xref: /sqlite-3.40.0/src/where.c (revision bd462bcc)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /*
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly.  The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
26 **
27 ** This object is not an API and can be changed from one release to the
28 ** next.  As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
30 */
31 typedef struct HiddenIndexInfo HiddenIndexInfo;
32 struct HiddenIndexInfo {
33   WhereClause *pWC;   /* The Where clause being analyzed */
34   Parse *pParse;      /* The parsing context */
35 };
36 
37 /* Forward declaration of methods */
38 static int whereLoopResize(sqlite3*, WhereLoop*, int);
39 
40 /* Test variable that can be set to enable WHERE tracing */
41 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
42 /***/ int sqlite3WhereTrace = 0;
43 #endif
44 
45 
46 /*
47 ** Return the estimated number of output rows from a WHERE clause
48 */
49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
50   return pWInfo->nRowOut;
51 }
52 
53 /*
54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
55 ** WHERE clause returns outputs for DISTINCT processing.
56 */
57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
58   return pWInfo->eDistinct;
59 }
60 
61 /*
62 ** Return TRUE if the WHERE clause returns rows in ORDER BY order.
63 ** Return FALSE if the output needs to be sorted.
64 */
65 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
66   return pWInfo->nOBSat;
67 }
68 
69 /*
70 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known
71 ** to emit rows in increasing order, and if the last row emitted by the
72 ** inner-most loop did not fit within the sorter, then we can skip all
73 ** subsequent rows for the current iteration of the inner loop (because they
74 ** will not fit in the sorter either) and continue with the second inner
75 ** loop - the loop immediately outside the inner-most.
76 **
77 ** When a row does not fit in the sorter (because the sorter already
78 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
79 ** label returned by this function.
80 **
81 ** If the ORDER BY LIMIT optimization applies, the jump destination should
82 ** be the continuation for the second-inner-most loop.  If the ORDER BY
83 ** LIMIT optimization does not apply, then the jump destination should
84 ** be the continuation for the inner-most loop.
85 **
86 ** It is always safe for this routine to return the continuation of the
87 ** inner-most loop, in the sense that a correct answer will result.
88 ** Returning the continuation the second inner loop is an optimization
89 ** that might make the code run a little faster, but should not change
90 ** the final answer.
91 */
92 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){
93   WhereLevel *pInner;
94   if( !pWInfo->bOrderedInnerLoop ){
95     /* The ORDER BY LIMIT optimization does not apply.  Jump to the
96     ** continuation of the inner-most loop. */
97     return pWInfo->iContinue;
98   }
99   pInner = &pWInfo->a[pWInfo->nLevel-1];
100   assert( pInner->addrNxt!=0 );
101   return pInner->addrNxt;
102 }
103 
104 /*
105 ** Return the VDBE address or label to jump to in order to continue
106 ** immediately with the next row of a WHERE clause.
107 */
108 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
109   assert( pWInfo->iContinue!=0 );
110   return pWInfo->iContinue;
111 }
112 
113 /*
114 ** Return the VDBE address or label to jump to in order to break
115 ** out of a WHERE loop.
116 */
117 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
118   return pWInfo->iBreak;
119 }
120 
121 /*
122 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
123 ** operate directly on the rowis returned by a WHERE clause.  Return
124 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
125 ** a single row is to be changed.  Return ONEPASS_MULTI (2) if the one-pass
126 ** optimization can be used on multiple
127 **
128 ** If the ONEPASS optimization is used (if this routine returns true)
129 ** then also write the indices of open cursors used by ONEPASS
130 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
131 ** table and iaCur[1] gets the cursor used by an auxiliary index.
132 ** Either value may be -1, indicating that cursor is not used.
133 ** Any cursors returned will have been opened for writing.
134 **
135 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
136 ** unable to use the ONEPASS optimization.
137 */
138 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
139   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
140 #ifdef WHERETRACE_ENABLED
141   if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
142     sqlite3DebugPrintf("%s cursors: %d %d\n",
143          pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
144          aiCur[0], aiCur[1]);
145   }
146 #endif
147   return pWInfo->eOnePass;
148 }
149 
150 /*
151 ** Move the content of pSrc into pDest
152 */
153 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
154   pDest->n = pSrc->n;
155   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
156 }
157 
158 /*
159 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
160 **
161 ** The new entry might overwrite an existing entry, or it might be
162 ** appended, or it might be discarded.  Do whatever is the right thing
163 ** so that pSet keeps the N_OR_COST best entries seen so far.
164 */
165 static int whereOrInsert(
166   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
167   Bitmask prereq,        /* Prerequisites of the new entry */
168   LogEst rRun,           /* Run-cost of the new entry */
169   LogEst nOut            /* Number of outputs for the new entry */
170 ){
171   u16 i;
172   WhereOrCost *p;
173   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
174     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
175       goto whereOrInsert_done;
176     }
177     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
178       return 0;
179     }
180   }
181   if( pSet->n<N_OR_COST ){
182     p = &pSet->a[pSet->n++];
183     p->nOut = nOut;
184   }else{
185     p = pSet->a;
186     for(i=1; i<pSet->n; i++){
187       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
188     }
189     if( p->rRun<=rRun ) return 0;
190   }
191 whereOrInsert_done:
192   p->prereq = prereq;
193   p->rRun = rRun;
194   if( p->nOut>nOut ) p->nOut = nOut;
195   return 1;
196 }
197 
198 /*
199 ** Return the bitmask for the given cursor number.  Return 0 if
200 ** iCursor is not in the set.
201 */
202 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
203   int i;
204   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
205   for(i=0; i<pMaskSet->n; i++){
206     if( pMaskSet->ix[i]==iCursor ){
207       return MASKBIT(i);
208     }
209   }
210   return 0;
211 }
212 
213 /*
214 ** Create a new mask for cursor iCursor.
215 **
216 ** There is one cursor per table in the FROM clause.  The number of
217 ** tables in the FROM clause is limited by a test early in the
218 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
219 ** array will never overflow.
220 */
221 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
222   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
223   pMaskSet->ix[pMaskSet->n++] = iCursor;
224 }
225 
226 /*
227 ** Advance to the next WhereTerm that matches according to the criteria
228 ** established when the pScan object was initialized by whereScanInit().
229 ** Return NULL if there are no more matching WhereTerms.
230 */
231 static WhereTerm *whereScanNext(WhereScan *pScan){
232   int iCur;            /* The cursor on the LHS of the term */
233   i16 iColumn;         /* The column on the LHS of the term.  -1 for IPK */
234   Expr *pX;            /* An expression being tested */
235   WhereClause *pWC;    /* Shorthand for pScan->pWC */
236   WhereTerm *pTerm;    /* The term being tested */
237   int k = pScan->k;    /* Where to start scanning */
238 
239   assert( pScan->iEquiv<=pScan->nEquiv );
240   pWC = pScan->pWC;
241   while(1){
242     iColumn = pScan->aiColumn[pScan->iEquiv-1];
243     iCur = pScan->aiCur[pScan->iEquiv-1];
244     assert( pWC!=0 );
245     do{
246       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
247         if( pTerm->leftCursor==iCur
248          && pTerm->u.leftColumn==iColumn
249          && (iColumn!=XN_EXPR
250              || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
251                                        pScan->pIdxExpr,iCur)==0)
252          && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
253         ){
254           if( (pTerm->eOperator & WO_EQUIV)!=0
255            && pScan->nEquiv<ArraySize(pScan->aiCur)
256            && (pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight))->op==TK_COLUMN
257           ){
258             int j;
259             for(j=0; j<pScan->nEquiv; j++){
260               if( pScan->aiCur[j]==pX->iTable
261                && pScan->aiColumn[j]==pX->iColumn ){
262                   break;
263               }
264             }
265             if( j==pScan->nEquiv ){
266               pScan->aiCur[j] = pX->iTable;
267               pScan->aiColumn[j] = pX->iColumn;
268               pScan->nEquiv++;
269             }
270           }
271           if( (pTerm->eOperator & pScan->opMask)!=0 ){
272             /* Verify the affinity and collating sequence match */
273             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
274               CollSeq *pColl;
275               Parse *pParse = pWC->pWInfo->pParse;
276               pX = pTerm->pExpr;
277               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
278                 continue;
279               }
280               assert(pX->pLeft);
281               pColl = sqlite3BinaryCompareCollSeq(pParse,
282                                                   pX->pLeft, pX->pRight);
283               if( pColl==0 ) pColl = pParse->db->pDfltColl;
284               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
285                 continue;
286               }
287             }
288             if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
289              && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
290              && pX->iTable==pScan->aiCur[0]
291              && pX->iColumn==pScan->aiColumn[0]
292             ){
293               testcase( pTerm->eOperator & WO_IS );
294               continue;
295             }
296             pScan->pWC = pWC;
297             pScan->k = k+1;
298             return pTerm;
299           }
300         }
301       }
302       pWC = pWC->pOuter;
303       k = 0;
304     }while( pWC!=0 );
305     if( pScan->iEquiv>=pScan->nEquiv ) break;
306     pWC = pScan->pOrigWC;
307     k = 0;
308     pScan->iEquiv++;
309   }
310   return 0;
311 }
312 
313 /*
314 ** Initialize a WHERE clause scanner object.  Return a pointer to the
315 ** first match.  Return NULL if there are no matches.
316 **
317 ** The scanner will be searching the WHERE clause pWC.  It will look
318 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
319 ** iCur.   Or if pIdx!=0 then X is column iColumn of index pIdx.  pIdx
320 ** must be one of the indexes of table iCur.
321 **
322 ** The <op> must be one of the operators described by opMask.
323 **
324 ** If the search is for X and the WHERE clause contains terms of the
325 ** form X=Y then this routine might also return terms of the form
326 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
327 ** but is enough to handle most commonly occurring SQL statements.
328 **
329 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
330 ** index pIdx.
331 */
332 static WhereTerm *whereScanInit(
333   WhereScan *pScan,       /* The WhereScan object being initialized */
334   WhereClause *pWC,       /* The WHERE clause to be scanned */
335   int iCur,               /* Cursor to scan for */
336   int iColumn,            /* Column to scan for */
337   u32 opMask,             /* Operator(s) to scan for */
338   Index *pIdx             /* Must be compatible with this index */
339 ){
340   pScan->pOrigWC = pWC;
341   pScan->pWC = pWC;
342   pScan->pIdxExpr = 0;
343   pScan->idxaff = 0;
344   pScan->zCollName = 0;
345   if( pIdx ){
346     int j = iColumn;
347     iColumn = pIdx->aiColumn[j];
348     if( iColumn==XN_EXPR ){
349       pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
350       pScan->zCollName = pIdx->azColl[j];
351     }else if( iColumn==pIdx->pTable->iPKey ){
352       iColumn = XN_ROWID;
353     }else if( iColumn>=0 ){
354       pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
355       pScan->zCollName = pIdx->azColl[j];
356     }
357   }else if( iColumn==XN_EXPR ){
358     return 0;
359   }
360   pScan->opMask = opMask;
361   pScan->k = 0;
362   pScan->aiCur[0] = iCur;
363   pScan->aiColumn[0] = iColumn;
364   pScan->nEquiv = 1;
365   pScan->iEquiv = 1;
366   return whereScanNext(pScan);
367 }
368 
369 /*
370 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
371 ** where X is a reference to the iColumn of table iCur or of index pIdx
372 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
373 ** the op parameter.  Return a pointer to the term.  Return 0 if not found.
374 **
375 ** If pIdx!=0 then it must be one of the indexes of table iCur.
376 ** Search for terms matching the iColumn-th column of pIdx
377 ** rather than the iColumn-th column of table iCur.
378 **
379 ** The term returned might by Y=<expr> if there is another constraint in
380 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
381 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
382 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
383 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
384 ** other equivalent values.  Hence a search for X will return <expr> if X=A1
385 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
386 **
387 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
388 ** then try for the one with no dependencies on <expr> - in other words where
389 ** <expr> is a constant expression of some kind.  Only return entries of
390 ** the form "X <op> Y" where Y is a column in another table if no terms of
391 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
392 ** exist, try to return a term that does not use WO_EQUIV.
393 */
394 WhereTerm *sqlite3WhereFindTerm(
395   WhereClause *pWC,     /* The WHERE clause to be searched */
396   int iCur,             /* Cursor number of LHS */
397   int iColumn,          /* Column number of LHS */
398   Bitmask notReady,     /* RHS must not overlap with this mask */
399   u32 op,               /* Mask of WO_xx values describing operator */
400   Index *pIdx           /* Must be compatible with this index, if not NULL */
401 ){
402   WhereTerm *pResult = 0;
403   WhereTerm *p;
404   WhereScan scan;
405 
406   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
407   op &= WO_EQ|WO_IS;
408   while( p ){
409     if( (p->prereqRight & notReady)==0 ){
410       if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
411         testcase( p->eOperator & WO_IS );
412         return p;
413       }
414       if( pResult==0 ) pResult = p;
415     }
416     p = whereScanNext(&scan);
417   }
418   return pResult;
419 }
420 
421 /*
422 ** This function searches pList for an entry that matches the iCol-th column
423 ** of index pIdx.
424 **
425 ** If such an expression is found, its index in pList->a[] is returned. If
426 ** no expression is found, -1 is returned.
427 */
428 static int findIndexCol(
429   Parse *pParse,                  /* Parse context */
430   ExprList *pList,                /* Expression list to search */
431   int iBase,                      /* Cursor for table associated with pIdx */
432   Index *pIdx,                    /* Index to match column of */
433   int iCol                        /* Column of index to match */
434 ){
435   int i;
436   const char *zColl = pIdx->azColl[iCol];
437 
438   for(i=0; i<pList->nExpr; i++){
439     Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr);
440     if( p->op==TK_COLUMN
441      && p->iColumn==pIdx->aiColumn[iCol]
442      && p->iTable==iBase
443     ){
444       CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
445       if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
446         return i;
447       }
448     }
449   }
450 
451   return -1;
452 }
453 
454 /*
455 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
456 */
457 static int indexColumnNotNull(Index *pIdx, int iCol){
458   int j;
459   assert( pIdx!=0 );
460   assert( iCol>=0 && iCol<pIdx->nColumn );
461   j = pIdx->aiColumn[iCol];
462   if( j>=0 ){
463     return pIdx->pTable->aCol[j].notNull;
464   }else if( j==(-1) ){
465     return 1;
466   }else{
467     assert( j==(-2) );
468     return 0;  /* Assume an indexed expression can always yield a NULL */
469 
470   }
471 }
472 
473 /*
474 ** Return true if the DISTINCT expression-list passed as the third argument
475 ** is redundant.
476 **
477 ** A DISTINCT list is redundant if any subset of the columns in the
478 ** DISTINCT list are collectively unique and individually non-null.
479 */
480 static int isDistinctRedundant(
481   Parse *pParse,            /* Parsing context */
482   SrcList *pTabList,        /* The FROM clause */
483   WhereClause *pWC,         /* The WHERE clause */
484   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
485 ){
486   Table *pTab;
487   Index *pIdx;
488   int i;
489   int iBase;
490 
491   /* If there is more than one table or sub-select in the FROM clause of
492   ** this query, then it will not be possible to show that the DISTINCT
493   ** clause is redundant. */
494   if( pTabList->nSrc!=1 ) return 0;
495   iBase = pTabList->a[0].iCursor;
496   pTab = pTabList->a[0].pTab;
497 
498   /* If any of the expressions is an IPK column on table iBase, then return
499   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
500   ** current SELECT is a correlated sub-query.
501   */
502   for(i=0; i<pDistinct->nExpr; i++){
503     Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr);
504     if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1;
505   }
506 
507   /* Loop through all indices on the table, checking each to see if it makes
508   ** the DISTINCT qualifier redundant. It does so if:
509   **
510   **   1. The index is itself UNIQUE, and
511   **
512   **   2. All of the columns in the index are either part of the pDistinct
513   **      list, or else the WHERE clause contains a term of the form "col=X",
514   **      where X is a constant value. The collation sequences of the
515   **      comparison and select-list expressions must match those of the index.
516   **
517   **   3. All of those index columns for which the WHERE clause does not
518   **      contain a "col=X" term are subject to a NOT NULL constraint.
519   */
520   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
521     if( !IsUniqueIndex(pIdx) ) continue;
522     for(i=0; i<pIdx->nKeyCol; i++){
523       if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
524         if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
525         if( indexColumnNotNull(pIdx, i)==0 ) break;
526       }
527     }
528     if( i==pIdx->nKeyCol ){
529       /* This index implies that the DISTINCT qualifier is redundant. */
530       return 1;
531     }
532   }
533 
534   return 0;
535 }
536 
537 
538 /*
539 ** Estimate the logarithm of the input value to base 2.
540 */
541 static LogEst estLog(LogEst N){
542   return N<=10 ? 0 : sqlite3LogEst(N) - 33;
543 }
544 
545 /*
546 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
547 **
548 ** This routine runs over generated VDBE code and translates OP_Column
549 ** opcodes into OP_Copy when the table is being accessed via co-routine
550 ** instead of via table lookup.
551 **
552 ** If the bIncrRowid parameter is 0, then any OP_Rowid instructions on
553 ** cursor iTabCur are transformed into OP_Null. Or, if bIncrRowid is non-zero,
554 ** then each OP_Rowid is transformed into an instruction to increment the
555 ** value stored in its output register.
556 */
557 static void translateColumnToCopy(
558   Parse *pParse,      /* Parsing context */
559   int iStart,         /* Translate from this opcode to the end */
560   int iTabCur,        /* OP_Column/OP_Rowid references to this table */
561   int iRegister,      /* The first column is in this register */
562   int bIncrRowid      /* If non-zero, transform OP_rowid to OP_AddImm(1) */
563 ){
564   Vdbe *v = pParse->pVdbe;
565   VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
566   int iEnd = sqlite3VdbeCurrentAddr(v);
567   if( pParse->db->mallocFailed ) return;
568   for(; iStart<iEnd; iStart++, pOp++){
569     if( pOp->p1!=iTabCur ) continue;
570     if( pOp->opcode==OP_Column ){
571       pOp->opcode = OP_Copy;
572       pOp->p1 = pOp->p2 + iRegister;
573       pOp->p2 = pOp->p3;
574       pOp->p3 = 0;
575     }else if( pOp->opcode==OP_Rowid ){
576       if( bIncrRowid ){
577         /* Increment the value stored in the P2 operand of the OP_Rowid. */
578         pOp->opcode = OP_AddImm;
579         pOp->p1 = pOp->p2;
580         pOp->p2 = 1;
581       }else{
582         pOp->opcode = OP_Null;
583         pOp->p1 = 0;
584         pOp->p3 = 0;
585       }
586     }
587   }
588 }
589 
590 /*
591 ** Two routines for printing the content of an sqlite3_index_info
592 ** structure.  Used for testing and debugging only.  If neither
593 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
594 ** are no-ops.
595 */
596 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
597 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
598   int i;
599   if( !sqlite3WhereTrace ) return;
600   for(i=0; i<p->nConstraint; i++){
601     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
602        i,
603        p->aConstraint[i].iColumn,
604        p->aConstraint[i].iTermOffset,
605        p->aConstraint[i].op,
606        p->aConstraint[i].usable);
607   }
608   for(i=0; i<p->nOrderBy; i++){
609     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
610        i,
611        p->aOrderBy[i].iColumn,
612        p->aOrderBy[i].desc);
613   }
614 }
615 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
616   int i;
617   if( !sqlite3WhereTrace ) return;
618   for(i=0; i<p->nConstraint; i++){
619     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
620        i,
621        p->aConstraintUsage[i].argvIndex,
622        p->aConstraintUsage[i].omit);
623   }
624   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
625   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
626   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
627   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
628   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
629 }
630 #else
631 #define TRACE_IDX_INPUTS(A)
632 #define TRACE_IDX_OUTPUTS(A)
633 #endif
634 
635 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
636 /*
637 ** Return TRUE if the WHERE clause term pTerm is of a form where it
638 ** could be used with an index to access pSrc, assuming an appropriate
639 ** index existed.
640 */
641 static int termCanDriveIndex(
642   WhereTerm *pTerm,              /* WHERE clause term to check */
643   struct SrcList_item *pSrc,     /* Table we are trying to access */
644   Bitmask notReady               /* Tables in outer loops of the join */
645 ){
646   char aff;
647   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
648   if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
649   if( (pSrc->fg.jointype & JT_LEFT)
650    && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
651    && (pTerm->eOperator & WO_IS)
652   ){
653     /* Cannot use an IS term from the WHERE clause as an index driver for
654     ** the RHS of a LEFT JOIN. Such a term can only be used if it is from
655     ** the ON clause.  */
656     return 0;
657   }
658   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
659   if( pTerm->u.leftColumn<0 ) return 0;
660   aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
661   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
662   testcase( pTerm->pExpr->op==TK_IS );
663   return 1;
664 }
665 #endif
666 
667 
668 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
669 /*
670 ** Generate code to construct the Index object for an automatic index
671 ** and to set up the WhereLevel object pLevel so that the code generator
672 ** makes use of the automatic index.
673 */
674 static void constructAutomaticIndex(
675   Parse *pParse,              /* The parsing context */
676   WhereClause *pWC,           /* The WHERE clause */
677   struct SrcList_item *pSrc,  /* The FROM clause term to get the next index */
678   Bitmask notReady,           /* Mask of cursors that are not available */
679   WhereLevel *pLevel          /* Write new index here */
680 ){
681   int nKeyCol;                /* Number of columns in the constructed index */
682   WhereTerm *pTerm;           /* A single term of the WHERE clause */
683   WhereTerm *pWCEnd;          /* End of pWC->a[] */
684   Index *pIdx;                /* Object describing the transient index */
685   Vdbe *v;                    /* Prepared statement under construction */
686   int addrInit;               /* Address of the initialization bypass jump */
687   Table *pTable;              /* The table being indexed */
688   int addrTop;                /* Top of the index fill loop */
689   int regRecord;              /* Register holding an index record */
690   int n;                      /* Column counter */
691   int i;                      /* Loop counter */
692   int mxBitCol;               /* Maximum column in pSrc->colUsed */
693   CollSeq *pColl;             /* Collating sequence to on a column */
694   WhereLoop *pLoop;           /* The Loop object */
695   char *zNotUsed;             /* Extra space on the end of pIdx */
696   Bitmask idxCols;            /* Bitmap of columns used for indexing */
697   Bitmask extraCols;          /* Bitmap of additional columns */
698   u8 sentWarning = 0;         /* True if a warnning has been issued */
699   Expr *pPartial = 0;         /* Partial Index Expression */
700   int iContinue = 0;          /* Jump here to skip excluded rows */
701   struct SrcList_item *pTabItem;  /* FROM clause term being indexed */
702   int addrCounter = 0;        /* Address where integer counter is initialized */
703   int regBase;                /* Array of registers where record is assembled */
704 
705   /* Generate code to skip over the creation and initialization of the
706   ** transient index on 2nd and subsequent iterations of the loop. */
707   v = pParse->pVdbe;
708   assert( v!=0 );
709   addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
710 
711   /* Count the number of columns that will be added to the index
712   ** and used to match WHERE clause constraints */
713   nKeyCol = 0;
714   pTable = pSrc->pTab;
715   pWCEnd = &pWC->a[pWC->nTerm];
716   pLoop = pLevel->pWLoop;
717   idxCols = 0;
718   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
719     Expr *pExpr = pTerm->pExpr;
720     assert( !ExprHasProperty(pExpr, EP_FromJoin)    /* prereq always non-zero */
721          || pExpr->iRightJoinTable!=pSrc->iCursor   /*   for the right-hand   */
722          || pLoop->prereq!=0 );                     /*   table of a LEFT JOIN */
723     if( pLoop->prereq==0
724      && (pTerm->wtFlags & TERM_VIRTUAL)==0
725      && !ExprHasProperty(pExpr, EP_FromJoin)
726      && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){
727       pPartial = sqlite3ExprAnd(pParse->db, pPartial,
728                                 sqlite3ExprDup(pParse->db, pExpr, 0));
729     }
730     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
731       int iCol = pTerm->u.leftColumn;
732       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
733       testcase( iCol==BMS );
734       testcase( iCol==BMS-1 );
735       if( !sentWarning ){
736         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
737             "automatic index on %s(%s)", pTable->zName,
738             pTable->aCol[iCol].zName);
739         sentWarning = 1;
740       }
741       if( (idxCols & cMask)==0 ){
742         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
743           goto end_auto_index_create;
744         }
745         pLoop->aLTerm[nKeyCol++] = pTerm;
746         idxCols |= cMask;
747       }
748     }
749   }
750   assert( nKeyCol>0 );
751   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
752   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
753                      | WHERE_AUTO_INDEX;
754 
755   /* Count the number of additional columns needed to create a
756   ** covering index.  A "covering index" is an index that contains all
757   ** columns that are needed by the query.  With a covering index, the
758   ** original table never needs to be accessed.  Automatic indices must
759   ** be a covering index because the index will not be updated if the
760   ** original table changes and the index and table cannot both be used
761   ** if they go out of sync.
762   */
763   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
764   mxBitCol = MIN(BMS-1,pTable->nCol);
765   testcase( pTable->nCol==BMS-1 );
766   testcase( pTable->nCol==BMS-2 );
767   for(i=0; i<mxBitCol; i++){
768     if( extraCols & MASKBIT(i) ) nKeyCol++;
769   }
770   if( pSrc->colUsed & MASKBIT(BMS-1) ){
771     nKeyCol += pTable->nCol - BMS + 1;
772   }
773 
774   /* Construct the Index object to describe this index */
775   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
776   if( pIdx==0 ) goto end_auto_index_create;
777   pLoop->u.btree.pIndex = pIdx;
778   pIdx->zName = "auto-index";
779   pIdx->pTable = pTable;
780   n = 0;
781   idxCols = 0;
782   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
783     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
784       int iCol = pTerm->u.leftColumn;
785       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
786       testcase( iCol==BMS-1 );
787       testcase( iCol==BMS );
788       if( (idxCols & cMask)==0 ){
789         Expr *pX = pTerm->pExpr;
790         idxCols |= cMask;
791         pIdx->aiColumn[n] = pTerm->u.leftColumn;
792         pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
793         pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
794         n++;
795       }
796     }
797   }
798   assert( (u32)n==pLoop->u.btree.nEq );
799 
800   /* Add additional columns needed to make the automatic index into
801   ** a covering index */
802   for(i=0; i<mxBitCol; i++){
803     if( extraCols & MASKBIT(i) ){
804       pIdx->aiColumn[n] = i;
805       pIdx->azColl[n] = sqlite3StrBINARY;
806       n++;
807     }
808   }
809   if( pSrc->colUsed & MASKBIT(BMS-1) ){
810     for(i=BMS-1; i<pTable->nCol; i++){
811       pIdx->aiColumn[n] = i;
812       pIdx->azColl[n] = sqlite3StrBINARY;
813       n++;
814     }
815   }
816   assert( n==nKeyCol );
817   pIdx->aiColumn[n] = XN_ROWID;
818   pIdx->azColl[n] = sqlite3StrBINARY;
819 
820   /* Create the automatic index */
821   assert( pLevel->iIdxCur>=0 );
822   pLevel->iIdxCur = pParse->nTab++;
823   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
824   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
825   VdbeComment((v, "for %s", pTable->zName));
826 
827   /* Fill the automatic index with content */
828   pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
829   if( pTabItem->fg.viaCoroutine ){
830     int regYield = pTabItem->regReturn;
831     addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
832     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
833     addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
834     VdbeCoverage(v);
835     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
836   }else{
837     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
838   }
839   if( pPartial ){
840     iContinue = sqlite3VdbeMakeLabel(v);
841     sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
842     pLoop->wsFlags |= WHERE_PARTIALIDX;
843   }
844   regRecord = sqlite3GetTempReg(pParse);
845   regBase = sqlite3GenerateIndexKey(
846       pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
847   );
848   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
849   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
850   if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
851   if( pTabItem->fg.viaCoroutine ){
852     sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
853     testcase( pParse->db->mallocFailed );
854     translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
855                           pTabItem->regResult, 1);
856     sqlite3VdbeGoto(v, addrTop);
857     pTabItem->fg.viaCoroutine = 0;
858   }else{
859     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
860   }
861   sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
862   sqlite3VdbeJumpHere(v, addrTop);
863   sqlite3ReleaseTempReg(pParse, regRecord);
864 
865   /* Jump here when skipping the initialization */
866   sqlite3VdbeJumpHere(v, addrInit);
867 
868 end_auto_index_create:
869   sqlite3ExprDelete(pParse->db, pPartial);
870 }
871 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
872 
873 #ifndef SQLITE_OMIT_VIRTUALTABLE
874 /*
875 ** Allocate and populate an sqlite3_index_info structure. It is the
876 ** responsibility of the caller to eventually release the structure
877 ** by passing the pointer returned by this function to sqlite3_free().
878 */
879 static sqlite3_index_info *allocateIndexInfo(
880   Parse *pParse,                  /* The parsing context */
881   WhereClause *pWC,               /* The WHERE clause being analyzed */
882   Bitmask mUnusable,              /* Ignore terms with these prereqs */
883   struct SrcList_item *pSrc,      /* The FROM clause term that is the vtab */
884   ExprList *pOrderBy,             /* The ORDER BY clause */
885   u16 *pmNoOmit                   /* Mask of terms not to omit */
886 ){
887   int i, j;
888   int nTerm;
889   struct sqlite3_index_constraint *pIdxCons;
890   struct sqlite3_index_orderby *pIdxOrderBy;
891   struct sqlite3_index_constraint_usage *pUsage;
892   struct HiddenIndexInfo *pHidden;
893   WhereTerm *pTerm;
894   int nOrderBy;
895   sqlite3_index_info *pIdxInfo;
896   u16 mNoOmit = 0;
897 
898   /* Count the number of possible WHERE clause constraints referring
899   ** to this virtual table */
900   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
901     if( pTerm->leftCursor != pSrc->iCursor ) continue;
902     if( pTerm->prereqRight & mUnusable ) continue;
903     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
904     testcase( pTerm->eOperator & WO_IN );
905     testcase( pTerm->eOperator & WO_ISNULL );
906     testcase( pTerm->eOperator & WO_IS );
907     testcase( pTerm->eOperator & WO_ALL );
908     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
909     if( pTerm->wtFlags & TERM_VNULL ) continue;
910     assert( pTerm->u.leftColumn>=(-1) );
911     nTerm++;
912   }
913 
914   /* If the ORDER BY clause contains only columns in the current
915   ** virtual table then allocate space for the aOrderBy part of
916   ** the sqlite3_index_info structure.
917   */
918   nOrderBy = 0;
919   if( pOrderBy ){
920     int n = pOrderBy->nExpr;
921     for(i=0; i<n; i++){
922       Expr *pExpr = pOrderBy->a[i].pExpr;
923       if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
924     }
925     if( i==n){
926       nOrderBy = n;
927     }
928   }
929 
930   /* Allocate the sqlite3_index_info structure
931   */
932   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
933                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
934                            + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) );
935   if( pIdxInfo==0 ){
936     sqlite3ErrorMsg(pParse, "out of memory");
937     return 0;
938   }
939 
940   /* Initialize the structure.  The sqlite3_index_info structure contains
941   ** many fields that are declared "const" to prevent xBestIndex from
942   ** changing them.  We have to do some funky casting in order to
943   ** initialize those fields.
944   */
945   pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
946   pIdxCons = (struct sqlite3_index_constraint*)&pHidden[1];
947   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
948   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
949   *(int*)&pIdxInfo->nConstraint = nTerm;
950   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
951   *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
952   *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
953   *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
954                                                                    pUsage;
955 
956   pHidden->pWC = pWC;
957   pHidden->pParse = pParse;
958   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
959     u16 op;
960     if( pTerm->leftCursor != pSrc->iCursor ) continue;
961     if( pTerm->prereqRight & mUnusable ) continue;
962     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
963     testcase( pTerm->eOperator & WO_IN );
964     testcase( pTerm->eOperator & WO_IS );
965     testcase( pTerm->eOperator & WO_ISNULL );
966     testcase( pTerm->eOperator & WO_ALL );
967     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
968     if( pTerm->wtFlags & TERM_VNULL ) continue;
969     if( (pSrc->fg.jointype & JT_LEFT)!=0
970      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
971      && (pTerm->eOperator & (WO_IS|WO_ISNULL))
972     ){
973       /* An "IS" term in the WHERE clause where the virtual table is the rhs
974       ** of a LEFT JOIN. Do not pass this term to the virtual table
975       ** implementation, as this can lead to incorrect results from SQL such
976       ** as:
977       **
978       **   "LEFT JOIN vtab WHERE vtab.col IS NULL"  */
979       testcase( pTerm->eOperator & WO_ISNULL );
980       testcase( pTerm->eOperator & WO_IS );
981       continue;
982     }
983     assert( pTerm->u.leftColumn>=(-1) );
984     pIdxCons[j].iColumn = pTerm->u.leftColumn;
985     pIdxCons[j].iTermOffset = i;
986     op = pTerm->eOperator & WO_ALL;
987     if( op==WO_IN ) op = WO_EQ;
988     if( op==WO_AUX ){
989       pIdxCons[j].op = pTerm->eMatchOp;
990     }else if( op & (WO_ISNULL|WO_IS) ){
991       if( op==WO_ISNULL ){
992         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
993       }else{
994         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
995       }
996     }else{
997       pIdxCons[j].op = (u8)op;
998       /* The direct assignment in the previous line is possible only because
999       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
1000       ** following asserts verify this fact. */
1001       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1002       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1003       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1004       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1005       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1006       assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
1007 
1008       if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
1009        && sqlite3ExprIsVector(pTerm->pExpr->pRight)
1010       ){
1011         if( i<16 ) mNoOmit |= (1 << i);
1012         if( op==WO_LT ) pIdxCons[j].op = WO_LE;
1013         if( op==WO_GT ) pIdxCons[j].op = WO_GE;
1014       }
1015     }
1016 
1017     j++;
1018   }
1019   for(i=0; i<nOrderBy; i++){
1020     Expr *pExpr = pOrderBy->a[i].pExpr;
1021     pIdxOrderBy[i].iColumn = pExpr->iColumn;
1022     pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
1023   }
1024 
1025   *pmNoOmit = mNoOmit;
1026   return pIdxInfo;
1027 }
1028 
1029 /*
1030 ** The table object reference passed as the second argument to this function
1031 ** must represent a virtual table. This function invokes the xBestIndex()
1032 ** method of the virtual table with the sqlite3_index_info object that
1033 ** comes in as the 3rd argument to this function.
1034 **
1035 ** If an error occurs, pParse is populated with an error message and an
1036 ** appropriate error code is returned.  A return of SQLITE_CONSTRAINT from
1037 ** xBestIndex is not considered an error.  SQLITE_CONSTRAINT indicates that
1038 ** the current configuration of "unusable" flags in sqlite3_index_info can
1039 ** not result in a valid plan.
1040 **
1041 ** Whether or not an error is returned, it is the responsibility of the
1042 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1043 ** that this is required.
1044 */
1045 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
1046   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
1047   int rc;
1048 
1049   TRACE_IDX_INPUTS(p);
1050   rc = pVtab->pModule->xBestIndex(pVtab, p);
1051   TRACE_IDX_OUTPUTS(p);
1052 
1053   if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){
1054     if( rc==SQLITE_NOMEM ){
1055       sqlite3OomFault(pParse->db);
1056     }else if( !pVtab->zErrMsg ){
1057       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1058     }else{
1059       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1060     }
1061   }
1062   sqlite3_free(pVtab->zErrMsg);
1063   pVtab->zErrMsg = 0;
1064   return rc;
1065 }
1066 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1067 
1068 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1069 /*
1070 ** Estimate the location of a particular key among all keys in an
1071 ** index.  Store the results in aStat as follows:
1072 **
1073 **    aStat[0]      Est. number of rows less than pRec
1074 **    aStat[1]      Est. number of rows equal to pRec
1075 **
1076 ** Return the index of the sample that is the smallest sample that
1077 ** is greater than or equal to pRec. Note that this index is not an index
1078 ** into the aSample[] array - it is an index into a virtual set of samples
1079 ** based on the contents of aSample[] and the number of fields in record
1080 ** pRec.
1081 */
1082 static int whereKeyStats(
1083   Parse *pParse,              /* Database connection */
1084   Index *pIdx,                /* Index to consider domain of */
1085   UnpackedRecord *pRec,       /* Vector of values to consider */
1086   int roundUp,                /* Round up if true.  Round down if false */
1087   tRowcnt *aStat              /* OUT: stats written here */
1088 ){
1089   IndexSample *aSample = pIdx->aSample;
1090   int iCol;                   /* Index of required stats in anEq[] etc. */
1091   int i;                      /* Index of first sample >= pRec */
1092   int iSample;                /* Smallest sample larger than or equal to pRec */
1093   int iMin = 0;               /* Smallest sample not yet tested */
1094   int iTest;                  /* Next sample to test */
1095   int res;                    /* Result of comparison operation */
1096   int nField;                 /* Number of fields in pRec */
1097   tRowcnt iLower = 0;         /* anLt[] + anEq[] of largest sample pRec is > */
1098 
1099 #ifndef SQLITE_DEBUG
1100   UNUSED_PARAMETER( pParse );
1101 #endif
1102   assert( pRec!=0 );
1103   assert( pIdx->nSample>0 );
1104   assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
1105 
1106   /* Do a binary search to find the first sample greater than or equal
1107   ** to pRec. If pRec contains a single field, the set of samples to search
1108   ** is simply the aSample[] array. If the samples in aSample[] contain more
1109   ** than one fields, all fields following the first are ignored.
1110   **
1111   ** If pRec contains N fields, where N is more than one, then as well as the
1112   ** samples in aSample[] (truncated to N fields), the search also has to
1113   ** consider prefixes of those samples. For example, if the set of samples
1114   ** in aSample is:
1115   **
1116   **     aSample[0] = (a, 5)
1117   **     aSample[1] = (a, 10)
1118   **     aSample[2] = (b, 5)
1119   **     aSample[3] = (c, 100)
1120   **     aSample[4] = (c, 105)
1121   **
1122   ** Then the search space should ideally be the samples above and the
1123   ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1124   ** the code actually searches this set:
1125   **
1126   **     0: (a)
1127   **     1: (a, 5)
1128   **     2: (a, 10)
1129   **     3: (a, 10)
1130   **     4: (b)
1131   **     5: (b, 5)
1132   **     6: (c)
1133   **     7: (c, 100)
1134   **     8: (c, 105)
1135   **     9: (c, 105)
1136   **
1137   ** For each sample in the aSample[] array, N samples are present in the
1138   ** effective sample array. In the above, samples 0 and 1 are based on
1139   ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1140   **
1141   ** Often, sample i of each block of N effective samples has (i+1) fields.
1142   ** Except, each sample may be extended to ensure that it is greater than or
1143   ** equal to the previous sample in the array. For example, in the above,
1144   ** sample 2 is the first sample of a block of N samples, so at first it
1145   ** appears that it should be 1 field in size. However, that would make it
1146   ** smaller than sample 1, so the binary search would not work. As a result,
1147   ** it is extended to two fields. The duplicates that this creates do not
1148   ** cause any problems.
1149   */
1150   nField = pRec->nField;
1151   iCol = 0;
1152   iSample = pIdx->nSample * nField;
1153   do{
1154     int iSamp;                    /* Index in aSample[] of test sample */
1155     int n;                        /* Number of fields in test sample */
1156 
1157     iTest = (iMin+iSample)/2;
1158     iSamp = iTest / nField;
1159     if( iSamp>0 ){
1160       /* The proposed effective sample is a prefix of sample aSample[iSamp].
1161       ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1162       ** fields that is greater than the previous effective sample.  */
1163       for(n=(iTest % nField) + 1; n<nField; n++){
1164         if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1165       }
1166     }else{
1167       n = iTest + 1;
1168     }
1169 
1170     pRec->nField = n;
1171     res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1172     if( res<0 ){
1173       iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1174       iMin = iTest+1;
1175     }else if( res==0 && n<nField ){
1176       iLower = aSample[iSamp].anLt[n-1];
1177       iMin = iTest+1;
1178       res = -1;
1179     }else{
1180       iSample = iTest;
1181       iCol = n-1;
1182     }
1183   }while( res && iMin<iSample );
1184   i = iSample / nField;
1185 
1186 #ifdef SQLITE_DEBUG
1187   /* The following assert statements check that the binary search code
1188   ** above found the right answer. This block serves no purpose other
1189   ** than to invoke the asserts.  */
1190   if( pParse->db->mallocFailed==0 ){
1191     if( res==0 ){
1192       /* If (res==0) is true, then pRec must be equal to sample i. */
1193       assert( i<pIdx->nSample );
1194       assert( iCol==nField-1 );
1195       pRec->nField = nField;
1196       assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1197            || pParse->db->mallocFailed
1198       );
1199     }else{
1200       /* Unless i==pIdx->nSample, indicating that pRec is larger than
1201       ** all samples in the aSample[] array, pRec must be smaller than the
1202       ** (iCol+1) field prefix of sample i.  */
1203       assert( i<=pIdx->nSample && i>=0 );
1204       pRec->nField = iCol+1;
1205       assert( i==pIdx->nSample
1206            || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1207            || pParse->db->mallocFailed );
1208 
1209       /* if i==0 and iCol==0, then record pRec is smaller than all samples
1210       ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1211       ** be greater than or equal to the (iCol) field prefix of sample i.
1212       ** If (i>0), then pRec must also be greater than sample (i-1).  */
1213       if( iCol>0 ){
1214         pRec->nField = iCol;
1215         assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1216              || pParse->db->mallocFailed );
1217       }
1218       if( i>0 ){
1219         pRec->nField = nField;
1220         assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1221              || pParse->db->mallocFailed );
1222       }
1223     }
1224   }
1225 #endif /* ifdef SQLITE_DEBUG */
1226 
1227   if( res==0 ){
1228     /* Record pRec is equal to sample i */
1229     assert( iCol==nField-1 );
1230     aStat[0] = aSample[i].anLt[iCol];
1231     aStat[1] = aSample[i].anEq[iCol];
1232   }else{
1233     /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1234     ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1235     ** is larger than all samples in the array. */
1236     tRowcnt iUpper, iGap;
1237     if( i>=pIdx->nSample ){
1238       iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1239     }else{
1240       iUpper = aSample[i].anLt[iCol];
1241     }
1242 
1243     if( iLower>=iUpper ){
1244       iGap = 0;
1245     }else{
1246       iGap = iUpper - iLower;
1247     }
1248     if( roundUp ){
1249       iGap = (iGap*2)/3;
1250     }else{
1251       iGap = iGap/3;
1252     }
1253     aStat[0] = iLower + iGap;
1254     aStat[1] = pIdx->aAvgEq[nField-1];
1255   }
1256 
1257   /* Restore the pRec->nField value before returning.  */
1258   pRec->nField = nField;
1259   return i;
1260 }
1261 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1262 
1263 /*
1264 ** If it is not NULL, pTerm is a term that provides an upper or lower
1265 ** bound on a range scan. Without considering pTerm, it is estimated
1266 ** that the scan will visit nNew rows. This function returns the number
1267 ** estimated to be visited after taking pTerm into account.
1268 **
1269 ** If the user explicitly specified a likelihood() value for this term,
1270 ** then the return value is the likelihood multiplied by the number of
1271 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1272 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1273 */
1274 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1275   LogEst nRet = nNew;
1276   if( pTerm ){
1277     if( pTerm->truthProb<=0 ){
1278       nRet += pTerm->truthProb;
1279     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1280       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
1281     }
1282   }
1283   return nRet;
1284 }
1285 
1286 
1287 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1288 /*
1289 ** Return the affinity for a single column of an index.
1290 */
1291 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1292   assert( iCol>=0 && iCol<pIdx->nColumn );
1293   if( !pIdx->zColAff ){
1294     if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1295   }
1296   return pIdx->zColAff[iCol];
1297 }
1298 #endif
1299 
1300 
1301 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1302 /*
1303 ** This function is called to estimate the number of rows visited by a
1304 ** range-scan on a skip-scan index. For example:
1305 **
1306 **   CREATE INDEX i1 ON t1(a, b, c);
1307 **   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1308 **
1309 ** Value pLoop->nOut is currently set to the estimated number of rows
1310 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1311 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1312 ** on the stat4 data for the index. this scan will be peformed multiple
1313 ** times (once for each (a,b) combination that matches a=?) is dealt with
1314 ** by the caller.
1315 **
1316 ** It does this by scanning through all stat4 samples, comparing values
1317 ** extracted from pLower and pUpper with the corresponding column in each
1318 ** sample. If L and U are the number of samples found to be less than or
1319 ** equal to the values extracted from pLower and pUpper respectively, and
1320 ** N is the total number of samples, the pLoop->nOut value is adjusted
1321 ** as follows:
1322 **
1323 **   nOut = nOut * ( min(U - L, 1) / N )
1324 **
1325 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1326 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1327 ** U is set to N.
1328 **
1329 ** Normally, this function sets *pbDone to 1 before returning. However,
1330 ** if no value can be extracted from either pLower or pUpper (and so the
1331 ** estimate of the number of rows delivered remains unchanged), *pbDone
1332 ** is left as is.
1333 **
1334 ** If an error occurs, an SQLite error code is returned. Otherwise,
1335 ** SQLITE_OK.
1336 */
1337 static int whereRangeSkipScanEst(
1338   Parse *pParse,       /* Parsing & code generating context */
1339   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1340   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1341   WhereLoop *pLoop,    /* Update the .nOut value of this loop */
1342   int *pbDone          /* Set to true if at least one expr. value extracted */
1343 ){
1344   Index *p = pLoop->u.btree.pIndex;
1345   int nEq = pLoop->u.btree.nEq;
1346   sqlite3 *db = pParse->db;
1347   int nLower = -1;
1348   int nUpper = p->nSample+1;
1349   int rc = SQLITE_OK;
1350   u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1351   CollSeq *pColl;
1352 
1353   sqlite3_value *p1 = 0;          /* Value extracted from pLower */
1354   sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
1355   sqlite3_value *pVal = 0;        /* Value extracted from record */
1356 
1357   pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1358   if( pLower ){
1359     rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1360     nLower = 0;
1361   }
1362   if( pUpper && rc==SQLITE_OK ){
1363     rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1364     nUpper = p2 ? 0 : p->nSample;
1365   }
1366 
1367   if( p1 || p2 ){
1368     int i;
1369     int nDiff;
1370     for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1371       rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1372       if( rc==SQLITE_OK && p1 ){
1373         int res = sqlite3MemCompare(p1, pVal, pColl);
1374         if( res>=0 ) nLower++;
1375       }
1376       if( rc==SQLITE_OK && p2 ){
1377         int res = sqlite3MemCompare(p2, pVal, pColl);
1378         if( res>=0 ) nUpper++;
1379       }
1380     }
1381     nDiff = (nUpper - nLower);
1382     if( nDiff<=0 ) nDiff = 1;
1383 
1384     /* If there is both an upper and lower bound specified, and the
1385     ** comparisons indicate that they are close together, use the fallback
1386     ** method (assume that the scan visits 1/64 of the rows) for estimating
1387     ** the number of rows visited. Otherwise, estimate the number of rows
1388     ** using the method described in the header comment for this function. */
1389     if( nDiff!=1 || pUpper==0 || pLower==0 ){
1390       int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1391       pLoop->nOut -= nAdjust;
1392       *pbDone = 1;
1393       WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n",
1394                            nLower, nUpper, nAdjust*-1, pLoop->nOut));
1395     }
1396 
1397   }else{
1398     assert( *pbDone==0 );
1399   }
1400 
1401   sqlite3ValueFree(p1);
1402   sqlite3ValueFree(p2);
1403   sqlite3ValueFree(pVal);
1404 
1405   return rc;
1406 }
1407 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1408 
1409 /*
1410 ** This function is used to estimate the number of rows that will be visited
1411 ** by scanning an index for a range of values. The range may have an upper
1412 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1413 ** and lower bounds are represented by pLower and pUpper respectively. For
1414 ** example, assuming that index p is on t1(a):
1415 **
1416 **   ... FROM t1 WHERE a > ? AND a < ? ...
1417 **                    |_____|   |_____|
1418 **                       |         |
1419 **                     pLower    pUpper
1420 **
1421 ** If either of the upper or lower bound is not present, then NULL is passed in
1422 ** place of the corresponding WhereTerm.
1423 **
1424 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1425 ** column subject to the range constraint. Or, equivalently, the number of
1426 ** equality constraints optimized by the proposed index scan. For example,
1427 ** assuming index p is on t1(a, b), and the SQL query is:
1428 **
1429 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1430 **
1431 ** then nEq is set to 1 (as the range restricted column, b, is the second
1432 ** left-most column of the index). Or, if the query is:
1433 **
1434 **   ... FROM t1 WHERE a > ? AND a < ? ...
1435 **
1436 ** then nEq is set to 0.
1437 **
1438 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1439 ** number of rows that the index scan is expected to visit without
1440 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1441 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1442 ** to account for the range constraints pLower and pUpper.
1443 **
1444 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1445 ** used, a single range inequality reduces the search space by a factor of 4.
1446 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1447 ** rows visited by a factor of 64.
1448 */
1449 static int whereRangeScanEst(
1450   Parse *pParse,       /* Parsing & code generating context */
1451   WhereLoopBuilder *pBuilder,
1452   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1453   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1454   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
1455 ){
1456   int rc = SQLITE_OK;
1457   int nOut = pLoop->nOut;
1458   LogEst nNew;
1459 
1460 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1461   Index *p = pLoop->u.btree.pIndex;
1462   int nEq = pLoop->u.btree.nEq;
1463 
1464   if( p->nSample>0 && nEq<p->nSampleCol
1465    && OptimizationEnabled(pParse->db, SQLITE_Stat34)
1466   ){
1467     if( nEq==pBuilder->nRecValid ){
1468       UnpackedRecord *pRec = pBuilder->pRec;
1469       tRowcnt a[2];
1470       int nBtm = pLoop->u.btree.nBtm;
1471       int nTop = pLoop->u.btree.nTop;
1472 
1473       /* Variable iLower will be set to the estimate of the number of rows in
1474       ** the index that are less than the lower bound of the range query. The
1475       ** lower bound being the concatenation of $P and $L, where $P is the
1476       ** key-prefix formed by the nEq values matched against the nEq left-most
1477       ** columns of the index, and $L is the value in pLower.
1478       **
1479       ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1480       ** is not a simple variable or literal value), the lower bound of the
1481       ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1482       ** if $L is available, whereKeyStats() is called for both ($P) and
1483       ** ($P:$L) and the larger of the two returned values is used.
1484       **
1485       ** Similarly, iUpper is to be set to the estimate of the number of rows
1486       ** less than the upper bound of the range query. Where the upper bound
1487       ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1488       ** of iUpper are requested of whereKeyStats() and the smaller used.
1489       **
1490       ** The number of rows between the two bounds is then just iUpper-iLower.
1491       */
1492       tRowcnt iLower;     /* Rows less than the lower bound */
1493       tRowcnt iUpper;     /* Rows less than the upper bound */
1494       int iLwrIdx = -2;   /* aSample[] for the lower bound */
1495       int iUprIdx = -1;   /* aSample[] for the upper bound */
1496 
1497       if( pRec ){
1498         testcase( pRec->nField!=pBuilder->nRecValid );
1499         pRec->nField = pBuilder->nRecValid;
1500       }
1501       /* Determine iLower and iUpper using ($P) only. */
1502       if( nEq==0 ){
1503         iLower = 0;
1504         iUpper = p->nRowEst0;
1505       }else{
1506         /* Note: this call could be optimized away - since the same values must
1507         ** have been requested when testing key $P in whereEqualScanEst().  */
1508         whereKeyStats(pParse, p, pRec, 0, a);
1509         iLower = a[0];
1510         iUpper = a[0] + a[1];
1511       }
1512 
1513       assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1514       assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1515       assert( p->aSortOrder!=0 );
1516       if( p->aSortOrder[nEq] ){
1517         /* The roles of pLower and pUpper are swapped for a DESC index */
1518         SWAP(WhereTerm*, pLower, pUpper);
1519         SWAP(int, nBtm, nTop);
1520       }
1521 
1522       /* If possible, improve on the iLower estimate using ($P:$L). */
1523       if( pLower ){
1524         int n;                    /* Values extracted from pExpr */
1525         Expr *pExpr = pLower->pExpr->pRight;
1526         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1527         if( rc==SQLITE_OK && n ){
1528           tRowcnt iNew;
1529           u16 mask = WO_GT|WO_LE;
1530           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1531           iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1532           iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1533           if( iNew>iLower ) iLower = iNew;
1534           nOut--;
1535           pLower = 0;
1536         }
1537       }
1538 
1539       /* If possible, improve on the iUpper estimate using ($P:$U). */
1540       if( pUpper ){
1541         int n;                    /* Values extracted from pExpr */
1542         Expr *pExpr = pUpper->pExpr->pRight;
1543         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1544         if( rc==SQLITE_OK && n ){
1545           tRowcnt iNew;
1546           u16 mask = WO_GT|WO_LE;
1547           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1548           iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1549           iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1550           if( iNew<iUpper ) iUpper = iNew;
1551           nOut--;
1552           pUpper = 0;
1553         }
1554       }
1555 
1556       pBuilder->pRec = pRec;
1557       if( rc==SQLITE_OK ){
1558         if( iUpper>iLower ){
1559           nNew = sqlite3LogEst(iUpper - iLower);
1560           /* TUNING:  If both iUpper and iLower are derived from the same
1561           ** sample, then assume they are 4x more selective.  This brings
1562           ** the estimated selectivity more in line with what it would be
1563           ** if estimated without the use of STAT3/4 tables. */
1564           if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
1565         }else{
1566           nNew = 10;        assert( 10==sqlite3LogEst(2) );
1567         }
1568         if( nNew<nOut ){
1569           nOut = nNew;
1570         }
1571         WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
1572                            (u32)iLower, (u32)iUpper, nOut));
1573       }
1574     }else{
1575       int bDone = 0;
1576       rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1577       if( bDone ) return rc;
1578     }
1579   }
1580 #else
1581   UNUSED_PARAMETER(pParse);
1582   UNUSED_PARAMETER(pBuilder);
1583   assert( pLower || pUpper );
1584 #endif
1585   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1586   nNew = whereRangeAdjust(pLower, nOut);
1587   nNew = whereRangeAdjust(pUpper, nNew);
1588 
1589   /* TUNING: If there is both an upper and lower limit and neither limit
1590   ** has an application-defined likelihood(), assume the range is
1591   ** reduced by an additional 75%. This means that, by default, an open-ended
1592   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1593   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1594   ** match 1/64 of the index. */
1595   if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1596     nNew -= 20;
1597   }
1598 
1599   nOut -= (pLower!=0) + (pUpper!=0);
1600   if( nNew<10 ) nNew = 10;
1601   if( nNew<nOut ) nOut = nNew;
1602 #if defined(WHERETRACE_ENABLED)
1603   if( pLoop->nOut>nOut ){
1604     WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1605                     pLoop->nOut, nOut));
1606   }
1607 #endif
1608   pLoop->nOut = (LogEst)nOut;
1609   return rc;
1610 }
1611 
1612 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1613 /*
1614 ** Estimate the number of rows that will be returned based on
1615 ** an equality constraint x=VALUE and where that VALUE occurs in
1616 ** the histogram data.  This only works when x is the left-most
1617 ** column of an index and sqlite_stat3 histogram data is available
1618 ** for that index.  When pExpr==NULL that means the constraint is
1619 ** "x IS NULL" instead of "x=VALUE".
1620 **
1621 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1622 ** If unable to make an estimate, leave *pnRow unchanged and return
1623 ** non-zero.
1624 **
1625 ** This routine can fail if it is unable to load a collating sequence
1626 ** required for string comparison, or if unable to allocate memory
1627 ** for a UTF conversion required for comparison.  The error is stored
1628 ** in the pParse structure.
1629 */
1630 static int whereEqualScanEst(
1631   Parse *pParse,       /* Parsing & code generating context */
1632   WhereLoopBuilder *pBuilder,
1633   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
1634   tRowcnt *pnRow       /* Write the revised row estimate here */
1635 ){
1636   Index *p = pBuilder->pNew->u.btree.pIndex;
1637   int nEq = pBuilder->pNew->u.btree.nEq;
1638   UnpackedRecord *pRec = pBuilder->pRec;
1639   int rc;                   /* Subfunction return code */
1640   tRowcnt a[2];             /* Statistics */
1641   int bOk;
1642 
1643   assert( nEq>=1 );
1644   assert( nEq<=p->nColumn );
1645   assert( p->aSample!=0 );
1646   assert( p->nSample>0 );
1647   assert( pBuilder->nRecValid<nEq );
1648 
1649   /* If values are not available for all fields of the index to the left
1650   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1651   if( pBuilder->nRecValid<(nEq-1) ){
1652     return SQLITE_NOTFOUND;
1653   }
1654 
1655   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1656   ** below would return the same value.  */
1657   if( nEq>=p->nColumn ){
1658     *pnRow = 1;
1659     return SQLITE_OK;
1660   }
1661 
1662   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1663   pBuilder->pRec = pRec;
1664   if( rc!=SQLITE_OK ) return rc;
1665   if( bOk==0 ) return SQLITE_NOTFOUND;
1666   pBuilder->nRecValid = nEq;
1667 
1668   whereKeyStats(pParse, p, pRec, 0, a);
1669   WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1670                    p->zName, nEq-1, (int)a[1]));
1671   *pnRow = a[1];
1672 
1673   return rc;
1674 }
1675 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1676 
1677 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1678 /*
1679 ** Estimate the number of rows that will be returned based on
1680 ** an IN constraint where the right-hand side of the IN operator
1681 ** is a list of values.  Example:
1682 **
1683 **        WHERE x IN (1,2,3,4)
1684 **
1685 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1686 ** If unable to make an estimate, leave *pnRow unchanged and return
1687 ** non-zero.
1688 **
1689 ** This routine can fail if it is unable to load a collating sequence
1690 ** required for string comparison, or if unable to allocate memory
1691 ** for a UTF conversion required for comparison.  The error is stored
1692 ** in the pParse structure.
1693 */
1694 static int whereInScanEst(
1695   Parse *pParse,       /* Parsing & code generating context */
1696   WhereLoopBuilder *pBuilder,
1697   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1698   tRowcnt *pnRow       /* Write the revised row estimate here */
1699 ){
1700   Index *p = pBuilder->pNew->u.btree.pIndex;
1701   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1702   int nRecValid = pBuilder->nRecValid;
1703   int rc = SQLITE_OK;     /* Subfunction return code */
1704   tRowcnt nEst;           /* Number of rows for a single term */
1705   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
1706   int i;                  /* Loop counter */
1707 
1708   assert( p->aSample!=0 );
1709   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
1710     nEst = nRow0;
1711     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
1712     nRowEst += nEst;
1713     pBuilder->nRecValid = nRecValid;
1714   }
1715 
1716   if( rc==SQLITE_OK ){
1717     if( nRowEst > nRow0 ) nRowEst = nRow0;
1718     *pnRow = nRowEst;
1719     WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
1720   }
1721   assert( pBuilder->nRecValid==nRecValid );
1722   return rc;
1723 }
1724 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1725 
1726 
1727 #ifdef WHERETRACE_ENABLED
1728 /*
1729 ** Print the content of a WhereTerm object
1730 */
1731 static void whereTermPrint(WhereTerm *pTerm, int iTerm){
1732   if( pTerm==0 ){
1733     sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
1734   }else{
1735     char zType[4];
1736     char zLeft[50];
1737     memcpy(zType, "...", 4);
1738     if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
1739     if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
1740     if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
1741     if( pTerm->eOperator & WO_SINGLE ){
1742       sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
1743                        pTerm->leftCursor, pTerm->u.leftColumn);
1744     }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
1745       sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%lld",
1746                        pTerm->u.pOrInfo->indexable);
1747     }else{
1748       sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
1749     }
1750     sqlite3DebugPrintf(
1751        "TERM-%-3d %p %s %-12s prob=%-3d op=0x%03x wtFlags=0x%04x",
1752        iTerm, pTerm, zType, zLeft, pTerm->truthProb,
1753        pTerm->eOperator, pTerm->wtFlags);
1754     if( pTerm->iField ){
1755       sqlite3DebugPrintf(" iField=%d\n", pTerm->iField);
1756     }else{
1757       sqlite3DebugPrintf("\n");
1758     }
1759     sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
1760   }
1761 }
1762 #endif
1763 
1764 #ifdef WHERETRACE_ENABLED
1765 /*
1766 ** Show the complete content of a WhereClause
1767 */
1768 void sqlite3WhereClausePrint(WhereClause *pWC){
1769   int i;
1770   for(i=0; i<pWC->nTerm; i++){
1771     whereTermPrint(&pWC->a[i], i);
1772   }
1773 }
1774 #endif
1775 
1776 #ifdef WHERETRACE_ENABLED
1777 /*
1778 ** Print a WhereLoop object for debugging purposes
1779 */
1780 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){
1781   WhereInfo *pWInfo = pWC->pWInfo;
1782   int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
1783   struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab;
1784   Table *pTab = pItem->pTab;
1785   Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
1786   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
1787                      p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
1788   sqlite3DebugPrintf(" %12s",
1789                      pItem->zAlias ? pItem->zAlias : pTab->zName);
1790   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
1791     const char *zName;
1792     if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
1793       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
1794         int i = sqlite3Strlen30(zName) - 1;
1795         while( zName[i]!='_' ) i--;
1796         zName += i;
1797       }
1798       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
1799     }else{
1800       sqlite3DebugPrintf("%20s","");
1801     }
1802   }else{
1803     char *z;
1804     if( p->u.vtab.idxStr ){
1805       z = sqlite3_mprintf("(%d,\"%s\",%x)",
1806                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
1807     }else{
1808       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
1809     }
1810     sqlite3DebugPrintf(" %-19s", z);
1811     sqlite3_free(z);
1812   }
1813   if( p->wsFlags & WHERE_SKIPSCAN ){
1814     sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
1815   }else{
1816     sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
1817   }
1818   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
1819   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
1820     int i;
1821     for(i=0; i<p->nLTerm; i++){
1822       whereTermPrint(p->aLTerm[i], i);
1823     }
1824   }
1825 }
1826 #endif
1827 
1828 /*
1829 ** Convert bulk memory into a valid WhereLoop that can be passed
1830 ** to whereLoopClear harmlessly.
1831 */
1832 static void whereLoopInit(WhereLoop *p){
1833   p->aLTerm = p->aLTermSpace;
1834   p->nLTerm = 0;
1835   p->nLSlot = ArraySize(p->aLTermSpace);
1836   p->wsFlags = 0;
1837 }
1838 
1839 /*
1840 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
1841 */
1842 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
1843   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
1844     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
1845       sqlite3_free(p->u.vtab.idxStr);
1846       p->u.vtab.needFree = 0;
1847       p->u.vtab.idxStr = 0;
1848     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
1849       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
1850       sqlite3DbFreeNN(db, p->u.btree.pIndex);
1851       p->u.btree.pIndex = 0;
1852     }
1853   }
1854 }
1855 
1856 /*
1857 ** Deallocate internal memory used by a WhereLoop object
1858 */
1859 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
1860   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1861   whereLoopClearUnion(db, p);
1862   whereLoopInit(p);
1863 }
1864 
1865 /*
1866 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
1867 */
1868 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
1869   WhereTerm **paNew;
1870   if( p->nLSlot>=n ) return SQLITE_OK;
1871   n = (n+7)&~7;
1872   paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
1873   if( paNew==0 ) return SQLITE_NOMEM_BKPT;
1874   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
1875   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1876   p->aLTerm = paNew;
1877   p->nLSlot = n;
1878   return SQLITE_OK;
1879 }
1880 
1881 /*
1882 ** Transfer content from the second pLoop into the first.
1883 */
1884 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
1885   whereLoopClearUnion(db, pTo);
1886   if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
1887     memset(&pTo->u, 0, sizeof(pTo->u));
1888     return SQLITE_NOMEM_BKPT;
1889   }
1890   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
1891   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
1892   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
1893     pFrom->u.vtab.needFree = 0;
1894   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
1895     pFrom->u.btree.pIndex = 0;
1896   }
1897   return SQLITE_OK;
1898 }
1899 
1900 /*
1901 ** Delete a WhereLoop object
1902 */
1903 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
1904   whereLoopClear(db, p);
1905   sqlite3DbFreeNN(db, p);
1906 }
1907 
1908 /*
1909 ** Free a WhereInfo structure
1910 */
1911 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
1912   int i;
1913   assert( pWInfo!=0 );
1914   for(i=0; i<pWInfo->nLevel; i++){
1915     WhereLevel *pLevel = &pWInfo->a[i];
1916     if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){
1917       sqlite3DbFree(db, pLevel->u.in.aInLoop);
1918     }
1919   }
1920   sqlite3WhereClauseClear(&pWInfo->sWC);
1921   while( pWInfo->pLoops ){
1922     WhereLoop *p = pWInfo->pLoops;
1923     pWInfo->pLoops = p->pNextLoop;
1924     whereLoopDelete(db, p);
1925   }
1926   sqlite3DbFreeNN(db, pWInfo);
1927 }
1928 
1929 /*
1930 ** Return TRUE if all of the following are true:
1931 **
1932 **   (1)  X has the same or lower cost that Y
1933 **   (2)  X uses fewer WHERE clause terms than Y
1934 **   (3)  Every WHERE clause term used by X is also used by Y
1935 **   (4)  X skips at least as many columns as Y
1936 **   (5)  If X is a covering index, than Y is too
1937 **
1938 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
1939 ** If X is a proper subset of Y then Y is a better choice and ought
1940 ** to have a lower cost.  This routine returns TRUE when that cost
1941 ** relationship is inverted and needs to be adjusted.  Constraint (4)
1942 ** was added because if X uses skip-scan less than Y it still might
1943 ** deserve a lower cost even if it is a proper subset of Y.  Constraint (5)
1944 ** was added because a covering index probably deserves to have a lower cost
1945 ** than a non-covering index even if it is a proper subset.
1946 */
1947 static int whereLoopCheaperProperSubset(
1948   const WhereLoop *pX,       /* First WhereLoop to compare */
1949   const WhereLoop *pY        /* Compare against this WhereLoop */
1950 ){
1951   int i, j;
1952   if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
1953     return 0; /* X is not a subset of Y */
1954   }
1955   if( pY->nSkip > pX->nSkip ) return 0;
1956   if( pX->rRun >= pY->rRun ){
1957     if( pX->rRun > pY->rRun ) return 0;    /* X costs more than Y */
1958     if( pX->nOut > pY->nOut ) return 0;    /* X costs more than Y */
1959   }
1960   for(i=pX->nLTerm-1; i>=0; i--){
1961     if( pX->aLTerm[i]==0 ) continue;
1962     for(j=pY->nLTerm-1; j>=0; j--){
1963       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
1964     }
1965     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
1966   }
1967   if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
1968    && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
1969     return 0;  /* Constraint (5) */
1970   }
1971   return 1;  /* All conditions meet */
1972 }
1973 
1974 /*
1975 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
1976 ** that:
1977 **
1978 **   (1) pTemplate costs less than any other WhereLoops that are a proper
1979 **       subset of pTemplate
1980 **
1981 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
1982 **       is a proper subset.
1983 **
1984 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
1985 ** WHERE clause terms than Y and that every WHERE clause term used by X is
1986 ** also used by Y.
1987 */
1988 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
1989   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
1990   for(; p; p=p->pNextLoop){
1991     if( p->iTab!=pTemplate->iTab ) continue;
1992     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
1993     if( whereLoopCheaperProperSubset(p, pTemplate) ){
1994       /* Adjust pTemplate cost downward so that it is cheaper than its
1995       ** subset p. */
1996       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
1997                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1));
1998       pTemplate->rRun = p->rRun;
1999       pTemplate->nOut = p->nOut - 1;
2000     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
2001       /* Adjust pTemplate cost upward so that it is costlier than p since
2002       ** pTemplate is a proper subset of p */
2003       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2004                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1));
2005       pTemplate->rRun = p->rRun;
2006       pTemplate->nOut = p->nOut + 1;
2007     }
2008   }
2009 }
2010 
2011 /*
2012 ** Search the list of WhereLoops in *ppPrev looking for one that can be
2013 ** replaced by pTemplate.
2014 **
2015 ** Return NULL if pTemplate does not belong on the WhereLoop list.
2016 ** In other words if pTemplate ought to be dropped from further consideration.
2017 **
2018 ** If pX is a WhereLoop that pTemplate can replace, then return the
2019 ** link that points to pX.
2020 **
2021 ** If pTemplate cannot replace any existing element of the list but needs
2022 ** to be added to the list as a new entry, then return a pointer to the
2023 ** tail of the list.
2024 */
2025 static WhereLoop **whereLoopFindLesser(
2026   WhereLoop **ppPrev,
2027   const WhereLoop *pTemplate
2028 ){
2029   WhereLoop *p;
2030   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
2031     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
2032       /* If either the iTab or iSortIdx values for two WhereLoop are different
2033       ** then those WhereLoops need to be considered separately.  Neither is
2034       ** a candidate to replace the other. */
2035       continue;
2036     }
2037     /* In the current implementation, the rSetup value is either zero
2038     ** or the cost of building an automatic index (NlogN) and the NlogN
2039     ** is the same for compatible WhereLoops. */
2040     assert( p->rSetup==0 || pTemplate->rSetup==0
2041                  || p->rSetup==pTemplate->rSetup );
2042 
2043     /* whereLoopAddBtree() always generates and inserts the automatic index
2044     ** case first.  Hence compatible candidate WhereLoops never have a larger
2045     ** rSetup. Call this SETUP-INVARIANT */
2046     assert( p->rSetup>=pTemplate->rSetup );
2047 
2048     /* Any loop using an appliation-defined index (or PRIMARY KEY or
2049     ** UNIQUE constraint) with one or more == constraints is better
2050     ** than an automatic index. Unless it is a skip-scan. */
2051     if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
2052      && (pTemplate->nSkip)==0
2053      && (pTemplate->wsFlags & WHERE_INDEXED)!=0
2054      && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
2055      && (p->prereq & pTemplate->prereq)==pTemplate->prereq
2056     ){
2057       break;
2058     }
2059 
2060     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2061     ** discarded.  WhereLoop p is better if:
2062     **   (1)  p has no more dependencies than pTemplate, and
2063     **   (2)  p has an equal or lower cost than pTemplate
2064     */
2065     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
2066      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
2067      && p->rRun<=pTemplate->rRun                      /* (2b) */
2068      && p->nOut<=pTemplate->nOut                      /* (2c) */
2069     ){
2070       return 0;  /* Discard pTemplate */
2071     }
2072 
2073     /* If pTemplate is always better than p, then cause p to be overwritten
2074     ** with pTemplate.  pTemplate is better than p if:
2075     **   (1)  pTemplate has no more dependences than p, and
2076     **   (2)  pTemplate has an equal or lower cost than p.
2077     */
2078     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
2079      && p->rRun>=pTemplate->rRun                             /* (2a) */
2080      && p->nOut>=pTemplate->nOut                             /* (2b) */
2081     ){
2082       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2083       break;   /* Cause p to be overwritten by pTemplate */
2084     }
2085   }
2086   return ppPrev;
2087 }
2088 
2089 /*
2090 ** Insert or replace a WhereLoop entry using the template supplied.
2091 **
2092 ** An existing WhereLoop entry might be overwritten if the new template
2093 ** is better and has fewer dependencies.  Or the template will be ignored
2094 ** and no insert will occur if an existing WhereLoop is faster and has
2095 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
2096 ** added based on the template.
2097 **
2098 ** If pBuilder->pOrSet is not NULL then we care about only the
2099 ** prerequisites and rRun and nOut costs of the N best loops.  That
2100 ** information is gathered in the pBuilder->pOrSet object.  This special
2101 ** processing mode is used only for OR clause processing.
2102 **
2103 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2104 ** still might overwrite similar loops with the new template if the
2105 ** new template is better.  Loops may be overwritten if the following
2106 ** conditions are met:
2107 **
2108 **    (1)  They have the same iTab.
2109 **    (2)  They have the same iSortIdx.
2110 **    (3)  The template has same or fewer dependencies than the current loop
2111 **    (4)  The template has the same or lower cost than the current loop
2112 */
2113 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2114   WhereLoop **ppPrev, *p;
2115   WhereInfo *pWInfo = pBuilder->pWInfo;
2116   sqlite3 *db = pWInfo->pParse->db;
2117   int rc;
2118 
2119   /* Stop the search once we hit the query planner search limit */
2120   if( pBuilder->iPlanLimit==0 ){
2121     WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
2122     if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0;
2123     return SQLITE_DONE;
2124   }
2125   pBuilder->iPlanLimit--;
2126 
2127   /* If pBuilder->pOrSet is defined, then only keep track of the costs
2128   ** and prereqs.
2129   */
2130   if( pBuilder->pOrSet!=0 ){
2131     if( pTemplate->nLTerm ){
2132 #if WHERETRACE_ENABLED
2133       u16 n = pBuilder->pOrSet->n;
2134       int x =
2135 #endif
2136       whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2137                                     pTemplate->nOut);
2138 #if WHERETRACE_ENABLED /* 0x8 */
2139       if( sqlite3WhereTrace & 0x8 ){
2140         sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
2141         whereLoopPrint(pTemplate, pBuilder->pWC);
2142       }
2143 #endif
2144     }
2145     return SQLITE_OK;
2146   }
2147 
2148   /* Look for an existing WhereLoop to replace with pTemplate
2149   */
2150   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2151   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2152 
2153   if( ppPrev==0 ){
2154     /* There already exists a WhereLoop on the list that is better
2155     ** than pTemplate, so just ignore pTemplate */
2156 #if WHERETRACE_ENABLED /* 0x8 */
2157     if( sqlite3WhereTrace & 0x8 ){
2158       sqlite3DebugPrintf("   skip: ");
2159       whereLoopPrint(pTemplate, pBuilder->pWC);
2160     }
2161 #endif
2162     return SQLITE_OK;
2163   }else{
2164     p = *ppPrev;
2165   }
2166 
2167   /* If we reach this point it means that either p[] should be overwritten
2168   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2169   ** WhereLoop and insert it.
2170   */
2171 #if WHERETRACE_ENABLED /* 0x8 */
2172   if( sqlite3WhereTrace & 0x8 ){
2173     if( p!=0 ){
2174       sqlite3DebugPrintf("replace: ");
2175       whereLoopPrint(p, pBuilder->pWC);
2176       sqlite3DebugPrintf("   with: ");
2177     }else{
2178       sqlite3DebugPrintf("    add: ");
2179     }
2180     whereLoopPrint(pTemplate, pBuilder->pWC);
2181   }
2182 #endif
2183   if( p==0 ){
2184     /* Allocate a new WhereLoop to add to the end of the list */
2185     *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2186     if( p==0 ) return SQLITE_NOMEM_BKPT;
2187     whereLoopInit(p);
2188     p->pNextLoop = 0;
2189   }else{
2190     /* We will be overwriting WhereLoop p[].  But before we do, first
2191     ** go through the rest of the list and delete any other entries besides
2192     ** p[] that are also supplated by pTemplate */
2193     WhereLoop **ppTail = &p->pNextLoop;
2194     WhereLoop *pToDel;
2195     while( *ppTail ){
2196       ppTail = whereLoopFindLesser(ppTail, pTemplate);
2197       if( ppTail==0 ) break;
2198       pToDel = *ppTail;
2199       if( pToDel==0 ) break;
2200       *ppTail = pToDel->pNextLoop;
2201 #if WHERETRACE_ENABLED /* 0x8 */
2202       if( sqlite3WhereTrace & 0x8 ){
2203         sqlite3DebugPrintf(" delete: ");
2204         whereLoopPrint(pToDel, pBuilder->pWC);
2205       }
2206 #endif
2207       whereLoopDelete(db, pToDel);
2208     }
2209   }
2210   rc = whereLoopXfer(db, p, pTemplate);
2211   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2212     Index *pIndex = p->u.btree.pIndex;
2213     if( pIndex && pIndex->tnum==0 ){
2214       p->u.btree.pIndex = 0;
2215     }
2216   }
2217   return rc;
2218 }
2219 
2220 /*
2221 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2222 ** WHERE clause that reference the loop but which are not used by an
2223 ** index.
2224 *
2225 ** For every WHERE clause term that is not used by the index
2226 ** and which has a truth probability assigned by one of the likelihood(),
2227 ** likely(), or unlikely() SQL functions, reduce the estimated number
2228 ** of output rows by the probability specified.
2229 **
2230 ** TUNING:  For every WHERE clause term that is not used by the index
2231 ** and which does not have an assigned truth probability, heuristics
2232 ** described below are used to try to estimate the truth probability.
2233 ** TODO --> Perhaps this is something that could be improved by better
2234 ** table statistics.
2235 **
2236 ** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
2237 ** value corresponds to -1 in LogEst notation, so this means decrement
2238 ** the WhereLoop.nOut field for every such WHERE clause term.
2239 **
2240 ** Heuristic 2:  If there exists one or more WHERE clause terms of the
2241 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2242 ** final output row estimate is no greater than 1/4 of the total number
2243 ** of rows in the table.  In other words, assume that x==EXPR will filter
2244 ** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
2245 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2246 ** on the "x" column and so in that case only cap the output row estimate
2247 ** at 1/2 instead of 1/4.
2248 */
2249 static void whereLoopOutputAdjust(
2250   WhereClause *pWC,      /* The WHERE clause */
2251   WhereLoop *pLoop,      /* The loop to adjust downward */
2252   LogEst nRow            /* Number of rows in the entire table */
2253 ){
2254   WhereTerm *pTerm, *pX;
2255   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2256   int i, j, k;
2257   LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */
2258 
2259   assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2260   for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
2261     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
2262     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2263     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2264     for(j=pLoop->nLTerm-1; j>=0; j--){
2265       pX = pLoop->aLTerm[j];
2266       if( pX==0 ) continue;
2267       if( pX==pTerm ) break;
2268       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2269     }
2270     if( j<0 ){
2271       if( pTerm->truthProb<=0 ){
2272         /* If a truth probability is specified using the likelihood() hints,
2273         ** then use the probability provided by the application. */
2274         pLoop->nOut += pTerm->truthProb;
2275       }else{
2276         /* In the absence of explicit truth probabilities, use heuristics to
2277         ** guess a reasonable truth probability. */
2278         pLoop->nOut--;
2279         if( pTerm->eOperator&(WO_EQ|WO_IS) ){
2280           Expr *pRight = pTerm->pExpr->pRight;
2281           testcase( pTerm->pExpr->op==TK_IS );
2282           if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2283             k = 10;
2284           }else{
2285             k = 20;
2286           }
2287           if( iReduce<k ) iReduce = k;
2288         }
2289       }
2290     }
2291   }
2292   if( pLoop->nOut > nRow-iReduce )  pLoop->nOut = nRow - iReduce;
2293 }
2294 
2295 /*
2296 ** Term pTerm is a vector range comparison operation. The first comparison
2297 ** in the vector can be optimized using column nEq of the index. This
2298 ** function returns the total number of vector elements that can be used
2299 ** as part of the range comparison.
2300 **
2301 ** For example, if the query is:
2302 **
2303 **   WHERE a = ? AND (b, c, d) > (?, ?, ?)
2304 **
2305 ** and the index:
2306 **
2307 **   CREATE INDEX ... ON (a, b, c, d, e)
2308 **
2309 ** then this function would be invoked with nEq=1. The value returned in
2310 ** this case is 3.
2311 */
2312 static int whereRangeVectorLen(
2313   Parse *pParse,       /* Parsing context */
2314   int iCur,            /* Cursor open on pIdx */
2315   Index *pIdx,         /* The index to be used for a inequality constraint */
2316   int nEq,             /* Number of prior equality constraints on same index */
2317   WhereTerm *pTerm     /* The vector inequality constraint */
2318 ){
2319   int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2320   int i;
2321 
2322   nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2323   for(i=1; i<nCmp; i++){
2324     /* Test if comparison i of pTerm is compatible with column (i+nEq)
2325     ** of the index. If not, exit the loop.  */
2326     char aff;                     /* Comparison affinity */
2327     char idxaff = 0;              /* Indexed columns affinity */
2328     CollSeq *pColl;               /* Comparison collation sequence */
2329     Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2330     Expr *pRhs = pTerm->pExpr->pRight;
2331     if( pRhs->flags & EP_xIsSelect ){
2332       pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2333     }else{
2334       pRhs = pRhs->x.pList->a[i].pExpr;
2335     }
2336 
2337     /* Check that the LHS of the comparison is a column reference to
2338     ** the right column of the right source table. And that the sort
2339     ** order of the index column is the same as the sort order of the
2340     ** leftmost index column.  */
2341     if( pLhs->op!=TK_COLUMN
2342      || pLhs->iTable!=iCur
2343      || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2344      || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2345     ){
2346       break;
2347     }
2348 
2349     testcase( pLhs->iColumn==XN_ROWID );
2350     aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2351     idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2352     if( aff!=idxaff ) break;
2353 
2354     pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2355     if( pColl==0 ) break;
2356     if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2357   }
2358   return i;
2359 }
2360 
2361 /*
2362 ** Adjust the cost C by the costMult facter T.  This only occurs if
2363 ** compiled with -DSQLITE_ENABLE_COSTMULT
2364 */
2365 #ifdef SQLITE_ENABLE_COSTMULT
2366 # define ApplyCostMultiplier(C,T)  C += T
2367 #else
2368 # define ApplyCostMultiplier(C,T)
2369 #endif
2370 
2371 /*
2372 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2373 ** index pIndex. Try to match one more.
2374 **
2375 ** When this function is called, pBuilder->pNew->nOut contains the
2376 ** number of rows expected to be visited by filtering using the nEq
2377 ** terms only. If it is modified, this value is restored before this
2378 ** function returns.
2379 **
2380 ** If pProbe->tnum==0, that means pIndex is a fake index used for the
2381 ** INTEGER PRIMARY KEY.
2382 */
2383 static int whereLoopAddBtreeIndex(
2384   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
2385   struct SrcList_item *pSrc,      /* FROM clause term being analyzed */
2386   Index *pProbe,                  /* An index on pSrc */
2387   LogEst nInMul                   /* log(Number of iterations due to IN) */
2388 ){
2389   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
2390   Parse *pParse = pWInfo->pParse;        /* Parsing context */
2391   sqlite3 *db = pParse->db;       /* Database connection malloc context */
2392   WhereLoop *pNew;                /* Template WhereLoop under construction */
2393   WhereTerm *pTerm;               /* A WhereTerm under consideration */
2394   int opMask;                     /* Valid operators for constraints */
2395   WhereScan scan;                 /* Iterator for WHERE terms */
2396   Bitmask saved_prereq;           /* Original value of pNew->prereq */
2397   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
2398   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
2399   u16 saved_nBtm;                 /* Original value of pNew->u.btree.nBtm */
2400   u16 saved_nTop;                 /* Original value of pNew->u.btree.nTop */
2401   u16 saved_nSkip;                /* Original value of pNew->nSkip */
2402   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
2403   LogEst saved_nOut;              /* Original value of pNew->nOut */
2404   int rc = SQLITE_OK;             /* Return code */
2405   LogEst rSize;                   /* Number of rows in the table */
2406   LogEst rLogSize;                /* Logarithm of table size */
2407   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2408 
2409   pNew = pBuilder->pNew;
2410   if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2411   WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d\n",
2412                      pProbe->pTable->zName,pProbe->zName, pNew->u.btree.nEq));
2413 
2414   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2415   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2416   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2417     opMask = WO_LT|WO_LE;
2418   }else{
2419     assert( pNew->u.btree.nBtm==0 );
2420     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2421   }
2422   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2423 
2424   assert( pNew->u.btree.nEq<pProbe->nColumn );
2425 
2426   saved_nEq = pNew->u.btree.nEq;
2427   saved_nBtm = pNew->u.btree.nBtm;
2428   saved_nTop = pNew->u.btree.nTop;
2429   saved_nSkip = pNew->nSkip;
2430   saved_nLTerm = pNew->nLTerm;
2431   saved_wsFlags = pNew->wsFlags;
2432   saved_prereq = pNew->prereq;
2433   saved_nOut = pNew->nOut;
2434   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2435                         opMask, pProbe);
2436   pNew->rSetup = 0;
2437   rSize = pProbe->aiRowLogEst[0];
2438   rLogSize = estLog(rSize);
2439   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2440     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
2441     LogEst rCostIdx;
2442     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
2443     int nIn = 0;
2444 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2445     int nRecValid = pBuilder->nRecValid;
2446 #endif
2447     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2448      && indexColumnNotNull(pProbe, saved_nEq)
2449     ){
2450       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2451     }
2452     if( pTerm->prereqRight & pNew->maskSelf ) continue;
2453 
2454     /* Do not allow the upper bound of a LIKE optimization range constraint
2455     ** to mix with a lower range bound from some other source */
2456     if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2457 
2458     /* Do not allow constraints from the WHERE clause to be used by the
2459     ** right table of a LEFT JOIN.  Only constraints in the ON clause are
2460     ** allowed */
2461     if( (pSrc->fg.jointype & JT_LEFT)!=0
2462      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
2463     ){
2464       continue;
2465     }
2466 
2467     if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2468       pBuilder->bldFlags |= SQLITE_BLDF_UNIQUE;
2469     }else{
2470       pBuilder->bldFlags |= SQLITE_BLDF_INDEXED;
2471     }
2472     pNew->wsFlags = saved_wsFlags;
2473     pNew->u.btree.nEq = saved_nEq;
2474     pNew->u.btree.nBtm = saved_nBtm;
2475     pNew->u.btree.nTop = saved_nTop;
2476     pNew->nLTerm = saved_nLTerm;
2477     if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2478     pNew->aLTerm[pNew->nLTerm++] = pTerm;
2479     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2480 
2481     assert( nInMul==0
2482         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2483         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2484         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2485     );
2486 
2487     if( eOp & WO_IN ){
2488       Expr *pExpr = pTerm->pExpr;
2489       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2490         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
2491         int i;
2492         nIn = 46;  assert( 46==sqlite3LogEst(25) );
2493 
2494         /* The expression may actually be of the form (x, y) IN (SELECT...).
2495         ** In this case there is a separate term for each of (x) and (y).
2496         ** However, the nIn multiplier should only be applied once, not once
2497         ** for each such term. The following loop checks that pTerm is the
2498         ** first such term in use, and sets nIn back to 0 if it is not. */
2499         for(i=0; i<pNew->nLTerm-1; i++){
2500           if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2501         }
2502       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2503         /* "x IN (value, value, ...)" */
2504         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2505         assert( nIn>0 );  /* RHS always has 2 or more terms...  The parser
2506                           ** changes "x IN (?)" into "x=?". */
2507       }
2508       if( pProbe->hasStat1 ){
2509         LogEst M, logK, safetyMargin;
2510         /* Let:
2511         **   N = the total number of rows in the table
2512         **   K = the number of entries on the RHS of the IN operator
2513         **   M = the number of rows in the table that match terms to the
2514         **       to the left in the same index.  If the IN operator is on
2515         **       the left-most index column, M==N.
2516         **
2517         ** Given the definitions above, it is better to omit the IN operator
2518         ** from the index lookup and instead do a scan of the M elements,
2519         ** testing each scanned row against the IN operator separately, if:
2520         **
2521         **        M*log(K) < K*log(N)
2522         **
2523         ** Our estimates for M, K, and N might be inaccurate, so we build in
2524         ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
2525         ** with the index, as using an index has better worst-case behavior.
2526         ** If we do not have real sqlite_stat1 data, always prefer to use
2527         ** the index.
2528         */
2529         M = pProbe->aiRowLogEst[saved_nEq];
2530         logK = estLog(nIn);
2531         safetyMargin = 10;  /* TUNING: extra weight for indexed IN */
2532         if( M + logK + safetyMargin < nIn + rLogSize ){
2533           WHERETRACE(0x40,
2534             ("Scan preferred over IN operator on column %d of \"%s\" (%d<%d)\n",
2535              saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize));
2536           continue;
2537         }else{
2538           WHERETRACE(0x40,
2539             ("IN operator preferred on column %d of \"%s\" (%d>=%d)\n",
2540              saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize));
2541         }
2542       }
2543       pNew->wsFlags |= WHERE_COLUMN_IN;
2544     }else if( eOp & (WO_EQ|WO_IS) ){
2545       int iCol = pProbe->aiColumn[saved_nEq];
2546       pNew->wsFlags |= WHERE_COLUMN_EQ;
2547       assert( saved_nEq==pNew->u.btree.nEq );
2548       if( iCol==XN_ROWID
2549        || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2550       ){
2551         if( iCol==XN_ROWID || pProbe->uniqNotNull
2552          || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
2553         ){
2554           pNew->wsFlags |= WHERE_ONEROW;
2555         }else{
2556           pNew->wsFlags |= WHERE_UNQ_WANTED;
2557         }
2558       }
2559     }else if( eOp & WO_ISNULL ){
2560       pNew->wsFlags |= WHERE_COLUMN_NULL;
2561     }else if( eOp & (WO_GT|WO_GE) ){
2562       testcase( eOp & WO_GT );
2563       testcase( eOp & WO_GE );
2564       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2565       pNew->u.btree.nBtm = whereRangeVectorLen(
2566           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2567       );
2568       pBtm = pTerm;
2569       pTop = 0;
2570       if( pTerm->wtFlags & TERM_LIKEOPT ){
2571         /* Range contraints that come from the LIKE optimization are
2572         ** always used in pairs. */
2573         pTop = &pTerm[1];
2574         assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2575         assert( pTop->wtFlags & TERM_LIKEOPT );
2576         assert( pTop->eOperator==WO_LT );
2577         if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2578         pNew->aLTerm[pNew->nLTerm++] = pTop;
2579         pNew->wsFlags |= WHERE_TOP_LIMIT;
2580         pNew->u.btree.nTop = 1;
2581       }
2582     }else{
2583       assert( eOp & (WO_LT|WO_LE) );
2584       testcase( eOp & WO_LT );
2585       testcase( eOp & WO_LE );
2586       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2587       pNew->u.btree.nTop = whereRangeVectorLen(
2588           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2589       );
2590       pTop = pTerm;
2591       pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2592                      pNew->aLTerm[pNew->nLTerm-2] : 0;
2593     }
2594 
2595     /* At this point pNew->nOut is set to the number of rows expected to
2596     ** be visited by the index scan before considering term pTerm, or the
2597     ** values of nIn and nInMul. In other words, assuming that all
2598     ** "x IN(...)" terms are replaced with "x = ?". This block updates
2599     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
2600     assert( pNew->nOut==saved_nOut );
2601     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2602       /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4
2603       ** data, using some other estimate.  */
2604       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2605     }else{
2606       int nEq = ++pNew->u.btree.nEq;
2607       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2608 
2609       assert( pNew->nOut==saved_nOut );
2610       if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2611         assert( (eOp & WO_IN) || nIn==0 );
2612         testcase( eOp & WO_IN );
2613         pNew->nOut += pTerm->truthProb;
2614         pNew->nOut -= nIn;
2615       }else{
2616 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2617         tRowcnt nOut = 0;
2618         if( nInMul==0
2619          && pProbe->nSample
2620          && pNew->u.btree.nEq<=pProbe->nSampleCol
2621          && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
2622          && OptimizationEnabled(db, SQLITE_Stat34)
2623         ){
2624           Expr *pExpr = pTerm->pExpr;
2625           if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2626             testcase( eOp & WO_EQ );
2627             testcase( eOp & WO_IS );
2628             testcase( eOp & WO_ISNULL );
2629             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2630           }else{
2631             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2632           }
2633           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2634           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
2635           if( nOut ){
2636             pNew->nOut = sqlite3LogEst(nOut);
2637             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
2638             pNew->nOut -= nIn;
2639           }
2640         }
2641         if( nOut==0 )
2642 #endif
2643         {
2644           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
2645           if( eOp & WO_ISNULL ){
2646             /* TUNING: If there is no likelihood() value, assume that a
2647             ** "col IS NULL" expression matches twice as many rows
2648             ** as (col=?). */
2649             pNew->nOut += 10;
2650           }
2651         }
2652       }
2653     }
2654 
2655     /* Set rCostIdx to the cost of visiting selected rows in index. Add
2656     ** it to pNew->rRun, which is currently set to the cost of the index
2657     ** seek only. Then, if this is a non-covering index, add the cost of
2658     ** visiting the rows in the main table.  */
2659     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
2660     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
2661     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
2662       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
2663     }
2664     ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
2665 
2666     nOutUnadjusted = pNew->nOut;
2667     pNew->rRun += nInMul + nIn;
2668     pNew->nOut += nInMul + nIn;
2669     whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
2670     rc = whereLoopInsert(pBuilder, pNew);
2671 
2672     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2673       pNew->nOut = saved_nOut;
2674     }else{
2675       pNew->nOut = nOutUnadjusted;
2676     }
2677 
2678     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
2679      && pNew->u.btree.nEq<pProbe->nColumn
2680     ){
2681       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
2682     }
2683     pNew->nOut = saved_nOut;
2684 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2685     pBuilder->nRecValid = nRecValid;
2686 #endif
2687   }
2688   pNew->prereq = saved_prereq;
2689   pNew->u.btree.nEq = saved_nEq;
2690   pNew->u.btree.nBtm = saved_nBtm;
2691   pNew->u.btree.nTop = saved_nTop;
2692   pNew->nSkip = saved_nSkip;
2693   pNew->wsFlags = saved_wsFlags;
2694   pNew->nOut = saved_nOut;
2695   pNew->nLTerm = saved_nLTerm;
2696 
2697   /* Consider using a skip-scan if there are no WHERE clause constraints
2698   ** available for the left-most terms of the index, and if the average
2699   ** number of repeats in the left-most terms is at least 18.
2700   **
2701   ** The magic number 18 is selected on the basis that scanning 17 rows
2702   ** is almost always quicker than an index seek (even though if the index
2703   ** contains fewer than 2^17 rows we assume otherwise in other parts of
2704   ** the code). And, even if it is not, it should not be too much slower.
2705   ** On the other hand, the extra seeks could end up being significantly
2706   ** more expensive.  */
2707   assert( 42==sqlite3LogEst(18) );
2708   if( saved_nEq==saved_nSkip
2709    && saved_nEq+1<pProbe->nKeyCol
2710    && pProbe->noSkipScan==0
2711    && OptimizationEnabled(db, SQLITE_SkipScan)
2712    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
2713    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
2714   ){
2715     LogEst nIter;
2716     pNew->u.btree.nEq++;
2717     pNew->nSkip++;
2718     pNew->aLTerm[pNew->nLTerm++] = 0;
2719     pNew->wsFlags |= WHERE_SKIPSCAN;
2720     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
2721     pNew->nOut -= nIter;
2722     /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
2723     ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
2724     nIter += 5;
2725     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
2726     pNew->nOut = saved_nOut;
2727     pNew->u.btree.nEq = saved_nEq;
2728     pNew->nSkip = saved_nSkip;
2729     pNew->wsFlags = saved_wsFlags;
2730   }
2731 
2732   WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
2733                       pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
2734   return rc;
2735 }
2736 
2737 /*
2738 ** Return True if it is possible that pIndex might be useful in
2739 ** implementing the ORDER BY clause in pBuilder.
2740 **
2741 ** Return False if pBuilder does not contain an ORDER BY clause or
2742 ** if there is no way for pIndex to be useful in implementing that
2743 ** ORDER BY clause.
2744 */
2745 static int indexMightHelpWithOrderBy(
2746   WhereLoopBuilder *pBuilder,
2747   Index *pIndex,
2748   int iCursor
2749 ){
2750   ExprList *pOB;
2751   ExprList *aColExpr;
2752   int ii, jj;
2753 
2754   if( pIndex->bUnordered ) return 0;
2755   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
2756   for(ii=0; ii<pOB->nExpr; ii++){
2757     Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr);
2758     if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
2759       if( pExpr->iColumn<0 ) return 1;
2760       for(jj=0; jj<pIndex->nKeyCol; jj++){
2761         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
2762       }
2763     }else if( (aColExpr = pIndex->aColExpr)!=0 ){
2764       for(jj=0; jj<pIndex->nKeyCol; jj++){
2765         if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
2766         if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
2767           return 1;
2768         }
2769       }
2770     }
2771   }
2772   return 0;
2773 }
2774 
2775 /* Check to see if a partial index with pPartIndexWhere can be used
2776 ** in the current query.  Return true if it can be and false if not.
2777 */
2778 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){
2779   int i;
2780   WhereTerm *pTerm;
2781   Parse *pParse = pWC->pWInfo->pParse;
2782   while( pWhere->op==TK_AND ){
2783     if( !whereUsablePartialIndex(iTab,pWC,pWhere->pLeft) ) return 0;
2784     pWhere = pWhere->pRight;
2785   }
2786   if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
2787   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
2788     Expr *pExpr = pTerm->pExpr;
2789     if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
2790      && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
2791     ){
2792       return 1;
2793     }
2794   }
2795   return 0;
2796 }
2797 
2798 /*
2799 ** Add all WhereLoop objects for a single table of the join where the table
2800 ** is identified by pBuilder->pNew->iTab.  That table is guaranteed to be
2801 ** a b-tree table, not a virtual table.
2802 **
2803 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
2804 ** are calculated as follows:
2805 **
2806 ** For a full scan, assuming the table (or index) contains nRow rows:
2807 **
2808 **     cost = nRow * 3.0                    // full-table scan
2809 **     cost = nRow * K                      // scan of covering index
2810 **     cost = nRow * (K+3.0)                // scan of non-covering index
2811 **
2812 ** where K is a value between 1.1 and 3.0 set based on the relative
2813 ** estimated average size of the index and table records.
2814 **
2815 ** For an index scan, where nVisit is the number of index rows visited
2816 ** by the scan, and nSeek is the number of seek operations required on
2817 ** the index b-tree:
2818 **
2819 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
2820 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
2821 **
2822 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
2823 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
2824 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
2825 **
2826 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
2827 ** of uncertainty.  For this reason, scoring is designed to pick plans that
2828 ** "do the least harm" if the estimates are inaccurate.  For example, a
2829 ** log(nRow) factor is omitted from a non-covering index scan in order to
2830 ** bias the scoring in favor of using an index, since the worst-case
2831 ** performance of using an index is far better than the worst-case performance
2832 ** of a full table scan.
2833 */
2834 static int whereLoopAddBtree(
2835   WhereLoopBuilder *pBuilder, /* WHERE clause information */
2836   Bitmask mPrereq             /* Extra prerequesites for using this table */
2837 ){
2838   WhereInfo *pWInfo;          /* WHERE analysis context */
2839   Index *pProbe;              /* An index we are evaluating */
2840   Index sPk;                  /* A fake index object for the primary key */
2841   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
2842   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
2843   SrcList *pTabList;          /* The FROM clause */
2844   struct SrcList_item *pSrc;  /* The FROM clause btree term to add */
2845   WhereLoop *pNew;            /* Template WhereLoop object */
2846   int rc = SQLITE_OK;         /* Return code */
2847   int iSortIdx = 1;           /* Index number */
2848   int b;                      /* A boolean value */
2849   LogEst rSize;               /* number of rows in the table */
2850   LogEst rLogSize;            /* Logarithm of the number of rows in the table */
2851   WhereClause *pWC;           /* The parsed WHERE clause */
2852   Table *pTab;                /* Table being queried */
2853 
2854   pNew = pBuilder->pNew;
2855   pWInfo = pBuilder->pWInfo;
2856   pTabList = pWInfo->pTabList;
2857   pSrc = pTabList->a + pNew->iTab;
2858   pTab = pSrc->pTab;
2859   pWC = pBuilder->pWC;
2860   assert( !IsVirtual(pSrc->pTab) );
2861 
2862   if( pSrc->pIBIndex ){
2863     /* An INDEXED BY clause specifies a particular index to use */
2864     pProbe = pSrc->pIBIndex;
2865   }else if( !HasRowid(pTab) ){
2866     pProbe = pTab->pIndex;
2867   }else{
2868     /* There is no INDEXED BY clause.  Create a fake Index object in local
2869     ** variable sPk to represent the rowid primary key index.  Make this
2870     ** fake index the first in a chain of Index objects with all of the real
2871     ** indices to follow */
2872     Index *pFirst;                  /* First of real indices on the table */
2873     memset(&sPk, 0, sizeof(Index));
2874     sPk.nKeyCol = 1;
2875     sPk.nColumn = 1;
2876     sPk.aiColumn = &aiColumnPk;
2877     sPk.aiRowLogEst = aiRowEstPk;
2878     sPk.onError = OE_Replace;
2879     sPk.pTable = pTab;
2880     sPk.szIdxRow = pTab->szTabRow;
2881     aiRowEstPk[0] = pTab->nRowLogEst;
2882     aiRowEstPk[1] = 0;
2883     pFirst = pSrc->pTab->pIndex;
2884     if( pSrc->fg.notIndexed==0 ){
2885       /* The real indices of the table are only considered if the
2886       ** NOT INDEXED qualifier is omitted from the FROM clause */
2887       sPk.pNext = pFirst;
2888     }
2889     pProbe = &sPk;
2890   }
2891   rSize = pTab->nRowLogEst;
2892   rLogSize = estLog(rSize);
2893 
2894 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
2895   /* Automatic indexes */
2896   if( !pBuilder->pOrSet      /* Not part of an OR optimization */
2897    && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
2898    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
2899    && pSrc->pIBIndex==0      /* Has no INDEXED BY clause */
2900    && !pSrc->fg.notIndexed   /* Has no NOT INDEXED clause */
2901    && HasRowid(pTab)         /* Not WITHOUT ROWID table. (FIXME: Why not?) */
2902    && !pSrc->fg.isCorrelated /* Not a correlated subquery */
2903    && !pSrc->fg.isRecursive  /* Not a recursive common table expression. */
2904   ){
2905     /* Generate auto-index WhereLoops */
2906     WhereTerm *pTerm;
2907     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
2908     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
2909       if( pTerm->prereqRight & pNew->maskSelf ) continue;
2910       if( termCanDriveIndex(pTerm, pSrc, 0) ){
2911         pNew->u.btree.nEq = 1;
2912         pNew->nSkip = 0;
2913         pNew->u.btree.pIndex = 0;
2914         pNew->nLTerm = 1;
2915         pNew->aLTerm[0] = pTerm;
2916         /* TUNING: One-time cost for computing the automatic index is
2917         ** estimated to be X*N*log2(N) where N is the number of rows in
2918         ** the table being indexed and where X is 7 (LogEst=28) for normal
2919         ** tables or 0.5 (LogEst=-10) for views and subqueries.  The value
2920         ** of X is smaller for views and subqueries so that the query planner
2921         ** will be more aggressive about generating automatic indexes for
2922         ** those objects, since there is no opportunity to add schema
2923         ** indexes on subqueries and views. */
2924         pNew->rSetup = rLogSize + rSize;
2925         if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){
2926           pNew->rSetup += 28;
2927         }else{
2928           pNew->rSetup -= 10;
2929         }
2930         ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
2931         if( pNew->rSetup<0 ) pNew->rSetup = 0;
2932         /* TUNING: Each index lookup yields 20 rows in the table.  This
2933         ** is more than the usual guess of 10 rows, since we have no way
2934         ** of knowing how selective the index will ultimately be.  It would
2935         ** not be unreasonable to make this value much larger. */
2936         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
2937         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
2938         pNew->wsFlags = WHERE_AUTO_INDEX;
2939         pNew->prereq = mPrereq | pTerm->prereqRight;
2940         rc = whereLoopInsert(pBuilder, pNew);
2941       }
2942     }
2943   }
2944 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
2945 
2946   /* Loop over all indices. If there was an INDEXED BY clause, then only
2947   ** consider index pProbe.  */
2948   for(; rc==SQLITE_OK && pProbe;
2949       pProbe=(pSrc->pIBIndex ? 0 : pProbe->pNext), iSortIdx++
2950   ){
2951     if( pProbe->pPartIdxWhere!=0
2952      && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){
2953       testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
2954       continue;  /* Partial index inappropriate for this query */
2955     }
2956     if( pProbe->bNoQuery ) continue;
2957     rSize = pProbe->aiRowLogEst[0];
2958     pNew->u.btree.nEq = 0;
2959     pNew->u.btree.nBtm = 0;
2960     pNew->u.btree.nTop = 0;
2961     pNew->nSkip = 0;
2962     pNew->nLTerm = 0;
2963     pNew->iSortIdx = 0;
2964     pNew->rSetup = 0;
2965     pNew->prereq = mPrereq;
2966     pNew->nOut = rSize;
2967     pNew->u.btree.pIndex = pProbe;
2968     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
2969     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
2970     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
2971     if( pProbe->tnum<=0 ){
2972       /* Integer primary key index */
2973       pNew->wsFlags = WHERE_IPK;
2974 
2975       /* Full table scan */
2976       pNew->iSortIdx = b ? iSortIdx : 0;
2977       /* TUNING: Cost of full table scan is (N*3.0). */
2978       pNew->rRun = rSize + 16;
2979       ApplyCostMultiplier(pNew->rRun, pTab->costMult);
2980       whereLoopOutputAdjust(pWC, pNew, rSize);
2981       rc = whereLoopInsert(pBuilder, pNew);
2982       pNew->nOut = rSize;
2983       if( rc ) break;
2984     }else{
2985       Bitmask m;
2986       if( pProbe->isCovering ){
2987         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
2988         m = 0;
2989       }else{
2990         m = pSrc->colUsed & pProbe->colNotIdxed;
2991         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
2992       }
2993 
2994       /* Full scan via index */
2995       if( b
2996        || !HasRowid(pTab)
2997        || pProbe->pPartIdxWhere!=0
2998        || ( m==0
2999          && pProbe->bUnordered==0
3000          && (pProbe->szIdxRow<pTab->szTabRow)
3001          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
3002          && sqlite3GlobalConfig.bUseCis
3003          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
3004           )
3005       ){
3006         pNew->iSortIdx = b ? iSortIdx : 0;
3007 
3008         /* The cost of visiting the index rows is N*K, where K is
3009         ** between 1.1 and 3.0, depending on the relative sizes of the
3010         ** index and table rows. */
3011         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
3012         if( m!=0 ){
3013           /* If this is a non-covering index scan, add in the cost of
3014           ** doing table lookups.  The cost will be 3x the number of
3015           ** lookups.  Take into account WHERE clause terms that can be
3016           ** satisfied using just the index, and that do not require a
3017           ** table lookup. */
3018           LogEst nLookup = rSize + 16;  /* Base cost:  N*3 */
3019           int ii;
3020           int iCur = pSrc->iCursor;
3021           WhereClause *pWC2 = &pWInfo->sWC;
3022           for(ii=0; ii<pWC2->nTerm; ii++){
3023             WhereTerm *pTerm = &pWC2->a[ii];
3024             if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
3025               break;
3026             }
3027             /* pTerm can be evaluated using just the index.  So reduce
3028             ** the expected number of table lookups accordingly */
3029             if( pTerm->truthProb<=0 ){
3030               nLookup += pTerm->truthProb;
3031             }else{
3032               nLookup--;
3033               if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
3034             }
3035           }
3036 
3037           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
3038         }
3039         ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3040         whereLoopOutputAdjust(pWC, pNew, rSize);
3041         rc = whereLoopInsert(pBuilder, pNew);
3042         pNew->nOut = rSize;
3043         if( rc ) break;
3044       }
3045     }
3046 
3047     pBuilder->bldFlags = 0;
3048     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
3049     if( pBuilder->bldFlags==SQLITE_BLDF_INDEXED ){
3050       /* If a non-unique index is used, or if a prefix of the key for
3051       ** unique index is used (making the index functionally non-unique)
3052       ** then the sqlite_stat1 data becomes important for scoring the
3053       ** plan */
3054       pTab->tabFlags |= TF_StatsUsed;
3055     }
3056 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
3057     sqlite3Stat4ProbeFree(pBuilder->pRec);
3058     pBuilder->nRecValid = 0;
3059     pBuilder->pRec = 0;
3060 #endif
3061   }
3062   return rc;
3063 }
3064 
3065 #ifndef SQLITE_OMIT_VIRTUALTABLE
3066 
3067 /*
3068 ** Argument pIdxInfo is already populated with all constraints that may
3069 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3070 ** function marks a subset of those constraints usable, invokes the
3071 ** xBestIndex method and adds the returned plan to pBuilder.
3072 **
3073 ** A constraint is marked usable if:
3074 **
3075 **   * Argument mUsable indicates that its prerequisites are available, and
3076 **
3077 **   * It is not one of the operators specified in the mExclude mask passed
3078 **     as the fourth argument (which in practice is either WO_IN or 0).
3079 **
3080 ** Argument mPrereq is a mask of tables that must be scanned before the
3081 ** virtual table in question. These are added to the plans prerequisites
3082 ** before it is added to pBuilder.
3083 **
3084 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3085 ** uses one or more WO_IN terms, or false otherwise.
3086 */
3087 static int whereLoopAddVirtualOne(
3088   WhereLoopBuilder *pBuilder,
3089   Bitmask mPrereq,                /* Mask of tables that must be used. */
3090   Bitmask mUsable,                /* Mask of usable tables */
3091   u16 mExclude,                   /* Exclude terms using these operators */
3092   sqlite3_index_info *pIdxInfo,   /* Populated object for xBestIndex */
3093   u16 mNoOmit,                    /* Do not omit these constraints */
3094   int *pbIn                       /* OUT: True if plan uses an IN(...) op */
3095 ){
3096   WhereClause *pWC = pBuilder->pWC;
3097   struct sqlite3_index_constraint *pIdxCons;
3098   struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3099   int i;
3100   int mxTerm;
3101   int rc = SQLITE_OK;
3102   WhereLoop *pNew = pBuilder->pNew;
3103   Parse *pParse = pBuilder->pWInfo->pParse;
3104   struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3105   int nConstraint = pIdxInfo->nConstraint;
3106 
3107   assert( (mUsable & mPrereq)==mPrereq );
3108   *pbIn = 0;
3109   pNew->prereq = mPrereq;
3110 
3111   /* Set the usable flag on the subset of constraints identified by
3112   ** arguments mUsable and mExclude. */
3113   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3114   for(i=0; i<nConstraint; i++, pIdxCons++){
3115     WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3116     pIdxCons->usable = 0;
3117     if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3118      && (pTerm->eOperator & mExclude)==0
3119     ){
3120       pIdxCons->usable = 1;
3121     }
3122   }
3123 
3124   /* Initialize the output fields of the sqlite3_index_info structure */
3125   memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3126   assert( pIdxInfo->needToFreeIdxStr==0 );
3127   pIdxInfo->idxStr = 0;
3128   pIdxInfo->idxNum = 0;
3129   pIdxInfo->orderByConsumed = 0;
3130   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3131   pIdxInfo->estimatedRows = 25;
3132   pIdxInfo->idxFlags = 0;
3133   pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3134 
3135   /* Invoke the virtual table xBestIndex() method */
3136   rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3137   if( rc ){
3138     if( rc==SQLITE_CONSTRAINT ){
3139       /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
3140       ** that the particular combination of parameters provided is unusable.
3141       ** Make no entries in the loop table.
3142       */
3143       WHERETRACE(0xffff, ("  ^^^^--- non-viable plan rejected!\n"));
3144       return SQLITE_OK;
3145     }
3146     return rc;
3147   }
3148 
3149   mxTerm = -1;
3150   assert( pNew->nLSlot>=nConstraint );
3151   for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
3152   pNew->u.vtab.omitMask = 0;
3153   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3154   for(i=0; i<nConstraint; i++, pIdxCons++){
3155     int iTerm;
3156     if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3157       WhereTerm *pTerm;
3158       int j = pIdxCons->iTermOffset;
3159       if( iTerm>=nConstraint
3160        || j<0
3161        || j>=pWC->nTerm
3162        || pNew->aLTerm[iTerm]!=0
3163        || pIdxCons->usable==0
3164       ){
3165         sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3166         testcase( pIdxInfo->needToFreeIdxStr );
3167         return SQLITE_ERROR;
3168       }
3169       testcase( iTerm==nConstraint-1 );
3170       testcase( j==0 );
3171       testcase( j==pWC->nTerm-1 );
3172       pTerm = &pWC->a[j];
3173       pNew->prereq |= pTerm->prereqRight;
3174       assert( iTerm<pNew->nLSlot );
3175       pNew->aLTerm[iTerm] = pTerm;
3176       if( iTerm>mxTerm ) mxTerm = iTerm;
3177       testcase( iTerm==15 );
3178       testcase( iTerm==16 );
3179       if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm;
3180       if( (pTerm->eOperator & WO_IN)!=0 ){
3181         /* A virtual table that is constrained by an IN clause may not
3182         ** consume the ORDER BY clause because (1) the order of IN terms
3183         ** is not necessarily related to the order of output terms and
3184         ** (2) Multiple outputs from a single IN value will not merge
3185         ** together.  */
3186         pIdxInfo->orderByConsumed = 0;
3187         pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3188         *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3189       }
3190     }
3191   }
3192   pNew->u.vtab.omitMask &= ~mNoOmit;
3193 
3194   pNew->nLTerm = mxTerm+1;
3195   for(i=0; i<=mxTerm; i++){
3196     if( pNew->aLTerm[i]==0 ){
3197       /* The non-zero argvIdx values must be contiguous.  Raise an
3198       ** error if they are not */
3199       sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3200       testcase( pIdxInfo->needToFreeIdxStr );
3201       return SQLITE_ERROR;
3202     }
3203   }
3204   assert( pNew->nLTerm<=pNew->nLSlot );
3205   pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3206   pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3207   pIdxInfo->needToFreeIdxStr = 0;
3208   pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3209   pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3210       pIdxInfo->nOrderBy : 0);
3211   pNew->rSetup = 0;
3212   pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3213   pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3214 
3215   /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3216   ** that the scan will visit at most one row. Clear it otherwise. */
3217   if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3218     pNew->wsFlags |= WHERE_ONEROW;
3219   }else{
3220     pNew->wsFlags &= ~WHERE_ONEROW;
3221   }
3222   rc = whereLoopInsert(pBuilder, pNew);
3223   if( pNew->u.vtab.needFree ){
3224     sqlite3_free(pNew->u.vtab.idxStr);
3225     pNew->u.vtab.needFree = 0;
3226   }
3227   WHERETRACE(0xffff, ("  bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3228                       *pbIn, (sqlite3_uint64)mPrereq,
3229                       (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3230 
3231   return rc;
3232 }
3233 
3234 /*
3235 ** If this function is invoked from within an xBestIndex() callback, it
3236 ** returns a pointer to a buffer containing the name of the collation
3237 ** sequence associated with element iCons of the sqlite3_index_info.aConstraint
3238 ** array. Or, if iCons is out of range or there is no active xBestIndex
3239 ** call, return NULL.
3240 */
3241 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
3242   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3243   const char *zRet = 0;
3244   if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
3245     CollSeq *pC = 0;
3246     int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
3247     Expr *pX = pHidden->pWC->a[iTerm].pExpr;
3248     if( pX->pLeft ){
3249       pC = sqlite3BinaryCompareCollSeq(pHidden->pParse, pX->pLeft, pX->pRight);
3250     }
3251     zRet = (pC ? pC->zName : sqlite3StrBINARY);
3252   }
3253   return zRet;
3254 }
3255 
3256 /*
3257 ** Add all WhereLoop objects for a table of the join identified by
3258 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
3259 **
3260 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3261 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3262 ** entries that occur before the virtual table in the FROM clause and are
3263 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3264 ** mUnusable mask contains all FROM clause entries that occur after the
3265 ** virtual table and are separated from it by at least one LEFT or
3266 ** CROSS JOIN.
3267 **
3268 ** For example, if the query were:
3269 **
3270 **   ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3271 **
3272 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3273 **
3274 ** All the tables in mPrereq must be scanned before the current virtual
3275 ** table. So any terms for which all prerequisites are satisfied by
3276 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3277 ** Conversely, all tables in mUnusable must be scanned after the current
3278 ** virtual table, so any terms for which the prerequisites overlap with
3279 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3280 */
3281 static int whereLoopAddVirtual(
3282   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
3283   Bitmask mPrereq,             /* Tables that must be scanned before this one */
3284   Bitmask mUnusable            /* Tables that must be scanned after this one */
3285 ){
3286   int rc = SQLITE_OK;          /* Return code */
3287   WhereInfo *pWInfo;           /* WHERE analysis context */
3288   Parse *pParse;               /* The parsing context */
3289   WhereClause *pWC;            /* The WHERE clause */
3290   struct SrcList_item *pSrc;   /* The FROM clause term to search */
3291   sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
3292   int nConstraint;             /* Number of constraints in p */
3293   int bIn;                     /* True if plan uses IN(...) operator */
3294   WhereLoop *pNew;
3295   Bitmask mBest;               /* Tables used by best possible plan */
3296   u16 mNoOmit;
3297 
3298   assert( (mPrereq & mUnusable)==0 );
3299   pWInfo = pBuilder->pWInfo;
3300   pParse = pWInfo->pParse;
3301   pWC = pBuilder->pWC;
3302   pNew = pBuilder->pNew;
3303   pSrc = &pWInfo->pTabList->a[pNew->iTab];
3304   assert( IsVirtual(pSrc->pTab) );
3305   p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy,
3306       &mNoOmit);
3307   if( p==0 ) return SQLITE_NOMEM_BKPT;
3308   pNew->rSetup = 0;
3309   pNew->wsFlags = WHERE_VIRTUALTABLE;
3310   pNew->nLTerm = 0;
3311   pNew->u.vtab.needFree = 0;
3312   nConstraint = p->nConstraint;
3313   if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3314     sqlite3DbFree(pParse->db, p);
3315     return SQLITE_NOMEM_BKPT;
3316   }
3317 
3318   /* First call xBestIndex() with all constraints usable. */
3319   WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
3320   WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
3321   rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn);
3322 
3323   /* If the call to xBestIndex() with all terms enabled produced a plan
3324   ** that does not require any source tables (IOW: a plan with mBest==0),
3325   ** then there is no point in making any further calls to xBestIndex()
3326   ** since they will all return the same result (if the xBestIndex()
3327   ** implementation is sane). */
3328   if( rc==SQLITE_OK && (mBest = (pNew->prereq & ~mPrereq))!=0 ){
3329     int seenZero = 0;             /* True if a plan with no prereqs seen */
3330     int seenZeroNoIN = 0;         /* Plan with no prereqs and no IN(...) seen */
3331     Bitmask mPrev = 0;
3332     Bitmask mBestNoIn = 0;
3333 
3334     /* If the plan produced by the earlier call uses an IN(...) term, call
3335     ** xBestIndex again, this time with IN(...) terms disabled. */
3336     if( bIn ){
3337       WHERETRACE(0x40, ("  VirtualOne: all usable w/o IN\n"));
3338       rc = whereLoopAddVirtualOne(
3339           pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn);
3340       assert( bIn==0 );
3341       mBestNoIn = pNew->prereq & ~mPrereq;
3342       if( mBestNoIn==0 ){
3343         seenZero = 1;
3344         seenZeroNoIN = 1;
3345       }
3346     }
3347 
3348     /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3349     ** in the set of terms that apply to the current virtual table.  */
3350     while( rc==SQLITE_OK ){
3351       int i;
3352       Bitmask mNext = ALLBITS;
3353       assert( mNext>0 );
3354       for(i=0; i<nConstraint; i++){
3355         Bitmask mThis = (
3356             pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3357         );
3358         if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3359       }
3360       mPrev = mNext;
3361       if( mNext==ALLBITS ) break;
3362       if( mNext==mBest || mNext==mBestNoIn ) continue;
3363       WHERETRACE(0x40, ("  VirtualOne: mPrev=%04llx mNext=%04llx\n",
3364                        (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3365       rc = whereLoopAddVirtualOne(
3366           pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn);
3367       if( pNew->prereq==mPrereq ){
3368         seenZero = 1;
3369         if( bIn==0 ) seenZeroNoIN = 1;
3370       }
3371     }
3372 
3373     /* If the calls to xBestIndex() in the above loop did not find a plan
3374     ** that requires no source tables at all (i.e. one guaranteed to be
3375     ** usable), make a call here with all source tables disabled */
3376     if( rc==SQLITE_OK && seenZero==0 ){
3377       WHERETRACE(0x40, ("  VirtualOne: all disabled\n"));
3378       rc = whereLoopAddVirtualOne(
3379           pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn);
3380       if( bIn==0 ) seenZeroNoIN = 1;
3381     }
3382 
3383     /* If the calls to xBestIndex() have so far failed to find a plan
3384     ** that requires no source tables at all and does not use an IN(...)
3385     ** operator, make a final call to obtain one here.  */
3386     if( rc==SQLITE_OK && seenZeroNoIN==0 ){
3387       WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
3388       rc = whereLoopAddVirtualOne(
3389           pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn);
3390     }
3391   }
3392 
3393   if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
3394   sqlite3DbFreeNN(pParse->db, p);
3395   WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
3396   return rc;
3397 }
3398 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3399 
3400 /*
3401 ** Add WhereLoop entries to handle OR terms.  This works for either
3402 ** btrees or virtual tables.
3403 */
3404 static int whereLoopAddOr(
3405   WhereLoopBuilder *pBuilder,
3406   Bitmask mPrereq,
3407   Bitmask mUnusable
3408 ){
3409   WhereInfo *pWInfo = pBuilder->pWInfo;
3410   WhereClause *pWC;
3411   WhereLoop *pNew;
3412   WhereTerm *pTerm, *pWCEnd;
3413   int rc = SQLITE_OK;
3414   int iCur;
3415   WhereClause tempWC;
3416   WhereLoopBuilder sSubBuild;
3417   WhereOrSet sSum, sCur;
3418   struct SrcList_item *pItem;
3419 
3420   pWC = pBuilder->pWC;
3421   pWCEnd = pWC->a + pWC->nTerm;
3422   pNew = pBuilder->pNew;
3423   memset(&sSum, 0, sizeof(sSum));
3424   pItem = pWInfo->pTabList->a + pNew->iTab;
3425   iCur = pItem->iCursor;
3426 
3427   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
3428     if( (pTerm->eOperator & WO_OR)!=0
3429      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
3430     ){
3431       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
3432       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
3433       WhereTerm *pOrTerm;
3434       int once = 1;
3435       int i, j;
3436 
3437       sSubBuild = *pBuilder;
3438       sSubBuild.pOrderBy = 0;
3439       sSubBuild.pOrSet = &sCur;
3440 
3441       WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
3442       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
3443         if( (pOrTerm->eOperator & WO_AND)!=0 ){
3444           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
3445         }else if( pOrTerm->leftCursor==iCur ){
3446           tempWC.pWInfo = pWC->pWInfo;
3447           tempWC.pOuter = pWC;
3448           tempWC.op = TK_AND;
3449           tempWC.nTerm = 1;
3450           tempWC.a = pOrTerm;
3451           sSubBuild.pWC = &tempWC;
3452         }else{
3453           continue;
3454         }
3455         sCur.n = 0;
3456 #ifdef WHERETRACE_ENABLED
3457         WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3458                    (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
3459         if( sqlite3WhereTrace & 0x400 ){
3460           sqlite3WhereClausePrint(sSubBuild.pWC);
3461         }
3462 #endif
3463 #ifndef SQLITE_OMIT_VIRTUALTABLE
3464         if( IsVirtual(pItem->pTab) ){
3465           rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
3466         }else
3467 #endif
3468         {
3469           rc = whereLoopAddBtree(&sSubBuild, mPrereq);
3470         }
3471         if( rc==SQLITE_OK ){
3472           rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
3473         }
3474         assert( rc==SQLITE_OK || sCur.n==0 );
3475         if( sCur.n==0 ){
3476           sSum.n = 0;
3477           break;
3478         }else if( once ){
3479           whereOrMove(&sSum, &sCur);
3480           once = 0;
3481         }else{
3482           WhereOrSet sPrev;
3483           whereOrMove(&sPrev, &sSum);
3484           sSum.n = 0;
3485           for(i=0; i<sPrev.n; i++){
3486             for(j=0; j<sCur.n; j++){
3487               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
3488                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
3489                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
3490             }
3491           }
3492         }
3493       }
3494       pNew->nLTerm = 1;
3495       pNew->aLTerm[0] = pTerm;
3496       pNew->wsFlags = WHERE_MULTI_OR;
3497       pNew->rSetup = 0;
3498       pNew->iSortIdx = 0;
3499       memset(&pNew->u, 0, sizeof(pNew->u));
3500       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
3501         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
3502         ** of all sub-scans required by the OR-scan. However, due to rounding
3503         ** errors, it may be that the cost of the OR-scan is equal to its
3504         ** most expensive sub-scan. Add the smallest possible penalty
3505         ** (equivalent to multiplying the cost by 1.07) to ensure that
3506         ** this does not happen. Otherwise, for WHERE clauses such as the
3507         ** following where there is an index on "y":
3508         **
3509         **     WHERE likelihood(x=?, 0.99) OR y=?
3510         **
3511         ** the planner may elect to "OR" together a full-table scan and an
3512         ** index lookup. And other similarly odd results.  */
3513         pNew->rRun = sSum.a[i].rRun + 1;
3514         pNew->nOut = sSum.a[i].nOut;
3515         pNew->prereq = sSum.a[i].prereq;
3516         rc = whereLoopInsert(pBuilder, pNew);
3517       }
3518       WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
3519     }
3520   }
3521   return rc;
3522 }
3523 
3524 /*
3525 ** Add all WhereLoop objects for all tables
3526 */
3527 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
3528   WhereInfo *pWInfo = pBuilder->pWInfo;
3529   Bitmask mPrereq = 0;
3530   Bitmask mPrior = 0;
3531   int iTab;
3532   SrcList *pTabList = pWInfo->pTabList;
3533   struct SrcList_item *pItem;
3534   struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel];
3535   sqlite3 *db = pWInfo->pParse->db;
3536   int rc = SQLITE_OK;
3537   WhereLoop *pNew;
3538   u8 priorJointype = 0;
3539 
3540   /* Loop over the tables in the join, from left to right */
3541   pNew = pBuilder->pNew;
3542   whereLoopInit(pNew);
3543   pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT;
3544   for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
3545     Bitmask mUnusable = 0;
3546     pNew->iTab = iTab;
3547     pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR;
3548     pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
3549     if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){
3550       /* This condition is true when pItem is the FROM clause term on the
3551       ** right-hand-side of a LEFT or CROSS JOIN.  */
3552       mPrereq = mPrior;
3553     }
3554     priorJointype = pItem->fg.jointype;
3555 #ifndef SQLITE_OMIT_VIRTUALTABLE
3556     if( IsVirtual(pItem->pTab) ){
3557       struct SrcList_item *p;
3558       for(p=&pItem[1]; p<pEnd; p++){
3559         if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
3560           mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
3561         }
3562       }
3563       rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
3564     }else
3565 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3566     {
3567       rc = whereLoopAddBtree(pBuilder, mPrereq);
3568     }
3569     if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
3570       rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
3571     }
3572     mPrior |= pNew->maskSelf;
3573     if( rc || db->mallocFailed ){
3574       if( rc==SQLITE_DONE ){
3575         /* We hit the query planner search limit set by iPlanLimit */
3576         sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search");
3577         rc = SQLITE_OK;
3578       }else{
3579         break;
3580       }
3581     }
3582   }
3583 
3584   whereLoopClear(db, pNew);
3585   return rc;
3586 }
3587 
3588 /*
3589 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
3590 ** parameters) to see if it outputs rows in the requested ORDER BY
3591 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
3592 **
3593 **   N>0:   N terms of the ORDER BY clause are satisfied
3594 **   N==0:  No terms of the ORDER BY clause are satisfied
3595 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
3596 **
3597 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
3598 ** strict.  With GROUP BY and DISTINCT the only requirement is that
3599 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
3600 ** and DISTINCT do not require rows to appear in any particular order as long
3601 ** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT
3602 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
3603 ** pOrderBy terms must be matched in strict left-to-right order.
3604 */
3605 static i8 wherePathSatisfiesOrderBy(
3606   WhereInfo *pWInfo,    /* The WHERE clause */
3607   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
3608   WherePath *pPath,     /* The WherePath to check */
3609   u16 wctrlFlags,       /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
3610   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
3611   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
3612   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
3613 ){
3614   u8 revSet;            /* True if rev is known */
3615   u8 rev;               /* Composite sort order */
3616   u8 revIdx;            /* Index sort order */
3617   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
3618   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
3619   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
3620   u16 eqOpMask;         /* Allowed equality operators */
3621   u16 nKeyCol;          /* Number of key columns in pIndex */
3622   u16 nColumn;          /* Total number of ordered columns in the index */
3623   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
3624   int iLoop;            /* Index of WhereLoop in pPath being processed */
3625   int i, j;             /* Loop counters */
3626   int iCur;             /* Cursor number for current WhereLoop */
3627   int iColumn;          /* A column number within table iCur */
3628   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
3629   WhereTerm *pTerm;     /* A single term of the WHERE clause */
3630   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
3631   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
3632   Index *pIndex;        /* The index associated with pLoop */
3633   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
3634   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
3635   Bitmask obDone;       /* Mask of all ORDER BY terms */
3636   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
3637   Bitmask ready;              /* Mask of inner loops */
3638 
3639   /*
3640   ** We say the WhereLoop is "one-row" if it generates no more than one
3641   ** row of output.  A WhereLoop is one-row if all of the following are true:
3642   **  (a) All index columns match with WHERE_COLUMN_EQ.
3643   **  (b) The index is unique
3644   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
3645   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
3646   **
3647   ** We say the WhereLoop is "order-distinct" if the set of columns from
3648   ** that WhereLoop that are in the ORDER BY clause are different for every
3649   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
3650   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
3651   ** is not order-distinct. To be order-distinct is not quite the same as being
3652   ** UNIQUE since a UNIQUE column or index can have multiple rows that
3653   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
3654   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
3655   **
3656   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
3657   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
3658   ** automatically order-distinct.
3659   */
3660 
3661   assert( pOrderBy!=0 );
3662   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
3663 
3664   nOrderBy = pOrderBy->nExpr;
3665   testcase( nOrderBy==BMS-1 );
3666   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
3667   isOrderDistinct = 1;
3668   obDone = MASKBIT(nOrderBy)-1;
3669   orderDistinctMask = 0;
3670   ready = 0;
3671   eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
3672   if( wctrlFlags & WHERE_ORDERBY_LIMIT ) eqOpMask |= WO_IN;
3673   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
3674     if( iLoop>0 ) ready |= pLoop->maskSelf;
3675     if( iLoop<nLoop ){
3676       pLoop = pPath->aLoop[iLoop];
3677       if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
3678     }else{
3679       pLoop = pLast;
3680     }
3681     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
3682       if( pLoop->u.vtab.isOrdered ) obSat = obDone;
3683       break;
3684     }else{
3685       pLoop->u.btree.nIdxCol = 0;
3686     }
3687     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
3688 
3689     /* Mark off any ORDER BY term X that is a column in the table of
3690     ** the current loop for which there is term in the WHERE
3691     ** clause of the form X IS NULL or X=? that reference only outer
3692     ** loops.
3693     */
3694     for(i=0; i<nOrderBy; i++){
3695       if( MASKBIT(i) & obSat ) continue;
3696       pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
3697       if( pOBExpr->op!=TK_COLUMN ) continue;
3698       if( pOBExpr->iTable!=iCur ) continue;
3699       pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
3700                        ~ready, eqOpMask, 0);
3701       if( pTerm==0 ) continue;
3702       if( pTerm->eOperator==WO_IN ){
3703         /* IN terms are only valid for sorting in the ORDER BY LIMIT
3704         ** optimization, and then only if they are actually used
3705         ** by the query plan */
3706         assert( wctrlFlags & WHERE_ORDERBY_LIMIT );
3707         for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
3708         if( j>=pLoop->nLTerm ) continue;
3709       }
3710       if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
3711         if( sqlite3ExprCollSeqMatch(pWInfo->pParse,
3712                   pOrderBy->a[i].pExpr, pTerm->pExpr)==0 ){
3713           continue;
3714         }
3715         testcase( pTerm->pExpr->op==TK_IS );
3716       }
3717       obSat |= MASKBIT(i);
3718     }
3719 
3720     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
3721       if( pLoop->wsFlags & WHERE_IPK ){
3722         pIndex = 0;
3723         nKeyCol = 0;
3724         nColumn = 1;
3725       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
3726         return 0;
3727       }else{
3728         nKeyCol = pIndex->nKeyCol;
3729         nColumn = pIndex->nColumn;
3730         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
3731         assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
3732                           || !HasRowid(pIndex->pTable));
3733         isOrderDistinct = IsUniqueIndex(pIndex);
3734       }
3735 
3736       /* Loop through all columns of the index and deal with the ones
3737       ** that are not constrained by == or IN.
3738       */
3739       rev = revSet = 0;
3740       distinctColumns = 0;
3741       for(j=0; j<nColumn; j++){
3742         u8 bOnce = 1; /* True to run the ORDER BY search loop */
3743 
3744         assert( j>=pLoop->u.btree.nEq
3745             || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
3746         );
3747         if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
3748           u16 eOp = pLoop->aLTerm[j]->eOperator;
3749 
3750           /* Skip over == and IS and ISNULL terms.  (Also skip IN terms when
3751           ** doing WHERE_ORDERBY_LIMIT processing).
3752           **
3753           ** If the current term is a column of an ((?,?) IN (SELECT...))
3754           ** expression for which the SELECT returns more than one column,
3755           ** check that it is the only column used by this loop. Otherwise,
3756           ** if it is one of two or more, none of the columns can be
3757           ** considered to match an ORDER BY term.  */
3758           if( (eOp & eqOpMask)!=0 ){
3759             if( eOp & WO_ISNULL ){
3760               testcase( isOrderDistinct );
3761               isOrderDistinct = 0;
3762             }
3763             continue;
3764           }else if( ALWAYS(eOp & WO_IN) ){
3765             /* ALWAYS() justification: eOp is an equality operator due to the
3766             ** j<pLoop->u.btree.nEq constraint above.  Any equality other
3767             ** than WO_IN is captured by the previous "if".  So this one
3768             ** always has to be WO_IN. */
3769             Expr *pX = pLoop->aLTerm[j]->pExpr;
3770             for(i=j+1; i<pLoop->u.btree.nEq; i++){
3771               if( pLoop->aLTerm[i]->pExpr==pX ){
3772                 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
3773                 bOnce = 0;
3774                 break;
3775               }
3776             }
3777           }
3778         }
3779 
3780         /* Get the column number in the table (iColumn) and sort order
3781         ** (revIdx) for the j-th column of the index.
3782         */
3783         if( pIndex ){
3784           iColumn = pIndex->aiColumn[j];
3785           revIdx = pIndex->aSortOrder[j];
3786           if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
3787         }else{
3788           iColumn = XN_ROWID;
3789           revIdx = 0;
3790         }
3791 
3792         /* An unconstrained column that might be NULL means that this
3793         ** WhereLoop is not well-ordered
3794         */
3795         if( isOrderDistinct
3796          && iColumn>=0
3797          && j>=pLoop->u.btree.nEq
3798          && pIndex->pTable->aCol[iColumn].notNull==0
3799         ){
3800           isOrderDistinct = 0;
3801         }
3802 
3803         /* Find the ORDER BY term that corresponds to the j-th column
3804         ** of the index and mark that ORDER BY term off
3805         */
3806         isMatch = 0;
3807         for(i=0; bOnce && i<nOrderBy; i++){
3808           if( MASKBIT(i) & obSat ) continue;
3809           pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
3810           testcase( wctrlFlags & WHERE_GROUPBY );
3811           testcase( wctrlFlags & WHERE_DISTINCTBY );
3812           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
3813           if( iColumn>=XN_ROWID ){
3814             if( pOBExpr->op!=TK_COLUMN ) continue;
3815             if( pOBExpr->iTable!=iCur ) continue;
3816             if( pOBExpr->iColumn!=iColumn ) continue;
3817           }else{
3818             Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
3819             if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
3820               continue;
3821             }
3822           }
3823           if( iColumn!=XN_ROWID ){
3824             pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
3825             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
3826           }
3827           pLoop->u.btree.nIdxCol = j+1;
3828           isMatch = 1;
3829           break;
3830         }
3831         if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
3832           /* Make sure the sort order is compatible in an ORDER BY clause.
3833           ** Sort order is irrelevant for a GROUP BY clause. */
3834           if( revSet ){
3835             if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0;
3836           }else{
3837             rev = revIdx ^ pOrderBy->a[i].sortOrder;
3838             if( rev ) *pRevMask |= MASKBIT(iLoop);
3839             revSet = 1;
3840           }
3841         }
3842         if( isMatch ){
3843           if( iColumn==XN_ROWID ){
3844             testcase( distinctColumns==0 );
3845             distinctColumns = 1;
3846           }
3847           obSat |= MASKBIT(i);
3848         }else{
3849           /* No match found */
3850           if( j==0 || j<nKeyCol ){
3851             testcase( isOrderDistinct!=0 );
3852             isOrderDistinct = 0;
3853           }
3854           break;
3855         }
3856       } /* end Loop over all index columns */
3857       if( distinctColumns ){
3858         testcase( isOrderDistinct==0 );
3859         isOrderDistinct = 1;
3860       }
3861     } /* end-if not one-row */
3862 
3863     /* Mark off any other ORDER BY terms that reference pLoop */
3864     if( isOrderDistinct ){
3865       orderDistinctMask |= pLoop->maskSelf;
3866       for(i=0; i<nOrderBy; i++){
3867         Expr *p;
3868         Bitmask mTerm;
3869         if( MASKBIT(i) & obSat ) continue;
3870         p = pOrderBy->a[i].pExpr;
3871         mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
3872         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
3873         if( (mTerm&~orderDistinctMask)==0 ){
3874           obSat |= MASKBIT(i);
3875         }
3876       }
3877     }
3878   } /* End the loop over all WhereLoops from outer-most down to inner-most */
3879   if( obSat==obDone ) return (i8)nOrderBy;
3880   if( !isOrderDistinct ){
3881     for(i=nOrderBy-1; i>0; i--){
3882       Bitmask m = MASKBIT(i) - 1;
3883       if( (obSat&m)==m ) return i;
3884     }
3885     return 0;
3886   }
3887   return -1;
3888 }
3889 
3890 
3891 /*
3892 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
3893 ** the planner assumes that the specified pOrderBy list is actually a GROUP
3894 ** BY clause - and so any order that groups rows as required satisfies the
3895 ** request.
3896 **
3897 ** Normally, in this case it is not possible for the caller to determine
3898 ** whether or not the rows are really being delivered in sorted order, or
3899 ** just in some other order that provides the required grouping. However,
3900 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
3901 ** this function may be called on the returned WhereInfo object. It returns
3902 ** true if the rows really will be sorted in the specified order, or false
3903 ** otherwise.
3904 **
3905 ** For example, assuming:
3906 **
3907 **   CREATE INDEX i1 ON t1(x, Y);
3908 **
3909 ** then
3910 **
3911 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
3912 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
3913 */
3914 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
3915   assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
3916   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
3917   return pWInfo->sorted;
3918 }
3919 
3920 #ifdef WHERETRACE_ENABLED
3921 /* For debugging use only: */
3922 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
3923   static char zName[65];
3924   int i;
3925   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
3926   if( pLast ) zName[i++] = pLast->cId;
3927   zName[i] = 0;
3928   return zName;
3929 }
3930 #endif
3931 
3932 /*
3933 ** Return the cost of sorting nRow rows, assuming that the keys have
3934 ** nOrderby columns and that the first nSorted columns are already in
3935 ** order.
3936 */
3937 static LogEst whereSortingCost(
3938   WhereInfo *pWInfo,
3939   LogEst nRow,
3940   int nOrderBy,
3941   int nSorted
3942 ){
3943   /* TUNING: Estimated cost of a full external sort, where N is
3944   ** the number of rows to sort is:
3945   **
3946   **   cost = (3.0 * N * log(N)).
3947   **
3948   ** Or, if the order-by clause has X terms but only the last Y
3949   ** terms are out of order, then block-sorting will reduce the
3950   ** sorting cost to:
3951   **
3952   **   cost = (3.0 * N * log(N)) * (Y/X)
3953   **
3954   ** The (Y/X) term is implemented using stack variable rScale
3955   ** below.  */
3956   LogEst rScale, rSortCost;
3957   assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
3958   rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
3959   rSortCost = nRow + rScale + 16;
3960 
3961   /* Multiple by log(M) where M is the number of output rows.
3962   ** Use the LIMIT for M if it is smaller */
3963   if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
3964     nRow = pWInfo->iLimit;
3965   }
3966   rSortCost += estLog(nRow);
3967   return rSortCost;
3968 }
3969 
3970 /*
3971 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
3972 ** attempts to find the lowest cost path that visits each WhereLoop
3973 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
3974 **
3975 ** Assume that the total number of output rows that will need to be sorted
3976 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
3977 ** costs if nRowEst==0.
3978 **
3979 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
3980 ** error occurs.
3981 */
3982 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
3983   int mxChoice;             /* Maximum number of simultaneous paths tracked */
3984   int nLoop;                /* Number of terms in the join */
3985   Parse *pParse;            /* Parsing context */
3986   sqlite3 *db;              /* The database connection */
3987   int iLoop;                /* Loop counter over the terms of the join */
3988   int ii, jj;               /* Loop counters */
3989   int mxI = 0;              /* Index of next entry to replace */
3990   int nOrderBy;             /* Number of ORDER BY clause terms */
3991   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
3992   LogEst mxUnsorted = 0;    /* Maximum unsorted cost of a set of path */
3993   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
3994   WherePath *aFrom;         /* All nFrom paths at the previous level */
3995   WherePath *aTo;           /* The nTo best paths at the current level */
3996   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
3997   WherePath *pTo;           /* An element of aTo[] that we are working on */
3998   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
3999   WhereLoop **pX;           /* Used to divy up the pSpace memory */
4000   LogEst *aSortCost = 0;    /* Sorting and partial sorting costs */
4001   char *pSpace;             /* Temporary memory used by this routine */
4002   int nSpace;               /* Bytes of space allocated at pSpace */
4003 
4004   pParse = pWInfo->pParse;
4005   db = pParse->db;
4006   nLoop = pWInfo->nLevel;
4007   /* TUNING: For simple queries, only the best path is tracked.
4008   ** For 2-way joins, the 5 best paths are followed.
4009   ** For joins of 3 or more tables, track the 10 best paths */
4010   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
4011   assert( nLoop<=pWInfo->pTabList->nSrc );
4012   WHERETRACE(0x002, ("---- begin solver.  (nRowEst=%d)\n", nRowEst));
4013 
4014   /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
4015   ** case the purpose of this call is to estimate the number of rows returned
4016   ** by the overall query. Once this estimate has been obtained, the caller
4017   ** will invoke this function a second time, passing the estimate as the
4018   ** nRowEst parameter.  */
4019   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
4020     nOrderBy = 0;
4021   }else{
4022     nOrderBy = pWInfo->pOrderBy->nExpr;
4023   }
4024 
4025   /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
4026   nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
4027   nSpace += sizeof(LogEst) * nOrderBy;
4028   pSpace = sqlite3DbMallocRawNN(db, nSpace);
4029   if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
4030   aTo = (WherePath*)pSpace;
4031   aFrom = aTo+mxChoice;
4032   memset(aFrom, 0, sizeof(aFrom[0]));
4033   pX = (WhereLoop**)(aFrom+mxChoice);
4034   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
4035     pFrom->aLoop = pX;
4036   }
4037   if( nOrderBy ){
4038     /* If there is an ORDER BY clause and it is not being ignored, set up
4039     ** space for the aSortCost[] array. Each element of the aSortCost array
4040     ** is either zero - meaning it has not yet been initialized - or the
4041     ** cost of sorting nRowEst rows of data where the first X terms of
4042     ** the ORDER BY clause are already in order, where X is the array
4043     ** index.  */
4044     aSortCost = (LogEst*)pX;
4045     memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
4046   }
4047   assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
4048   assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
4049 
4050   /* Seed the search with a single WherePath containing zero WhereLoops.
4051   **
4052   ** TUNING: Do not let the number of iterations go above 28.  If the cost
4053   ** of computing an automatic index is not paid back within the first 28
4054   ** rows, then do not use the automatic index. */
4055   aFrom[0].nRow = MIN(pParse->nQueryLoop, 48);  assert( 48==sqlite3LogEst(28) );
4056   nFrom = 1;
4057   assert( aFrom[0].isOrdered==0 );
4058   if( nOrderBy ){
4059     /* If nLoop is zero, then there are no FROM terms in the query. Since
4060     ** in this case the query may return a maximum of one row, the results
4061     ** are already in the requested order. Set isOrdered to nOrderBy to
4062     ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
4063     ** -1, indicating that the result set may or may not be ordered,
4064     ** depending on the loops added to the current plan.  */
4065     aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
4066   }
4067 
4068   /* Compute successively longer WherePaths using the previous generation
4069   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
4070   ** best paths at each generation */
4071   for(iLoop=0; iLoop<nLoop; iLoop++){
4072     nTo = 0;
4073     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
4074       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
4075         LogEst nOut;                      /* Rows visited by (pFrom+pWLoop) */
4076         LogEst rCost;                     /* Cost of path (pFrom+pWLoop) */
4077         LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
4078         i8 isOrdered = pFrom->isOrdered;  /* isOrdered for (pFrom+pWLoop) */
4079         Bitmask maskNew;                  /* Mask of src visited by (..) */
4080         Bitmask revMask = 0;              /* Mask of rev-order loops for (..) */
4081 
4082         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
4083         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
4084         if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
4085           /* Do not use an automatic index if the this loop is expected
4086           ** to run less than 1.25 times.  It is tempting to also exclude
4087           ** automatic index usage on an outer loop, but sometimes an automatic
4088           ** index is useful in the outer loop of a correlated subquery. */
4089           assert( 10==sqlite3LogEst(2) );
4090           continue;
4091         }
4092 
4093         /* At this point, pWLoop is a candidate to be the next loop.
4094         ** Compute its cost */
4095         rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
4096         rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
4097         nOut = pFrom->nRow + pWLoop->nOut;
4098         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
4099         if( isOrdered<0 ){
4100           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
4101                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
4102                        iLoop, pWLoop, &revMask);
4103         }else{
4104           revMask = pFrom->revLoop;
4105         }
4106         if( isOrdered>=0 && isOrdered<nOrderBy ){
4107           if( aSortCost[isOrdered]==0 ){
4108             aSortCost[isOrdered] = whereSortingCost(
4109                 pWInfo, nRowEst, nOrderBy, isOrdered
4110             );
4111           }
4112           /* TUNING:  Add a small extra penalty (5) to sorting as an
4113           ** extra encouragment to the query planner to select a plan
4114           ** where the rows emerge in the correct order without any sorting
4115           ** required. */
4116           rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5;
4117 
4118           WHERETRACE(0x002,
4119               ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
4120                aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
4121                rUnsorted, rCost));
4122         }else{
4123           rCost = rUnsorted;
4124           rUnsorted -= 2;  /* TUNING:  Slight bias in favor of no-sort plans */
4125         }
4126 
4127         /* Check to see if pWLoop should be added to the set of
4128         ** mxChoice best-so-far paths.
4129         **
4130         ** First look for an existing path among best-so-far paths
4131         ** that covers the same set of loops and has the same isOrdered
4132         ** setting as the current path candidate.
4133         **
4134         ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4135         ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4136         ** of legal values for isOrdered, -1..64.
4137         */
4138         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
4139           if( pTo->maskLoop==maskNew
4140            && ((pTo->isOrdered^isOrdered)&0x80)==0
4141           ){
4142             testcase( jj==nTo-1 );
4143             break;
4144           }
4145         }
4146         if( jj>=nTo ){
4147           /* None of the existing best-so-far paths match the candidate. */
4148           if( nTo>=mxChoice
4149            && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4150           ){
4151             /* The current candidate is no better than any of the mxChoice
4152             ** paths currently in the best-so-far buffer.  So discard
4153             ** this candidate as not viable. */
4154 #ifdef WHERETRACE_ENABLED /* 0x4 */
4155             if( sqlite3WhereTrace&0x4 ){
4156               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d,%3d order=%c\n",
4157                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4158                   isOrdered>=0 ? isOrdered+'0' : '?');
4159             }
4160 #endif
4161             continue;
4162           }
4163           /* If we reach this points it means that the new candidate path
4164           ** needs to be added to the set of best-so-far paths. */
4165           if( nTo<mxChoice ){
4166             /* Increase the size of the aTo set by one */
4167             jj = nTo++;
4168           }else{
4169             /* New path replaces the prior worst to keep count below mxChoice */
4170             jj = mxI;
4171           }
4172           pTo = &aTo[jj];
4173 #ifdef WHERETRACE_ENABLED /* 0x4 */
4174           if( sqlite3WhereTrace&0x4 ){
4175             sqlite3DebugPrintf("New    %s cost=%-3d,%3d,%3d order=%c\n",
4176                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4177                 isOrdered>=0 ? isOrdered+'0' : '?');
4178           }
4179 #endif
4180         }else{
4181           /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4182           ** same set of loops and has the same isOrdered setting as the
4183           ** candidate path.  Check to see if the candidate should replace
4184           ** pTo or if the candidate should be skipped.
4185           **
4186           ** The conditional is an expanded vector comparison equivalent to:
4187           **   (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4188           */
4189           if( pTo->rCost<rCost
4190            || (pTo->rCost==rCost
4191                && (pTo->nRow<nOut
4192                    || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4193                   )
4194               )
4195           ){
4196 #ifdef WHERETRACE_ENABLED /* 0x4 */
4197             if( sqlite3WhereTrace&0x4 ){
4198               sqlite3DebugPrintf(
4199                   "Skip   %s cost=%-3d,%3d,%3d order=%c",
4200                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4201                   isOrdered>=0 ? isOrdered+'0' : '?');
4202               sqlite3DebugPrintf("   vs %s cost=%-3d,%3d,%3d order=%c\n",
4203                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4204                   pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4205             }
4206 #endif
4207             /* Discard the candidate path from further consideration */
4208             testcase( pTo->rCost==rCost );
4209             continue;
4210           }
4211           testcase( pTo->rCost==rCost+1 );
4212           /* Control reaches here if the candidate path is better than the
4213           ** pTo path.  Replace pTo with the candidate. */
4214 #ifdef WHERETRACE_ENABLED /* 0x4 */
4215           if( sqlite3WhereTrace&0x4 ){
4216             sqlite3DebugPrintf(
4217                 "Update %s cost=%-3d,%3d,%3d order=%c",
4218                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4219                 isOrdered>=0 ? isOrdered+'0' : '?');
4220             sqlite3DebugPrintf("  was %s cost=%-3d,%3d,%3d order=%c\n",
4221                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4222                 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4223           }
4224 #endif
4225         }
4226         /* pWLoop is a winner.  Add it to the set of best so far */
4227         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4228         pTo->revLoop = revMask;
4229         pTo->nRow = nOut;
4230         pTo->rCost = rCost;
4231         pTo->rUnsorted = rUnsorted;
4232         pTo->isOrdered = isOrdered;
4233         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4234         pTo->aLoop[iLoop] = pWLoop;
4235         if( nTo>=mxChoice ){
4236           mxI = 0;
4237           mxCost = aTo[0].rCost;
4238           mxUnsorted = aTo[0].nRow;
4239           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4240             if( pTo->rCost>mxCost
4241              || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4242             ){
4243               mxCost = pTo->rCost;
4244               mxUnsorted = pTo->rUnsorted;
4245               mxI = jj;
4246             }
4247           }
4248         }
4249       }
4250     }
4251 
4252 #ifdef WHERETRACE_ENABLED  /* >=2 */
4253     if( sqlite3WhereTrace & 0x02 ){
4254       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4255       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4256         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4257            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4258            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4259         if( pTo->isOrdered>0 ){
4260           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4261         }else{
4262           sqlite3DebugPrintf("\n");
4263         }
4264       }
4265     }
4266 #endif
4267 
4268     /* Swap the roles of aFrom and aTo for the next generation */
4269     pFrom = aTo;
4270     aTo = aFrom;
4271     aFrom = pFrom;
4272     nFrom = nTo;
4273   }
4274 
4275   if( nFrom==0 ){
4276     sqlite3ErrorMsg(pParse, "no query solution");
4277     sqlite3DbFreeNN(db, pSpace);
4278     return SQLITE_ERROR;
4279   }
4280 
4281   /* Find the lowest cost path.  pFrom will be left pointing to that path */
4282   pFrom = aFrom;
4283   for(ii=1; ii<nFrom; ii++){
4284     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4285   }
4286   assert( pWInfo->nLevel==nLoop );
4287   /* Load the lowest cost path into pWInfo */
4288   for(iLoop=0; iLoop<nLoop; iLoop++){
4289     WhereLevel *pLevel = pWInfo->a + iLoop;
4290     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
4291     pLevel->iFrom = pWLoop->iTab;
4292     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
4293   }
4294   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
4295    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
4296    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
4297    && nRowEst
4298   ){
4299     Bitmask notUsed;
4300     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
4301                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
4302     if( rc==pWInfo->pResultSet->nExpr ){
4303       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4304     }
4305   }
4306   pWInfo->bOrderedInnerLoop = 0;
4307   if( pWInfo->pOrderBy ){
4308     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
4309       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
4310         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4311       }
4312     }else{
4313       pWInfo->nOBSat = pFrom->isOrdered;
4314       pWInfo->revMask = pFrom->revLoop;
4315       if( pWInfo->nOBSat<=0 ){
4316         pWInfo->nOBSat = 0;
4317         if( nLoop>0 ){
4318           u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
4319           if( (wsFlags & WHERE_ONEROW)==0
4320            && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
4321           ){
4322             Bitmask m = 0;
4323             int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
4324                       WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
4325             testcase( wsFlags & WHERE_IPK );
4326             testcase( wsFlags & WHERE_COLUMN_IN );
4327             if( rc==pWInfo->pOrderBy->nExpr ){
4328               pWInfo->bOrderedInnerLoop = 1;
4329               pWInfo->revMask = m;
4330             }
4331           }
4332         }
4333       }
4334     }
4335     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
4336         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
4337     ){
4338       Bitmask revMask = 0;
4339       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
4340           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
4341       );
4342       assert( pWInfo->sorted==0 );
4343       if( nOrder==pWInfo->pOrderBy->nExpr ){
4344         pWInfo->sorted = 1;
4345         pWInfo->revMask = revMask;
4346       }
4347     }
4348   }
4349 
4350 
4351   pWInfo->nRowOut = pFrom->nRow;
4352 
4353   /* Free temporary memory and return success */
4354   sqlite3DbFreeNN(db, pSpace);
4355   return SQLITE_OK;
4356 }
4357 
4358 /*
4359 ** Most queries use only a single table (they are not joins) and have
4360 ** simple == constraints against indexed fields.  This routine attempts
4361 ** to plan those simple cases using much less ceremony than the
4362 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4363 ** times for the common case.
4364 **
4365 ** Return non-zero on success, if this query can be handled by this
4366 ** no-frills query planner.  Return zero if this query needs the
4367 ** general-purpose query planner.
4368 */
4369 static int whereShortCut(WhereLoopBuilder *pBuilder){
4370   WhereInfo *pWInfo;
4371   struct SrcList_item *pItem;
4372   WhereClause *pWC;
4373   WhereTerm *pTerm;
4374   WhereLoop *pLoop;
4375   int iCur;
4376   int j;
4377   Table *pTab;
4378   Index *pIdx;
4379 
4380   pWInfo = pBuilder->pWInfo;
4381   if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
4382   assert( pWInfo->pTabList->nSrc>=1 );
4383   pItem = pWInfo->pTabList->a;
4384   pTab = pItem->pTab;
4385   if( IsVirtual(pTab) ) return 0;
4386   if( pItem->fg.isIndexedBy ) return 0;
4387   iCur = pItem->iCursor;
4388   pWC = &pWInfo->sWC;
4389   pLoop = pBuilder->pNew;
4390   pLoop->wsFlags = 0;
4391   pLoop->nSkip = 0;
4392   pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0);
4393   if( pTerm ){
4394     testcase( pTerm->eOperator & WO_IS );
4395     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
4396     pLoop->aLTerm[0] = pTerm;
4397     pLoop->nLTerm = 1;
4398     pLoop->u.btree.nEq = 1;
4399     /* TUNING: Cost of a rowid lookup is 10 */
4400     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
4401   }else{
4402     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4403       int opMask;
4404       assert( pLoop->aLTermSpace==pLoop->aLTerm );
4405       if( !IsUniqueIndex(pIdx)
4406        || pIdx->pPartIdxWhere!=0
4407        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
4408       ) continue;
4409       opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
4410       for(j=0; j<pIdx->nKeyCol; j++){
4411         pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx);
4412         if( pTerm==0 ) break;
4413         testcase( pTerm->eOperator & WO_IS );
4414         pLoop->aLTerm[j] = pTerm;
4415       }
4416       if( j!=pIdx->nKeyCol ) continue;
4417       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
4418       if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
4419         pLoop->wsFlags |= WHERE_IDX_ONLY;
4420       }
4421       pLoop->nLTerm = j;
4422       pLoop->u.btree.nEq = j;
4423       pLoop->u.btree.pIndex = pIdx;
4424       /* TUNING: Cost of a unique index lookup is 15 */
4425       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
4426       break;
4427     }
4428   }
4429   if( pLoop->wsFlags ){
4430     pLoop->nOut = (LogEst)1;
4431     pWInfo->a[0].pWLoop = pLoop;
4432     assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
4433     pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
4434     pWInfo->a[0].iTabCur = iCur;
4435     pWInfo->nRowOut = 1;
4436     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
4437     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
4438       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4439     }
4440 #ifdef SQLITE_DEBUG
4441     pLoop->cId = '0';
4442 #endif
4443     return 1;
4444   }
4445   return 0;
4446 }
4447 
4448 /*
4449 ** Helper function for exprIsDeterministic().
4450 */
4451 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
4452   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
4453     pWalker->eCode = 0;
4454     return WRC_Abort;
4455   }
4456   return WRC_Continue;
4457 }
4458 
4459 /*
4460 ** Return true if the expression contains no non-deterministic SQL
4461 ** functions. Do not consider non-deterministic SQL functions that are
4462 ** part of sub-select statements.
4463 */
4464 static int exprIsDeterministic(Expr *p){
4465   Walker w;
4466   memset(&w, 0, sizeof(w));
4467   w.eCode = 1;
4468   w.xExprCallback = exprNodeIsDeterministic;
4469   w.xSelectCallback = sqlite3SelectWalkFail;
4470   sqlite3WalkExpr(&w, p);
4471   return w.eCode;
4472 }
4473 
4474 /*
4475 ** Generate the beginning of the loop used for WHERE clause processing.
4476 ** The return value is a pointer to an opaque structure that contains
4477 ** information needed to terminate the loop.  Later, the calling routine
4478 ** should invoke sqlite3WhereEnd() with the return value of this function
4479 ** in order to complete the WHERE clause processing.
4480 **
4481 ** If an error occurs, this routine returns NULL.
4482 **
4483 ** The basic idea is to do a nested loop, one loop for each table in
4484 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
4485 ** same as a SELECT with only a single table in the FROM clause.)  For
4486 ** example, if the SQL is this:
4487 **
4488 **       SELECT * FROM t1, t2, t3 WHERE ...;
4489 **
4490 ** Then the code generated is conceptually like the following:
4491 **
4492 **      foreach row1 in t1 do       \    Code generated
4493 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
4494 **          foreach row3 in t3 do   /
4495 **            ...
4496 **          end                     \    Code generated
4497 **        end                        |-- by sqlite3WhereEnd()
4498 **      end                         /
4499 **
4500 ** Note that the loops might not be nested in the order in which they
4501 ** appear in the FROM clause if a different order is better able to make
4502 ** use of indices.  Note also that when the IN operator appears in
4503 ** the WHERE clause, it might result in additional nested loops for
4504 ** scanning through all values on the right-hand side of the IN.
4505 **
4506 ** There are Btree cursors associated with each table.  t1 uses cursor
4507 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
4508 ** And so forth.  This routine generates code to open those VDBE cursors
4509 ** and sqlite3WhereEnd() generates the code to close them.
4510 **
4511 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4512 ** in pTabList pointing at their appropriate entries.  The [...] code
4513 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4514 ** data from the various tables of the loop.
4515 **
4516 ** If the WHERE clause is empty, the foreach loops must each scan their
4517 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
4518 ** the tables have indices and there are terms in the WHERE clause that
4519 ** refer to those indices, a complete table scan can be avoided and the
4520 ** code will run much faster.  Most of the work of this routine is checking
4521 ** to see if there are indices that can be used to speed up the loop.
4522 **
4523 ** Terms of the WHERE clause are also used to limit which rows actually
4524 ** make it to the "..." in the middle of the loop.  After each "foreach",
4525 ** terms of the WHERE clause that use only terms in that loop and outer
4526 ** loops are evaluated and if false a jump is made around all subsequent
4527 ** inner loops (or around the "..." if the test occurs within the inner-
4528 ** most loop)
4529 **
4530 ** OUTER JOINS
4531 **
4532 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4533 **
4534 **    foreach row1 in t1 do
4535 **      flag = 0
4536 **      foreach row2 in t2 do
4537 **        start:
4538 **          ...
4539 **          flag = 1
4540 **      end
4541 **      if flag==0 then
4542 **        move the row2 cursor to a null row
4543 **        goto start
4544 **      fi
4545 **    end
4546 **
4547 ** ORDER BY CLAUSE PROCESSING
4548 **
4549 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
4550 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
4551 ** if there is one.  If there is no ORDER BY clause or if this routine
4552 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
4553 **
4554 ** The iIdxCur parameter is the cursor number of an index.  If
4555 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
4556 ** to use for OR clause processing.  The WHERE clause should use this
4557 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
4558 ** the first cursor in an array of cursors for all indices.  iIdxCur should
4559 ** be used to compute the appropriate cursor depending on which index is
4560 ** used.
4561 */
4562 WhereInfo *sqlite3WhereBegin(
4563   Parse *pParse,          /* The parser context */
4564   SrcList *pTabList,      /* FROM clause: A list of all tables to be scanned */
4565   Expr *pWhere,           /* The WHERE clause */
4566   ExprList *pOrderBy,     /* An ORDER BY (or GROUP BY) clause, or NULL */
4567   ExprList *pResultSet,   /* Query result set.  Req'd for DISTINCT */
4568   u16 wctrlFlags,         /* The WHERE_* flags defined in sqliteInt.h */
4569   int iAuxArg             /* If WHERE_OR_SUBCLAUSE is set, index cursor number
4570                           ** If WHERE_USE_LIMIT, then the limit amount */
4571 ){
4572   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
4573   int nTabList;              /* Number of elements in pTabList */
4574   WhereInfo *pWInfo;         /* Will become the return value of this function */
4575   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
4576   Bitmask notReady;          /* Cursors that are not yet positioned */
4577   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
4578   WhereMaskSet *pMaskSet;    /* The expression mask set */
4579   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
4580   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
4581   int ii;                    /* Loop counter */
4582   sqlite3 *db;               /* Database connection */
4583   int rc;                    /* Return code */
4584   u8 bFordelete = 0;         /* OPFLAG_FORDELETE or zero, as appropriate */
4585 
4586   assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
4587         (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
4588      && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4589   ));
4590 
4591   /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
4592   assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4593             || (wctrlFlags & WHERE_USE_LIMIT)==0 );
4594 
4595   /* Variable initialization */
4596   db = pParse->db;
4597   memset(&sWLB, 0, sizeof(sWLB));
4598 
4599   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
4600   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
4601   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
4602   sWLB.pOrderBy = pOrderBy;
4603 
4604   /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
4605   ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
4606   if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
4607     wctrlFlags &= ~WHERE_WANT_DISTINCT;
4608   }
4609 
4610   /* The number of tables in the FROM clause is limited by the number of
4611   ** bits in a Bitmask
4612   */
4613   testcase( pTabList->nSrc==BMS );
4614   if( pTabList->nSrc>BMS ){
4615     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
4616     return 0;
4617   }
4618 
4619   /* This function normally generates a nested loop for all tables in
4620   ** pTabList.  But if the WHERE_OR_SUBCLAUSE flag is set, then we should
4621   ** only generate code for the first table in pTabList and assume that
4622   ** any cursors associated with subsequent tables are uninitialized.
4623   */
4624   nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
4625 
4626   /* Allocate and initialize the WhereInfo structure that will become the
4627   ** return value. A single allocation is used to store the WhereInfo
4628   ** struct, the contents of WhereInfo.a[], the WhereClause structure
4629   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4630   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4631   ** some architectures. Hence the ROUND8() below.
4632   */
4633   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
4634   pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
4635   if( db->mallocFailed ){
4636     sqlite3DbFree(db, pWInfo);
4637     pWInfo = 0;
4638     goto whereBeginError;
4639   }
4640   pWInfo->pParse = pParse;
4641   pWInfo->pTabList = pTabList;
4642   pWInfo->pOrderBy = pOrderBy;
4643   pWInfo->pWhere = pWhere;
4644   pWInfo->pResultSet = pResultSet;
4645   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
4646   pWInfo->nLevel = nTabList;
4647   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v);
4648   pWInfo->wctrlFlags = wctrlFlags;
4649   pWInfo->iLimit = iAuxArg;
4650   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
4651   memset(&pWInfo->nOBSat, 0,
4652          offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
4653   memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
4654   assert( pWInfo->eOnePass==ONEPASS_OFF );  /* ONEPASS defaults to OFF */
4655   pMaskSet = &pWInfo->sMaskSet;
4656   sWLB.pWInfo = pWInfo;
4657   sWLB.pWC = &pWInfo->sWC;
4658   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
4659   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
4660   whereLoopInit(sWLB.pNew);
4661 #ifdef SQLITE_DEBUG
4662   sWLB.pNew->cId = '*';
4663 #endif
4664 
4665   /* Split the WHERE clause into separate subexpressions where each
4666   ** subexpression is separated by an AND operator.
4667   */
4668   initMaskSet(pMaskSet);
4669   sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
4670   sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
4671 
4672   /* Special case: No FROM clause
4673   */
4674   if( nTabList==0 ){
4675     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
4676     if( wctrlFlags & WHERE_WANT_DISTINCT ){
4677       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4678     }
4679     ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
4680   }else{
4681     /* Assign a bit from the bitmask to every term in the FROM clause.
4682     **
4683     ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
4684     **
4685     ** The rule of the previous sentence ensures thta if X is the bitmask for
4686     ** a table T, then X-1 is the bitmask for all other tables to the left of T.
4687     ** Knowing the bitmask for all tables to the left of a left join is
4688     ** important.  Ticket #3015.
4689     **
4690     ** Note that bitmasks are created for all pTabList->nSrc tables in
4691     ** pTabList, not just the first nTabList tables.  nTabList is normally
4692     ** equal to pTabList->nSrc but might be shortened to 1 if the
4693     ** WHERE_OR_SUBCLAUSE flag is set.
4694     */
4695     ii = 0;
4696     do{
4697       createMask(pMaskSet, pTabList->a[ii].iCursor);
4698       sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
4699     }while( (++ii)<pTabList->nSrc );
4700   #ifdef SQLITE_DEBUG
4701     {
4702       Bitmask mx = 0;
4703       for(ii=0; ii<pTabList->nSrc; ii++){
4704         Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
4705         assert( m>=mx );
4706         mx = m;
4707       }
4708     }
4709   #endif
4710   }
4711 
4712   /* Analyze all of the subexpressions. */
4713   sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
4714   if( db->mallocFailed ) goto whereBeginError;
4715 
4716   /* Special case: WHERE terms that do not refer to any tables in the join
4717   ** (constant expressions). Evaluate each such term, and jump over all the
4718   ** generated code if the result is not true.
4719   **
4720   ** Do not do this if the expression contains non-deterministic functions
4721   ** that are not within a sub-select. This is not strictly required, but
4722   ** preserves SQLite's legacy behaviour in the following two cases:
4723   **
4724   **   FROM ... WHERE random()>0;           -- eval random() once per row
4725   **   FROM ... WHERE (SELECT random())>0;  -- eval random() once overall
4726   */
4727   for(ii=0; ii<sWLB.pWC->nTerm; ii++){
4728     WhereTerm *pT = &sWLB.pWC->a[ii];
4729     if( pT->wtFlags & TERM_VIRTUAL ) continue;
4730     if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
4731       sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
4732       pT->wtFlags |= TERM_CODED;
4733     }
4734   }
4735 
4736   if( wctrlFlags & WHERE_WANT_DISTINCT ){
4737     if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
4738       /* The DISTINCT marking is pointless.  Ignore it. */
4739       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4740     }else if( pOrderBy==0 ){
4741       /* Try to ORDER BY the result set to make distinct processing easier */
4742       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
4743       pWInfo->pOrderBy = pResultSet;
4744     }
4745   }
4746 
4747   /* Construct the WhereLoop objects */
4748 #if defined(WHERETRACE_ENABLED)
4749   if( sqlite3WhereTrace & 0xffff ){
4750     sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
4751     if( wctrlFlags & WHERE_USE_LIMIT ){
4752       sqlite3DebugPrintf(", limit: %d", iAuxArg);
4753     }
4754     sqlite3DebugPrintf(")\n");
4755   }
4756   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
4757     sqlite3WhereClausePrint(sWLB.pWC);
4758   }
4759 #endif
4760 
4761   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
4762     rc = whereLoopAddAll(&sWLB);
4763     if( rc ) goto whereBeginError;
4764 
4765 #ifdef WHERETRACE_ENABLED
4766     if( sqlite3WhereTrace ){    /* Display all of the WhereLoop objects */
4767       WhereLoop *p;
4768       int i;
4769       static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
4770                                              "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
4771       for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
4772         p->cId = zLabel[i%(sizeof(zLabel)-1)];
4773         whereLoopPrint(p, sWLB.pWC);
4774       }
4775     }
4776 #endif
4777 
4778     wherePathSolver(pWInfo, 0);
4779     if( db->mallocFailed ) goto whereBeginError;
4780     if( pWInfo->pOrderBy ){
4781        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
4782        if( db->mallocFailed ) goto whereBeginError;
4783     }
4784   }
4785   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
4786      pWInfo->revMask = ALLBITS;
4787   }
4788   if( pParse->nErr || NEVER(db->mallocFailed) ){
4789     goto whereBeginError;
4790   }
4791 #ifdef WHERETRACE_ENABLED
4792   if( sqlite3WhereTrace ){
4793     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
4794     if( pWInfo->nOBSat>0 ){
4795       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
4796     }
4797     switch( pWInfo->eDistinct ){
4798       case WHERE_DISTINCT_UNIQUE: {
4799         sqlite3DebugPrintf("  DISTINCT=unique");
4800         break;
4801       }
4802       case WHERE_DISTINCT_ORDERED: {
4803         sqlite3DebugPrintf("  DISTINCT=ordered");
4804         break;
4805       }
4806       case WHERE_DISTINCT_UNORDERED: {
4807         sqlite3DebugPrintf("  DISTINCT=unordered");
4808         break;
4809       }
4810     }
4811     sqlite3DebugPrintf("\n");
4812     for(ii=0; ii<pWInfo->nLevel; ii++){
4813       whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
4814     }
4815   }
4816 #endif
4817 
4818   /* Attempt to omit tables from the join that do not affect the result.
4819   ** For a table to not affect the result, the following must be true:
4820   **
4821   **   1) The query must not be an aggregate.
4822   **   2) The table must be the RHS of a LEFT JOIN.
4823   **   3) Either the query must be DISTINCT, or else the ON or USING clause
4824   **      must contain a constraint that limits the scan of the table to
4825   **      at most a single row.
4826   **   4) The table must not be referenced by any part of the query apart
4827   **      from its own USING or ON clause.
4828   **
4829   ** For example, given:
4830   **
4831   **     CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
4832   **     CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
4833   **     CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
4834   **
4835   ** then table t2 can be omitted from the following:
4836   **
4837   **     SELECT v1, v3 FROM t1
4838   **       LEFT JOIN t2 USING (t1.ipk=t2.ipk)
4839   **       LEFT JOIN t3 USING (t1.ipk=t3.ipk)
4840   **
4841   ** or from:
4842   **
4843   **     SELECT DISTINCT v1, v3 FROM t1
4844   **       LEFT JOIN t2
4845   **       LEFT JOIN t3 USING (t1.ipk=t3.ipk)
4846   */
4847   notReady = ~(Bitmask)0;
4848   if( pWInfo->nLevel>=2
4849    && pResultSet!=0               /* guarantees condition (1) above */
4850    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
4851   ){
4852     int i;
4853     Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet);
4854     if( sWLB.pOrderBy ){
4855       tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy);
4856     }
4857     for(i=pWInfo->nLevel-1; i>=1; i--){
4858       WhereTerm *pTerm, *pEnd;
4859       struct SrcList_item *pItem;
4860       pLoop = pWInfo->a[i].pWLoop;
4861       pItem = &pWInfo->pTabList->a[pLoop->iTab];
4862       if( (pItem->fg.jointype & JT_LEFT)==0 ) continue;
4863       if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
4864        && (pLoop->wsFlags & WHERE_ONEROW)==0
4865       ){
4866         continue;
4867       }
4868       if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
4869       pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
4870       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
4871         if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
4872           if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
4873            || pTerm->pExpr->iRightJoinTable!=pItem->iCursor
4874           ){
4875             break;
4876           }
4877         }
4878       }
4879       if( pTerm<pEnd ) continue;
4880       WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
4881       notReady &= ~pLoop->maskSelf;
4882       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
4883         if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
4884           pTerm->wtFlags |= TERM_CODED;
4885         }
4886       }
4887       if( i!=pWInfo->nLevel-1 ){
4888         int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
4889         memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
4890       }
4891       pWInfo->nLevel--;
4892       nTabList--;
4893     }
4894   }
4895   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
4896   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
4897 
4898   /* If the caller is an UPDATE or DELETE statement that is requesting
4899   ** to use a one-pass algorithm, determine if this is appropriate.
4900   **
4901   ** A one-pass approach can be used if the caller has requested one
4902   ** and either (a) the scan visits at most one row or (b) each
4903   ** of the following are true:
4904   **
4905   **   * the caller has indicated that a one-pass approach can be used
4906   **     with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
4907   **   * the table is not a virtual table, and
4908   **   * either the scan does not use the OR optimization or the caller
4909   **     is a DELETE operation (WHERE_DUPLICATES_OK is only specified
4910   **     for DELETE).
4911   **
4912   ** The last qualification is because an UPDATE statement uses
4913   ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
4914   ** use a one-pass approach, and this is not set accurately for scans
4915   ** that use the OR optimization.
4916   */
4917   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
4918   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
4919     int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
4920     int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
4921     if( bOnerow || (
4922         0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
4923      && 0==(wsFlags & WHERE_VIRTUALTABLE)
4924      && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
4925     )){
4926       pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
4927       if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
4928         if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
4929           bFordelete = OPFLAG_FORDELETE;
4930         }
4931         pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
4932       }
4933     }
4934   }
4935 
4936   /* Open all tables in the pTabList and any indices selected for
4937   ** searching those tables.
4938   */
4939   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
4940     Table *pTab;     /* Table to open */
4941     int iDb;         /* Index of database containing table/index */
4942     struct SrcList_item *pTabItem;
4943 
4944     pTabItem = &pTabList->a[pLevel->iFrom];
4945     pTab = pTabItem->pTab;
4946     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4947     pLoop = pLevel->pWLoop;
4948     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
4949       /* Do nothing */
4950     }else
4951 #ifndef SQLITE_OMIT_VIRTUALTABLE
4952     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
4953       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
4954       int iCur = pTabItem->iCursor;
4955       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
4956     }else if( IsVirtual(pTab) ){
4957       /* noop */
4958     }else
4959 #endif
4960     if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
4961          && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
4962       int op = OP_OpenRead;
4963       if( pWInfo->eOnePass!=ONEPASS_OFF ){
4964         op = OP_OpenWrite;
4965         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
4966       };
4967       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
4968       assert( pTabItem->iCursor==pLevel->iTabCur );
4969       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
4970       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
4971       if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){
4972         Bitmask b = pTabItem->colUsed;
4973         int n = 0;
4974         for(; b; b=b>>1, n++){}
4975         sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
4976         assert( n<=pTab->nCol );
4977       }
4978 #ifdef SQLITE_ENABLE_CURSOR_HINTS
4979       if( pLoop->u.btree.pIndex!=0 ){
4980         sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
4981       }else
4982 #endif
4983       {
4984         sqlite3VdbeChangeP5(v, bFordelete);
4985       }
4986 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4987       sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
4988                             (const u8*)&pTabItem->colUsed, P4_INT64);
4989 #endif
4990     }else{
4991       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4992     }
4993     if( pLoop->wsFlags & WHERE_INDEXED ){
4994       Index *pIx = pLoop->u.btree.pIndex;
4995       int iIndexCur;
4996       int op = OP_OpenRead;
4997       /* iAuxArg is always set to a positive value if ONEPASS is possible */
4998       assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
4999       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
5000        && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
5001       ){
5002         /* This is one term of an OR-optimization using the PRIMARY KEY of a
5003         ** WITHOUT ROWID table.  No need for a separate index */
5004         iIndexCur = pLevel->iTabCur;
5005         op = 0;
5006       }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
5007         Index *pJ = pTabItem->pTab->pIndex;
5008         iIndexCur = iAuxArg;
5009         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
5010         while( ALWAYS(pJ) && pJ!=pIx ){
5011           iIndexCur++;
5012           pJ = pJ->pNext;
5013         }
5014         op = OP_OpenWrite;
5015         pWInfo->aiCurOnePass[1] = iIndexCur;
5016       }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
5017         iIndexCur = iAuxArg;
5018         op = OP_ReopenIdx;
5019       }else{
5020         iIndexCur = pParse->nTab++;
5021       }
5022       pLevel->iIdxCur = iIndexCur;
5023       assert( pIx->pSchema==pTab->pSchema );
5024       assert( iIndexCur>=0 );
5025       if( op ){
5026         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
5027         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
5028         if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
5029          && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
5030          && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
5031          && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
5032         ){
5033           sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */
5034         }
5035         VdbeComment((v, "%s", pIx->zName));
5036 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5037         {
5038           u64 colUsed = 0;
5039           int ii, jj;
5040           for(ii=0; ii<pIx->nColumn; ii++){
5041             jj = pIx->aiColumn[ii];
5042             if( jj<0 ) continue;
5043             if( jj>63 ) jj = 63;
5044             if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
5045             colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
5046           }
5047           sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
5048                                 (u8*)&colUsed, P4_INT64);
5049         }
5050 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
5051       }
5052     }
5053     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
5054   }
5055   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
5056   if( db->mallocFailed ) goto whereBeginError;
5057 
5058   /* Generate the code to do the search.  Each iteration of the for
5059   ** loop below generates code for a single nested loop of the VM
5060   ** program.
5061   */
5062   for(ii=0; ii<nTabList; ii++){
5063     int addrExplain;
5064     int wsFlags;
5065     pLevel = &pWInfo->a[ii];
5066     wsFlags = pLevel->pWLoop->wsFlags;
5067 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
5068     if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
5069       constructAutomaticIndex(pParse, &pWInfo->sWC,
5070                 &pTabList->a[pLevel->iFrom], notReady, pLevel);
5071       if( db->mallocFailed ) goto whereBeginError;
5072     }
5073 #endif
5074     addrExplain = sqlite3WhereExplainOneScan(
5075         pParse, pTabList, pLevel, wctrlFlags
5076     );
5077     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
5078     notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady);
5079     pWInfo->iContinue = pLevel->addrCont;
5080     if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
5081       sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
5082     }
5083   }
5084 
5085   /* Done. */
5086   VdbeModuleComment((v, "Begin WHERE-core"));
5087   return pWInfo;
5088 
5089   /* Jump here if malloc fails */
5090 whereBeginError:
5091   if( pWInfo ){
5092     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5093     whereInfoFree(db, pWInfo);
5094   }
5095   return 0;
5096 }
5097 
5098 /*
5099 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
5100 ** index rather than the main table.  In SQLITE_DEBUG mode, we want
5101 ** to trace those changes if PRAGMA vdbe_addoptrace=on.  This routine
5102 ** does that.
5103 */
5104 #ifndef SQLITE_DEBUG
5105 # define OpcodeRewriteTrace(D,K,P) /* no-op */
5106 #else
5107 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
5108   static void sqlite3WhereOpcodeRewriteTrace(
5109     sqlite3 *db,
5110     int pc,
5111     VdbeOp *pOp
5112   ){
5113     if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
5114     sqlite3VdbePrintOp(0, pc, pOp);
5115   }
5116 #endif
5117 
5118 /*
5119 ** Generate the end of the WHERE loop.  See comments on
5120 ** sqlite3WhereBegin() for additional information.
5121 */
5122 void sqlite3WhereEnd(WhereInfo *pWInfo){
5123   Parse *pParse = pWInfo->pParse;
5124   Vdbe *v = pParse->pVdbe;
5125   int i;
5126   WhereLevel *pLevel;
5127   WhereLoop *pLoop;
5128   SrcList *pTabList = pWInfo->pTabList;
5129   sqlite3 *db = pParse->db;
5130 
5131   /* Generate loop termination code.
5132   */
5133   VdbeModuleComment((v, "End WHERE-core"));
5134   for(i=pWInfo->nLevel-1; i>=0; i--){
5135     int addr;
5136     pLevel = &pWInfo->a[i];
5137     pLoop = pLevel->pWLoop;
5138     if( pLevel->op!=OP_Noop ){
5139 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5140       int addrSeek = 0;
5141       Index *pIdx;
5142       int n;
5143       if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
5144        && i==pWInfo->nLevel-1  /* Ticket [ef9318757b152e3] 2017-10-21 */
5145        && (pLoop->wsFlags & WHERE_INDEXED)!=0
5146        && (pIdx = pLoop->u.btree.pIndex)->hasStat1
5147        && (n = pLoop->u.btree.nIdxCol)>0
5148        && pIdx->aiRowLogEst[n]>=36
5149       ){
5150         int r1 = pParse->nMem+1;
5151         int j, op;
5152         for(j=0; j<n; j++){
5153           sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
5154         }
5155         pParse->nMem += n+1;
5156         op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
5157         addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
5158         VdbeCoverageIf(v, op==OP_SeekLT);
5159         VdbeCoverageIf(v, op==OP_SeekGT);
5160         sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
5161       }
5162 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
5163       /* The common case: Advance to the next row */
5164       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5165       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
5166       sqlite3VdbeChangeP5(v, pLevel->p5);
5167       VdbeCoverage(v);
5168       VdbeCoverageIf(v, pLevel->op==OP_Next);
5169       VdbeCoverageIf(v, pLevel->op==OP_Prev);
5170       VdbeCoverageIf(v, pLevel->op==OP_VNext);
5171 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5172       if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
5173 #endif
5174     }else{
5175       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5176     }
5177     if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
5178       struct InLoop *pIn;
5179       int j;
5180       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
5181       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
5182         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5183         if( pIn->eEndLoopOp!=OP_Noop ){
5184           if( pIn->nPrefix ){
5185             assert( pLoop->wsFlags & WHERE_IN_EARLYOUT );
5186             sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
5187                               sqlite3VdbeCurrentAddr(v)+2,
5188                               pIn->iBase, pIn->nPrefix);
5189             VdbeCoverage(v);
5190           }
5191           sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
5192           VdbeCoverage(v);
5193           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
5194           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
5195         }
5196         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
5197       }
5198     }
5199     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
5200     if( pLevel->addrSkip ){
5201       sqlite3VdbeGoto(v, pLevel->addrSkip);
5202       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
5203       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
5204       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
5205     }
5206 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
5207     if( pLevel->addrLikeRep ){
5208       sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
5209                         pLevel->addrLikeRep);
5210       VdbeCoverage(v);
5211     }
5212 #endif
5213     if( pLevel->iLeftJoin ){
5214       int ws = pLoop->wsFlags;
5215       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
5216       assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
5217       if( (ws & WHERE_IDX_ONLY)==0 ){
5218         assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
5219         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
5220       }
5221       if( (ws & WHERE_INDEXED)
5222        || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx)
5223       ){
5224         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
5225       }
5226       if( pLevel->op==OP_Return ){
5227         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
5228       }else{
5229         sqlite3VdbeGoto(v, pLevel->addrFirst);
5230       }
5231       sqlite3VdbeJumpHere(v, addr);
5232     }
5233     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
5234                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
5235   }
5236 
5237   /* The "break" point is here, just past the end of the outer loop.
5238   ** Set it.
5239   */
5240   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
5241 
5242   assert( pWInfo->nLevel<=pTabList->nSrc );
5243   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
5244     int k, last;
5245     VdbeOp *pOp;
5246     Index *pIdx = 0;
5247     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
5248     Table *pTab = pTabItem->pTab;
5249     assert( pTab!=0 );
5250     pLoop = pLevel->pWLoop;
5251 
5252     /* For a co-routine, change all OP_Column references to the table of
5253     ** the co-routine into OP_Copy of result contained in a register.
5254     ** OP_Rowid becomes OP_Null.
5255     */
5256     if( pTabItem->fg.viaCoroutine ){
5257       testcase( pParse->db->mallocFailed );
5258       translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
5259                             pTabItem->regResult, 0);
5260       continue;
5261     }
5262 
5263     /* If this scan uses an index, make VDBE code substitutions to read data
5264     ** from the index instead of from the table where possible.  In some cases
5265     ** this optimization prevents the table from ever being read, which can
5266     ** yield a significant performance boost.
5267     **
5268     ** Calls to the code generator in between sqlite3WhereBegin and
5269     ** sqlite3WhereEnd will have created code that references the table
5270     ** directly.  This loop scans all that code looking for opcodes
5271     ** that reference the table and converts them into opcodes that
5272     ** reference the index.
5273     */
5274     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
5275       pIdx = pLoop->u.btree.pIndex;
5276     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
5277       pIdx = pLevel->u.pCovidx;
5278     }
5279     if( pIdx
5280      && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable))
5281      && !db->mallocFailed
5282     ){
5283       last = sqlite3VdbeCurrentAddr(v);
5284       k = pLevel->addrBody;
5285 #ifdef SQLITE_DEBUG
5286       if( db->flags & SQLITE_VdbeAddopTrace ){
5287         printf("TRANSLATE opcodes in range %d..%d\n", k, last-1);
5288       }
5289 #endif
5290       pOp = sqlite3VdbeGetOp(v, k);
5291       for(; k<last; k++, pOp++){
5292         if( pOp->p1!=pLevel->iTabCur ) continue;
5293         if( pOp->opcode==OP_Column
5294 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
5295          || pOp->opcode==OP_Offset
5296 #endif
5297         ){
5298           int x = pOp->p2;
5299           assert( pIdx->pTable==pTab );
5300           if( !HasRowid(pTab) ){
5301             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
5302             x = pPk->aiColumn[x];
5303             assert( x>=0 );
5304           }
5305           x = sqlite3ColumnOfIndex(pIdx, x);
5306           if( x>=0 ){
5307             pOp->p2 = x;
5308             pOp->p1 = pLevel->iIdxCur;
5309             OpcodeRewriteTrace(db, k, pOp);
5310           }
5311           assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0
5312               || pWInfo->eOnePass );
5313         }else if( pOp->opcode==OP_Rowid ){
5314           pOp->p1 = pLevel->iIdxCur;
5315           pOp->opcode = OP_IdxRowid;
5316           OpcodeRewriteTrace(db, k, pOp);
5317         }else if( pOp->opcode==OP_IfNullRow ){
5318           pOp->p1 = pLevel->iIdxCur;
5319           OpcodeRewriteTrace(db, k, pOp);
5320         }
5321       }
5322 #ifdef SQLITE_DEBUG
5323       if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
5324 #endif
5325     }
5326   }
5327 
5328   /* Final cleanup
5329   */
5330   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5331   whereInfoFree(db, pWInfo);
5332   return;
5333 }
5334