xref: /sqlite-3.40.0/src/where.c (revision c023e03e)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** $Id: where.c,v 1.81 2003/07/16 00:54:31 drh Exp $
16 */
17 #include "sqliteInt.h"
18 
19 /*
20 ** The query generator uses an array of instances of this structure to
21 ** help it analyze the subexpressions of the WHERE clause.  Each WHERE
22 ** clause subexpression is separated from the others by an AND operator.
23 */
24 typedef struct ExprInfo ExprInfo;
25 struct ExprInfo {
26   Expr *p;                /* Pointer to the subexpression */
27   u8 indexable;           /* True if this subexprssion is usable by an index */
28   u8 oracle8join;         /* -1 if left side contains "(+)".  +1 if right side
29                           ** contains "(+)".  0 if neither contains "(+)" */
30   short int idxLeft;      /* p->pLeft is a column in this table number. -1 if
31                           ** p->pLeft is not the column of any table */
32   short int idxRight;     /* p->pRight is a column in this table number. -1 if
33                           ** p->pRight is not the column of any table */
34   unsigned prereqLeft;    /* Bitmask of tables referenced by p->pLeft */
35   unsigned prereqRight;   /* Bitmask of tables referenced by p->pRight */
36   unsigned prereqAll;     /* Bitmask of tables referenced by p */
37 };
38 
39 /*
40 ** An instance of the following structure keeps track of a mapping
41 ** between VDBE cursor numbers and bitmasks.  The VDBE cursor numbers
42 ** are small integers contained in SrcList_item.iCursor and Expr.iTable
43 ** fields.  For any given WHERE clause, we want to track which cursors
44 ** are being used, so we assign a single bit in a 32-bit word to track
45 ** that cursor.  Then a 32-bit integer is able to show the set of all
46 ** cursors being used.
47 */
48 typedef struct ExprMaskSet ExprMaskSet;
49 struct ExprMaskSet {
50   int n;          /* Number of assigned cursor values */
51   int ix[32];     /* Cursor assigned to each bit */
52 };
53 
54 /*
55 ** Determine the number of elements in an array.
56 */
57 #define ARRAYSIZE(X)  (sizeof(X)/sizeof(X[0]))
58 
59 /*
60 ** This routine is used to divide the WHERE expression into subexpressions
61 ** separated by the AND operator.
62 **
63 ** aSlot[] is an array of subexpressions structures.
64 ** There are nSlot spaces left in this array.  This routine attempts to
65 ** split pExpr into subexpressions and fills aSlot[] with those subexpressions.
66 ** The return value is the number of slots filled.
67 */
68 static int exprSplit(int nSlot, ExprInfo *aSlot, Expr *pExpr){
69   int cnt = 0;
70   if( pExpr==0 || nSlot<1 ) return 0;
71   if( nSlot==1 || pExpr->op!=TK_AND ){
72     aSlot[0].p = pExpr;
73     return 1;
74   }
75   if( pExpr->pLeft->op!=TK_AND ){
76     aSlot[0].p = pExpr->pLeft;
77     cnt = 1 + exprSplit(nSlot-1, &aSlot[1], pExpr->pRight);
78   }else{
79     cnt = exprSplit(nSlot, aSlot, pExpr->pLeft);
80     cnt += exprSplit(nSlot-cnt, &aSlot[cnt], pExpr->pRight);
81   }
82   return cnt;
83 }
84 
85 /*
86 ** Initialize an expression mask set
87 */
88 #define initMaskSet(P)  memset(P, 0, sizeof(*P))
89 
90 /*
91 ** Return the bitmask for the given cursor.  Assign a new bitmask
92 ** if this is the first time the cursor has been seen.
93 */
94 static int getMask(ExprMaskSet *pMaskSet, int iCursor){
95   int i;
96   for(i=0; i<pMaskSet->n; i++){
97     if( pMaskSet->ix[i]==iCursor ) return 1<<i;
98   }
99   if( i==pMaskSet->n && i<ARRAYSIZE(pMaskSet->ix) ){
100     pMaskSet->n++;
101     pMaskSet->ix[i] = iCursor;
102     return 1<<i;
103   }
104   return 0;
105 }
106 
107 /*
108 ** Destroy an expression mask set
109 */
110 #define freeMaskSet(P)   /* NO-OP */
111 
112 /*
113 ** This routine walks (recursively) an expression tree and generates
114 ** a bitmask indicating which tables are used in that expression
115 ** tree.
116 **
117 ** In order for this routine to work, the calling function must have
118 ** previously invoked sqliteExprResolveIds() on the expression.  See
119 ** the header comment on that routine for additional information.
120 ** The sqliteExprResolveIds() routines looks for column names and
121 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
122 ** the VDBE cursor number of the table.
123 */
124 static int exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
125   unsigned int mask = 0;
126   if( p==0 ) return 0;
127   if( p->op==TK_COLUMN ){
128     return getMask(pMaskSet, p->iTable);
129   }
130   if( p->pRight ){
131     mask = exprTableUsage(pMaskSet, p->pRight);
132   }
133   if( p->pLeft ){
134     mask |= exprTableUsage(pMaskSet, p->pLeft);
135   }
136   if( p->pList ){
137     int i;
138     for(i=0; i<p->pList->nExpr; i++){
139       mask |= exprTableUsage(pMaskSet, p->pList->a[i].pExpr);
140     }
141   }
142   return mask;
143 }
144 
145 /*
146 ** Return TRUE if the given operator is one of the operators that is
147 ** allowed for an indexable WHERE clause.  The allowed operators are
148 ** "=", "<", ">", "<=", ">=", and "IN".
149 */
150 static int allowedOp(int op){
151   switch( op ){
152     case TK_LT:
153     case TK_LE:
154     case TK_GT:
155     case TK_GE:
156     case TK_EQ:
157     case TK_IN:
158       return 1;
159     default:
160       return 0;
161   }
162 }
163 
164 /*
165 ** The input to this routine is an ExprInfo structure with only the
166 ** "p" field filled in.  The job of this routine is to analyze the
167 ** subexpression and populate all the other fields of the ExprInfo
168 ** structure.
169 */
170 static void exprAnalyze(ExprMaskSet *pMaskSet, ExprInfo *pInfo){
171   Expr *pExpr = pInfo->p;
172   pInfo->prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
173   pInfo->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
174   pInfo->prereqAll = exprTableUsage(pMaskSet, pExpr);
175   pInfo->indexable = 0;
176   pInfo->idxLeft = -1;
177   pInfo->idxRight = -1;
178   if( allowedOp(pExpr->op) && (pInfo->prereqRight & pInfo->prereqLeft)==0 ){
179     if( pExpr->pRight && pExpr->pRight->op==TK_COLUMN ){
180       pInfo->idxRight = pExpr->pRight->iTable;
181       pInfo->indexable = 1;
182     }
183     if( pExpr->pLeft->op==TK_COLUMN ){
184       pInfo->idxLeft = pExpr->pLeft->iTable;
185       pInfo->indexable = 1;
186     }
187   }
188 }
189 
190 /*
191 ** pOrderBy is an ORDER BY clause from a SELECT statement.  pTab is the
192 ** left-most table in the FROM clause of that same SELECT statement and
193 ** the table has a cursor number of "base".
194 **
195 ** This routine attempts to find an index for pTab that generates the
196 ** correct record sequence for the given ORDER BY clause.  The return value
197 ** is a pointer to an index that does the job.  NULL is returned if the
198 ** table has no index that will generate the correct sort order.
199 **
200 ** If there are two or more indices that generate the correct sort order
201 ** and pPreferredIdx is one of those indices, then return pPreferredIdx.
202 **
203 ** nEqCol is the number of columns of pPreferredIdx that are used as
204 ** equality constraints.  Any index returned must have exactly this same
205 ** set of columns.  The ORDER BY clause only matches index columns beyond the
206 ** the first nEqCol columns.
207 **
208 ** All terms of the ORDER BY clause must be either ASC or DESC.  The
209 ** *pbRev value is set to 1 if the ORDER BY clause is all DESC and it is
210 ** set to 0 if the ORDER BY clause is all ASC.
211 */
212 static Index *findSortingIndex(
213   Table *pTab,            /* The table to be sorted */
214   int base,               /* Cursor number for pTab */
215   ExprList *pOrderBy,     /* The ORDER BY clause */
216   Index *pPreferredIdx,   /* Use this index, if possible and not NULL */
217   int nEqCol,             /* Number of index columns used with == constraints */
218   int *pbRev              /* Set to 1 if ORDER BY is DESC */
219 ){
220   int i, j;
221   Index *pMatch;
222   Index *pIdx;
223   int sortOrder;
224 
225   assert( pOrderBy!=0 );
226   assert( pOrderBy->nExpr>0 );
227   sortOrder = pOrderBy->a[0].sortOrder & SQLITE_SO_DIRMASK;
228   for(i=0; i<pOrderBy->nExpr; i++){
229     Expr *p;
230     if( (pOrderBy->a[i].sortOrder & SQLITE_SO_DIRMASK)!=sortOrder ){
231       /* Indices can only be used if all ORDER BY terms are either
232       ** DESC or ASC.  Indices cannot be used on a mixture. */
233       return 0;
234     }
235     if( (pOrderBy->a[i].sortOrder & SQLITE_SO_TYPEMASK)!=SQLITE_SO_UNK ){
236       /* Do not sort by index if there is a COLLATE clause */
237       return 0;
238     }
239     p = pOrderBy->a[i].pExpr;
240     if( p->op!=TK_COLUMN || p->iTable!=base ){
241       /* Can not use an index sort on anything that is not a column in the
242       ** left-most table of the FROM clause */
243       return 0;
244     }
245   }
246 
247   /* If we get this far, it means the ORDER BY clause consists only of
248   ** ascending columns in the left-most table of the FROM clause.  Now
249   ** check for a matching index.
250   */
251   pMatch = 0;
252   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
253     int nExpr = pOrderBy->nExpr;
254     if( pIdx->nColumn < nEqCol || pIdx->nColumn < nExpr ) continue;
255     for(i=j=0; i<nEqCol; i++){
256       if( pPreferredIdx->aiColumn[i]!=pIdx->aiColumn[i] ) break;
257       if( j<nExpr && pOrderBy->a[j].pExpr->iColumn==pIdx->aiColumn[i] ){ j++; }
258     }
259     if( i<nEqCol ) continue;
260     for(i=0; i+j<nExpr; i++){
261       if( pOrderBy->a[i+j].pExpr->iColumn!=pIdx->aiColumn[i+nEqCol] ) break;
262     }
263     if( i+j>=nExpr ){
264       pMatch = pIdx;
265       if( pIdx==pPreferredIdx ) break;
266     }
267   }
268   if( pMatch && pbRev ){
269     *pbRev = sortOrder==SQLITE_SO_DESC;
270   }
271   return pMatch;
272 }
273 
274 /*
275 ** Generate the beginning of the loop used for WHERE clause processing.
276 ** The return value is a pointer to an (opaque) structure that contains
277 ** information needed to terminate the loop.  Later, the calling routine
278 ** should invoke sqliteWhereEnd() with the return value of this function
279 ** in order to complete the WHERE clause processing.
280 **
281 ** If an error occurs, this routine returns NULL.
282 **
283 ** The basic idea is to do a nested loop, one loop for each table in
284 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
285 ** same as a SELECT with only a single table in the FROM clause.)  For
286 ** example, if the SQL is this:
287 **
288 **       SELECT * FROM t1, t2, t3 WHERE ...;
289 **
290 ** Then the code generated is conceptually like the following:
291 **
292 **      foreach row1 in t1 do       \    Code generated
293 **        foreach row2 in t2 do      |-- by sqliteWhereBegin()
294 **          foreach row3 in t3 do   /
295 **            ...
296 **          end                     \    Code generated
297 **        end                        |-- by sqliteWhereEnd()
298 **      end                         /
299 **
300 ** There are Btree cursors associated with each table.  t1 uses cursor
301 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
302 ** And so forth.  This routine generates code to open those VDBE cursors
303 ** and sqliteWhereEnd() generates the code to close them.
304 **
305 ** If the WHERE clause is empty, the foreach loops must each scan their
306 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
307 ** the tables have indices and there are terms in the WHERE clause that
308 ** refer to those indices, a complete table scan can be avoided and the
309 ** code will run much faster.  Most of the work of this routine is checking
310 ** to see if there are indices that can be used to speed up the loop.
311 **
312 ** Terms of the WHERE clause are also used to limit which rows actually
313 ** make it to the "..." in the middle of the loop.  After each "foreach",
314 ** terms of the WHERE clause that use only terms in that loop and outer
315 ** loops are evaluated and if false a jump is made around all subsequent
316 ** inner loops (or around the "..." if the test occurs within the inner-
317 ** most loop)
318 **
319 ** OUTER JOINS
320 **
321 ** An outer join of tables t1 and t2 is conceptally coded as follows:
322 **
323 **    foreach row1 in t1 do
324 **      flag = 0
325 **      foreach row2 in t2 do
326 **        start:
327 **          ...
328 **          flag = 1
329 **      end
330 **      if flag==0 then
331 **        move the row2 cursor to a null row
332 **        goto start
333 **      fi
334 **    end
335 **
336 ** ORDER BY CLAUSE PROCESSING
337 **
338 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
339 ** if there is one.  If there is no ORDER BY clause or if this routine
340 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
341 **
342 ** If an index can be used so that the natural output order of the table
343 ** scan is correct for the ORDER BY clause, then that index is used and
344 ** *ppOrderBy is set to NULL.  This is an optimization that prevents an
345 ** unnecessary sort of the result set if an index appropriate for the
346 ** ORDER BY clause already exists.
347 **
348 ** If the where clause loops cannot be arranged to provide the correct
349 ** output order, then the *ppOrderBy is unchanged.
350 */
351 WhereInfo *sqliteWhereBegin(
352   Parse *pParse,       /* The parser context */
353   SrcList *pTabList,   /* A list of all tables to be scanned */
354   Expr *pWhere,        /* The WHERE clause */
355   int pushKey,         /* If TRUE, leave the table key on the stack */
356   ExprList **ppOrderBy /* An ORDER BY clause, or NULL */
357 ){
358   int i;                     /* Loop counter */
359   WhereInfo *pWInfo;         /* Will become the return value of this function */
360   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
361   int brk, cont = 0;         /* Addresses used during code generation */
362   int nExpr;           /* Number of subexpressions in the WHERE clause */
363   int loopMask;        /* One bit set for each outer loop */
364   int haveKey;         /* True if KEY is on the stack */
365   ExprMaskSet maskSet; /* The expression mask set */
366   int iDirectEq[32];   /* Term of the form ROWID==X for the N-th table */
367   int iDirectLt[32];   /* Term of the form ROWID<X or ROWID<=X */
368   int iDirectGt[32];   /* Term of the form ROWID>X or ROWID>=X */
369   ExprInfo aExpr[101]; /* The WHERE clause is divided into these expressions */
370 
371   /* pushKey is only allowed if there is a single table (as in an INSERT or
372   ** UPDATE statement)
373   */
374   assert( pushKey==0 || pTabList->nSrc==1 );
375 
376   /* Split the WHERE clause into separate subexpressions where each
377   ** subexpression is separated by an AND operator.  If the aExpr[]
378   ** array fills up, the last entry might point to an expression which
379   ** contains additional unfactored AND operators.
380   */
381   initMaskSet(&maskSet);
382   memset(aExpr, 0, sizeof(aExpr));
383   nExpr = exprSplit(ARRAYSIZE(aExpr), aExpr, pWhere);
384   if( nExpr==ARRAYSIZE(aExpr) ){
385     char zBuf[50];
386     sprintf(zBuf, "%d", (int)ARRAYSIZE(aExpr)-1);
387     sqliteSetString(&pParse->zErrMsg, "WHERE clause too complex - no more "
388        "than ", zBuf, " terms allowed", 0);
389     pParse->nErr++;
390     return 0;
391   }
392 
393   /* Allocate and initialize the WhereInfo structure that will become the
394   ** return value.
395   */
396   pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
397   if( sqlite_malloc_failed ){
398     sqliteFree(pWInfo);
399     return 0;
400   }
401   pWInfo->pParse = pParse;
402   pWInfo->pTabList = pTabList;
403   pWInfo->peakNTab = pWInfo->savedNTab = pParse->nTab;
404   pWInfo->iBreak = sqliteVdbeMakeLabel(v);
405 
406   /* Special case: a WHERE clause that is constant.  Evaluate the
407   ** expression and either jump over all of the code or fall thru.
408   */
409   if( pWhere && (pTabList->nSrc==0 || sqliteExprIsConstant(pWhere)) ){
410     sqliteExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
411     pWhere = 0;
412   }
413 
414   /* Analyze all of the subexpressions.
415   */
416   for(i=0; i<nExpr; i++){
417     exprAnalyze(&maskSet, &aExpr[i]);
418 
419     /* If we are executing a trigger body, remove all references to
420     ** new.* and old.* tables from the prerequisite masks.
421     */
422     if( pParse->trigStack ){
423       int x;
424       if( (x = pParse->trigStack->newIdx) >= 0 ){
425         int mask = ~getMask(&maskSet, x);
426         aExpr[i].prereqRight &= mask;
427         aExpr[i].prereqLeft &= mask;
428         aExpr[i].prereqAll &= mask;
429       }
430       if( (x = pParse->trigStack->oldIdx) >= 0 ){
431         int mask = ~getMask(&maskSet, x);
432         aExpr[i].prereqRight &= mask;
433         aExpr[i].prereqLeft &= mask;
434         aExpr[i].prereqAll &= mask;
435       }
436     }
437   }
438 
439   /* Figure out what index to use (if any) for each nested loop.
440   ** Make pWInfo->a[i].pIdx point to the index to use for the i-th nested
441   ** loop where i==0 is the outer loop and i==pTabList->nSrc-1 is the inner
442   ** loop.
443   **
444   ** If terms exist that use the ROWID of any table, then set the
445   ** iDirectEq[], iDirectLt[], or iDirectGt[] elements for that table
446   ** to the index of the term containing the ROWID.  We always prefer
447   ** to use a ROWID which can directly access a table rather than an
448   ** index which requires reading an index first to get the rowid then
449   ** doing a second read of the actual database table.
450   **
451   ** Actually, if there are more than 32 tables in the join, only the
452   ** first 32 tables are candidates for indices.  This is (again) due
453   ** to the limit of 32 bits in an integer bitmask.
454   */
455   loopMask = 0;
456   for(i=0; i<pTabList->nSrc && i<ARRAYSIZE(iDirectEq); i++){
457     int j;
458     int iCur = pTabList->a[i].iCursor;    /* The cursor for this table */
459     int mask = getMask(&maskSet, iCur);   /* Cursor mask for this table */
460     Table *pTab = pTabList->a[i].pTab;
461     Index *pIdx;
462     Index *pBestIdx = 0;
463     int bestScore = 0;
464 
465     /* Check to see if there is an expression that uses only the
466     ** ROWID field of this table.  For terms of the form ROWID==expr
467     ** set iDirectEq[i] to the index of the term.  For terms of the
468     ** form ROWID<expr or ROWID<=expr set iDirectLt[i] to the term index.
469     ** For terms like ROWID>expr or ROWID>=expr set iDirectGt[i].
470     **
471     ** (Added:) Treat ROWID IN expr like ROWID=expr.
472     */
473     pWInfo->a[i].iCur = -1;
474     iDirectEq[i] = -1;
475     iDirectLt[i] = -1;
476     iDirectGt[i] = -1;
477     for(j=0; j<nExpr; j++){
478       if( aExpr[j].idxLeft==iCur && aExpr[j].p->pLeft->iColumn<0
479             && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
480         switch( aExpr[j].p->op ){
481           case TK_IN:
482           case TK_EQ: iDirectEq[i] = j; break;
483           case TK_LE:
484           case TK_LT: iDirectLt[i] = j; break;
485           case TK_GE:
486           case TK_GT: iDirectGt[i] = j;  break;
487         }
488       }
489       if( aExpr[j].idxRight==iCur && aExpr[j].p->pRight->iColumn<0
490             && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
491         switch( aExpr[j].p->op ){
492           case TK_EQ: iDirectEq[i] = j;  break;
493           case TK_LE:
494           case TK_LT: iDirectGt[i] = j;  break;
495           case TK_GE:
496           case TK_GT: iDirectLt[i] = j;  break;
497         }
498       }
499     }
500     if( iDirectEq[i]>=0 ){
501       loopMask |= mask;
502       pWInfo->a[i].pIdx = 0;
503       continue;
504     }
505 
506     /* Do a search for usable indices.  Leave pBestIdx pointing to
507     ** the "best" index.  pBestIdx is left set to NULL if no indices
508     ** are usable.
509     **
510     ** The best index is determined as follows.  For each of the
511     ** left-most terms that is fixed by an equality operator, add
512     ** 8 to the score.  The right-most term of the index may be
513     ** constrained by an inequality.  Add 1 if for an "x<..." constraint
514     ** and add 2 for an "x>..." constraint.  Chose the index that
515     ** gives the best score.
516     **
517     ** This scoring system is designed so that the score can later be
518     ** used to determine how the index is used.  If the score&7 is 0
519     ** then all constraints are equalities.  If score&1 is not 0 then
520     ** there is an inequality used as a termination key.  (ex: "x<...")
521     ** If score&2 is not 0 then there is an inequality used as the
522     ** start key.  (ex: "x>...").  A score or 4 is the special case
523     ** of an IN operator constraint.  (ex:  "x IN ...").
524     **
525     ** The IN operator (as in "<expr> IN (...)") is treated the same as
526     ** an equality comparison except that it can only be used on the
527     ** left-most column of an index and other terms of the WHERE clause
528     ** cannot be used in conjunction with the IN operator to help satisfy
529     ** other columns of the index.
530     */
531     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
532       int eqMask = 0;  /* Index columns covered by an x=... term */
533       int ltMask = 0;  /* Index columns covered by an x<... term */
534       int gtMask = 0;  /* Index columns covered by an x>... term */
535       int inMask = 0;  /* Index columns covered by an x IN .. term */
536       int nEq, m, score;
537 
538       if( pIdx->nColumn>32 ) continue;  /* Ignore indices too many columns */
539       for(j=0; j<nExpr; j++){
540         if( aExpr[j].idxLeft==iCur
541              && (aExpr[j].prereqRight & loopMask)==aExpr[j].prereqRight ){
542           int iColumn = aExpr[j].p->pLeft->iColumn;
543           int k;
544           for(k=0; k<pIdx->nColumn; k++){
545             if( pIdx->aiColumn[k]==iColumn ){
546               switch( aExpr[j].p->op ){
547                 case TK_IN: {
548                   if( k==0 ) inMask |= 1;
549                   break;
550                 }
551                 case TK_EQ: {
552                   eqMask |= 1<<k;
553                   break;
554                 }
555                 case TK_LE:
556                 case TK_LT: {
557                   ltMask |= 1<<k;
558                   break;
559                 }
560                 case TK_GE:
561                 case TK_GT: {
562                   gtMask |= 1<<k;
563                   break;
564                 }
565                 default: {
566                   /* CANT_HAPPEN */
567                   assert( 0 );
568                   break;
569                 }
570               }
571               break;
572             }
573           }
574         }
575         if( aExpr[j].idxRight==iCur
576              && (aExpr[j].prereqLeft & loopMask)==aExpr[j].prereqLeft ){
577           int iColumn = aExpr[j].p->pRight->iColumn;
578           int k;
579           for(k=0; k<pIdx->nColumn; k++){
580             if( pIdx->aiColumn[k]==iColumn ){
581               switch( aExpr[j].p->op ){
582                 case TK_EQ: {
583                   eqMask |= 1<<k;
584                   break;
585                 }
586                 case TK_LE:
587                 case TK_LT: {
588                   gtMask |= 1<<k;
589                   break;
590                 }
591                 case TK_GE:
592                 case TK_GT: {
593                   ltMask |= 1<<k;
594                   break;
595                 }
596                 default: {
597                   /* CANT_HAPPEN */
598                   assert( 0 );
599                   break;
600                 }
601               }
602               break;
603             }
604           }
605         }
606       }
607 
608       /* The following loop ends with nEq set to the number of columns
609       ** on the left of the index with == constraints.
610       */
611       for(nEq=0; nEq<pIdx->nColumn; nEq++){
612         m = (1<<(nEq+1))-1;
613         if( (m & eqMask)!=m ) break;
614       }
615       score = nEq*8;   /* Base score is 8 times number of == constraints */
616       m = 1<<nEq;
617       if( m & ltMask ) score++;    /* Increase score for a < constraint */
618       if( m & gtMask ) score+=2;   /* Increase score for a > constraint */
619       if( score==0 && inMask ) score = 4;  /* Default score for IN constraint */
620       if( score>bestScore ){
621         pBestIdx = pIdx;
622         bestScore = score;
623       }
624     }
625     pWInfo->a[i].pIdx = pBestIdx;
626     pWInfo->a[i].score = bestScore;
627     pWInfo->a[i].bRev = 0;
628     loopMask |= mask;
629     if( pBestIdx ){
630       pWInfo->a[i].iCur = pParse->nTab++;
631       pWInfo->peakNTab = pParse->nTab;
632     }
633   }
634 
635   /* Check to see if the ORDER BY clause is or can be satisfied by the
636   ** use of an index on the first table.
637   */
638   if( ppOrderBy && *ppOrderBy && pTabList->nSrc>0 ){
639      Index *pSortIdx;
640      Index *pIdx;
641      Table *pTab;
642      int bRev = 0;
643 
644      pTab = pTabList->a[0].pTab;
645      pIdx = pWInfo->a[0].pIdx;
646      if( pIdx && pWInfo->a[0].score==4 ){
647        /* If there is already an IN index on the left-most table,
648        ** it will not give the correct sort order.
649        ** So, pretend that no suitable index is found.
650        */
651        pSortIdx = 0;
652      }else if( iDirectEq[0]>=0 || iDirectLt[0]>=0 || iDirectGt[0]>=0 ){
653        /* If the left-most column is accessed using its ROWID, then do
654        ** not try to sort by index.
655        */
656        pSortIdx = 0;
657      }else{
658        int nEqCol = (pWInfo->a[0].score+4)/8;
659        pSortIdx = findSortingIndex(pTab, pTabList->a[0].iCursor,
660                                    *ppOrderBy, pIdx, nEqCol, &bRev);
661      }
662      if( pSortIdx && (pIdx==0 || pIdx==pSortIdx) ){
663        if( pIdx==0 ){
664          pWInfo->a[0].pIdx = pSortIdx;
665          pWInfo->a[0].iCur = pParse->nTab++;
666          pWInfo->peakNTab = pParse->nTab;
667        }
668        pWInfo->a[0].bRev = bRev;
669        *ppOrderBy = 0;
670      }
671   }
672 
673   /* Open all tables in the pTabList and all indices used by those tables.
674   */
675   for(i=0; i<pTabList->nSrc; i++){
676     Table *pTab;
677 
678     pTab = pTabList->a[i].pTab;
679     if( pTab->isTransient || pTab->pSelect ) continue;
680     sqliteVdbeAddOp(v, OP_Integer, pTab->iDb, 0);
681     sqliteVdbeAddOp(v, OP_OpenRead, pTabList->a[i].iCursor, pTab->tnum);
682     sqliteVdbeChangeP3(v, -1, pTab->zName, P3_STATIC);
683     sqliteCodeVerifySchema(pParse, pTab->iDb);
684     if( pWInfo->a[i].pIdx!=0 ){
685       sqliteVdbeAddOp(v, OP_Integer, pWInfo->a[i].pIdx->iDb, 0);
686       sqliteVdbeAddOp(v, OP_OpenRead,
687                       pWInfo->a[i].iCur, pWInfo->a[i].pIdx->tnum);
688       sqliteVdbeChangeP3(v, -1, pWInfo->a[i].pIdx->zName, P3_STATIC);
689     }
690   }
691 
692   /* Generate the code to do the search
693   */
694   loopMask = 0;
695   for(i=0; i<pTabList->nSrc; i++){
696     int j, k;
697     int iCur = pTabList->a[i].iCursor;
698     Index *pIdx;
699     WhereLevel *pLevel = &pWInfo->a[i];
700 
701     /* If this is the right table of a LEFT OUTER JOIN, allocate and
702     ** initialize a memory cell that records if this table matches any
703     ** row of the left table of the join.
704     */
705     if( i>0 && (pTabList->a[i-1].jointype & JT_LEFT)!=0 ){
706       if( !pParse->nMem ) pParse->nMem++;
707       pLevel->iLeftJoin = pParse->nMem++;
708       sqliteVdbeAddOp(v, OP_String, 0, 0);
709       sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
710     }
711 
712     pIdx = pLevel->pIdx;
713     pLevel->inOp = OP_Noop;
714     if( i<ARRAYSIZE(iDirectEq) && iDirectEq[i]>=0 ){
715       /* Case 1:  We can directly reference a single row using an
716       **          equality comparison against the ROWID field.  Or
717       **          we reference multiple rows using a "rowid IN (...)"
718       **          construct.
719       */
720       k = iDirectEq[i];
721       assert( k<nExpr );
722       assert( aExpr[k].p!=0 );
723       assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
724       brk = pLevel->brk = sqliteVdbeMakeLabel(v);
725       if( aExpr[k].idxLeft==iCur ){
726         Expr *pX = aExpr[k].p;
727         if( pX->op!=TK_IN ){
728           sqliteExprCode(pParse, aExpr[k].p->pRight);
729         }else if( pX->pList ){
730           sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk);
731           pLevel->inOp = OP_SetNext;
732           pLevel->inP1 = pX->iTable;
733           pLevel->inP2 = sqliteVdbeCurrentAddr(v);
734         }else{
735           assert( pX->pSelect );
736           sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk);
737           sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1);
738           pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0);
739           pLevel->inOp = OP_Next;
740           pLevel->inP1 = pX->iTable;
741         }
742       }else{
743         sqliteExprCode(pParse, aExpr[k].p->pLeft);
744       }
745       aExpr[k].p = 0;
746       cont = pLevel->cont = sqliteVdbeMakeLabel(v);
747       sqliteVdbeAddOp(v, OP_MustBeInt, 1, brk);
748       haveKey = 0;
749       sqliteVdbeAddOp(v, OP_NotExists, iCur, brk);
750       pLevel->op = OP_Noop;
751     }else if( pIdx!=0 && pLevel->score>0 && pLevel->score%4==0 ){
752       /* Case 2:  There is an index and all terms of the WHERE clause that
753       **          refer to the index use the "==" or "IN" operators.
754       */
755       int start;
756       int testOp;
757       int nColumn = (pLevel->score+4)/8;
758       brk = pLevel->brk = sqliteVdbeMakeLabel(v);
759       for(j=0; j<nColumn; j++){
760         for(k=0; k<nExpr; k++){
761           Expr *pX = aExpr[k].p;
762           if( pX==0 ) continue;
763           if( aExpr[k].idxLeft==iCur
764              && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
765              && pX->pLeft->iColumn==pIdx->aiColumn[j]
766           ){
767             if( pX->op==TK_EQ ){
768               sqliteExprCode(pParse, pX->pRight);
769               aExpr[k].p = 0;
770               break;
771             }
772             if( pX->op==TK_IN && nColumn==1 ){
773               if( pX->pList ){
774                 sqliteVdbeAddOp(v, OP_SetFirst, pX->iTable, brk);
775                 pLevel->inOp = OP_SetNext;
776                 pLevel->inP1 = pX->iTable;
777                 pLevel->inP2 = sqliteVdbeCurrentAddr(v);
778               }else{
779                 assert( pX->pSelect );
780                 sqliteVdbeAddOp(v, OP_Rewind, pX->iTable, brk);
781                 sqliteVdbeAddOp(v, OP_KeyAsData, pX->iTable, 1);
782                 pLevel->inP2 = sqliteVdbeAddOp(v, OP_FullKey, pX->iTable, 0);
783                 pLevel->inOp = OP_Next;
784                 pLevel->inP1 = pX->iTable;
785               }
786               aExpr[k].p = 0;
787               break;
788             }
789           }
790           if( aExpr[k].idxRight==iCur
791              && aExpr[k].p->op==TK_EQ
792              && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
793              && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
794           ){
795             sqliteExprCode(pParse, aExpr[k].p->pLeft);
796             aExpr[k].p = 0;
797             break;
798           }
799         }
800       }
801       pLevel->iMem = pParse->nMem++;
802       cont = pLevel->cont = sqliteVdbeMakeLabel(v);
803       sqliteVdbeAddOp(v, OP_MakeKey, nColumn, 0);
804       sqliteAddIdxKeyType(v, pIdx);
805       if( nColumn==pIdx->nColumn || pLevel->bRev ){
806         sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
807         testOp = OP_IdxGT;
808       }else{
809         sqliteVdbeAddOp(v, OP_Dup, 0, 0);
810         sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
811         sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
812         testOp = OP_IdxGE;
813       }
814       if( pLevel->bRev ){
815         /* Scan in reverse order */
816         sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
817         sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk);
818         start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
819         sqliteVdbeAddOp(v, OP_IdxLT, pLevel->iCur, brk);
820         sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
821         pLevel->op = OP_Prev;
822       }else{
823         /* Scan in the forward order */
824         sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk);
825         start = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
826         sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk);
827         sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
828         pLevel->op = OP_Next;
829       }
830       if( i==pTabList->nSrc-1 && pushKey ){
831         haveKey = 1;
832       }else{
833         sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
834         haveKey = 0;
835       }
836       pLevel->p1 = pLevel->iCur;
837       pLevel->p2 = start;
838     }else if( i<ARRAYSIZE(iDirectLt) && (iDirectLt[i]>=0 || iDirectGt[i]>=0) ){
839       /* Case 3:  We have an inequality comparison against the ROWID field.
840       */
841       int testOp = OP_Noop;
842       int start;
843 
844       brk = pLevel->brk = sqliteVdbeMakeLabel(v);
845       cont = pLevel->cont = sqliteVdbeMakeLabel(v);
846       if( iDirectGt[i]>=0 ){
847         k = iDirectGt[i];
848         assert( k<nExpr );
849         assert( aExpr[k].p!=0 );
850         assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
851         if( aExpr[k].idxLeft==iCur ){
852           sqliteExprCode(pParse, aExpr[k].p->pRight);
853         }else{
854           sqliteExprCode(pParse, aExpr[k].p->pLeft);
855         }
856         sqliteVdbeAddOp(v, OP_IsNumeric, 1, brk);
857         if( aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT ){
858           sqliteVdbeAddOp(v, OP_AddImm, 1, 0);
859         }
860         sqliteVdbeAddOp(v, OP_MoveTo, iCur, brk);
861         aExpr[k].p = 0;
862       }else{
863         sqliteVdbeAddOp(v, OP_Rewind, iCur, brk);
864       }
865       if( iDirectLt[i]>=0 ){
866         k = iDirectLt[i];
867         assert( k<nExpr );
868         assert( aExpr[k].p!=0 );
869         assert( aExpr[k].idxLeft==iCur || aExpr[k].idxRight==iCur );
870         if( aExpr[k].idxLeft==iCur ){
871           sqliteExprCode(pParse, aExpr[k].p->pRight);
872         }else{
873           sqliteExprCode(pParse, aExpr[k].p->pLeft);
874         }
875         /* sqliteVdbeAddOp(v, OP_MustBeInt, 0, sqliteVdbeCurrentAddr(v)+1); */
876         pLevel->iMem = pParse->nMem++;
877         sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
878         if( aExpr[k].p->op==TK_LT || aExpr[k].p->op==TK_GT ){
879           testOp = OP_Ge;
880         }else{
881           testOp = OP_Gt;
882         }
883         aExpr[k].p = 0;
884       }
885       start = sqliteVdbeCurrentAddr(v);
886       pLevel->op = OP_Next;
887       pLevel->p1 = iCur;
888       pLevel->p2 = start;
889       if( testOp!=OP_Noop ){
890         sqliteVdbeAddOp(v, OP_Recno, iCur, 0);
891         sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
892         sqliteVdbeAddOp(v, testOp, 0, brk);
893       }
894       haveKey = 0;
895     }else if( pIdx==0 ){
896       /* Case 4:  There is no usable index.  We must do a complete
897       **          scan of the entire database table.
898       */
899       int start;
900 
901       brk = pLevel->brk = sqliteVdbeMakeLabel(v);
902       cont = pLevel->cont = sqliteVdbeMakeLabel(v);
903       sqliteVdbeAddOp(v, OP_Rewind, iCur, brk);
904       start = sqliteVdbeCurrentAddr(v);
905       pLevel->op = OP_Next;
906       pLevel->p1 = iCur;
907       pLevel->p2 = start;
908       haveKey = 0;
909     }else{
910       /* Case 5: The WHERE clause term that refers to the right-most
911       **         column of the index is an inequality.  For example, if
912       **         the index is on (x,y,z) and the WHERE clause is of the
913       **         form "x=5 AND y<10" then this case is used.  Only the
914       **         right-most column can be an inequality - the rest must
915       **         use the "==" operator.
916       **
917       **         This case is also used when there are no WHERE clause
918       **         constraints but an index is selected anyway, in order
919       **         to force the output order to conform to an ORDER BY.
920       */
921       int score = pLevel->score;
922       int nEqColumn = score/8;
923       int start;
924       int leFlag, geFlag;
925       int testOp;
926 
927       /* Evaluate the equality constraints
928       */
929       for(j=0; j<nEqColumn; j++){
930         for(k=0; k<nExpr; k++){
931           if( aExpr[k].p==0 ) continue;
932           if( aExpr[k].idxLeft==iCur
933              && aExpr[k].p->op==TK_EQ
934              && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
935              && aExpr[k].p->pLeft->iColumn==pIdx->aiColumn[j]
936           ){
937             sqliteExprCode(pParse, aExpr[k].p->pRight);
938             aExpr[k].p = 0;
939             break;
940           }
941           if( aExpr[k].idxRight==iCur
942              && aExpr[k].p->op==TK_EQ
943              && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
944              && aExpr[k].p->pRight->iColumn==pIdx->aiColumn[j]
945           ){
946             sqliteExprCode(pParse, aExpr[k].p->pLeft);
947             aExpr[k].p = 0;
948             break;
949           }
950         }
951       }
952 
953       /* Duplicate the equality term values because they will all be
954       ** used twice: once to make the termination key and once to make the
955       ** start key.
956       */
957       for(j=0; j<nEqColumn; j++){
958         sqliteVdbeAddOp(v, OP_Dup, nEqColumn-1, 0);
959       }
960 
961       /* Labels for the beginning and end of the loop
962       */
963       cont = pLevel->cont = sqliteVdbeMakeLabel(v);
964       brk = pLevel->brk = sqliteVdbeMakeLabel(v);
965 
966       /* Generate the termination key.  This is the key value that
967       ** will end the search.  There is no termination key if there
968       ** are no equality terms and no "X<..." term.
969       **
970       ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
971       ** key computed here really ends up being the start key.
972       */
973       if( (score & 1)!=0 ){
974         for(k=0; k<nExpr; k++){
975           Expr *pExpr = aExpr[k].p;
976           if( pExpr==0 ) continue;
977           if( aExpr[k].idxLeft==iCur
978              && (pExpr->op==TK_LT || pExpr->op==TK_LE)
979              && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
980              && pExpr->pLeft->iColumn==pIdx->aiColumn[j]
981           ){
982             sqliteExprCode(pParse, pExpr->pRight);
983             leFlag = pExpr->op==TK_LE;
984             aExpr[k].p = 0;
985             break;
986           }
987           if( aExpr[k].idxRight==iCur
988              && (pExpr->op==TK_GT || pExpr->op==TK_GE)
989              && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
990              && pExpr->pRight->iColumn==pIdx->aiColumn[j]
991           ){
992             sqliteExprCode(pParse, pExpr->pLeft);
993             leFlag = pExpr->op==TK_GE;
994             aExpr[k].p = 0;
995             break;
996           }
997         }
998         testOp = OP_IdxGE;
999       }else{
1000         testOp = nEqColumn>0 ? OP_IdxGE : OP_Noop;
1001         leFlag = 1;
1002       }
1003       if( testOp!=OP_Noop ){
1004         pLevel->iMem = pParse->nMem++;
1005         sqliteVdbeAddOp(v, OP_MakeKey, nEqColumn + (score & 1), 0);
1006         sqliteAddIdxKeyType(v, pIdx);
1007         if( leFlag ){
1008           sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
1009         }
1010         if( pLevel->bRev ){
1011           sqliteVdbeAddOp(v, OP_MoveLt, pLevel->iCur, brk);
1012         }else{
1013           sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
1014         }
1015       }else if( pLevel->bRev ){
1016         sqliteVdbeAddOp(v, OP_Last, pLevel->iCur, brk);
1017       }
1018 
1019       /* Generate the start key.  This is the key that defines the lower
1020       ** bound on the search.  There is no start key if there are no
1021       ** equality terms and if there is no "X>..." term.  In
1022       ** that case, generate a "Rewind" instruction in place of the
1023       ** start key search.
1024       **
1025       ** 2002-Dec-04: In the case of a reverse-order search, the so-called
1026       ** "start" key really ends up being used as the termination key.
1027       */
1028       if( (score & 2)!=0 ){
1029         for(k=0; k<nExpr; k++){
1030           Expr *pExpr = aExpr[k].p;
1031           if( pExpr==0 ) continue;
1032           if( aExpr[k].idxLeft==iCur
1033              && (pExpr->op==TK_GT || pExpr->op==TK_GE)
1034              && (aExpr[k].prereqRight & loopMask)==aExpr[k].prereqRight
1035              && pExpr->pLeft->iColumn==pIdx->aiColumn[j]
1036           ){
1037             sqliteExprCode(pParse, pExpr->pRight);
1038             geFlag = pExpr->op==TK_GE;
1039             aExpr[k].p = 0;
1040             break;
1041           }
1042           if( aExpr[k].idxRight==iCur
1043              && (pExpr->op==TK_LT || pExpr->op==TK_LE)
1044              && (aExpr[k].prereqLeft & loopMask)==aExpr[k].prereqLeft
1045              && pExpr->pRight->iColumn==pIdx->aiColumn[j]
1046           ){
1047             sqliteExprCode(pParse, pExpr->pLeft);
1048             geFlag = pExpr->op==TK_LE;
1049             aExpr[k].p = 0;
1050             break;
1051           }
1052         }
1053       }else{
1054         geFlag = 1;
1055       }
1056       if( nEqColumn>0 || (score&2)!=0 ){
1057         sqliteVdbeAddOp(v, OP_MakeKey, nEqColumn + ((score&2)!=0), 0);
1058         sqliteAddIdxKeyType(v, pIdx);
1059         if( !geFlag ){
1060           sqliteVdbeAddOp(v, OP_IncrKey, 0, 0);
1061         }
1062         if( pLevel->bRev ){
1063           pLevel->iMem = pParse->nMem++;
1064           sqliteVdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
1065           testOp = OP_IdxLT;
1066         }else{
1067           sqliteVdbeAddOp(v, OP_MoveTo, pLevel->iCur, brk);
1068         }
1069       }else if( pLevel->bRev ){
1070         testOp = OP_Noop;
1071       }else{
1072         sqliteVdbeAddOp(v, OP_Rewind, pLevel->iCur, brk);
1073       }
1074 
1075       /* Generate the the top of the loop.  If there is a termination
1076       ** key we have to test for that key and abort at the top of the
1077       ** loop.
1078       */
1079       start = sqliteVdbeCurrentAddr(v);
1080       if( testOp!=OP_Noop ){
1081         sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
1082         sqliteVdbeAddOp(v, testOp, pLevel->iCur, brk);
1083       }
1084       sqliteVdbeAddOp(v, OP_IdxRecno, pLevel->iCur, 0);
1085       if( i==pTabList->nSrc-1 && pushKey ){
1086         haveKey = 1;
1087       }else{
1088         sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
1089         haveKey = 0;
1090       }
1091 
1092       /* Record the instruction used to terminate the loop.
1093       */
1094       pLevel->op = pLevel->bRev ? OP_Prev : OP_Next;
1095       pLevel->p1 = pLevel->iCur;
1096       pLevel->p2 = start;
1097     }
1098     loopMask |= getMask(&maskSet, iCur);
1099 
1100     /* Insert code to test every subexpression that can be completely
1101     ** computed using the current set of tables.
1102     */
1103     for(j=0; j<nExpr; j++){
1104       if( aExpr[j].p==0 ) continue;
1105       if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue;
1106       if( pLevel->iLeftJoin && !ExprHasProperty(aExpr[j].p,EP_FromJoin) ){
1107         continue;
1108       }
1109       if( haveKey ){
1110         haveKey = 0;
1111         sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
1112       }
1113       sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1);
1114       aExpr[j].p = 0;
1115     }
1116     brk = cont;
1117 
1118     /* For a LEFT OUTER JOIN, generate code that will record the fact that
1119     ** at least one row of the right table has matched the left table.
1120     */
1121     if( pLevel->iLeftJoin ){
1122       pLevel->top = sqliteVdbeCurrentAddr(v);
1123       sqliteVdbeAddOp(v, OP_Integer, 1, 0);
1124       sqliteVdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
1125       for(j=0; j<nExpr; j++){
1126         if( aExpr[j].p==0 ) continue;
1127         if( (aExpr[j].prereqAll & loopMask)!=aExpr[j].prereqAll ) continue;
1128         if( haveKey ){
1129           /* Cannot happen.  "haveKey" can only be true if pushKey is true
1130           ** an pushKey can only be true for DELETE and UPDATE and there are
1131           ** no outer joins with DELETE and UPDATE.
1132           */
1133           haveKey = 0;
1134           sqliteVdbeAddOp(v, OP_MoveTo, iCur, 0);
1135         }
1136         sqliteExprIfFalse(pParse, aExpr[j].p, cont, 1);
1137         aExpr[j].p = 0;
1138       }
1139     }
1140   }
1141   pWInfo->iContinue = cont;
1142   if( pushKey && !haveKey ){
1143     sqliteVdbeAddOp(v, OP_Recno, pTabList->a[0].iCursor, 0);
1144   }
1145   freeMaskSet(&maskSet);
1146   return pWInfo;
1147 }
1148 
1149 /*
1150 ** Generate the end of the WHERE loop.  See comments on
1151 ** sqliteWhereBegin() for additional information.
1152 */
1153 void sqliteWhereEnd(WhereInfo *pWInfo){
1154   Vdbe *v = pWInfo->pParse->pVdbe;
1155   int i;
1156   WhereLevel *pLevel;
1157   SrcList *pTabList = pWInfo->pTabList;
1158 
1159   for(i=pTabList->nSrc-1; i>=0; i--){
1160     pLevel = &pWInfo->a[i];
1161     sqliteVdbeResolveLabel(v, pLevel->cont);
1162     if( pLevel->op!=OP_Noop ){
1163       sqliteVdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
1164     }
1165     sqliteVdbeResolveLabel(v, pLevel->brk);
1166     if( pLevel->inOp!=OP_Noop ){
1167       sqliteVdbeAddOp(v, pLevel->inOp, pLevel->inP1, pLevel->inP2);
1168     }
1169     if( pLevel->iLeftJoin ){
1170       int addr;
1171       addr = sqliteVdbeAddOp(v, OP_MemLoad, pLevel->iLeftJoin, 0);
1172       sqliteVdbeAddOp(v, OP_NotNull, 1, addr+4 + (pLevel->iCur>=0));
1173       sqliteVdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
1174       if( pLevel->iCur>=0 ){
1175         sqliteVdbeAddOp(v, OP_NullRow, pLevel->iCur, 0);
1176       }
1177       sqliteVdbeAddOp(v, OP_Goto, 0, pLevel->top);
1178     }
1179   }
1180   sqliteVdbeResolveLabel(v, pWInfo->iBreak);
1181   for(i=0; i<pTabList->nSrc; i++){
1182     Table *pTab = pTabList->a[i].pTab;
1183     assert( pTab!=0 );
1184     if( pTab->isTransient || pTab->pSelect ) continue;
1185     pLevel = &pWInfo->a[i];
1186     sqliteVdbeAddOp(v, OP_Close, pTabList->a[i].iCursor, 0);
1187     if( pLevel->pIdx!=0 ){
1188       sqliteVdbeAddOp(v, OP_Close, pLevel->iCur, 0);
1189     }
1190   }
1191 #if 0  /* Never reuse a cursor */
1192   if( pWInfo->pParse->nTab==pWInfo->peakNTab ){
1193     pWInfo->pParse->nTab = pWInfo->savedNTab;
1194   }
1195 #endif
1196   sqliteFree(pWInfo);
1197   return;
1198 }
1199