1471   UNUSED_PARAMETER(pParse);
1472   UNUSED_PARAMETER(pBuilder);
1473   assert( pLower || pUpper );
1474 #endif
1475   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1476   nNew = whereRangeAdjust(pLower, nOut);
1477   nNew = whereRangeAdjust(pUpper, nNew);
1478 
1479   /* TUNING: If there is both an upper and lower limit and neither limit
1480   ** has an application-defined likelihood(), assume the range is
1481   ** reduced by an additional 75%. This means that, by default, an open-ended
1482   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1483   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1484   ** match 1/64 of the index. */
1485   if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1486     nNew -= 20;
1487   }
1488 
1489   nOut -= (pLower!=0) + (pUpper!=0);
1490   if( nNew<10 ) nNew = 10;
1491   if( nNew<nOut ) nOut = nNew;
1492 #if defined(WHERETRACE_ENABLED)
1493   if( pLoop->nOut>nOut ){
1494     WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1495                     pLoop->nOut, nOut));
1496   }
1497 #endif
1498   pLoop->nOut = (LogEst)nOut;
1499   return rc;
1500 }
1501 
1502 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1503 /*
1504 ** Estimate the number of rows that will be returned based on
1505 ** an equality constraint x=VALUE and where that VALUE occurs in
1506 ** the histogram data.  This only works when x is the left-most
1507 ** column of an index and sqlite_stat3 histogram data is available
1508 ** for that index.  When pExpr==NULL that means the constraint is
1509 ** "x IS NULL" instead of "x=VALUE".
1510 **
1511 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1512 ** If unable to make an estimate, leave *pnRow unchanged and return
1513 ** non-zero.
1514 **
1515 ** This routine can fail if it is unable to load a collating sequence
1516 ** required for string comparison, or if unable to allocate memory
1517 ** for a UTF conversion required for comparison.  The error is stored
1518 ** in the pParse structure.
1519 */
1520 static int whereEqualScanEst(
1521   Parse *pParse,       /* Parsing & code generating context */
1522   WhereLoopBuilder *pBuilder,
1523   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
1524   tRowcnt *pnRow       /* Write the revised row estimate here */
1525 ){
1526   Index *p = pBuilder->pNew->u.btree.pIndex;
1527   int nEq = pBuilder->pNew->u.btree.nEq;
1528   UnpackedRecord *pRec = pBuilder->pRec;
1529   u8 aff;                   /* Column affinity */
1530   int rc;                   /* Subfunction return code */
1531   tRowcnt a[2];             /* Statistics */
1532   int bOk;
1533 
1534   assert( nEq>=1 );
1535   assert( nEq<=p->nColumn );
1536   assert( p->aSample!=0 );
1537   assert( p->nSample>0 );
1538   assert( pBuilder->nRecValid<nEq );
1539 
1540   /* If values are not available for all fields of the index to the left
1541   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1542   if( pBuilder->nRecValid<(nEq-1) ){
1543     return SQLITE_NOTFOUND;
1544   }
1545 
1546   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1547   ** below would return the same value.  */
1548   if( nEq>=p->nColumn ){
1549     *pnRow = 1;
1550     return SQLITE_OK;
1551   }
1552 
1553   aff = sqlite3IndexColumnAffinity(pParse->db, p, nEq-1);
1554   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq-1, &bOk);
1555   pBuilder->pRec = pRec;
1556   if( rc!=SQLITE_OK ) return rc;
1557   if( bOk==0 ) return SQLITE_NOTFOUND;
1558   pBuilder->nRecValid = nEq;
1559 
1560   whereKeyStats(pParse, p, pRec, 0, a);
1561   WHERETRACE(0x10,("equality scan regions: %d\n", (int)a[1]));
1562   *pnRow = a[1];
1563 
1564   return rc;
1565 }
1566 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1567 
1568 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1569 /*
1570 ** Estimate the number of rows that will be returned based on
1571 ** an IN constraint where the right-hand side of the IN operator
1572 ** is a list of values.  Example:
1573 **
1574 **        WHERE x IN (1,2,3,4)
1575 **
1576 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1577 ** If unable to make an estimate, leave *pnRow unchanged and return
1578 ** non-zero.
1579 **
1580 ** This routine can fail if it is unable to load a collating sequence
1581 ** required for string comparison, or if unable to allocate memory
1582 ** for a UTF conversion required for comparison.  The error is stored
1583 ** in the pParse structure.
1584 */
1585 static int whereInScanEst(
1586   Parse *pParse,       /* Parsing & code generating context */
1587   WhereLoopBuilder *pBuilder,
1588   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1589   tRowcnt *pnRow       /* Write the revised row estimate here */
1590 ){
1591   Index *p = pBuilder->pNew->u.btree.pIndex;
1592   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1593   int nRecValid = pBuilder->nRecValid;
1594   int rc = SQLITE_OK;     /* Subfunction return code */
1595   tRowcnt nEst;           /* Number of rows for a single term */
1596   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
1597   int i;                  /* Loop counter */
1598 
1599   assert( p->aSample!=0 );
1600   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
1601     nEst = nRow0;
1602     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
1603     nRowEst += nEst;
1604     pBuilder->nRecValid = nRecValid;
1605   }
1606 
1607   if( rc==SQLITE_OK ){
1608     if( nRowEst > nRow0 ) nRowEst = nRow0;
1609     *pnRow = nRowEst;
1610     WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
1611   }
1612   assert( pBuilder->nRecValid==nRecValid );
1613   return rc;
1614 }
1615 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1616 
1617 
1618 #ifdef WHERETRACE_ENABLED
1619 /*
1620 ** Print the content of a WhereTerm object
1621 */
1622 static void whereTermPrint(WhereTerm *pTerm, int iTerm){
1623   if( pTerm==0 ){
1624     sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
1625   }else{
1626     char zType[4];
1627     memcpy(zType, "...", 4);
1628     if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
1629     if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
1630     if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
1631     sqlite3DebugPrintf(
1632        "TERM-%-3d %p %s cursor=%-3d prob=%-3d op=0x%03x wtFlags=0x%04x\n",
1633        iTerm, pTerm, zType, pTerm->leftCursor, pTerm->truthProb,
1634        pTerm->eOperator, pTerm->wtFlags);
1635     sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
1636   }
1637 }
1638 #endif
1639 
1640 #ifdef WHERETRACE_ENABLED
1641 /*
1642 ** Print a WhereLoop object for debugging purposes
1643 */
1644 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){
1645   WhereInfo *pWInfo = pWC->pWInfo;
1646   int nb = 1+(pWInfo->pTabList->nSrc+7)/8;
1647   struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab;
1648   Table *pTab = pItem->pTab;
1649   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
1650                      p->iTab, nb, p->maskSelf, nb, p->prereq);
1651   sqlite3DebugPrintf(" %12s",
1652                      pItem->zAlias ? pItem->zAlias : pTab->zName);
1653   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
1654     const char *zName;
1655     if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
1656       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
1657         int i = sqlite3Strlen30(zName) - 1;
1658         while( zName[i]!='_' ) i--;
1659         zName += i;
1660       }
1661       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
1662     }else{
1663       sqlite3DebugPrintf("%20s","");
1664     }
1665   }else{
1666     char *z;
1667     if( p->u.vtab.idxStr ){
1668       z = sqlite3_mprintf("(%d,\"%s\",%x)",
1669                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
1670     }else{
1671       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
1672     }
1673     sqlite3DebugPrintf(" %-19s", z);
1674     sqlite3_free(z);
1675   }
1676   if( p->wsFlags & WHERE_SKIPSCAN ){
1677     sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
1678   }else{
1679     sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
1680   }
1681   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
1682   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
1683     int i;
1684     for(i=0; i<p->nLTerm; i++){
1685       whereTermPrint(p->aLTerm[i], i);
1686     }
1687   }
1688 }
1689 #endif
1690 
1691 /*
1692 ** Convert bulk memory into a valid WhereLoop that can be passed
1693 ** to whereLoopClear harmlessly.
1694 */
1695 static void whereLoopInit(WhereLoop *p){
1696   p->aLTerm = p->aLTermSpace;
1697   p->nLTerm = 0;
1698   p->nLSlot = ArraySize(p->aLTermSpace);
1699   p->wsFlags = 0;
1700 }
1701 
1702 /*
1703 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
1704 */
1705 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
1706   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
1707     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
1708       sqlite3_free(p->u.vtab.idxStr);
1709       p->u.vtab.needFree = 0;
1710       p->u.vtab.idxStr = 0;
1711     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
1712       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
1713       sqlite3DbFree(db, p->u.btree.pIndex);
1714       p->u.btree.pIndex = 0;
1715     }
1716   }
1717 }
1718 
1719 /*
1720 ** Deallocate internal memory used by a WhereLoop object
1721 */
1722 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
1723   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm);
1724   whereLoopClearUnion(db, p);
1725   whereLoopInit(p);
1726 }
1727 
1728 /*
1729 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
1730 */
1731 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
1732   WhereTerm **paNew;
1733   if( p->nLSlot>=n ) return SQLITE_OK;
1734   n = (n+7)&~7;
1735   paNew = sqlite3DbMallocRaw(db, sizeof(p->aLTerm[0])*n);
1736   if( paNew==0 ) return SQLITE_NOMEM;
1737   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
1738   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm);
1739   p->aLTerm = paNew;
1740   p->nLSlot = n;
1741   return SQLITE_OK;
1742 }
1743 
1744 /*
1745 ** Transfer content from the second pLoop into the first.
1746 */
1747 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
1748   whereLoopClearUnion(db, pTo);
1749   if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
1750     memset(&pTo->u, 0, sizeof(pTo->u));
1751     return SQLITE_NOMEM;
1752   }
1753   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
1754   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
1755   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
1756     pFrom->u.vtab.needFree = 0;
1757   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
1758     pFrom->u.btree.pIndex = 0;
1759   }
1760   return SQLITE_OK;
1761 }
1762 
1763 /*
1764 ** Delete a WhereLoop object
1765 */
1766 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
1767   whereLoopClear(db, p);
1768   sqlite3DbFree(db, p);
1769 }
1770 
1771 /*
1772 ** Free a WhereInfo structure
1773 */
1774 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
1775   if( ALWAYS(pWInfo) ){
1776     int i;
1777     for(i=0; i<pWInfo->nLevel; i++){
1778       WhereLevel *pLevel = &pWInfo->a[i];
1779       if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){
1780         sqlite3DbFree(db, pLevel->u.in.aInLoop);
1781       }
1782     }
1783     sqlite3WhereClauseClear(&pWInfo->sWC);
1784     while( pWInfo->pLoops ){
1785       WhereLoop *p = pWInfo->pLoops;
1786       pWInfo->pLoops = p->pNextLoop;
1787       whereLoopDelete(db, p);
1788     }
1789     sqlite3DbFree(db, pWInfo);
1790   }
1791 }
1792 
1793 /*
1794 ** Return TRUE if all of the following are true:
1795 **
1796 **   (1)  X has the same or lower cost that Y
1797 **   (2)  X is a proper subset of Y
1798 **   (3)  X skips at least as many columns as Y
1799 **
1800 ** By "proper subset" we mean that X uses fewer WHERE clause terms
1801 ** than Y and that every WHERE clause term used by X is also used
1802 ** by Y.
1803 **
1804 ** If X is a proper subset of Y then Y is a better choice and ought
1805 ** to have a lower cost.  This routine returns TRUE when that cost
1806 ** relationship is inverted and needs to be adjusted.  The third rule
1807 ** was added because if X uses skip-scan less than Y it still might
1808 ** deserve a lower cost even if it is a proper subset of Y.
1809 */
1810 static int whereLoopCheaperProperSubset(
1811   const WhereLoop *pX,       /* First WhereLoop to compare */
1812   const WhereLoop *pY        /* Compare against this WhereLoop */
1813 ){
1814   int i, j;
1815   if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
1816     return 0; /* X is not a subset of Y */
1817   }
1818   if( pY->nSkip > pX->nSkip ) return 0;
1819   if( pX->rRun >= pY->rRun ){
1820     if( pX->rRun > pY->rRun ) return 0;    /* X costs more than Y */
1821     if( pX->nOut > pY->nOut ) return 0;    /* X costs more than Y */
1822   }
1823   for(i=pX->nLTerm-1; i>=0; i--){
1824     if( pX->aLTerm[i]==0 ) continue;
1825     for(j=pY->nLTerm-1; j>=0; j--){
1826       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
1827     }
1828     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
1829   }
1830   return 1;  /* All conditions meet */
1831 }
1832 
1833 /*
1834 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
1835 ** that:
1836 **
1837 **   (1) pTemplate costs less than any other WhereLoops that are a proper
1838 **       subset of pTemplate
1839 **
1840 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
1841 **       is a proper subset.
1842 **
1843 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
1844 ** WHERE clause terms than Y and that every WHERE clause term used by X is
1845 ** also used by Y.
1846 */
1847 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
1848   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
1849   for(; p; p=p->pNextLoop){
1850     if( p->iTab!=pTemplate->iTab ) continue;
1851     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
1852     if( whereLoopCheaperProperSubset(p, pTemplate) ){
1853       /* Adjust pTemplate cost downward so that it is cheaper than its
1854       ** subset p. */
1855       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
1856                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1));
1857       pTemplate->rRun = p->rRun;
1858       pTemplate->nOut = p->nOut - 1;
1859     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
1860       /* Adjust pTemplate cost upward so that it is costlier than p since
1861       ** pTemplate is a proper subset of p */
1862       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
1863                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1));
1864       pTemplate->rRun = p->rRun;
1865       pTemplate->nOut = p->nOut + 1;
1866     }
1867   }
1868 }
1869 
1870 /*
1871 ** Search the list of WhereLoops in *ppPrev looking for one that can be
1872 ** supplanted by pTemplate.
1873 **
1874 ** Return NULL if the WhereLoop list contains an entry that can supplant
1875 ** pTemplate, in other words if pTemplate does not belong on the list.
1876 **
1877 ** If pX is a WhereLoop that pTemplate can supplant, then return the
1878 ** link that points to pX.
1879 **
1880 ** If pTemplate cannot supplant any existing element of the list but needs
1881 ** to be added to the list, then return a pointer to the tail of the list.
1882 */
1883 static WhereLoop **whereLoopFindLesser(
1884   WhereLoop **ppPrev,
1885   const WhereLoop *pTemplate
1886 ){
1887   WhereLoop *p;
1888   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
1889     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
1890       /* If either the iTab or iSortIdx values for two WhereLoop are different
1891       ** then those WhereLoops need to be considered separately.  Neither is
1892       ** a candidate to replace the other. */
1893       continue;
1894     }
1895     /* In the current implementation, the rSetup value is either zero
1896     ** or the cost of building an automatic index (NlogN) and the NlogN
1897     ** is the same for compatible WhereLoops. */
1898     assert( p->rSetup==0 || pTemplate->rSetup==0
1899                  || p->rSetup==pTemplate->rSetup );
1900 
1901     /* whereLoopAddBtree() always generates and inserts the automatic index
1902     ** case first.  Hence compatible candidate WhereLoops never have a larger
1903     ** rSetup. Call this SETUP-INVARIANT */
1904     assert( p->rSetup>=pTemplate->rSetup );
1905 
1906     /* Any loop using an appliation-defined index (or PRIMARY KEY or
1907     ** UNIQUE constraint) with one or more == constraints is better
1908     ** than an automatic index. Unless it is a skip-scan. */
1909     if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
1910      && (pTemplate->nSkip)==0
1911      && (pTemplate->wsFlags & WHERE_INDEXED)!=0
1912      && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
1913      && (p->prereq & pTemplate->prereq)==pTemplate->prereq
1914     ){
1915       break;
1916     }
1917 
1918     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
1919     ** discarded.  WhereLoop p is better if:
1920     **   (1)  p has no more dependencies than pTemplate, and
1921     **   (2)  p has an equal or lower cost than pTemplate
1922     */
1923     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
1924      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
1925      && p->rRun<=pTemplate->rRun                      /* (2b) */
1926      && p->nOut<=pTemplate->nOut                      /* (2c) */
1927     ){
1928       return 0;  /* Discard pTemplate */
1929     }
1930 
1931     /* If pTemplate is always better than p, then cause p to be overwritten
1932     ** with pTemplate.  pTemplate is better than p if:
1933     **   (1)  pTemplate has no more dependences than p, and
1934     **   (2)  pTemplate has an equal or lower cost than p.
1935     */
1936     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
1937      && p->rRun>=pTemplate->rRun                             /* (2a) */
1938      && p->nOut>=pTemplate->nOut                             /* (2b) */
1939     ){
1940       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
1941       break;   /* Cause p to be overwritten by pTemplate */
1942     }
1943   }
1944   return ppPrev;
1945 }
1946 
1947 /*
1948 ** Insert or replace a WhereLoop entry using the template supplied.
1949 **
1950 ** An existing WhereLoop entry might be overwritten if the new template
1951 ** is better and has fewer dependencies.  Or the template will be ignored
1952 ** and no insert will occur if an existing WhereLoop is faster and has
1953 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
1954 ** added based on the template.
1955 **
1956 ** If pBuilder->pOrSet is not NULL then we care about only the
1957 ** prerequisites and rRun and nOut costs of the N best loops.  That
1958 ** information is gathered in the pBuilder->pOrSet object.  This special
1959 ** processing mode is used only for OR clause processing.
1960 **
1961 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
1962 ** still might overwrite similar loops with the new template if the
1963 ** new template is better.  Loops may be overwritten if the following
1964 ** conditions are met:
1965 **
1966 **    (1)  They have the same iTab.
1967 **    (2)  They have the same iSortIdx.
1968 **    (3)  The template has same or fewer dependencies than the current loop
1969 **    (4)  The template has the same or lower cost than the current loop
1970 */
1971 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
1972   WhereLoop **ppPrev, *p;
1973   WhereInfo *pWInfo = pBuilder->pWInfo;
1974   sqlite3 *db = pWInfo->pParse->db;
1975 
1976   /* If pBuilder->pOrSet is defined, then only keep track of the costs
1977   ** and prereqs.
1978   */
1979   if( pBuilder->pOrSet!=0 ){
1980     if( pTemplate->nLTerm ){
1981 #if WHERETRACE_ENABLED
1982       u16 n = pBuilder->pOrSet->n;
1983       int x =
1984 #endif
1985       whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
1986                                     pTemplate->nOut);
1987 #if WHERETRACE_ENABLED /* 0x8 */
1988       if( sqlite3WhereTrace & 0x8 ){
1989         sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
1990         whereLoopPrint(pTemplate, pBuilder->pWC);
1991       }
1992 #endif
1993     }
1994     return SQLITE_OK;
1995   }
1996 
1997   /* Look for an existing WhereLoop to replace with pTemplate
1998   */
1999   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2000   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2001 
2002   if( ppPrev==0 ){
2003     /* There already exists a WhereLoop on the list that is better
2004     ** than pTemplate, so just ignore pTemplate */
2005 #if WHERETRACE_ENABLED /* 0x8 */
2006     if( sqlite3WhereTrace & 0x8 ){
2007       sqlite3DebugPrintf("   skip: ");
2008       whereLoopPrint(pTemplate, pBuilder->pWC);
2009     }
2010 #endif
2011     return SQLITE_OK;
2012   }else{
2013     p = *ppPrev;
2014   }
2015 
2016   /* If we reach this point it means that either p[] should be overwritten
2017   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2018   ** WhereLoop and insert it.
2019   */
2020 #if WHERETRACE_ENABLED /* 0x8 */
2021   if( sqlite3WhereTrace & 0x8 ){
2022     if( p!=0 ){
2023       sqlite3DebugPrintf("replace: ");
2024       whereLoopPrint(p, pBuilder->pWC);
2025     }
2026     sqlite3DebugPrintf("    add: ");
2027     whereLoopPrint(pTemplate, pBuilder->pWC);
2028   }
2029 #endif
2030   if( p==0 ){
2031     /* Allocate a new WhereLoop to add to the end of the list */
2032     *ppPrev = p = sqlite3DbMallocRaw(db, sizeof(WhereLoop));
2033     if( p==0 ) return SQLITE_NOMEM;
2034     whereLoopInit(p);
2035     p->pNextLoop = 0;
2036   }else{
2037     /* We will be overwriting WhereLoop p[].  But before we do, first
2038     ** go through the rest of the list and delete any other entries besides
2039     ** p[] that are also supplated by pTemplate */
2040     WhereLoop **ppTail = &p->pNextLoop;
2041     WhereLoop *pToDel;
2042     while( *ppTail ){
2043       ppTail = whereLoopFindLesser(ppTail, pTemplate);
2044       if( ppTail==0 ) break;
2045       pToDel = *ppTail;
2046       if( pToDel==0 ) break;
2047       *ppTail = pToDel->pNextLoop;
2048 #if WHERETRACE_ENABLED /* 0x8 */
2049       if( sqlite3WhereTrace & 0x8 ){
2050         sqlite3DebugPrintf(" delete: ");
2051         whereLoopPrint(pToDel, pBuilder->pWC);
2052       }
2053 #endif
2054       whereLoopDelete(db, pToDel);
2055     }
2056   }
2057   whereLoopXfer(db, p, pTemplate);
2058   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2059     Index *pIndex = p->u.btree.pIndex;
2060     if( pIndex && pIndex->tnum==0 ){
2061       p->u.btree.pIndex = 0;
2062     }
2063   }
2064   return SQLITE_OK;
2065 }
2066 
2067 /*
2068 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2069 ** WHERE clause that reference the loop but which are not used by an
2070 ** index.
2071 *
2072 ** For every WHERE clause term that is not used by the index
2073 ** and which has a truth probability assigned by one of the likelihood(),
2074 ** likely(), or unlikely() SQL functions, reduce the estimated number
2075 ** of output rows by the probability specified.
2076 **
2077 ** TUNING:  For every WHERE clause term that is not used by the index
2078 ** and which does not have an assigned truth probability, heuristics
2079 ** described below are used to try to estimate the truth probability.
2080 ** TODO --> Perhaps this is something that could be improved by better
2081 ** table statistics.
2082 **
2083 ** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
2084 ** value corresponds to -1 in LogEst notation, so this means decrement
2085 ** the WhereLoop.nOut field for every such WHERE clause term.
2086 **
2087 ** Heuristic 2:  If there exists one or more WHERE clause terms of the
2088 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2089 ** final output row estimate is no greater than 1/4 of the total number
2090 ** of rows in the table.  In other words, assume that x==EXPR will filter
2091 ** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
2092 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2093 ** on the "x" column and so in that case only cap the output row estimate
2094 ** at 1/2 instead of 1/4.
2095 */
2096 static void whereLoopOutputAdjust(
2097   WhereClause *pWC,      /* The WHERE clause */
2098   WhereLoop *pLoop,      /* The loop to adjust downward */
2099   LogEst nRow            /* Number of rows in the entire table */
2100 ){
2101   WhereTerm *pTerm, *pX;
2102   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2103   int i, j, k;
2104   LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */
2105 
2106   assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2107   for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
2108     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
2109     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2110     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2111     for(j=pLoop->nLTerm-1; j>=0; j--){
2112       pX = pLoop->aLTerm[j];
2113       if( pX==0 ) continue;
2114       if( pX==pTerm ) break;
2115       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2116     }
2117     if( j<0 ){
2118       if( pTerm->truthProb<=0 ){
2119         /* If a truth probability is specified using the likelihood() hints,
2120         ** then use the probability provided by the application. */
2121         pLoop->nOut += pTerm->truthProb;
2122       }else{
2123         /* In the absence of explicit truth probabilities, use heuristics to
2124         ** guess a reasonable truth probability. */
2125         pLoop->nOut--;
2126         if( pTerm->eOperator&(WO_EQ|WO_IS) ){
2127           Expr *pRight = pTerm->pExpr->pRight;
2128           testcase( pTerm->pExpr->op==TK_IS );
2129           if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2130             k = 10;
2131           }else{
2132             k = 20;
2133           }
2134           if( iReduce<k ) iReduce = k;
2135         }
2136       }
2137     }
2138   }
2139   if( pLoop->nOut > nRow-iReduce )  pLoop->nOut = nRow - iReduce;
2140 }
2141 
2142 /*
2143 ** Adjust the cost C by the costMult facter T.  This only occurs if
2144 ** compiled with -DSQLITE_ENABLE_COSTMULT
2145 */
2146 #ifdef SQLITE_ENABLE_COSTMULT
2147 # define ApplyCostMultiplier(C,T)  C += T
2148 #else
2149 # define ApplyCostMultiplier(C,T)
2150 #endif
2151 
2152 /*
2153 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2154 ** index pIndex. Try to match one more.
2155 **
2156 ** When this function is called, pBuilder->pNew->nOut contains the
2157 ** number of rows expected to be visited by filtering using the nEq
2158 ** terms only. If it is modified, this value is restored before this
2159 ** function returns.
2160 **
2161 ** If pProbe->tnum==0, that means pIndex is a fake index used for the
2162 ** INTEGER PRIMARY KEY.
2163 */
2164 static int whereLoopAddBtreeIndex(
2165   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
2166   struct SrcList_item *pSrc,      /* FROM clause term being analyzed */
2167   Index *pProbe,                  /* An index on pSrc */
2168   LogEst nInMul                   /* log(Number of iterations due to IN) */
2169 ){
2170   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
2171   Parse *pParse = pWInfo->pParse;        /* Parsing context */
2172   sqlite3 *db = pParse->db;       /* Database connection malloc context */
2173   WhereLoop *pNew;                /* Template WhereLoop under construction */
2174   WhereTerm *pTerm;               /* A WhereTerm under consideration */
2175   int opMask;                     /* Valid operators for constraints */
2176   WhereScan scan;                 /* Iterator for WHERE terms */
2177   Bitmask saved_prereq;           /* Original value of pNew->prereq */
2178   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
2179   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
2180   u16 saved_nSkip;                /* Original value of pNew->nSkip */
2181   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
2182   LogEst saved_nOut;              /* Original value of pNew->nOut */
2183   int rc = SQLITE_OK;             /* Return code */
2184   LogEst rSize;                   /* Number of rows in the table */
2185   LogEst rLogSize;                /* Logarithm of table size */
2186   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2187 
2188   pNew = pBuilder->pNew;
2189   if( db->mallocFailed ) return SQLITE_NOMEM;
2190 
2191   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2192   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2193   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2194     opMask = WO_LT|WO_LE;
2195   }else if( /*pProbe->tnum<=0 ||*/ (pSrc->fg.jointype & JT_LEFT)!=0 ){
2196     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE;
2197   }else{
2198     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2199   }
2200   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2201 
2202   assert( pNew->u.btree.nEq<pProbe->nColumn );
2203 
2204   saved_nEq = pNew->u.btree.nEq;
2205   saved_nSkip = pNew->nSkip;
2206   saved_nLTerm = pNew->nLTerm;
2207   saved_wsFlags = pNew->wsFlags;
2208   saved_prereq = pNew->prereq;
2209   saved_nOut = pNew->nOut;
2210   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2211                         opMask, pProbe);
2212   pNew->rSetup = 0;
2213   rSize = pProbe->aiRowLogEst[0];
2214   rLogSize = estLog(rSize);
2215   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2216     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
2217     LogEst rCostIdx;
2218     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
2219     int nIn = 0;
2220 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2221     int nRecValid = pBuilder->nRecValid;
2222 #endif
2223     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2224      && indexColumnNotNull(pProbe, saved_nEq)
2225     ){
2226       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2227     }
2228     if( pTerm->prereqRight & pNew->maskSelf ) continue;
2229 
2230     /* Do not allow the upper bound of a LIKE optimization range constraint
2231     ** to mix with a lower range bound from some other source */
2232     if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2233 
2234     pNew->wsFlags = saved_wsFlags;
2235     pNew->u.btree.nEq = saved_nEq;
2236     pNew->nLTerm = saved_nLTerm;
2237     if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2238     pNew->aLTerm[pNew->nLTerm++] = pTerm;
2239     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2240 
2241     assert( nInMul==0
2242         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2243         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2244         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2245     );
2246 
2247     if( eOp & WO_IN ){
2248       Expr *pExpr = pTerm->pExpr;
2249       pNew->wsFlags |= WHERE_COLUMN_IN;
2250       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2251         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
2252         nIn = 46;  assert( 46==sqlite3LogEst(25) );
2253       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2254         /* "x IN (value, value, ...)" */
2255         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2256       }
2257       assert( nIn>0 );  /* RHS always has 2 or more terms...  The parser
2258                         ** changes "x IN (?)" into "x=?". */
2259 
2260     }else if( eOp & (WO_EQ|WO_IS) ){
2261       int iCol = pProbe->aiColumn[saved_nEq];
2262       pNew->wsFlags |= WHERE_COLUMN_EQ;
2263       assert( saved_nEq==pNew->u.btree.nEq );
2264       if( iCol==XN_ROWID
2265        || (iCol>0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2266       ){
2267         if( iCol>=0 && pProbe->uniqNotNull==0 ){
2268           pNew->wsFlags |= WHERE_UNQ_WANTED;
2269         }else{
2270           pNew->wsFlags |= WHERE_ONEROW;
2271         }
2272       }
2273     }else if( eOp & WO_ISNULL ){
2274       pNew->wsFlags |= WHERE_COLUMN_NULL;
2275     }else if( eOp & (WO_GT|WO_GE) ){
2276       testcase( eOp & WO_GT );
2277       testcase( eOp & WO_GE );
2278       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2279       pBtm = pTerm;
2280       pTop = 0;
2281       if( pTerm->wtFlags & TERM_LIKEOPT ){
2282         /* Range contraints that come from the LIKE optimization are
2283         ** always used in pairs. */
2284         pTop = &pTerm[1];
2285         assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2286         assert( pTop->wtFlags & TERM_LIKEOPT );
2287         assert( pTop->eOperator==WO_LT );
2288         if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2289         pNew->aLTerm[pNew->nLTerm++] = pTop;
2290         pNew->wsFlags |= WHERE_TOP_LIMIT;
2291       }
2292     }else{
2293       assert( eOp & (WO_LT|WO_LE) );
2294       testcase( eOp & WO_LT );
2295       testcase( eOp & WO_LE );
2296       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2297       pTop = pTerm;
2298       pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2299                      pNew->aLTerm[pNew->nLTerm-2] : 0;
2300     }
2301 
2302     /* At this point pNew->nOut is set to the number of rows expected to
2303     ** be visited by the index scan before considering term pTerm, or the
2304     ** values of nIn and nInMul. In other words, assuming that all
2305     ** "x IN(...)" terms are replaced with "x = ?". This block updates
2306     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
2307     assert( pNew->nOut==saved_nOut );
2308     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2309       /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4
2310       ** data, using some other estimate.  */
2311       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2312     }else{
2313       int nEq = ++pNew->u.btree.nEq;
2314       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2315 
2316       assert( pNew->nOut==saved_nOut );
2317       if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2318         assert( (eOp & WO_IN) || nIn==0 );
2319         testcase( eOp & WO_IN );
2320         pNew->nOut += pTerm->truthProb;
2321         pNew->nOut -= nIn;
2322       }else{
2323 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2324         tRowcnt nOut = 0;
2325         if( nInMul==0
2326          && pProbe->nSample
2327          && pNew->u.btree.nEq<=pProbe->nSampleCol
2328          && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
2329         ){
2330           Expr *pExpr = pTerm->pExpr;
2331           if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2332             testcase( eOp & WO_EQ );
2333             testcase( eOp & WO_IS );
2334             testcase( eOp & WO_ISNULL );
2335             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2336           }else{
2337             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2338           }
2339           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2340           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
2341           if( nOut ){
2342             pNew->nOut = sqlite3LogEst(nOut);
2343             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
2344             pNew->nOut -= nIn;
2345           }
2346         }
2347         if( nOut==0 )
2348 #endif
2349         {
2350           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
2351           if( eOp & WO_ISNULL ){
2352             /* TUNING: If there is no likelihood() value, assume that a
2353             ** "col IS NULL" expression matches twice as many rows
2354             ** as (col=?). */
2355             pNew->nOut += 10;
2356           }
2357         }
2358       }
2359     }
2360 
2361     /* Set rCostIdx to the cost of visiting selected rows in index. Add
2362     ** it to pNew->rRun, which is currently set to the cost of the index
2363     ** seek only. Then, if this is a non-covering index, add the cost of
2364     ** visiting the rows in the main table.  */
2365     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
2366     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
2367     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
2368       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
2369     }
2370     ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
2371 
2372     nOutUnadjusted = pNew->nOut;
2373     pNew->rRun += nInMul + nIn;
2374     pNew->nOut += nInMul + nIn;
2375     whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
2376     rc = whereLoopInsert(pBuilder, pNew);
2377 
2378     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2379       pNew->nOut = saved_nOut;
2380     }else{
2381       pNew->nOut = nOutUnadjusted;
2382     }
2383 
2384     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
2385      && pNew->u.btree.nEq<pProbe->nColumn
2386     ){
2387       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
2388     }
2389     pNew->nOut = saved_nOut;
2390 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2391     pBuilder->nRecValid = nRecValid;
2392 #endif
2393   }
2394   pNew->prereq = saved_prereq;
2395   pNew->u.btree.nEq = saved_nEq;
2396   pNew->nSkip = saved_nSkip;
2397   pNew->wsFlags = saved_wsFlags;
2398   pNew->nOut = saved_nOut;
2399   pNew->nLTerm = saved_nLTerm;
2400 
2401   /* Consider using a skip-scan if there are no WHERE clause constraints
2402   ** available for the left-most terms of the index, and if the average
2403   ** number of repeats in the left-most terms is at least 18.
2404   **
2405   ** The magic number 18 is selected on the basis that scanning 17 rows
2406   ** is almost always quicker than an index seek (even though if the index
2407   ** contains fewer than 2^17 rows we assume otherwise in other parts of
2408   ** the code). And, even if it is not, it should not be too much slower.
2409   ** On the other hand, the extra seeks could end up being significantly
2410   ** more expensive.  */
2411   assert( 42==sqlite3LogEst(18) );
2412   if( saved_nEq==saved_nSkip
2413    && saved_nEq+1<pProbe->nKeyCol
2414    && pProbe->noSkipScan==0
2415    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
2416    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
2417   ){
2418     LogEst nIter;
2419     pNew->u.btree.nEq++;
2420     pNew->nSkip++;
2421     pNew->aLTerm[pNew->nLTerm++] = 0;
2422     pNew->wsFlags |= WHERE_SKIPSCAN;
2423     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
2424     pNew->nOut -= nIter;
2425     /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
2426     ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
2427     nIter += 5;
2428     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
2429     pNew->nOut = saved_nOut;
2430     pNew->u.btree.nEq = saved_nEq;
2431     pNew->nSkip = saved_nSkip;
2432     pNew->wsFlags = saved_wsFlags;
2433   }
2434 
2435   return rc;
2436 }
2437 
2438 /*
2439 ** Return True if it is possible that pIndex might be useful in
2440 ** implementing the ORDER BY clause in pBuilder.
2441 **
2442 ** Return False if pBuilder does not contain an ORDER BY clause or
2443 ** if there is no way for pIndex to be useful in implementing that
2444 ** ORDER BY clause.
2445 */
2446 static int indexMightHelpWithOrderBy(
2447   WhereLoopBuilder *pBuilder,
2448   Index *pIndex,
2449   int iCursor
2450 ){
2451   ExprList *pOB;
2452   ExprList *aColExpr;
2453   int ii, jj;
2454 
2455   if( pIndex->bUnordered ) return 0;
2456   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
2457   for(ii=0; ii<pOB->nExpr; ii++){
2458     Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr);
2459     if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
2460       if( pExpr->iColumn<0 ) return 1;
2461       for(jj=0; jj<pIndex->nKeyCol; jj++){
2462         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
2463       }
2464     }else if( (aColExpr = pIndex->aColExpr)!=0 ){
2465       for(jj=0; jj<pIndex->nKeyCol; jj++){
2466         if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
2467         if( sqlite3ExprCompare(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
2468           return 1;
2469         }
2470       }
2471     }
2472   }
2473   return 0;
2474 }
2475 
2476 /*
2477 ** Return a bitmask where 1s indicate that the corresponding column of
2478 ** the table is used by an index.  Only the first 63 columns are considered.
2479 */
2480 static Bitmask columnsInIndex(Index *pIdx){
2481   Bitmask m = 0;
2482   int j;
2483   for(j=pIdx->nColumn-1; j>=0; j--){
2484     int x = pIdx->aiColumn[j];
2485     if( x>=0 ){
2486       testcase( x==BMS-1 );
2487       testcase( x==BMS-2 );
2488       if( x<BMS-1 ) m |= MASKBIT(x);
2489     }
2490   }
2491   return m;
2492 }
2493 
2494 /* Check to see if a partial index with pPartIndexWhere can be used
2495 ** in the current query.  Return true if it can be and false if not.
2496 */
2497 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){
2498   int i;
2499   WhereTerm *pTerm;
2500   while( pWhere->op==TK_AND ){
2501     if( !whereUsablePartialIndex(iTab,pWC,pWhere->pLeft) ) return 0;
2502     pWhere = pWhere->pRight;
2503   }
2504   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
2505     Expr *pExpr = pTerm->pExpr;
2506     if( sqlite3ExprImpliesExpr(pExpr, pWhere, iTab)
2507      && (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
2508     ){
2509       return 1;
2510     }
2511   }
2512   return 0;
2513 }
2514 
2515 /*
2516 ** Add all WhereLoop objects for a single table of the join where the table
2517 ** is idenfied by pBuilder->pNew->iTab.  That table is guaranteed to be
2518 ** a b-tree table, not a virtual table.
2519 **
2520 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
2521 ** are calculated as follows:
2522 **
2523 ** For a full scan, assuming the table (or index) contains nRow rows:
2524 **
2525 **     cost = nRow * 3.0                    // full-table scan
2526 **     cost = nRow * K                      // scan of covering index
2527 **     cost = nRow * (K+3.0)                // scan of non-covering index
2528 **
2529 ** where K is a value between 1.1 and 3.0 set based on the relative
2530 ** estimated average size of the index and table records.
2531 **
2532 ** For an index scan, where nVisit is the number of index rows visited
2533 ** by the scan, and nSeek is the number of seek operations required on
2534 ** the index b-tree:
2535 **
2536 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
2537 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
2538 **
2539 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
2540 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
2541 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
2542 **
2543 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
2544 ** of uncertainty.  For this reason, scoring is designed to pick plans that
2545 ** "do the least harm" if the estimates are inaccurate.  For example, a
2546 ** log(nRow) factor is omitted from a non-covering index scan in order to
2547 ** bias the scoring in favor of using an index, since the worst-case
2548 ** performance of using an index is far better than the worst-case performance
2549 ** of a full table scan.
2550 */
2551 static int whereLoopAddBtree(
2552   WhereLoopBuilder *pBuilder, /* WHERE clause information */
2553   Bitmask mExtra              /* Extra prerequesites for using this table */
2554 ){
2555   WhereInfo *pWInfo;          /* WHERE analysis context */
2556   Index *pProbe;              /* An index we are evaluating */
2557   Index sPk;                  /* A fake index object for the primary key */
2558   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
2559   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
2560   SrcList *pTabList;          /* The FROM clause */
2561   struct SrcList_item *pSrc;  /* The FROM clause btree term to add */
2562   WhereLoop *pNew;            /* Template WhereLoop object */
2563   int rc = SQLITE_OK;         /* Return code */
2564   int iSortIdx = 1;           /* Index number */
2565   int b;                      /* A boolean value */
2566   LogEst rSize;               /* number of rows in the table */
2567   LogEst rLogSize;            /* Logarithm of the number of rows in the table */
2568   WhereClause *pWC;           /* The parsed WHERE clause */
2569   Table *pTab;                /* Table being queried */
2570 
2571   pNew = pBuilder->pNew;
2572   pWInfo = pBuilder->pWInfo;
2573   pTabList = pWInfo->pTabList;
2574   pSrc = pTabList->a + pNew->iTab;
2575   pTab = pSrc->pTab;
2576   pWC = pBuilder->pWC;
2577   assert( !IsVirtual(pSrc->pTab) );
2578 
2579   if( pSrc->pIBIndex ){
2580     /* An INDEXED BY clause specifies a particular index to use */
2581     pProbe = pSrc->pIBIndex;
2582   }else if( !HasRowid(pTab) ){
2583     pProbe = pTab->pIndex;
2584   }else{
2585     /* There is no INDEXED BY clause.  Create a fake Index object in local
2586     ** variable sPk to represent the rowid primary key index.  Make this
2587     ** fake index the first in a chain of Index objects with all of the real
2588     ** indices to follow */
2589     Index *pFirst;                  /* First of real indices on the table */
2590     memset(&sPk, 0, sizeof(Index));
2591     sPk.nKeyCol = 1;
2592     sPk.nColumn = 1;
2593     sPk.aiColumn = &aiColumnPk;
2594     sPk.aiRowLogEst = aiRowEstPk;
2595     sPk.onError = OE_Replace;
2596     sPk.pTable = pTab;
2597     sPk.szIdxRow = pTab->szTabRow;
2598     aiRowEstPk[0] = pTab->nRowLogEst;
2599     aiRowEstPk[1] = 0;
2600     pFirst = pSrc->pTab->pIndex;
2601     if( pSrc->fg.notIndexed==0 ){
2602       /* The real indices of the table are only considered if the
2603       ** NOT INDEXED qualifier is omitted from the FROM clause */
2604       sPk.pNext = pFirst;
2605     }
2606     pProbe = &sPk;
2607   }
2608   rSize = pTab->nRowLogEst;
2609   rLogSize = estLog(rSize);
2610 
2611 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
2612   /* Automatic indexes */
2613   if( !pBuilder->pOrSet      /* Not part of an OR optimization */
2614    && (pWInfo->wctrlFlags & WHERE_NO_AUTOINDEX)==0
2615    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
2616    && pSrc->pIBIndex==0      /* Has no INDEXED BY clause */
2617    && !pSrc->fg.notIndexed   /* Has no NOT INDEXED clause */
2618    && HasRowid(pTab)         /* Not WITHOUT ROWID table. (FIXME: Why not?) */
2619    && !pSrc->fg.isCorrelated /* Not a correlated subquery */
2620    && !pSrc->fg.isRecursive  /* Not a recursive common table expression. */
2621   ){
2622     /* Generate auto-index WhereLoops */
2623     WhereTerm *pTerm;
2624     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
2625     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
2626       if( pTerm->prereqRight & pNew->maskSelf ) continue;
2627       if( termCanDriveIndex(pTerm, pSrc, 0) ){
2628         pNew->u.btree.nEq = 1;
2629         pNew->nSkip = 0;
2630         pNew->u.btree.pIndex = 0;
2631         pNew->nLTerm = 1;
2632         pNew->aLTerm[0] = pTerm;
2633         /* TUNING: One-time cost for computing the automatic index is
2634         ** estimated to be X*N*log2(N) where N is the number of rows in
2635         ** the table being indexed and where X is 7 (LogEst=28) for normal
2636         ** tables or 1.375 (LogEst=4) for views and subqueries.  The value
2637         ** of X is smaller for views and subqueries so that the query planner
2638         ** will be more aggressive about generating automatic indexes for
2639         ** those objects, since there is no opportunity to add schema
2640         ** indexes on subqueries and views. */
2641         pNew->rSetup = rLogSize + rSize + 4;
2642         if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){
2643           pNew->rSetup += 24;
2644         }
2645         ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
2646         /* TUNING: Each index lookup yields 20 rows in the table.  This
2647         ** is more than the usual guess of 10 rows, since we have no way
2648         ** of knowing how selective the index will ultimately be.  It would
2649         ** not be unreasonable to make this value much larger. */
2650         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
2651         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
2652         pNew->wsFlags = WHERE_AUTO_INDEX;
2653         pNew->prereq = mExtra | pTerm->prereqRight;
2654         rc = whereLoopInsert(pBuilder, pNew);
2655       }
2656     }
2657   }
2658 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
2659 
2660   /* Loop over all indices
2661   */
2662   for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){
2663     if( pProbe->pPartIdxWhere!=0
2664      && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){
2665       testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
2666       continue;  /* Partial index inappropriate for this query */
2667     }
2668     rSize = pProbe->aiRowLogEst[0];
2669     pNew->u.btree.nEq = 0;
2670     pNew->nSkip = 0;
2671     pNew->nLTerm = 0;
2672     pNew->iSortIdx = 0;
2673     pNew->rSetup = 0;
2674     pNew->prereq = mExtra;
2675     pNew->nOut = rSize;
2676     pNew->u.btree.pIndex = pProbe;
2677     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
2678     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
2679     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
2680     if( pProbe->tnum<=0 ){
2681       /* Integer primary key index */
2682       pNew->wsFlags = WHERE_IPK;
2683 
2684       /* Full table scan */
2685       pNew->iSortIdx = b ? iSortIdx : 0;
2686       /* TUNING: Cost of full table scan is (N*3.0). */
2687       pNew->rRun = rSize + 16;
2688       ApplyCostMultiplier(pNew->rRun, pTab->costMult);
2689       whereLoopOutputAdjust(pWC, pNew, rSize);
2690       rc = whereLoopInsert(pBuilder, pNew);
2691       pNew->nOut = rSize;
2692       if( rc ) break;
2693     }else{
2694       Bitmask m;
2695       if( pProbe->isCovering ){
2696         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
2697         m = 0;
2698       }else{
2699         m = pSrc->colUsed & ~columnsInIndex(pProbe);
2700         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
2701       }
2702 
2703       /* Full scan via index */
2704       if( b
2705        || !HasRowid(pTab)
2706        || ( m==0
2707          && pProbe->bUnordered==0
2708          && (pProbe->szIdxRow<pTab->szTabRow)
2709          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
2710          && sqlite3GlobalConfig.bUseCis
2711          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
2712           )
2713       ){
2714         pNew->iSortIdx = b ? iSortIdx : 0;
2715 
2716         /* The cost of visiting the index rows is N*K, where K is
2717         ** between 1.1 and 3.0, depending on the relative sizes of the
2718         ** index and table rows. If this is a non-covering index scan,
2719         ** also add the cost of visiting table rows (N*3.0).  */
2720         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
2721         if( m!=0 ){
2722           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, rSize+16);
2723         }
2724         ApplyCostMultiplier(pNew->rRun, pTab->costMult);
2725         whereLoopOutputAdjust(pWC, pNew, rSize);
2726         rc = whereLoopInsert(pBuilder, pNew);
2727         pNew->nOut = rSize;
2728         if( rc ) break;
2729       }
2730     }
2731 
2732     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
2733 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2734     sqlite3Stat4ProbeFree(pBuilder->pRec);
2735     pBuilder->nRecValid = 0;
2736     pBuilder->pRec = 0;
2737 #endif
2738 
2739     /* If there was an INDEXED BY clause, then only that one index is
2740     ** considered. */
2741     if( pSrc->pIBIndex ) break;
2742   }
2743   return rc;
2744 }
2745 
2746 #ifndef SQLITE_OMIT_VIRTUALTABLE
2747 /*
2748 ** Add all WhereLoop objects for a table of the join identified by
2749 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
2750 **
2751 ** If there are no LEFT or CROSS JOIN joins in the query, both mExtra and
2752 ** mUnusable are set to 0. Otherwise, mExtra is a mask of all FROM clause
2753 ** entries that occur before the virtual table in the FROM clause and are
2754 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
2755 ** mUnusable mask contains all FROM clause entries that occur after the
2756 ** virtual table and are separated from it by at least one LEFT or
2757 ** CROSS JOIN.
2758 **
2759 ** For example, if the query were:
2760 **
2761 **   ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
2762 **
2763 ** then mExtra corresponds to (t1, t2) and mUnusable to (t5, t6).
2764 **
2765 ** All the tables in mExtra must be scanned before the current virtual
2766 ** table. So any terms for which all prerequisites are satisfied by
2767 ** mExtra may be specified as "usable" in all calls to xBestIndex.
2768 ** Conversely, all tables in mUnusable must be scanned after the current
2769 ** virtual table, so any terms for which the prerequisites overlap with
2770 ** mUnusable should always be configured as "not-usable" for xBestIndex.
2771 */
2772 static int whereLoopAddVirtual(
2773   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
2774   Bitmask mExtra,              /* Tables that must be scanned before this one */
2775   Bitmask mUnusable            /* Tables that must be scanned after this one */
2776 ){
2777   WhereInfo *pWInfo;           /* WHERE analysis context */
2778   Parse *pParse;               /* The parsing context */
2779   WhereClause *pWC;            /* The WHERE clause */
2780   struct SrcList_item *pSrc;   /* The FROM clause term to search */
2781   Table *pTab;
2782   sqlite3 *db;
2783   sqlite3_index_info *pIdxInfo;
2784   struct sqlite3_index_constraint *pIdxCons;
2785   struct sqlite3_index_constraint_usage *pUsage;
2786   WhereTerm *pTerm;
2787   int i, j;
2788   int iTerm, mxTerm;
2789   int nConstraint;
2790   int seenIn = 0;              /* True if an IN operator is seen */
2791   int seenVar = 0;             /* True if a non-constant constraint is seen */
2792   int iPhase;                  /* 0: const w/o IN, 1: const, 2: no IN,  2: IN */
2793   WhereLoop *pNew;
2794   int rc = SQLITE_OK;
2795 
2796   assert( (mExtra & mUnusable)==0 );
2797   pWInfo = pBuilder->pWInfo;
2798   pParse = pWInfo->pParse;
2799   db = pParse->db;
2800   pWC = pBuilder->pWC;
2801   pNew = pBuilder->pNew;
2802   pSrc = &pWInfo->pTabList->a[pNew->iTab];
2803   pTab = pSrc->pTab;
2804   assert( IsVirtual(pTab) );
2805   pIdxInfo = allocateIndexInfo(pParse, pWC, mUnusable, pSrc,pBuilder->pOrderBy);
2806   if( pIdxInfo==0 ) return SQLITE_NOMEM;
2807   pNew->prereq = 0;
2808   pNew->rSetup = 0;
2809   pNew->wsFlags = WHERE_VIRTUALTABLE;
2810   pNew->nLTerm = 0;
2811   pNew->u.vtab.needFree = 0;
2812   pUsage = pIdxInfo->aConstraintUsage;
2813   nConstraint = pIdxInfo->nConstraint;
2814   if( whereLoopResize(db, pNew, nConstraint) ){
2815     sqlite3DbFree(db, pIdxInfo);
2816     return SQLITE_NOMEM;
2817   }
2818 
2819   for(iPhase=0; iPhase<=3; iPhase++){
2820     if( !seenIn && (iPhase&1)!=0 ){
2821       iPhase++;
2822       if( iPhase>3 ) break;
2823     }
2824     if( !seenVar && iPhase>1 ) break;
2825     pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
2826     for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
2827       j = pIdxCons->iTermOffset;
2828       pTerm = &pWC->a[j];
2829       switch( iPhase ){
2830         case 0:    /* Constants without IN operator */
2831           pIdxCons->usable = 0;
2832           if( (pTerm->eOperator & WO_IN)!=0 ){
2833             seenIn = 1;
2834           }
2835           if( (pTerm->prereqRight & ~mExtra)!=0 ){
2836             seenVar = 1;
2837           }else if( (pTerm->eOperator & WO_IN)==0 ){
2838             pIdxCons->usable = 1;
2839           }
2840           break;
2841         case 1:    /* Constants with IN operators */
2842           assert( seenIn );
2843           pIdxCons->usable = (pTerm->prereqRight & ~mExtra)==0;
2844           break;
2845         case 2:    /* Variables without IN */
2846           assert( seenVar );
2847           pIdxCons->usable = (pTerm->eOperator & WO_IN)==0;
2848           break;
2849         default:   /* Variables with IN */
2850           assert( seenVar && seenIn );
2851           pIdxCons->usable = 1;
2852           break;
2853       }
2854     }
2855     memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
2856     if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr);
2857     pIdxInfo->idxStr = 0;
2858     pIdxInfo->idxNum = 0;
2859     pIdxInfo->needToFreeIdxStr = 0;
2860     pIdxInfo->orderByConsumed = 0;
2861     pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
2862     pIdxInfo->estimatedRows = 25;
2863     pIdxInfo->idxFlags = 0;
2864     rc = vtabBestIndex(pParse, pTab, pIdxInfo);
2865     if( rc ) goto whereLoopAddVtab_exit;
2866     pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
2867     pNew->prereq = mExtra;
2868     mxTerm = -1;
2869     assert( pNew->nLSlot>=nConstraint );
2870     for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
2871     pNew->u.vtab.omitMask = 0;
2872     for(i=0; i<nConstraint; i++, pIdxCons++){
2873       if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
2874         j = pIdxCons->iTermOffset;
2875         if( iTerm>=nConstraint
2876          || j<0
2877          || j>=pWC->nTerm
2878          || pNew->aLTerm[iTerm]!=0
2879         ){
2880           rc = SQLITE_ERROR;
2881           sqlite3ErrorMsg(pParse, "%s.xBestIndex() malfunction", pTab->zName);
2882           goto whereLoopAddVtab_exit;
2883         }
2884         testcase( iTerm==nConstraint-1 );
2885         testcase( j==0 );
2886         testcase( j==pWC->nTerm-1 );
2887         pTerm = &pWC->a[j];
2888         pNew->prereq |= pTerm->prereqRight;
2889         assert( iTerm<pNew->nLSlot );
2890         pNew->aLTerm[iTerm] = pTerm;
2891         if( iTerm>mxTerm ) mxTerm = iTerm;
2892         testcase( iTerm==15 );
2893         testcase( iTerm==16 );
2894         if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm;
2895         if( (pTerm->eOperator & WO_IN)!=0 ){
2896           if( pUsage[i].omit==0 ){
2897             /* Do not attempt to use an IN constraint if the virtual table
2898             ** says that the equivalent EQ constraint cannot be safely omitted.
2899             ** If we do attempt to use such a constraint, some rows might be
2900             ** repeated in the output. */
2901             break;
2902           }
2903           /* A virtual table that is constrained by an IN clause may not
2904           ** consume the ORDER BY clause because (1) the order of IN terms
2905           ** is not necessarily related to the order of output terms and
2906           ** (2) Multiple outputs from a single IN value will not merge
2907           ** together.  */
2908           pIdxInfo->orderByConsumed = 0;
2909           pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
2910         }
2911       }
2912     }
2913     if( i>=nConstraint ){
2914       pNew->nLTerm = mxTerm+1;
2915       assert( pNew->nLTerm<=pNew->nLSlot );
2916       pNew->u.vtab.idxNum = pIdxInfo->idxNum;
2917       pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
2918       pIdxInfo->needToFreeIdxStr = 0;
2919       pNew->u.vtab.idxStr = pIdxInfo->idxStr;
2920       pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
2921                                       pIdxInfo->nOrderBy : 0);
2922       pNew->rSetup = 0;
2923       pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
2924       pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
2925 
2926       /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
2927       ** that the scan will visit at most one row. Clear it otherwise. */
2928       if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
2929         pNew->wsFlags |= WHERE_ONEROW;
2930       }else{
2931         pNew->wsFlags &= ~WHERE_ONEROW;
2932       }
2933       whereLoopInsert(pBuilder, pNew);
2934       if( pNew->u.vtab.needFree ){
2935         sqlite3_free(pNew->u.vtab.idxStr);
2936         pNew->u.vtab.needFree = 0;
2937       }
2938     }
2939   }
2940 
2941 whereLoopAddVtab_exit:
2942   if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr);
2943   sqlite3DbFree(db, pIdxInfo);
2944   return rc;
2945 }
2946 #endif /* SQLITE_OMIT_VIRTUALTABLE */
2947 
2948 /*
2949 ** Add WhereLoop entries to handle OR terms.  This works for either
2950 ** btrees or virtual tables.
2951 */
2952 static int whereLoopAddOr(
2953   WhereLoopBuilder *pBuilder,
2954   Bitmask mExtra,
2955   Bitmask mUnusable
2956 ){
2957   WhereInfo *pWInfo = pBuilder->pWInfo;
2958   WhereClause *pWC;
2959   WhereLoop *pNew;
2960   WhereTerm *pTerm, *pWCEnd;
2961   int rc = SQLITE_OK;
2962   int iCur;
2963   WhereClause tempWC;
2964   WhereLoopBuilder sSubBuild;
2965   WhereOrSet sSum, sCur;
2966   struct SrcList_item *pItem;
2967 
2968   pWC = pBuilder->pWC;
2969   pWCEnd = pWC->a + pWC->nTerm;
2970   pNew = pBuilder->pNew;
2971   memset(&sSum, 0, sizeof(sSum));
2972   pItem = pWInfo->pTabList->a + pNew->iTab;
2973   iCur = pItem->iCursor;
2974 
2975   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
2976     if( (pTerm->eOperator & WO_OR)!=0
2977      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
2978     ){
2979       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
2980       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
2981       WhereTerm *pOrTerm;
2982       int once = 1;
2983       int i, j;
2984 
2985       sSubBuild = *pBuilder;
2986       sSubBuild.pOrderBy = 0;
2987       sSubBuild.pOrSet = &sCur;
2988 
2989       WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
2990       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
2991         if( (pOrTerm->eOperator & WO_AND)!=0 ){
2992           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
2993         }else if( pOrTerm->leftCursor==iCur ){
2994           tempWC.pWInfo = pWC->pWInfo;
2995           tempWC.pOuter = pWC;
2996           tempWC.op = TK_AND;
2997           tempWC.nTerm = 1;
2998           tempWC.a = pOrTerm;
2999           sSubBuild.pWC = &tempWC;
3000         }else{
3001           continue;
3002         }
3003         sCur.n = 0;
3004 #ifdef WHERETRACE_ENABLED
3005         WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3006                    (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
3007         if( sqlite3WhereTrace & 0x400 ){
3008           for(i=0; i<sSubBuild.pWC->nTerm; i++){
3009             whereTermPrint(&sSubBuild.pWC->a[i], i);
3010           }
3011         }
3012 #endif
3013 #ifndef SQLITE_OMIT_VIRTUALTABLE
3014         if( IsVirtual(pItem->pTab) ){
3015           rc = whereLoopAddVirtual(&sSubBuild, mExtra, mUnusable);
3016         }else
3017 #endif
3018         {
3019           rc = whereLoopAddBtree(&sSubBuild, mExtra);
3020         }
3021         if( rc==SQLITE_OK ){
3022           rc = whereLoopAddOr(&sSubBuild, mExtra, mUnusable);
3023         }
3024         assert( rc==SQLITE_OK || sCur.n==0 );
3025         if( sCur.n==0 ){
3026           sSum.n = 0;
3027           break;
3028         }else if( once ){
3029           whereOrMove(&sSum, &sCur);
3030           once = 0;
3031         }else{
3032           WhereOrSet sPrev;
3033           whereOrMove(&sPrev, &sSum);
3034           sSum.n = 0;
3035           for(i=0; i<sPrev.n; i++){
3036             for(j=0; j<sCur.n; j++){
3037               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
3038                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
3039                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
3040             }
3041           }
3042         }
3043       }
3044       pNew->nLTerm = 1;
3045       pNew->aLTerm[0] = pTerm;
3046       pNew->wsFlags = WHERE_MULTI_OR;
3047       pNew->rSetup = 0;
3048       pNew->iSortIdx = 0;
3049       memset(&pNew->u, 0, sizeof(pNew->u));
3050       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
3051         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
3052         ** of all sub-scans required by the OR-scan. However, due to rounding
3053         ** errors, it may be that the cost of the OR-scan is equal to its
3054         ** most expensive sub-scan. Add the smallest possible penalty
3055         ** (equivalent to multiplying the cost by 1.07) to ensure that
3056         ** this does not happen. Otherwise, for WHERE clauses such as the
3057         ** following where there is an index on "y":
3058         **
3059         **     WHERE likelihood(x=?, 0.99) OR y=?
3060         **
3061         ** the planner may elect to "OR" together a full-table scan and an
3062         ** index lookup. And other similarly odd results.  */
3063         pNew->rRun = sSum.a[i].rRun + 1;
3064         pNew->nOut = sSum.a[i].nOut;
3065         pNew->prereq = sSum.a[i].prereq;
3066         rc = whereLoopInsert(pBuilder, pNew);
3067       }
3068       WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
3069     }
3070   }
3071   return rc;
3072 }
3073 
3074 /*
3075 ** Add all WhereLoop objects for all tables
3076 */
3077 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
3078   WhereInfo *pWInfo = pBuilder->pWInfo;
3079   Bitmask mExtra = 0;
3080   Bitmask mPrior = 0;
3081   int iTab;
3082   SrcList *pTabList = pWInfo->pTabList;
3083   struct SrcList_item *pItem;
3084   struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel];
3085   sqlite3 *db = pWInfo->pParse->db;
3086   int rc = SQLITE_OK;
3087   WhereLoop *pNew;
3088   u8 priorJointype = 0;
3089 
3090   /* Loop over the tables in the join, from left to right */
3091   pNew = pBuilder->pNew;
3092   whereLoopInit(pNew);
3093   for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
3094     Bitmask mUnusable = 0;
3095     pNew->iTab = iTab;
3096     pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
3097     if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){
3098       /* This condition is true when pItem is the FROM clause term on the
3099       ** right-hand-side of a LEFT or CROSS JOIN.  */
3100       mExtra = mPrior;
3101     }
3102     priorJointype = pItem->fg.jointype;
3103     if( IsVirtual(pItem->pTab) ){
3104       struct SrcList_item *p;
3105       for(p=&pItem[1]; p<pEnd; p++){
3106         if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
3107           mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
3108         }
3109       }
3110       rc = whereLoopAddVirtual(pBuilder, mExtra, mUnusable);
3111     }else{
3112       rc = whereLoopAddBtree(pBuilder, mExtra);
3113     }
3114     if( rc==SQLITE_OK ){
3115       rc = whereLoopAddOr(pBuilder, mExtra, mUnusable);
3116     }
3117     mPrior |= pNew->maskSelf;
3118     if( rc || db->mallocFailed ) break;
3119   }
3120 
3121   whereLoopClear(db, pNew);
3122   return rc;
3123 }
3124 
3125 /*
3126 ** Examine a WherePath (with the addition of the extra WhereLoop of the 5th
3127 ** parameters) to see if it outputs rows in the requested ORDER BY
3128 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
3129 **
3130 **   N>0:   N terms of the ORDER BY clause are satisfied
3131 **   N==0:  No terms of the ORDER BY clause are satisfied
3132 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
3133 **
3134 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
3135 ** strict.  With GROUP BY and DISTINCT the only requirement is that
3136 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
3137 ** and DISTINCT do not require rows to appear in any particular order as long
3138 ** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT
3139 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
3140 ** pOrderBy terms must be matched in strict left-to-right order.
3141 */
3142 static i8 wherePathSatisfiesOrderBy(
3143   WhereInfo *pWInfo,    /* The WHERE clause */
3144   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
3145   WherePath *pPath,     /* The WherePath to check */
3146   u16 wctrlFlags,       /* Might contain WHERE_GROUPBY or WHERE_DISTINCTBY */
3147   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
3148   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
3149   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
3150 ){
3151   u8 revSet;            /* True if rev is known */
3152   u8 rev;               /* Composite sort order */
3153   u8 revIdx;            /* Index sort order */
3154   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
3155   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
3156   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
3157   u16 nKeyCol;          /* Number of key columns in pIndex */
3158   u16 nColumn;          /* Total number of ordered columns in the index */
3159   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
3160   int iLoop;            /* Index of WhereLoop in pPath being processed */
3161   int i, j;             /* Loop counters */
3162   int iCur;             /* Cursor number for current WhereLoop */
3163   int iColumn;          /* A column number within table iCur */
3164   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
3165   WhereTerm *pTerm;     /* A single term of the WHERE clause */
3166   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
3167   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
3168   Index *pIndex;        /* The index associated with pLoop */
3169   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
3170   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
3171   Bitmask obDone;       /* Mask of all ORDER BY terms */
3172   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
3173   Bitmask ready;              /* Mask of inner loops */
3174 
3175   /*
3176   ** We say the WhereLoop is "one-row" if it generates no more than one
3177   ** row of output.  A WhereLoop is one-row if all of the following are true:
3178   **  (a) All index columns match with WHERE_COLUMN_EQ.
3179   **  (b) The index is unique
3180   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
3181   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
3182   **
3183   ** We say the WhereLoop is "order-distinct" if the set of columns from
3184   ** that WhereLoop that are in the ORDER BY clause are different for every
3185   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
3186   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
3187   ** is not order-distinct. To be order-distinct is not quite the same as being
3188   ** UNIQUE since a UNIQUE column or index can have multiple rows that
3189   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
3190   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
3191   **
3192   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
3193   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
3194   ** automatically order-distinct.
3195   */
3196 
3197   assert( pOrderBy!=0 );
3198   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
3199 
3200   nOrderBy = pOrderBy->nExpr;
3201   testcase( nOrderBy==BMS-1 );
3202   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
3203   isOrderDistinct = 1;
3204   obDone = MASKBIT(nOrderBy)-1;
3205   orderDistinctMask = 0;
3206   ready = 0;
3207   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
3208     if( iLoop>0 ) ready |= pLoop->maskSelf;
3209     pLoop = iLoop<nLoop ? pPath->aLoop[iLoop] : pLast;
3210     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
3211       if( pLoop->u.vtab.isOrdered ) obSat = obDone;
3212       break;
3213     }
3214     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
3215 
3216     /* Mark off any ORDER BY term X that is a column in the table of
3217     ** the current loop for which there is term in the WHERE
3218     ** clause of the form X IS NULL or X=? that reference only outer
3219     ** loops.
3220     */
3221     for(i=0; i<nOrderBy; i++){
3222       if( MASKBIT(i) & obSat ) continue;
3223       pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
3224       if( pOBExpr->op!=TK_COLUMN ) continue;
3225       if( pOBExpr->iTable!=iCur ) continue;
3226       pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
3227                        ~ready, WO_EQ|WO_ISNULL|WO_IS, 0);
3228       if( pTerm==0 ) continue;
3229       if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
3230         const char *z1, *z2;
3231         pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
3232         if( !pColl ) pColl = db->pDfltColl;
3233         z1 = pColl->zName;
3234         pColl = sqlite3ExprCollSeq(pWInfo->pParse, pTerm->pExpr);
3235         if( !pColl ) pColl = db->pDfltColl;
3236         z2 = pColl->zName;
3237         if( sqlite3StrICmp(z1, z2)!=0 ) continue;
3238         testcase( pTerm->pExpr->op==TK_IS );
3239       }
3240       obSat |= MASKBIT(i);
3241     }
3242 
3243     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
3244       if( pLoop->wsFlags & WHERE_IPK ){
3245         pIndex = 0;
3246         nKeyCol = 0;
3247         nColumn = 1;
3248       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
3249         return 0;
3250       }else{
3251         nKeyCol = pIndex->nKeyCol;
3252         nColumn = pIndex->nColumn;
3253         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
3254         assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
3255                           || !HasRowid(pIndex->pTable));
3256         isOrderDistinct = IsUniqueIndex(pIndex);
3257       }
3258 
3259       /* Loop through all columns of the index and deal with the ones
3260       ** that are not constrained by == or IN.
3261       */
3262       rev = revSet = 0;
3263       distinctColumns = 0;
3264       for(j=0; j<nColumn; j++){
3265         u8 bOnce;   /* True to run the ORDER BY search loop */
3266 
3267         /* Skip over == and IS NULL terms */
3268         if( j<pLoop->u.btree.nEq
3269          && pLoop->nSkip==0
3270          && ((i = pLoop->aLTerm[j]->eOperator) & (WO_EQ|WO_ISNULL|WO_IS))!=0
3271         ){
3272           if( i & WO_ISNULL ){
3273             testcase( isOrderDistinct );
3274             isOrderDistinct = 0;
3275           }
3276           continue;
3277         }
3278 
3279         /* Get the column number in the table (iColumn) and sort order
3280         ** (revIdx) for the j-th column of the index.
3281         */
3282         if( pIndex ){
3283           iColumn = pIndex->aiColumn[j];
3284           revIdx = pIndex->aSortOrder[j];
3285           if( iColumn==pIndex->pTable->iPKey ) iColumn = -1;
3286         }else{
3287           iColumn = XN_ROWID;
3288           revIdx = 0;
3289         }
3290 
3291         /* An unconstrained column that might be NULL means that this
3292         ** WhereLoop is not well-ordered
3293         */
3294         if( isOrderDistinct
3295          && iColumn>=0
3296          && j>=pLoop->u.btree.nEq
3297          && pIndex->pTable->aCol[iColumn].notNull==0
3298         ){
3299           isOrderDistinct = 0;
3300         }
3301 
3302         /* Find the ORDER BY term that corresponds to the j-th column
3303         ** of the index and mark that ORDER BY term off
3304         */
3305         bOnce = 1;
3306         isMatch = 0;
3307         for(i=0; bOnce && i<nOrderBy; i++){
3308           if( MASKBIT(i) & obSat ) continue;
3309           pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
3310           testcase( wctrlFlags & WHERE_GROUPBY );
3311           testcase( wctrlFlags & WHERE_DISTINCTBY );
3312           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
3313           if( iColumn>=(-1) ){
3314             if( pOBExpr->op!=TK_COLUMN ) continue;
3315             if( pOBExpr->iTable!=iCur ) continue;
3316             if( pOBExpr->iColumn!=iColumn ) continue;
3317           }else{
3318             if( sqlite3ExprCompare(pOBExpr,pIndex->aColExpr->a[j].pExpr,iCur) ){
3319               continue;
3320             }
3321           }
3322           if( iColumn>=0 ){
3323             pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
3324             if( !pColl ) pColl = db->pDfltColl;
3325             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
3326           }
3327           isMatch = 1;
3328           break;
3329         }
3330         if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
3331           /* Make sure the sort order is compatible in an ORDER BY clause.
3332           ** Sort order is irrelevant for a GROUP BY clause. */
3333           if( revSet ){
3334             if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0;
3335           }else{
3336             rev = revIdx ^ pOrderBy->a[i].sortOrder;
3337             if( rev ) *pRevMask |= MASKBIT(iLoop);
3338             revSet = 1;
3339           }
3340         }
3341         if( isMatch ){
3342           if( iColumn<0 ){
3343             testcase( distinctColumns==0 );
3344             distinctColumns = 1;
3345           }
3346           obSat |= MASKBIT(i);
3347         }else{
3348           /* No match found */
3349           if( j==0 || j<nKeyCol ){
3350             testcase( isOrderDistinct!=0 );
3351             isOrderDistinct = 0;
3352           }
3353           break;
3354         }
3355       } /* end Loop over all index columns */
3356       if( distinctColumns ){
3357         testcase( isOrderDistinct==0 );
3358         isOrderDistinct = 1;
3359       }
3360     } /* end-if not one-row */
3361 
3362     /* Mark off any other ORDER BY terms that reference pLoop */
3363     if( isOrderDistinct ){
3364       orderDistinctMask |= pLoop->maskSelf;
3365       for(i=0; i<nOrderBy; i++){
3366         Expr *p;
3367         Bitmask mTerm;
3368         if( MASKBIT(i) & obSat ) continue;
3369         p = pOrderBy->a[i].pExpr;
3370         mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
3371         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
3372         if( (mTerm&~orderDistinctMask)==0 ){
3373           obSat |= MASKBIT(i);
3374         }
3375       }
3376     }
3377   } /* End the loop over all WhereLoops from outer-most down to inner-most */
3378   if( obSat==obDone ) return (i8)nOrderBy;
3379   if( !isOrderDistinct ){
3380     for(i=nOrderBy-1; i>0; i--){
3381       Bitmask m = MASKBIT(i) - 1;
3382       if( (obSat&m)==m ) return i;
3383     }
3384     return 0;
3385   }
3386   return -1;
3387 }
3388 
3389 
3390 /*
3391 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
3392 ** the planner assumes that the specified pOrderBy list is actually a GROUP
3393 ** BY clause - and so any order that groups rows as required satisfies the
3394 ** request.
3395 **
3396 ** Normally, in this case it is not possible for the caller to determine
3397 ** whether or not the rows are really being delivered in sorted order, or
3398 ** just in some other order that provides the required grouping. However,
3399 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
3400 ** this function may be called on the returned WhereInfo object. It returns
3401 ** true if the rows really will be sorted in the specified order, or false
3402 ** otherwise.
3403 **
3404 ** For example, assuming:
3405 **
3406 **   CREATE INDEX i1 ON t1(x, Y);
3407 **
3408 ** then
3409 **
3410 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
3411 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
3412 */
3413 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
3414   assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
3415   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
3416   return pWInfo->sorted;
3417 }
3418 
3419 #ifdef WHERETRACE_ENABLED
3420 /* For debugging use only: */
3421 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
3422   static char zName[65];
3423   int i;
3424   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
3425   if( pLast ) zName[i++] = pLast->cId;
3426   zName[i] = 0;
3427   return zName;
3428 }
3429 #endif
3430 
3431 /*
3432 ** Return the cost of sorting nRow rows, assuming that the keys have
3433 ** nOrderby columns and that the first nSorted columns are already in
3434 ** order.
3435 */
3436 static LogEst whereSortingCost(
3437   WhereInfo *pWInfo,
3438   LogEst nRow,
3439   int nOrderBy,
3440   int nSorted
3441 ){
3442   /* TUNING: Estimated cost of a full external sort, where N is
3443   ** the number of rows to sort is:
3444   **
3445   **   cost = (3.0 * N * log(N)).
3446   **
3447   ** Or, if the order-by clause has X terms but only the last Y
3448   ** terms are out of order, then block-sorting will reduce the
3449   ** sorting cost to:
3450   **
3451   **   cost = (3.0 * N * log(N)) * (Y/X)
3452   **
3453   ** The (Y/X) term is implemented using stack variable rScale
3454   ** below.  */
3455   LogEst rScale, rSortCost;
3456   assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
3457   rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
3458   rSortCost = nRow + estLog(nRow) + rScale + 16;
3459 
3460   /* TUNING: The cost of implementing DISTINCT using a B-TREE is
3461   ** similar but with a larger constant of proportionality.
3462   ** Multiply by an additional factor of 3.0.  */
3463   if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
3464     rSortCost += 16;
3465   }
3466 
3467   return rSortCost;
3468 }
3469 
3470 /*
3471 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
3472 ** attempts to find the lowest cost path that visits each WhereLoop
3473 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
3474 **
3475 ** Assume that the total number of output rows that will need to be sorted
3476 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
3477 ** costs if nRowEst==0.
3478 **
3479 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
3480 ** error occurs.
3481 */
3482 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
3483   int mxChoice;             /* Maximum number of simultaneous paths tracked */
3484   int nLoop;                /* Number of terms in the join */
3485   Parse *pParse;            /* Parsing context */
3486   sqlite3 *db;              /* The database connection */
3487   int iLoop;                /* Loop counter over the terms of the join */
3488   int ii, jj;               /* Loop counters */
3489   int mxI = 0;              /* Index of next entry to replace */
3490   int nOrderBy;             /* Number of ORDER BY clause terms */
3491   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
3492   LogEst mxUnsorted = 0;    /* Maximum unsorted cost of a set of path */
3493   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
3494   WherePath *aFrom;         /* All nFrom paths at the previous level */
3495   WherePath *aTo;           /* The nTo best paths at the current level */
3496   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
3497   WherePath *pTo;           /* An element of aTo[] that we are working on */
3498   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
3499   WhereLoop **pX;           /* Used to divy up the pSpace memory */
3500   LogEst *aSortCost = 0;    /* Sorting and partial sorting costs */
3501   char *pSpace;             /* Temporary memory used by this routine */
3502   int nSpace;               /* Bytes of space allocated at pSpace */
3503 
3504   pParse = pWInfo->pParse;
3505   db = pParse->db;
3506   nLoop = pWInfo->nLevel;
3507   /* TUNING: For simple queries, only the best path is tracked.
3508   ** For 2-way joins, the 5 best paths are followed.
3509   ** For joins of 3 or more tables, track the 10 best paths */
3510   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
3511   assert( nLoop<=pWInfo->pTabList->nSrc );
3512   WHERETRACE(0x002, ("---- begin solver.  (nRowEst=%d)\n", nRowEst));
3513 
3514   /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
3515   ** case the purpose of this call is to estimate the number of rows returned
3516   ** by the overall query. Once this estimate has been obtained, the caller
3517   ** will invoke this function a second time, passing the estimate as the
3518   ** nRowEst parameter.  */
3519   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
3520     nOrderBy = 0;
3521   }else{
3522     nOrderBy = pWInfo->pOrderBy->nExpr;
3523   }
3524 
3525   /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
3526   nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
3527   nSpace += sizeof(LogEst) * nOrderBy;
3528   pSpace = sqlite3DbMallocRaw(db, nSpace);
3529   if( pSpace==0 ) return SQLITE_NOMEM;
3530   aTo = (WherePath*)pSpace;
3531   aFrom = aTo+mxChoice;
3532   memset(aFrom, 0, sizeof(aFrom[0]));
3533   pX = (WhereLoop**)(aFrom+mxChoice);
3534   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
3535     pFrom->aLoop = pX;
3536   }
3537   if( nOrderBy ){
3538     /* If there is an ORDER BY clause and it is not being ignored, set up
3539     ** space for the aSortCost[] array. Each element of the aSortCost array
3540     ** is either zero - meaning it has not yet been initialized - or the
3541     ** cost of sorting nRowEst rows of data where the first X terms of
3542     ** the ORDER BY clause are already in order, where X is the array
3543     ** index.  */
3544     aSortCost = (LogEst*)pX;
3545     memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
3546   }
3547   assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
3548   assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
3549 
3550   /* Seed the search with a single WherePath containing zero WhereLoops.
3551   **
3552   ** TUNING: Do not let the number of iterations go above 28.  If the cost
3553   ** of computing an automatic index is not paid back within the first 28
3554   ** rows, then do not use the automatic index. */
3555   aFrom[0].nRow = MIN(pParse->nQueryLoop, 48);  assert( 48==sqlite3LogEst(28) );
3556   nFrom = 1;
3557   assert( aFrom[0].isOrdered==0 );
3558   if( nOrderBy ){
3559     /* If nLoop is zero, then there are no FROM terms in the query. Since
3560     ** in this case the query may return a maximum of one row, the results
3561     ** are already in the requested order. Set isOrdered to nOrderBy to
3562     ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
3563     ** -1, indicating that the result set may or may not be ordered,
3564     ** depending on the loops added to the current plan.  */
3565     aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
3566   }
3567 
3568   /* Compute successively longer WherePaths using the previous generation
3569   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
3570   ** best paths at each generation */
3571   for(iLoop=0; iLoop<nLoop; iLoop++){
3572     nTo = 0;
3573     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
3574       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
3575         LogEst nOut;                      /* Rows visited by (pFrom+pWLoop) */
3576         LogEst rCost;                     /* Cost of path (pFrom+pWLoop) */
3577         LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
3578         i8 isOrdered = pFrom->isOrdered;  /* isOrdered for (pFrom+pWLoop) */
3579         Bitmask maskNew;                  /* Mask of src visited by (..) */
3580         Bitmask revMask = 0;              /* Mask of rev-order loops for (..) */
3581 
3582         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
3583         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
3584         /* At this point, pWLoop is a candidate to be the next loop.
3585         ** Compute its cost */
3586         rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
3587         rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
3588         nOut = pFrom->nRow + pWLoop->nOut;
3589         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
3590         if( isOrdered<0 ){
3591           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
3592                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
3593                        iLoop, pWLoop, &revMask);
3594         }else{
3595           revMask = pFrom->revLoop;
3596         }
3597         if( isOrdered>=0 && isOrdered<nOrderBy ){
3598           if( aSortCost[isOrdered]==0 ){
3599             aSortCost[isOrdered] = whereSortingCost(
3600                 pWInfo, nRowEst, nOrderBy, isOrdered
3601             );
3602           }
3603           rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]);
3604 
3605           WHERETRACE(0x002,
3606               ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
3607                aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
3608                rUnsorted, rCost));
3609         }else{
3610           rCost = rUnsorted;
3611         }
3612 
3613         /* Check to see if pWLoop should be added to the set of
3614         ** mxChoice best-so-far paths.
3615         **
3616         ** First look for an existing path among best-so-far paths
3617         ** that covers the same set of loops and has the same isOrdered
3618         ** setting as the current path candidate.
3619         **
3620         ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
3621         ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
3622         ** of legal values for isOrdered, -1..64.
3623         */
3624         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
3625           if( pTo->maskLoop==maskNew
3626            && ((pTo->isOrdered^isOrdered)&0x80)==0
3627           ){
3628             testcase( jj==nTo-1 );
3629             break;
3630           }
3631         }
3632         if( jj>=nTo ){
3633           /* None of the existing best-so-far paths match the candidate. */
3634           if( nTo>=mxChoice
3635            && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
3636           ){
3637             /* The current candidate is no better than any of the mxChoice
3638             ** paths currently in the best-so-far buffer.  So discard
3639             ** this candidate as not viable. */
3640 #ifdef WHERETRACE_ENABLED /* 0x4 */
3641             if( sqlite3WhereTrace&0x4 ){
3642               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d order=%c\n",
3643                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
3644                   isOrdered>=0 ? isOrdered+'0' : '?');
3645             }
3646 #endif
3647             continue;
3648           }
3649           /* If we reach this points it means that the new candidate path
3650           ** needs to be added to the set of best-so-far paths. */
3651           if( nTo<mxChoice ){
3652             /* Increase the size of the aTo set by one */
3653             jj = nTo++;
3654           }else{
3655             /* New path replaces the prior worst to keep count below mxChoice */
3656             jj = mxI;
3657           }
3658           pTo = &aTo[jj];
3659 #ifdef WHERETRACE_ENABLED /* 0x4 */
3660           if( sqlite3WhereTrace&0x4 ){
3661             sqlite3DebugPrintf("New    %s cost=%-3d,%3d order=%c\n",
3662                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
3663                 isOrdered>=0 ? isOrdered+'0' : '?');
3664           }
3665 #endif
3666         }else{
3667           /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
3668           ** same set of loops and has the sam isOrdered setting as the
3669           ** candidate path.  Check to see if the candidate should replace
3670           ** pTo or if the candidate should be skipped */
3671           if( pTo->rCost<rCost || (pTo->rCost==rCost && pTo->nRow<=nOut) ){
3672 #ifdef WHERETRACE_ENABLED /* 0x4 */
3673             if( sqlite3WhereTrace&0x4 ){
3674               sqlite3DebugPrintf(
3675                   "Skip   %s cost=%-3d,%3d order=%c",
3676                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
3677                   isOrdered>=0 ? isOrdered+'0' : '?');
3678               sqlite3DebugPrintf("   vs %s cost=%-3d,%d order=%c\n",
3679                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
3680                   pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
3681             }
3682 #endif
3683             /* Discard the candidate path from further consideration */
3684             testcase( pTo->rCost==rCost );
3685             continue;
3686           }
3687           testcase( pTo->rCost==rCost+1 );
3688           /* Control reaches here if the candidate path is better than the
3689           ** pTo path.  Replace pTo with the candidate. */
3690 #ifdef WHERETRACE_ENABLED /* 0x4 */
3691           if( sqlite3WhereTrace&0x4 ){
3692             sqlite3DebugPrintf(
3693                 "Update %s cost=%-3d,%3d order=%c",
3694                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
3695                 isOrdered>=0 ? isOrdered+'0' : '?');
3696             sqlite3DebugPrintf("  was %s cost=%-3d,%3d order=%c\n",
3697                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
3698                 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
3699           }
3700 #endif
3701         }
3702         /* pWLoop is a winner.  Add it to the set of best so far */
3703         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
3704         pTo->revLoop = revMask;
3705         pTo->nRow = nOut;
3706         pTo->rCost = rCost;
3707         pTo->rUnsorted = rUnsorted;
3708         pTo->isOrdered = isOrdered;
3709         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
3710         pTo->aLoop[iLoop] = pWLoop;
3711         if( nTo>=mxChoice ){
3712           mxI = 0;
3713           mxCost = aTo[0].rCost;
3714           mxUnsorted = aTo[0].nRow;
3715           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
3716             if( pTo->rCost>mxCost
3717              || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
3718             ){
3719               mxCost = pTo->rCost;
3720               mxUnsorted = pTo->rUnsorted;
3721               mxI = jj;
3722             }
3723           }
3724         }
3725       }
3726     }
3727 
3728 #ifdef WHERETRACE_ENABLED  /* >=2 */
3729     if( sqlite3WhereTrace & 0x02 ){
3730       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
3731       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
3732         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
3733            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
3734            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
3735         if( pTo->isOrdered>0 ){
3736           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
3737         }else{
3738           sqlite3DebugPrintf("\n");
3739         }
3740       }
3741     }
3742 #endif
3743 
3744     /* Swap the roles of aFrom and aTo for the next generation */
3745     pFrom = aTo;
3746     aTo = aFrom;
3747     aFrom = pFrom;
3748     nFrom = nTo;
3749   }
3750 
3751   if( nFrom==0 ){
3752     sqlite3ErrorMsg(pParse, "no query solution");
3753     sqlite3DbFree(db, pSpace);
3754     return SQLITE_ERROR;
3755   }
3756 
3757   /* Find the lowest cost path.  pFrom will be left pointing to that path */
3758   pFrom = aFrom;
3759   for(ii=1; ii<nFrom; ii++){
3760     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
3761   }
3762   assert( pWInfo->nLevel==nLoop );
3763   /* Load the lowest cost path into pWInfo */
3764   for(iLoop=0; iLoop<nLoop; iLoop++){
3765     WhereLevel *pLevel = pWInfo->a + iLoop;
3766     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
3767     pLevel->iFrom = pWLoop->iTab;
3768     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
3769   }
3770   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
3771    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
3772    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
3773    && nRowEst
3774   ){
3775     Bitmask notUsed;
3776     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
3777                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
3778     if( rc==pWInfo->pResultSet->nExpr ){
3779       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
3780     }
3781   }
3782   if( pWInfo->pOrderBy ){
3783     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
3784       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
3785         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
3786       }
3787     }else{
3788       pWInfo->nOBSat = pFrom->isOrdered;
3789       if( pWInfo->nOBSat<0 ) pWInfo->nOBSat = 0;
3790       pWInfo->revMask = pFrom->revLoop;
3791     }
3792     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
3793         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
3794     ){
3795       Bitmask revMask = 0;
3796       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
3797           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
3798       );
3799       assert( pWInfo->sorted==0 );
3800       if( nOrder==pWInfo->pOrderBy->nExpr ){
3801         pWInfo->sorted = 1;
3802         pWInfo->revMask = revMask;
3803       }
3804     }
3805   }
3806 
3807 
3808   pWInfo->nRowOut = pFrom->nRow;
3809 
3810   /* Free temporary memory and return success */
3811   sqlite3DbFree(db, pSpace);
3812   return SQLITE_OK;
3813 }
3814 
3815 /*
3816 ** Most queries use only a single table (they are not joins) and have
3817 ** simple == constraints against indexed fields.  This routine attempts
3818 ** to plan those simple cases using much less ceremony than the
3819 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
3820 ** times for the common case.
3821 **
3822 ** Return non-zero on success, if this query can be handled by this
3823 ** no-frills query planner.  Return zero if this query needs the
3824 ** general-purpose query planner.
3825 */
3826 static int whereShortCut(WhereLoopBuilder *pBuilder){
3827   WhereInfo *pWInfo;
3828   struct SrcList_item *pItem;
3829   WhereClause *pWC;
3830   WhereTerm *pTerm;
3831   WhereLoop *pLoop;
3832   int iCur;
3833   int j;
3834   Table *pTab;
3835   Index *pIdx;
3836 
3837   pWInfo = pBuilder->pWInfo;
3838   if( pWInfo->wctrlFlags & WHERE_FORCE_TABLE ) return 0;
3839   assert( pWInfo->pTabList->nSrc>=1 );
3840   pItem = pWInfo->pTabList->a;
3841   pTab = pItem->pTab;
3842   if( IsVirtual(pTab) ) return 0;
3843   if( pItem->fg.isIndexedBy ) return 0;
3844   iCur = pItem->iCursor;
3845   pWC = &pWInfo->sWC;
3846   pLoop = pBuilder->pNew;
3847   pLoop->wsFlags = 0;
3848   pLoop->nSkip = 0;
3849   pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0);
3850   if( pTerm ){
3851     testcase( pTerm->eOperator & WO_IS );
3852     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
3853     pLoop->aLTerm[0] = pTerm;
3854     pLoop->nLTerm = 1;
3855     pLoop->u.btree.nEq = 1;
3856     /* TUNING: Cost of a rowid lookup is 10 */
3857     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
3858   }else{
3859     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3860       int opMask;
3861       assert( pLoop->aLTermSpace==pLoop->aLTerm );
3862       if( !IsUniqueIndex(pIdx)
3863        || pIdx->pPartIdxWhere!=0
3864        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
3865       ) continue;
3866       opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
3867       for(j=0; j<pIdx->nKeyCol; j++){
3868         pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx);
3869         if( pTerm==0 ) break;
3870         testcase( pTerm->eOperator & WO_IS );
3871         pLoop->aLTerm[j] = pTerm;
3872       }
3873       if( j!=pIdx->nKeyCol ) continue;
3874       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
3875       if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){
3876         pLoop->wsFlags |= WHERE_IDX_ONLY;
3877       }
3878       pLoop->nLTerm = j;
3879       pLoop->u.btree.nEq = j;
3880       pLoop->u.btree.pIndex = pIdx;
3881       /* TUNING: Cost of a unique index lookup is 15 */
3882       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
3883       break;
3884     }
3885   }
3886   if( pLoop->wsFlags ){
3887     pLoop->nOut = (LogEst)1;
3888     pWInfo->a[0].pWLoop = pLoop;
3889     pLoop->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
3890     pWInfo->a[0].iTabCur = iCur;
3891     pWInfo->nRowOut = 1;
3892     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
3893     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
3894       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
3895     }
3896 #ifdef SQLITE_DEBUG
3897     pLoop->cId = '0';
3898 #endif
3899     return 1;
3900   }
3901   return 0;
3902 }
3903 
3904 /*
3905 ** Generate the beginning of the loop used for WHERE clause processing.
3906 ** The return value is a pointer to an opaque structure that contains
3907 ** information needed to terminate the loop.  Later, the calling routine
3908 ** should invoke sqlite3WhereEnd() with the return value of this function
3909 ** in order to complete the WHERE clause processing.
3910 **
3911 ** If an error occurs, this routine returns NULL.
3912 **
3913 ** The basic idea is to do a nested loop, one loop for each table in
3914 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
3915 ** same as a SELECT with only a single table in the FROM clause.)  For
3916 ** example, if the SQL is this:
3917 **
3918 **       SELECT * FROM t1, t2, t3 WHERE ...;
3919 **
3920 ** Then the code generated is conceptually like the following:
3921 **
3922 **      foreach row1 in t1 do       \    Code generated
3923 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
3924 **          foreach row3 in t3 do   /
3925 **            ...
3926 **          end                     \    Code generated
3927 **        end                        |-- by sqlite3WhereEnd()
3928 **      end                         /
3929 **
3930 ** Note that the loops might not be nested in the order in which they
3931 ** appear in the FROM clause if a different order is better able to make
3932 ** use of indices.  Note also that when the IN operator appears in
3933 ** the WHERE clause, it might result in additional nested loops for
3934 ** scanning through all values on the right-hand side of the IN.
3935 **
3936 ** There are Btree cursors associated with each table.  t1 uses cursor
3937 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
3938 ** And so forth.  This routine generates code to open those VDBE cursors
3939 ** and sqlite3WhereEnd() generates the code to close them.
3940 **
3941 ** The code that sqlite3WhereBegin() generates leaves the cursors named
3942 ** in pTabList pointing at their appropriate entries.  The [...] code
3943 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
3944 ** data from the various tables of the loop.
3945 **
3946 ** If the WHERE clause is empty, the foreach loops must each scan their
3947 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
3948 ** the tables have indices and there are terms in the WHERE clause that
3949 ** refer to those indices, a complete table scan can be avoided and the
3950 ** code will run much faster.  Most of the work of this routine is checking
3951 ** to see if there are indices that can be used to speed up the loop.
3952 **
3953 ** Terms of the WHERE clause are also used to limit which rows actually
3954 ** make it to the "..." in the middle of the loop.  After each "foreach",
3955 ** terms of the WHERE clause that use only terms in that loop and outer
3956 ** loops are evaluated and if false a jump is made around all subsequent
3957 ** inner loops (or around the "..." if the test occurs within the inner-
3958 ** most loop)
3959 **
3960 ** OUTER JOINS
3961 **
3962 ** An outer join of tables t1 and t2 is conceptally coded as follows:
3963 **
3964 **    foreach row1 in t1 do
3965 **      flag = 0
3966 **      foreach row2 in t2 do
3967 **        start:
3968 **          ...
3969 **          flag = 1
3970 **      end
3971 **      if flag==0 then
3972 **        move the row2 cursor to a null row
3973 **        goto start
3974 **      fi
3975 **    end
3976 **
3977 ** ORDER BY CLAUSE PROCESSING
3978 **
3979 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
3980 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
3981 ** if there is one.  If there is no ORDER BY clause or if this routine
3982 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
3983 **
3984 ** The iIdxCur parameter is the cursor number of an index.  If
3985 ** WHERE_ONETABLE_ONLY is set, iIdxCur is the cursor number of an index
3986 ** to use for OR clause processing.  The WHERE clause should use this
3987 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
3988 ** the first cursor in an array of cursors for all indices.  iIdxCur should
3989 ** be used to compute the appropriate cursor depending on which index is
3990 ** used.
3991 */
3992 WhereInfo *sqlite3WhereBegin(
3993   Parse *pParse,        /* The parser context */
3994   SrcList *pTabList,    /* FROM clause: A list of all tables to be scanned */
3995   Expr *pWhere,         /* The WHERE clause */
3996   ExprList *pOrderBy,   /* An ORDER BY (or GROUP BY) clause, or NULL */
3997   ExprList *pResultSet, /* Result set of the query */
3998   u16 wctrlFlags,       /* One of the WHERE_* flags defined in sqliteInt.h */
3999   int iIdxCur           /* If WHERE_ONETABLE_ONLY is set, index cursor number */
4000 ){
4001   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
4002   int nTabList;              /* Number of elements in pTabList */
4003   WhereInfo *pWInfo;         /* Will become the return value of this function */
4004   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
4005   Bitmask notReady;          /* Cursors that are not yet positioned */
4006   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
4007   WhereMaskSet *pMaskSet;    /* The expression mask set */
4008   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
4009   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
4010   int ii;                    /* Loop counter */
4011   sqlite3 *db;               /* Database connection */
4012   int rc;                    /* Return code */
4013   u8 bFordelete = 0;
4014 
4015   assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
4016         (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
4017      && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0
4018   ));
4019 
4020   /* Variable initialization */
4021   db = pParse->db;
4022   memset(&sWLB, 0, sizeof(sWLB));
4023 
4024   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
4025   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
4026   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
4027   sWLB.pOrderBy = pOrderBy;
4028 
4029   /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
4030   ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
4031   if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
4032     wctrlFlags &= ~WHERE_WANT_DISTINCT;
4033   }
4034 
4035   /* The number of tables in the FROM clause is limited by the number of
4036   ** bits in a Bitmask
4037   */
4038   testcase( pTabList->nSrc==BMS );
4039   if( pTabList->nSrc>BMS ){
4040     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
4041     return 0;
4042   }
4043 
4044   /* This function normally generates a nested loop for all tables in
4045   ** pTabList.  But if the WHERE_ONETABLE_ONLY flag is set, then we should
4046   ** only generate code for the first table in pTabList and assume that
4047   ** any cursors associated with subsequent tables are uninitialized.
4048   */
4049   nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc;
4050 
4051   /* Allocate and initialize the WhereInfo structure that will become the
4052   ** return value. A single allocation is used to store the WhereInfo
4053   ** struct, the contents of WhereInfo.a[], the WhereClause structure
4054   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4055   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4056   ** some architectures. Hence the ROUND8() below.
4057   */
4058   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
4059   pWInfo = sqlite3DbMallocZero(db, nByteWInfo + sizeof(WhereLoop));
4060   if( db->mallocFailed ){
4061     sqlite3DbFree(db, pWInfo);
4062     pWInfo = 0;
4063     goto whereBeginError;
4064   }
4065   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
4066   pWInfo->nLevel = nTabList;
4067   pWInfo->pParse = pParse;
4068   pWInfo->pTabList = pTabList;
4069   pWInfo->pOrderBy = pOrderBy;
4070   pWInfo->pResultSet = pResultSet;
4071   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v);
4072   pWInfo->wctrlFlags = wctrlFlags;
4073   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
4074   assert( pWInfo->eOnePass==ONEPASS_OFF );  /* ONEPASS defaults to OFF */
4075   pMaskSet = &pWInfo->sMaskSet;
4076   sWLB.pWInfo = pWInfo;
4077   sWLB.pWC = &pWInfo->sWC;
4078   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
4079   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
4080   whereLoopInit(sWLB.pNew);
4081 #ifdef SQLITE_DEBUG
4082   sWLB.pNew->cId = '*';
4083 #endif
4084 
4085   /* Split the WHERE clause into separate subexpressions where each
4086   ** subexpression is separated by an AND operator.
4087   */
4088   initMaskSet(pMaskSet);
4089   sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
4090   sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
4091 
4092   /* Special case: a WHERE clause that is constant.  Evaluate the
4093   ** expression and either jump over all of the code or fall thru.
4094   */
4095   for(ii=0; ii<sWLB.pWC->nTerm; ii++){
4096     if( nTabList==0 || sqlite3ExprIsConstantNotJoin(sWLB.pWC->a[ii].pExpr) ){
4097       sqlite3ExprIfFalse(pParse, sWLB.pWC->a[ii].pExpr, pWInfo->iBreak,
4098                          SQLITE_JUMPIFNULL);
4099       sWLB.pWC->a[ii].wtFlags |= TERM_CODED;
4100     }
4101   }
4102 
4103   /* Special case: No FROM clause
4104   */
4105   if( nTabList==0 ){
4106     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
4107     if( wctrlFlags & WHERE_WANT_DISTINCT ){
4108       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4109     }
4110   }
4111 
4112   /* Assign a bit from the bitmask to every term in the FROM clause.
4113   **
4114   ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
4115   **
4116   ** The rule of the previous sentence ensures thta if X is the bitmask for
4117   ** a table T, then X-1 is the bitmask for all other tables to the left of T.
4118   ** Knowing the bitmask for all tables to the left of a left join is
4119   ** important.  Ticket #3015.
4120   **
4121   ** Note that bitmasks are created for all pTabList->nSrc tables in
4122   ** pTabList, not just the first nTabList tables.  nTabList is normally
4123   ** equal to pTabList->nSrc but might be shortened to 1 if the
4124   ** WHERE_ONETABLE_ONLY flag is set.
4125   */
4126   for(ii=0; ii<pTabList->nSrc; ii++){
4127     createMask(pMaskSet, pTabList->a[ii].iCursor);
4128     sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
4129   }
4130 #ifdef SQLITE_DEBUG
4131   for(ii=0; ii<pTabList->nSrc; ii++){
4132     Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
4133     assert( m==MASKBIT(ii) );
4134   }
4135 #endif
4136 
4137   /* Analyze all of the subexpressions. */
4138   sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
4139   if( db->mallocFailed ) goto whereBeginError;
4140 
4141   if( wctrlFlags & WHERE_WANT_DISTINCT ){
4142     if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
4143       /* The DISTINCT marking is pointless.  Ignore it. */
4144       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4145     }else if( pOrderBy==0 ){
4146       /* Try to ORDER BY the result set to make distinct processing easier */
4147       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
4148       pWInfo->pOrderBy = pResultSet;
4149     }
4150   }
4151 
4152   /* Construct the WhereLoop objects */
4153   WHERETRACE(0xffff,("*** Optimizer Start *** (wctrlFlags: 0x%x)\n",
4154              wctrlFlags));
4155 #if defined(WHERETRACE_ENABLED)
4156   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
4157     int i;
4158     for(i=0; i<sWLB.pWC->nTerm; i++){
4159       whereTermPrint(&sWLB.pWC->a[i], i);
4160     }
4161   }
4162 #endif
4163 
4164   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
4165     rc = whereLoopAddAll(&sWLB);
4166     if( rc ) goto whereBeginError;
4167 
4168 #ifdef WHERETRACE_ENABLED
4169     if( sqlite3WhereTrace ){    /* Display all of the WhereLoop objects */
4170       WhereLoop *p;
4171       int i;
4172       static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
4173                                              "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
4174       for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
4175         p->cId = zLabel[i%sizeof(zLabel)];
4176         whereLoopPrint(p, sWLB.pWC);
4177       }
4178     }
4179 #endif
4180 
4181     wherePathSolver(pWInfo, 0);
4182     if( db->mallocFailed ) goto whereBeginError;
4183     if( pWInfo->pOrderBy ){
4184        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
4185        if( db->mallocFailed ) goto whereBeginError;
4186     }
4187   }
4188   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
4189      pWInfo->revMask = (Bitmask)(-1);
4190   }
4191   if( pParse->nErr || NEVER(db->mallocFailed) ){
4192     goto whereBeginError;
4193   }
4194 #ifdef WHERETRACE_ENABLED
4195   if( sqlite3WhereTrace ){
4196     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
4197     if( pWInfo->nOBSat>0 ){
4198       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
4199     }
4200     switch( pWInfo->eDistinct ){
4201       case WHERE_DISTINCT_UNIQUE: {
4202         sqlite3DebugPrintf("  DISTINCT=unique");
4203         break;
4204       }
4205       case WHERE_DISTINCT_ORDERED: {
4206         sqlite3DebugPrintf("  DISTINCT=ordered");
4207         break;
4208       }
4209       case WHERE_DISTINCT_UNORDERED: {
4210         sqlite3DebugPrintf("  DISTINCT=unordered");
4211         break;
4212       }
4213     }
4214     sqlite3DebugPrintf("\n");
4215     for(ii=0; ii<pWInfo->nLevel; ii++){
4216       whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
4217     }
4218   }
4219 #endif
4220   /* Attempt to omit tables from the join that do not effect the result */
4221   if( pWInfo->nLevel>=2
4222    && pResultSet!=0
4223    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
4224   ){
4225     Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet);
4226     if( sWLB.pOrderBy ){
4227       tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy);
4228     }
4229     while( pWInfo->nLevel>=2 ){
4230       WhereTerm *pTerm, *pEnd;
4231       pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop;
4232       if( (pWInfo->pTabList->a[pLoop->iTab].fg.jointype & JT_LEFT)==0 ) break;
4233       if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
4234        && (pLoop->wsFlags & WHERE_ONEROW)==0
4235       ){
4236         break;
4237       }
4238       if( (tabUsed & pLoop->maskSelf)!=0 ) break;
4239       pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
4240       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
4241         if( (pTerm->prereqAll & pLoop->maskSelf)!=0
4242          && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
4243         ){
4244           break;
4245         }
4246       }
4247       if( pTerm<pEnd ) break;
4248       WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
4249       pWInfo->nLevel--;
4250       nTabList--;
4251     }
4252   }
4253   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
4254   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
4255 
4256   /* If the caller is an UPDATE or DELETE statement that is requesting
4257   ** to use a one-pass algorithm, determine if this is appropriate.
4258   ** The one-pass algorithm only works if the WHERE clause constrains
4259   ** the statement to update or delete a single row.
4260   */
4261   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
4262   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
4263     int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
4264     int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
4265     if( bOnerow || ( (wctrlFlags & WHERE_ONEPASS_MULTIROW)
4266        && 0==(wsFlags & WHERE_VIRTUALTABLE)
4267     )){
4268       pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
4269       if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
4270         if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
4271           bFordelete = OPFLAG_FORDELETE;
4272         }
4273         pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
4274       }
4275     }
4276   }
4277 
4278   /* Open all tables in the pTabList and any indices selected for
4279   ** searching those tables.
4280   */
4281   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
4282     Table *pTab;     /* Table to open */
4283     int iDb;         /* Index of database containing table/index */
4284     struct SrcList_item *pTabItem;
4285 
4286     pTabItem = &pTabList->a[pLevel->iFrom];
4287     pTab = pTabItem->pTab;
4288     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4289     pLoop = pLevel->pWLoop;
4290     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
4291       /* Do nothing */
4292     }else
4293 #ifndef SQLITE_OMIT_VIRTUALTABLE
4294     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
4295       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
4296       int iCur = pTabItem->iCursor;
4297       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
4298     }else if( IsVirtual(pTab) ){
4299       /* noop */
4300     }else
4301 #endif
4302     if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
4303          && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){
4304       int op = OP_OpenRead;
4305       if( pWInfo->eOnePass!=ONEPASS_OFF ){
4306         op = OP_OpenWrite;
4307         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
4308       };
4309       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
4310       assert( pTabItem->iCursor==pLevel->iTabCur );
4311       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
4312       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
4313       if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){
4314         Bitmask b = pTabItem->colUsed;
4315         int n = 0;
4316         for(; b; b=b>>1, n++){}
4317         sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1,
4318                             SQLITE_INT_TO_PTR(n), P4_INT32);
4319         assert( n<=pTab->nCol );
4320       }
4321 #ifdef SQLITE_ENABLE_CURSOR_HINTS
4322       if( pLoop->u.btree.pIndex!=0 ){
4323         sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
4324       }else
4325 #endif
4326       {
4327         sqlite3VdbeChangeP5(v, bFordelete);
4328       }
4329 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4330       sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
4331                             (const u8*)&pTabItem->colUsed, P4_INT64);
4332 #endif
4333     }else{
4334       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4335     }
4336     if( pLoop->wsFlags & WHERE_INDEXED ){
4337       Index *pIx = pLoop->u.btree.pIndex;
4338       int iIndexCur;
4339       int op = OP_OpenRead;
4340       /* iIdxCur is always set if to a positive value if ONEPASS is possible */
4341       assert( iIdxCur!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
4342       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
4343        && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0
4344       ){
4345         /* This is one term of an OR-optimization using the PRIMARY KEY of a
4346         ** WITHOUT ROWID table.  No need for a separate index */
4347         iIndexCur = pLevel->iTabCur;
4348         op = 0;
4349       }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
4350         Index *pJ = pTabItem->pTab->pIndex;
4351         iIndexCur = iIdxCur;
4352         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
4353         while( ALWAYS(pJ) && pJ!=pIx ){
4354           iIndexCur++;
4355           pJ = pJ->pNext;
4356         }
4357         op = OP_OpenWrite;
4358         pWInfo->aiCurOnePass[1] = iIndexCur;
4359       }else if( iIdxCur && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ){
4360         iIndexCur = iIdxCur;
4361         if( wctrlFlags & WHERE_REOPEN_IDX ) op = OP_ReopenIdx;
4362       }else{
4363         iIndexCur = pParse->nTab++;
4364       }
4365       pLevel->iIdxCur = iIndexCur;
4366       assert( pIx->pSchema==pTab->pSchema );
4367       assert( iIndexCur>=0 );
4368       if( op ){
4369         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
4370         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
4371         if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
4372          && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
4373          && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
4374         ){
4375           sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */
4376         }
4377         VdbeComment((v, "%s", pIx->zName));
4378 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4379         {
4380           u64 colUsed = 0;
4381           int ii, jj;
4382           for(ii=0; ii<pIx->nColumn; ii++){
4383             jj = pIx->aiColumn[ii];
4384             if( jj<0 ) continue;
4385             if( jj>63 ) jj = 63;
4386             if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
4387             colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
4388           }
4389           sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
4390                                 (u8*)&colUsed, P4_INT64);
4391         }
4392 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
4393       }
4394     }
4395     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
4396   }
4397   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
4398   if( db->mallocFailed ) goto whereBeginError;
4399 
4400   /* Generate the code to do the search.  Each iteration of the for
4401   ** loop below generates code for a single nested loop of the VM
4402   ** program.
4403   */
4404   notReady = ~(Bitmask)0;
4405   for(ii=0; ii<nTabList; ii++){
4406     int addrExplain;
4407     int wsFlags;
4408     pLevel = &pWInfo->a[ii];
4409     wsFlags = pLevel->pWLoop->wsFlags;
4410 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
4411     if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
4412       constructAutomaticIndex(pParse, &pWInfo->sWC,
4413                 &pTabList->a[pLevel->iFrom], notReady, pLevel);
4414       if( db->mallocFailed ) goto whereBeginError;
4415     }
4416 #endif
4417     addrExplain = sqlite3WhereExplainOneScan(
4418         pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags
4419     );
4420     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
4421     notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady);
4422     pWInfo->iContinue = pLevel->addrCont;
4423     if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_ONETABLE_ONLY)==0 ){
4424       sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
4425     }
4426   }
4427 
4428   /* Done. */
4429   VdbeModuleComment((v, "Begin WHERE-core"));
4430   return pWInfo;
4431 
4432   /* Jump here if malloc fails */
4433 whereBeginError:
4434   if( pWInfo ){
4435     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
4436     whereInfoFree(db, pWInfo);
4437   }
4438   return 0;
4439 }
4440 
4441 /*
4442 ** Generate the end of the WHERE loop.  See comments on
4443 ** sqlite3WhereBegin() for additional information.
4444 */
4445 void sqlite3WhereEnd(WhereInfo *pWInfo){
4446   Parse *pParse = pWInfo->pParse;
4447   Vdbe *v = pParse->pVdbe;
4448   int i;
4449   WhereLevel *pLevel;
4450   WhereLoop *pLoop;
4451   SrcList *pTabList = pWInfo->pTabList;
4452   sqlite3 *db = pParse->db;
4453 
4454   /* Generate loop termination code.
4455   */
4456   VdbeModuleComment((v, "End WHERE-core"));
4457   sqlite3ExprCacheClear(pParse);
4458   for(i=pWInfo->nLevel-1; i>=0; i--){
4459     int addr;
4460     pLevel = &pWInfo->a[i];
4461     pLoop = pLevel->pWLoop;
4462     sqlite3VdbeResolveLabel(v, pLevel->addrCont);
4463     if( pLevel->op!=OP_Noop ){
4464       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
4465       sqlite3VdbeChangeP5(v, pLevel->p5);
4466       VdbeCoverage(v);
4467       VdbeCoverageIf(v, pLevel->op==OP_Next);
4468       VdbeCoverageIf(v, pLevel->op==OP_Prev);
4469       VdbeCoverageIf(v, pLevel->op==OP_VNext);
4470     }
4471     if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
4472       struct InLoop *pIn;
4473       int j;
4474       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
4475       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
4476         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
4477         sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
4478         VdbeCoverage(v);
4479         VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen);
4480         VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen);
4481         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
4482       }
4483     }
4484     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
4485     if( pLevel->addrSkip ){
4486       sqlite3VdbeGoto(v, pLevel->addrSkip);
4487       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
4488       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
4489       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
4490     }
4491     if( pLevel->addrLikeRep ){
4492       int op;
4493       if( sqlite3VdbeGetOp(v, pLevel->addrLikeRep-1)->p1 ){
4494         op = OP_DecrJumpZero;
4495       }else{
4496         op = OP_JumpZeroIncr;
4497       }
4498       sqlite3VdbeAddOp2(v, op, pLevel->iLikeRepCntr, pLevel->addrLikeRep);
4499       VdbeCoverage(v);
4500     }
4501     if( pLevel->iLeftJoin ){
4502       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
4503       assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
4504            || (pLoop->wsFlags & WHERE_INDEXED)!=0 );
4505       if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){
4506         sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
4507       }
4508       if( pLoop->wsFlags & WHERE_INDEXED ){
4509         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
4510       }
4511       if( pLevel->op==OP_Return ){
4512         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
4513       }else{
4514         sqlite3VdbeGoto(v, pLevel->addrFirst);
4515       }
4516       sqlite3VdbeJumpHere(v, addr);
4517     }
4518     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
4519                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
4520   }
4521 
4522   /* The "break" point is here, just past the end of the outer loop.
4523   ** Set it.
4524   */
4525   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
4526 
4527   assert( pWInfo->nLevel<=pTabList->nSrc );
4528   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
4529     int k, last;
4530     VdbeOp *pOp;
4531     Index *pIdx = 0;
4532     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
4533     Table *pTab = pTabItem->pTab;
4534     assert( pTab!=0 );
4535     pLoop = pLevel->pWLoop;
4536 
4537     /* For a co-routine, change all OP_Column references to the table of
4538     ** the co-routine into OP_Copy of result contained in a register.
4539     ** OP_Rowid becomes OP_Null.
4540     */
4541     if( pTabItem->fg.viaCoroutine && !db->mallocFailed ){
4542       translateColumnToCopy(v, pLevel->addrBody, pLevel->iTabCur,
4543                             pTabItem->regResult, 0);
4544       continue;
4545     }
4546 
4547     /* Close all of the cursors that were opened by sqlite3WhereBegin.
4548     ** Except, do not close cursors that will be reused by the OR optimization
4549     ** (WHERE_OMIT_OPEN_CLOSE).  And do not close the OP_OpenWrite cursors
4550     ** created for the ONEPASS optimization.
4551     */
4552     if( (pTab->tabFlags & TF_Ephemeral)==0
4553      && pTab->pSelect==0
4554      && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0
4555     ){
4556       int ws = pLoop->wsFlags;
4557       if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){
4558         sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
4559       }
4560       if( (ws & WHERE_INDEXED)!=0
4561        && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0
4562        && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1]
4563       ){
4564         sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
4565       }
4566     }
4567 
4568     /* If this scan uses an index, make VDBE code substitutions to read data
4569     ** from the index instead of from the table where possible.  In some cases
4570     ** this optimization prevents the table from ever being read, which can
4571     ** yield a significant performance boost.
4572     **
4573     ** Calls to the code generator in between sqlite3WhereBegin and
4574     ** sqlite3WhereEnd will have created code that references the table
4575     ** directly.  This loop scans all that code looking for opcodes
4576     ** that reference the table and converts them into opcodes that
4577     ** reference the index.
4578     */
4579     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
4580       pIdx = pLoop->u.btree.pIndex;
4581     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
4582       pIdx = pLevel->u.pCovidx;
4583     }
4584     if( pIdx
4585      && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable))
4586      && !db->mallocFailed
4587     ){
4588       last = sqlite3VdbeCurrentAddr(v);
4589       k = pLevel->addrBody;
4590       pOp = sqlite3VdbeGetOp(v, k);
4591       for(; k<last; k++, pOp++){
4592         if( pOp->p1!=pLevel->iTabCur ) continue;
4593         if( pOp->opcode==OP_Column ){
4594           int x = pOp->p2;
4595           assert( pIdx->pTable==pTab );
4596           if( !HasRowid(pTab) ){
4597             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
4598             x = pPk->aiColumn[x];
4599             assert( x>=0 );
4600           }
4601           x = sqlite3ColumnOfIndex(pIdx, x);
4602           if( x>=0 ){
4603             pOp->p2 = x;
4604             pOp->p1 = pLevel->iIdxCur;
4605           }
4606           assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 );
4607         }else if( pOp->opcode==OP_Rowid ){
4608           pOp->p1 = pLevel->iIdxCur;
4609           pOp->opcode = OP_IdxRowid;
4610         }
4611       }
4612     }
4613   }
4614 
4615   /* Final cleanup
4616   */
4617   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
4618   whereInfoFree(db, pWInfo);
4619   return;
4620 }
4621