1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* 23 ** Extra information appended to the end of sqlite3_index_info but not 24 ** visible to the xBestIndex function, at least not directly. The 25 ** sqlite3_vtab_collation() interface knows how to reach it, however. 26 ** 27 ** This object is not an API and can be changed from one release to the 28 ** next. As long as allocateIndexInfo() and sqlite3_vtab_collation() 29 ** agree on the structure, all will be well. 30 */ 31 typedef struct HiddenIndexInfo HiddenIndexInfo; 32 struct HiddenIndexInfo { 33 WhereClause *pWC; /* The Where clause being analyzed */ 34 Parse *pParse; /* The parsing context */ 35 }; 36 37 /* Forward declaration of methods */ 38 static int whereLoopResize(sqlite3*, WhereLoop*, int); 39 40 /* Test variable that can be set to enable WHERE tracing */ 41 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 42 /***/ int sqlite3WhereTrace = 0; 43 #endif 44 45 46 /* 47 ** Return the estimated number of output rows from a WHERE clause 48 */ 49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ 50 return pWInfo->nRowOut; 51 } 52 53 /* 54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this 55 ** WHERE clause returns outputs for DISTINCT processing. 56 */ 57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ 58 return pWInfo->eDistinct; 59 } 60 61 /* 62 ** Return TRUE if the WHERE clause returns rows in ORDER BY order. 63 ** Return FALSE if the output needs to be sorted. 64 */ 65 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ 66 return pWInfo->nOBSat; 67 } 68 69 /* 70 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known 71 ** to emit rows in increasing order, and if the last row emitted by the 72 ** inner-most loop did not fit within the sorter, then we can skip all 73 ** subsequent rows for the current iteration of the inner loop (because they 74 ** will not fit in the sorter either) and continue with the second inner 75 ** loop - the loop immediately outside the inner-most. 76 ** 77 ** When a row does not fit in the sorter (because the sorter already 78 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the 79 ** label returned by this function. 80 ** 81 ** If the ORDER BY LIMIT optimization applies, the jump destination should 82 ** be the continuation for the second-inner-most loop. If the ORDER BY 83 ** LIMIT optimization does not apply, then the jump destination should 84 ** be the continuation for the inner-most loop. 85 ** 86 ** It is always safe for this routine to return the continuation of the 87 ** inner-most loop, in the sense that a correct answer will result. 88 ** Returning the continuation the second inner loop is an optimization 89 ** that might make the code run a little faster, but should not change 90 ** the final answer. 91 */ 92 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){ 93 WhereLevel *pInner; 94 if( !pWInfo->bOrderedInnerLoop ){ 95 /* The ORDER BY LIMIT optimization does not apply. Jump to the 96 ** continuation of the inner-most loop. */ 97 return pWInfo->iContinue; 98 } 99 pInner = &pWInfo->a[pWInfo->nLevel-1]; 100 assert( pInner->addrNxt!=0 ); 101 return pInner->addrNxt; 102 } 103 104 /* 105 ** Return the VDBE address or label to jump to in order to continue 106 ** immediately with the next row of a WHERE clause. 107 */ 108 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ 109 assert( pWInfo->iContinue!=0 ); 110 return pWInfo->iContinue; 111 } 112 113 /* 114 ** Return the VDBE address or label to jump to in order to break 115 ** out of a WHERE loop. 116 */ 117 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ 118 return pWInfo->iBreak; 119 } 120 121 /* 122 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to 123 ** operate directly on the rowis returned by a WHERE clause. Return 124 ** ONEPASS_SINGLE (1) if the statement can operation directly because only 125 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass 126 ** optimization can be used on multiple 127 ** 128 ** If the ONEPASS optimization is used (if this routine returns true) 129 ** then also write the indices of open cursors used by ONEPASS 130 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data 131 ** table and iaCur[1] gets the cursor used by an auxiliary index. 132 ** Either value may be -1, indicating that cursor is not used. 133 ** Any cursors returned will have been opened for writing. 134 ** 135 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is 136 ** unable to use the ONEPASS optimization. 137 */ 138 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ 139 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); 140 #ifdef WHERETRACE_ENABLED 141 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){ 142 sqlite3DebugPrintf("%s cursors: %d %d\n", 143 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI", 144 aiCur[0], aiCur[1]); 145 } 146 #endif 147 return pWInfo->eOnePass; 148 } 149 150 /* 151 ** Move the content of pSrc into pDest 152 */ 153 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ 154 pDest->n = pSrc->n; 155 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); 156 } 157 158 /* 159 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. 160 ** 161 ** The new entry might overwrite an existing entry, or it might be 162 ** appended, or it might be discarded. Do whatever is the right thing 163 ** so that pSet keeps the N_OR_COST best entries seen so far. 164 */ 165 static int whereOrInsert( 166 WhereOrSet *pSet, /* The WhereOrSet to be updated */ 167 Bitmask prereq, /* Prerequisites of the new entry */ 168 LogEst rRun, /* Run-cost of the new entry */ 169 LogEst nOut /* Number of outputs for the new entry */ 170 ){ 171 u16 i; 172 WhereOrCost *p; 173 for(i=pSet->n, p=pSet->a; i>0; i--, p++){ 174 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ 175 goto whereOrInsert_done; 176 } 177 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ 178 return 0; 179 } 180 } 181 if( pSet->n<N_OR_COST ){ 182 p = &pSet->a[pSet->n++]; 183 p->nOut = nOut; 184 }else{ 185 p = pSet->a; 186 for(i=1; i<pSet->n; i++){ 187 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; 188 } 189 if( p->rRun<=rRun ) return 0; 190 } 191 whereOrInsert_done: 192 p->prereq = prereq; 193 p->rRun = rRun; 194 if( p->nOut>nOut ) p->nOut = nOut; 195 return 1; 196 } 197 198 /* 199 ** Return the bitmask for the given cursor number. Return 0 if 200 ** iCursor is not in the set. 201 */ 202 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ 203 int i; 204 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); 205 for(i=0; i<pMaskSet->n; i++){ 206 if( pMaskSet->ix[i]==iCursor ){ 207 return MASKBIT(i); 208 } 209 } 210 return 0; 211 } 212 213 /* 214 ** Create a new mask for cursor iCursor. 215 ** 216 ** There is one cursor per table in the FROM clause. The number of 217 ** tables in the FROM clause is limited by a test early in the 218 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 219 ** array will never overflow. 220 */ 221 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 222 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 223 pMaskSet->ix[pMaskSet->n++] = iCursor; 224 } 225 226 /* 227 ** Advance to the next WhereTerm that matches according to the criteria 228 ** established when the pScan object was initialized by whereScanInit(). 229 ** Return NULL if there are no more matching WhereTerms. 230 */ 231 static WhereTerm *whereScanNext(WhereScan *pScan){ 232 int iCur; /* The cursor on the LHS of the term */ 233 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */ 234 Expr *pX; /* An expression being tested */ 235 WhereClause *pWC; /* Shorthand for pScan->pWC */ 236 WhereTerm *pTerm; /* The term being tested */ 237 int k = pScan->k; /* Where to start scanning */ 238 239 assert( pScan->iEquiv<=pScan->nEquiv ); 240 pWC = pScan->pWC; 241 while(1){ 242 iColumn = pScan->aiColumn[pScan->iEquiv-1]; 243 iCur = pScan->aiCur[pScan->iEquiv-1]; 244 assert( pWC!=0 ); 245 do{ 246 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ 247 if( pTerm->leftCursor==iCur 248 && pTerm->u.leftColumn==iColumn 249 && (iColumn!=XN_EXPR 250 || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft, 251 pScan->pIdxExpr,iCur)==0) 252 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 253 ){ 254 if( (pTerm->eOperator & WO_EQUIV)!=0 255 && pScan->nEquiv<ArraySize(pScan->aiCur) 256 && (pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight))->op==TK_COLUMN 257 ){ 258 int j; 259 for(j=0; j<pScan->nEquiv; j++){ 260 if( pScan->aiCur[j]==pX->iTable 261 && pScan->aiColumn[j]==pX->iColumn ){ 262 break; 263 } 264 } 265 if( j==pScan->nEquiv ){ 266 pScan->aiCur[j] = pX->iTable; 267 pScan->aiColumn[j] = pX->iColumn; 268 pScan->nEquiv++; 269 } 270 } 271 if( (pTerm->eOperator & pScan->opMask)!=0 ){ 272 /* Verify the affinity and collating sequence match */ 273 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ 274 CollSeq *pColl; 275 Parse *pParse = pWC->pWInfo->pParse; 276 pX = pTerm->pExpr; 277 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ 278 continue; 279 } 280 assert(pX->pLeft); 281 pColl = sqlite3BinaryCompareCollSeq(pParse, 282 pX->pLeft, pX->pRight); 283 if( pColl==0 ) pColl = pParse->db->pDfltColl; 284 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ 285 continue; 286 } 287 } 288 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0 289 && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN 290 && pX->iTable==pScan->aiCur[0] 291 && pX->iColumn==pScan->aiColumn[0] 292 ){ 293 testcase( pTerm->eOperator & WO_IS ); 294 continue; 295 } 296 pScan->pWC = pWC; 297 pScan->k = k+1; 298 return pTerm; 299 } 300 } 301 } 302 pWC = pWC->pOuter; 303 k = 0; 304 }while( pWC!=0 ); 305 if( pScan->iEquiv>=pScan->nEquiv ) break; 306 pWC = pScan->pOrigWC; 307 k = 0; 308 pScan->iEquiv++; 309 } 310 return 0; 311 } 312 313 /* 314 ** Initialize a WHERE clause scanner object. Return a pointer to the 315 ** first match. Return NULL if there are no matches. 316 ** 317 ** The scanner will be searching the WHERE clause pWC. It will look 318 ** for terms of the form "X <op> <expr>" where X is column iColumn of table 319 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx 320 ** must be one of the indexes of table iCur. 321 ** 322 ** The <op> must be one of the operators described by opMask. 323 ** 324 ** If the search is for X and the WHERE clause contains terms of the 325 ** form X=Y then this routine might also return terms of the form 326 ** "Y <op> <expr>". The number of levels of transitivity is limited, 327 ** but is enough to handle most commonly occurring SQL statements. 328 ** 329 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with 330 ** index pIdx. 331 */ 332 static WhereTerm *whereScanInit( 333 WhereScan *pScan, /* The WhereScan object being initialized */ 334 WhereClause *pWC, /* The WHERE clause to be scanned */ 335 int iCur, /* Cursor to scan for */ 336 int iColumn, /* Column to scan for */ 337 u32 opMask, /* Operator(s) to scan for */ 338 Index *pIdx /* Must be compatible with this index */ 339 ){ 340 pScan->pOrigWC = pWC; 341 pScan->pWC = pWC; 342 pScan->pIdxExpr = 0; 343 pScan->idxaff = 0; 344 pScan->zCollName = 0; 345 if( pIdx ){ 346 int j = iColumn; 347 iColumn = pIdx->aiColumn[j]; 348 if( iColumn==XN_EXPR ){ 349 pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr; 350 pScan->zCollName = pIdx->azColl[j]; 351 }else if( iColumn==pIdx->pTable->iPKey ){ 352 iColumn = XN_ROWID; 353 }else if( iColumn>=0 ){ 354 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; 355 pScan->zCollName = pIdx->azColl[j]; 356 } 357 }else if( iColumn==XN_EXPR ){ 358 return 0; 359 } 360 pScan->opMask = opMask; 361 pScan->k = 0; 362 pScan->aiCur[0] = iCur; 363 pScan->aiColumn[0] = iColumn; 364 pScan->nEquiv = 1; 365 pScan->iEquiv = 1; 366 return whereScanNext(pScan); 367 } 368 369 /* 370 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 371 ** where X is a reference to the iColumn of table iCur or of index pIdx 372 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by 373 ** the op parameter. Return a pointer to the term. Return 0 if not found. 374 ** 375 ** If pIdx!=0 then it must be one of the indexes of table iCur. 376 ** Search for terms matching the iColumn-th column of pIdx 377 ** rather than the iColumn-th column of table iCur. 378 ** 379 ** The term returned might by Y=<expr> if there is another constraint in 380 ** the WHERE clause that specifies that X=Y. Any such constraints will be 381 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The 382 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11 383 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10 384 ** other equivalent values. Hence a search for X will return <expr> if X=A1 385 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>. 386 ** 387 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" 388 ** then try for the one with no dependencies on <expr> - in other words where 389 ** <expr> is a constant expression of some kind. Only return entries of 390 ** the form "X <op> Y" where Y is a column in another table if no terms of 391 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS 392 ** exist, try to return a term that does not use WO_EQUIV. 393 */ 394 WhereTerm *sqlite3WhereFindTerm( 395 WhereClause *pWC, /* The WHERE clause to be searched */ 396 int iCur, /* Cursor number of LHS */ 397 int iColumn, /* Column number of LHS */ 398 Bitmask notReady, /* RHS must not overlap with this mask */ 399 u32 op, /* Mask of WO_xx values describing operator */ 400 Index *pIdx /* Must be compatible with this index, if not NULL */ 401 ){ 402 WhereTerm *pResult = 0; 403 WhereTerm *p; 404 WhereScan scan; 405 406 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); 407 op &= WO_EQ|WO_IS; 408 while( p ){ 409 if( (p->prereqRight & notReady)==0 ){ 410 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){ 411 testcase( p->eOperator & WO_IS ); 412 return p; 413 } 414 if( pResult==0 ) pResult = p; 415 } 416 p = whereScanNext(&scan); 417 } 418 return pResult; 419 } 420 421 /* 422 ** This function searches pList for an entry that matches the iCol-th column 423 ** of index pIdx. 424 ** 425 ** If such an expression is found, its index in pList->a[] is returned. If 426 ** no expression is found, -1 is returned. 427 */ 428 static int findIndexCol( 429 Parse *pParse, /* Parse context */ 430 ExprList *pList, /* Expression list to search */ 431 int iBase, /* Cursor for table associated with pIdx */ 432 Index *pIdx, /* Index to match column of */ 433 int iCol /* Column of index to match */ 434 ){ 435 int i; 436 const char *zColl = pIdx->azColl[iCol]; 437 438 for(i=0; i<pList->nExpr; i++){ 439 Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr); 440 if( p->op==TK_COLUMN 441 && p->iColumn==pIdx->aiColumn[iCol] 442 && p->iTable==iBase 443 ){ 444 CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr); 445 if( 0==sqlite3StrICmp(pColl->zName, zColl) ){ 446 return i; 447 } 448 } 449 } 450 451 return -1; 452 } 453 454 /* 455 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL 456 */ 457 static int indexColumnNotNull(Index *pIdx, int iCol){ 458 int j; 459 assert( pIdx!=0 ); 460 assert( iCol>=0 && iCol<pIdx->nColumn ); 461 j = pIdx->aiColumn[iCol]; 462 if( j>=0 ){ 463 return pIdx->pTable->aCol[j].notNull; 464 }else if( j==(-1) ){ 465 return 1; 466 }else{ 467 assert( j==(-2) ); 468 return 0; /* Assume an indexed expression can always yield a NULL */ 469 470 } 471 } 472 473 /* 474 ** Return true if the DISTINCT expression-list passed as the third argument 475 ** is redundant. 476 ** 477 ** A DISTINCT list is redundant if any subset of the columns in the 478 ** DISTINCT list are collectively unique and individually non-null. 479 */ 480 static int isDistinctRedundant( 481 Parse *pParse, /* Parsing context */ 482 SrcList *pTabList, /* The FROM clause */ 483 WhereClause *pWC, /* The WHERE clause */ 484 ExprList *pDistinct /* The result set that needs to be DISTINCT */ 485 ){ 486 Table *pTab; 487 Index *pIdx; 488 int i; 489 int iBase; 490 491 /* If there is more than one table or sub-select in the FROM clause of 492 ** this query, then it will not be possible to show that the DISTINCT 493 ** clause is redundant. */ 494 if( pTabList->nSrc!=1 ) return 0; 495 iBase = pTabList->a[0].iCursor; 496 pTab = pTabList->a[0].pTab; 497 498 /* If any of the expressions is an IPK column on table iBase, then return 499 ** true. Note: The (p->iTable==iBase) part of this test may be false if the 500 ** current SELECT is a correlated sub-query. 501 */ 502 for(i=0; i<pDistinct->nExpr; i++){ 503 Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr); 504 if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1; 505 } 506 507 /* Loop through all indices on the table, checking each to see if it makes 508 ** the DISTINCT qualifier redundant. It does so if: 509 ** 510 ** 1. The index is itself UNIQUE, and 511 ** 512 ** 2. All of the columns in the index are either part of the pDistinct 513 ** list, or else the WHERE clause contains a term of the form "col=X", 514 ** where X is a constant value. The collation sequences of the 515 ** comparison and select-list expressions must match those of the index. 516 ** 517 ** 3. All of those index columns for which the WHERE clause does not 518 ** contain a "col=X" term are subject to a NOT NULL constraint. 519 */ 520 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 521 if( !IsUniqueIndex(pIdx) ) continue; 522 for(i=0; i<pIdx->nKeyCol; i++){ 523 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){ 524 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break; 525 if( indexColumnNotNull(pIdx, i)==0 ) break; 526 } 527 } 528 if( i==pIdx->nKeyCol ){ 529 /* This index implies that the DISTINCT qualifier is redundant. */ 530 return 1; 531 } 532 } 533 534 return 0; 535 } 536 537 538 /* 539 ** Estimate the logarithm of the input value to base 2. 540 */ 541 static LogEst estLog(LogEst N){ 542 return N<=10 ? 0 : sqlite3LogEst(N) - 33; 543 } 544 545 /* 546 ** Convert OP_Column opcodes to OP_Copy in previously generated code. 547 ** 548 ** This routine runs over generated VDBE code and translates OP_Column 549 ** opcodes into OP_Copy when the table is being accessed via co-routine 550 ** instead of via table lookup. 551 ** 552 ** If the bIncrRowid parameter is 0, then any OP_Rowid instructions on 553 ** cursor iTabCur are transformed into OP_Null. Or, if bIncrRowid is non-zero, 554 ** then each OP_Rowid is transformed into an instruction to increment the 555 ** value stored in its output register. 556 */ 557 static void translateColumnToCopy( 558 Parse *pParse, /* Parsing context */ 559 int iStart, /* Translate from this opcode to the end */ 560 int iTabCur, /* OP_Column/OP_Rowid references to this table */ 561 int iRegister, /* The first column is in this register */ 562 int bIncrRowid /* If non-zero, transform OP_rowid to OP_AddImm(1) */ 563 ){ 564 Vdbe *v = pParse->pVdbe; 565 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart); 566 int iEnd = sqlite3VdbeCurrentAddr(v); 567 if( pParse->db->mallocFailed ) return; 568 for(; iStart<iEnd; iStart++, pOp++){ 569 if( pOp->p1!=iTabCur ) continue; 570 if( pOp->opcode==OP_Column ){ 571 pOp->opcode = OP_Copy; 572 pOp->p1 = pOp->p2 + iRegister; 573 pOp->p2 = pOp->p3; 574 pOp->p3 = 0; 575 }else if( pOp->opcode==OP_Rowid ){ 576 if( bIncrRowid ){ 577 /* Increment the value stored in the P2 operand of the OP_Rowid. */ 578 pOp->opcode = OP_AddImm; 579 pOp->p1 = pOp->p2; 580 pOp->p2 = 1; 581 }else{ 582 pOp->opcode = OP_Null; 583 pOp->p1 = 0; 584 pOp->p3 = 0; 585 } 586 } 587 } 588 } 589 590 /* 591 ** Two routines for printing the content of an sqlite3_index_info 592 ** structure. Used for testing and debugging only. If neither 593 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 594 ** are no-ops. 595 */ 596 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) 597 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ 598 int i; 599 if( !sqlite3WhereTrace ) return; 600 for(i=0; i<p->nConstraint; i++){ 601 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 602 i, 603 p->aConstraint[i].iColumn, 604 p->aConstraint[i].iTermOffset, 605 p->aConstraint[i].op, 606 p->aConstraint[i].usable); 607 } 608 for(i=0; i<p->nOrderBy; i++){ 609 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 610 i, 611 p->aOrderBy[i].iColumn, 612 p->aOrderBy[i].desc); 613 } 614 } 615 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ 616 int i; 617 if( !sqlite3WhereTrace ) return; 618 for(i=0; i<p->nConstraint; i++){ 619 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 620 i, 621 p->aConstraintUsage[i].argvIndex, 622 p->aConstraintUsage[i].omit); 623 } 624 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 625 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 626 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 627 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 628 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); 629 } 630 #else 631 #define TRACE_IDX_INPUTS(A) 632 #define TRACE_IDX_OUTPUTS(A) 633 #endif 634 635 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 636 /* 637 ** Return TRUE if the WHERE clause term pTerm is of a form where it 638 ** could be used with an index to access pSrc, assuming an appropriate 639 ** index existed. 640 */ 641 static int termCanDriveIndex( 642 WhereTerm *pTerm, /* WHERE clause term to check */ 643 struct SrcList_item *pSrc, /* Table we are trying to access */ 644 Bitmask notReady /* Tables in outer loops of the join */ 645 ){ 646 char aff; 647 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; 648 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0; 649 if( (pSrc->fg.jointype & JT_LEFT) 650 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 651 && (pTerm->eOperator & WO_IS) 652 ){ 653 /* Cannot use an IS term from the WHERE clause as an index driver for 654 ** the RHS of a LEFT JOIN. Such a term can only be used if it is from 655 ** the ON clause. */ 656 return 0; 657 } 658 if( (pTerm->prereqRight & notReady)!=0 ) return 0; 659 if( pTerm->u.leftColumn<0 ) return 0; 660 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; 661 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; 662 testcase( pTerm->pExpr->op==TK_IS ); 663 return 1; 664 } 665 #endif 666 667 668 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 669 /* 670 ** Generate code to construct the Index object for an automatic index 671 ** and to set up the WhereLevel object pLevel so that the code generator 672 ** makes use of the automatic index. 673 */ 674 static void constructAutomaticIndex( 675 Parse *pParse, /* The parsing context */ 676 WhereClause *pWC, /* The WHERE clause */ 677 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */ 678 Bitmask notReady, /* Mask of cursors that are not available */ 679 WhereLevel *pLevel /* Write new index here */ 680 ){ 681 int nKeyCol; /* Number of columns in the constructed index */ 682 WhereTerm *pTerm; /* A single term of the WHERE clause */ 683 WhereTerm *pWCEnd; /* End of pWC->a[] */ 684 Index *pIdx; /* Object describing the transient index */ 685 Vdbe *v; /* Prepared statement under construction */ 686 int addrInit; /* Address of the initialization bypass jump */ 687 Table *pTable; /* The table being indexed */ 688 int addrTop; /* Top of the index fill loop */ 689 int regRecord; /* Register holding an index record */ 690 int n; /* Column counter */ 691 int i; /* Loop counter */ 692 int mxBitCol; /* Maximum column in pSrc->colUsed */ 693 CollSeq *pColl; /* Collating sequence to on a column */ 694 WhereLoop *pLoop; /* The Loop object */ 695 char *zNotUsed; /* Extra space on the end of pIdx */ 696 Bitmask idxCols; /* Bitmap of columns used for indexing */ 697 Bitmask extraCols; /* Bitmap of additional columns */ 698 u8 sentWarning = 0; /* True if a warnning has been issued */ 699 Expr *pPartial = 0; /* Partial Index Expression */ 700 int iContinue = 0; /* Jump here to skip excluded rows */ 701 struct SrcList_item *pTabItem; /* FROM clause term being indexed */ 702 int addrCounter = 0; /* Address where integer counter is initialized */ 703 int regBase; /* Array of registers where record is assembled */ 704 705 /* Generate code to skip over the creation and initialization of the 706 ** transient index on 2nd and subsequent iterations of the loop. */ 707 v = pParse->pVdbe; 708 assert( v!=0 ); 709 addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 710 711 /* Count the number of columns that will be added to the index 712 ** and used to match WHERE clause constraints */ 713 nKeyCol = 0; 714 pTable = pSrc->pTab; 715 pWCEnd = &pWC->a[pWC->nTerm]; 716 pLoop = pLevel->pWLoop; 717 idxCols = 0; 718 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 719 Expr *pExpr = pTerm->pExpr; 720 assert( !ExprHasProperty(pExpr, EP_FromJoin) /* prereq always non-zero */ 721 || pExpr->iRightJoinTable!=pSrc->iCursor /* for the right-hand */ 722 || pLoop->prereq!=0 ); /* table of a LEFT JOIN */ 723 if( pLoop->prereq==0 724 && (pTerm->wtFlags & TERM_VIRTUAL)==0 725 && !ExprHasProperty(pExpr, EP_FromJoin) 726 && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){ 727 pPartial = sqlite3ExprAnd(pParse->db, pPartial, 728 sqlite3ExprDup(pParse->db, pExpr, 0)); 729 } 730 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 731 int iCol = pTerm->u.leftColumn; 732 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 733 testcase( iCol==BMS ); 734 testcase( iCol==BMS-1 ); 735 if( !sentWarning ){ 736 sqlite3_log(SQLITE_WARNING_AUTOINDEX, 737 "automatic index on %s(%s)", pTable->zName, 738 pTable->aCol[iCol].zName); 739 sentWarning = 1; 740 } 741 if( (idxCols & cMask)==0 ){ 742 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ 743 goto end_auto_index_create; 744 } 745 pLoop->aLTerm[nKeyCol++] = pTerm; 746 idxCols |= cMask; 747 } 748 } 749 } 750 assert( nKeyCol>0 ); 751 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; 752 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED 753 | WHERE_AUTO_INDEX; 754 755 /* Count the number of additional columns needed to create a 756 ** covering index. A "covering index" is an index that contains all 757 ** columns that are needed by the query. With a covering index, the 758 ** original table never needs to be accessed. Automatic indices must 759 ** be a covering index because the index will not be updated if the 760 ** original table changes and the index and table cannot both be used 761 ** if they go out of sync. 762 */ 763 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); 764 mxBitCol = MIN(BMS-1,pTable->nCol); 765 testcase( pTable->nCol==BMS-1 ); 766 testcase( pTable->nCol==BMS-2 ); 767 for(i=0; i<mxBitCol; i++){ 768 if( extraCols & MASKBIT(i) ) nKeyCol++; 769 } 770 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 771 nKeyCol += pTable->nCol - BMS + 1; 772 } 773 774 /* Construct the Index object to describe this index */ 775 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); 776 if( pIdx==0 ) goto end_auto_index_create; 777 pLoop->u.btree.pIndex = pIdx; 778 pIdx->zName = "auto-index"; 779 pIdx->pTable = pTable; 780 n = 0; 781 idxCols = 0; 782 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 783 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 784 int iCol = pTerm->u.leftColumn; 785 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 786 testcase( iCol==BMS-1 ); 787 testcase( iCol==BMS ); 788 if( (idxCols & cMask)==0 ){ 789 Expr *pX = pTerm->pExpr; 790 idxCols |= cMask; 791 pIdx->aiColumn[n] = pTerm->u.leftColumn; 792 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); 793 pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY; 794 n++; 795 } 796 } 797 } 798 assert( (u32)n==pLoop->u.btree.nEq ); 799 800 /* Add additional columns needed to make the automatic index into 801 ** a covering index */ 802 for(i=0; i<mxBitCol; i++){ 803 if( extraCols & MASKBIT(i) ){ 804 pIdx->aiColumn[n] = i; 805 pIdx->azColl[n] = sqlite3StrBINARY; 806 n++; 807 } 808 } 809 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 810 for(i=BMS-1; i<pTable->nCol; i++){ 811 pIdx->aiColumn[n] = i; 812 pIdx->azColl[n] = sqlite3StrBINARY; 813 n++; 814 } 815 } 816 assert( n==nKeyCol ); 817 pIdx->aiColumn[n] = XN_ROWID; 818 pIdx->azColl[n] = sqlite3StrBINARY; 819 820 /* Create the automatic index */ 821 assert( pLevel->iIdxCur>=0 ); 822 pLevel->iIdxCur = pParse->nTab++; 823 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); 824 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 825 VdbeComment((v, "for %s", pTable->zName)); 826 827 /* Fill the automatic index with content */ 828 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom]; 829 if( pTabItem->fg.viaCoroutine ){ 830 int regYield = pTabItem->regReturn; 831 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0); 832 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 833 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); 834 VdbeCoverage(v); 835 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 836 }else{ 837 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); 838 } 839 if( pPartial ){ 840 iContinue = sqlite3VdbeMakeLabel(v); 841 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); 842 pLoop->wsFlags |= WHERE_PARTIALIDX; 843 } 844 regRecord = sqlite3GetTempReg(pParse); 845 regBase = sqlite3GenerateIndexKey( 846 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0 847 ); 848 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); 849 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 850 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); 851 if( pTabItem->fg.viaCoroutine ){ 852 sqlite3VdbeChangeP2(v, addrCounter, regBase+n); 853 testcase( pParse->db->mallocFailed ); 854 translateColumnToCopy(pParse, addrTop, pLevel->iTabCur, 855 pTabItem->regResult, 1); 856 sqlite3VdbeGoto(v, addrTop); 857 pTabItem->fg.viaCoroutine = 0; 858 }else{ 859 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); 860 } 861 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); 862 sqlite3VdbeJumpHere(v, addrTop); 863 sqlite3ReleaseTempReg(pParse, regRecord); 864 865 /* Jump here when skipping the initialization */ 866 sqlite3VdbeJumpHere(v, addrInit); 867 868 end_auto_index_create: 869 sqlite3ExprDelete(pParse->db, pPartial); 870 } 871 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 872 873 #ifndef SQLITE_OMIT_VIRTUALTABLE 874 /* 875 ** Allocate and populate an sqlite3_index_info structure. It is the 876 ** responsibility of the caller to eventually release the structure 877 ** by passing the pointer returned by this function to sqlite3_free(). 878 */ 879 static sqlite3_index_info *allocateIndexInfo( 880 Parse *pParse, /* The parsing context */ 881 WhereClause *pWC, /* The WHERE clause being analyzed */ 882 Bitmask mUnusable, /* Ignore terms with these prereqs */ 883 struct SrcList_item *pSrc, /* The FROM clause term that is the vtab */ 884 ExprList *pOrderBy, /* The ORDER BY clause */ 885 u16 *pmNoOmit /* Mask of terms not to omit */ 886 ){ 887 int i, j; 888 int nTerm; 889 struct sqlite3_index_constraint *pIdxCons; 890 struct sqlite3_index_orderby *pIdxOrderBy; 891 struct sqlite3_index_constraint_usage *pUsage; 892 struct HiddenIndexInfo *pHidden; 893 WhereTerm *pTerm; 894 int nOrderBy; 895 sqlite3_index_info *pIdxInfo; 896 u16 mNoOmit = 0; 897 898 /* Count the number of possible WHERE clause constraints referring 899 ** to this virtual table */ 900 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 901 if( pTerm->leftCursor != pSrc->iCursor ) continue; 902 if( pTerm->prereqRight & mUnusable ) continue; 903 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 904 testcase( pTerm->eOperator & WO_IN ); 905 testcase( pTerm->eOperator & WO_ISNULL ); 906 testcase( pTerm->eOperator & WO_IS ); 907 testcase( pTerm->eOperator & WO_ALL ); 908 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue; 909 if( pTerm->wtFlags & TERM_VNULL ) continue; 910 assert( pTerm->u.leftColumn>=(-1) ); 911 nTerm++; 912 } 913 914 /* If the ORDER BY clause contains only columns in the current 915 ** virtual table then allocate space for the aOrderBy part of 916 ** the sqlite3_index_info structure. 917 */ 918 nOrderBy = 0; 919 if( pOrderBy ){ 920 int n = pOrderBy->nExpr; 921 for(i=0; i<n; i++){ 922 Expr *pExpr = pOrderBy->a[i].pExpr; 923 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 924 } 925 if( i==n){ 926 nOrderBy = n; 927 } 928 } 929 930 /* Allocate the sqlite3_index_info structure 931 */ 932 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 933 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 934 + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) ); 935 if( pIdxInfo==0 ){ 936 sqlite3ErrorMsg(pParse, "out of memory"); 937 return 0; 938 } 939 940 /* Initialize the structure. The sqlite3_index_info structure contains 941 ** many fields that are declared "const" to prevent xBestIndex from 942 ** changing them. We have to do some funky casting in order to 943 ** initialize those fields. 944 */ 945 pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1]; 946 pIdxCons = (struct sqlite3_index_constraint*)&pHidden[1]; 947 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 948 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 949 *(int*)&pIdxInfo->nConstraint = nTerm; 950 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 951 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; 952 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; 953 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = 954 pUsage; 955 956 pHidden->pWC = pWC; 957 pHidden->pParse = pParse; 958 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 959 u16 op; 960 if( pTerm->leftCursor != pSrc->iCursor ) continue; 961 if( pTerm->prereqRight & mUnusable ) continue; 962 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 963 testcase( pTerm->eOperator & WO_IN ); 964 testcase( pTerm->eOperator & WO_IS ); 965 testcase( pTerm->eOperator & WO_ISNULL ); 966 testcase( pTerm->eOperator & WO_ALL ); 967 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue; 968 if( pTerm->wtFlags & TERM_VNULL ) continue; 969 if( (pSrc->fg.jointype & JT_LEFT)!=0 970 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 971 && (pTerm->eOperator & (WO_IS|WO_ISNULL)) 972 ){ 973 /* An "IS" term in the WHERE clause where the virtual table is the rhs 974 ** of a LEFT JOIN. Do not pass this term to the virtual table 975 ** implementation, as this can lead to incorrect results from SQL such 976 ** as: 977 ** 978 ** "LEFT JOIN vtab WHERE vtab.col IS NULL" */ 979 testcase( pTerm->eOperator & WO_ISNULL ); 980 testcase( pTerm->eOperator & WO_IS ); 981 continue; 982 } 983 assert( pTerm->u.leftColumn>=(-1) ); 984 pIdxCons[j].iColumn = pTerm->u.leftColumn; 985 pIdxCons[j].iTermOffset = i; 986 op = pTerm->eOperator & WO_ALL; 987 if( op==WO_IN ) op = WO_EQ; 988 if( op==WO_AUX ){ 989 pIdxCons[j].op = pTerm->eMatchOp; 990 }else if( op & (WO_ISNULL|WO_IS) ){ 991 if( op==WO_ISNULL ){ 992 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL; 993 }else{ 994 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS; 995 } 996 }else{ 997 pIdxCons[j].op = (u8)op; 998 /* The direct assignment in the previous line is possible only because 999 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 1000 ** following asserts verify this fact. */ 1001 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 1002 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 1003 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 1004 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 1005 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 1006 assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) ); 1007 1008 if( op & (WO_LT|WO_LE|WO_GT|WO_GE) 1009 && sqlite3ExprIsVector(pTerm->pExpr->pRight) 1010 ){ 1011 if( i<16 ) mNoOmit |= (1 << i); 1012 if( op==WO_LT ) pIdxCons[j].op = WO_LE; 1013 if( op==WO_GT ) pIdxCons[j].op = WO_GE; 1014 } 1015 } 1016 1017 j++; 1018 } 1019 for(i=0; i<nOrderBy; i++){ 1020 Expr *pExpr = pOrderBy->a[i].pExpr; 1021 pIdxOrderBy[i].iColumn = pExpr->iColumn; 1022 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; 1023 } 1024 1025 *pmNoOmit = mNoOmit; 1026 return pIdxInfo; 1027 } 1028 1029 /* 1030 ** The table object reference passed as the second argument to this function 1031 ** must represent a virtual table. This function invokes the xBestIndex() 1032 ** method of the virtual table with the sqlite3_index_info object that 1033 ** comes in as the 3rd argument to this function. 1034 ** 1035 ** If an error occurs, pParse is populated with an error message and an 1036 ** appropriate error code is returned. A return of SQLITE_CONSTRAINT from 1037 ** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that 1038 ** the current configuration of "unusable" flags in sqlite3_index_info can 1039 ** not result in a valid plan. 1040 ** 1041 ** Whether or not an error is returned, it is the responsibility of the 1042 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates 1043 ** that this is required. 1044 */ 1045 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ 1046 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; 1047 int rc; 1048 1049 TRACE_IDX_INPUTS(p); 1050 rc = pVtab->pModule->xBestIndex(pVtab, p); 1051 TRACE_IDX_OUTPUTS(p); 1052 1053 if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){ 1054 if( rc==SQLITE_NOMEM ){ 1055 sqlite3OomFault(pParse->db); 1056 }else if( !pVtab->zErrMsg ){ 1057 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 1058 }else{ 1059 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 1060 } 1061 } 1062 sqlite3_free(pVtab->zErrMsg); 1063 pVtab->zErrMsg = 0; 1064 return rc; 1065 } 1066 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1067 1068 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1069 /* 1070 ** Estimate the location of a particular key among all keys in an 1071 ** index. Store the results in aStat as follows: 1072 ** 1073 ** aStat[0] Est. number of rows less than pRec 1074 ** aStat[1] Est. number of rows equal to pRec 1075 ** 1076 ** Return the index of the sample that is the smallest sample that 1077 ** is greater than or equal to pRec. Note that this index is not an index 1078 ** into the aSample[] array - it is an index into a virtual set of samples 1079 ** based on the contents of aSample[] and the number of fields in record 1080 ** pRec. 1081 */ 1082 static int whereKeyStats( 1083 Parse *pParse, /* Database connection */ 1084 Index *pIdx, /* Index to consider domain of */ 1085 UnpackedRecord *pRec, /* Vector of values to consider */ 1086 int roundUp, /* Round up if true. Round down if false */ 1087 tRowcnt *aStat /* OUT: stats written here */ 1088 ){ 1089 IndexSample *aSample = pIdx->aSample; 1090 int iCol; /* Index of required stats in anEq[] etc. */ 1091 int i; /* Index of first sample >= pRec */ 1092 int iSample; /* Smallest sample larger than or equal to pRec */ 1093 int iMin = 0; /* Smallest sample not yet tested */ 1094 int iTest; /* Next sample to test */ 1095 int res; /* Result of comparison operation */ 1096 int nField; /* Number of fields in pRec */ 1097 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ 1098 1099 #ifndef SQLITE_DEBUG 1100 UNUSED_PARAMETER( pParse ); 1101 #endif 1102 assert( pRec!=0 ); 1103 assert( pIdx->nSample>0 ); 1104 assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol ); 1105 1106 /* Do a binary search to find the first sample greater than or equal 1107 ** to pRec. If pRec contains a single field, the set of samples to search 1108 ** is simply the aSample[] array. If the samples in aSample[] contain more 1109 ** than one fields, all fields following the first are ignored. 1110 ** 1111 ** If pRec contains N fields, where N is more than one, then as well as the 1112 ** samples in aSample[] (truncated to N fields), the search also has to 1113 ** consider prefixes of those samples. For example, if the set of samples 1114 ** in aSample is: 1115 ** 1116 ** aSample[0] = (a, 5) 1117 ** aSample[1] = (a, 10) 1118 ** aSample[2] = (b, 5) 1119 ** aSample[3] = (c, 100) 1120 ** aSample[4] = (c, 105) 1121 ** 1122 ** Then the search space should ideally be the samples above and the 1123 ** unique prefixes [a], [b] and [c]. But since that is hard to organize, 1124 ** the code actually searches this set: 1125 ** 1126 ** 0: (a) 1127 ** 1: (a, 5) 1128 ** 2: (a, 10) 1129 ** 3: (a, 10) 1130 ** 4: (b) 1131 ** 5: (b, 5) 1132 ** 6: (c) 1133 ** 7: (c, 100) 1134 ** 8: (c, 105) 1135 ** 9: (c, 105) 1136 ** 1137 ** For each sample in the aSample[] array, N samples are present in the 1138 ** effective sample array. In the above, samples 0 and 1 are based on 1139 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. 1140 ** 1141 ** Often, sample i of each block of N effective samples has (i+1) fields. 1142 ** Except, each sample may be extended to ensure that it is greater than or 1143 ** equal to the previous sample in the array. For example, in the above, 1144 ** sample 2 is the first sample of a block of N samples, so at first it 1145 ** appears that it should be 1 field in size. However, that would make it 1146 ** smaller than sample 1, so the binary search would not work. As a result, 1147 ** it is extended to two fields. The duplicates that this creates do not 1148 ** cause any problems. 1149 */ 1150 nField = pRec->nField; 1151 iCol = 0; 1152 iSample = pIdx->nSample * nField; 1153 do{ 1154 int iSamp; /* Index in aSample[] of test sample */ 1155 int n; /* Number of fields in test sample */ 1156 1157 iTest = (iMin+iSample)/2; 1158 iSamp = iTest / nField; 1159 if( iSamp>0 ){ 1160 /* The proposed effective sample is a prefix of sample aSample[iSamp]. 1161 ** Specifically, the shortest prefix of at least (1 + iTest%nField) 1162 ** fields that is greater than the previous effective sample. */ 1163 for(n=(iTest % nField) + 1; n<nField; n++){ 1164 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break; 1165 } 1166 }else{ 1167 n = iTest + 1; 1168 } 1169 1170 pRec->nField = n; 1171 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); 1172 if( res<0 ){ 1173 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; 1174 iMin = iTest+1; 1175 }else if( res==0 && n<nField ){ 1176 iLower = aSample[iSamp].anLt[n-1]; 1177 iMin = iTest+1; 1178 res = -1; 1179 }else{ 1180 iSample = iTest; 1181 iCol = n-1; 1182 } 1183 }while( res && iMin<iSample ); 1184 i = iSample / nField; 1185 1186 #ifdef SQLITE_DEBUG 1187 /* The following assert statements check that the binary search code 1188 ** above found the right answer. This block serves no purpose other 1189 ** than to invoke the asserts. */ 1190 if( pParse->db->mallocFailed==0 ){ 1191 if( res==0 ){ 1192 /* If (res==0) is true, then pRec must be equal to sample i. */ 1193 assert( i<pIdx->nSample ); 1194 assert( iCol==nField-1 ); 1195 pRec->nField = nField; 1196 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) 1197 || pParse->db->mallocFailed 1198 ); 1199 }else{ 1200 /* Unless i==pIdx->nSample, indicating that pRec is larger than 1201 ** all samples in the aSample[] array, pRec must be smaller than the 1202 ** (iCol+1) field prefix of sample i. */ 1203 assert( i<=pIdx->nSample && i>=0 ); 1204 pRec->nField = iCol+1; 1205 assert( i==pIdx->nSample 1206 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 1207 || pParse->db->mallocFailed ); 1208 1209 /* if i==0 and iCol==0, then record pRec is smaller than all samples 1210 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must 1211 ** be greater than or equal to the (iCol) field prefix of sample i. 1212 ** If (i>0), then pRec must also be greater than sample (i-1). */ 1213 if( iCol>0 ){ 1214 pRec->nField = iCol; 1215 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 1216 || pParse->db->mallocFailed ); 1217 } 1218 if( i>0 ){ 1219 pRec->nField = nField; 1220 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 1221 || pParse->db->mallocFailed ); 1222 } 1223 } 1224 } 1225 #endif /* ifdef SQLITE_DEBUG */ 1226 1227 if( res==0 ){ 1228 /* Record pRec is equal to sample i */ 1229 assert( iCol==nField-1 ); 1230 aStat[0] = aSample[i].anLt[iCol]; 1231 aStat[1] = aSample[i].anEq[iCol]; 1232 }else{ 1233 /* At this point, the (iCol+1) field prefix of aSample[i] is the first 1234 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec 1235 ** is larger than all samples in the array. */ 1236 tRowcnt iUpper, iGap; 1237 if( i>=pIdx->nSample ){ 1238 iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); 1239 }else{ 1240 iUpper = aSample[i].anLt[iCol]; 1241 } 1242 1243 if( iLower>=iUpper ){ 1244 iGap = 0; 1245 }else{ 1246 iGap = iUpper - iLower; 1247 } 1248 if( roundUp ){ 1249 iGap = (iGap*2)/3; 1250 }else{ 1251 iGap = iGap/3; 1252 } 1253 aStat[0] = iLower + iGap; 1254 aStat[1] = pIdx->aAvgEq[nField-1]; 1255 } 1256 1257 /* Restore the pRec->nField value before returning. */ 1258 pRec->nField = nField; 1259 return i; 1260 } 1261 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1262 1263 /* 1264 ** If it is not NULL, pTerm is a term that provides an upper or lower 1265 ** bound on a range scan. Without considering pTerm, it is estimated 1266 ** that the scan will visit nNew rows. This function returns the number 1267 ** estimated to be visited after taking pTerm into account. 1268 ** 1269 ** If the user explicitly specified a likelihood() value for this term, 1270 ** then the return value is the likelihood multiplied by the number of 1271 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term 1272 ** has a likelihood of 0.50, and any other term a likelihood of 0.25. 1273 */ 1274 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ 1275 LogEst nRet = nNew; 1276 if( pTerm ){ 1277 if( pTerm->truthProb<=0 ){ 1278 nRet += pTerm->truthProb; 1279 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ 1280 nRet -= 20; assert( 20==sqlite3LogEst(4) ); 1281 } 1282 } 1283 return nRet; 1284 } 1285 1286 1287 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1288 /* 1289 ** Return the affinity for a single column of an index. 1290 */ 1291 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){ 1292 assert( iCol>=0 && iCol<pIdx->nColumn ); 1293 if( !pIdx->zColAff ){ 1294 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB; 1295 } 1296 return pIdx->zColAff[iCol]; 1297 } 1298 #endif 1299 1300 1301 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1302 /* 1303 ** This function is called to estimate the number of rows visited by a 1304 ** range-scan on a skip-scan index. For example: 1305 ** 1306 ** CREATE INDEX i1 ON t1(a, b, c); 1307 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; 1308 ** 1309 ** Value pLoop->nOut is currently set to the estimated number of rows 1310 ** visited for scanning (a=? AND b=?). This function reduces that estimate 1311 ** by some factor to account for the (c BETWEEN ? AND ?) expression based 1312 ** on the stat4 data for the index. this scan will be peformed multiple 1313 ** times (once for each (a,b) combination that matches a=?) is dealt with 1314 ** by the caller. 1315 ** 1316 ** It does this by scanning through all stat4 samples, comparing values 1317 ** extracted from pLower and pUpper with the corresponding column in each 1318 ** sample. If L and U are the number of samples found to be less than or 1319 ** equal to the values extracted from pLower and pUpper respectively, and 1320 ** N is the total number of samples, the pLoop->nOut value is adjusted 1321 ** as follows: 1322 ** 1323 ** nOut = nOut * ( min(U - L, 1) / N ) 1324 ** 1325 ** If pLower is NULL, or a value cannot be extracted from the term, L is 1326 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, 1327 ** U is set to N. 1328 ** 1329 ** Normally, this function sets *pbDone to 1 before returning. However, 1330 ** if no value can be extracted from either pLower or pUpper (and so the 1331 ** estimate of the number of rows delivered remains unchanged), *pbDone 1332 ** is left as is. 1333 ** 1334 ** If an error occurs, an SQLite error code is returned. Otherwise, 1335 ** SQLITE_OK. 1336 */ 1337 static int whereRangeSkipScanEst( 1338 Parse *pParse, /* Parsing & code generating context */ 1339 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1340 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1341 WhereLoop *pLoop, /* Update the .nOut value of this loop */ 1342 int *pbDone /* Set to true if at least one expr. value extracted */ 1343 ){ 1344 Index *p = pLoop->u.btree.pIndex; 1345 int nEq = pLoop->u.btree.nEq; 1346 sqlite3 *db = pParse->db; 1347 int nLower = -1; 1348 int nUpper = p->nSample+1; 1349 int rc = SQLITE_OK; 1350 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq); 1351 CollSeq *pColl; 1352 1353 sqlite3_value *p1 = 0; /* Value extracted from pLower */ 1354 sqlite3_value *p2 = 0; /* Value extracted from pUpper */ 1355 sqlite3_value *pVal = 0; /* Value extracted from record */ 1356 1357 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); 1358 if( pLower ){ 1359 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); 1360 nLower = 0; 1361 } 1362 if( pUpper && rc==SQLITE_OK ){ 1363 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); 1364 nUpper = p2 ? 0 : p->nSample; 1365 } 1366 1367 if( p1 || p2 ){ 1368 int i; 1369 int nDiff; 1370 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ 1371 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); 1372 if( rc==SQLITE_OK && p1 ){ 1373 int res = sqlite3MemCompare(p1, pVal, pColl); 1374 if( res>=0 ) nLower++; 1375 } 1376 if( rc==SQLITE_OK && p2 ){ 1377 int res = sqlite3MemCompare(p2, pVal, pColl); 1378 if( res>=0 ) nUpper++; 1379 } 1380 } 1381 nDiff = (nUpper - nLower); 1382 if( nDiff<=0 ) nDiff = 1; 1383 1384 /* If there is both an upper and lower bound specified, and the 1385 ** comparisons indicate that they are close together, use the fallback 1386 ** method (assume that the scan visits 1/64 of the rows) for estimating 1387 ** the number of rows visited. Otherwise, estimate the number of rows 1388 ** using the method described in the header comment for this function. */ 1389 if( nDiff!=1 || pUpper==0 || pLower==0 ){ 1390 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); 1391 pLoop->nOut -= nAdjust; 1392 *pbDone = 1; 1393 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", 1394 nLower, nUpper, nAdjust*-1, pLoop->nOut)); 1395 } 1396 1397 }else{ 1398 assert( *pbDone==0 ); 1399 } 1400 1401 sqlite3ValueFree(p1); 1402 sqlite3ValueFree(p2); 1403 sqlite3ValueFree(pVal); 1404 1405 return rc; 1406 } 1407 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1408 1409 /* 1410 ** This function is used to estimate the number of rows that will be visited 1411 ** by scanning an index for a range of values. The range may have an upper 1412 ** bound, a lower bound, or both. The WHERE clause terms that set the upper 1413 ** and lower bounds are represented by pLower and pUpper respectively. For 1414 ** example, assuming that index p is on t1(a): 1415 ** 1416 ** ... FROM t1 WHERE a > ? AND a < ? ... 1417 ** |_____| |_____| 1418 ** | | 1419 ** pLower pUpper 1420 ** 1421 ** If either of the upper or lower bound is not present, then NULL is passed in 1422 ** place of the corresponding WhereTerm. 1423 ** 1424 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index 1425 ** column subject to the range constraint. Or, equivalently, the number of 1426 ** equality constraints optimized by the proposed index scan. For example, 1427 ** assuming index p is on t1(a, b), and the SQL query is: 1428 ** 1429 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... 1430 ** 1431 ** then nEq is set to 1 (as the range restricted column, b, is the second 1432 ** left-most column of the index). Or, if the query is: 1433 ** 1434 ** ... FROM t1 WHERE a > ? AND a < ? ... 1435 ** 1436 ** then nEq is set to 0. 1437 ** 1438 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the 1439 ** number of rows that the index scan is expected to visit without 1440 ** considering the range constraints. If nEq is 0, then *pnOut is the number of 1441 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) 1442 ** to account for the range constraints pLower and pUpper. 1443 ** 1444 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be 1445 ** used, a single range inequality reduces the search space by a factor of 4. 1446 ** and a pair of constraints (x>? AND x<?) reduces the expected number of 1447 ** rows visited by a factor of 64. 1448 */ 1449 static int whereRangeScanEst( 1450 Parse *pParse, /* Parsing & code generating context */ 1451 WhereLoopBuilder *pBuilder, 1452 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1453 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1454 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ 1455 ){ 1456 int rc = SQLITE_OK; 1457 int nOut = pLoop->nOut; 1458 LogEst nNew; 1459 1460 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1461 Index *p = pLoop->u.btree.pIndex; 1462 int nEq = pLoop->u.btree.nEq; 1463 1464 if( p->nSample>0 && nEq<p->nSampleCol 1465 && OptimizationEnabled(pParse->db, SQLITE_Stat34) 1466 ){ 1467 if( nEq==pBuilder->nRecValid ){ 1468 UnpackedRecord *pRec = pBuilder->pRec; 1469 tRowcnt a[2]; 1470 int nBtm = pLoop->u.btree.nBtm; 1471 int nTop = pLoop->u.btree.nTop; 1472 1473 /* Variable iLower will be set to the estimate of the number of rows in 1474 ** the index that are less than the lower bound of the range query. The 1475 ** lower bound being the concatenation of $P and $L, where $P is the 1476 ** key-prefix formed by the nEq values matched against the nEq left-most 1477 ** columns of the index, and $L is the value in pLower. 1478 ** 1479 ** Or, if pLower is NULL or $L cannot be extracted from it (because it 1480 ** is not a simple variable or literal value), the lower bound of the 1481 ** range is $P. Due to a quirk in the way whereKeyStats() works, even 1482 ** if $L is available, whereKeyStats() is called for both ($P) and 1483 ** ($P:$L) and the larger of the two returned values is used. 1484 ** 1485 ** Similarly, iUpper is to be set to the estimate of the number of rows 1486 ** less than the upper bound of the range query. Where the upper bound 1487 ** is either ($P) or ($P:$U). Again, even if $U is available, both values 1488 ** of iUpper are requested of whereKeyStats() and the smaller used. 1489 ** 1490 ** The number of rows between the two bounds is then just iUpper-iLower. 1491 */ 1492 tRowcnt iLower; /* Rows less than the lower bound */ 1493 tRowcnt iUpper; /* Rows less than the upper bound */ 1494 int iLwrIdx = -2; /* aSample[] for the lower bound */ 1495 int iUprIdx = -1; /* aSample[] for the upper bound */ 1496 1497 if( pRec ){ 1498 testcase( pRec->nField!=pBuilder->nRecValid ); 1499 pRec->nField = pBuilder->nRecValid; 1500 } 1501 /* Determine iLower and iUpper using ($P) only. */ 1502 if( nEq==0 ){ 1503 iLower = 0; 1504 iUpper = p->nRowEst0; 1505 }else{ 1506 /* Note: this call could be optimized away - since the same values must 1507 ** have been requested when testing key $P in whereEqualScanEst(). */ 1508 whereKeyStats(pParse, p, pRec, 0, a); 1509 iLower = a[0]; 1510 iUpper = a[0] + a[1]; 1511 } 1512 1513 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); 1514 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); 1515 assert( p->aSortOrder!=0 ); 1516 if( p->aSortOrder[nEq] ){ 1517 /* The roles of pLower and pUpper are swapped for a DESC index */ 1518 SWAP(WhereTerm*, pLower, pUpper); 1519 SWAP(int, nBtm, nTop); 1520 } 1521 1522 /* If possible, improve on the iLower estimate using ($P:$L). */ 1523 if( pLower ){ 1524 int n; /* Values extracted from pExpr */ 1525 Expr *pExpr = pLower->pExpr->pRight; 1526 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n); 1527 if( rc==SQLITE_OK && n ){ 1528 tRowcnt iNew; 1529 u16 mask = WO_GT|WO_LE; 1530 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1531 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); 1532 iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0); 1533 if( iNew>iLower ) iLower = iNew; 1534 nOut--; 1535 pLower = 0; 1536 } 1537 } 1538 1539 /* If possible, improve on the iUpper estimate using ($P:$U). */ 1540 if( pUpper ){ 1541 int n; /* Values extracted from pExpr */ 1542 Expr *pExpr = pUpper->pExpr->pRight; 1543 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n); 1544 if( rc==SQLITE_OK && n ){ 1545 tRowcnt iNew; 1546 u16 mask = WO_GT|WO_LE; 1547 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1548 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); 1549 iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0); 1550 if( iNew<iUpper ) iUpper = iNew; 1551 nOut--; 1552 pUpper = 0; 1553 } 1554 } 1555 1556 pBuilder->pRec = pRec; 1557 if( rc==SQLITE_OK ){ 1558 if( iUpper>iLower ){ 1559 nNew = sqlite3LogEst(iUpper - iLower); 1560 /* TUNING: If both iUpper and iLower are derived from the same 1561 ** sample, then assume they are 4x more selective. This brings 1562 ** the estimated selectivity more in line with what it would be 1563 ** if estimated without the use of STAT3/4 tables. */ 1564 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) ); 1565 }else{ 1566 nNew = 10; assert( 10==sqlite3LogEst(2) ); 1567 } 1568 if( nNew<nOut ){ 1569 nOut = nNew; 1570 } 1571 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", 1572 (u32)iLower, (u32)iUpper, nOut)); 1573 } 1574 }else{ 1575 int bDone = 0; 1576 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); 1577 if( bDone ) return rc; 1578 } 1579 } 1580 #else 1581 UNUSED_PARAMETER(pParse); 1582 UNUSED_PARAMETER(pBuilder); 1583 assert( pLower || pUpper ); 1584 #endif 1585 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); 1586 nNew = whereRangeAdjust(pLower, nOut); 1587 nNew = whereRangeAdjust(pUpper, nNew); 1588 1589 /* TUNING: If there is both an upper and lower limit and neither limit 1590 ** has an application-defined likelihood(), assume the range is 1591 ** reduced by an additional 75%. This means that, by default, an open-ended 1592 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the 1593 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to 1594 ** match 1/64 of the index. */ 1595 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ 1596 nNew -= 20; 1597 } 1598 1599 nOut -= (pLower!=0) + (pUpper!=0); 1600 if( nNew<10 ) nNew = 10; 1601 if( nNew<nOut ) nOut = nNew; 1602 #if defined(WHERETRACE_ENABLED) 1603 if( pLoop->nOut>nOut ){ 1604 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", 1605 pLoop->nOut, nOut)); 1606 } 1607 #endif 1608 pLoop->nOut = (LogEst)nOut; 1609 return rc; 1610 } 1611 1612 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1613 /* 1614 ** Estimate the number of rows that will be returned based on 1615 ** an equality constraint x=VALUE and where that VALUE occurs in 1616 ** the histogram data. This only works when x is the left-most 1617 ** column of an index and sqlite_stat3 histogram data is available 1618 ** for that index. When pExpr==NULL that means the constraint is 1619 ** "x IS NULL" instead of "x=VALUE". 1620 ** 1621 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1622 ** If unable to make an estimate, leave *pnRow unchanged and return 1623 ** non-zero. 1624 ** 1625 ** This routine can fail if it is unable to load a collating sequence 1626 ** required for string comparison, or if unable to allocate memory 1627 ** for a UTF conversion required for comparison. The error is stored 1628 ** in the pParse structure. 1629 */ 1630 static int whereEqualScanEst( 1631 Parse *pParse, /* Parsing & code generating context */ 1632 WhereLoopBuilder *pBuilder, 1633 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ 1634 tRowcnt *pnRow /* Write the revised row estimate here */ 1635 ){ 1636 Index *p = pBuilder->pNew->u.btree.pIndex; 1637 int nEq = pBuilder->pNew->u.btree.nEq; 1638 UnpackedRecord *pRec = pBuilder->pRec; 1639 int rc; /* Subfunction return code */ 1640 tRowcnt a[2]; /* Statistics */ 1641 int bOk; 1642 1643 assert( nEq>=1 ); 1644 assert( nEq<=p->nColumn ); 1645 assert( p->aSample!=0 ); 1646 assert( p->nSample>0 ); 1647 assert( pBuilder->nRecValid<nEq ); 1648 1649 /* If values are not available for all fields of the index to the left 1650 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ 1651 if( pBuilder->nRecValid<(nEq-1) ){ 1652 return SQLITE_NOTFOUND; 1653 } 1654 1655 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() 1656 ** below would return the same value. */ 1657 if( nEq>=p->nColumn ){ 1658 *pnRow = 1; 1659 return SQLITE_OK; 1660 } 1661 1662 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk); 1663 pBuilder->pRec = pRec; 1664 if( rc!=SQLITE_OK ) return rc; 1665 if( bOk==0 ) return SQLITE_NOTFOUND; 1666 pBuilder->nRecValid = nEq; 1667 1668 whereKeyStats(pParse, p, pRec, 0, a); 1669 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n", 1670 p->zName, nEq-1, (int)a[1])); 1671 *pnRow = a[1]; 1672 1673 return rc; 1674 } 1675 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1676 1677 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1678 /* 1679 ** Estimate the number of rows that will be returned based on 1680 ** an IN constraint where the right-hand side of the IN operator 1681 ** is a list of values. Example: 1682 ** 1683 ** WHERE x IN (1,2,3,4) 1684 ** 1685 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1686 ** If unable to make an estimate, leave *pnRow unchanged and return 1687 ** non-zero. 1688 ** 1689 ** This routine can fail if it is unable to load a collating sequence 1690 ** required for string comparison, or if unable to allocate memory 1691 ** for a UTF conversion required for comparison. The error is stored 1692 ** in the pParse structure. 1693 */ 1694 static int whereInScanEst( 1695 Parse *pParse, /* Parsing & code generating context */ 1696 WhereLoopBuilder *pBuilder, 1697 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ 1698 tRowcnt *pnRow /* Write the revised row estimate here */ 1699 ){ 1700 Index *p = pBuilder->pNew->u.btree.pIndex; 1701 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); 1702 int nRecValid = pBuilder->nRecValid; 1703 int rc = SQLITE_OK; /* Subfunction return code */ 1704 tRowcnt nEst; /* Number of rows for a single term */ 1705 tRowcnt nRowEst = 0; /* New estimate of the number of rows */ 1706 int i; /* Loop counter */ 1707 1708 assert( p->aSample!=0 ); 1709 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ 1710 nEst = nRow0; 1711 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); 1712 nRowEst += nEst; 1713 pBuilder->nRecValid = nRecValid; 1714 } 1715 1716 if( rc==SQLITE_OK ){ 1717 if( nRowEst > nRow0 ) nRowEst = nRow0; 1718 *pnRow = nRowEst; 1719 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); 1720 } 1721 assert( pBuilder->nRecValid==nRecValid ); 1722 return rc; 1723 } 1724 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1725 1726 1727 #ifdef WHERETRACE_ENABLED 1728 /* 1729 ** Print the content of a WhereTerm object 1730 */ 1731 static void whereTermPrint(WhereTerm *pTerm, int iTerm){ 1732 if( pTerm==0 ){ 1733 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); 1734 }else{ 1735 char zType[4]; 1736 char zLeft[50]; 1737 memcpy(zType, "...", 4); 1738 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; 1739 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; 1740 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L'; 1741 if( pTerm->eOperator & WO_SINGLE ){ 1742 sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}", 1743 pTerm->leftCursor, pTerm->u.leftColumn); 1744 }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){ 1745 sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%lld", 1746 pTerm->u.pOrInfo->indexable); 1747 }else{ 1748 sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor); 1749 } 1750 sqlite3DebugPrintf( 1751 "TERM-%-3d %p %s %-12s prob=%-3d op=0x%03x wtFlags=0x%04x", 1752 iTerm, pTerm, zType, zLeft, pTerm->truthProb, 1753 pTerm->eOperator, pTerm->wtFlags); 1754 if( pTerm->iField ){ 1755 sqlite3DebugPrintf(" iField=%d\n", pTerm->iField); 1756 }else{ 1757 sqlite3DebugPrintf("\n"); 1758 } 1759 sqlite3TreeViewExpr(0, pTerm->pExpr, 0); 1760 } 1761 } 1762 #endif 1763 1764 #ifdef WHERETRACE_ENABLED 1765 /* 1766 ** Show the complete content of a WhereClause 1767 */ 1768 void sqlite3WhereClausePrint(WhereClause *pWC){ 1769 int i; 1770 for(i=0; i<pWC->nTerm; i++){ 1771 whereTermPrint(&pWC->a[i], i); 1772 } 1773 } 1774 #endif 1775 1776 #ifdef WHERETRACE_ENABLED 1777 /* 1778 ** Print a WhereLoop object for debugging purposes 1779 */ 1780 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){ 1781 WhereInfo *pWInfo = pWC->pWInfo; 1782 int nb = 1+(pWInfo->pTabList->nSrc+3)/4; 1783 struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab; 1784 Table *pTab = pItem->pTab; 1785 Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1; 1786 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, 1787 p->iTab, nb, p->maskSelf, nb, p->prereq & mAll); 1788 sqlite3DebugPrintf(" %12s", 1789 pItem->zAlias ? pItem->zAlias : pTab->zName); 1790 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 1791 const char *zName; 1792 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ 1793 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ 1794 int i = sqlite3Strlen30(zName) - 1; 1795 while( zName[i]!='_' ) i--; 1796 zName += i; 1797 } 1798 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); 1799 }else{ 1800 sqlite3DebugPrintf("%20s",""); 1801 } 1802 }else{ 1803 char *z; 1804 if( p->u.vtab.idxStr ){ 1805 z = sqlite3_mprintf("(%d,\"%s\",%x)", 1806 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); 1807 }else{ 1808 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); 1809 } 1810 sqlite3DebugPrintf(" %-19s", z); 1811 sqlite3_free(z); 1812 } 1813 if( p->wsFlags & WHERE_SKIPSCAN ){ 1814 sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); 1815 }else{ 1816 sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm); 1817 } 1818 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); 1819 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ 1820 int i; 1821 for(i=0; i<p->nLTerm; i++){ 1822 whereTermPrint(p->aLTerm[i], i); 1823 } 1824 } 1825 } 1826 #endif 1827 1828 /* 1829 ** Convert bulk memory into a valid WhereLoop that can be passed 1830 ** to whereLoopClear harmlessly. 1831 */ 1832 static void whereLoopInit(WhereLoop *p){ 1833 p->aLTerm = p->aLTermSpace; 1834 p->nLTerm = 0; 1835 p->nLSlot = ArraySize(p->aLTermSpace); 1836 p->wsFlags = 0; 1837 } 1838 1839 /* 1840 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. 1841 */ 1842 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ 1843 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ 1844 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ 1845 sqlite3_free(p->u.vtab.idxStr); 1846 p->u.vtab.needFree = 0; 1847 p->u.vtab.idxStr = 0; 1848 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ 1849 sqlite3DbFree(db, p->u.btree.pIndex->zColAff); 1850 sqlite3DbFreeNN(db, p->u.btree.pIndex); 1851 p->u.btree.pIndex = 0; 1852 } 1853 } 1854 } 1855 1856 /* 1857 ** Deallocate internal memory used by a WhereLoop object 1858 */ 1859 static void whereLoopClear(sqlite3 *db, WhereLoop *p){ 1860 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm); 1861 whereLoopClearUnion(db, p); 1862 whereLoopInit(p); 1863 } 1864 1865 /* 1866 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. 1867 */ 1868 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ 1869 WhereTerm **paNew; 1870 if( p->nLSlot>=n ) return SQLITE_OK; 1871 n = (n+7)&~7; 1872 paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n); 1873 if( paNew==0 ) return SQLITE_NOMEM_BKPT; 1874 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); 1875 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm); 1876 p->aLTerm = paNew; 1877 p->nLSlot = n; 1878 return SQLITE_OK; 1879 } 1880 1881 /* 1882 ** Transfer content from the second pLoop into the first. 1883 */ 1884 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ 1885 whereLoopClearUnion(db, pTo); 1886 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){ 1887 memset(&pTo->u, 0, sizeof(pTo->u)); 1888 return SQLITE_NOMEM_BKPT; 1889 } 1890 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); 1891 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); 1892 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ 1893 pFrom->u.vtab.needFree = 0; 1894 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 1895 pFrom->u.btree.pIndex = 0; 1896 } 1897 return SQLITE_OK; 1898 } 1899 1900 /* 1901 ** Delete a WhereLoop object 1902 */ 1903 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ 1904 whereLoopClear(db, p); 1905 sqlite3DbFreeNN(db, p); 1906 } 1907 1908 /* 1909 ** Free a WhereInfo structure 1910 */ 1911 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 1912 int i; 1913 assert( pWInfo!=0 ); 1914 for(i=0; i<pWInfo->nLevel; i++){ 1915 WhereLevel *pLevel = &pWInfo->a[i]; 1916 if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){ 1917 sqlite3DbFree(db, pLevel->u.in.aInLoop); 1918 } 1919 } 1920 sqlite3WhereClauseClear(&pWInfo->sWC); 1921 while( pWInfo->pLoops ){ 1922 WhereLoop *p = pWInfo->pLoops; 1923 pWInfo->pLoops = p->pNextLoop; 1924 whereLoopDelete(db, p); 1925 } 1926 sqlite3DbFreeNN(db, pWInfo); 1927 } 1928 1929 /* 1930 ** Return TRUE if all of the following are true: 1931 ** 1932 ** (1) X has the same or lower cost that Y 1933 ** (2) X uses fewer WHERE clause terms than Y 1934 ** (3) Every WHERE clause term used by X is also used by Y 1935 ** (4) X skips at least as many columns as Y 1936 ** (5) If X is a covering index, than Y is too 1937 ** 1938 ** Conditions (2) and (3) mean that X is a "proper subset" of Y. 1939 ** If X is a proper subset of Y then Y is a better choice and ought 1940 ** to have a lower cost. This routine returns TRUE when that cost 1941 ** relationship is inverted and needs to be adjusted. Constraint (4) 1942 ** was added because if X uses skip-scan less than Y it still might 1943 ** deserve a lower cost even if it is a proper subset of Y. Constraint (5) 1944 ** was added because a covering index probably deserves to have a lower cost 1945 ** than a non-covering index even if it is a proper subset. 1946 */ 1947 static int whereLoopCheaperProperSubset( 1948 const WhereLoop *pX, /* First WhereLoop to compare */ 1949 const WhereLoop *pY /* Compare against this WhereLoop */ 1950 ){ 1951 int i, j; 1952 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ 1953 return 0; /* X is not a subset of Y */ 1954 } 1955 if( pY->nSkip > pX->nSkip ) return 0; 1956 if( pX->rRun >= pY->rRun ){ 1957 if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */ 1958 if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */ 1959 } 1960 for(i=pX->nLTerm-1; i>=0; i--){ 1961 if( pX->aLTerm[i]==0 ) continue; 1962 for(j=pY->nLTerm-1; j>=0; j--){ 1963 if( pY->aLTerm[j]==pX->aLTerm[i] ) break; 1964 } 1965 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ 1966 } 1967 if( (pX->wsFlags&WHERE_IDX_ONLY)!=0 1968 && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){ 1969 return 0; /* Constraint (5) */ 1970 } 1971 return 1; /* All conditions meet */ 1972 } 1973 1974 /* 1975 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so 1976 ** that: 1977 ** 1978 ** (1) pTemplate costs less than any other WhereLoops that are a proper 1979 ** subset of pTemplate 1980 ** 1981 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate 1982 ** is a proper subset. 1983 ** 1984 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer 1985 ** WHERE clause terms than Y and that every WHERE clause term used by X is 1986 ** also used by Y. 1987 */ 1988 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ 1989 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; 1990 for(; p; p=p->pNextLoop){ 1991 if( p->iTab!=pTemplate->iTab ) continue; 1992 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; 1993 if( whereLoopCheaperProperSubset(p, pTemplate) ){ 1994 /* Adjust pTemplate cost downward so that it is cheaper than its 1995 ** subset p. */ 1996 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 1997 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1)); 1998 pTemplate->rRun = p->rRun; 1999 pTemplate->nOut = p->nOut - 1; 2000 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ 2001 /* Adjust pTemplate cost upward so that it is costlier than p since 2002 ** pTemplate is a proper subset of p */ 2003 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 2004 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1)); 2005 pTemplate->rRun = p->rRun; 2006 pTemplate->nOut = p->nOut + 1; 2007 } 2008 } 2009 } 2010 2011 /* 2012 ** Search the list of WhereLoops in *ppPrev looking for one that can be 2013 ** replaced by pTemplate. 2014 ** 2015 ** Return NULL if pTemplate does not belong on the WhereLoop list. 2016 ** In other words if pTemplate ought to be dropped from further consideration. 2017 ** 2018 ** If pX is a WhereLoop that pTemplate can replace, then return the 2019 ** link that points to pX. 2020 ** 2021 ** If pTemplate cannot replace any existing element of the list but needs 2022 ** to be added to the list as a new entry, then return a pointer to the 2023 ** tail of the list. 2024 */ 2025 static WhereLoop **whereLoopFindLesser( 2026 WhereLoop **ppPrev, 2027 const WhereLoop *pTemplate 2028 ){ 2029 WhereLoop *p; 2030 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ 2031 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ 2032 /* If either the iTab or iSortIdx values for two WhereLoop are different 2033 ** then those WhereLoops need to be considered separately. Neither is 2034 ** a candidate to replace the other. */ 2035 continue; 2036 } 2037 /* In the current implementation, the rSetup value is either zero 2038 ** or the cost of building an automatic index (NlogN) and the NlogN 2039 ** is the same for compatible WhereLoops. */ 2040 assert( p->rSetup==0 || pTemplate->rSetup==0 2041 || p->rSetup==pTemplate->rSetup ); 2042 2043 /* whereLoopAddBtree() always generates and inserts the automatic index 2044 ** case first. Hence compatible candidate WhereLoops never have a larger 2045 ** rSetup. Call this SETUP-INVARIANT */ 2046 assert( p->rSetup>=pTemplate->rSetup ); 2047 2048 /* Any loop using an appliation-defined index (or PRIMARY KEY or 2049 ** UNIQUE constraint) with one or more == constraints is better 2050 ** than an automatic index. Unless it is a skip-scan. */ 2051 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 2052 && (pTemplate->nSkip)==0 2053 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 2054 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 2055 && (p->prereq & pTemplate->prereq)==pTemplate->prereq 2056 ){ 2057 break; 2058 } 2059 2060 /* If existing WhereLoop p is better than pTemplate, pTemplate can be 2061 ** discarded. WhereLoop p is better if: 2062 ** (1) p has no more dependencies than pTemplate, and 2063 ** (2) p has an equal or lower cost than pTemplate 2064 */ 2065 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ 2066 && p->rSetup<=pTemplate->rSetup /* (2a) */ 2067 && p->rRun<=pTemplate->rRun /* (2b) */ 2068 && p->nOut<=pTemplate->nOut /* (2c) */ 2069 ){ 2070 return 0; /* Discard pTemplate */ 2071 } 2072 2073 /* If pTemplate is always better than p, then cause p to be overwritten 2074 ** with pTemplate. pTemplate is better than p if: 2075 ** (1) pTemplate has no more dependences than p, and 2076 ** (2) pTemplate has an equal or lower cost than p. 2077 */ 2078 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ 2079 && p->rRun>=pTemplate->rRun /* (2a) */ 2080 && p->nOut>=pTemplate->nOut /* (2b) */ 2081 ){ 2082 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ 2083 break; /* Cause p to be overwritten by pTemplate */ 2084 } 2085 } 2086 return ppPrev; 2087 } 2088 2089 /* 2090 ** Insert or replace a WhereLoop entry using the template supplied. 2091 ** 2092 ** An existing WhereLoop entry might be overwritten if the new template 2093 ** is better and has fewer dependencies. Or the template will be ignored 2094 ** and no insert will occur if an existing WhereLoop is faster and has 2095 ** fewer dependencies than the template. Otherwise a new WhereLoop is 2096 ** added based on the template. 2097 ** 2098 ** If pBuilder->pOrSet is not NULL then we care about only the 2099 ** prerequisites and rRun and nOut costs of the N best loops. That 2100 ** information is gathered in the pBuilder->pOrSet object. This special 2101 ** processing mode is used only for OR clause processing. 2102 ** 2103 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we 2104 ** still might overwrite similar loops with the new template if the 2105 ** new template is better. Loops may be overwritten if the following 2106 ** conditions are met: 2107 ** 2108 ** (1) They have the same iTab. 2109 ** (2) They have the same iSortIdx. 2110 ** (3) The template has same or fewer dependencies than the current loop 2111 ** (4) The template has the same or lower cost than the current loop 2112 */ 2113 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ 2114 WhereLoop **ppPrev, *p; 2115 WhereInfo *pWInfo = pBuilder->pWInfo; 2116 sqlite3 *db = pWInfo->pParse->db; 2117 int rc; 2118 2119 /* Stop the search once we hit the query planner search limit */ 2120 if( pBuilder->iPlanLimit==0 ){ 2121 WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n")); 2122 if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0; 2123 return SQLITE_DONE; 2124 } 2125 pBuilder->iPlanLimit--; 2126 2127 /* If pBuilder->pOrSet is defined, then only keep track of the costs 2128 ** and prereqs. 2129 */ 2130 if( pBuilder->pOrSet!=0 ){ 2131 if( pTemplate->nLTerm ){ 2132 #if WHERETRACE_ENABLED 2133 u16 n = pBuilder->pOrSet->n; 2134 int x = 2135 #endif 2136 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, 2137 pTemplate->nOut); 2138 #if WHERETRACE_ENABLED /* 0x8 */ 2139 if( sqlite3WhereTrace & 0x8 ){ 2140 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); 2141 whereLoopPrint(pTemplate, pBuilder->pWC); 2142 } 2143 #endif 2144 } 2145 return SQLITE_OK; 2146 } 2147 2148 /* Look for an existing WhereLoop to replace with pTemplate 2149 */ 2150 whereLoopAdjustCost(pWInfo->pLoops, pTemplate); 2151 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); 2152 2153 if( ppPrev==0 ){ 2154 /* There already exists a WhereLoop on the list that is better 2155 ** than pTemplate, so just ignore pTemplate */ 2156 #if WHERETRACE_ENABLED /* 0x8 */ 2157 if( sqlite3WhereTrace & 0x8 ){ 2158 sqlite3DebugPrintf(" skip: "); 2159 whereLoopPrint(pTemplate, pBuilder->pWC); 2160 } 2161 #endif 2162 return SQLITE_OK; 2163 }else{ 2164 p = *ppPrev; 2165 } 2166 2167 /* If we reach this point it means that either p[] should be overwritten 2168 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new 2169 ** WhereLoop and insert it. 2170 */ 2171 #if WHERETRACE_ENABLED /* 0x8 */ 2172 if( sqlite3WhereTrace & 0x8 ){ 2173 if( p!=0 ){ 2174 sqlite3DebugPrintf("replace: "); 2175 whereLoopPrint(p, pBuilder->pWC); 2176 sqlite3DebugPrintf(" with: "); 2177 }else{ 2178 sqlite3DebugPrintf(" add: "); 2179 } 2180 whereLoopPrint(pTemplate, pBuilder->pWC); 2181 } 2182 #endif 2183 if( p==0 ){ 2184 /* Allocate a new WhereLoop to add to the end of the list */ 2185 *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop)); 2186 if( p==0 ) return SQLITE_NOMEM_BKPT; 2187 whereLoopInit(p); 2188 p->pNextLoop = 0; 2189 }else{ 2190 /* We will be overwriting WhereLoop p[]. But before we do, first 2191 ** go through the rest of the list and delete any other entries besides 2192 ** p[] that are also supplated by pTemplate */ 2193 WhereLoop **ppTail = &p->pNextLoop; 2194 WhereLoop *pToDel; 2195 while( *ppTail ){ 2196 ppTail = whereLoopFindLesser(ppTail, pTemplate); 2197 if( ppTail==0 ) break; 2198 pToDel = *ppTail; 2199 if( pToDel==0 ) break; 2200 *ppTail = pToDel->pNextLoop; 2201 #if WHERETRACE_ENABLED /* 0x8 */ 2202 if( sqlite3WhereTrace & 0x8 ){ 2203 sqlite3DebugPrintf(" delete: "); 2204 whereLoopPrint(pToDel, pBuilder->pWC); 2205 } 2206 #endif 2207 whereLoopDelete(db, pToDel); 2208 } 2209 } 2210 rc = whereLoopXfer(db, p, pTemplate); 2211 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 2212 Index *pIndex = p->u.btree.pIndex; 2213 if( pIndex && pIndex->tnum==0 ){ 2214 p->u.btree.pIndex = 0; 2215 } 2216 } 2217 return rc; 2218 } 2219 2220 /* 2221 ** Adjust the WhereLoop.nOut value downward to account for terms of the 2222 ** WHERE clause that reference the loop but which are not used by an 2223 ** index. 2224 * 2225 ** For every WHERE clause term that is not used by the index 2226 ** and which has a truth probability assigned by one of the likelihood(), 2227 ** likely(), or unlikely() SQL functions, reduce the estimated number 2228 ** of output rows by the probability specified. 2229 ** 2230 ** TUNING: For every WHERE clause term that is not used by the index 2231 ** and which does not have an assigned truth probability, heuristics 2232 ** described below are used to try to estimate the truth probability. 2233 ** TODO --> Perhaps this is something that could be improved by better 2234 ** table statistics. 2235 ** 2236 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% 2237 ** value corresponds to -1 in LogEst notation, so this means decrement 2238 ** the WhereLoop.nOut field for every such WHERE clause term. 2239 ** 2240 ** Heuristic 2: If there exists one or more WHERE clause terms of the 2241 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the 2242 ** final output row estimate is no greater than 1/4 of the total number 2243 ** of rows in the table. In other words, assume that x==EXPR will filter 2244 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the 2245 ** "x" column is boolean or else -1 or 0 or 1 is a common default value 2246 ** on the "x" column and so in that case only cap the output row estimate 2247 ** at 1/2 instead of 1/4. 2248 */ 2249 static void whereLoopOutputAdjust( 2250 WhereClause *pWC, /* The WHERE clause */ 2251 WhereLoop *pLoop, /* The loop to adjust downward */ 2252 LogEst nRow /* Number of rows in the entire table */ 2253 ){ 2254 WhereTerm *pTerm, *pX; 2255 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); 2256 int i, j, k; 2257 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ 2258 2259 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2260 for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){ 2261 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break; 2262 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; 2263 if( (pTerm->prereqAll & notAllowed)!=0 ) continue; 2264 for(j=pLoop->nLTerm-1; j>=0; j--){ 2265 pX = pLoop->aLTerm[j]; 2266 if( pX==0 ) continue; 2267 if( pX==pTerm ) break; 2268 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; 2269 } 2270 if( j<0 ){ 2271 if( pTerm->truthProb<=0 ){ 2272 /* If a truth probability is specified using the likelihood() hints, 2273 ** then use the probability provided by the application. */ 2274 pLoop->nOut += pTerm->truthProb; 2275 }else{ 2276 /* In the absence of explicit truth probabilities, use heuristics to 2277 ** guess a reasonable truth probability. */ 2278 pLoop->nOut--; 2279 if( pTerm->eOperator&(WO_EQ|WO_IS) ){ 2280 Expr *pRight = pTerm->pExpr->pRight; 2281 testcase( pTerm->pExpr->op==TK_IS ); 2282 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){ 2283 k = 10; 2284 }else{ 2285 k = 20; 2286 } 2287 if( iReduce<k ) iReduce = k; 2288 } 2289 } 2290 } 2291 } 2292 if( pLoop->nOut > nRow-iReduce ) pLoop->nOut = nRow - iReduce; 2293 } 2294 2295 /* 2296 ** Term pTerm is a vector range comparison operation. The first comparison 2297 ** in the vector can be optimized using column nEq of the index. This 2298 ** function returns the total number of vector elements that can be used 2299 ** as part of the range comparison. 2300 ** 2301 ** For example, if the query is: 2302 ** 2303 ** WHERE a = ? AND (b, c, d) > (?, ?, ?) 2304 ** 2305 ** and the index: 2306 ** 2307 ** CREATE INDEX ... ON (a, b, c, d, e) 2308 ** 2309 ** then this function would be invoked with nEq=1. The value returned in 2310 ** this case is 3. 2311 */ 2312 static int whereRangeVectorLen( 2313 Parse *pParse, /* Parsing context */ 2314 int iCur, /* Cursor open on pIdx */ 2315 Index *pIdx, /* The index to be used for a inequality constraint */ 2316 int nEq, /* Number of prior equality constraints on same index */ 2317 WhereTerm *pTerm /* The vector inequality constraint */ 2318 ){ 2319 int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft); 2320 int i; 2321 2322 nCmp = MIN(nCmp, (pIdx->nColumn - nEq)); 2323 for(i=1; i<nCmp; i++){ 2324 /* Test if comparison i of pTerm is compatible with column (i+nEq) 2325 ** of the index. If not, exit the loop. */ 2326 char aff; /* Comparison affinity */ 2327 char idxaff = 0; /* Indexed columns affinity */ 2328 CollSeq *pColl; /* Comparison collation sequence */ 2329 Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr; 2330 Expr *pRhs = pTerm->pExpr->pRight; 2331 if( pRhs->flags & EP_xIsSelect ){ 2332 pRhs = pRhs->x.pSelect->pEList->a[i].pExpr; 2333 }else{ 2334 pRhs = pRhs->x.pList->a[i].pExpr; 2335 } 2336 2337 /* Check that the LHS of the comparison is a column reference to 2338 ** the right column of the right source table. And that the sort 2339 ** order of the index column is the same as the sort order of the 2340 ** leftmost index column. */ 2341 if( pLhs->op!=TK_COLUMN 2342 || pLhs->iTable!=iCur 2343 || pLhs->iColumn!=pIdx->aiColumn[i+nEq] 2344 || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq] 2345 ){ 2346 break; 2347 } 2348 2349 testcase( pLhs->iColumn==XN_ROWID ); 2350 aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs)); 2351 idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn); 2352 if( aff!=idxaff ) break; 2353 2354 pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2355 if( pColl==0 ) break; 2356 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break; 2357 } 2358 return i; 2359 } 2360 2361 /* 2362 ** Adjust the cost C by the costMult facter T. This only occurs if 2363 ** compiled with -DSQLITE_ENABLE_COSTMULT 2364 */ 2365 #ifdef SQLITE_ENABLE_COSTMULT 2366 # define ApplyCostMultiplier(C,T) C += T 2367 #else 2368 # define ApplyCostMultiplier(C,T) 2369 #endif 2370 2371 /* 2372 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the 2373 ** index pIndex. Try to match one more. 2374 ** 2375 ** When this function is called, pBuilder->pNew->nOut contains the 2376 ** number of rows expected to be visited by filtering using the nEq 2377 ** terms only. If it is modified, this value is restored before this 2378 ** function returns. 2379 ** 2380 ** If pProbe->tnum==0, that means pIndex is a fake index used for the 2381 ** INTEGER PRIMARY KEY. 2382 */ 2383 static int whereLoopAddBtreeIndex( 2384 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ 2385 struct SrcList_item *pSrc, /* FROM clause term being analyzed */ 2386 Index *pProbe, /* An index on pSrc */ 2387 LogEst nInMul /* log(Number of iterations due to IN) */ 2388 ){ 2389 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ 2390 Parse *pParse = pWInfo->pParse; /* Parsing context */ 2391 sqlite3 *db = pParse->db; /* Database connection malloc context */ 2392 WhereLoop *pNew; /* Template WhereLoop under construction */ 2393 WhereTerm *pTerm; /* A WhereTerm under consideration */ 2394 int opMask; /* Valid operators for constraints */ 2395 WhereScan scan; /* Iterator for WHERE terms */ 2396 Bitmask saved_prereq; /* Original value of pNew->prereq */ 2397 u16 saved_nLTerm; /* Original value of pNew->nLTerm */ 2398 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ 2399 u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */ 2400 u16 saved_nTop; /* Original value of pNew->u.btree.nTop */ 2401 u16 saved_nSkip; /* Original value of pNew->nSkip */ 2402 u32 saved_wsFlags; /* Original value of pNew->wsFlags */ 2403 LogEst saved_nOut; /* Original value of pNew->nOut */ 2404 int rc = SQLITE_OK; /* Return code */ 2405 LogEst rSize; /* Number of rows in the table */ 2406 LogEst rLogSize; /* Logarithm of table size */ 2407 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ 2408 2409 pNew = pBuilder->pNew; 2410 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 2411 WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d\n", 2412 pProbe->pTable->zName,pProbe->zName, pNew->u.btree.nEq)); 2413 2414 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); 2415 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); 2416 if( pNew->wsFlags & WHERE_BTM_LIMIT ){ 2417 opMask = WO_LT|WO_LE; 2418 }else{ 2419 assert( pNew->u.btree.nBtm==0 ); 2420 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS; 2421 } 2422 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); 2423 2424 assert( pNew->u.btree.nEq<pProbe->nColumn ); 2425 2426 saved_nEq = pNew->u.btree.nEq; 2427 saved_nBtm = pNew->u.btree.nBtm; 2428 saved_nTop = pNew->u.btree.nTop; 2429 saved_nSkip = pNew->nSkip; 2430 saved_nLTerm = pNew->nLTerm; 2431 saved_wsFlags = pNew->wsFlags; 2432 saved_prereq = pNew->prereq; 2433 saved_nOut = pNew->nOut; 2434 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq, 2435 opMask, pProbe); 2436 pNew->rSetup = 0; 2437 rSize = pProbe->aiRowLogEst[0]; 2438 rLogSize = estLog(rSize); 2439 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ 2440 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ 2441 LogEst rCostIdx; 2442 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ 2443 int nIn = 0; 2444 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2445 int nRecValid = pBuilder->nRecValid; 2446 #endif 2447 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) 2448 && indexColumnNotNull(pProbe, saved_nEq) 2449 ){ 2450 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ 2451 } 2452 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2453 2454 /* Do not allow the upper bound of a LIKE optimization range constraint 2455 ** to mix with a lower range bound from some other source */ 2456 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; 2457 2458 /* Do not allow constraints from the WHERE clause to be used by the 2459 ** right table of a LEFT JOIN. Only constraints in the ON clause are 2460 ** allowed */ 2461 if( (pSrc->fg.jointype & JT_LEFT)!=0 2462 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 2463 ){ 2464 continue; 2465 } 2466 2467 if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){ 2468 pBuilder->bldFlags |= SQLITE_BLDF_UNIQUE; 2469 }else{ 2470 pBuilder->bldFlags |= SQLITE_BLDF_INDEXED; 2471 } 2472 pNew->wsFlags = saved_wsFlags; 2473 pNew->u.btree.nEq = saved_nEq; 2474 pNew->u.btree.nBtm = saved_nBtm; 2475 pNew->u.btree.nTop = saved_nTop; 2476 pNew->nLTerm = saved_nLTerm; 2477 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2478 pNew->aLTerm[pNew->nLTerm++] = pTerm; 2479 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; 2480 2481 assert( nInMul==0 2482 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 2483 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 2484 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 2485 ); 2486 2487 if( eOp & WO_IN ){ 2488 Expr *pExpr = pTerm->pExpr; 2489 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2490 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ 2491 int i; 2492 nIn = 46; assert( 46==sqlite3LogEst(25) ); 2493 2494 /* The expression may actually be of the form (x, y) IN (SELECT...). 2495 ** In this case there is a separate term for each of (x) and (y). 2496 ** However, the nIn multiplier should only be applied once, not once 2497 ** for each such term. The following loop checks that pTerm is the 2498 ** first such term in use, and sets nIn back to 0 if it is not. */ 2499 for(i=0; i<pNew->nLTerm-1; i++){ 2500 if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0; 2501 } 2502 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ 2503 /* "x IN (value, value, ...)" */ 2504 nIn = sqlite3LogEst(pExpr->x.pList->nExpr); 2505 assert( nIn>0 ); /* RHS always has 2 or more terms... The parser 2506 ** changes "x IN (?)" into "x=?". */ 2507 } 2508 if( pProbe->hasStat1 ){ 2509 LogEst M, logK, safetyMargin; 2510 /* Let: 2511 ** N = the total number of rows in the table 2512 ** K = the number of entries on the RHS of the IN operator 2513 ** M = the number of rows in the table that match terms to the 2514 ** to the left in the same index. If the IN operator is on 2515 ** the left-most index column, M==N. 2516 ** 2517 ** Given the definitions above, it is better to omit the IN operator 2518 ** from the index lookup and instead do a scan of the M elements, 2519 ** testing each scanned row against the IN operator separately, if: 2520 ** 2521 ** M*log(K) < K*log(N) 2522 ** 2523 ** Our estimates for M, K, and N might be inaccurate, so we build in 2524 ** a safety margin of 2 (LogEst: 10) that favors using the IN operator 2525 ** with the index, as using an index has better worst-case behavior. 2526 ** If we do not have real sqlite_stat1 data, always prefer to use 2527 ** the index. 2528 */ 2529 M = pProbe->aiRowLogEst[saved_nEq]; 2530 logK = estLog(nIn); 2531 safetyMargin = 10; /* TUNING: extra weight for indexed IN */ 2532 if( M + logK + safetyMargin < nIn + rLogSize ){ 2533 WHERETRACE(0x40, 2534 ("Scan preferred over IN operator on column %d of \"%s\" (%d<%d)\n", 2535 saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize)); 2536 continue; 2537 }else{ 2538 WHERETRACE(0x40, 2539 ("IN operator preferred on column %d of \"%s\" (%d>=%d)\n", 2540 saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize)); 2541 } 2542 } 2543 pNew->wsFlags |= WHERE_COLUMN_IN; 2544 }else if( eOp & (WO_EQ|WO_IS) ){ 2545 int iCol = pProbe->aiColumn[saved_nEq]; 2546 pNew->wsFlags |= WHERE_COLUMN_EQ; 2547 assert( saved_nEq==pNew->u.btree.nEq ); 2548 if( iCol==XN_ROWID 2549 || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) 2550 ){ 2551 if( iCol==XN_ROWID || pProbe->uniqNotNull 2552 || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ) 2553 ){ 2554 pNew->wsFlags |= WHERE_ONEROW; 2555 }else{ 2556 pNew->wsFlags |= WHERE_UNQ_WANTED; 2557 } 2558 } 2559 }else if( eOp & WO_ISNULL ){ 2560 pNew->wsFlags |= WHERE_COLUMN_NULL; 2561 }else if( eOp & (WO_GT|WO_GE) ){ 2562 testcase( eOp & WO_GT ); 2563 testcase( eOp & WO_GE ); 2564 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; 2565 pNew->u.btree.nBtm = whereRangeVectorLen( 2566 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2567 ); 2568 pBtm = pTerm; 2569 pTop = 0; 2570 if( pTerm->wtFlags & TERM_LIKEOPT ){ 2571 /* Range contraints that come from the LIKE optimization are 2572 ** always used in pairs. */ 2573 pTop = &pTerm[1]; 2574 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm ); 2575 assert( pTop->wtFlags & TERM_LIKEOPT ); 2576 assert( pTop->eOperator==WO_LT ); 2577 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2578 pNew->aLTerm[pNew->nLTerm++] = pTop; 2579 pNew->wsFlags |= WHERE_TOP_LIMIT; 2580 pNew->u.btree.nTop = 1; 2581 } 2582 }else{ 2583 assert( eOp & (WO_LT|WO_LE) ); 2584 testcase( eOp & WO_LT ); 2585 testcase( eOp & WO_LE ); 2586 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; 2587 pNew->u.btree.nTop = whereRangeVectorLen( 2588 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2589 ); 2590 pTop = pTerm; 2591 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? 2592 pNew->aLTerm[pNew->nLTerm-2] : 0; 2593 } 2594 2595 /* At this point pNew->nOut is set to the number of rows expected to 2596 ** be visited by the index scan before considering term pTerm, or the 2597 ** values of nIn and nInMul. In other words, assuming that all 2598 ** "x IN(...)" terms are replaced with "x = ?". This block updates 2599 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ 2600 assert( pNew->nOut==saved_nOut ); 2601 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2602 /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4 2603 ** data, using some other estimate. */ 2604 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); 2605 }else{ 2606 int nEq = ++pNew->u.btree.nEq; 2607 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) ); 2608 2609 assert( pNew->nOut==saved_nOut ); 2610 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){ 2611 assert( (eOp & WO_IN) || nIn==0 ); 2612 testcase( eOp & WO_IN ); 2613 pNew->nOut += pTerm->truthProb; 2614 pNew->nOut -= nIn; 2615 }else{ 2616 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2617 tRowcnt nOut = 0; 2618 if( nInMul==0 2619 && pProbe->nSample 2620 && pNew->u.btree.nEq<=pProbe->nSampleCol 2621 && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect)) 2622 && OptimizationEnabled(db, SQLITE_Stat34) 2623 ){ 2624 Expr *pExpr = pTerm->pExpr; 2625 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){ 2626 testcase( eOp & WO_EQ ); 2627 testcase( eOp & WO_IS ); 2628 testcase( eOp & WO_ISNULL ); 2629 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); 2630 }else{ 2631 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); 2632 } 2633 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 2634 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ 2635 if( nOut ){ 2636 pNew->nOut = sqlite3LogEst(nOut); 2637 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; 2638 pNew->nOut -= nIn; 2639 } 2640 } 2641 if( nOut==0 ) 2642 #endif 2643 { 2644 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); 2645 if( eOp & WO_ISNULL ){ 2646 /* TUNING: If there is no likelihood() value, assume that a 2647 ** "col IS NULL" expression matches twice as many rows 2648 ** as (col=?). */ 2649 pNew->nOut += 10; 2650 } 2651 } 2652 } 2653 } 2654 2655 /* Set rCostIdx to the cost of visiting selected rows in index. Add 2656 ** it to pNew->rRun, which is currently set to the cost of the index 2657 ** seek only. Then, if this is a non-covering index, add the cost of 2658 ** visiting the rows in the main table. */ 2659 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; 2660 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); 2661 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ 2662 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); 2663 } 2664 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); 2665 2666 nOutUnadjusted = pNew->nOut; 2667 pNew->rRun += nInMul + nIn; 2668 pNew->nOut += nInMul + nIn; 2669 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); 2670 rc = whereLoopInsert(pBuilder, pNew); 2671 2672 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2673 pNew->nOut = saved_nOut; 2674 }else{ 2675 pNew->nOut = nOutUnadjusted; 2676 } 2677 2678 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 2679 && pNew->u.btree.nEq<pProbe->nColumn 2680 ){ 2681 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); 2682 } 2683 pNew->nOut = saved_nOut; 2684 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2685 pBuilder->nRecValid = nRecValid; 2686 #endif 2687 } 2688 pNew->prereq = saved_prereq; 2689 pNew->u.btree.nEq = saved_nEq; 2690 pNew->u.btree.nBtm = saved_nBtm; 2691 pNew->u.btree.nTop = saved_nTop; 2692 pNew->nSkip = saved_nSkip; 2693 pNew->wsFlags = saved_wsFlags; 2694 pNew->nOut = saved_nOut; 2695 pNew->nLTerm = saved_nLTerm; 2696 2697 /* Consider using a skip-scan if there are no WHERE clause constraints 2698 ** available for the left-most terms of the index, and if the average 2699 ** number of repeats in the left-most terms is at least 18. 2700 ** 2701 ** The magic number 18 is selected on the basis that scanning 17 rows 2702 ** is almost always quicker than an index seek (even though if the index 2703 ** contains fewer than 2^17 rows we assume otherwise in other parts of 2704 ** the code). And, even if it is not, it should not be too much slower. 2705 ** On the other hand, the extra seeks could end up being significantly 2706 ** more expensive. */ 2707 assert( 42==sqlite3LogEst(18) ); 2708 if( saved_nEq==saved_nSkip 2709 && saved_nEq+1<pProbe->nKeyCol 2710 && pProbe->noSkipScan==0 2711 && OptimizationEnabled(db, SQLITE_SkipScan) 2712 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ 2713 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK 2714 ){ 2715 LogEst nIter; 2716 pNew->u.btree.nEq++; 2717 pNew->nSkip++; 2718 pNew->aLTerm[pNew->nLTerm++] = 0; 2719 pNew->wsFlags |= WHERE_SKIPSCAN; 2720 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; 2721 pNew->nOut -= nIter; 2722 /* TUNING: Because uncertainties in the estimates for skip-scan queries, 2723 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ 2724 nIter += 5; 2725 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); 2726 pNew->nOut = saved_nOut; 2727 pNew->u.btree.nEq = saved_nEq; 2728 pNew->nSkip = saved_nSkip; 2729 pNew->wsFlags = saved_wsFlags; 2730 } 2731 2732 WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n", 2733 pProbe->pTable->zName, pProbe->zName, saved_nEq, rc)); 2734 return rc; 2735 } 2736 2737 /* 2738 ** Return True if it is possible that pIndex might be useful in 2739 ** implementing the ORDER BY clause in pBuilder. 2740 ** 2741 ** Return False if pBuilder does not contain an ORDER BY clause or 2742 ** if there is no way for pIndex to be useful in implementing that 2743 ** ORDER BY clause. 2744 */ 2745 static int indexMightHelpWithOrderBy( 2746 WhereLoopBuilder *pBuilder, 2747 Index *pIndex, 2748 int iCursor 2749 ){ 2750 ExprList *pOB; 2751 ExprList *aColExpr; 2752 int ii, jj; 2753 2754 if( pIndex->bUnordered ) return 0; 2755 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; 2756 for(ii=0; ii<pOB->nExpr; ii++){ 2757 Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr); 2758 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){ 2759 if( pExpr->iColumn<0 ) return 1; 2760 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2761 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; 2762 } 2763 }else if( (aColExpr = pIndex->aColExpr)!=0 ){ 2764 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2765 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue; 2766 if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){ 2767 return 1; 2768 } 2769 } 2770 } 2771 } 2772 return 0; 2773 } 2774 2775 /* Check to see if a partial index with pPartIndexWhere can be used 2776 ** in the current query. Return true if it can be and false if not. 2777 */ 2778 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){ 2779 int i; 2780 WhereTerm *pTerm; 2781 Parse *pParse = pWC->pWInfo->pParse; 2782 while( pWhere->op==TK_AND ){ 2783 if( !whereUsablePartialIndex(iTab,pWC,pWhere->pLeft) ) return 0; 2784 pWhere = pWhere->pRight; 2785 } 2786 if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0; 2787 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 2788 Expr *pExpr = pTerm->pExpr; 2789 if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab) 2790 && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab) 2791 ){ 2792 return 1; 2793 } 2794 } 2795 return 0; 2796 } 2797 2798 /* 2799 ** Add all WhereLoop objects for a single table of the join where the table 2800 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be 2801 ** a b-tree table, not a virtual table. 2802 ** 2803 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function 2804 ** are calculated as follows: 2805 ** 2806 ** For a full scan, assuming the table (or index) contains nRow rows: 2807 ** 2808 ** cost = nRow * 3.0 // full-table scan 2809 ** cost = nRow * K // scan of covering index 2810 ** cost = nRow * (K+3.0) // scan of non-covering index 2811 ** 2812 ** where K is a value between 1.1 and 3.0 set based on the relative 2813 ** estimated average size of the index and table records. 2814 ** 2815 ** For an index scan, where nVisit is the number of index rows visited 2816 ** by the scan, and nSeek is the number of seek operations required on 2817 ** the index b-tree: 2818 ** 2819 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index 2820 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index 2821 ** 2822 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the 2823 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when 2824 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. 2825 ** 2826 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount 2827 ** of uncertainty. For this reason, scoring is designed to pick plans that 2828 ** "do the least harm" if the estimates are inaccurate. For example, a 2829 ** log(nRow) factor is omitted from a non-covering index scan in order to 2830 ** bias the scoring in favor of using an index, since the worst-case 2831 ** performance of using an index is far better than the worst-case performance 2832 ** of a full table scan. 2833 */ 2834 static int whereLoopAddBtree( 2835 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 2836 Bitmask mPrereq /* Extra prerequesites for using this table */ 2837 ){ 2838 WhereInfo *pWInfo; /* WHERE analysis context */ 2839 Index *pProbe; /* An index we are evaluating */ 2840 Index sPk; /* A fake index object for the primary key */ 2841 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ 2842 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ 2843 SrcList *pTabList; /* The FROM clause */ 2844 struct SrcList_item *pSrc; /* The FROM clause btree term to add */ 2845 WhereLoop *pNew; /* Template WhereLoop object */ 2846 int rc = SQLITE_OK; /* Return code */ 2847 int iSortIdx = 1; /* Index number */ 2848 int b; /* A boolean value */ 2849 LogEst rSize; /* number of rows in the table */ 2850 LogEst rLogSize; /* Logarithm of the number of rows in the table */ 2851 WhereClause *pWC; /* The parsed WHERE clause */ 2852 Table *pTab; /* Table being queried */ 2853 2854 pNew = pBuilder->pNew; 2855 pWInfo = pBuilder->pWInfo; 2856 pTabList = pWInfo->pTabList; 2857 pSrc = pTabList->a + pNew->iTab; 2858 pTab = pSrc->pTab; 2859 pWC = pBuilder->pWC; 2860 assert( !IsVirtual(pSrc->pTab) ); 2861 2862 if( pSrc->pIBIndex ){ 2863 /* An INDEXED BY clause specifies a particular index to use */ 2864 pProbe = pSrc->pIBIndex; 2865 }else if( !HasRowid(pTab) ){ 2866 pProbe = pTab->pIndex; 2867 }else{ 2868 /* There is no INDEXED BY clause. Create a fake Index object in local 2869 ** variable sPk to represent the rowid primary key index. Make this 2870 ** fake index the first in a chain of Index objects with all of the real 2871 ** indices to follow */ 2872 Index *pFirst; /* First of real indices on the table */ 2873 memset(&sPk, 0, sizeof(Index)); 2874 sPk.nKeyCol = 1; 2875 sPk.nColumn = 1; 2876 sPk.aiColumn = &aiColumnPk; 2877 sPk.aiRowLogEst = aiRowEstPk; 2878 sPk.onError = OE_Replace; 2879 sPk.pTable = pTab; 2880 sPk.szIdxRow = pTab->szTabRow; 2881 aiRowEstPk[0] = pTab->nRowLogEst; 2882 aiRowEstPk[1] = 0; 2883 pFirst = pSrc->pTab->pIndex; 2884 if( pSrc->fg.notIndexed==0 ){ 2885 /* The real indices of the table are only considered if the 2886 ** NOT INDEXED qualifier is omitted from the FROM clause */ 2887 sPk.pNext = pFirst; 2888 } 2889 pProbe = &sPk; 2890 } 2891 rSize = pTab->nRowLogEst; 2892 rLogSize = estLog(rSize); 2893 2894 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 2895 /* Automatic indexes */ 2896 if( !pBuilder->pOrSet /* Not part of an OR optimization */ 2897 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 2898 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 2899 && pSrc->pIBIndex==0 /* Has no INDEXED BY clause */ 2900 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */ 2901 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */ 2902 && !pSrc->fg.isCorrelated /* Not a correlated subquery */ 2903 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */ 2904 ){ 2905 /* Generate auto-index WhereLoops */ 2906 WhereTerm *pTerm; 2907 WhereTerm *pWCEnd = pWC->a + pWC->nTerm; 2908 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ 2909 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2910 if( termCanDriveIndex(pTerm, pSrc, 0) ){ 2911 pNew->u.btree.nEq = 1; 2912 pNew->nSkip = 0; 2913 pNew->u.btree.pIndex = 0; 2914 pNew->nLTerm = 1; 2915 pNew->aLTerm[0] = pTerm; 2916 /* TUNING: One-time cost for computing the automatic index is 2917 ** estimated to be X*N*log2(N) where N is the number of rows in 2918 ** the table being indexed and where X is 7 (LogEst=28) for normal 2919 ** tables or 0.5 (LogEst=-10) for views and subqueries. The value 2920 ** of X is smaller for views and subqueries so that the query planner 2921 ** will be more aggressive about generating automatic indexes for 2922 ** those objects, since there is no opportunity to add schema 2923 ** indexes on subqueries and views. */ 2924 pNew->rSetup = rLogSize + rSize; 2925 if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){ 2926 pNew->rSetup += 28; 2927 }else{ 2928 pNew->rSetup -= 10; 2929 } 2930 ApplyCostMultiplier(pNew->rSetup, pTab->costMult); 2931 if( pNew->rSetup<0 ) pNew->rSetup = 0; 2932 /* TUNING: Each index lookup yields 20 rows in the table. This 2933 ** is more than the usual guess of 10 rows, since we have no way 2934 ** of knowing how selective the index will ultimately be. It would 2935 ** not be unreasonable to make this value much larger. */ 2936 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); 2937 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); 2938 pNew->wsFlags = WHERE_AUTO_INDEX; 2939 pNew->prereq = mPrereq | pTerm->prereqRight; 2940 rc = whereLoopInsert(pBuilder, pNew); 2941 } 2942 } 2943 } 2944 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 2945 2946 /* Loop over all indices. If there was an INDEXED BY clause, then only 2947 ** consider index pProbe. */ 2948 for(; rc==SQLITE_OK && pProbe; 2949 pProbe=(pSrc->pIBIndex ? 0 : pProbe->pNext), iSortIdx++ 2950 ){ 2951 if( pProbe->pPartIdxWhere!=0 2952 && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){ 2953 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ 2954 continue; /* Partial index inappropriate for this query */ 2955 } 2956 if( pProbe->bNoQuery ) continue; 2957 rSize = pProbe->aiRowLogEst[0]; 2958 pNew->u.btree.nEq = 0; 2959 pNew->u.btree.nBtm = 0; 2960 pNew->u.btree.nTop = 0; 2961 pNew->nSkip = 0; 2962 pNew->nLTerm = 0; 2963 pNew->iSortIdx = 0; 2964 pNew->rSetup = 0; 2965 pNew->prereq = mPrereq; 2966 pNew->nOut = rSize; 2967 pNew->u.btree.pIndex = pProbe; 2968 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); 2969 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ 2970 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); 2971 if( pProbe->tnum<=0 ){ 2972 /* Integer primary key index */ 2973 pNew->wsFlags = WHERE_IPK; 2974 2975 /* Full table scan */ 2976 pNew->iSortIdx = b ? iSortIdx : 0; 2977 /* TUNING: Cost of full table scan is (N*3.0). */ 2978 pNew->rRun = rSize + 16; 2979 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 2980 whereLoopOutputAdjust(pWC, pNew, rSize); 2981 rc = whereLoopInsert(pBuilder, pNew); 2982 pNew->nOut = rSize; 2983 if( rc ) break; 2984 }else{ 2985 Bitmask m; 2986 if( pProbe->isCovering ){ 2987 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; 2988 m = 0; 2989 }else{ 2990 m = pSrc->colUsed & pProbe->colNotIdxed; 2991 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; 2992 } 2993 2994 /* Full scan via index */ 2995 if( b 2996 || !HasRowid(pTab) 2997 || pProbe->pPartIdxWhere!=0 2998 || ( m==0 2999 && pProbe->bUnordered==0 3000 && (pProbe->szIdxRow<pTab->szTabRow) 3001 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 3002 && sqlite3GlobalConfig.bUseCis 3003 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) 3004 ) 3005 ){ 3006 pNew->iSortIdx = b ? iSortIdx : 0; 3007 3008 /* The cost of visiting the index rows is N*K, where K is 3009 ** between 1.1 and 3.0, depending on the relative sizes of the 3010 ** index and table rows. */ 3011 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; 3012 if( m!=0 ){ 3013 /* If this is a non-covering index scan, add in the cost of 3014 ** doing table lookups. The cost will be 3x the number of 3015 ** lookups. Take into account WHERE clause terms that can be 3016 ** satisfied using just the index, and that do not require a 3017 ** table lookup. */ 3018 LogEst nLookup = rSize + 16; /* Base cost: N*3 */ 3019 int ii; 3020 int iCur = pSrc->iCursor; 3021 WhereClause *pWC2 = &pWInfo->sWC; 3022 for(ii=0; ii<pWC2->nTerm; ii++){ 3023 WhereTerm *pTerm = &pWC2->a[ii]; 3024 if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){ 3025 break; 3026 } 3027 /* pTerm can be evaluated using just the index. So reduce 3028 ** the expected number of table lookups accordingly */ 3029 if( pTerm->truthProb<=0 ){ 3030 nLookup += pTerm->truthProb; 3031 }else{ 3032 nLookup--; 3033 if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19; 3034 } 3035 } 3036 3037 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup); 3038 } 3039 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 3040 whereLoopOutputAdjust(pWC, pNew, rSize); 3041 rc = whereLoopInsert(pBuilder, pNew); 3042 pNew->nOut = rSize; 3043 if( rc ) break; 3044 } 3045 } 3046 3047 pBuilder->bldFlags = 0; 3048 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); 3049 if( pBuilder->bldFlags==SQLITE_BLDF_INDEXED ){ 3050 /* If a non-unique index is used, or if a prefix of the key for 3051 ** unique index is used (making the index functionally non-unique) 3052 ** then the sqlite_stat1 data becomes important for scoring the 3053 ** plan */ 3054 pTab->tabFlags |= TF_StatsUsed; 3055 } 3056 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 3057 sqlite3Stat4ProbeFree(pBuilder->pRec); 3058 pBuilder->nRecValid = 0; 3059 pBuilder->pRec = 0; 3060 #endif 3061 } 3062 return rc; 3063 } 3064 3065 #ifndef SQLITE_OMIT_VIRTUALTABLE 3066 3067 /* 3068 ** Argument pIdxInfo is already populated with all constraints that may 3069 ** be used by the virtual table identified by pBuilder->pNew->iTab. This 3070 ** function marks a subset of those constraints usable, invokes the 3071 ** xBestIndex method and adds the returned plan to pBuilder. 3072 ** 3073 ** A constraint is marked usable if: 3074 ** 3075 ** * Argument mUsable indicates that its prerequisites are available, and 3076 ** 3077 ** * It is not one of the operators specified in the mExclude mask passed 3078 ** as the fourth argument (which in practice is either WO_IN or 0). 3079 ** 3080 ** Argument mPrereq is a mask of tables that must be scanned before the 3081 ** virtual table in question. These are added to the plans prerequisites 3082 ** before it is added to pBuilder. 3083 ** 3084 ** Output parameter *pbIn is set to true if the plan added to pBuilder 3085 ** uses one or more WO_IN terms, or false otherwise. 3086 */ 3087 static int whereLoopAddVirtualOne( 3088 WhereLoopBuilder *pBuilder, 3089 Bitmask mPrereq, /* Mask of tables that must be used. */ 3090 Bitmask mUsable, /* Mask of usable tables */ 3091 u16 mExclude, /* Exclude terms using these operators */ 3092 sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */ 3093 u16 mNoOmit, /* Do not omit these constraints */ 3094 int *pbIn /* OUT: True if plan uses an IN(...) op */ 3095 ){ 3096 WhereClause *pWC = pBuilder->pWC; 3097 struct sqlite3_index_constraint *pIdxCons; 3098 struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage; 3099 int i; 3100 int mxTerm; 3101 int rc = SQLITE_OK; 3102 WhereLoop *pNew = pBuilder->pNew; 3103 Parse *pParse = pBuilder->pWInfo->pParse; 3104 struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab]; 3105 int nConstraint = pIdxInfo->nConstraint; 3106 3107 assert( (mUsable & mPrereq)==mPrereq ); 3108 *pbIn = 0; 3109 pNew->prereq = mPrereq; 3110 3111 /* Set the usable flag on the subset of constraints identified by 3112 ** arguments mUsable and mExclude. */ 3113 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3114 for(i=0; i<nConstraint; i++, pIdxCons++){ 3115 WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset]; 3116 pIdxCons->usable = 0; 3117 if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight 3118 && (pTerm->eOperator & mExclude)==0 3119 ){ 3120 pIdxCons->usable = 1; 3121 } 3122 } 3123 3124 /* Initialize the output fields of the sqlite3_index_info structure */ 3125 memset(pUsage, 0, sizeof(pUsage[0])*nConstraint); 3126 assert( pIdxInfo->needToFreeIdxStr==0 ); 3127 pIdxInfo->idxStr = 0; 3128 pIdxInfo->idxNum = 0; 3129 pIdxInfo->orderByConsumed = 0; 3130 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; 3131 pIdxInfo->estimatedRows = 25; 3132 pIdxInfo->idxFlags = 0; 3133 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed; 3134 3135 /* Invoke the virtual table xBestIndex() method */ 3136 rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo); 3137 if( rc ){ 3138 if( rc==SQLITE_CONSTRAINT ){ 3139 /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means 3140 ** that the particular combination of parameters provided is unusable. 3141 ** Make no entries in the loop table. 3142 */ 3143 WHERETRACE(0xffff, (" ^^^^--- non-viable plan rejected!\n")); 3144 return SQLITE_OK; 3145 } 3146 return rc; 3147 } 3148 3149 mxTerm = -1; 3150 assert( pNew->nLSlot>=nConstraint ); 3151 for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0; 3152 pNew->u.vtab.omitMask = 0; 3153 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3154 for(i=0; i<nConstraint; i++, pIdxCons++){ 3155 int iTerm; 3156 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ 3157 WhereTerm *pTerm; 3158 int j = pIdxCons->iTermOffset; 3159 if( iTerm>=nConstraint 3160 || j<0 3161 || j>=pWC->nTerm 3162 || pNew->aLTerm[iTerm]!=0 3163 || pIdxCons->usable==0 3164 ){ 3165 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3166 testcase( pIdxInfo->needToFreeIdxStr ); 3167 return SQLITE_ERROR; 3168 } 3169 testcase( iTerm==nConstraint-1 ); 3170 testcase( j==0 ); 3171 testcase( j==pWC->nTerm-1 ); 3172 pTerm = &pWC->a[j]; 3173 pNew->prereq |= pTerm->prereqRight; 3174 assert( iTerm<pNew->nLSlot ); 3175 pNew->aLTerm[iTerm] = pTerm; 3176 if( iTerm>mxTerm ) mxTerm = iTerm; 3177 testcase( iTerm==15 ); 3178 testcase( iTerm==16 ); 3179 if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm; 3180 if( (pTerm->eOperator & WO_IN)!=0 ){ 3181 /* A virtual table that is constrained by an IN clause may not 3182 ** consume the ORDER BY clause because (1) the order of IN terms 3183 ** is not necessarily related to the order of output terms and 3184 ** (2) Multiple outputs from a single IN value will not merge 3185 ** together. */ 3186 pIdxInfo->orderByConsumed = 0; 3187 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE; 3188 *pbIn = 1; assert( (mExclude & WO_IN)==0 ); 3189 } 3190 } 3191 } 3192 pNew->u.vtab.omitMask &= ~mNoOmit; 3193 3194 pNew->nLTerm = mxTerm+1; 3195 for(i=0; i<=mxTerm; i++){ 3196 if( pNew->aLTerm[i]==0 ){ 3197 /* The non-zero argvIdx values must be contiguous. Raise an 3198 ** error if they are not */ 3199 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3200 testcase( pIdxInfo->needToFreeIdxStr ); 3201 return SQLITE_ERROR; 3202 } 3203 } 3204 assert( pNew->nLTerm<=pNew->nLSlot ); 3205 pNew->u.vtab.idxNum = pIdxInfo->idxNum; 3206 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; 3207 pIdxInfo->needToFreeIdxStr = 0; 3208 pNew->u.vtab.idxStr = pIdxInfo->idxStr; 3209 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? 3210 pIdxInfo->nOrderBy : 0); 3211 pNew->rSetup = 0; 3212 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); 3213 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); 3214 3215 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated 3216 ** that the scan will visit at most one row. Clear it otherwise. */ 3217 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){ 3218 pNew->wsFlags |= WHERE_ONEROW; 3219 }else{ 3220 pNew->wsFlags &= ~WHERE_ONEROW; 3221 } 3222 rc = whereLoopInsert(pBuilder, pNew); 3223 if( pNew->u.vtab.needFree ){ 3224 sqlite3_free(pNew->u.vtab.idxStr); 3225 pNew->u.vtab.needFree = 0; 3226 } 3227 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n", 3228 *pbIn, (sqlite3_uint64)mPrereq, 3229 (sqlite3_uint64)(pNew->prereq & ~mPrereq))); 3230 3231 return rc; 3232 } 3233 3234 /* 3235 ** If this function is invoked from within an xBestIndex() callback, it 3236 ** returns a pointer to a buffer containing the name of the collation 3237 ** sequence associated with element iCons of the sqlite3_index_info.aConstraint 3238 ** array. Or, if iCons is out of range or there is no active xBestIndex 3239 ** call, return NULL. 3240 */ 3241 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){ 3242 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3243 const char *zRet = 0; 3244 if( iCons>=0 && iCons<pIdxInfo->nConstraint ){ 3245 CollSeq *pC = 0; 3246 int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset; 3247 Expr *pX = pHidden->pWC->a[iTerm].pExpr; 3248 if( pX->pLeft ){ 3249 pC = sqlite3BinaryCompareCollSeq(pHidden->pParse, pX->pLeft, pX->pRight); 3250 } 3251 zRet = (pC ? pC->zName : sqlite3StrBINARY); 3252 } 3253 return zRet; 3254 } 3255 3256 /* 3257 ** Add all WhereLoop objects for a table of the join identified by 3258 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. 3259 ** 3260 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and 3261 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause 3262 ** entries that occur before the virtual table in the FROM clause and are 3263 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the 3264 ** mUnusable mask contains all FROM clause entries that occur after the 3265 ** virtual table and are separated from it by at least one LEFT or 3266 ** CROSS JOIN. 3267 ** 3268 ** For example, if the query were: 3269 ** 3270 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; 3271 ** 3272 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6). 3273 ** 3274 ** All the tables in mPrereq must be scanned before the current virtual 3275 ** table. So any terms for which all prerequisites are satisfied by 3276 ** mPrereq may be specified as "usable" in all calls to xBestIndex. 3277 ** Conversely, all tables in mUnusable must be scanned after the current 3278 ** virtual table, so any terms for which the prerequisites overlap with 3279 ** mUnusable should always be configured as "not-usable" for xBestIndex. 3280 */ 3281 static int whereLoopAddVirtual( 3282 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 3283 Bitmask mPrereq, /* Tables that must be scanned before this one */ 3284 Bitmask mUnusable /* Tables that must be scanned after this one */ 3285 ){ 3286 int rc = SQLITE_OK; /* Return code */ 3287 WhereInfo *pWInfo; /* WHERE analysis context */ 3288 Parse *pParse; /* The parsing context */ 3289 WhereClause *pWC; /* The WHERE clause */ 3290 struct SrcList_item *pSrc; /* The FROM clause term to search */ 3291 sqlite3_index_info *p; /* Object to pass to xBestIndex() */ 3292 int nConstraint; /* Number of constraints in p */ 3293 int bIn; /* True if plan uses IN(...) operator */ 3294 WhereLoop *pNew; 3295 Bitmask mBest; /* Tables used by best possible plan */ 3296 u16 mNoOmit; 3297 3298 assert( (mPrereq & mUnusable)==0 ); 3299 pWInfo = pBuilder->pWInfo; 3300 pParse = pWInfo->pParse; 3301 pWC = pBuilder->pWC; 3302 pNew = pBuilder->pNew; 3303 pSrc = &pWInfo->pTabList->a[pNew->iTab]; 3304 assert( IsVirtual(pSrc->pTab) ); 3305 p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy, 3306 &mNoOmit); 3307 if( p==0 ) return SQLITE_NOMEM_BKPT; 3308 pNew->rSetup = 0; 3309 pNew->wsFlags = WHERE_VIRTUALTABLE; 3310 pNew->nLTerm = 0; 3311 pNew->u.vtab.needFree = 0; 3312 nConstraint = p->nConstraint; 3313 if( whereLoopResize(pParse->db, pNew, nConstraint) ){ 3314 sqlite3DbFree(pParse->db, p); 3315 return SQLITE_NOMEM_BKPT; 3316 } 3317 3318 /* First call xBestIndex() with all constraints usable. */ 3319 WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName)); 3320 WHERETRACE(0x40, (" VirtualOne: all usable\n")); 3321 rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn); 3322 3323 /* If the call to xBestIndex() with all terms enabled produced a plan 3324 ** that does not require any source tables (IOW: a plan with mBest==0), 3325 ** then there is no point in making any further calls to xBestIndex() 3326 ** since they will all return the same result (if the xBestIndex() 3327 ** implementation is sane). */ 3328 if( rc==SQLITE_OK && (mBest = (pNew->prereq & ~mPrereq))!=0 ){ 3329 int seenZero = 0; /* True if a plan with no prereqs seen */ 3330 int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */ 3331 Bitmask mPrev = 0; 3332 Bitmask mBestNoIn = 0; 3333 3334 /* If the plan produced by the earlier call uses an IN(...) term, call 3335 ** xBestIndex again, this time with IN(...) terms disabled. */ 3336 if( bIn ){ 3337 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n")); 3338 rc = whereLoopAddVirtualOne( 3339 pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn); 3340 assert( bIn==0 ); 3341 mBestNoIn = pNew->prereq & ~mPrereq; 3342 if( mBestNoIn==0 ){ 3343 seenZero = 1; 3344 seenZeroNoIN = 1; 3345 } 3346 } 3347 3348 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq) 3349 ** in the set of terms that apply to the current virtual table. */ 3350 while( rc==SQLITE_OK ){ 3351 int i; 3352 Bitmask mNext = ALLBITS; 3353 assert( mNext>0 ); 3354 for(i=0; i<nConstraint; i++){ 3355 Bitmask mThis = ( 3356 pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq 3357 ); 3358 if( mThis>mPrev && mThis<mNext ) mNext = mThis; 3359 } 3360 mPrev = mNext; 3361 if( mNext==ALLBITS ) break; 3362 if( mNext==mBest || mNext==mBestNoIn ) continue; 3363 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n", 3364 (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext)); 3365 rc = whereLoopAddVirtualOne( 3366 pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn); 3367 if( pNew->prereq==mPrereq ){ 3368 seenZero = 1; 3369 if( bIn==0 ) seenZeroNoIN = 1; 3370 } 3371 } 3372 3373 /* If the calls to xBestIndex() in the above loop did not find a plan 3374 ** that requires no source tables at all (i.e. one guaranteed to be 3375 ** usable), make a call here with all source tables disabled */ 3376 if( rc==SQLITE_OK && seenZero==0 ){ 3377 WHERETRACE(0x40, (" VirtualOne: all disabled\n")); 3378 rc = whereLoopAddVirtualOne( 3379 pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn); 3380 if( bIn==0 ) seenZeroNoIN = 1; 3381 } 3382 3383 /* If the calls to xBestIndex() have so far failed to find a plan 3384 ** that requires no source tables at all and does not use an IN(...) 3385 ** operator, make a final call to obtain one here. */ 3386 if( rc==SQLITE_OK && seenZeroNoIN==0 ){ 3387 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n")); 3388 rc = whereLoopAddVirtualOne( 3389 pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn); 3390 } 3391 } 3392 3393 if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr); 3394 sqlite3DbFreeNN(pParse->db, p); 3395 WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc)); 3396 return rc; 3397 } 3398 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3399 3400 /* 3401 ** Add WhereLoop entries to handle OR terms. This works for either 3402 ** btrees or virtual tables. 3403 */ 3404 static int whereLoopAddOr( 3405 WhereLoopBuilder *pBuilder, 3406 Bitmask mPrereq, 3407 Bitmask mUnusable 3408 ){ 3409 WhereInfo *pWInfo = pBuilder->pWInfo; 3410 WhereClause *pWC; 3411 WhereLoop *pNew; 3412 WhereTerm *pTerm, *pWCEnd; 3413 int rc = SQLITE_OK; 3414 int iCur; 3415 WhereClause tempWC; 3416 WhereLoopBuilder sSubBuild; 3417 WhereOrSet sSum, sCur; 3418 struct SrcList_item *pItem; 3419 3420 pWC = pBuilder->pWC; 3421 pWCEnd = pWC->a + pWC->nTerm; 3422 pNew = pBuilder->pNew; 3423 memset(&sSum, 0, sizeof(sSum)); 3424 pItem = pWInfo->pTabList->a + pNew->iTab; 3425 iCur = pItem->iCursor; 3426 3427 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ 3428 if( (pTerm->eOperator & WO_OR)!=0 3429 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 3430 ){ 3431 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; 3432 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; 3433 WhereTerm *pOrTerm; 3434 int once = 1; 3435 int i, j; 3436 3437 sSubBuild = *pBuilder; 3438 sSubBuild.pOrderBy = 0; 3439 sSubBuild.pOrSet = &sCur; 3440 3441 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); 3442 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ 3443 if( (pOrTerm->eOperator & WO_AND)!=0 ){ 3444 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; 3445 }else if( pOrTerm->leftCursor==iCur ){ 3446 tempWC.pWInfo = pWC->pWInfo; 3447 tempWC.pOuter = pWC; 3448 tempWC.op = TK_AND; 3449 tempWC.nTerm = 1; 3450 tempWC.a = pOrTerm; 3451 sSubBuild.pWC = &tempWC; 3452 }else{ 3453 continue; 3454 } 3455 sCur.n = 0; 3456 #ifdef WHERETRACE_ENABLED 3457 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", 3458 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); 3459 if( sqlite3WhereTrace & 0x400 ){ 3460 sqlite3WhereClausePrint(sSubBuild.pWC); 3461 } 3462 #endif 3463 #ifndef SQLITE_OMIT_VIRTUALTABLE 3464 if( IsVirtual(pItem->pTab) ){ 3465 rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable); 3466 }else 3467 #endif 3468 { 3469 rc = whereLoopAddBtree(&sSubBuild, mPrereq); 3470 } 3471 if( rc==SQLITE_OK ){ 3472 rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable); 3473 } 3474 assert( rc==SQLITE_OK || sCur.n==0 ); 3475 if( sCur.n==0 ){ 3476 sSum.n = 0; 3477 break; 3478 }else if( once ){ 3479 whereOrMove(&sSum, &sCur); 3480 once = 0; 3481 }else{ 3482 WhereOrSet sPrev; 3483 whereOrMove(&sPrev, &sSum); 3484 sSum.n = 0; 3485 for(i=0; i<sPrev.n; i++){ 3486 for(j=0; j<sCur.n; j++){ 3487 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, 3488 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), 3489 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); 3490 } 3491 } 3492 } 3493 } 3494 pNew->nLTerm = 1; 3495 pNew->aLTerm[0] = pTerm; 3496 pNew->wsFlags = WHERE_MULTI_OR; 3497 pNew->rSetup = 0; 3498 pNew->iSortIdx = 0; 3499 memset(&pNew->u, 0, sizeof(pNew->u)); 3500 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ 3501 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs 3502 ** of all sub-scans required by the OR-scan. However, due to rounding 3503 ** errors, it may be that the cost of the OR-scan is equal to its 3504 ** most expensive sub-scan. Add the smallest possible penalty 3505 ** (equivalent to multiplying the cost by 1.07) to ensure that 3506 ** this does not happen. Otherwise, for WHERE clauses such as the 3507 ** following where there is an index on "y": 3508 ** 3509 ** WHERE likelihood(x=?, 0.99) OR y=? 3510 ** 3511 ** the planner may elect to "OR" together a full-table scan and an 3512 ** index lookup. And other similarly odd results. */ 3513 pNew->rRun = sSum.a[i].rRun + 1; 3514 pNew->nOut = sSum.a[i].nOut; 3515 pNew->prereq = sSum.a[i].prereq; 3516 rc = whereLoopInsert(pBuilder, pNew); 3517 } 3518 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); 3519 } 3520 } 3521 return rc; 3522 } 3523 3524 /* 3525 ** Add all WhereLoop objects for all tables 3526 */ 3527 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ 3528 WhereInfo *pWInfo = pBuilder->pWInfo; 3529 Bitmask mPrereq = 0; 3530 Bitmask mPrior = 0; 3531 int iTab; 3532 SrcList *pTabList = pWInfo->pTabList; 3533 struct SrcList_item *pItem; 3534 struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel]; 3535 sqlite3 *db = pWInfo->pParse->db; 3536 int rc = SQLITE_OK; 3537 WhereLoop *pNew; 3538 u8 priorJointype = 0; 3539 3540 /* Loop over the tables in the join, from left to right */ 3541 pNew = pBuilder->pNew; 3542 whereLoopInit(pNew); 3543 pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT; 3544 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){ 3545 Bitmask mUnusable = 0; 3546 pNew->iTab = iTab; 3547 pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR; 3548 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); 3549 if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){ 3550 /* This condition is true when pItem is the FROM clause term on the 3551 ** right-hand-side of a LEFT or CROSS JOIN. */ 3552 mPrereq = mPrior; 3553 } 3554 priorJointype = pItem->fg.jointype; 3555 #ifndef SQLITE_OMIT_VIRTUALTABLE 3556 if( IsVirtual(pItem->pTab) ){ 3557 struct SrcList_item *p; 3558 for(p=&pItem[1]; p<pEnd; p++){ 3559 if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){ 3560 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); 3561 } 3562 } 3563 rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable); 3564 }else 3565 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3566 { 3567 rc = whereLoopAddBtree(pBuilder, mPrereq); 3568 } 3569 if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){ 3570 rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable); 3571 } 3572 mPrior |= pNew->maskSelf; 3573 if( rc || db->mallocFailed ){ 3574 if( rc==SQLITE_DONE ){ 3575 /* We hit the query planner search limit set by iPlanLimit */ 3576 sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search"); 3577 rc = SQLITE_OK; 3578 }else{ 3579 break; 3580 } 3581 } 3582 } 3583 3584 whereLoopClear(db, pNew); 3585 return rc; 3586 } 3587 3588 /* 3589 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th 3590 ** parameters) to see if it outputs rows in the requested ORDER BY 3591 ** (or GROUP BY) without requiring a separate sort operation. Return N: 3592 ** 3593 ** N>0: N terms of the ORDER BY clause are satisfied 3594 ** N==0: No terms of the ORDER BY clause are satisfied 3595 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. 3596 ** 3597 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as 3598 ** strict. With GROUP BY and DISTINCT the only requirement is that 3599 ** equivalent rows appear immediately adjacent to one another. GROUP BY 3600 ** and DISTINCT do not require rows to appear in any particular order as long 3601 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT 3602 ** the pOrderBy terms can be matched in any order. With ORDER BY, the 3603 ** pOrderBy terms must be matched in strict left-to-right order. 3604 */ 3605 static i8 wherePathSatisfiesOrderBy( 3606 WhereInfo *pWInfo, /* The WHERE clause */ 3607 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ 3608 WherePath *pPath, /* The WherePath to check */ 3609 u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */ 3610 u16 nLoop, /* Number of entries in pPath->aLoop[] */ 3611 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ 3612 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ 3613 ){ 3614 u8 revSet; /* True if rev is known */ 3615 u8 rev; /* Composite sort order */ 3616 u8 revIdx; /* Index sort order */ 3617 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ 3618 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ 3619 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ 3620 u16 eqOpMask; /* Allowed equality operators */ 3621 u16 nKeyCol; /* Number of key columns in pIndex */ 3622 u16 nColumn; /* Total number of ordered columns in the index */ 3623 u16 nOrderBy; /* Number terms in the ORDER BY clause */ 3624 int iLoop; /* Index of WhereLoop in pPath being processed */ 3625 int i, j; /* Loop counters */ 3626 int iCur; /* Cursor number for current WhereLoop */ 3627 int iColumn; /* A column number within table iCur */ 3628 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ 3629 WhereTerm *pTerm; /* A single term of the WHERE clause */ 3630 Expr *pOBExpr; /* An expression from the ORDER BY clause */ 3631 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ 3632 Index *pIndex; /* The index associated with pLoop */ 3633 sqlite3 *db = pWInfo->pParse->db; /* Database connection */ 3634 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ 3635 Bitmask obDone; /* Mask of all ORDER BY terms */ 3636 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ 3637 Bitmask ready; /* Mask of inner loops */ 3638 3639 /* 3640 ** We say the WhereLoop is "one-row" if it generates no more than one 3641 ** row of output. A WhereLoop is one-row if all of the following are true: 3642 ** (a) All index columns match with WHERE_COLUMN_EQ. 3643 ** (b) The index is unique 3644 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. 3645 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. 3646 ** 3647 ** We say the WhereLoop is "order-distinct" if the set of columns from 3648 ** that WhereLoop that are in the ORDER BY clause are different for every 3649 ** row of the WhereLoop. Every one-row WhereLoop is automatically 3650 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause 3651 ** is not order-distinct. To be order-distinct is not quite the same as being 3652 ** UNIQUE since a UNIQUE column or index can have multiple rows that 3653 ** are NULL and NULL values are equivalent for the purpose of order-distinct. 3654 ** To be order-distinct, the columns must be UNIQUE and NOT NULL. 3655 ** 3656 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the 3657 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is 3658 ** automatically order-distinct. 3659 */ 3660 3661 assert( pOrderBy!=0 ); 3662 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; 3663 3664 nOrderBy = pOrderBy->nExpr; 3665 testcase( nOrderBy==BMS-1 ); 3666 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ 3667 isOrderDistinct = 1; 3668 obDone = MASKBIT(nOrderBy)-1; 3669 orderDistinctMask = 0; 3670 ready = 0; 3671 eqOpMask = WO_EQ | WO_IS | WO_ISNULL; 3672 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) eqOpMask |= WO_IN; 3673 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ 3674 if( iLoop>0 ) ready |= pLoop->maskSelf; 3675 if( iLoop<nLoop ){ 3676 pLoop = pPath->aLoop[iLoop]; 3677 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue; 3678 }else{ 3679 pLoop = pLast; 3680 } 3681 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ 3682 if( pLoop->u.vtab.isOrdered ) obSat = obDone; 3683 break; 3684 }else{ 3685 pLoop->u.btree.nIdxCol = 0; 3686 } 3687 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; 3688 3689 /* Mark off any ORDER BY term X that is a column in the table of 3690 ** the current loop for which there is term in the WHERE 3691 ** clause of the form X IS NULL or X=? that reference only outer 3692 ** loops. 3693 */ 3694 for(i=0; i<nOrderBy; i++){ 3695 if( MASKBIT(i) & obSat ) continue; 3696 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); 3697 if( pOBExpr->op!=TK_COLUMN ) continue; 3698 if( pOBExpr->iTable!=iCur ) continue; 3699 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, 3700 ~ready, eqOpMask, 0); 3701 if( pTerm==0 ) continue; 3702 if( pTerm->eOperator==WO_IN ){ 3703 /* IN terms are only valid for sorting in the ORDER BY LIMIT 3704 ** optimization, and then only if they are actually used 3705 ** by the query plan */ 3706 assert( wctrlFlags & WHERE_ORDERBY_LIMIT ); 3707 for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){} 3708 if( j>=pLoop->nLTerm ) continue; 3709 } 3710 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ 3711 if( sqlite3ExprCollSeqMatch(pWInfo->pParse, 3712 pOrderBy->a[i].pExpr, pTerm->pExpr)==0 ){ 3713 continue; 3714 } 3715 testcase( pTerm->pExpr->op==TK_IS ); 3716 } 3717 obSat |= MASKBIT(i); 3718 } 3719 3720 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ 3721 if( pLoop->wsFlags & WHERE_IPK ){ 3722 pIndex = 0; 3723 nKeyCol = 0; 3724 nColumn = 1; 3725 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ 3726 return 0; 3727 }else{ 3728 nKeyCol = pIndex->nKeyCol; 3729 nColumn = pIndex->nColumn; 3730 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); 3731 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID 3732 || !HasRowid(pIndex->pTable)); 3733 isOrderDistinct = IsUniqueIndex(pIndex); 3734 } 3735 3736 /* Loop through all columns of the index and deal with the ones 3737 ** that are not constrained by == or IN. 3738 */ 3739 rev = revSet = 0; 3740 distinctColumns = 0; 3741 for(j=0; j<nColumn; j++){ 3742 u8 bOnce = 1; /* True to run the ORDER BY search loop */ 3743 3744 assert( j>=pLoop->u.btree.nEq 3745 || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip) 3746 ); 3747 if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){ 3748 u16 eOp = pLoop->aLTerm[j]->eOperator; 3749 3750 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when 3751 ** doing WHERE_ORDERBY_LIMIT processing). 3752 ** 3753 ** If the current term is a column of an ((?,?) IN (SELECT...)) 3754 ** expression for which the SELECT returns more than one column, 3755 ** check that it is the only column used by this loop. Otherwise, 3756 ** if it is one of two or more, none of the columns can be 3757 ** considered to match an ORDER BY term. */ 3758 if( (eOp & eqOpMask)!=0 ){ 3759 if( eOp & WO_ISNULL ){ 3760 testcase( isOrderDistinct ); 3761 isOrderDistinct = 0; 3762 } 3763 continue; 3764 }else if( ALWAYS(eOp & WO_IN) ){ 3765 /* ALWAYS() justification: eOp is an equality operator due to the 3766 ** j<pLoop->u.btree.nEq constraint above. Any equality other 3767 ** than WO_IN is captured by the previous "if". So this one 3768 ** always has to be WO_IN. */ 3769 Expr *pX = pLoop->aLTerm[j]->pExpr; 3770 for(i=j+1; i<pLoop->u.btree.nEq; i++){ 3771 if( pLoop->aLTerm[i]->pExpr==pX ){ 3772 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) ); 3773 bOnce = 0; 3774 break; 3775 } 3776 } 3777 } 3778 } 3779 3780 /* Get the column number in the table (iColumn) and sort order 3781 ** (revIdx) for the j-th column of the index. 3782 */ 3783 if( pIndex ){ 3784 iColumn = pIndex->aiColumn[j]; 3785 revIdx = pIndex->aSortOrder[j]; 3786 if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID; 3787 }else{ 3788 iColumn = XN_ROWID; 3789 revIdx = 0; 3790 } 3791 3792 /* An unconstrained column that might be NULL means that this 3793 ** WhereLoop is not well-ordered 3794 */ 3795 if( isOrderDistinct 3796 && iColumn>=0 3797 && j>=pLoop->u.btree.nEq 3798 && pIndex->pTable->aCol[iColumn].notNull==0 3799 ){ 3800 isOrderDistinct = 0; 3801 } 3802 3803 /* Find the ORDER BY term that corresponds to the j-th column 3804 ** of the index and mark that ORDER BY term off 3805 */ 3806 isMatch = 0; 3807 for(i=0; bOnce && i<nOrderBy; i++){ 3808 if( MASKBIT(i) & obSat ) continue; 3809 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); 3810 testcase( wctrlFlags & WHERE_GROUPBY ); 3811 testcase( wctrlFlags & WHERE_DISTINCTBY ); 3812 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; 3813 if( iColumn>=XN_ROWID ){ 3814 if( pOBExpr->op!=TK_COLUMN ) continue; 3815 if( pOBExpr->iTable!=iCur ) continue; 3816 if( pOBExpr->iColumn!=iColumn ) continue; 3817 }else{ 3818 Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr; 3819 if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){ 3820 continue; 3821 } 3822 } 3823 if( iColumn!=XN_ROWID ){ 3824 pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 3825 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; 3826 } 3827 pLoop->u.btree.nIdxCol = j+1; 3828 isMatch = 1; 3829 break; 3830 } 3831 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ 3832 /* Make sure the sort order is compatible in an ORDER BY clause. 3833 ** Sort order is irrelevant for a GROUP BY clause. */ 3834 if( revSet ){ 3835 if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0; 3836 }else{ 3837 rev = revIdx ^ pOrderBy->a[i].sortOrder; 3838 if( rev ) *pRevMask |= MASKBIT(iLoop); 3839 revSet = 1; 3840 } 3841 } 3842 if( isMatch ){ 3843 if( iColumn==XN_ROWID ){ 3844 testcase( distinctColumns==0 ); 3845 distinctColumns = 1; 3846 } 3847 obSat |= MASKBIT(i); 3848 }else{ 3849 /* No match found */ 3850 if( j==0 || j<nKeyCol ){ 3851 testcase( isOrderDistinct!=0 ); 3852 isOrderDistinct = 0; 3853 } 3854 break; 3855 } 3856 } /* end Loop over all index columns */ 3857 if( distinctColumns ){ 3858 testcase( isOrderDistinct==0 ); 3859 isOrderDistinct = 1; 3860 } 3861 } /* end-if not one-row */ 3862 3863 /* Mark off any other ORDER BY terms that reference pLoop */ 3864 if( isOrderDistinct ){ 3865 orderDistinctMask |= pLoop->maskSelf; 3866 for(i=0; i<nOrderBy; i++){ 3867 Expr *p; 3868 Bitmask mTerm; 3869 if( MASKBIT(i) & obSat ) continue; 3870 p = pOrderBy->a[i].pExpr; 3871 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); 3872 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; 3873 if( (mTerm&~orderDistinctMask)==0 ){ 3874 obSat |= MASKBIT(i); 3875 } 3876 } 3877 } 3878 } /* End the loop over all WhereLoops from outer-most down to inner-most */ 3879 if( obSat==obDone ) return (i8)nOrderBy; 3880 if( !isOrderDistinct ){ 3881 for(i=nOrderBy-1; i>0; i--){ 3882 Bitmask m = MASKBIT(i) - 1; 3883 if( (obSat&m)==m ) return i; 3884 } 3885 return 0; 3886 } 3887 return -1; 3888 } 3889 3890 3891 /* 3892 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), 3893 ** the planner assumes that the specified pOrderBy list is actually a GROUP 3894 ** BY clause - and so any order that groups rows as required satisfies the 3895 ** request. 3896 ** 3897 ** Normally, in this case it is not possible for the caller to determine 3898 ** whether or not the rows are really being delivered in sorted order, or 3899 ** just in some other order that provides the required grouping. However, 3900 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then 3901 ** this function may be called on the returned WhereInfo object. It returns 3902 ** true if the rows really will be sorted in the specified order, or false 3903 ** otherwise. 3904 ** 3905 ** For example, assuming: 3906 ** 3907 ** CREATE INDEX i1 ON t1(x, Y); 3908 ** 3909 ** then 3910 ** 3911 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 3912 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 3913 */ 3914 int sqlite3WhereIsSorted(WhereInfo *pWInfo){ 3915 assert( pWInfo->wctrlFlags & WHERE_GROUPBY ); 3916 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); 3917 return pWInfo->sorted; 3918 } 3919 3920 #ifdef WHERETRACE_ENABLED 3921 /* For debugging use only: */ 3922 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ 3923 static char zName[65]; 3924 int i; 3925 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } 3926 if( pLast ) zName[i++] = pLast->cId; 3927 zName[i] = 0; 3928 return zName; 3929 } 3930 #endif 3931 3932 /* 3933 ** Return the cost of sorting nRow rows, assuming that the keys have 3934 ** nOrderby columns and that the first nSorted columns are already in 3935 ** order. 3936 */ 3937 static LogEst whereSortingCost( 3938 WhereInfo *pWInfo, 3939 LogEst nRow, 3940 int nOrderBy, 3941 int nSorted 3942 ){ 3943 /* TUNING: Estimated cost of a full external sort, where N is 3944 ** the number of rows to sort is: 3945 ** 3946 ** cost = (3.0 * N * log(N)). 3947 ** 3948 ** Or, if the order-by clause has X terms but only the last Y 3949 ** terms are out of order, then block-sorting will reduce the 3950 ** sorting cost to: 3951 ** 3952 ** cost = (3.0 * N * log(N)) * (Y/X) 3953 ** 3954 ** The (Y/X) term is implemented using stack variable rScale 3955 ** below. */ 3956 LogEst rScale, rSortCost; 3957 assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); 3958 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; 3959 rSortCost = nRow + rScale + 16; 3960 3961 /* Multiple by log(M) where M is the number of output rows. 3962 ** Use the LIMIT for M if it is smaller */ 3963 if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){ 3964 nRow = pWInfo->iLimit; 3965 } 3966 rSortCost += estLog(nRow); 3967 return rSortCost; 3968 } 3969 3970 /* 3971 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine 3972 ** attempts to find the lowest cost path that visits each WhereLoop 3973 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. 3974 ** 3975 ** Assume that the total number of output rows that will need to be sorted 3976 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting 3977 ** costs if nRowEst==0. 3978 ** 3979 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation 3980 ** error occurs. 3981 */ 3982 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ 3983 int mxChoice; /* Maximum number of simultaneous paths tracked */ 3984 int nLoop; /* Number of terms in the join */ 3985 Parse *pParse; /* Parsing context */ 3986 sqlite3 *db; /* The database connection */ 3987 int iLoop; /* Loop counter over the terms of the join */ 3988 int ii, jj; /* Loop counters */ 3989 int mxI = 0; /* Index of next entry to replace */ 3990 int nOrderBy; /* Number of ORDER BY clause terms */ 3991 LogEst mxCost = 0; /* Maximum cost of a set of paths */ 3992 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ 3993 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ 3994 WherePath *aFrom; /* All nFrom paths at the previous level */ 3995 WherePath *aTo; /* The nTo best paths at the current level */ 3996 WherePath *pFrom; /* An element of aFrom[] that we are working on */ 3997 WherePath *pTo; /* An element of aTo[] that we are working on */ 3998 WhereLoop *pWLoop; /* One of the WhereLoop objects */ 3999 WhereLoop **pX; /* Used to divy up the pSpace memory */ 4000 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ 4001 char *pSpace; /* Temporary memory used by this routine */ 4002 int nSpace; /* Bytes of space allocated at pSpace */ 4003 4004 pParse = pWInfo->pParse; 4005 db = pParse->db; 4006 nLoop = pWInfo->nLevel; 4007 /* TUNING: For simple queries, only the best path is tracked. 4008 ** For 2-way joins, the 5 best paths are followed. 4009 ** For joins of 3 or more tables, track the 10 best paths */ 4010 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); 4011 assert( nLoop<=pWInfo->pTabList->nSrc ); 4012 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); 4013 4014 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this 4015 ** case the purpose of this call is to estimate the number of rows returned 4016 ** by the overall query. Once this estimate has been obtained, the caller 4017 ** will invoke this function a second time, passing the estimate as the 4018 ** nRowEst parameter. */ 4019 if( pWInfo->pOrderBy==0 || nRowEst==0 ){ 4020 nOrderBy = 0; 4021 }else{ 4022 nOrderBy = pWInfo->pOrderBy->nExpr; 4023 } 4024 4025 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ 4026 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; 4027 nSpace += sizeof(LogEst) * nOrderBy; 4028 pSpace = sqlite3DbMallocRawNN(db, nSpace); 4029 if( pSpace==0 ) return SQLITE_NOMEM_BKPT; 4030 aTo = (WherePath*)pSpace; 4031 aFrom = aTo+mxChoice; 4032 memset(aFrom, 0, sizeof(aFrom[0])); 4033 pX = (WhereLoop**)(aFrom+mxChoice); 4034 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ 4035 pFrom->aLoop = pX; 4036 } 4037 if( nOrderBy ){ 4038 /* If there is an ORDER BY clause and it is not being ignored, set up 4039 ** space for the aSortCost[] array. Each element of the aSortCost array 4040 ** is either zero - meaning it has not yet been initialized - or the 4041 ** cost of sorting nRowEst rows of data where the first X terms of 4042 ** the ORDER BY clause are already in order, where X is the array 4043 ** index. */ 4044 aSortCost = (LogEst*)pX; 4045 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); 4046 } 4047 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); 4048 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); 4049 4050 /* Seed the search with a single WherePath containing zero WhereLoops. 4051 ** 4052 ** TUNING: Do not let the number of iterations go above 28. If the cost 4053 ** of computing an automatic index is not paid back within the first 28 4054 ** rows, then do not use the automatic index. */ 4055 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) ); 4056 nFrom = 1; 4057 assert( aFrom[0].isOrdered==0 ); 4058 if( nOrderBy ){ 4059 /* If nLoop is zero, then there are no FROM terms in the query. Since 4060 ** in this case the query may return a maximum of one row, the results 4061 ** are already in the requested order. Set isOrdered to nOrderBy to 4062 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to 4063 ** -1, indicating that the result set may or may not be ordered, 4064 ** depending on the loops added to the current plan. */ 4065 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; 4066 } 4067 4068 /* Compute successively longer WherePaths using the previous generation 4069 ** of WherePaths as the basis for the next. Keep track of the mxChoice 4070 ** best paths at each generation */ 4071 for(iLoop=0; iLoop<nLoop; iLoop++){ 4072 nTo = 0; 4073 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ 4074 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ 4075 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ 4076 LogEst rCost; /* Cost of path (pFrom+pWLoop) */ 4077 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ 4078 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */ 4079 Bitmask maskNew; /* Mask of src visited by (..) */ 4080 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */ 4081 4082 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; 4083 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; 4084 if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){ 4085 /* Do not use an automatic index if the this loop is expected 4086 ** to run less than 1.25 times. It is tempting to also exclude 4087 ** automatic index usage on an outer loop, but sometimes an automatic 4088 ** index is useful in the outer loop of a correlated subquery. */ 4089 assert( 10==sqlite3LogEst(2) ); 4090 continue; 4091 } 4092 4093 /* At this point, pWLoop is a candidate to be the next loop. 4094 ** Compute its cost */ 4095 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); 4096 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); 4097 nOut = pFrom->nRow + pWLoop->nOut; 4098 maskNew = pFrom->maskLoop | pWLoop->maskSelf; 4099 if( isOrdered<0 ){ 4100 isOrdered = wherePathSatisfiesOrderBy(pWInfo, 4101 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, 4102 iLoop, pWLoop, &revMask); 4103 }else{ 4104 revMask = pFrom->revLoop; 4105 } 4106 if( isOrdered>=0 && isOrdered<nOrderBy ){ 4107 if( aSortCost[isOrdered]==0 ){ 4108 aSortCost[isOrdered] = whereSortingCost( 4109 pWInfo, nRowEst, nOrderBy, isOrdered 4110 ); 4111 } 4112 /* TUNING: Add a small extra penalty (5) to sorting as an 4113 ** extra encouragment to the query planner to select a plan 4114 ** where the rows emerge in the correct order without any sorting 4115 ** required. */ 4116 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5; 4117 4118 WHERETRACE(0x002, 4119 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", 4120 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, 4121 rUnsorted, rCost)); 4122 }else{ 4123 rCost = rUnsorted; 4124 rUnsorted -= 2; /* TUNING: Slight bias in favor of no-sort plans */ 4125 } 4126 4127 /* Check to see if pWLoop should be added to the set of 4128 ** mxChoice best-so-far paths. 4129 ** 4130 ** First look for an existing path among best-so-far paths 4131 ** that covers the same set of loops and has the same isOrdered 4132 ** setting as the current path candidate. 4133 ** 4134 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent 4135 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range 4136 ** of legal values for isOrdered, -1..64. 4137 */ 4138 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ 4139 if( pTo->maskLoop==maskNew 4140 && ((pTo->isOrdered^isOrdered)&0x80)==0 4141 ){ 4142 testcase( jj==nTo-1 ); 4143 break; 4144 } 4145 } 4146 if( jj>=nTo ){ 4147 /* None of the existing best-so-far paths match the candidate. */ 4148 if( nTo>=mxChoice 4149 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) 4150 ){ 4151 /* The current candidate is no better than any of the mxChoice 4152 ** paths currently in the best-so-far buffer. So discard 4153 ** this candidate as not viable. */ 4154 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4155 if( sqlite3WhereTrace&0x4 ){ 4156 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n", 4157 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4158 isOrdered>=0 ? isOrdered+'0' : '?'); 4159 } 4160 #endif 4161 continue; 4162 } 4163 /* If we reach this points it means that the new candidate path 4164 ** needs to be added to the set of best-so-far paths. */ 4165 if( nTo<mxChoice ){ 4166 /* Increase the size of the aTo set by one */ 4167 jj = nTo++; 4168 }else{ 4169 /* New path replaces the prior worst to keep count below mxChoice */ 4170 jj = mxI; 4171 } 4172 pTo = &aTo[jj]; 4173 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4174 if( sqlite3WhereTrace&0x4 ){ 4175 sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n", 4176 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4177 isOrdered>=0 ? isOrdered+'0' : '?'); 4178 } 4179 #endif 4180 }else{ 4181 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the 4182 ** same set of loops and has the same isOrdered setting as the 4183 ** candidate path. Check to see if the candidate should replace 4184 ** pTo or if the candidate should be skipped. 4185 ** 4186 ** The conditional is an expanded vector comparison equivalent to: 4187 ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted) 4188 */ 4189 if( pTo->rCost<rCost 4190 || (pTo->rCost==rCost 4191 && (pTo->nRow<nOut 4192 || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted) 4193 ) 4194 ) 4195 ){ 4196 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4197 if( sqlite3WhereTrace&0x4 ){ 4198 sqlite3DebugPrintf( 4199 "Skip %s cost=%-3d,%3d,%3d order=%c", 4200 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4201 isOrdered>=0 ? isOrdered+'0' : '?'); 4202 sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n", 4203 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4204 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4205 } 4206 #endif 4207 /* Discard the candidate path from further consideration */ 4208 testcase( pTo->rCost==rCost ); 4209 continue; 4210 } 4211 testcase( pTo->rCost==rCost+1 ); 4212 /* Control reaches here if the candidate path is better than the 4213 ** pTo path. Replace pTo with the candidate. */ 4214 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4215 if( sqlite3WhereTrace&0x4 ){ 4216 sqlite3DebugPrintf( 4217 "Update %s cost=%-3d,%3d,%3d order=%c", 4218 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4219 isOrdered>=0 ? isOrdered+'0' : '?'); 4220 sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n", 4221 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4222 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4223 } 4224 #endif 4225 } 4226 /* pWLoop is a winner. Add it to the set of best so far */ 4227 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; 4228 pTo->revLoop = revMask; 4229 pTo->nRow = nOut; 4230 pTo->rCost = rCost; 4231 pTo->rUnsorted = rUnsorted; 4232 pTo->isOrdered = isOrdered; 4233 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); 4234 pTo->aLoop[iLoop] = pWLoop; 4235 if( nTo>=mxChoice ){ 4236 mxI = 0; 4237 mxCost = aTo[0].rCost; 4238 mxUnsorted = aTo[0].nRow; 4239 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ 4240 if( pTo->rCost>mxCost 4241 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) 4242 ){ 4243 mxCost = pTo->rCost; 4244 mxUnsorted = pTo->rUnsorted; 4245 mxI = jj; 4246 } 4247 } 4248 } 4249 } 4250 } 4251 4252 #ifdef WHERETRACE_ENABLED /* >=2 */ 4253 if( sqlite3WhereTrace & 0x02 ){ 4254 sqlite3DebugPrintf("---- after round %d ----\n", iLoop); 4255 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ 4256 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", 4257 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4258 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); 4259 if( pTo->isOrdered>0 ){ 4260 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); 4261 }else{ 4262 sqlite3DebugPrintf("\n"); 4263 } 4264 } 4265 } 4266 #endif 4267 4268 /* Swap the roles of aFrom and aTo for the next generation */ 4269 pFrom = aTo; 4270 aTo = aFrom; 4271 aFrom = pFrom; 4272 nFrom = nTo; 4273 } 4274 4275 if( nFrom==0 ){ 4276 sqlite3ErrorMsg(pParse, "no query solution"); 4277 sqlite3DbFreeNN(db, pSpace); 4278 return SQLITE_ERROR; 4279 } 4280 4281 /* Find the lowest cost path. pFrom will be left pointing to that path */ 4282 pFrom = aFrom; 4283 for(ii=1; ii<nFrom; ii++){ 4284 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; 4285 } 4286 assert( pWInfo->nLevel==nLoop ); 4287 /* Load the lowest cost path into pWInfo */ 4288 for(iLoop=0; iLoop<nLoop; iLoop++){ 4289 WhereLevel *pLevel = pWInfo->a + iLoop; 4290 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; 4291 pLevel->iFrom = pWLoop->iTab; 4292 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; 4293 } 4294 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 4295 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 4296 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP 4297 && nRowEst 4298 ){ 4299 Bitmask notUsed; 4300 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, 4301 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); 4302 if( rc==pWInfo->pResultSet->nExpr ){ 4303 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 4304 } 4305 } 4306 pWInfo->bOrderedInnerLoop = 0; 4307 if( pWInfo->pOrderBy ){ 4308 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ 4309 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ 4310 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 4311 } 4312 }else{ 4313 pWInfo->nOBSat = pFrom->isOrdered; 4314 pWInfo->revMask = pFrom->revLoop; 4315 if( pWInfo->nOBSat<=0 ){ 4316 pWInfo->nOBSat = 0; 4317 if( nLoop>0 ){ 4318 u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags; 4319 if( (wsFlags & WHERE_ONEROW)==0 4320 && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN) 4321 ){ 4322 Bitmask m = 0; 4323 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, 4324 WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m); 4325 testcase( wsFlags & WHERE_IPK ); 4326 testcase( wsFlags & WHERE_COLUMN_IN ); 4327 if( rc==pWInfo->pOrderBy->nExpr ){ 4328 pWInfo->bOrderedInnerLoop = 1; 4329 pWInfo->revMask = m; 4330 } 4331 } 4332 } 4333 } 4334 } 4335 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) 4336 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 4337 ){ 4338 Bitmask revMask = 0; 4339 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, 4340 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask 4341 ); 4342 assert( pWInfo->sorted==0 ); 4343 if( nOrder==pWInfo->pOrderBy->nExpr ){ 4344 pWInfo->sorted = 1; 4345 pWInfo->revMask = revMask; 4346 } 4347 } 4348 } 4349 4350 4351 pWInfo->nRowOut = pFrom->nRow; 4352 4353 /* Free temporary memory and return success */ 4354 sqlite3DbFreeNN(db, pSpace); 4355 return SQLITE_OK; 4356 } 4357 4358 /* 4359 ** Most queries use only a single table (they are not joins) and have 4360 ** simple == constraints against indexed fields. This routine attempts 4361 ** to plan those simple cases using much less ceremony than the 4362 ** general-purpose query planner, and thereby yield faster sqlite3_prepare() 4363 ** times for the common case. 4364 ** 4365 ** Return non-zero on success, if this query can be handled by this 4366 ** no-frills query planner. Return zero if this query needs the 4367 ** general-purpose query planner. 4368 */ 4369 static int whereShortCut(WhereLoopBuilder *pBuilder){ 4370 WhereInfo *pWInfo; 4371 struct SrcList_item *pItem; 4372 WhereClause *pWC; 4373 WhereTerm *pTerm; 4374 WhereLoop *pLoop; 4375 int iCur; 4376 int j; 4377 Table *pTab; 4378 Index *pIdx; 4379 4380 pWInfo = pBuilder->pWInfo; 4381 if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0; 4382 assert( pWInfo->pTabList->nSrc>=1 ); 4383 pItem = pWInfo->pTabList->a; 4384 pTab = pItem->pTab; 4385 if( IsVirtual(pTab) ) return 0; 4386 if( pItem->fg.isIndexedBy ) return 0; 4387 iCur = pItem->iCursor; 4388 pWC = &pWInfo->sWC; 4389 pLoop = pBuilder->pNew; 4390 pLoop->wsFlags = 0; 4391 pLoop->nSkip = 0; 4392 pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0); 4393 if( pTerm ){ 4394 testcase( pTerm->eOperator & WO_IS ); 4395 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; 4396 pLoop->aLTerm[0] = pTerm; 4397 pLoop->nLTerm = 1; 4398 pLoop->u.btree.nEq = 1; 4399 /* TUNING: Cost of a rowid lookup is 10 */ 4400 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ 4401 }else{ 4402 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4403 int opMask; 4404 assert( pLoop->aLTermSpace==pLoop->aLTerm ); 4405 if( !IsUniqueIndex(pIdx) 4406 || pIdx->pPartIdxWhere!=0 4407 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) 4408 ) continue; 4409 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; 4410 for(j=0; j<pIdx->nKeyCol; j++){ 4411 pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx); 4412 if( pTerm==0 ) break; 4413 testcase( pTerm->eOperator & WO_IS ); 4414 pLoop->aLTerm[j] = pTerm; 4415 } 4416 if( j!=pIdx->nKeyCol ) continue; 4417 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; 4418 if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){ 4419 pLoop->wsFlags |= WHERE_IDX_ONLY; 4420 } 4421 pLoop->nLTerm = j; 4422 pLoop->u.btree.nEq = j; 4423 pLoop->u.btree.pIndex = pIdx; 4424 /* TUNING: Cost of a unique index lookup is 15 */ 4425 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ 4426 break; 4427 } 4428 } 4429 if( pLoop->wsFlags ){ 4430 pLoop->nOut = (LogEst)1; 4431 pWInfo->a[0].pWLoop = pLoop; 4432 assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] ); 4433 pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */ 4434 pWInfo->a[0].iTabCur = iCur; 4435 pWInfo->nRowOut = 1; 4436 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; 4437 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ 4438 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4439 } 4440 #ifdef SQLITE_DEBUG 4441 pLoop->cId = '0'; 4442 #endif 4443 return 1; 4444 } 4445 return 0; 4446 } 4447 4448 /* 4449 ** Helper function for exprIsDeterministic(). 4450 */ 4451 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){ 4452 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){ 4453 pWalker->eCode = 0; 4454 return WRC_Abort; 4455 } 4456 return WRC_Continue; 4457 } 4458 4459 /* 4460 ** Return true if the expression contains no non-deterministic SQL 4461 ** functions. Do not consider non-deterministic SQL functions that are 4462 ** part of sub-select statements. 4463 */ 4464 static int exprIsDeterministic(Expr *p){ 4465 Walker w; 4466 memset(&w, 0, sizeof(w)); 4467 w.eCode = 1; 4468 w.xExprCallback = exprNodeIsDeterministic; 4469 w.xSelectCallback = sqlite3SelectWalkFail; 4470 sqlite3WalkExpr(&w, p); 4471 return w.eCode; 4472 } 4473 4474 /* 4475 ** Generate the beginning of the loop used for WHERE clause processing. 4476 ** The return value is a pointer to an opaque structure that contains 4477 ** information needed to terminate the loop. Later, the calling routine 4478 ** should invoke sqlite3WhereEnd() with the return value of this function 4479 ** in order to complete the WHERE clause processing. 4480 ** 4481 ** If an error occurs, this routine returns NULL. 4482 ** 4483 ** The basic idea is to do a nested loop, one loop for each table in 4484 ** the FROM clause of a select. (INSERT and UPDATE statements are the 4485 ** same as a SELECT with only a single table in the FROM clause.) For 4486 ** example, if the SQL is this: 4487 ** 4488 ** SELECT * FROM t1, t2, t3 WHERE ...; 4489 ** 4490 ** Then the code generated is conceptually like the following: 4491 ** 4492 ** foreach row1 in t1 do \ Code generated 4493 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 4494 ** foreach row3 in t3 do / 4495 ** ... 4496 ** end \ Code generated 4497 ** end |-- by sqlite3WhereEnd() 4498 ** end / 4499 ** 4500 ** Note that the loops might not be nested in the order in which they 4501 ** appear in the FROM clause if a different order is better able to make 4502 ** use of indices. Note also that when the IN operator appears in 4503 ** the WHERE clause, it might result in additional nested loops for 4504 ** scanning through all values on the right-hand side of the IN. 4505 ** 4506 ** There are Btree cursors associated with each table. t1 uses cursor 4507 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 4508 ** And so forth. This routine generates code to open those VDBE cursors 4509 ** and sqlite3WhereEnd() generates the code to close them. 4510 ** 4511 ** The code that sqlite3WhereBegin() generates leaves the cursors named 4512 ** in pTabList pointing at their appropriate entries. The [...] code 4513 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 4514 ** data from the various tables of the loop. 4515 ** 4516 ** If the WHERE clause is empty, the foreach loops must each scan their 4517 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 4518 ** the tables have indices and there are terms in the WHERE clause that 4519 ** refer to those indices, a complete table scan can be avoided and the 4520 ** code will run much faster. Most of the work of this routine is checking 4521 ** to see if there are indices that can be used to speed up the loop. 4522 ** 4523 ** Terms of the WHERE clause are also used to limit which rows actually 4524 ** make it to the "..." in the middle of the loop. After each "foreach", 4525 ** terms of the WHERE clause that use only terms in that loop and outer 4526 ** loops are evaluated and if false a jump is made around all subsequent 4527 ** inner loops (or around the "..." if the test occurs within the inner- 4528 ** most loop) 4529 ** 4530 ** OUTER JOINS 4531 ** 4532 ** An outer join of tables t1 and t2 is conceptally coded as follows: 4533 ** 4534 ** foreach row1 in t1 do 4535 ** flag = 0 4536 ** foreach row2 in t2 do 4537 ** start: 4538 ** ... 4539 ** flag = 1 4540 ** end 4541 ** if flag==0 then 4542 ** move the row2 cursor to a null row 4543 ** goto start 4544 ** fi 4545 ** end 4546 ** 4547 ** ORDER BY CLAUSE PROCESSING 4548 ** 4549 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause 4550 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement 4551 ** if there is one. If there is no ORDER BY clause or if this routine 4552 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. 4553 ** 4554 ** The iIdxCur parameter is the cursor number of an index. If 4555 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index 4556 ** to use for OR clause processing. The WHERE clause should use this 4557 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is 4558 ** the first cursor in an array of cursors for all indices. iIdxCur should 4559 ** be used to compute the appropriate cursor depending on which index is 4560 ** used. 4561 */ 4562 WhereInfo *sqlite3WhereBegin( 4563 Parse *pParse, /* The parser context */ 4564 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ 4565 Expr *pWhere, /* The WHERE clause */ 4566 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ 4567 ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */ 4568 u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */ 4569 int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number 4570 ** If WHERE_USE_LIMIT, then the limit amount */ 4571 ){ 4572 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ 4573 int nTabList; /* Number of elements in pTabList */ 4574 WhereInfo *pWInfo; /* Will become the return value of this function */ 4575 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 4576 Bitmask notReady; /* Cursors that are not yet positioned */ 4577 WhereLoopBuilder sWLB; /* The WhereLoop builder */ 4578 WhereMaskSet *pMaskSet; /* The expression mask set */ 4579 WhereLevel *pLevel; /* A single level in pWInfo->a[] */ 4580 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ 4581 int ii; /* Loop counter */ 4582 sqlite3 *db; /* Database connection */ 4583 int rc; /* Return code */ 4584 u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */ 4585 4586 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || ( 4587 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 4588 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 4589 )); 4590 4591 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */ 4592 assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 4593 || (wctrlFlags & WHERE_USE_LIMIT)==0 ); 4594 4595 /* Variable initialization */ 4596 db = pParse->db; 4597 memset(&sWLB, 0, sizeof(sWLB)); 4598 4599 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ 4600 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); 4601 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; 4602 sWLB.pOrderBy = pOrderBy; 4603 4604 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via 4605 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ 4606 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ 4607 wctrlFlags &= ~WHERE_WANT_DISTINCT; 4608 } 4609 4610 /* The number of tables in the FROM clause is limited by the number of 4611 ** bits in a Bitmask 4612 */ 4613 testcase( pTabList->nSrc==BMS ); 4614 if( pTabList->nSrc>BMS ){ 4615 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 4616 return 0; 4617 } 4618 4619 /* This function normally generates a nested loop for all tables in 4620 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should 4621 ** only generate code for the first table in pTabList and assume that 4622 ** any cursors associated with subsequent tables are uninitialized. 4623 */ 4624 nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc; 4625 4626 /* Allocate and initialize the WhereInfo structure that will become the 4627 ** return value. A single allocation is used to store the WhereInfo 4628 ** struct, the contents of WhereInfo.a[], the WhereClause structure 4629 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte 4630 ** field (type Bitmask) it must be aligned on an 8-byte boundary on 4631 ** some architectures. Hence the ROUND8() below. 4632 */ 4633 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); 4634 pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop)); 4635 if( db->mallocFailed ){ 4636 sqlite3DbFree(db, pWInfo); 4637 pWInfo = 0; 4638 goto whereBeginError; 4639 } 4640 pWInfo->pParse = pParse; 4641 pWInfo->pTabList = pTabList; 4642 pWInfo->pOrderBy = pOrderBy; 4643 pWInfo->pWhere = pWhere; 4644 pWInfo->pResultSet = pResultSet; 4645 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; 4646 pWInfo->nLevel = nTabList; 4647 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v); 4648 pWInfo->wctrlFlags = wctrlFlags; 4649 pWInfo->iLimit = iAuxArg; 4650 pWInfo->savedNQueryLoop = pParse->nQueryLoop; 4651 memset(&pWInfo->nOBSat, 0, 4652 offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat)); 4653 memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel)); 4654 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */ 4655 pMaskSet = &pWInfo->sMaskSet; 4656 sWLB.pWInfo = pWInfo; 4657 sWLB.pWC = &pWInfo->sWC; 4658 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); 4659 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); 4660 whereLoopInit(sWLB.pNew); 4661 #ifdef SQLITE_DEBUG 4662 sWLB.pNew->cId = '*'; 4663 #endif 4664 4665 /* Split the WHERE clause into separate subexpressions where each 4666 ** subexpression is separated by an AND operator. 4667 */ 4668 initMaskSet(pMaskSet); 4669 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); 4670 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); 4671 4672 /* Special case: No FROM clause 4673 */ 4674 if( nTabList==0 ){ 4675 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; 4676 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4677 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4678 } 4679 ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW")); 4680 }else{ 4681 /* Assign a bit from the bitmask to every term in the FROM clause. 4682 ** 4683 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. 4684 ** 4685 ** The rule of the previous sentence ensures thta if X is the bitmask for 4686 ** a table T, then X-1 is the bitmask for all other tables to the left of T. 4687 ** Knowing the bitmask for all tables to the left of a left join is 4688 ** important. Ticket #3015. 4689 ** 4690 ** Note that bitmasks are created for all pTabList->nSrc tables in 4691 ** pTabList, not just the first nTabList tables. nTabList is normally 4692 ** equal to pTabList->nSrc but might be shortened to 1 if the 4693 ** WHERE_OR_SUBCLAUSE flag is set. 4694 */ 4695 ii = 0; 4696 do{ 4697 createMask(pMaskSet, pTabList->a[ii].iCursor); 4698 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC); 4699 }while( (++ii)<pTabList->nSrc ); 4700 #ifdef SQLITE_DEBUG 4701 { 4702 Bitmask mx = 0; 4703 for(ii=0; ii<pTabList->nSrc; ii++){ 4704 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); 4705 assert( m>=mx ); 4706 mx = m; 4707 } 4708 } 4709 #endif 4710 } 4711 4712 /* Analyze all of the subexpressions. */ 4713 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); 4714 if( db->mallocFailed ) goto whereBeginError; 4715 4716 /* Special case: WHERE terms that do not refer to any tables in the join 4717 ** (constant expressions). Evaluate each such term, and jump over all the 4718 ** generated code if the result is not true. 4719 ** 4720 ** Do not do this if the expression contains non-deterministic functions 4721 ** that are not within a sub-select. This is not strictly required, but 4722 ** preserves SQLite's legacy behaviour in the following two cases: 4723 ** 4724 ** FROM ... WHERE random()>0; -- eval random() once per row 4725 ** FROM ... WHERE (SELECT random())>0; -- eval random() once overall 4726 */ 4727 for(ii=0; ii<sWLB.pWC->nTerm; ii++){ 4728 WhereTerm *pT = &sWLB.pWC->a[ii]; 4729 if( pT->wtFlags & TERM_VIRTUAL ) continue; 4730 if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){ 4731 sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL); 4732 pT->wtFlags |= TERM_CODED; 4733 } 4734 } 4735 4736 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4737 if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ 4738 /* The DISTINCT marking is pointless. Ignore it. */ 4739 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4740 }else if( pOrderBy==0 ){ 4741 /* Try to ORDER BY the result set to make distinct processing easier */ 4742 pWInfo->wctrlFlags |= WHERE_DISTINCTBY; 4743 pWInfo->pOrderBy = pResultSet; 4744 } 4745 } 4746 4747 /* Construct the WhereLoop objects */ 4748 #if defined(WHERETRACE_ENABLED) 4749 if( sqlite3WhereTrace & 0xffff ){ 4750 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags); 4751 if( wctrlFlags & WHERE_USE_LIMIT ){ 4752 sqlite3DebugPrintf(", limit: %d", iAuxArg); 4753 } 4754 sqlite3DebugPrintf(")\n"); 4755 } 4756 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 4757 sqlite3WhereClausePrint(sWLB.pWC); 4758 } 4759 #endif 4760 4761 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ 4762 rc = whereLoopAddAll(&sWLB); 4763 if( rc ) goto whereBeginError; 4764 4765 #ifdef WHERETRACE_ENABLED 4766 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ 4767 WhereLoop *p; 4768 int i; 4769 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" 4770 "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; 4771 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ 4772 p->cId = zLabel[i%(sizeof(zLabel)-1)]; 4773 whereLoopPrint(p, sWLB.pWC); 4774 } 4775 } 4776 #endif 4777 4778 wherePathSolver(pWInfo, 0); 4779 if( db->mallocFailed ) goto whereBeginError; 4780 if( pWInfo->pOrderBy ){ 4781 wherePathSolver(pWInfo, pWInfo->nRowOut+1); 4782 if( db->mallocFailed ) goto whereBeginError; 4783 } 4784 } 4785 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ 4786 pWInfo->revMask = ALLBITS; 4787 } 4788 if( pParse->nErr || NEVER(db->mallocFailed) ){ 4789 goto whereBeginError; 4790 } 4791 #ifdef WHERETRACE_ENABLED 4792 if( sqlite3WhereTrace ){ 4793 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); 4794 if( pWInfo->nOBSat>0 ){ 4795 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); 4796 } 4797 switch( pWInfo->eDistinct ){ 4798 case WHERE_DISTINCT_UNIQUE: { 4799 sqlite3DebugPrintf(" DISTINCT=unique"); 4800 break; 4801 } 4802 case WHERE_DISTINCT_ORDERED: { 4803 sqlite3DebugPrintf(" DISTINCT=ordered"); 4804 break; 4805 } 4806 case WHERE_DISTINCT_UNORDERED: { 4807 sqlite3DebugPrintf(" DISTINCT=unordered"); 4808 break; 4809 } 4810 } 4811 sqlite3DebugPrintf("\n"); 4812 for(ii=0; ii<pWInfo->nLevel; ii++){ 4813 whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); 4814 } 4815 } 4816 #endif 4817 4818 /* Attempt to omit tables from the join that do not affect the result. 4819 ** For a table to not affect the result, the following must be true: 4820 ** 4821 ** 1) The query must not be an aggregate. 4822 ** 2) The table must be the RHS of a LEFT JOIN. 4823 ** 3) Either the query must be DISTINCT, or else the ON or USING clause 4824 ** must contain a constraint that limits the scan of the table to 4825 ** at most a single row. 4826 ** 4) The table must not be referenced by any part of the query apart 4827 ** from its own USING or ON clause. 4828 ** 4829 ** For example, given: 4830 ** 4831 ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1); 4832 ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2); 4833 ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3); 4834 ** 4835 ** then table t2 can be omitted from the following: 4836 ** 4837 ** SELECT v1, v3 FROM t1 4838 ** LEFT JOIN t2 USING (t1.ipk=t2.ipk) 4839 ** LEFT JOIN t3 USING (t1.ipk=t3.ipk) 4840 ** 4841 ** or from: 4842 ** 4843 ** SELECT DISTINCT v1, v3 FROM t1 4844 ** LEFT JOIN t2 4845 ** LEFT JOIN t3 USING (t1.ipk=t3.ipk) 4846 */ 4847 notReady = ~(Bitmask)0; 4848 if( pWInfo->nLevel>=2 4849 && pResultSet!=0 /* guarantees condition (1) above */ 4850 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) 4851 ){ 4852 int i; 4853 Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet); 4854 if( sWLB.pOrderBy ){ 4855 tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy); 4856 } 4857 for(i=pWInfo->nLevel-1; i>=1; i--){ 4858 WhereTerm *pTerm, *pEnd; 4859 struct SrcList_item *pItem; 4860 pLoop = pWInfo->a[i].pWLoop; 4861 pItem = &pWInfo->pTabList->a[pLoop->iTab]; 4862 if( (pItem->fg.jointype & JT_LEFT)==0 ) continue; 4863 if( (wctrlFlags & WHERE_WANT_DISTINCT)==0 4864 && (pLoop->wsFlags & WHERE_ONEROW)==0 4865 ){ 4866 continue; 4867 } 4868 if( (tabUsed & pLoop->maskSelf)!=0 ) continue; 4869 pEnd = sWLB.pWC->a + sWLB.pWC->nTerm; 4870 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ 4871 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 4872 if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 4873 || pTerm->pExpr->iRightJoinTable!=pItem->iCursor 4874 ){ 4875 break; 4876 } 4877 } 4878 } 4879 if( pTerm<pEnd ) continue; 4880 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); 4881 notReady &= ~pLoop->maskSelf; 4882 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ 4883 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 4884 pTerm->wtFlags |= TERM_CODED; 4885 } 4886 } 4887 if( i!=pWInfo->nLevel-1 ){ 4888 int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel); 4889 memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte); 4890 } 4891 pWInfo->nLevel--; 4892 nTabList--; 4893 } 4894 } 4895 WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); 4896 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; 4897 4898 /* If the caller is an UPDATE or DELETE statement that is requesting 4899 ** to use a one-pass algorithm, determine if this is appropriate. 4900 ** 4901 ** A one-pass approach can be used if the caller has requested one 4902 ** and either (a) the scan visits at most one row or (b) each 4903 ** of the following are true: 4904 ** 4905 ** * the caller has indicated that a one-pass approach can be used 4906 ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and 4907 ** * the table is not a virtual table, and 4908 ** * either the scan does not use the OR optimization or the caller 4909 ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified 4910 ** for DELETE). 4911 ** 4912 ** The last qualification is because an UPDATE statement uses 4913 ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can 4914 ** use a one-pass approach, and this is not set accurately for scans 4915 ** that use the OR optimization. 4916 */ 4917 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 4918 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){ 4919 int wsFlags = pWInfo->a[0].pWLoop->wsFlags; 4920 int bOnerow = (wsFlags & WHERE_ONEROW)!=0; 4921 if( bOnerow || ( 4922 0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW) 4923 && 0==(wsFlags & WHERE_VIRTUALTABLE) 4924 && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK)) 4925 )){ 4926 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; 4927 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){ 4928 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){ 4929 bFordelete = OPFLAG_FORDELETE; 4930 } 4931 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY); 4932 } 4933 } 4934 } 4935 4936 /* Open all tables in the pTabList and any indices selected for 4937 ** searching those tables. 4938 */ 4939 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ 4940 Table *pTab; /* Table to open */ 4941 int iDb; /* Index of database containing table/index */ 4942 struct SrcList_item *pTabItem; 4943 4944 pTabItem = &pTabList->a[pLevel->iFrom]; 4945 pTab = pTabItem->pTab; 4946 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4947 pLoop = pLevel->pWLoop; 4948 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){ 4949 /* Do nothing */ 4950 }else 4951 #ifndef SQLITE_OMIT_VIRTUALTABLE 4952 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 4953 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 4954 int iCur = pTabItem->iCursor; 4955 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); 4956 }else if( IsVirtual(pTab) ){ 4957 /* noop */ 4958 }else 4959 #endif 4960 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 4961 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){ 4962 int op = OP_OpenRead; 4963 if( pWInfo->eOnePass!=ONEPASS_OFF ){ 4964 op = OP_OpenWrite; 4965 pWInfo->aiCurOnePass[0] = pTabItem->iCursor; 4966 }; 4967 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 4968 assert( pTabItem->iCursor==pLevel->iTabCur ); 4969 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 ); 4970 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS ); 4971 if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){ 4972 Bitmask b = pTabItem->colUsed; 4973 int n = 0; 4974 for(; b; b=b>>1, n++){} 4975 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32); 4976 assert( n<=pTab->nCol ); 4977 } 4978 #ifdef SQLITE_ENABLE_CURSOR_HINTS 4979 if( pLoop->u.btree.pIndex!=0 ){ 4980 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete); 4981 }else 4982 #endif 4983 { 4984 sqlite3VdbeChangeP5(v, bFordelete); 4985 } 4986 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4987 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, 4988 (const u8*)&pTabItem->colUsed, P4_INT64); 4989 #endif 4990 }else{ 4991 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 4992 } 4993 if( pLoop->wsFlags & WHERE_INDEXED ){ 4994 Index *pIx = pLoop->u.btree.pIndex; 4995 int iIndexCur; 4996 int op = OP_OpenRead; 4997 /* iAuxArg is always set to a positive value if ONEPASS is possible */ 4998 assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); 4999 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) 5000 && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 5001 ){ 5002 /* This is one term of an OR-optimization using the PRIMARY KEY of a 5003 ** WITHOUT ROWID table. No need for a separate index */ 5004 iIndexCur = pLevel->iTabCur; 5005 op = 0; 5006 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){ 5007 Index *pJ = pTabItem->pTab->pIndex; 5008 iIndexCur = iAuxArg; 5009 assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); 5010 while( ALWAYS(pJ) && pJ!=pIx ){ 5011 iIndexCur++; 5012 pJ = pJ->pNext; 5013 } 5014 op = OP_OpenWrite; 5015 pWInfo->aiCurOnePass[1] = iIndexCur; 5016 }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){ 5017 iIndexCur = iAuxArg; 5018 op = OP_ReopenIdx; 5019 }else{ 5020 iIndexCur = pParse->nTab++; 5021 } 5022 pLevel->iIdxCur = iIndexCur; 5023 assert( pIx->pSchema==pTab->pSchema ); 5024 assert( iIndexCur>=0 ); 5025 if( op ){ 5026 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); 5027 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 5028 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 5029 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 5030 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 5031 && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED 5032 ){ 5033 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */ 5034 } 5035 VdbeComment((v, "%s", pIx->zName)); 5036 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 5037 { 5038 u64 colUsed = 0; 5039 int ii, jj; 5040 for(ii=0; ii<pIx->nColumn; ii++){ 5041 jj = pIx->aiColumn[ii]; 5042 if( jj<0 ) continue; 5043 if( jj>63 ) jj = 63; 5044 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue; 5045 colUsed |= ((u64)1)<<(ii<63 ? ii : 63); 5046 } 5047 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, 5048 (u8*)&colUsed, P4_INT64); 5049 } 5050 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ 5051 } 5052 } 5053 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); 5054 } 5055 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 5056 if( db->mallocFailed ) goto whereBeginError; 5057 5058 /* Generate the code to do the search. Each iteration of the for 5059 ** loop below generates code for a single nested loop of the VM 5060 ** program. 5061 */ 5062 for(ii=0; ii<nTabList; ii++){ 5063 int addrExplain; 5064 int wsFlags; 5065 pLevel = &pWInfo->a[ii]; 5066 wsFlags = pLevel->pWLoop->wsFlags; 5067 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 5068 if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 5069 constructAutomaticIndex(pParse, &pWInfo->sWC, 5070 &pTabList->a[pLevel->iFrom], notReady, pLevel); 5071 if( db->mallocFailed ) goto whereBeginError; 5072 } 5073 #endif 5074 addrExplain = sqlite3WhereExplainOneScan( 5075 pParse, pTabList, pLevel, wctrlFlags 5076 ); 5077 pLevel->addrBody = sqlite3VdbeCurrentAddr(v); 5078 notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady); 5079 pWInfo->iContinue = pLevel->addrCont; 5080 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){ 5081 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); 5082 } 5083 } 5084 5085 /* Done. */ 5086 VdbeModuleComment((v, "Begin WHERE-core")); 5087 return pWInfo; 5088 5089 /* Jump here if malloc fails */ 5090 whereBeginError: 5091 if( pWInfo ){ 5092 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 5093 whereInfoFree(db, pWInfo); 5094 } 5095 return 0; 5096 } 5097 5098 /* 5099 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the 5100 ** index rather than the main table. In SQLITE_DEBUG mode, we want 5101 ** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine 5102 ** does that. 5103 */ 5104 #ifndef SQLITE_DEBUG 5105 # define OpcodeRewriteTrace(D,K,P) /* no-op */ 5106 #else 5107 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P) 5108 static void sqlite3WhereOpcodeRewriteTrace( 5109 sqlite3 *db, 5110 int pc, 5111 VdbeOp *pOp 5112 ){ 5113 if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return; 5114 sqlite3VdbePrintOp(0, pc, pOp); 5115 } 5116 #endif 5117 5118 /* 5119 ** Generate the end of the WHERE loop. See comments on 5120 ** sqlite3WhereBegin() for additional information. 5121 */ 5122 void sqlite3WhereEnd(WhereInfo *pWInfo){ 5123 Parse *pParse = pWInfo->pParse; 5124 Vdbe *v = pParse->pVdbe; 5125 int i; 5126 WhereLevel *pLevel; 5127 WhereLoop *pLoop; 5128 SrcList *pTabList = pWInfo->pTabList; 5129 sqlite3 *db = pParse->db; 5130 5131 /* Generate loop termination code. 5132 */ 5133 VdbeModuleComment((v, "End WHERE-core")); 5134 for(i=pWInfo->nLevel-1; i>=0; i--){ 5135 int addr; 5136 pLevel = &pWInfo->a[i]; 5137 pLoop = pLevel->pWLoop; 5138 if( pLevel->op!=OP_Noop ){ 5139 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 5140 int addrSeek = 0; 5141 Index *pIdx; 5142 int n; 5143 if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED 5144 && i==pWInfo->nLevel-1 /* Ticket [ef9318757b152e3] 2017-10-21 */ 5145 && (pLoop->wsFlags & WHERE_INDEXED)!=0 5146 && (pIdx = pLoop->u.btree.pIndex)->hasStat1 5147 && (n = pLoop->u.btree.nIdxCol)>0 5148 && pIdx->aiRowLogEst[n]>=36 5149 ){ 5150 int r1 = pParse->nMem+1; 5151 int j, op; 5152 for(j=0; j<n; j++){ 5153 sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j); 5154 } 5155 pParse->nMem += n+1; 5156 op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT; 5157 addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n); 5158 VdbeCoverageIf(v, op==OP_SeekLT); 5159 VdbeCoverageIf(v, op==OP_SeekGT); 5160 sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2); 5161 } 5162 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */ 5163 /* The common case: Advance to the next row */ 5164 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 5165 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); 5166 sqlite3VdbeChangeP5(v, pLevel->p5); 5167 VdbeCoverage(v); 5168 VdbeCoverageIf(v, pLevel->op==OP_Next); 5169 VdbeCoverageIf(v, pLevel->op==OP_Prev); 5170 VdbeCoverageIf(v, pLevel->op==OP_VNext); 5171 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 5172 if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek); 5173 #endif 5174 }else{ 5175 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 5176 } 5177 if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ 5178 struct InLoop *pIn; 5179 int j; 5180 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 5181 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 5182 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 5183 if( pIn->eEndLoopOp!=OP_Noop ){ 5184 if( pIn->nPrefix ){ 5185 assert( pLoop->wsFlags & WHERE_IN_EARLYOUT ); 5186 sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur, 5187 sqlite3VdbeCurrentAddr(v)+2, 5188 pIn->iBase, pIn->nPrefix); 5189 VdbeCoverage(v); 5190 } 5191 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); 5192 VdbeCoverage(v); 5193 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev); 5194 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next); 5195 } 5196 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 5197 } 5198 } 5199 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 5200 if( pLevel->addrSkip ){ 5201 sqlite3VdbeGoto(v, pLevel->addrSkip); 5202 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); 5203 sqlite3VdbeJumpHere(v, pLevel->addrSkip); 5204 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); 5205 } 5206 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 5207 if( pLevel->addrLikeRep ){ 5208 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1), 5209 pLevel->addrLikeRep); 5210 VdbeCoverage(v); 5211 } 5212 #endif 5213 if( pLevel->iLeftJoin ){ 5214 int ws = pLoop->wsFlags; 5215 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); 5216 assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 ); 5217 if( (ws & WHERE_IDX_ONLY)==0 ){ 5218 assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor ); 5219 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur); 5220 } 5221 if( (ws & WHERE_INDEXED) 5222 || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx) 5223 ){ 5224 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 5225 } 5226 if( pLevel->op==OP_Return ){ 5227 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); 5228 }else{ 5229 sqlite3VdbeGoto(v, pLevel->addrFirst); 5230 } 5231 sqlite3VdbeJumpHere(v, addr); 5232 } 5233 VdbeModuleComment((v, "End WHERE-loop%d: %s", i, 5234 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); 5235 } 5236 5237 /* The "break" point is here, just past the end of the outer loop. 5238 ** Set it. 5239 */ 5240 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 5241 5242 assert( pWInfo->nLevel<=pTabList->nSrc ); 5243 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ 5244 int k, last; 5245 VdbeOp *pOp; 5246 Index *pIdx = 0; 5247 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 5248 Table *pTab = pTabItem->pTab; 5249 assert( pTab!=0 ); 5250 pLoop = pLevel->pWLoop; 5251 5252 /* For a co-routine, change all OP_Column references to the table of 5253 ** the co-routine into OP_Copy of result contained in a register. 5254 ** OP_Rowid becomes OP_Null. 5255 */ 5256 if( pTabItem->fg.viaCoroutine ){ 5257 testcase( pParse->db->mallocFailed ); 5258 translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur, 5259 pTabItem->regResult, 0); 5260 continue; 5261 } 5262 5263 /* If this scan uses an index, make VDBE code substitutions to read data 5264 ** from the index instead of from the table where possible. In some cases 5265 ** this optimization prevents the table from ever being read, which can 5266 ** yield a significant performance boost. 5267 ** 5268 ** Calls to the code generator in between sqlite3WhereBegin and 5269 ** sqlite3WhereEnd will have created code that references the table 5270 ** directly. This loop scans all that code looking for opcodes 5271 ** that reference the table and converts them into opcodes that 5272 ** reference the index. 5273 */ 5274 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ 5275 pIdx = pLoop->u.btree.pIndex; 5276 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ 5277 pIdx = pLevel->u.pCovidx; 5278 } 5279 if( pIdx 5280 && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable)) 5281 && !db->mallocFailed 5282 ){ 5283 last = sqlite3VdbeCurrentAddr(v); 5284 k = pLevel->addrBody; 5285 #ifdef SQLITE_DEBUG 5286 if( db->flags & SQLITE_VdbeAddopTrace ){ 5287 printf("TRANSLATE opcodes in range %d..%d\n", k, last-1); 5288 } 5289 #endif 5290 pOp = sqlite3VdbeGetOp(v, k); 5291 for(; k<last; k++, pOp++){ 5292 if( pOp->p1!=pLevel->iTabCur ) continue; 5293 if( pOp->opcode==OP_Column 5294 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 5295 || pOp->opcode==OP_Offset 5296 #endif 5297 ){ 5298 int x = pOp->p2; 5299 assert( pIdx->pTable==pTab ); 5300 if( !HasRowid(pTab) ){ 5301 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 5302 x = pPk->aiColumn[x]; 5303 assert( x>=0 ); 5304 } 5305 x = sqlite3ColumnOfIndex(pIdx, x); 5306 if( x>=0 ){ 5307 pOp->p2 = x; 5308 pOp->p1 = pLevel->iIdxCur; 5309 OpcodeRewriteTrace(db, k, pOp); 5310 } 5311 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 5312 || pWInfo->eOnePass ); 5313 }else if( pOp->opcode==OP_Rowid ){ 5314 pOp->p1 = pLevel->iIdxCur; 5315 pOp->opcode = OP_IdxRowid; 5316 OpcodeRewriteTrace(db, k, pOp); 5317 }else if( pOp->opcode==OP_IfNullRow ){ 5318 pOp->p1 = pLevel->iIdxCur; 5319 OpcodeRewriteTrace(db, k, pOp); 5320 } 5321 } 5322 #ifdef SQLITE_DEBUG 5323 if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n"); 5324 #endif 5325 } 5326 } 5327 5328 /* Final cleanup 5329 */ 5330 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 5331 whereInfoFree(db, pWInfo); 5332 return; 5333 } 5334