xref: /sqlite-3.40.0/src/where.c (revision 87f500ce)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /* Forward declaration of methods */
23 static int whereLoopResize(sqlite3*, WhereLoop*, int);
24 
25 /* Test variable that can be set to enable WHERE tracing */
26 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
27 /***/ int sqlite3WhereTrace = 0;
28 #endif
29 
30 
31 /*
32 ** Return the estimated number of output rows from a WHERE clause
33 */
34 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
35   return pWInfo->nRowOut;
36 }
37 
38 /*
39 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
40 ** WHERE clause returns outputs for DISTINCT processing.
41 */
42 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
43   return pWInfo->eDistinct;
44 }
45 
46 /*
47 ** Return TRUE if the WHERE clause returns rows in ORDER BY order.
48 ** Return FALSE if the output needs to be sorted.
49 */
50 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
51   return pWInfo->nOBSat;
52 }
53 
54 /*
55 ** Return TRUE if the innermost loop of the WHERE clause implementation
56 ** returns rows in ORDER BY order for complete run of the inner loop.
57 **
58 ** Across multiple iterations of outer loops, the output rows need not be
59 ** sorted.  As long as rows are sorted for just the innermost loop, this
60 ** routine can return TRUE.
61 */
62 int sqlite3WhereOrderedInnerLoop(WhereInfo *pWInfo){
63   return pWInfo->bOrderedInnerLoop;
64 }
65 
66 /*
67 ** Return the VDBE address or label to jump to in order to continue
68 ** immediately with the next row of a WHERE clause.
69 */
70 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
71   assert( pWInfo->iContinue!=0 );
72   return pWInfo->iContinue;
73 }
74 
75 /*
76 ** Return the VDBE address or label to jump to in order to break
77 ** out of a WHERE loop.
78 */
79 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
80   return pWInfo->iBreak;
81 }
82 
83 /*
84 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
85 ** operate directly on the rowis returned by a WHERE clause.  Return
86 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
87 ** a single row is to be changed.  Return ONEPASS_MULTI (2) if the one-pass
88 ** optimization can be used on multiple
89 **
90 ** If the ONEPASS optimization is used (if this routine returns true)
91 ** then also write the indices of open cursors used by ONEPASS
92 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
93 ** table and iaCur[1] gets the cursor used by an auxiliary index.
94 ** Either value may be -1, indicating that cursor is not used.
95 ** Any cursors returned will have been opened for writing.
96 **
97 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
98 ** unable to use the ONEPASS optimization.
99 */
100 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
101   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
102 #ifdef WHERETRACE_ENABLED
103   if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
104     sqlite3DebugPrintf("%s cursors: %d %d\n",
105          pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
106          aiCur[0], aiCur[1]);
107   }
108 #endif
109   return pWInfo->eOnePass;
110 }
111 
112 /*
113 ** Move the content of pSrc into pDest
114 */
115 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
116   pDest->n = pSrc->n;
117   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
118 }
119 
120 /*
121 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
122 **
123 ** The new entry might overwrite an existing entry, or it might be
124 ** appended, or it might be discarded.  Do whatever is the right thing
125 ** so that pSet keeps the N_OR_COST best entries seen so far.
126 */
127 static int whereOrInsert(
128   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
129   Bitmask prereq,        /* Prerequisites of the new entry */
130   LogEst rRun,           /* Run-cost of the new entry */
131   LogEst nOut            /* Number of outputs for the new entry */
132 ){
133   u16 i;
134   WhereOrCost *p;
135   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
136     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
137       goto whereOrInsert_done;
138     }
139     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
140       return 0;
141     }
142   }
143   if( pSet->n<N_OR_COST ){
144     p = &pSet->a[pSet->n++];
145     p->nOut = nOut;
146   }else{
147     p = pSet->a;
148     for(i=1; i<pSet->n; i++){
149       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
150     }
151     if( p->rRun<=rRun ) return 0;
152   }
153 whereOrInsert_done:
154   p->prereq = prereq;
155   p->rRun = rRun;
156   if( p->nOut>nOut ) p->nOut = nOut;
157   return 1;
158 }
159 
160 /*
161 ** Return the bitmask for the given cursor number.  Return 0 if
162 ** iCursor is not in the set.
163 */
164 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
165   int i;
166   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
167   for(i=0; i<pMaskSet->n; i++){
168     if( pMaskSet->ix[i]==iCursor ){
169       return MASKBIT(i);
170     }
171   }
172   return 0;
173 }
174 
175 /*
176 ** Create a new mask for cursor iCursor.
177 **
178 ** There is one cursor per table in the FROM clause.  The number of
179 ** tables in the FROM clause is limited by a test early in the
180 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
181 ** array will never overflow.
182 */
183 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
184   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
185   pMaskSet->ix[pMaskSet->n++] = iCursor;
186 }
187 
188 /*
189 ** Advance to the next WhereTerm that matches according to the criteria
190 ** established when the pScan object was initialized by whereScanInit().
191 ** Return NULL if there are no more matching WhereTerms.
192 */
193 static WhereTerm *whereScanNext(WhereScan *pScan){
194   int iCur;            /* The cursor on the LHS of the term */
195   i16 iColumn;         /* The column on the LHS of the term.  -1 for IPK */
196   Expr *pX;            /* An expression being tested */
197   WhereClause *pWC;    /* Shorthand for pScan->pWC */
198   WhereTerm *pTerm;    /* The term being tested */
199   int k = pScan->k;    /* Where to start scanning */
200 
201   assert( pScan->iEquiv<=pScan->nEquiv );
202   pWC = pScan->pWC;
203   while(1){
204     iColumn = pScan->aiColumn[pScan->iEquiv-1];
205     iCur = pScan->aiCur[pScan->iEquiv-1];
206     assert( pWC!=0 );
207     do{
208       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
209         if( pTerm->leftCursor==iCur
210          && pTerm->u.leftColumn==iColumn
211          && (iColumn!=XN_EXPR
212              || sqlite3ExprCompare(pTerm->pExpr->pLeft,pScan->pIdxExpr,iCur)==0)
213          && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
214         ){
215           if( (pTerm->eOperator & WO_EQUIV)!=0
216            && pScan->nEquiv<ArraySize(pScan->aiCur)
217            && (pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight))->op==TK_COLUMN
218           ){
219             int j;
220             for(j=0; j<pScan->nEquiv; j++){
221               if( pScan->aiCur[j]==pX->iTable
222                && pScan->aiColumn[j]==pX->iColumn ){
223                   break;
224               }
225             }
226             if( j==pScan->nEquiv ){
227               pScan->aiCur[j] = pX->iTable;
228               pScan->aiColumn[j] = pX->iColumn;
229               pScan->nEquiv++;
230             }
231           }
232           if( (pTerm->eOperator & pScan->opMask)!=0 ){
233             /* Verify the affinity and collating sequence match */
234             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
235               CollSeq *pColl;
236               Parse *pParse = pWC->pWInfo->pParse;
237               pX = pTerm->pExpr;
238               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
239                 continue;
240               }
241               assert(pX->pLeft);
242               pColl = sqlite3BinaryCompareCollSeq(pParse,
243                                                   pX->pLeft, pX->pRight);
244               if( pColl==0 ) pColl = pParse->db->pDfltColl;
245               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
246                 continue;
247               }
248             }
249             if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
250              && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
251              && pX->iTable==pScan->aiCur[0]
252              && pX->iColumn==pScan->aiColumn[0]
253             ){
254               testcase( pTerm->eOperator & WO_IS );
255               continue;
256             }
257             pScan->pWC = pWC;
258             pScan->k = k+1;
259             return pTerm;
260           }
261         }
262       }
263       pWC = pWC->pOuter;
264       k = 0;
265     }while( pWC!=0 );
266     if( pScan->iEquiv>=pScan->nEquiv ) break;
267     pWC = pScan->pOrigWC;
268     k = 0;
269     pScan->iEquiv++;
270   }
271   return 0;
272 }
273 
274 /*
275 ** Initialize a WHERE clause scanner object.  Return a pointer to the
276 ** first match.  Return NULL if there are no matches.
277 **
278 ** The scanner will be searching the WHERE clause pWC.  It will look
279 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
280 ** iCur.   Or if pIdx!=0 then X is column iColumn of index pIdx.  pIdx
281 ** must be one of the indexes of table iCur.
282 **
283 ** The <op> must be one of the operators described by opMask.
284 **
285 ** If the search is for X and the WHERE clause contains terms of the
286 ** form X=Y then this routine might also return terms of the form
287 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
288 ** but is enough to handle most commonly occurring SQL statements.
289 **
290 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
291 ** index pIdx.
292 */
293 static WhereTerm *whereScanInit(
294   WhereScan *pScan,       /* The WhereScan object being initialized */
295   WhereClause *pWC,       /* The WHERE clause to be scanned */
296   int iCur,               /* Cursor to scan for */
297   int iColumn,            /* Column to scan for */
298   u32 opMask,             /* Operator(s) to scan for */
299   Index *pIdx             /* Must be compatible with this index */
300 ){
301   pScan->pOrigWC = pWC;
302   pScan->pWC = pWC;
303   pScan->pIdxExpr = 0;
304   pScan->idxaff = 0;
305   pScan->zCollName = 0;
306   if( pIdx ){
307     int j = iColumn;
308     iColumn = pIdx->aiColumn[j];
309     if( iColumn==XN_EXPR ){
310       pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
311     }else if( iColumn==pIdx->pTable->iPKey ){
312       iColumn = XN_ROWID;
313     }else if( iColumn>=0 ){
314       pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
315       pScan->zCollName = pIdx->azColl[j];
316     }
317   }else if( iColumn==XN_EXPR ){
318     return 0;
319   }
320   pScan->opMask = opMask;
321   pScan->k = 0;
322   pScan->aiCur[0] = iCur;
323   pScan->aiColumn[0] = iColumn;
324   pScan->nEquiv = 1;
325   pScan->iEquiv = 1;
326   return whereScanNext(pScan);
327 }
328 
329 /*
330 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
331 ** where X is a reference to the iColumn of table iCur or of index pIdx
332 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
333 ** the op parameter.  Return a pointer to the term.  Return 0 if not found.
334 **
335 ** If pIdx!=0 then it must be one of the indexes of table iCur.
336 ** Search for terms matching the iColumn-th column of pIdx
337 ** rather than the iColumn-th column of table iCur.
338 **
339 ** The term returned might by Y=<expr> if there is another constraint in
340 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
341 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
342 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
343 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
344 ** other equivalent values.  Hence a search for X will return <expr> if X=A1
345 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
346 **
347 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
348 ** then try for the one with no dependencies on <expr> - in other words where
349 ** <expr> is a constant expression of some kind.  Only return entries of
350 ** the form "X <op> Y" where Y is a column in another table if no terms of
351 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
352 ** exist, try to return a term that does not use WO_EQUIV.
353 */
354 WhereTerm *sqlite3WhereFindTerm(
355   WhereClause *pWC,     /* The WHERE clause to be searched */
356   int iCur,             /* Cursor number of LHS */
357   int iColumn,          /* Column number of LHS */
358   Bitmask notReady,     /* RHS must not overlap with this mask */
359   u32 op,               /* Mask of WO_xx values describing operator */
360   Index *pIdx           /* Must be compatible with this index, if not NULL */
361 ){
362   WhereTerm *pResult = 0;
363   WhereTerm *p;
364   WhereScan scan;
365 
366   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
367   op &= WO_EQ|WO_IS;
368   while( p ){
369     if( (p->prereqRight & notReady)==0 ){
370       if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
371         testcase( p->eOperator & WO_IS );
372         return p;
373       }
374       if( pResult==0 ) pResult = p;
375     }
376     p = whereScanNext(&scan);
377   }
378   return pResult;
379 }
380 
381 /*
382 ** This function searches pList for an entry that matches the iCol-th column
383 ** of index pIdx.
384 **
385 ** If such an expression is found, its index in pList->a[] is returned. If
386 ** no expression is found, -1 is returned.
387 */
388 static int findIndexCol(
389   Parse *pParse,                  /* Parse context */
390   ExprList *pList,                /* Expression list to search */
391   int iBase,                      /* Cursor for table associated with pIdx */
392   Index *pIdx,                    /* Index to match column of */
393   int iCol                        /* Column of index to match */
394 ){
395   int i;
396   const char *zColl = pIdx->azColl[iCol];
397 
398   for(i=0; i<pList->nExpr; i++){
399     Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr);
400     if( p->op==TK_COLUMN
401      && p->iColumn==pIdx->aiColumn[iCol]
402      && p->iTable==iBase
403     ){
404       CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
405       if( pColl && 0==sqlite3StrICmp(pColl->zName, zColl) ){
406         return i;
407       }
408     }
409   }
410 
411   return -1;
412 }
413 
414 /*
415 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
416 */
417 static int indexColumnNotNull(Index *pIdx, int iCol){
418   int j;
419   assert( pIdx!=0 );
420   assert( iCol>=0 && iCol<pIdx->nColumn );
421   j = pIdx->aiColumn[iCol];
422   if( j>=0 ){
423     return pIdx->pTable->aCol[j].notNull;
424   }else if( j==(-1) ){
425     return 1;
426   }else{
427     assert( j==(-2) );
428     return 0;  /* Assume an indexed expression can always yield a NULL */
429 
430   }
431 }
432 
433 /*
434 ** Return true if the DISTINCT expression-list passed as the third argument
435 ** is redundant.
436 **
437 ** A DISTINCT list is redundant if any subset of the columns in the
438 ** DISTINCT list are collectively unique and individually non-null.
439 */
440 static int isDistinctRedundant(
441   Parse *pParse,            /* Parsing context */
442   SrcList *pTabList,        /* The FROM clause */
443   WhereClause *pWC,         /* The WHERE clause */
444   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
445 ){
446   Table *pTab;
447   Index *pIdx;
448   int i;
449   int iBase;
450 
451   /* If there is more than one table or sub-select in the FROM clause of
452   ** this query, then it will not be possible to show that the DISTINCT
453   ** clause is redundant. */
454   if( pTabList->nSrc!=1 ) return 0;
455   iBase = pTabList->a[0].iCursor;
456   pTab = pTabList->a[0].pTab;
457 
458   /* If any of the expressions is an IPK column on table iBase, then return
459   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
460   ** current SELECT is a correlated sub-query.
461   */
462   for(i=0; i<pDistinct->nExpr; i++){
463     Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr);
464     if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1;
465   }
466 
467   /* Loop through all indices on the table, checking each to see if it makes
468   ** the DISTINCT qualifier redundant. It does so if:
469   **
470   **   1. The index is itself UNIQUE, and
471   **
472   **   2. All of the columns in the index are either part of the pDistinct
473   **      list, or else the WHERE clause contains a term of the form "col=X",
474   **      where X is a constant value. The collation sequences of the
475   **      comparison and select-list expressions must match those of the index.
476   **
477   **   3. All of those index columns for which the WHERE clause does not
478   **      contain a "col=X" term are subject to a NOT NULL constraint.
479   */
480   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
481     if( !IsUniqueIndex(pIdx) ) continue;
482     for(i=0; i<pIdx->nKeyCol; i++){
483       if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
484         if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
485         if( indexColumnNotNull(pIdx, i)==0 ) break;
486       }
487     }
488     if( i==pIdx->nKeyCol ){
489       /* This index implies that the DISTINCT qualifier is redundant. */
490       return 1;
491     }
492   }
493 
494   return 0;
495 }
496 
497 
498 /*
499 ** Estimate the logarithm of the input value to base 2.
500 */
501 static LogEst estLog(LogEst N){
502   return N<=10 ? 0 : sqlite3LogEst(N) - 33;
503 }
504 
505 /*
506 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
507 **
508 ** This routine runs over generated VDBE code and translates OP_Column
509 ** opcodes into OP_Copy when the table is being accessed via co-routine
510 ** instead of via table lookup.
511 **
512 ** If the bIncrRowid parameter is 0, then any OP_Rowid instructions on
513 ** cursor iTabCur are transformed into OP_Null. Or, if bIncrRowid is non-zero,
514 ** then each OP_Rowid is transformed into an instruction to increment the
515 ** value stored in its output register.
516 */
517 static void translateColumnToCopy(
518   Vdbe *v,            /* The VDBE containing code to translate */
519   int iStart,         /* Translate from this opcode to the end */
520   int iTabCur,        /* OP_Column/OP_Rowid references to this table */
521   int iRegister,      /* The first column is in this register */
522   int bIncrRowid      /* If non-zero, transform OP_rowid to OP_AddImm(1) */
523 ){
524   VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
525   int iEnd = sqlite3VdbeCurrentAddr(v);
526   for(; iStart<iEnd; iStart++, pOp++){
527     if( pOp->p1!=iTabCur ) continue;
528     if( pOp->opcode==OP_Column ){
529       pOp->opcode = OP_Copy;
530       pOp->p1 = pOp->p2 + iRegister;
531       pOp->p2 = pOp->p3;
532       pOp->p3 = 0;
533     }else if( pOp->opcode==OP_Rowid ){
534       if( bIncrRowid ){
535         /* Increment the value stored in the P2 operand of the OP_Rowid. */
536         pOp->opcode = OP_AddImm;
537         pOp->p1 = pOp->p2;
538         pOp->p2 = 1;
539       }else{
540         pOp->opcode = OP_Null;
541         pOp->p1 = 0;
542         pOp->p3 = 0;
543       }
544     }
545   }
546 }
547 
548 /*
549 ** Two routines for printing the content of an sqlite3_index_info
550 ** structure.  Used for testing and debugging only.  If neither
551 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
552 ** are no-ops.
553 */
554 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
555 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
556   int i;
557   if( !sqlite3WhereTrace ) return;
558   for(i=0; i<p->nConstraint; i++){
559     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
560        i,
561        p->aConstraint[i].iColumn,
562        p->aConstraint[i].iTermOffset,
563        p->aConstraint[i].op,
564        p->aConstraint[i].usable);
565   }
566   for(i=0; i<p->nOrderBy; i++){
567     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
568        i,
569        p->aOrderBy[i].iColumn,
570        p->aOrderBy[i].desc);
571   }
572 }
573 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
574   int i;
575   if( !sqlite3WhereTrace ) return;
576   for(i=0; i<p->nConstraint; i++){
577     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
578        i,
579        p->aConstraintUsage[i].argvIndex,
580        p->aConstraintUsage[i].omit);
581   }
582   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
583   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
584   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
585   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
586   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
587 }
588 #else
589 #define TRACE_IDX_INPUTS(A)
590 #define TRACE_IDX_OUTPUTS(A)
591 #endif
592 
593 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
594 /*
595 ** Return TRUE if the WHERE clause term pTerm is of a form where it
596 ** could be used with an index to access pSrc, assuming an appropriate
597 ** index existed.
598 */
599 static int termCanDriveIndex(
600   WhereTerm *pTerm,              /* WHERE clause term to check */
601   struct SrcList_item *pSrc,     /* Table we are trying to access */
602   Bitmask notReady               /* Tables in outer loops of the join */
603 ){
604   char aff;
605   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
606   if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
607   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
608   if( pTerm->u.leftColumn<0 ) return 0;
609   aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
610   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
611   testcase( pTerm->pExpr->op==TK_IS );
612   return 1;
613 }
614 #endif
615 
616 
617 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
618 /*
619 ** Generate code to construct the Index object for an automatic index
620 ** and to set up the WhereLevel object pLevel so that the code generator
621 ** makes use of the automatic index.
622 */
623 static void constructAutomaticIndex(
624   Parse *pParse,              /* The parsing context */
625   WhereClause *pWC,           /* The WHERE clause */
626   struct SrcList_item *pSrc,  /* The FROM clause term to get the next index */
627   Bitmask notReady,           /* Mask of cursors that are not available */
628   WhereLevel *pLevel          /* Write new index here */
629 ){
630   int nKeyCol;                /* Number of columns in the constructed index */
631   WhereTerm *pTerm;           /* A single term of the WHERE clause */
632   WhereTerm *pWCEnd;          /* End of pWC->a[] */
633   Index *pIdx;                /* Object describing the transient index */
634   Vdbe *v;                    /* Prepared statement under construction */
635   int addrInit;               /* Address of the initialization bypass jump */
636   Table *pTable;              /* The table being indexed */
637   int addrTop;                /* Top of the index fill loop */
638   int regRecord;              /* Register holding an index record */
639   int n;                      /* Column counter */
640   int i;                      /* Loop counter */
641   int mxBitCol;               /* Maximum column in pSrc->colUsed */
642   CollSeq *pColl;             /* Collating sequence to on a column */
643   WhereLoop *pLoop;           /* The Loop object */
644   char *zNotUsed;             /* Extra space on the end of pIdx */
645   Bitmask idxCols;            /* Bitmap of columns used for indexing */
646   Bitmask extraCols;          /* Bitmap of additional columns */
647   u8 sentWarning = 0;         /* True if a warnning has been issued */
648   Expr *pPartial = 0;         /* Partial Index Expression */
649   int iContinue = 0;          /* Jump here to skip excluded rows */
650   struct SrcList_item *pTabItem;  /* FROM clause term being indexed */
651   int addrCounter = 0;        /* Address where integer counter is initialized */
652   int regBase;                /* Array of registers where record is assembled */
653 
654   /* Generate code to skip over the creation and initialization of the
655   ** transient index on 2nd and subsequent iterations of the loop. */
656   v = pParse->pVdbe;
657   assert( v!=0 );
658   addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
659 
660   /* Count the number of columns that will be added to the index
661   ** and used to match WHERE clause constraints */
662   nKeyCol = 0;
663   pTable = pSrc->pTab;
664   pWCEnd = &pWC->a[pWC->nTerm];
665   pLoop = pLevel->pWLoop;
666   idxCols = 0;
667   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
668     Expr *pExpr = pTerm->pExpr;
669     assert( !ExprHasProperty(pExpr, EP_FromJoin)    /* prereq always non-zero */
670          || pExpr->iRightJoinTable!=pSrc->iCursor   /*   for the right-hand   */
671          || pLoop->prereq!=0 );                     /*   table of a LEFT JOIN */
672     if( pLoop->prereq==0
673      && (pTerm->wtFlags & TERM_VIRTUAL)==0
674      && !ExprHasProperty(pExpr, EP_FromJoin)
675      && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){
676       pPartial = sqlite3ExprAnd(pParse->db, pPartial,
677                                 sqlite3ExprDup(pParse->db, pExpr, 0));
678     }
679     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
680       int iCol = pTerm->u.leftColumn;
681       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
682       testcase( iCol==BMS );
683       testcase( iCol==BMS-1 );
684       if( !sentWarning ){
685         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
686             "automatic index on %s(%s)", pTable->zName,
687             pTable->aCol[iCol].zName);
688         sentWarning = 1;
689       }
690       if( (idxCols & cMask)==0 ){
691         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
692           goto end_auto_index_create;
693         }
694         pLoop->aLTerm[nKeyCol++] = pTerm;
695         idxCols |= cMask;
696       }
697     }
698   }
699   assert( nKeyCol>0 );
700   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
701   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
702                      | WHERE_AUTO_INDEX;
703 
704   /* Count the number of additional columns needed to create a
705   ** covering index.  A "covering index" is an index that contains all
706   ** columns that are needed by the query.  With a covering index, the
707   ** original table never needs to be accessed.  Automatic indices must
708   ** be a covering index because the index will not be updated if the
709   ** original table changes and the index and table cannot both be used
710   ** if they go out of sync.
711   */
712   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
713   mxBitCol = MIN(BMS-1,pTable->nCol);
714   testcase( pTable->nCol==BMS-1 );
715   testcase( pTable->nCol==BMS-2 );
716   for(i=0; i<mxBitCol; i++){
717     if( extraCols & MASKBIT(i) ) nKeyCol++;
718   }
719   if( pSrc->colUsed & MASKBIT(BMS-1) ){
720     nKeyCol += pTable->nCol - BMS + 1;
721   }
722 
723   /* Construct the Index object to describe this index */
724   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
725   if( pIdx==0 ) goto end_auto_index_create;
726   pLoop->u.btree.pIndex = pIdx;
727   pIdx->zName = "auto-index";
728   pIdx->pTable = pTable;
729   n = 0;
730   idxCols = 0;
731   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
732     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
733       int iCol = pTerm->u.leftColumn;
734       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
735       testcase( iCol==BMS-1 );
736       testcase( iCol==BMS );
737       if( (idxCols & cMask)==0 ){
738         Expr *pX = pTerm->pExpr;
739         idxCols |= cMask;
740         pIdx->aiColumn[n] = pTerm->u.leftColumn;
741         pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
742         pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
743         n++;
744       }
745     }
746   }
747   assert( (u32)n==pLoop->u.btree.nEq );
748 
749   /* Add additional columns needed to make the automatic index into
750   ** a covering index */
751   for(i=0; i<mxBitCol; i++){
752     if( extraCols & MASKBIT(i) ){
753       pIdx->aiColumn[n] = i;
754       pIdx->azColl[n] = sqlite3StrBINARY;
755       n++;
756     }
757   }
758   if( pSrc->colUsed & MASKBIT(BMS-1) ){
759     for(i=BMS-1; i<pTable->nCol; i++){
760       pIdx->aiColumn[n] = i;
761       pIdx->azColl[n] = sqlite3StrBINARY;
762       n++;
763     }
764   }
765   assert( n==nKeyCol );
766   pIdx->aiColumn[n] = XN_ROWID;
767   pIdx->azColl[n] = sqlite3StrBINARY;
768 
769   /* Create the automatic index */
770   assert( pLevel->iIdxCur>=0 );
771   pLevel->iIdxCur = pParse->nTab++;
772   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
773   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
774   VdbeComment((v, "for %s", pTable->zName));
775 
776   /* Fill the automatic index with content */
777   sqlite3ExprCachePush(pParse);
778   pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
779   if( pTabItem->fg.viaCoroutine ){
780     int regYield = pTabItem->regReturn;
781     addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
782     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
783     addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
784     VdbeCoverage(v);
785     VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
786   }else{
787     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
788   }
789   if( pPartial ){
790     iContinue = sqlite3VdbeMakeLabel(v);
791     sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
792     pLoop->wsFlags |= WHERE_PARTIALIDX;
793   }
794   regRecord = sqlite3GetTempReg(pParse);
795   regBase = sqlite3GenerateIndexKey(
796       pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
797   );
798   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
799   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
800   if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
801   if( pTabItem->fg.viaCoroutine ){
802     sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
803     translateColumnToCopy(v, addrTop, pLevel->iTabCur, pTabItem->regResult, 1);
804     sqlite3VdbeGoto(v, addrTop);
805     pTabItem->fg.viaCoroutine = 0;
806   }else{
807     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
808   }
809   sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
810   sqlite3VdbeJumpHere(v, addrTop);
811   sqlite3ReleaseTempReg(pParse, regRecord);
812   sqlite3ExprCachePop(pParse);
813 
814   /* Jump here when skipping the initialization */
815   sqlite3VdbeJumpHere(v, addrInit);
816 
817 end_auto_index_create:
818   sqlite3ExprDelete(pParse->db, pPartial);
819 }
820 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
821 
822 #ifndef SQLITE_OMIT_VIRTUALTABLE
823 /*
824 ** Allocate and populate an sqlite3_index_info structure. It is the
825 ** responsibility of the caller to eventually release the structure
826 ** by passing the pointer returned by this function to sqlite3_free().
827 */
828 static sqlite3_index_info *allocateIndexInfo(
829   Parse *pParse,
830   WhereClause *pWC,
831   Bitmask mUnusable,              /* Ignore terms with these prereqs */
832   struct SrcList_item *pSrc,
833   ExprList *pOrderBy,
834   u16 *pmNoOmit                   /* Mask of terms not to omit */
835 ){
836   int i, j;
837   int nTerm;
838   struct sqlite3_index_constraint *pIdxCons;
839   struct sqlite3_index_orderby *pIdxOrderBy;
840   struct sqlite3_index_constraint_usage *pUsage;
841   WhereTerm *pTerm;
842   int nOrderBy;
843   sqlite3_index_info *pIdxInfo;
844   u16 mNoOmit = 0;
845 
846   /* Count the number of possible WHERE clause constraints referring
847   ** to this virtual table */
848   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
849     if( pTerm->leftCursor != pSrc->iCursor ) continue;
850     if( pTerm->prereqRight & mUnusable ) continue;
851     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
852     testcase( pTerm->eOperator & WO_IN );
853     testcase( pTerm->eOperator & WO_ISNULL );
854     testcase( pTerm->eOperator & WO_IS );
855     testcase( pTerm->eOperator & WO_ALL );
856     if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue;
857     if( pTerm->wtFlags & TERM_VNULL ) continue;
858     assert( pTerm->u.leftColumn>=(-1) );
859     nTerm++;
860   }
861 
862   /* If the ORDER BY clause contains only columns in the current
863   ** virtual table then allocate space for the aOrderBy part of
864   ** the sqlite3_index_info structure.
865   */
866   nOrderBy = 0;
867   if( pOrderBy ){
868     int n = pOrderBy->nExpr;
869     for(i=0; i<n; i++){
870       Expr *pExpr = pOrderBy->a[i].pExpr;
871       if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
872     }
873     if( i==n){
874       nOrderBy = n;
875     }
876   }
877 
878   /* Allocate the sqlite3_index_info structure
879   */
880   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
881                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
882                            + sizeof(*pIdxOrderBy)*nOrderBy );
883   if( pIdxInfo==0 ){
884     sqlite3ErrorMsg(pParse, "out of memory");
885     return 0;
886   }
887 
888   /* Initialize the structure.  The sqlite3_index_info structure contains
889   ** many fields that are declared "const" to prevent xBestIndex from
890   ** changing them.  We have to do some funky casting in order to
891   ** initialize those fields.
892   */
893   pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
894   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
895   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
896   *(int*)&pIdxInfo->nConstraint = nTerm;
897   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
898   *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
899   *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
900   *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
901                                                                    pUsage;
902 
903   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
904     u8 op;
905     if( pTerm->leftCursor != pSrc->iCursor ) continue;
906     if( pTerm->prereqRight & mUnusable ) continue;
907     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
908     testcase( pTerm->eOperator & WO_IN );
909     testcase( pTerm->eOperator & WO_IS );
910     testcase( pTerm->eOperator & WO_ISNULL );
911     testcase( pTerm->eOperator & WO_ALL );
912     if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue;
913     if( pTerm->wtFlags & TERM_VNULL ) continue;
914     assert( pTerm->u.leftColumn>=(-1) );
915     pIdxCons[j].iColumn = pTerm->u.leftColumn;
916     pIdxCons[j].iTermOffset = i;
917     op = (u8)pTerm->eOperator & WO_ALL;
918     if( op==WO_IN ) op = WO_EQ;
919     if( op==WO_MATCH ){
920       op = pTerm->eMatchOp;
921     }
922     pIdxCons[j].op = op;
923     /* The direct assignment in the previous line is possible only because
924     ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
925     ** following asserts verify this fact. */
926     assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
927     assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
928     assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
929     assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
930     assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
931     assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
932     assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
933 
934     if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
935      && sqlite3ExprIsVector(pTerm->pExpr->pRight)
936     ){
937       if( i<16 ) mNoOmit |= (1 << i);
938       if( op==WO_LT ) pIdxCons[j].op = WO_LE;
939       if( op==WO_GT ) pIdxCons[j].op = WO_GE;
940     }
941 
942     j++;
943   }
944   for(i=0; i<nOrderBy; i++){
945     Expr *pExpr = pOrderBy->a[i].pExpr;
946     pIdxOrderBy[i].iColumn = pExpr->iColumn;
947     pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
948   }
949 
950   *pmNoOmit = mNoOmit;
951   return pIdxInfo;
952 }
953 
954 /*
955 ** The table object reference passed as the second argument to this function
956 ** must represent a virtual table. This function invokes the xBestIndex()
957 ** method of the virtual table with the sqlite3_index_info object that
958 ** comes in as the 3rd argument to this function.
959 **
960 ** If an error occurs, pParse is populated with an error message and a
961 ** non-zero value is returned. Otherwise, 0 is returned and the output
962 ** part of the sqlite3_index_info structure is left populated.
963 **
964 ** Whether or not an error is returned, it is the responsibility of the
965 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
966 ** that this is required.
967 */
968 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
969   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
970   int rc;
971 
972   TRACE_IDX_INPUTS(p);
973   rc = pVtab->pModule->xBestIndex(pVtab, p);
974   TRACE_IDX_OUTPUTS(p);
975 
976   if( rc!=SQLITE_OK ){
977     if( rc==SQLITE_NOMEM ){
978       sqlite3OomFault(pParse->db);
979     }else if( !pVtab->zErrMsg ){
980       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
981     }else{
982       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
983     }
984   }
985   sqlite3_free(pVtab->zErrMsg);
986   pVtab->zErrMsg = 0;
987 
988 #if 0
989   /* This error is now caught by the caller.
990   ** Search for "xBestIndex malfunction" below */
991   for(i=0; i<p->nConstraint; i++){
992     if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
993       sqlite3ErrorMsg(pParse,
994           "table %s: xBestIndex returned an invalid plan", pTab->zName);
995     }
996   }
997 #endif
998 
999   return pParse->nErr;
1000 }
1001 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1002 
1003 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1004 /*
1005 ** Estimate the location of a particular key among all keys in an
1006 ** index.  Store the results in aStat as follows:
1007 **
1008 **    aStat[0]      Est. number of rows less than pRec
1009 **    aStat[1]      Est. number of rows equal to pRec
1010 **
1011 ** Return the index of the sample that is the smallest sample that
1012 ** is greater than or equal to pRec. Note that this index is not an index
1013 ** into the aSample[] array - it is an index into a virtual set of samples
1014 ** based on the contents of aSample[] and the number of fields in record
1015 ** pRec.
1016 */
1017 static int whereKeyStats(
1018   Parse *pParse,              /* Database connection */
1019   Index *pIdx,                /* Index to consider domain of */
1020   UnpackedRecord *pRec,       /* Vector of values to consider */
1021   int roundUp,                /* Round up if true.  Round down if false */
1022   tRowcnt *aStat              /* OUT: stats written here */
1023 ){
1024   IndexSample *aSample = pIdx->aSample;
1025   int iCol;                   /* Index of required stats in anEq[] etc. */
1026   int i;                      /* Index of first sample >= pRec */
1027   int iSample;                /* Smallest sample larger than or equal to pRec */
1028   int iMin = 0;               /* Smallest sample not yet tested */
1029   int iTest;                  /* Next sample to test */
1030   int res;                    /* Result of comparison operation */
1031   int nField;                 /* Number of fields in pRec */
1032   tRowcnt iLower = 0;         /* anLt[] + anEq[] of largest sample pRec is > */
1033 
1034 #ifndef SQLITE_DEBUG
1035   UNUSED_PARAMETER( pParse );
1036 #endif
1037   assert( pRec!=0 );
1038   assert( pIdx->nSample>0 );
1039   assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
1040 
1041   /* Do a binary search to find the first sample greater than or equal
1042   ** to pRec. If pRec contains a single field, the set of samples to search
1043   ** is simply the aSample[] array. If the samples in aSample[] contain more
1044   ** than one fields, all fields following the first are ignored.
1045   **
1046   ** If pRec contains N fields, where N is more than one, then as well as the
1047   ** samples in aSample[] (truncated to N fields), the search also has to
1048   ** consider prefixes of those samples. For example, if the set of samples
1049   ** in aSample is:
1050   **
1051   **     aSample[0] = (a, 5)
1052   **     aSample[1] = (a, 10)
1053   **     aSample[2] = (b, 5)
1054   **     aSample[3] = (c, 100)
1055   **     aSample[4] = (c, 105)
1056   **
1057   ** Then the search space should ideally be the samples above and the
1058   ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1059   ** the code actually searches this set:
1060   **
1061   **     0: (a)
1062   **     1: (a, 5)
1063   **     2: (a, 10)
1064   **     3: (a, 10)
1065   **     4: (b)
1066   **     5: (b, 5)
1067   **     6: (c)
1068   **     7: (c, 100)
1069   **     8: (c, 105)
1070   **     9: (c, 105)
1071   **
1072   ** For each sample in the aSample[] array, N samples are present in the
1073   ** effective sample array. In the above, samples 0 and 1 are based on
1074   ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1075   **
1076   ** Often, sample i of each block of N effective samples has (i+1) fields.
1077   ** Except, each sample may be extended to ensure that it is greater than or
1078   ** equal to the previous sample in the array. For example, in the above,
1079   ** sample 2 is the first sample of a block of N samples, so at first it
1080   ** appears that it should be 1 field in size. However, that would make it
1081   ** smaller than sample 1, so the binary search would not work. As a result,
1082   ** it is extended to two fields. The duplicates that this creates do not
1083   ** cause any problems.
1084   */
1085   nField = pRec->nField;
1086   iCol = 0;
1087   iSample = pIdx->nSample * nField;
1088   do{
1089     int iSamp;                    /* Index in aSample[] of test sample */
1090     int n;                        /* Number of fields in test sample */
1091 
1092     iTest = (iMin+iSample)/2;
1093     iSamp = iTest / nField;
1094     if( iSamp>0 ){
1095       /* The proposed effective sample is a prefix of sample aSample[iSamp].
1096       ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1097       ** fields that is greater than the previous effective sample.  */
1098       for(n=(iTest % nField) + 1; n<nField; n++){
1099         if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1100       }
1101     }else{
1102       n = iTest + 1;
1103     }
1104 
1105     pRec->nField = n;
1106     res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1107     if( res<0 ){
1108       iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1109       iMin = iTest+1;
1110     }else if( res==0 && n<nField ){
1111       iLower = aSample[iSamp].anLt[n-1];
1112       iMin = iTest+1;
1113       res = -1;
1114     }else{
1115       iSample = iTest;
1116       iCol = n-1;
1117     }
1118   }while( res && iMin<iSample );
1119   i = iSample / nField;
1120 
1121 #ifdef SQLITE_DEBUG
1122   /* The following assert statements check that the binary search code
1123   ** above found the right answer. This block serves no purpose other
1124   ** than to invoke the asserts.  */
1125   if( pParse->db->mallocFailed==0 ){
1126     if( res==0 ){
1127       /* If (res==0) is true, then pRec must be equal to sample i. */
1128       assert( i<pIdx->nSample );
1129       assert( iCol==nField-1 );
1130       pRec->nField = nField;
1131       assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1132            || pParse->db->mallocFailed
1133       );
1134     }else{
1135       /* Unless i==pIdx->nSample, indicating that pRec is larger than
1136       ** all samples in the aSample[] array, pRec must be smaller than the
1137       ** (iCol+1) field prefix of sample i.  */
1138       assert( i<=pIdx->nSample && i>=0 );
1139       pRec->nField = iCol+1;
1140       assert( i==pIdx->nSample
1141            || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1142            || pParse->db->mallocFailed );
1143 
1144       /* if i==0 and iCol==0, then record pRec is smaller than all samples
1145       ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1146       ** be greater than or equal to the (iCol) field prefix of sample i.
1147       ** If (i>0), then pRec must also be greater than sample (i-1).  */
1148       if( iCol>0 ){
1149         pRec->nField = iCol;
1150         assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1151              || pParse->db->mallocFailed );
1152       }
1153       if( i>0 ){
1154         pRec->nField = nField;
1155         assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1156              || pParse->db->mallocFailed );
1157       }
1158     }
1159   }
1160 #endif /* ifdef SQLITE_DEBUG */
1161 
1162   if( res==0 ){
1163     /* Record pRec is equal to sample i */
1164     assert( iCol==nField-1 );
1165     aStat[0] = aSample[i].anLt[iCol];
1166     aStat[1] = aSample[i].anEq[iCol];
1167   }else{
1168     /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1169     ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1170     ** is larger than all samples in the array. */
1171     tRowcnt iUpper, iGap;
1172     if( i>=pIdx->nSample ){
1173       iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1174     }else{
1175       iUpper = aSample[i].anLt[iCol];
1176     }
1177 
1178     if( iLower>=iUpper ){
1179       iGap = 0;
1180     }else{
1181       iGap = iUpper - iLower;
1182     }
1183     if( roundUp ){
1184       iGap = (iGap*2)/3;
1185     }else{
1186       iGap = iGap/3;
1187     }
1188     aStat[0] = iLower + iGap;
1189     aStat[1] = pIdx->aAvgEq[iCol];
1190   }
1191 
1192   /* Restore the pRec->nField value before returning.  */
1193   pRec->nField = nField;
1194   return i;
1195 }
1196 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1197 
1198 /*
1199 ** If it is not NULL, pTerm is a term that provides an upper or lower
1200 ** bound on a range scan. Without considering pTerm, it is estimated
1201 ** that the scan will visit nNew rows. This function returns the number
1202 ** estimated to be visited after taking pTerm into account.
1203 **
1204 ** If the user explicitly specified a likelihood() value for this term,
1205 ** then the return value is the likelihood multiplied by the number of
1206 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1207 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1208 */
1209 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1210   LogEst nRet = nNew;
1211   if( pTerm ){
1212     if( pTerm->truthProb<=0 ){
1213       nRet += pTerm->truthProb;
1214     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1215       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
1216     }
1217   }
1218   return nRet;
1219 }
1220 
1221 
1222 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1223 /*
1224 ** Return the affinity for a single column of an index.
1225 */
1226 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1227   assert( iCol>=0 && iCol<pIdx->nColumn );
1228   if( !pIdx->zColAff ){
1229     if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1230   }
1231   return pIdx->zColAff[iCol];
1232 }
1233 #endif
1234 
1235 
1236 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1237 /*
1238 ** This function is called to estimate the number of rows visited by a
1239 ** range-scan on a skip-scan index. For example:
1240 **
1241 **   CREATE INDEX i1 ON t1(a, b, c);
1242 **   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1243 **
1244 ** Value pLoop->nOut is currently set to the estimated number of rows
1245 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1246 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1247 ** on the stat4 data for the index. this scan will be peformed multiple
1248 ** times (once for each (a,b) combination that matches a=?) is dealt with
1249 ** by the caller.
1250 **
1251 ** It does this by scanning through all stat4 samples, comparing values
1252 ** extracted from pLower and pUpper with the corresponding column in each
1253 ** sample. If L and U are the number of samples found to be less than or
1254 ** equal to the values extracted from pLower and pUpper respectively, and
1255 ** N is the total number of samples, the pLoop->nOut value is adjusted
1256 ** as follows:
1257 **
1258 **   nOut = nOut * ( min(U - L, 1) / N )
1259 **
1260 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1261 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1262 ** U is set to N.
1263 **
1264 ** Normally, this function sets *pbDone to 1 before returning. However,
1265 ** if no value can be extracted from either pLower or pUpper (and so the
1266 ** estimate of the number of rows delivered remains unchanged), *pbDone
1267 ** is left as is.
1268 **
1269 ** If an error occurs, an SQLite error code is returned. Otherwise,
1270 ** SQLITE_OK.
1271 */
1272 static int whereRangeSkipScanEst(
1273   Parse *pParse,       /* Parsing & code generating context */
1274   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1275   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1276   WhereLoop *pLoop,    /* Update the .nOut value of this loop */
1277   int *pbDone          /* Set to true if at least one expr. value extracted */
1278 ){
1279   Index *p = pLoop->u.btree.pIndex;
1280   int nEq = pLoop->u.btree.nEq;
1281   sqlite3 *db = pParse->db;
1282   int nLower = -1;
1283   int nUpper = p->nSample+1;
1284   int rc = SQLITE_OK;
1285   u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1286   CollSeq *pColl;
1287 
1288   sqlite3_value *p1 = 0;          /* Value extracted from pLower */
1289   sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
1290   sqlite3_value *pVal = 0;        /* Value extracted from record */
1291 
1292   pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1293   if( pLower ){
1294     rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1295     nLower = 0;
1296   }
1297   if( pUpper && rc==SQLITE_OK ){
1298     rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1299     nUpper = p2 ? 0 : p->nSample;
1300   }
1301 
1302   if( p1 || p2 ){
1303     int i;
1304     int nDiff;
1305     for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1306       rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1307       if( rc==SQLITE_OK && p1 ){
1308         int res = sqlite3MemCompare(p1, pVal, pColl);
1309         if( res>=0 ) nLower++;
1310       }
1311       if( rc==SQLITE_OK && p2 ){
1312         int res = sqlite3MemCompare(p2, pVal, pColl);
1313         if( res>=0 ) nUpper++;
1314       }
1315     }
1316     nDiff = (nUpper - nLower);
1317     if( nDiff<=0 ) nDiff = 1;
1318 
1319     /* If there is both an upper and lower bound specified, and the
1320     ** comparisons indicate that they are close together, use the fallback
1321     ** method (assume that the scan visits 1/64 of the rows) for estimating
1322     ** the number of rows visited. Otherwise, estimate the number of rows
1323     ** using the method described in the header comment for this function. */
1324     if( nDiff!=1 || pUpper==0 || pLower==0 ){
1325       int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1326       pLoop->nOut -= nAdjust;
1327       *pbDone = 1;
1328       WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n",
1329                            nLower, nUpper, nAdjust*-1, pLoop->nOut));
1330     }
1331 
1332   }else{
1333     assert( *pbDone==0 );
1334   }
1335 
1336   sqlite3ValueFree(p1);
1337   sqlite3ValueFree(p2);
1338   sqlite3ValueFree(pVal);
1339 
1340   return rc;
1341 }
1342 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1343 
1344 /*
1345 ** This function is used to estimate the number of rows that will be visited
1346 ** by scanning an index for a range of values. The range may have an upper
1347 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1348 ** and lower bounds are represented by pLower and pUpper respectively. For
1349 ** example, assuming that index p is on t1(a):
1350 **
1351 **   ... FROM t1 WHERE a > ? AND a < ? ...
1352 **                    |_____|   |_____|
1353 **                       |         |
1354 **                     pLower    pUpper
1355 **
1356 ** If either of the upper or lower bound is not present, then NULL is passed in
1357 ** place of the corresponding WhereTerm.
1358 **
1359 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1360 ** column subject to the range constraint. Or, equivalently, the number of
1361 ** equality constraints optimized by the proposed index scan. For example,
1362 ** assuming index p is on t1(a, b), and the SQL query is:
1363 **
1364 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1365 **
1366 ** then nEq is set to 1 (as the range restricted column, b, is the second
1367 ** left-most column of the index). Or, if the query is:
1368 **
1369 **   ... FROM t1 WHERE a > ? AND a < ? ...
1370 **
1371 ** then nEq is set to 0.
1372 **
1373 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1374 ** number of rows that the index scan is expected to visit without
1375 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1376 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1377 ** to account for the range constraints pLower and pUpper.
1378 **
1379 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1380 ** used, a single range inequality reduces the search space by a factor of 4.
1381 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1382 ** rows visited by a factor of 64.
1383 */
1384 static int whereRangeScanEst(
1385   Parse *pParse,       /* Parsing & code generating context */
1386   WhereLoopBuilder *pBuilder,
1387   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1388   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1389   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
1390 ){
1391   int rc = SQLITE_OK;
1392   int nOut = pLoop->nOut;
1393   LogEst nNew;
1394 
1395 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1396   Index *p = pLoop->u.btree.pIndex;
1397   int nEq = pLoop->u.btree.nEq;
1398 
1399   if( p->nSample>0 && nEq<p->nSampleCol ){
1400     if( nEq==pBuilder->nRecValid ){
1401       UnpackedRecord *pRec = pBuilder->pRec;
1402       tRowcnt a[2];
1403       int nBtm = pLoop->u.btree.nBtm;
1404       int nTop = pLoop->u.btree.nTop;
1405 
1406       /* Variable iLower will be set to the estimate of the number of rows in
1407       ** the index that are less than the lower bound of the range query. The
1408       ** lower bound being the concatenation of $P and $L, where $P is the
1409       ** key-prefix formed by the nEq values matched against the nEq left-most
1410       ** columns of the index, and $L is the value in pLower.
1411       **
1412       ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1413       ** is not a simple variable or literal value), the lower bound of the
1414       ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1415       ** if $L is available, whereKeyStats() is called for both ($P) and
1416       ** ($P:$L) and the larger of the two returned values is used.
1417       **
1418       ** Similarly, iUpper is to be set to the estimate of the number of rows
1419       ** less than the upper bound of the range query. Where the upper bound
1420       ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1421       ** of iUpper are requested of whereKeyStats() and the smaller used.
1422       **
1423       ** The number of rows between the two bounds is then just iUpper-iLower.
1424       */
1425       tRowcnt iLower;     /* Rows less than the lower bound */
1426       tRowcnt iUpper;     /* Rows less than the upper bound */
1427       int iLwrIdx = -2;   /* aSample[] for the lower bound */
1428       int iUprIdx = -1;   /* aSample[] for the upper bound */
1429 
1430       if( pRec ){
1431         testcase( pRec->nField!=pBuilder->nRecValid );
1432         pRec->nField = pBuilder->nRecValid;
1433       }
1434       /* Determine iLower and iUpper using ($P) only. */
1435       if( nEq==0 ){
1436         iLower = 0;
1437         iUpper = p->nRowEst0;
1438       }else{
1439         /* Note: this call could be optimized away - since the same values must
1440         ** have been requested when testing key $P in whereEqualScanEst().  */
1441         whereKeyStats(pParse, p, pRec, 0, a);
1442         iLower = a[0];
1443         iUpper = a[0] + a[1];
1444       }
1445 
1446       assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1447       assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1448       assert( p->aSortOrder!=0 );
1449       if( p->aSortOrder[nEq] ){
1450         /* The roles of pLower and pUpper are swapped for a DESC index */
1451         SWAP(WhereTerm*, pLower, pUpper);
1452         SWAP(int, nBtm, nTop);
1453       }
1454 
1455       /* If possible, improve on the iLower estimate using ($P:$L). */
1456       if( pLower ){
1457         int n;                    /* Values extracted from pExpr */
1458         Expr *pExpr = pLower->pExpr->pRight;
1459         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1460         if( rc==SQLITE_OK && n ){
1461           tRowcnt iNew;
1462           u16 mask = WO_GT|WO_LE;
1463           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1464           iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1465           iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1466           if( iNew>iLower ) iLower = iNew;
1467           nOut--;
1468           pLower = 0;
1469         }
1470       }
1471 
1472       /* If possible, improve on the iUpper estimate using ($P:$U). */
1473       if( pUpper ){
1474         int n;                    /* Values extracted from pExpr */
1475         Expr *pExpr = pUpper->pExpr->pRight;
1476         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1477         if( rc==SQLITE_OK && n ){
1478           tRowcnt iNew;
1479           u16 mask = WO_GT|WO_LE;
1480           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1481           iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1482           iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1483           if( iNew<iUpper ) iUpper = iNew;
1484           nOut--;
1485           pUpper = 0;
1486         }
1487       }
1488 
1489       pBuilder->pRec = pRec;
1490       if( rc==SQLITE_OK ){
1491         if( iUpper>iLower ){
1492           nNew = sqlite3LogEst(iUpper - iLower);
1493           /* TUNING:  If both iUpper and iLower are derived from the same
1494           ** sample, then assume they are 4x more selective.  This brings
1495           ** the estimated selectivity more in line with what it would be
1496           ** if estimated without the use of STAT3/4 tables. */
1497           if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
1498         }else{
1499           nNew = 10;        assert( 10==sqlite3LogEst(2) );
1500         }
1501         if( nNew<nOut ){
1502           nOut = nNew;
1503         }
1504         WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
1505                            (u32)iLower, (u32)iUpper, nOut));
1506       }
1507     }else{
1508       int bDone = 0;
1509       rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1510       if( bDone ) return rc;
1511     }
1512   }
1513 #else
1514   UNUSED_PARAMETER(pParse);
1515   UNUSED_PARAMETER(pBuilder);
1516   assert( pLower || pUpper );
1517 #endif
1518   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1519   nNew = whereRangeAdjust(pLower, nOut);
1520   nNew = whereRangeAdjust(pUpper, nNew);
1521 
1522   /* TUNING: If there is both an upper and lower limit and neither limit
1523   ** has an application-defined likelihood(), assume the range is
1524   ** reduced by an additional 75%. This means that, by default, an open-ended
1525   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1526   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1527   ** match 1/64 of the index. */
1528   if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1529     nNew -= 20;
1530   }
1531 
1532   nOut -= (pLower!=0) + (pUpper!=0);
1533   if( nNew<10 ) nNew = 10;
1534   if( nNew<nOut ) nOut = nNew;
1535 #if defined(WHERETRACE_ENABLED)
1536   if( pLoop->nOut>nOut ){
1537     WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1538                     pLoop->nOut, nOut));
1539   }
1540 #endif
1541   pLoop->nOut = (LogEst)nOut;
1542   return rc;
1543 }
1544 
1545 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1546 /*
1547 ** Estimate the number of rows that will be returned based on
1548 ** an equality constraint x=VALUE and where that VALUE occurs in
1549 ** the histogram data.  This only works when x is the left-most
1550 ** column of an index and sqlite_stat3 histogram data is available
1551 ** for that index.  When pExpr==NULL that means the constraint is
1552 ** "x IS NULL" instead of "x=VALUE".
1553 **
1554 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1555 ** If unable to make an estimate, leave *pnRow unchanged and return
1556 ** non-zero.
1557 **
1558 ** This routine can fail if it is unable to load a collating sequence
1559 ** required for string comparison, or if unable to allocate memory
1560 ** for a UTF conversion required for comparison.  The error is stored
1561 ** in the pParse structure.
1562 */
1563 static int whereEqualScanEst(
1564   Parse *pParse,       /* Parsing & code generating context */
1565   WhereLoopBuilder *pBuilder,
1566   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
1567   tRowcnt *pnRow       /* Write the revised row estimate here */
1568 ){
1569   Index *p = pBuilder->pNew->u.btree.pIndex;
1570   int nEq = pBuilder->pNew->u.btree.nEq;
1571   UnpackedRecord *pRec = pBuilder->pRec;
1572   int rc;                   /* Subfunction return code */
1573   tRowcnt a[2];             /* Statistics */
1574   int bOk;
1575 
1576   assert( nEq>=1 );
1577   assert( nEq<=p->nColumn );
1578   assert( p->aSample!=0 );
1579   assert( p->nSample>0 );
1580   assert( pBuilder->nRecValid<nEq );
1581 
1582   /* If values are not available for all fields of the index to the left
1583   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1584   if( pBuilder->nRecValid<(nEq-1) ){
1585     return SQLITE_NOTFOUND;
1586   }
1587 
1588   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1589   ** below would return the same value.  */
1590   if( nEq>=p->nColumn ){
1591     *pnRow = 1;
1592     return SQLITE_OK;
1593   }
1594 
1595   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1596   pBuilder->pRec = pRec;
1597   if( rc!=SQLITE_OK ) return rc;
1598   if( bOk==0 ) return SQLITE_NOTFOUND;
1599   pBuilder->nRecValid = nEq;
1600 
1601   whereKeyStats(pParse, p, pRec, 0, a);
1602   WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1603                    p->zName, nEq-1, (int)a[1]));
1604   *pnRow = a[1];
1605 
1606   return rc;
1607 }
1608 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1609 
1610 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1611 /*
1612 ** Estimate the number of rows that will be returned based on
1613 ** an IN constraint where the right-hand side of the IN operator
1614 ** is a list of values.  Example:
1615 **
1616 **        WHERE x IN (1,2,3,4)
1617 **
1618 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1619 ** If unable to make an estimate, leave *pnRow unchanged and return
1620 ** non-zero.
1621 **
1622 ** This routine can fail if it is unable to load a collating sequence
1623 ** required for string comparison, or if unable to allocate memory
1624 ** for a UTF conversion required for comparison.  The error is stored
1625 ** in the pParse structure.
1626 */
1627 static int whereInScanEst(
1628   Parse *pParse,       /* Parsing & code generating context */
1629   WhereLoopBuilder *pBuilder,
1630   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1631   tRowcnt *pnRow       /* Write the revised row estimate here */
1632 ){
1633   Index *p = pBuilder->pNew->u.btree.pIndex;
1634   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1635   int nRecValid = pBuilder->nRecValid;
1636   int rc = SQLITE_OK;     /* Subfunction return code */
1637   tRowcnt nEst;           /* Number of rows for a single term */
1638   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
1639   int i;                  /* Loop counter */
1640 
1641   assert( p->aSample!=0 );
1642   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
1643     nEst = nRow0;
1644     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
1645     nRowEst += nEst;
1646     pBuilder->nRecValid = nRecValid;
1647   }
1648 
1649   if( rc==SQLITE_OK ){
1650     if( nRowEst > nRow0 ) nRowEst = nRow0;
1651     *pnRow = nRowEst;
1652     WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
1653   }
1654   assert( pBuilder->nRecValid==nRecValid );
1655   return rc;
1656 }
1657 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1658 
1659 
1660 #ifdef WHERETRACE_ENABLED
1661 /*
1662 ** Print the content of a WhereTerm object
1663 */
1664 static void whereTermPrint(WhereTerm *pTerm, int iTerm){
1665   if( pTerm==0 ){
1666     sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
1667   }else{
1668     char zType[4];
1669     char zLeft[50];
1670     memcpy(zType, "...", 4);
1671     if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
1672     if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
1673     if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
1674     if( pTerm->eOperator & WO_SINGLE ){
1675       sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
1676                        pTerm->leftCursor, pTerm->u.leftColumn);
1677     }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
1678       sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%lld",
1679                        pTerm->u.pOrInfo->indexable);
1680     }else{
1681       sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
1682     }
1683     sqlite3DebugPrintf(
1684        "TERM-%-3d %p %s %-12s prob=%-3d op=0x%03x wtFlags=0x%04x",
1685        iTerm, pTerm, zType, zLeft, pTerm->truthProb,
1686        pTerm->eOperator, pTerm->wtFlags);
1687     if( pTerm->iField ){
1688       sqlite3DebugPrintf(" iField=%d\n", pTerm->iField);
1689     }else{
1690       sqlite3DebugPrintf("\n");
1691     }
1692     sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
1693   }
1694 }
1695 #endif
1696 
1697 #ifdef WHERETRACE_ENABLED
1698 /*
1699 ** Show the complete content of a WhereClause
1700 */
1701 void sqlite3WhereClausePrint(WhereClause *pWC){
1702   int i;
1703   for(i=0; i<pWC->nTerm; i++){
1704     whereTermPrint(&pWC->a[i], i);
1705   }
1706 }
1707 #endif
1708 
1709 #ifdef WHERETRACE_ENABLED
1710 /*
1711 ** Print a WhereLoop object for debugging purposes
1712 */
1713 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){
1714   WhereInfo *pWInfo = pWC->pWInfo;
1715   int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
1716   struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab;
1717   Table *pTab = pItem->pTab;
1718   Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
1719   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
1720                      p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
1721   sqlite3DebugPrintf(" %12s",
1722                      pItem->zAlias ? pItem->zAlias : pTab->zName);
1723   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
1724     const char *zName;
1725     if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
1726       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
1727         int i = sqlite3Strlen30(zName) - 1;
1728         while( zName[i]!='_' ) i--;
1729         zName += i;
1730       }
1731       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
1732     }else{
1733       sqlite3DebugPrintf("%20s","");
1734     }
1735   }else{
1736     char *z;
1737     if( p->u.vtab.idxStr ){
1738       z = sqlite3_mprintf("(%d,\"%s\",%x)",
1739                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
1740     }else{
1741       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
1742     }
1743     sqlite3DebugPrintf(" %-19s", z);
1744     sqlite3_free(z);
1745   }
1746   if( p->wsFlags & WHERE_SKIPSCAN ){
1747     sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
1748   }else{
1749     sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
1750   }
1751   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
1752   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
1753     int i;
1754     for(i=0; i<p->nLTerm; i++){
1755       whereTermPrint(p->aLTerm[i], i);
1756     }
1757   }
1758 }
1759 #endif
1760 
1761 /*
1762 ** Convert bulk memory into a valid WhereLoop that can be passed
1763 ** to whereLoopClear harmlessly.
1764 */
1765 static void whereLoopInit(WhereLoop *p){
1766   p->aLTerm = p->aLTermSpace;
1767   p->nLTerm = 0;
1768   p->nLSlot = ArraySize(p->aLTermSpace);
1769   p->wsFlags = 0;
1770 }
1771 
1772 /*
1773 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
1774 */
1775 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
1776   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
1777     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
1778       sqlite3_free(p->u.vtab.idxStr);
1779       p->u.vtab.needFree = 0;
1780       p->u.vtab.idxStr = 0;
1781     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
1782       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
1783       sqlite3DbFree(db, p->u.btree.pIndex);
1784       p->u.btree.pIndex = 0;
1785     }
1786   }
1787 }
1788 
1789 /*
1790 ** Deallocate internal memory used by a WhereLoop object
1791 */
1792 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
1793   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm);
1794   whereLoopClearUnion(db, p);
1795   whereLoopInit(p);
1796 }
1797 
1798 /*
1799 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
1800 */
1801 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
1802   WhereTerm **paNew;
1803   if( p->nLSlot>=n ) return SQLITE_OK;
1804   n = (n+7)&~7;
1805   paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
1806   if( paNew==0 ) return SQLITE_NOMEM_BKPT;
1807   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
1808   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm);
1809   p->aLTerm = paNew;
1810   p->nLSlot = n;
1811   return SQLITE_OK;
1812 }
1813 
1814 /*
1815 ** Transfer content from the second pLoop into the first.
1816 */
1817 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
1818   whereLoopClearUnion(db, pTo);
1819   if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
1820     memset(&pTo->u, 0, sizeof(pTo->u));
1821     return SQLITE_NOMEM_BKPT;
1822   }
1823   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
1824   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
1825   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
1826     pFrom->u.vtab.needFree = 0;
1827   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
1828     pFrom->u.btree.pIndex = 0;
1829   }
1830   return SQLITE_OK;
1831 }
1832 
1833 /*
1834 ** Delete a WhereLoop object
1835 */
1836 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
1837   whereLoopClear(db, p);
1838   sqlite3DbFree(db, p);
1839 }
1840 
1841 /*
1842 ** Free a WhereInfo structure
1843 */
1844 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
1845   if( ALWAYS(pWInfo) ){
1846     int i;
1847     for(i=0; i<pWInfo->nLevel; i++){
1848       WhereLevel *pLevel = &pWInfo->a[i];
1849       if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){
1850         sqlite3DbFree(db, pLevel->u.in.aInLoop);
1851       }
1852     }
1853     sqlite3WhereClauseClear(&pWInfo->sWC);
1854     while( pWInfo->pLoops ){
1855       WhereLoop *p = pWInfo->pLoops;
1856       pWInfo->pLoops = p->pNextLoop;
1857       whereLoopDelete(db, p);
1858     }
1859     sqlite3DbFree(db, pWInfo);
1860   }
1861 }
1862 
1863 /*
1864 ** Return TRUE if all of the following are true:
1865 **
1866 **   (1)  X has the same or lower cost that Y
1867 **   (2)  X is a proper subset of Y
1868 **   (3)  X skips at least as many columns as Y
1869 **
1870 ** By "proper subset" we mean that X uses fewer WHERE clause terms
1871 ** than Y and that every WHERE clause term used by X is also used
1872 ** by Y.
1873 **
1874 ** If X is a proper subset of Y then Y is a better choice and ought
1875 ** to have a lower cost.  This routine returns TRUE when that cost
1876 ** relationship is inverted and needs to be adjusted.  The third rule
1877 ** was added because if X uses skip-scan less than Y it still might
1878 ** deserve a lower cost even if it is a proper subset of Y.
1879 */
1880 static int whereLoopCheaperProperSubset(
1881   const WhereLoop *pX,       /* First WhereLoop to compare */
1882   const WhereLoop *pY        /* Compare against this WhereLoop */
1883 ){
1884   int i, j;
1885   if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
1886     return 0; /* X is not a subset of Y */
1887   }
1888   if( pY->nSkip > pX->nSkip ) return 0;
1889   if( pX->rRun >= pY->rRun ){
1890     if( pX->rRun > pY->rRun ) return 0;    /* X costs more than Y */
1891     if( pX->nOut > pY->nOut ) return 0;    /* X costs more than Y */
1892   }
1893   for(i=pX->nLTerm-1; i>=0; i--){
1894     if( pX->aLTerm[i]==0 ) continue;
1895     for(j=pY->nLTerm-1; j>=0; j--){
1896       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
1897     }
1898     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
1899   }
1900   return 1;  /* All conditions meet */
1901 }
1902 
1903 /*
1904 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
1905 ** that:
1906 **
1907 **   (1) pTemplate costs less than any other WhereLoops that are a proper
1908 **       subset of pTemplate
1909 **
1910 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
1911 **       is a proper subset.
1912 **
1913 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
1914 ** WHERE clause terms than Y and that every WHERE clause term used by X is
1915 ** also used by Y.
1916 */
1917 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
1918   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
1919   for(; p; p=p->pNextLoop){
1920     if( p->iTab!=pTemplate->iTab ) continue;
1921     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
1922     if( whereLoopCheaperProperSubset(p, pTemplate) ){
1923       /* Adjust pTemplate cost downward so that it is cheaper than its
1924       ** subset p. */
1925       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
1926                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1));
1927       pTemplate->rRun = p->rRun;
1928       pTemplate->nOut = p->nOut - 1;
1929     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
1930       /* Adjust pTemplate cost upward so that it is costlier than p since
1931       ** pTemplate is a proper subset of p */
1932       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
1933                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1));
1934       pTemplate->rRun = p->rRun;
1935       pTemplate->nOut = p->nOut + 1;
1936     }
1937   }
1938 }
1939 
1940 /*
1941 ** Search the list of WhereLoops in *ppPrev looking for one that can be
1942 ** supplanted by pTemplate.
1943 **
1944 ** Return NULL if the WhereLoop list contains an entry that can supplant
1945 ** pTemplate, in other words if pTemplate does not belong on the list.
1946 **
1947 ** If pX is a WhereLoop that pTemplate can supplant, then return the
1948 ** link that points to pX.
1949 **
1950 ** If pTemplate cannot supplant any existing element of the list but needs
1951 ** to be added to the list, then return a pointer to the tail of the list.
1952 */
1953 static WhereLoop **whereLoopFindLesser(
1954   WhereLoop **ppPrev,
1955   const WhereLoop *pTemplate
1956 ){
1957   WhereLoop *p;
1958   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
1959     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
1960       /* If either the iTab or iSortIdx values for two WhereLoop are different
1961       ** then those WhereLoops need to be considered separately.  Neither is
1962       ** a candidate to replace the other. */
1963       continue;
1964     }
1965     /* In the current implementation, the rSetup value is either zero
1966     ** or the cost of building an automatic index (NlogN) and the NlogN
1967     ** is the same for compatible WhereLoops. */
1968     assert( p->rSetup==0 || pTemplate->rSetup==0
1969                  || p->rSetup==pTemplate->rSetup );
1970 
1971     /* whereLoopAddBtree() always generates and inserts the automatic index
1972     ** case first.  Hence compatible candidate WhereLoops never have a larger
1973     ** rSetup. Call this SETUP-INVARIANT */
1974     assert( p->rSetup>=pTemplate->rSetup );
1975 
1976     /* Any loop using an appliation-defined index (or PRIMARY KEY or
1977     ** UNIQUE constraint) with one or more == constraints is better
1978     ** than an automatic index. Unless it is a skip-scan. */
1979     if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
1980      && (pTemplate->nSkip)==0
1981      && (pTemplate->wsFlags & WHERE_INDEXED)!=0
1982      && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
1983      && (p->prereq & pTemplate->prereq)==pTemplate->prereq
1984     ){
1985       break;
1986     }
1987 
1988     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
1989     ** discarded.  WhereLoop p is better if:
1990     **   (1)  p has no more dependencies than pTemplate, and
1991     **   (2)  p has an equal or lower cost than pTemplate
1992     */
1993     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
1994      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
1995      && p->rRun<=pTemplate->rRun                      /* (2b) */
1996      && p->nOut<=pTemplate->nOut                      /* (2c) */
1997     ){
1998       return 0;  /* Discard pTemplate */
1999     }
2000 
2001     /* If pTemplate is always better than p, then cause p to be overwritten
2002     ** with pTemplate.  pTemplate is better than p if:
2003     **   (1)  pTemplate has no more dependences than p, and
2004     **   (2)  pTemplate has an equal or lower cost than p.
2005     */
2006     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
2007      && p->rRun>=pTemplate->rRun                             /* (2a) */
2008      && p->nOut>=pTemplate->nOut                             /* (2b) */
2009     ){
2010       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2011       break;   /* Cause p to be overwritten by pTemplate */
2012     }
2013   }
2014   return ppPrev;
2015 }
2016 
2017 /*
2018 ** Insert or replace a WhereLoop entry using the template supplied.
2019 **
2020 ** An existing WhereLoop entry might be overwritten if the new template
2021 ** is better and has fewer dependencies.  Or the template will be ignored
2022 ** and no insert will occur if an existing WhereLoop is faster and has
2023 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
2024 ** added based on the template.
2025 **
2026 ** If pBuilder->pOrSet is not NULL then we care about only the
2027 ** prerequisites and rRun and nOut costs of the N best loops.  That
2028 ** information is gathered in the pBuilder->pOrSet object.  This special
2029 ** processing mode is used only for OR clause processing.
2030 **
2031 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2032 ** still might overwrite similar loops with the new template if the
2033 ** new template is better.  Loops may be overwritten if the following
2034 ** conditions are met:
2035 **
2036 **    (1)  They have the same iTab.
2037 **    (2)  They have the same iSortIdx.
2038 **    (3)  The template has same or fewer dependencies than the current loop
2039 **    (4)  The template has the same or lower cost than the current loop
2040 */
2041 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2042   WhereLoop **ppPrev, *p;
2043   WhereInfo *pWInfo = pBuilder->pWInfo;
2044   sqlite3 *db = pWInfo->pParse->db;
2045   int rc;
2046 
2047   /* If pBuilder->pOrSet is defined, then only keep track of the costs
2048   ** and prereqs.
2049   */
2050   if( pBuilder->pOrSet!=0 ){
2051     if( pTemplate->nLTerm ){
2052 #if WHERETRACE_ENABLED
2053       u16 n = pBuilder->pOrSet->n;
2054       int x =
2055 #endif
2056       whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2057                                     pTemplate->nOut);
2058 #if WHERETRACE_ENABLED /* 0x8 */
2059       if( sqlite3WhereTrace & 0x8 ){
2060         sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
2061         whereLoopPrint(pTemplate, pBuilder->pWC);
2062       }
2063 #endif
2064     }
2065     return SQLITE_OK;
2066   }
2067 
2068   /* Look for an existing WhereLoop to replace with pTemplate
2069   */
2070   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2071   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2072 
2073   if( ppPrev==0 ){
2074     /* There already exists a WhereLoop on the list that is better
2075     ** than pTemplate, so just ignore pTemplate */
2076 #if WHERETRACE_ENABLED /* 0x8 */
2077     if( sqlite3WhereTrace & 0x8 ){
2078       sqlite3DebugPrintf("   skip: ");
2079       whereLoopPrint(pTemplate, pBuilder->pWC);
2080     }
2081 #endif
2082     return SQLITE_OK;
2083   }else{
2084     p = *ppPrev;
2085   }
2086 
2087   /* If we reach this point it means that either p[] should be overwritten
2088   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2089   ** WhereLoop and insert it.
2090   */
2091 #if WHERETRACE_ENABLED /* 0x8 */
2092   if( sqlite3WhereTrace & 0x8 ){
2093     if( p!=0 ){
2094       sqlite3DebugPrintf("replace: ");
2095       whereLoopPrint(p, pBuilder->pWC);
2096     }
2097     sqlite3DebugPrintf("    add: ");
2098     whereLoopPrint(pTemplate, pBuilder->pWC);
2099   }
2100 #endif
2101   if( p==0 ){
2102     /* Allocate a new WhereLoop to add to the end of the list */
2103     *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2104     if( p==0 ) return SQLITE_NOMEM_BKPT;
2105     whereLoopInit(p);
2106     p->pNextLoop = 0;
2107   }else{
2108     /* We will be overwriting WhereLoop p[].  But before we do, first
2109     ** go through the rest of the list and delete any other entries besides
2110     ** p[] that are also supplated by pTemplate */
2111     WhereLoop **ppTail = &p->pNextLoop;
2112     WhereLoop *pToDel;
2113     while( *ppTail ){
2114       ppTail = whereLoopFindLesser(ppTail, pTemplate);
2115       if( ppTail==0 ) break;
2116       pToDel = *ppTail;
2117       if( pToDel==0 ) break;
2118       *ppTail = pToDel->pNextLoop;
2119 #if WHERETRACE_ENABLED /* 0x8 */
2120       if( sqlite3WhereTrace & 0x8 ){
2121         sqlite3DebugPrintf(" delete: ");
2122         whereLoopPrint(pToDel, pBuilder->pWC);
2123       }
2124 #endif
2125       whereLoopDelete(db, pToDel);
2126     }
2127   }
2128   rc = whereLoopXfer(db, p, pTemplate);
2129   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2130     Index *pIndex = p->u.btree.pIndex;
2131     if( pIndex && pIndex->tnum==0 ){
2132       p->u.btree.pIndex = 0;
2133     }
2134   }
2135   return rc;
2136 }
2137 
2138 /*
2139 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2140 ** WHERE clause that reference the loop but which are not used by an
2141 ** index.
2142 *
2143 ** For every WHERE clause term that is not used by the index
2144 ** and which has a truth probability assigned by one of the likelihood(),
2145 ** likely(), or unlikely() SQL functions, reduce the estimated number
2146 ** of output rows by the probability specified.
2147 **
2148 ** TUNING:  For every WHERE clause term that is not used by the index
2149 ** and which does not have an assigned truth probability, heuristics
2150 ** described below are used to try to estimate the truth probability.
2151 ** TODO --> Perhaps this is something that could be improved by better
2152 ** table statistics.
2153 **
2154 ** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
2155 ** value corresponds to -1 in LogEst notation, so this means decrement
2156 ** the WhereLoop.nOut field for every such WHERE clause term.
2157 **
2158 ** Heuristic 2:  If there exists one or more WHERE clause terms of the
2159 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2160 ** final output row estimate is no greater than 1/4 of the total number
2161 ** of rows in the table.  In other words, assume that x==EXPR will filter
2162 ** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
2163 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2164 ** on the "x" column and so in that case only cap the output row estimate
2165 ** at 1/2 instead of 1/4.
2166 */
2167 static void whereLoopOutputAdjust(
2168   WhereClause *pWC,      /* The WHERE clause */
2169   WhereLoop *pLoop,      /* The loop to adjust downward */
2170   LogEst nRow            /* Number of rows in the entire table */
2171 ){
2172   WhereTerm *pTerm, *pX;
2173   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2174   int i, j, k;
2175   LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */
2176 
2177   assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2178   for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
2179     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
2180     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2181     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2182     for(j=pLoop->nLTerm-1; j>=0; j--){
2183       pX = pLoop->aLTerm[j];
2184       if( pX==0 ) continue;
2185       if( pX==pTerm ) break;
2186       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2187     }
2188     if( j<0 ){
2189       if( pTerm->truthProb<=0 ){
2190         /* If a truth probability is specified using the likelihood() hints,
2191         ** then use the probability provided by the application. */
2192         pLoop->nOut += pTerm->truthProb;
2193       }else{
2194         /* In the absence of explicit truth probabilities, use heuristics to
2195         ** guess a reasonable truth probability. */
2196         pLoop->nOut--;
2197         if( pTerm->eOperator&(WO_EQ|WO_IS) ){
2198           Expr *pRight = pTerm->pExpr->pRight;
2199           testcase( pTerm->pExpr->op==TK_IS );
2200           if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2201             k = 10;
2202           }else{
2203             k = 20;
2204           }
2205           if( iReduce<k ) iReduce = k;
2206         }
2207       }
2208     }
2209   }
2210   if( pLoop->nOut > nRow-iReduce )  pLoop->nOut = nRow - iReduce;
2211 }
2212 
2213 /*
2214 ** Term pTerm is a vector range comparison operation. The first comparison
2215 ** in the vector can be optimized using column nEq of the index. This
2216 ** function returns the total number of vector elements that can be used
2217 ** as part of the range comparison.
2218 **
2219 ** For example, if the query is:
2220 **
2221 **   WHERE a = ? AND (b, c, d) > (?, ?, ?)
2222 **
2223 ** and the index:
2224 **
2225 **   CREATE INDEX ... ON (a, b, c, d, e)
2226 **
2227 ** then this function would be invoked with nEq=1. The value returned in
2228 ** this case is 3.
2229 */
2230 static int whereRangeVectorLen(
2231   Parse *pParse,       /* Parsing context */
2232   int iCur,            /* Cursor open on pIdx */
2233   Index *pIdx,         /* The index to be used for a inequality constraint */
2234   int nEq,             /* Number of prior equality constraints on same index */
2235   WhereTerm *pTerm     /* The vector inequality constraint */
2236 ){
2237   int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2238   int i;
2239 
2240   nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2241   for(i=1; i<nCmp; i++){
2242     /* Test if comparison i of pTerm is compatible with column (i+nEq)
2243     ** of the index. If not, exit the loop.  */
2244     char aff;                     /* Comparison affinity */
2245     char idxaff = 0;              /* Indexed columns affinity */
2246     CollSeq *pColl;               /* Comparison collation sequence */
2247     Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2248     Expr *pRhs = pTerm->pExpr->pRight;
2249     if( pRhs->flags & EP_xIsSelect ){
2250       pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2251     }else{
2252       pRhs = pRhs->x.pList->a[i].pExpr;
2253     }
2254 
2255     /* Check that the LHS of the comparison is a column reference to
2256     ** the right column of the right source table. And that the sort
2257     ** order of the index column is the same as the sort order of the
2258     ** leftmost index column.  */
2259     if( pLhs->op!=TK_COLUMN
2260      || pLhs->iTable!=iCur
2261      || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2262      || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2263     ){
2264       break;
2265     }
2266 
2267     testcase( pLhs->iColumn==XN_ROWID );
2268     aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2269     idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2270     if( aff!=idxaff ) break;
2271 
2272     pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2273     if( pColl==0 ) break;
2274     if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2275   }
2276   return i;
2277 }
2278 
2279 /*
2280 ** Adjust the cost C by the costMult facter T.  This only occurs if
2281 ** compiled with -DSQLITE_ENABLE_COSTMULT
2282 */
2283 #ifdef SQLITE_ENABLE_COSTMULT
2284 # define ApplyCostMultiplier(C,T)  C += T
2285 #else
2286 # define ApplyCostMultiplier(C,T)
2287 #endif
2288 
2289 /*
2290 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2291 ** index pIndex. Try to match one more.
2292 **
2293 ** When this function is called, pBuilder->pNew->nOut contains the
2294 ** number of rows expected to be visited by filtering using the nEq
2295 ** terms only. If it is modified, this value is restored before this
2296 ** function returns.
2297 **
2298 ** If pProbe->tnum==0, that means pIndex is a fake index used for the
2299 ** INTEGER PRIMARY KEY.
2300 */
2301 static int whereLoopAddBtreeIndex(
2302   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
2303   struct SrcList_item *pSrc,      /* FROM clause term being analyzed */
2304   Index *pProbe,                  /* An index on pSrc */
2305   LogEst nInMul                   /* log(Number of iterations due to IN) */
2306 ){
2307   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
2308   Parse *pParse = pWInfo->pParse;        /* Parsing context */
2309   sqlite3 *db = pParse->db;       /* Database connection malloc context */
2310   WhereLoop *pNew;                /* Template WhereLoop under construction */
2311   WhereTerm *pTerm;               /* A WhereTerm under consideration */
2312   int opMask;                     /* Valid operators for constraints */
2313   WhereScan scan;                 /* Iterator for WHERE terms */
2314   Bitmask saved_prereq;           /* Original value of pNew->prereq */
2315   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
2316   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
2317   u16 saved_nBtm;                 /* Original value of pNew->u.btree.nBtm */
2318   u16 saved_nTop;                 /* Original value of pNew->u.btree.nTop */
2319   u16 saved_nSkip;                /* Original value of pNew->nSkip */
2320   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
2321   LogEst saved_nOut;              /* Original value of pNew->nOut */
2322   int rc = SQLITE_OK;             /* Return code */
2323   LogEst rSize;                   /* Number of rows in the table */
2324   LogEst rLogSize;                /* Logarithm of table size */
2325   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2326 
2327   pNew = pBuilder->pNew;
2328   if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2329   WHERETRACE(0x800, ("BEGIN addBtreeIdx(%s), nEq=%d\n",
2330                      pProbe->zName, pNew->u.btree.nEq));
2331 
2332   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2333   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2334   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2335     opMask = WO_LT|WO_LE;
2336   }else{
2337     assert( pNew->u.btree.nBtm==0 );
2338     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2339   }
2340   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2341 
2342   assert( pNew->u.btree.nEq<pProbe->nColumn );
2343 
2344   saved_nEq = pNew->u.btree.nEq;
2345   saved_nBtm = pNew->u.btree.nBtm;
2346   saved_nTop = pNew->u.btree.nTop;
2347   saved_nSkip = pNew->nSkip;
2348   saved_nLTerm = pNew->nLTerm;
2349   saved_wsFlags = pNew->wsFlags;
2350   saved_prereq = pNew->prereq;
2351   saved_nOut = pNew->nOut;
2352   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2353                         opMask, pProbe);
2354   pNew->rSetup = 0;
2355   rSize = pProbe->aiRowLogEst[0];
2356   rLogSize = estLog(rSize);
2357   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2358     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
2359     LogEst rCostIdx;
2360     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
2361     int nIn = 0;
2362 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2363     int nRecValid = pBuilder->nRecValid;
2364 #endif
2365     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2366      && indexColumnNotNull(pProbe, saved_nEq)
2367     ){
2368       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2369     }
2370     if( pTerm->prereqRight & pNew->maskSelf ) continue;
2371 
2372     /* Do not allow the upper bound of a LIKE optimization range constraint
2373     ** to mix with a lower range bound from some other source */
2374     if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2375 
2376     /* Do not allow IS constraints from the WHERE clause to be used by the
2377     ** right table of a LEFT JOIN.  Only constraints in the ON clause are
2378     ** allowed */
2379     if( (pSrc->fg.jointype & JT_LEFT)!=0
2380      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
2381      && (eOp & (WO_IS|WO_ISNULL))!=0
2382     ){
2383       testcase( eOp & WO_IS );
2384       testcase( eOp & WO_ISNULL );
2385       continue;
2386     }
2387 
2388     pNew->wsFlags = saved_wsFlags;
2389     pNew->u.btree.nEq = saved_nEq;
2390     pNew->u.btree.nBtm = saved_nBtm;
2391     pNew->u.btree.nTop = saved_nTop;
2392     pNew->nLTerm = saved_nLTerm;
2393     if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2394     pNew->aLTerm[pNew->nLTerm++] = pTerm;
2395     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2396 
2397     assert( nInMul==0
2398         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2399         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2400         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2401     );
2402 
2403     if( eOp & WO_IN ){
2404       Expr *pExpr = pTerm->pExpr;
2405       pNew->wsFlags |= WHERE_COLUMN_IN;
2406       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2407         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
2408         int i;
2409         nIn = 46;  assert( 46==sqlite3LogEst(25) );
2410 
2411         /* The expression may actually be of the form (x, y) IN (SELECT...).
2412         ** In this case there is a separate term for each of (x) and (y).
2413         ** However, the nIn multiplier should only be applied once, not once
2414         ** for each such term. The following loop checks that pTerm is the
2415         ** first such term in use, and sets nIn back to 0 if it is not. */
2416         for(i=0; i<pNew->nLTerm-1; i++){
2417           if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2418         }
2419       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2420         /* "x IN (value, value, ...)" */
2421         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2422         assert( nIn>0 );  /* RHS always has 2 or more terms...  The parser
2423                           ** changes "x IN (?)" into "x=?". */
2424       }
2425     }else if( eOp & (WO_EQ|WO_IS) ){
2426       int iCol = pProbe->aiColumn[saved_nEq];
2427       pNew->wsFlags |= WHERE_COLUMN_EQ;
2428       assert( saved_nEq==pNew->u.btree.nEq );
2429       if( iCol==XN_ROWID
2430        || (iCol>0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2431       ){
2432         if( iCol>=0 && pProbe->uniqNotNull==0 ){
2433           pNew->wsFlags |= WHERE_UNQ_WANTED;
2434         }else{
2435           pNew->wsFlags |= WHERE_ONEROW;
2436         }
2437       }
2438     }else if( eOp & WO_ISNULL ){
2439       pNew->wsFlags |= WHERE_COLUMN_NULL;
2440     }else if( eOp & (WO_GT|WO_GE) ){
2441       testcase( eOp & WO_GT );
2442       testcase( eOp & WO_GE );
2443       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2444       pNew->u.btree.nBtm = whereRangeVectorLen(
2445           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2446       );
2447       pBtm = pTerm;
2448       pTop = 0;
2449       if( pTerm->wtFlags & TERM_LIKEOPT ){
2450         /* Range contraints that come from the LIKE optimization are
2451         ** always used in pairs. */
2452         pTop = &pTerm[1];
2453         assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2454         assert( pTop->wtFlags & TERM_LIKEOPT );
2455         assert( pTop->eOperator==WO_LT );
2456         if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2457         pNew->aLTerm[pNew->nLTerm++] = pTop;
2458         pNew->wsFlags |= WHERE_TOP_LIMIT;
2459         pNew->u.btree.nTop = 1;
2460       }
2461     }else{
2462       assert( eOp & (WO_LT|WO_LE) );
2463       testcase( eOp & WO_LT );
2464       testcase( eOp & WO_LE );
2465       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2466       pNew->u.btree.nTop = whereRangeVectorLen(
2467           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2468       );
2469       pTop = pTerm;
2470       pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2471                      pNew->aLTerm[pNew->nLTerm-2] : 0;
2472     }
2473 
2474     /* At this point pNew->nOut is set to the number of rows expected to
2475     ** be visited by the index scan before considering term pTerm, or the
2476     ** values of nIn and nInMul. In other words, assuming that all
2477     ** "x IN(...)" terms are replaced with "x = ?". This block updates
2478     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
2479     assert( pNew->nOut==saved_nOut );
2480     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2481       /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4
2482       ** data, using some other estimate.  */
2483       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2484     }else{
2485       int nEq = ++pNew->u.btree.nEq;
2486       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2487 
2488       assert( pNew->nOut==saved_nOut );
2489       if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2490         assert( (eOp & WO_IN) || nIn==0 );
2491         testcase( eOp & WO_IN );
2492         pNew->nOut += pTerm->truthProb;
2493         pNew->nOut -= nIn;
2494       }else{
2495 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2496         tRowcnt nOut = 0;
2497         if( nInMul==0
2498          && pProbe->nSample
2499          && pNew->u.btree.nEq<=pProbe->nSampleCol
2500          && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
2501         ){
2502           Expr *pExpr = pTerm->pExpr;
2503           if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2504             testcase( eOp & WO_EQ );
2505             testcase( eOp & WO_IS );
2506             testcase( eOp & WO_ISNULL );
2507             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2508           }else{
2509             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2510           }
2511           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2512           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
2513           if( nOut ){
2514             pNew->nOut = sqlite3LogEst(nOut);
2515             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
2516             pNew->nOut -= nIn;
2517           }
2518         }
2519         if( nOut==0 )
2520 #endif
2521         {
2522           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
2523           if( eOp & WO_ISNULL ){
2524             /* TUNING: If there is no likelihood() value, assume that a
2525             ** "col IS NULL" expression matches twice as many rows
2526             ** as (col=?). */
2527             pNew->nOut += 10;
2528           }
2529         }
2530       }
2531     }
2532 
2533     /* Set rCostIdx to the cost of visiting selected rows in index. Add
2534     ** it to pNew->rRun, which is currently set to the cost of the index
2535     ** seek only. Then, if this is a non-covering index, add the cost of
2536     ** visiting the rows in the main table.  */
2537     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
2538     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
2539     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
2540       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
2541     }
2542     ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
2543 
2544     nOutUnadjusted = pNew->nOut;
2545     pNew->rRun += nInMul + nIn;
2546     pNew->nOut += nInMul + nIn;
2547     whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
2548     rc = whereLoopInsert(pBuilder, pNew);
2549 
2550     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2551       pNew->nOut = saved_nOut;
2552     }else{
2553       pNew->nOut = nOutUnadjusted;
2554     }
2555 
2556     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
2557      && pNew->u.btree.nEq<pProbe->nColumn
2558     ){
2559       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
2560     }
2561     pNew->nOut = saved_nOut;
2562 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2563     pBuilder->nRecValid = nRecValid;
2564 #endif
2565   }
2566   pNew->prereq = saved_prereq;
2567   pNew->u.btree.nEq = saved_nEq;
2568   pNew->u.btree.nBtm = saved_nBtm;
2569   pNew->u.btree.nTop = saved_nTop;
2570   pNew->nSkip = saved_nSkip;
2571   pNew->wsFlags = saved_wsFlags;
2572   pNew->nOut = saved_nOut;
2573   pNew->nLTerm = saved_nLTerm;
2574 
2575   /* Consider using a skip-scan if there are no WHERE clause constraints
2576   ** available for the left-most terms of the index, and if the average
2577   ** number of repeats in the left-most terms is at least 18.
2578   **
2579   ** The magic number 18 is selected on the basis that scanning 17 rows
2580   ** is almost always quicker than an index seek (even though if the index
2581   ** contains fewer than 2^17 rows we assume otherwise in other parts of
2582   ** the code). And, even if it is not, it should not be too much slower.
2583   ** On the other hand, the extra seeks could end up being significantly
2584   ** more expensive.  */
2585   assert( 42==sqlite3LogEst(18) );
2586   if( saved_nEq==saved_nSkip
2587    && saved_nEq+1<pProbe->nKeyCol
2588    && pProbe->noSkipScan==0
2589    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
2590    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
2591   ){
2592     LogEst nIter;
2593     pNew->u.btree.nEq++;
2594     pNew->nSkip++;
2595     pNew->aLTerm[pNew->nLTerm++] = 0;
2596     pNew->wsFlags |= WHERE_SKIPSCAN;
2597     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
2598     pNew->nOut -= nIter;
2599     /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
2600     ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
2601     nIter += 5;
2602     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
2603     pNew->nOut = saved_nOut;
2604     pNew->u.btree.nEq = saved_nEq;
2605     pNew->nSkip = saved_nSkip;
2606     pNew->wsFlags = saved_wsFlags;
2607   }
2608 
2609   WHERETRACE(0x800, ("END addBtreeIdx(%s), nEq=%d, rc=%d\n",
2610                       pProbe->zName, saved_nEq, rc));
2611   return rc;
2612 }
2613 
2614 /*
2615 ** Return True if it is possible that pIndex might be useful in
2616 ** implementing the ORDER BY clause in pBuilder.
2617 **
2618 ** Return False if pBuilder does not contain an ORDER BY clause or
2619 ** if there is no way for pIndex to be useful in implementing that
2620 ** ORDER BY clause.
2621 */
2622 static int indexMightHelpWithOrderBy(
2623   WhereLoopBuilder *pBuilder,
2624   Index *pIndex,
2625   int iCursor
2626 ){
2627   ExprList *pOB;
2628   ExprList *aColExpr;
2629   int ii, jj;
2630 
2631   if( pIndex->bUnordered ) return 0;
2632   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
2633   for(ii=0; ii<pOB->nExpr; ii++){
2634     Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr);
2635     if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
2636       if( pExpr->iColumn<0 ) return 1;
2637       for(jj=0; jj<pIndex->nKeyCol; jj++){
2638         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
2639       }
2640     }else if( (aColExpr = pIndex->aColExpr)!=0 ){
2641       for(jj=0; jj<pIndex->nKeyCol; jj++){
2642         if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
2643         if( sqlite3ExprCompare(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
2644           return 1;
2645         }
2646       }
2647     }
2648   }
2649   return 0;
2650 }
2651 
2652 /*
2653 ** Return a bitmask where 1s indicate that the corresponding column of
2654 ** the table is used by an index.  Only the first 63 columns are considered.
2655 */
2656 static Bitmask columnsInIndex(Index *pIdx){
2657   Bitmask m = 0;
2658   int j;
2659   for(j=pIdx->nColumn-1; j>=0; j--){
2660     int x = pIdx->aiColumn[j];
2661     if( x>=0 ){
2662       testcase( x==BMS-1 );
2663       testcase( x==BMS-2 );
2664       if( x<BMS-1 ) m |= MASKBIT(x);
2665     }
2666   }
2667   return m;
2668 }
2669 
2670 /* Check to see if a partial index with pPartIndexWhere can be used
2671 ** in the current query.  Return true if it can be and false if not.
2672 */
2673 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){
2674   int i;
2675   WhereTerm *pTerm;
2676   while( pWhere->op==TK_AND ){
2677     if( !whereUsablePartialIndex(iTab,pWC,pWhere->pLeft) ) return 0;
2678     pWhere = pWhere->pRight;
2679   }
2680   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
2681     Expr *pExpr = pTerm->pExpr;
2682     if( sqlite3ExprImpliesExpr(pExpr, pWhere, iTab)
2683      && (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
2684     ){
2685       return 1;
2686     }
2687   }
2688   return 0;
2689 }
2690 
2691 /*
2692 ** Add all WhereLoop objects for a single table of the join where the table
2693 ** is identified by pBuilder->pNew->iTab.  That table is guaranteed to be
2694 ** a b-tree table, not a virtual table.
2695 **
2696 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
2697 ** are calculated as follows:
2698 **
2699 ** For a full scan, assuming the table (or index) contains nRow rows:
2700 **
2701 **     cost = nRow * 3.0                    // full-table scan
2702 **     cost = nRow * K                      // scan of covering index
2703 **     cost = nRow * (K+3.0)                // scan of non-covering index
2704 **
2705 ** where K is a value between 1.1 and 3.0 set based on the relative
2706 ** estimated average size of the index and table records.
2707 **
2708 ** For an index scan, where nVisit is the number of index rows visited
2709 ** by the scan, and nSeek is the number of seek operations required on
2710 ** the index b-tree:
2711 **
2712 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
2713 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
2714 **
2715 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
2716 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
2717 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
2718 **
2719 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
2720 ** of uncertainty.  For this reason, scoring is designed to pick plans that
2721 ** "do the least harm" if the estimates are inaccurate.  For example, a
2722 ** log(nRow) factor is omitted from a non-covering index scan in order to
2723 ** bias the scoring in favor of using an index, since the worst-case
2724 ** performance of using an index is far better than the worst-case performance
2725 ** of a full table scan.
2726 */
2727 static int whereLoopAddBtree(
2728   WhereLoopBuilder *pBuilder, /* WHERE clause information */
2729   Bitmask mPrereq             /* Extra prerequesites for using this table */
2730 ){
2731   WhereInfo *pWInfo;          /* WHERE analysis context */
2732   Index *pProbe;              /* An index we are evaluating */
2733   Index sPk;                  /* A fake index object for the primary key */
2734   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
2735   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
2736   SrcList *pTabList;          /* The FROM clause */
2737   struct SrcList_item *pSrc;  /* The FROM clause btree term to add */
2738   WhereLoop *pNew;            /* Template WhereLoop object */
2739   int rc = SQLITE_OK;         /* Return code */
2740   int iSortIdx = 1;           /* Index number */
2741   int b;                      /* A boolean value */
2742   LogEst rSize;               /* number of rows in the table */
2743   LogEst rLogSize;            /* Logarithm of the number of rows in the table */
2744   WhereClause *pWC;           /* The parsed WHERE clause */
2745   Table *pTab;                /* Table being queried */
2746 
2747   pNew = pBuilder->pNew;
2748   pWInfo = pBuilder->pWInfo;
2749   pTabList = pWInfo->pTabList;
2750   pSrc = pTabList->a + pNew->iTab;
2751   pTab = pSrc->pTab;
2752   pWC = pBuilder->pWC;
2753   assert( !IsVirtual(pSrc->pTab) );
2754 
2755   if( pSrc->pIBIndex ){
2756     /* An INDEXED BY clause specifies a particular index to use */
2757     pProbe = pSrc->pIBIndex;
2758   }else if( !HasRowid(pTab) ){
2759     pProbe = pTab->pIndex;
2760   }else{
2761     /* There is no INDEXED BY clause.  Create a fake Index object in local
2762     ** variable sPk to represent the rowid primary key index.  Make this
2763     ** fake index the first in a chain of Index objects with all of the real
2764     ** indices to follow */
2765     Index *pFirst;                  /* First of real indices on the table */
2766     memset(&sPk, 0, sizeof(Index));
2767     sPk.nKeyCol = 1;
2768     sPk.nColumn = 1;
2769     sPk.aiColumn = &aiColumnPk;
2770     sPk.aiRowLogEst = aiRowEstPk;
2771     sPk.onError = OE_Replace;
2772     sPk.pTable = pTab;
2773     sPk.szIdxRow = pTab->szTabRow;
2774     aiRowEstPk[0] = pTab->nRowLogEst;
2775     aiRowEstPk[1] = 0;
2776     pFirst = pSrc->pTab->pIndex;
2777     if( pSrc->fg.notIndexed==0 ){
2778       /* The real indices of the table are only considered if the
2779       ** NOT INDEXED qualifier is omitted from the FROM clause */
2780       sPk.pNext = pFirst;
2781     }
2782     pProbe = &sPk;
2783   }
2784   rSize = pTab->nRowLogEst;
2785   rLogSize = estLog(rSize);
2786 
2787 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
2788   /* Automatic indexes */
2789   if( !pBuilder->pOrSet      /* Not part of an OR optimization */
2790    && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
2791    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
2792    && pSrc->pIBIndex==0      /* Has no INDEXED BY clause */
2793    && !pSrc->fg.notIndexed   /* Has no NOT INDEXED clause */
2794    && HasRowid(pTab)         /* Not WITHOUT ROWID table. (FIXME: Why not?) */
2795    && !pSrc->fg.isCorrelated /* Not a correlated subquery */
2796    && !pSrc->fg.isRecursive  /* Not a recursive common table expression. */
2797   ){
2798     /* Generate auto-index WhereLoops */
2799     WhereTerm *pTerm;
2800     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
2801     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
2802       if( pTerm->prereqRight & pNew->maskSelf ) continue;
2803       if( termCanDriveIndex(pTerm, pSrc, 0) ){
2804         pNew->u.btree.nEq = 1;
2805         pNew->nSkip = 0;
2806         pNew->u.btree.pIndex = 0;
2807         pNew->nLTerm = 1;
2808         pNew->aLTerm[0] = pTerm;
2809         /* TUNING: One-time cost for computing the automatic index is
2810         ** estimated to be X*N*log2(N) where N is the number of rows in
2811         ** the table being indexed and where X is 7 (LogEst=28) for normal
2812         ** tables or 1.375 (LogEst=4) for views and subqueries.  The value
2813         ** of X is smaller for views and subqueries so that the query planner
2814         ** will be more aggressive about generating automatic indexes for
2815         ** those objects, since there is no opportunity to add schema
2816         ** indexes on subqueries and views. */
2817         pNew->rSetup = rLogSize + rSize + 4;
2818         if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){
2819           pNew->rSetup += 24;
2820         }
2821         ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
2822         if( pNew->rSetup<0 ) pNew->rSetup = 0;
2823         /* TUNING: Each index lookup yields 20 rows in the table.  This
2824         ** is more than the usual guess of 10 rows, since we have no way
2825         ** of knowing how selective the index will ultimately be.  It would
2826         ** not be unreasonable to make this value much larger. */
2827         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
2828         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
2829         pNew->wsFlags = WHERE_AUTO_INDEX;
2830         pNew->prereq = mPrereq | pTerm->prereqRight;
2831         rc = whereLoopInsert(pBuilder, pNew);
2832       }
2833     }
2834   }
2835 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
2836 
2837   /* Loop over all indices
2838   */
2839   for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){
2840     if( pProbe->pPartIdxWhere!=0
2841      && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){
2842       testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
2843       continue;  /* Partial index inappropriate for this query */
2844     }
2845     rSize = pProbe->aiRowLogEst[0];
2846     pNew->u.btree.nEq = 0;
2847     pNew->u.btree.nBtm = 0;
2848     pNew->u.btree.nTop = 0;
2849     pNew->nSkip = 0;
2850     pNew->nLTerm = 0;
2851     pNew->iSortIdx = 0;
2852     pNew->rSetup = 0;
2853     pNew->prereq = mPrereq;
2854     pNew->nOut = rSize;
2855     pNew->u.btree.pIndex = pProbe;
2856     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
2857     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
2858     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
2859     if( pProbe->tnum<=0 ){
2860       /* Integer primary key index */
2861       pNew->wsFlags = WHERE_IPK;
2862 
2863       /* Full table scan */
2864       pNew->iSortIdx = b ? iSortIdx : 0;
2865       /* TUNING: Cost of full table scan is (N*3.0). */
2866       pNew->rRun = rSize + 16;
2867       ApplyCostMultiplier(pNew->rRun, pTab->costMult);
2868       whereLoopOutputAdjust(pWC, pNew, rSize);
2869       rc = whereLoopInsert(pBuilder, pNew);
2870       pNew->nOut = rSize;
2871       if( rc ) break;
2872     }else{
2873       Bitmask m;
2874       if( pProbe->isCovering ){
2875         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
2876         m = 0;
2877       }else{
2878         m = pSrc->colUsed & ~columnsInIndex(pProbe);
2879         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
2880       }
2881 
2882       /* Full scan via index */
2883       if( b
2884        || !HasRowid(pTab)
2885        || pProbe->pPartIdxWhere!=0
2886        || ( m==0
2887          && pProbe->bUnordered==0
2888          && (pProbe->szIdxRow<pTab->szTabRow)
2889          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
2890          && sqlite3GlobalConfig.bUseCis
2891          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
2892           )
2893       ){
2894         pNew->iSortIdx = b ? iSortIdx : 0;
2895 
2896         /* The cost of visiting the index rows is N*K, where K is
2897         ** between 1.1 and 3.0, depending on the relative sizes of the
2898         ** index and table rows. */
2899         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
2900         if( m!=0 ){
2901           /* If this is a non-covering index scan, add in the cost of
2902           ** doing table lookups.  The cost will be 3x the number of
2903           ** lookups.  Take into account WHERE clause terms that can be
2904           ** satisfied using just the index, and that do not require a
2905           ** table lookup. */
2906           LogEst nLookup = rSize + 16;  /* Base cost:  N*3 */
2907           int ii;
2908           int iCur = pSrc->iCursor;
2909           WhereClause *pWC2 = &pWInfo->sWC;
2910           for(ii=0; ii<pWC2->nTerm; ii++){
2911             WhereTerm *pTerm = &pWC2->a[ii];
2912             if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
2913               break;
2914             }
2915             /* pTerm can be evaluated using just the index.  So reduce
2916             ** the expected number of table lookups accordingly */
2917             if( pTerm->truthProb<=0 ){
2918               nLookup += pTerm->truthProb;
2919             }else{
2920               nLookup--;
2921               if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
2922             }
2923           }
2924 
2925           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
2926         }
2927         ApplyCostMultiplier(pNew->rRun, pTab->costMult);
2928         whereLoopOutputAdjust(pWC, pNew, rSize);
2929         rc = whereLoopInsert(pBuilder, pNew);
2930         pNew->nOut = rSize;
2931         if( rc ) break;
2932       }
2933     }
2934 
2935     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
2936 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2937     sqlite3Stat4ProbeFree(pBuilder->pRec);
2938     pBuilder->nRecValid = 0;
2939     pBuilder->pRec = 0;
2940 #endif
2941 
2942     /* If there was an INDEXED BY clause, then only that one index is
2943     ** considered. */
2944     if( pSrc->pIBIndex ) break;
2945   }
2946   return rc;
2947 }
2948 
2949 #ifndef SQLITE_OMIT_VIRTUALTABLE
2950 
2951 /*
2952 ** Argument pIdxInfo is already populated with all constraints that may
2953 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
2954 ** function marks a subset of those constraints usable, invokes the
2955 ** xBestIndex method and adds the returned plan to pBuilder.
2956 **
2957 ** A constraint is marked usable if:
2958 **
2959 **   * Argument mUsable indicates that its prerequisites are available, and
2960 **
2961 **   * It is not one of the operators specified in the mExclude mask passed
2962 **     as the fourth argument (which in practice is either WO_IN or 0).
2963 **
2964 ** Argument mPrereq is a mask of tables that must be scanned before the
2965 ** virtual table in question. These are added to the plans prerequisites
2966 ** before it is added to pBuilder.
2967 **
2968 ** Output parameter *pbIn is set to true if the plan added to pBuilder
2969 ** uses one or more WO_IN terms, or false otherwise.
2970 */
2971 static int whereLoopAddVirtualOne(
2972   WhereLoopBuilder *pBuilder,
2973   Bitmask mPrereq,                /* Mask of tables that must be used. */
2974   Bitmask mUsable,                /* Mask of usable tables */
2975   u16 mExclude,                   /* Exclude terms using these operators */
2976   sqlite3_index_info *pIdxInfo,   /* Populated object for xBestIndex */
2977   u16 mNoOmit,                    /* Do not omit these constraints */
2978   int *pbIn                       /* OUT: True if plan uses an IN(...) op */
2979 ){
2980   WhereClause *pWC = pBuilder->pWC;
2981   struct sqlite3_index_constraint *pIdxCons;
2982   struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
2983   int i;
2984   int mxTerm;
2985   int rc = SQLITE_OK;
2986   WhereLoop *pNew = pBuilder->pNew;
2987   Parse *pParse = pBuilder->pWInfo->pParse;
2988   struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
2989   int nConstraint = pIdxInfo->nConstraint;
2990 
2991   assert( (mUsable & mPrereq)==mPrereq );
2992   *pbIn = 0;
2993   pNew->prereq = mPrereq;
2994 
2995   /* Set the usable flag on the subset of constraints identified by
2996   ** arguments mUsable and mExclude. */
2997   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
2998   for(i=0; i<nConstraint; i++, pIdxCons++){
2999     WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3000     pIdxCons->usable = 0;
3001     if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3002      && (pTerm->eOperator & mExclude)==0
3003     ){
3004       pIdxCons->usable = 1;
3005     }
3006   }
3007 
3008   /* Initialize the output fields of the sqlite3_index_info structure */
3009   memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3010   assert( pIdxInfo->needToFreeIdxStr==0 );
3011   pIdxInfo->idxStr = 0;
3012   pIdxInfo->idxNum = 0;
3013   pIdxInfo->orderByConsumed = 0;
3014   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3015   pIdxInfo->estimatedRows = 25;
3016   pIdxInfo->idxFlags = 0;
3017   pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3018 
3019   /* Invoke the virtual table xBestIndex() method */
3020   rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3021   if( rc ) return rc;
3022 
3023   mxTerm = -1;
3024   assert( pNew->nLSlot>=nConstraint );
3025   for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
3026   pNew->u.vtab.omitMask = 0;
3027   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3028   for(i=0; i<nConstraint; i++, pIdxCons++){
3029     int iTerm;
3030     if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3031       WhereTerm *pTerm;
3032       int j = pIdxCons->iTermOffset;
3033       if( iTerm>=nConstraint
3034        || j<0
3035        || j>=pWC->nTerm
3036        || pNew->aLTerm[iTerm]!=0
3037        || pIdxCons->usable==0
3038       ){
3039         rc = SQLITE_ERROR;
3040         sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3041         return rc;
3042       }
3043       testcase( iTerm==nConstraint-1 );
3044       testcase( j==0 );
3045       testcase( j==pWC->nTerm-1 );
3046       pTerm = &pWC->a[j];
3047       pNew->prereq |= pTerm->prereqRight;
3048       assert( iTerm<pNew->nLSlot );
3049       pNew->aLTerm[iTerm] = pTerm;
3050       if( iTerm>mxTerm ) mxTerm = iTerm;
3051       testcase( iTerm==15 );
3052       testcase( iTerm==16 );
3053       if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm;
3054       if( (pTerm->eOperator & WO_IN)!=0 ){
3055         /* A virtual table that is constrained by an IN clause may not
3056         ** consume the ORDER BY clause because (1) the order of IN terms
3057         ** is not necessarily related to the order of output terms and
3058         ** (2) Multiple outputs from a single IN value will not merge
3059         ** together.  */
3060         pIdxInfo->orderByConsumed = 0;
3061         pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3062         *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3063       }
3064     }
3065   }
3066   pNew->u.vtab.omitMask &= ~mNoOmit;
3067 
3068   pNew->nLTerm = mxTerm+1;
3069   assert( pNew->nLTerm<=pNew->nLSlot );
3070   pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3071   pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3072   pIdxInfo->needToFreeIdxStr = 0;
3073   pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3074   pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3075       pIdxInfo->nOrderBy : 0);
3076   pNew->rSetup = 0;
3077   pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3078   pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3079 
3080   /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3081   ** that the scan will visit at most one row. Clear it otherwise. */
3082   if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3083     pNew->wsFlags |= WHERE_ONEROW;
3084   }else{
3085     pNew->wsFlags &= ~WHERE_ONEROW;
3086   }
3087   rc = whereLoopInsert(pBuilder, pNew);
3088   if( pNew->u.vtab.needFree ){
3089     sqlite3_free(pNew->u.vtab.idxStr);
3090     pNew->u.vtab.needFree = 0;
3091   }
3092   WHERETRACE(0xffff, ("  bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3093                       *pbIn, (sqlite3_uint64)mPrereq,
3094                       (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3095 
3096   return rc;
3097 }
3098 
3099 
3100 /*
3101 ** Add all WhereLoop objects for a table of the join identified by
3102 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
3103 **
3104 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3105 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3106 ** entries that occur before the virtual table in the FROM clause and are
3107 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3108 ** mUnusable mask contains all FROM clause entries that occur after the
3109 ** virtual table and are separated from it by at least one LEFT or
3110 ** CROSS JOIN.
3111 **
3112 ** For example, if the query were:
3113 **
3114 **   ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3115 **
3116 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3117 **
3118 ** All the tables in mPrereq must be scanned before the current virtual
3119 ** table. So any terms for which all prerequisites are satisfied by
3120 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3121 ** Conversely, all tables in mUnusable must be scanned after the current
3122 ** virtual table, so any terms for which the prerequisites overlap with
3123 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3124 */
3125 static int whereLoopAddVirtual(
3126   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
3127   Bitmask mPrereq,             /* Tables that must be scanned before this one */
3128   Bitmask mUnusable            /* Tables that must be scanned after this one */
3129 ){
3130   int rc = SQLITE_OK;          /* Return code */
3131   WhereInfo *pWInfo;           /* WHERE analysis context */
3132   Parse *pParse;               /* The parsing context */
3133   WhereClause *pWC;            /* The WHERE clause */
3134   struct SrcList_item *pSrc;   /* The FROM clause term to search */
3135   sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
3136   int nConstraint;             /* Number of constraints in p */
3137   int bIn;                     /* True if plan uses IN(...) operator */
3138   WhereLoop *pNew;
3139   Bitmask mBest;               /* Tables used by best possible plan */
3140   u16 mNoOmit;
3141 
3142   assert( (mPrereq & mUnusable)==0 );
3143   pWInfo = pBuilder->pWInfo;
3144   pParse = pWInfo->pParse;
3145   pWC = pBuilder->pWC;
3146   pNew = pBuilder->pNew;
3147   pSrc = &pWInfo->pTabList->a[pNew->iTab];
3148   assert( IsVirtual(pSrc->pTab) );
3149   p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy,
3150       &mNoOmit);
3151   if( p==0 ) return SQLITE_NOMEM_BKPT;
3152   pNew->rSetup = 0;
3153   pNew->wsFlags = WHERE_VIRTUALTABLE;
3154   pNew->nLTerm = 0;
3155   pNew->u.vtab.needFree = 0;
3156   nConstraint = p->nConstraint;
3157   if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3158     sqlite3DbFree(pParse->db, p);
3159     return SQLITE_NOMEM_BKPT;
3160   }
3161 
3162   /* First call xBestIndex() with all constraints usable. */
3163   WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
3164   rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn);
3165 
3166   /* If the call to xBestIndex() with all terms enabled produced a plan
3167   ** that does not require any source tables (IOW: a plan with mBest==0),
3168   ** then there is no point in making any further calls to xBestIndex()
3169   ** since they will all return the same result (if the xBestIndex()
3170   ** implementation is sane). */
3171   if( rc==SQLITE_OK && (mBest = (pNew->prereq & ~mPrereq))!=0 ){
3172     int seenZero = 0;             /* True if a plan with no prereqs seen */
3173     int seenZeroNoIN = 0;         /* Plan with no prereqs and no IN(...) seen */
3174     Bitmask mPrev = 0;
3175     Bitmask mBestNoIn = 0;
3176 
3177     /* If the plan produced by the earlier call uses an IN(...) term, call
3178     ** xBestIndex again, this time with IN(...) terms disabled. */
3179     if( bIn ){
3180       WHERETRACE(0x40, ("  VirtualOne: all usable w/o IN\n"));
3181       rc = whereLoopAddVirtualOne(
3182           pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn);
3183       assert( bIn==0 );
3184       mBestNoIn = pNew->prereq & ~mPrereq;
3185       if( mBestNoIn==0 ){
3186         seenZero = 1;
3187         seenZeroNoIN = 1;
3188       }
3189     }
3190 
3191     /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3192     ** in the set of terms that apply to the current virtual table.  */
3193     while( rc==SQLITE_OK ){
3194       int i;
3195       Bitmask mNext = ALLBITS;
3196       assert( mNext>0 );
3197       for(i=0; i<nConstraint; i++){
3198         Bitmask mThis = (
3199             pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3200         );
3201         if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3202       }
3203       mPrev = mNext;
3204       if( mNext==ALLBITS ) break;
3205       if( mNext==mBest || mNext==mBestNoIn ) continue;
3206       WHERETRACE(0x40, ("  VirtualOne: mPrev=%04llx mNext=%04llx\n",
3207                        (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3208       rc = whereLoopAddVirtualOne(
3209           pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn);
3210       if( pNew->prereq==mPrereq ){
3211         seenZero = 1;
3212         if( bIn==0 ) seenZeroNoIN = 1;
3213       }
3214     }
3215 
3216     /* If the calls to xBestIndex() in the above loop did not find a plan
3217     ** that requires no source tables at all (i.e. one guaranteed to be
3218     ** usable), make a call here with all source tables disabled */
3219     if( rc==SQLITE_OK && seenZero==0 ){
3220       WHERETRACE(0x40, ("  VirtualOne: all disabled\n"));
3221       rc = whereLoopAddVirtualOne(
3222           pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn);
3223       if( bIn==0 ) seenZeroNoIN = 1;
3224     }
3225 
3226     /* If the calls to xBestIndex() have so far failed to find a plan
3227     ** that requires no source tables at all and does not use an IN(...)
3228     ** operator, make a final call to obtain one here.  */
3229     if( rc==SQLITE_OK && seenZeroNoIN==0 ){
3230       WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
3231       rc = whereLoopAddVirtualOne(
3232           pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn);
3233     }
3234   }
3235 
3236   if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
3237   sqlite3DbFree(pParse->db, p);
3238   return rc;
3239 }
3240 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3241 
3242 /*
3243 ** Add WhereLoop entries to handle OR terms.  This works for either
3244 ** btrees or virtual tables.
3245 */
3246 static int whereLoopAddOr(
3247   WhereLoopBuilder *pBuilder,
3248   Bitmask mPrereq,
3249   Bitmask mUnusable
3250 ){
3251   WhereInfo *pWInfo = pBuilder->pWInfo;
3252   WhereClause *pWC;
3253   WhereLoop *pNew;
3254   WhereTerm *pTerm, *pWCEnd;
3255   int rc = SQLITE_OK;
3256   int iCur;
3257   WhereClause tempWC;
3258   WhereLoopBuilder sSubBuild;
3259   WhereOrSet sSum, sCur;
3260   struct SrcList_item *pItem;
3261 
3262   pWC = pBuilder->pWC;
3263   pWCEnd = pWC->a + pWC->nTerm;
3264   pNew = pBuilder->pNew;
3265   memset(&sSum, 0, sizeof(sSum));
3266   pItem = pWInfo->pTabList->a + pNew->iTab;
3267   iCur = pItem->iCursor;
3268 
3269   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
3270     if( (pTerm->eOperator & WO_OR)!=0
3271      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
3272     ){
3273       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
3274       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
3275       WhereTerm *pOrTerm;
3276       int once = 1;
3277       int i, j;
3278 
3279       sSubBuild = *pBuilder;
3280       sSubBuild.pOrderBy = 0;
3281       sSubBuild.pOrSet = &sCur;
3282 
3283       WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
3284       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
3285         if( (pOrTerm->eOperator & WO_AND)!=0 ){
3286           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
3287         }else if( pOrTerm->leftCursor==iCur ){
3288           tempWC.pWInfo = pWC->pWInfo;
3289           tempWC.pOuter = pWC;
3290           tempWC.op = TK_AND;
3291           tempWC.nTerm = 1;
3292           tempWC.a = pOrTerm;
3293           sSubBuild.pWC = &tempWC;
3294         }else{
3295           continue;
3296         }
3297         sCur.n = 0;
3298 #ifdef WHERETRACE_ENABLED
3299         WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3300                    (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
3301         if( sqlite3WhereTrace & 0x400 ){
3302           sqlite3WhereClausePrint(sSubBuild.pWC);
3303         }
3304 #endif
3305 #ifndef SQLITE_OMIT_VIRTUALTABLE
3306         if( IsVirtual(pItem->pTab) ){
3307           rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
3308         }else
3309 #endif
3310         {
3311           rc = whereLoopAddBtree(&sSubBuild, mPrereq);
3312         }
3313         if( rc==SQLITE_OK ){
3314           rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
3315         }
3316         assert( rc==SQLITE_OK || sCur.n==0 );
3317         if( sCur.n==0 ){
3318           sSum.n = 0;
3319           break;
3320         }else if( once ){
3321           whereOrMove(&sSum, &sCur);
3322           once = 0;
3323         }else{
3324           WhereOrSet sPrev;
3325           whereOrMove(&sPrev, &sSum);
3326           sSum.n = 0;
3327           for(i=0; i<sPrev.n; i++){
3328             for(j=0; j<sCur.n; j++){
3329               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
3330                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
3331                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
3332             }
3333           }
3334         }
3335       }
3336       pNew->nLTerm = 1;
3337       pNew->aLTerm[0] = pTerm;
3338       pNew->wsFlags = WHERE_MULTI_OR;
3339       pNew->rSetup = 0;
3340       pNew->iSortIdx = 0;
3341       memset(&pNew->u, 0, sizeof(pNew->u));
3342       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
3343         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
3344         ** of all sub-scans required by the OR-scan. However, due to rounding
3345         ** errors, it may be that the cost of the OR-scan is equal to its
3346         ** most expensive sub-scan. Add the smallest possible penalty
3347         ** (equivalent to multiplying the cost by 1.07) to ensure that
3348         ** this does not happen. Otherwise, for WHERE clauses such as the
3349         ** following where there is an index on "y":
3350         **
3351         **     WHERE likelihood(x=?, 0.99) OR y=?
3352         **
3353         ** the planner may elect to "OR" together a full-table scan and an
3354         ** index lookup. And other similarly odd results.  */
3355         pNew->rRun = sSum.a[i].rRun + 1;
3356         pNew->nOut = sSum.a[i].nOut;
3357         pNew->prereq = sSum.a[i].prereq;
3358         rc = whereLoopInsert(pBuilder, pNew);
3359       }
3360       WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
3361     }
3362   }
3363   return rc;
3364 }
3365 
3366 /*
3367 ** Add all WhereLoop objects for all tables
3368 */
3369 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
3370   WhereInfo *pWInfo = pBuilder->pWInfo;
3371   Bitmask mPrereq = 0;
3372   Bitmask mPrior = 0;
3373   int iTab;
3374   SrcList *pTabList = pWInfo->pTabList;
3375   struct SrcList_item *pItem;
3376   struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel];
3377   sqlite3 *db = pWInfo->pParse->db;
3378   int rc = SQLITE_OK;
3379   WhereLoop *pNew;
3380   u8 priorJointype = 0;
3381 
3382   /* Loop over the tables in the join, from left to right */
3383   pNew = pBuilder->pNew;
3384   whereLoopInit(pNew);
3385   for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
3386     Bitmask mUnusable = 0;
3387     pNew->iTab = iTab;
3388     pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
3389     if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){
3390       /* This condition is true when pItem is the FROM clause term on the
3391       ** right-hand-side of a LEFT or CROSS JOIN.  */
3392       mPrereq = mPrior;
3393     }
3394     priorJointype = pItem->fg.jointype;
3395 #ifndef SQLITE_OMIT_VIRTUALTABLE
3396     if( IsVirtual(pItem->pTab) ){
3397       struct SrcList_item *p;
3398       for(p=&pItem[1]; p<pEnd; p++){
3399         if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
3400           mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
3401         }
3402       }
3403       rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
3404     }else
3405 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3406     {
3407       rc = whereLoopAddBtree(pBuilder, mPrereq);
3408     }
3409     if( rc==SQLITE_OK ){
3410       rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
3411     }
3412     mPrior |= pNew->maskSelf;
3413     if( rc || db->mallocFailed ) break;
3414   }
3415 
3416   whereLoopClear(db, pNew);
3417   return rc;
3418 }
3419 
3420 /*
3421 ** Examine a WherePath (with the addition of the extra WhereLoop of the 5th
3422 ** parameters) to see if it outputs rows in the requested ORDER BY
3423 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
3424 **
3425 **   N>0:   N terms of the ORDER BY clause are satisfied
3426 **   N==0:  No terms of the ORDER BY clause are satisfied
3427 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
3428 **
3429 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
3430 ** strict.  With GROUP BY and DISTINCT the only requirement is that
3431 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
3432 ** and DISTINCT do not require rows to appear in any particular order as long
3433 ** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT
3434 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
3435 ** pOrderBy terms must be matched in strict left-to-right order.
3436 */
3437 static i8 wherePathSatisfiesOrderBy(
3438   WhereInfo *pWInfo,    /* The WHERE clause */
3439   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
3440   WherePath *pPath,     /* The WherePath to check */
3441   u16 wctrlFlags,       /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
3442   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
3443   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
3444   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
3445 ){
3446   u8 revSet;            /* True if rev is known */
3447   u8 rev;               /* Composite sort order */
3448   u8 revIdx;            /* Index sort order */
3449   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
3450   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
3451   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
3452   u16 eqOpMask;         /* Allowed equality operators */
3453   u16 nKeyCol;          /* Number of key columns in pIndex */
3454   u16 nColumn;          /* Total number of ordered columns in the index */
3455   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
3456   int iLoop;            /* Index of WhereLoop in pPath being processed */
3457   int i, j;             /* Loop counters */
3458   int iCur;             /* Cursor number for current WhereLoop */
3459   int iColumn;          /* A column number within table iCur */
3460   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
3461   WhereTerm *pTerm;     /* A single term of the WHERE clause */
3462   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
3463   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
3464   Index *pIndex;        /* The index associated with pLoop */
3465   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
3466   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
3467   Bitmask obDone;       /* Mask of all ORDER BY terms */
3468   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
3469   Bitmask ready;              /* Mask of inner loops */
3470 
3471   /*
3472   ** We say the WhereLoop is "one-row" if it generates no more than one
3473   ** row of output.  A WhereLoop is one-row if all of the following are true:
3474   **  (a) All index columns match with WHERE_COLUMN_EQ.
3475   **  (b) The index is unique
3476   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
3477   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
3478   **
3479   ** We say the WhereLoop is "order-distinct" if the set of columns from
3480   ** that WhereLoop that are in the ORDER BY clause are different for every
3481   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
3482   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
3483   ** is not order-distinct. To be order-distinct is not quite the same as being
3484   ** UNIQUE since a UNIQUE column or index can have multiple rows that
3485   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
3486   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
3487   **
3488   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
3489   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
3490   ** automatically order-distinct.
3491   */
3492 
3493   assert( pOrderBy!=0 );
3494   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
3495 
3496   nOrderBy = pOrderBy->nExpr;
3497   testcase( nOrderBy==BMS-1 );
3498   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
3499   isOrderDistinct = 1;
3500   obDone = MASKBIT(nOrderBy)-1;
3501   orderDistinctMask = 0;
3502   ready = 0;
3503   eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
3504   if( wctrlFlags & WHERE_ORDERBY_LIMIT ) eqOpMask |= WO_IN;
3505   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
3506     if( iLoop>0 ) ready |= pLoop->maskSelf;
3507     if( iLoop<nLoop ){
3508       pLoop = pPath->aLoop[iLoop];
3509       if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
3510     }else{
3511       pLoop = pLast;
3512     }
3513     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
3514       if( pLoop->u.vtab.isOrdered ) obSat = obDone;
3515       break;
3516     }
3517     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
3518 
3519     /* Mark off any ORDER BY term X that is a column in the table of
3520     ** the current loop for which there is term in the WHERE
3521     ** clause of the form X IS NULL or X=? that reference only outer
3522     ** loops.
3523     */
3524     for(i=0; i<nOrderBy; i++){
3525       if( MASKBIT(i) & obSat ) continue;
3526       pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
3527       if( pOBExpr->op!=TK_COLUMN ) continue;
3528       if( pOBExpr->iTable!=iCur ) continue;
3529       pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
3530                        ~ready, eqOpMask, 0);
3531       if( pTerm==0 ) continue;
3532       if( pTerm->eOperator==WO_IN ){
3533         /* IN terms are only valid for sorting in the ORDER BY LIMIT
3534         ** optimization, and then only if they are actually used
3535         ** by the query plan */
3536         assert( wctrlFlags & WHERE_ORDERBY_LIMIT );
3537         for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
3538         if( j>=pLoop->nLTerm ) continue;
3539       }
3540       if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
3541         const char *z1, *z2;
3542         pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
3543         if( !pColl ) pColl = db->pDfltColl;
3544         z1 = pColl->zName;
3545         pColl = sqlite3ExprCollSeq(pWInfo->pParse, pTerm->pExpr);
3546         if( !pColl ) pColl = db->pDfltColl;
3547         z2 = pColl->zName;
3548         if( sqlite3StrICmp(z1, z2)!=0 ) continue;
3549         testcase( pTerm->pExpr->op==TK_IS );
3550       }
3551       obSat |= MASKBIT(i);
3552     }
3553 
3554     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
3555       if( pLoop->wsFlags & WHERE_IPK ){
3556         pIndex = 0;
3557         nKeyCol = 0;
3558         nColumn = 1;
3559       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
3560         return 0;
3561       }else{
3562         nKeyCol = pIndex->nKeyCol;
3563         nColumn = pIndex->nColumn;
3564         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
3565         assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
3566                           || !HasRowid(pIndex->pTable));
3567         isOrderDistinct = IsUniqueIndex(pIndex);
3568       }
3569 
3570       /* Loop through all columns of the index and deal with the ones
3571       ** that are not constrained by == or IN.
3572       */
3573       rev = revSet = 0;
3574       distinctColumns = 0;
3575       for(j=0; j<nColumn; j++){
3576         u8 bOnce = 1; /* True to run the ORDER BY search loop */
3577 
3578         assert( j>=pLoop->u.btree.nEq
3579             || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
3580         );
3581         if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
3582           u16 eOp = pLoop->aLTerm[j]->eOperator;
3583 
3584           /* Skip over == and IS and ISNULL terms.  (Also skip IN terms when
3585           ** doing WHERE_ORDERBY_LIMIT processing).
3586           **
3587           ** If the current term is a column of an ((?,?) IN (SELECT...))
3588           ** expression for which the SELECT returns more than one column,
3589           ** check that it is the only column used by this loop. Otherwise,
3590           ** if it is one of two or more, none of the columns can be
3591           ** considered to match an ORDER BY term.  */
3592           if( (eOp & eqOpMask)!=0 ){
3593             if( eOp & WO_ISNULL ){
3594               testcase( isOrderDistinct );
3595               isOrderDistinct = 0;
3596             }
3597             continue;
3598           }else if( ALWAYS(eOp & WO_IN) ){
3599             /* ALWAYS() justification: eOp is an equality operator due to the
3600             ** j<pLoop->u.btree.nEq constraint above.  Any equality other
3601             ** than WO_IN is captured by the previous "if".  So this one
3602             ** always has to be WO_IN. */
3603             Expr *pX = pLoop->aLTerm[j]->pExpr;
3604             for(i=j+1; i<pLoop->u.btree.nEq; i++){
3605               if( pLoop->aLTerm[i]->pExpr==pX ){
3606                 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
3607                 bOnce = 0;
3608                 break;
3609               }
3610             }
3611           }
3612         }
3613 
3614         /* Get the column number in the table (iColumn) and sort order
3615         ** (revIdx) for the j-th column of the index.
3616         */
3617         if( pIndex ){
3618           iColumn = pIndex->aiColumn[j];
3619           revIdx = pIndex->aSortOrder[j];
3620           if( iColumn==pIndex->pTable->iPKey ) iColumn = -1;
3621         }else{
3622           iColumn = XN_ROWID;
3623           revIdx = 0;
3624         }
3625 
3626         /* An unconstrained column that might be NULL means that this
3627         ** WhereLoop is not well-ordered
3628         */
3629         if( isOrderDistinct
3630          && iColumn>=0
3631          && j>=pLoop->u.btree.nEq
3632          && pIndex->pTable->aCol[iColumn].notNull==0
3633         ){
3634           isOrderDistinct = 0;
3635         }
3636 
3637         /* Find the ORDER BY term that corresponds to the j-th column
3638         ** of the index and mark that ORDER BY term off
3639         */
3640         isMatch = 0;
3641         for(i=0; bOnce && i<nOrderBy; i++){
3642           if( MASKBIT(i) & obSat ) continue;
3643           pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
3644           testcase( wctrlFlags & WHERE_GROUPBY );
3645           testcase( wctrlFlags & WHERE_DISTINCTBY );
3646           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
3647           if( iColumn>=(-1) ){
3648             if( pOBExpr->op!=TK_COLUMN ) continue;
3649             if( pOBExpr->iTable!=iCur ) continue;
3650             if( pOBExpr->iColumn!=iColumn ) continue;
3651           }else{
3652             if( sqlite3ExprCompare(pOBExpr,pIndex->aColExpr->a[j].pExpr,iCur) ){
3653               continue;
3654             }
3655           }
3656           if( iColumn>=0 ){
3657             pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
3658             if( !pColl ) pColl = db->pDfltColl;
3659             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
3660           }
3661           isMatch = 1;
3662           break;
3663         }
3664         if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
3665           /* Make sure the sort order is compatible in an ORDER BY clause.
3666           ** Sort order is irrelevant for a GROUP BY clause. */
3667           if( revSet ){
3668             if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0;
3669           }else{
3670             rev = revIdx ^ pOrderBy->a[i].sortOrder;
3671             if( rev ) *pRevMask |= MASKBIT(iLoop);
3672             revSet = 1;
3673           }
3674         }
3675         if( isMatch ){
3676           if( iColumn==XN_ROWID ){
3677             testcase( distinctColumns==0 );
3678             distinctColumns = 1;
3679           }
3680           obSat |= MASKBIT(i);
3681         }else{
3682           /* No match found */
3683           if( j==0 || j<nKeyCol ){
3684             testcase( isOrderDistinct!=0 );
3685             isOrderDistinct = 0;
3686           }
3687           break;
3688         }
3689       } /* end Loop over all index columns */
3690       if( distinctColumns ){
3691         testcase( isOrderDistinct==0 );
3692         isOrderDistinct = 1;
3693       }
3694     } /* end-if not one-row */
3695 
3696     /* Mark off any other ORDER BY terms that reference pLoop */
3697     if( isOrderDistinct ){
3698       orderDistinctMask |= pLoop->maskSelf;
3699       for(i=0; i<nOrderBy; i++){
3700         Expr *p;
3701         Bitmask mTerm;
3702         if( MASKBIT(i) & obSat ) continue;
3703         p = pOrderBy->a[i].pExpr;
3704         mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
3705         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
3706         if( (mTerm&~orderDistinctMask)==0 ){
3707           obSat |= MASKBIT(i);
3708         }
3709       }
3710     }
3711   } /* End the loop over all WhereLoops from outer-most down to inner-most */
3712   if( obSat==obDone ) return (i8)nOrderBy;
3713   if( !isOrderDistinct ){
3714     for(i=nOrderBy-1; i>0; i--){
3715       Bitmask m = MASKBIT(i) - 1;
3716       if( (obSat&m)==m ) return i;
3717     }
3718     return 0;
3719   }
3720   return -1;
3721 }
3722 
3723 
3724 /*
3725 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
3726 ** the planner assumes that the specified pOrderBy list is actually a GROUP
3727 ** BY clause - and so any order that groups rows as required satisfies the
3728 ** request.
3729 **
3730 ** Normally, in this case it is not possible for the caller to determine
3731 ** whether or not the rows are really being delivered in sorted order, or
3732 ** just in some other order that provides the required grouping. However,
3733 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
3734 ** this function may be called on the returned WhereInfo object. It returns
3735 ** true if the rows really will be sorted in the specified order, or false
3736 ** otherwise.
3737 **
3738 ** For example, assuming:
3739 **
3740 **   CREATE INDEX i1 ON t1(x, Y);
3741 **
3742 ** then
3743 **
3744 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
3745 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
3746 */
3747 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
3748   assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
3749   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
3750   return pWInfo->sorted;
3751 }
3752 
3753 #ifdef WHERETRACE_ENABLED
3754 /* For debugging use only: */
3755 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
3756   static char zName[65];
3757   int i;
3758   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
3759   if( pLast ) zName[i++] = pLast->cId;
3760   zName[i] = 0;
3761   return zName;
3762 }
3763 #endif
3764 
3765 /*
3766 ** Return the cost of sorting nRow rows, assuming that the keys have
3767 ** nOrderby columns and that the first nSorted columns are already in
3768 ** order.
3769 */
3770 static LogEst whereSortingCost(
3771   WhereInfo *pWInfo,
3772   LogEst nRow,
3773   int nOrderBy,
3774   int nSorted
3775 ){
3776   /* TUNING: Estimated cost of a full external sort, where N is
3777   ** the number of rows to sort is:
3778   **
3779   **   cost = (3.0 * N * log(N)).
3780   **
3781   ** Or, if the order-by clause has X terms but only the last Y
3782   ** terms are out of order, then block-sorting will reduce the
3783   ** sorting cost to:
3784   **
3785   **   cost = (3.0 * N * log(N)) * (Y/X)
3786   **
3787   ** The (Y/X) term is implemented using stack variable rScale
3788   ** below.  */
3789   LogEst rScale, rSortCost;
3790   assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
3791   rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
3792   rSortCost = nRow + rScale + 16;
3793 
3794   /* Multiple by log(M) where M is the number of output rows.
3795   ** Use the LIMIT for M if it is smaller */
3796   if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
3797     nRow = pWInfo->iLimit;
3798   }
3799   rSortCost += estLog(nRow);
3800   return rSortCost;
3801 }
3802 
3803 /*
3804 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
3805 ** attempts to find the lowest cost path that visits each WhereLoop
3806 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
3807 **
3808 ** Assume that the total number of output rows that will need to be sorted
3809 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
3810 ** costs if nRowEst==0.
3811 **
3812 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
3813 ** error occurs.
3814 */
3815 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
3816   int mxChoice;             /* Maximum number of simultaneous paths tracked */
3817   int nLoop;                /* Number of terms in the join */
3818   Parse *pParse;            /* Parsing context */
3819   sqlite3 *db;              /* The database connection */
3820   int iLoop;                /* Loop counter over the terms of the join */
3821   int ii, jj;               /* Loop counters */
3822   int mxI = 0;              /* Index of next entry to replace */
3823   int nOrderBy;             /* Number of ORDER BY clause terms */
3824   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
3825   LogEst mxUnsorted = 0;    /* Maximum unsorted cost of a set of path */
3826   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
3827   WherePath *aFrom;         /* All nFrom paths at the previous level */
3828   WherePath *aTo;           /* The nTo best paths at the current level */
3829   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
3830   WherePath *pTo;           /* An element of aTo[] that we are working on */
3831   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
3832   WhereLoop **pX;           /* Used to divy up the pSpace memory */
3833   LogEst *aSortCost = 0;    /* Sorting and partial sorting costs */
3834   char *pSpace;             /* Temporary memory used by this routine */
3835   int nSpace;               /* Bytes of space allocated at pSpace */
3836 
3837   pParse = pWInfo->pParse;
3838   db = pParse->db;
3839   nLoop = pWInfo->nLevel;
3840   /* TUNING: For simple queries, only the best path is tracked.
3841   ** For 2-way joins, the 5 best paths are followed.
3842   ** For joins of 3 or more tables, track the 10 best paths */
3843   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
3844   assert( nLoop<=pWInfo->pTabList->nSrc );
3845   WHERETRACE(0x002, ("---- begin solver.  (nRowEst=%d)\n", nRowEst));
3846 
3847   /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
3848   ** case the purpose of this call is to estimate the number of rows returned
3849   ** by the overall query. Once this estimate has been obtained, the caller
3850   ** will invoke this function a second time, passing the estimate as the
3851   ** nRowEst parameter.  */
3852   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
3853     nOrderBy = 0;
3854   }else{
3855     nOrderBy = pWInfo->pOrderBy->nExpr;
3856   }
3857 
3858   /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
3859   nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
3860   nSpace += sizeof(LogEst) * nOrderBy;
3861   pSpace = sqlite3DbMallocRawNN(db, nSpace);
3862   if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
3863   aTo = (WherePath*)pSpace;
3864   aFrom = aTo+mxChoice;
3865   memset(aFrom, 0, sizeof(aFrom[0]));
3866   pX = (WhereLoop**)(aFrom+mxChoice);
3867   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
3868     pFrom->aLoop = pX;
3869   }
3870   if( nOrderBy ){
3871     /* If there is an ORDER BY clause and it is not being ignored, set up
3872     ** space for the aSortCost[] array. Each element of the aSortCost array
3873     ** is either zero - meaning it has not yet been initialized - or the
3874     ** cost of sorting nRowEst rows of data where the first X terms of
3875     ** the ORDER BY clause are already in order, where X is the array
3876     ** index.  */
3877     aSortCost = (LogEst*)pX;
3878     memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
3879   }
3880   assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
3881   assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
3882 
3883   /* Seed the search with a single WherePath containing zero WhereLoops.
3884   **
3885   ** TUNING: Do not let the number of iterations go above 28.  If the cost
3886   ** of computing an automatic index is not paid back within the first 28
3887   ** rows, then do not use the automatic index. */
3888   aFrom[0].nRow = MIN(pParse->nQueryLoop, 48);  assert( 48==sqlite3LogEst(28) );
3889   nFrom = 1;
3890   assert( aFrom[0].isOrdered==0 );
3891   if( nOrderBy ){
3892     /* If nLoop is zero, then there are no FROM terms in the query. Since
3893     ** in this case the query may return a maximum of one row, the results
3894     ** are already in the requested order. Set isOrdered to nOrderBy to
3895     ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
3896     ** -1, indicating that the result set may or may not be ordered,
3897     ** depending on the loops added to the current plan.  */
3898     aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
3899   }
3900 
3901   /* Compute successively longer WherePaths using the previous generation
3902   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
3903   ** best paths at each generation */
3904   for(iLoop=0; iLoop<nLoop; iLoop++){
3905     nTo = 0;
3906     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
3907       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
3908         LogEst nOut;                      /* Rows visited by (pFrom+pWLoop) */
3909         LogEst rCost;                     /* Cost of path (pFrom+pWLoop) */
3910         LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
3911         i8 isOrdered = pFrom->isOrdered;  /* isOrdered for (pFrom+pWLoop) */
3912         Bitmask maskNew;                  /* Mask of src visited by (..) */
3913         Bitmask revMask = 0;              /* Mask of rev-order loops for (..) */
3914 
3915         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
3916         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
3917         if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<10 ){
3918           /* Do not use an automatic index if the this loop is expected
3919           ** to run less than 2 times. */
3920           assert( 10==sqlite3LogEst(2) );
3921           continue;
3922         }
3923         /* At this point, pWLoop is a candidate to be the next loop.
3924         ** Compute its cost */
3925         rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
3926         rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
3927         nOut = pFrom->nRow + pWLoop->nOut;
3928         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
3929         if( isOrdered<0 ){
3930           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
3931                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
3932                        iLoop, pWLoop, &revMask);
3933         }else{
3934           revMask = pFrom->revLoop;
3935         }
3936         if( isOrdered>=0 && isOrdered<nOrderBy ){
3937           if( aSortCost[isOrdered]==0 ){
3938             aSortCost[isOrdered] = whereSortingCost(
3939                 pWInfo, nRowEst, nOrderBy, isOrdered
3940             );
3941           }
3942           rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]);
3943 
3944           WHERETRACE(0x002,
3945               ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
3946                aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
3947                rUnsorted, rCost));
3948         }else{
3949           rCost = rUnsorted;
3950         }
3951 
3952         /* Check to see if pWLoop should be added to the set of
3953         ** mxChoice best-so-far paths.
3954         **
3955         ** First look for an existing path among best-so-far paths
3956         ** that covers the same set of loops and has the same isOrdered
3957         ** setting as the current path candidate.
3958         **
3959         ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
3960         ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
3961         ** of legal values for isOrdered, -1..64.
3962         */
3963         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
3964           if( pTo->maskLoop==maskNew
3965            && ((pTo->isOrdered^isOrdered)&0x80)==0
3966           ){
3967             testcase( jj==nTo-1 );
3968             break;
3969           }
3970         }
3971         if( jj>=nTo ){
3972           /* None of the existing best-so-far paths match the candidate. */
3973           if( nTo>=mxChoice
3974            && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
3975           ){
3976             /* The current candidate is no better than any of the mxChoice
3977             ** paths currently in the best-so-far buffer.  So discard
3978             ** this candidate as not viable. */
3979 #ifdef WHERETRACE_ENABLED /* 0x4 */
3980             if( sqlite3WhereTrace&0x4 ){
3981               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d order=%c\n",
3982                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
3983                   isOrdered>=0 ? isOrdered+'0' : '?');
3984             }
3985 #endif
3986             continue;
3987           }
3988           /* If we reach this points it means that the new candidate path
3989           ** needs to be added to the set of best-so-far paths. */
3990           if( nTo<mxChoice ){
3991             /* Increase the size of the aTo set by one */
3992             jj = nTo++;
3993           }else{
3994             /* New path replaces the prior worst to keep count below mxChoice */
3995             jj = mxI;
3996           }
3997           pTo = &aTo[jj];
3998 #ifdef WHERETRACE_ENABLED /* 0x4 */
3999           if( sqlite3WhereTrace&0x4 ){
4000             sqlite3DebugPrintf("New    %s cost=%-3d,%3d order=%c\n",
4001                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
4002                 isOrdered>=0 ? isOrdered+'0' : '?');
4003           }
4004 #endif
4005         }else{
4006           /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4007           ** same set of loops and has the sam isOrdered setting as the
4008           ** candidate path.  Check to see if the candidate should replace
4009           ** pTo or if the candidate should be skipped */
4010           if( pTo->rCost<rCost || (pTo->rCost==rCost && pTo->nRow<=nOut) ){
4011 #ifdef WHERETRACE_ENABLED /* 0x4 */
4012             if( sqlite3WhereTrace&0x4 ){
4013               sqlite3DebugPrintf(
4014                   "Skip   %s cost=%-3d,%3d order=%c",
4015                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
4016                   isOrdered>=0 ? isOrdered+'0' : '?');
4017               sqlite3DebugPrintf("   vs %s cost=%-3d,%d order=%c\n",
4018                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4019                   pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4020             }
4021 #endif
4022             /* Discard the candidate path from further consideration */
4023             testcase( pTo->rCost==rCost );
4024             continue;
4025           }
4026           testcase( pTo->rCost==rCost+1 );
4027           /* Control reaches here if the candidate path is better than the
4028           ** pTo path.  Replace pTo with the candidate. */
4029 #ifdef WHERETRACE_ENABLED /* 0x4 */
4030           if( sqlite3WhereTrace&0x4 ){
4031             sqlite3DebugPrintf(
4032                 "Update %s cost=%-3d,%3d order=%c",
4033                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
4034                 isOrdered>=0 ? isOrdered+'0' : '?');
4035             sqlite3DebugPrintf("  was %s cost=%-3d,%3d order=%c\n",
4036                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4037                 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4038           }
4039 #endif
4040         }
4041         /* pWLoop is a winner.  Add it to the set of best so far */
4042         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4043         pTo->revLoop = revMask;
4044         pTo->nRow = nOut;
4045         pTo->rCost = rCost;
4046         pTo->rUnsorted = rUnsorted;
4047         pTo->isOrdered = isOrdered;
4048         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4049         pTo->aLoop[iLoop] = pWLoop;
4050         if( nTo>=mxChoice ){
4051           mxI = 0;
4052           mxCost = aTo[0].rCost;
4053           mxUnsorted = aTo[0].nRow;
4054           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4055             if( pTo->rCost>mxCost
4056              || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4057             ){
4058               mxCost = pTo->rCost;
4059               mxUnsorted = pTo->rUnsorted;
4060               mxI = jj;
4061             }
4062           }
4063         }
4064       }
4065     }
4066 
4067 #ifdef WHERETRACE_ENABLED  /* >=2 */
4068     if( sqlite3WhereTrace & 0x02 ){
4069       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4070       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4071         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4072            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4073            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4074         if( pTo->isOrdered>0 ){
4075           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4076         }else{
4077           sqlite3DebugPrintf("\n");
4078         }
4079       }
4080     }
4081 #endif
4082 
4083     /* Swap the roles of aFrom and aTo for the next generation */
4084     pFrom = aTo;
4085     aTo = aFrom;
4086     aFrom = pFrom;
4087     nFrom = nTo;
4088   }
4089 
4090   if( nFrom==0 ){
4091     sqlite3ErrorMsg(pParse, "no query solution");
4092     sqlite3DbFree(db, pSpace);
4093     return SQLITE_ERROR;
4094   }
4095 
4096   /* Find the lowest cost path.  pFrom will be left pointing to that path */
4097   pFrom = aFrom;
4098   for(ii=1; ii<nFrom; ii++){
4099     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4100   }
4101   assert( pWInfo->nLevel==nLoop );
4102   /* Load the lowest cost path into pWInfo */
4103   for(iLoop=0; iLoop<nLoop; iLoop++){
4104     WhereLevel *pLevel = pWInfo->a + iLoop;
4105     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
4106     pLevel->iFrom = pWLoop->iTab;
4107     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
4108   }
4109   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
4110    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
4111    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
4112    && nRowEst
4113   ){
4114     Bitmask notUsed;
4115     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pDistinctSet, pFrom,
4116                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
4117     if( rc==pWInfo->pDistinctSet->nExpr ){
4118       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4119     }
4120   }
4121   if( pWInfo->pOrderBy ){
4122     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
4123       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
4124         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4125       }
4126     }else{
4127       pWInfo->nOBSat = pFrom->isOrdered;
4128       pWInfo->revMask = pFrom->revLoop;
4129       if( pWInfo->nOBSat<=0 ){
4130         pWInfo->nOBSat = 0;
4131         if( nLoop>0 ){
4132           u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
4133           if( (wsFlags & WHERE_ONEROW)==0
4134            && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
4135           ){
4136             Bitmask m = 0;
4137             int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
4138                       WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
4139             testcase( wsFlags & WHERE_IPK );
4140             testcase( wsFlags & WHERE_COLUMN_IN );
4141             if( rc==pWInfo->pOrderBy->nExpr ){
4142               pWInfo->bOrderedInnerLoop = 1;
4143               pWInfo->revMask = m;
4144             }
4145           }
4146         }
4147       }
4148     }
4149     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
4150         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
4151     ){
4152       Bitmask revMask = 0;
4153       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
4154           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
4155       );
4156       assert( pWInfo->sorted==0 );
4157       if( nOrder==pWInfo->pOrderBy->nExpr ){
4158         pWInfo->sorted = 1;
4159         pWInfo->revMask = revMask;
4160       }
4161     }
4162   }
4163 
4164 
4165   pWInfo->nRowOut = pFrom->nRow;
4166 
4167   /* Free temporary memory and return success */
4168   sqlite3DbFree(db, pSpace);
4169   return SQLITE_OK;
4170 }
4171 
4172 /*
4173 ** Most queries use only a single table (they are not joins) and have
4174 ** simple == constraints against indexed fields.  This routine attempts
4175 ** to plan those simple cases using much less ceremony than the
4176 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4177 ** times for the common case.
4178 **
4179 ** Return non-zero on success, if this query can be handled by this
4180 ** no-frills query planner.  Return zero if this query needs the
4181 ** general-purpose query planner.
4182 */
4183 static int whereShortCut(WhereLoopBuilder *pBuilder){
4184   WhereInfo *pWInfo;
4185   struct SrcList_item *pItem;
4186   WhereClause *pWC;
4187   WhereTerm *pTerm;
4188   WhereLoop *pLoop;
4189   int iCur;
4190   int j;
4191   Table *pTab;
4192   Index *pIdx;
4193 
4194   pWInfo = pBuilder->pWInfo;
4195   if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
4196   assert( pWInfo->pTabList->nSrc>=1 );
4197   pItem = pWInfo->pTabList->a;
4198   pTab = pItem->pTab;
4199   if( IsVirtual(pTab) ) return 0;
4200   if( pItem->fg.isIndexedBy ) return 0;
4201   iCur = pItem->iCursor;
4202   pWC = &pWInfo->sWC;
4203   pLoop = pBuilder->pNew;
4204   pLoop->wsFlags = 0;
4205   pLoop->nSkip = 0;
4206   pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0);
4207   if( pTerm ){
4208     testcase( pTerm->eOperator & WO_IS );
4209     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
4210     pLoop->aLTerm[0] = pTerm;
4211     pLoop->nLTerm = 1;
4212     pLoop->u.btree.nEq = 1;
4213     /* TUNING: Cost of a rowid lookup is 10 */
4214     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
4215   }else{
4216     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4217       int opMask;
4218       assert( pLoop->aLTermSpace==pLoop->aLTerm );
4219       if( !IsUniqueIndex(pIdx)
4220        || pIdx->pPartIdxWhere!=0
4221        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
4222       ) continue;
4223       opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
4224       for(j=0; j<pIdx->nKeyCol; j++){
4225         pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx);
4226         if( pTerm==0 ) break;
4227         testcase( pTerm->eOperator & WO_IS );
4228         pLoop->aLTerm[j] = pTerm;
4229       }
4230       if( j!=pIdx->nKeyCol ) continue;
4231       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
4232       if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){
4233         pLoop->wsFlags |= WHERE_IDX_ONLY;
4234       }
4235       pLoop->nLTerm = j;
4236       pLoop->u.btree.nEq = j;
4237       pLoop->u.btree.pIndex = pIdx;
4238       /* TUNING: Cost of a unique index lookup is 15 */
4239       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
4240       break;
4241     }
4242   }
4243   if( pLoop->wsFlags ){
4244     pLoop->nOut = (LogEst)1;
4245     pWInfo->a[0].pWLoop = pLoop;
4246     pLoop->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
4247     pWInfo->a[0].iTabCur = iCur;
4248     pWInfo->nRowOut = 1;
4249     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
4250     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
4251       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4252     }
4253 #ifdef SQLITE_DEBUG
4254     pLoop->cId = '0';
4255 #endif
4256     return 1;
4257   }
4258   return 0;
4259 }
4260 
4261 /*
4262 ** Generate the beginning of the loop used for WHERE clause processing.
4263 ** The return value is a pointer to an opaque structure that contains
4264 ** information needed to terminate the loop.  Later, the calling routine
4265 ** should invoke sqlite3WhereEnd() with the return value of this function
4266 ** in order to complete the WHERE clause processing.
4267 **
4268 ** If an error occurs, this routine returns NULL.
4269 **
4270 ** The basic idea is to do a nested loop, one loop for each table in
4271 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
4272 ** same as a SELECT with only a single table in the FROM clause.)  For
4273 ** example, if the SQL is this:
4274 **
4275 **       SELECT * FROM t1, t2, t3 WHERE ...;
4276 **
4277 ** Then the code generated is conceptually like the following:
4278 **
4279 **      foreach row1 in t1 do       \    Code generated
4280 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
4281 **          foreach row3 in t3 do   /
4282 **            ...
4283 **          end                     \    Code generated
4284 **        end                        |-- by sqlite3WhereEnd()
4285 **      end                         /
4286 **
4287 ** Note that the loops might not be nested in the order in which they
4288 ** appear in the FROM clause if a different order is better able to make
4289 ** use of indices.  Note also that when the IN operator appears in
4290 ** the WHERE clause, it might result in additional nested loops for
4291 ** scanning through all values on the right-hand side of the IN.
4292 **
4293 ** There are Btree cursors associated with each table.  t1 uses cursor
4294 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
4295 ** And so forth.  This routine generates code to open those VDBE cursors
4296 ** and sqlite3WhereEnd() generates the code to close them.
4297 **
4298 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4299 ** in pTabList pointing at their appropriate entries.  The [...] code
4300 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4301 ** data from the various tables of the loop.
4302 **
4303 ** If the WHERE clause is empty, the foreach loops must each scan their
4304 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
4305 ** the tables have indices and there are terms in the WHERE clause that
4306 ** refer to those indices, a complete table scan can be avoided and the
4307 ** code will run much faster.  Most of the work of this routine is checking
4308 ** to see if there are indices that can be used to speed up the loop.
4309 **
4310 ** Terms of the WHERE clause are also used to limit which rows actually
4311 ** make it to the "..." in the middle of the loop.  After each "foreach",
4312 ** terms of the WHERE clause that use only terms in that loop and outer
4313 ** loops are evaluated and if false a jump is made around all subsequent
4314 ** inner loops (or around the "..." if the test occurs within the inner-
4315 ** most loop)
4316 **
4317 ** OUTER JOINS
4318 **
4319 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4320 **
4321 **    foreach row1 in t1 do
4322 **      flag = 0
4323 **      foreach row2 in t2 do
4324 **        start:
4325 **          ...
4326 **          flag = 1
4327 **      end
4328 **      if flag==0 then
4329 **        move the row2 cursor to a null row
4330 **        goto start
4331 **      fi
4332 **    end
4333 **
4334 ** ORDER BY CLAUSE PROCESSING
4335 **
4336 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
4337 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
4338 ** if there is one.  If there is no ORDER BY clause or if this routine
4339 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
4340 **
4341 ** The iIdxCur parameter is the cursor number of an index.  If
4342 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
4343 ** to use for OR clause processing.  The WHERE clause should use this
4344 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
4345 ** the first cursor in an array of cursors for all indices.  iIdxCur should
4346 ** be used to compute the appropriate cursor depending on which index is
4347 ** used.
4348 */
4349 WhereInfo *sqlite3WhereBegin(
4350   Parse *pParse,          /* The parser context */
4351   SrcList *pTabList,      /* FROM clause: A list of all tables to be scanned */
4352   Expr *pWhere,           /* The WHERE clause */
4353   ExprList *pOrderBy,     /* An ORDER BY (or GROUP BY) clause, or NULL */
4354   ExprList *pDistinctSet, /* Try not to output two rows that duplicate these */
4355   u16 wctrlFlags,         /* The WHERE_* flags defined in sqliteInt.h */
4356   int iAuxArg             /* If WHERE_OR_SUBCLAUSE is set, index cursor number
4357                           ** If WHERE_USE_LIMIT, then the limit amount */
4358 ){
4359   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
4360   int nTabList;              /* Number of elements in pTabList */
4361   WhereInfo *pWInfo;         /* Will become the return value of this function */
4362   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
4363   Bitmask notReady;          /* Cursors that are not yet positioned */
4364   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
4365   WhereMaskSet *pMaskSet;    /* The expression mask set */
4366   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
4367   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
4368   int ii;                    /* Loop counter */
4369   sqlite3 *db;               /* Database connection */
4370   int rc;                    /* Return code */
4371   u8 bFordelete = 0;         /* OPFLAG_FORDELETE or zero, as appropriate */
4372 
4373   assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
4374         (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
4375      && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4376   ));
4377 
4378   /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
4379   assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4380             || (wctrlFlags & WHERE_USE_LIMIT)==0 );
4381 
4382   /* Variable initialization */
4383   db = pParse->db;
4384   memset(&sWLB, 0, sizeof(sWLB));
4385 
4386   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
4387   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
4388   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
4389   sWLB.pOrderBy = pOrderBy;
4390 
4391   /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
4392   ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
4393   if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
4394     wctrlFlags &= ~WHERE_WANT_DISTINCT;
4395   }
4396 
4397   /* The number of tables in the FROM clause is limited by the number of
4398   ** bits in a Bitmask
4399   */
4400   testcase( pTabList->nSrc==BMS );
4401   if( pTabList->nSrc>BMS ){
4402     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
4403     return 0;
4404   }
4405 
4406   /* This function normally generates a nested loop for all tables in
4407   ** pTabList.  But if the WHERE_OR_SUBCLAUSE flag is set, then we should
4408   ** only generate code for the first table in pTabList and assume that
4409   ** any cursors associated with subsequent tables are uninitialized.
4410   */
4411   nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
4412 
4413   /* Allocate and initialize the WhereInfo structure that will become the
4414   ** return value. A single allocation is used to store the WhereInfo
4415   ** struct, the contents of WhereInfo.a[], the WhereClause structure
4416   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4417   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4418   ** some architectures. Hence the ROUND8() below.
4419   */
4420   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
4421   pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
4422   if( db->mallocFailed ){
4423     sqlite3DbFree(db, pWInfo);
4424     pWInfo = 0;
4425     goto whereBeginError;
4426   }
4427   pWInfo->pParse = pParse;
4428   pWInfo->pTabList = pTabList;
4429   pWInfo->pOrderBy = pOrderBy;
4430   pWInfo->pDistinctSet = pDistinctSet;
4431   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
4432   pWInfo->nLevel = nTabList;
4433   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v);
4434   pWInfo->wctrlFlags = wctrlFlags;
4435   pWInfo->iLimit = iAuxArg;
4436   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
4437   memset(&pWInfo->nOBSat, 0,
4438          offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
4439   memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
4440   assert( pWInfo->eOnePass==ONEPASS_OFF );  /* ONEPASS defaults to OFF */
4441   pMaskSet = &pWInfo->sMaskSet;
4442   sWLB.pWInfo = pWInfo;
4443   sWLB.pWC = &pWInfo->sWC;
4444   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
4445   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
4446   whereLoopInit(sWLB.pNew);
4447 #ifdef SQLITE_DEBUG
4448   sWLB.pNew->cId = '*';
4449 #endif
4450 
4451   /* Split the WHERE clause into separate subexpressions where each
4452   ** subexpression is separated by an AND operator.
4453   */
4454   initMaskSet(pMaskSet);
4455   sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
4456   sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
4457 
4458   /* Special case: a WHERE clause that is constant.  Evaluate the
4459   ** expression and either jump over all of the code or fall thru.
4460   */
4461   for(ii=0; ii<sWLB.pWC->nTerm; ii++){
4462     if( nTabList==0 || sqlite3ExprIsConstantNotJoin(sWLB.pWC->a[ii].pExpr) ){
4463       sqlite3ExprIfFalse(pParse, sWLB.pWC->a[ii].pExpr, pWInfo->iBreak,
4464                          SQLITE_JUMPIFNULL);
4465       sWLB.pWC->a[ii].wtFlags |= TERM_CODED;
4466     }
4467   }
4468 
4469   /* Special case: No FROM clause
4470   */
4471   if( nTabList==0 ){
4472     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
4473     if( wctrlFlags & WHERE_WANT_DISTINCT ){
4474       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4475     }
4476   }
4477 
4478   /* Assign a bit from the bitmask to every term in the FROM clause.
4479   **
4480   ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
4481   **
4482   ** The rule of the previous sentence ensures thta if X is the bitmask for
4483   ** a table T, then X-1 is the bitmask for all other tables to the left of T.
4484   ** Knowing the bitmask for all tables to the left of a left join is
4485   ** important.  Ticket #3015.
4486   **
4487   ** Note that bitmasks are created for all pTabList->nSrc tables in
4488   ** pTabList, not just the first nTabList tables.  nTabList is normally
4489   ** equal to pTabList->nSrc but might be shortened to 1 if the
4490   ** WHERE_OR_SUBCLAUSE flag is set.
4491   */
4492   for(ii=0; ii<pTabList->nSrc; ii++){
4493     createMask(pMaskSet, pTabList->a[ii].iCursor);
4494     sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
4495   }
4496 #ifdef SQLITE_DEBUG
4497   for(ii=0; ii<pTabList->nSrc; ii++){
4498     Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
4499     assert( m==MASKBIT(ii) );
4500   }
4501 #endif
4502 
4503   /* Analyze all of the subexpressions. */
4504   sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
4505   if( db->mallocFailed ) goto whereBeginError;
4506 
4507   if( wctrlFlags & WHERE_WANT_DISTINCT ){
4508     if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pDistinctSet) ){
4509       /* The DISTINCT marking is pointless.  Ignore it. */
4510       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4511     }else if( pOrderBy==0 ){
4512       /* Try to ORDER BY the result set to make distinct processing easier */
4513       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
4514       pWInfo->pOrderBy = pDistinctSet;
4515     }
4516   }
4517 
4518   /* Construct the WhereLoop objects */
4519 #if defined(WHERETRACE_ENABLED)
4520   if( sqlite3WhereTrace & 0xffff ){
4521     sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
4522     if( wctrlFlags & WHERE_USE_LIMIT ){
4523       sqlite3DebugPrintf(", limit: %d", iAuxArg);
4524     }
4525     sqlite3DebugPrintf(")\n");
4526   }
4527   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
4528     sqlite3WhereClausePrint(sWLB.pWC);
4529   }
4530 #endif
4531 
4532   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
4533     rc = whereLoopAddAll(&sWLB);
4534     if( rc ) goto whereBeginError;
4535 
4536 #ifdef WHERETRACE_ENABLED
4537     if( sqlite3WhereTrace ){    /* Display all of the WhereLoop objects */
4538       WhereLoop *p;
4539       int i;
4540       static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
4541                                              "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
4542       for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
4543         p->cId = zLabel[i%sizeof(zLabel)];
4544         whereLoopPrint(p, sWLB.pWC);
4545       }
4546     }
4547 #endif
4548 
4549     wherePathSolver(pWInfo, 0);
4550     if( db->mallocFailed ) goto whereBeginError;
4551     if( pWInfo->pOrderBy ){
4552        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
4553        if( db->mallocFailed ) goto whereBeginError;
4554     }
4555   }
4556   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
4557      pWInfo->revMask = ALLBITS;
4558   }
4559   if( pParse->nErr || NEVER(db->mallocFailed) ){
4560     goto whereBeginError;
4561   }
4562 #ifdef WHERETRACE_ENABLED
4563   if( sqlite3WhereTrace ){
4564     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
4565     if( pWInfo->nOBSat>0 ){
4566       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
4567     }
4568     switch( pWInfo->eDistinct ){
4569       case WHERE_DISTINCT_UNIQUE: {
4570         sqlite3DebugPrintf("  DISTINCT=unique");
4571         break;
4572       }
4573       case WHERE_DISTINCT_ORDERED: {
4574         sqlite3DebugPrintf("  DISTINCT=ordered");
4575         break;
4576       }
4577       case WHERE_DISTINCT_UNORDERED: {
4578         sqlite3DebugPrintf("  DISTINCT=unordered");
4579         break;
4580       }
4581     }
4582     sqlite3DebugPrintf("\n");
4583     for(ii=0; ii<pWInfo->nLevel; ii++){
4584       whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
4585     }
4586   }
4587 #endif
4588   /* Attempt to omit tables from the join that do not effect the result */
4589   if( pWInfo->nLevel>=2
4590    && pDistinctSet!=0
4591    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
4592   ){
4593     Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pDistinctSet);
4594     if( sWLB.pOrderBy ){
4595       tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy);
4596     }
4597     while( pWInfo->nLevel>=2 ){
4598       WhereTerm *pTerm, *pEnd;
4599       pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop;
4600       if( (pWInfo->pTabList->a[pLoop->iTab].fg.jointype & JT_LEFT)==0 ) break;
4601       if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
4602        && (pLoop->wsFlags & WHERE_ONEROW)==0
4603       ){
4604         break;
4605       }
4606       if( (tabUsed & pLoop->maskSelf)!=0 ) break;
4607       pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
4608       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
4609         if( (pTerm->prereqAll & pLoop->maskSelf)!=0
4610          && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
4611         ){
4612           break;
4613         }
4614       }
4615       if( pTerm<pEnd ) break;
4616       WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
4617       pWInfo->nLevel--;
4618       nTabList--;
4619     }
4620   }
4621   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
4622   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
4623 
4624   /* If the caller is an UPDATE or DELETE statement that is requesting
4625   ** to use a one-pass algorithm, determine if this is appropriate.
4626   */
4627   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
4628   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
4629     int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
4630     int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
4631     if( bOnerow
4632      || ((wctrlFlags & WHERE_ONEPASS_MULTIROW)!=0
4633            && 0==(wsFlags & WHERE_VIRTUALTABLE))
4634     ){
4635       pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
4636       if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
4637         if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
4638           bFordelete = OPFLAG_FORDELETE;
4639         }
4640         pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
4641       }
4642     }
4643   }
4644 
4645   /* Open all tables in the pTabList and any indices selected for
4646   ** searching those tables.
4647   */
4648   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
4649     Table *pTab;     /* Table to open */
4650     int iDb;         /* Index of database containing table/index */
4651     struct SrcList_item *pTabItem;
4652 
4653     pTabItem = &pTabList->a[pLevel->iFrom];
4654     pTab = pTabItem->pTab;
4655     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4656     pLoop = pLevel->pWLoop;
4657     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
4658       /* Do nothing */
4659     }else
4660 #ifndef SQLITE_OMIT_VIRTUALTABLE
4661     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
4662       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
4663       int iCur = pTabItem->iCursor;
4664       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
4665     }else if( IsVirtual(pTab) ){
4666       /* noop */
4667     }else
4668 #endif
4669     if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
4670          && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
4671       int op = OP_OpenRead;
4672       if( pWInfo->eOnePass!=ONEPASS_OFF ){
4673         op = OP_OpenWrite;
4674         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
4675       };
4676       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
4677       assert( pTabItem->iCursor==pLevel->iTabCur );
4678       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
4679       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
4680       if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){
4681         Bitmask b = pTabItem->colUsed;
4682         int n = 0;
4683         for(; b; b=b>>1, n++){}
4684         sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
4685         assert( n<=pTab->nCol );
4686       }
4687 #ifdef SQLITE_ENABLE_CURSOR_HINTS
4688       if( pLoop->u.btree.pIndex!=0 ){
4689         sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
4690       }else
4691 #endif
4692       {
4693         sqlite3VdbeChangeP5(v, bFordelete);
4694       }
4695 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4696       sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
4697                             (const u8*)&pTabItem->colUsed, P4_INT64);
4698 #endif
4699     }else{
4700       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4701     }
4702     if( pLoop->wsFlags & WHERE_INDEXED ){
4703       Index *pIx = pLoop->u.btree.pIndex;
4704       int iIndexCur;
4705       int op = OP_OpenRead;
4706       /* iAuxArg is always set if to a positive value if ONEPASS is possible */
4707       assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
4708       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
4709        && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
4710       ){
4711         /* This is one term of an OR-optimization using the PRIMARY KEY of a
4712         ** WITHOUT ROWID table.  No need for a separate index */
4713         iIndexCur = pLevel->iTabCur;
4714         op = 0;
4715       }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
4716         Index *pJ = pTabItem->pTab->pIndex;
4717         iIndexCur = iAuxArg;
4718         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
4719         while( ALWAYS(pJ) && pJ!=pIx ){
4720           iIndexCur++;
4721           pJ = pJ->pNext;
4722         }
4723         op = OP_OpenWrite;
4724         pWInfo->aiCurOnePass[1] = iIndexCur;
4725       }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
4726         iIndexCur = iAuxArg;
4727         op = OP_ReopenIdx;
4728       }else{
4729         iIndexCur = pParse->nTab++;
4730       }
4731       pLevel->iIdxCur = iIndexCur;
4732       assert( pIx->pSchema==pTab->pSchema );
4733       assert( iIndexCur>=0 );
4734       if( op ){
4735         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
4736         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
4737         if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
4738          && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
4739          && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
4740         ){
4741           sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */
4742         }
4743         VdbeComment((v, "%s", pIx->zName));
4744 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4745         {
4746           u64 colUsed = 0;
4747           int ii, jj;
4748           for(ii=0; ii<pIx->nColumn; ii++){
4749             jj = pIx->aiColumn[ii];
4750             if( jj<0 ) continue;
4751             if( jj>63 ) jj = 63;
4752             if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
4753             colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
4754           }
4755           sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
4756                                 (u8*)&colUsed, P4_INT64);
4757         }
4758 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
4759       }
4760     }
4761     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
4762   }
4763   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
4764   if( db->mallocFailed ) goto whereBeginError;
4765 
4766   /* Generate the code to do the search.  Each iteration of the for
4767   ** loop below generates code for a single nested loop of the VM
4768   ** program.
4769   */
4770   notReady = ~(Bitmask)0;
4771   for(ii=0; ii<nTabList; ii++){
4772     int addrExplain;
4773     int wsFlags;
4774     pLevel = &pWInfo->a[ii];
4775     wsFlags = pLevel->pWLoop->wsFlags;
4776 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
4777     if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
4778       constructAutomaticIndex(pParse, &pWInfo->sWC,
4779                 &pTabList->a[pLevel->iFrom], notReady, pLevel);
4780       if( db->mallocFailed ) goto whereBeginError;
4781     }
4782 #endif
4783     addrExplain = sqlite3WhereExplainOneScan(
4784         pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags
4785     );
4786     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
4787     notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady);
4788     pWInfo->iContinue = pLevel->addrCont;
4789     if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
4790       sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
4791     }
4792   }
4793 
4794   /* Done. */
4795   VdbeModuleComment((v, "Begin WHERE-core"));
4796   return pWInfo;
4797 
4798   /* Jump here if malloc fails */
4799 whereBeginError:
4800   if( pWInfo ){
4801     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
4802     whereInfoFree(db, pWInfo);
4803   }
4804   return 0;
4805 }
4806 
4807 /*
4808 ** Generate the end of the WHERE loop.  See comments on
4809 ** sqlite3WhereBegin() for additional information.
4810 */
4811 void sqlite3WhereEnd(WhereInfo *pWInfo){
4812   Parse *pParse = pWInfo->pParse;
4813   Vdbe *v = pParse->pVdbe;
4814   int i;
4815   WhereLevel *pLevel;
4816   WhereLoop *pLoop;
4817   SrcList *pTabList = pWInfo->pTabList;
4818   sqlite3 *db = pParse->db;
4819 
4820   /* Generate loop termination code.
4821   */
4822   VdbeModuleComment((v, "End WHERE-core"));
4823   sqlite3ExprCacheClear(pParse);
4824   for(i=pWInfo->nLevel-1; i>=0; i--){
4825     int addr;
4826     pLevel = &pWInfo->a[i];
4827     pLoop = pLevel->pWLoop;
4828     sqlite3VdbeResolveLabel(v, pLevel->addrCont);
4829     if( pLevel->op!=OP_Noop ){
4830       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
4831       sqlite3VdbeChangeP5(v, pLevel->p5);
4832       VdbeCoverage(v);
4833       VdbeCoverageIf(v, pLevel->op==OP_Next);
4834       VdbeCoverageIf(v, pLevel->op==OP_Prev);
4835       VdbeCoverageIf(v, pLevel->op==OP_VNext);
4836     }
4837     if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
4838       struct InLoop *pIn;
4839       int j;
4840       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
4841       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
4842         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
4843         if( pIn->eEndLoopOp!=OP_Noop ){
4844           sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
4845           VdbeCoverage(v);
4846           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen);
4847           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen);
4848         }
4849         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
4850       }
4851     }
4852     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
4853     if( pLevel->addrSkip ){
4854       sqlite3VdbeGoto(v, pLevel->addrSkip);
4855       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
4856       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
4857       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
4858     }
4859 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
4860     if( pLevel->addrLikeRep ){
4861       sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
4862                         pLevel->addrLikeRep);
4863       VdbeCoverage(v);
4864     }
4865 #endif
4866     if( pLevel->iLeftJoin ){
4867       int ws = pLoop->wsFlags;
4868       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
4869       assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
4870       if( (ws & WHERE_IDX_ONLY)==0 ){
4871         sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
4872       }
4873       if( (ws & WHERE_INDEXED)
4874        || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx)
4875       ){
4876         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
4877       }
4878       if( pLevel->op==OP_Return ){
4879         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
4880       }else{
4881         sqlite3VdbeGoto(v, pLevel->addrFirst);
4882       }
4883       sqlite3VdbeJumpHere(v, addr);
4884     }
4885     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
4886                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
4887   }
4888 
4889   /* The "break" point is here, just past the end of the outer loop.
4890   ** Set it.
4891   */
4892   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
4893 
4894   assert( pWInfo->nLevel<=pTabList->nSrc );
4895   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
4896     int k, last;
4897     VdbeOp *pOp;
4898     Index *pIdx = 0;
4899     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
4900     Table *pTab = pTabItem->pTab;
4901     assert( pTab!=0 );
4902     pLoop = pLevel->pWLoop;
4903 
4904     /* For a co-routine, change all OP_Column references to the table of
4905     ** the co-routine into OP_Copy of result contained in a register.
4906     ** OP_Rowid becomes OP_Null.
4907     */
4908     if( pTabItem->fg.viaCoroutine && !db->mallocFailed ){
4909       translateColumnToCopy(v, pLevel->addrBody, pLevel->iTabCur,
4910                             pTabItem->regResult, 0);
4911       continue;
4912     }
4913 
4914     /* If this scan uses an index, make VDBE code substitutions to read data
4915     ** from the index instead of from the table where possible.  In some cases
4916     ** this optimization prevents the table from ever being read, which can
4917     ** yield a significant performance boost.
4918     **
4919     ** Calls to the code generator in between sqlite3WhereBegin and
4920     ** sqlite3WhereEnd will have created code that references the table
4921     ** directly.  This loop scans all that code looking for opcodes
4922     ** that reference the table and converts them into opcodes that
4923     ** reference the index.
4924     */
4925     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
4926       pIdx = pLoop->u.btree.pIndex;
4927     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
4928       pIdx = pLevel->u.pCovidx;
4929     }
4930     if( pIdx
4931      && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable))
4932      && !db->mallocFailed
4933     ){
4934       last = sqlite3VdbeCurrentAddr(v);
4935       k = pLevel->addrBody;
4936       pOp = sqlite3VdbeGetOp(v, k);
4937       for(; k<last; k++, pOp++){
4938         if( pOp->p1!=pLevel->iTabCur ) continue;
4939         if( pOp->opcode==OP_Column ){
4940           int x = pOp->p2;
4941           assert( pIdx->pTable==pTab );
4942           if( !HasRowid(pTab) ){
4943             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
4944             x = pPk->aiColumn[x];
4945             assert( x>=0 );
4946           }
4947           x = sqlite3ColumnOfIndex(pIdx, x);
4948           if( x>=0 ){
4949             pOp->p2 = x;
4950             pOp->p1 = pLevel->iIdxCur;
4951           }
4952           assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0
4953               || pWInfo->eOnePass );
4954         }else if( pOp->opcode==OP_Rowid ){
4955           pOp->p1 = pLevel->iIdxCur;
4956           pOp->opcode = OP_IdxRowid;
4957         }
4958       }
4959     }
4960   }
4961 
4962   /* Final cleanup
4963   */
4964   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
4965   whereInfoFree(db, pWInfo);
4966   return;
4967 }
4968