1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 ** 19 ** $Id: where.c,v 1.355 2008/12/30 17:55:00 drh Exp $ 20 */ 21 #include "sqliteInt.h" 22 23 /* 24 ** Trace output macros 25 */ 26 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 27 int sqlite3WhereTrace = 0; 28 #endif 29 #if 0 30 # define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X 31 #else 32 # define WHERETRACE(X) 33 #endif 34 35 /* Forward reference 36 */ 37 typedef struct WhereClause WhereClause; 38 typedef struct WhereMaskSet WhereMaskSet; 39 typedef struct WhereOrInfo WhereOrInfo; 40 typedef struct WhereAndInfo WhereAndInfo; 41 typedef struct WhereCost WhereCost; 42 43 /* 44 ** The query generator uses an array of instances of this structure to 45 ** help it analyze the subexpressions of the WHERE clause. Each WHERE 46 ** clause subexpression is separated from the others by AND operators. 47 ** (Note: the same data structure is also reused to hold a group of terms 48 ** separated by OR operators. But at the top-level, everything is AND 49 ** separated.) 50 ** 51 ** All WhereTerms are collected into a single WhereClause structure. 52 ** The following identity holds: 53 ** 54 ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm 55 ** 56 ** When a term is of the form: 57 ** 58 ** X <op> <expr> 59 ** 60 ** where X is a column name and <op> is one of certain operators, 61 ** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the 62 ** cursor number and column number for X. WhereTerm.eOperator records 63 ** the <op> using a bitmask encoding defined by WO_xxx below. The 64 ** use of a bitmask encoding for the operator allows us to search 65 ** quickly for terms that match any of several different operators. 66 ** 67 ** A WhereTerm might also be two or more subterms connected by OR: 68 ** 69 ** (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR .... 70 ** 71 ** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR 72 ** and the WhereTerm.u.pOrInfo field points to auxiliary information that 73 ** is collected about the 74 ** 75 ** If a term in the WHERE clause does not match either of the two previous 76 ** categories, then eOperator==0. The WhereTerm.pExpr field is still set 77 ** to the original subexpression content and wtFlags is set up appropriately 78 ** but no other fields in the WhereTerm object are meaningful. 79 ** 80 ** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers, 81 ** but they do so indirectly. A single WhereMaskSet structure translates 82 ** cursor number into bits and the translated bit is stored in the prereq 83 ** fields. The translation is used in order to maximize the number of 84 ** bits that will fit in a Bitmask. The VDBE cursor numbers might be 85 ** spread out over the non-negative integers. For example, the cursor 86 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The WhereMaskSet 87 ** translates these sparse cursor numbers into consecutive integers 88 ** beginning with 0 in order to make the best possible use of the available 89 ** bits in the Bitmask. So, in the example above, the cursor numbers 90 ** would be mapped into integers 0 through 7. 91 ** 92 ** The number of terms in a join is limited by the number of bits 93 ** in prereqRight and prereqAll. The default is 64 bits, hence SQLite 94 ** is only able to process joins with 64 or fewer tables. 95 */ 96 typedef struct WhereTerm WhereTerm; 97 struct WhereTerm { 98 Expr *pExpr; /* Pointer to the subexpression that is this term */ 99 int iParent; /* Disable pWC->a[iParent] when this term disabled */ 100 int leftCursor; /* Cursor number of X in "X <op> <expr>" */ 101 union { 102 int leftColumn; /* Column number of X in "X <op> <expr>" */ 103 WhereOrInfo *pOrInfo; /* Extra information if eOperator==WO_OR */ 104 WhereAndInfo *pAndInfo; /* Extra information if eOperator==WO_AND */ 105 } u; 106 u16 eOperator; /* A WO_xx value describing <op> */ 107 u8 wtFlags; /* TERM_xxx bit flags. See below */ 108 u8 nChild; /* Number of children that must disable us */ 109 WhereClause *pWC; /* The clause this term is part of */ 110 Bitmask prereqRight; /* Bitmask of tables used by pExpr->pRight */ 111 Bitmask prereqAll; /* Bitmask of tables referenced by pExpr */ 112 }; 113 114 /* 115 ** Allowed values of WhereTerm.wtFlags 116 */ 117 #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */ 118 #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */ 119 #define TERM_CODED 0x04 /* This term is already coded */ 120 #define TERM_COPIED 0x08 /* Has a child */ 121 #define TERM_ORINFO 0x10 /* Need to free the WhereTerm.u.pOrInfo object */ 122 #define TERM_ANDINFO 0x20 /* Need to free the WhereTerm.u.pAndInfo obj */ 123 #define TERM_OR_OK 0x40 /* Used during OR-clause processing */ 124 125 /* 126 ** An instance of the following structure holds all information about a 127 ** WHERE clause. Mostly this is a container for one or more WhereTerms. 128 */ 129 struct WhereClause { 130 Parse *pParse; /* The parser context */ 131 WhereMaskSet *pMaskSet; /* Mapping of table cursor numbers to bitmasks */ 132 u8 op; /* Split operator. TK_AND or TK_OR */ 133 int nTerm; /* Number of terms */ 134 int nSlot; /* Number of entries in a[] */ 135 WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */ 136 WhereTerm aStatic[4]; /* Initial static space for a[] */ 137 }; 138 139 /* 140 ** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to 141 ** a dynamically allocated instance of the following structure. 142 */ 143 struct WhereOrInfo { 144 WhereClause wc; /* Decomposition into subterms */ 145 Bitmask indexable; /* Bitmask of all indexable tables in the clause */ 146 }; 147 148 /* 149 ** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to 150 ** a dynamically allocated instance of the following structure. 151 */ 152 struct WhereAndInfo { 153 WhereClause wc; /* The subexpression broken out */ 154 }; 155 156 /* 157 ** An instance of the following structure keeps track of a mapping 158 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm. 159 ** 160 ** The VDBE cursor numbers are small integers contained in 161 ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE 162 ** clause, the cursor numbers might not begin with 0 and they might 163 ** contain gaps in the numbering sequence. But we want to make maximum 164 ** use of the bits in our bitmasks. This structure provides a mapping 165 ** from the sparse cursor numbers into consecutive integers beginning 166 ** with 0. 167 ** 168 ** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask 169 ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A. 170 ** 171 ** For example, if the WHERE clause expression used these VDBE 172 ** cursors: 4, 5, 8, 29, 57, 73. Then the WhereMaskSet structure 173 ** would map those cursor numbers into bits 0 through 5. 174 ** 175 ** Note that the mapping is not necessarily ordered. In the example 176 ** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0, 177 ** 57->5, 73->4. Or one of 719 other combinations might be used. It 178 ** does not really matter. What is important is that sparse cursor 179 ** numbers all get mapped into bit numbers that begin with 0 and contain 180 ** no gaps. 181 */ 182 struct WhereMaskSet { 183 int n; /* Number of assigned cursor values */ 184 int ix[BMS]; /* Cursor assigned to each bit */ 185 }; 186 187 /* 188 ** A WhereCost object records a lookup strategy and the estimated 189 ** cost of pursuing that strategy. 190 */ 191 struct WhereCost { 192 WherePlan plan; /* The lookup strategy */ 193 double rCost; /* Overall cost of pursuing this search strategy */ 194 double nRow; /* Estimated number of output rows */ 195 }; 196 197 /* 198 ** Bitmasks for the operators that indices are able to exploit. An 199 ** OR-ed combination of these values can be used when searching for 200 ** terms in the where clause. 201 */ 202 #define WO_IN 0x001 203 #define WO_EQ 0x002 204 #define WO_LT (WO_EQ<<(TK_LT-TK_EQ)) 205 #define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) 206 #define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) 207 #define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) 208 #define WO_MATCH 0x040 209 #define WO_ISNULL 0x080 210 #define WO_OR 0x100 /* Two or more OR-connected terms */ 211 #define WO_AND 0x200 /* Two or more AND-connected terms */ 212 213 #define WO_ALL 0xfff /* Mask of all possible WO_* values */ 214 #define WO_SINGLE 0x0ff /* Mask of all non-compound WO_* values */ 215 216 /* 217 ** Value for wsFlags returned by bestIndex() and stored in 218 ** WhereLevel.wsFlags. These flags determine which search 219 ** strategies are appropriate. 220 ** 221 ** The least significant 12 bits is reserved as a mask for WO_ values above. 222 ** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL. 223 ** But if the table is the right table of a left join, WhereLevel.wsFlags 224 ** is set to WO_IN|WO_EQ. The WhereLevel.wsFlags field can then be used as 225 ** the "op" parameter to findTerm when we are resolving equality constraints. 226 ** ISNULL constraints will then not be used on the right table of a left 227 ** join. Tickets #2177 and #2189. 228 */ 229 #define WHERE_ROWID_EQ 0x00001000 /* rowid=EXPR or rowid IN (...) */ 230 #define WHERE_ROWID_RANGE 0x00002000 /* rowid<EXPR and/or rowid>EXPR */ 231 #define WHERE_COLUMN_EQ 0x00010000 /* x=EXPR or x IN (...) */ 232 #define WHERE_COLUMN_RANGE 0x00020000 /* x<EXPR and/or x>EXPR */ 233 #define WHERE_COLUMN_IN 0x00040000 /* x IN (...) */ 234 #define WHERE_INDEXED 0x00070000 /* Anything that uses an index */ 235 #define WHERE_IN_ABLE 0x00071000 /* Able to support an IN operator */ 236 #define WHERE_TOP_LIMIT 0x00100000 /* x<EXPR or x<=EXPR constraint */ 237 #define WHERE_BTM_LIMIT 0x00200000 /* x>EXPR or x>=EXPR constraint */ 238 #define WHERE_IDX_ONLY 0x00800000 /* Use index only - omit table */ 239 #define WHERE_ORDERBY 0x01000000 /* Output will appear in correct order */ 240 #define WHERE_REVERSE 0x02000000 /* Scan in reverse order */ 241 #define WHERE_UNIQUE 0x04000000 /* Selects no more than one row */ 242 #define WHERE_VIRTUALTABLE 0x08000000 /* Use virtual-table processing */ 243 #define WHERE_MULTI_OR 0x10000000 /* OR using multiple indices */ 244 245 /* 246 ** Initialize a preallocated WhereClause structure. 247 */ 248 static void whereClauseInit( 249 WhereClause *pWC, /* The WhereClause to be initialized */ 250 Parse *pParse, /* The parsing context */ 251 WhereMaskSet *pMaskSet /* Mapping from table cursor numbers to bitmasks */ 252 ){ 253 pWC->pParse = pParse; 254 pWC->pMaskSet = pMaskSet; 255 pWC->nTerm = 0; 256 pWC->nSlot = ArraySize(pWC->aStatic); 257 pWC->a = pWC->aStatic; 258 } 259 260 /* Forward reference */ 261 static void whereClauseClear(WhereClause*); 262 263 /* 264 ** Deallocate all memory associated with a WhereOrInfo object. 265 */ 266 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ 267 if( p ){ 268 whereClauseClear(&p->wc); 269 sqlite3DbFree(db, p); 270 } 271 } 272 273 /* 274 ** Deallocate all memory associated with a WhereAndInfo object. 275 */ 276 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ 277 if( p ){ 278 whereClauseClear(&p->wc); 279 sqlite3DbFree(db, p); 280 } 281 } 282 283 /* 284 ** Deallocate a WhereClause structure. The WhereClause structure 285 ** itself is not freed. This routine is the inverse of whereClauseInit(). 286 */ 287 static void whereClauseClear(WhereClause *pWC){ 288 int i; 289 WhereTerm *a; 290 sqlite3 *db = pWC->pParse->db; 291 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ 292 if( a->wtFlags & TERM_DYNAMIC ){ 293 sqlite3ExprDelete(db, a->pExpr); 294 } 295 if( a->wtFlags & TERM_ORINFO ){ 296 whereOrInfoDelete(db, a->u.pOrInfo); 297 }else if( a->wtFlags & TERM_ANDINFO ){ 298 whereAndInfoDelete(db, a->u.pAndInfo); 299 } 300 } 301 if( pWC->a!=pWC->aStatic ){ 302 sqlite3DbFree(db, pWC->a); 303 } 304 } 305 306 /* 307 ** Add a single new WhereTerm entry to the WhereClause object pWC. 308 ** The new WhereTerm object is constructed from Expr p and with wtFlags. 309 ** The index in pWC->a[] of the new WhereTerm is returned on success. 310 ** 0 is returned if the new WhereTerm could not be added due to a memory 311 ** allocation error. The memory allocation failure will be recorded in 312 ** the db->mallocFailed flag so that higher-level functions can detect it. 313 ** 314 ** This routine will increase the size of the pWC->a[] array as necessary. 315 ** 316 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility 317 ** for freeing the expression p is assumed by the WhereClause object pWC. 318 ** This is true even if this routine fails to allocate a new WhereTerm. 319 ** 320 ** WARNING: This routine might reallocate the space used to store 321 ** WhereTerms. All pointers to WhereTerms should be invalidated after 322 ** calling this routine. Such pointers may be reinitialized by referencing 323 ** the pWC->a[] array. 324 */ 325 static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){ 326 WhereTerm *pTerm; 327 int idx; 328 if( pWC->nTerm>=pWC->nSlot ){ 329 WhereTerm *pOld = pWC->a; 330 sqlite3 *db = pWC->pParse->db; 331 pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); 332 if( pWC->a==0 ){ 333 if( wtFlags & TERM_DYNAMIC ){ 334 sqlite3ExprDelete(db, p); 335 } 336 pWC->a = pOld; 337 return 0; 338 } 339 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); 340 if( pOld!=pWC->aStatic ){ 341 sqlite3DbFree(db, pOld); 342 } 343 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); 344 } 345 pTerm = &pWC->a[idx = pWC->nTerm++]; 346 pTerm->pExpr = p; 347 pTerm->wtFlags = wtFlags; 348 pTerm->pWC = pWC; 349 pTerm->iParent = -1; 350 return idx; 351 } 352 353 /* 354 ** This routine identifies subexpressions in the WHERE clause where 355 ** each subexpression is separated by the AND operator or some other 356 ** operator specified in the op parameter. The WhereClause structure 357 ** is filled with pointers to subexpressions. For example: 358 ** 359 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) 360 ** \________/ \_______________/ \________________/ 361 ** slot[0] slot[1] slot[2] 362 ** 363 ** The original WHERE clause in pExpr is unaltered. All this routine 364 ** does is make slot[] entries point to substructure within pExpr. 365 ** 366 ** In the previous sentence and in the diagram, "slot[]" refers to 367 ** the WhereClause.a[] array. The slot[] array grows as needed to contain 368 ** all terms of the WHERE clause. 369 */ 370 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){ 371 pWC->op = (u8)op; 372 if( pExpr==0 ) return; 373 if( pExpr->op!=op ){ 374 whereClauseInsert(pWC, pExpr, 0); 375 }else{ 376 whereSplit(pWC, pExpr->pLeft, op); 377 whereSplit(pWC, pExpr->pRight, op); 378 } 379 } 380 381 /* 382 ** Initialize an expression mask set 383 */ 384 #define initMaskSet(P) memset(P, 0, sizeof(*P)) 385 386 /* 387 ** Return the bitmask for the given cursor number. Return 0 if 388 ** iCursor is not in the set. 389 */ 390 static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){ 391 int i; 392 for(i=0; i<pMaskSet->n; i++){ 393 if( pMaskSet->ix[i]==iCursor ){ 394 return ((Bitmask)1)<<i; 395 } 396 } 397 return 0; 398 } 399 400 /* 401 ** Create a new mask for cursor iCursor. 402 ** 403 ** There is one cursor per table in the FROM clause. The number of 404 ** tables in the FROM clause is limited by a test early in the 405 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 406 ** array will never overflow. 407 */ 408 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 409 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 410 pMaskSet->ix[pMaskSet->n++] = iCursor; 411 } 412 413 /* 414 ** This routine walks (recursively) an expression tree and generates 415 ** a bitmask indicating which tables are used in that expression 416 ** tree. 417 ** 418 ** In order for this routine to work, the calling function must have 419 ** previously invoked sqlite3ResolveExprNames() on the expression. See 420 ** the header comment on that routine for additional information. 421 ** The sqlite3ResolveExprNames() routines looks for column names and 422 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to 423 ** the VDBE cursor number of the table. This routine just has to 424 ** translate the cursor numbers into bitmask values and OR all 425 ** the bitmasks together. 426 */ 427 static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*); 428 static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*); 429 static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){ 430 Bitmask mask = 0; 431 if( p==0 ) return 0; 432 if( p->op==TK_COLUMN ){ 433 mask = getMask(pMaskSet, p->iTable); 434 return mask; 435 } 436 mask = exprTableUsage(pMaskSet, p->pRight); 437 mask |= exprTableUsage(pMaskSet, p->pLeft); 438 mask |= exprListTableUsage(pMaskSet, p->pList); 439 mask |= exprSelectTableUsage(pMaskSet, p->pSelect); 440 return mask; 441 } 442 static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){ 443 int i; 444 Bitmask mask = 0; 445 if( pList ){ 446 for(i=0; i<pList->nExpr; i++){ 447 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); 448 } 449 } 450 return mask; 451 } 452 static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){ 453 Bitmask mask = 0; 454 while( pS ){ 455 mask |= exprListTableUsage(pMaskSet, pS->pEList); 456 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); 457 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); 458 mask |= exprTableUsage(pMaskSet, pS->pWhere); 459 mask |= exprTableUsage(pMaskSet, pS->pHaving); 460 pS = pS->pPrior; 461 } 462 return mask; 463 } 464 465 /* 466 ** Return TRUE if the given operator is one of the operators that is 467 ** allowed for an indexable WHERE clause term. The allowed operators are 468 ** "=", "<", ">", "<=", ">=", and "IN". 469 */ 470 static int allowedOp(int op){ 471 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); 472 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); 473 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); 474 assert( TK_GE==TK_EQ+4 ); 475 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; 476 } 477 478 /* 479 ** Swap two objects of type TYPE. 480 */ 481 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 482 483 /* 484 ** Commute a comparison operator. Expressions of the form "X op Y" 485 ** are converted into "Y op X". 486 ** 487 ** If a collation sequence is associated with either the left or right 488 ** side of the comparison, it remains associated with the same side after 489 ** the commutation. So "Y collate NOCASE op X" becomes 490 ** "X collate NOCASE op Y". This is because any collation sequence on 491 ** the left hand side of a comparison overrides any collation sequence 492 ** attached to the right. For the same reason the EP_ExpCollate flag 493 ** is not commuted. 494 */ 495 static void exprCommute(Parse *pParse, Expr *pExpr){ 496 u16 expRight = (pExpr->pRight->flags & EP_ExpCollate); 497 u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate); 498 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); 499 pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight); 500 pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 501 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl); 502 pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft; 503 pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight; 504 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); 505 if( pExpr->op>=TK_GT ){ 506 assert( TK_LT==TK_GT+2 ); 507 assert( TK_GE==TK_LE+2 ); 508 assert( TK_GT>TK_EQ ); 509 assert( TK_GT<TK_LE ); 510 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); 511 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; 512 } 513 } 514 515 /* 516 ** Translate from TK_xx operator to WO_xx bitmask. 517 */ 518 static u16 operatorMask(int op){ 519 u16 c; 520 assert( allowedOp(op) ); 521 if( op==TK_IN ){ 522 c = WO_IN; 523 }else if( op==TK_ISNULL ){ 524 c = WO_ISNULL; 525 }else{ 526 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); 527 c = (u16)(WO_EQ<<(op-TK_EQ)); 528 } 529 assert( op!=TK_ISNULL || c==WO_ISNULL ); 530 assert( op!=TK_IN || c==WO_IN ); 531 assert( op!=TK_EQ || c==WO_EQ ); 532 assert( op!=TK_LT || c==WO_LT ); 533 assert( op!=TK_LE || c==WO_LE ); 534 assert( op!=TK_GT || c==WO_GT ); 535 assert( op!=TK_GE || c==WO_GE ); 536 return c; 537 } 538 539 /* 540 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 541 ** where X is a reference to the iColumn of table iCur and <op> is one of 542 ** the WO_xx operator codes specified by the op parameter. 543 ** Return a pointer to the term. Return 0 if not found. 544 */ 545 static WhereTerm *findTerm( 546 WhereClause *pWC, /* The WHERE clause to be searched */ 547 int iCur, /* Cursor number of LHS */ 548 int iColumn, /* Column number of LHS */ 549 Bitmask notReady, /* RHS must not overlap with this mask */ 550 u32 op, /* Mask of WO_xx values describing operator */ 551 Index *pIdx /* Must be compatible with this index, if not NULL */ 552 ){ 553 WhereTerm *pTerm; 554 int k; 555 assert( iCur>=0 ); 556 op &= WO_ALL; 557 for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){ 558 if( pTerm->leftCursor==iCur 559 && (pTerm->prereqRight & notReady)==0 560 && pTerm->u.leftColumn==iColumn 561 && (pTerm->eOperator & op)!=0 562 ){ 563 if( pIdx && pTerm->eOperator!=WO_ISNULL ){ 564 Expr *pX = pTerm->pExpr; 565 CollSeq *pColl; 566 char idxaff; 567 int j; 568 Parse *pParse = pWC->pParse; 569 570 idxaff = pIdx->pTable->aCol[iColumn].affinity; 571 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue; 572 573 /* Figure out the collation sequence required from an index for 574 ** it to be useful for optimising expression pX. Store this 575 ** value in variable pColl. 576 */ 577 assert(pX->pLeft); 578 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); 579 assert(pColl || pParse->nErr); 580 581 for(j=0; pIdx->aiColumn[j]!=iColumn; j++){ 582 if( NEVER(j>=pIdx->nColumn) ) return 0; 583 } 584 if( pColl && sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue; 585 } 586 return pTerm; 587 } 588 } 589 return 0; 590 } 591 592 /* Forward reference */ 593 static void exprAnalyze(SrcList*, WhereClause*, int); 594 595 /* 596 ** Call exprAnalyze on all terms in a WHERE clause. 597 ** 598 ** 599 */ 600 static void exprAnalyzeAll( 601 SrcList *pTabList, /* the FROM clause */ 602 WhereClause *pWC /* the WHERE clause to be analyzed */ 603 ){ 604 int i; 605 for(i=pWC->nTerm-1; i>=0; i--){ 606 exprAnalyze(pTabList, pWC, i); 607 } 608 } 609 610 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 611 /* 612 ** Check to see if the given expression is a LIKE or GLOB operator that 613 ** can be optimized using inequality constraints. Return TRUE if it is 614 ** so and false if not. 615 ** 616 ** In order for the operator to be optimizible, the RHS must be a string 617 ** literal that does not begin with a wildcard. 618 */ 619 static int isLikeOrGlob( 620 Parse *pParse, /* Parsing and code generating context */ 621 Expr *pExpr, /* Test this expression */ 622 int *pnPattern, /* Number of non-wildcard prefix characters */ 623 int *pisComplete, /* True if the only wildcard is % in the last character */ 624 int *pnoCase /* True if uppercase is equivalent to lowercase */ 625 ){ 626 const char *z; 627 Expr *pRight, *pLeft; 628 ExprList *pList; 629 int c, cnt; 630 char wc[3]; 631 CollSeq *pColl; 632 sqlite3 *db = pParse->db; 633 634 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ 635 return 0; 636 } 637 #ifdef SQLITE_EBCDIC 638 if( *pnoCase ) return 0; 639 #endif 640 pList = pExpr->pList; 641 pRight = pList->a[0].pExpr; 642 if( pRight->op!=TK_STRING 643 && (pRight->op!=TK_REGISTER || pRight->iColumn!=TK_STRING) ){ 644 return 0; 645 } 646 pLeft = pList->a[1].pExpr; 647 if( pLeft->op!=TK_COLUMN ){ 648 return 0; 649 } 650 pColl = sqlite3ExprCollSeq(pParse, pLeft); 651 assert( pColl!=0 || pLeft->iColumn==-1 ); 652 if( pColl==0 ){ 653 /* No collation is defined for the ROWID. Use the default. */ 654 pColl = db->pDfltColl; 655 } 656 if( (pColl->type!=SQLITE_COLL_BINARY || *pnoCase) && 657 (pColl->type!=SQLITE_COLL_NOCASE || !*pnoCase) ){ 658 return 0; 659 } 660 sqlite3DequoteExpr(db, pRight); 661 z = (char *)pRight->token.z; 662 cnt = 0; 663 if( z ){ 664 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ cnt++; } 665 } 666 if( cnt==0 || 255==(u8)z[cnt] ){ 667 return 0; 668 } 669 *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0; 670 *pnPattern = cnt; 671 return 1; 672 } 673 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 674 675 676 #ifndef SQLITE_OMIT_VIRTUALTABLE 677 /* 678 ** Check to see if the given expression is of the form 679 ** 680 ** column MATCH expr 681 ** 682 ** If it is then return TRUE. If not, return FALSE. 683 */ 684 static int isMatchOfColumn( 685 Expr *pExpr /* Test this expression */ 686 ){ 687 ExprList *pList; 688 689 if( pExpr->op!=TK_FUNCTION ){ 690 return 0; 691 } 692 if( pExpr->token.n!=5 || 693 sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){ 694 return 0; 695 } 696 pList = pExpr->pList; 697 if( pList->nExpr!=2 ){ 698 return 0; 699 } 700 if( pList->a[1].pExpr->op != TK_COLUMN ){ 701 return 0; 702 } 703 return 1; 704 } 705 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 706 707 /* 708 ** If the pBase expression originated in the ON or USING clause of 709 ** a join, then transfer the appropriate markings over to derived. 710 */ 711 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ 712 pDerived->flags |= pBase->flags & EP_FromJoin; 713 pDerived->iRightJoinTable = pBase->iRightJoinTable; 714 } 715 716 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 717 /* 718 ** Analyze a term that consists of two or more OR-connected 719 ** subterms. So in: 720 ** 721 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) 722 ** ^^^^^^^^^^^^^^^^^^^^ 723 ** 724 ** This routine analyzes terms such as the middle term in the above example. 725 ** A WhereOrTerm object is computed and attached to the term under 726 ** analysis, regardless of the outcome of the analysis. Hence: 727 ** 728 ** WhereTerm.wtFlags |= TERM_ORINFO 729 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object 730 ** 731 ** The term being analyzed must have two or more of OR-connected subterms. 732 ** A single subterm might be a set of AND-connected sub-subterms. 733 ** Examples of terms under analysis: 734 ** 735 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 736 ** (B) x=expr1 OR expr2=x OR x=expr3 737 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) 738 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') 739 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) 740 ** 741 ** CASE 1: 742 ** 743 ** If all subterms are of the form T.C=expr for some single column of C 744 ** a single table T (as shown in example B above) then create a new virtual 745 ** term that is an equivalent IN expression. In other words, if the term 746 ** being analyzed is: 747 ** 748 ** x = expr1 OR expr2 = x OR x = expr3 749 ** 750 ** then create a new virtual term like this: 751 ** 752 ** x IN (expr1,expr2,expr3) 753 ** 754 ** CASE 2: 755 ** 756 ** If all subterms are indexable by a single table T, then set 757 ** 758 ** WhereTerm.eOperator = WO_OR 759 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T 760 ** 761 ** A subterm is "indexable" if it is of the form 762 ** "T.C <op> <expr>" where C is any column of table T and 763 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". 764 ** A subterm is also indexable if it is an AND of two or more 765 ** subsubterms at least one of which is indexable. Indexable AND 766 ** subterms have their eOperator set to WO_AND and they have 767 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. 768 ** 769 ** From another point of view, "indexable" means that the subterm could 770 ** potentially be used with an index if an appropriate index exists. 771 ** This analysis does not consider whether or not the index exists; that 772 ** is something the bestIndex() routine will determine. This analysis 773 ** only looks at whether subterms appropriate for indexing exist. 774 ** 775 ** All examples A through E above all satisfy case 2. But if a term 776 ** also statisfies case 1 (such as B) we know that the optimizer will 777 ** always prefer case 1, so in that case we pretend that case 2 is not 778 ** satisfied. 779 ** 780 ** It might be the case that multiple tables are indexable. For example, 781 ** (E) above is indexable on tables P, Q, and R. 782 ** 783 ** Terms that satisfy case 2 are candidates for lookup by using 784 ** separate indices to find rowids for each subterm and composing 785 ** the union of all rowids using a RowSet object. This is similar 786 ** to "bitmap indices" in other database engines. 787 ** 788 ** OTHERWISE: 789 ** 790 ** If neither case 1 nor case 2 apply, then leave the eOperator set to 791 ** zero. This term is not useful for search. 792 */ 793 static void exprAnalyzeOrTerm( 794 SrcList *pSrc, /* the FROM clause */ 795 WhereClause *pWC, /* the complete WHERE clause */ 796 int idxTerm /* Index of the OR-term to be analyzed */ 797 ){ 798 Parse *pParse = pWC->pParse; /* Parser context */ 799 sqlite3 *db = pParse->db; /* Database connection */ 800 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ 801 Expr *pExpr = pTerm->pExpr; /* The expression of the term */ 802 WhereMaskSet *pMaskSet = pWC->pMaskSet; /* Table use masks */ 803 int i; /* Loop counters */ 804 WhereClause *pOrWc; /* Breakup of pTerm into subterms */ 805 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ 806 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ 807 Bitmask chngToIN; /* Tables that might satisfy case 1 */ 808 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ 809 810 /* 811 ** Break the OR clause into its separate subterms. The subterms are 812 ** stored in a WhereClause structure containing within the WhereOrInfo 813 ** object that is attached to the original OR clause term. 814 */ 815 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); 816 assert( pExpr->op==TK_OR ); 817 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); 818 if( pOrInfo==0 ) return; 819 pTerm->wtFlags |= TERM_ORINFO; 820 pOrWc = &pOrInfo->wc; 821 whereClauseInit(pOrWc, pWC->pParse, pMaskSet); 822 whereSplit(pOrWc, pExpr, TK_OR); 823 exprAnalyzeAll(pSrc, pOrWc); 824 if( db->mallocFailed ) return; 825 assert( pOrWc->nTerm>=2 ); 826 827 /* 828 ** Compute the set of tables that might satisfy cases 1 or 2. 829 */ 830 indexable = chngToIN = ~(Bitmask)0; 831 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ 832 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ 833 WhereAndInfo *pAndInfo; 834 assert( pOrTerm->eOperator==0 ); 835 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); 836 chngToIN = 0; 837 pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo)); 838 if( pAndInfo ){ 839 WhereClause *pAndWC; 840 WhereTerm *pAndTerm; 841 int j; 842 Bitmask b = 0; 843 pOrTerm->u.pAndInfo = pAndInfo; 844 pOrTerm->wtFlags |= TERM_ANDINFO; 845 pOrTerm->eOperator = WO_AND; 846 pAndWC = &pAndInfo->wc; 847 whereClauseInit(pAndWC, pWC->pParse, pMaskSet); 848 whereSplit(pAndWC, pOrTerm->pExpr, TK_AND); 849 exprAnalyzeAll(pSrc, pAndWC); 850 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ 851 if( pAndTerm->pExpr && allowedOp(pAndTerm->pExpr->op) ){ 852 b |= getMask(pMaskSet, pAndTerm->leftCursor); 853 } 854 } 855 indexable &= b; 856 } 857 }else if( pOrTerm->wtFlags & TERM_COPIED ){ 858 /* Skip this term for now. We revisit it when we process the 859 ** corresponding TERM_VIRTUAL term */ 860 }else{ 861 Bitmask b; 862 b = getMask(pMaskSet, pOrTerm->leftCursor); 863 if( pOrTerm->wtFlags & TERM_VIRTUAL ){ 864 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; 865 b |= getMask(pMaskSet, pOther->leftCursor); 866 } 867 indexable &= b; 868 if( pOrTerm->eOperator!=WO_EQ ){ 869 chngToIN = 0; 870 }else{ 871 chngToIN &= b; 872 } 873 } 874 } 875 876 /* 877 ** Record the set of tables that satisfy case 2. The set might be 878 ** empty. 879 */ 880 pOrInfo->indexable = indexable; 881 pTerm->eOperator = indexable==0 ? 0 : WO_OR; 882 883 /* 884 ** chngToIN holds a set of tables that *might* satisfy case 1. But 885 ** we have to do some additional checking to see if case 1 really 886 ** is satisfied. 887 */ 888 if( chngToIN ){ 889 int okToChngToIN = 0; /* True if the conversion to IN is valid */ 890 int iColumn = -1; /* Column index on lhs of IN operator */ 891 int iCursor; /* Table cursor common to all terms */ 892 int j = 0; /* Loop counter */ 893 894 /* Search for a table and column that appears on one side or the 895 ** other of the == operator in every subterm. That table and column 896 ** will be recorded in iCursor and iColumn. There might not be any 897 ** such table and column. Set okToChngToIN if an appropriate table 898 ** and column is found but leave okToChngToIN false if not found. 899 */ 900 for(j=0; j<2 && !okToChngToIN; j++){ 901 pOrTerm = pOrWc->a; 902 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ 903 assert( pOrTerm->eOperator==WO_EQ ); 904 pOrTerm->wtFlags &= ~TERM_OR_OK; 905 if( pOrTerm->leftCursor==iColumn ) continue; 906 if( (chngToIN & getMask(pMaskSet, pOrTerm->leftCursor))==0 ) continue; 907 iColumn = pOrTerm->u.leftColumn; 908 iCursor = pOrTerm->leftCursor; 909 break; 910 } 911 if( i<0 ){ 912 assert( j==1 ); 913 assert( (chngToIN&(chngToIN-1))==0 ); 914 assert( chngToIN==getMask(pMaskSet, iColumn) ); 915 break; 916 } 917 okToChngToIN = 1; 918 for(; i>=0 && okToChngToIN; i--, pOrTerm++){ 919 assert( pOrTerm->eOperator==WO_EQ ); 920 if( pOrTerm->leftCursor!=iCursor ){ 921 pOrTerm->wtFlags &= ~TERM_OR_OK; 922 }else if( pOrTerm->u.leftColumn!=iColumn ){ 923 okToChngToIN = 0; 924 }else{ 925 int affLeft, affRight; 926 /* If the right-hand side is also a column, then the affinities 927 ** of both right and left sides must be such that no type 928 ** conversions are required on the right. (Ticket #2249) 929 */ 930 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); 931 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); 932 if( affRight!=0 && affRight!=affLeft ){ 933 okToChngToIN = 0; 934 }else{ 935 pOrTerm->wtFlags |= TERM_OR_OK; 936 } 937 } 938 } 939 } 940 941 /* At this point, okToChngToIN is true if original pTerm satisfies 942 ** case 1. In that case, construct a new virtual term that is 943 ** pTerm converted into an IN operator. 944 */ 945 if( okToChngToIN ){ 946 Expr *pDup; /* A transient duplicate expression */ 947 ExprList *pList = 0; /* The RHS of the IN operator */ 948 Expr *pLeft = 0; /* The LHS of the IN operator */ 949 Expr *pNew; /* The complete IN operator */ 950 951 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ 952 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; 953 assert( pOrTerm->eOperator==WO_EQ ); 954 assert( pOrTerm->leftCursor==iCursor ); 955 assert( pOrTerm->u.leftColumn==iColumn ); 956 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight); 957 pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup, 0); 958 pLeft = pOrTerm->pExpr->pLeft; 959 } 960 assert( pLeft!=0 ); 961 pDup = sqlite3ExprDup(db, pLeft); 962 pNew = sqlite3Expr(db, TK_IN, pDup, 0, 0); 963 if( pNew ){ 964 int idxNew; 965 transferJoinMarkings(pNew, pExpr); 966 pNew->pList = pList; 967 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 968 testcase( idxNew==0 ); 969 exprAnalyze(pSrc, pWC, idxNew); 970 pTerm = &pWC->a[idxTerm]; 971 pWC->a[idxNew].iParent = idxTerm; 972 pTerm->nChild = 1; 973 }else{ 974 sqlite3ExprListDelete(db, pList); 975 } 976 pTerm->eOperator = 0; /* case 1 trumps case 2 */ 977 } 978 } 979 } 980 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ 981 982 983 /* 984 ** The input to this routine is an WhereTerm structure with only the 985 ** "pExpr" field filled in. The job of this routine is to analyze the 986 ** subexpression and populate all the other fields of the WhereTerm 987 ** structure. 988 ** 989 ** If the expression is of the form "<expr> <op> X" it gets commuted 990 ** to the standard form of "X <op> <expr>". 991 ** 992 ** If the expression is of the form "X <op> Y" where both X and Y are 993 ** columns, then the original expression is unchanged and a new virtual 994 ** term of the form "Y <op> X" is added to the WHERE clause and 995 ** analyzed separately. The original term is marked with TERM_COPIED 996 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr 997 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it 998 ** is a commuted copy of a prior term.) The original term has nChild=1 999 ** and the copy has idxParent set to the index of the original term. 1000 */ 1001 static void exprAnalyze( 1002 SrcList *pSrc, /* the FROM clause */ 1003 WhereClause *pWC, /* the WHERE clause */ 1004 int idxTerm /* Index of the term to be analyzed */ 1005 ){ 1006 WhereTerm *pTerm; /* The term to be analyzed */ 1007 WhereMaskSet *pMaskSet; /* Set of table index masks */ 1008 Expr *pExpr; /* The expression to be analyzed */ 1009 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ 1010 Bitmask prereqAll; /* Prerequesites of pExpr */ 1011 Bitmask extraRight = 0; 1012 int nPattern; 1013 int isComplete; 1014 int noCase; 1015 int op; /* Top-level operator. pExpr->op */ 1016 Parse *pParse = pWC->pParse; /* Parsing context */ 1017 sqlite3 *db = pParse->db; /* Database connection */ 1018 1019 if( db->mallocFailed ){ 1020 return; 1021 } 1022 pTerm = &pWC->a[idxTerm]; 1023 pMaskSet = pWC->pMaskSet; 1024 pExpr = pTerm->pExpr; 1025 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); 1026 op = pExpr->op; 1027 if( op==TK_IN ){ 1028 assert( pExpr->pRight==0 ); 1029 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList) 1030 | exprSelectTableUsage(pMaskSet, pExpr->pSelect); 1031 }else if( op==TK_ISNULL ){ 1032 pTerm->prereqRight = 0; 1033 }else{ 1034 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); 1035 } 1036 prereqAll = exprTableUsage(pMaskSet, pExpr); 1037 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 1038 Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable); 1039 prereqAll |= x; 1040 extraRight = x-1; /* ON clause terms may not be used with an index 1041 ** on left table of a LEFT JOIN. Ticket #3015 */ 1042 } 1043 pTerm->prereqAll = prereqAll; 1044 pTerm->leftCursor = -1; 1045 pTerm->iParent = -1; 1046 pTerm->eOperator = 0; 1047 if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){ 1048 Expr *pLeft = pExpr->pLeft; 1049 Expr *pRight = pExpr->pRight; 1050 if( pLeft->op==TK_COLUMN ){ 1051 pTerm->leftCursor = pLeft->iTable; 1052 pTerm->u.leftColumn = pLeft->iColumn; 1053 pTerm->eOperator = operatorMask(op); 1054 } 1055 if( pRight && pRight->op==TK_COLUMN ){ 1056 WhereTerm *pNew; 1057 Expr *pDup; 1058 if( pTerm->leftCursor>=0 ){ 1059 int idxNew; 1060 pDup = sqlite3ExprDup(db, pExpr); 1061 if( db->mallocFailed ){ 1062 sqlite3ExprDelete(db, pDup); 1063 return; 1064 } 1065 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); 1066 if( idxNew==0 ) return; 1067 pNew = &pWC->a[idxNew]; 1068 pNew->iParent = idxTerm; 1069 pTerm = &pWC->a[idxTerm]; 1070 pTerm->nChild = 1; 1071 pTerm->wtFlags |= TERM_COPIED; 1072 }else{ 1073 pDup = pExpr; 1074 pNew = pTerm; 1075 } 1076 exprCommute(pParse, pDup); 1077 pLeft = pDup->pLeft; 1078 pNew->leftCursor = pLeft->iTable; 1079 pNew->u.leftColumn = pLeft->iColumn; 1080 pNew->prereqRight = prereqLeft; 1081 pNew->prereqAll = prereqAll; 1082 pNew->eOperator = operatorMask(pDup->op); 1083 } 1084 } 1085 1086 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION 1087 /* If a term is the BETWEEN operator, create two new virtual terms 1088 ** that define the range that the BETWEEN implements. For example: 1089 ** 1090 ** a BETWEEN b AND c 1091 ** 1092 ** is converted into: 1093 ** 1094 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) 1095 ** 1096 ** The two new terms are added onto the end of the WhereClause object. 1097 ** The new terms are "dynamic" and are children of the original BETWEEN 1098 ** term. That means that if the BETWEEN term is coded, the children are 1099 ** skipped. Or, if the children are satisfied by an index, the original 1100 ** BETWEEN term is skipped. 1101 */ 1102 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ 1103 ExprList *pList = pExpr->pList; 1104 int i; 1105 static const u8 ops[] = {TK_GE, TK_LE}; 1106 assert( pList!=0 ); 1107 assert( pList->nExpr==2 ); 1108 for(i=0; i<2; i++){ 1109 Expr *pNewExpr; 1110 int idxNew; 1111 pNewExpr = sqlite3Expr(db, ops[i], sqlite3ExprDup(db, pExpr->pLeft), 1112 sqlite3ExprDup(db, pList->a[i].pExpr), 0); 1113 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1114 testcase( idxNew==0 ); 1115 exprAnalyze(pSrc, pWC, idxNew); 1116 pTerm = &pWC->a[idxTerm]; 1117 pWC->a[idxNew].iParent = idxTerm; 1118 } 1119 pTerm->nChild = 2; 1120 } 1121 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ 1122 1123 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 1124 /* Analyze a term that is composed of two or more subterms connected by 1125 ** an OR operator. 1126 */ 1127 else if( pExpr->op==TK_OR ){ 1128 assert( pWC->op==TK_AND ); 1129 exprAnalyzeOrTerm(pSrc, pWC, idxTerm); 1130 } 1131 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1132 1133 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 1134 /* Add constraints to reduce the search space on a LIKE or GLOB 1135 ** operator. 1136 ** 1137 ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints 1138 ** 1139 ** x>='abc' AND x<'abd' AND x LIKE 'abc%' 1140 ** 1141 ** The last character of the prefix "abc" is incremented to form the 1142 ** termination condition "abd". 1143 */ 1144 if( isLikeOrGlob(pParse, pExpr, &nPattern, &isComplete, &noCase) 1145 && pWC->op==TK_AND ){ 1146 Expr *pLeft, *pRight; 1147 Expr *pStr1, *pStr2; 1148 Expr *pNewExpr1, *pNewExpr2; 1149 int idxNew1, idxNew2; 1150 1151 pLeft = pExpr->pList->a[1].pExpr; 1152 pRight = pExpr->pList->a[0].pExpr; 1153 pStr1 = sqlite3PExpr(pParse, TK_STRING, 0, 0, 0); 1154 if( pStr1 ){ 1155 sqlite3TokenCopy(db, &pStr1->token, &pRight->token); 1156 pStr1->token.n = nPattern; 1157 pStr1->flags = EP_Dequoted; 1158 } 1159 pStr2 = sqlite3ExprDup(db, pStr1); 1160 if( !db->mallocFailed ){ 1161 u8 c, *pC; 1162 assert( pStr2->token.dyn ); 1163 pC = (u8*)&pStr2->token.z[nPattern-1]; 1164 c = *pC; 1165 if( noCase ){ 1166 if( c=='@' ) isComplete = 0; 1167 c = sqlite3UpperToLower[c]; 1168 } 1169 *pC = c + 1; 1170 } 1171 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft), pStr1, 0); 1172 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); 1173 testcase( idxNew1==0 ); 1174 exprAnalyze(pSrc, pWC, idxNew1); 1175 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft), pStr2, 0); 1176 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); 1177 testcase( idxNew2==0 ); 1178 exprAnalyze(pSrc, pWC, idxNew2); 1179 pTerm = &pWC->a[idxTerm]; 1180 if( isComplete ){ 1181 pWC->a[idxNew1].iParent = idxTerm; 1182 pWC->a[idxNew2].iParent = idxTerm; 1183 pTerm->nChild = 2; 1184 } 1185 } 1186 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 1187 1188 #ifndef SQLITE_OMIT_VIRTUALTABLE 1189 /* Add a WO_MATCH auxiliary term to the constraint set if the 1190 ** current expression is of the form: column MATCH expr. 1191 ** This information is used by the xBestIndex methods of 1192 ** virtual tables. The native query optimizer does not attempt 1193 ** to do anything with MATCH functions. 1194 */ 1195 if( isMatchOfColumn(pExpr) ){ 1196 int idxNew; 1197 Expr *pRight, *pLeft; 1198 WhereTerm *pNewTerm; 1199 Bitmask prereqColumn, prereqExpr; 1200 1201 pRight = pExpr->pList->a[0].pExpr; 1202 pLeft = pExpr->pList->a[1].pExpr; 1203 prereqExpr = exprTableUsage(pMaskSet, pRight); 1204 prereqColumn = exprTableUsage(pMaskSet, pLeft); 1205 if( (prereqExpr & prereqColumn)==0 ){ 1206 Expr *pNewExpr; 1207 pNewExpr = sqlite3Expr(db, TK_MATCH, 0, sqlite3ExprDup(db, pRight), 0); 1208 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1209 testcase( idxNew==0 ); 1210 pNewTerm = &pWC->a[idxNew]; 1211 pNewTerm->prereqRight = prereqExpr; 1212 pNewTerm->leftCursor = pLeft->iTable; 1213 pNewTerm->u.leftColumn = pLeft->iColumn; 1214 pNewTerm->eOperator = WO_MATCH; 1215 pNewTerm->iParent = idxTerm; 1216 pTerm = &pWC->a[idxTerm]; 1217 pTerm->nChild = 1; 1218 pTerm->wtFlags |= TERM_COPIED; 1219 pNewTerm->prereqAll = pTerm->prereqAll; 1220 } 1221 } 1222 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1223 1224 /* Prevent ON clause terms of a LEFT JOIN from being used to drive 1225 ** an index for tables to the left of the join. 1226 */ 1227 pTerm->prereqRight |= extraRight; 1228 } 1229 1230 /* 1231 ** Return TRUE if any of the expressions in pList->a[iFirst...] contain 1232 ** a reference to any table other than the iBase table. 1233 */ 1234 static int referencesOtherTables( 1235 ExprList *pList, /* Search expressions in ths list */ 1236 WhereMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ 1237 int iFirst, /* Be searching with the iFirst-th expression */ 1238 int iBase /* Ignore references to this table */ 1239 ){ 1240 Bitmask allowed = ~getMask(pMaskSet, iBase); 1241 while( iFirst<pList->nExpr ){ 1242 if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){ 1243 return 1; 1244 } 1245 } 1246 return 0; 1247 } 1248 1249 1250 /* 1251 ** This routine decides if pIdx can be used to satisfy the ORDER BY 1252 ** clause. If it can, it returns 1. If pIdx cannot satisfy the 1253 ** ORDER BY clause, this routine returns 0. 1254 ** 1255 ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the 1256 ** left-most table in the FROM clause of that same SELECT statement and 1257 ** the table has a cursor number of "base". pIdx is an index on pTab. 1258 ** 1259 ** nEqCol is the number of columns of pIdx that are used as equality 1260 ** constraints. Any of these columns may be missing from the ORDER BY 1261 ** clause and the match can still be a success. 1262 ** 1263 ** All terms of the ORDER BY that match against the index must be either 1264 ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE 1265 ** index do not need to satisfy this constraint.) The *pbRev value is 1266 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if 1267 ** the ORDER BY clause is all ASC. 1268 */ 1269 static int isSortingIndex( 1270 Parse *pParse, /* Parsing context */ 1271 WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmaps */ 1272 Index *pIdx, /* The index we are testing */ 1273 int base, /* Cursor number for the table to be sorted */ 1274 ExprList *pOrderBy, /* The ORDER BY clause */ 1275 int nEqCol, /* Number of index columns with == constraints */ 1276 int *pbRev /* Set to 1 if ORDER BY is DESC */ 1277 ){ 1278 int i, j; /* Loop counters */ 1279 int sortOrder = 0; /* XOR of index and ORDER BY sort direction */ 1280 int nTerm; /* Number of ORDER BY terms */ 1281 struct ExprList_item *pTerm; /* A term of the ORDER BY clause */ 1282 sqlite3 *db = pParse->db; 1283 1284 assert( pOrderBy!=0 ); 1285 nTerm = pOrderBy->nExpr; 1286 assert( nTerm>0 ); 1287 1288 /* Match terms of the ORDER BY clause against columns of 1289 ** the index. 1290 ** 1291 ** Note that indices have pIdx->nColumn regular columns plus 1292 ** one additional column containing the rowid. The rowid column 1293 ** of the index is also allowed to match against the ORDER BY 1294 ** clause. 1295 */ 1296 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){ 1297 Expr *pExpr; /* The expression of the ORDER BY pTerm */ 1298 CollSeq *pColl; /* The collating sequence of pExpr */ 1299 int termSortOrder; /* Sort order for this term */ 1300 int iColumn; /* The i-th column of the index. -1 for rowid */ 1301 int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */ 1302 const char *zColl; /* Name of the collating sequence for i-th index term */ 1303 1304 pExpr = pTerm->pExpr; 1305 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){ 1306 /* Can not use an index sort on anything that is not a column in the 1307 ** left-most table of the FROM clause */ 1308 break; 1309 } 1310 pColl = sqlite3ExprCollSeq(pParse, pExpr); 1311 if( !pColl ){ 1312 pColl = db->pDfltColl; 1313 } 1314 if( i<pIdx->nColumn ){ 1315 iColumn = pIdx->aiColumn[i]; 1316 if( iColumn==pIdx->pTable->iPKey ){ 1317 iColumn = -1; 1318 } 1319 iSortOrder = pIdx->aSortOrder[i]; 1320 zColl = pIdx->azColl[i]; 1321 }else{ 1322 iColumn = -1; 1323 iSortOrder = 0; 1324 zColl = pColl->zName; 1325 } 1326 if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){ 1327 /* Term j of the ORDER BY clause does not match column i of the index */ 1328 if( i<nEqCol ){ 1329 /* If an index column that is constrained by == fails to match an 1330 ** ORDER BY term, that is OK. Just ignore that column of the index 1331 */ 1332 continue; 1333 }else if( i==pIdx->nColumn ){ 1334 /* Index column i is the rowid. All other terms match. */ 1335 break; 1336 }else{ 1337 /* If an index column fails to match and is not constrained by == 1338 ** then the index cannot satisfy the ORDER BY constraint. 1339 */ 1340 return 0; 1341 } 1342 } 1343 assert( pIdx->aSortOrder!=0 ); 1344 assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 ); 1345 assert( iSortOrder==0 || iSortOrder==1 ); 1346 termSortOrder = iSortOrder ^ pTerm->sortOrder; 1347 if( i>nEqCol ){ 1348 if( termSortOrder!=sortOrder ){ 1349 /* Indices can only be used if all ORDER BY terms past the 1350 ** equality constraints are all either DESC or ASC. */ 1351 return 0; 1352 } 1353 }else{ 1354 sortOrder = termSortOrder; 1355 } 1356 j++; 1357 pTerm++; 1358 if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ 1359 /* If the indexed column is the primary key and everything matches 1360 ** so far and none of the ORDER BY terms to the right reference other 1361 ** tables in the join, then we are assured that the index can be used 1362 ** to sort because the primary key is unique and so none of the other 1363 ** columns will make any difference 1364 */ 1365 j = nTerm; 1366 } 1367 } 1368 1369 *pbRev = sortOrder!=0; 1370 if( j>=nTerm ){ 1371 /* All terms of the ORDER BY clause are covered by this index so 1372 ** this index can be used for sorting. */ 1373 return 1; 1374 } 1375 if( pIdx->onError!=OE_None && i==pIdx->nColumn 1376 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ 1377 /* All terms of this index match some prefix of the ORDER BY clause 1378 ** and the index is UNIQUE and no terms on the tail of the ORDER BY 1379 ** clause reference other tables in a join. If this is all true then 1380 ** the order by clause is superfluous. */ 1381 return 1; 1382 } 1383 return 0; 1384 } 1385 1386 /* 1387 ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied 1388 ** by sorting in order of ROWID. Return true if so and set *pbRev to be 1389 ** true for reverse ROWID and false for forward ROWID order. 1390 */ 1391 static int sortableByRowid( 1392 int base, /* Cursor number for table to be sorted */ 1393 ExprList *pOrderBy, /* The ORDER BY clause */ 1394 WhereMaskSet *pMaskSet, /* Mapping from table cursors to bitmaps */ 1395 int *pbRev /* Set to 1 if ORDER BY is DESC */ 1396 ){ 1397 Expr *p; 1398 1399 assert( pOrderBy!=0 ); 1400 assert( pOrderBy->nExpr>0 ); 1401 p = pOrderBy->a[0].pExpr; 1402 if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1 1403 && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){ 1404 *pbRev = pOrderBy->a[0].sortOrder; 1405 return 1; 1406 } 1407 return 0; 1408 } 1409 1410 /* 1411 ** Prepare a crude estimate of the logarithm of the input value. 1412 ** The results need not be exact. This is only used for estimating 1413 ** the total cost of performing operations with O(logN) or O(NlogN) 1414 ** complexity. Because N is just a guess, it is no great tragedy if 1415 ** logN is a little off. 1416 */ 1417 static double estLog(double N){ 1418 double logN = 1; 1419 double x = 10; 1420 while( N>x ){ 1421 logN += 1; 1422 x *= 10; 1423 } 1424 return logN; 1425 } 1426 1427 /* 1428 ** Two routines for printing the content of an sqlite3_index_info 1429 ** structure. Used for testing and debugging only. If neither 1430 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 1431 ** are no-ops. 1432 */ 1433 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG) 1434 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ 1435 int i; 1436 if( !sqlite3WhereTrace ) return; 1437 for(i=0; i<p->nConstraint; i++){ 1438 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 1439 i, 1440 p->aConstraint[i].iColumn, 1441 p->aConstraint[i].iTermOffset, 1442 p->aConstraint[i].op, 1443 p->aConstraint[i].usable); 1444 } 1445 for(i=0; i<p->nOrderBy; i++){ 1446 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 1447 i, 1448 p->aOrderBy[i].iColumn, 1449 p->aOrderBy[i].desc); 1450 } 1451 } 1452 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ 1453 int i; 1454 if( !sqlite3WhereTrace ) return; 1455 for(i=0; i<p->nConstraint; i++){ 1456 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 1457 i, 1458 p->aConstraintUsage[i].argvIndex, 1459 p->aConstraintUsage[i].omit); 1460 } 1461 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 1462 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 1463 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 1464 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 1465 } 1466 #else 1467 #define TRACE_IDX_INPUTS(A) 1468 #define TRACE_IDX_OUTPUTS(A) 1469 #endif 1470 1471 #ifndef SQLITE_OMIT_VIRTUALTABLE 1472 /* 1473 ** Compute the best index for a virtual table. 1474 ** 1475 ** The best index is computed by the xBestIndex method of the virtual 1476 ** table module. This routine is really just a wrapper that sets up 1477 ** the sqlite3_index_info structure that is used to communicate with 1478 ** xBestIndex. 1479 ** 1480 ** In a join, this routine might be called multiple times for the 1481 ** same virtual table. The sqlite3_index_info structure is created 1482 ** and initialized on the first invocation and reused on all subsequent 1483 ** invocations. The sqlite3_index_info structure is also used when 1484 ** code is generated to access the virtual table. The whereInfoDelete() 1485 ** routine takes care of freeing the sqlite3_index_info structure after 1486 ** everybody has finished with it. 1487 */ 1488 static double bestVirtualIndex( 1489 Parse *pParse, /* The parsing context */ 1490 WhereClause *pWC, /* The WHERE clause */ 1491 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1492 Bitmask notReady, /* Mask of cursors that are not available */ 1493 ExprList *pOrderBy, /* The order by clause */ 1494 int orderByUsable, /* True if we can potential sort */ 1495 sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */ 1496 ){ 1497 Table *pTab = pSrc->pTab; 1498 sqlite3_vtab *pVtab = pTab->pVtab; 1499 sqlite3_index_info *pIdxInfo; 1500 struct sqlite3_index_constraint *pIdxCons; 1501 struct sqlite3_index_orderby *pIdxOrderBy; 1502 struct sqlite3_index_constraint_usage *pUsage; 1503 WhereTerm *pTerm; 1504 int i, j; 1505 int nOrderBy; 1506 int rc; 1507 1508 /* If the sqlite3_index_info structure has not been previously 1509 ** allocated and initialized for this virtual table, then allocate 1510 ** and initialize it now 1511 */ 1512 pIdxInfo = *ppIdxInfo; 1513 if( pIdxInfo==0 ){ 1514 int nTerm; 1515 WHERETRACE(("Recomputing index info for %s...\n", pTab->zName)); 1516 1517 /* Count the number of possible WHERE clause constraints referring 1518 ** to this virtual table */ 1519 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1520 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1521 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); 1522 testcase( pTerm->eOperator==WO_IN ); 1523 testcase( pTerm->eOperator==WO_ISNULL ); 1524 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; 1525 nTerm++; 1526 } 1527 1528 /* If the ORDER BY clause contains only columns in the current 1529 ** virtual table then allocate space for the aOrderBy part of 1530 ** the sqlite3_index_info structure. 1531 */ 1532 nOrderBy = 0; 1533 if( pOrderBy ){ 1534 for(i=0; i<pOrderBy->nExpr; i++){ 1535 Expr *pExpr = pOrderBy->a[i].pExpr; 1536 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 1537 } 1538 if( i==pOrderBy->nExpr ){ 1539 nOrderBy = pOrderBy->nExpr; 1540 } 1541 } 1542 1543 /* Allocate the sqlite3_index_info structure 1544 */ 1545 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 1546 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 1547 + sizeof(*pIdxOrderBy)*nOrderBy ); 1548 if( pIdxInfo==0 ){ 1549 sqlite3ErrorMsg(pParse, "out of memory"); 1550 return 0.0; 1551 } 1552 *ppIdxInfo = pIdxInfo; 1553 1554 /* Initialize the structure. The sqlite3_index_info structure contains 1555 ** many fields that are declared "const" to prevent xBestIndex from 1556 ** changing them. We have to do some funky casting in order to 1557 ** initialize those fields. 1558 */ 1559 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; 1560 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 1561 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 1562 *(int*)&pIdxInfo->nConstraint = nTerm; 1563 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 1564 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; 1565 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; 1566 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = 1567 pUsage; 1568 1569 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1570 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1571 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); 1572 testcase( pTerm->eOperator==WO_IN ); 1573 testcase( pTerm->eOperator==WO_ISNULL ); 1574 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; 1575 pIdxCons[j].iColumn = pTerm->u.leftColumn; 1576 pIdxCons[j].iTermOffset = i; 1577 pIdxCons[j].op = (u8)pTerm->eOperator; 1578 /* The direct assignment in the previous line is possible only because 1579 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 1580 ** following asserts verify this fact. */ 1581 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 1582 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 1583 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 1584 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 1585 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 1586 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); 1587 assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); 1588 j++; 1589 } 1590 for(i=0; i<nOrderBy; i++){ 1591 Expr *pExpr = pOrderBy->a[i].pExpr; 1592 pIdxOrderBy[i].iColumn = pExpr->iColumn; 1593 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; 1594 } 1595 } 1596 1597 /* At this point, the sqlite3_index_info structure that pIdxInfo points 1598 ** to will have been initialized, either during the current invocation or 1599 ** during some prior invocation. Now we just have to customize the 1600 ** details of pIdxInfo for the current invocation and pass it to 1601 ** xBestIndex. 1602 */ 1603 1604 /* The module name must be defined. Also, by this point there must 1605 ** be a pointer to an sqlite3_vtab structure. Otherwise 1606 ** sqlite3ViewGetColumnNames() would have picked up the error. 1607 */ 1608 assert( pTab->azModuleArg && pTab->azModuleArg[0] ); 1609 assert( pVtab ); 1610 #if 0 1611 if( pTab->pVtab==0 ){ 1612 sqlite3ErrorMsg(pParse, "undefined module %s for table %s", 1613 pTab->azModuleArg[0], pTab->zName); 1614 return 0.0; 1615 } 1616 #endif 1617 1618 /* Set the aConstraint[].usable fields and initialize all 1619 ** output variables to zero. 1620 ** 1621 ** aConstraint[].usable is true for constraints where the right-hand 1622 ** side contains only references to tables to the left of the current 1623 ** table. In other words, if the constraint is of the form: 1624 ** 1625 ** column = expr 1626 ** 1627 ** and we are evaluating a join, then the constraint on column is 1628 ** only valid if all tables referenced in expr occur to the left 1629 ** of the table containing column. 1630 ** 1631 ** The aConstraints[] array contains entries for all constraints 1632 ** on the current table. That way we only have to compute it once 1633 ** even though we might try to pick the best index multiple times. 1634 ** For each attempt at picking an index, the order of tables in the 1635 ** join might be different so we have to recompute the usable flag 1636 ** each time. 1637 */ 1638 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 1639 pUsage = pIdxInfo->aConstraintUsage; 1640 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ 1641 j = pIdxCons->iTermOffset; 1642 pTerm = &pWC->a[j]; 1643 pIdxCons->usable = (pTerm->prereqRight & notReady)==0 ?1:0; 1644 } 1645 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); 1646 if( pIdxInfo->needToFreeIdxStr ){ 1647 sqlite3_free(pIdxInfo->idxStr); 1648 } 1649 pIdxInfo->idxStr = 0; 1650 pIdxInfo->idxNum = 0; 1651 pIdxInfo->needToFreeIdxStr = 0; 1652 pIdxInfo->orderByConsumed = 0; 1653 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0; 1654 nOrderBy = pIdxInfo->nOrderBy; 1655 if( pIdxInfo->nOrderBy && !orderByUsable ){ 1656 *(int*)&pIdxInfo->nOrderBy = 0; 1657 } 1658 1659 (void)sqlite3SafetyOff(pParse->db); 1660 WHERETRACE(("xBestIndex for %s\n", pTab->zName)); 1661 TRACE_IDX_INPUTS(pIdxInfo); 1662 rc = pVtab->pModule->xBestIndex(pVtab, pIdxInfo); 1663 TRACE_IDX_OUTPUTS(pIdxInfo); 1664 (void)sqlite3SafetyOn(pParse->db); 1665 1666 if( rc!=SQLITE_OK ){ 1667 if( rc==SQLITE_NOMEM ){ 1668 pParse->db->mallocFailed = 1; 1669 }else if( !pVtab->zErrMsg ){ 1670 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 1671 }else{ 1672 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 1673 } 1674 } 1675 sqlite3DbFree(pParse->db, pVtab->zErrMsg); 1676 pVtab->zErrMsg = 0; 1677 1678 for(i=0; i<pIdxInfo->nConstraint; i++){ 1679 if( !pIdxInfo->aConstraint[i].usable && pUsage[i].argvIndex>0 ){ 1680 sqlite3ErrorMsg(pParse, 1681 "table %s: xBestIndex returned an invalid plan", pTab->zName); 1682 return 0.0; 1683 } 1684 } 1685 1686 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 1687 return pIdxInfo->estimatedCost; 1688 } 1689 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1690 1691 /* 1692 ** Find the query plan for accessing a particular table. Write the 1693 ** best query plan and its cost into the WhereCost object supplied as the 1694 ** last parameter. 1695 ** 1696 ** The lowest cost plan wins. The cost is an estimate of the amount of 1697 ** CPU and disk I/O need to process the request using the selected plan. 1698 ** Factors that influence cost include: 1699 ** 1700 ** * The estimated number of rows that will be retrieved. (The 1701 ** fewer the better.) 1702 ** 1703 ** * Whether or not sorting must occur. 1704 ** 1705 ** * Whether or not there must be separate lookups in the 1706 ** index and in the main table. 1707 ** 1708 ** If there was an INDEXED BY clause attached to the table in the SELECT 1709 ** statement, then this function only considers plans using the 1710 ** named index. If one cannot be found, then the returned cost is 1711 ** SQLITE_BIG_DBL. If a plan can be found that uses the named index, 1712 ** then the cost is calculated in the usual way. 1713 ** 1714 ** If a NOT INDEXED clause was attached to the table in the SELECT 1715 ** statement, then no indexes are considered. However, the selected 1716 ** plan may still take advantage of the tables built-in rowid 1717 ** index. 1718 */ 1719 static void bestIndex( 1720 Parse *pParse, /* The parsing context */ 1721 WhereClause *pWC, /* The WHERE clause */ 1722 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1723 Bitmask notReady, /* Mask of cursors that are not available */ 1724 ExprList *pOrderBy, /* The ORDER BY clause */ 1725 WhereCost *pCost /* Lowest cost query plan */ 1726 ){ 1727 WhereTerm *pTerm; /* A single term of the WHERE clause */ 1728 int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ 1729 Index *pProbe; /* An index we are evaluating */ 1730 int rev; /* True to scan in reverse order */ 1731 int wsFlags; /* Flags associated with pProbe */ 1732 int nEq; /* Number of == or IN constraints */ 1733 int eqTermMask; /* Mask of valid equality operators */ 1734 double cost; /* Cost of using pProbe */ 1735 double nRow; /* Estimated number of rows in result set */ 1736 int i; /* Loop counter */ 1737 Bitmask maskSrc; /* Bitmask for the pSrc table */ 1738 1739 WHERETRACE(("bestIndex: tbl=%s notReady=%llx\n", pSrc->pTab->zName,notReady)); 1740 pProbe = pSrc->pTab->pIndex; 1741 if( pSrc->notIndexed ){ 1742 pProbe = 0; 1743 } 1744 1745 /* If the table has no indices and there are no terms in the where 1746 ** clause that refer to the ROWID, then we will never be able to do 1747 ** anything other than a full table scan on this table. We might as 1748 ** well put it first in the join order. That way, perhaps it can be 1749 ** referenced by other tables in the join. 1750 */ 1751 memset(pCost, 0, sizeof(*pCost)); 1752 if( pProbe==0 && 1753 findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 && 1754 (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){ 1755 return; 1756 } 1757 pCost->rCost = SQLITE_BIG_DBL; 1758 1759 /* Check for a rowid=EXPR or rowid IN (...) constraints. If there was 1760 ** an INDEXED BY clause attached to this table, skip this step. 1761 */ 1762 if( !pSrc->pIndex ){ 1763 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); 1764 if( pTerm ){ 1765 Expr *pExpr; 1766 pCost->plan.wsFlags = WHERE_ROWID_EQ; 1767 if( pTerm->eOperator & WO_EQ ){ 1768 /* Rowid== is always the best pick. Look no further. Because only 1769 ** a single row is generated, output is always in sorted order */ 1770 pCost->plan.wsFlags = WHERE_ROWID_EQ | WHERE_UNIQUE; 1771 pCost->plan.nEq = 1; 1772 WHERETRACE(("... best is rowid\n")); 1773 pCost->rCost = 0; 1774 pCost->nRow = 1; 1775 return; 1776 }else if( (pExpr = pTerm->pExpr)->pList!=0 ){ 1777 /* Rowid IN (LIST): cost is NlogN where N is the number of list 1778 ** elements. */ 1779 pCost->rCost = pCost->nRow = pExpr->pList->nExpr; 1780 pCost->rCost *= estLog(pCost->rCost); 1781 }else{ 1782 /* Rowid IN (SELECT): cost is NlogN where N is the number of rows 1783 ** in the result of the inner select. We have no way to estimate 1784 ** that value so make a wild guess. */ 1785 pCost->nRow = 100; 1786 pCost->rCost = 200; 1787 } 1788 WHERETRACE(("... rowid IN cost: %.9g\n", pCost->rCost)); 1789 } 1790 1791 /* Estimate the cost of a table scan. If we do not know how many 1792 ** entries are in the table, use 1 million as a guess. 1793 */ 1794 cost = pProbe ? pProbe->aiRowEst[0] : 1000000; 1795 WHERETRACE(("... table scan base cost: %.9g\n", cost)); 1796 wsFlags = WHERE_ROWID_RANGE; 1797 1798 /* Check for constraints on a range of rowids in a table scan. 1799 */ 1800 pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0); 1801 if( pTerm ){ 1802 if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){ 1803 wsFlags |= WHERE_TOP_LIMIT; 1804 cost /= 3; /* Guess that rowid<EXPR eliminates two-thirds of rows */ 1805 } 1806 if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){ 1807 wsFlags |= WHERE_BTM_LIMIT; 1808 cost /= 3; /* Guess that rowid>EXPR eliminates two-thirds of rows */ 1809 } 1810 WHERETRACE(("... rowid range reduces cost to %.9g\n", cost)); 1811 }else{ 1812 wsFlags = 0; 1813 } 1814 nRow = cost; 1815 1816 /* If the table scan does not satisfy the ORDER BY clause, increase 1817 ** the cost by NlogN to cover the expense of sorting. */ 1818 if( pOrderBy ){ 1819 if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){ 1820 wsFlags |= WHERE_ORDERBY|WHERE_ROWID_RANGE; 1821 if( rev ){ 1822 wsFlags |= WHERE_REVERSE; 1823 } 1824 }else{ 1825 cost += cost*estLog(cost); 1826 WHERETRACE(("... sorting increases cost to %.9g\n", cost)); 1827 } 1828 } 1829 if( cost<pCost->rCost ){ 1830 pCost->rCost = cost; 1831 pCost->nRow = nRow; 1832 pCost->plan.wsFlags = wsFlags; 1833 } 1834 } 1835 1836 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 1837 /* Search for an OR-clause that can be used to look up the table. 1838 */ 1839 maskSrc = getMask(pWC->pMaskSet, iCur); 1840 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1841 WhereClause tempWC; 1842 tempWC = *pWC; 1843 if( pTerm->eOperator==WO_OR 1844 && ((pTerm->prereqAll & ~maskSrc) & notReady)==0 1845 && (pTerm->u.pOrInfo->indexable & maskSrc)!=0 ){ 1846 WhereClause *pOrWC = &pTerm->u.pOrInfo->wc; 1847 WhereTerm *pOrTerm; 1848 int j; 1849 double rTotal = 0; 1850 double nRow = 0; 1851 for(j=0, pOrTerm=pOrWC->a; j<pOrWC->nTerm; j++, pOrTerm++){ 1852 WhereCost sTermCost; 1853 WHERETRACE(("... Multi-index OR testing for term %d of %d....\n", j,i)); 1854 if( pOrTerm->eOperator==WO_AND ){ 1855 WhereClause *pAndWC = &pOrTerm->u.pAndInfo->wc; 1856 bestIndex(pParse, pAndWC, pSrc, notReady, 0, &sTermCost); 1857 }else if( pOrTerm->leftCursor==iCur ){ 1858 tempWC.a = pOrTerm; 1859 tempWC.nTerm = 1; 1860 bestIndex(pParse, &tempWC, pSrc, notReady, 0, &sTermCost); 1861 }else{ 1862 continue; 1863 } 1864 if( sTermCost.plan.wsFlags==0 ){ 1865 rTotal = pCost->rCost; 1866 break; 1867 } 1868 rTotal += sTermCost.rCost; 1869 nRow += sTermCost.nRow; 1870 } 1871 WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", 1872 rTotal, nRow)); 1873 if( rTotal<pCost->rCost ){ 1874 pCost->rCost = rTotal; 1875 pCost->nRow = nRow; 1876 pCost->plan.wsFlags = WHERE_MULTI_OR; 1877 pCost->plan.u.pTerm = pTerm; 1878 if( pOrderBy!=0 1879 && sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) 1880 && !rev 1881 ){ 1882 pCost->plan.wsFlags = WHERE_ORDERBY|WHERE_MULTI_OR; 1883 } 1884 } 1885 } 1886 } 1887 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1888 1889 /* If the pSrc table is the right table of a LEFT JOIN then we may not 1890 ** use an index to satisfy IS NULL constraints on that table. This is 1891 ** because columns might end up being NULL if the table does not match - 1892 ** a circumstance which the index cannot help us discover. Ticket #2177. 1893 */ 1894 if( (pSrc->jointype & JT_LEFT)!=0 ){ 1895 eqTermMask = WO_EQ|WO_IN; 1896 }else{ 1897 eqTermMask = WO_EQ|WO_IN|WO_ISNULL; 1898 } 1899 1900 /* Look at each index. 1901 */ 1902 if( pSrc->pIndex ){ 1903 pProbe = pSrc->pIndex; 1904 } 1905 for(; pProbe; pProbe=(pSrc->pIndex ? 0 : pProbe->pNext)){ 1906 int i; /* Loop counter */ 1907 double inMultiplier = 1; 1908 1909 WHERETRACE(("... index %s:\n", pProbe->zName)); 1910 1911 /* Count the number of columns in the index that are satisfied 1912 ** by x=EXPR constraints or x IN (...) constraints. 1913 */ 1914 wsFlags = 0; 1915 for(i=0; i<pProbe->nColumn; i++){ 1916 int j = pProbe->aiColumn[i]; 1917 pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe); 1918 if( pTerm==0 ) break; 1919 wsFlags |= WHERE_COLUMN_EQ; 1920 if( pTerm->eOperator & WO_IN ){ 1921 Expr *pExpr = pTerm->pExpr; 1922 wsFlags |= WHERE_COLUMN_IN; 1923 if( pExpr->pSelect!=0 ){ 1924 inMultiplier *= 25; 1925 }else if( ALWAYS(pExpr->pList) ){ 1926 inMultiplier *= pExpr->pList->nExpr + 1; 1927 } 1928 } 1929 } 1930 nRow = pProbe->aiRowEst[i] * inMultiplier; 1931 cost = nRow * estLog(inMultiplier); 1932 nEq = i; 1933 if( pProbe->onError!=OE_None && (wsFlags & WHERE_COLUMN_IN)==0 1934 && nEq==pProbe->nColumn ){ 1935 wsFlags |= WHERE_UNIQUE; 1936 } 1937 WHERETRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n",nEq,inMultiplier,cost)); 1938 1939 /* Look for range constraints 1940 */ 1941 if( nEq<pProbe->nColumn ){ 1942 int j = pProbe->aiColumn[nEq]; 1943 pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe); 1944 if( pTerm ){ 1945 wsFlags |= WHERE_COLUMN_RANGE; 1946 if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){ 1947 wsFlags |= WHERE_TOP_LIMIT; 1948 cost /= 3; 1949 nRow /= 3; 1950 } 1951 if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){ 1952 wsFlags |= WHERE_BTM_LIMIT; 1953 cost /= 3; 1954 nRow /= 3; 1955 } 1956 WHERETRACE(("...... range reduces cost to %.9g\n", cost)); 1957 } 1958 } 1959 1960 /* Add the additional cost of sorting if that is a factor. 1961 */ 1962 if( pOrderBy ){ 1963 if( (wsFlags & WHERE_COLUMN_IN)==0 && 1964 isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){ 1965 if( wsFlags==0 ){ 1966 wsFlags = WHERE_COLUMN_RANGE; 1967 } 1968 wsFlags |= WHERE_ORDERBY; 1969 if( rev ){ 1970 wsFlags |= WHERE_REVERSE; 1971 } 1972 }else{ 1973 cost += cost*estLog(cost); 1974 WHERETRACE(("...... orderby increases cost to %.9g\n", cost)); 1975 } 1976 } 1977 1978 /* Check to see if we can get away with using just the index without 1979 ** ever reading the table. If that is the case, then halve the 1980 ** cost of this index. 1981 */ 1982 if( wsFlags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){ 1983 Bitmask m = pSrc->colUsed; 1984 int j; 1985 for(j=0; j<pProbe->nColumn; j++){ 1986 int x = pProbe->aiColumn[j]; 1987 if( x<BMS-1 ){ 1988 m &= ~(((Bitmask)1)<<x); 1989 } 1990 } 1991 if( m==0 ){ 1992 wsFlags |= WHERE_IDX_ONLY; 1993 cost /= 2; 1994 WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost)); 1995 } 1996 } 1997 1998 /* If this index has achieved the lowest cost so far, then use it. 1999 */ 2000 if( wsFlags!=0 && cost < pCost->rCost ){ 2001 pCost->rCost = cost; 2002 pCost->nRow = nRow; 2003 pCost->plan.wsFlags = wsFlags; 2004 pCost->plan.nEq = nEq; 2005 assert( pCost->plan.wsFlags & WHERE_INDEXED ); 2006 pCost->plan.u.pIdx = pProbe; 2007 } 2008 } 2009 2010 /* Report the best result 2011 */ 2012 pCost->plan.wsFlags |= eqTermMask; 2013 WHERETRACE(("best index is %s, cost=%.9g, nrow=%.9g, wsFlags=%x, nEq=%d\n", 2014 (pCost->plan.wsFlags & WHERE_INDEXED)!=0 ? 2015 pCost->plan.u.pIdx->zName : "(none)", pCost->nRow, 2016 pCost->rCost, pCost->plan.wsFlags, pCost->plan.nEq)); 2017 } 2018 2019 2020 /* 2021 ** Disable a term in the WHERE clause. Except, do not disable the term 2022 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 2023 ** or USING clause of that join. 2024 ** 2025 ** Consider the term t2.z='ok' in the following queries: 2026 ** 2027 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 2028 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 2029 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 2030 ** 2031 ** The t2.z='ok' is disabled in the in (2) because it originates 2032 ** in the ON clause. The term is disabled in (3) because it is not part 2033 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 2034 ** 2035 ** Disabling a term causes that term to not be tested in the inner loop 2036 ** of the join. Disabling is an optimization. When terms are satisfied 2037 ** by indices, we disable them to prevent redundant tests in the inner 2038 ** loop. We would get the correct results if nothing were ever disabled, 2039 ** but joins might run a little slower. The trick is to disable as much 2040 ** as we can without disabling too much. If we disabled in (1), we'd get 2041 ** the wrong answer. See ticket #813. 2042 */ 2043 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 2044 if( pTerm 2045 && ALWAYS((pTerm->wtFlags & TERM_CODED)==0) 2046 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 2047 ){ 2048 pTerm->wtFlags |= TERM_CODED; 2049 if( pTerm->iParent>=0 ){ 2050 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; 2051 if( (--pOther->nChild)==0 ){ 2052 disableTerm(pLevel, pOther); 2053 } 2054 } 2055 } 2056 } 2057 2058 /* 2059 ** Apply the affinities associated with the first n columns of index 2060 ** pIdx to the values in the n registers starting at base. 2061 */ 2062 static void codeApplyAffinity(Parse *pParse, int base, int n, Index *pIdx){ 2063 if( n>0 ){ 2064 Vdbe *v = pParse->pVdbe; 2065 assert( v!=0 ); 2066 sqlite3VdbeAddOp2(v, OP_Affinity, base, n); 2067 sqlite3IndexAffinityStr(v, pIdx); 2068 sqlite3ExprCacheAffinityChange(pParse, base, n); 2069 } 2070 } 2071 2072 2073 /* 2074 ** Generate code for a single equality term of the WHERE clause. An equality 2075 ** term can be either X=expr or X IN (...). pTerm is the term to be 2076 ** coded. 2077 ** 2078 ** The current value for the constraint is left in register iReg. 2079 ** 2080 ** For a constraint of the form X=expr, the expression is evaluated and its 2081 ** result is left on the stack. For constraints of the form X IN (...) 2082 ** this routine sets up a loop that will iterate over all values of X. 2083 */ 2084 static int codeEqualityTerm( 2085 Parse *pParse, /* The parsing context */ 2086 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 2087 WhereLevel *pLevel, /* When level of the FROM clause we are working on */ 2088 int iTarget /* Attempt to leave results in this register */ 2089 ){ 2090 Expr *pX = pTerm->pExpr; 2091 Vdbe *v = pParse->pVdbe; 2092 int iReg; /* Register holding results */ 2093 2094 assert( iTarget>0 ); 2095 if( pX->op==TK_EQ ){ 2096 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 2097 }else if( pX->op==TK_ISNULL ){ 2098 iReg = iTarget; 2099 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 2100 #ifndef SQLITE_OMIT_SUBQUERY 2101 }else{ 2102 int eType; 2103 int iTab; 2104 struct InLoop *pIn; 2105 2106 assert( pX->op==TK_IN ); 2107 iReg = iTarget; 2108 eType = sqlite3FindInIndex(pParse, pX, 0); 2109 iTab = pX->iTable; 2110 sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); 2111 VdbeComment((v, "%.*s", pX->span.n, pX->span.z)); 2112 assert( pLevel->plan.wsFlags & WHERE_IN_ABLE ); 2113 if( pLevel->u.in.nIn==0 ){ 2114 pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 2115 } 2116 pLevel->u.in.nIn++; 2117 pLevel->u.in.aInLoop = 2118 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, 2119 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 2120 pIn = pLevel->u.in.aInLoop; 2121 if( pIn ){ 2122 pIn += pLevel->u.in.nIn - 1; 2123 pIn->iCur = iTab; 2124 if( eType==IN_INDEX_ROWID ){ 2125 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); 2126 }else{ 2127 pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); 2128 } 2129 sqlite3VdbeAddOp1(v, OP_IsNull, iReg); 2130 }else{ 2131 pLevel->u.in.nIn = 0; 2132 } 2133 #endif 2134 } 2135 disableTerm(pLevel, pTerm); 2136 return iReg; 2137 } 2138 2139 /* 2140 ** Generate code that will evaluate all == and IN constraints for an 2141 ** index. The values for all constraints are left on the stack. 2142 ** 2143 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 2144 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 2145 ** The index has as many as three equality constraints, but in this 2146 ** example, the third "c" value is an inequality. So only two 2147 ** constraints are coded. This routine will generate code to evaluate 2148 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 2149 ** in consecutive registers and the index of the first register is returned. 2150 ** 2151 ** In the example above nEq==2. But this subroutine works for any value 2152 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 2153 ** The only thing it does is allocate the pLevel->iMem memory cell. 2154 ** 2155 ** This routine always allocates at least one memory cell and returns 2156 ** the index of that memory cell. The code that 2157 ** calls this routine will use that memory cell to store the termination 2158 ** key value of the loop. If one or more IN operators appear, then 2159 ** this routine allocates an additional nEq memory cells for internal 2160 ** use. 2161 */ 2162 static int codeAllEqualityTerms( 2163 Parse *pParse, /* Parsing context */ 2164 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 2165 WhereClause *pWC, /* The WHERE clause */ 2166 Bitmask notReady, /* Which parts of FROM have not yet been coded */ 2167 int nExtraReg /* Number of extra registers to allocate */ 2168 ){ 2169 int nEq = pLevel->plan.nEq; /* The number of == or IN constraints to code */ 2170 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 2171 Index *pIdx; /* The index being used for this loop */ 2172 int iCur = pLevel->iTabCur; /* The cursor of the table */ 2173 WhereTerm *pTerm; /* A single constraint term */ 2174 int j; /* Loop counter */ 2175 int regBase; /* Base register */ 2176 int nReg; /* Number of registers to allocate */ 2177 2178 /* This module is only called on query plans that use an index. */ 2179 assert( pLevel->plan.wsFlags & WHERE_INDEXED ); 2180 pIdx = pLevel->plan.u.pIdx; 2181 2182 /* Figure out how many memory cells we will need then allocate them. 2183 */ 2184 regBase = pParse->nMem + 1; 2185 nReg = pLevel->plan.nEq + nExtraReg; 2186 pParse->nMem += nReg; 2187 2188 /* Evaluate the equality constraints 2189 */ 2190 assert( pIdx->nColumn>=nEq ); 2191 for(j=0; j<nEq; j++){ 2192 int r1; 2193 int k = pIdx->aiColumn[j]; 2194 pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx); 2195 if( NEVER(pTerm==0) ) break; 2196 assert( (pTerm->wtFlags & TERM_CODED)==0 ); 2197 r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j); 2198 if( r1!=regBase+j ){ 2199 if( nReg==1 ){ 2200 sqlite3ReleaseTempReg(pParse, regBase); 2201 regBase = r1; 2202 }else{ 2203 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); 2204 } 2205 } 2206 testcase( pTerm->eOperator & WO_ISNULL ); 2207 testcase( pTerm->eOperator & WO_IN ); 2208 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ 2209 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 2210 } 2211 } 2212 return regBase; 2213 } 2214 2215 /* 2216 ** Return TRUE if the WhereClause pWC contains no terms that 2217 ** are not virtual and which have not been coded. 2218 ** 2219 ** To put it another way, return TRUE if no additional WHERE clauses 2220 ** tests are required in order to establish that the current row 2221 ** should go to output and return FALSE if there are some terms of 2222 ** the WHERE clause that need to be validated before outputing the row. 2223 */ 2224 static int whereRowReadyForOutput(WhereClause *pWC){ 2225 WhereTerm *pTerm; 2226 int j; 2227 2228 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2229 if( (pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED))==0 ) return 0; 2230 } 2231 return 1; 2232 } 2233 2234 /* 2235 ** Generate code for the start of the iLevel-th loop in the WHERE clause 2236 ** implementation described by pWInfo. 2237 */ 2238 static Bitmask codeOneLoopStart( 2239 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 2240 int iLevel, /* Which level of pWInfo->a[] should be coded */ 2241 u8 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */ 2242 Bitmask notReady /* Which tables are currently available */ 2243 ){ 2244 int j, k; /* Loop counters */ 2245 int iCur; /* The VDBE cursor for the table */ 2246 int addrNxt; /* Where to jump to continue with the next IN case */ 2247 int omitTable; /* True if we use the index only */ 2248 int bRev; /* True if we need to scan in reverse order */ 2249 WhereLevel *pLevel; /* The where level to be coded */ 2250 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 2251 WhereTerm *pTerm; /* A WHERE clause term */ 2252 Parse *pParse; /* Parsing context */ 2253 Vdbe *v; /* The prepared stmt under constructions */ 2254 struct SrcList_item *pTabItem; /* FROM clause term being coded */ 2255 int addrBrk; /* Jump here to break out of the loop */ 2256 int addrCont; /* Jump here to continue with next cycle */ 2257 int regRowSet; /* Write rowids to this RowSet if non-negative */ 2258 int codeRowSetEarly; /* True if index fully constrains the search */ 2259 2260 2261 pParse = pWInfo->pParse; 2262 v = pParse->pVdbe; 2263 pWC = pWInfo->pWC; 2264 pLevel = &pWInfo->a[iLevel]; 2265 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 2266 iCur = pTabItem->iCursor; 2267 bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0; 2268 omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0; 2269 regRowSet = pWInfo->regRowSet; 2270 codeRowSetEarly = 0; 2271 2272 /* Create labels for the "break" and "continue" instructions 2273 ** for the current loop. Jump to addrBrk to break out of a loop. 2274 ** Jump to cont to go immediately to the next iteration of the 2275 ** loop. 2276 ** 2277 ** When there is an IN operator, we also have a "addrNxt" label that 2278 ** means to continue with the next IN value combination. When 2279 ** there are no IN operators in the constraints, the "addrNxt" label 2280 ** is the same as "addrBrk". 2281 */ 2282 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 2283 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); 2284 2285 /* If this is the right table of a LEFT OUTER JOIN, allocate and 2286 ** initialize a memory cell that records if this table matches any 2287 ** row of the left table of the join. 2288 */ 2289 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ 2290 pLevel->iLeftJoin = ++pParse->nMem; 2291 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 2292 VdbeComment((v, "init LEFT JOIN no-match flag")); 2293 } 2294 2295 #ifndef SQLITE_OMIT_VIRTUALTABLE 2296 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 2297 /* Case 0: The table is a virtual-table. Use the VFilter and VNext 2298 ** to access the data. 2299 */ 2300 int iReg; /* P3 Value for OP_VFilter */ 2301 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx; 2302 int nConstraint = pVtabIdx->nConstraint; 2303 struct sqlite3_index_constraint_usage *aUsage = 2304 pVtabIdx->aConstraintUsage; 2305 const struct sqlite3_index_constraint *aConstraint = 2306 pVtabIdx->aConstraint; 2307 2308 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 2309 pParse->disableColCache++; 2310 for(j=1; j<=nConstraint; j++){ 2311 for(k=0; k<nConstraint; k++){ 2312 if( aUsage[k].argvIndex==j ){ 2313 int iTerm = aConstraint[k].iTermOffset; 2314 assert( pParse->disableColCache ); 2315 sqlite3ExprCode(pParse, pWC->a[iTerm].pExpr->pRight, iReg+j+1); 2316 break; 2317 } 2318 } 2319 if( k==nConstraint ) break; 2320 } 2321 assert( pParse->disableColCache ); 2322 pParse->disableColCache--; 2323 sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg); 2324 sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1); 2325 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrBrk, iReg, pVtabIdx->idxStr, 2326 pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC); 2327 pVtabIdx->needToFreeIdxStr = 0; 2328 for(j=0; j<nConstraint; j++){ 2329 if( aUsage[j].omit ){ 2330 int iTerm = aConstraint[j].iTermOffset; 2331 disableTerm(pLevel, &pWC->a[iTerm]); 2332 } 2333 } 2334 pLevel->op = OP_VNext; 2335 pLevel->p1 = iCur; 2336 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2337 codeRowSetEarly = regRowSet>=0 ? whereRowReadyForOutput(pWC) : 0; 2338 if( codeRowSetEarly ){ 2339 sqlite3VdbeAddOp2(v, OP_VRowid, iCur, iReg); 2340 sqlite3VdbeAddOp2(v, OP_RowSetAdd, regRowSet, iReg); 2341 } 2342 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 2343 }else 2344 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 2345 2346 if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){ 2347 /* Case 1: We can directly reference a single row using an 2348 ** equality comparison against the ROWID field. Or 2349 ** we reference multiple rows using a "rowid IN (...)" 2350 ** construct. 2351 */ 2352 int r1; 2353 int rtmp = sqlite3GetTempReg(pParse); 2354 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); 2355 assert( pTerm!=0 ); 2356 assert( pTerm->pExpr!=0 ); 2357 assert( pTerm->leftCursor==iCur ); 2358 assert( omitTable==0 ); 2359 r1 = codeEqualityTerm(pParse, pTerm, pLevel, rtmp); 2360 addrNxt = pLevel->addrNxt; 2361 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, addrNxt); 2362 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, r1); 2363 codeRowSetEarly = (pWC->nTerm==1 && regRowSet>=0) ?1:0; 2364 if( codeRowSetEarly ){ 2365 sqlite3VdbeAddOp2(v, OP_RowSetAdd, regRowSet, r1); 2366 } 2367 sqlite3ReleaseTempReg(pParse, rtmp); 2368 VdbeComment((v, "pk")); 2369 pLevel->op = OP_Noop; 2370 }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){ 2371 /* Case 2: We have an inequality comparison against the ROWID field. 2372 */ 2373 int testOp = OP_Noop; 2374 int start; 2375 int memEndValue = 0; 2376 WhereTerm *pStart, *pEnd; 2377 2378 assert( omitTable==0 ); 2379 pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0); 2380 pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0); 2381 if( bRev ){ 2382 pTerm = pStart; 2383 pStart = pEnd; 2384 pEnd = pTerm; 2385 } 2386 if( pStart ){ 2387 Expr *pX; /* The expression that defines the start bound */ 2388 int r1, rTemp; /* Registers for holding the start boundary */ 2389 2390 /* The following constant maps TK_xx codes into corresponding 2391 ** seek opcodes. It depends on a particular ordering of TK_xx 2392 */ 2393 const u8 aMoveOp[] = { 2394 /* TK_GT */ OP_SeekGt, 2395 /* TK_LE */ OP_SeekLe, 2396 /* TK_LT */ OP_SeekLt, 2397 /* TK_GE */ OP_SeekGe 2398 }; 2399 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 2400 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 2401 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 2402 2403 pX = pStart->pExpr; 2404 assert( pX!=0 ); 2405 assert( pStart->leftCursor==iCur ); 2406 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 2407 sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1); 2408 VdbeComment((v, "pk")); 2409 sqlite3ExprCacheAffinityChange(pParse, r1, 1); 2410 sqlite3ReleaseTempReg(pParse, rTemp); 2411 disableTerm(pLevel, pStart); 2412 }else{ 2413 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); 2414 } 2415 if( pEnd ){ 2416 Expr *pX; 2417 pX = pEnd->pExpr; 2418 assert( pX!=0 ); 2419 assert( pEnd->leftCursor==iCur ); 2420 memEndValue = ++pParse->nMem; 2421 sqlite3ExprCode(pParse, pX->pRight, memEndValue); 2422 if( pX->op==TK_LT || pX->op==TK_GT ){ 2423 testOp = bRev ? OP_Le : OP_Ge; 2424 }else{ 2425 testOp = bRev ? OP_Lt : OP_Gt; 2426 } 2427 disableTerm(pLevel, pEnd); 2428 } 2429 start = sqlite3VdbeCurrentAddr(v); 2430 pLevel->op = bRev ? OP_Prev : OP_Next; 2431 pLevel->p1 = iCur; 2432 pLevel->p2 = start; 2433 pLevel->p5 = (pStart==0 && pEnd==0) ?1:0; 2434 codeRowSetEarly = regRowSet>=0 ? whereRowReadyForOutput(pWC) : 0; 2435 if( codeRowSetEarly || testOp!=OP_Noop ){ 2436 int r1 = sqlite3GetTempReg(pParse); 2437 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1); 2438 if( testOp!=OP_Noop ){ 2439 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, r1); 2440 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 2441 } 2442 if( codeRowSetEarly ){ 2443 sqlite3VdbeAddOp2(v, OP_RowSetAdd, regRowSet, r1); 2444 } 2445 sqlite3ReleaseTempReg(pParse, r1); 2446 } 2447 }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){ 2448 /* Case 3: A scan using an index. 2449 ** 2450 ** The WHERE clause may contain zero or more equality 2451 ** terms ("==" or "IN" operators) that refer to the N 2452 ** left-most columns of the index. It may also contain 2453 ** inequality constraints (>, <, >= or <=) on the indexed 2454 ** column that immediately follows the N equalities. Only 2455 ** the right-most column can be an inequality - the rest must 2456 ** use the "==" and "IN" operators. For example, if the 2457 ** index is on (x,y,z), then the following clauses are all 2458 ** optimized: 2459 ** 2460 ** x=5 2461 ** x=5 AND y=10 2462 ** x=5 AND y<10 2463 ** x=5 AND y>5 AND y<10 2464 ** x=5 AND y=5 AND z<=10 2465 ** 2466 ** The z<10 term of the following cannot be used, only 2467 ** the x=5 term: 2468 ** 2469 ** x=5 AND z<10 2470 ** 2471 ** N may be zero if there are inequality constraints. 2472 ** If there are no inequality constraints, then N is at 2473 ** least one. 2474 ** 2475 ** This case is also used when there are no WHERE clause 2476 ** constraints but an index is selected anyway, in order 2477 ** to force the output order to conform to an ORDER BY. 2478 */ 2479 int aStartOp[] = { 2480 0, 2481 0, 2482 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 2483 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 2484 OP_SeekGt, /* 4: (start_constraints && !startEq && !bRev) */ 2485 OP_SeekLt, /* 5: (start_constraints && !startEq && bRev) */ 2486 OP_SeekGe, /* 6: (start_constraints && startEq && !bRev) */ 2487 OP_SeekLe /* 7: (start_constraints && startEq && bRev) */ 2488 }; 2489 int aEndOp[] = { 2490 OP_Noop, /* 0: (!end_constraints) */ 2491 OP_IdxGE, /* 1: (end_constraints && !bRev) */ 2492 OP_IdxLT /* 2: (end_constraints && bRev) */ 2493 }; 2494 int nEq = pLevel->plan.nEq; 2495 int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */ 2496 int regBase; /* Base register holding constraint values */ 2497 int r1; /* Temp register */ 2498 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 2499 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 2500 int startEq; /* True if range start uses ==, >= or <= */ 2501 int endEq; /* True if range end uses ==, >= or <= */ 2502 int start_constraints; /* Start of range is constrained */ 2503 int nConstraint; /* Number of constraint terms */ 2504 Index *pIdx; /* The index we will be using */ 2505 int iIdxCur; /* The VDBE cursor for the index */ 2506 int nExtraReg = 0; /* Number of extra registers needed */ 2507 int op; /* Instruction opcode */ 2508 2509 pIdx = pLevel->plan.u.pIdx; 2510 iIdxCur = pLevel->iIdxCur; 2511 k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */ 2512 2513 /* If this loop satisfies a sort order (pOrderBy) request that 2514 ** was passed to this function to implement a "SELECT min(x) ..." 2515 ** query, then the caller will only allow the loop to run for 2516 ** a single iteration. This means that the first row returned 2517 ** should not have a NULL value stored in 'x'. If column 'x' is 2518 ** the first one after the nEq equality constraints in the index, 2519 ** this requires some special handling. 2520 */ 2521 if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0 2522 && (pLevel->plan.wsFlags&WHERE_ORDERBY) 2523 && (pIdx->nColumn>nEq) 2524 ){ 2525 /* assert( pOrderBy->nExpr==1 ); */ 2526 /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */ 2527 isMinQuery = 1; 2528 nExtraReg = 1; 2529 } 2530 2531 /* Find any inequality constraint terms for the start and end 2532 ** of the range. 2533 */ 2534 if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){ 2535 pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx); 2536 nExtraReg = 1; 2537 } 2538 if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){ 2539 pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx); 2540 nExtraReg = 1; 2541 } 2542 2543 /* Generate code to evaluate all constraint terms using == or IN 2544 ** and store the values of those terms in an array of registers 2545 ** starting at regBase. 2546 */ 2547 regBase = codeAllEqualityTerms(pParse, pLevel, pWC, notReady, nExtraReg); 2548 addrNxt = pLevel->addrNxt; 2549 2550 2551 /* If we are doing a reverse order scan on an ascending index, or 2552 ** a forward order scan on a descending index, interchange the 2553 ** start and end terms (pRangeStart and pRangeEnd). 2554 */ 2555 if( bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){ 2556 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 2557 } 2558 2559 testcase( pRangeStart && pRangeStart->eOperator & WO_LE ); 2560 testcase( pRangeStart && pRangeStart->eOperator & WO_GE ); 2561 testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE ); 2562 testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE ); 2563 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 2564 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 2565 start_constraints = pRangeStart || nEq>0; 2566 2567 /* Seek the index cursor to the start of the range. */ 2568 nConstraint = nEq; 2569 if( pRangeStart ){ 2570 int dcc = pParse->disableColCache; 2571 if( pRangeEnd ){ 2572 pParse->disableColCache++; 2573 } 2574 sqlite3ExprCode(pParse, pRangeStart->pExpr->pRight, regBase+nEq); 2575 pParse->disableColCache = dcc; 2576 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 2577 nConstraint++; 2578 }else if( isMinQuery ){ 2579 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 2580 nConstraint++; 2581 startEq = 0; 2582 start_constraints = 1; 2583 } 2584 codeApplyAffinity(pParse, regBase, nConstraint, pIdx); 2585 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 2586 assert( op!=0 ); 2587 testcase( op==OP_Rewind ); 2588 testcase( op==OP_Last ); 2589 testcase( op==OP_SeekGt ); 2590 testcase( op==OP_SeekGe ); 2591 testcase( op==OP_SeekLe ); 2592 testcase( op==OP_SeekLt ); 2593 sqlite3VdbeAddOp4(v, op, iIdxCur, addrNxt, regBase, 2594 SQLITE_INT_TO_PTR(nConstraint), P4_INT32); 2595 2596 /* Load the value for the inequality constraint at the end of the 2597 ** range (if any). 2598 */ 2599 nConstraint = nEq; 2600 if( pRangeEnd ){ 2601 sqlite3ExprCode(pParse, pRangeEnd->pExpr->pRight, regBase+nEq); 2602 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 2603 codeApplyAffinity(pParse, regBase, nEq+1, pIdx); 2604 nConstraint++; 2605 } 2606 2607 /* Top of the loop body */ 2608 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2609 2610 /* Check if the index cursor is past the end of the range. */ 2611 op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)]; 2612 testcase( op==OP_Noop ); 2613 testcase( op==OP_IdxGE ); 2614 testcase( op==OP_IdxLT ); 2615 if( op!=OP_Noop ){ 2616 sqlite3VdbeAddOp4(v, op, iIdxCur, addrNxt, regBase, 2617 SQLITE_INT_TO_PTR(nConstraint), P4_INT32); 2618 sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0); 2619 } 2620 2621 /* If there are inequality constraints, check that the value 2622 ** of the table column that the inequality contrains is not NULL. 2623 ** If it is, jump to the next iteration of the loop. 2624 */ 2625 r1 = sqlite3GetTempReg(pParse); 2626 testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ); 2627 testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ); 2628 if( pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT) ){ 2629 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1); 2630 sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont); 2631 } 2632 2633 /* Seek the table cursor, if required */ 2634 disableTerm(pLevel, pRangeStart); 2635 disableTerm(pLevel, pRangeEnd); 2636 codeRowSetEarly = regRowSet>=0 ? whereRowReadyForOutput(pWC) : 0; 2637 if( !omitTable || codeRowSetEarly ){ 2638 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, r1); 2639 if( codeRowSetEarly ){ 2640 sqlite3VdbeAddOp2(v, OP_RowSetAdd, regRowSet, r1); 2641 }else{ 2642 sqlite3VdbeAddOp2(v, OP_Seek, iCur, r1); /* Deferred seek */ 2643 } 2644 } 2645 sqlite3ReleaseTempReg(pParse, r1); 2646 2647 /* Record the instruction used to terminate the loop. Disable 2648 ** WHERE clause terms made redundant by the index range scan. 2649 */ 2650 pLevel->op = bRev ? OP_Prev : OP_Next; 2651 pLevel->p1 = iIdxCur; 2652 }else 2653 2654 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 2655 if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){ 2656 /* Case 4: Two or more separately indexed terms connected by OR 2657 ** 2658 ** Example: 2659 ** 2660 ** CREATE TABLE t1(a,b,c,d); 2661 ** CREATE INDEX i1 ON t1(a); 2662 ** CREATE INDEX i2 ON t1(b); 2663 ** CREATE INDEX i3 ON t1(c); 2664 ** 2665 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 2666 ** 2667 ** In the example, there are three indexed terms connected by OR. 2668 ** The top of the loop is constructed by creating a RowSet object 2669 ** and populating it. Then looping over elements of the rowset. 2670 ** 2671 ** Null 1 2672 ** # fill RowSet 1 with entries where a=5 using i1 2673 ** # fill Rowset 1 with entries where b=7 using i2 2674 ** # fill Rowset 1 with entries where c=11 and d=13 i3 and t1 2675 ** A: RowSetRead 1, B, 2 2676 ** Seek i, 2 2677 ** 2678 ** The bottom of the loop looks like this: 2679 ** 2680 ** Goto 0, A 2681 ** B: 2682 */ 2683 int regOrRowset; /* Register holding the RowSet object */ 2684 int regNextRowid; /* Register holding next rowid */ 2685 WhereTerm *pTerm; /* The complete OR-clause */ 2686 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 2687 WhereTerm *pOrTerm; /* A single subterm within the OR-clause */ 2688 SrcList oneTab; /* Shortened table list */ 2689 2690 pTerm = pLevel->plan.u.pTerm; 2691 assert( pTerm!=0 ); 2692 assert( pTerm->eOperator==WO_OR ); 2693 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 2694 pOrWc = &pTerm->u.pOrInfo->wc; 2695 codeRowSetEarly = (regRowSet>=0 && pWC->nTerm==1) ?1:0; 2696 2697 if( codeRowSetEarly ){ 2698 regOrRowset = regRowSet; 2699 }else{ 2700 regOrRowset = sqlite3GetTempReg(pParse); 2701 sqlite3VdbeAddOp2(v, OP_Null, 0, regOrRowset); 2702 } 2703 oneTab.nSrc = 1; 2704 oneTab.nAlloc = 1; 2705 oneTab.a[0] = *pTabItem; 2706 for(j=0, pOrTerm=pOrWc->a; j<pOrWc->nTerm; j++, pOrTerm++){ 2707 WhereInfo *pSubWInfo; 2708 if( pOrTerm->leftCursor!=iCur && pOrTerm->eOperator!=WO_AND ) continue; 2709 pSubWInfo = sqlite3WhereBegin(pParse, &oneTab, pOrTerm->pExpr, 0, 2710 WHERE_FILL_ROWSET | WHERE_OMIT_OPEN | WHERE_OMIT_CLOSE, 2711 regOrRowset); 2712 if( pSubWInfo ){ 2713 sqlite3WhereEnd(pSubWInfo); 2714 } 2715 } 2716 sqlite3VdbeResolveLabel(v, addrCont); 2717 if( !codeRowSetEarly ){ 2718 regNextRowid = sqlite3GetTempReg(pParse); 2719 addrCont = 2720 sqlite3VdbeAddOp3(v, OP_RowSetRead, regOrRowset,addrBrk,regNextRowid); 2721 sqlite3VdbeAddOp2(v, OP_Seek, iCur, regNextRowid); 2722 sqlite3ReleaseTempReg(pParse, regNextRowid); 2723 /* sqlite3ReleaseTempReg(pParse, regOrRowset); // Preserve the RowSet */ 2724 pLevel->op = OP_Goto; 2725 pLevel->p2 = addrCont; 2726 } 2727 disableTerm(pLevel, pTerm); 2728 }else 2729 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 2730 2731 { 2732 /* Case 5: There is no usable index. We must do a complete 2733 ** scan of the entire table. 2734 */ 2735 assert( omitTable==0 ); 2736 assert( bRev==0 ); 2737 pLevel->op = OP_Next; 2738 pLevel->p1 = iCur; 2739 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, OP_Rewind, iCur, addrBrk); 2740 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2741 codeRowSetEarly = 0; 2742 } 2743 notReady &= ~getMask(pWC->pMaskSet, iCur); 2744 2745 /* Insert code to test every subexpression that can be completely 2746 ** computed using the current set of tables. 2747 */ 2748 k = 0; 2749 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2750 Expr *pE; 2751 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2752 testcase( pTerm->wtFlags & TERM_CODED ); 2753 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2754 if( (pTerm->prereqAll & notReady)!=0 ) continue; 2755 pE = pTerm->pExpr; 2756 assert( pE!=0 ); 2757 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ 2758 continue; 2759 } 2760 pParse->disableColCache += k; 2761 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 2762 pParse->disableColCache -= k; 2763 k = 1; 2764 pTerm->wtFlags |= TERM_CODED; 2765 } 2766 2767 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2768 ** at least one row of the right table has matched the left table. 2769 */ 2770 if( pLevel->iLeftJoin ){ 2771 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 2772 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 2773 VdbeComment((v, "record LEFT JOIN hit")); 2774 sqlite3ExprClearColumnCache(pParse, pLevel->iTabCur); 2775 sqlite3ExprClearColumnCache(pParse, pLevel->iIdxCur); 2776 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ 2777 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2778 testcase( pTerm->wtFlags & TERM_CODED ); 2779 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2780 if( (pTerm->prereqAll & notReady)!=0 ) continue; 2781 assert( pTerm->pExpr ); 2782 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 2783 pTerm->wtFlags |= TERM_CODED; 2784 } 2785 } 2786 2787 /* 2788 ** If it was requested to store the results in a rowset and that has 2789 ** not already been do, then do so now. 2790 */ 2791 if( regRowSet>=0 && !codeRowSetEarly ){ 2792 int r1 = sqlite3GetTempReg(pParse); 2793 #ifndef SQLITE_OMIT_VIRTUALTABLE 2794 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 2795 sqlite3VdbeAddOp2(v, OP_VRowid, iCur, r1); 2796 }else 2797 #endif 2798 { 2799 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1); 2800 } 2801 sqlite3VdbeAddOp2(v, OP_RowSetAdd, regRowSet, r1); 2802 sqlite3ReleaseTempReg(pParse, r1); 2803 } 2804 2805 return notReady; 2806 } 2807 2808 #if defined(SQLITE_TEST) 2809 /* 2810 ** The following variable holds a text description of query plan generated 2811 ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin 2812 ** overwrites the previous. This information is used for testing and 2813 ** analysis only. 2814 */ 2815 char sqlite3_query_plan[BMS*2*40]; /* Text of the join */ 2816 static int nQPlan = 0; /* Next free slow in _query_plan[] */ 2817 2818 #endif /* SQLITE_TEST */ 2819 2820 2821 /* 2822 ** Free a WhereInfo structure 2823 */ 2824 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 2825 if( pWInfo ){ 2826 int i; 2827 for(i=0; i<pWInfo->nLevel; i++){ 2828 sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo; 2829 if( pInfo ){ 2830 assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); 2831 if( pInfo->needToFreeIdxStr ){ 2832 sqlite3_free(pInfo->idxStr); 2833 } 2834 sqlite3DbFree(db, pInfo); 2835 } 2836 } 2837 whereClauseClear(pWInfo->pWC); 2838 sqlite3DbFree(db, pWInfo); 2839 } 2840 } 2841 2842 2843 /* 2844 ** Generate the beginning of the loop used for WHERE clause processing. 2845 ** The return value is a pointer to an opaque structure that contains 2846 ** information needed to terminate the loop. Later, the calling routine 2847 ** should invoke sqlite3WhereEnd() with the return value of this function 2848 ** in order to complete the WHERE clause processing. 2849 ** 2850 ** If an error occurs, this routine returns NULL. 2851 ** 2852 ** The basic idea is to do a nested loop, one loop for each table in 2853 ** the FROM clause of a select. (INSERT and UPDATE statements are the 2854 ** same as a SELECT with only a single table in the FROM clause.) For 2855 ** example, if the SQL is this: 2856 ** 2857 ** SELECT * FROM t1, t2, t3 WHERE ...; 2858 ** 2859 ** Then the code generated is conceptually like the following: 2860 ** 2861 ** foreach row1 in t1 do \ Code generated 2862 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 2863 ** foreach row3 in t3 do / 2864 ** ... 2865 ** end \ Code generated 2866 ** end |-- by sqlite3WhereEnd() 2867 ** end / 2868 ** 2869 ** Note that the loops might not be nested in the order in which they 2870 ** appear in the FROM clause if a different order is better able to make 2871 ** use of indices. Note also that when the IN operator appears in 2872 ** the WHERE clause, it might result in additional nested loops for 2873 ** scanning through all values on the right-hand side of the IN. 2874 ** 2875 ** There are Btree cursors associated with each table. t1 uses cursor 2876 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 2877 ** And so forth. This routine generates code to open those VDBE cursors 2878 ** and sqlite3WhereEnd() generates the code to close them. 2879 ** 2880 ** The code that sqlite3WhereBegin() generates leaves the cursors named 2881 ** in pTabList pointing at their appropriate entries. The [...] code 2882 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 2883 ** data from the various tables of the loop. 2884 ** 2885 ** If the WHERE clause is empty, the foreach loops must each scan their 2886 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 2887 ** the tables have indices and there are terms in the WHERE clause that 2888 ** refer to those indices, a complete table scan can be avoided and the 2889 ** code will run much faster. Most of the work of this routine is checking 2890 ** to see if there are indices that can be used to speed up the loop. 2891 ** 2892 ** Terms of the WHERE clause are also used to limit which rows actually 2893 ** make it to the "..." in the middle of the loop. After each "foreach", 2894 ** terms of the WHERE clause that use only terms in that loop and outer 2895 ** loops are evaluated and if false a jump is made around all subsequent 2896 ** inner loops (or around the "..." if the test occurs within the inner- 2897 ** most loop) 2898 ** 2899 ** OUTER JOINS 2900 ** 2901 ** An outer join of tables t1 and t2 is conceptally coded as follows: 2902 ** 2903 ** foreach row1 in t1 do 2904 ** flag = 0 2905 ** foreach row2 in t2 do 2906 ** start: 2907 ** ... 2908 ** flag = 1 2909 ** end 2910 ** if flag==0 then 2911 ** move the row2 cursor to a null row 2912 ** goto start 2913 ** fi 2914 ** end 2915 ** 2916 ** ORDER BY CLAUSE PROCESSING 2917 ** 2918 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, 2919 ** if there is one. If there is no ORDER BY clause or if this routine 2920 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. 2921 ** 2922 ** If an index can be used so that the natural output order of the table 2923 ** scan is correct for the ORDER BY clause, then that index is used and 2924 ** *ppOrderBy is set to NULL. This is an optimization that prevents an 2925 ** unnecessary sort of the result set if an index appropriate for the 2926 ** ORDER BY clause already exists. 2927 ** 2928 ** If the where clause loops cannot be arranged to provide the correct 2929 ** output order, then the *ppOrderBy is unchanged. 2930 */ 2931 WhereInfo *sqlite3WhereBegin( 2932 Parse *pParse, /* The parser context */ 2933 SrcList *pTabList, /* A list of all tables to be scanned */ 2934 Expr *pWhere, /* The WHERE clause */ 2935 ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */ 2936 u8 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */ 2937 int regRowSet /* Register hold RowSet if WHERE_FILL_ROWSET is set */ 2938 ){ 2939 int i; /* Loop counter */ 2940 WhereInfo *pWInfo; /* Will become the return value of this function */ 2941 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 2942 Bitmask notReady; /* Cursors that are not yet positioned */ 2943 WhereMaskSet *pMaskSet; /* The expression mask set */ 2944 WhereClause *pWC; /* Decomposition of the WHERE clause */ 2945 struct SrcList_item *pTabItem; /* A single entry from pTabList */ 2946 WhereLevel *pLevel; /* A single level in the pWInfo list */ 2947 int iFrom; /* First unused FROM clause element */ 2948 int andFlags; /* AND-ed combination of all pWC->a[].wtFlags */ 2949 sqlite3 *db; /* Database connection */ 2950 ExprList *pOrderBy = 0; 2951 2952 /* The number of tables in the FROM clause is limited by the number of 2953 ** bits in a Bitmask 2954 */ 2955 if( pTabList->nSrc>BMS ){ 2956 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 2957 return 0; 2958 } 2959 2960 if( ppOrderBy ){ 2961 pOrderBy = *ppOrderBy; 2962 } 2963 2964 /* Allocate and initialize the WhereInfo structure that will become the 2965 ** return value. 2966 */ 2967 db = pParse->db; 2968 pWInfo = sqlite3DbMallocZero(db, 2969 sizeof(WhereInfo) 2970 + (pTabList->nSrc-1)*sizeof(WhereLevel) 2971 + sizeof(WhereClause) 2972 + sizeof(WhereMaskSet) 2973 ); 2974 if( db->mallocFailed ){ 2975 goto whereBeginError; 2976 } 2977 pWInfo->nLevel = pTabList->nSrc; 2978 pWInfo->pParse = pParse; 2979 pWInfo->pTabList = pTabList; 2980 pWInfo->iBreak = sqlite3VdbeMakeLabel(v); 2981 pWInfo->regRowSet = (wctrlFlags & WHERE_FILL_ROWSET) ? regRowSet : -1; 2982 pWInfo->pWC = pWC = (WhereClause*)&pWInfo->a[pWInfo->nLevel]; 2983 pWInfo->wctrlFlags = wctrlFlags; 2984 pMaskSet = (WhereMaskSet*)&pWC[1]; 2985 2986 /* Split the WHERE clause into separate subexpressions where each 2987 ** subexpression is separated by an AND operator. 2988 */ 2989 initMaskSet(pMaskSet); 2990 whereClauseInit(pWC, pParse, pMaskSet); 2991 sqlite3ExprCodeConstants(pParse, pWhere); 2992 whereSplit(pWC, pWhere, TK_AND); 2993 2994 /* Special case: a WHERE clause that is constant. Evaluate the 2995 ** expression and either jump over all of the code or fall thru. 2996 */ 2997 if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){ 2998 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL); 2999 pWhere = 0; 3000 } 3001 3002 /* Assign a bit from the bitmask to every term in the FROM clause. 3003 ** 3004 ** When assigning bitmask values to FROM clause cursors, it must be 3005 ** the case that if X is the bitmask for the N-th FROM clause term then 3006 ** the bitmask for all FROM clause terms to the left of the N-th term 3007 ** is (X-1). An expression from the ON clause of a LEFT JOIN can use 3008 ** its Expr.iRightJoinTable value to find the bitmask of the right table 3009 ** of the join. Subtracting one from the right table bitmask gives a 3010 ** bitmask for all tables to the left of the join. Knowing the bitmask 3011 ** for all tables to the left of a left join is important. Ticket #3015. 3012 */ 3013 for(i=0; i<pTabList->nSrc; i++){ 3014 createMask(pMaskSet, pTabList->a[i].iCursor); 3015 } 3016 #ifndef NDEBUG 3017 { 3018 Bitmask toTheLeft = 0; 3019 for(i=0; i<pTabList->nSrc; i++){ 3020 Bitmask m = getMask(pMaskSet, pTabList->a[i].iCursor); 3021 assert( (m-1)==toTheLeft ); 3022 toTheLeft |= m; 3023 } 3024 } 3025 #endif 3026 3027 /* Analyze all of the subexpressions. Note that exprAnalyze() might 3028 ** add new virtual terms onto the end of the WHERE clause. We do not 3029 ** want to analyze these virtual terms, so start analyzing at the end 3030 ** and work forward so that the added virtual terms are never processed. 3031 */ 3032 exprAnalyzeAll(pTabList, pWC); 3033 if( db->mallocFailed ){ 3034 goto whereBeginError; 3035 } 3036 3037 /* Chose the best index to use for each table in the FROM clause. 3038 ** 3039 ** This loop fills in the following fields: 3040 ** 3041 ** pWInfo->a[].pIdx The index to use for this level of the loop. 3042 ** pWInfo->a[].wsFlags WHERE_xxx flags associated with pIdx 3043 ** pWInfo->a[].nEq The number of == and IN constraints 3044 ** pWInfo->a[].iFrom Which term of the FROM clause is being coded 3045 ** pWInfo->a[].iTabCur The VDBE cursor for the database table 3046 ** pWInfo->a[].iIdxCur The VDBE cursor for the index 3047 ** pWInfo->a[].pTerm When wsFlags==WO_OR, the OR-clause term 3048 ** 3049 ** This loop also figures out the nesting order of tables in the FROM 3050 ** clause. 3051 */ 3052 notReady = ~(Bitmask)0; 3053 pTabItem = pTabList->a; 3054 pLevel = pWInfo->a; 3055 andFlags = ~0; 3056 WHERETRACE(("*** Optimizer Start ***\n")); 3057 for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 3058 WhereCost bestPlan; /* Most efficient plan seen so far */ 3059 Index *pIdx; /* Index for FROM table at pTabItem */ 3060 int j; /* For looping over FROM tables */ 3061 int bestJ = 0; /* The value of j */ 3062 Bitmask m; /* Bitmask value for j or bestJ */ 3063 int once = 0; /* True when first table is seen */ 3064 3065 memset(&bestPlan, 0, sizeof(bestPlan)); 3066 bestPlan.rCost = SQLITE_BIG_DBL; 3067 for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){ 3068 int doNotReorder; /* True if this table should not be reordered */ 3069 WhereCost sCost; /* Cost information from bestIndex() */ 3070 3071 doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0; 3072 if( once && doNotReorder ) break; 3073 m = getMask(pMaskSet, pTabItem->iCursor); 3074 if( (m & notReady)==0 ){ 3075 if( j==iFrom ) iFrom++; 3076 continue; 3077 } 3078 assert( pTabItem->pTab ); 3079 #ifndef SQLITE_OMIT_VIRTUALTABLE 3080 if( IsVirtual(pTabItem->pTab) ){ 3081 sqlite3_index_info *pVtabIdx; /* Current virtual index */ 3082 sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo; 3083 sCost.rCost = bestVirtualIndex(pParse, pWC, pTabItem, notReady, 3084 ppOrderBy ? *ppOrderBy : 0, i==0, 3085 ppIdxInfo); 3086 sCost.plan.wsFlags = WHERE_VIRTUALTABLE; 3087 sCost.plan.u.pVtabIdx = pVtabIdx = *ppIdxInfo; 3088 if( pVtabIdx && pVtabIdx->orderByConsumed ){ 3089 sCost.plan.wsFlags = WHERE_VIRTUALTABLE | WHERE_ORDERBY; 3090 } 3091 sCost.plan.nEq = 0; 3092 if( (SQLITE_BIG_DBL/2.0)<sCost.rCost ){ 3093 /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the 3094 ** inital value of lowestCost in this loop. If it is, then 3095 ** the (cost<lowestCost) test below will never be true. 3096 */ 3097 sCost.rCost = (SQLITE_BIG_DBL/2.0); 3098 } 3099 }else 3100 #endif 3101 { 3102 bestIndex(pParse, pWC, pTabItem, notReady, 3103 (i==0 && ppOrderBy) ? *ppOrderBy : 0, &sCost); 3104 } 3105 if( once==0 || sCost.rCost<bestPlan.rCost ){ 3106 once = 1; 3107 bestPlan = sCost; 3108 bestJ = j; 3109 } 3110 if( doNotReorder ) break; 3111 } 3112 assert( once ); 3113 assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) ); 3114 WHERETRACE(("*** Optimizer selects table %d for loop %d\n", bestJ, 3115 pLevel-pWInfo->a)); 3116 if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 ){ 3117 *ppOrderBy = 0; 3118 } 3119 andFlags &= bestPlan.plan.wsFlags; 3120 pLevel->plan = bestPlan.plan; 3121 if( bestPlan.plan.wsFlags & WHERE_INDEXED ){ 3122 pLevel->iIdxCur = pParse->nTab++; 3123 }else{ 3124 pLevel->iIdxCur = -1; 3125 } 3126 notReady &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor); 3127 pLevel->iFrom = bestJ; 3128 3129 /* Check that if the table scanned by this loop iteration had an 3130 ** INDEXED BY clause attached to it, that the named index is being 3131 ** used for the scan. If not, then query compilation has failed. 3132 ** Return an error. 3133 */ 3134 pIdx = pTabList->a[bestJ].pIndex; 3135 assert( !pIdx 3136 || (bestPlan.plan.wsFlags&WHERE_INDEXED)==0 3137 || pIdx==bestPlan.plan.u.pIdx ); 3138 if( pIdx 3139 && ((bestPlan.plan.wsFlags & WHERE_INDEXED)==0 3140 || bestPlan.plan.u.pIdx!=pIdx) 3141 ){ 3142 sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName); 3143 goto whereBeginError; 3144 } 3145 } 3146 WHERETRACE(("*** Optimizer Finished ***\n")); 3147 if( db->mallocFailed ){ 3148 goto whereBeginError; 3149 } 3150 3151 /* If the total query only selects a single row, then the ORDER BY 3152 ** clause is irrelevant. 3153 */ 3154 if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){ 3155 *ppOrderBy = 0; 3156 } 3157 3158 /* If the caller is an UPDATE or DELETE statement that is requesting 3159 ** to use a one-pass algorithm, determine if this is appropriate. 3160 ** The one-pass algorithm only works if the WHERE clause constraints 3161 ** the statement to update a single row. 3162 */ 3163 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 3164 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){ 3165 pWInfo->okOnePass = 1; 3166 pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY; 3167 } 3168 3169 /* Open all tables in the pTabList and any indices selected for 3170 ** searching those tables. 3171 */ 3172 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ 3173 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 3174 Table *pTab; /* Table to open */ 3175 int iDb; /* Index of database containing table/index */ 3176 3177 #ifndef SQLITE_OMIT_EXPLAIN 3178 if( pParse->explain==2 ){ 3179 char *zMsg; 3180 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 3181 zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName); 3182 if( pItem->zAlias ){ 3183 zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias); 3184 } 3185 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ 3186 zMsg = sqlite3MAppendf(db, zMsg, "%s WITH INDEX %s", 3187 zMsg, pLevel->plan.u.pIdx->zName); 3188 }else if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){ 3189 zMsg = sqlite3MAppendf(db, zMsg, "%s VIA MULTI-INDEX UNION", zMsg); 3190 }else if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ 3191 zMsg = sqlite3MAppendf(db, zMsg, "%s USING PRIMARY KEY", zMsg); 3192 } 3193 #ifndef SQLITE_OMIT_VIRTUALTABLE 3194 else if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 3195 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx; 3196 zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg, 3197 pVtabIdx->idxNum, pVtabIdx->idxStr); 3198 } 3199 #endif 3200 if( pLevel->plan.wsFlags & WHERE_ORDERBY ){ 3201 zMsg = sqlite3MAppendf(db, zMsg, "%s ORDER BY", zMsg); 3202 } 3203 sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC); 3204 } 3205 #endif /* SQLITE_OMIT_EXPLAIN */ 3206 pTabItem = &pTabList->a[pLevel->iFrom]; 3207 pTab = pTabItem->pTab; 3208 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 3209 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue; 3210 #ifndef SQLITE_OMIT_VIRTUALTABLE 3211 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 3212 int iCur = pTabItem->iCursor; 3213 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, 3214 (const char*)pTab->pVtab, P4_VTAB); 3215 }else 3216 #endif 3217 if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 3218 && (wctrlFlags & WHERE_OMIT_OPEN)==0 ){ 3219 int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead; 3220 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 3221 if( !pWInfo->okOnePass && pTab->nCol<BMS ){ 3222 Bitmask b = pTabItem->colUsed; 3223 int n = 0; 3224 for(; b; b=b>>1, n++){} 3225 sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-2, n); 3226 assert( n<=pTab->nCol ); 3227 } 3228 }else{ 3229 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 3230 } 3231 pLevel->iTabCur = pTabItem->iCursor; 3232 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ 3233 Index *pIx = pLevel->plan.u.pIdx; 3234 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx); 3235 int iIdxCur = pLevel->iIdxCur; 3236 assert( pIx->pSchema==pTab->pSchema ); 3237 assert( iIdxCur>=0 ); 3238 sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIx->nColumn+1); 3239 sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb, 3240 (char*)pKey, P4_KEYINFO_HANDOFF); 3241 VdbeComment((v, "%s", pIx->zName)); 3242 } 3243 sqlite3CodeVerifySchema(pParse, iDb); 3244 } 3245 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 3246 3247 /* Generate the code to do the search. Each iteration of the for 3248 ** loop below generates code for a single nested loop of the VM 3249 ** program. 3250 */ 3251 notReady = ~(Bitmask)0; 3252 for(i=0; i<pTabList->nSrc; i++){ 3253 notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady); 3254 } 3255 pWInfo->iContinue = pWInfo->a[i-1].addrCont; 3256 3257 #ifdef SQLITE_TEST /* For testing and debugging use only */ 3258 /* Record in the query plan information about the current table 3259 ** and the index used to access it (if any). If the table itself 3260 ** is not used, its name is just '{}'. If no index is used 3261 ** the index is listed as "{}". If the primary key is used the 3262 ** index name is '*'. 3263 */ 3264 for(i=0; i<pTabList->nSrc; i++){ 3265 char *z; 3266 int n; 3267 pLevel = &pWInfo->a[i]; 3268 pTabItem = &pTabList->a[pLevel->iFrom]; 3269 z = pTabItem->zAlias; 3270 if( z==0 ) z = pTabItem->pTab->zName; 3271 n = sqlite3Strlen30(z); 3272 if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){ 3273 if( pLevel->plan.wsFlags & WHERE_IDX_ONLY ){ 3274 memcpy(&sqlite3_query_plan[nQPlan], "{}", 2); 3275 nQPlan += 2; 3276 }else{ 3277 memcpy(&sqlite3_query_plan[nQPlan], z, n); 3278 nQPlan += n; 3279 } 3280 sqlite3_query_plan[nQPlan++] = ' '; 3281 } 3282 testcase( pLevel->plan.wsFlags & WHERE_ROWID_EQ ); 3283 testcase( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ); 3284 if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ 3285 memcpy(&sqlite3_query_plan[nQPlan], "* ", 2); 3286 nQPlan += 2; 3287 }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ 3288 n = sqlite3Strlen30(pLevel->plan.u.pIdx->zName); 3289 if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){ 3290 memcpy(&sqlite3_query_plan[nQPlan], pLevel->plan.u.pIdx->zName, n); 3291 nQPlan += n; 3292 sqlite3_query_plan[nQPlan++] = ' '; 3293 } 3294 }else{ 3295 memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3); 3296 nQPlan += 3; 3297 } 3298 } 3299 while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){ 3300 sqlite3_query_plan[--nQPlan] = 0; 3301 } 3302 sqlite3_query_plan[nQPlan] = 0; 3303 nQPlan = 0; 3304 #endif /* SQLITE_TEST // Testing and debugging use only */ 3305 3306 /* Record the continuation address in the WhereInfo structure. Then 3307 ** clean up and return. 3308 */ 3309 return pWInfo; 3310 3311 /* Jump here if malloc fails */ 3312 whereBeginError: 3313 whereInfoFree(db, pWInfo); 3314 return 0; 3315 } 3316 3317 /* 3318 ** Generate the end of the WHERE loop. See comments on 3319 ** sqlite3WhereBegin() for additional information. 3320 */ 3321 void sqlite3WhereEnd(WhereInfo *pWInfo){ 3322 Parse *pParse = pWInfo->pParse; 3323 Vdbe *v = pParse->pVdbe; 3324 int i; 3325 WhereLevel *pLevel; 3326 SrcList *pTabList = pWInfo->pTabList; 3327 sqlite3 *db = pParse->db; 3328 3329 /* Generate loop termination code. 3330 */ 3331 sqlite3ExprClearColumnCache(pParse, -1); 3332 for(i=pTabList->nSrc-1; i>=0; i--){ 3333 pLevel = &pWInfo->a[i]; 3334 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 3335 if( pLevel->op!=OP_Noop ){ 3336 sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2); 3337 sqlite3VdbeChangeP5(v, pLevel->p5); 3338 } 3339 if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ 3340 struct InLoop *pIn; 3341 int j; 3342 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 3343 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 3344 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 3345 sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->addrInTop); 3346 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 3347 } 3348 sqlite3DbFree(db, pLevel->u.in.aInLoop); 3349 } 3350 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 3351 if( pLevel->iLeftJoin ){ 3352 int addr; 3353 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); 3354 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); 3355 if( pLevel->iIdxCur>=0 ){ 3356 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 3357 } 3358 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst); 3359 sqlite3VdbeJumpHere(v, addr); 3360 } 3361 } 3362 3363 /* The "break" point is here, just past the end of the outer loop. 3364 ** Set it. 3365 */ 3366 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 3367 3368 /* Close all of the cursors that were opened by sqlite3WhereBegin. 3369 */ 3370 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 3371 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 3372 Table *pTab = pTabItem->pTab; 3373 assert( pTab!=0 ); 3374 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue; 3375 if( (pWInfo->wctrlFlags & WHERE_OMIT_CLOSE)==0 ){ 3376 if( !pWInfo->okOnePass && (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){ 3377 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); 3378 } 3379 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ 3380 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); 3381 } 3382 } 3383 3384 /* If this scan uses an index, make code substitutions to read data 3385 ** from the index in preference to the table. Sometimes, this means 3386 ** the table need never be read from. This is a performance boost, 3387 ** as the vdbe level waits until the table is read before actually 3388 ** seeking the table cursor to the record corresponding to the current 3389 ** position in the index. 3390 ** 3391 ** Calls to the code generator in between sqlite3WhereBegin and 3392 ** sqlite3WhereEnd will have created code that references the table 3393 ** directly. This loop scans all that code looking for opcodes 3394 ** that reference the table and converts them into opcodes that 3395 ** reference the index. 3396 */ 3397 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ 3398 int k, j, last; 3399 VdbeOp *pOp; 3400 Index *pIdx = pLevel->plan.u.pIdx; 3401 int useIndexOnly = pLevel->plan.wsFlags & WHERE_IDX_ONLY; 3402 3403 assert( pIdx!=0 ); 3404 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop); 3405 last = sqlite3VdbeCurrentAddr(v); 3406 for(k=pWInfo->iTop; k<last; k++, pOp++){ 3407 if( pOp->p1!=pLevel->iTabCur ) continue; 3408 if( pOp->opcode==OP_Column ){ 3409 for(j=0; j<pIdx->nColumn; j++){ 3410 if( pOp->p2==pIdx->aiColumn[j] ){ 3411 pOp->p2 = j; 3412 pOp->p1 = pLevel->iIdxCur; 3413 break; 3414 } 3415 } 3416 assert(!useIndexOnly || j<pIdx->nColumn); 3417 }else if( pOp->opcode==OP_Rowid ){ 3418 pOp->p1 = pLevel->iIdxCur; 3419 pOp->opcode = OP_IdxRowid; 3420 }else if( pOp->opcode==OP_NullRow && useIndexOnly ){ 3421 pOp->opcode = OP_Noop; 3422 } 3423 } 3424 } 3425 } 3426 3427 /* Final cleanup 3428 */ 3429 whereInfoFree(db, pWInfo); 3430 return; 3431 } 3432