1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* 23 ** Extra information appended to the end of sqlite3_index_info but not 24 ** visible to the xBestIndex function, at least not directly. The 25 ** sqlite3_vtab_collation() interface knows how to reach it, however. 26 ** 27 ** This object is not an API and can be changed from one release to the 28 ** next. As long as allocateIndexInfo() and sqlite3_vtab_collation() 29 ** agree on the structure, all will be well. 30 */ 31 typedef struct HiddenIndexInfo HiddenIndexInfo; 32 struct HiddenIndexInfo { 33 WhereClause *pWC; /* The Where clause being analyzed */ 34 Parse *pParse; /* The parsing context */ 35 }; 36 37 /* Forward declaration of methods */ 38 static int whereLoopResize(sqlite3*, WhereLoop*, int); 39 40 /* Test variable that can be set to enable WHERE tracing */ 41 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 42 /***/ int sqlite3WhereTrace = 0; 43 #endif 44 45 46 /* 47 ** Return the estimated number of output rows from a WHERE clause 48 */ 49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ 50 return pWInfo->nRowOut; 51 } 52 53 /* 54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this 55 ** WHERE clause returns outputs for DISTINCT processing. 56 */ 57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ 58 return pWInfo->eDistinct; 59 } 60 61 /* 62 ** Return the number of ORDER BY terms that are satisfied by the 63 ** WHERE clause. A return of 0 means that the output must be 64 ** completely sorted. A return equal to the number of ORDER BY 65 ** terms means that no sorting is needed at all. A return that 66 ** is positive but less than the number of ORDER BY terms means that 67 ** block sorting is required. 68 */ 69 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ 70 return pWInfo->nOBSat; 71 } 72 73 /* 74 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known 75 ** to emit rows in increasing order, and if the last row emitted by the 76 ** inner-most loop did not fit within the sorter, then we can skip all 77 ** subsequent rows for the current iteration of the inner loop (because they 78 ** will not fit in the sorter either) and continue with the second inner 79 ** loop - the loop immediately outside the inner-most. 80 ** 81 ** When a row does not fit in the sorter (because the sorter already 82 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the 83 ** label returned by this function. 84 ** 85 ** If the ORDER BY LIMIT optimization applies, the jump destination should 86 ** be the continuation for the second-inner-most loop. If the ORDER BY 87 ** LIMIT optimization does not apply, then the jump destination should 88 ** be the continuation for the inner-most loop. 89 ** 90 ** It is always safe for this routine to return the continuation of the 91 ** inner-most loop, in the sense that a correct answer will result. 92 ** Returning the continuation the second inner loop is an optimization 93 ** that might make the code run a little faster, but should not change 94 ** the final answer. 95 */ 96 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){ 97 WhereLevel *pInner; 98 if( !pWInfo->bOrderedInnerLoop ){ 99 /* The ORDER BY LIMIT optimization does not apply. Jump to the 100 ** continuation of the inner-most loop. */ 101 return pWInfo->iContinue; 102 } 103 pInner = &pWInfo->a[pWInfo->nLevel-1]; 104 assert( pInner->addrNxt!=0 ); 105 return pInner->addrNxt; 106 } 107 108 /* 109 ** Return the VDBE address or label to jump to in order to continue 110 ** immediately with the next row of a WHERE clause. 111 */ 112 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ 113 assert( pWInfo->iContinue!=0 ); 114 return pWInfo->iContinue; 115 } 116 117 /* 118 ** Return the VDBE address or label to jump to in order to break 119 ** out of a WHERE loop. 120 */ 121 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ 122 return pWInfo->iBreak; 123 } 124 125 /* 126 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to 127 ** operate directly on the rowids returned by a WHERE clause. Return 128 ** ONEPASS_SINGLE (1) if the statement can operation directly because only 129 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass 130 ** optimization can be used on multiple 131 ** 132 ** If the ONEPASS optimization is used (if this routine returns true) 133 ** then also write the indices of open cursors used by ONEPASS 134 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data 135 ** table and iaCur[1] gets the cursor used by an auxiliary index. 136 ** Either value may be -1, indicating that cursor is not used. 137 ** Any cursors returned will have been opened for writing. 138 ** 139 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is 140 ** unable to use the ONEPASS optimization. 141 */ 142 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ 143 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); 144 #ifdef WHERETRACE_ENABLED 145 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){ 146 sqlite3DebugPrintf("%s cursors: %d %d\n", 147 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI", 148 aiCur[0], aiCur[1]); 149 } 150 #endif 151 return pWInfo->eOnePass; 152 } 153 154 /* 155 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move 156 ** the data cursor to the row selected by the index cursor. 157 */ 158 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){ 159 return pWInfo->bDeferredSeek; 160 } 161 162 /* 163 ** Move the content of pSrc into pDest 164 */ 165 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ 166 pDest->n = pSrc->n; 167 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); 168 } 169 170 /* 171 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. 172 ** 173 ** The new entry might overwrite an existing entry, or it might be 174 ** appended, or it might be discarded. Do whatever is the right thing 175 ** so that pSet keeps the N_OR_COST best entries seen so far. 176 */ 177 static int whereOrInsert( 178 WhereOrSet *pSet, /* The WhereOrSet to be updated */ 179 Bitmask prereq, /* Prerequisites of the new entry */ 180 LogEst rRun, /* Run-cost of the new entry */ 181 LogEst nOut /* Number of outputs for the new entry */ 182 ){ 183 u16 i; 184 WhereOrCost *p; 185 for(i=pSet->n, p=pSet->a; i>0; i--, p++){ 186 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ 187 goto whereOrInsert_done; 188 } 189 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ 190 return 0; 191 } 192 } 193 if( pSet->n<N_OR_COST ){ 194 p = &pSet->a[pSet->n++]; 195 p->nOut = nOut; 196 }else{ 197 p = pSet->a; 198 for(i=1; i<pSet->n; i++){ 199 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; 200 } 201 if( p->rRun<=rRun ) return 0; 202 } 203 whereOrInsert_done: 204 p->prereq = prereq; 205 p->rRun = rRun; 206 if( p->nOut>nOut ) p->nOut = nOut; 207 return 1; 208 } 209 210 /* 211 ** Return the bitmask for the given cursor number. Return 0 if 212 ** iCursor is not in the set. 213 */ 214 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ 215 int i; 216 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); 217 for(i=0; i<pMaskSet->n; i++){ 218 if( pMaskSet->ix[i]==iCursor ){ 219 return MASKBIT(i); 220 } 221 } 222 return 0; 223 } 224 225 /* 226 ** Create a new mask for cursor iCursor. 227 ** 228 ** There is one cursor per table in the FROM clause. The number of 229 ** tables in the FROM clause is limited by a test early in the 230 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 231 ** array will never overflow. 232 */ 233 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 234 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 235 pMaskSet->ix[pMaskSet->n++] = iCursor; 236 } 237 238 /* 239 ** If the right-hand branch of the expression is a TK_COLUMN, then return 240 ** a pointer to the right-hand branch. Otherwise, return NULL. 241 */ 242 static Expr *whereRightSubexprIsColumn(Expr *p){ 243 p = sqlite3ExprSkipCollateAndLikely(p->pRight); 244 if( ALWAYS(p!=0) && p->op==TK_COLUMN ) return p; 245 return 0; 246 } 247 248 /* 249 ** Advance to the next WhereTerm that matches according to the criteria 250 ** established when the pScan object was initialized by whereScanInit(). 251 ** Return NULL if there are no more matching WhereTerms. 252 */ 253 static WhereTerm *whereScanNext(WhereScan *pScan){ 254 int iCur; /* The cursor on the LHS of the term */ 255 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */ 256 Expr *pX; /* An expression being tested */ 257 WhereClause *pWC; /* Shorthand for pScan->pWC */ 258 WhereTerm *pTerm; /* The term being tested */ 259 int k = pScan->k; /* Where to start scanning */ 260 261 assert( pScan->iEquiv<=pScan->nEquiv ); 262 pWC = pScan->pWC; 263 while(1){ 264 iColumn = pScan->aiColumn[pScan->iEquiv-1]; 265 iCur = pScan->aiCur[pScan->iEquiv-1]; 266 assert( pWC!=0 ); 267 do{ 268 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ 269 if( pTerm->leftCursor==iCur 270 && pTerm->u.x.leftColumn==iColumn 271 && (iColumn!=XN_EXPR 272 || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft, 273 pScan->pIdxExpr,iCur)==0) 274 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 275 ){ 276 if( (pTerm->eOperator & WO_EQUIV)!=0 277 && pScan->nEquiv<ArraySize(pScan->aiCur) 278 && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0 279 ){ 280 int j; 281 for(j=0; j<pScan->nEquiv; j++){ 282 if( pScan->aiCur[j]==pX->iTable 283 && pScan->aiColumn[j]==pX->iColumn ){ 284 break; 285 } 286 } 287 if( j==pScan->nEquiv ){ 288 pScan->aiCur[j] = pX->iTable; 289 pScan->aiColumn[j] = pX->iColumn; 290 pScan->nEquiv++; 291 } 292 } 293 if( (pTerm->eOperator & pScan->opMask)!=0 ){ 294 /* Verify the affinity and collating sequence match */ 295 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ 296 CollSeq *pColl; 297 Parse *pParse = pWC->pWInfo->pParse; 298 pX = pTerm->pExpr; 299 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ 300 continue; 301 } 302 assert(pX->pLeft); 303 pColl = sqlite3ExprCompareCollSeq(pParse, pX); 304 if( pColl==0 ) pColl = pParse->db->pDfltColl; 305 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ 306 continue; 307 } 308 } 309 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0 310 && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN 311 && pX->iTable==pScan->aiCur[0] 312 && pX->iColumn==pScan->aiColumn[0] 313 ){ 314 testcase( pTerm->eOperator & WO_IS ); 315 continue; 316 } 317 pScan->pWC = pWC; 318 pScan->k = k+1; 319 return pTerm; 320 } 321 } 322 } 323 pWC = pWC->pOuter; 324 k = 0; 325 }while( pWC!=0 ); 326 if( pScan->iEquiv>=pScan->nEquiv ) break; 327 pWC = pScan->pOrigWC; 328 k = 0; 329 pScan->iEquiv++; 330 } 331 return 0; 332 } 333 334 /* 335 ** This is whereScanInit() for the case of an index on an expression. 336 ** It is factored out into a separate tail-recursion subroutine so that 337 ** the normal whereScanInit() routine, which is a high-runner, does not 338 ** need to push registers onto the stack as part of its prologue. 339 */ 340 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){ 341 pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr); 342 return whereScanNext(pScan); 343 } 344 345 /* 346 ** Initialize a WHERE clause scanner object. Return a pointer to the 347 ** first match. Return NULL if there are no matches. 348 ** 349 ** The scanner will be searching the WHERE clause pWC. It will look 350 ** for terms of the form "X <op> <expr>" where X is column iColumn of table 351 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx 352 ** must be one of the indexes of table iCur. 353 ** 354 ** The <op> must be one of the operators described by opMask. 355 ** 356 ** If the search is for X and the WHERE clause contains terms of the 357 ** form X=Y then this routine might also return terms of the form 358 ** "Y <op> <expr>". The number of levels of transitivity is limited, 359 ** but is enough to handle most commonly occurring SQL statements. 360 ** 361 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with 362 ** index pIdx. 363 */ 364 static WhereTerm *whereScanInit( 365 WhereScan *pScan, /* The WhereScan object being initialized */ 366 WhereClause *pWC, /* The WHERE clause to be scanned */ 367 int iCur, /* Cursor to scan for */ 368 int iColumn, /* Column to scan for */ 369 u32 opMask, /* Operator(s) to scan for */ 370 Index *pIdx /* Must be compatible with this index */ 371 ){ 372 pScan->pOrigWC = pWC; 373 pScan->pWC = pWC; 374 pScan->pIdxExpr = 0; 375 pScan->idxaff = 0; 376 pScan->zCollName = 0; 377 pScan->opMask = opMask; 378 pScan->k = 0; 379 pScan->aiCur[0] = iCur; 380 pScan->nEquiv = 1; 381 pScan->iEquiv = 1; 382 if( pIdx ){ 383 int j = iColumn; 384 iColumn = pIdx->aiColumn[j]; 385 if( iColumn==XN_EXPR ){ 386 pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr; 387 pScan->zCollName = pIdx->azColl[j]; 388 pScan->aiColumn[0] = XN_EXPR; 389 return whereScanInitIndexExpr(pScan); 390 }else if( iColumn==pIdx->pTable->iPKey ){ 391 iColumn = XN_ROWID; 392 }else if( iColumn>=0 ){ 393 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; 394 pScan->zCollName = pIdx->azColl[j]; 395 } 396 }else if( iColumn==XN_EXPR ){ 397 return 0; 398 } 399 pScan->aiColumn[0] = iColumn; 400 return whereScanNext(pScan); 401 } 402 403 /* 404 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 405 ** where X is a reference to the iColumn of table iCur or of index pIdx 406 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by 407 ** the op parameter. Return a pointer to the term. Return 0 if not found. 408 ** 409 ** If pIdx!=0 then it must be one of the indexes of table iCur. 410 ** Search for terms matching the iColumn-th column of pIdx 411 ** rather than the iColumn-th column of table iCur. 412 ** 413 ** The term returned might by Y=<expr> if there is another constraint in 414 ** the WHERE clause that specifies that X=Y. Any such constraints will be 415 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The 416 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11 417 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10 418 ** other equivalent values. Hence a search for X will return <expr> if X=A1 419 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>. 420 ** 421 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" 422 ** then try for the one with no dependencies on <expr> - in other words where 423 ** <expr> is a constant expression of some kind. Only return entries of 424 ** the form "X <op> Y" where Y is a column in another table if no terms of 425 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS 426 ** exist, try to return a term that does not use WO_EQUIV. 427 */ 428 WhereTerm *sqlite3WhereFindTerm( 429 WhereClause *pWC, /* The WHERE clause to be searched */ 430 int iCur, /* Cursor number of LHS */ 431 int iColumn, /* Column number of LHS */ 432 Bitmask notReady, /* RHS must not overlap with this mask */ 433 u32 op, /* Mask of WO_xx values describing operator */ 434 Index *pIdx /* Must be compatible with this index, if not NULL */ 435 ){ 436 WhereTerm *pResult = 0; 437 WhereTerm *p; 438 WhereScan scan; 439 440 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); 441 op &= WO_EQ|WO_IS; 442 while( p ){ 443 if( (p->prereqRight & notReady)==0 ){ 444 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){ 445 testcase( p->eOperator & WO_IS ); 446 return p; 447 } 448 if( pResult==0 ) pResult = p; 449 } 450 p = whereScanNext(&scan); 451 } 452 return pResult; 453 } 454 455 /* 456 ** This function searches pList for an entry that matches the iCol-th column 457 ** of index pIdx. 458 ** 459 ** If such an expression is found, its index in pList->a[] is returned. If 460 ** no expression is found, -1 is returned. 461 */ 462 static int findIndexCol( 463 Parse *pParse, /* Parse context */ 464 ExprList *pList, /* Expression list to search */ 465 int iBase, /* Cursor for table associated with pIdx */ 466 Index *pIdx, /* Index to match column of */ 467 int iCol /* Column of index to match */ 468 ){ 469 int i; 470 const char *zColl = pIdx->azColl[iCol]; 471 472 for(i=0; i<pList->nExpr; i++){ 473 Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr); 474 if( ALWAYS(p!=0) 475 && p->op==TK_COLUMN 476 && p->iColumn==pIdx->aiColumn[iCol] 477 && p->iTable==iBase 478 ){ 479 CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr); 480 if( 0==sqlite3StrICmp(pColl->zName, zColl) ){ 481 return i; 482 } 483 } 484 } 485 486 return -1; 487 } 488 489 /* 490 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL 491 */ 492 static int indexColumnNotNull(Index *pIdx, int iCol){ 493 int j; 494 assert( pIdx!=0 ); 495 assert( iCol>=0 && iCol<pIdx->nColumn ); 496 j = pIdx->aiColumn[iCol]; 497 if( j>=0 ){ 498 return pIdx->pTable->aCol[j].notNull; 499 }else if( j==(-1) ){ 500 return 1; 501 }else{ 502 assert( j==(-2) ); 503 return 0; /* Assume an indexed expression can always yield a NULL */ 504 505 } 506 } 507 508 /* 509 ** Return true if the DISTINCT expression-list passed as the third argument 510 ** is redundant. 511 ** 512 ** A DISTINCT list is redundant if any subset of the columns in the 513 ** DISTINCT list are collectively unique and individually non-null. 514 */ 515 static int isDistinctRedundant( 516 Parse *pParse, /* Parsing context */ 517 SrcList *pTabList, /* The FROM clause */ 518 WhereClause *pWC, /* The WHERE clause */ 519 ExprList *pDistinct /* The result set that needs to be DISTINCT */ 520 ){ 521 Table *pTab; 522 Index *pIdx; 523 int i; 524 int iBase; 525 526 /* If there is more than one table or sub-select in the FROM clause of 527 ** this query, then it will not be possible to show that the DISTINCT 528 ** clause is redundant. */ 529 if( pTabList->nSrc!=1 ) return 0; 530 iBase = pTabList->a[0].iCursor; 531 pTab = pTabList->a[0].pTab; 532 533 /* If any of the expressions is an IPK column on table iBase, then return 534 ** true. Note: The (p->iTable==iBase) part of this test may be false if the 535 ** current SELECT is a correlated sub-query. 536 */ 537 for(i=0; i<pDistinct->nExpr; i++){ 538 Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr); 539 if( NEVER(p==0) ) continue; 540 if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1; 541 } 542 543 /* Loop through all indices on the table, checking each to see if it makes 544 ** the DISTINCT qualifier redundant. It does so if: 545 ** 546 ** 1. The index is itself UNIQUE, and 547 ** 548 ** 2. All of the columns in the index are either part of the pDistinct 549 ** list, or else the WHERE clause contains a term of the form "col=X", 550 ** where X is a constant value. The collation sequences of the 551 ** comparison and select-list expressions must match those of the index. 552 ** 553 ** 3. All of those index columns for which the WHERE clause does not 554 ** contain a "col=X" term are subject to a NOT NULL constraint. 555 */ 556 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 557 if( !IsUniqueIndex(pIdx) ) continue; 558 for(i=0; i<pIdx->nKeyCol; i++){ 559 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){ 560 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break; 561 if( indexColumnNotNull(pIdx, i)==0 ) break; 562 } 563 } 564 if( i==pIdx->nKeyCol ){ 565 /* This index implies that the DISTINCT qualifier is redundant. */ 566 return 1; 567 } 568 } 569 570 return 0; 571 } 572 573 574 /* 575 ** Estimate the logarithm of the input value to base 2. 576 */ 577 static LogEst estLog(LogEst N){ 578 return N<=10 ? 0 : sqlite3LogEst(N) - 33; 579 } 580 581 /* 582 ** Convert OP_Column opcodes to OP_Copy in previously generated code. 583 ** 584 ** This routine runs over generated VDBE code and translates OP_Column 585 ** opcodes into OP_Copy when the table is being accessed via co-routine 586 ** instead of via table lookup. 587 ** 588 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on 589 ** cursor iTabCur are transformed into OP_Sequence opcode for the 590 ** iAutoidxCur cursor, in order to generate unique rowids for the 591 ** automatic index being generated. 592 */ 593 static void translateColumnToCopy( 594 Parse *pParse, /* Parsing context */ 595 int iStart, /* Translate from this opcode to the end */ 596 int iTabCur, /* OP_Column/OP_Rowid references to this table */ 597 int iRegister, /* The first column is in this register */ 598 int iAutoidxCur /* If non-zero, cursor of autoindex being generated */ 599 ){ 600 Vdbe *v = pParse->pVdbe; 601 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart); 602 int iEnd = sqlite3VdbeCurrentAddr(v); 603 if( pParse->db->mallocFailed ) return; 604 for(; iStart<iEnd; iStart++, pOp++){ 605 if( pOp->p1!=iTabCur ) continue; 606 if( pOp->opcode==OP_Column ){ 607 pOp->opcode = OP_Copy; 608 pOp->p1 = pOp->p2 + iRegister; 609 pOp->p2 = pOp->p3; 610 pOp->p3 = 0; 611 }else if( pOp->opcode==OP_Rowid ){ 612 if( iAutoidxCur ){ 613 pOp->opcode = OP_Sequence; 614 pOp->p1 = iAutoidxCur; 615 }else{ 616 pOp->opcode = OP_Null; 617 pOp->p1 = 0; 618 pOp->p3 = 0; 619 } 620 } 621 } 622 } 623 624 /* 625 ** Two routines for printing the content of an sqlite3_index_info 626 ** structure. Used for testing and debugging only. If neither 627 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 628 ** are no-ops. 629 */ 630 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) 631 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){ 632 int i; 633 if( !sqlite3WhereTrace ) return; 634 for(i=0; i<p->nConstraint; i++){ 635 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 636 i, 637 p->aConstraint[i].iColumn, 638 p->aConstraint[i].iTermOffset, 639 p->aConstraint[i].op, 640 p->aConstraint[i].usable); 641 } 642 for(i=0; i<p->nOrderBy; i++){ 643 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 644 i, 645 p->aOrderBy[i].iColumn, 646 p->aOrderBy[i].desc); 647 } 648 } 649 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){ 650 int i; 651 if( !sqlite3WhereTrace ) return; 652 for(i=0; i<p->nConstraint; i++){ 653 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 654 i, 655 p->aConstraintUsage[i].argvIndex, 656 p->aConstraintUsage[i].omit); 657 } 658 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 659 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 660 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 661 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 662 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); 663 } 664 #else 665 #define whereTraceIndexInfoInputs(A) 666 #define whereTraceIndexInfoOutputs(A) 667 #endif 668 669 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 670 /* 671 ** Return TRUE if the WHERE clause term pTerm is of a form where it 672 ** could be used with an index to access pSrc, assuming an appropriate 673 ** index existed. 674 */ 675 static int termCanDriveIndex( 676 WhereTerm *pTerm, /* WHERE clause term to check */ 677 struct SrcList_item *pSrc, /* Table we are trying to access */ 678 Bitmask notReady /* Tables in outer loops of the join */ 679 ){ 680 char aff; 681 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; 682 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0; 683 if( (pSrc->fg.jointype & JT_LEFT) 684 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 685 && (pTerm->eOperator & WO_IS) 686 ){ 687 /* Cannot use an IS term from the WHERE clause as an index driver for 688 ** the RHS of a LEFT JOIN. Such a term can only be used if it is from 689 ** the ON clause. */ 690 return 0; 691 } 692 if( (pTerm->prereqRight & notReady)!=0 ) return 0; 693 if( pTerm->u.x.leftColumn<0 ) return 0; 694 aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity; 695 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; 696 testcase( pTerm->pExpr->op==TK_IS ); 697 return 1; 698 } 699 #endif 700 701 702 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 703 /* 704 ** Generate code to construct the Index object for an automatic index 705 ** and to set up the WhereLevel object pLevel so that the code generator 706 ** makes use of the automatic index. 707 */ 708 static void constructAutomaticIndex( 709 Parse *pParse, /* The parsing context */ 710 WhereClause *pWC, /* The WHERE clause */ 711 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */ 712 Bitmask notReady, /* Mask of cursors that are not available */ 713 WhereLevel *pLevel /* Write new index here */ 714 ){ 715 int nKeyCol; /* Number of columns in the constructed index */ 716 WhereTerm *pTerm; /* A single term of the WHERE clause */ 717 WhereTerm *pWCEnd; /* End of pWC->a[] */ 718 Index *pIdx; /* Object describing the transient index */ 719 Vdbe *v; /* Prepared statement under construction */ 720 int addrInit; /* Address of the initialization bypass jump */ 721 Table *pTable; /* The table being indexed */ 722 int addrTop; /* Top of the index fill loop */ 723 int regRecord; /* Register holding an index record */ 724 int n; /* Column counter */ 725 int i; /* Loop counter */ 726 int mxBitCol; /* Maximum column in pSrc->colUsed */ 727 CollSeq *pColl; /* Collating sequence to on a column */ 728 WhereLoop *pLoop; /* The Loop object */ 729 char *zNotUsed; /* Extra space on the end of pIdx */ 730 Bitmask idxCols; /* Bitmap of columns used for indexing */ 731 Bitmask extraCols; /* Bitmap of additional columns */ 732 u8 sentWarning = 0; /* True if a warnning has been issued */ 733 Expr *pPartial = 0; /* Partial Index Expression */ 734 int iContinue = 0; /* Jump here to skip excluded rows */ 735 struct SrcList_item *pTabItem; /* FROM clause term being indexed */ 736 int addrCounter = 0; /* Address where integer counter is initialized */ 737 int regBase; /* Array of registers where record is assembled */ 738 739 /* Generate code to skip over the creation and initialization of the 740 ** transient index on 2nd and subsequent iterations of the loop. */ 741 v = pParse->pVdbe; 742 assert( v!=0 ); 743 addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 744 745 /* Count the number of columns that will be added to the index 746 ** and used to match WHERE clause constraints */ 747 nKeyCol = 0; 748 pTable = pSrc->pTab; 749 pWCEnd = &pWC->a[pWC->nTerm]; 750 pLoop = pLevel->pWLoop; 751 idxCols = 0; 752 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 753 Expr *pExpr = pTerm->pExpr; 754 assert( !ExprHasProperty(pExpr, EP_FromJoin) /* prereq always non-zero */ 755 || pExpr->iRightJoinTable!=pSrc->iCursor /* for the right-hand */ 756 || pLoop->prereq!=0 ); /* table of a LEFT JOIN */ 757 if( pLoop->prereq==0 758 && (pTerm->wtFlags & TERM_VIRTUAL)==0 759 && !ExprHasProperty(pExpr, EP_FromJoin) 760 && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){ 761 pPartial = sqlite3ExprAnd(pParse, pPartial, 762 sqlite3ExprDup(pParse->db, pExpr, 0)); 763 } 764 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 765 int iCol = pTerm->u.x.leftColumn; 766 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 767 testcase( iCol==BMS ); 768 testcase( iCol==BMS-1 ); 769 if( !sentWarning ){ 770 sqlite3_log(SQLITE_WARNING_AUTOINDEX, 771 "automatic index on %s(%s)", pTable->zName, 772 pTable->aCol[iCol].zName); 773 sentWarning = 1; 774 } 775 if( (idxCols & cMask)==0 ){ 776 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ 777 goto end_auto_index_create; 778 } 779 pLoop->aLTerm[nKeyCol++] = pTerm; 780 idxCols |= cMask; 781 } 782 } 783 } 784 assert( nKeyCol>0 ); 785 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; 786 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED 787 | WHERE_AUTO_INDEX; 788 789 /* Count the number of additional columns needed to create a 790 ** covering index. A "covering index" is an index that contains all 791 ** columns that are needed by the query. With a covering index, the 792 ** original table never needs to be accessed. Automatic indices must 793 ** be a covering index because the index will not be updated if the 794 ** original table changes and the index and table cannot both be used 795 ** if they go out of sync. 796 */ 797 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); 798 mxBitCol = MIN(BMS-1,pTable->nCol); 799 testcase( pTable->nCol==BMS-1 ); 800 testcase( pTable->nCol==BMS-2 ); 801 for(i=0; i<mxBitCol; i++){ 802 if( extraCols & MASKBIT(i) ) nKeyCol++; 803 } 804 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 805 nKeyCol += pTable->nCol - BMS + 1; 806 } 807 808 /* Construct the Index object to describe this index */ 809 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); 810 if( pIdx==0 ) goto end_auto_index_create; 811 pLoop->u.btree.pIndex = pIdx; 812 pIdx->zName = "auto-index"; 813 pIdx->pTable = pTable; 814 n = 0; 815 idxCols = 0; 816 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 817 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 818 int iCol = pTerm->u.x.leftColumn; 819 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 820 testcase( iCol==BMS-1 ); 821 testcase( iCol==BMS ); 822 if( (idxCols & cMask)==0 ){ 823 Expr *pX = pTerm->pExpr; 824 idxCols |= cMask; 825 pIdx->aiColumn[n] = pTerm->u.x.leftColumn; 826 pColl = sqlite3ExprCompareCollSeq(pParse, pX); 827 assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */ 828 pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY; 829 n++; 830 } 831 } 832 } 833 assert( (u32)n==pLoop->u.btree.nEq ); 834 835 /* Add additional columns needed to make the automatic index into 836 ** a covering index */ 837 for(i=0; i<mxBitCol; i++){ 838 if( extraCols & MASKBIT(i) ){ 839 pIdx->aiColumn[n] = i; 840 pIdx->azColl[n] = sqlite3StrBINARY; 841 n++; 842 } 843 } 844 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 845 for(i=BMS-1; i<pTable->nCol; i++){ 846 pIdx->aiColumn[n] = i; 847 pIdx->azColl[n] = sqlite3StrBINARY; 848 n++; 849 } 850 } 851 assert( n==nKeyCol ); 852 pIdx->aiColumn[n] = XN_ROWID; 853 pIdx->azColl[n] = sqlite3StrBINARY; 854 855 /* Create the automatic index */ 856 assert( pLevel->iIdxCur>=0 ); 857 pLevel->iIdxCur = pParse->nTab++; 858 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); 859 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 860 VdbeComment((v, "for %s", pTable->zName)); 861 862 /* Fill the automatic index with content */ 863 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom]; 864 if( pTabItem->fg.viaCoroutine ){ 865 int regYield = pTabItem->regReturn; 866 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0); 867 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 868 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); 869 VdbeCoverage(v); 870 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 871 }else{ 872 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); 873 } 874 if( pPartial ){ 875 iContinue = sqlite3VdbeMakeLabel(pParse); 876 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); 877 pLoop->wsFlags |= WHERE_PARTIALIDX; 878 } 879 regRecord = sqlite3GetTempReg(pParse); 880 regBase = sqlite3GenerateIndexKey( 881 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0 882 ); 883 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); 884 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 885 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); 886 if( pTabItem->fg.viaCoroutine ){ 887 sqlite3VdbeChangeP2(v, addrCounter, regBase+n); 888 testcase( pParse->db->mallocFailed ); 889 assert( pLevel->iIdxCur>0 ); 890 translateColumnToCopy(pParse, addrTop, pLevel->iTabCur, 891 pTabItem->regResult, pLevel->iIdxCur); 892 sqlite3VdbeGoto(v, addrTop); 893 pTabItem->fg.viaCoroutine = 0; 894 }else{ 895 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); 896 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); 897 } 898 sqlite3VdbeJumpHere(v, addrTop); 899 sqlite3ReleaseTempReg(pParse, regRecord); 900 901 /* Jump here when skipping the initialization */ 902 sqlite3VdbeJumpHere(v, addrInit); 903 904 end_auto_index_create: 905 sqlite3ExprDelete(pParse->db, pPartial); 906 } 907 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 908 909 #ifndef SQLITE_OMIT_VIRTUALTABLE 910 /* 911 ** Allocate and populate an sqlite3_index_info structure. It is the 912 ** responsibility of the caller to eventually release the structure 913 ** by passing the pointer returned by this function to sqlite3_free(). 914 */ 915 static sqlite3_index_info *allocateIndexInfo( 916 Parse *pParse, /* The parsing context */ 917 WhereClause *pWC, /* The WHERE clause being analyzed */ 918 Bitmask mUnusable, /* Ignore terms with these prereqs */ 919 struct SrcList_item *pSrc, /* The FROM clause term that is the vtab */ 920 ExprList *pOrderBy, /* The ORDER BY clause */ 921 u16 *pmNoOmit /* Mask of terms not to omit */ 922 ){ 923 int i, j; 924 int nTerm; 925 struct sqlite3_index_constraint *pIdxCons; 926 struct sqlite3_index_orderby *pIdxOrderBy; 927 struct sqlite3_index_constraint_usage *pUsage; 928 struct HiddenIndexInfo *pHidden; 929 WhereTerm *pTerm; 930 int nOrderBy; 931 sqlite3_index_info *pIdxInfo; 932 u16 mNoOmit = 0; 933 934 /* Count the number of possible WHERE clause constraints referring 935 ** to this virtual table */ 936 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 937 if( pTerm->leftCursor != pSrc->iCursor ) continue; 938 if( pTerm->prereqRight & mUnusable ) continue; 939 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 940 testcase( pTerm->eOperator & WO_IN ); 941 testcase( pTerm->eOperator & WO_ISNULL ); 942 testcase( pTerm->eOperator & WO_IS ); 943 testcase( pTerm->eOperator & WO_ALL ); 944 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue; 945 if( pTerm->wtFlags & TERM_VNULL ) continue; 946 assert( pTerm->u.x.leftColumn>=(-1) ); 947 nTerm++; 948 } 949 950 /* If the ORDER BY clause contains only columns in the current 951 ** virtual table then allocate space for the aOrderBy part of 952 ** the sqlite3_index_info structure. 953 */ 954 nOrderBy = 0; 955 if( pOrderBy ){ 956 int n = pOrderBy->nExpr; 957 for(i=0; i<n; i++){ 958 Expr *pExpr = pOrderBy->a[i].pExpr; 959 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 960 if( pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL ) break; 961 } 962 if( i==n){ 963 nOrderBy = n; 964 } 965 } 966 967 /* Allocate the sqlite3_index_info structure 968 */ 969 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 970 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 971 + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) ); 972 if( pIdxInfo==0 ){ 973 sqlite3ErrorMsg(pParse, "out of memory"); 974 return 0; 975 } 976 pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1]; 977 pIdxCons = (struct sqlite3_index_constraint*)&pHidden[1]; 978 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 979 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 980 pIdxInfo->nOrderBy = nOrderBy; 981 pIdxInfo->aConstraint = pIdxCons; 982 pIdxInfo->aOrderBy = pIdxOrderBy; 983 pIdxInfo->aConstraintUsage = pUsage; 984 pHidden->pWC = pWC; 985 pHidden->pParse = pParse; 986 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 987 u16 op; 988 if( pTerm->leftCursor != pSrc->iCursor ) continue; 989 if( pTerm->prereqRight & mUnusable ) continue; 990 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 991 testcase( pTerm->eOperator & WO_IN ); 992 testcase( pTerm->eOperator & WO_IS ); 993 testcase( pTerm->eOperator & WO_ISNULL ); 994 testcase( pTerm->eOperator & WO_ALL ); 995 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue; 996 if( pTerm->wtFlags & TERM_VNULL ) continue; 997 998 /* tag-20191211-002: WHERE-clause constraints are not useful to the 999 ** right-hand table of a LEFT JOIN. See tag-20191211-001 for the 1000 ** equivalent restriction for ordinary tables. */ 1001 if( (pSrc->fg.jointype & JT_LEFT)!=0 1002 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 1003 ){ 1004 continue; 1005 } 1006 assert( pTerm->u.x.leftColumn>=(-1) ); 1007 pIdxCons[j].iColumn = pTerm->u.x.leftColumn; 1008 pIdxCons[j].iTermOffset = i; 1009 op = pTerm->eOperator & WO_ALL; 1010 if( op==WO_IN ) op = WO_EQ; 1011 if( op==WO_AUX ){ 1012 pIdxCons[j].op = pTerm->eMatchOp; 1013 }else if( op & (WO_ISNULL|WO_IS) ){ 1014 if( op==WO_ISNULL ){ 1015 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL; 1016 }else{ 1017 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS; 1018 } 1019 }else{ 1020 pIdxCons[j].op = (u8)op; 1021 /* The direct assignment in the previous line is possible only because 1022 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 1023 ** following asserts verify this fact. */ 1024 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 1025 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 1026 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 1027 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 1028 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 1029 assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) ); 1030 1031 if( op & (WO_LT|WO_LE|WO_GT|WO_GE) 1032 && sqlite3ExprIsVector(pTerm->pExpr->pRight) 1033 ){ 1034 testcase( j!=i ); 1035 if( j<16 ) mNoOmit |= (1 << j); 1036 if( op==WO_LT ) pIdxCons[j].op = WO_LE; 1037 if( op==WO_GT ) pIdxCons[j].op = WO_GE; 1038 } 1039 } 1040 1041 j++; 1042 } 1043 pIdxInfo->nConstraint = j; 1044 for(i=0; i<nOrderBy; i++){ 1045 Expr *pExpr = pOrderBy->a[i].pExpr; 1046 pIdxOrderBy[i].iColumn = pExpr->iColumn; 1047 pIdxOrderBy[i].desc = pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC; 1048 } 1049 1050 *pmNoOmit = mNoOmit; 1051 return pIdxInfo; 1052 } 1053 1054 /* 1055 ** The table object reference passed as the second argument to this function 1056 ** must represent a virtual table. This function invokes the xBestIndex() 1057 ** method of the virtual table with the sqlite3_index_info object that 1058 ** comes in as the 3rd argument to this function. 1059 ** 1060 ** If an error occurs, pParse is populated with an error message and an 1061 ** appropriate error code is returned. A return of SQLITE_CONSTRAINT from 1062 ** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that 1063 ** the current configuration of "unusable" flags in sqlite3_index_info can 1064 ** not result in a valid plan. 1065 ** 1066 ** Whether or not an error is returned, it is the responsibility of the 1067 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates 1068 ** that this is required. 1069 */ 1070 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ 1071 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; 1072 int rc; 1073 1074 whereTraceIndexInfoInputs(p); 1075 rc = pVtab->pModule->xBestIndex(pVtab, p); 1076 whereTraceIndexInfoOutputs(p); 1077 1078 if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){ 1079 if( rc==SQLITE_NOMEM ){ 1080 sqlite3OomFault(pParse->db); 1081 }else if( !pVtab->zErrMsg ){ 1082 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 1083 }else{ 1084 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 1085 } 1086 } 1087 sqlite3_free(pVtab->zErrMsg); 1088 pVtab->zErrMsg = 0; 1089 return rc; 1090 } 1091 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1092 1093 #ifdef SQLITE_ENABLE_STAT4 1094 /* 1095 ** Estimate the location of a particular key among all keys in an 1096 ** index. Store the results in aStat as follows: 1097 ** 1098 ** aStat[0] Est. number of rows less than pRec 1099 ** aStat[1] Est. number of rows equal to pRec 1100 ** 1101 ** Return the index of the sample that is the smallest sample that 1102 ** is greater than or equal to pRec. Note that this index is not an index 1103 ** into the aSample[] array - it is an index into a virtual set of samples 1104 ** based on the contents of aSample[] and the number of fields in record 1105 ** pRec. 1106 */ 1107 static int whereKeyStats( 1108 Parse *pParse, /* Database connection */ 1109 Index *pIdx, /* Index to consider domain of */ 1110 UnpackedRecord *pRec, /* Vector of values to consider */ 1111 int roundUp, /* Round up if true. Round down if false */ 1112 tRowcnt *aStat /* OUT: stats written here */ 1113 ){ 1114 IndexSample *aSample = pIdx->aSample; 1115 int iCol; /* Index of required stats in anEq[] etc. */ 1116 int i; /* Index of first sample >= pRec */ 1117 int iSample; /* Smallest sample larger than or equal to pRec */ 1118 int iMin = 0; /* Smallest sample not yet tested */ 1119 int iTest; /* Next sample to test */ 1120 int res; /* Result of comparison operation */ 1121 int nField; /* Number of fields in pRec */ 1122 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ 1123 1124 #ifndef SQLITE_DEBUG 1125 UNUSED_PARAMETER( pParse ); 1126 #endif 1127 assert( pRec!=0 ); 1128 assert( pIdx->nSample>0 ); 1129 assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol ); 1130 1131 /* Do a binary search to find the first sample greater than or equal 1132 ** to pRec. If pRec contains a single field, the set of samples to search 1133 ** is simply the aSample[] array. If the samples in aSample[] contain more 1134 ** than one fields, all fields following the first are ignored. 1135 ** 1136 ** If pRec contains N fields, where N is more than one, then as well as the 1137 ** samples in aSample[] (truncated to N fields), the search also has to 1138 ** consider prefixes of those samples. For example, if the set of samples 1139 ** in aSample is: 1140 ** 1141 ** aSample[0] = (a, 5) 1142 ** aSample[1] = (a, 10) 1143 ** aSample[2] = (b, 5) 1144 ** aSample[3] = (c, 100) 1145 ** aSample[4] = (c, 105) 1146 ** 1147 ** Then the search space should ideally be the samples above and the 1148 ** unique prefixes [a], [b] and [c]. But since that is hard to organize, 1149 ** the code actually searches this set: 1150 ** 1151 ** 0: (a) 1152 ** 1: (a, 5) 1153 ** 2: (a, 10) 1154 ** 3: (a, 10) 1155 ** 4: (b) 1156 ** 5: (b, 5) 1157 ** 6: (c) 1158 ** 7: (c, 100) 1159 ** 8: (c, 105) 1160 ** 9: (c, 105) 1161 ** 1162 ** For each sample in the aSample[] array, N samples are present in the 1163 ** effective sample array. In the above, samples 0 and 1 are based on 1164 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. 1165 ** 1166 ** Often, sample i of each block of N effective samples has (i+1) fields. 1167 ** Except, each sample may be extended to ensure that it is greater than or 1168 ** equal to the previous sample in the array. For example, in the above, 1169 ** sample 2 is the first sample of a block of N samples, so at first it 1170 ** appears that it should be 1 field in size. However, that would make it 1171 ** smaller than sample 1, so the binary search would not work. As a result, 1172 ** it is extended to two fields. The duplicates that this creates do not 1173 ** cause any problems. 1174 */ 1175 nField = pRec->nField; 1176 iCol = 0; 1177 iSample = pIdx->nSample * nField; 1178 do{ 1179 int iSamp; /* Index in aSample[] of test sample */ 1180 int n; /* Number of fields in test sample */ 1181 1182 iTest = (iMin+iSample)/2; 1183 iSamp = iTest / nField; 1184 if( iSamp>0 ){ 1185 /* The proposed effective sample is a prefix of sample aSample[iSamp]. 1186 ** Specifically, the shortest prefix of at least (1 + iTest%nField) 1187 ** fields that is greater than the previous effective sample. */ 1188 for(n=(iTest % nField) + 1; n<nField; n++){ 1189 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break; 1190 } 1191 }else{ 1192 n = iTest + 1; 1193 } 1194 1195 pRec->nField = n; 1196 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); 1197 if( res<0 ){ 1198 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; 1199 iMin = iTest+1; 1200 }else if( res==0 && n<nField ){ 1201 iLower = aSample[iSamp].anLt[n-1]; 1202 iMin = iTest+1; 1203 res = -1; 1204 }else{ 1205 iSample = iTest; 1206 iCol = n-1; 1207 } 1208 }while( res && iMin<iSample ); 1209 i = iSample / nField; 1210 1211 #ifdef SQLITE_DEBUG 1212 /* The following assert statements check that the binary search code 1213 ** above found the right answer. This block serves no purpose other 1214 ** than to invoke the asserts. */ 1215 if( pParse->db->mallocFailed==0 ){ 1216 if( res==0 ){ 1217 /* If (res==0) is true, then pRec must be equal to sample i. */ 1218 assert( i<pIdx->nSample ); 1219 assert( iCol==nField-1 ); 1220 pRec->nField = nField; 1221 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) 1222 || pParse->db->mallocFailed 1223 ); 1224 }else{ 1225 /* Unless i==pIdx->nSample, indicating that pRec is larger than 1226 ** all samples in the aSample[] array, pRec must be smaller than the 1227 ** (iCol+1) field prefix of sample i. */ 1228 assert( i<=pIdx->nSample && i>=0 ); 1229 pRec->nField = iCol+1; 1230 assert( i==pIdx->nSample 1231 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 1232 || pParse->db->mallocFailed ); 1233 1234 /* if i==0 and iCol==0, then record pRec is smaller than all samples 1235 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must 1236 ** be greater than or equal to the (iCol) field prefix of sample i. 1237 ** If (i>0), then pRec must also be greater than sample (i-1). */ 1238 if( iCol>0 ){ 1239 pRec->nField = iCol; 1240 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 1241 || pParse->db->mallocFailed ); 1242 } 1243 if( i>0 ){ 1244 pRec->nField = nField; 1245 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 1246 || pParse->db->mallocFailed ); 1247 } 1248 } 1249 } 1250 #endif /* ifdef SQLITE_DEBUG */ 1251 1252 if( res==0 ){ 1253 /* Record pRec is equal to sample i */ 1254 assert( iCol==nField-1 ); 1255 aStat[0] = aSample[i].anLt[iCol]; 1256 aStat[1] = aSample[i].anEq[iCol]; 1257 }else{ 1258 /* At this point, the (iCol+1) field prefix of aSample[i] is the first 1259 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec 1260 ** is larger than all samples in the array. */ 1261 tRowcnt iUpper, iGap; 1262 if( i>=pIdx->nSample ){ 1263 iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); 1264 }else{ 1265 iUpper = aSample[i].anLt[iCol]; 1266 } 1267 1268 if( iLower>=iUpper ){ 1269 iGap = 0; 1270 }else{ 1271 iGap = iUpper - iLower; 1272 } 1273 if( roundUp ){ 1274 iGap = (iGap*2)/3; 1275 }else{ 1276 iGap = iGap/3; 1277 } 1278 aStat[0] = iLower + iGap; 1279 aStat[1] = pIdx->aAvgEq[nField-1]; 1280 } 1281 1282 /* Restore the pRec->nField value before returning. */ 1283 pRec->nField = nField; 1284 return i; 1285 } 1286 #endif /* SQLITE_ENABLE_STAT4 */ 1287 1288 /* 1289 ** If it is not NULL, pTerm is a term that provides an upper or lower 1290 ** bound on a range scan. Without considering pTerm, it is estimated 1291 ** that the scan will visit nNew rows. This function returns the number 1292 ** estimated to be visited after taking pTerm into account. 1293 ** 1294 ** If the user explicitly specified a likelihood() value for this term, 1295 ** then the return value is the likelihood multiplied by the number of 1296 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term 1297 ** has a likelihood of 0.50, and any other term a likelihood of 0.25. 1298 */ 1299 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ 1300 LogEst nRet = nNew; 1301 if( pTerm ){ 1302 if( pTerm->truthProb<=0 ){ 1303 nRet += pTerm->truthProb; 1304 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ 1305 nRet -= 20; assert( 20==sqlite3LogEst(4) ); 1306 } 1307 } 1308 return nRet; 1309 } 1310 1311 1312 #ifdef SQLITE_ENABLE_STAT4 1313 /* 1314 ** Return the affinity for a single column of an index. 1315 */ 1316 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){ 1317 assert( iCol>=0 && iCol<pIdx->nColumn ); 1318 if( !pIdx->zColAff ){ 1319 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB; 1320 } 1321 assert( pIdx->zColAff[iCol]!=0 ); 1322 return pIdx->zColAff[iCol]; 1323 } 1324 #endif 1325 1326 1327 #ifdef SQLITE_ENABLE_STAT4 1328 /* 1329 ** This function is called to estimate the number of rows visited by a 1330 ** range-scan on a skip-scan index. For example: 1331 ** 1332 ** CREATE INDEX i1 ON t1(a, b, c); 1333 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; 1334 ** 1335 ** Value pLoop->nOut is currently set to the estimated number of rows 1336 ** visited for scanning (a=? AND b=?). This function reduces that estimate 1337 ** by some factor to account for the (c BETWEEN ? AND ?) expression based 1338 ** on the stat4 data for the index. this scan will be peformed multiple 1339 ** times (once for each (a,b) combination that matches a=?) is dealt with 1340 ** by the caller. 1341 ** 1342 ** It does this by scanning through all stat4 samples, comparing values 1343 ** extracted from pLower and pUpper with the corresponding column in each 1344 ** sample. If L and U are the number of samples found to be less than or 1345 ** equal to the values extracted from pLower and pUpper respectively, and 1346 ** N is the total number of samples, the pLoop->nOut value is adjusted 1347 ** as follows: 1348 ** 1349 ** nOut = nOut * ( min(U - L, 1) / N ) 1350 ** 1351 ** If pLower is NULL, or a value cannot be extracted from the term, L is 1352 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, 1353 ** U is set to N. 1354 ** 1355 ** Normally, this function sets *pbDone to 1 before returning. However, 1356 ** if no value can be extracted from either pLower or pUpper (and so the 1357 ** estimate of the number of rows delivered remains unchanged), *pbDone 1358 ** is left as is. 1359 ** 1360 ** If an error occurs, an SQLite error code is returned. Otherwise, 1361 ** SQLITE_OK. 1362 */ 1363 static int whereRangeSkipScanEst( 1364 Parse *pParse, /* Parsing & code generating context */ 1365 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1366 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1367 WhereLoop *pLoop, /* Update the .nOut value of this loop */ 1368 int *pbDone /* Set to true if at least one expr. value extracted */ 1369 ){ 1370 Index *p = pLoop->u.btree.pIndex; 1371 int nEq = pLoop->u.btree.nEq; 1372 sqlite3 *db = pParse->db; 1373 int nLower = -1; 1374 int nUpper = p->nSample+1; 1375 int rc = SQLITE_OK; 1376 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq); 1377 CollSeq *pColl; 1378 1379 sqlite3_value *p1 = 0; /* Value extracted from pLower */ 1380 sqlite3_value *p2 = 0; /* Value extracted from pUpper */ 1381 sqlite3_value *pVal = 0; /* Value extracted from record */ 1382 1383 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); 1384 if( pLower ){ 1385 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); 1386 nLower = 0; 1387 } 1388 if( pUpper && rc==SQLITE_OK ){ 1389 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); 1390 nUpper = p2 ? 0 : p->nSample; 1391 } 1392 1393 if( p1 || p2 ){ 1394 int i; 1395 int nDiff; 1396 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ 1397 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); 1398 if( rc==SQLITE_OK && p1 ){ 1399 int res = sqlite3MemCompare(p1, pVal, pColl); 1400 if( res>=0 ) nLower++; 1401 } 1402 if( rc==SQLITE_OK && p2 ){ 1403 int res = sqlite3MemCompare(p2, pVal, pColl); 1404 if( res>=0 ) nUpper++; 1405 } 1406 } 1407 nDiff = (nUpper - nLower); 1408 if( nDiff<=0 ) nDiff = 1; 1409 1410 /* If there is both an upper and lower bound specified, and the 1411 ** comparisons indicate that they are close together, use the fallback 1412 ** method (assume that the scan visits 1/64 of the rows) for estimating 1413 ** the number of rows visited. Otherwise, estimate the number of rows 1414 ** using the method described in the header comment for this function. */ 1415 if( nDiff!=1 || pUpper==0 || pLower==0 ){ 1416 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); 1417 pLoop->nOut -= nAdjust; 1418 *pbDone = 1; 1419 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", 1420 nLower, nUpper, nAdjust*-1, pLoop->nOut)); 1421 } 1422 1423 }else{ 1424 assert( *pbDone==0 ); 1425 } 1426 1427 sqlite3ValueFree(p1); 1428 sqlite3ValueFree(p2); 1429 sqlite3ValueFree(pVal); 1430 1431 return rc; 1432 } 1433 #endif /* SQLITE_ENABLE_STAT4 */ 1434 1435 /* 1436 ** This function is used to estimate the number of rows that will be visited 1437 ** by scanning an index for a range of values. The range may have an upper 1438 ** bound, a lower bound, or both. The WHERE clause terms that set the upper 1439 ** and lower bounds are represented by pLower and pUpper respectively. For 1440 ** example, assuming that index p is on t1(a): 1441 ** 1442 ** ... FROM t1 WHERE a > ? AND a < ? ... 1443 ** |_____| |_____| 1444 ** | | 1445 ** pLower pUpper 1446 ** 1447 ** If either of the upper or lower bound is not present, then NULL is passed in 1448 ** place of the corresponding WhereTerm. 1449 ** 1450 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index 1451 ** column subject to the range constraint. Or, equivalently, the number of 1452 ** equality constraints optimized by the proposed index scan. For example, 1453 ** assuming index p is on t1(a, b), and the SQL query is: 1454 ** 1455 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... 1456 ** 1457 ** then nEq is set to 1 (as the range restricted column, b, is the second 1458 ** left-most column of the index). Or, if the query is: 1459 ** 1460 ** ... FROM t1 WHERE a > ? AND a < ? ... 1461 ** 1462 ** then nEq is set to 0. 1463 ** 1464 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the 1465 ** number of rows that the index scan is expected to visit without 1466 ** considering the range constraints. If nEq is 0, then *pnOut is the number of 1467 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) 1468 ** to account for the range constraints pLower and pUpper. 1469 ** 1470 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be 1471 ** used, a single range inequality reduces the search space by a factor of 4. 1472 ** and a pair of constraints (x>? AND x<?) reduces the expected number of 1473 ** rows visited by a factor of 64. 1474 */ 1475 static int whereRangeScanEst( 1476 Parse *pParse, /* Parsing & code generating context */ 1477 WhereLoopBuilder *pBuilder, 1478 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1479 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1480 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ 1481 ){ 1482 int rc = SQLITE_OK; 1483 int nOut = pLoop->nOut; 1484 LogEst nNew; 1485 1486 #ifdef SQLITE_ENABLE_STAT4 1487 Index *p = pLoop->u.btree.pIndex; 1488 int nEq = pLoop->u.btree.nEq; 1489 1490 if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol) 1491 && OptimizationEnabled(pParse->db, SQLITE_Stat4) 1492 ){ 1493 if( nEq==pBuilder->nRecValid ){ 1494 UnpackedRecord *pRec = pBuilder->pRec; 1495 tRowcnt a[2]; 1496 int nBtm = pLoop->u.btree.nBtm; 1497 int nTop = pLoop->u.btree.nTop; 1498 1499 /* Variable iLower will be set to the estimate of the number of rows in 1500 ** the index that are less than the lower bound of the range query. The 1501 ** lower bound being the concatenation of $P and $L, where $P is the 1502 ** key-prefix formed by the nEq values matched against the nEq left-most 1503 ** columns of the index, and $L is the value in pLower. 1504 ** 1505 ** Or, if pLower is NULL or $L cannot be extracted from it (because it 1506 ** is not a simple variable or literal value), the lower bound of the 1507 ** range is $P. Due to a quirk in the way whereKeyStats() works, even 1508 ** if $L is available, whereKeyStats() is called for both ($P) and 1509 ** ($P:$L) and the larger of the two returned values is used. 1510 ** 1511 ** Similarly, iUpper is to be set to the estimate of the number of rows 1512 ** less than the upper bound of the range query. Where the upper bound 1513 ** is either ($P) or ($P:$U). Again, even if $U is available, both values 1514 ** of iUpper are requested of whereKeyStats() and the smaller used. 1515 ** 1516 ** The number of rows between the two bounds is then just iUpper-iLower. 1517 */ 1518 tRowcnt iLower; /* Rows less than the lower bound */ 1519 tRowcnt iUpper; /* Rows less than the upper bound */ 1520 int iLwrIdx = -2; /* aSample[] for the lower bound */ 1521 int iUprIdx = -1; /* aSample[] for the upper bound */ 1522 1523 if( pRec ){ 1524 testcase( pRec->nField!=pBuilder->nRecValid ); 1525 pRec->nField = pBuilder->nRecValid; 1526 } 1527 /* Determine iLower and iUpper using ($P) only. */ 1528 if( nEq==0 ){ 1529 iLower = 0; 1530 iUpper = p->nRowEst0; 1531 }else{ 1532 /* Note: this call could be optimized away - since the same values must 1533 ** have been requested when testing key $P in whereEqualScanEst(). */ 1534 whereKeyStats(pParse, p, pRec, 0, a); 1535 iLower = a[0]; 1536 iUpper = a[0] + a[1]; 1537 } 1538 1539 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); 1540 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); 1541 assert( p->aSortOrder!=0 ); 1542 if( p->aSortOrder[nEq] ){ 1543 /* The roles of pLower and pUpper are swapped for a DESC index */ 1544 SWAP(WhereTerm*, pLower, pUpper); 1545 SWAP(int, nBtm, nTop); 1546 } 1547 1548 /* If possible, improve on the iLower estimate using ($P:$L). */ 1549 if( pLower ){ 1550 int n; /* Values extracted from pExpr */ 1551 Expr *pExpr = pLower->pExpr->pRight; 1552 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n); 1553 if( rc==SQLITE_OK && n ){ 1554 tRowcnt iNew; 1555 u16 mask = WO_GT|WO_LE; 1556 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1557 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); 1558 iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0); 1559 if( iNew>iLower ) iLower = iNew; 1560 nOut--; 1561 pLower = 0; 1562 } 1563 } 1564 1565 /* If possible, improve on the iUpper estimate using ($P:$U). */ 1566 if( pUpper ){ 1567 int n; /* Values extracted from pExpr */ 1568 Expr *pExpr = pUpper->pExpr->pRight; 1569 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n); 1570 if( rc==SQLITE_OK && n ){ 1571 tRowcnt iNew; 1572 u16 mask = WO_GT|WO_LE; 1573 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1574 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); 1575 iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0); 1576 if( iNew<iUpper ) iUpper = iNew; 1577 nOut--; 1578 pUpper = 0; 1579 } 1580 } 1581 1582 pBuilder->pRec = pRec; 1583 if( rc==SQLITE_OK ){ 1584 if( iUpper>iLower ){ 1585 nNew = sqlite3LogEst(iUpper - iLower); 1586 /* TUNING: If both iUpper and iLower are derived from the same 1587 ** sample, then assume they are 4x more selective. This brings 1588 ** the estimated selectivity more in line with what it would be 1589 ** if estimated without the use of STAT4 tables. */ 1590 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) ); 1591 }else{ 1592 nNew = 10; assert( 10==sqlite3LogEst(2) ); 1593 } 1594 if( nNew<nOut ){ 1595 nOut = nNew; 1596 } 1597 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", 1598 (u32)iLower, (u32)iUpper, nOut)); 1599 } 1600 }else{ 1601 int bDone = 0; 1602 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); 1603 if( bDone ) return rc; 1604 } 1605 } 1606 #else 1607 UNUSED_PARAMETER(pParse); 1608 UNUSED_PARAMETER(pBuilder); 1609 assert( pLower || pUpper ); 1610 #endif 1611 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); 1612 nNew = whereRangeAdjust(pLower, nOut); 1613 nNew = whereRangeAdjust(pUpper, nNew); 1614 1615 /* TUNING: If there is both an upper and lower limit and neither limit 1616 ** has an application-defined likelihood(), assume the range is 1617 ** reduced by an additional 75%. This means that, by default, an open-ended 1618 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the 1619 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to 1620 ** match 1/64 of the index. */ 1621 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ 1622 nNew -= 20; 1623 } 1624 1625 nOut -= (pLower!=0) + (pUpper!=0); 1626 if( nNew<10 ) nNew = 10; 1627 if( nNew<nOut ) nOut = nNew; 1628 #if defined(WHERETRACE_ENABLED) 1629 if( pLoop->nOut>nOut ){ 1630 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", 1631 pLoop->nOut, nOut)); 1632 } 1633 #endif 1634 pLoop->nOut = (LogEst)nOut; 1635 return rc; 1636 } 1637 1638 #ifdef SQLITE_ENABLE_STAT4 1639 /* 1640 ** Estimate the number of rows that will be returned based on 1641 ** an equality constraint x=VALUE and where that VALUE occurs in 1642 ** the histogram data. This only works when x is the left-most 1643 ** column of an index and sqlite_stat4 histogram data is available 1644 ** for that index. When pExpr==NULL that means the constraint is 1645 ** "x IS NULL" instead of "x=VALUE". 1646 ** 1647 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1648 ** If unable to make an estimate, leave *pnRow unchanged and return 1649 ** non-zero. 1650 ** 1651 ** This routine can fail if it is unable to load a collating sequence 1652 ** required for string comparison, or if unable to allocate memory 1653 ** for a UTF conversion required for comparison. The error is stored 1654 ** in the pParse structure. 1655 */ 1656 static int whereEqualScanEst( 1657 Parse *pParse, /* Parsing & code generating context */ 1658 WhereLoopBuilder *pBuilder, 1659 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ 1660 tRowcnt *pnRow /* Write the revised row estimate here */ 1661 ){ 1662 Index *p = pBuilder->pNew->u.btree.pIndex; 1663 int nEq = pBuilder->pNew->u.btree.nEq; 1664 UnpackedRecord *pRec = pBuilder->pRec; 1665 int rc; /* Subfunction return code */ 1666 tRowcnt a[2]; /* Statistics */ 1667 int bOk; 1668 1669 assert( nEq>=1 ); 1670 assert( nEq<=p->nColumn ); 1671 assert( p->aSample!=0 ); 1672 assert( p->nSample>0 ); 1673 assert( pBuilder->nRecValid<nEq ); 1674 1675 /* If values are not available for all fields of the index to the left 1676 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ 1677 if( pBuilder->nRecValid<(nEq-1) ){ 1678 return SQLITE_NOTFOUND; 1679 } 1680 1681 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() 1682 ** below would return the same value. */ 1683 if( nEq>=p->nColumn ){ 1684 *pnRow = 1; 1685 return SQLITE_OK; 1686 } 1687 1688 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk); 1689 pBuilder->pRec = pRec; 1690 if( rc!=SQLITE_OK ) return rc; 1691 if( bOk==0 ) return SQLITE_NOTFOUND; 1692 pBuilder->nRecValid = nEq; 1693 1694 whereKeyStats(pParse, p, pRec, 0, a); 1695 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n", 1696 p->zName, nEq-1, (int)a[1])); 1697 *pnRow = a[1]; 1698 1699 return rc; 1700 } 1701 #endif /* SQLITE_ENABLE_STAT4 */ 1702 1703 #ifdef SQLITE_ENABLE_STAT4 1704 /* 1705 ** Estimate the number of rows that will be returned based on 1706 ** an IN constraint where the right-hand side of the IN operator 1707 ** is a list of values. Example: 1708 ** 1709 ** WHERE x IN (1,2,3,4) 1710 ** 1711 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1712 ** If unable to make an estimate, leave *pnRow unchanged and return 1713 ** non-zero. 1714 ** 1715 ** This routine can fail if it is unable to load a collating sequence 1716 ** required for string comparison, or if unable to allocate memory 1717 ** for a UTF conversion required for comparison. The error is stored 1718 ** in the pParse structure. 1719 */ 1720 static int whereInScanEst( 1721 Parse *pParse, /* Parsing & code generating context */ 1722 WhereLoopBuilder *pBuilder, 1723 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ 1724 tRowcnt *pnRow /* Write the revised row estimate here */ 1725 ){ 1726 Index *p = pBuilder->pNew->u.btree.pIndex; 1727 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); 1728 int nRecValid = pBuilder->nRecValid; 1729 int rc = SQLITE_OK; /* Subfunction return code */ 1730 tRowcnt nEst; /* Number of rows for a single term */ 1731 tRowcnt nRowEst = 0; /* New estimate of the number of rows */ 1732 int i; /* Loop counter */ 1733 1734 assert( p->aSample!=0 ); 1735 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ 1736 nEst = nRow0; 1737 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); 1738 nRowEst += nEst; 1739 pBuilder->nRecValid = nRecValid; 1740 } 1741 1742 if( rc==SQLITE_OK ){ 1743 if( nRowEst > nRow0 ) nRowEst = nRow0; 1744 *pnRow = nRowEst; 1745 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); 1746 } 1747 assert( pBuilder->nRecValid==nRecValid ); 1748 return rc; 1749 } 1750 #endif /* SQLITE_ENABLE_STAT4 */ 1751 1752 1753 #ifdef WHERETRACE_ENABLED 1754 /* 1755 ** Print the content of a WhereTerm object 1756 */ 1757 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){ 1758 if( pTerm==0 ){ 1759 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); 1760 }else{ 1761 char zType[8]; 1762 char zLeft[50]; 1763 memcpy(zType, "....", 5); 1764 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; 1765 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; 1766 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L'; 1767 if( pTerm->wtFlags & TERM_CODED ) zType[3] = 'C'; 1768 if( pTerm->eOperator & WO_SINGLE ){ 1769 sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}", 1770 pTerm->leftCursor, pTerm->u.x.leftColumn); 1771 }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){ 1772 sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx", 1773 pTerm->u.pOrInfo->indexable); 1774 }else{ 1775 sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor); 1776 } 1777 sqlite3DebugPrintf( 1778 "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x", 1779 iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags); 1780 /* The 0x10000 .wheretrace flag causes extra information to be 1781 ** shown about each Term */ 1782 if( sqlite3WhereTrace & 0x10000 ){ 1783 sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx", 1784 pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight); 1785 } 1786 if( pTerm->u.x.iField ){ 1787 sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField); 1788 } 1789 if( pTerm->iParent>=0 ){ 1790 sqlite3DebugPrintf(" iParent=%d", pTerm->iParent); 1791 } 1792 sqlite3DebugPrintf("\n"); 1793 sqlite3TreeViewExpr(0, pTerm->pExpr, 0); 1794 } 1795 } 1796 #endif 1797 1798 #ifdef WHERETRACE_ENABLED 1799 /* 1800 ** Show the complete content of a WhereClause 1801 */ 1802 void sqlite3WhereClausePrint(WhereClause *pWC){ 1803 int i; 1804 for(i=0; i<pWC->nTerm; i++){ 1805 sqlite3WhereTermPrint(&pWC->a[i], i); 1806 } 1807 } 1808 #endif 1809 1810 #ifdef WHERETRACE_ENABLED 1811 /* 1812 ** Print a WhereLoop object for debugging purposes 1813 */ 1814 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){ 1815 WhereInfo *pWInfo = pWC->pWInfo; 1816 int nb = 1+(pWInfo->pTabList->nSrc+3)/4; 1817 struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab; 1818 Table *pTab = pItem->pTab; 1819 Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1; 1820 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, 1821 p->iTab, nb, p->maskSelf, nb, p->prereq & mAll); 1822 sqlite3DebugPrintf(" %12s", 1823 pItem->zAlias ? pItem->zAlias : pTab->zName); 1824 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 1825 const char *zName; 1826 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ 1827 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ 1828 int i = sqlite3Strlen30(zName) - 1; 1829 while( zName[i]!='_' ) i--; 1830 zName += i; 1831 } 1832 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); 1833 }else{ 1834 sqlite3DebugPrintf("%20s",""); 1835 } 1836 }else{ 1837 char *z; 1838 if( p->u.vtab.idxStr ){ 1839 z = sqlite3_mprintf("(%d,\"%s\",%#x)", 1840 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); 1841 }else{ 1842 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); 1843 } 1844 sqlite3DebugPrintf(" %-19s", z); 1845 sqlite3_free(z); 1846 } 1847 if( p->wsFlags & WHERE_SKIPSCAN ){ 1848 sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); 1849 }else{ 1850 sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm); 1851 } 1852 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); 1853 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ 1854 int i; 1855 for(i=0; i<p->nLTerm; i++){ 1856 sqlite3WhereTermPrint(p->aLTerm[i], i); 1857 } 1858 } 1859 } 1860 #endif 1861 1862 /* 1863 ** Convert bulk memory into a valid WhereLoop that can be passed 1864 ** to whereLoopClear harmlessly. 1865 */ 1866 static void whereLoopInit(WhereLoop *p){ 1867 p->aLTerm = p->aLTermSpace; 1868 p->nLTerm = 0; 1869 p->nLSlot = ArraySize(p->aLTermSpace); 1870 p->wsFlags = 0; 1871 } 1872 1873 /* 1874 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. 1875 */ 1876 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ 1877 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ 1878 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ 1879 sqlite3_free(p->u.vtab.idxStr); 1880 p->u.vtab.needFree = 0; 1881 p->u.vtab.idxStr = 0; 1882 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ 1883 sqlite3DbFree(db, p->u.btree.pIndex->zColAff); 1884 sqlite3DbFreeNN(db, p->u.btree.pIndex); 1885 p->u.btree.pIndex = 0; 1886 } 1887 } 1888 } 1889 1890 /* 1891 ** Deallocate internal memory used by a WhereLoop object 1892 */ 1893 static void whereLoopClear(sqlite3 *db, WhereLoop *p){ 1894 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm); 1895 whereLoopClearUnion(db, p); 1896 whereLoopInit(p); 1897 } 1898 1899 /* 1900 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. 1901 */ 1902 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ 1903 WhereTerm **paNew; 1904 if( p->nLSlot>=n ) return SQLITE_OK; 1905 n = (n+7)&~7; 1906 paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n); 1907 if( paNew==0 ) return SQLITE_NOMEM_BKPT; 1908 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); 1909 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm); 1910 p->aLTerm = paNew; 1911 p->nLSlot = n; 1912 return SQLITE_OK; 1913 } 1914 1915 /* 1916 ** Transfer content from the second pLoop into the first. 1917 */ 1918 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ 1919 whereLoopClearUnion(db, pTo); 1920 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){ 1921 memset(&pTo->u, 0, sizeof(pTo->u)); 1922 return SQLITE_NOMEM_BKPT; 1923 } 1924 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); 1925 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); 1926 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ 1927 pFrom->u.vtab.needFree = 0; 1928 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 1929 pFrom->u.btree.pIndex = 0; 1930 } 1931 return SQLITE_OK; 1932 } 1933 1934 /* 1935 ** Delete a WhereLoop object 1936 */ 1937 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ 1938 whereLoopClear(db, p); 1939 sqlite3DbFreeNN(db, p); 1940 } 1941 1942 /* 1943 ** Free a WhereInfo structure 1944 */ 1945 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 1946 int i; 1947 assert( pWInfo!=0 ); 1948 for(i=0; i<pWInfo->nLevel; i++){ 1949 WhereLevel *pLevel = &pWInfo->a[i]; 1950 if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){ 1951 sqlite3DbFree(db, pLevel->u.in.aInLoop); 1952 } 1953 } 1954 sqlite3WhereClauseClear(&pWInfo->sWC); 1955 while( pWInfo->pLoops ){ 1956 WhereLoop *p = pWInfo->pLoops; 1957 pWInfo->pLoops = p->pNextLoop; 1958 whereLoopDelete(db, p); 1959 } 1960 assert( pWInfo->pExprMods==0 ); 1961 sqlite3DbFreeNN(db, pWInfo); 1962 } 1963 1964 /* 1965 ** Return TRUE if all of the following are true: 1966 ** 1967 ** (1) X has the same or lower cost that Y 1968 ** (2) X uses fewer WHERE clause terms than Y 1969 ** (3) Every WHERE clause term used by X is also used by Y 1970 ** (4) X skips at least as many columns as Y 1971 ** (5) If X is a covering index, than Y is too 1972 ** 1973 ** Conditions (2) and (3) mean that X is a "proper subset" of Y. 1974 ** If X is a proper subset of Y then Y is a better choice and ought 1975 ** to have a lower cost. This routine returns TRUE when that cost 1976 ** relationship is inverted and needs to be adjusted. Constraint (4) 1977 ** was added because if X uses skip-scan less than Y it still might 1978 ** deserve a lower cost even if it is a proper subset of Y. Constraint (5) 1979 ** was added because a covering index probably deserves to have a lower cost 1980 ** than a non-covering index even if it is a proper subset. 1981 */ 1982 static int whereLoopCheaperProperSubset( 1983 const WhereLoop *pX, /* First WhereLoop to compare */ 1984 const WhereLoop *pY /* Compare against this WhereLoop */ 1985 ){ 1986 int i, j; 1987 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ 1988 return 0; /* X is not a subset of Y */ 1989 } 1990 if( pY->nSkip > pX->nSkip ) return 0; 1991 if( pX->rRun >= pY->rRun ){ 1992 if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */ 1993 if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */ 1994 } 1995 for(i=pX->nLTerm-1; i>=0; i--){ 1996 if( pX->aLTerm[i]==0 ) continue; 1997 for(j=pY->nLTerm-1; j>=0; j--){ 1998 if( pY->aLTerm[j]==pX->aLTerm[i] ) break; 1999 } 2000 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ 2001 } 2002 if( (pX->wsFlags&WHERE_IDX_ONLY)!=0 2003 && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){ 2004 return 0; /* Constraint (5) */ 2005 } 2006 return 1; /* All conditions meet */ 2007 } 2008 2009 /* 2010 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so 2011 ** that: 2012 ** 2013 ** (1) pTemplate costs less than any other WhereLoops that are a proper 2014 ** subset of pTemplate 2015 ** 2016 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate 2017 ** is a proper subset. 2018 ** 2019 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer 2020 ** WHERE clause terms than Y and that every WHERE clause term used by X is 2021 ** also used by Y. 2022 */ 2023 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ 2024 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; 2025 for(; p; p=p->pNextLoop){ 2026 if( p->iTab!=pTemplate->iTab ) continue; 2027 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; 2028 if( whereLoopCheaperProperSubset(p, pTemplate) ){ 2029 /* Adjust pTemplate cost downward so that it is cheaper than its 2030 ** subset p. */ 2031 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 2032 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1)); 2033 pTemplate->rRun = p->rRun; 2034 pTemplate->nOut = p->nOut - 1; 2035 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ 2036 /* Adjust pTemplate cost upward so that it is costlier than p since 2037 ** pTemplate is a proper subset of p */ 2038 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 2039 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1)); 2040 pTemplate->rRun = p->rRun; 2041 pTemplate->nOut = p->nOut + 1; 2042 } 2043 } 2044 } 2045 2046 /* 2047 ** Search the list of WhereLoops in *ppPrev looking for one that can be 2048 ** replaced by pTemplate. 2049 ** 2050 ** Return NULL if pTemplate does not belong on the WhereLoop list. 2051 ** In other words if pTemplate ought to be dropped from further consideration. 2052 ** 2053 ** If pX is a WhereLoop that pTemplate can replace, then return the 2054 ** link that points to pX. 2055 ** 2056 ** If pTemplate cannot replace any existing element of the list but needs 2057 ** to be added to the list as a new entry, then return a pointer to the 2058 ** tail of the list. 2059 */ 2060 static WhereLoop **whereLoopFindLesser( 2061 WhereLoop **ppPrev, 2062 const WhereLoop *pTemplate 2063 ){ 2064 WhereLoop *p; 2065 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ 2066 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ 2067 /* If either the iTab or iSortIdx values for two WhereLoop are different 2068 ** then those WhereLoops need to be considered separately. Neither is 2069 ** a candidate to replace the other. */ 2070 continue; 2071 } 2072 /* In the current implementation, the rSetup value is either zero 2073 ** or the cost of building an automatic index (NlogN) and the NlogN 2074 ** is the same for compatible WhereLoops. */ 2075 assert( p->rSetup==0 || pTemplate->rSetup==0 2076 || p->rSetup==pTemplate->rSetup ); 2077 2078 /* whereLoopAddBtree() always generates and inserts the automatic index 2079 ** case first. Hence compatible candidate WhereLoops never have a larger 2080 ** rSetup. Call this SETUP-INVARIANT */ 2081 assert( p->rSetup>=pTemplate->rSetup ); 2082 2083 /* Any loop using an appliation-defined index (or PRIMARY KEY or 2084 ** UNIQUE constraint) with one or more == constraints is better 2085 ** than an automatic index. Unless it is a skip-scan. */ 2086 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 2087 && (pTemplate->nSkip)==0 2088 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 2089 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 2090 && (p->prereq & pTemplate->prereq)==pTemplate->prereq 2091 ){ 2092 break; 2093 } 2094 2095 /* If existing WhereLoop p is better than pTemplate, pTemplate can be 2096 ** discarded. WhereLoop p is better if: 2097 ** (1) p has no more dependencies than pTemplate, and 2098 ** (2) p has an equal or lower cost than pTemplate 2099 */ 2100 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ 2101 && p->rSetup<=pTemplate->rSetup /* (2a) */ 2102 && p->rRun<=pTemplate->rRun /* (2b) */ 2103 && p->nOut<=pTemplate->nOut /* (2c) */ 2104 ){ 2105 return 0; /* Discard pTemplate */ 2106 } 2107 2108 /* If pTemplate is always better than p, then cause p to be overwritten 2109 ** with pTemplate. pTemplate is better than p if: 2110 ** (1) pTemplate has no more dependences than p, and 2111 ** (2) pTemplate has an equal or lower cost than p. 2112 */ 2113 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ 2114 && p->rRun>=pTemplate->rRun /* (2a) */ 2115 && p->nOut>=pTemplate->nOut /* (2b) */ 2116 ){ 2117 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ 2118 break; /* Cause p to be overwritten by pTemplate */ 2119 } 2120 } 2121 return ppPrev; 2122 } 2123 2124 /* 2125 ** Insert or replace a WhereLoop entry using the template supplied. 2126 ** 2127 ** An existing WhereLoop entry might be overwritten if the new template 2128 ** is better and has fewer dependencies. Or the template will be ignored 2129 ** and no insert will occur if an existing WhereLoop is faster and has 2130 ** fewer dependencies than the template. Otherwise a new WhereLoop is 2131 ** added based on the template. 2132 ** 2133 ** If pBuilder->pOrSet is not NULL then we care about only the 2134 ** prerequisites and rRun and nOut costs of the N best loops. That 2135 ** information is gathered in the pBuilder->pOrSet object. This special 2136 ** processing mode is used only for OR clause processing. 2137 ** 2138 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we 2139 ** still might overwrite similar loops with the new template if the 2140 ** new template is better. Loops may be overwritten if the following 2141 ** conditions are met: 2142 ** 2143 ** (1) They have the same iTab. 2144 ** (2) They have the same iSortIdx. 2145 ** (3) The template has same or fewer dependencies than the current loop 2146 ** (4) The template has the same or lower cost than the current loop 2147 */ 2148 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ 2149 WhereLoop **ppPrev, *p; 2150 WhereInfo *pWInfo = pBuilder->pWInfo; 2151 sqlite3 *db = pWInfo->pParse->db; 2152 int rc; 2153 2154 /* Stop the search once we hit the query planner search limit */ 2155 if( pBuilder->iPlanLimit==0 ){ 2156 WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n")); 2157 if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0; 2158 return SQLITE_DONE; 2159 } 2160 pBuilder->iPlanLimit--; 2161 2162 whereLoopAdjustCost(pWInfo->pLoops, pTemplate); 2163 2164 /* If pBuilder->pOrSet is defined, then only keep track of the costs 2165 ** and prereqs. 2166 */ 2167 if( pBuilder->pOrSet!=0 ){ 2168 if( pTemplate->nLTerm ){ 2169 #if WHERETRACE_ENABLED 2170 u16 n = pBuilder->pOrSet->n; 2171 int x = 2172 #endif 2173 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, 2174 pTemplate->nOut); 2175 #if WHERETRACE_ENABLED /* 0x8 */ 2176 if( sqlite3WhereTrace & 0x8 ){ 2177 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); 2178 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2179 } 2180 #endif 2181 } 2182 return SQLITE_OK; 2183 } 2184 2185 /* Look for an existing WhereLoop to replace with pTemplate 2186 */ 2187 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); 2188 2189 if( ppPrev==0 ){ 2190 /* There already exists a WhereLoop on the list that is better 2191 ** than pTemplate, so just ignore pTemplate */ 2192 #if WHERETRACE_ENABLED /* 0x8 */ 2193 if( sqlite3WhereTrace & 0x8 ){ 2194 sqlite3DebugPrintf(" skip: "); 2195 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2196 } 2197 #endif 2198 return SQLITE_OK; 2199 }else{ 2200 p = *ppPrev; 2201 } 2202 2203 /* If we reach this point it means that either p[] should be overwritten 2204 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new 2205 ** WhereLoop and insert it. 2206 */ 2207 #if WHERETRACE_ENABLED /* 0x8 */ 2208 if( sqlite3WhereTrace & 0x8 ){ 2209 if( p!=0 ){ 2210 sqlite3DebugPrintf("replace: "); 2211 sqlite3WhereLoopPrint(p, pBuilder->pWC); 2212 sqlite3DebugPrintf(" with: "); 2213 }else{ 2214 sqlite3DebugPrintf(" add: "); 2215 } 2216 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2217 } 2218 #endif 2219 if( p==0 ){ 2220 /* Allocate a new WhereLoop to add to the end of the list */ 2221 *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop)); 2222 if( p==0 ) return SQLITE_NOMEM_BKPT; 2223 whereLoopInit(p); 2224 p->pNextLoop = 0; 2225 }else{ 2226 /* We will be overwriting WhereLoop p[]. But before we do, first 2227 ** go through the rest of the list and delete any other entries besides 2228 ** p[] that are also supplated by pTemplate */ 2229 WhereLoop **ppTail = &p->pNextLoop; 2230 WhereLoop *pToDel; 2231 while( *ppTail ){ 2232 ppTail = whereLoopFindLesser(ppTail, pTemplate); 2233 if( ppTail==0 ) break; 2234 pToDel = *ppTail; 2235 if( pToDel==0 ) break; 2236 *ppTail = pToDel->pNextLoop; 2237 #if WHERETRACE_ENABLED /* 0x8 */ 2238 if( sqlite3WhereTrace & 0x8 ){ 2239 sqlite3DebugPrintf(" delete: "); 2240 sqlite3WhereLoopPrint(pToDel, pBuilder->pWC); 2241 } 2242 #endif 2243 whereLoopDelete(db, pToDel); 2244 } 2245 } 2246 rc = whereLoopXfer(db, p, pTemplate); 2247 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 2248 Index *pIndex = p->u.btree.pIndex; 2249 if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){ 2250 p->u.btree.pIndex = 0; 2251 } 2252 } 2253 return rc; 2254 } 2255 2256 /* 2257 ** Adjust the WhereLoop.nOut value downward to account for terms of the 2258 ** WHERE clause that reference the loop but which are not used by an 2259 ** index. 2260 * 2261 ** For every WHERE clause term that is not used by the index 2262 ** and which has a truth probability assigned by one of the likelihood(), 2263 ** likely(), or unlikely() SQL functions, reduce the estimated number 2264 ** of output rows by the probability specified. 2265 ** 2266 ** TUNING: For every WHERE clause term that is not used by the index 2267 ** and which does not have an assigned truth probability, heuristics 2268 ** described below are used to try to estimate the truth probability. 2269 ** TODO --> Perhaps this is something that could be improved by better 2270 ** table statistics. 2271 ** 2272 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% 2273 ** value corresponds to -1 in LogEst notation, so this means decrement 2274 ** the WhereLoop.nOut field for every such WHERE clause term. 2275 ** 2276 ** Heuristic 2: If there exists one or more WHERE clause terms of the 2277 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the 2278 ** final output row estimate is no greater than 1/4 of the total number 2279 ** of rows in the table. In other words, assume that x==EXPR will filter 2280 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the 2281 ** "x" column is boolean or else -1 or 0 or 1 is a common default value 2282 ** on the "x" column and so in that case only cap the output row estimate 2283 ** at 1/2 instead of 1/4. 2284 */ 2285 static void whereLoopOutputAdjust( 2286 WhereClause *pWC, /* The WHERE clause */ 2287 WhereLoop *pLoop, /* The loop to adjust downward */ 2288 LogEst nRow /* Number of rows in the entire table */ 2289 ){ 2290 WhereTerm *pTerm, *pX; 2291 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); 2292 int i, j; 2293 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ 2294 2295 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2296 for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){ 2297 assert( pTerm!=0 ); 2298 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break; 2299 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; 2300 if( (pTerm->prereqAll & notAllowed)!=0 ) continue; 2301 for(j=pLoop->nLTerm-1; j>=0; j--){ 2302 pX = pLoop->aLTerm[j]; 2303 if( pX==0 ) continue; 2304 if( pX==pTerm ) break; 2305 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; 2306 } 2307 if( j<0 ){ 2308 if( pTerm->truthProb<=0 ){ 2309 /* If a truth probability is specified using the likelihood() hints, 2310 ** then use the probability provided by the application. */ 2311 pLoop->nOut += pTerm->truthProb; 2312 }else{ 2313 /* In the absence of explicit truth probabilities, use heuristics to 2314 ** guess a reasonable truth probability. */ 2315 pLoop->nOut--; 2316 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 2317 && (pTerm->wtFlags & TERM_HIGHTRUTH)==0 /* tag-20200224-1 */ 2318 ){ 2319 Expr *pRight = pTerm->pExpr->pRight; 2320 int k = 0; 2321 testcase( pTerm->pExpr->op==TK_IS ); 2322 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){ 2323 k = 10; 2324 }else{ 2325 k = 20; 2326 } 2327 if( iReduce<k ){ 2328 pTerm->wtFlags |= TERM_HEURTRUTH; 2329 iReduce = k; 2330 } 2331 } 2332 } 2333 } 2334 } 2335 if( pLoop->nOut > nRow-iReduce ) pLoop->nOut = nRow - iReduce; 2336 } 2337 2338 /* 2339 ** Term pTerm is a vector range comparison operation. The first comparison 2340 ** in the vector can be optimized using column nEq of the index. This 2341 ** function returns the total number of vector elements that can be used 2342 ** as part of the range comparison. 2343 ** 2344 ** For example, if the query is: 2345 ** 2346 ** WHERE a = ? AND (b, c, d) > (?, ?, ?) 2347 ** 2348 ** and the index: 2349 ** 2350 ** CREATE INDEX ... ON (a, b, c, d, e) 2351 ** 2352 ** then this function would be invoked with nEq=1. The value returned in 2353 ** this case is 3. 2354 */ 2355 static int whereRangeVectorLen( 2356 Parse *pParse, /* Parsing context */ 2357 int iCur, /* Cursor open on pIdx */ 2358 Index *pIdx, /* The index to be used for a inequality constraint */ 2359 int nEq, /* Number of prior equality constraints on same index */ 2360 WhereTerm *pTerm /* The vector inequality constraint */ 2361 ){ 2362 int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft); 2363 int i; 2364 2365 nCmp = MIN(nCmp, (pIdx->nColumn - nEq)); 2366 for(i=1; i<nCmp; i++){ 2367 /* Test if comparison i of pTerm is compatible with column (i+nEq) 2368 ** of the index. If not, exit the loop. */ 2369 char aff; /* Comparison affinity */ 2370 char idxaff = 0; /* Indexed columns affinity */ 2371 CollSeq *pColl; /* Comparison collation sequence */ 2372 Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr; 2373 Expr *pRhs = pTerm->pExpr->pRight; 2374 if( pRhs->flags & EP_xIsSelect ){ 2375 pRhs = pRhs->x.pSelect->pEList->a[i].pExpr; 2376 }else{ 2377 pRhs = pRhs->x.pList->a[i].pExpr; 2378 } 2379 2380 /* Check that the LHS of the comparison is a column reference to 2381 ** the right column of the right source table. And that the sort 2382 ** order of the index column is the same as the sort order of the 2383 ** leftmost index column. */ 2384 if( pLhs->op!=TK_COLUMN 2385 || pLhs->iTable!=iCur 2386 || pLhs->iColumn!=pIdx->aiColumn[i+nEq] 2387 || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq] 2388 ){ 2389 break; 2390 } 2391 2392 testcase( pLhs->iColumn==XN_ROWID ); 2393 aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs)); 2394 idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn); 2395 if( aff!=idxaff ) break; 2396 2397 pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2398 if( pColl==0 ) break; 2399 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break; 2400 } 2401 return i; 2402 } 2403 2404 /* 2405 ** Adjust the cost C by the costMult facter T. This only occurs if 2406 ** compiled with -DSQLITE_ENABLE_COSTMULT 2407 */ 2408 #ifdef SQLITE_ENABLE_COSTMULT 2409 # define ApplyCostMultiplier(C,T) C += T 2410 #else 2411 # define ApplyCostMultiplier(C,T) 2412 #endif 2413 2414 /* 2415 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the 2416 ** index pIndex. Try to match one more. 2417 ** 2418 ** When this function is called, pBuilder->pNew->nOut contains the 2419 ** number of rows expected to be visited by filtering using the nEq 2420 ** terms only. If it is modified, this value is restored before this 2421 ** function returns. 2422 ** 2423 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is 2424 ** a fake index used for the INTEGER PRIMARY KEY. 2425 */ 2426 static int whereLoopAddBtreeIndex( 2427 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ 2428 struct SrcList_item *pSrc, /* FROM clause term being analyzed */ 2429 Index *pProbe, /* An index on pSrc */ 2430 LogEst nInMul /* log(Number of iterations due to IN) */ 2431 ){ 2432 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ 2433 Parse *pParse = pWInfo->pParse; /* Parsing context */ 2434 sqlite3 *db = pParse->db; /* Database connection malloc context */ 2435 WhereLoop *pNew; /* Template WhereLoop under construction */ 2436 WhereTerm *pTerm; /* A WhereTerm under consideration */ 2437 int opMask; /* Valid operators for constraints */ 2438 WhereScan scan; /* Iterator for WHERE terms */ 2439 Bitmask saved_prereq; /* Original value of pNew->prereq */ 2440 u16 saved_nLTerm; /* Original value of pNew->nLTerm */ 2441 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ 2442 u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */ 2443 u16 saved_nTop; /* Original value of pNew->u.btree.nTop */ 2444 u16 saved_nSkip; /* Original value of pNew->nSkip */ 2445 u32 saved_wsFlags; /* Original value of pNew->wsFlags */ 2446 LogEst saved_nOut; /* Original value of pNew->nOut */ 2447 int rc = SQLITE_OK; /* Return code */ 2448 LogEst rSize; /* Number of rows in the table */ 2449 LogEst rLogSize; /* Logarithm of table size */ 2450 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ 2451 2452 pNew = pBuilder->pNew; 2453 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 2454 WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n", 2455 pProbe->pTable->zName,pProbe->zName, 2456 pNew->u.btree.nEq, pNew->nSkip, pNew->rRun)); 2457 2458 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); 2459 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); 2460 if( pNew->wsFlags & WHERE_BTM_LIMIT ){ 2461 opMask = WO_LT|WO_LE; 2462 }else{ 2463 assert( pNew->u.btree.nBtm==0 ); 2464 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS; 2465 } 2466 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); 2467 2468 assert( pNew->u.btree.nEq<pProbe->nColumn ); 2469 2470 saved_nEq = pNew->u.btree.nEq; 2471 saved_nBtm = pNew->u.btree.nBtm; 2472 saved_nTop = pNew->u.btree.nTop; 2473 saved_nSkip = pNew->nSkip; 2474 saved_nLTerm = pNew->nLTerm; 2475 saved_wsFlags = pNew->wsFlags; 2476 saved_prereq = pNew->prereq; 2477 saved_nOut = pNew->nOut; 2478 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq, 2479 opMask, pProbe); 2480 pNew->rSetup = 0; 2481 rSize = pProbe->aiRowLogEst[0]; 2482 rLogSize = estLog(rSize); 2483 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ 2484 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ 2485 LogEst rCostIdx; 2486 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ 2487 int nIn = 0; 2488 #ifdef SQLITE_ENABLE_STAT4 2489 int nRecValid = pBuilder->nRecValid; 2490 #endif 2491 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) 2492 && indexColumnNotNull(pProbe, saved_nEq) 2493 ){ 2494 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ 2495 } 2496 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2497 2498 /* Do not allow the upper bound of a LIKE optimization range constraint 2499 ** to mix with a lower range bound from some other source */ 2500 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; 2501 2502 /* tag-20191211-001: Do not allow constraints from the WHERE clause to 2503 ** be used by the right table of a LEFT JOIN. Only constraints in the 2504 ** ON clause are allowed. See tag-20191211-002 for the vtab equivalent. */ 2505 if( (pSrc->fg.jointype & JT_LEFT)!=0 2506 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 2507 ){ 2508 continue; 2509 } 2510 2511 if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){ 2512 pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE; 2513 }else{ 2514 pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED; 2515 } 2516 pNew->wsFlags = saved_wsFlags; 2517 pNew->u.btree.nEq = saved_nEq; 2518 pNew->u.btree.nBtm = saved_nBtm; 2519 pNew->u.btree.nTop = saved_nTop; 2520 pNew->nLTerm = saved_nLTerm; 2521 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2522 pNew->aLTerm[pNew->nLTerm++] = pTerm; 2523 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; 2524 2525 assert( nInMul==0 2526 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 2527 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 2528 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 2529 ); 2530 2531 if( eOp & WO_IN ){ 2532 Expr *pExpr = pTerm->pExpr; 2533 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2534 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ 2535 int i; 2536 nIn = 46; assert( 46==sqlite3LogEst(25) ); 2537 2538 /* The expression may actually be of the form (x, y) IN (SELECT...). 2539 ** In this case there is a separate term for each of (x) and (y). 2540 ** However, the nIn multiplier should only be applied once, not once 2541 ** for each such term. The following loop checks that pTerm is the 2542 ** first such term in use, and sets nIn back to 0 if it is not. */ 2543 for(i=0; i<pNew->nLTerm-1; i++){ 2544 if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0; 2545 } 2546 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ 2547 /* "x IN (value, value, ...)" */ 2548 nIn = sqlite3LogEst(pExpr->x.pList->nExpr); 2549 } 2550 if( pProbe->hasStat1 && rLogSize>=10 ){ 2551 LogEst M, logK, safetyMargin; 2552 /* Let: 2553 ** N = the total number of rows in the table 2554 ** K = the number of entries on the RHS of the IN operator 2555 ** M = the number of rows in the table that match terms to the 2556 ** to the left in the same index. If the IN operator is on 2557 ** the left-most index column, M==N. 2558 ** 2559 ** Given the definitions above, it is better to omit the IN operator 2560 ** from the index lookup and instead do a scan of the M elements, 2561 ** testing each scanned row against the IN operator separately, if: 2562 ** 2563 ** M*log(K) < K*log(N) 2564 ** 2565 ** Our estimates for M, K, and N might be inaccurate, so we build in 2566 ** a safety margin of 2 (LogEst: 10) that favors using the IN operator 2567 ** with the index, as using an index has better worst-case behavior. 2568 ** If we do not have real sqlite_stat1 data, always prefer to use 2569 ** the index. Do not bother with this optimization on very small 2570 ** tables (less than 2 rows) as it is pointless in that case. 2571 */ 2572 M = pProbe->aiRowLogEst[saved_nEq]; 2573 logK = estLog(nIn); 2574 safetyMargin = 10; /* TUNING: extra weight for indexed IN */ 2575 if( M + logK + safetyMargin < nIn + rLogSize ){ 2576 WHERETRACE(0x40, 2577 ("Scan preferred over IN operator on column %d of \"%s\" (%d<%d)\n", 2578 saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize)); 2579 pNew->wsFlags |= WHERE_IN_SEEKSCAN; 2580 }else{ 2581 WHERETRACE(0x40, 2582 ("IN operator preferred on column %d of \"%s\" (%d>=%d)\n", 2583 saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize)); 2584 } 2585 } 2586 pNew->wsFlags |= WHERE_COLUMN_IN; 2587 }else if( eOp & (WO_EQ|WO_IS) ){ 2588 int iCol = pProbe->aiColumn[saved_nEq]; 2589 pNew->wsFlags |= WHERE_COLUMN_EQ; 2590 assert( saved_nEq==pNew->u.btree.nEq ); 2591 if( iCol==XN_ROWID 2592 || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) 2593 ){ 2594 if( iCol==XN_ROWID || pProbe->uniqNotNull 2595 || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ) 2596 ){ 2597 pNew->wsFlags |= WHERE_ONEROW; 2598 }else{ 2599 pNew->wsFlags |= WHERE_UNQ_WANTED; 2600 } 2601 } 2602 }else if( eOp & WO_ISNULL ){ 2603 pNew->wsFlags |= WHERE_COLUMN_NULL; 2604 }else if( eOp & (WO_GT|WO_GE) ){ 2605 testcase( eOp & WO_GT ); 2606 testcase( eOp & WO_GE ); 2607 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; 2608 pNew->u.btree.nBtm = whereRangeVectorLen( 2609 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2610 ); 2611 pBtm = pTerm; 2612 pTop = 0; 2613 if( pTerm->wtFlags & TERM_LIKEOPT ){ 2614 /* Range contraints that come from the LIKE optimization are 2615 ** always used in pairs. */ 2616 pTop = &pTerm[1]; 2617 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm ); 2618 assert( pTop->wtFlags & TERM_LIKEOPT ); 2619 assert( pTop->eOperator==WO_LT ); 2620 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2621 pNew->aLTerm[pNew->nLTerm++] = pTop; 2622 pNew->wsFlags |= WHERE_TOP_LIMIT; 2623 pNew->u.btree.nTop = 1; 2624 } 2625 }else{ 2626 assert( eOp & (WO_LT|WO_LE) ); 2627 testcase( eOp & WO_LT ); 2628 testcase( eOp & WO_LE ); 2629 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; 2630 pNew->u.btree.nTop = whereRangeVectorLen( 2631 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2632 ); 2633 pTop = pTerm; 2634 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? 2635 pNew->aLTerm[pNew->nLTerm-2] : 0; 2636 } 2637 2638 /* At this point pNew->nOut is set to the number of rows expected to 2639 ** be visited by the index scan before considering term pTerm, or the 2640 ** values of nIn and nInMul. In other words, assuming that all 2641 ** "x IN(...)" terms are replaced with "x = ?". This block updates 2642 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ 2643 assert( pNew->nOut==saved_nOut ); 2644 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2645 /* Adjust nOut using stat4 data. Or, if there is no stat4 2646 ** data, using some other estimate. */ 2647 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); 2648 }else{ 2649 int nEq = ++pNew->u.btree.nEq; 2650 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) ); 2651 2652 assert( pNew->nOut==saved_nOut ); 2653 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){ 2654 assert( (eOp & WO_IN) || nIn==0 ); 2655 testcase( eOp & WO_IN ); 2656 pNew->nOut += pTerm->truthProb; 2657 pNew->nOut -= nIn; 2658 }else{ 2659 #ifdef SQLITE_ENABLE_STAT4 2660 tRowcnt nOut = 0; 2661 if( nInMul==0 2662 && pProbe->nSample 2663 && pNew->u.btree.nEq<=pProbe->nSampleCol 2664 && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect)) 2665 && OptimizationEnabled(db, SQLITE_Stat4) 2666 ){ 2667 Expr *pExpr = pTerm->pExpr; 2668 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){ 2669 testcase( eOp & WO_EQ ); 2670 testcase( eOp & WO_IS ); 2671 testcase( eOp & WO_ISNULL ); 2672 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); 2673 }else{ 2674 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); 2675 } 2676 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 2677 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ 2678 if( nOut ){ 2679 pNew->nOut = sqlite3LogEst(nOut); 2680 if( nEq==1 2681 /* TUNING: Mark terms as "low selectivity" if they seem likely 2682 ** to be true for half or more of the rows in the table. 2683 ** See tag-202002240-1 */ 2684 && pNew->nOut+10 > pProbe->aiRowLogEst[0] 2685 ){ 2686 #if WHERETRACE_ENABLED /* 0x01 */ 2687 if( sqlite3WhereTrace & 0x01 ){ 2688 sqlite3DebugPrintf( 2689 "STAT4 determines term has low selectivity:\n"); 2690 sqlite3WhereTermPrint(pTerm, 999); 2691 } 2692 #endif 2693 pTerm->wtFlags |= TERM_HIGHTRUTH; 2694 if( pTerm->wtFlags & TERM_HEURTRUTH ){ 2695 /* If the term has previously been used with an assumption of 2696 ** higher selectivity, then set the flag to rerun the 2697 ** loop computations. */ 2698 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS; 2699 } 2700 } 2701 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; 2702 pNew->nOut -= nIn; 2703 } 2704 } 2705 if( nOut==0 ) 2706 #endif 2707 { 2708 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); 2709 if( eOp & WO_ISNULL ){ 2710 /* TUNING: If there is no likelihood() value, assume that a 2711 ** "col IS NULL" expression matches twice as many rows 2712 ** as (col=?). */ 2713 pNew->nOut += 10; 2714 } 2715 } 2716 } 2717 } 2718 2719 /* Set rCostIdx to the cost of visiting selected rows in index. Add 2720 ** it to pNew->rRun, which is currently set to the cost of the index 2721 ** seek only. Then, if this is a non-covering index, add the cost of 2722 ** visiting the rows in the main table. */ 2723 assert( pSrc->pTab->szTabRow>0 ); 2724 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; 2725 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); 2726 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ 2727 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); 2728 } 2729 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); 2730 2731 nOutUnadjusted = pNew->nOut; 2732 pNew->rRun += nInMul + nIn; 2733 pNew->nOut += nInMul + nIn; 2734 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); 2735 rc = whereLoopInsert(pBuilder, pNew); 2736 2737 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2738 pNew->nOut = saved_nOut; 2739 }else{ 2740 pNew->nOut = nOutUnadjusted; 2741 } 2742 2743 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 2744 && pNew->u.btree.nEq<pProbe->nColumn 2745 ){ 2746 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); 2747 } 2748 pNew->nOut = saved_nOut; 2749 #ifdef SQLITE_ENABLE_STAT4 2750 pBuilder->nRecValid = nRecValid; 2751 #endif 2752 } 2753 pNew->prereq = saved_prereq; 2754 pNew->u.btree.nEq = saved_nEq; 2755 pNew->u.btree.nBtm = saved_nBtm; 2756 pNew->u.btree.nTop = saved_nTop; 2757 pNew->nSkip = saved_nSkip; 2758 pNew->wsFlags = saved_wsFlags; 2759 pNew->nOut = saved_nOut; 2760 pNew->nLTerm = saved_nLTerm; 2761 2762 /* Consider using a skip-scan if there are no WHERE clause constraints 2763 ** available for the left-most terms of the index, and if the average 2764 ** number of repeats in the left-most terms is at least 18. 2765 ** 2766 ** The magic number 18 is selected on the basis that scanning 17 rows 2767 ** is almost always quicker than an index seek (even though if the index 2768 ** contains fewer than 2^17 rows we assume otherwise in other parts of 2769 ** the code). And, even if it is not, it should not be too much slower. 2770 ** On the other hand, the extra seeks could end up being significantly 2771 ** more expensive. */ 2772 assert( 42==sqlite3LogEst(18) ); 2773 if( saved_nEq==saved_nSkip 2774 && saved_nEq+1<pProbe->nKeyCol 2775 && saved_nEq==pNew->nLTerm 2776 && pProbe->noSkipScan==0 2777 && pProbe->hasStat1!=0 2778 && OptimizationEnabled(db, SQLITE_SkipScan) 2779 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ 2780 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK 2781 ){ 2782 LogEst nIter; 2783 pNew->u.btree.nEq++; 2784 pNew->nSkip++; 2785 pNew->aLTerm[pNew->nLTerm++] = 0; 2786 pNew->wsFlags |= WHERE_SKIPSCAN; 2787 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; 2788 pNew->nOut -= nIter; 2789 /* TUNING: Because uncertainties in the estimates for skip-scan queries, 2790 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ 2791 nIter += 5; 2792 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); 2793 pNew->nOut = saved_nOut; 2794 pNew->u.btree.nEq = saved_nEq; 2795 pNew->nSkip = saved_nSkip; 2796 pNew->wsFlags = saved_wsFlags; 2797 } 2798 2799 WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n", 2800 pProbe->pTable->zName, pProbe->zName, saved_nEq, rc)); 2801 return rc; 2802 } 2803 2804 /* 2805 ** Return True if it is possible that pIndex might be useful in 2806 ** implementing the ORDER BY clause in pBuilder. 2807 ** 2808 ** Return False if pBuilder does not contain an ORDER BY clause or 2809 ** if there is no way for pIndex to be useful in implementing that 2810 ** ORDER BY clause. 2811 */ 2812 static int indexMightHelpWithOrderBy( 2813 WhereLoopBuilder *pBuilder, 2814 Index *pIndex, 2815 int iCursor 2816 ){ 2817 ExprList *pOB; 2818 ExprList *aColExpr; 2819 int ii, jj; 2820 2821 if( pIndex->bUnordered ) return 0; 2822 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; 2823 for(ii=0; ii<pOB->nExpr; ii++){ 2824 Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr); 2825 if( NEVER(pExpr==0) ) continue; 2826 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){ 2827 if( pExpr->iColumn<0 ) return 1; 2828 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2829 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; 2830 } 2831 }else if( (aColExpr = pIndex->aColExpr)!=0 ){ 2832 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2833 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue; 2834 if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){ 2835 return 1; 2836 } 2837 } 2838 } 2839 } 2840 return 0; 2841 } 2842 2843 /* Check to see if a partial index with pPartIndexWhere can be used 2844 ** in the current query. Return true if it can be and false if not. 2845 */ 2846 static int whereUsablePartialIndex( 2847 int iTab, /* The table for which we want an index */ 2848 int isLeft, /* True if iTab is the right table of a LEFT JOIN */ 2849 WhereClause *pWC, /* The WHERE clause of the query */ 2850 Expr *pWhere /* The WHERE clause from the partial index */ 2851 ){ 2852 int i; 2853 WhereTerm *pTerm; 2854 Parse *pParse = pWC->pWInfo->pParse; 2855 while( pWhere->op==TK_AND ){ 2856 if( !whereUsablePartialIndex(iTab,isLeft,pWC,pWhere->pLeft) ) return 0; 2857 pWhere = pWhere->pRight; 2858 } 2859 if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0; 2860 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 2861 Expr *pExpr; 2862 pExpr = pTerm->pExpr; 2863 if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab) 2864 && (isLeft==0 || ExprHasProperty(pExpr, EP_FromJoin)) 2865 && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab) 2866 ){ 2867 return 1; 2868 } 2869 } 2870 return 0; 2871 } 2872 2873 /* 2874 ** Add all WhereLoop objects for a single table of the join where the table 2875 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be 2876 ** a b-tree table, not a virtual table. 2877 ** 2878 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function 2879 ** are calculated as follows: 2880 ** 2881 ** For a full scan, assuming the table (or index) contains nRow rows: 2882 ** 2883 ** cost = nRow * 3.0 // full-table scan 2884 ** cost = nRow * K // scan of covering index 2885 ** cost = nRow * (K+3.0) // scan of non-covering index 2886 ** 2887 ** where K is a value between 1.1 and 3.0 set based on the relative 2888 ** estimated average size of the index and table records. 2889 ** 2890 ** For an index scan, where nVisit is the number of index rows visited 2891 ** by the scan, and nSeek is the number of seek operations required on 2892 ** the index b-tree: 2893 ** 2894 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index 2895 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index 2896 ** 2897 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the 2898 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when 2899 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. 2900 ** 2901 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount 2902 ** of uncertainty. For this reason, scoring is designed to pick plans that 2903 ** "do the least harm" if the estimates are inaccurate. For example, a 2904 ** log(nRow) factor is omitted from a non-covering index scan in order to 2905 ** bias the scoring in favor of using an index, since the worst-case 2906 ** performance of using an index is far better than the worst-case performance 2907 ** of a full table scan. 2908 */ 2909 static int whereLoopAddBtree( 2910 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 2911 Bitmask mPrereq /* Extra prerequesites for using this table */ 2912 ){ 2913 WhereInfo *pWInfo; /* WHERE analysis context */ 2914 Index *pProbe; /* An index we are evaluating */ 2915 Index sPk; /* A fake index object for the primary key */ 2916 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ 2917 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ 2918 SrcList *pTabList; /* The FROM clause */ 2919 struct SrcList_item *pSrc; /* The FROM clause btree term to add */ 2920 WhereLoop *pNew; /* Template WhereLoop object */ 2921 int rc = SQLITE_OK; /* Return code */ 2922 int iSortIdx = 1; /* Index number */ 2923 int b; /* A boolean value */ 2924 LogEst rSize; /* number of rows in the table */ 2925 LogEst rLogSize; /* Logarithm of the number of rows in the table */ 2926 WhereClause *pWC; /* The parsed WHERE clause */ 2927 Table *pTab; /* Table being queried */ 2928 2929 pNew = pBuilder->pNew; 2930 pWInfo = pBuilder->pWInfo; 2931 pTabList = pWInfo->pTabList; 2932 pSrc = pTabList->a + pNew->iTab; 2933 pTab = pSrc->pTab; 2934 pWC = pBuilder->pWC; 2935 assert( !IsVirtual(pSrc->pTab) ); 2936 2937 if( pSrc->pIBIndex ){ 2938 /* An INDEXED BY clause specifies a particular index to use */ 2939 pProbe = pSrc->pIBIndex; 2940 }else if( !HasRowid(pTab) ){ 2941 pProbe = pTab->pIndex; 2942 }else{ 2943 /* There is no INDEXED BY clause. Create a fake Index object in local 2944 ** variable sPk to represent the rowid primary key index. Make this 2945 ** fake index the first in a chain of Index objects with all of the real 2946 ** indices to follow */ 2947 Index *pFirst; /* First of real indices on the table */ 2948 memset(&sPk, 0, sizeof(Index)); 2949 sPk.nKeyCol = 1; 2950 sPk.nColumn = 1; 2951 sPk.aiColumn = &aiColumnPk; 2952 sPk.aiRowLogEst = aiRowEstPk; 2953 sPk.onError = OE_Replace; 2954 sPk.pTable = pTab; 2955 sPk.szIdxRow = pTab->szTabRow; 2956 sPk.idxType = SQLITE_IDXTYPE_IPK; 2957 aiRowEstPk[0] = pTab->nRowLogEst; 2958 aiRowEstPk[1] = 0; 2959 pFirst = pSrc->pTab->pIndex; 2960 if( pSrc->fg.notIndexed==0 ){ 2961 /* The real indices of the table are only considered if the 2962 ** NOT INDEXED qualifier is omitted from the FROM clause */ 2963 sPk.pNext = pFirst; 2964 } 2965 pProbe = &sPk; 2966 } 2967 rSize = pTab->nRowLogEst; 2968 rLogSize = estLog(rSize); 2969 2970 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 2971 /* Automatic indexes */ 2972 if( !pBuilder->pOrSet /* Not part of an OR optimization */ 2973 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 2974 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 2975 && pSrc->pIBIndex==0 /* Has no INDEXED BY clause */ 2976 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */ 2977 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */ 2978 && !pSrc->fg.isCorrelated /* Not a correlated subquery */ 2979 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */ 2980 ){ 2981 /* Generate auto-index WhereLoops */ 2982 WhereTerm *pTerm; 2983 WhereTerm *pWCEnd = pWC->a + pWC->nTerm; 2984 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ 2985 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2986 if( termCanDriveIndex(pTerm, pSrc, 0) ){ 2987 pNew->u.btree.nEq = 1; 2988 pNew->nSkip = 0; 2989 pNew->u.btree.pIndex = 0; 2990 pNew->nLTerm = 1; 2991 pNew->aLTerm[0] = pTerm; 2992 /* TUNING: One-time cost for computing the automatic index is 2993 ** estimated to be X*N*log2(N) where N is the number of rows in 2994 ** the table being indexed and where X is 7 (LogEst=28) for normal 2995 ** tables or 0.5 (LogEst=-10) for views and subqueries. The value 2996 ** of X is smaller for views and subqueries so that the query planner 2997 ** will be more aggressive about generating automatic indexes for 2998 ** those objects, since there is no opportunity to add schema 2999 ** indexes on subqueries and views. */ 3000 pNew->rSetup = rLogSize + rSize; 3001 if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){ 3002 pNew->rSetup += 28; 3003 }else{ 3004 pNew->rSetup -= 10; 3005 } 3006 ApplyCostMultiplier(pNew->rSetup, pTab->costMult); 3007 if( pNew->rSetup<0 ) pNew->rSetup = 0; 3008 /* TUNING: Each index lookup yields 20 rows in the table. This 3009 ** is more than the usual guess of 10 rows, since we have no way 3010 ** of knowing how selective the index will ultimately be. It would 3011 ** not be unreasonable to make this value much larger. */ 3012 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); 3013 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); 3014 pNew->wsFlags = WHERE_AUTO_INDEX; 3015 pNew->prereq = mPrereq | pTerm->prereqRight; 3016 rc = whereLoopInsert(pBuilder, pNew); 3017 } 3018 } 3019 } 3020 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 3021 3022 /* Loop over all indices. If there was an INDEXED BY clause, then only 3023 ** consider index pProbe. */ 3024 for(; rc==SQLITE_OK && pProbe; 3025 pProbe=(pSrc->pIBIndex ? 0 : pProbe->pNext), iSortIdx++ 3026 ){ 3027 int isLeft = (pSrc->fg.jointype & JT_OUTER)!=0; 3028 if( pProbe->pPartIdxWhere!=0 3029 && !whereUsablePartialIndex(pSrc->iCursor, isLeft, pWC, 3030 pProbe->pPartIdxWhere) 3031 ){ 3032 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ 3033 continue; /* Partial index inappropriate for this query */ 3034 } 3035 if( pProbe->bNoQuery ) continue; 3036 rSize = pProbe->aiRowLogEst[0]; 3037 pNew->u.btree.nEq = 0; 3038 pNew->u.btree.nBtm = 0; 3039 pNew->u.btree.nTop = 0; 3040 pNew->nSkip = 0; 3041 pNew->nLTerm = 0; 3042 pNew->iSortIdx = 0; 3043 pNew->rSetup = 0; 3044 pNew->prereq = mPrereq; 3045 pNew->nOut = rSize; 3046 pNew->u.btree.pIndex = pProbe; 3047 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); 3048 3049 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ 3050 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); 3051 if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){ 3052 /* Integer primary key index */ 3053 pNew->wsFlags = WHERE_IPK; 3054 3055 /* Full table scan */ 3056 pNew->iSortIdx = b ? iSortIdx : 0; 3057 /* TUNING: Cost of full table scan is 3.0*N. The 3.0 factor is an 3058 ** extra cost designed to discourage the use of full table scans, 3059 ** since index lookups have better worst-case performance if our 3060 ** stat guesses are wrong. Reduce the 3.0 penalty slightly 3061 ** (to 2.75) if we have valid STAT4 information for the table. 3062 ** At 2.75, a full table scan is preferred over using an index on 3063 ** a column with just two distinct values where each value has about 3064 ** an equal number of appearances. Without STAT4 data, we still want 3065 ** to use an index in that case, since the constraint might be for 3066 ** the scarcer of the two values, and in that case an index lookup is 3067 ** better. 3068 */ 3069 #ifdef SQLITE_ENABLE_STAT4 3070 pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0); 3071 #else 3072 pNew->rRun = rSize + 16; 3073 #endif 3074 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 3075 whereLoopOutputAdjust(pWC, pNew, rSize); 3076 rc = whereLoopInsert(pBuilder, pNew); 3077 pNew->nOut = rSize; 3078 if( rc ) break; 3079 }else{ 3080 Bitmask m; 3081 if( pProbe->isCovering ){ 3082 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; 3083 m = 0; 3084 }else{ 3085 m = pSrc->colUsed & pProbe->colNotIdxed; 3086 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; 3087 } 3088 3089 /* Full scan via index */ 3090 if( b 3091 || !HasRowid(pTab) 3092 || pProbe->pPartIdxWhere!=0 3093 || pSrc->fg.isIndexedBy 3094 || ( m==0 3095 && pProbe->bUnordered==0 3096 && (pProbe->szIdxRow<pTab->szTabRow) 3097 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 3098 && sqlite3GlobalConfig.bUseCis 3099 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) 3100 ) 3101 ){ 3102 pNew->iSortIdx = b ? iSortIdx : 0; 3103 3104 /* The cost of visiting the index rows is N*K, where K is 3105 ** between 1.1 and 3.0, depending on the relative sizes of the 3106 ** index and table rows. */ 3107 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; 3108 if( m!=0 ){ 3109 /* If this is a non-covering index scan, add in the cost of 3110 ** doing table lookups. The cost will be 3x the number of 3111 ** lookups. Take into account WHERE clause terms that can be 3112 ** satisfied using just the index, and that do not require a 3113 ** table lookup. */ 3114 LogEst nLookup = rSize + 16; /* Base cost: N*3 */ 3115 int ii; 3116 int iCur = pSrc->iCursor; 3117 WhereClause *pWC2 = &pWInfo->sWC; 3118 for(ii=0; ii<pWC2->nTerm; ii++){ 3119 WhereTerm *pTerm = &pWC2->a[ii]; 3120 if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){ 3121 break; 3122 } 3123 /* pTerm can be evaluated using just the index. So reduce 3124 ** the expected number of table lookups accordingly */ 3125 if( pTerm->truthProb<=0 ){ 3126 nLookup += pTerm->truthProb; 3127 }else{ 3128 nLookup--; 3129 if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19; 3130 } 3131 } 3132 3133 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup); 3134 } 3135 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 3136 whereLoopOutputAdjust(pWC, pNew, rSize); 3137 rc = whereLoopInsert(pBuilder, pNew); 3138 pNew->nOut = rSize; 3139 if( rc ) break; 3140 } 3141 } 3142 3143 pBuilder->bldFlags1 = 0; 3144 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); 3145 if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){ 3146 /* If a non-unique index is used, or if a prefix of the key for 3147 ** unique index is used (making the index functionally non-unique) 3148 ** then the sqlite_stat1 data becomes important for scoring the 3149 ** plan */ 3150 pTab->tabFlags |= TF_StatsUsed; 3151 } 3152 #ifdef SQLITE_ENABLE_STAT4 3153 sqlite3Stat4ProbeFree(pBuilder->pRec); 3154 pBuilder->nRecValid = 0; 3155 pBuilder->pRec = 0; 3156 #endif 3157 } 3158 return rc; 3159 } 3160 3161 #ifndef SQLITE_OMIT_VIRTUALTABLE 3162 3163 /* 3164 ** Argument pIdxInfo is already populated with all constraints that may 3165 ** be used by the virtual table identified by pBuilder->pNew->iTab. This 3166 ** function marks a subset of those constraints usable, invokes the 3167 ** xBestIndex method and adds the returned plan to pBuilder. 3168 ** 3169 ** A constraint is marked usable if: 3170 ** 3171 ** * Argument mUsable indicates that its prerequisites are available, and 3172 ** 3173 ** * It is not one of the operators specified in the mExclude mask passed 3174 ** as the fourth argument (which in practice is either WO_IN or 0). 3175 ** 3176 ** Argument mPrereq is a mask of tables that must be scanned before the 3177 ** virtual table in question. These are added to the plans prerequisites 3178 ** before it is added to pBuilder. 3179 ** 3180 ** Output parameter *pbIn is set to true if the plan added to pBuilder 3181 ** uses one or more WO_IN terms, or false otherwise. 3182 */ 3183 static int whereLoopAddVirtualOne( 3184 WhereLoopBuilder *pBuilder, 3185 Bitmask mPrereq, /* Mask of tables that must be used. */ 3186 Bitmask mUsable, /* Mask of usable tables */ 3187 u16 mExclude, /* Exclude terms using these operators */ 3188 sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */ 3189 u16 mNoOmit, /* Do not omit these constraints */ 3190 int *pbIn /* OUT: True if plan uses an IN(...) op */ 3191 ){ 3192 WhereClause *pWC = pBuilder->pWC; 3193 struct sqlite3_index_constraint *pIdxCons; 3194 struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage; 3195 int i; 3196 int mxTerm; 3197 int rc = SQLITE_OK; 3198 WhereLoop *pNew = pBuilder->pNew; 3199 Parse *pParse = pBuilder->pWInfo->pParse; 3200 struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab]; 3201 int nConstraint = pIdxInfo->nConstraint; 3202 3203 assert( (mUsable & mPrereq)==mPrereq ); 3204 *pbIn = 0; 3205 pNew->prereq = mPrereq; 3206 3207 /* Set the usable flag on the subset of constraints identified by 3208 ** arguments mUsable and mExclude. */ 3209 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3210 for(i=0; i<nConstraint; i++, pIdxCons++){ 3211 WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset]; 3212 pIdxCons->usable = 0; 3213 if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight 3214 && (pTerm->eOperator & mExclude)==0 3215 ){ 3216 pIdxCons->usable = 1; 3217 } 3218 } 3219 3220 /* Initialize the output fields of the sqlite3_index_info structure */ 3221 memset(pUsage, 0, sizeof(pUsage[0])*nConstraint); 3222 assert( pIdxInfo->needToFreeIdxStr==0 ); 3223 pIdxInfo->idxStr = 0; 3224 pIdxInfo->idxNum = 0; 3225 pIdxInfo->orderByConsumed = 0; 3226 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; 3227 pIdxInfo->estimatedRows = 25; 3228 pIdxInfo->idxFlags = 0; 3229 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed; 3230 3231 /* Invoke the virtual table xBestIndex() method */ 3232 rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo); 3233 if( rc ){ 3234 if( rc==SQLITE_CONSTRAINT ){ 3235 /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means 3236 ** that the particular combination of parameters provided is unusable. 3237 ** Make no entries in the loop table. 3238 */ 3239 WHERETRACE(0xffff, (" ^^^^--- non-viable plan rejected!\n")); 3240 return SQLITE_OK; 3241 } 3242 return rc; 3243 } 3244 3245 mxTerm = -1; 3246 assert( pNew->nLSlot>=nConstraint ); 3247 for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0; 3248 pNew->u.vtab.omitMask = 0; 3249 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3250 for(i=0; i<nConstraint; i++, pIdxCons++){ 3251 int iTerm; 3252 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ 3253 WhereTerm *pTerm; 3254 int j = pIdxCons->iTermOffset; 3255 if( iTerm>=nConstraint 3256 || j<0 3257 || j>=pWC->nTerm 3258 || pNew->aLTerm[iTerm]!=0 3259 || pIdxCons->usable==0 3260 ){ 3261 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3262 testcase( pIdxInfo->needToFreeIdxStr ); 3263 return SQLITE_ERROR; 3264 } 3265 testcase( iTerm==nConstraint-1 ); 3266 testcase( j==0 ); 3267 testcase( j==pWC->nTerm-1 ); 3268 pTerm = &pWC->a[j]; 3269 pNew->prereq |= pTerm->prereqRight; 3270 assert( iTerm<pNew->nLSlot ); 3271 pNew->aLTerm[iTerm] = pTerm; 3272 if( iTerm>mxTerm ) mxTerm = iTerm; 3273 testcase( iTerm==15 ); 3274 testcase( iTerm==16 ); 3275 if( pUsage[i].omit ){ 3276 if( i<16 && ((1<<i)&mNoOmit)==0 ){ 3277 testcase( i!=iTerm ); 3278 pNew->u.vtab.omitMask |= 1<<iTerm; 3279 }else{ 3280 testcase( i!=iTerm ); 3281 } 3282 } 3283 if( (pTerm->eOperator & WO_IN)!=0 ){ 3284 /* A virtual table that is constrained by an IN clause may not 3285 ** consume the ORDER BY clause because (1) the order of IN terms 3286 ** is not necessarily related to the order of output terms and 3287 ** (2) Multiple outputs from a single IN value will not merge 3288 ** together. */ 3289 pIdxInfo->orderByConsumed = 0; 3290 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE; 3291 *pbIn = 1; assert( (mExclude & WO_IN)==0 ); 3292 } 3293 } 3294 } 3295 3296 pNew->nLTerm = mxTerm+1; 3297 for(i=0; i<=mxTerm; i++){ 3298 if( pNew->aLTerm[i]==0 ){ 3299 /* The non-zero argvIdx values must be contiguous. Raise an 3300 ** error if they are not */ 3301 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3302 testcase( pIdxInfo->needToFreeIdxStr ); 3303 return SQLITE_ERROR; 3304 } 3305 } 3306 assert( pNew->nLTerm<=pNew->nLSlot ); 3307 pNew->u.vtab.idxNum = pIdxInfo->idxNum; 3308 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; 3309 pIdxInfo->needToFreeIdxStr = 0; 3310 pNew->u.vtab.idxStr = pIdxInfo->idxStr; 3311 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? 3312 pIdxInfo->nOrderBy : 0); 3313 pNew->rSetup = 0; 3314 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); 3315 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); 3316 3317 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated 3318 ** that the scan will visit at most one row. Clear it otherwise. */ 3319 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){ 3320 pNew->wsFlags |= WHERE_ONEROW; 3321 }else{ 3322 pNew->wsFlags &= ~WHERE_ONEROW; 3323 } 3324 rc = whereLoopInsert(pBuilder, pNew); 3325 if( pNew->u.vtab.needFree ){ 3326 sqlite3_free(pNew->u.vtab.idxStr); 3327 pNew->u.vtab.needFree = 0; 3328 } 3329 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n", 3330 *pbIn, (sqlite3_uint64)mPrereq, 3331 (sqlite3_uint64)(pNew->prereq & ~mPrereq))); 3332 3333 return rc; 3334 } 3335 3336 /* 3337 ** If this function is invoked from within an xBestIndex() callback, it 3338 ** returns a pointer to a buffer containing the name of the collation 3339 ** sequence associated with element iCons of the sqlite3_index_info.aConstraint 3340 ** array. Or, if iCons is out of range or there is no active xBestIndex 3341 ** call, return NULL. 3342 */ 3343 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){ 3344 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3345 const char *zRet = 0; 3346 if( iCons>=0 && iCons<pIdxInfo->nConstraint ){ 3347 CollSeq *pC = 0; 3348 int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset; 3349 Expr *pX = pHidden->pWC->a[iTerm].pExpr; 3350 if( pX->pLeft ){ 3351 pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX); 3352 } 3353 zRet = (pC ? pC->zName : sqlite3StrBINARY); 3354 } 3355 return zRet; 3356 } 3357 3358 /* 3359 ** Add all WhereLoop objects for a table of the join identified by 3360 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. 3361 ** 3362 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and 3363 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause 3364 ** entries that occur before the virtual table in the FROM clause and are 3365 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the 3366 ** mUnusable mask contains all FROM clause entries that occur after the 3367 ** virtual table and are separated from it by at least one LEFT or 3368 ** CROSS JOIN. 3369 ** 3370 ** For example, if the query were: 3371 ** 3372 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; 3373 ** 3374 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6). 3375 ** 3376 ** All the tables in mPrereq must be scanned before the current virtual 3377 ** table. So any terms for which all prerequisites are satisfied by 3378 ** mPrereq may be specified as "usable" in all calls to xBestIndex. 3379 ** Conversely, all tables in mUnusable must be scanned after the current 3380 ** virtual table, so any terms for which the prerequisites overlap with 3381 ** mUnusable should always be configured as "not-usable" for xBestIndex. 3382 */ 3383 static int whereLoopAddVirtual( 3384 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 3385 Bitmask mPrereq, /* Tables that must be scanned before this one */ 3386 Bitmask mUnusable /* Tables that must be scanned after this one */ 3387 ){ 3388 int rc = SQLITE_OK; /* Return code */ 3389 WhereInfo *pWInfo; /* WHERE analysis context */ 3390 Parse *pParse; /* The parsing context */ 3391 WhereClause *pWC; /* The WHERE clause */ 3392 struct SrcList_item *pSrc; /* The FROM clause term to search */ 3393 sqlite3_index_info *p; /* Object to pass to xBestIndex() */ 3394 int nConstraint; /* Number of constraints in p */ 3395 int bIn; /* True if plan uses IN(...) operator */ 3396 WhereLoop *pNew; 3397 Bitmask mBest; /* Tables used by best possible plan */ 3398 u16 mNoOmit; 3399 3400 assert( (mPrereq & mUnusable)==0 ); 3401 pWInfo = pBuilder->pWInfo; 3402 pParse = pWInfo->pParse; 3403 pWC = pBuilder->pWC; 3404 pNew = pBuilder->pNew; 3405 pSrc = &pWInfo->pTabList->a[pNew->iTab]; 3406 assert( IsVirtual(pSrc->pTab) ); 3407 p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy, 3408 &mNoOmit); 3409 if( p==0 ) return SQLITE_NOMEM_BKPT; 3410 pNew->rSetup = 0; 3411 pNew->wsFlags = WHERE_VIRTUALTABLE; 3412 pNew->nLTerm = 0; 3413 pNew->u.vtab.needFree = 0; 3414 nConstraint = p->nConstraint; 3415 if( whereLoopResize(pParse->db, pNew, nConstraint) ){ 3416 sqlite3DbFree(pParse->db, p); 3417 return SQLITE_NOMEM_BKPT; 3418 } 3419 3420 /* First call xBestIndex() with all constraints usable. */ 3421 WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName)); 3422 WHERETRACE(0x40, (" VirtualOne: all usable\n")); 3423 rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn); 3424 3425 /* If the call to xBestIndex() with all terms enabled produced a plan 3426 ** that does not require any source tables (IOW: a plan with mBest==0) 3427 ** and does not use an IN(...) operator, then there is no point in making 3428 ** any further calls to xBestIndex() since they will all return the same 3429 ** result (if the xBestIndex() implementation is sane). */ 3430 if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){ 3431 int seenZero = 0; /* True if a plan with no prereqs seen */ 3432 int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */ 3433 Bitmask mPrev = 0; 3434 Bitmask mBestNoIn = 0; 3435 3436 /* If the plan produced by the earlier call uses an IN(...) term, call 3437 ** xBestIndex again, this time with IN(...) terms disabled. */ 3438 if( bIn ){ 3439 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n")); 3440 rc = whereLoopAddVirtualOne( 3441 pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn); 3442 assert( bIn==0 ); 3443 mBestNoIn = pNew->prereq & ~mPrereq; 3444 if( mBestNoIn==0 ){ 3445 seenZero = 1; 3446 seenZeroNoIN = 1; 3447 } 3448 } 3449 3450 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq) 3451 ** in the set of terms that apply to the current virtual table. */ 3452 while( rc==SQLITE_OK ){ 3453 int i; 3454 Bitmask mNext = ALLBITS; 3455 assert( mNext>0 ); 3456 for(i=0; i<nConstraint; i++){ 3457 Bitmask mThis = ( 3458 pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq 3459 ); 3460 if( mThis>mPrev && mThis<mNext ) mNext = mThis; 3461 } 3462 mPrev = mNext; 3463 if( mNext==ALLBITS ) break; 3464 if( mNext==mBest || mNext==mBestNoIn ) continue; 3465 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n", 3466 (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext)); 3467 rc = whereLoopAddVirtualOne( 3468 pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn); 3469 if( pNew->prereq==mPrereq ){ 3470 seenZero = 1; 3471 if( bIn==0 ) seenZeroNoIN = 1; 3472 } 3473 } 3474 3475 /* If the calls to xBestIndex() in the above loop did not find a plan 3476 ** that requires no source tables at all (i.e. one guaranteed to be 3477 ** usable), make a call here with all source tables disabled */ 3478 if( rc==SQLITE_OK && seenZero==0 ){ 3479 WHERETRACE(0x40, (" VirtualOne: all disabled\n")); 3480 rc = whereLoopAddVirtualOne( 3481 pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn); 3482 if( bIn==0 ) seenZeroNoIN = 1; 3483 } 3484 3485 /* If the calls to xBestIndex() have so far failed to find a plan 3486 ** that requires no source tables at all and does not use an IN(...) 3487 ** operator, make a final call to obtain one here. */ 3488 if( rc==SQLITE_OK && seenZeroNoIN==0 ){ 3489 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n")); 3490 rc = whereLoopAddVirtualOne( 3491 pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn); 3492 } 3493 } 3494 3495 if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr); 3496 sqlite3DbFreeNN(pParse->db, p); 3497 WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc)); 3498 return rc; 3499 } 3500 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3501 3502 /* 3503 ** Add WhereLoop entries to handle OR terms. This works for either 3504 ** btrees or virtual tables. 3505 */ 3506 static int whereLoopAddOr( 3507 WhereLoopBuilder *pBuilder, 3508 Bitmask mPrereq, 3509 Bitmask mUnusable 3510 ){ 3511 WhereInfo *pWInfo = pBuilder->pWInfo; 3512 WhereClause *pWC; 3513 WhereLoop *pNew; 3514 WhereTerm *pTerm, *pWCEnd; 3515 int rc = SQLITE_OK; 3516 int iCur; 3517 WhereClause tempWC; 3518 WhereLoopBuilder sSubBuild; 3519 WhereOrSet sSum, sCur; 3520 struct SrcList_item *pItem; 3521 3522 pWC = pBuilder->pWC; 3523 pWCEnd = pWC->a + pWC->nTerm; 3524 pNew = pBuilder->pNew; 3525 memset(&sSum, 0, sizeof(sSum)); 3526 pItem = pWInfo->pTabList->a + pNew->iTab; 3527 iCur = pItem->iCursor; 3528 3529 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ 3530 if( (pTerm->eOperator & WO_OR)!=0 3531 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 3532 ){ 3533 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; 3534 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; 3535 WhereTerm *pOrTerm; 3536 int once = 1; 3537 int i, j; 3538 3539 sSubBuild = *pBuilder; 3540 sSubBuild.pOrderBy = 0; 3541 sSubBuild.pOrSet = &sCur; 3542 3543 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); 3544 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ 3545 if( (pOrTerm->eOperator & WO_AND)!=0 ){ 3546 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; 3547 }else if( pOrTerm->leftCursor==iCur ){ 3548 tempWC.pWInfo = pWC->pWInfo; 3549 tempWC.pOuter = pWC; 3550 tempWC.op = TK_AND; 3551 tempWC.nTerm = 1; 3552 tempWC.a = pOrTerm; 3553 sSubBuild.pWC = &tempWC; 3554 }else{ 3555 continue; 3556 } 3557 sCur.n = 0; 3558 #ifdef WHERETRACE_ENABLED 3559 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", 3560 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); 3561 if( sqlite3WhereTrace & 0x400 ){ 3562 sqlite3WhereClausePrint(sSubBuild.pWC); 3563 } 3564 #endif 3565 #ifndef SQLITE_OMIT_VIRTUALTABLE 3566 if( IsVirtual(pItem->pTab) ){ 3567 rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable); 3568 }else 3569 #endif 3570 { 3571 rc = whereLoopAddBtree(&sSubBuild, mPrereq); 3572 } 3573 if( rc==SQLITE_OK ){ 3574 rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable); 3575 } 3576 assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0 ); 3577 testcase( rc==SQLITE_DONE ); 3578 if( sCur.n==0 ){ 3579 sSum.n = 0; 3580 break; 3581 }else if( once ){ 3582 whereOrMove(&sSum, &sCur); 3583 once = 0; 3584 }else{ 3585 WhereOrSet sPrev; 3586 whereOrMove(&sPrev, &sSum); 3587 sSum.n = 0; 3588 for(i=0; i<sPrev.n; i++){ 3589 for(j=0; j<sCur.n; j++){ 3590 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, 3591 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), 3592 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); 3593 } 3594 } 3595 } 3596 } 3597 pNew->nLTerm = 1; 3598 pNew->aLTerm[0] = pTerm; 3599 pNew->wsFlags = WHERE_MULTI_OR; 3600 pNew->rSetup = 0; 3601 pNew->iSortIdx = 0; 3602 memset(&pNew->u, 0, sizeof(pNew->u)); 3603 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ 3604 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs 3605 ** of all sub-scans required by the OR-scan. However, due to rounding 3606 ** errors, it may be that the cost of the OR-scan is equal to its 3607 ** most expensive sub-scan. Add the smallest possible penalty 3608 ** (equivalent to multiplying the cost by 1.07) to ensure that 3609 ** this does not happen. Otherwise, for WHERE clauses such as the 3610 ** following where there is an index on "y": 3611 ** 3612 ** WHERE likelihood(x=?, 0.99) OR y=? 3613 ** 3614 ** the planner may elect to "OR" together a full-table scan and an 3615 ** index lookup. And other similarly odd results. */ 3616 pNew->rRun = sSum.a[i].rRun + 1; 3617 pNew->nOut = sSum.a[i].nOut; 3618 pNew->prereq = sSum.a[i].prereq; 3619 rc = whereLoopInsert(pBuilder, pNew); 3620 } 3621 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); 3622 } 3623 } 3624 return rc; 3625 } 3626 3627 /* 3628 ** Add all WhereLoop objects for all tables 3629 */ 3630 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ 3631 WhereInfo *pWInfo = pBuilder->pWInfo; 3632 Bitmask mPrereq = 0; 3633 Bitmask mPrior = 0; 3634 int iTab; 3635 SrcList *pTabList = pWInfo->pTabList; 3636 struct SrcList_item *pItem; 3637 struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel]; 3638 sqlite3 *db = pWInfo->pParse->db; 3639 int rc = SQLITE_OK; 3640 WhereLoop *pNew; 3641 3642 /* Loop over the tables in the join, from left to right */ 3643 pNew = pBuilder->pNew; 3644 whereLoopInit(pNew); 3645 pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT; 3646 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){ 3647 Bitmask mUnusable = 0; 3648 pNew->iTab = iTab; 3649 pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR; 3650 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); 3651 if( (pItem->fg.jointype & (JT_LEFT|JT_CROSS))!=0 ){ 3652 /* This condition is true when pItem is the FROM clause term on the 3653 ** right-hand-side of a LEFT or CROSS JOIN. */ 3654 mPrereq = mPrior; 3655 }else{ 3656 mPrereq = 0; 3657 } 3658 #ifndef SQLITE_OMIT_VIRTUALTABLE 3659 if( IsVirtual(pItem->pTab) ){ 3660 struct SrcList_item *p; 3661 for(p=&pItem[1]; p<pEnd; p++){ 3662 if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){ 3663 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); 3664 } 3665 } 3666 rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable); 3667 }else 3668 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3669 { 3670 rc = whereLoopAddBtree(pBuilder, mPrereq); 3671 } 3672 if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){ 3673 rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable); 3674 } 3675 mPrior |= pNew->maskSelf; 3676 if( rc || db->mallocFailed ){ 3677 if( rc==SQLITE_DONE ){ 3678 /* We hit the query planner search limit set by iPlanLimit */ 3679 sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search"); 3680 rc = SQLITE_OK; 3681 }else{ 3682 break; 3683 } 3684 } 3685 } 3686 3687 whereLoopClear(db, pNew); 3688 return rc; 3689 } 3690 3691 /* 3692 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th 3693 ** parameters) to see if it outputs rows in the requested ORDER BY 3694 ** (or GROUP BY) without requiring a separate sort operation. Return N: 3695 ** 3696 ** N>0: N terms of the ORDER BY clause are satisfied 3697 ** N==0: No terms of the ORDER BY clause are satisfied 3698 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. 3699 ** 3700 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as 3701 ** strict. With GROUP BY and DISTINCT the only requirement is that 3702 ** equivalent rows appear immediately adjacent to one another. GROUP BY 3703 ** and DISTINCT do not require rows to appear in any particular order as long 3704 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT 3705 ** the pOrderBy terms can be matched in any order. With ORDER BY, the 3706 ** pOrderBy terms must be matched in strict left-to-right order. 3707 */ 3708 static i8 wherePathSatisfiesOrderBy( 3709 WhereInfo *pWInfo, /* The WHERE clause */ 3710 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ 3711 WherePath *pPath, /* The WherePath to check */ 3712 u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */ 3713 u16 nLoop, /* Number of entries in pPath->aLoop[] */ 3714 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ 3715 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ 3716 ){ 3717 u8 revSet; /* True if rev is known */ 3718 u8 rev; /* Composite sort order */ 3719 u8 revIdx; /* Index sort order */ 3720 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ 3721 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ 3722 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ 3723 u16 eqOpMask; /* Allowed equality operators */ 3724 u16 nKeyCol; /* Number of key columns in pIndex */ 3725 u16 nColumn; /* Total number of ordered columns in the index */ 3726 u16 nOrderBy; /* Number terms in the ORDER BY clause */ 3727 int iLoop; /* Index of WhereLoop in pPath being processed */ 3728 int i, j; /* Loop counters */ 3729 int iCur; /* Cursor number for current WhereLoop */ 3730 int iColumn; /* A column number within table iCur */ 3731 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ 3732 WhereTerm *pTerm; /* A single term of the WHERE clause */ 3733 Expr *pOBExpr; /* An expression from the ORDER BY clause */ 3734 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ 3735 Index *pIndex; /* The index associated with pLoop */ 3736 sqlite3 *db = pWInfo->pParse->db; /* Database connection */ 3737 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ 3738 Bitmask obDone; /* Mask of all ORDER BY terms */ 3739 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ 3740 Bitmask ready; /* Mask of inner loops */ 3741 3742 /* 3743 ** We say the WhereLoop is "one-row" if it generates no more than one 3744 ** row of output. A WhereLoop is one-row if all of the following are true: 3745 ** (a) All index columns match with WHERE_COLUMN_EQ. 3746 ** (b) The index is unique 3747 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. 3748 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. 3749 ** 3750 ** We say the WhereLoop is "order-distinct" if the set of columns from 3751 ** that WhereLoop that are in the ORDER BY clause are different for every 3752 ** row of the WhereLoop. Every one-row WhereLoop is automatically 3753 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause 3754 ** is not order-distinct. To be order-distinct is not quite the same as being 3755 ** UNIQUE since a UNIQUE column or index can have multiple rows that 3756 ** are NULL and NULL values are equivalent for the purpose of order-distinct. 3757 ** To be order-distinct, the columns must be UNIQUE and NOT NULL. 3758 ** 3759 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the 3760 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is 3761 ** automatically order-distinct. 3762 */ 3763 3764 assert( pOrderBy!=0 ); 3765 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; 3766 3767 nOrderBy = pOrderBy->nExpr; 3768 testcase( nOrderBy==BMS-1 ); 3769 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ 3770 isOrderDistinct = 1; 3771 obDone = MASKBIT(nOrderBy)-1; 3772 orderDistinctMask = 0; 3773 ready = 0; 3774 eqOpMask = WO_EQ | WO_IS | WO_ISNULL; 3775 if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){ 3776 eqOpMask |= WO_IN; 3777 } 3778 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ 3779 if( iLoop>0 ) ready |= pLoop->maskSelf; 3780 if( iLoop<nLoop ){ 3781 pLoop = pPath->aLoop[iLoop]; 3782 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue; 3783 }else{ 3784 pLoop = pLast; 3785 } 3786 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ 3787 if( pLoop->u.vtab.isOrdered && (wctrlFlags & WHERE_DISTINCTBY)==0 ){ 3788 obSat = obDone; 3789 } 3790 break; 3791 }else if( wctrlFlags & WHERE_DISTINCTBY ){ 3792 pLoop->u.btree.nDistinctCol = 0; 3793 } 3794 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; 3795 3796 /* Mark off any ORDER BY term X that is a column in the table of 3797 ** the current loop for which there is term in the WHERE 3798 ** clause of the form X IS NULL or X=? that reference only outer 3799 ** loops. 3800 */ 3801 for(i=0; i<nOrderBy; i++){ 3802 if( MASKBIT(i) & obSat ) continue; 3803 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr); 3804 if( NEVER(pOBExpr==0) ) continue; 3805 if( pOBExpr->op!=TK_COLUMN ) continue; 3806 if( pOBExpr->iTable!=iCur ) continue; 3807 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, 3808 ~ready, eqOpMask, 0); 3809 if( pTerm==0 ) continue; 3810 if( pTerm->eOperator==WO_IN ){ 3811 /* IN terms are only valid for sorting in the ORDER BY LIMIT 3812 ** optimization, and then only if they are actually used 3813 ** by the query plan */ 3814 assert( wctrlFlags & 3815 (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) ); 3816 for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){} 3817 if( j>=pLoop->nLTerm ) continue; 3818 } 3819 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ 3820 Parse *pParse = pWInfo->pParse; 3821 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr); 3822 CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr); 3823 assert( pColl1 ); 3824 if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){ 3825 continue; 3826 } 3827 testcase( pTerm->pExpr->op==TK_IS ); 3828 } 3829 obSat |= MASKBIT(i); 3830 } 3831 3832 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ 3833 if( pLoop->wsFlags & WHERE_IPK ){ 3834 pIndex = 0; 3835 nKeyCol = 0; 3836 nColumn = 1; 3837 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ 3838 return 0; 3839 }else{ 3840 nKeyCol = pIndex->nKeyCol; 3841 nColumn = pIndex->nColumn; 3842 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); 3843 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID 3844 || !HasRowid(pIndex->pTable)); 3845 isOrderDistinct = IsUniqueIndex(pIndex) 3846 && (pLoop->wsFlags & WHERE_SKIPSCAN)==0; 3847 } 3848 3849 /* Loop through all columns of the index and deal with the ones 3850 ** that are not constrained by == or IN. 3851 */ 3852 rev = revSet = 0; 3853 distinctColumns = 0; 3854 for(j=0; j<nColumn; j++){ 3855 u8 bOnce = 1; /* True to run the ORDER BY search loop */ 3856 3857 assert( j>=pLoop->u.btree.nEq 3858 || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip) 3859 ); 3860 if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){ 3861 u16 eOp = pLoop->aLTerm[j]->eOperator; 3862 3863 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when 3864 ** doing WHERE_ORDERBY_LIMIT processing). Except, IS and ISNULL 3865 ** terms imply that the index is not UNIQUE NOT NULL in which case 3866 ** the loop need to be marked as not order-distinct because it can 3867 ** have repeated NULL rows. 3868 ** 3869 ** If the current term is a column of an ((?,?) IN (SELECT...)) 3870 ** expression for which the SELECT returns more than one column, 3871 ** check that it is the only column used by this loop. Otherwise, 3872 ** if it is one of two or more, none of the columns can be 3873 ** considered to match an ORDER BY term. 3874 */ 3875 if( (eOp & eqOpMask)!=0 ){ 3876 if( eOp & (WO_ISNULL|WO_IS) ){ 3877 testcase( eOp & WO_ISNULL ); 3878 testcase( eOp & WO_IS ); 3879 testcase( isOrderDistinct ); 3880 isOrderDistinct = 0; 3881 } 3882 continue; 3883 }else if( ALWAYS(eOp & WO_IN) ){ 3884 /* ALWAYS() justification: eOp is an equality operator due to the 3885 ** j<pLoop->u.btree.nEq constraint above. Any equality other 3886 ** than WO_IN is captured by the previous "if". So this one 3887 ** always has to be WO_IN. */ 3888 Expr *pX = pLoop->aLTerm[j]->pExpr; 3889 for(i=j+1; i<pLoop->u.btree.nEq; i++){ 3890 if( pLoop->aLTerm[i]->pExpr==pX ){ 3891 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) ); 3892 bOnce = 0; 3893 break; 3894 } 3895 } 3896 } 3897 } 3898 3899 /* Get the column number in the table (iColumn) and sort order 3900 ** (revIdx) for the j-th column of the index. 3901 */ 3902 if( pIndex ){ 3903 iColumn = pIndex->aiColumn[j]; 3904 revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC; 3905 if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID; 3906 }else{ 3907 iColumn = XN_ROWID; 3908 revIdx = 0; 3909 } 3910 3911 /* An unconstrained column that might be NULL means that this 3912 ** WhereLoop is not well-ordered 3913 */ 3914 if( isOrderDistinct 3915 && iColumn>=0 3916 && j>=pLoop->u.btree.nEq 3917 && pIndex->pTable->aCol[iColumn].notNull==0 3918 ){ 3919 isOrderDistinct = 0; 3920 } 3921 3922 /* Find the ORDER BY term that corresponds to the j-th column 3923 ** of the index and mark that ORDER BY term off 3924 */ 3925 isMatch = 0; 3926 for(i=0; bOnce && i<nOrderBy; i++){ 3927 if( MASKBIT(i) & obSat ) continue; 3928 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr); 3929 testcase( wctrlFlags & WHERE_GROUPBY ); 3930 testcase( wctrlFlags & WHERE_DISTINCTBY ); 3931 if( NEVER(pOBExpr==0) ) continue; 3932 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; 3933 if( iColumn>=XN_ROWID ){ 3934 if( pOBExpr->op!=TK_COLUMN ) continue; 3935 if( pOBExpr->iTable!=iCur ) continue; 3936 if( pOBExpr->iColumn!=iColumn ) continue; 3937 }else{ 3938 Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr; 3939 if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){ 3940 continue; 3941 } 3942 } 3943 if( iColumn!=XN_ROWID ){ 3944 pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 3945 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; 3946 } 3947 if( wctrlFlags & WHERE_DISTINCTBY ){ 3948 pLoop->u.btree.nDistinctCol = j+1; 3949 } 3950 isMatch = 1; 3951 break; 3952 } 3953 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ 3954 /* Make sure the sort order is compatible in an ORDER BY clause. 3955 ** Sort order is irrelevant for a GROUP BY clause. */ 3956 if( revSet ){ 3957 if( (rev ^ revIdx)!=(pOrderBy->a[i].sortFlags&KEYINFO_ORDER_DESC) ){ 3958 isMatch = 0; 3959 } 3960 }else{ 3961 rev = revIdx ^ (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC); 3962 if( rev ) *pRevMask |= MASKBIT(iLoop); 3963 revSet = 1; 3964 } 3965 } 3966 if( isMatch && (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL) ){ 3967 if( j==pLoop->u.btree.nEq ){ 3968 pLoop->wsFlags |= WHERE_BIGNULL_SORT; 3969 }else{ 3970 isMatch = 0; 3971 } 3972 } 3973 if( isMatch ){ 3974 if( iColumn==XN_ROWID ){ 3975 testcase( distinctColumns==0 ); 3976 distinctColumns = 1; 3977 } 3978 obSat |= MASKBIT(i); 3979 }else{ 3980 /* No match found */ 3981 if( j==0 || j<nKeyCol ){ 3982 testcase( isOrderDistinct!=0 ); 3983 isOrderDistinct = 0; 3984 } 3985 break; 3986 } 3987 } /* end Loop over all index columns */ 3988 if( distinctColumns ){ 3989 testcase( isOrderDistinct==0 ); 3990 isOrderDistinct = 1; 3991 } 3992 } /* end-if not one-row */ 3993 3994 /* Mark off any other ORDER BY terms that reference pLoop */ 3995 if( isOrderDistinct ){ 3996 orderDistinctMask |= pLoop->maskSelf; 3997 for(i=0; i<nOrderBy; i++){ 3998 Expr *p; 3999 Bitmask mTerm; 4000 if( MASKBIT(i) & obSat ) continue; 4001 p = pOrderBy->a[i].pExpr; 4002 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); 4003 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; 4004 if( (mTerm&~orderDistinctMask)==0 ){ 4005 obSat |= MASKBIT(i); 4006 } 4007 } 4008 } 4009 } /* End the loop over all WhereLoops from outer-most down to inner-most */ 4010 if( obSat==obDone ) return (i8)nOrderBy; 4011 if( !isOrderDistinct ){ 4012 for(i=nOrderBy-1; i>0; i--){ 4013 Bitmask m = MASKBIT(i) - 1; 4014 if( (obSat&m)==m ) return i; 4015 } 4016 return 0; 4017 } 4018 return -1; 4019 } 4020 4021 4022 /* 4023 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), 4024 ** the planner assumes that the specified pOrderBy list is actually a GROUP 4025 ** BY clause - and so any order that groups rows as required satisfies the 4026 ** request. 4027 ** 4028 ** Normally, in this case it is not possible for the caller to determine 4029 ** whether or not the rows are really being delivered in sorted order, or 4030 ** just in some other order that provides the required grouping. However, 4031 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then 4032 ** this function may be called on the returned WhereInfo object. It returns 4033 ** true if the rows really will be sorted in the specified order, or false 4034 ** otherwise. 4035 ** 4036 ** For example, assuming: 4037 ** 4038 ** CREATE INDEX i1 ON t1(x, Y); 4039 ** 4040 ** then 4041 ** 4042 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 4043 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 4044 */ 4045 int sqlite3WhereIsSorted(WhereInfo *pWInfo){ 4046 assert( pWInfo->wctrlFlags & WHERE_GROUPBY ); 4047 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); 4048 return pWInfo->sorted; 4049 } 4050 4051 #ifdef WHERETRACE_ENABLED 4052 /* For debugging use only: */ 4053 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ 4054 static char zName[65]; 4055 int i; 4056 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } 4057 if( pLast ) zName[i++] = pLast->cId; 4058 zName[i] = 0; 4059 return zName; 4060 } 4061 #endif 4062 4063 /* 4064 ** Return the cost of sorting nRow rows, assuming that the keys have 4065 ** nOrderby columns and that the first nSorted columns are already in 4066 ** order. 4067 */ 4068 static LogEst whereSortingCost( 4069 WhereInfo *pWInfo, 4070 LogEst nRow, 4071 int nOrderBy, 4072 int nSorted 4073 ){ 4074 /* TUNING: Estimated cost of a full external sort, where N is 4075 ** the number of rows to sort is: 4076 ** 4077 ** cost = (3.0 * N * log(N)). 4078 ** 4079 ** Or, if the order-by clause has X terms but only the last Y 4080 ** terms are out of order, then block-sorting will reduce the 4081 ** sorting cost to: 4082 ** 4083 ** cost = (3.0 * N * log(N)) * (Y/X) 4084 ** 4085 ** The (Y/X) term is implemented using stack variable rScale 4086 ** below. 4087 */ 4088 LogEst rScale, rSortCost; 4089 assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); 4090 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; 4091 rSortCost = nRow + rScale + 16; 4092 4093 /* Multiple by log(M) where M is the number of output rows. 4094 ** Use the LIMIT for M if it is smaller. Or if this sort is for 4095 ** a DISTINCT operator, M will be the number of distinct output 4096 ** rows, so fudge it downwards a bit. 4097 */ 4098 if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){ 4099 nRow = pWInfo->iLimit; 4100 }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){ 4101 /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT 4102 ** reduces the number of output rows by a factor of 2 */ 4103 if( nRow>10 ) nRow -= 10; assert( 10==sqlite3LogEst(2) ); 4104 } 4105 rSortCost += estLog(nRow); 4106 return rSortCost; 4107 } 4108 4109 /* 4110 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine 4111 ** attempts to find the lowest cost path that visits each WhereLoop 4112 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. 4113 ** 4114 ** Assume that the total number of output rows that will need to be sorted 4115 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting 4116 ** costs if nRowEst==0. 4117 ** 4118 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation 4119 ** error occurs. 4120 */ 4121 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ 4122 int mxChoice; /* Maximum number of simultaneous paths tracked */ 4123 int nLoop; /* Number of terms in the join */ 4124 Parse *pParse; /* Parsing context */ 4125 sqlite3 *db; /* The database connection */ 4126 int iLoop; /* Loop counter over the terms of the join */ 4127 int ii, jj; /* Loop counters */ 4128 int mxI = 0; /* Index of next entry to replace */ 4129 int nOrderBy; /* Number of ORDER BY clause terms */ 4130 LogEst mxCost = 0; /* Maximum cost of a set of paths */ 4131 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ 4132 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ 4133 WherePath *aFrom; /* All nFrom paths at the previous level */ 4134 WherePath *aTo; /* The nTo best paths at the current level */ 4135 WherePath *pFrom; /* An element of aFrom[] that we are working on */ 4136 WherePath *pTo; /* An element of aTo[] that we are working on */ 4137 WhereLoop *pWLoop; /* One of the WhereLoop objects */ 4138 WhereLoop **pX; /* Used to divy up the pSpace memory */ 4139 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ 4140 char *pSpace; /* Temporary memory used by this routine */ 4141 int nSpace; /* Bytes of space allocated at pSpace */ 4142 4143 pParse = pWInfo->pParse; 4144 db = pParse->db; 4145 nLoop = pWInfo->nLevel; 4146 /* TUNING: For simple queries, only the best path is tracked. 4147 ** For 2-way joins, the 5 best paths are followed. 4148 ** For joins of 3 or more tables, track the 10 best paths */ 4149 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); 4150 assert( nLoop<=pWInfo->pTabList->nSrc ); 4151 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); 4152 4153 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this 4154 ** case the purpose of this call is to estimate the number of rows returned 4155 ** by the overall query. Once this estimate has been obtained, the caller 4156 ** will invoke this function a second time, passing the estimate as the 4157 ** nRowEst parameter. */ 4158 if( pWInfo->pOrderBy==0 || nRowEst==0 ){ 4159 nOrderBy = 0; 4160 }else{ 4161 nOrderBy = pWInfo->pOrderBy->nExpr; 4162 } 4163 4164 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ 4165 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; 4166 nSpace += sizeof(LogEst) * nOrderBy; 4167 pSpace = sqlite3DbMallocRawNN(db, nSpace); 4168 if( pSpace==0 ) return SQLITE_NOMEM_BKPT; 4169 aTo = (WherePath*)pSpace; 4170 aFrom = aTo+mxChoice; 4171 memset(aFrom, 0, sizeof(aFrom[0])); 4172 pX = (WhereLoop**)(aFrom+mxChoice); 4173 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ 4174 pFrom->aLoop = pX; 4175 } 4176 if( nOrderBy ){ 4177 /* If there is an ORDER BY clause and it is not being ignored, set up 4178 ** space for the aSortCost[] array. Each element of the aSortCost array 4179 ** is either zero - meaning it has not yet been initialized - or the 4180 ** cost of sorting nRowEst rows of data where the first X terms of 4181 ** the ORDER BY clause are already in order, where X is the array 4182 ** index. */ 4183 aSortCost = (LogEst*)pX; 4184 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); 4185 } 4186 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); 4187 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); 4188 4189 /* Seed the search with a single WherePath containing zero WhereLoops. 4190 ** 4191 ** TUNING: Do not let the number of iterations go above 28. If the cost 4192 ** of computing an automatic index is not paid back within the first 28 4193 ** rows, then do not use the automatic index. */ 4194 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) ); 4195 nFrom = 1; 4196 assert( aFrom[0].isOrdered==0 ); 4197 if( nOrderBy ){ 4198 /* If nLoop is zero, then there are no FROM terms in the query. Since 4199 ** in this case the query may return a maximum of one row, the results 4200 ** are already in the requested order. Set isOrdered to nOrderBy to 4201 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to 4202 ** -1, indicating that the result set may or may not be ordered, 4203 ** depending on the loops added to the current plan. */ 4204 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; 4205 } 4206 4207 /* Compute successively longer WherePaths using the previous generation 4208 ** of WherePaths as the basis for the next. Keep track of the mxChoice 4209 ** best paths at each generation */ 4210 for(iLoop=0; iLoop<nLoop; iLoop++){ 4211 nTo = 0; 4212 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ 4213 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ 4214 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ 4215 LogEst rCost; /* Cost of path (pFrom+pWLoop) */ 4216 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ 4217 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */ 4218 Bitmask maskNew; /* Mask of src visited by (..) */ 4219 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */ 4220 4221 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; 4222 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; 4223 if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){ 4224 /* Do not use an automatic index if the this loop is expected 4225 ** to run less than 1.25 times. It is tempting to also exclude 4226 ** automatic index usage on an outer loop, but sometimes an automatic 4227 ** index is useful in the outer loop of a correlated subquery. */ 4228 assert( 10==sqlite3LogEst(2) ); 4229 continue; 4230 } 4231 4232 /* At this point, pWLoop is a candidate to be the next loop. 4233 ** Compute its cost */ 4234 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); 4235 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); 4236 nOut = pFrom->nRow + pWLoop->nOut; 4237 maskNew = pFrom->maskLoop | pWLoop->maskSelf; 4238 if( isOrdered<0 ){ 4239 isOrdered = wherePathSatisfiesOrderBy(pWInfo, 4240 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, 4241 iLoop, pWLoop, &revMask); 4242 }else{ 4243 revMask = pFrom->revLoop; 4244 } 4245 if( isOrdered>=0 && isOrdered<nOrderBy ){ 4246 if( aSortCost[isOrdered]==0 ){ 4247 aSortCost[isOrdered] = whereSortingCost( 4248 pWInfo, nRowEst, nOrderBy, isOrdered 4249 ); 4250 } 4251 /* TUNING: Add a small extra penalty (5) to sorting as an 4252 ** extra encouragment to the query planner to select a plan 4253 ** where the rows emerge in the correct order without any sorting 4254 ** required. */ 4255 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5; 4256 4257 WHERETRACE(0x002, 4258 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", 4259 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, 4260 rUnsorted, rCost)); 4261 }else{ 4262 rCost = rUnsorted; 4263 rUnsorted -= 2; /* TUNING: Slight bias in favor of no-sort plans */ 4264 } 4265 4266 /* Check to see if pWLoop should be added to the set of 4267 ** mxChoice best-so-far paths. 4268 ** 4269 ** First look for an existing path among best-so-far paths 4270 ** that covers the same set of loops and has the same isOrdered 4271 ** setting as the current path candidate. 4272 ** 4273 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent 4274 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range 4275 ** of legal values for isOrdered, -1..64. 4276 */ 4277 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ 4278 if( pTo->maskLoop==maskNew 4279 && ((pTo->isOrdered^isOrdered)&0x80)==0 4280 ){ 4281 testcase( jj==nTo-1 ); 4282 break; 4283 } 4284 } 4285 if( jj>=nTo ){ 4286 /* None of the existing best-so-far paths match the candidate. */ 4287 if( nTo>=mxChoice 4288 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) 4289 ){ 4290 /* The current candidate is no better than any of the mxChoice 4291 ** paths currently in the best-so-far buffer. So discard 4292 ** this candidate as not viable. */ 4293 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4294 if( sqlite3WhereTrace&0x4 ){ 4295 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n", 4296 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4297 isOrdered>=0 ? isOrdered+'0' : '?'); 4298 } 4299 #endif 4300 continue; 4301 } 4302 /* If we reach this points it means that the new candidate path 4303 ** needs to be added to the set of best-so-far paths. */ 4304 if( nTo<mxChoice ){ 4305 /* Increase the size of the aTo set by one */ 4306 jj = nTo++; 4307 }else{ 4308 /* New path replaces the prior worst to keep count below mxChoice */ 4309 jj = mxI; 4310 } 4311 pTo = &aTo[jj]; 4312 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4313 if( sqlite3WhereTrace&0x4 ){ 4314 sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n", 4315 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4316 isOrdered>=0 ? isOrdered+'0' : '?'); 4317 } 4318 #endif 4319 }else{ 4320 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the 4321 ** same set of loops and has the same isOrdered setting as the 4322 ** candidate path. Check to see if the candidate should replace 4323 ** pTo or if the candidate should be skipped. 4324 ** 4325 ** The conditional is an expanded vector comparison equivalent to: 4326 ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted) 4327 */ 4328 if( pTo->rCost<rCost 4329 || (pTo->rCost==rCost 4330 && (pTo->nRow<nOut 4331 || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted) 4332 ) 4333 ) 4334 ){ 4335 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4336 if( sqlite3WhereTrace&0x4 ){ 4337 sqlite3DebugPrintf( 4338 "Skip %s cost=%-3d,%3d,%3d order=%c", 4339 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4340 isOrdered>=0 ? isOrdered+'0' : '?'); 4341 sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n", 4342 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4343 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4344 } 4345 #endif 4346 /* Discard the candidate path from further consideration */ 4347 testcase( pTo->rCost==rCost ); 4348 continue; 4349 } 4350 testcase( pTo->rCost==rCost+1 ); 4351 /* Control reaches here if the candidate path is better than the 4352 ** pTo path. Replace pTo with the candidate. */ 4353 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4354 if( sqlite3WhereTrace&0x4 ){ 4355 sqlite3DebugPrintf( 4356 "Update %s cost=%-3d,%3d,%3d order=%c", 4357 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4358 isOrdered>=0 ? isOrdered+'0' : '?'); 4359 sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n", 4360 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4361 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4362 } 4363 #endif 4364 } 4365 /* pWLoop is a winner. Add it to the set of best so far */ 4366 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; 4367 pTo->revLoop = revMask; 4368 pTo->nRow = nOut; 4369 pTo->rCost = rCost; 4370 pTo->rUnsorted = rUnsorted; 4371 pTo->isOrdered = isOrdered; 4372 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); 4373 pTo->aLoop[iLoop] = pWLoop; 4374 if( nTo>=mxChoice ){ 4375 mxI = 0; 4376 mxCost = aTo[0].rCost; 4377 mxUnsorted = aTo[0].nRow; 4378 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ 4379 if( pTo->rCost>mxCost 4380 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) 4381 ){ 4382 mxCost = pTo->rCost; 4383 mxUnsorted = pTo->rUnsorted; 4384 mxI = jj; 4385 } 4386 } 4387 } 4388 } 4389 } 4390 4391 #ifdef WHERETRACE_ENABLED /* >=2 */ 4392 if( sqlite3WhereTrace & 0x02 ){ 4393 sqlite3DebugPrintf("---- after round %d ----\n", iLoop); 4394 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ 4395 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", 4396 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4397 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); 4398 if( pTo->isOrdered>0 ){ 4399 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); 4400 }else{ 4401 sqlite3DebugPrintf("\n"); 4402 } 4403 } 4404 } 4405 #endif 4406 4407 /* Swap the roles of aFrom and aTo for the next generation */ 4408 pFrom = aTo; 4409 aTo = aFrom; 4410 aFrom = pFrom; 4411 nFrom = nTo; 4412 } 4413 4414 if( nFrom==0 ){ 4415 sqlite3ErrorMsg(pParse, "no query solution"); 4416 sqlite3DbFreeNN(db, pSpace); 4417 return SQLITE_ERROR; 4418 } 4419 4420 /* Find the lowest cost path. pFrom will be left pointing to that path */ 4421 pFrom = aFrom; 4422 for(ii=1; ii<nFrom; ii++){ 4423 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; 4424 } 4425 assert( pWInfo->nLevel==nLoop ); 4426 /* Load the lowest cost path into pWInfo */ 4427 for(iLoop=0; iLoop<nLoop; iLoop++){ 4428 WhereLevel *pLevel = pWInfo->a + iLoop; 4429 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; 4430 pLevel->iFrom = pWLoop->iTab; 4431 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; 4432 } 4433 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 4434 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 4435 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP 4436 && nRowEst 4437 ){ 4438 Bitmask notUsed; 4439 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, 4440 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); 4441 if( rc==pWInfo->pResultSet->nExpr ){ 4442 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 4443 } 4444 } 4445 pWInfo->bOrderedInnerLoop = 0; 4446 if( pWInfo->pOrderBy ){ 4447 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ 4448 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ 4449 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 4450 } 4451 }else{ 4452 pWInfo->nOBSat = pFrom->isOrdered; 4453 pWInfo->revMask = pFrom->revLoop; 4454 if( pWInfo->nOBSat<=0 ){ 4455 pWInfo->nOBSat = 0; 4456 if( nLoop>0 ){ 4457 u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags; 4458 if( (wsFlags & WHERE_ONEROW)==0 4459 && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN) 4460 ){ 4461 Bitmask m = 0; 4462 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, 4463 WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m); 4464 testcase( wsFlags & WHERE_IPK ); 4465 testcase( wsFlags & WHERE_COLUMN_IN ); 4466 if( rc==pWInfo->pOrderBy->nExpr ){ 4467 pWInfo->bOrderedInnerLoop = 1; 4468 pWInfo->revMask = m; 4469 } 4470 } 4471 } 4472 }else if( nLoop 4473 && pWInfo->nOBSat==1 4474 && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0 4475 ){ 4476 pWInfo->bOrderedInnerLoop = 1; 4477 } 4478 } 4479 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) 4480 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 4481 ){ 4482 Bitmask revMask = 0; 4483 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, 4484 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask 4485 ); 4486 assert( pWInfo->sorted==0 ); 4487 if( nOrder==pWInfo->pOrderBy->nExpr ){ 4488 pWInfo->sorted = 1; 4489 pWInfo->revMask = revMask; 4490 } 4491 } 4492 } 4493 4494 4495 pWInfo->nRowOut = pFrom->nRow; 4496 4497 /* Free temporary memory and return success */ 4498 sqlite3DbFreeNN(db, pSpace); 4499 return SQLITE_OK; 4500 } 4501 4502 /* 4503 ** Most queries use only a single table (they are not joins) and have 4504 ** simple == constraints against indexed fields. This routine attempts 4505 ** to plan those simple cases using much less ceremony than the 4506 ** general-purpose query planner, and thereby yield faster sqlite3_prepare() 4507 ** times for the common case. 4508 ** 4509 ** Return non-zero on success, if this query can be handled by this 4510 ** no-frills query planner. Return zero if this query needs the 4511 ** general-purpose query planner. 4512 */ 4513 static int whereShortCut(WhereLoopBuilder *pBuilder){ 4514 WhereInfo *pWInfo; 4515 struct SrcList_item *pItem; 4516 WhereClause *pWC; 4517 WhereTerm *pTerm; 4518 WhereLoop *pLoop; 4519 int iCur; 4520 int j; 4521 Table *pTab; 4522 Index *pIdx; 4523 4524 pWInfo = pBuilder->pWInfo; 4525 if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0; 4526 assert( pWInfo->pTabList->nSrc>=1 ); 4527 pItem = pWInfo->pTabList->a; 4528 pTab = pItem->pTab; 4529 if( IsVirtual(pTab) ) return 0; 4530 if( pItem->fg.isIndexedBy ) return 0; 4531 iCur = pItem->iCursor; 4532 pWC = &pWInfo->sWC; 4533 pLoop = pBuilder->pNew; 4534 pLoop->wsFlags = 0; 4535 pLoop->nSkip = 0; 4536 pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0); 4537 if( pTerm ){ 4538 testcase( pTerm->eOperator & WO_IS ); 4539 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; 4540 pLoop->aLTerm[0] = pTerm; 4541 pLoop->nLTerm = 1; 4542 pLoop->u.btree.nEq = 1; 4543 /* TUNING: Cost of a rowid lookup is 10 */ 4544 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ 4545 }else{ 4546 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4547 int opMask; 4548 assert( pLoop->aLTermSpace==pLoop->aLTerm ); 4549 if( !IsUniqueIndex(pIdx) 4550 || pIdx->pPartIdxWhere!=0 4551 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) 4552 ) continue; 4553 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; 4554 for(j=0; j<pIdx->nKeyCol; j++){ 4555 pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx); 4556 if( pTerm==0 ) break; 4557 testcase( pTerm->eOperator & WO_IS ); 4558 pLoop->aLTerm[j] = pTerm; 4559 } 4560 if( j!=pIdx->nKeyCol ) continue; 4561 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; 4562 if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){ 4563 pLoop->wsFlags |= WHERE_IDX_ONLY; 4564 } 4565 pLoop->nLTerm = j; 4566 pLoop->u.btree.nEq = j; 4567 pLoop->u.btree.pIndex = pIdx; 4568 /* TUNING: Cost of a unique index lookup is 15 */ 4569 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ 4570 break; 4571 } 4572 } 4573 if( pLoop->wsFlags ){ 4574 pLoop->nOut = (LogEst)1; 4575 pWInfo->a[0].pWLoop = pLoop; 4576 assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] ); 4577 pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */ 4578 pWInfo->a[0].iTabCur = iCur; 4579 pWInfo->nRowOut = 1; 4580 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; 4581 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ 4582 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4583 } 4584 #ifdef SQLITE_DEBUG 4585 pLoop->cId = '0'; 4586 #endif 4587 return 1; 4588 } 4589 return 0; 4590 } 4591 4592 /* 4593 ** Helper function for exprIsDeterministic(). 4594 */ 4595 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){ 4596 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){ 4597 pWalker->eCode = 0; 4598 return WRC_Abort; 4599 } 4600 return WRC_Continue; 4601 } 4602 4603 /* 4604 ** Return true if the expression contains no non-deterministic SQL 4605 ** functions. Do not consider non-deterministic SQL functions that are 4606 ** part of sub-select statements. 4607 */ 4608 static int exprIsDeterministic(Expr *p){ 4609 Walker w; 4610 memset(&w, 0, sizeof(w)); 4611 w.eCode = 1; 4612 w.xExprCallback = exprNodeIsDeterministic; 4613 w.xSelectCallback = sqlite3SelectWalkFail; 4614 sqlite3WalkExpr(&w, p); 4615 return w.eCode; 4616 } 4617 4618 4619 #ifdef WHERETRACE_ENABLED 4620 /* 4621 ** Display all WhereLoops in pWInfo 4622 */ 4623 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){ 4624 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ 4625 WhereLoop *p; 4626 int i; 4627 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" 4628 "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; 4629 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ 4630 p->cId = zLabel[i%(sizeof(zLabel)-1)]; 4631 sqlite3WhereLoopPrint(p, pWC); 4632 } 4633 } 4634 } 4635 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C) 4636 #else 4637 # define WHERETRACE_ALL_LOOPS(W,C) 4638 #endif 4639 4640 /* 4641 ** Generate the beginning of the loop used for WHERE clause processing. 4642 ** The return value is a pointer to an opaque structure that contains 4643 ** information needed to terminate the loop. Later, the calling routine 4644 ** should invoke sqlite3WhereEnd() with the return value of this function 4645 ** in order to complete the WHERE clause processing. 4646 ** 4647 ** If an error occurs, this routine returns NULL. 4648 ** 4649 ** The basic idea is to do a nested loop, one loop for each table in 4650 ** the FROM clause of a select. (INSERT and UPDATE statements are the 4651 ** same as a SELECT with only a single table in the FROM clause.) For 4652 ** example, if the SQL is this: 4653 ** 4654 ** SELECT * FROM t1, t2, t3 WHERE ...; 4655 ** 4656 ** Then the code generated is conceptually like the following: 4657 ** 4658 ** foreach row1 in t1 do \ Code generated 4659 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 4660 ** foreach row3 in t3 do / 4661 ** ... 4662 ** end \ Code generated 4663 ** end |-- by sqlite3WhereEnd() 4664 ** end / 4665 ** 4666 ** Note that the loops might not be nested in the order in which they 4667 ** appear in the FROM clause if a different order is better able to make 4668 ** use of indices. Note also that when the IN operator appears in 4669 ** the WHERE clause, it might result in additional nested loops for 4670 ** scanning through all values on the right-hand side of the IN. 4671 ** 4672 ** There are Btree cursors associated with each table. t1 uses cursor 4673 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 4674 ** And so forth. This routine generates code to open those VDBE cursors 4675 ** and sqlite3WhereEnd() generates the code to close them. 4676 ** 4677 ** The code that sqlite3WhereBegin() generates leaves the cursors named 4678 ** in pTabList pointing at their appropriate entries. The [...] code 4679 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 4680 ** data from the various tables of the loop. 4681 ** 4682 ** If the WHERE clause is empty, the foreach loops must each scan their 4683 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 4684 ** the tables have indices and there are terms in the WHERE clause that 4685 ** refer to those indices, a complete table scan can be avoided and the 4686 ** code will run much faster. Most of the work of this routine is checking 4687 ** to see if there are indices that can be used to speed up the loop. 4688 ** 4689 ** Terms of the WHERE clause are also used to limit which rows actually 4690 ** make it to the "..." in the middle of the loop. After each "foreach", 4691 ** terms of the WHERE clause that use only terms in that loop and outer 4692 ** loops are evaluated and if false a jump is made around all subsequent 4693 ** inner loops (or around the "..." if the test occurs within the inner- 4694 ** most loop) 4695 ** 4696 ** OUTER JOINS 4697 ** 4698 ** An outer join of tables t1 and t2 is conceptally coded as follows: 4699 ** 4700 ** foreach row1 in t1 do 4701 ** flag = 0 4702 ** foreach row2 in t2 do 4703 ** start: 4704 ** ... 4705 ** flag = 1 4706 ** end 4707 ** if flag==0 then 4708 ** move the row2 cursor to a null row 4709 ** goto start 4710 ** fi 4711 ** end 4712 ** 4713 ** ORDER BY CLAUSE PROCESSING 4714 ** 4715 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause 4716 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement 4717 ** if there is one. If there is no ORDER BY clause or if this routine 4718 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. 4719 ** 4720 ** The iIdxCur parameter is the cursor number of an index. If 4721 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index 4722 ** to use for OR clause processing. The WHERE clause should use this 4723 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is 4724 ** the first cursor in an array of cursors for all indices. iIdxCur should 4725 ** be used to compute the appropriate cursor depending on which index is 4726 ** used. 4727 */ 4728 WhereInfo *sqlite3WhereBegin( 4729 Parse *pParse, /* The parser context */ 4730 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ 4731 Expr *pWhere, /* The WHERE clause */ 4732 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ 4733 ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */ 4734 u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */ 4735 int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number 4736 ** If WHERE_USE_LIMIT, then the limit amount */ 4737 ){ 4738 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ 4739 int nTabList; /* Number of elements in pTabList */ 4740 WhereInfo *pWInfo; /* Will become the return value of this function */ 4741 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 4742 Bitmask notReady; /* Cursors that are not yet positioned */ 4743 WhereLoopBuilder sWLB; /* The WhereLoop builder */ 4744 WhereMaskSet *pMaskSet; /* The expression mask set */ 4745 WhereLevel *pLevel; /* A single level in pWInfo->a[] */ 4746 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ 4747 int ii; /* Loop counter */ 4748 sqlite3 *db; /* Database connection */ 4749 int rc; /* Return code */ 4750 u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */ 4751 4752 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || ( 4753 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 4754 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 4755 )); 4756 4757 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */ 4758 assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 4759 || (wctrlFlags & WHERE_USE_LIMIT)==0 ); 4760 4761 /* Variable initialization */ 4762 db = pParse->db; 4763 memset(&sWLB, 0, sizeof(sWLB)); 4764 4765 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ 4766 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); 4767 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; 4768 sWLB.pOrderBy = pOrderBy; 4769 4770 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via 4771 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ 4772 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ 4773 wctrlFlags &= ~WHERE_WANT_DISTINCT; 4774 } 4775 4776 /* The number of tables in the FROM clause is limited by the number of 4777 ** bits in a Bitmask 4778 */ 4779 testcase( pTabList->nSrc==BMS ); 4780 if( pTabList->nSrc>BMS ){ 4781 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 4782 return 0; 4783 } 4784 4785 /* This function normally generates a nested loop for all tables in 4786 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should 4787 ** only generate code for the first table in pTabList and assume that 4788 ** any cursors associated with subsequent tables are uninitialized. 4789 */ 4790 nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc; 4791 4792 /* Allocate and initialize the WhereInfo structure that will become the 4793 ** return value. A single allocation is used to store the WhereInfo 4794 ** struct, the contents of WhereInfo.a[], the WhereClause structure 4795 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte 4796 ** field (type Bitmask) it must be aligned on an 8-byte boundary on 4797 ** some architectures. Hence the ROUND8() below. 4798 */ 4799 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); 4800 pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop)); 4801 if( db->mallocFailed ){ 4802 sqlite3DbFree(db, pWInfo); 4803 pWInfo = 0; 4804 goto whereBeginError; 4805 } 4806 pWInfo->pParse = pParse; 4807 pWInfo->pTabList = pTabList; 4808 pWInfo->pOrderBy = pOrderBy; 4809 pWInfo->pWhere = pWhere; 4810 pWInfo->pResultSet = pResultSet; 4811 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; 4812 pWInfo->nLevel = nTabList; 4813 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse); 4814 pWInfo->wctrlFlags = wctrlFlags; 4815 pWInfo->iLimit = iAuxArg; 4816 pWInfo->savedNQueryLoop = pParse->nQueryLoop; 4817 memset(&pWInfo->nOBSat, 0, 4818 offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat)); 4819 memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel)); 4820 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */ 4821 pMaskSet = &pWInfo->sMaskSet; 4822 sWLB.pWInfo = pWInfo; 4823 sWLB.pWC = &pWInfo->sWC; 4824 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); 4825 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); 4826 whereLoopInit(sWLB.pNew); 4827 #ifdef SQLITE_DEBUG 4828 sWLB.pNew->cId = '*'; 4829 #endif 4830 4831 /* Split the WHERE clause into separate subexpressions where each 4832 ** subexpression is separated by an AND operator. 4833 */ 4834 initMaskSet(pMaskSet); 4835 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); 4836 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); 4837 4838 /* Special case: No FROM clause 4839 */ 4840 if( nTabList==0 ){ 4841 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; 4842 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4843 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4844 } 4845 ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW")); 4846 }else{ 4847 /* Assign a bit from the bitmask to every term in the FROM clause. 4848 ** 4849 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. 4850 ** 4851 ** The rule of the previous sentence ensures thta if X is the bitmask for 4852 ** a table T, then X-1 is the bitmask for all other tables to the left of T. 4853 ** Knowing the bitmask for all tables to the left of a left join is 4854 ** important. Ticket #3015. 4855 ** 4856 ** Note that bitmasks are created for all pTabList->nSrc tables in 4857 ** pTabList, not just the first nTabList tables. nTabList is normally 4858 ** equal to pTabList->nSrc but might be shortened to 1 if the 4859 ** WHERE_OR_SUBCLAUSE flag is set. 4860 */ 4861 ii = 0; 4862 do{ 4863 createMask(pMaskSet, pTabList->a[ii].iCursor); 4864 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC); 4865 }while( (++ii)<pTabList->nSrc ); 4866 #ifdef SQLITE_DEBUG 4867 { 4868 Bitmask mx = 0; 4869 for(ii=0; ii<pTabList->nSrc; ii++){ 4870 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); 4871 assert( m>=mx ); 4872 mx = m; 4873 } 4874 } 4875 #endif 4876 } 4877 4878 /* Analyze all of the subexpressions. */ 4879 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); 4880 if( db->mallocFailed ) goto whereBeginError; 4881 4882 /* Special case: WHERE terms that do not refer to any tables in the join 4883 ** (constant expressions). Evaluate each such term, and jump over all the 4884 ** generated code if the result is not true. 4885 ** 4886 ** Do not do this if the expression contains non-deterministic functions 4887 ** that are not within a sub-select. This is not strictly required, but 4888 ** preserves SQLite's legacy behaviour in the following two cases: 4889 ** 4890 ** FROM ... WHERE random()>0; -- eval random() once per row 4891 ** FROM ... WHERE (SELECT random())>0; -- eval random() once overall 4892 */ 4893 for(ii=0; ii<sWLB.pWC->nTerm; ii++){ 4894 WhereTerm *pT = &sWLB.pWC->a[ii]; 4895 if( pT->wtFlags & TERM_VIRTUAL ) continue; 4896 if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){ 4897 sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL); 4898 pT->wtFlags |= TERM_CODED; 4899 } 4900 } 4901 4902 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4903 if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ 4904 /* The DISTINCT marking is pointless. Ignore it. */ 4905 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4906 }else if( pOrderBy==0 ){ 4907 /* Try to ORDER BY the result set to make distinct processing easier */ 4908 pWInfo->wctrlFlags |= WHERE_DISTINCTBY; 4909 pWInfo->pOrderBy = pResultSet; 4910 } 4911 } 4912 4913 /* Construct the WhereLoop objects */ 4914 #if defined(WHERETRACE_ENABLED) 4915 if( sqlite3WhereTrace & 0xffff ){ 4916 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags); 4917 if( wctrlFlags & WHERE_USE_LIMIT ){ 4918 sqlite3DebugPrintf(", limit: %d", iAuxArg); 4919 } 4920 sqlite3DebugPrintf(")\n"); 4921 if( sqlite3WhereTrace & 0x100 ){ 4922 Select sSelect; 4923 memset(&sSelect, 0, sizeof(sSelect)); 4924 sSelect.selFlags = SF_WhereBegin; 4925 sSelect.pSrc = pTabList; 4926 sSelect.pWhere = pWhere; 4927 sSelect.pOrderBy = pOrderBy; 4928 sSelect.pEList = pResultSet; 4929 sqlite3TreeViewSelect(0, &sSelect, 0); 4930 } 4931 } 4932 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 4933 sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n"); 4934 sqlite3WhereClausePrint(sWLB.pWC); 4935 } 4936 #endif 4937 4938 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ 4939 rc = whereLoopAddAll(&sWLB); 4940 if( rc ) goto whereBeginError; 4941 4942 #ifdef SQLITE_ENABLE_STAT4 4943 /* If one or more WhereTerm.truthProb values were used in estimating 4944 ** loop parameters, but then those truthProb values were subsequently 4945 ** changed based on STAT4 information while computing subsequent loops, 4946 ** then we need to rerun the whole loop building process so that all 4947 ** loops will be built using the revised truthProb values. */ 4948 if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){ 4949 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC); 4950 WHERETRACE(0xffff, 4951 ("**** Redo all loop computations due to" 4952 " TERM_HIGHTRUTH changes ****\n")); 4953 while( pWInfo->pLoops ){ 4954 WhereLoop *p = pWInfo->pLoops; 4955 pWInfo->pLoops = p->pNextLoop; 4956 whereLoopDelete(db, p); 4957 } 4958 rc = whereLoopAddAll(&sWLB); 4959 if( rc ) goto whereBeginError; 4960 } 4961 #endif 4962 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC); 4963 4964 wherePathSolver(pWInfo, 0); 4965 if( db->mallocFailed ) goto whereBeginError; 4966 if( pWInfo->pOrderBy ){ 4967 wherePathSolver(pWInfo, pWInfo->nRowOut+1); 4968 if( db->mallocFailed ) goto whereBeginError; 4969 } 4970 } 4971 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ 4972 pWInfo->revMask = ALLBITS; 4973 } 4974 if( pParse->nErr || NEVER(db->mallocFailed) ){ 4975 goto whereBeginError; 4976 } 4977 #ifdef WHERETRACE_ENABLED 4978 if( sqlite3WhereTrace ){ 4979 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); 4980 if( pWInfo->nOBSat>0 ){ 4981 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); 4982 } 4983 switch( pWInfo->eDistinct ){ 4984 case WHERE_DISTINCT_UNIQUE: { 4985 sqlite3DebugPrintf(" DISTINCT=unique"); 4986 break; 4987 } 4988 case WHERE_DISTINCT_ORDERED: { 4989 sqlite3DebugPrintf(" DISTINCT=ordered"); 4990 break; 4991 } 4992 case WHERE_DISTINCT_UNORDERED: { 4993 sqlite3DebugPrintf(" DISTINCT=unordered"); 4994 break; 4995 } 4996 } 4997 sqlite3DebugPrintf("\n"); 4998 for(ii=0; ii<pWInfo->nLevel; ii++){ 4999 sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); 5000 } 5001 } 5002 #endif 5003 5004 /* Attempt to omit tables from the join that do not affect the result. 5005 ** For a table to not affect the result, the following must be true: 5006 ** 5007 ** 1) The query must not be an aggregate. 5008 ** 2) The table must be the RHS of a LEFT JOIN. 5009 ** 3) Either the query must be DISTINCT, or else the ON or USING clause 5010 ** must contain a constraint that limits the scan of the table to 5011 ** at most a single row. 5012 ** 4) The table must not be referenced by any part of the query apart 5013 ** from its own USING or ON clause. 5014 ** 5015 ** For example, given: 5016 ** 5017 ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1); 5018 ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2); 5019 ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3); 5020 ** 5021 ** then table t2 can be omitted from the following: 5022 ** 5023 ** SELECT v1, v3 FROM t1 5024 ** LEFT JOIN t2 ON (t1.ipk=t2.ipk) 5025 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk) 5026 ** 5027 ** or from: 5028 ** 5029 ** SELECT DISTINCT v1, v3 FROM t1 5030 ** LEFT JOIN t2 5031 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk) 5032 */ 5033 notReady = ~(Bitmask)0; 5034 if( pWInfo->nLevel>=2 5035 && pResultSet!=0 /* guarantees condition (1) above */ 5036 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) 5037 ){ 5038 int i; 5039 Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet); 5040 if( sWLB.pOrderBy ){ 5041 tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy); 5042 } 5043 for(i=pWInfo->nLevel-1; i>=1; i--){ 5044 WhereTerm *pTerm, *pEnd; 5045 struct SrcList_item *pItem; 5046 pLoop = pWInfo->a[i].pWLoop; 5047 pItem = &pWInfo->pTabList->a[pLoop->iTab]; 5048 if( (pItem->fg.jointype & JT_LEFT)==0 ) continue; 5049 if( (wctrlFlags & WHERE_WANT_DISTINCT)==0 5050 && (pLoop->wsFlags & WHERE_ONEROW)==0 5051 ){ 5052 continue; 5053 } 5054 if( (tabUsed & pLoop->maskSelf)!=0 ) continue; 5055 pEnd = sWLB.pWC->a + sWLB.pWC->nTerm; 5056 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ 5057 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 5058 if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 5059 || pTerm->pExpr->iRightJoinTable!=pItem->iCursor 5060 ){ 5061 break; 5062 } 5063 } 5064 } 5065 if( pTerm<pEnd ) continue; 5066 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); 5067 notReady &= ~pLoop->maskSelf; 5068 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ 5069 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 5070 pTerm->wtFlags |= TERM_CODED; 5071 } 5072 } 5073 if( i!=pWInfo->nLevel-1 ){ 5074 int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel); 5075 memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte); 5076 } 5077 pWInfo->nLevel--; 5078 nTabList--; 5079 } 5080 } 5081 #if defined(WHERETRACE_ENABLED) 5082 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 5083 sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n"); 5084 sqlite3WhereClausePrint(sWLB.pWC); 5085 } 5086 WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); 5087 #endif 5088 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; 5089 5090 /* If the caller is an UPDATE or DELETE statement that is requesting 5091 ** to use a one-pass algorithm, determine if this is appropriate. 5092 ** 5093 ** A one-pass approach can be used if the caller has requested one 5094 ** and either (a) the scan visits at most one row or (b) each 5095 ** of the following are true: 5096 ** 5097 ** * the caller has indicated that a one-pass approach can be used 5098 ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and 5099 ** * the table is not a virtual table, and 5100 ** * either the scan does not use the OR optimization or the caller 5101 ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified 5102 ** for DELETE). 5103 ** 5104 ** The last qualification is because an UPDATE statement uses 5105 ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can 5106 ** use a one-pass approach, and this is not set accurately for scans 5107 ** that use the OR optimization. 5108 */ 5109 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 5110 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){ 5111 int wsFlags = pWInfo->a[0].pWLoop->wsFlags; 5112 int bOnerow = (wsFlags & WHERE_ONEROW)!=0; 5113 assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) ); 5114 if( bOnerow || ( 5115 0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW) 5116 && !IsVirtual(pTabList->a[0].pTab) 5117 && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK)) 5118 )){ 5119 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; 5120 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){ 5121 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){ 5122 bFordelete = OPFLAG_FORDELETE; 5123 } 5124 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY); 5125 } 5126 } 5127 } 5128 5129 /* Open all tables in the pTabList and any indices selected for 5130 ** searching those tables. 5131 */ 5132 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ 5133 Table *pTab; /* Table to open */ 5134 int iDb; /* Index of database containing table/index */ 5135 struct SrcList_item *pTabItem; 5136 5137 pTabItem = &pTabList->a[pLevel->iFrom]; 5138 pTab = pTabItem->pTab; 5139 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5140 pLoop = pLevel->pWLoop; 5141 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){ 5142 /* Do nothing */ 5143 }else 5144 #ifndef SQLITE_OMIT_VIRTUALTABLE 5145 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 5146 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 5147 int iCur = pTabItem->iCursor; 5148 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); 5149 }else if( IsVirtual(pTab) ){ 5150 /* noop */ 5151 }else 5152 #endif 5153 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 5154 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){ 5155 int op = OP_OpenRead; 5156 if( pWInfo->eOnePass!=ONEPASS_OFF ){ 5157 op = OP_OpenWrite; 5158 pWInfo->aiCurOnePass[0] = pTabItem->iCursor; 5159 }; 5160 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 5161 assert( pTabItem->iCursor==pLevel->iTabCur ); 5162 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 ); 5163 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS ); 5164 if( pWInfo->eOnePass==ONEPASS_OFF 5165 && pTab->nCol<BMS 5166 && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0 5167 ){ 5168 /* If we know that only a prefix of the record will be used, 5169 ** it is advantageous to reduce the "column count" field in 5170 ** the P4 operand of the OP_OpenRead/Write opcode. */ 5171 Bitmask b = pTabItem->colUsed; 5172 int n = 0; 5173 for(; b; b=b>>1, n++){} 5174 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32); 5175 assert( n<=pTab->nCol ); 5176 } 5177 #ifdef SQLITE_ENABLE_CURSOR_HINTS 5178 if( pLoop->u.btree.pIndex!=0 ){ 5179 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete); 5180 }else 5181 #endif 5182 { 5183 sqlite3VdbeChangeP5(v, bFordelete); 5184 } 5185 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 5186 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, 5187 (const u8*)&pTabItem->colUsed, P4_INT64); 5188 #endif 5189 }else{ 5190 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5191 } 5192 if( pLoop->wsFlags & WHERE_INDEXED ){ 5193 Index *pIx = pLoop->u.btree.pIndex; 5194 int iIndexCur; 5195 int op = OP_OpenRead; 5196 /* iAuxArg is always set to a positive value if ONEPASS is possible */ 5197 assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); 5198 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) 5199 && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 5200 ){ 5201 /* This is one term of an OR-optimization using the PRIMARY KEY of a 5202 ** WITHOUT ROWID table. No need for a separate index */ 5203 iIndexCur = pLevel->iTabCur; 5204 op = 0; 5205 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){ 5206 Index *pJ = pTabItem->pTab->pIndex; 5207 iIndexCur = iAuxArg; 5208 assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); 5209 while( ALWAYS(pJ) && pJ!=pIx ){ 5210 iIndexCur++; 5211 pJ = pJ->pNext; 5212 } 5213 op = OP_OpenWrite; 5214 pWInfo->aiCurOnePass[1] = iIndexCur; 5215 }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){ 5216 iIndexCur = iAuxArg; 5217 op = OP_ReopenIdx; 5218 }else{ 5219 iIndexCur = pParse->nTab++; 5220 } 5221 pLevel->iIdxCur = iIndexCur; 5222 assert( pIx->pSchema==pTab->pSchema ); 5223 assert( iIndexCur>=0 ); 5224 if( op ){ 5225 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); 5226 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 5227 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 5228 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 5229 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0 5230 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 5231 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 5232 && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED 5233 ){ 5234 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); 5235 } 5236 VdbeComment((v, "%s", pIx->zName)); 5237 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 5238 { 5239 u64 colUsed = 0; 5240 int ii, jj; 5241 for(ii=0; ii<pIx->nColumn; ii++){ 5242 jj = pIx->aiColumn[ii]; 5243 if( jj<0 ) continue; 5244 if( jj>63 ) jj = 63; 5245 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue; 5246 colUsed |= ((u64)1)<<(ii<63 ? ii : 63); 5247 } 5248 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, 5249 (u8*)&colUsed, P4_INT64); 5250 } 5251 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ 5252 } 5253 } 5254 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); 5255 } 5256 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 5257 if( db->mallocFailed ) goto whereBeginError; 5258 5259 /* Generate the code to do the search. Each iteration of the for 5260 ** loop below generates code for a single nested loop of the VM 5261 ** program. 5262 */ 5263 for(ii=0; ii<nTabList; ii++){ 5264 int addrExplain; 5265 int wsFlags; 5266 pLevel = &pWInfo->a[ii]; 5267 wsFlags = pLevel->pWLoop->wsFlags; 5268 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 5269 if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 5270 constructAutomaticIndex(pParse, &pWInfo->sWC, 5271 &pTabList->a[pLevel->iFrom], notReady, pLevel); 5272 if( db->mallocFailed ) goto whereBeginError; 5273 } 5274 #endif 5275 addrExplain = sqlite3WhereExplainOneScan( 5276 pParse, pTabList, pLevel, wctrlFlags 5277 ); 5278 pLevel->addrBody = sqlite3VdbeCurrentAddr(v); 5279 notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady); 5280 pWInfo->iContinue = pLevel->addrCont; 5281 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){ 5282 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); 5283 } 5284 } 5285 5286 /* Done. */ 5287 VdbeModuleComment((v, "Begin WHERE-core")); 5288 pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v); 5289 return pWInfo; 5290 5291 /* Jump here if malloc fails */ 5292 whereBeginError: 5293 if( pWInfo ){ 5294 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 5295 whereInfoFree(db, pWInfo); 5296 } 5297 return 0; 5298 } 5299 5300 /* 5301 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the 5302 ** index rather than the main table. In SQLITE_DEBUG mode, we want 5303 ** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine 5304 ** does that. 5305 */ 5306 #ifndef SQLITE_DEBUG 5307 # define OpcodeRewriteTrace(D,K,P) /* no-op */ 5308 #else 5309 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P) 5310 static void sqlite3WhereOpcodeRewriteTrace( 5311 sqlite3 *db, 5312 int pc, 5313 VdbeOp *pOp 5314 ){ 5315 if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return; 5316 sqlite3VdbePrintOp(0, pc, pOp); 5317 } 5318 #endif 5319 5320 /* 5321 ** Generate the end of the WHERE loop. See comments on 5322 ** sqlite3WhereBegin() for additional information. 5323 */ 5324 void sqlite3WhereEnd(WhereInfo *pWInfo){ 5325 Parse *pParse = pWInfo->pParse; 5326 Vdbe *v = pParse->pVdbe; 5327 int i; 5328 WhereLevel *pLevel; 5329 WhereLoop *pLoop; 5330 SrcList *pTabList = pWInfo->pTabList; 5331 sqlite3 *db = pParse->db; 5332 int iEnd = sqlite3VdbeCurrentAddr(v); 5333 5334 /* Generate loop termination code. 5335 */ 5336 VdbeModuleComment((v, "End WHERE-core")); 5337 for(i=pWInfo->nLevel-1; i>=0; i--){ 5338 int addr; 5339 pLevel = &pWInfo->a[i]; 5340 pLoop = pLevel->pWLoop; 5341 if( pLevel->op!=OP_Noop ){ 5342 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 5343 int addrSeek = 0; 5344 Index *pIdx; 5345 int n; 5346 if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED 5347 && i==pWInfo->nLevel-1 /* Ticket [ef9318757b152e3] 2017-10-21 */ 5348 && (pLoop->wsFlags & WHERE_INDEXED)!=0 5349 && (pIdx = pLoop->u.btree.pIndex)->hasStat1 5350 && (n = pLoop->u.btree.nDistinctCol)>0 5351 && pIdx->aiRowLogEst[n]>=36 5352 ){ 5353 int r1 = pParse->nMem+1; 5354 int j, op; 5355 for(j=0; j<n; j++){ 5356 sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j); 5357 } 5358 pParse->nMem += n+1; 5359 op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT; 5360 addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n); 5361 VdbeCoverageIf(v, op==OP_SeekLT); 5362 VdbeCoverageIf(v, op==OP_SeekGT); 5363 sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2); 5364 } 5365 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */ 5366 /* The common case: Advance to the next row */ 5367 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 5368 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); 5369 sqlite3VdbeChangeP5(v, pLevel->p5); 5370 VdbeCoverage(v); 5371 VdbeCoverageIf(v, pLevel->op==OP_Next); 5372 VdbeCoverageIf(v, pLevel->op==OP_Prev); 5373 VdbeCoverageIf(v, pLevel->op==OP_VNext); 5374 if( pLevel->regBignull ){ 5375 sqlite3VdbeResolveLabel(v, pLevel->addrBignull); 5376 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1); 5377 VdbeCoverage(v); 5378 } 5379 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 5380 if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek); 5381 #endif 5382 }else{ 5383 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 5384 } 5385 if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ 5386 struct InLoop *pIn; 5387 int j; 5388 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 5389 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 5390 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 5391 if( pIn->eEndLoopOp!=OP_Noop ){ 5392 if( pIn->nPrefix ){ 5393 int bEarlyOut = 5394 (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 5395 && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0; 5396 if( pLevel->iLeftJoin ){ 5397 /* For LEFT JOIN queries, cursor pIn->iCur may not have been 5398 ** opened yet. This occurs for WHERE clauses such as 5399 ** "a = ? AND b IN (...)", where the index is on (a, b). If 5400 ** the RHS of the (a=?) is NULL, then the "b IN (...)" may 5401 ** never have been coded, but the body of the loop run to 5402 ** return the null-row. So, if the cursor is not open yet, 5403 ** jump over the OP_Next or OP_Prev instruction about to 5404 ** be coded. */ 5405 sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur, 5406 sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut); 5407 VdbeCoverage(v); 5408 } 5409 if( bEarlyOut ){ 5410 sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur, 5411 sqlite3VdbeCurrentAddr(v)+2, 5412 pIn->iBase, pIn->nPrefix); 5413 VdbeCoverage(v); 5414 } 5415 } 5416 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); 5417 VdbeCoverage(v); 5418 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev); 5419 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next); 5420 } 5421 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 5422 } 5423 } 5424 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 5425 if( pLevel->addrSkip ){ 5426 sqlite3VdbeGoto(v, pLevel->addrSkip); 5427 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); 5428 sqlite3VdbeJumpHere(v, pLevel->addrSkip); 5429 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); 5430 } 5431 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 5432 if( pLevel->addrLikeRep ){ 5433 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1), 5434 pLevel->addrLikeRep); 5435 VdbeCoverage(v); 5436 } 5437 #endif 5438 if( pLevel->iLeftJoin ){ 5439 int ws = pLoop->wsFlags; 5440 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); 5441 assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 ); 5442 if( (ws & WHERE_IDX_ONLY)==0 ){ 5443 assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor ); 5444 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur); 5445 } 5446 if( (ws & WHERE_INDEXED) 5447 || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx) 5448 ){ 5449 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 5450 } 5451 if( pLevel->op==OP_Return ){ 5452 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); 5453 }else{ 5454 sqlite3VdbeGoto(v, pLevel->addrFirst); 5455 } 5456 sqlite3VdbeJumpHere(v, addr); 5457 } 5458 VdbeModuleComment((v, "End WHERE-loop%d: %s", i, 5459 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); 5460 } 5461 5462 /* The "break" point is here, just past the end of the outer loop. 5463 ** Set it. 5464 */ 5465 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 5466 5467 assert( pWInfo->nLevel<=pTabList->nSrc ); 5468 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ 5469 int k, last; 5470 VdbeOp *pOp, *pLastOp; 5471 Index *pIdx = 0; 5472 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 5473 Table *pTab = pTabItem->pTab; 5474 assert( pTab!=0 ); 5475 pLoop = pLevel->pWLoop; 5476 5477 /* For a co-routine, change all OP_Column references to the table of 5478 ** the co-routine into OP_Copy of result contained in a register. 5479 ** OP_Rowid becomes OP_Null. 5480 */ 5481 if( pTabItem->fg.viaCoroutine ){ 5482 testcase( pParse->db->mallocFailed ); 5483 translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur, 5484 pTabItem->regResult, 0); 5485 continue; 5486 } 5487 5488 #ifdef SQLITE_ENABLE_EARLY_CURSOR_CLOSE 5489 /* Close all of the cursors that were opened by sqlite3WhereBegin. 5490 ** Except, do not close cursors that will be reused by the OR optimization 5491 ** (WHERE_OR_SUBCLAUSE). And do not close the OP_OpenWrite cursors 5492 ** created for the ONEPASS optimization. 5493 */ 5494 if( (pTab->tabFlags & TF_Ephemeral)==0 5495 && pTab->pSelect==0 5496 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 5497 ){ 5498 int ws = pLoop->wsFlags; 5499 if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){ 5500 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); 5501 } 5502 if( (ws & WHERE_INDEXED)!=0 5503 && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0 5504 && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1] 5505 ){ 5506 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); 5507 } 5508 } 5509 #endif 5510 5511 /* If this scan uses an index, make VDBE code substitutions to read data 5512 ** from the index instead of from the table where possible. In some cases 5513 ** this optimization prevents the table from ever being read, which can 5514 ** yield a significant performance boost. 5515 ** 5516 ** Calls to the code generator in between sqlite3WhereBegin and 5517 ** sqlite3WhereEnd will have created code that references the table 5518 ** directly. This loop scans all that code looking for opcodes 5519 ** that reference the table and converts them into opcodes that 5520 ** reference the index. 5521 */ 5522 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ 5523 pIdx = pLoop->u.btree.pIndex; 5524 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ 5525 pIdx = pLevel->u.pCovidx; 5526 } 5527 if( pIdx 5528 && !db->mallocFailed 5529 ){ 5530 if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){ 5531 last = iEnd; 5532 }else{ 5533 last = pWInfo->iEndWhere; 5534 } 5535 k = pLevel->addrBody + 1; 5536 #ifdef SQLITE_DEBUG 5537 if( db->flags & SQLITE_VdbeAddopTrace ){ 5538 printf("TRANSLATE opcodes in range %d..%d\n", k, last-1); 5539 } 5540 /* Proof that the "+1" on the k value above is safe */ 5541 pOp = sqlite3VdbeGetOp(v, k - 1); 5542 assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur ); 5543 assert( pOp->opcode!=OP_Rowid || pOp->p1!=pLevel->iTabCur ); 5544 assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur ); 5545 #endif 5546 pOp = sqlite3VdbeGetOp(v, k); 5547 pLastOp = pOp + (last - k); 5548 assert( pOp<pLastOp ); 5549 do{ 5550 if( pOp->p1!=pLevel->iTabCur ){ 5551 /* no-op */ 5552 }else if( pOp->opcode==OP_Column 5553 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 5554 || pOp->opcode==OP_Offset 5555 #endif 5556 ){ 5557 int x = pOp->p2; 5558 assert( pIdx->pTable==pTab ); 5559 if( !HasRowid(pTab) ){ 5560 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 5561 x = pPk->aiColumn[x]; 5562 assert( x>=0 ); 5563 }else{ 5564 testcase( x!=sqlite3StorageColumnToTable(pTab,x) ); 5565 x = sqlite3StorageColumnToTable(pTab,x); 5566 } 5567 x = sqlite3TableColumnToIndex(pIdx, x); 5568 if( x>=0 ){ 5569 pOp->p2 = x; 5570 pOp->p1 = pLevel->iIdxCur; 5571 OpcodeRewriteTrace(db, k, pOp); 5572 } 5573 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 5574 || pWInfo->eOnePass ); 5575 }else if( pOp->opcode==OP_Rowid ){ 5576 pOp->p1 = pLevel->iIdxCur; 5577 pOp->opcode = OP_IdxRowid; 5578 OpcodeRewriteTrace(db, k, pOp); 5579 }else if( pOp->opcode==OP_IfNullRow ){ 5580 pOp->p1 = pLevel->iIdxCur; 5581 OpcodeRewriteTrace(db, k, pOp); 5582 } 5583 #ifdef SQLITE_DEBUG 5584 k++; 5585 #endif 5586 }while( (++pOp)<pLastOp ); 5587 #ifdef SQLITE_DEBUG 5588 if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n"); 5589 #endif 5590 } 5591 } 5592 5593 /* Undo all Expr node modifications */ 5594 while( pWInfo->pExprMods ){ 5595 WhereExprMod *p = pWInfo->pExprMods; 5596 pWInfo->pExprMods = p->pNext; 5597 memcpy(p->pExpr, &p->orig, sizeof(p->orig)); 5598 sqlite3DbFree(db, p); 5599 } 5600 5601 /* Final cleanup 5602 */ 5603 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 5604 whereInfoFree(db, pWInfo); 5605 return; 5606 } 5607