xref: /sqlite-3.40.0/src/where.c (revision aeb4e6ee)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /*
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly.  The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
26 **
27 ** This object is not an API and can be changed from one release to the
28 ** next.  As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
30 */
31 typedef struct HiddenIndexInfo HiddenIndexInfo;
32 struct HiddenIndexInfo {
33   WhereClause *pWC;   /* The Where clause being analyzed */
34   Parse *pParse;      /* The parsing context */
35 };
36 
37 /* Forward declaration of methods */
38 static int whereLoopResize(sqlite3*, WhereLoop*, int);
39 
40 /* Test variable that can be set to enable WHERE tracing */
41 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
42 /***/ int sqlite3WhereTrace = 0;
43 #endif
44 
45 
46 /*
47 ** Return the estimated number of output rows from a WHERE clause
48 */
49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
50   return pWInfo->nRowOut;
51 }
52 
53 /*
54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
55 ** WHERE clause returns outputs for DISTINCT processing.
56 */
57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
58   return pWInfo->eDistinct;
59 }
60 
61 /*
62 ** Return the number of ORDER BY terms that are satisfied by the
63 ** WHERE clause.  A return of 0 means that the output must be
64 ** completely sorted.  A return equal to the number of ORDER BY
65 ** terms means that no sorting is needed at all.  A return that
66 ** is positive but less than the number of ORDER BY terms means that
67 ** block sorting is required.
68 */
69 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
70   return pWInfo->nOBSat;
71 }
72 
73 /*
74 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known
75 ** to emit rows in increasing order, and if the last row emitted by the
76 ** inner-most loop did not fit within the sorter, then we can skip all
77 ** subsequent rows for the current iteration of the inner loop (because they
78 ** will not fit in the sorter either) and continue with the second inner
79 ** loop - the loop immediately outside the inner-most.
80 **
81 ** When a row does not fit in the sorter (because the sorter already
82 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
83 ** label returned by this function.
84 **
85 ** If the ORDER BY LIMIT optimization applies, the jump destination should
86 ** be the continuation for the second-inner-most loop.  If the ORDER BY
87 ** LIMIT optimization does not apply, then the jump destination should
88 ** be the continuation for the inner-most loop.
89 **
90 ** It is always safe for this routine to return the continuation of the
91 ** inner-most loop, in the sense that a correct answer will result.
92 ** Returning the continuation the second inner loop is an optimization
93 ** that might make the code run a little faster, but should not change
94 ** the final answer.
95 */
96 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){
97   WhereLevel *pInner;
98   if( !pWInfo->bOrderedInnerLoop ){
99     /* The ORDER BY LIMIT optimization does not apply.  Jump to the
100     ** continuation of the inner-most loop. */
101     return pWInfo->iContinue;
102   }
103   pInner = &pWInfo->a[pWInfo->nLevel-1];
104   assert( pInner->addrNxt!=0 );
105   return pInner->addrNxt;
106 }
107 
108 /*
109 ** Return the VDBE address or label to jump to in order to continue
110 ** immediately with the next row of a WHERE clause.
111 */
112 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
113   assert( pWInfo->iContinue!=0 );
114   return pWInfo->iContinue;
115 }
116 
117 /*
118 ** Return the VDBE address or label to jump to in order to break
119 ** out of a WHERE loop.
120 */
121 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
122   return pWInfo->iBreak;
123 }
124 
125 /*
126 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
127 ** operate directly on the rowids returned by a WHERE clause.  Return
128 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
129 ** a single row is to be changed.  Return ONEPASS_MULTI (2) if the one-pass
130 ** optimization can be used on multiple
131 **
132 ** If the ONEPASS optimization is used (if this routine returns true)
133 ** then also write the indices of open cursors used by ONEPASS
134 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
135 ** table and iaCur[1] gets the cursor used by an auxiliary index.
136 ** Either value may be -1, indicating that cursor is not used.
137 ** Any cursors returned will have been opened for writing.
138 **
139 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
140 ** unable to use the ONEPASS optimization.
141 */
142 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
143   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
144 #ifdef WHERETRACE_ENABLED
145   if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
146     sqlite3DebugPrintf("%s cursors: %d %d\n",
147          pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
148          aiCur[0], aiCur[1]);
149   }
150 #endif
151   return pWInfo->eOnePass;
152 }
153 
154 /*
155 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move
156 ** the data cursor to the row selected by the index cursor.
157 */
158 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){
159   return pWInfo->bDeferredSeek;
160 }
161 
162 /*
163 ** Move the content of pSrc into pDest
164 */
165 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
166   pDest->n = pSrc->n;
167   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
168 }
169 
170 /*
171 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
172 **
173 ** The new entry might overwrite an existing entry, or it might be
174 ** appended, or it might be discarded.  Do whatever is the right thing
175 ** so that pSet keeps the N_OR_COST best entries seen so far.
176 */
177 static int whereOrInsert(
178   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
179   Bitmask prereq,        /* Prerequisites of the new entry */
180   LogEst rRun,           /* Run-cost of the new entry */
181   LogEst nOut            /* Number of outputs for the new entry */
182 ){
183   u16 i;
184   WhereOrCost *p;
185   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
186     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
187       goto whereOrInsert_done;
188     }
189     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
190       return 0;
191     }
192   }
193   if( pSet->n<N_OR_COST ){
194     p = &pSet->a[pSet->n++];
195     p->nOut = nOut;
196   }else{
197     p = pSet->a;
198     for(i=1; i<pSet->n; i++){
199       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
200     }
201     if( p->rRun<=rRun ) return 0;
202   }
203 whereOrInsert_done:
204   p->prereq = prereq;
205   p->rRun = rRun;
206   if( p->nOut>nOut ) p->nOut = nOut;
207   return 1;
208 }
209 
210 /*
211 ** Return the bitmask for the given cursor number.  Return 0 if
212 ** iCursor is not in the set.
213 */
214 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
215   int i;
216   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
217   for(i=0; i<pMaskSet->n; i++){
218     if( pMaskSet->ix[i]==iCursor ){
219       return MASKBIT(i);
220     }
221   }
222   return 0;
223 }
224 
225 /*
226 ** Create a new mask for cursor iCursor.
227 **
228 ** There is one cursor per table in the FROM clause.  The number of
229 ** tables in the FROM clause is limited by a test early in the
230 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
231 ** array will never overflow.
232 */
233 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
234   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
235   pMaskSet->ix[pMaskSet->n++] = iCursor;
236 }
237 
238 /*
239 ** If the right-hand branch of the expression is a TK_COLUMN, then return
240 ** a pointer to the right-hand branch.  Otherwise, return NULL.
241 */
242 static Expr *whereRightSubexprIsColumn(Expr *p){
243   p = sqlite3ExprSkipCollateAndLikely(p->pRight);
244   if( ALWAYS(p!=0) && p->op==TK_COLUMN ) return p;
245   return 0;
246 }
247 
248 /*
249 ** Advance to the next WhereTerm that matches according to the criteria
250 ** established when the pScan object was initialized by whereScanInit().
251 ** Return NULL if there are no more matching WhereTerms.
252 */
253 static WhereTerm *whereScanNext(WhereScan *pScan){
254   int iCur;            /* The cursor on the LHS of the term */
255   i16 iColumn;         /* The column on the LHS of the term.  -1 for IPK */
256   Expr *pX;            /* An expression being tested */
257   WhereClause *pWC;    /* Shorthand for pScan->pWC */
258   WhereTerm *pTerm;    /* The term being tested */
259   int k = pScan->k;    /* Where to start scanning */
260 
261   assert( pScan->iEquiv<=pScan->nEquiv );
262   pWC = pScan->pWC;
263   while(1){
264     iColumn = pScan->aiColumn[pScan->iEquiv-1];
265     iCur = pScan->aiCur[pScan->iEquiv-1];
266     assert( pWC!=0 );
267     do{
268       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
269         if( pTerm->leftCursor==iCur
270          && pTerm->u.x.leftColumn==iColumn
271          && (iColumn!=XN_EXPR
272              || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
273                                        pScan->pIdxExpr,iCur)==0)
274          && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
275         ){
276           if( (pTerm->eOperator & WO_EQUIV)!=0
277            && pScan->nEquiv<ArraySize(pScan->aiCur)
278            && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0
279           ){
280             int j;
281             for(j=0; j<pScan->nEquiv; j++){
282               if( pScan->aiCur[j]==pX->iTable
283                && pScan->aiColumn[j]==pX->iColumn ){
284                   break;
285               }
286             }
287             if( j==pScan->nEquiv ){
288               pScan->aiCur[j] = pX->iTable;
289               pScan->aiColumn[j] = pX->iColumn;
290               pScan->nEquiv++;
291             }
292           }
293           if( (pTerm->eOperator & pScan->opMask)!=0 ){
294             /* Verify the affinity and collating sequence match */
295             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
296               CollSeq *pColl;
297               Parse *pParse = pWC->pWInfo->pParse;
298               pX = pTerm->pExpr;
299               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
300                 continue;
301               }
302               assert(pX->pLeft);
303               pColl = sqlite3ExprCompareCollSeq(pParse, pX);
304               if( pColl==0 ) pColl = pParse->db->pDfltColl;
305               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
306                 continue;
307               }
308             }
309             if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
310              && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
311              && pX->iTable==pScan->aiCur[0]
312              && pX->iColumn==pScan->aiColumn[0]
313             ){
314               testcase( pTerm->eOperator & WO_IS );
315               continue;
316             }
317             pScan->pWC = pWC;
318             pScan->k = k+1;
319             return pTerm;
320           }
321         }
322       }
323       pWC = pWC->pOuter;
324       k = 0;
325     }while( pWC!=0 );
326     if( pScan->iEquiv>=pScan->nEquiv ) break;
327     pWC = pScan->pOrigWC;
328     k = 0;
329     pScan->iEquiv++;
330   }
331   return 0;
332 }
333 
334 /*
335 ** This is whereScanInit() for the case of an index on an expression.
336 ** It is factored out into a separate tail-recursion subroutine so that
337 ** the normal whereScanInit() routine, which is a high-runner, does not
338 ** need to push registers onto the stack as part of its prologue.
339 */
340 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){
341   pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr);
342   return whereScanNext(pScan);
343 }
344 
345 /*
346 ** Initialize a WHERE clause scanner object.  Return a pointer to the
347 ** first match.  Return NULL if there are no matches.
348 **
349 ** The scanner will be searching the WHERE clause pWC.  It will look
350 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
351 ** iCur.   Or if pIdx!=0 then X is column iColumn of index pIdx.  pIdx
352 ** must be one of the indexes of table iCur.
353 **
354 ** The <op> must be one of the operators described by opMask.
355 **
356 ** If the search is for X and the WHERE clause contains terms of the
357 ** form X=Y then this routine might also return terms of the form
358 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
359 ** but is enough to handle most commonly occurring SQL statements.
360 **
361 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
362 ** index pIdx.
363 */
364 static WhereTerm *whereScanInit(
365   WhereScan *pScan,       /* The WhereScan object being initialized */
366   WhereClause *pWC,       /* The WHERE clause to be scanned */
367   int iCur,               /* Cursor to scan for */
368   int iColumn,            /* Column to scan for */
369   u32 opMask,             /* Operator(s) to scan for */
370   Index *pIdx             /* Must be compatible with this index */
371 ){
372   pScan->pOrigWC = pWC;
373   pScan->pWC = pWC;
374   pScan->pIdxExpr = 0;
375   pScan->idxaff = 0;
376   pScan->zCollName = 0;
377   pScan->opMask = opMask;
378   pScan->k = 0;
379   pScan->aiCur[0] = iCur;
380   pScan->nEquiv = 1;
381   pScan->iEquiv = 1;
382   if( pIdx ){
383     int j = iColumn;
384     iColumn = pIdx->aiColumn[j];
385     if( iColumn==XN_EXPR ){
386       pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
387       pScan->zCollName = pIdx->azColl[j];
388       pScan->aiColumn[0] = XN_EXPR;
389       return whereScanInitIndexExpr(pScan);
390     }else if( iColumn==pIdx->pTable->iPKey ){
391       iColumn = XN_ROWID;
392     }else if( iColumn>=0 ){
393       pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
394       pScan->zCollName = pIdx->azColl[j];
395     }
396   }else if( iColumn==XN_EXPR ){
397     return 0;
398   }
399   pScan->aiColumn[0] = iColumn;
400   return whereScanNext(pScan);
401 }
402 
403 /*
404 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
405 ** where X is a reference to the iColumn of table iCur or of index pIdx
406 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
407 ** the op parameter.  Return a pointer to the term.  Return 0 if not found.
408 **
409 ** If pIdx!=0 then it must be one of the indexes of table iCur.
410 ** Search for terms matching the iColumn-th column of pIdx
411 ** rather than the iColumn-th column of table iCur.
412 **
413 ** The term returned might by Y=<expr> if there is another constraint in
414 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
415 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
416 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
417 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
418 ** other equivalent values.  Hence a search for X will return <expr> if X=A1
419 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
420 **
421 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
422 ** then try for the one with no dependencies on <expr> - in other words where
423 ** <expr> is a constant expression of some kind.  Only return entries of
424 ** the form "X <op> Y" where Y is a column in another table if no terms of
425 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
426 ** exist, try to return a term that does not use WO_EQUIV.
427 */
428 WhereTerm *sqlite3WhereFindTerm(
429   WhereClause *pWC,     /* The WHERE clause to be searched */
430   int iCur,             /* Cursor number of LHS */
431   int iColumn,          /* Column number of LHS */
432   Bitmask notReady,     /* RHS must not overlap with this mask */
433   u32 op,               /* Mask of WO_xx values describing operator */
434   Index *pIdx           /* Must be compatible with this index, if not NULL */
435 ){
436   WhereTerm *pResult = 0;
437   WhereTerm *p;
438   WhereScan scan;
439 
440   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
441   op &= WO_EQ|WO_IS;
442   while( p ){
443     if( (p->prereqRight & notReady)==0 ){
444       if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
445         testcase( p->eOperator & WO_IS );
446         return p;
447       }
448       if( pResult==0 ) pResult = p;
449     }
450     p = whereScanNext(&scan);
451   }
452   return pResult;
453 }
454 
455 /*
456 ** This function searches pList for an entry that matches the iCol-th column
457 ** of index pIdx.
458 **
459 ** If such an expression is found, its index in pList->a[] is returned. If
460 ** no expression is found, -1 is returned.
461 */
462 static int findIndexCol(
463   Parse *pParse,                  /* Parse context */
464   ExprList *pList,                /* Expression list to search */
465   int iBase,                      /* Cursor for table associated with pIdx */
466   Index *pIdx,                    /* Index to match column of */
467   int iCol                        /* Column of index to match */
468 ){
469   int i;
470   const char *zColl = pIdx->azColl[iCol];
471 
472   for(i=0; i<pList->nExpr; i++){
473     Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr);
474     if( ALWAYS(p!=0)
475      && p->op==TK_COLUMN
476      && p->iColumn==pIdx->aiColumn[iCol]
477      && p->iTable==iBase
478     ){
479       CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
480       if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
481         return i;
482       }
483     }
484   }
485 
486   return -1;
487 }
488 
489 /*
490 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
491 */
492 static int indexColumnNotNull(Index *pIdx, int iCol){
493   int j;
494   assert( pIdx!=0 );
495   assert( iCol>=0 && iCol<pIdx->nColumn );
496   j = pIdx->aiColumn[iCol];
497   if( j>=0 ){
498     return pIdx->pTable->aCol[j].notNull;
499   }else if( j==(-1) ){
500     return 1;
501   }else{
502     assert( j==(-2) );
503     return 0;  /* Assume an indexed expression can always yield a NULL */
504 
505   }
506 }
507 
508 /*
509 ** Return true if the DISTINCT expression-list passed as the third argument
510 ** is redundant.
511 **
512 ** A DISTINCT list is redundant if any subset of the columns in the
513 ** DISTINCT list are collectively unique and individually non-null.
514 */
515 static int isDistinctRedundant(
516   Parse *pParse,            /* Parsing context */
517   SrcList *pTabList,        /* The FROM clause */
518   WhereClause *pWC,         /* The WHERE clause */
519   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
520 ){
521   Table *pTab;
522   Index *pIdx;
523   int i;
524   int iBase;
525 
526   /* If there is more than one table or sub-select in the FROM clause of
527   ** this query, then it will not be possible to show that the DISTINCT
528   ** clause is redundant. */
529   if( pTabList->nSrc!=1 ) return 0;
530   iBase = pTabList->a[0].iCursor;
531   pTab = pTabList->a[0].pTab;
532 
533   /* If any of the expressions is an IPK column on table iBase, then return
534   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
535   ** current SELECT is a correlated sub-query.
536   */
537   for(i=0; i<pDistinct->nExpr; i++){
538     Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr);
539     if( NEVER(p==0) ) continue;
540     if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1;
541   }
542 
543   /* Loop through all indices on the table, checking each to see if it makes
544   ** the DISTINCT qualifier redundant. It does so if:
545   **
546   **   1. The index is itself UNIQUE, and
547   **
548   **   2. All of the columns in the index are either part of the pDistinct
549   **      list, or else the WHERE clause contains a term of the form "col=X",
550   **      where X is a constant value. The collation sequences of the
551   **      comparison and select-list expressions must match those of the index.
552   **
553   **   3. All of those index columns for which the WHERE clause does not
554   **      contain a "col=X" term are subject to a NOT NULL constraint.
555   */
556   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
557     if( !IsUniqueIndex(pIdx) ) continue;
558     for(i=0; i<pIdx->nKeyCol; i++){
559       if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
560         if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
561         if( indexColumnNotNull(pIdx, i)==0 ) break;
562       }
563     }
564     if( i==pIdx->nKeyCol ){
565       /* This index implies that the DISTINCT qualifier is redundant. */
566       return 1;
567     }
568   }
569 
570   return 0;
571 }
572 
573 
574 /*
575 ** Estimate the logarithm of the input value to base 2.
576 */
577 static LogEst estLog(LogEst N){
578   return N<=10 ? 0 : sqlite3LogEst(N) - 33;
579 }
580 
581 /*
582 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
583 **
584 ** This routine runs over generated VDBE code and translates OP_Column
585 ** opcodes into OP_Copy when the table is being accessed via co-routine
586 ** instead of via table lookup.
587 **
588 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
589 ** cursor iTabCur are transformed into OP_Sequence opcode for the
590 ** iAutoidxCur cursor, in order to generate unique rowids for the
591 ** automatic index being generated.
592 */
593 static void translateColumnToCopy(
594   Parse *pParse,      /* Parsing context */
595   int iStart,         /* Translate from this opcode to the end */
596   int iTabCur,        /* OP_Column/OP_Rowid references to this table */
597   int iRegister,      /* The first column is in this register */
598   int iAutoidxCur     /* If non-zero, cursor of autoindex being generated */
599 ){
600   Vdbe *v = pParse->pVdbe;
601   VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
602   int iEnd = sqlite3VdbeCurrentAddr(v);
603   if( pParse->db->mallocFailed ) return;
604   for(; iStart<iEnd; iStart++, pOp++){
605     if( pOp->p1!=iTabCur ) continue;
606     if( pOp->opcode==OP_Column ){
607       pOp->opcode = OP_Copy;
608       pOp->p1 = pOp->p2 + iRegister;
609       pOp->p2 = pOp->p3;
610       pOp->p3 = 0;
611     }else if( pOp->opcode==OP_Rowid ){
612       if( iAutoidxCur ){
613         pOp->opcode = OP_Sequence;
614         pOp->p1 = iAutoidxCur;
615       }else{
616         pOp->opcode = OP_Null;
617         pOp->p1 = 0;
618         pOp->p3 = 0;
619       }
620     }
621   }
622 }
623 
624 /*
625 ** Two routines for printing the content of an sqlite3_index_info
626 ** structure.  Used for testing and debugging only.  If neither
627 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
628 ** are no-ops.
629 */
630 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
631 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){
632   int i;
633   if( !sqlite3WhereTrace ) return;
634   for(i=0; i<p->nConstraint; i++){
635     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
636        i,
637        p->aConstraint[i].iColumn,
638        p->aConstraint[i].iTermOffset,
639        p->aConstraint[i].op,
640        p->aConstraint[i].usable);
641   }
642   for(i=0; i<p->nOrderBy; i++){
643     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
644        i,
645        p->aOrderBy[i].iColumn,
646        p->aOrderBy[i].desc);
647   }
648 }
649 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){
650   int i;
651   if( !sqlite3WhereTrace ) return;
652   for(i=0; i<p->nConstraint; i++){
653     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
654        i,
655        p->aConstraintUsage[i].argvIndex,
656        p->aConstraintUsage[i].omit);
657   }
658   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
659   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
660   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
661   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
662   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
663 }
664 #else
665 #define whereTraceIndexInfoInputs(A)
666 #define whereTraceIndexInfoOutputs(A)
667 #endif
668 
669 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
670 /*
671 ** Return TRUE if the WHERE clause term pTerm is of a form where it
672 ** could be used with an index to access pSrc, assuming an appropriate
673 ** index existed.
674 */
675 static int termCanDriveIndex(
676   WhereTerm *pTerm,              /* WHERE clause term to check */
677   struct SrcList_item *pSrc,     /* Table we are trying to access */
678   Bitmask notReady               /* Tables in outer loops of the join */
679 ){
680   char aff;
681   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
682   if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
683   if( (pSrc->fg.jointype & JT_LEFT)
684    && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
685    && (pTerm->eOperator & WO_IS)
686   ){
687     /* Cannot use an IS term from the WHERE clause as an index driver for
688     ** the RHS of a LEFT JOIN. Such a term can only be used if it is from
689     ** the ON clause.  */
690     return 0;
691   }
692   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
693   if( pTerm->u.x.leftColumn<0 ) return 0;
694   aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity;
695   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
696   testcase( pTerm->pExpr->op==TK_IS );
697   return 1;
698 }
699 #endif
700 
701 
702 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
703 /*
704 ** Generate code to construct the Index object for an automatic index
705 ** and to set up the WhereLevel object pLevel so that the code generator
706 ** makes use of the automatic index.
707 */
708 static void constructAutomaticIndex(
709   Parse *pParse,              /* The parsing context */
710   WhereClause *pWC,           /* The WHERE clause */
711   struct SrcList_item *pSrc,  /* The FROM clause term to get the next index */
712   Bitmask notReady,           /* Mask of cursors that are not available */
713   WhereLevel *pLevel          /* Write new index here */
714 ){
715   int nKeyCol;                /* Number of columns in the constructed index */
716   WhereTerm *pTerm;           /* A single term of the WHERE clause */
717   WhereTerm *pWCEnd;          /* End of pWC->a[] */
718   Index *pIdx;                /* Object describing the transient index */
719   Vdbe *v;                    /* Prepared statement under construction */
720   int addrInit;               /* Address of the initialization bypass jump */
721   Table *pTable;              /* The table being indexed */
722   int addrTop;                /* Top of the index fill loop */
723   int regRecord;              /* Register holding an index record */
724   int n;                      /* Column counter */
725   int i;                      /* Loop counter */
726   int mxBitCol;               /* Maximum column in pSrc->colUsed */
727   CollSeq *pColl;             /* Collating sequence to on a column */
728   WhereLoop *pLoop;           /* The Loop object */
729   char *zNotUsed;             /* Extra space on the end of pIdx */
730   Bitmask idxCols;            /* Bitmap of columns used for indexing */
731   Bitmask extraCols;          /* Bitmap of additional columns */
732   u8 sentWarning = 0;         /* True if a warnning has been issued */
733   Expr *pPartial = 0;         /* Partial Index Expression */
734   int iContinue = 0;          /* Jump here to skip excluded rows */
735   struct SrcList_item *pTabItem;  /* FROM clause term being indexed */
736   int addrCounter = 0;        /* Address where integer counter is initialized */
737   int regBase;                /* Array of registers where record is assembled */
738 
739   /* Generate code to skip over the creation and initialization of the
740   ** transient index on 2nd and subsequent iterations of the loop. */
741   v = pParse->pVdbe;
742   assert( v!=0 );
743   addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
744 
745   /* Count the number of columns that will be added to the index
746   ** and used to match WHERE clause constraints */
747   nKeyCol = 0;
748   pTable = pSrc->pTab;
749   pWCEnd = &pWC->a[pWC->nTerm];
750   pLoop = pLevel->pWLoop;
751   idxCols = 0;
752   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
753     Expr *pExpr = pTerm->pExpr;
754     assert( !ExprHasProperty(pExpr, EP_FromJoin)    /* prereq always non-zero */
755          || pExpr->iRightJoinTable!=pSrc->iCursor   /*   for the right-hand   */
756          || pLoop->prereq!=0 );                     /*   table of a LEFT JOIN */
757     if( pLoop->prereq==0
758      && (pTerm->wtFlags & TERM_VIRTUAL)==0
759      && !ExprHasProperty(pExpr, EP_FromJoin)
760      && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){
761       pPartial = sqlite3ExprAnd(pParse, pPartial,
762                                 sqlite3ExprDup(pParse->db, pExpr, 0));
763     }
764     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
765       int iCol = pTerm->u.x.leftColumn;
766       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
767       testcase( iCol==BMS );
768       testcase( iCol==BMS-1 );
769       if( !sentWarning ){
770         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
771             "automatic index on %s(%s)", pTable->zName,
772             pTable->aCol[iCol].zName);
773         sentWarning = 1;
774       }
775       if( (idxCols & cMask)==0 ){
776         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
777           goto end_auto_index_create;
778         }
779         pLoop->aLTerm[nKeyCol++] = pTerm;
780         idxCols |= cMask;
781       }
782     }
783   }
784   assert( nKeyCol>0 );
785   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
786   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
787                      | WHERE_AUTO_INDEX;
788 
789   /* Count the number of additional columns needed to create a
790   ** covering index.  A "covering index" is an index that contains all
791   ** columns that are needed by the query.  With a covering index, the
792   ** original table never needs to be accessed.  Automatic indices must
793   ** be a covering index because the index will not be updated if the
794   ** original table changes and the index and table cannot both be used
795   ** if they go out of sync.
796   */
797   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
798   mxBitCol = MIN(BMS-1,pTable->nCol);
799   testcase( pTable->nCol==BMS-1 );
800   testcase( pTable->nCol==BMS-2 );
801   for(i=0; i<mxBitCol; i++){
802     if( extraCols & MASKBIT(i) ) nKeyCol++;
803   }
804   if( pSrc->colUsed & MASKBIT(BMS-1) ){
805     nKeyCol += pTable->nCol - BMS + 1;
806   }
807 
808   /* Construct the Index object to describe this index */
809   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
810   if( pIdx==0 ) goto end_auto_index_create;
811   pLoop->u.btree.pIndex = pIdx;
812   pIdx->zName = "auto-index";
813   pIdx->pTable = pTable;
814   n = 0;
815   idxCols = 0;
816   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
817     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
818       int iCol = pTerm->u.x.leftColumn;
819       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
820       testcase( iCol==BMS-1 );
821       testcase( iCol==BMS );
822       if( (idxCols & cMask)==0 ){
823         Expr *pX = pTerm->pExpr;
824         idxCols |= cMask;
825         pIdx->aiColumn[n] = pTerm->u.x.leftColumn;
826         pColl = sqlite3ExprCompareCollSeq(pParse, pX);
827         assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */
828         pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
829         n++;
830       }
831     }
832   }
833   assert( (u32)n==pLoop->u.btree.nEq );
834 
835   /* Add additional columns needed to make the automatic index into
836   ** a covering index */
837   for(i=0; i<mxBitCol; i++){
838     if( extraCols & MASKBIT(i) ){
839       pIdx->aiColumn[n] = i;
840       pIdx->azColl[n] = sqlite3StrBINARY;
841       n++;
842     }
843   }
844   if( pSrc->colUsed & MASKBIT(BMS-1) ){
845     for(i=BMS-1; i<pTable->nCol; i++){
846       pIdx->aiColumn[n] = i;
847       pIdx->azColl[n] = sqlite3StrBINARY;
848       n++;
849     }
850   }
851   assert( n==nKeyCol );
852   pIdx->aiColumn[n] = XN_ROWID;
853   pIdx->azColl[n] = sqlite3StrBINARY;
854 
855   /* Create the automatic index */
856   assert( pLevel->iIdxCur>=0 );
857   pLevel->iIdxCur = pParse->nTab++;
858   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
859   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
860   VdbeComment((v, "for %s", pTable->zName));
861 
862   /* Fill the automatic index with content */
863   pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
864   if( pTabItem->fg.viaCoroutine ){
865     int regYield = pTabItem->regReturn;
866     addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
867     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
868     addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
869     VdbeCoverage(v);
870     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
871   }else{
872     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
873   }
874   if( pPartial ){
875     iContinue = sqlite3VdbeMakeLabel(pParse);
876     sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
877     pLoop->wsFlags |= WHERE_PARTIALIDX;
878   }
879   regRecord = sqlite3GetTempReg(pParse);
880   regBase = sqlite3GenerateIndexKey(
881       pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
882   );
883   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
884   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
885   if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
886   if( pTabItem->fg.viaCoroutine ){
887     sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
888     testcase( pParse->db->mallocFailed );
889     assert( pLevel->iIdxCur>0 );
890     translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
891                           pTabItem->regResult, pLevel->iIdxCur);
892     sqlite3VdbeGoto(v, addrTop);
893     pTabItem->fg.viaCoroutine = 0;
894   }else{
895     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
896     sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
897   }
898   sqlite3VdbeJumpHere(v, addrTop);
899   sqlite3ReleaseTempReg(pParse, regRecord);
900 
901   /* Jump here when skipping the initialization */
902   sqlite3VdbeJumpHere(v, addrInit);
903 
904 end_auto_index_create:
905   sqlite3ExprDelete(pParse->db, pPartial);
906 }
907 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
908 
909 #ifndef SQLITE_OMIT_VIRTUALTABLE
910 /*
911 ** Allocate and populate an sqlite3_index_info structure. It is the
912 ** responsibility of the caller to eventually release the structure
913 ** by passing the pointer returned by this function to sqlite3_free().
914 */
915 static sqlite3_index_info *allocateIndexInfo(
916   Parse *pParse,                  /* The parsing context */
917   WhereClause *pWC,               /* The WHERE clause being analyzed */
918   Bitmask mUnusable,              /* Ignore terms with these prereqs */
919   struct SrcList_item *pSrc,      /* The FROM clause term that is the vtab */
920   ExprList *pOrderBy,             /* The ORDER BY clause */
921   u16 *pmNoOmit                   /* Mask of terms not to omit */
922 ){
923   int i, j;
924   int nTerm;
925   struct sqlite3_index_constraint *pIdxCons;
926   struct sqlite3_index_orderby *pIdxOrderBy;
927   struct sqlite3_index_constraint_usage *pUsage;
928   struct HiddenIndexInfo *pHidden;
929   WhereTerm *pTerm;
930   int nOrderBy;
931   sqlite3_index_info *pIdxInfo;
932   u16 mNoOmit = 0;
933 
934   /* Count the number of possible WHERE clause constraints referring
935   ** to this virtual table */
936   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
937     if( pTerm->leftCursor != pSrc->iCursor ) continue;
938     if( pTerm->prereqRight & mUnusable ) continue;
939     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
940     testcase( pTerm->eOperator & WO_IN );
941     testcase( pTerm->eOperator & WO_ISNULL );
942     testcase( pTerm->eOperator & WO_IS );
943     testcase( pTerm->eOperator & WO_ALL );
944     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
945     if( pTerm->wtFlags & TERM_VNULL ) continue;
946     assert( pTerm->u.x.leftColumn>=(-1) );
947     nTerm++;
948   }
949 
950   /* If the ORDER BY clause contains only columns in the current
951   ** virtual table then allocate space for the aOrderBy part of
952   ** the sqlite3_index_info structure.
953   */
954   nOrderBy = 0;
955   if( pOrderBy ){
956     int n = pOrderBy->nExpr;
957     for(i=0; i<n; i++){
958       Expr *pExpr = pOrderBy->a[i].pExpr;
959       if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
960       if( pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL ) break;
961     }
962     if( i==n){
963       nOrderBy = n;
964     }
965   }
966 
967   /* Allocate the sqlite3_index_info structure
968   */
969   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
970                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
971                            + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) );
972   if( pIdxInfo==0 ){
973     sqlite3ErrorMsg(pParse, "out of memory");
974     return 0;
975   }
976   pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
977   pIdxCons = (struct sqlite3_index_constraint*)&pHidden[1];
978   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
979   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
980   pIdxInfo->nOrderBy = nOrderBy;
981   pIdxInfo->aConstraint = pIdxCons;
982   pIdxInfo->aOrderBy = pIdxOrderBy;
983   pIdxInfo->aConstraintUsage = pUsage;
984   pHidden->pWC = pWC;
985   pHidden->pParse = pParse;
986   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
987     u16 op;
988     if( pTerm->leftCursor != pSrc->iCursor ) continue;
989     if( pTerm->prereqRight & mUnusable ) continue;
990     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
991     testcase( pTerm->eOperator & WO_IN );
992     testcase( pTerm->eOperator & WO_IS );
993     testcase( pTerm->eOperator & WO_ISNULL );
994     testcase( pTerm->eOperator & WO_ALL );
995     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
996     if( pTerm->wtFlags & TERM_VNULL ) continue;
997 
998     /* tag-20191211-002: WHERE-clause constraints are not useful to the
999     ** right-hand table of a LEFT JOIN.  See tag-20191211-001 for the
1000     ** equivalent restriction for ordinary tables. */
1001     if( (pSrc->fg.jointype & JT_LEFT)!=0
1002      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
1003     ){
1004       continue;
1005     }
1006     assert( pTerm->u.x.leftColumn>=(-1) );
1007     pIdxCons[j].iColumn = pTerm->u.x.leftColumn;
1008     pIdxCons[j].iTermOffset = i;
1009     op = pTerm->eOperator & WO_ALL;
1010     if( op==WO_IN ) op = WO_EQ;
1011     if( op==WO_AUX ){
1012       pIdxCons[j].op = pTerm->eMatchOp;
1013     }else if( op & (WO_ISNULL|WO_IS) ){
1014       if( op==WO_ISNULL ){
1015         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
1016       }else{
1017         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
1018       }
1019     }else{
1020       pIdxCons[j].op = (u8)op;
1021       /* The direct assignment in the previous line is possible only because
1022       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
1023       ** following asserts verify this fact. */
1024       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1025       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1026       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1027       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1028       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1029       assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
1030 
1031       if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
1032        && sqlite3ExprIsVector(pTerm->pExpr->pRight)
1033       ){
1034         testcase( j!=i );
1035         if( j<16 ) mNoOmit |= (1 << j);
1036         if( op==WO_LT ) pIdxCons[j].op = WO_LE;
1037         if( op==WO_GT ) pIdxCons[j].op = WO_GE;
1038       }
1039     }
1040 
1041     j++;
1042   }
1043   pIdxInfo->nConstraint = j;
1044   for(i=0; i<nOrderBy; i++){
1045     Expr *pExpr = pOrderBy->a[i].pExpr;
1046     pIdxOrderBy[i].iColumn = pExpr->iColumn;
1047     pIdxOrderBy[i].desc = pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC;
1048   }
1049 
1050   *pmNoOmit = mNoOmit;
1051   return pIdxInfo;
1052 }
1053 
1054 /*
1055 ** The table object reference passed as the second argument to this function
1056 ** must represent a virtual table. This function invokes the xBestIndex()
1057 ** method of the virtual table with the sqlite3_index_info object that
1058 ** comes in as the 3rd argument to this function.
1059 **
1060 ** If an error occurs, pParse is populated with an error message and an
1061 ** appropriate error code is returned.  A return of SQLITE_CONSTRAINT from
1062 ** xBestIndex is not considered an error.  SQLITE_CONSTRAINT indicates that
1063 ** the current configuration of "unusable" flags in sqlite3_index_info can
1064 ** not result in a valid plan.
1065 **
1066 ** Whether or not an error is returned, it is the responsibility of the
1067 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1068 ** that this is required.
1069 */
1070 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
1071   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
1072   int rc;
1073 
1074   whereTraceIndexInfoInputs(p);
1075   rc = pVtab->pModule->xBestIndex(pVtab, p);
1076   whereTraceIndexInfoOutputs(p);
1077 
1078   if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){
1079     if( rc==SQLITE_NOMEM ){
1080       sqlite3OomFault(pParse->db);
1081     }else if( !pVtab->zErrMsg ){
1082       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1083     }else{
1084       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1085     }
1086   }
1087   sqlite3_free(pVtab->zErrMsg);
1088   pVtab->zErrMsg = 0;
1089   return rc;
1090 }
1091 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1092 
1093 #ifdef SQLITE_ENABLE_STAT4
1094 /*
1095 ** Estimate the location of a particular key among all keys in an
1096 ** index.  Store the results in aStat as follows:
1097 **
1098 **    aStat[0]      Est. number of rows less than pRec
1099 **    aStat[1]      Est. number of rows equal to pRec
1100 **
1101 ** Return the index of the sample that is the smallest sample that
1102 ** is greater than or equal to pRec. Note that this index is not an index
1103 ** into the aSample[] array - it is an index into a virtual set of samples
1104 ** based on the contents of aSample[] and the number of fields in record
1105 ** pRec.
1106 */
1107 static int whereKeyStats(
1108   Parse *pParse,              /* Database connection */
1109   Index *pIdx,                /* Index to consider domain of */
1110   UnpackedRecord *pRec,       /* Vector of values to consider */
1111   int roundUp,                /* Round up if true.  Round down if false */
1112   tRowcnt *aStat              /* OUT: stats written here */
1113 ){
1114   IndexSample *aSample = pIdx->aSample;
1115   int iCol;                   /* Index of required stats in anEq[] etc. */
1116   int i;                      /* Index of first sample >= pRec */
1117   int iSample;                /* Smallest sample larger than or equal to pRec */
1118   int iMin = 0;               /* Smallest sample not yet tested */
1119   int iTest;                  /* Next sample to test */
1120   int res;                    /* Result of comparison operation */
1121   int nField;                 /* Number of fields in pRec */
1122   tRowcnt iLower = 0;         /* anLt[] + anEq[] of largest sample pRec is > */
1123 
1124 #ifndef SQLITE_DEBUG
1125   UNUSED_PARAMETER( pParse );
1126 #endif
1127   assert( pRec!=0 );
1128   assert( pIdx->nSample>0 );
1129   assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
1130 
1131   /* Do a binary search to find the first sample greater than or equal
1132   ** to pRec. If pRec contains a single field, the set of samples to search
1133   ** is simply the aSample[] array. If the samples in aSample[] contain more
1134   ** than one fields, all fields following the first are ignored.
1135   **
1136   ** If pRec contains N fields, where N is more than one, then as well as the
1137   ** samples in aSample[] (truncated to N fields), the search also has to
1138   ** consider prefixes of those samples. For example, if the set of samples
1139   ** in aSample is:
1140   **
1141   **     aSample[0] = (a, 5)
1142   **     aSample[1] = (a, 10)
1143   **     aSample[2] = (b, 5)
1144   **     aSample[3] = (c, 100)
1145   **     aSample[4] = (c, 105)
1146   **
1147   ** Then the search space should ideally be the samples above and the
1148   ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1149   ** the code actually searches this set:
1150   **
1151   **     0: (a)
1152   **     1: (a, 5)
1153   **     2: (a, 10)
1154   **     3: (a, 10)
1155   **     4: (b)
1156   **     5: (b, 5)
1157   **     6: (c)
1158   **     7: (c, 100)
1159   **     8: (c, 105)
1160   **     9: (c, 105)
1161   **
1162   ** For each sample in the aSample[] array, N samples are present in the
1163   ** effective sample array. In the above, samples 0 and 1 are based on
1164   ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1165   **
1166   ** Often, sample i of each block of N effective samples has (i+1) fields.
1167   ** Except, each sample may be extended to ensure that it is greater than or
1168   ** equal to the previous sample in the array. For example, in the above,
1169   ** sample 2 is the first sample of a block of N samples, so at first it
1170   ** appears that it should be 1 field in size. However, that would make it
1171   ** smaller than sample 1, so the binary search would not work. As a result,
1172   ** it is extended to two fields. The duplicates that this creates do not
1173   ** cause any problems.
1174   */
1175   nField = pRec->nField;
1176   iCol = 0;
1177   iSample = pIdx->nSample * nField;
1178   do{
1179     int iSamp;                    /* Index in aSample[] of test sample */
1180     int n;                        /* Number of fields in test sample */
1181 
1182     iTest = (iMin+iSample)/2;
1183     iSamp = iTest / nField;
1184     if( iSamp>0 ){
1185       /* The proposed effective sample is a prefix of sample aSample[iSamp].
1186       ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1187       ** fields that is greater than the previous effective sample.  */
1188       for(n=(iTest % nField) + 1; n<nField; n++){
1189         if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1190       }
1191     }else{
1192       n = iTest + 1;
1193     }
1194 
1195     pRec->nField = n;
1196     res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1197     if( res<0 ){
1198       iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1199       iMin = iTest+1;
1200     }else if( res==0 && n<nField ){
1201       iLower = aSample[iSamp].anLt[n-1];
1202       iMin = iTest+1;
1203       res = -1;
1204     }else{
1205       iSample = iTest;
1206       iCol = n-1;
1207     }
1208   }while( res && iMin<iSample );
1209   i = iSample / nField;
1210 
1211 #ifdef SQLITE_DEBUG
1212   /* The following assert statements check that the binary search code
1213   ** above found the right answer. This block serves no purpose other
1214   ** than to invoke the asserts.  */
1215   if( pParse->db->mallocFailed==0 ){
1216     if( res==0 ){
1217       /* If (res==0) is true, then pRec must be equal to sample i. */
1218       assert( i<pIdx->nSample );
1219       assert( iCol==nField-1 );
1220       pRec->nField = nField;
1221       assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1222            || pParse->db->mallocFailed
1223       );
1224     }else{
1225       /* Unless i==pIdx->nSample, indicating that pRec is larger than
1226       ** all samples in the aSample[] array, pRec must be smaller than the
1227       ** (iCol+1) field prefix of sample i.  */
1228       assert( i<=pIdx->nSample && i>=0 );
1229       pRec->nField = iCol+1;
1230       assert( i==pIdx->nSample
1231            || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1232            || pParse->db->mallocFailed );
1233 
1234       /* if i==0 and iCol==0, then record pRec is smaller than all samples
1235       ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1236       ** be greater than or equal to the (iCol) field prefix of sample i.
1237       ** If (i>0), then pRec must also be greater than sample (i-1).  */
1238       if( iCol>0 ){
1239         pRec->nField = iCol;
1240         assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1241              || pParse->db->mallocFailed );
1242       }
1243       if( i>0 ){
1244         pRec->nField = nField;
1245         assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1246              || pParse->db->mallocFailed );
1247       }
1248     }
1249   }
1250 #endif /* ifdef SQLITE_DEBUG */
1251 
1252   if( res==0 ){
1253     /* Record pRec is equal to sample i */
1254     assert( iCol==nField-1 );
1255     aStat[0] = aSample[i].anLt[iCol];
1256     aStat[1] = aSample[i].anEq[iCol];
1257   }else{
1258     /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1259     ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1260     ** is larger than all samples in the array. */
1261     tRowcnt iUpper, iGap;
1262     if( i>=pIdx->nSample ){
1263       iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1264     }else{
1265       iUpper = aSample[i].anLt[iCol];
1266     }
1267 
1268     if( iLower>=iUpper ){
1269       iGap = 0;
1270     }else{
1271       iGap = iUpper - iLower;
1272     }
1273     if( roundUp ){
1274       iGap = (iGap*2)/3;
1275     }else{
1276       iGap = iGap/3;
1277     }
1278     aStat[0] = iLower + iGap;
1279     aStat[1] = pIdx->aAvgEq[nField-1];
1280   }
1281 
1282   /* Restore the pRec->nField value before returning.  */
1283   pRec->nField = nField;
1284   return i;
1285 }
1286 #endif /* SQLITE_ENABLE_STAT4 */
1287 
1288 /*
1289 ** If it is not NULL, pTerm is a term that provides an upper or lower
1290 ** bound on a range scan. Without considering pTerm, it is estimated
1291 ** that the scan will visit nNew rows. This function returns the number
1292 ** estimated to be visited after taking pTerm into account.
1293 **
1294 ** If the user explicitly specified a likelihood() value for this term,
1295 ** then the return value is the likelihood multiplied by the number of
1296 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1297 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1298 */
1299 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1300   LogEst nRet = nNew;
1301   if( pTerm ){
1302     if( pTerm->truthProb<=0 ){
1303       nRet += pTerm->truthProb;
1304     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1305       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
1306     }
1307   }
1308   return nRet;
1309 }
1310 
1311 
1312 #ifdef SQLITE_ENABLE_STAT4
1313 /*
1314 ** Return the affinity for a single column of an index.
1315 */
1316 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1317   assert( iCol>=0 && iCol<pIdx->nColumn );
1318   if( !pIdx->zColAff ){
1319     if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1320   }
1321   assert( pIdx->zColAff[iCol]!=0 );
1322   return pIdx->zColAff[iCol];
1323 }
1324 #endif
1325 
1326 
1327 #ifdef SQLITE_ENABLE_STAT4
1328 /*
1329 ** This function is called to estimate the number of rows visited by a
1330 ** range-scan on a skip-scan index. For example:
1331 **
1332 **   CREATE INDEX i1 ON t1(a, b, c);
1333 **   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1334 **
1335 ** Value pLoop->nOut is currently set to the estimated number of rows
1336 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1337 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1338 ** on the stat4 data for the index. this scan will be peformed multiple
1339 ** times (once for each (a,b) combination that matches a=?) is dealt with
1340 ** by the caller.
1341 **
1342 ** It does this by scanning through all stat4 samples, comparing values
1343 ** extracted from pLower and pUpper with the corresponding column in each
1344 ** sample. If L and U are the number of samples found to be less than or
1345 ** equal to the values extracted from pLower and pUpper respectively, and
1346 ** N is the total number of samples, the pLoop->nOut value is adjusted
1347 ** as follows:
1348 **
1349 **   nOut = nOut * ( min(U - L, 1) / N )
1350 **
1351 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1352 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1353 ** U is set to N.
1354 **
1355 ** Normally, this function sets *pbDone to 1 before returning. However,
1356 ** if no value can be extracted from either pLower or pUpper (and so the
1357 ** estimate of the number of rows delivered remains unchanged), *pbDone
1358 ** is left as is.
1359 **
1360 ** If an error occurs, an SQLite error code is returned. Otherwise,
1361 ** SQLITE_OK.
1362 */
1363 static int whereRangeSkipScanEst(
1364   Parse *pParse,       /* Parsing & code generating context */
1365   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1366   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1367   WhereLoop *pLoop,    /* Update the .nOut value of this loop */
1368   int *pbDone          /* Set to true if at least one expr. value extracted */
1369 ){
1370   Index *p = pLoop->u.btree.pIndex;
1371   int nEq = pLoop->u.btree.nEq;
1372   sqlite3 *db = pParse->db;
1373   int nLower = -1;
1374   int nUpper = p->nSample+1;
1375   int rc = SQLITE_OK;
1376   u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1377   CollSeq *pColl;
1378 
1379   sqlite3_value *p1 = 0;          /* Value extracted from pLower */
1380   sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
1381   sqlite3_value *pVal = 0;        /* Value extracted from record */
1382 
1383   pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1384   if( pLower ){
1385     rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1386     nLower = 0;
1387   }
1388   if( pUpper && rc==SQLITE_OK ){
1389     rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1390     nUpper = p2 ? 0 : p->nSample;
1391   }
1392 
1393   if( p1 || p2 ){
1394     int i;
1395     int nDiff;
1396     for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1397       rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1398       if( rc==SQLITE_OK && p1 ){
1399         int res = sqlite3MemCompare(p1, pVal, pColl);
1400         if( res>=0 ) nLower++;
1401       }
1402       if( rc==SQLITE_OK && p2 ){
1403         int res = sqlite3MemCompare(p2, pVal, pColl);
1404         if( res>=0 ) nUpper++;
1405       }
1406     }
1407     nDiff = (nUpper - nLower);
1408     if( nDiff<=0 ) nDiff = 1;
1409 
1410     /* If there is both an upper and lower bound specified, and the
1411     ** comparisons indicate that they are close together, use the fallback
1412     ** method (assume that the scan visits 1/64 of the rows) for estimating
1413     ** the number of rows visited. Otherwise, estimate the number of rows
1414     ** using the method described in the header comment for this function. */
1415     if( nDiff!=1 || pUpper==0 || pLower==0 ){
1416       int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1417       pLoop->nOut -= nAdjust;
1418       *pbDone = 1;
1419       WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n",
1420                            nLower, nUpper, nAdjust*-1, pLoop->nOut));
1421     }
1422 
1423   }else{
1424     assert( *pbDone==0 );
1425   }
1426 
1427   sqlite3ValueFree(p1);
1428   sqlite3ValueFree(p2);
1429   sqlite3ValueFree(pVal);
1430 
1431   return rc;
1432 }
1433 #endif /* SQLITE_ENABLE_STAT4 */
1434 
1435 /*
1436 ** This function is used to estimate the number of rows that will be visited
1437 ** by scanning an index for a range of values. The range may have an upper
1438 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1439 ** and lower bounds are represented by pLower and pUpper respectively. For
1440 ** example, assuming that index p is on t1(a):
1441 **
1442 **   ... FROM t1 WHERE a > ? AND a < ? ...
1443 **                    |_____|   |_____|
1444 **                       |         |
1445 **                     pLower    pUpper
1446 **
1447 ** If either of the upper or lower bound is not present, then NULL is passed in
1448 ** place of the corresponding WhereTerm.
1449 **
1450 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1451 ** column subject to the range constraint. Or, equivalently, the number of
1452 ** equality constraints optimized by the proposed index scan. For example,
1453 ** assuming index p is on t1(a, b), and the SQL query is:
1454 **
1455 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1456 **
1457 ** then nEq is set to 1 (as the range restricted column, b, is the second
1458 ** left-most column of the index). Or, if the query is:
1459 **
1460 **   ... FROM t1 WHERE a > ? AND a < ? ...
1461 **
1462 ** then nEq is set to 0.
1463 **
1464 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1465 ** number of rows that the index scan is expected to visit without
1466 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1467 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1468 ** to account for the range constraints pLower and pUpper.
1469 **
1470 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1471 ** used, a single range inequality reduces the search space by a factor of 4.
1472 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1473 ** rows visited by a factor of 64.
1474 */
1475 static int whereRangeScanEst(
1476   Parse *pParse,       /* Parsing & code generating context */
1477   WhereLoopBuilder *pBuilder,
1478   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1479   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1480   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
1481 ){
1482   int rc = SQLITE_OK;
1483   int nOut = pLoop->nOut;
1484   LogEst nNew;
1485 
1486 #ifdef SQLITE_ENABLE_STAT4
1487   Index *p = pLoop->u.btree.pIndex;
1488   int nEq = pLoop->u.btree.nEq;
1489 
1490   if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol)
1491    && OptimizationEnabled(pParse->db, SQLITE_Stat4)
1492   ){
1493     if( nEq==pBuilder->nRecValid ){
1494       UnpackedRecord *pRec = pBuilder->pRec;
1495       tRowcnt a[2];
1496       int nBtm = pLoop->u.btree.nBtm;
1497       int nTop = pLoop->u.btree.nTop;
1498 
1499       /* Variable iLower will be set to the estimate of the number of rows in
1500       ** the index that are less than the lower bound of the range query. The
1501       ** lower bound being the concatenation of $P and $L, where $P is the
1502       ** key-prefix formed by the nEq values matched against the nEq left-most
1503       ** columns of the index, and $L is the value in pLower.
1504       **
1505       ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1506       ** is not a simple variable or literal value), the lower bound of the
1507       ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1508       ** if $L is available, whereKeyStats() is called for both ($P) and
1509       ** ($P:$L) and the larger of the two returned values is used.
1510       **
1511       ** Similarly, iUpper is to be set to the estimate of the number of rows
1512       ** less than the upper bound of the range query. Where the upper bound
1513       ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1514       ** of iUpper are requested of whereKeyStats() and the smaller used.
1515       **
1516       ** The number of rows between the two bounds is then just iUpper-iLower.
1517       */
1518       tRowcnt iLower;     /* Rows less than the lower bound */
1519       tRowcnt iUpper;     /* Rows less than the upper bound */
1520       int iLwrIdx = -2;   /* aSample[] for the lower bound */
1521       int iUprIdx = -1;   /* aSample[] for the upper bound */
1522 
1523       if( pRec ){
1524         testcase( pRec->nField!=pBuilder->nRecValid );
1525         pRec->nField = pBuilder->nRecValid;
1526       }
1527       /* Determine iLower and iUpper using ($P) only. */
1528       if( nEq==0 ){
1529         iLower = 0;
1530         iUpper = p->nRowEst0;
1531       }else{
1532         /* Note: this call could be optimized away - since the same values must
1533         ** have been requested when testing key $P in whereEqualScanEst().  */
1534         whereKeyStats(pParse, p, pRec, 0, a);
1535         iLower = a[0];
1536         iUpper = a[0] + a[1];
1537       }
1538 
1539       assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1540       assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1541       assert( p->aSortOrder!=0 );
1542       if( p->aSortOrder[nEq] ){
1543         /* The roles of pLower and pUpper are swapped for a DESC index */
1544         SWAP(WhereTerm*, pLower, pUpper);
1545         SWAP(int, nBtm, nTop);
1546       }
1547 
1548       /* If possible, improve on the iLower estimate using ($P:$L). */
1549       if( pLower ){
1550         int n;                    /* Values extracted from pExpr */
1551         Expr *pExpr = pLower->pExpr->pRight;
1552         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1553         if( rc==SQLITE_OK && n ){
1554           tRowcnt iNew;
1555           u16 mask = WO_GT|WO_LE;
1556           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1557           iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1558           iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1559           if( iNew>iLower ) iLower = iNew;
1560           nOut--;
1561           pLower = 0;
1562         }
1563       }
1564 
1565       /* If possible, improve on the iUpper estimate using ($P:$U). */
1566       if( pUpper ){
1567         int n;                    /* Values extracted from pExpr */
1568         Expr *pExpr = pUpper->pExpr->pRight;
1569         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1570         if( rc==SQLITE_OK && n ){
1571           tRowcnt iNew;
1572           u16 mask = WO_GT|WO_LE;
1573           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1574           iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1575           iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1576           if( iNew<iUpper ) iUpper = iNew;
1577           nOut--;
1578           pUpper = 0;
1579         }
1580       }
1581 
1582       pBuilder->pRec = pRec;
1583       if( rc==SQLITE_OK ){
1584         if( iUpper>iLower ){
1585           nNew = sqlite3LogEst(iUpper - iLower);
1586           /* TUNING:  If both iUpper and iLower are derived from the same
1587           ** sample, then assume they are 4x more selective.  This brings
1588           ** the estimated selectivity more in line with what it would be
1589           ** if estimated without the use of STAT4 tables. */
1590           if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
1591         }else{
1592           nNew = 10;        assert( 10==sqlite3LogEst(2) );
1593         }
1594         if( nNew<nOut ){
1595           nOut = nNew;
1596         }
1597         WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
1598                            (u32)iLower, (u32)iUpper, nOut));
1599       }
1600     }else{
1601       int bDone = 0;
1602       rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1603       if( bDone ) return rc;
1604     }
1605   }
1606 #else
1607   UNUSED_PARAMETER(pParse);
1608   UNUSED_PARAMETER(pBuilder);
1609   assert( pLower || pUpper );
1610 #endif
1611   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1612   nNew = whereRangeAdjust(pLower, nOut);
1613   nNew = whereRangeAdjust(pUpper, nNew);
1614 
1615   /* TUNING: If there is both an upper and lower limit and neither limit
1616   ** has an application-defined likelihood(), assume the range is
1617   ** reduced by an additional 75%. This means that, by default, an open-ended
1618   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1619   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1620   ** match 1/64 of the index. */
1621   if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1622     nNew -= 20;
1623   }
1624 
1625   nOut -= (pLower!=0) + (pUpper!=0);
1626   if( nNew<10 ) nNew = 10;
1627   if( nNew<nOut ) nOut = nNew;
1628 #if defined(WHERETRACE_ENABLED)
1629   if( pLoop->nOut>nOut ){
1630     WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1631                     pLoop->nOut, nOut));
1632   }
1633 #endif
1634   pLoop->nOut = (LogEst)nOut;
1635   return rc;
1636 }
1637 
1638 #ifdef SQLITE_ENABLE_STAT4
1639 /*
1640 ** Estimate the number of rows that will be returned based on
1641 ** an equality constraint x=VALUE and where that VALUE occurs in
1642 ** the histogram data.  This only works when x is the left-most
1643 ** column of an index and sqlite_stat4 histogram data is available
1644 ** for that index.  When pExpr==NULL that means the constraint is
1645 ** "x IS NULL" instead of "x=VALUE".
1646 **
1647 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1648 ** If unable to make an estimate, leave *pnRow unchanged and return
1649 ** non-zero.
1650 **
1651 ** This routine can fail if it is unable to load a collating sequence
1652 ** required for string comparison, or if unable to allocate memory
1653 ** for a UTF conversion required for comparison.  The error is stored
1654 ** in the pParse structure.
1655 */
1656 static int whereEqualScanEst(
1657   Parse *pParse,       /* Parsing & code generating context */
1658   WhereLoopBuilder *pBuilder,
1659   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
1660   tRowcnt *pnRow       /* Write the revised row estimate here */
1661 ){
1662   Index *p = pBuilder->pNew->u.btree.pIndex;
1663   int nEq = pBuilder->pNew->u.btree.nEq;
1664   UnpackedRecord *pRec = pBuilder->pRec;
1665   int rc;                   /* Subfunction return code */
1666   tRowcnt a[2];             /* Statistics */
1667   int bOk;
1668 
1669   assert( nEq>=1 );
1670   assert( nEq<=p->nColumn );
1671   assert( p->aSample!=0 );
1672   assert( p->nSample>0 );
1673   assert( pBuilder->nRecValid<nEq );
1674 
1675   /* If values are not available for all fields of the index to the left
1676   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1677   if( pBuilder->nRecValid<(nEq-1) ){
1678     return SQLITE_NOTFOUND;
1679   }
1680 
1681   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1682   ** below would return the same value.  */
1683   if( nEq>=p->nColumn ){
1684     *pnRow = 1;
1685     return SQLITE_OK;
1686   }
1687 
1688   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1689   pBuilder->pRec = pRec;
1690   if( rc!=SQLITE_OK ) return rc;
1691   if( bOk==0 ) return SQLITE_NOTFOUND;
1692   pBuilder->nRecValid = nEq;
1693 
1694   whereKeyStats(pParse, p, pRec, 0, a);
1695   WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1696                    p->zName, nEq-1, (int)a[1]));
1697   *pnRow = a[1];
1698 
1699   return rc;
1700 }
1701 #endif /* SQLITE_ENABLE_STAT4 */
1702 
1703 #ifdef SQLITE_ENABLE_STAT4
1704 /*
1705 ** Estimate the number of rows that will be returned based on
1706 ** an IN constraint where the right-hand side of the IN operator
1707 ** is a list of values.  Example:
1708 **
1709 **        WHERE x IN (1,2,3,4)
1710 **
1711 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1712 ** If unable to make an estimate, leave *pnRow unchanged and return
1713 ** non-zero.
1714 **
1715 ** This routine can fail if it is unable to load a collating sequence
1716 ** required for string comparison, or if unable to allocate memory
1717 ** for a UTF conversion required for comparison.  The error is stored
1718 ** in the pParse structure.
1719 */
1720 static int whereInScanEst(
1721   Parse *pParse,       /* Parsing & code generating context */
1722   WhereLoopBuilder *pBuilder,
1723   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1724   tRowcnt *pnRow       /* Write the revised row estimate here */
1725 ){
1726   Index *p = pBuilder->pNew->u.btree.pIndex;
1727   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1728   int nRecValid = pBuilder->nRecValid;
1729   int rc = SQLITE_OK;     /* Subfunction return code */
1730   tRowcnt nEst;           /* Number of rows for a single term */
1731   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
1732   int i;                  /* Loop counter */
1733 
1734   assert( p->aSample!=0 );
1735   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
1736     nEst = nRow0;
1737     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
1738     nRowEst += nEst;
1739     pBuilder->nRecValid = nRecValid;
1740   }
1741 
1742   if( rc==SQLITE_OK ){
1743     if( nRowEst > nRow0 ) nRowEst = nRow0;
1744     *pnRow = nRowEst;
1745     WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
1746   }
1747   assert( pBuilder->nRecValid==nRecValid );
1748   return rc;
1749 }
1750 #endif /* SQLITE_ENABLE_STAT4 */
1751 
1752 
1753 #ifdef WHERETRACE_ENABLED
1754 /*
1755 ** Print the content of a WhereTerm object
1756 */
1757 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){
1758   if( pTerm==0 ){
1759     sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
1760   }else{
1761     char zType[8];
1762     char zLeft[50];
1763     memcpy(zType, "....", 5);
1764     if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
1765     if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
1766     if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
1767     if( pTerm->wtFlags & TERM_CODED  ) zType[3] = 'C';
1768     if( pTerm->eOperator & WO_SINGLE ){
1769       sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
1770                        pTerm->leftCursor, pTerm->u.x.leftColumn);
1771     }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
1772       sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx",
1773                        pTerm->u.pOrInfo->indexable);
1774     }else{
1775       sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
1776     }
1777     sqlite3DebugPrintf(
1778        "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x",
1779        iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags);
1780     /* The 0x10000 .wheretrace flag causes extra information to be
1781     ** shown about each Term */
1782     if( sqlite3WhereTrace & 0x10000 ){
1783       sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx",
1784         pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight);
1785     }
1786     if( pTerm->u.x.iField ){
1787       sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField);
1788     }
1789     if( pTerm->iParent>=0 ){
1790       sqlite3DebugPrintf(" iParent=%d", pTerm->iParent);
1791     }
1792     sqlite3DebugPrintf("\n");
1793     sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
1794   }
1795 }
1796 #endif
1797 
1798 #ifdef WHERETRACE_ENABLED
1799 /*
1800 ** Show the complete content of a WhereClause
1801 */
1802 void sqlite3WhereClausePrint(WhereClause *pWC){
1803   int i;
1804   for(i=0; i<pWC->nTerm; i++){
1805     sqlite3WhereTermPrint(&pWC->a[i], i);
1806   }
1807 }
1808 #endif
1809 
1810 #ifdef WHERETRACE_ENABLED
1811 /*
1812 ** Print a WhereLoop object for debugging purposes
1813 */
1814 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){
1815   WhereInfo *pWInfo = pWC->pWInfo;
1816   int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
1817   struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab;
1818   Table *pTab = pItem->pTab;
1819   Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
1820   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
1821                      p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
1822   sqlite3DebugPrintf(" %12s",
1823                      pItem->zAlias ? pItem->zAlias : pTab->zName);
1824   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
1825     const char *zName;
1826     if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
1827       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
1828         int i = sqlite3Strlen30(zName) - 1;
1829         while( zName[i]!='_' ) i--;
1830         zName += i;
1831       }
1832       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
1833     }else{
1834       sqlite3DebugPrintf("%20s","");
1835     }
1836   }else{
1837     char *z;
1838     if( p->u.vtab.idxStr ){
1839       z = sqlite3_mprintf("(%d,\"%s\",%#x)",
1840                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
1841     }else{
1842       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
1843     }
1844     sqlite3DebugPrintf(" %-19s", z);
1845     sqlite3_free(z);
1846   }
1847   if( p->wsFlags & WHERE_SKIPSCAN ){
1848     sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
1849   }else{
1850     sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
1851   }
1852   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
1853   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
1854     int i;
1855     for(i=0; i<p->nLTerm; i++){
1856       sqlite3WhereTermPrint(p->aLTerm[i], i);
1857     }
1858   }
1859 }
1860 #endif
1861 
1862 /*
1863 ** Convert bulk memory into a valid WhereLoop that can be passed
1864 ** to whereLoopClear harmlessly.
1865 */
1866 static void whereLoopInit(WhereLoop *p){
1867   p->aLTerm = p->aLTermSpace;
1868   p->nLTerm = 0;
1869   p->nLSlot = ArraySize(p->aLTermSpace);
1870   p->wsFlags = 0;
1871 }
1872 
1873 /*
1874 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
1875 */
1876 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
1877   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
1878     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
1879       sqlite3_free(p->u.vtab.idxStr);
1880       p->u.vtab.needFree = 0;
1881       p->u.vtab.idxStr = 0;
1882     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
1883       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
1884       sqlite3DbFreeNN(db, p->u.btree.pIndex);
1885       p->u.btree.pIndex = 0;
1886     }
1887   }
1888 }
1889 
1890 /*
1891 ** Deallocate internal memory used by a WhereLoop object
1892 */
1893 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
1894   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1895   whereLoopClearUnion(db, p);
1896   whereLoopInit(p);
1897 }
1898 
1899 /*
1900 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
1901 */
1902 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
1903   WhereTerm **paNew;
1904   if( p->nLSlot>=n ) return SQLITE_OK;
1905   n = (n+7)&~7;
1906   paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
1907   if( paNew==0 ) return SQLITE_NOMEM_BKPT;
1908   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
1909   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1910   p->aLTerm = paNew;
1911   p->nLSlot = n;
1912   return SQLITE_OK;
1913 }
1914 
1915 /*
1916 ** Transfer content from the second pLoop into the first.
1917 */
1918 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
1919   whereLoopClearUnion(db, pTo);
1920   if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
1921     memset(&pTo->u, 0, sizeof(pTo->u));
1922     return SQLITE_NOMEM_BKPT;
1923   }
1924   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
1925   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
1926   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
1927     pFrom->u.vtab.needFree = 0;
1928   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
1929     pFrom->u.btree.pIndex = 0;
1930   }
1931   return SQLITE_OK;
1932 }
1933 
1934 /*
1935 ** Delete a WhereLoop object
1936 */
1937 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
1938   whereLoopClear(db, p);
1939   sqlite3DbFreeNN(db, p);
1940 }
1941 
1942 /*
1943 ** Free a WhereInfo structure
1944 */
1945 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
1946   int i;
1947   assert( pWInfo!=0 );
1948   for(i=0; i<pWInfo->nLevel; i++){
1949     WhereLevel *pLevel = &pWInfo->a[i];
1950     if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){
1951       sqlite3DbFree(db, pLevel->u.in.aInLoop);
1952     }
1953   }
1954   sqlite3WhereClauseClear(&pWInfo->sWC);
1955   while( pWInfo->pLoops ){
1956     WhereLoop *p = pWInfo->pLoops;
1957     pWInfo->pLoops = p->pNextLoop;
1958     whereLoopDelete(db, p);
1959   }
1960   assert( pWInfo->pExprMods==0 );
1961   sqlite3DbFreeNN(db, pWInfo);
1962 }
1963 
1964 /*
1965 ** Return TRUE if all of the following are true:
1966 **
1967 **   (1)  X has the same or lower cost that Y
1968 **   (2)  X uses fewer WHERE clause terms than Y
1969 **   (3)  Every WHERE clause term used by X is also used by Y
1970 **   (4)  X skips at least as many columns as Y
1971 **   (5)  If X is a covering index, than Y is too
1972 **
1973 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
1974 ** If X is a proper subset of Y then Y is a better choice and ought
1975 ** to have a lower cost.  This routine returns TRUE when that cost
1976 ** relationship is inverted and needs to be adjusted.  Constraint (4)
1977 ** was added because if X uses skip-scan less than Y it still might
1978 ** deserve a lower cost even if it is a proper subset of Y.  Constraint (5)
1979 ** was added because a covering index probably deserves to have a lower cost
1980 ** than a non-covering index even if it is a proper subset.
1981 */
1982 static int whereLoopCheaperProperSubset(
1983   const WhereLoop *pX,       /* First WhereLoop to compare */
1984   const WhereLoop *pY        /* Compare against this WhereLoop */
1985 ){
1986   int i, j;
1987   if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
1988     return 0; /* X is not a subset of Y */
1989   }
1990   if( pY->nSkip > pX->nSkip ) return 0;
1991   if( pX->rRun >= pY->rRun ){
1992     if( pX->rRun > pY->rRun ) return 0;    /* X costs more than Y */
1993     if( pX->nOut > pY->nOut ) return 0;    /* X costs more than Y */
1994   }
1995   for(i=pX->nLTerm-1; i>=0; i--){
1996     if( pX->aLTerm[i]==0 ) continue;
1997     for(j=pY->nLTerm-1; j>=0; j--){
1998       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
1999     }
2000     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
2001   }
2002   if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
2003    && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
2004     return 0;  /* Constraint (5) */
2005   }
2006   return 1;  /* All conditions meet */
2007 }
2008 
2009 /*
2010 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
2011 ** that:
2012 **
2013 **   (1) pTemplate costs less than any other WhereLoops that are a proper
2014 **       subset of pTemplate
2015 **
2016 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
2017 **       is a proper subset.
2018 **
2019 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
2020 ** WHERE clause terms than Y and that every WHERE clause term used by X is
2021 ** also used by Y.
2022 */
2023 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
2024   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
2025   for(; p; p=p->pNextLoop){
2026     if( p->iTab!=pTemplate->iTab ) continue;
2027     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
2028     if( whereLoopCheaperProperSubset(p, pTemplate) ){
2029       /* Adjust pTemplate cost downward so that it is cheaper than its
2030       ** subset p. */
2031       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2032                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1));
2033       pTemplate->rRun = p->rRun;
2034       pTemplate->nOut = p->nOut - 1;
2035     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
2036       /* Adjust pTemplate cost upward so that it is costlier than p since
2037       ** pTemplate is a proper subset of p */
2038       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2039                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1));
2040       pTemplate->rRun = p->rRun;
2041       pTemplate->nOut = p->nOut + 1;
2042     }
2043   }
2044 }
2045 
2046 /*
2047 ** Search the list of WhereLoops in *ppPrev looking for one that can be
2048 ** replaced by pTemplate.
2049 **
2050 ** Return NULL if pTemplate does not belong on the WhereLoop list.
2051 ** In other words if pTemplate ought to be dropped from further consideration.
2052 **
2053 ** If pX is a WhereLoop that pTemplate can replace, then return the
2054 ** link that points to pX.
2055 **
2056 ** If pTemplate cannot replace any existing element of the list but needs
2057 ** to be added to the list as a new entry, then return a pointer to the
2058 ** tail of the list.
2059 */
2060 static WhereLoop **whereLoopFindLesser(
2061   WhereLoop **ppPrev,
2062   const WhereLoop *pTemplate
2063 ){
2064   WhereLoop *p;
2065   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
2066     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
2067       /* If either the iTab or iSortIdx values for two WhereLoop are different
2068       ** then those WhereLoops need to be considered separately.  Neither is
2069       ** a candidate to replace the other. */
2070       continue;
2071     }
2072     /* In the current implementation, the rSetup value is either zero
2073     ** or the cost of building an automatic index (NlogN) and the NlogN
2074     ** is the same for compatible WhereLoops. */
2075     assert( p->rSetup==0 || pTemplate->rSetup==0
2076                  || p->rSetup==pTemplate->rSetup );
2077 
2078     /* whereLoopAddBtree() always generates and inserts the automatic index
2079     ** case first.  Hence compatible candidate WhereLoops never have a larger
2080     ** rSetup. Call this SETUP-INVARIANT */
2081     assert( p->rSetup>=pTemplate->rSetup );
2082 
2083     /* Any loop using an appliation-defined index (or PRIMARY KEY or
2084     ** UNIQUE constraint) with one or more == constraints is better
2085     ** than an automatic index. Unless it is a skip-scan. */
2086     if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
2087      && (pTemplate->nSkip)==0
2088      && (pTemplate->wsFlags & WHERE_INDEXED)!=0
2089      && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
2090      && (p->prereq & pTemplate->prereq)==pTemplate->prereq
2091     ){
2092       break;
2093     }
2094 
2095     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2096     ** discarded.  WhereLoop p is better if:
2097     **   (1)  p has no more dependencies than pTemplate, and
2098     **   (2)  p has an equal or lower cost than pTemplate
2099     */
2100     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
2101      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
2102      && p->rRun<=pTemplate->rRun                      /* (2b) */
2103      && p->nOut<=pTemplate->nOut                      /* (2c) */
2104     ){
2105       return 0;  /* Discard pTemplate */
2106     }
2107 
2108     /* If pTemplate is always better than p, then cause p to be overwritten
2109     ** with pTemplate.  pTemplate is better than p if:
2110     **   (1)  pTemplate has no more dependences than p, and
2111     **   (2)  pTemplate has an equal or lower cost than p.
2112     */
2113     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
2114      && p->rRun>=pTemplate->rRun                             /* (2a) */
2115      && p->nOut>=pTemplate->nOut                             /* (2b) */
2116     ){
2117       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2118       break;   /* Cause p to be overwritten by pTemplate */
2119     }
2120   }
2121   return ppPrev;
2122 }
2123 
2124 /*
2125 ** Insert or replace a WhereLoop entry using the template supplied.
2126 **
2127 ** An existing WhereLoop entry might be overwritten if the new template
2128 ** is better and has fewer dependencies.  Or the template will be ignored
2129 ** and no insert will occur if an existing WhereLoop is faster and has
2130 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
2131 ** added based on the template.
2132 **
2133 ** If pBuilder->pOrSet is not NULL then we care about only the
2134 ** prerequisites and rRun and nOut costs of the N best loops.  That
2135 ** information is gathered in the pBuilder->pOrSet object.  This special
2136 ** processing mode is used only for OR clause processing.
2137 **
2138 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2139 ** still might overwrite similar loops with the new template if the
2140 ** new template is better.  Loops may be overwritten if the following
2141 ** conditions are met:
2142 **
2143 **    (1)  They have the same iTab.
2144 **    (2)  They have the same iSortIdx.
2145 **    (3)  The template has same or fewer dependencies than the current loop
2146 **    (4)  The template has the same or lower cost than the current loop
2147 */
2148 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2149   WhereLoop **ppPrev, *p;
2150   WhereInfo *pWInfo = pBuilder->pWInfo;
2151   sqlite3 *db = pWInfo->pParse->db;
2152   int rc;
2153 
2154   /* Stop the search once we hit the query planner search limit */
2155   if( pBuilder->iPlanLimit==0 ){
2156     WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
2157     if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0;
2158     return SQLITE_DONE;
2159   }
2160   pBuilder->iPlanLimit--;
2161 
2162   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2163 
2164   /* If pBuilder->pOrSet is defined, then only keep track of the costs
2165   ** and prereqs.
2166   */
2167   if( pBuilder->pOrSet!=0 ){
2168     if( pTemplate->nLTerm ){
2169 #if WHERETRACE_ENABLED
2170       u16 n = pBuilder->pOrSet->n;
2171       int x =
2172 #endif
2173       whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2174                                     pTemplate->nOut);
2175 #if WHERETRACE_ENABLED /* 0x8 */
2176       if( sqlite3WhereTrace & 0x8 ){
2177         sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
2178         sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2179       }
2180 #endif
2181     }
2182     return SQLITE_OK;
2183   }
2184 
2185   /* Look for an existing WhereLoop to replace with pTemplate
2186   */
2187   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2188 
2189   if( ppPrev==0 ){
2190     /* There already exists a WhereLoop on the list that is better
2191     ** than pTemplate, so just ignore pTemplate */
2192 #if WHERETRACE_ENABLED /* 0x8 */
2193     if( sqlite3WhereTrace & 0x8 ){
2194       sqlite3DebugPrintf("   skip: ");
2195       sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2196     }
2197 #endif
2198     return SQLITE_OK;
2199   }else{
2200     p = *ppPrev;
2201   }
2202 
2203   /* If we reach this point it means that either p[] should be overwritten
2204   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2205   ** WhereLoop and insert it.
2206   */
2207 #if WHERETRACE_ENABLED /* 0x8 */
2208   if( sqlite3WhereTrace & 0x8 ){
2209     if( p!=0 ){
2210       sqlite3DebugPrintf("replace: ");
2211       sqlite3WhereLoopPrint(p, pBuilder->pWC);
2212       sqlite3DebugPrintf("   with: ");
2213     }else{
2214       sqlite3DebugPrintf("    add: ");
2215     }
2216     sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2217   }
2218 #endif
2219   if( p==0 ){
2220     /* Allocate a new WhereLoop to add to the end of the list */
2221     *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2222     if( p==0 ) return SQLITE_NOMEM_BKPT;
2223     whereLoopInit(p);
2224     p->pNextLoop = 0;
2225   }else{
2226     /* We will be overwriting WhereLoop p[].  But before we do, first
2227     ** go through the rest of the list and delete any other entries besides
2228     ** p[] that are also supplated by pTemplate */
2229     WhereLoop **ppTail = &p->pNextLoop;
2230     WhereLoop *pToDel;
2231     while( *ppTail ){
2232       ppTail = whereLoopFindLesser(ppTail, pTemplate);
2233       if( ppTail==0 ) break;
2234       pToDel = *ppTail;
2235       if( pToDel==0 ) break;
2236       *ppTail = pToDel->pNextLoop;
2237 #if WHERETRACE_ENABLED /* 0x8 */
2238       if( sqlite3WhereTrace & 0x8 ){
2239         sqlite3DebugPrintf(" delete: ");
2240         sqlite3WhereLoopPrint(pToDel, pBuilder->pWC);
2241       }
2242 #endif
2243       whereLoopDelete(db, pToDel);
2244     }
2245   }
2246   rc = whereLoopXfer(db, p, pTemplate);
2247   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2248     Index *pIndex = p->u.btree.pIndex;
2249     if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){
2250       p->u.btree.pIndex = 0;
2251     }
2252   }
2253   return rc;
2254 }
2255 
2256 /*
2257 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2258 ** WHERE clause that reference the loop but which are not used by an
2259 ** index.
2260 *
2261 ** For every WHERE clause term that is not used by the index
2262 ** and which has a truth probability assigned by one of the likelihood(),
2263 ** likely(), or unlikely() SQL functions, reduce the estimated number
2264 ** of output rows by the probability specified.
2265 **
2266 ** TUNING:  For every WHERE clause term that is not used by the index
2267 ** and which does not have an assigned truth probability, heuristics
2268 ** described below are used to try to estimate the truth probability.
2269 ** TODO --> Perhaps this is something that could be improved by better
2270 ** table statistics.
2271 **
2272 ** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
2273 ** value corresponds to -1 in LogEst notation, so this means decrement
2274 ** the WhereLoop.nOut field for every such WHERE clause term.
2275 **
2276 ** Heuristic 2:  If there exists one or more WHERE clause terms of the
2277 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2278 ** final output row estimate is no greater than 1/4 of the total number
2279 ** of rows in the table.  In other words, assume that x==EXPR will filter
2280 ** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
2281 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2282 ** on the "x" column and so in that case only cap the output row estimate
2283 ** at 1/2 instead of 1/4.
2284 */
2285 static void whereLoopOutputAdjust(
2286   WhereClause *pWC,      /* The WHERE clause */
2287   WhereLoop *pLoop,      /* The loop to adjust downward */
2288   LogEst nRow            /* Number of rows in the entire table */
2289 ){
2290   WhereTerm *pTerm, *pX;
2291   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2292   int i, j;
2293   LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */
2294 
2295   assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2296   for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
2297     assert( pTerm!=0 );
2298     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
2299     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2300     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2301     for(j=pLoop->nLTerm-1; j>=0; j--){
2302       pX = pLoop->aLTerm[j];
2303       if( pX==0 ) continue;
2304       if( pX==pTerm ) break;
2305       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2306     }
2307     if( j<0 ){
2308       if( pTerm->truthProb<=0 ){
2309         /* If a truth probability is specified using the likelihood() hints,
2310         ** then use the probability provided by the application. */
2311         pLoop->nOut += pTerm->truthProb;
2312       }else{
2313         /* In the absence of explicit truth probabilities, use heuristics to
2314         ** guess a reasonable truth probability. */
2315         pLoop->nOut--;
2316         if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0
2317          && (pTerm->wtFlags & TERM_HIGHTRUTH)==0  /* tag-20200224-1 */
2318         ){
2319           Expr *pRight = pTerm->pExpr->pRight;
2320           int k = 0;
2321           testcase( pTerm->pExpr->op==TK_IS );
2322           if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2323             k = 10;
2324           }else{
2325             k = 20;
2326           }
2327           if( iReduce<k ){
2328             pTerm->wtFlags |= TERM_HEURTRUTH;
2329             iReduce = k;
2330           }
2331         }
2332       }
2333     }
2334   }
2335   if( pLoop->nOut > nRow-iReduce )  pLoop->nOut = nRow - iReduce;
2336 }
2337 
2338 /*
2339 ** Term pTerm is a vector range comparison operation. The first comparison
2340 ** in the vector can be optimized using column nEq of the index. This
2341 ** function returns the total number of vector elements that can be used
2342 ** as part of the range comparison.
2343 **
2344 ** For example, if the query is:
2345 **
2346 **   WHERE a = ? AND (b, c, d) > (?, ?, ?)
2347 **
2348 ** and the index:
2349 **
2350 **   CREATE INDEX ... ON (a, b, c, d, e)
2351 **
2352 ** then this function would be invoked with nEq=1. The value returned in
2353 ** this case is 3.
2354 */
2355 static int whereRangeVectorLen(
2356   Parse *pParse,       /* Parsing context */
2357   int iCur,            /* Cursor open on pIdx */
2358   Index *pIdx,         /* The index to be used for a inequality constraint */
2359   int nEq,             /* Number of prior equality constraints on same index */
2360   WhereTerm *pTerm     /* The vector inequality constraint */
2361 ){
2362   int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2363   int i;
2364 
2365   nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2366   for(i=1; i<nCmp; i++){
2367     /* Test if comparison i of pTerm is compatible with column (i+nEq)
2368     ** of the index. If not, exit the loop.  */
2369     char aff;                     /* Comparison affinity */
2370     char idxaff = 0;              /* Indexed columns affinity */
2371     CollSeq *pColl;               /* Comparison collation sequence */
2372     Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2373     Expr *pRhs = pTerm->pExpr->pRight;
2374     if( pRhs->flags & EP_xIsSelect ){
2375       pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2376     }else{
2377       pRhs = pRhs->x.pList->a[i].pExpr;
2378     }
2379 
2380     /* Check that the LHS of the comparison is a column reference to
2381     ** the right column of the right source table. And that the sort
2382     ** order of the index column is the same as the sort order of the
2383     ** leftmost index column.  */
2384     if( pLhs->op!=TK_COLUMN
2385      || pLhs->iTable!=iCur
2386      || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2387      || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2388     ){
2389       break;
2390     }
2391 
2392     testcase( pLhs->iColumn==XN_ROWID );
2393     aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2394     idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2395     if( aff!=idxaff ) break;
2396 
2397     pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2398     if( pColl==0 ) break;
2399     if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2400   }
2401   return i;
2402 }
2403 
2404 /*
2405 ** Adjust the cost C by the costMult facter T.  This only occurs if
2406 ** compiled with -DSQLITE_ENABLE_COSTMULT
2407 */
2408 #ifdef SQLITE_ENABLE_COSTMULT
2409 # define ApplyCostMultiplier(C,T)  C += T
2410 #else
2411 # define ApplyCostMultiplier(C,T)
2412 #endif
2413 
2414 /*
2415 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2416 ** index pIndex. Try to match one more.
2417 **
2418 ** When this function is called, pBuilder->pNew->nOut contains the
2419 ** number of rows expected to be visited by filtering using the nEq
2420 ** terms only. If it is modified, this value is restored before this
2421 ** function returns.
2422 **
2423 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
2424 ** a fake index used for the INTEGER PRIMARY KEY.
2425 */
2426 static int whereLoopAddBtreeIndex(
2427   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
2428   struct SrcList_item *pSrc,      /* FROM clause term being analyzed */
2429   Index *pProbe,                  /* An index on pSrc */
2430   LogEst nInMul                   /* log(Number of iterations due to IN) */
2431 ){
2432   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
2433   Parse *pParse = pWInfo->pParse;        /* Parsing context */
2434   sqlite3 *db = pParse->db;       /* Database connection malloc context */
2435   WhereLoop *pNew;                /* Template WhereLoop under construction */
2436   WhereTerm *pTerm;               /* A WhereTerm under consideration */
2437   int opMask;                     /* Valid operators for constraints */
2438   WhereScan scan;                 /* Iterator for WHERE terms */
2439   Bitmask saved_prereq;           /* Original value of pNew->prereq */
2440   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
2441   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
2442   u16 saved_nBtm;                 /* Original value of pNew->u.btree.nBtm */
2443   u16 saved_nTop;                 /* Original value of pNew->u.btree.nTop */
2444   u16 saved_nSkip;                /* Original value of pNew->nSkip */
2445   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
2446   LogEst saved_nOut;              /* Original value of pNew->nOut */
2447   int rc = SQLITE_OK;             /* Return code */
2448   LogEst rSize;                   /* Number of rows in the table */
2449   LogEst rLogSize;                /* Logarithm of table size */
2450   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2451 
2452   pNew = pBuilder->pNew;
2453   if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2454   WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n",
2455                      pProbe->pTable->zName,pProbe->zName,
2456                      pNew->u.btree.nEq, pNew->nSkip, pNew->rRun));
2457 
2458   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2459   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2460   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2461     opMask = WO_LT|WO_LE;
2462   }else{
2463     assert( pNew->u.btree.nBtm==0 );
2464     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2465   }
2466   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2467 
2468   assert( pNew->u.btree.nEq<pProbe->nColumn );
2469 
2470   saved_nEq = pNew->u.btree.nEq;
2471   saved_nBtm = pNew->u.btree.nBtm;
2472   saved_nTop = pNew->u.btree.nTop;
2473   saved_nSkip = pNew->nSkip;
2474   saved_nLTerm = pNew->nLTerm;
2475   saved_wsFlags = pNew->wsFlags;
2476   saved_prereq = pNew->prereq;
2477   saved_nOut = pNew->nOut;
2478   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2479                         opMask, pProbe);
2480   pNew->rSetup = 0;
2481   rSize = pProbe->aiRowLogEst[0];
2482   rLogSize = estLog(rSize);
2483   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2484     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
2485     LogEst rCostIdx;
2486     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
2487     int nIn = 0;
2488 #ifdef SQLITE_ENABLE_STAT4
2489     int nRecValid = pBuilder->nRecValid;
2490 #endif
2491     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2492      && indexColumnNotNull(pProbe, saved_nEq)
2493     ){
2494       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2495     }
2496     if( pTerm->prereqRight & pNew->maskSelf ) continue;
2497 
2498     /* Do not allow the upper bound of a LIKE optimization range constraint
2499     ** to mix with a lower range bound from some other source */
2500     if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2501 
2502     /* tag-20191211-001:  Do not allow constraints from the WHERE clause to
2503     ** be used by the right table of a LEFT JOIN.  Only constraints in the
2504     ** ON clause are allowed.  See tag-20191211-002 for the vtab equivalent. */
2505     if( (pSrc->fg.jointype & JT_LEFT)!=0
2506      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
2507     ){
2508       continue;
2509     }
2510 
2511     if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2512       pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE;
2513     }else{
2514       pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED;
2515     }
2516     pNew->wsFlags = saved_wsFlags;
2517     pNew->u.btree.nEq = saved_nEq;
2518     pNew->u.btree.nBtm = saved_nBtm;
2519     pNew->u.btree.nTop = saved_nTop;
2520     pNew->nLTerm = saved_nLTerm;
2521     if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2522     pNew->aLTerm[pNew->nLTerm++] = pTerm;
2523     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2524 
2525     assert( nInMul==0
2526         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2527         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2528         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2529     );
2530 
2531     if( eOp & WO_IN ){
2532       Expr *pExpr = pTerm->pExpr;
2533       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2534         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
2535         int i;
2536         nIn = 46;  assert( 46==sqlite3LogEst(25) );
2537 
2538         /* The expression may actually be of the form (x, y) IN (SELECT...).
2539         ** In this case there is a separate term for each of (x) and (y).
2540         ** However, the nIn multiplier should only be applied once, not once
2541         ** for each such term. The following loop checks that pTerm is the
2542         ** first such term in use, and sets nIn back to 0 if it is not. */
2543         for(i=0; i<pNew->nLTerm-1; i++){
2544           if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2545         }
2546       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2547         /* "x IN (value, value, ...)" */
2548         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2549       }
2550       if( pProbe->hasStat1 && rLogSize>=10 ){
2551         LogEst M, logK, safetyMargin;
2552         /* Let:
2553         **   N = the total number of rows in the table
2554         **   K = the number of entries on the RHS of the IN operator
2555         **   M = the number of rows in the table that match terms to the
2556         **       to the left in the same index.  If the IN operator is on
2557         **       the left-most index column, M==N.
2558         **
2559         ** Given the definitions above, it is better to omit the IN operator
2560         ** from the index lookup and instead do a scan of the M elements,
2561         ** testing each scanned row against the IN operator separately, if:
2562         **
2563         **        M*log(K) < K*log(N)
2564         **
2565         ** Our estimates for M, K, and N might be inaccurate, so we build in
2566         ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
2567         ** with the index, as using an index has better worst-case behavior.
2568         ** If we do not have real sqlite_stat1 data, always prefer to use
2569         ** the index.  Do not bother with this optimization on very small
2570         ** tables (less than 2 rows) as it is pointless in that case.
2571         */
2572         M = pProbe->aiRowLogEst[saved_nEq];
2573         logK = estLog(nIn);
2574         safetyMargin = 10;  /* TUNING: extra weight for indexed IN */
2575         if( M + logK + safetyMargin < nIn + rLogSize ){
2576           WHERETRACE(0x40,
2577             ("Scan preferred over IN operator on column %d of \"%s\" (%d<%d)\n",
2578              saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize));
2579           pNew->wsFlags |= WHERE_IN_SEEKSCAN;
2580         }else{
2581           WHERETRACE(0x40,
2582             ("IN operator preferred on column %d of \"%s\" (%d>=%d)\n",
2583              saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize));
2584         }
2585       }
2586       pNew->wsFlags |= WHERE_COLUMN_IN;
2587     }else if( eOp & (WO_EQ|WO_IS) ){
2588       int iCol = pProbe->aiColumn[saved_nEq];
2589       pNew->wsFlags |= WHERE_COLUMN_EQ;
2590       assert( saved_nEq==pNew->u.btree.nEq );
2591       if( iCol==XN_ROWID
2592        || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2593       ){
2594         if( iCol==XN_ROWID || pProbe->uniqNotNull
2595          || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
2596         ){
2597           pNew->wsFlags |= WHERE_ONEROW;
2598         }else{
2599           pNew->wsFlags |= WHERE_UNQ_WANTED;
2600         }
2601       }
2602     }else if( eOp & WO_ISNULL ){
2603       pNew->wsFlags |= WHERE_COLUMN_NULL;
2604     }else if( eOp & (WO_GT|WO_GE) ){
2605       testcase( eOp & WO_GT );
2606       testcase( eOp & WO_GE );
2607       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2608       pNew->u.btree.nBtm = whereRangeVectorLen(
2609           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2610       );
2611       pBtm = pTerm;
2612       pTop = 0;
2613       if( pTerm->wtFlags & TERM_LIKEOPT ){
2614         /* Range contraints that come from the LIKE optimization are
2615         ** always used in pairs. */
2616         pTop = &pTerm[1];
2617         assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2618         assert( pTop->wtFlags & TERM_LIKEOPT );
2619         assert( pTop->eOperator==WO_LT );
2620         if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2621         pNew->aLTerm[pNew->nLTerm++] = pTop;
2622         pNew->wsFlags |= WHERE_TOP_LIMIT;
2623         pNew->u.btree.nTop = 1;
2624       }
2625     }else{
2626       assert( eOp & (WO_LT|WO_LE) );
2627       testcase( eOp & WO_LT );
2628       testcase( eOp & WO_LE );
2629       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2630       pNew->u.btree.nTop = whereRangeVectorLen(
2631           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2632       );
2633       pTop = pTerm;
2634       pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2635                      pNew->aLTerm[pNew->nLTerm-2] : 0;
2636     }
2637 
2638     /* At this point pNew->nOut is set to the number of rows expected to
2639     ** be visited by the index scan before considering term pTerm, or the
2640     ** values of nIn and nInMul. In other words, assuming that all
2641     ** "x IN(...)" terms are replaced with "x = ?". This block updates
2642     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
2643     assert( pNew->nOut==saved_nOut );
2644     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2645       /* Adjust nOut using stat4 data. Or, if there is no stat4
2646       ** data, using some other estimate.  */
2647       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2648     }else{
2649       int nEq = ++pNew->u.btree.nEq;
2650       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2651 
2652       assert( pNew->nOut==saved_nOut );
2653       if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2654         assert( (eOp & WO_IN) || nIn==0 );
2655         testcase( eOp & WO_IN );
2656         pNew->nOut += pTerm->truthProb;
2657         pNew->nOut -= nIn;
2658       }else{
2659 #ifdef SQLITE_ENABLE_STAT4
2660         tRowcnt nOut = 0;
2661         if( nInMul==0
2662          && pProbe->nSample
2663          && pNew->u.btree.nEq<=pProbe->nSampleCol
2664          && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
2665          && OptimizationEnabled(db, SQLITE_Stat4)
2666         ){
2667           Expr *pExpr = pTerm->pExpr;
2668           if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2669             testcase( eOp & WO_EQ );
2670             testcase( eOp & WO_IS );
2671             testcase( eOp & WO_ISNULL );
2672             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2673           }else{
2674             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2675           }
2676           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2677           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
2678           if( nOut ){
2679             pNew->nOut = sqlite3LogEst(nOut);
2680             if( nEq==1
2681              /* TUNING: Mark terms as "low selectivity" if they seem likely
2682              ** to be true for half or more of the rows in the table.
2683              ** See tag-202002240-1 */
2684              && pNew->nOut+10 > pProbe->aiRowLogEst[0]
2685             ){
2686 #if WHERETRACE_ENABLED /* 0x01 */
2687               if( sqlite3WhereTrace & 0x01 ){
2688                 sqlite3DebugPrintf(
2689                    "STAT4 determines term has low selectivity:\n");
2690                 sqlite3WhereTermPrint(pTerm, 999);
2691               }
2692 #endif
2693               pTerm->wtFlags |= TERM_HIGHTRUTH;
2694               if( pTerm->wtFlags & TERM_HEURTRUTH ){
2695                 /* If the term has previously been used with an assumption of
2696                 ** higher selectivity, then set the flag to rerun the
2697                 ** loop computations. */
2698                 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS;
2699               }
2700             }
2701             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
2702             pNew->nOut -= nIn;
2703           }
2704         }
2705         if( nOut==0 )
2706 #endif
2707         {
2708           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
2709           if( eOp & WO_ISNULL ){
2710             /* TUNING: If there is no likelihood() value, assume that a
2711             ** "col IS NULL" expression matches twice as many rows
2712             ** as (col=?). */
2713             pNew->nOut += 10;
2714           }
2715         }
2716       }
2717     }
2718 
2719     /* Set rCostIdx to the cost of visiting selected rows in index. Add
2720     ** it to pNew->rRun, which is currently set to the cost of the index
2721     ** seek only. Then, if this is a non-covering index, add the cost of
2722     ** visiting the rows in the main table.  */
2723     assert( pSrc->pTab->szTabRow>0 );
2724     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
2725     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
2726     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
2727       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
2728     }
2729     ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
2730 
2731     nOutUnadjusted = pNew->nOut;
2732     pNew->rRun += nInMul + nIn;
2733     pNew->nOut += nInMul + nIn;
2734     whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
2735     rc = whereLoopInsert(pBuilder, pNew);
2736 
2737     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2738       pNew->nOut = saved_nOut;
2739     }else{
2740       pNew->nOut = nOutUnadjusted;
2741     }
2742 
2743     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
2744      && pNew->u.btree.nEq<pProbe->nColumn
2745     ){
2746       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
2747     }
2748     pNew->nOut = saved_nOut;
2749 #ifdef SQLITE_ENABLE_STAT4
2750     pBuilder->nRecValid = nRecValid;
2751 #endif
2752   }
2753   pNew->prereq = saved_prereq;
2754   pNew->u.btree.nEq = saved_nEq;
2755   pNew->u.btree.nBtm = saved_nBtm;
2756   pNew->u.btree.nTop = saved_nTop;
2757   pNew->nSkip = saved_nSkip;
2758   pNew->wsFlags = saved_wsFlags;
2759   pNew->nOut = saved_nOut;
2760   pNew->nLTerm = saved_nLTerm;
2761 
2762   /* Consider using a skip-scan if there are no WHERE clause constraints
2763   ** available for the left-most terms of the index, and if the average
2764   ** number of repeats in the left-most terms is at least 18.
2765   **
2766   ** The magic number 18 is selected on the basis that scanning 17 rows
2767   ** is almost always quicker than an index seek (even though if the index
2768   ** contains fewer than 2^17 rows we assume otherwise in other parts of
2769   ** the code). And, even if it is not, it should not be too much slower.
2770   ** On the other hand, the extra seeks could end up being significantly
2771   ** more expensive.  */
2772   assert( 42==sqlite3LogEst(18) );
2773   if( saved_nEq==saved_nSkip
2774    && saved_nEq+1<pProbe->nKeyCol
2775    && saved_nEq==pNew->nLTerm
2776    && pProbe->noSkipScan==0
2777    && pProbe->hasStat1!=0
2778    && OptimizationEnabled(db, SQLITE_SkipScan)
2779    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
2780    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
2781   ){
2782     LogEst nIter;
2783     pNew->u.btree.nEq++;
2784     pNew->nSkip++;
2785     pNew->aLTerm[pNew->nLTerm++] = 0;
2786     pNew->wsFlags |= WHERE_SKIPSCAN;
2787     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
2788     pNew->nOut -= nIter;
2789     /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
2790     ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
2791     nIter += 5;
2792     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
2793     pNew->nOut = saved_nOut;
2794     pNew->u.btree.nEq = saved_nEq;
2795     pNew->nSkip = saved_nSkip;
2796     pNew->wsFlags = saved_wsFlags;
2797   }
2798 
2799   WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
2800                       pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
2801   return rc;
2802 }
2803 
2804 /*
2805 ** Return True if it is possible that pIndex might be useful in
2806 ** implementing the ORDER BY clause in pBuilder.
2807 **
2808 ** Return False if pBuilder does not contain an ORDER BY clause or
2809 ** if there is no way for pIndex to be useful in implementing that
2810 ** ORDER BY clause.
2811 */
2812 static int indexMightHelpWithOrderBy(
2813   WhereLoopBuilder *pBuilder,
2814   Index *pIndex,
2815   int iCursor
2816 ){
2817   ExprList *pOB;
2818   ExprList *aColExpr;
2819   int ii, jj;
2820 
2821   if( pIndex->bUnordered ) return 0;
2822   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
2823   for(ii=0; ii<pOB->nExpr; ii++){
2824     Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr);
2825     if( NEVER(pExpr==0) ) continue;
2826     if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
2827       if( pExpr->iColumn<0 ) return 1;
2828       for(jj=0; jj<pIndex->nKeyCol; jj++){
2829         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
2830       }
2831     }else if( (aColExpr = pIndex->aColExpr)!=0 ){
2832       for(jj=0; jj<pIndex->nKeyCol; jj++){
2833         if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
2834         if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
2835           return 1;
2836         }
2837       }
2838     }
2839   }
2840   return 0;
2841 }
2842 
2843 /* Check to see if a partial index with pPartIndexWhere can be used
2844 ** in the current query.  Return true if it can be and false if not.
2845 */
2846 static int whereUsablePartialIndex(
2847   int iTab,             /* The table for which we want an index */
2848   int isLeft,           /* True if iTab is the right table of a LEFT JOIN */
2849   WhereClause *pWC,     /* The WHERE clause of the query */
2850   Expr *pWhere          /* The WHERE clause from the partial index */
2851 ){
2852   int i;
2853   WhereTerm *pTerm;
2854   Parse *pParse = pWC->pWInfo->pParse;
2855   while( pWhere->op==TK_AND ){
2856     if( !whereUsablePartialIndex(iTab,isLeft,pWC,pWhere->pLeft) ) return 0;
2857     pWhere = pWhere->pRight;
2858   }
2859   if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
2860   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
2861     Expr *pExpr;
2862     pExpr = pTerm->pExpr;
2863     if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
2864      && (isLeft==0 || ExprHasProperty(pExpr, EP_FromJoin))
2865      && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
2866     ){
2867       return 1;
2868     }
2869   }
2870   return 0;
2871 }
2872 
2873 /*
2874 ** Add all WhereLoop objects for a single table of the join where the table
2875 ** is identified by pBuilder->pNew->iTab.  That table is guaranteed to be
2876 ** a b-tree table, not a virtual table.
2877 **
2878 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
2879 ** are calculated as follows:
2880 **
2881 ** For a full scan, assuming the table (or index) contains nRow rows:
2882 **
2883 **     cost = nRow * 3.0                    // full-table scan
2884 **     cost = nRow * K                      // scan of covering index
2885 **     cost = nRow * (K+3.0)                // scan of non-covering index
2886 **
2887 ** where K is a value between 1.1 and 3.0 set based on the relative
2888 ** estimated average size of the index and table records.
2889 **
2890 ** For an index scan, where nVisit is the number of index rows visited
2891 ** by the scan, and nSeek is the number of seek operations required on
2892 ** the index b-tree:
2893 **
2894 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
2895 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
2896 **
2897 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
2898 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
2899 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
2900 **
2901 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
2902 ** of uncertainty.  For this reason, scoring is designed to pick plans that
2903 ** "do the least harm" if the estimates are inaccurate.  For example, a
2904 ** log(nRow) factor is omitted from a non-covering index scan in order to
2905 ** bias the scoring in favor of using an index, since the worst-case
2906 ** performance of using an index is far better than the worst-case performance
2907 ** of a full table scan.
2908 */
2909 static int whereLoopAddBtree(
2910   WhereLoopBuilder *pBuilder, /* WHERE clause information */
2911   Bitmask mPrereq             /* Extra prerequesites for using this table */
2912 ){
2913   WhereInfo *pWInfo;          /* WHERE analysis context */
2914   Index *pProbe;              /* An index we are evaluating */
2915   Index sPk;                  /* A fake index object for the primary key */
2916   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
2917   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
2918   SrcList *pTabList;          /* The FROM clause */
2919   struct SrcList_item *pSrc;  /* The FROM clause btree term to add */
2920   WhereLoop *pNew;            /* Template WhereLoop object */
2921   int rc = SQLITE_OK;         /* Return code */
2922   int iSortIdx = 1;           /* Index number */
2923   int b;                      /* A boolean value */
2924   LogEst rSize;               /* number of rows in the table */
2925   LogEst rLogSize;            /* Logarithm of the number of rows in the table */
2926   WhereClause *pWC;           /* The parsed WHERE clause */
2927   Table *pTab;                /* Table being queried */
2928 
2929   pNew = pBuilder->pNew;
2930   pWInfo = pBuilder->pWInfo;
2931   pTabList = pWInfo->pTabList;
2932   pSrc = pTabList->a + pNew->iTab;
2933   pTab = pSrc->pTab;
2934   pWC = pBuilder->pWC;
2935   assert( !IsVirtual(pSrc->pTab) );
2936 
2937   if( pSrc->pIBIndex ){
2938     /* An INDEXED BY clause specifies a particular index to use */
2939     pProbe = pSrc->pIBIndex;
2940   }else if( !HasRowid(pTab) ){
2941     pProbe = pTab->pIndex;
2942   }else{
2943     /* There is no INDEXED BY clause.  Create a fake Index object in local
2944     ** variable sPk to represent the rowid primary key index.  Make this
2945     ** fake index the first in a chain of Index objects with all of the real
2946     ** indices to follow */
2947     Index *pFirst;                  /* First of real indices on the table */
2948     memset(&sPk, 0, sizeof(Index));
2949     sPk.nKeyCol = 1;
2950     sPk.nColumn = 1;
2951     sPk.aiColumn = &aiColumnPk;
2952     sPk.aiRowLogEst = aiRowEstPk;
2953     sPk.onError = OE_Replace;
2954     sPk.pTable = pTab;
2955     sPk.szIdxRow = pTab->szTabRow;
2956     sPk.idxType = SQLITE_IDXTYPE_IPK;
2957     aiRowEstPk[0] = pTab->nRowLogEst;
2958     aiRowEstPk[1] = 0;
2959     pFirst = pSrc->pTab->pIndex;
2960     if( pSrc->fg.notIndexed==0 ){
2961       /* The real indices of the table are only considered if the
2962       ** NOT INDEXED qualifier is omitted from the FROM clause */
2963       sPk.pNext = pFirst;
2964     }
2965     pProbe = &sPk;
2966   }
2967   rSize = pTab->nRowLogEst;
2968   rLogSize = estLog(rSize);
2969 
2970 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
2971   /* Automatic indexes */
2972   if( !pBuilder->pOrSet      /* Not part of an OR optimization */
2973    && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
2974    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
2975    && pSrc->pIBIndex==0      /* Has no INDEXED BY clause */
2976    && !pSrc->fg.notIndexed   /* Has no NOT INDEXED clause */
2977    && HasRowid(pTab)         /* Not WITHOUT ROWID table. (FIXME: Why not?) */
2978    && !pSrc->fg.isCorrelated /* Not a correlated subquery */
2979    && !pSrc->fg.isRecursive  /* Not a recursive common table expression. */
2980   ){
2981     /* Generate auto-index WhereLoops */
2982     WhereTerm *pTerm;
2983     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
2984     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
2985       if( pTerm->prereqRight & pNew->maskSelf ) continue;
2986       if( termCanDriveIndex(pTerm, pSrc, 0) ){
2987         pNew->u.btree.nEq = 1;
2988         pNew->nSkip = 0;
2989         pNew->u.btree.pIndex = 0;
2990         pNew->nLTerm = 1;
2991         pNew->aLTerm[0] = pTerm;
2992         /* TUNING: One-time cost for computing the automatic index is
2993         ** estimated to be X*N*log2(N) where N is the number of rows in
2994         ** the table being indexed and where X is 7 (LogEst=28) for normal
2995         ** tables or 0.5 (LogEst=-10) for views and subqueries.  The value
2996         ** of X is smaller for views and subqueries so that the query planner
2997         ** will be more aggressive about generating automatic indexes for
2998         ** those objects, since there is no opportunity to add schema
2999         ** indexes on subqueries and views. */
3000         pNew->rSetup = rLogSize + rSize;
3001         if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){
3002           pNew->rSetup += 28;
3003         }else{
3004           pNew->rSetup -= 10;
3005         }
3006         ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
3007         if( pNew->rSetup<0 ) pNew->rSetup = 0;
3008         /* TUNING: Each index lookup yields 20 rows in the table.  This
3009         ** is more than the usual guess of 10 rows, since we have no way
3010         ** of knowing how selective the index will ultimately be.  It would
3011         ** not be unreasonable to make this value much larger. */
3012         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
3013         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
3014         pNew->wsFlags = WHERE_AUTO_INDEX;
3015         pNew->prereq = mPrereq | pTerm->prereqRight;
3016         rc = whereLoopInsert(pBuilder, pNew);
3017       }
3018     }
3019   }
3020 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
3021 
3022   /* Loop over all indices. If there was an INDEXED BY clause, then only
3023   ** consider index pProbe.  */
3024   for(; rc==SQLITE_OK && pProbe;
3025       pProbe=(pSrc->pIBIndex ? 0 : pProbe->pNext), iSortIdx++
3026   ){
3027     int isLeft = (pSrc->fg.jointype & JT_OUTER)!=0;
3028     if( pProbe->pPartIdxWhere!=0
3029      && !whereUsablePartialIndex(pSrc->iCursor, isLeft, pWC,
3030                                  pProbe->pPartIdxWhere)
3031     ){
3032       testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
3033       continue;  /* Partial index inappropriate for this query */
3034     }
3035     if( pProbe->bNoQuery ) continue;
3036     rSize = pProbe->aiRowLogEst[0];
3037     pNew->u.btree.nEq = 0;
3038     pNew->u.btree.nBtm = 0;
3039     pNew->u.btree.nTop = 0;
3040     pNew->nSkip = 0;
3041     pNew->nLTerm = 0;
3042     pNew->iSortIdx = 0;
3043     pNew->rSetup = 0;
3044     pNew->prereq = mPrereq;
3045     pNew->nOut = rSize;
3046     pNew->u.btree.pIndex = pProbe;
3047     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
3048 
3049     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
3050     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
3051     if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){
3052       /* Integer primary key index */
3053       pNew->wsFlags = WHERE_IPK;
3054 
3055       /* Full table scan */
3056       pNew->iSortIdx = b ? iSortIdx : 0;
3057       /* TUNING: Cost of full table scan is 3.0*N.  The 3.0 factor is an
3058       ** extra cost designed to discourage the use of full table scans,
3059       ** since index lookups have better worst-case performance if our
3060       ** stat guesses are wrong.  Reduce the 3.0 penalty slightly
3061       ** (to 2.75) if we have valid STAT4 information for the table.
3062       ** At 2.75, a full table scan is preferred over using an index on
3063       ** a column with just two distinct values where each value has about
3064       ** an equal number of appearances.  Without STAT4 data, we still want
3065       ** to use an index in that case, since the constraint might be for
3066       ** the scarcer of the two values, and in that case an index lookup is
3067       ** better.
3068       */
3069 #ifdef SQLITE_ENABLE_STAT4
3070       pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0);
3071 #else
3072       pNew->rRun = rSize + 16;
3073 #endif
3074       ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3075       whereLoopOutputAdjust(pWC, pNew, rSize);
3076       rc = whereLoopInsert(pBuilder, pNew);
3077       pNew->nOut = rSize;
3078       if( rc ) break;
3079     }else{
3080       Bitmask m;
3081       if( pProbe->isCovering ){
3082         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
3083         m = 0;
3084       }else{
3085         m = pSrc->colUsed & pProbe->colNotIdxed;
3086         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
3087       }
3088 
3089       /* Full scan via index */
3090       if( b
3091        || !HasRowid(pTab)
3092        || pProbe->pPartIdxWhere!=0
3093        || pSrc->fg.isIndexedBy
3094        || ( m==0
3095          && pProbe->bUnordered==0
3096          && (pProbe->szIdxRow<pTab->szTabRow)
3097          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
3098          && sqlite3GlobalConfig.bUseCis
3099          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
3100           )
3101       ){
3102         pNew->iSortIdx = b ? iSortIdx : 0;
3103 
3104         /* The cost of visiting the index rows is N*K, where K is
3105         ** between 1.1 and 3.0, depending on the relative sizes of the
3106         ** index and table rows. */
3107         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
3108         if( m!=0 ){
3109           /* If this is a non-covering index scan, add in the cost of
3110           ** doing table lookups.  The cost will be 3x the number of
3111           ** lookups.  Take into account WHERE clause terms that can be
3112           ** satisfied using just the index, and that do not require a
3113           ** table lookup. */
3114           LogEst nLookup = rSize + 16;  /* Base cost:  N*3 */
3115           int ii;
3116           int iCur = pSrc->iCursor;
3117           WhereClause *pWC2 = &pWInfo->sWC;
3118           for(ii=0; ii<pWC2->nTerm; ii++){
3119             WhereTerm *pTerm = &pWC2->a[ii];
3120             if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
3121               break;
3122             }
3123             /* pTerm can be evaluated using just the index.  So reduce
3124             ** the expected number of table lookups accordingly */
3125             if( pTerm->truthProb<=0 ){
3126               nLookup += pTerm->truthProb;
3127             }else{
3128               nLookup--;
3129               if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
3130             }
3131           }
3132 
3133           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
3134         }
3135         ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3136         whereLoopOutputAdjust(pWC, pNew, rSize);
3137         rc = whereLoopInsert(pBuilder, pNew);
3138         pNew->nOut = rSize;
3139         if( rc ) break;
3140       }
3141     }
3142 
3143     pBuilder->bldFlags1 = 0;
3144     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
3145     if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){
3146       /* If a non-unique index is used, or if a prefix of the key for
3147       ** unique index is used (making the index functionally non-unique)
3148       ** then the sqlite_stat1 data becomes important for scoring the
3149       ** plan */
3150       pTab->tabFlags |= TF_StatsUsed;
3151     }
3152 #ifdef SQLITE_ENABLE_STAT4
3153     sqlite3Stat4ProbeFree(pBuilder->pRec);
3154     pBuilder->nRecValid = 0;
3155     pBuilder->pRec = 0;
3156 #endif
3157   }
3158   return rc;
3159 }
3160 
3161 #ifndef SQLITE_OMIT_VIRTUALTABLE
3162 
3163 /*
3164 ** Argument pIdxInfo is already populated with all constraints that may
3165 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3166 ** function marks a subset of those constraints usable, invokes the
3167 ** xBestIndex method and adds the returned plan to pBuilder.
3168 **
3169 ** A constraint is marked usable if:
3170 **
3171 **   * Argument mUsable indicates that its prerequisites are available, and
3172 **
3173 **   * It is not one of the operators specified in the mExclude mask passed
3174 **     as the fourth argument (which in practice is either WO_IN or 0).
3175 **
3176 ** Argument mPrereq is a mask of tables that must be scanned before the
3177 ** virtual table in question. These are added to the plans prerequisites
3178 ** before it is added to pBuilder.
3179 **
3180 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3181 ** uses one or more WO_IN terms, or false otherwise.
3182 */
3183 static int whereLoopAddVirtualOne(
3184   WhereLoopBuilder *pBuilder,
3185   Bitmask mPrereq,                /* Mask of tables that must be used. */
3186   Bitmask mUsable,                /* Mask of usable tables */
3187   u16 mExclude,                   /* Exclude terms using these operators */
3188   sqlite3_index_info *pIdxInfo,   /* Populated object for xBestIndex */
3189   u16 mNoOmit,                    /* Do not omit these constraints */
3190   int *pbIn                       /* OUT: True if plan uses an IN(...) op */
3191 ){
3192   WhereClause *pWC = pBuilder->pWC;
3193   struct sqlite3_index_constraint *pIdxCons;
3194   struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3195   int i;
3196   int mxTerm;
3197   int rc = SQLITE_OK;
3198   WhereLoop *pNew = pBuilder->pNew;
3199   Parse *pParse = pBuilder->pWInfo->pParse;
3200   struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3201   int nConstraint = pIdxInfo->nConstraint;
3202 
3203   assert( (mUsable & mPrereq)==mPrereq );
3204   *pbIn = 0;
3205   pNew->prereq = mPrereq;
3206 
3207   /* Set the usable flag on the subset of constraints identified by
3208   ** arguments mUsable and mExclude. */
3209   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3210   for(i=0; i<nConstraint; i++, pIdxCons++){
3211     WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3212     pIdxCons->usable = 0;
3213     if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3214      && (pTerm->eOperator & mExclude)==0
3215     ){
3216       pIdxCons->usable = 1;
3217     }
3218   }
3219 
3220   /* Initialize the output fields of the sqlite3_index_info structure */
3221   memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3222   assert( pIdxInfo->needToFreeIdxStr==0 );
3223   pIdxInfo->idxStr = 0;
3224   pIdxInfo->idxNum = 0;
3225   pIdxInfo->orderByConsumed = 0;
3226   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3227   pIdxInfo->estimatedRows = 25;
3228   pIdxInfo->idxFlags = 0;
3229   pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3230 
3231   /* Invoke the virtual table xBestIndex() method */
3232   rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3233   if( rc ){
3234     if( rc==SQLITE_CONSTRAINT ){
3235       /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
3236       ** that the particular combination of parameters provided is unusable.
3237       ** Make no entries in the loop table.
3238       */
3239       WHERETRACE(0xffff, ("  ^^^^--- non-viable plan rejected!\n"));
3240       return SQLITE_OK;
3241     }
3242     return rc;
3243   }
3244 
3245   mxTerm = -1;
3246   assert( pNew->nLSlot>=nConstraint );
3247   for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
3248   pNew->u.vtab.omitMask = 0;
3249   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3250   for(i=0; i<nConstraint; i++, pIdxCons++){
3251     int iTerm;
3252     if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3253       WhereTerm *pTerm;
3254       int j = pIdxCons->iTermOffset;
3255       if( iTerm>=nConstraint
3256        || j<0
3257        || j>=pWC->nTerm
3258        || pNew->aLTerm[iTerm]!=0
3259        || pIdxCons->usable==0
3260       ){
3261         sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3262         testcase( pIdxInfo->needToFreeIdxStr );
3263         return SQLITE_ERROR;
3264       }
3265       testcase( iTerm==nConstraint-1 );
3266       testcase( j==0 );
3267       testcase( j==pWC->nTerm-1 );
3268       pTerm = &pWC->a[j];
3269       pNew->prereq |= pTerm->prereqRight;
3270       assert( iTerm<pNew->nLSlot );
3271       pNew->aLTerm[iTerm] = pTerm;
3272       if( iTerm>mxTerm ) mxTerm = iTerm;
3273       testcase( iTerm==15 );
3274       testcase( iTerm==16 );
3275       if( pUsage[i].omit ){
3276         if( i<16 && ((1<<i)&mNoOmit)==0 ){
3277           testcase( i!=iTerm );
3278           pNew->u.vtab.omitMask |= 1<<iTerm;
3279         }else{
3280           testcase( i!=iTerm );
3281         }
3282       }
3283       if( (pTerm->eOperator & WO_IN)!=0 ){
3284         /* A virtual table that is constrained by an IN clause may not
3285         ** consume the ORDER BY clause because (1) the order of IN terms
3286         ** is not necessarily related to the order of output terms and
3287         ** (2) Multiple outputs from a single IN value will not merge
3288         ** together.  */
3289         pIdxInfo->orderByConsumed = 0;
3290         pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3291         *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3292       }
3293     }
3294   }
3295 
3296   pNew->nLTerm = mxTerm+1;
3297   for(i=0; i<=mxTerm; i++){
3298     if( pNew->aLTerm[i]==0 ){
3299       /* The non-zero argvIdx values must be contiguous.  Raise an
3300       ** error if they are not */
3301       sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3302       testcase( pIdxInfo->needToFreeIdxStr );
3303       return SQLITE_ERROR;
3304     }
3305   }
3306   assert( pNew->nLTerm<=pNew->nLSlot );
3307   pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3308   pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3309   pIdxInfo->needToFreeIdxStr = 0;
3310   pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3311   pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3312       pIdxInfo->nOrderBy : 0);
3313   pNew->rSetup = 0;
3314   pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3315   pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3316 
3317   /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3318   ** that the scan will visit at most one row. Clear it otherwise. */
3319   if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3320     pNew->wsFlags |= WHERE_ONEROW;
3321   }else{
3322     pNew->wsFlags &= ~WHERE_ONEROW;
3323   }
3324   rc = whereLoopInsert(pBuilder, pNew);
3325   if( pNew->u.vtab.needFree ){
3326     sqlite3_free(pNew->u.vtab.idxStr);
3327     pNew->u.vtab.needFree = 0;
3328   }
3329   WHERETRACE(0xffff, ("  bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3330                       *pbIn, (sqlite3_uint64)mPrereq,
3331                       (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3332 
3333   return rc;
3334 }
3335 
3336 /*
3337 ** If this function is invoked from within an xBestIndex() callback, it
3338 ** returns a pointer to a buffer containing the name of the collation
3339 ** sequence associated with element iCons of the sqlite3_index_info.aConstraint
3340 ** array. Or, if iCons is out of range or there is no active xBestIndex
3341 ** call, return NULL.
3342 */
3343 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
3344   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3345   const char *zRet = 0;
3346   if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
3347     CollSeq *pC = 0;
3348     int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
3349     Expr *pX = pHidden->pWC->a[iTerm].pExpr;
3350     if( pX->pLeft ){
3351       pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX);
3352     }
3353     zRet = (pC ? pC->zName : sqlite3StrBINARY);
3354   }
3355   return zRet;
3356 }
3357 
3358 /*
3359 ** Add all WhereLoop objects for a table of the join identified by
3360 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
3361 **
3362 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3363 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3364 ** entries that occur before the virtual table in the FROM clause and are
3365 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3366 ** mUnusable mask contains all FROM clause entries that occur after the
3367 ** virtual table and are separated from it by at least one LEFT or
3368 ** CROSS JOIN.
3369 **
3370 ** For example, if the query were:
3371 **
3372 **   ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3373 **
3374 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3375 **
3376 ** All the tables in mPrereq must be scanned before the current virtual
3377 ** table. So any terms for which all prerequisites are satisfied by
3378 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3379 ** Conversely, all tables in mUnusable must be scanned after the current
3380 ** virtual table, so any terms for which the prerequisites overlap with
3381 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3382 */
3383 static int whereLoopAddVirtual(
3384   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
3385   Bitmask mPrereq,             /* Tables that must be scanned before this one */
3386   Bitmask mUnusable            /* Tables that must be scanned after this one */
3387 ){
3388   int rc = SQLITE_OK;          /* Return code */
3389   WhereInfo *pWInfo;           /* WHERE analysis context */
3390   Parse *pParse;               /* The parsing context */
3391   WhereClause *pWC;            /* The WHERE clause */
3392   struct SrcList_item *pSrc;   /* The FROM clause term to search */
3393   sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
3394   int nConstraint;             /* Number of constraints in p */
3395   int bIn;                     /* True if plan uses IN(...) operator */
3396   WhereLoop *pNew;
3397   Bitmask mBest;               /* Tables used by best possible plan */
3398   u16 mNoOmit;
3399 
3400   assert( (mPrereq & mUnusable)==0 );
3401   pWInfo = pBuilder->pWInfo;
3402   pParse = pWInfo->pParse;
3403   pWC = pBuilder->pWC;
3404   pNew = pBuilder->pNew;
3405   pSrc = &pWInfo->pTabList->a[pNew->iTab];
3406   assert( IsVirtual(pSrc->pTab) );
3407   p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy,
3408       &mNoOmit);
3409   if( p==0 ) return SQLITE_NOMEM_BKPT;
3410   pNew->rSetup = 0;
3411   pNew->wsFlags = WHERE_VIRTUALTABLE;
3412   pNew->nLTerm = 0;
3413   pNew->u.vtab.needFree = 0;
3414   nConstraint = p->nConstraint;
3415   if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3416     sqlite3DbFree(pParse->db, p);
3417     return SQLITE_NOMEM_BKPT;
3418   }
3419 
3420   /* First call xBestIndex() with all constraints usable. */
3421   WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
3422   WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
3423   rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn);
3424 
3425   /* If the call to xBestIndex() with all terms enabled produced a plan
3426   ** that does not require any source tables (IOW: a plan with mBest==0)
3427   ** and does not use an IN(...) operator, then there is no point in making
3428   ** any further calls to xBestIndex() since they will all return the same
3429   ** result (if the xBestIndex() implementation is sane). */
3430   if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){
3431     int seenZero = 0;             /* True if a plan with no prereqs seen */
3432     int seenZeroNoIN = 0;         /* Plan with no prereqs and no IN(...) seen */
3433     Bitmask mPrev = 0;
3434     Bitmask mBestNoIn = 0;
3435 
3436     /* If the plan produced by the earlier call uses an IN(...) term, call
3437     ** xBestIndex again, this time with IN(...) terms disabled. */
3438     if( bIn ){
3439       WHERETRACE(0x40, ("  VirtualOne: all usable w/o IN\n"));
3440       rc = whereLoopAddVirtualOne(
3441           pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn);
3442       assert( bIn==0 );
3443       mBestNoIn = pNew->prereq & ~mPrereq;
3444       if( mBestNoIn==0 ){
3445         seenZero = 1;
3446         seenZeroNoIN = 1;
3447       }
3448     }
3449 
3450     /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3451     ** in the set of terms that apply to the current virtual table.  */
3452     while( rc==SQLITE_OK ){
3453       int i;
3454       Bitmask mNext = ALLBITS;
3455       assert( mNext>0 );
3456       for(i=0; i<nConstraint; i++){
3457         Bitmask mThis = (
3458             pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3459         );
3460         if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3461       }
3462       mPrev = mNext;
3463       if( mNext==ALLBITS ) break;
3464       if( mNext==mBest || mNext==mBestNoIn ) continue;
3465       WHERETRACE(0x40, ("  VirtualOne: mPrev=%04llx mNext=%04llx\n",
3466                        (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3467       rc = whereLoopAddVirtualOne(
3468           pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn);
3469       if( pNew->prereq==mPrereq ){
3470         seenZero = 1;
3471         if( bIn==0 ) seenZeroNoIN = 1;
3472       }
3473     }
3474 
3475     /* If the calls to xBestIndex() in the above loop did not find a plan
3476     ** that requires no source tables at all (i.e. one guaranteed to be
3477     ** usable), make a call here with all source tables disabled */
3478     if( rc==SQLITE_OK && seenZero==0 ){
3479       WHERETRACE(0x40, ("  VirtualOne: all disabled\n"));
3480       rc = whereLoopAddVirtualOne(
3481           pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn);
3482       if( bIn==0 ) seenZeroNoIN = 1;
3483     }
3484 
3485     /* If the calls to xBestIndex() have so far failed to find a plan
3486     ** that requires no source tables at all and does not use an IN(...)
3487     ** operator, make a final call to obtain one here.  */
3488     if( rc==SQLITE_OK && seenZeroNoIN==0 ){
3489       WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
3490       rc = whereLoopAddVirtualOne(
3491           pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn);
3492     }
3493   }
3494 
3495   if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
3496   sqlite3DbFreeNN(pParse->db, p);
3497   WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
3498   return rc;
3499 }
3500 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3501 
3502 /*
3503 ** Add WhereLoop entries to handle OR terms.  This works for either
3504 ** btrees or virtual tables.
3505 */
3506 static int whereLoopAddOr(
3507   WhereLoopBuilder *pBuilder,
3508   Bitmask mPrereq,
3509   Bitmask mUnusable
3510 ){
3511   WhereInfo *pWInfo = pBuilder->pWInfo;
3512   WhereClause *pWC;
3513   WhereLoop *pNew;
3514   WhereTerm *pTerm, *pWCEnd;
3515   int rc = SQLITE_OK;
3516   int iCur;
3517   WhereClause tempWC;
3518   WhereLoopBuilder sSubBuild;
3519   WhereOrSet sSum, sCur;
3520   struct SrcList_item *pItem;
3521 
3522   pWC = pBuilder->pWC;
3523   pWCEnd = pWC->a + pWC->nTerm;
3524   pNew = pBuilder->pNew;
3525   memset(&sSum, 0, sizeof(sSum));
3526   pItem = pWInfo->pTabList->a + pNew->iTab;
3527   iCur = pItem->iCursor;
3528 
3529   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
3530     if( (pTerm->eOperator & WO_OR)!=0
3531      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
3532     ){
3533       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
3534       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
3535       WhereTerm *pOrTerm;
3536       int once = 1;
3537       int i, j;
3538 
3539       sSubBuild = *pBuilder;
3540       sSubBuild.pOrderBy = 0;
3541       sSubBuild.pOrSet = &sCur;
3542 
3543       WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
3544       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
3545         if( (pOrTerm->eOperator & WO_AND)!=0 ){
3546           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
3547         }else if( pOrTerm->leftCursor==iCur ){
3548           tempWC.pWInfo = pWC->pWInfo;
3549           tempWC.pOuter = pWC;
3550           tempWC.op = TK_AND;
3551           tempWC.nTerm = 1;
3552           tempWC.a = pOrTerm;
3553           sSubBuild.pWC = &tempWC;
3554         }else{
3555           continue;
3556         }
3557         sCur.n = 0;
3558 #ifdef WHERETRACE_ENABLED
3559         WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3560                    (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
3561         if( sqlite3WhereTrace & 0x400 ){
3562           sqlite3WhereClausePrint(sSubBuild.pWC);
3563         }
3564 #endif
3565 #ifndef SQLITE_OMIT_VIRTUALTABLE
3566         if( IsVirtual(pItem->pTab) ){
3567           rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
3568         }else
3569 #endif
3570         {
3571           rc = whereLoopAddBtree(&sSubBuild, mPrereq);
3572         }
3573         if( rc==SQLITE_OK ){
3574           rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
3575         }
3576         assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0 );
3577         testcase( rc==SQLITE_DONE );
3578         if( sCur.n==0 ){
3579           sSum.n = 0;
3580           break;
3581         }else if( once ){
3582           whereOrMove(&sSum, &sCur);
3583           once = 0;
3584         }else{
3585           WhereOrSet sPrev;
3586           whereOrMove(&sPrev, &sSum);
3587           sSum.n = 0;
3588           for(i=0; i<sPrev.n; i++){
3589             for(j=0; j<sCur.n; j++){
3590               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
3591                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
3592                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
3593             }
3594           }
3595         }
3596       }
3597       pNew->nLTerm = 1;
3598       pNew->aLTerm[0] = pTerm;
3599       pNew->wsFlags = WHERE_MULTI_OR;
3600       pNew->rSetup = 0;
3601       pNew->iSortIdx = 0;
3602       memset(&pNew->u, 0, sizeof(pNew->u));
3603       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
3604         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
3605         ** of all sub-scans required by the OR-scan. However, due to rounding
3606         ** errors, it may be that the cost of the OR-scan is equal to its
3607         ** most expensive sub-scan. Add the smallest possible penalty
3608         ** (equivalent to multiplying the cost by 1.07) to ensure that
3609         ** this does not happen. Otherwise, for WHERE clauses such as the
3610         ** following where there is an index on "y":
3611         **
3612         **     WHERE likelihood(x=?, 0.99) OR y=?
3613         **
3614         ** the planner may elect to "OR" together a full-table scan and an
3615         ** index lookup. And other similarly odd results.  */
3616         pNew->rRun = sSum.a[i].rRun + 1;
3617         pNew->nOut = sSum.a[i].nOut;
3618         pNew->prereq = sSum.a[i].prereq;
3619         rc = whereLoopInsert(pBuilder, pNew);
3620       }
3621       WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
3622     }
3623   }
3624   return rc;
3625 }
3626 
3627 /*
3628 ** Add all WhereLoop objects for all tables
3629 */
3630 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
3631   WhereInfo *pWInfo = pBuilder->pWInfo;
3632   Bitmask mPrereq = 0;
3633   Bitmask mPrior = 0;
3634   int iTab;
3635   SrcList *pTabList = pWInfo->pTabList;
3636   struct SrcList_item *pItem;
3637   struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel];
3638   sqlite3 *db = pWInfo->pParse->db;
3639   int rc = SQLITE_OK;
3640   WhereLoop *pNew;
3641 
3642   /* Loop over the tables in the join, from left to right */
3643   pNew = pBuilder->pNew;
3644   whereLoopInit(pNew);
3645   pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT;
3646   for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
3647     Bitmask mUnusable = 0;
3648     pNew->iTab = iTab;
3649     pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR;
3650     pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
3651     if( (pItem->fg.jointype & (JT_LEFT|JT_CROSS))!=0 ){
3652       /* This condition is true when pItem is the FROM clause term on the
3653       ** right-hand-side of a LEFT or CROSS JOIN.  */
3654       mPrereq = mPrior;
3655     }else{
3656       mPrereq = 0;
3657     }
3658 #ifndef SQLITE_OMIT_VIRTUALTABLE
3659     if( IsVirtual(pItem->pTab) ){
3660       struct SrcList_item *p;
3661       for(p=&pItem[1]; p<pEnd; p++){
3662         if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
3663           mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
3664         }
3665       }
3666       rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
3667     }else
3668 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3669     {
3670       rc = whereLoopAddBtree(pBuilder, mPrereq);
3671     }
3672     if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
3673       rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
3674     }
3675     mPrior |= pNew->maskSelf;
3676     if( rc || db->mallocFailed ){
3677       if( rc==SQLITE_DONE ){
3678         /* We hit the query planner search limit set by iPlanLimit */
3679         sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search");
3680         rc = SQLITE_OK;
3681       }else{
3682         break;
3683       }
3684     }
3685   }
3686 
3687   whereLoopClear(db, pNew);
3688   return rc;
3689 }
3690 
3691 /*
3692 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
3693 ** parameters) to see if it outputs rows in the requested ORDER BY
3694 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
3695 **
3696 **   N>0:   N terms of the ORDER BY clause are satisfied
3697 **   N==0:  No terms of the ORDER BY clause are satisfied
3698 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
3699 **
3700 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
3701 ** strict.  With GROUP BY and DISTINCT the only requirement is that
3702 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
3703 ** and DISTINCT do not require rows to appear in any particular order as long
3704 ** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT
3705 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
3706 ** pOrderBy terms must be matched in strict left-to-right order.
3707 */
3708 static i8 wherePathSatisfiesOrderBy(
3709   WhereInfo *pWInfo,    /* The WHERE clause */
3710   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
3711   WherePath *pPath,     /* The WherePath to check */
3712   u16 wctrlFlags,       /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
3713   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
3714   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
3715   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
3716 ){
3717   u8 revSet;            /* True if rev is known */
3718   u8 rev;               /* Composite sort order */
3719   u8 revIdx;            /* Index sort order */
3720   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
3721   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
3722   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
3723   u16 eqOpMask;         /* Allowed equality operators */
3724   u16 nKeyCol;          /* Number of key columns in pIndex */
3725   u16 nColumn;          /* Total number of ordered columns in the index */
3726   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
3727   int iLoop;            /* Index of WhereLoop in pPath being processed */
3728   int i, j;             /* Loop counters */
3729   int iCur;             /* Cursor number for current WhereLoop */
3730   int iColumn;          /* A column number within table iCur */
3731   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
3732   WhereTerm *pTerm;     /* A single term of the WHERE clause */
3733   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
3734   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
3735   Index *pIndex;        /* The index associated with pLoop */
3736   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
3737   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
3738   Bitmask obDone;       /* Mask of all ORDER BY terms */
3739   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
3740   Bitmask ready;              /* Mask of inner loops */
3741 
3742   /*
3743   ** We say the WhereLoop is "one-row" if it generates no more than one
3744   ** row of output.  A WhereLoop is one-row if all of the following are true:
3745   **  (a) All index columns match with WHERE_COLUMN_EQ.
3746   **  (b) The index is unique
3747   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
3748   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
3749   **
3750   ** We say the WhereLoop is "order-distinct" if the set of columns from
3751   ** that WhereLoop that are in the ORDER BY clause are different for every
3752   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
3753   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
3754   ** is not order-distinct. To be order-distinct is not quite the same as being
3755   ** UNIQUE since a UNIQUE column or index can have multiple rows that
3756   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
3757   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
3758   **
3759   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
3760   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
3761   ** automatically order-distinct.
3762   */
3763 
3764   assert( pOrderBy!=0 );
3765   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
3766 
3767   nOrderBy = pOrderBy->nExpr;
3768   testcase( nOrderBy==BMS-1 );
3769   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
3770   isOrderDistinct = 1;
3771   obDone = MASKBIT(nOrderBy)-1;
3772   orderDistinctMask = 0;
3773   ready = 0;
3774   eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
3775   if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){
3776     eqOpMask |= WO_IN;
3777   }
3778   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
3779     if( iLoop>0 ) ready |= pLoop->maskSelf;
3780     if( iLoop<nLoop ){
3781       pLoop = pPath->aLoop[iLoop];
3782       if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
3783     }else{
3784       pLoop = pLast;
3785     }
3786     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
3787       if( pLoop->u.vtab.isOrdered && (wctrlFlags & WHERE_DISTINCTBY)==0 ){
3788         obSat = obDone;
3789       }
3790       break;
3791     }else if( wctrlFlags & WHERE_DISTINCTBY ){
3792       pLoop->u.btree.nDistinctCol = 0;
3793     }
3794     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
3795 
3796     /* Mark off any ORDER BY term X that is a column in the table of
3797     ** the current loop for which there is term in the WHERE
3798     ** clause of the form X IS NULL or X=? that reference only outer
3799     ** loops.
3800     */
3801     for(i=0; i<nOrderBy; i++){
3802       if( MASKBIT(i) & obSat ) continue;
3803       pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
3804       if( NEVER(pOBExpr==0) ) continue;
3805       if( pOBExpr->op!=TK_COLUMN ) continue;
3806       if( pOBExpr->iTable!=iCur ) continue;
3807       pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
3808                        ~ready, eqOpMask, 0);
3809       if( pTerm==0 ) continue;
3810       if( pTerm->eOperator==WO_IN ){
3811         /* IN terms are only valid for sorting in the ORDER BY LIMIT
3812         ** optimization, and then only if they are actually used
3813         ** by the query plan */
3814         assert( wctrlFlags &
3815                (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) );
3816         for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
3817         if( j>=pLoop->nLTerm ) continue;
3818       }
3819       if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
3820         Parse *pParse = pWInfo->pParse;
3821         CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr);
3822         CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr);
3823         assert( pColl1 );
3824         if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){
3825           continue;
3826         }
3827         testcase( pTerm->pExpr->op==TK_IS );
3828       }
3829       obSat |= MASKBIT(i);
3830     }
3831 
3832     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
3833       if( pLoop->wsFlags & WHERE_IPK ){
3834         pIndex = 0;
3835         nKeyCol = 0;
3836         nColumn = 1;
3837       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
3838         return 0;
3839       }else{
3840         nKeyCol = pIndex->nKeyCol;
3841         nColumn = pIndex->nColumn;
3842         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
3843         assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
3844                           || !HasRowid(pIndex->pTable));
3845         isOrderDistinct = IsUniqueIndex(pIndex)
3846                           && (pLoop->wsFlags & WHERE_SKIPSCAN)==0;
3847       }
3848 
3849       /* Loop through all columns of the index and deal with the ones
3850       ** that are not constrained by == or IN.
3851       */
3852       rev = revSet = 0;
3853       distinctColumns = 0;
3854       for(j=0; j<nColumn; j++){
3855         u8 bOnce = 1; /* True to run the ORDER BY search loop */
3856 
3857         assert( j>=pLoop->u.btree.nEq
3858             || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
3859         );
3860         if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
3861           u16 eOp = pLoop->aLTerm[j]->eOperator;
3862 
3863           /* Skip over == and IS and ISNULL terms.  (Also skip IN terms when
3864           ** doing WHERE_ORDERBY_LIMIT processing).  Except, IS and ISNULL
3865           ** terms imply that the index is not UNIQUE NOT NULL in which case
3866           ** the loop need to be marked as not order-distinct because it can
3867           ** have repeated NULL rows.
3868           **
3869           ** If the current term is a column of an ((?,?) IN (SELECT...))
3870           ** expression for which the SELECT returns more than one column,
3871           ** check that it is the only column used by this loop. Otherwise,
3872           ** if it is one of two or more, none of the columns can be
3873           ** considered to match an ORDER BY term.
3874           */
3875           if( (eOp & eqOpMask)!=0 ){
3876             if( eOp & (WO_ISNULL|WO_IS) ){
3877               testcase( eOp & WO_ISNULL );
3878               testcase( eOp & WO_IS );
3879               testcase( isOrderDistinct );
3880               isOrderDistinct = 0;
3881             }
3882             continue;
3883           }else if( ALWAYS(eOp & WO_IN) ){
3884             /* ALWAYS() justification: eOp is an equality operator due to the
3885             ** j<pLoop->u.btree.nEq constraint above.  Any equality other
3886             ** than WO_IN is captured by the previous "if".  So this one
3887             ** always has to be WO_IN. */
3888             Expr *pX = pLoop->aLTerm[j]->pExpr;
3889             for(i=j+1; i<pLoop->u.btree.nEq; i++){
3890               if( pLoop->aLTerm[i]->pExpr==pX ){
3891                 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
3892                 bOnce = 0;
3893                 break;
3894               }
3895             }
3896           }
3897         }
3898 
3899         /* Get the column number in the table (iColumn) and sort order
3900         ** (revIdx) for the j-th column of the index.
3901         */
3902         if( pIndex ){
3903           iColumn = pIndex->aiColumn[j];
3904           revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC;
3905           if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
3906         }else{
3907           iColumn = XN_ROWID;
3908           revIdx = 0;
3909         }
3910 
3911         /* An unconstrained column that might be NULL means that this
3912         ** WhereLoop is not well-ordered
3913         */
3914         if( isOrderDistinct
3915          && iColumn>=0
3916          && j>=pLoop->u.btree.nEq
3917          && pIndex->pTable->aCol[iColumn].notNull==0
3918         ){
3919           isOrderDistinct = 0;
3920         }
3921 
3922         /* Find the ORDER BY term that corresponds to the j-th column
3923         ** of the index and mark that ORDER BY term off
3924         */
3925         isMatch = 0;
3926         for(i=0; bOnce && i<nOrderBy; i++){
3927           if( MASKBIT(i) & obSat ) continue;
3928           pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
3929           testcase( wctrlFlags & WHERE_GROUPBY );
3930           testcase( wctrlFlags & WHERE_DISTINCTBY );
3931           if( NEVER(pOBExpr==0) ) continue;
3932           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
3933           if( iColumn>=XN_ROWID ){
3934             if( pOBExpr->op!=TK_COLUMN ) continue;
3935             if( pOBExpr->iTable!=iCur ) continue;
3936             if( pOBExpr->iColumn!=iColumn ) continue;
3937           }else{
3938             Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
3939             if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
3940               continue;
3941             }
3942           }
3943           if( iColumn!=XN_ROWID ){
3944             pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
3945             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
3946           }
3947           if( wctrlFlags & WHERE_DISTINCTBY ){
3948             pLoop->u.btree.nDistinctCol = j+1;
3949           }
3950           isMatch = 1;
3951           break;
3952         }
3953         if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
3954           /* Make sure the sort order is compatible in an ORDER BY clause.
3955           ** Sort order is irrelevant for a GROUP BY clause. */
3956           if( revSet ){
3957             if( (rev ^ revIdx)!=(pOrderBy->a[i].sortFlags&KEYINFO_ORDER_DESC) ){
3958               isMatch = 0;
3959             }
3960           }else{
3961             rev = revIdx ^ (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC);
3962             if( rev ) *pRevMask |= MASKBIT(iLoop);
3963             revSet = 1;
3964           }
3965         }
3966         if( isMatch && (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL) ){
3967           if( j==pLoop->u.btree.nEq ){
3968             pLoop->wsFlags |= WHERE_BIGNULL_SORT;
3969           }else{
3970             isMatch = 0;
3971           }
3972         }
3973         if( isMatch ){
3974           if( iColumn==XN_ROWID ){
3975             testcase( distinctColumns==0 );
3976             distinctColumns = 1;
3977           }
3978           obSat |= MASKBIT(i);
3979         }else{
3980           /* No match found */
3981           if( j==0 || j<nKeyCol ){
3982             testcase( isOrderDistinct!=0 );
3983             isOrderDistinct = 0;
3984           }
3985           break;
3986         }
3987       } /* end Loop over all index columns */
3988       if( distinctColumns ){
3989         testcase( isOrderDistinct==0 );
3990         isOrderDistinct = 1;
3991       }
3992     } /* end-if not one-row */
3993 
3994     /* Mark off any other ORDER BY terms that reference pLoop */
3995     if( isOrderDistinct ){
3996       orderDistinctMask |= pLoop->maskSelf;
3997       for(i=0; i<nOrderBy; i++){
3998         Expr *p;
3999         Bitmask mTerm;
4000         if( MASKBIT(i) & obSat ) continue;
4001         p = pOrderBy->a[i].pExpr;
4002         mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
4003         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
4004         if( (mTerm&~orderDistinctMask)==0 ){
4005           obSat |= MASKBIT(i);
4006         }
4007       }
4008     }
4009   } /* End the loop over all WhereLoops from outer-most down to inner-most */
4010   if( obSat==obDone ) return (i8)nOrderBy;
4011   if( !isOrderDistinct ){
4012     for(i=nOrderBy-1; i>0; i--){
4013       Bitmask m = MASKBIT(i) - 1;
4014       if( (obSat&m)==m ) return i;
4015     }
4016     return 0;
4017   }
4018   return -1;
4019 }
4020 
4021 
4022 /*
4023 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
4024 ** the planner assumes that the specified pOrderBy list is actually a GROUP
4025 ** BY clause - and so any order that groups rows as required satisfies the
4026 ** request.
4027 **
4028 ** Normally, in this case it is not possible for the caller to determine
4029 ** whether or not the rows are really being delivered in sorted order, or
4030 ** just in some other order that provides the required grouping. However,
4031 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
4032 ** this function may be called on the returned WhereInfo object. It returns
4033 ** true if the rows really will be sorted in the specified order, or false
4034 ** otherwise.
4035 **
4036 ** For example, assuming:
4037 **
4038 **   CREATE INDEX i1 ON t1(x, Y);
4039 **
4040 ** then
4041 **
4042 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
4043 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
4044 */
4045 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
4046   assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
4047   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
4048   return pWInfo->sorted;
4049 }
4050 
4051 #ifdef WHERETRACE_ENABLED
4052 /* For debugging use only: */
4053 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
4054   static char zName[65];
4055   int i;
4056   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
4057   if( pLast ) zName[i++] = pLast->cId;
4058   zName[i] = 0;
4059   return zName;
4060 }
4061 #endif
4062 
4063 /*
4064 ** Return the cost of sorting nRow rows, assuming that the keys have
4065 ** nOrderby columns and that the first nSorted columns are already in
4066 ** order.
4067 */
4068 static LogEst whereSortingCost(
4069   WhereInfo *pWInfo,
4070   LogEst nRow,
4071   int nOrderBy,
4072   int nSorted
4073 ){
4074   /* TUNING: Estimated cost of a full external sort, where N is
4075   ** the number of rows to sort is:
4076   **
4077   **   cost = (3.0 * N * log(N)).
4078   **
4079   ** Or, if the order-by clause has X terms but only the last Y
4080   ** terms are out of order, then block-sorting will reduce the
4081   ** sorting cost to:
4082   **
4083   **   cost = (3.0 * N * log(N)) * (Y/X)
4084   **
4085   ** The (Y/X) term is implemented using stack variable rScale
4086   ** below.
4087   */
4088   LogEst rScale, rSortCost;
4089   assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
4090   rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
4091   rSortCost = nRow + rScale + 16;
4092 
4093   /* Multiple by log(M) where M is the number of output rows.
4094   ** Use the LIMIT for M if it is smaller.  Or if this sort is for
4095   ** a DISTINCT operator, M will be the number of distinct output
4096   ** rows, so fudge it downwards a bit.
4097   */
4098   if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
4099     nRow = pWInfo->iLimit;
4100   }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){
4101     /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT
4102     ** reduces the number of output rows by a factor of 2 */
4103     if( nRow>10 ) nRow -= 10;  assert( 10==sqlite3LogEst(2) );
4104   }
4105   rSortCost += estLog(nRow);
4106   return rSortCost;
4107 }
4108 
4109 /*
4110 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
4111 ** attempts to find the lowest cost path that visits each WhereLoop
4112 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
4113 **
4114 ** Assume that the total number of output rows that will need to be sorted
4115 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
4116 ** costs if nRowEst==0.
4117 **
4118 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
4119 ** error occurs.
4120 */
4121 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
4122   int mxChoice;             /* Maximum number of simultaneous paths tracked */
4123   int nLoop;                /* Number of terms in the join */
4124   Parse *pParse;            /* Parsing context */
4125   sqlite3 *db;              /* The database connection */
4126   int iLoop;                /* Loop counter over the terms of the join */
4127   int ii, jj;               /* Loop counters */
4128   int mxI = 0;              /* Index of next entry to replace */
4129   int nOrderBy;             /* Number of ORDER BY clause terms */
4130   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
4131   LogEst mxUnsorted = 0;    /* Maximum unsorted cost of a set of path */
4132   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
4133   WherePath *aFrom;         /* All nFrom paths at the previous level */
4134   WherePath *aTo;           /* The nTo best paths at the current level */
4135   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
4136   WherePath *pTo;           /* An element of aTo[] that we are working on */
4137   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
4138   WhereLoop **pX;           /* Used to divy up the pSpace memory */
4139   LogEst *aSortCost = 0;    /* Sorting and partial sorting costs */
4140   char *pSpace;             /* Temporary memory used by this routine */
4141   int nSpace;               /* Bytes of space allocated at pSpace */
4142 
4143   pParse = pWInfo->pParse;
4144   db = pParse->db;
4145   nLoop = pWInfo->nLevel;
4146   /* TUNING: For simple queries, only the best path is tracked.
4147   ** For 2-way joins, the 5 best paths are followed.
4148   ** For joins of 3 or more tables, track the 10 best paths */
4149   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
4150   assert( nLoop<=pWInfo->pTabList->nSrc );
4151   WHERETRACE(0x002, ("---- begin solver.  (nRowEst=%d)\n", nRowEst));
4152 
4153   /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
4154   ** case the purpose of this call is to estimate the number of rows returned
4155   ** by the overall query. Once this estimate has been obtained, the caller
4156   ** will invoke this function a second time, passing the estimate as the
4157   ** nRowEst parameter.  */
4158   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
4159     nOrderBy = 0;
4160   }else{
4161     nOrderBy = pWInfo->pOrderBy->nExpr;
4162   }
4163 
4164   /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
4165   nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
4166   nSpace += sizeof(LogEst) * nOrderBy;
4167   pSpace = sqlite3DbMallocRawNN(db, nSpace);
4168   if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
4169   aTo = (WherePath*)pSpace;
4170   aFrom = aTo+mxChoice;
4171   memset(aFrom, 0, sizeof(aFrom[0]));
4172   pX = (WhereLoop**)(aFrom+mxChoice);
4173   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
4174     pFrom->aLoop = pX;
4175   }
4176   if( nOrderBy ){
4177     /* If there is an ORDER BY clause and it is not being ignored, set up
4178     ** space for the aSortCost[] array. Each element of the aSortCost array
4179     ** is either zero - meaning it has not yet been initialized - or the
4180     ** cost of sorting nRowEst rows of data where the first X terms of
4181     ** the ORDER BY clause are already in order, where X is the array
4182     ** index.  */
4183     aSortCost = (LogEst*)pX;
4184     memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
4185   }
4186   assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
4187   assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
4188 
4189   /* Seed the search with a single WherePath containing zero WhereLoops.
4190   **
4191   ** TUNING: Do not let the number of iterations go above 28.  If the cost
4192   ** of computing an automatic index is not paid back within the first 28
4193   ** rows, then do not use the automatic index. */
4194   aFrom[0].nRow = MIN(pParse->nQueryLoop, 48);  assert( 48==sqlite3LogEst(28) );
4195   nFrom = 1;
4196   assert( aFrom[0].isOrdered==0 );
4197   if( nOrderBy ){
4198     /* If nLoop is zero, then there are no FROM terms in the query. Since
4199     ** in this case the query may return a maximum of one row, the results
4200     ** are already in the requested order. Set isOrdered to nOrderBy to
4201     ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
4202     ** -1, indicating that the result set may or may not be ordered,
4203     ** depending on the loops added to the current plan.  */
4204     aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
4205   }
4206 
4207   /* Compute successively longer WherePaths using the previous generation
4208   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
4209   ** best paths at each generation */
4210   for(iLoop=0; iLoop<nLoop; iLoop++){
4211     nTo = 0;
4212     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
4213       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
4214         LogEst nOut;                      /* Rows visited by (pFrom+pWLoop) */
4215         LogEst rCost;                     /* Cost of path (pFrom+pWLoop) */
4216         LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
4217         i8 isOrdered = pFrom->isOrdered;  /* isOrdered for (pFrom+pWLoop) */
4218         Bitmask maskNew;                  /* Mask of src visited by (..) */
4219         Bitmask revMask = 0;              /* Mask of rev-order loops for (..) */
4220 
4221         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
4222         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
4223         if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
4224           /* Do not use an automatic index if the this loop is expected
4225           ** to run less than 1.25 times.  It is tempting to also exclude
4226           ** automatic index usage on an outer loop, but sometimes an automatic
4227           ** index is useful in the outer loop of a correlated subquery. */
4228           assert( 10==sqlite3LogEst(2) );
4229           continue;
4230         }
4231 
4232         /* At this point, pWLoop is a candidate to be the next loop.
4233         ** Compute its cost */
4234         rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
4235         rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
4236         nOut = pFrom->nRow + pWLoop->nOut;
4237         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
4238         if( isOrdered<0 ){
4239           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
4240                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
4241                        iLoop, pWLoop, &revMask);
4242         }else{
4243           revMask = pFrom->revLoop;
4244         }
4245         if( isOrdered>=0 && isOrdered<nOrderBy ){
4246           if( aSortCost[isOrdered]==0 ){
4247             aSortCost[isOrdered] = whereSortingCost(
4248                 pWInfo, nRowEst, nOrderBy, isOrdered
4249             );
4250           }
4251           /* TUNING:  Add a small extra penalty (5) to sorting as an
4252           ** extra encouragment to the query planner to select a plan
4253           ** where the rows emerge in the correct order without any sorting
4254           ** required. */
4255           rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5;
4256 
4257           WHERETRACE(0x002,
4258               ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
4259                aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
4260                rUnsorted, rCost));
4261         }else{
4262           rCost = rUnsorted;
4263           rUnsorted -= 2;  /* TUNING:  Slight bias in favor of no-sort plans */
4264         }
4265 
4266         /* Check to see if pWLoop should be added to the set of
4267         ** mxChoice best-so-far paths.
4268         **
4269         ** First look for an existing path among best-so-far paths
4270         ** that covers the same set of loops and has the same isOrdered
4271         ** setting as the current path candidate.
4272         **
4273         ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4274         ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4275         ** of legal values for isOrdered, -1..64.
4276         */
4277         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
4278           if( pTo->maskLoop==maskNew
4279            && ((pTo->isOrdered^isOrdered)&0x80)==0
4280           ){
4281             testcase( jj==nTo-1 );
4282             break;
4283           }
4284         }
4285         if( jj>=nTo ){
4286           /* None of the existing best-so-far paths match the candidate. */
4287           if( nTo>=mxChoice
4288            && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4289           ){
4290             /* The current candidate is no better than any of the mxChoice
4291             ** paths currently in the best-so-far buffer.  So discard
4292             ** this candidate as not viable. */
4293 #ifdef WHERETRACE_ENABLED /* 0x4 */
4294             if( sqlite3WhereTrace&0x4 ){
4295               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d,%3d order=%c\n",
4296                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4297                   isOrdered>=0 ? isOrdered+'0' : '?');
4298             }
4299 #endif
4300             continue;
4301           }
4302           /* If we reach this points it means that the new candidate path
4303           ** needs to be added to the set of best-so-far paths. */
4304           if( nTo<mxChoice ){
4305             /* Increase the size of the aTo set by one */
4306             jj = nTo++;
4307           }else{
4308             /* New path replaces the prior worst to keep count below mxChoice */
4309             jj = mxI;
4310           }
4311           pTo = &aTo[jj];
4312 #ifdef WHERETRACE_ENABLED /* 0x4 */
4313           if( sqlite3WhereTrace&0x4 ){
4314             sqlite3DebugPrintf("New    %s cost=%-3d,%3d,%3d order=%c\n",
4315                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4316                 isOrdered>=0 ? isOrdered+'0' : '?');
4317           }
4318 #endif
4319         }else{
4320           /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4321           ** same set of loops and has the same isOrdered setting as the
4322           ** candidate path.  Check to see if the candidate should replace
4323           ** pTo or if the candidate should be skipped.
4324           **
4325           ** The conditional is an expanded vector comparison equivalent to:
4326           **   (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4327           */
4328           if( pTo->rCost<rCost
4329            || (pTo->rCost==rCost
4330                && (pTo->nRow<nOut
4331                    || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4332                   )
4333               )
4334           ){
4335 #ifdef WHERETRACE_ENABLED /* 0x4 */
4336             if( sqlite3WhereTrace&0x4 ){
4337               sqlite3DebugPrintf(
4338                   "Skip   %s cost=%-3d,%3d,%3d order=%c",
4339                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4340                   isOrdered>=0 ? isOrdered+'0' : '?');
4341               sqlite3DebugPrintf("   vs %s cost=%-3d,%3d,%3d order=%c\n",
4342                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4343                   pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4344             }
4345 #endif
4346             /* Discard the candidate path from further consideration */
4347             testcase( pTo->rCost==rCost );
4348             continue;
4349           }
4350           testcase( pTo->rCost==rCost+1 );
4351           /* Control reaches here if the candidate path is better than the
4352           ** pTo path.  Replace pTo with the candidate. */
4353 #ifdef WHERETRACE_ENABLED /* 0x4 */
4354           if( sqlite3WhereTrace&0x4 ){
4355             sqlite3DebugPrintf(
4356                 "Update %s cost=%-3d,%3d,%3d order=%c",
4357                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4358                 isOrdered>=0 ? isOrdered+'0' : '?');
4359             sqlite3DebugPrintf("  was %s cost=%-3d,%3d,%3d order=%c\n",
4360                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4361                 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4362           }
4363 #endif
4364         }
4365         /* pWLoop is a winner.  Add it to the set of best so far */
4366         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4367         pTo->revLoop = revMask;
4368         pTo->nRow = nOut;
4369         pTo->rCost = rCost;
4370         pTo->rUnsorted = rUnsorted;
4371         pTo->isOrdered = isOrdered;
4372         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4373         pTo->aLoop[iLoop] = pWLoop;
4374         if( nTo>=mxChoice ){
4375           mxI = 0;
4376           mxCost = aTo[0].rCost;
4377           mxUnsorted = aTo[0].nRow;
4378           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4379             if( pTo->rCost>mxCost
4380              || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4381             ){
4382               mxCost = pTo->rCost;
4383               mxUnsorted = pTo->rUnsorted;
4384               mxI = jj;
4385             }
4386           }
4387         }
4388       }
4389     }
4390 
4391 #ifdef WHERETRACE_ENABLED  /* >=2 */
4392     if( sqlite3WhereTrace & 0x02 ){
4393       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4394       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4395         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4396            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4397            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4398         if( pTo->isOrdered>0 ){
4399           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4400         }else{
4401           sqlite3DebugPrintf("\n");
4402         }
4403       }
4404     }
4405 #endif
4406 
4407     /* Swap the roles of aFrom and aTo for the next generation */
4408     pFrom = aTo;
4409     aTo = aFrom;
4410     aFrom = pFrom;
4411     nFrom = nTo;
4412   }
4413 
4414   if( nFrom==0 ){
4415     sqlite3ErrorMsg(pParse, "no query solution");
4416     sqlite3DbFreeNN(db, pSpace);
4417     return SQLITE_ERROR;
4418   }
4419 
4420   /* Find the lowest cost path.  pFrom will be left pointing to that path */
4421   pFrom = aFrom;
4422   for(ii=1; ii<nFrom; ii++){
4423     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4424   }
4425   assert( pWInfo->nLevel==nLoop );
4426   /* Load the lowest cost path into pWInfo */
4427   for(iLoop=0; iLoop<nLoop; iLoop++){
4428     WhereLevel *pLevel = pWInfo->a + iLoop;
4429     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
4430     pLevel->iFrom = pWLoop->iTab;
4431     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
4432   }
4433   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
4434    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
4435    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
4436    && nRowEst
4437   ){
4438     Bitmask notUsed;
4439     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
4440                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
4441     if( rc==pWInfo->pResultSet->nExpr ){
4442       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4443     }
4444   }
4445   pWInfo->bOrderedInnerLoop = 0;
4446   if( pWInfo->pOrderBy ){
4447     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
4448       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
4449         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4450       }
4451     }else{
4452       pWInfo->nOBSat = pFrom->isOrdered;
4453       pWInfo->revMask = pFrom->revLoop;
4454       if( pWInfo->nOBSat<=0 ){
4455         pWInfo->nOBSat = 0;
4456         if( nLoop>0 ){
4457           u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
4458           if( (wsFlags & WHERE_ONEROW)==0
4459            && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
4460           ){
4461             Bitmask m = 0;
4462             int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
4463                       WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
4464             testcase( wsFlags & WHERE_IPK );
4465             testcase( wsFlags & WHERE_COLUMN_IN );
4466             if( rc==pWInfo->pOrderBy->nExpr ){
4467               pWInfo->bOrderedInnerLoop = 1;
4468               pWInfo->revMask = m;
4469             }
4470           }
4471         }
4472       }else if( nLoop
4473             && pWInfo->nOBSat==1
4474             && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0
4475             ){
4476         pWInfo->bOrderedInnerLoop = 1;
4477       }
4478     }
4479     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
4480         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
4481     ){
4482       Bitmask revMask = 0;
4483       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
4484           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
4485       );
4486       assert( pWInfo->sorted==0 );
4487       if( nOrder==pWInfo->pOrderBy->nExpr ){
4488         pWInfo->sorted = 1;
4489         pWInfo->revMask = revMask;
4490       }
4491     }
4492   }
4493 
4494 
4495   pWInfo->nRowOut = pFrom->nRow;
4496 
4497   /* Free temporary memory and return success */
4498   sqlite3DbFreeNN(db, pSpace);
4499   return SQLITE_OK;
4500 }
4501 
4502 /*
4503 ** Most queries use only a single table (they are not joins) and have
4504 ** simple == constraints against indexed fields.  This routine attempts
4505 ** to plan those simple cases using much less ceremony than the
4506 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4507 ** times for the common case.
4508 **
4509 ** Return non-zero on success, if this query can be handled by this
4510 ** no-frills query planner.  Return zero if this query needs the
4511 ** general-purpose query planner.
4512 */
4513 static int whereShortCut(WhereLoopBuilder *pBuilder){
4514   WhereInfo *pWInfo;
4515   struct SrcList_item *pItem;
4516   WhereClause *pWC;
4517   WhereTerm *pTerm;
4518   WhereLoop *pLoop;
4519   int iCur;
4520   int j;
4521   Table *pTab;
4522   Index *pIdx;
4523 
4524   pWInfo = pBuilder->pWInfo;
4525   if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
4526   assert( pWInfo->pTabList->nSrc>=1 );
4527   pItem = pWInfo->pTabList->a;
4528   pTab = pItem->pTab;
4529   if( IsVirtual(pTab) ) return 0;
4530   if( pItem->fg.isIndexedBy ) return 0;
4531   iCur = pItem->iCursor;
4532   pWC = &pWInfo->sWC;
4533   pLoop = pBuilder->pNew;
4534   pLoop->wsFlags = 0;
4535   pLoop->nSkip = 0;
4536   pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0);
4537   if( pTerm ){
4538     testcase( pTerm->eOperator & WO_IS );
4539     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
4540     pLoop->aLTerm[0] = pTerm;
4541     pLoop->nLTerm = 1;
4542     pLoop->u.btree.nEq = 1;
4543     /* TUNING: Cost of a rowid lookup is 10 */
4544     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
4545   }else{
4546     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4547       int opMask;
4548       assert( pLoop->aLTermSpace==pLoop->aLTerm );
4549       if( !IsUniqueIndex(pIdx)
4550        || pIdx->pPartIdxWhere!=0
4551        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
4552       ) continue;
4553       opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
4554       for(j=0; j<pIdx->nKeyCol; j++){
4555         pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx);
4556         if( pTerm==0 ) break;
4557         testcase( pTerm->eOperator & WO_IS );
4558         pLoop->aLTerm[j] = pTerm;
4559       }
4560       if( j!=pIdx->nKeyCol ) continue;
4561       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
4562       if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
4563         pLoop->wsFlags |= WHERE_IDX_ONLY;
4564       }
4565       pLoop->nLTerm = j;
4566       pLoop->u.btree.nEq = j;
4567       pLoop->u.btree.pIndex = pIdx;
4568       /* TUNING: Cost of a unique index lookup is 15 */
4569       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
4570       break;
4571     }
4572   }
4573   if( pLoop->wsFlags ){
4574     pLoop->nOut = (LogEst)1;
4575     pWInfo->a[0].pWLoop = pLoop;
4576     assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
4577     pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
4578     pWInfo->a[0].iTabCur = iCur;
4579     pWInfo->nRowOut = 1;
4580     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
4581     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
4582       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4583     }
4584 #ifdef SQLITE_DEBUG
4585     pLoop->cId = '0';
4586 #endif
4587     return 1;
4588   }
4589   return 0;
4590 }
4591 
4592 /*
4593 ** Helper function for exprIsDeterministic().
4594 */
4595 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
4596   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
4597     pWalker->eCode = 0;
4598     return WRC_Abort;
4599   }
4600   return WRC_Continue;
4601 }
4602 
4603 /*
4604 ** Return true if the expression contains no non-deterministic SQL
4605 ** functions. Do not consider non-deterministic SQL functions that are
4606 ** part of sub-select statements.
4607 */
4608 static int exprIsDeterministic(Expr *p){
4609   Walker w;
4610   memset(&w, 0, sizeof(w));
4611   w.eCode = 1;
4612   w.xExprCallback = exprNodeIsDeterministic;
4613   w.xSelectCallback = sqlite3SelectWalkFail;
4614   sqlite3WalkExpr(&w, p);
4615   return w.eCode;
4616 }
4617 
4618 
4619 #ifdef WHERETRACE_ENABLED
4620 /*
4621 ** Display all WhereLoops in pWInfo
4622 */
4623 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){
4624   if( sqlite3WhereTrace ){    /* Display all of the WhereLoop objects */
4625     WhereLoop *p;
4626     int i;
4627     static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
4628                                            "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
4629     for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
4630       p->cId = zLabel[i%(sizeof(zLabel)-1)];
4631       sqlite3WhereLoopPrint(p, pWC);
4632     }
4633   }
4634 }
4635 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C)
4636 #else
4637 # define WHERETRACE_ALL_LOOPS(W,C)
4638 #endif
4639 
4640 /*
4641 ** Generate the beginning of the loop used for WHERE clause processing.
4642 ** The return value is a pointer to an opaque structure that contains
4643 ** information needed to terminate the loop.  Later, the calling routine
4644 ** should invoke sqlite3WhereEnd() with the return value of this function
4645 ** in order to complete the WHERE clause processing.
4646 **
4647 ** If an error occurs, this routine returns NULL.
4648 **
4649 ** The basic idea is to do a nested loop, one loop for each table in
4650 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
4651 ** same as a SELECT with only a single table in the FROM clause.)  For
4652 ** example, if the SQL is this:
4653 **
4654 **       SELECT * FROM t1, t2, t3 WHERE ...;
4655 **
4656 ** Then the code generated is conceptually like the following:
4657 **
4658 **      foreach row1 in t1 do       \    Code generated
4659 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
4660 **          foreach row3 in t3 do   /
4661 **            ...
4662 **          end                     \    Code generated
4663 **        end                        |-- by sqlite3WhereEnd()
4664 **      end                         /
4665 **
4666 ** Note that the loops might not be nested in the order in which they
4667 ** appear in the FROM clause if a different order is better able to make
4668 ** use of indices.  Note also that when the IN operator appears in
4669 ** the WHERE clause, it might result in additional nested loops for
4670 ** scanning through all values on the right-hand side of the IN.
4671 **
4672 ** There are Btree cursors associated with each table.  t1 uses cursor
4673 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
4674 ** And so forth.  This routine generates code to open those VDBE cursors
4675 ** and sqlite3WhereEnd() generates the code to close them.
4676 **
4677 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4678 ** in pTabList pointing at their appropriate entries.  The [...] code
4679 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4680 ** data from the various tables of the loop.
4681 **
4682 ** If the WHERE clause is empty, the foreach loops must each scan their
4683 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
4684 ** the tables have indices and there are terms in the WHERE clause that
4685 ** refer to those indices, a complete table scan can be avoided and the
4686 ** code will run much faster.  Most of the work of this routine is checking
4687 ** to see if there are indices that can be used to speed up the loop.
4688 **
4689 ** Terms of the WHERE clause are also used to limit which rows actually
4690 ** make it to the "..." in the middle of the loop.  After each "foreach",
4691 ** terms of the WHERE clause that use only terms in that loop and outer
4692 ** loops are evaluated and if false a jump is made around all subsequent
4693 ** inner loops (or around the "..." if the test occurs within the inner-
4694 ** most loop)
4695 **
4696 ** OUTER JOINS
4697 **
4698 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4699 **
4700 **    foreach row1 in t1 do
4701 **      flag = 0
4702 **      foreach row2 in t2 do
4703 **        start:
4704 **          ...
4705 **          flag = 1
4706 **      end
4707 **      if flag==0 then
4708 **        move the row2 cursor to a null row
4709 **        goto start
4710 **      fi
4711 **    end
4712 **
4713 ** ORDER BY CLAUSE PROCESSING
4714 **
4715 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
4716 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
4717 ** if there is one.  If there is no ORDER BY clause or if this routine
4718 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
4719 **
4720 ** The iIdxCur parameter is the cursor number of an index.  If
4721 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
4722 ** to use for OR clause processing.  The WHERE clause should use this
4723 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
4724 ** the first cursor in an array of cursors for all indices.  iIdxCur should
4725 ** be used to compute the appropriate cursor depending on which index is
4726 ** used.
4727 */
4728 WhereInfo *sqlite3WhereBegin(
4729   Parse *pParse,          /* The parser context */
4730   SrcList *pTabList,      /* FROM clause: A list of all tables to be scanned */
4731   Expr *pWhere,           /* The WHERE clause */
4732   ExprList *pOrderBy,     /* An ORDER BY (or GROUP BY) clause, or NULL */
4733   ExprList *pResultSet,   /* Query result set.  Req'd for DISTINCT */
4734   u16 wctrlFlags,         /* The WHERE_* flags defined in sqliteInt.h */
4735   int iAuxArg             /* If WHERE_OR_SUBCLAUSE is set, index cursor number
4736                           ** If WHERE_USE_LIMIT, then the limit amount */
4737 ){
4738   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
4739   int nTabList;              /* Number of elements in pTabList */
4740   WhereInfo *pWInfo;         /* Will become the return value of this function */
4741   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
4742   Bitmask notReady;          /* Cursors that are not yet positioned */
4743   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
4744   WhereMaskSet *pMaskSet;    /* The expression mask set */
4745   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
4746   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
4747   int ii;                    /* Loop counter */
4748   sqlite3 *db;               /* Database connection */
4749   int rc;                    /* Return code */
4750   u8 bFordelete = 0;         /* OPFLAG_FORDELETE or zero, as appropriate */
4751 
4752   assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
4753         (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
4754      && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4755   ));
4756 
4757   /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
4758   assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4759             || (wctrlFlags & WHERE_USE_LIMIT)==0 );
4760 
4761   /* Variable initialization */
4762   db = pParse->db;
4763   memset(&sWLB, 0, sizeof(sWLB));
4764 
4765   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
4766   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
4767   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
4768   sWLB.pOrderBy = pOrderBy;
4769 
4770   /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
4771   ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
4772   if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
4773     wctrlFlags &= ~WHERE_WANT_DISTINCT;
4774   }
4775 
4776   /* The number of tables in the FROM clause is limited by the number of
4777   ** bits in a Bitmask
4778   */
4779   testcase( pTabList->nSrc==BMS );
4780   if( pTabList->nSrc>BMS ){
4781     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
4782     return 0;
4783   }
4784 
4785   /* This function normally generates a nested loop for all tables in
4786   ** pTabList.  But if the WHERE_OR_SUBCLAUSE flag is set, then we should
4787   ** only generate code for the first table in pTabList and assume that
4788   ** any cursors associated with subsequent tables are uninitialized.
4789   */
4790   nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
4791 
4792   /* Allocate and initialize the WhereInfo structure that will become the
4793   ** return value. A single allocation is used to store the WhereInfo
4794   ** struct, the contents of WhereInfo.a[], the WhereClause structure
4795   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4796   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4797   ** some architectures. Hence the ROUND8() below.
4798   */
4799   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
4800   pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
4801   if( db->mallocFailed ){
4802     sqlite3DbFree(db, pWInfo);
4803     pWInfo = 0;
4804     goto whereBeginError;
4805   }
4806   pWInfo->pParse = pParse;
4807   pWInfo->pTabList = pTabList;
4808   pWInfo->pOrderBy = pOrderBy;
4809   pWInfo->pWhere = pWhere;
4810   pWInfo->pResultSet = pResultSet;
4811   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
4812   pWInfo->nLevel = nTabList;
4813   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse);
4814   pWInfo->wctrlFlags = wctrlFlags;
4815   pWInfo->iLimit = iAuxArg;
4816   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
4817   memset(&pWInfo->nOBSat, 0,
4818          offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
4819   memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
4820   assert( pWInfo->eOnePass==ONEPASS_OFF );  /* ONEPASS defaults to OFF */
4821   pMaskSet = &pWInfo->sMaskSet;
4822   sWLB.pWInfo = pWInfo;
4823   sWLB.pWC = &pWInfo->sWC;
4824   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
4825   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
4826   whereLoopInit(sWLB.pNew);
4827 #ifdef SQLITE_DEBUG
4828   sWLB.pNew->cId = '*';
4829 #endif
4830 
4831   /* Split the WHERE clause into separate subexpressions where each
4832   ** subexpression is separated by an AND operator.
4833   */
4834   initMaskSet(pMaskSet);
4835   sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
4836   sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
4837 
4838   /* Special case: No FROM clause
4839   */
4840   if( nTabList==0 ){
4841     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
4842     if( wctrlFlags & WHERE_WANT_DISTINCT ){
4843       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4844     }
4845     ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
4846   }else{
4847     /* Assign a bit from the bitmask to every term in the FROM clause.
4848     **
4849     ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
4850     **
4851     ** The rule of the previous sentence ensures thta if X is the bitmask for
4852     ** a table T, then X-1 is the bitmask for all other tables to the left of T.
4853     ** Knowing the bitmask for all tables to the left of a left join is
4854     ** important.  Ticket #3015.
4855     **
4856     ** Note that bitmasks are created for all pTabList->nSrc tables in
4857     ** pTabList, not just the first nTabList tables.  nTabList is normally
4858     ** equal to pTabList->nSrc but might be shortened to 1 if the
4859     ** WHERE_OR_SUBCLAUSE flag is set.
4860     */
4861     ii = 0;
4862     do{
4863       createMask(pMaskSet, pTabList->a[ii].iCursor);
4864       sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
4865     }while( (++ii)<pTabList->nSrc );
4866   #ifdef SQLITE_DEBUG
4867     {
4868       Bitmask mx = 0;
4869       for(ii=0; ii<pTabList->nSrc; ii++){
4870         Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
4871         assert( m>=mx );
4872         mx = m;
4873       }
4874     }
4875   #endif
4876   }
4877 
4878   /* Analyze all of the subexpressions. */
4879   sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
4880   if( db->mallocFailed ) goto whereBeginError;
4881 
4882   /* Special case: WHERE terms that do not refer to any tables in the join
4883   ** (constant expressions). Evaluate each such term, and jump over all the
4884   ** generated code if the result is not true.
4885   **
4886   ** Do not do this if the expression contains non-deterministic functions
4887   ** that are not within a sub-select. This is not strictly required, but
4888   ** preserves SQLite's legacy behaviour in the following two cases:
4889   **
4890   **   FROM ... WHERE random()>0;           -- eval random() once per row
4891   **   FROM ... WHERE (SELECT random())>0;  -- eval random() once overall
4892   */
4893   for(ii=0; ii<sWLB.pWC->nTerm; ii++){
4894     WhereTerm *pT = &sWLB.pWC->a[ii];
4895     if( pT->wtFlags & TERM_VIRTUAL ) continue;
4896     if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
4897       sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
4898       pT->wtFlags |= TERM_CODED;
4899     }
4900   }
4901 
4902   if( wctrlFlags & WHERE_WANT_DISTINCT ){
4903     if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
4904       /* The DISTINCT marking is pointless.  Ignore it. */
4905       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4906     }else if( pOrderBy==0 ){
4907       /* Try to ORDER BY the result set to make distinct processing easier */
4908       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
4909       pWInfo->pOrderBy = pResultSet;
4910     }
4911   }
4912 
4913   /* Construct the WhereLoop objects */
4914 #if defined(WHERETRACE_ENABLED)
4915   if( sqlite3WhereTrace & 0xffff ){
4916     sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
4917     if( wctrlFlags & WHERE_USE_LIMIT ){
4918       sqlite3DebugPrintf(", limit: %d", iAuxArg);
4919     }
4920     sqlite3DebugPrintf(")\n");
4921     if( sqlite3WhereTrace & 0x100 ){
4922       Select sSelect;
4923       memset(&sSelect, 0, sizeof(sSelect));
4924       sSelect.selFlags = SF_WhereBegin;
4925       sSelect.pSrc = pTabList;
4926       sSelect.pWhere = pWhere;
4927       sSelect.pOrderBy = pOrderBy;
4928       sSelect.pEList = pResultSet;
4929       sqlite3TreeViewSelect(0, &sSelect, 0);
4930     }
4931   }
4932   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
4933     sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
4934     sqlite3WhereClausePrint(sWLB.pWC);
4935   }
4936 #endif
4937 
4938   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
4939     rc = whereLoopAddAll(&sWLB);
4940     if( rc ) goto whereBeginError;
4941 
4942 #ifdef SQLITE_ENABLE_STAT4
4943     /* If one or more WhereTerm.truthProb values were used in estimating
4944     ** loop parameters, but then those truthProb values were subsequently
4945     ** changed based on STAT4 information while computing subsequent loops,
4946     ** then we need to rerun the whole loop building process so that all
4947     ** loops will be built using the revised truthProb values. */
4948     if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){
4949       WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
4950       WHERETRACE(0xffff,
4951            ("**** Redo all loop computations due to"
4952             " TERM_HIGHTRUTH changes ****\n"));
4953       while( pWInfo->pLoops ){
4954         WhereLoop *p = pWInfo->pLoops;
4955         pWInfo->pLoops = p->pNextLoop;
4956         whereLoopDelete(db, p);
4957       }
4958       rc = whereLoopAddAll(&sWLB);
4959       if( rc ) goto whereBeginError;
4960     }
4961 #endif
4962     WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
4963 
4964     wherePathSolver(pWInfo, 0);
4965     if( db->mallocFailed ) goto whereBeginError;
4966     if( pWInfo->pOrderBy ){
4967        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
4968        if( db->mallocFailed ) goto whereBeginError;
4969     }
4970   }
4971   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
4972      pWInfo->revMask = ALLBITS;
4973   }
4974   if( pParse->nErr || NEVER(db->mallocFailed) ){
4975     goto whereBeginError;
4976   }
4977 #ifdef WHERETRACE_ENABLED
4978   if( sqlite3WhereTrace ){
4979     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
4980     if( pWInfo->nOBSat>0 ){
4981       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
4982     }
4983     switch( pWInfo->eDistinct ){
4984       case WHERE_DISTINCT_UNIQUE: {
4985         sqlite3DebugPrintf("  DISTINCT=unique");
4986         break;
4987       }
4988       case WHERE_DISTINCT_ORDERED: {
4989         sqlite3DebugPrintf("  DISTINCT=ordered");
4990         break;
4991       }
4992       case WHERE_DISTINCT_UNORDERED: {
4993         sqlite3DebugPrintf("  DISTINCT=unordered");
4994         break;
4995       }
4996     }
4997     sqlite3DebugPrintf("\n");
4998     for(ii=0; ii<pWInfo->nLevel; ii++){
4999       sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
5000     }
5001   }
5002 #endif
5003 
5004   /* Attempt to omit tables from the join that do not affect the result.
5005   ** For a table to not affect the result, the following must be true:
5006   **
5007   **   1) The query must not be an aggregate.
5008   **   2) The table must be the RHS of a LEFT JOIN.
5009   **   3) Either the query must be DISTINCT, or else the ON or USING clause
5010   **      must contain a constraint that limits the scan of the table to
5011   **      at most a single row.
5012   **   4) The table must not be referenced by any part of the query apart
5013   **      from its own USING or ON clause.
5014   **
5015   ** For example, given:
5016   **
5017   **     CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
5018   **     CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
5019   **     CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
5020   **
5021   ** then table t2 can be omitted from the following:
5022   **
5023   **     SELECT v1, v3 FROM t1
5024   **       LEFT JOIN t2 ON (t1.ipk=t2.ipk)
5025   **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5026   **
5027   ** or from:
5028   **
5029   **     SELECT DISTINCT v1, v3 FROM t1
5030   **       LEFT JOIN t2
5031   **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5032   */
5033   notReady = ~(Bitmask)0;
5034   if( pWInfo->nLevel>=2
5035    && pResultSet!=0               /* guarantees condition (1) above */
5036    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
5037   ){
5038     int i;
5039     Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet);
5040     if( sWLB.pOrderBy ){
5041       tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy);
5042     }
5043     for(i=pWInfo->nLevel-1; i>=1; i--){
5044       WhereTerm *pTerm, *pEnd;
5045       struct SrcList_item *pItem;
5046       pLoop = pWInfo->a[i].pWLoop;
5047       pItem = &pWInfo->pTabList->a[pLoop->iTab];
5048       if( (pItem->fg.jointype & JT_LEFT)==0 ) continue;
5049       if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
5050        && (pLoop->wsFlags & WHERE_ONEROW)==0
5051       ){
5052         continue;
5053       }
5054       if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
5055       pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
5056       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
5057         if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5058           if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
5059            || pTerm->pExpr->iRightJoinTable!=pItem->iCursor
5060           ){
5061             break;
5062           }
5063         }
5064       }
5065       if( pTerm<pEnd ) continue;
5066       WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
5067       notReady &= ~pLoop->maskSelf;
5068       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
5069         if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5070           pTerm->wtFlags |= TERM_CODED;
5071         }
5072       }
5073       if( i!=pWInfo->nLevel-1 ){
5074         int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
5075         memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
5076       }
5077       pWInfo->nLevel--;
5078       nTabList--;
5079     }
5080   }
5081 #if defined(WHERETRACE_ENABLED)
5082   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5083     sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
5084     sqlite3WhereClausePrint(sWLB.pWC);
5085   }
5086   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
5087 #endif
5088   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
5089 
5090   /* If the caller is an UPDATE or DELETE statement that is requesting
5091   ** to use a one-pass algorithm, determine if this is appropriate.
5092   **
5093   ** A one-pass approach can be used if the caller has requested one
5094   ** and either (a) the scan visits at most one row or (b) each
5095   ** of the following are true:
5096   **
5097   **   * the caller has indicated that a one-pass approach can be used
5098   **     with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
5099   **   * the table is not a virtual table, and
5100   **   * either the scan does not use the OR optimization or the caller
5101   **     is a DELETE operation (WHERE_DUPLICATES_OK is only specified
5102   **     for DELETE).
5103   **
5104   ** The last qualification is because an UPDATE statement uses
5105   ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
5106   ** use a one-pass approach, and this is not set accurately for scans
5107   ** that use the OR optimization.
5108   */
5109   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
5110   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
5111     int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
5112     int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
5113     assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) );
5114     if( bOnerow || (
5115         0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
5116      && !IsVirtual(pTabList->a[0].pTab)
5117      && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
5118     )){
5119       pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
5120       if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
5121         if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
5122           bFordelete = OPFLAG_FORDELETE;
5123         }
5124         pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
5125       }
5126     }
5127   }
5128 
5129   /* Open all tables in the pTabList and any indices selected for
5130   ** searching those tables.
5131   */
5132   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
5133     Table *pTab;     /* Table to open */
5134     int iDb;         /* Index of database containing table/index */
5135     struct SrcList_item *pTabItem;
5136 
5137     pTabItem = &pTabList->a[pLevel->iFrom];
5138     pTab = pTabItem->pTab;
5139     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5140     pLoop = pLevel->pWLoop;
5141     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
5142       /* Do nothing */
5143     }else
5144 #ifndef SQLITE_OMIT_VIRTUALTABLE
5145     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
5146       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
5147       int iCur = pTabItem->iCursor;
5148       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
5149     }else if( IsVirtual(pTab) ){
5150       /* noop */
5151     }else
5152 #endif
5153     if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
5154          && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
5155       int op = OP_OpenRead;
5156       if( pWInfo->eOnePass!=ONEPASS_OFF ){
5157         op = OP_OpenWrite;
5158         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
5159       };
5160       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
5161       assert( pTabItem->iCursor==pLevel->iTabCur );
5162       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
5163       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
5164       if( pWInfo->eOnePass==ONEPASS_OFF
5165        && pTab->nCol<BMS
5166        && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0
5167       ){
5168         /* If we know that only a prefix of the record will be used,
5169         ** it is advantageous to reduce the "column count" field in
5170         ** the P4 operand of the OP_OpenRead/Write opcode. */
5171         Bitmask b = pTabItem->colUsed;
5172         int n = 0;
5173         for(; b; b=b>>1, n++){}
5174         sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
5175         assert( n<=pTab->nCol );
5176       }
5177 #ifdef SQLITE_ENABLE_CURSOR_HINTS
5178       if( pLoop->u.btree.pIndex!=0 ){
5179         sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
5180       }else
5181 #endif
5182       {
5183         sqlite3VdbeChangeP5(v, bFordelete);
5184       }
5185 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5186       sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
5187                             (const u8*)&pTabItem->colUsed, P4_INT64);
5188 #endif
5189     }else{
5190       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5191     }
5192     if( pLoop->wsFlags & WHERE_INDEXED ){
5193       Index *pIx = pLoop->u.btree.pIndex;
5194       int iIndexCur;
5195       int op = OP_OpenRead;
5196       /* iAuxArg is always set to a positive value if ONEPASS is possible */
5197       assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
5198       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
5199        && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
5200       ){
5201         /* This is one term of an OR-optimization using the PRIMARY KEY of a
5202         ** WITHOUT ROWID table.  No need for a separate index */
5203         iIndexCur = pLevel->iTabCur;
5204         op = 0;
5205       }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
5206         Index *pJ = pTabItem->pTab->pIndex;
5207         iIndexCur = iAuxArg;
5208         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
5209         while( ALWAYS(pJ) && pJ!=pIx ){
5210           iIndexCur++;
5211           pJ = pJ->pNext;
5212         }
5213         op = OP_OpenWrite;
5214         pWInfo->aiCurOnePass[1] = iIndexCur;
5215       }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
5216         iIndexCur = iAuxArg;
5217         op = OP_ReopenIdx;
5218       }else{
5219         iIndexCur = pParse->nTab++;
5220       }
5221       pLevel->iIdxCur = iIndexCur;
5222       assert( pIx->pSchema==pTab->pSchema );
5223       assert( iIndexCur>=0 );
5224       if( op ){
5225         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
5226         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
5227         if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
5228          && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
5229          && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0
5230          && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
5231          && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
5232          && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
5233         ){
5234           sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ);
5235         }
5236         VdbeComment((v, "%s", pIx->zName));
5237 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5238         {
5239           u64 colUsed = 0;
5240           int ii, jj;
5241           for(ii=0; ii<pIx->nColumn; ii++){
5242             jj = pIx->aiColumn[ii];
5243             if( jj<0 ) continue;
5244             if( jj>63 ) jj = 63;
5245             if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
5246             colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
5247           }
5248           sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
5249                                 (u8*)&colUsed, P4_INT64);
5250         }
5251 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
5252       }
5253     }
5254     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
5255   }
5256   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
5257   if( db->mallocFailed ) goto whereBeginError;
5258 
5259   /* Generate the code to do the search.  Each iteration of the for
5260   ** loop below generates code for a single nested loop of the VM
5261   ** program.
5262   */
5263   for(ii=0; ii<nTabList; ii++){
5264     int addrExplain;
5265     int wsFlags;
5266     pLevel = &pWInfo->a[ii];
5267     wsFlags = pLevel->pWLoop->wsFlags;
5268 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
5269     if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
5270       constructAutomaticIndex(pParse, &pWInfo->sWC,
5271                 &pTabList->a[pLevel->iFrom], notReady, pLevel);
5272       if( db->mallocFailed ) goto whereBeginError;
5273     }
5274 #endif
5275     addrExplain = sqlite3WhereExplainOneScan(
5276         pParse, pTabList, pLevel, wctrlFlags
5277     );
5278     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
5279     notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady);
5280     pWInfo->iContinue = pLevel->addrCont;
5281     if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
5282       sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
5283     }
5284   }
5285 
5286   /* Done. */
5287   VdbeModuleComment((v, "Begin WHERE-core"));
5288   pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v);
5289   return pWInfo;
5290 
5291   /* Jump here if malloc fails */
5292 whereBeginError:
5293   if( pWInfo ){
5294     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5295     whereInfoFree(db, pWInfo);
5296   }
5297   return 0;
5298 }
5299 
5300 /*
5301 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
5302 ** index rather than the main table.  In SQLITE_DEBUG mode, we want
5303 ** to trace those changes if PRAGMA vdbe_addoptrace=on.  This routine
5304 ** does that.
5305 */
5306 #ifndef SQLITE_DEBUG
5307 # define OpcodeRewriteTrace(D,K,P) /* no-op */
5308 #else
5309 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
5310   static void sqlite3WhereOpcodeRewriteTrace(
5311     sqlite3 *db,
5312     int pc,
5313     VdbeOp *pOp
5314   ){
5315     if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
5316     sqlite3VdbePrintOp(0, pc, pOp);
5317   }
5318 #endif
5319 
5320 /*
5321 ** Generate the end of the WHERE loop.  See comments on
5322 ** sqlite3WhereBegin() for additional information.
5323 */
5324 void sqlite3WhereEnd(WhereInfo *pWInfo){
5325   Parse *pParse = pWInfo->pParse;
5326   Vdbe *v = pParse->pVdbe;
5327   int i;
5328   WhereLevel *pLevel;
5329   WhereLoop *pLoop;
5330   SrcList *pTabList = pWInfo->pTabList;
5331   sqlite3 *db = pParse->db;
5332   int iEnd = sqlite3VdbeCurrentAddr(v);
5333 
5334   /* Generate loop termination code.
5335   */
5336   VdbeModuleComment((v, "End WHERE-core"));
5337   for(i=pWInfo->nLevel-1; i>=0; i--){
5338     int addr;
5339     pLevel = &pWInfo->a[i];
5340     pLoop = pLevel->pWLoop;
5341     if( pLevel->op!=OP_Noop ){
5342 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5343       int addrSeek = 0;
5344       Index *pIdx;
5345       int n;
5346       if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
5347        && i==pWInfo->nLevel-1  /* Ticket [ef9318757b152e3] 2017-10-21 */
5348        && (pLoop->wsFlags & WHERE_INDEXED)!=0
5349        && (pIdx = pLoop->u.btree.pIndex)->hasStat1
5350        && (n = pLoop->u.btree.nDistinctCol)>0
5351        && pIdx->aiRowLogEst[n]>=36
5352       ){
5353         int r1 = pParse->nMem+1;
5354         int j, op;
5355         for(j=0; j<n; j++){
5356           sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
5357         }
5358         pParse->nMem += n+1;
5359         op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
5360         addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
5361         VdbeCoverageIf(v, op==OP_SeekLT);
5362         VdbeCoverageIf(v, op==OP_SeekGT);
5363         sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
5364       }
5365 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
5366       /* The common case: Advance to the next row */
5367       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5368       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
5369       sqlite3VdbeChangeP5(v, pLevel->p5);
5370       VdbeCoverage(v);
5371       VdbeCoverageIf(v, pLevel->op==OP_Next);
5372       VdbeCoverageIf(v, pLevel->op==OP_Prev);
5373       VdbeCoverageIf(v, pLevel->op==OP_VNext);
5374       if( pLevel->regBignull ){
5375         sqlite3VdbeResolveLabel(v, pLevel->addrBignull);
5376         sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1);
5377         VdbeCoverage(v);
5378       }
5379 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5380       if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
5381 #endif
5382     }else{
5383       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5384     }
5385     if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
5386       struct InLoop *pIn;
5387       int j;
5388       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
5389       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
5390         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5391         if( pIn->eEndLoopOp!=OP_Noop ){
5392           if( pIn->nPrefix ){
5393             int bEarlyOut =
5394                 (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
5395                  && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0;
5396             if( pLevel->iLeftJoin ){
5397               /* For LEFT JOIN queries, cursor pIn->iCur may not have been
5398               ** opened yet. This occurs for WHERE clauses such as
5399               ** "a = ? AND b IN (...)", where the index is on (a, b). If
5400               ** the RHS of the (a=?) is NULL, then the "b IN (...)" may
5401               ** never have been coded, but the body of the loop run to
5402               ** return the null-row. So, if the cursor is not open yet,
5403               ** jump over the OP_Next or OP_Prev instruction about to
5404               ** be coded.  */
5405               sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur,
5406                   sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut);
5407               VdbeCoverage(v);
5408             }
5409             if( bEarlyOut ){
5410               sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
5411                   sqlite3VdbeCurrentAddr(v)+2,
5412                   pIn->iBase, pIn->nPrefix);
5413               VdbeCoverage(v);
5414             }
5415           }
5416           sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
5417           VdbeCoverage(v);
5418           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
5419           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
5420         }
5421         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
5422       }
5423     }
5424     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
5425     if( pLevel->addrSkip ){
5426       sqlite3VdbeGoto(v, pLevel->addrSkip);
5427       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
5428       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
5429       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
5430     }
5431 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
5432     if( pLevel->addrLikeRep ){
5433       sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
5434                         pLevel->addrLikeRep);
5435       VdbeCoverage(v);
5436     }
5437 #endif
5438     if( pLevel->iLeftJoin ){
5439       int ws = pLoop->wsFlags;
5440       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
5441       assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
5442       if( (ws & WHERE_IDX_ONLY)==0 ){
5443         assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
5444         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
5445       }
5446       if( (ws & WHERE_INDEXED)
5447        || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx)
5448       ){
5449         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
5450       }
5451       if( pLevel->op==OP_Return ){
5452         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
5453       }else{
5454         sqlite3VdbeGoto(v, pLevel->addrFirst);
5455       }
5456       sqlite3VdbeJumpHere(v, addr);
5457     }
5458     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
5459                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
5460   }
5461 
5462   /* The "break" point is here, just past the end of the outer loop.
5463   ** Set it.
5464   */
5465   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
5466 
5467   assert( pWInfo->nLevel<=pTabList->nSrc );
5468   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
5469     int k, last;
5470     VdbeOp *pOp, *pLastOp;
5471     Index *pIdx = 0;
5472     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
5473     Table *pTab = pTabItem->pTab;
5474     assert( pTab!=0 );
5475     pLoop = pLevel->pWLoop;
5476 
5477     /* For a co-routine, change all OP_Column references to the table of
5478     ** the co-routine into OP_Copy of result contained in a register.
5479     ** OP_Rowid becomes OP_Null.
5480     */
5481     if( pTabItem->fg.viaCoroutine ){
5482       testcase( pParse->db->mallocFailed );
5483       translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
5484                             pTabItem->regResult, 0);
5485       continue;
5486     }
5487 
5488 #ifdef SQLITE_ENABLE_EARLY_CURSOR_CLOSE
5489     /* Close all of the cursors that were opened by sqlite3WhereBegin.
5490     ** Except, do not close cursors that will be reused by the OR optimization
5491     ** (WHERE_OR_SUBCLAUSE).  And do not close the OP_OpenWrite cursors
5492     ** created for the ONEPASS optimization.
5493     */
5494     if( (pTab->tabFlags & TF_Ephemeral)==0
5495      && pTab->pSelect==0
5496      && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5497     ){
5498       int ws = pLoop->wsFlags;
5499       if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){
5500         sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
5501       }
5502       if( (ws & WHERE_INDEXED)!=0
5503        && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0
5504        && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1]
5505       ){
5506         sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
5507       }
5508     }
5509 #endif
5510 
5511     /* If this scan uses an index, make VDBE code substitutions to read data
5512     ** from the index instead of from the table where possible.  In some cases
5513     ** this optimization prevents the table from ever being read, which can
5514     ** yield a significant performance boost.
5515     **
5516     ** Calls to the code generator in between sqlite3WhereBegin and
5517     ** sqlite3WhereEnd will have created code that references the table
5518     ** directly.  This loop scans all that code looking for opcodes
5519     ** that reference the table and converts them into opcodes that
5520     ** reference the index.
5521     */
5522     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
5523       pIdx = pLoop->u.btree.pIndex;
5524     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
5525       pIdx = pLevel->u.pCovidx;
5526     }
5527     if( pIdx
5528      && !db->mallocFailed
5529     ){
5530       if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){
5531         last = iEnd;
5532       }else{
5533         last = pWInfo->iEndWhere;
5534       }
5535       k = pLevel->addrBody + 1;
5536 #ifdef SQLITE_DEBUG
5537       if( db->flags & SQLITE_VdbeAddopTrace ){
5538         printf("TRANSLATE opcodes in range %d..%d\n", k, last-1);
5539       }
5540       /* Proof that the "+1" on the k value above is safe */
5541       pOp = sqlite3VdbeGetOp(v, k - 1);
5542       assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur );
5543       assert( pOp->opcode!=OP_Rowid  || pOp->p1!=pLevel->iTabCur );
5544       assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur );
5545 #endif
5546       pOp = sqlite3VdbeGetOp(v, k);
5547       pLastOp = pOp + (last - k);
5548       assert( pOp<pLastOp );
5549       do{
5550         if( pOp->p1!=pLevel->iTabCur ){
5551           /* no-op */
5552         }else if( pOp->opcode==OP_Column
5553 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
5554          || pOp->opcode==OP_Offset
5555 #endif
5556         ){
5557           int x = pOp->p2;
5558           assert( pIdx->pTable==pTab );
5559           if( !HasRowid(pTab) ){
5560             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
5561             x = pPk->aiColumn[x];
5562             assert( x>=0 );
5563           }else{
5564             testcase( x!=sqlite3StorageColumnToTable(pTab,x) );
5565             x = sqlite3StorageColumnToTable(pTab,x);
5566           }
5567           x = sqlite3TableColumnToIndex(pIdx, x);
5568           if( x>=0 ){
5569             pOp->p2 = x;
5570             pOp->p1 = pLevel->iIdxCur;
5571             OpcodeRewriteTrace(db, k, pOp);
5572           }
5573           assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0
5574               || pWInfo->eOnePass );
5575         }else if( pOp->opcode==OP_Rowid ){
5576           pOp->p1 = pLevel->iIdxCur;
5577           pOp->opcode = OP_IdxRowid;
5578           OpcodeRewriteTrace(db, k, pOp);
5579         }else if( pOp->opcode==OP_IfNullRow ){
5580           pOp->p1 = pLevel->iIdxCur;
5581           OpcodeRewriteTrace(db, k, pOp);
5582         }
5583 #ifdef SQLITE_DEBUG
5584         k++;
5585 #endif
5586       }while( (++pOp)<pLastOp );
5587 #ifdef SQLITE_DEBUG
5588       if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
5589 #endif
5590     }
5591   }
5592 
5593   /* Undo all Expr node modifications */
5594   while( pWInfo->pExprMods ){
5595     WhereExprMod *p = pWInfo->pExprMods;
5596     pWInfo->pExprMods = p->pNext;
5597     memcpy(p->pExpr, &p->orig, sizeof(p->orig));
5598     sqlite3DbFree(db, p);
5599   }
5600 
5601   /* Final cleanup
5602   */
5603   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5604   whereInfoFree(db, pWInfo);
5605   return;
5606 }
5607