xref: /sqlite-3.40.0/src/where.c (revision a8e41eca)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /*
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly.  The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
26 **
27 ** This object is not an API and can be changed from one release to the
28 ** next.  As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
30 */
31 typedef struct HiddenIndexInfo HiddenIndexInfo;
32 struct HiddenIndexInfo {
33   WhereClause *pWC;   /* The Where clause being analyzed */
34   Parse *pParse;      /* The parsing context */
35 };
36 
37 /* Forward declaration of methods */
38 static int whereLoopResize(sqlite3*, WhereLoop*, int);
39 
40 /* Test variable that can be set to enable WHERE tracing */
41 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
42 /***/ int sqlite3WhereTrace = 0;
43 #endif
44 
45 
46 /*
47 ** Return the estimated number of output rows from a WHERE clause
48 */
49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
50   return pWInfo->nRowOut;
51 }
52 
53 /*
54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
55 ** WHERE clause returns outputs for DISTINCT processing.
56 */
57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
58   return pWInfo->eDistinct;
59 }
60 
61 /*
62 ** Return TRUE if the WHERE clause returns rows in ORDER BY order.
63 ** Return FALSE if the output needs to be sorted.
64 */
65 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
66   return pWInfo->nOBSat;
67 }
68 
69 /*
70 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known
71 ** to emit rows in increasing order, and if the last row emitted by the
72 ** inner-most loop did not fit within the sorter, then we can skip all
73 ** subsequent rows for the current iteration of the inner loop (because they
74 ** will not fit in the sorter either) and continue with the second inner
75 ** loop - the loop immediately outside the inner-most.
76 **
77 ** When a row does not fit in the sorter (because the sorter already
78 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
79 ** label returned by this function.
80 **
81 ** If the ORDER BY LIMIT optimization applies, the jump destination should
82 ** be the continuation for the second-inner-most loop.  If the ORDER BY
83 ** LIMIT optimization does not apply, then the jump destination should
84 ** be the continuation for the inner-most loop.
85 **
86 ** It is always safe for this routine to return the continuation of the
87 ** inner-most loop, in the sense that a correct answer will result.
88 ** Returning the continuation the second inner loop is an optimization
89 ** that might make the code run a little faster, but should not change
90 ** the final answer.
91 */
92 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){
93   WhereLevel *pInner;
94   if( !pWInfo->bOrderedInnerLoop ){
95     /* The ORDER BY LIMIT optimization does not apply.  Jump to the
96     ** continuation of the inner-most loop. */
97     return pWInfo->iContinue;
98   }
99   pInner = &pWInfo->a[pWInfo->nLevel-1];
100   assert( pInner->addrNxt!=0 );
101   return pInner->addrNxt;
102 }
103 
104 /*
105 ** Return the VDBE address or label to jump to in order to continue
106 ** immediately with the next row of a WHERE clause.
107 */
108 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
109   assert( pWInfo->iContinue!=0 );
110   return pWInfo->iContinue;
111 }
112 
113 /*
114 ** Return the VDBE address or label to jump to in order to break
115 ** out of a WHERE loop.
116 */
117 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
118   return pWInfo->iBreak;
119 }
120 
121 /*
122 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
123 ** operate directly on the rowids returned by a WHERE clause.  Return
124 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
125 ** a single row is to be changed.  Return ONEPASS_MULTI (2) if the one-pass
126 ** optimization can be used on multiple
127 **
128 ** If the ONEPASS optimization is used (if this routine returns true)
129 ** then also write the indices of open cursors used by ONEPASS
130 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
131 ** table and iaCur[1] gets the cursor used by an auxiliary index.
132 ** Either value may be -1, indicating that cursor is not used.
133 ** Any cursors returned will have been opened for writing.
134 **
135 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
136 ** unable to use the ONEPASS optimization.
137 */
138 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
139   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
140 #ifdef WHERETRACE_ENABLED
141   if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
142     sqlite3DebugPrintf("%s cursors: %d %d\n",
143          pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
144          aiCur[0], aiCur[1]);
145   }
146 #endif
147   return pWInfo->eOnePass;
148 }
149 
150 /*
151 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move
152 ** the data cursor to the row selected by the index cursor.
153 */
154 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){
155   return pWInfo->bDeferredSeek;
156 }
157 
158 /*
159 ** Move the content of pSrc into pDest
160 */
161 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
162   pDest->n = pSrc->n;
163   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
164 }
165 
166 /*
167 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
168 **
169 ** The new entry might overwrite an existing entry, or it might be
170 ** appended, or it might be discarded.  Do whatever is the right thing
171 ** so that pSet keeps the N_OR_COST best entries seen so far.
172 */
173 static int whereOrInsert(
174   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
175   Bitmask prereq,        /* Prerequisites of the new entry */
176   LogEst rRun,           /* Run-cost of the new entry */
177   LogEst nOut            /* Number of outputs for the new entry */
178 ){
179   u16 i;
180   WhereOrCost *p;
181   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
182     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
183       goto whereOrInsert_done;
184     }
185     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
186       return 0;
187     }
188   }
189   if( pSet->n<N_OR_COST ){
190     p = &pSet->a[pSet->n++];
191     p->nOut = nOut;
192   }else{
193     p = pSet->a;
194     for(i=1; i<pSet->n; i++){
195       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
196     }
197     if( p->rRun<=rRun ) return 0;
198   }
199 whereOrInsert_done:
200   p->prereq = prereq;
201   p->rRun = rRun;
202   if( p->nOut>nOut ) p->nOut = nOut;
203   return 1;
204 }
205 
206 /*
207 ** Return the bitmask for the given cursor number.  Return 0 if
208 ** iCursor is not in the set.
209 */
210 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
211   int i;
212   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
213   for(i=0; i<pMaskSet->n; i++){
214     if( pMaskSet->ix[i]==iCursor ){
215       return MASKBIT(i);
216     }
217   }
218   return 0;
219 }
220 
221 /*
222 ** Create a new mask for cursor iCursor.
223 **
224 ** There is one cursor per table in the FROM clause.  The number of
225 ** tables in the FROM clause is limited by a test early in the
226 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
227 ** array will never overflow.
228 */
229 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
230   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
231   pMaskSet->ix[pMaskSet->n++] = iCursor;
232 }
233 
234 /*
235 ** Advance to the next WhereTerm that matches according to the criteria
236 ** established when the pScan object was initialized by whereScanInit().
237 ** Return NULL if there are no more matching WhereTerms.
238 */
239 static WhereTerm *whereScanNext(WhereScan *pScan){
240   int iCur;            /* The cursor on the LHS of the term */
241   i16 iColumn;         /* The column on the LHS of the term.  -1 for IPK */
242   Expr *pX;            /* An expression being tested */
243   WhereClause *pWC;    /* Shorthand for pScan->pWC */
244   WhereTerm *pTerm;    /* The term being tested */
245   int k = pScan->k;    /* Where to start scanning */
246 
247   assert( pScan->iEquiv<=pScan->nEquiv );
248   pWC = pScan->pWC;
249   while(1){
250     iColumn = pScan->aiColumn[pScan->iEquiv-1];
251     iCur = pScan->aiCur[pScan->iEquiv-1];
252     assert( pWC!=0 );
253     do{
254       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
255         if( pTerm->leftCursor==iCur
256          && pTerm->u.leftColumn==iColumn
257          && (iColumn!=XN_EXPR
258              || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
259                                        pScan->pIdxExpr,iCur)==0)
260          && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
261         ){
262           if( (pTerm->eOperator & WO_EQUIV)!=0
263            && pScan->nEquiv<ArraySize(pScan->aiCur)
264            && (pX = sqlite3ExprSkipCollateAndLikely(pTerm->pExpr->pRight))->op
265                ==TK_COLUMN
266           ){
267             int j;
268             for(j=0; j<pScan->nEquiv; j++){
269               if( pScan->aiCur[j]==pX->iTable
270                && pScan->aiColumn[j]==pX->iColumn ){
271                   break;
272               }
273             }
274             if( j==pScan->nEquiv ){
275               pScan->aiCur[j] = pX->iTable;
276               pScan->aiColumn[j] = pX->iColumn;
277               pScan->nEquiv++;
278             }
279           }
280           if( (pTerm->eOperator & pScan->opMask)!=0 ){
281             /* Verify the affinity and collating sequence match */
282             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
283               CollSeq *pColl;
284               Parse *pParse = pWC->pWInfo->pParse;
285               pX = pTerm->pExpr;
286               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
287                 continue;
288               }
289               assert(pX->pLeft);
290               pColl = sqlite3ExprCompareCollSeq(pParse, pX);
291               if( pColl==0 ) pColl = pParse->db->pDfltColl;
292               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
293                 continue;
294               }
295             }
296             if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
297              && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
298              && pX->iTable==pScan->aiCur[0]
299              && pX->iColumn==pScan->aiColumn[0]
300             ){
301               testcase( pTerm->eOperator & WO_IS );
302               continue;
303             }
304             pScan->pWC = pWC;
305             pScan->k = k+1;
306             return pTerm;
307           }
308         }
309       }
310       pWC = pWC->pOuter;
311       k = 0;
312     }while( pWC!=0 );
313     if( pScan->iEquiv>=pScan->nEquiv ) break;
314     pWC = pScan->pOrigWC;
315     k = 0;
316     pScan->iEquiv++;
317   }
318   return 0;
319 }
320 
321 /*
322 ** This is whereScanInit() for the case of an index on an expression.
323 ** It is factored out into a separate tail-recursion subroutine so that
324 ** the normal whereScanInit() routine, which is a high-runner, does not
325 ** need to push registers onto the stack as part of its prologue.
326 */
327 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){
328   pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr);
329   return whereScanNext(pScan);
330 }
331 
332 /*
333 ** Initialize a WHERE clause scanner object.  Return a pointer to the
334 ** first match.  Return NULL if there are no matches.
335 **
336 ** The scanner will be searching the WHERE clause pWC.  It will look
337 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
338 ** iCur.   Or if pIdx!=0 then X is column iColumn of index pIdx.  pIdx
339 ** must be one of the indexes of table iCur.
340 **
341 ** The <op> must be one of the operators described by opMask.
342 **
343 ** If the search is for X and the WHERE clause contains terms of the
344 ** form X=Y then this routine might also return terms of the form
345 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
346 ** but is enough to handle most commonly occurring SQL statements.
347 **
348 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
349 ** index pIdx.
350 */
351 static WhereTerm *whereScanInit(
352   WhereScan *pScan,       /* The WhereScan object being initialized */
353   WhereClause *pWC,       /* The WHERE clause to be scanned */
354   int iCur,               /* Cursor to scan for */
355   int iColumn,            /* Column to scan for */
356   u32 opMask,             /* Operator(s) to scan for */
357   Index *pIdx             /* Must be compatible with this index */
358 ){
359   pScan->pOrigWC = pWC;
360   pScan->pWC = pWC;
361   pScan->pIdxExpr = 0;
362   pScan->idxaff = 0;
363   pScan->zCollName = 0;
364   pScan->opMask = opMask;
365   pScan->k = 0;
366   pScan->aiCur[0] = iCur;
367   pScan->nEquiv = 1;
368   pScan->iEquiv = 1;
369   if( pIdx ){
370     int j = iColumn;
371     iColumn = pIdx->aiColumn[j];
372     if( iColumn==XN_EXPR ){
373       pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
374       pScan->zCollName = pIdx->azColl[j];
375       pScan->aiColumn[0] = XN_EXPR;
376       return whereScanInitIndexExpr(pScan);
377     }else if( iColumn==pIdx->pTable->iPKey ){
378       iColumn = XN_ROWID;
379     }else if( iColumn>=0 ){
380       pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
381       pScan->zCollName = pIdx->azColl[j];
382     }
383   }else if( iColumn==XN_EXPR ){
384     return 0;
385   }
386   pScan->aiColumn[0] = iColumn;
387   return whereScanNext(pScan);
388 }
389 
390 /*
391 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
392 ** where X is a reference to the iColumn of table iCur or of index pIdx
393 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
394 ** the op parameter.  Return a pointer to the term.  Return 0 if not found.
395 **
396 ** If pIdx!=0 then it must be one of the indexes of table iCur.
397 ** Search for terms matching the iColumn-th column of pIdx
398 ** rather than the iColumn-th column of table iCur.
399 **
400 ** The term returned might by Y=<expr> if there is another constraint in
401 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
402 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
403 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
404 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
405 ** other equivalent values.  Hence a search for X will return <expr> if X=A1
406 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
407 **
408 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
409 ** then try for the one with no dependencies on <expr> - in other words where
410 ** <expr> is a constant expression of some kind.  Only return entries of
411 ** the form "X <op> Y" where Y is a column in another table if no terms of
412 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
413 ** exist, try to return a term that does not use WO_EQUIV.
414 */
415 WhereTerm *sqlite3WhereFindTerm(
416   WhereClause *pWC,     /* The WHERE clause to be searched */
417   int iCur,             /* Cursor number of LHS */
418   int iColumn,          /* Column number of LHS */
419   Bitmask notReady,     /* RHS must not overlap with this mask */
420   u32 op,               /* Mask of WO_xx values describing operator */
421   Index *pIdx           /* Must be compatible with this index, if not NULL */
422 ){
423   WhereTerm *pResult = 0;
424   WhereTerm *p;
425   WhereScan scan;
426 
427   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
428   op &= WO_EQ|WO_IS;
429   while( p ){
430     if( (p->prereqRight & notReady)==0 ){
431       if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
432         testcase( p->eOperator & WO_IS );
433         return p;
434       }
435       if( pResult==0 ) pResult = p;
436     }
437     p = whereScanNext(&scan);
438   }
439   return pResult;
440 }
441 
442 /*
443 ** This function searches pList for an entry that matches the iCol-th column
444 ** of index pIdx.
445 **
446 ** If such an expression is found, its index in pList->a[] is returned. If
447 ** no expression is found, -1 is returned.
448 */
449 static int findIndexCol(
450   Parse *pParse,                  /* Parse context */
451   ExprList *pList,                /* Expression list to search */
452   int iBase,                      /* Cursor for table associated with pIdx */
453   Index *pIdx,                    /* Index to match column of */
454   int iCol                        /* Column of index to match */
455 ){
456   int i;
457   const char *zColl = pIdx->azColl[iCol];
458 
459   for(i=0; i<pList->nExpr; i++){
460     Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr);
461     if( p->op==TK_COLUMN
462      && p->iColumn==pIdx->aiColumn[iCol]
463      && p->iTable==iBase
464     ){
465       CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
466       if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
467         return i;
468       }
469     }
470   }
471 
472   return -1;
473 }
474 
475 /*
476 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
477 */
478 static int indexColumnNotNull(Index *pIdx, int iCol){
479   int j;
480   assert( pIdx!=0 );
481   assert( iCol>=0 && iCol<pIdx->nColumn );
482   j = pIdx->aiColumn[iCol];
483   if( j>=0 ){
484     return pIdx->pTable->aCol[j].notNull;
485   }else if( j==(-1) ){
486     return 1;
487   }else{
488     assert( j==(-2) );
489     return 0;  /* Assume an indexed expression can always yield a NULL */
490 
491   }
492 }
493 
494 /*
495 ** Return true if the DISTINCT expression-list passed as the third argument
496 ** is redundant.
497 **
498 ** A DISTINCT list is redundant if any subset of the columns in the
499 ** DISTINCT list are collectively unique and individually non-null.
500 */
501 static int isDistinctRedundant(
502   Parse *pParse,            /* Parsing context */
503   SrcList *pTabList,        /* The FROM clause */
504   WhereClause *pWC,         /* The WHERE clause */
505   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
506 ){
507   Table *pTab;
508   Index *pIdx;
509   int i;
510   int iBase;
511 
512   /* If there is more than one table or sub-select in the FROM clause of
513   ** this query, then it will not be possible to show that the DISTINCT
514   ** clause is redundant. */
515   if( pTabList->nSrc!=1 ) return 0;
516   iBase = pTabList->a[0].iCursor;
517   pTab = pTabList->a[0].pTab;
518 
519   /* If any of the expressions is an IPK column on table iBase, then return
520   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
521   ** current SELECT is a correlated sub-query.
522   */
523   for(i=0; i<pDistinct->nExpr; i++){
524     Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr);
525     if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1;
526   }
527 
528   /* Loop through all indices on the table, checking each to see if it makes
529   ** the DISTINCT qualifier redundant. It does so if:
530   **
531   **   1. The index is itself UNIQUE, and
532   **
533   **   2. All of the columns in the index are either part of the pDistinct
534   **      list, or else the WHERE clause contains a term of the form "col=X",
535   **      where X is a constant value. The collation sequences of the
536   **      comparison and select-list expressions must match those of the index.
537   **
538   **   3. All of those index columns for which the WHERE clause does not
539   **      contain a "col=X" term are subject to a NOT NULL constraint.
540   */
541   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
542     if( !IsUniqueIndex(pIdx) ) continue;
543     for(i=0; i<pIdx->nKeyCol; i++){
544       if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
545         if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
546         if( indexColumnNotNull(pIdx, i)==0 ) break;
547       }
548     }
549     if( i==pIdx->nKeyCol ){
550       /* This index implies that the DISTINCT qualifier is redundant. */
551       return 1;
552     }
553   }
554 
555   return 0;
556 }
557 
558 
559 /*
560 ** Estimate the logarithm of the input value to base 2.
561 */
562 static LogEst estLog(LogEst N){
563   return N<=10 ? 0 : sqlite3LogEst(N) - 33;
564 }
565 
566 /*
567 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
568 **
569 ** This routine runs over generated VDBE code and translates OP_Column
570 ** opcodes into OP_Copy when the table is being accessed via co-routine
571 ** instead of via table lookup.
572 **
573 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
574 ** cursor iTabCur are transformed into OP_Sequence opcode for the
575 ** iAutoidxCur cursor, in order to generate unique rowids for the
576 ** automatic index being generated.
577 */
578 static void translateColumnToCopy(
579   Parse *pParse,      /* Parsing context */
580   int iStart,         /* Translate from this opcode to the end */
581   int iTabCur,        /* OP_Column/OP_Rowid references to this table */
582   int iRegister,      /* The first column is in this register */
583   int iAutoidxCur     /* If non-zero, cursor of autoindex being generated */
584 ){
585   Vdbe *v = pParse->pVdbe;
586   VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
587   int iEnd = sqlite3VdbeCurrentAddr(v);
588   if( pParse->db->mallocFailed ) return;
589   for(; iStart<iEnd; iStart++, pOp++){
590     if( pOp->p1!=iTabCur ) continue;
591     if( pOp->opcode==OP_Column ){
592       pOp->opcode = OP_Copy;
593       pOp->p1 = pOp->p2 + iRegister;
594       pOp->p2 = pOp->p3;
595       pOp->p3 = 0;
596     }else if( pOp->opcode==OP_Rowid ){
597       if( iAutoidxCur ){
598         pOp->opcode = OP_Sequence;
599         pOp->p1 = iAutoidxCur;
600       }else{
601         pOp->opcode = OP_Null;
602         pOp->p1 = 0;
603         pOp->p3 = 0;
604       }
605     }
606   }
607 }
608 
609 /*
610 ** Two routines for printing the content of an sqlite3_index_info
611 ** structure.  Used for testing and debugging only.  If neither
612 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
613 ** are no-ops.
614 */
615 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
616 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){
617   int i;
618   if( !sqlite3WhereTrace ) return;
619   for(i=0; i<p->nConstraint; i++){
620     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
621        i,
622        p->aConstraint[i].iColumn,
623        p->aConstraint[i].iTermOffset,
624        p->aConstraint[i].op,
625        p->aConstraint[i].usable);
626   }
627   for(i=0; i<p->nOrderBy; i++){
628     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
629        i,
630        p->aOrderBy[i].iColumn,
631        p->aOrderBy[i].desc);
632   }
633 }
634 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){
635   int i;
636   if( !sqlite3WhereTrace ) return;
637   for(i=0; i<p->nConstraint; i++){
638     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
639        i,
640        p->aConstraintUsage[i].argvIndex,
641        p->aConstraintUsage[i].omit);
642   }
643   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
644   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
645   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
646   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
647   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
648 }
649 #else
650 #define whereTraceIndexInfoInputs(A)
651 #define whereTraceIndexInfoOutputs(A)
652 #endif
653 
654 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
655 /*
656 ** Return TRUE if the WHERE clause term pTerm is of a form where it
657 ** could be used with an index to access pSrc, assuming an appropriate
658 ** index existed.
659 */
660 static int termCanDriveIndex(
661   WhereTerm *pTerm,              /* WHERE clause term to check */
662   struct SrcList_item *pSrc,     /* Table we are trying to access */
663   Bitmask notReady               /* Tables in outer loops of the join */
664 ){
665   char aff;
666   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
667   if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
668   if( (pSrc->fg.jointype & JT_LEFT)
669    && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
670    && (pTerm->eOperator & WO_IS)
671   ){
672     /* Cannot use an IS term from the WHERE clause as an index driver for
673     ** the RHS of a LEFT JOIN. Such a term can only be used if it is from
674     ** the ON clause.  */
675     return 0;
676   }
677   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
678   if( pTerm->u.leftColumn<0 ) return 0;
679   aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
680   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
681   testcase( pTerm->pExpr->op==TK_IS );
682   return 1;
683 }
684 #endif
685 
686 
687 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
688 /*
689 ** Generate code to construct the Index object for an automatic index
690 ** and to set up the WhereLevel object pLevel so that the code generator
691 ** makes use of the automatic index.
692 */
693 static void constructAutomaticIndex(
694   Parse *pParse,              /* The parsing context */
695   WhereClause *pWC,           /* The WHERE clause */
696   struct SrcList_item *pSrc,  /* The FROM clause term to get the next index */
697   Bitmask notReady,           /* Mask of cursors that are not available */
698   WhereLevel *pLevel          /* Write new index here */
699 ){
700   int nKeyCol;                /* Number of columns in the constructed index */
701   WhereTerm *pTerm;           /* A single term of the WHERE clause */
702   WhereTerm *pWCEnd;          /* End of pWC->a[] */
703   Index *pIdx;                /* Object describing the transient index */
704   Vdbe *v;                    /* Prepared statement under construction */
705   int addrInit;               /* Address of the initialization bypass jump */
706   Table *pTable;              /* The table being indexed */
707   int addrTop;                /* Top of the index fill loop */
708   int regRecord;              /* Register holding an index record */
709   int n;                      /* Column counter */
710   int i;                      /* Loop counter */
711   int mxBitCol;               /* Maximum column in pSrc->colUsed */
712   CollSeq *pColl;             /* Collating sequence to on a column */
713   WhereLoop *pLoop;           /* The Loop object */
714   char *zNotUsed;             /* Extra space on the end of pIdx */
715   Bitmask idxCols;            /* Bitmap of columns used for indexing */
716   Bitmask extraCols;          /* Bitmap of additional columns */
717   u8 sentWarning = 0;         /* True if a warnning has been issued */
718   Expr *pPartial = 0;         /* Partial Index Expression */
719   int iContinue = 0;          /* Jump here to skip excluded rows */
720   struct SrcList_item *pTabItem;  /* FROM clause term being indexed */
721   int addrCounter = 0;        /* Address where integer counter is initialized */
722   int regBase;                /* Array of registers where record is assembled */
723 
724   /* Generate code to skip over the creation and initialization of the
725   ** transient index on 2nd and subsequent iterations of the loop. */
726   v = pParse->pVdbe;
727   assert( v!=0 );
728   addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
729 
730   /* Count the number of columns that will be added to the index
731   ** and used to match WHERE clause constraints */
732   nKeyCol = 0;
733   pTable = pSrc->pTab;
734   pWCEnd = &pWC->a[pWC->nTerm];
735   pLoop = pLevel->pWLoop;
736   idxCols = 0;
737   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
738     Expr *pExpr = pTerm->pExpr;
739     assert( !ExprHasProperty(pExpr, EP_FromJoin)    /* prereq always non-zero */
740          || pExpr->iRightJoinTable!=pSrc->iCursor   /*   for the right-hand   */
741          || pLoop->prereq!=0 );                     /*   table of a LEFT JOIN */
742     if( pLoop->prereq==0
743      && (pTerm->wtFlags & TERM_VIRTUAL)==0
744      && !ExprHasProperty(pExpr, EP_FromJoin)
745      && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){
746       pPartial = sqlite3ExprAnd(pParse, pPartial,
747                                 sqlite3ExprDup(pParse->db, pExpr, 0));
748     }
749     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
750       int iCol = pTerm->u.leftColumn;
751       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
752       testcase( iCol==BMS );
753       testcase( iCol==BMS-1 );
754       if( !sentWarning ){
755         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
756             "automatic index on %s(%s)", pTable->zName,
757             pTable->aCol[iCol].zName);
758         sentWarning = 1;
759       }
760       if( (idxCols & cMask)==0 ){
761         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
762           goto end_auto_index_create;
763         }
764         pLoop->aLTerm[nKeyCol++] = pTerm;
765         idxCols |= cMask;
766       }
767     }
768   }
769   assert( nKeyCol>0 );
770   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
771   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
772                      | WHERE_AUTO_INDEX;
773 
774   /* Count the number of additional columns needed to create a
775   ** covering index.  A "covering index" is an index that contains all
776   ** columns that are needed by the query.  With a covering index, the
777   ** original table never needs to be accessed.  Automatic indices must
778   ** be a covering index because the index will not be updated if the
779   ** original table changes and the index and table cannot both be used
780   ** if they go out of sync.
781   */
782   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
783   mxBitCol = MIN(BMS-1,pTable->nCol);
784   testcase( pTable->nCol==BMS-1 );
785   testcase( pTable->nCol==BMS-2 );
786   for(i=0; i<mxBitCol; i++){
787     if( extraCols & MASKBIT(i) ) nKeyCol++;
788   }
789   if( pSrc->colUsed & MASKBIT(BMS-1) ){
790     nKeyCol += pTable->nCol - BMS + 1;
791   }
792 
793   /* Construct the Index object to describe this index */
794   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
795   if( pIdx==0 ) goto end_auto_index_create;
796   pLoop->u.btree.pIndex = pIdx;
797   pIdx->zName = "auto-index";
798   pIdx->pTable = pTable;
799   n = 0;
800   idxCols = 0;
801   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
802     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
803       int iCol = pTerm->u.leftColumn;
804       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
805       testcase( iCol==BMS-1 );
806       testcase( iCol==BMS );
807       if( (idxCols & cMask)==0 ){
808         Expr *pX = pTerm->pExpr;
809         idxCols |= cMask;
810         pIdx->aiColumn[n] = pTerm->u.leftColumn;
811         pColl = sqlite3ExprCompareCollSeq(pParse, pX);
812         assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */
813         pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
814         n++;
815       }
816     }
817   }
818   assert( (u32)n==pLoop->u.btree.nEq );
819 
820   /* Add additional columns needed to make the automatic index into
821   ** a covering index */
822   for(i=0; i<mxBitCol; i++){
823     if( extraCols & MASKBIT(i) ){
824       pIdx->aiColumn[n] = i;
825       pIdx->azColl[n] = sqlite3StrBINARY;
826       n++;
827     }
828   }
829   if( pSrc->colUsed & MASKBIT(BMS-1) ){
830     for(i=BMS-1; i<pTable->nCol; i++){
831       pIdx->aiColumn[n] = i;
832       pIdx->azColl[n] = sqlite3StrBINARY;
833       n++;
834     }
835   }
836   assert( n==nKeyCol );
837   pIdx->aiColumn[n] = XN_ROWID;
838   pIdx->azColl[n] = sqlite3StrBINARY;
839 
840   /* Create the automatic index */
841   assert( pLevel->iIdxCur>=0 );
842   pLevel->iIdxCur = pParse->nTab++;
843   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
844   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
845   VdbeComment((v, "for %s", pTable->zName));
846 
847   /* Fill the automatic index with content */
848   pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
849   if( pTabItem->fg.viaCoroutine ){
850     int regYield = pTabItem->regReturn;
851     addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
852     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
853     addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
854     VdbeCoverage(v);
855     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
856   }else{
857     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
858   }
859   if( pPartial ){
860     iContinue = sqlite3VdbeMakeLabel(pParse);
861     sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
862     pLoop->wsFlags |= WHERE_PARTIALIDX;
863   }
864   regRecord = sqlite3GetTempReg(pParse);
865   regBase = sqlite3GenerateIndexKey(
866       pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
867   );
868   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
869   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
870   if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
871   if( pTabItem->fg.viaCoroutine ){
872     sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
873     testcase( pParse->db->mallocFailed );
874     assert( pLevel->iIdxCur>0 );
875     translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
876                           pTabItem->regResult, pLevel->iIdxCur);
877     sqlite3VdbeGoto(v, addrTop);
878     pTabItem->fg.viaCoroutine = 0;
879   }else{
880     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
881     sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
882   }
883   sqlite3VdbeJumpHere(v, addrTop);
884   sqlite3ReleaseTempReg(pParse, regRecord);
885 
886   /* Jump here when skipping the initialization */
887   sqlite3VdbeJumpHere(v, addrInit);
888 
889 end_auto_index_create:
890   sqlite3ExprDelete(pParse->db, pPartial);
891 }
892 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
893 
894 #ifndef SQLITE_OMIT_VIRTUALTABLE
895 /*
896 ** Allocate and populate an sqlite3_index_info structure. It is the
897 ** responsibility of the caller to eventually release the structure
898 ** by passing the pointer returned by this function to sqlite3_free().
899 */
900 static sqlite3_index_info *allocateIndexInfo(
901   Parse *pParse,                  /* The parsing context */
902   WhereClause *pWC,               /* The WHERE clause being analyzed */
903   Bitmask mUnusable,              /* Ignore terms with these prereqs */
904   struct SrcList_item *pSrc,      /* The FROM clause term that is the vtab */
905   ExprList *pOrderBy,             /* The ORDER BY clause */
906   u16 *pmNoOmit                   /* Mask of terms not to omit */
907 ){
908   int i, j;
909   int nTerm;
910   struct sqlite3_index_constraint *pIdxCons;
911   struct sqlite3_index_orderby *pIdxOrderBy;
912   struct sqlite3_index_constraint_usage *pUsage;
913   struct HiddenIndexInfo *pHidden;
914   WhereTerm *pTerm;
915   int nOrderBy;
916   sqlite3_index_info *pIdxInfo;
917   u16 mNoOmit = 0;
918 
919   /* Count the number of possible WHERE clause constraints referring
920   ** to this virtual table */
921   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
922     if( pTerm->leftCursor != pSrc->iCursor ) continue;
923     if( pTerm->prereqRight & mUnusable ) continue;
924     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
925     testcase( pTerm->eOperator & WO_IN );
926     testcase( pTerm->eOperator & WO_ISNULL );
927     testcase( pTerm->eOperator & WO_IS );
928     testcase( pTerm->eOperator & WO_ALL );
929     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
930     if( pTerm->wtFlags & TERM_VNULL ) continue;
931     assert( pTerm->u.leftColumn>=(-1) );
932     nTerm++;
933   }
934 
935   /* If the ORDER BY clause contains only columns in the current
936   ** virtual table then allocate space for the aOrderBy part of
937   ** the sqlite3_index_info structure.
938   */
939   nOrderBy = 0;
940   if( pOrderBy ){
941     int n = pOrderBy->nExpr;
942     for(i=0; i<n; i++){
943       Expr *pExpr = pOrderBy->a[i].pExpr;
944       if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
945       if( pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL ) break;
946     }
947     if( i==n){
948       nOrderBy = n;
949     }
950   }
951 
952   /* Allocate the sqlite3_index_info structure
953   */
954   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
955                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
956                            + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) );
957   if( pIdxInfo==0 ){
958     sqlite3ErrorMsg(pParse, "out of memory");
959     return 0;
960   }
961   pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
962   pIdxCons = (struct sqlite3_index_constraint*)&pHidden[1];
963   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
964   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
965   pIdxInfo->nOrderBy = nOrderBy;
966   pIdxInfo->aConstraint = pIdxCons;
967   pIdxInfo->aOrderBy = pIdxOrderBy;
968   pIdxInfo->aConstraintUsage = pUsage;
969   pHidden->pWC = pWC;
970   pHidden->pParse = pParse;
971   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
972     u16 op;
973     if( pTerm->leftCursor != pSrc->iCursor ) continue;
974     if( pTerm->prereqRight & mUnusable ) continue;
975     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
976     testcase( pTerm->eOperator & WO_IN );
977     testcase( pTerm->eOperator & WO_IS );
978     testcase( pTerm->eOperator & WO_ISNULL );
979     testcase( pTerm->eOperator & WO_ALL );
980     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
981     if( pTerm->wtFlags & TERM_VNULL ) continue;
982 
983     /* tag-20191211-002: WHERE-clause constraints are not useful to the
984     ** right-hand table of a LEFT JOIN.  See tag-20191211-001 for the
985     ** equivalent restriction for ordinary tables. */
986     if( (pSrc->fg.jointype & JT_LEFT)!=0
987      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
988     ){
989       continue;
990     }
991     assert( pTerm->u.leftColumn>=(-1) );
992     pIdxCons[j].iColumn = pTerm->u.leftColumn;
993     pIdxCons[j].iTermOffset = i;
994     op = pTerm->eOperator & WO_ALL;
995     if( op==WO_IN ) op = WO_EQ;
996     if( op==WO_AUX ){
997       pIdxCons[j].op = pTerm->eMatchOp;
998     }else if( op & (WO_ISNULL|WO_IS) ){
999       if( op==WO_ISNULL ){
1000         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
1001       }else{
1002         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
1003       }
1004     }else{
1005       pIdxCons[j].op = (u8)op;
1006       /* The direct assignment in the previous line is possible only because
1007       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
1008       ** following asserts verify this fact. */
1009       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1010       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1011       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1012       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1013       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1014       assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
1015 
1016       if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
1017        && sqlite3ExprIsVector(pTerm->pExpr->pRight)
1018       ){
1019         testcase( j!=i );
1020         if( j<16 ) mNoOmit |= (1 << j);
1021         if( op==WO_LT ) pIdxCons[j].op = WO_LE;
1022         if( op==WO_GT ) pIdxCons[j].op = WO_GE;
1023       }
1024     }
1025 
1026     j++;
1027   }
1028   pIdxInfo->nConstraint = j;
1029   for(i=0; i<nOrderBy; i++){
1030     Expr *pExpr = pOrderBy->a[i].pExpr;
1031     pIdxOrderBy[i].iColumn = pExpr->iColumn;
1032     pIdxOrderBy[i].desc = pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC;
1033   }
1034 
1035   *pmNoOmit = mNoOmit;
1036   return pIdxInfo;
1037 }
1038 
1039 /*
1040 ** The table object reference passed as the second argument to this function
1041 ** must represent a virtual table. This function invokes the xBestIndex()
1042 ** method of the virtual table with the sqlite3_index_info object that
1043 ** comes in as the 3rd argument to this function.
1044 **
1045 ** If an error occurs, pParse is populated with an error message and an
1046 ** appropriate error code is returned.  A return of SQLITE_CONSTRAINT from
1047 ** xBestIndex is not considered an error.  SQLITE_CONSTRAINT indicates that
1048 ** the current configuration of "unusable" flags in sqlite3_index_info can
1049 ** not result in a valid plan.
1050 **
1051 ** Whether or not an error is returned, it is the responsibility of the
1052 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1053 ** that this is required.
1054 */
1055 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
1056   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
1057   int rc;
1058 
1059   whereTraceIndexInfoInputs(p);
1060   rc = pVtab->pModule->xBestIndex(pVtab, p);
1061   whereTraceIndexInfoOutputs(p);
1062 
1063   if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){
1064     if( rc==SQLITE_NOMEM ){
1065       sqlite3OomFault(pParse->db);
1066     }else if( !pVtab->zErrMsg ){
1067       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1068     }else{
1069       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1070     }
1071   }
1072   sqlite3_free(pVtab->zErrMsg);
1073   pVtab->zErrMsg = 0;
1074   return rc;
1075 }
1076 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1077 
1078 #ifdef SQLITE_ENABLE_STAT4
1079 /*
1080 ** Estimate the location of a particular key among all keys in an
1081 ** index.  Store the results in aStat as follows:
1082 **
1083 **    aStat[0]      Est. number of rows less than pRec
1084 **    aStat[1]      Est. number of rows equal to pRec
1085 **
1086 ** Return the index of the sample that is the smallest sample that
1087 ** is greater than or equal to pRec. Note that this index is not an index
1088 ** into the aSample[] array - it is an index into a virtual set of samples
1089 ** based on the contents of aSample[] and the number of fields in record
1090 ** pRec.
1091 */
1092 static int whereKeyStats(
1093   Parse *pParse,              /* Database connection */
1094   Index *pIdx,                /* Index to consider domain of */
1095   UnpackedRecord *pRec,       /* Vector of values to consider */
1096   int roundUp,                /* Round up if true.  Round down if false */
1097   tRowcnt *aStat              /* OUT: stats written here */
1098 ){
1099   IndexSample *aSample = pIdx->aSample;
1100   int iCol;                   /* Index of required stats in anEq[] etc. */
1101   int i;                      /* Index of first sample >= pRec */
1102   int iSample;                /* Smallest sample larger than or equal to pRec */
1103   int iMin = 0;               /* Smallest sample not yet tested */
1104   int iTest;                  /* Next sample to test */
1105   int res;                    /* Result of comparison operation */
1106   int nField;                 /* Number of fields in pRec */
1107   tRowcnt iLower = 0;         /* anLt[] + anEq[] of largest sample pRec is > */
1108 
1109 #ifndef SQLITE_DEBUG
1110   UNUSED_PARAMETER( pParse );
1111 #endif
1112   assert( pRec!=0 );
1113   assert( pIdx->nSample>0 );
1114   assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
1115 
1116   /* Do a binary search to find the first sample greater than or equal
1117   ** to pRec. If pRec contains a single field, the set of samples to search
1118   ** is simply the aSample[] array. If the samples in aSample[] contain more
1119   ** than one fields, all fields following the first are ignored.
1120   **
1121   ** If pRec contains N fields, where N is more than one, then as well as the
1122   ** samples in aSample[] (truncated to N fields), the search also has to
1123   ** consider prefixes of those samples. For example, if the set of samples
1124   ** in aSample is:
1125   **
1126   **     aSample[0] = (a, 5)
1127   **     aSample[1] = (a, 10)
1128   **     aSample[2] = (b, 5)
1129   **     aSample[3] = (c, 100)
1130   **     aSample[4] = (c, 105)
1131   **
1132   ** Then the search space should ideally be the samples above and the
1133   ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1134   ** the code actually searches this set:
1135   **
1136   **     0: (a)
1137   **     1: (a, 5)
1138   **     2: (a, 10)
1139   **     3: (a, 10)
1140   **     4: (b)
1141   **     5: (b, 5)
1142   **     6: (c)
1143   **     7: (c, 100)
1144   **     8: (c, 105)
1145   **     9: (c, 105)
1146   **
1147   ** For each sample in the aSample[] array, N samples are present in the
1148   ** effective sample array. In the above, samples 0 and 1 are based on
1149   ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1150   **
1151   ** Often, sample i of each block of N effective samples has (i+1) fields.
1152   ** Except, each sample may be extended to ensure that it is greater than or
1153   ** equal to the previous sample in the array. For example, in the above,
1154   ** sample 2 is the first sample of a block of N samples, so at first it
1155   ** appears that it should be 1 field in size. However, that would make it
1156   ** smaller than sample 1, so the binary search would not work. As a result,
1157   ** it is extended to two fields. The duplicates that this creates do not
1158   ** cause any problems.
1159   */
1160   nField = pRec->nField;
1161   iCol = 0;
1162   iSample = pIdx->nSample * nField;
1163   do{
1164     int iSamp;                    /* Index in aSample[] of test sample */
1165     int n;                        /* Number of fields in test sample */
1166 
1167     iTest = (iMin+iSample)/2;
1168     iSamp = iTest / nField;
1169     if( iSamp>0 ){
1170       /* The proposed effective sample is a prefix of sample aSample[iSamp].
1171       ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1172       ** fields that is greater than the previous effective sample.  */
1173       for(n=(iTest % nField) + 1; n<nField; n++){
1174         if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1175       }
1176     }else{
1177       n = iTest + 1;
1178     }
1179 
1180     pRec->nField = n;
1181     res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1182     if( res<0 ){
1183       iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1184       iMin = iTest+1;
1185     }else if( res==0 && n<nField ){
1186       iLower = aSample[iSamp].anLt[n-1];
1187       iMin = iTest+1;
1188       res = -1;
1189     }else{
1190       iSample = iTest;
1191       iCol = n-1;
1192     }
1193   }while( res && iMin<iSample );
1194   i = iSample / nField;
1195 
1196 #ifdef SQLITE_DEBUG
1197   /* The following assert statements check that the binary search code
1198   ** above found the right answer. This block serves no purpose other
1199   ** than to invoke the asserts.  */
1200   if( pParse->db->mallocFailed==0 ){
1201     if( res==0 ){
1202       /* If (res==0) is true, then pRec must be equal to sample i. */
1203       assert( i<pIdx->nSample );
1204       assert( iCol==nField-1 );
1205       pRec->nField = nField;
1206       assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1207            || pParse->db->mallocFailed
1208       );
1209     }else{
1210       /* Unless i==pIdx->nSample, indicating that pRec is larger than
1211       ** all samples in the aSample[] array, pRec must be smaller than the
1212       ** (iCol+1) field prefix of sample i.  */
1213       assert( i<=pIdx->nSample && i>=0 );
1214       pRec->nField = iCol+1;
1215       assert( i==pIdx->nSample
1216            || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1217            || pParse->db->mallocFailed );
1218 
1219       /* if i==0 and iCol==0, then record pRec is smaller than all samples
1220       ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1221       ** be greater than or equal to the (iCol) field prefix of sample i.
1222       ** If (i>0), then pRec must also be greater than sample (i-1).  */
1223       if( iCol>0 ){
1224         pRec->nField = iCol;
1225         assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1226              || pParse->db->mallocFailed );
1227       }
1228       if( i>0 ){
1229         pRec->nField = nField;
1230         assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1231              || pParse->db->mallocFailed );
1232       }
1233     }
1234   }
1235 #endif /* ifdef SQLITE_DEBUG */
1236 
1237   if( res==0 ){
1238     /* Record pRec is equal to sample i */
1239     assert( iCol==nField-1 );
1240     aStat[0] = aSample[i].anLt[iCol];
1241     aStat[1] = aSample[i].anEq[iCol];
1242   }else{
1243     /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1244     ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1245     ** is larger than all samples in the array. */
1246     tRowcnt iUpper, iGap;
1247     if( i>=pIdx->nSample ){
1248       iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1249     }else{
1250       iUpper = aSample[i].anLt[iCol];
1251     }
1252 
1253     if( iLower>=iUpper ){
1254       iGap = 0;
1255     }else{
1256       iGap = iUpper - iLower;
1257     }
1258     if( roundUp ){
1259       iGap = (iGap*2)/3;
1260     }else{
1261       iGap = iGap/3;
1262     }
1263     aStat[0] = iLower + iGap;
1264     aStat[1] = pIdx->aAvgEq[nField-1];
1265   }
1266 
1267   /* Restore the pRec->nField value before returning.  */
1268   pRec->nField = nField;
1269   return i;
1270 }
1271 #endif /* SQLITE_ENABLE_STAT4 */
1272 
1273 /*
1274 ** If it is not NULL, pTerm is a term that provides an upper or lower
1275 ** bound on a range scan. Without considering pTerm, it is estimated
1276 ** that the scan will visit nNew rows. This function returns the number
1277 ** estimated to be visited after taking pTerm into account.
1278 **
1279 ** If the user explicitly specified a likelihood() value for this term,
1280 ** then the return value is the likelihood multiplied by the number of
1281 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1282 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1283 */
1284 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1285   LogEst nRet = nNew;
1286   if( pTerm ){
1287     if( pTerm->truthProb<=0 ){
1288       nRet += pTerm->truthProb;
1289     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1290       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
1291     }
1292   }
1293   return nRet;
1294 }
1295 
1296 
1297 #ifdef SQLITE_ENABLE_STAT4
1298 /*
1299 ** Return the affinity for a single column of an index.
1300 */
1301 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1302   assert( iCol>=0 && iCol<pIdx->nColumn );
1303   if( !pIdx->zColAff ){
1304     if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1305   }
1306   assert( pIdx->zColAff[iCol]!=0 );
1307   return pIdx->zColAff[iCol];
1308 }
1309 #endif
1310 
1311 
1312 #ifdef SQLITE_ENABLE_STAT4
1313 /*
1314 ** This function is called to estimate the number of rows visited by a
1315 ** range-scan on a skip-scan index. For example:
1316 **
1317 **   CREATE INDEX i1 ON t1(a, b, c);
1318 **   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1319 **
1320 ** Value pLoop->nOut is currently set to the estimated number of rows
1321 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1322 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1323 ** on the stat4 data for the index. this scan will be peformed multiple
1324 ** times (once for each (a,b) combination that matches a=?) is dealt with
1325 ** by the caller.
1326 **
1327 ** It does this by scanning through all stat4 samples, comparing values
1328 ** extracted from pLower and pUpper with the corresponding column in each
1329 ** sample. If L and U are the number of samples found to be less than or
1330 ** equal to the values extracted from pLower and pUpper respectively, and
1331 ** N is the total number of samples, the pLoop->nOut value is adjusted
1332 ** as follows:
1333 **
1334 **   nOut = nOut * ( min(U - L, 1) / N )
1335 **
1336 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1337 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1338 ** U is set to N.
1339 **
1340 ** Normally, this function sets *pbDone to 1 before returning. However,
1341 ** if no value can be extracted from either pLower or pUpper (and so the
1342 ** estimate of the number of rows delivered remains unchanged), *pbDone
1343 ** is left as is.
1344 **
1345 ** If an error occurs, an SQLite error code is returned. Otherwise,
1346 ** SQLITE_OK.
1347 */
1348 static int whereRangeSkipScanEst(
1349   Parse *pParse,       /* Parsing & code generating context */
1350   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1351   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1352   WhereLoop *pLoop,    /* Update the .nOut value of this loop */
1353   int *pbDone          /* Set to true if at least one expr. value extracted */
1354 ){
1355   Index *p = pLoop->u.btree.pIndex;
1356   int nEq = pLoop->u.btree.nEq;
1357   sqlite3 *db = pParse->db;
1358   int nLower = -1;
1359   int nUpper = p->nSample+1;
1360   int rc = SQLITE_OK;
1361   u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1362   CollSeq *pColl;
1363 
1364   sqlite3_value *p1 = 0;          /* Value extracted from pLower */
1365   sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
1366   sqlite3_value *pVal = 0;        /* Value extracted from record */
1367 
1368   pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1369   if( pLower ){
1370     rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1371     nLower = 0;
1372   }
1373   if( pUpper && rc==SQLITE_OK ){
1374     rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1375     nUpper = p2 ? 0 : p->nSample;
1376   }
1377 
1378   if( p1 || p2 ){
1379     int i;
1380     int nDiff;
1381     for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1382       rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1383       if( rc==SQLITE_OK && p1 ){
1384         int res = sqlite3MemCompare(p1, pVal, pColl);
1385         if( res>=0 ) nLower++;
1386       }
1387       if( rc==SQLITE_OK && p2 ){
1388         int res = sqlite3MemCompare(p2, pVal, pColl);
1389         if( res>=0 ) nUpper++;
1390       }
1391     }
1392     nDiff = (nUpper - nLower);
1393     if( nDiff<=0 ) nDiff = 1;
1394 
1395     /* If there is both an upper and lower bound specified, and the
1396     ** comparisons indicate that they are close together, use the fallback
1397     ** method (assume that the scan visits 1/64 of the rows) for estimating
1398     ** the number of rows visited. Otherwise, estimate the number of rows
1399     ** using the method described in the header comment for this function. */
1400     if( nDiff!=1 || pUpper==0 || pLower==0 ){
1401       int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1402       pLoop->nOut -= nAdjust;
1403       *pbDone = 1;
1404       WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n",
1405                            nLower, nUpper, nAdjust*-1, pLoop->nOut));
1406     }
1407 
1408   }else{
1409     assert( *pbDone==0 );
1410   }
1411 
1412   sqlite3ValueFree(p1);
1413   sqlite3ValueFree(p2);
1414   sqlite3ValueFree(pVal);
1415 
1416   return rc;
1417 }
1418 #endif /* SQLITE_ENABLE_STAT4 */
1419 
1420 /*
1421 ** This function is used to estimate the number of rows that will be visited
1422 ** by scanning an index for a range of values. The range may have an upper
1423 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1424 ** and lower bounds are represented by pLower and pUpper respectively. For
1425 ** example, assuming that index p is on t1(a):
1426 **
1427 **   ... FROM t1 WHERE a > ? AND a < ? ...
1428 **                    |_____|   |_____|
1429 **                       |         |
1430 **                     pLower    pUpper
1431 **
1432 ** If either of the upper or lower bound is not present, then NULL is passed in
1433 ** place of the corresponding WhereTerm.
1434 **
1435 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1436 ** column subject to the range constraint. Or, equivalently, the number of
1437 ** equality constraints optimized by the proposed index scan. For example,
1438 ** assuming index p is on t1(a, b), and the SQL query is:
1439 **
1440 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1441 **
1442 ** then nEq is set to 1 (as the range restricted column, b, is the second
1443 ** left-most column of the index). Or, if the query is:
1444 **
1445 **   ... FROM t1 WHERE a > ? AND a < ? ...
1446 **
1447 ** then nEq is set to 0.
1448 **
1449 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1450 ** number of rows that the index scan is expected to visit without
1451 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1452 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1453 ** to account for the range constraints pLower and pUpper.
1454 **
1455 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1456 ** used, a single range inequality reduces the search space by a factor of 4.
1457 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1458 ** rows visited by a factor of 64.
1459 */
1460 static int whereRangeScanEst(
1461   Parse *pParse,       /* Parsing & code generating context */
1462   WhereLoopBuilder *pBuilder,
1463   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1464   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1465   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
1466 ){
1467   int rc = SQLITE_OK;
1468   int nOut = pLoop->nOut;
1469   LogEst nNew;
1470 
1471 #ifdef SQLITE_ENABLE_STAT4
1472   Index *p = pLoop->u.btree.pIndex;
1473   int nEq = pLoop->u.btree.nEq;
1474 
1475   if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol)
1476    && OptimizationEnabled(pParse->db, SQLITE_Stat4)
1477   ){
1478     if( nEq==pBuilder->nRecValid ){
1479       UnpackedRecord *pRec = pBuilder->pRec;
1480       tRowcnt a[2];
1481       int nBtm = pLoop->u.btree.nBtm;
1482       int nTop = pLoop->u.btree.nTop;
1483 
1484       /* Variable iLower will be set to the estimate of the number of rows in
1485       ** the index that are less than the lower bound of the range query. The
1486       ** lower bound being the concatenation of $P and $L, where $P is the
1487       ** key-prefix formed by the nEq values matched against the nEq left-most
1488       ** columns of the index, and $L is the value in pLower.
1489       **
1490       ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1491       ** is not a simple variable or literal value), the lower bound of the
1492       ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1493       ** if $L is available, whereKeyStats() is called for both ($P) and
1494       ** ($P:$L) and the larger of the two returned values is used.
1495       **
1496       ** Similarly, iUpper is to be set to the estimate of the number of rows
1497       ** less than the upper bound of the range query. Where the upper bound
1498       ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1499       ** of iUpper are requested of whereKeyStats() and the smaller used.
1500       **
1501       ** The number of rows between the two bounds is then just iUpper-iLower.
1502       */
1503       tRowcnt iLower;     /* Rows less than the lower bound */
1504       tRowcnt iUpper;     /* Rows less than the upper bound */
1505       int iLwrIdx = -2;   /* aSample[] for the lower bound */
1506       int iUprIdx = -1;   /* aSample[] for the upper bound */
1507 
1508       if( pRec ){
1509         testcase( pRec->nField!=pBuilder->nRecValid );
1510         pRec->nField = pBuilder->nRecValid;
1511       }
1512       /* Determine iLower and iUpper using ($P) only. */
1513       if( nEq==0 ){
1514         iLower = 0;
1515         iUpper = p->nRowEst0;
1516       }else{
1517         /* Note: this call could be optimized away - since the same values must
1518         ** have been requested when testing key $P in whereEqualScanEst().  */
1519         whereKeyStats(pParse, p, pRec, 0, a);
1520         iLower = a[0];
1521         iUpper = a[0] + a[1];
1522       }
1523 
1524       assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1525       assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1526       assert( p->aSortOrder!=0 );
1527       if( p->aSortOrder[nEq] ){
1528         /* The roles of pLower and pUpper are swapped for a DESC index */
1529         SWAP(WhereTerm*, pLower, pUpper);
1530         SWAP(int, nBtm, nTop);
1531       }
1532 
1533       /* If possible, improve on the iLower estimate using ($P:$L). */
1534       if( pLower ){
1535         int n;                    /* Values extracted from pExpr */
1536         Expr *pExpr = pLower->pExpr->pRight;
1537         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1538         if( rc==SQLITE_OK && n ){
1539           tRowcnt iNew;
1540           u16 mask = WO_GT|WO_LE;
1541           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1542           iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1543           iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1544           if( iNew>iLower ) iLower = iNew;
1545           nOut--;
1546           pLower = 0;
1547         }
1548       }
1549 
1550       /* If possible, improve on the iUpper estimate using ($P:$U). */
1551       if( pUpper ){
1552         int n;                    /* Values extracted from pExpr */
1553         Expr *pExpr = pUpper->pExpr->pRight;
1554         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1555         if( rc==SQLITE_OK && n ){
1556           tRowcnt iNew;
1557           u16 mask = WO_GT|WO_LE;
1558           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1559           iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1560           iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1561           if( iNew<iUpper ) iUpper = iNew;
1562           nOut--;
1563           pUpper = 0;
1564         }
1565       }
1566 
1567       pBuilder->pRec = pRec;
1568       if( rc==SQLITE_OK ){
1569         if( iUpper>iLower ){
1570           nNew = sqlite3LogEst(iUpper - iLower);
1571           /* TUNING:  If both iUpper and iLower are derived from the same
1572           ** sample, then assume they are 4x more selective.  This brings
1573           ** the estimated selectivity more in line with what it would be
1574           ** if estimated without the use of STAT4 tables. */
1575           if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
1576         }else{
1577           nNew = 10;        assert( 10==sqlite3LogEst(2) );
1578         }
1579         if( nNew<nOut ){
1580           nOut = nNew;
1581         }
1582         WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
1583                            (u32)iLower, (u32)iUpper, nOut));
1584       }
1585     }else{
1586       int bDone = 0;
1587       rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1588       if( bDone ) return rc;
1589     }
1590   }
1591 #else
1592   UNUSED_PARAMETER(pParse);
1593   UNUSED_PARAMETER(pBuilder);
1594   assert( pLower || pUpper );
1595 #endif
1596   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1597   nNew = whereRangeAdjust(pLower, nOut);
1598   nNew = whereRangeAdjust(pUpper, nNew);
1599 
1600   /* TUNING: If there is both an upper and lower limit and neither limit
1601   ** has an application-defined likelihood(), assume the range is
1602   ** reduced by an additional 75%. This means that, by default, an open-ended
1603   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1604   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1605   ** match 1/64 of the index. */
1606   if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1607     nNew -= 20;
1608   }
1609 
1610   nOut -= (pLower!=0) + (pUpper!=0);
1611   if( nNew<10 ) nNew = 10;
1612   if( nNew<nOut ) nOut = nNew;
1613 #if defined(WHERETRACE_ENABLED)
1614   if( pLoop->nOut>nOut ){
1615     WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1616                     pLoop->nOut, nOut));
1617   }
1618 #endif
1619   pLoop->nOut = (LogEst)nOut;
1620   return rc;
1621 }
1622 
1623 #ifdef SQLITE_ENABLE_STAT4
1624 /*
1625 ** Estimate the number of rows that will be returned based on
1626 ** an equality constraint x=VALUE and where that VALUE occurs in
1627 ** the histogram data.  This only works when x is the left-most
1628 ** column of an index and sqlite_stat4 histogram data is available
1629 ** for that index.  When pExpr==NULL that means the constraint is
1630 ** "x IS NULL" instead of "x=VALUE".
1631 **
1632 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1633 ** If unable to make an estimate, leave *pnRow unchanged and return
1634 ** non-zero.
1635 **
1636 ** This routine can fail if it is unable to load a collating sequence
1637 ** required for string comparison, or if unable to allocate memory
1638 ** for a UTF conversion required for comparison.  The error is stored
1639 ** in the pParse structure.
1640 */
1641 static int whereEqualScanEst(
1642   Parse *pParse,       /* Parsing & code generating context */
1643   WhereLoopBuilder *pBuilder,
1644   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
1645   tRowcnt *pnRow       /* Write the revised row estimate here */
1646 ){
1647   Index *p = pBuilder->pNew->u.btree.pIndex;
1648   int nEq = pBuilder->pNew->u.btree.nEq;
1649   UnpackedRecord *pRec = pBuilder->pRec;
1650   int rc;                   /* Subfunction return code */
1651   tRowcnt a[2];             /* Statistics */
1652   int bOk;
1653 
1654   assert( nEq>=1 );
1655   assert( nEq<=p->nColumn );
1656   assert( p->aSample!=0 );
1657   assert( p->nSample>0 );
1658   assert( pBuilder->nRecValid<nEq );
1659 
1660   /* If values are not available for all fields of the index to the left
1661   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1662   if( pBuilder->nRecValid<(nEq-1) ){
1663     return SQLITE_NOTFOUND;
1664   }
1665 
1666   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1667   ** below would return the same value.  */
1668   if( nEq>=p->nColumn ){
1669     *pnRow = 1;
1670     return SQLITE_OK;
1671   }
1672 
1673   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1674   pBuilder->pRec = pRec;
1675   if( rc!=SQLITE_OK ) return rc;
1676   if( bOk==0 ) return SQLITE_NOTFOUND;
1677   pBuilder->nRecValid = nEq;
1678 
1679   whereKeyStats(pParse, p, pRec, 0, a);
1680   WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1681                    p->zName, nEq-1, (int)a[1]));
1682   *pnRow = a[1];
1683 
1684   return rc;
1685 }
1686 #endif /* SQLITE_ENABLE_STAT4 */
1687 
1688 #ifdef SQLITE_ENABLE_STAT4
1689 /*
1690 ** Estimate the number of rows that will be returned based on
1691 ** an IN constraint where the right-hand side of the IN operator
1692 ** is a list of values.  Example:
1693 **
1694 **        WHERE x IN (1,2,3,4)
1695 **
1696 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1697 ** If unable to make an estimate, leave *pnRow unchanged and return
1698 ** non-zero.
1699 **
1700 ** This routine can fail if it is unable to load a collating sequence
1701 ** required for string comparison, or if unable to allocate memory
1702 ** for a UTF conversion required for comparison.  The error is stored
1703 ** in the pParse structure.
1704 */
1705 static int whereInScanEst(
1706   Parse *pParse,       /* Parsing & code generating context */
1707   WhereLoopBuilder *pBuilder,
1708   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1709   tRowcnt *pnRow       /* Write the revised row estimate here */
1710 ){
1711   Index *p = pBuilder->pNew->u.btree.pIndex;
1712   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1713   int nRecValid = pBuilder->nRecValid;
1714   int rc = SQLITE_OK;     /* Subfunction return code */
1715   tRowcnt nEst;           /* Number of rows for a single term */
1716   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
1717   int i;                  /* Loop counter */
1718 
1719   assert( p->aSample!=0 );
1720   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
1721     nEst = nRow0;
1722     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
1723     nRowEst += nEst;
1724     pBuilder->nRecValid = nRecValid;
1725   }
1726 
1727   if( rc==SQLITE_OK ){
1728     if( nRowEst > nRow0 ) nRowEst = nRow0;
1729     *pnRow = nRowEst;
1730     WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
1731   }
1732   assert( pBuilder->nRecValid==nRecValid );
1733   return rc;
1734 }
1735 #endif /* SQLITE_ENABLE_STAT4 */
1736 
1737 
1738 #ifdef WHERETRACE_ENABLED
1739 /*
1740 ** Print the content of a WhereTerm object
1741 */
1742 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){
1743   if( pTerm==0 ){
1744     sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
1745   }else{
1746     char zType[8];
1747     char zLeft[50];
1748     memcpy(zType, "....", 5);
1749     if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
1750     if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
1751     if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
1752     if( pTerm->wtFlags & TERM_CODED  ) zType[3] = 'C';
1753     if( pTerm->eOperator & WO_SINGLE ){
1754       sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
1755                        pTerm->leftCursor, pTerm->u.leftColumn);
1756     }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
1757       sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%lld",
1758                        pTerm->u.pOrInfo->indexable);
1759     }else{
1760       sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
1761     }
1762     sqlite3DebugPrintf(
1763        "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x",
1764        iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags);
1765     /* The 0x10000 .wheretrace flag causes extra information to be
1766     ** shown about each Term */
1767     if( sqlite3WhereTrace & 0x10000 ){
1768       sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx",
1769         pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight);
1770     }
1771     if( pTerm->iField ){
1772       sqlite3DebugPrintf(" iField=%d", pTerm->iField);
1773     }
1774     if( pTerm->iParent>=0 ){
1775       sqlite3DebugPrintf(" iParent=%d", pTerm->iParent);
1776     }
1777     sqlite3DebugPrintf("\n");
1778     sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
1779   }
1780 }
1781 #endif
1782 
1783 #ifdef WHERETRACE_ENABLED
1784 /*
1785 ** Show the complete content of a WhereClause
1786 */
1787 void sqlite3WhereClausePrint(WhereClause *pWC){
1788   int i;
1789   for(i=0; i<pWC->nTerm; i++){
1790     sqlite3WhereTermPrint(&pWC->a[i], i);
1791   }
1792 }
1793 #endif
1794 
1795 #ifdef WHERETRACE_ENABLED
1796 /*
1797 ** Print a WhereLoop object for debugging purposes
1798 */
1799 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){
1800   WhereInfo *pWInfo = pWC->pWInfo;
1801   int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
1802   struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab;
1803   Table *pTab = pItem->pTab;
1804   Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
1805   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
1806                      p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
1807   sqlite3DebugPrintf(" %12s",
1808                      pItem->zAlias ? pItem->zAlias : pTab->zName);
1809   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
1810     const char *zName;
1811     if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
1812       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
1813         int i = sqlite3Strlen30(zName) - 1;
1814         while( zName[i]!='_' ) i--;
1815         zName += i;
1816       }
1817       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
1818     }else{
1819       sqlite3DebugPrintf("%20s","");
1820     }
1821   }else{
1822     char *z;
1823     if( p->u.vtab.idxStr ){
1824       z = sqlite3_mprintf("(%d,\"%s\",%#x)",
1825                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
1826     }else{
1827       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
1828     }
1829     sqlite3DebugPrintf(" %-19s", z);
1830     sqlite3_free(z);
1831   }
1832   if( p->wsFlags & WHERE_SKIPSCAN ){
1833     sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
1834   }else{
1835     sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
1836   }
1837   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
1838   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
1839     int i;
1840     for(i=0; i<p->nLTerm; i++){
1841       sqlite3WhereTermPrint(p->aLTerm[i], i);
1842     }
1843   }
1844 }
1845 #endif
1846 
1847 /*
1848 ** Convert bulk memory into a valid WhereLoop that can be passed
1849 ** to whereLoopClear harmlessly.
1850 */
1851 static void whereLoopInit(WhereLoop *p){
1852   p->aLTerm = p->aLTermSpace;
1853   p->nLTerm = 0;
1854   p->nLSlot = ArraySize(p->aLTermSpace);
1855   p->wsFlags = 0;
1856 }
1857 
1858 /*
1859 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
1860 */
1861 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
1862   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
1863     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
1864       sqlite3_free(p->u.vtab.idxStr);
1865       p->u.vtab.needFree = 0;
1866       p->u.vtab.idxStr = 0;
1867     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
1868       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
1869       sqlite3DbFreeNN(db, p->u.btree.pIndex);
1870       p->u.btree.pIndex = 0;
1871     }
1872   }
1873 }
1874 
1875 /*
1876 ** Deallocate internal memory used by a WhereLoop object
1877 */
1878 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
1879   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1880   whereLoopClearUnion(db, p);
1881   whereLoopInit(p);
1882 }
1883 
1884 /*
1885 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
1886 */
1887 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
1888   WhereTerm **paNew;
1889   if( p->nLSlot>=n ) return SQLITE_OK;
1890   n = (n+7)&~7;
1891   paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
1892   if( paNew==0 ) return SQLITE_NOMEM_BKPT;
1893   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
1894   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1895   p->aLTerm = paNew;
1896   p->nLSlot = n;
1897   return SQLITE_OK;
1898 }
1899 
1900 /*
1901 ** Transfer content from the second pLoop into the first.
1902 */
1903 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
1904   whereLoopClearUnion(db, pTo);
1905   if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
1906     memset(&pTo->u, 0, sizeof(pTo->u));
1907     return SQLITE_NOMEM_BKPT;
1908   }
1909   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
1910   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
1911   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
1912     pFrom->u.vtab.needFree = 0;
1913   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
1914     pFrom->u.btree.pIndex = 0;
1915   }
1916   return SQLITE_OK;
1917 }
1918 
1919 /*
1920 ** Delete a WhereLoop object
1921 */
1922 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
1923   whereLoopClear(db, p);
1924   sqlite3DbFreeNN(db, p);
1925 }
1926 
1927 /*
1928 ** Free a WhereInfo structure
1929 */
1930 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
1931   int i;
1932   assert( pWInfo!=0 );
1933   for(i=0; i<pWInfo->nLevel; i++){
1934     WhereLevel *pLevel = &pWInfo->a[i];
1935     if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){
1936       sqlite3DbFree(db, pLevel->u.in.aInLoop);
1937     }
1938   }
1939   sqlite3WhereClauseClear(&pWInfo->sWC);
1940   while( pWInfo->pLoops ){
1941     WhereLoop *p = pWInfo->pLoops;
1942     pWInfo->pLoops = p->pNextLoop;
1943     whereLoopDelete(db, p);
1944   }
1945   assert( pWInfo->pExprMods==0 );
1946   sqlite3DbFreeNN(db, pWInfo);
1947 }
1948 
1949 /*
1950 ** Return TRUE if all of the following are true:
1951 **
1952 **   (1)  X has the same or lower cost that Y
1953 **   (2)  X uses fewer WHERE clause terms than Y
1954 **   (3)  Every WHERE clause term used by X is also used by Y
1955 **   (4)  X skips at least as many columns as Y
1956 **   (5)  If X is a covering index, than Y is too
1957 **
1958 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
1959 ** If X is a proper subset of Y then Y is a better choice and ought
1960 ** to have a lower cost.  This routine returns TRUE when that cost
1961 ** relationship is inverted and needs to be adjusted.  Constraint (4)
1962 ** was added because if X uses skip-scan less than Y it still might
1963 ** deserve a lower cost even if it is a proper subset of Y.  Constraint (5)
1964 ** was added because a covering index probably deserves to have a lower cost
1965 ** than a non-covering index even if it is a proper subset.
1966 */
1967 static int whereLoopCheaperProperSubset(
1968   const WhereLoop *pX,       /* First WhereLoop to compare */
1969   const WhereLoop *pY        /* Compare against this WhereLoop */
1970 ){
1971   int i, j;
1972   if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
1973     return 0; /* X is not a subset of Y */
1974   }
1975   if( pY->nSkip > pX->nSkip ) return 0;
1976   if( pX->rRun >= pY->rRun ){
1977     if( pX->rRun > pY->rRun ) return 0;    /* X costs more than Y */
1978     if( pX->nOut > pY->nOut ) return 0;    /* X costs more than Y */
1979   }
1980   for(i=pX->nLTerm-1; i>=0; i--){
1981     if( pX->aLTerm[i]==0 ) continue;
1982     for(j=pY->nLTerm-1; j>=0; j--){
1983       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
1984     }
1985     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
1986   }
1987   if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
1988    && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
1989     return 0;  /* Constraint (5) */
1990   }
1991   return 1;  /* All conditions meet */
1992 }
1993 
1994 /*
1995 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
1996 ** that:
1997 **
1998 **   (1) pTemplate costs less than any other WhereLoops that are a proper
1999 **       subset of pTemplate
2000 **
2001 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
2002 **       is a proper subset.
2003 **
2004 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
2005 ** WHERE clause terms than Y and that every WHERE clause term used by X is
2006 ** also used by Y.
2007 */
2008 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
2009   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
2010   for(; p; p=p->pNextLoop){
2011     if( p->iTab!=pTemplate->iTab ) continue;
2012     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
2013     if( whereLoopCheaperProperSubset(p, pTemplate) ){
2014       /* Adjust pTemplate cost downward so that it is cheaper than its
2015       ** subset p. */
2016       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2017                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1));
2018       pTemplate->rRun = p->rRun;
2019       pTemplate->nOut = p->nOut - 1;
2020     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
2021       /* Adjust pTemplate cost upward so that it is costlier than p since
2022       ** pTemplate is a proper subset of p */
2023       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2024                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1));
2025       pTemplate->rRun = p->rRun;
2026       pTemplate->nOut = p->nOut + 1;
2027     }
2028   }
2029 }
2030 
2031 /*
2032 ** Search the list of WhereLoops in *ppPrev looking for one that can be
2033 ** replaced by pTemplate.
2034 **
2035 ** Return NULL if pTemplate does not belong on the WhereLoop list.
2036 ** In other words if pTemplate ought to be dropped from further consideration.
2037 **
2038 ** If pX is a WhereLoop that pTemplate can replace, then return the
2039 ** link that points to pX.
2040 **
2041 ** If pTemplate cannot replace any existing element of the list but needs
2042 ** to be added to the list as a new entry, then return a pointer to the
2043 ** tail of the list.
2044 */
2045 static WhereLoop **whereLoopFindLesser(
2046   WhereLoop **ppPrev,
2047   const WhereLoop *pTemplate
2048 ){
2049   WhereLoop *p;
2050   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
2051     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
2052       /* If either the iTab or iSortIdx values for two WhereLoop are different
2053       ** then those WhereLoops need to be considered separately.  Neither is
2054       ** a candidate to replace the other. */
2055       continue;
2056     }
2057     /* In the current implementation, the rSetup value is either zero
2058     ** or the cost of building an automatic index (NlogN) and the NlogN
2059     ** is the same for compatible WhereLoops. */
2060     assert( p->rSetup==0 || pTemplate->rSetup==0
2061                  || p->rSetup==pTemplate->rSetup );
2062 
2063     /* whereLoopAddBtree() always generates and inserts the automatic index
2064     ** case first.  Hence compatible candidate WhereLoops never have a larger
2065     ** rSetup. Call this SETUP-INVARIANT */
2066     assert( p->rSetup>=pTemplate->rSetup );
2067 
2068     /* Any loop using an appliation-defined index (or PRIMARY KEY or
2069     ** UNIQUE constraint) with one or more == constraints is better
2070     ** than an automatic index. Unless it is a skip-scan. */
2071     if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
2072      && (pTemplate->nSkip)==0
2073      && (pTemplate->wsFlags & WHERE_INDEXED)!=0
2074      && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
2075      && (p->prereq & pTemplate->prereq)==pTemplate->prereq
2076     ){
2077       break;
2078     }
2079 
2080     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2081     ** discarded.  WhereLoop p is better if:
2082     **   (1)  p has no more dependencies than pTemplate, and
2083     **   (2)  p has an equal or lower cost than pTemplate
2084     */
2085     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
2086      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
2087      && p->rRun<=pTemplate->rRun                      /* (2b) */
2088      && p->nOut<=pTemplate->nOut                      /* (2c) */
2089     ){
2090       return 0;  /* Discard pTemplate */
2091     }
2092 
2093     /* If pTemplate is always better than p, then cause p to be overwritten
2094     ** with pTemplate.  pTemplate is better than p if:
2095     **   (1)  pTemplate has no more dependences than p, and
2096     **   (2)  pTemplate has an equal or lower cost than p.
2097     */
2098     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
2099      && p->rRun>=pTemplate->rRun                             /* (2a) */
2100      && p->nOut>=pTemplate->nOut                             /* (2b) */
2101     ){
2102       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2103       break;   /* Cause p to be overwritten by pTemplate */
2104     }
2105   }
2106   return ppPrev;
2107 }
2108 
2109 /*
2110 ** Insert or replace a WhereLoop entry using the template supplied.
2111 **
2112 ** An existing WhereLoop entry might be overwritten if the new template
2113 ** is better and has fewer dependencies.  Or the template will be ignored
2114 ** and no insert will occur if an existing WhereLoop is faster and has
2115 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
2116 ** added based on the template.
2117 **
2118 ** If pBuilder->pOrSet is not NULL then we care about only the
2119 ** prerequisites and rRun and nOut costs of the N best loops.  That
2120 ** information is gathered in the pBuilder->pOrSet object.  This special
2121 ** processing mode is used only for OR clause processing.
2122 **
2123 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2124 ** still might overwrite similar loops with the new template if the
2125 ** new template is better.  Loops may be overwritten if the following
2126 ** conditions are met:
2127 **
2128 **    (1)  They have the same iTab.
2129 **    (2)  They have the same iSortIdx.
2130 **    (3)  The template has same or fewer dependencies than the current loop
2131 **    (4)  The template has the same or lower cost than the current loop
2132 */
2133 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2134   WhereLoop **ppPrev, *p;
2135   WhereInfo *pWInfo = pBuilder->pWInfo;
2136   sqlite3 *db = pWInfo->pParse->db;
2137   int rc;
2138 
2139   /* Stop the search once we hit the query planner search limit */
2140   if( pBuilder->iPlanLimit==0 ){
2141     WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
2142     if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0;
2143     return SQLITE_DONE;
2144   }
2145   pBuilder->iPlanLimit--;
2146 
2147   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2148 
2149   /* If pBuilder->pOrSet is defined, then only keep track of the costs
2150   ** and prereqs.
2151   */
2152   if( pBuilder->pOrSet!=0 ){
2153     if( pTemplate->nLTerm ){
2154 #if WHERETRACE_ENABLED
2155       u16 n = pBuilder->pOrSet->n;
2156       int x =
2157 #endif
2158       whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2159                                     pTemplate->nOut);
2160 #if WHERETRACE_ENABLED /* 0x8 */
2161       if( sqlite3WhereTrace & 0x8 ){
2162         sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
2163         sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2164       }
2165 #endif
2166     }
2167     return SQLITE_OK;
2168   }
2169 
2170   /* Look for an existing WhereLoop to replace with pTemplate
2171   */
2172   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2173 
2174   if( ppPrev==0 ){
2175     /* There already exists a WhereLoop on the list that is better
2176     ** than pTemplate, so just ignore pTemplate */
2177 #if WHERETRACE_ENABLED /* 0x8 */
2178     if( sqlite3WhereTrace & 0x8 ){
2179       sqlite3DebugPrintf("   skip: ");
2180       sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2181     }
2182 #endif
2183     return SQLITE_OK;
2184   }else{
2185     p = *ppPrev;
2186   }
2187 
2188   /* If we reach this point it means that either p[] should be overwritten
2189   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2190   ** WhereLoop and insert it.
2191   */
2192 #if WHERETRACE_ENABLED /* 0x8 */
2193   if( sqlite3WhereTrace & 0x8 ){
2194     if( p!=0 ){
2195       sqlite3DebugPrintf("replace: ");
2196       sqlite3WhereLoopPrint(p, pBuilder->pWC);
2197       sqlite3DebugPrintf("   with: ");
2198     }else{
2199       sqlite3DebugPrintf("    add: ");
2200     }
2201     sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2202   }
2203 #endif
2204   if( p==0 ){
2205     /* Allocate a new WhereLoop to add to the end of the list */
2206     *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2207     if( p==0 ) return SQLITE_NOMEM_BKPT;
2208     whereLoopInit(p);
2209     p->pNextLoop = 0;
2210   }else{
2211     /* We will be overwriting WhereLoop p[].  But before we do, first
2212     ** go through the rest of the list and delete any other entries besides
2213     ** p[] that are also supplated by pTemplate */
2214     WhereLoop **ppTail = &p->pNextLoop;
2215     WhereLoop *pToDel;
2216     while( *ppTail ){
2217       ppTail = whereLoopFindLesser(ppTail, pTemplate);
2218       if( ppTail==0 ) break;
2219       pToDel = *ppTail;
2220       if( pToDel==0 ) break;
2221       *ppTail = pToDel->pNextLoop;
2222 #if WHERETRACE_ENABLED /* 0x8 */
2223       if( sqlite3WhereTrace & 0x8 ){
2224         sqlite3DebugPrintf(" delete: ");
2225         sqlite3WhereLoopPrint(pToDel, pBuilder->pWC);
2226       }
2227 #endif
2228       whereLoopDelete(db, pToDel);
2229     }
2230   }
2231   rc = whereLoopXfer(db, p, pTemplate);
2232   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2233     Index *pIndex = p->u.btree.pIndex;
2234     if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){
2235       p->u.btree.pIndex = 0;
2236     }
2237   }
2238   return rc;
2239 }
2240 
2241 /*
2242 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2243 ** WHERE clause that reference the loop but which are not used by an
2244 ** index.
2245 *
2246 ** For every WHERE clause term that is not used by the index
2247 ** and which has a truth probability assigned by one of the likelihood(),
2248 ** likely(), or unlikely() SQL functions, reduce the estimated number
2249 ** of output rows by the probability specified.
2250 **
2251 ** TUNING:  For every WHERE clause term that is not used by the index
2252 ** and which does not have an assigned truth probability, heuristics
2253 ** described below are used to try to estimate the truth probability.
2254 ** TODO --> Perhaps this is something that could be improved by better
2255 ** table statistics.
2256 **
2257 ** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
2258 ** value corresponds to -1 in LogEst notation, so this means decrement
2259 ** the WhereLoop.nOut field for every such WHERE clause term.
2260 **
2261 ** Heuristic 2:  If there exists one or more WHERE clause terms of the
2262 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2263 ** final output row estimate is no greater than 1/4 of the total number
2264 ** of rows in the table.  In other words, assume that x==EXPR will filter
2265 ** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
2266 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2267 ** on the "x" column and so in that case only cap the output row estimate
2268 ** at 1/2 instead of 1/4.
2269 */
2270 static void whereLoopOutputAdjust(
2271   WhereClause *pWC,      /* The WHERE clause */
2272   WhereLoop *pLoop,      /* The loop to adjust downward */
2273   LogEst nRow            /* Number of rows in the entire table */
2274 ){
2275   WhereTerm *pTerm, *pX;
2276   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2277   int i, j;
2278   LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */
2279 
2280   assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2281   for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
2282     assert( pTerm!=0 );
2283     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
2284     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2285     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2286     for(j=pLoop->nLTerm-1; j>=0; j--){
2287       pX = pLoop->aLTerm[j];
2288       if( pX==0 ) continue;
2289       if( pX==pTerm ) break;
2290       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2291     }
2292     if( j<0 ){
2293       if( pTerm->truthProb<=0 ){
2294         /* If a truth probability is specified using the likelihood() hints,
2295         ** then use the probability provided by the application. */
2296         pLoop->nOut += pTerm->truthProb;
2297       }else{
2298         /* In the absence of explicit truth probabilities, use heuristics to
2299         ** guess a reasonable truth probability. */
2300         pLoop->nOut--;
2301         if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0
2302          && (pTerm->wtFlags & TERM_HIGHTRUTH)==0  /* tag-20200224-1 */
2303         ){
2304           Expr *pRight = pTerm->pExpr->pRight;
2305           int k = 0;
2306           testcase( pTerm->pExpr->op==TK_IS );
2307           if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2308             k = 10;
2309           }else{
2310             k = 20;
2311           }
2312           if( iReduce<k ){
2313             pTerm->wtFlags |= TERM_HEURTRUTH;
2314             iReduce = k;
2315           }
2316         }
2317       }
2318     }
2319   }
2320   if( pLoop->nOut > nRow-iReduce )  pLoop->nOut = nRow - iReduce;
2321 }
2322 
2323 /*
2324 ** Term pTerm is a vector range comparison operation. The first comparison
2325 ** in the vector can be optimized using column nEq of the index. This
2326 ** function returns the total number of vector elements that can be used
2327 ** as part of the range comparison.
2328 **
2329 ** For example, if the query is:
2330 **
2331 **   WHERE a = ? AND (b, c, d) > (?, ?, ?)
2332 **
2333 ** and the index:
2334 **
2335 **   CREATE INDEX ... ON (a, b, c, d, e)
2336 **
2337 ** then this function would be invoked with nEq=1. The value returned in
2338 ** this case is 3.
2339 */
2340 static int whereRangeVectorLen(
2341   Parse *pParse,       /* Parsing context */
2342   int iCur,            /* Cursor open on pIdx */
2343   Index *pIdx,         /* The index to be used for a inequality constraint */
2344   int nEq,             /* Number of prior equality constraints on same index */
2345   WhereTerm *pTerm     /* The vector inequality constraint */
2346 ){
2347   int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2348   int i;
2349 
2350   nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2351   for(i=1; i<nCmp; i++){
2352     /* Test if comparison i of pTerm is compatible with column (i+nEq)
2353     ** of the index. If not, exit the loop.  */
2354     char aff;                     /* Comparison affinity */
2355     char idxaff = 0;              /* Indexed columns affinity */
2356     CollSeq *pColl;               /* Comparison collation sequence */
2357     Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2358     Expr *pRhs = pTerm->pExpr->pRight;
2359     if( pRhs->flags & EP_xIsSelect ){
2360       pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2361     }else{
2362       pRhs = pRhs->x.pList->a[i].pExpr;
2363     }
2364 
2365     /* Check that the LHS of the comparison is a column reference to
2366     ** the right column of the right source table. And that the sort
2367     ** order of the index column is the same as the sort order of the
2368     ** leftmost index column.  */
2369     if( pLhs->op!=TK_COLUMN
2370      || pLhs->iTable!=iCur
2371      || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2372      || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2373     ){
2374       break;
2375     }
2376 
2377     testcase( pLhs->iColumn==XN_ROWID );
2378     aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2379     idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2380     if( aff!=idxaff ) break;
2381 
2382     pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2383     if( pColl==0 ) break;
2384     if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2385   }
2386   return i;
2387 }
2388 
2389 /*
2390 ** Adjust the cost C by the costMult facter T.  This only occurs if
2391 ** compiled with -DSQLITE_ENABLE_COSTMULT
2392 */
2393 #ifdef SQLITE_ENABLE_COSTMULT
2394 # define ApplyCostMultiplier(C,T)  C += T
2395 #else
2396 # define ApplyCostMultiplier(C,T)
2397 #endif
2398 
2399 /*
2400 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2401 ** index pIndex. Try to match one more.
2402 **
2403 ** When this function is called, pBuilder->pNew->nOut contains the
2404 ** number of rows expected to be visited by filtering using the nEq
2405 ** terms only. If it is modified, this value is restored before this
2406 ** function returns.
2407 **
2408 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
2409 ** a fake index used for the INTEGER PRIMARY KEY.
2410 */
2411 static int whereLoopAddBtreeIndex(
2412   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
2413   struct SrcList_item *pSrc,      /* FROM clause term being analyzed */
2414   Index *pProbe,                  /* An index on pSrc */
2415   LogEst nInMul                   /* log(Number of iterations due to IN) */
2416 ){
2417   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
2418   Parse *pParse = pWInfo->pParse;        /* Parsing context */
2419   sqlite3 *db = pParse->db;       /* Database connection malloc context */
2420   WhereLoop *pNew;                /* Template WhereLoop under construction */
2421   WhereTerm *pTerm;               /* A WhereTerm under consideration */
2422   int opMask;                     /* Valid operators for constraints */
2423   WhereScan scan;                 /* Iterator for WHERE terms */
2424   Bitmask saved_prereq;           /* Original value of pNew->prereq */
2425   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
2426   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
2427   u16 saved_nBtm;                 /* Original value of pNew->u.btree.nBtm */
2428   u16 saved_nTop;                 /* Original value of pNew->u.btree.nTop */
2429   u16 saved_nSkip;                /* Original value of pNew->nSkip */
2430   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
2431   LogEst saved_nOut;              /* Original value of pNew->nOut */
2432   int rc = SQLITE_OK;             /* Return code */
2433   LogEst rSize;                   /* Number of rows in the table */
2434   LogEst rLogSize;                /* Logarithm of table size */
2435   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2436 
2437   pNew = pBuilder->pNew;
2438   if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2439   WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d\n",
2440                      pProbe->pTable->zName,pProbe->zName,
2441                      pNew->u.btree.nEq, pNew->nSkip));
2442 
2443   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2444   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2445   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2446     opMask = WO_LT|WO_LE;
2447   }else{
2448     assert( pNew->u.btree.nBtm==0 );
2449     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2450   }
2451   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2452 
2453   assert( pNew->u.btree.nEq<pProbe->nColumn );
2454 
2455   saved_nEq = pNew->u.btree.nEq;
2456   saved_nBtm = pNew->u.btree.nBtm;
2457   saved_nTop = pNew->u.btree.nTop;
2458   saved_nSkip = pNew->nSkip;
2459   saved_nLTerm = pNew->nLTerm;
2460   saved_wsFlags = pNew->wsFlags;
2461   saved_prereq = pNew->prereq;
2462   saved_nOut = pNew->nOut;
2463   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2464                         opMask, pProbe);
2465   pNew->rSetup = 0;
2466   rSize = pProbe->aiRowLogEst[0];
2467   rLogSize = estLog(rSize);
2468   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2469     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
2470     LogEst rCostIdx;
2471     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
2472     int nIn = 0;
2473 #ifdef SQLITE_ENABLE_STAT4
2474     int nRecValid = pBuilder->nRecValid;
2475 #endif
2476     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2477      && indexColumnNotNull(pProbe, saved_nEq)
2478     ){
2479       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2480     }
2481     if( pTerm->prereqRight & pNew->maskSelf ) continue;
2482 
2483     /* Do not allow the upper bound of a LIKE optimization range constraint
2484     ** to mix with a lower range bound from some other source */
2485     if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2486 
2487     /* tag-20191211-001:  Do not allow constraints from the WHERE clause to
2488     ** be used by the right table of a LEFT JOIN.  Only constraints in the
2489     ** ON clause are allowed.  See tag-20191211-002 for the vtab equivalent. */
2490     if( (pSrc->fg.jointype & JT_LEFT)!=0
2491      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
2492     ){
2493       continue;
2494     }
2495 
2496     if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2497       pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE;
2498     }else{
2499       pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED;
2500     }
2501     pNew->wsFlags = saved_wsFlags;
2502     pNew->u.btree.nEq = saved_nEq;
2503     pNew->u.btree.nBtm = saved_nBtm;
2504     pNew->u.btree.nTop = saved_nTop;
2505     pNew->nLTerm = saved_nLTerm;
2506     if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2507     pNew->aLTerm[pNew->nLTerm++] = pTerm;
2508     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2509 
2510     assert( nInMul==0
2511         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2512         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2513         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2514     );
2515 
2516     if( eOp & WO_IN ){
2517       Expr *pExpr = pTerm->pExpr;
2518       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2519         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
2520         int i;
2521         nIn = 46;  assert( 46==sqlite3LogEst(25) );
2522 
2523         /* The expression may actually be of the form (x, y) IN (SELECT...).
2524         ** In this case there is a separate term for each of (x) and (y).
2525         ** However, the nIn multiplier should only be applied once, not once
2526         ** for each such term. The following loop checks that pTerm is the
2527         ** first such term in use, and sets nIn back to 0 if it is not. */
2528         for(i=0; i<pNew->nLTerm-1; i++){
2529           if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2530         }
2531       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2532         /* "x IN (value, value, ...)" */
2533         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2534       }
2535       if( pProbe->hasStat1 ){
2536         LogEst M, logK, safetyMargin;
2537         /* Let:
2538         **   N = the total number of rows in the table
2539         **   K = the number of entries on the RHS of the IN operator
2540         **   M = the number of rows in the table that match terms to the
2541         **       to the left in the same index.  If the IN operator is on
2542         **       the left-most index column, M==N.
2543         **
2544         ** Given the definitions above, it is better to omit the IN operator
2545         ** from the index lookup and instead do a scan of the M elements,
2546         ** testing each scanned row against the IN operator separately, if:
2547         **
2548         **        M*log(K) < K*log(N)
2549         **
2550         ** Our estimates for M, K, and N might be inaccurate, so we build in
2551         ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
2552         ** with the index, as using an index has better worst-case behavior.
2553         ** If we do not have real sqlite_stat1 data, always prefer to use
2554         ** the index.
2555         */
2556         M = pProbe->aiRowLogEst[saved_nEq];
2557         logK = estLog(nIn);
2558         safetyMargin = 10;  /* TUNING: extra weight for indexed IN */
2559         if( M + logK + safetyMargin < nIn + rLogSize ){
2560           WHERETRACE(0x40,
2561             ("Scan preferred over IN operator on column %d of \"%s\" (%d<%d)\n",
2562              saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize));
2563           continue;
2564         }else{
2565           WHERETRACE(0x40,
2566             ("IN operator preferred on column %d of \"%s\" (%d>=%d)\n",
2567              saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize));
2568         }
2569       }
2570       pNew->wsFlags |= WHERE_COLUMN_IN;
2571     }else if( eOp & (WO_EQ|WO_IS) ){
2572       int iCol = pProbe->aiColumn[saved_nEq];
2573       pNew->wsFlags |= WHERE_COLUMN_EQ;
2574       assert( saved_nEq==pNew->u.btree.nEq );
2575       if( iCol==XN_ROWID
2576        || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2577       ){
2578         if( iCol==XN_ROWID || pProbe->uniqNotNull
2579          || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
2580         ){
2581           pNew->wsFlags |= WHERE_ONEROW;
2582         }else{
2583           pNew->wsFlags |= WHERE_UNQ_WANTED;
2584         }
2585       }
2586     }else if( eOp & WO_ISNULL ){
2587       pNew->wsFlags |= WHERE_COLUMN_NULL;
2588     }else if( eOp & (WO_GT|WO_GE) ){
2589       testcase( eOp & WO_GT );
2590       testcase( eOp & WO_GE );
2591       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2592       pNew->u.btree.nBtm = whereRangeVectorLen(
2593           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2594       );
2595       pBtm = pTerm;
2596       pTop = 0;
2597       if( pTerm->wtFlags & TERM_LIKEOPT ){
2598         /* Range contraints that come from the LIKE optimization are
2599         ** always used in pairs. */
2600         pTop = &pTerm[1];
2601         assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2602         assert( pTop->wtFlags & TERM_LIKEOPT );
2603         assert( pTop->eOperator==WO_LT );
2604         if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2605         pNew->aLTerm[pNew->nLTerm++] = pTop;
2606         pNew->wsFlags |= WHERE_TOP_LIMIT;
2607         pNew->u.btree.nTop = 1;
2608       }
2609     }else{
2610       assert( eOp & (WO_LT|WO_LE) );
2611       testcase( eOp & WO_LT );
2612       testcase( eOp & WO_LE );
2613       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2614       pNew->u.btree.nTop = whereRangeVectorLen(
2615           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2616       );
2617       pTop = pTerm;
2618       pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2619                      pNew->aLTerm[pNew->nLTerm-2] : 0;
2620     }
2621 
2622     /* At this point pNew->nOut is set to the number of rows expected to
2623     ** be visited by the index scan before considering term pTerm, or the
2624     ** values of nIn and nInMul. In other words, assuming that all
2625     ** "x IN(...)" terms are replaced with "x = ?". This block updates
2626     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
2627     assert( pNew->nOut==saved_nOut );
2628     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2629       /* Adjust nOut using stat4 data. Or, if there is no stat4
2630       ** data, using some other estimate.  */
2631       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2632     }else{
2633       int nEq = ++pNew->u.btree.nEq;
2634       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2635 
2636       assert( pNew->nOut==saved_nOut );
2637       if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2638         assert( (eOp & WO_IN) || nIn==0 );
2639         testcase( eOp & WO_IN );
2640         pNew->nOut += pTerm->truthProb;
2641         pNew->nOut -= nIn;
2642       }else{
2643 #ifdef SQLITE_ENABLE_STAT4
2644         tRowcnt nOut = 0;
2645         if( nInMul==0
2646          && pProbe->nSample
2647          && pNew->u.btree.nEq<=pProbe->nSampleCol
2648          && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
2649          && OptimizationEnabled(db, SQLITE_Stat4)
2650         ){
2651           Expr *pExpr = pTerm->pExpr;
2652           if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2653             testcase( eOp & WO_EQ );
2654             testcase( eOp & WO_IS );
2655             testcase( eOp & WO_ISNULL );
2656             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2657           }else{
2658             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2659           }
2660           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2661           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
2662           if( nOut ){
2663             pNew->nOut = sqlite3LogEst(nOut);
2664             if( nEq==1
2665              /* TUNING: Mark terms as "low selectivity" if they seem likely
2666              ** to be true for half or more of the rows in the table.
2667              ** See tag-202002240-1 */
2668              && pNew->nOut+10 > pProbe->aiRowLogEst[0]
2669             ){
2670 #if WHERETRACE_ENABLED /* 0x01 */
2671               if( sqlite3WhereTrace & 0x01 ){
2672                 sqlite3DebugPrintf(
2673                    "STAT4 determines term has low selectivity:\n");
2674                 sqlite3WhereTermPrint(pTerm, 999);
2675               }
2676 #endif
2677               pTerm->wtFlags |= TERM_HIGHTRUTH;
2678               if( pTerm->wtFlags & TERM_HEURTRUTH ){
2679                 /* If the term has previously been used with an assumption of
2680                 ** higher selectivity, then set the flag to rerun the
2681                 ** loop computations. */
2682                 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS;
2683               }
2684             }
2685             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
2686             pNew->nOut -= nIn;
2687           }
2688         }
2689         if( nOut==0 )
2690 #endif
2691         {
2692           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
2693           if( eOp & WO_ISNULL ){
2694             /* TUNING: If there is no likelihood() value, assume that a
2695             ** "col IS NULL" expression matches twice as many rows
2696             ** as (col=?). */
2697             pNew->nOut += 10;
2698           }
2699         }
2700       }
2701     }
2702 
2703     /* Set rCostIdx to the cost of visiting selected rows in index. Add
2704     ** it to pNew->rRun, which is currently set to the cost of the index
2705     ** seek only. Then, if this is a non-covering index, add the cost of
2706     ** visiting the rows in the main table.  */
2707     assert( pSrc->pTab->szTabRow>0 );
2708     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
2709     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
2710     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
2711       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
2712     }
2713     ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
2714 
2715     nOutUnadjusted = pNew->nOut;
2716     pNew->rRun += nInMul + nIn;
2717     pNew->nOut += nInMul + nIn;
2718     whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
2719     rc = whereLoopInsert(pBuilder, pNew);
2720 
2721     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2722       pNew->nOut = saved_nOut;
2723     }else{
2724       pNew->nOut = nOutUnadjusted;
2725     }
2726 
2727     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
2728      && pNew->u.btree.nEq<pProbe->nColumn
2729     ){
2730       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
2731     }
2732     pNew->nOut = saved_nOut;
2733 #ifdef SQLITE_ENABLE_STAT4
2734     pBuilder->nRecValid = nRecValid;
2735 #endif
2736   }
2737   pNew->prereq = saved_prereq;
2738   pNew->u.btree.nEq = saved_nEq;
2739   pNew->u.btree.nBtm = saved_nBtm;
2740   pNew->u.btree.nTop = saved_nTop;
2741   pNew->nSkip = saved_nSkip;
2742   pNew->wsFlags = saved_wsFlags;
2743   pNew->nOut = saved_nOut;
2744   pNew->nLTerm = saved_nLTerm;
2745 
2746   /* Consider using a skip-scan if there are no WHERE clause constraints
2747   ** available for the left-most terms of the index, and if the average
2748   ** number of repeats in the left-most terms is at least 18.
2749   **
2750   ** The magic number 18 is selected on the basis that scanning 17 rows
2751   ** is almost always quicker than an index seek (even though if the index
2752   ** contains fewer than 2^17 rows we assume otherwise in other parts of
2753   ** the code). And, even if it is not, it should not be too much slower.
2754   ** On the other hand, the extra seeks could end up being significantly
2755   ** more expensive.  */
2756   assert( 42==sqlite3LogEst(18) );
2757   if( saved_nEq==saved_nSkip
2758    && saved_nEq+1<pProbe->nKeyCol
2759    && saved_nEq==pNew->nLTerm
2760    && pProbe->noSkipScan==0
2761    && pProbe->hasStat1!=0
2762    && OptimizationEnabled(db, SQLITE_SkipScan)
2763    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
2764    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
2765   ){
2766     LogEst nIter;
2767     pNew->u.btree.nEq++;
2768     pNew->nSkip++;
2769     pNew->aLTerm[pNew->nLTerm++] = 0;
2770     pNew->wsFlags |= WHERE_SKIPSCAN;
2771     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
2772     pNew->nOut -= nIter;
2773     /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
2774     ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
2775     nIter += 5;
2776     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
2777     pNew->nOut = saved_nOut;
2778     pNew->u.btree.nEq = saved_nEq;
2779     pNew->nSkip = saved_nSkip;
2780     pNew->wsFlags = saved_wsFlags;
2781   }
2782 
2783   WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
2784                       pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
2785   return rc;
2786 }
2787 
2788 /*
2789 ** Return True if it is possible that pIndex might be useful in
2790 ** implementing the ORDER BY clause in pBuilder.
2791 **
2792 ** Return False if pBuilder does not contain an ORDER BY clause or
2793 ** if there is no way for pIndex to be useful in implementing that
2794 ** ORDER BY clause.
2795 */
2796 static int indexMightHelpWithOrderBy(
2797   WhereLoopBuilder *pBuilder,
2798   Index *pIndex,
2799   int iCursor
2800 ){
2801   ExprList *pOB;
2802   ExprList *aColExpr;
2803   int ii, jj;
2804 
2805   if( pIndex->bUnordered ) return 0;
2806   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
2807   for(ii=0; ii<pOB->nExpr; ii++){
2808     Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr);
2809     if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
2810       if( pExpr->iColumn<0 ) return 1;
2811       for(jj=0; jj<pIndex->nKeyCol; jj++){
2812         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
2813       }
2814     }else if( (aColExpr = pIndex->aColExpr)!=0 ){
2815       for(jj=0; jj<pIndex->nKeyCol; jj++){
2816         if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
2817         if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
2818           return 1;
2819         }
2820       }
2821     }
2822   }
2823   return 0;
2824 }
2825 
2826 /* Check to see if a partial index with pPartIndexWhere can be used
2827 ** in the current query.  Return true if it can be and false if not.
2828 */
2829 static int whereUsablePartialIndex(
2830   int iTab,             /* The table for which we want an index */
2831   int isLeft,           /* True if iTab is the right table of a LEFT JOIN */
2832   WhereClause *pWC,     /* The WHERE clause of the query */
2833   Expr *pWhere          /* The WHERE clause from the partial index */
2834 ){
2835   int i;
2836   WhereTerm *pTerm;
2837   Parse *pParse = pWC->pWInfo->pParse;
2838   while( pWhere->op==TK_AND ){
2839     if( !whereUsablePartialIndex(iTab,isLeft,pWC,pWhere->pLeft) ) return 0;
2840     pWhere = pWhere->pRight;
2841   }
2842   if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
2843   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
2844     Expr *pExpr;
2845     pExpr = pTerm->pExpr;
2846     if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
2847      && (isLeft==0 || ExprHasProperty(pExpr, EP_FromJoin))
2848      && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
2849     ){
2850       return 1;
2851     }
2852   }
2853   return 0;
2854 }
2855 
2856 /*
2857 ** Add all WhereLoop objects for a single table of the join where the table
2858 ** is identified by pBuilder->pNew->iTab.  That table is guaranteed to be
2859 ** a b-tree table, not a virtual table.
2860 **
2861 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
2862 ** are calculated as follows:
2863 **
2864 ** For a full scan, assuming the table (or index) contains nRow rows:
2865 **
2866 **     cost = nRow * 3.0                    // full-table scan
2867 **     cost = nRow * K                      // scan of covering index
2868 **     cost = nRow * (K+3.0)                // scan of non-covering index
2869 **
2870 ** where K is a value between 1.1 and 3.0 set based on the relative
2871 ** estimated average size of the index and table records.
2872 **
2873 ** For an index scan, where nVisit is the number of index rows visited
2874 ** by the scan, and nSeek is the number of seek operations required on
2875 ** the index b-tree:
2876 **
2877 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
2878 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
2879 **
2880 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
2881 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
2882 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
2883 **
2884 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
2885 ** of uncertainty.  For this reason, scoring is designed to pick plans that
2886 ** "do the least harm" if the estimates are inaccurate.  For example, a
2887 ** log(nRow) factor is omitted from a non-covering index scan in order to
2888 ** bias the scoring in favor of using an index, since the worst-case
2889 ** performance of using an index is far better than the worst-case performance
2890 ** of a full table scan.
2891 */
2892 static int whereLoopAddBtree(
2893   WhereLoopBuilder *pBuilder, /* WHERE clause information */
2894   Bitmask mPrereq             /* Extra prerequesites for using this table */
2895 ){
2896   WhereInfo *pWInfo;          /* WHERE analysis context */
2897   Index *pProbe;              /* An index we are evaluating */
2898   Index sPk;                  /* A fake index object for the primary key */
2899   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
2900   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
2901   SrcList *pTabList;          /* The FROM clause */
2902   struct SrcList_item *pSrc;  /* The FROM clause btree term to add */
2903   WhereLoop *pNew;            /* Template WhereLoop object */
2904   int rc = SQLITE_OK;         /* Return code */
2905   int iSortIdx = 1;           /* Index number */
2906   int b;                      /* A boolean value */
2907   LogEst rSize;               /* number of rows in the table */
2908   LogEst rLogSize;            /* Logarithm of the number of rows in the table */
2909   WhereClause *pWC;           /* The parsed WHERE clause */
2910   Table *pTab;                /* Table being queried */
2911 
2912   pNew = pBuilder->pNew;
2913   pWInfo = pBuilder->pWInfo;
2914   pTabList = pWInfo->pTabList;
2915   pSrc = pTabList->a + pNew->iTab;
2916   pTab = pSrc->pTab;
2917   pWC = pBuilder->pWC;
2918   assert( !IsVirtual(pSrc->pTab) );
2919 
2920   if( pSrc->pIBIndex ){
2921     /* An INDEXED BY clause specifies a particular index to use */
2922     pProbe = pSrc->pIBIndex;
2923   }else if( !HasRowid(pTab) ){
2924     pProbe = pTab->pIndex;
2925   }else{
2926     /* There is no INDEXED BY clause.  Create a fake Index object in local
2927     ** variable sPk to represent the rowid primary key index.  Make this
2928     ** fake index the first in a chain of Index objects with all of the real
2929     ** indices to follow */
2930     Index *pFirst;                  /* First of real indices on the table */
2931     memset(&sPk, 0, sizeof(Index));
2932     sPk.nKeyCol = 1;
2933     sPk.nColumn = 1;
2934     sPk.aiColumn = &aiColumnPk;
2935     sPk.aiRowLogEst = aiRowEstPk;
2936     sPk.onError = OE_Replace;
2937     sPk.pTable = pTab;
2938     sPk.szIdxRow = pTab->szTabRow;
2939     sPk.idxType = SQLITE_IDXTYPE_IPK;
2940     aiRowEstPk[0] = pTab->nRowLogEst;
2941     aiRowEstPk[1] = 0;
2942     pFirst = pSrc->pTab->pIndex;
2943     if( pSrc->fg.notIndexed==0 ){
2944       /* The real indices of the table are only considered if the
2945       ** NOT INDEXED qualifier is omitted from the FROM clause */
2946       sPk.pNext = pFirst;
2947     }
2948     pProbe = &sPk;
2949   }
2950   rSize = pTab->nRowLogEst;
2951   rLogSize = estLog(rSize);
2952 
2953 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
2954   /* Automatic indexes */
2955   if( !pBuilder->pOrSet      /* Not part of an OR optimization */
2956    && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
2957    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
2958    && pSrc->pIBIndex==0      /* Has no INDEXED BY clause */
2959    && !pSrc->fg.notIndexed   /* Has no NOT INDEXED clause */
2960    && HasRowid(pTab)         /* Not WITHOUT ROWID table. (FIXME: Why not?) */
2961    && !pSrc->fg.isCorrelated /* Not a correlated subquery */
2962    && !pSrc->fg.isRecursive  /* Not a recursive common table expression. */
2963   ){
2964     /* Generate auto-index WhereLoops */
2965     WhereTerm *pTerm;
2966     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
2967     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
2968       if( pTerm->prereqRight & pNew->maskSelf ) continue;
2969       if( termCanDriveIndex(pTerm, pSrc, 0) ){
2970         pNew->u.btree.nEq = 1;
2971         pNew->nSkip = 0;
2972         pNew->u.btree.pIndex = 0;
2973         pNew->nLTerm = 1;
2974         pNew->aLTerm[0] = pTerm;
2975         /* TUNING: One-time cost for computing the automatic index is
2976         ** estimated to be X*N*log2(N) where N is the number of rows in
2977         ** the table being indexed and where X is 7 (LogEst=28) for normal
2978         ** tables or 0.5 (LogEst=-10) for views and subqueries.  The value
2979         ** of X is smaller for views and subqueries so that the query planner
2980         ** will be more aggressive about generating automatic indexes for
2981         ** those objects, since there is no opportunity to add schema
2982         ** indexes on subqueries and views. */
2983         pNew->rSetup = rLogSize + rSize;
2984         if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){
2985           pNew->rSetup += 28;
2986         }else{
2987           pNew->rSetup -= 10;
2988         }
2989         ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
2990         if( pNew->rSetup<0 ) pNew->rSetup = 0;
2991         /* TUNING: Each index lookup yields 20 rows in the table.  This
2992         ** is more than the usual guess of 10 rows, since we have no way
2993         ** of knowing how selective the index will ultimately be.  It would
2994         ** not be unreasonable to make this value much larger. */
2995         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
2996         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
2997         pNew->wsFlags = WHERE_AUTO_INDEX;
2998         pNew->prereq = mPrereq | pTerm->prereqRight;
2999         rc = whereLoopInsert(pBuilder, pNew);
3000       }
3001     }
3002   }
3003 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
3004 
3005   /* Loop over all indices. If there was an INDEXED BY clause, then only
3006   ** consider index pProbe.  */
3007   for(; rc==SQLITE_OK && pProbe;
3008       pProbe=(pSrc->pIBIndex ? 0 : pProbe->pNext), iSortIdx++
3009   ){
3010     int isLeft = (pSrc->fg.jointype & JT_OUTER)!=0;
3011     if( pProbe->pPartIdxWhere!=0
3012      && !whereUsablePartialIndex(pSrc->iCursor, isLeft, pWC,
3013                                  pProbe->pPartIdxWhere)
3014     ){
3015       testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
3016       continue;  /* Partial index inappropriate for this query */
3017     }
3018     if( pProbe->bNoQuery ) continue;
3019     rSize = pProbe->aiRowLogEst[0];
3020     pNew->u.btree.nEq = 0;
3021     pNew->u.btree.nBtm = 0;
3022     pNew->u.btree.nTop = 0;
3023     pNew->nSkip = 0;
3024     pNew->nLTerm = 0;
3025     pNew->iSortIdx = 0;
3026     pNew->rSetup = 0;
3027     pNew->prereq = mPrereq;
3028     pNew->nOut = rSize;
3029     pNew->u.btree.pIndex = pProbe;
3030     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
3031     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
3032     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
3033     if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){
3034       /* Integer primary key index */
3035       pNew->wsFlags = WHERE_IPK;
3036 
3037       /* Full table scan */
3038       pNew->iSortIdx = b ? iSortIdx : 0;
3039       /* TUNING: Cost of full table scan is (N*3.0). */
3040       pNew->rRun = rSize + 16;
3041       ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3042       whereLoopOutputAdjust(pWC, pNew, rSize);
3043       rc = whereLoopInsert(pBuilder, pNew);
3044       pNew->nOut = rSize;
3045       if( rc ) break;
3046     }else{
3047       Bitmask m;
3048       if( pProbe->isCovering ){
3049         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
3050         m = 0;
3051       }else{
3052         m = pSrc->colUsed & pProbe->colNotIdxed;
3053         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
3054       }
3055 
3056       /* Full scan via index */
3057       if( b
3058        || !HasRowid(pTab)
3059        || pProbe->pPartIdxWhere!=0
3060        || ( m==0
3061          && pProbe->bUnordered==0
3062          && (pProbe->szIdxRow<pTab->szTabRow)
3063          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
3064          && sqlite3GlobalConfig.bUseCis
3065          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
3066           )
3067       ){
3068         pNew->iSortIdx = b ? iSortIdx : 0;
3069 
3070         /* The cost of visiting the index rows is N*K, where K is
3071         ** between 1.1 and 3.0, depending on the relative sizes of the
3072         ** index and table rows. */
3073         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
3074         if( m!=0 ){
3075           /* If this is a non-covering index scan, add in the cost of
3076           ** doing table lookups.  The cost will be 3x the number of
3077           ** lookups.  Take into account WHERE clause terms that can be
3078           ** satisfied using just the index, and that do not require a
3079           ** table lookup. */
3080           LogEst nLookup = rSize + 16;  /* Base cost:  N*3 */
3081           int ii;
3082           int iCur = pSrc->iCursor;
3083           WhereClause *pWC2 = &pWInfo->sWC;
3084           for(ii=0; ii<pWC2->nTerm; ii++){
3085             WhereTerm *pTerm = &pWC2->a[ii];
3086             if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
3087               break;
3088             }
3089             /* pTerm can be evaluated using just the index.  So reduce
3090             ** the expected number of table lookups accordingly */
3091             if( pTerm->truthProb<=0 ){
3092               nLookup += pTerm->truthProb;
3093             }else{
3094               nLookup--;
3095               if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
3096             }
3097           }
3098 
3099           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
3100         }
3101         ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3102         whereLoopOutputAdjust(pWC, pNew, rSize);
3103         rc = whereLoopInsert(pBuilder, pNew);
3104         pNew->nOut = rSize;
3105         if( rc ) break;
3106       }
3107     }
3108 
3109     pBuilder->bldFlags1 = 0;
3110     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
3111     if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){
3112       /* If a non-unique index is used, or if a prefix of the key for
3113       ** unique index is used (making the index functionally non-unique)
3114       ** then the sqlite_stat1 data becomes important for scoring the
3115       ** plan */
3116       pTab->tabFlags |= TF_StatsUsed;
3117     }
3118 #ifdef SQLITE_ENABLE_STAT4
3119     sqlite3Stat4ProbeFree(pBuilder->pRec);
3120     pBuilder->nRecValid = 0;
3121     pBuilder->pRec = 0;
3122 #endif
3123   }
3124   return rc;
3125 }
3126 
3127 #ifndef SQLITE_OMIT_VIRTUALTABLE
3128 
3129 /*
3130 ** Argument pIdxInfo is already populated with all constraints that may
3131 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3132 ** function marks a subset of those constraints usable, invokes the
3133 ** xBestIndex method and adds the returned plan to pBuilder.
3134 **
3135 ** A constraint is marked usable if:
3136 **
3137 **   * Argument mUsable indicates that its prerequisites are available, and
3138 **
3139 **   * It is not one of the operators specified in the mExclude mask passed
3140 **     as the fourth argument (which in practice is either WO_IN or 0).
3141 **
3142 ** Argument mPrereq is a mask of tables that must be scanned before the
3143 ** virtual table in question. These are added to the plans prerequisites
3144 ** before it is added to pBuilder.
3145 **
3146 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3147 ** uses one or more WO_IN terms, or false otherwise.
3148 */
3149 static int whereLoopAddVirtualOne(
3150   WhereLoopBuilder *pBuilder,
3151   Bitmask mPrereq,                /* Mask of tables that must be used. */
3152   Bitmask mUsable,                /* Mask of usable tables */
3153   u16 mExclude,                   /* Exclude terms using these operators */
3154   sqlite3_index_info *pIdxInfo,   /* Populated object for xBestIndex */
3155   u16 mNoOmit,                    /* Do not omit these constraints */
3156   int *pbIn                       /* OUT: True if plan uses an IN(...) op */
3157 ){
3158   WhereClause *pWC = pBuilder->pWC;
3159   struct sqlite3_index_constraint *pIdxCons;
3160   struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3161   int i;
3162   int mxTerm;
3163   int rc = SQLITE_OK;
3164   WhereLoop *pNew = pBuilder->pNew;
3165   Parse *pParse = pBuilder->pWInfo->pParse;
3166   struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3167   int nConstraint = pIdxInfo->nConstraint;
3168 
3169   assert( (mUsable & mPrereq)==mPrereq );
3170   *pbIn = 0;
3171   pNew->prereq = mPrereq;
3172 
3173   /* Set the usable flag on the subset of constraints identified by
3174   ** arguments mUsable and mExclude. */
3175   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3176   for(i=0; i<nConstraint; i++, pIdxCons++){
3177     WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3178     pIdxCons->usable = 0;
3179     if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3180      && (pTerm->eOperator & mExclude)==0
3181     ){
3182       pIdxCons->usable = 1;
3183     }
3184   }
3185 
3186   /* Initialize the output fields of the sqlite3_index_info structure */
3187   memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3188   assert( pIdxInfo->needToFreeIdxStr==0 );
3189   pIdxInfo->idxStr = 0;
3190   pIdxInfo->idxNum = 0;
3191   pIdxInfo->orderByConsumed = 0;
3192   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3193   pIdxInfo->estimatedRows = 25;
3194   pIdxInfo->idxFlags = 0;
3195   pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3196 
3197   /* Invoke the virtual table xBestIndex() method */
3198   rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3199   if( rc ){
3200     if( rc==SQLITE_CONSTRAINT ){
3201       /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
3202       ** that the particular combination of parameters provided is unusable.
3203       ** Make no entries in the loop table.
3204       */
3205       WHERETRACE(0xffff, ("  ^^^^--- non-viable plan rejected!\n"));
3206       return SQLITE_OK;
3207     }
3208     return rc;
3209   }
3210 
3211   mxTerm = -1;
3212   assert( pNew->nLSlot>=nConstraint );
3213   for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
3214   pNew->u.vtab.omitMask = 0;
3215   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3216   for(i=0; i<nConstraint; i++, pIdxCons++){
3217     int iTerm;
3218     if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3219       WhereTerm *pTerm;
3220       int j = pIdxCons->iTermOffset;
3221       if( iTerm>=nConstraint
3222        || j<0
3223        || j>=pWC->nTerm
3224        || pNew->aLTerm[iTerm]!=0
3225        || pIdxCons->usable==0
3226       ){
3227         sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3228         testcase( pIdxInfo->needToFreeIdxStr );
3229         return SQLITE_ERROR;
3230       }
3231       testcase( iTerm==nConstraint-1 );
3232       testcase( j==0 );
3233       testcase( j==pWC->nTerm-1 );
3234       pTerm = &pWC->a[j];
3235       pNew->prereq |= pTerm->prereqRight;
3236       assert( iTerm<pNew->nLSlot );
3237       pNew->aLTerm[iTerm] = pTerm;
3238       if( iTerm>mxTerm ) mxTerm = iTerm;
3239       testcase( iTerm==15 );
3240       testcase( iTerm==16 );
3241       if( pUsage[i].omit ){
3242         if( i<16 && ((1<<i)&mNoOmit)==0 ){
3243           testcase( i!=iTerm );
3244           pNew->u.vtab.omitMask |= 1<<iTerm;
3245         }else{
3246           testcase( i!=iTerm );
3247         }
3248       }
3249       if( (pTerm->eOperator & WO_IN)!=0 ){
3250         /* A virtual table that is constrained by an IN clause may not
3251         ** consume the ORDER BY clause because (1) the order of IN terms
3252         ** is not necessarily related to the order of output terms and
3253         ** (2) Multiple outputs from a single IN value will not merge
3254         ** together.  */
3255         pIdxInfo->orderByConsumed = 0;
3256         pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3257         *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3258       }
3259     }
3260   }
3261 
3262   pNew->nLTerm = mxTerm+1;
3263   for(i=0; i<=mxTerm; i++){
3264     if( pNew->aLTerm[i]==0 ){
3265       /* The non-zero argvIdx values must be contiguous.  Raise an
3266       ** error if they are not */
3267       sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3268       testcase( pIdxInfo->needToFreeIdxStr );
3269       return SQLITE_ERROR;
3270     }
3271   }
3272   assert( pNew->nLTerm<=pNew->nLSlot );
3273   pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3274   pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3275   pIdxInfo->needToFreeIdxStr = 0;
3276   pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3277   pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3278       pIdxInfo->nOrderBy : 0);
3279   pNew->rSetup = 0;
3280   pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3281   pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3282 
3283   /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3284   ** that the scan will visit at most one row. Clear it otherwise. */
3285   if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3286     pNew->wsFlags |= WHERE_ONEROW;
3287   }else{
3288     pNew->wsFlags &= ~WHERE_ONEROW;
3289   }
3290   rc = whereLoopInsert(pBuilder, pNew);
3291   if( pNew->u.vtab.needFree ){
3292     sqlite3_free(pNew->u.vtab.idxStr);
3293     pNew->u.vtab.needFree = 0;
3294   }
3295   WHERETRACE(0xffff, ("  bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3296                       *pbIn, (sqlite3_uint64)mPrereq,
3297                       (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3298 
3299   return rc;
3300 }
3301 
3302 /*
3303 ** If this function is invoked from within an xBestIndex() callback, it
3304 ** returns a pointer to a buffer containing the name of the collation
3305 ** sequence associated with element iCons of the sqlite3_index_info.aConstraint
3306 ** array. Or, if iCons is out of range or there is no active xBestIndex
3307 ** call, return NULL.
3308 */
3309 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
3310   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3311   const char *zRet = 0;
3312   if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
3313     CollSeq *pC = 0;
3314     int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
3315     Expr *pX = pHidden->pWC->a[iTerm].pExpr;
3316     if( pX->pLeft ){
3317       pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX);
3318     }
3319     zRet = (pC ? pC->zName : sqlite3StrBINARY);
3320   }
3321   return zRet;
3322 }
3323 
3324 /*
3325 ** Add all WhereLoop objects for a table of the join identified by
3326 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
3327 **
3328 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3329 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3330 ** entries that occur before the virtual table in the FROM clause and are
3331 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3332 ** mUnusable mask contains all FROM clause entries that occur after the
3333 ** virtual table and are separated from it by at least one LEFT or
3334 ** CROSS JOIN.
3335 **
3336 ** For example, if the query were:
3337 **
3338 **   ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3339 **
3340 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3341 **
3342 ** All the tables in mPrereq must be scanned before the current virtual
3343 ** table. So any terms for which all prerequisites are satisfied by
3344 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3345 ** Conversely, all tables in mUnusable must be scanned after the current
3346 ** virtual table, so any terms for which the prerequisites overlap with
3347 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3348 */
3349 static int whereLoopAddVirtual(
3350   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
3351   Bitmask mPrereq,             /* Tables that must be scanned before this one */
3352   Bitmask mUnusable            /* Tables that must be scanned after this one */
3353 ){
3354   int rc = SQLITE_OK;          /* Return code */
3355   WhereInfo *pWInfo;           /* WHERE analysis context */
3356   Parse *pParse;               /* The parsing context */
3357   WhereClause *pWC;            /* The WHERE clause */
3358   struct SrcList_item *pSrc;   /* The FROM clause term to search */
3359   sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
3360   int nConstraint;             /* Number of constraints in p */
3361   int bIn;                     /* True if plan uses IN(...) operator */
3362   WhereLoop *pNew;
3363   Bitmask mBest;               /* Tables used by best possible plan */
3364   u16 mNoOmit;
3365 
3366   assert( (mPrereq & mUnusable)==0 );
3367   pWInfo = pBuilder->pWInfo;
3368   pParse = pWInfo->pParse;
3369   pWC = pBuilder->pWC;
3370   pNew = pBuilder->pNew;
3371   pSrc = &pWInfo->pTabList->a[pNew->iTab];
3372   assert( IsVirtual(pSrc->pTab) );
3373   p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy,
3374       &mNoOmit);
3375   if( p==0 ) return SQLITE_NOMEM_BKPT;
3376   pNew->rSetup = 0;
3377   pNew->wsFlags = WHERE_VIRTUALTABLE;
3378   pNew->nLTerm = 0;
3379   pNew->u.vtab.needFree = 0;
3380   nConstraint = p->nConstraint;
3381   if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3382     sqlite3DbFree(pParse->db, p);
3383     return SQLITE_NOMEM_BKPT;
3384   }
3385 
3386   /* First call xBestIndex() with all constraints usable. */
3387   WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
3388   WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
3389   rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn);
3390 
3391   /* If the call to xBestIndex() with all terms enabled produced a plan
3392   ** that does not require any source tables (IOW: a plan with mBest==0)
3393   ** and does not use an IN(...) operator, then there is no point in making
3394   ** any further calls to xBestIndex() since they will all return the same
3395   ** result (if the xBestIndex() implementation is sane). */
3396   if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){
3397     int seenZero = 0;             /* True if a plan with no prereqs seen */
3398     int seenZeroNoIN = 0;         /* Plan with no prereqs and no IN(...) seen */
3399     Bitmask mPrev = 0;
3400     Bitmask mBestNoIn = 0;
3401 
3402     /* If the plan produced by the earlier call uses an IN(...) term, call
3403     ** xBestIndex again, this time with IN(...) terms disabled. */
3404     if( bIn ){
3405       WHERETRACE(0x40, ("  VirtualOne: all usable w/o IN\n"));
3406       rc = whereLoopAddVirtualOne(
3407           pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn);
3408       assert( bIn==0 );
3409       mBestNoIn = pNew->prereq & ~mPrereq;
3410       if( mBestNoIn==0 ){
3411         seenZero = 1;
3412         seenZeroNoIN = 1;
3413       }
3414     }
3415 
3416     /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3417     ** in the set of terms that apply to the current virtual table.  */
3418     while( rc==SQLITE_OK ){
3419       int i;
3420       Bitmask mNext = ALLBITS;
3421       assert( mNext>0 );
3422       for(i=0; i<nConstraint; i++){
3423         Bitmask mThis = (
3424             pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3425         );
3426         if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3427       }
3428       mPrev = mNext;
3429       if( mNext==ALLBITS ) break;
3430       if( mNext==mBest || mNext==mBestNoIn ) continue;
3431       WHERETRACE(0x40, ("  VirtualOne: mPrev=%04llx mNext=%04llx\n",
3432                        (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3433       rc = whereLoopAddVirtualOne(
3434           pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn);
3435       if( pNew->prereq==mPrereq ){
3436         seenZero = 1;
3437         if( bIn==0 ) seenZeroNoIN = 1;
3438       }
3439     }
3440 
3441     /* If the calls to xBestIndex() in the above loop did not find a plan
3442     ** that requires no source tables at all (i.e. one guaranteed to be
3443     ** usable), make a call here with all source tables disabled */
3444     if( rc==SQLITE_OK && seenZero==0 ){
3445       WHERETRACE(0x40, ("  VirtualOne: all disabled\n"));
3446       rc = whereLoopAddVirtualOne(
3447           pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn);
3448       if( bIn==0 ) seenZeroNoIN = 1;
3449     }
3450 
3451     /* If the calls to xBestIndex() have so far failed to find a plan
3452     ** that requires no source tables at all and does not use an IN(...)
3453     ** operator, make a final call to obtain one here.  */
3454     if( rc==SQLITE_OK && seenZeroNoIN==0 ){
3455       WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
3456       rc = whereLoopAddVirtualOne(
3457           pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn);
3458     }
3459   }
3460 
3461   if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
3462   sqlite3DbFreeNN(pParse->db, p);
3463   WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
3464   return rc;
3465 }
3466 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3467 
3468 /*
3469 ** Add WhereLoop entries to handle OR terms.  This works for either
3470 ** btrees or virtual tables.
3471 */
3472 static int whereLoopAddOr(
3473   WhereLoopBuilder *pBuilder,
3474   Bitmask mPrereq,
3475   Bitmask mUnusable
3476 ){
3477   WhereInfo *pWInfo = pBuilder->pWInfo;
3478   WhereClause *pWC;
3479   WhereLoop *pNew;
3480   WhereTerm *pTerm, *pWCEnd;
3481   int rc = SQLITE_OK;
3482   int iCur;
3483   WhereClause tempWC;
3484   WhereLoopBuilder sSubBuild;
3485   WhereOrSet sSum, sCur;
3486   struct SrcList_item *pItem;
3487 
3488   pWC = pBuilder->pWC;
3489   pWCEnd = pWC->a + pWC->nTerm;
3490   pNew = pBuilder->pNew;
3491   memset(&sSum, 0, sizeof(sSum));
3492   pItem = pWInfo->pTabList->a + pNew->iTab;
3493   iCur = pItem->iCursor;
3494 
3495   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
3496     if( (pTerm->eOperator & WO_OR)!=0
3497      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
3498     ){
3499       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
3500       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
3501       WhereTerm *pOrTerm;
3502       int once = 1;
3503       int i, j;
3504 
3505       sSubBuild = *pBuilder;
3506       sSubBuild.pOrderBy = 0;
3507       sSubBuild.pOrSet = &sCur;
3508 
3509       WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
3510       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
3511         if( (pOrTerm->eOperator & WO_AND)!=0 ){
3512           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
3513         }else if( pOrTerm->leftCursor==iCur ){
3514           tempWC.pWInfo = pWC->pWInfo;
3515           tempWC.pOuter = pWC;
3516           tempWC.op = TK_AND;
3517           tempWC.nTerm = 1;
3518           tempWC.a = pOrTerm;
3519           sSubBuild.pWC = &tempWC;
3520         }else{
3521           continue;
3522         }
3523         sCur.n = 0;
3524 #ifdef WHERETRACE_ENABLED
3525         WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3526                    (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
3527         if( sqlite3WhereTrace & 0x400 ){
3528           sqlite3WhereClausePrint(sSubBuild.pWC);
3529         }
3530 #endif
3531 #ifndef SQLITE_OMIT_VIRTUALTABLE
3532         if( IsVirtual(pItem->pTab) ){
3533           rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
3534         }else
3535 #endif
3536         {
3537           rc = whereLoopAddBtree(&sSubBuild, mPrereq);
3538         }
3539         if( rc==SQLITE_OK ){
3540           rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
3541         }
3542         assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0 );
3543         testcase( rc==SQLITE_DONE );
3544         if( sCur.n==0 ){
3545           sSum.n = 0;
3546           break;
3547         }else if( once ){
3548           whereOrMove(&sSum, &sCur);
3549           once = 0;
3550         }else{
3551           WhereOrSet sPrev;
3552           whereOrMove(&sPrev, &sSum);
3553           sSum.n = 0;
3554           for(i=0; i<sPrev.n; i++){
3555             for(j=0; j<sCur.n; j++){
3556               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
3557                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
3558                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
3559             }
3560           }
3561         }
3562       }
3563       pNew->nLTerm = 1;
3564       pNew->aLTerm[0] = pTerm;
3565       pNew->wsFlags = WHERE_MULTI_OR;
3566       pNew->rSetup = 0;
3567       pNew->iSortIdx = 0;
3568       memset(&pNew->u, 0, sizeof(pNew->u));
3569       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
3570         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
3571         ** of all sub-scans required by the OR-scan. However, due to rounding
3572         ** errors, it may be that the cost of the OR-scan is equal to its
3573         ** most expensive sub-scan. Add the smallest possible penalty
3574         ** (equivalent to multiplying the cost by 1.07) to ensure that
3575         ** this does not happen. Otherwise, for WHERE clauses such as the
3576         ** following where there is an index on "y":
3577         **
3578         **     WHERE likelihood(x=?, 0.99) OR y=?
3579         **
3580         ** the planner may elect to "OR" together a full-table scan and an
3581         ** index lookup. And other similarly odd results.  */
3582         pNew->rRun = sSum.a[i].rRun + 1;
3583         pNew->nOut = sSum.a[i].nOut;
3584         pNew->prereq = sSum.a[i].prereq;
3585         rc = whereLoopInsert(pBuilder, pNew);
3586       }
3587       WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
3588     }
3589   }
3590   return rc;
3591 }
3592 
3593 /*
3594 ** Add all WhereLoop objects for all tables
3595 */
3596 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
3597   WhereInfo *pWInfo = pBuilder->pWInfo;
3598   Bitmask mPrereq = 0;
3599   Bitmask mPrior = 0;
3600   int iTab;
3601   SrcList *pTabList = pWInfo->pTabList;
3602   struct SrcList_item *pItem;
3603   struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel];
3604   sqlite3 *db = pWInfo->pParse->db;
3605   int rc = SQLITE_OK;
3606   WhereLoop *pNew;
3607   u8 priorJointype = 0;
3608 
3609   /* Loop over the tables in the join, from left to right */
3610   pNew = pBuilder->pNew;
3611   whereLoopInit(pNew);
3612   pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT;
3613   for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
3614     Bitmask mUnusable = 0;
3615     pNew->iTab = iTab;
3616     pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR;
3617     pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
3618     if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){
3619       /* This condition is true when pItem is the FROM clause term on the
3620       ** right-hand-side of a LEFT or CROSS JOIN.  */
3621       mPrereq = mPrior;
3622     }
3623     priorJointype = pItem->fg.jointype;
3624 #ifndef SQLITE_OMIT_VIRTUALTABLE
3625     if( IsVirtual(pItem->pTab) ){
3626       struct SrcList_item *p;
3627       for(p=&pItem[1]; p<pEnd; p++){
3628         if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
3629           mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
3630         }
3631       }
3632       rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
3633     }else
3634 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3635     {
3636       rc = whereLoopAddBtree(pBuilder, mPrereq);
3637     }
3638     if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
3639       rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
3640     }
3641     mPrior |= pNew->maskSelf;
3642     if( rc || db->mallocFailed ){
3643       if( rc==SQLITE_DONE ){
3644         /* We hit the query planner search limit set by iPlanLimit */
3645         sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search");
3646         rc = SQLITE_OK;
3647       }else{
3648         break;
3649       }
3650     }
3651   }
3652 
3653   whereLoopClear(db, pNew);
3654   return rc;
3655 }
3656 
3657 /*
3658 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
3659 ** parameters) to see if it outputs rows in the requested ORDER BY
3660 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
3661 **
3662 **   N>0:   N terms of the ORDER BY clause are satisfied
3663 **   N==0:  No terms of the ORDER BY clause are satisfied
3664 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
3665 **
3666 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
3667 ** strict.  With GROUP BY and DISTINCT the only requirement is that
3668 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
3669 ** and DISTINCT do not require rows to appear in any particular order as long
3670 ** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT
3671 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
3672 ** pOrderBy terms must be matched in strict left-to-right order.
3673 */
3674 static i8 wherePathSatisfiesOrderBy(
3675   WhereInfo *pWInfo,    /* The WHERE clause */
3676   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
3677   WherePath *pPath,     /* The WherePath to check */
3678   u16 wctrlFlags,       /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
3679   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
3680   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
3681   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
3682 ){
3683   u8 revSet;            /* True if rev is known */
3684   u8 rev;               /* Composite sort order */
3685   u8 revIdx;            /* Index sort order */
3686   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
3687   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
3688   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
3689   u16 eqOpMask;         /* Allowed equality operators */
3690   u16 nKeyCol;          /* Number of key columns in pIndex */
3691   u16 nColumn;          /* Total number of ordered columns in the index */
3692   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
3693   int iLoop;            /* Index of WhereLoop in pPath being processed */
3694   int i, j;             /* Loop counters */
3695   int iCur;             /* Cursor number for current WhereLoop */
3696   int iColumn;          /* A column number within table iCur */
3697   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
3698   WhereTerm *pTerm;     /* A single term of the WHERE clause */
3699   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
3700   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
3701   Index *pIndex;        /* The index associated with pLoop */
3702   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
3703   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
3704   Bitmask obDone;       /* Mask of all ORDER BY terms */
3705   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
3706   Bitmask ready;              /* Mask of inner loops */
3707 
3708   /*
3709   ** We say the WhereLoop is "one-row" if it generates no more than one
3710   ** row of output.  A WhereLoop is one-row if all of the following are true:
3711   **  (a) All index columns match with WHERE_COLUMN_EQ.
3712   **  (b) The index is unique
3713   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
3714   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
3715   **
3716   ** We say the WhereLoop is "order-distinct" if the set of columns from
3717   ** that WhereLoop that are in the ORDER BY clause are different for every
3718   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
3719   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
3720   ** is not order-distinct. To be order-distinct is not quite the same as being
3721   ** UNIQUE since a UNIQUE column or index can have multiple rows that
3722   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
3723   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
3724   **
3725   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
3726   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
3727   ** automatically order-distinct.
3728   */
3729 
3730   assert( pOrderBy!=0 );
3731   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
3732 
3733   nOrderBy = pOrderBy->nExpr;
3734   testcase( nOrderBy==BMS-1 );
3735   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
3736   isOrderDistinct = 1;
3737   obDone = MASKBIT(nOrderBy)-1;
3738   orderDistinctMask = 0;
3739   ready = 0;
3740   eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
3741   if( wctrlFlags & WHERE_ORDERBY_LIMIT ) eqOpMask |= WO_IN;
3742   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
3743     if( iLoop>0 ) ready |= pLoop->maskSelf;
3744     if( iLoop<nLoop ){
3745       pLoop = pPath->aLoop[iLoop];
3746       if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
3747     }else{
3748       pLoop = pLast;
3749     }
3750     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
3751       if( pLoop->u.vtab.isOrdered && (wctrlFlags & WHERE_DISTINCTBY)==0 ){
3752         obSat = obDone;
3753       }
3754       break;
3755     }else if( wctrlFlags & WHERE_DISTINCTBY ){
3756       pLoop->u.btree.nDistinctCol = 0;
3757     }
3758     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
3759 
3760     /* Mark off any ORDER BY term X that is a column in the table of
3761     ** the current loop for which there is term in the WHERE
3762     ** clause of the form X IS NULL or X=? that reference only outer
3763     ** loops.
3764     */
3765     for(i=0; i<nOrderBy; i++){
3766       if( MASKBIT(i) & obSat ) continue;
3767       pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
3768       if( pOBExpr->op!=TK_COLUMN ) continue;
3769       if( pOBExpr->iTable!=iCur ) continue;
3770       pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
3771                        ~ready, eqOpMask, 0);
3772       if( pTerm==0 ) continue;
3773       if( pTerm->eOperator==WO_IN ){
3774         /* IN terms are only valid for sorting in the ORDER BY LIMIT
3775         ** optimization, and then only if they are actually used
3776         ** by the query plan */
3777         assert( wctrlFlags & WHERE_ORDERBY_LIMIT );
3778         for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
3779         if( j>=pLoop->nLTerm ) continue;
3780       }
3781       if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
3782         Parse *pParse = pWInfo->pParse;
3783         CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr);
3784         CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr);
3785         assert( pColl1 );
3786         if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){
3787           continue;
3788         }
3789         testcase( pTerm->pExpr->op==TK_IS );
3790       }
3791       obSat |= MASKBIT(i);
3792     }
3793 
3794     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
3795       if( pLoop->wsFlags & WHERE_IPK ){
3796         pIndex = 0;
3797         nKeyCol = 0;
3798         nColumn = 1;
3799       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
3800         return 0;
3801       }else{
3802         nKeyCol = pIndex->nKeyCol;
3803         nColumn = pIndex->nColumn;
3804         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
3805         assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
3806                           || !HasRowid(pIndex->pTable));
3807         isOrderDistinct = IsUniqueIndex(pIndex)
3808                           && (pLoop->wsFlags & WHERE_SKIPSCAN)==0;
3809       }
3810 
3811       /* Loop through all columns of the index and deal with the ones
3812       ** that are not constrained by == or IN.
3813       */
3814       rev = revSet = 0;
3815       distinctColumns = 0;
3816       for(j=0; j<nColumn; j++){
3817         u8 bOnce = 1; /* True to run the ORDER BY search loop */
3818 
3819         assert( j>=pLoop->u.btree.nEq
3820             || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
3821         );
3822         if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
3823           u16 eOp = pLoop->aLTerm[j]->eOperator;
3824 
3825           /* Skip over == and IS and ISNULL terms.  (Also skip IN terms when
3826           ** doing WHERE_ORDERBY_LIMIT processing).  Except, IS and ISNULL
3827           ** terms imply that the index is not UNIQUE NOT NULL in which case
3828           ** the loop need to be marked as not order-distinct because it can
3829           ** have repeated NULL rows.
3830           **
3831           ** If the current term is a column of an ((?,?) IN (SELECT...))
3832           ** expression for which the SELECT returns more than one column,
3833           ** check that it is the only column used by this loop. Otherwise,
3834           ** if it is one of two or more, none of the columns can be
3835           ** considered to match an ORDER BY term.
3836           */
3837           if( (eOp & eqOpMask)!=0 ){
3838             if( eOp & (WO_ISNULL|WO_IS) ){
3839               testcase( eOp & WO_ISNULL );
3840               testcase( eOp & WO_IS );
3841               testcase( isOrderDistinct );
3842               isOrderDistinct = 0;
3843             }
3844             continue;
3845           }else if( ALWAYS(eOp & WO_IN) ){
3846             /* ALWAYS() justification: eOp is an equality operator due to the
3847             ** j<pLoop->u.btree.nEq constraint above.  Any equality other
3848             ** than WO_IN is captured by the previous "if".  So this one
3849             ** always has to be WO_IN. */
3850             Expr *pX = pLoop->aLTerm[j]->pExpr;
3851             for(i=j+1; i<pLoop->u.btree.nEq; i++){
3852               if( pLoop->aLTerm[i]->pExpr==pX ){
3853                 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
3854                 bOnce = 0;
3855                 break;
3856               }
3857             }
3858           }
3859         }
3860 
3861         /* Get the column number in the table (iColumn) and sort order
3862         ** (revIdx) for the j-th column of the index.
3863         */
3864         if( pIndex ){
3865           iColumn = pIndex->aiColumn[j];
3866           revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC;
3867           if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
3868         }else{
3869           iColumn = XN_ROWID;
3870           revIdx = 0;
3871         }
3872 
3873         /* An unconstrained column that might be NULL means that this
3874         ** WhereLoop is not well-ordered
3875         */
3876         if( isOrderDistinct
3877          && iColumn>=0
3878          && j>=pLoop->u.btree.nEq
3879          && pIndex->pTable->aCol[iColumn].notNull==0
3880         ){
3881           isOrderDistinct = 0;
3882         }
3883 
3884         /* Find the ORDER BY term that corresponds to the j-th column
3885         ** of the index and mark that ORDER BY term off
3886         */
3887         isMatch = 0;
3888         for(i=0; bOnce && i<nOrderBy; i++){
3889           if( MASKBIT(i) & obSat ) continue;
3890           pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
3891           testcase( wctrlFlags & WHERE_GROUPBY );
3892           testcase( wctrlFlags & WHERE_DISTINCTBY );
3893           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
3894           if( iColumn>=XN_ROWID ){
3895             if( pOBExpr->op!=TK_COLUMN ) continue;
3896             if( pOBExpr->iTable!=iCur ) continue;
3897             if( pOBExpr->iColumn!=iColumn ) continue;
3898           }else{
3899             Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
3900             if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
3901               continue;
3902             }
3903           }
3904           if( iColumn!=XN_ROWID ){
3905             pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
3906             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
3907           }
3908           if( wctrlFlags & WHERE_DISTINCTBY ){
3909             pLoop->u.btree.nDistinctCol = j+1;
3910           }
3911           isMatch = 1;
3912           break;
3913         }
3914         if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
3915           /* Make sure the sort order is compatible in an ORDER BY clause.
3916           ** Sort order is irrelevant for a GROUP BY clause. */
3917           if( revSet ){
3918             if( (rev ^ revIdx)!=(pOrderBy->a[i].sortFlags&KEYINFO_ORDER_DESC) ){
3919               isMatch = 0;
3920             }
3921           }else{
3922             rev = revIdx ^ (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC);
3923             if( rev ) *pRevMask |= MASKBIT(iLoop);
3924             revSet = 1;
3925           }
3926         }
3927         if( isMatch && (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL) ){
3928           if( j==pLoop->u.btree.nEq ){
3929             pLoop->wsFlags |= WHERE_BIGNULL_SORT;
3930           }else{
3931             isMatch = 0;
3932           }
3933         }
3934         if( isMatch ){
3935           if( iColumn==XN_ROWID ){
3936             testcase( distinctColumns==0 );
3937             distinctColumns = 1;
3938           }
3939           obSat |= MASKBIT(i);
3940         }else{
3941           /* No match found */
3942           if( j==0 || j<nKeyCol ){
3943             testcase( isOrderDistinct!=0 );
3944             isOrderDistinct = 0;
3945           }
3946           break;
3947         }
3948       } /* end Loop over all index columns */
3949       if( distinctColumns ){
3950         testcase( isOrderDistinct==0 );
3951         isOrderDistinct = 1;
3952       }
3953     } /* end-if not one-row */
3954 
3955     /* Mark off any other ORDER BY terms that reference pLoop */
3956     if( isOrderDistinct ){
3957       orderDistinctMask |= pLoop->maskSelf;
3958       for(i=0; i<nOrderBy; i++){
3959         Expr *p;
3960         Bitmask mTerm;
3961         if( MASKBIT(i) & obSat ) continue;
3962         p = pOrderBy->a[i].pExpr;
3963         mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
3964         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
3965         if( (mTerm&~orderDistinctMask)==0 ){
3966           obSat |= MASKBIT(i);
3967         }
3968       }
3969     }
3970   } /* End the loop over all WhereLoops from outer-most down to inner-most */
3971   if( obSat==obDone ) return (i8)nOrderBy;
3972   if( !isOrderDistinct ){
3973     for(i=nOrderBy-1; i>0; i--){
3974       Bitmask m = MASKBIT(i) - 1;
3975       if( (obSat&m)==m ) return i;
3976     }
3977     return 0;
3978   }
3979   return -1;
3980 }
3981 
3982 
3983 /*
3984 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
3985 ** the planner assumes that the specified pOrderBy list is actually a GROUP
3986 ** BY clause - and so any order that groups rows as required satisfies the
3987 ** request.
3988 **
3989 ** Normally, in this case it is not possible for the caller to determine
3990 ** whether or not the rows are really being delivered in sorted order, or
3991 ** just in some other order that provides the required grouping. However,
3992 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
3993 ** this function may be called on the returned WhereInfo object. It returns
3994 ** true if the rows really will be sorted in the specified order, or false
3995 ** otherwise.
3996 **
3997 ** For example, assuming:
3998 **
3999 **   CREATE INDEX i1 ON t1(x, Y);
4000 **
4001 ** then
4002 **
4003 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
4004 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
4005 */
4006 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
4007   assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
4008   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
4009   return pWInfo->sorted;
4010 }
4011 
4012 #ifdef WHERETRACE_ENABLED
4013 /* For debugging use only: */
4014 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
4015   static char zName[65];
4016   int i;
4017   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
4018   if( pLast ) zName[i++] = pLast->cId;
4019   zName[i] = 0;
4020   return zName;
4021 }
4022 #endif
4023 
4024 /*
4025 ** Return the cost of sorting nRow rows, assuming that the keys have
4026 ** nOrderby columns and that the first nSorted columns are already in
4027 ** order.
4028 */
4029 static LogEst whereSortingCost(
4030   WhereInfo *pWInfo,
4031   LogEst nRow,
4032   int nOrderBy,
4033   int nSorted
4034 ){
4035   /* TUNING: Estimated cost of a full external sort, where N is
4036   ** the number of rows to sort is:
4037   **
4038   **   cost = (3.0 * N * log(N)).
4039   **
4040   ** Or, if the order-by clause has X terms but only the last Y
4041   ** terms are out of order, then block-sorting will reduce the
4042   ** sorting cost to:
4043   **
4044   **   cost = (3.0 * N * log(N)) * (Y/X)
4045   **
4046   ** The (Y/X) term is implemented using stack variable rScale
4047   ** below.  */
4048   LogEst rScale, rSortCost;
4049   assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
4050   rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
4051   rSortCost = nRow + rScale + 16;
4052 
4053   /* Multiple by log(M) where M is the number of output rows.
4054   ** Use the LIMIT for M if it is smaller */
4055   if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
4056     nRow = pWInfo->iLimit;
4057   }
4058   rSortCost += estLog(nRow);
4059   return rSortCost;
4060 }
4061 
4062 /*
4063 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
4064 ** attempts to find the lowest cost path that visits each WhereLoop
4065 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
4066 **
4067 ** Assume that the total number of output rows that will need to be sorted
4068 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
4069 ** costs if nRowEst==0.
4070 **
4071 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
4072 ** error occurs.
4073 */
4074 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
4075   int mxChoice;             /* Maximum number of simultaneous paths tracked */
4076   int nLoop;                /* Number of terms in the join */
4077   Parse *pParse;            /* Parsing context */
4078   sqlite3 *db;              /* The database connection */
4079   int iLoop;                /* Loop counter over the terms of the join */
4080   int ii, jj;               /* Loop counters */
4081   int mxI = 0;              /* Index of next entry to replace */
4082   int nOrderBy;             /* Number of ORDER BY clause terms */
4083   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
4084   LogEst mxUnsorted = 0;    /* Maximum unsorted cost of a set of path */
4085   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
4086   WherePath *aFrom;         /* All nFrom paths at the previous level */
4087   WherePath *aTo;           /* The nTo best paths at the current level */
4088   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
4089   WherePath *pTo;           /* An element of aTo[] that we are working on */
4090   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
4091   WhereLoop **pX;           /* Used to divy up the pSpace memory */
4092   LogEst *aSortCost = 0;    /* Sorting and partial sorting costs */
4093   char *pSpace;             /* Temporary memory used by this routine */
4094   int nSpace;               /* Bytes of space allocated at pSpace */
4095 
4096   pParse = pWInfo->pParse;
4097   db = pParse->db;
4098   nLoop = pWInfo->nLevel;
4099   /* TUNING: For simple queries, only the best path is tracked.
4100   ** For 2-way joins, the 5 best paths are followed.
4101   ** For joins of 3 or more tables, track the 10 best paths */
4102   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
4103   assert( nLoop<=pWInfo->pTabList->nSrc );
4104   WHERETRACE(0x002, ("---- begin solver.  (nRowEst=%d)\n", nRowEst));
4105 
4106   /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
4107   ** case the purpose of this call is to estimate the number of rows returned
4108   ** by the overall query. Once this estimate has been obtained, the caller
4109   ** will invoke this function a second time, passing the estimate as the
4110   ** nRowEst parameter.  */
4111   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
4112     nOrderBy = 0;
4113   }else{
4114     nOrderBy = pWInfo->pOrderBy->nExpr;
4115   }
4116 
4117   /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
4118   nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
4119   nSpace += sizeof(LogEst) * nOrderBy;
4120   pSpace = sqlite3DbMallocRawNN(db, nSpace);
4121   if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
4122   aTo = (WherePath*)pSpace;
4123   aFrom = aTo+mxChoice;
4124   memset(aFrom, 0, sizeof(aFrom[0]));
4125   pX = (WhereLoop**)(aFrom+mxChoice);
4126   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
4127     pFrom->aLoop = pX;
4128   }
4129   if( nOrderBy ){
4130     /* If there is an ORDER BY clause and it is not being ignored, set up
4131     ** space for the aSortCost[] array. Each element of the aSortCost array
4132     ** is either zero - meaning it has not yet been initialized - or the
4133     ** cost of sorting nRowEst rows of data where the first X terms of
4134     ** the ORDER BY clause are already in order, where X is the array
4135     ** index.  */
4136     aSortCost = (LogEst*)pX;
4137     memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
4138   }
4139   assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
4140   assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
4141 
4142   /* Seed the search with a single WherePath containing zero WhereLoops.
4143   **
4144   ** TUNING: Do not let the number of iterations go above 28.  If the cost
4145   ** of computing an automatic index is not paid back within the first 28
4146   ** rows, then do not use the automatic index. */
4147   aFrom[0].nRow = MIN(pParse->nQueryLoop, 48);  assert( 48==sqlite3LogEst(28) );
4148   nFrom = 1;
4149   assert( aFrom[0].isOrdered==0 );
4150   if( nOrderBy ){
4151     /* If nLoop is zero, then there are no FROM terms in the query. Since
4152     ** in this case the query may return a maximum of one row, the results
4153     ** are already in the requested order. Set isOrdered to nOrderBy to
4154     ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
4155     ** -1, indicating that the result set may or may not be ordered,
4156     ** depending on the loops added to the current plan.  */
4157     aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
4158   }
4159 
4160   /* Compute successively longer WherePaths using the previous generation
4161   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
4162   ** best paths at each generation */
4163   for(iLoop=0; iLoop<nLoop; iLoop++){
4164     nTo = 0;
4165     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
4166       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
4167         LogEst nOut;                      /* Rows visited by (pFrom+pWLoop) */
4168         LogEst rCost;                     /* Cost of path (pFrom+pWLoop) */
4169         LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
4170         i8 isOrdered = pFrom->isOrdered;  /* isOrdered for (pFrom+pWLoop) */
4171         Bitmask maskNew;                  /* Mask of src visited by (..) */
4172         Bitmask revMask = 0;              /* Mask of rev-order loops for (..) */
4173 
4174         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
4175         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
4176         if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
4177           /* Do not use an automatic index if the this loop is expected
4178           ** to run less than 1.25 times.  It is tempting to also exclude
4179           ** automatic index usage on an outer loop, but sometimes an automatic
4180           ** index is useful in the outer loop of a correlated subquery. */
4181           assert( 10==sqlite3LogEst(2) );
4182           continue;
4183         }
4184 
4185         /* At this point, pWLoop is a candidate to be the next loop.
4186         ** Compute its cost */
4187         rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
4188         rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
4189         nOut = pFrom->nRow + pWLoop->nOut;
4190         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
4191         if( isOrdered<0 ){
4192           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
4193                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
4194                        iLoop, pWLoop, &revMask);
4195         }else{
4196           revMask = pFrom->revLoop;
4197         }
4198         if( isOrdered>=0 && isOrdered<nOrderBy ){
4199           if( aSortCost[isOrdered]==0 ){
4200             aSortCost[isOrdered] = whereSortingCost(
4201                 pWInfo, nRowEst, nOrderBy, isOrdered
4202             );
4203           }
4204           /* TUNING:  Add a small extra penalty (5) to sorting as an
4205           ** extra encouragment to the query planner to select a plan
4206           ** where the rows emerge in the correct order without any sorting
4207           ** required. */
4208           rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5;
4209 
4210           WHERETRACE(0x002,
4211               ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
4212                aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
4213                rUnsorted, rCost));
4214         }else{
4215           rCost = rUnsorted;
4216           rUnsorted -= 2;  /* TUNING:  Slight bias in favor of no-sort plans */
4217         }
4218 
4219         /* Check to see if pWLoop should be added to the set of
4220         ** mxChoice best-so-far paths.
4221         **
4222         ** First look for an existing path among best-so-far paths
4223         ** that covers the same set of loops and has the same isOrdered
4224         ** setting as the current path candidate.
4225         **
4226         ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4227         ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4228         ** of legal values for isOrdered, -1..64.
4229         */
4230         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
4231           if( pTo->maskLoop==maskNew
4232            && ((pTo->isOrdered^isOrdered)&0x80)==0
4233           ){
4234             testcase( jj==nTo-1 );
4235             break;
4236           }
4237         }
4238         if( jj>=nTo ){
4239           /* None of the existing best-so-far paths match the candidate. */
4240           if( nTo>=mxChoice
4241            && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4242           ){
4243             /* The current candidate is no better than any of the mxChoice
4244             ** paths currently in the best-so-far buffer.  So discard
4245             ** this candidate as not viable. */
4246 #ifdef WHERETRACE_ENABLED /* 0x4 */
4247             if( sqlite3WhereTrace&0x4 ){
4248               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d,%3d order=%c\n",
4249                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4250                   isOrdered>=0 ? isOrdered+'0' : '?');
4251             }
4252 #endif
4253             continue;
4254           }
4255           /* If we reach this points it means that the new candidate path
4256           ** needs to be added to the set of best-so-far paths. */
4257           if( nTo<mxChoice ){
4258             /* Increase the size of the aTo set by one */
4259             jj = nTo++;
4260           }else{
4261             /* New path replaces the prior worst to keep count below mxChoice */
4262             jj = mxI;
4263           }
4264           pTo = &aTo[jj];
4265 #ifdef WHERETRACE_ENABLED /* 0x4 */
4266           if( sqlite3WhereTrace&0x4 ){
4267             sqlite3DebugPrintf("New    %s cost=%-3d,%3d,%3d order=%c\n",
4268                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4269                 isOrdered>=0 ? isOrdered+'0' : '?');
4270           }
4271 #endif
4272         }else{
4273           /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4274           ** same set of loops and has the same isOrdered setting as the
4275           ** candidate path.  Check to see if the candidate should replace
4276           ** pTo or if the candidate should be skipped.
4277           **
4278           ** The conditional is an expanded vector comparison equivalent to:
4279           **   (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4280           */
4281           if( pTo->rCost<rCost
4282            || (pTo->rCost==rCost
4283                && (pTo->nRow<nOut
4284                    || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4285                   )
4286               )
4287           ){
4288 #ifdef WHERETRACE_ENABLED /* 0x4 */
4289             if( sqlite3WhereTrace&0x4 ){
4290               sqlite3DebugPrintf(
4291                   "Skip   %s cost=%-3d,%3d,%3d order=%c",
4292                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4293                   isOrdered>=0 ? isOrdered+'0' : '?');
4294               sqlite3DebugPrintf("   vs %s cost=%-3d,%3d,%3d order=%c\n",
4295                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4296                   pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4297             }
4298 #endif
4299             /* Discard the candidate path from further consideration */
4300             testcase( pTo->rCost==rCost );
4301             continue;
4302           }
4303           testcase( pTo->rCost==rCost+1 );
4304           /* Control reaches here if the candidate path is better than the
4305           ** pTo path.  Replace pTo with the candidate. */
4306 #ifdef WHERETRACE_ENABLED /* 0x4 */
4307           if( sqlite3WhereTrace&0x4 ){
4308             sqlite3DebugPrintf(
4309                 "Update %s cost=%-3d,%3d,%3d order=%c",
4310                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4311                 isOrdered>=0 ? isOrdered+'0' : '?');
4312             sqlite3DebugPrintf("  was %s cost=%-3d,%3d,%3d order=%c\n",
4313                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4314                 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4315           }
4316 #endif
4317         }
4318         /* pWLoop is a winner.  Add it to the set of best so far */
4319         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4320         pTo->revLoop = revMask;
4321         pTo->nRow = nOut;
4322         pTo->rCost = rCost;
4323         pTo->rUnsorted = rUnsorted;
4324         pTo->isOrdered = isOrdered;
4325         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4326         pTo->aLoop[iLoop] = pWLoop;
4327         if( nTo>=mxChoice ){
4328           mxI = 0;
4329           mxCost = aTo[0].rCost;
4330           mxUnsorted = aTo[0].nRow;
4331           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4332             if( pTo->rCost>mxCost
4333              || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4334             ){
4335               mxCost = pTo->rCost;
4336               mxUnsorted = pTo->rUnsorted;
4337               mxI = jj;
4338             }
4339           }
4340         }
4341       }
4342     }
4343 
4344 #ifdef WHERETRACE_ENABLED  /* >=2 */
4345     if( sqlite3WhereTrace & 0x02 ){
4346       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4347       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4348         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4349            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4350            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4351         if( pTo->isOrdered>0 ){
4352           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4353         }else{
4354           sqlite3DebugPrintf("\n");
4355         }
4356       }
4357     }
4358 #endif
4359 
4360     /* Swap the roles of aFrom and aTo for the next generation */
4361     pFrom = aTo;
4362     aTo = aFrom;
4363     aFrom = pFrom;
4364     nFrom = nTo;
4365   }
4366 
4367   if( nFrom==0 ){
4368     sqlite3ErrorMsg(pParse, "no query solution");
4369     sqlite3DbFreeNN(db, pSpace);
4370     return SQLITE_ERROR;
4371   }
4372 
4373   /* Find the lowest cost path.  pFrom will be left pointing to that path */
4374   pFrom = aFrom;
4375   for(ii=1; ii<nFrom; ii++){
4376     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4377   }
4378   assert( pWInfo->nLevel==nLoop );
4379   /* Load the lowest cost path into pWInfo */
4380   for(iLoop=0; iLoop<nLoop; iLoop++){
4381     WhereLevel *pLevel = pWInfo->a + iLoop;
4382     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
4383     pLevel->iFrom = pWLoop->iTab;
4384     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
4385   }
4386   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
4387    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
4388    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
4389    && nRowEst
4390   ){
4391     Bitmask notUsed;
4392     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
4393                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
4394     if( rc==pWInfo->pResultSet->nExpr ){
4395       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4396     }
4397   }
4398   pWInfo->bOrderedInnerLoop = 0;
4399   if( pWInfo->pOrderBy ){
4400     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
4401       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
4402         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4403       }
4404     }else{
4405       pWInfo->nOBSat = pFrom->isOrdered;
4406       pWInfo->revMask = pFrom->revLoop;
4407       if( pWInfo->nOBSat<=0 ){
4408         pWInfo->nOBSat = 0;
4409         if( nLoop>0 ){
4410           u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
4411           if( (wsFlags & WHERE_ONEROW)==0
4412            && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
4413           ){
4414             Bitmask m = 0;
4415             int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
4416                       WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
4417             testcase( wsFlags & WHERE_IPK );
4418             testcase( wsFlags & WHERE_COLUMN_IN );
4419             if( rc==pWInfo->pOrderBy->nExpr ){
4420               pWInfo->bOrderedInnerLoop = 1;
4421               pWInfo->revMask = m;
4422             }
4423           }
4424         }
4425       }
4426     }
4427     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
4428         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
4429     ){
4430       Bitmask revMask = 0;
4431       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
4432           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
4433       );
4434       assert( pWInfo->sorted==0 );
4435       if( nOrder==pWInfo->pOrderBy->nExpr ){
4436         pWInfo->sorted = 1;
4437         pWInfo->revMask = revMask;
4438       }
4439     }
4440   }
4441 
4442 
4443   pWInfo->nRowOut = pFrom->nRow;
4444 
4445   /* Free temporary memory and return success */
4446   sqlite3DbFreeNN(db, pSpace);
4447   return SQLITE_OK;
4448 }
4449 
4450 /*
4451 ** Most queries use only a single table (they are not joins) and have
4452 ** simple == constraints against indexed fields.  This routine attempts
4453 ** to plan those simple cases using much less ceremony than the
4454 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4455 ** times for the common case.
4456 **
4457 ** Return non-zero on success, if this query can be handled by this
4458 ** no-frills query planner.  Return zero if this query needs the
4459 ** general-purpose query planner.
4460 */
4461 static int whereShortCut(WhereLoopBuilder *pBuilder){
4462   WhereInfo *pWInfo;
4463   struct SrcList_item *pItem;
4464   WhereClause *pWC;
4465   WhereTerm *pTerm;
4466   WhereLoop *pLoop;
4467   int iCur;
4468   int j;
4469   Table *pTab;
4470   Index *pIdx;
4471 
4472   pWInfo = pBuilder->pWInfo;
4473   if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
4474   assert( pWInfo->pTabList->nSrc>=1 );
4475   pItem = pWInfo->pTabList->a;
4476   pTab = pItem->pTab;
4477   if( IsVirtual(pTab) ) return 0;
4478   if( pItem->fg.isIndexedBy ) return 0;
4479   iCur = pItem->iCursor;
4480   pWC = &pWInfo->sWC;
4481   pLoop = pBuilder->pNew;
4482   pLoop->wsFlags = 0;
4483   pLoop->nSkip = 0;
4484   pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0);
4485   if( pTerm ){
4486     testcase( pTerm->eOperator & WO_IS );
4487     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
4488     pLoop->aLTerm[0] = pTerm;
4489     pLoop->nLTerm = 1;
4490     pLoop->u.btree.nEq = 1;
4491     /* TUNING: Cost of a rowid lookup is 10 */
4492     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
4493   }else{
4494     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4495       int opMask;
4496       assert( pLoop->aLTermSpace==pLoop->aLTerm );
4497       if( !IsUniqueIndex(pIdx)
4498        || pIdx->pPartIdxWhere!=0
4499        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
4500       ) continue;
4501       opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
4502       for(j=0; j<pIdx->nKeyCol; j++){
4503         pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx);
4504         if( pTerm==0 ) break;
4505         testcase( pTerm->eOperator & WO_IS );
4506         pLoop->aLTerm[j] = pTerm;
4507       }
4508       if( j!=pIdx->nKeyCol ) continue;
4509       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
4510       if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
4511         pLoop->wsFlags |= WHERE_IDX_ONLY;
4512       }
4513       pLoop->nLTerm = j;
4514       pLoop->u.btree.nEq = j;
4515       pLoop->u.btree.pIndex = pIdx;
4516       /* TUNING: Cost of a unique index lookup is 15 */
4517       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
4518       break;
4519     }
4520   }
4521   if( pLoop->wsFlags ){
4522     pLoop->nOut = (LogEst)1;
4523     pWInfo->a[0].pWLoop = pLoop;
4524     assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
4525     pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
4526     pWInfo->a[0].iTabCur = iCur;
4527     pWInfo->nRowOut = 1;
4528     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
4529     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
4530       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4531     }
4532 #ifdef SQLITE_DEBUG
4533     pLoop->cId = '0';
4534 #endif
4535     return 1;
4536   }
4537   return 0;
4538 }
4539 
4540 /*
4541 ** Helper function for exprIsDeterministic().
4542 */
4543 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
4544   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
4545     pWalker->eCode = 0;
4546     return WRC_Abort;
4547   }
4548   return WRC_Continue;
4549 }
4550 
4551 /*
4552 ** Return true if the expression contains no non-deterministic SQL
4553 ** functions. Do not consider non-deterministic SQL functions that are
4554 ** part of sub-select statements.
4555 */
4556 static int exprIsDeterministic(Expr *p){
4557   Walker w;
4558   memset(&w, 0, sizeof(w));
4559   w.eCode = 1;
4560   w.xExprCallback = exprNodeIsDeterministic;
4561   w.xSelectCallback = sqlite3SelectWalkFail;
4562   sqlite3WalkExpr(&w, p);
4563   return w.eCode;
4564 }
4565 
4566 
4567 #ifdef WHERETRACE_ENABLED
4568 /*
4569 ** Display all WhereLoops in pWInfo
4570 */
4571 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){
4572   if( sqlite3WhereTrace ){    /* Display all of the WhereLoop objects */
4573     WhereLoop *p;
4574     int i;
4575     static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
4576                                            "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
4577     for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
4578       p->cId = zLabel[i%(sizeof(zLabel)-1)];
4579       sqlite3WhereLoopPrint(p, pWC);
4580     }
4581   }
4582 }
4583 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C)
4584 #else
4585 # define WHERETRACE_ALL_LOOPS(W,C)
4586 #endif
4587 
4588 /*
4589 ** Generate the beginning of the loop used for WHERE clause processing.
4590 ** The return value is a pointer to an opaque structure that contains
4591 ** information needed to terminate the loop.  Later, the calling routine
4592 ** should invoke sqlite3WhereEnd() with the return value of this function
4593 ** in order to complete the WHERE clause processing.
4594 **
4595 ** If an error occurs, this routine returns NULL.
4596 **
4597 ** The basic idea is to do a nested loop, one loop for each table in
4598 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
4599 ** same as a SELECT with only a single table in the FROM clause.)  For
4600 ** example, if the SQL is this:
4601 **
4602 **       SELECT * FROM t1, t2, t3 WHERE ...;
4603 **
4604 ** Then the code generated is conceptually like the following:
4605 **
4606 **      foreach row1 in t1 do       \    Code generated
4607 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
4608 **          foreach row3 in t3 do   /
4609 **            ...
4610 **          end                     \    Code generated
4611 **        end                        |-- by sqlite3WhereEnd()
4612 **      end                         /
4613 **
4614 ** Note that the loops might not be nested in the order in which they
4615 ** appear in the FROM clause if a different order is better able to make
4616 ** use of indices.  Note also that when the IN operator appears in
4617 ** the WHERE clause, it might result in additional nested loops for
4618 ** scanning through all values on the right-hand side of the IN.
4619 **
4620 ** There are Btree cursors associated with each table.  t1 uses cursor
4621 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
4622 ** And so forth.  This routine generates code to open those VDBE cursors
4623 ** and sqlite3WhereEnd() generates the code to close them.
4624 **
4625 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4626 ** in pTabList pointing at their appropriate entries.  The [...] code
4627 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4628 ** data from the various tables of the loop.
4629 **
4630 ** If the WHERE clause is empty, the foreach loops must each scan their
4631 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
4632 ** the tables have indices and there are terms in the WHERE clause that
4633 ** refer to those indices, a complete table scan can be avoided and the
4634 ** code will run much faster.  Most of the work of this routine is checking
4635 ** to see if there are indices that can be used to speed up the loop.
4636 **
4637 ** Terms of the WHERE clause are also used to limit which rows actually
4638 ** make it to the "..." in the middle of the loop.  After each "foreach",
4639 ** terms of the WHERE clause that use only terms in that loop and outer
4640 ** loops are evaluated and if false a jump is made around all subsequent
4641 ** inner loops (or around the "..." if the test occurs within the inner-
4642 ** most loop)
4643 **
4644 ** OUTER JOINS
4645 **
4646 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4647 **
4648 **    foreach row1 in t1 do
4649 **      flag = 0
4650 **      foreach row2 in t2 do
4651 **        start:
4652 **          ...
4653 **          flag = 1
4654 **      end
4655 **      if flag==0 then
4656 **        move the row2 cursor to a null row
4657 **        goto start
4658 **      fi
4659 **    end
4660 **
4661 ** ORDER BY CLAUSE PROCESSING
4662 **
4663 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
4664 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
4665 ** if there is one.  If there is no ORDER BY clause or if this routine
4666 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
4667 **
4668 ** The iIdxCur parameter is the cursor number of an index.  If
4669 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
4670 ** to use for OR clause processing.  The WHERE clause should use this
4671 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
4672 ** the first cursor in an array of cursors for all indices.  iIdxCur should
4673 ** be used to compute the appropriate cursor depending on which index is
4674 ** used.
4675 */
4676 WhereInfo *sqlite3WhereBegin(
4677   Parse *pParse,          /* The parser context */
4678   SrcList *pTabList,      /* FROM clause: A list of all tables to be scanned */
4679   Expr *pWhere,           /* The WHERE clause */
4680   ExprList *pOrderBy,     /* An ORDER BY (or GROUP BY) clause, or NULL */
4681   ExprList *pResultSet,   /* Query result set.  Req'd for DISTINCT */
4682   u16 wctrlFlags,         /* The WHERE_* flags defined in sqliteInt.h */
4683   int iAuxArg             /* If WHERE_OR_SUBCLAUSE is set, index cursor number
4684                           ** If WHERE_USE_LIMIT, then the limit amount */
4685 ){
4686   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
4687   int nTabList;              /* Number of elements in pTabList */
4688   WhereInfo *pWInfo;         /* Will become the return value of this function */
4689   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
4690   Bitmask notReady;          /* Cursors that are not yet positioned */
4691   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
4692   WhereMaskSet *pMaskSet;    /* The expression mask set */
4693   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
4694   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
4695   int ii;                    /* Loop counter */
4696   sqlite3 *db;               /* Database connection */
4697   int rc;                    /* Return code */
4698   u8 bFordelete = 0;         /* OPFLAG_FORDELETE or zero, as appropriate */
4699 
4700   assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
4701         (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
4702      && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4703   ));
4704 
4705   /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
4706   assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4707             || (wctrlFlags & WHERE_USE_LIMIT)==0 );
4708 
4709   /* Variable initialization */
4710   db = pParse->db;
4711   memset(&sWLB, 0, sizeof(sWLB));
4712 
4713   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
4714   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
4715   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
4716   sWLB.pOrderBy = pOrderBy;
4717 
4718   /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
4719   ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
4720   if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
4721     wctrlFlags &= ~WHERE_WANT_DISTINCT;
4722   }
4723 
4724   /* The number of tables in the FROM clause is limited by the number of
4725   ** bits in a Bitmask
4726   */
4727   testcase( pTabList->nSrc==BMS );
4728   if( pTabList->nSrc>BMS ){
4729     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
4730     return 0;
4731   }
4732 
4733   /* This function normally generates a nested loop for all tables in
4734   ** pTabList.  But if the WHERE_OR_SUBCLAUSE flag is set, then we should
4735   ** only generate code for the first table in pTabList and assume that
4736   ** any cursors associated with subsequent tables are uninitialized.
4737   */
4738   nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
4739 
4740   /* Allocate and initialize the WhereInfo structure that will become the
4741   ** return value. A single allocation is used to store the WhereInfo
4742   ** struct, the contents of WhereInfo.a[], the WhereClause structure
4743   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4744   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4745   ** some architectures. Hence the ROUND8() below.
4746   */
4747   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
4748   pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
4749   if( db->mallocFailed ){
4750     sqlite3DbFree(db, pWInfo);
4751     pWInfo = 0;
4752     goto whereBeginError;
4753   }
4754   pWInfo->pParse = pParse;
4755   pWInfo->pTabList = pTabList;
4756   pWInfo->pOrderBy = pOrderBy;
4757   pWInfo->pWhere = pWhere;
4758   pWInfo->pResultSet = pResultSet;
4759   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
4760   pWInfo->nLevel = nTabList;
4761   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse);
4762   pWInfo->wctrlFlags = wctrlFlags;
4763   pWInfo->iLimit = iAuxArg;
4764   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
4765   memset(&pWInfo->nOBSat, 0,
4766          offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
4767   memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
4768   assert( pWInfo->eOnePass==ONEPASS_OFF );  /* ONEPASS defaults to OFF */
4769   pMaskSet = &pWInfo->sMaskSet;
4770   sWLB.pWInfo = pWInfo;
4771   sWLB.pWC = &pWInfo->sWC;
4772   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
4773   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
4774   whereLoopInit(sWLB.pNew);
4775 #ifdef SQLITE_DEBUG
4776   sWLB.pNew->cId = '*';
4777 #endif
4778 
4779   /* Split the WHERE clause into separate subexpressions where each
4780   ** subexpression is separated by an AND operator.
4781   */
4782   initMaskSet(pMaskSet);
4783   sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
4784   sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
4785 
4786   /* Special case: No FROM clause
4787   */
4788   if( nTabList==0 ){
4789     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
4790     if( wctrlFlags & WHERE_WANT_DISTINCT ){
4791       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4792     }
4793     ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
4794   }else{
4795     /* Assign a bit from the bitmask to every term in the FROM clause.
4796     **
4797     ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
4798     **
4799     ** The rule of the previous sentence ensures thta if X is the bitmask for
4800     ** a table T, then X-1 is the bitmask for all other tables to the left of T.
4801     ** Knowing the bitmask for all tables to the left of a left join is
4802     ** important.  Ticket #3015.
4803     **
4804     ** Note that bitmasks are created for all pTabList->nSrc tables in
4805     ** pTabList, not just the first nTabList tables.  nTabList is normally
4806     ** equal to pTabList->nSrc but might be shortened to 1 if the
4807     ** WHERE_OR_SUBCLAUSE flag is set.
4808     */
4809     ii = 0;
4810     do{
4811       createMask(pMaskSet, pTabList->a[ii].iCursor);
4812       sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
4813     }while( (++ii)<pTabList->nSrc );
4814   #ifdef SQLITE_DEBUG
4815     {
4816       Bitmask mx = 0;
4817       for(ii=0; ii<pTabList->nSrc; ii++){
4818         Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
4819         assert( m>=mx );
4820         mx = m;
4821       }
4822     }
4823   #endif
4824   }
4825 
4826   /* Analyze all of the subexpressions. */
4827   sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
4828   if( db->mallocFailed ) goto whereBeginError;
4829 
4830   /* Special case: WHERE terms that do not refer to any tables in the join
4831   ** (constant expressions). Evaluate each such term, and jump over all the
4832   ** generated code if the result is not true.
4833   **
4834   ** Do not do this if the expression contains non-deterministic functions
4835   ** that are not within a sub-select. This is not strictly required, but
4836   ** preserves SQLite's legacy behaviour in the following two cases:
4837   **
4838   **   FROM ... WHERE random()>0;           -- eval random() once per row
4839   **   FROM ... WHERE (SELECT random())>0;  -- eval random() once overall
4840   */
4841   for(ii=0; ii<sWLB.pWC->nTerm; ii++){
4842     WhereTerm *pT = &sWLB.pWC->a[ii];
4843     if( pT->wtFlags & TERM_VIRTUAL ) continue;
4844     if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
4845       sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
4846       pT->wtFlags |= TERM_CODED;
4847     }
4848   }
4849 
4850   if( wctrlFlags & WHERE_WANT_DISTINCT ){
4851     if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
4852       /* The DISTINCT marking is pointless.  Ignore it. */
4853       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4854     }else if( pOrderBy==0 ){
4855       /* Try to ORDER BY the result set to make distinct processing easier */
4856       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
4857       pWInfo->pOrderBy = pResultSet;
4858     }
4859   }
4860 
4861   /* Construct the WhereLoop objects */
4862 #if defined(WHERETRACE_ENABLED)
4863   if( sqlite3WhereTrace & 0xffff ){
4864     sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
4865     if( wctrlFlags & WHERE_USE_LIMIT ){
4866       sqlite3DebugPrintf(", limit: %d", iAuxArg);
4867     }
4868     sqlite3DebugPrintf(")\n");
4869     if( sqlite3WhereTrace & 0x100 ){
4870       Select sSelect;
4871       memset(&sSelect, 0, sizeof(sSelect));
4872       sSelect.selFlags = SF_WhereBegin;
4873       sSelect.pSrc = pTabList;
4874       sSelect.pWhere = pWhere;
4875       sSelect.pOrderBy = pOrderBy;
4876       sSelect.pEList = pResultSet;
4877       sqlite3TreeViewSelect(0, &sSelect, 0);
4878     }
4879   }
4880   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
4881     sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
4882     sqlite3WhereClausePrint(sWLB.pWC);
4883   }
4884 #endif
4885 
4886   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
4887     rc = whereLoopAddAll(&sWLB);
4888     if( rc ) goto whereBeginError;
4889 
4890 #ifdef SQLITE_ENABLE_STAT4
4891     /* If one or more WhereTerm.truthProb values were used in estimating
4892     ** loop parameters, but then those truthProb values were subsequently
4893     ** changed based on STAT4 information while computing subsequent loops,
4894     ** then we need to rerun the whole loop building process so that all
4895     ** loops will be built using the revised truthProb values. */
4896     if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){
4897       WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
4898       WHERETRACE(0xffff,
4899            ("**** Redo all loop computations due to"
4900             " TERM_HIGHTRUTH changes ****\n"));
4901       while( pWInfo->pLoops ){
4902         WhereLoop *p = pWInfo->pLoops;
4903         pWInfo->pLoops = p->pNextLoop;
4904         whereLoopDelete(db, p);
4905       }
4906       rc = whereLoopAddAll(&sWLB);
4907       if( rc ) goto whereBeginError;
4908     }
4909 #endif
4910     WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
4911 
4912     wherePathSolver(pWInfo, 0);
4913     if( db->mallocFailed ) goto whereBeginError;
4914     if( pWInfo->pOrderBy ){
4915        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
4916        if( db->mallocFailed ) goto whereBeginError;
4917     }
4918   }
4919   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
4920      pWInfo->revMask = ALLBITS;
4921   }
4922   if( pParse->nErr || NEVER(db->mallocFailed) ){
4923     goto whereBeginError;
4924   }
4925 #ifdef WHERETRACE_ENABLED
4926   if( sqlite3WhereTrace ){
4927     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
4928     if( pWInfo->nOBSat>0 ){
4929       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
4930     }
4931     switch( pWInfo->eDistinct ){
4932       case WHERE_DISTINCT_UNIQUE: {
4933         sqlite3DebugPrintf("  DISTINCT=unique");
4934         break;
4935       }
4936       case WHERE_DISTINCT_ORDERED: {
4937         sqlite3DebugPrintf("  DISTINCT=ordered");
4938         break;
4939       }
4940       case WHERE_DISTINCT_UNORDERED: {
4941         sqlite3DebugPrintf("  DISTINCT=unordered");
4942         break;
4943       }
4944     }
4945     sqlite3DebugPrintf("\n");
4946     for(ii=0; ii<pWInfo->nLevel; ii++){
4947       sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
4948     }
4949   }
4950 #endif
4951 
4952   /* Attempt to omit tables from the join that do not affect the result.
4953   ** For a table to not affect the result, the following must be true:
4954   **
4955   **   1) The query must not be an aggregate.
4956   **   2) The table must be the RHS of a LEFT JOIN.
4957   **   3) Either the query must be DISTINCT, or else the ON or USING clause
4958   **      must contain a constraint that limits the scan of the table to
4959   **      at most a single row.
4960   **   4) The table must not be referenced by any part of the query apart
4961   **      from its own USING or ON clause.
4962   **
4963   ** For example, given:
4964   **
4965   **     CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
4966   **     CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
4967   **     CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
4968   **
4969   ** then table t2 can be omitted from the following:
4970   **
4971   **     SELECT v1, v3 FROM t1
4972   **       LEFT JOIN t2 ON (t1.ipk=t2.ipk)
4973   **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
4974   **
4975   ** or from:
4976   **
4977   **     SELECT DISTINCT v1, v3 FROM t1
4978   **       LEFT JOIN t2
4979   **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
4980   */
4981   notReady = ~(Bitmask)0;
4982   if( pWInfo->nLevel>=2
4983    && pResultSet!=0               /* guarantees condition (1) above */
4984    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
4985   ){
4986     int i;
4987     Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet);
4988     if( sWLB.pOrderBy ){
4989       tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy);
4990     }
4991     for(i=pWInfo->nLevel-1; i>=1; i--){
4992       WhereTerm *pTerm, *pEnd;
4993       struct SrcList_item *pItem;
4994       pLoop = pWInfo->a[i].pWLoop;
4995       pItem = &pWInfo->pTabList->a[pLoop->iTab];
4996       if( (pItem->fg.jointype & JT_LEFT)==0 ) continue;
4997       if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
4998        && (pLoop->wsFlags & WHERE_ONEROW)==0
4999       ){
5000         continue;
5001       }
5002       if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
5003       pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
5004       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
5005         if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5006           if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
5007            || pTerm->pExpr->iRightJoinTable!=pItem->iCursor
5008           ){
5009             break;
5010           }
5011         }
5012       }
5013       if( pTerm<pEnd ) continue;
5014       WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
5015       notReady &= ~pLoop->maskSelf;
5016       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
5017         if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5018           pTerm->wtFlags |= TERM_CODED;
5019         }
5020       }
5021       if( i!=pWInfo->nLevel-1 ){
5022         int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
5023         memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
5024       }
5025       pWInfo->nLevel--;
5026       nTabList--;
5027     }
5028   }
5029 #if defined(WHERETRACE_ENABLED)
5030   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5031     sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
5032     sqlite3WhereClausePrint(sWLB.pWC);
5033   }
5034   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
5035 #endif
5036   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
5037 
5038   /* If the caller is an UPDATE or DELETE statement that is requesting
5039   ** to use a one-pass algorithm, determine if this is appropriate.
5040   **
5041   ** A one-pass approach can be used if the caller has requested one
5042   ** and either (a) the scan visits at most one row or (b) each
5043   ** of the following are true:
5044   **
5045   **   * the caller has indicated that a one-pass approach can be used
5046   **     with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
5047   **   * the table is not a virtual table, and
5048   **   * either the scan does not use the OR optimization or the caller
5049   **     is a DELETE operation (WHERE_DUPLICATES_OK is only specified
5050   **     for DELETE).
5051   **
5052   ** The last qualification is because an UPDATE statement uses
5053   ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
5054   ** use a one-pass approach, and this is not set accurately for scans
5055   ** that use the OR optimization.
5056   */
5057   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
5058   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
5059     int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
5060     int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
5061     assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) );
5062     if( bOnerow || (
5063         0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
5064      && !IsVirtual(pTabList->a[0].pTab)
5065      && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
5066     )){
5067       pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
5068       if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
5069         if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
5070           bFordelete = OPFLAG_FORDELETE;
5071         }
5072         pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
5073       }
5074     }
5075   }
5076 
5077   /* Open all tables in the pTabList and any indices selected for
5078   ** searching those tables.
5079   */
5080   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
5081     Table *pTab;     /* Table to open */
5082     int iDb;         /* Index of database containing table/index */
5083     struct SrcList_item *pTabItem;
5084 
5085     pTabItem = &pTabList->a[pLevel->iFrom];
5086     pTab = pTabItem->pTab;
5087     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5088     pLoop = pLevel->pWLoop;
5089     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
5090       /* Do nothing */
5091     }else
5092 #ifndef SQLITE_OMIT_VIRTUALTABLE
5093     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
5094       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
5095       int iCur = pTabItem->iCursor;
5096       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
5097     }else if( IsVirtual(pTab) ){
5098       /* noop */
5099     }else
5100 #endif
5101     if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
5102          && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
5103       int op = OP_OpenRead;
5104       if( pWInfo->eOnePass!=ONEPASS_OFF ){
5105         op = OP_OpenWrite;
5106         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
5107       };
5108       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
5109       assert( pTabItem->iCursor==pLevel->iTabCur );
5110       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
5111       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
5112       if( pWInfo->eOnePass==ONEPASS_OFF
5113        && pTab->nCol<BMS
5114        && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0
5115       ){
5116         /* If we know that only a prefix of the record will be used,
5117         ** it is advantageous to reduce the "column count" field in
5118         ** the P4 operand of the OP_OpenRead/Write opcode. */
5119         Bitmask b = pTabItem->colUsed;
5120         int n = 0;
5121         for(; b; b=b>>1, n++){}
5122         sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
5123         assert( n<=pTab->nCol );
5124       }
5125 #ifdef SQLITE_ENABLE_CURSOR_HINTS
5126       if( pLoop->u.btree.pIndex!=0 ){
5127         sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
5128       }else
5129 #endif
5130       {
5131         sqlite3VdbeChangeP5(v, bFordelete);
5132       }
5133 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5134       sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
5135                             (const u8*)&pTabItem->colUsed, P4_INT64);
5136 #endif
5137     }else{
5138       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5139     }
5140     if( pLoop->wsFlags & WHERE_INDEXED ){
5141       Index *pIx = pLoop->u.btree.pIndex;
5142       int iIndexCur;
5143       int op = OP_OpenRead;
5144       /* iAuxArg is always set to a positive value if ONEPASS is possible */
5145       assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
5146       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
5147        && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
5148       ){
5149         /* This is one term of an OR-optimization using the PRIMARY KEY of a
5150         ** WITHOUT ROWID table.  No need for a separate index */
5151         iIndexCur = pLevel->iTabCur;
5152         op = 0;
5153       }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
5154         Index *pJ = pTabItem->pTab->pIndex;
5155         iIndexCur = iAuxArg;
5156         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
5157         while( ALWAYS(pJ) && pJ!=pIx ){
5158           iIndexCur++;
5159           pJ = pJ->pNext;
5160         }
5161         op = OP_OpenWrite;
5162         pWInfo->aiCurOnePass[1] = iIndexCur;
5163       }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
5164         iIndexCur = iAuxArg;
5165         op = OP_ReopenIdx;
5166       }else{
5167         iIndexCur = pParse->nTab++;
5168       }
5169       pLevel->iIdxCur = iIndexCur;
5170       assert( pIx->pSchema==pTab->pSchema );
5171       assert( iIndexCur>=0 );
5172       if( op ){
5173         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
5174         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
5175         if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
5176          && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
5177          && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0
5178          && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
5179          && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
5180         ){
5181           sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ);
5182         }
5183         VdbeComment((v, "%s", pIx->zName));
5184 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5185         {
5186           u64 colUsed = 0;
5187           int ii, jj;
5188           for(ii=0; ii<pIx->nColumn; ii++){
5189             jj = pIx->aiColumn[ii];
5190             if( jj<0 ) continue;
5191             if( jj>63 ) jj = 63;
5192             if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
5193             colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
5194           }
5195           sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
5196                                 (u8*)&colUsed, P4_INT64);
5197         }
5198 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
5199       }
5200     }
5201     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
5202   }
5203   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
5204   if( db->mallocFailed ) goto whereBeginError;
5205 
5206   /* Generate the code to do the search.  Each iteration of the for
5207   ** loop below generates code for a single nested loop of the VM
5208   ** program.
5209   */
5210   for(ii=0; ii<nTabList; ii++){
5211     int addrExplain;
5212     int wsFlags;
5213     pLevel = &pWInfo->a[ii];
5214     wsFlags = pLevel->pWLoop->wsFlags;
5215 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
5216     if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
5217       constructAutomaticIndex(pParse, &pWInfo->sWC,
5218                 &pTabList->a[pLevel->iFrom], notReady, pLevel);
5219       if( db->mallocFailed ) goto whereBeginError;
5220     }
5221 #endif
5222     addrExplain = sqlite3WhereExplainOneScan(
5223         pParse, pTabList, pLevel, wctrlFlags
5224     );
5225     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
5226     notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady);
5227     pWInfo->iContinue = pLevel->addrCont;
5228     if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
5229       sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
5230     }
5231   }
5232 
5233   /* Done. */
5234   VdbeModuleComment((v, "Begin WHERE-core"));
5235   return pWInfo;
5236 
5237   /* Jump here if malloc fails */
5238 whereBeginError:
5239   if( pWInfo ){
5240     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5241     whereInfoFree(db, pWInfo);
5242   }
5243   return 0;
5244 }
5245 
5246 /*
5247 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
5248 ** index rather than the main table.  In SQLITE_DEBUG mode, we want
5249 ** to trace those changes if PRAGMA vdbe_addoptrace=on.  This routine
5250 ** does that.
5251 */
5252 #ifndef SQLITE_DEBUG
5253 # define OpcodeRewriteTrace(D,K,P) /* no-op */
5254 #else
5255 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
5256   static void sqlite3WhereOpcodeRewriteTrace(
5257     sqlite3 *db,
5258     int pc,
5259     VdbeOp *pOp
5260   ){
5261     if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
5262     sqlite3VdbePrintOp(0, pc, pOp);
5263   }
5264 #endif
5265 
5266 /*
5267 ** Generate the end of the WHERE loop.  See comments on
5268 ** sqlite3WhereBegin() for additional information.
5269 */
5270 void sqlite3WhereEnd(WhereInfo *pWInfo){
5271   Parse *pParse = pWInfo->pParse;
5272   Vdbe *v = pParse->pVdbe;
5273   int i;
5274   WhereLevel *pLevel;
5275   WhereLoop *pLoop;
5276   SrcList *pTabList = pWInfo->pTabList;
5277   sqlite3 *db = pParse->db;
5278 
5279   /* Generate loop termination code.
5280   */
5281   VdbeModuleComment((v, "End WHERE-core"));
5282   for(i=pWInfo->nLevel-1; i>=0; i--){
5283     int addr;
5284     pLevel = &pWInfo->a[i];
5285     pLoop = pLevel->pWLoop;
5286     if( pLevel->op!=OP_Noop ){
5287 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5288       int addrSeek = 0;
5289       Index *pIdx;
5290       int n;
5291       if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
5292        && i==pWInfo->nLevel-1  /* Ticket [ef9318757b152e3] 2017-10-21 */
5293        && (pLoop->wsFlags & WHERE_INDEXED)!=0
5294        && (pIdx = pLoop->u.btree.pIndex)->hasStat1
5295        && (n = pLoop->u.btree.nDistinctCol)>0
5296        && pIdx->aiRowLogEst[n]>=36
5297       ){
5298         int r1 = pParse->nMem+1;
5299         int j, op;
5300         for(j=0; j<n; j++){
5301           sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
5302         }
5303         pParse->nMem += n+1;
5304         op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
5305         addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
5306         VdbeCoverageIf(v, op==OP_SeekLT);
5307         VdbeCoverageIf(v, op==OP_SeekGT);
5308         sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
5309       }
5310 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
5311       /* The common case: Advance to the next row */
5312       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5313       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
5314       sqlite3VdbeChangeP5(v, pLevel->p5);
5315       VdbeCoverage(v);
5316       VdbeCoverageIf(v, pLevel->op==OP_Next);
5317       VdbeCoverageIf(v, pLevel->op==OP_Prev);
5318       VdbeCoverageIf(v, pLevel->op==OP_VNext);
5319       if( pLevel->regBignull ){
5320         sqlite3VdbeResolveLabel(v, pLevel->addrBignull);
5321         sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1);
5322         VdbeCoverage(v);
5323       }
5324 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5325       if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
5326 #endif
5327     }else{
5328       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5329     }
5330     if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
5331       struct InLoop *pIn;
5332       int j;
5333       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
5334       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
5335         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5336         if( pIn->eEndLoopOp!=OP_Noop ){
5337           if( pIn->nPrefix ){
5338             assert( pLoop->wsFlags & WHERE_IN_EARLYOUT );
5339             if( pLevel->iLeftJoin ){
5340               /* For LEFT JOIN queries, cursor pIn->iCur may not have been
5341               ** opened yet. This occurs for WHERE clauses such as
5342               ** "a = ? AND b IN (...)", where the index is on (a, b). If
5343               ** the RHS of the (a=?) is NULL, then the "b IN (...)" may
5344               ** never have been coded, but the body of the loop run to
5345               ** return the null-row. So, if the cursor is not open yet,
5346               ** jump over the OP_Next or OP_Prev instruction about to
5347               ** be coded.  */
5348               sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur,
5349                   sqlite3VdbeCurrentAddr(v) + 2 +
5350                      ((pLoop->wsFlags & WHERE_VIRTUALTABLE)==0)
5351               );
5352               VdbeCoverage(v);
5353             }
5354             if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ){
5355               sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
5356                   sqlite3VdbeCurrentAddr(v)+2,
5357                   pIn->iBase, pIn->nPrefix);
5358               VdbeCoverage(v);
5359             }
5360           }
5361           sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
5362           VdbeCoverage(v);
5363           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
5364           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
5365         }
5366         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
5367       }
5368     }
5369     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
5370     if( pLevel->addrSkip ){
5371       sqlite3VdbeGoto(v, pLevel->addrSkip);
5372       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
5373       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
5374       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
5375     }
5376 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
5377     if( pLevel->addrLikeRep ){
5378       sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
5379                         pLevel->addrLikeRep);
5380       VdbeCoverage(v);
5381     }
5382 #endif
5383     if( pLevel->iLeftJoin ){
5384       int ws = pLoop->wsFlags;
5385       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
5386       assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
5387       if( (ws & WHERE_IDX_ONLY)==0 ){
5388         assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
5389         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
5390       }
5391       if( (ws & WHERE_INDEXED)
5392        || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx)
5393       ){
5394         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
5395       }
5396       if( pLevel->op==OP_Return ){
5397         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
5398       }else{
5399         sqlite3VdbeGoto(v, pLevel->addrFirst);
5400       }
5401       sqlite3VdbeJumpHere(v, addr);
5402     }
5403     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
5404                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
5405   }
5406 
5407   /* The "break" point is here, just past the end of the outer loop.
5408   ** Set it.
5409   */
5410   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
5411 
5412   assert( pWInfo->nLevel<=pTabList->nSrc );
5413   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
5414     int k, last;
5415     VdbeOp *pOp;
5416     Index *pIdx = 0;
5417     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
5418     Table *pTab = pTabItem->pTab;
5419     assert( pTab!=0 );
5420     pLoop = pLevel->pWLoop;
5421 
5422     /* For a co-routine, change all OP_Column references to the table of
5423     ** the co-routine into OP_Copy of result contained in a register.
5424     ** OP_Rowid becomes OP_Null.
5425     */
5426     if( pTabItem->fg.viaCoroutine ){
5427       testcase( pParse->db->mallocFailed );
5428       translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
5429                             pTabItem->regResult, 0);
5430       continue;
5431     }
5432 
5433 #ifdef SQLITE_ENABLE_EARLY_CURSOR_CLOSE
5434     /* Close all of the cursors that were opened by sqlite3WhereBegin.
5435     ** Except, do not close cursors that will be reused by the OR optimization
5436     ** (WHERE_OR_SUBCLAUSE).  And do not close the OP_OpenWrite cursors
5437     ** created for the ONEPASS optimization.
5438     */
5439     if( (pTab->tabFlags & TF_Ephemeral)==0
5440      && pTab->pSelect==0
5441      && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5442     ){
5443       int ws = pLoop->wsFlags;
5444       if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){
5445         sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
5446       }
5447       if( (ws & WHERE_INDEXED)!=0
5448        && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0
5449        && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1]
5450       ){
5451         sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
5452       }
5453     }
5454 #endif
5455 
5456     /* If this scan uses an index, make VDBE code substitutions to read data
5457     ** from the index instead of from the table where possible.  In some cases
5458     ** this optimization prevents the table from ever being read, which can
5459     ** yield a significant performance boost.
5460     **
5461     ** Calls to the code generator in between sqlite3WhereBegin and
5462     ** sqlite3WhereEnd will have created code that references the table
5463     ** directly.  This loop scans all that code looking for opcodes
5464     ** that reference the table and converts them into opcodes that
5465     ** reference the index.
5466     */
5467     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
5468       pIdx = pLoop->u.btree.pIndex;
5469     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
5470       pIdx = pLevel->u.pCovidx;
5471     }
5472     if( pIdx
5473      && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable))
5474      && !db->mallocFailed
5475     ){
5476       last = sqlite3VdbeCurrentAddr(v);
5477       k = pLevel->addrBody;
5478 #ifdef SQLITE_DEBUG
5479       if( db->flags & SQLITE_VdbeAddopTrace ){
5480         printf("TRANSLATE opcodes in range %d..%d\n", k, last-1);
5481       }
5482 #endif
5483       pOp = sqlite3VdbeGetOp(v, k);
5484       for(; k<last; k++, pOp++){
5485         if( pOp->p1!=pLevel->iTabCur ) continue;
5486         if( pOp->opcode==OP_Column
5487 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
5488          || pOp->opcode==OP_Offset
5489 #endif
5490         ){
5491           int x = pOp->p2;
5492           assert( pIdx->pTable==pTab );
5493           if( !HasRowid(pTab) ){
5494             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
5495             x = pPk->aiColumn[x];
5496             assert( x>=0 );
5497           }else{
5498             testcase( x!=sqlite3StorageColumnToTable(pTab,x) );
5499             x = sqlite3StorageColumnToTable(pTab,x);
5500           }
5501           x = sqlite3TableColumnToIndex(pIdx, x);
5502           if( x>=0 ){
5503             pOp->p2 = x;
5504             pOp->p1 = pLevel->iIdxCur;
5505             OpcodeRewriteTrace(db, k, pOp);
5506           }
5507           assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0
5508               || pWInfo->eOnePass );
5509         }else if( pOp->opcode==OP_Rowid ){
5510           pOp->p1 = pLevel->iIdxCur;
5511           pOp->opcode = OP_IdxRowid;
5512           OpcodeRewriteTrace(db, k, pOp);
5513         }else if( pOp->opcode==OP_IfNullRow ){
5514           pOp->p1 = pLevel->iIdxCur;
5515           OpcodeRewriteTrace(db, k, pOp);
5516         }
5517       }
5518 #ifdef SQLITE_DEBUG
5519       if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
5520 #endif
5521     }
5522   }
5523 
5524   /* Undo all Expr node modifications */
5525   while( pWInfo->pExprMods ){
5526     WhereExprMod *p = pWInfo->pExprMods;
5527     pWInfo->pExprMods = p->pNext;
5528     memcpy(p->pExpr, &p->orig, sizeof(p->orig));
5529     sqlite3DbFree(db, p);
5530   }
5531 
5532   /* Final cleanup
5533   */
5534   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5535   whereInfoFree(db, pWInfo);
5536   return;
5537 }
5538