1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* 23 ** Extra information appended to the end of sqlite3_index_info but not 24 ** visible to the xBestIndex function, at least not directly. The 25 ** sqlite3_vtab_collation() interface knows how to reach it, however. 26 ** 27 ** This object is not an API and can be changed from one release to the 28 ** next. As long as allocateIndexInfo() and sqlite3_vtab_collation() 29 ** agree on the structure, all will be well. 30 */ 31 typedef struct HiddenIndexInfo HiddenIndexInfo; 32 struct HiddenIndexInfo { 33 WhereClause *pWC; /* The Where clause being analyzed */ 34 Parse *pParse; /* The parsing context */ 35 int eDistinct; /* Value to return from sqlite3_vtab_distinct() */ 36 u32 mIn; /* Mask of terms that are <col> IN (...) */ 37 u32 mHandleIn; /* Terms that vtab will handle as <col> IN (...) */ 38 sqlite3_value *aRhs[1]; /* RHS values for constraints. MUST BE LAST 39 ** because extra space is allocated to hold up 40 ** to nTerm such values */ 41 }; 42 43 /* Forward declaration of methods */ 44 static int whereLoopResize(sqlite3*, WhereLoop*, int); 45 46 /* 47 ** Return the estimated number of output rows from a WHERE clause 48 */ 49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ 50 return pWInfo->nRowOut; 51 } 52 53 /* 54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this 55 ** WHERE clause returns outputs for DISTINCT processing. 56 */ 57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ 58 return pWInfo->eDistinct; 59 } 60 61 /* 62 ** Return the number of ORDER BY terms that are satisfied by the 63 ** WHERE clause. A return of 0 means that the output must be 64 ** completely sorted. A return equal to the number of ORDER BY 65 ** terms means that no sorting is needed at all. A return that 66 ** is positive but less than the number of ORDER BY terms means that 67 ** block sorting is required. 68 */ 69 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ 70 return pWInfo->nOBSat; 71 } 72 73 /* 74 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known 75 ** to emit rows in increasing order, and if the last row emitted by the 76 ** inner-most loop did not fit within the sorter, then we can skip all 77 ** subsequent rows for the current iteration of the inner loop (because they 78 ** will not fit in the sorter either) and continue with the second inner 79 ** loop - the loop immediately outside the inner-most. 80 ** 81 ** When a row does not fit in the sorter (because the sorter already 82 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the 83 ** label returned by this function. 84 ** 85 ** If the ORDER BY LIMIT optimization applies, the jump destination should 86 ** be the continuation for the second-inner-most loop. If the ORDER BY 87 ** LIMIT optimization does not apply, then the jump destination should 88 ** be the continuation for the inner-most loop. 89 ** 90 ** It is always safe for this routine to return the continuation of the 91 ** inner-most loop, in the sense that a correct answer will result. 92 ** Returning the continuation the second inner loop is an optimization 93 ** that might make the code run a little faster, but should not change 94 ** the final answer. 95 */ 96 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){ 97 WhereLevel *pInner; 98 if( !pWInfo->bOrderedInnerLoop ){ 99 /* The ORDER BY LIMIT optimization does not apply. Jump to the 100 ** continuation of the inner-most loop. */ 101 return pWInfo->iContinue; 102 } 103 pInner = &pWInfo->a[pWInfo->nLevel-1]; 104 assert( pInner->addrNxt!=0 ); 105 return pInner->pRJ ? pWInfo->iContinue : pInner->addrNxt; 106 } 107 108 /* 109 ** While generating code for the min/max optimization, after handling 110 ** the aggregate-step call to min() or max(), check to see if any 111 ** additional looping is required. If the output order is such that 112 ** we are certain that the correct answer has already been found, then 113 ** code an OP_Goto to by pass subsequent processing. 114 ** 115 ** Any extra OP_Goto that is coded here is an optimization. The 116 ** correct answer should be obtained regardless. This OP_Goto just 117 ** makes the answer appear faster. 118 */ 119 void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){ 120 WhereLevel *pInner; 121 int i; 122 if( !pWInfo->bOrderedInnerLoop ) return; 123 if( pWInfo->nOBSat==0 ) return; 124 for(i=pWInfo->nLevel-1; i>=0; i--){ 125 pInner = &pWInfo->a[i]; 126 if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){ 127 sqlite3VdbeGoto(v, pInner->addrNxt); 128 return; 129 } 130 } 131 sqlite3VdbeGoto(v, pWInfo->iBreak); 132 } 133 134 /* 135 ** Return the VDBE address or label to jump to in order to continue 136 ** immediately with the next row of a WHERE clause. 137 */ 138 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ 139 assert( pWInfo->iContinue!=0 ); 140 return pWInfo->iContinue; 141 } 142 143 /* 144 ** Return the VDBE address or label to jump to in order to break 145 ** out of a WHERE loop. 146 */ 147 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ 148 return pWInfo->iBreak; 149 } 150 151 /* 152 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to 153 ** operate directly on the rowids returned by a WHERE clause. Return 154 ** ONEPASS_SINGLE (1) if the statement can operation directly because only 155 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass 156 ** optimization can be used on multiple 157 ** 158 ** If the ONEPASS optimization is used (if this routine returns true) 159 ** then also write the indices of open cursors used by ONEPASS 160 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data 161 ** table and iaCur[1] gets the cursor used by an auxiliary index. 162 ** Either value may be -1, indicating that cursor is not used. 163 ** Any cursors returned will have been opened for writing. 164 ** 165 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is 166 ** unable to use the ONEPASS optimization. 167 */ 168 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ 169 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); 170 #ifdef WHERETRACE_ENABLED 171 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){ 172 sqlite3DebugPrintf("%s cursors: %d %d\n", 173 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI", 174 aiCur[0], aiCur[1]); 175 } 176 #endif 177 return pWInfo->eOnePass; 178 } 179 180 /* 181 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move 182 ** the data cursor to the row selected by the index cursor. 183 */ 184 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){ 185 return pWInfo->bDeferredSeek; 186 } 187 188 /* 189 ** Move the content of pSrc into pDest 190 */ 191 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ 192 pDest->n = pSrc->n; 193 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); 194 } 195 196 /* 197 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. 198 ** 199 ** The new entry might overwrite an existing entry, or it might be 200 ** appended, or it might be discarded. Do whatever is the right thing 201 ** so that pSet keeps the N_OR_COST best entries seen so far. 202 */ 203 static int whereOrInsert( 204 WhereOrSet *pSet, /* The WhereOrSet to be updated */ 205 Bitmask prereq, /* Prerequisites of the new entry */ 206 LogEst rRun, /* Run-cost of the new entry */ 207 LogEst nOut /* Number of outputs for the new entry */ 208 ){ 209 u16 i; 210 WhereOrCost *p; 211 for(i=pSet->n, p=pSet->a; i>0; i--, p++){ 212 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ 213 goto whereOrInsert_done; 214 } 215 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ 216 return 0; 217 } 218 } 219 if( pSet->n<N_OR_COST ){ 220 p = &pSet->a[pSet->n++]; 221 p->nOut = nOut; 222 }else{ 223 p = pSet->a; 224 for(i=1; i<pSet->n; i++){ 225 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; 226 } 227 if( p->rRun<=rRun ) return 0; 228 } 229 whereOrInsert_done: 230 p->prereq = prereq; 231 p->rRun = rRun; 232 if( p->nOut>nOut ) p->nOut = nOut; 233 return 1; 234 } 235 236 /* 237 ** Return the bitmask for the given cursor number. Return 0 if 238 ** iCursor is not in the set. 239 */ 240 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ 241 int i; 242 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); 243 assert( pMaskSet->n>0 || pMaskSet->ix[0]<0 ); 244 assert( iCursor>=-1 ); 245 if( pMaskSet->ix[0]==iCursor ){ 246 return 1; 247 } 248 for(i=1; i<pMaskSet->n; i++){ 249 if( pMaskSet->ix[i]==iCursor ){ 250 return MASKBIT(i); 251 } 252 } 253 return 0; 254 } 255 256 /* Allocate memory that is automatically freed when pWInfo is freed. 257 */ 258 void *sqlite3WhereMalloc(WhereInfo *pWInfo, u64 nByte){ 259 WhereMemBlock *pBlock; 260 pBlock = sqlite3DbMallocRawNN(pWInfo->pParse->db, nByte+sizeof(*pBlock)); 261 if( pBlock ){ 262 pBlock->pNext = pWInfo->pMemToFree; 263 pBlock->sz = nByte; 264 pWInfo->pMemToFree = pBlock; 265 pBlock++; 266 } 267 return (void*)pBlock; 268 } 269 void *sqlite3WhereRealloc(WhereInfo *pWInfo, void *pOld, u64 nByte){ 270 void *pNew = sqlite3WhereMalloc(pWInfo, nByte); 271 if( pNew && pOld ){ 272 WhereMemBlock *pOldBlk = (WhereMemBlock*)pOld; 273 pOldBlk--; 274 assert( pOldBlk->sz<nByte ); 275 memcpy(pNew, pOld, pOldBlk->sz); 276 } 277 return pNew; 278 } 279 280 /* 281 ** Create a new mask for cursor iCursor. 282 ** 283 ** There is one cursor per table in the FROM clause. The number of 284 ** tables in the FROM clause is limited by a test early in the 285 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 286 ** array will never overflow. 287 */ 288 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 289 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 290 pMaskSet->ix[pMaskSet->n++] = iCursor; 291 } 292 293 /* 294 ** If the right-hand branch of the expression is a TK_COLUMN, then return 295 ** a pointer to the right-hand branch. Otherwise, return NULL. 296 */ 297 static Expr *whereRightSubexprIsColumn(Expr *p){ 298 p = sqlite3ExprSkipCollateAndLikely(p->pRight); 299 if( ALWAYS(p!=0) && p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){ 300 return p; 301 } 302 return 0; 303 } 304 305 /* 306 ** Advance to the next WhereTerm that matches according to the criteria 307 ** established when the pScan object was initialized by whereScanInit(). 308 ** Return NULL if there are no more matching WhereTerms. 309 */ 310 static WhereTerm *whereScanNext(WhereScan *pScan){ 311 int iCur; /* The cursor on the LHS of the term */ 312 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */ 313 Expr *pX; /* An expression being tested */ 314 WhereClause *pWC; /* Shorthand for pScan->pWC */ 315 WhereTerm *pTerm; /* The term being tested */ 316 int k = pScan->k; /* Where to start scanning */ 317 318 assert( pScan->iEquiv<=pScan->nEquiv ); 319 pWC = pScan->pWC; 320 while(1){ 321 iColumn = pScan->aiColumn[pScan->iEquiv-1]; 322 iCur = pScan->aiCur[pScan->iEquiv-1]; 323 assert( pWC!=0 ); 324 assert( iCur>=0 ); 325 do{ 326 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ 327 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 || pTerm->leftCursor<0 ); 328 if( pTerm->leftCursor==iCur 329 && pTerm->u.x.leftColumn==iColumn 330 && (iColumn!=XN_EXPR 331 || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft, 332 pScan->pIdxExpr,iCur)==0) 333 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_OuterON)) 334 ){ 335 if( (pTerm->eOperator & WO_EQUIV)!=0 336 && pScan->nEquiv<ArraySize(pScan->aiCur) 337 && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0 338 ){ 339 int j; 340 for(j=0; j<pScan->nEquiv; j++){ 341 if( pScan->aiCur[j]==pX->iTable 342 && pScan->aiColumn[j]==pX->iColumn ){ 343 break; 344 } 345 } 346 if( j==pScan->nEquiv ){ 347 pScan->aiCur[j] = pX->iTable; 348 pScan->aiColumn[j] = pX->iColumn; 349 pScan->nEquiv++; 350 } 351 } 352 if( (pTerm->eOperator & pScan->opMask)!=0 ){ 353 /* Verify the affinity and collating sequence match */ 354 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ 355 CollSeq *pColl; 356 Parse *pParse = pWC->pWInfo->pParse; 357 pX = pTerm->pExpr; 358 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ 359 continue; 360 } 361 assert(pX->pLeft); 362 pColl = sqlite3ExprCompareCollSeq(pParse, pX); 363 if( pColl==0 ) pColl = pParse->db->pDfltColl; 364 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ 365 continue; 366 } 367 } 368 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0 369 && (pX = pTerm->pExpr->pRight, ALWAYS(pX!=0)) 370 && pX->op==TK_COLUMN 371 && pX->iTable==pScan->aiCur[0] 372 && pX->iColumn==pScan->aiColumn[0] 373 ){ 374 testcase( pTerm->eOperator & WO_IS ); 375 continue; 376 } 377 pScan->pWC = pWC; 378 pScan->k = k+1; 379 #ifdef WHERETRACE_ENABLED 380 if( sqlite3WhereTrace & 0x20000 ){ 381 int ii; 382 sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d", 383 pTerm, pScan->nEquiv); 384 for(ii=0; ii<pScan->nEquiv; ii++){ 385 sqlite3DebugPrintf(" {%d:%d}", 386 pScan->aiCur[ii], pScan->aiColumn[ii]); 387 } 388 sqlite3DebugPrintf("\n"); 389 } 390 #endif 391 return pTerm; 392 } 393 } 394 } 395 pWC = pWC->pOuter; 396 k = 0; 397 }while( pWC!=0 ); 398 if( pScan->iEquiv>=pScan->nEquiv ) break; 399 pWC = pScan->pOrigWC; 400 k = 0; 401 pScan->iEquiv++; 402 } 403 return 0; 404 } 405 406 /* 407 ** This is whereScanInit() for the case of an index on an expression. 408 ** It is factored out into a separate tail-recursion subroutine so that 409 ** the normal whereScanInit() routine, which is a high-runner, does not 410 ** need to push registers onto the stack as part of its prologue. 411 */ 412 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){ 413 pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr); 414 return whereScanNext(pScan); 415 } 416 417 /* 418 ** Initialize a WHERE clause scanner object. Return a pointer to the 419 ** first match. Return NULL if there are no matches. 420 ** 421 ** The scanner will be searching the WHERE clause pWC. It will look 422 ** for terms of the form "X <op> <expr>" where X is column iColumn of table 423 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx 424 ** must be one of the indexes of table iCur. 425 ** 426 ** The <op> must be one of the operators described by opMask. 427 ** 428 ** If the search is for X and the WHERE clause contains terms of the 429 ** form X=Y then this routine might also return terms of the form 430 ** "Y <op> <expr>". The number of levels of transitivity is limited, 431 ** but is enough to handle most commonly occurring SQL statements. 432 ** 433 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with 434 ** index pIdx. 435 */ 436 static WhereTerm *whereScanInit( 437 WhereScan *pScan, /* The WhereScan object being initialized */ 438 WhereClause *pWC, /* The WHERE clause to be scanned */ 439 int iCur, /* Cursor to scan for */ 440 int iColumn, /* Column to scan for */ 441 u32 opMask, /* Operator(s) to scan for */ 442 Index *pIdx /* Must be compatible with this index */ 443 ){ 444 pScan->pOrigWC = pWC; 445 pScan->pWC = pWC; 446 pScan->pIdxExpr = 0; 447 pScan->idxaff = 0; 448 pScan->zCollName = 0; 449 pScan->opMask = opMask; 450 pScan->k = 0; 451 pScan->aiCur[0] = iCur; 452 pScan->nEquiv = 1; 453 pScan->iEquiv = 1; 454 if( pIdx ){ 455 int j = iColumn; 456 iColumn = pIdx->aiColumn[j]; 457 if( iColumn==pIdx->pTable->iPKey ){ 458 iColumn = XN_ROWID; 459 }else if( iColumn>=0 ){ 460 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; 461 pScan->zCollName = pIdx->azColl[j]; 462 }else if( iColumn==XN_EXPR ){ 463 pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr; 464 pScan->zCollName = pIdx->azColl[j]; 465 pScan->aiColumn[0] = XN_EXPR; 466 return whereScanInitIndexExpr(pScan); 467 } 468 }else if( iColumn==XN_EXPR ){ 469 return 0; 470 } 471 pScan->aiColumn[0] = iColumn; 472 return whereScanNext(pScan); 473 } 474 475 /* 476 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 477 ** where X is a reference to the iColumn of table iCur or of index pIdx 478 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by 479 ** the op parameter. Return a pointer to the term. Return 0 if not found. 480 ** 481 ** If pIdx!=0 then it must be one of the indexes of table iCur. 482 ** Search for terms matching the iColumn-th column of pIdx 483 ** rather than the iColumn-th column of table iCur. 484 ** 485 ** The term returned might by Y=<expr> if there is another constraint in 486 ** the WHERE clause that specifies that X=Y. Any such constraints will be 487 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The 488 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11 489 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10 490 ** other equivalent values. Hence a search for X will return <expr> if X=A1 491 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>. 492 ** 493 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" 494 ** then try for the one with no dependencies on <expr> - in other words where 495 ** <expr> is a constant expression of some kind. Only return entries of 496 ** the form "X <op> Y" where Y is a column in another table if no terms of 497 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS 498 ** exist, try to return a term that does not use WO_EQUIV. 499 */ 500 WhereTerm *sqlite3WhereFindTerm( 501 WhereClause *pWC, /* The WHERE clause to be searched */ 502 int iCur, /* Cursor number of LHS */ 503 int iColumn, /* Column number of LHS */ 504 Bitmask notReady, /* RHS must not overlap with this mask */ 505 u32 op, /* Mask of WO_xx values describing operator */ 506 Index *pIdx /* Must be compatible with this index, if not NULL */ 507 ){ 508 WhereTerm *pResult = 0; 509 WhereTerm *p; 510 WhereScan scan; 511 512 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); 513 op &= WO_EQ|WO_IS; 514 while( p ){ 515 if( (p->prereqRight & notReady)==0 ){ 516 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){ 517 testcase( p->eOperator & WO_IS ); 518 return p; 519 } 520 if( pResult==0 ) pResult = p; 521 } 522 p = whereScanNext(&scan); 523 } 524 return pResult; 525 } 526 527 /* 528 ** This function searches pList for an entry that matches the iCol-th column 529 ** of index pIdx. 530 ** 531 ** If such an expression is found, its index in pList->a[] is returned. If 532 ** no expression is found, -1 is returned. 533 */ 534 static int findIndexCol( 535 Parse *pParse, /* Parse context */ 536 ExprList *pList, /* Expression list to search */ 537 int iBase, /* Cursor for table associated with pIdx */ 538 Index *pIdx, /* Index to match column of */ 539 int iCol /* Column of index to match */ 540 ){ 541 int i; 542 const char *zColl = pIdx->azColl[iCol]; 543 544 for(i=0; i<pList->nExpr; i++){ 545 Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr); 546 if( ALWAYS(p!=0) 547 && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN) 548 && p->iColumn==pIdx->aiColumn[iCol] 549 && p->iTable==iBase 550 ){ 551 CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr); 552 if( 0==sqlite3StrICmp(pColl->zName, zColl) ){ 553 return i; 554 } 555 } 556 } 557 558 return -1; 559 } 560 561 /* 562 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL 563 */ 564 static int indexColumnNotNull(Index *pIdx, int iCol){ 565 int j; 566 assert( pIdx!=0 ); 567 assert( iCol>=0 && iCol<pIdx->nColumn ); 568 j = pIdx->aiColumn[iCol]; 569 if( j>=0 ){ 570 return pIdx->pTable->aCol[j].notNull; 571 }else if( j==(-1) ){ 572 return 1; 573 }else{ 574 assert( j==(-2) ); 575 return 0; /* Assume an indexed expression can always yield a NULL */ 576 577 } 578 } 579 580 /* 581 ** Return true if the DISTINCT expression-list passed as the third argument 582 ** is redundant. 583 ** 584 ** A DISTINCT list is redundant if any subset of the columns in the 585 ** DISTINCT list are collectively unique and individually non-null. 586 */ 587 static int isDistinctRedundant( 588 Parse *pParse, /* Parsing context */ 589 SrcList *pTabList, /* The FROM clause */ 590 WhereClause *pWC, /* The WHERE clause */ 591 ExprList *pDistinct /* The result set that needs to be DISTINCT */ 592 ){ 593 Table *pTab; 594 Index *pIdx; 595 int i; 596 int iBase; 597 598 /* If there is more than one table or sub-select in the FROM clause of 599 ** this query, then it will not be possible to show that the DISTINCT 600 ** clause is redundant. */ 601 if( pTabList->nSrc!=1 ) return 0; 602 iBase = pTabList->a[0].iCursor; 603 pTab = pTabList->a[0].pTab; 604 605 /* If any of the expressions is an IPK column on table iBase, then return 606 ** true. Note: The (p->iTable==iBase) part of this test may be false if the 607 ** current SELECT is a correlated sub-query. 608 */ 609 for(i=0; i<pDistinct->nExpr; i++){ 610 Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr); 611 if( NEVER(p==0) ) continue; 612 if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue; 613 if( p->iTable==iBase && p->iColumn<0 ) return 1; 614 } 615 616 /* Loop through all indices on the table, checking each to see if it makes 617 ** the DISTINCT qualifier redundant. It does so if: 618 ** 619 ** 1. The index is itself UNIQUE, and 620 ** 621 ** 2. All of the columns in the index are either part of the pDistinct 622 ** list, or else the WHERE clause contains a term of the form "col=X", 623 ** where X is a constant value. The collation sequences of the 624 ** comparison and select-list expressions must match those of the index. 625 ** 626 ** 3. All of those index columns for which the WHERE clause does not 627 ** contain a "col=X" term are subject to a NOT NULL constraint. 628 */ 629 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 630 if( !IsUniqueIndex(pIdx) ) continue; 631 if( pIdx->pPartIdxWhere ) continue; 632 for(i=0; i<pIdx->nKeyCol; i++){ 633 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){ 634 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break; 635 if( indexColumnNotNull(pIdx, i)==0 ) break; 636 } 637 } 638 if( i==pIdx->nKeyCol ){ 639 /* This index implies that the DISTINCT qualifier is redundant. */ 640 return 1; 641 } 642 } 643 644 return 0; 645 } 646 647 648 /* 649 ** Estimate the logarithm of the input value to base 2. 650 */ 651 static LogEst estLog(LogEst N){ 652 return N<=10 ? 0 : sqlite3LogEst(N) - 33; 653 } 654 655 /* 656 ** Convert OP_Column opcodes to OP_Copy in previously generated code. 657 ** 658 ** This routine runs over generated VDBE code and translates OP_Column 659 ** opcodes into OP_Copy when the table is being accessed via co-routine 660 ** instead of via table lookup. 661 ** 662 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on 663 ** cursor iTabCur are transformed into OP_Sequence opcode for the 664 ** iAutoidxCur cursor, in order to generate unique rowids for the 665 ** automatic index being generated. 666 */ 667 static void translateColumnToCopy( 668 Parse *pParse, /* Parsing context */ 669 int iStart, /* Translate from this opcode to the end */ 670 int iTabCur, /* OP_Column/OP_Rowid references to this table */ 671 int iRegister, /* The first column is in this register */ 672 int iAutoidxCur /* If non-zero, cursor of autoindex being generated */ 673 ){ 674 Vdbe *v = pParse->pVdbe; 675 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart); 676 int iEnd = sqlite3VdbeCurrentAddr(v); 677 if( pParse->db->mallocFailed ) return; 678 for(; iStart<iEnd; iStart++, pOp++){ 679 if( pOp->p1!=iTabCur ) continue; 680 if( pOp->opcode==OP_Column ){ 681 pOp->opcode = OP_Copy; 682 pOp->p1 = pOp->p2 + iRegister; 683 pOp->p2 = pOp->p3; 684 pOp->p3 = 0; 685 pOp->p5 = 2; /* Cause the MEM_Subtype flag to be cleared */ 686 }else if( pOp->opcode==OP_Rowid ){ 687 pOp->opcode = OP_Sequence; 688 pOp->p1 = iAutoidxCur; 689 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW 690 if( iAutoidxCur==0 ){ 691 pOp->opcode = OP_Null; 692 pOp->p3 = 0; 693 } 694 #endif 695 } 696 } 697 } 698 699 /* 700 ** Two routines for printing the content of an sqlite3_index_info 701 ** structure. Used for testing and debugging only. If neither 702 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 703 ** are no-ops. 704 */ 705 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) 706 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){ 707 int i; 708 if( !sqlite3WhereTrace ) return; 709 for(i=0; i<p->nConstraint; i++){ 710 sqlite3DebugPrintf( 711 " constraint[%d]: col=%d termid=%d op=%d usabled=%d collseq=%s\n", 712 i, 713 p->aConstraint[i].iColumn, 714 p->aConstraint[i].iTermOffset, 715 p->aConstraint[i].op, 716 p->aConstraint[i].usable, 717 sqlite3_vtab_collation(p,i)); 718 } 719 for(i=0; i<p->nOrderBy; i++){ 720 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 721 i, 722 p->aOrderBy[i].iColumn, 723 p->aOrderBy[i].desc); 724 } 725 } 726 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){ 727 int i; 728 if( !sqlite3WhereTrace ) return; 729 for(i=0; i<p->nConstraint; i++){ 730 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 731 i, 732 p->aConstraintUsage[i].argvIndex, 733 p->aConstraintUsage[i].omit); 734 } 735 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 736 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 737 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 738 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 739 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); 740 } 741 #else 742 #define whereTraceIndexInfoInputs(A) 743 #define whereTraceIndexInfoOutputs(A) 744 #endif 745 746 /* 747 ** We know that pSrc is an operand of an outer join. Return true if 748 ** pTerm is a constraint that is compatible with that join. 749 ** 750 ** pTerm must be EP_OuterON if pSrc is the right operand of an 751 ** outer join. pTerm can be either EP_OuterON or EP_InnerON if pSrc 752 ** is the left operand of a RIGHT join. 753 ** 754 ** See https://sqlite.org/forum/forumpost/206d99a16dd9212f 755 ** for an example of a WHERE clause constraints that may not be used on 756 ** the right table of a RIGHT JOIN because the constraint implies a 757 ** not-NULL condition on the left table of the RIGHT JOIN. 758 */ 759 static int constraintCompatibleWithOuterJoin( 760 const WhereTerm *pTerm, /* WHERE clause term to check */ 761 const SrcItem *pSrc /* Table we are trying to access */ 762 ){ 763 assert( (pSrc->fg.jointype&(JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 ); /* By caller */ 764 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LEFT ); 765 testcase( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))==JT_LTORJ ); 766 testcase( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) 767 testcase( ExprHasProperty(pTerm->pExpr, EP_InnerON) ); 768 if( !ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON) 769 || pTerm->pExpr->w.iJoin != pSrc->iCursor 770 ){ 771 return 0; 772 } 773 if( (pSrc->fg.jointype & (JT_LEFT|JT_RIGHT))!=0 774 && ExprHasProperty(pTerm->pExpr, EP_InnerON) 775 ){ 776 return 0; 777 } 778 return 1; 779 } 780 781 782 783 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 784 /* 785 ** Return TRUE if the WHERE clause term pTerm is of a form where it 786 ** could be used with an index to access pSrc, assuming an appropriate 787 ** index existed. 788 */ 789 static int termCanDriveIndex( 790 const WhereTerm *pTerm, /* WHERE clause term to check */ 791 const SrcItem *pSrc, /* Table we are trying to access */ 792 const Bitmask notReady /* Tables in outer loops of the join */ 793 ){ 794 char aff; 795 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; 796 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0; 797 assert( (pSrc->fg.jointype & JT_RIGHT)==0 ); 798 if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 799 && !constraintCompatibleWithOuterJoin(pTerm,pSrc) 800 ){ 801 return 0; /* See https://sqlite.org/forum/forumpost/51e6959f61 */ 802 } 803 if( (pTerm->prereqRight & notReady)!=0 ) return 0; 804 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 805 if( pTerm->u.x.leftColumn<0 ) return 0; 806 aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity; 807 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; 808 testcase( pTerm->pExpr->op==TK_IS ); 809 return 1; 810 } 811 #endif 812 813 814 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 815 /* 816 ** Generate code to construct the Index object for an automatic index 817 ** and to set up the WhereLevel object pLevel so that the code generator 818 ** makes use of the automatic index. 819 */ 820 static SQLITE_NOINLINE void constructAutomaticIndex( 821 Parse *pParse, /* The parsing context */ 822 const WhereClause *pWC, /* The WHERE clause */ 823 const SrcItem *pSrc, /* The FROM clause term to get the next index */ 824 const Bitmask notReady, /* Mask of cursors that are not available */ 825 WhereLevel *pLevel /* Write new index here */ 826 ){ 827 int nKeyCol; /* Number of columns in the constructed index */ 828 WhereTerm *pTerm; /* A single term of the WHERE clause */ 829 WhereTerm *pWCEnd; /* End of pWC->a[] */ 830 Index *pIdx; /* Object describing the transient index */ 831 Vdbe *v; /* Prepared statement under construction */ 832 int addrInit; /* Address of the initialization bypass jump */ 833 Table *pTable; /* The table being indexed */ 834 int addrTop; /* Top of the index fill loop */ 835 int regRecord; /* Register holding an index record */ 836 int n; /* Column counter */ 837 int i; /* Loop counter */ 838 int mxBitCol; /* Maximum column in pSrc->colUsed */ 839 CollSeq *pColl; /* Collating sequence to on a column */ 840 WhereLoop *pLoop; /* The Loop object */ 841 char *zNotUsed; /* Extra space on the end of pIdx */ 842 Bitmask idxCols; /* Bitmap of columns used for indexing */ 843 Bitmask extraCols; /* Bitmap of additional columns */ 844 u8 sentWarning = 0; /* True if a warnning has been issued */ 845 Expr *pPartial = 0; /* Partial Index Expression */ 846 int iContinue = 0; /* Jump here to skip excluded rows */ 847 SrcItem *pTabItem; /* FROM clause term being indexed */ 848 int addrCounter = 0; /* Address where integer counter is initialized */ 849 int regBase; /* Array of registers where record is assembled */ 850 851 /* Generate code to skip over the creation and initialization of the 852 ** transient index on 2nd and subsequent iterations of the loop. */ 853 v = pParse->pVdbe; 854 assert( v!=0 ); 855 addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 856 857 /* Count the number of columns that will be added to the index 858 ** and used to match WHERE clause constraints */ 859 nKeyCol = 0; 860 pTable = pSrc->pTab; 861 pWCEnd = &pWC->a[pWC->nTerm]; 862 pLoop = pLevel->pWLoop; 863 idxCols = 0; 864 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 865 Expr *pExpr = pTerm->pExpr; 866 /* Make the automatic index a partial index if there are terms in the 867 ** WHERE clause (or the ON clause of a LEFT join) that constrain which 868 ** rows of the target table (pSrc) that can be used. */ 869 if( (pTerm->wtFlags & TERM_VIRTUAL)==0 870 && sqlite3ExprIsTableConstraint(pExpr, pSrc) 871 ){ 872 pPartial = sqlite3ExprAnd(pParse, pPartial, 873 sqlite3ExprDup(pParse->db, pExpr, 0)); 874 } 875 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 876 int iCol; 877 Bitmask cMask; 878 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 879 iCol = pTerm->u.x.leftColumn; 880 cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 881 testcase( iCol==BMS ); 882 testcase( iCol==BMS-1 ); 883 if( !sentWarning ){ 884 sqlite3_log(SQLITE_WARNING_AUTOINDEX, 885 "automatic index on %s(%s)", pTable->zName, 886 pTable->aCol[iCol].zCnName); 887 sentWarning = 1; 888 } 889 if( (idxCols & cMask)==0 ){ 890 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ 891 goto end_auto_index_create; 892 } 893 pLoop->aLTerm[nKeyCol++] = pTerm; 894 idxCols |= cMask; 895 } 896 } 897 } 898 assert( nKeyCol>0 || pParse->db->mallocFailed ); 899 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; 900 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED 901 | WHERE_AUTO_INDEX; 902 903 /* Count the number of additional columns needed to create a 904 ** covering index. A "covering index" is an index that contains all 905 ** columns that are needed by the query. With a covering index, the 906 ** original table never needs to be accessed. Automatic indices must 907 ** be a covering index because the index will not be updated if the 908 ** original table changes and the index and table cannot both be used 909 ** if they go out of sync. 910 */ 911 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); 912 mxBitCol = MIN(BMS-1,pTable->nCol); 913 testcase( pTable->nCol==BMS-1 ); 914 testcase( pTable->nCol==BMS-2 ); 915 for(i=0; i<mxBitCol; i++){ 916 if( extraCols & MASKBIT(i) ) nKeyCol++; 917 } 918 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 919 nKeyCol += pTable->nCol - BMS + 1; 920 } 921 922 /* Construct the Index object to describe this index */ 923 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); 924 if( pIdx==0 ) goto end_auto_index_create; 925 pLoop->u.btree.pIndex = pIdx; 926 pIdx->zName = "auto-index"; 927 pIdx->pTable = pTable; 928 n = 0; 929 idxCols = 0; 930 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 931 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 932 int iCol; 933 Bitmask cMask; 934 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 935 iCol = pTerm->u.x.leftColumn; 936 cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 937 testcase( iCol==BMS-1 ); 938 testcase( iCol==BMS ); 939 if( (idxCols & cMask)==0 ){ 940 Expr *pX = pTerm->pExpr; 941 idxCols |= cMask; 942 pIdx->aiColumn[n] = pTerm->u.x.leftColumn; 943 pColl = sqlite3ExprCompareCollSeq(pParse, pX); 944 assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */ 945 pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY; 946 n++; 947 } 948 } 949 } 950 assert( (u32)n==pLoop->u.btree.nEq ); 951 952 /* Add additional columns needed to make the automatic index into 953 ** a covering index */ 954 for(i=0; i<mxBitCol; i++){ 955 if( extraCols & MASKBIT(i) ){ 956 pIdx->aiColumn[n] = i; 957 pIdx->azColl[n] = sqlite3StrBINARY; 958 n++; 959 } 960 } 961 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 962 for(i=BMS-1; i<pTable->nCol; i++){ 963 pIdx->aiColumn[n] = i; 964 pIdx->azColl[n] = sqlite3StrBINARY; 965 n++; 966 } 967 } 968 assert( n==nKeyCol ); 969 pIdx->aiColumn[n] = XN_ROWID; 970 pIdx->azColl[n] = sqlite3StrBINARY; 971 972 /* Create the automatic index */ 973 assert( pLevel->iIdxCur>=0 ); 974 pLevel->iIdxCur = pParse->nTab++; 975 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); 976 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 977 VdbeComment((v, "for %s", pTable->zName)); 978 if( OptimizationEnabled(pParse->db, SQLITE_BloomFilter) ){ 979 pLevel->regFilter = ++pParse->nMem; 980 sqlite3VdbeAddOp2(v, OP_Blob, 10000, pLevel->regFilter); 981 } 982 983 /* Fill the automatic index with content */ 984 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom]; 985 if( pTabItem->fg.viaCoroutine ){ 986 int regYield = pTabItem->regReturn; 987 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0); 988 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 989 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); 990 VdbeCoverage(v); 991 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 992 }else{ 993 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); 994 } 995 if( pPartial ){ 996 iContinue = sqlite3VdbeMakeLabel(pParse); 997 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); 998 pLoop->wsFlags |= WHERE_PARTIALIDX; 999 } 1000 regRecord = sqlite3GetTempReg(pParse); 1001 regBase = sqlite3GenerateIndexKey( 1002 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0 1003 ); 1004 if( pLevel->regFilter ){ 1005 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, 1006 regBase, pLoop->u.btree.nEq); 1007 } 1008 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); 1009 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1010 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); 1011 if( pTabItem->fg.viaCoroutine ){ 1012 sqlite3VdbeChangeP2(v, addrCounter, regBase+n); 1013 testcase( pParse->db->mallocFailed ); 1014 assert( pLevel->iIdxCur>0 ); 1015 translateColumnToCopy(pParse, addrTop, pLevel->iTabCur, 1016 pTabItem->regResult, pLevel->iIdxCur); 1017 sqlite3VdbeGoto(v, addrTop); 1018 pTabItem->fg.viaCoroutine = 0; 1019 }else{ 1020 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); 1021 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); 1022 } 1023 sqlite3VdbeJumpHere(v, addrTop); 1024 sqlite3ReleaseTempReg(pParse, regRecord); 1025 1026 /* Jump here when skipping the initialization */ 1027 sqlite3VdbeJumpHere(v, addrInit); 1028 1029 end_auto_index_create: 1030 sqlite3ExprDelete(pParse->db, pPartial); 1031 } 1032 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 1033 1034 /* 1035 ** Generate bytecode that will initialize a Bloom filter that is appropriate 1036 ** for pLevel. 1037 ** 1038 ** If there are inner loops within pLevel that have the WHERE_BLOOMFILTER 1039 ** flag set, initialize a Bloomfilter for them as well. Except don't do 1040 ** this recursive initialization if the SQLITE_BloomPulldown optimization has 1041 ** been turned off. 1042 ** 1043 ** When the Bloom filter is initialized, the WHERE_BLOOMFILTER flag is cleared 1044 ** from the loop, but the regFilter value is set to a register that implements 1045 ** the Bloom filter. When regFilter is positive, the 1046 ** sqlite3WhereCodeOneLoopStart() will generate code to test the Bloom filter 1047 ** and skip the subsequence B-Tree seek if the Bloom filter indicates that 1048 ** no matching rows exist. 1049 ** 1050 ** This routine may only be called if it has previously been determined that 1051 ** the loop would benefit from a Bloom filter, and the WHERE_BLOOMFILTER bit 1052 ** is set. 1053 */ 1054 static SQLITE_NOINLINE void sqlite3ConstructBloomFilter( 1055 WhereInfo *pWInfo, /* The WHERE clause */ 1056 int iLevel, /* Index in pWInfo->a[] that is pLevel */ 1057 WhereLevel *pLevel, /* Make a Bloom filter for this FROM term */ 1058 Bitmask notReady /* Loops that are not ready */ 1059 ){ 1060 int addrOnce; /* Address of opening OP_Once */ 1061 int addrTop; /* Address of OP_Rewind */ 1062 int addrCont; /* Jump here to skip a row */ 1063 const WhereTerm *pTerm; /* For looping over WHERE clause terms */ 1064 const WhereTerm *pWCEnd; /* Last WHERE clause term */ 1065 Parse *pParse = pWInfo->pParse; /* Parsing context */ 1066 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ 1067 WhereLoop *pLoop = pLevel->pWLoop; /* The loop being coded */ 1068 int iCur; /* Cursor for table getting the filter */ 1069 1070 assert( pLoop!=0 ); 1071 assert( v!=0 ); 1072 assert( pLoop->wsFlags & WHERE_BLOOMFILTER ); 1073 1074 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 1075 do{ 1076 const SrcItem *pItem; 1077 const Table *pTab; 1078 u64 sz; 1079 sqlite3WhereExplainBloomFilter(pParse, pWInfo, pLevel); 1080 addrCont = sqlite3VdbeMakeLabel(pParse); 1081 iCur = pLevel->iTabCur; 1082 pLevel->regFilter = ++pParse->nMem; 1083 1084 /* The Bloom filter is a Blob held in a register. Initialize it 1085 ** to zero-filled blob of at least 80K bits, but maybe more if the 1086 ** estimated size of the table is larger. We could actually 1087 ** measure the size of the table at run-time using OP_Count with 1088 ** P3==1 and use that value to initialize the blob. But that makes 1089 ** testing complicated. By basing the blob size on the value in the 1090 ** sqlite_stat1 table, testing is much easier. 1091 */ 1092 pItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1093 assert( pItem!=0 ); 1094 pTab = pItem->pTab; 1095 assert( pTab!=0 ); 1096 sz = sqlite3LogEstToInt(pTab->nRowLogEst); 1097 if( sz<10000 ){ 1098 sz = 10000; 1099 }else if( sz>10000000 ){ 1100 sz = 10000000; 1101 } 1102 sqlite3VdbeAddOp2(v, OP_Blob, (int)sz, pLevel->regFilter); 1103 1104 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); 1105 pWCEnd = &pWInfo->sWC.a[pWInfo->sWC.nTerm]; 1106 for(pTerm=pWInfo->sWC.a; pTerm<pWCEnd; pTerm++){ 1107 Expr *pExpr = pTerm->pExpr; 1108 if( (pTerm->wtFlags & TERM_VIRTUAL)==0 1109 && sqlite3ExprIsTableConstraint(pExpr, pItem) 1110 ){ 1111 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 1112 } 1113 } 1114 if( pLoop->wsFlags & WHERE_IPK ){ 1115 int r1 = sqlite3GetTempReg(pParse); 1116 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1); 1117 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, 1); 1118 sqlite3ReleaseTempReg(pParse, r1); 1119 }else{ 1120 Index *pIdx = pLoop->u.btree.pIndex; 1121 int n = pLoop->u.btree.nEq; 1122 int r1 = sqlite3GetTempRange(pParse, n); 1123 int jj; 1124 for(jj=0; jj<n; jj++){ 1125 int iCol = pIdx->aiColumn[jj]; 1126 assert( pIdx->pTable==pItem->pTab ); 1127 sqlite3ExprCodeGetColumnOfTable(v, pIdx->pTable, iCur, iCol,r1+jj); 1128 } 1129 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, n); 1130 sqlite3ReleaseTempRange(pParse, r1, n); 1131 } 1132 sqlite3VdbeResolveLabel(v, addrCont); 1133 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); 1134 VdbeCoverage(v); 1135 sqlite3VdbeJumpHere(v, addrTop); 1136 pLoop->wsFlags &= ~WHERE_BLOOMFILTER; 1137 if( OptimizationDisabled(pParse->db, SQLITE_BloomPulldown) ) break; 1138 while( ++iLevel < pWInfo->nLevel ){ 1139 const SrcItem *pTabItem; 1140 pLevel = &pWInfo->a[iLevel]; 1141 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 1142 if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ) ) continue; 1143 pLoop = pLevel->pWLoop; 1144 if( NEVER(pLoop==0) ) continue; 1145 if( pLoop->prereq & notReady ) continue; 1146 if( (pLoop->wsFlags & (WHERE_BLOOMFILTER|WHERE_COLUMN_IN)) 1147 ==WHERE_BLOOMFILTER 1148 ){ 1149 /* This is a candidate for bloom-filter pull-down (early evaluation). 1150 ** The test that WHERE_COLUMN_IN is omitted is important, as we are 1151 ** not able to do early evaluation of bloom filters that make use of 1152 ** the IN operator */ 1153 break; 1154 } 1155 } 1156 }while( iLevel < pWInfo->nLevel ); 1157 sqlite3VdbeJumpHere(v, addrOnce); 1158 } 1159 1160 1161 #ifndef SQLITE_OMIT_VIRTUALTABLE 1162 /* 1163 ** Allocate and populate an sqlite3_index_info structure. It is the 1164 ** responsibility of the caller to eventually release the structure 1165 ** by passing the pointer returned by this function to freeIndexInfo(). 1166 */ 1167 static sqlite3_index_info *allocateIndexInfo( 1168 WhereInfo *pWInfo, /* The WHERE clause */ 1169 WhereClause *pWC, /* The WHERE clause being analyzed */ 1170 Bitmask mUnusable, /* Ignore terms with these prereqs */ 1171 SrcItem *pSrc, /* The FROM clause term that is the vtab */ 1172 u16 *pmNoOmit /* Mask of terms not to omit */ 1173 ){ 1174 int i, j; 1175 int nTerm; 1176 Parse *pParse = pWInfo->pParse; 1177 struct sqlite3_index_constraint *pIdxCons; 1178 struct sqlite3_index_orderby *pIdxOrderBy; 1179 struct sqlite3_index_constraint_usage *pUsage; 1180 struct HiddenIndexInfo *pHidden; 1181 WhereTerm *pTerm; 1182 int nOrderBy; 1183 sqlite3_index_info *pIdxInfo; 1184 u16 mNoOmit = 0; 1185 const Table *pTab; 1186 int eDistinct = 0; 1187 ExprList *pOrderBy = pWInfo->pOrderBy; 1188 1189 assert( pSrc!=0 ); 1190 pTab = pSrc->pTab; 1191 assert( pTab!=0 ); 1192 assert( IsVirtual(pTab) ); 1193 1194 /* Find all WHERE clause constraints referring to this virtual table. 1195 ** Mark each term with the TERM_OK flag. Set nTerm to the number of 1196 ** terms found. 1197 */ 1198 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1199 pTerm->wtFlags &= ~TERM_OK; 1200 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1201 if( pTerm->prereqRight & mUnusable ) continue; 1202 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 1203 testcase( pTerm->eOperator & WO_IN ); 1204 testcase( pTerm->eOperator & WO_ISNULL ); 1205 testcase( pTerm->eOperator & WO_IS ); 1206 testcase( pTerm->eOperator & WO_ALL ); 1207 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue; 1208 if( pTerm->wtFlags & TERM_VNULL ) continue; 1209 1210 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 1211 assert( pTerm->u.x.leftColumn>=XN_ROWID ); 1212 assert( pTerm->u.x.leftColumn<pTab->nCol ); 1213 if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 1214 && !constraintCompatibleWithOuterJoin(pTerm,pSrc) 1215 ){ 1216 continue; 1217 } 1218 nTerm++; 1219 pTerm->wtFlags |= TERM_OK; 1220 } 1221 1222 /* If the ORDER BY clause contains only columns in the current 1223 ** virtual table then allocate space for the aOrderBy part of 1224 ** the sqlite3_index_info structure. 1225 */ 1226 nOrderBy = 0; 1227 if( pOrderBy ){ 1228 int n = pOrderBy->nExpr; 1229 for(i=0; i<n; i++){ 1230 Expr *pExpr = pOrderBy->a[i].pExpr; 1231 Expr *pE2; 1232 1233 /* Skip over constant terms in the ORDER BY clause */ 1234 if( sqlite3ExprIsConstant(pExpr) ){ 1235 continue; 1236 } 1237 1238 /* Virtual tables are unable to deal with NULLS FIRST */ 1239 if( pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL ) break; 1240 1241 /* First case - a direct column references without a COLLATE operator */ 1242 if( pExpr->op==TK_COLUMN && pExpr->iTable==pSrc->iCursor ){ 1243 assert( pExpr->iColumn>=XN_ROWID && pExpr->iColumn<pTab->nCol ); 1244 continue; 1245 } 1246 1247 /* 2nd case - a column reference with a COLLATE operator. Only match 1248 ** of the COLLATE operator matches the collation of the column. */ 1249 if( pExpr->op==TK_COLLATE 1250 && (pE2 = pExpr->pLeft)->op==TK_COLUMN 1251 && pE2->iTable==pSrc->iCursor 1252 ){ 1253 const char *zColl; /* The collating sequence name */ 1254 assert( !ExprHasProperty(pExpr, EP_IntValue) ); 1255 assert( pExpr->u.zToken!=0 ); 1256 assert( pE2->iColumn>=XN_ROWID && pE2->iColumn<pTab->nCol ); 1257 pExpr->iColumn = pE2->iColumn; 1258 if( pE2->iColumn<0 ) continue; /* Collseq does not matter for rowid */ 1259 zColl = sqlite3ColumnColl(&pTab->aCol[pE2->iColumn]); 1260 if( zColl==0 ) zColl = sqlite3StrBINARY; 1261 if( sqlite3_stricmp(pExpr->u.zToken, zColl)==0 ) continue; 1262 } 1263 1264 /* No matches cause a break out of the loop */ 1265 break; 1266 } 1267 if( i==n ){ 1268 nOrderBy = n; 1269 if( (pWInfo->wctrlFlags & WHERE_DISTINCTBY) ){ 1270 eDistinct = 2 + ((pWInfo->wctrlFlags & WHERE_SORTBYGROUP)!=0); 1271 }else if( pWInfo->wctrlFlags & WHERE_GROUPBY ){ 1272 eDistinct = 1; 1273 } 1274 } 1275 } 1276 1277 /* Allocate the sqlite3_index_info structure 1278 */ 1279 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 1280 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 1281 + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) 1282 + sizeof(sqlite3_value*)*nTerm ); 1283 if( pIdxInfo==0 ){ 1284 sqlite3ErrorMsg(pParse, "out of memory"); 1285 return 0; 1286 } 1287 pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1]; 1288 pIdxCons = (struct sqlite3_index_constraint*)&pHidden->aRhs[nTerm]; 1289 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 1290 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 1291 pIdxInfo->aConstraint = pIdxCons; 1292 pIdxInfo->aOrderBy = pIdxOrderBy; 1293 pIdxInfo->aConstraintUsage = pUsage; 1294 pHidden->pWC = pWC; 1295 pHidden->pParse = pParse; 1296 pHidden->eDistinct = eDistinct; 1297 pHidden->mIn = 0; 1298 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1299 u16 op; 1300 if( (pTerm->wtFlags & TERM_OK)==0 ) continue; 1301 pIdxCons[j].iColumn = pTerm->u.x.leftColumn; 1302 pIdxCons[j].iTermOffset = i; 1303 op = pTerm->eOperator & WO_ALL; 1304 if( op==WO_IN ){ 1305 if( (pTerm->wtFlags & TERM_SLICE)==0 ){ 1306 pHidden->mIn |= SMASKBIT32(j); 1307 } 1308 op = WO_EQ; 1309 } 1310 if( op==WO_AUX ){ 1311 pIdxCons[j].op = pTerm->eMatchOp; 1312 }else if( op & (WO_ISNULL|WO_IS) ){ 1313 if( op==WO_ISNULL ){ 1314 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL; 1315 }else{ 1316 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS; 1317 } 1318 }else{ 1319 pIdxCons[j].op = (u8)op; 1320 /* The direct assignment in the previous line is possible only because 1321 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 1322 ** following asserts verify this fact. */ 1323 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 1324 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 1325 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 1326 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 1327 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 1328 assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) ); 1329 1330 if( op & (WO_LT|WO_LE|WO_GT|WO_GE) 1331 && sqlite3ExprIsVector(pTerm->pExpr->pRight) 1332 ){ 1333 testcase( j!=i ); 1334 if( j<16 ) mNoOmit |= (1 << j); 1335 if( op==WO_LT ) pIdxCons[j].op = WO_LE; 1336 if( op==WO_GT ) pIdxCons[j].op = WO_GE; 1337 } 1338 } 1339 1340 j++; 1341 } 1342 assert( j==nTerm ); 1343 pIdxInfo->nConstraint = j; 1344 for(i=j=0; i<nOrderBy; i++){ 1345 Expr *pExpr = pOrderBy->a[i].pExpr; 1346 if( sqlite3ExprIsConstant(pExpr) ) continue; 1347 assert( pExpr->op==TK_COLUMN 1348 || (pExpr->op==TK_COLLATE && pExpr->pLeft->op==TK_COLUMN 1349 && pExpr->iColumn==pExpr->pLeft->iColumn) ); 1350 pIdxOrderBy[j].iColumn = pExpr->iColumn; 1351 pIdxOrderBy[j].desc = pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC; 1352 j++; 1353 } 1354 pIdxInfo->nOrderBy = j; 1355 1356 *pmNoOmit = mNoOmit; 1357 return pIdxInfo; 1358 } 1359 1360 /* 1361 ** Free an sqlite3_index_info structure allocated by allocateIndexInfo() 1362 ** and possibly modified by xBestIndex methods. 1363 */ 1364 static void freeIndexInfo(sqlite3 *db, sqlite3_index_info *pIdxInfo){ 1365 HiddenIndexInfo *pHidden; 1366 int i; 1367 assert( pIdxInfo!=0 ); 1368 pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 1369 assert( pHidden->pParse!=0 ); 1370 assert( pHidden->pParse->db==db ); 1371 for(i=0; i<pIdxInfo->nConstraint; i++){ 1372 sqlite3ValueFree(pHidden->aRhs[i]); /* IMP: R-14553-25174 */ 1373 pHidden->aRhs[i] = 0; 1374 } 1375 sqlite3DbFree(db, pIdxInfo); 1376 } 1377 1378 /* 1379 ** The table object reference passed as the second argument to this function 1380 ** must represent a virtual table. This function invokes the xBestIndex() 1381 ** method of the virtual table with the sqlite3_index_info object that 1382 ** comes in as the 3rd argument to this function. 1383 ** 1384 ** If an error occurs, pParse is populated with an error message and an 1385 ** appropriate error code is returned. A return of SQLITE_CONSTRAINT from 1386 ** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that 1387 ** the current configuration of "unusable" flags in sqlite3_index_info can 1388 ** not result in a valid plan. 1389 ** 1390 ** Whether or not an error is returned, it is the responsibility of the 1391 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates 1392 ** that this is required. 1393 */ 1394 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ 1395 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; 1396 int rc; 1397 1398 whereTraceIndexInfoInputs(p); 1399 pParse->db->nSchemaLock++; 1400 rc = pVtab->pModule->xBestIndex(pVtab, p); 1401 pParse->db->nSchemaLock--; 1402 whereTraceIndexInfoOutputs(p); 1403 1404 if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){ 1405 if( rc==SQLITE_NOMEM ){ 1406 sqlite3OomFault(pParse->db); 1407 }else if( !pVtab->zErrMsg ){ 1408 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 1409 }else{ 1410 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 1411 } 1412 } 1413 sqlite3_free(pVtab->zErrMsg); 1414 pVtab->zErrMsg = 0; 1415 return rc; 1416 } 1417 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1418 1419 #ifdef SQLITE_ENABLE_STAT4 1420 /* 1421 ** Estimate the location of a particular key among all keys in an 1422 ** index. Store the results in aStat as follows: 1423 ** 1424 ** aStat[0] Est. number of rows less than pRec 1425 ** aStat[1] Est. number of rows equal to pRec 1426 ** 1427 ** Return the index of the sample that is the smallest sample that 1428 ** is greater than or equal to pRec. Note that this index is not an index 1429 ** into the aSample[] array - it is an index into a virtual set of samples 1430 ** based on the contents of aSample[] and the number of fields in record 1431 ** pRec. 1432 */ 1433 static int whereKeyStats( 1434 Parse *pParse, /* Database connection */ 1435 Index *pIdx, /* Index to consider domain of */ 1436 UnpackedRecord *pRec, /* Vector of values to consider */ 1437 int roundUp, /* Round up if true. Round down if false */ 1438 tRowcnt *aStat /* OUT: stats written here */ 1439 ){ 1440 IndexSample *aSample = pIdx->aSample; 1441 int iCol; /* Index of required stats in anEq[] etc. */ 1442 int i; /* Index of first sample >= pRec */ 1443 int iSample; /* Smallest sample larger than or equal to pRec */ 1444 int iMin = 0; /* Smallest sample not yet tested */ 1445 int iTest; /* Next sample to test */ 1446 int res; /* Result of comparison operation */ 1447 int nField; /* Number of fields in pRec */ 1448 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ 1449 1450 #ifndef SQLITE_DEBUG 1451 UNUSED_PARAMETER( pParse ); 1452 #endif 1453 assert( pRec!=0 ); 1454 assert( pIdx->nSample>0 ); 1455 assert( pRec->nField>0 ); 1456 1457 /* Do a binary search to find the first sample greater than or equal 1458 ** to pRec. If pRec contains a single field, the set of samples to search 1459 ** is simply the aSample[] array. If the samples in aSample[] contain more 1460 ** than one fields, all fields following the first are ignored. 1461 ** 1462 ** If pRec contains N fields, where N is more than one, then as well as the 1463 ** samples in aSample[] (truncated to N fields), the search also has to 1464 ** consider prefixes of those samples. For example, if the set of samples 1465 ** in aSample is: 1466 ** 1467 ** aSample[0] = (a, 5) 1468 ** aSample[1] = (a, 10) 1469 ** aSample[2] = (b, 5) 1470 ** aSample[3] = (c, 100) 1471 ** aSample[4] = (c, 105) 1472 ** 1473 ** Then the search space should ideally be the samples above and the 1474 ** unique prefixes [a], [b] and [c]. But since that is hard to organize, 1475 ** the code actually searches this set: 1476 ** 1477 ** 0: (a) 1478 ** 1: (a, 5) 1479 ** 2: (a, 10) 1480 ** 3: (a, 10) 1481 ** 4: (b) 1482 ** 5: (b, 5) 1483 ** 6: (c) 1484 ** 7: (c, 100) 1485 ** 8: (c, 105) 1486 ** 9: (c, 105) 1487 ** 1488 ** For each sample in the aSample[] array, N samples are present in the 1489 ** effective sample array. In the above, samples 0 and 1 are based on 1490 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. 1491 ** 1492 ** Often, sample i of each block of N effective samples has (i+1) fields. 1493 ** Except, each sample may be extended to ensure that it is greater than or 1494 ** equal to the previous sample in the array. For example, in the above, 1495 ** sample 2 is the first sample of a block of N samples, so at first it 1496 ** appears that it should be 1 field in size. However, that would make it 1497 ** smaller than sample 1, so the binary search would not work. As a result, 1498 ** it is extended to two fields. The duplicates that this creates do not 1499 ** cause any problems. 1500 */ 1501 nField = MIN(pRec->nField, pIdx->nSample); 1502 iCol = 0; 1503 iSample = pIdx->nSample * nField; 1504 do{ 1505 int iSamp; /* Index in aSample[] of test sample */ 1506 int n; /* Number of fields in test sample */ 1507 1508 iTest = (iMin+iSample)/2; 1509 iSamp = iTest / nField; 1510 if( iSamp>0 ){ 1511 /* The proposed effective sample is a prefix of sample aSample[iSamp]. 1512 ** Specifically, the shortest prefix of at least (1 + iTest%nField) 1513 ** fields that is greater than the previous effective sample. */ 1514 for(n=(iTest % nField) + 1; n<nField; n++){ 1515 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break; 1516 } 1517 }else{ 1518 n = iTest + 1; 1519 } 1520 1521 pRec->nField = n; 1522 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); 1523 if( res<0 ){ 1524 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; 1525 iMin = iTest+1; 1526 }else if( res==0 && n<nField ){ 1527 iLower = aSample[iSamp].anLt[n-1]; 1528 iMin = iTest+1; 1529 res = -1; 1530 }else{ 1531 iSample = iTest; 1532 iCol = n-1; 1533 } 1534 }while( res && iMin<iSample ); 1535 i = iSample / nField; 1536 1537 #ifdef SQLITE_DEBUG 1538 /* The following assert statements check that the binary search code 1539 ** above found the right answer. This block serves no purpose other 1540 ** than to invoke the asserts. */ 1541 if( pParse->db->mallocFailed==0 ){ 1542 if( res==0 ){ 1543 /* If (res==0) is true, then pRec must be equal to sample i. */ 1544 assert( i<pIdx->nSample ); 1545 assert( iCol==nField-1 ); 1546 pRec->nField = nField; 1547 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) 1548 || pParse->db->mallocFailed 1549 ); 1550 }else{ 1551 /* Unless i==pIdx->nSample, indicating that pRec is larger than 1552 ** all samples in the aSample[] array, pRec must be smaller than the 1553 ** (iCol+1) field prefix of sample i. */ 1554 assert( i<=pIdx->nSample && i>=0 ); 1555 pRec->nField = iCol+1; 1556 assert( i==pIdx->nSample 1557 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 1558 || pParse->db->mallocFailed ); 1559 1560 /* if i==0 and iCol==0, then record pRec is smaller than all samples 1561 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must 1562 ** be greater than or equal to the (iCol) field prefix of sample i. 1563 ** If (i>0), then pRec must also be greater than sample (i-1). */ 1564 if( iCol>0 ){ 1565 pRec->nField = iCol; 1566 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 1567 || pParse->db->mallocFailed ); 1568 } 1569 if( i>0 ){ 1570 pRec->nField = nField; 1571 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 1572 || pParse->db->mallocFailed ); 1573 } 1574 } 1575 } 1576 #endif /* ifdef SQLITE_DEBUG */ 1577 1578 if( res==0 ){ 1579 /* Record pRec is equal to sample i */ 1580 assert( iCol==nField-1 ); 1581 aStat[0] = aSample[i].anLt[iCol]; 1582 aStat[1] = aSample[i].anEq[iCol]; 1583 }else{ 1584 /* At this point, the (iCol+1) field prefix of aSample[i] is the first 1585 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec 1586 ** is larger than all samples in the array. */ 1587 tRowcnt iUpper, iGap; 1588 if( i>=pIdx->nSample ){ 1589 iUpper = pIdx->nRowEst0; 1590 }else{ 1591 iUpper = aSample[i].anLt[iCol]; 1592 } 1593 1594 if( iLower>=iUpper ){ 1595 iGap = 0; 1596 }else{ 1597 iGap = iUpper - iLower; 1598 } 1599 if( roundUp ){ 1600 iGap = (iGap*2)/3; 1601 }else{ 1602 iGap = iGap/3; 1603 } 1604 aStat[0] = iLower + iGap; 1605 aStat[1] = pIdx->aAvgEq[nField-1]; 1606 } 1607 1608 /* Restore the pRec->nField value before returning. */ 1609 pRec->nField = nField; 1610 return i; 1611 } 1612 #endif /* SQLITE_ENABLE_STAT4 */ 1613 1614 /* 1615 ** If it is not NULL, pTerm is a term that provides an upper or lower 1616 ** bound on a range scan. Without considering pTerm, it is estimated 1617 ** that the scan will visit nNew rows. This function returns the number 1618 ** estimated to be visited after taking pTerm into account. 1619 ** 1620 ** If the user explicitly specified a likelihood() value for this term, 1621 ** then the return value is the likelihood multiplied by the number of 1622 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term 1623 ** has a likelihood of 0.50, and any other term a likelihood of 0.25. 1624 */ 1625 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ 1626 LogEst nRet = nNew; 1627 if( pTerm ){ 1628 if( pTerm->truthProb<=0 ){ 1629 nRet += pTerm->truthProb; 1630 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ 1631 nRet -= 20; assert( 20==sqlite3LogEst(4) ); 1632 } 1633 } 1634 return nRet; 1635 } 1636 1637 1638 #ifdef SQLITE_ENABLE_STAT4 1639 /* 1640 ** Return the affinity for a single column of an index. 1641 */ 1642 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){ 1643 assert( iCol>=0 && iCol<pIdx->nColumn ); 1644 if( !pIdx->zColAff ){ 1645 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB; 1646 } 1647 assert( pIdx->zColAff[iCol]!=0 ); 1648 return pIdx->zColAff[iCol]; 1649 } 1650 #endif 1651 1652 1653 #ifdef SQLITE_ENABLE_STAT4 1654 /* 1655 ** This function is called to estimate the number of rows visited by a 1656 ** range-scan on a skip-scan index. For example: 1657 ** 1658 ** CREATE INDEX i1 ON t1(a, b, c); 1659 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; 1660 ** 1661 ** Value pLoop->nOut is currently set to the estimated number of rows 1662 ** visited for scanning (a=? AND b=?). This function reduces that estimate 1663 ** by some factor to account for the (c BETWEEN ? AND ?) expression based 1664 ** on the stat4 data for the index. this scan will be peformed multiple 1665 ** times (once for each (a,b) combination that matches a=?) is dealt with 1666 ** by the caller. 1667 ** 1668 ** It does this by scanning through all stat4 samples, comparing values 1669 ** extracted from pLower and pUpper with the corresponding column in each 1670 ** sample. If L and U are the number of samples found to be less than or 1671 ** equal to the values extracted from pLower and pUpper respectively, and 1672 ** N is the total number of samples, the pLoop->nOut value is adjusted 1673 ** as follows: 1674 ** 1675 ** nOut = nOut * ( min(U - L, 1) / N ) 1676 ** 1677 ** If pLower is NULL, or a value cannot be extracted from the term, L is 1678 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, 1679 ** U is set to N. 1680 ** 1681 ** Normally, this function sets *pbDone to 1 before returning. However, 1682 ** if no value can be extracted from either pLower or pUpper (and so the 1683 ** estimate of the number of rows delivered remains unchanged), *pbDone 1684 ** is left as is. 1685 ** 1686 ** If an error occurs, an SQLite error code is returned. Otherwise, 1687 ** SQLITE_OK. 1688 */ 1689 static int whereRangeSkipScanEst( 1690 Parse *pParse, /* Parsing & code generating context */ 1691 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1692 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1693 WhereLoop *pLoop, /* Update the .nOut value of this loop */ 1694 int *pbDone /* Set to true if at least one expr. value extracted */ 1695 ){ 1696 Index *p = pLoop->u.btree.pIndex; 1697 int nEq = pLoop->u.btree.nEq; 1698 sqlite3 *db = pParse->db; 1699 int nLower = -1; 1700 int nUpper = p->nSample+1; 1701 int rc = SQLITE_OK; 1702 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq); 1703 CollSeq *pColl; 1704 1705 sqlite3_value *p1 = 0; /* Value extracted from pLower */ 1706 sqlite3_value *p2 = 0; /* Value extracted from pUpper */ 1707 sqlite3_value *pVal = 0; /* Value extracted from record */ 1708 1709 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); 1710 if( pLower ){ 1711 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); 1712 nLower = 0; 1713 } 1714 if( pUpper && rc==SQLITE_OK ){ 1715 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); 1716 nUpper = p2 ? 0 : p->nSample; 1717 } 1718 1719 if( p1 || p2 ){ 1720 int i; 1721 int nDiff; 1722 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ 1723 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); 1724 if( rc==SQLITE_OK && p1 ){ 1725 int res = sqlite3MemCompare(p1, pVal, pColl); 1726 if( res>=0 ) nLower++; 1727 } 1728 if( rc==SQLITE_OK && p2 ){ 1729 int res = sqlite3MemCompare(p2, pVal, pColl); 1730 if( res>=0 ) nUpper++; 1731 } 1732 } 1733 nDiff = (nUpper - nLower); 1734 if( nDiff<=0 ) nDiff = 1; 1735 1736 /* If there is both an upper and lower bound specified, and the 1737 ** comparisons indicate that they are close together, use the fallback 1738 ** method (assume that the scan visits 1/64 of the rows) for estimating 1739 ** the number of rows visited. Otherwise, estimate the number of rows 1740 ** using the method described in the header comment for this function. */ 1741 if( nDiff!=1 || pUpper==0 || pLower==0 ){ 1742 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); 1743 pLoop->nOut -= nAdjust; 1744 *pbDone = 1; 1745 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", 1746 nLower, nUpper, nAdjust*-1, pLoop->nOut)); 1747 } 1748 1749 }else{ 1750 assert( *pbDone==0 ); 1751 } 1752 1753 sqlite3ValueFree(p1); 1754 sqlite3ValueFree(p2); 1755 sqlite3ValueFree(pVal); 1756 1757 return rc; 1758 } 1759 #endif /* SQLITE_ENABLE_STAT4 */ 1760 1761 /* 1762 ** This function is used to estimate the number of rows that will be visited 1763 ** by scanning an index for a range of values. The range may have an upper 1764 ** bound, a lower bound, or both. The WHERE clause terms that set the upper 1765 ** and lower bounds are represented by pLower and pUpper respectively. For 1766 ** example, assuming that index p is on t1(a): 1767 ** 1768 ** ... FROM t1 WHERE a > ? AND a < ? ... 1769 ** |_____| |_____| 1770 ** | | 1771 ** pLower pUpper 1772 ** 1773 ** If either of the upper or lower bound is not present, then NULL is passed in 1774 ** place of the corresponding WhereTerm. 1775 ** 1776 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index 1777 ** column subject to the range constraint. Or, equivalently, the number of 1778 ** equality constraints optimized by the proposed index scan. For example, 1779 ** assuming index p is on t1(a, b), and the SQL query is: 1780 ** 1781 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... 1782 ** 1783 ** then nEq is set to 1 (as the range restricted column, b, is the second 1784 ** left-most column of the index). Or, if the query is: 1785 ** 1786 ** ... FROM t1 WHERE a > ? AND a < ? ... 1787 ** 1788 ** then nEq is set to 0. 1789 ** 1790 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the 1791 ** number of rows that the index scan is expected to visit without 1792 ** considering the range constraints. If nEq is 0, then *pnOut is the number of 1793 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) 1794 ** to account for the range constraints pLower and pUpper. 1795 ** 1796 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be 1797 ** used, a single range inequality reduces the search space by a factor of 4. 1798 ** and a pair of constraints (x>? AND x<?) reduces the expected number of 1799 ** rows visited by a factor of 64. 1800 */ 1801 static int whereRangeScanEst( 1802 Parse *pParse, /* Parsing & code generating context */ 1803 WhereLoopBuilder *pBuilder, 1804 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1805 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1806 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ 1807 ){ 1808 int rc = SQLITE_OK; 1809 int nOut = pLoop->nOut; 1810 LogEst nNew; 1811 1812 #ifdef SQLITE_ENABLE_STAT4 1813 Index *p = pLoop->u.btree.pIndex; 1814 int nEq = pLoop->u.btree.nEq; 1815 1816 if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol) 1817 && OptimizationEnabled(pParse->db, SQLITE_Stat4) 1818 ){ 1819 if( nEq==pBuilder->nRecValid ){ 1820 UnpackedRecord *pRec = pBuilder->pRec; 1821 tRowcnt a[2]; 1822 int nBtm = pLoop->u.btree.nBtm; 1823 int nTop = pLoop->u.btree.nTop; 1824 1825 /* Variable iLower will be set to the estimate of the number of rows in 1826 ** the index that are less than the lower bound of the range query. The 1827 ** lower bound being the concatenation of $P and $L, where $P is the 1828 ** key-prefix formed by the nEq values matched against the nEq left-most 1829 ** columns of the index, and $L is the value in pLower. 1830 ** 1831 ** Or, if pLower is NULL or $L cannot be extracted from it (because it 1832 ** is not a simple variable or literal value), the lower bound of the 1833 ** range is $P. Due to a quirk in the way whereKeyStats() works, even 1834 ** if $L is available, whereKeyStats() is called for both ($P) and 1835 ** ($P:$L) and the larger of the two returned values is used. 1836 ** 1837 ** Similarly, iUpper is to be set to the estimate of the number of rows 1838 ** less than the upper bound of the range query. Where the upper bound 1839 ** is either ($P) or ($P:$U). Again, even if $U is available, both values 1840 ** of iUpper are requested of whereKeyStats() and the smaller used. 1841 ** 1842 ** The number of rows between the two bounds is then just iUpper-iLower. 1843 */ 1844 tRowcnt iLower; /* Rows less than the lower bound */ 1845 tRowcnt iUpper; /* Rows less than the upper bound */ 1846 int iLwrIdx = -2; /* aSample[] for the lower bound */ 1847 int iUprIdx = -1; /* aSample[] for the upper bound */ 1848 1849 if( pRec ){ 1850 testcase( pRec->nField!=pBuilder->nRecValid ); 1851 pRec->nField = pBuilder->nRecValid; 1852 } 1853 /* Determine iLower and iUpper using ($P) only. */ 1854 if( nEq==0 ){ 1855 iLower = 0; 1856 iUpper = p->nRowEst0; 1857 }else{ 1858 /* Note: this call could be optimized away - since the same values must 1859 ** have been requested when testing key $P in whereEqualScanEst(). */ 1860 whereKeyStats(pParse, p, pRec, 0, a); 1861 iLower = a[0]; 1862 iUpper = a[0] + a[1]; 1863 } 1864 1865 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); 1866 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); 1867 assert( p->aSortOrder!=0 ); 1868 if( p->aSortOrder[nEq] ){ 1869 /* The roles of pLower and pUpper are swapped for a DESC index */ 1870 SWAP(WhereTerm*, pLower, pUpper); 1871 SWAP(int, nBtm, nTop); 1872 } 1873 1874 /* If possible, improve on the iLower estimate using ($P:$L). */ 1875 if( pLower ){ 1876 int n; /* Values extracted from pExpr */ 1877 Expr *pExpr = pLower->pExpr->pRight; 1878 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n); 1879 if( rc==SQLITE_OK && n ){ 1880 tRowcnt iNew; 1881 u16 mask = WO_GT|WO_LE; 1882 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1883 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); 1884 iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0); 1885 if( iNew>iLower ) iLower = iNew; 1886 nOut--; 1887 pLower = 0; 1888 } 1889 } 1890 1891 /* If possible, improve on the iUpper estimate using ($P:$U). */ 1892 if( pUpper ){ 1893 int n; /* Values extracted from pExpr */ 1894 Expr *pExpr = pUpper->pExpr->pRight; 1895 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n); 1896 if( rc==SQLITE_OK && n ){ 1897 tRowcnt iNew; 1898 u16 mask = WO_GT|WO_LE; 1899 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1900 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); 1901 iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0); 1902 if( iNew<iUpper ) iUpper = iNew; 1903 nOut--; 1904 pUpper = 0; 1905 } 1906 } 1907 1908 pBuilder->pRec = pRec; 1909 if( rc==SQLITE_OK ){ 1910 if( iUpper>iLower ){ 1911 nNew = sqlite3LogEst(iUpper - iLower); 1912 /* TUNING: If both iUpper and iLower are derived from the same 1913 ** sample, then assume they are 4x more selective. This brings 1914 ** the estimated selectivity more in line with what it would be 1915 ** if estimated without the use of STAT4 tables. */ 1916 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) ); 1917 }else{ 1918 nNew = 10; assert( 10==sqlite3LogEst(2) ); 1919 } 1920 if( nNew<nOut ){ 1921 nOut = nNew; 1922 } 1923 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", 1924 (u32)iLower, (u32)iUpper, nOut)); 1925 } 1926 }else{ 1927 int bDone = 0; 1928 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); 1929 if( bDone ) return rc; 1930 } 1931 } 1932 #else 1933 UNUSED_PARAMETER(pParse); 1934 UNUSED_PARAMETER(pBuilder); 1935 assert( pLower || pUpper ); 1936 #endif 1937 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); 1938 nNew = whereRangeAdjust(pLower, nOut); 1939 nNew = whereRangeAdjust(pUpper, nNew); 1940 1941 /* TUNING: If there is both an upper and lower limit and neither limit 1942 ** has an application-defined likelihood(), assume the range is 1943 ** reduced by an additional 75%. This means that, by default, an open-ended 1944 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the 1945 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to 1946 ** match 1/64 of the index. */ 1947 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ 1948 nNew -= 20; 1949 } 1950 1951 nOut -= (pLower!=0) + (pUpper!=0); 1952 if( nNew<10 ) nNew = 10; 1953 if( nNew<nOut ) nOut = nNew; 1954 #if defined(WHERETRACE_ENABLED) 1955 if( pLoop->nOut>nOut ){ 1956 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", 1957 pLoop->nOut, nOut)); 1958 } 1959 #endif 1960 pLoop->nOut = (LogEst)nOut; 1961 return rc; 1962 } 1963 1964 #ifdef SQLITE_ENABLE_STAT4 1965 /* 1966 ** Estimate the number of rows that will be returned based on 1967 ** an equality constraint x=VALUE and where that VALUE occurs in 1968 ** the histogram data. This only works when x is the left-most 1969 ** column of an index and sqlite_stat4 histogram data is available 1970 ** for that index. When pExpr==NULL that means the constraint is 1971 ** "x IS NULL" instead of "x=VALUE". 1972 ** 1973 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1974 ** If unable to make an estimate, leave *pnRow unchanged and return 1975 ** non-zero. 1976 ** 1977 ** This routine can fail if it is unable to load a collating sequence 1978 ** required for string comparison, or if unable to allocate memory 1979 ** for a UTF conversion required for comparison. The error is stored 1980 ** in the pParse structure. 1981 */ 1982 static int whereEqualScanEst( 1983 Parse *pParse, /* Parsing & code generating context */ 1984 WhereLoopBuilder *pBuilder, 1985 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ 1986 tRowcnt *pnRow /* Write the revised row estimate here */ 1987 ){ 1988 Index *p = pBuilder->pNew->u.btree.pIndex; 1989 int nEq = pBuilder->pNew->u.btree.nEq; 1990 UnpackedRecord *pRec = pBuilder->pRec; 1991 int rc; /* Subfunction return code */ 1992 tRowcnt a[2]; /* Statistics */ 1993 int bOk; 1994 1995 assert( nEq>=1 ); 1996 assert( nEq<=p->nColumn ); 1997 assert( p->aSample!=0 ); 1998 assert( p->nSample>0 ); 1999 assert( pBuilder->nRecValid<nEq ); 2000 2001 /* If values are not available for all fields of the index to the left 2002 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ 2003 if( pBuilder->nRecValid<(nEq-1) ){ 2004 return SQLITE_NOTFOUND; 2005 } 2006 2007 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() 2008 ** below would return the same value. */ 2009 if( nEq>=p->nColumn ){ 2010 *pnRow = 1; 2011 return SQLITE_OK; 2012 } 2013 2014 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk); 2015 pBuilder->pRec = pRec; 2016 if( rc!=SQLITE_OK ) return rc; 2017 if( bOk==0 ) return SQLITE_NOTFOUND; 2018 pBuilder->nRecValid = nEq; 2019 2020 whereKeyStats(pParse, p, pRec, 0, a); 2021 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n", 2022 p->zName, nEq-1, (int)a[1])); 2023 *pnRow = a[1]; 2024 2025 return rc; 2026 } 2027 #endif /* SQLITE_ENABLE_STAT4 */ 2028 2029 #ifdef SQLITE_ENABLE_STAT4 2030 /* 2031 ** Estimate the number of rows that will be returned based on 2032 ** an IN constraint where the right-hand side of the IN operator 2033 ** is a list of values. Example: 2034 ** 2035 ** WHERE x IN (1,2,3,4) 2036 ** 2037 ** Write the estimated row count into *pnRow and return SQLITE_OK. 2038 ** If unable to make an estimate, leave *pnRow unchanged and return 2039 ** non-zero. 2040 ** 2041 ** This routine can fail if it is unable to load a collating sequence 2042 ** required for string comparison, or if unable to allocate memory 2043 ** for a UTF conversion required for comparison. The error is stored 2044 ** in the pParse structure. 2045 */ 2046 static int whereInScanEst( 2047 Parse *pParse, /* Parsing & code generating context */ 2048 WhereLoopBuilder *pBuilder, 2049 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ 2050 tRowcnt *pnRow /* Write the revised row estimate here */ 2051 ){ 2052 Index *p = pBuilder->pNew->u.btree.pIndex; 2053 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); 2054 int nRecValid = pBuilder->nRecValid; 2055 int rc = SQLITE_OK; /* Subfunction return code */ 2056 tRowcnt nEst; /* Number of rows for a single term */ 2057 tRowcnt nRowEst = 0; /* New estimate of the number of rows */ 2058 int i; /* Loop counter */ 2059 2060 assert( p->aSample!=0 ); 2061 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ 2062 nEst = nRow0; 2063 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); 2064 nRowEst += nEst; 2065 pBuilder->nRecValid = nRecValid; 2066 } 2067 2068 if( rc==SQLITE_OK ){ 2069 if( nRowEst > nRow0 ) nRowEst = nRow0; 2070 *pnRow = nRowEst; 2071 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); 2072 } 2073 assert( pBuilder->nRecValid==nRecValid ); 2074 return rc; 2075 } 2076 #endif /* SQLITE_ENABLE_STAT4 */ 2077 2078 2079 #ifdef WHERETRACE_ENABLED 2080 /* 2081 ** Print the content of a WhereTerm object 2082 */ 2083 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){ 2084 if( pTerm==0 ){ 2085 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); 2086 }else{ 2087 char zType[8]; 2088 char zLeft[50]; 2089 memcpy(zType, "....", 5); 2090 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; 2091 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; 2092 if( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) zType[2] = 'L'; 2093 if( pTerm->wtFlags & TERM_CODED ) zType[3] = 'C'; 2094 if( pTerm->eOperator & WO_SINGLE ){ 2095 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 ); 2096 sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}", 2097 pTerm->leftCursor, pTerm->u.x.leftColumn); 2098 }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){ 2099 sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx", 2100 pTerm->u.pOrInfo->indexable); 2101 }else{ 2102 sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor); 2103 } 2104 sqlite3DebugPrintf( 2105 "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x", 2106 iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags); 2107 /* The 0x10000 .wheretrace flag causes extra information to be 2108 ** shown about each Term */ 2109 if( sqlite3WhereTrace & 0x10000 ){ 2110 sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx", 2111 pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight); 2112 } 2113 if( (pTerm->eOperator & (WO_OR|WO_AND))==0 && pTerm->u.x.iField ){ 2114 sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField); 2115 } 2116 if( pTerm->iParent>=0 ){ 2117 sqlite3DebugPrintf(" iParent=%d", pTerm->iParent); 2118 } 2119 sqlite3DebugPrintf("\n"); 2120 sqlite3TreeViewExpr(0, pTerm->pExpr, 0); 2121 } 2122 } 2123 #endif 2124 2125 #ifdef WHERETRACE_ENABLED 2126 /* 2127 ** Show the complete content of a WhereClause 2128 */ 2129 void sqlite3WhereClausePrint(WhereClause *pWC){ 2130 int i; 2131 for(i=0; i<pWC->nTerm; i++){ 2132 sqlite3WhereTermPrint(&pWC->a[i], i); 2133 } 2134 } 2135 #endif 2136 2137 #ifdef WHERETRACE_ENABLED 2138 /* 2139 ** Print a WhereLoop object for debugging purposes 2140 */ 2141 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){ 2142 WhereInfo *pWInfo = pWC->pWInfo; 2143 int nb = 1+(pWInfo->pTabList->nSrc+3)/4; 2144 SrcItem *pItem = pWInfo->pTabList->a + p->iTab; 2145 Table *pTab = pItem->pTab; 2146 Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1; 2147 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, 2148 p->iTab, nb, p->maskSelf, nb, p->prereq & mAll); 2149 sqlite3DebugPrintf(" %12s", 2150 pItem->zAlias ? pItem->zAlias : pTab->zName); 2151 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 2152 const char *zName; 2153 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ 2154 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ 2155 int i = sqlite3Strlen30(zName) - 1; 2156 while( zName[i]!='_' ) i--; 2157 zName += i; 2158 } 2159 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); 2160 }else{ 2161 sqlite3DebugPrintf("%20s",""); 2162 } 2163 }else{ 2164 char *z; 2165 if( p->u.vtab.idxStr ){ 2166 z = sqlite3_mprintf("(%d,\"%s\",%#x)", 2167 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); 2168 }else{ 2169 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); 2170 } 2171 sqlite3DebugPrintf(" %-19s", z); 2172 sqlite3_free(z); 2173 } 2174 if( p->wsFlags & WHERE_SKIPSCAN ){ 2175 sqlite3DebugPrintf(" f %06x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); 2176 }else{ 2177 sqlite3DebugPrintf(" f %06x N %d", p->wsFlags, p->nLTerm); 2178 } 2179 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); 2180 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ 2181 int i; 2182 for(i=0; i<p->nLTerm; i++){ 2183 sqlite3WhereTermPrint(p->aLTerm[i], i); 2184 } 2185 } 2186 } 2187 #endif 2188 2189 /* 2190 ** Convert bulk memory into a valid WhereLoop that can be passed 2191 ** to whereLoopClear harmlessly. 2192 */ 2193 static void whereLoopInit(WhereLoop *p){ 2194 p->aLTerm = p->aLTermSpace; 2195 p->nLTerm = 0; 2196 p->nLSlot = ArraySize(p->aLTermSpace); 2197 p->wsFlags = 0; 2198 } 2199 2200 /* 2201 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. 2202 */ 2203 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ 2204 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ 2205 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ 2206 sqlite3_free(p->u.vtab.idxStr); 2207 p->u.vtab.needFree = 0; 2208 p->u.vtab.idxStr = 0; 2209 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ 2210 sqlite3DbFree(db, p->u.btree.pIndex->zColAff); 2211 sqlite3DbFreeNN(db, p->u.btree.pIndex); 2212 p->u.btree.pIndex = 0; 2213 } 2214 } 2215 } 2216 2217 /* 2218 ** Deallocate internal memory used by a WhereLoop object. Leave the 2219 ** object in an initialized state, as if it had been newly allocated. 2220 */ 2221 static void whereLoopClear(sqlite3 *db, WhereLoop *p){ 2222 if( p->aLTerm!=p->aLTermSpace ){ 2223 sqlite3DbFreeNN(db, p->aLTerm); 2224 p->aLTerm = p->aLTermSpace; 2225 p->nLSlot = ArraySize(p->aLTermSpace); 2226 } 2227 whereLoopClearUnion(db, p); 2228 p->nLTerm = 0; 2229 p->wsFlags = 0; 2230 } 2231 2232 /* 2233 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. 2234 */ 2235 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ 2236 WhereTerm **paNew; 2237 if( p->nLSlot>=n ) return SQLITE_OK; 2238 n = (n+7)&~7; 2239 paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n); 2240 if( paNew==0 ) return SQLITE_NOMEM_BKPT; 2241 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); 2242 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm); 2243 p->aLTerm = paNew; 2244 p->nLSlot = n; 2245 return SQLITE_OK; 2246 } 2247 2248 /* 2249 ** Transfer content from the second pLoop into the first. 2250 */ 2251 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ 2252 whereLoopClearUnion(db, pTo); 2253 if( pFrom->nLTerm > pTo->nLSlot 2254 && whereLoopResize(db, pTo, pFrom->nLTerm) 2255 ){ 2256 memset(pTo, 0, WHERE_LOOP_XFER_SZ); 2257 return SQLITE_NOMEM_BKPT; 2258 } 2259 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); 2260 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); 2261 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ 2262 pFrom->u.vtab.needFree = 0; 2263 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 2264 pFrom->u.btree.pIndex = 0; 2265 } 2266 return SQLITE_OK; 2267 } 2268 2269 /* 2270 ** Delete a WhereLoop object 2271 */ 2272 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ 2273 assert( db!=0 ); 2274 whereLoopClear(db, p); 2275 sqlite3DbNNFreeNN(db, p); 2276 } 2277 2278 /* 2279 ** Free a WhereInfo structure 2280 */ 2281 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 2282 assert( pWInfo!=0 ); 2283 assert( db!=0 ); 2284 sqlite3WhereClauseClear(&pWInfo->sWC); 2285 while( pWInfo->pLoops ){ 2286 WhereLoop *p = pWInfo->pLoops; 2287 pWInfo->pLoops = p->pNextLoop; 2288 whereLoopDelete(db, p); 2289 } 2290 assert( pWInfo->pExprMods==0 ); 2291 while( pWInfo->pMemToFree ){ 2292 WhereMemBlock *pNext = pWInfo->pMemToFree->pNext; 2293 sqlite3DbNNFreeNN(db, pWInfo->pMemToFree); 2294 pWInfo->pMemToFree = pNext; 2295 } 2296 sqlite3DbNNFreeNN(db, pWInfo); 2297 } 2298 2299 /* Undo all Expr node modifications 2300 */ 2301 static void whereUndoExprMods(WhereInfo *pWInfo){ 2302 while( pWInfo->pExprMods ){ 2303 WhereExprMod *p = pWInfo->pExprMods; 2304 pWInfo->pExprMods = p->pNext; 2305 memcpy(p->pExpr, &p->orig, sizeof(p->orig)); 2306 sqlite3DbFree(pWInfo->pParse->db, p); 2307 } 2308 } 2309 2310 /* 2311 ** Return TRUE if all of the following are true: 2312 ** 2313 ** (1) X has the same or lower cost, or returns the same or fewer rows, 2314 ** than Y. 2315 ** (2) X uses fewer WHERE clause terms than Y 2316 ** (3) Every WHERE clause term used by X is also used by Y 2317 ** (4) X skips at least as many columns as Y 2318 ** (5) If X is a covering index, than Y is too 2319 ** 2320 ** Conditions (2) and (3) mean that X is a "proper subset" of Y. 2321 ** If X is a proper subset of Y then Y is a better choice and ought 2322 ** to have a lower cost. This routine returns TRUE when that cost 2323 ** relationship is inverted and needs to be adjusted. Constraint (4) 2324 ** was added because if X uses skip-scan less than Y it still might 2325 ** deserve a lower cost even if it is a proper subset of Y. Constraint (5) 2326 ** was added because a covering index probably deserves to have a lower cost 2327 ** than a non-covering index even if it is a proper subset. 2328 */ 2329 static int whereLoopCheaperProperSubset( 2330 const WhereLoop *pX, /* First WhereLoop to compare */ 2331 const WhereLoop *pY /* Compare against this WhereLoop */ 2332 ){ 2333 int i, j; 2334 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ 2335 return 0; /* X is not a subset of Y */ 2336 } 2337 if( pX->rRun>pY->rRun && pX->nOut>pY->nOut ) return 0; 2338 if( pY->nSkip > pX->nSkip ) return 0; 2339 for(i=pX->nLTerm-1; i>=0; i--){ 2340 if( pX->aLTerm[i]==0 ) continue; 2341 for(j=pY->nLTerm-1; j>=0; j--){ 2342 if( pY->aLTerm[j]==pX->aLTerm[i] ) break; 2343 } 2344 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ 2345 } 2346 if( (pX->wsFlags&WHERE_IDX_ONLY)!=0 2347 && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){ 2348 return 0; /* Constraint (5) */ 2349 } 2350 return 1; /* All conditions meet */ 2351 } 2352 2353 /* 2354 ** Try to adjust the cost and number of output rows of WhereLoop pTemplate 2355 ** upwards or downwards so that: 2356 ** 2357 ** (1) pTemplate costs less than any other WhereLoops that are a proper 2358 ** subset of pTemplate 2359 ** 2360 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate 2361 ** is a proper subset. 2362 ** 2363 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer 2364 ** WHERE clause terms than Y and that every WHERE clause term used by X is 2365 ** also used by Y. 2366 */ 2367 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ 2368 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; 2369 for(; p; p=p->pNextLoop){ 2370 if( p->iTab!=pTemplate->iTab ) continue; 2371 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; 2372 if( whereLoopCheaperProperSubset(p, pTemplate) ){ 2373 /* Adjust pTemplate cost downward so that it is cheaper than its 2374 ** subset p. */ 2375 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 2376 pTemplate->rRun, pTemplate->nOut, 2377 MIN(p->rRun, pTemplate->rRun), 2378 MIN(p->nOut - 1, pTemplate->nOut))); 2379 pTemplate->rRun = MIN(p->rRun, pTemplate->rRun); 2380 pTemplate->nOut = MIN(p->nOut - 1, pTemplate->nOut); 2381 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ 2382 /* Adjust pTemplate cost upward so that it is costlier than p since 2383 ** pTemplate is a proper subset of p */ 2384 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 2385 pTemplate->rRun, pTemplate->nOut, 2386 MAX(p->rRun, pTemplate->rRun), 2387 MAX(p->nOut + 1, pTemplate->nOut))); 2388 pTemplate->rRun = MAX(p->rRun, pTemplate->rRun); 2389 pTemplate->nOut = MAX(p->nOut + 1, pTemplate->nOut); 2390 } 2391 } 2392 } 2393 2394 /* 2395 ** Search the list of WhereLoops in *ppPrev looking for one that can be 2396 ** replaced by pTemplate. 2397 ** 2398 ** Return NULL if pTemplate does not belong on the WhereLoop list. 2399 ** In other words if pTemplate ought to be dropped from further consideration. 2400 ** 2401 ** If pX is a WhereLoop that pTemplate can replace, then return the 2402 ** link that points to pX. 2403 ** 2404 ** If pTemplate cannot replace any existing element of the list but needs 2405 ** to be added to the list as a new entry, then return a pointer to the 2406 ** tail of the list. 2407 */ 2408 static WhereLoop **whereLoopFindLesser( 2409 WhereLoop **ppPrev, 2410 const WhereLoop *pTemplate 2411 ){ 2412 WhereLoop *p; 2413 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ 2414 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ 2415 /* If either the iTab or iSortIdx values for two WhereLoop are different 2416 ** then those WhereLoops need to be considered separately. Neither is 2417 ** a candidate to replace the other. */ 2418 continue; 2419 } 2420 /* In the current implementation, the rSetup value is either zero 2421 ** or the cost of building an automatic index (NlogN) and the NlogN 2422 ** is the same for compatible WhereLoops. */ 2423 assert( p->rSetup==0 || pTemplate->rSetup==0 2424 || p->rSetup==pTemplate->rSetup ); 2425 2426 /* whereLoopAddBtree() always generates and inserts the automatic index 2427 ** case first. Hence compatible candidate WhereLoops never have a larger 2428 ** rSetup. Call this SETUP-INVARIANT */ 2429 assert( p->rSetup>=pTemplate->rSetup ); 2430 2431 /* Any loop using an appliation-defined index (or PRIMARY KEY or 2432 ** UNIQUE constraint) with one or more == constraints is better 2433 ** than an automatic index. Unless it is a skip-scan. */ 2434 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 2435 && (pTemplate->nSkip)==0 2436 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 2437 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 2438 && (p->prereq & pTemplate->prereq)==pTemplate->prereq 2439 ){ 2440 break; 2441 } 2442 2443 /* If existing WhereLoop p is better than pTemplate, pTemplate can be 2444 ** discarded. WhereLoop p is better if: 2445 ** (1) p has no more dependencies than pTemplate, and 2446 ** (2) p has an equal or lower cost than pTemplate 2447 */ 2448 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ 2449 && p->rSetup<=pTemplate->rSetup /* (2a) */ 2450 && p->rRun<=pTemplate->rRun /* (2b) */ 2451 && p->nOut<=pTemplate->nOut /* (2c) */ 2452 ){ 2453 return 0; /* Discard pTemplate */ 2454 } 2455 2456 /* If pTemplate is always better than p, then cause p to be overwritten 2457 ** with pTemplate. pTemplate is better than p if: 2458 ** (1) pTemplate has no more dependences than p, and 2459 ** (2) pTemplate has an equal or lower cost than p. 2460 */ 2461 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ 2462 && p->rRun>=pTemplate->rRun /* (2a) */ 2463 && p->nOut>=pTemplate->nOut /* (2b) */ 2464 ){ 2465 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ 2466 break; /* Cause p to be overwritten by pTemplate */ 2467 } 2468 } 2469 return ppPrev; 2470 } 2471 2472 /* 2473 ** Insert or replace a WhereLoop entry using the template supplied. 2474 ** 2475 ** An existing WhereLoop entry might be overwritten if the new template 2476 ** is better and has fewer dependencies. Or the template will be ignored 2477 ** and no insert will occur if an existing WhereLoop is faster and has 2478 ** fewer dependencies than the template. Otherwise a new WhereLoop is 2479 ** added based on the template. 2480 ** 2481 ** If pBuilder->pOrSet is not NULL then we care about only the 2482 ** prerequisites and rRun and nOut costs of the N best loops. That 2483 ** information is gathered in the pBuilder->pOrSet object. This special 2484 ** processing mode is used only for OR clause processing. 2485 ** 2486 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we 2487 ** still might overwrite similar loops with the new template if the 2488 ** new template is better. Loops may be overwritten if the following 2489 ** conditions are met: 2490 ** 2491 ** (1) They have the same iTab. 2492 ** (2) They have the same iSortIdx. 2493 ** (3) The template has same or fewer dependencies than the current loop 2494 ** (4) The template has the same or lower cost than the current loop 2495 */ 2496 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ 2497 WhereLoop **ppPrev, *p; 2498 WhereInfo *pWInfo = pBuilder->pWInfo; 2499 sqlite3 *db = pWInfo->pParse->db; 2500 int rc; 2501 2502 /* Stop the search once we hit the query planner search limit */ 2503 if( pBuilder->iPlanLimit==0 ){ 2504 WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n")); 2505 if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0; 2506 return SQLITE_DONE; 2507 } 2508 pBuilder->iPlanLimit--; 2509 2510 whereLoopAdjustCost(pWInfo->pLoops, pTemplate); 2511 2512 /* If pBuilder->pOrSet is defined, then only keep track of the costs 2513 ** and prereqs. 2514 */ 2515 if( pBuilder->pOrSet!=0 ){ 2516 if( pTemplate->nLTerm ){ 2517 #if WHERETRACE_ENABLED 2518 u16 n = pBuilder->pOrSet->n; 2519 int x = 2520 #endif 2521 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, 2522 pTemplate->nOut); 2523 #if WHERETRACE_ENABLED /* 0x8 */ 2524 if( sqlite3WhereTrace & 0x8 ){ 2525 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); 2526 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2527 } 2528 #endif 2529 } 2530 return SQLITE_OK; 2531 } 2532 2533 /* Look for an existing WhereLoop to replace with pTemplate 2534 */ 2535 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); 2536 2537 if( ppPrev==0 ){ 2538 /* There already exists a WhereLoop on the list that is better 2539 ** than pTemplate, so just ignore pTemplate */ 2540 #if WHERETRACE_ENABLED /* 0x8 */ 2541 if( sqlite3WhereTrace & 0x8 ){ 2542 sqlite3DebugPrintf(" skip: "); 2543 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2544 } 2545 #endif 2546 return SQLITE_OK; 2547 }else{ 2548 p = *ppPrev; 2549 } 2550 2551 /* If we reach this point it means that either p[] should be overwritten 2552 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new 2553 ** WhereLoop and insert it. 2554 */ 2555 #if WHERETRACE_ENABLED /* 0x8 */ 2556 if( sqlite3WhereTrace & 0x8 ){ 2557 if( p!=0 ){ 2558 sqlite3DebugPrintf("replace: "); 2559 sqlite3WhereLoopPrint(p, pBuilder->pWC); 2560 sqlite3DebugPrintf(" with: "); 2561 }else{ 2562 sqlite3DebugPrintf(" add: "); 2563 } 2564 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2565 } 2566 #endif 2567 if( p==0 ){ 2568 /* Allocate a new WhereLoop to add to the end of the list */ 2569 *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop)); 2570 if( p==0 ) return SQLITE_NOMEM_BKPT; 2571 whereLoopInit(p); 2572 p->pNextLoop = 0; 2573 }else{ 2574 /* We will be overwriting WhereLoop p[]. But before we do, first 2575 ** go through the rest of the list and delete any other entries besides 2576 ** p[] that are also supplated by pTemplate */ 2577 WhereLoop **ppTail = &p->pNextLoop; 2578 WhereLoop *pToDel; 2579 while( *ppTail ){ 2580 ppTail = whereLoopFindLesser(ppTail, pTemplate); 2581 if( ppTail==0 ) break; 2582 pToDel = *ppTail; 2583 if( pToDel==0 ) break; 2584 *ppTail = pToDel->pNextLoop; 2585 #if WHERETRACE_ENABLED /* 0x8 */ 2586 if( sqlite3WhereTrace & 0x8 ){ 2587 sqlite3DebugPrintf(" delete: "); 2588 sqlite3WhereLoopPrint(pToDel, pBuilder->pWC); 2589 } 2590 #endif 2591 whereLoopDelete(db, pToDel); 2592 } 2593 } 2594 rc = whereLoopXfer(db, p, pTemplate); 2595 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 2596 Index *pIndex = p->u.btree.pIndex; 2597 if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){ 2598 p->u.btree.pIndex = 0; 2599 } 2600 } 2601 return rc; 2602 } 2603 2604 /* 2605 ** Adjust the WhereLoop.nOut value downward to account for terms of the 2606 ** WHERE clause that reference the loop but which are not used by an 2607 ** index. 2608 * 2609 ** For every WHERE clause term that is not used by the index 2610 ** and which has a truth probability assigned by one of the likelihood(), 2611 ** likely(), or unlikely() SQL functions, reduce the estimated number 2612 ** of output rows by the probability specified. 2613 ** 2614 ** TUNING: For every WHERE clause term that is not used by the index 2615 ** and which does not have an assigned truth probability, heuristics 2616 ** described below are used to try to estimate the truth probability. 2617 ** TODO --> Perhaps this is something that could be improved by better 2618 ** table statistics. 2619 ** 2620 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% 2621 ** value corresponds to -1 in LogEst notation, so this means decrement 2622 ** the WhereLoop.nOut field for every such WHERE clause term. 2623 ** 2624 ** Heuristic 2: If there exists one or more WHERE clause terms of the 2625 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the 2626 ** final output row estimate is no greater than 1/4 of the total number 2627 ** of rows in the table. In other words, assume that x==EXPR will filter 2628 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the 2629 ** "x" column is boolean or else -1 or 0 or 1 is a common default value 2630 ** on the "x" column and so in that case only cap the output row estimate 2631 ** at 1/2 instead of 1/4. 2632 */ 2633 static void whereLoopOutputAdjust( 2634 WhereClause *pWC, /* The WHERE clause */ 2635 WhereLoop *pLoop, /* The loop to adjust downward */ 2636 LogEst nRow /* Number of rows in the entire table */ 2637 ){ 2638 WhereTerm *pTerm, *pX; 2639 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); 2640 int i, j; 2641 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ 2642 2643 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2644 for(i=pWC->nBase, pTerm=pWC->a; i>0; i--, pTerm++){ 2645 assert( pTerm!=0 ); 2646 if( (pTerm->prereqAll & notAllowed)!=0 ) continue; 2647 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; 2648 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) continue; 2649 for(j=pLoop->nLTerm-1; j>=0; j--){ 2650 pX = pLoop->aLTerm[j]; 2651 if( pX==0 ) continue; 2652 if( pX==pTerm ) break; 2653 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; 2654 } 2655 if( j<0 ){ 2656 if( pLoop->maskSelf==pTerm->prereqAll ){ 2657 /* If there are extra terms in the WHERE clause not used by an index 2658 ** that depend only on the table being scanned, and that will tend to 2659 ** cause many rows to be omitted, then mark that table as 2660 ** "self-culling". 2661 ** 2662 ** 2022-03-24: Self-culling only applies if either the extra terms 2663 ** are straight comparison operators that are non-true with NULL 2664 ** operand, or if the loop is not an OUTER JOIN. 2665 */ 2666 if( (pTerm->eOperator & 0x3f)!=0 2667 || (pWC->pWInfo->pTabList->a[pLoop->iTab].fg.jointype 2668 & (JT_LEFT|JT_LTORJ))==0 2669 ){ 2670 pLoop->wsFlags |= WHERE_SELFCULL; 2671 } 2672 } 2673 if( pTerm->truthProb<=0 ){ 2674 /* If a truth probability is specified using the likelihood() hints, 2675 ** then use the probability provided by the application. */ 2676 pLoop->nOut += pTerm->truthProb; 2677 }else{ 2678 /* In the absence of explicit truth probabilities, use heuristics to 2679 ** guess a reasonable truth probability. */ 2680 pLoop->nOut--; 2681 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 2682 && (pTerm->wtFlags & TERM_HIGHTRUTH)==0 /* tag-20200224-1 */ 2683 ){ 2684 Expr *pRight = pTerm->pExpr->pRight; 2685 int k = 0; 2686 testcase( pTerm->pExpr->op==TK_IS ); 2687 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){ 2688 k = 10; 2689 }else{ 2690 k = 20; 2691 } 2692 if( iReduce<k ){ 2693 pTerm->wtFlags |= TERM_HEURTRUTH; 2694 iReduce = k; 2695 } 2696 } 2697 } 2698 } 2699 } 2700 if( pLoop->nOut > nRow-iReduce ){ 2701 pLoop->nOut = nRow - iReduce; 2702 } 2703 } 2704 2705 /* 2706 ** Term pTerm is a vector range comparison operation. The first comparison 2707 ** in the vector can be optimized using column nEq of the index. This 2708 ** function returns the total number of vector elements that can be used 2709 ** as part of the range comparison. 2710 ** 2711 ** For example, if the query is: 2712 ** 2713 ** WHERE a = ? AND (b, c, d) > (?, ?, ?) 2714 ** 2715 ** and the index: 2716 ** 2717 ** CREATE INDEX ... ON (a, b, c, d, e) 2718 ** 2719 ** then this function would be invoked with nEq=1. The value returned in 2720 ** this case is 3. 2721 */ 2722 static int whereRangeVectorLen( 2723 Parse *pParse, /* Parsing context */ 2724 int iCur, /* Cursor open on pIdx */ 2725 Index *pIdx, /* The index to be used for a inequality constraint */ 2726 int nEq, /* Number of prior equality constraints on same index */ 2727 WhereTerm *pTerm /* The vector inequality constraint */ 2728 ){ 2729 int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft); 2730 int i; 2731 2732 nCmp = MIN(nCmp, (pIdx->nColumn - nEq)); 2733 for(i=1; i<nCmp; i++){ 2734 /* Test if comparison i of pTerm is compatible with column (i+nEq) 2735 ** of the index. If not, exit the loop. */ 2736 char aff; /* Comparison affinity */ 2737 char idxaff = 0; /* Indexed columns affinity */ 2738 CollSeq *pColl; /* Comparison collation sequence */ 2739 Expr *pLhs, *pRhs; 2740 2741 assert( ExprUseXList(pTerm->pExpr->pLeft) ); 2742 pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr; 2743 pRhs = pTerm->pExpr->pRight; 2744 if( ExprUseXSelect(pRhs) ){ 2745 pRhs = pRhs->x.pSelect->pEList->a[i].pExpr; 2746 }else{ 2747 pRhs = pRhs->x.pList->a[i].pExpr; 2748 } 2749 2750 /* Check that the LHS of the comparison is a column reference to 2751 ** the right column of the right source table. And that the sort 2752 ** order of the index column is the same as the sort order of the 2753 ** leftmost index column. */ 2754 if( pLhs->op!=TK_COLUMN 2755 || pLhs->iTable!=iCur 2756 || pLhs->iColumn!=pIdx->aiColumn[i+nEq] 2757 || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq] 2758 ){ 2759 break; 2760 } 2761 2762 testcase( pLhs->iColumn==XN_ROWID ); 2763 aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs)); 2764 idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn); 2765 if( aff!=idxaff ) break; 2766 2767 pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2768 if( pColl==0 ) break; 2769 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break; 2770 } 2771 return i; 2772 } 2773 2774 /* 2775 ** Adjust the cost C by the costMult facter T. This only occurs if 2776 ** compiled with -DSQLITE_ENABLE_COSTMULT 2777 */ 2778 #ifdef SQLITE_ENABLE_COSTMULT 2779 # define ApplyCostMultiplier(C,T) C += T 2780 #else 2781 # define ApplyCostMultiplier(C,T) 2782 #endif 2783 2784 /* 2785 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the 2786 ** index pIndex. Try to match one more. 2787 ** 2788 ** When this function is called, pBuilder->pNew->nOut contains the 2789 ** number of rows expected to be visited by filtering using the nEq 2790 ** terms only. If it is modified, this value is restored before this 2791 ** function returns. 2792 ** 2793 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is 2794 ** a fake index used for the INTEGER PRIMARY KEY. 2795 */ 2796 static int whereLoopAddBtreeIndex( 2797 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ 2798 SrcItem *pSrc, /* FROM clause term being analyzed */ 2799 Index *pProbe, /* An index on pSrc */ 2800 LogEst nInMul /* log(Number of iterations due to IN) */ 2801 ){ 2802 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ 2803 Parse *pParse = pWInfo->pParse; /* Parsing context */ 2804 sqlite3 *db = pParse->db; /* Database connection malloc context */ 2805 WhereLoop *pNew; /* Template WhereLoop under construction */ 2806 WhereTerm *pTerm; /* A WhereTerm under consideration */ 2807 int opMask; /* Valid operators for constraints */ 2808 WhereScan scan; /* Iterator for WHERE terms */ 2809 Bitmask saved_prereq; /* Original value of pNew->prereq */ 2810 u16 saved_nLTerm; /* Original value of pNew->nLTerm */ 2811 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ 2812 u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */ 2813 u16 saved_nTop; /* Original value of pNew->u.btree.nTop */ 2814 u16 saved_nSkip; /* Original value of pNew->nSkip */ 2815 u32 saved_wsFlags; /* Original value of pNew->wsFlags */ 2816 LogEst saved_nOut; /* Original value of pNew->nOut */ 2817 int rc = SQLITE_OK; /* Return code */ 2818 LogEst rSize; /* Number of rows in the table */ 2819 LogEst rLogSize; /* Logarithm of table size */ 2820 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ 2821 2822 pNew = pBuilder->pNew; 2823 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 2824 WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n", 2825 pProbe->pTable->zName,pProbe->zName, 2826 pNew->u.btree.nEq, pNew->nSkip, pNew->rRun)); 2827 2828 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); 2829 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); 2830 if( pNew->wsFlags & WHERE_BTM_LIMIT ){ 2831 opMask = WO_LT|WO_LE; 2832 }else{ 2833 assert( pNew->u.btree.nBtm==0 ); 2834 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS; 2835 } 2836 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); 2837 2838 assert( pNew->u.btree.nEq<pProbe->nColumn ); 2839 assert( pNew->u.btree.nEq<pProbe->nKeyCol 2840 || pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY ); 2841 2842 saved_nEq = pNew->u.btree.nEq; 2843 saved_nBtm = pNew->u.btree.nBtm; 2844 saved_nTop = pNew->u.btree.nTop; 2845 saved_nSkip = pNew->nSkip; 2846 saved_nLTerm = pNew->nLTerm; 2847 saved_wsFlags = pNew->wsFlags; 2848 saved_prereq = pNew->prereq; 2849 saved_nOut = pNew->nOut; 2850 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq, 2851 opMask, pProbe); 2852 pNew->rSetup = 0; 2853 rSize = pProbe->aiRowLogEst[0]; 2854 rLogSize = estLog(rSize); 2855 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ 2856 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ 2857 LogEst rCostIdx; 2858 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ 2859 int nIn = 0; 2860 #ifdef SQLITE_ENABLE_STAT4 2861 int nRecValid = pBuilder->nRecValid; 2862 #endif 2863 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) 2864 && indexColumnNotNull(pProbe, saved_nEq) 2865 ){ 2866 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ 2867 } 2868 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2869 2870 /* Do not allow the upper bound of a LIKE optimization range constraint 2871 ** to mix with a lower range bound from some other source */ 2872 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; 2873 2874 if( (pSrc->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT))!=0 2875 && !constraintCompatibleWithOuterJoin(pTerm,pSrc) 2876 ){ 2877 continue; 2878 } 2879 if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){ 2880 pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE; 2881 }else{ 2882 pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED; 2883 } 2884 pNew->wsFlags = saved_wsFlags; 2885 pNew->u.btree.nEq = saved_nEq; 2886 pNew->u.btree.nBtm = saved_nBtm; 2887 pNew->u.btree.nTop = saved_nTop; 2888 pNew->nLTerm = saved_nLTerm; 2889 if( pNew->nLTerm>=pNew->nLSlot 2890 && whereLoopResize(db, pNew, pNew->nLTerm+1) 2891 ){ 2892 break; /* OOM while trying to enlarge the pNew->aLTerm array */ 2893 } 2894 pNew->aLTerm[pNew->nLTerm++] = pTerm; 2895 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; 2896 2897 assert( nInMul==0 2898 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 2899 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 2900 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 2901 ); 2902 2903 if( eOp & WO_IN ){ 2904 Expr *pExpr = pTerm->pExpr; 2905 if( ExprUseXSelect(pExpr) ){ 2906 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ 2907 int i; 2908 nIn = 46; assert( 46==sqlite3LogEst(25) ); 2909 2910 /* The expression may actually be of the form (x, y) IN (SELECT...). 2911 ** In this case there is a separate term for each of (x) and (y). 2912 ** However, the nIn multiplier should only be applied once, not once 2913 ** for each such term. The following loop checks that pTerm is the 2914 ** first such term in use, and sets nIn back to 0 if it is not. */ 2915 for(i=0; i<pNew->nLTerm-1; i++){ 2916 if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0; 2917 } 2918 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ 2919 /* "x IN (value, value, ...)" */ 2920 nIn = sqlite3LogEst(pExpr->x.pList->nExpr); 2921 } 2922 if( pProbe->hasStat1 && rLogSize>=10 ){ 2923 LogEst M, logK, x; 2924 /* Let: 2925 ** N = the total number of rows in the table 2926 ** K = the number of entries on the RHS of the IN operator 2927 ** M = the number of rows in the table that match terms to the 2928 ** to the left in the same index. If the IN operator is on 2929 ** the left-most index column, M==N. 2930 ** 2931 ** Given the definitions above, it is better to omit the IN operator 2932 ** from the index lookup and instead do a scan of the M elements, 2933 ** testing each scanned row against the IN operator separately, if: 2934 ** 2935 ** M*log(K) < K*log(N) 2936 ** 2937 ** Our estimates for M, K, and N might be inaccurate, so we build in 2938 ** a safety margin of 2 (LogEst: 10) that favors using the IN operator 2939 ** with the index, as using an index has better worst-case behavior. 2940 ** If we do not have real sqlite_stat1 data, always prefer to use 2941 ** the index. Do not bother with this optimization on very small 2942 ** tables (less than 2 rows) as it is pointless in that case. 2943 */ 2944 M = pProbe->aiRowLogEst[saved_nEq]; 2945 logK = estLog(nIn); 2946 /* TUNING v----- 10 to bias toward indexed IN */ 2947 x = M + logK + 10 - (nIn + rLogSize); 2948 if( x>=0 ){ 2949 WHERETRACE(0x40, 2950 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) " 2951 "prefers indexed lookup\n", 2952 saved_nEq, M, logK, nIn, rLogSize, x)); 2953 }else if( nInMul<2 && OptimizationEnabled(db, SQLITE_SeekScan) ){ 2954 WHERETRACE(0x40, 2955 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d" 2956 " nInMul=%d) prefers skip-scan\n", 2957 saved_nEq, M, logK, nIn, rLogSize, x, nInMul)); 2958 pNew->wsFlags |= WHERE_IN_SEEKSCAN; 2959 }else{ 2960 WHERETRACE(0x40, 2961 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d" 2962 " nInMul=%d) prefers normal scan\n", 2963 saved_nEq, M, logK, nIn, rLogSize, x, nInMul)); 2964 continue; 2965 } 2966 } 2967 pNew->wsFlags |= WHERE_COLUMN_IN; 2968 }else if( eOp & (WO_EQ|WO_IS) ){ 2969 int iCol = pProbe->aiColumn[saved_nEq]; 2970 pNew->wsFlags |= WHERE_COLUMN_EQ; 2971 assert( saved_nEq==pNew->u.btree.nEq ); 2972 if( iCol==XN_ROWID 2973 || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) 2974 ){ 2975 if( iCol==XN_ROWID || pProbe->uniqNotNull 2976 || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ) 2977 ){ 2978 pNew->wsFlags |= WHERE_ONEROW; 2979 }else{ 2980 pNew->wsFlags |= WHERE_UNQ_WANTED; 2981 } 2982 } 2983 if( scan.iEquiv>1 ) pNew->wsFlags |= WHERE_TRANSCONS; 2984 }else if( eOp & WO_ISNULL ){ 2985 pNew->wsFlags |= WHERE_COLUMN_NULL; 2986 }else{ 2987 int nVecLen = whereRangeVectorLen( 2988 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2989 ); 2990 if( eOp & (WO_GT|WO_GE) ){ 2991 testcase( eOp & WO_GT ); 2992 testcase( eOp & WO_GE ); 2993 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; 2994 pNew->u.btree.nBtm = nVecLen; 2995 pBtm = pTerm; 2996 pTop = 0; 2997 if( pTerm->wtFlags & TERM_LIKEOPT ){ 2998 /* Range constraints that come from the LIKE optimization are 2999 ** always used in pairs. */ 3000 pTop = &pTerm[1]; 3001 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm ); 3002 assert( pTop->wtFlags & TERM_LIKEOPT ); 3003 assert( pTop->eOperator==WO_LT ); 3004 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 3005 pNew->aLTerm[pNew->nLTerm++] = pTop; 3006 pNew->wsFlags |= WHERE_TOP_LIMIT; 3007 pNew->u.btree.nTop = 1; 3008 } 3009 }else{ 3010 assert( eOp & (WO_LT|WO_LE) ); 3011 testcase( eOp & WO_LT ); 3012 testcase( eOp & WO_LE ); 3013 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; 3014 pNew->u.btree.nTop = nVecLen; 3015 pTop = pTerm; 3016 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? 3017 pNew->aLTerm[pNew->nLTerm-2] : 0; 3018 } 3019 } 3020 3021 /* At this point pNew->nOut is set to the number of rows expected to 3022 ** be visited by the index scan before considering term pTerm, or the 3023 ** values of nIn and nInMul. In other words, assuming that all 3024 ** "x IN(...)" terms are replaced with "x = ?". This block updates 3025 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ 3026 assert( pNew->nOut==saved_nOut ); 3027 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 3028 /* Adjust nOut using stat4 data. Or, if there is no stat4 3029 ** data, using some other estimate. */ 3030 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); 3031 }else{ 3032 int nEq = ++pNew->u.btree.nEq; 3033 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) ); 3034 3035 assert( pNew->nOut==saved_nOut ); 3036 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){ 3037 assert( (eOp & WO_IN) || nIn==0 ); 3038 testcase( eOp & WO_IN ); 3039 pNew->nOut += pTerm->truthProb; 3040 pNew->nOut -= nIn; 3041 }else{ 3042 #ifdef SQLITE_ENABLE_STAT4 3043 tRowcnt nOut = 0; 3044 if( nInMul==0 3045 && pProbe->nSample 3046 && ALWAYS(pNew->u.btree.nEq<=pProbe->nSampleCol) 3047 && ((eOp & WO_IN)==0 || ExprUseXList(pTerm->pExpr)) 3048 && OptimizationEnabled(db, SQLITE_Stat4) 3049 ){ 3050 Expr *pExpr = pTerm->pExpr; 3051 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){ 3052 testcase( eOp & WO_EQ ); 3053 testcase( eOp & WO_IS ); 3054 testcase( eOp & WO_ISNULL ); 3055 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); 3056 }else{ 3057 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); 3058 } 3059 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 3060 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ 3061 if( nOut ){ 3062 pNew->nOut = sqlite3LogEst(nOut); 3063 if( nEq==1 3064 /* TUNING: Mark terms as "low selectivity" if they seem likely 3065 ** to be true for half or more of the rows in the table. 3066 ** See tag-202002240-1 */ 3067 && pNew->nOut+10 > pProbe->aiRowLogEst[0] 3068 ){ 3069 #if WHERETRACE_ENABLED /* 0x01 */ 3070 if( sqlite3WhereTrace & 0x01 ){ 3071 sqlite3DebugPrintf( 3072 "STAT4 determines term has low selectivity:\n"); 3073 sqlite3WhereTermPrint(pTerm, 999); 3074 } 3075 #endif 3076 pTerm->wtFlags |= TERM_HIGHTRUTH; 3077 if( pTerm->wtFlags & TERM_HEURTRUTH ){ 3078 /* If the term has previously been used with an assumption of 3079 ** higher selectivity, then set the flag to rerun the 3080 ** loop computations. */ 3081 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS; 3082 } 3083 } 3084 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; 3085 pNew->nOut -= nIn; 3086 } 3087 } 3088 if( nOut==0 ) 3089 #endif 3090 { 3091 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); 3092 if( eOp & WO_ISNULL ){ 3093 /* TUNING: If there is no likelihood() value, assume that a 3094 ** "col IS NULL" expression matches twice as many rows 3095 ** as (col=?). */ 3096 pNew->nOut += 10; 3097 } 3098 } 3099 } 3100 } 3101 3102 /* Set rCostIdx to the cost of visiting selected rows in index. Add 3103 ** it to pNew->rRun, which is currently set to the cost of the index 3104 ** seek only. Then, if this is a non-covering index, add the cost of 3105 ** visiting the rows in the main table. */ 3106 assert( pSrc->pTab->szTabRow>0 ); 3107 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; 3108 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); 3109 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ 3110 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); 3111 } 3112 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); 3113 3114 nOutUnadjusted = pNew->nOut; 3115 pNew->rRun += nInMul + nIn; 3116 pNew->nOut += nInMul + nIn; 3117 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); 3118 rc = whereLoopInsert(pBuilder, pNew); 3119 3120 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 3121 pNew->nOut = saved_nOut; 3122 }else{ 3123 pNew->nOut = nOutUnadjusted; 3124 } 3125 3126 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 3127 && pNew->u.btree.nEq<pProbe->nColumn 3128 && (pNew->u.btree.nEq<pProbe->nKeyCol || 3129 pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY) 3130 ){ 3131 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); 3132 } 3133 pNew->nOut = saved_nOut; 3134 #ifdef SQLITE_ENABLE_STAT4 3135 pBuilder->nRecValid = nRecValid; 3136 #endif 3137 } 3138 pNew->prereq = saved_prereq; 3139 pNew->u.btree.nEq = saved_nEq; 3140 pNew->u.btree.nBtm = saved_nBtm; 3141 pNew->u.btree.nTop = saved_nTop; 3142 pNew->nSkip = saved_nSkip; 3143 pNew->wsFlags = saved_wsFlags; 3144 pNew->nOut = saved_nOut; 3145 pNew->nLTerm = saved_nLTerm; 3146 3147 /* Consider using a skip-scan if there are no WHERE clause constraints 3148 ** available for the left-most terms of the index, and if the average 3149 ** number of repeats in the left-most terms is at least 18. 3150 ** 3151 ** The magic number 18 is selected on the basis that scanning 17 rows 3152 ** is almost always quicker than an index seek (even though if the index 3153 ** contains fewer than 2^17 rows we assume otherwise in other parts of 3154 ** the code). And, even if it is not, it should not be too much slower. 3155 ** On the other hand, the extra seeks could end up being significantly 3156 ** more expensive. */ 3157 assert( 42==sqlite3LogEst(18) ); 3158 if( saved_nEq==saved_nSkip 3159 && saved_nEq+1<pProbe->nKeyCol 3160 && saved_nEq==pNew->nLTerm 3161 && pProbe->noSkipScan==0 3162 && pProbe->hasStat1!=0 3163 && OptimizationEnabled(db, SQLITE_SkipScan) 3164 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ 3165 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK 3166 ){ 3167 LogEst nIter; 3168 pNew->u.btree.nEq++; 3169 pNew->nSkip++; 3170 pNew->aLTerm[pNew->nLTerm++] = 0; 3171 pNew->wsFlags |= WHERE_SKIPSCAN; 3172 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; 3173 pNew->nOut -= nIter; 3174 /* TUNING: Because uncertainties in the estimates for skip-scan queries, 3175 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ 3176 nIter += 5; 3177 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); 3178 pNew->nOut = saved_nOut; 3179 pNew->u.btree.nEq = saved_nEq; 3180 pNew->nSkip = saved_nSkip; 3181 pNew->wsFlags = saved_wsFlags; 3182 } 3183 3184 WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n", 3185 pProbe->pTable->zName, pProbe->zName, saved_nEq, rc)); 3186 return rc; 3187 } 3188 3189 /* 3190 ** Return True if it is possible that pIndex might be useful in 3191 ** implementing the ORDER BY clause in pBuilder. 3192 ** 3193 ** Return False if pBuilder does not contain an ORDER BY clause or 3194 ** if there is no way for pIndex to be useful in implementing that 3195 ** ORDER BY clause. 3196 */ 3197 static int indexMightHelpWithOrderBy( 3198 WhereLoopBuilder *pBuilder, 3199 Index *pIndex, 3200 int iCursor 3201 ){ 3202 ExprList *pOB; 3203 ExprList *aColExpr; 3204 int ii, jj; 3205 3206 if( pIndex->bUnordered ) return 0; 3207 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; 3208 for(ii=0; ii<pOB->nExpr; ii++){ 3209 Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr); 3210 if( NEVER(pExpr==0) ) continue; 3211 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){ 3212 if( pExpr->iColumn<0 ) return 1; 3213 for(jj=0; jj<pIndex->nKeyCol; jj++){ 3214 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; 3215 } 3216 }else if( (aColExpr = pIndex->aColExpr)!=0 ){ 3217 for(jj=0; jj<pIndex->nKeyCol; jj++){ 3218 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue; 3219 if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){ 3220 return 1; 3221 } 3222 } 3223 } 3224 } 3225 return 0; 3226 } 3227 3228 /* Check to see if a partial index with pPartIndexWhere can be used 3229 ** in the current query. Return true if it can be and false if not. 3230 */ 3231 static int whereUsablePartialIndex( 3232 int iTab, /* The table for which we want an index */ 3233 u8 jointype, /* The JT_* flags on the join */ 3234 WhereClause *pWC, /* The WHERE clause of the query */ 3235 Expr *pWhere /* The WHERE clause from the partial index */ 3236 ){ 3237 int i; 3238 WhereTerm *pTerm; 3239 Parse *pParse; 3240 3241 if( jointype & JT_LTORJ ) return 0; 3242 pParse = pWC->pWInfo->pParse; 3243 while( pWhere->op==TK_AND ){ 3244 if( !whereUsablePartialIndex(iTab,jointype,pWC,pWhere->pLeft) ) return 0; 3245 pWhere = pWhere->pRight; 3246 } 3247 if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0; 3248 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 3249 Expr *pExpr; 3250 pExpr = pTerm->pExpr; 3251 if( (!ExprHasProperty(pExpr, EP_OuterON) || pExpr->w.iJoin==iTab) 3252 && ((jointype & JT_OUTER)==0 || ExprHasProperty(pExpr, EP_OuterON)) 3253 && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab) 3254 && (pTerm->wtFlags & TERM_VNULL)==0 3255 ){ 3256 return 1; 3257 } 3258 } 3259 return 0; 3260 } 3261 3262 /* 3263 ** Add all WhereLoop objects for a single table of the join where the table 3264 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be 3265 ** a b-tree table, not a virtual table. 3266 ** 3267 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function 3268 ** are calculated as follows: 3269 ** 3270 ** For a full scan, assuming the table (or index) contains nRow rows: 3271 ** 3272 ** cost = nRow * 3.0 // full-table scan 3273 ** cost = nRow * K // scan of covering index 3274 ** cost = nRow * (K+3.0) // scan of non-covering index 3275 ** 3276 ** where K is a value between 1.1 and 3.0 set based on the relative 3277 ** estimated average size of the index and table records. 3278 ** 3279 ** For an index scan, where nVisit is the number of index rows visited 3280 ** by the scan, and nSeek is the number of seek operations required on 3281 ** the index b-tree: 3282 ** 3283 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index 3284 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index 3285 ** 3286 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the 3287 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when 3288 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. 3289 ** 3290 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount 3291 ** of uncertainty. For this reason, scoring is designed to pick plans that 3292 ** "do the least harm" if the estimates are inaccurate. For example, a 3293 ** log(nRow) factor is omitted from a non-covering index scan in order to 3294 ** bias the scoring in favor of using an index, since the worst-case 3295 ** performance of using an index is far better than the worst-case performance 3296 ** of a full table scan. 3297 */ 3298 static int whereLoopAddBtree( 3299 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 3300 Bitmask mPrereq /* Extra prerequesites for using this table */ 3301 ){ 3302 WhereInfo *pWInfo; /* WHERE analysis context */ 3303 Index *pProbe; /* An index we are evaluating */ 3304 Index sPk; /* A fake index object for the primary key */ 3305 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ 3306 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ 3307 SrcList *pTabList; /* The FROM clause */ 3308 SrcItem *pSrc; /* The FROM clause btree term to add */ 3309 WhereLoop *pNew; /* Template WhereLoop object */ 3310 int rc = SQLITE_OK; /* Return code */ 3311 int iSortIdx = 1; /* Index number */ 3312 int b; /* A boolean value */ 3313 LogEst rSize; /* number of rows in the table */ 3314 WhereClause *pWC; /* The parsed WHERE clause */ 3315 Table *pTab; /* Table being queried */ 3316 3317 pNew = pBuilder->pNew; 3318 pWInfo = pBuilder->pWInfo; 3319 pTabList = pWInfo->pTabList; 3320 pSrc = pTabList->a + pNew->iTab; 3321 pTab = pSrc->pTab; 3322 pWC = pBuilder->pWC; 3323 assert( !IsVirtual(pSrc->pTab) ); 3324 3325 if( pSrc->fg.isIndexedBy ){ 3326 assert( pSrc->fg.isCte==0 ); 3327 /* An INDEXED BY clause specifies a particular index to use */ 3328 pProbe = pSrc->u2.pIBIndex; 3329 }else if( !HasRowid(pTab) ){ 3330 pProbe = pTab->pIndex; 3331 }else{ 3332 /* There is no INDEXED BY clause. Create a fake Index object in local 3333 ** variable sPk to represent the rowid primary key index. Make this 3334 ** fake index the first in a chain of Index objects with all of the real 3335 ** indices to follow */ 3336 Index *pFirst; /* First of real indices on the table */ 3337 memset(&sPk, 0, sizeof(Index)); 3338 sPk.nKeyCol = 1; 3339 sPk.nColumn = 1; 3340 sPk.aiColumn = &aiColumnPk; 3341 sPk.aiRowLogEst = aiRowEstPk; 3342 sPk.onError = OE_Replace; 3343 sPk.pTable = pTab; 3344 sPk.szIdxRow = pTab->szTabRow; 3345 sPk.idxType = SQLITE_IDXTYPE_IPK; 3346 aiRowEstPk[0] = pTab->nRowLogEst; 3347 aiRowEstPk[1] = 0; 3348 pFirst = pSrc->pTab->pIndex; 3349 if( pSrc->fg.notIndexed==0 ){ 3350 /* The real indices of the table are only considered if the 3351 ** NOT INDEXED qualifier is omitted from the FROM clause */ 3352 sPk.pNext = pFirst; 3353 } 3354 pProbe = &sPk; 3355 } 3356 rSize = pTab->nRowLogEst; 3357 3358 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 3359 /* Automatic indexes */ 3360 if( !pBuilder->pOrSet /* Not part of an OR optimization */ 3361 && (pWInfo->wctrlFlags & (WHERE_RIGHT_JOIN|WHERE_OR_SUBCLAUSE))==0 3362 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 3363 && !pSrc->fg.isIndexedBy /* Has no INDEXED BY clause */ 3364 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */ 3365 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */ 3366 && !pSrc->fg.isCorrelated /* Not a correlated subquery */ 3367 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */ 3368 && (pSrc->fg.jointype & JT_RIGHT)==0 /* Not the right tab of a RIGHT JOIN */ 3369 ){ 3370 /* Generate auto-index WhereLoops */ 3371 LogEst rLogSize; /* Logarithm of the number of rows in the table */ 3372 WhereTerm *pTerm; 3373 WhereTerm *pWCEnd = pWC->a + pWC->nTerm; 3374 rLogSize = estLog(rSize); 3375 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ 3376 if( pTerm->prereqRight & pNew->maskSelf ) continue; 3377 if( termCanDriveIndex(pTerm, pSrc, 0) ){ 3378 pNew->u.btree.nEq = 1; 3379 pNew->nSkip = 0; 3380 pNew->u.btree.pIndex = 0; 3381 pNew->nLTerm = 1; 3382 pNew->aLTerm[0] = pTerm; 3383 /* TUNING: One-time cost for computing the automatic index is 3384 ** estimated to be X*N*log2(N) where N is the number of rows in 3385 ** the table being indexed and where X is 7 (LogEst=28) for normal 3386 ** tables or 0.5 (LogEst=-10) for views and subqueries. The value 3387 ** of X is smaller for views and subqueries so that the query planner 3388 ** will be more aggressive about generating automatic indexes for 3389 ** those objects, since there is no opportunity to add schema 3390 ** indexes on subqueries and views. */ 3391 pNew->rSetup = rLogSize + rSize; 3392 if( !IsView(pTab) && (pTab->tabFlags & TF_Ephemeral)==0 ){ 3393 pNew->rSetup += 28; 3394 }else{ 3395 pNew->rSetup -= 10; 3396 } 3397 ApplyCostMultiplier(pNew->rSetup, pTab->costMult); 3398 if( pNew->rSetup<0 ) pNew->rSetup = 0; 3399 /* TUNING: Each index lookup yields 20 rows in the table. This 3400 ** is more than the usual guess of 10 rows, since we have no way 3401 ** of knowing how selective the index will ultimately be. It would 3402 ** not be unreasonable to make this value much larger. */ 3403 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); 3404 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); 3405 pNew->wsFlags = WHERE_AUTO_INDEX; 3406 pNew->prereq = mPrereq | pTerm->prereqRight; 3407 rc = whereLoopInsert(pBuilder, pNew); 3408 } 3409 } 3410 } 3411 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 3412 3413 /* Loop over all indices. If there was an INDEXED BY clause, then only 3414 ** consider index pProbe. */ 3415 for(; rc==SQLITE_OK && pProbe; 3416 pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++ 3417 ){ 3418 if( pProbe->pPartIdxWhere!=0 3419 && !whereUsablePartialIndex(pSrc->iCursor, pSrc->fg.jointype, pWC, 3420 pProbe->pPartIdxWhere) 3421 ){ 3422 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ 3423 continue; /* Partial index inappropriate for this query */ 3424 } 3425 if( pProbe->bNoQuery ) continue; 3426 rSize = pProbe->aiRowLogEst[0]; 3427 pNew->u.btree.nEq = 0; 3428 pNew->u.btree.nBtm = 0; 3429 pNew->u.btree.nTop = 0; 3430 pNew->nSkip = 0; 3431 pNew->nLTerm = 0; 3432 pNew->iSortIdx = 0; 3433 pNew->rSetup = 0; 3434 pNew->prereq = mPrereq; 3435 pNew->nOut = rSize; 3436 pNew->u.btree.pIndex = pProbe; 3437 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); 3438 3439 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ 3440 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); 3441 if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){ 3442 /* Integer primary key index */ 3443 pNew->wsFlags = WHERE_IPK; 3444 3445 /* Full table scan */ 3446 pNew->iSortIdx = b ? iSortIdx : 0; 3447 /* TUNING: Cost of full table scan is 3.0*N. The 3.0 factor is an 3448 ** extra cost designed to discourage the use of full table scans, 3449 ** since index lookups have better worst-case performance if our 3450 ** stat guesses are wrong. Reduce the 3.0 penalty slightly 3451 ** (to 2.75) if we have valid STAT4 information for the table. 3452 ** At 2.75, a full table scan is preferred over using an index on 3453 ** a column with just two distinct values where each value has about 3454 ** an equal number of appearances. Without STAT4 data, we still want 3455 ** to use an index in that case, since the constraint might be for 3456 ** the scarcer of the two values, and in that case an index lookup is 3457 ** better. 3458 */ 3459 #ifdef SQLITE_ENABLE_STAT4 3460 pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0); 3461 #else 3462 pNew->rRun = rSize + 16; 3463 #endif 3464 if( IsView(pTab) || (pTab->tabFlags & TF_Ephemeral)!=0 ){ 3465 pNew->wsFlags |= WHERE_VIEWSCAN; 3466 } 3467 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 3468 whereLoopOutputAdjust(pWC, pNew, rSize); 3469 rc = whereLoopInsert(pBuilder, pNew); 3470 pNew->nOut = rSize; 3471 if( rc ) break; 3472 }else{ 3473 Bitmask m; 3474 if( pProbe->isCovering ){ 3475 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; 3476 m = 0; 3477 }else{ 3478 m = pSrc->colUsed & pProbe->colNotIdxed; 3479 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; 3480 } 3481 3482 /* Full scan via index */ 3483 if( b 3484 || !HasRowid(pTab) 3485 || pProbe->pPartIdxWhere!=0 3486 || pSrc->fg.isIndexedBy 3487 || ( m==0 3488 && pProbe->bUnordered==0 3489 && (pProbe->szIdxRow<pTab->szTabRow) 3490 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 3491 && sqlite3GlobalConfig.bUseCis 3492 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) 3493 ) 3494 ){ 3495 pNew->iSortIdx = b ? iSortIdx : 0; 3496 3497 /* The cost of visiting the index rows is N*K, where K is 3498 ** between 1.1 and 3.0, depending on the relative sizes of the 3499 ** index and table rows. */ 3500 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; 3501 if( m!=0 ){ 3502 /* If this is a non-covering index scan, add in the cost of 3503 ** doing table lookups. The cost will be 3x the number of 3504 ** lookups. Take into account WHERE clause terms that can be 3505 ** satisfied using just the index, and that do not require a 3506 ** table lookup. */ 3507 LogEst nLookup = rSize + 16; /* Base cost: N*3 */ 3508 int ii; 3509 int iCur = pSrc->iCursor; 3510 WhereClause *pWC2 = &pWInfo->sWC; 3511 for(ii=0; ii<pWC2->nTerm; ii++){ 3512 WhereTerm *pTerm = &pWC2->a[ii]; 3513 if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){ 3514 break; 3515 } 3516 /* pTerm can be evaluated using just the index. So reduce 3517 ** the expected number of table lookups accordingly */ 3518 if( pTerm->truthProb<=0 ){ 3519 nLookup += pTerm->truthProb; 3520 }else{ 3521 nLookup--; 3522 if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19; 3523 } 3524 } 3525 3526 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup); 3527 } 3528 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 3529 whereLoopOutputAdjust(pWC, pNew, rSize); 3530 if( (pSrc->fg.jointype & JT_RIGHT)!=0 && pProbe->aColExpr ){ 3531 /* Do not do an SCAN of a index-on-expression in a RIGHT JOIN 3532 ** because the cursor used to access the index might not be 3533 ** positioned to the correct row during the right-join no-match 3534 ** loop. */ 3535 }else{ 3536 rc = whereLoopInsert(pBuilder, pNew); 3537 } 3538 pNew->nOut = rSize; 3539 if( rc ) break; 3540 } 3541 } 3542 3543 pBuilder->bldFlags1 = 0; 3544 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); 3545 if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){ 3546 /* If a non-unique index is used, or if a prefix of the key for 3547 ** unique index is used (making the index functionally non-unique) 3548 ** then the sqlite_stat1 data becomes important for scoring the 3549 ** plan */ 3550 pTab->tabFlags |= TF_StatsUsed; 3551 } 3552 #ifdef SQLITE_ENABLE_STAT4 3553 sqlite3Stat4ProbeFree(pBuilder->pRec); 3554 pBuilder->nRecValid = 0; 3555 pBuilder->pRec = 0; 3556 #endif 3557 } 3558 return rc; 3559 } 3560 3561 #ifndef SQLITE_OMIT_VIRTUALTABLE 3562 3563 /* 3564 ** Return true if pTerm is a virtual table LIMIT or OFFSET term. 3565 */ 3566 static int isLimitTerm(WhereTerm *pTerm){ 3567 assert( pTerm->eOperator==WO_AUX || pTerm->eMatchOp==0 ); 3568 return pTerm->eMatchOp>=SQLITE_INDEX_CONSTRAINT_LIMIT 3569 && pTerm->eMatchOp<=SQLITE_INDEX_CONSTRAINT_OFFSET; 3570 } 3571 3572 /* 3573 ** Argument pIdxInfo is already populated with all constraints that may 3574 ** be used by the virtual table identified by pBuilder->pNew->iTab. This 3575 ** function marks a subset of those constraints usable, invokes the 3576 ** xBestIndex method and adds the returned plan to pBuilder. 3577 ** 3578 ** A constraint is marked usable if: 3579 ** 3580 ** * Argument mUsable indicates that its prerequisites are available, and 3581 ** 3582 ** * It is not one of the operators specified in the mExclude mask passed 3583 ** as the fourth argument (which in practice is either WO_IN or 0). 3584 ** 3585 ** Argument mPrereq is a mask of tables that must be scanned before the 3586 ** virtual table in question. These are added to the plans prerequisites 3587 ** before it is added to pBuilder. 3588 ** 3589 ** Output parameter *pbIn is set to true if the plan added to pBuilder 3590 ** uses one or more WO_IN terms, or false otherwise. 3591 */ 3592 static int whereLoopAddVirtualOne( 3593 WhereLoopBuilder *pBuilder, 3594 Bitmask mPrereq, /* Mask of tables that must be used. */ 3595 Bitmask mUsable, /* Mask of usable tables */ 3596 u16 mExclude, /* Exclude terms using these operators */ 3597 sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */ 3598 u16 mNoOmit, /* Do not omit these constraints */ 3599 int *pbIn, /* OUT: True if plan uses an IN(...) op */ 3600 int *pbRetryLimit /* OUT: Retry without LIMIT/OFFSET */ 3601 ){ 3602 WhereClause *pWC = pBuilder->pWC; 3603 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3604 struct sqlite3_index_constraint *pIdxCons; 3605 struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage; 3606 int i; 3607 int mxTerm; 3608 int rc = SQLITE_OK; 3609 WhereLoop *pNew = pBuilder->pNew; 3610 Parse *pParse = pBuilder->pWInfo->pParse; 3611 SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab]; 3612 int nConstraint = pIdxInfo->nConstraint; 3613 3614 assert( (mUsable & mPrereq)==mPrereq ); 3615 *pbIn = 0; 3616 pNew->prereq = mPrereq; 3617 3618 /* Set the usable flag on the subset of constraints identified by 3619 ** arguments mUsable and mExclude. */ 3620 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3621 for(i=0; i<nConstraint; i++, pIdxCons++){ 3622 WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset]; 3623 pIdxCons->usable = 0; 3624 if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight 3625 && (pTerm->eOperator & mExclude)==0 3626 && (pbRetryLimit || !isLimitTerm(pTerm)) 3627 ){ 3628 pIdxCons->usable = 1; 3629 } 3630 } 3631 3632 /* Initialize the output fields of the sqlite3_index_info structure */ 3633 memset(pUsage, 0, sizeof(pUsage[0])*nConstraint); 3634 assert( pIdxInfo->needToFreeIdxStr==0 ); 3635 pIdxInfo->idxStr = 0; 3636 pIdxInfo->idxNum = 0; 3637 pIdxInfo->orderByConsumed = 0; 3638 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; 3639 pIdxInfo->estimatedRows = 25; 3640 pIdxInfo->idxFlags = 0; 3641 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed; 3642 pHidden->mHandleIn = 0; 3643 3644 /* Invoke the virtual table xBestIndex() method */ 3645 rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo); 3646 if( rc ){ 3647 if( rc==SQLITE_CONSTRAINT ){ 3648 /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means 3649 ** that the particular combination of parameters provided is unusable. 3650 ** Make no entries in the loop table. 3651 */ 3652 WHERETRACE(0xffff, (" ^^^^--- non-viable plan rejected!\n")); 3653 return SQLITE_OK; 3654 } 3655 return rc; 3656 } 3657 3658 mxTerm = -1; 3659 assert( pNew->nLSlot>=nConstraint ); 3660 memset(pNew->aLTerm, 0, sizeof(pNew->aLTerm[0])*nConstraint ); 3661 memset(&pNew->u.vtab, 0, sizeof(pNew->u.vtab)); 3662 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3663 for(i=0; i<nConstraint; i++, pIdxCons++){ 3664 int iTerm; 3665 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ 3666 WhereTerm *pTerm; 3667 int j = pIdxCons->iTermOffset; 3668 if( iTerm>=nConstraint 3669 || j<0 3670 || j>=pWC->nTerm 3671 || pNew->aLTerm[iTerm]!=0 3672 || pIdxCons->usable==0 3673 ){ 3674 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3675 testcase( pIdxInfo->needToFreeIdxStr ); 3676 return SQLITE_ERROR; 3677 } 3678 testcase( iTerm==nConstraint-1 ); 3679 testcase( j==0 ); 3680 testcase( j==pWC->nTerm-1 ); 3681 pTerm = &pWC->a[j]; 3682 pNew->prereq |= pTerm->prereqRight; 3683 assert( iTerm<pNew->nLSlot ); 3684 pNew->aLTerm[iTerm] = pTerm; 3685 if( iTerm>mxTerm ) mxTerm = iTerm; 3686 testcase( iTerm==15 ); 3687 testcase( iTerm==16 ); 3688 if( pUsage[i].omit ){ 3689 if( i<16 && ((1<<i)&mNoOmit)==0 ){ 3690 testcase( i!=iTerm ); 3691 pNew->u.vtab.omitMask |= 1<<iTerm; 3692 }else{ 3693 testcase( i!=iTerm ); 3694 } 3695 if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET ){ 3696 pNew->u.vtab.bOmitOffset = 1; 3697 } 3698 } 3699 if( SMASKBIT32(i) & pHidden->mHandleIn ){ 3700 pNew->u.vtab.mHandleIn |= MASKBIT32(iTerm); 3701 }else if( (pTerm->eOperator & WO_IN)!=0 ){ 3702 /* A virtual table that is constrained by an IN clause may not 3703 ** consume the ORDER BY clause because (1) the order of IN terms 3704 ** is not necessarily related to the order of output terms and 3705 ** (2) Multiple outputs from a single IN value will not merge 3706 ** together. */ 3707 pIdxInfo->orderByConsumed = 0; 3708 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE; 3709 *pbIn = 1; assert( (mExclude & WO_IN)==0 ); 3710 } 3711 3712 assert( pbRetryLimit || !isLimitTerm(pTerm) ); 3713 if( isLimitTerm(pTerm) && *pbIn ){ 3714 /* If there is an IN(...) term handled as an == (separate call to 3715 ** xFilter for each value on the RHS of the IN) and a LIMIT or 3716 ** OFFSET term handled as well, the plan is unusable. Set output 3717 ** variable *pbRetryLimit to true to tell the caller to retry with 3718 ** LIMIT and OFFSET disabled. */ 3719 if( pIdxInfo->needToFreeIdxStr ){ 3720 sqlite3_free(pIdxInfo->idxStr); 3721 pIdxInfo->idxStr = 0; 3722 pIdxInfo->needToFreeIdxStr = 0; 3723 } 3724 *pbRetryLimit = 1; 3725 return SQLITE_OK; 3726 } 3727 } 3728 } 3729 3730 pNew->nLTerm = mxTerm+1; 3731 for(i=0; i<=mxTerm; i++){ 3732 if( pNew->aLTerm[i]==0 ){ 3733 /* The non-zero argvIdx values must be contiguous. Raise an 3734 ** error if they are not */ 3735 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3736 testcase( pIdxInfo->needToFreeIdxStr ); 3737 return SQLITE_ERROR; 3738 } 3739 } 3740 assert( pNew->nLTerm<=pNew->nLSlot ); 3741 pNew->u.vtab.idxNum = pIdxInfo->idxNum; 3742 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; 3743 pIdxInfo->needToFreeIdxStr = 0; 3744 pNew->u.vtab.idxStr = pIdxInfo->idxStr; 3745 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? 3746 pIdxInfo->nOrderBy : 0); 3747 pNew->rSetup = 0; 3748 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); 3749 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); 3750 3751 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated 3752 ** that the scan will visit at most one row. Clear it otherwise. */ 3753 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){ 3754 pNew->wsFlags |= WHERE_ONEROW; 3755 }else{ 3756 pNew->wsFlags &= ~WHERE_ONEROW; 3757 } 3758 rc = whereLoopInsert(pBuilder, pNew); 3759 if( pNew->u.vtab.needFree ){ 3760 sqlite3_free(pNew->u.vtab.idxStr); 3761 pNew->u.vtab.needFree = 0; 3762 } 3763 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n", 3764 *pbIn, (sqlite3_uint64)mPrereq, 3765 (sqlite3_uint64)(pNew->prereq & ~mPrereq))); 3766 3767 return rc; 3768 } 3769 3770 /* 3771 ** Return the collating sequence for a constraint passed into xBestIndex. 3772 ** 3773 ** pIdxInfo must be an sqlite3_index_info structure passed into xBestIndex. 3774 ** This routine depends on there being a HiddenIndexInfo structure immediately 3775 ** following the sqlite3_index_info structure. 3776 ** 3777 ** Return a pointer to the collation name: 3778 ** 3779 ** 1. If there is an explicit COLLATE operator on the constaint, return it. 3780 ** 3781 ** 2. Else, if the column has an alternative collation, return that. 3782 ** 3783 ** 3. Otherwise, return "BINARY". 3784 */ 3785 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){ 3786 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3787 const char *zRet = 0; 3788 if( iCons>=0 && iCons<pIdxInfo->nConstraint ){ 3789 CollSeq *pC = 0; 3790 int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset; 3791 Expr *pX = pHidden->pWC->a[iTerm].pExpr; 3792 if( pX->pLeft ){ 3793 pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX); 3794 } 3795 zRet = (pC ? pC->zName : sqlite3StrBINARY); 3796 } 3797 return zRet; 3798 } 3799 3800 /* 3801 ** Return true if constraint iCons is really an IN(...) constraint, or 3802 ** false otherwise. If iCons is an IN(...) constraint, set (if bHandle!=0) 3803 ** or clear (if bHandle==0) the flag to handle it using an iterator. 3804 */ 3805 int sqlite3_vtab_in(sqlite3_index_info *pIdxInfo, int iCons, int bHandle){ 3806 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3807 u32 m = SMASKBIT32(iCons); 3808 if( m & pHidden->mIn ){ 3809 if( bHandle==0 ){ 3810 pHidden->mHandleIn &= ~m; 3811 }else if( bHandle>0 ){ 3812 pHidden->mHandleIn |= m; 3813 } 3814 return 1; 3815 } 3816 return 0; 3817 } 3818 3819 /* 3820 ** This interface is callable from within the xBestIndex callback only. 3821 ** 3822 ** If possible, set (*ppVal) to point to an object containing the value 3823 ** on the right-hand-side of constraint iCons. 3824 */ 3825 int sqlite3_vtab_rhs_value( 3826 sqlite3_index_info *pIdxInfo, /* Copy of first argument to xBestIndex */ 3827 int iCons, /* Constraint for which RHS is wanted */ 3828 sqlite3_value **ppVal /* Write value extracted here */ 3829 ){ 3830 HiddenIndexInfo *pH = (HiddenIndexInfo*)&pIdxInfo[1]; 3831 sqlite3_value *pVal = 0; 3832 int rc = SQLITE_OK; 3833 if( iCons<0 || iCons>=pIdxInfo->nConstraint ){ 3834 rc = SQLITE_MISUSE; /* EV: R-30545-25046 */ 3835 }else{ 3836 if( pH->aRhs[iCons]==0 ){ 3837 WhereTerm *pTerm = &pH->pWC->a[pIdxInfo->aConstraint[iCons].iTermOffset]; 3838 rc = sqlite3ValueFromExpr( 3839 pH->pParse->db, pTerm->pExpr->pRight, ENC(pH->pParse->db), 3840 SQLITE_AFF_BLOB, &pH->aRhs[iCons] 3841 ); 3842 testcase( rc!=SQLITE_OK ); 3843 } 3844 pVal = pH->aRhs[iCons]; 3845 } 3846 *ppVal = pVal; 3847 3848 if( rc==SQLITE_OK && pVal==0 ){ /* IMP: R-19933-32160 */ 3849 rc = SQLITE_NOTFOUND; /* IMP: R-36424-56542 */ 3850 } 3851 3852 return rc; 3853 } 3854 3855 /* 3856 ** Return true if ORDER BY clause may be handled as DISTINCT. 3857 */ 3858 int sqlite3_vtab_distinct(sqlite3_index_info *pIdxInfo){ 3859 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3860 assert( pHidden->eDistinct>=0 && pHidden->eDistinct<=3 ); 3861 return pHidden->eDistinct; 3862 } 3863 3864 #if (defined(SQLITE_ENABLE_DBPAGE_VTAB) || defined(SQLITE_TEST)) \ 3865 && !defined(SQLITE_OMIT_VIRTUALTABLE) 3866 /* 3867 ** Cause the prepared statement that is associated with a call to 3868 ** xBestIndex to potentiall use all schemas. If the statement being 3869 ** prepared is read-only, then just start read transactions on all 3870 ** schemas. But if this is a write operation, start writes on all 3871 ** schemas. 3872 ** 3873 ** This is used by the (built-in) sqlite_dbpage virtual table. 3874 */ 3875 void sqlite3VtabUsesAllSchemas(sqlite3_index_info *pIdxInfo){ 3876 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3877 Parse *pParse = pHidden->pParse; 3878 int nDb = pParse->db->nDb; 3879 int i; 3880 for(i=0; i<nDb; i++){ 3881 sqlite3CodeVerifySchema(pParse, i); 3882 } 3883 if( pParse->writeMask ){ 3884 for(i=0; i<nDb; i++){ 3885 sqlite3BeginWriteOperation(pParse, 0, i); 3886 } 3887 } 3888 } 3889 #endif 3890 3891 /* 3892 ** Add all WhereLoop objects for a table of the join identified by 3893 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. 3894 ** 3895 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and 3896 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause 3897 ** entries that occur before the virtual table in the FROM clause and are 3898 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the 3899 ** mUnusable mask contains all FROM clause entries that occur after the 3900 ** virtual table and are separated from it by at least one LEFT or 3901 ** CROSS JOIN. 3902 ** 3903 ** For example, if the query were: 3904 ** 3905 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; 3906 ** 3907 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6). 3908 ** 3909 ** All the tables in mPrereq must be scanned before the current virtual 3910 ** table. So any terms for which all prerequisites are satisfied by 3911 ** mPrereq may be specified as "usable" in all calls to xBestIndex. 3912 ** Conversely, all tables in mUnusable must be scanned after the current 3913 ** virtual table, so any terms for which the prerequisites overlap with 3914 ** mUnusable should always be configured as "not-usable" for xBestIndex. 3915 */ 3916 static int whereLoopAddVirtual( 3917 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 3918 Bitmask mPrereq, /* Tables that must be scanned before this one */ 3919 Bitmask mUnusable /* Tables that must be scanned after this one */ 3920 ){ 3921 int rc = SQLITE_OK; /* Return code */ 3922 WhereInfo *pWInfo; /* WHERE analysis context */ 3923 Parse *pParse; /* The parsing context */ 3924 WhereClause *pWC; /* The WHERE clause */ 3925 SrcItem *pSrc; /* The FROM clause term to search */ 3926 sqlite3_index_info *p; /* Object to pass to xBestIndex() */ 3927 int nConstraint; /* Number of constraints in p */ 3928 int bIn; /* True if plan uses IN(...) operator */ 3929 WhereLoop *pNew; 3930 Bitmask mBest; /* Tables used by best possible plan */ 3931 u16 mNoOmit; 3932 int bRetry = 0; /* True to retry with LIMIT/OFFSET disabled */ 3933 3934 assert( (mPrereq & mUnusable)==0 ); 3935 pWInfo = pBuilder->pWInfo; 3936 pParse = pWInfo->pParse; 3937 pWC = pBuilder->pWC; 3938 pNew = pBuilder->pNew; 3939 pSrc = &pWInfo->pTabList->a[pNew->iTab]; 3940 assert( IsVirtual(pSrc->pTab) ); 3941 p = allocateIndexInfo(pWInfo, pWC, mUnusable, pSrc, &mNoOmit); 3942 if( p==0 ) return SQLITE_NOMEM_BKPT; 3943 pNew->rSetup = 0; 3944 pNew->wsFlags = WHERE_VIRTUALTABLE; 3945 pNew->nLTerm = 0; 3946 pNew->u.vtab.needFree = 0; 3947 nConstraint = p->nConstraint; 3948 if( whereLoopResize(pParse->db, pNew, nConstraint) ){ 3949 freeIndexInfo(pParse->db, p); 3950 return SQLITE_NOMEM_BKPT; 3951 } 3952 3953 /* First call xBestIndex() with all constraints usable. */ 3954 WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName)); 3955 WHERETRACE(0x40, (" VirtualOne: all usable\n")); 3956 rc = whereLoopAddVirtualOne( 3957 pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, &bRetry 3958 ); 3959 if( bRetry ){ 3960 assert( rc==SQLITE_OK ); 3961 rc = whereLoopAddVirtualOne( 3962 pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, 0 3963 ); 3964 } 3965 3966 /* If the call to xBestIndex() with all terms enabled produced a plan 3967 ** that does not require any source tables (IOW: a plan with mBest==0) 3968 ** and does not use an IN(...) operator, then there is no point in making 3969 ** any further calls to xBestIndex() since they will all return the same 3970 ** result (if the xBestIndex() implementation is sane). */ 3971 if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){ 3972 int seenZero = 0; /* True if a plan with no prereqs seen */ 3973 int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */ 3974 Bitmask mPrev = 0; 3975 Bitmask mBestNoIn = 0; 3976 3977 /* If the plan produced by the earlier call uses an IN(...) term, call 3978 ** xBestIndex again, this time with IN(...) terms disabled. */ 3979 if( bIn ){ 3980 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n")); 3981 rc = whereLoopAddVirtualOne( 3982 pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn, 0); 3983 assert( bIn==0 ); 3984 mBestNoIn = pNew->prereq & ~mPrereq; 3985 if( mBestNoIn==0 ){ 3986 seenZero = 1; 3987 seenZeroNoIN = 1; 3988 } 3989 } 3990 3991 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq) 3992 ** in the set of terms that apply to the current virtual table. */ 3993 while( rc==SQLITE_OK ){ 3994 int i; 3995 Bitmask mNext = ALLBITS; 3996 assert( mNext>0 ); 3997 for(i=0; i<nConstraint; i++){ 3998 Bitmask mThis = ( 3999 pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq 4000 ); 4001 if( mThis>mPrev && mThis<mNext ) mNext = mThis; 4002 } 4003 mPrev = mNext; 4004 if( mNext==ALLBITS ) break; 4005 if( mNext==mBest || mNext==mBestNoIn ) continue; 4006 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n", 4007 (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext)); 4008 rc = whereLoopAddVirtualOne( 4009 pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn, 0); 4010 if( pNew->prereq==mPrereq ){ 4011 seenZero = 1; 4012 if( bIn==0 ) seenZeroNoIN = 1; 4013 } 4014 } 4015 4016 /* If the calls to xBestIndex() in the above loop did not find a plan 4017 ** that requires no source tables at all (i.e. one guaranteed to be 4018 ** usable), make a call here with all source tables disabled */ 4019 if( rc==SQLITE_OK && seenZero==0 ){ 4020 WHERETRACE(0x40, (" VirtualOne: all disabled\n")); 4021 rc = whereLoopAddVirtualOne( 4022 pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn, 0); 4023 if( bIn==0 ) seenZeroNoIN = 1; 4024 } 4025 4026 /* If the calls to xBestIndex() have so far failed to find a plan 4027 ** that requires no source tables at all and does not use an IN(...) 4028 ** operator, make a final call to obtain one here. */ 4029 if( rc==SQLITE_OK && seenZeroNoIN==0 ){ 4030 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n")); 4031 rc = whereLoopAddVirtualOne( 4032 pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn, 0); 4033 } 4034 } 4035 4036 if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr); 4037 freeIndexInfo(pParse->db, p); 4038 WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc)); 4039 return rc; 4040 } 4041 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4042 4043 /* 4044 ** Add WhereLoop entries to handle OR terms. This works for either 4045 ** btrees or virtual tables. 4046 */ 4047 static int whereLoopAddOr( 4048 WhereLoopBuilder *pBuilder, 4049 Bitmask mPrereq, 4050 Bitmask mUnusable 4051 ){ 4052 WhereInfo *pWInfo = pBuilder->pWInfo; 4053 WhereClause *pWC; 4054 WhereLoop *pNew; 4055 WhereTerm *pTerm, *pWCEnd; 4056 int rc = SQLITE_OK; 4057 int iCur; 4058 WhereClause tempWC; 4059 WhereLoopBuilder sSubBuild; 4060 WhereOrSet sSum, sCur; 4061 SrcItem *pItem; 4062 4063 pWC = pBuilder->pWC; 4064 pWCEnd = pWC->a + pWC->nTerm; 4065 pNew = pBuilder->pNew; 4066 memset(&sSum, 0, sizeof(sSum)); 4067 pItem = pWInfo->pTabList->a + pNew->iTab; 4068 iCur = pItem->iCursor; 4069 4070 /* The multi-index OR optimization does not work for RIGHT and FULL JOIN */ 4071 if( pItem->fg.jointype & JT_RIGHT ) return SQLITE_OK; 4072 4073 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ 4074 if( (pTerm->eOperator & WO_OR)!=0 4075 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 4076 ){ 4077 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; 4078 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; 4079 WhereTerm *pOrTerm; 4080 int once = 1; 4081 int i, j; 4082 4083 sSubBuild = *pBuilder; 4084 sSubBuild.pOrSet = &sCur; 4085 4086 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); 4087 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ 4088 if( (pOrTerm->eOperator & WO_AND)!=0 ){ 4089 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; 4090 }else if( pOrTerm->leftCursor==iCur ){ 4091 tempWC.pWInfo = pWC->pWInfo; 4092 tempWC.pOuter = pWC; 4093 tempWC.op = TK_AND; 4094 tempWC.nTerm = 1; 4095 tempWC.nBase = 1; 4096 tempWC.a = pOrTerm; 4097 sSubBuild.pWC = &tempWC; 4098 }else{ 4099 continue; 4100 } 4101 sCur.n = 0; 4102 #ifdef WHERETRACE_ENABLED 4103 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", 4104 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); 4105 if( sqlite3WhereTrace & 0x400 ){ 4106 sqlite3WhereClausePrint(sSubBuild.pWC); 4107 } 4108 #endif 4109 #ifndef SQLITE_OMIT_VIRTUALTABLE 4110 if( IsVirtual(pItem->pTab) ){ 4111 rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable); 4112 }else 4113 #endif 4114 { 4115 rc = whereLoopAddBtree(&sSubBuild, mPrereq); 4116 } 4117 if( rc==SQLITE_OK ){ 4118 rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable); 4119 } 4120 assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0 4121 || rc==SQLITE_NOMEM ); 4122 testcase( rc==SQLITE_NOMEM && sCur.n>0 ); 4123 testcase( rc==SQLITE_DONE ); 4124 if( sCur.n==0 ){ 4125 sSum.n = 0; 4126 break; 4127 }else if( once ){ 4128 whereOrMove(&sSum, &sCur); 4129 once = 0; 4130 }else{ 4131 WhereOrSet sPrev; 4132 whereOrMove(&sPrev, &sSum); 4133 sSum.n = 0; 4134 for(i=0; i<sPrev.n; i++){ 4135 for(j=0; j<sCur.n; j++){ 4136 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, 4137 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), 4138 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); 4139 } 4140 } 4141 } 4142 } 4143 pNew->nLTerm = 1; 4144 pNew->aLTerm[0] = pTerm; 4145 pNew->wsFlags = WHERE_MULTI_OR; 4146 pNew->rSetup = 0; 4147 pNew->iSortIdx = 0; 4148 memset(&pNew->u, 0, sizeof(pNew->u)); 4149 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ 4150 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs 4151 ** of all sub-scans required by the OR-scan. However, due to rounding 4152 ** errors, it may be that the cost of the OR-scan is equal to its 4153 ** most expensive sub-scan. Add the smallest possible penalty 4154 ** (equivalent to multiplying the cost by 1.07) to ensure that 4155 ** this does not happen. Otherwise, for WHERE clauses such as the 4156 ** following where there is an index on "y": 4157 ** 4158 ** WHERE likelihood(x=?, 0.99) OR y=? 4159 ** 4160 ** the planner may elect to "OR" together a full-table scan and an 4161 ** index lookup. And other similarly odd results. */ 4162 pNew->rRun = sSum.a[i].rRun + 1; 4163 pNew->nOut = sSum.a[i].nOut; 4164 pNew->prereq = sSum.a[i].prereq; 4165 rc = whereLoopInsert(pBuilder, pNew); 4166 } 4167 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); 4168 } 4169 } 4170 return rc; 4171 } 4172 4173 /* 4174 ** Add all WhereLoop objects for all tables 4175 */ 4176 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ 4177 WhereInfo *pWInfo = pBuilder->pWInfo; 4178 Bitmask mPrereq = 0; 4179 Bitmask mPrior = 0; 4180 int iTab; 4181 SrcList *pTabList = pWInfo->pTabList; 4182 SrcItem *pItem; 4183 SrcItem *pEnd = &pTabList->a[pWInfo->nLevel]; 4184 sqlite3 *db = pWInfo->pParse->db; 4185 int rc = SQLITE_OK; 4186 int bFirstPastRJ = 0; 4187 int hasRightJoin = 0; 4188 WhereLoop *pNew; 4189 4190 4191 /* Loop over the tables in the join, from left to right */ 4192 pNew = pBuilder->pNew; 4193 4194 /* Verify that pNew has already been initialized */ 4195 assert( pNew->nLTerm==0 ); 4196 assert( pNew->wsFlags==0 ); 4197 assert( pNew->nLSlot>=ArraySize(pNew->aLTermSpace) ); 4198 assert( pNew->aLTerm!=0 ); 4199 4200 pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT; 4201 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){ 4202 Bitmask mUnusable = 0; 4203 pNew->iTab = iTab; 4204 pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR; 4205 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); 4206 if( bFirstPastRJ 4207 || (pItem->fg.jointype & (JT_OUTER|JT_CROSS|JT_LTORJ))!=0 4208 ){ 4209 /* Add prerequisites to prevent reordering of FROM clause terms 4210 ** across CROSS joins and outer joins. The bFirstPastRJ boolean 4211 ** prevents the right operand of a RIGHT JOIN from being swapped with 4212 ** other elements even further to the right. 4213 ** 4214 ** The JT_LTORJ case and the hasRightJoin flag work together to 4215 ** prevent FROM-clause terms from moving from the right side of 4216 ** a LEFT JOIN over to the left side of that join if the LEFT JOIN 4217 ** is itself on the left side of a RIGHT JOIN. 4218 */ 4219 if( pItem->fg.jointype & JT_LTORJ ) hasRightJoin = 1; 4220 mPrereq |= mPrior; 4221 bFirstPastRJ = (pItem->fg.jointype & JT_RIGHT)!=0; 4222 }else if( !hasRightJoin ){ 4223 mPrereq = 0; 4224 } 4225 #ifndef SQLITE_OMIT_VIRTUALTABLE 4226 if( IsVirtual(pItem->pTab) ){ 4227 SrcItem *p; 4228 for(p=&pItem[1]; p<pEnd; p++){ 4229 if( mUnusable || (p->fg.jointype & (JT_OUTER|JT_CROSS)) ){ 4230 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); 4231 } 4232 } 4233 rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable); 4234 }else 4235 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 4236 { 4237 rc = whereLoopAddBtree(pBuilder, mPrereq); 4238 } 4239 if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){ 4240 rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable); 4241 } 4242 mPrior |= pNew->maskSelf; 4243 if( rc || db->mallocFailed ){ 4244 if( rc==SQLITE_DONE ){ 4245 /* We hit the query planner search limit set by iPlanLimit */ 4246 sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search"); 4247 rc = SQLITE_OK; 4248 }else{ 4249 break; 4250 } 4251 } 4252 } 4253 4254 whereLoopClear(db, pNew); 4255 return rc; 4256 } 4257 4258 /* 4259 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th 4260 ** parameters) to see if it outputs rows in the requested ORDER BY 4261 ** (or GROUP BY) without requiring a separate sort operation. Return N: 4262 ** 4263 ** N>0: N terms of the ORDER BY clause are satisfied 4264 ** N==0: No terms of the ORDER BY clause are satisfied 4265 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. 4266 ** 4267 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as 4268 ** strict. With GROUP BY and DISTINCT the only requirement is that 4269 ** equivalent rows appear immediately adjacent to one another. GROUP BY 4270 ** and DISTINCT do not require rows to appear in any particular order as long 4271 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT 4272 ** the pOrderBy terms can be matched in any order. With ORDER BY, the 4273 ** pOrderBy terms must be matched in strict left-to-right order. 4274 */ 4275 static i8 wherePathSatisfiesOrderBy( 4276 WhereInfo *pWInfo, /* The WHERE clause */ 4277 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ 4278 WherePath *pPath, /* The WherePath to check */ 4279 u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */ 4280 u16 nLoop, /* Number of entries in pPath->aLoop[] */ 4281 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ 4282 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ 4283 ){ 4284 u8 revSet; /* True if rev is known */ 4285 u8 rev; /* Composite sort order */ 4286 u8 revIdx; /* Index sort order */ 4287 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ 4288 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ 4289 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ 4290 u16 eqOpMask; /* Allowed equality operators */ 4291 u16 nKeyCol; /* Number of key columns in pIndex */ 4292 u16 nColumn; /* Total number of ordered columns in the index */ 4293 u16 nOrderBy; /* Number terms in the ORDER BY clause */ 4294 int iLoop; /* Index of WhereLoop in pPath being processed */ 4295 int i, j; /* Loop counters */ 4296 int iCur; /* Cursor number for current WhereLoop */ 4297 int iColumn; /* A column number within table iCur */ 4298 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ 4299 WhereTerm *pTerm; /* A single term of the WHERE clause */ 4300 Expr *pOBExpr; /* An expression from the ORDER BY clause */ 4301 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ 4302 Index *pIndex; /* The index associated with pLoop */ 4303 sqlite3 *db = pWInfo->pParse->db; /* Database connection */ 4304 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ 4305 Bitmask obDone; /* Mask of all ORDER BY terms */ 4306 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ 4307 Bitmask ready; /* Mask of inner loops */ 4308 4309 /* 4310 ** We say the WhereLoop is "one-row" if it generates no more than one 4311 ** row of output. A WhereLoop is one-row if all of the following are true: 4312 ** (a) All index columns match with WHERE_COLUMN_EQ. 4313 ** (b) The index is unique 4314 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. 4315 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. 4316 ** 4317 ** We say the WhereLoop is "order-distinct" if the set of columns from 4318 ** that WhereLoop that are in the ORDER BY clause are different for every 4319 ** row of the WhereLoop. Every one-row WhereLoop is automatically 4320 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause 4321 ** is not order-distinct. To be order-distinct is not quite the same as being 4322 ** UNIQUE since a UNIQUE column or index can have multiple rows that 4323 ** are NULL and NULL values are equivalent for the purpose of order-distinct. 4324 ** To be order-distinct, the columns must be UNIQUE and NOT NULL. 4325 ** 4326 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the 4327 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is 4328 ** automatically order-distinct. 4329 */ 4330 4331 assert( pOrderBy!=0 ); 4332 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; 4333 4334 nOrderBy = pOrderBy->nExpr; 4335 testcase( nOrderBy==BMS-1 ); 4336 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ 4337 isOrderDistinct = 1; 4338 obDone = MASKBIT(nOrderBy)-1; 4339 orderDistinctMask = 0; 4340 ready = 0; 4341 eqOpMask = WO_EQ | WO_IS | WO_ISNULL; 4342 if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){ 4343 eqOpMask |= WO_IN; 4344 } 4345 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ 4346 if( iLoop>0 ) ready |= pLoop->maskSelf; 4347 if( iLoop<nLoop ){ 4348 pLoop = pPath->aLoop[iLoop]; 4349 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue; 4350 }else{ 4351 pLoop = pLast; 4352 } 4353 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ 4354 if( pLoop->u.vtab.isOrdered 4355 && ((wctrlFlags&(WHERE_DISTINCTBY|WHERE_SORTBYGROUP))!=WHERE_DISTINCTBY) 4356 ){ 4357 obSat = obDone; 4358 } 4359 break; 4360 }else if( wctrlFlags & WHERE_DISTINCTBY ){ 4361 pLoop->u.btree.nDistinctCol = 0; 4362 } 4363 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; 4364 4365 /* Mark off any ORDER BY term X that is a column in the table of 4366 ** the current loop for which there is term in the WHERE 4367 ** clause of the form X IS NULL or X=? that reference only outer 4368 ** loops. 4369 */ 4370 for(i=0; i<nOrderBy; i++){ 4371 if( MASKBIT(i) & obSat ) continue; 4372 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr); 4373 if( NEVER(pOBExpr==0) ) continue; 4374 if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue; 4375 if( pOBExpr->iTable!=iCur ) continue; 4376 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, 4377 ~ready, eqOpMask, 0); 4378 if( pTerm==0 ) continue; 4379 if( pTerm->eOperator==WO_IN ){ 4380 /* IN terms are only valid for sorting in the ORDER BY LIMIT 4381 ** optimization, and then only if they are actually used 4382 ** by the query plan */ 4383 assert( wctrlFlags & 4384 (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) ); 4385 for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){} 4386 if( j>=pLoop->nLTerm ) continue; 4387 } 4388 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ 4389 Parse *pParse = pWInfo->pParse; 4390 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr); 4391 CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr); 4392 assert( pColl1 ); 4393 if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){ 4394 continue; 4395 } 4396 testcase( pTerm->pExpr->op==TK_IS ); 4397 } 4398 obSat |= MASKBIT(i); 4399 } 4400 4401 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ 4402 if( pLoop->wsFlags & WHERE_IPK ){ 4403 pIndex = 0; 4404 nKeyCol = 0; 4405 nColumn = 1; 4406 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ 4407 return 0; 4408 }else{ 4409 nKeyCol = pIndex->nKeyCol; 4410 nColumn = pIndex->nColumn; 4411 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); 4412 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID 4413 || !HasRowid(pIndex->pTable)); 4414 /* All relevant terms of the index must also be non-NULL in order 4415 ** for isOrderDistinct to be true. So the isOrderDistint value 4416 ** computed here might be a false positive. Corrections will be 4417 ** made at tag-20210426-1 below */ 4418 isOrderDistinct = IsUniqueIndex(pIndex) 4419 && (pLoop->wsFlags & WHERE_SKIPSCAN)==0; 4420 } 4421 4422 /* Loop through all columns of the index and deal with the ones 4423 ** that are not constrained by == or IN. 4424 */ 4425 rev = revSet = 0; 4426 distinctColumns = 0; 4427 for(j=0; j<nColumn; j++){ 4428 u8 bOnce = 1; /* True to run the ORDER BY search loop */ 4429 4430 assert( j>=pLoop->u.btree.nEq 4431 || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip) 4432 ); 4433 if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){ 4434 u16 eOp = pLoop->aLTerm[j]->eOperator; 4435 4436 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when 4437 ** doing WHERE_ORDERBY_LIMIT processing). Except, IS and ISNULL 4438 ** terms imply that the index is not UNIQUE NOT NULL in which case 4439 ** the loop need to be marked as not order-distinct because it can 4440 ** have repeated NULL rows. 4441 ** 4442 ** If the current term is a column of an ((?,?) IN (SELECT...)) 4443 ** expression for which the SELECT returns more than one column, 4444 ** check that it is the only column used by this loop. Otherwise, 4445 ** if it is one of two or more, none of the columns can be 4446 ** considered to match an ORDER BY term. 4447 */ 4448 if( (eOp & eqOpMask)!=0 ){ 4449 if( eOp & (WO_ISNULL|WO_IS) ){ 4450 testcase( eOp & WO_ISNULL ); 4451 testcase( eOp & WO_IS ); 4452 testcase( isOrderDistinct ); 4453 isOrderDistinct = 0; 4454 } 4455 continue; 4456 }else if( ALWAYS(eOp & WO_IN) ){ 4457 /* ALWAYS() justification: eOp is an equality operator due to the 4458 ** j<pLoop->u.btree.nEq constraint above. Any equality other 4459 ** than WO_IN is captured by the previous "if". So this one 4460 ** always has to be WO_IN. */ 4461 Expr *pX = pLoop->aLTerm[j]->pExpr; 4462 for(i=j+1; i<pLoop->u.btree.nEq; i++){ 4463 if( pLoop->aLTerm[i]->pExpr==pX ){ 4464 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) ); 4465 bOnce = 0; 4466 break; 4467 } 4468 } 4469 } 4470 } 4471 4472 /* Get the column number in the table (iColumn) and sort order 4473 ** (revIdx) for the j-th column of the index. 4474 */ 4475 if( pIndex ){ 4476 iColumn = pIndex->aiColumn[j]; 4477 revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC; 4478 if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID; 4479 }else{ 4480 iColumn = XN_ROWID; 4481 revIdx = 0; 4482 } 4483 4484 /* An unconstrained column that might be NULL means that this 4485 ** WhereLoop is not well-ordered. tag-20210426-1 4486 */ 4487 if( isOrderDistinct ){ 4488 if( iColumn>=0 4489 && j>=pLoop->u.btree.nEq 4490 && pIndex->pTable->aCol[iColumn].notNull==0 4491 ){ 4492 isOrderDistinct = 0; 4493 } 4494 if( iColumn==XN_EXPR ){ 4495 isOrderDistinct = 0; 4496 } 4497 } 4498 4499 /* Find the ORDER BY term that corresponds to the j-th column 4500 ** of the index and mark that ORDER BY term off 4501 */ 4502 isMatch = 0; 4503 for(i=0; bOnce && i<nOrderBy; i++){ 4504 if( MASKBIT(i) & obSat ) continue; 4505 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr); 4506 testcase( wctrlFlags & WHERE_GROUPBY ); 4507 testcase( wctrlFlags & WHERE_DISTINCTBY ); 4508 if( NEVER(pOBExpr==0) ) continue; 4509 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; 4510 if( iColumn>=XN_ROWID ){ 4511 if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue; 4512 if( pOBExpr->iTable!=iCur ) continue; 4513 if( pOBExpr->iColumn!=iColumn ) continue; 4514 }else{ 4515 Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr; 4516 if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){ 4517 continue; 4518 } 4519 } 4520 if( iColumn!=XN_ROWID ){ 4521 pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 4522 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; 4523 } 4524 if( wctrlFlags & WHERE_DISTINCTBY ){ 4525 pLoop->u.btree.nDistinctCol = j+1; 4526 } 4527 isMatch = 1; 4528 break; 4529 } 4530 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ 4531 /* Make sure the sort order is compatible in an ORDER BY clause. 4532 ** Sort order is irrelevant for a GROUP BY clause. */ 4533 if( revSet ){ 4534 if( (rev ^ revIdx) 4535 != (pOrderBy->a[i].fg.sortFlags&KEYINFO_ORDER_DESC) 4536 ){ 4537 isMatch = 0; 4538 } 4539 }else{ 4540 rev = revIdx ^ (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_DESC); 4541 if( rev ) *pRevMask |= MASKBIT(iLoop); 4542 revSet = 1; 4543 } 4544 } 4545 if( isMatch && (pOrderBy->a[i].fg.sortFlags & KEYINFO_ORDER_BIGNULL) ){ 4546 if( j==pLoop->u.btree.nEq ){ 4547 pLoop->wsFlags |= WHERE_BIGNULL_SORT; 4548 }else{ 4549 isMatch = 0; 4550 } 4551 } 4552 if( isMatch ){ 4553 if( iColumn==XN_ROWID ){ 4554 testcase( distinctColumns==0 ); 4555 distinctColumns = 1; 4556 } 4557 obSat |= MASKBIT(i); 4558 }else{ 4559 /* No match found */ 4560 if( j==0 || j<nKeyCol ){ 4561 testcase( isOrderDistinct!=0 ); 4562 isOrderDistinct = 0; 4563 } 4564 break; 4565 } 4566 } /* end Loop over all index columns */ 4567 if( distinctColumns ){ 4568 testcase( isOrderDistinct==0 ); 4569 isOrderDistinct = 1; 4570 } 4571 } /* end-if not one-row */ 4572 4573 /* Mark off any other ORDER BY terms that reference pLoop */ 4574 if( isOrderDistinct ){ 4575 orderDistinctMask |= pLoop->maskSelf; 4576 for(i=0; i<nOrderBy; i++){ 4577 Expr *p; 4578 Bitmask mTerm; 4579 if( MASKBIT(i) & obSat ) continue; 4580 p = pOrderBy->a[i].pExpr; 4581 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); 4582 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; 4583 if( (mTerm&~orderDistinctMask)==0 ){ 4584 obSat |= MASKBIT(i); 4585 } 4586 } 4587 } 4588 } /* End the loop over all WhereLoops from outer-most down to inner-most */ 4589 if( obSat==obDone ) return (i8)nOrderBy; 4590 if( !isOrderDistinct ){ 4591 for(i=nOrderBy-1; i>0; i--){ 4592 Bitmask m = ALWAYS(i<BMS) ? MASKBIT(i) - 1 : 0; 4593 if( (obSat&m)==m ) return i; 4594 } 4595 return 0; 4596 } 4597 return -1; 4598 } 4599 4600 4601 /* 4602 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), 4603 ** the planner assumes that the specified pOrderBy list is actually a GROUP 4604 ** BY clause - and so any order that groups rows as required satisfies the 4605 ** request. 4606 ** 4607 ** Normally, in this case it is not possible for the caller to determine 4608 ** whether or not the rows are really being delivered in sorted order, or 4609 ** just in some other order that provides the required grouping. However, 4610 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then 4611 ** this function may be called on the returned WhereInfo object. It returns 4612 ** true if the rows really will be sorted in the specified order, or false 4613 ** otherwise. 4614 ** 4615 ** For example, assuming: 4616 ** 4617 ** CREATE INDEX i1 ON t1(x, Y); 4618 ** 4619 ** then 4620 ** 4621 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 4622 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 4623 */ 4624 int sqlite3WhereIsSorted(WhereInfo *pWInfo){ 4625 assert( pWInfo->wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY) ); 4626 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); 4627 return pWInfo->sorted; 4628 } 4629 4630 #ifdef WHERETRACE_ENABLED 4631 /* For debugging use only: */ 4632 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ 4633 static char zName[65]; 4634 int i; 4635 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } 4636 if( pLast ) zName[i++] = pLast->cId; 4637 zName[i] = 0; 4638 return zName; 4639 } 4640 #endif 4641 4642 /* 4643 ** Return the cost of sorting nRow rows, assuming that the keys have 4644 ** nOrderby columns and that the first nSorted columns are already in 4645 ** order. 4646 */ 4647 static LogEst whereSortingCost( 4648 WhereInfo *pWInfo, 4649 LogEst nRow, 4650 int nOrderBy, 4651 int nSorted 4652 ){ 4653 /* TUNING: Estimated cost of a full external sort, where N is 4654 ** the number of rows to sort is: 4655 ** 4656 ** cost = (3.0 * N * log(N)). 4657 ** 4658 ** Or, if the order-by clause has X terms but only the last Y 4659 ** terms are out of order, then block-sorting will reduce the 4660 ** sorting cost to: 4661 ** 4662 ** cost = (3.0 * N * log(N)) * (Y/X) 4663 ** 4664 ** The (Y/X) term is implemented using stack variable rScale 4665 ** below. 4666 */ 4667 LogEst rScale, rSortCost; 4668 assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); 4669 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; 4670 rSortCost = nRow + rScale + 16; 4671 4672 /* Multiple by log(M) where M is the number of output rows. 4673 ** Use the LIMIT for M if it is smaller. Or if this sort is for 4674 ** a DISTINCT operator, M will be the number of distinct output 4675 ** rows, so fudge it downwards a bit. 4676 */ 4677 if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){ 4678 nRow = pWInfo->iLimit; 4679 }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){ 4680 /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT 4681 ** reduces the number of output rows by a factor of 2 */ 4682 if( nRow>10 ){ nRow -= 10; assert( 10==sqlite3LogEst(2) ); } 4683 } 4684 rSortCost += estLog(nRow); 4685 return rSortCost; 4686 } 4687 4688 /* 4689 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine 4690 ** attempts to find the lowest cost path that visits each WhereLoop 4691 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. 4692 ** 4693 ** Assume that the total number of output rows that will need to be sorted 4694 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting 4695 ** costs if nRowEst==0. 4696 ** 4697 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation 4698 ** error occurs. 4699 */ 4700 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ 4701 int mxChoice; /* Maximum number of simultaneous paths tracked */ 4702 int nLoop; /* Number of terms in the join */ 4703 Parse *pParse; /* Parsing context */ 4704 sqlite3 *db; /* The database connection */ 4705 int iLoop; /* Loop counter over the terms of the join */ 4706 int ii, jj; /* Loop counters */ 4707 int mxI = 0; /* Index of next entry to replace */ 4708 int nOrderBy; /* Number of ORDER BY clause terms */ 4709 LogEst mxCost = 0; /* Maximum cost of a set of paths */ 4710 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ 4711 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ 4712 WherePath *aFrom; /* All nFrom paths at the previous level */ 4713 WherePath *aTo; /* The nTo best paths at the current level */ 4714 WherePath *pFrom; /* An element of aFrom[] that we are working on */ 4715 WherePath *pTo; /* An element of aTo[] that we are working on */ 4716 WhereLoop *pWLoop; /* One of the WhereLoop objects */ 4717 WhereLoop **pX; /* Used to divy up the pSpace memory */ 4718 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ 4719 char *pSpace; /* Temporary memory used by this routine */ 4720 int nSpace; /* Bytes of space allocated at pSpace */ 4721 4722 pParse = pWInfo->pParse; 4723 db = pParse->db; 4724 nLoop = pWInfo->nLevel; 4725 /* TUNING: For simple queries, only the best path is tracked. 4726 ** For 2-way joins, the 5 best paths are followed. 4727 ** For joins of 3 or more tables, track the 10 best paths */ 4728 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); 4729 assert( nLoop<=pWInfo->pTabList->nSrc ); 4730 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); 4731 4732 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this 4733 ** case the purpose of this call is to estimate the number of rows returned 4734 ** by the overall query. Once this estimate has been obtained, the caller 4735 ** will invoke this function a second time, passing the estimate as the 4736 ** nRowEst parameter. */ 4737 if( pWInfo->pOrderBy==0 || nRowEst==0 ){ 4738 nOrderBy = 0; 4739 }else{ 4740 nOrderBy = pWInfo->pOrderBy->nExpr; 4741 } 4742 4743 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ 4744 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; 4745 nSpace += sizeof(LogEst) * nOrderBy; 4746 pSpace = sqlite3DbMallocRawNN(db, nSpace); 4747 if( pSpace==0 ) return SQLITE_NOMEM_BKPT; 4748 aTo = (WherePath*)pSpace; 4749 aFrom = aTo+mxChoice; 4750 memset(aFrom, 0, sizeof(aFrom[0])); 4751 pX = (WhereLoop**)(aFrom+mxChoice); 4752 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ 4753 pFrom->aLoop = pX; 4754 } 4755 if( nOrderBy ){ 4756 /* If there is an ORDER BY clause and it is not being ignored, set up 4757 ** space for the aSortCost[] array. Each element of the aSortCost array 4758 ** is either zero - meaning it has not yet been initialized - or the 4759 ** cost of sorting nRowEst rows of data where the first X terms of 4760 ** the ORDER BY clause are already in order, where X is the array 4761 ** index. */ 4762 aSortCost = (LogEst*)pX; 4763 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); 4764 } 4765 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); 4766 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); 4767 4768 /* Seed the search with a single WherePath containing zero WhereLoops. 4769 ** 4770 ** TUNING: Do not let the number of iterations go above 28. If the cost 4771 ** of computing an automatic index is not paid back within the first 28 4772 ** rows, then do not use the automatic index. */ 4773 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) ); 4774 nFrom = 1; 4775 assert( aFrom[0].isOrdered==0 ); 4776 if( nOrderBy ){ 4777 /* If nLoop is zero, then there are no FROM terms in the query. Since 4778 ** in this case the query may return a maximum of one row, the results 4779 ** are already in the requested order. Set isOrdered to nOrderBy to 4780 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to 4781 ** -1, indicating that the result set may or may not be ordered, 4782 ** depending on the loops added to the current plan. */ 4783 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; 4784 } 4785 4786 /* Compute successively longer WherePaths using the previous generation 4787 ** of WherePaths as the basis for the next. Keep track of the mxChoice 4788 ** best paths at each generation */ 4789 for(iLoop=0; iLoop<nLoop; iLoop++){ 4790 nTo = 0; 4791 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ 4792 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ 4793 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ 4794 LogEst rCost; /* Cost of path (pFrom+pWLoop) */ 4795 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ 4796 i8 isOrdered; /* isOrdered for (pFrom+pWLoop) */ 4797 Bitmask maskNew; /* Mask of src visited by (..) */ 4798 Bitmask revMask; /* Mask of rev-order loops for (..) */ 4799 4800 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; 4801 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; 4802 if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){ 4803 /* Do not use an automatic index if the this loop is expected 4804 ** to run less than 1.25 times. It is tempting to also exclude 4805 ** automatic index usage on an outer loop, but sometimes an automatic 4806 ** index is useful in the outer loop of a correlated subquery. */ 4807 assert( 10==sqlite3LogEst(2) ); 4808 continue; 4809 } 4810 4811 /* At this point, pWLoop is a candidate to be the next loop. 4812 ** Compute its cost */ 4813 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); 4814 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); 4815 nOut = pFrom->nRow + pWLoop->nOut; 4816 maskNew = pFrom->maskLoop | pWLoop->maskSelf; 4817 isOrdered = pFrom->isOrdered; 4818 if( isOrdered<0 ){ 4819 revMask = 0; 4820 isOrdered = wherePathSatisfiesOrderBy(pWInfo, 4821 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, 4822 iLoop, pWLoop, &revMask); 4823 }else{ 4824 revMask = pFrom->revLoop; 4825 } 4826 if( isOrdered>=0 && isOrdered<nOrderBy ){ 4827 if( aSortCost[isOrdered]==0 ){ 4828 aSortCost[isOrdered] = whereSortingCost( 4829 pWInfo, nRowEst, nOrderBy, isOrdered 4830 ); 4831 } 4832 /* TUNING: Add a small extra penalty (5) to sorting as an 4833 ** extra encouragment to the query planner to select a plan 4834 ** where the rows emerge in the correct order without any sorting 4835 ** required. */ 4836 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5; 4837 4838 WHERETRACE(0x002, 4839 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", 4840 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, 4841 rUnsorted, rCost)); 4842 }else{ 4843 rCost = rUnsorted; 4844 rUnsorted -= 2; /* TUNING: Slight bias in favor of no-sort plans */ 4845 } 4846 4847 /* TUNING: A full-scan of a VIEW or subquery in the outer loop 4848 ** is not so bad. */ 4849 if( iLoop==0 && (pWLoop->wsFlags & WHERE_VIEWSCAN)!=0 ){ 4850 rCost += -10; 4851 nOut += -30; 4852 } 4853 4854 /* Check to see if pWLoop should be added to the set of 4855 ** mxChoice best-so-far paths. 4856 ** 4857 ** First look for an existing path among best-so-far paths 4858 ** that covers the same set of loops and has the same isOrdered 4859 ** setting as the current path candidate. 4860 ** 4861 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent 4862 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range 4863 ** of legal values for isOrdered, -1..64. 4864 */ 4865 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ 4866 if( pTo->maskLoop==maskNew 4867 && ((pTo->isOrdered^isOrdered)&0x80)==0 4868 ){ 4869 testcase( jj==nTo-1 ); 4870 break; 4871 } 4872 } 4873 if( jj>=nTo ){ 4874 /* None of the existing best-so-far paths match the candidate. */ 4875 if( nTo>=mxChoice 4876 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) 4877 ){ 4878 /* The current candidate is no better than any of the mxChoice 4879 ** paths currently in the best-so-far buffer. So discard 4880 ** this candidate as not viable. */ 4881 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4882 if( sqlite3WhereTrace&0x4 ){ 4883 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n", 4884 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4885 isOrdered>=0 ? isOrdered+'0' : '?'); 4886 } 4887 #endif 4888 continue; 4889 } 4890 /* If we reach this points it means that the new candidate path 4891 ** needs to be added to the set of best-so-far paths. */ 4892 if( nTo<mxChoice ){ 4893 /* Increase the size of the aTo set by one */ 4894 jj = nTo++; 4895 }else{ 4896 /* New path replaces the prior worst to keep count below mxChoice */ 4897 jj = mxI; 4898 } 4899 pTo = &aTo[jj]; 4900 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4901 if( sqlite3WhereTrace&0x4 ){ 4902 sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n", 4903 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4904 isOrdered>=0 ? isOrdered+'0' : '?'); 4905 } 4906 #endif 4907 }else{ 4908 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the 4909 ** same set of loops and has the same isOrdered setting as the 4910 ** candidate path. Check to see if the candidate should replace 4911 ** pTo or if the candidate should be skipped. 4912 ** 4913 ** The conditional is an expanded vector comparison equivalent to: 4914 ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted) 4915 */ 4916 if( pTo->rCost<rCost 4917 || (pTo->rCost==rCost 4918 && (pTo->nRow<nOut 4919 || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted) 4920 ) 4921 ) 4922 ){ 4923 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4924 if( sqlite3WhereTrace&0x4 ){ 4925 sqlite3DebugPrintf( 4926 "Skip %s cost=%-3d,%3d,%3d order=%c", 4927 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4928 isOrdered>=0 ? isOrdered+'0' : '?'); 4929 sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n", 4930 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4931 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4932 } 4933 #endif 4934 /* Discard the candidate path from further consideration */ 4935 testcase( pTo->rCost==rCost ); 4936 continue; 4937 } 4938 testcase( pTo->rCost==rCost+1 ); 4939 /* Control reaches here if the candidate path is better than the 4940 ** pTo path. Replace pTo with the candidate. */ 4941 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4942 if( sqlite3WhereTrace&0x4 ){ 4943 sqlite3DebugPrintf( 4944 "Update %s cost=%-3d,%3d,%3d order=%c", 4945 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4946 isOrdered>=0 ? isOrdered+'0' : '?'); 4947 sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n", 4948 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4949 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4950 } 4951 #endif 4952 } 4953 /* pWLoop is a winner. Add it to the set of best so far */ 4954 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; 4955 pTo->revLoop = revMask; 4956 pTo->nRow = nOut; 4957 pTo->rCost = rCost; 4958 pTo->rUnsorted = rUnsorted; 4959 pTo->isOrdered = isOrdered; 4960 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); 4961 pTo->aLoop[iLoop] = pWLoop; 4962 if( nTo>=mxChoice ){ 4963 mxI = 0; 4964 mxCost = aTo[0].rCost; 4965 mxUnsorted = aTo[0].nRow; 4966 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ 4967 if( pTo->rCost>mxCost 4968 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) 4969 ){ 4970 mxCost = pTo->rCost; 4971 mxUnsorted = pTo->rUnsorted; 4972 mxI = jj; 4973 } 4974 } 4975 } 4976 } 4977 } 4978 4979 #ifdef WHERETRACE_ENABLED /* >=2 */ 4980 if( sqlite3WhereTrace & 0x02 ){ 4981 sqlite3DebugPrintf("---- after round %d ----\n", iLoop); 4982 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ 4983 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", 4984 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4985 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); 4986 if( pTo->isOrdered>0 ){ 4987 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); 4988 }else{ 4989 sqlite3DebugPrintf("\n"); 4990 } 4991 } 4992 } 4993 #endif 4994 4995 /* Swap the roles of aFrom and aTo for the next generation */ 4996 pFrom = aTo; 4997 aTo = aFrom; 4998 aFrom = pFrom; 4999 nFrom = nTo; 5000 } 5001 5002 if( nFrom==0 ){ 5003 sqlite3ErrorMsg(pParse, "no query solution"); 5004 sqlite3DbFreeNN(db, pSpace); 5005 return SQLITE_ERROR; 5006 } 5007 5008 /* Find the lowest cost path. pFrom will be left pointing to that path */ 5009 pFrom = aFrom; 5010 for(ii=1; ii<nFrom; ii++){ 5011 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; 5012 } 5013 assert( pWInfo->nLevel==nLoop ); 5014 /* Load the lowest cost path into pWInfo */ 5015 for(iLoop=0; iLoop<nLoop; iLoop++){ 5016 WhereLevel *pLevel = pWInfo->a + iLoop; 5017 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; 5018 pLevel->iFrom = pWLoop->iTab; 5019 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; 5020 } 5021 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 5022 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 5023 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP 5024 && nRowEst 5025 ){ 5026 Bitmask notUsed; 5027 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, 5028 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); 5029 if( rc==pWInfo->pResultSet->nExpr ){ 5030 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 5031 } 5032 } 5033 pWInfo->bOrderedInnerLoop = 0; 5034 if( pWInfo->pOrderBy ){ 5035 pWInfo->nOBSat = pFrom->isOrdered; 5036 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ 5037 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ 5038 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 5039 } 5040 }else{ 5041 pWInfo->revMask = pFrom->revLoop; 5042 if( pWInfo->nOBSat<=0 ){ 5043 pWInfo->nOBSat = 0; 5044 if( nLoop>0 ){ 5045 u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags; 5046 if( (wsFlags & WHERE_ONEROW)==0 5047 && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN) 5048 ){ 5049 Bitmask m = 0; 5050 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, 5051 WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m); 5052 testcase( wsFlags & WHERE_IPK ); 5053 testcase( wsFlags & WHERE_COLUMN_IN ); 5054 if( rc==pWInfo->pOrderBy->nExpr ){ 5055 pWInfo->bOrderedInnerLoop = 1; 5056 pWInfo->revMask = m; 5057 } 5058 } 5059 } 5060 }else if( nLoop 5061 && pWInfo->nOBSat==1 5062 && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0 5063 ){ 5064 pWInfo->bOrderedInnerLoop = 1; 5065 } 5066 } 5067 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) 5068 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 5069 ){ 5070 Bitmask revMask = 0; 5071 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, 5072 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask 5073 ); 5074 assert( pWInfo->sorted==0 ); 5075 if( nOrder==pWInfo->pOrderBy->nExpr ){ 5076 pWInfo->sorted = 1; 5077 pWInfo->revMask = revMask; 5078 } 5079 } 5080 } 5081 5082 5083 pWInfo->nRowOut = pFrom->nRow; 5084 5085 /* Free temporary memory and return success */ 5086 assert( db!=0 ); 5087 sqlite3DbNNFreeNN(db, pSpace); 5088 return SQLITE_OK; 5089 } 5090 5091 /* 5092 ** Most queries use only a single table (they are not joins) and have 5093 ** simple == constraints against indexed fields. This routine attempts 5094 ** to plan those simple cases using much less ceremony than the 5095 ** general-purpose query planner, and thereby yield faster sqlite3_prepare() 5096 ** times for the common case. 5097 ** 5098 ** Return non-zero on success, if this query can be handled by this 5099 ** no-frills query planner. Return zero if this query needs the 5100 ** general-purpose query planner. 5101 */ 5102 static int whereShortCut(WhereLoopBuilder *pBuilder){ 5103 WhereInfo *pWInfo; 5104 SrcItem *pItem; 5105 WhereClause *pWC; 5106 WhereTerm *pTerm; 5107 WhereLoop *pLoop; 5108 int iCur; 5109 int j; 5110 Table *pTab; 5111 Index *pIdx; 5112 WhereScan scan; 5113 5114 pWInfo = pBuilder->pWInfo; 5115 if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0; 5116 assert( pWInfo->pTabList->nSrc>=1 ); 5117 pItem = pWInfo->pTabList->a; 5118 pTab = pItem->pTab; 5119 if( IsVirtual(pTab) ) return 0; 5120 if( pItem->fg.isIndexedBy || pItem->fg.notIndexed ){ 5121 testcase( pItem->fg.isIndexedBy ); 5122 testcase( pItem->fg.notIndexed ); 5123 return 0; 5124 } 5125 iCur = pItem->iCursor; 5126 pWC = &pWInfo->sWC; 5127 pLoop = pBuilder->pNew; 5128 pLoop->wsFlags = 0; 5129 pLoop->nSkip = 0; 5130 pTerm = whereScanInit(&scan, pWC, iCur, -1, WO_EQ|WO_IS, 0); 5131 while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan); 5132 if( pTerm ){ 5133 testcase( pTerm->eOperator & WO_IS ); 5134 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; 5135 pLoop->aLTerm[0] = pTerm; 5136 pLoop->nLTerm = 1; 5137 pLoop->u.btree.nEq = 1; 5138 /* TUNING: Cost of a rowid lookup is 10 */ 5139 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ 5140 }else{ 5141 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 5142 int opMask; 5143 assert( pLoop->aLTermSpace==pLoop->aLTerm ); 5144 if( !IsUniqueIndex(pIdx) 5145 || pIdx->pPartIdxWhere!=0 5146 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) 5147 ) continue; 5148 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; 5149 for(j=0; j<pIdx->nKeyCol; j++){ 5150 pTerm = whereScanInit(&scan, pWC, iCur, j, opMask, pIdx); 5151 while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan); 5152 if( pTerm==0 ) break; 5153 testcase( pTerm->eOperator & WO_IS ); 5154 pLoop->aLTerm[j] = pTerm; 5155 } 5156 if( j!=pIdx->nKeyCol ) continue; 5157 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; 5158 if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){ 5159 pLoop->wsFlags |= WHERE_IDX_ONLY; 5160 } 5161 pLoop->nLTerm = j; 5162 pLoop->u.btree.nEq = j; 5163 pLoop->u.btree.pIndex = pIdx; 5164 /* TUNING: Cost of a unique index lookup is 15 */ 5165 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ 5166 break; 5167 } 5168 } 5169 if( pLoop->wsFlags ){ 5170 pLoop->nOut = (LogEst)1; 5171 pWInfo->a[0].pWLoop = pLoop; 5172 assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] ); 5173 pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */ 5174 pWInfo->a[0].iTabCur = iCur; 5175 pWInfo->nRowOut = 1; 5176 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; 5177 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ 5178 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 5179 } 5180 if( scan.iEquiv>1 ) pLoop->wsFlags |= WHERE_TRANSCONS; 5181 #ifdef SQLITE_DEBUG 5182 pLoop->cId = '0'; 5183 #endif 5184 #ifdef WHERETRACE_ENABLED 5185 if( sqlite3WhereTrace ){ 5186 sqlite3DebugPrintf("whereShortCut() used to compute solution\n"); 5187 } 5188 #endif 5189 return 1; 5190 } 5191 return 0; 5192 } 5193 5194 /* 5195 ** Helper function for exprIsDeterministic(). 5196 */ 5197 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){ 5198 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){ 5199 pWalker->eCode = 0; 5200 return WRC_Abort; 5201 } 5202 return WRC_Continue; 5203 } 5204 5205 /* 5206 ** Return true if the expression contains no non-deterministic SQL 5207 ** functions. Do not consider non-deterministic SQL functions that are 5208 ** part of sub-select statements. 5209 */ 5210 static int exprIsDeterministic(Expr *p){ 5211 Walker w; 5212 memset(&w, 0, sizeof(w)); 5213 w.eCode = 1; 5214 w.xExprCallback = exprNodeIsDeterministic; 5215 w.xSelectCallback = sqlite3SelectWalkFail; 5216 sqlite3WalkExpr(&w, p); 5217 return w.eCode; 5218 } 5219 5220 5221 #ifdef WHERETRACE_ENABLED 5222 /* 5223 ** Display all WhereLoops in pWInfo 5224 */ 5225 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){ 5226 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ 5227 WhereLoop *p; 5228 int i; 5229 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" 5230 "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; 5231 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ 5232 p->cId = zLabel[i%(sizeof(zLabel)-1)]; 5233 sqlite3WhereLoopPrint(p, pWC); 5234 } 5235 } 5236 } 5237 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C) 5238 #else 5239 # define WHERETRACE_ALL_LOOPS(W,C) 5240 #endif 5241 5242 /* Attempt to omit tables from a join that do not affect the result. 5243 ** For a table to not affect the result, the following must be true: 5244 ** 5245 ** 1) The query must not be an aggregate. 5246 ** 2) The table must be the RHS of a LEFT JOIN. 5247 ** 3) Either the query must be DISTINCT, or else the ON or USING clause 5248 ** must contain a constraint that limits the scan of the table to 5249 ** at most a single row. 5250 ** 4) The table must not be referenced by any part of the query apart 5251 ** from its own USING or ON clause. 5252 ** 5253 ** For example, given: 5254 ** 5255 ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1); 5256 ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2); 5257 ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3); 5258 ** 5259 ** then table t2 can be omitted from the following: 5260 ** 5261 ** SELECT v1, v3 FROM t1 5262 ** LEFT JOIN t2 ON (t1.ipk=t2.ipk) 5263 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk) 5264 ** 5265 ** or from: 5266 ** 5267 ** SELECT DISTINCT v1, v3 FROM t1 5268 ** LEFT JOIN t2 5269 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk) 5270 */ 5271 static SQLITE_NOINLINE Bitmask whereOmitNoopJoin( 5272 WhereInfo *pWInfo, 5273 Bitmask notReady 5274 ){ 5275 int i; 5276 Bitmask tabUsed; 5277 5278 /* Preconditions checked by the caller */ 5279 assert( pWInfo->nLevel>=2 ); 5280 assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_OmitNoopJoin) ); 5281 5282 /* These two preconditions checked by the caller combine to guarantee 5283 ** condition (1) of the header comment */ 5284 assert( pWInfo->pResultSet!=0 ); 5285 assert( 0==(pWInfo->wctrlFlags & WHERE_AGG_DISTINCT) ); 5286 5287 tabUsed = sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pResultSet); 5288 if( pWInfo->pOrderBy ){ 5289 tabUsed |= sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pOrderBy); 5290 } 5291 for(i=pWInfo->nLevel-1; i>=1; i--){ 5292 WhereTerm *pTerm, *pEnd; 5293 SrcItem *pItem; 5294 WhereLoop *pLoop; 5295 pLoop = pWInfo->a[i].pWLoop; 5296 pItem = &pWInfo->pTabList->a[pLoop->iTab]; 5297 if( (pItem->fg.jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ) continue; 5298 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)==0 5299 && (pLoop->wsFlags & WHERE_ONEROW)==0 5300 ){ 5301 continue; 5302 } 5303 if( (tabUsed & pLoop->maskSelf)!=0 ) continue; 5304 pEnd = pWInfo->sWC.a + pWInfo->sWC.nTerm; 5305 for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){ 5306 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 5307 if( !ExprHasProperty(pTerm->pExpr, EP_OuterON) 5308 || pTerm->pExpr->w.iJoin!=pItem->iCursor 5309 ){ 5310 break; 5311 } 5312 } 5313 } 5314 if( pTerm<pEnd ) continue; 5315 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); 5316 notReady &= ~pLoop->maskSelf; 5317 for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){ 5318 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 5319 pTerm->wtFlags |= TERM_CODED; 5320 } 5321 } 5322 if( i!=pWInfo->nLevel-1 ){ 5323 int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel); 5324 memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte); 5325 } 5326 pWInfo->nLevel--; 5327 assert( pWInfo->nLevel>0 ); 5328 } 5329 return notReady; 5330 } 5331 5332 /* 5333 ** Check to see if there are any SEARCH loops that might benefit from 5334 ** using a Bloom filter. Consider a Bloom filter if: 5335 ** 5336 ** (1) The SEARCH happens more than N times where N is the number 5337 ** of rows in the table that is being considered for the Bloom 5338 ** filter. 5339 ** (2) Some searches are expected to find zero rows. (This is determined 5340 ** by the WHERE_SELFCULL flag on the term.) 5341 ** (3) Bloom-filter processing is not disabled. (Checked by the 5342 ** caller.) 5343 ** (4) The size of the table being searched is known by ANALYZE. 5344 ** 5345 ** This block of code merely checks to see if a Bloom filter would be 5346 ** appropriate, and if so sets the WHERE_BLOOMFILTER flag on the 5347 ** WhereLoop. The implementation of the Bloom filter comes further 5348 ** down where the code for each WhereLoop is generated. 5349 */ 5350 static SQLITE_NOINLINE void whereCheckIfBloomFilterIsUseful( 5351 const WhereInfo *pWInfo 5352 ){ 5353 int i; 5354 LogEst nSearch; 5355 5356 assert( pWInfo->nLevel>=2 ); 5357 assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_BloomFilter) ); 5358 nSearch = pWInfo->a[0].pWLoop->nOut; 5359 for(i=1; i<pWInfo->nLevel; i++){ 5360 WhereLoop *pLoop = pWInfo->a[i].pWLoop; 5361 const unsigned int reqFlags = (WHERE_SELFCULL|WHERE_COLUMN_EQ); 5362 if( (pLoop->wsFlags & reqFlags)==reqFlags 5363 /* vvvvvv--- Always the case if WHERE_COLUMN_EQ is defined */ 5364 && ALWAYS((pLoop->wsFlags & (WHERE_IPK|WHERE_INDEXED))!=0) 5365 ){ 5366 SrcItem *pItem = &pWInfo->pTabList->a[pLoop->iTab]; 5367 Table *pTab = pItem->pTab; 5368 pTab->tabFlags |= TF_StatsUsed; 5369 if( nSearch > pTab->nRowLogEst 5370 && (pTab->tabFlags & TF_HasStat1)!=0 5371 ){ 5372 testcase( pItem->fg.jointype & JT_LEFT ); 5373 pLoop->wsFlags |= WHERE_BLOOMFILTER; 5374 pLoop->wsFlags &= ~WHERE_IDX_ONLY; 5375 WHERETRACE(0xffff, ( 5376 "-> use Bloom-filter on loop %c because there are ~%.1e " 5377 "lookups into %s which has only ~%.1e rows\n", 5378 pLoop->cId, (double)sqlite3LogEstToInt(nSearch), pTab->zName, 5379 (double)sqlite3LogEstToInt(pTab->nRowLogEst))); 5380 } 5381 } 5382 nSearch += pLoop->nOut; 5383 } 5384 } 5385 5386 /* 5387 ** Generate the beginning of the loop used for WHERE clause processing. 5388 ** The return value is a pointer to an opaque structure that contains 5389 ** information needed to terminate the loop. Later, the calling routine 5390 ** should invoke sqlite3WhereEnd() with the return value of this function 5391 ** in order to complete the WHERE clause processing. 5392 ** 5393 ** If an error occurs, this routine returns NULL. 5394 ** 5395 ** The basic idea is to do a nested loop, one loop for each table in 5396 ** the FROM clause of a select. (INSERT and UPDATE statements are the 5397 ** same as a SELECT with only a single table in the FROM clause.) For 5398 ** example, if the SQL is this: 5399 ** 5400 ** SELECT * FROM t1, t2, t3 WHERE ...; 5401 ** 5402 ** Then the code generated is conceptually like the following: 5403 ** 5404 ** foreach row1 in t1 do \ Code generated 5405 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 5406 ** foreach row3 in t3 do / 5407 ** ... 5408 ** end \ Code generated 5409 ** end |-- by sqlite3WhereEnd() 5410 ** end / 5411 ** 5412 ** Note that the loops might not be nested in the order in which they 5413 ** appear in the FROM clause if a different order is better able to make 5414 ** use of indices. Note also that when the IN operator appears in 5415 ** the WHERE clause, it might result in additional nested loops for 5416 ** scanning through all values on the right-hand side of the IN. 5417 ** 5418 ** There are Btree cursors associated with each table. t1 uses cursor 5419 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 5420 ** And so forth. This routine generates code to open those VDBE cursors 5421 ** and sqlite3WhereEnd() generates the code to close them. 5422 ** 5423 ** The code that sqlite3WhereBegin() generates leaves the cursors named 5424 ** in pTabList pointing at their appropriate entries. The [...] code 5425 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 5426 ** data from the various tables of the loop. 5427 ** 5428 ** If the WHERE clause is empty, the foreach loops must each scan their 5429 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 5430 ** the tables have indices and there are terms in the WHERE clause that 5431 ** refer to those indices, a complete table scan can be avoided and the 5432 ** code will run much faster. Most of the work of this routine is checking 5433 ** to see if there are indices that can be used to speed up the loop. 5434 ** 5435 ** Terms of the WHERE clause are also used to limit which rows actually 5436 ** make it to the "..." in the middle of the loop. After each "foreach", 5437 ** terms of the WHERE clause that use only terms in that loop and outer 5438 ** loops are evaluated and if false a jump is made around all subsequent 5439 ** inner loops (or around the "..." if the test occurs within the inner- 5440 ** most loop) 5441 ** 5442 ** OUTER JOINS 5443 ** 5444 ** An outer join of tables t1 and t2 is conceptally coded as follows: 5445 ** 5446 ** foreach row1 in t1 do 5447 ** flag = 0 5448 ** foreach row2 in t2 do 5449 ** start: 5450 ** ... 5451 ** flag = 1 5452 ** end 5453 ** if flag==0 then 5454 ** move the row2 cursor to a null row 5455 ** goto start 5456 ** fi 5457 ** end 5458 ** 5459 ** ORDER BY CLAUSE PROCESSING 5460 ** 5461 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause 5462 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement 5463 ** if there is one. If there is no ORDER BY clause or if this routine 5464 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. 5465 ** 5466 ** The iIdxCur parameter is the cursor number of an index. If 5467 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index 5468 ** to use for OR clause processing. The WHERE clause should use this 5469 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is 5470 ** the first cursor in an array of cursors for all indices. iIdxCur should 5471 ** be used to compute the appropriate cursor depending on which index is 5472 ** used. 5473 */ 5474 WhereInfo *sqlite3WhereBegin( 5475 Parse *pParse, /* The parser context */ 5476 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ 5477 Expr *pWhere, /* The WHERE clause */ 5478 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ 5479 ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */ 5480 Select *pLimit, /* Use this LIMIT/OFFSET clause, if any */ 5481 u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */ 5482 int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number 5483 ** If WHERE_USE_LIMIT, then the limit amount */ 5484 ){ 5485 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ 5486 int nTabList; /* Number of elements in pTabList */ 5487 WhereInfo *pWInfo; /* Will become the return value of this function */ 5488 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 5489 Bitmask notReady; /* Cursors that are not yet positioned */ 5490 WhereLoopBuilder sWLB; /* The WhereLoop builder */ 5491 WhereMaskSet *pMaskSet; /* The expression mask set */ 5492 WhereLevel *pLevel; /* A single level in pWInfo->a[] */ 5493 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ 5494 int ii; /* Loop counter */ 5495 sqlite3 *db; /* Database connection */ 5496 int rc; /* Return code */ 5497 u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */ 5498 5499 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || ( 5500 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 5501 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 5502 )); 5503 5504 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */ 5505 assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 5506 || (wctrlFlags & WHERE_USE_LIMIT)==0 ); 5507 5508 /* Variable initialization */ 5509 db = pParse->db; 5510 memset(&sWLB, 0, sizeof(sWLB)); 5511 5512 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ 5513 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); 5514 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; 5515 5516 /* The number of tables in the FROM clause is limited by the number of 5517 ** bits in a Bitmask 5518 */ 5519 testcase( pTabList->nSrc==BMS ); 5520 if( pTabList->nSrc>BMS ){ 5521 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 5522 return 0; 5523 } 5524 5525 /* This function normally generates a nested loop for all tables in 5526 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should 5527 ** only generate code for the first table in pTabList and assume that 5528 ** any cursors associated with subsequent tables are uninitialized. 5529 */ 5530 nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc; 5531 5532 /* Allocate and initialize the WhereInfo structure that will become the 5533 ** return value. A single allocation is used to store the WhereInfo 5534 ** struct, the contents of WhereInfo.a[], the WhereClause structure 5535 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte 5536 ** field (type Bitmask) it must be aligned on an 8-byte boundary on 5537 ** some architectures. Hence the ROUND8() below. 5538 */ 5539 nByteWInfo = ROUND8P(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); 5540 pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop)); 5541 if( db->mallocFailed ){ 5542 sqlite3DbFree(db, pWInfo); 5543 pWInfo = 0; 5544 goto whereBeginError; 5545 } 5546 pWInfo->pParse = pParse; 5547 pWInfo->pTabList = pTabList; 5548 pWInfo->pOrderBy = pOrderBy; 5549 pWInfo->pWhere = pWhere; 5550 pWInfo->pResultSet = pResultSet; 5551 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; 5552 pWInfo->nLevel = nTabList; 5553 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse); 5554 pWInfo->wctrlFlags = wctrlFlags; 5555 pWInfo->iLimit = iAuxArg; 5556 pWInfo->savedNQueryLoop = pParse->nQueryLoop; 5557 #ifndef SQLITE_OMIT_VIRTUALTABLE 5558 pWInfo->pLimit = pLimit; 5559 #endif 5560 memset(&pWInfo->nOBSat, 0, 5561 offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat)); 5562 memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel)); 5563 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */ 5564 pMaskSet = &pWInfo->sMaskSet; 5565 pMaskSet->n = 0; 5566 pMaskSet->ix[0] = -99; /* Initialize ix[0] to a value that can never be 5567 ** a valid cursor number, to avoid an initial 5568 ** test for pMaskSet->n==0 in sqlite3WhereGetMask() */ 5569 sWLB.pWInfo = pWInfo; 5570 sWLB.pWC = &pWInfo->sWC; 5571 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); 5572 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); 5573 whereLoopInit(sWLB.pNew); 5574 #ifdef SQLITE_DEBUG 5575 sWLB.pNew->cId = '*'; 5576 #endif 5577 5578 /* Split the WHERE clause into separate subexpressions where each 5579 ** subexpression is separated by an AND operator. 5580 */ 5581 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); 5582 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); 5583 5584 /* Special case: No FROM clause 5585 */ 5586 if( nTabList==0 ){ 5587 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; 5588 if( (wctrlFlags & WHERE_WANT_DISTINCT)!=0 5589 && OptimizationEnabled(db, SQLITE_DistinctOpt) 5590 ){ 5591 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 5592 } 5593 ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW")); 5594 }else{ 5595 /* Assign a bit from the bitmask to every term in the FROM clause. 5596 ** 5597 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. 5598 ** 5599 ** The rule of the previous sentence ensures thta if X is the bitmask for 5600 ** a table T, then X-1 is the bitmask for all other tables to the left of T. 5601 ** Knowing the bitmask for all tables to the left of a left join is 5602 ** important. Ticket #3015. 5603 ** 5604 ** Note that bitmasks are created for all pTabList->nSrc tables in 5605 ** pTabList, not just the first nTabList tables. nTabList is normally 5606 ** equal to pTabList->nSrc but might be shortened to 1 if the 5607 ** WHERE_OR_SUBCLAUSE flag is set. 5608 */ 5609 ii = 0; 5610 do{ 5611 createMask(pMaskSet, pTabList->a[ii].iCursor); 5612 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC); 5613 }while( (++ii)<pTabList->nSrc ); 5614 #ifdef SQLITE_DEBUG 5615 { 5616 Bitmask mx = 0; 5617 for(ii=0; ii<pTabList->nSrc; ii++){ 5618 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); 5619 assert( m>=mx ); 5620 mx = m; 5621 } 5622 } 5623 #endif 5624 } 5625 5626 /* Analyze all of the subexpressions. */ 5627 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); 5628 sqlite3WhereAddLimit(&pWInfo->sWC, pLimit); 5629 if( pParse->nErr ) goto whereBeginError; 5630 5631 /* Special case: WHERE terms that do not refer to any tables in the join 5632 ** (constant expressions). Evaluate each such term, and jump over all the 5633 ** generated code if the result is not true. 5634 ** 5635 ** Do not do this if the expression contains non-deterministic functions 5636 ** that are not within a sub-select. This is not strictly required, but 5637 ** preserves SQLite's legacy behaviour in the following two cases: 5638 ** 5639 ** FROM ... WHERE random()>0; -- eval random() once per row 5640 ** FROM ... WHERE (SELECT random())>0; -- eval random() once overall 5641 */ 5642 for(ii=0; ii<sWLB.pWC->nBase; ii++){ 5643 WhereTerm *pT = &sWLB.pWC->a[ii]; 5644 if( pT->wtFlags & TERM_VIRTUAL ) continue; 5645 if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){ 5646 sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL); 5647 pT->wtFlags |= TERM_CODED; 5648 } 5649 } 5650 5651 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 5652 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ 5653 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via 5654 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ 5655 wctrlFlags &= ~WHERE_WANT_DISTINCT; 5656 pWInfo->wctrlFlags &= ~WHERE_WANT_DISTINCT; 5657 }else if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ 5658 /* The DISTINCT marking is pointless. Ignore it. */ 5659 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 5660 }else if( pOrderBy==0 ){ 5661 /* Try to ORDER BY the result set to make distinct processing easier */ 5662 pWInfo->wctrlFlags |= WHERE_DISTINCTBY; 5663 pWInfo->pOrderBy = pResultSet; 5664 } 5665 } 5666 5667 /* Construct the WhereLoop objects */ 5668 #if defined(WHERETRACE_ENABLED) 5669 if( sqlite3WhereTrace & 0xffff ){ 5670 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags); 5671 if( wctrlFlags & WHERE_USE_LIMIT ){ 5672 sqlite3DebugPrintf(", limit: %d", iAuxArg); 5673 } 5674 sqlite3DebugPrintf(")\n"); 5675 if( sqlite3WhereTrace & 0x100 ){ 5676 Select sSelect; 5677 memset(&sSelect, 0, sizeof(sSelect)); 5678 sSelect.selFlags = SF_WhereBegin; 5679 sSelect.pSrc = pTabList; 5680 sSelect.pWhere = pWhere; 5681 sSelect.pOrderBy = pOrderBy; 5682 sSelect.pEList = pResultSet; 5683 sqlite3TreeViewSelect(0, &sSelect, 0); 5684 } 5685 } 5686 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 5687 sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n"); 5688 sqlite3WhereClausePrint(sWLB.pWC); 5689 } 5690 #endif 5691 5692 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ 5693 rc = whereLoopAddAll(&sWLB); 5694 if( rc ) goto whereBeginError; 5695 5696 #ifdef SQLITE_ENABLE_STAT4 5697 /* If one or more WhereTerm.truthProb values were used in estimating 5698 ** loop parameters, but then those truthProb values were subsequently 5699 ** changed based on STAT4 information while computing subsequent loops, 5700 ** then we need to rerun the whole loop building process so that all 5701 ** loops will be built using the revised truthProb values. */ 5702 if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){ 5703 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC); 5704 WHERETRACE(0xffff, 5705 ("**** Redo all loop computations due to" 5706 " TERM_HIGHTRUTH changes ****\n")); 5707 while( pWInfo->pLoops ){ 5708 WhereLoop *p = pWInfo->pLoops; 5709 pWInfo->pLoops = p->pNextLoop; 5710 whereLoopDelete(db, p); 5711 } 5712 rc = whereLoopAddAll(&sWLB); 5713 if( rc ) goto whereBeginError; 5714 } 5715 #endif 5716 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC); 5717 5718 wherePathSolver(pWInfo, 0); 5719 if( db->mallocFailed ) goto whereBeginError; 5720 if( pWInfo->pOrderBy ){ 5721 wherePathSolver(pWInfo, pWInfo->nRowOut+1); 5722 if( db->mallocFailed ) goto whereBeginError; 5723 } 5724 } 5725 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ 5726 pWInfo->revMask = ALLBITS; 5727 } 5728 if( pParse->nErr ){ 5729 goto whereBeginError; 5730 } 5731 assert( db->mallocFailed==0 ); 5732 #ifdef WHERETRACE_ENABLED 5733 if( sqlite3WhereTrace ){ 5734 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); 5735 if( pWInfo->nOBSat>0 ){ 5736 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); 5737 } 5738 switch( pWInfo->eDistinct ){ 5739 case WHERE_DISTINCT_UNIQUE: { 5740 sqlite3DebugPrintf(" DISTINCT=unique"); 5741 break; 5742 } 5743 case WHERE_DISTINCT_ORDERED: { 5744 sqlite3DebugPrintf(" DISTINCT=ordered"); 5745 break; 5746 } 5747 case WHERE_DISTINCT_UNORDERED: { 5748 sqlite3DebugPrintf(" DISTINCT=unordered"); 5749 break; 5750 } 5751 } 5752 sqlite3DebugPrintf("\n"); 5753 for(ii=0; ii<pWInfo->nLevel; ii++){ 5754 sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); 5755 } 5756 } 5757 #endif 5758 5759 /* Attempt to omit tables from a join that do not affect the result. 5760 ** See the comment on whereOmitNoopJoin() for further information. 5761 ** 5762 ** This query optimization is factored out into a separate "no-inline" 5763 ** procedure to keep the sqlite3WhereBegin() procedure from becoming 5764 ** too large. If sqlite3WhereBegin() becomes too large, that prevents 5765 ** some C-compiler optimizers from in-lining the 5766 ** sqlite3WhereCodeOneLoopStart() procedure, and it is important to 5767 ** in-line sqlite3WhereCodeOneLoopStart() for performance reasons. 5768 */ 5769 notReady = ~(Bitmask)0; 5770 if( pWInfo->nLevel>=2 5771 && pResultSet!=0 /* these two combine to guarantee */ 5772 && 0==(wctrlFlags & WHERE_AGG_DISTINCT) /* condition (1) above */ 5773 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) 5774 ){ 5775 notReady = whereOmitNoopJoin(pWInfo, notReady); 5776 nTabList = pWInfo->nLevel; 5777 assert( nTabList>0 ); 5778 } 5779 5780 /* Check to see if there are any SEARCH loops that might benefit from 5781 ** using a Bloom filter. 5782 */ 5783 if( pWInfo->nLevel>=2 5784 && OptimizationEnabled(db, SQLITE_BloomFilter) 5785 ){ 5786 whereCheckIfBloomFilterIsUseful(pWInfo); 5787 } 5788 5789 #if defined(WHERETRACE_ENABLED) 5790 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 5791 sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n"); 5792 sqlite3WhereClausePrint(sWLB.pWC); 5793 } 5794 WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); 5795 #endif 5796 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; 5797 5798 /* If the caller is an UPDATE or DELETE statement that is requesting 5799 ** to use a one-pass algorithm, determine if this is appropriate. 5800 ** 5801 ** A one-pass approach can be used if the caller has requested one 5802 ** and either (a) the scan visits at most one row or (b) each 5803 ** of the following are true: 5804 ** 5805 ** * the caller has indicated that a one-pass approach can be used 5806 ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and 5807 ** * the table is not a virtual table, and 5808 ** * either the scan does not use the OR optimization or the caller 5809 ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified 5810 ** for DELETE). 5811 ** 5812 ** The last qualification is because an UPDATE statement uses 5813 ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can 5814 ** use a one-pass approach, and this is not set accurately for scans 5815 ** that use the OR optimization. 5816 */ 5817 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 5818 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){ 5819 int wsFlags = pWInfo->a[0].pWLoop->wsFlags; 5820 int bOnerow = (wsFlags & WHERE_ONEROW)!=0; 5821 assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) ); 5822 if( bOnerow || ( 5823 0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW) 5824 && !IsVirtual(pTabList->a[0].pTab) 5825 && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK)) 5826 )){ 5827 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; 5828 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){ 5829 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){ 5830 bFordelete = OPFLAG_FORDELETE; 5831 } 5832 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY); 5833 } 5834 } 5835 } 5836 5837 /* Open all tables in the pTabList and any indices selected for 5838 ** searching those tables. 5839 */ 5840 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ 5841 Table *pTab; /* Table to open */ 5842 int iDb; /* Index of database containing table/index */ 5843 SrcItem *pTabItem; 5844 5845 pTabItem = &pTabList->a[pLevel->iFrom]; 5846 pTab = pTabItem->pTab; 5847 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5848 pLoop = pLevel->pWLoop; 5849 if( (pTab->tabFlags & TF_Ephemeral)!=0 || IsView(pTab) ){ 5850 /* Do nothing */ 5851 }else 5852 #ifndef SQLITE_OMIT_VIRTUALTABLE 5853 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 5854 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 5855 int iCur = pTabItem->iCursor; 5856 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); 5857 }else if( IsVirtual(pTab) ){ 5858 /* noop */ 5859 }else 5860 #endif 5861 if( ((pLoop->wsFlags & WHERE_IDX_ONLY)==0 5862 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0) 5863 || (pTabItem->fg.jointype & (JT_LTORJ|JT_RIGHT))!=0 5864 ){ 5865 int op = OP_OpenRead; 5866 if( pWInfo->eOnePass!=ONEPASS_OFF ){ 5867 op = OP_OpenWrite; 5868 pWInfo->aiCurOnePass[0] = pTabItem->iCursor; 5869 }; 5870 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 5871 assert( pTabItem->iCursor==pLevel->iTabCur ); 5872 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 ); 5873 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS ); 5874 if( pWInfo->eOnePass==ONEPASS_OFF 5875 && pTab->nCol<BMS 5876 && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0 5877 && (pLoop->wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))==0 5878 ){ 5879 /* If we know that only a prefix of the record will be used, 5880 ** it is advantageous to reduce the "column count" field in 5881 ** the P4 operand of the OP_OpenRead/Write opcode. */ 5882 Bitmask b = pTabItem->colUsed; 5883 int n = 0; 5884 for(; b; b=b>>1, n++){} 5885 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32); 5886 assert( n<=pTab->nCol ); 5887 } 5888 #ifdef SQLITE_ENABLE_CURSOR_HINTS 5889 if( pLoop->u.btree.pIndex!=0 ){ 5890 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete); 5891 }else 5892 #endif 5893 { 5894 sqlite3VdbeChangeP5(v, bFordelete); 5895 } 5896 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 5897 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, 5898 (const u8*)&pTabItem->colUsed, P4_INT64); 5899 #endif 5900 }else{ 5901 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5902 } 5903 if( pLoop->wsFlags & WHERE_INDEXED ){ 5904 Index *pIx = pLoop->u.btree.pIndex; 5905 int iIndexCur; 5906 int op = OP_OpenRead; 5907 /* iAuxArg is always set to a positive value if ONEPASS is possible */ 5908 assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); 5909 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) 5910 && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 5911 ){ 5912 /* This is one term of an OR-optimization using the PRIMARY KEY of a 5913 ** WITHOUT ROWID table. No need for a separate index */ 5914 iIndexCur = pLevel->iTabCur; 5915 op = 0; 5916 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){ 5917 Index *pJ = pTabItem->pTab->pIndex; 5918 iIndexCur = iAuxArg; 5919 assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); 5920 while( ALWAYS(pJ) && pJ!=pIx ){ 5921 iIndexCur++; 5922 pJ = pJ->pNext; 5923 } 5924 op = OP_OpenWrite; 5925 pWInfo->aiCurOnePass[1] = iIndexCur; 5926 }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){ 5927 iIndexCur = iAuxArg; 5928 op = OP_ReopenIdx; 5929 }else{ 5930 iIndexCur = pParse->nTab++; 5931 } 5932 pLevel->iIdxCur = iIndexCur; 5933 assert( pIx!=0 ); 5934 assert( pIx->pSchema==pTab->pSchema ); 5935 assert( iIndexCur>=0 ); 5936 if( op ){ 5937 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); 5938 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 5939 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 5940 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 5941 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0 5942 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 5943 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 5944 && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED 5945 ){ 5946 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); 5947 } 5948 VdbeComment((v, "%s", pIx->zName)); 5949 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 5950 { 5951 u64 colUsed = 0; 5952 int ii, jj; 5953 for(ii=0; ii<pIx->nColumn; ii++){ 5954 jj = pIx->aiColumn[ii]; 5955 if( jj<0 ) continue; 5956 if( jj>63 ) jj = 63; 5957 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue; 5958 colUsed |= ((u64)1)<<(ii<63 ? ii : 63); 5959 } 5960 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, 5961 (u8*)&colUsed, P4_INT64); 5962 } 5963 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ 5964 } 5965 } 5966 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); 5967 if( (pTabItem->fg.jointype & JT_RIGHT)!=0 5968 && (pLevel->pRJ = sqlite3WhereMalloc(pWInfo, sizeof(WhereRightJoin)))!=0 5969 ){ 5970 WhereRightJoin *pRJ = pLevel->pRJ; 5971 pRJ->iMatch = pParse->nTab++; 5972 pRJ->regBloom = ++pParse->nMem; 5973 sqlite3VdbeAddOp2(v, OP_Blob, 65536, pRJ->regBloom); 5974 pRJ->regReturn = ++pParse->nMem; 5975 sqlite3VdbeAddOp2(v, OP_Null, 0, pRJ->regReturn); 5976 assert( pTab==pTabItem->pTab ); 5977 if( HasRowid(pTab) ){ 5978 KeyInfo *pInfo; 5979 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, 1); 5980 pInfo = sqlite3KeyInfoAlloc(pParse->db, 1, 0); 5981 if( pInfo ){ 5982 pInfo->aColl[0] = 0; 5983 pInfo->aSortFlags[0] = 0; 5984 sqlite3VdbeAppendP4(v, pInfo, P4_KEYINFO); 5985 } 5986 }else{ 5987 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 5988 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRJ->iMatch, pPk->nKeyCol); 5989 sqlite3VdbeSetP4KeyInfo(pParse, pPk); 5990 } 5991 pLoop->wsFlags &= ~WHERE_IDX_ONLY; 5992 /* The nature of RIGHT JOIN processing is such that it messes up 5993 ** the output order. So omit any ORDER BY/GROUP BY elimination 5994 ** optimizations. We need to do an actual sort for RIGHT JOIN. */ 5995 pWInfo->nOBSat = 0; 5996 pWInfo->eDistinct = WHERE_DISTINCT_UNORDERED; 5997 } 5998 } 5999 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 6000 if( db->mallocFailed ) goto whereBeginError; 6001 6002 /* Generate the code to do the search. Each iteration of the for 6003 ** loop below generates code for a single nested loop of the VM 6004 ** program. 6005 */ 6006 for(ii=0; ii<nTabList; ii++){ 6007 int addrExplain; 6008 int wsFlags; 6009 SrcItem *pSrc; 6010 if( pParse->nErr ) goto whereBeginError; 6011 pLevel = &pWInfo->a[ii]; 6012 wsFlags = pLevel->pWLoop->wsFlags; 6013 pSrc = &pTabList->a[pLevel->iFrom]; 6014 if( pSrc->fg.isMaterialized ){ 6015 if( pSrc->fg.isCorrelated ){ 6016 sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub); 6017 }else{ 6018 int iOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 6019 sqlite3VdbeAddOp2(v, OP_Gosub, pSrc->regReturn, pSrc->addrFillSub); 6020 sqlite3VdbeJumpHere(v, iOnce); 6021 } 6022 } 6023 if( (wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))!=0 ){ 6024 if( (wsFlags & WHERE_AUTO_INDEX)!=0 ){ 6025 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 6026 constructAutomaticIndex(pParse, &pWInfo->sWC, 6027 &pTabList->a[pLevel->iFrom], notReady, pLevel); 6028 #endif 6029 }else{ 6030 sqlite3ConstructBloomFilter(pWInfo, ii, pLevel, notReady); 6031 } 6032 if( db->mallocFailed ) goto whereBeginError; 6033 } 6034 addrExplain = sqlite3WhereExplainOneScan( 6035 pParse, pTabList, pLevel, wctrlFlags 6036 ); 6037 pLevel->addrBody = sqlite3VdbeCurrentAddr(v); 6038 notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady); 6039 pWInfo->iContinue = pLevel->addrCont; 6040 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){ 6041 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); 6042 } 6043 } 6044 6045 /* Done. */ 6046 VdbeModuleComment((v, "Begin WHERE-core")); 6047 pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v); 6048 return pWInfo; 6049 6050 /* Jump here if malloc fails */ 6051 whereBeginError: 6052 if( pWInfo ){ 6053 testcase( pWInfo->pExprMods!=0 ); 6054 whereUndoExprMods(pWInfo); 6055 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 6056 whereInfoFree(db, pWInfo); 6057 } 6058 return 0; 6059 } 6060 6061 /* 6062 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the 6063 ** index rather than the main table. In SQLITE_DEBUG mode, we want 6064 ** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine 6065 ** does that. 6066 */ 6067 #ifndef SQLITE_DEBUG 6068 # define OpcodeRewriteTrace(D,K,P) /* no-op */ 6069 #else 6070 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P) 6071 static void sqlite3WhereOpcodeRewriteTrace( 6072 sqlite3 *db, 6073 int pc, 6074 VdbeOp *pOp 6075 ){ 6076 if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return; 6077 sqlite3VdbePrintOp(0, pc, pOp); 6078 } 6079 #endif 6080 6081 #ifdef SQLITE_DEBUG 6082 /* 6083 ** Return true if cursor iCur is opened by instruction k of the 6084 ** bytecode. Used inside of assert() only. 6085 */ 6086 static int cursorIsOpen(Vdbe *v, int iCur, int k){ 6087 while( k>=0 ){ 6088 VdbeOp *pOp = sqlite3VdbeGetOp(v,k--); 6089 if( pOp->p1!=iCur ) continue; 6090 if( pOp->opcode==OP_Close ) return 0; 6091 if( pOp->opcode==OP_OpenRead ) return 1; 6092 if( pOp->opcode==OP_OpenWrite ) return 1; 6093 if( pOp->opcode==OP_OpenDup ) return 1; 6094 if( pOp->opcode==OP_OpenAutoindex ) return 1; 6095 if( pOp->opcode==OP_OpenEphemeral ) return 1; 6096 } 6097 return 0; 6098 } 6099 #endif /* SQLITE_DEBUG */ 6100 6101 /* 6102 ** Generate the end of the WHERE loop. See comments on 6103 ** sqlite3WhereBegin() for additional information. 6104 */ 6105 void sqlite3WhereEnd(WhereInfo *pWInfo){ 6106 Parse *pParse = pWInfo->pParse; 6107 Vdbe *v = pParse->pVdbe; 6108 int i; 6109 WhereLevel *pLevel; 6110 WhereLoop *pLoop; 6111 SrcList *pTabList = pWInfo->pTabList; 6112 sqlite3 *db = pParse->db; 6113 int iEnd = sqlite3VdbeCurrentAddr(v); 6114 int nRJ = 0; 6115 6116 /* Generate loop termination code. 6117 */ 6118 VdbeModuleComment((v, "End WHERE-core")); 6119 for(i=pWInfo->nLevel-1; i>=0; i--){ 6120 int addr; 6121 pLevel = &pWInfo->a[i]; 6122 if( pLevel->pRJ ){ 6123 /* Terminate the subroutine that forms the interior of the loop of 6124 ** the RIGHT JOIN table */ 6125 WhereRightJoin *pRJ = pLevel->pRJ; 6126 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 6127 pLevel->addrCont = 0; 6128 pRJ->endSubrtn = sqlite3VdbeCurrentAddr(v); 6129 sqlite3VdbeAddOp3(v, OP_Return, pRJ->regReturn, pRJ->addrSubrtn, 1); 6130 VdbeCoverage(v); 6131 nRJ++; 6132 } 6133 pLoop = pLevel->pWLoop; 6134 if( pLevel->op!=OP_Noop ){ 6135 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 6136 int addrSeek = 0; 6137 Index *pIdx; 6138 int n; 6139 if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED 6140 && i==pWInfo->nLevel-1 /* Ticket [ef9318757b152e3] 2017-10-21 */ 6141 && (pLoop->wsFlags & WHERE_INDEXED)!=0 6142 && (pIdx = pLoop->u.btree.pIndex)->hasStat1 6143 && (n = pLoop->u.btree.nDistinctCol)>0 6144 && pIdx->aiRowLogEst[n]>=36 6145 ){ 6146 int r1 = pParse->nMem+1; 6147 int j, op; 6148 for(j=0; j<n; j++){ 6149 sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j); 6150 } 6151 pParse->nMem += n+1; 6152 op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT; 6153 addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n); 6154 VdbeCoverageIf(v, op==OP_SeekLT); 6155 VdbeCoverageIf(v, op==OP_SeekGT); 6156 sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2); 6157 } 6158 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */ 6159 /* The common case: Advance to the next row */ 6160 if( pLevel->addrCont ) sqlite3VdbeResolveLabel(v, pLevel->addrCont); 6161 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); 6162 sqlite3VdbeChangeP5(v, pLevel->p5); 6163 VdbeCoverage(v); 6164 VdbeCoverageIf(v, pLevel->op==OP_Next); 6165 VdbeCoverageIf(v, pLevel->op==OP_Prev); 6166 VdbeCoverageIf(v, pLevel->op==OP_VNext); 6167 if( pLevel->regBignull ){ 6168 sqlite3VdbeResolveLabel(v, pLevel->addrBignull); 6169 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1); 6170 VdbeCoverage(v); 6171 } 6172 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 6173 if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek); 6174 #endif 6175 }else if( pLevel->addrCont ){ 6176 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 6177 } 6178 if( (pLoop->wsFlags & WHERE_IN_ABLE)!=0 && pLevel->u.in.nIn>0 ){ 6179 struct InLoop *pIn; 6180 int j; 6181 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 6182 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 6183 assert( sqlite3VdbeGetOp(v, pIn->addrInTop+1)->opcode==OP_IsNull 6184 || pParse->db->mallocFailed ); 6185 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 6186 if( pIn->eEndLoopOp!=OP_Noop ){ 6187 if( pIn->nPrefix ){ 6188 int bEarlyOut = 6189 (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 6190 && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0; 6191 if( pLevel->iLeftJoin ){ 6192 /* For LEFT JOIN queries, cursor pIn->iCur may not have been 6193 ** opened yet. This occurs for WHERE clauses such as 6194 ** "a = ? AND b IN (...)", where the index is on (a, b). If 6195 ** the RHS of the (a=?) is NULL, then the "b IN (...)" may 6196 ** never have been coded, but the body of the loop run to 6197 ** return the null-row. So, if the cursor is not open yet, 6198 ** jump over the OP_Next or OP_Prev instruction about to 6199 ** be coded. */ 6200 sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur, 6201 sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut); 6202 VdbeCoverage(v); 6203 } 6204 if( bEarlyOut ){ 6205 sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur, 6206 sqlite3VdbeCurrentAddr(v)+2, 6207 pIn->iBase, pIn->nPrefix); 6208 VdbeCoverage(v); 6209 /* Retarget the OP_IsNull against the left operand of IN so 6210 ** it jumps past the OP_IfNoHope. This is because the 6211 ** OP_IsNull also bypasses the OP_Affinity opcode that is 6212 ** required by OP_IfNoHope. */ 6213 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 6214 } 6215 } 6216 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); 6217 VdbeCoverage(v); 6218 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev); 6219 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next); 6220 } 6221 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 6222 } 6223 } 6224 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 6225 if( pLevel->pRJ ){ 6226 sqlite3VdbeAddOp3(v, OP_Return, pLevel->pRJ->regReturn, 0, 1); 6227 VdbeCoverage(v); 6228 } 6229 if( pLevel->addrSkip ){ 6230 sqlite3VdbeGoto(v, pLevel->addrSkip); 6231 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); 6232 sqlite3VdbeJumpHere(v, pLevel->addrSkip); 6233 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); 6234 } 6235 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 6236 if( pLevel->addrLikeRep ){ 6237 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1), 6238 pLevel->addrLikeRep); 6239 VdbeCoverage(v); 6240 } 6241 #endif 6242 if( pLevel->iLeftJoin ){ 6243 int ws = pLoop->wsFlags; 6244 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); 6245 assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 ); 6246 if( (ws & WHERE_IDX_ONLY)==0 ){ 6247 assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor ); 6248 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur); 6249 } 6250 if( (ws & WHERE_INDEXED) 6251 || ((ws & WHERE_MULTI_OR) && pLevel->u.pCoveringIdx) 6252 ){ 6253 if( ws & WHERE_MULTI_OR ){ 6254 Index *pIx = pLevel->u.pCoveringIdx; 6255 int iDb = sqlite3SchemaToIndex(db, pIx->pSchema); 6256 sqlite3VdbeAddOp3(v, OP_ReopenIdx, pLevel->iIdxCur, pIx->tnum, iDb); 6257 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 6258 } 6259 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 6260 } 6261 if( pLevel->op==OP_Return ){ 6262 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); 6263 }else{ 6264 sqlite3VdbeGoto(v, pLevel->addrFirst); 6265 } 6266 sqlite3VdbeJumpHere(v, addr); 6267 } 6268 VdbeModuleComment((v, "End WHERE-loop%d: %s", i, 6269 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); 6270 } 6271 6272 assert( pWInfo->nLevel<=pTabList->nSrc ); 6273 if( pWInfo->pExprMods ) whereUndoExprMods(pWInfo); 6274 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ 6275 int k, last; 6276 VdbeOp *pOp, *pLastOp; 6277 Index *pIdx = 0; 6278 SrcItem *pTabItem = &pTabList->a[pLevel->iFrom]; 6279 Table *pTab = pTabItem->pTab; 6280 assert( pTab!=0 ); 6281 pLoop = pLevel->pWLoop; 6282 6283 /* Do RIGHT JOIN processing. Generate code that will output the 6284 ** unmatched rows of the right operand of the RIGHT JOIN with 6285 ** all of the columns of the left operand set to NULL. 6286 */ 6287 if( pLevel->pRJ ){ 6288 sqlite3WhereRightJoinLoop(pWInfo, i, pLevel); 6289 continue; 6290 } 6291 6292 /* For a co-routine, change all OP_Column references to the table of 6293 ** the co-routine into OP_Copy of result contained in a register. 6294 ** OP_Rowid becomes OP_Null. 6295 */ 6296 if( pTabItem->fg.viaCoroutine ){ 6297 testcase( pParse->db->mallocFailed ); 6298 translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur, 6299 pTabItem->regResult, 0); 6300 continue; 6301 } 6302 6303 /* If this scan uses an index, make VDBE code substitutions to read data 6304 ** from the index instead of from the table where possible. In some cases 6305 ** this optimization prevents the table from ever being read, which can 6306 ** yield a significant performance boost. 6307 ** 6308 ** Calls to the code generator in between sqlite3WhereBegin and 6309 ** sqlite3WhereEnd will have created code that references the table 6310 ** directly. This loop scans all that code looking for opcodes 6311 ** that reference the table and converts them into opcodes that 6312 ** reference the index. 6313 */ 6314 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ 6315 pIdx = pLoop->u.btree.pIndex; 6316 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ 6317 pIdx = pLevel->u.pCoveringIdx; 6318 } 6319 if( pIdx 6320 && !db->mallocFailed 6321 ){ 6322 if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){ 6323 last = iEnd; 6324 }else{ 6325 last = pWInfo->iEndWhere; 6326 } 6327 k = pLevel->addrBody + 1; 6328 #ifdef SQLITE_DEBUG 6329 if( db->flags & SQLITE_VdbeAddopTrace ){ 6330 printf("TRANSLATE opcodes in range %d..%d\n", k, last-1); 6331 } 6332 /* Proof that the "+1" on the k value above is safe */ 6333 pOp = sqlite3VdbeGetOp(v, k - 1); 6334 assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur ); 6335 assert( pOp->opcode!=OP_Rowid || pOp->p1!=pLevel->iTabCur ); 6336 assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur ); 6337 #endif 6338 pOp = sqlite3VdbeGetOp(v, k); 6339 pLastOp = pOp + (last - k); 6340 assert( pOp<=pLastOp ); 6341 do{ 6342 if( pOp->p1!=pLevel->iTabCur ){ 6343 /* no-op */ 6344 }else if( pOp->opcode==OP_Column 6345 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 6346 || pOp->opcode==OP_Offset 6347 #endif 6348 ){ 6349 int x = pOp->p2; 6350 assert( pIdx->pTable==pTab ); 6351 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 6352 if( pOp->opcode==OP_Offset ){ 6353 /* Do not need to translate the column number */ 6354 }else 6355 #endif 6356 if( !HasRowid(pTab) ){ 6357 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 6358 x = pPk->aiColumn[x]; 6359 assert( x>=0 ); 6360 }else{ 6361 testcase( x!=sqlite3StorageColumnToTable(pTab,x) ); 6362 x = sqlite3StorageColumnToTable(pTab,x); 6363 } 6364 x = sqlite3TableColumnToIndex(pIdx, x); 6365 if( x>=0 ){ 6366 pOp->p2 = x; 6367 pOp->p1 = pLevel->iIdxCur; 6368 OpcodeRewriteTrace(db, k, pOp); 6369 }else{ 6370 /* Unable to translate the table reference into an index 6371 ** reference. Verify that this is harmless - that the 6372 ** table being referenced really is open. 6373 */ 6374 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 6375 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 6376 || cursorIsOpen(v,pOp->p1,k) 6377 || pOp->opcode==OP_Offset 6378 ); 6379 #else 6380 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 6381 || cursorIsOpen(v,pOp->p1,k) 6382 ); 6383 #endif 6384 } 6385 }else if( pOp->opcode==OP_Rowid ){ 6386 pOp->p1 = pLevel->iIdxCur; 6387 pOp->opcode = OP_IdxRowid; 6388 OpcodeRewriteTrace(db, k, pOp); 6389 }else if( pOp->opcode==OP_IfNullRow ){ 6390 pOp->p1 = pLevel->iIdxCur; 6391 OpcodeRewriteTrace(db, k, pOp); 6392 } 6393 #ifdef SQLITE_DEBUG 6394 k++; 6395 #endif 6396 }while( (++pOp)<pLastOp ); 6397 #ifdef SQLITE_DEBUG 6398 if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n"); 6399 #endif 6400 } 6401 } 6402 6403 /* The "break" point is here, just past the end of the outer loop. 6404 ** Set it. 6405 */ 6406 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 6407 6408 /* Final cleanup 6409 */ 6410 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 6411 whereInfoFree(db, pWInfo); 6412 pParse->withinRJSubrtn -= nRJ; 6413 return; 6414 } 6415