xref: /sqlite-3.40.0/src/where.c (revision 8c53b4e7)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /*
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly.  The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
26 **
27 ** This object is not an API and can be changed from one release to the
28 ** next.  As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
30 */
31 typedef struct HiddenIndexInfo HiddenIndexInfo;
32 struct HiddenIndexInfo {
33   WhereClause *pWC;   /* The Where clause being analyzed */
34   Parse *pParse;      /* The parsing context */
35 };
36 
37 /* Forward declaration of methods */
38 static int whereLoopResize(sqlite3*, WhereLoop*, int);
39 
40 /* Test variable that can be set to enable WHERE tracing */
41 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
42 /***/ int sqlite3WhereTrace = 0;
43 #endif
44 
45 
46 /*
47 ** Return the estimated number of output rows from a WHERE clause
48 */
49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
50   return pWInfo->nRowOut;
51 }
52 
53 /*
54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
55 ** WHERE clause returns outputs for DISTINCT processing.
56 */
57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
58   return pWInfo->eDistinct;
59 }
60 
61 /*
62 ** Return TRUE if the WHERE clause returns rows in ORDER BY order.
63 ** Return FALSE if the output needs to be sorted.
64 */
65 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
66   return pWInfo->nOBSat;
67 }
68 
69 /*
70 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known
71 ** to emit rows in increasing order, and if the last row emitted by the
72 ** inner-most loop did not fit within the sorter, then we can skip all
73 ** subsequent rows for the current iteration of the inner loop (because they
74 ** will not fit in the sorter either) and continue with the second inner
75 ** loop - the loop immediately outside the inner-most.
76 **
77 ** When a row does not fit in the sorter (because the sorter already
78 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
79 ** label returned by this function.
80 **
81 ** If the ORDER BY LIMIT optimization applies, the jump destination should
82 ** be the continuation for the second-inner-most loop.  If the ORDER BY
83 ** LIMIT optimization does not apply, then the jump destination should
84 ** be the continuation for the inner-most loop.
85 **
86 ** It is always safe for this routine to return the continuation of the
87 ** inner-most loop, in the sense that a correct answer will result.
88 ** Returning the continuation the second inner loop is an optimization
89 ** that might make the code run a little faster, but should not change
90 ** the final answer.
91 */
92 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){
93   WhereLevel *pInner;
94   if( !pWInfo->bOrderedInnerLoop ){
95     /* The ORDER BY LIMIT optimization does not apply.  Jump to the
96     ** continuation of the inner-most loop. */
97     return pWInfo->iContinue;
98   }
99   pInner = &pWInfo->a[pWInfo->nLevel-1];
100   assert( pInner->addrNxt!=0 );
101   return pInner->addrNxt;
102 }
103 
104 /*
105 ** Return the VDBE address or label to jump to in order to continue
106 ** immediately with the next row of a WHERE clause.
107 */
108 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
109   assert( pWInfo->iContinue!=0 );
110   return pWInfo->iContinue;
111 }
112 
113 /*
114 ** Return the VDBE address or label to jump to in order to break
115 ** out of a WHERE loop.
116 */
117 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
118   return pWInfo->iBreak;
119 }
120 
121 /*
122 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
123 ** operate directly on the rowis returned by a WHERE clause.  Return
124 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
125 ** a single row is to be changed.  Return ONEPASS_MULTI (2) if the one-pass
126 ** optimization can be used on multiple
127 **
128 ** If the ONEPASS optimization is used (if this routine returns true)
129 ** then also write the indices of open cursors used by ONEPASS
130 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
131 ** table and iaCur[1] gets the cursor used by an auxiliary index.
132 ** Either value may be -1, indicating that cursor is not used.
133 ** Any cursors returned will have been opened for writing.
134 **
135 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
136 ** unable to use the ONEPASS optimization.
137 */
138 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
139   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
140 #ifdef WHERETRACE_ENABLED
141   if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
142     sqlite3DebugPrintf("%s cursors: %d %d\n",
143          pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
144          aiCur[0], aiCur[1]);
145   }
146 #endif
147   return pWInfo->eOnePass;
148 }
149 
150 /*
151 ** Move the content of pSrc into pDest
152 */
153 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
154   pDest->n = pSrc->n;
155   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
156 }
157 
158 /*
159 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
160 **
161 ** The new entry might overwrite an existing entry, or it might be
162 ** appended, or it might be discarded.  Do whatever is the right thing
163 ** so that pSet keeps the N_OR_COST best entries seen so far.
164 */
165 static int whereOrInsert(
166   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
167   Bitmask prereq,        /* Prerequisites of the new entry */
168   LogEst rRun,           /* Run-cost of the new entry */
169   LogEst nOut            /* Number of outputs for the new entry */
170 ){
171   u16 i;
172   WhereOrCost *p;
173   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
174     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
175       goto whereOrInsert_done;
176     }
177     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
178       return 0;
179     }
180   }
181   if( pSet->n<N_OR_COST ){
182     p = &pSet->a[pSet->n++];
183     p->nOut = nOut;
184   }else{
185     p = pSet->a;
186     for(i=1; i<pSet->n; i++){
187       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
188     }
189     if( p->rRun<=rRun ) return 0;
190   }
191 whereOrInsert_done:
192   p->prereq = prereq;
193   p->rRun = rRun;
194   if( p->nOut>nOut ) p->nOut = nOut;
195   return 1;
196 }
197 
198 /*
199 ** Return the bitmask for the given cursor number.  Return 0 if
200 ** iCursor is not in the set.
201 */
202 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
203   int i;
204   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
205   for(i=0; i<pMaskSet->n; i++){
206     if( pMaskSet->ix[i]==iCursor ){
207       return MASKBIT(i);
208     }
209   }
210   return 0;
211 }
212 
213 /*
214 ** Create a new mask for cursor iCursor.
215 **
216 ** There is one cursor per table in the FROM clause.  The number of
217 ** tables in the FROM clause is limited by a test early in the
218 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
219 ** array will never overflow.
220 */
221 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
222   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
223   pMaskSet->ix[pMaskSet->n++] = iCursor;
224 }
225 
226 /*
227 ** Advance to the next WhereTerm that matches according to the criteria
228 ** established when the pScan object was initialized by whereScanInit().
229 ** Return NULL if there are no more matching WhereTerms.
230 */
231 static WhereTerm *whereScanNext(WhereScan *pScan){
232   int iCur;            /* The cursor on the LHS of the term */
233   i16 iColumn;         /* The column on the LHS of the term.  -1 for IPK */
234   Expr *pX;            /* An expression being tested */
235   WhereClause *pWC;    /* Shorthand for pScan->pWC */
236   WhereTerm *pTerm;    /* The term being tested */
237   int k = pScan->k;    /* Where to start scanning */
238 
239   assert( pScan->iEquiv<=pScan->nEquiv );
240   pWC = pScan->pWC;
241   while(1){
242     iColumn = pScan->aiColumn[pScan->iEquiv-1];
243     iCur = pScan->aiCur[pScan->iEquiv-1];
244     assert( pWC!=0 );
245     do{
246       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
247         if( pTerm->leftCursor==iCur
248          && pTerm->u.leftColumn==iColumn
249          && (iColumn!=XN_EXPR
250              || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
251                                        pScan->pIdxExpr,iCur)==0)
252          && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
253         ){
254           if( (pTerm->eOperator & WO_EQUIV)!=0
255            && pScan->nEquiv<ArraySize(pScan->aiCur)
256            && (pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight))->op==TK_COLUMN
257           ){
258             int j;
259             for(j=0; j<pScan->nEquiv; j++){
260               if( pScan->aiCur[j]==pX->iTable
261                && pScan->aiColumn[j]==pX->iColumn ){
262                   break;
263               }
264             }
265             if( j==pScan->nEquiv ){
266               pScan->aiCur[j] = pX->iTable;
267               pScan->aiColumn[j] = pX->iColumn;
268               pScan->nEquiv++;
269             }
270           }
271           if( (pTerm->eOperator & pScan->opMask)!=0 ){
272             /* Verify the affinity and collating sequence match */
273             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
274               CollSeq *pColl;
275               Parse *pParse = pWC->pWInfo->pParse;
276               pX = pTerm->pExpr;
277               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
278                 continue;
279               }
280               assert(pX->pLeft);
281               pColl = sqlite3BinaryCompareCollSeq(pParse,
282                                                   pX->pLeft, pX->pRight);
283               if( pColl==0 ) pColl = pParse->db->pDfltColl;
284               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
285                 continue;
286               }
287             }
288             if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
289              && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
290              && pX->iTable==pScan->aiCur[0]
291              && pX->iColumn==pScan->aiColumn[0]
292             ){
293               testcase( pTerm->eOperator & WO_IS );
294               continue;
295             }
296             pScan->pWC = pWC;
297             pScan->k = k+1;
298             return pTerm;
299           }
300         }
301       }
302       pWC = pWC->pOuter;
303       k = 0;
304     }while( pWC!=0 );
305     if( pScan->iEquiv>=pScan->nEquiv ) break;
306     pWC = pScan->pOrigWC;
307     k = 0;
308     pScan->iEquiv++;
309   }
310   return 0;
311 }
312 
313 /*
314 ** Initialize a WHERE clause scanner object.  Return a pointer to the
315 ** first match.  Return NULL if there are no matches.
316 **
317 ** The scanner will be searching the WHERE clause pWC.  It will look
318 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
319 ** iCur.   Or if pIdx!=0 then X is column iColumn of index pIdx.  pIdx
320 ** must be one of the indexes of table iCur.
321 **
322 ** The <op> must be one of the operators described by opMask.
323 **
324 ** If the search is for X and the WHERE clause contains terms of the
325 ** form X=Y then this routine might also return terms of the form
326 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
327 ** but is enough to handle most commonly occurring SQL statements.
328 **
329 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
330 ** index pIdx.
331 */
332 static WhereTerm *whereScanInit(
333   WhereScan *pScan,       /* The WhereScan object being initialized */
334   WhereClause *pWC,       /* The WHERE clause to be scanned */
335   int iCur,               /* Cursor to scan for */
336   int iColumn,            /* Column to scan for */
337   u32 opMask,             /* Operator(s) to scan for */
338   Index *pIdx             /* Must be compatible with this index */
339 ){
340   pScan->pOrigWC = pWC;
341   pScan->pWC = pWC;
342   pScan->pIdxExpr = 0;
343   pScan->idxaff = 0;
344   pScan->zCollName = 0;
345   if( pIdx ){
346     int j = iColumn;
347     iColumn = pIdx->aiColumn[j];
348     if( iColumn==XN_EXPR ){
349       pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
350       pScan->zCollName = pIdx->azColl[j];
351     }else if( iColumn==pIdx->pTable->iPKey ){
352       iColumn = XN_ROWID;
353     }else if( iColumn>=0 ){
354       pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
355       pScan->zCollName = pIdx->azColl[j];
356     }
357   }else if( iColumn==XN_EXPR ){
358     return 0;
359   }
360   pScan->opMask = opMask;
361   pScan->k = 0;
362   pScan->aiCur[0] = iCur;
363   pScan->aiColumn[0] = iColumn;
364   pScan->nEquiv = 1;
365   pScan->iEquiv = 1;
366   return whereScanNext(pScan);
367 }
368 
369 /*
370 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
371 ** where X is a reference to the iColumn of table iCur or of index pIdx
372 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
373 ** the op parameter.  Return a pointer to the term.  Return 0 if not found.
374 **
375 ** If pIdx!=0 then it must be one of the indexes of table iCur.
376 ** Search for terms matching the iColumn-th column of pIdx
377 ** rather than the iColumn-th column of table iCur.
378 **
379 ** The term returned might by Y=<expr> if there is another constraint in
380 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
381 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
382 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
383 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
384 ** other equivalent values.  Hence a search for X will return <expr> if X=A1
385 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
386 **
387 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
388 ** then try for the one with no dependencies on <expr> - in other words where
389 ** <expr> is a constant expression of some kind.  Only return entries of
390 ** the form "X <op> Y" where Y is a column in another table if no terms of
391 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
392 ** exist, try to return a term that does not use WO_EQUIV.
393 */
394 WhereTerm *sqlite3WhereFindTerm(
395   WhereClause *pWC,     /* The WHERE clause to be searched */
396   int iCur,             /* Cursor number of LHS */
397   int iColumn,          /* Column number of LHS */
398   Bitmask notReady,     /* RHS must not overlap with this mask */
399   u32 op,               /* Mask of WO_xx values describing operator */
400   Index *pIdx           /* Must be compatible with this index, if not NULL */
401 ){
402   WhereTerm *pResult = 0;
403   WhereTerm *p;
404   WhereScan scan;
405 
406   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
407   op &= WO_EQ|WO_IS;
408   while( p ){
409     if( (p->prereqRight & notReady)==0 ){
410       if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
411         testcase( p->eOperator & WO_IS );
412         return p;
413       }
414       if( pResult==0 ) pResult = p;
415     }
416     p = whereScanNext(&scan);
417   }
418   return pResult;
419 }
420 
421 /*
422 ** This function searches pList for an entry that matches the iCol-th column
423 ** of index pIdx.
424 **
425 ** If such an expression is found, its index in pList->a[] is returned. If
426 ** no expression is found, -1 is returned.
427 */
428 static int findIndexCol(
429   Parse *pParse,                  /* Parse context */
430   ExprList *pList,                /* Expression list to search */
431   int iBase,                      /* Cursor for table associated with pIdx */
432   Index *pIdx,                    /* Index to match column of */
433   int iCol                        /* Column of index to match */
434 ){
435   int i;
436   const char *zColl = pIdx->azColl[iCol];
437 
438   for(i=0; i<pList->nExpr; i++){
439     Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr);
440     if( p->op==TK_COLUMN
441      && p->iColumn==pIdx->aiColumn[iCol]
442      && p->iTable==iBase
443     ){
444       CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
445       if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
446         return i;
447       }
448     }
449   }
450 
451   return -1;
452 }
453 
454 /*
455 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
456 */
457 static int indexColumnNotNull(Index *pIdx, int iCol){
458   int j;
459   assert( pIdx!=0 );
460   assert( iCol>=0 && iCol<pIdx->nColumn );
461   j = pIdx->aiColumn[iCol];
462   if( j>=0 ){
463     return pIdx->pTable->aCol[j].notNull;
464   }else if( j==(-1) ){
465     return 1;
466   }else{
467     assert( j==(-2) );
468     return 0;  /* Assume an indexed expression can always yield a NULL */
469 
470   }
471 }
472 
473 /*
474 ** Return true if the DISTINCT expression-list passed as the third argument
475 ** is redundant.
476 **
477 ** A DISTINCT list is redundant if any subset of the columns in the
478 ** DISTINCT list are collectively unique and individually non-null.
479 */
480 static int isDistinctRedundant(
481   Parse *pParse,            /* Parsing context */
482   SrcList *pTabList,        /* The FROM clause */
483   WhereClause *pWC,         /* The WHERE clause */
484   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
485 ){
486   Table *pTab;
487   Index *pIdx;
488   int i;
489   int iBase;
490 
491   /* If there is more than one table or sub-select in the FROM clause of
492   ** this query, then it will not be possible to show that the DISTINCT
493   ** clause is redundant. */
494   if( pTabList->nSrc!=1 ) return 0;
495   iBase = pTabList->a[0].iCursor;
496   pTab = pTabList->a[0].pTab;
497 
498   /* If any of the expressions is an IPK column on table iBase, then return
499   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
500   ** current SELECT is a correlated sub-query.
501   */
502   for(i=0; i<pDistinct->nExpr; i++){
503     Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr);
504     if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1;
505   }
506 
507   /* Loop through all indices on the table, checking each to see if it makes
508   ** the DISTINCT qualifier redundant. It does so if:
509   **
510   **   1. The index is itself UNIQUE, and
511   **
512   **   2. All of the columns in the index are either part of the pDistinct
513   **      list, or else the WHERE clause contains a term of the form "col=X",
514   **      where X is a constant value. The collation sequences of the
515   **      comparison and select-list expressions must match those of the index.
516   **
517   **   3. All of those index columns for which the WHERE clause does not
518   **      contain a "col=X" term are subject to a NOT NULL constraint.
519   */
520   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
521     if( !IsUniqueIndex(pIdx) ) continue;
522     for(i=0; i<pIdx->nKeyCol; i++){
523       if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
524         if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
525         if( indexColumnNotNull(pIdx, i)==0 ) break;
526       }
527     }
528     if( i==pIdx->nKeyCol ){
529       /* This index implies that the DISTINCT qualifier is redundant. */
530       return 1;
531     }
532   }
533 
534   return 0;
535 }
536 
537 
538 /*
539 ** Estimate the logarithm of the input value to base 2.
540 */
541 static LogEst estLog(LogEst N){
542   return N<=10 ? 0 : sqlite3LogEst(N) - 33;
543 }
544 
545 /*
546 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
547 **
548 ** This routine runs over generated VDBE code and translates OP_Column
549 ** opcodes into OP_Copy when the table is being accessed via co-routine
550 ** instead of via table lookup.
551 **
552 ** If the bIncrRowid parameter is 0, then any OP_Rowid instructions on
553 ** cursor iTabCur are transformed into OP_Null. Or, if bIncrRowid is non-zero,
554 ** then each OP_Rowid is transformed into an instruction to increment the
555 ** value stored in its output register.
556 */
557 static void translateColumnToCopy(
558   Parse *pParse,      /* Parsing context */
559   int iStart,         /* Translate from this opcode to the end */
560   int iTabCur,        /* OP_Column/OP_Rowid references to this table */
561   int iRegister,      /* The first column is in this register */
562   int bIncrRowid      /* If non-zero, transform OP_rowid to OP_AddImm(1) */
563 ){
564   Vdbe *v = pParse->pVdbe;
565   VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
566   int iEnd = sqlite3VdbeCurrentAddr(v);
567   if( pParse->db->mallocFailed ) return;
568   for(; iStart<iEnd; iStart++, pOp++){
569     if( pOp->p1!=iTabCur ) continue;
570     if( pOp->opcode==OP_Column ){
571       pOp->opcode = OP_Copy;
572       pOp->p1 = pOp->p2 + iRegister;
573       pOp->p2 = pOp->p3;
574       pOp->p3 = 0;
575     }else if( pOp->opcode==OP_Rowid ){
576       if( bIncrRowid ){
577         /* Increment the value stored in the P2 operand of the OP_Rowid. */
578         pOp->opcode = OP_AddImm;
579         pOp->p1 = pOp->p2;
580         pOp->p2 = 1;
581       }else{
582         pOp->opcode = OP_Null;
583         pOp->p1 = 0;
584         pOp->p3 = 0;
585       }
586     }
587   }
588 }
589 
590 /*
591 ** Two routines for printing the content of an sqlite3_index_info
592 ** structure.  Used for testing and debugging only.  If neither
593 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
594 ** are no-ops.
595 */
596 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
597 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
598   int i;
599   if( !sqlite3WhereTrace ) return;
600   for(i=0; i<p->nConstraint; i++){
601     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
602        i,
603        p->aConstraint[i].iColumn,
604        p->aConstraint[i].iTermOffset,
605        p->aConstraint[i].op,
606        p->aConstraint[i].usable);
607   }
608   for(i=0; i<p->nOrderBy; i++){
609     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
610        i,
611        p->aOrderBy[i].iColumn,
612        p->aOrderBy[i].desc);
613   }
614 }
615 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
616   int i;
617   if( !sqlite3WhereTrace ) return;
618   for(i=0; i<p->nConstraint; i++){
619     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
620        i,
621        p->aConstraintUsage[i].argvIndex,
622        p->aConstraintUsage[i].omit);
623   }
624   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
625   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
626   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
627   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
628   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
629 }
630 #else
631 #define TRACE_IDX_INPUTS(A)
632 #define TRACE_IDX_OUTPUTS(A)
633 #endif
634 
635 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
636 /*
637 ** Return TRUE if the WHERE clause term pTerm is of a form where it
638 ** could be used with an index to access pSrc, assuming an appropriate
639 ** index existed.
640 */
641 static int termCanDriveIndex(
642   WhereTerm *pTerm,              /* WHERE clause term to check */
643   struct SrcList_item *pSrc,     /* Table we are trying to access */
644   Bitmask notReady               /* Tables in outer loops of the join */
645 ){
646   char aff;
647   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
648   if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
649   if( (pSrc->fg.jointype & JT_LEFT)
650    && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
651    && (pTerm->eOperator & WO_IS)
652   ){
653     /* Cannot use an IS term from the WHERE clause as an index driver for
654     ** the RHS of a LEFT JOIN. Such a term can only be used if it is from
655     ** the ON clause.  */
656     return 0;
657   }
658   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
659   if( pTerm->u.leftColumn<0 ) return 0;
660   aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
661   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
662   testcase( pTerm->pExpr->op==TK_IS );
663   return 1;
664 }
665 #endif
666 
667 
668 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
669 /*
670 ** Generate code to construct the Index object for an automatic index
671 ** and to set up the WhereLevel object pLevel so that the code generator
672 ** makes use of the automatic index.
673 */
674 static void constructAutomaticIndex(
675   Parse *pParse,              /* The parsing context */
676   WhereClause *pWC,           /* The WHERE clause */
677   struct SrcList_item *pSrc,  /* The FROM clause term to get the next index */
678   Bitmask notReady,           /* Mask of cursors that are not available */
679   WhereLevel *pLevel          /* Write new index here */
680 ){
681   int nKeyCol;                /* Number of columns in the constructed index */
682   WhereTerm *pTerm;           /* A single term of the WHERE clause */
683   WhereTerm *pWCEnd;          /* End of pWC->a[] */
684   Index *pIdx;                /* Object describing the transient index */
685   Vdbe *v;                    /* Prepared statement under construction */
686   int addrInit;               /* Address of the initialization bypass jump */
687   Table *pTable;              /* The table being indexed */
688   int addrTop;                /* Top of the index fill loop */
689   int regRecord;              /* Register holding an index record */
690   int n;                      /* Column counter */
691   int i;                      /* Loop counter */
692   int mxBitCol;               /* Maximum column in pSrc->colUsed */
693   CollSeq *pColl;             /* Collating sequence to on a column */
694   WhereLoop *pLoop;           /* The Loop object */
695   char *zNotUsed;             /* Extra space on the end of pIdx */
696   Bitmask idxCols;            /* Bitmap of columns used for indexing */
697   Bitmask extraCols;          /* Bitmap of additional columns */
698   u8 sentWarning = 0;         /* True if a warnning has been issued */
699   Expr *pPartial = 0;         /* Partial Index Expression */
700   int iContinue = 0;          /* Jump here to skip excluded rows */
701   struct SrcList_item *pTabItem;  /* FROM clause term being indexed */
702   int addrCounter = 0;        /* Address where integer counter is initialized */
703   int regBase;                /* Array of registers where record is assembled */
704 
705   /* Generate code to skip over the creation and initialization of the
706   ** transient index on 2nd and subsequent iterations of the loop. */
707   v = pParse->pVdbe;
708   assert( v!=0 );
709   addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
710 
711   /* Count the number of columns that will be added to the index
712   ** and used to match WHERE clause constraints */
713   nKeyCol = 0;
714   pTable = pSrc->pTab;
715   pWCEnd = &pWC->a[pWC->nTerm];
716   pLoop = pLevel->pWLoop;
717   idxCols = 0;
718   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
719     Expr *pExpr = pTerm->pExpr;
720     assert( !ExprHasProperty(pExpr, EP_FromJoin)    /* prereq always non-zero */
721          || pExpr->iRightJoinTable!=pSrc->iCursor   /*   for the right-hand   */
722          || pLoop->prereq!=0 );                     /*   table of a LEFT JOIN */
723     if( pLoop->prereq==0
724      && (pTerm->wtFlags & TERM_VIRTUAL)==0
725      && !ExprHasProperty(pExpr, EP_FromJoin)
726      && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){
727       pPartial = sqlite3ExprAnd(pParse->db, pPartial,
728                                 sqlite3ExprDup(pParse->db, pExpr, 0));
729     }
730     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
731       int iCol = pTerm->u.leftColumn;
732       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
733       testcase( iCol==BMS );
734       testcase( iCol==BMS-1 );
735       if( !sentWarning ){
736         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
737             "automatic index on %s(%s)", pTable->zName,
738             pTable->aCol[iCol].zName);
739         sentWarning = 1;
740       }
741       if( (idxCols & cMask)==0 ){
742         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
743           goto end_auto_index_create;
744         }
745         pLoop->aLTerm[nKeyCol++] = pTerm;
746         idxCols |= cMask;
747       }
748     }
749   }
750   assert( nKeyCol>0 );
751   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
752   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
753                      | WHERE_AUTO_INDEX;
754 
755   /* Count the number of additional columns needed to create a
756   ** covering index.  A "covering index" is an index that contains all
757   ** columns that are needed by the query.  With a covering index, the
758   ** original table never needs to be accessed.  Automatic indices must
759   ** be a covering index because the index will not be updated if the
760   ** original table changes and the index and table cannot both be used
761   ** if they go out of sync.
762   */
763   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
764   mxBitCol = MIN(BMS-1,pTable->nCol);
765   testcase( pTable->nCol==BMS-1 );
766   testcase( pTable->nCol==BMS-2 );
767   for(i=0; i<mxBitCol; i++){
768     if( extraCols & MASKBIT(i) ) nKeyCol++;
769   }
770   if( pSrc->colUsed & MASKBIT(BMS-1) ){
771     nKeyCol += pTable->nCol - BMS + 1;
772   }
773 
774   /* Construct the Index object to describe this index */
775   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
776   if( pIdx==0 ) goto end_auto_index_create;
777   pLoop->u.btree.pIndex = pIdx;
778   pIdx->zName = "auto-index";
779   pIdx->pTable = pTable;
780   n = 0;
781   idxCols = 0;
782   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
783     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
784       int iCol = pTerm->u.leftColumn;
785       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
786       testcase( iCol==BMS-1 );
787       testcase( iCol==BMS );
788       if( (idxCols & cMask)==0 ){
789         Expr *pX = pTerm->pExpr;
790         idxCols |= cMask;
791         pIdx->aiColumn[n] = pTerm->u.leftColumn;
792         pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
793         pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
794         n++;
795       }
796     }
797   }
798   assert( (u32)n==pLoop->u.btree.nEq );
799 
800   /* Add additional columns needed to make the automatic index into
801   ** a covering index */
802   for(i=0; i<mxBitCol; i++){
803     if( extraCols & MASKBIT(i) ){
804       pIdx->aiColumn[n] = i;
805       pIdx->azColl[n] = sqlite3StrBINARY;
806       n++;
807     }
808   }
809   if( pSrc->colUsed & MASKBIT(BMS-1) ){
810     for(i=BMS-1; i<pTable->nCol; i++){
811       pIdx->aiColumn[n] = i;
812       pIdx->azColl[n] = sqlite3StrBINARY;
813       n++;
814     }
815   }
816   assert( n==nKeyCol );
817   pIdx->aiColumn[n] = XN_ROWID;
818   pIdx->azColl[n] = sqlite3StrBINARY;
819 
820   /* Create the automatic index */
821   assert( pLevel->iIdxCur>=0 );
822   pLevel->iIdxCur = pParse->nTab++;
823   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
824   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
825   VdbeComment((v, "for %s", pTable->zName));
826 
827   /* Fill the automatic index with content */
828   pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
829   if( pTabItem->fg.viaCoroutine ){
830     int regYield = pTabItem->regReturn;
831     addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
832     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
833     addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
834     VdbeCoverage(v);
835     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
836   }else{
837     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
838   }
839   if( pPartial ){
840     iContinue = sqlite3VdbeMakeLabel(v);
841     sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
842     pLoop->wsFlags |= WHERE_PARTIALIDX;
843   }
844   regRecord = sqlite3GetTempReg(pParse);
845   regBase = sqlite3GenerateIndexKey(
846       pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
847   );
848   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
849   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
850   if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
851   if( pTabItem->fg.viaCoroutine ){
852     sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
853     testcase( pParse->db->mallocFailed );
854     translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
855                           pTabItem->regResult, 1);
856     sqlite3VdbeGoto(v, addrTop);
857   }else{
858     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
859   }
860   sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
861   sqlite3VdbeJumpHere(v, addrTop);
862   sqlite3ReleaseTempReg(pParse, regRecord);
863 
864   /* Jump here when skipping the initialization */
865   sqlite3VdbeJumpHere(v, addrInit);
866 
867 end_auto_index_create:
868   sqlite3ExprDelete(pParse->db, pPartial);
869 }
870 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
871 
872 #ifndef SQLITE_OMIT_VIRTUALTABLE
873 /*
874 ** Allocate and populate an sqlite3_index_info structure. It is the
875 ** responsibility of the caller to eventually release the structure
876 ** by passing the pointer returned by this function to sqlite3_free().
877 */
878 static sqlite3_index_info *allocateIndexInfo(
879   Parse *pParse,                  /* The parsing context */
880   WhereClause *pWC,               /* The WHERE clause being analyzed */
881   Bitmask mUnusable,              /* Ignore terms with these prereqs */
882   struct SrcList_item *pSrc,      /* The FROM clause term that is the vtab */
883   ExprList *pOrderBy,             /* The ORDER BY clause */
884   u16 *pmNoOmit                   /* Mask of terms not to omit */
885 ){
886   int i, j;
887   int nTerm;
888   struct sqlite3_index_constraint *pIdxCons;
889   struct sqlite3_index_orderby *pIdxOrderBy;
890   struct sqlite3_index_constraint_usage *pUsage;
891   struct HiddenIndexInfo *pHidden;
892   WhereTerm *pTerm;
893   int nOrderBy;
894   sqlite3_index_info *pIdxInfo;
895   u16 mNoOmit = 0;
896 
897   /* Count the number of possible WHERE clause constraints referring
898   ** to this virtual table */
899   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
900     if( pTerm->leftCursor != pSrc->iCursor ) continue;
901     if( pTerm->prereqRight & mUnusable ) continue;
902     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
903     testcase( pTerm->eOperator & WO_IN );
904     testcase( pTerm->eOperator & WO_ISNULL );
905     testcase( pTerm->eOperator & WO_IS );
906     testcase( pTerm->eOperator & WO_ALL );
907     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
908     if( pTerm->wtFlags & TERM_VNULL ) continue;
909     assert( pTerm->u.leftColumn>=(-1) );
910     nTerm++;
911   }
912 
913   /* If the ORDER BY clause contains only columns in the current
914   ** virtual table then allocate space for the aOrderBy part of
915   ** the sqlite3_index_info structure.
916   */
917   nOrderBy = 0;
918   if( pOrderBy ){
919     int n = pOrderBy->nExpr;
920     for(i=0; i<n; i++){
921       Expr *pExpr = pOrderBy->a[i].pExpr;
922       if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
923     }
924     if( i==n){
925       nOrderBy = n;
926     }
927   }
928 
929   /* Allocate the sqlite3_index_info structure
930   */
931   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
932                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
933                            + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) );
934   if( pIdxInfo==0 ){
935     sqlite3ErrorMsg(pParse, "out of memory");
936     return 0;
937   }
938 
939   /* Initialize the structure.  The sqlite3_index_info structure contains
940   ** many fields that are declared "const" to prevent xBestIndex from
941   ** changing them.  We have to do some funky casting in order to
942   ** initialize those fields.
943   */
944   pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
945   pIdxCons = (struct sqlite3_index_constraint*)&pHidden[1];
946   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
947   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
948   *(int*)&pIdxInfo->nConstraint = nTerm;
949   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
950   *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
951   *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
952   *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
953                                                                    pUsage;
954 
955   pHidden->pWC = pWC;
956   pHidden->pParse = pParse;
957   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
958     u16 op;
959     if( pTerm->leftCursor != pSrc->iCursor ) continue;
960     if( pTerm->prereqRight & mUnusable ) continue;
961     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
962     testcase( pTerm->eOperator & WO_IN );
963     testcase( pTerm->eOperator & WO_IS );
964     testcase( pTerm->eOperator & WO_ISNULL );
965     testcase( pTerm->eOperator & WO_ALL );
966     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
967     if( pTerm->wtFlags & TERM_VNULL ) continue;
968     if( (pSrc->fg.jointype & JT_LEFT)!=0
969      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
970      && (pTerm->eOperator & (WO_IS|WO_ISNULL))
971     ){
972       /* An "IS" term in the WHERE clause where the virtual table is the rhs
973       ** of a LEFT JOIN. Do not pass this term to the virtual table
974       ** implementation, as this can lead to incorrect results from SQL such
975       ** as:
976       **
977       **   "LEFT JOIN vtab WHERE vtab.col IS NULL"  */
978       testcase( pTerm->eOperator & WO_ISNULL );
979       testcase( pTerm->eOperator & WO_IS );
980       continue;
981     }
982     assert( pTerm->u.leftColumn>=(-1) );
983     pIdxCons[j].iColumn = pTerm->u.leftColumn;
984     pIdxCons[j].iTermOffset = i;
985     op = pTerm->eOperator & WO_ALL;
986     if( op==WO_IN ) op = WO_EQ;
987     if( op==WO_AUX ){
988       pIdxCons[j].op = pTerm->eMatchOp;
989     }else if( op & (WO_ISNULL|WO_IS) ){
990       if( op==WO_ISNULL ){
991         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
992       }else{
993         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
994       }
995     }else{
996       pIdxCons[j].op = (u8)op;
997       /* The direct assignment in the previous line is possible only because
998       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
999       ** following asserts verify this fact. */
1000       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1001       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1002       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1003       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1004       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1005       assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
1006 
1007       if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
1008        && sqlite3ExprIsVector(pTerm->pExpr->pRight)
1009       ){
1010         if( i<16 ) mNoOmit |= (1 << i);
1011         if( op==WO_LT ) pIdxCons[j].op = WO_LE;
1012         if( op==WO_GT ) pIdxCons[j].op = WO_GE;
1013       }
1014     }
1015 
1016     j++;
1017   }
1018   for(i=0; i<nOrderBy; i++){
1019     Expr *pExpr = pOrderBy->a[i].pExpr;
1020     pIdxOrderBy[i].iColumn = pExpr->iColumn;
1021     pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
1022   }
1023 
1024   *pmNoOmit = mNoOmit;
1025   return pIdxInfo;
1026 }
1027 
1028 /*
1029 ** The table object reference passed as the second argument to this function
1030 ** must represent a virtual table. This function invokes the xBestIndex()
1031 ** method of the virtual table with the sqlite3_index_info object that
1032 ** comes in as the 3rd argument to this function.
1033 **
1034 ** If an error occurs, pParse is populated with an error message and an
1035 ** appropriate error code is returned.  A return of SQLITE_CONSTRAINT from
1036 ** xBestIndex is not considered an error.  SQLITE_CONSTRAINT indicates that
1037 ** the current configuration of "unusable" flags in sqlite3_index_info can
1038 ** not result in a valid plan.
1039 **
1040 ** Whether or not an error is returned, it is the responsibility of the
1041 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1042 ** that this is required.
1043 */
1044 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
1045   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
1046   int rc;
1047 
1048   TRACE_IDX_INPUTS(p);
1049   rc = pVtab->pModule->xBestIndex(pVtab, p);
1050   TRACE_IDX_OUTPUTS(p);
1051 
1052   if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){
1053     if( rc==SQLITE_NOMEM ){
1054       sqlite3OomFault(pParse->db);
1055     }else if( !pVtab->zErrMsg ){
1056       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1057     }else{
1058       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1059     }
1060   }
1061   sqlite3_free(pVtab->zErrMsg);
1062   pVtab->zErrMsg = 0;
1063   return rc;
1064 }
1065 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1066 
1067 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1068 /*
1069 ** Estimate the location of a particular key among all keys in an
1070 ** index.  Store the results in aStat as follows:
1071 **
1072 **    aStat[0]      Est. number of rows less than pRec
1073 **    aStat[1]      Est. number of rows equal to pRec
1074 **
1075 ** Return the index of the sample that is the smallest sample that
1076 ** is greater than or equal to pRec. Note that this index is not an index
1077 ** into the aSample[] array - it is an index into a virtual set of samples
1078 ** based on the contents of aSample[] and the number of fields in record
1079 ** pRec.
1080 */
1081 static int whereKeyStats(
1082   Parse *pParse,              /* Database connection */
1083   Index *pIdx,                /* Index to consider domain of */
1084   UnpackedRecord *pRec,       /* Vector of values to consider */
1085   int roundUp,                /* Round up if true.  Round down if false */
1086   tRowcnt *aStat              /* OUT: stats written here */
1087 ){
1088   IndexSample *aSample = pIdx->aSample;
1089   int iCol;                   /* Index of required stats in anEq[] etc. */
1090   int i;                      /* Index of first sample >= pRec */
1091   int iSample;                /* Smallest sample larger than or equal to pRec */
1092   int iMin = 0;               /* Smallest sample not yet tested */
1093   int iTest;                  /* Next sample to test */
1094   int res;                    /* Result of comparison operation */
1095   int nField;                 /* Number of fields in pRec */
1096   tRowcnt iLower = 0;         /* anLt[] + anEq[] of largest sample pRec is > */
1097 
1098 #ifndef SQLITE_DEBUG
1099   UNUSED_PARAMETER( pParse );
1100 #endif
1101   assert( pRec!=0 );
1102   assert( pIdx->nSample>0 );
1103   assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
1104 
1105   /* Do a binary search to find the first sample greater than or equal
1106   ** to pRec. If pRec contains a single field, the set of samples to search
1107   ** is simply the aSample[] array. If the samples in aSample[] contain more
1108   ** than one fields, all fields following the first are ignored.
1109   **
1110   ** If pRec contains N fields, where N is more than one, then as well as the
1111   ** samples in aSample[] (truncated to N fields), the search also has to
1112   ** consider prefixes of those samples. For example, if the set of samples
1113   ** in aSample is:
1114   **
1115   **     aSample[0] = (a, 5)
1116   **     aSample[1] = (a, 10)
1117   **     aSample[2] = (b, 5)
1118   **     aSample[3] = (c, 100)
1119   **     aSample[4] = (c, 105)
1120   **
1121   ** Then the search space should ideally be the samples above and the
1122   ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1123   ** the code actually searches this set:
1124   **
1125   **     0: (a)
1126   **     1: (a, 5)
1127   **     2: (a, 10)
1128   **     3: (a, 10)
1129   **     4: (b)
1130   **     5: (b, 5)
1131   **     6: (c)
1132   **     7: (c, 100)
1133   **     8: (c, 105)
1134   **     9: (c, 105)
1135   **
1136   ** For each sample in the aSample[] array, N samples are present in the
1137   ** effective sample array. In the above, samples 0 and 1 are based on
1138   ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1139   **
1140   ** Often, sample i of each block of N effective samples has (i+1) fields.
1141   ** Except, each sample may be extended to ensure that it is greater than or
1142   ** equal to the previous sample in the array. For example, in the above,
1143   ** sample 2 is the first sample of a block of N samples, so at first it
1144   ** appears that it should be 1 field in size. However, that would make it
1145   ** smaller than sample 1, so the binary search would not work. As a result,
1146   ** it is extended to two fields. The duplicates that this creates do not
1147   ** cause any problems.
1148   */
1149   nField = pRec->nField;
1150   iCol = 0;
1151   iSample = pIdx->nSample * nField;
1152   do{
1153     int iSamp;                    /* Index in aSample[] of test sample */
1154     int n;                        /* Number of fields in test sample */
1155 
1156     iTest = (iMin+iSample)/2;
1157     iSamp = iTest / nField;
1158     if( iSamp>0 ){
1159       /* The proposed effective sample is a prefix of sample aSample[iSamp].
1160       ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1161       ** fields that is greater than the previous effective sample.  */
1162       for(n=(iTest % nField) + 1; n<nField; n++){
1163         if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1164       }
1165     }else{
1166       n = iTest + 1;
1167     }
1168 
1169     pRec->nField = n;
1170     res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1171     if( res<0 ){
1172       iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1173       iMin = iTest+1;
1174     }else if( res==0 && n<nField ){
1175       iLower = aSample[iSamp].anLt[n-1];
1176       iMin = iTest+1;
1177       res = -1;
1178     }else{
1179       iSample = iTest;
1180       iCol = n-1;
1181     }
1182   }while( res && iMin<iSample );
1183   i = iSample / nField;
1184 
1185 #ifdef SQLITE_DEBUG
1186   /* The following assert statements check that the binary search code
1187   ** above found the right answer. This block serves no purpose other
1188   ** than to invoke the asserts.  */
1189   if( pParse->db->mallocFailed==0 ){
1190     if( res==0 ){
1191       /* If (res==0) is true, then pRec must be equal to sample i. */
1192       assert( i<pIdx->nSample );
1193       assert( iCol==nField-1 );
1194       pRec->nField = nField;
1195       assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1196            || pParse->db->mallocFailed
1197       );
1198     }else{
1199       /* Unless i==pIdx->nSample, indicating that pRec is larger than
1200       ** all samples in the aSample[] array, pRec must be smaller than the
1201       ** (iCol+1) field prefix of sample i.  */
1202       assert( i<=pIdx->nSample && i>=0 );
1203       pRec->nField = iCol+1;
1204       assert( i==pIdx->nSample
1205            || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1206            || pParse->db->mallocFailed );
1207 
1208       /* if i==0 and iCol==0, then record pRec is smaller than all samples
1209       ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1210       ** be greater than or equal to the (iCol) field prefix of sample i.
1211       ** If (i>0), then pRec must also be greater than sample (i-1).  */
1212       if( iCol>0 ){
1213         pRec->nField = iCol;
1214         assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1215              || pParse->db->mallocFailed );
1216       }
1217       if( i>0 ){
1218         pRec->nField = nField;
1219         assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1220              || pParse->db->mallocFailed );
1221       }
1222     }
1223   }
1224 #endif /* ifdef SQLITE_DEBUG */
1225 
1226   if( res==0 ){
1227     /* Record pRec is equal to sample i */
1228     assert( iCol==nField-1 );
1229     aStat[0] = aSample[i].anLt[iCol];
1230     aStat[1] = aSample[i].anEq[iCol];
1231   }else{
1232     /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1233     ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1234     ** is larger than all samples in the array. */
1235     tRowcnt iUpper, iGap;
1236     if( i>=pIdx->nSample ){
1237       iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1238     }else{
1239       iUpper = aSample[i].anLt[iCol];
1240     }
1241 
1242     if( iLower>=iUpper ){
1243       iGap = 0;
1244     }else{
1245       iGap = iUpper - iLower;
1246     }
1247     if( roundUp ){
1248       iGap = (iGap*2)/3;
1249     }else{
1250       iGap = iGap/3;
1251     }
1252     aStat[0] = iLower + iGap;
1253     aStat[1] = pIdx->aAvgEq[nField-1];
1254   }
1255 
1256   /* Restore the pRec->nField value before returning.  */
1257   pRec->nField = nField;
1258   return i;
1259 }
1260 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1261 
1262 /*
1263 ** If it is not NULL, pTerm is a term that provides an upper or lower
1264 ** bound on a range scan. Without considering pTerm, it is estimated
1265 ** that the scan will visit nNew rows. This function returns the number
1266 ** estimated to be visited after taking pTerm into account.
1267 **
1268 ** If the user explicitly specified a likelihood() value for this term,
1269 ** then the return value is the likelihood multiplied by the number of
1270 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1271 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1272 */
1273 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1274   LogEst nRet = nNew;
1275   if( pTerm ){
1276     if( pTerm->truthProb<=0 ){
1277       nRet += pTerm->truthProb;
1278     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1279       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
1280     }
1281   }
1282   return nRet;
1283 }
1284 
1285 
1286 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1287 /*
1288 ** Return the affinity for a single column of an index.
1289 */
1290 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1291   assert( iCol>=0 && iCol<pIdx->nColumn );
1292   if( !pIdx->zColAff ){
1293     if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1294   }
1295   return pIdx->zColAff[iCol];
1296 }
1297 #endif
1298 
1299 
1300 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1301 /*
1302 ** This function is called to estimate the number of rows visited by a
1303 ** range-scan on a skip-scan index. For example:
1304 **
1305 **   CREATE INDEX i1 ON t1(a, b, c);
1306 **   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1307 **
1308 ** Value pLoop->nOut is currently set to the estimated number of rows
1309 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1310 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1311 ** on the stat4 data for the index. this scan will be peformed multiple
1312 ** times (once for each (a,b) combination that matches a=?) is dealt with
1313 ** by the caller.
1314 **
1315 ** It does this by scanning through all stat4 samples, comparing values
1316 ** extracted from pLower and pUpper with the corresponding column in each
1317 ** sample. If L and U are the number of samples found to be less than or
1318 ** equal to the values extracted from pLower and pUpper respectively, and
1319 ** N is the total number of samples, the pLoop->nOut value is adjusted
1320 ** as follows:
1321 **
1322 **   nOut = nOut * ( min(U - L, 1) / N )
1323 **
1324 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1325 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1326 ** U is set to N.
1327 **
1328 ** Normally, this function sets *pbDone to 1 before returning. However,
1329 ** if no value can be extracted from either pLower or pUpper (and so the
1330 ** estimate of the number of rows delivered remains unchanged), *pbDone
1331 ** is left as is.
1332 **
1333 ** If an error occurs, an SQLite error code is returned. Otherwise,
1334 ** SQLITE_OK.
1335 */
1336 static int whereRangeSkipScanEst(
1337   Parse *pParse,       /* Parsing & code generating context */
1338   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1339   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1340   WhereLoop *pLoop,    /* Update the .nOut value of this loop */
1341   int *pbDone          /* Set to true if at least one expr. value extracted */
1342 ){
1343   Index *p = pLoop->u.btree.pIndex;
1344   int nEq = pLoop->u.btree.nEq;
1345   sqlite3 *db = pParse->db;
1346   int nLower = -1;
1347   int nUpper = p->nSample+1;
1348   int rc = SQLITE_OK;
1349   u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1350   CollSeq *pColl;
1351 
1352   sqlite3_value *p1 = 0;          /* Value extracted from pLower */
1353   sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
1354   sqlite3_value *pVal = 0;        /* Value extracted from record */
1355 
1356   pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1357   if( pLower ){
1358     rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1359     nLower = 0;
1360   }
1361   if( pUpper && rc==SQLITE_OK ){
1362     rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1363     nUpper = p2 ? 0 : p->nSample;
1364   }
1365 
1366   if( p1 || p2 ){
1367     int i;
1368     int nDiff;
1369     for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1370       rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1371       if( rc==SQLITE_OK && p1 ){
1372         int res = sqlite3MemCompare(p1, pVal, pColl);
1373         if( res>=0 ) nLower++;
1374       }
1375       if( rc==SQLITE_OK && p2 ){
1376         int res = sqlite3MemCompare(p2, pVal, pColl);
1377         if( res>=0 ) nUpper++;
1378       }
1379     }
1380     nDiff = (nUpper - nLower);
1381     if( nDiff<=0 ) nDiff = 1;
1382 
1383     /* If there is both an upper and lower bound specified, and the
1384     ** comparisons indicate that they are close together, use the fallback
1385     ** method (assume that the scan visits 1/64 of the rows) for estimating
1386     ** the number of rows visited. Otherwise, estimate the number of rows
1387     ** using the method described in the header comment for this function. */
1388     if( nDiff!=1 || pUpper==0 || pLower==0 ){
1389       int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1390       pLoop->nOut -= nAdjust;
1391       *pbDone = 1;
1392       WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n",
1393                            nLower, nUpper, nAdjust*-1, pLoop->nOut));
1394     }
1395 
1396   }else{
1397     assert( *pbDone==0 );
1398   }
1399 
1400   sqlite3ValueFree(p1);
1401   sqlite3ValueFree(p2);
1402   sqlite3ValueFree(pVal);
1403 
1404   return rc;
1405 }
1406 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1407 
1408 /*
1409 ** This function is used to estimate the number of rows that will be visited
1410 ** by scanning an index for a range of values. The range may have an upper
1411 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1412 ** and lower bounds are represented by pLower and pUpper respectively. For
1413 ** example, assuming that index p is on t1(a):
1414 **
1415 **   ... FROM t1 WHERE a > ? AND a < ? ...
1416 **                    |_____|   |_____|
1417 **                       |         |
1418 **                     pLower    pUpper
1419 **
1420 ** If either of the upper or lower bound is not present, then NULL is passed in
1421 ** place of the corresponding WhereTerm.
1422 **
1423 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1424 ** column subject to the range constraint. Or, equivalently, the number of
1425 ** equality constraints optimized by the proposed index scan. For example,
1426 ** assuming index p is on t1(a, b), and the SQL query is:
1427 **
1428 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1429 **
1430 ** then nEq is set to 1 (as the range restricted column, b, is the second
1431 ** left-most column of the index). Or, if the query is:
1432 **
1433 **   ... FROM t1 WHERE a > ? AND a < ? ...
1434 **
1435 ** then nEq is set to 0.
1436 **
1437 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1438 ** number of rows that the index scan is expected to visit without
1439 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1440 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1441 ** to account for the range constraints pLower and pUpper.
1442 **
1443 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1444 ** used, a single range inequality reduces the search space by a factor of 4.
1445 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1446 ** rows visited by a factor of 64.
1447 */
1448 static int whereRangeScanEst(
1449   Parse *pParse,       /* Parsing & code generating context */
1450   WhereLoopBuilder *pBuilder,
1451   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1452   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1453   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
1454 ){
1455   int rc = SQLITE_OK;
1456   int nOut = pLoop->nOut;
1457   LogEst nNew;
1458 
1459 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1460   Index *p = pLoop->u.btree.pIndex;
1461   int nEq = pLoop->u.btree.nEq;
1462 
1463   if( p->nSample>0 && nEq<p->nSampleCol
1464    && OptimizationEnabled(pParse->db, SQLITE_Stat34)
1465   ){
1466     if( nEq==pBuilder->nRecValid ){
1467       UnpackedRecord *pRec = pBuilder->pRec;
1468       tRowcnt a[2];
1469       int nBtm = pLoop->u.btree.nBtm;
1470       int nTop = pLoop->u.btree.nTop;
1471 
1472       /* Variable iLower will be set to the estimate of the number of rows in
1473       ** the index that are less than the lower bound of the range query. The
1474       ** lower bound being the concatenation of $P and $L, where $P is the
1475       ** key-prefix formed by the nEq values matched against the nEq left-most
1476       ** columns of the index, and $L is the value in pLower.
1477       **
1478       ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1479       ** is not a simple variable or literal value), the lower bound of the
1480       ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1481       ** if $L is available, whereKeyStats() is called for both ($P) and
1482       ** ($P:$L) and the larger of the two returned values is used.
1483       **
1484       ** Similarly, iUpper is to be set to the estimate of the number of rows
1485       ** less than the upper bound of the range query. Where the upper bound
1486       ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1487       ** of iUpper are requested of whereKeyStats() and the smaller used.
1488       **
1489       ** The number of rows between the two bounds is then just iUpper-iLower.
1490       */
1491       tRowcnt iLower;     /* Rows less than the lower bound */
1492       tRowcnt iUpper;     /* Rows less than the upper bound */
1493       int iLwrIdx = -2;   /* aSample[] for the lower bound */
1494       int iUprIdx = -1;   /* aSample[] for the upper bound */
1495 
1496       if( pRec ){
1497         testcase( pRec->nField!=pBuilder->nRecValid );
1498         pRec->nField = pBuilder->nRecValid;
1499       }
1500       /* Determine iLower and iUpper using ($P) only. */
1501       if( nEq==0 ){
1502         iLower = 0;
1503         iUpper = p->nRowEst0;
1504       }else{
1505         /* Note: this call could be optimized away - since the same values must
1506         ** have been requested when testing key $P in whereEqualScanEst().  */
1507         whereKeyStats(pParse, p, pRec, 0, a);
1508         iLower = a[0];
1509         iUpper = a[0] + a[1];
1510       }
1511 
1512       assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1513       assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1514       assert( p->aSortOrder!=0 );
1515       if( p->aSortOrder[nEq] ){
1516         /* The roles of pLower and pUpper are swapped for a DESC index */
1517         SWAP(WhereTerm*, pLower, pUpper);
1518         SWAP(int, nBtm, nTop);
1519       }
1520 
1521       /* If possible, improve on the iLower estimate using ($P:$L). */
1522       if( pLower ){
1523         int n;                    /* Values extracted from pExpr */
1524         Expr *pExpr = pLower->pExpr->pRight;
1525         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1526         if( rc==SQLITE_OK && n ){
1527           tRowcnt iNew;
1528           u16 mask = WO_GT|WO_LE;
1529           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1530           iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1531           iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1532           if( iNew>iLower ) iLower = iNew;
1533           nOut--;
1534           pLower = 0;
1535         }
1536       }
1537 
1538       /* If possible, improve on the iUpper estimate using ($P:$U). */
1539       if( pUpper ){
1540         int n;                    /* Values extracted from pExpr */
1541         Expr *pExpr = pUpper->pExpr->pRight;
1542         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1543         if( rc==SQLITE_OK && n ){
1544           tRowcnt iNew;
1545           u16 mask = WO_GT|WO_LE;
1546           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1547           iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1548           iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1549           if( iNew<iUpper ) iUpper = iNew;
1550           nOut--;
1551           pUpper = 0;
1552         }
1553       }
1554 
1555       pBuilder->pRec = pRec;
1556       if( rc==SQLITE_OK ){
1557         if( iUpper>iLower ){
1558           nNew = sqlite3LogEst(iUpper - iLower);
1559           /* TUNING:  If both iUpper and iLower are derived from the same
1560           ** sample, then assume they are 4x more selective.  This brings
1561           ** the estimated selectivity more in line with what it would be
1562           ** if estimated without the use of STAT3/4 tables. */
1563           if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
1564         }else{
1565           nNew = 10;        assert( 10==sqlite3LogEst(2) );
1566         }
1567         if( nNew<nOut ){
1568           nOut = nNew;
1569         }
1570         WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
1571                            (u32)iLower, (u32)iUpper, nOut));
1572       }
1573     }else{
1574       int bDone = 0;
1575       rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1576       if( bDone ) return rc;
1577     }
1578   }
1579 #else
1580   UNUSED_PARAMETER(pParse);
1581   UNUSED_PARAMETER(pBuilder);
1582   assert( pLower || pUpper );
1583 #endif
1584   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1585   nNew = whereRangeAdjust(pLower, nOut);
1586   nNew = whereRangeAdjust(pUpper, nNew);
1587 
1588   /* TUNING: If there is both an upper and lower limit and neither limit
1589   ** has an application-defined likelihood(), assume the range is
1590   ** reduced by an additional 75%. This means that, by default, an open-ended
1591   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1592   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1593   ** match 1/64 of the index. */
1594   if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1595     nNew -= 20;
1596   }
1597 
1598   nOut -= (pLower!=0) + (pUpper!=0);
1599   if( nNew<10 ) nNew = 10;
1600   if( nNew<nOut ) nOut = nNew;
1601 #if defined(WHERETRACE_ENABLED)
1602   if( pLoop->nOut>nOut ){
1603     WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1604                     pLoop->nOut, nOut));
1605   }
1606 #endif
1607   pLoop->nOut = (LogEst)nOut;
1608   return rc;
1609 }
1610 
1611 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1612 /*
1613 ** Estimate the number of rows that will be returned based on
1614 ** an equality constraint x=VALUE and where that VALUE occurs in
1615 ** the histogram data.  This only works when x is the left-most
1616 ** column of an index and sqlite_stat3 histogram data is available
1617 ** for that index.  When pExpr==NULL that means the constraint is
1618 ** "x IS NULL" instead of "x=VALUE".
1619 **
1620 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1621 ** If unable to make an estimate, leave *pnRow unchanged and return
1622 ** non-zero.
1623 **
1624 ** This routine can fail if it is unable to load a collating sequence
1625 ** required for string comparison, or if unable to allocate memory
1626 ** for a UTF conversion required for comparison.  The error is stored
1627 ** in the pParse structure.
1628 */
1629 static int whereEqualScanEst(
1630   Parse *pParse,       /* Parsing & code generating context */
1631   WhereLoopBuilder *pBuilder,
1632   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
1633   tRowcnt *pnRow       /* Write the revised row estimate here */
1634 ){
1635   Index *p = pBuilder->pNew->u.btree.pIndex;
1636   int nEq = pBuilder->pNew->u.btree.nEq;
1637   UnpackedRecord *pRec = pBuilder->pRec;
1638   int rc;                   /* Subfunction return code */
1639   tRowcnt a[2];             /* Statistics */
1640   int bOk;
1641 
1642   assert( nEq>=1 );
1643   assert( nEq<=p->nColumn );
1644   assert( p->aSample!=0 );
1645   assert( p->nSample>0 );
1646   assert( pBuilder->nRecValid<nEq );
1647 
1648   /* If values are not available for all fields of the index to the left
1649   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1650   if( pBuilder->nRecValid<(nEq-1) ){
1651     return SQLITE_NOTFOUND;
1652   }
1653 
1654   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1655   ** below would return the same value.  */
1656   if( nEq>=p->nColumn ){
1657     *pnRow = 1;
1658     return SQLITE_OK;
1659   }
1660 
1661   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1662   pBuilder->pRec = pRec;
1663   if( rc!=SQLITE_OK ) return rc;
1664   if( bOk==0 ) return SQLITE_NOTFOUND;
1665   pBuilder->nRecValid = nEq;
1666 
1667   whereKeyStats(pParse, p, pRec, 0, a);
1668   WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1669                    p->zName, nEq-1, (int)a[1]));
1670   *pnRow = a[1];
1671 
1672   return rc;
1673 }
1674 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1675 
1676 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1677 /*
1678 ** Estimate the number of rows that will be returned based on
1679 ** an IN constraint where the right-hand side of the IN operator
1680 ** is a list of values.  Example:
1681 **
1682 **        WHERE x IN (1,2,3,4)
1683 **
1684 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1685 ** If unable to make an estimate, leave *pnRow unchanged and return
1686 ** non-zero.
1687 **
1688 ** This routine can fail if it is unable to load a collating sequence
1689 ** required for string comparison, or if unable to allocate memory
1690 ** for a UTF conversion required for comparison.  The error is stored
1691 ** in the pParse structure.
1692 */
1693 static int whereInScanEst(
1694   Parse *pParse,       /* Parsing & code generating context */
1695   WhereLoopBuilder *pBuilder,
1696   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1697   tRowcnt *pnRow       /* Write the revised row estimate here */
1698 ){
1699   Index *p = pBuilder->pNew->u.btree.pIndex;
1700   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1701   int nRecValid = pBuilder->nRecValid;
1702   int rc = SQLITE_OK;     /* Subfunction return code */
1703   tRowcnt nEst;           /* Number of rows for a single term */
1704   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
1705   int i;                  /* Loop counter */
1706 
1707   assert( p->aSample!=0 );
1708   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
1709     nEst = nRow0;
1710     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
1711     nRowEst += nEst;
1712     pBuilder->nRecValid = nRecValid;
1713   }
1714 
1715   if( rc==SQLITE_OK ){
1716     if( nRowEst > nRow0 ) nRowEst = nRow0;
1717     *pnRow = nRowEst;
1718     WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
1719   }
1720   assert( pBuilder->nRecValid==nRecValid );
1721   return rc;
1722 }
1723 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1724 
1725 
1726 #ifdef WHERETRACE_ENABLED
1727 /*
1728 ** Print the content of a WhereTerm object
1729 */
1730 static void whereTermPrint(WhereTerm *pTerm, int iTerm){
1731   if( pTerm==0 ){
1732     sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
1733   }else{
1734     char zType[4];
1735     char zLeft[50];
1736     memcpy(zType, "...", 4);
1737     if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
1738     if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
1739     if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
1740     if( pTerm->eOperator & WO_SINGLE ){
1741       sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
1742                        pTerm->leftCursor, pTerm->u.leftColumn);
1743     }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
1744       sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%lld",
1745                        pTerm->u.pOrInfo->indexable);
1746     }else{
1747       sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
1748     }
1749     sqlite3DebugPrintf(
1750        "TERM-%-3d %p %s %-12s prob=%-3d op=0x%03x wtFlags=0x%04x",
1751        iTerm, pTerm, zType, zLeft, pTerm->truthProb,
1752        pTerm->eOperator, pTerm->wtFlags);
1753     if( pTerm->iField ){
1754       sqlite3DebugPrintf(" iField=%d\n", pTerm->iField);
1755     }else{
1756       sqlite3DebugPrintf("\n");
1757     }
1758     sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
1759   }
1760 }
1761 #endif
1762 
1763 #ifdef WHERETRACE_ENABLED
1764 /*
1765 ** Show the complete content of a WhereClause
1766 */
1767 void sqlite3WhereClausePrint(WhereClause *pWC){
1768   int i;
1769   for(i=0; i<pWC->nTerm; i++){
1770     whereTermPrint(&pWC->a[i], i);
1771   }
1772 }
1773 #endif
1774 
1775 #ifdef WHERETRACE_ENABLED
1776 /*
1777 ** Print a WhereLoop object for debugging purposes
1778 */
1779 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){
1780   WhereInfo *pWInfo = pWC->pWInfo;
1781   int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
1782   struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab;
1783   Table *pTab = pItem->pTab;
1784   Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
1785   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
1786                      p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
1787   sqlite3DebugPrintf(" %12s",
1788                      pItem->zAlias ? pItem->zAlias : pTab->zName);
1789   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
1790     const char *zName;
1791     if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
1792       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
1793         int i = sqlite3Strlen30(zName) - 1;
1794         while( zName[i]!='_' ) i--;
1795         zName += i;
1796       }
1797       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
1798     }else{
1799       sqlite3DebugPrintf("%20s","");
1800     }
1801   }else{
1802     char *z;
1803     if( p->u.vtab.idxStr ){
1804       z = sqlite3_mprintf("(%d,\"%s\",%x)",
1805                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
1806     }else{
1807       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
1808     }
1809     sqlite3DebugPrintf(" %-19s", z);
1810     sqlite3_free(z);
1811   }
1812   if( p->wsFlags & WHERE_SKIPSCAN ){
1813     sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
1814   }else{
1815     sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
1816   }
1817   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
1818   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
1819     int i;
1820     for(i=0; i<p->nLTerm; i++){
1821       whereTermPrint(p->aLTerm[i], i);
1822     }
1823   }
1824 }
1825 #endif
1826 
1827 /*
1828 ** Convert bulk memory into a valid WhereLoop that can be passed
1829 ** to whereLoopClear harmlessly.
1830 */
1831 static void whereLoopInit(WhereLoop *p){
1832   p->aLTerm = p->aLTermSpace;
1833   p->nLTerm = 0;
1834   p->nLSlot = ArraySize(p->aLTermSpace);
1835   p->wsFlags = 0;
1836 }
1837 
1838 /*
1839 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
1840 */
1841 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
1842   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
1843     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
1844       sqlite3_free(p->u.vtab.idxStr);
1845       p->u.vtab.needFree = 0;
1846       p->u.vtab.idxStr = 0;
1847     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
1848       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
1849       sqlite3DbFreeNN(db, p->u.btree.pIndex);
1850       p->u.btree.pIndex = 0;
1851     }
1852   }
1853 }
1854 
1855 /*
1856 ** Deallocate internal memory used by a WhereLoop object
1857 */
1858 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
1859   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1860   whereLoopClearUnion(db, p);
1861   whereLoopInit(p);
1862 }
1863 
1864 /*
1865 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
1866 */
1867 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
1868   WhereTerm **paNew;
1869   if( p->nLSlot>=n ) return SQLITE_OK;
1870   n = (n+7)&~7;
1871   paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
1872   if( paNew==0 ) return SQLITE_NOMEM_BKPT;
1873   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
1874   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1875   p->aLTerm = paNew;
1876   p->nLSlot = n;
1877   return SQLITE_OK;
1878 }
1879 
1880 /*
1881 ** Transfer content from the second pLoop into the first.
1882 */
1883 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
1884   whereLoopClearUnion(db, pTo);
1885   if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
1886     memset(&pTo->u, 0, sizeof(pTo->u));
1887     return SQLITE_NOMEM_BKPT;
1888   }
1889   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
1890   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
1891   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
1892     pFrom->u.vtab.needFree = 0;
1893   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
1894     pFrom->u.btree.pIndex = 0;
1895   }
1896   return SQLITE_OK;
1897 }
1898 
1899 /*
1900 ** Delete a WhereLoop object
1901 */
1902 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
1903   whereLoopClear(db, p);
1904   sqlite3DbFreeNN(db, p);
1905 }
1906 
1907 /*
1908 ** Free a WhereInfo structure
1909 */
1910 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
1911   int i;
1912   assert( pWInfo!=0 );
1913   for(i=0; i<pWInfo->nLevel; i++){
1914     WhereLevel *pLevel = &pWInfo->a[i];
1915     if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){
1916       sqlite3DbFree(db, pLevel->u.in.aInLoop);
1917     }
1918   }
1919   sqlite3WhereClauseClear(&pWInfo->sWC);
1920   while( pWInfo->pLoops ){
1921     WhereLoop *p = pWInfo->pLoops;
1922     pWInfo->pLoops = p->pNextLoop;
1923     whereLoopDelete(db, p);
1924   }
1925   sqlite3DbFreeNN(db, pWInfo);
1926 }
1927 
1928 /*
1929 ** Return TRUE if all of the following are true:
1930 **
1931 **   (1)  X has the same or lower cost that Y
1932 **   (2)  X uses fewer WHERE clause terms than Y
1933 **   (3)  Every WHERE clause term used by X is also used by Y
1934 **   (4)  X skips at least as many columns as Y
1935 **   (5)  If X is a covering index, than Y is too
1936 **
1937 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
1938 ** If X is a proper subset of Y then Y is a better choice and ought
1939 ** to have a lower cost.  This routine returns TRUE when that cost
1940 ** relationship is inverted and needs to be adjusted.  Constraint (4)
1941 ** was added because if X uses skip-scan less than Y it still might
1942 ** deserve a lower cost even if it is a proper subset of Y.  Constraint (5)
1943 ** was added because a covering index probably deserves to have a lower cost
1944 ** than a non-covering index even if it is a proper subset.
1945 */
1946 static int whereLoopCheaperProperSubset(
1947   const WhereLoop *pX,       /* First WhereLoop to compare */
1948   const WhereLoop *pY        /* Compare against this WhereLoop */
1949 ){
1950   int i, j;
1951   if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
1952     return 0; /* X is not a subset of Y */
1953   }
1954   if( pY->nSkip > pX->nSkip ) return 0;
1955   if( pX->rRun >= pY->rRun ){
1956     if( pX->rRun > pY->rRun ) return 0;    /* X costs more than Y */
1957     if( pX->nOut > pY->nOut ) return 0;    /* X costs more than Y */
1958   }
1959   for(i=pX->nLTerm-1; i>=0; i--){
1960     if( pX->aLTerm[i]==0 ) continue;
1961     for(j=pY->nLTerm-1; j>=0; j--){
1962       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
1963     }
1964     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
1965   }
1966   if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
1967    && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
1968     return 0;  /* Constraint (5) */
1969   }
1970   return 1;  /* All conditions meet */
1971 }
1972 
1973 /*
1974 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
1975 ** that:
1976 **
1977 **   (1) pTemplate costs less than any other WhereLoops that are a proper
1978 **       subset of pTemplate
1979 **
1980 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
1981 **       is a proper subset.
1982 **
1983 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
1984 ** WHERE clause terms than Y and that every WHERE clause term used by X is
1985 ** also used by Y.
1986 */
1987 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
1988   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
1989   for(; p; p=p->pNextLoop){
1990     if( p->iTab!=pTemplate->iTab ) continue;
1991     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
1992     if( whereLoopCheaperProperSubset(p, pTemplate) ){
1993       /* Adjust pTemplate cost downward so that it is cheaper than its
1994       ** subset p. */
1995       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
1996                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1));
1997       pTemplate->rRun = p->rRun;
1998       pTemplate->nOut = p->nOut - 1;
1999     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
2000       /* Adjust pTemplate cost upward so that it is costlier than p since
2001       ** pTemplate is a proper subset of p */
2002       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2003                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1));
2004       pTemplate->rRun = p->rRun;
2005       pTemplate->nOut = p->nOut + 1;
2006     }
2007   }
2008 }
2009 
2010 /*
2011 ** Search the list of WhereLoops in *ppPrev looking for one that can be
2012 ** replaced by pTemplate.
2013 **
2014 ** Return NULL if pTemplate does not belong on the WhereLoop list.
2015 ** In other words if pTemplate ought to be dropped from further consideration.
2016 **
2017 ** If pX is a WhereLoop that pTemplate can replace, then return the
2018 ** link that points to pX.
2019 **
2020 ** If pTemplate cannot replace any existing element of the list but needs
2021 ** to be added to the list as a new entry, then return a pointer to the
2022 ** tail of the list.
2023 */
2024 static WhereLoop **whereLoopFindLesser(
2025   WhereLoop **ppPrev,
2026   const WhereLoop *pTemplate
2027 ){
2028   WhereLoop *p;
2029   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
2030     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
2031       /* If either the iTab or iSortIdx values for two WhereLoop are different
2032       ** then those WhereLoops need to be considered separately.  Neither is
2033       ** a candidate to replace the other. */
2034       continue;
2035     }
2036     /* In the current implementation, the rSetup value is either zero
2037     ** or the cost of building an automatic index (NlogN) and the NlogN
2038     ** is the same for compatible WhereLoops. */
2039     assert( p->rSetup==0 || pTemplate->rSetup==0
2040                  || p->rSetup==pTemplate->rSetup );
2041 
2042     /* whereLoopAddBtree() always generates and inserts the automatic index
2043     ** case first.  Hence compatible candidate WhereLoops never have a larger
2044     ** rSetup. Call this SETUP-INVARIANT */
2045     assert( p->rSetup>=pTemplate->rSetup );
2046 
2047     /* Any loop using an appliation-defined index (or PRIMARY KEY or
2048     ** UNIQUE constraint) with one or more == constraints is better
2049     ** than an automatic index. Unless it is a skip-scan. */
2050     if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
2051      && (pTemplate->nSkip)==0
2052      && (pTemplate->wsFlags & WHERE_INDEXED)!=0
2053      && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
2054      && (p->prereq & pTemplate->prereq)==pTemplate->prereq
2055     ){
2056       break;
2057     }
2058 
2059     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2060     ** discarded.  WhereLoop p is better if:
2061     **   (1)  p has no more dependencies than pTemplate, and
2062     **   (2)  p has an equal or lower cost than pTemplate
2063     */
2064     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
2065      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
2066      && p->rRun<=pTemplate->rRun                      /* (2b) */
2067      && p->nOut<=pTemplate->nOut                      /* (2c) */
2068     ){
2069       return 0;  /* Discard pTemplate */
2070     }
2071 
2072     /* If pTemplate is always better than p, then cause p to be overwritten
2073     ** with pTemplate.  pTemplate is better than p if:
2074     **   (1)  pTemplate has no more dependences than p, and
2075     **   (2)  pTemplate has an equal or lower cost than p.
2076     */
2077     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
2078      && p->rRun>=pTemplate->rRun                             /* (2a) */
2079      && p->nOut>=pTemplate->nOut                             /* (2b) */
2080     ){
2081       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2082       break;   /* Cause p to be overwritten by pTemplate */
2083     }
2084   }
2085   return ppPrev;
2086 }
2087 
2088 /*
2089 ** Insert or replace a WhereLoop entry using the template supplied.
2090 **
2091 ** An existing WhereLoop entry might be overwritten if the new template
2092 ** is better and has fewer dependencies.  Or the template will be ignored
2093 ** and no insert will occur if an existing WhereLoop is faster and has
2094 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
2095 ** added based on the template.
2096 **
2097 ** If pBuilder->pOrSet is not NULL then we care about only the
2098 ** prerequisites and rRun and nOut costs of the N best loops.  That
2099 ** information is gathered in the pBuilder->pOrSet object.  This special
2100 ** processing mode is used only for OR clause processing.
2101 **
2102 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2103 ** still might overwrite similar loops with the new template if the
2104 ** new template is better.  Loops may be overwritten if the following
2105 ** conditions are met:
2106 **
2107 **    (1)  They have the same iTab.
2108 **    (2)  They have the same iSortIdx.
2109 **    (3)  The template has same or fewer dependencies than the current loop
2110 **    (4)  The template has the same or lower cost than the current loop
2111 */
2112 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2113   WhereLoop **ppPrev, *p;
2114   WhereInfo *pWInfo = pBuilder->pWInfo;
2115   sqlite3 *db = pWInfo->pParse->db;
2116   int rc;
2117 
2118   /* Stop the search once we hit the query planner search limit */
2119   if( pBuilder->iPlanLimit==0 ){
2120     WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
2121     if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0;
2122     return SQLITE_DONE;
2123   }
2124   pBuilder->iPlanLimit--;
2125 
2126   /* If pBuilder->pOrSet is defined, then only keep track of the costs
2127   ** and prereqs.
2128   */
2129   if( pBuilder->pOrSet!=0 ){
2130     if( pTemplate->nLTerm ){
2131 #if WHERETRACE_ENABLED
2132       u16 n = pBuilder->pOrSet->n;
2133       int x =
2134 #endif
2135       whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2136                                     pTemplate->nOut);
2137 #if WHERETRACE_ENABLED /* 0x8 */
2138       if( sqlite3WhereTrace & 0x8 ){
2139         sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
2140         whereLoopPrint(pTemplate, pBuilder->pWC);
2141       }
2142 #endif
2143     }
2144     return SQLITE_OK;
2145   }
2146 
2147   /* Look for an existing WhereLoop to replace with pTemplate
2148   */
2149   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2150   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2151 
2152   if( ppPrev==0 ){
2153     /* There already exists a WhereLoop on the list that is better
2154     ** than pTemplate, so just ignore pTemplate */
2155 #if WHERETRACE_ENABLED /* 0x8 */
2156     if( sqlite3WhereTrace & 0x8 ){
2157       sqlite3DebugPrintf("   skip: ");
2158       whereLoopPrint(pTemplate, pBuilder->pWC);
2159     }
2160 #endif
2161     return SQLITE_OK;
2162   }else{
2163     p = *ppPrev;
2164   }
2165 
2166   /* If we reach this point it means that either p[] should be overwritten
2167   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2168   ** WhereLoop and insert it.
2169   */
2170 #if WHERETRACE_ENABLED /* 0x8 */
2171   if( sqlite3WhereTrace & 0x8 ){
2172     if( p!=0 ){
2173       sqlite3DebugPrintf("replace: ");
2174       whereLoopPrint(p, pBuilder->pWC);
2175       sqlite3DebugPrintf("   with: ");
2176     }else{
2177       sqlite3DebugPrintf("    add: ");
2178     }
2179     whereLoopPrint(pTemplate, pBuilder->pWC);
2180   }
2181 #endif
2182   if( p==0 ){
2183     /* Allocate a new WhereLoop to add to the end of the list */
2184     *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2185     if( p==0 ) return SQLITE_NOMEM_BKPT;
2186     whereLoopInit(p);
2187     p->pNextLoop = 0;
2188   }else{
2189     /* We will be overwriting WhereLoop p[].  But before we do, first
2190     ** go through the rest of the list and delete any other entries besides
2191     ** p[] that are also supplated by pTemplate */
2192     WhereLoop **ppTail = &p->pNextLoop;
2193     WhereLoop *pToDel;
2194     while( *ppTail ){
2195       ppTail = whereLoopFindLesser(ppTail, pTemplate);
2196       if( ppTail==0 ) break;
2197       pToDel = *ppTail;
2198       if( pToDel==0 ) break;
2199       *ppTail = pToDel->pNextLoop;
2200 #if WHERETRACE_ENABLED /* 0x8 */
2201       if( sqlite3WhereTrace & 0x8 ){
2202         sqlite3DebugPrintf(" delete: ");
2203         whereLoopPrint(pToDel, pBuilder->pWC);
2204       }
2205 #endif
2206       whereLoopDelete(db, pToDel);
2207     }
2208   }
2209   rc = whereLoopXfer(db, p, pTemplate);
2210   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2211     Index *pIndex = p->u.btree.pIndex;
2212     if( pIndex && pIndex->tnum==0 ){
2213       p->u.btree.pIndex = 0;
2214     }
2215   }
2216   return rc;
2217 }
2218 
2219 /*
2220 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2221 ** WHERE clause that reference the loop but which are not used by an
2222 ** index.
2223 *
2224 ** For every WHERE clause term that is not used by the index
2225 ** and which has a truth probability assigned by one of the likelihood(),
2226 ** likely(), or unlikely() SQL functions, reduce the estimated number
2227 ** of output rows by the probability specified.
2228 **
2229 ** TUNING:  For every WHERE clause term that is not used by the index
2230 ** and which does not have an assigned truth probability, heuristics
2231 ** described below are used to try to estimate the truth probability.
2232 ** TODO --> Perhaps this is something that could be improved by better
2233 ** table statistics.
2234 **
2235 ** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
2236 ** value corresponds to -1 in LogEst notation, so this means decrement
2237 ** the WhereLoop.nOut field for every such WHERE clause term.
2238 **
2239 ** Heuristic 2:  If there exists one or more WHERE clause terms of the
2240 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2241 ** final output row estimate is no greater than 1/4 of the total number
2242 ** of rows in the table.  In other words, assume that x==EXPR will filter
2243 ** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
2244 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2245 ** on the "x" column and so in that case only cap the output row estimate
2246 ** at 1/2 instead of 1/4.
2247 */
2248 static void whereLoopOutputAdjust(
2249   WhereClause *pWC,      /* The WHERE clause */
2250   WhereLoop *pLoop,      /* The loop to adjust downward */
2251   LogEst nRow            /* Number of rows in the entire table */
2252 ){
2253   WhereTerm *pTerm, *pX;
2254   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2255   int i, j, k;
2256   LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */
2257 
2258   assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2259   for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
2260     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
2261     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2262     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2263     for(j=pLoop->nLTerm-1; j>=0; j--){
2264       pX = pLoop->aLTerm[j];
2265       if( pX==0 ) continue;
2266       if( pX==pTerm ) break;
2267       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2268     }
2269     if( j<0 ){
2270       if( pTerm->truthProb<=0 ){
2271         /* If a truth probability is specified using the likelihood() hints,
2272         ** then use the probability provided by the application. */
2273         pLoop->nOut += pTerm->truthProb;
2274       }else{
2275         /* In the absence of explicit truth probabilities, use heuristics to
2276         ** guess a reasonable truth probability. */
2277         pLoop->nOut--;
2278         if( pTerm->eOperator&(WO_EQ|WO_IS) ){
2279           Expr *pRight = pTerm->pExpr->pRight;
2280           testcase( pTerm->pExpr->op==TK_IS );
2281           if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2282             k = 10;
2283           }else{
2284             k = 20;
2285           }
2286           if( iReduce<k ) iReduce = k;
2287         }
2288       }
2289     }
2290   }
2291   if( pLoop->nOut > nRow-iReduce )  pLoop->nOut = nRow - iReduce;
2292 }
2293 
2294 /*
2295 ** Term pTerm is a vector range comparison operation. The first comparison
2296 ** in the vector can be optimized using column nEq of the index. This
2297 ** function returns the total number of vector elements that can be used
2298 ** as part of the range comparison.
2299 **
2300 ** For example, if the query is:
2301 **
2302 **   WHERE a = ? AND (b, c, d) > (?, ?, ?)
2303 **
2304 ** and the index:
2305 **
2306 **   CREATE INDEX ... ON (a, b, c, d, e)
2307 **
2308 ** then this function would be invoked with nEq=1. The value returned in
2309 ** this case is 3.
2310 */
2311 static int whereRangeVectorLen(
2312   Parse *pParse,       /* Parsing context */
2313   int iCur,            /* Cursor open on pIdx */
2314   Index *pIdx,         /* The index to be used for a inequality constraint */
2315   int nEq,             /* Number of prior equality constraints on same index */
2316   WhereTerm *pTerm     /* The vector inequality constraint */
2317 ){
2318   int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2319   int i;
2320 
2321   nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2322   for(i=1; i<nCmp; i++){
2323     /* Test if comparison i of pTerm is compatible with column (i+nEq)
2324     ** of the index. If not, exit the loop.  */
2325     char aff;                     /* Comparison affinity */
2326     char idxaff = 0;              /* Indexed columns affinity */
2327     CollSeq *pColl;               /* Comparison collation sequence */
2328     Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2329     Expr *pRhs = pTerm->pExpr->pRight;
2330     if( pRhs->flags & EP_xIsSelect ){
2331       pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2332     }else{
2333       pRhs = pRhs->x.pList->a[i].pExpr;
2334     }
2335 
2336     /* Check that the LHS of the comparison is a column reference to
2337     ** the right column of the right source table. And that the sort
2338     ** order of the index column is the same as the sort order of the
2339     ** leftmost index column.  */
2340     if( pLhs->op!=TK_COLUMN
2341      || pLhs->iTable!=iCur
2342      || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2343      || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2344     ){
2345       break;
2346     }
2347 
2348     testcase( pLhs->iColumn==XN_ROWID );
2349     aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2350     idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2351     if( aff!=idxaff ) break;
2352 
2353     pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2354     if( pColl==0 ) break;
2355     if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2356   }
2357   return i;
2358 }
2359 
2360 /*
2361 ** Adjust the cost C by the costMult facter T.  This only occurs if
2362 ** compiled with -DSQLITE_ENABLE_COSTMULT
2363 */
2364 #ifdef SQLITE_ENABLE_COSTMULT
2365 # define ApplyCostMultiplier(C,T)  C += T
2366 #else
2367 # define ApplyCostMultiplier(C,T)
2368 #endif
2369 
2370 /*
2371 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2372 ** index pIndex. Try to match one more.
2373 **
2374 ** When this function is called, pBuilder->pNew->nOut contains the
2375 ** number of rows expected to be visited by filtering using the nEq
2376 ** terms only. If it is modified, this value is restored before this
2377 ** function returns.
2378 **
2379 ** If pProbe->tnum==0, that means pIndex is a fake index used for the
2380 ** INTEGER PRIMARY KEY.
2381 */
2382 static int whereLoopAddBtreeIndex(
2383   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
2384   struct SrcList_item *pSrc,      /* FROM clause term being analyzed */
2385   Index *pProbe,                  /* An index on pSrc */
2386   LogEst nInMul                   /* log(Number of iterations due to IN) */
2387 ){
2388   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
2389   Parse *pParse = pWInfo->pParse;        /* Parsing context */
2390   sqlite3 *db = pParse->db;       /* Database connection malloc context */
2391   WhereLoop *pNew;                /* Template WhereLoop under construction */
2392   WhereTerm *pTerm;               /* A WhereTerm under consideration */
2393   int opMask;                     /* Valid operators for constraints */
2394   WhereScan scan;                 /* Iterator for WHERE terms */
2395   Bitmask saved_prereq;           /* Original value of pNew->prereq */
2396   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
2397   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
2398   u16 saved_nBtm;                 /* Original value of pNew->u.btree.nBtm */
2399   u16 saved_nTop;                 /* Original value of pNew->u.btree.nTop */
2400   u16 saved_nSkip;                /* Original value of pNew->nSkip */
2401   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
2402   LogEst saved_nOut;              /* Original value of pNew->nOut */
2403   int rc = SQLITE_OK;             /* Return code */
2404   LogEst rSize;                   /* Number of rows in the table */
2405   LogEst rLogSize;                /* Logarithm of table size */
2406   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2407 
2408   pNew = pBuilder->pNew;
2409   if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2410   WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d\n",
2411                      pProbe->pTable->zName,pProbe->zName, pNew->u.btree.nEq));
2412 
2413   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2414   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2415   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2416     opMask = WO_LT|WO_LE;
2417   }else{
2418     assert( pNew->u.btree.nBtm==0 );
2419     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2420   }
2421   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2422 
2423   assert( pNew->u.btree.nEq<pProbe->nColumn );
2424 
2425   saved_nEq = pNew->u.btree.nEq;
2426   saved_nBtm = pNew->u.btree.nBtm;
2427   saved_nTop = pNew->u.btree.nTop;
2428   saved_nSkip = pNew->nSkip;
2429   saved_nLTerm = pNew->nLTerm;
2430   saved_wsFlags = pNew->wsFlags;
2431   saved_prereq = pNew->prereq;
2432   saved_nOut = pNew->nOut;
2433   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2434                         opMask, pProbe);
2435   pNew->rSetup = 0;
2436   rSize = pProbe->aiRowLogEst[0];
2437   rLogSize = estLog(rSize);
2438   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2439     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
2440     LogEst rCostIdx;
2441     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
2442     int nIn = 0;
2443 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2444     int nRecValid = pBuilder->nRecValid;
2445 #endif
2446     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2447      && indexColumnNotNull(pProbe, saved_nEq)
2448     ){
2449       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2450     }
2451     if( pTerm->prereqRight & pNew->maskSelf ) continue;
2452 
2453     /* Do not allow the upper bound of a LIKE optimization range constraint
2454     ** to mix with a lower range bound from some other source */
2455     if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2456 
2457     /* Do not allow constraints from the WHERE clause to be used by the
2458     ** right table of a LEFT JOIN.  Only constraints in the ON clause are
2459     ** allowed */
2460     if( (pSrc->fg.jointype & JT_LEFT)!=0
2461      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
2462     ){
2463       continue;
2464     }
2465 
2466     if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2467       pBuilder->bldFlags |= SQLITE_BLDF_UNIQUE;
2468     }else{
2469       pBuilder->bldFlags |= SQLITE_BLDF_INDEXED;
2470     }
2471     pNew->wsFlags = saved_wsFlags;
2472     pNew->u.btree.nEq = saved_nEq;
2473     pNew->u.btree.nBtm = saved_nBtm;
2474     pNew->u.btree.nTop = saved_nTop;
2475     pNew->nLTerm = saved_nLTerm;
2476     if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2477     pNew->aLTerm[pNew->nLTerm++] = pTerm;
2478     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2479 
2480     assert( nInMul==0
2481         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2482         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2483         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2484     );
2485 
2486     if( eOp & WO_IN ){
2487       Expr *pExpr = pTerm->pExpr;
2488       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2489         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
2490         int i;
2491         nIn = 46;  assert( 46==sqlite3LogEst(25) );
2492 
2493         /* The expression may actually be of the form (x, y) IN (SELECT...).
2494         ** In this case there is a separate term for each of (x) and (y).
2495         ** However, the nIn multiplier should only be applied once, not once
2496         ** for each such term. The following loop checks that pTerm is the
2497         ** first such term in use, and sets nIn back to 0 if it is not. */
2498         for(i=0; i<pNew->nLTerm-1; i++){
2499           if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2500         }
2501       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2502         /* "x IN (value, value, ...)" */
2503         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2504         assert( nIn>0 );  /* RHS always has 2 or more terms...  The parser
2505                           ** changes "x IN (?)" into "x=?". */
2506       }
2507       if( pProbe->hasStat1 ){
2508         LogEst M, logK, safetyMargin;
2509         /* Let:
2510         **   N = the total number of rows in the table
2511         **   K = the number of entries on the RHS of the IN operator
2512         **   M = the number of rows in the table that match terms to the
2513         **       to the left in the same index.  If the IN operator is on
2514         **       the left-most index column, M==N.
2515         **
2516         ** Given the definitions above, it is better to omit the IN operator
2517         ** from the index lookup and instead do a scan of the M elements,
2518         ** testing each scanned row against the IN operator separately, if:
2519         **
2520         **        M*log(K) < K*log(N)
2521         **
2522         ** Our estimates for M, K, and N might be inaccurate, so we build in
2523         ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
2524         ** with the index, as using an index has better worst-case behavior.
2525         ** If we do not have real sqlite_stat1 data, always prefer to use
2526         ** the index.
2527         */
2528         M = pProbe->aiRowLogEst[saved_nEq];
2529         logK = estLog(nIn);
2530         safetyMargin = 10;  /* TUNING: extra weight for indexed IN */
2531         if( M + logK + safetyMargin < nIn + rLogSize ){
2532           WHERETRACE(0x40,
2533             ("Scan preferred over IN operator on column %d of \"%s\" (%d<%d)\n",
2534              saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize));
2535           continue;
2536         }else{
2537           WHERETRACE(0x40,
2538             ("IN operator preferred on column %d of \"%s\" (%d>=%d)\n",
2539              saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize));
2540         }
2541       }
2542       pNew->wsFlags |= WHERE_COLUMN_IN;
2543     }else if( eOp & (WO_EQ|WO_IS) ){
2544       int iCol = pProbe->aiColumn[saved_nEq];
2545       pNew->wsFlags |= WHERE_COLUMN_EQ;
2546       assert( saved_nEq==pNew->u.btree.nEq );
2547       if( iCol==XN_ROWID
2548        || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2549       ){
2550         if( iCol==XN_ROWID || pProbe->uniqNotNull
2551          || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
2552         ){
2553           pNew->wsFlags |= WHERE_ONEROW;
2554         }else{
2555           pNew->wsFlags |= WHERE_UNQ_WANTED;
2556         }
2557       }
2558     }else if( eOp & WO_ISNULL ){
2559       pNew->wsFlags |= WHERE_COLUMN_NULL;
2560     }else if( eOp & (WO_GT|WO_GE) ){
2561       testcase( eOp & WO_GT );
2562       testcase( eOp & WO_GE );
2563       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2564       pNew->u.btree.nBtm = whereRangeVectorLen(
2565           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2566       );
2567       pBtm = pTerm;
2568       pTop = 0;
2569       if( pTerm->wtFlags & TERM_LIKEOPT ){
2570         /* Range contraints that come from the LIKE optimization are
2571         ** always used in pairs. */
2572         pTop = &pTerm[1];
2573         assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2574         assert( pTop->wtFlags & TERM_LIKEOPT );
2575         assert( pTop->eOperator==WO_LT );
2576         if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2577         pNew->aLTerm[pNew->nLTerm++] = pTop;
2578         pNew->wsFlags |= WHERE_TOP_LIMIT;
2579         pNew->u.btree.nTop = 1;
2580       }
2581     }else{
2582       assert( eOp & (WO_LT|WO_LE) );
2583       testcase( eOp & WO_LT );
2584       testcase( eOp & WO_LE );
2585       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2586       pNew->u.btree.nTop = whereRangeVectorLen(
2587           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2588       );
2589       pTop = pTerm;
2590       pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2591                      pNew->aLTerm[pNew->nLTerm-2] : 0;
2592     }
2593 
2594     /* At this point pNew->nOut is set to the number of rows expected to
2595     ** be visited by the index scan before considering term pTerm, or the
2596     ** values of nIn and nInMul. In other words, assuming that all
2597     ** "x IN(...)" terms are replaced with "x = ?". This block updates
2598     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
2599     assert( pNew->nOut==saved_nOut );
2600     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2601       /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4
2602       ** data, using some other estimate.  */
2603       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2604     }else{
2605       int nEq = ++pNew->u.btree.nEq;
2606       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2607 
2608       assert( pNew->nOut==saved_nOut );
2609       if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2610         assert( (eOp & WO_IN) || nIn==0 );
2611         testcase( eOp & WO_IN );
2612         pNew->nOut += pTerm->truthProb;
2613         pNew->nOut -= nIn;
2614       }else{
2615 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2616         tRowcnt nOut = 0;
2617         if( nInMul==0
2618          && pProbe->nSample
2619          && pNew->u.btree.nEq<=pProbe->nSampleCol
2620          && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
2621          && OptimizationEnabled(db, SQLITE_Stat34)
2622         ){
2623           Expr *pExpr = pTerm->pExpr;
2624           if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2625             testcase( eOp & WO_EQ );
2626             testcase( eOp & WO_IS );
2627             testcase( eOp & WO_ISNULL );
2628             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2629           }else{
2630             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2631           }
2632           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2633           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
2634           if( nOut ){
2635             pNew->nOut = sqlite3LogEst(nOut);
2636             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
2637             pNew->nOut -= nIn;
2638           }
2639         }
2640         if( nOut==0 )
2641 #endif
2642         {
2643           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
2644           if( eOp & WO_ISNULL ){
2645             /* TUNING: If there is no likelihood() value, assume that a
2646             ** "col IS NULL" expression matches twice as many rows
2647             ** as (col=?). */
2648             pNew->nOut += 10;
2649           }
2650         }
2651       }
2652     }
2653 
2654     /* Set rCostIdx to the cost of visiting selected rows in index. Add
2655     ** it to pNew->rRun, which is currently set to the cost of the index
2656     ** seek only. Then, if this is a non-covering index, add the cost of
2657     ** visiting the rows in the main table.  */
2658     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
2659     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
2660     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
2661       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
2662     }
2663     ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
2664 
2665     nOutUnadjusted = pNew->nOut;
2666     pNew->rRun += nInMul + nIn;
2667     pNew->nOut += nInMul + nIn;
2668     whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
2669     rc = whereLoopInsert(pBuilder, pNew);
2670 
2671     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2672       pNew->nOut = saved_nOut;
2673     }else{
2674       pNew->nOut = nOutUnadjusted;
2675     }
2676 
2677     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
2678      && pNew->u.btree.nEq<pProbe->nColumn
2679     ){
2680       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
2681     }
2682     pNew->nOut = saved_nOut;
2683 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2684     pBuilder->nRecValid = nRecValid;
2685 #endif
2686   }
2687   pNew->prereq = saved_prereq;
2688   pNew->u.btree.nEq = saved_nEq;
2689   pNew->u.btree.nBtm = saved_nBtm;
2690   pNew->u.btree.nTop = saved_nTop;
2691   pNew->nSkip = saved_nSkip;
2692   pNew->wsFlags = saved_wsFlags;
2693   pNew->nOut = saved_nOut;
2694   pNew->nLTerm = saved_nLTerm;
2695 
2696   /* Consider using a skip-scan if there are no WHERE clause constraints
2697   ** available for the left-most terms of the index, and if the average
2698   ** number of repeats in the left-most terms is at least 18.
2699   **
2700   ** The magic number 18 is selected on the basis that scanning 17 rows
2701   ** is almost always quicker than an index seek (even though if the index
2702   ** contains fewer than 2^17 rows we assume otherwise in other parts of
2703   ** the code). And, even if it is not, it should not be too much slower.
2704   ** On the other hand, the extra seeks could end up being significantly
2705   ** more expensive.  */
2706   assert( 42==sqlite3LogEst(18) );
2707   if( saved_nEq==saved_nSkip
2708    && saved_nEq+1<pProbe->nKeyCol
2709    && pProbe->noSkipScan==0
2710    && OptimizationEnabled(db, SQLITE_SkipScan)
2711    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
2712    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
2713   ){
2714     LogEst nIter;
2715     pNew->u.btree.nEq++;
2716     pNew->nSkip++;
2717     pNew->aLTerm[pNew->nLTerm++] = 0;
2718     pNew->wsFlags |= WHERE_SKIPSCAN;
2719     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
2720     pNew->nOut -= nIter;
2721     /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
2722     ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
2723     nIter += 5;
2724     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
2725     pNew->nOut = saved_nOut;
2726     pNew->u.btree.nEq = saved_nEq;
2727     pNew->nSkip = saved_nSkip;
2728     pNew->wsFlags = saved_wsFlags;
2729   }
2730 
2731   WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
2732                       pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
2733   return rc;
2734 }
2735 
2736 /*
2737 ** Return True if it is possible that pIndex might be useful in
2738 ** implementing the ORDER BY clause in pBuilder.
2739 **
2740 ** Return False if pBuilder does not contain an ORDER BY clause or
2741 ** if there is no way for pIndex to be useful in implementing that
2742 ** ORDER BY clause.
2743 */
2744 static int indexMightHelpWithOrderBy(
2745   WhereLoopBuilder *pBuilder,
2746   Index *pIndex,
2747   int iCursor
2748 ){
2749   ExprList *pOB;
2750   ExprList *aColExpr;
2751   int ii, jj;
2752 
2753   if( pIndex->bUnordered ) return 0;
2754   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
2755   for(ii=0; ii<pOB->nExpr; ii++){
2756     Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr);
2757     if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
2758       if( pExpr->iColumn<0 ) return 1;
2759       for(jj=0; jj<pIndex->nKeyCol; jj++){
2760         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
2761       }
2762     }else if( (aColExpr = pIndex->aColExpr)!=0 ){
2763       for(jj=0; jj<pIndex->nKeyCol; jj++){
2764         if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
2765         if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
2766           return 1;
2767         }
2768       }
2769     }
2770   }
2771   return 0;
2772 }
2773 
2774 /* Check to see if a partial index with pPartIndexWhere can be used
2775 ** in the current query.  Return true if it can be and false if not.
2776 */
2777 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){
2778   int i;
2779   WhereTerm *pTerm;
2780   Parse *pParse = pWC->pWInfo->pParse;
2781   while( pWhere->op==TK_AND ){
2782     if( !whereUsablePartialIndex(iTab,pWC,pWhere->pLeft) ) return 0;
2783     pWhere = pWhere->pRight;
2784   }
2785   if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
2786   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
2787     Expr *pExpr = pTerm->pExpr;
2788     if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
2789      && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
2790     ){
2791       return 1;
2792     }
2793   }
2794   return 0;
2795 }
2796 
2797 /*
2798 ** Add all WhereLoop objects for a single table of the join where the table
2799 ** is identified by pBuilder->pNew->iTab.  That table is guaranteed to be
2800 ** a b-tree table, not a virtual table.
2801 **
2802 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
2803 ** are calculated as follows:
2804 **
2805 ** For a full scan, assuming the table (or index) contains nRow rows:
2806 **
2807 **     cost = nRow * 3.0                    // full-table scan
2808 **     cost = nRow * K                      // scan of covering index
2809 **     cost = nRow * (K+3.0)                // scan of non-covering index
2810 **
2811 ** where K is a value between 1.1 and 3.0 set based on the relative
2812 ** estimated average size of the index and table records.
2813 **
2814 ** For an index scan, where nVisit is the number of index rows visited
2815 ** by the scan, and nSeek is the number of seek operations required on
2816 ** the index b-tree:
2817 **
2818 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
2819 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
2820 **
2821 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
2822 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
2823 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
2824 **
2825 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
2826 ** of uncertainty.  For this reason, scoring is designed to pick plans that
2827 ** "do the least harm" if the estimates are inaccurate.  For example, a
2828 ** log(nRow) factor is omitted from a non-covering index scan in order to
2829 ** bias the scoring in favor of using an index, since the worst-case
2830 ** performance of using an index is far better than the worst-case performance
2831 ** of a full table scan.
2832 */
2833 static int whereLoopAddBtree(
2834   WhereLoopBuilder *pBuilder, /* WHERE clause information */
2835   Bitmask mPrereq             /* Extra prerequesites for using this table */
2836 ){
2837   WhereInfo *pWInfo;          /* WHERE analysis context */
2838   Index *pProbe;              /* An index we are evaluating */
2839   Index sPk;                  /* A fake index object for the primary key */
2840   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
2841   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
2842   SrcList *pTabList;          /* The FROM clause */
2843   struct SrcList_item *pSrc;  /* The FROM clause btree term to add */
2844   WhereLoop *pNew;            /* Template WhereLoop object */
2845   int rc = SQLITE_OK;         /* Return code */
2846   int iSortIdx = 1;           /* Index number */
2847   int b;                      /* A boolean value */
2848   LogEst rSize;               /* number of rows in the table */
2849   LogEst rLogSize;            /* Logarithm of the number of rows in the table */
2850   WhereClause *pWC;           /* The parsed WHERE clause */
2851   Table *pTab;                /* Table being queried */
2852 
2853   pNew = pBuilder->pNew;
2854   pWInfo = pBuilder->pWInfo;
2855   pTabList = pWInfo->pTabList;
2856   pSrc = pTabList->a + pNew->iTab;
2857   pTab = pSrc->pTab;
2858   pWC = pBuilder->pWC;
2859   assert( !IsVirtual(pSrc->pTab) );
2860 
2861   if( pSrc->pIBIndex ){
2862     /* An INDEXED BY clause specifies a particular index to use */
2863     pProbe = pSrc->pIBIndex;
2864   }else if( !HasRowid(pTab) ){
2865     pProbe = pTab->pIndex;
2866   }else{
2867     /* There is no INDEXED BY clause.  Create a fake Index object in local
2868     ** variable sPk to represent the rowid primary key index.  Make this
2869     ** fake index the first in a chain of Index objects with all of the real
2870     ** indices to follow */
2871     Index *pFirst;                  /* First of real indices on the table */
2872     memset(&sPk, 0, sizeof(Index));
2873     sPk.nKeyCol = 1;
2874     sPk.nColumn = 1;
2875     sPk.aiColumn = &aiColumnPk;
2876     sPk.aiRowLogEst = aiRowEstPk;
2877     sPk.onError = OE_Replace;
2878     sPk.pTable = pTab;
2879     sPk.szIdxRow = pTab->szTabRow;
2880     aiRowEstPk[0] = pTab->nRowLogEst;
2881     aiRowEstPk[1] = 0;
2882     pFirst = pSrc->pTab->pIndex;
2883     if( pSrc->fg.notIndexed==0 ){
2884       /* The real indices of the table are only considered if the
2885       ** NOT INDEXED qualifier is omitted from the FROM clause */
2886       sPk.pNext = pFirst;
2887     }
2888     pProbe = &sPk;
2889   }
2890   rSize = pTab->nRowLogEst;
2891   rLogSize = estLog(rSize);
2892 
2893 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
2894   /* Automatic indexes */
2895   if( !pBuilder->pOrSet      /* Not part of an OR optimization */
2896    && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
2897    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
2898    && pSrc->pIBIndex==0      /* Has no INDEXED BY clause */
2899    && !pSrc->fg.notIndexed   /* Has no NOT INDEXED clause */
2900    && HasRowid(pTab)         /* Not WITHOUT ROWID table. (FIXME: Why not?) */
2901    && !pSrc->fg.isCorrelated /* Not a correlated subquery */
2902    && !pSrc->fg.isRecursive  /* Not a recursive common table expression. */
2903   ){
2904     /* Generate auto-index WhereLoops */
2905     WhereTerm *pTerm;
2906     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
2907     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
2908       if( pTerm->prereqRight & pNew->maskSelf ) continue;
2909       if( termCanDriveIndex(pTerm, pSrc, 0) ){
2910         pNew->u.btree.nEq = 1;
2911         pNew->nSkip = 0;
2912         pNew->u.btree.pIndex = 0;
2913         pNew->nLTerm = 1;
2914         pNew->aLTerm[0] = pTerm;
2915         /* TUNING: One-time cost for computing the automatic index is
2916         ** estimated to be X*N*log2(N) where N is the number of rows in
2917         ** the table being indexed and where X is 7 (LogEst=28) for normal
2918         ** tables or 0.5 (LogEst=-10) for views and subqueries.  The value
2919         ** of X is smaller for views and subqueries so that the query planner
2920         ** will be more aggressive about generating automatic indexes for
2921         ** those objects, since there is no opportunity to add schema
2922         ** indexes on subqueries and views. */
2923         pNew->rSetup = rLogSize + rSize;
2924         if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){
2925           pNew->rSetup += 28;
2926         }else{
2927           pNew->rSetup -= 10;
2928         }
2929         ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
2930         if( pNew->rSetup<0 ) pNew->rSetup = 0;
2931         /* TUNING: Each index lookup yields 20 rows in the table.  This
2932         ** is more than the usual guess of 10 rows, since we have no way
2933         ** of knowing how selective the index will ultimately be.  It would
2934         ** not be unreasonable to make this value much larger. */
2935         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
2936         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
2937         pNew->wsFlags = WHERE_AUTO_INDEX;
2938         pNew->prereq = mPrereq | pTerm->prereqRight;
2939         rc = whereLoopInsert(pBuilder, pNew);
2940       }
2941     }
2942   }
2943 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
2944 
2945   /* Loop over all indices. If there was an INDEXED BY clause, then only
2946   ** consider index pProbe.  */
2947   for(; rc==SQLITE_OK && pProbe;
2948       pProbe=(pSrc->pIBIndex ? 0 : pProbe->pNext), iSortIdx++
2949   ){
2950     if( pProbe->pPartIdxWhere!=0
2951      && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){
2952       testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
2953       continue;  /* Partial index inappropriate for this query */
2954     }
2955     if( pProbe->bNoQuery ) continue;
2956     rSize = pProbe->aiRowLogEst[0];
2957     pNew->u.btree.nEq = 0;
2958     pNew->u.btree.nBtm = 0;
2959     pNew->u.btree.nTop = 0;
2960     pNew->nSkip = 0;
2961     pNew->nLTerm = 0;
2962     pNew->iSortIdx = 0;
2963     pNew->rSetup = 0;
2964     pNew->prereq = mPrereq;
2965     pNew->nOut = rSize;
2966     pNew->u.btree.pIndex = pProbe;
2967     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
2968     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
2969     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
2970     if( pProbe->tnum<=0 ){
2971       /* Integer primary key index */
2972       pNew->wsFlags = WHERE_IPK;
2973 
2974       /* Full table scan */
2975       pNew->iSortIdx = b ? iSortIdx : 0;
2976       /* TUNING: Cost of full table scan is (N*3.0). */
2977       pNew->rRun = rSize + 16;
2978       ApplyCostMultiplier(pNew->rRun, pTab->costMult);
2979       whereLoopOutputAdjust(pWC, pNew, rSize);
2980       rc = whereLoopInsert(pBuilder, pNew);
2981       pNew->nOut = rSize;
2982       if( rc ) break;
2983     }else{
2984       Bitmask m;
2985       if( pProbe->isCovering ){
2986         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
2987         m = 0;
2988       }else{
2989         m = pSrc->colUsed & pProbe->colNotIdxed;
2990         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
2991       }
2992 
2993       /* Full scan via index */
2994       if( b
2995        || !HasRowid(pTab)
2996        || pProbe->pPartIdxWhere!=0
2997        || ( m==0
2998          && pProbe->bUnordered==0
2999          && (pProbe->szIdxRow<pTab->szTabRow)
3000          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
3001          && sqlite3GlobalConfig.bUseCis
3002          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
3003           )
3004       ){
3005         pNew->iSortIdx = b ? iSortIdx : 0;
3006 
3007         /* The cost of visiting the index rows is N*K, where K is
3008         ** between 1.1 and 3.0, depending on the relative sizes of the
3009         ** index and table rows. */
3010         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
3011         if( m!=0 ){
3012           /* If this is a non-covering index scan, add in the cost of
3013           ** doing table lookups.  The cost will be 3x the number of
3014           ** lookups.  Take into account WHERE clause terms that can be
3015           ** satisfied using just the index, and that do not require a
3016           ** table lookup. */
3017           LogEst nLookup = rSize + 16;  /* Base cost:  N*3 */
3018           int ii;
3019           int iCur = pSrc->iCursor;
3020           WhereClause *pWC2 = &pWInfo->sWC;
3021           for(ii=0; ii<pWC2->nTerm; ii++){
3022             WhereTerm *pTerm = &pWC2->a[ii];
3023             if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
3024               break;
3025             }
3026             /* pTerm can be evaluated using just the index.  So reduce
3027             ** the expected number of table lookups accordingly */
3028             if( pTerm->truthProb<=0 ){
3029               nLookup += pTerm->truthProb;
3030             }else{
3031               nLookup--;
3032               if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
3033             }
3034           }
3035 
3036           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
3037         }
3038         ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3039         whereLoopOutputAdjust(pWC, pNew, rSize);
3040         rc = whereLoopInsert(pBuilder, pNew);
3041         pNew->nOut = rSize;
3042         if( rc ) break;
3043       }
3044     }
3045 
3046     pBuilder->bldFlags = 0;
3047     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
3048     if( pBuilder->bldFlags==SQLITE_BLDF_INDEXED ){
3049       /* If a non-unique index is used, or if a prefix of the key for
3050       ** unique index is used (making the index functionally non-unique)
3051       ** then the sqlite_stat1 data becomes important for scoring the
3052       ** plan */
3053       pTab->tabFlags |= TF_StatsUsed;
3054     }
3055 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
3056     sqlite3Stat4ProbeFree(pBuilder->pRec);
3057     pBuilder->nRecValid = 0;
3058     pBuilder->pRec = 0;
3059 #endif
3060   }
3061   return rc;
3062 }
3063 
3064 #ifndef SQLITE_OMIT_VIRTUALTABLE
3065 
3066 /*
3067 ** Argument pIdxInfo is already populated with all constraints that may
3068 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3069 ** function marks a subset of those constraints usable, invokes the
3070 ** xBestIndex method and adds the returned plan to pBuilder.
3071 **
3072 ** A constraint is marked usable if:
3073 **
3074 **   * Argument mUsable indicates that its prerequisites are available, and
3075 **
3076 **   * It is not one of the operators specified in the mExclude mask passed
3077 **     as the fourth argument (which in practice is either WO_IN or 0).
3078 **
3079 ** Argument mPrereq is a mask of tables that must be scanned before the
3080 ** virtual table in question. These are added to the plans prerequisites
3081 ** before it is added to pBuilder.
3082 **
3083 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3084 ** uses one or more WO_IN terms, or false otherwise.
3085 */
3086 static int whereLoopAddVirtualOne(
3087   WhereLoopBuilder *pBuilder,
3088   Bitmask mPrereq,                /* Mask of tables that must be used. */
3089   Bitmask mUsable,                /* Mask of usable tables */
3090   u16 mExclude,                   /* Exclude terms using these operators */
3091   sqlite3_index_info *pIdxInfo,   /* Populated object for xBestIndex */
3092   u16 mNoOmit,                    /* Do not omit these constraints */
3093   int *pbIn                       /* OUT: True if plan uses an IN(...) op */
3094 ){
3095   WhereClause *pWC = pBuilder->pWC;
3096   struct sqlite3_index_constraint *pIdxCons;
3097   struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3098   int i;
3099   int mxTerm;
3100   int rc = SQLITE_OK;
3101   WhereLoop *pNew = pBuilder->pNew;
3102   Parse *pParse = pBuilder->pWInfo->pParse;
3103   struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3104   int nConstraint = pIdxInfo->nConstraint;
3105 
3106   assert( (mUsable & mPrereq)==mPrereq );
3107   *pbIn = 0;
3108   pNew->prereq = mPrereq;
3109 
3110   /* Set the usable flag on the subset of constraints identified by
3111   ** arguments mUsable and mExclude. */
3112   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3113   for(i=0; i<nConstraint; i++, pIdxCons++){
3114     WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3115     pIdxCons->usable = 0;
3116     if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3117      && (pTerm->eOperator & mExclude)==0
3118     ){
3119       pIdxCons->usable = 1;
3120     }
3121   }
3122 
3123   /* Initialize the output fields of the sqlite3_index_info structure */
3124   memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3125   assert( pIdxInfo->needToFreeIdxStr==0 );
3126   pIdxInfo->idxStr = 0;
3127   pIdxInfo->idxNum = 0;
3128   pIdxInfo->orderByConsumed = 0;
3129   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3130   pIdxInfo->estimatedRows = 25;
3131   pIdxInfo->idxFlags = 0;
3132   pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3133 
3134   /* Invoke the virtual table xBestIndex() method */
3135   rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3136   if( rc ){
3137     if( rc==SQLITE_CONSTRAINT ){
3138       /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
3139       ** that the particular combination of parameters provided is unusable.
3140       ** Make no entries in the loop table.
3141       */
3142       WHERETRACE(0xffff, ("  ^^^^--- non-viable plan rejected!\n"));
3143       return SQLITE_OK;
3144     }
3145     return rc;
3146   }
3147 
3148   mxTerm = -1;
3149   assert( pNew->nLSlot>=nConstraint );
3150   for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
3151   pNew->u.vtab.omitMask = 0;
3152   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3153   for(i=0; i<nConstraint; i++, pIdxCons++){
3154     int iTerm;
3155     if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3156       WhereTerm *pTerm;
3157       int j = pIdxCons->iTermOffset;
3158       if( iTerm>=nConstraint
3159        || j<0
3160        || j>=pWC->nTerm
3161        || pNew->aLTerm[iTerm]!=0
3162        || pIdxCons->usable==0
3163       ){
3164         sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3165         testcase( pIdxInfo->needToFreeIdxStr );
3166         return SQLITE_ERROR;
3167       }
3168       testcase( iTerm==nConstraint-1 );
3169       testcase( j==0 );
3170       testcase( j==pWC->nTerm-1 );
3171       pTerm = &pWC->a[j];
3172       pNew->prereq |= pTerm->prereqRight;
3173       assert( iTerm<pNew->nLSlot );
3174       pNew->aLTerm[iTerm] = pTerm;
3175       if( iTerm>mxTerm ) mxTerm = iTerm;
3176       testcase( iTerm==15 );
3177       testcase( iTerm==16 );
3178       if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm;
3179       if( (pTerm->eOperator & WO_IN)!=0 ){
3180         /* A virtual table that is constrained by an IN clause may not
3181         ** consume the ORDER BY clause because (1) the order of IN terms
3182         ** is not necessarily related to the order of output terms and
3183         ** (2) Multiple outputs from a single IN value will not merge
3184         ** together.  */
3185         pIdxInfo->orderByConsumed = 0;
3186         pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3187         *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3188       }
3189     }
3190   }
3191   pNew->u.vtab.omitMask &= ~mNoOmit;
3192 
3193   pNew->nLTerm = mxTerm+1;
3194   for(i=0; i<=mxTerm; i++){
3195     if( pNew->aLTerm[i]==0 ){
3196       /* The non-zero argvIdx values must be contiguous.  Raise an
3197       ** error if they are not */
3198       sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3199       testcase( pIdxInfo->needToFreeIdxStr );
3200       return SQLITE_ERROR;
3201     }
3202   }
3203   assert( pNew->nLTerm<=pNew->nLSlot );
3204   pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3205   pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3206   pIdxInfo->needToFreeIdxStr = 0;
3207   pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3208   pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3209       pIdxInfo->nOrderBy : 0);
3210   pNew->rSetup = 0;
3211   pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3212   pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3213 
3214   /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3215   ** that the scan will visit at most one row. Clear it otherwise. */
3216   if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3217     pNew->wsFlags |= WHERE_ONEROW;
3218   }else{
3219     pNew->wsFlags &= ~WHERE_ONEROW;
3220   }
3221   rc = whereLoopInsert(pBuilder, pNew);
3222   if( pNew->u.vtab.needFree ){
3223     sqlite3_free(pNew->u.vtab.idxStr);
3224     pNew->u.vtab.needFree = 0;
3225   }
3226   WHERETRACE(0xffff, ("  bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3227                       *pbIn, (sqlite3_uint64)mPrereq,
3228                       (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3229 
3230   return rc;
3231 }
3232 
3233 /*
3234 ** If this function is invoked from within an xBestIndex() callback, it
3235 ** returns a pointer to a buffer containing the name of the collation
3236 ** sequence associated with element iCons of the sqlite3_index_info.aConstraint
3237 ** array. Or, if iCons is out of range or there is no active xBestIndex
3238 ** call, return NULL.
3239 */
3240 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
3241   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3242   const char *zRet = 0;
3243   if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
3244     CollSeq *pC = 0;
3245     int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
3246     Expr *pX = pHidden->pWC->a[iTerm].pExpr;
3247     if( pX->pLeft ){
3248       pC = sqlite3BinaryCompareCollSeq(pHidden->pParse, pX->pLeft, pX->pRight);
3249     }
3250     zRet = (pC ? pC->zName : sqlite3StrBINARY);
3251   }
3252   return zRet;
3253 }
3254 
3255 /*
3256 ** Add all WhereLoop objects for a table of the join identified by
3257 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
3258 **
3259 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3260 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3261 ** entries that occur before the virtual table in the FROM clause and are
3262 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3263 ** mUnusable mask contains all FROM clause entries that occur after the
3264 ** virtual table and are separated from it by at least one LEFT or
3265 ** CROSS JOIN.
3266 **
3267 ** For example, if the query were:
3268 **
3269 **   ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3270 **
3271 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3272 **
3273 ** All the tables in mPrereq must be scanned before the current virtual
3274 ** table. So any terms for which all prerequisites are satisfied by
3275 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3276 ** Conversely, all tables in mUnusable must be scanned after the current
3277 ** virtual table, so any terms for which the prerequisites overlap with
3278 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3279 */
3280 static int whereLoopAddVirtual(
3281   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
3282   Bitmask mPrereq,             /* Tables that must be scanned before this one */
3283   Bitmask mUnusable            /* Tables that must be scanned after this one */
3284 ){
3285   int rc = SQLITE_OK;          /* Return code */
3286   WhereInfo *pWInfo;           /* WHERE analysis context */
3287   Parse *pParse;               /* The parsing context */
3288   WhereClause *pWC;            /* The WHERE clause */
3289   struct SrcList_item *pSrc;   /* The FROM clause term to search */
3290   sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
3291   int nConstraint;             /* Number of constraints in p */
3292   int bIn;                     /* True if plan uses IN(...) operator */
3293   WhereLoop *pNew;
3294   Bitmask mBest;               /* Tables used by best possible plan */
3295   u16 mNoOmit;
3296 
3297   assert( (mPrereq & mUnusable)==0 );
3298   pWInfo = pBuilder->pWInfo;
3299   pParse = pWInfo->pParse;
3300   pWC = pBuilder->pWC;
3301   pNew = pBuilder->pNew;
3302   pSrc = &pWInfo->pTabList->a[pNew->iTab];
3303   assert( IsVirtual(pSrc->pTab) );
3304   p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy,
3305       &mNoOmit);
3306   if( p==0 ) return SQLITE_NOMEM_BKPT;
3307   pNew->rSetup = 0;
3308   pNew->wsFlags = WHERE_VIRTUALTABLE;
3309   pNew->nLTerm = 0;
3310   pNew->u.vtab.needFree = 0;
3311   nConstraint = p->nConstraint;
3312   if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3313     sqlite3DbFree(pParse->db, p);
3314     return SQLITE_NOMEM_BKPT;
3315   }
3316 
3317   /* First call xBestIndex() with all constraints usable. */
3318   WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
3319   WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
3320   rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn);
3321 
3322   /* If the call to xBestIndex() with all terms enabled produced a plan
3323   ** that does not require any source tables (IOW: a plan with mBest==0),
3324   ** then there is no point in making any further calls to xBestIndex()
3325   ** since they will all return the same result (if the xBestIndex()
3326   ** implementation is sane). */
3327   if( rc==SQLITE_OK && (mBest = (pNew->prereq & ~mPrereq))!=0 ){
3328     int seenZero = 0;             /* True if a plan with no prereqs seen */
3329     int seenZeroNoIN = 0;         /* Plan with no prereqs and no IN(...) seen */
3330     Bitmask mPrev = 0;
3331     Bitmask mBestNoIn = 0;
3332 
3333     /* If the plan produced by the earlier call uses an IN(...) term, call
3334     ** xBestIndex again, this time with IN(...) terms disabled. */
3335     if( bIn ){
3336       WHERETRACE(0x40, ("  VirtualOne: all usable w/o IN\n"));
3337       rc = whereLoopAddVirtualOne(
3338           pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn);
3339       assert( bIn==0 );
3340       mBestNoIn = pNew->prereq & ~mPrereq;
3341       if( mBestNoIn==0 ){
3342         seenZero = 1;
3343         seenZeroNoIN = 1;
3344       }
3345     }
3346 
3347     /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3348     ** in the set of terms that apply to the current virtual table.  */
3349     while( rc==SQLITE_OK ){
3350       int i;
3351       Bitmask mNext = ALLBITS;
3352       assert( mNext>0 );
3353       for(i=0; i<nConstraint; i++){
3354         Bitmask mThis = (
3355             pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3356         );
3357         if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3358       }
3359       mPrev = mNext;
3360       if( mNext==ALLBITS ) break;
3361       if( mNext==mBest || mNext==mBestNoIn ) continue;
3362       WHERETRACE(0x40, ("  VirtualOne: mPrev=%04llx mNext=%04llx\n",
3363                        (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3364       rc = whereLoopAddVirtualOne(
3365           pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn);
3366       if( pNew->prereq==mPrereq ){
3367         seenZero = 1;
3368         if( bIn==0 ) seenZeroNoIN = 1;
3369       }
3370     }
3371 
3372     /* If the calls to xBestIndex() in the above loop did not find a plan
3373     ** that requires no source tables at all (i.e. one guaranteed to be
3374     ** usable), make a call here with all source tables disabled */
3375     if( rc==SQLITE_OK && seenZero==0 ){
3376       WHERETRACE(0x40, ("  VirtualOne: all disabled\n"));
3377       rc = whereLoopAddVirtualOne(
3378           pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn);
3379       if( bIn==0 ) seenZeroNoIN = 1;
3380     }
3381 
3382     /* If the calls to xBestIndex() have so far failed to find a plan
3383     ** that requires no source tables at all and does not use an IN(...)
3384     ** operator, make a final call to obtain one here.  */
3385     if( rc==SQLITE_OK && seenZeroNoIN==0 ){
3386       WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
3387       rc = whereLoopAddVirtualOne(
3388           pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn);
3389     }
3390   }
3391 
3392   if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
3393   sqlite3DbFreeNN(pParse->db, p);
3394   WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
3395   return rc;
3396 }
3397 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3398 
3399 /*
3400 ** Add WhereLoop entries to handle OR terms.  This works for either
3401 ** btrees or virtual tables.
3402 */
3403 static int whereLoopAddOr(
3404   WhereLoopBuilder *pBuilder,
3405   Bitmask mPrereq,
3406   Bitmask mUnusable
3407 ){
3408   WhereInfo *pWInfo = pBuilder->pWInfo;
3409   WhereClause *pWC;
3410   WhereLoop *pNew;
3411   WhereTerm *pTerm, *pWCEnd;
3412   int rc = SQLITE_OK;
3413   int iCur;
3414   WhereClause tempWC;
3415   WhereLoopBuilder sSubBuild;
3416   WhereOrSet sSum, sCur;
3417   struct SrcList_item *pItem;
3418 
3419   pWC = pBuilder->pWC;
3420   pWCEnd = pWC->a + pWC->nTerm;
3421   pNew = pBuilder->pNew;
3422   memset(&sSum, 0, sizeof(sSum));
3423   pItem = pWInfo->pTabList->a + pNew->iTab;
3424   iCur = pItem->iCursor;
3425 
3426   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
3427     if( (pTerm->eOperator & WO_OR)!=0
3428      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
3429     ){
3430       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
3431       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
3432       WhereTerm *pOrTerm;
3433       int once = 1;
3434       int i, j;
3435 
3436       sSubBuild = *pBuilder;
3437       sSubBuild.pOrderBy = 0;
3438       sSubBuild.pOrSet = &sCur;
3439 
3440       WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
3441       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
3442         if( (pOrTerm->eOperator & WO_AND)!=0 ){
3443           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
3444         }else if( pOrTerm->leftCursor==iCur ){
3445           tempWC.pWInfo = pWC->pWInfo;
3446           tempWC.pOuter = pWC;
3447           tempWC.op = TK_AND;
3448           tempWC.nTerm = 1;
3449           tempWC.a = pOrTerm;
3450           sSubBuild.pWC = &tempWC;
3451         }else{
3452           continue;
3453         }
3454         sCur.n = 0;
3455 #ifdef WHERETRACE_ENABLED
3456         WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3457                    (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
3458         if( sqlite3WhereTrace & 0x400 ){
3459           sqlite3WhereClausePrint(sSubBuild.pWC);
3460         }
3461 #endif
3462 #ifndef SQLITE_OMIT_VIRTUALTABLE
3463         if( IsVirtual(pItem->pTab) ){
3464           rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
3465         }else
3466 #endif
3467         {
3468           rc = whereLoopAddBtree(&sSubBuild, mPrereq);
3469         }
3470         if( rc==SQLITE_OK ){
3471           rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
3472         }
3473         assert( rc==SQLITE_OK || sCur.n==0 );
3474         if( sCur.n==0 ){
3475           sSum.n = 0;
3476           break;
3477         }else if( once ){
3478           whereOrMove(&sSum, &sCur);
3479           once = 0;
3480         }else{
3481           WhereOrSet sPrev;
3482           whereOrMove(&sPrev, &sSum);
3483           sSum.n = 0;
3484           for(i=0; i<sPrev.n; i++){
3485             for(j=0; j<sCur.n; j++){
3486               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
3487                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
3488                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
3489             }
3490           }
3491         }
3492       }
3493       pNew->nLTerm = 1;
3494       pNew->aLTerm[0] = pTerm;
3495       pNew->wsFlags = WHERE_MULTI_OR;
3496       pNew->rSetup = 0;
3497       pNew->iSortIdx = 0;
3498       memset(&pNew->u, 0, sizeof(pNew->u));
3499       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
3500         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
3501         ** of all sub-scans required by the OR-scan. However, due to rounding
3502         ** errors, it may be that the cost of the OR-scan is equal to its
3503         ** most expensive sub-scan. Add the smallest possible penalty
3504         ** (equivalent to multiplying the cost by 1.07) to ensure that
3505         ** this does not happen. Otherwise, for WHERE clauses such as the
3506         ** following where there is an index on "y":
3507         **
3508         **     WHERE likelihood(x=?, 0.99) OR y=?
3509         **
3510         ** the planner may elect to "OR" together a full-table scan and an
3511         ** index lookup. And other similarly odd results.  */
3512         pNew->rRun = sSum.a[i].rRun + 1;
3513         pNew->nOut = sSum.a[i].nOut;
3514         pNew->prereq = sSum.a[i].prereq;
3515         rc = whereLoopInsert(pBuilder, pNew);
3516       }
3517       WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
3518     }
3519   }
3520   return rc;
3521 }
3522 
3523 /*
3524 ** Add all WhereLoop objects for all tables
3525 */
3526 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
3527   WhereInfo *pWInfo = pBuilder->pWInfo;
3528   Bitmask mPrereq = 0;
3529   Bitmask mPrior = 0;
3530   int iTab;
3531   SrcList *pTabList = pWInfo->pTabList;
3532   struct SrcList_item *pItem;
3533   struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel];
3534   sqlite3 *db = pWInfo->pParse->db;
3535   int rc = SQLITE_OK;
3536   WhereLoop *pNew;
3537   u8 priorJointype = 0;
3538 
3539   /* Loop over the tables in the join, from left to right */
3540   pNew = pBuilder->pNew;
3541   whereLoopInit(pNew);
3542   pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT;
3543   for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
3544     Bitmask mUnusable = 0;
3545     pNew->iTab = iTab;
3546     pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR;
3547     pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
3548     if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){
3549       /* This condition is true when pItem is the FROM clause term on the
3550       ** right-hand-side of a LEFT or CROSS JOIN.  */
3551       mPrereq = mPrior;
3552     }
3553     priorJointype = pItem->fg.jointype;
3554 #ifndef SQLITE_OMIT_VIRTUALTABLE
3555     if( IsVirtual(pItem->pTab) ){
3556       struct SrcList_item *p;
3557       for(p=&pItem[1]; p<pEnd; p++){
3558         if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
3559           mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
3560         }
3561       }
3562       rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
3563     }else
3564 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3565     {
3566       rc = whereLoopAddBtree(pBuilder, mPrereq);
3567     }
3568     if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
3569       rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
3570     }
3571     mPrior |= pNew->maskSelf;
3572     if( rc || db->mallocFailed ){
3573       if( rc==SQLITE_DONE ){
3574         /* We hit the query planner search limit set by iPlanLimit */
3575         sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search");
3576         rc = SQLITE_OK;
3577       }else{
3578         break;
3579       }
3580     }
3581   }
3582 
3583   whereLoopClear(db, pNew);
3584   return rc;
3585 }
3586 
3587 /*
3588 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
3589 ** parameters) to see if it outputs rows in the requested ORDER BY
3590 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
3591 **
3592 **   N>0:   N terms of the ORDER BY clause are satisfied
3593 **   N==0:  No terms of the ORDER BY clause are satisfied
3594 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
3595 **
3596 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
3597 ** strict.  With GROUP BY and DISTINCT the only requirement is that
3598 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
3599 ** and DISTINCT do not require rows to appear in any particular order as long
3600 ** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT
3601 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
3602 ** pOrderBy terms must be matched in strict left-to-right order.
3603 */
3604 static i8 wherePathSatisfiesOrderBy(
3605   WhereInfo *pWInfo,    /* The WHERE clause */
3606   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
3607   WherePath *pPath,     /* The WherePath to check */
3608   u16 wctrlFlags,       /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
3609   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
3610   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
3611   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
3612 ){
3613   u8 revSet;            /* True if rev is known */
3614   u8 rev;               /* Composite sort order */
3615   u8 revIdx;            /* Index sort order */
3616   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
3617   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
3618   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
3619   u16 eqOpMask;         /* Allowed equality operators */
3620   u16 nKeyCol;          /* Number of key columns in pIndex */
3621   u16 nColumn;          /* Total number of ordered columns in the index */
3622   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
3623   int iLoop;            /* Index of WhereLoop in pPath being processed */
3624   int i, j;             /* Loop counters */
3625   int iCur;             /* Cursor number for current WhereLoop */
3626   int iColumn;          /* A column number within table iCur */
3627   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
3628   WhereTerm *pTerm;     /* A single term of the WHERE clause */
3629   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
3630   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
3631   Index *pIndex;        /* The index associated with pLoop */
3632   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
3633   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
3634   Bitmask obDone;       /* Mask of all ORDER BY terms */
3635   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
3636   Bitmask ready;              /* Mask of inner loops */
3637 
3638   /*
3639   ** We say the WhereLoop is "one-row" if it generates no more than one
3640   ** row of output.  A WhereLoop is one-row if all of the following are true:
3641   **  (a) All index columns match with WHERE_COLUMN_EQ.
3642   **  (b) The index is unique
3643   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
3644   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
3645   **
3646   ** We say the WhereLoop is "order-distinct" if the set of columns from
3647   ** that WhereLoop that are in the ORDER BY clause are different for every
3648   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
3649   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
3650   ** is not order-distinct. To be order-distinct is not quite the same as being
3651   ** UNIQUE since a UNIQUE column or index can have multiple rows that
3652   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
3653   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
3654   **
3655   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
3656   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
3657   ** automatically order-distinct.
3658   */
3659 
3660   assert( pOrderBy!=0 );
3661   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
3662 
3663   nOrderBy = pOrderBy->nExpr;
3664   testcase( nOrderBy==BMS-1 );
3665   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
3666   isOrderDistinct = 1;
3667   obDone = MASKBIT(nOrderBy)-1;
3668   orderDistinctMask = 0;
3669   ready = 0;
3670   eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
3671   if( wctrlFlags & WHERE_ORDERBY_LIMIT ) eqOpMask |= WO_IN;
3672   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
3673     if( iLoop>0 ) ready |= pLoop->maskSelf;
3674     if( iLoop<nLoop ){
3675       pLoop = pPath->aLoop[iLoop];
3676       if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
3677     }else{
3678       pLoop = pLast;
3679     }
3680     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
3681       if( pLoop->u.vtab.isOrdered ) obSat = obDone;
3682       break;
3683     }else{
3684       pLoop->u.btree.nIdxCol = 0;
3685     }
3686     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
3687 
3688     /* Mark off any ORDER BY term X that is a column in the table of
3689     ** the current loop for which there is term in the WHERE
3690     ** clause of the form X IS NULL or X=? that reference only outer
3691     ** loops.
3692     */
3693     for(i=0; i<nOrderBy; i++){
3694       if( MASKBIT(i) & obSat ) continue;
3695       pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
3696       if( pOBExpr->op!=TK_COLUMN ) continue;
3697       if( pOBExpr->iTable!=iCur ) continue;
3698       pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
3699                        ~ready, eqOpMask, 0);
3700       if( pTerm==0 ) continue;
3701       if( pTerm->eOperator==WO_IN ){
3702         /* IN terms are only valid for sorting in the ORDER BY LIMIT
3703         ** optimization, and then only if they are actually used
3704         ** by the query plan */
3705         assert( wctrlFlags & WHERE_ORDERBY_LIMIT );
3706         for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
3707         if( j>=pLoop->nLTerm ) continue;
3708       }
3709       if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
3710         if( sqlite3ExprCollSeqMatch(pWInfo->pParse,
3711                   pOrderBy->a[i].pExpr, pTerm->pExpr)==0 ){
3712           continue;
3713         }
3714         testcase( pTerm->pExpr->op==TK_IS );
3715       }
3716       obSat |= MASKBIT(i);
3717     }
3718 
3719     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
3720       if( pLoop->wsFlags & WHERE_IPK ){
3721         pIndex = 0;
3722         nKeyCol = 0;
3723         nColumn = 1;
3724       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
3725         return 0;
3726       }else{
3727         nKeyCol = pIndex->nKeyCol;
3728         nColumn = pIndex->nColumn;
3729         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
3730         assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
3731                           || !HasRowid(pIndex->pTable));
3732         isOrderDistinct = IsUniqueIndex(pIndex);
3733       }
3734 
3735       /* Loop through all columns of the index and deal with the ones
3736       ** that are not constrained by == or IN.
3737       */
3738       rev = revSet = 0;
3739       distinctColumns = 0;
3740       for(j=0; j<nColumn; j++){
3741         u8 bOnce = 1; /* True to run the ORDER BY search loop */
3742 
3743         assert( j>=pLoop->u.btree.nEq
3744             || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
3745         );
3746         if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
3747           u16 eOp = pLoop->aLTerm[j]->eOperator;
3748 
3749           /* Skip over == and IS and ISNULL terms.  (Also skip IN terms when
3750           ** doing WHERE_ORDERBY_LIMIT processing).
3751           **
3752           ** If the current term is a column of an ((?,?) IN (SELECT...))
3753           ** expression for which the SELECT returns more than one column,
3754           ** check that it is the only column used by this loop. Otherwise,
3755           ** if it is one of two or more, none of the columns can be
3756           ** considered to match an ORDER BY term.  */
3757           if( (eOp & eqOpMask)!=0 ){
3758             if( eOp & WO_ISNULL ){
3759               testcase( isOrderDistinct );
3760               isOrderDistinct = 0;
3761             }
3762             continue;
3763           }else if( ALWAYS(eOp & WO_IN) ){
3764             /* ALWAYS() justification: eOp is an equality operator due to the
3765             ** j<pLoop->u.btree.nEq constraint above.  Any equality other
3766             ** than WO_IN is captured by the previous "if".  So this one
3767             ** always has to be WO_IN. */
3768             Expr *pX = pLoop->aLTerm[j]->pExpr;
3769             for(i=j+1; i<pLoop->u.btree.nEq; i++){
3770               if( pLoop->aLTerm[i]->pExpr==pX ){
3771                 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
3772                 bOnce = 0;
3773                 break;
3774               }
3775             }
3776           }
3777         }
3778 
3779         /* Get the column number in the table (iColumn) and sort order
3780         ** (revIdx) for the j-th column of the index.
3781         */
3782         if( pIndex ){
3783           iColumn = pIndex->aiColumn[j];
3784           revIdx = pIndex->aSortOrder[j];
3785           if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
3786         }else{
3787           iColumn = XN_ROWID;
3788           revIdx = 0;
3789         }
3790 
3791         /* An unconstrained column that might be NULL means that this
3792         ** WhereLoop is not well-ordered
3793         */
3794         if( isOrderDistinct
3795          && iColumn>=0
3796          && j>=pLoop->u.btree.nEq
3797          && pIndex->pTable->aCol[iColumn].notNull==0
3798         ){
3799           isOrderDistinct = 0;
3800         }
3801 
3802         /* Find the ORDER BY term that corresponds to the j-th column
3803         ** of the index and mark that ORDER BY term off
3804         */
3805         isMatch = 0;
3806         for(i=0; bOnce && i<nOrderBy; i++){
3807           if( MASKBIT(i) & obSat ) continue;
3808           pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
3809           testcase( wctrlFlags & WHERE_GROUPBY );
3810           testcase( wctrlFlags & WHERE_DISTINCTBY );
3811           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
3812           if( iColumn>=XN_ROWID ){
3813             if( pOBExpr->op!=TK_COLUMN ) continue;
3814             if( pOBExpr->iTable!=iCur ) continue;
3815             if( pOBExpr->iColumn!=iColumn ) continue;
3816           }else{
3817             Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
3818             if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
3819               continue;
3820             }
3821           }
3822           if( iColumn!=XN_ROWID ){
3823             pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
3824             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
3825           }
3826           pLoop->u.btree.nIdxCol = j+1;
3827           isMatch = 1;
3828           break;
3829         }
3830         if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
3831           /* Make sure the sort order is compatible in an ORDER BY clause.
3832           ** Sort order is irrelevant for a GROUP BY clause. */
3833           if( revSet ){
3834             if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0;
3835           }else{
3836             rev = revIdx ^ pOrderBy->a[i].sortOrder;
3837             if( rev ) *pRevMask |= MASKBIT(iLoop);
3838             revSet = 1;
3839           }
3840         }
3841         if( isMatch ){
3842           if( iColumn==XN_ROWID ){
3843             testcase( distinctColumns==0 );
3844             distinctColumns = 1;
3845           }
3846           obSat |= MASKBIT(i);
3847         }else{
3848           /* No match found */
3849           if( j==0 || j<nKeyCol ){
3850             testcase( isOrderDistinct!=0 );
3851             isOrderDistinct = 0;
3852           }
3853           break;
3854         }
3855       } /* end Loop over all index columns */
3856       if( distinctColumns ){
3857         testcase( isOrderDistinct==0 );
3858         isOrderDistinct = 1;
3859       }
3860     } /* end-if not one-row */
3861 
3862     /* Mark off any other ORDER BY terms that reference pLoop */
3863     if( isOrderDistinct ){
3864       orderDistinctMask |= pLoop->maskSelf;
3865       for(i=0; i<nOrderBy; i++){
3866         Expr *p;
3867         Bitmask mTerm;
3868         if( MASKBIT(i) & obSat ) continue;
3869         p = pOrderBy->a[i].pExpr;
3870         mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
3871         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
3872         if( (mTerm&~orderDistinctMask)==0 ){
3873           obSat |= MASKBIT(i);
3874         }
3875       }
3876     }
3877   } /* End the loop over all WhereLoops from outer-most down to inner-most */
3878   if( obSat==obDone ) return (i8)nOrderBy;
3879   if( !isOrderDistinct ){
3880     for(i=nOrderBy-1; i>0; i--){
3881       Bitmask m = MASKBIT(i) - 1;
3882       if( (obSat&m)==m ) return i;
3883     }
3884     return 0;
3885   }
3886   return -1;
3887 }
3888 
3889 
3890 /*
3891 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
3892 ** the planner assumes that the specified pOrderBy list is actually a GROUP
3893 ** BY clause - and so any order that groups rows as required satisfies the
3894 ** request.
3895 **
3896 ** Normally, in this case it is not possible for the caller to determine
3897 ** whether or not the rows are really being delivered in sorted order, or
3898 ** just in some other order that provides the required grouping. However,
3899 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
3900 ** this function may be called on the returned WhereInfo object. It returns
3901 ** true if the rows really will be sorted in the specified order, or false
3902 ** otherwise.
3903 **
3904 ** For example, assuming:
3905 **
3906 **   CREATE INDEX i1 ON t1(x, Y);
3907 **
3908 ** then
3909 **
3910 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
3911 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
3912 */
3913 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
3914   assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
3915   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
3916   return pWInfo->sorted;
3917 }
3918 
3919 #ifdef WHERETRACE_ENABLED
3920 /* For debugging use only: */
3921 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
3922   static char zName[65];
3923   int i;
3924   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
3925   if( pLast ) zName[i++] = pLast->cId;
3926   zName[i] = 0;
3927   return zName;
3928 }
3929 #endif
3930 
3931 /*
3932 ** Return the cost of sorting nRow rows, assuming that the keys have
3933 ** nOrderby columns and that the first nSorted columns are already in
3934 ** order.
3935 */
3936 static LogEst whereSortingCost(
3937   WhereInfo *pWInfo,
3938   LogEst nRow,
3939   int nOrderBy,
3940   int nSorted
3941 ){
3942   /* TUNING: Estimated cost of a full external sort, where N is
3943   ** the number of rows to sort is:
3944   **
3945   **   cost = (3.0 * N * log(N)).
3946   **
3947   ** Or, if the order-by clause has X terms but only the last Y
3948   ** terms are out of order, then block-sorting will reduce the
3949   ** sorting cost to:
3950   **
3951   **   cost = (3.0 * N * log(N)) * (Y/X)
3952   **
3953   ** The (Y/X) term is implemented using stack variable rScale
3954   ** below.  */
3955   LogEst rScale, rSortCost;
3956   assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
3957   rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
3958   rSortCost = nRow + rScale + 16;
3959 
3960   /* Multiple by log(M) where M is the number of output rows.
3961   ** Use the LIMIT for M if it is smaller */
3962   if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
3963     nRow = pWInfo->iLimit;
3964   }
3965   rSortCost += estLog(nRow);
3966   return rSortCost;
3967 }
3968 
3969 /*
3970 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
3971 ** attempts to find the lowest cost path that visits each WhereLoop
3972 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
3973 **
3974 ** Assume that the total number of output rows that will need to be sorted
3975 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
3976 ** costs if nRowEst==0.
3977 **
3978 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
3979 ** error occurs.
3980 */
3981 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
3982   int mxChoice;             /* Maximum number of simultaneous paths tracked */
3983   int nLoop;                /* Number of terms in the join */
3984   Parse *pParse;            /* Parsing context */
3985   sqlite3 *db;              /* The database connection */
3986   int iLoop;                /* Loop counter over the terms of the join */
3987   int ii, jj;               /* Loop counters */
3988   int mxI = 0;              /* Index of next entry to replace */
3989   int nOrderBy;             /* Number of ORDER BY clause terms */
3990   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
3991   LogEst mxUnsorted = 0;    /* Maximum unsorted cost of a set of path */
3992   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
3993   WherePath *aFrom;         /* All nFrom paths at the previous level */
3994   WherePath *aTo;           /* The nTo best paths at the current level */
3995   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
3996   WherePath *pTo;           /* An element of aTo[] that we are working on */
3997   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
3998   WhereLoop **pX;           /* Used to divy up the pSpace memory */
3999   LogEst *aSortCost = 0;    /* Sorting and partial sorting costs */
4000   char *pSpace;             /* Temporary memory used by this routine */
4001   int nSpace;               /* Bytes of space allocated at pSpace */
4002 
4003   pParse = pWInfo->pParse;
4004   db = pParse->db;
4005   nLoop = pWInfo->nLevel;
4006   /* TUNING: For simple queries, only the best path is tracked.
4007   ** For 2-way joins, the 5 best paths are followed.
4008   ** For joins of 3 or more tables, track the 10 best paths */
4009   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
4010   assert( nLoop<=pWInfo->pTabList->nSrc );
4011   WHERETRACE(0x002, ("---- begin solver.  (nRowEst=%d)\n", nRowEst));
4012 
4013   /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
4014   ** case the purpose of this call is to estimate the number of rows returned
4015   ** by the overall query. Once this estimate has been obtained, the caller
4016   ** will invoke this function a second time, passing the estimate as the
4017   ** nRowEst parameter.  */
4018   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
4019     nOrderBy = 0;
4020   }else{
4021     nOrderBy = pWInfo->pOrderBy->nExpr;
4022   }
4023 
4024   /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
4025   nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
4026   nSpace += sizeof(LogEst) * nOrderBy;
4027   pSpace = sqlite3DbMallocRawNN(db, nSpace);
4028   if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
4029   aTo = (WherePath*)pSpace;
4030   aFrom = aTo+mxChoice;
4031   memset(aFrom, 0, sizeof(aFrom[0]));
4032   pX = (WhereLoop**)(aFrom+mxChoice);
4033   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
4034     pFrom->aLoop = pX;
4035   }
4036   if( nOrderBy ){
4037     /* If there is an ORDER BY clause and it is not being ignored, set up
4038     ** space for the aSortCost[] array. Each element of the aSortCost array
4039     ** is either zero - meaning it has not yet been initialized - or the
4040     ** cost of sorting nRowEst rows of data where the first X terms of
4041     ** the ORDER BY clause are already in order, where X is the array
4042     ** index.  */
4043     aSortCost = (LogEst*)pX;
4044     memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
4045   }
4046   assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
4047   assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
4048 
4049   /* Seed the search with a single WherePath containing zero WhereLoops.
4050   **
4051   ** TUNING: Do not let the number of iterations go above 28.  If the cost
4052   ** of computing an automatic index is not paid back within the first 28
4053   ** rows, then do not use the automatic index. */
4054   aFrom[0].nRow = MIN(pParse->nQueryLoop, 48);  assert( 48==sqlite3LogEst(28) );
4055   nFrom = 1;
4056   assert( aFrom[0].isOrdered==0 );
4057   if( nOrderBy ){
4058     /* If nLoop is zero, then there are no FROM terms in the query. Since
4059     ** in this case the query may return a maximum of one row, the results
4060     ** are already in the requested order. Set isOrdered to nOrderBy to
4061     ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
4062     ** -1, indicating that the result set may or may not be ordered,
4063     ** depending on the loops added to the current plan.  */
4064     aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
4065   }
4066 
4067   /* Compute successively longer WherePaths using the previous generation
4068   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
4069   ** best paths at each generation */
4070   for(iLoop=0; iLoop<nLoop; iLoop++){
4071     nTo = 0;
4072     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
4073       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
4074         LogEst nOut;                      /* Rows visited by (pFrom+pWLoop) */
4075         LogEst rCost;                     /* Cost of path (pFrom+pWLoop) */
4076         LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
4077         i8 isOrdered = pFrom->isOrdered;  /* isOrdered for (pFrom+pWLoop) */
4078         Bitmask maskNew;                  /* Mask of src visited by (..) */
4079         Bitmask revMask = 0;              /* Mask of rev-order loops for (..) */
4080 
4081         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
4082         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
4083         if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
4084           /* Do not use an automatic index if the this loop is expected
4085           ** to run less than 1.25 times.  It is tempting to also exclude
4086           ** automatic index usage on an outer loop, but sometimes an automatic
4087           ** index is useful in the outer loop of a correlated subquery. */
4088           assert( 10==sqlite3LogEst(2) );
4089           continue;
4090         }
4091 
4092         /* At this point, pWLoop is a candidate to be the next loop.
4093         ** Compute its cost */
4094         rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
4095         rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
4096         nOut = pFrom->nRow + pWLoop->nOut;
4097         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
4098         if( isOrdered<0 ){
4099           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
4100                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
4101                        iLoop, pWLoop, &revMask);
4102         }else{
4103           revMask = pFrom->revLoop;
4104         }
4105         if( isOrdered>=0 && isOrdered<nOrderBy ){
4106           if( aSortCost[isOrdered]==0 ){
4107             aSortCost[isOrdered] = whereSortingCost(
4108                 pWInfo, nRowEst, nOrderBy, isOrdered
4109             );
4110           }
4111           /* TUNING:  Add a small extra penalty (5) to sorting as an
4112           ** extra encouragment to the query planner to select a plan
4113           ** where the rows emerge in the correct order without any sorting
4114           ** required. */
4115           rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5;
4116 
4117           WHERETRACE(0x002,
4118               ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
4119                aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
4120                rUnsorted, rCost));
4121         }else{
4122           rCost = rUnsorted;
4123           rUnsorted -= 2;  /* TUNING:  Slight bias in favor of no-sort plans */
4124         }
4125 
4126         /* Check to see if pWLoop should be added to the set of
4127         ** mxChoice best-so-far paths.
4128         **
4129         ** First look for an existing path among best-so-far paths
4130         ** that covers the same set of loops and has the same isOrdered
4131         ** setting as the current path candidate.
4132         **
4133         ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4134         ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4135         ** of legal values for isOrdered, -1..64.
4136         */
4137         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
4138           if( pTo->maskLoop==maskNew
4139            && ((pTo->isOrdered^isOrdered)&0x80)==0
4140           ){
4141             testcase( jj==nTo-1 );
4142             break;
4143           }
4144         }
4145         if( jj>=nTo ){
4146           /* None of the existing best-so-far paths match the candidate. */
4147           if( nTo>=mxChoice
4148            && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4149           ){
4150             /* The current candidate is no better than any of the mxChoice
4151             ** paths currently in the best-so-far buffer.  So discard
4152             ** this candidate as not viable. */
4153 #ifdef WHERETRACE_ENABLED /* 0x4 */
4154             if( sqlite3WhereTrace&0x4 ){
4155               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d,%3d order=%c\n",
4156                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4157                   isOrdered>=0 ? isOrdered+'0' : '?');
4158             }
4159 #endif
4160             continue;
4161           }
4162           /* If we reach this points it means that the new candidate path
4163           ** needs to be added to the set of best-so-far paths. */
4164           if( nTo<mxChoice ){
4165             /* Increase the size of the aTo set by one */
4166             jj = nTo++;
4167           }else{
4168             /* New path replaces the prior worst to keep count below mxChoice */
4169             jj = mxI;
4170           }
4171           pTo = &aTo[jj];
4172 #ifdef WHERETRACE_ENABLED /* 0x4 */
4173           if( sqlite3WhereTrace&0x4 ){
4174             sqlite3DebugPrintf("New    %s cost=%-3d,%3d,%3d order=%c\n",
4175                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4176                 isOrdered>=0 ? isOrdered+'0' : '?');
4177           }
4178 #endif
4179         }else{
4180           /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4181           ** same set of loops and has the same isOrdered setting as the
4182           ** candidate path.  Check to see if the candidate should replace
4183           ** pTo or if the candidate should be skipped.
4184           **
4185           ** The conditional is an expanded vector comparison equivalent to:
4186           **   (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4187           */
4188           if( pTo->rCost<rCost
4189            || (pTo->rCost==rCost
4190                && (pTo->nRow<nOut
4191                    || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4192                   )
4193               )
4194           ){
4195 #ifdef WHERETRACE_ENABLED /* 0x4 */
4196             if( sqlite3WhereTrace&0x4 ){
4197               sqlite3DebugPrintf(
4198                   "Skip   %s cost=%-3d,%3d,%3d order=%c",
4199                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4200                   isOrdered>=0 ? isOrdered+'0' : '?');
4201               sqlite3DebugPrintf("   vs %s cost=%-3d,%3d,%3d order=%c\n",
4202                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4203                   pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4204             }
4205 #endif
4206             /* Discard the candidate path from further consideration */
4207             testcase( pTo->rCost==rCost );
4208             continue;
4209           }
4210           testcase( pTo->rCost==rCost+1 );
4211           /* Control reaches here if the candidate path is better than the
4212           ** pTo path.  Replace pTo with the candidate. */
4213 #ifdef WHERETRACE_ENABLED /* 0x4 */
4214           if( sqlite3WhereTrace&0x4 ){
4215             sqlite3DebugPrintf(
4216                 "Update %s cost=%-3d,%3d,%3d order=%c",
4217                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4218                 isOrdered>=0 ? isOrdered+'0' : '?');
4219             sqlite3DebugPrintf("  was %s cost=%-3d,%3d,%3d order=%c\n",
4220                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4221                 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4222           }
4223 #endif
4224         }
4225         /* pWLoop is a winner.  Add it to the set of best so far */
4226         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4227         pTo->revLoop = revMask;
4228         pTo->nRow = nOut;
4229         pTo->rCost = rCost;
4230         pTo->rUnsorted = rUnsorted;
4231         pTo->isOrdered = isOrdered;
4232         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4233         pTo->aLoop[iLoop] = pWLoop;
4234         if( nTo>=mxChoice ){
4235           mxI = 0;
4236           mxCost = aTo[0].rCost;
4237           mxUnsorted = aTo[0].nRow;
4238           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4239             if( pTo->rCost>mxCost
4240              || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4241             ){
4242               mxCost = pTo->rCost;
4243               mxUnsorted = pTo->rUnsorted;
4244               mxI = jj;
4245             }
4246           }
4247         }
4248       }
4249     }
4250 
4251 #ifdef WHERETRACE_ENABLED  /* >=2 */
4252     if( sqlite3WhereTrace & 0x02 ){
4253       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4254       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4255         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4256            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4257            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4258         if( pTo->isOrdered>0 ){
4259           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4260         }else{
4261           sqlite3DebugPrintf("\n");
4262         }
4263       }
4264     }
4265 #endif
4266 
4267     /* Swap the roles of aFrom and aTo for the next generation */
4268     pFrom = aTo;
4269     aTo = aFrom;
4270     aFrom = pFrom;
4271     nFrom = nTo;
4272   }
4273 
4274   if( nFrom==0 ){
4275     sqlite3ErrorMsg(pParse, "no query solution");
4276     sqlite3DbFreeNN(db, pSpace);
4277     return SQLITE_ERROR;
4278   }
4279 
4280   /* Find the lowest cost path.  pFrom will be left pointing to that path */
4281   pFrom = aFrom;
4282   for(ii=1; ii<nFrom; ii++){
4283     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4284   }
4285   assert( pWInfo->nLevel==nLoop );
4286   /* Load the lowest cost path into pWInfo */
4287   for(iLoop=0; iLoop<nLoop; iLoop++){
4288     WhereLevel *pLevel = pWInfo->a + iLoop;
4289     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
4290     pLevel->iFrom = pWLoop->iTab;
4291     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
4292   }
4293   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
4294    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
4295    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
4296    && nRowEst
4297   ){
4298     Bitmask notUsed;
4299     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
4300                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
4301     if( rc==pWInfo->pResultSet->nExpr ){
4302       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4303     }
4304   }
4305   pWInfo->bOrderedInnerLoop = 0;
4306   if( pWInfo->pOrderBy ){
4307     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
4308       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
4309         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4310       }
4311     }else{
4312       pWInfo->nOBSat = pFrom->isOrdered;
4313       pWInfo->revMask = pFrom->revLoop;
4314       if( pWInfo->nOBSat<=0 ){
4315         pWInfo->nOBSat = 0;
4316         if( nLoop>0 ){
4317           u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
4318           if( (wsFlags & WHERE_ONEROW)==0
4319            && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
4320           ){
4321             Bitmask m = 0;
4322             int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
4323                       WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
4324             testcase( wsFlags & WHERE_IPK );
4325             testcase( wsFlags & WHERE_COLUMN_IN );
4326             if( rc==pWInfo->pOrderBy->nExpr ){
4327               pWInfo->bOrderedInnerLoop = 1;
4328               pWInfo->revMask = m;
4329             }
4330           }
4331         }
4332       }
4333     }
4334     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
4335         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
4336     ){
4337       Bitmask revMask = 0;
4338       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
4339           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
4340       );
4341       assert( pWInfo->sorted==0 );
4342       if( nOrder==pWInfo->pOrderBy->nExpr ){
4343         pWInfo->sorted = 1;
4344         pWInfo->revMask = revMask;
4345       }
4346     }
4347   }
4348 
4349 
4350   pWInfo->nRowOut = pFrom->nRow;
4351 
4352   /* Free temporary memory and return success */
4353   sqlite3DbFreeNN(db, pSpace);
4354   return SQLITE_OK;
4355 }
4356 
4357 /*
4358 ** Most queries use only a single table (they are not joins) and have
4359 ** simple == constraints against indexed fields.  This routine attempts
4360 ** to plan those simple cases using much less ceremony than the
4361 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4362 ** times for the common case.
4363 **
4364 ** Return non-zero on success, if this query can be handled by this
4365 ** no-frills query planner.  Return zero if this query needs the
4366 ** general-purpose query planner.
4367 */
4368 static int whereShortCut(WhereLoopBuilder *pBuilder){
4369   WhereInfo *pWInfo;
4370   struct SrcList_item *pItem;
4371   WhereClause *pWC;
4372   WhereTerm *pTerm;
4373   WhereLoop *pLoop;
4374   int iCur;
4375   int j;
4376   Table *pTab;
4377   Index *pIdx;
4378 
4379   pWInfo = pBuilder->pWInfo;
4380   if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
4381   assert( pWInfo->pTabList->nSrc>=1 );
4382   pItem = pWInfo->pTabList->a;
4383   pTab = pItem->pTab;
4384   if( IsVirtual(pTab) ) return 0;
4385   if( pItem->fg.isIndexedBy ) return 0;
4386   iCur = pItem->iCursor;
4387   pWC = &pWInfo->sWC;
4388   pLoop = pBuilder->pNew;
4389   pLoop->wsFlags = 0;
4390   pLoop->nSkip = 0;
4391   pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0);
4392   if( pTerm ){
4393     testcase( pTerm->eOperator & WO_IS );
4394     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
4395     pLoop->aLTerm[0] = pTerm;
4396     pLoop->nLTerm = 1;
4397     pLoop->u.btree.nEq = 1;
4398     /* TUNING: Cost of a rowid lookup is 10 */
4399     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
4400   }else{
4401     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4402       int opMask;
4403       assert( pLoop->aLTermSpace==pLoop->aLTerm );
4404       if( !IsUniqueIndex(pIdx)
4405        || pIdx->pPartIdxWhere!=0
4406        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
4407       ) continue;
4408       opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
4409       for(j=0; j<pIdx->nKeyCol; j++){
4410         pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx);
4411         if( pTerm==0 ) break;
4412         testcase( pTerm->eOperator & WO_IS );
4413         pLoop->aLTerm[j] = pTerm;
4414       }
4415       if( j!=pIdx->nKeyCol ) continue;
4416       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
4417       if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
4418         pLoop->wsFlags |= WHERE_IDX_ONLY;
4419       }
4420       pLoop->nLTerm = j;
4421       pLoop->u.btree.nEq = j;
4422       pLoop->u.btree.pIndex = pIdx;
4423       /* TUNING: Cost of a unique index lookup is 15 */
4424       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
4425       break;
4426     }
4427   }
4428   if( pLoop->wsFlags ){
4429     pLoop->nOut = (LogEst)1;
4430     pWInfo->a[0].pWLoop = pLoop;
4431     assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
4432     pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
4433     pWInfo->a[0].iTabCur = iCur;
4434     pWInfo->nRowOut = 1;
4435     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
4436     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
4437       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4438     }
4439 #ifdef SQLITE_DEBUG
4440     pLoop->cId = '0';
4441 #endif
4442     return 1;
4443   }
4444   return 0;
4445 }
4446 
4447 /*
4448 ** Helper function for exprIsDeterministic().
4449 */
4450 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
4451   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
4452     pWalker->eCode = 0;
4453     return WRC_Abort;
4454   }
4455   return WRC_Continue;
4456 }
4457 
4458 /*
4459 ** Return true if the expression contains no non-deterministic SQL
4460 ** functions. Do not consider non-deterministic SQL functions that are
4461 ** part of sub-select statements.
4462 */
4463 static int exprIsDeterministic(Expr *p){
4464   Walker w;
4465   memset(&w, 0, sizeof(w));
4466   w.eCode = 1;
4467   w.xExprCallback = exprNodeIsDeterministic;
4468   w.xSelectCallback = sqlite3SelectWalkFail;
4469   sqlite3WalkExpr(&w, p);
4470   return w.eCode;
4471 }
4472 
4473 /*
4474 ** Generate the beginning of the loop used for WHERE clause processing.
4475 ** The return value is a pointer to an opaque structure that contains
4476 ** information needed to terminate the loop.  Later, the calling routine
4477 ** should invoke sqlite3WhereEnd() with the return value of this function
4478 ** in order to complete the WHERE clause processing.
4479 **
4480 ** If an error occurs, this routine returns NULL.
4481 **
4482 ** The basic idea is to do a nested loop, one loop for each table in
4483 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
4484 ** same as a SELECT with only a single table in the FROM clause.)  For
4485 ** example, if the SQL is this:
4486 **
4487 **       SELECT * FROM t1, t2, t3 WHERE ...;
4488 **
4489 ** Then the code generated is conceptually like the following:
4490 **
4491 **      foreach row1 in t1 do       \    Code generated
4492 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
4493 **          foreach row3 in t3 do   /
4494 **            ...
4495 **          end                     \    Code generated
4496 **        end                        |-- by sqlite3WhereEnd()
4497 **      end                         /
4498 **
4499 ** Note that the loops might not be nested in the order in which they
4500 ** appear in the FROM clause if a different order is better able to make
4501 ** use of indices.  Note also that when the IN operator appears in
4502 ** the WHERE clause, it might result in additional nested loops for
4503 ** scanning through all values on the right-hand side of the IN.
4504 **
4505 ** There are Btree cursors associated with each table.  t1 uses cursor
4506 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
4507 ** And so forth.  This routine generates code to open those VDBE cursors
4508 ** and sqlite3WhereEnd() generates the code to close them.
4509 **
4510 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4511 ** in pTabList pointing at their appropriate entries.  The [...] code
4512 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4513 ** data from the various tables of the loop.
4514 **
4515 ** If the WHERE clause is empty, the foreach loops must each scan their
4516 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
4517 ** the tables have indices and there are terms in the WHERE clause that
4518 ** refer to those indices, a complete table scan can be avoided and the
4519 ** code will run much faster.  Most of the work of this routine is checking
4520 ** to see if there are indices that can be used to speed up the loop.
4521 **
4522 ** Terms of the WHERE clause are also used to limit which rows actually
4523 ** make it to the "..." in the middle of the loop.  After each "foreach",
4524 ** terms of the WHERE clause that use only terms in that loop and outer
4525 ** loops are evaluated and if false a jump is made around all subsequent
4526 ** inner loops (or around the "..." if the test occurs within the inner-
4527 ** most loop)
4528 **
4529 ** OUTER JOINS
4530 **
4531 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4532 **
4533 **    foreach row1 in t1 do
4534 **      flag = 0
4535 **      foreach row2 in t2 do
4536 **        start:
4537 **          ...
4538 **          flag = 1
4539 **      end
4540 **      if flag==0 then
4541 **        move the row2 cursor to a null row
4542 **        goto start
4543 **      fi
4544 **    end
4545 **
4546 ** ORDER BY CLAUSE PROCESSING
4547 **
4548 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
4549 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
4550 ** if there is one.  If there is no ORDER BY clause or if this routine
4551 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
4552 **
4553 ** The iIdxCur parameter is the cursor number of an index.  If
4554 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
4555 ** to use for OR clause processing.  The WHERE clause should use this
4556 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
4557 ** the first cursor in an array of cursors for all indices.  iIdxCur should
4558 ** be used to compute the appropriate cursor depending on which index is
4559 ** used.
4560 */
4561 WhereInfo *sqlite3WhereBegin(
4562   Parse *pParse,          /* The parser context */
4563   SrcList *pTabList,      /* FROM clause: A list of all tables to be scanned */
4564   Expr *pWhere,           /* The WHERE clause */
4565   ExprList *pOrderBy,     /* An ORDER BY (or GROUP BY) clause, or NULL */
4566   ExprList *pResultSet,   /* Query result set.  Req'd for DISTINCT */
4567   u16 wctrlFlags,         /* The WHERE_* flags defined in sqliteInt.h */
4568   int iAuxArg             /* If WHERE_OR_SUBCLAUSE is set, index cursor number
4569                           ** If WHERE_USE_LIMIT, then the limit amount */
4570 ){
4571   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
4572   int nTabList;              /* Number of elements in pTabList */
4573   WhereInfo *pWInfo;         /* Will become the return value of this function */
4574   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
4575   Bitmask notReady;          /* Cursors that are not yet positioned */
4576   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
4577   WhereMaskSet *pMaskSet;    /* The expression mask set */
4578   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
4579   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
4580   int ii;                    /* Loop counter */
4581   sqlite3 *db;               /* Database connection */
4582   int rc;                    /* Return code */
4583   u8 bFordelete = 0;         /* OPFLAG_FORDELETE or zero, as appropriate */
4584 
4585   assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
4586         (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
4587      && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4588   ));
4589 
4590   /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
4591   assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4592             || (wctrlFlags & WHERE_USE_LIMIT)==0 );
4593 
4594   /* Variable initialization */
4595   db = pParse->db;
4596   memset(&sWLB, 0, sizeof(sWLB));
4597 
4598   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
4599   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
4600   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
4601   sWLB.pOrderBy = pOrderBy;
4602 
4603   /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
4604   ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
4605   if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
4606     wctrlFlags &= ~WHERE_WANT_DISTINCT;
4607   }
4608 
4609   /* The number of tables in the FROM clause is limited by the number of
4610   ** bits in a Bitmask
4611   */
4612   testcase( pTabList->nSrc==BMS );
4613   if( pTabList->nSrc>BMS ){
4614     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
4615     return 0;
4616   }
4617 
4618   /* This function normally generates a nested loop for all tables in
4619   ** pTabList.  But if the WHERE_OR_SUBCLAUSE flag is set, then we should
4620   ** only generate code for the first table in pTabList and assume that
4621   ** any cursors associated with subsequent tables are uninitialized.
4622   */
4623   nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
4624 
4625   /* Allocate and initialize the WhereInfo structure that will become the
4626   ** return value. A single allocation is used to store the WhereInfo
4627   ** struct, the contents of WhereInfo.a[], the WhereClause structure
4628   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4629   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4630   ** some architectures. Hence the ROUND8() below.
4631   */
4632   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
4633   pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
4634   if( db->mallocFailed ){
4635     sqlite3DbFree(db, pWInfo);
4636     pWInfo = 0;
4637     goto whereBeginError;
4638   }
4639   pWInfo->pParse = pParse;
4640   pWInfo->pTabList = pTabList;
4641   pWInfo->pOrderBy = pOrderBy;
4642   pWInfo->pWhere = pWhere;
4643   pWInfo->pResultSet = pResultSet;
4644   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
4645   pWInfo->nLevel = nTabList;
4646   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v);
4647   pWInfo->wctrlFlags = wctrlFlags;
4648   pWInfo->iLimit = iAuxArg;
4649   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
4650   memset(&pWInfo->nOBSat, 0,
4651          offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
4652   memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
4653   assert( pWInfo->eOnePass==ONEPASS_OFF );  /* ONEPASS defaults to OFF */
4654   pMaskSet = &pWInfo->sMaskSet;
4655   sWLB.pWInfo = pWInfo;
4656   sWLB.pWC = &pWInfo->sWC;
4657   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
4658   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
4659   whereLoopInit(sWLB.pNew);
4660 #ifdef SQLITE_DEBUG
4661   sWLB.pNew->cId = '*';
4662 #endif
4663 
4664   /* Split the WHERE clause into separate subexpressions where each
4665   ** subexpression is separated by an AND operator.
4666   */
4667   initMaskSet(pMaskSet);
4668   sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
4669   sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
4670 
4671   /* Special case: No FROM clause
4672   */
4673   if( nTabList==0 ){
4674     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
4675     if( wctrlFlags & WHERE_WANT_DISTINCT ){
4676       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4677     }
4678     ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
4679   }else{
4680     /* Assign a bit from the bitmask to every term in the FROM clause.
4681     **
4682     ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
4683     **
4684     ** The rule of the previous sentence ensures thta if X is the bitmask for
4685     ** a table T, then X-1 is the bitmask for all other tables to the left of T.
4686     ** Knowing the bitmask for all tables to the left of a left join is
4687     ** important.  Ticket #3015.
4688     **
4689     ** Note that bitmasks are created for all pTabList->nSrc tables in
4690     ** pTabList, not just the first nTabList tables.  nTabList is normally
4691     ** equal to pTabList->nSrc but might be shortened to 1 if the
4692     ** WHERE_OR_SUBCLAUSE flag is set.
4693     */
4694     ii = 0;
4695     do{
4696       createMask(pMaskSet, pTabList->a[ii].iCursor);
4697       sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
4698     }while( (++ii)<pTabList->nSrc );
4699   #ifdef SQLITE_DEBUG
4700     {
4701       Bitmask mx = 0;
4702       for(ii=0; ii<pTabList->nSrc; ii++){
4703         Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
4704         assert( m>=mx );
4705         mx = m;
4706       }
4707     }
4708   #endif
4709   }
4710 
4711   /* Analyze all of the subexpressions. */
4712   sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
4713   if( db->mallocFailed ) goto whereBeginError;
4714 
4715   /* Special case: WHERE terms that do not refer to any tables in the join
4716   ** (constant expressions). Evaluate each such term, and jump over all the
4717   ** generated code if the result is not true.
4718   **
4719   ** Do not do this if the expression contains non-deterministic functions
4720   ** that are not within a sub-select. This is not strictly required, but
4721   ** preserves SQLite's legacy behaviour in the following two cases:
4722   **
4723   **   FROM ... WHERE random()>0;           -- eval random() once per row
4724   **   FROM ... WHERE (SELECT random())>0;  -- eval random() once overall
4725   */
4726   for(ii=0; ii<sWLB.pWC->nTerm; ii++){
4727     WhereTerm *pT = &sWLB.pWC->a[ii];
4728     if( pT->wtFlags & TERM_VIRTUAL ) continue;
4729     if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
4730       sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
4731       pT->wtFlags |= TERM_CODED;
4732     }
4733   }
4734 
4735   if( wctrlFlags & WHERE_WANT_DISTINCT ){
4736     if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
4737       /* The DISTINCT marking is pointless.  Ignore it. */
4738       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4739     }else if( pOrderBy==0 ){
4740       /* Try to ORDER BY the result set to make distinct processing easier */
4741       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
4742       pWInfo->pOrderBy = pResultSet;
4743     }
4744   }
4745 
4746   /* Construct the WhereLoop objects */
4747 #if defined(WHERETRACE_ENABLED)
4748   if( sqlite3WhereTrace & 0xffff ){
4749     sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
4750     if( wctrlFlags & WHERE_USE_LIMIT ){
4751       sqlite3DebugPrintf(", limit: %d", iAuxArg);
4752     }
4753     sqlite3DebugPrintf(")\n");
4754   }
4755   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
4756     sqlite3WhereClausePrint(sWLB.pWC);
4757   }
4758 #endif
4759 
4760   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
4761     rc = whereLoopAddAll(&sWLB);
4762     if( rc ) goto whereBeginError;
4763 
4764 #ifdef WHERETRACE_ENABLED
4765     if( sqlite3WhereTrace ){    /* Display all of the WhereLoop objects */
4766       WhereLoop *p;
4767       int i;
4768       static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
4769                                              "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
4770       for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
4771         p->cId = zLabel[i%(sizeof(zLabel)-1)];
4772         whereLoopPrint(p, sWLB.pWC);
4773       }
4774     }
4775 #endif
4776 
4777     wherePathSolver(pWInfo, 0);
4778     if( db->mallocFailed ) goto whereBeginError;
4779     if( pWInfo->pOrderBy ){
4780        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
4781        if( db->mallocFailed ) goto whereBeginError;
4782     }
4783   }
4784   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
4785      pWInfo->revMask = ALLBITS;
4786   }
4787   if( pParse->nErr || NEVER(db->mallocFailed) ){
4788     goto whereBeginError;
4789   }
4790 #ifdef WHERETRACE_ENABLED
4791   if( sqlite3WhereTrace ){
4792     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
4793     if( pWInfo->nOBSat>0 ){
4794       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
4795     }
4796     switch( pWInfo->eDistinct ){
4797       case WHERE_DISTINCT_UNIQUE: {
4798         sqlite3DebugPrintf("  DISTINCT=unique");
4799         break;
4800       }
4801       case WHERE_DISTINCT_ORDERED: {
4802         sqlite3DebugPrintf("  DISTINCT=ordered");
4803         break;
4804       }
4805       case WHERE_DISTINCT_UNORDERED: {
4806         sqlite3DebugPrintf("  DISTINCT=unordered");
4807         break;
4808       }
4809     }
4810     sqlite3DebugPrintf("\n");
4811     for(ii=0; ii<pWInfo->nLevel; ii++){
4812       whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
4813     }
4814   }
4815 #endif
4816 
4817   /* Attempt to omit tables from the join that do not affect the result.
4818   ** For a table to not affect the result, the following must be true:
4819   **
4820   **   1) The query must not be an aggregate.
4821   **   2) The table must be the RHS of a LEFT JOIN.
4822   **   3) Either the query must be DISTINCT, or else the ON or USING clause
4823   **      must contain a constraint that limits the scan of the table to
4824   **      at most a single row.
4825   **   4) The table must not be referenced by any part of the query apart
4826   **      from its own USING or ON clause.
4827   **
4828   ** For example, given:
4829   **
4830   **     CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
4831   **     CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
4832   **     CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
4833   **
4834   ** then table t2 can be omitted from the following:
4835   **
4836   **     SELECT v1, v3 FROM t1
4837   **       LEFT JOIN t2 USING (t1.ipk=t2.ipk)
4838   **       LEFT JOIN t3 USING (t1.ipk=t3.ipk)
4839   **
4840   ** or from:
4841   **
4842   **     SELECT DISTINCT v1, v3 FROM t1
4843   **       LEFT JOIN t2
4844   **       LEFT JOIN t3 USING (t1.ipk=t3.ipk)
4845   */
4846   notReady = ~(Bitmask)0;
4847   if( pWInfo->nLevel>=2
4848    && pResultSet!=0               /* guarantees condition (1) above */
4849    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
4850   ){
4851     int i;
4852     Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet);
4853     if( sWLB.pOrderBy ){
4854       tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy);
4855     }
4856     for(i=pWInfo->nLevel-1; i>=1; i--){
4857       WhereTerm *pTerm, *pEnd;
4858       struct SrcList_item *pItem;
4859       pLoop = pWInfo->a[i].pWLoop;
4860       pItem = &pWInfo->pTabList->a[pLoop->iTab];
4861       if( (pItem->fg.jointype & JT_LEFT)==0 ) continue;
4862       if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
4863        && (pLoop->wsFlags & WHERE_ONEROW)==0
4864       ){
4865         continue;
4866       }
4867       if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
4868       pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
4869       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
4870         if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
4871           if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
4872            || pTerm->pExpr->iRightJoinTable!=pItem->iCursor
4873           ){
4874             break;
4875           }
4876         }
4877       }
4878       if( pTerm<pEnd ) continue;
4879       WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
4880       notReady &= ~pLoop->maskSelf;
4881       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
4882         if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
4883           pTerm->wtFlags |= TERM_CODED;
4884         }
4885       }
4886       if( i!=pWInfo->nLevel-1 ){
4887         int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
4888         memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
4889       }
4890       pWInfo->nLevel--;
4891       nTabList--;
4892     }
4893   }
4894   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
4895   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
4896 
4897   /* If the caller is an UPDATE or DELETE statement that is requesting
4898   ** to use a one-pass algorithm, determine if this is appropriate.
4899   **
4900   ** A one-pass approach can be used if the caller has requested one
4901   ** and either (a) the scan visits at most one row or (b) each
4902   ** of the following are true:
4903   **
4904   **   * the caller has indicated that a one-pass approach can be used
4905   **     with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
4906   **   * the table is not a virtual table, and
4907   **   * either the scan does not use the OR optimization or the caller
4908   **     is a DELETE operation (WHERE_DUPLICATES_OK is only specified
4909   **     for DELETE).
4910   **
4911   ** The last qualification is because an UPDATE statement uses
4912   ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
4913   ** use a one-pass approach, and this is not set accurately for scans
4914   ** that use the OR optimization.
4915   */
4916   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
4917   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
4918     int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
4919     int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
4920     if( bOnerow || (
4921         0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
4922      && 0==(wsFlags & WHERE_VIRTUALTABLE)
4923      && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
4924     )){
4925       pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
4926       if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
4927         if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
4928           bFordelete = OPFLAG_FORDELETE;
4929         }
4930         pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
4931       }
4932     }
4933   }
4934 
4935   /* Open all tables in the pTabList and any indices selected for
4936   ** searching those tables.
4937   */
4938   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
4939     Table *pTab;     /* Table to open */
4940     int iDb;         /* Index of database containing table/index */
4941     struct SrcList_item *pTabItem;
4942 
4943     pTabItem = &pTabList->a[pLevel->iFrom];
4944     pTab = pTabItem->pTab;
4945     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4946     pLoop = pLevel->pWLoop;
4947     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
4948       /* Do nothing */
4949     }else
4950 #ifndef SQLITE_OMIT_VIRTUALTABLE
4951     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
4952       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
4953       int iCur = pTabItem->iCursor;
4954       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
4955     }else if( IsVirtual(pTab) ){
4956       /* noop */
4957     }else
4958 #endif
4959     if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
4960          && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
4961       int op = OP_OpenRead;
4962       if( pWInfo->eOnePass!=ONEPASS_OFF ){
4963         op = OP_OpenWrite;
4964         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
4965       };
4966       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
4967       assert( pTabItem->iCursor==pLevel->iTabCur );
4968       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
4969       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
4970       if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){
4971         Bitmask b = pTabItem->colUsed;
4972         int n = 0;
4973         for(; b; b=b>>1, n++){}
4974         sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
4975         assert( n<=pTab->nCol );
4976       }
4977 #ifdef SQLITE_ENABLE_CURSOR_HINTS
4978       if( pLoop->u.btree.pIndex!=0 ){
4979         sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
4980       }else
4981 #endif
4982       {
4983         sqlite3VdbeChangeP5(v, bFordelete);
4984       }
4985 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4986       sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
4987                             (const u8*)&pTabItem->colUsed, P4_INT64);
4988 #endif
4989     }else{
4990       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4991     }
4992     if( pLoop->wsFlags & WHERE_INDEXED ){
4993       Index *pIx = pLoop->u.btree.pIndex;
4994       int iIndexCur;
4995       int op = OP_OpenRead;
4996       /* iAuxArg is always set to a positive value if ONEPASS is possible */
4997       assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
4998       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
4999        && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
5000       ){
5001         /* This is one term of an OR-optimization using the PRIMARY KEY of a
5002         ** WITHOUT ROWID table.  No need for a separate index */
5003         iIndexCur = pLevel->iTabCur;
5004         op = 0;
5005       }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
5006         Index *pJ = pTabItem->pTab->pIndex;
5007         iIndexCur = iAuxArg;
5008         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
5009         while( ALWAYS(pJ) && pJ!=pIx ){
5010           iIndexCur++;
5011           pJ = pJ->pNext;
5012         }
5013         op = OP_OpenWrite;
5014         pWInfo->aiCurOnePass[1] = iIndexCur;
5015       }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
5016         iIndexCur = iAuxArg;
5017         op = OP_ReopenIdx;
5018       }else{
5019         iIndexCur = pParse->nTab++;
5020       }
5021       pLevel->iIdxCur = iIndexCur;
5022       assert( pIx->pSchema==pTab->pSchema );
5023       assert( iIndexCur>=0 );
5024       if( op ){
5025         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
5026         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
5027         if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
5028          && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
5029          && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
5030          && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
5031         ){
5032           sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */
5033         }
5034         VdbeComment((v, "%s", pIx->zName));
5035 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5036         {
5037           u64 colUsed = 0;
5038           int ii, jj;
5039           for(ii=0; ii<pIx->nColumn; ii++){
5040             jj = pIx->aiColumn[ii];
5041             if( jj<0 ) continue;
5042             if( jj>63 ) jj = 63;
5043             if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
5044             colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
5045           }
5046           sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
5047                                 (u8*)&colUsed, P4_INT64);
5048         }
5049 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
5050       }
5051     }
5052     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
5053   }
5054   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
5055   if( db->mallocFailed ) goto whereBeginError;
5056 
5057   /* Generate the code to do the search.  Each iteration of the for
5058   ** loop below generates code for a single nested loop of the VM
5059   ** program.
5060   */
5061   for(ii=0; ii<nTabList; ii++){
5062     int addrExplain;
5063     int wsFlags;
5064     pLevel = &pWInfo->a[ii];
5065     wsFlags = pLevel->pWLoop->wsFlags;
5066 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
5067     if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
5068       constructAutomaticIndex(pParse, &pWInfo->sWC,
5069                 &pTabList->a[pLevel->iFrom], notReady, pLevel);
5070       if( db->mallocFailed ) goto whereBeginError;
5071     }
5072 #endif
5073     addrExplain = sqlite3WhereExplainOneScan(
5074         pParse, pTabList, pLevel, wctrlFlags
5075     );
5076     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
5077     notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady);
5078     pWInfo->iContinue = pLevel->addrCont;
5079     if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
5080       sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
5081     }
5082   }
5083 
5084   /* Done. */
5085   VdbeModuleComment((v, "Begin WHERE-core"));
5086   return pWInfo;
5087 
5088   /* Jump here if malloc fails */
5089 whereBeginError:
5090   if( pWInfo ){
5091     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5092     whereInfoFree(db, pWInfo);
5093   }
5094   return 0;
5095 }
5096 
5097 /*
5098 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
5099 ** index rather than the main table.  In SQLITE_DEBUG mode, we want
5100 ** to trace those changes if PRAGMA vdbe_addoptrace=on.  This routine
5101 ** does that.
5102 */
5103 #ifndef SQLITE_DEBUG
5104 # define OpcodeRewriteTrace(D,K,P) /* no-op */
5105 #else
5106 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
5107   static void sqlite3WhereOpcodeRewriteTrace(
5108     sqlite3 *db,
5109     int pc,
5110     VdbeOp *pOp
5111   ){
5112     if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
5113     sqlite3VdbePrintOp(0, pc, pOp);
5114   }
5115 #endif
5116 
5117 /*
5118 ** Generate the end of the WHERE loop.  See comments on
5119 ** sqlite3WhereBegin() for additional information.
5120 */
5121 void sqlite3WhereEnd(WhereInfo *pWInfo){
5122   Parse *pParse = pWInfo->pParse;
5123   Vdbe *v = pParse->pVdbe;
5124   int i;
5125   WhereLevel *pLevel;
5126   WhereLoop *pLoop;
5127   SrcList *pTabList = pWInfo->pTabList;
5128   sqlite3 *db = pParse->db;
5129 
5130   /* Generate loop termination code.
5131   */
5132   VdbeModuleComment((v, "End WHERE-core"));
5133   for(i=pWInfo->nLevel-1; i>=0; i--){
5134     int addr;
5135     pLevel = &pWInfo->a[i];
5136     pLoop = pLevel->pWLoop;
5137     if( pLevel->op!=OP_Noop ){
5138 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5139       int addrSeek = 0;
5140       Index *pIdx;
5141       int n;
5142       if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
5143        && i==pWInfo->nLevel-1  /* Ticket [ef9318757b152e3] 2017-10-21 */
5144        && (pLoop->wsFlags & WHERE_INDEXED)!=0
5145        && (pIdx = pLoop->u.btree.pIndex)->hasStat1
5146        && (n = pLoop->u.btree.nIdxCol)>0
5147        && pIdx->aiRowLogEst[n]>=36
5148       ){
5149         int r1 = pParse->nMem+1;
5150         int j, op;
5151         for(j=0; j<n; j++){
5152           sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
5153         }
5154         pParse->nMem += n+1;
5155         op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
5156         addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
5157         VdbeCoverageIf(v, op==OP_SeekLT);
5158         VdbeCoverageIf(v, op==OP_SeekGT);
5159         sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
5160       }
5161 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
5162       /* The common case: Advance to the next row */
5163       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5164       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
5165       sqlite3VdbeChangeP5(v, pLevel->p5);
5166       VdbeCoverage(v);
5167       VdbeCoverageIf(v, pLevel->op==OP_Next);
5168       VdbeCoverageIf(v, pLevel->op==OP_Prev);
5169       VdbeCoverageIf(v, pLevel->op==OP_VNext);
5170 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5171       if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
5172 #endif
5173     }else{
5174       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5175     }
5176     if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
5177       struct InLoop *pIn;
5178       int j;
5179       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
5180       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
5181         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5182         if( pIn->eEndLoopOp!=OP_Noop ){
5183           if( pIn->nPrefix ){
5184             assert( pLoop->wsFlags & WHERE_IN_EARLYOUT );
5185             sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
5186                               sqlite3VdbeCurrentAddr(v)+2,
5187                               pIn->iBase, pIn->nPrefix);
5188             VdbeCoverage(v);
5189           }
5190           sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
5191           VdbeCoverage(v);
5192           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
5193           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
5194         }
5195         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
5196       }
5197     }
5198     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
5199     if( pLevel->addrSkip ){
5200       sqlite3VdbeGoto(v, pLevel->addrSkip);
5201       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
5202       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
5203       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
5204     }
5205 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
5206     if( pLevel->addrLikeRep ){
5207       sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
5208                         pLevel->addrLikeRep);
5209       VdbeCoverage(v);
5210     }
5211 #endif
5212     if( pLevel->iLeftJoin ){
5213       int ws = pLoop->wsFlags;
5214       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
5215       assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
5216       if( (ws & WHERE_IDX_ONLY)==0 ){
5217         assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
5218         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
5219       }
5220       if( (ws & WHERE_INDEXED)
5221        || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx)
5222       ){
5223         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
5224       }
5225       if( pLevel->op==OP_Return ){
5226         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
5227       }else{
5228         sqlite3VdbeGoto(v, pLevel->addrFirst);
5229       }
5230       sqlite3VdbeJumpHere(v, addr);
5231     }
5232     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
5233                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
5234   }
5235 
5236   /* The "break" point is here, just past the end of the outer loop.
5237   ** Set it.
5238   */
5239   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
5240 
5241   assert( pWInfo->nLevel<=pTabList->nSrc );
5242   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
5243     int k, last;
5244     VdbeOp *pOp;
5245     Index *pIdx = 0;
5246     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
5247     Table *pTab = pTabItem->pTab;
5248     assert( pTab!=0 );
5249     pLoop = pLevel->pWLoop;
5250 
5251     /* For a co-routine, change all OP_Column references to the table of
5252     ** the co-routine into OP_Copy of result contained in a register.
5253     ** OP_Rowid becomes OP_Null.
5254     */
5255     if( pTabItem->fg.viaCoroutine ){
5256       testcase( pParse->db->mallocFailed );
5257       translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
5258                             pTabItem->regResult, 0);
5259       continue;
5260     }
5261 
5262     /* If this scan uses an index, make VDBE code substitutions to read data
5263     ** from the index instead of from the table where possible.  In some cases
5264     ** this optimization prevents the table from ever being read, which can
5265     ** yield a significant performance boost.
5266     **
5267     ** Calls to the code generator in between sqlite3WhereBegin and
5268     ** sqlite3WhereEnd will have created code that references the table
5269     ** directly.  This loop scans all that code looking for opcodes
5270     ** that reference the table and converts them into opcodes that
5271     ** reference the index.
5272     */
5273     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
5274       pIdx = pLoop->u.btree.pIndex;
5275     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
5276       pIdx = pLevel->u.pCovidx;
5277     }
5278     if( pIdx
5279      && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable))
5280      && !db->mallocFailed
5281     ){
5282       last = sqlite3VdbeCurrentAddr(v);
5283       k = pLevel->addrBody;
5284 #ifdef SQLITE_DEBUG
5285       if( db->flags & SQLITE_VdbeAddopTrace ){
5286         printf("TRANSLATE opcodes in range %d..%d\n", k, last-1);
5287       }
5288 #endif
5289       pOp = sqlite3VdbeGetOp(v, k);
5290       for(; k<last; k++, pOp++){
5291         if( pOp->p1!=pLevel->iTabCur ) continue;
5292         if( pOp->opcode==OP_Column
5293 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
5294          || pOp->opcode==OP_Offset
5295 #endif
5296         ){
5297           int x = pOp->p2;
5298           assert( pIdx->pTable==pTab );
5299           if( !HasRowid(pTab) ){
5300             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
5301             x = pPk->aiColumn[x];
5302             assert( x>=0 );
5303           }
5304           x = sqlite3ColumnOfIndex(pIdx, x);
5305           if( x>=0 ){
5306             pOp->p2 = x;
5307             pOp->p1 = pLevel->iIdxCur;
5308             OpcodeRewriteTrace(db, k, pOp);
5309           }
5310           assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0
5311               || pWInfo->eOnePass );
5312         }else if( pOp->opcode==OP_Rowid ){
5313           pOp->p1 = pLevel->iIdxCur;
5314           pOp->opcode = OP_IdxRowid;
5315           OpcodeRewriteTrace(db, k, pOp);
5316         }else if( pOp->opcode==OP_IfNullRow ){
5317           pOp->p1 = pLevel->iIdxCur;
5318           OpcodeRewriteTrace(db, k, pOp);
5319         }
5320       }
5321 #ifdef SQLITE_DEBUG
5322       if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
5323 #endif
5324     }
5325   }
5326 
5327   /* Final cleanup
5328   */
5329   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5330   whereInfoFree(db, pWInfo);
5331   return;
5332 }
5333