1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* Forward declaration of methods */ 23 static int whereLoopResize(sqlite3*, WhereLoop*, int); 24 25 /* Test variable that can be set to enable WHERE tracing */ 26 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 27 /***/ int sqlite3WhereTrace = 0; 28 #endif 29 30 31 /* 32 ** Return the estimated number of output rows from a WHERE clause 33 */ 34 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ 35 return pWInfo->nRowOut; 36 } 37 38 /* 39 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this 40 ** WHERE clause returns outputs for DISTINCT processing. 41 */ 42 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ 43 return pWInfo->eDistinct; 44 } 45 46 /* 47 ** Return TRUE if the WHERE clause returns rows in ORDER BY order. 48 ** Return FALSE if the output needs to be sorted. 49 */ 50 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ 51 return pWInfo->nOBSat; 52 } 53 54 /* 55 ** Return TRUE if the innermost loop of the WHERE clause implementation 56 ** returns rows in ORDER BY order for complete run of the inner loop. 57 ** 58 ** Across multiple iterations of outer loops, the output rows need not be 59 ** sorted. As long as rows are sorted for just the innermost loop, this 60 ** routine can return TRUE. 61 */ 62 int sqlite3WhereOrderedInnerLoop(WhereInfo *pWInfo){ 63 return pWInfo->bOrderedInnerLoop; 64 } 65 66 /* 67 ** Return the VDBE address or label to jump to in order to continue 68 ** immediately with the next row of a WHERE clause. 69 */ 70 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ 71 assert( pWInfo->iContinue!=0 ); 72 return pWInfo->iContinue; 73 } 74 75 /* 76 ** Return the VDBE address or label to jump to in order to break 77 ** out of a WHERE loop. 78 */ 79 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ 80 return pWInfo->iBreak; 81 } 82 83 /* 84 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to 85 ** operate directly on the rowis returned by a WHERE clause. Return 86 ** ONEPASS_SINGLE (1) if the statement can operation directly because only 87 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass 88 ** optimization can be used on multiple 89 ** 90 ** If the ONEPASS optimization is used (if this routine returns true) 91 ** then also write the indices of open cursors used by ONEPASS 92 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data 93 ** table and iaCur[1] gets the cursor used by an auxiliary index. 94 ** Either value may be -1, indicating that cursor is not used. 95 ** Any cursors returned will have been opened for writing. 96 ** 97 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is 98 ** unable to use the ONEPASS optimization. 99 */ 100 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ 101 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); 102 #ifdef WHERETRACE_ENABLED 103 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){ 104 sqlite3DebugPrintf("%s cursors: %d %d\n", 105 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI", 106 aiCur[0], aiCur[1]); 107 } 108 #endif 109 return pWInfo->eOnePass; 110 } 111 112 /* 113 ** Move the content of pSrc into pDest 114 */ 115 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ 116 pDest->n = pSrc->n; 117 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); 118 } 119 120 /* 121 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. 122 ** 123 ** The new entry might overwrite an existing entry, or it might be 124 ** appended, or it might be discarded. Do whatever is the right thing 125 ** so that pSet keeps the N_OR_COST best entries seen so far. 126 */ 127 static int whereOrInsert( 128 WhereOrSet *pSet, /* The WhereOrSet to be updated */ 129 Bitmask prereq, /* Prerequisites of the new entry */ 130 LogEst rRun, /* Run-cost of the new entry */ 131 LogEst nOut /* Number of outputs for the new entry */ 132 ){ 133 u16 i; 134 WhereOrCost *p; 135 for(i=pSet->n, p=pSet->a; i>0; i--, p++){ 136 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ 137 goto whereOrInsert_done; 138 } 139 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ 140 return 0; 141 } 142 } 143 if( pSet->n<N_OR_COST ){ 144 p = &pSet->a[pSet->n++]; 145 p->nOut = nOut; 146 }else{ 147 p = pSet->a; 148 for(i=1; i<pSet->n; i++){ 149 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; 150 } 151 if( p->rRun<=rRun ) return 0; 152 } 153 whereOrInsert_done: 154 p->prereq = prereq; 155 p->rRun = rRun; 156 if( p->nOut>nOut ) p->nOut = nOut; 157 return 1; 158 } 159 160 /* 161 ** Return the bitmask for the given cursor number. Return 0 if 162 ** iCursor is not in the set. 163 */ 164 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ 165 int i; 166 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); 167 for(i=0; i<pMaskSet->n; i++){ 168 if( pMaskSet->ix[i]==iCursor ){ 169 return MASKBIT(i); 170 } 171 } 172 return 0; 173 } 174 175 /* 176 ** Create a new mask for cursor iCursor. 177 ** 178 ** There is one cursor per table in the FROM clause. The number of 179 ** tables in the FROM clause is limited by a test early in the 180 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 181 ** array will never overflow. 182 */ 183 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 184 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 185 pMaskSet->ix[pMaskSet->n++] = iCursor; 186 } 187 188 /* 189 ** Advance to the next WhereTerm that matches according to the criteria 190 ** established when the pScan object was initialized by whereScanInit(). 191 ** Return NULL if there are no more matching WhereTerms. 192 */ 193 static WhereTerm *whereScanNext(WhereScan *pScan){ 194 int iCur; /* The cursor on the LHS of the term */ 195 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */ 196 Expr *pX; /* An expression being tested */ 197 WhereClause *pWC; /* Shorthand for pScan->pWC */ 198 WhereTerm *pTerm; /* The term being tested */ 199 int k = pScan->k; /* Where to start scanning */ 200 201 assert( pScan->iEquiv<=pScan->nEquiv ); 202 pWC = pScan->pWC; 203 while(1){ 204 iColumn = pScan->aiColumn[pScan->iEquiv-1]; 205 iCur = pScan->aiCur[pScan->iEquiv-1]; 206 assert( pWC!=0 ); 207 do{ 208 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ 209 if( pTerm->leftCursor==iCur 210 && pTerm->u.leftColumn==iColumn 211 && (iColumn!=XN_EXPR 212 || sqlite3ExprCompare(pTerm->pExpr->pLeft,pScan->pIdxExpr,iCur)==0) 213 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 214 ){ 215 if( (pTerm->eOperator & WO_EQUIV)!=0 216 && pScan->nEquiv<ArraySize(pScan->aiCur) 217 && (pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight))->op==TK_COLUMN 218 ){ 219 int j; 220 for(j=0; j<pScan->nEquiv; j++){ 221 if( pScan->aiCur[j]==pX->iTable 222 && pScan->aiColumn[j]==pX->iColumn ){ 223 break; 224 } 225 } 226 if( j==pScan->nEquiv ){ 227 pScan->aiCur[j] = pX->iTable; 228 pScan->aiColumn[j] = pX->iColumn; 229 pScan->nEquiv++; 230 } 231 } 232 if( (pTerm->eOperator & pScan->opMask)!=0 ){ 233 /* Verify the affinity and collating sequence match */ 234 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ 235 CollSeq *pColl; 236 Parse *pParse = pWC->pWInfo->pParse; 237 pX = pTerm->pExpr; 238 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ 239 continue; 240 } 241 assert(pX->pLeft); 242 pColl = sqlite3BinaryCompareCollSeq(pParse, 243 pX->pLeft, pX->pRight); 244 if( pColl==0 ) pColl = pParse->db->pDfltColl; 245 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ 246 continue; 247 } 248 } 249 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0 250 && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN 251 && pX->iTable==pScan->aiCur[0] 252 && pX->iColumn==pScan->aiColumn[0] 253 ){ 254 testcase( pTerm->eOperator & WO_IS ); 255 continue; 256 } 257 pScan->pWC = pWC; 258 pScan->k = k+1; 259 return pTerm; 260 } 261 } 262 } 263 pWC = pWC->pOuter; 264 k = 0; 265 }while( pWC!=0 ); 266 if( pScan->iEquiv>=pScan->nEquiv ) break; 267 pWC = pScan->pOrigWC; 268 k = 0; 269 pScan->iEquiv++; 270 } 271 return 0; 272 } 273 274 /* 275 ** Initialize a WHERE clause scanner object. Return a pointer to the 276 ** first match. Return NULL if there are no matches. 277 ** 278 ** The scanner will be searching the WHERE clause pWC. It will look 279 ** for terms of the form "X <op> <expr>" where X is column iColumn of table 280 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx 281 ** must be one of the indexes of table iCur. 282 ** 283 ** The <op> must be one of the operators described by opMask. 284 ** 285 ** If the search is for X and the WHERE clause contains terms of the 286 ** form X=Y then this routine might also return terms of the form 287 ** "Y <op> <expr>". The number of levels of transitivity is limited, 288 ** but is enough to handle most commonly occurring SQL statements. 289 ** 290 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with 291 ** index pIdx. 292 */ 293 static WhereTerm *whereScanInit( 294 WhereScan *pScan, /* The WhereScan object being initialized */ 295 WhereClause *pWC, /* The WHERE clause to be scanned */ 296 int iCur, /* Cursor to scan for */ 297 int iColumn, /* Column to scan for */ 298 u32 opMask, /* Operator(s) to scan for */ 299 Index *pIdx /* Must be compatible with this index */ 300 ){ 301 pScan->pOrigWC = pWC; 302 pScan->pWC = pWC; 303 pScan->pIdxExpr = 0; 304 pScan->idxaff = 0; 305 pScan->zCollName = 0; 306 if( pIdx ){ 307 int j = iColumn; 308 iColumn = pIdx->aiColumn[j]; 309 if( iColumn==XN_EXPR ){ 310 pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr; 311 }else if( iColumn==pIdx->pTable->iPKey ){ 312 iColumn = XN_ROWID; 313 }else if( iColumn>=0 ){ 314 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; 315 pScan->zCollName = pIdx->azColl[j]; 316 } 317 }else if( iColumn==XN_EXPR ){ 318 return 0; 319 } 320 pScan->opMask = opMask; 321 pScan->k = 0; 322 pScan->aiCur[0] = iCur; 323 pScan->aiColumn[0] = iColumn; 324 pScan->nEquiv = 1; 325 pScan->iEquiv = 1; 326 return whereScanNext(pScan); 327 } 328 329 /* 330 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 331 ** where X is a reference to the iColumn of table iCur or of index pIdx 332 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by 333 ** the op parameter. Return a pointer to the term. Return 0 if not found. 334 ** 335 ** If pIdx!=0 then it must be one of the indexes of table iCur. 336 ** Search for terms matching the iColumn-th column of pIdx 337 ** rather than the iColumn-th column of table iCur. 338 ** 339 ** The term returned might by Y=<expr> if there is another constraint in 340 ** the WHERE clause that specifies that X=Y. Any such constraints will be 341 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The 342 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11 343 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10 344 ** other equivalent values. Hence a search for X will return <expr> if X=A1 345 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>. 346 ** 347 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" 348 ** then try for the one with no dependencies on <expr> - in other words where 349 ** <expr> is a constant expression of some kind. Only return entries of 350 ** the form "X <op> Y" where Y is a column in another table if no terms of 351 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS 352 ** exist, try to return a term that does not use WO_EQUIV. 353 */ 354 WhereTerm *sqlite3WhereFindTerm( 355 WhereClause *pWC, /* The WHERE clause to be searched */ 356 int iCur, /* Cursor number of LHS */ 357 int iColumn, /* Column number of LHS */ 358 Bitmask notReady, /* RHS must not overlap with this mask */ 359 u32 op, /* Mask of WO_xx values describing operator */ 360 Index *pIdx /* Must be compatible with this index, if not NULL */ 361 ){ 362 WhereTerm *pResult = 0; 363 WhereTerm *p; 364 WhereScan scan; 365 366 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); 367 op &= WO_EQ|WO_IS; 368 while( p ){ 369 if( (p->prereqRight & notReady)==0 ){ 370 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){ 371 testcase( p->eOperator & WO_IS ); 372 return p; 373 } 374 if( pResult==0 ) pResult = p; 375 } 376 p = whereScanNext(&scan); 377 } 378 return pResult; 379 } 380 381 /* 382 ** This function searches pList for an entry that matches the iCol-th column 383 ** of index pIdx. 384 ** 385 ** If such an expression is found, its index in pList->a[] is returned. If 386 ** no expression is found, -1 is returned. 387 */ 388 static int findIndexCol( 389 Parse *pParse, /* Parse context */ 390 ExprList *pList, /* Expression list to search */ 391 int iBase, /* Cursor for table associated with pIdx */ 392 Index *pIdx, /* Index to match column of */ 393 int iCol /* Column of index to match */ 394 ){ 395 int i; 396 const char *zColl = pIdx->azColl[iCol]; 397 398 for(i=0; i<pList->nExpr; i++){ 399 Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr); 400 if( p->op==TK_COLUMN 401 && p->iColumn==pIdx->aiColumn[iCol] 402 && p->iTable==iBase 403 ){ 404 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); 405 if( pColl && 0==sqlite3StrICmp(pColl->zName, zColl) ){ 406 return i; 407 } 408 } 409 } 410 411 return -1; 412 } 413 414 /* 415 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL 416 */ 417 static int indexColumnNotNull(Index *pIdx, int iCol){ 418 int j; 419 assert( pIdx!=0 ); 420 assert( iCol>=0 && iCol<pIdx->nColumn ); 421 j = pIdx->aiColumn[iCol]; 422 if( j>=0 ){ 423 return pIdx->pTable->aCol[j].notNull; 424 }else if( j==(-1) ){ 425 return 1; 426 }else{ 427 assert( j==(-2) ); 428 return 0; /* Assume an indexed expression can always yield a NULL */ 429 430 } 431 } 432 433 /* 434 ** Return true if the DISTINCT expression-list passed as the third argument 435 ** is redundant. 436 ** 437 ** A DISTINCT list is redundant if any subset of the columns in the 438 ** DISTINCT list are collectively unique and individually non-null. 439 */ 440 static int isDistinctRedundant( 441 Parse *pParse, /* Parsing context */ 442 SrcList *pTabList, /* The FROM clause */ 443 WhereClause *pWC, /* The WHERE clause */ 444 ExprList *pDistinct /* The result set that needs to be DISTINCT */ 445 ){ 446 Table *pTab; 447 Index *pIdx; 448 int i; 449 int iBase; 450 451 /* If there is more than one table or sub-select in the FROM clause of 452 ** this query, then it will not be possible to show that the DISTINCT 453 ** clause is redundant. */ 454 if( pTabList->nSrc!=1 ) return 0; 455 iBase = pTabList->a[0].iCursor; 456 pTab = pTabList->a[0].pTab; 457 458 /* If any of the expressions is an IPK column on table iBase, then return 459 ** true. Note: The (p->iTable==iBase) part of this test may be false if the 460 ** current SELECT is a correlated sub-query. 461 */ 462 for(i=0; i<pDistinct->nExpr; i++){ 463 Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr); 464 if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1; 465 } 466 467 /* Loop through all indices on the table, checking each to see if it makes 468 ** the DISTINCT qualifier redundant. It does so if: 469 ** 470 ** 1. The index is itself UNIQUE, and 471 ** 472 ** 2. All of the columns in the index are either part of the pDistinct 473 ** list, or else the WHERE clause contains a term of the form "col=X", 474 ** where X is a constant value. The collation sequences of the 475 ** comparison and select-list expressions must match those of the index. 476 ** 477 ** 3. All of those index columns for which the WHERE clause does not 478 ** contain a "col=X" term are subject to a NOT NULL constraint. 479 */ 480 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 481 if( !IsUniqueIndex(pIdx) ) continue; 482 for(i=0; i<pIdx->nKeyCol; i++){ 483 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){ 484 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break; 485 if( indexColumnNotNull(pIdx, i)==0 ) break; 486 } 487 } 488 if( i==pIdx->nKeyCol ){ 489 /* This index implies that the DISTINCT qualifier is redundant. */ 490 return 1; 491 } 492 } 493 494 return 0; 495 } 496 497 498 /* 499 ** Estimate the logarithm of the input value to base 2. 500 */ 501 static LogEst estLog(LogEst N){ 502 return N<=10 ? 0 : sqlite3LogEst(N) - 33; 503 } 504 505 /* 506 ** Convert OP_Column opcodes to OP_Copy in previously generated code. 507 ** 508 ** This routine runs over generated VDBE code and translates OP_Column 509 ** opcodes into OP_Copy when the table is being accessed via co-routine 510 ** instead of via table lookup. 511 ** 512 ** If the bIncrRowid parameter is 0, then any OP_Rowid instructions on 513 ** cursor iTabCur are transformed into OP_Null. Or, if bIncrRowid is non-zero, 514 ** then each OP_Rowid is transformed into an instruction to increment the 515 ** value stored in its output register. 516 */ 517 static void translateColumnToCopy( 518 Vdbe *v, /* The VDBE containing code to translate */ 519 int iStart, /* Translate from this opcode to the end */ 520 int iTabCur, /* OP_Column/OP_Rowid references to this table */ 521 int iRegister, /* The first column is in this register */ 522 int bIncrRowid /* If non-zero, transform OP_rowid to OP_AddImm(1) */ 523 ){ 524 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart); 525 int iEnd = sqlite3VdbeCurrentAddr(v); 526 for(; iStart<iEnd; iStart++, pOp++){ 527 if( pOp->p1!=iTabCur ) continue; 528 if( pOp->opcode==OP_Column ){ 529 pOp->opcode = OP_Copy; 530 pOp->p1 = pOp->p2 + iRegister; 531 pOp->p2 = pOp->p3; 532 pOp->p3 = 0; 533 }else if( pOp->opcode==OP_Rowid ){ 534 if( bIncrRowid ){ 535 /* Increment the value stored in the P2 operand of the OP_Rowid. */ 536 pOp->opcode = OP_AddImm; 537 pOp->p1 = pOp->p2; 538 pOp->p2 = 1; 539 }else{ 540 pOp->opcode = OP_Null; 541 pOp->p1 = 0; 542 pOp->p3 = 0; 543 } 544 } 545 } 546 } 547 548 /* 549 ** Two routines for printing the content of an sqlite3_index_info 550 ** structure. Used for testing and debugging only. If neither 551 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 552 ** are no-ops. 553 */ 554 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) 555 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ 556 int i; 557 if( !sqlite3WhereTrace ) return; 558 for(i=0; i<p->nConstraint; i++){ 559 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 560 i, 561 p->aConstraint[i].iColumn, 562 p->aConstraint[i].iTermOffset, 563 p->aConstraint[i].op, 564 p->aConstraint[i].usable); 565 } 566 for(i=0; i<p->nOrderBy; i++){ 567 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 568 i, 569 p->aOrderBy[i].iColumn, 570 p->aOrderBy[i].desc); 571 } 572 } 573 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ 574 int i; 575 if( !sqlite3WhereTrace ) return; 576 for(i=0; i<p->nConstraint; i++){ 577 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 578 i, 579 p->aConstraintUsage[i].argvIndex, 580 p->aConstraintUsage[i].omit); 581 } 582 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 583 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 584 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 585 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 586 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); 587 } 588 #else 589 #define TRACE_IDX_INPUTS(A) 590 #define TRACE_IDX_OUTPUTS(A) 591 #endif 592 593 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 594 /* 595 ** Return TRUE if the WHERE clause term pTerm is of a form where it 596 ** could be used with an index to access pSrc, assuming an appropriate 597 ** index existed. 598 */ 599 static int termCanDriveIndex( 600 WhereTerm *pTerm, /* WHERE clause term to check */ 601 struct SrcList_item *pSrc, /* Table we are trying to access */ 602 Bitmask notReady /* Tables in outer loops of the join */ 603 ){ 604 char aff; 605 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; 606 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0; 607 if( (pTerm->prereqRight & notReady)!=0 ) return 0; 608 if( pTerm->u.leftColumn<0 ) return 0; 609 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; 610 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; 611 testcase( pTerm->pExpr->op==TK_IS ); 612 return 1; 613 } 614 #endif 615 616 617 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 618 /* 619 ** Generate code to construct the Index object for an automatic index 620 ** and to set up the WhereLevel object pLevel so that the code generator 621 ** makes use of the automatic index. 622 */ 623 static void constructAutomaticIndex( 624 Parse *pParse, /* The parsing context */ 625 WhereClause *pWC, /* The WHERE clause */ 626 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */ 627 Bitmask notReady, /* Mask of cursors that are not available */ 628 WhereLevel *pLevel /* Write new index here */ 629 ){ 630 int nKeyCol; /* Number of columns in the constructed index */ 631 WhereTerm *pTerm; /* A single term of the WHERE clause */ 632 WhereTerm *pWCEnd; /* End of pWC->a[] */ 633 Index *pIdx; /* Object describing the transient index */ 634 Vdbe *v; /* Prepared statement under construction */ 635 int addrInit; /* Address of the initialization bypass jump */ 636 Table *pTable; /* The table being indexed */ 637 int addrTop; /* Top of the index fill loop */ 638 int regRecord; /* Register holding an index record */ 639 int n; /* Column counter */ 640 int i; /* Loop counter */ 641 int mxBitCol; /* Maximum column in pSrc->colUsed */ 642 CollSeq *pColl; /* Collating sequence to on a column */ 643 WhereLoop *pLoop; /* The Loop object */ 644 char *zNotUsed; /* Extra space on the end of pIdx */ 645 Bitmask idxCols; /* Bitmap of columns used for indexing */ 646 Bitmask extraCols; /* Bitmap of additional columns */ 647 u8 sentWarning = 0; /* True if a warnning has been issued */ 648 Expr *pPartial = 0; /* Partial Index Expression */ 649 int iContinue = 0; /* Jump here to skip excluded rows */ 650 struct SrcList_item *pTabItem; /* FROM clause term being indexed */ 651 int addrCounter = 0; /* Address where integer counter is initialized */ 652 int regBase; /* Array of registers where record is assembled */ 653 654 /* Generate code to skip over the creation and initialization of the 655 ** transient index on 2nd and subsequent iterations of the loop. */ 656 v = pParse->pVdbe; 657 assert( v!=0 ); 658 addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 659 660 /* Count the number of columns that will be added to the index 661 ** and used to match WHERE clause constraints */ 662 nKeyCol = 0; 663 pTable = pSrc->pTab; 664 pWCEnd = &pWC->a[pWC->nTerm]; 665 pLoop = pLevel->pWLoop; 666 idxCols = 0; 667 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 668 Expr *pExpr = pTerm->pExpr; 669 assert( !ExprHasProperty(pExpr, EP_FromJoin) /* prereq always non-zero */ 670 || pExpr->iRightJoinTable!=pSrc->iCursor /* for the right-hand */ 671 || pLoop->prereq!=0 ); /* table of a LEFT JOIN */ 672 if( pLoop->prereq==0 673 && (pTerm->wtFlags & TERM_VIRTUAL)==0 674 && !ExprHasProperty(pExpr, EP_FromJoin) 675 && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){ 676 pPartial = sqlite3ExprAnd(pParse->db, pPartial, 677 sqlite3ExprDup(pParse->db, pExpr, 0)); 678 } 679 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 680 int iCol = pTerm->u.leftColumn; 681 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 682 testcase( iCol==BMS ); 683 testcase( iCol==BMS-1 ); 684 if( !sentWarning ){ 685 sqlite3_log(SQLITE_WARNING_AUTOINDEX, 686 "automatic index on %s(%s)", pTable->zName, 687 pTable->aCol[iCol].zName); 688 sentWarning = 1; 689 } 690 if( (idxCols & cMask)==0 ){ 691 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ 692 goto end_auto_index_create; 693 } 694 pLoop->aLTerm[nKeyCol++] = pTerm; 695 idxCols |= cMask; 696 } 697 } 698 } 699 assert( nKeyCol>0 ); 700 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; 701 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED 702 | WHERE_AUTO_INDEX; 703 704 /* Count the number of additional columns needed to create a 705 ** covering index. A "covering index" is an index that contains all 706 ** columns that are needed by the query. With a covering index, the 707 ** original table never needs to be accessed. Automatic indices must 708 ** be a covering index because the index will not be updated if the 709 ** original table changes and the index and table cannot both be used 710 ** if they go out of sync. 711 */ 712 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); 713 mxBitCol = MIN(BMS-1,pTable->nCol); 714 testcase( pTable->nCol==BMS-1 ); 715 testcase( pTable->nCol==BMS-2 ); 716 for(i=0; i<mxBitCol; i++){ 717 if( extraCols & MASKBIT(i) ) nKeyCol++; 718 } 719 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 720 nKeyCol += pTable->nCol - BMS + 1; 721 } 722 723 /* Construct the Index object to describe this index */ 724 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); 725 if( pIdx==0 ) goto end_auto_index_create; 726 pLoop->u.btree.pIndex = pIdx; 727 pIdx->zName = "auto-index"; 728 pIdx->pTable = pTable; 729 n = 0; 730 idxCols = 0; 731 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 732 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 733 int iCol = pTerm->u.leftColumn; 734 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 735 testcase( iCol==BMS-1 ); 736 testcase( iCol==BMS ); 737 if( (idxCols & cMask)==0 ){ 738 Expr *pX = pTerm->pExpr; 739 idxCols |= cMask; 740 pIdx->aiColumn[n] = pTerm->u.leftColumn; 741 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); 742 pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY; 743 n++; 744 } 745 } 746 } 747 assert( (u32)n==pLoop->u.btree.nEq ); 748 749 /* Add additional columns needed to make the automatic index into 750 ** a covering index */ 751 for(i=0; i<mxBitCol; i++){ 752 if( extraCols & MASKBIT(i) ){ 753 pIdx->aiColumn[n] = i; 754 pIdx->azColl[n] = sqlite3StrBINARY; 755 n++; 756 } 757 } 758 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 759 for(i=BMS-1; i<pTable->nCol; i++){ 760 pIdx->aiColumn[n] = i; 761 pIdx->azColl[n] = sqlite3StrBINARY; 762 n++; 763 } 764 } 765 assert( n==nKeyCol ); 766 pIdx->aiColumn[n] = XN_ROWID; 767 pIdx->azColl[n] = sqlite3StrBINARY; 768 769 /* Create the automatic index */ 770 assert( pLevel->iIdxCur>=0 ); 771 pLevel->iIdxCur = pParse->nTab++; 772 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); 773 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 774 VdbeComment((v, "for %s", pTable->zName)); 775 776 /* Fill the automatic index with content */ 777 sqlite3ExprCachePush(pParse); 778 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom]; 779 if( pTabItem->fg.viaCoroutine ){ 780 int regYield = pTabItem->regReturn; 781 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0); 782 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 783 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); 784 VdbeCoverage(v); 785 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); 786 }else{ 787 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); 788 } 789 if( pPartial ){ 790 iContinue = sqlite3VdbeMakeLabel(v); 791 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); 792 pLoop->wsFlags |= WHERE_PARTIALIDX; 793 } 794 regRecord = sqlite3GetTempReg(pParse); 795 regBase = sqlite3GenerateIndexKey( 796 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0 797 ); 798 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); 799 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 800 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); 801 if( pTabItem->fg.viaCoroutine ){ 802 sqlite3VdbeChangeP2(v, addrCounter, regBase+n); 803 translateColumnToCopy(v, addrTop, pLevel->iTabCur, pTabItem->regResult, 1); 804 sqlite3VdbeGoto(v, addrTop); 805 pTabItem->fg.viaCoroutine = 0; 806 }else{ 807 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); 808 } 809 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); 810 sqlite3VdbeJumpHere(v, addrTop); 811 sqlite3ReleaseTempReg(pParse, regRecord); 812 sqlite3ExprCachePop(pParse); 813 814 /* Jump here when skipping the initialization */ 815 sqlite3VdbeJumpHere(v, addrInit); 816 817 end_auto_index_create: 818 sqlite3ExprDelete(pParse->db, pPartial); 819 } 820 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 821 822 #ifndef SQLITE_OMIT_VIRTUALTABLE 823 /* 824 ** Allocate and populate an sqlite3_index_info structure. It is the 825 ** responsibility of the caller to eventually release the structure 826 ** by passing the pointer returned by this function to sqlite3_free(). 827 */ 828 static sqlite3_index_info *allocateIndexInfo( 829 Parse *pParse, 830 WhereClause *pWC, 831 Bitmask mUnusable, /* Ignore terms with these prereqs */ 832 struct SrcList_item *pSrc, 833 ExprList *pOrderBy, 834 u16 *pmNoOmit /* Mask of terms not to omit */ 835 ){ 836 int i, j; 837 int nTerm; 838 struct sqlite3_index_constraint *pIdxCons; 839 struct sqlite3_index_orderby *pIdxOrderBy; 840 struct sqlite3_index_constraint_usage *pUsage; 841 WhereTerm *pTerm; 842 int nOrderBy; 843 sqlite3_index_info *pIdxInfo; 844 u16 mNoOmit = 0; 845 846 /* Count the number of possible WHERE clause constraints referring 847 ** to this virtual table */ 848 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 849 if( pTerm->leftCursor != pSrc->iCursor ) continue; 850 if( pTerm->prereqRight & mUnusable ) continue; 851 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 852 testcase( pTerm->eOperator & WO_IN ); 853 testcase( pTerm->eOperator & WO_ISNULL ); 854 testcase( pTerm->eOperator & WO_IS ); 855 testcase( pTerm->eOperator & WO_ALL ); 856 if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue; 857 if( pTerm->wtFlags & TERM_VNULL ) continue; 858 assert( pTerm->u.leftColumn>=(-1) ); 859 nTerm++; 860 } 861 862 /* If the ORDER BY clause contains only columns in the current 863 ** virtual table then allocate space for the aOrderBy part of 864 ** the sqlite3_index_info structure. 865 */ 866 nOrderBy = 0; 867 if( pOrderBy ){ 868 int n = pOrderBy->nExpr; 869 for(i=0; i<n; i++){ 870 Expr *pExpr = pOrderBy->a[i].pExpr; 871 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 872 } 873 if( i==n){ 874 nOrderBy = n; 875 } 876 } 877 878 /* Allocate the sqlite3_index_info structure 879 */ 880 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 881 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 882 + sizeof(*pIdxOrderBy)*nOrderBy ); 883 if( pIdxInfo==0 ){ 884 sqlite3ErrorMsg(pParse, "out of memory"); 885 return 0; 886 } 887 888 /* Initialize the structure. The sqlite3_index_info structure contains 889 ** many fields that are declared "const" to prevent xBestIndex from 890 ** changing them. We have to do some funky casting in order to 891 ** initialize those fields. 892 */ 893 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; 894 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 895 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 896 *(int*)&pIdxInfo->nConstraint = nTerm; 897 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 898 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; 899 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; 900 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = 901 pUsage; 902 903 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 904 u8 op; 905 if( pTerm->leftCursor != pSrc->iCursor ) continue; 906 if( pTerm->prereqRight & mUnusable ) continue; 907 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 908 testcase( pTerm->eOperator & WO_IN ); 909 testcase( pTerm->eOperator & WO_IS ); 910 testcase( pTerm->eOperator & WO_ISNULL ); 911 testcase( pTerm->eOperator & WO_ALL ); 912 if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue; 913 if( pTerm->wtFlags & TERM_VNULL ) continue; 914 assert( pTerm->u.leftColumn>=(-1) ); 915 pIdxCons[j].iColumn = pTerm->u.leftColumn; 916 pIdxCons[j].iTermOffset = i; 917 op = (u8)pTerm->eOperator & WO_ALL; 918 if( op==WO_IN ) op = WO_EQ; 919 if( op==WO_MATCH ){ 920 op = pTerm->eMatchOp; 921 } 922 pIdxCons[j].op = op; 923 /* The direct assignment in the previous line is possible only because 924 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 925 ** following asserts verify this fact. */ 926 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 927 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 928 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 929 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 930 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 931 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); 932 assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); 933 934 if( op & (WO_LT|WO_LE|WO_GT|WO_GE) 935 && sqlite3ExprIsVector(pTerm->pExpr->pRight) 936 ){ 937 if( i<16 ) mNoOmit |= (1 << i); 938 if( op==WO_LT ) pIdxCons[j].op = WO_LE; 939 if( op==WO_GT ) pIdxCons[j].op = WO_GE; 940 } 941 942 j++; 943 } 944 for(i=0; i<nOrderBy; i++){ 945 Expr *pExpr = pOrderBy->a[i].pExpr; 946 pIdxOrderBy[i].iColumn = pExpr->iColumn; 947 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; 948 } 949 950 *pmNoOmit = mNoOmit; 951 return pIdxInfo; 952 } 953 954 /* 955 ** The table object reference passed as the second argument to this function 956 ** must represent a virtual table. This function invokes the xBestIndex() 957 ** method of the virtual table with the sqlite3_index_info object that 958 ** comes in as the 3rd argument to this function. 959 ** 960 ** If an error occurs, pParse is populated with an error message and a 961 ** non-zero value is returned. Otherwise, 0 is returned and the output 962 ** part of the sqlite3_index_info structure is left populated. 963 ** 964 ** Whether or not an error is returned, it is the responsibility of the 965 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates 966 ** that this is required. 967 */ 968 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ 969 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; 970 int rc; 971 972 TRACE_IDX_INPUTS(p); 973 rc = pVtab->pModule->xBestIndex(pVtab, p); 974 TRACE_IDX_OUTPUTS(p); 975 976 if( rc!=SQLITE_OK ){ 977 if( rc==SQLITE_NOMEM ){ 978 sqlite3OomFault(pParse->db); 979 }else if( !pVtab->zErrMsg ){ 980 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 981 }else{ 982 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 983 } 984 } 985 sqlite3_free(pVtab->zErrMsg); 986 pVtab->zErrMsg = 0; 987 988 #if 0 989 /* This error is now caught by the caller. 990 ** Search for "xBestIndex malfunction" below */ 991 for(i=0; i<p->nConstraint; i++){ 992 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){ 993 sqlite3ErrorMsg(pParse, 994 "table %s: xBestIndex returned an invalid plan", pTab->zName); 995 } 996 } 997 #endif 998 999 return pParse->nErr; 1000 } 1001 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1002 1003 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1004 /* 1005 ** Estimate the location of a particular key among all keys in an 1006 ** index. Store the results in aStat as follows: 1007 ** 1008 ** aStat[0] Est. number of rows less than pRec 1009 ** aStat[1] Est. number of rows equal to pRec 1010 ** 1011 ** Return the index of the sample that is the smallest sample that 1012 ** is greater than or equal to pRec. Note that this index is not an index 1013 ** into the aSample[] array - it is an index into a virtual set of samples 1014 ** based on the contents of aSample[] and the number of fields in record 1015 ** pRec. 1016 */ 1017 static int whereKeyStats( 1018 Parse *pParse, /* Database connection */ 1019 Index *pIdx, /* Index to consider domain of */ 1020 UnpackedRecord *pRec, /* Vector of values to consider */ 1021 int roundUp, /* Round up if true. Round down if false */ 1022 tRowcnt *aStat /* OUT: stats written here */ 1023 ){ 1024 IndexSample *aSample = pIdx->aSample; 1025 int iCol; /* Index of required stats in anEq[] etc. */ 1026 int i; /* Index of first sample >= pRec */ 1027 int iSample; /* Smallest sample larger than or equal to pRec */ 1028 int iMin = 0; /* Smallest sample not yet tested */ 1029 int iTest; /* Next sample to test */ 1030 int res; /* Result of comparison operation */ 1031 int nField; /* Number of fields in pRec */ 1032 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ 1033 1034 #ifndef SQLITE_DEBUG 1035 UNUSED_PARAMETER( pParse ); 1036 #endif 1037 assert( pRec!=0 ); 1038 assert( pIdx->nSample>0 ); 1039 assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol ); 1040 1041 /* Do a binary search to find the first sample greater than or equal 1042 ** to pRec. If pRec contains a single field, the set of samples to search 1043 ** is simply the aSample[] array. If the samples in aSample[] contain more 1044 ** than one fields, all fields following the first are ignored. 1045 ** 1046 ** If pRec contains N fields, where N is more than one, then as well as the 1047 ** samples in aSample[] (truncated to N fields), the search also has to 1048 ** consider prefixes of those samples. For example, if the set of samples 1049 ** in aSample is: 1050 ** 1051 ** aSample[0] = (a, 5) 1052 ** aSample[1] = (a, 10) 1053 ** aSample[2] = (b, 5) 1054 ** aSample[3] = (c, 100) 1055 ** aSample[4] = (c, 105) 1056 ** 1057 ** Then the search space should ideally be the samples above and the 1058 ** unique prefixes [a], [b] and [c]. But since that is hard to organize, 1059 ** the code actually searches this set: 1060 ** 1061 ** 0: (a) 1062 ** 1: (a, 5) 1063 ** 2: (a, 10) 1064 ** 3: (a, 10) 1065 ** 4: (b) 1066 ** 5: (b, 5) 1067 ** 6: (c) 1068 ** 7: (c, 100) 1069 ** 8: (c, 105) 1070 ** 9: (c, 105) 1071 ** 1072 ** For each sample in the aSample[] array, N samples are present in the 1073 ** effective sample array. In the above, samples 0 and 1 are based on 1074 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. 1075 ** 1076 ** Often, sample i of each block of N effective samples has (i+1) fields. 1077 ** Except, each sample may be extended to ensure that it is greater than or 1078 ** equal to the previous sample in the array. For example, in the above, 1079 ** sample 2 is the first sample of a block of N samples, so at first it 1080 ** appears that it should be 1 field in size. However, that would make it 1081 ** smaller than sample 1, so the binary search would not work. As a result, 1082 ** it is extended to two fields. The duplicates that this creates do not 1083 ** cause any problems. 1084 */ 1085 nField = pRec->nField; 1086 iCol = 0; 1087 iSample = pIdx->nSample * nField; 1088 do{ 1089 int iSamp; /* Index in aSample[] of test sample */ 1090 int n; /* Number of fields in test sample */ 1091 1092 iTest = (iMin+iSample)/2; 1093 iSamp = iTest / nField; 1094 if( iSamp>0 ){ 1095 /* The proposed effective sample is a prefix of sample aSample[iSamp]. 1096 ** Specifically, the shortest prefix of at least (1 + iTest%nField) 1097 ** fields that is greater than the previous effective sample. */ 1098 for(n=(iTest % nField) + 1; n<nField; n++){ 1099 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break; 1100 } 1101 }else{ 1102 n = iTest + 1; 1103 } 1104 1105 pRec->nField = n; 1106 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); 1107 if( res<0 ){ 1108 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; 1109 iMin = iTest+1; 1110 }else if( res==0 && n<nField ){ 1111 iLower = aSample[iSamp].anLt[n-1]; 1112 iMin = iTest+1; 1113 res = -1; 1114 }else{ 1115 iSample = iTest; 1116 iCol = n-1; 1117 } 1118 }while( res && iMin<iSample ); 1119 i = iSample / nField; 1120 1121 #ifdef SQLITE_DEBUG 1122 /* The following assert statements check that the binary search code 1123 ** above found the right answer. This block serves no purpose other 1124 ** than to invoke the asserts. */ 1125 if( pParse->db->mallocFailed==0 ){ 1126 if( res==0 ){ 1127 /* If (res==0) is true, then pRec must be equal to sample i. */ 1128 assert( i<pIdx->nSample ); 1129 assert( iCol==nField-1 ); 1130 pRec->nField = nField; 1131 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) 1132 || pParse->db->mallocFailed 1133 ); 1134 }else{ 1135 /* Unless i==pIdx->nSample, indicating that pRec is larger than 1136 ** all samples in the aSample[] array, pRec must be smaller than the 1137 ** (iCol+1) field prefix of sample i. */ 1138 assert( i<=pIdx->nSample && i>=0 ); 1139 pRec->nField = iCol+1; 1140 assert( i==pIdx->nSample 1141 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 1142 || pParse->db->mallocFailed ); 1143 1144 /* if i==0 and iCol==0, then record pRec is smaller than all samples 1145 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must 1146 ** be greater than or equal to the (iCol) field prefix of sample i. 1147 ** If (i>0), then pRec must also be greater than sample (i-1). */ 1148 if( iCol>0 ){ 1149 pRec->nField = iCol; 1150 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 1151 || pParse->db->mallocFailed ); 1152 } 1153 if( i>0 ){ 1154 pRec->nField = nField; 1155 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 1156 || pParse->db->mallocFailed ); 1157 } 1158 } 1159 } 1160 #endif /* ifdef SQLITE_DEBUG */ 1161 1162 if( res==0 ){ 1163 /* Record pRec is equal to sample i */ 1164 assert( iCol==nField-1 ); 1165 aStat[0] = aSample[i].anLt[iCol]; 1166 aStat[1] = aSample[i].anEq[iCol]; 1167 }else{ 1168 /* At this point, the (iCol+1) field prefix of aSample[i] is the first 1169 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec 1170 ** is larger than all samples in the array. */ 1171 tRowcnt iUpper, iGap; 1172 if( i>=pIdx->nSample ){ 1173 iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); 1174 }else{ 1175 iUpper = aSample[i].anLt[iCol]; 1176 } 1177 1178 if( iLower>=iUpper ){ 1179 iGap = 0; 1180 }else{ 1181 iGap = iUpper - iLower; 1182 } 1183 if( roundUp ){ 1184 iGap = (iGap*2)/3; 1185 }else{ 1186 iGap = iGap/3; 1187 } 1188 aStat[0] = iLower + iGap; 1189 aStat[1] = pIdx->aAvgEq[iCol]; 1190 } 1191 1192 /* Restore the pRec->nField value before returning. */ 1193 pRec->nField = nField; 1194 return i; 1195 } 1196 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1197 1198 /* 1199 ** If it is not NULL, pTerm is a term that provides an upper or lower 1200 ** bound on a range scan. Without considering pTerm, it is estimated 1201 ** that the scan will visit nNew rows. This function returns the number 1202 ** estimated to be visited after taking pTerm into account. 1203 ** 1204 ** If the user explicitly specified a likelihood() value for this term, 1205 ** then the return value is the likelihood multiplied by the number of 1206 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term 1207 ** has a likelihood of 0.50, and any other term a likelihood of 0.25. 1208 */ 1209 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ 1210 LogEst nRet = nNew; 1211 if( pTerm ){ 1212 if( pTerm->truthProb<=0 ){ 1213 nRet += pTerm->truthProb; 1214 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ 1215 nRet -= 20; assert( 20==sqlite3LogEst(4) ); 1216 } 1217 } 1218 return nRet; 1219 } 1220 1221 1222 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1223 /* 1224 ** Return the affinity for a single column of an index. 1225 */ 1226 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){ 1227 assert( iCol>=0 && iCol<pIdx->nColumn ); 1228 if( !pIdx->zColAff ){ 1229 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB; 1230 } 1231 return pIdx->zColAff[iCol]; 1232 } 1233 #endif 1234 1235 1236 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1237 /* 1238 ** This function is called to estimate the number of rows visited by a 1239 ** range-scan on a skip-scan index. For example: 1240 ** 1241 ** CREATE INDEX i1 ON t1(a, b, c); 1242 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; 1243 ** 1244 ** Value pLoop->nOut is currently set to the estimated number of rows 1245 ** visited for scanning (a=? AND b=?). This function reduces that estimate 1246 ** by some factor to account for the (c BETWEEN ? AND ?) expression based 1247 ** on the stat4 data for the index. this scan will be peformed multiple 1248 ** times (once for each (a,b) combination that matches a=?) is dealt with 1249 ** by the caller. 1250 ** 1251 ** It does this by scanning through all stat4 samples, comparing values 1252 ** extracted from pLower and pUpper with the corresponding column in each 1253 ** sample. If L and U are the number of samples found to be less than or 1254 ** equal to the values extracted from pLower and pUpper respectively, and 1255 ** N is the total number of samples, the pLoop->nOut value is adjusted 1256 ** as follows: 1257 ** 1258 ** nOut = nOut * ( min(U - L, 1) / N ) 1259 ** 1260 ** If pLower is NULL, or a value cannot be extracted from the term, L is 1261 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, 1262 ** U is set to N. 1263 ** 1264 ** Normally, this function sets *pbDone to 1 before returning. However, 1265 ** if no value can be extracted from either pLower or pUpper (and so the 1266 ** estimate of the number of rows delivered remains unchanged), *pbDone 1267 ** is left as is. 1268 ** 1269 ** If an error occurs, an SQLite error code is returned. Otherwise, 1270 ** SQLITE_OK. 1271 */ 1272 static int whereRangeSkipScanEst( 1273 Parse *pParse, /* Parsing & code generating context */ 1274 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1275 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1276 WhereLoop *pLoop, /* Update the .nOut value of this loop */ 1277 int *pbDone /* Set to true if at least one expr. value extracted */ 1278 ){ 1279 Index *p = pLoop->u.btree.pIndex; 1280 int nEq = pLoop->u.btree.nEq; 1281 sqlite3 *db = pParse->db; 1282 int nLower = -1; 1283 int nUpper = p->nSample+1; 1284 int rc = SQLITE_OK; 1285 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq); 1286 CollSeq *pColl; 1287 1288 sqlite3_value *p1 = 0; /* Value extracted from pLower */ 1289 sqlite3_value *p2 = 0; /* Value extracted from pUpper */ 1290 sqlite3_value *pVal = 0; /* Value extracted from record */ 1291 1292 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); 1293 if( pLower ){ 1294 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); 1295 nLower = 0; 1296 } 1297 if( pUpper && rc==SQLITE_OK ){ 1298 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); 1299 nUpper = p2 ? 0 : p->nSample; 1300 } 1301 1302 if( p1 || p2 ){ 1303 int i; 1304 int nDiff; 1305 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ 1306 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); 1307 if( rc==SQLITE_OK && p1 ){ 1308 int res = sqlite3MemCompare(p1, pVal, pColl); 1309 if( res>=0 ) nLower++; 1310 } 1311 if( rc==SQLITE_OK && p2 ){ 1312 int res = sqlite3MemCompare(p2, pVal, pColl); 1313 if( res>=0 ) nUpper++; 1314 } 1315 } 1316 nDiff = (nUpper - nLower); 1317 if( nDiff<=0 ) nDiff = 1; 1318 1319 /* If there is both an upper and lower bound specified, and the 1320 ** comparisons indicate that they are close together, use the fallback 1321 ** method (assume that the scan visits 1/64 of the rows) for estimating 1322 ** the number of rows visited. Otherwise, estimate the number of rows 1323 ** using the method described in the header comment for this function. */ 1324 if( nDiff!=1 || pUpper==0 || pLower==0 ){ 1325 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); 1326 pLoop->nOut -= nAdjust; 1327 *pbDone = 1; 1328 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", 1329 nLower, nUpper, nAdjust*-1, pLoop->nOut)); 1330 } 1331 1332 }else{ 1333 assert( *pbDone==0 ); 1334 } 1335 1336 sqlite3ValueFree(p1); 1337 sqlite3ValueFree(p2); 1338 sqlite3ValueFree(pVal); 1339 1340 return rc; 1341 } 1342 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1343 1344 /* 1345 ** This function is used to estimate the number of rows that will be visited 1346 ** by scanning an index for a range of values. The range may have an upper 1347 ** bound, a lower bound, or both. The WHERE clause terms that set the upper 1348 ** and lower bounds are represented by pLower and pUpper respectively. For 1349 ** example, assuming that index p is on t1(a): 1350 ** 1351 ** ... FROM t1 WHERE a > ? AND a < ? ... 1352 ** |_____| |_____| 1353 ** | | 1354 ** pLower pUpper 1355 ** 1356 ** If either of the upper or lower bound is not present, then NULL is passed in 1357 ** place of the corresponding WhereTerm. 1358 ** 1359 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index 1360 ** column subject to the range constraint. Or, equivalently, the number of 1361 ** equality constraints optimized by the proposed index scan. For example, 1362 ** assuming index p is on t1(a, b), and the SQL query is: 1363 ** 1364 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... 1365 ** 1366 ** then nEq is set to 1 (as the range restricted column, b, is the second 1367 ** left-most column of the index). Or, if the query is: 1368 ** 1369 ** ... FROM t1 WHERE a > ? AND a < ? ... 1370 ** 1371 ** then nEq is set to 0. 1372 ** 1373 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the 1374 ** number of rows that the index scan is expected to visit without 1375 ** considering the range constraints. If nEq is 0, then *pnOut is the number of 1376 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) 1377 ** to account for the range constraints pLower and pUpper. 1378 ** 1379 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be 1380 ** used, a single range inequality reduces the search space by a factor of 4. 1381 ** and a pair of constraints (x>? AND x<?) reduces the expected number of 1382 ** rows visited by a factor of 64. 1383 */ 1384 static int whereRangeScanEst( 1385 Parse *pParse, /* Parsing & code generating context */ 1386 WhereLoopBuilder *pBuilder, 1387 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1388 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1389 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ 1390 ){ 1391 int rc = SQLITE_OK; 1392 int nOut = pLoop->nOut; 1393 LogEst nNew; 1394 1395 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1396 Index *p = pLoop->u.btree.pIndex; 1397 int nEq = pLoop->u.btree.nEq; 1398 1399 if( p->nSample>0 && nEq<p->nSampleCol ){ 1400 if( nEq==pBuilder->nRecValid ){ 1401 UnpackedRecord *pRec = pBuilder->pRec; 1402 tRowcnt a[2]; 1403 int nBtm = pLoop->u.btree.nBtm; 1404 int nTop = pLoop->u.btree.nTop; 1405 1406 /* Variable iLower will be set to the estimate of the number of rows in 1407 ** the index that are less than the lower bound of the range query. The 1408 ** lower bound being the concatenation of $P and $L, where $P is the 1409 ** key-prefix formed by the nEq values matched against the nEq left-most 1410 ** columns of the index, and $L is the value in pLower. 1411 ** 1412 ** Or, if pLower is NULL or $L cannot be extracted from it (because it 1413 ** is not a simple variable or literal value), the lower bound of the 1414 ** range is $P. Due to a quirk in the way whereKeyStats() works, even 1415 ** if $L is available, whereKeyStats() is called for both ($P) and 1416 ** ($P:$L) and the larger of the two returned values is used. 1417 ** 1418 ** Similarly, iUpper is to be set to the estimate of the number of rows 1419 ** less than the upper bound of the range query. Where the upper bound 1420 ** is either ($P) or ($P:$U). Again, even if $U is available, both values 1421 ** of iUpper are requested of whereKeyStats() and the smaller used. 1422 ** 1423 ** The number of rows between the two bounds is then just iUpper-iLower. 1424 */ 1425 tRowcnt iLower; /* Rows less than the lower bound */ 1426 tRowcnt iUpper; /* Rows less than the upper bound */ 1427 int iLwrIdx = -2; /* aSample[] for the lower bound */ 1428 int iUprIdx = -1; /* aSample[] for the upper bound */ 1429 1430 if( pRec ){ 1431 testcase( pRec->nField!=pBuilder->nRecValid ); 1432 pRec->nField = pBuilder->nRecValid; 1433 } 1434 /* Determine iLower and iUpper using ($P) only. */ 1435 if( nEq==0 ){ 1436 iLower = 0; 1437 iUpper = p->nRowEst0; 1438 }else{ 1439 /* Note: this call could be optimized away - since the same values must 1440 ** have been requested when testing key $P in whereEqualScanEst(). */ 1441 whereKeyStats(pParse, p, pRec, 0, a); 1442 iLower = a[0]; 1443 iUpper = a[0] + a[1]; 1444 } 1445 1446 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); 1447 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); 1448 assert( p->aSortOrder!=0 ); 1449 if( p->aSortOrder[nEq] ){ 1450 /* The roles of pLower and pUpper are swapped for a DESC index */ 1451 SWAP(WhereTerm*, pLower, pUpper); 1452 SWAP(int, nBtm, nTop); 1453 } 1454 1455 /* If possible, improve on the iLower estimate using ($P:$L). */ 1456 if( pLower ){ 1457 int n; /* Values extracted from pExpr */ 1458 Expr *pExpr = pLower->pExpr->pRight; 1459 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n); 1460 if( rc==SQLITE_OK && n ){ 1461 tRowcnt iNew; 1462 u16 mask = WO_GT|WO_LE; 1463 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1464 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); 1465 iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0); 1466 if( iNew>iLower ) iLower = iNew; 1467 nOut--; 1468 pLower = 0; 1469 } 1470 } 1471 1472 /* If possible, improve on the iUpper estimate using ($P:$U). */ 1473 if( pUpper ){ 1474 int n; /* Values extracted from pExpr */ 1475 Expr *pExpr = pUpper->pExpr->pRight; 1476 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n); 1477 if( rc==SQLITE_OK && n ){ 1478 tRowcnt iNew; 1479 u16 mask = WO_GT|WO_LE; 1480 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1481 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); 1482 iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0); 1483 if( iNew<iUpper ) iUpper = iNew; 1484 nOut--; 1485 pUpper = 0; 1486 } 1487 } 1488 1489 pBuilder->pRec = pRec; 1490 if( rc==SQLITE_OK ){ 1491 if( iUpper>iLower ){ 1492 nNew = sqlite3LogEst(iUpper - iLower); 1493 /* TUNING: If both iUpper and iLower are derived from the same 1494 ** sample, then assume they are 4x more selective. This brings 1495 ** the estimated selectivity more in line with what it would be 1496 ** if estimated without the use of STAT3/4 tables. */ 1497 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) ); 1498 }else{ 1499 nNew = 10; assert( 10==sqlite3LogEst(2) ); 1500 } 1501 if( nNew<nOut ){ 1502 nOut = nNew; 1503 } 1504 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", 1505 (u32)iLower, (u32)iUpper, nOut)); 1506 } 1507 }else{ 1508 int bDone = 0; 1509 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); 1510 if( bDone ) return rc; 1511 } 1512 } 1513 #else 1514 UNUSED_PARAMETER(pParse); 1515 UNUSED_PARAMETER(pBuilder); 1516 assert( pLower || pUpper ); 1517 #endif 1518 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); 1519 nNew = whereRangeAdjust(pLower, nOut); 1520 nNew = whereRangeAdjust(pUpper, nNew); 1521 1522 /* TUNING: If there is both an upper and lower limit and neither limit 1523 ** has an application-defined likelihood(), assume the range is 1524 ** reduced by an additional 75%. This means that, by default, an open-ended 1525 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the 1526 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to 1527 ** match 1/64 of the index. */ 1528 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ 1529 nNew -= 20; 1530 } 1531 1532 nOut -= (pLower!=0) + (pUpper!=0); 1533 if( nNew<10 ) nNew = 10; 1534 if( nNew<nOut ) nOut = nNew; 1535 #if defined(WHERETRACE_ENABLED) 1536 if( pLoop->nOut>nOut ){ 1537 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", 1538 pLoop->nOut, nOut)); 1539 } 1540 #endif 1541 pLoop->nOut = (LogEst)nOut; 1542 return rc; 1543 } 1544 1545 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1546 /* 1547 ** Estimate the number of rows that will be returned based on 1548 ** an equality constraint x=VALUE and where that VALUE occurs in 1549 ** the histogram data. This only works when x is the left-most 1550 ** column of an index and sqlite_stat3 histogram data is available 1551 ** for that index. When pExpr==NULL that means the constraint is 1552 ** "x IS NULL" instead of "x=VALUE". 1553 ** 1554 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1555 ** If unable to make an estimate, leave *pnRow unchanged and return 1556 ** non-zero. 1557 ** 1558 ** This routine can fail if it is unable to load a collating sequence 1559 ** required for string comparison, or if unable to allocate memory 1560 ** for a UTF conversion required for comparison. The error is stored 1561 ** in the pParse structure. 1562 */ 1563 static int whereEqualScanEst( 1564 Parse *pParse, /* Parsing & code generating context */ 1565 WhereLoopBuilder *pBuilder, 1566 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ 1567 tRowcnt *pnRow /* Write the revised row estimate here */ 1568 ){ 1569 Index *p = pBuilder->pNew->u.btree.pIndex; 1570 int nEq = pBuilder->pNew->u.btree.nEq; 1571 UnpackedRecord *pRec = pBuilder->pRec; 1572 int rc; /* Subfunction return code */ 1573 tRowcnt a[2]; /* Statistics */ 1574 int bOk; 1575 1576 assert( nEq>=1 ); 1577 assert( nEq<=p->nColumn ); 1578 assert( p->aSample!=0 ); 1579 assert( p->nSample>0 ); 1580 assert( pBuilder->nRecValid<nEq ); 1581 1582 /* If values are not available for all fields of the index to the left 1583 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ 1584 if( pBuilder->nRecValid<(nEq-1) ){ 1585 return SQLITE_NOTFOUND; 1586 } 1587 1588 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() 1589 ** below would return the same value. */ 1590 if( nEq>=p->nColumn ){ 1591 *pnRow = 1; 1592 return SQLITE_OK; 1593 } 1594 1595 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk); 1596 pBuilder->pRec = pRec; 1597 if( rc!=SQLITE_OK ) return rc; 1598 if( bOk==0 ) return SQLITE_NOTFOUND; 1599 pBuilder->nRecValid = nEq; 1600 1601 whereKeyStats(pParse, p, pRec, 0, a); 1602 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n", 1603 p->zName, nEq-1, (int)a[1])); 1604 *pnRow = a[1]; 1605 1606 return rc; 1607 } 1608 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1609 1610 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1611 /* 1612 ** Estimate the number of rows that will be returned based on 1613 ** an IN constraint where the right-hand side of the IN operator 1614 ** is a list of values. Example: 1615 ** 1616 ** WHERE x IN (1,2,3,4) 1617 ** 1618 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1619 ** If unable to make an estimate, leave *pnRow unchanged and return 1620 ** non-zero. 1621 ** 1622 ** This routine can fail if it is unable to load a collating sequence 1623 ** required for string comparison, or if unable to allocate memory 1624 ** for a UTF conversion required for comparison. The error is stored 1625 ** in the pParse structure. 1626 */ 1627 static int whereInScanEst( 1628 Parse *pParse, /* Parsing & code generating context */ 1629 WhereLoopBuilder *pBuilder, 1630 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ 1631 tRowcnt *pnRow /* Write the revised row estimate here */ 1632 ){ 1633 Index *p = pBuilder->pNew->u.btree.pIndex; 1634 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); 1635 int nRecValid = pBuilder->nRecValid; 1636 int rc = SQLITE_OK; /* Subfunction return code */ 1637 tRowcnt nEst; /* Number of rows for a single term */ 1638 tRowcnt nRowEst = 0; /* New estimate of the number of rows */ 1639 int i; /* Loop counter */ 1640 1641 assert( p->aSample!=0 ); 1642 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ 1643 nEst = nRow0; 1644 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); 1645 nRowEst += nEst; 1646 pBuilder->nRecValid = nRecValid; 1647 } 1648 1649 if( rc==SQLITE_OK ){ 1650 if( nRowEst > nRow0 ) nRowEst = nRow0; 1651 *pnRow = nRowEst; 1652 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); 1653 } 1654 assert( pBuilder->nRecValid==nRecValid ); 1655 return rc; 1656 } 1657 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1658 1659 1660 #ifdef WHERETRACE_ENABLED 1661 /* 1662 ** Print the content of a WhereTerm object 1663 */ 1664 static void whereTermPrint(WhereTerm *pTerm, int iTerm){ 1665 if( pTerm==0 ){ 1666 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); 1667 }else{ 1668 char zType[4]; 1669 char zLeft[50]; 1670 memcpy(zType, "...", 4); 1671 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; 1672 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; 1673 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L'; 1674 if( pTerm->eOperator & WO_SINGLE ){ 1675 sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}", 1676 pTerm->leftCursor, pTerm->u.leftColumn); 1677 }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){ 1678 sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%lld", 1679 pTerm->u.pOrInfo->indexable); 1680 }else{ 1681 sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor); 1682 } 1683 sqlite3DebugPrintf( 1684 "TERM-%-3d %p %s %-12s prob=%-3d op=0x%03x wtFlags=0x%04x", 1685 iTerm, pTerm, zType, zLeft, pTerm->truthProb, 1686 pTerm->eOperator, pTerm->wtFlags); 1687 if( pTerm->iField ){ 1688 sqlite3DebugPrintf(" iField=%d\n", pTerm->iField); 1689 }else{ 1690 sqlite3DebugPrintf("\n"); 1691 } 1692 sqlite3TreeViewExpr(0, pTerm->pExpr, 0); 1693 } 1694 } 1695 #endif 1696 1697 #ifdef WHERETRACE_ENABLED 1698 /* 1699 ** Show the complete content of a WhereClause 1700 */ 1701 void sqlite3WhereClausePrint(WhereClause *pWC){ 1702 int i; 1703 for(i=0; i<pWC->nTerm; i++){ 1704 whereTermPrint(&pWC->a[i], i); 1705 } 1706 } 1707 #endif 1708 1709 #ifdef WHERETRACE_ENABLED 1710 /* 1711 ** Print a WhereLoop object for debugging purposes 1712 */ 1713 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){ 1714 WhereInfo *pWInfo = pWC->pWInfo; 1715 int nb = 1+(pWInfo->pTabList->nSrc+3)/4; 1716 struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab; 1717 Table *pTab = pItem->pTab; 1718 Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1; 1719 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, 1720 p->iTab, nb, p->maskSelf, nb, p->prereq & mAll); 1721 sqlite3DebugPrintf(" %12s", 1722 pItem->zAlias ? pItem->zAlias : pTab->zName); 1723 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 1724 const char *zName; 1725 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ 1726 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ 1727 int i = sqlite3Strlen30(zName) - 1; 1728 while( zName[i]!='_' ) i--; 1729 zName += i; 1730 } 1731 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); 1732 }else{ 1733 sqlite3DebugPrintf("%20s",""); 1734 } 1735 }else{ 1736 char *z; 1737 if( p->u.vtab.idxStr ){ 1738 z = sqlite3_mprintf("(%d,\"%s\",%x)", 1739 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); 1740 }else{ 1741 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); 1742 } 1743 sqlite3DebugPrintf(" %-19s", z); 1744 sqlite3_free(z); 1745 } 1746 if( p->wsFlags & WHERE_SKIPSCAN ){ 1747 sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); 1748 }else{ 1749 sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm); 1750 } 1751 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); 1752 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ 1753 int i; 1754 for(i=0; i<p->nLTerm; i++){ 1755 whereTermPrint(p->aLTerm[i], i); 1756 } 1757 } 1758 } 1759 #endif 1760 1761 /* 1762 ** Convert bulk memory into a valid WhereLoop that can be passed 1763 ** to whereLoopClear harmlessly. 1764 */ 1765 static void whereLoopInit(WhereLoop *p){ 1766 p->aLTerm = p->aLTermSpace; 1767 p->nLTerm = 0; 1768 p->nLSlot = ArraySize(p->aLTermSpace); 1769 p->wsFlags = 0; 1770 } 1771 1772 /* 1773 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. 1774 */ 1775 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ 1776 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ 1777 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ 1778 sqlite3_free(p->u.vtab.idxStr); 1779 p->u.vtab.needFree = 0; 1780 p->u.vtab.idxStr = 0; 1781 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ 1782 sqlite3DbFree(db, p->u.btree.pIndex->zColAff); 1783 sqlite3DbFree(db, p->u.btree.pIndex); 1784 p->u.btree.pIndex = 0; 1785 } 1786 } 1787 } 1788 1789 /* 1790 ** Deallocate internal memory used by a WhereLoop object 1791 */ 1792 static void whereLoopClear(sqlite3 *db, WhereLoop *p){ 1793 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); 1794 whereLoopClearUnion(db, p); 1795 whereLoopInit(p); 1796 } 1797 1798 /* 1799 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. 1800 */ 1801 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ 1802 WhereTerm **paNew; 1803 if( p->nLSlot>=n ) return SQLITE_OK; 1804 n = (n+7)&~7; 1805 paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n); 1806 if( paNew==0 ) return SQLITE_NOMEM_BKPT; 1807 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); 1808 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); 1809 p->aLTerm = paNew; 1810 p->nLSlot = n; 1811 return SQLITE_OK; 1812 } 1813 1814 /* 1815 ** Transfer content from the second pLoop into the first. 1816 */ 1817 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ 1818 whereLoopClearUnion(db, pTo); 1819 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){ 1820 memset(&pTo->u, 0, sizeof(pTo->u)); 1821 return SQLITE_NOMEM_BKPT; 1822 } 1823 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); 1824 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); 1825 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ 1826 pFrom->u.vtab.needFree = 0; 1827 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 1828 pFrom->u.btree.pIndex = 0; 1829 } 1830 return SQLITE_OK; 1831 } 1832 1833 /* 1834 ** Delete a WhereLoop object 1835 */ 1836 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ 1837 whereLoopClear(db, p); 1838 sqlite3DbFree(db, p); 1839 } 1840 1841 /* 1842 ** Free a WhereInfo structure 1843 */ 1844 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 1845 if( ALWAYS(pWInfo) ){ 1846 int i; 1847 for(i=0; i<pWInfo->nLevel; i++){ 1848 WhereLevel *pLevel = &pWInfo->a[i]; 1849 if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){ 1850 sqlite3DbFree(db, pLevel->u.in.aInLoop); 1851 } 1852 } 1853 sqlite3WhereClauseClear(&pWInfo->sWC); 1854 while( pWInfo->pLoops ){ 1855 WhereLoop *p = pWInfo->pLoops; 1856 pWInfo->pLoops = p->pNextLoop; 1857 whereLoopDelete(db, p); 1858 } 1859 sqlite3DbFree(db, pWInfo); 1860 } 1861 } 1862 1863 /* 1864 ** Return TRUE if all of the following are true: 1865 ** 1866 ** (1) X has the same or lower cost that Y 1867 ** (2) X is a proper subset of Y 1868 ** (3) X skips at least as many columns as Y 1869 ** 1870 ** By "proper subset" we mean that X uses fewer WHERE clause terms 1871 ** than Y and that every WHERE clause term used by X is also used 1872 ** by Y. 1873 ** 1874 ** If X is a proper subset of Y then Y is a better choice and ought 1875 ** to have a lower cost. This routine returns TRUE when that cost 1876 ** relationship is inverted and needs to be adjusted. The third rule 1877 ** was added because if X uses skip-scan less than Y it still might 1878 ** deserve a lower cost even if it is a proper subset of Y. 1879 */ 1880 static int whereLoopCheaperProperSubset( 1881 const WhereLoop *pX, /* First WhereLoop to compare */ 1882 const WhereLoop *pY /* Compare against this WhereLoop */ 1883 ){ 1884 int i, j; 1885 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ 1886 return 0; /* X is not a subset of Y */ 1887 } 1888 if( pY->nSkip > pX->nSkip ) return 0; 1889 if( pX->rRun >= pY->rRun ){ 1890 if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */ 1891 if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */ 1892 } 1893 for(i=pX->nLTerm-1; i>=0; i--){ 1894 if( pX->aLTerm[i]==0 ) continue; 1895 for(j=pY->nLTerm-1; j>=0; j--){ 1896 if( pY->aLTerm[j]==pX->aLTerm[i] ) break; 1897 } 1898 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ 1899 } 1900 return 1; /* All conditions meet */ 1901 } 1902 1903 /* 1904 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so 1905 ** that: 1906 ** 1907 ** (1) pTemplate costs less than any other WhereLoops that are a proper 1908 ** subset of pTemplate 1909 ** 1910 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate 1911 ** is a proper subset. 1912 ** 1913 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer 1914 ** WHERE clause terms than Y and that every WHERE clause term used by X is 1915 ** also used by Y. 1916 */ 1917 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ 1918 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; 1919 for(; p; p=p->pNextLoop){ 1920 if( p->iTab!=pTemplate->iTab ) continue; 1921 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; 1922 if( whereLoopCheaperProperSubset(p, pTemplate) ){ 1923 /* Adjust pTemplate cost downward so that it is cheaper than its 1924 ** subset p. */ 1925 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 1926 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1)); 1927 pTemplate->rRun = p->rRun; 1928 pTemplate->nOut = p->nOut - 1; 1929 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ 1930 /* Adjust pTemplate cost upward so that it is costlier than p since 1931 ** pTemplate is a proper subset of p */ 1932 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 1933 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1)); 1934 pTemplate->rRun = p->rRun; 1935 pTemplate->nOut = p->nOut + 1; 1936 } 1937 } 1938 } 1939 1940 /* 1941 ** Search the list of WhereLoops in *ppPrev looking for one that can be 1942 ** supplanted by pTemplate. 1943 ** 1944 ** Return NULL if the WhereLoop list contains an entry that can supplant 1945 ** pTemplate, in other words if pTemplate does not belong on the list. 1946 ** 1947 ** If pX is a WhereLoop that pTemplate can supplant, then return the 1948 ** link that points to pX. 1949 ** 1950 ** If pTemplate cannot supplant any existing element of the list but needs 1951 ** to be added to the list, then return a pointer to the tail of the list. 1952 */ 1953 static WhereLoop **whereLoopFindLesser( 1954 WhereLoop **ppPrev, 1955 const WhereLoop *pTemplate 1956 ){ 1957 WhereLoop *p; 1958 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ 1959 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ 1960 /* If either the iTab or iSortIdx values for two WhereLoop are different 1961 ** then those WhereLoops need to be considered separately. Neither is 1962 ** a candidate to replace the other. */ 1963 continue; 1964 } 1965 /* In the current implementation, the rSetup value is either zero 1966 ** or the cost of building an automatic index (NlogN) and the NlogN 1967 ** is the same for compatible WhereLoops. */ 1968 assert( p->rSetup==0 || pTemplate->rSetup==0 1969 || p->rSetup==pTemplate->rSetup ); 1970 1971 /* whereLoopAddBtree() always generates and inserts the automatic index 1972 ** case first. Hence compatible candidate WhereLoops never have a larger 1973 ** rSetup. Call this SETUP-INVARIANT */ 1974 assert( p->rSetup>=pTemplate->rSetup ); 1975 1976 /* Any loop using an appliation-defined index (or PRIMARY KEY or 1977 ** UNIQUE constraint) with one or more == constraints is better 1978 ** than an automatic index. Unless it is a skip-scan. */ 1979 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 1980 && (pTemplate->nSkip)==0 1981 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 1982 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 1983 && (p->prereq & pTemplate->prereq)==pTemplate->prereq 1984 ){ 1985 break; 1986 } 1987 1988 /* If existing WhereLoop p is better than pTemplate, pTemplate can be 1989 ** discarded. WhereLoop p is better if: 1990 ** (1) p has no more dependencies than pTemplate, and 1991 ** (2) p has an equal or lower cost than pTemplate 1992 */ 1993 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ 1994 && p->rSetup<=pTemplate->rSetup /* (2a) */ 1995 && p->rRun<=pTemplate->rRun /* (2b) */ 1996 && p->nOut<=pTemplate->nOut /* (2c) */ 1997 ){ 1998 return 0; /* Discard pTemplate */ 1999 } 2000 2001 /* If pTemplate is always better than p, then cause p to be overwritten 2002 ** with pTemplate. pTemplate is better than p if: 2003 ** (1) pTemplate has no more dependences than p, and 2004 ** (2) pTemplate has an equal or lower cost than p. 2005 */ 2006 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ 2007 && p->rRun>=pTemplate->rRun /* (2a) */ 2008 && p->nOut>=pTemplate->nOut /* (2b) */ 2009 ){ 2010 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ 2011 break; /* Cause p to be overwritten by pTemplate */ 2012 } 2013 } 2014 return ppPrev; 2015 } 2016 2017 /* 2018 ** Insert or replace a WhereLoop entry using the template supplied. 2019 ** 2020 ** An existing WhereLoop entry might be overwritten if the new template 2021 ** is better and has fewer dependencies. Or the template will be ignored 2022 ** and no insert will occur if an existing WhereLoop is faster and has 2023 ** fewer dependencies than the template. Otherwise a new WhereLoop is 2024 ** added based on the template. 2025 ** 2026 ** If pBuilder->pOrSet is not NULL then we care about only the 2027 ** prerequisites and rRun and nOut costs of the N best loops. That 2028 ** information is gathered in the pBuilder->pOrSet object. This special 2029 ** processing mode is used only for OR clause processing. 2030 ** 2031 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we 2032 ** still might overwrite similar loops with the new template if the 2033 ** new template is better. Loops may be overwritten if the following 2034 ** conditions are met: 2035 ** 2036 ** (1) They have the same iTab. 2037 ** (2) They have the same iSortIdx. 2038 ** (3) The template has same or fewer dependencies than the current loop 2039 ** (4) The template has the same or lower cost than the current loop 2040 */ 2041 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ 2042 WhereLoop **ppPrev, *p; 2043 WhereInfo *pWInfo = pBuilder->pWInfo; 2044 sqlite3 *db = pWInfo->pParse->db; 2045 int rc; 2046 2047 /* If pBuilder->pOrSet is defined, then only keep track of the costs 2048 ** and prereqs. 2049 */ 2050 if( pBuilder->pOrSet!=0 ){ 2051 if( pTemplate->nLTerm ){ 2052 #if WHERETRACE_ENABLED 2053 u16 n = pBuilder->pOrSet->n; 2054 int x = 2055 #endif 2056 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, 2057 pTemplate->nOut); 2058 #if WHERETRACE_ENABLED /* 0x8 */ 2059 if( sqlite3WhereTrace & 0x8 ){ 2060 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); 2061 whereLoopPrint(pTemplate, pBuilder->pWC); 2062 } 2063 #endif 2064 } 2065 return SQLITE_OK; 2066 } 2067 2068 /* Look for an existing WhereLoop to replace with pTemplate 2069 */ 2070 whereLoopAdjustCost(pWInfo->pLoops, pTemplate); 2071 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); 2072 2073 if( ppPrev==0 ){ 2074 /* There already exists a WhereLoop on the list that is better 2075 ** than pTemplate, so just ignore pTemplate */ 2076 #if WHERETRACE_ENABLED /* 0x8 */ 2077 if( sqlite3WhereTrace & 0x8 ){ 2078 sqlite3DebugPrintf(" skip: "); 2079 whereLoopPrint(pTemplate, pBuilder->pWC); 2080 } 2081 #endif 2082 return SQLITE_OK; 2083 }else{ 2084 p = *ppPrev; 2085 } 2086 2087 /* If we reach this point it means that either p[] should be overwritten 2088 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new 2089 ** WhereLoop and insert it. 2090 */ 2091 #if WHERETRACE_ENABLED /* 0x8 */ 2092 if( sqlite3WhereTrace & 0x8 ){ 2093 if( p!=0 ){ 2094 sqlite3DebugPrintf("replace: "); 2095 whereLoopPrint(p, pBuilder->pWC); 2096 } 2097 sqlite3DebugPrintf(" add: "); 2098 whereLoopPrint(pTemplate, pBuilder->pWC); 2099 } 2100 #endif 2101 if( p==0 ){ 2102 /* Allocate a new WhereLoop to add to the end of the list */ 2103 *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop)); 2104 if( p==0 ) return SQLITE_NOMEM_BKPT; 2105 whereLoopInit(p); 2106 p->pNextLoop = 0; 2107 }else{ 2108 /* We will be overwriting WhereLoop p[]. But before we do, first 2109 ** go through the rest of the list and delete any other entries besides 2110 ** p[] that are also supplated by pTemplate */ 2111 WhereLoop **ppTail = &p->pNextLoop; 2112 WhereLoop *pToDel; 2113 while( *ppTail ){ 2114 ppTail = whereLoopFindLesser(ppTail, pTemplate); 2115 if( ppTail==0 ) break; 2116 pToDel = *ppTail; 2117 if( pToDel==0 ) break; 2118 *ppTail = pToDel->pNextLoop; 2119 #if WHERETRACE_ENABLED /* 0x8 */ 2120 if( sqlite3WhereTrace & 0x8 ){ 2121 sqlite3DebugPrintf(" delete: "); 2122 whereLoopPrint(pToDel, pBuilder->pWC); 2123 } 2124 #endif 2125 whereLoopDelete(db, pToDel); 2126 } 2127 } 2128 rc = whereLoopXfer(db, p, pTemplate); 2129 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 2130 Index *pIndex = p->u.btree.pIndex; 2131 if( pIndex && pIndex->tnum==0 ){ 2132 p->u.btree.pIndex = 0; 2133 } 2134 } 2135 return rc; 2136 } 2137 2138 /* 2139 ** Adjust the WhereLoop.nOut value downward to account for terms of the 2140 ** WHERE clause that reference the loop but which are not used by an 2141 ** index. 2142 * 2143 ** For every WHERE clause term that is not used by the index 2144 ** and which has a truth probability assigned by one of the likelihood(), 2145 ** likely(), or unlikely() SQL functions, reduce the estimated number 2146 ** of output rows by the probability specified. 2147 ** 2148 ** TUNING: For every WHERE clause term that is not used by the index 2149 ** and which does not have an assigned truth probability, heuristics 2150 ** described below are used to try to estimate the truth probability. 2151 ** TODO --> Perhaps this is something that could be improved by better 2152 ** table statistics. 2153 ** 2154 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% 2155 ** value corresponds to -1 in LogEst notation, so this means decrement 2156 ** the WhereLoop.nOut field for every such WHERE clause term. 2157 ** 2158 ** Heuristic 2: If there exists one or more WHERE clause terms of the 2159 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the 2160 ** final output row estimate is no greater than 1/4 of the total number 2161 ** of rows in the table. In other words, assume that x==EXPR will filter 2162 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the 2163 ** "x" column is boolean or else -1 or 0 or 1 is a common default value 2164 ** on the "x" column and so in that case only cap the output row estimate 2165 ** at 1/2 instead of 1/4. 2166 */ 2167 static void whereLoopOutputAdjust( 2168 WhereClause *pWC, /* The WHERE clause */ 2169 WhereLoop *pLoop, /* The loop to adjust downward */ 2170 LogEst nRow /* Number of rows in the entire table */ 2171 ){ 2172 WhereTerm *pTerm, *pX; 2173 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); 2174 int i, j, k; 2175 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ 2176 2177 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2178 for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){ 2179 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break; 2180 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; 2181 if( (pTerm->prereqAll & notAllowed)!=0 ) continue; 2182 for(j=pLoop->nLTerm-1; j>=0; j--){ 2183 pX = pLoop->aLTerm[j]; 2184 if( pX==0 ) continue; 2185 if( pX==pTerm ) break; 2186 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; 2187 } 2188 if( j<0 ){ 2189 if( pTerm->truthProb<=0 ){ 2190 /* If a truth probability is specified using the likelihood() hints, 2191 ** then use the probability provided by the application. */ 2192 pLoop->nOut += pTerm->truthProb; 2193 }else{ 2194 /* In the absence of explicit truth probabilities, use heuristics to 2195 ** guess a reasonable truth probability. */ 2196 pLoop->nOut--; 2197 if( pTerm->eOperator&(WO_EQ|WO_IS) ){ 2198 Expr *pRight = pTerm->pExpr->pRight; 2199 testcase( pTerm->pExpr->op==TK_IS ); 2200 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){ 2201 k = 10; 2202 }else{ 2203 k = 20; 2204 } 2205 if( iReduce<k ) iReduce = k; 2206 } 2207 } 2208 } 2209 } 2210 if( pLoop->nOut > nRow-iReduce ) pLoop->nOut = nRow - iReduce; 2211 } 2212 2213 /* 2214 ** Term pTerm is a vector range comparison operation. The first comparison 2215 ** in the vector can be optimized using column nEq of the index. This 2216 ** function returns the total number of vector elements that can be used 2217 ** as part of the range comparison. 2218 ** 2219 ** For example, if the query is: 2220 ** 2221 ** WHERE a = ? AND (b, c, d) > (?, ?, ?) 2222 ** 2223 ** and the index: 2224 ** 2225 ** CREATE INDEX ... ON (a, b, c, d, e) 2226 ** 2227 ** then this function would be invoked with nEq=1. The value returned in 2228 ** this case is 3. 2229 */ 2230 static int whereRangeVectorLen( 2231 Parse *pParse, /* Parsing context */ 2232 int iCur, /* Cursor open on pIdx */ 2233 Index *pIdx, /* The index to be used for a inequality constraint */ 2234 int nEq, /* Number of prior equality constraints on same index */ 2235 WhereTerm *pTerm /* The vector inequality constraint */ 2236 ){ 2237 int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft); 2238 int i; 2239 2240 nCmp = MIN(nCmp, (pIdx->nColumn - nEq)); 2241 for(i=1; i<nCmp; i++){ 2242 /* Test if comparison i of pTerm is compatible with column (i+nEq) 2243 ** of the index. If not, exit the loop. */ 2244 char aff; /* Comparison affinity */ 2245 char idxaff = 0; /* Indexed columns affinity */ 2246 CollSeq *pColl; /* Comparison collation sequence */ 2247 Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr; 2248 Expr *pRhs = pTerm->pExpr->pRight; 2249 if( pRhs->flags & EP_xIsSelect ){ 2250 pRhs = pRhs->x.pSelect->pEList->a[i].pExpr; 2251 }else{ 2252 pRhs = pRhs->x.pList->a[i].pExpr; 2253 } 2254 2255 /* Check that the LHS of the comparison is a column reference to 2256 ** the right column of the right source table. And that the sort 2257 ** order of the index column is the same as the sort order of the 2258 ** leftmost index column. */ 2259 if( pLhs->op!=TK_COLUMN 2260 || pLhs->iTable!=iCur 2261 || pLhs->iColumn!=pIdx->aiColumn[i+nEq] 2262 || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq] 2263 ){ 2264 break; 2265 } 2266 2267 testcase( pLhs->iColumn==XN_ROWID ); 2268 aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs)); 2269 idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn); 2270 if( aff!=idxaff ) break; 2271 2272 pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2273 if( pColl==0 ) break; 2274 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break; 2275 } 2276 return i; 2277 } 2278 2279 /* 2280 ** Adjust the cost C by the costMult facter T. This only occurs if 2281 ** compiled with -DSQLITE_ENABLE_COSTMULT 2282 */ 2283 #ifdef SQLITE_ENABLE_COSTMULT 2284 # define ApplyCostMultiplier(C,T) C += T 2285 #else 2286 # define ApplyCostMultiplier(C,T) 2287 #endif 2288 2289 /* 2290 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the 2291 ** index pIndex. Try to match one more. 2292 ** 2293 ** When this function is called, pBuilder->pNew->nOut contains the 2294 ** number of rows expected to be visited by filtering using the nEq 2295 ** terms only. If it is modified, this value is restored before this 2296 ** function returns. 2297 ** 2298 ** If pProbe->tnum==0, that means pIndex is a fake index used for the 2299 ** INTEGER PRIMARY KEY. 2300 */ 2301 static int whereLoopAddBtreeIndex( 2302 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ 2303 struct SrcList_item *pSrc, /* FROM clause term being analyzed */ 2304 Index *pProbe, /* An index on pSrc */ 2305 LogEst nInMul /* log(Number of iterations due to IN) */ 2306 ){ 2307 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ 2308 Parse *pParse = pWInfo->pParse; /* Parsing context */ 2309 sqlite3 *db = pParse->db; /* Database connection malloc context */ 2310 WhereLoop *pNew; /* Template WhereLoop under construction */ 2311 WhereTerm *pTerm; /* A WhereTerm under consideration */ 2312 int opMask; /* Valid operators for constraints */ 2313 WhereScan scan; /* Iterator for WHERE terms */ 2314 Bitmask saved_prereq; /* Original value of pNew->prereq */ 2315 u16 saved_nLTerm; /* Original value of pNew->nLTerm */ 2316 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ 2317 u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */ 2318 u16 saved_nTop; /* Original value of pNew->u.btree.nTop */ 2319 u16 saved_nSkip; /* Original value of pNew->nSkip */ 2320 u32 saved_wsFlags; /* Original value of pNew->wsFlags */ 2321 LogEst saved_nOut; /* Original value of pNew->nOut */ 2322 int rc = SQLITE_OK; /* Return code */ 2323 LogEst rSize; /* Number of rows in the table */ 2324 LogEst rLogSize; /* Logarithm of table size */ 2325 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ 2326 2327 pNew = pBuilder->pNew; 2328 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 2329 WHERETRACE(0x800, ("BEGIN addBtreeIdx(%s), nEq=%d\n", 2330 pProbe->zName, pNew->u.btree.nEq)); 2331 2332 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); 2333 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); 2334 if( pNew->wsFlags & WHERE_BTM_LIMIT ){ 2335 opMask = WO_LT|WO_LE; 2336 }else{ 2337 assert( pNew->u.btree.nBtm==0 ); 2338 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS; 2339 } 2340 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); 2341 2342 assert( pNew->u.btree.nEq<pProbe->nColumn ); 2343 2344 saved_nEq = pNew->u.btree.nEq; 2345 saved_nBtm = pNew->u.btree.nBtm; 2346 saved_nTop = pNew->u.btree.nTop; 2347 saved_nSkip = pNew->nSkip; 2348 saved_nLTerm = pNew->nLTerm; 2349 saved_wsFlags = pNew->wsFlags; 2350 saved_prereq = pNew->prereq; 2351 saved_nOut = pNew->nOut; 2352 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq, 2353 opMask, pProbe); 2354 pNew->rSetup = 0; 2355 rSize = pProbe->aiRowLogEst[0]; 2356 rLogSize = estLog(rSize); 2357 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ 2358 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ 2359 LogEst rCostIdx; 2360 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ 2361 int nIn = 0; 2362 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2363 int nRecValid = pBuilder->nRecValid; 2364 #endif 2365 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) 2366 && indexColumnNotNull(pProbe, saved_nEq) 2367 ){ 2368 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ 2369 } 2370 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2371 2372 /* Do not allow the upper bound of a LIKE optimization range constraint 2373 ** to mix with a lower range bound from some other source */ 2374 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; 2375 2376 /* Do not allow IS constraints from the WHERE clause to be used by the 2377 ** right table of a LEFT JOIN. Only constraints in the ON clause are 2378 ** allowed */ 2379 if( (pSrc->fg.jointype & JT_LEFT)!=0 2380 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 2381 && (eOp & (WO_IS|WO_ISNULL))!=0 2382 ){ 2383 testcase( eOp & WO_IS ); 2384 testcase( eOp & WO_ISNULL ); 2385 continue; 2386 } 2387 2388 pNew->wsFlags = saved_wsFlags; 2389 pNew->u.btree.nEq = saved_nEq; 2390 pNew->u.btree.nBtm = saved_nBtm; 2391 pNew->u.btree.nTop = saved_nTop; 2392 pNew->nLTerm = saved_nLTerm; 2393 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2394 pNew->aLTerm[pNew->nLTerm++] = pTerm; 2395 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; 2396 2397 assert( nInMul==0 2398 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 2399 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 2400 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 2401 ); 2402 2403 if( eOp & WO_IN ){ 2404 Expr *pExpr = pTerm->pExpr; 2405 pNew->wsFlags |= WHERE_COLUMN_IN; 2406 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2407 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ 2408 int i; 2409 nIn = 46; assert( 46==sqlite3LogEst(25) ); 2410 2411 /* The expression may actually be of the form (x, y) IN (SELECT...). 2412 ** In this case there is a separate term for each of (x) and (y). 2413 ** However, the nIn multiplier should only be applied once, not once 2414 ** for each such term. The following loop checks that pTerm is the 2415 ** first such term in use, and sets nIn back to 0 if it is not. */ 2416 for(i=0; i<pNew->nLTerm-1; i++){ 2417 if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0; 2418 } 2419 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ 2420 /* "x IN (value, value, ...)" */ 2421 nIn = sqlite3LogEst(pExpr->x.pList->nExpr); 2422 assert( nIn>0 ); /* RHS always has 2 or more terms... The parser 2423 ** changes "x IN (?)" into "x=?". */ 2424 } 2425 }else if( eOp & (WO_EQ|WO_IS) ){ 2426 int iCol = pProbe->aiColumn[saved_nEq]; 2427 pNew->wsFlags |= WHERE_COLUMN_EQ; 2428 assert( saved_nEq==pNew->u.btree.nEq ); 2429 if( iCol==XN_ROWID 2430 || (iCol>0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) 2431 ){ 2432 if( iCol>=0 && pProbe->uniqNotNull==0 ){ 2433 pNew->wsFlags |= WHERE_UNQ_WANTED; 2434 }else{ 2435 pNew->wsFlags |= WHERE_ONEROW; 2436 } 2437 } 2438 }else if( eOp & WO_ISNULL ){ 2439 pNew->wsFlags |= WHERE_COLUMN_NULL; 2440 }else if( eOp & (WO_GT|WO_GE) ){ 2441 testcase( eOp & WO_GT ); 2442 testcase( eOp & WO_GE ); 2443 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; 2444 pNew->u.btree.nBtm = whereRangeVectorLen( 2445 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2446 ); 2447 pBtm = pTerm; 2448 pTop = 0; 2449 if( pTerm->wtFlags & TERM_LIKEOPT ){ 2450 /* Range contraints that come from the LIKE optimization are 2451 ** always used in pairs. */ 2452 pTop = &pTerm[1]; 2453 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm ); 2454 assert( pTop->wtFlags & TERM_LIKEOPT ); 2455 assert( pTop->eOperator==WO_LT ); 2456 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2457 pNew->aLTerm[pNew->nLTerm++] = pTop; 2458 pNew->wsFlags |= WHERE_TOP_LIMIT; 2459 pNew->u.btree.nTop = 1; 2460 } 2461 }else{ 2462 assert( eOp & (WO_LT|WO_LE) ); 2463 testcase( eOp & WO_LT ); 2464 testcase( eOp & WO_LE ); 2465 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; 2466 pNew->u.btree.nTop = whereRangeVectorLen( 2467 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2468 ); 2469 pTop = pTerm; 2470 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? 2471 pNew->aLTerm[pNew->nLTerm-2] : 0; 2472 } 2473 2474 /* At this point pNew->nOut is set to the number of rows expected to 2475 ** be visited by the index scan before considering term pTerm, or the 2476 ** values of nIn and nInMul. In other words, assuming that all 2477 ** "x IN(...)" terms are replaced with "x = ?". This block updates 2478 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ 2479 assert( pNew->nOut==saved_nOut ); 2480 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2481 /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4 2482 ** data, using some other estimate. */ 2483 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); 2484 }else{ 2485 int nEq = ++pNew->u.btree.nEq; 2486 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) ); 2487 2488 assert( pNew->nOut==saved_nOut ); 2489 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){ 2490 assert( (eOp & WO_IN) || nIn==0 ); 2491 testcase( eOp & WO_IN ); 2492 pNew->nOut += pTerm->truthProb; 2493 pNew->nOut -= nIn; 2494 }else{ 2495 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2496 tRowcnt nOut = 0; 2497 if( nInMul==0 2498 && pProbe->nSample 2499 && pNew->u.btree.nEq<=pProbe->nSampleCol 2500 && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect)) 2501 ){ 2502 Expr *pExpr = pTerm->pExpr; 2503 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){ 2504 testcase( eOp & WO_EQ ); 2505 testcase( eOp & WO_IS ); 2506 testcase( eOp & WO_ISNULL ); 2507 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); 2508 }else{ 2509 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); 2510 } 2511 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 2512 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ 2513 if( nOut ){ 2514 pNew->nOut = sqlite3LogEst(nOut); 2515 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; 2516 pNew->nOut -= nIn; 2517 } 2518 } 2519 if( nOut==0 ) 2520 #endif 2521 { 2522 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); 2523 if( eOp & WO_ISNULL ){ 2524 /* TUNING: If there is no likelihood() value, assume that a 2525 ** "col IS NULL" expression matches twice as many rows 2526 ** as (col=?). */ 2527 pNew->nOut += 10; 2528 } 2529 } 2530 } 2531 } 2532 2533 /* Set rCostIdx to the cost of visiting selected rows in index. Add 2534 ** it to pNew->rRun, which is currently set to the cost of the index 2535 ** seek only. Then, if this is a non-covering index, add the cost of 2536 ** visiting the rows in the main table. */ 2537 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; 2538 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); 2539 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ 2540 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); 2541 } 2542 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); 2543 2544 nOutUnadjusted = pNew->nOut; 2545 pNew->rRun += nInMul + nIn; 2546 pNew->nOut += nInMul + nIn; 2547 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); 2548 rc = whereLoopInsert(pBuilder, pNew); 2549 2550 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2551 pNew->nOut = saved_nOut; 2552 }else{ 2553 pNew->nOut = nOutUnadjusted; 2554 } 2555 2556 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 2557 && pNew->u.btree.nEq<pProbe->nColumn 2558 ){ 2559 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); 2560 } 2561 pNew->nOut = saved_nOut; 2562 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2563 pBuilder->nRecValid = nRecValid; 2564 #endif 2565 } 2566 pNew->prereq = saved_prereq; 2567 pNew->u.btree.nEq = saved_nEq; 2568 pNew->u.btree.nBtm = saved_nBtm; 2569 pNew->u.btree.nTop = saved_nTop; 2570 pNew->nSkip = saved_nSkip; 2571 pNew->wsFlags = saved_wsFlags; 2572 pNew->nOut = saved_nOut; 2573 pNew->nLTerm = saved_nLTerm; 2574 2575 /* Consider using a skip-scan if there are no WHERE clause constraints 2576 ** available for the left-most terms of the index, and if the average 2577 ** number of repeats in the left-most terms is at least 18. 2578 ** 2579 ** The magic number 18 is selected on the basis that scanning 17 rows 2580 ** is almost always quicker than an index seek (even though if the index 2581 ** contains fewer than 2^17 rows we assume otherwise in other parts of 2582 ** the code). And, even if it is not, it should not be too much slower. 2583 ** On the other hand, the extra seeks could end up being significantly 2584 ** more expensive. */ 2585 assert( 42==sqlite3LogEst(18) ); 2586 if( saved_nEq==saved_nSkip 2587 && saved_nEq+1<pProbe->nKeyCol 2588 && pProbe->noSkipScan==0 2589 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ 2590 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK 2591 ){ 2592 LogEst nIter; 2593 pNew->u.btree.nEq++; 2594 pNew->nSkip++; 2595 pNew->aLTerm[pNew->nLTerm++] = 0; 2596 pNew->wsFlags |= WHERE_SKIPSCAN; 2597 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; 2598 pNew->nOut -= nIter; 2599 /* TUNING: Because uncertainties in the estimates for skip-scan queries, 2600 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ 2601 nIter += 5; 2602 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); 2603 pNew->nOut = saved_nOut; 2604 pNew->u.btree.nEq = saved_nEq; 2605 pNew->nSkip = saved_nSkip; 2606 pNew->wsFlags = saved_wsFlags; 2607 } 2608 2609 WHERETRACE(0x800, ("END addBtreeIdx(%s), nEq=%d, rc=%d\n", 2610 pProbe->zName, saved_nEq, rc)); 2611 return rc; 2612 } 2613 2614 /* 2615 ** Return True if it is possible that pIndex might be useful in 2616 ** implementing the ORDER BY clause in pBuilder. 2617 ** 2618 ** Return False if pBuilder does not contain an ORDER BY clause or 2619 ** if there is no way for pIndex to be useful in implementing that 2620 ** ORDER BY clause. 2621 */ 2622 static int indexMightHelpWithOrderBy( 2623 WhereLoopBuilder *pBuilder, 2624 Index *pIndex, 2625 int iCursor 2626 ){ 2627 ExprList *pOB; 2628 ExprList *aColExpr; 2629 int ii, jj; 2630 2631 if( pIndex->bUnordered ) return 0; 2632 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; 2633 for(ii=0; ii<pOB->nExpr; ii++){ 2634 Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr); 2635 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){ 2636 if( pExpr->iColumn<0 ) return 1; 2637 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2638 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; 2639 } 2640 }else if( (aColExpr = pIndex->aColExpr)!=0 ){ 2641 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2642 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue; 2643 if( sqlite3ExprCompare(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){ 2644 return 1; 2645 } 2646 } 2647 } 2648 } 2649 return 0; 2650 } 2651 2652 /* 2653 ** Return a bitmask where 1s indicate that the corresponding column of 2654 ** the table is used by an index. Only the first 63 columns are considered. 2655 */ 2656 static Bitmask columnsInIndex(Index *pIdx){ 2657 Bitmask m = 0; 2658 int j; 2659 for(j=pIdx->nColumn-1; j>=0; j--){ 2660 int x = pIdx->aiColumn[j]; 2661 if( x>=0 ){ 2662 testcase( x==BMS-1 ); 2663 testcase( x==BMS-2 ); 2664 if( x<BMS-1 ) m |= MASKBIT(x); 2665 } 2666 } 2667 return m; 2668 } 2669 2670 /* Check to see if a partial index with pPartIndexWhere can be used 2671 ** in the current query. Return true if it can be and false if not. 2672 */ 2673 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){ 2674 int i; 2675 WhereTerm *pTerm; 2676 while( pWhere->op==TK_AND ){ 2677 if( !whereUsablePartialIndex(iTab,pWC,pWhere->pLeft) ) return 0; 2678 pWhere = pWhere->pRight; 2679 } 2680 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 2681 Expr *pExpr = pTerm->pExpr; 2682 if( sqlite3ExprImpliesExpr(pExpr, pWhere, iTab) 2683 && (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab) 2684 ){ 2685 return 1; 2686 } 2687 } 2688 return 0; 2689 } 2690 2691 /* 2692 ** Add all WhereLoop objects for a single table of the join where the table 2693 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be 2694 ** a b-tree table, not a virtual table. 2695 ** 2696 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function 2697 ** are calculated as follows: 2698 ** 2699 ** For a full scan, assuming the table (or index) contains nRow rows: 2700 ** 2701 ** cost = nRow * 3.0 // full-table scan 2702 ** cost = nRow * K // scan of covering index 2703 ** cost = nRow * (K+3.0) // scan of non-covering index 2704 ** 2705 ** where K is a value between 1.1 and 3.0 set based on the relative 2706 ** estimated average size of the index and table records. 2707 ** 2708 ** For an index scan, where nVisit is the number of index rows visited 2709 ** by the scan, and nSeek is the number of seek operations required on 2710 ** the index b-tree: 2711 ** 2712 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index 2713 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index 2714 ** 2715 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the 2716 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when 2717 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. 2718 ** 2719 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount 2720 ** of uncertainty. For this reason, scoring is designed to pick plans that 2721 ** "do the least harm" if the estimates are inaccurate. For example, a 2722 ** log(nRow) factor is omitted from a non-covering index scan in order to 2723 ** bias the scoring in favor of using an index, since the worst-case 2724 ** performance of using an index is far better than the worst-case performance 2725 ** of a full table scan. 2726 */ 2727 static int whereLoopAddBtree( 2728 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 2729 Bitmask mPrereq /* Extra prerequesites for using this table */ 2730 ){ 2731 WhereInfo *pWInfo; /* WHERE analysis context */ 2732 Index *pProbe; /* An index we are evaluating */ 2733 Index sPk; /* A fake index object for the primary key */ 2734 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ 2735 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ 2736 SrcList *pTabList; /* The FROM clause */ 2737 struct SrcList_item *pSrc; /* The FROM clause btree term to add */ 2738 WhereLoop *pNew; /* Template WhereLoop object */ 2739 int rc = SQLITE_OK; /* Return code */ 2740 int iSortIdx = 1; /* Index number */ 2741 int b; /* A boolean value */ 2742 LogEst rSize; /* number of rows in the table */ 2743 LogEst rLogSize; /* Logarithm of the number of rows in the table */ 2744 WhereClause *pWC; /* The parsed WHERE clause */ 2745 Table *pTab; /* Table being queried */ 2746 2747 pNew = pBuilder->pNew; 2748 pWInfo = pBuilder->pWInfo; 2749 pTabList = pWInfo->pTabList; 2750 pSrc = pTabList->a + pNew->iTab; 2751 pTab = pSrc->pTab; 2752 pWC = pBuilder->pWC; 2753 assert( !IsVirtual(pSrc->pTab) ); 2754 2755 if( pSrc->pIBIndex ){ 2756 /* An INDEXED BY clause specifies a particular index to use */ 2757 pProbe = pSrc->pIBIndex; 2758 }else if( !HasRowid(pTab) ){ 2759 pProbe = pTab->pIndex; 2760 }else{ 2761 /* There is no INDEXED BY clause. Create a fake Index object in local 2762 ** variable sPk to represent the rowid primary key index. Make this 2763 ** fake index the first in a chain of Index objects with all of the real 2764 ** indices to follow */ 2765 Index *pFirst; /* First of real indices on the table */ 2766 memset(&sPk, 0, sizeof(Index)); 2767 sPk.nKeyCol = 1; 2768 sPk.nColumn = 1; 2769 sPk.aiColumn = &aiColumnPk; 2770 sPk.aiRowLogEst = aiRowEstPk; 2771 sPk.onError = OE_Replace; 2772 sPk.pTable = pTab; 2773 sPk.szIdxRow = pTab->szTabRow; 2774 aiRowEstPk[0] = pTab->nRowLogEst; 2775 aiRowEstPk[1] = 0; 2776 pFirst = pSrc->pTab->pIndex; 2777 if( pSrc->fg.notIndexed==0 ){ 2778 /* The real indices of the table are only considered if the 2779 ** NOT INDEXED qualifier is omitted from the FROM clause */ 2780 sPk.pNext = pFirst; 2781 } 2782 pProbe = &sPk; 2783 } 2784 rSize = pTab->nRowLogEst; 2785 rLogSize = estLog(rSize); 2786 2787 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 2788 /* Automatic indexes */ 2789 if( !pBuilder->pOrSet /* Not part of an OR optimization */ 2790 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 2791 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 2792 && pSrc->pIBIndex==0 /* Has no INDEXED BY clause */ 2793 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */ 2794 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */ 2795 && !pSrc->fg.isCorrelated /* Not a correlated subquery */ 2796 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */ 2797 ){ 2798 /* Generate auto-index WhereLoops */ 2799 WhereTerm *pTerm; 2800 WhereTerm *pWCEnd = pWC->a + pWC->nTerm; 2801 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ 2802 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2803 if( termCanDriveIndex(pTerm, pSrc, 0) ){ 2804 pNew->u.btree.nEq = 1; 2805 pNew->nSkip = 0; 2806 pNew->u.btree.pIndex = 0; 2807 pNew->nLTerm = 1; 2808 pNew->aLTerm[0] = pTerm; 2809 /* TUNING: One-time cost for computing the automatic index is 2810 ** estimated to be X*N*log2(N) where N is the number of rows in 2811 ** the table being indexed and where X is 7 (LogEst=28) for normal 2812 ** tables or 1.375 (LogEst=4) for views and subqueries. The value 2813 ** of X is smaller for views and subqueries so that the query planner 2814 ** will be more aggressive about generating automatic indexes for 2815 ** those objects, since there is no opportunity to add schema 2816 ** indexes on subqueries and views. */ 2817 pNew->rSetup = rLogSize + rSize + 4; 2818 if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){ 2819 pNew->rSetup += 24; 2820 } 2821 ApplyCostMultiplier(pNew->rSetup, pTab->costMult); 2822 if( pNew->rSetup<0 ) pNew->rSetup = 0; 2823 /* TUNING: Each index lookup yields 20 rows in the table. This 2824 ** is more than the usual guess of 10 rows, since we have no way 2825 ** of knowing how selective the index will ultimately be. It would 2826 ** not be unreasonable to make this value much larger. */ 2827 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); 2828 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); 2829 pNew->wsFlags = WHERE_AUTO_INDEX; 2830 pNew->prereq = mPrereq | pTerm->prereqRight; 2831 rc = whereLoopInsert(pBuilder, pNew); 2832 } 2833 } 2834 } 2835 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 2836 2837 /* Loop over all indices 2838 */ 2839 for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){ 2840 if( pProbe->pPartIdxWhere!=0 2841 && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){ 2842 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ 2843 continue; /* Partial index inappropriate for this query */ 2844 } 2845 rSize = pProbe->aiRowLogEst[0]; 2846 pNew->u.btree.nEq = 0; 2847 pNew->u.btree.nBtm = 0; 2848 pNew->u.btree.nTop = 0; 2849 pNew->nSkip = 0; 2850 pNew->nLTerm = 0; 2851 pNew->iSortIdx = 0; 2852 pNew->rSetup = 0; 2853 pNew->prereq = mPrereq; 2854 pNew->nOut = rSize; 2855 pNew->u.btree.pIndex = pProbe; 2856 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); 2857 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ 2858 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); 2859 if( pProbe->tnum<=0 ){ 2860 /* Integer primary key index */ 2861 pNew->wsFlags = WHERE_IPK; 2862 2863 /* Full table scan */ 2864 pNew->iSortIdx = b ? iSortIdx : 0; 2865 /* TUNING: Cost of full table scan is (N*3.0). */ 2866 pNew->rRun = rSize + 16; 2867 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 2868 whereLoopOutputAdjust(pWC, pNew, rSize); 2869 rc = whereLoopInsert(pBuilder, pNew); 2870 pNew->nOut = rSize; 2871 if( rc ) break; 2872 }else{ 2873 Bitmask m; 2874 if( pProbe->isCovering ){ 2875 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; 2876 m = 0; 2877 }else{ 2878 m = pSrc->colUsed & ~columnsInIndex(pProbe); 2879 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; 2880 } 2881 2882 /* Full scan via index */ 2883 if( b 2884 || !HasRowid(pTab) 2885 || pProbe->pPartIdxWhere!=0 2886 || ( m==0 2887 && pProbe->bUnordered==0 2888 && (pProbe->szIdxRow<pTab->szTabRow) 2889 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 2890 && sqlite3GlobalConfig.bUseCis 2891 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) 2892 ) 2893 ){ 2894 pNew->iSortIdx = b ? iSortIdx : 0; 2895 2896 /* The cost of visiting the index rows is N*K, where K is 2897 ** between 1.1 and 3.0, depending on the relative sizes of the 2898 ** index and table rows. */ 2899 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; 2900 if( m!=0 ){ 2901 /* If this is a non-covering index scan, add in the cost of 2902 ** doing table lookups. The cost will be 3x the number of 2903 ** lookups. Take into account WHERE clause terms that can be 2904 ** satisfied using just the index, and that do not require a 2905 ** table lookup. */ 2906 LogEst nLookup = rSize + 16; /* Base cost: N*3 */ 2907 int ii; 2908 int iCur = pSrc->iCursor; 2909 WhereClause *pWC2 = &pWInfo->sWC; 2910 for(ii=0; ii<pWC2->nTerm; ii++){ 2911 WhereTerm *pTerm = &pWC2->a[ii]; 2912 if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){ 2913 break; 2914 } 2915 /* pTerm can be evaluated using just the index. So reduce 2916 ** the expected number of table lookups accordingly */ 2917 if( pTerm->truthProb<=0 ){ 2918 nLookup += pTerm->truthProb; 2919 }else{ 2920 nLookup--; 2921 if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19; 2922 } 2923 } 2924 2925 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup); 2926 } 2927 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 2928 whereLoopOutputAdjust(pWC, pNew, rSize); 2929 rc = whereLoopInsert(pBuilder, pNew); 2930 pNew->nOut = rSize; 2931 if( rc ) break; 2932 } 2933 } 2934 2935 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); 2936 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2937 sqlite3Stat4ProbeFree(pBuilder->pRec); 2938 pBuilder->nRecValid = 0; 2939 pBuilder->pRec = 0; 2940 #endif 2941 2942 /* If there was an INDEXED BY clause, then only that one index is 2943 ** considered. */ 2944 if( pSrc->pIBIndex ) break; 2945 } 2946 return rc; 2947 } 2948 2949 #ifndef SQLITE_OMIT_VIRTUALTABLE 2950 2951 /* 2952 ** Argument pIdxInfo is already populated with all constraints that may 2953 ** be used by the virtual table identified by pBuilder->pNew->iTab. This 2954 ** function marks a subset of those constraints usable, invokes the 2955 ** xBestIndex method and adds the returned plan to pBuilder. 2956 ** 2957 ** A constraint is marked usable if: 2958 ** 2959 ** * Argument mUsable indicates that its prerequisites are available, and 2960 ** 2961 ** * It is not one of the operators specified in the mExclude mask passed 2962 ** as the fourth argument (which in practice is either WO_IN or 0). 2963 ** 2964 ** Argument mPrereq is a mask of tables that must be scanned before the 2965 ** virtual table in question. These are added to the plans prerequisites 2966 ** before it is added to pBuilder. 2967 ** 2968 ** Output parameter *pbIn is set to true if the plan added to pBuilder 2969 ** uses one or more WO_IN terms, or false otherwise. 2970 */ 2971 static int whereLoopAddVirtualOne( 2972 WhereLoopBuilder *pBuilder, 2973 Bitmask mPrereq, /* Mask of tables that must be used. */ 2974 Bitmask mUsable, /* Mask of usable tables */ 2975 u16 mExclude, /* Exclude terms using these operators */ 2976 sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */ 2977 u16 mNoOmit, /* Do not omit these constraints */ 2978 int *pbIn /* OUT: True if plan uses an IN(...) op */ 2979 ){ 2980 WhereClause *pWC = pBuilder->pWC; 2981 struct sqlite3_index_constraint *pIdxCons; 2982 struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage; 2983 int i; 2984 int mxTerm; 2985 int rc = SQLITE_OK; 2986 WhereLoop *pNew = pBuilder->pNew; 2987 Parse *pParse = pBuilder->pWInfo->pParse; 2988 struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab]; 2989 int nConstraint = pIdxInfo->nConstraint; 2990 2991 assert( (mUsable & mPrereq)==mPrereq ); 2992 *pbIn = 0; 2993 pNew->prereq = mPrereq; 2994 2995 /* Set the usable flag on the subset of constraints identified by 2996 ** arguments mUsable and mExclude. */ 2997 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 2998 for(i=0; i<nConstraint; i++, pIdxCons++){ 2999 WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset]; 3000 pIdxCons->usable = 0; 3001 if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight 3002 && (pTerm->eOperator & mExclude)==0 3003 ){ 3004 pIdxCons->usable = 1; 3005 } 3006 } 3007 3008 /* Initialize the output fields of the sqlite3_index_info structure */ 3009 memset(pUsage, 0, sizeof(pUsage[0])*nConstraint); 3010 assert( pIdxInfo->needToFreeIdxStr==0 ); 3011 pIdxInfo->idxStr = 0; 3012 pIdxInfo->idxNum = 0; 3013 pIdxInfo->orderByConsumed = 0; 3014 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; 3015 pIdxInfo->estimatedRows = 25; 3016 pIdxInfo->idxFlags = 0; 3017 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed; 3018 3019 /* Invoke the virtual table xBestIndex() method */ 3020 rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo); 3021 if( rc ) return rc; 3022 3023 mxTerm = -1; 3024 assert( pNew->nLSlot>=nConstraint ); 3025 for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0; 3026 pNew->u.vtab.omitMask = 0; 3027 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3028 for(i=0; i<nConstraint; i++, pIdxCons++){ 3029 int iTerm; 3030 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ 3031 WhereTerm *pTerm; 3032 int j = pIdxCons->iTermOffset; 3033 if( iTerm>=nConstraint 3034 || j<0 3035 || j>=pWC->nTerm 3036 || pNew->aLTerm[iTerm]!=0 3037 || pIdxCons->usable==0 3038 ){ 3039 rc = SQLITE_ERROR; 3040 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3041 return rc; 3042 } 3043 testcase( iTerm==nConstraint-1 ); 3044 testcase( j==0 ); 3045 testcase( j==pWC->nTerm-1 ); 3046 pTerm = &pWC->a[j]; 3047 pNew->prereq |= pTerm->prereqRight; 3048 assert( iTerm<pNew->nLSlot ); 3049 pNew->aLTerm[iTerm] = pTerm; 3050 if( iTerm>mxTerm ) mxTerm = iTerm; 3051 testcase( iTerm==15 ); 3052 testcase( iTerm==16 ); 3053 if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm; 3054 if( (pTerm->eOperator & WO_IN)!=0 ){ 3055 /* A virtual table that is constrained by an IN clause may not 3056 ** consume the ORDER BY clause because (1) the order of IN terms 3057 ** is not necessarily related to the order of output terms and 3058 ** (2) Multiple outputs from a single IN value will not merge 3059 ** together. */ 3060 pIdxInfo->orderByConsumed = 0; 3061 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE; 3062 *pbIn = 1; assert( (mExclude & WO_IN)==0 ); 3063 } 3064 } 3065 } 3066 pNew->u.vtab.omitMask &= ~mNoOmit; 3067 3068 pNew->nLTerm = mxTerm+1; 3069 assert( pNew->nLTerm<=pNew->nLSlot ); 3070 pNew->u.vtab.idxNum = pIdxInfo->idxNum; 3071 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; 3072 pIdxInfo->needToFreeIdxStr = 0; 3073 pNew->u.vtab.idxStr = pIdxInfo->idxStr; 3074 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? 3075 pIdxInfo->nOrderBy : 0); 3076 pNew->rSetup = 0; 3077 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); 3078 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); 3079 3080 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated 3081 ** that the scan will visit at most one row. Clear it otherwise. */ 3082 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){ 3083 pNew->wsFlags |= WHERE_ONEROW; 3084 }else{ 3085 pNew->wsFlags &= ~WHERE_ONEROW; 3086 } 3087 rc = whereLoopInsert(pBuilder, pNew); 3088 if( pNew->u.vtab.needFree ){ 3089 sqlite3_free(pNew->u.vtab.idxStr); 3090 pNew->u.vtab.needFree = 0; 3091 } 3092 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n", 3093 *pbIn, (sqlite3_uint64)mPrereq, 3094 (sqlite3_uint64)(pNew->prereq & ~mPrereq))); 3095 3096 return rc; 3097 } 3098 3099 3100 /* 3101 ** Add all WhereLoop objects for a table of the join identified by 3102 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. 3103 ** 3104 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and 3105 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause 3106 ** entries that occur before the virtual table in the FROM clause and are 3107 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the 3108 ** mUnusable mask contains all FROM clause entries that occur after the 3109 ** virtual table and are separated from it by at least one LEFT or 3110 ** CROSS JOIN. 3111 ** 3112 ** For example, if the query were: 3113 ** 3114 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; 3115 ** 3116 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6). 3117 ** 3118 ** All the tables in mPrereq must be scanned before the current virtual 3119 ** table. So any terms for which all prerequisites are satisfied by 3120 ** mPrereq may be specified as "usable" in all calls to xBestIndex. 3121 ** Conversely, all tables in mUnusable must be scanned after the current 3122 ** virtual table, so any terms for which the prerequisites overlap with 3123 ** mUnusable should always be configured as "not-usable" for xBestIndex. 3124 */ 3125 static int whereLoopAddVirtual( 3126 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 3127 Bitmask mPrereq, /* Tables that must be scanned before this one */ 3128 Bitmask mUnusable /* Tables that must be scanned after this one */ 3129 ){ 3130 int rc = SQLITE_OK; /* Return code */ 3131 WhereInfo *pWInfo; /* WHERE analysis context */ 3132 Parse *pParse; /* The parsing context */ 3133 WhereClause *pWC; /* The WHERE clause */ 3134 struct SrcList_item *pSrc; /* The FROM clause term to search */ 3135 sqlite3_index_info *p; /* Object to pass to xBestIndex() */ 3136 int nConstraint; /* Number of constraints in p */ 3137 int bIn; /* True if plan uses IN(...) operator */ 3138 WhereLoop *pNew; 3139 Bitmask mBest; /* Tables used by best possible plan */ 3140 u16 mNoOmit; 3141 3142 assert( (mPrereq & mUnusable)==0 ); 3143 pWInfo = pBuilder->pWInfo; 3144 pParse = pWInfo->pParse; 3145 pWC = pBuilder->pWC; 3146 pNew = pBuilder->pNew; 3147 pSrc = &pWInfo->pTabList->a[pNew->iTab]; 3148 assert( IsVirtual(pSrc->pTab) ); 3149 p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy, 3150 &mNoOmit); 3151 if( p==0 ) return SQLITE_NOMEM_BKPT; 3152 pNew->rSetup = 0; 3153 pNew->wsFlags = WHERE_VIRTUALTABLE; 3154 pNew->nLTerm = 0; 3155 pNew->u.vtab.needFree = 0; 3156 nConstraint = p->nConstraint; 3157 if( whereLoopResize(pParse->db, pNew, nConstraint) ){ 3158 sqlite3DbFree(pParse->db, p); 3159 return SQLITE_NOMEM_BKPT; 3160 } 3161 3162 /* First call xBestIndex() with all constraints usable. */ 3163 WHERETRACE(0x40, (" VirtualOne: all usable\n")); 3164 rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn); 3165 3166 /* If the call to xBestIndex() with all terms enabled produced a plan 3167 ** that does not require any source tables (IOW: a plan with mBest==0), 3168 ** then there is no point in making any further calls to xBestIndex() 3169 ** since they will all return the same result (if the xBestIndex() 3170 ** implementation is sane). */ 3171 if( rc==SQLITE_OK && (mBest = (pNew->prereq & ~mPrereq))!=0 ){ 3172 int seenZero = 0; /* True if a plan with no prereqs seen */ 3173 int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */ 3174 Bitmask mPrev = 0; 3175 Bitmask mBestNoIn = 0; 3176 3177 /* If the plan produced by the earlier call uses an IN(...) term, call 3178 ** xBestIndex again, this time with IN(...) terms disabled. */ 3179 if( bIn ){ 3180 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n")); 3181 rc = whereLoopAddVirtualOne( 3182 pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn); 3183 assert( bIn==0 ); 3184 mBestNoIn = pNew->prereq & ~mPrereq; 3185 if( mBestNoIn==0 ){ 3186 seenZero = 1; 3187 seenZeroNoIN = 1; 3188 } 3189 } 3190 3191 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq) 3192 ** in the set of terms that apply to the current virtual table. */ 3193 while( rc==SQLITE_OK ){ 3194 int i; 3195 Bitmask mNext = ALLBITS; 3196 assert( mNext>0 ); 3197 for(i=0; i<nConstraint; i++){ 3198 Bitmask mThis = ( 3199 pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq 3200 ); 3201 if( mThis>mPrev && mThis<mNext ) mNext = mThis; 3202 } 3203 mPrev = mNext; 3204 if( mNext==ALLBITS ) break; 3205 if( mNext==mBest || mNext==mBestNoIn ) continue; 3206 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n", 3207 (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext)); 3208 rc = whereLoopAddVirtualOne( 3209 pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn); 3210 if( pNew->prereq==mPrereq ){ 3211 seenZero = 1; 3212 if( bIn==0 ) seenZeroNoIN = 1; 3213 } 3214 } 3215 3216 /* If the calls to xBestIndex() in the above loop did not find a plan 3217 ** that requires no source tables at all (i.e. one guaranteed to be 3218 ** usable), make a call here with all source tables disabled */ 3219 if( rc==SQLITE_OK && seenZero==0 ){ 3220 WHERETRACE(0x40, (" VirtualOne: all disabled\n")); 3221 rc = whereLoopAddVirtualOne( 3222 pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn); 3223 if( bIn==0 ) seenZeroNoIN = 1; 3224 } 3225 3226 /* If the calls to xBestIndex() have so far failed to find a plan 3227 ** that requires no source tables at all and does not use an IN(...) 3228 ** operator, make a final call to obtain one here. */ 3229 if( rc==SQLITE_OK && seenZeroNoIN==0 ){ 3230 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n")); 3231 rc = whereLoopAddVirtualOne( 3232 pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn); 3233 } 3234 } 3235 3236 if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr); 3237 sqlite3DbFree(pParse->db, p); 3238 return rc; 3239 } 3240 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3241 3242 /* 3243 ** Add WhereLoop entries to handle OR terms. This works for either 3244 ** btrees or virtual tables. 3245 */ 3246 static int whereLoopAddOr( 3247 WhereLoopBuilder *pBuilder, 3248 Bitmask mPrereq, 3249 Bitmask mUnusable 3250 ){ 3251 WhereInfo *pWInfo = pBuilder->pWInfo; 3252 WhereClause *pWC; 3253 WhereLoop *pNew; 3254 WhereTerm *pTerm, *pWCEnd; 3255 int rc = SQLITE_OK; 3256 int iCur; 3257 WhereClause tempWC; 3258 WhereLoopBuilder sSubBuild; 3259 WhereOrSet sSum, sCur; 3260 struct SrcList_item *pItem; 3261 3262 pWC = pBuilder->pWC; 3263 pWCEnd = pWC->a + pWC->nTerm; 3264 pNew = pBuilder->pNew; 3265 memset(&sSum, 0, sizeof(sSum)); 3266 pItem = pWInfo->pTabList->a + pNew->iTab; 3267 iCur = pItem->iCursor; 3268 3269 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ 3270 if( (pTerm->eOperator & WO_OR)!=0 3271 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 3272 ){ 3273 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; 3274 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; 3275 WhereTerm *pOrTerm; 3276 int once = 1; 3277 int i, j; 3278 3279 sSubBuild = *pBuilder; 3280 sSubBuild.pOrderBy = 0; 3281 sSubBuild.pOrSet = &sCur; 3282 3283 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); 3284 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ 3285 if( (pOrTerm->eOperator & WO_AND)!=0 ){ 3286 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; 3287 }else if( pOrTerm->leftCursor==iCur ){ 3288 tempWC.pWInfo = pWC->pWInfo; 3289 tempWC.pOuter = pWC; 3290 tempWC.op = TK_AND; 3291 tempWC.nTerm = 1; 3292 tempWC.a = pOrTerm; 3293 sSubBuild.pWC = &tempWC; 3294 }else{ 3295 continue; 3296 } 3297 sCur.n = 0; 3298 #ifdef WHERETRACE_ENABLED 3299 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", 3300 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); 3301 if( sqlite3WhereTrace & 0x400 ){ 3302 sqlite3WhereClausePrint(sSubBuild.pWC); 3303 } 3304 #endif 3305 #ifndef SQLITE_OMIT_VIRTUALTABLE 3306 if( IsVirtual(pItem->pTab) ){ 3307 rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable); 3308 }else 3309 #endif 3310 { 3311 rc = whereLoopAddBtree(&sSubBuild, mPrereq); 3312 } 3313 if( rc==SQLITE_OK ){ 3314 rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable); 3315 } 3316 assert( rc==SQLITE_OK || sCur.n==0 ); 3317 if( sCur.n==0 ){ 3318 sSum.n = 0; 3319 break; 3320 }else if( once ){ 3321 whereOrMove(&sSum, &sCur); 3322 once = 0; 3323 }else{ 3324 WhereOrSet sPrev; 3325 whereOrMove(&sPrev, &sSum); 3326 sSum.n = 0; 3327 for(i=0; i<sPrev.n; i++){ 3328 for(j=0; j<sCur.n; j++){ 3329 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, 3330 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), 3331 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); 3332 } 3333 } 3334 } 3335 } 3336 pNew->nLTerm = 1; 3337 pNew->aLTerm[0] = pTerm; 3338 pNew->wsFlags = WHERE_MULTI_OR; 3339 pNew->rSetup = 0; 3340 pNew->iSortIdx = 0; 3341 memset(&pNew->u, 0, sizeof(pNew->u)); 3342 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ 3343 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs 3344 ** of all sub-scans required by the OR-scan. However, due to rounding 3345 ** errors, it may be that the cost of the OR-scan is equal to its 3346 ** most expensive sub-scan. Add the smallest possible penalty 3347 ** (equivalent to multiplying the cost by 1.07) to ensure that 3348 ** this does not happen. Otherwise, for WHERE clauses such as the 3349 ** following where there is an index on "y": 3350 ** 3351 ** WHERE likelihood(x=?, 0.99) OR y=? 3352 ** 3353 ** the planner may elect to "OR" together a full-table scan and an 3354 ** index lookup. And other similarly odd results. */ 3355 pNew->rRun = sSum.a[i].rRun + 1; 3356 pNew->nOut = sSum.a[i].nOut; 3357 pNew->prereq = sSum.a[i].prereq; 3358 rc = whereLoopInsert(pBuilder, pNew); 3359 } 3360 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); 3361 } 3362 } 3363 return rc; 3364 } 3365 3366 /* 3367 ** Add all WhereLoop objects for all tables 3368 */ 3369 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ 3370 WhereInfo *pWInfo = pBuilder->pWInfo; 3371 Bitmask mPrereq = 0; 3372 Bitmask mPrior = 0; 3373 int iTab; 3374 SrcList *pTabList = pWInfo->pTabList; 3375 struct SrcList_item *pItem; 3376 struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel]; 3377 sqlite3 *db = pWInfo->pParse->db; 3378 int rc = SQLITE_OK; 3379 WhereLoop *pNew; 3380 u8 priorJointype = 0; 3381 3382 /* Loop over the tables in the join, from left to right */ 3383 pNew = pBuilder->pNew; 3384 whereLoopInit(pNew); 3385 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){ 3386 Bitmask mUnusable = 0; 3387 pNew->iTab = iTab; 3388 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); 3389 if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){ 3390 /* This condition is true when pItem is the FROM clause term on the 3391 ** right-hand-side of a LEFT or CROSS JOIN. */ 3392 mPrereq = mPrior; 3393 } 3394 priorJointype = pItem->fg.jointype; 3395 #ifndef SQLITE_OMIT_VIRTUALTABLE 3396 if( IsVirtual(pItem->pTab) ){ 3397 struct SrcList_item *p; 3398 for(p=&pItem[1]; p<pEnd; p++){ 3399 if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){ 3400 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); 3401 } 3402 } 3403 rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable); 3404 }else 3405 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3406 { 3407 rc = whereLoopAddBtree(pBuilder, mPrereq); 3408 } 3409 if( rc==SQLITE_OK ){ 3410 rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable); 3411 } 3412 mPrior |= pNew->maskSelf; 3413 if( rc || db->mallocFailed ) break; 3414 } 3415 3416 whereLoopClear(db, pNew); 3417 return rc; 3418 } 3419 3420 /* 3421 ** Examine a WherePath (with the addition of the extra WhereLoop of the 5th 3422 ** parameters) to see if it outputs rows in the requested ORDER BY 3423 ** (or GROUP BY) without requiring a separate sort operation. Return N: 3424 ** 3425 ** N>0: N terms of the ORDER BY clause are satisfied 3426 ** N==0: No terms of the ORDER BY clause are satisfied 3427 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. 3428 ** 3429 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as 3430 ** strict. With GROUP BY and DISTINCT the only requirement is that 3431 ** equivalent rows appear immediately adjacent to one another. GROUP BY 3432 ** and DISTINCT do not require rows to appear in any particular order as long 3433 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT 3434 ** the pOrderBy terms can be matched in any order. With ORDER BY, the 3435 ** pOrderBy terms must be matched in strict left-to-right order. 3436 */ 3437 static i8 wherePathSatisfiesOrderBy( 3438 WhereInfo *pWInfo, /* The WHERE clause */ 3439 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ 3440 WherePath *pPath, /* The WherePath to check */ 3441 u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */ 3442 u16 nLoop, /* Number of entries in pPath->aLoop[] */ 3443 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ 3444 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ 3445 ){ 3446 u8 revSet; /* True if rev is known */ 3447 u8 rev; /* Composite sort order */ 3448 u8 revIdx; /* Index sort order */ 3449 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ 3450 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ 3451 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ 3452 u16 eqOpMask; /* Allowed equality operators */ 3453 u16 nKeyCol; /* Number of key columns in pIndex */ 3454 u16 nColumn; /* Total number of ordered columns in the index */ 3455 u16 nOrderBy; /* Number terms in the ORDER BY clause */ 3456 int iLoop; /* Index of WhereLoop in pPath being processed */ 3457 int i, j; /* Loop counters */ 3458 int iCur; /* Cursor number for current WhereLoop */ 3459 int iColumn; /* A column number within table iCur */ 3460 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ 3461 WhereTerm *pTerm; /* A single term of the WHERE clause */ 3462 Expr *pOBExpr; /* An expression from the ORDER BY clause */ 3463 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ 3464 Index *pIndex; /* The index associated with pLoop */ 3465 sqlite3 *db = pWInfo->pParse->db; /* Database connection */ 3466 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ 3467 Bitmask obDone; /* Mask of all ORDER BY terms */ 3468 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ 3469 Bitmask ready; /* Mask of inner loops */ 3470 3471 /* 3472 ** We say the WhereLoop is "one-row" if it generates no more than one 3473 ** row of output. A WhereLoop is one-row if all of the following are true: 3474 ** (a) All index columns match with WHERE_COLUMN_EQ. 3475 ** (b) The index is unique 3476 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. 3477 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. 3478 ** 3479 ** We say the WhereLoop is "order-distinct" if the set of columns from 3480 ** that WhereLoop that are in the ORDER BY clause are different for every 3481 ** row of the WhereLoop. Every one-row WhereLoop is automatically 3482 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause 3483 ** is not order-distinct. To be order-distinct is not quite the same as being 3484 ** UNIQUE since a UNIQUE column or index can have multiple rows that 3485 ** are NULL and NULL values are equivalent for the purpose of order-distinct. 3486 ** To be order-distinct, the columns must be UNIQUE and NOT NULL. 3487 ** 3488 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the 3489 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is 3490 ** automatically order-distinct. 3491 */ 3492 3493 assert( pOrderBy!=0 ); 3494 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; 3495 3496 nOrderBy = pOrderBy->nExpr; 3497 testcase( nOrderBy==BMS-1 ); 3498 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ 3499 isOrderDistinct = 1; 3500 obDone = MASKBIT(nOrderBy)-1; 3501 orderDistinctMask = 0; 3502 ready = 0; 3503 eqOpMask = WO_EQ | WO_IS | WO_ISNULL; 3504 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) eqOpMask |= WO_IN; 3505 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ 3506 if( iLoop>0 ) ready |= pLoop->maskSelf; 3507 if( iLoop<nLoop ){ 3508 pLoop = pPath->aLoop[iLoop]; 3509 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue; 3510 }else{ 3511 pLoop = pLast; 3512 } 3513 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ 3514 if( pLoop->u.vtab.isOrdered ) obSat = obDone; 3515 break; 3516 } 3517 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; 3518 3519 /* Mark off any ORDER BY term X that is a column in the table of 3520 ** the current loop for which there is term in the WHERE 3521 ** clause of the form X IS NULL or X=? that reference only outer 3522 ** loops. 3523 */ 3524 for(i=0; i<nOrderBy; i++){ 3525 if( MASKBIT(i) & obSat ) continue; 3526 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); 3527 if( pOBExpr->op!=TK_COLUMN ) continue; 3528 if( pOBExpr->iTable!=iCur ) continue; 3529 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, 3530 ~ready, eqOpMask, 0); 3531 if( pTerm==0 ) continue; 3532 if( pTerm->eOperator==WO_IN ){ 3533 /* IN terms are only valid for sorting in the ORDER BY LIMIT 3534 ** optimization, and then only if they are actually used 3535 ** by the query plan */ 3536 assert( wctrlFlags & WHERE_ORDERBY_LIMIT ); 3537 for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){} 3538 if( j>=pLoop->nLTerm ) continue; 3539 } 3540 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ 3541 const char *z1, *z2; 3542 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 3543 if( !pColl ) pColl = db->pDfltColl; 3544 z1 = pColl->zName; 3545 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pTerm->pExpr); 3546 if( !pColl ) pColl = db->pDfltColl; 3547 z2 = pColl->zName; 3548 if( sqlite3StrICmp(z1, z2)!=0 ) continue; 3549 testcase( pTerm->pExpr->op==TK_IS ); 3550 } 3551 obSat |= MASKBIT(i); 3552 } 3553 3554 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ 3555 if( pLoop->wsFlags & WHERE_IPK ){ 3556 pIndex = 0; 3557 nKeyCol = 0; 3558 nColumn = 1; 3559 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ 3560 return 0; 3561 }else{ 3562 nKeyCol = pIndex->nKeyCol; 3563 nColumn = pIndex->nColumn; 3564 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); 3565 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID 3566 || !HasRowid(pIndex->pTable)); 3567 isOrderDistinct = IsUniqueIndex(pIndex); 3568 } 3569 3570 /* Loop through all columns of the index and deal with the ones 3571 ** that are not constrained by == or IN. 3572 */ 3573 rev = revSet = 0; 3574 distinctColumns = 0; 3575 for(j=0; j<nColumn; j++){ 3576 u8 bOnce = 1; /* True to run the ORDER BY search loop */ 3577 3578 assert( j>=pLoop->u.btree.nEq 3579 || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip) 3580 ); 3581 if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){ 3582 u16 eOp = pLoop->aLTerm[j]->eOperator; 3583 3584 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when 3585 ** doing WHERE_ORDERBY_LIMIT processing). 3586 ** 3587 ** If the current term is a column of an ((?,?) IN (SELECT...)) 3588 ** expression for which the SELECT returns more than one column, 3589 ** check that it is the only column used by this loop. Otherwise, 3590 ** if it is one of two or more, none of the columns can be 3591 ** considered to match an ORDER BY term. */ 3592 if( (eOp & eqOpMask)!=0 ){ 3593 if( eOp & WO_ISNULL ){ 3594 testcase( isOrderDistinct ); 3595 isOrderDistinct = 0; 3596 } 3597 continue; 3598 }else if( ALWAYS(eOp & WO_IN) ){ 3599 /* ALWAYS() justification: eOp is an equality operator due to the 3600 ** j<pLoop->u.btree.nEq constraint above. Any equality other 3601 ** than WO_IN is captured by the previous "if". So this one 3602 ** always has to be WO_IN. */ 3603 Expr *pX = pLoop->aLTerm[j]->pExpr; 3604 for(i=j+1; i<pLoop->u.btree.nEq; i++){ 3605 if( pLoop->aLTerm[i]->pExpr==pX ){ 3606 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) ); 3607 bOnce = 0; 3608 break; 3609 } 3610 } 3611 } 3612 } 3613 3614 /* Get the column number in the table (iColumn) and sort order 3615 ** (revIdx) for the j-th column of the index. 3616 */ 3617 if( pIndex ){ 3618 iColumn = pIndex->aiColumn[j]; 3619 revIdx = pIndex->aSortOrder[j]; 3620 if( iColumn==pIndex->pTable->iPKey ) iColumn = -1; 3621 }else{ 3622 iColumn = XN_ROWID; 3623 revIdx = 0; 3624 } 3625 3626 /* An unconstrained column that might be NULL means that this 3627 ** WhereLoop is not well-ordered 3628 */ 3629 if( isOrderDistinct 3630 && iColumn>=0 3631 && j>=pLoop->u.btree.nEq 3632 && pIndex->pTable->aCol[iColumn].notNull==0 3633 ){ 3634 isOrderDistinct = 0; 3635 } 3636 3637 /* Find the ORDER BY term that corresponds to the j-th column 3638 ** of the index and mark that ORDER BY term off 3639 */ 3640 isMatch = 0; 3641 for(i=0; bOnce && i<nOrderBy; i++){ 3642 if( MASKBIT(i) & obSat ) continue; 3643 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); 3644 testcase( wctrlFlags & WHERE_GROUPBY ); 3645 testcase( wctrlFlags & WHERE_DISTINCTBY ); 3646 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; 3647 if( iColumn>=(-1) ){ 3648 if( pOBExpr->op!=TK_COLUMN ) continue; 3649 if( pOBExpr->iTable!=iCur ) continue; 3650 if( pOBExpr->iColumn!=iColumn ) continue; 3651 }else{ 3652 if( sqlite3ExprCompare(pOBExpr,pIndex->aColExpr->a[j].pExpr,iCur) ){ 3653 continue; 3654 } 3655 } 3656 if( iColumn>=0 ){ 3657 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 3658 if( !pColl ) pColl = db->pDfltColl; 3659 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; 3660 } 3661 isMatch = 1; 3662 break; 3663 } 3664 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ 3665 /* Make sure the sort order is compatible in an ORDER BY clause. 3666 ** Sort order is irrelevant for a GROUP BY clause. */ 3667 if( revSet ){ 3668 if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0; 3669 }else{ 3670 rev = revIdx ^ pOrderBy->a[i].sortOrder; 3671 if( rev ) *pRevMask |= MASKBIT(iLoop); 3672 revSet = 1; 3673 } 3674 } 3675 if( isMatch ){ 3676 if( iColumn==XN_ROWID ){ 3677 testcase( distinctColumns==0 ); 3678 distinctColumns = 1; 3679 } 3680 obSat |= MASKBIT(i); 3681 }else{ 3682 /* No match found */ 3683 if( j==0 || j<nKeyCol ){ 3684 testcase( isOrderDistinct!=0 ); 3685 isOrderDistinct = 0; 3686 } 3687 break; 3688 } 3689 } /* end Loop over all index columns */ 3690 if( distinctColumns ){ 3691 testcase( isOrderDistinct==0 ); 3692 isOrderDistinct = 1; 3693 } 3694 } /* end-if not one-row */ 3695 3696 /* Mark off any other ORDER BY terms that reference pLoop */ 3697 if( isOrderDistinct ){ 3698 orderDistinctMask |= pLoop->maskSelf; 3699 for(i=0; i<nOrderBy; i++){ 3700 Expr *p; 3701 Bitmask mTerm; 3702 if( MASKBIT(i) & obSat ) continue; 3703 p = pOrderBy->a[i].pExpr; 3704 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); 3705 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; 3706 if( (mTerm&~orderDistinctMask)==0 ){ 3707 obSat |= MASKBIT(i); 3708 } 3709 } 3710 } 3711 } /* End the loop over all WhereLoops from outer-most down to inner-most */ 3712 if( obSat==obDone ) return (i8)nOrderBy; 3713 if( !isOrderDistinct ){ 3714 for(i=nOrderBy-1; i>0; i--){ 3715 Bitmask m = MASKBIT(i) - 1; 3716 if( (obSat&m)==m ) return i; 3717 } 3718 return 0; 3719 } 3720 return -1; 3721 } 3722 3723 3724 /* 3725 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), 3726 ** the planner assumes that the specified pOrderBy list is actually a GROUP 3727 ** BY clause - and so any order that groups rows as required satisfies the 3728 ** request. 3729 ** 3730 ** Normally, in this case it is not possible for the caller to determine 3731 ** whether or not the rows are really being delivered in sorted order, or 3732 ** just in some other order that provides the required grouping. However, 3733 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then 3734 ** this function may be called on the returned WhereInfo object. It returns 3735 ** true if the rows really will be sorted in the specified order, or false 3736 ** otherwise. 3737 ** 3738 ** For example, assuming: 3739 ** 3740 ** CREATE INDEX i1 ON t1(x, Y); 3741 ** 3742 ** then 3743 ** 3744 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 3745 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 3746 */ 3747 int sqlite3WhereIsSorted(WhereInfo *pWInfo){ 3748 assert( pWInfo->wctrlFlags & WHERE_GROUPBY ); 3749 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); 3750 return pWInfo->sorted; 3751 } 3752 3753 #ifdef WHERETRACE_ENABLED 3754 /* For debugging use only: */ 3755 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ 3756 static char zName[65]; 3757 int i; 3758 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } 3759 if( pLast ) zName[i++] = pLast->cId; 3760 zName[i] = 0; 3761 return zName; 3762 } 3763 #endif 3764 3765 /* 3766 ** Return the cost of sorting nRow rows, assuming that the keys have 3767 ** nOrderby columns and that the first nSorted columns are already in 3768 ** order. 3769 */ 3770 static LogEst whereSortingCost( 3771 WhereInfo *pWInfo, 3772 LogEst nRow, 3773 int nOrderBy, 3774 int nSorted 3775 ){ 3776 /* TUNING: Estimated cost of a full external sort, where N is 3777 ** the number of rows to sort is: 3778 ** 3779 ** cost = (3.0 * N * log(N)). 3780 ** 3781 ** Or, if the order-by clause has X terms but only the last Y 3782 ** terms are out of order, then block-sorting will reduce the 3783 ** sorting cost to: 3784 ** 3785 ** cost = (3.0 * N * log(N)) * (Y/X) 3786 ** 3787 ** The (Y/X) term is implemented using stack variable rScale 3788 ** below. */ 3789 LogEst rScale, rSortCost; 3790 assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); 3791 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; 3792 rSortCost = nRow + rScale + 16; 3793 3794 /* Multiple by log(M) where M is the number of output rows. 3795 ** Use the LIMIT for M if it is smaller */ 3796 if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){ 3797 nRow = pWInfo->iLimit; 3798 } 3799 rSortCost += estLog(nRow); 3800 return rSortCost; 3801 } 3802 3803 /* 3804 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine 3805 ** attempts to find the lowest cost path that visits each WhereLoop 3806 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. 3807 ** 3808 ** Assume that the total number of output rows that will need to be sorted 3809 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting 3810 ** costs if nRowEst==0. 3811 ** 3812 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation 3813 ** error occurs. 3814 */ 3815 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ 3816 int mxChoice; /* Maximum number of simultaneous paths tracked */ 3817 int nLoop; /* Number of terms in the join */ 3818 Parse *pParse; /* Parsing context */ 3819 sqlite3 *db; /* The database connection */ 3820 int iLoop; /* Loop counter over the terms of the join */ 3821 int ii, jj; /* Loop counters */ 3822 int mxI = 0; /* Index of next entry to replace */ 3823 int nOrderBy; /* Number of ORDER BY clause terms */ 3824 LogEst mxCost = 0; /* Maximum cost of a set of paths */ 3825 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ 3826 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ 3827 WherePath *aFrom; /* All nFrom paths at the previous level */ 3828 WherePath *aTo; /* The nTo best paths at the current level */ 3829 WherePath *pFrom; /* An element of aFrom[] that we are working on */ 3830 WherePath *pTo; /* An element of aTo[] that we are working on */ 3831 WhereLoop *pWLoop; /* One of the WhereLoop objects */ 3832 WhereLoop **pX; /* Used to divy up the pSpace memory */ 3833 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ 3834 char *pSpace; /* Temporary memory used by this routine */ 3835 int nSpace; /* Bytes of space allocated at pSpace */ 3836 3837 pParse = pWInfo->pParse; 3838 db = pParse->db; 3839 nLoop = pWInfo->nLevel; 3840 /* TUNING: For simple queries, only the best path is tracked. 3841 ** For 2-way joins, the 5 best paths are followed. 3842 ** For joins of 3 or more tables, track the 10 best paths */ 3843 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); 3844 assert( nLoop<=pWInfo->pTabList->nSrc ); 3845 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); 3846 3847 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this 3848 ** case the purpose of this call is to estimate the number of rows returned 3849 ** by the overall query. Once this estimate has been obtained, the caller 3850 ** will invoke this function a second time, passing the estimate as the 3851 ** nRowEst parameter. */ 3852 if( pWInfo->pOrderBy==0 || nRowEst==0 ){ 3853 nOrderBy = 0; 3854 }else{ 3855 nOrderBy = pWInfo->pOrderBy->nExpr; 3856 } 3857 3858 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ 3859 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; 3860 nSpace += sizeof(LogEst) * nOrderBy; 3861 pSpace = sqlite3DbMallocRawNN(db, nSpace); 3862 if( pSpace==0 ) return SQLITE_NOMEM_BKPT; 3863 aTo = (WherePath*)pSpace; 3864 aFrom = aTo+mxChoice; 3865 memset(aFrom, 0, sizeof(aFrom[0])); 3866 pX = (WhereLoop**)(aFrom+mxChoice); 3867 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ 3868 pFrom->aLoop = pX; 3869 } 3870 if( nOrderBy ){ 3871 /* If there is an ORDER BY clause and it is not being ignored, set up 3872 ** space for the aSortCost[] array. Each element of the aSortCost array 3873 ** is either zero - meaning it has not yet been initialized - or the 3874 ** cost of sorting nRowEst rows of data where the first X terms of 3875 ** the ORDER BY clause are already in order, where X is the array 3876 ** index. */ 3877 aSortCost = (LogEst*)pX; 3878 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); 3879 } 3880 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); 3881 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); 3882 3883 /* Seed the search with a single WherePath containing zero WhereLoops. 3884 ** 3885 ** TUNING: Do not let the number of iterations go above 28. If the cost 3886 ** of computing an automatic index is not paid back within the first 28 3887 ** rows, then do not use the automatic index. */ 3888 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) ); 3889 nFrom = 1; 3890 assert( aFrom[0].isOrdered==0 ); 3891 if( nOrderBy ){ 3892 /* If nLoop is zero, then there are no FROM terms in the query. Since 3893 ** in this case the query may return a maximum of one row, the results 3894 ** are already in the requested order. Set isOrdered to nOrderBy to 3895 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to 3896 ** -1, indicating that the result set may or may not be ordered, 3897 ** depending on the loops added to the current plan. */ 3898 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; 3899 } 3900 3901 /* Compute successively longer WherePaths using the previous generation 3902 ** of WherePaths as the basis for the next. Keep track of the mxChoice 3903 ** best paths at each generation */ 3904 for(iLoop=0; iLoop<nLoop; iLoop++){ 3905 nTo = 0; 3906 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ 3907 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ 3908 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ 3909 LogEst rCost; /* Cost of path (pFrom+pWLoop) */ 3910 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ 3911 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */ 3912 Bitmask maskNew; /* Mask of src visited by (..) */ 3913 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */ 3914 3915 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; 3916 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; 3917 if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<10 ){ 3918 /* Do not use an automatic index if the this loop is expected 3919 ** to run less than 2 times. */ 3920 assert( 10==sqlite3LogEst(2) ); 3921 continue; 3922 } 3923 /* At this point, pWLoop is a candidate to be the next loop. 3924 ** Compute its cost */ 3925 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); 3926 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); 3927 nOut = pFrom->nRow + pWLoop->nOut; 3928 maskNew = pFrom->maskLoop | pWLoop->maskSelf; 3929 if( isOrdered<0 ){ 3930 isOrdered = wherePathSatisfiesOrderBy(pWInfo, 3931 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, 3932 iLoop, pWLoop, &revMask); 3933 }else{ 3934 revMask = pFrom->revLoop; 3935 } 3936 if( isOrdered>=0 && isOrdered<nOrderBy ){ 3937 if( aSortCost[isOrdered]==0 ){ 3938 aSortCost[isOrdered] = whereSortingCost( 3939 pWInfo, nRowEst, nOrderBy, isOrdered 3940 ); 3941 } 3942 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]); 3943 3944 WHERETRACE(0x002, 3945 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", 3946 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, 3947 rUnsorted, rCost)); 3948 }else{ 3949 rCost = rUnsorted; 3950 } 3951 3952 /* Check to see if pWLoop should be added to the set of 3953 ** mxChoice best-so-far paths. 3954 ** 3955 ** First look for an existing path among best-so-far paths 3956 ** that covers the same set of loops and has the same isOrdered 3957 ** setting as the current path candidate. 3958 ** 3959 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent 3960 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range 3961 ** of legal values for isOrdered, -1..64. 3962 */ 3963 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ 3964 if( pTo->maskLoop==maskNew 3965 && ((pTo->isOrdered^isOrdered)&0x80)==0 3966 ){ 3967 testcase( jj==nTo-1 ); 3968 break; 3969 } 3970 } 3971 if( jj>=nTo ){ 3972 /* None of the existing best-so-far paths match the candidate. */ 3973 if( nTo>=mxChoice 3974 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) 3975 ){ 3976 /* The current candidate is no better than any of the mxChoice 3977 ** paths currently in the best-so-far buffer. So discard 3978 ** this candidate as not viable. */ 3979 #ifdef WHERETRACE_ENABLED /* 0x4 */ 3980 if( sqlite3WhereTrace&0x4 ){ 3981 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d order=%c\n", 3982 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 3983 isOrdered>=0 ? isOrdered+'0' : '?'); 3984 } 3985 #endif 3986 continue; 3987 } 3988 /* If we reach this points it means that the new candidate path 3989 ** needs to be added to the set of best-so-far paths. */ 3990 if( nTo<mxChoice ){ 3991 /* Increase the size of the aTo set by one */ 3992 jj = nTo++; 3993 }else{ 3994 /* New path replaces the prior worst to keep count below mxChoice */ 3995 jj = mxI; 3996 } 3997 pTo = &aTo[jj]; 3998 #ifdef WHERETRACE_ENABLED /* 0x4 */ 3999 if( sqlite3WhereTrace&0x4 ){ 4000 sqlite3DebugPrintf("New %s cost=%-3d,%3d order=%c\n", 4001 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 4002 isOrdered>=0 ? isOrdered+'0' : '?'); 4003 } 4004 #endif 4005 }else{ 4006 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the 4007 ** same set of loops and has the sam isOrdered setting as the 4008 ** candidate path. Check to see if the candidate should replace 4009 ** pTo or if the candidate should be skipped */ 4010 if( pTo->rCost<rCost || (pTo->rCost==rCost && pTo->nRow<=nOut) ){ 4011 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4012 if( sqlite3WhereTrace&0x4 ){ 4013 sqlite3DebugPrintf( 4014 "Skip %s cost=%-3d,%3d order=%c", 4015 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 4016 isOrdered>=0 ? isOrdered+'0' : '?'); 4017 sqlite3DebugPrintf(" vs %s cost=%-3d,%d order=%c\n", 4018 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4019 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4020 } 4021 #endif 4022 /* Discard the candidate path from further consideration */ 4023 testcase( pTo->rCost==rCost ); 4024 continue; 4025 } 4026 testcase( pTo->rCost==rCost+1 ); 4027 /* Control reaches here if the candidate path is better than the 4028 ** pTo path. Replace pTo with the candidate. */ 4029 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4030 if( sqlite3WhereTrace&0x4 ){ 4031 sqlite3DebugPrintf( 4032 "Update %s cost=%-3d,%3d order=%c", 4033 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 4034 isOrdered>=0 ? isOrdered+'0' : '?'); 4035 sqlite3DebugPrintf(" was %s cost=%-3d,%3d order=%c\n", 4036 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4037 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4038 } 4039 #endif 4040 } 4041 /* pWLoop is a winner. Add it to the set of best so far */ 4042 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; 4043 pTo->revLoop = revMask; 4044 pTo->nRow = nOut; 4045 pTo->rCost = rCost; 4046 pTo->rUnsorted = rUnsorted; 4047 pTo->isOrdered = isOrdered; 4048 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); 4049 pTo->aLoop[iLoop] = pWLoop; 4050 if( nTo>=mxChoice ){ 4051 mxI = 0; 4052 mxCost = aTo[0].rCost; 4053 mxUnsorted = aTo[0].nRow; 4054 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ 4055 if( pTo->rCost>mxCost 4056 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) 4057 ){ 4058 mxCost = pTo->rCost; 4059 mxUnsorted = pTo->rUnsorted; 4060 mxI = jj; 4061 } 4062 } 4063 } 4064 } 4065 } 4066 4067 #ifdef WHERETRACE_ENABLED /* >=2 */ 4068 if( sqlite3WhereTrace & 0x02 ){ 4069 sqlite3DebugPrintf("---- after round %d ----\n", iLoop); 4070 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ 4071 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", 4072 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4073 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); 4074 if( pTo->isOrdered>0 ){ 4075 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); 4076 }else{ 4077 sqlite3DebugPrintf("\n"); 4078 } 4079 } 4080 } 4081 #endif 4082 4083 /* Swap the roles of aFrom and aTo for the next generation */ 4084 pFrom = aTo; 4085 aTo = aFrom; 4086 aFrom = pFrom; 4087 nFrom = nTo; 4088 } 4089 4090 if( nFrom==0 ){ 4091 sqlite3ErrorMsg(pParse, "no query solution"); 4092 sqlite3DbFree(db, pSpace); 4093 return SQLITE_ERROR; 4094 } 4095 4096 /* Find the lowest cost path. pFrom will be left pointing to that path */ 4097 pFrom = aFrom; 4098 for(ii=1; ii<nFrom; ii++){ 4099 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; 4100 } 4101 assert( pWInfo->nLevel==nLoop ); 4102 /* Load the lowest cost path into pWInfo */ 4103 for(iLoop=0; iLoop<nLoop; iLoop++){ 4104 WhereLevel *pLevel = pWInfo->a + iLoop; 4105 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; 4106 pLevel->iFrom = pWLoop->iTab; 4107 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; 4108 } 4109 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 4110 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 4111 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP 4112 && nRowEst 4113 ){ 4114 Bitmask notUsed; 4115 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pDistinctSet, pFrom, 4116 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); 4117 if( rc==pWInfo->pDistinctSet->nExpr ){ 4118 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 4119 } 4120 } 4121 if( pWInfo->pOrderBy ){ 4122 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ 4123 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ 4124 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 4125 } 4126 }else{ 4127 pWInfo->nOBSat = pFrom->isOrdered; 4128 pWInfo->revMask = pFrom->revLoop; 4129 if( pWInfo->nOBSat<=0 ){ 4130 pWInfo->nOBSat = 0; 4131 if( nLoop>0 ){ 4132 u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags; 4133 if( (wsFlags & WHERE_ONEROW)==0 4134 && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN) 4135 ){ 4136 Bitmask m = 0; 4137 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, 4138 WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m); 4139 testcase( wsFlags & WHERE_IPK ); 4140 testcase( wsFlags & WHERE_COLUMN_IN ); 4141 if( rc==pWInfo->pOrderBy->nExpr ){ 4142 pWInfo->bOrderedInnerLoop = 1; 4143 pWInfo->revMask = m; 4144 } 4145 } 4146 } 4147 } 4148 } 4149 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) 4150 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 4151 ){ 4152 Bitmask revMask = 0; 4153 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, 4154 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask 4155 ); 4156 assert( pWInfo->sorted==0 ); 4157 if( nOrder==pWInfo->pOrderBy->nExpr ){ 4158 pWInfo->sorted = 1; 4159 pWInfo->revMask = revMask; 4160 } 4161 } 4162 } 4163 4164 4165 pWInfo->nRowOut = pFrom->nRow; 4166 4167 /* Free temporary memory and return success */ 4168 sqlite3DbFree(db, pSpace); 4169 return SQLITE_OK; 4170 } 4171 4172 /* 4173 ** Most queries use only a single table (they are not joins) and have 4174 ** simple == constraints against indexed fields. This routine attempts 4175 ** to plan those simple cases using much less ceremony than the 4176 ** general-purpose query planner, and thereby yield faster sqlite3_prepare() 4177 ** times for the common case. 4178 ** 4179 ** Return non-zero on success, if this query can be handled by this 4180 ** no-frills query planner. Return zero if this query needs the 4181 ** general-purpose query planner. 4182 */ 4183 static int whereShortCut(WhereLoopBuilder *pBuilder){ 4184 WhereInfo *pWInfo; 4185 struct SrcList_item *pItem; 4186 WhereClause *pWC; 4187 WhereTerm *pTerm; 4188 WhereLoop *pLoop; 4189 int iCur; 4190 int j; 4191 Table *pTab; 4192 Index *pIdx; 4193 4194 pWInfo = pBuilder->pWInfo; 4195 if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0; 4196 assert( pWInfo->pTabList->nSrc>=1 ); 4197 pItem = pWInfo->pTabList->a; 4198 pTab = pItem->pTab; 4199 if( IsVirtual(pTab) ) return 0; 4200 if( pItem->fg.isIndexedBy ) return 0; 4201 iCur = pItem->iCursor; 4202 pWC = &pWInfo->sWC; 4203 pLoop = pBuilder->pNew; 4204 pLoop->wsFlags = 0; 4205 pLoop->nSkip = 0; 4206 pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0); 4207 if( pTerm ){ 4208 testcase( pTerm->eOperator & WO_IS ); 4209 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; 4210 pLoop->aLTerm[0] = pTerm; 4211 pLoop->nLTerm = 1; 4212 pLoop->u.btree.nEq = 1; 4213 /* TUNING: Cost of a rowid lookup is 10 */ 4214 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ 4215 }else{ 4216 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4217 int opMask; 4218 assert( pLoop->aLTermSpace==pLoop->aLTerm ); 4219 if( !IsUniqueIndex(pIdx) 4220 || pIdx->pPartIdxWhere!=0 4221 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) 4222 ) continue; 4223 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; 4224 for(j=0; j<pIdx->nKeyCol; j++){ 4225 pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx); 4226 if( pTerm==0 ) break; 4227 testcase( pTerm->eOperator & WO_IS ); 4228 pLoop->aLTerm[j] = pTerm; 4229 } 4230 if( j!=pIdx->nKeyCol ) continue; 4231 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; 4232 if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){ 4233 pLoop->wsFlags |= WHERE_IDX_ONLY; 4234 } 4235 pLoop->nLTerm = j; 4236 pLoop->u.btree.nEq = j; 4237 pLoop->u.btree.pIndex = pIdx; 4238 /* TUNING: Cost of a unique index lookup is 15 */ 4239 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ 4240 break; 4241 } 4242 } 4243 if( pLoop->wsFlags ){ 4244 pLoop->nOut = (LogEst)1; 4245 pWInfo->a[0].pWLoop = pLoop; 4246 pLoop->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 4247 pWInfo->a[0].iTabCur = iCur; 4248 pWInfo->nRowOut = 1; 4249 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; 4250 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ 4251 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4252 } 4253 #ifdef SQLITE_DEBUG 4254 pLoop->cId = '0'; 4255 #endif 4256 return 1; 4257 } 4258 return 0; 4259 } 4260 4261 /* 4262 ** Generate the beginning of the loop used for WHERE clause processing. 4263 ** The return value is a pointer to an opaque structure that contains 4264 ** information needed to terminate the loop. Later, the calling routine 4265 ** should invoke sqlite3WhereEnd() with the return value of this function 4266 ** in order to complete the WHERE clause processing. 4267 ** 4268 ** If an error occurs, this routine returns NULL. 4269 ** 4270 ** The basic idea is to do a nested loop, one loop for each table in 4271 ** the FROM clause of a select. (INSERT and UPDATE statements are the 4272 ** same as a SELECT with only a single table in the FROM clause.) For 4273 ** example, if the SQL is this: 4274 ** 4275 ** SELECT * FROM t1, t2, t3 WHERE ...; 4276 ** 4277 ** Then the code generated is conceptually like the following: 4278 ** 4279 ** foreach row1 in t1 do \ Code generated 4280 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 4281 ** foreach row3 in t3 do / 4282 ** ... 4283 ** end \ Code generated 4284 ** end |-- by sqlite3WhereEnd() 4285 ** end / 4286 ** 4287 ** Note that the loops might not be nested in the order in which they 4288 ** appear in the FROM clause if a different order is better able to make 4289 ** use of indices. Note also that when the IN operator appears in 4290 ** the WHERE clause, it might result in additional nested loops for 4291 ** scanning through all values on the right-hand side of the IN. 4292 ** 4293 ** There are Btree cursors associated with each table. t1 uses cursor 4294 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 4295 ** And so forth. This routine generates code to open those VDBE cursors 4296 ** and sqlite3WhereEnd() generates the code to close them. 4297 ** 4298 ** The code that sqlite3WhereBegin() generates leaves the cursors named 4299 ** in pTabList pointing at their appropriate entries. The [...] code 4300 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 4301 ** data from the various tables of the loop. 4302 ** 4303 ** If the WHERE clause is empty, the foreach loops must each scan their 4304 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 4305 ** the tables have indices and there are terms in the WHERE clause that 4306 ** refer to those indices, a complete table scan can be avoided and the 4307 ** code will run much faster. Most of the work of this routine is checking 4308 ** to see if there are indices that can be used to speed up the loop. 4309 ** 4310 ** Terms of the WHERE clause are also used to limit which rows actually 4311 ** make it to the "..." in the middle of the loop. After each "foreach", 4312 ** terms of the WHERE clause that use only terms in that loop and outer 4313 ** loops are evaluated and if false a jump is made around all subsequent 4314 ** inner loops (or around the "..." if the test occurs within the inner- 4315 ** most loop) 4316 ** 4317 ** OUTER JOINS 4318 ** 4319 ** An outer join of tables t1 and t2 is conceptally coded as follows: 4320 ** 4321 ** foreach row1 in t1 do 4322 ** flag = 0 4323 ** foreach row2 in t2 do 4324 ** start: 4325 ** ... 4326 ** flag = 1 4327 ** end 4328 ** if flag==0 then 4329 ** move the row2 cursor to a null row 4330 ** goto start 4331 ** fi 4332 ** end 4333 ** 4334 ** ORDER BY CLAUSE PROCESSING 4335 ** 4336 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause 4337 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement 4338 ** if there is one. If there is no ORDER BY clause or if this routine 4339 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. 4340 ** 4341 ** The iIdxCur parameter is the cursor number of an index. If 4342 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index 4343 ** to use for OR clause processing. The WHERE clause should use this 4344 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is 4345 ** the first cursor in an array of cursors for all indices. iIdxCur should 4346 ** be used to compute the appropriate cursor depending on which index is 4347 ** used. 4348 */ 4349 WhereInfo *sqlite3WhereBegin( 4350 Parse *pParse, /* The parser context */ 4351 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ 4352 Expr *pWhere, /* The WHERE clause */ 4353 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ 4354 ExprList *pDistinctSet, /* Try not to output two rows that duplicate these */ 4355 u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */ 4356 int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number 4357 ** If WHERE_USE_LIMIT, then the limit amount */ 4358 ){ 4359 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ 4360 int nTabList; /* Number of elements in pTabList */ 4361 WhereInfo *pWInfo; /* Will become the return value of this function */ 4362 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 4363 Bitmask notReady; /* Cursors that are not yet positioned */ 4364 WhereLoopBuilder sWLB; /* The WhereLoop builder */ 4365 WhereMaskSet *pMaskSet; /* The expression mask set */ 4366 WhereLevel *pLevel; /* A single level in pWInfo->a[] */ 4367 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ 4368 int ii; /* Loop counter */ 4369 sqlite3 *db; /* Database connection */ 4370 int rc; /* Return code */ 4371 u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */ 4372 4373 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || ( 4374 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 4375 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 4376 )); 4377 4378 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */ 4379 assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 4380 || (wctrlFlags & WHERE_USE_LIMIT)==0 ); 4381 4382 /* Variable initialization */ 4383 db = pParse->db; 4384 memset(&sWLB, 0, sizeof(sWLB)); 4385 4386 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ 4387 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); 4388 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; 4389 sWLB.pOrderBy = pOrderBy; 4390 4391 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via 4392 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ 4393 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ 4394 wctrlFlags &= ~WHERE_WANT_DISTINCT; 4395 } 4396 4397 /* The number of tables in the FROM clause is limited by the number of 4398 ** bits in a Bitmask 4399 */ 4400 testcase( pTabList->nSrc==BMS ); 4401 if( pTabList->nSrc>BMS ){ 4402 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 4403 return 0; 4404 } 4405 4406 /* This function normally generates a nested loop for all tables in 4407 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should 4408 ** only generate code for the first table in pTabList and assume that 4409 ** any cursors associated with subsequent tables are uninitialized. 4410 */ 4411 nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc; 4412 4413 /* Allocate and initialize the WhereInfo structure that will become the 4414 ** return value. A single allocation is used to store the WhereInfo 4415 ** struct, the contents of WhereInfo.a[], the WhereClause structure 4416 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte 4417 ** field (type Bitmask) it must be aligned on an 8-byte boundary on 4418 ** some architectures. Hence the ROUND8() below. 4419 */ 4420 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); 4421 pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop)); 4422 if( db->mallocFailed ){ 4423 sqlite3DbFree(db, pWInfo); 4424 pWInfo = 0; 4425 goto whereBeginError; 4426 } 4427 pWInfo->pParse = pParse; 4428 pWInfo->pTabList = pTabList; 4429 pWInfo->pOrderBy = pOrderBy; 4430 pWInfo->pDistinctSet = pDistinctSet; 4431 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; 4432 pWInfo->nLevel = nTabList; 4433 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v); 4434 pWInfo->wctrlFlags = wctrlFlags; 4435 pWInfo->iLimit = iAuxArg; 4436 pWInfo->savedNQueryLoop = pParse->nQueryLoop; 4437 memset(&pWInfo->nOBSat, 0, 4438 offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat)); 4439 memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel)); 4440 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */ 4441 pMaskSet = &pWInfo->sMaskSet; 4442 sWLB.pWInfo = pWInfo; 4443 sWLB.pWC = &pWInfo->sWC; 4444 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); 4445 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); 4446 whereLoopInit(sWLB.pNew); 4447 #ifdef SQLITE_DEBUG 4448 sWLB.pNew->cId = '*'; 4449 #endif 4450 4451 /* Split the WHERE clause into separate subexpressions where each 4452 ** subexpression is separated by an AND operator. 4453 */ 4454 initMaskSet(pMaskSet); 4455 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); 4456 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); 4457 4458 /* Special case: a WHERE clause that is constant. Evaluate the 4459 ** expression and either jump over all of the code or fall thru. 4460 */ 4461 for(ii=0; ii<sWLB.pWC->nTerm; ii++){ 4462 if( nTabList==0 || sqlite3ExprIsConstantNotJoin(sWLB.pWC->a[ii].pExpr) ){ 4463 sqlite3ExprIfFalse(pParse, sWLB.pWC->a[ii].pExpr, pWInfo->iBreak, 4464 SQLITE_JUMPIFNULL); 4465 sWLB.pWC->a[ii].wtFlags |= TERM_CODED; 4466 } 4467 } 4468 4469 /* Special case: No FROM clause 4470 */ 4471 if( nTabList==0 ){ 4472 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; 4473 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4474 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4475 } 4476 } 4477 4478 /* Assign a bit from the bitmask to every term in the FROM clause. 4479 ** 4480 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. 4481 ** 4482 ** The rule of the previous sentence ensures thta if X is the bitmask for 4483 ** a table T, then X-1 is the bitmask for all other tables to the left of T. 4484 ** Knowing the bitmask for all tables to the left of a left join is 4485 ** important. Ticket #3015. 4486 ** 4487 ** Note that bitmasks are created for all pTabList->nSrc tables in 4488 ** pTabList, not just the first nTabList tables. nTabList is normally 4489 ** equal to pTabList->nSrc but might be shortened to 1 if the 4490 ** WHERE_OR_SUBCLAUSE flag is set. 4491 */ 4492 for(ii=0; ii<pTabList->nSrc; ii++){ 4493 createMask(pMaskSet, pTabList->a[ii].iCursor); 4494 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC); 4495 } 4496 #ifdef SQLITE_DEBUG 4497 for(ii=0; ii<pTabList->nSrc; ii++){ 4498 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); 4499 assert( m==MASKBIT(ii) ); 4500 } 4501 #endif 4502 4503 /* Analyze all of the subexpressions. */ 4504 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); 4505 if( db->mallocFailed ) goto whereBeginError; 4506 4507 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4508 if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pDistinctSet) ){ 4509 /* The DISTINCT marking is pointless. Ignore it. */ 4510 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4511 }else if( pOrderBy==0 ){ 4512 /* Try to ORDER BY the result set to make distinct processing easier */ 4513 pWInfo->wctrlFlags |= WHERE_DISTINCTBY; 4514 pWInfo->pOrderBy = pDistinctSet; 4515 } 4516 } 4517 4518 /* Construct the WhereLoop objects */ 4519 #if defined(WHERETRACE_ENABLED) 4520 if( sqlite3WhereTrace & 0xffff ){ 4521 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags); 4522 if( wctrlFlags & WHERE_USE_LIMIT ){ 4523 sqlite3DebugPrintf(", limit: %d", iAuxArg); 4524 } 4525 sqlite3DebugPrintf(")\n"); 4526 } 4527 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 4528 sqlite3WhereClausePrint(sWLB.pWC); 4529 } 4530 #endif 4531 4532 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ 4533 rc = whereLoopAddAll(&sWLB); 4534 if( rc ) goto whereBeginError; 4535 4536 #ifdef WHERETRACE_ENABLED 4537 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ 4538 WhereLoop *p; 4539 int i; 4540 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" 4541 "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; 4542 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ 4543 p->cId = zLabel[i%sizeof(zLabel)]; 4544 whereLoopPrint(p, sWLB.pWC); 4545 } 4546 } 4547 #endif 4548 4549 wherePathSolver(pWInfo, 0); 4550 if( db->mallocFailed ) goto whereBeginError; 4551 if( pWInfo->pOrderBy ){ 4552 wherePathSolver(pWInfo, pWInfo->nRowOut+1); 4553 if( db->mallocFailed ) goto whereBeginError; 4554 } 4555 } 4556 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ 4557 pWInfo->revMask = ALLBITS; 4558 } 4559 if( pParse->nErr || NEVER(db->mallocFailed) ){ 4560 goto whereBeginError; 4561 } 4562 #ifdef WHERETRACE_ENABLED 4563 if( sqlite3WhereTrace ){ 4564 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); 4565 if( pWInfo->nOBSat>0 ){ 4566 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); 4567 } 4568 switch( pWInfo->eDistinct ){ 4569 case WHERE_DISTINCT_UNIQUE: { 4570 sqlite3DebugPrintf(" DISTINCT=unique"); 4571 break; 4572 } 4573 case WHERE_DISTINCT_ORDERED: { 4574 sqlite3DebugPrintf(" DISTINCT=ordered"); 4575 break; 4576 } 4577 case WHERE_DISTINCT_UNORDERED: { 4578 sqlite3DebugPrintf(" DISTINCT=unordered"); 4579 break; 4580 } 4581 } 4582 sqlite3DebugPrintf("\n"); 4583 for(ii=0; ii<pWInfo->nLevel; ii++){ 4584 whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); 4585 } 4586 } 4587 #endif 4588 /* Attempt to omit tables from the join that do not effect the result */ 4589 if( pWInfo->nLevel>=2 4590 && pDistinctSet!=0 4591 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) 4592 ){ 4593 Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pDistinctSet); 4594 if( sWLB.pOrderBy ){ 4595 tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy); 4596 } 4597 while( pWInfo->nLevel>=2 ){ 4598 WhereTerm *pTerm, *pEnd; 4599 pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop; 4600 if( (pWInfo->pTabList->a[pLoop->iTab].fg.jointype & JT_LEFT)==0 ) break; 4601 if( (wctrlFlags & WHERE_WANT_DISTINCT)==0 4602 && (pLoop->wsFlags & WHERE_ONEROW)==0 4603 ){ 4604 break; 4605 } 4606 if( (tabUsed & pLoop->maskSelf)!=0 ) break; 4607 pEnd = sWLB.pWC->a + sWLB.pWC->nTerm; 4608 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ 4609 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 4610 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 4611 ){ 4612 break; 4613 } 4614 } 4615 if( pTerm<pEnd ) break; 4616 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); 4617 pWInfo->nLevel--; 4618 nTabList--; 4619 } 4620 } 4621 WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); 4622 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; 4623 4624 /* If the caller is an UPDATE or DELETE statement that is requesting 4625 ** to use a one-pass algorithm, determine if this is appropriate. 4626 */ 4627 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 4628 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){ 4629 int wsFlags = pWInfo->a[0].pWLoop->wsFlags; 4630 int bOnerow = (wsFlags & WHERE_ONEROW)!=0; 4631 if( bOnerow 4632 || ((wctrlFlags & WHERE_ONEPASS_MULTIROW)!=0 4633 && 0==(wsFlags & WHERE_VIRTUALTABLE)) 4634 ){ 4635 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; 4636 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){ 4637 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){ 4638 bFordelete = OPFLAG_FORDELETE; 4639 } 4640 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY); 4641 } 4642 } 4643 } 4644 4645 /* Open all tables in the pTabList and any indices selected for 4646 ** searching those tables. 4647 */ 4648 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ 4649 Table *pTab; /* Table to open */ 4650 int iDb; /* Index of database containing table/index */ 4651 struct SrcList_item *pTabItem; 4652 4653 pTabItem = &pTabList->a[pLevel->iFrom]; 4654 pTab = pTabItem->pTab; 4655 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4656 pLoop = pLevel->pWLoop; 4657 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){ 4658 /* Do nothing */ 4659 }else 4660 #ifndef SQLITE_OMIT_VIRTUALTABLE 4661 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 4662 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 4663 int iCur = pTabItem->iCursor; 4664 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); 4665 }else if( IsVirtual(pTab) ){ 4666 /* noop */ 4667 }else 4668 #endif 4669 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 4670 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){ 4671 int op = OP_OpenRead; 4672 if( pWInfo->eOnePass!=ONEPASS_OFF ){ 4673 op = OP_OpenWrite; 4674 pWInfo->aiCurOnePass[0] = pTabItem->iCursor; 4675 }; 4676 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 4677 assert( pTabItem->iCursor==pLevel->iTabCur ); 4678 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 ); 4679 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS ); 4680 if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){ 4681 Bitmask b = pTabItem->colUsed; 4682 int n = 0; 4683 for(; b; b=b>>1, n++){} 4684 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32); 4685 assert( n<=pTab->nCol ); 4686 } 4687 #ifdef SQLITE_ENABLE_CURSOR_HINTS 4688 if( pLoop->u.btree.pIndex!=0 ){ 4689 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete); 4690 }else 4691 #endif 4692 { 4693 sqlite3VdbeChangeP5(v, bFordelete); 4694 } 4695 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4696 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, 4697 (const u8*)&pTabItem->colUsed, P4_INT64); 4698 #endif 4699 }else{ 4700 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 4701 } 4702 if( pLoop->wsFlags & WHERE_INDEXED ){ 4703 Index *pIx = pLoop->u.btree.pIndex; 4704 int iIndexCur; 4705 int op = OP_OpenRead; 4706 /* iAuxArg is always set if to a positive value if ONEPASS is possible */ 4707 assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); 4708 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) 4709 && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 4710 ){ 4711 /* This is one term of an OR-optimization using the PRIMARY KEY of a 4712 ** WITHOUT ROWID table. No need for a separate index */ 4713 iIndexCur = pLevel->iTabCur; 4714 op = 0; 4715 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){ 4716 Index *pJ = pTabItem->pTab->pIndex; 4717 iIndexCur = iAuxArg; 4718 assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); 4719 while( ALWAYS(pJ) && pJ!=pIx ){ 4720 iIndexCur++; 4721 pJ = pJ->pNext; 4722 } 4723 op = OP_OpenWrite; 4724 pWInfo->aiCurOnePass[1] = iIndexCur; 4725 }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){ 4726 iIndexCur = iAuxArg; 4727 op = OP_ReopenIdx; 4728 }else{ 4729 iIndexCur = pParse->nTab++; 4730 } 4731 pLevel->iIdxCur = iIndexCur; 4732 assert( pIx->pSchema==pTab->pSchema ); 4733 assert( iIndexCur>=0 ); 4734 if( op ){ 4735 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); 4736 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 4737 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 4738 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 4739 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 4740 ){ 4741 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */ 4742 } 4743 VdbeComment((v, "%s", pIx->zName)); 4744 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4745 { 4746 u64 colUsed = 0; 4747 int ii, jj; 4748 for(ii=0; ii<pIx->nColumn; ii++){ 4749 jj = pIx->aiColumn[ii]; 4750 if( jj<0 ) continue; 4751 if( jj>63 ) jj = 63; 4752 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue; 4753 colUsed |= ((u64)1)<<(ii<63 ? ii : 63); 4754 } 4755 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, 4756 (u8*)&colUsed, P4_INT64); 4757 } 4758 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ 4759 } 4760 } 4761 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); 4762 } 4763 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 4764 if( db->mallocFailed ) goto whereBeginError; 4765 4766 /* Generate the code to do the search. Each iteration of the for 4767 ** loop below generates code for a single nested loop of the VM 4768 ** program. 4769 */ 4770 notReady = ~(Bitmask)0; 4771 for(ii=0; ii<nTabList; ii++){ 4772 int addrExplain; 4773 int wsFlags; 4774 pLevel = &pWInfo->a[ii]; 4775 wsFlags = pLevel->pWLoop->wsFlags; 4776 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 4777 if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 4778 constructAutomaticIndex(pParse, &pWInfo->sWC, 4779 &pTabList->a[pLevel->iFrom], notReady, pLevel); 4780 if( db->mallocFailed ) goto whereBeginError; 4781 } 4782 #endif 4783 addrExplain = sqlite3WhereExplainOneScan( 4784 pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags 4785 ); 4786 pLevel->addrBody = sqlite3VdbeCurrentAddr(v); 4787 notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady); 4788 pWInfo->iContinue = pLevel->addrCont; 4789 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){ 4790 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); 4791 } 4792 } 4793 4794 /* Done. */ 4795 VdbeModuleComment((v, "Begin WHERE-core")); 4796 return pWInfo; 4797 4798 /* Jump here if malloc fails */ 4799 whereBeginError: 4800 if( pWInfo ){ 4801 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 4802 whereInfoFree(db, pWInfo); 4803 } 4804 return 0; 4805 } 4806 4807 /* 4808 ** Generate the end of the WHERE loop. See comments on 4809 ** sqlite3WhereBegin() for additional information. 4810 */ 4811 void sqlite3WhereEnd(WhereInfo *pWInfo){ 4812 Parse *pParse = pWInfo->pParse; 4813 Vdbe *v = pParse->pVdbe; 4814 int i; 4815 WhereLevel *pLevel; 4816 WhereLoop *pLoop; 4817 SrcList *pTabList = pWInfo->pTabList; 4818 sqlite3 *db = pParse->db; 4819 4820 /* Generate loop termination code. 4821 */ 4822 VdbeModuleComment((v, "End WHERE-core")); 4823 sqlite3ExprCacheClear(pParse); 4824 for(i=pWInfo->nLevel-1; i>=0; i--){ 4825 int addr; 4826 pLevel = &pWInfo->a[i]; 4827 pLoop = pLevel->pWLoop; 4828 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 4829 if( pLevel->op!=OP_Noop ){ 4830 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); 4831 sqlite3VdbeChangeP5(v, pLevel->p5); 4832 VdbeCoverage(v); 4833 VdbeCoverageIf(v, pLevel->op==OP_Next); 4834 VdbeCoverageIf(v, pLevel->op==OP_Prev); 4835 VdbeCoverageIf(v, pLevel->op==OP_VNext); 4836 } 4837 if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ 4838 struct InLoop *pIn; 4839 int j; 4840 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 4841 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 4842 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 4843 if( pIn->eEndLoopOp!=OP_Noop ){ 4844 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); 4845 VdbeCoverage(v); 4846 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen); 4847 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen); 4848 } 4849 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 4850 } 4851 } 4852 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 4853 if( pLevel->addrSkip ){ 4854 sqlite3VdbeGoto(v, pLevel->addrSkip); 4855 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); 4856 sqlite3VdbeJumpHere(v, pLevel->addrSkip); 4857 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); 4858 } 4859 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 4860 if( pLevel->addrLikeRep ){ 4861 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1), 4862 pLevel->addrLikeRep); 4863 VdbeCoverage(v); 4864 } 4865 #endif 4866 if( pLevel->iLeftJoin ){ 4867 int ws = pLoop->wsFlags; 4868 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); 4869 assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 ); 4870 if( (ws & WHERE_IDX_ONLY)==0 ){ 4871 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); 4872 } 4873 if( (ws & WHERE_INDEXED) 4874 || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx) 4875 ){ 4876 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 4877 } 4878 if( pLevel->op==OP_Return ){ 4879 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); 4880 }else{ 4881 sqlite3VdbeGoto(v, pLevel->addrFirst); 4882 } 4883 sqlite3VdbeJumpHere(v, addr); 4884 } 4885 VdbeModuleComment((v, "End WHERE-loop%d: %s", i, 4886 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); 4887 } 4888 4889 /* The "break" point is here, just past the end of the outer loop. 4890 ** Set it. 4891 */ 4892 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 4893 4894 assert( pWInfo->nLevel<=pTabList->nSrc ); 4895 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ 4896 int k, last; 4897 VdbeOp *pOp; 4898 Index *pIdx = 0; 4899 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 4900 Table *pTab = pTabItem->pTab; 4901 assert( pTab!=0 ); 4902 pLoop = pLevel->pWLoop; 4903 4904 /* For a co-routine, change all OP_Column references to the table of 4905 ** the co-routine into OP_Copy of result contained in a register. 4906 ** OP_Rowid becomes OP_Null. 4907 */ 4908 if( pTabItem->fg.viaCoroutine && !db->mallocFailed ){ 4909 translateColumnToCopy(v, pLevel->addrBody, pLevel->iTabCur, 4910 pTabItem->regResult, 0); 4911 continue; 4912 } 4913 4914 /* If this scan uses an index, make VDBE code substitutions to read data 4915 ** from the index instead of from the table where possible. In some cases 4916 ** this optimization prevents the table from ever being read, which can 4917 ** yield a significant performance boost. 4918 ** 4919 ** Calls to the code generator in between sqlite3WhereBegin and 4920 ** sqlite3WhereEnd will have created code that references the table 4921 ** directly. This loop scans all that code looking for opcodes 4922 ** that reference the table and converts them into opcodes that 4923 ** reference the index. 4924 */ 4925 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ 4926 pIdx = pLoop->u.btree.pIndex; 4927 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ 4928 pIdx = pLevel->u.pCovidx; 4929 } 4930 if( pIdx 4931 && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable)) 4932 && !db->mallocFailed 4933 ){ 4934 last = sqlite3VdbeCurrentAddr(v); 4935 k = pLevel->addrBody; 4936 pOp = sqlite3VdbeGetOp(v, k); 4937 for(; k<last; k++, pOp++){ 4938 if( pOp->p1!=pLevel->iTabCur ) continue; 4939 if( pOp->opcode==OP_Column ){ 4940 int x = pOp->p2; 4941 assert( pIdx->pTable==pTab ); 4942 if( !HasRowid(pTab) ){ 4943 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 4944 x = pPk->aiColumn[x]; 4945 assert( x>=0 ); 4946 } 4947 x = sqlite3ColumnOfIndex(pIdx, x); 4948 if( x>=0 ){ 4949 pOp->p2 = x; 4950 pOp->p1 = pLevel->iIdxCur; 4951 } 4952 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 4953 || pWInfo->eOnePass ); 4954 }else if( pOp->opcode==OP_Rowid ){ 4955 pOp->p1 = pLevel->iIdxCur; 4956 pOp->opcode = OP_IdxRowid; 4957 } 4958 } 4959 } 4960 } 4961 4962 /* Final cleanup 4963 */ 4964 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 4965 whereInfoFree(db, pWInfo); 4966 return; 4967 } 4968