xref: /sqlite-3.40.0/src/where.c (revision 9cffb0ff)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /*
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly.  The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
26 **
27 ** This object is not an API and can be changed from one release to the
28 ** next.  As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
30 */
31 typedef struct HiddenIndexInfo HiddenIndexInfo;
32 struct HiddenIndexInfo {
33   WhereClause *pWC;   /* The Where clause being analyzed */
34   Parse *pParse;      /* The parsing context */
35 };
36 
37 /* Forward declaration of methods */
38 static int whereLoopResize(sqlite3*, WhereLoop*, int);
39 
40 /*
41 ** Return the estimated number of output rows from a WHERE clause
42 */
43 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
44   return pWInfo->nRowOut;
45 }
46 
47 /*
48 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
49 ** WHERE clause returns outputs for DISTINCT processing.
50 */
51 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
52   return pWInfo->eDistinct;
53 }
54 
55 /*
56 ** Return the number of ORDER BY terms that are satisfied by the
57 ** WHERE clause.  A return of 0 means that the output must be
58 ** completely sorted.  A return equal to the number of ORDER BY
59 ** terms means that no sorting is needed at all.  A return that
60 ** is positive but less than the number of ORDER BY terms means that
61 ** block sorting is required.
62 */
63 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
64   return pWInfo->nOBSat;
65 }
66 
67 /*
68 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known
69 ** to emit rows in increasing order, and if the last row emitted by the
70 ** inner-most loop did not fit within the sorter, then we can skip all
71 ** subsequent rows for the current iteration of the inner loop (because they
72 ** will not fit in the sorter either) and continue with the second inner
73 ** loop - the loop immediately outside the inner-most.
74 **
75 ** When a row does not fit in the sorter (because the sorter already
76 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
77 ** label returned by this function.
78 **
79 ** If the ORDER BY LIMIT optimization applies, the jump destination should
80 ** be the continuation for the second-inner-most loop.  If the ORDER BY
81 ** LIMIT optimization does not apply, then the jump destination should
82 ** be the continuation for the inner-most loop.
83 **
84 ** It is always safe for this routine to return the continuation of the
85 ** inner-most loop, in the sense that a correct answer will result.
86 ** Returning the continuation the second inner loop is an optimization
87 ** that might make the code run a little faster, but should not change
88 ** the final answer.
89 */
90 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){
91   WhereLevel *pInner;
92   if( !pWInfo->bOrderedInnerLoop ){
93     /* The ORDER BY LIMIT optimization does not apply.  Jump to the
94     ** continuation of the inner-most loop. */
95     return pWInfo->iContinue;
96   }
97   pInner = &pWInfo->a[pWInfo->nLevel-1];
98   assert( pInner->addrNxt!=0 );
99   return pInner->addrNxt;
100 }
101 
102 /*
103 ** While generating code for the min/max optimization, after handling
104 ** the aggregate-step call to min() or max(), check to see if any
105 ** additional looping is required.  If the output order is such that
106 ** we are certain that the correct answer has already been found, then
107 ** code an OP_Goto to by pass subsequent processing.
108 **
109 ** Any extra OP_Goto that is coded here is an optimization.  The
110 ** correct answer should be obtained regardless.  This OP_Goto just
111 ** makes the answer appear faster.
112 */
113 void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){
114   WhereLevel *pInner;
115   int i;
116   if( !pWInfo->bOrderedInnerLoop ) return;
117   if( pWInfo->nOBSat==0 ) return;
118   for(i=pWInfo->nLevel-1; i>=0; i--){
119     pInner = &pWInfo->a[i];
120     if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){
121       sqlite3VdbeGoto(v, pInner->addrNxt);
122       return;
123     }
124   }
125   sqlite3VdbeGoto(v, pWInfo->iBreak);
126 }
127 
128 /*
129 ** Return the VDBE address or label to jump to in order to continue
130 ** immediately with the next row of a WHERE clause.
131 */
132 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
133   assert( pWInfo->iContinue!=0 );
134   return pWInfo->iContinue;
135 }
136 
137 /*
138 ** Return the VDBE address or label to jump to in order to break
139 ** out of a WHERE loop.
140 */
141 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
142   return pWInfo->iBreak;
143 }
144 
145 /*
146 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
147 ** operate directly on the rowids returned by a WHERE clause.  Return
148 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
149 ** a single row is to be changed.  Return ONEPASS_MULTI (2) if the one-pass
150 ** optimization can be used on multiple
151 **
152 ** If the ONEPASS optimization is used (if this routine returns true)
153 ** then also write the indices of open cursors used by ONEPASS
154 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
155 ** table and iaCur[1] gets the cursor used by an auxiliary index.
156 ** Either value may be -1, indicating that cursor is not used.
157 ** Any cursors returned will have been opened for writing.
158 **
159 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
160 ** unable to use the ONEPASS optimization.
161 */
162 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
163   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
164 #ifdef WHERETRACE_ENABLED
165   if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
166     sqlite3DebugPrintf("%s cursors: %d %d\n",
167          pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
168          aiCur[0], aiCur[1]);
169   }
170 #endif
171   return pWInfo->eOnePass;
172 }
173 
174 /*
175 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move
176 ** the data cursor to the row selected by the index cursor.
177 */
178 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){
179   return pWInfo->bDeferredSeek;
180 }
181 
182 /*
183 ** Move the content of pSrc into pDest
184 */
185 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
186   pDest->n = pSrc->n;
187   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
188 }
189 
190 /*
191 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
192 **
193 ** The new entry might overwrite an existing entry, or it might be
194 ** appended, or it might be discarded.  Do whatever is the right thing
195 ** so that pSet keeps the N_OR_COST best entries seen so far.
196 */
197 static int whereOrInsert(
198   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
199   Bitmask prereq,        /* Prerequisites of the new entry */
200   LogEst rRun,           /* Run-cost of the new entry */
201   LogEst nOut            /* Number of outputs for the new entry */
202 ){
203   u16 i;
204   WhereOrCost *p;
205   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
206     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
207       goto whereOrInsert_done;
208     }
209     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
210       return 0;
211     }
212   }
213   if( pSet->n<N_OR_COST ){
214     p = &pSet->a[pSet->n++];
215     p->nOut = nOut;
216   }else{
217     p = pSet->a;
218     for(i=1; i<pSet->n; i++){
219       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
220     }
221     if( p->rRun<=rRun ) return 0;
222   }
223 whereOrInsert_done:
224   p->prereq = prereq;
225   p->rRun = rRun;
226   if( p->nOut>nOut ) p->nOut = nOut;
227   return 1;
228 }
229 
230 /*
231 ** Return the bitmask for the given cursor number.  Return 0 if
232 ** iCursor is not in the set.
233 */
234 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
235   int i;
236   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
237   for(i=0; i<pMaskSet->n; i++){
238     if( pMaskSet->ix[i]==iCursor ){
239       return MASKBIT(i);
240     }
241   }
242   return 0;
243 }
244 
245 /*
246 ** Create a new mask for cursor iCursor.
247 **
248 ** There is one cursor per table in the FROM clause.  The number of
249 ** tables in the FROM clause is limited by a test early in the
250 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
251 ** array will never overflow.
252 */
253 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
254   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
255   pMaskSet->ix[pMaskSet->n++] = iCursor;
256 }
257 
258 /*
259 ** If the right-hand branch of the expression is a TK_COLUMN, then return
260 ** a pointer to the right-hand branch.  Otherwise, return NULL.
261 */
262 static Expr *whereRightSubexprIsColumn(Expr *p){
263   p = sqlite3ExprSkipCollateAndLikely(p->pRight);
264   if( ALWAYS(p!=0) && p->op==TK_COLUMN ) return p;
265   return 0;
266 }
267 
268 /*
269 ** Advance to the next WhereTerm that matches according to the criteria
270 ** established when the pScan object was initialized by whereScanInit().
271 ** Return NULL if there are no more matching WhereTerms.
272 */
273 static WhereTerm *whereScanNext(WhereScan *pScan){
274   int iCur;            /* The cursor on the LHS of the term */
275   i16 iColumn;         /* The column on the LHS of the term.  -1 for IPK */
276   Expr *pX;            /* An expression being tested */
277   WhereClause *pWC;    /* Shorthand for pScan->pWC */
278   WhereTerm *pTerm;    /* The term being tested */
279   int k = pScan->k;    /* Where to start scanning */
280 
281   assert( pScan->iEquiv<=pScan->nEquiv );
282   pWC = pScan->pWC;
283   while(1){
284     iColumn = pScan->aiColumn[pScan->iEquiv-1];
285     iCur = pScan->aiCur[pScan->iEquiv-1];
286     assert( pWC!=0 );
287     do{
288       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
289         if( pTerm->leftCursor==iCur
290          && pTerm->u.x.leftColumn==iColumn
291          && (iColumn!=XN_EXPR
292              || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
293                                        pScan->pIdxExpr,iCur)==0)
294          && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
295         ){
296           if( (pTerm->eOperator & WO_EQUIV)!=0
297            && pScan->nEquiv<ArraySize(pScan->aiCur)
298            && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0
299           ){
300             int j;
301             for(j=0; j<pScan->nEquiv; j++){
302               if( pScan->aiCur[j]==pX->iTable
303                && pScan->aiColumn[j]==pX->iColumn ){
304                   break;
305               }
306             }
307             if( j==pScan->nEquiv ){
308               pScan->aiCur[j] = pX->iTable;
309               pScan->aiColumn[j] = pX->iColumn;
310               pScan->nEquiv++;
311             }
312           }
313           if( (pTerm->eOperator & pScan->opMask)!=0 ){
314             /* Verify the affinity and collating sequence match */
315             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
316               CollSeq *pColl;
317               Parse *pParse = pWC->pWInfo->pParse;
318               pX = pTerm->pExpr;
319               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
320                 continue;
321               }
322               assert(pX->pLeft);
323               pColl = sqlite3ExprCompareCollSeq(pParse, pX);
324               if( pColl==0 ) pColl = pParse->db->pDfltColl;
325               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
326                 continue;
327               }
328             }
329             if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
330              && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
331              && pX->iTable==pScan->aiCur[0]
332              && pX->iColumn==pScan->aiColumn[0]
333             ){
334               testcase( pTerm->eOperator & WO_IS );
335               continue;
336             }
337             pScan->pWC = pWC;
338             pScan->k = k+1;
339             return pTerm;
340           }
341         }
342       }
343       pWC = pWC->pOuter;
344       k = 0;
345     }while( pWC!=0 );
346     if( pScan->iEquiv>=pScan->nEquiv ) break;
347     pWC = pScan->pOrigWC;
348     k = 0;
349     pScan->iEquiv++;
350   }
351   return 0;
352 }
353 
354 /*
355 ** This is whereScanInit() for the case of an index on an expression.
356 ** It is factored out into a separate tail-recursion subroutine so that
357 ** the normal whereScanInit() routine, which is a high-runner, does not
358 ** need to push registers onto the stack as part of its prologue.
359 */
360 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){
361   pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr);
362   return whereScanNext(pScan);
363 }
364 
365 /*
366 ** Initialize a WHERE clause scanner object.  Return a pointer to the
367 ** first match.  Return NULL if there are no matches.
368 **
369 ** The scanner will be searching the WHERE clause pWC.  It will look
370 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
371 ** iCur.   Or if pIdx!=0 then X is column iColumn of index pIdx.  pIdx
372 ** must be one of the indexes of table iCur.
373 **
374 ** The <op> must be one of the operators described by opMask.
375 **
376 ** If the search is for X and the WHERE clause contains terms of the
377 ** form X=Y then this routine might also return terms of the form
378 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
379 ** but is enough to handle most commonly occurring SQL statements.
380 **
381 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
382 ** index pIdx.
383 */
384 static WhereTerm *whereScanInit(
385   WhereScan *pScan,       /* The WhereScan object being initialized */
386   WhereClause *pWC,       /* The WHERE clause to be scanned */
387   int iCur,               /* Cursor to scan for */
388   int iColumn,            /* Column to scan for */
389   u32 opMask,             /* Operator(s) to scan for */
390   Index *pIdx             /* Must be compatible with this index */
391 ){
392   pScan->pOrigWC = pWC;
393   pScan->pWC = pWC;
394   pScan->pIdxExpr = 0;
395   pScan->idxaff = 0;
396   pScan->zCollName = 0;
397   pScan->opMask = opMask;
398   pScan->k = 0;
399   pScan->aiCur[0] = iCur;
400   pScan->nEquiv = 1;
401   pScan->iEquiv = 1;
402   if( pIdx ){
403     int j = iColumn;
404     iColumn = pIdx->aiColumn[j];
405     if( iColumn==XN_EXPR ){
406       pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
407       pScan->zCollName = pIdx->azColl[j];
408       pScan->aiColumn[0] = XN_EXPR;
409       return whereScanInitIndexExpr(pScan);
410     }else if( iColumn==pIdx->pTable->iPKey ){
411       iColumn = XN_ROWID;
412     }else if( iColumn>=0 ){
413       pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
414       pScan->zCollName = pIdx->azColl[j];
415     }
416   }else if( iColumn==XN_EXPR ){
417     return 0;
418   }
419   pScan->aiColumn[0] = iColumn;
420   return whereScanNext(pScan);
421 }
422 
423 /*
424 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
425 ** where X is a reference to the iColumn of table iCur or of index pIdx
426 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
427 ** the op parameter.  Return a pointer to the term.  Return 0 if not found.
428 **
429 ** If pIdx!=0 then it must be one of the indexes of table iCur.
430 ** Search for terms matching the iColumn-th column of pIdx
431 ** rather than the iColumn-th column of table iCur.
432 **
433 ** The term returned might by Y=<expr> if there is another constraint in
434 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
435 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
436 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
437 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
438 ** other equivalent values.  Hence a search for X will return <expr> if X=A1
439 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
440 **
441 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
442 ** then try for the one with no dependencies on <expr> - in other words where
443 ** <expr> is a constant expression of some kind.  Only return entries of
444 ** the form "X <op> Y" where Y is a column in another table if no terms of
445 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
446 ** exist, try to return a term that does not use WO_EQUIV.
447 */
448 WhereTerm *sqlite3WhereFindTerm(
449   WhereClause *pWC,     /* The WHERE clause to be searched */
450   int iCur,             /* Cursor number of LHS */
451   int iColumn,          /* Column number of LHS */
452   Bitmask notReady,     /* RHS must not overlap with this mask */
453   u32 op,               /* Mask of WO_xx values describing operator */
454   Index *pIdx           /* Must be compatible with this index, if not NULL */
455 ){
456   WhereTerm *pResult = 0;
457   WhereTerm *p;
458   WhereScan scan;
459 
460   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
461   op &= WO_EQ|WO_IS;
462   while( p ){
463     if( (p->prereqRight & notReady)==0 ){
464       if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
465         testcase( p->eOperator & WO_IS );
466         return p;
467       }
468       if( pResult==0 ) pResult = p;
469     }
470     p = whereScanNext(&scan);
471   }
472   return pResult;
473 }
474 
475 /*
476 ** This function searches pList for an entry that matches the iCol-th column
477 ** of index pIdx.
478 **
479 ** If such an expression is found, its index in pList->a[] is returned. If
480 ** no expression is found, -1 is returned.
481 */
482 static int findIndexCol(
483   Parse *pParse,                  /* Parse context */
484   ExprList *pList,                /* Expression list to search */
485   int iBase,                      /* Cursor for table associated with pIdx */
486   Index *pIdx,                    /* Index to match column of */
487   int iCol                        /* Column of index to match */
488 ){
489   int i;
490   const char *zColl = pIdx->azColl[iCol];
491 
492   for(i=0; i<pList->nExpr; i++){
493     Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr);
494     if( ALWAYS(p!=0)
495      && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN)
496      && p->iColumn==pIdx->aiColumn[iCol]
497      && p->iTable==iBase
498     ){
499       CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
500       if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
501         return i;
502       }
503     }
504   }
505 
506   return -1;
507 }
508 
509 /*
510 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
511 */
512 static int indexColumnNotNull(Index *pIdx, int iCol){
513   int j;
514   assert( pIdx!=0 );
515   assert( iCol>=0 && iCol<pIdx->nColumn );
516   j = pIdx->aiColumn[iCol];
517   if( j>=0 ){
518     return pIdx->pTable->aCol[j].notNull;
519   }else if( j==(-1) ){
520     return 1;
521   }else{
522     assert( j==(-2) );
523     return 0;  /* Assume an indexed expression can always yield a NULL */
524 
525   }
526 }
527 
528 /*
529 ** Return true if the DISTINCT expression-list passed as the third argument
530 ** is redundant.
531 **
532 ** A DISTINCT list is redundant if any subset of the columns in the
533 ** DISTINCT list are collectively unique and individually non-null.
534 */
535 static int isDistinctRedundant(
536   Parse *pParse,            /* Parsing context */
537   SrcList *pTabList,        /* The FROM clause */
538   WhereClause *pWC,         /* The WHERE clause */
539   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
540 ){
541   Table *pTab;
542   Index *pIdx;
543   int i;
544   int iBase;
545 
546   /* If there is more than one table or sub-select in the FROM clause of
547   ** this query, then it will not be possible to show that the DISTINCT
548   ** clause is redundant. */
549   if( pTabList->nSrc!=1 ) return 0;
550   iBase = pTabList->a[0].iCursor;
551   pTab = pTabList->a[0].pTab;
552 
553   /* If any of the expressions is an IPK column on table iBase, then return
554   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
555   ** current SELECT is a correlated sub-query.
556   */
557   for(i=0; i<pDistinct->nExpr; i++){
558     Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr);
559     if( NEVER(p==0) ) continue;
560     if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue;
561     if( p->iTable==iBase && p->iColumn<0 ) return 1;
562   }
563 
564   /* Loop through all indices on the table, checking each to see if it makes
565   ** the DISTINCT qualifier redundant. It does so if:
566   **
567   **   1. The index is itself UNIQUE, and
568   **
569   **   2. All of the columns in the index are either part of the pDistinct
570   **      list, or else the WHERE clause contains a term of the form "col=X",
571   **      where X is a constant value. The collation sequences of the
572   **      comparison and select-list expressions must match those of the index.
573   **
574   **   3. All of those index columns for which the WHERE clause does not
575   **      contain a "col=X" term are subject to a NOT NULL constraint.
576   */
577   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
578     if( !IsUniqueIndex(pIdx) ) continue;
579     for(i=0; i<pIdx->nKeyCol; i++){
580       if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
581         if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
582         if( indexColumnNotNull(pIdx, i)==0 ) break;
583       }
584     }
585     if( i==pIdx->nKeyCol ){
586       /* This index implies that the DISTINCT qualifier is redundant. */
587       return 1;
588     }
589   }
590 
591   return 0;
592 }
593 
594 
595 /*
596 ** Estimate the logarithm of the input value to base 2.
597 */
598 static LogEst estLog(LogEst N){
599   return N<=10 ? 0 : sqlite3LogEst(N) - 33;
600 }
601 
602 /*
603 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
604 **
605 ** This routine runs over generated VDBE code and translates OP_Column
606 ** opcodes into OP_Copy when the table is being accessed via co-routine
607 ** instead of via table lookup.
608 **
609 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
610 ** cursor iTabCur are transformed into OP_Sequence opcode for the
611 ** iAutoidxCur cursor, in order to generate unique rowids for the
612 ** automatic index being generated.
613 */
614 static void translateColumnToCopy(
615   Parse *pParse,      /* Parsing context */
616   int iStart,         /* Translate from this opcode to the end */
617   int iTabCur,        /* OP_Column/OP_Rowid references to this table */
618   int iRegister,      /* The first column is in this register */
619   int iAutoidxCur     /* If non-zero, cursor of autoindex being generated */
620 ){
621   Vdbe *v = pParse->pVdbe;
622   VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
623   int iEnd = sqlite3VdbeCurrentAddr(v);
624   if( pParse->db->mallocFailed ) return;
625   for(; iStart<iEnd; iStart++, pOp++){
626     if( pOp->p1!=iTabCur ) continue;
627     if( pOp->opcode==OP_Column ){
628       pOp->opcode = OP_Copy;
629       pOp->p1 = pOp->p2 + iRegister;
630       pOp->p2 = pOp->p3;
631       pOp->p3 = 0;
632     }else if( pOp->opcode==OP_Rowid ){
633       if( iAutoidxCur ){
634         pOp->opcode = OP_Sequence;
635         pOp->p1 = iAutoidxCur;
636       }else{
637         pOp->opcode = OP_Null;
638         pOp->p1 = 0;
639         pOp->p3 = 0;
640       }
641     }
642   }
643 }
644 
645 /*
646 ** Two routines for printing the content of an sqlite3_index_info
647 ** structure.  Used for testing and debugging only.  If neither
648 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
649 ** are no-ops.
650 */
651 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
652 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){
653   int i;
654   if( !sqlite3WhereTrace ) return;
655   for(i=0; i<p->nConstraint; i++){
656     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
657        i,
658        p->aConstraint[i].iColumn,
659        p->aConstraint[i].iTermOffset,
660        p->aConstraint[i].op,
661        p->aConstraint[i].usable);
662   }
663   for(i=0; i<p->nOrderBy; i++){
664     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
665        i,
666        p->aOrderBy[i].iColumn,
667        p->aOrderBy[i].desc);
668   }
669 }
670 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){
671   int i;
672   if( !sqlite3WhereTrace ) return;
673   for(i=0; i<p->nConstraint; i++){
674     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
675        i,
676        p->aConstraintUsage[i].argvIndex,
677        p->aConstraintUsage[i].omit);
678   }
679   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
680   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
681   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
682   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
683   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
684 }
685 #else
686 #define whereTraceIndexInfoInputs(A)
687 #define whereTraceIndexInfoOutputs(A)
688 #endif
689 
690 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
691 /*
692 ** Return TRUE if the WHERE clause term pTerm is of a form where it
693 ** could be used with an index to access pSrc, assuming an appropriate
694 ** index existed.
695 */
696 static int termCanDriveIndex(
697   WhereTerm *pTerm,              /* WHERE clause term to check */
698   SrcItem *pSrc,                 /* Table we are trying to access */
699   Bitmask notReady               /* Tables in outer loops of the join */
700 ){
701   char aff;
702   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
703   if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
704   if( (pSrc->fg.jointype & JT_LEFT)
705    && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
706    && (pTerm->eOperator & WO_IS)
707   ){
708     /* Cannot use an IS term from the WHERE clause as an index driver for
709     ** the RHS of a LEFT JOIN. Such a term can only be used if it is from
710     ** the ON clause.  */
711     return 0;
712   }
713   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
714   if( pTerm->u.x.leftColumn<0 ) return 0;
715   aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity;
716   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
717   testcase( pTerm->pExpr->op==TK_IS );
718   return 1;
719 }
720 #endif
721 
722 
723 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
724 /*
725 ** Generate code to construct the Index object for an automatic index
726 ** and to set up the WhereLevel object pLevel so that the code generator
727 ** makes use of the automatic index.
728 */
729 static void constructAutomaticIndex(
730   Parse *pParse,              /* The parsing context */
731   WhereClause *pWC,           /* The WHERE clause */
732   SrcItem *pSrc,              /* The FROM clause term to get the next index */
733   Bitmask notReady,           /* Mask of cursors that are not available */
734   WhereLevel *pLevel          /* Write new index here */
735 ){
736   int nKeyCol;                /* Number of columns in the constructed index */
737   WhereTerm *pTerm;           /* A single term of the WHERE clause */
738   WhereTerm *pWCEnd;          /* End of pWC->a[] */
739   Index *pIdx;                /* Object describing the transient index */
740   Vdbe *v;                    /* Prepared statement under construction */
741   int addrInit;               /* Address of the initialization bypass jump */
742   Table *pTable;              /* The table being indexed */
743   int addrTop;                /* Top of the index fill loop */
744   int regRecord;              /* Register holding an index record */
745   int n;                      /* Column counter */
746   int i;                      /* Loop counter */
747   int mxBitCol;               /* Maximum column in pSrc->colUsed */
748   CollSeq *pColl;             /* Collating sequence to on a column */
749   WhereLoop *pLoop;           /* The Loop object */
750   char *zNotUsed;             /* Extra space on the end of pIdx */
751   Bitmask idxCols;            /* Bitmap of columns used for indexing */
752   Bitmask extraCols;          /* Bitmap of additional columns */
753   u8 sentWarning = 0;         /* True if a warnning has been issued */
754   Expr *pPartial = 0;         /* Partial Index Expression */
755   int iContinue = 0;          /* Jump here to skip excluded rows */
756   SrcItem *pTabItem;          /* FROM clause term being indexed */
757   int addrCounter = 0;        /* Address where integer counter is initialized */
758   int regBase;                /* Array of registers where record is assembled */
759 
760   /* Generate code to skip over the creation and initialization of the
761   ** transient index on 2nd and subsequent iterations of the loop. */
762   v = pParse->pVdbe;
763   assert( v!=0 );
764   addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
765 
766   /* Count the number of columns that will be added to the index
767   ** and used to match WHERE clause constraints */
768   nKeyCol = 0;
769   pTable = pSrc->pTab;
770   pWCEnd = &pWC->a[pWC->nTerm];
771   pLoop = pLevel->pWLoop;
772   idxCols = 0;
773   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
774     Expr *pExpr = pTerm->pExpr;
775     assert( !ExprHasProperty(pExpr, EP_FromJoin)    /* prereq always non-zero */
776          || pExpr->iRightJoinTable!=pSrc->iCursor   /*   for the right-hand   */
777          || pLoop->prereq!=0 );                     /*   table of a LEFT JOIN */
778     if( pLoop->prereq==0
779      && (pTerm->wtFlags & TERM_VIRTUAL)==0
780      && !ExprHasProperty(pExpr, EP_FromJoin)
781      && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){
782       pPartial = sqlite3ExprAnd(pParse, pPartial,
783                                 sqlite3ExprDup(pParse->db, pExpr, 0));
784     }
785     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
786       int iCol = pTerm->u.x.leftColumn;
787       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
788       testcase( iCol==BMS );
789       testcase( iCol==BMS-1 );
790       if( !sentWarning ){
791         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
792             "automatic index on %s(%s)", pTable->zName,
793             pTable->aCol[iCol].zName);
794         sentWarning = 1;
795       }
796       if( (idxCols & cMask)==0 ){
797         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
798           goto end_auto_index_create;
799         }
800         pLoop->aLTerm[nKeyCol++] = pTerm;
801         idxCols |= cMask;
802       }
803     }
804   }
805   assert( nKeyCol>0 );
806   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
807   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
808                      | WHERE_AUTO_INDEX;
809 
810   /* Count the number of additional columns needed to create a
811   ** covering index.  A "covering index" is an index that contains all
812   ** columns that are needed by the query.  With a covering index, the
813   ** original table never needs to be accessed.  Automatic indices must
814   ** be a covering index because the index will not be updated if the
815   ** original table changes and the index and table cannot both be used
816   ** if they go out of sync.
817   */
818   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
819   mxBitCol = MIN(BMS-1,pTable->nCol);
820   testcase( pTable->nCol==BMS-1 );
821   testcase( pTable->nCol==BMS-2 );
822   for(i=0; i<mxBitCol; i++){
823     if( extraCols & MASKBIT(i) ) nKeyCol++;
824   }
825   if( pSrc->colUsed & MASKBIT(BMS-1) ){
826     nKeyCol += pTable->nCol - BMS + 1;
827   }
828 
829   /* Construct the Index object to describe this index */
830   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
831   if( pIdx==0 ) goto end_auto_index_create;
832   pLoop->u.btree.pIndex = pIdx;
833   pIdx->zName = "auto-index";
834   pIdx->pTable = pTable;
835   n = 0;
836   idxCols = 0;
837   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
838     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
839       int iCol = pTerm->u.x.leftColumn;
840       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
841       testcase( iCol==BMS-1 );
842       testcase( iCol==BMS );
843       if( (idxCols & cMask)==0 ){
844         Expr *pX = pTerm->pExpr;
845         idxCols |= cMask;
846         pIdx->aiColumn[n] = pTerm->u.x.leftColumn;
847         pColl = sqlite3ExprCompareCollSeq(pParse, pX);
848         assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */
849         pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
850         n++;
851       }
852     }
853   }
854   assert( (u32)n==pLoop->u.btree.nEq );
855 
856   /* Add additional columns needed to make the automatic index into
857   ** a covering index */
858   for(i=0; i<mxBitCol; i++){
859     if( extraCols & MASKBIT(i) ){
860       pIdx->aiColumn[n] = i;
861       pIdx->azColl[n] = sqlite3StrBINARY;
862       n++;
863     }
864   }
865   if( pSrc->colUsed & MASKBIT(BMS-1) ){
866     for(i=BMS-1; i<pTable->nCol; i++){
867       pIdx->aiColumn[n] = i;
868       pIdx->azColl[n] = sqlite3StrBINARY;
869       n++;
870     }
871   }
872   assert( n==nKeyCol );
873   pIdx->aiColumn[n] = XN_ROWID;
874   pIdx->azColl[n] = sqlite3StrBINARY;
875 
876   /* Create the automatic index */
877   assert( pLevel->iIdxCur>=0 );
878   pLevel->iIdxCur = pParse->nTab++;
879   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
880   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
881   VdbeComment((v, "for %s", pTable->zName));
882 
883   /* Fill the automatic index with content */
884   pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
885   if( pTabItem->fg.viaCoroutine ){
886     int regYield = pTabItem->regReturn;
887     addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
888     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
889     addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
890     VdbeCoverage(v);
891     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
892   }else{
893     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
894   }
895   if( pPartial ){
896     iContinue = sqlite3VdbeMakeLabel(pParse);
897     sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
898     pLoop->wsFlags |= WHERE_PARTIALIDX;
899   }
900   regRecord = sqlite3GetTempReg(pParse);
901   regBase = sqlite3GenerateIndexKey(
902       pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
903   );
904   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
905   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
906   if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
907   if( pTabItem->fg.viaCoroutine ){
908     sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
909     testcase( pParse->db->mallocFailed );
910     assert( pLevel->iIdxCur>0 );
911     translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
912                           pTabItem->regResult, pLevel->iIdxCur);
913     sqlite3VdbeGoto(v, addrTop);
914     pTabItem->fg.viaCoroutine = 0;
915   }else{
916     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
917     sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
918   }
919   sqlite3VdbeJumpHere(v, addrTop);
920   sqlite3ReleaseTempReg(pParse, regRecord);
921 
922   /* Jump here when skipping the initialization */
923   sqlite3VdbeJumpHere(v, addrInit);
924 
925 end_auto_index_create:
926   sqlite3ExprDelete(pParse->db, pPartial);
927 }
928 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
929 
930 #ifndef SQLITE_OMIT_VIRTUALTABLE
931 /*
932 ** Allocate and populate an sqlite3_index_info structure. It is the
933 ** responsibility of the caller to eventually release the structure
934 ** by passing the pointer returned by this function to sqlite3_free().
935 */
936 static sqlite3_index_info *allocateIndexInfo(
937   Parse *pParse,                  /* The parsing context */
938   WhereClause *pWC,               /* The WHERE clause being analyzed */
939   Bitmask mUnusable,              /* Ignore terms with these prereqs */
940   SrcItem *pSrc,                  /* The FROM clause term that is the vtab */
941   ExprList *pOrderBy,             /* The ORDER BY clause */
942   u16 *pmNoOmit                   /* Mask of terms not to omit */
943 ){
944   int i, j;
945   int nTerm;
946   struct sqlite3_index_constraint *pIdxCons;
947   struct sqlite3_index_orderby *pIdxOrderBy;
948   struct sqlite3_index_constraint_usage *pUsage;
949   struct HiddenIndexInfo *pHidden;
950   WhereTerm *pTerm;
951   int nOrderBy;
952   sqlite3_index_info *pIdxInfo;
953   u16 mNoOmit = 0;
954 
955   /* Count the number of possible WHERE clause constraints referring
956   ** to this virtual table */
957   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
958     if( pTerm->leftCursor != pSrc->iCursor ) continue;
959     if( pTerm->prereqRight & mUnusable ) continue;
960     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
961     testcase( pTerm->eOperator & WO_IN );
962     testcase( pTerm->eOperator & WO_ISNULL );
963     testcase( pTerm->eOperator & WO_IS );
964     testcase( pTerm->eOperator & WO_ALL );
965     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
966     if( pTerm->wtFlags & TERM_VNULL ) continue;
967     assert( pTerm->u.x.leftColumn>=(-1) );
968     nTerm++;
969   }
970 
971   /* If the ORDER BY clause contains only columns in the current
972   ** virtual table then allocate space for the aOrderBy part of
973   ** the sqlite3_index_info structure.
974   */
975   nOrderBy = 0;
976   if( pOrderBy ){
977     int n = pOrderBy->nExpr;
978     for(i=0; i<n; i++){
979       Expr *pExpr = pOrderBy->a[i].pExpr;
980       if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
981       if( pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL ) break;
982     }
983     if( i==n){
984       nOrderBy = n;
985     }
986   }
987 
988   /* Allocate the sqlite3_index_info structure
989   */
990   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
991                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
992                            + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) );
993   if( pIdxInfo==0 ){
994     sqlite3ErrorMsg(pParse, "out of memory");
995     return 0;
996   }
997   pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
998   pIdxCons = (struct sqlite3_index_constraint*)&pHidden[1];
999   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1000   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1001   pIdxInfo->nOrderBy = nOrderBy;
1002   pIdxInfo->aConstraint = pIdxCons;
1003   pIdxInfo->aOrderBy = pIdxOrderBy;
1004   pIdxInfo->aConstraintUsage = pUsage;
1005   pHidden->pWC = pWC;
1006   pHidden->pParse = pParse;
1007   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1008     u16 op;
1009     if( pTerm->leftCursor != pSrc->iCursor ) continue;
1010     if( pTerm->prereqRight & mUnusable ) continue;
1011     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
1012     testcase( pTerm->eOperator & WO_IN );
1013     testcase( pTerm->eOperator & WO_IS );
1014     testcase( pTerm->eOperator & WO_ISNULL );
1015     testcase( pTerm->eOperator & WO_ALL );
1016     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
1017     if( pTerm->wtFlags & TERM_VNULL ) continue;
1018 
1019     /* tag-20191211-002: WHERE-clause constraints are not useful to the
1020     ** right-hand table of a LEFT JOIN.  See tag-20191211-001 for the
1021     ** equivalent restriction for ordinary tables. */
1022     if( (pSrc->fg.jointype & JT_LEFT)!=0
1023      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
1024     ){
1025       continue;
1026     }
1027     assert( pTerm->u.x.leftColumn>=(-1) );
1028     pIdxCons[j].iColumn = pTerm->u.x.leftColumn;
1029     pIdxCons[j].iTermOffset = i;
1030     op = pTerm->eOperator & WO_ALL;
1031     if( op==WO_IN ) op = WO_EQ;
1032     if( op==WO_AUX ){
1033       pIdxCons[j].op = pTerm->eMatchOp;
1034     }else if( op & (WO_ISNULL|WO_IS) ){
1035       if( op==WO_ISNULL ){
1036         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
1037       }else{
1038         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
1039       }
1040     }else{
1041       pIdxCons[j].op = (u8)op;
1042       /* The direct assignment in the previous line is possible only because
1043       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
1044       ** following asserts verify this fact. */
1045       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1046       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1047       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1048       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1049       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1050       assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
1051 
1052       if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
1053        && sqlite3ExprIsVector(pTerm->pExpr->pRight)
1054       ){
1055         testcase( j!=i );
1056         if( j<16 ) mNoOmit |= (1 << j);
1057         if( op==WO_LT ) pIdxCons[j].op = WO_LE;
1058         if( op==WO_GT ) pIdxCons[j].op = WO_GE;
1059       }
1060     }
1061 
1062     j++;
1063   }
1064   pIdxInfo->nConstraint = j;
1065   for(i=0; i<nOrderBy; i++){
1066     Expr *pExpr = pOrderBy->a[i].pExpr;
1067     pIdxOrderBy[i].iColumn = pExpr->iColumn;
1068     pIdxOrderBy[i].desc = pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC;
1069   }
1070 
1071   *pmNoOmit = mNoOmit;
1072   return pIdxInfo;
1073 }
1074 
1075 /*
1076 ** The table object reference passed as the second argument to this function
1077 ** must represent a virtual table. This function invokes the xBestIndex()
1078 ** method of the virtual table with the sqlite3_index_info object that
1079 ** comes in as the 3rd argument to this function.
1080 **
1081 ** If an error occurs, pParse is populated with an error message and an
1082 ** appropriate error code is returned.  A return of SQLITE_CONSTRAINT from
1083 ** xBestIndex is not considered an error.  SQLITE_CONSTRAINT indicates that
1084 ** the current configuration of "unusable" flags in sqlite3_index_info can
1085 ** not result in a valid plan.
1086 **
1087 ** Whether or not an error is returned, it is the responsibility of the
1088 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1089 ** that this is required.
1090 */
1091 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
1092   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
1093   int rc;
1094 
1095   whereTraceIndexInfoInputs(p);
1096   rc = pVtab->pModule->xBestIndex(pVtab, p);
1097   whereTraceIndexInfoOutputs(p);
1098 
1099   if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){
1100     if( rc==SQLITE_NOMEM ){
1101       sqlite3OomFault(pParse->db);
1102     }else if( !pVtab->zErrMsg ){
1103       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1104     }else{
1105       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1106     }
1107   }
1108   sqlite3_free(pVtab->zErrMsg);
1109   pVtab->zErrMsg = 0;
1110   return rc;
1111 }
1112 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1113 
1114 #ifdef SQLITE_ENABLE_STAT4
1115 /*
1116 ** Estimate the location of a particular key among all keys in an
1117 ** index.  Store the results in aStat as follows:
1118 **
1119 **    aStat[0]      Est. number of rows less than pRec
1120 **    aStat[1]      Est. number of rows equal to pRec
1121 **
1122 ** Return the index of the sample that is the smallest sample that
1123 ** is greater than or equal to pRec. Note that this index is not an index
1124 ** into the aSample[] array - it is an index into a virtual set of samples
1125 ** based on the contents of aSample[] and the number of fields in record
1126 ** pRec.
1127 */
1128 static int whereKeyStats(
1129   Parse *pParse,              /* Database connection */
1130   Index *pIdx,                /* Index to consider domain of */
1131   UnpackedRecord *pRec,       /* Vector of values to consider */
1132   int roundUp,                /* Round up if true.  Round down if false */
1133   tRowcnt *aStat              /* OUT: stats written here */
1134 ){
1135   IndexSample *aSample = pIdx->aSample;
1136   int iCol;                   /* Index of required stats in anEq[] etc. */
1137   int i;                      /* Index of first sample >= pRec */
1138   int iSample;                /* Smallest sample larger than or equal to pRec */
1139   int iMin = 0;               /* Smallest sample not yet tested */
1140   int iTest;                  /* Next sample to test */
1141   int res;                    /* Result of comparison operation */
1142   int nField;                 /* Number of fields in pRec */
1143   tRowcnt iLower = 0;         /* anLt[] + anEq[] of largest sample pRec is > */
1144 
1145 #ifndef SQLITE_DEBUG
1146   UNUSED_PARAMETER( pParse );
1147 #endif
1148   assert( pRec!=0 );
1149   assert( pIdx->nSample>0 );
1150   assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
1151 
1152   /* Do a binary search to find the first sample greater than or equal
1153   ** to pRec. If pRec contains a single field, the set of samples to search
1154   ** is simply the aSample[] array. If the samples in aSample[] contain more
1155   ** than one fields, all fields following the first are ignored.
1156   **
1157   ** If pRec contains N fields, where N is more than one, then as well as the
1158   ** samples in aSample[] (truncated to N fields), the search also has to
1159   ** consider prefixes of those samples. For example, if the set of samples
1160   ** in aSample is:
1161   **
1162   **     aSample[0] = (a, 5)
1163   **     aSample[1] = (a, 10)
1164   **     aSample[2] = (b, 5)
1165   **     aSample[3] = (c, 100)
1166   **     aSample[4] = (c, 105)
1167   **
1168   ** Then the search space should ideally be the samples above and the
1169   ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1170   ** the code actually searches this set:
1171   **
1172   **     0: (a)
1173   **     1: (a, 5)
1174   **     2: (a, 10)
1175   **     3: (a, 10)
1176   **     4: (b)
1177   **     5: (b, 5)
1178   **     6: (c)
1179   **     7: (c, 100)
1180   **     8: (c, 105)
1181   **     9: (c, 105)
1182   **
1183   ** For each sample in the aSample[] array, N samples are present in the
1184   ** effective sample array. In the above, samples 0 and 1 are based on
1185   ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1186   **
1187   ** Often, sample i of each block of N effective samples has (i+1) fields.
1188   ** Except, each sample may be extended to ensure that it is greater than or
1189   ** equal to the previous sample in the array. For example, in the above,
1190   ** sample 2 is the first sample of a block of N samples, so at first it
1191   ** appears that it should be 1 field in size. However, that would make it
1192   ** smaller than sample 1, so the binary search would not work. As a result,
1193   ** it is extended to two fields. The duplicates that this creates do not
1194   ** cause any problems.
1195   */
1196   nField = pRec->nField;
1197   iCol = 0;
1198   iSample = pIdx->nSample * nField;
1199   do{
1200     int iSamp;                    /* Index in aSample[] of test sample */
1201     int n;                        /* Number of fields in test sample */
1202 
1203     iTest = (iMin+iSample)/2;
1204     iSamp = iTest / nField;
1205     if( iSamp>0 ){
1206       /* The proposed effective sample is a prefix of sample aSample[iSamp].
1207       ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1208       ** fields that is greater than the previous effective sample.  */
1209       for(n=(iTest % nField) + 1; n<nField; n++){
1210         if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1211       }
1212     }else{
1213       n = iTest + 1;
1214     }
1215 
1216     pRec->nField = n;
1217     res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1218     if( res<0 ){
1219       iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1220       iMin = iTest+1;
1221     }else if( res==0 && n<nField ){
1222       iLower = aSample[iSamp].anLt[n-1];
1223       iMin = iTest+1;
1224       res = -1;
1225     }else{
1226       iSample = iTest;
1227       iCol = n-1;
1228     }
1229   }while( res && iMin<iSample );
1230   i = iSample / nField;
1231 
1232 #ifdef SQLITE_DEBUG
1233   /* The following assert statements check that the binary search code
1234   ** above found the right answer. This block serves no purpose other
1235   ** than to invoke the asserts.  */
1236   if( pParse->db->mallocFailed==0 ){
1237     if( res==0 ){
1238       /* If (res==0) is true, then pRec must be equal to sample i. */
1239       assert( i<pIdx->nSample );
1240       assert( iCol==nField-1 );
1241       pRec->nField = nField;
1242       assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1243            || pParse->db->mallocFailed
1244       );
1245     }else{
1246       /* Unless i==pIdx->nSample, indicating that pRec is larger than
1247       ** all samples in the aSample[] array, pRec must be smaller than the
1248       ** (iCol+1) field prefix of sample i.  */
1249       assert( i<=pIdx->nSample && i>=0 );
1250       pRec->nField = iCol+1;
1251       assert( i==pIdx->nSample
1252            || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1253            || pParse->db->mallocFailed );
1254 
1255       /* if i==0 and iCol==0, then record pRec is smaller than all samples
1256       ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1257       ** be greater than or equal to the (iCol) field prefix of sample i.
1258       ** If (i>0), then pRec must also be greater than sample (i-1).  */
1259       if( iCol>0 ){
1260         pRec->nField = iCol;
1261         assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1262              || pParse->db->mallocFailed );
1263       }
1264       if( i>0 ){
1265         pRec->nField = nField;
1266         assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1267              || pParse->db->mallocFailed );
1268       }
1269     }
1270   }
1271 #endif /* ifdef SQLITE_DEBUG */
1272 
1273   if( res==0 ){
1274     /* Record pRec is equal to sample i */
1275     assert( iCol==nField-1 );
1276     aStat[0] = aSample[i].anLt[iCol];
1277     aStat[1] = aSample[i].anEq[iCol];
1278   }else{
1279     /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1280     ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1281     ** is larger than all samples in the array. */
1282     tRowcnt iUpper, iGap;
1283     if( i>=pIdx->nSample ){
1284       iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1285     }else{
1286       iUpper = aSample[i].anLt[iCol];
1287     }
1288 
1289     if( iLower>=iUpper ){
1290       iGap = 0;
1291     }else{
1292       iGap = iUpper - iLower;
1293     }
1294     if( roundUp ){
1295       iGap = (iGap*2)/3;
1296     }else{
1297       iGap = iGap/3;
1298     }
1299     aStat[0] = iLower + iGap;
1300     aStat[1] = pIdx->aAvgEq[nField-1];
1301   }
1302 
1303   /* Restore the pRec->nField value before returning.  */
1304   pRec->nField = nField;
1305   return i;
1306 }
1307 #endif /* SQLITE_ENABLE_STAT4 */
1308 
1309 /*
1310 ** If it is not NULL, pTerm is a term that provides an upper or lower
1311 ** bound on a range scan. Without considering pTerm, it is estimated
1312 ** that the scan will visit nNew rows. This function returns the number
1313 ** estimated to be visited after taking pTerm into account.
1314 **
1315 ** If the user explicitly specified a likelihood() value for this term,
1316 ** then the return value is the likelihood multiplied by the number of
1317 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1318 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1319 */
1320 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1321   LogEst nRet = nNew;
1322   if( pTerm ){
1323     if( pTerm->truthProb<=0 ){
1324       nRet += pTerm->truthProb;
1325     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1326       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
1327     }
1328   }
1329   return nRet;
1330 }
1331 
1332 
1333 #ifdef SQLITE_ENABLE_STAT4
1334 /*
1335 ** Return the affinity for a single column of an index.
1336 */
1337 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1338   assert( iCol>=0 && iCol<pIdx->nColumn );
1339   if( !pIdx->zColAff ){
1340     if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1341   }
1342   assert( pIdx->zColAff[iCol]!=0 );
1343   return pIdx->zColAff[iCol];
1344 }
1345 #endif
1346 
1347 
1348 #ifdef SQLITE_ENABLE_STAT4
1349 /*
1350 ** This function is called to estimate the number of rows visited by a
1351 ** range-scan on a skip-scan index. For example:
1352 **
1353 **   CREATE INDEX i1 ON t1(a, b, c);
1354 **   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1355 **
1356 ** Value pLoop->nOut is currently set to the estimated number of rows
1357 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1358 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1359 ** on the stat4 data for the index. this scan will be peformed multiple
1360 ** times (once for each (a,b) combination that matches a=?) is dealt with
1361 ** by the caller.
1362 **
1363 ** It does this by scanning through all stat4 samples, comparing values
1364 ** extracted from pLower and pUpper with the corresponding column in each
1365 ** sample. If L and U are the number of samples found to be less than or
1366 ** equal to the values extracted from pLower and pUpper respectively, and
1367 ** N is the total number of samples, the pLoop->nOut value is adjusted
1368 ** as follows:
1369 **
1370 **   nOut = nOut * ( min(U - L, 1) / N )
1371 **
1372 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1373 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1374 ** U is set to N.
1375 **
1376 ** Normally, this function sets *pbDone to 1 before returning. However,
1377 ** if no value can be extracted from either pLower or pUpper (and so the
1378 ** estimate of the number of rows delivered remains unchanged), *pbDone
1379 ** is left as is.
1380 **
1381 ** If an error occurs, an SQLite error code is returned. Otherwise,
1382 ** SQLITE_OK.
1383 */
1384 static int whereRangeSkipScanEst(
1385   Parse *pParse,       /* Parsing & code generating context */
1386   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1387   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1388   WhereLoop *pLoop,    /* Update the .nOut value of this loop */
1389   int *pbDone          /* Set to true if at least one expr. value extracted */
1390 ){
1391   Index *p = pLoop->u.btree.pIndex;
1392   int nEq = pLoop->u.btree.nEq;
1393   sqlite3 *db = pParse->db;
1394   int nLower = -1;
1395   int nUpper = p->nSample+1;
1396   int rc = SQLITE_OK;
1397   u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1398   CollSeq *pColl;
1399 
1400   sqlite3_value *p1 = 0;          /* Value extracted from pLower */
1401   sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
1402   sqlite3_value *pVal = 0;        /* Value extracted from record */
1403 
1404   pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1405   if( pLower ){
1406     rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1407     nLower = 0;
1408   }
1409   if( pUpper && rc==SQLITE_OK ){
1410     rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1411     nUpper = p2 ? 0 : p->nSample;
1412   }
1413 
1414   if( p1 || p2 ){
1415     int i;
1416     int nDiff;
1417     for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1418       rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1419       if( rc==SQLITE_OK && p1 ){
1420         int res = sqlite3MemCompare(p1, pVal, pColl);
1421         if( res>=0 ) nLower++;
1422       }
1423       if( rc==SQLITE_OK && p2 ){
1424         int res = sqlite3MemCompare(p2, pVal, pColl);
1425         if( res>=0 ) nUpper++;
1426       }
1427     }
1428     nDiff = (nUpper - nLower);
1429     if( nDiff<=0 ) nDiff = 1;
1430 
1431     /* If there is both an upper and lower bound specified, and the
1432     ** comparisons indicate that they are close together, use the fallback
1433     ** method (assume that the scan visits 1/64 of the rows) for estimating
1434     ** the number of rows visited. Otherwise, estimate the number of rows
1435     ** using the method described in the header comment for this function. */
1436     if( nDiff!=1 || pUpper==0 || pLower==0 ){
1437       int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1438       pLoop->nOut -= nAdjust;
1439       *pbDone = 1;
1440       WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n",
1441                            nLower, nUpper, nAdjust*-1, pLoop->nOut));
1442     }
1443 
1444   }else{
1445     assert( *pbDone==0 );
1446   }
1447 
1448   sqlite3ValueFree(p1);
1449   sqlite3ValueFree(p2);
1450   sqlite3ValueFree(pVal);
1451 
1452   return rc;
1453 }
1454 #endif /* SQLITE_ENABLE_STAT4 */
1455 
1456 /*
1457 ** This function is used to estimate the number of rows that will be visited
1458 ** by scanning an index for a range of values. The range may have an upper
1459 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1460 ** and lower bounds are represented by pLower and pUpper respectively. For
1461 ** example, assuming that index p is on t1(a):
1462 **
1463 **   ... FROM t1 WHERE a > ? AND a < ? ...
1464 **                    |_____|   |_____|
1465 **                       |         |
1466 **                     pLower    pUpper
1467 **
1468 ** If either of the upper or lower bound is not present, then NULL is passed in
1469 ** place of the corresponding WhereTerm.
1470 **
1471 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1472 ** column subject to the range constraint. Or, equivalently, the number of
1473 ** equality constraints optimized by the proposed index scan. For example,
1474 ** assuming index p is on t1(a, b), and the SQL query is:
1475 **
1476 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1477 **
1478 ** then nEq is set to 1 (as the range restricted column, b, is the second
1479 ** left-most column of the index). Or, if the query is:
1480 **
1481 **   ... FROM t1 WHERE a > ? AND a < ? ...
1482 **
1483 ** then nEq is set to 0.
1484 **
1485 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1486 ** number of rows that the index scan is expected to visit without
1487 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1488 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1489 ** to account for the range constraints pLower and pUpper.
1490 **
1491 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1492 ** used, a single range inequality reduces the search space by a factor of 4.
1493 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1494 ** rows visited by a factor of 64.
1495 */
1496 static int whereRangeScanEst(
1497   Parse *pParse,       /* Parsing & code generating context */
1498   WhereLoopBuilder *pBuilder,
1499   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1500   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1501   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
1502 ){
1503   int rc = SQLITE_OK;
1504   int nOut = pLoop->nOut;
1505   LogEst nNew;
1506 
1507 #ifdef SQLITE_ENABLE_STAT4
1508   Index *p = pLoop->u.btree.pIndex;
1509   int nEq = pLoop->u.btree.nEq;
1510 
1511   if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol)
1512    && OptimizationEnabled(pParse->db, SQLITE_Stat4)
1513   ){
1514     if( nEq==pBuilder->nRecValid ){
1515       UnpackedRecord *pRec = pBuilder->pRec;
1516       tRowcnt a[2];
1517       int nBtm = pLoop->u.btree.nBtm;
1518       int nTop = pLoop->u.btree.nTop;
1519 
1520       /* Variable iLower will be set to the estimate of the number of rows in
1521       ** the index that are less than the lower bound of the range query. The
1522       ** lower bound being the concatenation of $P and $L, where $P is the
1523       ** key-prefix formed by the nEq values matched against the nEq left-most
1524       ** columns of the index, and $L is the value in pLower.
1525       **
1526       ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1527       ** is not a simple variable or literal value), the lower bound of the
1528       ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1529       ** if $L is available, whereKeyStats() is called for both ($P) and
1530       ** ($P:$L) and the larger of the two returned values is used.
1531       **
1532       ** Similarly, iUpper is to be set to the estimate of the number of rows
1533       ** less than the upper bound of the range query. Where the upper bound
1534       ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1535       ** of iUpper are requested of whereKeyStats() and the smaller used.
1536       **
1537       ** The number of rows between the two bounds is then just iUpper-iLower.
1538       */
1539       tRowcnt iLower;     /* Rows less than the lower bound */
1540       tRowcnt iUpper;     /* Rows less than the upper bound */
1541       int iLwrIdx = -2;   /* aSample[] for the lower bound */
1542       int iUprIdx = -1;   /* aSample[] for the upper bound */
1543 
1544       if( pRec ){
1545         testcase( pRec->nField!=pBuilder->nRecValid );
1546         pRec->nField = pBuilder->nRecValid;
1547       }
1548       /* Determine iLower and iUpper using ($P) only. */
1549       if( nEq==0 ){
1550         iLower = 0;
1551         iUpper = p->nRowEst0;
1552       }else{
1553         /* Note: this call could be optimized away - since the same values must
1554         ** have been requested when testing key $P in whereEqualScanEst().  */
1555         whereKeyStats(pParse, p, pRec, 0, a);
1556         iLower = a[0];
1557         iUpper = a[0] + a[1];
1558       }
1559 
1560       assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1561       assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1562       assert( p->aSortOrder!=0 );
1563       if( p->aSortOrder[nEq] ){
1564         /* The roles of pLower and pUpper are swapped for a DESC index */
1565         SWAP(WhereTerm*, pLower, pUpper);
1566         SWAP(int, nBtm, nTop);
1567       }
1568 
1569       /* If possible, improve on the iLower estimate using ($P:$L). */
1570       if( pLower ){
1571         int n;                    /* Values extracted from pExpr */
1572         Expr *pExpr = pLower->pExpr->pRight;
1573         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1574         if( rc==SQLITE_OK && n ){
1575           tRowcnt iNew;
1576           u16 mask = WO_GT|WO_LE;
1577           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1578           iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1579           iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1580           if( iNew>iLower ) iLower = iNew;
1581           nOut--;
1582           pLower = 0;
1583         }
1584       }
1585 
1586       /* If possible, improve on the iUpper estimate using ($P:$U). */
1587       if( pUpper ){
1588         int n;                    /* Values extracted from pExpr */
1589         Expr *pExpr = pUpper->pExpr->pRight;
1590         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1591         if( rc==SQLITE_OK && n ){
1592           tRowcnt iNew;
1593           u16 mask = WO_GT|WO_LE;
1594           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1595           iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1596           iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1597           if( iNew<iUpper ) iUpper = iNew;
1598           nOut--;
1599           pUpper = 0;
1600         }
1601       }
1602 
1603       pBuilder->pRec = pRec;
1604       if( rc==SQLITE_OK ){
1605         if( iUpper>iLower ){
1606           nNew = sqlite3LogEst(iUpper - iLower);
1607           /* TUNING:  If both iUpper and iLower are derived from the same
1608           ** sample, then assume they are 4x more selective.  This brings
1609           ** the estimated selectivity more in line with what it would be
1610           ** if estimated without the use of STAT4 tables. */
1611           if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
1612         }else{
1613           nNew = 10;        assert( 10==sqlite3LogEst(2) );
1614         }
1615         if( nNew<nOut ){
1616           nOut = nNew;
1617         }
1618         WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
1619                            (u32)iLower, (u32)iUpper, nOut));
1620       }
1621     }else{
1622       int bDone = 0;
1623       rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1624       if( bDone ) return rc;
1625     }
1626   }
1627 #else
1628   UNUSED_PARAMETER(pParse);
1629   UNUSED_PARAMETER(pBuilder);
1630   assert( pLower || pUpper );
1631 #endif
1632   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1633   nNew = whereRangeAdjust(pLower, nOut);
1634   nNew = whereRangeAdjust(pUpper, nNew);
1635 
1636   /* TUNING: If there is both an upper and lower limit and neither limit
1637   ** has an application-defined likelihood(), assume the range is
1638   ** reduced by an additional 75%. This means that, by default, an open-ended
1639   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1640   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1641   ** match 1/64 of the index. */
1642   if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1643     nNew -= 20;
1644   }
1645 
1646   nOut -= (pLower!=0) + (pUpper!=0);
1647   if( nNew<10 ) nNew = 10;
1648   if( nNew<nOut ) nOut = nNew;
1649 #if defined(WHERETRACE_ENABLED)
1650   if( pLoop->nOut>nOut ){
1651     WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1652                     pLoop->nOut, nOut));
1653   }
1654 #endif
1655   pLoop->nOut = (LogEst)nOut;
1656   return rc;
1657 }
1658 
1659 #ifdef SQLITE_ENABLE_STAT4
1660 /*
1661 ** Estimate the number of rows that will be returned based on
1662 ** an equality constraint x=VALUE and where that VALUE occurs in
1663 ** the histogram data.  This only works when x is the left-most
1664 ** column of an index and sqlite_stat4 histogram data is available
1665 ** for that index.  When pExpr==NULL that means the constraint is
1666 ** "x IS NULL" instead of "x=VALUE".
1667 **
1668 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1669 ** If unable to make an estimate, leave *pnRow unchanged and return
1670 ** non-zero.
1671 **
1672 ** This routine can fail if it is unable to load a collating sequence
1673 ** required for string comparison, or if unable to allocate memory
1674 ** for a UTF conversion required for comparison.  The error is stored
1675 ** in the pParse structure.
1676 */
1677 static int whereEqualScanEst(
1678   Parse *pParse,       /* Parsing & code generating context */
1679   WhereLoopBuilder *pBuilder,
1680   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
1681   tRowcnt *pnRow       /* Write the revised row estimate here */
1682 ){
1683   Index *p = pBuilder->pNew->u.btree.pIndex;
1684   int nEq = pBuilder->pNew->u.btree.nEq;
1685   UnpackedRecord *pRec = pBuilder->pRec;
1686   int rc;                   /* Subfunction return code */
1687   tRowcnt a[2];             /* Statistics */
1688   int bOk;
1689 
1690   assert( nEq>=1 );
1691   assert( nEq<=p->nColumn );
1692   assert( p->aSample!=0 );
1693   assert( p->nSample>0 );
1694   assert( pBuilder->nRecValid<nEq );
1695 
1696   /* If values are not available for all fields of the index to the left
1697   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1698   if( pBuilder->nRecValid<(nEq-1) ){
1699     return SQLITE_NOTFOUND;
1700   }
1701 
1702   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1703   ** below would return the same value.  */
1704   if( nEq>=p->nColumn ){
1705     *pnRow = 1;
1706     return SQLITE_OK;
1707   }
1708 
1709   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1710   pBuilder->pRec = pRec;
1711   if( rc!=SQLITE_OK ) return rc;
1712   if( bOk==0 ) return SQLITE_NOTFOUND;
1713   pBuilder->nRecValid = nEq;
1714 
1715   whereKeyStats(pParse, p, pRec, 0, a);
1716   WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1717                    p->zName, nEq-1, (int)a[1]));
1718   *pnRow = a[1];
1719 
1720   return rc;
1721 }
1722 #endif /* SQLITE_ENABLE_STAT4 */
1723 
1724 #ifdef SQLITE_ENABLE_STAT4
1725 /*
1726 ** Estimate the number of rows that will be returned based on
1727 ** an IN constraint where the right-hand side of the IN operator
1728 ** is a list of values.  Example:
1729 **
1730 **        WHERE x IN (1,2,3,4)
1731 **
1732 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1733 ** If unable to make an estimate, leave *pnRow unchanged and return
1734 ** non-zero.
1735 **
1736 ** This routine can fail if it is unable to load a collating sequence
1737 ** required for string comparison, or if unable to allocate memory
1738 ** for a UTF conversion required for comparison.  The error is stored
1739 ** in the pParse structure.
1740 */
1741 static int whereInScanEst(
1742   Parse *pParse,       /* Parsing & code generating context */
1743   WhereLoopBuilder *pBuilder,
1744   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1745   tRowcnt *pnRow       /* Write the revised row estimate here */
1746 ){
1747   Index *p = pBuilder->pNew->u.btree.pIndex;
1748   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1749   int nRecValid = pBuilder->nRecValid;
1750   int rc = SQLITE_OK;     /* Subfunction return code */
1751   tRowcnt nEst;           /* Number of rows for a single term */
1752   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
1753   int i;                  /* Loop counter */
1754 
1755   assert( p->aSample!=0 );
1756   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
1757     nEst = nRow0;
1758     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
1759     nRowEst += nEst;
1760     pBuilder->nRecValid = nRecValid;
1761   }
1762 
1763   if( rc==SQLITE_OK ){
1764     if( nRowEst > nRow0 ) nRowEst = nRow0;
1765     *pnRow = nRowEst;
1766     WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
1767   }
1768   assert( pBuilder->nRecValid==nRecValid );
1769   return rc;
1770 }
1771 #endif /* SQLITE_ENABLE_STAT4 */
1772 
1773 
1774 #ifdef WHERETRACE_ENABLED
1775 /*
1776 ** Print the content of a WhereTerm object
1777 */
1778 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){
1779   if( pTerm==0 ){
1780     sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
1781   }else{
1782     char zType[8];
1783     char zLeft[50];
1784     memcpy(zType, "....", 5);
1785     if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
1786     if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
1787     if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
1788     if( pTerm->wtFlags & TERM_CODED  ) zType[3] = 'C';
1789     if( pTerm->eOperator & WO_SINGLE ){
1790       sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
1791                        pTerm->leftCursor, pTerm->u.x.leftColumn);
1792     }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
1793       sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx",
1794                        pTerm->u.pOrInfo->indexable);
1795     }else{
1796       sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
1797     }
1798     sqlite3DebugPrintf(
1799        "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x",
1800        iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags);
1801     /* The 0x10000 .wheretrace flag causes extra information to be
1802     ** shown about each Term */
1803     if( sqlite3WhereTrace & 0x10000 ){
1804       sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx",
1805         pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight);
1806     }
1807     if( pTerm->u.x.iField ){
1808       sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField);
1809     }
1810     if( pTerm->iParent>=0 ){
1811       sqlite3DebugPrintf(" iParent=%d", pTerm->iParent);
1812     }
1813     sqlite3DebugPrintf("\n");
1814     sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
1815   }
1816 }
1817 #endif
1818 
1819 #ifdef WHERETRACE_ENABLED
1820 /*
1821 ** Show the complete content of a WhereClause
1822 */
1823 void sqlite3WhereClausePrint(WhereClause *pWC){
1824   int i;
1825   for(i=0; i<pWC->nTerm; i++){
1826     sqlite3WhereTermPrint(&pWC->a[i], i);
1827   }
1828 }
1829 #endif
1830 
1831 #ifdef WHERETRACE_ENABLED
1832 /*
1833 ** Print a WhereLoop object for debugging purposes
1834 */
1835 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){
1836   WhereInfo *pWInfo = pWC->pWInfo;
1837   int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
1838   SrcItem *pItem = pWInfo->pTabList->a + p->iTab;
1839   Table *pTab = pItem->pTab;
1840   Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
1841   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
1842                      p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
1843   sqlite3DebugPrintf(" %12s",
1844                      pItem->zAlias ? pItem->zAlias : pTab->zName);
1845   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
1846     const char *zName;
1847     if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
1848       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
1849         int i = sqlite3Strlen30(zName) - 1;
1850         while( zName[i]!='_' ) i--;
1851         zName += i;
1852       }
1853       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
1854     }else{
1855       sqlite3DebugPrintf("%20s","");
1856     }
1857   }else{
1858     char *z;
1859     if( p->u.vtab.idxStr ){
1860       z = sqlite3_mprintf("(%d,\"%s\",%#x)",
1861                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
1862     }else{
1863       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
1864     }
1865     sqlite3DebugPrintf(" %-19s", z);
1866     sqlite3_free(z);
1867   }
1868   if( p->wsFlags & WHERE_SKIPSCAN ){
1869     sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
1870   }else{
1871     sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
1872   }
1873   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
1874   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
1875     int i;
1876     for(i=0; i<p->nLTerm; i++){
1877       sqlite3WhereTermPrint(p->aLTerm[i], i);
1878     }
1879   }
1880 }
1881 #endif
1882 
1883 /*
1884 ** Convert bulk memory into a valid WhereLoop that can be passed
1885 ** to whereLoopClear harmlessly.
1886 */
1887 static void whereLoopInit(WhereLoop *p){
1888   p->aLTerm = p->aLTermSpace;
1889   p->nLTerm = 0;
1890   p->nLSlot = ArraySize(p->aLTermSpace);
1891   p->wsFlags = 0;
1892 }
1893 
1894 /*
1895 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
1896 */
1897 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
1898   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
1899     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
1900       sqlite3_free(p->u.vtab.idxStr);
1901       p->u.vtab.needFree = 0;
1902       p->u.vtab.idxStr = 0;
1903     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
1904       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
1905       sqlite3DbFreeNN(db, p->u.btree.pIndex);
1906       p->u.btree.pIndex = 0;
1907     }
1908   }
1909 }
1910 
1911 /*
1912 ** Deallocate internal memory used by a WhereLoop object
1913 */
1914 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
1915   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1916   whereLoopClearUnion(db, p);
1917   whereLoopInit(p);
1918 }
1919 
1920 /*
1921 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
1922 */
1923 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
1924   WhereTerm **paNew;
1925   if( p->nLSlot>=n ) return SQLITE_OK;
1926   n = (n+7)&~7;
1927   paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
1928   if( paNew==0 ) return SQLITE_NOMEM_BKPT;
1929   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
1930   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1931   p->aLTerm = paNew;
1932   p->nLSlot = n;
1933   return SQLITE_OK;
1934 }
1935 
1936 /*
1937 ** Transfer content from the second pLoop into the first.
1938 */
1939 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
1940   whereLoopClearUnion(db, pTo);
1941   if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
1942     memset(&pTo->u, 0, sizeof(pTo->u));
1943     return SQLITE_NOMEM_BKPT;
1944   }
1945   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
1946   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
1947   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
1948     pFrom->u.vtab.needFree = 0;
1949   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
1950     pFrom->u.btree.pIndex = 0;
1951   }
1952   return SQLITE_OK;
1953 }
1954 
1955 /*
1956 ** Delete a WhereLoop object
1957 */
1958 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
1959   whereLoopClear(db, p);
1960   sqlite3DbFreeNN(db, p);
1961 }
1962 
1963 /*
1964 ** Free a WhereInfo structure
1965 */
1966 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
1967   int i;
1968   assert( pWInfo!=0 );
1969   for(i=0; i<pWInfo->nLevel; i++){
1970     WhereLevel *pLevel = &pWInfo->a[i];
1971     if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){
1972       sqlite3DbFree(db, pLevel->u.in.aInLoop);
1973     }
1974   }
1975   sqlite3WhereClauseClear(&pWInfo->sWC);
1976   while( pWInfo->pLoops ){
1977     WhereLoop *p = pWInfo->pLoops;
1978     pWInfo->pLoops = p->pNextLoop;
1979     whereLoopDelete(db, p);
1980   }
1981   assert( pWInfo->pExprMods==0 );
1982   sqlite3DbFreeNN(db, pWInfo);
1983 }
1984 
1985 /*
1986 ** Return TRUE if all of the following are true:
1987 **
1988 **   (1)  X has the same or lower cost that Y
1989 **   (2)  X uses fewer WHERE clause terms than Y
1990 **   (3)  Every WHERE clause term used by X is also used by Y
1991 **   (4)  X skips at least as many columns as Y
1992 **   (5)  If X is a covering index, than Y is too
1993 **
1994 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
1995 ** If X is a proper subset of Y then Y is a better choice and ought
1996 ** to have a lower cost.  This routine returns TRUE when that cost
1997 ** relationship is inverted and needs to be adjusted.  Constraint (4)
1998 ** was added because if X uses skip-scan less than Y it still might
1999 ** deserve a lower cost even if it is a proper subset of Y.  Constraint (5)
2000 ** was added because a covering index probably deserves to have a lower cost
2001 ** than a non-covering index even if it is a proper subset.
2002 */
2003 static int whereLoopCheaperProperSubset(
2004   const WhereLoop *pX,       /* First WhereLoop to compare */
2005   const WhereLoop *pY        /* Compare against this WhereLoop */
2006 ){
2007   int i, j;
2008   if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
2009     return 0; /* X is not a subset of Y */
2010   }
2011   if( pY->nSkip > pX->nSkip ) return 0;
2012   if( pX->rRun >= pY->rRun ){
2013     if( pX->rRun > pY->rRun ) return 0;    /* X costs more than Y */
2014     if( pX->nOut > pY->nOut ) return 0;    /* X costs more than Y */
2015   }
2016   for(i=pX->nLTerm-1; i>=0; i--){
2017     if( pX->aLTerm[i]==0 ) continue;
2018     for(j=pY->nLTerm-1; j>=0; j--){
2019       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
2020     }
2021     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
2022   }
2023   if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
2024    && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
2025     return 0;  /* Constraint (5) */
2026   }
2027   return 1;  /* All conditions meet */
2028 }
2029 
2030 /*
2031 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
2032 ** that:
2033 **
2034 **   (1) pTemplate costs less than any other WhereLoops that are a proper
2035 **       subset of pTemplate
2036 **
2037 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
2038 **       is a proper subset.
2039 **
2040 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
2041 ** WHERE clause terms than Y and that every WHERE clause term used by X is
2042 ** also used by Y.
2043 */
2044 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
2045   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
2046   for(; p; p=p->pNextLoop){
2047     if( p->iTab!=pTemplate->iTab ) continue;
2048     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
2049     if( whereLoopCheaperProperSubset(p, pTemplate) ){
2050       /* Adjust pTemplate cost downward so that it is cheaper than its
2051       ** subset p. */
2052       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2053                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1));
2054       pTemplate->rRun = p->rRun;
2055       pTemplate->nOut = p->nOut - 1;
2056     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
2057       /* Adjust pTemplate cost upward so that it is costlier than p since
2058       ** pTemplate is a proper subset of p */
2059       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2060                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1));
2061       pTemplate->rRun = p->rRun;
2062       pTemplate->nOut = p->nOut + 1;
2063     }
2064   }
2065 }
2066 
2067 /*
2068 ** Search the list of WhereLoops in *ppPrev looking for one that can be
2069 ** replaced by pTemplate.
2070 **
2071 ** Return NULL if pTemplate does not belong on the WhereLoop list.
2072 ** In other words if pTemplate ought to be dropped from further consideration.
2073 **
2074 ** If pX is a WhereLoop that pTemplate can replace, then return the
2075 ** link that points to pX.
2076 **
2077 ** If pTemplate cannot replace any existing element of the list but needs
2078 ** to be added to the list as a new entry, then return a pointer to the
2079 ** tail of the list.
2080 */
2081 static WhereLoop **whereLoopFindLesser(
2082   WhereLoop **ppPrev,
2083   const WhereLoop *pTemplate
2084 ){
2085   WhereLoop *p;
2086   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
2087     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
2088       /* If either the iTab or iSortIdx values for two WhereLoop are different
2089       ** then those WhereLoops need to be considered separately.  Neither is
2090       ** a candidate to replace the other. */
2091       continue;
2092     }
2093     /* In the current implementation, the rSetup value is either zero
2094     ** or the cost of building an automatic index (NlogN) and the NlogN
2095     ** is the same for compatible WhereLoops. */
2096     assert( p->rSetup==0 || pTemplate->rSetup==0
2097                  || p->rSetup==pTemplate->rSetup );
2098 
2099     /* whereLoopAddBtree() always generates and inserts the automatic index
2100     ** case first.  Hence compatible candidate WhereLoops never have a larger
2101     ** rSetup. Call this SETUP-INVARIANT */
2102     assert( p->rSetup>=pTemplate->rSetup );
2103 
2104     /* Any loop using an appliation-defined index (or PRIMARY KEY or
2105     ** UNIQUE constraint) with one or more == constraints is better
2106     ** than an automatic index. Unless it is a skip-scan. */
2107     if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
2108      && (pTemplate->nSkip)==0
2109      && (pTemplate->wsFlags & WHERE_INDEXED)!=0
2110      && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
2111      && (p->prereq & pTemplate->prereq)==pTemplate->prereq
2112     ){
2113       break;
2114     }
2115 
2116     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2117     ** discarded.  WhereLoop p is better if:
2118     **   (1)  p has no more dependencies than pTemplate, and
2119     **   (2)  p has an equal or lower cost than pTemplate
2120     */
2121     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
2122      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
2123      && p->rRun<=pTemplate->rRun                      /* (2b) */
2124      && p->nOut<=pTemplate->nOut                      /* (2c) */
2125     ){
2126       return 0;  /* Discard pTemplate */
2127     }
2128 
2129     /* If pTemplate is always better than p, then cause p to be overwritten
2130     ** with pTemplate.  pTemplate is better than p if:
2131     **   (1)  pTemplate has no more dependences than p, and
2132     **   (2)  pTemplate has an equal or lower cost than p.
2133     */
2134     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
2135      && p->rRun>=pTemplate->rRun                             /* (2a) */
2136      && p->nOut>=pTemplate->nOut                             /* (2b) */
2137     ){
2138       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2139       break;   /* Cause p to be overwritten by pTemplate */
2140     }
2141   }
2142   return ppPrev;
2143 }
2144 
2145 /*
2146 ** Insert or replace a WhereLoop entry using the template supplied.
2147 **
2148 ** An existing WhereLoop entry might be overwritten if the new template
2149 ** is better and has fewer dependencies.  Or the template will be ignored
2150 ** and no insert will occur if an existing WhereLoop is faster and has
2151 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
2152 ** added based on the template.
2153 **
2154 ** If pBuilder->pOrSet is not NULL then we care about only the
2155 ** prerequisites and rRun and nOut costs of the N best loops.  That
2156 ** information is gathered in the pBuilder->pOrSet object.  This special
2157 ** processing mode is used only for OR clause processing.
2158 **
2159 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2160 ** still might overwrite similar loops with the new template if the
2161 ** new template is better.  Loops may be overwritten if the following
2162 ** conditions are met:
2163 **
2164 **    (1)  They have the same iTab.
2165 **    (2)  They have the same iSortIdx.
2166 **    (3)  The template has same or fewer dependencies than the current loop
2167 **    (4)  The template has the same or lower cost than the current loop
2168 */
2169 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2170   WhereLoop **ppPrev, *p;
2171   WhereInfo *pWInfo = pBuilder->pWInfo;
2172   sqlite3 *db = pWInfo->pParse->db;
2173   int rc;
2174 
2175   /* Stop the search once we hit the query planner search limit */
2176   if( pBuilder->iPlanLimit==0 ){
2177     WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
2178     if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0;
2179     return SQLITE_DONE;
2180   }
2181   pBuilder->iPlanLimit--;
2182 
2183   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2184 
2185   /* If pBuilder->pOrSet is defined, then only keep track of the costs
2186   ** and prereqs.
2187   */
2188   if( pBuilder->pOrSet!=0 ){
2189     if( pTemplate->nLTerm ){
2190 #if WHERETRACE_ENABLED
2191       u16 n = pBuilder->pOrSet->n;
2192       int x =
2193 #endif
2194       whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2195                                     pTemplate->nOut);
2196 #if WHERETRACE_ENABLED /* 0x8 */
2197       if( sqlite3WhereTrace & 0x8 ){
2198         sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
2199         sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2200       }
2201 #endif
2202     }
2203     return SQLITE_OK;
2204   }
2205 
2206   /* Look for an existing WhereLoop to replace with pTemplate
2207   */
2208   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2209 
2210   if( ppPrev==0 ){
2211     /* There already exists a WhereLoop on the list that is better
2212     ** than pTemplate, so just ignore pTemplate */
2213 #if WHERETRACE_ENABLED /* 0x8 */
2214     if( sqlite3WhereTrace & 0x8 ){
2215       sqlite3DebugPrintf("   skip: ");
2216       sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2217     }
2218 #endif
2219     return SQLITE_OK;
2220   }else{
2221     p = *ppPrev;
2222   }
2223 
2224   /* If we reach this point it means that either p[] should be overwritten
2225   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2226   ** WhereLoop and insert it.
2227   */
2228 #if WHERETRACE_ENABLED /* 0x8 */
2229   if( sqlite3WhereTrace & 0x8 ){
2230     if( p!=0 ){
2231       sqlite3DebugPrintf("replace: ");
2232       sqlite3WhereLoopPrint(p, pBuilder->pWC);
2233       sqlite3DebugPrintf("   with: ");
2234     }else{
2235       sqlite3DebugPrintf("    add: ");
2236     }
2237     sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2238   }
2239 #endif
2240   if( p==0 ){
2241     /* Allocate a new WhereLoop to add to the end of the list */
2242     *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2243     if( p==0 ) return SQLITE_NOMEM_BKPT;
2244     whereLoopInit(p);
2245     p->pNextLoop = 0;
2246   }else{
2247     /* We will be overwriting WhereLoop p[].  But before we do, first
2248     ** go through the rest of the list and delete any other entries besides
2249     ** p[] that are also supplated by pTemplate */
2250     WhereLoop **ppTail = &p->pNextLoop;
2251     WhereLoop *pToDel;
2252     while( *ppTail ){
2253       ppTail = whereLoopFindLesser(ppTail, pTemplate);
2254       if( ppTail==0 ) break;
2255       pToDel = *ppTail;
2256       if( pToDel==0 ) break;
2257       *ppTail = pToDel->pNextLoop;
2258 #if WHERETRACE_ENABLED /* 0x8 */
2259       if( sqlite3WhereTrace & 0x8 ){
2260         sqlite3DebugPrintf(" delete: ");
2261         sqlite3WhereLoopPrint(pToDel, pBuilder->pWC);
2262       }
2263 #endif
2264       whereLoopDelete(db, pToDel);
2265     }
2266   }
2267   rc = whereLoopXfer(db, p, pTemplate);
2268   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2269     Index *pIndex = p->u.btree.pIndex;
2270     if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){
2271       p->u.btree.pIndex = 0;
2272     }
2273   }
2274   return rc;
2275 }
2276 
2277 /*
2278 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2279 ** WHERE clause that reference the loop but which are not used by an
2280 ** index.
2281 *
2282 ** For every WHERE clause term that is not used by the index
2283 ** and which has a truth probability assigned by one of the likelihood(),
2284 ** likely(), or unlikely() SQL functions, reduce the estimated number
2285 ** of output rows by the probability specified.
2286 **
2287 ** TUNING:  For every WHERE clause term that is not used by the index
2288 ** and which does not have an assigned truth probability, heuristics
2289 ** described below are used to try to estimate the truth probability.
2290 ** TODO --> Perhaps this is something that could be improved by better
2291 ** table statistics.
2292 **
2293 ** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
2294 ** value corresponds to -1 in LogEst notation, so this means decrement
2295 ** the WhereLoop.nOut field for every such WHERE clause term.
2296 **
2297 ** Heuristic 2:  If there exists one or more WHERE clause terms of the
2298 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2299 ** final output row estimate is no greater than 1/4 of the total number
2300 ** of rows in the table.  In other words, assume that x==EXPR will filter
2301 ** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
2302 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2303 ** on the "x" column and so in that case only cap the output row estimate
2304 ** at 1/2 instead of 1/4.
2305 */
2306 static void whereLoopOutputAdjust(
2307   WhereClause *pWC,      /* The WHERE clause */
2308   WhereLoop *pLoop,      /* The loop to adjust downward */
2309   LogEst nRow            /* Number of rows in the entire table */
2310 ){
2311   WhereTerm *pTerm, *pX;
2312   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2313   int i, j;
2314   LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */
2315 
2316   assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2317   for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
2318     assert( pTerm!=0 );
2319     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
2320     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2321     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2322     for(j=pLoop->nLTerm-1; j>=0; j--){
2323       pX = pLoop->aLTerm[j];
2324       if( pX==0 ) continue;
2325       if( pX==pTerm ) break;
2326       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2327     }
2328     if( j<0 ){
2329       if( pTerm->truthProb<=0 ){
2330         /* If a truth probability is specified using the likelihood() hints,
2331         ** then use the probability provided by the application. */
2332         pLoop->nOut += pTerm->truthProb;
2333       }else{
2334         /* In the absence of explicit truth probabilities, use heuristics to
2335         ** guess a reasonable truth probability. */
2336         pLoop->nOut--;
2337         if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0
2338          && (pTerm->wtFlags & TERM_HIGHTRUTH)==0  /* tag-20200224-1 */
2339         ){
2340           Expr *pRight = pTerm->pExpr->pRight;
2341           int k = 0;
2342           testcase( pTerm->pExpr->op==TK_IS );
2343           if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2344             k = 10;
2345           }else{
2346             k = 20;
2347           }
2348           if( iReduce<k ){
2349             pTerm->wtFlags |= TERM_HEURTRUTH;
2350             iReduce = k;
2351           }
2352         }
2353       }
2354     }
2355   }
2356   if( pLoop->nOut > nRow-iReduce )  pLoop->nOut = nRow - iReduce;
2357 }
2358 
2359 /*
2360 ** Term pTerm is a vector range comparison operation. The first comparison
2361 ** in the vector can be optimized using column nEq of the index. This
2362 ** function returns the total number of vector elements that can be used
2363 ** as part of the range comparison.
2364 **
2365 ** For example, if the query is:
2366 **
2367 **   WHERE a = ? AND (b, c, d) > (?, ?, ?)
2368 **
2369 ** and the index:
2370 **
2371 **   CREATE INDEX ... ON (a, b, c, d, e)
2372 **
2373 ** then this function would be invoked with nEq=1. The value returned in
2374 ** this case is 3.
2375 */
2376 static int whereRangeVectorLen(
2377   Parse *pParse,       /* Parsing context */
2378   int iCur,            /* Cursor open on pIdx */
2379   Index *pIdx,         /* The index to be used for a inequality constraint */
2380   int nEq,             /* Number of prior equality constraints on same index */
2381   WhereTerm *pTerm     /* The vector inequality constraint */
2382 ){
2383   int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2384   int i;
2385 
2386   nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2387   for(i=1; i<nCmp; i++){
2388     /* Test if comparison i of pTerm is compatible with column (i+nEq)
2389     ** of the index. If not, exit the loop.  */
2390     char aff;                     /* Comparison affinity */
2391     char idxaff = 0;              /* Indexed columns affinity */
2392     CollSeq *pColl;               /* Comparison collation sequence */
2393     Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2394     Expr *pRhs = pTerm->pExpr->pRight;
2395     if( pRhs->flags & EP_xIsSelect ){
2396       pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2397     }else{
2398       pRhs = pRhs->x.pList->a[i].pExpr;
2399     }
2400 
2401     /* Check that the LHS of the comparison is a column reference to
2402     ** the right column of the right source table. And that the sort
2403     ** order of the index column is the same as the sort order of the
2404     ** leftmost index column.  */
2405     if( pLhs->op!=TK_COLUMN
2406      || pLhs->iTable!=iCur
2407      || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2408      || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2409     ){
2410       break;
2411     }
2412 
2413     testcase( pLhs->iColumn==XN_ROWID );
2414     aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2415     idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2416     if( aff!=idxaff ) break;
2417 
2418     pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2419     if( pColl==0 ) break;
2420     if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2421   }
2422   return i;
2423 }
2424 
2425 /*
2426 ** Adjust the cost C by the costMult facter T.  This only occurs if
2427 ** compiled with -DSQLITE_ENABLE_COSTMULT
2428 */
2429 #ifdef SQLITE_ENABLE_COSTMULT
2430 # define ApplyCostMultiplier(C,T)  C += T
2431 #else
2432 # define ApplyCostMultiplier(C,T)
2433 #endif
2434 
2435 /*
2436 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2437 ** index pIndex. Try to match one more.
2438 **
2439 ** When this function is called, pBuilder->pNew->nOut contains the
2440 ** number of rows expected to be visited by filtering using the nEq
2441 ** terms only. If it is modified, this value is restored before this
2442 ** function returns.
2443 **
2444 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
2445 ** a fake index used for the INTEGER PRIMARY KEY.
2446 */
2447 static int whereLoopAddBtreeIndex(
2448   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
2449   SrcItem *pSrc,                  /* FROM clause term being analyzed */
2450   Index *pProbe,                  /* An index on pSrc */
2451   LogEst nInMul                   /* log(Number of iterations due to IN) */
2452 ){
2453   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
2454   Parse *pParse = pWInfo->pParse;        /* Parsing context */
2455   sqlite3 *db = pParse->db;       /* Database connection malloc context */
2456   WhereLoop *pNew;                /* Template WhereLoop under construction */
2457   WhereTerm *pTerm;               /* A WhereTerm under consideration */
2458   int opMask;                     /* Valid operators for constraints */
2459   WhereScan scan;                 /* Iterator for WHERE terms */
2460   Bitmask saved_prereq;           /* Original value of pNew->prereq */
2461   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
2462   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
2463   u16 saved_nBtm;                 /* Original value of pNew->u.btree.nBtm */
2464   u16 saved_nTop;                 /* Original value of pNew->u.btree.nTop */
2465   u16 saved_nSkip;                /* Original value of pNew->nSkip */
2466   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
2467   LogEst saved_nOut;              /* Original value of pNew->nOut */
2468   int rc = SQLITE_OK;             /* Return code */
2469   LogEst rSize;                   /* Number of rows in the table */
2470   LogEst rLogSize;                /* Logarithm of table size */
2471   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2472 
2473   pNew = pBuilder->pNew;
2474   if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2475   WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n",
2476                      pProbe->pTable->zName,pProbe->zName,
2477                      pNew->u.btree.nEq, pNew->nSkip, pNew->rRun));
2478 
2479   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2480   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2481   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2482     opMask = WO_LT|WO_LE;
2483   }else{
2484     assert( pNew->u.btree.nBtm==0 );
2485     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2486   }
2487   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2488 
2489   assert( pNew->u.btree.nEq<pProbe->nColumn );
2490 
2491   saved_nEq = pNew->u.btree.nEq;
2492   saved_nBtm = pNew->u.btree.nBtm;
2493   saved_nTop = pNew->u.btree.nTop;
2494   saved_nSkip = pNew->nSkip;
2495   saved_nLTerm = pNew->nLTerm;
2496   saved_wsFlags = pNew->wsFlags;
2497   saved_prereq = pNew->prereq;
2498   saved_nOut = pNew->nOut;
2499   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2500                         opMask, pProbe);
2501   pNew->rSetup = 0;
2502   rSize = pProbe->aiRowLogEst[0];
2503   rLogSize = estLog(rSize);
2504   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2505     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
2506     LogEst rCostIdx;
2507     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
2508     int nIn = 0;
2509 #ifdef SQLITE_ENABLE_STAT4
2510     int nRecValid = pBuilder->nRecValid;
2511 #endif
2512     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2513      && indexColumnNotNull(pProbe, saved_nEq)
2514     ){
2515       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2516     }
2517     if( pTerm->prereqRight & pNew->maskSelf ) continue;
2518 
2519     /* Do not allow the upper bound of a LIKE optimization range constraint
2520     ** to mix with a lower range bound from some other source */
2521     if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2522 
2523     /* tag-20191211-001:  Do not allow constraints from the WHERE clause to
2524     ** be used by the right table of a LEFT JOIN.  Only constraints in the
2525     ** ON clause are allowed.  See tag-20191211-002 for the vtab equivalent. */
2526     if( (pSrc->fg.jointype & JT_LEFT)!=0
2527      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
2528     ){
2529       continue;
2530     }
2531 
2532     if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2533       pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE;
2534     }else{
2535       pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED;
2536     }
2537     pNew->wsFlags = saved_wsFlags;
2538     pNew->u.btree.nEq = saved_nEq;
2539     pNew->u.btree.nBtm = saved_nBtm;
2540     pNew->u.btree.nTop = saved_nTop;
2541     pNew->nLTerm = saved_nLTerm;
2542     if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2543     pNew->aLTerm[pNew->nLTerm++] = pTerm;
2544     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2545 
2546     assert( nInMul==0
2547         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2548         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2549         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2550     );
2551 
2552     if( eOp & WO_IN ){
2553       Expr *pExpr = pTerm->pExpr;
2554       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2555         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
2556         int i;
2557         nIn = 46;  assert( 46==sqlite3LogEst(25) );
2558 
2559         /* The expression may actually be of the form (x, y) IN (SELECT...).
2560         ** In this case there is a separate term for each of (x) and (y).
2561         ** However, the nIn multiplier should only be applied once, not once
2562         ** for each such term. The following loop checks that pTerm is the
2563         ** first such term in use, and sets nIn back to 0 if it is not. */
2564         for(i=0; i<pNew->nLTerm-1; i++){
2565           if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2566         }
2567       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2568         /* "x IN (value, value, ...)" */
2569         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2570       }
2571       if( pProbe->hasStat1 && rLogSize>=10 ){
2572         LogEst M, logK, safetyMargin;
2573         /* Let:
2574         **   N = the total number of rows in the table
2575         **   K = the number of entries on the RHS of the IN operator
2576         **   M = the number of rows in the table that match terms to the
2577         **       to the left in the same index.  If the IN operator is on
2578         **       the left-most index column, M==N.
2579         **
2580         ** Given the definitions above, it is better to omit the IN operator
2581         ** from the index lookup and instead do a scan of the M elements,
2582         ** testing each scanned row against the IN operator separately, if:
2583         **
2584         **        M*log(K) < K*log(N)
2585         **
2586         ** Our estimates for M, K, and N might be inaccurate, so we build in
2587         ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
2588         ** with the index, as using an index has better worst-case behavior.
2589         ** If we do not have real sqlite_stat1 data, always prefer to use
2590         ** the index.  Do not bother with this optimization on very small
2591         ** tables (less than 2 rows) as it is pointless in that case.
2592         */
2593         M = pProbe->aiRowLogEst[saved_nEq];
2594         logK = estLog(nIn);
2595         safetyMargin = 10;  /* TUNING: extra weight for indexed IN */
2596         if( M + logK + safetyMargin < nIn + rLogSize ){
2597           WHERETRACE(0x40,
2598             ("Scan preferred over IN operator on column %d of \"%s\" (%d<%d)\n",
2599              saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize));
2600           pNew->wsFlags |= WHERE_IN_SEEKSCAN;
2601         }else{
2602           WHERETRACE(0x40,
2603             ("IN operator preferred on column %d of \"%s\" (%d>=%d)\n",
2604              saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize));
2605         }
2606       }
2607       pNew->wsFlags |= WHERE_COLUMN_IN;
2608     }else if( eOp & (WO_EQ|WO_IS) ){
2609       int iCol = pProbe->aiColumn[saved_nEq];
2610       pNew->wsFlags |= WHERE_COLUMN_EQ;
2611       assert( saved_nEq==pNew->u.btree.nEq );
2612       if( iCol==XN_ROWID
2613        || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2614       ){
2615         if( iCol==XN_ROWID || pProbe->uniqNotNull
2616          || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
2617         ){
2618           pNew->wsFlags |= WHERE_ONEROW;
2619         }else{
2620           pNew->wsFlags |= WHERE_UNQ_WANTED;
2621         }
2622       }
2623     }else if( eOp & WO_ISNULL ){
2624       pNew->wsFlags |= WHERE_COLUMN_NULL;
2625     }else if( eOp & (WO_GT|WO_GE) ){
2626       testcase( eOp & WO_GT );
2627       testcase( eOp & WO_GE );
2628       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2629       pNew->u.btree.nBtm = whereRangeVectorLen(
2630           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2631       );
2632       pBtm = pTerm;
2633       pTop = 0;
2634       if( pTerm->wtFlags & TERM_LIKEOPT ){
2635         /* Range constraints that come from the LIKE optimization are
2636         ** always used in pairs. */
2637         pTop = &pTerm[1];
2638         assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2639         assert( pTop->wtFlags & TERM_LIKEOPT );
2640         assert( pTop->eOperator==WO_LT );
2641         if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2642         pNew->aLTerm[pNew->nLTerm++] = pTop;
2643         pNew->wsFlags |= WHERE_TOP_LIMIT;
2644         pNew->u.btree.nTop = 1;
2645       }
2646     }else{
2647       assert( eOp & (WO_LT|WO_LE) );
2648       testcase( eOp & WO_LT );
2649       testcase( eOp & WO_LE );
2650       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2651       pNew->u.btree.nTop = whereRangeVectorLen(
2652           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2653       );
2654       pTop = pTerm;
2655       pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2656                      pNew->aLTerm[pNew->nLTerm-2] : 0;
2657     }
2658 
2659     /* At this point pNew->nOut is set to the number of rows expected to
2660     ** be visited by the index scan before considering term pTerm, or the
2661     ** values of nIn and nInMul. In other words, assuming that all
2662     ** "x IN(...)" terms are replaced with "x = ?". This block updates
2663     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
2664     assert( pNew->nOut==saved_nOut );
2665     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2666       /* Adjust nOut using stat4 data. Or, if there is no stat4
2667       ** data, using some other estimate.  */
2668       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2669     }else{
2670       int nEq = ++pNew->u.btree.nEq;
2671       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2672 
2673       assert( pNew->nOut==saved_nOut );
2674       if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2675         assert( (eOp & WO_IN) || nIn==0 );
2676         testcase( eOp & WO_IN );
2677         pNew->nOut += pTerm->truthProb;
2678         pNew->nOut -= nIn;
2679       }else{
2680 #ifdef SQLITE_ENABLE_STAT4
2681         tRowcnt nOut = 0;
2682         if( nInMul==0
2683          && pProbe->nSample
2684          && pNew->u.btree.nEq<=pProbe->nSampleCol
2685          && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
2686          && OptimizationEnabled(db, SQLITE_Stat4)
2687         ){
2688           Expr *pExpr = pTerm->pExpr;
2689           if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2690             testcase( eOp & WO_EQ );
2691             testcase( eOp & WO_IS );
2692             testcase( eOp & WO_ISNULL );
2693             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2694           }else{
2695             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2696           }
2697           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2698           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
2699           if( nOut ){
2700             pNew->nOut = sqlite3LogEst(nOut);
2701             if( nEq==1
2702              /* TUNING: Mark terms as "low selectivity" if they seem likely
2703              ** to be true for half or more of the rows in the table.
2704              ** See tag-202002240-1 */
2705              && pNew->nOut+10 > pProbe->aiRowLogEst[0]
2706             ){
2707 #if WHERETRACE_ENABLED /* 0x01 */
2708               if( sqlite3WhereTrace & 0x01 ){
2709                 sqlite3DebugPrintf(
2710                    "STAT4 determines term has low selectivity:\n");
2711                 sqlite3WhereTermPrint(pTerm, 999);
2712               }
2713 #endif
2714               pTerm->wtFlags |= TERM_HIGHTRUTH;
2715               if( pTerm->wtFlags & TERM_HEURTRUTH ){
2716                 /* If the term has previously been used with an assumption of
2717                 ** higher selectivity, then set the flag to rerun the
2718                 ** loop computations. */
2719                 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS;
2720               }
2721             }
2722             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
2723             pNew->nOut -= nIn;
2724           }
2725         }
2726         if( nOut==0 )
2727 #endif
2728         {
2729           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
2730           if( eOp & WO_ISNULL ){
2731             /* TUNING: If there is no likelihood() value, assume that a
2732             ** "col IS NULL" expression matches twice as many rows
2733             ** as (col=?). */
2734             pNew->nOut += 10;
2735           }
2736         }
2737       }
2738     }
2739 
2740     /* Set rCostIdx to the cost of visiting selected rows in index. Add
2741     ** it to pNew->rRun, which is currently set to the cost of the index
2742     ** seek only. Then, if this is a non-covering index, add the cost of
2743     ** visiting the rows in the main table.  */
2744     assert( pSrc->pTab->szTabRow>0 );
2745     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
2746     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
2747     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
2748       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
2749     }
2750     ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
2751 
2752     nOutUnadjusted = pNew->nOut;
2753     pNew->rRun += nInMul + nIn;
2754     pNew->nOut += nInMul + nIn;
2755     whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
2756     rc = whereLoopInsert(pBuilder, pNew);
2757 
2758     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2759       pNew->nOut = saved_nOut;
2760     }else{
2761       pNew->nOut = nOutUnadjusted;
2762     }
2763 
2764     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
2765      && pNew->u.btree.nEq<pProbe->nColumn
2766     ){
2767       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
2768     }
2769     pNew->nOut = saved_nOut;
2770 #ifdef SQLITE_ENABLE_STAT4
2771     pBuilder->nRecValid = nRecValid;
2772 #endif
2773   }
2774   pNew->prereq = saved_prereq;
2775   pNew->u.btree.nEq = saved_nEq;
2776   pNew->u.btree.nBtm = saved_nBtm;
2777   pNew->u.btree.nTop = saved_nTop;
2778   pNew->nSkip = saved_nSkip;
2779   pNew->wsFlags = saved_wsFlags;
2780   pNew->nOut = saved_nOut;
2781   pNew->nLTerm = saved_nLTerm;
2782 
2783   /* Consider using a skip-scan if there are no WHERE clause constraints
2784   ** available for the left-most terms of the index, and if the average
2785   ** number of repeats in the left-most terms is at least 18.
2786   **
2787   ** The magic number 18 is selected on the basis that scanning 17 rows
2788   ** is almost always quicker than an index seek (even though if the index
2789   ** contains fewer than 2^17 rows we assume otherwise in other parts of
2790   ** the code). And, even if it is not, it should not be too much slower.
2791   ** On the other hand, the extra seeks could end up being significantly
2792   ** more expensive.  */
2793   assert( 42==sqlite3LogEst(18) );
2794   if( saved_nEq==saved_nSkip
2795    && saved_nEq+1<pProbe->nKeyCol
2796    && saved_nEq==pNew->nLTerm
2797    && pProbe->noSkipScan==0
2798    && pProbe->hasStat1!=0
2799    && OptimizationEnabled(db, SQLITE_SkipScan)
2800    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
2801    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
2802   ){
2803     LogEst nIter;
2804     pNew->u.btree.nEq++;
2805     pNew->nSkip++;
2806     pNew->aLTerm[pNew->nLTerm++] = 0;
2807     pNew->wsFlags |= WHERE_SKIPSCAN;
2808     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
2809     pNew->nOut -= nIter;
2810     /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
2811     ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
2812     nIter += 5;
2813     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
2814     pNew->nOut = saved_nOut;
2815     pNew->u.btree.nEq = saved_nEq;
2816     pNew->nSkip = saved_nSkip;
2817     pNew->wsFlags = saved_wsFlags;
2818   }
2819 
2820   WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
2821                       pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
2822   return rc;
2823 }
2824 
2825 /*
2826 ** Return True if it is possible that pIndex might be useful in
2827 ** implementing the ORDER BY clause in pBuilder.
2828 **
2829 ** Return False if pBuilder does not contain an ORDER BY clause or
2830 ** if there is no way for pIndex to be useful in implementing that
2831 ** ORDER BY clause.
2832 */
2833 static int indexMightHelpWithOrderBy(
2834   WhereLoopBuilder *pBuilder,
2835   Index *pIndex,
2836   int iCursor
2837 ){
2838   ExprList *pOB;
2839   ExprList *aColExpr;
2840   int ii, jj;
2841 
2842   if( pIndex->bUnordered ) return 0;
2843   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
2844   for(ii=0; ii<pOB->nExpr; ii++){
2845     Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr);
2846     if( NEVER(pExpr==0) ) continue;
2847     if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
2848       if( pExpr->iColumn<0 ) return 1;
2849       for(jj=0; jj<pIndex->nKeyCol; jj++){
2850         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
2851       }
2852     }else if( (aColExpr = pIndex->aColExpr)!=0 ){
2853       for(jj=0; jj<pIndex->nKeyCol; jj++){
2854         if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
2855         if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
2856           return 1;
2857         }
2858       }
2859     }
2860   }
2861   return 0;
2862 }
2863 
2864 /* Check to see if a partial index with pPartIndexWhere can be used
2865 ** in the current query.  Return true if it can be and false if not.
2866 */
2867 static int whereUsablePartialIndex(
2868   int iTab,             /* The table for which we want an index */
2869   int isLeft,           /* True if iTab is the right table of a LEFT JOIN */
2870   WhereClause *pWC,     /* The WHERE clause of the query */
2871   Expr *pWhere          /* The WHERE clause from the partial index */
2872 ){
2873   int i;
2874   WhereTerm *pTerm;
2875   Parse *pParse = pWC->pWInfo->pParse;
2876   while( pWhere->op==TK_AND ){
2877     if( !whereUsablePartialIndex(iTab,isLeft,pWC,pWhere->pLeft) ) return 0;
2878     pWhere = pWhere->pRight;
2879   }
2880   if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
2881   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
2882     Expr *pExpr;
2883     pExpr = pTerm->pExpr;
2884     if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
2885      && (isLeft==0 || ExprHasProperty(pExpr, EP_FromJoin))
2886      && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
2887     ){
2888       return 1;
2889     }
2890   }
2891   return 0;
2892 }
2893 
2894 /*
2895 ** Add all WhereLoop objects for a single table of the join where the table
2896 ** is identified by pBuilder->pNew->iTab.  That table is guaranteed to be
2897 ** a b-tree table, not a virtual table.
2898 **
2899 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
2900 ** are calculated as follows:
2901 **
2902 ** For a full scan, assuming the table (or index) contains nRow rows:
2903 **
2904 **     cost = nRow * 3.0                    // full-table scan
2905 **     cost = nRow * K                      // scan of covering index
2906 **     cost = nRow * (K+3.0)                // scan of non-covering index
2907 **
2908 ** where K is a value between 1.1 and 3.0 set based on the relative
2909 ** estimated average size of the index and table records.
2910 **
2911 ** For an index scan, where nVisit is the number of index rows visited
2912 ** by the scan, and nSeek is the number of seek operations required on
2913 ** the index b-tree:
2914 **
2915 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
2916 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
2917 **
2918 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
2919 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
2920 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
2921 **
2922 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
2923 ** of uncertainty.  For this reason, scoring is designed to pick plans that
2924 ** "do the least harm" if the estimates are inaccurate.  For example, a
2925 ** log(nRow) factor is omitted from a non-covering index scan in order to
2926 ** bias the scoring in favor of using an index, since the worst-case
2927 ** performance of using an index is far better than the worst-case performance
2928 ** of a full table scan.
2929 */
2930 static int whereLoopAddBtree(
2931   WhereLoopBuilder *pBuilder, /* WHERE clause information */
2932   Bitmask mPrereq             /* Extra prerequesites for using this table */
2933 ){
2934   WhereInfo *pWInfo;          /* WHERE analysis context */
2935   Index *pProbe;              /* An index we are evaluating */
2936   Index sPk;                  /* A fake index object for the primary key */
2937   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
2938   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
2939   SrcList *pTabList;          /* The FROM clause */
2940   SrcItem *pSrc;              /* The FROM clause btree term to add */
2941   WhereLoop *pNew;            /* Template WhereLoop object */
2942   int rc = SQLITE_OK;         /* Return code */
2943   int iSortIdx = 1;           /* Index number */
2944   int b;                      /* A boolean value */
2945   LogEst rSize;               /* number of rows in the table */
2946   LogEst rLogSize;            /* Logarithm of the number of rows in the table */
2947   WhereClause *pWC;           /* The parsed WHERE clause */
2948   Table *pTab;                /* Table being queried */
2949 
2950   pNew = pBuilder->pNew;
2951   pWInfo = pBuilder->pWInfo;
2952   pTabList = pWInfo->pTabList;
2953   pSrc = pTabList->a + pNew->iTab;
2954   pTab = pSrc->pTab;
2955   pWC = pBuilder->pWC;
2956   assert( !IsVirtual(pSrc->pTab) );
2957 
2958   if( pSrc->fg.isIndexedBy ){
2959     /* An INDEXED BY clause specifies a particular index to use */
2960     pProbe = pSrc->u2.pIBIndex;
2961   }else if( !HasRowid(pTab) ){
2962     pProbe = pTab->pIndex;
2963   }else{
2964     /* There is no INDEXED BY clause.  Create a fake Index object in local
2965     ** variable sPk to represent the rowid primary key index.  Make this
2966     ** fake index the first in a chain of Index objects with all of the real
2967     ** indices to follow */
2968     Index *pFirst;                  /* First of real indices on the table */
2969     memset(&sPk, 0, sizeof(Index));
2970     sPk.nKeyCol = 1;
2971     sPk.nColumn = 1;
2972     sPk.aiColumn = &aiColumnPk;
2973     sPk.aiRowLogEst = aiRowEstPk;
2974     sPk.onError = OE_Replace;
2975     sPk.pTable = pTab;
2976     sPk.szIdxRow = pTab->szTabRow;
2977     sPk.idxType = SQLITE_IDXTYPE_IPK;
2978     aiRowEstPk[0] = pTab->nRowLogEst;
2979     aiRowEstPk[1] = 0;
2980     pFirst = pSrc->pTab->pIndex;
2981     if( pSrc->fg.notIndexed==0 ){
2982       /* The real indices of the table are only considered if the
2983       ** NOT INDEXED qualifier is omitted from the FROM clause */
2984       sPk.pNext = pFirst;
2985     }
2986     pProbe = &sPk;
2987   }
2988   rSize = pTab->nRowLogEst;
2989   rLogSize = estLog(rSize);
2990 
2991 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
2992   /* Automatic indexes */
2993   if( !pBuilder->pOrSet      /* Not part of an OR optimization */
2994    && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
2995    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
2996    && !pSrc->fg.isIndexedBy  /* Has no INDEXED BY clause */
2997    && !pSrc->fg.notIndexed   /* Has no NOT INDEXED clause */
2998    && HasRowid(pTab)         /* Not WITHOUT ROWID table. (FIXME: Why not?) */
2999    && !pSrc->fg.isCorrelated /* Not a correlated subquery */
3000    && !pSrc->fg.isRecursive  /* Not a recursive common table expression. */
3001   ){
3002     /* Generate auto-index WhereLoops */
3003     WhereTerm *pTerm;
3004     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
3005     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
3006       if( pTerm->prereqRight & pNew->maskSelf ) continue;
3007       if( termCanDriveIndex(pTerm, pSrc, 0) ){
3008         pNew->u.btree.nEq = 1;
3009         pNew->nSkip = 0;
3010         pNew->u.btree.pIndex = 0;
3011         pNew->nLTerm = 1;
3012         pNew->aLTerm[0] = pTerm;
3013         /* TUNING: One-time cost for computing the automatic index is
3014         ** estimated to be X*N*log2(N) where N is the number of rows in
3015         ** the table being indexed and where X is 7 (LogEst=28) for normal
3016         ** tables or 0.5 (LogEst=-10) for views and subqueries.  The value
3017         ** of X is smaller for views and subqueries so that the query planner
3018         ** will be more aggressive about generating automatic indexes for
3019         ** those objects, since there is no opportunity to add schema
3020         ** indexes on subqueries and views. */
3021         pNew->rSetup = rLogSize + rSize;
3022         if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){
3023           pNew->rSetup += 28;
3024         }else{
3025           pNew->rSetup -= 10;
3026         }
3027         ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
3028         if( pNew->rSetup<0 ) pNew->rSetup = 0;
3029         /* TUNING: Each index lookup yields 20 rows in the table.  This
3030         ** is more than the usual guess of 10 rows, since we have no way
3031         ** of knowing how selective the index will ultimately be.  It would
3032         ** not be unreasonable to make this value much larger. */
3033         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
3034         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
3035         pNew->wsFlags = WHERE_AUTO_INDEX;
3036         pNew->prereq = mPrereq | pTerm->prereqRight;
3037         rc = whereLoopInsert(pBuilder, pNew);
3038       }
3039     }
3040   }
3041 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
3042 
3043   /* Loop over all indices. If there was an INDEXED BY clause, then only
3044   ** consider index pProbe.  */
3045   for(; rc==SQLITE_OK && pProbe;
3046       pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++
3047   ){
3048     int isLeft = (pSrc->fg.jointype & JT_OUTER)!=0;
3049     if( pProbe->pPartIdxWhere!=0
3050      && !whereUsablePartialIndex(pSrc->iCursor, isLeft, pWC,
3051                                  pProbe->pPartIdxWhere)
3052     ){
3053       testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
3054       continue;  /* Partial index inappropriate for this query */
3055     }
3056     if( pProbe->bNoQuery ) continue;
3057     rSize = pProbe->aiRowLogEst[0];
3058     pNew->u.btree.nEq = 0;
3059     pNew->u.btree.nBtm = 0;
3060     pNew->u.btree.nTop = 0;
3061     pNew->nSkip = 0;
3062     pNew->nLTerm = 0;
3063     pNew->iSortIdx = 0;
3064     pNew->rSetup = 0;
3065     pNew->prereq = mPrereq;
3066     pNew->nOut = rSize;
3067     pNew->u.btree.pIndex = pProbe;
3068     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
3069 
3070     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
3071     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
3072     if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){
3073       /* Integer primary key index */
3074       pNew->wsFlags = WHERE_IPK;
3075 
3076       /* Full table scan */
3077       pNew->iSortIdx = b ? iSortIdx : 0;
3078       /* TUNING: Cost of full table scan is 3.0*N.  The 3.0 factor is an
3079       ** extra cost designed to discourage the use of full table scans,
3080       ** since index lookups have better worst-case performance if our
3081       ** stat guesses are wrong.  Reduce the 3.0 penalty slightly
3082       ** (to 2.75) if we have valid STAT4 information for the table.
3083       ** At 2.75, a full table scan is preferred over using an index on
3084       ** a column with just two distinct values where each value has about
3085       ** an equal number of appearances.  Without STAT4 data, we still want
3086       ** to use an index in that case, since the constraint might be for
3087       ** the scarcer of the two values, and in that case an index lookup is
3088       ** better.
3089       */
3090 #ifdef SQLITE_ENABLE_STAT4
3091       pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0);
3092 #else
3093       pNew->rRun = rSize + 16;
3094 #endif
3095       ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3096       whereLoopOutputAdjust(pWC, pNew, rSize);
3097       rc = whereLoopInsert(pBuilder, pNew);
3098       pNew->nOut = rSize;
3099       if( rc ) break;
3100     }else{
3101       Bitmask m;
3102       if( pProbe->isCovering ){
3103         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
3104         m = 0;
3105       }else{
3106         m = pSrc->colUsed & pProbe->colNotIdxed;
3107         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
3108       }
3109 
3110       /* Full scan via index */
3111       if( b
3112        || !HasRowid(pTab)
3113        || pProbe->pPartIdxWhere!=0
3114        || pSrc->fg.isIndexedBy
3115        || ( m==0
3116          && pProbe->bUnordered==0
3117          && (pProbe->szIdxRow<pTab->szTabRow)
3118          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
3119          && sqlite3GlobalConfig.bUseCis
3120          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
3121           )
3122       ){
3123         pNew->iSortIdx = b ? iSortIdx : 0;
3124 
3125         /* The cost of visiting the index rows is N*K, where K is
3126         ** between 1.1 and 3.0, depending on the relative sizes of the
3127         ** index and table rows. */
3128         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
3129         if( m!=0 ){
3130           /* If this is a non-covering index scan, add in the cost of
3131           ** doing table lookups.  The cost will be 3x the number of
3132           ** lookups.  Take into account WHERE clause terms that can be
3133           ** satisfied using just the index, and that do not require a
3134           ** table lookup. */
3135           LogEst nLookup = rSize + 16;  /* Base cost:  N*3 */
3136           int ii;
3137           int iCur = pSrc->iCursor;
3138           WhereClause *pWC2 = &pWInfo->sWC;
3139           for(ii=0; ii<pWC2->nTerm; ii++){
3140             WhereTerm *pTerm = &pWC2->a[ii];
3141             if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
3142               break;
3143             }
3144             /* pTerm can be evaluated using just the index.  So reduce
3145             ** the expected number of table lookups accordingly */
3146             if( pTerm->truthProb<=0 ){
3147               nLookup += pTerm->truthProb;
3148             }else{
3149               nLookup--;
3150               if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
3151             }
3152           }
3153 
3154           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
3155         }
3156         ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3157         whereLoopOutputAdjust(pWC, pNew, rSize);
3158         rc = whereLoopInsert(pBuilder, pNew);
3159         pNew->nOut = rSize;
3160         if( rc ) break;
3161       }
3162     }
3163 
3164     pBuilder->bldFlags1 = 0;
3165     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
3166     if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){
3167       /* If a non-unique index is used, or if a prefix of the key for
3168       ** unique index is used (making the index functionally non-unique)
3169       ** then the sqlite_stat1 data becomes important for scoring the
3170       ** plan */
3171       pTab->tabFlags |= TF_StatsUsed;
3172     }
3173 #ifdef SQLITE_ENABLE_STAT4
3174     sqlite3Stat4ProbeFree(pBuilder->pRec);
3175     pBuilder->nRecValid = 0;
3176     pBuilder->pRec = 0;
3177 #endif
3178   }
3179   return rc;
3180 }
3181 
3182 #ifndef SQLITE_OMIT_VIRTUALTABLE
3183 
3184 /*
3185 ** Argument pIdxInfo is already populated with all constraints that may
3186 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3187 ** function marks a subset of those constraints usable, invokes the
3188 ** xBestIndex method and adds the returned plan to pBuilder.
3189 **
3190 ** A constraint is marked usable if:
3191 **
3192 **   * Argument mUsable indicates that its prerequisites are available, and
3193 **
3194 **   * It is not one of the operators specified in the mExclude mask passed
3195 **     as the fourth argument (which in practice is either WO_IN or 0).
3196 **
3197 ** Argument mPrereq is a mask of tables that must be scanned before the
3198 ** virtual table in question. These are added to the plans prerequisites
3199 ** before it is added to pBuilder.
3200 **
3201 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3202 ** uses one or more WO_IN terms, or false otherwise.
3203 */
3204 static int whereLoopAddVirtualOne(
3205   WhereLoopBuilder *pBuilder,
3206   Bitmask mPrereq,                /* Mask of tables that must be used. */
3207   Bitmask mUsable,                /* Mask of usable tables */
3208   u16 mExclude,                   /* Exclude terms using these operators */
3209   sqlite3_index_info *pIdxInfo,   /* Populated object for xBestIndex */
3210   u16 mNoOmit,                    /* Do not omit these constraints */
3211   int *pbIn                       /* OUT: True if plan uses an IN(...) op */
3212 ){
3213   WhereClause *pWC = pBuilder->pWC;
3214   struct sqlite3_index_constraint *pIdxCons;
3215   struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3216   int i;
3217   int mxTerm;
3218   int rc = SQLITE_OK;
3219   WhereLoop *pNew = pBuilder->pNew;
3220   Parse *pParse = pBuilder->pWInfo->pParse;
3221   SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3222   int nConstraint = pIdxInfo->nConstraint;
3223 
3224   assert( (mUsable & mPrereq)==mPrereq );
3225   *pbIn = 0;
3226   pNew->prereq = mPrereq;
3227 
3228   /* Set the usable flag on the subset of constraints identified by
3229   ** arguments mUsable and mExclude. */
3230   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3231   for(i=0; i<nConstraint; i++, pIdxCons++){
3232     WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3233     pIdxCons->usable = 0;
3234     if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3235      && (pTerm->eOperator & mExclude)==0
3236     ){
3237       pIdxCons->usable = 1;
3238     }
3239   }
3240 
3241   /* Initialize the output fields of the sqlite3_index_info structure */
3242   memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3243   assert( pIdxInfo->needToFreeIdxStr==0 );
3244   pIdxInfo->idxStr = 0;
3245   pIdxInfo->idxNum = 0;
3246   pIdxInfo->orderByConsumed = 0;
3247   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3248   pIdxInfo->estimatedRows = 25;
3249   pIdxInfo->idxFlags = 0;
3250   pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3251 
3252   /* Invoke the virtual table xBestIndex() method */
3253   rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3254   if( rc ){
3255     if( rc==SQLITE_CONSTRAINT ){
3256       /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
3257       ** that the particular combination of parameters provided is unusable.
3258       ** Make no entries in the loop table.
3259       */
3260       WHERETRACE(0xffff, ("  ^^^^--- non-viable plan rejected!\n"));
3261       return SQLITE_OK;
3262     }
3263     return rc;
3264   }
3265 
3266   mxTerm = -1;
3267   assert( pNew->nLSlot>=nConstraint );
3268   for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
3269   pNew->u.vtab.omitMask = 0;
3270   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3271   for(i=0; i<nConstraint; i++, pIdxCons++){
3272     int iTerm;
3273     if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3274       WhereTerm *pTerm;
3275       int j = pIdxCons->iTermOffset;
3276       if( iTerm>=nConstraint
3277        || j<0
3278        || j>=pWC->nTerm
3279        || pNew->aLTerm[iTerm]!=0
3280        || pIdxCons->usable==0
3281       ){
3282         sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3283         testcase( pIdxInfo->needToFreeIdxStr );
3284         return SQLITE_ERROR;
3285       }
3286       testcase( iTerm==nConstraint-1 );
3287       testcase( j==0 );
3288       testcase( j==pWC->nTerm-1 );
3289       pTerm = &pWC->a[j];
3290       pNew->prereq |= pTerm->prereqRight;
3291       assert( iTerm<pNew->nLSlot );
3292       pNew->aLTerm[iTerm] = pTerm;
3293       if( iTerm>mxTerm ) mxTerm = iTerm;
3294       testcase( iTerm==15 );
3295       testcase( iTerm==16 );
3296       if( pUsage[i].omit ){
3297         if( i<16 && ((1<<i)&mNoOmit)==0 ){
3298           testcase( i!=iTerm );
3299           pNew->u.vtab.omitMask |= 1<<iTerm;
3300         }else{
3301           testcase( i!=iTerm );
3302         }
3303       }
3304       if( (pTerm->eOperator & WO_IN)!=0 ){
3305         /* A virtual table that is constrained by an IN clause may not
3306         ** consume the ORDER BY clause because (1) the order of IN terms
3307         ** is not necessarily related to the order of output terms and
3308         ** (2) Multiple outputs from a single IN value will not merge
3309         ** together.  */
3310         pIdxInfo->orderByConsumed = 0;
3311         pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3312         *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3313       }
3314     }
3315   }
3316 
3317   pNew->nLTerm = mxTerm+1;
3318   for(i=0; i<=mxTerm; i++){
3319     if( pNew->aLTerm[i]==0 ){
3320       /* The non-zero argvIdx values must be contiguous.  Raise an
3321       ** error if they are not */
3322       sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3323       testcase( pIdxInfo->needToFreeIdxStr );
3324       return SQLITE_ERROR;
3325     }
3326   }
3327   assert( pNew->nLTerm<=pNew->nLSlot );
3328   pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3329   pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3330   pIdxInfo->needToFreeIdxStr = 0;
3331   pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3332   pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3333       pIdxInfo->nOrderBy : 0);
3334   pNew->rSetup = 0;
3335   pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3336   pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3337 
3338   /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3339   ** that the scan will visit at most one row. Clear it otherwise. */
3340   if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3341     pNew->wsFlags |= WHERE_ONEROW;
3342   }else{
3343     pNew->wsFlags &= ~WHERE_ONEROW;
3344   }
3345   rc = whereLoopInsert(pBuilder, pNew);
3346   if( pNew->u.vtab.needFree ){
3347     sqlite3_free(pNew->u.vtab.idxStr);
3348     pNew->u.vtab.needFree = 0;
3349   }
3350   WHERETRACE(0xffff, ("  bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3351                       *pbIn, (sqlite3_uint64)mPrereq,
3352                       (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3353 
3354   return rc;
3355 }
3356 
3357 /*
3358 ** If this function is invoked from within an xBestIndex() callback, it
3359 ** returns a pointer to a buffer containing the name of the collation
3360 ** sequence associated with element iCons of the sqlite3_index_info.aConstraint
3361 ** array. Or, if iCons is out of range or there is no active xBestIndex
3362 ** call, return NULL.
3363 */
3364 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
3365   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3366   const char *zRet = 0;
3367   if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
3368     CollSeq *pC = 0;
3369     int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
3370     Expr *pX = pHidden->pWC->a[iTerm].pExpr;
3371     if( pX->pLeft ){
3372       pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX);
3373     }
3374     zRet = (pC ? pC->zName : sqlite3StrBINARY);
3375   }
3376   return zRet;
3377 }
3378 
3379 /*
3380 ** Add all WhereLoop objects for a table of the join identified by
3381 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
3382 **
3383 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3384 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3385 ** entries that occur before the virtual table in the FROM clause and are
3386 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3387 ** mUnusable mask contains all FROM clause entries that occur after the
3388 ** virtual table and are separated from it by at least one LEFT or
3389 ** CROSS JOIN.
3390 **
3391 ** For example, if the query were:
3392 **
3393 **   ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3394 **
3395 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3396 **
3397 ** All the tables in mPrereq must be scanned before the current virtual
3398 ** table. So any terms for which all prerequisites are satisfied by
3399 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3400 ** Conversely, all tables in mUnusable must be scanned after the current
3401 ** virtual table, so any terms for which the prerequisites overlap with
3402 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3403 */
3404 static int whereLoopAddVirtual(
3405   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
3406   Bitmask mPrereq,             /* Tables that must be scanned before this one */
3407   Bitmask mUnusable            /* Tables that must be scanned after this one */
3408 ){
3409   int rc = SQLITE_OK;          /* Return code */
3410   WhereInfo *pWInfo;           /* WHERE analysis context */
3411   Parse *pParse;               /* The parsing context */
3412   WhereClause *pWC;            /* The WHERE clause */
3413   SrcItem *pSrc;               /* The FROM clause term to search */
3414   sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
3415   int nConstraint;             /* Number of constraints in p */
3416   int bIn;                     /* True if plan uses IN(...) operator */
3417   WhereLoop *pNew;
3418   Bitmask mBest;               /* Tables used by best possible plan */
3419   u16 mNoOmit;
3420 
3421   assert( (mPrereq & mUnusable)==0 );
3422   pWInfo = pBuilder->pWInfo;
3423   pParse = pWInfo->pParse;
3424   pWC = pBuilder->pWC;
3425   pNew = pBuilder->pNew;
3426   pSrc = &pWInfo->pTabList->a[pNew->iTab];
3427   assert( IsVirtual(pSrc->pTab) );
3428   p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy,
3429       &mNoOmit);
3430   if( p==0 ) return SQLITE_NOMEM_BKPT;
3431   pNew->rSetup = 0;
3432   pNew->wsFlags = WHERE_VIRTUALTABLE;
3433   pNew->nLTerm = 0;
3434   pNew->u.vtab.needFree = 0;
3435   nConstraint = p->nConstraint;
3436   if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3437     sqlite3DbFree(pParse->db, p);
3438     return SQLITE_NOMEM_BKPT;
3439   }
3440 
3441   /* First call xBestIndex() with all constraints usable. */
3442   WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
3443   WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
3444   rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn);
3445 
3446   /* If the call to xBestIndex() with all terms enabled produced a plan
3447   ** that does not require any source tables (IOW: a plan with mBest==0)
3448   ** and does not use an IN(...) operator, then there is no point in making
3449   ** any further calls to xBestIndex() since they will all return the same
3450   ** result (if the xBestIndex() implementation is sane). */
3451   if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){
3452     int seenZero = 0;             /* True if a plan with no prereqs seen */
3453     int seenZeroNoIN = 0;         /* Plan with no prereqs and no IN(...) seen */
3454     Bitmask mPrev = 0;
3455     Bitmask mBestNoIn = 0;
3456 
3457     /* If the plan produced by the earlier call uses an IN(...) term, call
3458     ** xBestIndex again, this time with IN(...) terms disabled. */
3459     if( bIn ){
3460       WHERETRACE(0x40, ("  VirtualOne: all usable w/o IN\n"));
3461       rc = whereLoopAddVirtualOne(
3462           pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn);
3463       assert( bIn==0 );
3464       mBestNoIn = pNew->prereq & ~mPrereq;
3465       if( mBestNoIn==0 ){
3466         seenZero = 1;
3467         seenZeroNoIN = 1;
3468       }
3469     }
3470 
3471     /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3472     ** in the set of terms that apply to the current virtual table.  */
3473     while( rc==SQLITE_OK ){
3474       int i;
3475       Bitmask mNext = ALLBITS;
3476       assert( mNext>0 );
3477       for(i=0; i<nConstraint; i++){
3478         Bitmask mThis = (
3479             pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3480         );
3481         if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3482       }
3483       mPrev = mNext;
3484       if( mNext==ALLBITS ) break;
3485       if( mNext==mBest || mNext==mBestNoIn ) continue;
3486       WHERETRACE(0x40, ("  VirtualOne: mPrev=%04llx mNext=%04llx\n",
3487                        (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3488       rc = whereLoopAddVirtualOne(
3489           pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn);
3490       if( pNew->prereq==mPrereq ){
3491         seenZero = 1;
3492         if( bIn==0 ) seenZeroNoIN = 1;
3493       }
3494     }
3495 
3496     /* If the calls to xBestIndex() in the above loop did not find a plan
3497     ** that requires no source tables at all (i.e. one guaranteed to be
3498     ** usable), make a call here with all source tables disabled */
3499     if( rc==SQLITE_OK && seenZero==0 ){
3500       WHERETRACE(0x40, ("  VirtualOne: all disabled\n"));
3501       rc = whereLoopAddVirtualOne(
3502           pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn);
3503       if( bIn==0 ) seenZeroNoIN = 1;
3504     }
3505 
3506     /* If the calls to xBestIndex() have so far failed to find a plan
3507     ** that requires no source tables at all and does not use an IN(...)
3508     ** operator, make a final call to obtain one here.  */
3509     if( rc==SQLITE_OK && seenZeroNoIN==0 ){
3510       WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
3511       rc = whereLoopAddVirtualOne(
3512           pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn);
3513     }
3514   }
3515 
3516   if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
3517   sqlite3DbFreeNN(pParse->db, p);
3518   WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
3519   return rc;
3520 }
3521 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3522 
3523 /*
3524 ** Add WhereLoop entries to handle OR terms.  This works for either
3525 ** btrees or virtual tables.
3526 */
3527 static int whereLoopAddOr(
3528   WhereLoopBuilder *pBuilder,
3529   Bitmask mPrereq,
3530   Bitmask mUnusable
3531 ){
3532   WhereInfo *pWInfo = pBuilder->pWInfo;
3533   WhereClause *pWC;
3534   WhereLoop *pNew;
3535   WhereTerm *pTerm, *pWCEnd;
3536   int rc = SQLITE_OK;
3537   int iCur;
3538   WhereClause tempWC;
3539   WhereLoopBuilder sSubBuild;
3540   WhereOrSet sSum, sCur;
3541   SrcItem *pItem;
3542 
3543   pWC = pBuilder->pWC;
3544   pWCEnd = pWC->a + pWC->nTerm;
3545   pNew = pBuilder->pNew;
3546   memset(&sSum, 0, sizeof(sSum));
3547   pItem = pWInfo->pTabList->a + pNew->iTab;
3548   iCur = pItem->iCursor;
3549 
3550   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
3551     if( (pTerm->eOperator & WO_OR)!=0
3552      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
3553     ){
3554       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
3555       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
3556       WhereTerm *pOrTerm;
3557       int once = 1;
3558       int i, j;
3559 
3560       sSubBuild = *pBuilder;
3561       sSubBuild.pOrderBy = 0;
3562       sSubBuild.pOrSet = &sCur;
3563 
3564       WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
3565       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
3566         if( (pOrTerm->eOperator & WO_AND)!=0 ){
3567           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
3568         }else if( pOrTerm->leftCursor==iCur ){
3569           tempWC.pWInfo = pWC->pWInfo;
3570           tempWC.pOuter = pWC;
3571           tempWC.op = TK_AND;
3572           tempWC.nTerm = 1;
3573           tempWC.a = pOrTerm;
3574           sSubBuild.pWC = &tempWC;
3575         }else{
3576           continue;
3577         }
3578         sCur.n = 0;
3579 #ifdef WHERETRACE_ENABLED
3580         WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3581                    (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
3582         if( sqlite3WhereTrace & 0x400 ){
3583           sqlite3WhereClausePrint(sSubBuild.pWC);
3584         }
3585 #endif
3586 #ifndef SQLITE_OMIT_VIRTUALTABLE
3587         if( IsVirtual(pItem->pTab) ){
3588           rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
3589         }else
3590 #endif
3591         {
3592           rc = whereLoopAddBtree(&sSubBuild, mPrereq);
3593         }
3594         if( rc==SQLITE_OK ){
3595           rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
3596         }
3597         assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0 );
3598         testcase( rc==SQLITE_DONE );
3599         if( sCur.n==0 ){
3600           sSum.n = 0;
3601           break;
3602         }else if( once ){
3603           whereOrMove(&sSum, &sCur);
3604           once = 0;
3605         }else{
3606           WhereOrSet sPrev;
3607           whereOrMove(&sPrev, &sSum);
3608           sSum.n = 0;
3609           for(i=0; i<sPrev.n; i++){
3610             for(j=0; j<sCur.n; j++){
3611               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
3612                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
3613                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
3614             }
3615           }
3616         }
3617       }
3618       pNew->nLTerm = 1;
3619       pNew->aLTerm[0] = pTerm;
3620       pNew->wsFlags = WHERE_MULTI_OR;
3621       pNew->rSetup = 0;
3622       pNew->iSortIdx = 0;
3623       memset(&pNew->u, 0, sizeof(pNew->u));
3624       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
3625         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
3626         ** of all sub-scans required by the OR-scan. However, due to rounding
3627         ** errors, it may be that the cost of the OR-scan is equal to its
3628         ** most expensive sub-scan. Add the smallest possible penalty
3629         ** (equivalent to multiplying the cost by 1.07) to ensure that
3630         ** this does not happen. Otherwise, for WHERE clauses such as the
3631         ** following where there is an index on "y":
3632         **
3633         **     WHERE likelihood(x=?, 0.99) OR y=?
3634         **
3635         ** the planner may elect to "OR" together a full-table scan and an
3636         ** index lookup. And other similarly odd results.  */
3637         pNew->rRun = sSum.a[i].rRun + 1;
3638         pNew->nOut = sSum.a[i].nOut;
3639         pNew->prereq = sSum.a[i].prereq;
3640         rc = whereLoopInsert(pBuilder, pNew);
3641       }
3642       WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
3643     }
3644   }
3645   return rc;
3646 }
3647 
3648 /*
3649 ** Add all WhereLoop objects for all tables
3650 */
3651 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
3652   WhereInfo *pWInfo = pBuilder->pWInfo;
3653   Bitmask mPrereq = 0;
3654   Bitmask mPrior = 0;
3655   int iTab;
3656   SrcList *pTabList = pWInfo->pTabList;
3657   SrcItem *pItem;
3658   SrcItem *pEnd = &pTabList->a[pWInfo->nLevel];
3659   sqlite3 *db = pWInfo->pParse->db;
3660   int rc = SQLITE_OK;
3661   WhereLoop *pNew;
3662 
3663   /* Loop over the tables in the join, from left to right */
3664   pNew = pBuilder->pNew;
3665   whereLoopInit(pNew);
3666   pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT;
3667   for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
3668     Bitmask mUnusable = 0;
3669     pNew->iTab = iTab;
3670     pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR;
3671     pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
3672     if( (pItem->fg.jointype & (JT_LEFT|JT_CROSS))!=0 ){
3673       /* This condition is true when pItem is the FROM clause term on the
3674       ** right-hand-side of a LEFT or CROSS JOIN.  */
3675       mPrereq = mPrior;
3676     }else{
3677       mPrereq = 0;
3678     }
3679 #ifndef SQLITE_OMIT_VIRTUALTABLE
3680     if( IsVirtual(pItem->pTab) ){
3681       SrcItem *p;
3682       for(p=&pItem[1]; p<pEnd; p++){
3683         if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
3684           mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
3685         }
3686       }
3687       rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
3688     }else
3689 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3690     {
3691       rc = whereLoopAddBtree(pBuilder, mPrereq);
3692     }
3693     if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
3694       rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
3695     }
3696     mPrior |= pNew->maskSelf;
3697     if( rc || db->mallocFailed ){
3698       if( rc==SQLITE_DONE ){
3699         /* We hit the query planner search limit set by iPlanLimit */
3700         sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search");
3701         rc = SQLITE_OK;
3702       }else{
3703         break;
3704       }
3705     }
3706   }
3707 
3708   whereLoopClear(db, pNew);
3709   return rc;
3710 }
3711 
3712 /*
3713 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
3714 ** parameters) to see if it outputs rows in the requested ORDER BY
3715 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
3716 **
3717 **   N>0:   N terms of the ORDER BY clause are satisfied
3718 **   N==0:  No terms of the ORDER BY clause are satisfied
3719 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
3720 **
3721 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
3722 ** strict.  With GROUP BY and DISTINCT the only requirement is that
3723 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
3724 ** and DISTINCT do not require rows to appear in any particular order as long
3725 ** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT
3726 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
3727 ** pOrderBy terms must be matched in strict left-to-right order.
3728 */
3729 static i8 wherePathSatisfiesOrderBy(
3730   WhereInfo *pWInfo,    /* The WHERE clause */
3731   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
3732   WherePath *pPath,     /* The WherePath to check */
3733   u16 wctrlFlags,       /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
3734   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
3735   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
3736   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
3737 ){
3738   u8 revSet;            /* True if rev is known */
3739   u8 rev;               /* Composite sort order */
3740   u8 revIdx;            /* Index sort order */
3741   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
3742   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
3743   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
3744   u16 eqOpMask;         /* Allowed equality operators */
3745   u16 nKeyCol;          /* Number of key columns in pIndex */
3746   u16 nColumn;          /* Total number of ordered columns in the index */
3747   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
3748   int iLoop;            /* Index of WhereLoop in pPath being processed */
3749   int i, j;             /* Loop counters */
3750   int iCur;             /* Cursor number for current WhereLoop */
3751   int iColumn;          /* A column number within table iCur */
3752   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
3753   WhereTerm *pTerm;     /* A single term of the WHERE clause */
3754   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
3755   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
3756   Index *pIndex;        /* The index associated with pLoop */
3757   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
3758   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
3759   Bitmask obDone;       /* Mask of all ORDER BY terms */
3760   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
3761   Bitmask ready;              /* Mask of inner loops */
3762 
3763   /*
3764   ** We say the WhereLoop is "one-row" if it generates no more than one
3765   ** row of output.  A WhereLoop is one-row if all of the following are true:
3766   **  (a) All index columns match with WHERE_COLUMN_EQ.
3767   **  (b) The index is unique
3768   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
3769   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
3770   **
3771   ** We say the WhereLoop is "order-distinct" if the set of columns from
3772   ** that WhereLoop that are in the ORDER BY clause are different for every
3773   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
3774   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
3775   ** is not order-distinct. To be order-distinct is not quite the same as being
3776   ** UNIQUE since a UNIQUE column or index can have multiple rows that
3777   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
3778   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
3779   **
3780   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
3781   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
3782   ** automatically order-distinct.
3783   */
3784 
3785   assert( pOrderBy!=0 );
3786   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
3787 
3788   nOrderBy = pOrderBy->nExpr;
3789   testcase( nOrderBy==BMS-1 );
3790   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
3791   isOrderDistinct = 1;
3792   obDone = MASKBIT(nOrderBy)-1;
3793   orderDistinctMask = 0;
3794   ready = 0;
3795   eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
3796   if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){
3797     eqOpMask |= WO_IN;
3798   }
3799   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
3800     if( iLoop>0 ) ready |= pLoop->maskSelf;
3801     if( iLoop<nLoop ){
3802       pLoop = pPath->aLoop[iLoop];
3803       if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
3804     }else{
3805       pLoop = pLast;
3806     }
3807     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
3808       if( pLoop->u.vtab.isOrdered && (wctrlFlags & WHERE_DISTINCTBY)==0 ){
3809         obSat = obDone;
3810       }
3811       break;
3812     }else if( wctrlFlags & WHERE_DISTINCTBY ){
3813       pLoop->u.btree.nDistinctCol = 0;
3814     }
3815     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
3816 
3817     /* Mark off any ORDER BY term X that is a column in the table of
3818     ** the current loop for which there is term in the WHERE
3819     ** clause of the form X IS NULL or X=? that reference only outer
3820     ** loops.
3821     */
3822     for(i=0; i<nOrderBy; i++){
3823       if( MASKBIT(i) & obSat ) continue;
3824       pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
3825       if( NEVER(pOBExpr==0) ) continue;
3826       if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
3827       if( pOBExpr->iTable!=iCur ) continue;
3828       pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
3829                        ~ready, eqOpMask, 0);
3830       if( pTerm==0 ) continue;
3831       if( pTerm->eOperator==WO_IN ){
3832         /* IN terms are only valid for sorting in the ORDER BY LIMIT
3833         ** optimization, and then only if they are actually used
3834         ** by the query plan */
3835         assert( wctrlFlags &
3836                (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) );
3837         for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
3838         if( j>=pLoop->nLTerm ) continue;
3839       }
3840       if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
3841         Parse *pParse = pWInfo->pParse;
3842         CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr);
3843         CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr);
3844         assert( pColl1 );
3845         if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){
3846           continue;
3847         }
3848         testcase( pTerm->pExpr->op==TK_IS );
3849       }
3850       obSat |= MASKBIT(i);
3851     }
3852 
3853     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
3854       if( pLoop->wsFlags & WHERE_IPK ){
3855         pIndex = 0;
3856         nKeyCol = 0;
3857         nColumn = 1;
3858       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
3859         return 0;
3860       }else{
3861         nKeyCol = pIndex->nKeyCol;
3862         nColumn = pIndex->nColumn;
3863         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
3864         assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
3865                           || !HasRowid(pIndex->pTable));
3866         isOrderDistinct = IsUniqueIndex(pIndex)
3867                           && (pLoop->wsFlags & WHERE_SKIPSCAN)==0;
3868       }
3869 
3870       /* Loop through all columns of the index and deal with the ones
3871       ** that are not constrained by == or IN.
3872       */
3873       rev = revSet = 0;
3874       distinctColumns = 0;
3875       for(j=0; j<nColumn; j++){
3876         u8 bOnce = 1; /* True to run the ORDER BY search loop */
3877 
3878         assert( j>=pLoop->u.btree.nEq
3879             || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
3880         );
3881         if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
3882           u16 eOp = pLoop->aLTerm[j]->eOperator;
3883 
3884           /* Skip over == and IS and ISNULL terms.  (Also skip IN terms when
3885           ** doing WHERE_ORDERBY_LIMIT processing).  Except, IS and ISNULL
3886           ** terms imply that the index is not UNIQUE NOT NULL in which case
3887           ** the loop need to be marked as not order-distinct because it can
3888           ** have repeated NULL rows.
3889           **
3890           ** If the current term is a column of an ((?,?) IN (SELECT...))
3891           ** expression for which the SELECT returns more than one column,
3892           ** check that it is the only column used by this loop. Otherwise,
3893           ** if it is one of two or more, none of the columns can be
3894           ** considered to match an ORDER BY term.
3895           */
3896           if( (eOp & eqOpMask)!=0 ){
3897             if( eOp & (WO_ISNULL|WO_IS) ){
3898               testcase( eOp & WO_ISNULL );
3899               testcase( eOp & WO_IS );
3900               testcase( isOrderDistinct );
3901               isOrderDistinct = 0;
3902             }
3903             continue;
3904           }else if( ALWAYS(eOp & WO_IN) ){
3905             /* ALWAYS() justification: eOp is an equality operator due to the
3906             ** j<pLoop->u.btree.nEq constraint above.  Any equality other
3907             ** than WO_IN is captured by the previous "if".  So this one
3908             ** always has to be WO_IN. */
3909             Expr *pX = pLoop->aLTerm[j]->pExpr;
3910             for(i=j+1; i<pLoop->u.btree.nEq; i++){
3911               if( pLoop->aLTerm[i]->pExpr==pX ){
3912                 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
3913                 bOnce = 0;
3914                 break;
3915               }
3916             }
3917           }
3918         }
3919 
3920         /* Get the column number in the table (iColumn) and sort order
3921         ** (revIdx) for the j-th column of the index.
3922         */
3923         if( pIndex ){
3924           iColumn = pIndex->aiColumn[j];
3925           revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC;
3926           if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
3927         }else{
3928           iColumn = XN_ROWID;
3929           revIdx = 0;
3930         }
3931 
3932         /* An unconstrained column that might be NULL means that this
3933         ** WhereLoop is not well-ordered
3934         */
3935         if( isOrderDistinct
3936          && iColumn>=0
3937          && j>=pLoop->u.btree.nEq
3938          && pIndex->pTable->aCol[iColumn].notNull==0
3939         ){
3940           isOrderDistinct = 0;
3941         }
3942 
3943         /* Find the ORDER BY term that corresponds to the j-th column
3944         ** of the index and mark that ORDER BY term off
3945         */
3946         isMatch = 0;
3947         for(i=0; bOnce && i<nOrderBy; i++){
3948           if( MASKBIT(i) & obSat ) continue;
3949           pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
3950           testcase( wctrlFlags & WHERE_GROUPBY );
3951           testcase( wctrlFlags & WHERE_DISTINCTBY );
3952           if( NEVER(pOBExpr==0) ) continue;
3953           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
3954           if( iColumn>=XN_ROWID ){
3955             if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
3956             if( pOBExpr->iTable!=iCur ) continue;
3957             if( pOBExpr->iColumn!=iColumn ) continue;
3958           }else{
3959             Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
3960             if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
3961               continue;
3962             }
3963           }
3964           if( iColumn!=XN_ROWID ){
3965             pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
3966             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
3967           }
3968           if( wctrlFlags & WHERE_DISTINCTBY ){
3969             pLoop->u.btree.nDistinctCol = j+1;
3970           }
3971           isMatch = 1;
3972           break;
3973         }
3974         if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
3975           /* Make sure the sort order is compatible in an ORDER BY clause.
3976           ** Sort order is irrelevant for a GROUP BY clause. */
3977           if( revSet ){
3978             if( (rev ^ revIdx)!=(pOrderBy->a[i].sortFlags&KEYINFO_ORDER_DESC) ){
3979               isMatch = 0;
3980             }
3981           }else{
3982             rev = revIdx ^ (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC);
3983             if( rev ) *pRevMask |= MASKBIT(iLoop);
3984             revSet = 1;
3985           }
3986         }
3987         if( isMatch && (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL) ){
3988           if( j==pLoop->u.btree.nEq ){
3989             pLoop->wsFlags |= WHERE_BIGNULL_SORT;
3990           }else{
3991             isMatch = 0;
3992           }
3993         }
3994         if( isMatch ){
3995           if( iColumn==XN_ROWID ){
3996             testcase( distinctColumns==0 );
3997             distinctColumns = 1;
3998           }
3999           obSat |= MASKBIT(i);
4000         }else{
4001           /* No match found */
4002           if( j==0 || j<nKeyCol ){
4003             testcase( isOrderDistinct!=0 );
4004             isOrderDistinct = 0;
4005           }
4006           break;
4007         }
4008       } /* end Loop over all index columns */
4009       if( distinctColumns ){
4010         testcase( isOrderDistinct==0 );
4011         isOrderDistinct = 1;
4012       }
4013     } /* end-if not one-row */
4014 
4015     /* Mark off any other ORDER BY terms that reference pLoop */
4016     if( isOrderDistinct ){
4017       orderDistinctMask |= pLoop->maskSelf;
4018       for(i=0; i<nOrderBy; i++){
4019         Expr *p;
4020         Bitmask mTerm;
4021         if( MASKBIT(i) & obSat ) continue;
4022         p = pOrderBy->a[i].pExpr;
4023         mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
4024         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
4025         if( (mTerm&~orderDistinctMask)==0 ){
4026           obSat |= MASKBIT(i);
4027         }
4028       }
4029     }
4030   } /* End the loop over all WhereLoops from outer-most down to inner-most */
4031   if( obSat==obDone ) return (i8)nOrderBy;
4032   if( !isOrderDistinct ){
4033     for(i=nOrderBy-1; i>0; i--){
4034       Bitmask m = MASKBIT(i) - 1;
4035       if( (obSat&m)==m ) return i;
4036     }
4037     return 0;
4038   }
4039   return -1;
4040 }
4041 
4042 
4043 /*
4044 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
4045 ** the planner assumes that the specified pOrderBy list is actually a GROUP
4046 ** BY clause - and so any order that groups rows as required satisfies the
4047 ** request.
4048 **
4049 ** Normally, in this case it is not possible for the caller to determine
4050 ** whether or not the rows are really being delivered in sorted order, or
4051 ** just in some other order that provides the required grouping. However,
4052 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
4053 ** this function may be called on the returned WhereInfo object. It returns
4054 ** true if the rows really will be sorted in the specified order, or false
4055 ** otherwise.
4056 **
4057 ** For example, assuming:
4058 **
4059 **   CREATE INDEX i1 ON t1(x, Y);
4060 **
4061 ** then
4062 **
4063 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
4064 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
4065 */
4066 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
4067   assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
4068   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
4069   return pWInfo->sorted;
4070 }
4071 
4072 #ifdef WHERETRACE_ENABLED
4073 /* For debugging use only: */
4074 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
4075   static char zName[65];
4076   int i;
4077   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
4078   if( pLast ) zName[i++] = pLast->cId;
4079   zName[i] = 0;
4080   return zName;
4081 }
4082 #endif
4083 
4084 /*
4085 ** Return the cost of sorting nRow rows, assuming that the keys have
4086 ** nOrderby columns and that the first nSorted columns are already in
4087 ** order.
4088 */
4089 static LogEst whereSortingCost(
4090   WhereInfo *pWInfo,
4091   LogEst nRow,
4092   int nOrderBy,
4093   int nSorted
4094 ){
4095   /* TUNING: Estimated cost of a full external sort, where N is
4096   ** the number of rows to sort is:
4097   **
4098   **   cost = (3.0 * N * log(N)).
4099   **
4100   ** Or, if the order-by clause has X terms but only the last Y
4101   ** terms are out of order, then block-sorting will reduce the
4102   ** sorting cost to:
4103   **
4104   **   cost = (3.0 * N * log(N)) * (Y/X)
4105   **
4106   ** The (Y/X) term is implemented using stack variable rScale
4107   ** below.
4108   */
4109   LogEst rScale, rSortCost;
4110   assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
4111   rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
4112   rSortCost = nRow + rScale + 16;
4113 
4114   /* Multiple by log(M) where M is the number of output rows.
4115   ** Use the LIMIT for M if it is smaller.  Or if this sort is for
4116   ** a DISTINCT operator, M will be the number of distinct output
4117   ** rows, so fudge it downwards a bit.
4118   */
4119   if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
4120     nRow = pWInfo->iLimit;
4121   }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){
4122     /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT
4123     ** reduces the number of output rows by a factor of 2 */
4124     if( nRow>10 ) nRow -= 10;  assert( 10==sqlite3LogEst(2) );
4125   }
4126   rSortCost += estLog(nRow);
4127   return rSortCost;
4128 }
4129 
4130 /*
4131 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
4132 ** attempts to find the lowest cost path that visits each WhereLoop
4133 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
4134 **
4135 ** Assume that the total number of output rows that will need to be sorted
4136 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
4137 ** costs if nRowEst==0.
4138 **
4139 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
4140 ** error occurs.
4141 */
4142 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
4143   int mxChoice;             /* Maximum number of simultaneous paths tracked */
4144   int nLoop;                /* Number of terms in the join */
4145   Parse *pParse;            /* Parsing context */
4146   sqlite3 *db;              /* The database connection */
4147   int iLoop;                /* Loop counter over the terms of the join */
4148   int ii, jj;               /* Loop counters */
4149   int mxI = 0;              /* Index of next entry to replace */
4150   int nOrderBy;             /* Number of ORDER BY clause terms */
4151   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
4152   LogEst mxUnsorted = 0;    /* Maximum unsorted cost of a set of path */
4153   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
4154   WherePath *aFrom;         /* All nFrom paths at the previous level */
4155   WherePath *aTo;           /* The nTo best paths at the current level */
4156   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
4157   WherePath *pTo;           /* An element of aTo[] that we are working on */
4158   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
4159   WhereLoop **pX;           /* Used to divy up the pSpace memory */
4160   LogEst *aSortCost = 0;    /* Sorting and partial sorting costs */
4161   char *pSpace;             /* Temporary memory used by this routine */
4162   int nSpace;               /* Bytes of space allocated at pSpace */
4163 
4164   pParse = pWInfo->pParse;
4165   db = pParse->db;
4166   nLoop = pWInfo->nLevel;
4167   /* TUNING: For simple queries, only the best path is tracked.
4168   ** For 2-way joins, the 5 best paths are followed.
4169   ** For joins of 3 or more tables, track the 10 best paths */
4170   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
4171   assert( nLoop<=pWInfo->pTabList->nSrc );
4172   WHERETRACE(0x002, ("---- begin solver.  (nRowEst=%d)\n", nRowEst));
4173 
4174   /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
4175   ** case the purpose of this call is to estimate the number of rows returned
4176   ** by the overall query. Once this estimate has been obtained, the caller
4177   ** will invoke this function a second time, passing the estimate as the
4178   ** nRowEst parameter.  */
4179   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
4180     nOrderBy = 0;
4181   }else{
4182     nOrderBy = pWInfo->pOrderBy->nExpr;
4183   }
4184 
4185   /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
4186   nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
4187   nSpace += sizeof(LogEst) * nOrderBy;
4188   pSpace = sqlite3DbMallocRawNN(db, nSpace);
4189   if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
4190   aTo = (WherePath*)pSpace;
4191   aFrom = aTo+mxChoice;
4192   memset(aFrom, 0, sizeof(aFrom[0]));
4193   pX = (WhereLoop**)(aFrom+mxChoice);
4194   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
4195     pFrom->aLoop = pX;
4196   }
4197   if( nOrderBy ){
4198     /* If there is an ORDER BY clause and it is not being ignored, set up
4199     ** space for the aSortCost[] array. Each element of the aSortCost array
4200     ** is either zero - meaning it has not yet been initialized - or the
4201     ** cost of sorting nRowEst rows of data where the first X terms of
4202     ** the ORDER BY clause are already in order, where X is the array
4203     ** index.  */
4204     aSortCost = (LogEst*)pX;
4205     memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
4206   }
4207   assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
4208   assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
4209 
4210   /* Seed the search with a single WherePath containing zero WhereLoops.
4211   **
4212   ** TUNING: Do not let the number of iterations go above 28.  If the cost
4213   ** of computing an automatic index is not paid back within the first 28
4214   ** rows, then do not use the automatic index. */
4215   aFrom[0].nRow = MIN(pParse->nQueryLoop, 48);  assert( 48==sqlite3LogEst(28) );
4216   nFrom = 1;
4217   assert( aFrom[0].isOrdered==0 );
4218   if( nOrderBy ){
4219     /* If nLoop is zero, then there are no FROM terms in the query. Since
4220     ** in this case the query may return a maximum of one row, the results
4221     ** are already in the requested order. Set isOrdered to nOrderBy to
4222     ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
4223     ** -1, indicating that the result set may or may not be ordered,
4224     ** depending on the loops added to the current plan.  */
4225     aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
4226   }
4227 
4228   /* Compute successively longer WherePaths using the previous generation
4229   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
4230   ** best paths at each generation */
4231   for(iLoop=0; iLoop<nLoop; iLoop++){
4232     nTo = 0;
4233     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
4234       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
4235         LogEst nOut;                      /* Rows visited by (pFrom+pWLoop) */
4236         LogEst rCost;                     /* Cost of path (pFrom+pWLoop) */
4237         LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
4238         i8 isOrdered = pFrom->isOrdered;  /* isOrdered for (pFrom+pWLoop) */
4239         Bitmask maskNew;                  /* Mask of src visited by (..) */
4240         Bitmask revMask = 0;              /* Mask of rev-order loops for (..) */
4241 
4242         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
4243         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
4244         if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
4245           /* Do not use an automatic index if the this loop is expected
4246           ** to run less than 1.25 times.  It is tempting to also exclude
4247           ** automatic index usage on an outer loop, but sometimes an automatic
4248           ** index is useful in the outer loop of a correlated subquery. */
4249           assert( 10==sqlite3LogEst(2) );
4250           continue;
4251         }
4252 
4253         /* At this point, pWLoop is a candidate to be the next loop.
4254         ** Compute its cost */
4255         rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
4256         rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
4257         nOut = pFrom->nRow + pWLoop->nOut;
4258         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
4259         if( isOrdered<0 ){
4260           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
4261                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
4262                        iLoop, pWLoop, &revMask);
4263         }else{
4264           revMask = pFrom->revLoop;
4265         }
4266         if( isOrdered>=0 && isOrdered<nOrderBy ){
4267           if( aSortCost[isOrdered]==0 ){
4268             aSortCost[isOrdered] = whereSortingCost(
4269                 pWInfo, nRowEst, nOrderBy, isOrdered
4270             );
4271           }
4272           /* TUNING:  Add a small extra penalty (5) to sorting as an
4273           ** extra encouragment to the query planner to select a plan
4274           ** where the rows emerge in the correct order without any sorting
4275           ** required. */
4276           rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5;
4277 
4278           WHERETRACE(0x002,
4279               ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
4280                aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
4281                rUnsorted, rCost));
4282         }else{
4283           rCost = rUnsorted;
4284           rUnsorted -= 2;  /* TUNING:  Slight bias in favor of no-sort plans */
4285         }
4286 
4287         /* Check to see if pWLoop should be added to the set of
4288         ** mxChoice best-so-far paths.
4289         **
4290         ** First look for an existing path among best-so-far paths
4291         ** that covers the same set of loops and has the same isOrdered
4292         ** setting as the current path candidate.
4293         **
4294         ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4295         ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4296         ** of legal values for isOrdered, -1..64.
4297         */
4298         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
4299           if( pTo->maskLoop==maskNew
4300            && ((pTo->isOrdered^isOrdered)&0x80)==0
4301           ){
4302             testcase( jj==nTo-1 );
4303             break;
4304           }
4305         }
4306         if( jj>=nTo ){
4307           /* None of the existing best-so-far paths match the candidate. */
4308           if( nTo>=mxChoice
4309            && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4310           ){
4311             /* The current candidate is no better than any of the mxChoice
4312             ** paths currently in the best-so-far buffer.  So discard
4313             ** this candidate as not viable. */
4314 #ifdef WHERETRACE_ENABLED /* 0x4 */
4315             if( sqlite3WhereTrace&0x4 ){
4316               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d,%3d order=%c\n",
4317                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4318                   isOrdered>=0 ? isOrdered+'0' : '?');
4319             }
4320 #endif
4321             continue;
4322           }
4323           /* If we reach this points it means that the new candidate path
4324           ** needs to be added to the set of best-so-far paths. */
4325           if( nTo<mxChoice ){
4326             /* Increase the size of the aTo set by one */
4327             jj = nTo++;
4328           }else{
4329             /* New path replaces the prior worst to keep count below mxChoice */
4330             jj = mxI;
4331           }
4332           pTo = &aTo[jj];
4333 #ifdef WHERETRACE_ENABLED /* 0x4 */
4334           if( sqlite3WhereTrace&0x4 ){
4335             sqlite3DebugPrintf("New    %s cost=%-3d,%3d,%3d order=%c\n",
4336                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4337                 isOrdered>=0 ? isOrdered+'0' : '?');
4338           }
4339 #endif
4340         }else{
4341           /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4342           ** same set of loops and has the same isOrdered setting as the
4343           ** candidate path.  Check to see if the candidate should replace
4344           ** pTo or if the candidate should be skipped.
4345           **
4346           ** The conditional is an expanded vector comparison equivalent to:
4347           **   (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4348           */
4349           if( pTo->rCost<rCost
4350            || (pTo->rCost==rCost
4351                && (pTo->nRow<nOut
4352                    || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4353                   )
4354               )
4355           ){
4356 #ifdef WHERETRACE_ENABLED /* 0x4 */
4357             if( sqlite3WhereTrace&0x4 ){
4358               sqlite3DebugPrintf(
4359                   "Skip   %s cost=%-3d,%3d,%3d order=%c",
4360                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4361                   isOrdered>=0 ? isOrdered+'0' : '?');
4362               sqlite3DebugPrintf("   vs %s cost=%-3d,%3d,%3d order=%c\n",
4363                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4364                   pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4365             }
4366 #endif
4367             /* Discard the candidate path from further consideration */
4368             testcase( pTo->rCost==rCost );
4369             continue;
4370           }
4371           testcase( pTo->rCost==rCost+1 );
4372           /* Control reaches here if the candidate path is better than the
4373           ** pTo path.  Replace pTo with the candidate. */
4374 #ifdef WHERETRACE_ENABLED /* 0x4 */
4375           if( sqlite3WhereTrace&0x4 ){
4376             sqlite3DebugPrintf(
4377                 "Update %s cost=%-3d,%3d,%3d order=%c",
4378                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4379                 isOrdered>=0 ? isOrdered+'0' : '?');
4380             sqlite3DebugPrintf("  was %s cost=%-3d,%3d,%3d order=%c\n",
4381                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4382                 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4383           }
4384 #endif
4385         }
4386         /* pWLoop is a winner.  Add it to the set of best so far */
4387         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4388         pTo->revLoop = revMask;
4389         pTo->nRow = nOut;
4390         pTo->rCost = rCost;
4391         pTo->rUnsorted = rUnsorted;
4392         pTo->isOrdered = isOrdered;
4393         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4394         pTo->aLoop[iLoop] = pWLoop;
4395         if( nTo>=mxChoice ){
4396           mxI = 0;
4397           mxCost = aTo[0].rCost;
4398           mxUnsorted = aTo[0].nRow;
4399           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4400             if( pTo->rCost>mxCost
4401              || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4402             ){
4403               mxCost = pTo->rCost;
4404               mxUnsorted = pTo->rUnsorted;
4405               mxI = jj;
4406             }
4407           }
4408         }
4409       }
4410     }
4411 
4412 #ifdef WHERETRACE_ENABLED  /* >=2 */
4413     if( sqlite3WhereTrace & 0x02 ){
4414       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4415       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4416         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4417            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4418            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4419         if( pTo->isOrdered>0 ){
4420           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4421         }else{
4422           sqlite3DebugPrintf("\n");
4423         }
4424       }
4425     }
4426 #endif
4427 
4428     /* Swap the roles of aFrom and aTo for the next generation */
4429     pFrom = aTo;
4430     aTo = aFrom;
4431     aFrom = pFrom;
4432     nFrom = nTo;
4433   }
4434 
4435   if( nFrom==0 ){
4436     sqlite3ErrorMsg(pParse, "no query solution");
4437     sqlite3DbFreeNN(db, pSpace);
4438     return SQLITE_ERROR;
4439   }
4440 
4441   /* Find the lowest cost path.  pFrom will be left pointing to that path */
4442   pFrom = aFrom;
4443   for(ii=1; ii<nFrom; ii++){
4444     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4445   }
4446   assert( pWInfo->nLevel==nLoop );
4447   /* Load the lowest cost path into pWInfo */
4448   for(iLoop=0; iLoop<nLoop; iLoop++){
4449     WhereLevel *pLevel = pWInfo->a + iLoop;
4450     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
4451     pLevel->iFrom = pWLoop->iTab;
4452     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
4453   }
4454   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
4455    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
4456    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
4457    && nRowEst
4458   ){
4459     Bitmask notUsed;
4460     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
4461                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
4462     if( rc==pWInfo->pResultSet->nExpr ){
4463       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4464     }
4465   }
4466   pWInfo->bOrderedInnerLoop = 0;
4467   if( pWInfo->pOrderBy ){
4468     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
4469       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
4470         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4471       }
4472     }else{
4473       pWInfo->nOBSat = pFrom->isOrdered;
4474       pWInfo->revMask = pFrom->revLoop;
4475       if( pWInfo->nOBSat<=0 ){
4476         pWInfo->nOBSat = 0;
4477         if( nLoop>0 ){
4478           u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
4479           if( (wsFlags & WHERE_ONEROW)==0
4480            && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
4481           ){
4482             Bitmask m = 0;
4483             int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
4484                       WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
4485             testcase( wsFlags & WHERE_IPK );
4486             testcase( wsFlags & WHERE_COLUMN_IN );
4487             if( rc==pWInfo->pOrderBy->nExpr ){
4488               pWInfo->bOrderedInnerLoop = 1;
4489               pWInfo->revMask = m;
4490             }
4491           }
4492         }
4493       }else if( nLoop
4494             && pWInfo->nOBSat==1
4495             && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0
4496             ){
4497         pWInfo->bOrderedInnerLoop = 1;
4498       }
4499     }
4500     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
4501         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
4502     ){
4503       Bitmask revMask = 0;
4504       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
4505           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
4506       );
4507       assert( pWInfo->sorted==0 );
4508       if( nOrder==pWInfo->pOrderBy->nExpr ){
4509         pWInfo->sorted = 1;
4510         pWInfo->revMask = revMask;
4511       }
4512     }
4513   }
4514 
4515 
4516   pWInfo->nRowOut = pFrom->nRow;
4517 
4518   /* Free temporary memory and return success */
4519   sqlite3DbFreeNN(db, pSpace);
4520   return SQLITE_OK;
4521 }
4522 
4523 /*
4524 ** Most queries use only a single table (they are not joins) and have
4525 ** simple == constraints against indexed fields.  This routine attempts
4526 ** to plan those simple cases using much less ceremony than the
4527 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4528 ** times for the common case.
4529 **
4530 ** Return non-zero on success, if this query can be handled by this
4531 ** no-frills query planner.  Return zero if this query needs the
4532 ** general-purpose query planner.
4533 */
4534 static int whereShortCut(WhereLoopBuilder *pBuilder){
4535   WhereInfo *pWInfo;
4536   SrcItem *pItem;
4537   WhereClause *pWC;
4538   WhereTerm *pTerm;
4539   WhereLoop *pLoop;
4540   int iCur;
4541   int j;
4542   Table *pTab;
4543   Index *pIdx;
4544 
4545   pWInfo = pBuilder->pWInfo;
4546   if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
4547   assert( pWInfo->pTabList->nSrc>=1 );
4548   pItem = pWInfo->pTabList->a;
4549   pTab = pItem->pTab;
4550   if( IsVirtual(pTab) ) return 0;
4551   if( pItem->fg.isIndexedBy ) return 0;
4552   iCur = pItem->iCursor;
4553   pWC = &pWInfo->sWC;
4554   pLoop = pBuilder->pNew;
4555   pLoop->wsFlags = 0;
4556   pLoop->nSkip = 0;
4557   pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0);
4558   if( pTerm ){
4559     testcase( pTerm->eOperator & WO_IS );
4560     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
4561     pLoop->aLTerm[0] = pTerm;
4562     pLoop->nLTerm = 1;
4563     pLoop->u.btree.nEq = 1;
4564     /* TUNING: Cost of a rowid lookup is 10 */
4565     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
4566   }else{
4567     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4568       int opMask;
4569       assert( pLoop->aLTermSpace==pLoop->aLTerm );
4570       if( !IsUniqueIndex(pIdx)
4571        || pIdx->pPartIdxWhere!=0
4572        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
4573       ) continue;
4574       opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
4575       for(j=0; j<pIdx->nKeyCol; j++){
4576         pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx);
4577         if( pTerm==0 ) break;
4578         testcase( pTerm->eOperator & WO_IS );
4579         pLoop->aLTerm[j] = pTerm;
4580       }
4581       if( j!=pIdx->nKeyCol ) continue;
4582       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
4583       if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
4584         pLoop->wsFlags |= WHERE_IDX_ONLY;
4585       }
4586       pLoop->nLTerm = j;
4587       pLoop->u.btree.nEq = j;
4588       pLoop->u.btree.pIndex = pIdx;
4589       /* TUNING: Cost of a unique index lookup is 15 */
4590       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
4591       break;
4592     }
4593   }
4594   if( pLoop->wsFlags ){
4595     pLoop->nOut = (LogEst)1;
4596     pWInfo->a[0].pWLoop = pLoop;
4597     assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
4598     pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
4599     pWInfo->a[0].iTabCur = iCur;
4600     pWInfo->nRowOut = 1;
4601     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
4602     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
4603       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4604     }
4605 #ifdef SQLITE_DEBUG
4606     pLoop->cId = '0';
4607 #endif
4608     return 1;
4609   }
4610   return 0;
4611 }
4612 
4613 /*
4614 ** Helper function for exprIsDeterministic().
4615 */
4616 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
4617   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
4618     pWalker->eCode = 0;
4619     return WRC_Abort;
4620   }
4621   return WRC_Continue;
4622 }
4623 
4624 /*
4625 ** Return true if the expression contains no non-deterministic SQL
4626 ** functions. Do not consider non-deterministic SQL functions that are
4627 ** part of sub-select statements.
4628 */
4629 static int exprIsDeterministic(Expr *p){
4630   Walker w;
4631   memset(&w, 0, sizeof(w));
4632   w.eCode = 1;
4633   w.xExprCallback = exprNodeIsDeterministic;
4634   w.xSelectCallback = sqlite3SelectWalkFail;
4635   sqlite3WalkExpr(&w, p);
4636   return w.eCode;
4637 }
4638 
4639 
4640 #ifdef WHERETRACE_ENABLED
4641 /*
4642 ** Display all WhereLoops in pWInfo
4643 */
4644 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){
4645   if( sqlite3WhereTrace ){    /* Display all of the WhereLoop objects */
4646     WhereLoop *p;
4647     int i;
4648     static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
4649                                            "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
4650     for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
4651       p->cId = zLabel[i%(sizeof(zLabel)-1)];
4652       sqlite3WhereLoopPrint(p, pWC);
4653     }
4654   }
4655 }
4656 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C)
4657 #else
4658 # define WHERETRACE_ALL_LOOPS(W,C)
4659 #endif
4660 
4661 /*
4662 ** Generate the beginning of the loop used for WHERE clause processing.
4663 ** The return value is a pointer to an opaque structure that contains
4664 ** information needed to terminate the loop.  Later, the calling routine
4665 ** should invoke sqlite3WhereEnd() with the return value of this function
4666 ** in order to complete the WHERE clause processing.
4667 **
4668 ** If an error occurs, this routine returns NULL.
4669 **
4670 ** The basic idea is to do a nested loop, one loop for each table in
4671 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
4672 ** same as a SELECT with only a single table in the FROM clause.)  For
4673 ** example, if the SQL is this:
4674 **
4675 **       SELECT * FROM t1, t2, t3 WHERE ...;
4676 **
4677 ** Then the code generated is conceptually like the following:
4678 **
4679 **      foreach row1 in t1 do       \    Code generated
4680 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
4681 **          foreach row3 in t3 do   /
4682 **            ...
4683 **          end                     \    Code generated
4684 **        end                        |-- by sqlite3WhereEnd()
4685 **      end                         /
4686 **
4687 ** Note that the loops might not be nested in the order in which they
4688 ** appear in the FROM clause if a different order is better able to make
4689 ** use of indices.  Note also that when the IN operator appears in
4690 ** the WHERE clause, it might result in additional nested loops for
4691 ** scanning through all values on the right-hand side of the IN.
4692 **
4693 ** There are Btree cursors associated with each table.  t1 uses cursor
4694 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
4695 ** And so forth.  This routine generates code to open those VDBE cursors
4696 ** and sqlite3WhereEnd() generates the code to close them.
4697 **
4698 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4699 ** in pTabList pointing at their appropriate entries.  The [...] code
4700 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4701 ** data from the various tables of the loop.
4702 **
4703 ** If the WHERE clause is empty, the foreach loops must each scan their
4704 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
4705 ** the tables have indices and there are terms in the WHERE clause that
4706 ** refer to those indices, a complete table scan can be avoided and the
4707 ** code will run much faster.  Most of the work of this routine is checking
4708 ** to see if there are indices that can be used to speed up the loop.
4709 **
4710 ** Terms of the WHERE clause are also used to limit which rows actually
4711 ** make it to the "..." in the middle of the loop.  After each "foreach",
4712 ** terms of the WHERE clause that use only terms in that loop and outer
4713 ** loops are evaluated and if false a jump is made around all subsequent
4714 ** inner loops (or around the "..." if the test occurs within the inner-
4715 ** most loop)
4716 **
4717 ** OUTER JOINS
4718 **
4719 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4720 **
4721 **    foreach row1 in t1 do
4722 **      flag = 0
4723 **      foreach row2 in t2 do
4724 **        start:
4725 **          ...
4726 **          flag = 1
4727 **      end
4728 **      if flag==0 then
4729 **        move the row2 cursor to a null row
4730 **        goto start
4731 **      fi
4732 **    end
4733 **
4734 ** ORDER BY CLAUSE PROCESSING
4735 **
4736 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
4737 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
4738 ** if there is one.  If there is no ORDER BY clause or if this routine
4739 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
4740 **
4741 ** The iIdxCur parameter is the cursor number of an index.  If
4742 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
4743 ** to use for OR clause processing.  The WHERE clause should use this
4744 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
4745 ** the first cursor in an array of cursors for all indices.  iIdxCur should
4746 ** be used to compute the appropriate cursor depending on which index is
4747 ** used.
4748 */
4749 WhereInfo *sqlite3WhereBegin(
4750   Parse *pParse,          /* The parser context */
4751   SrcList *pTabList,      /* FROM clause: A list of all tables to be scanned */
4752   Expr *pWhere,           /* The WHERE clause */
4753   ExprList *pOrderBy,     /* An ORDER BY (or GROUP BY) clause, or NULL */
4754   ExprList *pResultSet,   /* Query result set.  Req'd for DISTINCT */
4755   u16 wctrlFlags,         /* The WHERE_* flags defined in sqliteInt.h */
4756   int iAuxArg             /* If WHERE_OR_SUBCLAUSE is set, index cursor number
4757                           ** If WHERE_USE_LIMIT, then the limit amount */
4758 ){
4759   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
4760   int nTabList;              /* Number of elements in pTabList */
4761   WhereInfo *pWInfo;         /* Will become the return value of this function */
4762   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
4763   Bitmask notReady;          /* Cursors that are not yet positioned */
4764   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
4765   WhereMaskSet *pMaskSet;    /* The expression mask set */
4766   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
4767   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
4768   int ii;                    /* Loop counter */
4769   sqlite3 *db;               /* Database connection */
4770   int rc;                    /* Return code */
4771   u8 bFordelete = 0;         /* OPFLAG_FORDELETE or zero, as appropriate */
4772 
4773   assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
4774         (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
4775      && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4776   ));
4777 
4778   /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
4779   assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4780             || (wctrlFlags & WHERE_USE_LIMIT)==0 );
4781 
4782   /* Variable initialization */
4783   db = pParse->db;
4784   memset(&sWLB, 0, sizeof(sWLB));
4785 
4786   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
4787   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
4788   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
4789   sWLB.pOrderBy = pOrderBy;
4790 
4791   /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
4792   ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
4793   if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
4794     wctrlFlags &= ~WHERE_WANT_DISTINCT;
4795   }
4796 
4797   /* The number of tables in the FROM clause is limited by the number of
4798   ** bits in a Bitmask
4799   */
4800   testcase( pTabList->nSrc==BMS );
4801   if( pTabList->nSrc>BMS ){
4802     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
4803     return 0;
4804   }
4805 
4806   /* This function normally generates a nested loop for all tables in
4807   ** pTabList.  But if the WHERE_OR_SUBCLAUSE flag is set, then we should
4808   ** only generate code for the first table in pTabList and assume that
4809   ** any cursors associated with subsequent tables are uninitialized.
4810   */
4811   nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
4812 
4813   /* Allocate and initialize the WhereInfo structure that will become the
4814   ** return value. A single allocation is used to store the WhereInfo
4815   ** struct, the contents of WhereInfo.a[], the WhereClause structure
4816   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4817   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4818   ** some architectures. Hence the ROUND8() below.
4819   */
4820   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
4821   pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
4822   if( db->mallocFailed ){
4823     sqlite3DbFree(db, pWInfo);
4824     pWInfo = 0;
4825     goto whereBeginError;
4826   }
4827   pWInfo->pParse = pParse;
4828   pWInfo->pTabList = pTabList;
4829   pWInfo->pOrderBy = pOrderBy;
4830   pWInfo->pWhere = pWhere;
4831   pWInfo->pResultSet = pResultSet;
4832   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
4833   pWInfo->nLevel = nTabList;
4834   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse);
4835   pWInfo->wctrlFlags = wctrlFlags;
4836   pWInfo->iLimit = iAuxArg;
4837   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
4838   memset(&pWInfo->nOBSat, 0,
4839          offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
4840   memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
4841   assert( pWInfo->eOnePass==ONEPASS_OFF );  /* ONEPASS defaults to OFF */
4842   pMaskSet = &pWInfo->sMaskSet;
4843   sWLB.pWInfo = pWInfo;
4844   sWLB.pWC = &pWInfo->sWC;
4845   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
4846   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
4847   whereLoopInit(sWLB.pNew);
4848 #ifdef SQLITE_DEBUG
4849   sWLB.pNew->cId = '*';
4850 #endif
4851 
4852   /* Split the WHERE clause into separate subexpressions where each
4853   ** subexpression is separated by an AND operator.
4854   */
4855   initMaskSet(pMaskSet);
4856   sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
4857   sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
4858 
4859   /* Special case: No FROM clause
4860   */
4861   if( nTabList==0 ){
4862     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
4863     if( wctrlFlags & WHERE_WANT_DISTINCT ){
4864       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4865     }
4866     ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
4867   }else{
4868     /* Assign a bit from the bitmask to every term in the FROM clause.
4869     **
4870     ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
4871     **
4872     ** The rule of the previous sentence ensures thta if X is the bitmask for
4873     ** a table T, then X-1 is the bitmask for all other tables to the left of T.
4874     ** Knowing the bitmask for all tables to the left of a left join is
4875     ** important.  Ticket #3015.
4876     **
4877     ** Note that bitmasks are created for all pTabList->nSrc tables in
4878     ** pTabList, not just the first nTabList tables.  nTabList is normally
4879     ** equal to pTabList->nSrc but might be shortened to 1 if the
4880     ** WHERE_OR_SUBCLAUSE flag is set.
4881     */
4882     ii = 0;
4883     do{
4884       createMask(pMaskSet, pTabList->a[ii].iCursor);
4885       sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
4886     }while( (++ii)<pTabList->nSrc );
4887   #ifdef SQLITE_DEBUG
4888     {
4889       Bitmask mx = 0;
4890       for(ii=0; ii<pTabList->nSrc; ii++){
4891         Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
4892         assert( m>=mx );
4893         mx = m;
4894       }
4895     }
4896   #endif
4897   }
4898 
4899   /* Analyze all of the subexpressions. */
4900   sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
4901   if( db->mallocFailed ) goto whereBeginError;
4902 
4903   /* Special case: WHERE terms that do not refer to any tables in the join
4904   ** (constant expressions). Evaluate each such term, and jump over all the
4905   ** generated code if the result is not true.
4906   **
4907   ** Do not do this if the expression contains non-deterministic functions
4908   ** that are not within a sub-select. This is not strictly required, but
4909   ** preserves SQLite's legacy behaviour in the following two cases:
4910   **
4911   **   FROM ... WHERE random()>0;           -- eval random() once per row
4912   **   FROM ... WHERE (SELECT random())>0;  -- eval random() once overall
4913   */
4914   for(ii=0; ii<sWLB.pWC->nTerm; ii++){
4915     WhereTerm *pT = &sWLB.pWC->a[ii];
4916     if( pT->wtFlags & TERM_VIRTUAL ) continue;
4917     if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
4918       sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
4919       pT->wtFlags |= TERM_CODED;
4920     }
4921   }
4922 
4923   if( wctrlFlags & WHERE_WANT_DISTINCT ){
4924     if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
4925       /* The DISTINCT marking is pointless.  Ignore it. */
4926       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4927     }else if( pOrderBy==0 ){
4928       /* Try to ORDER BY the result set to make distinct processing easier */
4929       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
4930       pWInfo->pOrderBy = pResultSet;
4931     }
4932   }
4933 
4934   /* Construct the WhereLoop objects */
4935 #if defined(WHERETRACE_ENABLED)
4936   if( sqlite3WhereTrace & 0xffff ){
4937     sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
4938     if( wctrlFlags & WHERE_USE_LIMIT ){
4939       sqlite3DebugPrintf(", limit: %d", iAuxArg);
4940     }
4941     sqlite3DebugPrintf(")\n");
4942     if( sqlite3WhereTrace & 0x100 ){
4943       Select sSelect;
4944       memset(&sSelect, 0, sizeof(sSelect));
4945       sSelect.selFlags = SF_WhereBegin;
4946       sSelect.pSrc = pTabList;
4947       sSelect.pWhere = pWhere;
4948       sSelect.pOrderBy = pOrderBy;
4949       sSelect.pEList = pResultSet;
4950       sqlite3TreeViewSelect(0, &sSelect, 0);
4951     }
4952   }
4953   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
4954     sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
4955     sqlite3WhereClausePrint(sWLB.pWC);
4956   }
4957 #endif
4958 
4959   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
4960     rc = whereLoopAddAll(&sWLB);
4961     if( rc ) goto whereBeginError;
4962 
4963 #ifdef SQLITE_ENABLE_STAT4
4964     /* If one or more WhereTerm.truthProb values were used in estimating
4965     ** loop parameters, but then those truthProb values were subsequently
4966     ** changed based on STAT4 information while computing subsequent loops,
4967     ** then we need to rerun the whole loop building process so that all
4968     ** loops will be built using the revised truthProb values. */
4969     if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){
4970       WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
4971       WHERETRACE(0xffff,
4972            ("**** Redo all loop computations due to"
4973             " TERM_HIGHTRUTH changes ****\n"));
4974       while( pWInfo->pLoops ){
4975         WhereLoop *p = pWInfo->pLoops;
4976         pWInfo->pLoops = p->pNextLoop;
4977         whereLoopDelete(db, p);
4978       }
4979       rc = whereLoopAddAll(&sWLB);
4980       if( rc ) goto whereBeginError;
4981     }
4982 #endif
4983     WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
4984 
4985     wherePathSolver(pWInfo, 0);
4986     if( db->mallocFailed ) goto whereBeginError;
4987     if( pWInfo->pOrderBy ){
4988        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
4989        if( db->mallocFailed ) goto whereBeginError;
4990     }
4991   }
4992   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
4993      pWInfo->revMask = ALLBITS;
4994   }
4995   if( pParse->nErr || db->mallocFailed ){
4996     goto whereBeginError;
4997   }
4998 #ifdef WHERETRACE_ENABLED
4999   if( sqlite3WhereTrace ){
5000     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
5001     if( pWInfo->nOBSat>0 ){
5002       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
5003     }
5004     switch( pWInfo->eDistinct ){
5005       case WHERE_DISTINCT_UNIQUE: {
5006         sqlite3DebugPrintf("  DISTINCT=unique");
5007         break;
5008       }
5009       case WHERE_DISTINCT_ORDERED: {
5010         sqlite3DebugPrintf("  DISTINCT=ordered");
5011         break;
5012       }
5013       case WHERE_DISTINCT_UNORDERED: {
5014         sqlite3DebugPrintf("  DISTINCT=unordered");
5015         break;
5016       }
5017     }
5018     sqlite3DebugPrintf("\n");
5019     for(ii=0; ii<pWInfo->nLevel; ii++){
5020       sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
5021     }
5022   }
5023 #endif
5024 
5025   /* Attempt to omit tables from the join that do not affect the result.
5026   ** For a table to not affect the result, the following must be true:
5027   **
5028   **   1) The query must not be an aggregate. Or it must be an aggregate
5029   **      that contains only one aggregate function with the DISTINCT
5030   **      qualifier. e.g. "SELECT count(DISTINCT ...) FROM".
5031   **   2) The table must be the RHS of a LEFT JOIN.
5032   **   3) Either the query must be DISTINCT, or else the ON or USING clause
5033   **      must contain a constraint that limits the scan of the table to
5034   **      at most a single row.
5035   **   4) The table must not be referenced by any part of the query apart
5036   **      from its own USING or ON clause.
5037   **
5038   ** For example, given:
5039   **
5040   **     CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
5041   **     CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
5042   **     CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
5043   **
5044   ** then table t2 can be omitted from the following:
5045   **
5046   **     SELECT v1, v3 FROM t1
5047   **       LEFT JOIN t2 ON (t1.ipk=t2.ipk)
5048   **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5049   **
5050   ** or from:
5051   **
5052   **     SELECT DISTINCT v1, v3 FROM t1
5053   **       LEFT JOIN t2
5054   **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5055   */
5056   notReady = ~(Bitmask)0;
5057   if( pWInfo->nLevel>=2
5058    && pResultSet!=0               /* guarantees condition (1) above */
5059    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
5060   ){
5061     int i;
5062     Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet);
5063     if( sWLB.pOrderBy ){
5064       tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy);
5065     }
5066     for(i=pWInfo->nLevel-1; i>=1; i--){
5067       WhereTerm *pTerm, *pEnd;
5068       SrcItem *pItem;
5069       pLoop = pWInfo->a[i].pWLoop;
5070       pItem = &pWInfo->pTabList->a[pLoop->iTab];
5071       if( (pItem->fg.jointype & JT_LEFT)==0 ) continue;
5072       if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
5073        && (pLoop->wsFlags & WHERE_ONEROW)==0
5074       ){
5075         continue;
5076       }
5077       if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
5078       pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
5079       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
5080         if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5081           if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
5082            || pTerm->pExpr->iRightJoinTable!=pItem->iCursor
5083           ){
5084             break;
5085           }
5086         }
5087       }
5088       if( pTerm<pEnd ) continue;
5089       WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
5090       notReady &= ~pLoop->maskSelf;
5091       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
5092         if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5093           pTerm->wtFlags |= TERM_CODED;
5094         }
5095       }
5096       if( i!=pWInfo->nLevel-1 ){
5097         int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
5098         memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
5099       }
5100       pWInfo->nLevel--;
5101       nTabList--;
5102     }
5103   }
5104 #if defined(WHERETRACE_ENABLED)
5105   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5106     sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
5107     sqlite3WhereClausePrint(sWLB.pWC);
5108   }
5109   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
5110 #endif
5111   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
5112 
5113   /* If the caller is an UPDATE or DELETE statement that is requesting
5114   ** to use a one-pass algorithm, determine if this is appropriate.
5115   **
5116   ** A one-pass approach can be used if the caller has requested one
5117   ** and either (a) the scan visits at most one row or (b) each
5118   ** of the following are true:
5119   **
5120   **   * the caller has indicated that a one-pass approach can be used
5121   **     with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
5122   **   * the table is not a virtual table, and
5123   **   * either the scan does not use the OR optimization or the caller
5124   **     is a DELETE operation (WHERE_DUPLICATES_OK is only specified
5125   **     for DELETE).
5126   **
5127   ** The last qualification is because an UPDATE statement uses
5128   ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
5129   ** use a one-pass approach, and this is not set accurately for scans
5130   ** that use the OR optimization.
5131   */
5132   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
5133   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
5134     int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
5135     int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
5136     assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) );
5137     if( bOnerow || (
5138         0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
5139      && !IsVirtual(pTabList->a[0].pTab)
5140      && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
5141     )){
5142       pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
5143       if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
5144         if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
5145           bFordelete = OPFLAG_FORDELETE;
5146         }
5147         pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
5148       }
5149     }
5150   }
5151 
5152   /* Open all tables in the pTabList and any indices selected for
5153   ** searching those tables.
5154   */
5155   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
5156     Table *pTab;     /* Table to open */
5157     int iDb;         /* Index of database containing table/index */
5158     SrcItem *pTabItem;
5159 
5160     pTabItem = &pTabList->a[pLevel->iFrom];
5161     pTab = pTabItem->pTab;
5162     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5163     pLoop = pLevel->pWLoop;
5164     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
5165       /* Do nothing */
5166     }else
5167 #ifndef SQLITE_OMIT_VIRTUALTABLE
5168     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
5169       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
5170       int iCur = pTabItem->iCursor;
5171       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
5172     }else if( IsVirtual(pTab) ){
5173       /* noop */
5174     }else
5175 #endif
5176     if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
5177          && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
5178       int op = OP_OpenRead;
5179       if( pWInfo->eOnePass!=ONEPASS_OFF ){
5180         op = OP_OpenWrite;
5181         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
5182       };
5183       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
5184       assert( pTabItem->iCursor==pLevel->iTabCur );
5185       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
5186       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
5187       if( pWInfo->eOnePass==ONEPASS_OFF
5188        && pTab->nCol<BMS
5189        && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0
5190       ){
5191         /* If we know that only a prefix of the record will be used,
5192         ** it is advantageous to reduce the "column count" field in
5193         ** the P4 operand of the OP_OpenRead/Write opcode. */
5194         Bitmask b = pTabItem->colUsed;
5195         int n = 0;
5196         for(; b; b=b>>1, n++){}
5197         sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
5198         assert( n<=pTab->nCol );
5199       }
5200 #ifdef SQLITE_ENABLE_CURSOR_HINTS
5201       if( pLoop->u.btree.pIndex!=0 ){
5202         sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
5203       }else
5204 #endif
5205       {
5206         sqlite3VdbeChangeP5(v, bFordelete);
5207       }
5208 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5209       sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
5210                             (const u8*)&pTabItem->colUsed, P4_INT64);
5211 #endif
5212     }else{
5213       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5214     }
5215     if( pLoop->wsFlags & WHERE_INDEXED ){
5216       Index *pIx = pLoop->u.btree.pIndex;
5217       int iIndexCur;
5218       int op = OP_OpenRead;
5219       /* iAuxArg is always set to a positive value if ONEPASS is possible */
5220       assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
5221       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
5222        && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
5223       ){
5224         /* This is one term of an OR-optimization using the PRIMARY KEY of a
5225         ** WITHOUT ROWID table.  No need for a separate index */
5226         iIndexCur = pLevel->iTabCur;
5227         op = 0;
5228       }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
5229         Index *pJ = pTabItem->pTab->pIndex;
5230         iIndexCur = iAuxArg;
5231         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
5232         while( ALWAYS(pJ) && pJ!=pIx ){
5233           iIndexCur++;
5234           pJ = pJ->pNext;
5235         }
5236         op = OP_OpenWrite;
5237         pWInfo->aiCurOnePass[1] = iIndexCur;
5238       }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
5239         iIndexCur = iAuxArg;
5240         op = OP_ReopenIdx;
5241       }else{
5242         iIndexCur = pParse->nTab++;
5243       }
5244       pLevel->iIdxCur = iIndexCur;
5245       assert( pIx->pSchema==pTab->pSchema );
5246       assert( iIndexCur>=0 );
5247       if( op ){
5248         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
5249         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
5250         if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
5251          && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
5252          && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0
5253          && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
5254          && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
5255          && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
5256         ){
5257           sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ);
5258         }
5259         VdbeComment((v, "%s", pIx->zName));
5260 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5261         {
5262           u64 colUsed = 0;
5263           int ii, jj;
5264           for(ii=0; ii<pIx->nColumn; ii++){
5265             jj = pIx->aiColumn[ii];
5266             if( jj<0 ) continue;
5267             if( jj>63 ) jj = 63;
5268             if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
5269             colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
5270           }
5271           sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
5272                                 (u8*)&colUsed, P4_INT64);
5273         }
5274 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
5275       }
5276     }
5277     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
5278   }
5279   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
5280   if( db->mallocFailed ) goto whereBeginError;
5281 
5282   /* Generate the code to do the search.  Each iteration of the for
5283   ** loop below generates code for a single nested loop of the VM
5284   ** program.
5285   */
5286   for(ii=0; ii<nTabList; ii++){
5287     int addrExplain;
5288     int wsFlags;
5289     pLevel = &pWInfo->a[ii];
5290     wsFlags = pLevel->pWLoop->wsFlags;
5291 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
5292     if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
5293       constructAutomaticIndex(pParse, &pWInfo->sWC,
5294                 &pTabList->a[pLevel->iFrom], notReady, pLevel);
5295       if( db->mallocFailed ) goto whereBeginError;
5296     }
5297 #endif
5298     addrExplain = sqlite3WhereExplainOneScan(
5299         pParse, pTabList, pLevel, wctrlFlags
5300     );
5301     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
5302     notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady);
5303     pWInfo->iContinue = pLevel->addrCont;
5304     if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
5305       sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
5306     }
5307   }
5308 
5309   /* Done. */
5310   VdbeModuleComment((v, "Begin WHERE-core"));
5311   pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v);
5312   return pWInfo;
5313 
5314   /* Jump here if malloc fails */
5315 whereBeginError:
5316   if( pWInfo ){
5317     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5318     whereInfoFree(db, pWInfo);
5319   }
5320   return 0;
5321 }
5322 
5323 /*
5324 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
5325 ** index rather than the main table.  In SQLITE_DEBUG mode, we want
5326 ** to trace those changes if PRAGMA vdbe_addoptrace=on.  This routine
5327 ** does that.
5328 */
5329 #ifndef SQLITE_DEBUG
5330 # define OpcodeRewriteTrace(D,K,P) /* no-op */
5331 #else
5332 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
5333   static void sqlite3WhereOpcodeRewriteTrace(
5334     sqlite3 *db,
5335     int pc,
5336     VdbeOp *pOp
5337   ){
5338     if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
5339     sqlite3VdbePrintOp(0, pc, pOp);
5340   }
5341 #endif
5342 
5343 /*
5344 ** Generate the end of the WHERE loop.  See comments on
5345 ** sqlite3WhereBegin() for additional information.
5346 */
5347 void sqlite3WhereEnd(WhereInfo *pWInfo){
5348   Parse *pParse = pWInfo->pParse;
5349   Vdbe *v = pParse->pVdbe;
5350   int i;
5351   WhereLevel *pLevel;
5352   WhereLoop *pLoop;
5353   SrcList *pTabList = pWInfo->pTabList;
5354   sqlite3 *db = pParse->db;
5355   int iEnd = sqlite3VdbeCurrentAddr(v);
5356 
5357   /* Generate loop termination code.
5358   */
5359   VdbeModuleComment((v, "End WHERE-core"));
5360   for(i=pWInfo->nLevel-1; i>=0; i--){
5361     int addr;
5362     pLevel = &pWInfo->a[i];
5363     pLoop = pLevel->pWLoop;
5364     if( pLevel->op!=OP_Noop ){
5365 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5366       int addrSeek = 0;
5367       Index *pIdx;
5368       int n;
5369       if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
5370        && i==pWInfo->nLevel-1  /* Ticket [ef9318757b152e3] 2017-10-21 */
5371        && (pLoop->wsFlags & WHERE_INDEXED)!=0
5372        && (pIdx = pLoop->u.btree.pIndex)->hasStat1
5373        && (n = pLoop->u.btree.nDistinctCol)>0
5374        && pIdx->aiRowLogEst[n]>=36
5375       ){
5376         int r1 = pParse->nMem+1;
5377         int j, op;
5378         for(j=0; j<n; j++){
5379           sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
5380         }
5381         pParse->nMem += n+1;
5382         op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
5383         addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
5384         VdbeCoverageIf(v, op==OP_SeekLT);
5385         VdbeCoverageIf(v, op==OP_SeekGT);
5386         sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
5387       }
5388 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
5389       /* The common case: Advance to the next row */
5390       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5391       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
5392       sqlite3VdbeChangeP5(v, pLevel->p5);
5393       VdbeCoverage(v);
5394       VdbeCoverageIf(v, pLevel->op==OP_Next);
5395       VdbeCoverageIf(v, pLevel->op==OP_Prev);
5396       VdbeCoverageIf(v, pLevel->op==OP_VNext);
5397       if( pLevel->regBignull ){
5398         sqlite3VdbeResolveLabel(v, pLevel->addrBignull);
5399         sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1);
5400         VdbeCoverage(v);
5401       }
5402 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5403       if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
5404 #endif
5405     }else{
5406       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5407     }
5408     if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
5409       struct InLoop *pIn;
5410       int j;
5411       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
5412       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
5413         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5414         if( pIn->eEndLoopOp!=OP_Noop ){
5415           if( pIn->nPrefix ){
5416             int bEarlyOut =
5417                 (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
5418                  && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0;
5419             if( pLevel->iLeftJoin ){
5420               /* For LEFT JOIN queries, cursor pIn->iCur may not have been
5421               ** opened yet. This occurs for WHERE clauses such as
5422               ** "a = ? AND b IN (...)", where the index is on (a, b). If
5423               ** the RHS of the (a=?) is NULL, then the "b IN (...)" may
5424               ** never have been coded, but the body of the loop run to
5425               ** return the null-row. So, if the cursor is not open yet,
5426               ** jump over the OP_Next or OP_Prev instruction about to
5427               ** be coded.  */
5428               sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur,
5429                   sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut);
5430               VdbeCoverage(v);
5431             }
5432             if( bEarlyOut ){
5433               sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
5434                   sqlite3VdbeCurrentAddr(v)+2,
5435                   pIn->iBase, pIn->nPrefix);
5436               VdbeCoverage(v);
5437             }
5438           }
5439           sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
5440           VdbeCoverage(v);
5441           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
5442           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
5443         }
5444         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
5445       }
5446     }
5447     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
5448     if( pLevel->addrSkip ){
5449       sqlite3VdbeGoto(v, pLevel->addrSkip);
5450       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
5451       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
5452       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
5453     }
5454 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
5455     if( pLevel->addrLikeRep ){
5456       sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
5457                         pLevel->addrLikeRep);
5458       VdbeCoverage(v);
5459     }
5460 #endif
5461     if( pLevel->iLeftJoin ){
5462       int ws = pLoop->wsFlags;
5463       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
5464       assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
5465       if( (ws & WHERE_IDX_ONLY)==0 ){
5466         assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
5467         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
5468       }
5469       if( (ws & WHERE_INDEXED)
5470        || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx)
5471       ){
5472         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
5473       }
5474       if( pLevel->op==OP_Return ){
5475         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
5476       }else{
5477         sqlite3VdbeGoto(v, pLevel->addrFirst);
5478       }
5479       sqlite3VdbeJumpHere(v, addr);
5480     }
5481     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
5482                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
5483   }
5484 
5485   /* The "break" point is here, just past the end of the outer loop.
5486   ** Set it.
5487   */
5488   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
5489 
5490   assert( pWInfo->nLevel<=pTabList->nSrc );
5491   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
5492     int k, last;
5493     VdbeOp *pOp, *pLastOp;
5494     Index *pIdx = 0;
5495     SrcItem *pTabItem = &pTabList->a[pLevel->iFrom];
5496     Table *pTab = pTabItem->pTab;
5497     assert( pTab!=0 );
5498     pLoop = pLevel->pWLoop;
5499 
5500     /* For a co-routine, change all OP_Column references to the table of
5501     ** the co-routine into OP_Copy of result contained in a register.
5502     ** OP_Rowid becomes OP_Null.
5503     */
5504     if( pTabItem->fg.viaCoroutine ){
5505       testcase( pParse->db->mallocFailed );
5506       translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
5507                             pTabItem->regResult, 0);
5508       continue;
5509     }
5510 
5511 #ifdef SQLITE_ENABLE_EARLY_CURSOR_CLOSE
5512     /* Close all of the cursors that were opened by sqlite3WhereBegin.
5513     ** Except, do not close cursors that will be reused by the OR optimization
5514     ** (WHERE_OR_SUBCLAUSE).  And do not close the OP_OpenWrite cursors
5515     ** created for the ONEPASS optimization.
5516     */
5517     if( (pTab->tabFlags & TF_Ephemeral)==0
5518      && pTab->pSelect==0
5519      && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5520     ){
5521       int ws = pLoop->wsFlags;
5522       if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){
5523         sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
5524       }
5525       if( (ws & WHERE_INDEXED)!=0
5526        && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0
5527        && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1]
5528       ){
5529         sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
5530       }
5531     }
5532 #endif
5533 
5534     /* If this scan uses an index, make VDBE code substitutions to read data
5535     ** from the index instead of from the table where possible.  In some cases
5536     ** this optimization prevents the table from ever being read, which can
5537     ** yield a significant performance boost.
5538     **
5539     ** Calls to the code generator in between sqlite3WhereBegin and
5540     ** sqlite3WhereEnd will have created code that references the table
5541     ** directly.  This loop scans all that code looking for opcodes
5542     ** that reference the table and converts them into opcodes that
5543     ** reference the index.
5544     */
5545     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
5546       pIdx = pLoop->u.btree.pIndex;
5547     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
5548       pIdx = pLevel->u.pCovidx;
5549     }
5550     if( pIdx
5551      && !db->mallocFailed
5552     ){
5553       if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){
5554         last = iEnd;
5555       }else{
5556         last = pWInfo->iEndWhere;
5557       }
5558       k = pLevel->addrBody + 1;
5559 #ifdef SQLITE_DEBUG
5560       if( db->flags & SQLITE_VdbeAddopTrace ){
5561         printf("TRANSLATE opcodes in range %d..%d\n", k, last-1);
5562       }
5563       /* Proof that the "+1" on the k value above is safe */
5564       pOp = sqlite3VdbeGetOp(v, k - 1);
5565       assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur );
5566       assert( pOp->opcode!=OP_Rowid  || pOp->p1!=pLevel->iTabCur );
5567       assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur );
5568 #endif
5569       pOp = sqlite3VdbeGetOp(v, k);
5570       pLastOp = pOp + (last - k);
5571       assert( pOp<pLastOp || (pParse->nErr>0 && pOp==pLastOp) );
5572       do{
5573         if( pOp->p1!=pLevel->iTabCur ){
5574           /* no-op */
5575         }else if( pOp->opcode==OP_Column
5576 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
5577          || pOp->opcode==OP_Offset
5578 #endif
5579         ){
5580           int x = pOp->p2;
5581           assert( pIdx->pTable==pTab );
5582           if( !HasRowid(pTab) ){
5583             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
5584             x = pPk->aiColumn[x];
5585             assert( x>=0 );
5586           }else{
5587             testcase( x!=sqlite3StorageColumnToTable(pTab,x) );
5588             x = sqlite3StorageColumnToTable(pTab,x);
5589           }
5590           x = sqlite3TableColumnToIndex(pIdx, x);
5591           if( x>=0 ){
5592             pOp->p2 = x;
5593             pOp->p1 = pLevel->iIdxCur;
5594             OpcodeRewriteTrace(db, k, pOp);
5595           }
5596           assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0
5597               || pWInfo->eOnePass );
5598         }else if( pOp->opcode==OP_Rowid ){
5599           pOp->p1 = pLevel->iIdxCur;
5600           pOp->opcode = OP_IdxRowid;
5601           OpcodeRewriteTrace(db, k, pOp);
5602         }else if( pOp->opcode==OP_IfNullRow ){
5603           pOp->p1 = pLevel->iIdxCur;
5604           OpcodeRewriteTrace(db, k, pOp);
5605         }
5606 #ifdef SQLITE_DEBUG
5607         k++;
5608 #endif
5609       }while( (++pOp)<pLastOp );
5610 #ifdef SQLITE_DEBUG
5611       if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
5612 #endif
5613     }
5614   }
5615 
5616   /* Undo all Expr node modifications */
5617   while( pWInfo->pExprMods ){
5618     WhereExprMod *p = pWInfo->pExprMods;
5619     pWInfo->pExprMods = p->pNext;
5620     memcpy(p->pExpr, &p->orig, sizeof(p->orig));
5621     sqlite3DbFree(db, p);
5622   }
5623 
5624   /* Final cleanup
5625   */
5626   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5627   whereInfoFree(db, pWInfo);
5628   return;
5629 }
5630