1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* Forward declaration of methods */ 23 static int whereLoopResize(sqlite3*, WhereLoop*, int); 24 25 /* Test variable that can be set to enable WHERE tracing */ 26 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 27 /***/ int sqlite3WhereTrace = 0; 28 #endif 29 30 31 /* 32 ** Return the estimated number of output rows from a WHERE clause 33 */ 34 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ 35 return pWInfo->nRowOut; 36 } 37 38 /* 39 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this 40 ** WHERE clause returns outputs for DISTINCT processing. 41 */ 42 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ 43 return pWInfo->eDistinct; 44 } 45 46 /* 47 ** Return TRUE if the WHERE clause returns rows in ORDER BY order. 48 ** Return FALSE if the output needs to be sorted. 49 */ 50 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ 51 return pWInfo->nOBSat; 52 } 53 54 /* 55 ** Return the VDBE address or label to jump to in order to continue 56 ** immediately with the next row of a WHERE clause. 57 */ 58 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ 59 assert( pWInfo->iContinue!=0 ); 60 return pWInfo->iContinue; 61 } 62 63 /* 64 ** Return the VDBE address or label to jump to in order to break 65 ** out of a WHERE loop. 66 */ 67 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ 68 return pWInfo->iBreak; 69 } 70 71 /* 72 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to 73 ** operate directly on the rowis returned by a WHERE clause. Return 74 ** ONEPASS_SINGLE (1) if the statement can operation directly because only 75 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass 76 ** optimization can be used on multiple 77 ** 78 ** If the ONEPASS optimization is used (if this routine returns true) 79 ** then also write the indices of open cursors used by ONEPASS 80 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data 81 ** table and iaCur[1] gets the cursor used by an auxiliary index. 82 ** Either value may be -1, indicating that cursor is not used. 83 ** Any cursors returned will have been opened for writing. 84 ** 85 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is 86 ** unable to use the ONEPASS optimization. 87 */ 88 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ 89 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); 90 #ifdef WHERETRACE_ENABLED 91 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){ 92 sqlite3DebugPrintf("%s cursors: %d %d\n", 93 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI", 94 aiCur[0], aiCur[1]); 95 } 96 #endif 97 return pWInfo->eOnePass; 98 } 99 100 /* 101 ** Move the content of pSrc into pDest 102 */ 103 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ 104 pDest->n = pSrc->n; 105 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); 106 } 107 108 /* 109 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. 110 ** 111 ** The new entry might overwrite an existing entry, or it might be 112 ** appended, or it might be discarded. Do whatever is the right thing 113 ** so that pSet keeps the N_OR_COST best entries seen so far. 114 */ 115 static int whereOrInsert( 116 WhereOrSet *pSet, /* The WhereOrSet to be updated */ 117 Bitmask prereq, /* Prerequisites of the new entry */ 118 LogEst rRun, /* Run-cost of the new entry */ 119 LogEst nOut /* Number of outputs for the new entry */ 120 ){ 121 u16 i; 122 WhereOrCost *p; 123 for(i=pSet->n, p=pSet->a; i>0; i--, p++){ 124 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ 125 goto whereOrInsert_done; 126 } 127 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ 128 return 0; 129 } 130 } 131 if( pSet->n<N_OR_COST ){ 132 p = &pSet->a[pSet->n++]; 133 p->nOut = nOut; 134 }else{ 135 p = pSet->a; 136 for(i=1; i<pSet->n; i++){ 137 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; 138 } 139 if( p->rRun<=rRun ) return 0; 140 } 141 whereOrInsert_done: 142 p->prereq = prereq; 143 p->rRun = rRun; 144 if( p->nOut>nOut ) p->nOut = nOut; 145 return 1; 146 } 147 148 /* 149 ** Return the bitmask for the given cursor number. Return 0 if 150 ** iCursor is not in the set. 151 */ 152 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ 153 int i; 154 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); 155 for(i=0; i<pMaskSet->n; i++){ 156 if( pMaskSet->ix[i]==iCursor ){ 157 return MASKBIT(i); 158 } 159 } 160 return 0; 161 } 162 163 /* 164 ** Create a new mask for cursor iCursor. 165 ** 166 ** There is one cursor per table in the FROM clause. The number of 167 ** tables in the FROM clause is limited by a test early in the 168 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 169 ** array will never overflow. 170 */ 171 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 172 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 173 pMaskSet->ix[pMaskSet->n++] = iCursor; 174 } 175 176 /* 177 ** Advance to the next WhereTerm that matches according to the criteria 178 ** established when the pScan object was initialized by whereScanInit(). 179 ** Return NULL if there are no more matching WhereTerms. 180 */ 181 static WhereTerm *whereScanNext(WhereScan *pScan){ 182 int iCur; /* The cursor on the LHS of the term */ 183 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */ 184 Expr *pX; /* An expression being tested */ 185 WhereClause *pWC; /* Shorthand for pScan->pWC */ 186 WhereTerm *pTerm; /* The term being tested */ 187 int k = pScan->k; /* Where to start scanning */ 188 189 while( pScan->iEquiv<=pScan->nEquiv ){ 190 iCur = pScan->aiCur[pScan->iEquiv-1]; 191 iColumn = pScan->aiColumn[pScan->iEquiv-1]; 192 if( iColumn==XN_EXPR && pScan->pIdxExpr==0 ) return 0; 193 while( (pWC = pScan->pWC)!=0 ){ 194 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ 195 if( pTerm->leftCursor==iCur 196 && pTerm->u.leftColumn==iColumn 197 && (iColumn!=XN_EXPR 198 || sqlite3ExprCompare(pTerm->pExpr->pLeft,pScan->pIdxExpr,iCur)==0) 199 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 200 ){ 201 if( (pTerm->eOperator & WO_EQUIV)!=0 202 && pScan->nEquiv<ArraySize(pScan->aiCur) 203 && (pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight))->op==TK_COLUMN 204 ){ 205 int j; 206 for(j=0; j<pScan->nEquiv; j++){ 207 if( pScan->aiCur[j]==pX->iTable 208 && pScan->aiColumn[j]==pX->iColumn ){ 209 break; 210 } 211 } 212 if( j==pScan->nEquiv ){ 213 pScan->aiCur[j] = pX->iTable; 214 pScan->aiColumn[j] = pX->iColumn; 215 pScan->nEquiv++; 216 } 217 } 218 if( (pTerm->eOperator & pScan->opMask)!=0 ){ 219 /* Verify the affinity and collating sequence match */ 220 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ 221 CollSeq *pColl; 222 Parse *pParse = pWC->pWInfo->pParse; 223 pX = pTerm->pExpr; 224 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ 225 continue; 226 } 227 assert(pX->pLeft); 228 pColl = sqlite3BinaryCompareCollSeq(pParse, 229 pX->pLeft, pX->pRight); 230 if( pColl==0 ) pColl = pParse->db->pDfltColl; 231 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ 232 continue; 233 } 234 } 235 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0 236 && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN 237 && pX->iTable==pScan->aiCur[0] 238 && pX->iColumn==pScan->aiColumn[0] 239 ){ 240 testcase( pTerm->eOperator & WO_IS ); 241 continue; 242 } 243 pScan->k = k+1; 244 return pTerm; 245 } 246 } 247 } 248 pScan->pWC = pScan->pWC->pOuter; 249 k = 0; 250 } 251 pScan->pWC = pScan->pOrigWC; 252 k = 0; 253 pScan->iEquiv++; 254 } 255 return 0; 256 } 257 258 /* 259 ** Initialize a WHERE clause scanner object. Return a pointer to the 260 ** first match. Return NULL if there are no matches. 261 ** 262 ** The scanner will be searching the WHERE clause pWC. It will look 263 ** for terms of the form "X <op> <expr>" where X is column iColumn of table 264 ** iCur. The <op> must be one of the operators described by opMask. 265 ** 266 ** If the search is for X and the WHERE clause contains terms of the 267 ** form X=Y then this routine might also return terms of the form 268 ** "Y <op> <expr>". The number of levels of transitivity is limited, 269 ** but is enough to handle most commonly occurring SQL statements. 270 ** 271 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with 272 ** index pIdx. 273 */ 274 static WhereTerm *whereScanInit( 275 WhereScan *pScan, /* The WhereScan object being initialized */ 276 WhereClause *pWC, /* The WHERE clause to be scanned */ 277 int iCur, /* Cursor to scan for */ 278 int iColumn, /* Column to scan for */ 279 u32 opMask, /* Operator(s) to scan for */ 280 Index *pIdx /* Must be compatible with this index */ 281 ){ 282 int j = 0; 283 284 /* memset(pScan, 0, sizeof(*pScan)); */ 285 pScan->pOrigWC = pWC; 286 pScan->pWC = pWC; 287 pScan->pIdxExpr = 0; 288 if( pIdx ){ 289 j = iColumn; 290 iColumn = pIdx->aiColumn[j]; 291 if( iColumn==XN_EXPR ) pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr; 292 if( iColumn==pIdx->pTable->iPKey ) iColumn = XN_ROWID; 293 } 294 if( pIdx && iColumn>=0 ){ 295 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; 296 pScan->zCollName = pIdx->azColl[j]; 297 }else{ 298 pScan->idxaff = 0; 299 pScan->zCollName = 0; 300 } 301 pScan->opMask = opMask; 302 pScan->k = 0; 303 pScan->aiCur[0] = iCur; 304 pScan->aiColumn[0] = iColumn; 305 pScan->nEquiv = 1; 306 pScan->iEquiv = 1; 307 return whereScanNext(pScan); 308 } 309 310 /* 311 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 312 ** where X is a reference to the iColumn of table iCur and <op> is one of 313 ** the WO_xx operator codes specified by the op parameter. 314 ** Return a pointer to the term. Return 0 if not found. 315 ** 316 ** If pIdx!=0 then search for terms matching the iColumn-th column of pIdx 317 ** rather than the iColumn-th column of table iCur. 318 ** 319 ** The term returned might by Y=<expr> if there is another constraint in 320 ** the WHERE clause that specifies that X=Y. Any such constraints will be 321 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The 322 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11 323 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10 324 ** other equivalent values. Hence a search for X will return <expr> if X=A1 325 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>. 326 ** 327 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" 328 ** then try for the one with no dependencies on <expr> - in other words where 329 ** <expr> is a constant expression of some kind. Only return entries of 330 ** the form "X <op> Y" where Y is a column in another table if no terms of 331 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS 332 ** exist, try to return a term that does not use WO_EQUIV. 333 */ 334 WhereTerm *sqlite3WhereFindTerm( 335 WhereClause *pWC, /* The WHERE clause to be searched */ 336 int iCur, /* Cursor number of LHS */ 337 int iColumn, /* Column number of LHS */ 338 Bitmask notReady, /* RHS must not overlap with this mask */ 339 u32 op, /* Mask of WO_xx values describing operator */ 340 Index *pIdx /* Must be compatible with this index, if not NULL */ 341 ){ 342 WhereTerm *pResult = 0; 343 WhereTerm *p; 344 WhereScan scan; 345 346 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); 347 op &= WO_EQ|WO_IS; 348 while( p ){ 349 if( (p->prereqRight & notReady)==0 ){ 350 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){ 351 testcase( p->eOperator & WO_IS ); 352 return p; 353 } 354 if( pResult==0 ) pResult = p; 355 } 356 p = whereScanNext(&scan); 357 } 358 return pResult; 359 } 360 361 /* 362 ** This function searches pList for an entry that matches the iCol-th column 363 ** of index pIdx. 364 ** 365 ** If such an expression is found, its index in pList->a[] is returned. If 366 ** no expression is found, -1 is returned. 367 */ 368 static int findIndexCol( 369 Parse *pParse, /* Parse context */ 370 ExprList *pList, /* Expression list to search */ 371 int iBase, /* Cursor for table associated with pIdx */ 372 Index *pIdx, /* Index to match column of */ 373 int iCol /* Column of index to match */ 374 ){ 375 int i; 376 const char *zColl = pIdx->azColl[iCol]; 377 378 for(i=0; i<pList->nExpr; i++){ 379 Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr); 380 if( p->op==TK_COLUMN 381 && p->iColumn==pIdx->aiColumn[iCol] 382 && p->iTable==iBase 383 ){ 384 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); 385 if( pColl && 0==sqlite3StrICmp(pColl->zName, zColl) ){ 386 return i; 387 } 388 } 389 } 390 391 return -1; 392 } 393 394 /* 395 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL 396 */ 397 static int indexColumnNotNull(Index *pIdx, int iCol){ 398 int j; 399 assert( pIdx!=0 ); 400 assert( iCol>=0 && iCol<pIdx->nColumn ); 401 j = pIdx->aiColumn[iCol]; 402 if( j>=0 ){ 403 return pIdx->pTable->aCol[j].notNull; 404 }else if( j==(-1) ){ 405 return 1; 406 }else{ 407 assert( j==(-2) ); 408 return 0; /* Assume an indexed expression can always yield a NULL */ 409 410 } 411 } 412 413 /* 414 ** Return true if the DISTINCT expression-list passed as the third argument 415 ** is redundant. 416 ** 417 ** A DISTINCT list is redundant if any subset of the columns in the 418 ** DISTINCT list are collectively unique and individually non-null. 419 */ 420 static int isDistinctRedundant( 421 Parse *pParse, /* Parsing context */ 422 SrcList *pTabList, /* The FROM clause */ 423 WhereClause *pWC, /* The WHERE clause */ 424 ExprList *pDistinct /* The result set that needs to be DISTINCT */ 425 ){ 426 Table *pTab; 427 Index *pIdx; 428 int i; 429 int iBase; 430 431 /* If there is more than one table or sub-select in the FROM clause of 432 ** this query, then it will not be possible to show that the DISTINCT 433 ** clause is redundant. */ 434 if( pTabList->nSrc!=1 ) return 0; 435 iBase = pTabList->a[0].iCursor; 436 pTab = pTabList->a[0].pTab; 437 438 /* If any of the expressions is an IPK column on table iBase, then return 439 ** true. Note: The (p->iTable==iBase) part of this test may be false if the 440 ** current SELECT is a correlated sub-query. 441 */ 442 for(i=0; i<pDistinct->nExpr; i++){ 443 Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr); 444 if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1; 445 } 446 447 /* Loop through all indices on the table, checking each to see if it makes 448 ** the DISTINCT qualifier redundant. It does so if: 449 ** 450 ** 1. The index is itself UNIQUE, and 451 ** 452 ** 2. All of the columns in the index are either part of the pDistinct 453 ** list, or else the WHERE clause contains a term of the form "col=X", 454 ** where X is a constant value. The collation sequences of the 455 ** comparison and select-list expressions must match those of the index. 456 ** 457 ** 3. All of those index columns for which the WHERE clause does not 458 ** contain a "col=X" term are subject to a NOT NULL constraint. 459 */ 460 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 461 if( !IsUniqueIndex(pIdx) ) continue; 462 for(i=0; i<pIdx->nKeyCol; i++){ 463 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){ 464 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break; 465 if( indexColumnNotNull(pIdx, i)==0 ) break; 466 } 467 } 468 if( i==pIdx->nKeyCol ){ 469 /* This index implies that the DISTINCT qualifier is redundant. */ 470 return 1; 471 } 472 } 473 474 return 0; 475 } 476 477 478 /* 479 ** Estimate the logarithm of the input value to base 2. 480 */ 481 static LogEst estLog(LogEst N){ 482 return N<=10 ? 0 : sqlite3LogEst(N) - 33; 483 } 484 485 /* 486 ** Convert OP_Column opcodes to OP_Copy in previously generated code. 487 ** 488 ** This routine runs over generated VDBE code and translates OP_Column 489 ** opcodes into OP_Copy when the table is being accessed via co-routine 490 ** instead of via table lookup. 491 ** 492 ** If the bIncrRowid parameter is 0, then any OP_Rowid instructions on 493 ** cursor iTabCur are transformed into OP_Null. Or, if bIncrRowid is non-zero, 494 ** then each OP_Rowid is transformed into an instruction to increment the 495 ** value stored in its output register. 496 */ 497 static void translateColumnToCopy( 498 Vdbe *v, /* The VDBE containing code to translate */ 499 int iStart, /* Translate from this opcode to the end */ 500 int iTabCur, /* OP_Column/OP_Rowid references to this table */ 501 int iRegister, /* The first column is in this register */ 502 int bIncrRowid /* If non-zero, transform OP_rowid to OP_AddImm(1) */ 503 ){ 504 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart); 505 int iEnd = sqlite3VdbeCurrentAddr(v); 506 for(; iStart<iEnd; iStart++, pOp++){ 507 if( pOp->p1!=iTabCur ) continue; 508 if( pOp->opcode==OP_Column ){ 509 pOp->opcode = OP_Copy; 510 pOp->p1 = pOp->p2 + iRegister; 511 pOp->p2 = pOp->p3; 512 pOp->p3 = 0; 513 }else if( pOp->opcode==OP_Rowid ){ 514 if( bIncrRowid ){ 515 /* Increment the value stored in the P2 operand of the OP_Rowid. */ 516 pOp->opcode = OP_AddImm; 517 pOp->p1 = pOp->p2; 518 pOp->p2 = 1; 519 }else{ 520 pOp->opcode = OP_Null; 521 pOp->p1 = 0; 522 pOp->p3 = 0; 523 } 524 } 525 } 526 } 527 528 /* 529 ** Two routines for printing the content of an sqlite3_index_info 530 ** structure. Used for testing and debugging only. If neither 531 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 532 ** are no-ops. 533 */ 534 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) 535 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ 536 int i; 537 if( !sqlite3WhereTrace ) return; 538 for(i=0; i<p->nConstraint; i++){ 539 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 540 i, 541 p->aConstraint[i].iColumn, 542 p->aConstraint[i].iTermOffset, 543 p->aConstraint[i].op, 544 p->aConstraint[i].usable); 545 } 546 for(i=0; i<p->nOrderBy; i++){ 547 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 548 i, 549 p->aOrderBy[i].iColumn, 550 p->aOrderBy[i].desc); 551 } 552 } 553 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ 554 int i; 555 if( !sqlite3WhereTrace ) return; 556 for(i=0; i<p->nConstraint; i++){ 557 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 558 i, 559 p->aConstraintUsage[i].argvIndex, 560 p->aConstraintUsage[i].omit); 561 } 562 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 563 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 564 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 565 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 566 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); 567 } 568 #else 569 #define TRACE_IDX_INPUTS(A) 570 #define TRACE_IDX_OUTPUTS(A) 571 #endif 572 573 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 574 /* 575 ** Return TRUE if the WHERE clause term pTerm is of a form where it 576 ** could be used with an index to access pSrc, assuming an appropriate 577 ** index existed. 578 */ 579 static int termCanDriveIndex( 580 WhereTerm *pTerm, /* WHERE clause term to check */ 581 struct SrcList_item *pSrc, /* Table we are trying to access */ 582 Bitmask notReady /* Tables in outer loops of the join */ 583 ){ 584 char aff; 585 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; 586 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0; 587 if( (pTerm->prereqRight & notReady)!=0 ) return 0; 588 if( pTerm->u.leftColumn<0 ) return 0; 589 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; 590 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; 591 testcase( pTerm->pExpr->op==TK_IS ); 592 return 1; 593 } 594 #endif 595 596 597 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 598 /* 599 ** Generate code to construct the Index object for an automatic index 600 ** and to set up the WhereLevel object pLevel so that the code generator 601 ** makes use of the automatic index. 602 */ 603 static void constructAutomaticIndex( 604 Parse *pParse, /* The parsing context */ 605 WhereClause *pWC, /* The WHERE clause */ 606 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */ 607 Bitmask notReady, /* Mask of cursors that are not available */ 608 WhereLevel *pLevel /* Write new index here */ 609 ){ 610 int nKeyCol; /* Number of columns in the constructed index */ 611 WhereTerm *pTerm; /* A single term of the WHERE clause */ 612 WhereTerm *pWCEnd; /* End of pWC->a[] */ 613 Index *pIdx; /* Object describing the transient index */ 614 Vdbe *v; /* Prepared statement under construction */ 615 int addrInit; /* Address of the initialization bypass jump */ 616 Table *pTable; /* The table being indexed */ 617 int addrTop; /* Top of the index fill loop */ 618 int regRecord; /* Register holding an index record */ 619 int n; /* Column counter */ 620 int i; /* Loop counter */ 621 int mxBitCol; /* Maximum column in pSrc->colUsed */ 622 CollSeq *pColl; /* Collating sequence to on a column */ 623 WhereLoop *pLoop; /* The Loop object */ 624 char *zNotUsed; /* Extra space on the end of pIdx */ 625 Bitmask idxCols; /* Bitmap of columns used for indexing */ 626 Bitmask extraCols; /* Bitmap of additional columns */ 627 u8 sentWarning = 0; /* True if a warnning has been issued */ 628 Expr *pPartial = 0; /* Partial Index Expression */ 629 int iContinue = 0; /* Jump here to skip excluded rows */ 630 struct SrcList_item *pTabItem; /* FROM clause term being indexed */ 631 int addrCounter = 0; /* Address where integer counter is initialized */ 632 int regBase; /* Array of registers where record is assembled */ 633 634 /* Generate code to skip over the creation and initialization of the 635 ** transient index on 2nd and subsequent iterations of the loop. */ 636 v = pParse->pVdbe; 637 assert( v!=0 ); 638 addrInit = sqlite3CodeOnce(pParse); VdbeCoverage(v); 639 640 /* Count the number of columns that will be added to the index 641 ** and used to match WHERE clause constraints */ 642 nKeyCol = 0; 643 pTable = pSrc->pTab; 644 pWCEnd = &pWC->a[pWC->nTerm]; 645 pLoop = pLevel->pWLoop; 646 idxCols = 0; 647 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 648 Expr *pExpr = pTerm->pExpr; 649 assert( !ExprHasProperty(pExpr, EP_FromJoin) /* prereq always non-zero */ 650 || pExpr->iRightJoinTable!=pSrc->iCursor /* for the right-hand */ 651 || pLoop->prereq!=0 ); /* table of a LEFT JOIN */ 652 if( pLoop->prereq==0 653 && (pTerm->wtFlags & TERM_VIRTUAL)==0 654 && !ExprHasProperty(pExpr, EP_FromJoin) 655 && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){ 656 pPartial = sqlite3ExprAnd(pParse->db, pPartial, 657 sqlite3ExprDup(pParse->db, pExpr, 0)); 658 } 659 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 660 int iCol = pTerm->u.leftColumn; 661 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 662 testcase( iCol==BMS ); 663 testcase( iCol==BMS-1 ); 664 if( !sentWarning ){ 665 sqlite3_log(SQLITE_WARNING_AUTOINDEX, 666 "automatic index on %s(%s)", pTable->zName, 667 pTable->aCol[iCol].zName); 668 sentWarning = 1; 669 } 670 if( (idxCols & cMask)==0 ){ 671 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ 672 goto end_auto_index_create; 673 } 674 pLoop->aLTerm[nKeyCol++] = pTerm; 675 idxCols |= cMask; 676 } 677 } 678 } 679 assert( nKeyCol>0 ); 680 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; 681 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED 682 | WHERE_AUTO_INDEX; 683 684 /* Count the number of additional columns needed to create a 685 ** covering index. A "covering index" is an index that contains all 686 ** columns that are needed by the query. With a covering index, the 687 ** original table never needs to be accessed. Automatic indices must 688 ** be a covering index because the index will not be updated if the 689 ** original table changes and the index and table cannot both be used 690 ** if they go out of sync. 691 */ 692 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); 693 mxBitCol = MIN(BMS-1,pTable->nCol); 694 testcase( pTable->nCol==BMS-1 ); 695 testcase( pTable->nCol==BMS-2 ); 696 for(i=0; i<mxBitCol; i++){ 697 if( extraCols & MASKBIT(i) ) nKeyCol++; 698 } 699 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 700 nKeyCol += pTable->nCol - BMS + 1; 701 } 702 703 /* Construct the Index object to describe this index */ 704 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); 705 if( pIdx==0 ) goto end_auto_index_create; 706 pLoop->u.btree.pIndex = pIdx; 707 pIdx->zName = "auto-index"; 708 pIdx->pTable = pTable; 709 n = 0; 710 idxCols = 0; 711 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 712 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 713 int iCol = pTerm->u.leftColumn; 714 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 715 testcase( iCol==BMS-1 ); 716 testcase( iCol==BMS ); 717 if( (idxCols & cMask)==0 ){ 718 Expr *pX = pTerm->pExpr; 719 idxCols |= cMask; 720 pIdx->aiColumn[n] = pTerm->u.leftColumn; 721 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); 722 pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY; 723 n++; 724 } 725 } 726 } 727 assert( (u32)n==pLoop->u.btree.nEq ); 728 729 /* Add additional columns needed to make the automatic index into 730 ** a covering index */ 731 for(i=0; i<mxBitCol; i++){ 732 if( extraCols & MASKBIT(i) ){ 733 pIdx->aiColumn[n] = i; 734 pIdx->azColl[n] = sqlite3StrBINARY; 735 n++; 736 } 737 } 738 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 739 for(i=BMS-1; i<pTable->nCol; i++){ 740 pIdx->aiColumn[n] = i; 741 pIdx->azColl[n] = sqlite3StrBINARY; 742 n++; 743 } 744 } 745 assert( n==nKeyCol ); 746 pIdx->aiColumn[n] = XN_ROWID; 747 pIdx->azColl[n] = sqlite3StrBINARY; 748 749 /* Create the automatic index */ 750 assert( pLevel->iIdxCur>=0 ); 751 pLevel->iIdxCur = pParse->nTab++; 752 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); 753 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 754 VdbeComment((v, "for %s", pTable->zName)); 755 756 /* Fill the automatic index with content */ 757 sqlite3ExprCachePush(pParse); 758 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom]; 759 if( pTabItem->fg.viaCoroutine ){ 760 int regYield = pTabItem->regReturn; 761 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0); 762 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 763 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); 764 VdbeCoverage(v); 765 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); 766 }else{ 767 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); 768 } 769 if( pPartial ){ 770 iContinue = sqlite3VdbeMakeLabel(v); 771 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); 772 pLoop->wsFlags |= WHERE_PARTIALIDX; 773 } 774 regRecord = sqlite3GetTempReg(pParse); 775 regBase = sqlite3GenerateIndexKey( 776 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0 777 ); 778 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); 779 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 780 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); 781 if( pTabItem->fg.viaCoroutine ){ 782 sqlite3VdbeChangeP2(v, addrCounter, regBase+n); 783 translateColumnToCopy(v, addrTop, pLevel->iTabCur, pTabItem->regResult, 1); 784 sqlite3VdbeGoto(v, addrTop); 785 pTabItem->fg.viaCoroutine = 0; 786 }else{ 787 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); 788 } 789 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); 790 sqlite3VdbeJumpHere(v, addrTop); 791 sqlite3ReleaseTempReg(pParse, regRecord); 792 sqlite3ExprCachePop(pParse); 793 794 /* Jump here when skipping the initialization */ 795 sqlite3VdbeJumpHere(v, addrInit); 796 797 end_auto_index_create: 798 sqlite3ExprDelete(pParse->db, pPartial); 799 } 800 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 801 802 #ifndef SQLITE_OMIT_VIRTUALTABLE 803 /* 804 ** Allocate and populate an sqlite3_index_info structure. It is the 805 ** responsibility of the caller to eventually release the structure 806 ** by passing the pointer returned by this function to sqlite3_free(). 807 */ 808 static sqlite3_index_info *allocateIndexInfo( 809 Parse *pParse, 810 WhereClause *pWC, 811 Bitmask mUnusable, /* Ignore terms with these prereqs */ 812 struct SrcList_item *pSrc, 813 ExprList *pOrderBy 814 ){ 815 int i, j; 816 int nTerm; 817 struct sqlite3_index_constraint *pIdxCons; 818 struct sqlite3_index_orderby *pIdxOrderBy; 819 struct sqlite3_index_constraint_usage *pUsage; 820 WhereTerm *pTerm; 821 int nOrderBy; 822 sqlite3_index_info *pIdxInfo; 823 824 /* Count the number of possible WHERE clause constraints referring 825 ** to this virtual table */ 826 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 827 if( pTerm->leftCursor != pSrc->iCursor ) continue; 828 if( pTerm->prereqRight & mUnusable ) continue; 829 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 830 testcase( pTerm->eOperator & WO_IN ); 831 testcase( pTerm->eOperator & WO_ISNULL ); 832 testcase( pTerm->eOperator & WO_IS ); 833 testcase( pTerm->eOperator & WO_ALL ); 834 if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue; 835 if( pTerm->wtFlags & TERM_VNULL ) continue; 836 assert( pTerm->u.leftColumn>=(-1) ); 837 nTerm++; 838 } 839 840 /* If the ORDER BY clause contains only columns in the current 841 ** virtual table then allocate space for the aOrderBy part of 842 ** the sqlite3_index_info structure. 843 */ 844 nOrderBy = 0; 845 if( pOrderBy ){ 846 int n = pOrderBy->nExpr; 847 for(i=0; i<n; i++){ 848 Expr *pExpr = pOrderBy->a[i].pExpr; 849 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 850 } 851 if( i==n){ 852 nOrderBy = n; 853 } 854 } 855 856 /* Allocate the sqlite3_index_info structure 857 */ 858 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 859 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 860 + sizeof(*pIdxOrderBy)*nOrderBy ); 861 if( pIdxInfo==0 ){ 862 sqlite3ErrorMsg(pParse, "out of memory"); 863 return 0; 864 } 865 866 /* Initialize the structure. The sqlite3_index_info structure contains 867 ** many fields that are declared "const" to prevent xBestIndex from 868 ** changing them. We have to do some funky casting in order to 869 ** initialize those fields. 870 */ 871 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; 872 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 873 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 874 *(int*)&pIdxInfo->nConstraint = nTerm; 875 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 876 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; 877 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; 878 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = 879 pUsage; 880 881 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 882 u8 op; 883 if( pTerm->leftCursor != pSrc->iCursor ) continue; 884 if( pTerm->prereqRight & mUnusable ) continue; 885 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 886 testcase( pTerm->eOperator & WO_IN ); 887 testcase( pTerm->eOperator & WO_IS ); 888 testcase( pTerm->eOperator & WO_ISNULL ); 889 testcase( pTerm->eOperator & WO_ALL ); 890 if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue; 891 if( pTerm->wtFlags & TERM_VNULL ) continue; 892 assert( pTerm->u.leftColumn>=(-1) ); 893 pIdxCons[j].iColumn = pTerm->u.leftColumn; 894 pIdxCons[j].iTermOffset = i; 895 op = (u8)pTerm->eOperator & WO_ALL; 896 if( op==WO_IN ) op = WO_EQ; 897 if( op==WO_MATCH ){ 898 op = pTerm->eMatchOp; 899 } 900 pIdxCons[j].op = op; 901 /* The direct assignment in the previous line is possible only because 902 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 903 ** following asserts verify this fact. */ 904 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 905 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 906 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 907 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 908 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 909 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); 910 assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); 911 j++; 912 } 913 for(i=0; i<nOrderBy; i++){ 914 Expr *pExpr = pOrderBy->a[i].pExpr; 915 pIdxOrderBy[i].iColumn = pExpr->iColumn; 916 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; 917 } 918 919 return pIdxInfo; 920 } 921 922 /* 923 ** The table object reference passed as the second argument to this function 924 ** must represent a virtual table. This function invokes the xBestIndex() 925 ** method of the virtual table with the sqlite3_index_info object that 926 ** comes in as the 3rd argument to this function. 927 ** 928 ** If an error occurs, pParse is populated with an error message and a 929 ** non-zero value is returned. Otherwise, 0 is returned and the output 930 ** part of the sqlite3_index_info structure is left populated. 931 ** 932 ** Whether or not an error is returned, it is the responsibility of the 933 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates 934 ** that this is required. 935 */ 936 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ 937 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; 938 int rc; 939 940 TRACE_IDX_INPUTS(p); 941 rc = pVtab->pModule->xBestIndex(pVtab, p); 942 TRACE_IDX_OUTPUTS(p); 943 944 if( rc!=SQLITE_OK ){ 945 if( rc==SQLITE_NOMEM ){ 946 sqlite3OomFault(pParse->db); 947 }else if( !pVtab->zErrMsg ){ 948 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 949 }else{ 950 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 951 } 952 } 953 sqlite3_free(pVtab->zErrMsg); 954 pVtab->zErrMsg = 0; 955 956 #if 0 957 /* This error is now caught by the caller. 958 ** Search for "xBestIndex malfunction" below */ 959 for(i=0; i<p->nConstraint; i++){ 960 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){ 961 sqlite3ErrorMsg(pParse, 962 "table %s: xBestIndex returned an invalid plan", pTab->zName); 963 } 964 } 965 #endif 966 967 return pParse->nErr; 968 } 969 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ 970 971 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 972 /* 973 ** Estimate the location of a particular key among all keys in an 974 ** index. Store the results in aStat as follows: 975 ** 976 ** aStat[0] Est. number of rows less than pRec 977 ** aStat[1] Est. number of rows equal to pRec 978 ** 979 ** Return the index of the sample that is the smallest sample that 980 ** is greater than or equal to pRec. Note that this index is not an index 981 ** into the aSample[] array - it is an index into a virtual set of samples 982 ** based on the contents of aSample[] and the number of fields in record 983 ** pRec. 984 */ 985 static int whereKeyStats( 986 Parse *pParse, /* Database connection */ 987 Index *pIdx, /* Index to consider domain of */ 988 UnpackedRecord *pRec, /* Vector of values to consider */ 989 int roundUp, /* Round up if true. Round down if false */ 990 tRowcnt *aStat /* OUT: stats written here */ 991 ){ 992 IndexSample *aSample = pIdx->aSample; 993 int iCol; /* Index of required stats in anEq[] etc. */ 994 int i; /* Index of first sample >= pRec */ 995 int iSample; /* Smallest sample larger than or equal to pRec */ 996 int iMin = 0; /* Smallest sample not yet tested */ 997 int iTest; /* Next sample to test */ 998 int res; /* Result of comparison operation */ 999 int nField; /* Number of fields in pRec */ 1000 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ 1001 1002 #ifndef SQLITE_DEBUG 1003 UNUSED_PARAMETER( pParse ); 1004 #endif 1005 assert( pRec!=0 ); 1006 assert( pIdx->nSample>0 ); 1007 assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol ); 1008 1009 /* Do a binary search to find the first sample greater than or equal 1010 ** to pRec. If pRec contains a single field, the set of samples to search 1011 ** is simply the aSample[] array. If the samples in aSample[] contain more 1012 ** than one fields, all fields following the first are ignored. 1013 ** 1014 ** If pRec contains N fields, where N is more than one, then as well as the 1015 ** samples in aSample[] (truncated to N fields), the search also has to 1016 ** consider prefixes of those samples. For example, if the set of samples 1017 ** in aSample is: 1018 ** 1019 ** aSample[0] = (a, 5) 1020 ** aSample[1] = (a, 10) 1021 ** aSample[2] = (b, 5) 1022 ** aSample[3] = (c, 100) 1023 ** aSample[4] = (c, 105) 1024 ** 1025 ** Then the search space should ideally be the samples above and the 1026 ** unique prefixes [a], [b] and [c]. But since that is hard to organize, 1027 ** the code actually searches this set: 1028 ** 1029 ** 0: (a) 1030 ** 1: (a, 5) 1031 ** 2: (a, 10) 1032 ** 3: (a, 10) 1033 ** 4: (b) 1034 ** 5: (b, 5) 1035 ** 6: (c) 1036 ** 7: (c, 100) 1037 ** 8: (c, 105) 1038 ** 9: (c, 105) 1039 ** 1040 ** For each sample in the aSample[] array, N samples are present in the 1041 ** effective sample array. In the above, samples 0 and 1 are based on 1042 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. 1043 ** 1044 ** Often, sample i of each block of N effective samples has (i+1) fields. 1045 ** Except, each sample may be extended to ensure that it is greater than or 1046 ** equal to the previous sample in the array. For example, in the above, 1047 ** sample 2 is the first sample of a block of N samples, so at first it 1048 ** appears that it should be 1 field in size. However, that would make it 1049 ** smaller than sample 1, so the binary search would not work. As a result, 1050 ** it is extended to two fields. The duplicates that this creates do not 1051 ** cause any problems. 1052 */ 1053 nField = pRec->nField; 1054 iCol = 0; 1055 iSample = pIdx->nSample * nField; 1056 do{ 1057 int iSamp; /* Index in aSample[] of test sample */ 1058 int n; /* Number of fields in test sample */ 1059 1060 iTest = (iMin+iSample)/2; 1061 iSamp = iTest / nField; 1062 if( iSamp>0 ){ 1063 /* The proposed effective sample is a prefix of sample aSample[iSamp]. 1064 ** Specifically, the shortest prefix of at least (1 + iTest%nField) 1065 ** fields that is greater than the previous effective sample. */ 1066 for(n=(iTest % nField) + 1; n<nField; n++){ 1067 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break; 1068 } 1069 }else{ 1070 n = iTest + 1; 1071 } 1072 1073 pRec->nField = n; 1074 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); 1075 if( res<0 ){ 1076 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; 1077 iMin = iTest+1; 1078 }else if( res==0 && n<nField ){ 1079 iLower = aSample[iSamp].anLt[n-1]; 1080 iMin = iTest+1; 1081 res = -1; 1082 }else{ 1083 iSample = iTest; 1084 iCol = n-1; 1085 } 1086 }while( res && iMin<iSample ); 1087 i = iSample / nField; 1088 1089 #ifdef SQLITE_DEBUG 1090 /* The following assert statements check that the binary search code 1091 ** above found the right answer. This block serves no purpose other 1092 ** than to invoke the asserts. */ 1093 if( pParse->db->mallocFailed==0 ){ 1094 if( res==0 ){ 1095 /* If (res==0) is true, then pRec must be equal to sample i. */ 1096 assert( i<pIdx->nSample ); 1097 assert( iCol==nField-1 ); 1098 pRec->nField = nField; 1099 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) 1100 || pParse->db->mallocFailed 1101 ); 1102 }else{ 1103 /* Unless i==pIdx->nSample, indicating that pRec is larger than 1104 ** all samples in the aSample[] array, pRec must be smaller than the 1105 ** (iCol+1) field prefix of sample i. */ 1106 assert( i<=pIdx->nSample && i>=0 ); 1107 pRec->nField = iCol+1; 1108 assert( i==pIdx->nSample 1109 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 1110 || pParse->db->mallocFailed ); 1111 1112 /* if i==0 and iCol==0, then record pRec is smaller than all samples 1113 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must 1114 ** be greater than or equal to the (iCol) field prefix of sample i. 1115 ** If (i>0), then pRec must also be greater than sample (i-1). */ 1116 if( iCol>0 ){ 1117 pRec->nField = iCol; 1118 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 1119 || pParse->db->mallocFailed ); 1120 } 1121 if( i>0 ){ 1122 pRec->nField = nField; 1123 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 1124 || pParse->db->mallocFailed ); 1125 } 1126 } 1127 } 1128 #endif /* ifdef SQLITE_DEBUG */ 1129 1130 if( res==0 ){ 1131 /* Record pRec is equal to sample i */ 1132 assert( iCol==nField-1 ); 1133 aStat[0] = aSample[i].anLt[iCol]; 1134 aStat[1] = aSample[i].anEq[iCol]; 1135 }else{ 1136 /* At this point, the (iCol+1) field prefix of aSample[i] is the first 1137 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec 1138 ** is larger than all samples in the array. */ 1139 tRowcnt iUpper, iGap; 1140 if( i>=pIdx->nSample ){ 1141 iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); 1142 }else{ 1143 iUpper = aSample[i].anLt[iCol]; 1144 } 1145 1146 if( iLower>=iUpper ){ 1147 iGap = 0; 1148 }else{ 1149 iGap = iUpper - iLower; 1150 } 1151 if( roundUp ){ 1152 iGap = (iGap*2)/3; 1153 }else{ 1154 iGap = iGap/3; 1155 } 1156 aStat[0] = iLower + iGap; 1157 aStat[1] = pIdx->aAvgEq[iCol]; 1158 } 1159 1160 /* Restore the pRec->nField value before returning. */ 1161 pRec->nField = nField; 1162 return i; 1163 } 1164 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1165 1166 /* 1167 ** If it is not NULL, pTerm is a term that provides an upper or lower 1168 ** bound on a range scan. Without considering pTerm, it is estimated 1169 ** that the scan will visit nNew rows. This function returns the number 1170 ** estimated to be visited after taking pTerm into account. 1171 ** 1172 ** If the user explicitly specified a likelihood() value for this term, 1173 ** then the return value is the likelihood multiplied by the number of 1174 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term 1175 ** has a likelihood of 0.50, and any other term a likelihood of 0.25. 1176 */ 1177 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ 1178 LogEst nRet = nNew; 1179 if( pTerm ){ 1180 if( pTerm->truthProb<=0 ){ 1181 nRet += pTerm->truthProb; 1182 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ 1183 nRet -= 20; assert( 20==sqlite3LogEst(4) ); 1184 } 1185 } 1186 return nRet; 1187 } 1188 1189 1190 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1191 /* 1192 ** Return the affinity for a single column of an index. 1193 */ 1194 static char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){ 1195 assert( iCol>=0 && iCol<pIdx->nColumn ); 1196 if( !pIdx->zColAff ){ 1197 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB; 1198 } 1199 return pIdx->zColAff[iCol]; 1200 } 1201 #endif 1202 1203 1204 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1205 /* 1206 ** This function is called to estimate the number of rows visited by a 1207 ** range-scan on a skip-scan index. For example: 1208 ** 1209 ** CREATE INDEX i1 ON t1(a, b, c); 1210 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; 1211 ** 1212 ** Value pLoop->nOut is currently set to the estimated number of rows 1213 ** visited for scanning (a=? AND b=?). This function reduces that estimate 1214 ** by some factor to account for the (c BETWEEN ? AND ?) expression based 1215 ** on the stat4 data for the index. this scan will be peformed multiple 1216 ** times (once for each (a,b) combination that matches a=?) is dealt with 1217 ** by the caller. 1218 ** 1219 ** It does this by scanning through all stat4 samples, comparing values 1220 ** extracted from pLower and pUpper with the corresponding column in each 1221 ** sample. If L and U are the number of samples found to be less than or 1222 ** equal to the values extracted from pLower and pUpper respectively, and 1223 ** N is the total number of samples, the pLoop->nOut value is adjusted 1224 ** as follows: 1225 ** 1226 ** nOut = nOut * ( min(U - L, 1) / N ) 1227 ** 1228 ** If pLower is NULL, or a value cannot be extracted from the term, L is 1229 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, 1230 ** U is set to N. 1231 ** 1232 ** Normally, this function sets *pbDone to 1 before returning. However, 1233 ** if no value can be extracted from either pLower or pUpper (and so the 1234 ** estimate of the number of rows delivered remains unchanged), *pbDone 1235 ** is left as is. 1236 ** 1237 ** If an error occurs, an SQLite error code is returned. Otherwise, 1238 ** SQLITE_OK. 1239 */ 1240 static int whereRangeSkipScanEst( 1241 Parse *pParse, /* Parsing & code generating context */ 1242 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1243 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1244 WhereLoop *pLoop, /* Update the .nOut value of this loop */ 1245 int *pbDone /* Set to true if at least one expr. value extracted */ 1246 ){ 1247 Index *p = pLoop->u.btree.pIndex; 1248 int nEq = pLoop->u.btree.nEq; 1249 sqlite3 *db = pParse->db; 1250 int nLower = -1; 1251 int nUpper = p->nSample+1; 1252 int rc = SQLITE_OK; 1253 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq); 1254 CollSeq *pColl; 1255 1256 sqlite3_value *p1 = 0; /* Value extracted from pLower */ 1257 sqlite3_value *p2 = 0; /* Value extracted from pUpper */ 1258 sqlite3_value *pVal = 0; /* Value extracted from record */ 1259 1260 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); 1261 if( pLower ){ 1262 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); 1263 nLower = 0; 1264 } 1265 if( pUpper && rc==SQLITE_OK ){ 1266 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); 1267 nUpper = p2 ? 0 : p->nSample; 1268 } 1269 1270 if( p1 || p2 ){ 1271 int i; 1272 int nDiff; 1273 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ 1274 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); 1275 if( rc==SQLITE_OK && p1 ){ 1276 int res = sqlite3MemCompare(p1, pVal, pColl); 1277 if( res>=0 ) nLower++; 1278 } 1279 if( rc==SQLITE_OK && p2 ){ 1280 int res = sqlite3MemCompare(p2, pVal, pColl); 1281 if( res>=0 ) nUpper++; 1282 } 1283 } 1284 nDiff = (nUpper - nLower); 1285 if( nDiff<=0 ) nDiff = 1; 1286 1287 /* If there is both an upper and lower bound specified, and the 1288 ** comparisons indicate that they are close together, use the fallback 1289 ** method (assume that the scan visits 1/64 of the rows) for estimating 1290 ** the number of rows visited. Otherwise, estimate the number of rows 1291 ** using the method described in the header comment for this function. */ 1292 if( nDiff!=1 || pUpper==0 || pLower==0 ){ 1293 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); 1294 pLoop->nOut -= nAdjust; 1295 *pbDone = 1; 1296 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", 1297 nLower, nUpper, nAdjust*-1, pLoop->nOut)); 1298 } 1299 1300 }else{ 1301 assert( *pbDone==0 ); 1302 } 1303 1304 sqlite3ValueFree(p1); 1305 sqlite3ValueFree(p2); 1306 sqlite3ValueFree(pVal); 1307 1308 return rc; 1309 } 1310 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1311 1312 /* 1313 ** This function is used to estimate the number of rows that will be visited 1314 ** by scanning an index for a range of values. The range may have an upper 1315 ** bound, a lower bound, or both. The WHERE clause terms that set the upper 1316 ** and lower bounds are represented by pLower and pUpper respectively. For 1317 ** example, assuming that index p is on t1(a): 1318 ** 1319 ** ... FROM t1 WHERE a > ? AND a < ? ... 1320 ** |_____| |_____| 1321 ** | | 1322 ** pLower pUpper 1323 ** 1324 ** If either of the upper or lower bound is not present, then NULL is passed in 1325 ** place of the corresponding WhereTerm. 1326 ** 1327 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index 1328 ** column subject to the range constraint. Or, equivalently, the number of 1329 ** equality constraints optimized by the proposed index scan. For example, 1330 ** assuming index p is on t1(a, b), and the SQL query is: 1331 ** 1332 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... 1333 ** 1334 ** then nEq is set to 1 (as the range restricted column, b, is the second 1335 ** left-most column of the index). Or, if the query is: 1336 ** 1337 ** ... FROM t1 WHERE a > ? AND a < ? ... 1338 ** 1339 ** then nEq is set to 0. 1340 ** 1341 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the 1342 ** number of rows that the index scan is expected to visit without 1343 ** considering the range constraints. If nEq is 0, then *pnOut is the number of 1344 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) 1345 ** to account for the range constraints pLower and pUpper. 1346 ** 1347 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be 1348 ** used, a single range inequality reduces the search space by a factor of 4. 1349 ** and a pair of constraints (x>? AND x<?) reduces the expected number of 1350 ** rows visited by a factor of 64. 1351 */ 1352 static int whereRangeScanEst( 1353 Parse *pParse, /* Parsing & code generating context */ 1354 WhereLoopBuilder *pBuilder, 1355 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1356 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1357 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ 1358 ){ 1359 int rc = SQLITE_OK; 1360 int nOut = pLoop->nOut; 1361 LogEst nNew; 1362 1363 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1364 Index *p = pLoop->u.btree.pIndex; 1365 int nEq = pLoop->u.btree.nEq; 1366 1367 if( p->nSample>0 && nEq<p->nSampleCol ){ 1368 if( nEq==pBuilder->nRecValid ){ 1369 UnpackedRecord *pRec = pBuilder->pRec; 1370 tRowcnt a[2]; 1371 u8 aff; 1372 1373 /* Variable iLower will be set to the estimate of the number of rows in 1374 ** the index that are less than the lower bound of the range query. The 1375 ** lower bound being the concatenation of $P and $L, where $P is the 1376 ** key-prefix formed by the nEq values matched against the nEq left-most 1377 ** columns of the index, and $L is the value in pLower. 1378 ** 1379 ** Or, if pLower is NULL or $L cannot be extracted from it (because it 1380 ** is not a simple variable or literal value), the lower bound of the 1381 ** range is $P. Due to a quirk in the way whereKeyStats() works, even 1382 ** if $L is available, whereKeyStats() is called for both ($P) and 1383 ** ($P:$L) and the larger of the two returned values is used. 1384 ** 1385 ** Similarly, iUpper is to be set to the estimate of the number of rows 1386 ** less than the upper bound of the range query. Where the upper bound 1387 ** is either ($P) or ($P:$U). Again, even if $U is available, both values 1388 ** of iUpper are requested of whereKeyStats() and the smaller used. 1389 ** 1390 ** The number of rows between the two bounds is then just iUpper-iLower. 1391 */ 1392 tRowcnt iLower; /* Rows less than the lower bound */ 1393 tRowcnt iUpper; /* Rows less than the upper bound */ 1394 int iLwrIdx = -2; /* aSample[] for the lower bound */ 1395 int iUprIdx = -1; /* aSample[] for the upper bound */ 1396 1397 if( pRec ){ 1398 testcase( pRec->nField!=pBuilder->nRecValid ); 1399 pRec->nField = pBuilder->nRecValid; 1400 } 1401 aff = sqlite3IndexColumnAffinity(pParse->db, p, nEq); 1402 assert( nEq!=p->nKeyCol || aff==SQLITE_AFF_INTEGER ); 1403 /* Determine iLower and iUpper using ($P) only. */ 1404 if( nEq==0 ){ 1405 iLower = 0; 1406 iUpper = p->nRowEst0; 1407 }else{ 1408 /* Note: this call could be optimized away - since the same values must 1409 ** have been requested when testing key $P in whereEqualScanEst(). */ 1410 whereKeyStats(pParse, p, pRec, 0, a); 1411 iLower = a[0]; 1412 iUpper = a[0] + a[1]; 1413 } 1414 1415 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); 1416 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); 1417 assert( p->aSortOrder!=0 ); 1418 if( p->aSortOrder[nEq] ){ 1419 /* The roles of pLower and pUpper are swapped for a DESC index */ 1420 SWAP(WhereTerm*, pLower, pUpper); 1421 } 1422 1423 /* If possible, improve on the iLower estimate using ($P:$L). */ 1424 if( pLower ){ 1425 int bOk; /* True if value is extracted from pExpr */ 1426 Expr *pExpr = pLower->pExpr->pRight; 1427 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk); 1428 if( rc==SQLITE_OK && bOk ){ 1429 tRowcnt iNew; 1430 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); 1431 iNew = a[0] + ((pLower->eOperator & (WO_GT|WO_LE)) ? a[1] : 0); 1432 if( iNew>iLower ) iLower = iNew; 1433 nOut--; 1434 pLower = 0; 1435 } 1436 } 1437 1438 /* If possible, improve on the iUpper estimate using ($P:$U). */ 1439 if( pUpper ){ 1440 int bOk; /* True if value is extracted from pExpr */ 1441 Expr *pExpr = pUpper->pExpr->pRight; 1442 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk); 1443 if( rc==SQLITE_OK && bOk ){ 1444 tRowcnt iNew; 1445 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); 1446 iNew = a[0] + ((pUpper->eOperator & (WO_GT|WO_LE)) ? a[1] : 0); 1447 if( iNew<iUpper ) iUpper = iNew; 1448 nOut--; 1449 pUpper = 0; 1450 } 1451 } 1452 1453 pBuilder->pRec = pRec; 1454 if( rc==SQLITE_OK ){ 1455 if( iUpper>iLower ){ 1456 nNew = sqlite3LogEst(iUpper - iLower); 1457 /* TUNING: If both iUpper and iLower are derived from the same 1458 ** sample, then assume they are 4x more selective. This brings 1459 ** the estimated selectivity more in line with what it would be 1460 ** if estimated without the use of STAT3/4 tables. */ 1461 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) ); 1462 }else{ 1463 nNew = 10; assert( 10==sqlite3LogEst(2) ); 1464 } 1465 if( nNew<nOut ){ 1466 nOut = nNew; 1467 } 1468 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", 1469 (u32)iLower, (u32)iUpper, nOut)); 1470 } 1471 }else{ 1472 int bDone = 0; 1473 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); 1474 if( bDone ) return rc; 1475 } 1476 } 1477 #else 1478 UNUSED_PARAMETER(pParse); 1479 UNUSED_PARAMETER(pBuilder); 1480 assert( pLower || pUpper ); 1481 #endif 1482 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); 1483 nNew = whereRangeAdjust(pLower, nOut); 1484 nNew = whereRangeAdjust(pUpper, nNew); 1485 1486 /* TUNING: If there is both an upper and lower limit and neither limit 1487 ** has an application-defined likelihood(), assume the range is 1488 ** reduced by an additional 75%. This means that, by default, an open-ended 1489 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the 1490 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to 1491 ** match 1/64 of the index. */ 1492 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ 1493 nNew -= 20; 1494 } 1495 1496 nOut -= (pLower!=0) + (pUpper!=0); 1497 if( nNew<10 ) nNew = 10; 1498 if( nNew<nOut ) nOut = nNew; 1499 #if defined(WHERETRACE_ENABLED) 1500 if( pLoop->nOut>nOut ){ 1501 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", 1502 pLoop->nOut, nOut)); 1503 } 1504 #endif 1505 pLoop->nOut = (LogEst)nOut; 1506 return rc; 1507 } 1508 1509 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1510 /* 1511 ** Estimate the number of rows that will be returned based on 1512 ** an equality constraint x=VALUE and where that VALUE occurs in 1513 ** the histogram data. This only works when x is the left-most 1514 ** column of an index and sqlite_stat3 histogram data is available 1515 ** for that index. When pExpr==NULL that means the constraint is 1516 ** "x IS NULL" instead of "x=VALUE". 1517 ** 1518 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1519 ** If unable to make an estimate, leave *pnRow unchanged and return 1520 ** non-zero. 1521 ** 1522 ** This routine can fail if it is unable to load a collating sequence 1523 ** required for string comparison, or if unable to allocate memory 1524 ** for a UTF conversion required for comparison. The error is stored 1525 ** in the pParse structure. 1526 */ 1527 static int whereEqualScanEst( 1528 Parse *pParse, /* Parsing & code generating context */ 1529 WhereLoopBuilder *pBuilder, 1530 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ 1531 tRowcnt *pnRow /* Write the revised row estimate here */ 1532 ){ 1533 Index *p = pBuilder->pNew->u.btree.pIndex; 1534 int nEq = pBuilder->pNew->u.btree.nEq; 1535 UnpackedRecord *pRec = pBuilder->pRec; 1536 u8 aff; /* Column affinity */ 1537 int rc; /* Subfunction return code */ 1538 tRowcnt a[2]; /* Statistics */ 1539 int bOk; 1540 1541 assert( nEq>=1 ); 1542 assert( nEq<=p->nColumn ); 1543 assert( p->aSample!=0 ); 1544 assert( p->nSample>0 ); 1545 assert( pBuilder->nRecValid<nEq ); 1546 1547 /* If values are not available for all fields of the index to the left 1548 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ 1549 if( pBuilder->nRecValid<(nEq-1) ){ 1550 return SQLITE_NOTFOUND; 1551 } 1552 1553 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() 1554 ** below would return the same value. */ 1555 if( nEq>=p->nColumn ){ 1556 *pnRow = 1; 1557 return SQLITE_OK; 1558 } 1559 1560 aff = sqlite3IndexColumnAffinity(pParse->db, p, nEq-1); 1561 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq-1, &bOk); 1562 pBuilder->pRec = pRec; 1563 if( rc!=SQLITE_OK ) return rc; 1564 if( bOk==0 ) return SQLITE_NOTFOUND; 1565 pBuilder->nRecValid = nEq; 1566 1567 whereKeyStats(pParse, p, pRec, 0, a); 1568 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n", 1569 p->zName, nEq-1, (int)a[1])); 1570 *pnRow = a[1]; 1571 1572 return rc; 1573 } 1574 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1575 1576 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1577 /* 1578 ** Estimate the number of rows that will be returned based on 1579 ** an IN constraint where the right-hand side of the IN operator 1580 ** is a list of values. Example: 1581 ** 1582 ** WHERE x IN (1,2,3,4) 1583 ** 1584 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1585 ** If unable to make an estimate, leave *pnRow unchanged and return 1586 ** non-zero. 1587 ** 1588 ** This routine can fail if it is unable to load a collating sequence 1589 ** required for string comparison, or if unable to allocate memory 1590 ** for a UTF conversion required for comparison. The error is stored 1591 ** in the pParse structure. 1592 */ 1593 static int whereInScanEst( 1594 Parse *pParse, /* Parsing & code generating context */ 1595 WhereLoopBuilder *pBuilder, 1596 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ 1597 tRowcnt *pnRow /* Write the revised row estimate here */ 1598 ){ 1599 Index *p = pBuilder->pNew->u.btree.pIndex; 1600 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); 1601 int nRecValid = pBuilder->nRecValid; 1602 int rc = SQLITE_OK; /* Subfunction return code */ 1603 tRowcnt nEst; /* Number of rows for a single term */ 1604 tRowcnt nRowEst = 0; /* New estimate of the number of rows */ 1605 int i; /* Loop counter */ 1606 1607 assert( p->aSample!=0 ); 1608 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ 1609 nEst = nRow0; 1610 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); 1611 nRowEst += nEst; 1612 pBuilder->nRecValid = nRecValid; 1613 } 1614 1615 if( rc==SQLITE_OK ){ 1616 if( nRowEst > nRow0 ) nRowEst = nRow0; 1617 *pnRow = nRowEst; 1618 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); 1619 } 1620 assert( pBuilder->nRecValid==nRecValid ); 1621 return rc; 1622 } 1623 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1624 1625 1626 #ifdef WHERETRACE_ENABLED 1627 /* 1628 ** Print the content of a WhereTerm object 1629 */ 1630 static void whereTermPrint(WhereTerm *pTerm, int iTerm){ 1631 if( pTerm==0 ){ 1632 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); 1633 }else{ 1634 char zType[4]; 1635 memcpy(zType, "...", 4); 1636 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; 1637 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; 1638 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L'; 1639 sqlite3DebugPrintf( 1640 "TERM-%-3d %p %s cursor=%-3d prob=%-3d op=0x%03x wtFlags=0x%04x\n", 1641 iTerm, pTerm, zType, pTerm->leftCursor, pTerm->truthProb, 1642 pTerm->eOperator, pTerm->wtFlags); 1643 sqlite3TreeViewExpr(0, pTerm->pExpr, 0); 1644 } 1645 } 1646 #endif 1647 1648 #ifdef WHERETRACE_ENABLED 1649 /* 1650 ** Print a WhereLoop object for debugging purposes 1651 */ 1652 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){ 1653 WhereInfo *pWInfo = pWC->pWInfo; 1654 int nb = 1+(pWInfo->pTabList->nSrc+7)/8; 1655 struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab; 1656 Table *pTab = pItem->pTab; 1657 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, 1658 p->iTab, nb, p->maskSelf, nb, p->prereq); 1659 sqlite3DebugPrintf(" %12s", 1660 pItem->zAlias ? pItem->zAlias : pTab->zName); 1661 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 1662 const char *zName; 1663 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ 1664 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ 1665 int i = sqlite3Strlen30(zName) - 1; 1666 while( zName[i]!='_' ) i--; 1667 zName += i; 1668 } 1669 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); 1670 }else{ 1671 sqlite3DebugPrintf("%20s",""); 1672 } 1673 }else{ 1674 char *z; 1675 if( p->u.vtab.idxStr ){ 1676 z = sqlite3_mprintf("(%d,\"%s\",%x)", 1677 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); 1678 }else{ 1679 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); 1680 } 1681 sqlite3DebugPrintf(" %-19s", z); 1682 sqlite3_free(z); 1683 } 1684 if( p->wsFlags & WHERE_SKIPSCAN ){ 1685 sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); 1686 }else{ 1687 sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm); 1688 } 1689 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); 1690 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ 1691 int i; 1692 for(i=0; i<p->nLTerm; i++){ 1693 whereTermPrint(p->aLTerm[i], i); 1694 } 1695 } 1696 } 1697 #endif 1698 1699 /* 1700 ** Convert bulk memory into a valid WhereLoop that can be passed 1701 ** to whereLoopClear harmlessly. 1702 */ 1703 static void whereLoopInit(WhereLoop *p){ 1704 p->aLTerm = p->aLTermSpace; 1705 p->nLTerm = 0; 1706 p->nLSlot = ArraySize(p->aLTermSpace); 1707 p->wsFlags = 0; 1708 } 1709 1710 /* 1711 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. 1712 */ 1713 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ 1714 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ 1715 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ 1716 sqlite3_free(p->u.vtab.idxStr); 1717 p->u.vtab.needFree = 0; 1718 p->u.vtab.idxStr = 0; 1719 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ 1720 sqlite3DbFree(db, p->u.btree.pIndex->zColAff); 1721 sqlite3DbFree(db, p->u.btree.pIndex); 1722 p->u.btree.pIndex = 0; 1723 } 1724 } 1725 } 1726 1727 /* 1728 ** Deallocate internal memory used by a WhereLoop object 1729 */ 1730 static void whereLoopClear(sqlite3 *db, WhereLoop *p){ 1731 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); 1732 whereLoopClearUnion(db, p); 1733 whereLoopInit(p); 1734 } 1735 1736 /* 1737 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. 1738 */ 1739 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ 1740 WhereTerm **paNew; 1741 if( p->nLSlot>=n ) return SQLITE_OK; 1742 n = (n+7)&~7; 1743 paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n); 1744 if( paNew==0 ) return SQLITE_NOMEM_BKPT; 1745 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); 1746 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); 1747 p->aLTerm = paNew; 1748 p->nLSlot = n; 1749 return SQLITE_OK; 1750 } 1751 1752 /* 1753 ** Transfer content from the second pLoop into the first. 1754 */ 1755 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ 1756 whereLoopClearUnion(db, pTo); 1757 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){ 1758 memset(&pTo->u, 0, sizeof(pTo->u)); 1759 return SQLITE_NOMEM_BKPT; 1760 } 1761 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); 1762 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); 1763 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ 1764 pFrom->u.vtab.needFree = 0; 1765 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 1766 pFrom->u.btree.pIndex = 0; 1767 } 1768 return SQLITE_OK; 1769 } 1770 1771 /* 1772 ** Delete a WhereLoop object 1773 */ 1774 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ 1775 whereLoopClear(db, p); 1776 sqlite3DbFree(db, p); 1777 } 1778 1779 /* 1780 ** Free a WhereInfo structure 1781 */ 1782 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 1783 if( ALWAYS(pWInfo) ){ 1784 int i; 1785 for(i=0; i<pWInfo->nLevel; i++){ 1786 WhereLevel *pLevel = &pWInfo->a[i]; 1787 if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){ 1788 sqlite3DbFree(db, pLevel->u.in.aInLoop); 1789 } 1790 } 1791 sqlite3WhereClauseClear(&pWInfo->sWC); 1792 while( pWInfo->pLoops ){ 1793 WhereLoop *p = pWInfo->pLoops; 1794 pWInfo->pLoops = p->pNextLoop; 1795 whereLoopDelete(db, p); 1796 } 1797 sqlite3DbFree(db, pWInfo); 1798 } 1799 } 1800 1801 /* 1802 ** Return TRUE if all of the following are true: 1803 ** 1804 ** (1) X has the same or lower cost that Y 1805 ** (2) X is a proper subset of Y 1806 ** (3) X skips at least as many columns as Y 1807 ** 1808 ** By "proper subset" we mean that X uses fewer WHERE clause terms 1809 ** than Y and that every WHERE clause term used by X is also used 1810 ** by Y. 1811 ** 1812 ** If X is a proper subset of Y then Y is a better choice and ought 1813 ** to have a lower cost. This routine returns TRUE when that cost 1814 ** relationship is inverted and needs to be adjusted. The third rule 1815 ** was added because if X uses skip-scan less than Y it still might 1816 ** deserve a lower cost even if it is a proper subset of Y. 1817 */ 1818 static int whereLoopCheaperProperSubset( 1819 const WhereLoop *pX, /* First WhereLoop to compare */ 1820 const WhereLoop *pY /* Compare against this WhereLoop */ 1821 ){ 1822 int i, j; 1823 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ 1824 return 0; /* X is not a subset of Y */ 1825 } 1826 if( pY->nSkip > pX->nSkip ) return 0; 1827 if( pX->rRun >= pY->rRun ){ 1828 if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */ 1829 if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */ 1830 } 1831 for(i=pX->nLTerm-1; i>=0; i--){ 1832 if( pX->aLTerm[i]==0 ) continue; 1833 for(j=pY->nLTerm-1; j>=0; j--){ 1834 if( pY->aLTerm[j]==pX->aLTerm[i] ) break; 1835 } 1836 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ 1837 } 1838 return 1; /* All conditions meet */ 1839 } 1840 1841 /* 1842 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so 1843 ** that: 1844 ** 1845 ** (1) pTemplate costs less than any other WhereLoops that are a proper 1846 ** subset of pTemplate 1847 ** 1848 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate 1849 ** is a proper subset. 1850 ** 1851 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer 1852 ** WHERE clause terms than Y and that every WHERE clause term used by X is 1853 ** also used by Y. 1854 */ 1855 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ 1856 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; 1857 for(; p; p=p->pNextLoop){ 1858 if( p->iTab!=pTemplate->iTab ) continue; 1859 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; 1860 if( whereLoopCheaperProperSubset(p, pTemplate) ){ 1861 /* Adjust pTemplate cost downward so that it is cheaper than its 1862 ** subset p. */ 1863 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 1864 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1)); 1865 pTemplate->rRun = p->rRun; 1866 pTemplate->nOut = p->nOut - 1; 1867 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ 1868 /* Adjust pTemplate cost upward so that it is costlier than p since 1869 ** pTemplate is a proper subset of p */ 1870 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 1871 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1)); 1872 pTemplate->rRun = p->rRun; 1873 pTemplate->nOut = p->nOut + 1; 1874 } 1875 } 1876 } 1877 1878 /* 1879 ** Search the list of WhereLoops in *ppPrev looking for one that can be 1880 ** supplanted by pTemplate. 1881 ** 1882 ** Return NULL if the WhereLoop list contains an entry that can supplant 1883 ** pTemplate, in other words if pTemplate does not belong on the list. 1884 ** 1885 ** If pX is a WhereLoop that pTemplate can supplant, then return the 1886 ** link that points to pX. 1887 ** 1888 ** If pTemplate cannot supplant any existing element of the list but needs 1889 ** to be added to the list, then return a pointer to the tail of the list. 1890 */ 1891 static WhereLoop **whereLoopFindLesser( 1892 WhereLoop **ppPrev, 1893 const WhereLoop *pTemplate 1894 ){ 1895 WhereLoop *p; 1896 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ 1897 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ 1898 /* If either the iTab or iSortIdx values for two WhereLoop are different 1899 ** then those WhereLoops need to be considered separately. Neither is 1900 ** a candidate to replace the other. */ 1901 continue; 1902 } 1903 /* In the current implementation, the rSetup value is either zero 1904 ** or the cost of building an automatic index (NlogN) and the NlogN 1905 ** is the same for compatible WhereLoops. */ 1906 assert( p->rSetup==0 || pTemplate->rSetup==0 1907 || p->rSetup==pTemplate->rSetup ); 1908 1909 /* whereLoopAddBtree() always generates and inserts the automatic index 1910 ** case first. Hence compatible candidate WhereLoops never have a larger 1911 ** rSetup. Call this SETUP-INVARIANT */ 1912 assert( p->rSetup>=pTemplate->rSetup ); 1913 1914 /* Any loop using an appliation-defined index (or PRIMARY KEY or 1915 ** UNIQUE constraint) with one or more == constraints is better 1916 ** than an automatic index. Unless it is a skip-scan. */ 1917 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 1918 && (pTemplate->nSkip)==0 1919 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 1920 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 1921 && (p->prereq & pTemplate->prereq)==pTemplate->prereq 1922 ){ 1923 break; 1924 } 1925 1926 /* If existing WhereLoop p is better than pTemplate, pTemplate can be 1927 ** discarded. WhereLoop p is better if: 1928 ** (1) p has no more dependencies than pTemplate, and 1929 ** (2) p has an equal or lower cost than pTemplate 1930 */ 1931 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ 1932 && p->rSetup<=pTemplate->rSetup /* (2a) */ 1933 && p->rRun<=pTemplate->rRun /* (2b) */ 1934 && p->nOut<=pTemplate->nOut /* (2c) */ 1935 ){ 1936 return 0; /* Discard pTemplate */ 1937 } 1938 1939 /* If pTemplate is always better than p, then cause p to be overwritten 1940 ** with pTemplate. pTemplate is better than p if: 1941 ** (1) pTemplate has no more dependences than p, and 1942 ** (2) pTemplate has an equal or lower cost than p. 1943 */ 1944 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ 1945 && p->rRun>=pTemplate->rRun /* (2a) */ 1946 && p->nOut>=pTemplate->nOut /* (2b) */ 1947 ){ 1948 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ 1949 break; /* Cause p to be overwritten by pTemplate */ 1950 } 1951 } 1952 return ppPrev; 1953 } 1954 1955 /* 1956 ** Insert or replace a WhereLoop entry using the template supplied. 1957 ** 1958 ** An existing WhereLoop entry might be overwritten if the new template 1959 ** is better and has fewer dependencies. Or the template will be ignored 1960 ** and no insert will occur if an existing WhereLoop is faster and has 1961 ** fewer dependencies than the template. Otherwise a new WhereLoop is 1962 ** added based on the template. 1963 ** 1964 ** If pBuilder->pOrSet is not NULL then we care about only the 1965 ** prerequisites and rRun and nOut costs of the N best loops. That 1966 ** information is gathered in the pBuilder->pOrSet object. This special 1967 ** processing mode is used only for OR clause processing. 1968 ** 1969 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we 1970 ** still might overwrite similar loops with the new template if the 1971 ** new template is better. Loops may be overwritten if the following 1972 ** conditions are met: 1973 ** 1974 ** (1) They have the same iTab. 1975 ** (2) They have the same iSortIdx. 1976 ** (3) The template has same or fewer dependencies than the current loop 1977 ** (4) The template has the same or lower cost than the current loop 1978 */ 1979 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ 1980 WhereLoop **ppPrev, *p; 1981 WhereInfo *pWInfo = pBuilder->pWInfo; 1982 sqlite3 *db = pWInfo->pParse->db; 1983 int rc; 1984 1985 /* If pBuilder->pOrSet is defined, then only keep track of the costs 1986 ** and prereqs. 1987 */ 1988 if( pBuilder->pOrSet!=0 ){ 1989 if( pTemplate->nLTerm ){ 1990 #if WHERETRACE_ENABLED 1991 u16 n = pBuilder->pOrSet->n; 1992 int x = 1993 #endif 1994 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, 1995 pTemplate->nOut); 1996 #if WHERETRACE_ENABLED /* 0x8 */ 1997 if( sqlite3WhereTrace & 0x8 ){ 1998 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); 1999 whereLoopPrint(pTemplate, pBuilder->pWC); 2000 } 2001 #endif 2002 } 2003 return SQLITE_OK; 2004 } 2005 2006 /* Look for an existing WhereLoop to replace with pTemplate 2007 */ 2008 whereLoopAdjustCost(pWInfo->pLoops, pTemplate); 2009 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); 2010 2011 if( ppPrev==0 ){ 2012 /* There already exists a WhereLoop on the list that is better 2013 ** than pTemplate, so just ignore pTemplate */ 2014 #if WHERETRACE_ENABLED /* 0x8 */ 2015 if( sqlite3WhereTrace & 0x8 ){ 2016 sqlite3DebugPrintf(" skip: "); 2017 whereLoopPrint(pTemplate, pBuilder->pWC); 2018 } 2019 #endif 2020 return SQLITE_OK; 2021 }else{ 2022 p = *ppPrev; 2023 } 2024 2025 /* If we reach this point it means that either p[] should be overwritten 2026 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new 2027 ** WhereLoop and insert it. 2028 */ 2029 #if WHERETRACE_ENABLED /* 0x8 */ 2030 if( sqlite3WhereTrace & 0x8 ){ 2031 if( p!=0 ){ 2032 sqlite3DebugPrintf("replace: "); 2033 whereLoopPrint(p, pBuilder->pWC); 2034 } 2035 sqlite3DebugPrintf(" add: "); 2036 whereLoopPrint(pTemplate, pBuilder->pWC); 2037 } 2038 #endif 2039 if( p==0 ){ 2040 /* Allocate a new WhereLoop to add to the end of the list */ 2041 *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop)); 2042 if( p==0 ) return SQLITE_NOMEM_BKPT; 2043 whereLoopInit(p); 2044 p->pNextLoop = 0; 2045 }else{ 2046 /* We will be overwriting WhereLoop p[]. But before we do, first 2047 ** go through the rest of the list and delete any other entries besides 2048 ** p[] that are also supplated by pTemplate */ 2049 WhereLoop **ppTail = &p->pNextLoop; 2050 WhereLoop *pToDel; 2051 while( *ppTail ){ 2052 ppTail = whereLoopFindLesser(ppTail, pTemplate); 2053 if( ppTail==0 ) break; 2054 pToDel = *ppTail; 2055 if( pToDel==0 ) break; 2056 *ppTail = pToDel->pNextLoop; 2057 #if WHERETRACE_ENABLED /* 0x8 */ 2058 if( sqlite3WhereTrace & 0x8 ){ 2059 sqlite3DebugPrintf(" delete: "); 2060 whereLoopPrint(pToDel, pBuilder->pWC); 2061 } 2062 #endif 2063 whereLoopDelete(db, pToDel); 2064 } 2065 } 2066 rc = whereLoopXfer(db, p, pTemplate); 2067 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 2068 Index *pIndex = p->u.btree.pIndex; 2069 if( pIndex && pIndex->tnum==0 ){ 2070 p->u.btree.pIndex = 0; 2071 } 2072 } 2073 return rc; 2074 } 2075 2076 /* 2077 ** Adjust the WhereLoop.nOut value downward to account for terms of the 2078 ** WHERE clause that reference the loop but which are not used by an 2079 ** index. 2080 * 2081 ** For every WHERE clause term that is not used by the index 2082 ** and which has a truth probability assigned by one of the likelihood(), 2083 ** likely(), or unlikely() SQL functions, reduce the estimated number 2084 ** of output rows by the probability specified. 2085 ** 2086 ** TUNING: For every WHERE clause term that is not used by the index 2087 ** and which does not have an assigned truth probability, heuristics 2088 ** described below are used to try to estimate the truth probability. 2089 ** TODO --> Perhaps this is something that could be improved by better 2090 ** table statistics. 2091 ** 2092 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% 2093 ** value corresponds to -1 in LogEst notation, so this means decrement 2094 ** the WhereLoop.nOut field for every such WHERE clause term. 2095 ** 2096 ** Heuristic 2: If there exists one or more WHERE clause terms of the 2097 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the 2098 ** final output row estimate is no greater than 1/4 of the total number 2099 ** of rows in the table. In other words, assume that x==EXPR will filter 2100 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the 2101 ** "x" column is boolean or else -1 or 0 or 1 is a common default value 2102 ** on the "x" column and so in that case only cap the output row estimate 2103 ** at 1/2 instead of 1/4. 2104 */ 2105 static void whereLoopOutputAdjust( 2106 WhereClause *pWC, /* The WHERE clause */ 2107 WhereLoop *pLoop, /* The loop to adjust downward */ 2108 LogEst nRow /* Number of rows in the entire table */ 2109 ){ 2110 WhereTerm *pTerm, *pX; 2111 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); 2112 int i, j, k; 2113 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ 2114 2115 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2116 for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){ 2117 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break; 2118 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; 2119 if( (pTerm->prereqAll & notAllowed)!=0 ) continue; 2120 for(j=pLoop->nLTerm-1; j>=0; j--){ 2121 pX = pLoop->aLTerm[j]; 2122 if( pX==0 ) continue; 2123 if( pX==pTerm ) break; 2124 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; 2125 } 2126 if( j<0 ){ 2127 if( pTerm->truthProb<=0 ){ 2128 /* If a truth probability is specified using the likelihood() hints, 2129 ** then use the probability provided by the application. */ 2130 pLoop->nOut += pTerm->truthProb; 2131 }else{ 2132 /* In the absence of explicit truth probabilities, use heuristics to 2133 ** guess a reasonable truth probability. */ 2134 pLoop->nOut--; 2135 if( pTerm->eOperator&(WO_EQ|WO_IS) ){ 2136 Expr *pRight = pTerm->pExpr->pRight; 2137 testcase( pTerm->pExpr->op==TK_IS ); 2138 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){ 2139 k = 10; 2140 }else{ 2141 k = 20; 2142 } 2143 if( iReduce<k ) iReduce = k; 2144 } 2145 } 2146 } 2147 } 2148 if( pLoop->nOut > nRow-iReduce ) pLoop->nOut = nRow - iReduce; 2149 } 2150 2151 /* 2152 ** Adjust the cost C by the costMult facter T. This only occurs if 2153 ** compiled with -DSQLITE_ENABLE_COSTMULT 2154 */ 2155 #ifdef SQLITE_ENABLE_COSTMULT 2156 # define ApplyCostMultiplier(C,T) C += T 2157 #else 2158 # define ApplyCostMultiplier(C,T) 2159 #endif 2160 2161 /* 2162 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the 2163 ** index pIndex. Try to match one more. 2164 ** 2165 ** When this function is called, pBuilder->pNew->nOut contains the 2166 ** number of rows expected to be visited by filtering using the nEq 2167 ** terms only. If it is modified, this value is restored before this 2168 ** function returns. 2169 ** 2170 ** If pProbe->tnum==0, that means pIndex is a fake index used for the 2171 ** INTEGER PRIMARY KEY. 2172 */ 2173 static int whereLoopAddBtreeIndex( 2174 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ 2175 struct SrcList_item *pSrc, /* FROM clause term being analyzed */ 2176 Index *pProbe, /* An index on pSrc */ 2177 LogEst nInMul /* log(Number of iterations due to IN) */ 2178 ){ 2179 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ 2180 Parse *pParse = pWInfo->pParse; /* Parsing context */ 2181 sqlite3 *db = pParse->db; /* Database connection malloc context */ 2182 WhereLoop *pNew; /* Template WhereLoop under construction */ 2183 WhereTerm *pTerm; /* A WhereTerm under consideration */ 2184 int opMask; /* Valid operators for constraints */ 2185 WhereScan scan; /* Iterator for WHERE terms */ 2186 Bitmask saved_prereq; /* Original value of pNew->prereq */ 2187 u16 saved_nLTerm; /* Original value of pNew->nLTerm */ 2188 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ 2189 u16 saved_nSkip; /* Original value of pNew->nSkip */ 2190 u32 saved_wsFlags; /* Original value of pNew->wsFlags */ 2191 LogEst saved_nOut; /* Original value of pNew->nOut */ 2192 int rc = SQLITE_OK; /* Return code */ 2193 LogEst rSize; /* Number of rows in the table */ 2194 LogEst rLogSize; /* Logarithm of table size */ 2195 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ 2196 2197 pNew = pBuilder->pNew; 2198 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 2199 2200 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); 2201 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); 2202 if( pNew->wsFlags & WHERE_BTM_LIMIT ){ 2203 opMask = WO_LT|WO_LE; 2204 }else if( /*pProbe->tnum<=0 ||*/ (pSrc->fg.jointype & JT_LEFT)!=0 ){ 2205 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE; 2206 }else{ 2207 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS; 2208 } 2209 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); 2210 2211 assert( pNew->u.btree.nEq<pProbe->nColumn ); 2212 2213 saved_nEq = pNew->u.btree.nEq; 2214 saved_nSkip = pNew->nSkip; 2215 saved_nLTerm = pNew->nLTerm; 2216 saved_wsFlags = pNew->wsFlags; 2217 saved_prereq = pNew->prereq; 2218 saved_nOut = pNew->nOut; 2219 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq, 2220 opMask, pProbe); 2221 pNew->rSetup = 0; 2222 rSize = pProbe->aiRowLogEst[0]; 2223 rLogSize = estLog(rSize); 2224 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ 2225 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ 2226 LogEst rCostIdx; 2227 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ 2228 int nIn = 0; 2229 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2230 int nRecValid = pBuilder->nRecValid; 2231 #endif 2232 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) 2233 && indexColumnNotNull(pProbe, saved_nEq) 2234 ){ 2235 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ 2236 } 2237 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2238 2239 /* Do not allow the upper bound of a LIKE optimization range constraint 2240 ** to mix with a lower range bound from some other source */ 2241 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; 2242 2243 pNew->wsFlags = saved_wsFlags; 2244 pNew->u.btree.nEq = saved_nEq; 2245 pNew->nLTerm = saved_nLTerm; 2246 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2247 pNew->aLTerm[pNew->nLTerm++] = pTerm; 2248 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; 2249 2250 assert( nInMul==0 2251 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 2252 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 2253 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 2254 ); 2255 2256 if( eOp & WO_IN ){ 2257 Expr *pExpr = pTerm->pExpr; 2258 pNew->wsFlags |= WHERE_COLUMN_IN; 2259 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2260 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ 2261 nIn = 46; assert( 46==sqlite3LogEst(25) ); 2262 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ 2263 /* "x IN (value, value, ...)" */ 2264 nIn = sqlite3LogEst(pExpr->x.pList->nExpr); 2265 } 2266 assert( nIn>0 ); /* RHS always has 2 or more terms... The parser 2267 ** changes "x IN (?)" into "x=?". */ 2268 2269 }else if( eOp & (WO_EQ|WO_IS) ){ 2270 int iCol = pProbe->aiColumn[saved_nEq]; 2271 pNew->wsFlags |= WHERE_COLUMN_EQ; 2272 assert( saved_nEq==pNew->u.btree.nEq ); 2273 if( iCol==XN_ROWID 2274 || (iCol>0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) 2275 ){ 2276 if( iCol>=0 && pProbe->uniqNotNull==0 ){ 2277 pNew->wsFlags |= WHERE_UNQ_WANTED; 2278 }else{ 2279 pNew->wsFlags |= WHERE_ONEROW; 2280 } 2281 } 2282 }else if( eOp & WO_ISNULL ){ 2283 pNew->wsFlags |= WHERE_COLUMN_NULL; 2284 }else if( eOp & (WO_GT|WO_GE) ){ 2285 testcase( eOp & WO_GT ); 2286 testcase( eOp & WO_GE ); 2287 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; 2288 pBtm = pTerm; 2289 pTop = 0; 2290 if( pTerm->wtFlags & TERM_LIKEOPT ){ 2291 /* Range contraints that come from the LIKE optimization are 2292 ** always used in pairs. */ 2293 pTop = &pTerm[1]; 2294 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm ); 2295 assert( pTop->wtFlags & TERM_LIKEOPT ); 2296 assert( pTop->eOperator==WO_LT ); 2297 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2298 pNew->aLTerm[pNew->nLTerm++] = pTop; 2299 pNew->wsFlags |= WHERE_TOP_LIMIT; 2300 } 2301 }else{ 2302 assert( eOp & (WO_LT|WO_LE) ); 2303 testcase( eOp & WO_LT ); 2304 testcase( eOp & WO_LE ); 2305 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; 2306 pTop = pTerm; 2307 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? 2308 pNew->aLTerm[pNew->nLTerm-2] : 0; 2309 } 2310 2311 /* At this point pNew->nOut is set to the number of rows expected to 2312 ** be visited by the index scan before considering term pTerm, or the 2313 ** values of nIn and nInMul. In other words, assuming that all 2314 ** "x IN(...)" terms are replaced with "x = ?". This block updates 2315 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ 2316 assert( pNew->nOut==saved_nOut ); 2317 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2318 /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4 2319 ** data, using some other estimate. */ 2320 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); 2321 }else{ 2322 int nEq = ++pNew->u.btree.nEq; 2323 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) ); 2324 2325 assert( pNew->nOut==saved_nOut ); 2326 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){ 2327 assert( (eOp & WO_IN) || nIn==0 ); 2328 testcase( eOp & WO_IN ); 2329 pNew->nOut += pTerm->truthProb; 2330 pNew->nOut -= nIn; 2331 }else{ 2332 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2333 tRowcnt nOut = 0; 2334 if( nInMul==0 2335 && pProbe->nSample 2336 && pNew->u.btree.nEq<=pProbe->nSampleCol 2337 && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect)) 2338 ){ 2339 Expr *pExpr = pTerm->pExpr; 2340 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){ 2341 testcase( eOp & WO_EQ ); 2342 testcase( eOp & WO_IS ); 2343 testcase( eOp & WO_ISNULL ); 2344 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); 2345 }else{ 2346 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); 2347 } 2348 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 2349 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ 2350 if( nOut ){ 2351 pNew->nOut = sqlite3LogEst(nOut); 2352 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; 2353 pNew->nOut -= nIn; 2354 } 2355 } 2356 if( nOut==0 ) 2357 #endif 2358 { 2359 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); 2360 if( eOp & WO_ISNULL ){ 2361 /* TUNING: If there is no likelihood() value, assume that a 2362 ** "col IS NULL" expression matches twice as many rows 2363 ** as (col=?). */ 2364 pNew->nOut += 10; 2365 } 2366 } 2367 } 2368 } 2369 2370 /* Set rCostIdx to the cost of visiting selected rows in index. Add 2371 ** it to pNew->rRun, which is currently set to the cost of the index 2372 ** seek only. Then, if this is a non-covering index, add the cost of 2373 ** visiting the rows in the main table. */ 2374 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; 2375 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); 2376 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ 2377 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); 2378 } 2379 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); 2380 2381 nOutUnadjusted = pNew->nOut; 2382 pNew->rRun += nInMul + nIn; 2383 pNew->nOut += nInMul + nIn; 2384 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); 2385 rc = whereLoopInsert(pBuilder, pNew); 2386 2387 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2388 pNew->nOut = saved_nOut; 2389 }else{ 2390 pNew->nOut = nOutUnadjusted; 2391 } 2392 2393 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 2394 && pNew->u.btree.nEq<pProbe->nColumn 2395 ){ 2396 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); 2397 } 2398 pNew->nOut = saved_nOut; 2399 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2400 pBuilder->nRecValid = nRecValid; 2401 #endif 2402 } 2403 pNew->prereq = saved_prereq; 2404 pNew->u.btree.nEq = saved_nEq; 2405 pNew->nSkip = saved_nSkip; 2406 pNew->wsFlags = saved_wsFlags; 2407 pNew->nOut = saved_nOut; 2408 pNew->nLTerm = saved_nLTerm; 2409 2410 /* Consider using a skip-scan if there are no WHERE clause constraints 2411 ** available for the left-most terms of the index, and if the average 2412 ** number of repeats in the left-most terms is at least 18. 2413 ** 2414 ** The magic number 18 is selected on the basis that scanning 17 rows 2415 ** is almost always quicker than an index seek (even though if the index 2416 ** contains fewer than 2^17 rows we assume otherwise in other parts of 2417 ** the code). And, even if it is not, it should not be too much slower. 2418 ** On the other hand, the extra seeks could end up being significantly 2419 ** more expensive. */ 2420 assert( 42==sqlite3LogEst(18) ); 2421 if( saved_nEq==saved_nSkip 2422 && saved_nEq+1<pProbe->nKeyCol 2423 && pProbe->noSkipScan==0 2424 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ 2425 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK 2426 ){ 2427 LogEst nIter; 2428 pNew->u.btree.nEq++; 2429 pNew->nSkip++; 2430 pNew->aLTerm[pNew->nLTerm++] = 0; 2431 pNew->wsFlags |= WHERE_SKIPSCAN; 2432 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; 2433 pNew->nOut -= nIter; 2434 /* TUNING: Because uncertainties in the estimates for skip-scan queries, 2435 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ 2436 nIter += 5; 2437 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); 2438 pNew->nOut = saved_nOut; 2439 pNew->u.btree.nEq = saved_nEq; 2440 pNew->nSkip = saved_nSkip; 2441 pNew->wsFlags = saved_wsFlags; 2442 } 2443 2444 return rc; 2445 } 2446 2447 /* 2448 ** Return True if it is possible that pIndex might be useful in 2449 ** implementing the ORDER BY clause in pBuilder. 2450 ** 2451 ** Return False if pBuilder does not contain an ORDER BY clause or 2452 ** if there is no way for pIndex to be useful in implementing that 2453 ** ORDER BY clause. 2454 */ 2455 static int indexMightHelpWithOrderBy( 2456 WhereLoopBuilder *pBuilder, 2457 Index *pIndex, 2458 int iCursor 2459 ){ 2460 ExprList *pOB; 2461 ExprList *aColExpr; 2462 int ii, jj; 2463 2464 if( pIndex->bUnordered ) return 0; 2465 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; 2466 for(ii=0; ii<pOB->nExpr; ii++){ 2467 Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr); 2468 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){ 2469 if( pExpr->iColumn<0 ) return 1; 2470 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2471 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; 2472 } 2473 }else if( (aColExpr = pIndex->aColExpr)!=0 ){ 2474 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2475 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue; 2476 if( sqlite3ExprCompare(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){ 2477 return 1; 2478 } 2479 } 2480 } 2481 } 2482 return 0; 2483 } 2484 2485 /* 2486 ** Return a bitmask where 1s indicate that the corresponding column of 2487 ** the table is used by an index. Only the first 63 columns are considered. 2488 */ 2489 static Bitmask columnsInIndex(Index *pIdx){ 2490 Bitmask m = 0; 2491 int j; 2492 for(j=pIdx->nColumn-1; j>=0; j--){ 2493 int x = pIdx->aiColumn[j]; 2494 if( x>=0 ){ 2495 testcase( x==BMS-1 ); 2496 testcase( x==BMS-2 ); 2497 if( x<BMS-1 ) m |= MASKBIT(x); 2498 } 2499 } 2500 return m; 2501 } 2502 2503 /* Check to see if a partial index with pPartIndexWhere can be used 2504 ** in the current query. Return true if it can be and false if not. 2505 */ 2506 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){ 2507 int i; 2508 WhereTerm *pTerm; 2509 while( pWhere->op==TK_AND ){ 2510 if( !whereUsablePartialIndex(iTab,pWC,pWhere->pLeft) ) return 0; 2511 pWhere = pWhere->pRight; 2512 } 2513 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 2514 Expr *pExpr = pTerm->pExpr; 2515 if( sqlite3ExprImpliesExpr(pExpr, pWhere, iTab) 2516 && (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab) 2517 ){ 2518 return 1; 2519 } 2520 } 2521 return 0; 2522 } 2523 2524 /* 2525 ** Add all WhereLoop objects for a single table of the join where the table 2526 ** is idenfied by pBuilder->pNew->iTab. That table is guaranteed to be 2527 ** a b-tree table, not a virtual table. 2528 ** 2529 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function 2530 ** are calculated as follows: 2531 ** 2532 ** For a full scan, assuming the table (or index) contains nRow rows: 2533 ** 2534 ** cost = nRow * 3.0 // full-table scan 2535 ** cost = nRow * K // scan of covering index 2536 ** cost = nRow * (K+3.0) // scan of non-covering index 2537 ** 2538 ** where K is a value between 1.1 and 3.0 set based on the relative 2539 ** estimated average size of the index and table records. 2540 ** 2541 ** For an index scan, where nVisit is the number of index rows visited 2542 ** by the scan, and nSeek is the number of seek operations required on 2543 ** the index b-tree: 2544 ** 2545 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index 2546 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index 2547 ** 2548 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the 2549 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when 2550 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. 2551 ** 2552 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount 2553 ** of uncertainty. For this reason, scoring is designed to pick plans that 2554 ** "do the least harm" if the estimates are inaccurate. For example, a 2555 ** log(nRow) factor is omitted from a non-covering index scan in order to 2556 ** bias the scoring in favor of using an index, since the worst-case 2557 ** performance of using an index is far better than the worst-case performance 2558 ** of a full table scan. 2559 */ 2560 static int whereLoopAddBtree( 2561 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 2562 Bitmask mPrereq /* Extra prerequesites for using this table */ 2563 ){ 2564 WhereInfo *pWInfo; /* WHERE analysis context */ 2565 Index *pProbe; /* An index we are evaluating */ 2566 Index sPk; /* A fake index object for the primary key */ 2567 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ 2568 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ 2569 SrcList *pTabList; /* The FROM clause */ 2570 struct SrcList_item *pSrc; /* The FROM clause btree term to add */ 2571 WhereLoop *pNew; /* Template WhereLoop object */ 2572 int rc = SQLITE_OK; /* Return code */ 2573 int iSortIdx = 1; /* Index number */ 2574 int b; /* A boolean value */ 2575 LogEst rSize; /* number of rows in the table */ 2576 LogEst rLogSize; /* Logarithm of the number of rows in the table */ 2577 WhereClause *pWC; /* The parsed WHERE clause */ 2578 Table *pTab; /* Table being queried */ 2579 2580 pNew = pBuilder->pNew; 2581 pWInfo = pBuilder->pWInfo; 2582 pTabList = pWInfo->pTabList; 2583 pSrc = pTabList->a + pNew->iTab; 2584 pTab = pSrc->pTab; 2585 pWC = pBuilder->pWC; 2586 assert( !IsVirtual(pSrc->pTab) ); 2587 2588 if( pSrc->pIBIndex ){ 2589 /* An INDEXED BY clause specifies a particular index to use */ 2590 pProbe = pSrc->pIBIndex; 2591 }else if( !HasRowid(pTab) ){ 2592 pProbe = pTab->pIndex; 2593 }else{ 2594 /* There is no INDEXED BY clause. Create a fake Index object in local 2595 ** variable sPk to represent the rowid primary key index. Make this 2596 ** fake index the first in a chain of Index objects with all of the real 2597 ** indices to follow */ 2598 Index *pFirst; /* First of real indices on the table */ 2599 memset(&sPk, 0, sizeof(Index)); 2600 sPk.nKeyCol = 1; 2601 sPk.nColumn = 1; 2602 sPk.aiColumn = &aiColumnPk; 2603 sPk.aiRowLogEst = aiRowEstPk; 2604 sPk.onError = OE_Replace; 2605 sPk.pTable = pTab; 2606 sPk.szIdxRow = pTab->szTabRow; 2607 aiRowEstPk[0] = pTab->nRowLogEst; 2608 aiRowEstPk[1] = 0; 2609 pFirst = pSrc->pTab->pIndex; 2610 if( pSrc->fg.notIndexed==0 ){ 2611 /* The real indices of the table are only considered if the 2612 ** NOT INDEXED qualifier is omitted from the FROM clause */ 2613 sPk.pNext = pFirst; 2614 } 2615 pProbe = &sPk; 2616 } 2617 rSize = pTab->nRowLogEst; 2618 rLogSize = estLog(rSize); 2619 2620 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 2621 /* Automatic indexes */ 2622 if( !pBuilder->pOrSet /* Not part of an OR optimization */ 2623 && (pWInfo->wctrlFlags & WHERE_NO_AUTOINDEX)==0 2624 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 2625 && pSrc->pIBIndex==0 /* Has no INDEXED BY clause */ 2626 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */ 2627 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */ 2628 && !pSrc->fg.isCorrelated /* Not a correlated subquery */ 2629 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */ 2630 ){ 2631 /* Generate auto-index WhereLoops */ 2632 WhereTerm *pTerm; 2633 WhereTerm *pWCEnd = pWC->a + pWC->nTerm; 2634 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ 2635 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2636 if( termCanDriveIndex(pTerm, pSrc, 0) ){ 2637 pNew->u.btree.nEq = 1; 2638 pNew->nSkip = 0; 2639 pNew->u.btree.pIndex = 0; 2640 pNew->nLTerm = 1; 2641 pNew->aLTerm[0] = pTerm; 2642 /* TUNING: One-time cost for computing the automatic index is 2643 ** estimated to be X*N*log2(N) where N is the number of rows in 2644 ** the table being indexed and where X is 7 (LogEst=28) for normal 2645 ** tables or 1.375 (LogEst=4) for views and subqueries. The value 2646 ** of X is smaller for views and subqueries so that the query planner 2647 ** will be more aggressive about generating automatic indexes for 2648 ** those objects, since there is no opportunity to add schema 2649 ** indexes on subqueries and views. */ 2650 pNew->rSetup = rLogSize + rSize + 4; 2651 if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){ 2652 pNew->rSetup += 24; 2653 } 2654 ApplyCostMultiplier(pNew->rSetup, pTab->costMult); 2655 /* TUNING: Each index lookup yields 20 rows in the table. This 2656 ** is more than the usual guess of 10 rows, since we have no way 2657 ** of knowing how selective the index will ultimately be. It would 2658 ** not be unreasonable to make this value much larger. */ 2659 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); 2660 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); 2661 pNew->wsFlags = WHERE_AUTO_INDEX; 2662 pNew->prereq = mPrereq | pTerm->prereqRight; 2663 rc = whereLoopInsert(pBuilder, pNew); 2664 } 2665 } 2666 } 2667 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 2668 2669 /* Loop over all indices 2670 */ 2671 for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){ 2672 if( pProbe->pPartIdxWhere!=0 2673 && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){ 2674 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ 2675 continue; /* Partial index inappropriate for this query */ 2676 } 2677 rSize = pProbe->aiRowLogEst[0]; 2678 pNew->u.btree.nEq = 0; 2679 pNew->nSkip = 0; 2680 pNew->nLTerm = 0; 2681 pNew->iSortIdx = 0; 2682 pNew->rSetup = 0; 2683 pNew->prereq = mPrereq; 2684 pNew->nOut = rSize; 2685 pNew->u.btree.pIndex = pProbe; 2686 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); 2687 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ 2688 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); 2689 if( pProbe->tnum<=0 ){ 2690 /* Integer primary key index */ 2691 pNew->wsFlags = WHERE_IPK; 2692 2693 /* Full table scan */ 2694 pNew->iSortIdx = b ? iSortIdx : 0; 2695 /* TUNING: Cost of full table scan is (N*3.0). */ 2696 pNew->rRun = rSize + 16; 2697 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 2698 whereLoopOutputAdjust(pWC, pNew, rSize); 2699 rc = whereLoopInsert(pBuilder, pNew); 2700 pNew->nOut = rSize; 2701 if( rc ) break; 2702 }else{ 2703 Bitmask m; 2704 if( pProbe->isCovering ){ 2705 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; 2706 m = 0; 2707 }else{ 2708 m = pSrc->colUsed & ~columnsInIndex(pProbe); 2709 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; 2710 } 2711 2712 /* Full scan via index */ 2713 if( b 2714 || !HasRowid(pTab) 2715 || ( m==0 2716 && pProbe->bUnordered==0 2717 && (pProbe->szIdxRow<pTab->szTabRow) 2718 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 2719 && sqlite3GlobalConfig.bUseCis 2720 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) 2721 ) 2722 ){ 2723 pNew->iSortIdx = b ? iSortIdx : 0; 2724 2725 /* The cost of visiting the index rows is N*K, where K is 2726 ** between 1.1 and 3.0, depending on the relative sizes of the 2727 ** index and table rows. If this is a non-covering index scan, 2728 ** also add the cost of visiting table rows (N*3.0). */ 2729 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; 2730 if( m!=0 ){ 2731 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, rSize+16); 2732 } 2733 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 2734 whereLoopOutputAdjust(pWC, pNew, rSize); 2735 rc = whereLoopInsert(pBuilder, pNew); 2736 pNew->nOut = rSize; 2737 if( rc ) break; 2738 } 2739 } 2740 2741 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); 2742 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2743 sqlite3Stat4ProbeFree(pBuilder->pRec); 2744 pBuilder->nRecValid = 0; 2745 pBuilder->pRec = 0; 2746 #endif 2747 2748 /* If there was an INDEXED BY clause, then only that one index is 2749 ** considered. */ 2750 if( pSrc->pIBIndex ) break; 2751 } 2752 return rc; 2753 } 2754 2755 #ifndef SQLITE_OMIT_VIRTUALTABLE 2756 2757 /* 2758 ** Argument pIdxInfo is already populated with all constraints that may 2759 ** be used by the virtual table identified by pBuilder->pNew->iTab. This 2760 ** function marks a subset of those constraints usable, invokes the 2761 ** xBestIndex method and adds the returned plan to pBuilder. 2762 ** 2763 ** A constraint is marked usable if: 2764 ** 2765 ** * Argument mUsable indicates that its prerequisites are available, and 2766 ** 2767 ** * It is not one of the operators specified in the mExclude mask passed 2768 ** as the fourth argument (which in practice is either WO_IN or 0). 2769 ** 2770 ** Argument mPrereq is a mask of tables that must be scanned before the 2771 ** virtual table in question. These are added to the plans prerequisites 2772 ** before it is added to pBuilder. 2773 ** 2774 ** Output parameter *pbIn is set to true if the plan added to pBuilder 2775 ** uses one or more WO_IN terms, or false otherwise. 2776 */ 2777 static int whereLoopAddVirtualOne( 2778 WhereLoopBuilder *pBuilder, 2779 Bitmask mPrereq, /* Mask of tables that must be used. */ 2780 Bitmask mUsable, /* Mask of usable tables */ 2781 u16 mExclude, /* Exclude terms using these operators */ 2782 sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */ 2783 int *pbIn /* OUT: True if plan uses an IN(...) op */ 2784 ){ 2785 WhereClause *pWC = pBuilder->pWC; 2786 struct sqlite3_index_constraint *pIdxCons; 2787 struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage; 2788 int i; 2789 int mxTerm; 2790 int rc = SQLITE_OK; 2791 WhereLoop *pNew = pBuilder->pNew; 2792 Parse *pParse = pBuilder->pWInfo->pParse; 2793 struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab]; 2794 int nConstraint = pIdxInfo->nConstraint; 2795 2796 assert( (mUsable & mPrereq)==mPrereq ); 2797 *pbIn = 0; 2798 pNew->prereq = mPrereq; 2799 2800 /* Set the usable flag on the subset of constraints identified by 2801 ** arguments mUsable and mExclude. */ 2802 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 2803 for(i=0; i<nConstraint; i++, pIdxCons++){ 2804 WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset]; 2805 pIdxCons->usable = 0; 2806 if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight 2807 && (pTerm->eOperator & mExclude)==0 2808 ){ 2809 pIdxCons->usable = 1; 2810 } 2811 } 2812 2813 /* Initialize the output fields of the sqlite3_index_info structure */ 2814 memset(pUsage, 0, sizeof(pUsage[0])*nConstraint); 2815 assert( pIdxInfo->needToFreeIdxStr==0 ); 2816 pIdxInfo->idxStr = 0; 2817 pIdxInfo->idxNum = 0; 2818 pIdxInfo->orderByConsumed = 0; 2819 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; 2820 pIdxInfo->estimatedRows = 25; 2821 pIdxInfo->idxFlags = 0; 2822 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed; 2823 2824 /* Invoke the virtual table xBestIndex() method */ 2825 rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo); 2826 if( rc ) return rc; 2827 2828 mxTerm = -1; 2829 assert( pNew->nLSlot>=nConstraint ); 2830 for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0; 2831 pNew->u.vtab.omitMask = 0; 2832 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 2833 for(i=0; i<nConstraint; i++, pIdxCons++){ 2834 int iTerm; 2835 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ 2836 WhereTerm *pTerm; 2837 int j = pIdxCons->iTermOffset; 2838 if( iTerm>=nConstraint 2839 || j<0 2840 || j>=pWC->nTerm 2841 || pNew->aLTerm[iTerm]!=0 2842 || pIdxCons->usable==0 2843 ){ 2844 rc = SQLITE_ERROR; 2845 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 2846 return rc; 2847 } 2848 testcase( iTerm==nConstraint-1 ); 2849 testcase( j==0 ); 2850 testcase( j==pWC->nTerm-1 ); 2851 pTerm = &pWC->a[j]; 2852 pNew->prereq |= pTerm->prereqRight; 2853 assert( iTerm<pNew->nLSlot ); 2854 pNew->aLTerm[iTerm] = pTerm; 2855 if( iTerm>mxTerm ) mxTerm = iTerm; 2856 testcase( iTerm==15 ); 2857 testcase( iTerm==16 ); 2858 if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm; 2859 if( (pTerm->eOperator & WO_IN)!=0 ){ 2860 /* A virtual table that is constrained by an IN clause may not 2861 ** consume the ORDER BY clause because (1) the order of IN terms 2862 ** is not necessarily related to the order of output terms and 2863 ** (2) Multiple outputs from a single IN value will not merge 2864 ** together. */ 2865 pIdxInfo->orderByConsumed = 0; 2866 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE; 2867 *pbIn = 1; assert( (mExclude & WO_IN)==0 ); 2868 } 2869 } 2870 } 2871 2872 pNew->nLTerm = mxTerm+1; 2873 assert( pNew->nLTerm<=pNew->nLSlot ); 2874 pNew->u.vtab.idxNum = pIdxInfo->idxNum; 2875 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; 2876 pIdxInfo->needToFreeIdxStr = 0; 2877 pNew->u.vtab.idxStr = pIdxInfo->idxStr; 2878 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? 2879 pIdxInfo->nOrderBy : 0); 2880 pNew->rSetup = 0; 2881 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); 2882 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); 2883 2884 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated 2885 ** that the scan will visit at most one row. Clear it otherwise. */ 2886 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){ 2887 pNew->wsFlags |= WHERE_ONEROW; 2888 }else{ 2889 pNew->wsFlags &= ~WHERE_ONEROW; 2890 } 2891 rc = whereLoopInsert(pBuilder, pNew); 2892 if( pNew->u.vtab.needFree ){ 2893 sqlite3_free(pNew->u.vtab.idxStr); 2894 pNew->u.vtab.needFree = 0; 2895 } 2896 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n", 2897 *pbIn, (sqlite3_uint64)mPrereq, 2898 (sqlite3_uint64)(pNew->prereq & ~mPrereq))); 2899 2900 return rc; 2901 } 2902 2903 2904 /* 2905 ** Add all WhereLoop objects for a table of the join identified by 2906 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. 2907 ** 2908 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and 2909 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause 2910 ** entries that occur before the virtual table in the FROM clause and are 2911 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the 2912 ** mUnusable mask contains all FROM clause entries that occur after the 2913 ** virtual table and are separated from it by at least one LEFT or 2914 ** CROSS JOIN. 2915 ** 2916 ** For example, if the query were: 2917 ** 2918 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; 2919 ** 2920 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6). 2921 ** 2922 ** All the tables in mPrereq must be scanned before the current virtual 2923 ** table. So any terms for which all prerequisites are satisfied by 2924 ** mPrereq may be specified as "usable" in all calls to xBestIndex. 2925 ** Conversely, all tables in mUnusable must be scanned after the current 2926 ** virtual table, so any terms for which the prerequisites overlap with 2927 ** mUnusable should always be configured as "not-usable" for xBestIndex. 2928 */ 2929 static int whereLoopAddVirtual( 2930 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 2931 Bitmask mPrereq, /* Tables that must be scanned before this one */ 2932 Bitmask mUnusable /* Tables that must be scanned after this one */ 2933 ){ 2934 int rc = SQLITE_OK; /* Return code */ 2935 WhereInfo *pWInfo; /* WHERE analysis context */ 2936 Parse *pParse; /* The parsing context */ 2937 WhereClause *pWC; /* The WHERE clause */ 2938 struct SrcList_item *pSrc; /* The FROM clause term to search */ 2939 sqlite3_index_info *p; /* Object to pass to xBestIndex() */ 2940 int nConstraint; /* Number of constraints in p */ 2941 int bIn; /* True if plan uses IN(...) operator */ 2942 WhereLoop *pNew; 2943 Bitmask mBest; /* Tables used by best possible plan */ 2944 2945 assert( (mPrereq & mUnusable)==0 ); 2946 pWInfo = pBuilder->pWInfo; 2947 pParse = pWInfo->pParse; 2948 pWC = pBuilder->pWC; 2949 pNew = pBuilder->pNew; 2950 pSrc = &pWInfo->pTabList->a[pNew->iTab]; 2951 assert( IsVirtual(pSrc->pTab) ); 2952 p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy); 2953 if( p==0 ) return SQLITE_NOMEM_BKPT; 2954 pNew->rSetup = 0; 2955 pNew->wsFlags = WHERE_VIRTUALTABLE; 2956 pNew->nLTerm = 0; 2957 pNew->u.vtab.needFree = 0; 2958 nConstraint = p->nConstraint; 2959 if( whereLoopResize(pParse->db, pNew, nConstraint) ){ 2960 sqlite3DbFree(pParse->db, p); 2961 return SQLITE_NOMEM_BKPT; 2962 } 2963 2964 /* First call xBestIndex() with all constraints usable. */ 2965 WHERETRACE(0x40, (" VirtualOne: all usable\n")); 2966 rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, &bIn); 2967 2968 /* If the call to xBestIndex() with all terms enabled produced a plan 2969 ** that does not require any source tables (IOW: a plan with mBest==0), 2970 ** then there is no point in making any further calls to xBestIndex() 2971 ** since they will all return the same result (if the xBestIndex() 2972 ** implementation is sane). */ 2973 if( rc==SQLITE_OK && (mBest = (pNew->prereq & ~mPrereq))!=0 ){ 2974 int seenZero = 0; /* True if a plan with no prereqs seen */ 2975 int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */ 2976 Bitmask mPrev = 0; 2977 Bitmask mBestNoIn = 0; 2978 2979 /* If the plan produced by the earlier call uses an IN(...) term, call 2980 ** xBestIndex again, this time with IN(...) terms disabled. */ 2981 if( bIn ){ 2982 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n")); 2983 rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, WO_IN, p, &bIn); 2984 assert( bIn==0 ); 2985 mBestNoIn = pNew->prereq & ~mPrereq; 2986 if( mBestNoIn==0 ){ 2987 seenZero = 1; 2988 seenZeroNoIN = 1; 2989 } 2990 } 2991 2992 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq) 2993 ** in the set of terms that apply to the current virtual table. */ 2994 while( rc==SQLITE_OK ){ 2995 int i; 2996 Bitmask mNext = ALLBITS; 2997 assert( mNext>0 ); 2998 for(i=0; i<nConstraint; i++){ 2999 Bitmask mThis = ( 3000 pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq 3001 ); 3002 if( mThis>mPrev && mThis<mNext ) mNext = mThis; 3003 } 3004 mPrev = mNext; 3005 if( mNext==ALLBITS ) break; 3006 if( mNext==mBest || mNext==mBestNoIn ) continue; 3007 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n", 3008 (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext)); 3009 rc = whereLoopAddVirtualOne(pBuilder, mPrereq, mNext|mPrereq, 0, p, &bIn); 3010 if( pNew->prereq==mPrereq ){ 3011 seenZero = 1; 3012 if( bIn==0 ) seenZeroNoIN = 1; 3013 } 3014 } 3015 3016 /* If the calls to xBestIndex() in the above loop did not find a plan 3017 ** that requires no source tables at all (i.e. one guaranteed to be 3018 ** usable), make a call here with all source tables disabled */ 3019 if( rc==SQLITE_OK && seenZero==0 ){ 3020 WHERETRACE(0x40, (" VirtualOne: all disabled\n")); 3021 rc = whereLoopAddVirtualOne(pBuilder, mPrereq, mPrereq, 0, p, &bIn); 3022 if( bIn==0 ) seenZeroNoIN = 1; 3023 } 3024 3025 /* If the calls to xBestIndex() have so far failed to find a plan 3026 ** that requires no source tables at all and does not use an IN(...) 3027 ** operator, make a final call to obtain one here. */ 3028 if( rc==SQLITE_OK && seenZeroNoIN==0 ){ 3029 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n")); 3030 rc = whereLoopAddVirtualOne(pBuilder, mPrereq, mPrereq, WO_IN, p, &bIn); 3031 } 3032 } 3033 3034 if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr); 3035 sqlite3DbFree(pParse->db, p); 3036 return rc; 3037 } 3038 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3039 3040 /* 3041 ** Add WhereLoop entries to handle OR terms. This works for either 3042 ** btrees or virtual tables. 3043 */ 3044 static int whereLoopAddOr( 3045 WhereLoopBuilder *pBuilder, 3046 Bitmask mPrereq, 3047 Bitmask mUnusable 3048 ){ 3049 WhereInfo *pWInfo = pBuilder->pWInfo; 3050 WhereClause *pWC; 3051 WhereLoop *pNew; 3052 WhereTerm *pTerm, *pWCEnd; 3053 int rc = SQLITE_OK; 3054 int iCur; 3055 WhereClause tempWC; 3056 WhereLoopBuilder sSubBuild; 3057 WhereOrSet sSum, sCur; 3058 struct SrcList_item *pItem; 3059 3060 pWC = pBuilder->pWC; 3061 pWCEnd = pWC->a + pWC->nTerm; 3062 pNew = pBuilder->pNew; 3063 memset(&sSum, 0, sizeof(sSum)); 3064 pItem = pWInfo->pTabList->a + pNew->iTab; 3065 iCur = pItem->iCursor; 3066 3067 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ 3068 if( (pTerm->eOperator & WO_OR)!=0 3069 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 3070 ){ 3071 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; 3072 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; 3073 WhereTerm *pOrTerm; 3074 int once = 1; 3075 int i, j; 3076 3077 sSubBuild = *pBuilder; 3078 sSubBuild.pOrderBy = 0; 3079 sSubBuild.pOrSet = &sCur; 3080 3081 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); 3082 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ 3083 if( (pOrTerm->eOperator & WO_AND)!=0 ){ 3084 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; 3085 }else if( pOrTerm->leftCursor==iCur ){ 3086 tempWC.pWInfo = pWC->pWInfo; 3087 tempWC.pOuter = pWC; 3088 tempWC.op = TK_AND; 3089 tempWC.nTerm = 1; 3090 tempWC.a = pOrTerm; 3091 sSubBuild.pWC = &tempWC; 3092 }else{ 3093 continue; 3094 } 3095 sCur.n = 0; 3096 #ifdef WHERETRACE_ENABLED 3097 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", 3098 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); 3099 if( sqlite3WhereTrace & 0x400 ){ 3100 for(i=0; i<sSubBuild.pWC->nTerm; i++){ 3101 whereTermPrint(&sSubBuild.pWC->a[i], i); 3102 } 3103 } 3104 #endif 3105 #ifndef SQLITE_OMIT_VIRTUALTABLE 3106 if( IsVirtual(pItem->pTab) ){ 3107 rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable); 3108 }else 3109 #endif 3110 { 3111 rc = whereLoopAddBtree(&sSubBuild, mPrereq); 3112 } 3113 if( rc==SQLITE_OK ){ 3114 rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable); 3115 } 3116 assert( rc==SQLITE_OK || sCur.n==0 ); 3117 if( sCur.n==0 ){ 3118 sSum.n = 0; 3119 break; 3120 }else if( once ){ 3121 whereOrMove(&sSum, &sCur); 3122 once = 0; 3123 }else{ 3124 WhereOrSet sPrev; 3125 whereOrMove(&sPrev, &sSum); 3126 sSum.n = 0; 3127 for(i=0; i<sPrev.n; i++){ 3128 for(j=0; j<sCur.n; j++){ 3129 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, 3130 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), 3131 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); 3132 } 3133 } 3134 } 3135 } 3136 pNew->nLTerm = 1; 3137 pNew->aLTerm[0] = pTerm; 3138 pNew->wsFlags = WHERE_MULTI_OR; 3139 pNew->rSetup = 0; 3140 pNew->iSortIdx = 0; 3141 memset(&pNew->u, 0, sizeof(pNew->u)); 3142 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ 3143 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs 3144 ** of all sub-scans required by the OR-scan. However, due to rounding 3145 ** errors, it may be that the cost of the OR-scan is equal to its 3146 ** most expensive sub-scan. Add the smallest possible penalty 3147 ** (equivalent to multiplying the cost by 1.07) to ensure that 3148 ** this does not happen. Otherwise, for WHERE clauses such as the 3149 ** following where there is an index on "y": 3150 ** 3151 ** WHERE likelihood(x=?, 0.99) OR y=? 3152 ** 3153 ** the planner may elect to "OR" together a full-table scan and an 3154 ** index lookup. And other similarly odd results. */ 3155 pNew->rRun = sSum.a[i].rRun + 1; 3156 pNew->nOut = sSum.a[i].nOut; 3157 pNew->prereq = sSum.a[i].prereq; 3158 rc = whereLoopInsert(pBuilder, pNew); 3159 } 3160 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); 3161 } 3162 } 3163 return rc; 3164 } 3165 3166 /* 3167 ** Add all WhereLoop objects for all tables 3168 */ 3169 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ 3170 WhereInfo *pWInfo = pBuilder->pWInfo; 3171 Bitmask mPrereq = 0; 3172 Bitmask mPrior = 0; 3173 int iTab; 3174 SrcList *pTabList = pWInfo->pTabList; 3175 struct SrcList_item *pItem; 3176 struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel]; 3177 sqlite3 *db = pWInfo->pParse->db; 3178 int rc = SQLITE_OK; 3179 WhereLoop *pNew; 3180 u8 priorJointype = 0; 3181 3182 /* Loop over the tables in the join, from left to right */ 3183 pNew = pBuilder->pNew; 3184 whereLoopInit(pNew); 3185 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){ 3186 Bitmask mUnusable = 0; 3187 pNew->iTab = iTab; 3188 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); 3189 if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){ 3190 /* This condition is true when pItem is the FROM clause term on the 3191 ** right-hand-side of a LEFT or CROSS JOIN. */ 3192 mPrereq = mPrior; 3193 } 3194 priorJointype = pItem->fg.jointype; 3195 if( IsVirtual(pItem->pTab) ){ 3196 struct SrcList_item *p; 3197 for(p=&pItem[1]; p<pEnd; p++){ 3198 if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){ 3199 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); 3200 } 3201 } 3202 rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable); 3203 }else{ 3204 rc = whereLoopAddBtree(pBuilder, mPrereq); 3205 } 3206 if( rc==SQLITE_OK ){ 3207 rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable); 3208 } 3209 mPrior |= pNew->maskSelf; 3210 if( rc || db->mallocFailed ) break; 3211 } 3212 3213 whereLoopClear(db, pNew); 3214 return rc; 3215 } 3216 3217 /* 3218 ** Examine a WherePath (with the addition of the extra WhereLoop of the 5th 3219 ** parameters) to see if it outputs rows in the requested ORDER BY 3220 ** (or GROUP BY) without requiring a separate sort operation. Return N: 3221 ** 3222 ** N>0: N terms of the ORDER BY clause are satisfied 3223 ** N==0: No terms of the ORDER BY clause are satisfied 3224 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. 3225 ** 3226 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as 3227 ** strict. With GROUP BY and DISTINCT the only requirement is that 3228 ** equivalent rows appear immediately adjacent to one another. GROUP BY 3229 ** and DISTINCT do not require rows to appear in any particular order as long 3230 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT 3231 ** the pOrderBy terms can be matched in any order. With ORDER BY, the 3232 ** pOrderBy terms must be matched in strict left-to-right order. 3233 */ 3234 static i8 wherePathSatisfiesOrderBy( 3235 WhereInfo *pWInfo, /* The WHERE clause */ 3236 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ 3237 WherePath *pPath, /* The WherePath to check */ 3238 u16 wctrlFlags, /* Might contain WHERE_GROUPBY or WHERE_DISTINCTBY */ 3239 u16 nLoop, /* Number of entries in pPath->aLoop[] */ 3240 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ 3241 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ 3242 ){ 3243 u8 revSet; /* True if rev is known */ 3244 u8 rev; /* Composite sort order */ 3245 u8 revIdx; /* Index sort order */ 3246 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ 3247 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ 3248 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ 3249 u16 nKeyCol; /* Number of key columns in pIndex */ 3250 u16 nColumn; /* Total number of ordered columns in the index */ 3251 u16 nOrderBy; /* Number terms in the ORDER BY clause */ 3252 int iLoop; /* Index of WhereLoop in pPath being processed */ 3253 int i, j; /* Loop counters */ 3254 int iCur; /* Cursor number for current WhereLoop */ 3255 int iColumn; /* A column number within table iCur */ 3256 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ 3257 WhereTerm *pTerm; /* A single term of the WHERE clause */ 3258 Expr *pOBExpr; /* An expression from the ORDER BY clause */ 3259 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ 3260 Index *pIndex; /* The index associated with pLoop */ 3261 sqlite3 *db = pWInfo->pParse->db; /* Database connection */ 3262 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ 3263 Bitmask obDone; /* Mask of all ORDER BY terms */ 3264 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ 3265 Bitmask ready; /* Mask of inner loops */ 3266 3267 /* 3268 ** We say the WhereLoop is "one-row" if it generates no more than one 3269 ** row of output. A WhereLoop is one-row if all of the following are true: 3270 ** (a) All index columns match with WHERE_COLUMN_EQ. 3271 ** (b) The index is unique 3272 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. 3273 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. 3274 ** 3275 ** We say the WhereLoop is "order-distinct" if the set of columns from 3276 ** that WhereLoop that are in the ORDER BY clause are different for every 3277 ** row of the WhereLoop. Every one-row WhereLoop is automatically 3278 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause 3279 ** is not order-distinct. To be order-distinct is not quite the same as being 3280 ** UNIQUE since a UNIQUE column or index can have multiple rows that 3281 ** are NULL and NULL values are equivalent for the purpose of order-distinct. 3282 ** To be order-distinct, the columns must be UNIQUE and NOT NULL. 3283 ** 3284 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the 3285 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is 3286 ** automatically order-distinct. 3287 */ 3288 3289 assert( pOrderBy!=0 ); 3290 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; 3291 3292 nOrderBy = pOrderBy->nExpr; 3293 testcase( nOrderBy==BMS-1 ); 3294 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ 3295 isOrderDistinct = 1; 3296 obDone = MASKBIT(nOrderBy)-1; 3297 orderDistinctMask = 0; 3298 ready = 0; 3299 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ 3300 if( iLoop>0 ) ready |= pLoop->maskSelf; 3301 pLoop = iLoop<nLoop ? pPath->aLoop[iLoop] : pLast; 3302 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ 3303 if( pLoop->u.vtab.isOrdered ) obSat = obDone; 3304 break; 3305 } 3306 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; 3307 3308 /* Mark off any ORDER BY term X that is a column in the table of 3309 ** the current loop for which there is term in the WHERE 3310 ** clause of the form X IS NULL or X=? that reference only outer 3311 ** loops. 3312 */ 3313 for(i=0; i<nOrderBy; i++){ 3314 if( MASKBIT(i) & obSat ) continue; 3315 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); 3316 if( pOBExpr->op!=TK_COLUMN ) continue; 3317 if( pOBExpr->iTable!=iCur ) continue; 3318 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, 3319 ~ready, WO_EQ|WO_ISNULL|WO_IS, 0); 3320 if( pTerm==0 ) continue; 3321 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ 3322 const char *z1, *z2; 3323 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 3324 if( !pColl ) pColl = db->pDfltColl; 3325 z1 = pColl->zName; 3326 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pTerm->pExpr); 3327 if( !pColl ) pColl = db->pDfltColl; 3328 z2 = pColl->zName; 3329 if( sqlite3StrICmp(z1, z2)!=0 ) continue; 3330 testcase( pTerm->pExpr->op==TK_IS ); 3331 } 3332 obSat |= MASKBIT(i); 3333 } 3334 3335 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ 3336 if( pLoop->wsFlags & WHERE_IPK ){ 3337 pIndex = 0; 3338 nKeyCol = 0; 3339 nColumn = 1; 3340 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ 3341 return 0; 3342 }else{ 3343 nKeyCol = pIndex->nKeyCol; 3344 nColumn = pIndex->nColumn; 3345 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); 3346 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID 3347 || !HasRowid(pIndex->pTable)); 3348 isOrderDistinct = IsUniqueIndex(pIndex); 3349 } 3350 3351 /* Loop through all columns of the index and deal with the ones 3352 ** that are not constrained by == or IN. 3353 */ 3354 rev = revSet = 0; 3355 distinctColumns = 0; 3356 for(j=0; j<nColumn; j++){ 3357 u8 bOnce; /* True to run the ORDER BY search loop */ 3358 3359 /* Skip over == and IS NULL terms */ 3360 if( j<pLoop->u.btree.nEq 3361 && pLoop->nSkip==0 3362 && ((i = pLoop->aLTerm[j]->eOperator) & (WO_EQ|WO_ISNULL|WO_IS))!=0 3363 ){ 3364 if( i & WO_ISNULL ){ 3365 testcase( isOrderDistinct ); 3366 isOrderDistinct = 0; 3367 } 3368 continue; 3369 } 3370 3371 /* Get the column number in the table (iColumn) and sort order 3372 ** (revIdx) for the j-th column of the index. 3373 */ 3374 if( pIndex ){ 3375 iColumn = pIndex->aiColumn[j]; 3376 revIdx = pIndex->aSortOrder[j]; 3377 if( iColumn==pIndex->pTable->iPKey ) iColumn = -1; 3378 }else{ 3379 iColumn = XN_ROWID; 3380 revIdx = 0; 3381 } 3382 3383 /* An unconstrained column that might be NULL means that this 3384 ** WhereLoop is not well-ordered 3385 */ 3386 if( isOrderDistinct 3387 && iColumn>=0 3388 && j>=pLoop->u.btree.nEq 3389 && pIndex->pTable->aCol[iColumn].notNull==0 3390 ){ 3391 isOrderDistinct = 0; 3392 } 3393 3394 /* Find the ORDER BY term that corresponds to the j-th column 3395 ** of the index and mark that ORDER BY term off 3396 */ 3397 bOnce = 1; 3398 isMatch = 0; 3399 for(i=0; bOnce && i<nOrderBy; i++){ 3400 if( MASKBIT(i) & obSat ) continue; 3401 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); 3402 testcase( wctrlFlags & WHERE_GROUPBY ); 3403 testcase( wctrlFlags & WHERE_DISTINCTBY ); 3404 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; 3405 if( iColumn>=(-1) ){ 3406 if( pOBExpr->op!=TK_COLUMN ) continue; 3407 if( pOBExpr->iTable!=iCur ) continue; 3408 if( pOBExpr->iColumn!=iColumn ) continue; 3409 }else{ 3410 if( sqlite3ExprCompare(pOBExpr,pIndex->aColExpr->a[j].pExpr,iCur) ){ 3411 continue; 3412 } 3413 } 3414 if( iColumn>=0 ){ 3415 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 3416 if( !pColl ) pColl = db->pDfltColl; 3417 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; 3418 } 3419 isMatch = 1; 3420 break; 3421 } 3422 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ 3423 /* Make sure the sort order is compatible in an ORDER BY clause. 3424 ** Sort order is irrelevant for a GROUP BY clause. */ 3425 if( revSet ){ 3426 if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0; 3427 }else{ 3428 rev = revIdx ^ pOrderBy->a[i].sortOrder; 3429 if( rev ) *pRevMask |= MASKBIT(iLoop); 3430 revSet = 1; 3431 } 3432 } 3433 if( isMatch ){ 3434 if( iColumn<0 ){ 3435 testcase( distinctColumns==0 ); 3436 distinctColumns = 1; 3437 } 3438 obSat |= MASKBIT(i); 3439 }else{ 3440 /* No match found */ 3441 if( j==0 || j<nKeyCol ){ 3442 testcase( isOrderDistinct!=0 ); 3443 isOrderDistinct = 0; 3444 } 3445 break; 3446 } 3447 } /* end Loop over all index columns */ 3448 if( distinctColumns ){ 3449 testcase( isOrderDistinct==0 ); 3450 isOrderDistinct = 1; 3451 } 3452 } /* end-if not one-row */ 3453 3454 /* Mark off any other ORDER BY terms that reference pLoop */ 3455 if( isOrderDistinct ){ 3456 orderDistinctMask |= pLoop->maskSelf; 3457 for(i=0; i<nOrderBy; i++){ 3458 Expr *p; 3459 Bitmask mTerm; 3460 if( MASKBIT(i) & obSat ) continue; 3461 p = pOrderBy->a[i].pExpr; 3462 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); 3463 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; 3464 if( (mTerm&~orderDistinctMask)==0 ){ 3465 obSat |= MASKBIT(i); 3466 } 3467 } 3468 } 3469 } /* End the loop over all WhereLoops from outer-most down to inner-most */ 3470 if( obSat==obDone ) return (i8)nOrderBy; 3471 if( !isOrderDistinct ){ 3472 for(i=nOrderBy-1; i>0; i--){ 3473 Bitmask m = MASKBIT(i) - 1; 3474 if( (obSat&m)==m ) return i; 3475 } 3476 return 0; 3477 } 3478 return -1; 3479 } 3480 3481 3482 /* 3483 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), 3484 ** the planner assumes that the specified pOrderBy list is actually a GROUP 3485 ** BY clause - and so any order that groups rows as required satisfies the 3486 ** request. 3487 ** 3488 ** Normally, in this case it is not possible for the caller to determine 3489 ** whether or not the rows are really being delivered in sorted order, or 3490 ** just in some other order that provides the required grouping. However, 3491 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then 3492 ** this function may be called on the returned WhereInfo object. It returns 3493 ** true if the rows really will be sorted in the specified order, or false 3494 ** otherwise. 3495 ** 3496 ** For example, assuming: 3497 ** 3498 ** CREATE INDEX i1 ON t1(x, Y); 3499 ** 3500 ** then 3501 ** 3502 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 3503 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 3504 */ 3505 int sqlite3WhereIsSorted(WhereInfo *pWInfo){ 3506 assert( pWInfo->wctrlFlags & WHERE_GROUPBY ); 3507 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); 3508 return pWInfo->sorted; 3509 } 3510 3511 #ifdef WHERETRACE_ENABLED 3512 /* For debugging use only: */ 3513 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ 3514 static char zName[65]; 3515 int i; 3516 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } 3517 if( pLast ) zName[i++] = pLast->cId; 3518 zName[i] = 0; 3519 return zName; 3520 } 3521 #endif 3522 3523 /* 3524 ** Return the cost of sorting nRow rows, assuming that the keys have 3525 ** nOrderby columns and that the first nSorted columns are already in 3526 ** order. 3527 */ 3528 static LogEst whereSortingCost( 3529 WhereInfo *pWInfo, 3530 LogEst nRow, 3531 int nOrderBy, 3532 int nSorted 3533 ){ 3534 /* TUNING: Estimated cost of a full external sort, where N is 3535 ** the number of rows to sort is: 3536 ** 3537 ** cost = (3.0 * N * log(N)). 3538 ** 3539 ** Or, if the order-by clause has X terms but only the last Y 3540 ** terms are out of order, then block-sorting will reduce the 3541 ** sorting cost to: 3542 ** 3543 ** cost = (3.0 * N * log(N)) * (Y/X) 3544 ** 3545 ** The (Y/X) term is implemented using stack variable rScale 3546 ** below. */ 3547 LogEst rScale, rSortCost; 3548 assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); 3549 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; 3550 rSortCost = nRow + rScale + 16; 3551 3552 /* Multiple by log(M) where M is the number of output rows. 3553 ** Use the LIMIT for M if it is smaller */ 3554 if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){ 3555 nRow = pWInfo->iLimit; 3556 } 3557 rSortCost += estLog(nRow); 3558 return rSortCost; 3559 } 3560 3561 /* 3562 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine 3563 ** attempts to find the lowest cost path that visits each WhereLoop 3564 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. 3565 ** 3566 ** Assume that the total number of output rows that will need to be sorted 3567 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting 3568 ** costs if nRowEst==0. 3569 ** 3570 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation 3571 ** error occurs. 3572 */ 3573 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ 3574 int mxChoice; /* Maximum number of simultaneous paths tracked */ 3575 int nLoop; /* Number of terms in the join */ 3576 Parse *pParse; /* Parsing context */ 3577 sqlite3 *db; /* The database connection */ 3578 int iLoop; /* Loop counter over the terms of the join */ 3579 int ii, jj; /* Loop counters */ 3580 int mxI = 0; /* Index of next entry to replace */ 3581 int nOrderBy; /* Number of ORDER BY clause terms */ 3582 LogEst mxCost = 0; /* Maximum cost of a set of paths */ 3583 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ 3584 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ 3585 WherePath *aFrom; /* All nFrom paths at the previous level */ 3586 WherePath *aTo; /* The nTo best paths at the current level */ 3587 WherePath *pFrom; /* An element of aFrom[] that we are working on */ 3588 WherePath *pTo; /* An element of aTo[] that we are working on */ 3589 WhereLoop *pWLoop; /* One of the WhereLoop objects */ 3590 WhereLoop **pX; /* Used to divy up the pSpace memory */ 3591 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ 3592 char *pSpace; /* Temporary memory used by this routine */ 3593 int nSpace; /* Bytes of space allocated at pSpace */ 3594 3595 pParse = pWInfo->pParse; 3596 db = pParse->db; 3597 nLoop = pWInfo->nLevel; 3598 /* TUNING: For simple queries, only the best path is tracked. 3599 ** For 2-way joins, the 5 best paths are followed. 3600 ** For joins of 3 or more tables, track the 10 best paths */ 3601 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); 3602 assert( nLoop<=pWInfo->pTabList->nSrc ); 3603 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); 3604 3605 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this 3606 ** case the purpose of this call is to estimate the number of rows returned 3607 ** by the overall query. Once this estimate has been obtained, the caller 3608 ** will invoke this function a second time, passing the estimate as the 3609 ** nRowEst parameter. */ 3610 if( pWInfo->pOrderBy==0 || nRowEst==0 ){ 3611 nOrderBy = 0; 3612 }else{ 3613 nOrderBy = pWInfo->pOrderBy->nExpr; 3614 } 3615 3616 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ 3617 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; 3618 nSpace += sizeof(LogEst) * nOrderBy; 3619 pSpace = sqlite3DbMallocRawNN(db, nSpace); 3620 if( pSpace==0 ) return SQLITE_NOMEM_BKPT; 3621 aTo = (WherePath*)pSpace; 3622 aFrom = aTo+mxChoice; 3623 memset(aFrom, 0, sizeof(aFrom[0])); 3624 pX = (WhereLoop**)(aFrom+mxChoice); 3625 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ 3626 pFrom->aLoop = pX; 3627 } 3628 if( nOrderBy ){ 3629 /* If there is an ORDER BY clause and it is not being ignored, set up 3630 ** space for the aSortCost[] array. Each element of the aSortCost array 3631 ** is either zero - meaning it has not yet been initialized - or the 3632 ** cost of sorting nRowEst rows of data where the first X terms of 3633 ** the ORDER BY clause are already in order, where X is the array 3634 ** index. */ 3635 aSortCost = (LogEst*)pX; 3636 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); 3637 } 3638 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); 3639 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); 3640 3641 /* Seed the search with a single WherePath containing zero WhereLoops. 3642 ** 3643 ** TUNING: Do not let the number of iterations go above 28. If the cost 3644 ** of computing an automatic index is not paid back within the first 28 3645 ** rows, then do not use the automatic index. */ 3646 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) ); 3647 nFrom = 1; 3648 assert( aFrom[0].isOrdered==0 ); 3649 if( nOrderBy ){ 3650 /* If nLoop is zero, then there are no FROM terms in the query. Since 3651 ** in this case the query may return a maximum of one row, the results 3652 ** are already in the requested order. Set isOrdered to nOrderBy to 3653 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to 3654 ** -1, indicating that the result set may or may not be ordered, 3655 ** depending on the loops added to the current plan. */ 3656 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; 3657 } 3658 3659 /* Compute successively longer WherePaths using the previous generation 3660 ** of WherePaths as the basis for the next. Keep track of the mxChoice 3661 ** best paths at each generation */ 3662 for(iLoop=0; iLoop<nLoop; iLoop++){ 3663 nTo = 0; 3664 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ 3665 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ 3666 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ 3667 LogEst rCost; /* Cost of path (pFrom+pWLoop) */ 3668 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ 3669 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */ 3670 Bitmask maskNew; /* Mask of src visited by (..) */ 3671 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */ 3672 3673 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; 3674 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; 3675 if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<10 ){ 3676 /* Do not use an automatic index if the this loop is expected 3677 ** to run less than 2 times. */ 3678 assert( 10==sqlite3LogEst(2) ); 3679 continue; 3680 } 3681 /* At this point, pWLoop is a candidate to be the next loop. 3682 ** Compute its cost */ 3683 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); 3684 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); 3685 nOut = pFrom->nRow + pWLoop->nOut; 3686 maskNew = pFrom->maskLoop | pWLoop->maskSelf; 3687 if( isOrdered<0 ){ 3688 isOrdered = wherePathSatisfiesOrderBy(pWInfo, 3689 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, 3690 iLoop, pWLoop, &revMask); 3691 }else{ 3692 revMask = pFrom->revLoop; 3693 } 3694 if( isOrdered>=0 && isOrdered<nOrderBy ){ 3695 if( aSortCost[isOrdered]==0 ){ 3696 aSortCost[isOrdered] = whereSortingCost( 3697 pWInfo, nRowEst, nOrderBy, isOrdered 3698 ); 3699 } 3700 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]); 3701 3702 WHERETRACE(0x002, 3703 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", 3704 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, 3705 rUnsorted, rCost)); 3706 }else{ 3707 rCost = rUnsorted; 3708 } 3709 3710 /* Check to see if pWLoop should be added to the set of 3711 ** mxChoice best-so-far paths. 3712 ** 3713 ** First look for an existing path among best-so-far paths 3714 ** that covers the same set of loops and has the same isOrdered 3715 ** setting as the current path candidate. 3716 ** 3717 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent 3718 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range 3719 ** of legal values for isOrdered, -1..64. 3720 */ 3721 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ 3722 if( pTo->maskLoop==maskNew 3723 && ((pTo->isOrdered^isOrdered)&0x80)==0 3724 ){ 3725 testcase( jj==nTo-1 ); 3726 break; 3727 } 3728 } 3729 if( jj>=nTo ){ 3730 /* None of the existing best-so-far paths match the candidate. */ 3731 if( nTo>=mxChoice 3732 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) 3733 ){ 3734 /* The current candidate is no better than any of the mxChoice 3735 ** paths currently in the best-so-far buffer. So discard 3736 ** this candidate as not viable. */ 3737 #ifdef WHERETRACE_ENABLED /* 0x4 */ 3738 if( sqlite3WhereTrace&0x4 ){ 3739 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d order=%c\n", 3740 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 3741 isOrdered>=0 ? isOrdered+'0' : '?'); 3742 } 3743 #endif 3744 continue; 3745 } 3746 /* If we reach this points it means that the new candidate path 3747 ** needs to be added to the set of best-so-far paths. */ 3748 if( nTo<mxChoice ){ 3749 /* Increase the size of the aTo set by one */ 3750 jj = nTo++; 3751 }else{ 3752 /* New path replaces the prior worst to keep count below mxChoice */ 3753 jj = mxI; 3754 } 3755 pTo = &aTo[jj]; 3756 #ifdef WHERETRACE_ENABLED /* 0x4 */ 3757 if( sqlite3WhereTrace&0x4 ){ 3758 sqlite3DebugPrintf("New %s cost=%-3d,%3d order=%c\n", 3759 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 3760 isOrdered>=0 ? isOrdered+'0' : '?'); 3761 } 3762 #endif 3763 }else{ 3764 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the 3765 ** same set of loops and has the sam isOrdered setting as the 3766 ** candidate path. Check to see if the candidate should replace 3767 ** pTo or if the candidate should be skipped */ 3768 if( pTo->rCost<rCost || (pTo->rCost==rCost && pTo->nRow<=nOut) ){ 3769 #ifdef WHERETRACE_ENABLED /* 0x4 */ 3770 if( sqlite3WhereTrace&0x4 ){ 3771 sqlite3DebugPrintf( 3772 "Skip %s cost=%-3d,%3d order=%c", 3773 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 3774 isOrdered>=0 ? isOrdered+'0' : '?'); 3775 sqlite3DebugPrintf(" vs %s cost=%-3d,%d order=%c\n", 3776 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 3777 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 3778 } 3779 #endif 3780 /* Discard the candidate path from further consideration */ 3781 testcase( pTo->rCost==rCost ); 3782 continue; 3783 } 3784 testcase( pTo->rCost==rCost+1 ); 3785 /* Control reaches here if the candidate path is better than the 3786 ** pTo path. Replace pTo with the candidate. */ 3787 #ifdef WHERETRACE_ENABLED /* 0x4 */ 3788 if( sqlite3WhereTrace&0x4 ){ 3789 sqlite3DebugPrintf( 3790 "Update %s cost=%-3d,%3d order=%c", 3791 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 3792 isOrdered>=0 ? isOrdered+'0' : '?'); 3793 sqlite3DebugPrintf(" was %s cost=%-3d,%3d order=%c\n", 3794 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 3795 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 3796 } 3797 #endif 3798 } 3799 /* pWLoop is a winner. Add it to the set of best so far */ 3800 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; 3801 pTo->revLoop = revMask; 3802 pTo->nRow = nOut; 3803 pTo->rCost = rCost; 3804 pTo->rUnsorted = rUnsorted; 3805 pTo->isOrdered = isOrdered; 3806 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); 3807 pTo->aLoop[iLoop] = pWLoop; 3808 if( nTo>=mxChoice ){ 3809 mxI = 0; 3810 mxCost = aTo[0].rCost; 3811 mxUnsorted = aTo[0].nRow; 3812 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ 3813 if( pTo->rCost>mxCost 3814 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) 3815 ){ 3816 mxCost = pTo->rCost; 3817 mxUnsorted = pTo->rUnsorted; 3818 mxI = jj; 3819 } 3820 } 3821 } 3822 } 3823 } 3824 3825 #ifdef WHERETRACE_ENABLED /* >=2 */ 3826 if( sqlite3WhereTrace & 0x02 ){ 3827 sqlite3DebugPrintf("---- after round %d ----\n", iLoop); 3828 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ 3829 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", 3830 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 3831 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); 3832 if( pTo->isOrdered>0 ){ 3833 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); 3834 }else{ 3835 sqlite3DebugPrintf("\n"); 3836 } 3837 } 3838 } 3839 #endif 3840 3841 /* Swap the roles of aFrom and aTo for the next generation */ 3842 pFrom = aTo; 3843 aTo = aFrom; 3844 aFrom = pFrom; 3845 nFrom = nTo; 3846 } 3847 3848 if( nFrom==0 ){ 3849 sqlite3ErrorMsg(pParse, "no query solution"); 3850 sqlite3DbFree(db, pSpace); 3851 return SQLITE_ERROR; 3852 } 3853 3854 /* Find the lowest cost path. pFrom will be left pointing to that path */ 3855 pFrom = aFrom; 3856 for(ii=1; ii<nFrom; ii++){ 3857 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; 3858 } 3859 assert( pWInfo->nLevel==nLoop ); 3860 /* Load the lowest cost path into pWInfo */ 3861 for(iLoop=0; iLoop<nLoop; iLoop++){ 3862 WhereLevel *pLevel = pWInfo->a + iLoop; 3863 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; 3864 pLevel->iFrom = pWLoop->iTab; 3865 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; 3866 } 3867 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 3868 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 3869 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP 3870 && nRowEst 3871 ){ 3872 Bitmask notUsed; 3873 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, 3874 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); 3875 if( rc==pWInfo->pResultSet->nExpr ){ 3876 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 3877 } 3878 } 3879 if( pWInfo->pOrderBy ){ 3880 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ 3881 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ 3882 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 3883 } 3884 }else{ 3885 pWInfo->nOBSat = pFrom->isOrdered; 3886 if( pWInfo->nOBSat<0 ) pWInfo->nOBSat = 0; 3887 pWInfo->revMask = pFrom->revLoop; 3888 } 3889 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) 3890 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 3891 ){ 3892 Bitmask revMask = 0; 3893 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, 3894 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask 3895 ); 3896 assert( pWInfo->sorted==0 ); 3897 if( nOrder==pWInfo->pOrderBy->nExpr ){ 3898 pWInfo->sorted = 1; 3899 pWInfo->revMask = revMask; 3900 } 3901 } 3902 } 3903 3904 3905 pWInfo->nRowOut = pFrom->nRow; 3906 3907 /* Free temporary memory and return success */ 3908 sqlite3DbFree(db, pSpace); 3909 return SQLITE_OK; 3910 } 3911 3912 /* 3913 ** Most queries use only a single table (they are not joins) and have 3914 ** simple == constraints against indexed fields. This routine attempts 3915 ** to plan those simple cases using much less ceremony than the 3916 ** general-purpose query planner, and thereby yield faster sqlite3_prepare() 3917 ** times for the common case. 3918 ** 3919 ** Return non-zero on success, if this query can be handled by this 3920 ** no-frills query planner. Return zero if this query needs the 3921 ** general-purpose query planner. 3922 */ 3923 static int whereShortCut(WhereLoopBuilder *pBuilder){ 3924 WhereInfo *pWInfo; 3925 struct SrcList_item *pItem; 3926 WhereClause *pWC; 3927 WhereTerm *pTerm; 3928 WhereLoop *pLoop; 3929 int iCur; 3930 int j; 3931 Table *pTab; 3932 Index *pIdx; 3933 3934 pWInfo = pBuilder->pWInfo; 3935 if( pWInfo->wctrlFlags & WHERE_FORCE_TABLE ) return 0; 3936 assert( pWInfo->pTabList->nSrc>=1 ); 3937 pItem = pWInfo->pTabList->a; 3938 pTab = pItem->pTab; 3939 if( IsVirtual(pTab) ) return 0; 3940 if( pItem->fg.isIndexedBy ) return 0; 3941 iCur = pItem->iCursor; 3942 pWC = &pWInfo->sWC; 3943 pLoop = pBuilder->pNew; 3944 pLoop->wsFlags = 0; 3945 pLoop->nSkip = 0; 3946 pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0); 3947 if( pTerm ){ 3948 testcase( pTerm->eOperator & WO_IS ); 3949 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; 3950 pLoop->aLTerm[0] = pTerm; 3951 pLoop->nLTerm = 1; 3952 pLoop->u.btree.nEq = 1; 3953 /* TUNING: Cost of a rowid lookup is 10 */ 3954 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ 3955 }else{ 3956 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3957 int opMask; 3958 assert( pLoop->aLTermSpace==pLoop->aLTerm ); 3959 if( !IsUniqueIndex(pIdx) 3960 || pIdx->pPartIdxWhere!=0 3961 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) 3962 ) continue; 3963 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; 3964 for(j=0; j<pIdx->nKeyCol; j++){ 3965 pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx); 3966 if( pTerm==0 ) break; 3967 testcase( pTerm->eOperator & WO_IS ); 3968 pLoop->aLTerm[j] = pTerm; 3969 } 3970 if( j!=pIdx->nKeyCol ) continue; 3971 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; 3972 if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){ 3973 pLoop->wsFlags |= WHERE_IDX_ONLY; 3974 } 3975 pLoop->nLTerm = j; 3976 pLoop->u.btree.nEq = j; 3977 pLoop->u.btree.pIndex = pIdx; 3978 /* TUNING: Cost of a unique index lookup is 15 */ 3979 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ 3980 break; 3981 } 3982 } 3983 if( pLoop->wsFlags ){ 3984 pLoop->nOut = (LogEst)1; 3985 pWInfo->a[0].pWLoop = pLoop; 3986 pLoop->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 3987 pWInfo->a[0].iTabCur = iCur; 3988 pWInfo->nRowOut = 1; 3989 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; 3990 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ 3991 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 3992 } 3993 #ifdef SQLITE_DEBUG 3994 pLoop->cId = '0'; 3995 #endif 3996 return 1; 3997 } 3998 return 0; 3999 } 4000 4001 /* 4002 ** Generate the beginning of the loop used for WHERE clause processing. 4003 ** The return value is a pointer to an opaque structure that contains 4004 ** information needed to terminate the loop. Later, the calling routine 4005 ** should invoke sqlite3WhereEnd() with the return value of this function 4006 ** in order to complete the WHERE clause processing. 4007 ** 4008 ** If an error occurs, this routine returns NULL. 4009 ** 4010 ** The basic idea is to do a nested loop, one loop for each table in 4011 ** the FROM clause of a select. (INSERT and UPDATE statements are the 4012 ** same as a SELECT with only a single table in the FROM clause.) For 4013 ** example, if the SQL is this: 4014 ** 4015 ** SELECT * FROM t1, t2, t3 WHERE ...; 4016 ** 4017 ** Then the code generated is conceptually like the following: 4018 ** 4019 ** foreach row1 in t1 do \ Code generated 4020 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 4021 ** foreach row3 in t3 do / 4022 ** ... 4023 ** end \ Code generated 4024 ** end |-- by sqlite3WhereEnd() 4025 ** end / 4026 ** 4027 ** Note that the loops might not be nested in the order in which they 4028 ** appear in the FROM clause if a different order is better able to make 4029 ** use of indices. Note also that when the IN operator appears in 4030 ** the WHERE clause, it might result in additional nested loops for 4031 ** scanning through all values on the right-hand side of the IN. 4032 ** 4033 ** There are Btree cursors associated with each table. t1 uses cursor 4034 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 4035 ** And so forth. This routine generates code to open those VDBE cursors 4036 ** and sqlite3WhereEnd() generates the code to close them. 4037 ** 4038 ** The code that sqlite3WhereBegin() generates leaves the cursors named 4039 ** in pTabList pointing at their appropriate entries. The [...] code 4040 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 4041 ** data from the various tables of the loop. 4042 ** 4043 ** If the WHERE clause is empty, the foreach loops must each scan their 4044 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 4045 ** the tables have indices and there are terms in the WHERE clause that 4046 ** refer to those indices, a complete table scan can be avoided and the 4047 ** code will run much faster. Most of the work of this routine is checking 4048 ** to see if there are indices that can be used to speed up the loop. 4049 ** 4050 ** Terms of the WHERE clause are also used to limit which rows actually 4051 ** make it to the "..." in the middle of the loop. After each "foreach", 4052 ** terms of the WHERE clause that use only terms in that loop and outer 4053 ** loops are evaluated and if false a jump is made around all subsequent 4054 ** inner loops (or around the "..." if the test occurs within the inner- 4055 ** most loop) 4056 ** 4057 ** OUTER JOINS 4058 ** 4059 ** An outer join of tables t1 and t2 is conceptally coded as follows: 4060 ** 4061 ** foreach row1 in t1 do 4062 ** flag = 0 4063 ** foreach row2 in t2 do 4064 ** start: 4065 ** ... 4066 ** flag = 1 4067 ** end 4068 ** if flag==0 then 4069 ** move the row2 cursor to a null row 4070 ** goto start 4071 ** fi 4072 ** end 4073 ** 4074 ** ORDER BY CLAUSE PROCESSING 4075 ** 4076 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause 4077 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement 4078 ** if there is one. If there is no ORDER BY clause or if this routine 4079 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. 4080 ** 4081 ** The iIdxCur parameter is the cursor number of an index. If 4082 ** WHERE_ONETABLE_ONLY is set, iIdxCur is the cursor number of an index 4083 ** to use for OR clause processing. The WHERE clause should use this 4084 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is 4085 ** the first cursor in an array of cursors for all indices. iIdxCur should 4086 ** be used to compute the appropriate cursor depending on which index is 4087 ** used. 4088 */ 4089 WhereInfo *sqlite3WhereBegin( 4090 Parse *pParse, /* The parser context */ 4091 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ 4092 Expr *pWhere, /* The WHERE clause */ 4093 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ 4094 ExprList *pResultSet, /* Result set of the query */ 4095 u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */ 4096 int iAuxArg /* If WHERE_ONETABLE_ONLY is set, index cursor number, 4097 ** If WHERE_USE_LIMIT, then the limit amount */ 4098 ){ 4099 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ 4100 int nTabList; /* Number of elements in pTabList */ 4101 WhereInfo *pWInfo; /* Will become the return value of this function */ 4102 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 4103 Bitmask notReady; /* Cursors that are not yet positioned */ 4104 WhereLoopBuilder sWLB; /* The WhereLoop builder */ 4105 WhereMaskSet *pMaskSet; /* The expression mask set */ 4106 WhereLevel *pLevel; /* A single level in pWInfo->a[] */ 4107 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ 4108 int ii; /* Loop counter */ 4109 sqlite3 *db; /* Database connection */ 4110 int rc; /* Return code */ 4111 u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */ 4112 4113 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || ( 4114 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 4115 && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 4116 )); 4117 4118 /* Only one of WHERE_ONETABLE_ONLY or WHERE_USE_LIMIT */ 4119 assert( (wctrlFlags & WHERE_ONETABLE_ONLY)==0 4120 || (wctrlFlags & WHERE_USE_LIMIT)==0 ); 4121 4122 /* Variable initialization */ 4123 db = pParse->db; 4124 memset(&sWLB, 0, sizeof(sWLB)); 4125 4126 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ 4127 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); 4128 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; 4129 sWLB.pOrderBy = pOrderBy; 4130 4131 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via 4132 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ 4133 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ 4134 wctrlFlags &= ~WHERE_WANT_DISTINCT; 4135 } 4136 4137 /* The number of tables in the FROM clause is limited by the number of 4138 ** bits in a Bitmask 4139 */ 4140 testcase( pTabList->nSrc==BMS ); 4141 if( pTabList->nSrc>BMS ){ 4142 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 4143 return 0; 4144 } 4145 4146 /* This function normally generates a nested loop for all tables in 4147 ** pTabList. But if the WHERE_ONETABLE_ONLY flag is set, then we should 4148 ** only generate code for the first table in pTabList and assume that 4149 ** any cursors associated with subsequent tables are uninitialized. 4150 */ 4151 nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc; 4152 4153 /* Allocate and initialize the WhereInfo structure that will become the 4154 ** return value. A single allocation is used to store the WhereInfo 4155 ** struct, the contents of WhereInfo.a[], the WhereClause structure 4156 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte 4157 ** field (type Bitmask) it must be aligned on an 8-byte boundary on 4158 ** some architectures. Hence the ROUND8() below. 4159 */ 4160 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); 4161 pWInfo = sqlite3DbMallocZero(db, nByteWInfo + sizeof(WhereLoop)); 4162 if( db->mallocFailed ){ 4163 sqlite3DbFree(db, pWInfo); 4164 pWInfo = 0; 4165 goto whereBeginError; 4166 } 4167 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; 4168 pWInfo->nLevel = nTabList; 4169 pWInfo->pParse = pParse; 4170 pWInfo->pTabList = pTabList; 4171 pWInfo->pOrderBy = pOrderBy; 4172 pWInfo->pResultSet = pResultSet; 4173 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v); 4174 pWInfo->wctrlFlags = wctrlFlags; 4175 pWInfo->iLimit = iAuxArg; 4176 pWInfo->savedNQueryLoop = pParse->nQueryLoop; 4177 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */ 4178 pMaskSet = &pWInfo->sMaskSet; 4179 sWLB.pWInfo = pWInfo; 4180 sWLB.pWC = &pWInfo->sWC; 4181 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); 4182 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); 4183 whereLoopInit(sWLB.pNew); 4184 #ifdef SQLITE_DEBUG 4185 sWLB.pNew->cId = '*'; 4186 #endif 4187 4188 /* Split the WHERE clause into separate subexpressions where each 4189 ** subexpression is separated by an AND operator. 4190 */ 4191 initMaskSet(pMaskSet); 4192 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); 4193 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); 4194 4195 /* Special case: a WHERE clause that is constant. Evaluate the 4196 ** expression and either jump over all of the code or fall thru. 4197 */ 4198 for(ii=0; ii<sWLB.pWC->nTerm; ii++){ 4199 if( nTabList==0 || sqlite3ExprIsConstantNotJoin(sWLB.pWC->a[ii].pExpr) ){ 4200 sqlite3ExprIfFalse(pParse, sWLB.pWC->a[ii].pExpr, pWInfo->iBreak, 4201 SQLITE_JUMPIFNULL); 4202 sWLB.pWC->a[ii].wtFlags |= TERM_CODED; 4203 } 4204 } 4205 4206 /* Special case: No FROM clause 4207 */ 4208 if( nTabList==0 ){ 4209 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; 4210 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4211 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4212 } 4213 } 4214 4215 /* Assign a bit from the bitmask to every term in the FROM clause. 4216 ** 4217 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. 4218 ** 4219 ** The rule of the previous sentence ensures thta if X is the bitmask for 4220 ** a table T, then X-1 is the bitmask for all other tables to the left of T. 4221 ** Knowing the bitmask for all tables to the left of a left join is 4222 ** important. Ticket #3015. 4223 ** 4224 ** Note that bitmasks are created for all pTabList->nSrc tables in 4225 ** pTabList, not just the first nTabList tables. nTabList is normally 4226 ** equal to pTabList->nSrc but might be shortened to 1 if the 4227 ** WHERE_ONETABLE_ONLY flag is set. 4228 */ 4229 for(ii=0; ii<pTabList->nSrc; ii++){ 4230 createMask(pMaskSet, pTabList->a[ii].iCursor); 4231 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC); 4232 } 4233 #ifdef SQLITE_DEBUG 4234 for(ii=0; ii<pTabList->nSrc; ii++){ 4235 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); 4236 assert( m==MASKBIT(ii) ); 4237 } 4238 #endif 4239 4240 /* Analyze all of the subexpressions. */ 4241 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); 4242 if( db->mallocFailed ) goto whereBeginError; 4243 4244 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4245 if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ 4246 /* The DISTINCT marking is pointless. Ignore it. */ 4247 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4248 }else if( pOrderBy==0 ){ 4249 /* Try to ORDER BY the result set to make distinct processing easier */ 4250 pWInfo->wctrlFlags |= WHERE_DISTINCTBY; 4251 pWInfo->pOrderBy = pResultSet; 4252 } 4253 } 4254 4255 /* Construct the WhereLoop objects */ 4256 #if defined(WHERETRACE_ENABLED) 4257 if( sqlite3WhereTrace & 0xffff ){ 4258 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags); 4259 if( wctrlFlags & WHERE_USE_LIMIT ){ 4260 sqlite3DebugPrintf(", limit: %d", iAuxArg); 4261 } 4262 sqlite3DebugPrintf(")\n"); 4263 } 4264 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 4265 int i; 4266 for(i=0; i<sWLB.pWC->nTerm; i++){ 4267 whereTermPrint(&sWLB.pWC->a[i], i); 4268 } 4269 } 4270 #endif 4271 4272 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ 4273 rc = whereLoopAddAll(&sWLB); 4274 if( rc ) goto whereBeginError; 4275 4276 #ifdef WHERETRACE_ENABLED 4277 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ 4278 WhereLoop *p; 4279 int i; 4280 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" 4281 "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; 4282 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ 4283 p->cId = zLabel[i%sizeof(zLabel)]; 4284 whereLoopPrint(p, sWLB.pWC); 4285 } 4286 } 4287 #endif 4288 4289 wherePathSolver(pWInfo, 0); 4290 if( db->mallocFailed ) goto whereBeginError; 4291 if( pWInfo->pOrderBy ){ 4292 wherePathSolver(pWInfo, pWInfo->nRowOut+1); 4293 if( db->mallocFailed ) goto whereBeginError; 4294 } 4295 } 4296 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ 4297 pWInfo->revMask = ALLBITS; 4298 } 4299 if( pParse->nErr || NEVER(db->mallocFailed) ){ 4300 goto whereBeginError; 4301 } 4302 #ifdef WHERETRACE_ENABLED 4303 if( sqlite3WhereTrace ){ 4304 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); 4305 if( pWInfo->nOBSat>0 ){ 4306 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); 4307 } 4308 switch( pWInfo->eDistinct ){ 4309 case WHERE_DISTINCT_UNIQUE: { 4310 sqlite3DebugPrintf(" DISTINCT=unique"); 4311 break; 4312 } 4313 case WHERE_DISTINCT_ORDERED: { 4314 sqlite3DebugPrintf(" DISTINCT=ordered"); 4315 break; 4316 } 4317 case WHERE_DISTINCT_UNORDERED: { 4318 sqlite3DebugPrintf(" DISTINCT=unordered"); 4319 break; 4320 } 4321 } 4322 sqlite3DebugPrintf("\n"); 4323 for(ii=0; ii<pWInfo->nLevel; ii++){ 4324 whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); 4325 } 4326 } 4327 #endif 4328 /* Attempt to omit tables from the join that do not effect the result */ 4329 if( pWInfo->nLevel>=2 4330 && pResultSet!=0 4331 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) 4332 ){ 4333 Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet); 4334 if( sWLB.pOrderBy ){ 4335 tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy); 4336 } 4337 while( pWInfo->nLevel>=2 ){ 4338 WhereTerm *pTerm, *pEnd; 4339 pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop; 4340 if( (pWInfo->pTabList->a[pLoop->iTab].fg.jointype & JT_LEFT)==0 ) break; 4341 if( (wctrlFlags & WHERE_WANT_DISTINCT)==0 4342 && (pLoop->wsFlags & WHERE_ONEROW)==0 4343 ){ 4344 break; 4345 } 4346 if( (tabUsed & pLoop->maskSelf)!=0 ) break; 4347 pEnd = sWLB.pWC->a + sWLB.pWC->nTerm; 4348 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ 4349 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 4350 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 4351 ){ 4352 break; 4353 } 4354 } 4355 if( pTerm<pEnd ) break; 4356 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); 4357 pWInfo->nLevel--; 4358 nTabList--; 4359 } 4360 } 4361 WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); 4362 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; 4363 4364 /* If the caller is an UPDATE or DELETE statement that is requesting 4365 ** to use a one-pass algorithm, determine if this is appropriate. 4366 */ 4367 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 4368 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){ 4369 int wsFlags = pWInfo->a[0].pWLoop->wsFlags; 4370 int bOnerow = (wsFlags & WHERE_ONEROW)!=0; 4371 if( bOnerow 4372 || ((wctrlFlags & WHERE_ONEPASS_MULTIROW)!=0 4373 && 0==(wsFlags & WHERE_VIRTUALTABLE)) 4374 ){ 4375 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; 4376 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){ 4377 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){ 4378 bFordelete = OPFLAG_FORDELETE; 4379 } 4380 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY); 4381 } 4382 } 4383 } 4384 4385 /* Open all tables in the pTabList and any indices selected for 4386 ** searching those tables. 4387 */ 4388 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ 4389 Table *pTab; /* Table to open */ 4390 int iDb; /* Index of database containing table/index */ 4391 struct SrcList_item *pTabItem; 4392 4393 pTabItem = &pTabList->a[pLevel->iFrom]; 4394 pTab = pTabItem->pTab; 4395 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4396 pLoop = pLevel->pWLoop; 4397 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){ 4398 /* Do nothing */ 4399 }else 4400 #ifndef SQLITE_OMIT_VIRTUALTABLE 4401 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 4402 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 4403 int iCur = pTabItem->iCursor; 4404 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); 4405 }else if( IsVirtual(pTab) ){ 4406 /* noop */ 4407 }else 4408 #endif 4409 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 4410 && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){ 4411 int op = OP_OpenRead; 4412 if( pWInfo->eOnePass!=ONEPASS_OFF ){ 4413 op = OP_OpenWrite; 4414 pWInfo->aiCurOnePass[0] = pTabItem->iCursor; 4415 }; 4416 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 4417 assert( pTabItem->iCursor==pLevel->iTabCur ); 4418 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 ); 4419 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS ); 4420 if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){ 4421 Bitmask b = pTabItem->colUsed; 4422 int n = 0; 4423 for(; b; b=b>>1, n++){} 4424 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32); 4425 assert( n<=pTab->nCol ); 4426 } 4427 #ifdef SQLITE_ENABLE_CURSOR_HINTS 4428 if( pLoop->u.btree.pIndex!=0 ){ 4429 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete); 4430 }else 4431 #endif 4432 { 4433 sqlite3VdbeChangeP5(v, bFordelete); 4434 } 4435 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4436 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, 4437 (const u8*)&pTabItem->colUsed, P4_INT64); 4438 #endif 4439 }else{ 4440 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 4441 } 4442 if( pLoop->wsFlags & WHERE_INDEXED ){ 4443 Index *pIx = pLoop->u.btree.pIndex; 4444 int iIndexCur; 4445 int op = OP_OpenRead; 4446 /* iAuxArg is always set if to a positive value if ONEPASS is possible */ 4447 assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); 4448 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) 4449 && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 4450 ){ 4451 /* This is one term of an OR-optimization using the PRIMARY KEY of a 4452 ** WITHOUT ROWID table. No need for a separate index */ 4453 iIndexCur = pLevel->iTabCur; 4454 op = 0; 4455 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){ 4456 Index *pJ = pTabItem->pTab->pIndex; 4457 iIndexCur = iAuxArg; 4458 assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); 4459 while( ALWAYS(pJ) && pJ!=pIx ){ 4460 iIndexCur++; 4461 pJ = pJ->pNext; 4462 } 4463 op = OP_OpenWrite; 4464 pWInfo->aiCurOnePass[1] = iIndexCur; 4465 }else if( iAuxArg && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ){ 4466 iIndexCur = iAuxArg; 4467 if( wctrlFlags & WHERE_REOPEN_IDX ) op = OP_ReopenIdx; 4468 }else{ 4469 iIndexCur = pParse->nTab++; 4470 } 4471 pLevel->iIdxCur = iIndexCur; 4472 assert( pIx->pSchema==pTab->pSchema ); 4473 assert( iIndexCur>=0 ); 4474 if( op ){ 4475 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); 4476 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 4477 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 4478 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 4479 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 4480 ){ 4481 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */ 4482 } 4483 VdbeComment((v, "%s", pIx->zName)); 4484 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4485 { 4486 u64 colUsed = 0; 4487 int ii, jj; 4488 for(ii=0; ii<pIx->nColumn; ii++){ 4489 jj = pIx->aiColumn[ii]; 4490 if( jj<0 ) continue; 4491 if( jj>63 ) jj = 63; 4492 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue; 4493 colUsed |= ((u64)1)<<(ii<63 ? ii : 63); 4494 } 4495 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, 4496 (u8*)&colUsed, P4_INT64); 4497 } 4498 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ 4499 } 4500 } 4501 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); 4502 } 4503 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 4504 if( db->mallocFailed ) goto whereBeginError; 4505 4506 /* Generate the code to do the search. Each iteration of the for 4507 ** loop below generates code for a single nested loop of the VM 4508 ** program. 4509 */ 4510 notReady = ~(Bitmask)0; 4511 for(ii=0; ii<nTabList; ii++){ 4512 int addrExplain; 4513 int wsFlags; 4514 pLevel = &pWInfo->a[ii]; 4515 wsFlags = pLevel->pWLoop->wsFlags; 4516 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 4517 if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 4518 constructAutomaticIndex(pParse, &pWInfo->sWC, 4519 &pTabList->a[pLevel->iFrom], notReady, pLevel); 4520 if( db->mallocFailed ) goto whereBeginError; 4521 } 4522 #endif 4523 addrExplain = sqlite3WhereExplainOneScan( 4524 pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags 4525 ); 4526 pLevel->addrBody = sqlite3VdbeCurrentAddr(v); 4527 notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady); 4528 pWInfo->iContinue = pLevel->addrCont; 4529 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_ONETABLE_ONLY)==0 ){ 4530 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); 4531 } 4532 } 4533 4534 /* Done. */ 4535 VdbeModuleComment((v, "Begin WHERE-core")); 4536 return pWInfo; 4537 4538 /* Jump here if malloc fails */ 4539 whereBeginError: 4540 if( pWInfo ){ 4541 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 4542 whereInfoFree(db, pWInfo); 4543 } 4544 return 0; 4545 } 4546 4547 /* 4548 ** Generate the end of the WHERE loop. See comments on 4549 ** sqlite3WhereBegin() for additional information. 4550 */ 4551 void sqlite3WhereEnd(WhereInfo *pWInfo){ 4552 Parse *pParse = pWInfo->pParse; 4553 Vdbe *v = pParse->pVdbe; 4554 int i; 4555 WhereLevel *pLevel; 4556 WhereLoop *pLoop; 4557 SrcList *pTabList = pWInfo->pTabList; 4558 sqlite3 *db = pParse->db; 4559 4560 /* Generate loop termination code. 4561 */ 4562 VdbeModuleComment((v, "End WHERE-core")); 4563 sqlite3ExprCacheClear(pParse); 4564 for(i=pWInfo->nLevel-1; i>=0; i--){ 4565 int addr; 4566 pLevel = &pWInfo->a[i]; 4567 pLoop = pLevel->pWLoop; 4568 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 4569 if( pLevel->op!=OP_Noop ){ 4570 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); 4571 sqlite3VdbeChangeP5(v, pLevel->p5); 4572 VdbeCoverage(v); 4573 VdbeCoverageIf(v, pLevel->op==OP_Next); 4574 VdbeCoverageIf(v, pLevel->op==OP_Prev); 4575 VdbeCoverageIf(v, pLevel->op==OP_VNext); 4576 } 4577 if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ 4578 struct InLoop *pIn; 4579 int j; 4580 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 4581 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 4582 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 4583 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); 4584 VdbeCoverage(v); 4585 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen); 4586 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen); 4587 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 4588 } 4589 } 4590 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 4591 if( pLevel->addrSkip ){ 4592 sqlite3VdbeGoto(v, pLevel->addrSkip); 4593 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); 4594 sqlite3VdbeJumpHere(v, pLevel->addrSkip); 4595 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); 4596 } 4597 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 4598 if( pLevel->addrLikeRep ){ 4599 int op; 4600 if( sqlite3VdbeGetOp(v, pLevel->addrLikeRep-1)->p1 ){ 4601 op = OP_DecrJumpZero; 4602 }else{ 4603 op = OP_JumpZeroIncr; 4604 } 4605 sqlite3VdbeAddOp2(v, op, pLevel->iLikeRepCntr, pLevel->addrLikeRep); 4606 VdbeCoverage(v); 4607 } 4608 #endif 4609 if( pLevel->iLeftJoin ){ 4610 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); 4611 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 4612 || (pLoop->wsFlags & WHERE_INDEXED)!=0 ); 4613 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){ 4614 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); 4615 } 4616 if( pLoop->wsFlags & WHERE_INDEXED ){ 4617 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 4618 } 4619 if( pLevel->op==OP_Return ){ 4620 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); 4621 }else{ 4622 sqlite3VdbeGoto(v, pLevel->addrFirst); 4623 } 4624 sqlite3VdbeJumpHere(v, addr); 4625 } 4626 VdbeModuleComment((v, "End WHERE-loop%d: %s", i, 4627 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); 4628 } 4629 4630 /* The "break" point is here, just past the end of the outer loop. 4631 ** Set it. 4632 */ 4633 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 4634 4635 assert( pWInfo->nLevel<=pTabList->nSrc ); 4636 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ 4637 int k, last; 4638 VdbeOp *pOp; 4639 Index *pIdx = 0; 4640 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 4641 Table *pTab = pTabItem->pTab; 4642 assert( pTab!=0 ); 4643 pLoop = pLevel->pWLoop; 4644 4645 /* For a co-routine, change all OP_Column references to the table of 4646 ** the co-routine into OP_Copy of result contained in a register. 4647 ** OP_Rowid becomes OP_Null. 4648 */ 4649 if( pTabItem->fg.viaCoroutine && !db->mallocFailed ){ 4650 translateColumnToCopy(v, pLevel->addrBody, pLevel->iTabCur, 4651 pTabItem->regResult, 0); 4652 continue; 4653 } 4654 4655 /* Close all of the cursors that were opened by sqlite3WhereBegin. 4656 ** Except, do not close cursors that will be reused by the OR optimization 4657 ** (WHERE_OMIT_OPEN_CLOSE). And do not close the OP_OpenWrite cursors 4658 ** created for the ONEPASS optimization. 4659 */ 4660 if( (pTab->tabFlags & TF_Ephemeral)==0 4661 && pTab->pSelect==0 4662 && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 4663 ){ 4664 int ws = pLoop->wsFlags; 4665 if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){ 4666 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); 4667 } 4668 if( (ws & WHERE_INDEXED)!=0 4669 && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0 4670 && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1] 4671 ){ 4672 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); 4673 } 4674 } 4675 4676 /* If this scan uses an index, make VDBE code substitutions to read data 4677 ** from the index instead of from the table where possible. In some cases 4678 ** this optimization prevents the table from ever being read, which can 4679 ** yield a significant performance boost. 4680 ** 4681 ** Calls to the code generator in between sqlite3WhereBegin and 4682 ** sqlite3WhereEnd will have created code that references the table 4683 ** directly. This loop scans all that code looking for opcodes 4684 ** that reference the table and converts them into opcodes that 4685 ** reference the index. 4686 */ 4687 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ 4688 pIdx = pLoop->u.btree.pIndex; 4689 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ 4690 pIdx = pLevel->u.pCovidx; 4691 } 4692 if( pIdx 4693 && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable)) 4694 && !db->mallocFailed 4695 ){ 4696 last = sqlite3VdbeCurrentAddr(v); 4697 k = pLevel->addrBody; 4698 pOp = sqlite3VdbeGetOp(v, k); 4699 for(; k<last; k++, pOp++){ 4700 if( pOp->p1!=pLevel->iTabCur ) continue; 4701 if( pOp->opcode==OP_Column ){ 4702 int x = pOp->p2; 4703 assert( pIdx->pTable==pTab ); 4704 if( !HasRowid(pTab) ){ 4705 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 4706 x = pPk->aiColumn[x]; 4707 assert( x>=0 ); 4708 } 4709 x = sqlite3ColumnOfIndex(pIdx, x); 4710 if( x>=0 ){ 4711 pOp->p2 = x; 4712 pOp->p1 = pLevel->iIdxCur; 4713 } 4714 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 ); 4715 }else if( pOp->opcode==OP_Rowid ){ 4716 pOp->p1 = pLevel->iIdxCur; 4717 pOp->opcode = OP_IdxRowid; 4718 } 4719 } 4720 } 4721 } 4722 4723 /* Final cleanup 4724 */ 4725 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 4726 whereInfoFree(db, pWInfo); 4727 return; 4728 } 4729