xref: /sqlite-3.40.0/src/where.c (revision b5e2e6fc)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /*
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly.  The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
26 **
27 ** This object is not an API and can be changed from one release to the
28 ** next.  As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
30 */
31 typedef struct HiddenIndexInfo HiddenIndexInfo;
32 struct HiddenIndexInfo {
33   WhereClause *pWC;        /* The Where clause being analyzed */
34   Parse *pParse;           /* The parsing context */
35   int eDistinct;           /* Value to return from sqlite3_vtab_distinct() */
36   u32 mIn;                 /* Mask of terms that are <col> IN (...) */
37   u32 mHandleIn;           /* Terms that vtab will handle as <col> IN (...) */
38   sqlite3_value *aRhs[1];  /* RHS values for constraints. MUST BE LAST
39                            ** because extra space is allocated to hold up
40                            ** to nTerm such values */
41 };
42 
43 /* Forward declaration of methods */
44 static int whereLoopResize(sqlite3*, WhereLoop*, int);
45 
46 /*
47 ** Return the estimated number of output rows from a WHERE clause
48 */
49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
50   return pWInfo->nRowOut;
51 }
52 
53 /*
54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
55 ** WHERE clause returns outputs for DISTINCT processing.
56 */
57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
58   return pWInfo->eDistinct;
59 }
60 
61 /*
62 ** Return the number of ORDER BY terms that are satisfied by the
63 ** WHERE clause.  A return of 0 means that the output must be
64 ** completely sorted.  A return equal to the number of ORDER BY
65 ** terms means that no sorting is needed at all.  A return that
66 ** is positive but less than the number of ORDER BY terms means that
67 ** block sorting is required.
68 */
69 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
70   return pWInfo->nOBSat;
71 }
72 
73 /*
74 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known
75 ** to emit rows in increasing order, and if the last row emitted by the
76 ** inner-most loop did not fit within the sorter, then we can skip all
77 ** subsequent rows for the current iteration of the inner loop (because they
78 ** will not fit in the sorter either) and continue with the second inner
79 ** loop - the loop immediately outside the inner-most.
80 **
81 ** When a row does not fit in the sorter (because the sorter already
82 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
83 ** label returned by this function.
84 **
85 ** If the ORDER BY LIMIT optimization applies, the jump destination should
86 ** be the continuation for the second-inner-most loop.  If the ORDER BY
87 ** LIMIT optimization does not apply, then the jump destination should
88 ** be the continuation for the inner-most loop.
89 **
90 ** It is always safe for this routine to return the continuation of the
91 ** inner-most loop, in the sense that a correct answer will result.
92 ** Returning the continuation the second inner loop is an optimization
93 ** that might make the code run a little faster, but should not change
94 ** the final answer.
95 */
96 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){
97   WhereLevel *pInner;
98   if( !pWInfo->bOrderedInnerLoop ){
99     /* The ORDER BY LIMIT optimization does not apply.  Jump to the
100     ** continuation of the inner-most loop. */
101     return pWInfo->iContinue;
102   }
103   pInner = &pWInfo->a[pWInfo->nLevel-1];
104   assert( pInner->addrNxt!=0 );
105   return pInner->pRJ ? pWInfo->iContinue : pInner->addrNxt;
106 }
107 
108 /*
109 ** While generating code for the min/max optimization, after handling
110 ** the aggregate-step call to min() or max(), check to see if any
111 ** additional looping is required.  If the output order is such that
112 ** we are certain that the correct answer has already been found, then
113 ** code an OP_Goto to by pass subsequent processing.
114 **
115 ** Any extra OP_Goto that is coded here is an optimization.  The
116 ** correct answer should be obtained regardless.  This OP_Goto just
117 ** makes the answer appear faster.
118 */
119 void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){
120   WhereLevel *pInner;
121   int i;
122   if( !pWInfo->bOrderedInnerLoop ) return;
123   if( pWInfo->nOBSat==0 ) return;
124   for(i=pWInfo->nLevel-1; i>=0; i--){
125     pInner = &pWInfo->a[i];
126     if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){
127       sqlite3VdbeGoto(v, pInner->addrNxt);
128       return;
129     }
130   }
131   sqlite3VdbeGoto(v, pWInfo->iBreak);
132 }
133 
134 /*
135 ** Return the VDBE address or label to jump to in order to continue
136 ** immediately with the next row of a WHERE clause.
137 */
138 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
139   assert( pWInfo->iContinue!=0 );
140   return pWInfo->iContinue;
141 }
142 
143 /*
144 ** Return the VDBE address or label to jump to in order to break
145 ** out of a WHERE loop.
146 */
147 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
148   return pWInfo->iBreak;
149 }
150 
151 /*
152 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
153 ** operate directly on the rowids returned by a WHERE clause.  Return
154 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
155 ** a single row is to be changed.  Return ONEPASS_MULTI (2) if the one-pass
156 ** optimization can be used on multiple
157 **
158 ** If the ONEPASS optimization is used (if this routine returns true)
159 ** then also write the indices of open cursors used by ONEPASS
160 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
161 ** table and iaCur[1] gets the cursor used by an auxiliary index.
162 ** Either value may be -1, indicating that cursor is not used.
163 ** Any cursors returned will have been opened for writing.
164 **
165 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
166 ** unable to use the ONEPASS optimization.
167 */
168 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
169   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
170 #ifdef WHERETRACE_ENABLED
171   if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
172     sqlite3DebugPrintf("%s cursors: %d %d\n",
173          pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
174          aiCur[0], aiCur[1]);
175   }
176 #endif
177   return pWInfo->eOnePass;
178 }
179 
180 /*
181 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move
182 ** the data cursor to the row selected by the index cursor.
183 */
184 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){
185   return pWInfo->bDeferredSeek;
186 }
187 
188 /*
189 ** Move the content of pSrc into pDest
190 */
191 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
192   pDest->n = pSrc->n;
193   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
194 }
195 
196 /*
197 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
198 **
199 ** The new entry might overwrite an existing entry, or it might be
200 ** appended, or it might be discarded.  Do whatever is the right thing
201 ** so that pSet keeps the N_OR_COST best entries seen so far.
202 */
203 static int whereOrInsert(
204   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
205   Bitmask prereq,        /* Prerequisites of the new entry */
206   LogEst rRun,           /* Run-cost of the new entry */
207   LogEst nOut            /* Number of outputs for the new entry */
208 ){
209   u16 i;
210   WhereOrCost *p;
211   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
212     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
213       goto whereOrInsert_done;
214     }
215     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
216       return 0;
217     }
218   }
219   if( pSet->n<N_OR_COST ){
220     p = &pSet->a[pSet->n++];
221     p->nOut = nOut;
222   }else{
223     p = pSet->a;
224     for(i=1; i<pSet->n; i++){
225       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
226     }
227     if( p->rRun<=rRun ) return 0;
228   }
229 whereOrInsert_done:
230   p->prereq = prereq;
231   p->rRun = rRun;
232   if( p->nOut>nOut ) p->nOut = nOut;
233   return 1;
234 }
235 
236 /*
237 ** Return the bitmask for the given cursor number.  Return 0 if
238 ** iCursor is not in the set.
239 */
240 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
241   int i;
242   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
243   assert( pMaskSet->n>0 || pMaskSet->ix[0]<0 );
244   assert( iCursor>=-1 );
245   if( pMaskSet->ix[0]==iCursor ){
246     return 1;
247   }
248   for(i=1; i<pMaskSet->n; i++){
249     if( pMaskSet->ix[i]==iCursor ){
250       return MASKBIT(i);
251     }
252   }
253   return 0;
254 }
255 
256 /* Allocate memory that is automatically freed when pWInfo is freed.
257 */
258 void *sqlite3WhereMalloc(WhereInfo *pWInfo, u64 nByte){
259   WhereMemBlock *pBlock;
260   pBlock = sqlite3DbMallocRawNN(pWInfo->pParse->db, nByte+sizeof(*pBlock));
261   if( pBlock ){
262     pBlock->pNext = pWInfo->pMemToFree;
263     pBlock->sz = nByte;
264     pWInfo->pMemToFree = pBlock;
265     pBlock++;
266   }
267   return (void*)pBlock;
268 }
269 void *sqlite3WhereRealloc(WhereInfo *pWInfo, void *pOld, u64 nByte){
270   void *pNew = sqlite3WhereMalloc(pWInfo, nByte);
271   if( pNew && pOld ){
272     WhereMemBlock *pOldBlk = (WhereMemBlock*)pOld;
273     pOldBlk--;
274     assert( pOldBlk->sz<nByte );
275     memcpy(pNew, pOld, pOldBlk->sz);
276   }
277   return pNew;
278 }
279 
280 /*
281 ** Create a new mask for cursor iCursor.
282 **
283 ** There is one cursor per table in the FROM clause.  The number of
284 ** tables in the FROM clause is limited by a test early in the
285 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
286 ** array will never overflow.
287 */
288 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
289   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
290   pMaskSet->ix[pMaskSet->n++] = iCursor;
291 }
292 
293 /*
294 ** If the right-hand branch of the expression is a TK_COLUMN, then return
295 ** a pointer to the right-hand branch.  Otherwise, return NULL.
296 */
297 static Expr *whereRightSubexprIsColumn(Expr *p){
298   p = sqlite3ExprSkipCollateAndLikely(p->pRight);
299   if( ALWAYS(p!=0) && p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){
300     return p;
301   }
302   return 0;
303 }
304 
305 /*
306 ** Advance to the next WhereTerm that matches according to the criteria
307 ** established when the pScan object was initialized by whereScanInit().
308 ** Return NULL if there are no more matching WhereTerms.
309 */
310 static WhereTerm *whereScanNext(WhereScan *pScan){
311   int iCur;            /* The cursor on the LHS of the term */
312   i16 iColumn;         /* The column on the LHS of the term.  -1 for IPK */
313   Expr *pX;            /* An expression being tested */
314   WhereClause *pWC;    /* Shorthand for pScan->pWC */
315   WhereTerm *pTerm;    /* The term being tested */
316   int k = pScan->k;    /* Where to start scanning */
317 
318   assert( pScan->iEquiv<=pScan->nEquiv );
319   pWC = pScan->pWC;
320   while(1){
321     iColumn = pScan->aiColumn[pScan->iEquiv-1];
322     iCur = pScan->aiCur[pScan->iEquiv-1];
323     assert( pWC!=0 );
324     assert( iCur>=0 );
325     do{
326       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
327         assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 || pTerm->leftCursor<0 );
328         if( pTerm->leftCursor==iCur
329          && pTerm->u.x.leftColumn==iColumn
330          && (iColumn!=XN_EXPR
331              || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
332                                        pScan->pIdxExpr,iCur)==0)
333          && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_OuterON))
334         ){
335           if( (pTerm->eOperator & WO_EQUIV)!=0
336            && pScan->nEquiv<ArraySize(pScan->aiCur)
337            && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0
338           ){
339             int j;
340             for(j=0; j<pScan->nEquiv; j++){
341               if( pScan->aiCur[j]==pX->iTable
342                && pScan->aiColumn[j]==pX->iColumn ){
343                   break;
344               }
345             }
346             if( j==pScan->nEquiv ){
347               pScan->aiCur[j] = pX->iTable;
348               pScan->aiColumn[j] = pX->iColumn;
349               pScan->nEquiv++;
350             }
351           }
352           if( (pTerm->eOperator & pScan->opMask)!=0 ){
353             /* Verify the affinity and collating sequence match */
354             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
355               CollSeq *pColl;
356               Parse *pParse = pWC->pWInfo->pParse;
357               pX = pTerm->pExpr;
358               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
359                 continue;
360               }
361               assert(pX->pLeft);
362               pColl = sqlite3ExprCompareCollSeq(pParse, pX);
363               if( pColl==0 ) pColl = pParse->db->pDfltColl;
364               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
365                 continue;
366               }
367             }
368             if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
369              && (pX = pTerm->pExpr->pRight, ALWAYS(pX!=0))
370              && pX->op==TK_COLUMN
371              && pX->iTable==pScan->aiCur[0]
372              && pX->iColumn==pScan->aiColumn[0]
373             ){
374               testcase( pTerm->eOperator & WO_IS );
375               continue;
376             }
377             pScan->pWC = pWC;
378             pScan->k = k+1;
379 #ifdef WHERETRACE_ENABLED
380             if( sqlite3WhereTrace & 0x20000 ){
381               int ii;
382               sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d",
383                  pTerm, pScan->nEquiv);
384               for(ii=0; ii<pScan->nEquiv; ii++){
385                 sqlite3DebugPrintf(" {%d:%d}",
386                    pScan->aiCur[ii], pScan->aiColumn[ii]);
387               }
388               sqlite3DebugPrintf("\n");
389             }
390 #endif
391             return pTerm;
392           }
393         }
394       }
395       pWC = pWC->pOuter;
396       k = 0;
397     }while( pWC!=0 );
398     if( pScan->iEquiv>=pScan->nEquiv ) break;
399     pWC = pScan->pOrigWC;
400     k = 0;
401     pScan->iEquiv++;
402   }
403   return 0;
404 }
405 
406 /*
407 ** This is whereScanInit() for the case of an index on an expression.
408 ** It is factored out into a separate tail-recursion subroutine so that
409 ** the normal whereScanInit() routine, which is a high-runner, does not
410 ** need to push registers onto the stack as part of its prologue.
411 */
412 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){
413   pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr);
414   return whereScanNext(pScan);
415 }
416 
417 /*
418 ** Initialize a WHERE clause scanner object.  Return a pointer to the
419 ** first match.  Return NULL if there are no matches.
420 **
421 ** The scanner will be searching the WHERE clause pWC.  It will look
422 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
423 ** iCur.   Or if pIdx!=0 then X is column iColumn of index pIdx.  pIdx
424 ** must be one of the indexes of table iCur.
425 **
426 ** The <op> must be one of the operators described by opMask.
427 **
428 ** If the search is for X and the WHERE clause contains terms of the
429 ** form X=Y then this routine might also return terms of the form
430 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
431 ** but is enough to handle most commonly occurring SQL statements.
432 **
433 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
434 ** index pIdx.
435 */
436 static WhereTerm *whereScanInit(
437   WhereScan *pScan,       /* The WhereScan object being initialized */
438   WhereClause *pWC,       /* The WHERE clause to be scanned */
439   int iCur,               /* Cursor to scan for */
440   int iColumn,            /* Column to scan for */
441   u32 opMask,             /* Operator(s) to scan for */
442   Index *pIdx             /* Must be compatible with this index */
443 ){
444   pScan->pOrigWC = pWC;
445   pScan->pWC = pWC;
446   pScan->pIdxExpr = 0;
447   pScan->idxaff = 0;
448   pScan->zCollName = 0;
449   pScan->opMask = opMask;
450   pScan->k = 0;
451   pScan->aiCur[0] = iCur;
452   pScan->nEquiv = 1;
453   pScan->iEquiv = 1;
454   if( pIdx ){
455     int j = iColumn;
456     iColumn = pIdx->aiColumn[j];
457     if( iColumn==pIdx->pTable->iPKey ){
458       iColumn = XN_ROWID;
459     }else if( iColumn>=0 ){
460       pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
461       pScan->zCollName = pIdx->azColl[j];
462     }else if( iColumn==XN_EXPR ){
463       pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
464       pScan->zCollName = pIdx->azColl[j];
465       pScan->aiColumn[0] = XN_EXPR;
466       return whereScanInitIndexExpr(pScan);
467     }
468   }else if( iColumn==XN_EXPR ){
469     return 0;
470   }
471   pScan->aiColumn[0] = iColumn;
472   return whereScanNext(pScan);
473 }
474 
475 /*
476 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
477 ** where X is a reference to the iColumn of table iCur or of index pIdx
478 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
479 ** the op parameter.  Return a pointer to the term.  Return 0 if not found.
480 **
481 ** If pIdx!=0 then it must be one of the indexes of table iCur.
482 ** Search for terms matching the iColumn-th column of pIdx
483 ** rather than the iColumn-th column of table iCur.
484 **
485 ** The term returned might by Y=<expr> if there is another constraint in
486 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
487 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
488 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
489 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
490 ** other equivalent values.  Hence a search for X will return <expr> if X=A1
491 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
492 **
493 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
494 ** then try for the one with no dependencies on <expr> - in other words where
495 ** <expr> is a constant expression of some kind.  Only return entries of
496 ** the form "X <op> Y" where Y is a column in another table if no terms of
497 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
498 ** exist, try to return a term that does not use WO_EQUIV.
499 */
500 WhereTerm *sqlite3WhereFindTerm(
501   WhereClause *pWC,     /* The WHERE clause to be searched */
502   int iCur,             /* Cursor number of LHS */
503   int iColumn,          /* Column number of LHS */
504   Bitmask notReady,     /* RHS must not overlap with this mask */
505   u32 op,               /* Mask of WO_xx values describing operator */
506   Index *pIdx           /* Must be compatible with this index, if not NULL */
507 ){
508   WhereTerm *pResult = 0;
509   WhereTerm *p;
510   WhereScan scan;
511 
512   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
513   op &= WO_EQ|WO_IS;
514   while( p ){
515     if( (p->prereqRight & notReady)==0 ){
516       if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
517         testcase( p->eOperator & WO_IS );
518         return p;
519       }
520       if( pResult==0 ) pResult = p;
521     }
522     p = whereScanNext(&scan);
523   }
524   return pResult;
525 }
526 
527 /*
528 ** This function searches pList for an entry that matches the iCol-th column
529 ** of index pIdx.
530 **
531 ** If such an expression is found, its index in pList->a[] is returned. If
532 ** no expression is found, -1 is returned.
533 */
534 static int findIndexCol(
535   Parse *pParse,                  /* Parse context */
536   ExprList *pList,                /* Expression list to search */
537   int iBase,                      /* Cursor for table associated with pIdx */
538   Index *pIdx,                    /* Index to match column of */
539   int iCol                        /* Column of index to match */
540 ){
541   int i;
542   const char *zColl = pIdx->azColl[iCol];
543 
544   for(i=0; i<pList->nExpr; i++){
545     Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr);
546     if( ALWAYS(p!=0)
547      && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN)
548      && p->iColumn==pIdx->aiColumn[iCol]
549      && p->iTable==iBase
550     ){
551       CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
552       if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
553         return i;
554       }
555     }
556   }
557 
558   return -1;
559 }
560 
561 /*
562 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
563 */
564 static int indexColumnNotNull(Index *pIdx, int iCol){
565   int j;
566   assert( pIdx!=0 );
567   assert( iCol>=0 && iCol<pIdx->nColumn );
568   j = pIdx->aiColumn[iCol];
569   if( j>=0 ){
570     return pIdx->pTable->aCol[j].notNull;
571   }else if( j==(-1) ){
572     return 1;
573   }else{
574     assert( j==(-2) );
575     return 0;  /* Assume an indexed expression can always yield a NULL */
576 
577   }
578 }
579 
580 /*
581 ** Return true if the DISTINCT expression-list passed as the third argument
582 ** is redundant.
583 **
584 ** A DISTINCT list is redundant if any subset of the columns in the
585 ** DISTINCT list are collectively unique and individually non-null.
586 */
587 static int isDistinctRedundant(
588   Parse *pParse,            /* Parsing context */
589   SrcList *pTabList,        /* The FROM clause */
590   WhereClause *pWC,         /* The WHERE clause */
591   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
592 ){
593   Table *pTab;
594   Index *pIdx;
595   int i;
596   int iBase;
597 
598   /* If there is more than one table or sub-select in the FROM clause of
599   ** this query, then it will not be possible to show that the DISTINCT
600   ** clause is redundant. */
601   if( pTabList->nSrc!=1 ) return 0;
602   iBase = pTabList->a[0].iCursor;
603   pTab = pTabList->a[0].pTab;
604 
605   /* If any of the expressions is an IPK column on table iBase, then return
606   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
607   ** current SELECT is a correlated sub-query.
608   */
609   for(i=0; i<pDistinct->nExpr; i++){
610     Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr);
611     if( NEVER(p==0) ) continue;
612     if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue;
613     if( p->iTable==iBase && p->iColumn<0 ) return 1;
614   }
615 
616   /* Loop through all indices on the table, checking each to see if it makes
617   ** the DISTINCT qualifier redundant. It does so if:
618   **
619   **   1. The index is itself UNIQUE, and
620   **
621   **   2. All of the columns in the index are either part of the pDistinct
622   **      list, or else the WHERE clause contains a term of the form "col=X",
623   **      where X is a constant value. The collation sequences of the
624   **      comparison and select-list expressions must match those of the index.
625   **
626   **   3. All of those index columns for which the WHERE clause does not
627   **      contain a "col=X" term are subject to a NOT NULL constraint.
628   */
629   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
630     if( !IsUniqueIndex(pIdx) ) continue;
631     if( pIdx->pPartIdxWhere ) continue;
632     for(i=0; i<pIdx->nKeyCol; i++){
633       if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
634         if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
635         if( indexColumnNotNull(pIdx, i)==0 ) break;
636       }
637     }
638     if( i==pIdx->nKeyCol ){
639       /* This index implies that the DISTINCT qualifier is redundant. */
640       return 1;
641     }
642   }
643 
644   return 0;
645 }
646 
647 
648 /*
649 ** Estimate the logarithm of the input value to base 2.
650 */
651 static LogEst estLog(LogEst N){
652   return N<=10 ? 0 : sqlite3LogEst(N) - 33;
653 }
654 
655 /*
656 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
657 **
658 ** This routine runs over generated VDBE code and translates OP_Column
659 ** opcodes into OP_Copy when the table is being accessed via co-routine
660 ** instead of via table lookup.
661 **
662 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
663 ** cursor iTabCur are transformed into OP_Sequence opcode for the
664 ** iAutoidxCur cursor, in order to generate unique rowids for the
665 ** automatic index being generated.
666 */
667 static void translateColumnToCopy(
668   Parse *pParse,      /* Parsing context */
669   int iStart,         /* Translate from this opcode to the end */
670   int iTabCur,        /* OP_Column/OP_Rowid references to this table */
671   int iRegister,      /* The first column is in this register */
672   int iAutoidxCur     /* If non-zero, cursor of autoindex being generated */
673 ){
674   Vdbe *v = pParse->pVdbe;
675   VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
676   int iEnd = sqlite3VdbeCurrentAddr(v);
677   if( pParse->db->mallocFailed ) return;
678   for(; iStart<iEnd; iStart++, pOp++){
679     if( pOp->p1!=iTabCur ) continue;
680     if( pOp->opcode==OP_Column ){
681       pOp->opcode = OP_Copy;
682       pOp->p1 = pOp->p2 + iRegister;
683       pOp->p2 = pOp->p3;
684       pOp->p3 = 0;
685       pOp->p5 = 2;  /* Cause the MEM_Subtype flag to be cleared */
686     }else if( pOp->opcode==OP_Rowid ){
687       pOp->opcode = OP_Sequence;
688       pOp->p1 = iAutoidxCur;
689 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
690       if( iAutoidxCur==0 ){
691         pOp->opcode = OP_Null;
692         pOp->p3 = 0;
693       }
694 #endif
695     }
696   }
697 }
698 
699 /*
700 ** Two routines for printing the content of an sqlite3_index_info
701 ** structure.  Used for testing and debugging only.  If neither
702 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
703 ** are no-ops.
704 */
705 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
706 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){
707   int i;
708   if( !sqlite3WhereTrace ) return;
709   for(i=0; i<p->nConstraint; i++){
710     sqlite3DebugPrintf(
711        "  constraint[%d]: col=%d termid=%d op=%d usabled=%d collseq=%s\n",
712        i,
713        p->aConstraint[i].iColumn,
714        p->aConstraint[i].iTermOffset,
715        p->aConstraint[i].op,
716        p->aConstraint[i].usable,
717        sqlite3_vtab_collation(p,i));
718   }
719   for(i=0; i<p->nOrderBy; i++){
720     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
721        i,
722        p->aOrderBy[i].iColumn,
723        p->aOrderBy[i].desc);
724   }
725 }
726 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){
727   int i;
728   if( !sqlite3WhereTrace ) return;
729   for(i=0; i<p->nConstraint; i++){
730     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
731        i,
732        p->aConstraintUsage[i].argvIndex,
733        p->aConstraintUsage[i].omit);
734   }
735   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
736   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
737   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
738   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
739   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
740 }
741 #else
742 #define whereTraceIndexInfoInputs(A)
743 #define whereTraceIndexInfoOutputs(A)
744 #endif
745 
746 /*
747 ** We know that pSrc is an operand of an outer join.  Return true if
748 ** pTerm is a constraint that is compatible with that join.
749 **
750 ** pTerm must be EP_OuterON if pSrc is the right operand of an
751 ** outer join.  pTerm can be either EP_OuterON or EP_InnerON if pSrc
752 ** is the left operand of a RIGHT join.
753 **
754 ** See https://sqlite.org/forum/forumpost/206d99a16dd9212f
755 ** for an example of a WHERE clause constraints that may not be used on
756 ** the right table of a RIGHT JOIN because the constraint implies a
757 ** not-NULL condition on the left table of the RIGHT JOIN.
758 */
759 static int constraintCompatibleWithOuterJoin(
760   const WhereTerm *pTerm,       /* WHERE clause term to check */
761   const SrcItem *pSrc           /* Table we are trying to access */
762 ){
763   assert( (pSrc->fg.jointype&(JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ); /* By caller */
764   testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT );
765   testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ );
766   testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) )
767   testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) );
768   if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON)
769    || pTerm->pExpr->w.iJoin != pSrc->iCursor
770   ){
771     return 0;
772   }
773   if( (pSrc->fg.jointype & (JT_LEFT|JT_RIGHT))!=0
774    && ExprHasProperty(pTerm->pExpr, EP_InnerON)
775   ){
776     return 0;
777   }
778   return 1;
779 }
780 
781 
782 
783 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
784 /*
785 ** Return TRUE if the WHERE clause term pTerm is of a form where it
786 ** could be used with an index to access pSrc, assuming an appropriate
787 ** index existed.
788 */
789 static int termCanDriveIndex(
790   const WhereTerm *pTerm,        /* WHERE clause term to check */
791   const SrcItem *pSrc,           /* Table we are trying to access */
792   const Bitmask notReady         /* Tables in outer loops of the join */
793 ){
794   char aff;
795   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
796   if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
797   assert( (pSrc->fg.jointype & JT_RIGHT)==0 );
798   if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0
799    && !constraintCompatibleWithOuterJoin(pTerm,pSrc)
800   ){
801     return 0;  /* See https://sqlite.org/forum/forumpost/51e6959f61 */
802   }
803   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
804   assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
805   if( pTerm->u.x.leftColumn<0 ) return 0;
806   aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity;
807   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
808   testcase( pTerm->pExpr->op==TK_IS );
809   return 1;
810 }
811 #endif
812 
813 
814 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
815 /*
816 ** Generate code to construct the Index object for an automatic index
817 ** and to set up the WhereLevel object pLevel so that the code generator
818 ** makes use of the automatic index.
819 */
820 static SQLITE_NOINLINE void constructAutomaticIndex(
821   Parse *pParse,              /* The parsing context */
822   const WhereClause *pWC,     /* The WHERE clause */
823   const SrcItem *pSrc,        /* The FROM clause term to get the next index */
824   const Bitmask notReady,     /* Mask of cursors that are not available */
825   WhereLevel *pLevel          /* Write new index here */
826 ){
827   int nKeyCol;                /* Number of columns in the constructed index */
828   WhereTerm *pTerm;           /* A single term of the WHERE clause */
829   WhereTerm *pWCEnd;          /* End of pWC->a[] */
830   Index *pIdx;                /* Object describing the transient index */
831   Vdbe *v;                    /* Prepared statement under construction */
832   int addrInit;               /* Address of the initialization bypass jump */
833   Table *pTable;              /* The table being indexed */
834   int addrTop;                /* Top of the index fill loop */
835   int regRecord;              /* Register holding an index record */
836   int n;                      /* Column counter */
837   int i;                      /* Loop counter */
838   int mxBitCol;               /* Maximum column in pSrc->colUsed */
839   CollSeq *pColl;             /* Collating sequence to on a column */
840   WhereLoop *pLoop;           /* The Loop object */
841   char *zNotUsed;             /* Extra space on the end of pIdx */
842   Bitmask idxCols;            /* Bitmap of columns used for indexing */
843   Bitmask extraCols;          /* Bitmap of additional columns */
844   u8 sentWarning = 0;         /* True if a warnning has been issued */
845   Expr *pPartial = 0;         /* Partial Index Expression */
846   int iContinue = 0;          /* Jump here to skip excluded rows */
847   SrcItem *pTabItem;          /* FROM clause term being indexed */
848   int addrCounter = 0;        /* Address where integer counter is initialized */
849   int regBase;                /* Array of registers where record is assembled */
850 
851   /* Generate code to skip over the creation and initialization of the
852   ** transient index on 2nd and subsequent iterations of the loop. */
853   v = pParse->pVdbe;
854   assert( v!=0 );
855   addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
856 
857   /* Count the number of columns that will be added to the index
858   ** and used to match WHERE clause constraints */
859   nKeyCol = 0;
860   pTable = pSrc->pTab;
861   pWCEnd = &pWC->a[pWC->nTerm];
862   pLoop = pLevel->pWLoop;
863   idxCols = 0;
864   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
865     Expr *pExpr = pTerm->pExpr;
866     /* Make the automatic index a partial index if there are terms in the
867     ** WHERE clause (or the ON clause of a LEFT join) that constrain which
868     ** rows of the target table (pSrc) that can be used. */
869     if( (pTerm->wtFlags & TERM_VIRTUAL)==0
870      && sqlite3ExprIsTableConstraint(pExpr, pSrc)
871     ){
872       pPartial = sqlite3ExprAnd(pParse, pPartial,
873                                 sqlite3ExprDup(pParse->db, pExpr, 0));
874     }
875     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
876       int iCol;
877       Bitmask cMask;
878       assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
879       iCol = pTerm->u.x.leftColumn;
880       cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
881       testcase( iCol==BMS );
882       testcase( iCol==BMS-1 );
883       if( !sentWarning ){
884         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
885             "automatic index on %s(%s)", pTable->zName,
886             pTable->aCol[iCol].zCnName);
887         sentWarning = 1;
888       }
889       if( (idxCols & cMask)==0 ){
890         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
891           goto end_auto_index_create;
892         }
893         pLoop->aLTerm[nKeyCol++] = pTerm;
894         idxCols |= cMask;
895       }
896     }
897   }
898   assert( nKeyCol>0 || pParse->db->mallocFailed );
899   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
900   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
901                      | WHERE_AUTO_INDEX;
902 
903   /* Count the number of additional columns needed to create a
904   ** covering index.  A "covering index" is an index that contains all
905   ** columns that are needed by the query.  With a covering index, the
906   ** original table never needs to be accessed.  Automatic indices must
907   ** be a covering index because the index will not be updated if the
908   ** original table changes and the index and table cannot both be used
909   ** if they go out of sync.
910   */
911   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
912   mxBitCol = MIN(BMS-1,pTable->nCol);
913   testcase( pTable->nCol==BMS-1 );
914   testcase( pTable->nCol==BMS-2 );
915   for(i=0; i<mxBitCol; i++){
916     if( extraCols & MASKBIT(i) ) nKeyCol++;
917   }
918   if( pSrc->colUsed & MASKBIT(BMS-1) ){
919     nKeyCol += pTable->nCol - BMS + 1;
920   }
921 
922   /* Construct the Index object to describe this index */
923   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
924   if( pIdx==0 ) goto end_auto_index_create;
925   pLoop->u.btree.pIndex = pIdx;
926   pIdx->zName = "auto-index";
927   pIdx->pTable = pTable;
928   n = 0;
929   idxCols = 0;
930   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
931     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
932       int iCol;
933       Bitmask cMask;
934       assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
935       iCol = pTerm->u.x.leftColumn;
936       cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
937       testcase( iCol==BMS-1 );
938       testcase( iCol==BMS );
939       if( (idxCols & cMask)==0 ){
940         Expr *pX = pTerm->pExpr;
941         idxCols |= cMask;
942         pIdx->aiColumn[n] = pTerm->u.x.leftColumn;
943         pColl = sqlite3ExprCompareCollSeq(pParse, pX);
944         assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */
945         pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
946         n++;
947       }
948     }
949   }
950   assert( (u32)n==pLoop->u.btree.nEq );
951 
952   /* Add additional columns needed to make the automatic index into
953   ** a covering index */
954   for(i=0; i<mxBitCol; i++){
955     if( extraCols & MASKBIT(i) ){
956       pIdx->aiColumn[n] = i;
957       pIdx->azColl[n] = sqlite3StrBINARY;
958       n++;
959     }
960   }
961   if( pSrc->colUsed & MASKBIT(BMS-1) ){
962     for(i=BMS-1; i<pTable->nCol; i++){
963       pIdx->aiColumn[n] = i;
964       pIdx->azColl[n] = sqlite3StrBINARY;
965       n++;
966     }
967   }
968   assert( n==nKeyCol );
969   pIdx->aiColumn[n] = XN_ROWID;
970   pIdx->azColl[n] = sqlite3StrBINARY;
971 
972   /* Create the automatic index */
973   assert( pLevel->iIdxCur>=0 );
974   pLevel->iIdxCur = pParse->nTab++;
975   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
976   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
977   VdbeComment((v, "for %s", pTable->zName));
978   if( OptimizationEnabled(pParse->db, SQLITE_BloomFilter) ){
979     pLevel->regFilter = ++pParse->nMem;
980     sqlite3VdbeAddOp2(v, OP_Blob, 10000, pLevel->regFilter);
981   }
982 
983   /* Fill the automatic index with content */
984   pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
985   if( pTabItem->fg.viaCoroutine ){
986     int regYield = pTabItem->regReturn;
987     addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
988     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
989     addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
990     VdbeCoverage(v);
991     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
992   }else{
993     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
994   }
995   if( pPartial ){
996     iContinue = sqlite3VdbeMakeLabel(pParse);
997     sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
998     pLoop->wsFlags |= WHERE_PARTIALIDX;
999   }
1000   regRecord = sqlite3GetTempReg(pParse);
1001   regBase = sqlite3GenerateIndexKey(
1002       pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
1003   );
1004   if( pLevel->regFilter ){
1005     sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0,
1006                          regBase, pLoop->u.btree.nEq);
1007   }
1008   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
1009   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1010   if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
1011   if( pTabItem->fg.viaCoroutine ){
1012     sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
1013     testcase( pParse->db->mallocFailed );
1014     assert( pLevel->iIdxCur>0 );
1015     translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
1016                           pTabItem->regResult, pLevel->iIdxCur);
1017     sqlite3VdbeGoto(v, addrTop);
1018     pTabItem->fg.viaCoroutine = 0;
1019   }else{
1020     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
1021     sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
1022   }
1023   sqlite3VdbeJumpHere(v, addrTop);
1024   sqlite3ReleaseTempReg(pParse, regRecord);
1025 
1026   /* Jump here when skipping the initialization */
1027   sqlite3VdbeJumpHere(v, addrInit);
1028 
1029 end_auto_index_create:
1030   sqlite3ExprDelete(pParse->db, pPartial);
1031 }
1032 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
1033 
1034 /*
1035 ** Generate bytecode that will initialize a Bloom filter that is appropriate
1036 ** for pLevel.
1037 **
1038 ** If there are inner loops within pLevel that have the WHERE_BLOOMFILTER
1039 ** flag set, initialize a Bloomfilter for them as well.  Except don't do
1040 ** this recursive initialization if the SQLITE_BloomPulldown optimization has
1041 ** been turned off.
1042 **
1043 ** When the Bloom filter is initialized, the WHERE_BLOOMFILTER flag is cleared
1044 ** from the loop, but the regFilter value is set to a register that implements
1045 ** the Bloom filter.  When regFilter is positive, the
1046 ** sqlite3WhereCodeOneLoopStart() will generate code to test the Bloom filter
1047 ** and skip the subsequence B-Tree seek if the Bloom filter indicates that
1048 ** no matching rows exist.
1049 **
1050 ** This routine may only be called if it has previously been determined that
1051 ** the loop would benefit from a Bloom filter, and the WHERE_BLOOMFILTER bit
1052 ** is set.
1053 */
1054 static SQLITE_NOINLINE void sqlite3ConstructBloomFilter(
1055   WhereInfo *pWInfo,    /* The WHERE clause */
1056   int iLevel,           /* Index in pWInfo->a[] that is pLevel */
1057   WhereLevel *pLevel,   /* Make a Bloom filter for this FROM term */
1058   Bitmask notReady      /* Loops that are not ready */
1059 ){
1060   int addrOnce;                        /* Address of opening OP_Once */
1061   int addrTop;                         /* Address of OP_Rewind */
1062   int addrCont;                        /* Jump here to skip a row */
1063   const WhereTerm *pTerm;              /* For looping over WHERE clause terms */
1064   const WhereTerm *pWCEnd;             /* Last WHERE clause term */
1065   Parse *pParse = pWInfo->pParse;      /* Parsing context */
1066   Vdbe *v = pParse->pVdbe;             /* VDBE under construction */
1067   WhereLoop *pLoop = pLevel->pWLoop;   /* The loop being coded */
1068   int iCur;                            /* Cursor for table getting the filter */
1069 
1070   assert( pLoop!=0 );
1071   assert( v!=0 );
1072   assert( pLoop->wsFlags & WHERE_BLOOMFILTER );
1073 
1074   addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1075   do{
1076     const SrcItem *pItem;
1077     const Table *pTab;
1078     u64 sz;
1079     sqlite3WhereExplainBloomFilter(pParse, pWInfo, pLevel);
1080     addrCont = sqlite3VdbeMakeLabel(pParse);
1081     iCur = pLevel->iTabCur;
1082     pLevel->regFilter = ++pParse->nMem;
1083 
1084     /* The Bloom filter is a Blob held in a register.  Initialize it
1085     ** to zero-filled blob of at least 80K bits, but maybe more if the
1086     ** estimated size of the table is larger.  We could actually
1087     ** measure the size of the table at run-time using OP_Count with
1088     ** P3==1 and use that value to initialize the blob.  But that makes
1089     ** testing complicated.  By basing the blob size on the value in the
1090     ** sqlite_stat1 table, testing is much easier.
1091     */
1092     pItem = &pWInfo->pTabList->a[pLevel->iFrom];
1093     assert( pItem!=0 );
1094     pTab = pItem->pTab;
1095     assert( pTab!=0 );
1096     sz = sqlite3LogEstToInt(pTab->nRowLogEst);
1097     if( sz<10000 ){
1098       sz = 10000;
1099     }else if( sz>10000000 ){
1100       sz = 10000000;
1101     }
1102     sqlite3VdbeAddOp2(v, OP_Blob, (int)sz, pLevel->regFilter);
1103 
1104     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
1105     pWCEnd = &pWInfo->sWC.a[pWInfo->sWC.nTerm];
1106     for(pTerm=pWInfo->sWC.a; pTerm<pWCEnd; pTerm++){
1107       Expr *pExpr = pTerm->pExpr;
1108       if( (pTerm->wtFlags & TERM_VIRTUAL)==0
1109        && sqlite3ExprIsTableConstraint(pExpr, pItem)
1110       ){
1111         sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
1112       }
1113     }
1114     if( pLoop->wsFlags & WHERE_IPK ){
1115       int r1 = sqlite3GetTempReg(pParse);
1116       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1);
1117       sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, 1);
1118       sqlite3ReleaseTempReg(pParse, r1);
1119     }else{
1120       Index *pIdx = pLoop->u.btree.pIndex;
1121       int n = pLoop->u.btree.nEq;
1122       int r1 = sqlite3GetTempRange(pParse, n);
1123       int jj;
1124       for(jj=0; jj<n; jj++){
1125         int iCol = pIdx->aiColumn[jj];
1126         assert( pIdx->pTable==pItem->pTab );
1127         sqlite3ExprCodeGetColumnOfTable(v, pIdx->pTable, iCur, iCol,r1+jj);
1128       }
1129       sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, n);
1130       sqlite3ReleaseTempRange(pParse, r1, n);
1131     }
1132     sqlite3VdbeResolveLabel(v, addrCont);
1133     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1);
1134     VdbeCoverage(v);
1135     sqlite3VdbeJumpHere(v, addrTop);
1136     pLoop->wsFlags &= ~WHERE_BLOOMFILTER;
1137     if( OptimizationDisabled(pParse->db, SQLITE_BloomPulldown) ) break;
1138     while( ++iLevel < pWInfo->nLevel ){
1139       const SrcItem *pTabItem;
1140       pLevel = &pWInfo->a[iLevel];
1141       pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1142       if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ) ) continue;
1143       pLoop = pLevel->pWLoop;
1144       if( NEVER(pLoop==0) ) continue;
1145       if( pLoop->prereq & notReady ) continue;
1146       if( (pLoop->wsFlags & (WHERE_BLOOMFILTER|WHERE_COLUMN_IN))
1147                  ==WHERE_BLOOMFILTER
1148       ){
1149         /* This is a candidate for bloom-filter pull-down (early evaluation).
1150         ** The test that WHERE_COLUMN_IN is omitted is important, as we are
1151         ** not able to do early evaluation of bloom filters that make use of
1152         ** the IN operator */
1153         break;
1154       }
1155     }
1156   }while( iLevel < pWInfo->nLevel );
1157   sqlite3VdbeJumpHere(v, addrOnce);
1158 }
1159 
1160 
1161 #ifndef SQLITE_OMIT_VIRTUALTABLE
1162 /*
1163 ** Allocate and populate an sqlite3_index_info structure. It is the
1164 ** responsibility of the caller to eventually release the structure
1165 ** by passing the pointer returned by this function to freeIndexInfo().
1166 */
1167 static sqlite3_index_info *allocateIndexInfo(
1168   WhereInfo *pWInfo,              /* The WHERE clause */
1169   WhereClause *pWC,               /* The WHERE clause being analyzed */
1170   Bitmask mUnusable,              /* Ignore terms with these prereqs */
1171   SrcItem *pSrc,                  /* The FROM clause term that is the vtab */
1172   u16 *pmNoOmit                   /* Mask of terms not to omit */
1173 ){
1174   int i, j;
1175   int nTerm;
1176   Parse *pParse = pWInfo->pParse;
1177   struct sqlite3_index_constraint *pIdxCons;
1178   struct sqlite3_index_orderby *pIdxOrderBy;
1179   struct sqlite3_index_constraint_usage *pUsage;
1180   struct HiddenIndexInfo *pHidden;
1181   WhereTerm *pTerm;
1182   int nOrderBy;
1183   sqlite3_index_info *pIdxInfo;
1184   u16 mNoOmit = 0;
1185   const Table *pTab;
1186   int eDistinct = 0;
1187   ExprList *pOrderBy = pWInfo->pOrderBy;
1188 
1189   assert( pSrc!=0 );
1190   pTab = pSrc->pTab;
1191   assert( pTab!=0 );
1192   assert( IsVirtual(pTab) );
1193 
1194   /* Find all WHERE clause constraints referring to this virtual table.
1195   ** Mark each term with the TERM_OK flag.  Set nTerm to the number of
1196   ** terms found.
1197   */
1198   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1199     pTerm->wtFlags &= ~TERM_OK;
1200     if( pTerm->leftCursor != pSrc->iCursor ) continue;
1201     if( pTerm->prereqRight & mUnusable ) continue;
1202     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
1203     testcase( pTerm->eOperator & WO_IN );
1204     testcase( pTerm->eOperator & WO_ISNULL );
1205     testcase( pTerm->eOperator & WO_IS );
1206     testcase( pTerm->eOperator & WO_ALL );
1207     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
1208     if( pTerm->wtFlags & TERM_VNULL ) continue;
1209 
1210     assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
1211     assert( pTerm->u.x.leftColumn>=XN_ROWID );
1212     assert( pTerm->u.x.leftColumn<pTab->nCol );
1213     if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0
1214      && !constraintCompatibleWithOuterJoin(pTerm,pSrc)
1215     ){
1216       continue;
1217     }
1218     nTerm++;
1219     pTerm->wtFlags |= TERM_OK;
1220   }
1221 
1222   /* If the ORDER BY clause contains only columns in the current
1223   ** virtual table then allocate space for the aOrderBy part of
1224   ** the sqlite3_index_info structure.
1225   */
1226   nOrderBy = 0;
1227   if( pOrderBy ){
1228     int n = pOrderBy->nExpr;
1229     for(i=0; i<n; i++){
1230       Expr *pExpr = pOrderBy->a[i].pExpr;
1231       Expr *pE2;
1232 
1233       /* Skip over constant terms in the ORDER BY clause */
1234       if( sqlite3ExprIsConstant(pExpr) ){
1235         continue;
1236       }
1237 
1238       /* Virtual tables are unable to deal with NULLS FIRST */
1239       if( pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL ) break;
1240 
1241       /* First case - a direct column references without a COLLATE operator */
1242       if( pExpr->op==TK_COLUMN && pExpr->iTable==pSrc->iCursor ){
1243         assert( pExpr->iColumn>=XN_ROWID && pExpr->iColumn<pTab->nCol );
1244         continue;
1245       }
1246 
1247       /* 2nd case - a column reference with a COLLATE operator.  Only match
1248       ** of the COLLATE operator matches the collation of the column. */
1249       if( pExpr->op==TK_COLLATE
1250        && (pE2 = pExpr->pLeft)->op==TK_COLUMN
1251        && pE2->iTable==pSrc->iCursor
1252       ){
1253         const char *zColl;  /* The collating sequence name */
1254         assert( !ExprHasProperty(pExpr, EP_IntValue) );
1255         assert( pExpr->u.zToken!=0 );
1256         assert( pE2->iColumn>=XN_ROWID && pE2->iColumn<pTab->nCol );
1257         pExpr->iColumn = pE2->iColumn;
1258         if( pE2->iColumn<0 ) continue;  /* Collseq does not matter for rowid */
1259         zColl = sqlite3ColumnColl(&pTab->aCol[pE2->iColumn]);
1260         if( zColl==0 ) zColl = sqlite3StrBINARY;
1261         if( sqlite3_stricmp(pExpr->u.zToken, zColl)==0 ) continue;
1262       }
1263 
1264       /* No matches cause a break out of the loop */
1265       break;
1266     }
1267     if( i==n ){
1268       nOrderBy = n;
1269       if( (pWInfo->wctrlFlags & WHERE_DISTINCTBY) ){
1270         eDistinct = 2 + ((pWInfo->wctrlFlags & WHERE_SORTBYGROUP)!=0);
1271       }else if( pWInfo->wctrlFlags & WHERE_GROUPBY ){
1272         eDistinct = 1;
1273       }
1274     }
1275   }
1276 
1277   /* Allocate the sqlite3_index_info structure
1278   */
1279   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
1280                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1281                            + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden)
1282                            + sizeof(sqlite3_value*)*nTerm );
1283   if( pIdxInfo==0 ){
1284     sqlite3ErrorMsg(pParse, "out of memory");
1285     return 0;
1286   }
1287   pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
1288   pIdxCons = (struct sqlite3_index_constraint*)&pHidden->aRhs[nTerm];
1289   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1290   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1291   pIdxInfo->aConstraint = pIdxCons;
1292   pIdxInfo->aOrderBy = pIdxOrderBy;
1293   pIdxInfo->aConstraintUsage = pUsage;
1294   pHidden->pWC = pWC;
1295   pHidden->pParse = pParse;
1296   pHidden->eDistinct = eDistinct;
1297   pHidden->mIn = 0;
1298   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1299     u16 op;
1300     if( (pTerm->wtFlags & TERM_OK)==0 ) continue;
1301     pIdxCons[j].iColumn = pTerm->u.x.leftColumn;
1302     pIdxCons[j].iTermOffset = i;
1303     op = pTerm->eOperator & WO_ALL;
1304     if( op==WO_IN ){
1305       if( (pTerm->wtFlags & TERM_SLICE)==0 ){
1306         pHidden->mIn |= SMASKBIT32(j);
1307       }
1308       op = WO_EQ;
1309     }
1310     if( op==WO_AUX ){
1311       pIdxCons[j].op = pTerm->eMatchOp;
1312     }else if( op & (WO_ISNULL|WO_IS) ){
1313       if( op==WO_ISNULL ){
1314         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
1315       }else{
1316         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
1317       }
1318     }else{
1319       pIdxCons[j].op = (u8)op;
1320       /* The direct assignment in the previous line is possible only because
1321       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
1322       ** following asserts verify this fact. */
1323       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1324       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1325       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1326       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1327       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1328       assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
1329 
1330       if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
1331        && sqlite3ExprIsVector(pTerm->pExpr->pRight)
1332       ){
1333         testcase( j!=i );
1334         if( j<16 ) mNoOmit |= (1 << j);
1335         if( op==WO_LT ) pIdxCons[j].op = WO_LE;
1336         if( op==WO_GT ) pIdxCons[j].op = WO_GE;
1337       }
1338     }
1339 
1340     j++;
1341   }
1342   assert( j==nTerm );
1343   pIdxInfo->nConstraint = j;
1344   for(i=j=0; i<nOrderBy; i++){
1345     Expr *pExpr = pOrderBy->a[i].pExpr;
1346     if( sqlite3ExprIsConstant(pExpr) ) continue;
1347     assert( pExpr->op==TK_COLUMN
1348          || (pExpr->op==TK_COLLATE && pExpr->pLeft->op==TK_COLUMN
1349               && pExpr->iColumn==pExpr->pLeft->iColumn) );
1350     pIdxOrderBy[j].iColumn = pExpr->iColumn;
1351     pIdxOrderBy[j].desc = pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC;
1352     j++;
1353   }
1354   pIdxInfo->nOrderBy = j;
1355 
1356   *pmNoOmit = mNoOmit;
1357   return pIdxInfo;
1358 }
1359 
1360 /*
1361 ** Free an sqlite3_index_info structure allocated by allocateIndexInfo()
1362 ** and possibly modified by xBestIndex methods.
1363 */
1364 static void freeIndexInfo(sqlite3 *db, sqlite3_index_info *pIdxInfo){
1365   HiddenIndexInfo *pHidden;
1366   int i;
1367   assert( pIdxInfo!=0 );
1368   pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
1369   assert( pHidden->pParse!=0 );
1370   assert( pHidden->pParse->db==db );
1371   for(i=0; i<pIdxInfo->nConstraint; i++){
1372     sqlite3ValueFree(pHidden->aRhs[i]); /* IMP: R-14553-25174 */
1373     pHidden->aRhs[i] = 0;
1374   }
1375   sqlite3DbFree(db, pIdxInfo);
1376 }
1377 
1378 /*
1379 ** The table object reference passed as the second argument to this function
1380 ** must represent a virtual table. This function invokes the xBestIndex()
1381 ** method of the virtual table with the sqlite3_index_info object that
1382 ** comes in as the 3rd argument to this function.
1383 **
1384 ** If an error occurs, pParse is populated with an error message and an
1385 ** appropriate error code is returned.  A return of SQLITE_CONSTRAINT from
1386 ** xBestIndex is not considered an error.  SQLITE_CONSTRAINT indicates that
1387 ** the current configuration of "unusable" flags in sqlite3_index_info can
1388 ** not result in a valid plan.
1389 **
1390 ** Whether or not an error is returned, it is the responsibility of the
1391 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1392 ** that this is required.
1393 */
1394 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
1395   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
1396   int rc;
1397 
1398   whereTraceIndexInfoInputs(p);
1399   pParse->db->nSchemaLock++;
1400   rc = pVtab->pModule->xBestIndex(pVtab, p);
1401   pParse->db->nSchemaLock--;
1402   whereTraceIndexInfoOutputs(p);
1403 
1404   if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){
1405     if( rc==SQLITE_NOMEM ){
1406       sqlite3OomFault(pParse->db);
1407     }else if( !pVtab->zErrMsg ){
1408       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1409     }else{
1410       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1411     }
1412   }
1413   sqlite3_free(pVtab->zErrMsg);
1414   pVtab->zErrMsg = 0;
1415   return rc;
1416 }
1417 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1418 
1419 #ifdef SQLITE_ENABLE_STAT4
1420 /*
1421 ** Estimate the location of a particular key among all keys in an
1422 ** index.  Store the results in aStat as follows:
1423 **
1424 **    aStat[0]      Est. number of rows less than pRec
1425 **    aStat[1]      Est. number of rows equal to pRec
1426 **
1427 ** Return the index of the sample that is the smallest sample that
1428 ** is greater than or equal to pRec. Note that this index is not an index
1429 ** into the aSample[] array - it is an index into a virtual set of samples
1430 ** based on the contents of aSample[] and the number of fields in record
1431 ** pRec.
1432 */
1433 static int whereKeyStats(
1434   Parse *pParse,              /* Database connection */
1435   Index *pIdx,                /* Index to consider domain of */
1436   UnpackedRecord *pRec,       /* Vector of values to consider */
1437   int roundUp,                /* Round up if true.  Round down if false */
1438   tRowcnt *aStat              /* OUT: stats written here */
1439 ){
1440   IndexSample *aSample = pIdx->aSample;
1441   int iCol;                   /* Index of required stats in anEq[] etc. */
1442   int i;                      /* Index of first sample >= pRec */
1443   int iSample;                /* Smallest sample larger than or equal to pRec */
1444   int iMin = 0;               /* Smallest sample not yet tested */
1445   int iTest;                  /* Next sample to test */
1446   int res;                    /* Result of comparison operation */
1447   int nField;                 /* Number of fields in pRec */
1448   tRowcnt iLower = 0;         /* anLt[] + anEq[] of largest sample pRec is > */
1449 
1450 #ifndef SQLITE_DEBUG
1451   UNUSED_PARAMETER( pParse );
1452 #endif
1453   assert( pRec!=0 );
1454   assert( pIdx->nSample>0 );
1455   assert( pRec->nField>0 );
1456 
1457   /* Do a binary search to find the first sample greater than or equal
1458   ** to pRec. If pRec contains a single field, the set of samples to search
1459   ** is simply the aSample[] array. If the samples in aSample[] contain more
1460   ** than one fields, all fields following the first are ignored.
1461   **
1462   ** If pRec contains N fields, where N is more than one, then as well as the
1463   ** samples in aSample[] (truncated to N fields), the search also has to
1464   ** consider prefixes of those samples. For example, if the set of samples
1465   ** in aSample is:
1466   **
1467   **     aSample[0] = (a, 5)
1468   **     aSample[1] = (a, 10)
1469   **     aSample[2] = (b, 5)
1470   **     aSample[3] = (c, 100)
1471   **     aSample[4] = (c, 105)
1472   **
1473   ** Then the search space should ideally be the samples above and the
1474   ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1475   ** the code actually searches this set:
1476   **
1477   **     0: (a)
1478   **     1: (a, 5)
1479   **     2: (a, 10)
1480   **     3: (a, 10)
1481   **     4: (b)
1482   **     5: (b, 5)
1483   **     6: (c)
1484   **     7: (c, 100)
1485   **     8: (c, 105)
1486   **     9: (c, 105)
1487   **
1488   ** For each sample in the aSample[] array, N samples are present in the
1489   ** effective sample array. In the above, samples 0 and 1 are based on
1490   ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1491   **
1492   ** Often, sample i of each block of N effective samples has (i+1) fields.
1493   ** Except, each sample may be extended to ensure that it is greater than or
1494   ** equal to the previous sample in the array. For example, in the above,
1495   ** sample 2 is the first sample of a block of N samples, so at first it
1496   ** appears that it should be 1 field in size. However, that would make it
1497   ** smaller than sample 1, so the binary search would not work. As a result,
1498   ** it is extended to two fields. The duplicates that this creates do not
1499   ** cause any problems.
1500   */
1501   nField = MIN(pRec->nField, pIdx->nSample);
1502   iCol = 0;
1503   iSample = pIdx->nSample * nField;
1504   do{
1505     int iSamp;                    /* Index in aSample[] of test sample */
1506     int n;                        /* Number of fields in test sample */
1507 
1508     iTest = (iMin+iSample)/2;
1509     iSamp = iTest / nField;
1510     if( iSamp>0 ){
1511       /* The proposed effective sample is a prefix of sample aSample[iSamp].
1512       ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1513       ** fields that is greater than the previous effective sample.  */
1514       for(n=(iTest % nField) + 1; n<nField; n++){
1515         if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1516       }
1517     }else{
1518       n = iTest + 1;
1519     }
1520 
1521     pRec->nField = n;
1522     res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1523     if( res<0 ){
1524       iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1525       iMin = iTest+1;
1526     }else if( res==0 && n<nField ){
1527       iLower = aSample[iSamp].anLt[n-1];
1528       iMin = iTest+1;
1529       res = -1;
1530     }else{
1531       iSample = iTest;
1532       iCol = n-1;
1533     }
1534   }while( res && iMin<iSample );
1535   i = iSample / nField;
1536 
1537 #ifdef SQLITE_DEBUG
1538   /* The following assert statements check that the binary search code
1539   ** above found the right answer. This block serves no purpose other
1540   ** than to invoke the asserts.  */
1541   if( pParse->db->mallocFailed==0 ){
1542     if( res==0 ){
1543       /* If (res==0) is true, then pRec must be equal to sample i. */
1544       assert( i<pIdx->nSample );
1545       assert( iCol==nField-1 );
1546       pRec->nField = nField;
1547       assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1548            || pParse->db->mallocFailed
1549       );
1550     }else{
1551       /* Unless i==pIdx->nSample, indicating that pRec is larger than
1552       ** all samples in the aSample[] array, pRec must be smaller than the
1553       ** (iCol+1) field prefix of sample i.  */
1554       assert( i<=pIdx->nSample && i>=0 );
1555       pRec->nField = iCol+1;
1556       assert( i==pIdx->nSample
1557            || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1558            || pParse->db->mallocFailed );
1559 
1560       /* if i==0 and iCol==0, then record pRec is smaller than all samples
1561       ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1562       ** be greater than or equal to the (iCol) field prefix of sample i.
1563       ** If (i>0), then pRec must also be greater than sample (i-1).  */
1564       if( iCol>0 ){
1565         pRec->nField = iCol;
1566         assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1567              || pParse->db->mallocFailed );
1568       }
1569       if( i>0 ){
1570         pRec->nField = nField;
1571         assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1572              || pParse->db->mallocFailed );
1573       }
1574     }
1575   }
1576 #endif /* ifdef SQLITE_DEBUG */
1577 
1578   if( res==0 ){
1579     /* Record pRec is equal to sample i */
1580     assert( iCol==nField-1 );
1581     aStat[0] = aSample[i].anLt[iCol];
1582     aStat[1] = aSample[i].anEq[iCol];
1583   }else{
1584     /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1585     ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1586     ** is larger than all samples in the array. */
1587     tRowcnt iUpper, iGap;
1588     if( i>=pIdx->nSample ){
1589       iUpper = pIdx->nRowEst0;
1590     }else{
1591       iUpper = aSample[i].anLt[iCol];
1592     }
1593 
1594     if( iLower>=iUpper ){
1595       iGap = 0;
1596     }else{
1597       iGap = iUpper - iLower;
1598     }
1599     if( roundUp ){
1600       iGap = (iGap*2)/3;
1601     }else{
1602       iGap = iGap/3;
1603     }
1604     aStat[0] = iLower + iGap;
1605     aStat[1] = pIdx->aAvgEq[nField-1];
1606   }
1607 
1608   /* Restore the pRec->nField value before returning.  */
1609   pRec->nField = nField;
1610   return i;
1611 }
1612 #endif /* SQLITE_ENABLE_STAT4 */
1613 
1614 /*
1615 ** If it is not NULL, pTerm is a term that provides an upper or lower
1616 ** bound on a range scan. Without considering pTerm, it is estimated
1617 ** that the scan will visit nNew rows. This function returns the number
1618 ** estimated to be visited after taking pTerm into account.
1619 **
1620 ** If the user explicitly specified a likelihood() value for this term,
1621 ** then the return value is the likelihood multiplied by the number of
1622 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1623 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1624 */
1625 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1626   LogEst nRet = nNew;
1627   if( pTerm ){
1628     if( pTerm->truthProb<=0 ){
1629       nRet += pTerm->truthProb;
1630     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1631       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
1632     }
1633   }
1634   return nRet;
1635 }
1636 
1637 
1638 #ifdef SQLITE_ENABLE_STAT4
1639 /*
1640 ** Return the affinity for a single column of an index.
1641 */
1642 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1643   assert( iCol>=0 && iCol<pIdx->nColumn );
1644   if( !pIdx->zColAff ){
1645     if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1646   }
1647   assert( pIdx->zColAff[iCol]!=0 );
1648   return pIdx->zColAff[iCol];
1649 }
1650 #endif
1651 
1652 
1653 #ifdef SQLITE_ENABLE_STAT4
1654 /*
1655 ** This function is called to estimate the number of rows visited by a
1656 ** range-scan on a skip-scan index. For example:
1657 **
1658 **   CREATE INDEX i1 ON t1(a, b, c);
1659 **   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1660 **
1661 ** Value pLoop->nOut is currently set to the estimated number of rows
1662 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1663 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1664 ** on the stat4 data for the index. this scan will be peformed multiple
1665 ** times (once for each (a,b) combination that matches a=?) is dealt with
1666 ** by the caller.
1667 **
1668 ** It does this by scanning through all stat4 samples, comparing values
1669 ** extracted from pLower and pUpper with the corresponding column in each
1670 ** sample. If L and U are the number of samples found to be less than or
1671 ** equal to the values extracted from pLower and pUpper respectively, and
1672 ** N is the total number of samples, the pLoop->nOut value is adjusted
1673 ** as follows:
1674 **
1675 **   nOut = nOut * ( min(U - L, 1) / N )
1676 **
1677 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1678 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1679 ** U is set to N.
1680 **
1681 ** Normally, this function sets *pbDone to 1 before returning. However,
1682 ** if no value can be extracted from either pLower or pUpper (and so the
1683 ** estimate of the number of rows delivered remains unchanged), *pbDone
1684 ** is left as is.
1685 **
1686 ** If an error occurs, an SQLite error code is returned. Otherwise,
1687 ** SQLITE_OK.
1688 */
1689 static int whereRangeSkipScanEst(
1690   Parse *pParse,       /* Parsing & code generating context */
1691   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1692   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1693   WhereLoop *pLoop,    /* Update the .nOut value of this loop */
1694   int *pbDone          /* Set to true if at least one expr. value extracted */
1695 ){
1696   Index *p = pLoop->u.btree.pIndex;
1697   int nEq = pLoop->u.btree.nEq;
1698   sqlite3 *db = pParse->db;
1699   int nLower = -1;
1700   int nUpper = p->nSample+1;
1701   int rc = SQLITE_OK;
1702   u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1703   CollSeq *pColl;
1704 
1705   sqlite3_value *p1 = 0;          /* Value extracted from pLower */
1706   sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
1707   sqlite3_value *pVal = 0;        /* Value extracted from record */
1708 
1709   pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1710   if( pLower ){
1711     rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1712     nLower = 0;
1713   }
1714   if( pUpper && rc==SQLITE_OK ){
1715     rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1716     nUpper = p2 ? 0 : p->nSample;
1717   }
1718 
1719   if( p1 || p2 ){
1720     int i;
1721     int nDiff;
1722     for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1723       rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1724       if( rc==SQLITE_OK && p1 ){
1725         int res = sqlite3MemCompare(p1, pVal, pColl);
1726         if( res>=0 ) nLower++;
1727       }
1728       if( rc==SQLITE_OK && p2 ){
1729         int res = sqlite3MemCompare(p2, pVal, pColl);
1730         if( res>=0 ) nUpper++;
1731       }
1732     }
1733     nDiff = (nUpper - nLower);
1734     if( nDiff<=0 ) nDiff = 1;
1735 
1736     /* If there is both an upper and lower bound specified, and the
1737     ** comparisons indicate that they are close together, use the fallback
1738     ** method (assume that the scan visits 1/64 of the rows) for estimating
1739     ** the number of rows visited. Otherwise, estimate the number of rows
1740     ** using the method described in the header comment for this function. */
1741     if( nDiff!=1 || pUpper==0 || pLower==0 ){
1742       int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1743       pLoop->nOut -= nAdjust;
1744       *pbDone = 1;
1745       WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n",
1746                            nLower, nUpper, nAdjust*-1, pLoop->nOut));
1747     }
1748 
1749   }else{
1750     assert( *pbDone==0 );
1751   }
1752 
1753   sqlite3ValueFree(p1);
1754   sqlite3ValueFree(p2);
1755   sqlite3ValueFree(pVal);
1756 
1757   return rc;
1758 }
1759 #endif /* SQLITE_ENABLE_STAT4 */
1760 
1761 /*
1762 ** This function is used to estimate the number of rows that will be visited
1763 ** by scanning an index for a range of values. The range may have an upper
1764 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1765 ** and lower bounds are represented by pLower and pUpper respectively. For
1766 ** example, assuming that index p is on t1(a):
1767 **
1768 **   ... FROM t1 WHERE a > ? AND a < ? ...
1769 **                    |_____|   |_____|
1770 **                       |         |
1771 **                     pLower    pUpper
1772 **
1773 ** If either of the upper or lower bound is not present, then NULL is passed in
1774 ** place of the corresponding WhereTerm.
1775 **
1776 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1777 ** column subject to the range constraint. Or, equivalently, the number of
1778 ** equality constraints optimized by the proposed index scan. For example,
1779 ** assuming index p is on t1(a, b), and the SQL query is:
1780 **
1781 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1782 **
1783 ** then nEq is set to 1 (as the range restricted column, b, is the second
1784 ** left-most column of the index). Or, if the query is:
1785 **
1786 **   ... FROM t1 WHERE a > ? AND a < ? ...
1787 **
1788 ** then nEq is set to 0.
1789 **
1790 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1791 ** number of rows that the index scan is expected to visit without
1792 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1793 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1794 ** to account for the range constraints pLower and pUpper.
1795 **
1796 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1797 ** used, a single range inequality reduces the search space by a factor of 4.
1798 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1799 ** rows visited by a factor of 64.
1800 */
1801 static int whereRangeScanEst(
1802   Parse *pParse,       /* Parsing & code generating context */
1803   WhereLoopBuilder *pBuilder,
1804   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1805   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1806   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
1807 ){
1808   int rc = SQLITE_OK;
1809   int nOut = pLoop->nOut;
1810   LogEst nNew;
1811 
1812 #ifdef SQLITE_ENABLE_STAT4
1813   Index *p = pLoop->u.btree.pIndex;
1814   int nEq = pLoop->u.btree.nEq;
1815 
1816   if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol)
1817    && OptimizationEnabled(pParse->db, SQLITE_Stat4)
1818   ){
1819     if( nEq==pBuilder->nRecValid ){
1820       UnpackedRecord *pRec = pBuilder->pRec;
1821       tRowcnt a[2];
1822       int nBtm = pLoop->u.btree.nBtm;
1823       int nTop = pLoop->u.btree.nTop;
1824 
1825       /* Variable iLower will be set to the estimate of the number of rows in
1826       ** the index that are less than the lower bound of the range query. The
1827       ** lower bound being the concatenation of $P and $L, where $P is the
1828       ** key-prefix formed by the nEq values matched against the nEq left-most
1829       ** columns of the index, and $L is the value in pLower.
1830       **
1831       ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1832       ** is not a simple variable or literal value), the lower bound of the
1833       ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1834       ** if $L is available, whereKeyStats() is called for both ($P) and
1835       ** ($P:$L) and the larger of the two returned values is used.
1836       **
1837       ** Similarly, iUpper is to be set to the estimate of the number of rows
1838       ** less than the upper bound of the range query. Where the upper bound
1839       ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1840       ** of iUpper are requested of whereKeyStats() and the smaller used.
1841       **
1842       ** The number of rows between the two bounds is then just iUpper-iLower.
1843       */
1844       tRowcnt iLower;     /* Rows less than the lower bound */
1845       tRowcnt iUpper;     /* Rows less than the upper bound */
1846       int iLwrIdx = -2;   /* aSample[] for the lower bound */
1847       int iUprIdx = -1;   /* aSample[] for the upper bound */
1848 
1849       if( pRec ){
1850         testcase( pRec->nField!=pBuilder->nRecValid );
1851         pRec->nField = pBuilder->nRecValid;
1852       }
1853       /* Determine iLower and iUpper using ($P) only. */
1854       if( nEq==0 ){
1855         iLower = 0;
1856         iUpper = p->nRowEst0;
1857       }else{
1858         /* Note: this call could be optimized away - since the same values must
1859         ** have been requested when testing key $P in whereEqualScanEst().  */
1860         whereKeyStats(pParse, p, pRec, 0, a);
1861         iLower = a[0];
1862         iUpper = a[0] + a[1];
1863       }
1864 
1865       assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1866       assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1867       assert( p->aSortOrder!=0 );
1868       if( p->aSortOrder[nEq] ){
1869         /* The roles of pLower and pUpper are swapped for a DESC index */
1870         SWAP(WhereTerm*, pLower, pUpper);
1871         SWAP(int, nBtm, nTop);
1872       }
1873 
1874       /* If possible, improve on the iLower estimate using ($P:$L). */
1875       if( pLower ){
1876         int n;                    /* Values extracted from pExpr */
1877         Expr *pExpr = pLower->pExpr->pRight;
1878         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1879         if( rc==SQLITE_OK && n ){
1880           tRowcnt iNew;
1881           u16 mask = WO_GT|WO_LE;
1882           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1883           iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1884           iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1885           if( iNew>iLower ) iLower = iNew;
1886           nOut--;
1887           pLower = 0;
1888         }
1889       }
1890 
1891       /* If possible, improve on the iUpper estimate using ($P:$U). */
1892       if( pUpper ){
1893         int n;                    /* Values extracted from pExpr */
1894         Expr *pExpr = pUpper->pExpr->pRight;
1895         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1896         if( rc==SQLITE_OK && n ){
1897           tRowcnt iNew;
1898           u16 mask = WO_GT|WO_LE;
1899           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1900           iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1901           iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1902           if( iNew<iUpper ) iUpper = iNew;
1903           nOut--;
1904           pUpper = 0;
1905         }
1906       }
1907 
1908       pBuilder->pRec = pRec;
1909       if( rc==SQLITE_OK ){
1910         if( iUpper>iLower ){
1911           nNew = sqlite3LogEst(iUpper - iLower);
1912           /* TUNING:  If both iUpper and iLower are derived from the same
1913           ** sample, then assume they are 4x more selective.  This brings
1914           ** the estimated selectivity more in line with what it would be
1915           ** if estimated without the use of STAT4 tables. */
1916           if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
1917         }else{
1918           nNew = 10;        assert( 10==sqlite3LogEst(2) );
1919         }
1920         if( nNew<nOut ){
1921           nOut = nNew;
1922         }
1923         WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
1924                            (u32)iLower, (u32)iUpper, nOut));
1925       }
1926     }else{
1927       int bDone = 0;
1928       rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1929       if( bDone ) return rc;
1930     }
1931   }
1932 #else
1933   UNUSED_PARAMETER(pParse);
1934   UNUSED_PARAMETER(pBuilder);
1935   assert( pLower || pUpper );
1936 #endif
1937   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1938   nNew = whereRangeAdjust(pLower, nOut);
1939   nNew = whereRangeAdjust(pUpper, nNew);
1940 
1941   /* TUNING: If there is both an upper and lower limit and neither limit
1942   ** has an application-defined likelihood(), assume the range is
1943   ** reduced by an additional 75%. This means that, by default, an open-ended
1944   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1945   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1946   ** match 1/64 of the index. */
1947   if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1948     nNew -= 20;
1949   }
1950 
1951   nOut -= (pLower!=0) + (pUpper!=0);
1952   if( nNew<10 ) nNew = 10;
1953   if( nNew<nOut ) nOut = nNew;
1954 #if defined(WHERETRACE_ENABLED)
1955   if( pLoop->nOut>nOut ){
1956     WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1957                     pLoop->nOut, nOut));
1958   }
1959 #endif
1960   pLoop->nOut = (LogEst)nOut;
1961   return rc;
1962 }
1963 
1964 #ifdef SQLITE_ENABLE_STAT4
1965 /*
1966 ** Estimate the number of rows that will be returned based on
1967 ** an equality constraint x=VALUE and where that VALUE occurs in
1968 ** the histogram data.  This only works when x is the left-most
1969 ** column of an index and sqlite_stat4 histogram data is available
1970 ** for that index.  When pExpr==NULL that means the constraint is
1971 ** "x IS NULL" instead of "x=VALUE".
1972 **
1973 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1974 ** If unable to make an estimate, leave *pnRow unchanged and return
1975 ** non-zero.
1976 **
1977 ** This routine can fail if it is unable to load a collating sequence
1978 ** required for string comparison, or if unable to allocate memory
1979 ** for a UTF conversion required for comparison.  The error is stored
1980 ** in the pParse structure.
1981 */
1982 static int whereEqualScanEst(
1983   Parse *pParse,       /* Parsing & code generating context */
1984   WhereLoopBuilder *pBuilder,
1985   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
1986   tRowcnt *pnRow       /* Write the revised row estimate here */
1987 ){
1988   Index *p = pBuilder->pNew->u.btree.pIndex;
1989   int nEq = pBuilder->pNew->u.btree.nEq;
1990   UnpackedRecord *pRec = pBuilder->pRec;
1991   int rc;                   /* Subfunction return code */
1992   tRowcnt a[2];             /* Statistics */
1993   int bOk;
1994 
1995   assert( nEq>=1 );
1996   assert( nEq<=p->nColumn );
1997   assert( p->aSample!=0 );
1998   assert( p->nSample>0 );
1999   assert( pBuilder->nRecValid<nEq );
2000 
2001   /* If values are not available for all fields of the index to the left
2002   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
2003   if( pBuilder->nRecValid<(nEq-1) ){
2004     return SQLITE_NOTFOUND;
2005   }
2006 
2007   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
2008   ** below would return the same value.  */
2009   if( nEq>=p->nColumn ){
2010     *pnRow = 1;
2011     return SQLITE_OK;
2012   }
2013 
2014   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
2015   pBuilder->pRec = pRec;
2016   if( rc!=SQLITE_OK ) return rc;
2017   if( bOk==0 ) return SQLITE_NOTFOUND;
2018   pBuilder->nRecValid = nEq;
2019 
2020   whereKeyStats(pParse, p, pRec, 0, a);
2021   WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
2022                    p->zName, nEq-1, (int)a[1]));
2023   *pnRow = a[1];
2024 
2025   return rc;
2026 }
2027 #endif /* SQLITE_ENABLE_STAT4 */
2028 
2029 #ifdef SQLITE_ENABLE_STAT4
2030 /*
2031 ** Estimate the number of rows that will be returned based on
2032 ** an IN constraint where the right-hand side of the IN operator
2033 ** is a list of values.  Example:
2034 **
2035 **        WHERE x IN (1,2,3,4)
2036 **
2037 ** Write the estimated row count into *pnRow and return SQLITE_OK.
2038 ** If unable to make an estimate, leave *pnRow unchanged and return
2039 ** non-zero.
2040 **
2041 ** This routine can fail if it is unable to load a collating sequence
2042 ** required for string comparison, or if unable to allocate memory
2043 ** for a UTF conversion required for comparison.  The error is stored
2044 ** in the pParse structure.
2045 */
2046 static int whereInScanEst(
2047   Parse *pParse,       /* Parsing & code generating context */
2048   WhereLoopBuilder *pBuilder,
2049   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
2050   tRowcnt *pnRow       /* Write the revised row estimate here */
2051 ){
2052   Index *p = pBuilder->pNew->u.btree.pIndex;
2053   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
2054   int nRecValid = pBuilder->nRecValid;
2055   int rc = SQLITE_OK;     /* Subfunction return code */
2056   tRowcnt nEst;           /* Number of rows for a single term */
2057   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
2058   int i;                  /* Loop counter */
2059 
2060   assert( p->aSample!=0 );
2061   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
2062     nEst = nRow0;
2063     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
2064     nRowEst += nEst;
2065     pBuilder->nRecValid = nRecValid;
2066   }
2067 
2068   if( rc==SQLITE_OK ){
2069     if( nRowEst > nRow0 ) nRowEst = nRow0;
2070     *pnRow = nRowEst;
2071     WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
2072   }
2073   assert( pBuilder->nRecValid==nRecValid );
2074   return rc;
2075 }
2076 #endif /* SQLITE_ENABLE_STAT4 */
2077 
2078 
2079 #ifdef WHERETRACE_ENABLED
2080 /*
2081 ** Print the content of a WhereTerm object
2082 */
2083 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){
2084   if( pTerm==0 ){
2085     sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
2086   }else{
2087     char zType[8];
2088     char zLeft[50];
2089     memcpy(zType, "....", 5);
2090     if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
2091     if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
2092     if( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) zType[2] = 'L';
2093     if( pTerm->wtFlags & TERM_CODED  ) zType[3] = 'C';
2094     if( pTerm->eOperator & WO_SINGLE ){
2095       assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
2096       sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
2097                        pTerm->leftCursor, pTerm->u.x.leftColumn);
2098     }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
2099       sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx",
2100                        pTerm->u.pOrInfo->indexable);
2101     }else{
2102       sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
2103     }
2104     sqlite3DebugPrintf(
2105        "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x",
2106        iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags);
2107     /* The 0x10000 .wheretrace flag causes extra information to be
2108     ** shown about each Term */
2109     if( sqlite3WhereTrace & 0x10000 ){
2110       sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx",
2111         pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight);
2112     }
2113     if( (pTerm->eOperator & (WO_OR|WO_AND))==0 && pTerm->u.x.iField ){
2114       sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField);
2115     }
2116     if( pTerm->iParent>=0 ){
2117       sqlite3DebugPrintf(" iParent=%d", pTerm->iParent);
2118     }
2119     sqlite3DebugPrintf("\n");
2120     sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
2121   }
2122 }
2123 #endif
2124 
2125 #ifdef WHERETRACE_ENABLED
2126 /*
2127 ** Show the complete content of a WhereClause
2128 */
2129 void sqlite3WhereClausePrint(WhereClause *pWC){
2130   int i;
2131   for(i=0; i<pWC->nTerm; i++){
2132     sqlite3WhereTermPrint(&pWC->a[i], i);
2133   }
2134 }
2135 #endif
2136 
2137 #ifdef WHERETRACE_ENABLED
2138 /*
2139 ** Print a WhereLoop object for debugging purposes
2140 */
2141 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){
2142   WhereInfo *pWInfo = pWC->pWInfo;
2143   int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
2144   SrcItem *pItem = pWInfo->pTabList->a + p->iTab;
2145   Table *pTab = pItem->pTab;
2146   Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
2147   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
2148                      p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
2149   sqlite3DebugPrintf(" %12s",
2150                      pItem->zAlias ? pItem->zAlias : pTab->zName);
2151   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2152     const char *zName;
2153     if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
2154       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
2155         int i = sqlite3Strlen30(zName) - 1;
2156         while( zName[i]!='_' ) i--;
2157         zName += i;
2158       }
2159       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
2160     }else{
2161       sqlite3DebugPrintf("%20s","");
2162     }
2163   }else{
2164     char *z;
2165     if( p->u.vtab.idxStr ){
2166       z = sqlite3_mprintf("(%d,\"%s\",%#x)",
2167                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
2168     }else{
2169       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
2170     }
2171     sqlite3DebugPrintf(" %-19s", z);
2172     sqlite3_free(z);
2173   }
2174   if( p->wsFlags & WHERE_SKIPSCAN ){
2175     sqlite3DebugPrintf(" f %06x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
2176   }else{
2177     sqlite3DebugPrintf(" f %06x N %d", p->wsFlags, p->nLTerm);
2178   }
2179   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
2180   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
2181     int i;
2182     for(i=0; i<p->nLTerm; i++){
2183       sqlite3WhereTermPrint(p->aLTerm[i], i);
2184     }
2185   }
2186 }
2187 #endif
2188 
2189 /*
2190 ** Convert bulk memory into a valid WhereLoop that can be passed
2191 ** to whereLoopClear harmlessly.
2192 */
2193 static void whereLoopInit(WhereLoop *p){
2194   p->aLTerm = p->aLTermSpace;
2195   p->nLTerm = 0;
2196   p->nLSlot = ArraySize(p->aLTermSpace);
2197   p->wsFlags = 0;
2198 }
2199 
2200 /*
2201 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
2202 */
2203 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
2204   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
2205     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
2206       sqlite3_free(p->u.vtab.idxStr);
2207       p->u.vtab.needFree = 0;
2208       p->u.vtab.idxStr = 0;
2209     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
2210       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
2211       sqlite3DbFreeNN(db, p->u.btree.pIndex);
2212       p->u.btree.pIndex = 0;
2213     }
2214   }
2215 }
2216 
2217 /*
2218 ** Deallocate internal memory used by a WhereLoop object.  Leave the
2219 ** object in an initialized state, as if it had been newly allocated.
2220 */
2221 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
2222   if( p->aLTerm!=p->aLTermSpace ){
2223     sqlite3DbFreeNN(db, p->aLTerm);
2224     p->aLTerm = p->aLTermSpace;
2225     p->nLSlot = ArraySize(p->aLTermSpace);
2226   }
2227   whereLoopClearUnion(db, p);
2228   p->nLTerm = 0;
2229   p->wsFlags = 0;
2230 }
2231 
2232 /*
2233 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
2234 */
2235 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
2236   WhereTerm **paNew;
2237   if( p->nLSlot>=n ) return SQLITE_OK;
2238   n = (n+7)&~7;
2239   paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
2240   if( paNew==0 ) return SQLITE_NOMEM_BKPT;
2241   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
2242   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
2243   p->aLTerm = paNew;
2244   p->nLSlot = n;
2245   return SQLITE_OK;
2246 }
2247 
2248 /*
2249 ** Transfer content from the second pLoop into the first.
2250 */
2251 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
2252   whereLoopClearUnion(db, pTo);
2253   if( pFrom->nLTerm > pTo->nLSlot
2254    && whereLoopResize(db, pTo, pFrom->nLTerm)
2255   ){
2256     memset(pTo, 0, WHERE_LOOP_XFER_SZ);
2257     return SQLITE_NOMEM_BKPT;
2258   }
2259   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
2260   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
2261   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
2262     pFrom->u.vtab.needFree = 0;
2263   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
2264     pFrom->u.btree.pIndex = 0;
2265   }
2266   return SQLITE_OK;
2267 }
2268 
2269 /*
2270 ** Delete a WhereLoop object
2271 */
2272 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
2273   assert( db!=0 );
2274   whereLoopClear(db, p);
2275   sqlite3DbNNFreeNN(db, p);
2276 }
2277 
2278 /*
2279 ** Free a WhereInfo structure
2280 */
2281 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
2282   assert( pWInfo!=0 );
2283   assert( db!=0 );
2284   sqlite3WhereClauseClear(&pWInfo->sWC);
2285   while( pWInfo->pLoops ){
2286     WhereLoop *p = pWInfo->pLoops;
2287     pWInfo->pLoops = p->pNextLoop;
2288     whereLoopDelete(db, p);
2289   }
2290   assert( pWInfo->pExprMods==0 );
2291   while( pWInfo->pMemToFree ){
2292     WhereMemBlock *pNext = pWInfo->pMemToFree->pNext;
2293     sqlite3DbNNFreeNN(db, pWInfo->pMemToFree);
2294     pWInfo->pMemToFree = pNext;
2295   }
2296   sqlite3DbNNFreeNN(db, pWInfo);
2297 }
2298 
2299 /* Undo all Expr node modifications
2300 */
2301 static void whereUndoExprMods(WhereInfo *pWInfo){
2302   while( pWInfo->pExprMods ){
2303     WhereExprMod *p = pWInfo->pExprMods;
2304     pWInfo->pExprMods = p->pNext;
2305     memcpy(p->pExpr, &p->orig, sizeof(p->orig));
2306     sqlite3DbFree(pWInfo->pParse->db, p);
2307   }
2308 }
2309 
2310 /*
2311 ** Return TRUE if all of the following are true:
2312 **
2313 **   (1)  X has the same or lower cost, or returns the same or fewer rows,
2314 **        than Y.
2315 **   (2)  X uses fewer WHERE clause terms than Y
2316 **   (3)  Every WHERE clause term used by X is also used by Y
2317 **   (4)  X skips at least as many columns as Y
2318 **   (5)  If X is a covering index, than Y is too
2319 **
2320 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
2321 ** If X is a proper subset of Y then Y is a better choice and ought
2322 ** to have a lower cost.  This routine returns TRUE when that cost
2323 ** relationship is inverted and needs to be adjusted.  Constraint (4)
2324 ** was added because if X uses skip-scan less than Y it still might
2325 ** deserve a lower cost even if it is a proper subset of Y.  Constraint (5)
2326 ** was added because a covering index probably deserves to have a lower cost
2327 ** than a non-covering index even if it is a proper subset.
2328 */
2329 static int whereLoopCheaperProperSubset(
2330   const WhereLoop *pX,       /* First WhereLoop to compare */
2331   const WhereLoop *pY        /* Compare against this WhereLoop */
2332 ){
2333   int i, j;
2334   if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
2335     return 0; /* X is not a subset of Y */
2336   }
2337   if( pX->rRun>pY->rRun && pX->nOut>pY->nOut ) return 0;
2338   if( pY->nSkip > pX->nSkip ) return 0;
2339   for(i=pX->nLTerm-1; i>=0; i--){
2340     if( pX->aLTerm[i]==0 ) continue;
2341     for(j=pY->nLTerm-1; j>=0; j--){
2342       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
2343     }
2344     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
2345   }
2346   if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
2347    && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
2348     return 0;  /* Constraint (5) */
2349   }
2350   return 1;  /* All conditions meet */
2351 }
2352 
2353 /*
2354 ** Try to adjust the cost and number of output rows of WhereLoop pTemplate
2355 ** upwards or downwards so that:
2356 **
2357 **   (1) pTemplate costs less than any other WhereLoops that are a proper
2358 **       subset of pTemplate
2359 **
2360 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
2361 **       is a proper subset.
2362 **
2363 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
2364 ** WHERE clause terms than Y and that every WHERE clause term used by X is
2365 ** also used by Y.
2366 */
2367 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
2368   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
2369   for(; p; p=p->pNextLoop){
2370     if( p->iTab!=pTemplate->iTab ) continue;
2371     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
2372     if( whereLoopCheaperProperSubset(p, pTemplate) ){
2373       /* Adjust pTemplate cost downward so that it is cheaper than its
2374       ** subset p. */
2375       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2376                        pTemplate->rRun, pTemplate->nOut,
2377                        MIN(p->rRun, pTemplate->rRun),
2378                        MIN(p->nOut - 1, pTemplate->nOut)));
2379       pTemplate->rRun = MIN(p->rRun, pTemplate->rRun);
2380       pTemplate->nOut = MIN(p->nOut - 1, pTemplate->nOut);
2381     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
2382       /* Adjust pTemplate cost upward so that it is costlier than p since
2383       ** pTemplate is a proper subset of p */
2384       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2385                        pTemplate->rRun, pTemplate->nOut,
2386                        MAX(p->rRun, pTemplate->rRun),
2387                        MAX(p->nOut + 1, pTemplate->nOut)));
2388       pTemplate->rRun = MAX(p->rRun, pTemplate->rRun);
2389       pTemplate->nOut = MAX(p->nOut + 1, pTemplate->nOut);
2390     }
2391   }
2392 }
2393 
2394 /*
2395 ** Search the list of WhereLoops in *ppPrev looking for one that can be
2396 ** replaced by pTemplate.
2397 **
2398 ** Return NULL if pTemplate does not belong on the WhereLoop list.
2399 ** In other words if pTemplate ought to be dropped from further consideration.
2400 **
2401 ** If pX is a WhereLoop that pTemplate can replace, then return the
2402 ** link that points to pX.
2403 **
2404 ** If pTemplate cannot replace any existing element of the list but needs
2405 ** to be added to the list as a new entry, then return a pointer to the
2406 ** tail of the list.
2407 */
2408 static WhereLoop **whereLoopFindLesser(
2409   WhereLoop **ppPrev,
2410   const WhereLoop *pTemplate
2411 ){
2412   WhereLoop *p;
2413   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
2414     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
2415       /* If either the iTab or iSortIdx values for two WhereLoop are different
2416       ** then those WhereLoops need to be considered separately.  Neither is
2417       ** a candidate to replace the other. */
2418       continue;
2419     }
2420     /* In the current implementation, the rSetup value is either zero
2421     ** or the cost of building an automatic index (NlogN) and the NlogN
2422     ** is the same for compatible WhereLoops. */
2423     assert( p->rSetup==0 || pTemplate->rSetup==0
2424                  || p->rSetup==pTemplate->rSetup );
2425 
2426     /* whereLoopAddBtree() always generates and inserts the automatic index
2427     ** case first.  Hence compatible candidate WhereLoops never have a larger
2428     ** rSetup. Call this SETUP-INVARIANT */
2429     assert( p->rSetup>=pTemplate->rSetup );
2430 
2431     /* Any loop using an appliation-defined index (or PRIMARY KEY or
2432     ** UNIQUE constraint) with one or more == constraints is better
2433     ** than an automatic index. Unless it is a skip-scan. */
2434     if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
2435      && (pTemplate->nSkip)==0
2436      && (pTemplate->wsFlags & WHERE_INDEXED)!=0
2437      && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
2438      && (p->prereq & pTemplate->prereq)==pTemplate->prereq
2439     ){
2440       break;
2441     }
2442 
2443     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2444     ** discarded.  WhereLoop p is better if:
2445     **   (1)  p has no more dependencies than pTemplate, and
2446     **   (2)  p has an equal or lower cost than pTemplate
2447     */
2448     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
2449      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
2450      && p->rRun<=pTemplate->rRun                      /* (2b) */
2451      && p->nOut<=pTemplate->nOut                      /* (2c) */
2452     ){
2453       return 0;  /* Discard pTemplate */
2454     }
2455 
2456     /* If pTemplate is always better than p, then cause p to be overwritten
2457     ** with pTemplate.  pTemplate is better than p if:
2458     **   (1)  pTemplate has no more dependences than p, and
2459     **   (2)  pTemplate has an equal or lower cost than p.
2460     */
2461     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
2462      && p->rRun>=pTemplate->rRun                             /* (2a) */
2463      && p->nOut>=pTemplate->nOut                             /* (2b) */
2464     ){
2465       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2466       break;   /* Cause p to be overwritten by pTemplate */
2467     }
2468   }
2469   return ppPrev;
2470 }
2471 
2472 /*
2473 ** Insert or replace a WhereLoop entry using the template supplied.
2474 **
2475 ** An existing WhereLoop entry might be overwritten if the new template
2476 ** is better and has fewer dependencies.  Or the template will be ignored
2477 ** and no insert will occur if an existing WhereLoop is faster and has
2478 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
2479 ** added based on the template.
2480 **
2481 ** If pBuilder->pOrSet is not NULL then we care about only the
2482 ** prerequisites and rRun and nOut costs of the N best loops.  That
2483 ** information is gathered in the pBuilder->pOrSet object.  This special
2484 ** processing mode is used only for OR clause processing.
2485 **
2486 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2487 ** still might overwrite similar loops with the new template if the
2488 ** new template is better.  Loops may be overwritten if the following
2489 ** conditions are met:
2490 **
2491 **    (1)  They have the same iTab.
2492 **    (2)  They have the same iSortIdx.
2493 **    (3)  The template has same or fewer dependencies than the current loop
2494 **    (4)  The template has the same or lower cost than the current loop
2495 */
2496 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2497   WhereLoop **ppPrev, *p;
2498   WhereInfo *pWInfo = pBuilder->pWInfo;
2499   sqlite3 *db = pWInfo->pParse->db;
2500   int rc;
2501 
2502   /* Stop the search once we hit the query planner search limit */
2503   if( pBuilder->iPlanLimit==0 ){
2504     WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
2505     if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0;
2506     return SQLITE_DONE;
2507   }
2508   pBuilder->iPlanLimit--;
2509 
2510   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2511 
2512   /* If pBuilder->pOrSet is defined, then only keep track of the costs
2513   ** and prereqs.
2514   */
2515   if( pBuilder->pOrSet!=0 ){
2516     if( pTemplate->nLTerm ){
2517 #if WHERETRACE_ENABLED
2518       u16 n = pBuilder->pOrSet->n;
2519       int x =
2520 #endif
2521       whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2522                                     pTemplate->nOut);
2523 #if WHERETRACE_ENABLED /* 0x8 */
2524       if( sqlite3WhereTrace & 0x8 ){
2525         sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
2526         sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2527       }
2528 #endif
2529     }
2530     return SQLITE_OK;
2531   }
2532 
2533   /* Look for an existing WhereLoop to replace with pTemplate
2534   */
2535   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2536 
2537   if( ppPrev==0 ){
2538     /* There already exists a WhereLoop on the list that is better
2539     ** than pTemplate, so just ignore pTemplate */
2540 #if WHERETRACE_ENABLED /* 0x8 */
2541     if( sqlite3WhereTrace & 0x8 ){
2542       sqlite3DebugPrintf("   skip: ");
2543       sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2544     }
2545 #endif
2546     return SQLITE_OK;
2547   }else{
2548     p = *ppPrev;
2549   }
2550 
2551   /* If we reach this point it means that either p[] should be overwritten
2552   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2553   ** WhereLoop and insert it.
2554   */
2555 #if WHERETRACE_ENABLED /* 0x8 */
2556   if( sqlite3WhereTrace & 0x8 ){
2557     if( p!=0 ){
2558       sqlite3DebugPrintf("replace: ");
2559       sqlite3WhereLoopPrint(p, pBuilder->pWC);
2560       sqlite3DebugPrintf("   with: ");
2561     }else{
2562       sqlite3DebugPrintf("    add: ");
2563     }
2564     sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2565   }
2566 #endif
2567   if( p==0 ){
2568     /* Allocate a new WhereLoop to add to the end of the list */
2569     *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2570     if( p==0 ) return SQLITE_NOMEM_BKPT;
2571     whereLoopInit(p);
2572     p->pNextLoop = 0;
2573   }else{
2574     /* We will be overwriting WhereLoop p[].  But before we do, first
2575     ** go through the rest of the list and delete any other entries besides
2576     ** p[] that are also supplated by pTemplate */
2577     WhereLoop **ppTail = &p->pNextLoop;
2578     WhereLoop *pToDel;
2579     while( *ppTail ){
2580       ppTail = whereLoopFindLesser(ppTail, pTemplate);
2581       if( ppTail==0 ) break;
2582       pToDel = *ppTail;
2583       if( pToDel==0 ) break;
2584       *ppTail = pToDel->pNextLoop;
2585 #if WHERETRACE_ENABLED /* 0x8 */
2586       if( sqlite3WhereTrace & 0x8 ){
2587         sqlite3DebugPrintf(" delete: ");
2588         sqlite3WhereLoopPrint(pToDel, pBuilder->pWC);
2589       }
2590 #endif
2591       whereLoopDelete(db, pToDel);
2592     }
2593   }
2594   rc = whereLoopXfer(db, p, pTemplate);
2595   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2596     Index *pIndex = p->u.btree.pIndex;
2597     if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){
2598       p->u.btree.pIndex = 0;
2599     }
2600   }
2601   return rc;
2602 }
2603 
2604 /*
2605 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2606 ** WHERE clause that reference the loop but which are not used by an
2607 ** index.
2608 *
2609 ** For every WHERE clause term that is not used by the index
2610 ** and which has a truth probability assigned by one of the likelihood(),
2611 ** likely(), or unlikely() SQL functions, reduce the estimated number
2612 ** of output rows by the probability specified.
2613 **
2614 ** TUNING:  For every WHERE clause term that is not used by the index
2615 ** and which does not have an assigned truth probability, heuristics
2616 ** described below are used to try to estimate the truth probability.
2617 ** TODO --> Perhaps this is something that could be improved by better
2618 ** table statistics.
2619 **
2620 ** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
2621 ** value corresponds to -1 in LogEst notation, so this means decrement
2622 ** the WhereLoop.nOut field for every such WHERE clause term.
2623 **
2624 ** Heuristic 2:  If there exists one or more WHERE clause terms of the
2625 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2626 ** final output row estimate is no greater than 1/4 of the total number
2627 ** of rows in the table.  In other words, assume that x==EXPR will filter
2628 ** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
2629 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2630 ** on the "x" column and so in that case only cap the output row estimate
2631 ** at 1/2 instead of 1/4.
2632 */
2633 static void whereLoopOutputAdjust(
2634   WhereClause *pWC,      /* The WHERE clause */
2635   WhereLoop *pLoop,      /* The loop to adjust downward */
2636   LogEst nRow            /* Number of rows in the entire table */
2637 ){
2638   WhereTerm *pTerm, *pX;
2639   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2640   int i, j;
2641   LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */
2642 
2643   assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2644   for(i=pWC->nBase, pTerm=pWC->a; i>0; i--, pTerm++){
2645     assert( pTerm!=0 );
2646     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2647     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2648     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) continue;
2649     for(j=pLoop->nLTerm-1; j>=0; j--){
2650       pX = pLoop->aLTerm[j];
2651       if( pX==0 ) continue;
2652       if( pX==pTerm ) break;
2653       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2654     }
2655     if( j<0 ){
2656       if( pLoop->maskSelf==pTerm->prereqAll ){
2657         /* If there are extra terms in the WHERE clause not used by an index
2658         ** that depend only on the table being scanned, and that will tend to
2659         ** cause many rows to be omitted, then mark that table as
2660         ** "self-culling".
2661         **
2662         ** 2022-03-24:  Self-culling only applies if either the extra terms
2663         ** are straight comparison operators that are non-true with NULL
2664         ** operand, or if the loop is not an OUTER JOIN.
2665         */
2666         if( (pTerm->eOperator & 0x3f)!=0
2667          || (pWC->pWInfo->pTabList->a[pLoop->iTab].fg.jointype
2668                   & (JT_LEFT|JT_LTORJ))==0
2669         ){
2670           pLoop->wsFlags |= WHERE_SELFCULL;
2671         }
2672       }
2673       if( pTerm->truthProb<=0 ){
2674         /* If a truth probability is specified using the likelihood() hints,
2675         ** then use the probability provided by the application. */
2676         pLoop->nOut += pTerm->truthProb;
2677       }else{
2678         /* In the absence of explicit truth probabilities, use heuristics to
2679         ** guess a reasonable truth probability. */
2680         pLoop->nOut--;
2681         if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0
2682          && (pTerm->wtFlags & TERM_HIGHTRUTH)==0  /* tag-20200224-1 */
2683         ){
2684           Expr *pRight = pTerm->pExpr->pRight;
2685           int k = 0;
2686           testcase( pTerm->pExpr->op==TK_IS );
2687           if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2688             k = 10;
2689           }else{
2690             k = 20;
2691           }
2692           if( iReduce<k ){
2693             pTerm->wtFlags |= TERM_HEURTRUTH;
2694             iReduce = k;
2695           }
2696         }
2697       }
2698     }
2699   }
2700   if( pLoop->nOut > nRow-iReduce ){
2701     pLoop->nOut = nRow - iReduce;
2702   }
2703 }
2704 
2705 /*
2706 ** Term pTerm is a vector range comparison operation. The first comparison
2707 ** in the vector can be optimized using column nEq of the index. This
2708 ** function returns the total number of vector elements that can be used
2709 ** as part of the range comparison.
2710 **
2711 ** For example, if the query is:
2712 **
2713 **   WHERE a = ? AND (b, c, d) > (?, ?, ?)
2714 **
2715 ** and the index:
2716 **
2717 **   CREATE INDEX ... ON (a, b, c, d, e)
2718 **
2719 ** then this function would be invoked with nEq=1. The value returned in
2720 ** this case is 3.
2721 */
2722 static int whereRangeVectorLen(
2723   Parse *pParse,       /* Parsing context */
2724   int iCur,            /* Cursor open on pIdx */
2725   Index *pIdx,         /* The index to be used for a inequality constraint */
2726   int nEq,             /* Number of prior equality constraints on same index */
2727   WhereTerm *pTerm     /* The vector inequality constraint */
2728 ){
2729   int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2730   int i;
2731 
2732   nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2733   for(i=1; i<nCmp; i++){
2734     /* Test if comparison i of pTerm is compatible with column (i+nEq)
2735     ** of the index. If not, exit the loop.  */
2736     char aff;                     /* Comparison affinity */
2737     char idxaff = 0;              /* Indexed columns affinity */
2738     CollSeq *pColl;               /* Comparison collation sequence */
2739     Expr *pLhs, *pRhs;
2740 
2741     assert( ExprUseXList(pTerm->pExpr->pLeft) );
2742     pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2743     pRhs = pTerm->pExpr->pRight;
2744     if( ExprUseXSelect(pRhs) ){
2745       pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2746     }else{
2747       pRhs = pRhs->x.pList->a[i].pExpr;
2748     }
2749 
2750     /* Check that the LHS of the comparison is a column reference to
2751     ** the right column of the right source table. And that the sort
2752     ** order of the index column is the same as the sort order of the
2753     ** leftmost index column.  */
2754     if( pLhs->op!=TK_COLUMN
2755      || pLhs->iTable!=iCur
2756      || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2757      || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2758     ){
2759       break;
2760     }
2761 
2762     testcase( pLhs->iColumn==XN_ROWID );
2763     aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2764     idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2765     if( aff!=idxaff ) break;
2766 
2767     pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2768     if( pColl==0 ) break;
2769     if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2770   }
2771   return i;
2772 }
2773 
2774 /*
2775 ** Adjust the cost C by the costMult facter T.  This only occurs if
2776 ** compiled with -DSQLITE_ENABLE_COSTMULT
2777 */
2778 #ifdef SQLITE_ENABLE_COSTMULT
2779 # define ApplyCostMultiplier(C,T)  C += T
2780 #else
2781 # define ApplyCostMultiplier(C,T)
2782 #endif
2783 
2784 /*
2785 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2786 ** index pIndex. Try to match one more.
2787 **
2788 ** When this function is called, pBuilder->pNew->nOut contains the
2789 ** number of rows expected to be visited by filtering using the nEq
2790 ** terms only. If it is modified, this value is restored before this
2791 ** function returns.
2792 **
2793 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
2794 ** a fake index used for the INTEGER PRIMARY KEY.
2795 */
2796 static int whereLoopAddBtreeIndex(
2797   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
2798   SrcItem *pSrc,                  /* FROM clause term being analyzed */
2799   Index *pProbe,                  /* An index on pSrc */
2800   LogEst nInMul                   /* log(Number of iterations due to IN) */
2801 ){
2802   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
2803   Parse *pParse = pWInfo->pParse;        /* Parsing context */
2804   sqlite3 *db = pParse->db;       /* Database connection malloc context */
2805   WhereLoop *pNew;                /* Template WhereLoop under construction */
2806   WhereTerm *pTerm;               /* A WhereTerm under consideration */
2807   int opMask;                     /* Valid operators for constraints */
2808   WhereScan scan;                 /* Iterator for WHERE terms */
2809   Bitmask saved_prereq;           /* Original value of pNew->prereq */
2810   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
2811   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
2812   u16 saved_nBtm;                 /* Original value of pNew->u.btree.nBtm */
2813   u16 saved_nTop;                 /* Original value of pNew->u.btree.nTop */
2814   u16 saved_nSkip;                /* Original value of pNew->nSkip */
2815   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
2816   LogEst saved_nOut;              /* Original value of pNew->nOut */
2817   int rc = SQLITE_OK;             /* Return code */
2818   LogEst rSize;                   /* Number of rows in the table */
2819   LogEst rLogSize;                /* Logarithm of table size */
2820   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2821 
2822   pNew = pBuilder->pNew;
2823   if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2824   WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n",
2825                      pProbe->pTable->zName,pProbe->zName,
2826                      pNew->u.btree.nEq, pNew->nSkip, pNew->rRun));
2827 
2828   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2829   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2830   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2831     opMask = WO_LT|WO_LE;
2832   }else{
2833     assert( pNew->u.btree.nBtm==0 );
2834     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2835   }
2836   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2837 
2838   assert( pNew->u.btree.nEq<pProbe->nColumn );
2839   assert( pNew->u.btree.nEq<pProbe->nKeyCol
2840        || pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY );
2841 
2842   saved_nEq = pNew->u.btree.nEq;
2843   saved_nBtm = pNew->u.btree.nBtm;
2844   saved_nTop = pNew->u.btree.nTop;
2845   saved_nSkip = pNew->nSkip;
2846   saved_nLTerm = pNew->nLTerm;
2847   saved_wsFlags = pNew->wsFlags;
2848   saved_prereq = pNew->prereq;
2849   saved_nOut = pNew->nOut;
2850   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2851                         opMask, pProbe);
2852   pNew->rSetup = 0;
2853   rSize = pProbe->aiRowLogEst[0];
2854   rLogSize = estLog(rSize);
2855   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2856     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
2857     LogEst rCostIdx;
2858     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
2859     int nIn = 0;
2860 #ifdef SQLITE_ENABLE_STAT4
2861     int nRecValid = pBuilder->nRecValid;
2862 #endif
2863     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2864      && indexColumnNotNull(pProbe, saved_nEq)
2865     ){
2866       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2867     }
2868     if( pTerm->prereqRight & pNew->maskSelf ) continue;
2869 
2870     /* Do not allow the upper bound of a LIKE optimization range constraint
2871     ** to mix with a lower range bound from some other source */
2872     if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2873 
2874     if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0
2875      && !constraintCompatibleWithOuterJoin(pTerm,pSrc)
2876     ){
2877       continue;
2878     }
2879     if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2880       pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE;
2881     }else{
2882       pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED;
2883     }
2884     pNew->wsFlags = saved_wsFlags;
2885     pNew->u.btree.nEq = saved_nEq;
2886     pNew->u.btree.nBtm = saved_nBtm;
2887     pNew->u.btree.nTop = saved_nTop;
2888     pNew->nLTerm = saved_nLTerm;
2889     if( pNew->nLTerm>=pNew->nLSlot
2890      && whereLoopResize(db, pNew, pNew->nLTerm+1)
2891     ){
2892        break; /* OOM while trying to enlarge the pNew->aLTerm array */
2893     }
2894     pNew->aLTerm[pNew->nLTerm++] = pTerm;
2895     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2896 
2897     assert( nInMul==0
2898         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2899         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2900         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2901     );
2902 
2903     if( eOp & WO_IN ){
2904       Expr *pExpr = pTerm->pExpr;
2905       if( ExprUseXSelect(pExpr) ){
2906         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
2907         int i;
2908         nIn = 46;  assert( 46==sqlite3LogEst(25) );
2909 
2910         /* The expression may actually be of the form (x, y) IN (SELECT...).
2911         ** In this case there is a separate term for each of (x) and (y).
2912         ** However, the nIn multiplier should only be applied once, not once
2913         ** for each such term. The following loop checks that pTerm is the
2914         ** first such term in use, and sets nIn back to 0 if it is not. */
2915         for(i=0; i<pNew->nLTerm-1; i++){
2916           if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2917         }
2918       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2919         /* "x IN (value, value, ...)" */
2920         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2921       }
2922       if( pProbe->hasStat1 && rLogSize>=10 ){
2923         LogEst M, logK, x;
2924         /* Let:
2925         **   N = the total number of rows in the table
2926         **   K = the number of entries on the RHS of the IN operator
2927         **   M = the number of rows in the table that match terms to the
2928         **       to the left in the same index.  If the IN operator is on
2929         **       the left-most index column, M==N.
2930         **
2931         ** Given the definitions above, it is better to omit the IN operator
2932         ** from the index lookup and instead do a scan of the M elements,
2933         ** testing each scanned row against the IN operator separately, if:
2934         **
2935         **        M*log(K) < K*log(N)
2936         **
2937         ** Our estimates for M, K, and N might be inaccurate, so we build in
2938         ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
2939         ** with the index, as using an index has better worst-case behavior.
2940         ** If we do not have real sqlite_stat1 data, always prefer to use
2941         ** the index.  Do not bother with this optimization on very small
2942         ** tables (less than 2 rows) as it is pointless in that case.
2943         */
2944         M = pProbe->aiRowLogEst[saved_nEq];
2945         logK = estLog(nIn);
2946         /* TUNING      v-----  10 to bias toward indexed IN */
2947         x = M + logK + 10 - (nIn + rLogSize);
2948         if( x>=0 ){
2949           WHERETRACE(0x40,
2950             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) "
2951              "prefers indexed lookup\n",
2952              saved_nEq, M, logK, nIn, rLogSize, x));
2953         }else if( nInMul<2 && OptimizationEnabled(db, SQLITE_SeekScan) ){
2954           WHERETRACE(0x40,
2955             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2956              " nInMul=%d) prefers skip-scan\n",
2957              saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
2958           pNew->wsFlags |= WHERE_IN_SEEKSCAN;
2959         }else{
2960           WHERETRACE(0x40,
2961             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2962              " nInMul=%d) prefers normal scan\n",
2963              saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
2964           continue;
2965         }
2966       }
2967       pNew->wsFlags |= WHERE_COLUMN_IN;
2968     }else if( eOp & (WO_EQ|WO_IS) ){
2969       int iCol = pProbe->aiColumn[saved_nEq];
2970       pNew->wsFlags |= WHERE_COLUMN_EQ;
2971       assert( saved_nEq==pNew->u.btree.nEq );
2972       if( iCol==XN_ROWID
2973        || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2974       ){
2975         if( iCol==XN_ROWID || pProbe->uniqNotNull
2976          || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
2977         ){
2978           pNew->wsFlags |= WHERE_ONEROW;
2979         }else{
2980           pNew->wsFlags |= WHERE_UNQ_WANTED;
2981         }
2982       }
2983       if( scan.iEquiv>1 ) pNew->wsFlags |= WHERE_TRANSCONS;
2984     }else if( eOp & WO_ISNULL ){
2985       pNew->wsFlags |= WHERE_COLUMN_NULL;
2986     }else{
2987       int nVecLen = whereRangeVectorLen(
2988           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2989       );
2990       if( eOp & (WO_GT|WO_GE) ){
2991         testcase( eOp & WO_GT );
2992         testcase( eOp & WO_GE );
2993         pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2994         pNew->u.btree.nBtm = nVecLen;
2995         pBtm = pTerm;
2996         pTop = 0;
2997         if( pTerm->wtFlags & TERM_LIKEOPT ){
2998           /* Range constraints that come from the LIKE optimization are
2999           ** always used in pairs. */
3000           pTop = &pTerm[1];
3001           assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
3002           assert( pTop->wtFlags & TERM_LIKEOPT );
3003           assert( pTop->eOperator==WO_LT );
3004           if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
3005           pNew->aLTerm[pNew->nLTerm++] = pTop;
3006           pNew->wsFlags |= WHERE_TOP_LIMIT;
3007           pNew->u.btree.nTop = 1;
3008         }
3009       }else{
3010         assert( eOp & (WO_LT|WO_LE) );
3011         testcase( eOp & WO_LT );
3012         testcase( eOp & WO_LE );
3013         pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
3014         pNew->u.btree.nTop = nVecLen;
3015         pTop = pTerm;
3016         pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
3017                        pNew->aLTerm[pNew->nLTerm-2] : 0;
3018       }
3019     }
3020 
3021     /* At this point pNew->nOut is set to the number of rows expected to
3022     ** be visited by the index scan before considering term pTerm, or the
3023     ** values of nIn and nInMul. In other words, assuming that all
3024     ** "x IN(...)" terms are replaced with "x = ?". This block updates
3025     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
3026     assert( pNew->nOut==saved_nOut );
3027     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
3028       /* Adjust nOut using stat4 data. Or, if there is no stat4
3029       ** data, using some other estimate.  */
3030       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
3031     }else{
3032       int nEq = ++pNew->u.btree.nEq;
3033       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
3034 
3035       assert( pNew->nOut==saved_nOut );
3036       if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
3037         assert( (eOp & WO_IN) || nIn==0 );
3038         testcase( eOp & WO_IN );
3039         pNew->nOut += pTerm->truthProb;
3040         pNew->nOut -= nIn;
3041       }else{
3042 #ifdef SQLITE_ENABLE_STAT4
3043         tRowcnt nOut = 0;
3044         if( nInMul==0
3045          && pProbe->nSample
3046          && ALWAYS(pNew->u.btree.nEq<=pProbe->nSampleCol)
3047          && ((eOp & WO_IN)==0 || ExprUseXList(pTerm->pExpr))
3048          && OptimizationEnabled(db, SQLITE_Stat4)
3049         ){
3050           Expr *pExpr = pTerm->pExpr;
3051           if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
3052             testcase( eOp & WO_EQ );
3053             testcase( eOp & WO_IS );
3054             testcase( eOp & WO_ISNULL );
3055             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
3056           }else{
3057             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
3058           }
3059           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
3060           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
3061           if( nOut ){
3062             pNew->nOut = sqlite3LogEst(nOut);
3063             if( nEq==1
3064              /* TUNING: Mark terms as "low selectivity" if they seem likely
3065              ** to be true for half or more of the rows in the table.
3066              ** See tag-202002240-1 */
3067              && pNew->nOut+10 > pProbe->aiRowLogEst[0]
3068             ){
3069 #if WHERETRACE_ENABLED /* 0x01 */
3070               if( sqlite3WhereTrace & 0x01 ){
3071                 sqlite3DebugPrintf(
3072                    "STAT4 determines term has low selectivity:\n");
3073                 sqlite3WhereTermPrint(pTerm, 999);
3074               }
3075 #endif
3076               pTerm->wtFlags |= TERM_HIGHTRUTH;
3077               if( pTerm->wtFlags & TERM_HEURTRUTH ){
3078                 /* If the term has previously been used with an assumption of
3079                 ** higher selectivity, then set the flag to rerun the
3080                 ** loop computations. */
3081                 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS;
3082               }
3083             }
3084             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
3085             pNew->nOut -= nIn;
3086           }
3087         }
3088         if( nOut==0 )
3089 #endif
3090         {
3091           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
3092           if( eOp & WO_ISNULL ){
3093             /* TUNING: If there is no likelihood() value, assume that a
3094             ** "col IS NULL" expression matches twice as many rows
3095             ** as (col=?). */
3096             pNew->nOut += 10;
3097           }
3098         }
3099       }
3100     }
3101 
3102     /* Set rCostIdx to the cost of visiting selected rows in index. Add
3103     ** it to pNew->rRun, which is currently set to the cost of the index
3104     ** seek only. Then, if this is a non-covering index, add the cost of
3105     ** visiting the rows in the main table.  */
3106     assert( pSrc->pTab->szTabRow>0 );
3107     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
3108     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
3109     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
3110       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
3111     }
3112     ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
3113 
3114     nOutUnadjusted = pNew->nOut;
3115     pNew->rRun += nInMul + nIn;
3116     pNew->nOut += nInMul + nIn;
3117     whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
3118     rc = whereLoopInsert(pBuilder, pNew);
3119 
3120     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
3121       pNew->nOut = saved_nOut;
3122     }else{
3123       pNew->nOut = nOutUnadjusted;
3124     }
3125 
3126     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
3127      && pNew->u.btree.nEq<pProbe->nColumn
3128      && (pNew->u.btree.nEq<pProbe->nKeyCol ||
3129            pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY)
3130     ){
3131       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
3132     }
3133     pNew->nOut = saved_nOut;
3134 #ifdef SQLITE_ENABLE_STAT4
3135     pBuilder->nRecValid = nRecValid;
3136 #endif
3137   }
3138   pNew->prereq = saved_prereq;
3139   pNew->u.btree.nEq = saved_nEq;
3140   pNew->u.btree.nBtm = saved_nBtm;
3141   pNew->u.btree.nTop = saved_nTop;
3142   pNew->nSkip = saved_nSkip;
3143   pNew->wsFlags = saved_wsFlags;
3144   pNew->nOut = saved_nOut;
3145   pNew->nLTerm = saved_nLTerm;
3146 
3147   /* Consider using a skip-scan if there are no WHERE clause constraints
3148   ** available for the left-most terms of the index, and if the average
3149   ** number of repeats in the left-most terms is at least 18.
3150   **
3151   ** The magic number 18 is selected on the basis that scanning 17 rows
3152   ** is almost always quicker than an index seek (even though if the index
3153   ** contains fewer than 2^17 rows we assume otherwise in other parts of
3154   ** the code). And, even if it is not, it should not be too much slower.
3155   ** On the other hand, the extra seeks could end up being significantly
3156   ** more expensive.  */
3157   assert( 42==sqlite3LogEst(18) );
3158   if( saved_nEq==saved_nSkip
3159    && saved_nEq+1<pProbe->nKeyCol
3160    && saved_nEq==pNew->nLTerm
3161    && pProbe->noSkipScan==0
3162    && pProbe->hasStat1!=0
3163    && OptimizationEnabled(db, SQLITE_SkipScan)
3164    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
3165    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
3166   ){
3167     LogEst nIter;
3168     pNew->u.btree.nEq++;
3169     pNew->nSkip++;
3170     pNew->aLTerm[pNew->nLTerm++] = 0;
3171     pNew->wsFlags |= WHERE_SKIPSCAN;
3172     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
3173     pNew->nOut -= nIter;
3174     /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
3175     ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
3176     nIter += 5;
3177     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
3178     pNew->nOut = saved_nOut;
3179     pNew->u.btree.nEq = saved_nEq;
3180     pNew->nSkip = saved_nSkip;
3181     pNew->wsFlags = saved_wsFlags;
3182   }
3183 
3184   WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
3185                       pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
3186   return rc;
3187 }
3188 
3189 /*
3190 ** Return True if it is possible that pIndex might be useful in
3191 ** implementing the ORDER BY clause in pBuilder.
3192 **
3193 ** Return False if pBuilder does not contain an ORDER BY clause or
3194 ** if there is no way for pIndex to be useful in implementing that
3195 ** ORDER BY clause.
3196 */
3197 static int indexMightHelpWithOrderBy(
3198   WhereLoopBuilder *pBuilder,
3199   Index *pIndex,
3200   int iCursor
3201 ){
3202   ExprList *pOB;
3203   ExprList *aColExpr;
3204   int ii, jj;
3205 
3206   if( pIndex->bUnordered ) return 0;
3207   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
3208   for(ii=0; ii<pOB->nExpr; ii++){
3209     Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr);
3210     if( NEVER(pExpr==0) ) continue;
3211     if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
3212       if( pExpr->iColumn<0 ) return 1;
3213       for(jj=0; jj<pIndex->nKeyCol; jj++){
3214         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
3215       }
3216     }else if( (aColExpr = pIndex->aColExpr)!=0 ){
3217       for(jj=0; jj<pIndex->nKeyCol; jj++){
3218         if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
3219         if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
3220           return 1;
3221         }
3222       }
3223     }
3224   }
3225   return 0;
3226 }
3227 
3228 /* Check to see if a partial index with pPartIndexWhere can be used
3229 ** in the current query.  Return true if it can be and false if not.
3230 */
3231 static int whereUsablePartialIndex(
3232   int iTab,             /* The table for which we want an index */
3233   u8 jointype,          /* The JT_* flags on the join */
3234   WhereClause *pWC,     /* The WHERE clause of the query */
3235   Expr *pWhere          /* The WHERE clause from the partial index */
3236 ){
3237   int i;
3238   WhereTerm *pTerm;
3239   Parse *pParse;
3240 
3241   if( jointype & JT_LTORJ ) return 0;
3242   pParse = pWC->pWInfo->pParse;
3243   while( pWhere->op==TK_AND ){
3244     if( !whereUsablePartialIndex(iTab,jointype,pWC,pWhere->pLeft) ) return 0;
3245     pWhere = pWhere->pRight;
3246   }
3247   if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
3248   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
3249     Expr *pExpr;
3250     pExpr = pTerm->pExpr;
3251     if( (!ExprHasProperty(pExpr, EP_OuterON) || pExpr->w.iJoin==iTab)
3252      && ((jointype & JT_OUTER)==0 || ExprHasProperty(pExpr, EP_OuterON))
3253      && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
3254      && (pTerm->wtFlags & TERM_VNULL)==0
3255     ){
3256       return 1;
3257     }
3258   }
3259   return 0;
3260 }
3261 
3262 /*
3263 ** Add all WhereLoop objects for a single table of the join where the table
3264 ** is identified by pBuilder->pNew->iTab.  That table is guaranteed to be
3265 ** a b-tree table, not a virtual table.
3266 **
3267 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
3268 ** are calculated as follows:
3269 **
3270 ** For a full scan, assuming the table (or index) contains nRow rows:
3271 **
3272 **     cost = nRow * 3.0                    // full-table scan
3273 **     cost = nRow * K                      // scan of covering index
3274 **     cost = nRow * (K+3.0)                // scan of non-covering index
3275 **
3276 ** where K is a value between 1.1 and 3.0 set based on the relative
3277 ** estimated average size of the index and table records.
3278 **
3279 ** For an index scan, where nVisit is the number of index rows visited
3280 ** by the scan, and nSeek is the number of seek operations required on
3281 ** the index b-tree:
3282 **
3283 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
3284 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
3285 **
3286 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
3287 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
3288 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
3289 **
3290 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
3291 ** of uncertainty.  For this reason, scoring is designed to pick plans that
3292 ** "do the least harm" if the estimates are inaccurate.  For example, a
3293 ** log(nRow) factor is omitted from a non-covering index scan in order to
3294 ** bias the scoring in favor of using an index, since the worst-case
3295 ** performance of using an index is far better than the worst-case performance
3296 ** of a full table scan.
3297 */
3298 static int whereLoopAddBtree(
3299   WhereLoopBuilder *pBuilder, /* WHERE clause information */
3300   Bitmask mPrereq             /* Extra prerequesites for using this table */
3301 ){
3302   WhereInfo *pWInfo;          /* WHERE analysis context */
3303   Index *pProbe;              /* An index we are evaluating */
3304   Index sPk;                  /* A fake index object for the primary key */
3305   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
3306   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
3307   SrcList *pTabList;          /* The FROM clause */
3308   SrcItem *pSrc;              /* The FROM clause btree term to add */
3309   WhereLoop *pNew;            /* Template WhereLoop object */
3310   int rc = SQLITE_OK;         /* Return code */
3311   int iSortIdx = 1;           /* Index number */
3312   int b;                      /* A boolean value */
3313   LogEst rSize;               /* number of rows in the table */
3314   WhereClause *pWC;           /* The parsed WHERE clause */
3315   Table *pTab;                /* Table being queried */
3316 
3317   pNew = pBuilder->pNew;
3318   pWInfo = pBuilder->pWInfo;
3319   pTabList = pWInfo->pTabList;
3320   pSrc = pTabList->a + pNew->iTab;
3321   pTab = pSrc->pTab;
3322   pWC = pBuilder->pWC;
3323   assert( !IsVirtual(pSrc->pTab) );
3324 
3325   if( pSrc->fg.isIndexedBy ){
3326     assert( pSrc->fg.isCte==0 );
3327     /* An INDEXED BY clause specifies a particular index to use */
3328     pProbe = pSrc->u2.pIBIndex;
3329   }else if( !HasRowid(pTab) ){
3330     pProbe = pTab->pIndex;
3331   }else{
3332     /* There is no INDEXED BY clause.  Create a fake Index object in local
3333     ** variable sPk to represent the rowid primary key index.  Make this
3334     ** fake index the first in a chain of Index objects with all of the real
3335     ** indices to follow */
3336     Index *pFirst;                  /* First of real indices on the table */
3337     memset(&sPk, 0, sizeof(Index));
3338     sPk.nKeyCol = 1;
3339     sPk.nColumn = 1;
3340     sPk.aiColumn = &aiColumnPk;
3341     sPk.aiRowLogEst = aiRowEstPk;
3342     sPk.onError = OE_Replace;
3343     sPk.pTable = pTab;
3344     sPk.szIdxRow = pTab->szTabRow;
3345     sPk.idxType = SQLITE_IDXTYPE_IPK;
3346     aiRowEstPk[0] = pTab->nRowLogEst;
3347     aiRowEstPk[1] = 0;
3348     pFirst = pSrc->pTab->pIndex;
3349     if( pSrc->fg.notIndexed==0 ){
3350       /* The real indices of the table are only considered if the
3351       ** NOT INDEXED qualifier is omitted from the FROM clause */
3352       sPk.pNext = pFirst;
3353     }
3354     pProbe = &sPk;
3355   }
3356   rSize = pTab->nRowLogEst;
3357 
3358 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
3359   /* Automatic indexes */
3360   if( !pBuilder->pOrSet      /* Not part of an OR optimization */
3361    && (pWInfo->wctrlFlags & (WHERE_RIGHT_JOIN|WHERE_OR_SUBCLAUSE))==0
3362    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
3363    && !pSrc->fg.isIndexedBy  /* Has no INDEXED BY clause */
3364    && !pSrc->fg.notIndexed   /* Has no NOT INDEXED clause */
3365    && HasRowid(pTab)         /* Not WITHOUT ROWID table. (FIXME: Why not?) */
3366    && !pSrc->fg.isCorrelated /* Not a correlated subquery */
3367    && !pSrc->fg.isRecursive  /* Not a recursive common table expression. */
3368    && (pSrc->fg.jointype & JT_RIGHT)==0 /* Not the right tab of a RIGHT JOIN */
3369   ){
3370     /* Generate auto-index WhereLoops */
3371     LogEst rLogSize;         /* Logarithm of the number of rows in the table */
3372     WhereTerm *pTerm;
3373     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
3374     rLogSize = estLog(rSize);
3375     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
3376       if( pTerm->prereqRight & pNew->maskSelf ) continue;
3377       if( termCanDriveIndex(pTerm, pSrc, 0) ){
3378         pNew->u.btree.nEq = 1;
3379         pNew->nSkip = 0;
3380         pNew->u.btree.pIndex = 0;
3381         pNew->nLTerm = 1;
3382         pNew->aLTerm[0] = pTerm;
3383         /* TUNING: One-time cost for computing the automatic index is
3384         ** estimated to be X*N*log2(N) where N is the number of rows in
3385         ** the table being indexed and where X is 7 (LogEst=28) for normal
3386         ** tables or 0.5 (LogEst=-10) for views and subqueries.  The value
3387         ** of X is smaller for views and subqueries so that the query planner
3388         ** will be more aggressive about generating automatic indexes for
3389         ** those objects, since there is no opportunity to add schema
3390         ** indexes on subqueries and views. */
3391         pNew->rSetup = rLogSize + rSize;
3392         if( !IsView(pTab) && (pTab->tabFlags & TF_Ephemeral)==0 ){
3393           pNew->rSetup += 28;
3394         }else{
3395           pNew->rSetup -= 10;
3396         }
3397         ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
3398         if( pNew->rSetup<0 ) pNew->rSetup = 0;
3399         /* TUNING: Each index lookup yields 20 rows in the table.  This
3400         ** is more than the usual guess of 10 rows, since we have no way
3401         ** of knowing how selective the index will ultimately be.  It would
3402         ** not be unreasonable to make this value much larger. */
3403         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
3404         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
3405         pNew->wsFlags = WHERE_AUTO_INDEX;
3406         pNew->prereq = mPrereq | pTerm->prereqRight;
3407         rc = whereLoopInsert(pBuilder, pNew);
3408       }
3409     }
3410   }
3411 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
3412 
3413   /* Loop over all indices. If there was an INDEXED BY clause, then only
3414   ** consider index pProbe.  */
3415   for(; rc==SQLITE_OK && pProbe;
3416       pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++
3417   ){
3418     if( pProbe->pPartIdxWhere!=0
3419      && !whereUsablePartialIndex(pSrc->iCursor, pSrc->fg.jointype, pWC,
3420                                  pProbe->pPartIdxWhere)
3421     ){
3422       testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
3423       continue;  /* Partial index inappropriate for this query */
3424     }
3425     if( pProbe->bNoQuery ) continue;
3426     rSize = pProbe->aiRowLogEst[0];
3427     pNew->u.btree.nEq = 0;
3428     pNew->u.btree.nBtm = 0;
3429     pNew->u.btree.nTop = 0;
3430     pNew->nSkip = 0;
3431     pNew->nLTerm = 0;
3432     pNew->iSortIdx = 0;
3433     pNew->rSetup = 0;
3434     pNew->prereq = mPrereq;
3435     pNew->nOut = rSize;
3436     pNew->u.btree.pIndex = pProbe;
3437     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
3438 
3439     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
3440     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
3441     if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){
3442       /* Integer primary key index */
3443       pNew->wsFlags = WHERE_IPK;
3444 
3445       /* Full table scan */
3446       pNew->iSortIdx = b ? iSortIdx : 0;
3447       /* TUNING: Cost of full table scan is 3.0*N.  The 3.0 factor is an
3448       ** extra cost designed to discourage the use of full table scans,
3449       ** since index lookups have better worst-case performance if our
3450       ** stat guesses are wrong.  Reduce the 3.0 penalty slightly
3451       ** (to 2.75) if we have valid STAT4 information for the table.
3452       ** At 2.75, a full table scan is preferred over using an index on
3453       ** a column with just two distinct values where each value has about
3454       ** an equal number of appearances.  Without STAT4 data, we still want
3455       ** to use an index in that case, since the constraint might be for
3456       ** the scarcer of the two values, and in that case an index lookup is
3457       ** better.
3458       */
3459 #ifdef SQLITE_ENABLE_STAT4
3460       pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0);
3461 #else
3462       pNew->rRun = rSize + 16;
3463 #endif
3464       if( IsView(pTab) || (pTab->tabFlags & TF_Ephemeral)!=0 ){
3465         pNew->wsFlags |= WHERE_VIEWSCAN;
3466       }
3467       ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3468       whereLoopOutputAdjust(pWC, pNew, rSize);
3469       rc = whereLoopInsert(pBuilder, pNew);
3470       pNew->nOut = rSize;
3471       if( rc ) break;
3472     }else{
3473       Bitmask m;
3474       if( pProbe->isCovering ){
3475         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
3476         m = 0;
3477       }else{
3478         m = pSrc->colUsed & pProbe->colNotIdxed;
3479         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
3480       }
3481 
3482       /* Full scan via index */
3483       if( b
3484        || !HasRowid(pTab)
3485        || pProbe->pPartIdxWhere!=0
3486        || pSrc->fg.isIndexedBy
3487        || ( m==0
3488          && pProbe->bUnordered==0
3489          && (pProbe->szIdxRow<pTab->szTabRow)
3490          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
3491          && sqlite3GlobalConfig.bUseCis
3492          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
3493           )
3494       ){
3495         pNew->iSortIdx = b ? iSortIdx : 0;
3496 
3497         /* The cost of visiting the index rows is N*K, where K is
3498         ** between 1.1 and 3.0, depending on the relative sizes of the
3499         ** index and table rows. */
3500         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
3501         if( m!=0 ){
3502           /* If this is a non-covering index scan, add in the cost of
3503           ** doing table lookups.  The cost will be 3x the number of
3504           ** lookups.  Take into account WHERE clause terms that can be
3505           ** satisfied using just the index, and that do not require a
3506           ** table lookup. */
3507           LogEst nLookup = rSize + 16;  /* Base cost:  N*3 */
3508           int ii;
3509           int iCur = pSrc->iCursor;
3510           WhereClause *pWC2 = &pWInfo->sWC;
3511           for(ii=0; ii<pWC2->nTerm; ii++){
3512             WhereTerm *pTerm = &pWC2->a[ii];
3513             if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
3514               break;
3515             }
3516             /* pTerm can be evaluated using just the index.  So reduce
3517             ** the expected number of table lookups accordingly */
3518             if( pTerm->truthProb<=0 ){
3519               nLookup += pTerm->truthProb;
3520             }else{
3521               nLookup--;
3522               if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
3523             }
3524           }
3525 
3526           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
3527         }
3528         ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3529         whereLoopOutputAdjust(pWC, pNew, rSize);
3530         if( (pSrc->fg.jointype & JT_RIGHT)!=0 && pProbe->aColExpr ){
3531           /* Do not do an SCAN of a index-on-expression in a RIGHT JOIN
3532           ** because the cursor used to access the index might not be
3533           ** positioned to the correct row during the right-join no-match
3534           ** loop. */
3535         }else{
3536           rc = whereLoopInsert(pBuilder, pNew);
3537         }
3538         pNew->nOut = rSize;
3539         if( rc ) break;
3540       }
3541     }
3542 
3543     pBuilder->bldFlags1 = 0;
3544     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
3545     if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){
3546       /* If a non-unique index is used, or if a prefix of the key for
3547       ** unique index is used (making the index functionally non-unique)
3548       ** then the sqlite_stat1 data becomes important for scoring the
3549       ** plan */
3550       pTab->tabFlags |= TF_StatsUsed;
3551     }
3552 #ifdef SQLITE_ENABLE_STAT4
3553     sqlite3Stat4ProbeFree(pBuilder->pRec);
3554     pBuilder->nRecValid = 0;
3555     pBuilder->pRec = 0;
3556 #endif
3557   }
3558   return rc;
3559 }
3560 
3561 #ifndef SQLITE_OMIT_VIRTUALTABLE
3562 
3563 /*
3564 ** Return true if pTerm is a virtual table LIMIT or OFFSET term.
3565 */
3566 static int isLimitTerm(WhereTerm *pTerm){
3567   assert( pTerm->eOperator==WO_AUX || pTerm->eMatchOp==0 );
3568   return pTerm->eMatchOp>=SQLITE_INDEX_CONSTRAINT_LIMIT
3569       && pTerm->eMatchOp<=SQLITE_INDEX_CONSTRAINT_OFFSET;
3570 }
3571 
3572 /*
3573 ** Argument pIdxInfo is already populated with all constraints that may
3574 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3575 ** function marks a subset of those constraints usable, invokes the
3576 ** xBestIndex method and adds the returned plan to pBuilder.
3577 **
3578 ** A constraint is marked usable if:
3579 **
3580 **   * Argument mUsable indicates that its prerequisites are available, and
3581 **
3582 **   * It is not one of the operators specified in the mExclude mask passed
3583 **     as the fourth argument (which in practice is either WO_IN or 0).
3584 **
3585 ** Argument mPrereq is a mask of tables that must be scanned before the
3586 ** virtual table in question. These are added to the plans prerequisites
3587 ** before it is added to pBuilder.
3588 **
3589 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3590 ** uses one or more WO_IN terms, or false otherwise.
3591 */
3592 static int whereLoopAddVirtualOne(
3593   WhereLoopBuilder *pBuilder,
3594   Bitmask mPrereq,                /* Mask of tables that must be used. */
3595   Bitmask mUsable,                /* Mask of usable tables */
3596   u16 mExclude,                   /* Exclude terms using these operators */
3597   sqlite3_index_info *pIdxInfo,   /* Populated object for xBestIndex */
3598   u16 mNoOmit,                    /* Do not omit these constraints */
3599   int *pbIn,                      /* OUT: True if plan uses an IN(...) op */
3600   int *pbRetryLimit               /* OUT: Retry without LIMIT/OFFSET */
3601 ){
3602   WhereClause *pWC = pBuilder->pWC;
3603   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3604   struct sqlite3_index_constraint *pIdxCons;
3605   struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3606   int i;
3607   int mxTerm;
3608   int rc = SQLITE_OK;
3609   WhereLoop *pNew = pBuilder->pNew;
3610   Parse *pParse = pBuilder->pWInfo->pParse;
3611   SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3612   int nConstraint = pIdxInfo->nConstraint;
3613 
3614   assert( (mUsable & mPrereq)==mPrereq );
3615   *pbIn = 0;
3616   pNew->prereq = mPrereq;
3617 
3618   /* Set the usable flag on the subset of constraints identified by
3619   ** arguments mUsable and mExclude. */
3620   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3621   for(i=0; i<nConstraint; i++, pIdxCons++){
3622     WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3623     pIdxCons->usable = 0;
3624     if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3625      && (pTerm->eOperator & mExclude)==0
3626      && (pbRetryLimit || !isLimitTerm(pTerm))
3627     ){
3628       pIdxCons->usable = 1;
3629     }
3630   }
3631 
3632   /* Initialize the output fields of the sqlite3_index_info structure */
3633   memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3634   assert( pIdxInfo->needToFreeIdxStr==0 );
3635   pIdxInfo->idxStr = 0;
3636   pIdxInfo->idxNum = 0;
3637   pIdxInfo->orderByConsumed = 0;
3638   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3639   pIdxInfo->estimatedRows = 25;
3640   pIdxInfo->idxFlags = 0;
3641   pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3642   pHidden->mHandleIn = 0;
3643 
3644   /* Invoke the virtual table xBestIndex() method */
3645   rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3646   if( rc ){
3647     if( rc==SQLITE_CONSTRAINT ){
3648       /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
3649       ** that the particular combination of parameters provided is unusable.
3650       ** Make no entries in the loop table.
3651       */
3652       WHERETRACE(0xffff, ("  ^^^^--- non-viable plan rejected!\n"));
3653       return SQLITE_OK;
3654     }
3655     return rc;
3656   }
3657 
3658   mxTerm = -1;
3659   assert( pNew->nLSlot>=nConstraint );
3660   memset(pNew->aLTerm, 0, sizeof(pNew->aLTerm[0])*nConstraint );
3661   memset(&pNew->u.vtab, 0, sizeof(pNew->u.vtab));
3662   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3663   for(i=0; i<nConstraint; i++, pIdxCons++){
3664     int iTerm;
3665     if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3666       WhereTerm *pTerm;
3667       int j = pIdxCons->iTermOffset;
3668       if( iTerm>=nConstraint
3669        || j<0
3670        || j>=pWC->nTerm
3671        || pNew->aLTerm[iTerm]!=0
3672        || pIdxCons->usable==0
3673       ){
3674         sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3675         testcase( pIdxInfo->needToFreeIdxStr );
3676         return SQLITE_ERROR;
3677       }
3678       testcase( iTerm==nConstraint-1 );
3679       testcase( j==0 );
3680       testcase( j==pWC->nTerm-1 );
3681       pTerm = &pWC->a[j];
3682       pNew->prereq |= pTerm->prereqRight;
3683       assert( iTerm<pNew->nLSlot );
3684       pNew->aLTerm[iTerm] = pTerm;
3685       if( iTerm>mxTerm ) mxTerm = iTerm;
3686       testcase( iTerm==15 );
3687       testcase( iTerm==16 );
3688       if( pUsage[i].omit ){
3689         if( i<16 && ((1<<i)&mNoOmit)==0 ){
3690           testcase( i!=iTerm );
3691           pNew->u.vtab.omitMask |= 1<<iTerm;
3692         }else{
3693           testcase( i!=iTerm );
3694         }
3695         if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET ){
3696           pNew->u.vtab.bOmitOffset = 1;
3697         }
3698       }
3699       if( SMASKBIT32(i) & pHidden->mHandleIn ){
3700         pNew->u.vtab.mHandleIn |= MASKBIT32(iTerm);
3701       }else if( (pTerm->eOperator & WO_IN)!=0 ){
3702         /* A virtual table that is constrained by an IN clause may not
3703         ** consume the ORDER BY clause because (1) the order of IN terms
3704         ** is not necessarily related to the order of output terms and
3705         ** (2) Multiple outputs from a single IN value will not merge
3706         ** together.  */
3707         pIdxInfo->orderByConsumed = 0;
3708         pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3709         *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3710       }
3711 
3712       assert( pbRetryLimit || !isLimitTerm(pTerm) );
3713       if( isLimitTerm(pTerm) && *pbIn ){
3714         /* If there is an IN(...) term handled as an == (separate call to
3715         ** xFilter for each value on the RHS of the IN) and a LIMIT or
3716         ** OFFSET term handled as well, the plan is unusable. Set output
3717         ** variable *pbRetryLimit to true to tell the caller to retry with
3718         ** LIMIT and OFFSET disabled. */
3719         if( pIdxInfo->needToFreeIdxStr ){
3720           sqlite3_free(pIdxInfo->idxStr);
3721           pIdxInfo->idxStr = 0;
3722           pIdxInfo->needToFreeIdxStr = 0;
3723         }
3724         *pbRetryLimit = 1;
3725         return SQLITE_OK;
3726       }
3727     }
3728   }
3729 
3730   pNew->nLTerm = mxTerm+1;
3731   for(i=0; i<=mxTerm; i++){
3732     if( pNew->aLTerm[i]==0 ){
3733       /* The non-zero argvIdx values must be contiguous.  Raise an
3734       ** error if they are not */
3735       sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3736       testcase( pIdxInfo->needToFreeIdxStr );
3737       return SQLITE_ERROR;
3738     }
3739   }
3740   assert( pNew->nLTerm<=pNew->nLSlot );
3741   pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3742   pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3743   pIdxInfo->needToFreeIdxStr = 0;
3744   pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3745   pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3746       pIdxInfo->nOrderBy : 0);
3747   pNew->rSetup = 0;
3748   pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3749   pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3750 
3751   /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3752   ** that the scan will visit at most one row. Clear it otherwise. */
3753   if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3754     pNew->wsFlags |= WHERE_ONEROW;
3755   }else{
3756     pNew->wsFlags &= ~WHERE_ONEROW;
3757   }
3758   rc = whereLoopInsert(pBuilder, pNew);
3759   if( pNew->u.vtab.needFree ){
3760     sqlite3_free(pNew->u.vtab.idxStr);
3761     pNew->u.vtab.needFree = 0;
3762   }
3763   WHERETRACE(0xffff, ("  bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3764                       *pbIn, (sqlite3_uint64)mPrereq,
3765                       (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3766 
3767   return rc;
3768 }
3769 
3770 /*
3771 ** Return the collating sequence for a constraint passed into xBestIndex.
3772 **
3773 ** pIdxInfo must be an sqlite3_index_info structure passed into xBestIndex.
3774 ** This routine depends on there being a HiddenIndexInfo structure immediately
3775 ** following the sqlite3_index_info structure.
3776 **
3777 ** Return a pointer to the collation name:
3778 **
3779 **    1. If there is an explicit COLLATE operator on the constaint, return it.
3780 **
3781 **    2. Else, if the column has an alternative collation, return that.
3782 **
3783 **    3. Otherwise, return "BINARY".
3784 */
3785 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
3786   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3787   const char *zRet = 0;
3788   if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
3789     CollSeq *pC = 0;
3790     int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
3791     Expr *pX = pHidden->pWC->a[iTerm].pExpr;
3792     if( pX->pLeft ){
3793       pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX);
3794     }
3795     zRet = (pC ? pC->zName : sqlite3StrBINARY);
3796   }
3797   return zRet;
3798 }
3799 
3800 /*
3801 ** Return true if constraint iCons is really an IN(...) constraint, or
3802 ** false otherwise. If iCons is an IN(...) constraint, set (if bHandle!=0)
3803 ** or clear (if bHandle==0) the flag to handle it using an iterator.
3804 */
3805 int sqlite3_vtab_in(sqlite3_index_info *pIdxInfo, int iCons, int bHandle){
3806   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3807   u32 m = SMASKBIT32(iCons);
3808   if( m & pHidden->mIn ){
3809     if( bHandle==0 ){
3810       pHidden->mHandleIn &= ~m;
3811     }else if( bHandle>0 ){
3812       pHidden->mHandleIn |= m;
3813     }
3814     return 1;
3815   }
3816   return 0;
3817 }
3818 
3819 /*
3820 ** This interface is callable from within the xBestIndex callback only.
3821 **
3822 ** If possible, set (*ppVal) to point to an object containing the value
3823 ** on the right-hand-side of constraint iCons.
3824 */
3825 int sqlite3_vtab_rhs_value(
3826   sqlite3_index_info *pIdxInfo,   /* Copy of first argument to xBestIndex */
3827   int iCons,                      /* Constraint for which RHS is wanted */
3828   sqlite3_value **ppVal           /* Write value extracted here */
3829 ){
3830   HiddenIndexInfo *pH = (HiddenIndexInfo*)&pIdxInfo[1];
3831   sqlite3_value *pVal = 0;
3832   int rc = SQLITE_OK;
3833   if( iCons<0 || iCons>=pIdxInfo->nConstraint ){
3834     rc = SQLITE_MISUSE; /* EV: R-30545-25046 */
3835   }else{
3836     if( pH->aRhs[iCons]==0 ){
3837       WhereTerm *pTerm = &pH->pWC->a[pIdxInfo->aConstraint[iCons].iTermOffset];
3838       rc = sqlite3ValueFromExpr(
3839           pH->pParse->db, pTerm->pExpr->pRight, ENC(pH->pParse->db),
3840           SQLITE_AFF_BLOB, &pH->aRhs[iCons]
3841       );
3842       testcase( rc!=SQLITE_OK );
3843     }
3844     pVal = pH->aRhs[iCons];
3845   }
3846   *ppVal = pVal;
3847 
3848   if( rc==SQLITE_OK && pVal==0 ){  /* IMP: R-19933-32160 */
3849     rc = SQLITE_NOTFOUND;          /* IMP: R-36424-56542 */
3850   }
3851 
3852   return rc;
3853 }
3854 
3855 /*
3856 ** Return true if ORDER BY clause may be handled as DISTINCT.
3857 */
3858 int sqlite3_vtab_distinct(sqlite3_index_info *pIdxInfo){
3859   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3860   assert( pHidden->eDistinct>=0 && pHidden->eDistinct<=3 );
3861   return pHidden->eDistinct;
3862 }
3863 
3864 #if (defined(SQLITE_ENABLE_DBPAGE_VTAB) || defined(SQLITE_TEST)) \
3865     && !defined(SQLITE_OMIT_VIRTUALTABLE)
3866 /*
3867 ** Cause the prepared statement that is associated with a call to
3868 ** xBestIndex to potentiall use all schemas.  If the statement being
3869 ** prepared is read-only, then just start read transactions on all
3870 ** schemas.  But if this is a write operation, start writes on all
3871 ** schemas.
3872 **
3873 ** This is used by the (built-in) sqlite_dbpage virtual table.
3874 */
3875 void sqlite3VtabUsesAllSchemas(sqlite3_index_info *pIdxInfo){
3876   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3877   Parse *pParse = pHidden->pParse;
3878   int nDb = pParse->db->nDb;
3879   int i;
3880   for(i=0; i<nDb; i++){
3881     sqlite3CodeVerifySchema(pParse, i);
3882   }
3883   if( pParse->writeMask ){
3884     for(i=0; i<nDb; i++){
3885       sqlite3BeginWriteOperation(pParse, 0, i);
3886     }
3887   }
3888 }
3889 #endif
3890 
3891 /*
3892 ** Add all WhereLoop objects for a table of the join identified by
3893 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
3894 **
3895 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3896 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3897 ** entries that occur before the virtual table in the FROM clause and are
3898 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3899 ** mUnusable mask contains all FROM clause entries that occur after the
3900 ** virtual table and are separated from it by at least one LEFT or
3901 ** CROSS JOIN.
3902 **
3903 ** For example, if the query were:
3904 **
3905 **   ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3906 **
3907 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3908 **
3909 ** All the tables in mPrereq must be scanned before the current virtual
3910 ** table. So any terms for which all prerequisites are satisfied by
3911 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3912 ** Conversely, all tables in mUnusable must be scanned after the current
3913 ** virtual table, so any terms for which the prerequisites overlap with
3914 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3915 */
3916 static int whereLoopAddVirtual(
3917   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
3918   Bitmask mPrereq,             /* Tables that must be scanned before this one */
3919   Bitmask mUnusable            /* Tables that must be scanned after this one */
3920 ){
3921   int rc = SQLITE_OK;          /* Return code */
3922   WhereInfo *pWInfo;           /* WHERE analysis context */
3923   Parse *pParse;               /* The parsing context */
3924   WhereClause *pWC;            /* The WHERE clause */
3925   SrcItem *pSrc;               /* The FROM clause term to search */
3926   sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
3927   int nConstraint;             /* Number of constraints in p */
3928   int bIn;                     /* True if plan uses IN(...) operator */
3929   WhereLoop *pNew;
3930   Bitmask mBest;               /* Tables used by best possible plan */
3931   u16 mNoOmit;
3932   int bRetry = 0;              /* True to retry with LIMIT/OFFSET disabled */
3933 
3934   assert( (mPrereq & mUnusable)==0 );
3935   pWInfo = pBuilder->pWInfo;
3936   pParse = pWInfo->pParse;
3937   pWC = pBuilder->pWC;
3938   pNew = pBuilder->pNew;
3939   pSrc = &pWInfo->pTabList->a[pNew->iTab];
3940   assert( IsVirtual(pSrc->pTab) );
3941   p = allocateIndexInfo(pWInfo, pWC, mUnusable, pSrc, &mNoOmit);
3942   if( p==0 ) return SQLITE_NOMEM_BKPT;
3943   pNew->rSetup = 0;
3944   pNew->wsFlags = WHERE_VIRTUALTABLE;
3945   pNew->nLTerm = 0;
3946   pNew->u.vtab.needFree = 0;
3947   nConstraint = p->nConstraint;
3948   if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3949     freeIndexInfo(pParse->db, p);
3950     return SQLITE_NOMEM_BKPT;
3951   }
3952 
3953   /* First call xBestIndex() with all constraints usable. */
3954   WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
3955   WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
3956   rc = whereLoopAddVirtualOne(
3957       pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, &bRetry
3958   );
3959   if( bRetry ){
3960     assert( rc==SQLITE_OK );
3961     rc = whereLoopAddVirtualOne(
3962         pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, 0
3963     );
3964   }
3965 
3966   /* If the call to xBestIndex() with all terms enabled produced a plan
3967   ** that does not require any source tables (IOW: a plan with mBest==0)
3968   ** and does not use an IN(...) operator, then there is no point in making
3969   ** any further calls to xBestIndex() since they will all return the same
3970   ** result (if the xBestIndex() implementation is sane). */
3971   if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){
3972     int seenZero = 0;             /* True if a plan with no prereqs seen */
3973     int seenZeroNoIN = 0;         /* Plan with no prereqs and no IN(...) seen */
3974     Bitmask mPrev = 0;
3975     Bitmask mBestNoIn = 0;
3976 
3977     /* If the plan produced by the earlier call uses an IN(...) term, call
3978     ** xBestIndex again, this time with IN(...) terms disabled. */
3979     if( bIn ){
3980       WHERETRACE(0x40, ("  VirtualOne: all usable w/o IN\n"));
3981       rc = whereLoopAddVirtualOne(
3982           pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn, 0);
3983       assert( bIn==0 );
3984       mBestNoIn = pNew->prereq & ~mPrereq;
3985       if( mBestNoIn==0 ){
3986         seenZero = 1;
3987         seenZeroNoIN = 1;
3988       }
3989     }
3990 
3991     /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3992     ** in the set of terms that apply to the current virtual table.  */
3993     while( rc==SQLITE_OK ){
3994       int i;
3995       Bitmask mNext = ALLBITS;
3996       assert( mNext>0 );
3997       for(i=0; i<nConstraint; i++){
3998         Bitmask mThis = (
3999             pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
4000         );
4001         if( mThis>mPrev && mThis<mNext ) mNext = mThis;
4002       }
4003       mPrev = mNext;
4004       if( mNext==ALLBITS ) break;
4005       if( mNext==mBest || mNext==mBestNoIn ) continue;
4006       WHERETRACE(0x40, ("  VirtualOne: mPrev=%04llx mNext=%04llx\n",
4007                        (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
4008       rc = whereLoopAddVirtualOne(
4009           pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn, 0);
4010       if( pNew->prereq==mPrereq ){
4011         seenZero = 1;
4012         if( bIn==0 ) seenZeroNoIN = 1;
4013       }
4014     }
4015 
4016     /* If the calls to xBestIndex() in the above loop did not find a plan
4017     ** that requires no source tables at all (i.e. one guaranteed to be
4018     ** usable), make a call here with all source tables disabled */
4019     if( rc==SQLITE_OK && seenZero==0 ){
4020       WHERETRACE(0x40, ("  VirtualOne: all disabled\n"));
4021       rc = whereLoopAddVirtualOne(
4022           pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn, 0);
4023       if( bIn==0 ) seenZeroNoIN = 1;
4024     }
4025 
4026     /* If the calls to xBestIndex() have so far failed to find a plan
4027     ** that requires no source tables at all and does not use an IN(...)
4028     ** operator, make a final call to obtain one here.  */
4029     if( rc==SQLITE_OK && seenZeroNoIN==0 ){
4030       WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
4031       rc = whereLoopAddVirtualOne(
4032           pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn, 0);
4033     }
4034   }
4035 
4036   if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
4037   freeIndexInfo(pParse->db, p);
4038   WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
4039   return rc;
4040 }
4041 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4042 
4043 /*
4044 ** Add WhereLoop entries to handle OR terms.  This works for either
4045 ** btrees or virtual tables.
4046 */
4047 static int whereLoopAddOr(
4048   WhereLoopBuilder *pBuilder,
4049   Bitmask mPrereq,
4050   Bitmask mUnusable
4051 ){
4052   WhereInfo *pWInfo = pBuilder->pWInfo;
4053   WhereClause *pWC;
4054   WhereLoop *pNew;
4055   WhereTerm *pTerm, *pWCEnd;
4056   int rc = SQLITE_OK;
4057   int iCur;
4058   WhereClause tempWC;
4059   WhereLoopBuilder sSubBuild;
4060   WhereOrSet sSum, sCur;
4061   SrcItem *pItem;
4062 
4063   pWC = pBuilder->pWC;
4064   pWCEnd = pWC->a + pWC->nTerm;
4065   pNew = pBuilder->pNew;
4066   memset(&sSum, 0, sizeof(sSum));
4067   pItem = pWInfo->pTabList->a + pNew->iTab;
4068   iCur = pItem->iCursor;
4069 
4070   /* The multi-index OR optimization does not work for RIGHT and FULL JOIN */
4071   if( pItem->fg.jointype & JT_RIGHT ) return SQLITE_OK;
4072 
4073   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
4074     if( (pTerm->eOperator & WO_OR)!=0
4075      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
4076     ){
4077       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
4078       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
4079       WhereTerm *pOrTerm;
4080       int once = 1;
4081       int i, j;
4082 
4083       sSubBuild = *pBuilder;
4084       sSubBuild.pOrSet = &sCur;
4085 
4086       WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
4087       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
4088         if( (pOrTerm->eOperator & WO_AND)!=0 ){
4089           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
4090         }else if( pOrTerm->leftCursor==iCur ){
4091           tempWC.pWInfo = pWC->pWInfo;
4092           tempWC.pOuter = pWC;
4093           tempWC.op = TK_AND;
4094           tempWC.nTerm = 1;
4095           tempWC.nBase = 1;
4096           tempWC.a = pOrTerm;
4097           sSubBuild.pWC = &tempWC;
4098         }else{
4099           continue;
4100         }
4101         sCur.n = 0;
4102 #ifdef WHERETRACE_ENABLED
4103         WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
4104                    (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
4105         if( sqlite3WhereTrace & 0x400 ){
4106           sqlite3WhereClausePrint(sSubBuild.pWC);
4107         }
4108 #endif
4109 #ifndef SQLITE_OMIT_VIRTUALTABLE
4110         if( IsVirtual(pItem->pTab) ){
4111           rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
4112         }else
4113 #endif
4114         {
4115           rc = whereLoopAddBtree(&sSubBuild, mPrereq);
4116         }
4117         if( rc==SQLITE_OK ){
4118           rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
4119         }
4120         assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0
4121                 || rc==SQLITE_NOMEM );
4122         testcase( rc==SQLITE_NOMEM && sCur.n>0 );
4123         testcase( rc==SQLITE_DONE );
4124         if( sCur.n==0 ){
4125           sSum.n = 0;
4126           break;
4127         }else if( once ){
4128           whereOrMove(&sSum, &sCur);
4129           once = 0;
4130         }else{
4131           WhereOrSet sPrev;
4132           whereOrMove(&sPrev, &sSum);
4133           sSum.n = 0;
4134           for(i=0; i<sPrev.n; i++){
4135             for(j=0; j<sCur.n; j++){
4136               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
4137                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
4138                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
4139             }
4140           }
4141         }
4142       }
4143       pNew->nLTerm = 1;
4144       pNew->aLTerm[0] = pTerm;
4145       pNew->wsFlags = WHERE_MULTI_OR;
4146       pNew->rSetup = 0;
4147       pNew->iSortIdx = 0;
4148       memset(&pNew->u, 0, sizeof(pNew->u));
4149       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
4150         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
4151         ** of all sub-scans required by the OR-scan. However, due to rounding
4152         ** errors, it may be that the cost of the OR-scan is equal to its
4153         ** most expensive sub-scan. Add the smallest possible penalty
4154         ** (equivalent to multiplying the cost by 1.07) to ensure that
4155         ** this does not happen. Otherwise, for WHERE clauses such as the
4156         ** following where there is an index on "y":
4157         **
4158         **     WHERE likelihood(x=?, 0.99) OR y=?
4159         **
4160         ** the planner may elect to "OR" together a full-table scan and an
4161         ** index lookup. And other similarly odd results.  */
4162         pNew->rRun = sSum.a[i].rRun + 1;
4163         pNew->nOut = sSum.a[i].nOut;
4164         pNew->prereq = sSum.a[i].prereq;
4165         rc = whereLoopInsert(pBuilder, pNew);
4166       }
4167       WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
4168     }
4169   }
4170   return rc;
4171 }
4172 
4173 /*
4174 ** Add all WhereLoop objects for all tables
4175 */
4176 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
4177   WhereInfo *pWInfo = pBuilder->pWInfo;
4178   Bitmask mPrereq = 0;
4179   Bitmask mPrior = 0;
4180   int iTab;
4181   SrcList *pTabList = pWInfo->pTabList;
4182   SrcItem *pItem;
4183   SrcItem *pEnd = &pTabList->a[pWInfo->nLevel];
4184   sqlite3 *db = pWInfo->pParse->db;
4185   int rc = SQLITE_OK;
4186   int bFirstPastRJ = 0;
4187   int hasRightJoin = 0;
4188   WhereLoop *pNew;
4189 
4190 
4191   /* Loop over the tables in the join, from left to right */
4192   pNew = pBuilder->pNew;
4193 
4194   /* Verify that pNew has already been initialized */
4195   assert( pNew->nLTerm==0 );
4196   assert( pNew->wsFlags==0 );
4197   assert( pNew->nLSlot>=ArraySize(pNew->aLTermSpace) );
4198   assert( pNew->aLTerm!=0 );
4199 
4200   pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT;
4201   for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
4202     Bitmask mUnusable = 0;
4203     pNew->iTab = iTab;
4204     pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR;
4205     pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
4206     if( bFirstPastRJ
4207      || (pItem->fg.jointype & (JT_OUTER|JT_CROSS|JT_LTORJ))!=0
4208     ){
4209       /* Add prerequisites to prevent reordering of FROM clause terms
4210       ** across CROSS joins and outer joins.  The bFirstPastRJ boolean
4211       ** prevents the right operand of a RIGHT JOIN from being swapped with
4212       ** other elements even further to the right.
4213       **
4214       ** The JT_LTORJ case and the hasRightJoin flag work together to
4215       ** prevent FROM-clause terms from moving from the right side of
4216       ** a LEFT JOIN over to the left side of that join if the LEFT JOIN
4217       ** is itself on the left side of a RIGHT JOIN.
4218       */
4219       if( pItem->fg.jointype & JT_LTORJ ) hasRightJoin = 1;
4220       mPrereq |= mPrior;
4221       bFirstPastRJ = (pItem->fg.jointype & JT_RIGHT)!=0;
4222     }else if( !hasRightJoin ){
4223       mPrereq = 0;
4224     }
4225 #ifndef SQLITE_OMIT_VIRTUALTABLE
4226     if( IsVirtual(pItem->pTab) ){
4227       SrcItem *p;
4228       for(p=&pItem[1]; p<pEnd; p++){
4229         if( mUnusable || (p->fg.jointype & (JT_OUTER|JT_CROSS)) ){
4230           mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
4231         }
4232       }
4233       rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
4234     }else
4235 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4236     {
4237       rc = whereLoopAddBtree(pBuilder, mPrereq);
4238     }
4239     if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
4240       rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
4241     }
4242     mPrior |= pNew->maskSelf;
4243     if( rc || db->mallocFailed ){
4244       if( rc==SQLITE_DONE ){
4245         /* We hit the query planner search limit set by iPlanLimit */
4246         sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search");
4247         rc = SQLITE_OK;
4248       }else{
4249         break;
4250       }
4251     }
4252   }
4253 
4254   whereLoopClear(db, pNew);
4255   return rc;
4256 }
4257 
4258 /*
4259 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
4260 ** parameters) to see if it outputs rows in the requested ORDER BY
4261 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
4262 **
4263 **   N>0:   N terms of the ORDER BY clause are satisfied
4264 **   N==0:  No terms of the ORDER BY clause are satisfied
4265 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
4266 **
4267 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
4268 ** strict.  With GROUP BY and DISTINCT the only requirement is that
4269 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
4270 ** and DISTINCT do not require rows to appear in any particular order as long
4271 ** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT
4272 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
4273 ** pOrderBy terms must be matched in strict left-to-right order.
4274 */
4275 static i8 wherePathSatisfiesOrderBy(
4276   WhereInfo *pWInfo,    /* The WHERE clause */
4277   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
4278   WherePath *pPath,     /* The WherePath to check */
4279   u16 wctrlFlags,       /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
4280   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
4281   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
4282   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
4283 ){
4284   u8 revSet;            /* True if rev is known */
4285   u8 rev;               /* Composite sort order */
4286   u8 revIdx;            /* Index sort order */
4287   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
4288   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
4289   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
4290   u16 eqOpMask;         /* Allowed equality operators */
4291   u16 nKeyCol;          /* Number of key columns in pIndex */
4292   u16 nColumn;          /* Total number of ordered columns in the index */
4293   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
4294   int iLoop;            /* Index of WhereLoop in pPath being processed */
4295   int i, j;             /* Loop counters */
4296   int iCur;             /* Cursor number for current WhereLoop */
4297   int iColumn;          /* A column number within table iCur */
4298   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
4299   WhereTerm *pTerm;     /* A single term of the WHERE clause */
4300   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
4301   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
4302   Index *pIndex;        /* The index associated with pLoop */
4303   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
4304   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
4305   Bitmask obDone;       /* Mask of all ORDER BY terms */
4306   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
4307   Bitmask ready;              /* Mask of inner loops */
4308 
4309   /*
4310   ** We say the WhereLoop is "one-row" if it generates no more than one
4311   ** row of output.  A WhereLoop is one-row if all of the following are true:
4312   **  (a) All index columns match with WHERE_COLUMN_EQ.
4313   **  (b) The index is unique
4314   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
4315   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
4316   **
4317   ** We say the WhereLoop is "order-distinct" if the set of columns from
4318   ** that WhereLoop that are in the ORDER BY clause are different for every
4319   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
4320   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
4321   ** is not order-distinct. To be order-distinct is not quite the same as being
4322   ** UNIQUE since a UNIQUE column or index can have multiple rows that
4323   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
4324   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
4325   **
4326   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
4327   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
4328   ** automatically order-distinct.
4329   */
4330 
4331   assert( pOrderBy!=0 );
4332   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
4333 
4334   nOrderBy = pOrderBy->nExpr;
4335   testcase( nOrderBy==BMS-1 );
4336   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
4337   isOrderDistinct = 1;
4338   obDone = MASKBIT(nOrderBy)-1;
4339   orderDistinctMask = 0;
4340   ready = 0;
4341   eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
4342   if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){
4343     eqOpMask |= WO_IN;
4344   }
4345   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
4346     if( iLoop>0 ) ready |= pLoop->maskSelf;
4347     if( iLoop<nLoop ){
4348       pLoop = pPath->aLoop[iLoop];
4349       if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
4350     }else{
4351       pLoop = pLast;
4352     }
4353     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
4354       if( pLoop->u.vtab.isOrdered
4355        && ((wctrlFlags&(WHERE_DISTINCTBY|WHERE_SORTBYGROUP))!=WHERE_DISTINCTBY)
4356       ){
4357         obSat = obDone;
4358       }
4359       break;
4360     }else if( wctrlFlags & WHERE_DISTINCTBY ){
4361       pLoop->u.btree.nDistinctCol = 0;
4362     }
4363     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
4364 
4365     /* Mark off any ORDER BY term X that is a column in the table of
4366     ** the current loop for which there is term in the WHERE
4367     ** clause of the form X IS NULL or X=? that reference only outer
4368     ** loops.
4369     */
4370     for(i=0; i<nOrderBy; i++){
4371       if( MASKBIT(i) & obSat ) continue;
4372       pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
4373       if( NEVER(pOBExpr==0) ) continue;
4374       if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
4375       if( pOBExpr->iTable!=iCur ) continue;
4376       pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
4377                        ~ready, eqOpMask, 0);
4378       if( pTerm==0 ) continue;
4379       if( pTerm->eOperator==WO_IN ){
4380         /* IN terms are only valid for sorting in the ORDER BY LIMIT
4381         ** optimization, and then only if they are actually used
4382         ** by the query plan */
4383         assert( wctrlFlags &
4384                (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) );
4385         for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
4386         if( j>=pLoop->nLTerm ) continue;
4387       }
4388       if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
4389         Parse *pParse = pWInfo->pParse;
4390         CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr);
4391         CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr);
4392         assert( pColl1 );
4393         if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){
4394           continue;
4395         }
4396         testcase( pTerm->pExpr->op==TK_IS );
4397       }
4398       obSat |= MASKBIT(i);
4399     }
4400 
4401     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
4402       if( pLoop->wsFlags & WHERE_IPK ){
4403         pIndex = 0;
4404         nKeyCol = 0;
4405         nColumn = 1;
4406       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
4407         return 0;
4408       }else{
4409         nKeyCol = pIndex->nKeyCol;
4410         nColumn = pIndex->nColumn;
4411         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
4412         assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
4413                           || !HasRowid(pIndex->pTable));
4414         /* All relevant terms of the index must also be non-NULL in order
4415         ** for isOrderDistinct to be true.  So the isOrderDistint value
4416         ** computed here might be a false positive.  Corrections will be
4417         ** made at tag-20210426-1 below */
4418         isOrderDistinct = IsUniqueIndex(pIndex)
4419                           && (pLoop->wsFlags & WHERE_SKIPSCAN)==0;
4420       }
4421 
4422       /* Loop through all columns of the index and deal with the ones
4423       ** that are not constrained by == or IN.
4424       */
4425       rev = revSet = 0;
4426       distinctColumns = 0;
4427       for(j=0; j<nColumn; j++){
4428         u8 bOnce = 1; /* True to run the ORDER BY search loop */
4429 
4430         assert( j>=pLoop->u.btree.nEq
4431             || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
4432         );
4433         if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
4434           u16 eOp = pLoop->aLTerm[j]->eOperator;
4435 
4436           /* Skip over == and IS and ISNULL terms.  (Also skip IN terms when
4437           ** doing WHERE_ORDERBY_LIMIT processing).  Except, IS and ISNULL
4438           ** terms imply that the index is not UNIQUE NOT NULL in which case
4439           ** the loop need to be marked as not order-distinct because it can
4440           ** have repeated NULL rows.
4441           **
4442           ** If the current term is a column of an ((?,?) IN (SELECT...))
4443           ** expression for which the SELECT returns more than one column,
4444           ** check that it is the only column used by this loop. Otherwise,
4445           ** if it is one of two or more, none of the columns can be
4446           ** considered to match an ORDER BY term.
4447           */
4448           if( (eOp & eqOpMask)!=0 ){
4449             if( eOp & (WO_ISNULL|WO_IS) ){
4450               testcase( eOp & WO_ISNULL );
4451               testcase( eOp & WO_IS );
4452               testcase( isOrderDistinct );
4453               isOrderDistinct = 0;
4454             }
4455             continue;
4456           }else if( ALWAYS(eOp & WO_IN) ){
4457             /* ALWAYS() justification: eOp is an equality operator due to the
4458             ** j<pLoop->u.btree.nEq constraint above.  Any equality other
4459             ** than WO_IN is captured by the previous "if".  So this one
4460             ** always has to be WO_IN. */
4461             Expr *pX = pLoop->aLTerm[j]->pExpr;
4462             for(i=j+1; i<pLoop->u.btree.nEq; i++){
4463               if( pLoop->aLTerm[i]->pExpr==pX ){
4464                 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
4465                 bOnce = 0;
4466                 break;
4467               }
4468             }
4469           }
4470         }
4471 
4472         /* Get the column number in the table (iColumn) and sort order
4473         ** (revIdx) for the j-th column of the index.
4474         */
4475         if( pIndex ){
4476           iColumn = pIndex->aiColumn[j];
4477           revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC;
4478           if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
4479         }else{
4480           iColumn = XN_ROWID;
4481           revIdx = 0;
4482         }
4483 
4484         /* An unconstrained column that might be NULL means that this
4485         ** WhereLoop is not well-ordered.  tag-20210426-1
4486         */
4487         if( isOrderDistinct ){
4488           if( iColumn>=0
4489            && j>=pLoop->u.btree.nEq
4490            && pIndex->pTable->aCol[iColumn].notNull==0
4491           ){
4492             isOrderDistinct = 0;
4493           }
4494           if( iColumn==XN_EXPR ){
4495             isOrderDistinct = 0;
4496           }
4497         }
4498 
4499         /* Find the ORDER BY term that corresponds to the j-th column
4500         ** of the index and mark that ORDER BY term off
4501         */
4502         isMatch = 0;
4503         for(i=0; bOnce && i<nOrderBy; i++){
4504           if( MASKBIT(i) & obSat ) continue;
4505           pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
4506           testcase( wctrlFlags & WHERE_GROUPBY );
4507           testcase( wctrlFlags & WHERE_DISTINCTBY );
4508           if( NEVER(pOBExpr==0) ) continue;
4509           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
4510           if( iColumn>=XN_ROWID ){
4511             if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
4512             if( pOBExpr->iTable!=iCur ) continue;
4513             if( pOBExpr->iColumn!=iColumn ) continue;
4514           }else{
4515             Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
4516             if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
4517               continue;
4518             }
4519           }
4520           if( iColumn!=XN_ROWID ){
4521             pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
4522             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
4523           }
4524           if( wctrlFlags & WHERE_DISTINCTBY ){
4525             pLoop->u.btree.nDistinctCol = j+1;
4526           }
4527           isMatch = 1;
4528           break;
4529         }
4530         if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
4531           /* Make sure the sort order is compatible in an ORDER BY clause.
4532           ** Sort order is irrelevant for a GROUP BY clause. */
4533           if( revSet ){
4534             if( (rev ^ revIdx)
4535                            != (pOrderBy->a[i].fg.sortFlags&KEYINFO_ORDER_DESC)
4536             ){
4537               isMatch = 0;
4538             }
4539           }else{
4540             rev = revIdx ^ (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC);
4541             if( rev ) *pRevMask |= MASKBIT(iLoop);
4542             revSet = 1;
4543           }
4544         }
4545         if( isMatch && (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL) ){
4546           if( j==pLoop->u.btree.nEq ){
4547             pLoop->wsFlags |= WHERE_BIGNULL_SORT;
4548           }else{
4549             isMatch = 0;
4550           }
4551         }
4552         if( isMatch ){
4553           if( iColumn==XN_ROWID ){
4554             testcase( distinctColumns==0 );
4555             distinctColumns = 1;
4556           }
4557           obSat |= MASKBIT(i);
4558         }else{
4559           /* No match found */
4560           if( j==0 || j<nKeyCol ){
4561             testcase( isOrderDistinct!=0 );
4562             isOrderDistinct = 0;
4563           }
4564           break;
4565         }
4566       } /* end Loop over all index columns */
4567       if( distinctColumns ){
4568         testcase( isOrderDistinct==0 );
4569         isOrderDistinct = 1;
4570       }
4571     } /* end-if not one-row */
4572 
4573     /* Mark off any other ORDER BY terms that reference pLoop */
4574     if( isOrderDistinct ){
4575       orderDistinctMask |= pLoop->maskSelf;
4576       for(i=0; i<nOrderBy; i++){
4577         Expr *p;
4578         Bitmask mTerm;
4579         if( MASKBIT(i) & obSat ) continue;
4580         p = pOrderBy->a[i].pExpr;
4581         mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
4582         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
4583         if( (mTerm&~orderDistinctMask)==0 ){
4584           obSat |= MASKBIT(i);
4585         }
4586       }
4587     }
4588   } /* End the loop over all WhereLoops from outer-most down to inner-most */
4589   if( obSat==obDone ) return (i8)nOrderBy;
4590   if( !isOrderDistinct ){
4591     for(i=nOrderBy-1; i>0; i--){
4592       Bitmask m = ALWAYS(i<BMS) ? MASKBIT(i) - 1 : 0;
4593       if( (obSat&m)==m ) return i;
4594     }
4595     return 0;
4596   }
4597   return -1;
4598 }
4599 
4600 
4601 /*
4602 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
4603 ** the planner assumes that the specified pOrderBy list is actually a GROUP
4604 ** BY clause - and so any order that groups rows as required satisfies the
4605 ** request.
4606 **
4607 ** Normally, in this case it is not possible for the caller to determine
4608 ** whether or not the rows are really being delivered in sorted order, or
4609 ** just in some other order that provides the required grouping. However,
4610 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
4611 ** this function may be called on the returned WhereInfo object. It returns
4612 ** true if the rows really will be sorted in the specified order, or false
4613 ** otherwise.
4614 **
4615 ** For example, assuming:
4616 **
4617 **   CREATE INDEX i1 ON t1(x, Y);
4618 **
4619 ** then
4620 **
4621 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
4622 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
4623 */
4624 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
4625   assert( pWInfo->wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY) );
4626   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
4627   return pWInfo->sorted;
4628 }
4629 
4630 #ifdef WHERETRACE_ENABLED
4631 /* For debugging use only: */
4632 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
4633   static char zName[65];
4634   int i;
4635   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
4636   if( pLast ) zName[i++] = pLast->cId;
4637   zName[i] = 0;
4638   return zName;
4639 }
4640 #endif
4641 
4642 /*
4643 ** Return the cost of sorting nRow rows, assuming that the keys have
4644 ** nOrderby columns and that the first nSorted columns are already in
4645 ** order.
4646 */
4647 static LogEst whereSortingCost(
4648   WhereInfo *pWInfo,
4649   LogEst nRow,
4650   int nOrderBy,
4651   int nSorted
4652 ){
4653   /* TUNING: Estimated cost of a full external sort, where N is
4654   ** the number of rows to sort is:
4655   **
4656   **   cost = (3.0 * N * log(N)).
4657   **
4658   ** Or, if the order-by clause has X terms but only the last Y
4659   ** terms are out of order, then block-sorting will reduce the
4660   ** sorting cost to:
4661   **
4662   **   cost = (3.0 * N * log(N)) * (Y/X)
4663   **
4664   ** The (Y/X) term is implemented using stack variable rScale
4665   ** below.
4666   */
4667   LogEst rScale, rSortCost;
4668   assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
4669   rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
4670   rSortCost = nRow + rScale + 16;
4671 
4672   /* Multiple by log(M) where M is the number of output rows.
4673   ** Use the LIMIT for M if it is smaller.  Or if this sort is for
4674   ** a DISTINCT operator, M will be the number of distinct output
4675   ** rows, so fudge it downwards a bit.
4676   */
4677   if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
4678     nRow = pWInfo->iLimit;
4679   }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){
4680     /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT
4681     ** reduces the number of output rows by a factor of 2 */
4682     if( nRow>10 ){ nRow -= 10;  assert( 10==sqlite3LogEst(2) ); }
4683   }
4684   rSortCost += estLog(nRow);
4685   return rSortCost;
4686 }
4687 
4688 /*
4689 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
4690 ** attempts to find the lowest cost path that visits each WhereLoop
4691 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
4692 **
4693 ** Assume that the total number of output rows that will need to be sorted
4694 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
4695 ** costs if nRowEst==0.
4696 **
4697 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
4698 ** error occurs.
4699 */
4700 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
4701   int mxChoice;             /* Maximum number of simultaneous paths tracked */
4702   int nLoop;                /* Number of terms in the join */
4703   Parse *pParse;            /* Parsing context */
4704   int iLoop;                /* Loop counter over the terms of the join */
4705   int ii, jj;               /* Loop counters */
4706   int mxI = 0;              /* Index of next entry to replace */
4707   int nOrderBy;             /* Number of ORDER BY clause terms */
4708   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
4709   LogEst mxUnsorted = 0;    /* Maximum unsorted cost of a set of path */
4710   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
4711   WherePath *aFrom;         /* All nFrom paths at the previous level */
4712   WherePath *aTo;           /* The nTo best paths at the current level */
4713   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
4714   WherePath *pTo;           /* An element of aTo[] that we are working on */
4715   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
4716   WhereLoop **pX;           /* Used to divy up the pSpace memory */
4717   LogEst *aSortCost = 0;    /* Sorting and partial sorting costs */
4718   char *pSpace;             /* Temporary memory used by this routine */
4719   int nSpace;               /* Bytes of space allocated at pSpace */
4720 
4721   pParse = pWInfo->pParse;
4722   nLoop = pWInfo->nLevel;
4723   /* TUNING: For simple queries, only the best path is tracked.
4724   ** For 2-way joins, the 5 best paths are followed.
4725   ** For joins of 3 or more tables, track the 10 best paths */
4726   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
4727   assert( nLoop<=pWInfo->pTabList->nSrc );
4728   WHERETRACE(0x002, ("---- begin solver.  (nRowEst=%d)\n", nRowEst));
4729 
4730   /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
4731   ** case the purpose of this call is to estimate the number of rows returned
4732   ** by the overall query. Once this estimate has been obtained, the caller
4733   ** will invoke this function a second time, passing the estimate as the
4734   ** nRowEst parameter.  */
4735   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
4736     nOrderBy = 0;
4737   }else{
4738     nOrderBy = pWInfo->pOrderBy->nExpr;
4739   }
4740 
4741   /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
4742   nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
4743   nSpace += sizeof(LogEst) * nOrderBy;
4744   pSpace = sqlite3StackAllocRawNN(pParse->db, nSpace);
4745   if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
4746   aTo = (WherePath*)pSpace;
4747   aFrom = aTo+mxChoice;
4748   memset(aFrom, 0, sizeof(aFrom[0]));
4749   pX = (WhereLoop**)(aFrom+mxChoice);
4750   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
4751     pFrom->aLoop = pX;
4752   }
4753   if( nOrderBy ){
4754     /* If there is an ORDER BY clause and it is not being ignored, set up
4755     ** space for the aSortCost[] array. Each element of the aSortCost array
4756     ** is either zero - meaning it has not yet been initialized - or the
4757     ** cost of sorting nRowEst rows of data where the first X terms of
4758     ** the ORDER BY clause are already in order, where X is the array
4759     ** index.  */
4760     aSortCost = (LogEst*)pX;
4761     memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
4762   }
4763   assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
4764   assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
4765 
4766   /* Seed the search with a single WherePath containing zero WhereLoops.
4767   **
4768   ** TUNING: Do not let the number of iterations go above 28.  If the cost
4769   ** of computing an automatic index is not paid back within the first 28
4770   ** rows, then do not use the automatic index. */
4771   aFrom[0].nRow = MIN(pParse->nQueryLoop, 48);  assert( 48==sqlite3LogEst(28) );
4772   nFrom = 1;
4773   assert( aFrom[0].isOrdered==0 );
4774   if( nOrderBy ){
4775     /* If nLoop is zero, then there are no FROM terms in the query. Since
4776     ** in this case the query may return a maximum of one row, the results
4777     ** are already in the requested order. Set isOrdered to nOrderBy to
4778     ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
4779     ** -1, indicating that the result set may or may not be ordered,
4780     ** depending on the loops added to the current plan.  */
4781     aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
4782   }
4783 
4784   /* Compute successively longer WherePaths using the previous generation
4785   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
4786   ** best paths at each generation */
4787   for(iLoop=0; iLoop<nLoop; iLoop++){
4788     nTo = 0;
4789     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
4790       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
4791         LogEst nOut;                      /* Rows visited by (pFrom+pWLoop) */
4792         LogEst rCost;                     /* Cost of path (pFrom+pWLoop) */
4793         LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
4794         i8 isOrdered;                     /* isOrdered for (pFrom+pWLoop) */
4795         Bitmask maskNew;                  /* Mask of src visited by (..) */
4796         Bitmask revMask;                  /* Mask of rev-order loops for (..) */
4797 
4798         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
4799         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
4800         if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
4801           /* Do not use an automatic index if the this loop is expected
4802           ** to run less than 1.25 times.  It is tempting to also exclude
4803           ** automatic index usage on an outer loop, but sometimes an automatic
4804           ** index is useful in the outer loop of a correlated subquery. */
4805           assert( 10==sqlite3LogEst(2) );
4806           continue;
4807         }
4808 
4809         /* At this point, pWLoop is a candidate to be the next loop.
4810         ** Compute its cost */
4811         rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
4812         rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
4813         nOut = pFrom->nRow + pWLoop->nOut;
4814         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
4815         isOrdered = pFrom->isOrdered;
4816         if( isOrdered<0 ){
4817           revMask = 0;
4818           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
4819                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
4820                        iLoop, pWLoop, &revMask);
4821         }else{
4822           revMask = pFrom->revLoop;
4823         }
4824         if( isOrdered>=0 && isOrdered<nOrderBy ){
4825           if( aSortCost[isOrdered]==0 ){
4826             aSortCost[isOrdered] = whereSortingCost(
4827                 pWInfo, nRowEst, nOrderBy, isOrdered
4828             );
4829           }
4830           /* TUNING:  Add a small extra penalty (5) to sorting as an
4831           ** extra encouragment to the query planner to select a plan
4832           ** where the rows emerge in the correct order without any sorting
4833           ** required. */
4834           rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5;
4835 
4836           WHERETRACE(0x002,
4837               ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
4838                aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
4839                rUnsorted, rCost));
4840         }else{
4841           rCost = rUnsorted;
4842           rUnsorted -= 2;  /* TUNING:  Slight bias in favor of no-sort plans */
4843         }
4844 
4845         /* TUNING:  A full-scan of a VIEW or subquery in the outer loop
4846         ** is not so bad. */
4847         if( iLoop==0 && (pWLoop->wsFlags & WHERE_VIEWSCAN)!=0 ){
4848           rCost += -10;
4849           nOut += -30;
4850         }
4851 
4852         /* Check to see if pWLoop should be added to the set of
4853         ** mxChoice best-so-far paths.
4854         **
4855         ** First look for an existing path among best-so-far paths
4856         ** that covers the same set of loops and has the same isOrdered
4857         ** setting as the current path candidate.
4858         **
4859         ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4860         ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4861         ** of legal values for isOrdered, -1..64.
4862         */
4863         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
4864           if( pTo->maskLoop==maskNew
4865            && ((pTo->isOrdered^isOrdered)&0x80)==0
4866           ){
4867             testcase( jj==nTo-1 );
4868             break;
4869           }
4870         }
4871         if( jj>=nTo ){
4872           /* None of the existing best-so-far paths match the candidate. */
4873           if( nTo>=mxChoice
4874            && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4875           ){
4876             /* The current candidate is no better than any of the mxChoice
4877             ** paths currently in the best-so-far buffer.  So discard
4878             ** this candidate as not viable. */
4879 #ifdef WHERETRACE_ENABLED /* 0x4 */
4880             if( sqlite3WhereTrace&0x4 ){
4881               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d,%3d order=%c\n",
4882                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4883                   isOrdered>=0 ? isOrdered+'0' : '?');
4884             }
4885 #endif
4886             continue;
4887           }
4888           /* If we reach this points it means that the new candidate path
4889           ** needs to be added to the set of best-so-far paths. */
4890           if( nTo<mxChoice ){
4891             /* Increase the size of the aTo set by one */
4892             jj = nTo++;
4893           }else{
4894             /* New path replaces the prior worst to keep count below mxChoice */
4895             jj = mxI;
4896           }
4897           pTo = &aTo[jj];
4898 #ifdef WHERETRACE_ENABLED /* 0x4 */
4899           if( sqlite3WhereTrace&0x4 ){
4900             sqlite3DebugPrintf("New    %s cost=%-3d,%3d,%3d order=%c\n",
4901                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4902                 isOrdered>=0 ? isOrdered+'0' : '?');
4903           }
4904 #endif
4905         }else{
4906           /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4907           ** same set of loops and has the same isOrdered setting as the
4908           ** candidate path.  Check to see if the candidate should replace
4909           ** pTo or if the candidate should be skipped.
4910           **
4911           ** The conditional is an expanded vector comparison equivalent to:
4912           **   (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4913           */
4914           if( pTo->rCost<rCost
4915            || (pTo->rCost==rCost
4916                && (pTo->nRow<nOut
4917                    || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4918                   )
4919               )
4920           ){
4921 #ifdef WHERETRACE_ENABLED /* 0x4 */
4922             if( sqlite3WhereTrace&0x4 ){
4923               sqlite3DebugPrintf(
4924                   "Skip   %s cost=%-3d,%3d,%3d order=%c",
4925                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4926                   isOrdered>=0 ? isOrdered+'0' : '?');
4927               sqlite3DebugPrintf("   vs %s cost=%-3d,%3d,%3d order=%c\n",
4928                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4929                   pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4930             }
4931 #endif
4932             /* Discard the candidate path from further consideration */
4933             testcase( pTo->rCost==rCost );
4934             continue;
4935           }
4936           testcase( pTo->rCost==rCost+1 );
4937           /* Control reaches here if the candidate path is better than the
4938           ** pTo path.  Replace pTo with the candidate. */
4939 #ifdef WHERETRACE_ENABLED /* 0x4 */
4940           if( sqlite3WhereTrace&0x4 ){
4941             sqlite3DebugPrintf(
4942                 "Update %s cost=%-3d,%3d,%3d order=%c",
4943                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4944                 isOrdered>=0 ? isOrdered+'0' : '?');
4945             sqlite3DebugPrintf("  was %s cost=%-3d,%3d,%3d order=%c\n",
4946                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4947                 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4948           }
4949 #endif
4950         }
4951         /* pWLoop is a winner.  Add it to the set of best so far */
4952         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4953         pTo->revLoop = revMask;
4954         pTo->nRow = nOut;
4955         pTo->rCost = rCost;
4956         pTo->rUnsorted = rUnsorted;
4957         pTo->isOrdered = isOrdered;
4958         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4959         pTo->aLoop[iLoop] = pWLoop;
4960         if( nTo>=mxChoice ){
4961           mxI = 0;
4962           mxCost = aTo[0].rCost;
4963           mxUnsorted = aTo[0].nRow;
4964           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4965             if( pTo->rCost>mxCost
4966              || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4967             ){
4968               mxCost = pTo->rCost;
4969               mxUnsorted = pTo->rUnsorted;
4970               mxI = jj;
4971             }
4972           }
4973         }
4974       }
4975     }
4976 
4977 #ifdef WHERETRACE_ENABLED  /* >=2 */
4978     if( sqlite3WhereTrace & 0x02 ){
4979       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4980       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4981         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4982            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4983            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4984         if( pTo->isOrdered>0 ){
4985           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4986         }else{
4987           sqlite3DebugPrintf("\n");
4988         }
4989       }
4990     }
4991 #endif
4992 
4993     /* Swap the roles of aFrom and aTo for the next generation */
4994     pFrom = aTo;
4995     aTo = aFrom;
4996     aFrom = pFrom;
4997     nFrom = nTo;
4998   }
4999 
5000   if( nFrom==0 ){
5001     sqlite3ErrorMsg(pParse, "no query solution");
5002     sqlite3StackFreeNN(pParse->db, pSpace);
5003     return SQLITE_ERROR;
5004   }
5005 
5006   /* Find the lowest cost path.  pFrom will be left pointing to that path */
5007   pFrom = aFrom;
5008   for(ii=1; ii<nFrom; ii++){
5009     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
5010   }
5011   assert( pWInfo->nLevel==nLoop );
5012   /* Load the lowest cost path into pWInfo */
5013   for(iLoop=0; iLoop<nLoop; iLoop++){
5014     WhereLevel *pLevel = pWInfo->a + iLoop;
5015     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
5016     pLevel->iFrom = pWLoop->iTab;
5017     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
5018   }
5019   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
5020    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
5021    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
5022    && nRowEst
5023   ){
5024     Bitmask notUsed;
5025     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
5026                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
5027     if( rc==pWInfo->pResultSet->nExpr ){
5028       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
5029     }
5030   }
5031   pWInfo->bOrderedInnerLoop = 0;
5032   if( pWInfo->pOrderBy ){
5033     pWInfo->nOBSat = pFrom->isOrdered;
5034     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
5035       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
5036         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
5037       }
5038     }else{
5039       pWInfo->revMask = pFrom->revLoop;
5040       if( pWInfo->nOBSat<=0 ){
5041         pWInfo->nOBSat = 0;
5042         if( nLoop>0 ){
5043           u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
5044           if( (wsFlags & WHERE_ONEROW)==0
5045            && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
5046           ){
5047             Bitmask m = 0;
5048             int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
5049                       WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
5050             testcase( wsFlags & WHERE_IPK );
5051             testcase( wsFlags & WHERE_COLUMN_IN );
5052             if( rc==pWInfo->pOrderBy->nExpr ){
5053               pWInfo->bOrderedInnerLoop = 1;
5054               pWInfo->revMask = m;
5055             }
5056           }
5057         }
5058       }else if( nLoop
5059             && pWInfo->nOBSat==1
5060             && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0
5061             ){
5062         pWInfo->bOrderedInnerLoop = 1;
5063       }
5064     }
5065     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
5066         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
5067     ){
5068       Bitmask revMask = 0;
5069       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
5070           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
5071       );
5072       assert( pWInfo->sorted==0 );
5073       if( nOrder==pWInfo->pOrderBy->nExpr ){
5074         pWInfo->sorted = 1;
5075         pWInfo->revMask = revMask;
5076       }
5077     }
5078   }
5079 
5080 
5081   pWInfo->nRowOut = pFrom->nRow;
5082 
5083   /* Free temporary memory and return success */
5084   sqlite3StackFreeNN(pParse->db, pSpace);
5085   return SQLITE_OK;
5086 }
5087 
5088 /*
5089 ** Most queries use only a single table (they are not joins) and have
5090 ** simple == constraints against indexed fields.  This routine attempts
5091 ** to plan those simple cases using much less ceremony than the
5092 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
5093 ** times for the common case.
5094 **
5095 ** Return non-zero on success, if this query can be handled by this
5096 ** no-frills query planner.  Return zero if this query needs the
5097 ** general-purpose query planner.
5098 */
5099 static int whereShortCut(WhereLoopBuilder *pBuilder){
5100   WhereInfo *pWInfo;
5101   SrcItem *pItem;
5102   WhereClause *pWC;
5103   WhereTerm *pTerm;
5104   WhereLoop *pLoop;
5105   int iCur;
5106   int j;
5107   Table *pTab;
5108   Index *pIdx;
5109   WhereScan scan;
5110 
5111   pWInfo = pBuilder->pWInfo;
5112   if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
5113   assert( pWInfo->pTabList->nSrc>=1 );
5114   pItem = pWInfo->pTabList->a;
5115   pTab = pItem->pTab;
5116   if( IsVirtual(pTab) ) return 0;
5117   if( pItem->fg.isIndexedBy || pItem->fg.notIndexed ){
5118     testcase( pItem->fg.isIndexedBy );
5119     testcase( pItem->fg.notIndexed );
5120     return 0;
5121   }
5122   iCur = pItem->iCursor;
5123   pWC = &pWInfo->sWC;
5124   pLoop = pBuilder->pNew;
5125   pLoop->wsFlags = 0;
5126   pLoop->nSkip = 0;
5127   pTerm = whereScanInit(&scan, pWC, iCur, -1, WO_EQ|WO_IS, 0);
5128   while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
5129   if( pTerm ){
5130     testcase( pTerm->eOperator & WO_IS );
5131     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
5132     pLoop->aLTerm[0] = pTerm;
5133     pLoop->nLTerm = 1;
5134     pLoop->u.btree.nEq = 1;
5135     /* TUNING: Cost of a rowid lookup is 10 */
5136     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
5137   }else{
5138     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5139       int opMask;
5140       assert( pLoop->aLTermSpace==pLoop->aLTerm );
5141       if( !IsUniqueIndex(pIdx)
5142        || pIdx->pPartIdxWhere!=0
5143        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
5144       ) continue;
5145       opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
5146       for(j=0; j<pIdx->nKeyCol; j++){
5147         pTerm = whereScanInit(&scan, pWC, iCur, j, opMask, pIdx);
5148         while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
5149         if( pTerm==0 ) break;
5150         testcase( pTerm->eOperator & WO_IS );
5151         pLoop->aLTerm[j] = pTerm;
5152       }
5153       if( j!=pIdx->nKeyCol ) continue;
5154       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
5155       if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
5156         pLoop->wsFlags |= WHERE_IDX_ONLY;
5157       }
5158       pLoop->nLTerm = j;
5159       pLoop->u.btree.nEq = j;
5160       pLoop->u.btree.pIndex = pIdx;
5161       /* TUNING: Cost of a unique index lookup is 15 */
5162       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
5163       break;
5164     }
5165   }
5166   if( pLoop->wsFlags ){
5167     pLoop->nOut = (LogEst)1;
5168     pWInfo->a[0].pWLoop = pLoop;
5169     assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
5170     pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
5171     pWInfo->a[0].iTabCur = iCur;
5172     pWInfo->nRowOut = 1;
5173     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
5174     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
5175       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
5176     }
5177     if( scan.iEquiv>1 ) pLoop->wsFlags |= WHERE_TRANSCONS;
5178 #ifdef SQLITE_DEBUG
5179     pLoop->cId = '0';
5180 #endif
5181 #ifdef WHERETRACE_ENABLED
5182     if( sqlite3WhereTrace ){
5183       sqlite3DebugPrintf("whereShortCut() used to compute solution\n");
5184     }
5185 #endif
5186     return 1;
5187   }
5188   return 0;
5189 }
5190 
5191 /*
5192 ** Helper function for exprIsDeterministic().
5193 */
5194 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
5195   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
5196     pWalker->eCode = 0;
5197     return WRC_Abort;
5198   }
5199   return WRC_Continue;
5200 }
5201 
5202 /*
5203 ** Return true if the expression contains no non-deterministic SQL
5204 ** functions. Do not consider non-deterministic SQL functions that are
5205 ** part of sub-select statements.
5206 */
5207 static int exprIsDeterministic(Expr *p){
5208   Walker w;
5209   memset(&w, 0, sizeof(w));
5210   w.eCode = 1;
5211   w.xExprCallback = exprNodeIsDeterministic;
5212   w.xSelectCallback = sqlite3SelectWalkFail;
5213   sqlite3WalkExpr(&w, p);
5214   return w.eCode;
5215 }
5216 
5217 
5218 #ifdef WHERETRACE_ENABLED
5219 /*
5220 ** Display all WhereLoops in pWInfo
5221 */
5222 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){
5223   if( sqlite3WhereTrace ){    /* Display all of the WhereLoop objects */
5224     WhereLoop *p;
5225     int i;
5226     static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
5227                                            "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
5228     for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
5229       p->cId = zLabel[i%(sizeof(zLabel)-1)];
5230       sqlite3WhereLoopPrint(p, pWC);
5231     }
5232   }
5233 }
5234 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C)
5235 #else
5236 # define WHERETRACE_ALL_LOOPS(W,C)
5237 #endif
5238 
5239 /* Attempt to omit tables from a join that do not affect the result.
5240 ** For a table to not affect the result, the following must be true:
5241 **
5242 **   1) The query must not be an aggregate.
5243 **   2) The table must be the RHS of a LEFT JOIN.
5244 **   3) Either the query must be DISTINCT, or else the ON or USING clause
5245 **      must contain a constraint that limits the scan of the table to
5246 **      at most a single row.
5247 **   4) The table must not be referenced by any part of the query apart
5248 **      from its own USING or ON clause.
5249 **
5250 ** For example, given:
5251 **
5252 **     CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
5253 **     CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
5254 **     CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
5255 **
5256 ** then table t2 can be omitted from the following:
5257 **
5258 **     SELECT v1, v3 FROM t1
5259 **       LEFT JOIN t2 ON (t1.ipk=t2.ipk)
5260 **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5261 **
5262 ** or from:
5263 **
5264 **     SELECT DISTINCT v1, v3 FROM t1
5265 **       LEFT JOIN t2
5266 **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5267 */
5268 static SQLITE_NOINLINE Bitmask whereOmitNoopJoin(
5269   WhereInfo *pWInfo,
5270   Bitmask notReady
5271 ){
5272   int i;
5273   Bitmask tabUsed;
5274 
5275   /* Preconditions checked by the caller */
5276   assert( pWInfo->nLevel>=2 );
5277   assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_OmitNoopJoin) );
5278 
5279   /* These two preconditions checked by the caller combine to guarantee
5280   ** condition (1) of the header comment */
5281   assert( pWInfo->pResultSet!=0 );
5282   assert( 0==(pWInfo->wctrlFlags & WHERE_AGG_DISTINCT) );
5283 
5284   tabUsed = sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pResultSet);
5285   if( pWInfo->pOrderBy ){
5286     tabUsed |= sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pOrderBy);
5287   }
5288   for(i=pWInfo->nLevel-1; i>=1; i--){
5289     WhereTerm *pTerm, *pEnd;
5290     SrcItem *pItem;
5291     WhereLoop *pLoop;
5292     pLoop = pWInfo->a[i].pWLoop;
5293     pItem = &pWInfo->pTabList->a[pLoop->iTab];
5294     if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ) continue;
5295     if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)==0
5296      && (pLoop->wsFlags & WHERE_ONEROW)==0
5297     ){
5298       continue;
5299     }
5300     if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
5301     pEnd = pWInfo->sWC.a + pWInfo->sWC.nTerm;
5302     for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){
5303       if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5304         if( !ExprHasProperty(pTerm->pExpr, EP_OuterON)
5305          || pTerm->pExpr->w.iJoin!=pItem->iCursor
5306         ){
5307           break;
5308         }
5309       }
5310     }
5311     if( pTerm<pEnd ) continue;
5312     WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
5313     notReady &= ~pLoop->maskSelf;
5314     for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){
5315       if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5316         pTerm->wtFlags |= TERM_CODED;
5317       }
5318     }
5319     if( i!=pWInfo->nLevel-1 ){
5320       int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
5321       memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
5322     }
5323     pWInfo->nLevel--;
5324     assert( pWInfo->nLevel>0 );
5325   }
5326   return notReady;
5327 }
5328 
5329 /*
5330 ** Check to see if there are any SEARCH loops that might benefit from
5331 ** using a Bloom filter.  Consider a Bloom filter if:
5332 **
5333 **   (1)  The SEARCH happens more than N times where N is the number
5334 **        of rows in the table that is being considered for the Bloom
5335 **        filter.
5336 **   (2)  Some searches are expected to find zero rows.  (This is determined
5337 **        by the WHERE_SELFCULL flag on the term.)
5338 **   (3)  Bloom-filter processing is not disabled.  (Checked by the
5339 **        caller.)
5340 **   (4)  The size of the table being searched is known by ANALYZE.
5341 **
5342 ** This block of code merely checks to see if a Bloom filter would be
5343 ** appropriate, and if so sets the WHERE_BLOOMFILTER flag on the
5344 ** WhereLoop.  The implementation of the Bloom filter comes further
5345 ** down where the code for each WhereLoop is generated.
5346 */
5347 static SQLITE_NOINLINE void whereCheckIfBloomFilterIsUseful(
5348   const WhereInfo *pWInfo
5349 ){
5350   int i;
5351   LogEst nSearch;
5352 
5353   assert( pWInfo->nLevel>=2 );
5354   assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_BloomFilter) );
5355   nSearch = pWInfo->a[0].pWLoop->nOut;
5356   for(i=1; i<pWInfo->nLevel; i++){
5357     WhereLoop *pLoop = pWInfo->a[i].pWLoop;
5358     const unsigned int reqFlags = (WHERE_SELFCULL|WHERE_COLUMN_EQ);
5359     if( (pLoop->wsFlags & reqFlags)==reqFlags
5360      /* vvvvvv--- Always the case if WHERE_COLUMN_EQ is defined */
5361      && ALWAYS((pLoop->wsFlags & (WHERE_IPK|WHERE_INDEXED))!=0)
5362     ){
5363       SrcItem *pItem = &pWInfo->pTabList->a[pLoop->iTab];
5364       Table *pTab = pItem->pTab;
5365       pTab->tabFlags |= TF_StatsUsed;
5366       if( nSearch > pTab->nRowLogEst
5367        && (pTab->tabFlags & TF_HasStat1)!=0
5368       ){
5369         testcase( pItem->fg.jointype & JT_LEFT );
5370         pLoop->wsFlags |= WHERE_BLOOMFILTER;
5371         pLoop->wsFlags &= ~WHERE_IDX_ONLY;
5372         WHERETRACE(0xffff, (
5373            "-> use Bloom-filter on loop %c because there are ~%.1e "
5374            "lookups into %s which has only ~%.1e rows\n",
5375            pLoop->cId, (double)sqlite3LogEstToInt(nSearch), pTab->zName,
5376            (double)sqlite3LogEstToInt(pTab->nRowLogEst)));
5377       }
5378     }
5379     nSearch += pLoop->nOut;
5380   }
5381 }
5382 
5383 /*
5384 ** Generate the beginning of the loop used for WHERE clause processing.
5385 ** The return value is a pointer to an opaque structure that contains
5386 ** information needed to terminate the loop.  Later, the calling routine
5387 ** should invoke sqlite3WhereEnd() with the return value of this function
5388 ** in order to complete the WHERE clause processing.
5389 **
5390 ** If an error occurs, this routine returns NULL.
5391 **
5392 ** The basic idea is to do a nested loop, one loop for each table in
5393 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
5394 ** same as a SELECT with only a single table in the FROM clause.)  For
5395 ** example, if the SQL is this:
5396 **
5397 **       SELECT * FROM t1, t2, t3 WHERE ...;
5398 **
5399 ** Then the code generated is conceptually like the following:
5400 **
5401 **      foreach row1 in t1 do       \    Code generated
5402 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
5403 **          foreach row3 in t3 do   /
5404 **            ...
5405 **          end                     \    Code generated
5406 **        end                        |-- by sqlite3WhereEnd()
5407 **      end                         /
5408 **
5409 ** Note that the loops might not be nested in the order in which they
5410 ** appear in the FROM clause if a different order is better able to make
5411 ** use of indices.  Note also that when the IN operator appears in
5412 ** the WHERE clause, it might result in additional nested loops for
5413 ** scanning through all values on the right-hand side of the IN.
5414 **
5415 ** There are Btree cursors associated with each table.  t1 uses cursor
5416 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
5417 ** And so forth.  This routine generates code to open those VDBE cursors
5418 ** and sqlite3WhereEnd() generates the code to close them.
5419 **
5420 ** The code that sqlite3WhereBegin() generates leaves the cursors named
5421 ** in pTabList pointing at their appropriate entries.  The [...] code
5422 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
5423 ** data from the various tables of the loop.
5424 **
5425 ** If the WHERE clause is empty, the foreach loops must each scan their
5426 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
5427 ** the tables have indices and there are terms in the WHERE clause that
5428 ** refer to those indices, a complete table scan can be avoided and the
5429 ** code will run much faster.  Most of the work of this routine is checking
5430 ** to see if there are indices that can be used to speed up the loop.
5431 **
5432 ** Terms of the WHERE clause are also used to limit which rows actually
5433 ** make it to the "..." in the middle of the loop.  After each "foreach",
5434 ** terms of the WHERE clause that use only terms in that loop and outer
5435 ** loops are evaluated and if false a jump is made around all subsequent
5436 ** inner loops (or around the "..." if the test occurs within the inner-
5437 ** most loop)
5438 **
5439 ** OUTER JOINS
5440 **
5441 ** An outer join of tables t1 and t2 is conceptally coded as follows:
5442 **
5443 **    foreach row1 in t1 do
5444 **      flag = 0
5445 **      foreach row2 in t2 do
5446 **        start:
5447 **          ...
5448 **          flag = 1
5449 **      end
5450 **      if flag==0 then
5451 **        move the row2 cursor to a null row
5452 **        goto start
5453 **      fi
5454 **    end
5455 **
5456 ** ORDER BY CLAUSE PROCESSING
5457 **
5458 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
5459 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
5460 ** if there is one.  If there is no ORDER BY clause or if this routine
5461 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
5462 **
5463 ** The iIdxCur parameter is the cursor number of an index.  If
5464 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
5465 ** to use for OR clause processing.  The WHERE clause should use this
5466 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
5467 ** the first cursor in an array of cursors for all indices.  iIdxCur should
5468 ** be used to compute the appropriate cursor depending on which index is
5469 ** used.
5470 */
5471 WhereInfo *sqlite3WhereBegin(
5472   Parse *pParse,          /* The parser context */
5473   SrcList *pTabList,      /* FROM clause: A list of all tables to be scanned */
5474   Expr *pWhere,           /* The WHERE clause */
5475   ExprList *pOrderBy,     /* An ORDER BY (or GROUP BY) clause, or NULL */
5476   ExprList *pResultSet,   /* Query result set.  Req'd for DISTINCT */
5477   Select *pLimit,         /* Use this LIMIT/OFFSET clause, if any */
5478   u16 wctrlFlags,         /* The WHERE_* flags defined in sqliteInt.h */
5479   int iAuxArg             /* If WHERE_OR_SUBCLAUSE is set, index cursor number
5480                           ** If WHERE_USE_LIMIT, then the limit amount */
5481 ){
5482   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
5483   int nTabList;              /* Number of elements in pTabList */
5484   WhereInfo *pWInfo;         /* Will become the return value of this function */
5485   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
5486   Bitmask notReady;          /* Cursors that are not yet positioned */
5487   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
5488   WhereMaskSet *pMaskSet;    /* The expression mask set */
5489   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
5490   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
5491   int ii;                    /* Loop counter */
5492   sqlite3 *db;               /* Database connection */
5493   int rc;                    /* Return code */
5494   u8 bFordelete = 0;         /* OPFLAG_FORDELETE or zero, as appropriate */
5495 
5496   assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
5497         (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
5498      && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5499   ));
5500 
5501   /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
5502   assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5503             || (wctrlFlags & WHERE_USE_LIMIT)==0 );
5504 
5505   /* Variable initialization */
5506   db = pParse->db;
5507   memset(&sWLB, 0, sizeof(sWLB));
5508 
5509   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
5510   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
5511   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
5512 
5513   /* The number of tables in the FROM clause is limited by the number of
5514   ** bits in a Bitmask
5515   */
5516   testcase( pTabList->nSrc==BMS );
5517   if( pTabList->nSrc>BMS ){
5518     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
5519     return 0;
5520   }
5521 
5522   /* This function normally generates a nested loop for all tables in
5523   ** pTabList.  But if the WHERE_OR_SUBCLAUSE flag is set, then we should
5524   ** only generate code for the first table in pTabList and assume that
5525   ** any cursors associated with subsequent tables are uninitialized.
5526   */
5527   nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
5528 
5529   /* Allocate and initialize the WhereInfo structure that will become the
5530   ** return value. A single allocation is used to store the WhereInfo
5531   ** struct, the contents of WhereInfo.a[], the WhereClause structure
5532   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
5533   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
5534   ** some architectures. Hence the ROUND8() below.
5535   */
5536   nByteWInfo = ROUND8P(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
5537   pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
5538   if( db->mallocFailed ){
5539     sqlite3DbFree(db, pWInfo);
5540     pWInfo = 0;
5541     goto whereBeginError;
5542   }
5543   pWInfo->pParse = pParse;
5544   pWInfo->pTabList = pTabList;
5545   pWInfo->pOrderBy = pOrderBy;
5546   pWInfo->pWhere = pWhere;
5547   pWInfo->pResultSet = pResultSet;
5548   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
5549   pWInfo->nLevel = nTabList;
5550   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse);
5551   pWInfo->wctrlFlags = wctrlFlags;
5552   pWInfo->iLimit = iAuxArg;
5553   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
5554 #ifndef SQLITE_OMIT_VIRTUALTABLE
5555   pWInfo->pLimit = pLimit;
5556 #endif
5557   memset(&pWInfo->nOBSat, 0,
5558          offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
5559   memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
5560   assert( pWInfo->eOnePass==ONEPASS_OFF );  /* ONEPASS defaults to OFF */
5561   pMaskSet = &pWInfo->sMaskSet;
5562   pMaskSet->n = 0;
5563   pMaskSet->ix[0] = -99; /* Initialize ix[0] to a value that can never be
5564                          ** a valid cursor number, to avoid an initial
5565                          ** test for pMaskSet->n==0 in sqlite3WhereGetMask() */
5566   sWLB.pWInfo = pWInfo;
5567   sWLB.pWC = &pWInfo->sWC;
5568   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
5569   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
5570   whereLoopInit(sWLB.pNew);
5571 #ifdef SQLITE_DEBUG
5572   sWLB.pNew->cId = '*';
5573 #endif
5574 
5575   /* Split the WHERE clause into separate subexpressions where each
5576   ** subexpression is separated by an AND operator.
5577   */
5578   sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
5579   sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
5580 
5581   /* Special case: No FROM clause
5582   */
5583   if( nTabList==0 ){
5584     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
5585     if( (wctrlFlags & WHERE_WANT_DISTINCT)!=0
5586      && OptimizationEnabled(db, SQLITE_DistinctOpt)
5587     ){
5588       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
5589     }
5590     ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
5591   }else{
5592     /* Assign a bit from the bitmask to every term in the FROM clause.
5593     **
5594     ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
5595     **
5596     ** The rule of the previous sentence ensures thta if X is the bitmask for
5597     ** a table T, then X-1 is the bitmask for all other tables to the left of T.
5598     ** Knowing the bitmask for all tables to the left of a left join is
5599     ** important.  Ticket #3015.
5600     **
5601     ** Note that bitmasks are created for all pTabList->nSrc tables in
5602     ** pTabList, not just the first nTabList tables.  nTabList is normally
5603     ** equal to pTabList->nSrc but might be shortened to 1 if the
5604     ** WHERE_OR_SUBCLAUSE flag is set.
5605     */
5606     ii = 0;
5607     do{
5608       createMask(pMaskSet, pTabList->a[ii].iCursor);
5609       sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
5610     }while( (++ii)<pTabList->nSrc );
5611   #ifdef SQLITE_DEBUG
5612     {
5613       Bitmask mx = 0;
5614       for(ii=0; ii<pTabList->nSrc; ii++){
5615         Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
5616         assert( m>=mx );
5617         mx = m;
5618       }
5619     }
5620   #endif
5621   }
5622 
5623   /* Analyze all of the subexpressions. */
5624   sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
5625   sqlite3WhereAddLimit(&pWInfo->sWC, pLimit);
5626   if( pParse->nErr ) goto whereBeginError;
5627 
5628   /* Special case: WHERE terms that do not refer to any tables in the join
5629   ** (constant expressions). Evaluate each such term, and jump over all the
5630   ** generated code if the result is not true.
5631   **
5632   ** Do not do this if the expression contains non-deterministic functions
5633   ** that are not within a sub-select. This is not strictly required, but
5634   ** preserves SQLite's legacy behaviour in the following two cases:
5635   **
5636   **   FROM ... WHERE random()>0;           -- eval random() once per row
5637   **   FROM ... WHERE (SELECT random())>0;  -- eval random() once overall
5638   */
5639   for(ii=0; ii<sWLB.pWC->nBase; ii++){
5640     WhereTerm *pT = &sWLB.pWC->a[ii];
5641     if( pT->wtFlags & TERM_VIRTUAL ) continue;
5642     if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
5643       sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
5644       pT->wtFlags |= TERM_CODED;
5645     }
5646   }
5647 
5648   if( wctrlFlags & WHERE_WANT_DISTINCT ){
5649     if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
5650       /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
5651       ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
5652       wctrlFlags &= ~WHERE_WANT_DISTINCT;
5653       pWInfo->wctrlFlags &= ~WHERE_WANT_DISTINCT;
5654     }else if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
5655       /* The DISTINCT marking is pointless.  Ignore it. */
5656       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
5657     }else if( pOrderBy==0 ){
5658       /* Try to ORDER BY the result set to make distinct processing easier */
5659       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
5660       pWInfo->pOrderBy = pResultSet;
5661     }
5662   }
5663 
5664   /* Construct the WhereLoop objects */
5665 #if defined(WHERETRACE_ENABLED)
5666   if( sqlite3WhereTrace & 0xffff ){
5667     sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
5668     if( wctrlFlags & WHERE_USE_LIMIT ){
5669       sqlite3DebugPrintf(", limit: %d", iAuxArg);
5670     }
5671     sqlite3DebugPrintf(")\n");
5672     if( sqlite3WhereTrace & 0x100 ){
5673       Select sSelect;
5674       memset(&sSelect, 0, sizeof(sSelect));
5675       sSelect.selFlags = SF_WhereBegin;
5676       sSelect.pSrc = pTabList;
5677       sSelect.pWhere = pWhere;
5678       sSelect.pOrderBy = pOrderBy;
5679       sSelect.pEList = pResultSet;
5680       sqlite3TreeViewSelect(0, &sSelect, 0);
5681     }
5682   }
5683   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5684     sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
5685     sqlite3WhereClausePrint(sWLB.pWC);
5686   }
5687 #endif
5688 
5689   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
5690     rc = whereLoopAddAll(&sWLB);
5691     if( rc ) goto whereBeginError;
5692 
5693 #ifdef SQLITE_ENABLE_STAT4
5694     /* If one or more WhereTerm.truthProb values were used in estimating
5695     ** loop parameters, but then those truthProb values were subsequently
5696     ** changed based on STAT4 information while computing subsequent loops,
5697     ** then we need to rerun the whole loop building process so that all
5698     ** loops will be built using the revised truthProb values. */
5699     if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){
5700       WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
5701       WHERETRACE(0xffff,
5702            ("**** Redo all loop computations due to"
5703             " TERM_HIGHTRUTH changes ****\n"));
5704       while( pWInfo->pLoops ){
5705         WhereLoop *p = pWInfo->pLoops;
5706         pWInfo->pLoops = p->pNextLoop;
5707         whereLoopDelete(db, p);
5708       }
5709       rc = whereLoopAddAll(&sWLB);
5710       if( rc ) goto whereBeginError;
5711     }
5712 #endif
5713     WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
5714 
5715     wherePathSolver(pWInfo, 0);
5716     if( db->mallocFailed ) goto whereBeginError;
5717     if( pWInfo->pOrderBy ){
5718        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
5719        if( db->mallocFailed ) goto whereBeginError;
5720     }
5721   }
5722   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
5723      pWInfo->revMask = ALLBITS;
5724   }
5725   if( pParse->nErr ){
5726     goto whereBeginError;
5727   }
5728   assert( db->mallocFailed==0 );
5729 #ifdef WHERETRACE_ENABLED
5730   if( sqlite3WhereTrace ){
5731     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
5732     if( pWInfo->nOBSat>0 ){
5733       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
5734     }
5735     switch( pWInfo->eDistinct ){
5736       case WHERE_DISTINCT_UNIQUE: {
5737         sqlite3DebugPrintf("  DISTINCT=unique");
5738         break;
5739       }
5740       case WHERE_DISTINCT_ORDERED: {
5741         sqlite3DebugPrintf("  DISTINCT=ordered");
5742         break;
5743       }
5744       case WHERE_DISTINCT_UNORDERED: {
5745         sqlite3DebugPrintf("  DISTINCT=unordered");
5746         break;
5747       }
5748     }
5749     sqlite3DebugPrintf("\n");
5750     for(ii=0; ii<pWInfo->nLevel; ii++){
5751       sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
5752     }
5753   }
5754 #endif
5755 
5756   /* Attempt to omit tables from a join that do not affect the result.
5757   ** See the comment on whereOmitNoopJoin() for further information.
5758   **
5759   ** This query optimization is factored out into a separate "no-inline"
5760   ** procedure to keep the sqlite3WhereBegin() procedure from becoming
5761   ** too large.  If sqlite3WhereBegin() becomes too large, that prevents
5762   ** some C-compiler optimizers from in-lining the
5763   ** sqlite3WhereCodeOneLoopStart() procedure, and it is important to
5764   ** in-line sqlite3WhereCodeOneLoopStart() for performance reasons.
5765   */
5766   notReady = ~(Bitmask)0;
5767   if( pWInfo->nLevel>=2
5768    && pResultSet!=0                         /* these two combine to guarantee */
5769    && 0==(wctrlFlags & WHERE_AGG_DISTINCT)  /* condition (1) above */
5770    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
5771   ){
5772     notReady = whereOmitNoopJoin(pWInfo, notReady);
5773     nTabList = pWInfo->nLevel;
5774     assert( nTabList>0 );
5775   }
5776 
5777   /* Check to see if there are any SEARCH loops that might benefit from
5778   ** using a Bloom filter.
5779   */
5780   if( pWInfo->nLevel>=2
5781    && OptimizationEnabled(db, SQLITE_BloomFilter)
5782   ){
5783     whereCheckIfBloomFilterIsUseful(pWInfo);
5784   }
5785 
5786 #if defined(WHERETRACE_ENABLED)
5787   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5788     sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
5789     sqlite3WhereClausePrint(sWLB.pWC);
5790   }
5791   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
5792 #endif
5793   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
5794 
5795   /* If the caller is an UPDATE or DELETE statement that is requesting
5796   ** to use a one-pass algorithm, determine if this is appropriate.
5797   **
5798   ** A one-pass approach can be used if the caller has requested one
5799   ** and either (a) the scan visits at most one row or (b) each
5800   ** of the following are true:
5801   **
5802   **   * the caller has indicated that a one-pass approach can be used
5803   **     with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
5804   **   * the table is not a virtual table, and
5805   **   * either the scan does not use the OR optimization or the caller
5806   **     is a DELETE operation (WHERE_DUPLICATES_OK is only specified
5807   **     for DELETE).
5808   **
5809   ** The last qualification is because an UPDATE statement uses
5810   ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
5811   ** use a one-pass approach, and this is not set accurately for scans
5812   ** that use the OR optimization.
5813   */
5814   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
5815   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
5816     int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
5817     int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
5818     assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) );
5819     if( bOnerow || (
5820         0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
5821      && !IsVirtual(pTabList->a[0].pTab)
5822      && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
5823     )){
5824       pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
5825       if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
5826         if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
5827           bFordelete = OPFLAG_FORDELETE;
5828         }
5829         pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
5830       }
5831     }
5832   }
5833 
5834   /* Open all tables in the pTabList and any indices selected for
5835   ** searching those tables.
5836   */
5837   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
5838     Table *pTab;     /* Table to open */
5839     int iDb;         /* Index of database containing table/index */
5840     SrcItem *pTabItem;
5841 
5842     pTabItem = &pTabList->a[pLevel->iFrom];
5843     pTab = pTabItem->pTab;
5844     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5845     pLoop = pLevel->pWLoop;
5846     if( (pTab->tabFlags & TF_Ephemeral)!=0 || IsView(pTab) ){
5847       /* Do nothing */
5848     }else
5849 #ifndef SQLITE_OMIT_VIRTUALTABLE
5850     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
5851       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
5852       int iCur = pTabItem->iCursor;
5853       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
5854     }else if( IsVirtual(pTab) ){
5855       /* noop */
5856     }else
5857 #endif
5858     if( ((pLoop->wsFlags & WHERE_IDX_ONLY)==0
5859          && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0)
5860      || (pTabItem->fg.jointype & (JT_LTORJ|JT_RIGHT))!=0
5861     ){
5862       int op = OP_OpenRead;
5863       if( pWInfo->eOnePass!=ONEPASS_OFF ){
5864         op = OP_OpenWrite;
5865         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
5866       };
5867       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
5868       assert( pTabItem->iCursor==pLevel->iTabCur );
5869       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
5870       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
5871       if( pWInfo->eOnePass==ONEPASS_OFF
5872        && pTab->nCol<BMS
5873        && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0
5874        && (pLoop->wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))==0
5875       ){
5876         /* If we know that only a prefix of the record will be used,
5877         ** it is advantageous to reduce the "column count" field in
5878         ** the P4 operand of the OP_OpenRead/Write opcode. */
5879         Bitmask b = pTabItem->colUsed;
5880         int n = 0;
5881         for(; b; b=b>>1, n++){}
5882         sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
5883         assert( n<=pTab->nCol );
5884       }
5885 #ifdef SQLITE_ENABLE_CURSOR_HINTS
5886       if( pLoop->u.btree.pIndex!=0 ){
5887         sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
5888       }else
5889 #endif
5890       {
5891         sqlite3VdbeChangeP5(v, bFordelete);
5892       }
5893 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5894       sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
5895                             (const u8*)&pTabItem->colUsed, P4_INT64);
5896 #endif
5897     }else{
5898       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5899     }
5900     if( pLoop->wsFlags & WHERE_INDEXED ){
5901       Index *pIx = pLoop->u.btree.pIndex;
5902       int iIndexCur;
5903       int op = OP_OpenRead;
5904       /* iAuxArg is always set to a positive value if ONEPASS is possible */
5905       assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
5906       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
5907        && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
5908       ){
5909         /* This is one term of an OR-optimization using the PRIMARY KEY of a
5910         ** WITHOUT ROWID table.  No need for a separate index */
5911         iIndexCur = pLevel->iTabCur;
5912         op = 0;
5913       }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
5914         Index *pJ = pTabItem->pTab->pIndex;
5915         iIndexCur = iAuxArg;
5916         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
5917         while( ALWAYS(pJ) && pJ!=pIx ){
5918           iIndexCur++;
5919           pJ = pJ->pNext;
5920         }
5921         op = OP_OpenWrite;
5922         pWInfo->aiCurOnePass[1] = iIndexCur;
5923       }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
5924         iIndexCur = iAuxArg;
5925         op = OP_ReopenIdx;
5926       }else{
5927         iIndexCur = pParse->nTab++;
5928       }
5929       pLevel->iIdxCur = iIndexCur;
5930       assert( pIx!=0 );
5931       assert( pIx->pSchema==pTab->pSchema );
5932       assert( iIndexCur>=0 );
5933       if( op ){
5934         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
5935         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
5936         if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
5937          && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
5938          && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0
5939          && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
5940          && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
5941          && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
5942         ){
5943           sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ);
5944         }
5945         VdbeComment((v, "%s", pIx->zName));
5946 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5947         {
5948           u64 colUsed = 0;
5949           int ii, jj;
5950           for(ii=0; ii<pIx->nColumn; ii++){
5951             jj = pIx->aiColumn[ii];
5952             if( jj<0 ) continue;
5953             if( jj>63 ) jj = 63;
5954             if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
5955             colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
5956           }
5957           sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
5958                                 (u8*)&colUsed, P4_INT64);
5959         }
5960 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
5961       }
5962     }
5963     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
5964     if( (pTabItem->fg.jointype & JT_RIGHT)!=0
5965      && (pLevel->pRJ = sqlite3WhereMalloc(pWInfo, sizeof(WhereRightJoin)))!=0
5966     ){
5967       WhereRightJoin *pRJ = pLevel->pRJ;
5968       pRJ->iMatch = pParse->nTab++;
5969       pRJ->regBloom = ++pParse->nMem;
5970       sqlite3VdbeAddOp2(v, OP_Blob, 65536, pRJ->regBloom);
5971       pRJ->regReturn = ++pParse->nMem;
5972       sqlite3VdbeAddOp2(v, OP_Null, 0, pRJ->regReturn);
5973       assert( pTab==pTabItem->pTab );
5974       if( HasRowid(pTab) ){
5975         KeyInfo *pInfo;
5976         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, 1);
5977         pInfo = sqlite3KeyInfoAlloc(pParse->db, 1, 0);
5978         if( pInfo ){
5979           pInfo->aColl[0] = 0;
5980           pInfo->aSortFlags[0] = 0;
5981           sqlite3VdbeAppendP4(v, pInfo, P4_KEYINFO);
5982         }
5983       }else{
5984         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
5985         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, pPk->nKeyCol);
5986         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
5987       }
5988       pLoop->wsFlags &= ~WHERE_IDX_ONLY;
5989       /* The nature of RIGHT JOIN processing is such that it messes up
5990       ** the output order.  So omit any ORDER BY/GROUP BY elimination
5991       ** optimizations.  We need to do an actual sort for RIGHT JOIN. */
5992       pWInfo->nOBSat = 0;
5993       pWInfo->eDistinct = WHERE_DISTINCT_UNORDERED;
5994     }
5995   }
5996   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
5997   if( db->mallocFailed ) goto whereBeginError;
5998 
5999   /* Generate the code to do the search.  Each iteration of the for
6000   ** loop below generates code for a single nested loop of the VM
6001   ** program.
6002   */
6003   for(ii=0; ii<nTabList; ii++){
6004     int addrExplain;
6005     int wsFlags;
6006     SrcItem *pSrc;
6007     if( pParse->nErr ) goto whereBeginError;
6008     pLevel = &pWInfo->a[ii];
6009     wsFlags = pLevel->pWLoop->wsFlags;
6010     pSrc = &pTabList->a[pLevel->iFrom];
6011     if( pSrc->fg.isMaterialized ){
6012       if( pSrc->fg.isCorrelated ){
6013         sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub);
6014       }else{
6015         int iOnce = sqlite3VdbeAddOp0(v, OP_Once);  VdbeCoverage(v);
6016         sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub);
6017         sqlite3VdbeJumpHere(v, iOnce);
6018       }
6019     }
6020     if( (wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))!=0 ){
6021       if( (wsFlags & WHERE_AUTO_INDEX)!=0 ){
6022 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
6023         constructAutomaticIndex(pParse, &pWInfo->sWC,
6024                   &pTabList->a[pLevel->iFrom], notReady, pLevel);
6025 #endif
6026       }else{
6027         sqlite3ConstructBloomFilter(pWInfo, ii, pLevel, notReady);
6028       }
6029       if( db->mallocFailed ) goto whereBeginError;
6030     }
6031     addrExplain = sqlite3WhereExplainOneScan(
6032         pParse, pTabList, pLevel, wctrlFlags
6033     );
6034     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
6035     notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady);
6036     pWInfo->iContinue = pLevel->addrCont;
6037     if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
6038       sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
6039     }
6040   }
6041 
6042   /* Done. */
6043   VdbeModuleComment((v, "Begin WHERE-core"));
6044   pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v);
6045   return pWInfo;
6046 
6047   /* Jump here if malloc fails */
6048 whereBeginError:
6049   if( pWInfo ){
6050     testcase( pWInfo->pExprMods!=0 );
6051     whereUndoExprMods(pWInfo);
6052     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
6053     whereInfoFree(db, pWInfo);
6054   }
6055   return 0;
6056 }
6057 
6058 /*
6059 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
6060 ** index rather than the main table.  In SQLITE_DEBUG mode, we want
6061 ** to trace those changes if PRAGMA vdbe_addoptrace=on.  This routine
6062 ** does that.
6063 */
6064 #ifndef SQLITE_DEBUG
6065 # define OpcodeRewriteTrace(D,K,P) /* no-op */
6066 #else
6067 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
6068   static void sqlite3WhereOpcodeRewriteTrace(
6069     sqlite3 *db,
6070     int pc,
6071     VdbeOp *pOp
6072   ){
6073     if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
6074     sqlite3VdbePrintOp(0, pc, pOp);
6075   }
6076 #endif
6077 
6078 #ifdef SQLITE_DEBUG
6079 /*
6080 ** Return true if cursor iCur is opened by instruction k of the
6081 ** bytecode.  Used inside of assert() only.
6082 */
6083 static int cursorIsOpen(Vdbe *v, int iCur, int k){
6084   while( k>=0 ){
6085     VdbeOp *pOp = sqlite3VdbeGetOp(v,k--);
6086     if( pOp->p1!=iCur ) continue;
6087     if( pOp->opcode==OP_Close ) return 0;
6088     if( pOp->opcode==OP_OpenRead ) return 1;
6089     if( pOp->opcode==OP_OpenWrite ) return 1;
6090     if( pOp->opcode==OP_OpenDup ) return 1;
6091     if( pOp->opcode==OP_OpenAutoindex ) return 1;
6092     if( pOp->opcode==OP_OpenEphemeral ) return 1;
6093   }
6094   return 0;
6095 }
6096 #endif /* SQLITE_DEBUG */
6097 
6098 /*
6099 ** Generate the end of the WHERE loop.  See comments on
6100 ** sqlite3WhereBegin() for additional information.
6101 */
6102 void sqlite3WhereEnd(WhereInfo *pWInfo){
6103   Parse *pParse = pWInfo->pParse;
6104   Vdbe *v = pParse->pVdbe;
6105   int i;
6106   WhereLevel *pLevel;
6107   WhereLoop *pLoop;
6108   SrcList *pTabList = pWInfo->pTabList;
6109   sqlite3 *db = pParse->db;
6110   int iEnd = sqlite3VdbeCurrentAddr(v);
6111   int nRJ = 0;
6112 
6113   /* Generate loop termination code.
6114   */
6115   VdbeModuleComment((v, "End WHERE-core"));
6116   for(i=pWInfo->nLevel-1; i>=0; i--){
6117     int addr;
6118     pLevel = &pWInfo->a[i];
6119     if( pLevel->pRJ ){
6120       /* Terminate the subroutine that forms the interior of the loop of
6121       ** the RIGHT JOIN table */
6122       WhereRightJoin *pRJ = pLevel->pRJ;
6123       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
6124       pLevel->addrCont = 0;
6125       pRJ->endSubrtn = sqlite3VdbeCurrentAddr(v);
6126       sqlite3VdbeAddOp3(v, OP_Return, pRJ->regReturn, pRJ->addrSubrtn, 1);
6127       VdbeCoverage(v);
6128       nRJ++;
6129     }
6130     pLoop = pLevel->pWLoop;
6131     if( pLevel->op!=OP_Noop ){
6132 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
6133       int addrSeek = 0;
6134       Index *pIdx;
6135       int n;
6136       if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
6137        && i==pWInfo->nLevel-1  /* Ticket [ef9318757b152e3] 2017-10-21 */
6138        && (pLoop->wsFlags & WHERE_INDEXED)!=0
6139        && (pIdx = pLoop->u.btree.pIndex)->hasStat1
6140        && (n = pLoop->u.btree.nDistinctCol)>0
6141        && pIdx->aiRowLogEst[n]>=36
6142       ){
6143         int r1 = pParse->nMem+1;
6144         int j, op;
6145         for(j=0; j<n; j++){
6146           sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
6147         }
6148         pParse->nMem += n+1;
6149         op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
6150         addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
6151         VdbeCoverageIf(v, op==OP_SeekLT);
6152         VdbeCoverageIf(v, op==OP_SeekGT);
6153         sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
6154       }
6155 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
6156       /* The common case: Advance to the next row */
6157       if( pLevel->addrCont ) sqlite3VdbeResolveLabel(v, pLevel->addrCont);
6158       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
6159       sqlite3VdbeChangeP5(v, pLevel->p5);
6160       VdbeCoverage(v);
6161       VdbeCoverageIf(v, pLevel->op==OP_Next);
6162       VdbeCoverageIf(v, pLevel->op==OP_Prev);
6163       VdbeCoverageIf(v, pLevel->op==OP_VNext);
6164       if( pLevel->regBignull ){
6165         sqlite3VdbeResolveLabel(v, pLevel->addrBignull);
6166         sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1);
6167         VdbeCoverage(v);
6168       }
6169 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
6170       if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
6171 #endif
6172     }else if( pLevel->addrCont ){
6173       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
6174     }
6175     if( (pLoop->wsFlags & WHERE_IN_ABLE)!=0 && pLevel->u.in.nIn>0 ){
6176       struct InLoop *pIn;
6177       int j;
6178       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
6179       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
6180         assert( sqlite3VdbeGetOp(v, pIn->addrInTop+1)->opcode==OP_IsNull
6181                  || pParse->db->mallocFailed );
6182         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
6183         if( pIn->eEndLoopOp!=OP_Noop ){
6184           if( pIn->nPrefix ){
6185             int bEarlyOut =
6186                 (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
6187                  && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0;
6188             if( pLevel->iLeftJoin ){
6189               /* For LEFT JOIN queries, cursor pIn->iCur may not have been
6190               ** opened yet. This occurs for WHERE clauses such as
6191               ** "a = ? AND b IN (...)", where the index is on (a, b). If
6192               ** the RHS of the (a=?) is NULL, then the "b IN (...)" may
6193               ** never have been coded, but the body of the loop run to
6194               ** return the null-row. So, if the cursor is not open yet,
6195               ** jump over the OP_Next or OP_Prev instruction about to
6196               ** be coded.  */
6197               sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur,
6198                   sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut);
6199               VdbeCoverage(v);
6200             }
6201             if( bEarlyOut ){
6202               sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
6203                   sqlite3VdbeCurrentAddr(v)+2,
6204                   pIn->iBase, pIn->nPrefix);
6205               VdbeCoverage(v);
6206               /* Retarget the OP_IsNull against the left operand of IN so
6207               ** it jumps past the OP_IfNoHope.  This is because the
6208               ** OP_IsNull also bypasses the OP_Affinity opcode that is
6209               ** required by OP_IfNoHope. */
6210               sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
6211             }
6212           }
6213           sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
6214           VdbeCoverage(v);
6215           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
6216           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
6217         }
6218         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
6219       }
6220     }
6221     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
6222     if( pLevel->pRJ ){
6223       sqlite3VdbeAddOp3(v, OP_Return, pLevel->pRJ->regReturn, 0, 1);
6224       VdbeCoverage(v);
6225     }
6226     if( pLevel->addrSkip ){
6227       sqlite3VdbeGoto(v, pLevel->addrSkip);
6228       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
6229       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
6230       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
6231     }
6232 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
6233     if( pLevel->addrLikeRep ){
6234       sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
6235                         pLevel->addrLikeRep);
6236       VdbeCoverage(v);
6237     }
6238 #endif
6239     if( pLevel->iLeftJoin ){
6240       int ws = pLoop->wsFlags;
6241       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
6242       assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
6243       if( (ws & WHERE_IDX_ONLY)==0 ){
6244         assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
6245         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
6246       }
6247       if( (ws & WHERE_INDEXED)
6248        || ((ws & WHERE_MULTI_OR) && pLevel->u.pCoveringIdx)
6249       ){
6250         if( ws & WHERE_MULTI_OR ){
6251           Index *pIx = pLevel->u.pCoveringIdx;
6252           int iDb = sqlite3SchemaToIndex(db, pIx->pSchema);
6253           sqlite3VdbeAddOp3(v, OP_ReopenIdx, pLevel->iIdxCur, pIx->tnum, iDb);
6254           sqlite3VdbeSetP4KeyInfo(pParse, pIx);
6255         }
6256         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
6257       }
6258       if( pLevel->op==OP_Return ){
6259         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
6260       }else{
6261         sqlite3VdbeGoto(v, pLevel->addrFirst);
6262       }
6263       sqlite3VdbeJumpHere(v, addr);
6264     }
6265     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
6266                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
6267   }
6268 
6269   assert( pWInfo->nLevel<=pTabList->nSrc );
6270   if( pWInfo->pExprMods ) whereUndoExprMods(pWInfo);
6271   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
6272     int k, last;
6273     VdbeOp *pOp, *pLastOp;
6274     Index *pIdx = 0;
6275     SrcItem *pTabItem = &pTabList->a[pLevel->iFrom];
6276     Table *pTab = pTabItem->pTab;
6277     assert( pTab!=0 );
6278     pLoop = pLevel->pWLoop;
6279 
6280     /* Do RIGHT JOIN processing.  Generate code that will output the
6281     ** unmatched rows of the right operand of the RIGHT JOIN with
6282     ** all of the columns of the left operand set to NULL.
6283     */
6284     if( pLevel->pRJ ){
6285       sqlite3WhereRightJoinLoop(pWInfo, i, pLevel);
6286       continue;
6287     }
6288 
6289     /* For a co-routine, change all OP_Column references to the table of
6290     ** the co-routine into OP_Copy of result contained in a register.
6291     ** OP_Rowid becomes OP_Null.
6292     */
6293     if( pTabItem->fg.viaCoroutine ){
6294       testcase( pParse->db->mallocFailed );
6295       translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
6296                             pTabItem->regResult, 0);
6297       continue;
6298     }
6299 
6300     /* If this scan uses an index, make VDBE code substitutions to read data
6301     ** from the index instead of from the table where possible.  In some cases
6302     ** this optimization prevents the table from ever being read, which can
6303     ** yield a significant performance boost.
6304     **
6305     ** Calls to the code generator in between sqlite3WhereBegin and
6306     ** sqlite3WhereEnd will have created code that references the table
6307     ** directly.  This loop scans all that code looking for opcodes
6308     ** that reference the table and converts them into opcodes that
6309     ** reference the index.
6310     */
6311     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
6312       pIdx = pLoop->u.btree.pIndex;
6313     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
6314       pIdx = pLevel->u.pCoveringIdx;
6315     }
6316     if( pIdx
6317      && !db->mallocFailed
6318     ){
6319       if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){
6320         last = iEnd;
6321       }else{
6322         last = pWInfo->iEndWhere;
6323       }
6324       k = pLevel->addrBody + 1;
6325 #ifdef SQLITE_DEBUG
6326       if( db->flags & SQLITE_VdbeAddopTrace ){
6327         printf("TRANSLATE opcodes in range %d..%d\n", k, last-1);
6328       }
6329       /* Proof that the "+1" on the k value above is safe */
6330       pOp = sqlite3VdbeGetOp(v, k - 1);
6331       assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur );
6332       assert( pOp->opcode!=OP_Rowid  || pOp->p1!=pLevel->iTabCur );
6333       assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur );
6334 #endif
6335       pOp = sqlite3VdbeGetOp(v, k);
6336       pLastOp = pOp + (last - k);
6337       assert( pOp<=pLastOp );
6338       do{
6339         if( pOp->p1!=pLevel->iTabCur ){
6340           /* no-op */
6341         }else if( pOp->opcode==OP_Column
6342 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6343          || pOp->opcode==OP_Offset
6344 #endif
6345         ){
6346           int x = pOp->p2;
6347           assert( pIdx->pTable==pTab );
6348 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6349           if( pOp->opcode==OP_Offset ){
6350             /* Do not need to translate the column number */
6351           }else
6352 #endif
6353           if( !HasRowid(pTab) ){
6354             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
6355             x = pPk->aiColumn[x];
6356             assert( x>=0 );
6357           }else{
6358             testcase( x!=sqlite3StorageColumnToTable(pTab,x) );
6359             x = sqlite3StorageColumnToTable(pTab,x);
6360           }
6361           x = sqlite3TableColumnToIndex(pIdx, x);
6362           if( x>=0 ){
6363             pOp->p2 = x;
6364             pOp->p1 = pLevel->iIdxCur;
6365             OpcodeRewriteTrace(db, k, pOp);
6366           }else{
6367             /* Unable to translate the table reference into an index
6368             ** reference.  Verify that this is harmless - that the
6369             ** table being referenced really is open.
6370             */
6371 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6372             assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
6373                  || cursorIsOpen(v,pOp->p1,k)
6374                  || pOp->opcode==OP_Offset
6375             );
6376 #else
6377             assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
6378                  || cursorIsOpen(v,pOp->p1,k)
6379             );
6380 #endif
6381           }
6382         }else if( pOp->opcode==OP_Rowid ){
6383           pOp->p1 = pLevel->iIdxCur;
6384           pOp->opcode = OP_IdxRowid;
6385           OpcodeRewriteTrace(db, k, pOp);
6386         }else if( pOp->opcode==OP_IfNullRow ){
6387           pOp->p1 = pLevel->iIdxCur;
6388           OpcodeRewriteTrace(db, k, pOp);
6389         }
6390 #ifdef SQLITE_DEBUG
6391         k++;
6392 #endif
6393       }while( (++pOp)<pLastOp );
6394 #ifdef SQLITE_DEBUG
6395       if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
6396 #endif
6397     }
6398   }
6399 
6400   /* The "break" point is here, just past the end of the outer loop.
6401   ** Set it.
6402   */
6403   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
6404 
6405   /* Final cleanup
6406   */
6407   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
6408   whereInfoFree(db, pWInfo);
6409   pParse->withinRJSubrtn -= nRJ;
6410   return;
6411 }
6412