xref: /sqlite-3.40.0/src/where.c (revision 8f2c0b59)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /*
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly.  The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
26 **
27 ** This object is not an API and can be changed from one release to the
28 ** next.  As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
30 */
31 typedef struct HiddenIndexInfo HiddenIndexInfo;
32 struct HiddenIndexInfo {
33   WhereClause *pWC;        /* The Where clause being analyzed */
34   Parse *pParse;           /* The parsing context */
35   int eDistinct;           /* Value to return from sqlite3_vtab_distinct() */
36   sqlite3_value *aRhs[1];  /* RHS values for constraints. MUST BE LAST
37                            ** because extra space is allocated to hold up
38                            ** to nTerm such values */
39 };
40 
41 /* Forward declaration of methods */
42 static int whereLoopResize(sqlite3*, WhereLoop*, int);
43 
44 /*
45 ** Return the estimated number of output rows from a WHERE clause
46 */
47 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
48   return pWInfo->nRowOut;
49 }
50 
51 /*
52 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
53 ** WHERE clause returns outputs for DISTINCT processing.
54 */
55 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
56   return pWInfo->eDistinct;
57 }
58 
59 /*
60 ** Return the number of ORDER BY terms that are satisfied by the
61 ** WHERE clause.  A return of 0 means that the output must be
62 ** completely sorted.  A return equal to the number of ORDER BY
63 ** terms means that no sorting is needed at all.  A return that
64 ** is positive but less than the number of ORDER BY terms means that
65 ** block sorting is required.
66 */
67 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
68   return pWInfo->nOBSat;
69 }
70 
71 /*
72 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known
73 ** to emit rows in increasing order, and if the last row emitted by the
74 ** inner-most loop did not fit within the sorter, then we can skip all
75 ** subsequent rows for the current iteration of the inner loop (because they
76 ** will not fit in the sorter either) and continue with the second inner
77 ** loop - the loop immediately outside the inner-most.
78 **
79 ** When a row does not fit in the sorter (because the sorter already
80 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
81 ** label returned by this function.
82 **
83 ** If the ORDER BY LIMIT optimization applies, the jump destination should
84 ** be the continuation for the second-inner-most loop.  If the ORDER BY
85 ** LIMIT optimization does not apply, then the jump destination should
86 ** be the continuation for the inner-most loop.
87 **
88 ** It is always safe for this routine to return the continuation of the
89 ** inner-most loop, in the sense that a correct answer will result.
90 ** Returning the continuation the second inner loop is an optimization
91 ** that might make the code run a little faster, but should not change
92 ** the final answer.
93 */
94 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){
95   WhereLevel *pInner;
96   if( !pWInfo->bOrderedInnerLoop ){
97     /* The ORDER BY LIMIT optimization does not apply.  Jump to the
98     ** continuation of the inner-most loop. */
99     return pWInfo->iContinue;
100   }
101   pInner = &pWInfo->a[pWInfo->nLevel-1];
102   assert( pInner->addrNxt!=0 );
103   return pInner->addrNxt;
104 }
105 
106 /*
107 ** While generating code for the min/max optimization, after handling
108 ** the aggregate-step call to min() or max(), check to see if any
109 ** additional looping is required.  If the output order is such that
110 ** we are certain that the correct answer has already been found, then
111 ** code an OP_Goto to by pass subsequent processing.
112 **
113 ** Any extra OP_Goto that is coded here is an optimization.  The
114 ** correct answer should be obtained regardless.  This OP_Goto just
115 ** makes the answer appear faster.
116 */
117 void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){
118   WhereLevel *pInner;
119   int i;
120   if( !pWInfo->bOrderedInnerLoop ) return;
121   if( pWInfo->nOBSat==0 ) return;
122   for(i=pWInfo->nLevel-1; i>=0; i--){
123     pInner = &pWInfo->a[i];
124     if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){
125       sqlite3VdbeGoto(v, pInner->addrNxt);
126       return;
127     }
128   }
129   sqlite3VdbeGoto(v, pWInfo->iBreak);
130 }
131 
132 /*
133 ** Return the VDBE address or label to jump to in order to continue
134 ** immediately with the next row of a WHERE clause.
135 */
136 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
137   assert( pWInfo->iContinue!=0 );
138   return pWInfo->iContinue;
139 }
140 
141 /*
142 ** Return the VDBE address or label to jump to in order to break
143 ** out of a WHERE loop.
144 */
145 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
146   return pWInfo->iBreak;
147 }
148 
149 /*
150 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
151 ** operate directly on the rowids returned by a WHERE clause.  Return
152 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
153 ** a single row is to be changed.  Return ONEPASS_MULTI (2) if the one-pass
154 ** optimization can be used on multiple
155 **
156 ** If the ONEPASS optimization is used (if this routine returns true)
157 ** then also write the indices of open cursors used by ONEPASS
158 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
159 ** table and iaCur[1] gets the cursor used by an auxiliary index.
160 ** Either value may be -1, indicating that cursor is not used.
161 ** Any cursors returned will have been opened for writing.
162 **
163 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
164 ** unable to use the ONEPASS optimization.
165 */
166 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
167   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
168 #ifdef WHERETRACE_ENABLED
169   if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
170     sqlite3DebugPrintf("%s cursors: %d %d\n",
171          pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
172          aiCur[0], aiCur[1]);
173   }
174 #endif
175   return pWInfo->eOnePass;
176 }
177 
178 /*
179 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move
180 ** the data cursor to the row selected by the index cursor.
181 */
182 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){
183   return pWInfo->bDeferredSeek;
184 }
185 
186 /*
187 ** Move the content of pSrc into pDest
188 */
189 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
190   pDest->n = pSrc->n;
191   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
192 }
193 
194 /*
195 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
196 **
197 ** The new entry might overwrite an existing entry, or it might be
198 ** appended, or it might be discarded.  Do whatever is the right thing
199 ** so that pSet keeps the N_OR_COST best entries seen so far.
200 */
201 static int whereOrInsert(
202   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
203   Bitmask prereq,        /* Prerequisites of the new entry */
204   LogEst rRun,           /* Run-cost of the new entry */
205   LogEst nOut            /* Number of outputs for the new entry */
206 ){
207   u16 i;
208   WhereOrCost *p;
209   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
210     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
211       goto whereOrInsert_done;
212     }
213     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
214       return 0;
215     }
216   }
217   if( pSet->n<N_OR_COST ){
218     p = &pSet->a[pSet->n++];
219     p->nOut = nOut;
220   }else{
221     p = pSet->a;
222     for(i=1; i<pSet->n; i++){
223       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
224     }
225     if( p->rRun<=rRun ) return 0;
226   }
227 whereOrInsert_done:
228   p->prereq = prereq;
229   p->rRun = rRun;
230   if( p->nOut>nOut ) p->nOut = nOut;
231   return 1;
232 }
233 
234 /*
235 ** Return the bitmask for the given cursor number.  Return 0 if
236 ** iCursor is not in the set.
237 */
238 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
239   int i;
240   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
241   assert( pMaskSet->n>0 || pMaskSet->ix[0]<0 );
242   assert( iCursor>=-1 );
243   if( pMaskSet->ix[0]==iCursor ){
244     return 1;
245   }
246   for(i=1; i<pMaskSet->n; i++){
247     if( pMaskSet->ix[i]==iCursor ){
248       return MASKBIT(i);
249     }
250   }
251   return 0;
252 }
253 
254 /*
255 ** Create a new mask for cursor iCursor.
256 **
257 ** There is one cursor per table in the FROM clause.  The number of
258 ** tables in the FROM clause is limited by a test early in the
259 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
260 ** array will never overflow.
261 */
262 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
263   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
264   pMaskSet->ix[pMaskSet->n++] = iCursor;
265 }
266 
267 /*
268 ** If the right-hand branch of the expression is a TK_COLUMN, then return
269 ** a pointer to the right-hand branch.  Otherwise, return NULL.
270 */
271 static Expr *whereRightSubexprIsColumn(Expr *p){
272   p = sqlite3ExprSkipCollateAndLikely(p->pRight);
273   if( ALWAYS(p!=0) && p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){
274     return p;
275   }
276   return 0;
277 }
278 
279 /*
280 ** Advance to the next WhereTerm that matches according to the criteria
281 ** established when the pScan object was initialized by whereScanInit().
282 ** Return NULL if there are no more matching WhereTerms.
283 */
284 static WhereTerm *whereScanNext(WhereScan *pScan){
285   int iCur;            /* The cursor on the LHS of the term */
286   i16 iColumn;         /* The column on the LHS of the term.  -1 for IPK */
287   Expr *pX;            /* An expression being tested */
288   WhereClause *pWC;    /* Shorthand for pScan->pWC */
289   WhereTerm *pTerm;    /* The term being tested */
290   int k = pScan->k;    /* Where to start scanning */
291 
292   assert( pScan->iEquiv<=pScan->nEquiv );
293   pWC = pScan->pWC;
294   while(1){
295     iColumn = pScan->aiColumn[pScan->iEquiv-1];
296     iCur = pScan->aiCur[pScan->iEquiv-1];
297     assert( pWC!=0 );
298     assert( iCur>=0 );
299     do{
300       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
301         assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 || pTerm->leftCursor<0 );
302         if( pTerm->leftCursor==iCur
303          && pTerm->u.x.leftColumn==iColumn
304          && (iColumn!=XN_EXPR
305              || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
306                                        pScan->pIdxExpr,iCur)==0)
307          && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
308         ){
309           if( (pTerm->eOperator & WO_EQUIV)!=0
310            && pScan->nEquiv<ArraySize(pScan->aiCur)
311            && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0
312           ){
313             int j;
314             for(j=0; j<pScan->nEquiv; j++){
315               if( pScan->aiCur[j]==pX->iTable
316                && pScan->aiColumn[j]==pX->iColumn ){
317                   break;
318               }
319             }
320             if( j==pScan->nEquiv ){
321               pScan->aiCur[j] = pX->iTable;
322               pScan->aiColumn[j] = pX->iColumn;
323               pScan->nEquiv++;
324             }
325           }
326           if( (pTerm->eOperator & pScan->opMask)!=0 ){
327             /* Verify the affinity and collating sequence match */
328             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
329               CollSeq *pColl;
330               Parse *pParse = pWC->pWInfo->pParse;
331               pX = pTerm->pExpr;
332               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
333                 continue;
334               }
335               assert(pX->pLeft);
336               pColl = sqlite3ExprCompareCollSeq(pParse, pX);
337               if( pColl==0 ) pColl = pParse->db->pDfltColl;
338               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
339                 continue;
340               }
341             }
342             if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
343              && (pX = pTerm->pExpr->pRight, ALWAYS(pX!=0))
344              && pX->op==TK_COLUMN
345              && pX->iTable==pScan->aiCur[0]
346              && pX->iColumn==pScan->aiColumn[0]
347             ){
348               testcase( pTerm->eOperator & WO_IS );
349               continue;
350             }
351             pScan->pWC = pWC;
352             pScan->k = k+1;
353 #ifdef WHERETRACE_ENABLED
354             if( sqlite3WhereTrace & 0x20000 ){
355               int ii;
356               sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d",
357                  pTerm, pScan->nEquiv);
358               for(ii=0; ii<pScan->nEquiv; ii++){
359                 sqlite3DebugPrintf(" {%d:%d}",
360                    pScan->aiCur[ii], pScan->aiColumn[ii]);
361               }
362               sqlite3DebugPrintf("\n");
363             }
364 #endif
365             return pTerm;
366           }
367         }
368       }
369       pWC = pWC->pOuter;
370       k = 0;
371     }while( pWC!=0 );
372     if( pScan->iEquiv>=pScan->nEquiv ) break;
373     pWC = pScan->pOrigWC;
374     k = 0;
375     pScan->iEquiv++;
376   }
377   return 0;
378 }
379 
380 /*
381 ** This is whereScanInit() for the case of an index on an expression.
382 ** It is factored out into a separate tail-recursion subroutine so that
383 ** the normal whereScanInit() routine, which is a high-runner, does not
384 ** need to push registers onto the stack as part of its prologue.
385 */
386 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){
387   pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr);
388   return whereScanNext(pScan);
389 }
390 
391 /*
392 ** Initialize a WHERE clause scanner object.  Return a pointer to the
393 ** first match.  Return NULL if there are no matches.
394 **
395 ** The scanner will be searching the WHERE clause pWC.  It will look
396 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
397 ** iCur.   Or if pIdx!=0 then X is column iColumn of index pIdx.  pIdx
398 ** must be one of the indexes of table iCur.
399 **
400 ** The <op> must be one of the operators described by opMask.
401 **
402 ** If the search is for X and the WHERE clause contains terms of the
403 ** form X=Y then this routine might also return terms of the form
404 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
405 ** but is enough to handle most commonly occurring SQL statements.
406 **
407 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
408 ** index pIdx.
409 */
410 static WhereTerm *whereScanInit(
411   WhereScan *pScan,       /* The WhereScan object being initialized */
412   WhereClause *pWC,       /* The WHERE clause to be scanned */
413   int iCur,               /* Cursor to scan for */
414   int iColumn,            /* Column to scan for */
415   u32 opMask,             /* Operator(s) to scan for */
416   Index *pIdx             /* Must be compatible with this index */
417 ){
418   pScan->pOrigWC = pWC;
419   pScan->pWC = pWC;
420   pScan->pIdxExpr = 0;
421   pScan->idxaff = 0;
422   pScan->zCollName = 0;
423   pScan->opMask = opMask;
424   pScan->k = 0;
425   pScan->aiCur[0] = iCur;
426   pScan->nEquiv = 1;
427   pScan->iEquiv = 1;
428   if( pIdx ){
429     int j = iColumn;
430     iColumn = pIdx->aiColumn[j];
431     if( iColumn==pIdx->pTable->iPKey ){
432       iColumn = XN_ROWID;
433     }else if( iColumn>=0 ){
434       pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
435       pScan->zCollName = pIdx->azColl[j];
436     }else if( iColumn==XN_EXPR ){
437       pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
438       pScan->zCollName = pIdx->azColl[j];
439       pScan->aiColumn[0] = XN_EXPR;
440       return whereScanInitIndexExpr(pScan);
441     }
442   }else if( iColumn==XN_EXPR ){
443     return 0;
444   }
445   pScan->aiColumn[0] = iColumn;
446   return whereScanNext(pScan);
447 }
448 
449 /*
450 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
451 ** where X is a reference to the iColumn of table iCur or of index pIdx
452 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
453 ** the op parameter.  Return a pointer to the term.  Return 0 if not found.
454 **
455 ** If pIdx!=0 then it must be one of the indexes of table iCur.
456 ** Search for terms matching the iColumn-th column of pIdx
457 ** rather than the iColumn-th column of table iCur.
458 **
459 ** The term returned might by Y=<expr> if there is another constraint in
460 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
461 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
462 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
463 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
464 ** other equivalent values.  Hence a search for X will return <expr> if X=A1
465 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
466 **
467 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
468 ** then try for the one with no dependencies on <expr> - in other words where
469 ** <expr> is a constant expression of some kind.  Only return entries of
470 ** the form "X <op> Y" where Y is a column in another table if no terms of
471 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
472 ** exist, try to return a term that does not use WO_EQUIV.
473 */
474 WhereTerm *sqlite3WhereFindTerm(
475   WhereClause *pWC,     /* The WHERE clause to be searched */
476   int iCur,             /* Cursor number of LHS */
477   int iColumn,          /* Column number of LHS */
478   Bitmask notReady,     /* RHS must not overlap with this mask */
479   u32 op,               /* Mask of WO_xx values describing operator */
480   Index *pIdx           /* Must be compatible with this index, if not NULL */
481 ){
482   WhereTerm *pResult = 0;
483   WhereTerm *p;
484   WhereScan scan;
485 
486   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
487   op &= WO_EQ|WO_IS;
488   while( p ){
489     if( (p->prereqRight & notReady)==0 ){
490       if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
491         testcase( p->eOperator & WO_IS );
492         return p;
493       }
494       if( pResult==0 ) pResult = p;
495     }
496     p = whereScanNext(&scan);
497   }
498   return pResult;
499 }
500 
501 /*
502 ** This function searches pList for an entry that matches the iCol-th column
503 ** of index pIdx.
504 **
505 ** If such an expression is found, its index in pList->a[] is returned. If
506 ** no expression is found, -1 is returned.
507 */
508 static int findIndexCol(
509   Parse *pParse,                  /* Parse context */
510   ExprList *pList,                /* Expression list to search */
511   int iBase,                      /* Cursor for table associated with pIdx */
512   Index *pIdx,                    /* Index to match column of */
513   int iCol                        /* Column of index to match */
514 ){
515   int i;
516   const char *zColl = pIdx->azColl[iCol];
517 
518   for(i=0; i<pList->nExpr; i++){
519     Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr);
520     if( ALWAYS(p!=0)
521      && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN)
522      && p->iColumn==pIdx->aiColumn[iCol]
523      && p->iTable==iBase
524     ){
525       CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
526       if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
527         return i;
528       }
529     }
530   }
531 
532   return -1;
533 }
534 
535 /*
536 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
537 */
538 static int indexColumnNotNull(Index *pIdx, int iCol){
539   int j;
540   assert( pIdx!=0 );
541   assert( iCol>=0 && iCol<pIdx->nColumn );
542   j = pIdx->aiColumn[iCol];
543   if( j>=0 ){
544     return pIdx->pTable->aCol[j].notNull;
545   }else if( j==(-1) ){
546     return 1;
547   }else{
548     assert( j==(-2) );
549     return 0;  /* Assume an indexed expression can always yield a NULL */
550 
551   }
552 }
553 
554 /*
555 ** Return true if the DISTINCT expression-list passed as the third argument
556 ** is redundant.
557 **
558 ** A DISTINCT list is redundant if any subset of the columns in the
559 ** DISTINCT list are collectively unique and individually non-null.
560 */
561 static int isDistinctRedundant(
562   Parse *pParse,            /* Parsing context */
563   SrcList *pTabList,        /* The FROM clause */
564   WhereClause *pWC,         /* The WHERE clause */
565   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
566 ){
567   Table *pTab;
568   Index *pIdx;
569   int i;
570   int iBase;
571 
572   /* If there is more than one table or sub-select in the FROM clause of
573   ** this query, then it will not be possible to show that the DISTINCT
574   ** clause is redundant. */
575   if( pTabList->nSrc!=1 ) return 0;
576   iBase = pTabList->a[0].iCursor;
577   pTab = pTabList->a[0].pTab;
578 
579   /* If any of the expressions is an IPK column on table iBase, then return
580   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
581   ** current SELECT is a correlated sub-query.
582   */
583   for(i=0; i<pDistinct->nExpr; i++){
584     Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr);
585     if( NEVER(p==0) ) continue;
586     if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue;
587     if( p->iTable==iBase && p->iColumn<0 ) return 1;
588   }
589 
590   /* Loop through all indices on the table, checking each to see if it makes
591   ** the DISTINCT qualifier redundant. It does so if:
592   **
593   **   1. The index is itself UNIQUE, and
594   **
595   **   2. All of the columns in the index are either part of the pDistinct
596   **      list, or else the WHERE clause contains a term of the form "col=X",
597   **      where X is a constant value. The collation sequences of the
598   **      comparison and select-list expressions must match those of the index.
599   **
600   **   3. All of those index columns for which the WHERE clause does not
601   **      contain a "col=X" term are subject to a NOT NULL constraint.
602   */
603   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
604     if( !IsUniqueIndex(pIdx) ) continue;
605     if( pIdx->pPartIdxWhere ) continue;
606     for(i=0; i<pIdx->nKeyCol; i++){
607       if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
608         if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
609         if( indexColumnNotNull(pIdx, i)==0 ) break;
610       }
611     }
612     if( i==pIdx->nKeyCol ){
613       /* This index implies that the DISTINCT qualifier is redundant. */
614       return 1;
615     }
616   }
617 
618   return 0;
619 }
620 
621 
622 /*
623 ** Estimate the logarithm of the input value to base 2.
624 */
625 static LogEst estLog(LogEst N){
626   return N<=10 ? 0 : sqlite3LogEst(N) - 33;
627 }
628 
629 /*
630 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
631 **
632 ** This routine runs over generated VDBE code and translates OP_Column
633 ** opcodes into OP_Copy when the table is being accessed via co-routine
634 ** instead of via table lookup.
635 **
636 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
637 ** cursor iTabCur are transformed into OP_Sequence opcode for the
638 ** iAutoidxCur cursor, in order to generate unique rowids for the
639 ** automatic index being generated.
640 */
641 static void translateColumnToCopy(
642   Parse *pParse,      /* Parsing context */
643   int iStart,         /* Translate from this opcode to the end */
644   int iTabCur,        /* OP_Column/OP_Rowid references to this table */
645   int iRegister,      /* The first column is in this register */
646   int iAutoidxCur     /* If non-zero, cursor of autoindex being generated */
647 ){
648   Vdbe *v = pParse->pVdbe;
649   VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
650   int iEnd = sqlite3VdbeCurrentAddr(v);
651   if( pParse->db->mallocFailed ) return;
652   for(; iStart<iEnd; iStart++, pOp++){
653     if( pOp->p1!=iTabCur ) continue;
654     if( pOp->opcode==OP_Column ){
655       pOp->opcode = OP_Copy;
656       pOp->p1 = pOp->p2 + iRegister;
657       pOp->p2 = pOp->p3;
658       pOp->p3 = 0;
659     }else if( pOp->opcode==OP_Rowid ){
660       pOp->opcode = OP_Sequence;
661       pOp->p1 = iAutoidxCur;
662 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
663       if( iAutoidxCur==0 ){
664         pOp->opcode = OP_Null;
665         pOp->p3 = 0;
666       }
667 #endif
668     }
669   }
670 }
671 
672 /*
673 ** Two routines for printing the content of an sqlite3_index_info
674 ** structure.  Used for testing and debugging only.  If neither
675 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
676 ** are no-ops.
677 */
678 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
679 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){
680   int i;
681   if( !sqlite3WhereTrace ) return;
682   for(i=0; i<p->nConstraint; i++){
683     sqlite3DebugPrintf(
684        "  constraint[%d]: col=%d termid=%d op=%d usabled=%d collseq=%s\n",
685        i,
686        p->aConstraint[i].iColumn,
687        p->aConstraint[i].iTermOffset,
688        p->aConstraint[i].op,
689        p->aConstraint[i].usable,
690        sqlite3_vtab_collation(p,i));
691   }
692   for(i=0; i<p->nOrderBy; i++){
693     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
694        i,
695        p->aOrderBy[i].iColumn,
696        p->aOrderBy[i].desc);
697   }
698 }
699 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){
700   int i;
701   if( !sqlite3WhereTrace ) return;
702   for(i=0; i<p->nConstraint; i++){
703     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
704        i,
705        p->aConstraintUsage[i].argvIndex,
706        p->aConstraintUsage[i].omit);
707   }
708   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
709   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
710   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
711   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
712   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
713 }
714 #else
715 #define whereTraceIndexInfoInputs(A)
716 #define whereTraceIndexInfoOutputs(A)
717 #endif
718 
719 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
720 /*
721 ** Return TRUE if the WHERE clause term pTerm is of a form where it
722 ** could be used with an index to access pSrc, assuming an appropriate
723 ** index existed.
724 */
725 static int termCanDriveIndex(
726   const WhereTerm *pTerm,        /* WHERE clause term to check */
727   const SrcItem *pSrc,           /* Table we are trying to access */
728   const Bitmask notReady         /* Tables in outer loops of the join */
729 ){
730   char aff;
731   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
732   if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
733   if( (pSrc->fg.jointype & JT_LEFT)
734    && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
735    && (pTerm->eOperator & WO_IS)
736   ){
737     /* Cannot use an IS term from the WHERE clause as an index driver for
738     ** the RHS of a LEFT JOIN. Such a term can only be used if it is from
739     ** the ON clause.  */
740     return 0;
741   }
742   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
743   assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
744   if( pTerm->u.x.leftColumn<0 ) return 0;
745   aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity;
746   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
747   testcase( pTerm->pExpr->op==TK_IS );
748   return 1;
749 }
750 #endif
751 
752 
753 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
754 /*
755 ** Generate code to construct the Index object for an automatic index
756 ** and to set up the WhereLevel object pLevel so that the code generator
757 ** makes use of the automatic index.
758 */
759 static SQLITE_NOINLINE void constructAutomaticIndex(
760   Parse *pParse,              /* The parsing context */
761   const WhereClause *pWC,     /* The WHERE clause */
762   const SrcItem *pSrc,        /* The FROM clause term to get the next index */
763   const Bitmask notReady,     /* Mask of cursors that are not available */
764   WhereLevel *pLevel          /* Write new index here */
765 ){
766   int nKeyCol;                /* Number of columns in the constructed index */
767   WhereTerm *pTerm;           /* A single term of the WHERE clause */
768   WhereTerm *pWCEnd;          /* End of pWC->a[] */
769   Index *pIdx;                /* Object describing the transient index */
770   Vdbe *v;                    /* Prepared statement under construction */
771   int addrInit;               /* Address of the initialization bypass jump */
772   Table *pTable;              /* The table being indexed */
773   int addrTop;                /* Top of the index fill loop */
774   int regRecord;              /* Register holding an index record */
775   int n;                      /* Column counter */
776   int i;                      /* Loop counter */
777   int mxBitCol;               /* Maximum column in pSrc->colUsed */
778   CollSeq *pColl;             /* Collating sequence to on a column */
779   WhereLoop *pLoop;           /* The Loop object */
780   char *zNotUsed;             /* Extra space on the end of pIdx */
781   Bitmask idxCols;            /* Bitmap of columns used for indexing */
782   Bitmask extraCols;          /* Bitmap of additional columns */
783   u8 sentWarning = 0;         /* True if a warnning has been issued */
784   Expr *pPartial = 0;         /* Partial Index Expression */
785   int iContinue = 0;          /* Jump here to skip excluded rows */
786   SrcItem *pTabItem;          /* FROM clause term being indexed */
787   int addrCounter = 0;        /* Address where integer counter is initialized */
788   int regBase;                /* Array of registers where record is assembled */
789 
790   /* Generate code to skip over the creation and initialization of the
791   ** transient index on 2nd and subsequent iterations of the loop. */
792   v = pParse->pVdbe;
793   assert( v!=0 );
794   addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
795 
796   /* Count the number of columns that will be added to the index
797   ** and used to match WHERE clause constraints */
798   nKeyCol = 0;
799   pTable = pSrc->pTab;
800   pWCEnd = &pWC->a[pWC->nTerm];
801   pLoop = pLevel->pWLoop;
802   idxCols = 0;
803   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
804     Expr *pExpr = pTerm->pExpr;
805     /* Make the automatic index a partial index if there are terms in the
806     ** WHERE clause (or the ON clause of a LEFT join) that constrain which
807     ** rows of the target table (pSrc) that can be used. */
808     if( (pTerm->wtFlags & TERM_VIRTUAL)==0
809      && ((pSrc->fg.jointype&JT_LEFT)==0 || ExprHasProperty(pExpr,EP_FromJoin))
810      && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor)
811     ){
812       pPartial = sqlite3ExprAnd(pParse, pPartial,
813                                 sqlite3ExprDup(pParse->db, pExpr, 0));
814     }
815     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
816       int iCol;
817       Bitmask cMask;
818       assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
819       iCol = pTerm->u.x.leftColumn;
820       cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
821       testcase( iCol==BMS );
822       testcase( iCol==BMS-1 );
823       if( !sentWarning ){
824         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
825             "automatic index on %s(%s)", pTable->zName,
826             pTable->aCol[iCol].zCnName);
827         sentWarning = 1;
828       }
829       if( (idxCols & cMask)==0 ){
830         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
831           goto end_auto_index_create;
832         }
833         pLoop->aLTerm[nKeyCol++] = pTerm;
834         idxCols |= cMask;
835       }
836     }
837   }
838   assert( nKeyCol>0 || pParse->db->mallocFailed );
839   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
840   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
841                      | WHERE_AUTO_INDEX;
842 
843   /* Count the number of additional columns needed to create a
844   ** covering index.  A "covering index" is an index that contains all
845   ** columns that are needed by the query.  With a covering index, the
846   ** original table never needs to be accessed.  Automatic indices must
847   ** be a covering index because the index will not be updated if the
848   ** original table changes and the index and table cannot both be used
849   ** if they go out of sync.
850   */
851   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
852   mxBitCol = MIN(BMS-1,pTable->nCol);
853   testcase( pTable->nCol==BMS-1 );
854   testcase( pTable->nCol==BMS-2 );
855   for(i=0; i<mxBitCol; i++){
856     if( extraCols & MASKBIT(i) ) nKeyCol++;
857   }
858   if( pSrc->colUsed & MASKBIT(BMS-1) ){
859     nKeyCol += pTable->nCol - BMS + 1;
860   }
861 
862   /* Construct the Index object to describe this index */
863   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
864   if( pIdx==0 ) goto end_auto_index_create;
865   pLoop->u.btree.pIndex = pIdx;
866   pIdx->zName = "auto-index";
867   pIdx->pTable = pTable;
868   n = 0;
869   idxCols = 0;
870   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
871     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
872       int iCol;
873       Bitmask cMask;
874       assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
875       iCol = pTerm->u.x.leftColumn;
876       cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
877       testcase( iCol==BMS-1 );
878       testcase( iCol==BMS );
879       if( (idxCols & cMask)==0 ){
880         Expr *pX = pTerm->pExpr;
881         idxCols |= cMask;
882         pIdx->aiColumn[n] = pTerm->u.x.leftColumn;
883         pColl = sqlite3ExprCompareCollSeq(pParse, pX);
884         assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */
885         pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
886         n++;
887       }
888     }
889   }
890   assert( (u32)n==pLoop->u.btree.nEq );
891 
892   /* Add additional columns needed to make the automatic index into
893   ** a covering index */
894   for(i=0; i<mxBitCol; i++){
895     if( extraCols & MASKBIT(i) ){
896       pIdx->aiColumn[n] = i;
897       pIdx->azColl[n] = sqlite3StrBINARY;
898       n++;
899     }
900   }
901   if( pSrc->colUsed & MASKBIT(BMS-1) ){
902     for(i=BMS-1; i<pTable->nCol; i++){
903       pIdx->aiColumn[n] = i;
904       pIdx->azColl[n] = sqlite3StrBINARY;
905       n++;
906     }
907   }
908   assert( n==nKeyCol );
909   pIdx->aiColumn[n] = XN_ROWID;
910   pIdx->azColl[n] = sqlite3StrBINARY;
911 
912   /* Create the automatic index */
913   assert( pLevel->iIdxCur>=0 );
914   pLevel->iIdxCur = pParse->nTab++;
915   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
916   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
917   VdbeComment((v, "for %s", pTable->zName));
918   if( OptimizationEnabled(pParse->db, SQLITE_BloomFilter) ){
919     pLevel->regFilter = ++pParse->nMem;
920     sqlite3VdbeAddOp2(v, OP_Blob, 10000, pLevel->regFilter);
921   }
922 
923   /* Fill the automatic index with content */
924   pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
925   if( pTabItem->fg.viaCoroutine ){
926     int regYield = pTabItem->regReturn;
927     addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
928     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
929     addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
930     VdbeCoverage(v);
931     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
932   }else{
933     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
934   }
935   if( pPartial ){
936     iContinue = sqlite3VdbeMakeLabel(pParse);
937     sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
938     pLoop->wsFlags |= WHERE_PARTIALIDX;
939   }
940   regRecord = sqlite3GetTempReg(pParse);
941   regBase = sqlite3GenerateIndexKey(
942       pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
943   );
944   if( pLevel->regFilter ){
945     sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0,
946                          regBase, pLoop->u.btree.nEq);
947   }
948   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
949   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
950   if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
951   if( pTabItem->fg.viaCoroutine ){
952     sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
953     testcase( pParse->db->mallocFailed );
954     assert( pLevel->iIdxCur>0 );
955     translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
956                           pTabItem->regResult, pLevel->iIdxCur);
957     sqlite3VdbeGoto(v, addrTop);
958     pTabItem->fg.viaCoroutine = 0;
959   }else{
960     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
961     sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
962   }
963   sqlite3VdbeJumpHere(v, addrTop);
964   sqlite3ReleaseTempReg(pParse, regRecord);
965 
966   /* Jump here when skipping the initialization */
967   sqlite3VdbeJumpHere(v, addrInit);
968 
969 end_auto_index_create:
970   sqlite3ExprDelete(pParse->db, pPartial);
971 }
972 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
973 
974 /*
975 ** Generate bytecode that will initialize a Bloom filter that is appropriate
976 ** for pLevel.
977 **
978 ** If there are inner loops within pLevel that have the WHERE_BLOOMFILTER
979 ** flag set, initialize a Bloomfilter for them as well.  Except don't do
980 ** this recursive initialization if the SQLITE_BloomPulldown optimization has
981 ** been turned off.
982 **
983 ** When the Bloom filter is initialized, the WHERE_BLOOMFILTER flag is cleared
984 ** from the loop, but the regFilter value is set to a register that implements
985 ** the Bloom filter.  When regFilter is positive, the
986 ** sqlite3WhereCodeOneLoopStart() will generate code to test the Bloom filter
987 ** and skip the subsequence B-Tree seek if the Bloom filter indicates that
988 ** no matching rows exist.
989 **
990 ** This routine may only be called if it has previously been determined that
991 ** the loop would benefit from a Bloom filter, and the WHERE_BLOOMFILTER bit
992 ** is set.
993 */
994 static SQLITE_NOINLINE void sqlite3ConstructBloomFilter(
995   WhereInfo *pWInfo,    /* The WHERE clause */
996   int iLevel,           /* Index in pWInfo->a[] that is pLevel */
997   WhereLevel *pLevel,   /* Make a Bloom filter for this FROM term */
998   Bitmask notReady      /* Loops that are not ready */
999 ){
1000   int addrOnce;                        /* Address of opening OP_Once */
1001   int addrTop;                         /* Address of OP_Rewind */
1002   int addrCont;                        /* Jump here to skip a row */
1003   const WhereTerm *pTerm;              /* For looping over WHERE clause terms */
1004   const WhereTerm *pWCEnd;             /* Last WHERE clause term */
1005   Parse *pParse = pWInfo->pParse;      /* Parsing context */
1006   Vdbe *v = pParse->pVdbe;             /* VDBE under construction */
1007   WhereLoop *pLoop = pLevel->pWLoop;   /* The loop being coded */
1008   int iCur;                            /* Cursor for table getting the filter */
1009 
1010   assert( pLoop!=0 );
1011   assert( v!=0 );
1012   assert( pLoop->wsFlags & WHERE_BLOOMFILTER );
1013 
1014   addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1015   do{
1016     const SrcItem *pItem;
1017     const Table *pTab;
1018     u64 sz;
1019     sqlite3WhereExplainBloomFilter(pParse, pWInfo, pLevel);
1020     addrCont = sqlite3VdbeMakeLabel(pParse);
1021     iCur = pLevel->iTabCur;
1022     pLevel->regFilter = ++pParse->nMem;
1023 
1024     /* The Bloom filter is a Blob held in a register.  Initialize it
1025     ** to zero-filled blob of at least 80K bits, but maybe more if the
1026     ** estimated size of the table is larger.  We could actually
1027     ** measure the size of the table at run-time using OP_Count with
1028     ** P3==1 and use that value to initialize the blob.  But that makes
1029     ** testing complicated.  By basing the blob size on the value in the
1030     ** sqlite_stat1 table, testing is much easier.
1031     */
1032     pItem = &pWInfo->pTabList->a[pLevel->iFrom];
1033     assert( pItem!=0 );
1034     pTab = pItem->pTab;
1035     assert( pTab!=0 );
1036     sz = sqlite3LogEstToInt(pTab->nRowLogEst);
1037     if( sz<10000 ){
1038       sz = 10000;
1039     }else if( sz>10000000 ){
1040       sz = 10000000;
1041     }
1042     sqlite3VdbeAddOp2(v, OP_Blob, (int)sz, pLevel->regFilter);
1043 
1044     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
1045     pWCEnd = &pWInfo->sWC.a[pWInfo->sWC.nTerm];
1046     for(pTerm=pWInfo->sWC.a; pTerm<pWCEnd; pTerm++){
1047       Expr *pExpr = pTerm->pExpr;
1048       if( (pTerm->wtFlags & TERM_VIRTUAL)==0
1049        && sqlite3ExprIsTableConstant(pExpr, iCur)
1050       ){
1051         sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
1052       }
1053     }
1054     if( pLoop->wsFlags & WHERE_IPK ){
1055       int r1 = sqlite3GetTempReg(pParse);
1056       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1);
1057       sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, 1);
1058       sqlite3ReleaseTempReg(pParse, r1);
1059     }else{
1060       Index *pIdx = pLoop->u.btree.pIndex;
1061       int n = pLoop->u.btree.nEq;
1062       int r1 = sqlite3GetTempRange(pParse, n);
1063       int jj;
1064       for(jj=0; jj<n; jj++){
1065         int iCol = pIdx->aiColumn[jj];
1066         assert( pIdx->pTable==pItem->pTab );
1067         sqlite3ExprCodeGetColumnOfTable(v, pIdx->pTable, iCur, iCol,r1+jj);
1068       }
1069       sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, n);
1070       sqlite3ReleaseTempRange(pParse, r1, n);
1071     }
1072     sqlite3VdbeResolveLabel(v, addrCont);
1073     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1);
1074     VdbeCoverage(v);
1075     sqlite3VdbeJumpHere(v, addrTop);
1076     pLoop->wsFlags &= ~WHERE_BLOOMFILTER;
1077     if( OptimizationDisabled(pParse->db, SQLITE_BloomPulldown) ) break;
1078     while( ++iLevel < pWInfo->nLevel ){
1079       pLevel = &pWInfo->a[iLevel];
1080       pLoop = pLevel->pWLoop;
1081       if( NEVER(pLoop==0) ) continue;
1082       if( pLoop->prereq & notReady ) continue;
1083       if( (pLoop->wsFlags & (WHERE_BLOOMFILTER|WHERE_COLUMN_IN))
1084                  ==WHERE_BLOOMFILTER
1085       ){
1086         /* This is a candidate for bloom-filter pull-down (early evaluation).
1087         ** The test that WHERE_COLUMN_IN is omitted is important, as we are
1088         ** not able to do early evaluation of bloom filters that make use of
1089         ** the IN operator */
1090         break;
1091       }
1092     }
1093   }while( iLevel < pWInfo->nLevel );
1094   sqlite3VdbeJumpHere(v, addrOnce);
1095 }
1096 
1097 
1098 #ifndef SQLITE_OMIT_VIRTUALTABLE
1099 /*
1100 ** Allocate and populate an sqlite3_index_info structure. It is the
1101 ** responsibility of the caller to eventually release the structure
1102 ** by passing the pointer returned by this function to freeIndexInfo().
1103 */
1104 static sqlite3_index_info *allocateIndexInfo(
1105   WhereInfo *pWInfo,              /* The WHERE clause */
1106   WhereClause *pWC,               /* The WHERE clause being analyzed */
1107   Bitmask mUnusable,              /* Ignore terms with these prereqs */
1108   SrcItem *pSrc,                  /* The FROM clause term that is the vtab */
1109   u16 *pmNoOmit                   /* Mask of terms not to omit */
1110 ){
1111   int i, j;
1112   int nTerm;
1113   Parse *pParse = pWInfo->pParse;
1114   struct sqlite3_index_constraint *pIdxCons;
1115   struct sqlite3_index_orderby *pIdxOrderBy;
1116   struct sqlite3_index_constraint_usage *pUsage;
1117   struct HiddenIndexInfo *pHidden;
1118   WhereTerm *pTerm;
1119   int nOrderBy;
1120   sqlite3_index_info *pIdxInfo;
1121   u16 mNoOmit = 0;
1122   const Table *pTab;
1123   int eDistinct = 0;
1124   ExprList *pOrderBy = pWInfo->pOrderBy;
1125 
1126   assert( pSrc!=0 );
1127   pTab = pSrc->pTab;
1128   assert( pTab!=0 );
1129   assert( IsVirtual(pTab) );
1130 
1131   /* Find all WHERE clause constraints referring to this virtual table.
1132   ** Mark each term with the TERM_OK flag.  Set nTerm to the number of
1133   ** terms found.
1134   */
1135   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1136     pTerm->wtFlags &= ~TERM_OK;
1137     if( pTerm->leftCursor != pSrc->iCursor ) continue;
1138     if( pTerm->prereqRight & mUnusable ) continue;
1139     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
1140     testcase( pTerm->eOperator & WO_IN );
1141     testcase( pTerm->eOperator & WO_ISNULL );
1142     testcase( pTerm->eOperator & WO_IS );
1143     testcase( pTerm->eOperator & WO_ALL );
1144     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
1145     if( pTerm->wtFlags & TERM_VNULL ) continue;
1146     assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
1147     assert( pTerm->u.x.leftColumn>=XN_ROWID );
1148     assert( pTerm->u.x.leftColumn<pTab->nCol );
1149 
1150     /* tag-20191211-002: WHERE-clause constraints are not useful to the
1151     ** right-hand table of a LEFT JOIN.  See tag-20191211-001 for the
1152     ** equivalent restriction for ordinary tables. */
1153     if( (pSrc->fg.jointype & JT_LEFT)!=0
1154      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
1155     ){
1156       continue;
1157     }
1158     nTerm++;
1159     pTerm->wtFlags |= TERM_OK;
1160   }
1161 
1162   /* If the ORDER BY clause contains only columns in the current
1163   ** virtual table then allocate space for the aOrderBy part of
1164   ** the sqlite3_index_info structure.
1165   */
1166   nOrderBy = 0;
1167   if( pOrderBy ){
1168     int n = pOrderBy->nExpr;
1169     for(i=0; i<n; i++){
1170       Expr *pExpr = pOrderBy->a[i].pExpr;
1171       Expr *pE2;
1172 
1173       /* Skip over constant terms in the ORDER BY clause */
1174       if( sqlite3ExprIsConstant(pExpr) ){
1175         continue;
1176       }
1177 
1178       /* Virtual tables are unable to deal with NULLS FIRST */
1179       if( pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL ) break;
1180 
1181       /* First case - a direct column references without a COLLATE operator */
1182       if( pExpr->op==TK_COLUMN && pExpr->iTable==pSrc->iCursor ){
1183         assert( pExpr->iColumn>=XN_ROWID && pExpr->iColumn<pTab->nCol );
1184         continue;
1185       }
1186 
1187       /* 2nd case - a column reference with a COLLATE operator.  Only match
1188       ** of the COLLATE operator matches the collation of the column. */
1189       if( pExpr->op==TK_COLLATE
1190        && (pE2 = pExpr->pLeft)->op==TK_COLUMN
1191        && pE2->iTable==pSrc->iCursor
1192       ){
1193         const char *zColl;  /* The collating sequence name */
1194         assert( !ExprHasProperty(pExpr, EP_IntValue) );
1195         assert( pExpr->u.zToken!=0 );
1196         assert( pE2->iColumn>=XN_ROWID && pE2->iColumn<pTab->nCol );
1197         pExpr->iColumn = pE2->iColumn;
1198         if( pE2->iColumn<0 ) continue;  /* Collseq does not matter for rowid */
1199         zColl = sqlite3ColumnColl(&pTab->aCol[pE2->iColumn]);
1200         if( zColl==0 ) zColl = sqlite3StrBINARY;
1201         if( sqlite3_stricmp(pExpr->u.zToken, zColl)==0 ) continue;
1202       }
1203 
1204       /* No matches cause a break out of the loop */
1205       break;
1206     }
1207     if( i==n){
1208       nOrderBy = n;
1209       if( (pWInfo->wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY)) ){
1210         eDistinct = 1 + ((pWInfo->wctrlFlags & WHERE_DISTINCTBY)!=0);
1211       }
1212     }
1213   }
1214 
1215   /* Allocate the sqlite3_index_info structure
1216   */
1217   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
1218                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1219                            + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden)
1220                            + sizeof(sqlite3_value*)*nTerm );
1221   if( pIdxInfo==0 ){
1222     sqlite3ErrorMsg(pParse, "out of memory");
1223     return 0;
1224   }
1225   pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
1226   pIdxCons = (struct sqlite3_index_constraint*)&pHidden->aRhs[nTerm];
1227   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1228   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1229   pIdxInfo->aConstraint = pIdxCons;
1230   pIdxInfo->aOrderBy = pIdxOrderBy;
1231   pIdxInfo->aConstraintUsage = pUsage;
1232   pHidden->pWC = pWC;
1233   pHidden->pParse = pParse;
1234   pHidden->eDistinct = eDistinct;
1235   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1236     u16 op;
1237     if( (pTerm->wtFlags & TERM_OK)==0 ) continue;
1238     pIdxCons[j].iColumn = pTerm->u.x.leftColumn;
1239     pIdxCons[j].iTermOffset = i;
1240     op = pTerm->eOperator & WO_ALL;
1241     if( op==WO_IN ) op = WO_EQ;
1242     if( op==WO_AUX ){
1243       pIdxCons[j].op = pTerm->eMatchOp;
1244     }else if( op & (WO_ISNULL|WO_IS) ){
1245       if( op==WO_ISNULL ){
1246         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
1247       }else{
1248         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
1249       }
1250     }else{
1251       pIdxCons[j].op = (u8)op;
1252       /* The direct assignment in the previous line is possible only because
1253       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
1254       ** following asserts verify this fact. */
1255       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1256       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1257       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1258       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1259       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1260       assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
1261 
1262       if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
1263        && sqlite3ExprIsVector(pTerm->pExpr->pRight)
1264       ){
1265         testcase( j!=i );
1266         if( j<16 ) mNoOmit |= (1 << j);
1267         if( op==WO_LT ) pIdxCons[j].op = WO_LE;
1268         if( op==WO_GT ) pIdxCons[j].op = WO_GE;
1269       }
1270     }
1271 
1272     j++;
1273   }
1274   assert( j==nTerm );
1275   pIdxInfo->nConstraint = j;
1276   for(i=j=0; i<nOrderBy; i++){
1277     Expr *pExpr = pOrderBy->a[i].pExpr;
1278     if( sqlite3ExprIsConstant(pExpr) ) continue;
1279     assert( pExpr->op==TK_COLUMN
1280          || (pExpr->op==TK_COLLATE && pExpr->pLeft->op==TK_COLUMN
1281               && pExpr->iColumn==pExpr->pLeft->iColumn) );
1282     pIdxOrderBy[j].iColumn = pExpr->iColumn;
1283     pIdxOrderBy[j].desc = pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC;
1284     j++;
1285   }
1286   pIdxInfo->nOrderBy = j;
1287 
1288   *pmNoOmit = mNoOmit;
1289   return pIdxInfo;
1290 }
1291 
1292 /*
1293 ** Free an sqlite3_index_info structure allocated by allocateIndexInfo()
1294 ** and possibly modified by xBestIndex methods.
1295 */
1296 static void freeIndexInfo(sqlite3 *db, sqlite3_index_info *pIdxInfo){
1297   HiddenIndexInfo *pHidden;
1298   int i;
1299   assert( pIdxInfo!=0 );
1300   pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
1301   assert( pHidden->pParse!=0 );
1302   assert( pHidden->pParse->db==db );
1303   for(i=0; i<pIdxInfo->nConstraint; i++){
1304     sqlite3ValueFree(pHidden->aRhs[i]); /* IMP: R-14553-25174 */
1305     pHidden->aRhs[i] = 0;
1306   }
1307   sqlite3DbFree(db, pIdxInfo);
1308 }
1309 
1310 /*
1311 ** The table object reference passed as the second argument to this function
1312 ** must represent a virtual table. This function invokes the xBestIndex()
1313 ** method of the virtual table with the sqlite3_index_info object that
1314 ** comes in as the 3rd argument to this function.
1315 **
1316 ** If an error occurs, pParse is populated with an error message and an
1317 ** appropriate error code is returned.  A return of SQLITE_CONSTRAINT from
1318 ** xBestIndex is not considered an error.  SQLITE_CONSTRAINT indicates that
1319 ** the current configuration of "unusable" flags in sqlite3_index_info can
1320 ** not result in a valid plan.
1321 **
1322 ** Whether or not an error is returned, it is the responsibility of the
1323 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1324 ** that this is required.
1325 */
1326 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
1327   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
1328   int rc;
1329 
1330   whereTraceIndexInfoInputs(p);
1331   rc = pVtab->pModule->xBestIndex(pVtab, p);
1332   whereTraceIndexInfoOutputs(p);
1333 
1334   if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){
1335     if( rc==SQLITE_NOMEM ){
1336       sqlite3OomFault(pParse->db);
1337     }else if( !pVtab->zErrMsg ){
1338       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1339     }else{
1340       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1341     }
1342   }
1343   sqlite3_free(pVtab->zErrMsg);
1344   pVtab->zErrMsg = 0;
1345   return rc;
1346 }
1347 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1348 
1349 #ifdef SQLITE_ENABLE_STAT4
1350 /*
1351 ** Estimate the location of a particular key among all keys in an
1352 ** index.  Store the results in aStat as follows:
1353 **
1354 **    aStat[0]      Est. number of rows less than pRec
1355 **    aStat[1]      Est. number of rows equal to pRec
1356 **
1357 ** Return the index of the sample that is the smallest sample that
1358 ** is greater than or equal to pRec. Note that this index is not an index
1359 ** into the aSample[] array - it is an index into a virtual set of samples
1360 ** based on the contents of aSample[] and the number of fields in record
1361 ** pRec.
1362 */
1363 static int whereKeyStats(
1364   Parse *pParse,              /* Database connection */
1365   Index *pIdx,                /* Index to consider domain of */
1366   UnpackedRecord *pRec,       /* Vector of values to consider */
1367   int roundUp,                /* Round up if true.  Round down if false */
1368   tRowcnt *aStat              /* OUT: stats written here */
1369 ){
1370   IndexSample *aSample = pIdx->aSample;
1371   int iCol;                   /* Index of required stats in anEq[] etc. */
1372   int i;                      /* Index of first sample >= pRec */
1373   int iSample;                /* Smallest sample larger than or equal to pRec */
1374   int iMin = 0;               /* Smallest sample not yet tested */
1375   int iTest;                  /* Next sample to test */
1376   int res;                    /* Result of comparison operation */
1377   int nField;                 /* Number of fields in pRec */
1378   tRowcnt iLower = 0;         /* anLt[] + anEq[] of largest sample pRec is > */
1379 
1380 #ifndef SQLITE_DEBUG
1381   UNUSED_PARAMETER( pParse );
1382 #endif
1383   assert( pRec!=0 );
1384   assert( pIdx->nSample>0 );
1385   assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
1386 
1387   /* Do a binary search to find the first sample greater than or equal
1388   ** to pRec. If pRec contains a single field, the set of samples to search
1389   ** is simply the aSample[] array. If the samples in aSample[] contain more
1390   ** than one fields, all fields following the first are ignored.
1391   **
1392   ** If pRec contains N fields, where N is more than one, then as well as the
1393   ** samples in aSample[] (truncated to N fields), the search also has to
1394   ** consider prefixes of those samples. For example, if the set of samples
1395   ** in aSample is:
1396   **
1397   **     aSample[0] = (a, 5)
1398   **     aSample[1] = (a, 10)
1399   **     aSample[2] = (b, 5)
1400   **     aSample[3] = (c, 100)
1401   **     aSample[4] = (c, 105)
1402   **
1403   ** Then the search space should ideally be the samples above and the
1404   ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1405   ** the code actually searches this set:
1406   **
1407   **     0: (a)
1408   **     1: (a, 5)
1409   **     2: (a, 10)
1410   **     3: (a, 10)
1411   **     4: (b)
1412   **     5: (b, 5)
1413   **     6: (c)
1414   **     7: (c, 100)
1415   **     8: (c, 105)
1416   **     9: (c, 105)
1417   **
1418   ** For each sample in the aSample[] array, N samples are present in the
1419   ** effective sample array. In the above, samples 0 and 1 are based on
1420   ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1421   **
1422   ** Often, sample i of each block of N effective samples has (i+1) fields.
1423   ** Except, each sample may be extended to ensure that it is greater than or
1424   ** equal to the previous sample in the array. For example, in the above,
1425   ** sample 2 is the first sample of a block of N samples, so at first it
1426   ** appears that it should be 1 field in size. However, that would make it
1427   ** smaller than sample 1, so the binary search would not work. As a result,
1428   ** it is extended to two fields. The duplicates that this creates do not
1429   ** cause any problems.
1430   */
1431   nField = pRec->nField;
1432   iCol = 0;
1433   iSample = pIdx->nSample * nField;
1434   do{
1435     int iSamp;                    /* Index in aSample[] of test sample */
1436     int n;                        /* Number of fields in test sample */
1437 
1438     iTest = (iMin+iSample)/2;
1439     iSamp = iTest / nField;
1440     if( iSamp>0 ){
1441       /* The proposed effective sample is a prefix of sample aSample[iSamp].
1442       ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1443       ** fields that is greater than the previous effective sample.  */
1444       for(n=(iTest % nField) + 1; n<nField; n++){
1445         if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1446       }
1447     }else{
1448       n = iTest + 1;
1449     }
1450 
1451     pRec->nField = n;
1452     res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1453     if( res<0 ){
1454       iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1455       iMin = iTest+1;
1456     }else if( res==0 && n<nField ){
1457       iLower = aSample[iSamp].anLt[n-1];
1458       iMin = iTest+1;
1459       res = -1;
1460     }else{
1461       iSample = iTest;
1462       iCol = n-1;
1463     }
1464   }while( res && iMin<iSample );
1465   i = iSample / nField;
1466 
1467 #ifdef SQLITE_DEBUG
1468   /* The following assert statements check that the binary search code
1469   ** above found the right answer. This block serves no purpose other
1470   ** than to invoke the asserts.  */
1471   if( pParse->db->mallocFailed==0 ){
1472     if( res==0 ){
1473       /* If (res==0) is true, then pRec must be equal to sample i. */
1474       assert( i<pIdx->nSample );
1475       assert( iCol==nField-1 );
1476       pRec->nField = nField;
1477       assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1478            || pParse->db->mallocFailed
1479       );
1480     }else{
1481       /* Unless i==pIdx->nSample, indicating that pRec is larger than
1482       ** all samples in the aSample[] array, pRec must be smaller than the
1483       ** (iCol+1) field prefix of sample i.  */
1484       assert( i<=pIdx->nSample && i>=0 );
1485       pRec->nField = iCol+1;
1486       assert( i==pIdx->nSample
1487            || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1488            || pParse->db->mallocFailed );
1489 
1490       /* if i==0 and iCol==0, then record pRec is smaller than all samples
1491       ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1492       ** be greater than or equal to the (iCol) field prefix of sample i.
1493       ** If (i>0), then pRec must also be greater than sample (i-1).  */
1494       if( iCol>0 ){
1495         pRec->nField = iCol;
1496         assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1497              || pParse->db->mallocFailed );
1498       }
1499       if( i>0 ){
1500         pRec->nField = nField;
1501         assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1502              || pParse->db->mallocFailed );
1503       }
1504     }
1505   }
1506 #endif /* ifdef SQLITE_DEBUG */
1507 
1508   if( res==0 ){
1509     /* Record pRec is equal to sample i */
1510     assert( iCol==nField-1 );
1511     aStat[0] = aSample[i].anLt[iCol];
1512     aStat[1] = aSample[i].anEq[iCol];
1513   }else{
1514     /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1515     ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1516     ** is larger than all samples in the array. */
1517     tRowcnt iUpper, iGap;
1518     if( i>=pIdx->nSample ){
1519       iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1520     }else{
1521       iUpper = aSample[i].anLt[iCol];
1522     }
1523 
1524     if( iLower>=iUpper ){
1525       iGap = 0;
1526     }else{
1527       iGap = iUpper - iLower;
1528     }
1529     if( roundUp ){
1530       iGap = (iGap*2)/3;
1531     }else{
1532       iGap = iGap/3;
1533     }
1534     aStat[0] = iLower + iGap;
1535     aStat[1] = pIdx->aAvgEq[nField-1];
1536   }
1537 
1538   /* Restore the pRec->nField value before returning.  */
1539   pRec->nField = nField;
1540   return i;
1541 }
1542 #endif /* SQLITE_ENABLE_STAT4 */
1543 
1544 /*
1545 ** If it is not NULL, pTerm is a term that provides an upper or lower
1546 ** bound on a range scan. Without considering pTerm, it is estimated
1547 ** that the scan will visit nNew rows. This function returns the number
1548 ** estimated to be visited after taking pTerm into account.
1549 **
1550 ** If the user explicitly specified a likelihood() value for this term,
1551 ** then the return value is the likelihood multiplied by the number of
1552 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1553 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1554 */
1555 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1556   LogEst nRet = nNew;
1557   if( pTerm ){
1558     if( pTerm->truthProb<=0 ){
1559       nRet += pTerm->truthProb;
1560     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1561       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
1562     }
1563   }
1564   return nRet;
1565 }
1566 
1567 
1568 #ifdef SQLITE_ENABLE_STAT4
1569 /*
1570 ** Return the affinity for a single column of an index.
1571 */
1572 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1573   assert( iCol>=0 && iCol<pIdx->nColumn );
1574   if( !pIdx->zColAff ){
1575     if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1576   }
1577   assert( pIdx->zColAff[iCol]!=0 );
1578   return pIdx->zColAff[iCol];
1579 }
1580 #endif
1581 
1582 
1583 #ifdef SQLITE_ENABLE_STAT4
1584 /*
1585 ** This function is called to estimate the number of rows visited by a
1586 ** range-scan on a skip-scan index. For example:
1587 **
1588 **   CREATE INDEX i1 ON t1(a, b, c);
1589 **   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1590 **
1591 ** Value pLoop->nOut is currently set to the estimated number of rows
1592 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1593 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1594 ** on the stat4 data for the index. this scan will be peformed multiple
1595 ** times (once for each (a,b) combination that matches a=?) is dealt with
1596 ** by the caller.
1597 **
1598 ** It does this by scanning through all stat4 samples, comparing values
1599 ** extracted from pLower and pUpper with the corresponding column in each
1600 ** sample. If L and U are the number of samples found to be less than or
1601 ** equal to the values extracted from pLower and pUpper respectively, and
1602 ** N is the total number of samples, the pLoop->nOut value is adjusted
1603 ** as follows:
1604 **
1605 **   nOut = nOut * ( min(U - L, 1) / N )
1606 **
1607 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1608 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1609 ** U is set to N.
1610 **
1611 ** Normally, this function sets *pbDone to 1 before returning. However,
1612 ** if no value can be extracted from either pLower or pUpper (and so the
1613 ** estimate of the number of rows delivered remains unchanged), *pbDone
1614 ** is left as is.
1615 **
1616 ** If an error occurs, an SQLite error code is returned. Otherwise,
1617 ** SQLITE_OK.
1618 */
1619 static int whereRangeSkipScanEst(
1620   Parse *pParse,       /* Parsing & code generating context */
1621   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1622   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1623   WhereLoop *pLoop,    /* Update the .nOut value of this loop */
1624   int *pbDone          /* Set to true if at least one expr. value extracted */
1625 ){
1626   Index *p = pLoop->u.btree.pIndex;
1627   int nEq = pLoop->u.btree.nEq;
1628   sqlite3 *db = pParse->db;
1629   int nLower = -1;
1630   int nUpper = p->nSample+1;
1631   int rc = SQLITE_OK;
1632   u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1633   CollSeq *pColl;
1634 
1635   sqlite3_value *p1 = 0;          /* Value extracted from pLower */
1636   sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
1637   sqlite3_value *pVal = 0;        /* Value extracted from record */
1638 
1639   pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1640   if( pLower ){
1641     rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1642     nLower = 0;
1643   }
1644   if( pUpper && rc==SQLITE_OK ){
1645     rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1646     nUpper = p2 ? 0 : p->nSample;
1647   }
1648 
1649   if( p1 || p2 ){
1650     int i;
1651     int nDiff;
1652     for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1653       rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1654       if( rc==SQLITE_OK && p1 ){
1655         int res = sqlite3MemCompare(p1, pVal, pColl);
1656         if( res>=0 ) nLower++;
1657       }
1658       if( rc==SQLITE_OK && p2 ){
1659         int res = sqlite3MemCompare(p2, pVal, pColl);
1660         if( res>=0 ) nUpper++;
1661       }
1662     }
1663     nDiff = (nUpper - nLower);
1664     if( nDiff<=0 ) nDiff = 1;
1665 
1666     /* If there is both an upper and lower bound specified, and the
1667     ** comparisons indicate that they are close together, use the fallback
1668     ** method (assume that the scan visits 1/64 of the rows) for estimating
1669     ** the number of rows visited. Otherwise, estimate the number of rows
1670     ** using the method described in the header comment for this function. */
1671     if( nDiff!=1 || pUpper==0 || pLower==0 ){
1672       int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1673       pLoop->nOut -= nAdjust;
1674       *pbDone = 1;
1675       WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n",
1676                            nLower, nUpper, nAdjust*-1, pLoop->nOut));
1677     }
1678 
1679   }else{
1680     assert( *pbDone==0 );
1681   }
1682 
1683   sqlite3ValueFree(p1);
1684   sqlite3ValueFree(p2);
1685   sqlite3ValueFree(pVal);
1686 
1687   return rc;
1688 }
1689 #endif /* SQLITE_ENABLE_STAT4 */
1690 
1691 /*
1692 ** This function is used to estimate the number of rows that will be visited
1693 ** by scanning an index for a range of values. The range may have an upper
1694 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1695 ** and lower bounds are represented by pLower and pUpper respectively. For
1696 ** example, assuming that index p is on t1(a):
1697 **
1698 **   ... FROM t1 WHERE a > ? AND a < ? ...
1699 **                    |_____|   |_____|
1700 **                       |         |
1701 **                     pLower    pUpper
1702 **
1703 ** If either of the upper or lower bound is not present, then NULL is passed in
1704 ** place of the corresponding WhereTerm.
1705 **
1706 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1707 ** column subject to the range constraint. Or, equivalently, the number of
1708 ** equality constraints optimized by the proposed index scan. For example,
1709 ** assuming index p is on t1(a, b), and the SQL query is:
1710 **
1711 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1712 **
1713 ** then nEq is set to 1 (as the range restricted column, b, is the second
1714 ** left-most column of the index). Or, if the query is:
1715 **
1716 **   ... FROM t1 WHERE a > ? AND a < ? ...
1717 **
1718 ** then nEq is set to 0.
1719 **
1720 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1721 ** number of rows that the index scan is expected to visit without
1722 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1723 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1724 ** to account for the range constraints pLower and pUpper.
1725 **
1726 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1727 ** used, a single range inequality reduces the search space by a factor of 4.
1728 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1729 ** rows visited by a factor of 64.
1730 */
1731 static int whereRangeScanEst(
1732   Parse *pParse,       /* Parsing & code generating context */
1733   WhereLoopBuilder *pBuilder,
1734   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1735   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1736   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
1737 ){
1738   int rc = SQLITE_OK;
1739   int nOut = pLoop->nOut;
1740   LogEst nNew;
1741 
1742 #ifdef SQLITE_ENABLE_STAT4
1743   Index *p = pLoop->u.btree.pIndex;
1744   int nEq = pLoop->u.btree.nEq;
1745 
1746   if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol)
1747    && OptimizationEnabled(pParse->db, SQLITE_Stat4)
1748   ){
1749     if( nEq==pBuilder->nRecValid ){
1750       UnpackedRecord *pRec = pBuilder->pRec;
1751       tRowcnt a[2];
1752       int nBtm = pLoop->u.btree.nBtm;
1753       int nTop = pLoop->u.btree.nTop;
1754 
1755       /* Variable iLower will be set to the estimate of the number of rows in
1756       ** the index that are less than the lower bound of the range query. The
1757       ** lower bound being the concatenation of $P and $L, where $P is the
1758       ** key-prefix formed by the nEq values matched against the nEq left-most
1759       ** columns of the index, and $L is the value in pLower.
1760       **
1761       ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1762       ** is not a simple variable or literal value), the lower bound of the
1763       ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1764       ** if $L is available, whereKeyStats() is called for both ($P) and
1765       ** ($P:$L) and the larger of the two returned values is used.
1766       **
1767       ** Similarly, iUpper is to be set to the estimate of the number of rows
1768       ** less than the upper bound of the range query. Where the upper bound
1769       ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1770       ** of iUpper are requested of whereKeyStats() and the smaller used.
1771       **
1772       ** The number of rows between the two bounds is then just iUpper-iLower.
1773       */
1774       tRowcnt iLower;     /* Rows less than the lower bound */
1775       tRowcnt iUpper;     /* Rows less than the upper bound */
1776       int iLwrIdx = -2;   /* aSample[] for the lower bound */
1777       int iUprIdx = -1;   /* aSample[] for the upper bound */
1778 
1779       if( pRec ){
1780         testcase( pRec->nField!=pBuilder->nRecValid );
1781         pRec->nField = pBuilder->nRecValid;
1782       }
1783       /* Determine iLower and iUpper using ($P) only. */
1784       if( nEq==0 ){
1785         iLower = 0;
1786         iUpper = p->nRowEst0;
1787       }else{
1788         /* Note: this call could be optimized away - since the same values must
1789         ** have been requested when testing key $P in whereEqualScanEst().  */
1790         whereKeyStats(pParse, p, pRec, 0, a);
1791         iLower = a[0];
1792         iUpper = a[0] + a[1];
1793       }
1794 
1795       assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1796       assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1797       assert( p->aSortOrder!=0 );
1798       if( p->aSortOrder[nEq] ){
1799         /* The roles of pLower and pUpper are swapped for a DESC index */
1800         SWAP(WhereTerm*, pLower, pUpper);
1801         SWAP(int, nBtm, nTop);
1802       }
1803 
1804       /* If possible, improve on the iLower estimate using ($P:$L). */
1805       if( pLower ){
1806         int n;                    /* Values extracted from pExpr */
1807         Expr *pExpr = pLower->pExpr->pRight;
1808         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1809         if( rc==SQLITE_OK && n ){
1810           tRowcnt iNew;
1811           u16 mask = WO_GT|WO_LE;
1812           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1813           iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1814           iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1815           if( iNew>iLower ) iLower = iNew;
1816           nOut--;
1817           pLower = 0;
1818         }
1819       }
1820 
1821       /* If possible, improve on the iUpper estimate using ($P:$U). */
1822       if( pUpper ){
1823         int n;                    /* Values extracted from pExpr */
1824         Expr *pExpr = pUpper->pExpr->pRight;
1825         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1826         if( rc==SQLITE_OK && n ){
1827           tRowcnt iNew;
1828           u16 mask = WO_GT|WO_LE;
1829           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1830           iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1831           iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1832           if( iNew<iUpper ) iUpper = iNew;
1833           nOut--;
1834           pUpper = 0;
1835         }
1836       }
1837 
1838       pBuilder->pRec = pRec;
1839       if( rc==SQLITE_OK ){
1840         if( iUpper>iLower ){
1841           nNew = sqlite3LogEst(iUpper - iLower);
1842           /* TUNING:  If both iUpper and iLower are derived from the same
1843           ** sample, then assume they are 4x more selective.  This brings
1844           ** the estimated selectivity more in line with what it would be
1845           ** if estimated without the use of STAT4 tables. */
1846           if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
1847         }else{
1848           nNew = 10;        assert( 10==sqlite3LogEst(2) );
1849         }
1850         if( nNew<nOut ){
1851           nOut = nNew;
1852         }
1853         WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
1854                            (u32)iLower, (u32)iUpper, nOut));
1855       }
1856     }else{
1857       int bDone = 0;
1858       rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1859       if( bDone ) return rc;
1860     }
1861   }
1862 #else
1863   UNUSED_PARAMETER(pParse);
1864   UNUSED_PARAMETER(pBuilder);
1865   assert( pLower || pUpper );
1866 #endif
1867   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1868   nNew = whereRangeAdjust(pLower, nOut);
1869   nNew = whereRangeAdjust(pUpper, nNew);
1870 
1871   /* TUNING: If there is both an upper and lower limit and neither limit
1872   ** has an application-defined likelihood(), assume the range is
1873   ** reduced by an additional 75%. This means that, by default, an open-ended
1874   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1875   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1876   ** match 1/64 of the index. */
1877   if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1878     nNew -= 20;
1879   }
1880 
1881   nOut -= (pLower!=0) + (pUpper!=0);
1882   if( nNew<10 ) nNew = 10;
1883   if( nNew<nOut ) nOut = nNew;
1884 #if defined(WHERETRACE_ENABLED)
1885   if( pLoop->nOut>nOut ){
1886     WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1887                     pLoop->nOut, nOut));
1888   }
1889 #endif
1890   pLoop->nOut = (LogEst)nOut;
1891   return rc;
1892 }
1893 
1894 #ifdef SQLITE_ENABLE_STAT4
1895 /*
1896 ** Estimate the number of rows that will be returned based on
1897 ** an equality constraint x=VALUE and where that VALUE occurs in
1898 ** the histogram data.  This only works when x is the left-most
1899 ** column of an index and sqlite_stat4 histogram data is available
1900 ** for that index.  When pExpr==NULL that means the constraint is
1901 ** "x IS NULL" instead of "x=VALUE".
1902 **
1903 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1904 ** If unable to make an estimate, leave *pnRow unchanged and return
1905 ** non-zero.
1906 **
1907 ** This routine can fail if it is unable to load a collating sequence
1908 ** required for string comparison, or if unable to allocate memory
1909 ** for a UTF conversion required for comparison.  The error is stored
1910 ** in the pParse structure.
1911 */
1912 static int whereEqualScanEst(
1913   Parse *pParse,       /* Parsing & code generating context */
1914   WhereLoopBuilder *pBuilder,
1915   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
1916   tRowcnt *pnRow       /* Write the revised row estimate here */
1917 ){
1918   Index *p = pBuilder->pNew->u.btree.pIndex;
1919   int nEq = pBuilder->pNew->u.btree.nEq;
1920   UnpackedRecord *pRec = pBuilder->pRec;
1921   int rc;                   /* Subfunction return code */
1922   tRowcnt a[2];             /* Statistics */
1923   int bOk;
1924 
1925   assert( nEq>=1 );
1926   assert( nEq<=p->nColumn );
1927   assert( p->aSample!=0 );
1928   assert( p->nSample>0 );
1929   assert( pBuilder->nRecValid<nEq );
1930 
1931   /* If values are not available for all fields of the index to the left
1932   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1933   if( pBuilder->nRecValid<(nEq-1) ){
1934     return SQLITE_NOTFOUND;
1935   }
1936 
1937   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1938   ** below would return the same value.  */
1939   if( nEq>=p->nColumn ){
1940     *pnRow = 1;
1941     return SQLITE_OK;
1942   }
1943 
1944   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1945   pBuilder->pRec = pRec;
1946   if( rc!=SQLITE_OK ) return rc;
1947   if( bOk==0 ) return SQLITE_NOTFOUND;
1948   pBuilder->nRecValid = nEq;
1949 
1950   whereKeyStats(pParse, p, pRec, 0, a);
1951   WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1952                    p->zName, nEq-1, (int)a[1]));
1953   *pnRow = a[1];
1954 
1955   return rc;
1956 }
1957 #endif /* SQLITE_ENABLE_STAT4 */
1958 
1959 #ifdef SQLITE_ENABLE_STAT4
1960 /*
1961 ** Estimate the number of rows that will be returned based on
1962 ** an IN constraint where the right-hand side of the IN operator
1963 ** is a list of values.  Example:
1964 **
1965 **        WHERE x IN (1,2,3,4)
1966 **
1967 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1968 ** If unable to make an estimate, leave *pnRow unchanged and return
1969 ** non-zero.
1970 **
1971 ** This routine can fail if it is unable to load a collating sequence
1972 ** required for string comparison, or if unable to allocate memory
1973 ** for a UTF conversion required for comparison.  The error is stored
1974 ** in the pParse structure.
1975 */
1976 static int whereInScanEst(
1977   Parse *pParse,       /* Parsing & code generating context */
1978   WhereLoopBuilder *pBuilder,
1979   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1980   tRowcnt *pnRow       /* Write the revised row estimate here */
1981 ){
1982   Index *p = pBuilder->pNew->u.btree.pIndex;
1983   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1984   int nRecValid = pBuilder->nRecValid;
1985   int rc = SQLITE_OK;     /* Subfunction return code */
1986   tRowcnt nEst;           /* Number of rows for a single term */
1987   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
1988   int i;                  /* Loop counter */
1989 
1990   assert( p->aSample!=0 );
1991   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
1992     nEst = nRow0;
1993     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
1994     nRowEst += nEst;
1995     pBuilder->nRecValid = nRecValid;
1996   }
1997 
1998   if( rc==SQLITE_OK ){
1999     if( nRowEst > nRow0 ) nRowEst = nRow0;
2000     *pnRow = nRowEst;
2001     WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
2002   }
2003   assert( pBuilder->nRecValid==nRecValid );
2004   return rc;
2005 }
2006 #endif /* SQLITE_ENABLE_STAT4 */
2007 
2008 
2009 #ifdef WHERETRACE_ENABLED
2010 /*
2011 ** Print the content of a WhereTerm object
2012 */
2013 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){
2014   if( pTerm==0 ){
2015     sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
2016   }else{
2017     char zType[8];
2018     char zLeft[50];
2019     memcpy(zType, "....", 5);
2020     if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
2021     if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
2022     if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
2023     if( pTerm->wtFlags & TERM_CODED  ) zType[3] = 'C';
2024     if( pTerm->eOperator & WO_SINGLE ){
2025       assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
2026       sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
2027                        pTerm->leftCursor, pTerm->u.x.leftColumn);
2028     }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
2029       sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx",
2030                        pTerm->u.pOrInfo->indexable);
2031     }else{
2032       sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
2033     }
2034     sqlite3DebugPrintf(
2035        "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x",
2036        iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags);
2037     /* The 0x10000 .wheretrace flag causes extra information to be
2038     ** shown about each Term */
2039     if( sqlite3WhereTrace & 0x10000 ){
2040       sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx",
2041         pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight);
2042     }
2043     if( (pTerm->eOperator & (WO_OR|WO_AND))==0 && pTerm->u.x.iField ){
2044       sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField);
2045     }
2046     if( pTerm->iParent>=0 ){
2047       sqlite3DebugPrintf(" iParent=%d", pTerm->iParent);
2048     }
2049     sqlite3DebugPrintf("\n");
2050     sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
2051   }
2052 }
2053 #endif
2054 
2055 #ifdef WHERETRACE_ENABLED
2056 /*
2057 ** Show the complete content of a WhereClause
2058 */
2059 void sqlite3WhereClausePrint(WhereClause *pWC){
2060   int i;
2061   for(i=0; i<pWC->nTerm; i++){
2062     sqlite3WhereTermPrint(&pWC->a[i], i);
2063   }
2064 }
2065 #endif
2066 
2067 #ifdef WHERETRACE_ENABLED
2068 /*
2069 ** Print a WhereLoop object for debugging purposes
2070 */
2071 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){
2072   WhereInfo *pWInfo = pWC->pWInfo;
2073   int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
2074   SrcItem *pItem = pWInfo->pTabList->a + p->iTab;
2075   Table *pTab = pItem->pTab;
2076   Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
2077   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
2078                      p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
2079   sqlite3DebugPrintf(" %12s",
2080                      pItem->zAlias ? pItem->zAlias : pTab->zName);
2081   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2082     const char *zName;
2083     if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
2084       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
2085         int i = sqlite3Strlen30(zName) - 1;
2086         while( zName[i]!='_' ) i--;
2087         zName += i;
2088       }
2089       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
2090     }else{
2091       sqlite3DebugPrintf("%20s","");
2092     }
2093   }else{
2094     char *z;
2095     if( p->u.vtab.idxStr ){
2096       z = sqlite3_mprintf("(%d,\"%s\",%#x)",
2097                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
2098     }else{
2099       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
2100     }
2101     sqlite3DebugPrintf(" %-19s", z);
2102     sqlite3_free(z);
2103   }
2104   if( p->wsFlags & WHERE_SKIPSCAN ){
2105     sqlite3DebugPrintf(" f %06x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
2106   }else{
2107     sqlite3DebugPrintf(" f %06x N %d", p->wsFlags, p->nLTerm);
2108   }
2109   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
2110   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
2111     int i;
2112     for(i=0; i<p->nLTerm; i++){
2113       sqlite3WhereTermPrint(p->aLTerm[i], i);
2114     }
2115   }
2116 }
2117 #endif
2118 
2119 /*
2120 ** Convert bulk memory into a valid WhereLoop that can be passed
2121 ** to whereLoopClear harmlessly.
2122 */
2123 static void whereLoopInit(WhereLoop *p){
2124   p->aLTerm = p->aLTermSpace;
2125   p->nLTerm = 0;
2126   p->nLSlot = ArraySize(p->aLTermSpace);
2127   p->wsFlags = 0;
2128 }
2129 
2130 /*
2131 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
2132 */
2133 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
2134   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
2135     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
2136       sqlite3_free(p->u.vtab.idxStr);
2137       p->u.vtab.needFree = 0;
2138       p->u.vtab.idxStr = 0;
2139     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
2140       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
2141       sqlite3DbFreeNN(db, p->u.btree.pIndex);
2142       p->u.btree.pIndex = 0;
2143     }
2144   }
2145 }
2146 
2147 /*
2148 ** Deallocate internal memory used by a WhereLoop object
2149 */
2150 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
2151   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
2152   whereLoopClearUnion(db, p);
2153   whereLoopInit(p);
2154 }
2155 
2156 /*
2157 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
2158 */
2159 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
2160   WhereTerm **paNew;
2161   if( p->nLSlot>=n ) return SQLITE_OK;
2162   n = (n+7)&~7;
2163   paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
2164   if( paNew==0 ) return SQLITE_NOMEM_BKPT;
2165   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
2166   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
2167   p->aLTerm = paNew;
2168   p->nLSlot = n;
2169   return SQLITE_OK;
2170 }
2171 
2172 /*
2173 ** Transfer content from the second pLoop into the first.
2174 */
2175 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
2176   whereLoopClearUnion(db, pTo);
2177   if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
2178     memset(pTo, 0, WHERE_LOOP_XFER_SZ);
2179     return SQLITE_NOMEM_BKPT;
2180   }
2181   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
2182   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
2183   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
2184     pFrom->u.vtab.needFree = 0;
2185   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
2186     pFrom->u.btree.pIndex = 0;
2187   }
2188   return SQLITE_OK;
2189 }
2190 
2191 /*
2192 ** Delete a WhereLoop object
2193 */
2194 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
2195   whereLoopClear(db, p);
2196   sqlite3DbFreeNN(db, p);
2197 }
2198 
2199 /*
2200 ** Free a WhereInfo structure
2201 */
2202 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
2203   int i;
2204   assert( pWInfo!=0 );
2205   for(i=0; i<pWInfo->nLevel; i++){
2206     WhereLevel *pLevel = &pWInfo->a[i];
2207     if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE)!=0 ){
2208       assert( (pLevel->pWLoop->wsFlags & WHERE_MULTI_OR)==0 );
2209       sqlite3DbFree(db, pLevel->u.in.aInLoop);
2210     }
2211   }
2212   sqlite3WhereClauseClear(&pWInfo->sWC);
2213   while( pWInfo->pLoops ){
2214     WhereLoop *p = pWInfo->pLoops;
2215     pWInfo->pLoops = p->pNextLoop;
2216     whereLoopDelete(db, p);
2217   }
2218   assert( pWInfo->pExprMods==0 );
2219   sqlite3DbFreeNN(db, pWInfo);
2220 }
2221 
2222 /* Undo all Expr node modifications
2223 */
2224 static void whereUndoExprMods(WhereInfo *pWInfo){
2225   while( pWInfo->pExprMods ){
2226     WhereExprMod *p = pWInfo->pExprMods;
2227     pWInfo->pExprMods = p->pNext;
2228     memcpy(p->pExpr, &p->orig, sizeof(p->orig));
2229     sqlite3DbFree(pWInfo->pParse->db, p);
2230   }
2231 }
2232 
2233 /*
2234 ** Return TRUE if all of the following are true:
2235 **
2236 **   (1)  X has the same or lower cost, or returns the same or fewer rows,
2237 **        than Y.
2238 **   (2)  X uses fewer WHERE clause terms than Y
2239 **   (3)  Every WHERE clause term used by X is also used by Y
2240 **   (4)  X skips at least as many columns as Y
2241 **   (5)  If X is a covering index, than Y is too
2242 **
2243 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
2244 ** If X is a proper subset of Y then Y is a better choice and ought
2245 ** to have a lower cost.  This routine returns TRUE when that cost
2246 ** relationship is inverted and needs to be adjusted.  Constraint (4)
2247 ** was added because if X uses skip-scan less than Y it still might
2248 ** deserve a lower cost even if it is a proper subset of Y.  Constraint (5)
2249 ** was added because a covering index probably deserves to have a lower cost
2250 ** than a non-covering index even if it is a proper subset.
2251 */
2252 static int whereLoopCheaperProperSubset(
2253   const WhereLoop *pX,       /* First WhereLoop to compare */
2254   const WhereLoop *pY        /* Compare against this WhereLoop */
2255 ){
2256   int i, j;
2257   if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
2258     return 0; /* X is not a subset of Y */
2259   }
2260   if( pX->rRun>pY->rRun && pX->nOut>pY->nOut ) return 0;
2261   if( pY->nSkip > pX->nSkip ) return 0;
2262   for(i=pX->nLTerm-1; i>=0; i--){
2263     if( pX->aLTerm[i]==0 ) continue;
2264     for(j=pY->nLTerm-1; j>=0; j--){
2265       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
2266     }
2267     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
2268   }
2269   if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
2270    && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
2271     return 0;  /* Constraint (5) */
2272   }
2273   return 1;  /* All conditions meet */
2274 }
2275 
2276 /*
2277 ** Try to adjust the cost and number of output rows of WhereLoop pTemplate
2278 ** upwards or downwards so that:
2279 **
2280 **   (1) pTemplate costs less than any other WhereLoops that are a proper
2281 **       subset of pTemplate
2282 **
2283 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
2284 **       is a proper subset.
2285 **
2286 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
2287 ** WHERE clause terms than Y and that every WHERE clause term used by X is
2288 ** also used by Y.
2289 */
2290 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
2291   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
2292   for(; p; p=p->pNextLoop){
2293     if( p->iTab!=pTemplate->iTab ) continue;
2294     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
2295     if( whereLoopCheaperProperSubset(p, pTemplate) ){
2296       /* Adjust pTemplate cost downward so that it is cheaper than its
2297       ** subset p. */
2298       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2299                        pTemplate->rRun, pTemplate->nOut,
2300                        MIN(p->rRun, pTemplate->rRun),
2301                        MIN(p->nOut - 1, pTemplate->nOut)));
2302       pTemplate->rRun = MIN(p->rRun, pTemplate->rRun);
2303       pTemplate->nOut = MIN(p->nOut - 1, pTemplate->nOut);
2304     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
2305       /* Adjust pTemplate cost upward so that it is costlier than p since
2306       ** pTemplate is a proper subset of p */
2307       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2308                        pTemplate->rRun, pTemplate->nOut,
2309                        MAX(p->rRun, pTemplate->rRun),
2310                        MAX(p->nOut + 1, pTemplate->nOut)));
2311       pTemplate->rRun = MAX(p->rRun, pTemplate->rRun);
2312       pTemplate->nOut = MAX(p->nOut + 1, pTemplate->nOut);
2313     }
2314   }
2315 }
2316 
2317 /*
2318 ** Search the list of WhereLoops in *ppPrev looking for one that can be
2319 ** replaced by pTemplate.
2320 **
2321 ** Return NULL if pTemplate does not belong on the WhereLoop list.
2322 ** In other words if pTemplate ought to be dropped from further consideration.
2323 **
2324 ** If pX is a WhereLoop that pTemplate can replace, then return the
2325 ** link that points to pX.
2326 **
2327 ** If pTemplate cannot replace any existing element of the list but needs
2328 ** to be added to the list as a new entry, then return a pointer to the
2329 ** tail of the list.
2330 */
2331 static WhereLoop **whereLoopFindLesser(
2332   WhereLoop **ppPrev,
2333   const WhereLoop *pTemplate
2334 ){
2335   WhereLoop *p;
2336   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
2337     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
2338       /* If either the iTab or iSortIdx values for two WhereLoop are different
2339       ** then those WhereLoops need to be considered separately.  Neither is
2340       ** a candidate to replace the other. */
2341       continue;
2342     }
2343     /* In the current implementation, the rSetup value is either zero
2344     ** or the cost of building an automatic index (NlogN) and the NlogN
2345     ** is the same for compatible WhereLoops. */
2346     assert( p->rSetup==0 || pTemplate->rSetup==0
2347                  || p->rSetup==pTemplate->rSetup );
2348 
2349     /* whereLoopAddBtree() always generates and inserts the automatic index
2350     ** case first.  Hence compatible candidate WhereLoops never have a larger
2351     ** rSetup. Call this SETUP-INVARIANT */
2352     assert( p->rSetup>=pTemplate->rSetup );
2353 
2354     /* Any loop using an appliation-defined index (or PRIMARY KEY or
2355     ** UNIQUE constraint) with one or more == constraints is better
2356     ** than an automatic index. Unless it is a skip-scan. */
2357     if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
2358      && (pTemplate->nSkip)==0
2359      && (pTemplate->wsFlags & WHERE_INDEXED)!=0
2360      && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
2361      && (p->prereq & pTemplate->prereq)==pTemplate->prereq
2362     ){
2363       break;
2364     }
2365 
2366     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2367     ** discarded.  WhereLoop p is better if:
2368     **   (1)  p has no more dependencies than pTemplate, and
2369     **   (2)  p has an equal or lower cost than pTemplate
2370     */
2371     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
2372      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
2373      && p->rRun<=pTemplate->rRun                      /* (2b) */
2374      && p->nOut<=pTemplate->nOut                      /* (2c) */
2375     ){
2376       return 0;  /* Discard pTemplate */
2377     }
2378 
2379     /* If pTemplate is always better than p, then cause p to be overwritten
2380     ** with pTemplate.  pTemplate is better than p if:
2381     **   (1)  pTemplate has no more dependences than p, and
2382     **   (2)  pTemplate has an equal or lower cost than p.
2383     */
2384     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
2385      && p->rRun>=pTemplate->rRun                             /* (2a) */
2386      && p->nOut>=pTemplate->nOut                             /* (2b) */
2387     ){
2388       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2389       break;   /* Cause p to be overwritten by pTemplate */
2390     }
2391   }
2392   return ppPrev;
2393 }
2394 
2395 /*
2396 ** Insert or replace a WhereLoop entry using the template supplied.
2397 **
2398 ** An existing WhereLoop entry might be overwritten if the new template
2399 ** is better and has fewer dependencies.  Or the template will be ignored
2400 ** and no insert will occur if an existing WhereLoop is faster and has
2401 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
2402 ** added based on the template.
2403 **
2404 ** If pBuilder->pOrSet is not NULL then we care about only the
2405 ** prerequisites and rRun and nOut costs of the N best loops.  That
2406 ** information is gathered in the pBuilder->pOrSet object.  This special
2407 ** processing mode is used only for OR clause processing.
2408 **
2409 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2410 ** still might overwrite similar loops with the new template if the
2411 ** new template is better.  Loops may be overwritten if the following
2412 ** conditions are met:
2413 **
2414 **    (1)  They have the same iTab.
2415 **    (2)  They have the same iSortIdx.
2416 **    (3)  The template has same or fewer dependencies than the current loop
2417 **    (4)  The template has the same or lower cost than the current loop
2418 */
2419 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2420   WhereLoop **ppPrev, *p;
2421   WhereInfo *pWInfo = pBuilder->pWInfo;
2422   sqlite3 *db = pWInfo->pParse->db;
2423   int rc;
2424 
2425   /* Stop the search once we hit the query planner search limit */
2426   if( pBuilder->iPlanLimit==0 ){
2427     WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
2428     if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0;
2429     return SQLITE_DONE;
2430   }
2431   pBuilder->iPlanLimit--;
2432 
2433   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2434 
2435   /* If pBuilder->pOrSet is defined, then only keep track of the costs
2436   ** and prereqs.
2437   */
2438   if( pBuilder->pOrSet!=0 ){
2439     if( pTemplate->nLTerm ){
2440 #if WHERETRACE_ENABLED
2441       u16 n = pBuilder->pOrSet->n;
2442       int x =
2443 #endif
2444       whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2445                                     pTemplate->nOut);
2446 #if WHERETRACE_ENABLED /* 0x8 */
2447       if( sqlite3WhereTrace & 0x8 ){
2448         sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
2449         sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2450       }
2451 #endif
2452     }
2453     return SQLITE_OK;
2454   }
2455 
2456   /* Look for an existing WhereLoop to replace with pTemplate
2457   */
2458   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2459 
2460   if( ppPrev==0 ){
2461     /* There already exists a WhereLoop on the list that is better
2462     ** than pTemplate, so just ignore pTemplate */
2463 #if WHERETRACE_ENABLED /* 0x8 */
2464     if( sqlite3WhereTrace & 0x8 ){
2465       sqlite3DebugPrintf("   skip: ");
2466       sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2467     }
2468 #endif
2469     return SQLITE_OK;
2470   }else{
2471     p = *ppPrev;
2472   }
2473 
2474   /* If we reach this point it means that either p[] should be overwritten
2475   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2476   ** WhereLoop and insert it.
2477   */
2478 #if WHERETRACE_ENABLED /* 0x8 */
2479   if( sqlite3WhereTrace & 0x8 ){
2480     if( p!=0 ){
2481       sqlite3DebugPrintf("replace: ");
2482       sqlite3WhereLoopPrint(p, pBuilder->pWC);
2483       sqlite3DebugPrintf("   with: ");
2484     }else{
2485       sqlite3DebugPrintf("    add: ");
2486     }
2487     sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2488   }
2489 #endif
2490   if( p==0 ){
2491     /* Allocate a new WhereLoop to add to the end of the list */
2492     *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2493     if( p==0 ) return SQLITE_NOMEM_BKPT;
2494     whereLoopInit(p);
2495     p->pNextLoop = 0;
2496   }else{
2497     /* We will be overwriting WhereLoop p[].  But before we do, first
2498     ** go through the rest of the list and delete any other entries besides
2499     ** p[] that are also supplated by pTemplate */
2500     WhereLoop **ppTail = &p->pNextLoop;
2501     WhereLoop *pToDel;
2502     while( *ppTail ){
2503       ppTail = whereLoopFindLesser(ppTail, pTemplate);
2504       if( ppTail==0 ) break;
2505       pToDel = *ppTail;
2506       if( pToDel==0 ) break;
2507       *ppTail = pToDel->pNextLoop;
2508 #if WHERETRACE_ENABLED /* 0x8 */
2509       if( sqlite3WhereTrace & 0x8 ){
2510         sqlite3DebugPrintf(" delete: ");
2511         sqlite3WhereLoopPrint(pToDel, pBuilder->pWC);
2512       }
2513 #endif
2514       whereLoopDelete(db, pToDel);
2515     }
2516   }
2517   rc = whereLoopXfer(db, p, pTemplate);
2518   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2519     Index *pIndex = p->u.btree.pIndex;
2520     if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){
2521       p->u.btree.pIndex = 0;
2522     }
2523   }
2524   return rc;
2525 }
2526 
2527 /*
2528 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2529 ** WHERE clause that reference the loop but which are not used by an
2530 ** index.
2531 *
2532 ** For every WHERE clause term that is not used by the index
2533 ** and which has a truth probability assigned by one of the likelihood(),
2534 ** likely(), or unlikely() SQL functions, reduce the estimated number
2535 ** of output rows by the probability specified.
2536 **
2537 ** TUNING:  For every WHERE clause term that is not used by the index
2538 ** and which does not have an assigned truth probability, heuristics
2539 ** described below are used to try to estimate the truth probability.
2540 ** TODO --> Perhaps this is something that could be improved by better
2541 ** table statistics.
2542 **
2543 ** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
2544 ** value corresponds to -1 in LogEst notation, so this means decrement
2545 ** the WhereLoop.nOut field for every such WHERE clause term.
2546 **
2547 ** Heuristic 2:  If there exists one or more WHERE clause terms of the
2548 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2549 ** final output row estimate is no greater than 1/4 of the total number
2550 ** of rows in the table.  In other words, assume that x==EXPR will filter
2551 ** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
2552 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2553 ** on the "x" column and so in that case only cap the output row estimate
2554 ** at 1/2 instead of 1/4.
2555 */
2556 static void whereLoopOutputAdjust(
2557   WhereClause *pWC,      /* The WHERE clause */
2558   WhereLoop *pLoop,      /* The loop to adjust downward */
2559   LogEst nRow            /* Number of rows in the entire table */
2560 ){
2561   WhereTerm *pTerm, *pX;
2562   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2563   int i, j;
2564   LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */
2565 
2566   assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2567   for(i=pWC->nBase, pTerm=pWC->a; i>0; i--, pTerm++){
2568     assert( pTerm!=0 );
2569     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2570     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2571     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) continue;
2572     for(j=pLoop->nLTerm-1; j>=0; j--){
2573       pX = pLoop->aLTerm[j];
2574       if( pX==0 ) continue;
2575       if( pX==pTerm ) break;
2576       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2577     }
2578     if( j<0 ){
2579       if( pLoop->maskSelf==pTerm->prereqAll ){
2580         /* If there are extra terms in the WHERE clause not used by an index
2581         ** that depend only on the table being scanned, and that will tend to
2582         ** cause many rows to be omitted, then mark that table as
2583         ** "self-culling". */
2584         pLoop->wsFlags |= WHERE_SELFCULL;
2585       }
2586       if( pTerm->truthProb<=0 ){
2587         /* If a truth probability is specified using the likelihood() hints,
2588         ** then use the probability provided by the application. */
2589         pLoop->nOut += pTerm->truthProb;
2590       }else{
2591         /* In the absence of explicit truth probabilities, use heuristics to
2592         ** guess a reasonable truth probability. */
2593         pLoop->nOut--;
2594         if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0
2595          && (pTerm->wtFlags & TERM_HIGHTRUTH)==0  /* tag-20200224-1 */
2596         ){
2597           Expr *pRight = pTerm->pExpr->pRight;
2598           int k = 0;
2599           testcase( pTerm->pExpr->op==TK_IS );
2600           if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2601             k = 10;
2602           }else{
2603             k = 20;
2604           }
2605           if( iReduce<k ){
2606             pTerm->wtFlags |= TERM_HEURTRUTH;
2607             iReduce = k;
2608           }
2609         }
2610       }
2611     }
2612   }
2613   if( pLoop->nOut > nRow-iReduce ){
2614     pLoop->nOut = nRow - iReduce;
2615   }
2616 }
2617 
2618 /*
2619 ** Term pTerm is a vector range comparison operation. The first comparison
2620 ** in the vector can be optimized using column nEq of the index. This
2621 ** function returns the total number of vector elements that can be used
2622 ** as part of the range comparison.
2623 **
2624 ** For example, if the query is:
2625 **
2626 **   WHERE a = ? AND (b, c, d) > (?, ?, ?)
2627 **
2628 ** and the index:
2629 **
2630 **   CREATE INDEX ... ON (a, b, c, d, e)
2631 **
2632 ** then this function would be invoked with nEq=1. The value returned in
2633 ** this case is 3.
2634 */
2635 static int whereRangeVectorLen(
2636   Parse *pParse,       /* Parsing context */
2637   int iCur,            /* Cursor open on pIdx */
2638   Index *pIdx,         /* The index to be used for a inequality constraint */
2639   int nEq,             /* Number of prior equality constraints on same index */
2640   WhereTerm *pTerm     /* The vector inequality constraint */
2641 ){
2642   int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2643   int i;
2644 
2645   nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2646   for(i=1; i<nCmp; i++){
2647     /* Test if comparison i of pTerm is compatible with column (i+nEq)
2648     ** of the index. If not, exit the loop.  */
2649     char aff;                     /* Comparison affinity */
2650     char idxaff = 0;              /* Indexed columns affinity */
2651     CollSeq *pColl;               /* Comparison collation sequence */
2652     Expr *pLhs, *pRhs;
2653 
2654     assert( ExprUseXList(pTerm->pExpr->pLeft) );
2655     pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2656     pRhs = pTerm->pExpr->pRight;
2657     if( ExprUseXSelect(pRhs) ){
2658       pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2659     }else{
2660       pRhs = pRhs->x.pList->a[i].pExpr;
2661     }
2662 
2663     /* Check that the LHS of the comparison is a column reference to
2664     ** the right column of the right source table. And that the sort
2665     ** order of the index column is the same as the sort order of the
2666     ** leftmost index column.  */
2667     if( pLhs->op!=TK_COLUMN
2668      || pLhs->iTable!=iCur
2669      || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2670      || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2671     ){
2672       break;
2673     }
2674 
2675     testcase( pLhs->iColumn==XN_ROWID );
2676     aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2677     idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2678     if( aff!=idxaff ) break;
2679 
2680     pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2681     if( pColl==0 ) break;
2682     if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2683   }
2684   return i;
2685 }
2686 
2687 /*
2688 ** Adjust the cost C by the costMult facter T.  This only occurs if
2689 ** compiled with -DSQLITE_ENABLE_COSTMULT
2690 */
2691 #ifdef SQLITE_ENABLE_COSTMULT
2692 # define ApplyCostMultiplier(C,T)  C += T
2693 #else
2694 # define ApplyCostMultiplier(C,T)
2695 #endif
2696 
2697 /*
2698 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2699 ** index pIndex. Try to match one more.
2700 **
2701 ** When this function is called, pBuilder->pNew->nOut contains the
2702 ** number of rows expected to be visited by filtering using the nEq
2703 ** terms only. If it is modified, this value is restored before this
2704 ** function returns.
2705 **
2706 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
2707 ** a fake index used for the INTEGER PRIMARY KEY.
2708 */
2709 static int whereLoopAddBtreeIndex(
2710   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
2711   SrcItem *pSrc,                  /* FROM clause term being analyzed */
2712   Index *pProbe,                  /* An index on pSrc */
2713   LogEst nInMul                   /* log(Number of iterations due to IN) */
2714 ){
2715   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
2716   Parse *pParse = pWInfo->pParse;        /* Parsing context */
2717   sqlite3 *db = pParse->db;       /* Database connection malloc context */
2718   WhereLoop *pNew;                /* Template WhereLoop under construction */
2719   WhereTerm *pTerm;               /* A WhereTerm under consideration */
2720   int opMask;                     /* Valid operators for constraints */
2721   WhereScan scan;                 /* Iterator for WHERE terms */
2722   Bitmask saved_prereq;           /* Original value of pNew->prereq */
2723   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
2724   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
2725   u16 saved_nBtm;                 /* Original value of pNew->u.btree.nBtm */
2726   u16 saved_nTop;                 /* Original value of pNew->u.btree.nTop */
2727   u16 saved_nSkip;                /* Original value of pNew->nSkip */
2728   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
2729   LogEst saved_nOut;              /* Original value of pNew->nOut */
2730   int rc = SQLITE_OK;             /* Return code */
2731   LogEst rSize;                   /* Number of rows in the table */
2732   LogEst rLogSize;                /* Logarithm of table size */
2733   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2734 
2735   pNew = pBuilder->pNew;
2736   if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2737   WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n",
2738                      pProbe->pTable->zName,pProbe->zName,
2739                      pNew->u.btree.nEq, pNew->nSkip, pNew->rRun));
2740 
2741   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2742   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2743   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2744     opMask = WO_LT|WO_LE;
2745   }else{
2746     assert( pNew->u.btree.nBtm==0 );
2747     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2748   }
2749   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2750 
2751   assert( pNew->u.btree.nEq<pProbe->nColumn );
2752   assert( pNew->u.btree.nEq<pProbe->nKeyCol
2753        || pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY );
2754 
2755   saved_nEq = pNew->u.btree.nEq;
2756   saved_nBtm = pNew->u.btree.nBtm;
2757   saved_nTop = pNew->u.btree.nTop;
2758   saved_nSkip = pNew->nSkip;
2759   saved_nLTerm = pNew->nLTerm;
2760   saved_wsFlags = pNew->wsFlags;
2761   saved_prereq = pNew->prereq;
2762   saved_nOut = pNew->nOut;
2763   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2764                         opMask, pProbe);
2765   pNew->rSetup = 0;
2766   rSize = pProbe->aiRowLogEst[0];
2767   rLogSize = estLog(rSize);
2768   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2769     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
2770     LogEst rCostIdx;
2771     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
2772     int nIn = 0;
2773 #ifdef SQLITE_ENABLE_STAT4
2774     int nRecValid = pBuilder->nRecValid;
2775 #endif
2776     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2777      && indexColumnNotNull(pProbe, saved_nEq)
2778     ){
2779       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2780     }
2781     if( pTerm->prereqRight & pNew->maskSelf ) continue;
2782 
2783     /* Do not allow the upper bound of a LIKE optimization range constraint
2784     ** to mix with a lower range bound from some other source */
2785     if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2786 
2787     /* tag-20191211-001:  Do not allow constraints from the WHERE clause to
2788     ** be used by the right table of a LEFT JOIN.  Only constraints in the
2789     ** ON clause are allowed.  See tag-20191211-002 for the vtab equivalent. */
2790     if( (pSrc->fg.jointype & JT_LEFT)!=0
2791      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
2792     ){
2793       continue;
2794     }
2795 
2796     if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2797       pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE;
2798     }else{
2799       pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED;
2800     }
2801     pNew->wsFlags = saved_wsFlags;
2802     pNew->u.btree.nEq = saved_nEq;
2803     pNew->u.btree.nBtm = saved_nBtm;
2804     pNew->u.btree.nTop = saved_nTop;
2805     pNew->nLTerm = saved_nLTerm;
2806     if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2807     pNew->aLTerm[pNew->nLTerm++] = pTerm;
2808     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2809 
2810     assert( nInMul==0
2811         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2812         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2813         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2814     );
2815 
2816     if( eOp & WO_IN ){
2817       Expr *pExpr = pTerm->pExpr;
2818       if( ExprUseXSelect(pExpr) ){
2819         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
2820         int i;
2821         nIn = 46;  assert( 46==sqlite3LogEst(25) );
2822 
2823         /* The expression may actually be of the form (x, y) IN (SELECT...).
2824         ** In this case there is a separate term for each of (x) and (y).
2825         ** However, the nIn multiplier should only be applied once, not once
2826         ** for each such term. The following loop checks that pTerm is the
2827         ** first such term in use, and sets nIn back to 0 if it is not. */
2828         for(i=0; i<pNew->nLTerm-1; i++){
2829           if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2830         }
2831       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2832         /* "x IN (value, value, ...)" */
2833         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2834       }
2835       if( pProbe->hasStat1 && rLogSize>=10 ){
2836         LogEst M, logK, x;
2837         /* Let:
2838         **   N = the total number of rows in the table
2839         **   K = the number of entries on the RHS of the IN operator
2840         **   M = the number of rows in the table that match terms to the
2841         **       to the left in the same index.  If the IN operator is on
2842         **       the left-most index column, M==N.
2843         **
2844         ** Given the definitions above, it is better to omit the IN operator
2845         ** from the index lookup and instead do a scan of the M elements,
2846         ** testing each scanned row against the IN operator separately, if:
2847         **
2848         **        M*log(K) < K*log(N)
2849         **
2850         ** Our estimates for M, K, and N might be inaccurate, so we build in
2851         ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
2852         ** with the index, as using an index has better worst-case behavior.
2853         ** If we do not have real sqlite_stat1 data, always prefer to use
2854         ** the index.  Do not bother with this optimization on very small
2855         ** tables (less than 2 rows) as it is pointless in that case.
2856         */
2857         M = pProbe->aiRowLogEst[saved_nEq];
2858         logK = estLog(nIn);
2859         /* TUNING      v-----  10 to bias toward indexed IN */
2860         x = M + logK + 10 - (nIn + rLogSize);
2861         if( x>=0 ){
2862           WHERETRACE(0x40,
2863             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) "
2864              "prefers indexed lookup\n",
2865              saved_nEq, M, logK, nIn, rLogSize, x));
2866         }else if( nInMul<2 && OptimizationEnabled(db, SQLITE_SeekScan) ){
2867           WHERETRACE(0x40,
2868             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2869              " nInMul=%d) prefers skip-scan\n",
2870              saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
2871           pNew->wsFlags |= WHERE_IN_SEEKSCAN;
2872         }else{
2873           WHERETRACE(0x40,
2874             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2875              " nInMul=%d) prefers normal scan\n",
2876              saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
2877           continue;
2878         }
2879       }
2880       pNew->wsFlags |= WHERE_COLUMN_IN;
2881     }else if( eOp & (WO_EQ|WO_IS) ){
2882       int iCol = pProbe->aiColumn[saved_nEq];
2883       pNew->wsFlags |= WHERE_COLUMN_EQ;
2884       assert( saved_nEq==pNew->u.btree.nEq );
2885       if( iCol==XN_ROWID
2886        || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2887       ){
2888         if( iCol==XN_ROWID || pProbe->uniqNotNull
2889          || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
2890         ){
2891           pNew->wsFlags |= WHERE_ONEROW;
2892         }else{
2893           pNew->wsFlags |= WHERE_UNQ_WANTED;
2894         }
2895       }
2896       if( scan.iEquiv>1 ) pNew->wsFlags |= WHERE_TRANSCONS;
2897     }else if( eOp & WO_ISNULL ){
2898       pNew->wsFlags |= WHERE_COLUMN_NULL;
2899     }else if( eOp & (WO_GT|WO_GE) ){
2900       testcase( eOp & WO_GT );
2901       testcase( eOp & WO_GE );
2902       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2903       pNew->u.btree.nBtm = whereRangeVectorLen(
2904           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2905       );
2906       pBtm = pTerm;
2907       pTop = 0;
2908       if( pTerm->wtFlags & TERM_LIKEOPT ){
2909         /* Range constraints that come from the LIKE optimization are
2910         ** always used in pairs. */
2911         pTop = &pTerm[1];
2912         assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2913         assert( pTop->wtFlags & TERM_LIKEOPT );
2914         assert( pTop->eOperator==WO_LT );
2915         if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2916         pNew->aLTerm[pNew->nLTerm++] = pTop;
2917         pNew->wsFlags |= WHERE_TOP_LIMIT;
2918         pNew->u.btree.nTop = 1;
2919       }
2920     }else{
2921       assert( eOp & (WO_LT|WO_LE) );
2922       testcase( eOp & WO_LT );
2923       testcase( eOp & WO_LE );
2924       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2925       pNew->u.btree.nTop = whereRangeVectorLen(
2926           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2927       );
2928       pTop = pTerm;
2929       pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2930                      pNew->aLTerm[pNew->nLTerm-2] : 0;
2931     }
2932 
2933     /* At this point pNew->nOut is set to the number of rows expected to
2934     ** be visited by the index scan before considering term pTerm, or the
2935     ** values of nIn and nInMul. In other words, assuming that all
2936     ** "x IN(...)" terms are replaced with "x = ?". This block updates
2937     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
2938     assert( pNew->nOut==saved_nOut );
2939     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2940       /* Adjust nOut using stat4 data. Or, if there is no stat4
2941       ** data, using some other estimate.  */
2942       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2943     }else{
2944       int nEq = ++pNew->u.btree.nEq;
2945       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2946 
2947       assert( pNew->nOut==saved_nOut );
2948       if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2949         assert( (eOp & WO_IN) || nIn==0 );
2950         testcase( eOp & WO_IN );
2951         pNew->nOut += pTerm->truthProb;
2952         pNew->nOut -= nIn;
2953       }else{
2954 #ifdef SQLITE_ENABLE_STAT4
2955         tRowcnt nOut = 0;
2956         if( nInMul==0
2957          && pProbe->nSample
2958          && ALWAYS(pNew->u.btree.nEq<=pProbe->nSampleCol)
2959          && ((eOp & WO_IN)==0 || ExprUseXList(pTerm->pExpr))
2960          && OptimizationEnabled(db, SQLITE_Stat4)
2961         ){
2962           Expr *pExpr = pTerm->pExpr;
2963           if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2964             testcase( eOp & WO_EQ );
2965             testcase( eOp & WO_IS );
2966             testcase( eOp & WO_ISNULL );
2967             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2968           }else{
2969             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2970           }
2971           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2972           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
2973           if( nOut ){
2974             pNew->nOut = sqlite3LogEst(nOut);
2975             if( nEq==1
2976              /* TUNING: Mark terms as "low selectivity" if they seem likely
2977              ** to be true for half or more of the rows in the table.
2978              ** See tag-202002240-1 */
2979              && pNew->nOut+10 > pProbe->aiRowLogEst[0]
2980             ){
2981 #if WHERETRACE_ENABLED /* 0x01 */
2982               if( sqlite3WhereTrace & 0x01 ){
2983                 sqlite3DebugPrintf(
2984                    "STAT4 determines term has low selectivity:\n");
2985                 sqlite3WhereTermPrint(pTerm, 999);
2986               }
2987 #endif
2988               pTerm->wtFlags |= TERM_HIGHTRUTH;
2989               if( pTerm->wtFlags & TERM_HEURTRUTH ){
2990                 /* If the term has previously been used with an assumption of
2991                 ** higher selectivity, then set the flag to rerun the
2992                 ** loop computations. */
2993                 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS;
2994               }
2995             }
2996             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
2997             pNew->nOut -= nIn;
2998           }
2999         }
3000         if( nOut==0 )
3001 #endif
3002         {
3003           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
3004           if( eOp & WO_ISNULL ){
3005             /* TUNING: If there is no likelihood() value, assume that a
3006             ** "col IS NULL" expression matches twice as many rows
3007             ** as (col=?). */
3008             pNew->nOut += 10;
3009           }
3010         }
3011       }
3012     }
3013 
3014     /* Set rCostIdx to the cost of visiting selected rows in index. Add
3015     ** it to pNew->rRun, which is currently set to the cost of the index
3016     ** seek only. Then, if this is a non-covering index, add the cost of
3017     ** visiting the rows in the main table.  */
3018     assert( pSrc->pTab->szTabRow>0 );
3019     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
3020     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
3021     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
3022       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
3023     }
3024     ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
3025 
3026     nOutUnadjusted = pNew->nOut;
3027     pNew->rRun += nInMul + nIn;
3028     pNew->nOut += nInMul + nIn;
3029     whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
3030     rc = whereLoopInsert(pBuilder, pNew);
3031 
3032     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
3033       pNew->nOut = saved_nOut;
3034     }else{
3035       pNew->nOut = nOutUnadjusted;
3036     }
3037 
3038     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
3039      && pNew->u.btree.nEq<pProbe->nColumn
3040      && (pNew->u.btree.nEq<pProbe->nKeyCol ||
3041            pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY)
3042     ){
3043       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
3044     }
3045     pNew->nOut = saved_nOut;
3046 #ifdef SQLITE_ENABLE_STAT4
3047     pBuilder->nRecValid = nRecValid;
3048 #endif
3049   }
3050   pNew->prereq = saved_prereq;
3051   pNew->u.btree.nEq = saved_nEq;
3052   pNew->u.btree.nBtm = saved_nBtm;
3053   pNew->u.btree.nTop = saved_nTop;
3054   pNew->nSkip = saved_nSkip;
3055   pNew->wsFlags = saved_wsFlags;
3056   pNew->nOut = saved_nOut;
3057   pNew->nLTerm = saved_nLTerm;
3058 
3059   /* Consider using a skip-scan if there are no WHERE clause constraints
3060   ** available for the left-most terms of the index, and if the average
3061   ** number of repeats in the left-most terms is at least 18.
3062   **
3063   ** The magic number 18 is selected on the basis that scanning 17 rows
3064   ** is almost always quicker than an index seek (even though if the index
3065   ** contains fewer than 2^17 rows we assume otherwise in other parts of
3066   ** the code). And, even if it is not, it should not be too much slower.
3067   ** On the other hand, the extra seeks could end up being significantly
3068   ** more expensive.  */
3069   assert( 42==sqlite3LogEst(18) );
3070   if( saved_nEq==saved_nSkip
3071    && saved_nEq+1<pProbe->nKeyCol
3072    && saved_nEq==pNew->nLTerm
3073    && pProbe->noSkipScan==0
3074    && pProbe->hasStat1!=0
3075    && OptimizationEnabled(db, SQLITE_SkipScan)
3076    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
3077    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
3078   ){
3079     LogEst nIter;
3080     pNew->u.btree.nEq++;
3081     pNew->nSkip++;
3082     pNew->aLTerm[pNew->nLTerm++] = 0;
3083     pNew->wsFlags |= WHERE_SKIPSCAN;
3084     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
3085     pNew->nOut -= nIter;
3086     /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
3087     ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
3088     nIter += 5;
3089     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
3090     pNew->nOut = saved_nOut;
3091     pNew->u.btree.nEq = saved_nEq;
3092     pNew->nSkip = saved_nSkip;
3093     pNew->wsFlags = saved_wsFlags;
3094   }
3095 
3096   WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
3097                       pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
3098   return rc;
3099 }
3100 
3101 /*
3102 ** Return True if it is possible that pIndex might be useful in
3103 ** implementing the ORDER BY clause in pBuilder.
3104 **
3105 ** Return False if pBuilder does not contain an ORDER BY clause or
3106 ** if there is no way for pIndex to be useful in implementing that
3107 ** ORDER BY clause.
3108 */
3109 static int indexMightHelpWithOrderBy(
3110   WhereLoopBuilder *pBuilder,
3111   Index *pIndex,
3112   int iCursor
3113 ){
3114   ExprList *pOB;
3115   ExprList *aColExpr;
3116   int ii, jj;
3117 
3118   if( pIndex->bUnordered ) return 0;
3119   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
3120   for(ii=0; ii<pOB->nExpr; ii++){
3121     Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr);
3122     if( NEVER(pExpr==0) ) continue;
3123     if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
3124       if( pExpr->iColumn<0 ) return 1;
3125       for(jj=0; jj<pIndex->nKeyCol; jj++){
3126         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
3127       }
3128     }else if( (aColExpr = pIndex->aColExpr)!=0 ){
3129       for(jj=0; jj<pIndex->nKeyCol; jj++){
3130         if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
3131         if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
3132           return 1;
3133         }
3134       }
3135     }
3136   }
3137   return 0;
3138 }
3139 
3140 /* Check to see if a partial index with pPartIndexWhere can be used
3141 ** in the current query.  Return true if it can be and false if not.
3142 */
3143 static int whereUsablePartialIndex(
3144   int iTab,             /* The table for which we want an index */
3145   int isLeft,           /* True if iTab is the right table of a LEFT JOIN */
3146   WhereClause *pWC,     /* The WHERE clause of the query */
3147   Expr *pWhere          /* The WHERE clause from the partial index */
3148 ){
3149   int i;
3150   WhereTerm *pTerm;
3151   Parse *pParse = pWC->pWInfo->pParse;
3152   while( pWhere->op==TK_AND ){
3153     if( !whereUsablePartialIndex(iTab,isLeft,pWC,pWhere->pLeft) ) return 0;
3154     pWhere = pWhere->pRight;
3155   }
3156   if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
3157   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
3158     Expr *pExpr;
3159     pExpr = pTerm->pExpr;
3160     if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
3161      && (isLeft==0 || ExprHasProperty(pExpr, EP_FromJoin))
3162      && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
3163      && (pTerm->wtFlags & TERM_VNULL)==0
3164     ){
3165       return 1;
3166     }
3167   }
3168   return 0;
3169 }
3170 
3171 /*
3172 ** Add all WhereLoop objects for a single table of the join where the table
3173 ** is identified by pBuilder->pNew->iTab.  That table is guaranteed to be
3174 ** a b-tree table, not a virtual table.
3175 **
3176 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
3177 ** are calculated as follows:
3178 **
3179 ** For a full scan, assuming the table (or index) contains nRow rows:
3180 **
3181 **     cost = nRow * 3.0                    // full-table scan
3182 **     cost = nRow * K                      // scan of covering index
3183 **     cost = nRow * (K+3.0)                // scan of non-covering index
3184 **
3185 ** where K is a value between 1.1 and 3.0 set based on the relative
3186 ** estimated average size of the index and table records.
3187 **
3188 ** For an index scan, where nVisit is the number of index rows visited
3189 ** by the scan, and nSeek is the number of seek operations required on
3190 ** the index b-tree:
3191 **
3192 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
3193 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
3194 **
3195 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
3196 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
3197 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
3198 **
3199 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
3200 ** of uncertainty.  For this reason, scoring is designed to pick plans that
3201 ** "do the least harm" if the estimates are inaccurate.  For example, a
3202 ** log(nRow) factor is omitted from a non-covering index scan in order to
3203 ** bias the scoring in favor of using an index, since the worst-case
3204 ** performance of using an index is far better than the worst-case performance
3205 ** of a full table scan.
3206 */
3207 static int whereLoopAddBtree(
3208   WhereLoopBuilder *pBuilder, /* WHERE clause information */
3209   Bitmask mPrereq             /* Extra prerequesites for using this table */
3210 ){
3211   WhereInfo *pWInfo;          /* WHERE analysis context */
3212   Index *pProbe;              /* An index we are evaluating */
3213   Index sPk;                  /* A fake index object for the primary key */
3214   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
3215   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
3216   SrcList *pTabList;          /* The FROM clause */
3217   SrcItem *pSrc;              /* The FROM clause btree term to add */
3218   WhereLoop *pNew;            /* Template WhereLoop object */
3219   int rc = SQLITE_OK;         /* Return code */
3220   int iSortIdx = 1;           /* Index number */
3221   int b;                      /* A boolean value */
3222   LogEst rSize;               /* number of rows in the table */
3223   WhereClause *pWC;           /* The parsed WHERE clause */
3224   Table *pTab;                /* Table being queried */
3225 
3226   pNew = pBuilder->pNew;
3227   pWInfo = pBuilder->pWInfo;
3228   pTabList = pWInfo->pTabList;
3229   pSrc = pTabList->a + pNew->iTab;
3230   pTab = pSrc->pTab;
3231   pWC = pBuilder->pWC;
3232   assert( !IsVirtual(pSrc->pTab) );
3233 
3234   if( pSrc->fg.isIndexedBy ){
3235     assert( pSrc->fg.isCte==0 );
3236     /* An INDEXED BY clause specifies a particular index to use */
3237     pProbe = pSrc->u2.pIBIndex;
3238   }else if( !HasRowid(pTab) ){
3239     pProbe = pTab->pIndex;
3240   }else{
3241     /* There is no INDEXED BY clause.  Create a fake Index object in local
3242     ** variable sPk to represent the rowid primary key index.  Make this
3243     ** fake index the first in a chain of Index objects with all of the real
3244     ** indices to follow */
3245     Index *pFirst;                  /* First of real indices on the table */
3246     memset(&sPk, 0, sizeof(Index));
3247     sPk.nKeyCol = 1;
3248     sPk.nColumn = 1;
3249     sPk.aiColumn = &aiColumnPk;
3250     sPk.aiRowLogEst = aiRowEstPk;
3251     sPk.onError = OE_Replace;
3252     sPk.pTable = pTab;
3253     sPk.szIdxRow = pTab->szTabRow;
3254     sPk.idxType = SQLITE_IDXTYPE_IPK;
3255     aiRowEstPk[0] = pTab->nRowLogEst;
3256     aiRowEstPk[1] = 0;
3257     pFirst = pSrc->pTab->pIndex;
3258     if( pSrc->fg.notIndexed==0 ){
3259       /* The real indices of the table are only considered if the
3260       ** NOT INDEXED qualifier is omitted from the FROM clause */
3261       sPk.pNext = pFirst;
3262     }
3263     pProbe = &sPk;
3264   }
3265   rSize = pTab->nRowLogEst;
3266 
3267 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
3268   /* Automatic indexes */
3269   if( !pBuilder->pOrSet      /* Not part of an OR optimization */
3270    && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
3271    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
3272    && !pSrc->fg.isIndexedBy  /* Has no INDEXED BY clause */
3273    && !pSrc->fg.notIndexed   /* Has no NOT INDEXED clause */
3274    && HasRowid(pTab)         /* Not WITHOUT ROWID table. (FIXME: Why not?) */
3275    && !pSrc->fg.isCorrelated /* Not a correlated subquery */
3276    && !pSrc->fg.isRecursive  /* Not a recursive common table expression. */
3277   ){
3278     /* Generate auto-index WhereLoops */
3279     LogEst rLogSize;         /* Logarithm of the number of rows in the table */
3280     WhereTerm *pTerm;
3281     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
3282     rLogSize = estLog(rSize);
3283     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
3284       if( pTerm->prereqRight & pNew->maskSelf ) continue;
3285       if( termCanDriveIndex(pTerm, pSrc, 0) ){
3286         pNew->u.btree.nEq = 1;
3287         pNew->nSkip = 0;
3288         pNew->u.btree.pIndex = 0;
3289         pNew->nLTerm = 1;
3290         pNew->aLTerm[0] = pTerm;
3291         /* TUNING: One-time cost for computing the automatic index is
3292         ** estimated to be X*N*log2(N) where N is the number of rows in
3293         ** the table being indexed and where X is 7 (LogEst=28) for normal
3294         ** tables or 0.5 (LogEst=-10) for views and subqueries.  The value
3295         ** of X is smaller for views and subqueries so that the query planner
3296         ** will be more aggressive about generating automatic indexes for
3297         ** those objects, since there is no opportunity to add schema
3298         ** indexes on subqueries and views. */
3299         pNew->rSetup = rLogSize + rSize;
3300         if( !IsView(pTab) && (pTab->tabFlags & TF_Ephemeral)==0 ){
3301           pNew->rSetup += 28;
3302         }else{
3303           pNew->rSetup -= 10;
3304         }
3305         ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
3306         if( pNew->rSetup<0 ) pNew->rSetup = 0;
3307         /* TUNING: Each index lookup yields 20 rows in the table.  This
3308         ** is more than the usual guess of 10 rows, since we have no way
3309         ** of knowing how selective the index will ultimately be.  It would
3310         ** not be unreasonable to make this value much larger. */
3311         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
3312         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
3313         pNew->wsFlags = WHERE_AUTO_INDEX;
3314         pNew->prereq = mPrereq | pTerm->prereqRight;
3315         rc = whereLoopInsert(pBuilder, pNew);
3316       }
3317     }
3318   }
3319 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
3320 
3321   /* Loop over all indices. If there was an INDEXED BY clause, then only
3322   ** consider index pProbe.  */
3323   for(; rc==SQLITE_OK && pProbe;
3324       pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++
3325   ){
3326     int isLeft = (pSrc->fg.jointype & JT_OUTER)!=0;
3327     if( pProbe->pPartIdxWhere!=0
3328      && !whereUsablePartialIndex(pSrc->iCursor, isLeft, pWC,
3329                                  pProbe->pPartIdxWhere)
3330     ){
3331       testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
3332       continue;  /* Partial index inappropriate for this query */
3333     }
3334     if( pProbe->bNoQuery ) continue;
3335     rSize = pProbe->aiRowLogEst[0];
3336     pNew->u.btree.nEq = 0;
3337     pNew->u.btree.nBtm = 0;
3338     pNew->u.btree.nTop = 0;
3339     pNew->nSkip = 0;
3340     pNew->nLTerm = 0;
3341     pNew->iSortIdx = 0;
3342     pNew->rSetup = 0;
3343     pNew->prereq = mPrereq;
3344     pNew->nOut = rSize;
3345     pNew->u.btree.pIndex = pProbe;
3346     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
3347 
3348     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
3349     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
3350     if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){
3351       /* Integer primary key index */
3352       pNew->wsFlags = WHERE_IPK;
3353 
3354       /* Full table scan */
3355       pNew->iSortIdx = b ? iSortIdx : 0;
3356       /* TUNING: Cost of full table scan is 3.0*N.  The 3.0 factor is an
3357       ** extra cost designed to discourage the use of full table scans,
3358       ** since index lookups have better worst-case performance if our
3359       ** stat guesses are wrong.  Reduce the 3.0 penalty slightly
3360       ** (to 2.75) if we have valid STAT4 information for the table.
3361       ** At 2.75, a full table scan is preferred over using an index on
3362       ** a column with just two distinct values where each value has about
3363       ** an equal number of appearances.  Without STAT4 data, we still want
3364       ** to use an index in that case, since the constraint might be for
3365       ** the scarcer of the two values, and in that case an index lookup is
3366       ** better.
3367       */
3368 #ifdef SQLITE_ENABLE_STAT4
3369       pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0);
3370 #else
3371       pNew->rRun = rSize + 16;
3372 #endif
3373       ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3374       whereLoopOutputAdjust(pWC, pNew, rSize);
3375       rc = whereLoopInsert(pBuilder, pNew);
3376       pNew->nOut = rSize;
3377       if( rc ) break;
3378     }else{
3379       Bitmask m;
3380       if( pProbe->isCovering ){
3381         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
3382         m = 0;
3383       }else{
3384         m = pSrc->colUsed & pProbe->colNotIdxed;
3385         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
3386       }
3387 
3388       /* Full scan via index */
3389       if( b
3390        || !HasRowid(pTab)
3391        || pProbe->pPartIdxWhere!=0
3392        || pSrc->fg.isIndexedBy
3393        || ( m==0
3394          && pProbe->bUnordered==0
3395          && (pProbe->szIdxRow<pTab->szTabRow)
3396          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
3397          && sqlite3GlobalConfig.bUseCis
3398          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
3399           )
3400       ){
3401         pNew->iSortIdx = b ? iSortIdx : 0;
3402 
3403         /* The cost of visiting the index rows is N*K, where K is
3404         ** between 1.1 and 3.0, depending on the relative sizes of the
3405         ** index and table rows. */
3406         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
3407         if( m!=0 ){
3408           /* If this is a non-covering index scan, add in the cost of
3409           ** doing table lookups.  The cost will be 3x the number of
3410           ** lookups.  Take into account WHERE clause terms that can be
3411           ** satisfied using just the index, and that do not require a
3412           ** table lookup. */
3413           LogEst nLookup = rSize + 16;  /* Base cost:  N*3 */
3414           int ii;
3415           int iCur = pSrc->iCursor;
3416           WhereClause *pWC2 = &pWInfo->sWC;
3417           for(ii=0; ii<pWC2->nTerm; ii++){
3418             WhereTerm *pTerm = &pWC2->a[ii];
3419             if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
3420               break;
3421             }
3422             /* pTerm can be evaluated using just the index.  So reduce
3423             ** the expected number of table lookups accordingly */
3424             if( pTerm->truthProb<=0 ){
3425               nLookup += pTerm->truthProb;
3426             }else{
3427               nLookup--;
3428               if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
3429             }
3430           }
3431 
3432           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
3433         }
3434         ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3435         whereLoopOutputAdjust(pWC, pNew, rSize);
3436         rc = whereLoopInsert(pBuilder, pNew);
3437         pNew->nOut = rSize;
3438         if( rc ) break;
3439       }
3440     }
3441 
3442     pBuilder->bldFlags1 = 0;
3443     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
3444     if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){
3445       /* If a non-unique index is used, or if a prefix of the key for
3446       ** unique index is used (making the index functionally non-unique)
3447       ** then the sqlite_stat1 data becomes important for scoring the
3448       ** plan */
3449       pTab->tabFlags |= TF_StatsUsed;
3450     }
3451 #ifdef SQLITE_ENABLE_STAT4
3452     sqlite3Stat4ProbeFree(pBuilder->pRec);
3453     pBuilder->nRecValid = 0;
3454     pBuilder->pRec = 0;
3455 #endif
3456   }
3457   return rc;
3458 }
3459 
3460 #ifndef SQLITE_OMIT_VIRTUALTABLE
3461 
3462 /*
3463 ** Return true if pTerm is a virtual table LIMIT or OFFSET term.
3464 */
3465 static int isLimitTerm(WhereTerm *pTerm){
3466   assert( pTerm->eOperator==WO_AUX || pTerm->eMatchOp==0 );
3467   return pTerm->eMatchOp>=SQLITE_INDEX_CONSTRAINT_LIMIT
3468       && pTerm->eMatchOp<=SQLITE_INDEX_CONSTRAINT_OFFSET;
3469 }
3470 
3471 /*
3472 ** Argument pIdxInfo is already populated with all constraints that may
3473 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3474 ** function marks a subset of those constraints usable, invokes the
3475 ** xBestIndex method and adds the returned plan to pBuilder.
3476 **
3477 ** A constraint is marked usable if:
3478 **
3479 **   * Argument mUsable indicates that its prerequisites are available, and
3480 **
3481 **   * It is not one of the operators specified in the mExclude mask passed
3482 **     as the fourth argument (which in practice is either WO_IN or 0).
3483 **
3484 ** Argument mPrereq is a mask of tables that must be scanned before the
3485 ** virtual table in question. These are added to the plans prerequisites
3486 ** before it is added to pBuilder.
3487 **
3488 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3489 ** uses one or more WO_IN terms, or false otherwise.
3490 */
3491 static int whereLoopAddVirtualOne(
3492   WhereLoopBuilder *pBuilder,
3493   Bitmask mPrereq,                /* Mask of tables that must be used. */
3494   Bitmask mUsable,                /* Mask of usable tables */
3495   u16 mExclude,                   /* Exclude terms using these operators */
3496   sqlite3_index_info *pIdxInfo,   /* Populated object for xBestIndex */
3497   u16 mNoOmit,                    /* Do not omit these constraints */
3498   int *pbIn,                      /* OUT: True if plan uses an IN(...) op */
3499   int *pbRetryLimit               /* OUT: Retry without LIMIT/OFFSET */
3500 ){
3501   WhereClause *pWC = pBuilder->pWC;
3502   struct sqlite3_index_constraint *pIdxCons;
3503   struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3504   int i;
3505   int mxTerm;
3506   int rc = SQLITE_OK;
3507   WhereLoop *pNew = pBuilder->pNew;
3508   Parse *pParse = pBuilder->pWInfo->pParse;
3509   SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3510   int nConstraint = pIdxInfo->nConstraint;
3511 
3512   assert( (mUsable & mPrereq)==mPrereq );
3513   *pbIn = 0;
3514   pNew->prereq = mPrereq;
3515 
3516   /* Set the usable flag on the subset of constraints identified by
3517   ** arguments mUsable and mExclude. */
3518   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3519   for(i=0; i<nConstraint; i++, pIdxCons++){
3520     WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3521     pIdxCons->usable = 0;
3522     if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3523      && (pTerm->eOperator & mExclude)==0
3524      && (pbRetryLimit || !isLimitTerm(pTerm))
3525     ){
3526       pIdxCons->usable = 1;
3527     }
3528   }
3529 
3530   /* Initialize the output fields of the sqlite3_index_info structure */
3531   memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3532   assert( pIdxInfo->needToFreeIdxStr==0 );
3533   pIdxInfo->idxStr = 0;
3534   pIdxInfo->idxNum = 0;
3535   pIdxInfo->orderByConsumed = 0;
3536   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3537   pIdxInfo->estimatedRows = 25;
3538   pIdxInfo->idxFlags = 0;
3539   pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3540 
3541   /* Invoke the virtual table xBestIndex() method */
3542   rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3543   if( rc ){
3544     if( rc==SQLITE_CONSTRAINT ){
3545       /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
3546       ** that the particular combination of parameters provided is unusable.
3547       ** Make no entries in the loop table.
3548       */
3549       WHERETRACE(0xffff, ("  ^^^^--- non-viable plan rejected!\n"));
3550       return SQLITE_OK;
3551     }
3552     return rc;
3553   }
3554 
3555   mxTerm = -1;
3556   assert( pNew->nLSlot>=nConstraint );
3557   memset(pNew->aLTerm, 0, sizeof(pNew->aLTerm[0])*nConstraint );
3558   memset(&pNew->u.vtab, 0, sizeof(pNew->u.vtab));
3559   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3560   for(i=0; i<nConstraint; i++, pIdxCons++){
3561     int iTerm;
3562     if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3563       WhereTerm *pTerm;
3564       int j = pIdxCons->iTermOffset;
3565       if( iTerm>=nConstraint
3566        || j<0
3567        || j>=pWC->nTerm
3568        || pNew->aLTerm[iTerm]!=0
3569        || pIdxCons->usable==0
3570       ){
3571         sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3572         testcase( pIdxInfo->needToFreeIdxStr );
3573         return SQLITE_ERROR;
3574       }
3575       testcase( iTerm==nConstraint-1 );
3576       testcase( j==0 );
3577       testcase( j==pWC->nTerm-1 );
3578       pTerm = &pWC->a[j];
3579       pNew->prereq |= pTerm->prereqRight;
3580       assert( iTerm<pNew->nLSlot );
3581       pNew->aLTerm[iTerm] = pTerm;
3582       if( iTerm>mxTerm ) mxTerm = iTerm;
3583       testcase( iTerm==15 );
3584       testcase( iTerm==16 );
3585       if( pUsage[i].omit ){
3586         if( i<16 && ((1<<i)&mNoOmit)==0 ){
3587           testcase( i!=iTerm );
3588           pNew->u.vtab.omitMask |= 1<<iTerm;
3589         }else{
3590           testcase( i!=iTerm );
3591         }
3592         if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET ){
3593           pNew->u.vtab.bOmitOffset = 1;
3594         }
3595       }
3596       if( (pTerm->eOperator & WO_IN)!=0 ){
3597         /* A virtual table that is constrained by an IN clause may not
3598         ** consume the ORDER BY clause because (1) the order of IN terms
3599         ** is not necessarily related to the order of output terms and
3600         ** (2) Multiple outputs from a single IN value will not merge
3601         ** together.  */
3602         pIdxInfo->orderByConsumed = 0;
3603         pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3604         *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3605       }
3606 
3607       if( isLimitTerm(pTerm) && *pbIn ){
3608         /* If there is an IN(...) term handled as an == (separate call to
3609         ** xFilter for each value on the RHS of the IN) and a LIMIT or
3610         ** OFFSET term handled as well, the plan is unusable. Set output
3611         ** variable *pbRetryLimit to true to tell the caller to retry with
3612         ** LIMIT and OFFSET disabled. */
3613         if( pIdxInfo->needToFreeIdxStr ){
3614           sqlite3_free(pIdxInfo->idxStr);
3615           pIdxInfo->idxStr = 0;
3616           pIdxInfo->needToFreeIdxStr = 0;
3617         }
3618         *pbRetryLimit = 1;
3619         return SQLITE_OK;
3620       }
3621     }
3622   }
3623 
3624   pNew->nLTerm = mxTerm+1;
3625   for(i=0; i<=mxTerm; i++){
3626     if( pNew->aLTerm[i]==0 ){
3627       /* The non-zero argvIdx values must be contiguous.  Raise an
3628       ** error if they are not */
3629       sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3630       testcase( pIdxInfo->needToFreeIdxStr );
3631       return SQLITE_ERROR;
3632     }
3633   }
3634   assert( pNew->nLTerm<=pNew->nLSlot );
3635   pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3636   pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3637   pIdxInfo->needToFreeIdxStr = 0;
3638   pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3639   pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3640       pIdxInfo->nOrderBy : 0);
3641   pNew->rSetup = 0;
3642   pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3643   pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3644 
3645   /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3646   ** that the scan will visit at most one row. Clear it otherwise. */
3647   if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3648     pNew->wsFlags |= WHERE_ONEROW;
3649   }else{
3650     pNew->wsFlags &= ~WHERE_ONEROW;
3651   }
3652   rc = whereLoopInsert(pBuilder, pNew);
3653   if( pNew->u.vtab.needFree ){
3654     sqlite3_free(pNew->u.vtab.idxStr);
3655     pNew->u.vtab.needFree = 0;
3656   }
3657   WHERETRACE(0xffff, ("  bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3658                       *pbIn, (sqlite3_uint64)mPrereq,
3659                       (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3660 
3661   return rc;
3662 }
3663 
3664 /*
3665 ** Return the collating sequence for a constraint passed into xBestIndex.
3666 **
3667 ** pIdxInfo must be an sqlite3_index_info structure passed into xBestIndex.
3668 ** This routine depends on there being a HiddenIndexInfo structure immediately
3669 ** following the sqlite3_index_info structure.
3670 **
3671 ** Return a pointer to the collation name:
3672 **
3673 **    1. If there is an explicit COLLATE operator on the constaint, return it.
3674 **
3675 **    2. Else, if the column has an alternative collation, return that.
3676 **
3677 **    3. Otherwise, return "BINARY".
3678 */
3679 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
3680   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3681   const char *zRet = 0;
3682   if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
3683     CollSeq *pC = 0;
3684     int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
3685     Expr *pX = pHidden->pWC->a[iTerm].pExpr;
3686     if( pX->pLeft ){
3687       pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX);
3688     }
3689     zRet = (pC ? pC->zName : sqlite3StrBINARY);
3690   }
3691   return zRet;
3692 }
3693 
3694 /*
3695 ** This interface is callable from within the xBestIndex callback only.
3696 **
3697 ** If possible, set (*ppVal) to point to an object containing the value
3698 ** on the right-hand-side of constraint iCons.
3699 */
3700 int sqlite3_vtab_rhs_value(
3701   sqlite3_index_info *pIdxInfo,   /* Copy of first argument to xBestIndex */
3702   int iCons,                      /* Constraint for which RHS is wanted */
3703   sqlite3_value **ppVal           /* Write value extracted here */
3704 ){
3705   HiddenIndexInfo *pH = (HiddenIndexInfo*)&pIdxInfo[1];
3706   sqlite3_value *pVal = 0;
3707   int rc = SQLITE_OK;
3708   if( iCons<0 || iCons>=pIdxInfo->nConstraint ){
3709     rc = SQLITE_MISUSE; /* EV: R-30545-25046 */
3710   }else{
3711     if( pH->aRhs[iCons]==0 ){
3712       WhereTerm *pTerm = &pH->pWC->a[pIdxInfo->aConstraint[iCons].iTermOffset];
3713       rc = sqlite3ValueFromExpr(
3714           pH->pParse->db, pTerm->pExpr->pRight, ENC(pH->pParse->db),
3715           SQLITE_AFF_BLOB, &pH->aRhs[iCons]
3716       );
3717       testcase( rc!=SQLITE_OK );
3718     }
3719     pVal = pH->aRhs[iCons];
3720   }
3721   *ppVal = pVal;
3722 
3723   if( rc==SQLITE_OK && pVal==0 ){  /* IMP: R-19933-32160 */
3724     rc = SQLITE_NOTFOUND;          /* IMP: R-36424-56542 */
3725   }
3726 
3727   return rc;
3728 }
3729 
3730 
3731 /*
3732 ** Return true if ORDER BY clause may be handled as DISTINCT.
3733 */
3734 int sqlite3_vtab_distinct(sqlite3_index_info *pIdxInfo){
3735   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3736   assert( pHidden->eDistinct==0
3737        || pHidden->eDistinct==1
3738        || pHidden->eDistinct==2 );
3739   return pHidden->eDistinct;
3740 }
3741 
3742 /*
3743 ** Add all WhereLoop objects for a table of the join identified by
3744 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
3745 **
3746 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3747 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3748 ** entries that occur before the virtual table in the FROM clause and are
3749 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3750 ** mUnusable mask contains all FROM clause entries that occur after the
3751 ** virtual table and are separated from it by at least one LEFT or
3752 ** CROSS JOIN.
3753 **
3754 ** For example, if the query were:
3755 **
3756 **   ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3757 **
3758 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3759 **
3760 ** All the tables in mPrereq must be scanned before the current virtual
3761 ** table. So any terms for which all prerequisites are satisfied by
3762 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3763 ** Conversely, all tables in mUnusable must be scanned after the current
3764 ** virtual table, so any terms for which the prerequisites overlap with
3765 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3766 */
3767 static int whereLoopAddVirtual(
3768   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
3769   Bitmask mPrereq,             /* Tables that must be scanned before this one */
3770   Bitmask mUnusable            /* Tables that must be scanned after this one */
3771 ){
3772   int rc = SQLITE_OK;          /* Return code */
3773   WhereInfo *pWInfo;           /* WHERE analysis context */
3774   Parse *pParse;               /* The parsing context */
3775   WhereClause *pWC;            /* The WHERE clause */
3776   SrcItem *pSrc;               /* The FROM clause term to search */
3777   sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
3778   int nConstraint;             /* Number of constraints in p */
3779   int bIn;                     /* True if plan uses IN(...) operator */
3780   WhereLoop *pNew;
3781   Bitmask mBest;               /* Tables used by best possible plan */
3782   u16 mNoOmit;
3783   int bRetry = 0;              /* True to retry with LIMIT/OFFSET disabled */
3784 
3785   assert( (mPrereq & mUnusable)==0 );
3786   pWInfo = pBuilder->pWInfo;
3787   pParse = pWInfo->pParse;
3788   pWC = pBuilder->pWC;
3789   pNew = pBuilder->pNew;
3790   pSrc = &pWInfo->pTabList->a[pNew->iTab];
3791   assert( IsVirtual(pSrc->pTab) );
3792   p = allocateIndexInfo(pWInfo, pWC, mUnusable, pSrc, &mNoOmit);
3793   if( p==0 ) return SQLITE_NOMEM_BKPT;
3794   pNew->rSetup = 0;
3795   pNew->wsFlags = WHERE_VIRTUALTABLE;
3796   pNew->nLTerm = 0;
3797   pNew->u.vtab.needFree = 0;
3798   nConstraint = p->nConstraint;
3799   if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3800     freeIndexInfo(pParse->db, p);
3801     return SQLITE_NOMEM_BKPT;
3802   }
3803 
3804   /* First call xBestIndex() with all constraints usable. */
3805   WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
3806   WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
3807   rc = whereLoopAddVirtualOne(
3808       pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, &bRetry
3809   );
3810   if( bRetry ){
3811     assert( rc==SQLITE_OK );
3812     rc = whereLoopAddVirtualOne(
3813         pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, 0
3814     );
3815   }
3816 
3817   /* If the call to xBestIndex() with all terms enabled produced a plan
3818   ** that does not require any source tables (IOW: a plan with mBest==0)
3819   ** and does not use an IN(...) operator, then there is no point in making
3820   ** any further calls to xBestIndex() since they will all return the same
3821   ** result (if the xBestIndex() implementation is sane). */
3822   if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){
3823     int seenZero = 0;             /* True if a plan with no prereqs seen */
3824     int seenZeroNoIN = 0;         /* Plan with no prereqs and no IN(...) seen */
3825     Bitmask mPrev = 0;
3826     Bitmask mBestNoIn = 0;
3827 
3828     /* If the plan produced by the earlier call uses an IN(...) term, call
3829     ** xBestIndex again, this time with IN(...) terms disabled. */
3830     if( bIn ){
3831       WHERETRACE(0x40, ("  VirtualOne: all usable w/o IN\n"));
3832       rc = whereLoopAddVirtualOne(
3833           pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn, 0);
3834       assert( bIn==0 );
3835       mBestNoIn = pNew->prereq & ~mPrereq;
3836       if( mBestNoIn==0 ){
3837         seenZero = 1;
3838         seenZeroNoIN = 1;
3839       }
3840     }
3841 
3842     /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3843     ** in the set of terms that apply to the current virtual table.  */
3844     while( rc==SQLITE_OK ){
3845       int i;
3846       Bitmask mNext = ALLBITS;
3847       assert( mNext>0 );
3848       for(i=0; i<nConstraint; i++){
3849         Bitmask mThis = (
3850             pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3851         );
3852         if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3853       }
3854       mPrev = mNext;
3855       if( mNext==ALLBITS ) break;
3856       if( mNext==mBest || mNext==mBestNoIn ) continue;
3857       WHERETRACE(0x40, ("  VirtualOne: mPrev=%04llx mNext=%04llx\n",
3858                        (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3859       rc = whereLoopAddVirtualOne(
3860           pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn, 0);
3861       if( pNew->prereq==mPrereq ){
3862         seenZero = 1;
3863         if( bIn==0 ) seenZeroNoIN = 1;
3864       }
3865     }
3866 
3867     /* If the calls to xBestIndex() in the above loop did not find a plan
3868     ** that requires no source tables at all (i.e. one guaranteed to be
3869     ** usable), make a call here with all source tables disabled */
3870     if( rc==SQLITE_OK && seenZero==0 ){
3871       WHERETRACE(0x40, ("  VirtualOne: all disabled\n"));
3872       rc = whereLoopAddVirtualOne(
3873           pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn, 0);
3874       if( bIn==0 ) seenZeroNoIN = 1;
3875     }
3876 
3877     /* If the calls to xBestIndex() have so far failed to find a plan
3878     ** that requires no source tables at all and does not use an IN(...)
3879     ** operator, make a final call to obtain one here.  */
3880     if( rc==SQLITE_OK && seenZeroNoIN==0 ){
3881       WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
3882       rc = whereLoopAddVirtualOne(
3883           pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn, 0);
3884     }
3885   }
3886 
3887   if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
3888   freeIndexInfo(pParse->db, p);
3889   WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
3890   return rc;
3891 }
3892 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3893 
3894 /*
3895 ** Add WhereLoop entries to handle OR terms.  This works for either
3896 ** btrees or virtual tables.
3897 */
3898 static int whereLoopAddOr(
3899   WhereLoopBuilder *pBuilder,
3900   Bitmask mPrereq,
3901   Bitmask mUnusable
3902 ){
3903   WhereInfo *pWInfo = pBuilder->pWInfo;
3904   WhereClause *pWC;
3905   WhereLoop *pNew;
3906   WhereTerm *pTerm, *pWCEnd;
3907   int rc = SQLITE_OK;
3908   int iCur;
3909   WhereClause tempWC;
3910   WhereLoopBuilder sSubBuild;
3911   WhereOrSet sSum, sCur;
3912   SrcItem *pItem;
3913 
3914   pWC = pBuilder->pWC;
3915   pWCEnd = pWC->a + pWC->nTerm;
3916   pNew = pBuilder->pNew;
3917   memset(&sSum, 0, sizeof(sSum));
3918   pItem = pWInfo->pTabList->a + pNew->iTab;
3919   iCur = pItem->iCursor;
3920 
3921   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
3922     if( (pTerm->eOperator & WO_OR)!=0
3923      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
3924     ){
3925       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
3926       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
3927       WhereTerm *pOrTerm;
3928       int once = 1;
3929       int i, j;
3930 
3931       sSubBuild = *pBuilder;
3932       sSubBuild.pOrSet = &sCur;
3933 
3934       WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
3935       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
3936         if( (pOrTerm->eOperator & WO_AND)!=0 ){
3937           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
3938         }else if( pOrTerm->leftCursor==iCur ){
3939           tempWC.pWInfo = pWC->pWInfo;
3940           tempWC.pOuter = pWC;
3941           tempWC.op = TK_AND;
3942           tempWC.nTerm = 1;
3943           tempWC.nBase = 1;
3944           tempWC.a = pOrTerm;
3945           sSubBuild.pWC = &tempWC;
3946         }else{
3947           continue;
3948         }
3949         sCur.n = 0;
3950 #ifdef WHERETRACE_ENABLED
3951         WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3952                    (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
3953         if( sqlite3WhereTrace & 0x400 ){
3954           sqlite3WhereClausePrint(sSubBuild.pWC);
3955         }
3956 #endif
3957 #ifndef SQLITE_OMIT_VIRTUALTABLE
3958         if( IsVirtual(pItem->pTab) ){
3959           rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
3960         }else
3961 #endif
3962         {
3963           rc = whereLoopAddBtree(&sSubBuild, mPrereq);
3964         }
3965         if( rc==SQLITE_OK ){
3966           rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
3967         }
3968         assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0
3969                 || rc==SQLITE_NOMEM );
3970         testcase( rc==SQLITE_NOMEM && sCur.n>0 );
3971         testcase( rc==SQLITE_DONE );
3972         if( sCur.n==0 ){
3973           sSum.n = 0;
3974           break;
3975         }else if( once ){
3976           whereOrMove(&sSum, &sCur);
3977           once = 0;
3978         }else{
3979           WhereOrSet sPrev;
3980           whereOrMove(&sPrev, &sSum);
3981           sSum.n = 0;
3982           for(i=0; i<sPrev.n; i++){
3983             for(j=0; j<sCur.n; j++){
3984               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
3985                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
3986                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
3987             }
3988           }
3989         }
3990       }
3991       pNew->nLTerm = 1;
3992       pNew->aLTerm[0] = pTerm;
3993       pNew->wsFlags = WHERE_MULTI_OR;
3994       pNew->rSetup = 0;
3995       pNew->iSortIdx = 0;
3996       memset(&pNew->u, 0, sizeof(pNew->u));
3997       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
3998         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
3999         ** of all sub-scans required by the OR-scan. However, due to rounding
4000         ** errors, it may be that the cost of the OR-scan is equal to its
4001         ** most expensive sub-scan. Add the smallest possible penalty
4002         ** (equivalent to multiplying the cost by 1.07) to ensure that
4003         ** this does not happen. Otherwise, for WHERE clauses such as the
4004         ** following where there is an index on "y":
4005         **
4006         **     WHERE likelihood(x=?, 0.99) OR y=?
4007         **
4008         ** the planner may elect to "OR" together a full-table scan and an
4009         ** index lookup. And other similarly odd results.  */
4010         pNew->rRun = sSum.a[i].rRun + 1;
4011         pNew->nOut = sSum.a[i].nOut;
4012         pNew->prereq = sSum.a[i].prereq;
4013         rc = whereLoopInsert(pBuilder, pNew);
4014       }
4015       WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
4016     }
4017   }
4018   return rc;
4019 }
4020 
4021 /*
4022 ** Add all WhereLoop objects for all tables
4023 */
4024 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
4025   WhereInfo *pWInfo = pBuilder->pWInfo;
4026   Bitmask mPrereq = 0;
4027   Bitmask mPrior = 0;
4028   int iTab;
4029   SrcList *pTabList = pWInfo->pTabList;
4030   SrcItem *pItem;
4031   SrcItem *pEnd = &pTabList->a[pWInfo->nLevel];
4032   sqlite3 *db = pWInfo->pParse->db;
4033   int rc = SQLITE_OK;
4034   WhereLoop *pNew;
4035 
4036   /* Loop over the tables in the join, from left to right */
4037   pNew = pBuilder->pNew;
4038   whereLoopInit(pNew);
4039   pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT;
4040   for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
4041     Bitmask mUnusable = 0;
4042     pNew->iTab = iTab;
4043     pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR;
4044     pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
4045     if( (pItem->fg.jointype & (JT_LEFT|JT_CROSS))!=0 ){
4046       /* This condition is true when pItem is the FROM clause term on the
4047       ** right-hand-side of a LEFT or CROSS JOIN.  */
4048       mPrereq = mPrior;
4049     }else{
4050       mPrereq = 0;
4051     }
4052 #ifndef SQLITE_OMIT_VIRTUALTABLE
4053     if( IsVirtual(pItem->pTab) ){
4054       SrcItem *p;
4055       for(p=&pItem[1]; p<pEnd; p++){
4056         if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
4057           mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
4058         }
4059       }
4060       rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
4061     }else
4062 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4063     {
4064       rc = whereLoopAddBtree(pBuilder, mPrereq);
4065     }
4066     if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
4067       rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
4068     }
4069     mPrior |= pNew->maskSelf;
4070     if( rc || db->mallocFailed ){
4071       if( rc==SQLITE_DONE ){
4072         /* We hit the query planner search limit set by iPlanLimit */
4073         sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search");
4074         rc = SQLITE_OK;
4075       }else{
4076         break;
4077       }
4078     }
4079   }
4080 
4081   whereLoopClear(db, pNew);
4082   return rc;
4083 }
4084 
4085 /*
4086 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
4087 ** parameters) to see if it outputs rows in the requested ORDER BY
4088 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
4089 **
4090 **   N>0:   N terms of the ORDER BY clause are satisfied
4091 **   N==0:  No terms of the ORDER BY clause are satisfied
4092 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
4093 **
4094 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
4095 ** strict.  With GROUP BY and DISTINCT the only requirement is that
4096 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
4097 ** and DISTINCT do not require rows to appear in any particular order as long
4098 ** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT
4099 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
4100 ** pOrderBy terms must be matched in strict left-to-right order.
4101 */
4102 static i8 wherePathSatisfiesOrderBy(
4103   WhereInfo *pWInfo,    /* The WHERE clause */
4104   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
4105   WherePath *pPath,     /* The WherePath to check */
4106   u16 wctrlFlags,       /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
4107   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
4108   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
4109   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
4110 ){
4111   u8 revSet;            /* True if rev is known */
4112   u8 rev;               /* Composite sort order */
4113   u8 revIdx;            /* Index sort order */
4114   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
4115   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
4116   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
4117   u16 eqOpMask;         /* Allowed equality operators */
4118   u16 nKeyCol;          /* Number of key columns in pIndex */
4119   u16 nColumn;          /* Total number of ordered columns in the index */
4120   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
4121   int iLoop;            /* Index of WhereLoop in pPath being processed */
4122   int i, j;             /* Loop counters */
4123   int iCur;             /* Cursor number for current WhereLoop */
4124   int iColumn;          /* A column number within table iCur */
4125   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
4126   WhereTerm *pTerm;     /* A single term of the WHERE clause */
4127   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
4128   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
4129   Index *pIndex;        /* The index associated with pLoop */
4130   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
4131   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
4132   Bitmask obDone;       /* Mask of all ORDER BY terms */
4133   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
4134   Bitmask ready;              /* Mask of inner loops */
4135 
4136   /*
4137   ** We say the WhereLoop is "one-row" if it generates no more than one
4138   ** row of output.  A WhereLoop is one-row if all of the following are true:
4139   **  (a) All index columns match with WHERE_COLUMN_EQ.
4140   **  (b) The index is unique
4141   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
4142   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
4143   **
4144   ** We say the WhereLoop is "order-distinct" if the set of columns from
4145   ** that WhereLoop that are in the ORDER BY clause are different for every
4146   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
4147   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
4148   ** is not order-distinct. To be order-distinct is not quite the same as being
4149   ** UNIQUE since a UNIQUE column or index can have multiple rows that
4150   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
4151   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
4152   **
4153   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
4154   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
4155   ** automatically order-distinct.
4156   */
4157 
4158   assert( pOrderBy!=0 );
4159   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
4160 
4161   nOrderBy = pOrderBy->nExpr;
4162   testcase( nOrderBy==BMS-1 );
4163   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
4164   isOrderDistinct = 1;
4165   obDone = MASKBIT(nOrderBy)-1;
4166   orderDistinctMask = 0;
4167   ready = 0;
4168   eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
4169   if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){
4170     eqOpMask |= WO_IN;
4171   }
4172   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
4173     if( iLoop>0 ) ready |= pLoop->maskSelf;
4174     if( iLoop<nLoop ){
4175       pLoop = pPath->aLoop[iLoop];
4176       if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
4177     }else{
4178       pLoop = pLast;
4179     }
4180     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
4181       if( pLoop->u.vtab.isOrdered && (wctrlFlags & WHERE_DISTINCTBY)==0 ){
4182         obSat = obDone;
4183       }
4184       break;
4185     }else if( wctrlFlags & WHERE_DISTINCTBY ){
4186       pLoop->u.btree.nDistinctCol = 0;
4187     }
4188     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
4189 
4190     /* Mark off any ORDER BY term X that is a column in the table of
4191     ** the current loop for which there is term in the WHERE
4192     ** clause of the form X IS NULL or X=? that reference only outer
4193     ** loops.
4194     */
4195     for(i=0; i<nOrderBy; i++){
4196       if( MASKBIT(i) & obSat ) continue;
4197       pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
4198       if( NEVER(pOBExpr==0) ) continue;
4199       if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
4200       if( pOBExpr->iTable!=iCur ) continue;
4201       pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
4202                        ~ready, eqOpMask, 0);
4203       if( pTerm==0 ) continue;
4204       if( pTerm->eOperator==WO_IN ){
4205         /* IN terms are only valid for sorting in the ORDER BY LIMIT
4206         ** optimization, and then only if they are actually used
4207         ** by the query plan */
4208         assert( wctrlFlags &
4209                (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) );
4210         for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
4211         if( j>=pLoop->nLTerm ) continue;
4212       }
4213       if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
4214         Parse *pParse = pWInfo->pParse;
4215         CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr);
4216         CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr);
4217         assert( pColl1 );
4218         if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){
4219           continue;
4220         }
4221         testcase( pTerm->pExpr->op==TK_IS );
4222       }
4223       obSat |= MASKBIT(i);
4224     }
4225 
4226     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
4227       if( pLoop->wsFlags & WHERE_IPK ){
4228         pIndex = 0;
4229         nKeyCol = 0;
4230         nColumn = 1;
4231       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
4232         return 0;
4233       }else{
4234         nKeyCol = pIndex->nKeyCol;
4235         nColumn = pIndex->nColumn;
4236         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
4237         assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
4238                           || !HasRowid(pIndex->pTable));
4239         /* All relevant terms of the index must also be non-NULL in order
4240         ** for isOrderDistinct to be true.  So the isOrderDistint value
4241         ** computed here might be a false positive.  Corrections will be
4242         ** made at tag-20210426-1 below */
4243         isOrderDistinct = IsUniqueIndex(pIndex)
4244                           && (pLoop->wsFlags & WHERE_SKIPSCAN)==0;
4245       }
4246 
4247       /* Loop through all columns of the index and deal with the ones
4248       ** that are not constrained by == or IN.
4249       */
4250       rev = revSet = 0;
4251       distinctColumns = 0;
4252       for(j=0; j<nColumn; j++){
4253         u8 bOnce = 1; /* True to run the ORDER BY search loop */
4254 
4255         assert( j>=pLoop->u.btree.nEq
4256             || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
4257         );
4258         if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
4259           u16 eOp = pLoop->aLTerm[j]->eOperator;
4260 
4261           /* Skip over == and IS and ISNULL terms.  (Also skip IN terms when
4262           ** doing WHERE_ORDERBY_LIMIT processing).  Except, IS and ISNULL
4263           ** terms imply that the index is not UNIQUE NOT NULL in which case
4264           ** the loop need to be marked as not order-distinct because it can
4265           ** have repeated NULL rows.
4266           **
4267           ** If the current term is a column of an ((?,?) IN (SELECT...))
4268           ** expression for which the SELECT returns more than one column,
4269           ** check that it is the only column used by this loop. Otherwise,
4270           ** if it is one of two or more, none of the columns can be
4271           ** considered to match an ORDER BY term.
4272           */
4273           if( (eOp & eqOpMask)!=0 ){
4274             if( eOp & (WO_ISNULL|WO_IS) ){
4275               testcase( eOp & WO_ISNULL );
4276               testcase( eOp & WO_IS );
4277               testcase( isOrderDistinct );
4278               isOrderDistinct = 0;
4279             }
4280             continue;
4281           }else if( ALWAYS(eOp & WO_IN) ){
4282             /* ALWAYS() justification: eOp is an equality operator due to the
4283             ** j<pLoop->u.btree.nEq constraint above.  Any equality other
4284             ** than WO_IN is captured by the previous "if".  So this one
4285             ** always has to be WO_IN. */
4286             Expr *pX = pLoop->aLTerm[j]->pExpr;
4287             for(i=j+1; i<pLoop->u.btree.nEq; i++){
4288               if( pLoop->aLTerm[i]->pExpr==pX ){
4289                 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
4290                 bOnce = 0;
4291                 break;
4292               }
4293             }
4294           }
4295         }
4296 
4297         /* Get the column number in the table (iColumn) and sort order
4298         ** (revIdx) for the j-th column of the index.
4299         */
4300         if( pIndex ){
4301           iColumn = pIndex->aiColumn[j];
4302           revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC;
4303           if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
4304         }else{
4305           iColumn = XN_ROWID;
4306           revIdx = 0;
4307         }
4308 
4309         /* An unconstrained column that might be NULL means that this
4310         ** WhereLoop is not well-ordered.  tag-20210426-1
4311         */
4312         if( isOrderDistinct ){
4313           if( iColumn>=0
4314            && j>=pLoop->u.btree.nEq
4315            && pIndex->pTable->aCol[iColumn].notNull==0
4316           ){
4317             isOrderDistinct = 0;
4318           }
4319           if( iColumn==XN_EXPR ){
4320             isOrderDistinct = 0;
4321           }
4322         }
4323 
4324         /* Find the ORDER BY term that corresponds to the j-th column
4325         ** of the index and mark that ORDER BY term off
4326         */
4327         isMatch = 0;
4328         for(i=0; bOnce && i<nOrderBy; i++){
4329           if( MASKBIT(i) & obSat ) continue;
4330           pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
4331           testcase( wctrlFlags & WHERE_GROUPBY );
4332           testcase( wctrlFlags & WHERE_DISTINCTBY );
4333           if( NEVER(pOBExpr==0) ) continue;
4334           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
4335           if( iColumn>=XN_ROWID ){
4336             if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
4337             if( pOBExpr->iTable!=iCur ) continue;
4338             if( pOBExpr->iColumn!=iColumn ) continue;
4339           }else{
4340             Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
4341             if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
4342               continue;
4343             }
4344           }
4345           if( iColumn!=XN_ROWID ){
4346             pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
4347             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
4348           }
4349           if( wctrlFlags & WHERE_DISTINCTBY ){
4350             pLoop->u.btree.nDistinctCol = j+1;
4351           }
4352           isMatch = 1;
4353           break;
4354         }
4355         if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
4356           /* Make sure the sort order is compatible in an ORDER BY clause.
4357           ** Sort order is irrelevant for a GROUP BY clause. */
4358           if( revSet ){
4359             if( (rev ^ revIdx)!=(pOrderBy->a[i].sortFlags&KEYINFO_ORDER_DESC) ){
4360               isMatch = 0;
4361             }
4362           }else{
4363             rev = revIdx ^ (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC);
4364             if( rev ) *pRevMask |= MASKBIT(iLoop);
4365             revSet = 1;
4366           }
4367         }
4368         if( isMatch && (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL) ){
4369           if( j==pLoop->u.btree.nEq ){
4370             pLoop->wsFlags |= WHERE_BIGNULL_SORT;
4371           }else{
4372             isMatch = 0;
4373           }
4374         }
4375         if( isMatch ){
4376           if( iColumn==XN_ROWID ){
4377             testcase( distinctColumns==0 );
4378             distinctColumns = 1;
4379           }
4380           obSat |= MASKBIT(i);
4381         }else{
4382           /* No match found */
4383           if( j==0 || j<nKeyCol ){
4384             testcase( isOrderDistinct!=0 );
4385             isOrderDistinct = 0;
4386           }
4387           break;
4388         }
4389       } /* end Loop over all index columns */
4390       if( distinctColumns ){
4391         testcase( isOrderDistinct==0 );
4392         isOrderDistinct = 1;
4393       }
4394     } /* end-if not one-row */
4395 
4396     /* Mark off any other ORDER BY terms that reference pLoop */
4397     if( isOrderDistinct ){
4398       orderDistinctMask |= pLoop->maskSelf;
4399       for(i=0; i<nOrderBy; i++){
4400         Expr *p;
4401         Bitmask mTerm;
4402         if( MASKBIT(i) & obSat ) continue;
4403         p = pOrderBy->a[i].pExpr;
4404         mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
4405         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
4406         if( (mTerm&~orderDistinctMask)==0 ){
4407           obSat |= MASKBIT(i);
4408         }
4409       }
4410     }
4411   } /* End the loop over all WhereLoops from outer-most down to inner-most */
4412   if( obSat==obDone ) return (i8)nOrderBy;
4413   if( !isOrderDistinct ){
4414     for(i=nOrderBy-1; i>0; i--){
4415       Bitmask m = ALWAYS(i<BMS) ? MASKBIT(i) - 1 : 0;
4416       if( (obSat&m)==m ) return i;
4417     }
4418     return 0;
4419   }
4420   return -1;
4421 }
4422 
4423 
4424 /*
4425 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
4426 ** the planner assumes that the specified pOrderBy list is actually a GROUP
4427 ** BY clause - and so any order that groups rows as required satisfies the
4428 ** request.
4429 **
4430 ** Normally, in this case it is not possible for the caller to determine
4431 ** whether or not the rows are really being delivered in sorted order, or
4432 ** just in some other order that provides the required grouping. However,
4433 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
4434 ** this function may be called on the returned WhereInfo object. It returns
4435 ** true if the rows really will be sorted in the specified order, or false
4436 ** otherwise.
4437 **
4438 ** For example, assuming:
4439 **
4440 **   CREATE INDEX i1 ON t1(x, Y);
4441 **
4442 ** then
4443 **
4444 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
4445 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
4446 */
4447 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
4448   assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
4449   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
4450   return pWInfo->sorted;
4451 }
4452 
4453 #ifdef WHERETRACE_ENABLED
4454 /* For debugging use only: */
4455 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
4456   static char zName[65];
4457   int i;
4458   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
4459   if( pLast ) zName[i++] = pLast->cId;
4460   zName[i] = 0;
4461   return zName;
4462 }
4463 #endif
4464 
4465 /*
4466 ** Return the cost of sorting nRow rows, assuming that the keys have
4467 ** nOrderby columns and that the first nSorted columns are already in
4468 ** order.
4469 */
4470 static LogEst whereSortingCost(
4471   WhereInfo *pWInfo,
4472   LogEst nRow,
4473   int nOrderBy,
4474   int nSorted
4475 ){
4476   /* TUNING: Estimated cost of a full external sort, where N is
4477   ** the number of rows to sort is:
4478   **
4479   **   cost = (3.0 * N * log(N)).
4480   **
4481   ** Or, if the order-by clause has X terms but only the last Y
4482   ** terms are out of order, then block-sorting will reduce the
4483   ** sorting cost to:
4484   **
4485   **   cost = (3.0 * N * log(N)) * (Y/X)
4486   **
4487   ** The (Y/X) term is implemented using stack variable rScale
4488   ** below.
4489   */
4490   LogEst rScale, rSortCost;
4491   assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
4492   rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
4493   rSortCost = nRow + rScale + 16;
4494 
4495   /* Multiple by log(M) where M is the number of output rows.
4496   ** Use the LIMIT for M if it is smaller.  Or if this sort is for
4497   ** a DISTINCT operator, M will be the number of distinct output
4498   ** rows, so fudge it downwards a bit.
4499   */
4500   if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
4501     nRow = pWInfo->iLimit;
4502   }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){
4503     /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT
4504     ** reduces the number of output rows by a factor of 2 */
4505     if( nRow>10 ){ nRow -= 10;  assert( 10==sqlite3LogEst(2) ); }
4506   }
4507   rSortCost += estLog(nRow);
4508   return rSortCost;
4509 }
4510 
4511 /*
4512 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
4513 ** attempts to find the lowest cost path that visits each WhereLoop
4514 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
4515 **
4516 ** Assume that the total number of output rows that will need to be sorted
4517 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
4518 ** costs if nRowEst==0.
4519 **
4520 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
4521 ** error occurs.
4522 */
4523 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
4524   int mxChoice;             /* Maximum number of simultaneous paths tracked */
4525   int nLoop;                /* Number of terms in the join */
4526   Parse *pParse;            /* Parsing context */
4527   sqlite3 *db;              /* The database connection */
4528   int iLoop;                /* Loop counter over the terms of the join */
4529   int ii, jj;               /* Loop counters */
4530   int mxI = 0;              /* Index of next entry to replace */
4531   int nOrderBy;             /* Number of ORDER BY clause terms */
4532   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
4533   LogEst mxUnsorted = 0;    /* Maximum unsorted cost of a set of path */
4534   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
4535   WherePath *aFrom;         /* All nFrom paths at the previous level */
4536   WherePath *aTo;           /* The nTo best paths at the current level */
4537   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
4538   WherePath *pTo;           /* An element of aTo[] that we are working on */
4539   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
4540   WhereLoop **pX;           /* Used to divy up the pSpace memory */
4541   LogEst *aSortCost = 0;    /* Sorting and partial sorting costs */
4542   char *pSpace;             /* Temporary memory used by this routine */
4543   int nSpace;               /* Bytes of space allocated at pSpace */
4544 
4545   pParse = pWInfo->pParse;
4546   db = pParse->db;
4547   nLoop = pWInfo->nLevel;
4548   /* TUNING: For simple queries, only the best path is tracked.
4549   ** For 2-way joins, the 5 best paths are followed.
4550   ** For joins of 3 or more tables, track the 10 best paths */
4551   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
4552   assert( nLoop<=pWInfo->pTabList->nSrc );
4553   WHERETRACE(0x002, ("---- begin solver.  (nRowEst=%d)\n", nRowEst));
4554 
4555   /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
4556   ** case the purpose of this call is to estimate the number of rows returned
4557   ** by the overall query. Once this estimate has been obtained, the caller
4558   ** will invoke this function a second time, passing the estimate as the
4559   ** nRowEst parameter.  */
4560   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
4561     nOrderBy = 0;
4562   }else{
4563     nOrderBy = pWInfo->pOrderBy->nExpr;
4564   }
4565 
4566   /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
4567   nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
4568   nSpace += sizeof(LogEst) * nOrderBy;
4569   pSpace = sqlite3DbMallocRawNN(db, nSpace);
4570   if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
4571   aTo = (WherePath*)pSpace;
4572   aFrom = aTo+mxChoice;
4573   memset(aFrom, 0, sizeof(aFrom[0]));
4574   pX = (WhereLoop**)(aFrom+mxChoice);
4575   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
4576     pFrom->aLoop = pX;
4577   }
4578   if( nOrderBy ){
4579     /* If there is an ORDER BY clause and it is not being ignored, set up
4580     ** space for the aSortCost[] array. Each element of the aSortCost array
4581     ** is either zero - meaning it has not yet been initialized - or the
4582     ** cost of sorting nRowEst rows of data where the first X terms of
4583     ** the ORDER BY clause are already in order, where X is the array
4584     ** index.  */
4585     aSortCost = (LogEst*)pX;
4586     memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
4587   }
4588   assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
4589   assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
4590 
4591   /* Seed the search with a single WherePath containing zero WhereLoops.
4592   **
4593   ** TUNING: Do not let the number of iterations go above 28.  If the cost
4594   ** of computing an automatic index is not paid back within the first 28
4595   ** rows, then do not use the automatic index. */
4596   aFrom[0].nRow = MIN(pParse->nQueryLoop, 48);  assert( 48==sqlite3LogEst(28) );
4597   nFrom = 1;
4598   assert( aFrom[0].isOrdered==0 );
4599   if( nOrderBy ){
4600     /* If nLoop is zero, then there are no FROM terms in the query. Since
4601     ** in this case the query may return a maximum of one row, the results
4602     ** are already in the requested order. Set isOrdered to nOrderBy to
4603     ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
4604     ** -1, indicating that the result set may or may not be ordered,
4605     ** depending on the loops added to the current plan.  */
4606     aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
4607   }
4608 
4609   /* Compute successively longer WherePaths using the previous generation
4610   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
4611   ** best paths at each generation */
4612   for(iLoop=0; iLoop<nLoop; iLoop++){
4613     nTo = 0;
4614     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
4615       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
4616         LogEst nOut;                      /* Rows visited by (pFrom+pWLoop) */
4617         LogEst rCost;                     /* Cost of path (pFrom+pWLoop) */
4618         LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
4619         i8 isOrdered = pFrom->isOrdered;  /* isOrdered for (pFrom+pWLoop) */
4620         Bitmask maskNew;                  /* Mask of src visited by (..) */
4621         Bitmask revMask = 0;              /* Mask of rev-order loops for (..) */
4622 
4623         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
4624         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
4625         if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
4626           /* Do not use an automatic index if the this loop is expected
4627           ** to run less than 1.25 times.  It is tempting to also exclude
4628           ** automatic index usage on an outer loop, but sometimes an automatic
4629           ** index is useful in the outer loop of a correlated subquery. */
4630           assert( 10==sqlite3LogEst(2) );
4631           continue;
4632         }
4633 
4634         /* At this point, pWLoop is a candidate to be the next loop.
4635         ** Compute its cost */
4636         rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
4637         rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
4638         nOut = pFrom->nRow + pWLoop->nOut;
4639         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
4640         if( isOrdered<0 ){
4641           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
4642                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
4643                        iLoop, pWLoop, &revMask);
4644         }else{
4645           revMask = pFrom->revLoop;
4646         }
4647         if( isOrdered>=0 && isOrdered<nOrderBy ){
4648           if( aSortCost[isOrdered]==0 ){
4649             aSortCost[isOrdered] = whereSortingCost(
4650                 pWInfo, nRowEst, nOrderBy, isOrdered
4651             );
4652           }
4653           /* TUNING:  Add a small extra penalty (5) to sorting as an
4654           ** extra encouragment to the query planner to select a plan
4655           ** where the rows emerge in the correct order without any sorting
4656           ** required. */
4657           rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5;
4658 
4659           WHERETRACE(0x002,
4660               ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
4661                aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
4662                rUnsorted, rCost));
4663         }else{
4664           rCost = rUnsorted;
4665           rUnsorted -= 2;  /* TUNING:  Slight bias in favor of no-sort plans */
4666         }
4667 
4668         /* Check to see if pWLoop should be added to the set of
4669         ** mxChoice best-so-far paths.
4670         **
4671         ** First look for an existing path among best-so-far paths
4672         ** that covers the same set of loops and has the same isOrdered
4673         ** setting as the current path candidate.
4674         **
4675         ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4676         ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4677         ** of legal values for isOrdered, -1..64.
4678         */
4679         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
4680           if( pTo->maskLoop==maskNew
4681            && ((pTo->isOrdered^isOrdered)&0x80)==0
4682           ){
4683             testcase( jj==nTo-1 );
4684             break;
4685           }
4686         }
4687         if( jj>=nTo ){
4688           /* None of the existing best-so-far paths match the candidate. */
4689           if( nTo>=mxChoice
4690            && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4691           ){
4692             /* The current candidate is no better than any of the mxChoice
4693             ** paths currently in the best-so-far buffer.  So discard
4694             ** this candidate as not viable. */
4695 #ifdef WHERETRACE_ENABLED /* 0x4 */
4696             if( sqlite3WhereTrace&0x4 ){
4697               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d,%3d order=%c\n",
4698                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4699                   isOrdered>=0 ? isOrdered+'0' : '?');
4700             }
4701 #endif
4702             continue;
4703           }
4704           /* If we reach this points it means that the new candidate path
4705           ** needs to be added to the set of best-so-far paths. */
4706           if( nTo<mxChoice ){
4707             /* Increase the size of the aTo set by one */
4708             jj = nTo++;
4709           }else{
4710             /* New path replaces the prior worst to keep count below mxChoice */
4711             jj = mxI;
4712           }
4713           pTo = &aTo[jj];
4714 #ifdef WHERETRACE_ENABLED /* 0x4 */
4715           if( sqlite3WhereTrace&0x4 ){
4716             sqlite3DebugPrintf("New    %s cost=%-3d,%3d,%3d order=%c\n",
4717                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4718                 isOrdered>=0 ? isOrdered+'0' : '?');
4719           }
4720 #endif
4721         }else{
4722           /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4723           ** same set of loops and has the same isOrdered setting as the
4724           ** candidate path.  Check to see if the candidate should replace
4725           ** pTo or if the candidate should be skipped.
4726           **
4727           ** The conditional is an expanded vector comparison equivalent to:
4728           **   (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4729           */
4730           if( pTo->rCost<rCost
4731            || (pTo->rCost==rCost
4732                && (pTo->nRow<nOut
4733                    || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4734                   )
4735               )
4736           ){
4737 #ifdef WHERETRACE_ENABLED /* 0x4 */
4738             if( sqlite3WhereTrace&0x4 ){
4739               sqlite3DebugPrintf(
4740                   "Skip   %s cost=%-3d,%3d,%3d order=%c",
4741                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4742                   isOrdered>=0 ? isOrdered+'0' : '?');
4743               sqlite3DebugPrintf("   vs %s cost=%-3d,%3d,%3d order=%c\n",
4744                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4745                   pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4746             }
4747 #endif
4748             /* Discard the candidate path from further consideration */
4749             testcase( pTo->rCost==rCost );
4750             continue;
4751           }
4752           testcase( pTo->rCost==rCost+1 );
4753           /* Control reaches here if the candidate path is better than the
4754           ** pTo path.  Replace pTo with the candidate. */
4755 #ifdef WHERETRACE_ENABLED /* 0x4 */
4756           if( sqlite3WhereTrace&0x4 ){
4757             sqlite3DebugPrintf(
4758                 "Update %s cost=%-3d,%3d,%3d order=%c",
4759                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4760                 isOrdered>=0 ? isOrdered+'0' : '?');
4761             sqlite3DebugPrintf("  was %s cost=%-3d,%3d,%3d order=%c\n",
4762                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4763                 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4764           }
4765 #endif
4766         }
4767         /* pWLoop is a winner.  Add it to the set of best so far */
4768         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4769         pTo->revLoop = revMask;
4770         pTo->nRow = nOut;
4771         pTo->rCost = rCost;
4772         pTo->rUnsorted = rUnsorted;
4773         pTo->isOrdered = isOrdered;
4774         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4775         pTo->aLoop[iLoop] = pWLoop;
4776         if( nTo>=mxChoice ){
4777           mxI = 0;
4778           mxCost = aTo[0].rCost;
4779           mxUnsorted = aTo[0].nRow;
4780           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4781             if( pTo->rCost>mxCost
4782              || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4783             ){
4784               mxCost = pTo->rCost;
4785               mxUnsorted = pTo->rUnsorted;
4786               mxI = jj;
4787             }
4788           }
4789         }
4790       }
4791     }
4792 
4793 #ifdef WHERETRACE_ENABLED  /* >=2 */
4794     if( sqlite3WhereTrace & 0x02 ){
4795       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4796       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4797         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4798            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4799            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4800         if( pTo->isOrdered>0 ){
4801           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4802         }else{
4803           sqlite3DebugPrintf("\n");
4804         }
4805       }
4806     }
4807 #endif
4808 
4809     /* Swap the roles of aFrom and aTo for the next generation */
4810     pFrom = aTo;
4811     aTo = aFrom;
4812     aFrom = pFrom;
4813     nFrom = nTo;
4814   }
4815 
4816   if( nFrom==0 ){
4817     sqlite3ErrorMsg(pParse, "no query solution");
4818     sqlite3DbFreeNN(db, pSpace);
4819     return SQLITE_ERROR;
4820   }
4821 
4822   /* Find the lowest cost path.  pFrom will be left pointing to that path */
4823   pFrom = aFrom;
4824   for(ii=1; ii<nFrom; ii++){
4825     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4826   }
4827   assert( pWInfo->nLevel==nLoop );
4828   /* Load the lowest cost path into pWInfo */
4829   for(iLoop=0; iLoop<nLoop; iLoop++){
4830     WhereLevel *pLevel = pWInfo->a + iLoop;
4831     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
4832     pLevel->iFrom = pWLoop->iTab;
4833     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
4834   }
4835   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
4836    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
4837    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
4838    && nRowEst
4839   ){
4840     Bitmask notUsed;
4841     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
4842                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
4843     if( rc==pWInfo->pResultSet->nExpr ){
4844       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4845     }
4846   }
4847   pWInfo->bOrderedInnerLoop = 0;
4848   if( pWInfo->pOrderBy ){
4849     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
4850       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
4851         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4852       }
4853     }else{
4854       pWInfo->nOBSat = pFrom->isOrdered;
4855       pWInfo->revMask = pFrom->revLoop;
4856       if( pWInfo->nOBSat<=0 ){
4857         pWInfo->nOBSat = 0;
4858         if( nLoop>0 ){
4859           u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
4860           if( (wsFlags & WHERE_ONEROW)==0
4861            && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
4862           ){
4863             Bitmask m = 0;
4864             int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
4865                       WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
4866             testcase( wsFlags & WHERE_IPK );
4867             testcase( wsFlags & WHERE_COLUMN_IN );
4868             if( rc==pWInfo->pOrderBy->nExpr ){
4869               pWInfo->bOrderedInnerLoop = 1;
4870               pWInfo->revMask = m;
4871             }
4872           }
4873         }
4874       }else if( nLoop
4875             && pWInfo->nOBSat==1
4876             && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0
4877             ){
4878         pWInfo->bOrderedInnerLoop = 1;
4879       }
4880     }
4881     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
4882         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
4883     ){
4884       Bitmask revMask = 0;
4885       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
4886           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
4887       );
4888       assert( pWInfo->sorted==0 );
4889       if( nOrder==pWInfo->pOrderBy->nExpr ){
4890         pWInfo->sorted = 1;
4891         pWInfo->revMask = revMask;
4892       }
4893     }
4894   }
4895 
4896 
4897   pWInfo->nRowOut = pFrom->nRow;
4898 
4899   /* Free temporary memory and return success */
4900   sqlite3DbFreeNN(db, pSpace);
4901   return SQLITE_OK;
4902 }
4903 
4904 /*
4905 ** Most queries use only a single table (they are not joins) and have
4906 ** simple == constraints against indexed fields.  This routine attempts
4907 ** to plan those simple cases using much less ceremony than the
4908 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4909 ** times for the common case.
4910 **
4911 ** Return non-zero on success, if this query can be handled by this
4912 ** no-frills query planner.  Return zero if this query needs the
4913 ** general-purpose query planner.
4914 */
4915 static int whereShortCut(WhereLoopBuilder *pBuilder){
4916   WhereInfo *pWInfo;
4917   SrcItem *pItem;
4918   WhereClause *pWC;
4919   WhereTerm *pTerm;
4920   WhereLoop *pLoop;
4921   int iCur;
4922   int j;
4923   Table *pTab;
4924   Index *pIdx;
4925   WhereScan scan;
4926 
4927   pWInfo = pBuilder->pWInfo;
4928   if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
4929   assert( pWInfo->pTabList->nSrc>=1 );
4930   pItem = pWInfo->pTabList->a;
4931   pTab = pItem->pTab;
4932   if( IsVirtual(pTab) ) return 0;
4933   if( pItem->fg.isIndexedBy ) return 0;
4934   iCur = pItem->iCursor;
4935   pWC = &pWInfo->sWC;
4936   pLoop = pBuilder->pNew;
4937   pLoop->wsFlags = 0;
4938   pLoop->nSkip = 0;
4939   pTerm = whereScanInit(&scan, pWC, iCur, -1, WO_EQ|WO_IS, 0);
4940   while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
4941   if( pTerm ){
4942     testcase( pTerm->eOperator & WO_IS );
4943     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
4944     pLoop->aLTerm[0] = pTerm;
4945     pLoop->nLTerm = 1;
4946     pLoop->u.btree.nEq = 1;
4947     /* TUNING: Cost of a rowid lookup is 10 */
4948     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
4949   }else{
4950     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4951       int opMask;
4952       assert( pLoop->aLTermSpace==pLoop->aLTerm );
4953       if( !IsUniqueIndex(pIdx)
4954        || pIdx->pPartIdxWhere!=0
4955        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
4956       ) continue;
4957       opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
4958       for(j=0; j<pIdx->nKeyCol; j++){
4959         pTerm = whereScanInit(&scan, pWC, iCur, j, opMask, pIdx);
4960         while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
4961         if( pTerm==0 ) break;
4962         testcase( pTerm->eOperator & WO_IS );
4963         pLoop->aLTerm[j] = pTerm;
4964       }
4965       if( j!=pIdx->nKeyCol ) continue;
4966       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
4967       if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
4968         pLoop->wsFlags |= WHERE_IDX_ONLY;
4969       }
4970       pLoop->nLTerm = j;
4971       pLoop->u.btree.nEq = j;
4972       pLoop->u.btree.pIndex = pIdx;
4973       /* TUNING: Cost of a unique index lookup is 15 */
4974       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
4975       break;
4976     }
4977   }
4978   if( pLoop->wsFlags ){
4979     pLoop->nOut = (LogEst)1;
4980     pWInfo->a[0].pWLoop = pLoop;
4981     assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
4982     pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
4983     pWInfo->a[0].iTabCur = iCur;
4984     pWInfo->nRowOut = 1;
4985     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
4986     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
4987       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4988     }
4989     if( scan.iEquiv>1 ) pLoop->wsFlags |= WHERE_TRANSCONS;
4990 #ifdef SQLITE_DEBUG
4991     pLoop->cId = '0';
4992 #endif
4993 #ifdef WHERETRACE_ENABLED
4994     if( sqlite3WhereTrace ){
4995       sqlite3DebugPrintf("whereShortCut() used to compute solution\n");
4996     }
4997 #endif
4998     return 1;
4999   }
5000   return 0;
5001 }
5002 
5003 /*
5004 ** Helper function for exprIsDeterministic().
5005 */
5006 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
5007   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
5008     pWalker->eCode = 0;
5009     return WRC_Abort;
5010   }
5011   return WRC_Continue;
5012 }
5013 
5014 /*
5015 ** Return true if the expression contains no non-deterministic SQL
5016 ** functions. Do not consider non-deterministic SQL functions that are
5017 ** part of sub-select statements.
5018 */
5019 static int exprIsDeterministic(Expr *p){
5020   Walker w;
5021   memset(&w, 0, sizeof(w));
5022   w.eCode = 1;
5023   w.xExprCallback = exprNodeIsDeterministic;
5024   w.xSelectCallback = sqlite3SelectWalkFail;
5025   sqlite3WalkExpr(&w, p);
5026   return w.eCode;
5027 }
5028 
5029 
5030 #ifdef WHERETRACE_ENABLED
5031 /*
5032 ** Display all WhereLoops in pWInfo
5033 */
5034 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){
5035   if( sqlite3WhereTrace ){    /* Display all of the WhereLoop objects */
5036     WhereLoop *p;
5037     int i;
5038     static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
5039                                            "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
5040     for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
5041       p->cId = zLabel[i%(sizeof(zLabel)-1)];
5042       sqlite3WhereLoopPrint(p, pWC);
5043     }
5044   }
5045 }
5046 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C)
5047 #else
5048 # define WHERETRACE_ALL_LOOPS(W,C)
5049 #endif
5050 
5051 /* Attempt to omit tables from a join that do not affect the result.
5052 ** For a table to not affect the result, the following must be true:
5053 **
5054 **   1) The query must not be an aggregate.
5055 **   2) The table must be the RHS of a LEFT JOIN.
5056 **   3) Either the query must be DISTINCT, or else the ON or USING clause
5057 **      must contain a constraint that limits the scan of the table to
5058 **      at most a single row.
5059 **   4) The table must not be referenced by any part of the query apart
5060 **      from its own USING or ON clause.
5061 **
5062 ** For example, given:
5063 **
5064 **     CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
5065 **     CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
5066 **     CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
5067 **
5068 ** then table t2 can be omitted from the following:
5069 **
5070 **     SELECT v1, v3 FROM t1
5071 **       LEFT JOIN t2 ON (t1.ipk=t2.ipk)
5072 **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5073 **
5074 ** or from:
5075 **
5076 **     SELECT DISTINCT v1, v3 FROM t1
5077 **       LEFT JOIN t2
5078 **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5079 */
5080 static SQLITE_NOINLINE Bitmask whereOmitNoopJoin(
5081   WhereInfo *pWInfo,
5082   Bitmask notReady
5083 ){
5084   int i;
5085   Bitmask tabUsed;
5086 
5087   /* Preconditions checked by the caller */
5088   assert( pWInfo->nLevel>=2 );
5089   assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_OmitNoopJoin) );
5090 
5091   /* These two preconditions checked by the caller combine to guarantee
5092   ** condition (1) of the header comment */
5093   assert( pWInfo->pResultSet!=0 );
5094   assert( 0==(pWInfo->wctrlFlags & WHERE_AGG_DISTINCT) );
5095 
5096   tabUsed = sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pResultSet);
5097   if( pWInfo->pOrderBy ){
5098     tabUsed |= sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pOrderBy);
5099   }
5100   for(i=pWInfo->nLevel-1; i>=1; i--){
5101     WhereTerm *pTerm, *pEnd;
5102     SrcItem *pItem;
5103     WhereLoop *pLoop;
5104     pLoop = pWInfo->a[i].pWLoop;
5105     pItem = &pWInfo->pTabList->a[pLoop->iTab];
5106     if( (pItem->fg.jointype & JT_LEFT)==0 ) continue;
5107     if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)==0
5108      && (pLoop->wsFlags & WHERE_ONEROW)==0
5109     ){
5110       continue;
5111     }
5112     if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
5113     pEnd = pWInfo->sWC.a + pWInfo->sWC.nTerm;
5114     for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){
5115       if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5116         if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
5117          || pTerm->pExpr->iRightJoinTable!=pItem->iCursor
5118         ){
5119           break;
5120         }
5121       }
5122     }
5123     if( pTerm<pEnd ) continue;
5124     WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
5125     notReady &= ~pLoop->maskSelf;
5126     for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){
5127       if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5128         pTerm->wtFlags |= TERM_CODED;
5129       }
5130     }
5131     if( i!=pWInfo->nLevel-1 ){
5132       int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
5133       memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
5134     }
5135     pWInfo->nLevel--;
5136     assert( pWInfo->nLevel>0 );
5137   }
5138   return notReady;
5139 }
5140 
5141 /*
5142 ** Check to see if there are any SEARCH loops that might benefit from
5143 ** using a Bloom filter.  Consider a Bloom filter if:
5144 **
5145 **   (1)  The SEARCH happens more than N times where N is the number
5146 **        of rows in the table that is being considered for the Bloom
5147 **        filter.
5148 **   (2)  Some searches are expected to find zero rows.  (This is determined
5149 **        by the WHERE_SELFCULL flag on the term.)
5150 **   (3)  Bloom-filter processing is not disabled.  (Checked by the
5151 **        caller.)
5152 **   (4)  The size of the table being searched is known by ANALYZE.
5153 **
5154 ** This block of code merely checks to see if a Bloom filter would be
5155 ** appropriate, and if so sets the WHERE_BLOOMFILTER flag on the
5156 ** WhereLoop.  The implementation of the Bloom filter comes further
5157 ** down where the code for each WhereLoop is generated.
5158 */
5159 static SQLITE_NOINLINE void whereCheckIfBloomFilterIsUseful(
5160   const WhereInfo *pWInfo
5161 ){
5162   int i;
5163   LogEst nSearch;
5164 
5165   assert( pWInfo->nLevel>=2 );
5166   assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_BloomFilter) );
5167   nSearch = pWInfo->a[0].pWLoop->nOut;
5168   for(i=1; i<pWInfo->nLevel; i++){
5169     WhereLoop *pLoop = pWInfo->a[i].pWLoop;
5170     const unsigned int reqFlags = (WHERE_SELFCULL|WHERE_COLUMN_EQ);
5171     if( (pLoop->wsFlags & reqFlags)==reqFlags
5172      /* vvvvvv--- Always the case if WHERE_COLUMN_EQ is defined */
5173      && ALWAYS((pLoop->wsFlags & (WHERE_IPK|WHERE_INDEXED))!=0)
5174     ){
5175       SrcItem *pItem = &pWInfo->pTabList->a[pLoop->iTab];
5176       Table *pTab = pItem->pTab;
5177       pTab->tabFlags |= TF_StatsUsed;
5178       if( nSearch > pTab->nRowLogEst
5179        && (pTab->tabFlags & TF_HasStat1)!=0
5180       ){
5181         testcase( pItem->fg.jointype & JT_LEFT );
5182         pLoop->wsFlags |= WHERE_BLOOMFILTER;
5183         pLoop->wsFlags &= ~WHERE_IDX_ONLY;
5184         WHERETRACE(0xffff, (
5185            "-> use Bloom-filter on loop %c because there are ~%.1e "
5186            "lookups into %s which has only ~%.1e rows\n",
5187            pLoop->cId, (double)sqlite3LogEstToInt(nSearch), pTab->zName,
5188            (double)sqlite3LogEstToInt(pTab->nRowLogEst)));
5189       }
5190     }
5191     nSearch += pLoop->nOut;
5192   }
5193 }
5194 
5195 /*
5196 ** Generate the beginning of the loop used for WHERE clause processing.
5197 ** The return value is a pointer to an opaque structure that contains
5198 ** information needed to terminate the loop.  Later, the calling routine
5199 ** should invoke sqlite3WhereEnd() with the return value of this function
5200 ** in order to complete the WHERE clause processing.
5201 **
5202 ** If an error occurs, this routine returns NULL.
5203 **
5204 ** The basic idea is to do a nested loop, one loop for each table in
5205 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
5206 ** same as a SELECT with only a single table in the FROM clause.)  For
5207 ** example, if the SQL is this:
5208 **
5209 **       SELECT * FROM t1, t2, t3 WHERE ...;
5210 **
5211 ** Then the code generated is conceptually like the following:
5212 **
5213 **      foreach row1 in t1 do       \    Code generated
5214 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
5215 **          foreach row3 in t3 do   /
5216 **            ...
5217 **          end                     \    Code generated
5218 **        end                        |-- by sqlite3WhereEnd()
5219 **      end                         /
5220 **
5221 ** Note that the loops might not be nested in the order in which they
5222 ** appear in the FROM clause if a different order is better able to make
5223 ** use of indices.  Note also that when the IN operator appears in
5224 ** the WHERE clause, it might result in additional nested loops for
5225 ** scanning through all values on the right-hand side of the IN.
5226 **
5227 ** There are Btree cursors associated with each table.  t1 uses cursor
5228 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
5229 ** And so forth.  This routine generates code to open those VDBE cursors
5230 ** and sqlite3WhereEnd() generates the code to close them.
5231 **
5232 ** The code that sqlite3WhereBegin() generates leaves the cursors named
5233 ** in pTabList pointing at their appropriate entries.  The [...] code
5234 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
5235 ** data from the various tables of the loop.
5236 **
5237 ** If the WHERE clause is empty, the foreach loops must each scan their
5238 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
5239 ** the tables have indices and there are terms in the WHERE clause that
5240 ** refer to those indices, a complete table scan can be avoided and the
5241 ** code will run much faster.  Most of the work of this routine is checking
5242 ** to see if there are indices that can be used to speed up the loop.
5243 **
5244 ** Terms of the WHERE clause are also used to limit which rows actually
5245 ** make it to the "..." in the middle of the loop.  After each "foreach",
5246 ** terms of the WHERE clause that use only terms in that loop and outer
5247 ** loops are evaluated and if false a jump is made around all subsequent
5248 ** inner loops (or around the "..." if the test occurs within the inner-
5249 ** most loop)
5250 **
5251 ** OUTER JOINS
5252 **
5253 ** An outer join of tables t1 and t2 is conceptally coded as follows:
5254 **
5255 **    foreach row1 in t1 do
5256 **      flag = 0
5257 **      foreach row2 in t2 do
5258 **        start:
5259 **          ...
5260 **          flag = 1
5261 **      end
5262 **      if flag==0 then
5263 **        move the row2 cursor to a null row
5264 **        goto start
5265 **      fi
5266 **    end
5267 **
5268 ** ORDER BY CLAUSE PROCESSING
5269 **
5270 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
5271 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
5272 ** if there is one.  If there is no ORDER BY clause or if this routine
5273 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
5274 **
5275 ** The iIdxCur parameter is the cursor number of an index.  If
5276 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
5277 ** to use for OR clause processing.  The WHERE clause should use this
5278 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
5279 ** the first cursor in an array of cursors for all indices.  iIdxCur should
5280 ** be used to compute the appropriate cursor depending on which index is
5281 ** used.
5282 */
5283 WhereInfo *sqlite3WhereBegin(
5284   Parse *pParse,          /* The parser context */
5285   SrcList *pTabList,      /* FROM clause: A list of all tables to be scanned */
5286   Expr *pWhere,           /* The WHERE clause */
5287   ExprList *pOrderBy,     /* An ORDER BY (or GROUP BY) clause, or NULL */
5288   ExprList *pResultSet,   /* Query result set.  Req'd for DISTINCT */
5289   Select *pLimit,         /* Use this LIMIT/OFFSET clause, if any */
5290   u16 wctrlFlags,         /* The WHERE_* flags defined in sqliteInt.h */
5291   int iAuxArg             /* If WHERE_OR_SUBCLAUSE is set, index cursor number
5292                           ** If WHERE_USE_LIMIT, then the limit amount */
5293 ){
5294   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
5295   int nTabList;              /* Number of elements in pTabList */
5296   WhereInfo *pWInfo;         /* Will become the return value of this function */
5297   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
5298   Bitmask notReady;          /* Cursors that are not yet positioned */
5299   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
5300   WhereMaskSet *pMaskSet;    /* The expression mask set */
5301   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
5302   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
5303   int ii;                    /* Loop counter */
5304   sqlite3 *db;               /* Database connection */
5305   int rc;                    /* Return code */
5306   u8 bFordelete = 0;         /* OPFLAG_FORDELETE or zero, as appropriate */
5307 
5308   assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
5309         (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
5310      && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5311   ));
5312 
5313   /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
5314   assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5315             || (wctrlFlags & WHERE_USE_LIMIT)==0 );
5316 
5317   /* Variable initialization */
5318   db = pParse->db;
5319   memset(&sWLB, 0, sizeof(sWLB));
5320 
5321   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
5322   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
5323   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
5324 
5325   /* The number of tables in the FROM clause is limited by the number of
5326   ** bits in a Bitmask
5327   */
5328   testcase( pTabList->nSrc==BMS );
5329   if( pTabList->nSrc>BMS ){
5330     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
5331     return 0;
5332   }
5333 
5334   /* This function normally generates a nested loop for all tables in
5335   ** pTabList.  But if the WHERE_OR_SUBCLAUSE flag is set, then we should
5336   ** only generate code for the first table in pTabList and assume that
5337   ** any cursors associated with subsequent tables are uninitialized.
5338   */
5339   nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
5340 
5341   /* Allocate and initialize the WhereInfo structure that will become the
5342   ** return value. A single allocation is used to store the WhereInfo
5343   ** struct, the contents of WhereInfo.a[], the WhereClause structure
5344   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
5345   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
5346   ** some architectures. Hence the ROUND8() below.
5347   */
5348   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
5349   pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
5350   if( db->mallocFailed ){
5351     sqlite3DbFree(db, pWInfo);
5352     pWInfo = 0;
5353     goto whereBeginError;
5354   }
5355   pWInfo->pParse = pParse;
5356   pWInfo->pTabList = pTabList;
5357   pWInfo->pOrderBy = pOrderBy;
5358   pWInfo->pWhere = pWhere;
5359   pWInfo->pResultSet = pResultSet;
5360   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
5361   pWInfo->nLevel = nTabList;
5362   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse);
5363   pWInfo->wctrlFlags = wctrlFlags;
5364   pWInfo->iLimit = iAuxArg;
5365   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
5366 #ifndef SQLITE_OMIT_VIRTUALTABLE
5367   pWInfo->pLimit = pLimit;
5368 #endif
5369   memset(&pWInfo->nOBSat, 0,
5370          offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
5371   memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
5372   assert( pWInfo->eOnePass==ONEPASS_OFF );  /* ONEPASS defaults to OFF */
5373   pMaskSet = &pWInfo->sMaskSet;
5374   pMaskSet->n = 0;
5375   pMaskSet->ix[0] = -99; /* Initialize ix[0] to a value that can never be
5376                          ** a valid cursor number, to avoid an initial
5377                          ** test for pMaskSet->n==0 in sqlite3WhereGetMask() */
5378   sWLB.pWInfo = pWInfo;
5379   sWLB.pWC = &pWInfo->sWC;
5380   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
5381   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
5382   whereLoopInit(sWLB.pNew);
5383 #ifdef SQLITE_DEBUG
5384   sWLB.pNew->cId = '*';
5385 #endif
5386 
5387   /* Split the WHERE clause into separate subexpressions where each
5388   ** subexpression is separated by an AND operator.
5389   */
5390   sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
5391   sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
5392 
5393   /* Special case: No FROM clause
5394   */
5395   if( nTabList==0 ){
5396     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
5397     if( (wctrlFlags & WHERE_WANT_DISTINCT)!=0
5398      && OptimizationEnabled(db, SQLITE_DistinctOpt)
5399     ){
5400       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
5401     }
5402     ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
5403   }else{
5404     /* Assign a bit from the bitmask to every term in the FROM clause.
5405     **
5406     ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
5407     **
5408     ** The rule of the previous sentence ensures thta if X is the bitmask for
5409     ** a table T, then X-1 is the bitmask for all other tables to the left of T.
5410     ** Knowing the bitmask for all tables to the left of a left join is
5411     ** important.  Ticket #3015.
5412     **
5413     ** Note that bitmasks are created for all pTabList->nSrc tables in
5414     ** pTabList, not just the first nTabList tables.  nTabList is normally
5415     ** equal to pTabList->nSrc but might be shortened to 1 if the
5416     ** WHERE_OR_SUBCLAUSE flag is set.
5417     */
5418     ii = 0;
5419     do{
5420       createMask(pMaskSet, pTabList->a[ii].iCursor);
5421       sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
5422     }while( (++ii)<pTabList->nSrc );
5423   #ifdef SQLITE_DEBUG
5424     {
5425       Bitmask mx = 0;
5426       for(ii=0; ii<pTabList->nSrc; ii++){
5427         Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
5428         assert( m>=mx );
5429         mx = m;
5430       }
5431     }
5432   #endif
5433   }
5434 
5435   /* Analyze all of the subexpressions. */
5436   sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
5437   sqlite3WhereAddLimit(&pWInfo->sWC, pLimit);
5438   if( db->mallocFailed ) goto whereBeginError;
5439 
5440   /* Special case: WHERE terms that do not refer to any tables in the join
5441   ** (constant expressions). Evaluate each such term, and jump over all the
5442   ** generated code if the result is not true.
5443   **
5444   ** Do not do this if the expression contains non-deterministic functions
5445   ** that are not within a sub-select. This is not strictly required, but
5446   ** preserves SQLite's legacy behaviour in the following two cases:
5447   **
5448   **   FROM ... WHERE random()>0;           -- eval random() once per row
5449   **   FROM ... WHERE (SELECT random())>0;  -- eval random() once overall
5450   */
5451   for(ii=0; ii<sWLB.pWC->nBase; ii++){
5452     WhereTerm *pT = &sWLB.pWC->a[ii];
5453     if( pT->wtFlags & TERM_VIRTUAL ) continue;
5454     if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
5455       sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
5456       pT->wtFlags |= TERM_CODED;
5457     }
5458   }
5459 
5460   if( wctrlFlags & WHERE_WANT_DISTINCT ){
5461     if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
5462       /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
5463       ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
5464       wctrlFlags &= ~WHERE_WANT_DISTINCT;
5465       pWInfo->wctrlFlags &= ~WHERE_WANT_DISTINCT;
5466     }else if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
5467       /* The DISTINCT marking is pointless.  Ignore it. */
5468       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
5469     }else if( pOrderBy==0 ){
5470       /* Try to ORDER BY the result set to make distinct processing easier */
5471       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
5472       pWInfo->pOrderBy = pResultSet;
5473     }
5474   }
5475 
5476   /* Construct the WhereLoop objects */
5477 #if defined(WHERETRACE_ENABLED)
5478   if( sqlite3WhereTrace & 0xffff ){
5479     sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
5480     if( wctrlFlags & WHERE_USE_LIMIT ){
5481       sqlite3DebugPrintf(", limit: %d", iAuxArg);
5482     }
5483     sqlite3DebugPrintf(")\n");
5484     if( sqlite3WhereTrace & 0x100 ){
5485       Select sSelect;
5486       memset(&sSelect, 0, sizeof(sSelect));
5487       sSelect.selFlags = SF_WhereBegin;
5488       sSelect.pSrc = pTabList;
5489       sSelect.pWhere = pWhere;
5490       sSelect.pOrderBy = pOrderBy;
5491       sSelect.pEList = pResultSet;
5492       sqlite3TreeViewSelect(0, &sSelect, 0);
5493     }
5494   }
5495   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5496     sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
5497     sqlite3WhereClausePrint(sWLB.pWC);
5498   }
5499 #endif
5500 
5501   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
5502     rc = whereLoopAddAll(&sWLB);
5503     if( rc ) goto whereBeginError;
5504 
5505 #ifdef SQLITE_ENABLE_STAT4
5506     /* If one or more WhereTerm.truthProb values were used in estimating
5507     ** loop parameters, but then those truthProb values were subsequently
5508     ** changed based on STAT4 information while computing subsequent loops,
5509     ** then we need to rerun the whole loop building process so that all
5510     ** loops will be built using the revised truthProb values. */
5511     if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){
5512       WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
5513       WHERETRACE(0xffff,
5514            ("**** Redo all loop computations due to"
5515             " TERM_HIGHTRUTH changes ****\n"));
5516       while( pWInfo->pLoops ){
5517         WhereLoop *p = pWInfo->pLoops;
5518         pWInfo->pLoops = p->pNextLoop;
5519         whereLoopDelete(db, p);
5520       }
5521       rc = whereLoopAddAll(&sWLB);
5522       if( rc ) goto whereBeginError;
5523     }
5524 #endif
5525     WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
5526 
5527     wherePathSolver(pWInfo, 0);
5528     if( db->mallocFailed ) goto whereBeginError;
5529     if( pWInfo->pOrderBy ){
5530        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
5531        if( db->mallocFailed ) goto whereBeginError;
5532     }
5533   }
5534   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
5535      pWInfo->revMask = ALLBITS;
5536   }
5537   if( pParse->nErr ){
5538     goto whereBeginError;
5539   }
5540   assert( db->mallocFailed==0 );
5541 #ifdef WHERETRACE_ENABLED
5542   if( sqlite3WhereTrace ){
5543     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
5544     if( pWInfo->nOBSat>0 ){
5545       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
5546     }
5547     switch( pWInfo->eDistinct ){
5548       case WHERE_DISTINCT_UNIQUE: {
5549         sqlite3DebugPrintf("  DISTINCT=unique");
5550         break;
5551       }
5552       case WHERE_DISTINCT_ORDERED: {
5553         sqlite3DebugPrintf("  DISTINCT=ordered");
5554         break;
5555       }
5556       case WHERE_DISTINCT_UNORDERED: {
5557         sqlite3DebugPrintf("  DISTINCT=unordered");
5558         break;
5559       }
5560     }
5561     sqlite3DebugPrintf("\n");
5562     for(ii=0; ii<pWInfo->nLevel; ii++){
5563       sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
5564     }
5565   }
5566 #endif
5567 
5568   /* Attempt to omit tables from a join that do not affect the result.
5569   ** See the comment on whereOmitNoopJoin() for further information.
5570   **
5571   ** This query optimization is factored out into a separate "no-inline"
5572   ** procedure to keep the sqlite3WhereBegin() procedure from becoming
5573   ** too large.  If sqlite3WhereBegin() becomes too large, that prevents
5574   ** some C-compiler optimizers from in-lining the
5575   ** sqlite3WhereCodeOneLoopStart() procedure, and it is important to
5576   ** in-line sqlite3WhereCodeOneLoopStart() for performance reasons.
5577   */
5578   notReady = ~(Bitmask)0;
5579   if( pWInfo->nLevel>=2
5580    && pResultSet!=0                         /* these two combine to guarantee */
5581    && 0==(wctrlFlags & WHERE_AGG_DISTINCT)  /* condition (1) above */
5582    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
5583   ){
5584     notReady = whereOmitNoopJoin(pWInfo, notReady);
5585     nTabList = pWInfo->nLevel;
5586     assert( nTabList>0 );
5587   }
5588 
5589   /* Check to see if there are any SEARCH loops that might benefit from
5590   ** using a Bloom filter.
5591   */
5592   if( pWInfo->nLevel>=2
5593    && OptimizationEnabled(db, SQLITE_BloomFilter)
5594   ){
5595     whereCheckIfBloomFilterIsUseful(pWInfo);
5596   }
5597 
5598 #if defined(WHERETRACE_ENABLED)
5599   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5600     sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
5601     sqlite3WhereClausePrint(sWLB.pWC);
5602   }
5603   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
5604 #endif
5605   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
5606 
5607   /* If the caller is an UPDATE or DELETE statement that is requesting
5608   ** to use a one-pass algorithm, determine if this is appropriate.
5609   **
5610   ** A one-pass approach can be used if the caller has requested one
5611   ** and either (a) the scan visits at most one row or (b) each
5612   ** of the following are true:
5613   **
5614   **   * the caller has indicated that a one-pass approach can be used
5615   **     with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
5616   **   * the table is not a virtual table, and
5617   **   * either the scan does not use the OR optimization or the caller
5618   **     is a DELETE operation (WHERE_DUPLICATES_OK is only specified
5619   **     for DELETE).
5620   **
5621   ** The last qualification is because an UPDATE statement uses
5622   ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
5623   ** use a one-pass approach, and this is not set accurately for scans
5624   ** that use the OR optimization.
5625   */
5626   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
5627   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
5628     int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
5629     int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
5630     assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) );
5631     if( bOnerow || (
5632         0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
5633      && !IsVirtual(pTabList->a[0].pTab)
5634      && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
5635     )){
5636       pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
5637       if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
5638         if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
5639           bFordelete = OPFLAG_FORDELETE;
5640         }
5641         pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
5642       }
5643     }
5644   }
5645 
5646   /* Open all tables in the pTabList and any indices selected for
5647   ** searching those tables.
5648   */
5649   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
5650     Table *pTab;     /* Table to open */
5651     int iDb;         /* Index of database containing table/index */
5652     SrcItem *pTabItem;
5653 
5654     pTabItem = &pTabList->a[pLevel->iFrom];
5655     pTab = pTabItem->pTab;
5656     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5657     pLoop = pLevel->pWLoop;
5658     if( (pTab->tabFlags & TF_Ephemeral)!=0 || IsView(pTab) ){
5659       /* Do nothing */
5660     }else
5661 #ifndef SQLITE_OMIT_VIRTUALTABLE
5662     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
5663       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
5664       int iCur = pTabItem->iCursor;
5665       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
5666     }else if( IsVirtual(pTab) ){
5667       /* noop */
5668     }else
5669 #endif
5670     if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
5671          && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
5672       int op = OP_OpenRead;
5673       if( pWInfo->eOnePass!=ONEPASS_OFF ){
5674         op = OP_OpenWrite;
5675         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
5676       };
5677       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
5678       assert( pTabItem->iCursor==pLevel->iTabCur );
5679       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
5680       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
5681       if( pWInfo->eOnePass==ONEPASS_OFF
5682        && pTab->nCol<BMS
5683        && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0
5684       ){
5685         /* If we know that only a prefix of the record will be used,
5686         ** it is advantageous to reduce the "column count" field in
5687         ** the P4 operand of the OP_OpenRead/Write opcode. */
5688         Bitmask b = pTabItem->colUsed;
5689         int n = 0;
5690         for(; b; b=b>>1, n++){}
5691         sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
5692         assert( n<=pTab->nCol );
5693       }
5694 #ifdef SQLITE_ENABLE_CURSOR_HINTS
5695       if( pLoop->u.btree.pIndex!=0 ){
5696         sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
5697       }else
5698 #endif
5699       {
5700         sqlite3VdbeChangeP5(v, bFordelete);
5701       }
5702 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5703       sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
5704                             (const u8*)&pTabItem->colUsed, P4_INT64);
5705 #endif
5706     }else{
5707       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5708     }
5709     if( pLoop->wsFlags & WHERE_INDEXED ){
5710       Index *pIx = pLoop->u.btree.pIndex;
5711       int iIndexCur;
5712       int op = OP_OpenRead;
5713       /* iAuxArg is always set to a positive value if ONEPASS is possible */
5714       assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
5715       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
5716        && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
5717       ){
5718         /* This is one term of an OR-optimization using the PRIMARY KEY of a
5719         ** WITHOUT ROWID table.  No need for a separate index */
5720         iIndexCur = pLevel->iTabCur;
5721         op = 0;
5722       }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
5723         Index *pJ = pTabItem->pTab->pIndex;
5724         iIndexCur = iAuxArg;
5725         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
5726         while( ALWAYS(pJ) && pJ!=pIx ){
5727           iIndexCur++;
5728           pJ = pJ->pNext;
5729         }
5730         op = OP_OpenWrite;
5731         pWInfo->aiCurOnePass[1] = iIndexCur;
5732       }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
5733         iIndexCur = iAuxArg;
5734         op = OP_ReopenIdx;
5735       }else{
5736         iIndexCur = pParse->nTab++;
5737       }
5738       pLevel->iIdxCur = iIndexCur;
5739       assert( pIx->pSchema==pTab->pSchema );
5740       assert( iIndexCur>=0 );
5741       if( op ){
5742         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
5743         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
5744         if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
5745          && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
5746          && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0
5747          && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
5748          && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
5749          && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
5750         ){
5751           sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ);
5752         }
5753         VdbeComment((v, "%s", pIx->zName));
5754 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5755         {
5756           u64 colUsed = 0;
5757           int ii, jj;
5758           for(ii=0; ii<pIx->nColumn; ii++){
5759             jj = pIx->aiColumn[ii];
5760             if( jj<0 ) continue;
5761             if( jj>63 ) jj = 63;
5762             if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
5763             colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
5764           }
5765           sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
5766                                 (u8*)&colUsed, P4_INT64);
5767         }
5768 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
5769       }
5770     }
5771     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
5772   }
5773   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
5774   if( db->mallocFailed ) goto whereBeginError;
5775 
5776   /* Generate the code to do the search.  Each iteration of the for
5777   ** loop below generates code for a single nested loop of the VM
5778   ** program.
5779   */
5780   for(ii=0; ii<nTabList; ii++){
5781     int addrExplain;
5782     int wsFlags;
5783     if( pParse->nErr ) goto whereBeginError;
5784     pLevel = &pWInfo->a[ii];
5785     wsFlags = pLevel->pWLoop->wsFlags;
5786     if( (wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))!=0 ){
5787       if( (wsFlags & WHERE_AUTO_INDEX)!=0 ){
5788 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
5789         constructAutomaticIndex(pParse, &pWInfo->sWC,
5790                   &pTabList->a[pLevel->iFrom], notReady, pLevel);
5791 #endif
5792       }else{
5793         sqlite3ConstructBloomFilter(pWInfo, ii, pLevel, notReady);
5794       }
5795       if( db->mallocFailed ) goto whereBeginError;
5796     }
5797     addrExplain = sqlite3WhereExplainOneScan(
5798         pParse, pTabList, pLevel, wctrlFlags
5799     );
5800     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
5801     notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady);
5802     pWInfo->iContinue = pLevel->addrCont;
5803     if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
5804       sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
5805     }
5806   }
5807 
5808   /* Done. */
5809   VdbeModuleComment((v, "Begin WHERE-core"));
5810   pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v);
5811   return pWInfo;
5812 
5813   /* Jump here if malloc fails */
5814 whereBeginError:
5815   if( pWInfo ){
5816     testcase( pWInfo->pExprMods!=0 );
5817     whereUndoExprMods(pWInfo);
5818     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5819     whereInfoFree(db, pWInfo);
5820   }
5821   return 0;
5822 }
5823 
5824 /*
5825 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
5826 ** index rather than the main table.  In SQLITE_DEBUG mode, we want
5827 ** to trace those changes if PRAGMA vdbe_addoptrace=on.  This routine
5828 ** does that.
5829 */
5830 #ifndef SQLITE_DEBUG
5831 # define OpcodeRewriteTrace(D,K,P) /* no-op */
5832 #else
5833 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
5834   static void sqlite3WhereOpcodeRewriteTrace(
5835     sqlite3 *db,
5836     int pc,
5837     VdbeOp *pOp
5838   ){
5839     if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
5840     sqlite3VdbePrintOp(0, pc, pOp);
5841   }
5842 #endif
5843 
5844 /*
5845 ** Generate the end of the WHERE loop.  See comments on
5846 ** sqlite3WhereBegin() for additional information.
5847 */
5848 void sqlite3WhereEnd(WhereInfo *pWInfo){
5849   Parse *pParse = pWInfo->pParse;
5850   Vdbe *v = pParse->pVdbe;
5851   int i;
5852   WhereLevel *pLevel;
5853   WhereLoop *pLoop;
5854   SrcList *pTabList = pWInfo->pTabList;
5855   sqlite3 *db = pParse->db;
5856   int iEnd = sqlite3VdbeCurrentAddr(v);
5857 
5858   /* Generate loop termination code.
5859   */
5860   VdbeModuleComment((v, "End WHERE-core"));
5861   for(i=pWInfo->nLevel-1; i>=0; i--){
5862     int addr;
5863     pLevel = &pWInfo->a[i];
5864     pLoop = pLevel->pWLoop;
5865     if( pLevel->op!=OP_Noop ){
5866 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5867       int addrSeek = 0;
5868       Index *pIdx;
5869       int n;
5870       if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
5871        && i==pWInfo->nLevel-1  /* Ticket [ef9318757b152e3] 2017-10-21 */
5872        && (pLoop->wsFlags & WHERE_INDEXED)!=0
5873        && (pIdx = pLoop->u.btree.pIndex)->hasStat1
5874        && (n = pLoop->u.btree.nDistinctCol)>0
5875        && pIdx->aiRowLogEst[n]>=36
5876       ){
5877         int r1 = pParse->nMem+1;
5878         int j, op;
5879         for(j=0; j<n; j++){
5880           sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
5881         }
5882         pParse->nMem += n+1;
5883         op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
5884         addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
5885         VdbeCoverageIf(v, op==OP_SeekLT);
5886         VdbeCoverageIf(v, op==OP_SeekGT);
5887         sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
5888       }
5889 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
5890       /* The common case: Advance to the next row */
5891       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5892       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
5893       sqlite3VdbeChangeP5(v, pLevel->p5);
5894       VdbeCoverage(v);
5895       VdbeCoverageIf(v, pLevel->op==OP_Next);
5896       VdbeCoverageIf(v, pLevel->op==OP_Prev);
5897       VdbeCoverageIf(v, pLevel->op==OP_VNext);
5898       if( pLevel->regBignull ){
5899         sqlite3VdbeResolveLabel(v, pLevel->addrBignull);
5900         sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1);
5901         VdbeCoverage(v);
5902       }
5903 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5904       if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
5905 #endif
5906     }else{
5907       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5908     }
5909     if( (pLoop->wsFlags & WHERE_IN_ABLE)!=0 && pLevel->u.in.nIn>0 ){
5910       struct InLoop *pIn;
5911       int j;
5912       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
5913       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
5914         assert( sqlite3VdbeGetOp(v, pIn->addrInTop+1)->opcode==OP_IsNull
5915                  || pParse->db->mallocFailed );
5916         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5917         if( pIn->eEndLoopOp!=OP_Noop ){
5918           if( pIn->nPrefix ){
5919             int bEarlyOut =
5920                 (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
5921                  && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0;
5922             if( pLevel->iLeftJoin ){
5923               /* For LEFT JOIN queries, cursor pIn->iCur may not have been
5924               ** opened yet. This occurs for WHERE clauses such as
5925               ** "a = ? AND b IN (...)", where the index is on (a, b). If
5926               ** the RHS of the (a=?) is NULL, then the "b IN (...)" may
5927               ** never have been coded, but the body of the loop run to
5928               ** return the null-row. So, if the cursor is not open yet,
5929               ** jump over the OP_Next or OP_Prev instruction about to
5930               ** be coded.  */
5931               sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur,
5932                   sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut);
5933               VdbeCoverage(v);
5934             }
5935             if( bEarlyOut ){
5936               sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
5937                   sqlite3VdbeCurrentAddr(v)+2,
5938                   pIn->iBase, pIn->nPrefix);
5939               VdbeCoverage(v);
5940               /* Retarget the OP_IsNull against the left operand of IN so
5941               ** it jumps past the OP_IfNoHope.  This is because the
5942               ** OP_IsNull also bypasses the OP_Affinity opcode that is
5943               ** required by OP_IfNoHope. */
5944               sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5945             }
5946           }
5947           sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
5948           VdbeCoverage(v);
5949           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
5950           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
5951         }
5952         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
5953       }
5954     }
5955     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
5956     if( pLevel->addrSkip ){
5957       sqlite3VdbeGoto(v, pLevel->addrSkip);
5958       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
5959       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
5960       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
5961     }
5962 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
5963     if( pLevel->addrLikeRep ){
5964       sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
5965                         pLevel->addrLikeRep);
5966       VdbeCoverage(v);
5967     }
5968 #endif
5969     if( pLevel->iLeftJoin ){
5970       int ws = pLoop->wsFlags;
5971       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
5972       assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
5973       if( (ws & WHERE_IDX_ONLY)==0 ){
5974         assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
5975         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
5976       }
5977       if( (ws & WHERE_INDEXED)
5978        || ((ws & WHERE_MULTI_OR) && pLevel->u.pCoveringIdx)
5979       ){
5980         if( ws & WHERE_MULTI_OR ){
5981           Index *pIx = pLevel->u.pCoveringIdx;
5982           int iDb = sqlite3SchemaToIndex(db, pIx->pSchema);
5983           sqlite3VdbeAddOp3(v, OP_ReopenIdx, pLevel->iIdxCur, pIx->tnum, iDb);
5984           sqlite3VdbeSetP4KeyInfo(pParse, pIx);
5985         }
5986         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
5987       }
5988       if( pLevel->op==OP_Return ){
5989         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
5990       }else{
5991         sqlite3VdbeGoto(v, pLevel->addrFirst);
5992       }
5993       sqlite3VdbeJumpHere(v, addr);
5994     }
5995     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
5996                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
5997   }
5998 
5999   /* The "break" point is here, just past the end of the outer loop.
6000   ** Set it.
6001   */
6002   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
6003 
6004   assert( pWInfo->nLevel<=pTabList->nSrc );
6005   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
6006     int k, last;
6007     VdbeOp *pOp, *pLastOp;
6008     Index *pIdx = 0;
6009     SrcItem *pTabItem = &pTabList->a[pLevel->iFrom];
6010     Table *pTab = pTabItem->pTab;
6011     assert( pTab!=0 );
6012     pLoop = pLevel->pWLoop;
6013 
6014     /* For a co-routine, change all OP_Column references to the table of
6015     ** the co-routine into OP_Copy of result contained in a register.
6016     ** OP_Rowid becomes OP_Null.
6017     */
6018     if( pTabItem->fg.viaCoroutine ){
6019       testcase( pParse->db->mallocFailed );
6020       translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
6021                             pTabItem->regResult, 0);
6022       continue;
6023     }
6024 
6025 #ifdef SQLITE_ENABLE_EARLY_CURSOR_CLOSE
6026     /* Close all of the cursors that were opened by sqlite3WhereBegin.
6027     ** Except, do not close cursors that will be reused by the OR optimization
6028     ** (WHERE_OR_SUBCLAUSE).  And do not close the OP_OpenWrite cursors
6029     ** created for the ONEPASS optimization.
6030     */
6031     if( (pTab->tabFlags & TF_Ephemeral)==0
6032      && !IsView(pTab)
6033      && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
6034     ){
6035       int ws = pLoop->wsFlags;
6036       if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){
6037         sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
6038       }
6039       if( (ws & WHERE_INDEXED)!=0
6040        && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0
6041        && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1]
6042       ){
6043         sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
6044       }
6045     }
6046 #endif
6047 
6048     /* If this scan uses an index, make VDBE code substitutions to read data
6049     ** from the index instead of from the table where possible.  In some cases
6050     ** this optimization prevents the table from ever being read, which can
6051     ** yield a significant performance boost.
6052     **
6053     ** Calls to the code generator in between sqlite3WhereBegin and
6054     ** sqlite3WhereEnd will have created code that references the table
6055     ** directly.  This loop scans all that code looking for opcodes
6056     ** that reference the table and converts them into opcodes that
6057     ** reference the index.
6058     */
6059     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
6060       pIdx = pLoop->u.btree.pIndex;
6061     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
6062       pIdx = pLevel->u.pCoveringIdx;
6063     }
6064     if( pIdx
6065      && !db->mallocFailed
6066     ){
6067       if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){
6068         last = iEnd;
6069       }else{
6070         last = pWInfo->iEndWhere;
6071       }
6072       k = pLevel->addrBody + 1;
6073 #ifdef SQLITE_DEBUG
6074       if( db->flags & SQLITE_VdbeAddopTrace ){
6075         printf("TRANSLATE opcodes in range %d..%d\n", k, last-1);
6076       }
6077       /* Proof that the "+1" on the k value above is safe */
6078       pOp = sqlite3VdbeGetOp(v, k - 1);
6079       assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur );
6080       assert( pOp->opcode!=OP_Rowid  || pOp->p1!=pLevel->iTabCur );
6081       assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur );
6082 #endif
6083       pOp = sqlite3VdbeGetOp(v, k);
6084       pLastOp = pOp + (last - k);
6085       assert( pOp<=pLastOp );
6086       do{
6087         if( pOp->p1!=pLevel->iTabCur ){
6088           /* no-op */
6089         }else if( pOp->opcode==OP_Column
6090 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6091          || pOp->opcode==OP_Offset
6092 #endif
6093         ){
6094           int x = pOp->p2;
6095           assert( pIdx->pTable==pTab );
6096           if( !HasRowid(pTab) ){
6097             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
6098             x = pPk->aiColumn[x];
6099             assert( x>=0 );
6100           }else{
6101             testcase( x!=sqlite3StorageColumnToTable(pTab,x) );
6102             x = sqlite3StorageColumnToTable(pTab,x);
6103           }
6104           x = sqlite3TableColumnToIndex(pIdx, x);
6105           if( x>=0 ){
6106             pOp->p2 = x;
6107             pOp->p1 = pLevel->iIdxCur;
6108             OpcodeRewriteTrace(db, k, pOp);
6109           }
6110           assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0
6111               || pWInfo->eOnePass );
6112         }else if( pOp->opcode==OP_Rowid ){
6113           pOp->p1 = pLevel->iIdxCur;
6114           pOp->opcode = OP_IdxRowid;
6115           OpcodeRewriteTrace(db, k, pOp);
6116         }else if( pOp->opcode==OP_IfNullRow ){
6117           pOp->p1 = pLevel->iIdxCur;
6118           OpcodeRewriteTrace(db, k, pOp);
6119         }
6120 #ifdef SQLITE_DEBUG
6121         k++;
6122 #endif
6123       }while( (++pOp)<pLastOp );
6124 #ifdef SQLITE_DEBUG
6125       if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
6126 #endif
6127     }
6128   }
6129 
6130   /* Final cleanup
6131   */
6132   if( pWInfo->pExprMods ) whereUndoExprMods(pWInfo);
6133   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
6134   whereInfoFree(db, pWInfo);
6135   return;
6136 }
6137