1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is reponsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 ** 19 ** $Id: where.c,v 1.266 2007/12/12 17:42:53 danielk1977 Exp $ 20 */ 21 #include "sqliteInt.h" 22 23 /* 24 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 25 */ 26 #define BMS (sizeof(Bitmask)*8) 27 28 /* 29 ** Trace output macros 30 */ 31 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 32 int sqlite3_where_trace = 0; 33 # define WHERETRACE(X) if(sqlite3_where_trace) sqlite3DebugPrintf X 34 #else 35 # define WHERETRACE(X) 36 #endif 37 38 /* Forward reference 39 */ 40 typedef struct WhereClause WhereClause; 41 typedef struct ExprMaskSet ExprMaskSet; 42 43 /* 44 ** The query generator uses an array of instances of this structure to 45 ** help it analyze the subexpressions of the WHERE clause. Each WHERE 46 ** clause subexpression is separated from the others by an AND operator. 47 ** 48 ** All WhereTerms are collected into a single WhereClause structure. 49 ** The following identity holds: 50 ** 51 ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm 52 ** 53 ** When a term is of the form: 54 ** 55 ** X <op> <expr> 56 ** 57 ** where X is a column name and <op> is one of certain operators, 58 ** then WhereTerm.leftCursor and WhereTerm.leftColumn record the 59 ** cursor number and column number for X. WhereTerm.operator records 60 ** the <op> using a bitmask encoding defined by WO_xxx below. The 61 ** use of a bitmask encoding for the operator allows us to search 62 ** quickly for terms that match any of several different operators. 63 ** 64 ** prereqRight and prereqAll record sets of cursor numbers, 65 ** but they do so indirectly. A single ExprMaskSet structure translates 66 ** cursor number into bits and the translated bit is stored in the prereq 67 ** fields. The translation is used in order to maximize the number of 68 ** bits that will fit in a Bitmask. The VDBE cursor numbers might be 69 ** spread out over the non-negative integers. For example, the cursor 70 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The ExprMaskSet 71 ** translates these sparse cursor numbers into consecutive integers 72 ** beginning with 0 in order to make the best possible use of the available 73 ** bits in the Bitmask. So, in the example above, the cursor numbers 74 ** would be mapped into integers 0 through 7. 75 */ 76 typedef struct WhereTerm WhereTerm; 77 struct WhereTerm { 78 Expr *pExpr; /* Pointer to the subexpression */ 79 i16 iParent; /* Disable pWC->a[iParent] when this term disabled */ 80 i16 leftCursor; /* Cursor number of X in "X <op> <expr>" */ 81 i16 leftColumn; /* Column number of X in "X <op> <expr>" */ 82 u16 eOperator; /* A WO_xx value describing <op> */ 83 u8 flags; /* Bit flags. See below */ 84 u8 nChild; /* Number of children that must disable us */ 85 WhereClause *pWC; /* The clause this term is part of */ 86 Bitmask prereqRight; /* Bitmask of tables used by pRight */ 87 Bitmask prereqAll; /* Bitmask of tables referenced by p */ 88 }; 89 90 /* 91 ** Allowed values of WhereTerm.flags 92 */ 93 #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(pExpr) */ 94 #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */ 95 #define TERM_CODED 0x04 /* This term is already coded */ 96 #define TERM_COPIED 0x08 /* Has a child */ 97 #define TERM_OR_OK 0x10 /* Used during OR-clause processing */ 98 99 /* 100 ** An instance of the following structure holds all information about a 101 ** WHERE clause. Mostly this is a container for one or more WhereTerms. 102 */ 103 struct WhereClause { 104 Parse *pParse; /* The parser context */ 105 ExprMaskSet *pMaskSet; /* Mapping of table indices to bitmasks */ 106 int nTerm; /* Number of terms */ 107 int nSlot; /* Number of entries in a[] */ 108 WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */ 109 WhereTerm aStatic[10]; /* Initial static space for a[] */ 110 }; 111 112 /* 113 ** An instance of the following structure keeps track of a mapping 114 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm. 115 ** 116 ** The VDBE cursor numbers are small integers contained in 117 ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE 118 ** clause, the cursor numbers might not begin with 0 and they might 119 ** contain gaps in the numbering sequence. But we want to make maximum 120 ** use of the bits in our bitmasks. This structure provides a mapping 121 ** from the sparse cursor numbers into consecutive integers beginning 122 ** with 0. 123 ** 124 ** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask 125 ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A. 126 ** 127 ** For example, if the WHERE clause expression used these VDBE 128 ** cursors: 4, 5, 8, 29, 57, 73. Then the ExprMaskSet structure 129 ** would map those cursor numbers into bits 0 through 5. 130 ** 131 ** Note that the mapping is not necessarily ordered. In the example 132 ** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0, 133 ** 57->5, 73->4. Or one of 719 other combinations might be used. It 134 ** does not really matter. What is important is that sparse cursor 135 ** numbers all get mapped into bit numbers that begin with 0 and contain 136 ** no gaps. 137 */ 138 struct ExprMaskSet { 139 int n; /* Number of assigned cursor values */ 140 int ix[sizeof(Bitmask)*8]; /* Cursor assigned to each bit */ 141 }; 142 143 144 /* 145 ** Bitmasks for the operators that indices are able to exploit. An 146 ** OR-ed combination of these values can be used when searching for 147 ** terms in the where clause. 148 */ 149 #define WO_IN 1 150 #define WO_EQ 2 151 #define WO_LT (WO_EQ<<(TK_LT-TK_EQ)) 152 #define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) 153 #define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) 154 #define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) 155 #define WO_MATCH 64 156 #define WO_ISNULL 128 157 158 /* 159 ** Value for flags returned by bestIndex(). 160 ** 161 ** The least significant byte is reserved as a mask for WO_ values above. 162 ** The WhereLevel.flags field is usually set to WO_IN|WO_EQ|WO_ISNULL. 163 ** But if the table is the right table of a left join, WhereLevel.flags 164 ** is set to WO_IN|WO_EQ. The WhereLevel.flags field can then be used as 165 ** the "op" parameter to findTerm when we are resolving equality constraints. 166 ** ISNULL constraints will then not be used on the right table of a left 167 ** join. Tickets #2177 and #2189. 168 */ 169 #define WHERE_ROWID_EQ 0x000100 /* rowid=EXPR or rowid IN (...) */ 170 #define WHERE_ROWID_RANGE 0x000200 /* rowid<EXPR and/or rowid>EXPR */ 171 #define WHERE_COLUMN_EQ 0x001000 /* x=EXPR or x IN (...) */ 172 #define WHERE_COLUMN_RANGE 0x002000 /* x<EXPR and/or x>EXPR */ 173 #define WHERE_COLUMN_IN 0x004000 /* x IN (...) */ 174 #define WHERE_TOP_LIMIT 0x010000 /* x<EXPR or x<=EXPR constraint */ 175 #define WHERE_BTM_LIMIT 0x020000 /* x>EXPR or x>=EXPR constraint */ 176 #define WHERE_IDX_ONLY 0x080000 /* Use index only - omit table */ 177 #define WHERE_ORDERBY 0x100000 /* Output will appear in correct order */ 178 #define WHERE_REVERSE 0x200000 /* Scan in reverse order */ 179 #define WHERE_UNIQUE 0x400000 /* Selects no more than one row */ 180 #define WHERE_VIRTUALTABLE 0x800000 /* Use virtual-table processing */ 181 182 /* 183 ** Initialize a preallocated WhereClause structure. 184 */ 185 static void whereClauseInit( 186 WhereClause *pWC, /* The WhereClause to be initialized */ 187 Parse *pParse, /* The parsing context */ 188 ExprMaskSet *pMaskSet /* Mapping from table indices to bitmasks */ 189 ){ 190 pWC->pParse = pParse; 191 pWC->pMaskSet = pMaskSet; 192 pWC->nTerm = 0; 193 pWC->nSlot = ArraySize(pWC->aStatic); 194 pWC->a = pWC->aStatic; 195 } 196 197 /* 198 ** Deallocate a WhereClause structure. The WhereClause structure 199 ** itself is not freed. This routine is the inverse of whereClauseInit(). 200 */ 201 static void whereClauseClear(WhereClause *pWC){ 202 int i; 203 WhereTerm *a; 204 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ 205 if( a->flags & TERM_DYNAMIC ){ 206 sqlite3ExprDelete(a->pExpr); 207 } 208 } 209 if( pWC->a!=pWC->aStatic ){ 210 sqlite3_free(pWC->a); 211 } 212 } 213 214 /* 215 ** Add a new entries to the WhereClause structure. Increase the allocated 216 ** space as necessary. 217 ** 218 ** If the flags argument includes TERM_DYNAMIC, then responsibility 219 ** for freeing the expression p is assumed by the WhereClause object. 220 ** 221 ** WARNING: This routine might reallocate the space used to store 222 ** WhereTerms. All pointers to WhereTerms should be invalided after 223 ** calling this routine. Such pointers may be reinitialized by referencing 224 ** the pWC->a[] array. 225 */ 226 static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){ 227 WhereTerm *pTerm; 228 int idx; 229 if( pWC->nTerm>=pWC->nSlot ){ 230 WhereTerm *pOld = pWC->a; 231 pWC->a = sqlite3_malloc( sizeof(pWC->a[0])*pWC->nSlot*2 ); 232 if( pWC->a==0 ){ 233 pWC->pParse->db->mallocFailed = 1; 234 if( flags & TERM_DYNAMIC ){ 235 sqlite3ExprDelete(p); 236 } 237 pWC->a = pOld; 238 return 0; 239 } 240 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); 241 if( pOld!=pWC->aStatic ){ 242 sqlite3_free(pOld); 243 } 244 pWC->nSlot *= 2; 245 } 246 pTerm = &pWC->a[idx = pWC->nTerm]; 247 pWC->nTerm++; 248 pTerm->pExpr = p; 249 pTerm->flags = flags; 250 pTerm->pWC = pWC; 251 pTerm->iParent = -1; 252 return idx; 253 } 254 255 /* 256 ** This routine identifies subexpressions in the WHERE clause where 257 ** each subexpression is separated by the AND operator or some other 258 ** operator specified in the op parameter. The WhereClause structure 259 ** is filled with pointers to subexpressions. For example: 260 ** 261 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) 262 ** \________/ \_______________/ \________________/ 263 ** slot[0] slot[1] slot[2] 264 ** 265 ** The original WHERE clause in pExpr is unaltered. All this routine 266 ** does is make slot[] entries point to substructure within pExpr. 267 ** 268 ** In the previous sentence and in the diagram, "slot[]" refers to 269 ** the WhereClause.a[] array. This array grows as needed to contain 270 ** all terms of the WHERE clause. 271 */ 272 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){ 273 if( pExpr==0 ) return; 274 if( pExpr->op!=op ){ 275 whereClauseInsert(pWC, pExpr, 0); 276 }else{ 277 whereSplit(pWC, pExpr->pLeft, op); 278 whereSplit(pWC, pExpr->pRight, op); 279 } 280 } 281 282 /* 283 ** Initialize an expression mask set 284 */ 285 #define initMaskSet(P) memset(P, 0, sizeof(*P)) 286 287 /* 288 ** Return the bitmask for the given cursor number. Return 0 if 289 ** iCursor is not in the set. 290 */ 291 static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){ 292 int i; 293 for(i=0; i<pMaskSet->n; i++){ 294 if( pMaskSet->ix[i]==iCursor ){ 295 return ((Bitmask)1)<<i; 296 } 297 } 298 return 0; 299 } 300 301 /* 302 ** Create a new mask for cursor iCursor. 303 ** 304 ** There is one cursor per table in the FROM clause. The number of 305 ** tables in the FROM clause is limited by a test early in the 306 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 307 ** array will never overflow. 308 */ 309 static void createMask(ExprMaskSet *pMaskSet, int iCursor){ 310 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 311 pMaskSet->ix[pMaskSet->n++] = iCursor; 312 } 313 314 /* 315 ** This routine walks (recursively) an expression tree and generates 316 ** a bitmask indicating which tables are used in that expression 317 ** tree. 318 ** 319 ** In order for this routine to work, the calling function must have 320 ** previously invoked sqlite3ExprResolveNames() on the expression. See 321 ** the header comment on that routine for additional information. 322 ** The sqlite3ExprResolveNames() routines looks for column names and 323 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to 324 ** the VDBE cursor number of the table. This routine just has to 325 ** translate the cursor numbers into bitmask values and OR all 326 ** the bitmasks together. 327 */ 328 static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*); 329 static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*); 330 static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){ 331 Bitmask mask = 0; 332 if( p==0 ) return 0; 333 if( p->op==TK_COLUMN ){ 334 mask = getMask(pMaskSet, p->iTable); 335 return mask; 336 } 337 mask = exprTableUsage(pMaskSet, p->pRight); 338 mask |= exprTableUsage(pMaskSet, p->pLeft); 339 mask |= exprListTableUsage(pMaskSet, p->pList); 340 mask |= exprSelectTableUsage(pMaskSet, p->pSelect); 341 return mask; 342 } 343 static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){ 344 int i; 345 Bitmask mask = 0; 346 if( pList ){ 347 for(i=0; i<pList->nExpr; i++){ 348 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); 349 } 350 } 351 return mask; 352 } 353 static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){ 354 Bitmask mask = 0; 355 while( pS ){ 356 mask |= exprListTableUsage(pMaskSet, pS->pEList); 357 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); 358 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); 359 mask |= exprTableUsage(pMaskSet, pS->pWhere); 360 mask |= exprTableUsage(pMaskSet, pS->pHaving); 361 pS = pS->pPrior; 362 } 363 return mask; 364 } 365 366 /* 367 ** Return TRUE if the given operator is one of the operators that is 368 ** allowed for an indexable WHERE clause term. The allowed operators are 369 ** "=", "<", ">", "<=", ">=", and "IN". 370 */ 371 static int allowedOp(int op){ 372 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); 373 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); 374 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); 375 assert( TK_GE==TK_EQ+4 ); 376 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; 377 } 378 379 /* 380 ** Swap two objects of type T. 381 */ 382 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 383 384 /* 385 ** Commute a comparision operator. Expressions of the form "X op Y" 386 ** are converted into "Y op X". 387 ** 388 ** If a collation sequence is associated with either the left or right 389 ** side of the comparison, it remains associated with the same side after 390 ** the commutation. So "Y collate NOCASE op X" becomes 391 ** "X collate NOCASE op Y". This is because any collation sequence on 392 ** the left hand side of a comparison overrides any collation sequence 393 ** attached to the right. For the same reason the EP_ExpCollate flag 394 ** is not commuted. 395 */ 396 static void exprCommute(Expr *pExpr){ 397 u16 expRight = (pExpr->pRight->flags & EP_ExpCollate); 398 u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate); 399 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); 400 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl); 401 pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft; 402 pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight; 403 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); 404 if( pExpr->op>=TK_GT ){ 405 assert( TK_LT==TK_GT+2 ); 406 assert( TK_GE==TK_LE+2 ); 407 assert( TK_GT>TK_EQ ); 408 assert( TK_GT<TK_LE ); 409 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); 410 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; 411 } 412 } 413 414 /* 415 ** Translate from TK_xx operator to WO_xx bitmask. 416 */ 417 static int operatorMask(int op){ 418 int c; 419 assert( allowedOp(op) ); 420 if( op==TK_IN ){ 421 c = WO_IN; 422 }else if( op==TK_ISNULL ){ 423 c = WO_ISNULL; 424 }else{ 425 c = WO_EQ<<(op-TK_EQ); 426 } 427 assert( op!=TK_ISNULL || c==WO_ISNULL ); 428 assert( op!=TK_IN || c==WO_IN ); 429 assert( op!=TK_EQ || c==WO_EQ ); 430 assert( op!=TK_LT || c==WO_LT ); 431 assert( op!=TK_LE || c==WO_LE ); 432 assert( op!=TK_GT || c==WO_GT ); 433 assert( op!=TK_GE || c==WO_GE ); 434 return c; 435 } 436 437 /* 438 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 439 ** where X is a reference to the iColumn of table iCur and <op> is one of 440 ** the WO_xx operator codes specified by the op parameter. 441 ** Return a pointer to the term. Return 0 if not found. 442 */ 443 static WhereTerm *findTerm( 444 WhereClause *pWC, /* The WHERE clause to be searched */ 445 int iCur, /* Cursor number of LHS */ 446 int iColumn, /* Column number of LHS */ 447 Bitmask notReady, /* RHS must not overlap with this mask */ 448 u16 op, /* Mask of WO_xx values describing operator */ 449 Index *pIdx /* Must be compatible with this index, if not NULL */ 450 ){ 451 WhereTerm *pTerm; 452 int k; 453 for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){ 454 if( pTerm->leftCursor==iCur 455 && (pTerm->prereqRight & notReady)==0 456 && pTerm->leftColumn==iColumn 457 && (pTerm->eOperator & op)!=0 458 ){ 459 if( iCur>=0 && pIdx && pTerm->eOperator!=WO_ISNULL ){ 460 Expr *pX = pTerm->pExpr; 461 CollSeq *pColl; 462 char idxaff; 463 int j; 464 Parse *pParse = pWC->pParse; 465 466 idxaff = pIdx->pTable->aCol[iColumn].affinity; 467 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue; 468 469 /* Figure out the collation sequence required from an index for 470 ** it to be useful for optimising expression pX. Store this 471 ** value in variable pColl. 472 */ 473 assert(pX->pLeft); 474 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); 475 if( !pColl ){ 476 pColl = pParse->db->pDfltColl; 477 } 478 479 for(j=0; j<pIdx->nColumn && pIdx->aiColumn[j]!=iColumn; j++){} 480 assert( j<pIdx->nColumn ); 481 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue; 482 } 483 return pTerm; 484 } 485 } 486 return 0; 487 } 488 489 /* Forward reference */ 490 static void exprAnalyze(SrcList*, WhereClause*, int); 491 492 /* 493 ** Call exprAnalyze on all terms in a WHERE clause. 494 ** 495 ** 496 */ 497 static void exprAnalyzeAll( 498 SrcList *pTabList, /* the FROM clause */ 499 WhereClause *pWC /* the WHERE clause to be analyzed */ 500 ){ 501 int i; 502 for(i=pWC->nTerm-1; i>=0; i--){ 503 exprAnalyze(pTabList, pWC, i); 504 } 505 } 506 507 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 508 /* 509 ** Check to see if the given expression is a LIKE or GLOB operator that 510 ** can be optimized using inequality constraints. Return TRUE if it is 511 ** so and false if not. 512 ** 513 ** In order for the operator to be optimizible, the RHS must be a string 514 ** literal that does not begin with a wildcard. 515 */ 516 static int isLikeOrGlob( 517 sqlite3 *db, /* The database */ 518 Expr *pExpr, /* Test this expression */ 519 int *pnPattern, /* Number of non-wildcard prefix characters */ 520 int *pisComplete /* True if the only wildcard is % in the last character */ 521 ){ 522 const char *z; 523 Expr *pRight, *pLeft; 524 ExprList *pList; 525 int c, cnt; 526 int noCase; 527 char wc[3]; 528 CollSeq *pColl; 529 530 if( !sqlite3IsLikeFunction(db, pExpr, &noCase, wc) ){ 531 return 0; 532 } 533 pList = pExpr->pList; 534 pRight = pList->a[0].pExpr; 535 if( pRight->op!=TK_STRING ){ 536 return 0; 537 } 538 pLeft = pList->a[1].pExpr; 539 if( pLeft->op!=TK_COLUMN ){ 540 return 0; 541 } 542 pColl = pLeft->pColl; 543 if( pColl==0 ){ 544 /* TODO: Coverage testing doesn't get this case. Is it actually possible 545 ** for an expression of type TK_COLUMN to not have an assigned collation 546 ** sequence at this point? 547 */ 548 pColl = db->pDfltColl; 549 } 550 if( (pColl->type!=SQLITE_COLL_BINARY || noCase) && 551 (pColl->type!=SQLITE_COLL_NOCASE || !noCase) ){ 552 return 0; 553 } 554 sqlite3DequoteExpr(db, pRight); 555 z = (char *)pRight->token.z; 556 cnt = 0; 557 if( z ){ 558 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ cnt++; } 559 } 560 if( cnt==0 || 255==(u8)z[cnt] ){ 561 return 0; 562 } 563 *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0; 564 *pnPattern = cnt; 565 return 1; 566 } 567 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 568 569 570 #ifndef SQLITE_OMIT_VIRTUALTABLE 571 /* 572 ** Check to see if the given expression is of the form 573 ** 574 ** column MATCH expr 575 ** 576 ** If it is then return TRUE. If not, return FALSE. 577 */ 578 static int isMatchOfColumn( 579 Expr *pExpr /* Test this expression */ 580 ){ 581 ExprList *pList; 582 583 if( pExpr->op!=TK_FUNCTION ){ 584 return 0; 585 } 586 if( pExpr->token.n!=5 || 587 sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){ 588 return 0; 589 } 590 pList = pExpr->pList; 591 if( pList->nExpr!=2 ){ 592 return 0; 593 } 594 if( pList->a[1].pExpr->op != TK_COLUMN ){ 595 return 0; 596 } 597 return 1; 598 } 599 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 600 601 /* 602 ** If the pBase expression originated in the ON or USING clause of 603 ** a join, then transfer the appropriate markings over to derived. 604 */ 605 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ 606 pDerived->flags |= pBase->flags & EP_FromJoin; 607 pDerived->iRightJoinTable = pBase->iRightJoinTable; 608 } 609 610 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 611 /* 612 ** Return TRUE if the given term of an OR clause can be converted 613 ** into an IN clause. The iCursor and iColumn define the left-hand 614 ** side of the IN clause. 615 ** 616 ** The context is that we have multiple OR-connected equality terms 617 ** like this: 618 ** 619 ** a=<expr1> OR a=<expr2> OR b=<expr3> OR ... 620 ** 621 ** The pOrTerm input to this routine corresponds to a single term of 622 ** this OR clause. In order for the term to be a condidate for 623 ** conversion to an IN operator, the following must be true: 624 ** 625 ** * The left-hand side of the term must be the column which 626 ** is identified by iCursor and iColumn. 627 ** 628 ** * If the right-hand side is also a column, then the affinities 629 ** of both right and left sides must be such that no type 630 ** conversions are required on the right. (Ticket #2249) 631 ** 632 ** If both of these conditions are true, then return true. Otherwise 633 ** return false. 634 */ 635 static int orTermIsOptCandidate(WhereTerm *pOrTerm, int iCursor, int iColumn){ 636 int affLeft, affRight; 637 assert( pOrTerm->eOperator==WO_EQ ); 638 if( pOrTerm->leftCursor!=iCursor ){ 639 return 0; 640 } 641 if( pOrTerm->leftColumn!=iColumn ){ 642 return 0; 643 } 644 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); 645 if( affRight==0 ){ 646 return 1; 647 } 648 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); 649 if( affRight!=affLeft ){ 650 return 0; 651 } 652 return 1; 653 } 654 655 /* 656 ** Return true if the given term of an OR clause can be ignored during 657 ** a check to make sure all OR terms are candidates for optimization. 658 ** In other words, return true if a call to the orTermIsOptCandidate() 659 ** above returned false but it is not necessary to disqualify the 660 ** optimization. 661 ** 662 ** Suppose the original OR phrase was this: 663 ** 664 ** a=4 OR a=11 OR a=b 665 ** 666 ** During analysis, the third term gets flipped around and duplicate 667 ** so that we are left with this: 668 ** 669 ** a=4 OR a=11 OR a=b OR b=a 670 ** 671 ** Since the last two terms are duplicates, only one of them 672 ** has to qualify in order for the whole phrase to qualify. When 673 ** this routine is called, we know that pOrTerm did not qualify. 674 ** This routine merely checks to see if pOrTerm has a duplicate that 675 ** might qualify. If there is a duplicate that has not yet been 676 ** disqualified, then return true. If there are no duplicates, or 677 ** the duplicate has also been disqualifed, return false. 678 */ 679 static int orTermHasOkDuplicate(WhereClause *pOr, WhereTerm *pOrTerm){ 680 if( pOrTerm->flags & TERM_COPIED ){ 681 /* This is the original term. The duplicate is to the left had 682 ** has not yet been analyzed and thus has not yet been disqualified. */ 683 return 1; 684 } 685 if( (pOrTerm->flags & TERM_VIRTUAL)!=0 686 && (pOr->a[pOrTerm->iParent].flags & TERM_OR_OK)!=0 ){ 687 /* This is a duplicate term. The original qualified so this one 688 ** does not have to. */ 689 return 1; 690 } 691 /* This is either a singleton term or else it is a duplicate for 692 ** which the original did not qualify. Either way we are done for. */ 693 return 0; 694 } 695 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ 696 697 /* 698 ** The input to this routine is an WhereTerm structure with only the 699 ** "pExpr" field filled in. The job of this routine is to analyze the 700 ** subexpression and populate all the other fields of the WhereTerm 701 ** structure. 702 ** 703 ** If the expression is of the form "<expr> <op> X" it gets commuted 704 ** to the standard form of "X <op> <expr>". If the expression is of 705 ** the form "X <op> Y" where both X and Y are columns, then the original 706 ** expression is unchanged and a new virtual expression of the form 707 ** "Y <op> X" is added to the WHERE clause and analyzed separately. 708 */ 709 static void exprAnalyze( 710 SrcList *pSrc, /* the FROM clause */ 711 WhereClause *pWC, /* the WHERE clause */ 712 int idxTerm /* Index of the term to be analyzed */ 713 ){ 714 WhereTerm *pTerm; 715 ExprMaskSet *pMaskSet; 716 Expr *pExpr; 717 Bitmask prereqLeft; 718 Bitmask prereqAll; 719 int nPattern; 720 int isComplete; 721 int op; 722 Parse *pParse = pWC->pParse; 723 sqlite3 *db = pParse->db; 724 725 if( db->mallocFailed ){ 726 return; 727 } 728 pTerm = &pWC->a[idxTerm]; 729 pMaskSet = pWC->pMaskSet; 730 pExpr = pTerm->pExpr; 731 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); 732 op = pExpr->op; 733 if( op==TK_IN ){ 734 assert( pExpr->pRight==0 ); 735 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList) 736 | exprSelectTableUsage(pMaskSet, pExpr->pSelect); 737 }else if( op==TK_ISNULL ){ 738 pTerm->prereqRight = 0; 739 }else{ 740 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); 741 } 742 prereqAll = exprTableUsage(pMaskSet, pExpr); 743 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 744 prereqAll |= getMask(pMaskSet, pExpr->iRightJoinTable); 745 } 746 pTerm->prereqAll = prereqAll; 747 pTerm->leftCursor = -1; 748 pTerm->iParent = -1; 749 pTerm->eOperator = 0; 750 if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){ 751 Expr *pLeft = pExpr->pLeft; 752 Expr *pRight = pExpr->pRight; 753 if( pLeft->op==TK_COLUMN ){ 754 pTerm->leftCursor = pLeft->iTable; 755 pTerm->leftColumn = pLeft->iColumn; 756 pTerm->eOperator = operatorMask(op); 757 } 758 if( pRight && pRight->op==TK_COLUMN ){ 759 WhereTerm *pNew; 760 Expr *pDup; 761 if( pTerm->leftCursor>=0 ){ 762 int idxNew; 763 pDup = sqlite3ExprDup(db, pExpr); 764 if( db->mallocFailed ){ 765 sqlite3ExprDelete(pDup); 766 return; 767 } 768 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); 769 if( idxNew==0 ) return; 770 pNew = &pWC->a[idxNew]; 771 pNew->iParent = idxTerm; 772 pTerm = &pWC->a[idxTerm]; 773 pTerm->nChild = 1; 774 pTerm->flags |= TERM_COPIED; 775 }else{ 776 pDup = pExpr; 777 pNew = pTerm; 778 } 779 exprCommute(pDup); 780 pLeft = pDup->pLeft; 781 pNew->leftCursor = pLeft->iTable; 782 pNew->leftColumn = pLeft->iColumn; 783 pNew->prereqRight = prereqLeft; 784 pNew->prereqAll = prereqAll; 785 pNew->eOperator = operatorMask(pDup->op); 786 } 787 } 788 789 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION 790 /* If a term is the BETWEEN operator, create two new virtual terms 791 ** that define the range that the BETWEEN implements. 792 */ 793 else if( pExpr->op==TK_BETWEEN ){ 794 ExprList *pList = pExpr->pList; 795 int i; 796 static const u8 ops[] = {TK_GE, TK_LE}; 797 assert( pList!=0 ); 798 assert( pList->nExpr==2 ); 799 for(i=0; i<2; i++){ 800 Expr *pNewExpr; 801 int idxNew; 802 pNewExpr = sqlite3Expr(db, ops[i], sqlite3ExprDup(db, pExpr->pLeft), 803 sqlite3ExprDup(db, pList->a[i].pExpr), 0); 804 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 805 exprAnalyze(pSrc, pWC, idxNew); 806 pTerm = &pWC->a[idxTerm]; 807 pWC->a[idxNew].iParent = idxTerm; 808 } 809 pTerm->nChild = 2; 810 } 811 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ 812 813 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 814 /* Attempt to convert OR-connected terms into an IN operator so that 815 ** they can make use of indices. Example: 816 ** 817 ** x = expr1 OR expr2 = x OR x = expr3 818 ** 819 ** is converted into 820 ** 821 ** x IN (expr1,expr2,expr3) 822 ** 823 ** This optimization must be omitted if OMIT_SUBQUERY is defined because 824 ** the compiler for the the IN operator is part of sub-queries. 825 */ 826 else if( pExpr->op==TK_OR ){ 827 int ok; 828 int i, j; 829 int iColumn, iCursor; 830 WhereClause sOr; 831 WhereTerm *pOrTerm; 832 833 assert( (pTerm->flags & TERM_DYNAMIC)==0 ); 834 whereClauseInit(&sOr, pWC->pParse, pMaskSet); 835 whereSplit(&sOr, pExpr, TK_OR); 836 exprAnalyzeAll(pSrc, &sOr); 837 assert( sOr.nTerm>=2 ); 838 j = 0; 839 do{ 840 assert( j<sOr.nTerm ); 841 iColumn = sOr.a[j].leftColumn; 842 iCursor = sOr.a[j].leftCursor; 843 ok = iCursor>=0; 844 for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){ 845 if( pOrTerm->eOperator!=WO_EQ ){ 846 goto or_not_possible; 847 } 848 if( orTermIsOptCandidate(pOrTerm, iCursor, iColumn) ){ 849 pOrTerm->flags |= TERM_OR_OK; 850 }else if( orTermHasOkDuplicate(&sOr, pOrTerm) ){ 851 pOrTerm->flags &= ~TERM_OR_OK; 852 }else{ 853 ok = 0; 854 } 855 } 856 }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<2 ); 857 if( ok ){ 858 ExprList *pList = 0; 859 Expr *pNew, *pDup; 860 Expr *pLeft = 0; 861 for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){ 862 if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue; 863 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight); 864 pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup, 0); 865 pLeft = pOrTerm->pExpr->pLeft; 866 } 867 assert( pLeft!=0 ); 868 pDup = sqlite3ExprDup(db, pLeft); 869 pNew = sqlite3Expr(db, TK_IN, pDup, 0, 0); 870 if( pNew ){ 871 int idxNew; 872 transferJoinMarkings(pNew, pExpr); 873 pNew->pList = pList; 874 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 875 exprAnalyze(pSrc, pWC, idxNew); 876 pTerm = &pWC->a[idxTerm]; 877 pWC->a[idxNew].iParent = idxTerm; 878 pTerm->nChild = 1; 879 }else{ 880 sqlite3ExprListDelete(pList); 881 } 882 } 883 or_not_possible: 884 whereClauseClear(&sOr); 885 } 886 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 887 888 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 889 /* Add constraints to reduce the search space on a LIKE or GLOB 890 ** operator. 891 */ 892 if( isLikeOrGlob(db, pExpr, &nPattern, &isComplete) ){ 893 Expr *pLeft, *pRight; 894 Expr *pStr1, *pStr2; 895 Expr *pNewExpr1, *pNewExpr2; 896 int idxNew1, idxNew2; 897 898 pLeft = pExpr->pList->a[1].pExpr; 899 pRight = pExpr->pList->a[0].pExpr; 900 pStr1 = sqlite3PExpr(pParse, TK_STRING, 0, 0, 0); 901 if( pStr1 ){ 902 sqlite3TokenCopy(db, &pStr1->token, &pRight->token); 903 pStr1->token.n = nPattern; 904 pStr1->flags = EP_Dequoted; 905 } 906 pStr2 = sqlite3ExprDup(db, pStr1); 907 if( !db->mallocFailed ){ 908 assert( pStr2->token.dyn ); 909 ++*(u8*)&pStr2->token.z[nPattern-1]; 910 } 911 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft), pStr1, 0); 912 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); 913 exprAnalyze(pSrc, pWC, idxNew1); 914 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft), pStr2, 0); 915 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); 916 exprAnalyze(pSrc, pWC, idxNew2); 917 pTerm = &pWC->a[idxTerm]; 918 if( isComplete ){ 919 pWC->a[idxNew1].iParent = idxTerm; 920 pWC->a[idxNew2].iParent = idxTerm; 921 pTerm->nChild = 2; 922 } 923 } 924 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 925 926 #ifndef SQLITE_OMIT_VIRTUALTABLE 927 /* Add a WO_MATCH auxiliary term to the constraint set if the 928 ** current expression is of the form: column MATCH expr. 929 ** This information is used by the xBestIndex methods of 930 ** virtual tables. The native query optimizer does not attempt 931 ** to do anything with MATCH functions. 932 */ 933 if( isMatchOfColumn(pExpr) ){ 934 int idxNew; 935 Expr *pRight, *pLeft; 936 WhereTerm *pNewTerm; 937 Bitmask prereqColumn, prereqExpr; 938 939 pRight = pExpr->pList->a[0].pExpr; 940 pLeft = pExpr->pList->a[1].pExpr; 941 prereqExpr = exprTableUsage(pMaskSet, pRight); 942 prereqColumn = exprTableUsage(pMaskSet, pLeft); 943 if( (prereqExpr & prereqColumn)==0 ){ 944 Expr *pNewExpr; 945 pNewExpr = sqlite3Expr(db, TK_MATCH, 0, sqlite3ExprDup(db, pRight), 0); 946 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 947 pNewTerm = &pWC->a[idxNew]; 948 pNewTerm->prereqRight = prereqExpr; 949 pNewTerm->leftCursor = pLeft->iTable; 950 pNewTerm->leftColumn = pLeft->iColumn; 951 pNewTerm->eOperator = WO_MATCH; 952 pNewTerm->iParent = idxTerm; 953 pTerm = &pWC->a[idxTerm]; 954 pTerm->nChild = 1; 955 pTerm->flags |= TERM_COPIED; 956 pNewTerm->prereqAll = pTerm->prereqAll; 957 } 958 } 959 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 960 } 961 962 /* 963 ** Return TRUE if any of the expressions in pList->a[iFirst...] contain 964 ** a reference to any table other than the iBase table. 965 */ 966 static int referencesOtherTables( 967 ExprList *pList, /* Search expressions in ths list */ 968 ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ 969 int iFirst, /* Be searching with the iFirst-th expression */ 970 int iBase /* Ignore references to this table */ 971 ){ 972 Bitmask allowed = ~getMask(pMaskSet, iBase); 973 while( iFirst<pList->nExpr ){ 974 if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){ 975 return 1; 976 } 977 } 978 return 0; 979 } 980 981 982 /* 983 ** This routine decides if pIdx can be used to satisfy the ORDER BY 984 ** clause. If it can, it returns 1. If pIdx cannot satisfy the 985 ** ORDER BY clause, this routine returns 0. 986 ** 987 ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the 988 ** left-most table in the FROM clause of that same SELECT statement and 989 ** the table has a cursor number of "base". pIdx is an index on pTab. 990 ** 991 ** nEqCol is the number of columns of pIdx that are used as equality 992 ** constraints. Any of these columns may be missing from the ORDER BY 993 ** clause and the match can still be a success. 994 ** 995 ** All terms of the ORDER BY that match against the index must be either 996 ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE 997 ** index do not need to satisfy this constraint.) The *pbRev value is 998 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if 999 ** the ORDER BY clause is all ASC. 1000 */ 1001 static int isSortingIndex( 1002 Parse *pParse, /* Parsing context */ 1003 ExprMaskSet *pMaskSet, /* Mapping from table indices to bitmaps */ 1004 Index *pIdx, /* The index we are testing */ 1005 int base, /* Cursor number for the table to be sorted */ 1006 ExprList *pOrderBy, /* The ORDER BY clause */ 1007 int nEqCol, /* Number of index columns with == constraints */ 1008 int *pbRev /* Set to 1 if ORDER BY is DESC */ 1009 ){ 1010 int i, j; /* Loop counters */ 1011 int sortOrder = 0; /* XOR of index and ORDER BY sort direction */ 1012 int nTerm; /* Number of ORDER BY terms */ 1013 struct ExprList_item *pTerm; /* A term of the ORDER BY clause */ 1014 sqlite3 *db = pParse->db; 1015 1016 assert( pOrderBy!=0 ); 1017 nTerm = pOrderBy->nExpr; 1018 assert( nTerm>0 ); 1019 1020 /* Match terms of the ORDER BY clause against columns of 1021 ** the index. 1022 ** 1023 ** Note that indices have pIdx->nColumn regular columns plus 1024 ** one additional column containing the rowid. The rowid column 1025 ** of the index is also allowed to match against the ORDER BY 1026 ** clause. 1027 */ 1028 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){ 1029 Expr *pExpr; /* The expression of the ORDER BY pTerm */ 1030 CollSeq *pColl; /* The collating sequence of pExpr */ 1031 int termSortOrder; /* Sort order for this term */ 1032 int iColumn; /* The i-th column of the index. -1 for rowid */ 1033 int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */ 1034 const char *zColl; /* Name of the collating sequence for i-th index term */ 1035 1036 pExpr = pTerm->pExpr; 1037 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){ 1038 /* Can not use an index sort on anything that is not a column in the 1039 ** left-most table of the FROM clause */ 1040 break; 1041 } 1042 pColl = sqlite3ExprCollSeq(pParse, pExpr); 1043 if( !pColl ){ 1044 pColl = db->pDfltColl; 1045 } 1046 if( i<pIdx->nColumn ){ 1047 iColumn = pIdx->aiColumn[i]; 1048 if( iColumn==pIdx->pTable->iPKey ){ 1049 iColumn = -1; 1050 } 1051 iSortOrder = pIdx->aSortOrder[i]; 1052 zColl = pIdx->azColl[i]; 1053 }else{ 1054 iColumn = -1; 1055 iSortOrder = 0; 1056 zColl = pColl->zName; 1057 } 1058 if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){ 1059 /* Term j of the ORDER BY clause does not match column i of the index */ 1060 if( i<nEqCol ){ 1061 /* If an index column that is constrained by == fails to match an 1062 ** ORDER BY term, that is OK. Just ignore that column of the index 1063 */ 1064 continue; 1065 }else{ 1066 /* If an index column fails to match and is not constrained by == 1067 ** then the index cannot satisfy the ORDER BY constraint. 1068 */ 1069 return 0; 1070 } 1071 } 1072 assert( pIdx->aSortOrder!=0 ); 1073 assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 ); 1074 assert( iSortOrder==0 || iSortOrder==1 ); 1075 termSortOrder = iSortOrder ^ pTerm->sortOrder; 1076 if( i>nEqCol ){ 1077 if( termSortOrder!=sortOrder ){ 1078 /* Indices can only be used if all ORDER BY terms past the 1079 ** equality constraints are all either DESC or ASC. */ 1080 return 0; 1081 } 1082 }else{ 1083 sortOrder = termSortOrder; 1084 } 1085 j++; 1086 pTerm++; 1087 if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ 1088 /* If the indexed column is the primary key and everything matches 1089 ** so far and none of the ORDER BY terms to the right reference other 1090 ** tables in the join, then we are assured that the index can be used 1091 ** to sort because the primary key is unique and so none of the other 1092 ** columns will make any difference 1093 */ 1094 j = nTerm; 1095 } 1096 } 1097 1098 *pbRev = sortOrder!=0; 1099 if( j>=nTerm ){ 1100 /* All terms of the ORDER BY clause are covered by this index so 1101 ** this index can be used for sorting. */ 1102 return 1; 1103 } 1104 if( pIdx->onError!=OE_None && i==pIdx->nColumn 1105 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ 1106 /* All terms of this index match some prefix of the ORDER BY clause 1107 ** and the index is UNIQUE and no terms on the tail of the ORDER BY 1108 ** clause reference other tables in a join. If this is all true then 1109 ** the order by clause is superfluous. */ 1110 return 1; 1111 } 1112 return 0; 1113 } 1114 1115 /* 1116 ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied 1117 ** by sorting in order of ROWID. Return true if so and set *pbRev to be 1118 ** true for reverse ROWID and false for forward ROWID order. 1119 */ 1120 static int sortableByRowid( 1121 int base, /* Cursor number for table to be sorted */ 1122 ExprList *pOrderBy, /* The ORDER BY clause */ 1123 ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ 1124 int *pbRev /* Set to 1 if ORDER BY is DESC */ 1125 ){ 1126 Expr *p; 1127 1128 assert( pOrderBy!=0 ); 1129 assert( pOrderBy->nExpr>0 ); 1130 p = pOrderBy->a[0].pExpr; 1131 if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1 1132 && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){ 1133 *pbRev = pOrderBy->a[0].sortOrder; 1134 return 1; 1135 } 1136 return 0; 1137 } 1138 1139 /* 1140 ** Prepare a crude estimate of the logarithm of the input value. 1141 ** The results need not be exact. This is only used for estimating 1142 ** the total cost of performing operatings with O(logN) or O(NlogN) 1143 ** complexity. Because N is just a guess, it is no great tragedy if 1144 ** logN is a little off. 1145 */ 1146 static double estLog(double N){ 1147 double logN = 1; 1148 double x = 10; 1149 while( N>x ){ 1150 logN += 1; 1151 x *= 10; 1152 } 1153 return logN; 1154 } 1155 1156 /* 1157 ** Two routines for printing the content of an sqlite3_index_info 1158 ** structure. Used for testing and debugging only. If neither 1159 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 1160 ** are no-ops. 1161 */ 1162 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG) 1163 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ 1164 int i; 1165 if( !sqlite3_where_trace ) return; 1166 for(i=0; i<p->nConstraint; i++){ 1167 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 1168 i, 1169 p->aConstraint[i].iColumn, 1170 p->aConstraint[i].iTermOffset, 1171 p->aConstraint[i].op, 1172 p->aConstraint[i].usable); 1173 } 1174 for(i=0; i<p->nOrderBy; i++){ 1175 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 1176 i, 1177 p->aOrderBy[i].iColumn, 1178 p->aOrderBy[i].desc); 1179 } 1180 } 1181 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ 1182 int i; 1183 if( !sqlite3_where_trace ) return; 1184 for(i=0; i<p->nConstraint; i++){ 1185 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 1186 i, 1187 p->aConstraintUsage[i].argvIndex, 1188 p->aConstraintUsage[i].omit); 1189 } 1190 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 1191 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 1192 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 1193 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 1194 } 1195 #else 1196 #define TRACE_IDX_INPUTS(A) 1197 #define TRACE_IDX_OUTPUTS(A) 1198 #endif 1199 1200 #ifndef SQLITE_OMIT_VIRTUALTABLE 1201 /* 1202 ** Compute the best index for a virtual table. 1203 ** 1204 ** The best index is computed by the xBestIndex method of the virtual 1205 ** table module. This routine is really just a wrapper that sets up 1206 ** the sqlite3_index_info structure that is used to communicate with 1207 ** xBestIndex. 1208 ** 1209 ** In a join, this routine might be called multiple times for the 1210 ** same virtual table. The sqlite3_index_info structure is created 1211 ** and initialized on the first invocation and reused on all subsequent 1212 ** invocations. The sqlite3_index_info structure is also used when 1213 ** code is generated to access the virtual table. The whereInfoDelete() 1214 ** routine takes care of freeing the sqlite3_index_info structure after 1215 ** everybody has finished with it. 1216 */ 1217 static double bestVirtualIndex( 1218 Parse *pParse, /* The parsing context */ 1219 WhereClause *pWC, /* The WHERE clause */ 1220 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1221 Bitmask notReady, /* Mask of cursors that are not available */ 1222 ExprList *pOrderBy, /* The order by clause */ 1223 int orderByUsable, /* True if we can potential sort */ 1224 sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */ 1225 ){ 1226 Table *pTab = pSrc->pTab; 1227 sqlite3_index_info *pIdxInfo; 1228 struct sqlite3_index_constraint *pIdxCons; 1229 struct sqlite3_index_orderby *pIdxOrderBy; 1230 struct sqlite3_index_constraint_usage *pUsage; 1231 WhereTerm *pTerm; 1232 int i, j; 1233 int nOrderBy; 1234 int rc; 1235 1236 /* If the sqlite3_index_info structure has not been previously 1237 ** allocated and initialized for this virtual table, then allocate 1238 ** and initialize it now 1239 */ 1240 pIdxInfo = *ppIdxInfo; 1241 if( pIdxInfo==0 ){ 1242 WhereTerm *pTerm; 1243 int nTerm; 1244 WHERETRACE(("Recomputing index info for %s...\n", pTab->zName)); 1245 1246 /* Count the number of possible WHERE clause constraints referring 1247 ** to this virtual table */ 1248 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1249 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1250 if( pTerm->eOperator==WO_IN ) continue; 1251 if( pTerm->eOperator==WO_ISNULL ) continue; 1252 nTerm++; 1253 } 1254 1255 /* If the ORDER BY clause contains only columns in the current 1256 ** virtual table then allocate space for the aOrderBy part of 1257 ** the sqlite3_index_info structure. 1258 */ 1259 nOrderBy = 0; 1260 if( pOrderBy ){ 1261 for(i=0; i<pOrderBy->nExpr; i++){ 1262 Expr *pExpr = pOrderBy->a[i].pExpr; 1263 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 1264 } 1265 if( i==pOrderBy->nExpr ){ 1266 nOrderBy = pOrderBy->nExpr; 1267 } 1268 } 1269 1270 /* Allocate the sqlite3_index_info structure 1271 */ 1272 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 1273 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 1274 + sizeof(*pIdxOrderBy)*nOrderBy ); 1275 if( pIdxInfo==0 ){ 1276 sqlite3ErrorMsg(pParse, "out of memory"); 1277 return 0.0; 1278 } 1279 *ppIdxInfo = pIdxInfo; 1280 1281 /* Initialize the structure. The sqlite3_index_info structure contains 1282 ** many fields that are declared "const" to prevent xBestIndex from 1283 ** changing them. We have to do some funky casting in order to 1284 ** initialize those fields. 1285 */ 1286 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; 1287 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 1288 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 1289 *(int*)&pIdxInfo->nConstraint = nTerm; 1290 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 1291 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; 1292 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; 1293 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = 1294 pUsage; 1295 1296 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1297 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1298 if( pTerm->eOperator==WO_IN ) continue; 1299 if( pTerm->eOperator==WO_ISNULL ) continue; 1300 pIdxCons[j].iColumn = pTerm->leftColumn; 1301 pIdxCons[j].iTermOffset = i; 1302 pIdxCons[j].op = pTerm->eOperator; 1303 /* The direct assignment in the previous line is possible only because 1304 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 1305 ** following asserts verify this fact. */ 1306 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 1307 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 1308 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 1309 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 1310 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 1311 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); 1312 assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); 1313 j++; 1314 } 1315 for(i=0; i<nOrderBy; i++){ 1316 Expr *pExpr = pOrderBy->a[i].pExpr; 1317 pIdxOrderBy[i].iColumn = pExpr->iColumn; 1318 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; 1319 } 1320 } 1321 1322 /* At this point, the sqlite3_index_info structure that pIdxInfo points 1323 ** to will have been initialized, either during the current invocation or 1324 ** during some prior invocation. Now we just have to customize the 1325 ** details of pIdxInfo for the current invocation and pass it to 1326 ** xBestIndex. 1327 */ 1328 1329 /* The module name must be defined. Also, by this point there must 1330 ** be a pointer to an sqlite3_vtab structure. Otherwise 1331 ** sqlite3ViewGetColumnNames() would have picked up the error. 1332 */ 1333 assert( pTab->azModuleArg && pTab->azModuleArg[0] ); 1334 assert( pTab->pVtab ); 1335 #if 0 1336 if( pTab->pVtab==0 ){ 1337 sqlite3ErrorMsg(pParse, "undefined module %s for table %s", 1338 pTab->azModuleArg[0], pTab->zName); 1339 return 0.0; 1340 } 1341 #endif 1342 1343 /* Set the aConstraint[].usable fields and initialize all 1344 ** output variables to zero. 1345 ** 1346 ** aConstraint[].usable is true for constraints where the right-hand 1347 ** side contains only references to tables to the left of the current 1348 ** table. In other words, if the constraint is of the form: 1349 ** 1350 ** column = expr 1351 ** 1352 ** and we are evaluating a join, then the constraint on column is 1353 ** only valid if all tables referenced in expr occur to the left 1354 ** of the table containing column. 1355 ** 1356 ** The aConstraints[] array contains entries for all constraints 1357 ** on the current table. That way we only have to compute it once 1358 ** even though we might try to pick the best index multiple times. 1359 ** For each attempt at picking an index, the order of tables in the 1360 ** join might be different so we have to recompute the usable flag 1361 ** each time. 1362 */ 1363 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 1364 pUsage = pIdxInfo->aConstraintUsage; 1365 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ 1366 j = pIdxCons->iTermOffset; 1367 pTerm = &pWC->a[j]; 1368 pIdxCons->usable = (pTerm->prereqRight & notReady)==0; 1369 } 1370 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); 1371 if( pIdxInfo->needToFreeIdxStr ){ 1372 sqlite3_free(pIdxInfo->idxStr); 1373 } 1374 pIdxInfo->idxStr = 0; 1375 pIdxInfo->idxNum = 0; 1376 pIdxInfo->needToFreeIdxStr = 0; 1377 pIdxInfo->orderByConsumed = 0; 1378 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0; 1379 nOrderBy = pIdxInfo->nOrderBy; 1380 if( pIdxInfo->nOrderBy && !orderByUsable ){ 1381 *(int*)&pIdxInfo->nOrderBy = 0; 1382 } 1383 1384 sqlite3SafetyOff(pParse->db); 1385 WHERETRACE(("xBestIndex for %s\n", pTab->zName)); 1386 TRACE_IDX_INPUTS(pIdxInfo); 1387 rc = pTab->pVtab->pModule->xBestIndex(pTab->pVtab, pIdxInfo); 1388 TRACE_IDX_OUTPUTS(pIdxInfo); 1389 if( rc!=SQLITE_OK ){ 1390 if( rc==SQLITE_NOMEM ){ 1391 pParse->db->mallocFailed = 1; 1392 }else { 1393 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 1394 } 1395 sqlite3SafetyOn(pParse->db); 1396 }else{ 1397 rc = sqlite3SafetyOn(pParse->db); 1398 } 1399 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 1400 1401 return pIdxInfo->estimatedCost; 1402 } 1403 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1404 1405 /* 1406 ** Find the best index for accessing a particular table. Return a pointer 1407 ** to the index, flags that describe how the index should be used, the 1408 ** number of equality constraints, and the "cost" for this index. 1409 ** 1410 ** The lowest cost index wins. The cost is an estimate of the amount of 1411 ** CPU and disk I/O need to process the request using the selected index. 1412 ** Factors that influence cost include: 1413 ** 1414 ** * The estimated number of rows that will be retrieved. (The 1415 ** fewer the better.) 1416 ** 1417 ** * Whether or not sorting must occur. 1418 ** 1419 ** * Whether or not there must be separate lookups in the 1420 ** index and in the main table. 1421 ** 1422 */ 1423 static double bestIndex( 1424 Parse *pParse, /* The parsing context */ 1425 WhereClause *pWC, /* The WHERE clause */ 1426 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1427 Bitmask notReady, /* Mask of cursors that are not available */ 1428 ExprList *pOrderBy, /* The order by clause */ 1429 Index **ppIndex, /* Make *ppIndex point to the best index */ 1430 int *pFlags, /* Put flags describing this choice in *pFlags */ 1431 int *pnEq /* Put the number of == or IN constraints here */ 1432 ){ 1433 WhereTerm *pTerm; 1434 Index *bestIdx = 0; /* Index that gives the lowest cost */ 1435 double lowestCost; /* The cost of using bestIdx */ 1436 int bestFlags = 0; /* Flags associated with bestIdx */ 1437 int bestNEq = 0; /* Best value for nEq */ 1438 int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ 1439 Index *pProbe; /* An index we are evaluating */ 1440 int rev; /* True to scan in reverse order */ 1441 int flags; /* Flags associated with pProbe */ 1442 int nEq; /* Number of == or IN constraints */ 1443 int eqTermMask; /* Mask of valid equality operators */ 1444 double cost; /* Cost of using pProbe */ 1445 1446 WHERETRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady)); 1447 lowestCost = SQLITE_BIG_DBL; 1448 pProbe = pSrc->pTab->pIndex; 1449 1450 /* If the table has no indices and there are no terms in the where 1451 ** clause that refer to the ROWID, then we will never be able to do 1452 ** anything other than a full table scan on this table. We might as 1453 ** well put it first in the join order. That way, perhaps it can be 1454 ** referenced by other tables in the join. 1455 */ 1456 if( pProbe==0 && 1457 findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 && 1458 (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){ 1459 *pFlags = 0; 1460 *ppIndex = 0; 1461 *pnEq = 0; 1462 return 0.0; 1463 } 1464 1465 /* Check for a rowid=EXPR or rowid IN (...) constraints 1466 */ 1467 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); 1468 if( pTerm ){ 1469 Expr *pExpr; 1470 *ppIndex = 0; 1471 bestFlags = WHERE_ROWID_EQ; 1472 if( pTerm->eOperator & WO_EQ ){ 1473 /* Rowid== is always the best pick. Look no further. Because only 1474 ** a single row is generated, output is always in sorted order */ 1475 *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE; 1476 *pnEq = 1; 1477 WHERETRACE(("... best is rowid\n")); 1478 return 0.0; 1479 }else if( (pExpr = pTerm->pExpr)->pList!=0 ){ 1480 /* Rowid IN (LIST): cost is NlogN where N is the number of list 1481 ** elements. */ 1482 lowestCost = pExpr->pList->nExpr; 1483 lowestCost *= estLog(lowestCost); 1484 }else{ 1485 /* Rowid IN (SELECT): cost is NlogN where N is the number of rows 1486 ** in the result of the inner select. We have no way to estimate 1487 ** that value so make a wild guess. */ 1488 lowestCost = 200; 1489 } 1490 WHERETRACE(("... rowid IN cost: %.9g\n", lowestCost)); 1491 } 1492 1493 /* Estimate the cost of a table scan. If we do not know how many 1494 ** entries are in the table, use 1 million as a guess. 1495 */ 1496 cost = pProbe ? pProbe->aiRowEst[0] : 1000000; 1497 WHERETRACE(("... table scan base cost: %.9g\n", cost)); 1498 flags = WHERE_ROWID_RANGE; 1499 1500 /* Check for constraints on a range of rowids in a table scan. 1501 */ 1502 pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0); 1503 if( pTerm ){ 1504 if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){ 1505 flags |= WHERE_TOP_LIMIT; 1506 cost /= 3; /* Guess that rowid<EXPR eliminates two-thirds or rows */ 1507 } 1508 if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){ 1509 flags |= WHERE_BTM_LIMIT; 1510 cost /= 3; /* Guess that rowid>EXPR eliminates two-thirds of rows */ 1511 } 1512 WHERETRACE(("... rowid range reduces cost to %.9g\n", cost)); 1513 }else{ 1514 flags = 0; 1515 } 1516 1517 /* If the table scan does not satisfy the ORDER BY clause, increase 1518 ** the cost by NlogN to cover the expense of sorting. */ 1519 if( pOrderBy ){ 1520 if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){ 1521 flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE; 1522 if( rev ){ 1523 flags |= WHERE_REVERSE; 1524 } 1525 }else{ 1526 cost += cost*estLog(cost); 1527 WHERETRACE(("... sorting increases cost to %.9g\n", cost)); 1528 } 1529 } 1530 if( cost<lowestCost ){ 1531 lowestCost = cost; 1532 bestFlags = flags; 1533 } 1534 1535 /* If the pSrc table is the right table of a LEFT JOIN then we may not 1536 ** use an index to satisfy IS NULL constraints on that table. This is 1537 ** because columns might end up being NULL if the table does not match - 1538 ** a circumstance which the index cannot help us discover. Ticket #2177. 1539 */ 1540 if( (pSrc->jointype & JT_LEFT)!=0 ){ 1541 eqTermMask = WO_EQ|WO_IN; 1542 }else{ 1543 eqTermMask = WO_EQ|WO_IN|WO_ISNULL; 1544 } 1545 1546 /* Look at each index. 1547 */ 1548 for(; pProbe; pProbe=pProbe->pNext){ 1549 int i; /* Loop counter */ 1550 double inMultiplier = 1; 1551 1552 WHERETRACE(("... index %s:\n", pProbe->zName)); 1553 1554 /* Count the number of columns in the index that are satisfied 1555 ** by x=EXPR constraints or x IN (...) constraints. 1556 */ 1557 flags = 0; 1558 for(i=0; i<pProbe->nColumn; i++){ 1559 int j = pProbe->aiColumn[i]; 1560 pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe); 1561 if( pTerm==0 ) break; 1562 flags |= WHERE_COLUMN_EQ; 1563 if( pTerm->eOperator & WO_IN ){ 1564 Expr *pExpr = pTerm->pExpr; 1565 flags |= WHERE_COLUMN_IN; 1566 if( pExpr->pSelect!=0 ){ 1567 inMultiplier *= 25; 1568 }else if( pExpr->pList!=0 ){ 1569 inMultiplier *= pExpr->pList->nExpr + 1; 1570 } 1571 } 1572 } 1573 cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier); 1574 nEq = i; 1575 if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0 1576 && nEq==pProbe->nColumn ){ 1577 flags |= WHERE_UNIQUE; 1578 } 1579 WHERETRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n",nEq,inMultiplier,cost)); 1580 1581 /* Look for range constraints 1582 */ 1583 if( nEq<pProbe->nColumn ){ 1584 int j = pProbe->aiColumn[nEq]; 1585 pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe); 1586 if( pTerm ){ 1587 flags |= WHERE_COLUMN_RANGE; 1588 if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){ 1589 flags |= WHERE_TOP_LIMIT; 1590 cost /= 3; 1591 } 1592 if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){ 1593 flags |= WHERE_BTM_LIMIT; 1594 cost /= 3; 1595 } 1596 WHERETRACE(("...... range reduces cost to %.9g\n", cost)); 1597 } 1598 } 1599 1600 /* Add the additional cost of sorting if that is a factor. 1601 */ 1602 if( pOrderBy ){ 1603 if( (flags & WHERE_COLUMN_IN)==0 && 1604 isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){ 1605 if( flags==0 ){ 1606 flags = WHERE_COLUMN_RANGE; 1607 } 1608 flags |= WHERE_ORDERBY; 1609 if( rev ){ 1610 flags |= WHERE_REVERSE; 1611 } 1612 }else{ 1613 cost += cost*estLog(cost); 1614 WHERETRACE(("...... orderby increases cost to %.9g\n", cost)); 1615 } 1616 } 1617 1618 /* Check to see if we can get away with using just the index without 1619 ** ever reading the table. If that is the case, then halve the 1620 ** cost of this index. 1621 */ 1622 if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){ 1623 Bitmask m = pSrc->colUsed; 1624 int j; 1625 for(j=0; j<pProbe->nColumn; j++){ 1626 int x = pProbe->aiColumn[j]; 1627 if( x<BMS-1 ){ 1628 m &= ~(((Bitmask)1)<<x); 1629 } 1630 } 1631 if( m==0 ){ 1632 flags |= WHERE_IDX_ONLY; 1633 cost /= 2; 1634 WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost)); 1635 } 1636 } 1637 1638 /* If this index has achieved the lowest cost so far, then use it. 1639 */ 1640 if( flags && cost < lowestCost ){ 1641 bestIdx = pProbe; 1642 lowestCost = cost; 1643 bestFlags = flags; 1644 bestNEq = nEq; 1645 } 1646 } 1647 1648 /* Report the best result 1649 */ 1650 *ppIndex = bestIdx; 1651 WHERETRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n", 1652 bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq)); 1653 *pFlags = bestFlags | eqTermMask; 1654 *pnEq = bestNEq; 1655 return lowestCost; 1656 } 1657 1658 1659 /* 1660 ** Disable a term in the WHERE clause. Except, do not disable the term 1661 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 1662 ** or USING clause of that join. 1663 ** 1664 ** Consider the term t2.z='ok' in the following queries: 1665 ** 1666 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 1667 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 1668 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 1669 ** 1670 ** The t2.z='ok' is disabled in the in (2) because it originates 1671 ** in the ON clause. The term is disabled in (3) because it is not part 1672 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 1673 ** 1674 ** Disabling a term causes that term to not be tested in the inner loop 1675 ** of the join. Disabling is an optimization. When terms are satisfied 1676 ** by indices, we disable them to prevent redundant tests in the inner 1677 ** loop. We would get the correct results if nothing were ever disabled, 1678 ** but joins might run a little slower. The trick is to disable as much 1679 ** as we can without disabling too much. If we disabled in (1), we'd get 1680 ** the wrong answer. See ticket #813. 1681 */ 1682 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 1683 if( pTerm 1684 && (pTerm->flags & TERM_CODED)==0 1685 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 1686 ){ 1687 pTerm->flags |= TERM_CODED; 1688 if( pTerm->iParent>=0 ){ 1689 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; 1690 if( (--pOther->nChild)==0 ){ 1691 disableTerm(pLevel, pOther); 1692 } 1693 } 1694 } 1695 } 1696 1697 /* 1698 ** Generate code that builds a probe for an index. 1699 ** 1700 ** There should be nColumn values on the stack. The index 1701 ** to be probed is pIdx. Pop the values from the stack and 1702 ** replace them all with a single record that is the index 1703 ** problem. 1704 */ 1705 static void buildIndexProbe( 1706 Vdbe *v, /* Generate code into this VM */ 1707 int nColumn, /* The number of columns to check for NULL */ 1708 Index *pIdx /* Index that we will be searching */ 1709 ){ 1710 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 1711 sqlite3IndexAffinityStr(v, pIdx); 1712 } 1713 1714 1715 /* 1716 ** Generate code for a single equality term of the WHERE clause. An equality 1717 ** term can be either X=expr or X IN (...). pTerm is the term to be 1718 ** coded. 1719 ** 1720 ** The current value for the constraint is left on the top of the stack. 1721 ** 1722 ** For a constraint of the form X=expr, the expression is evaluated and its 1723 ** result is left on the stack. For constraints of the form X IN (...) 1724 ** this routine sets up a loop that will iterate over all values of X. 1725 */ 1726 static void codeEqualityTerm( 1727 Parse *pParse, /* The parsing context */ 1728 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 1729 WhereLevel *pLevel /* When level of the FROM clause we are working on */ 1730 ){ 1731 Expr *pX = pTerm->pExpr; 1732 Vdbe *v = pParse->pVdbe; 1733 if( pX->op==TK_EQ ){ 1734 sqlite3ExprCode(pParse, pX->pRight); 1735 }else if( pX->op==TK_ISNULL ){ 1736 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1737 #ifndef SQLITE_OMIT_SUBQUERY 1738 }else{ 1739 int eType; 1740 int iTab; 1741 struct InLoop *pIn; 1742 1743 assert( pX->op==TK_IN ); 1744 eType = sqlite3FindInIndex(pParse, pX, 1); 1745 iTab = pX->iTable; 1746 sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0); 1747 VdbeComment((v, "# %.*s", pX->span.n, pX->span.z)); 1748 if( pLevel->nIn==0 ){ 1749 pLevel->nxt = sqlite3VdbeMakeLabel(v); 1750 } 1751 pLevel->nIn++; 1752 pLevel->aInLoop = sqlite3DbReallocOrFree(pParse->db, pLevel->aInLoop, 1753 sizeof(pLevel->aInLoop[0])*pLevel->nIn); 1754 pIn = pLevel->aInLoop; 1755 if( pIn ){ 1756 int op = ((eType==IN_INDEX_ROWID)?OP_Rowid:OP_Column); 1757 pIn += pLevel->nIn - 1; 1758 pIn->iCur = iTab; 1759 pIn->topAddr = sqlite3VdbeAddOp(v, op, iTab, 0); 1760 sqlite3VdbeAddOp(v, OP_IsNull, -1, 0); 1761 }else{ 1762 pLevel->nIn = 0; 1763 } 1764 #endif 1765 } 1766 disableTerm(pLevel, pTerm); 1767 } 1768 1769 /* 1770 ** Generate code that will evaluate all == and IN constraints for an 1771 ** index. The values for all constraints are left on the stack. 1772 ** 1773 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 1774 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 1775 ** The index has as many as three equality constraints, but in this 1776 ** example, the third "c" value is an inequality. So only two 1777 ** constraints are coded. This routine will generate code to evaluate 1778 ** a==5 and b IN (1,2,3). The current values for a and b will be left 1779 ** on the stack - a is the deepest and b the shallowest. 1780 ** 1781 ** In the example above nEq==2. But this subroutine works for any value 1782 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 1783 ** The only thing it does is allocate the pLevel->iMem memory cell. 1784 ** 1785 ** This routine always allocates at least one memory cell and puts 1786 ** the address of that memory cell in pLevel->iMem. The code that 1787 ** calls this routine will use pLevel->iMem to store the termination 1788 ** key value of the loop. If one or more IN operators appear, then 1789 ** this routine allocates an additional nEq memory cells for internal 1790 ** use. 1791 */ 1792 static void codeAllEqualityTerms( 1793 Parse *pParse, /* Parsing context */ 1794 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 1795 WhereClause *pWC, /* The WHERE clause */ 1796 Bitmask notReady /* Which parts of FROM have not yet been coded */ 1797 ){ 1798 int nEq = pLevel->nEq; /* The number of == or IN constraints to code */ 1799 int termsInMem = 0; /* If true, store value in mem[] cells */ 1800 Vdbe *v = pParse->pVdbe; /* The virtual machine under construction */ 1801 Index *pIdx = pLevel->pIdx; /* The index being used for this loop */ 1802 int iCur = pLevel->iTabCur; /* The cursor of the table */ 1803 WhereTerm *pTerm; /* A single constraint term */ 1804 int j; /* Loop counter */ 1805 1806 /* Figure out how many memory cells we will need then allocate them. 1807 ** We always need at least one used to store the loop terminator 1808 ** value. If there are IN operators we'll need one for each == or 1809 ** IN constraint. 1810 */ 1811 pLevel->iMem = pParse->nMem++; 1812 if( pLevel->flags & WHERE_COLUMN_IN ){ 1813 pParse->nMem += pLevel->nEq; 1814 termsInMem = 1; 1815 } 1816 1817 /* Evaluate the equality constraints 1818 */ 1819 assert( pIdx->nColumn>=nEq ); 1820 for(j=0; j<nEq; j++){ 1821 int k = pIdx->aiColumn[j]; 1822 pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx); 1823 if( pTerm==0 ) break; 1824 assert( (pTerm->flags & TERM_CODED)==0 ); 1825 codeEqualityTerm(pParse, pTerm, pLevel); 1826 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ 1827 sqlite3VdbeAddOp(v, OP_IsNull, termsInMem ? -1 : -(j+1), pLevel->brk); 1828 } 1829 if( termsInMem ){ 1830 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem+j+1, 1); 1831 } 1832 } 1833 1834 /* Make sure all the constraint values are on the top of the stack 1835 */ 1836 if( termsInMem ){ 1837 for(j=0; j<nEq; j++){ 1838 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem+j+1, 0); 1839 } 1840 } 1841 } 1842 1843 #if defined(SQLITE_TEST) 1844 /* 1845 ** The following variable holds a text description of query plan generated 1846 ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin 1847 ** overwrites the previous. This information is used for testing and 1848 ** analysis only. 1849 */ 1850 char sqlite3_query_plan[BMS*2*40]; /* Text of the join */ 1851 static int nQPlan = 0; /* Next free slow in _query_plan[] */ 1852 1853 #endif /* SQLITE_TEST */ 1854 1855 1856 /* 1857 ** Free a WhereInfo structure 1858 */ 1859 static void whereInfoFree(WhereInfo *pWInfo){ 1860 if( pWInfo ){ 1861 int i; 1862 for(i=0; i<pWInfo->nLevel; i++){ 1863 sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo; 1864 if( pInfo ){ 1865 if( pInfo->needToFreeIdxStr ){ 1866 /* Coverage: Don't think this can be reached. By the time this 1867 ** function is called, the index-strings have been passed 1868 ** to the vdbe layer for deletion. 1869 */ 1870 sqlite3_free(pInfo->idxStr); 1871 } 1872 sqlite3_free(pInfo); 1873 } 1874 } 1875 sqlite3_free(pWInfo); 1876 } 1877 } 1878 1879 1880 /* 1881 ** Generate the beginning of the loop used for WHERE clause processing. 1882 ** The return value is a pointer to an opaque structure that contains 1883 ** information needed to terminate the loop. Later, the calling routine 1884 ** should invoke sqlite3WhereEnd() with the return value of this function 1885 ** in order to complete the WHERE clause processing. 1886 ** 1887 ** If an error occurs, this routine returns NULL. 1888 ** 1889 ** The basic idea is to do a nested loop, one loop for each table in 1890 ** the FROM clause of a select. (INSERT and UPDATE statements are the 1891 ** same as a SELECT with only a single table in the FROM clause.) For 1892 ** example, if the SQL is this: 1893 ** 1894 ** SELECT * FROM t1, t2, t3 WHERE ...; 1895 ** 1896 ** Then the code generated is conceptually like the following: 1897 ** 1898 ** foreach row1 in t1 do \ Code generated 1899 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 1900 ** foreach row3 in t3 do / 1901 ** ... 1902 ** end \ Code generated 1903 ** end |-- by sqlite3WhereEnd() 1904 ** end / 1905 ** 1906 ** Note that the loops might not be nested in the order in which they 1907 ** appear in the FROM clause if a different order is better able to make 1908 ** use of indices. Note also that when the IN operator appears in 1909 ** the WHERE clause, it might result in additional nested loops for 1910 ** scanning through all values on the right-hand side of the IN. 1911 ** 1912 ** There are Btree cursors associated with each table. t1 uses cursor 1913 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 1914 ** And so forth. This routine generates code to open those VDBE cursors 1915 ** and sqlite3WhereEnd() generates the code to close them. 1916 ** 1917 ** The code that sqlite3WhereBegin() generates leaves the cursors named 1918 ** in pTabList pointing at their appropriate entries. The [...] code 1919 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 1920 ** data from the various tables of the loop. 1921 ** 1922 ** If the WHERE clause is empty, the foreach loops must each scan their 1923 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 1924 ** the tables have indices and there are terms in the WHERE clause that 1925 ** refer to those indices, a complete table scan can be avoided and the 1926 ** code will run much faster. Most of the work of this routine is checking 1927 ** to see if there are indices that can be used to speed up the loop. 1928 ** 1929 ** Terms of the WHERE clause are also used to limit which rows actually 1930 ** make it to the "..." in the middle of the loop. After each "foreach", 1931 ** terms of the WHERE clause that use only terms in that loop and outer 1932 ** loops are evaluated and if false a jump is made around all subsequent 1933 ** inner loops (or around the "..." if the test occurs within the inner- 1934 ** most loop) 1935 ** 1936 ** OUTER JOINS 1937 ** 1938 ** An outer join of tables t1 and t2 is conceptally coded as follows: 1939 ** 1940 ** foreach row1 in t1 do 1941 ** flag = 0 1942 ** foreach row2 in t2 do 1943 ** start: 1944 ** ... 1945 ** flag = 1 1946 ** end 1947 ** if flag==0 then 1948 ** move the row2 cursor to a null row 1949 ** goto start 1950 ** fi 1951 ** end 1952 ** 1953 ** ORDER BY CLAUSE PROCESSING 1954 ** 1955 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, 1956 ** if there is one. If there is no ORDER BY clause or if this routine 1957 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. 1958 ** 1959 ** If an index can be used so that the natural output order of the table 1960 ** scan is correct for the ORDER BY clause, then that index is used and 1961 ** *ppOrderBy is set to NULL. This is an optimization that prevents an 1962 ** unnecessary sort of the result set if an index appropriate for the 1963 ** ORDER BY clause already exists. 1964 ** 1965 ** If the where clause loops cannot be arranged to provide the correct 1966 ** output order, then the *ppOrderBy is unchanged. 1967 */ 1968 WhereInfo *sqlite3WhereBegin( 1969 Parse *pParse, /* The parser context */ 1970 SrcList *pTabList, /* A list of all tables to be scanned */ 1971 Expr *pWhere, /* The WHERE clause */ 1972 ExprList **ppOrderBy /* An ORDER BY clause, or NULL */ 1973 ){ 1974 int i; /* Loop counter */ 1975 WhereInfo *pWInfo; /* Will become the return value of this function */ 1976 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 1977 int brk, cont = 0; /* Addresses used during code generation */ 1978 Bitmask notReady; /* Cursors that are not yet positioned */ 1979 WhereTerm *pTerm; /* A single term in the WHERE clause */ 1980 ExprMaskSet maskSet; /* The expression mask set */ 1981 WhereClause wc; /* The WHERE clause is divided into these terms */ 1982 struct SrcList_item *pTabItem; /* A single entry from pTabList */ 1983 WhereLevel *pLevel; /* A single level in the pWInfo list */ 1984 int iFrom; /* First unused FROM clause element */ 1985 int andFlags; /* AND-ed combination of all wc.a[].flags */ 1986 sqlite3 *db; /* Database connection */ 1987 1988 /* The number of tables in the FROM clause is limited by the number of 1989 ** bits in a Bitmask 1990 */ 1991 if( pTabList->nSrc>BMS ){ 1992 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 1993 return 0; 1994 } 1995 1996 /* Split the WHERE clause into separate subexpressions where each 1997 ** subexpression is separated by an AND operator. 1998 */ 1999 initMaskSet(&maskSet); 2000 whereClauseInit(&wc, pParse, &maskSet); 2001 whereSplit(&wc, pWhere, TK_AND); 2002 2003 /* Allocate and initialize the WhereInfo structure that will become the 2004 ** return value. 2005 */ 2006 db = pParse->db; 2007 pWInfo = sqlite3DbMallocZero(db, 2008 sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel)); 2009 if( db->mallocFailed ){ 2010 goto whereBeginNoMem; 2011 } 2012 pWInfo->nLevel = pTabList->nSrc; 2013 pWInfo->pParse = pParse; 2014 pWInfo->pTabList = pTabList; 2015 pWInfo->iBreak = sqlite3VdbeMakeLabel(v); 2016 2017 /* Special case: a WHERE clause that is constant. Evaluate the 2018 ** expression and either jump over all of the code or fall thru. 2019 */ 2020 if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){ 2021 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1); 2022 pWhere = 0; 2023 } 2024 2025 /* Analyze all of the subexpressions. Note that exprAnalyze() might 2026 ** add new virtual terms onto the end of the WHERE clause. We do not 2027 ** want to analyze these virtual terms, so start analyzing at the end 2028 ** and work forward so that the added virtual terms are never processed. 2029 */ 2030 for(i=0; i<pTabList->nSrc; i++){ 2031 createMask(&maskSet, pTabList->a[i].iCursor); 2032 } 2033 exprAnalyzeAll(pTabList, &wc); 2034 if( db->mallocFailed ){ 2035 goto whereBeginNoMem; 2036 } 2037 2038 /* Chose the best index to use for each table in the FROM clause. 2039 ** 2040 ** This loop fills in the following fields: 2041 ** 2042 ** pWInfo->a[].pIdx The index to use for this level of the loop. 2043 ** pWInfo->a[].flags WHERE_xxx flags associated with pIdx 2044 ** pWInfo->a[].nEq The number of == and IN constraints 2045 ** pWInfo->a[].iFrom When term of the FROM clause is being coded 2046 ** pWInfo->a[].iTabCur The VDBE cursor for the database table 2047 ** pWInfo->a[].iIdxCur The VDBE cursor for the index 2048 ** 2049 ** This loop also figures out the nesting order of tables in the FROM 2050 ** clause. 2051 */ 2052 notReady = ~(Bitmask)0; 2053 pTabItem = pTabList->a; 2054 pLevel = pWInfo->a; 2055 andFlags = ~0; 2056 WHERETRACE(("*** Optimizer Start ***\n")); 2057 for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 2058 Index *pIdx; /* Index for FROM table at pTabItem */ 2059 int flags; /* Flags asssociated with pIdx */ 2060 int nEq; /* Number of == or IN constraints */ 2061 double cost; /* The cost for pIdx */ 2062 int j; /* For looping over FROM tables */ 2063 Index *pBest = 0; /* The best index seen so far */ 2064 int bestFlags = 0; /* Flags associated with pBest */ 2065 int bestNEq = 0; /* nEq associated with pBest */ 2066 double lowestCost; /* Cost of the pBest */ 2067 int bestJ = 0; /* The value of j */ 2068 Bitmask m; /* Bitmask value for j or bestJ */ 2069 int once = 0; /* True when first table is seen */ 2070 sqlite3_index_info *pIndex; /* Current virtual index */ 2071 2072 lowestCost = SQLITE_BIG_DBL; 2073 for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){ 2074 int doNotReorder; /* True if this table should not be reordered */ 2075 2076 doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0; 2077 if( once && doNotReorder ) break; 2078 m = getMask(&maskSet, pTabItem->iCursor); 2079 if( (m & notReady)==0 ){ 2080 if( j==iFrom ) iFrom++; 2081 continue; 2082 } 2083 assert( pTabItem->pTab ); 2084 #ifndef SQLITE_OMIT_VIRTUALTABLE 2085 if( IsVirtual(pTabItem->pTab) ){ 2086 sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo; 2087 cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady, 2088 ppOrderBy ? *ppOrderBy : 0, i==0, 2089 ppIdxInfo); 2090 flags = WHERE_VIRTUALTABLE; 2091 pIndex = *ppIdxInfo; 2092 if( pIndex && pIndex->orderByConsumed ){ 2093 flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY; 2094 } 2095 pIdx = 0; 2096 nEq = 0; 2097 if( (SQLITE_BIG_DBL/2.0)<cost ){ 2098 /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the 2099 ** inital value of lowestCost in this loop. If it is, then 2100 ** the (cost<lowestCost) test below will never be true and 2101 ** pLevel->pBestIdx never set. 2102 */ 2103 cost = (SQLITE_BIG_DBL/2.0); 2104 } 2105 }else 2106 #endif 2107 { 2108 cost = bestIndex(pParse, &wc, pTabItem, notReady, 2109 (i==0 && ppOrderBy) ? *ppOrderBy : 0, 2110 &pIdx, &flags, &nEq); 2111 pIndex = 0; 2112 } 2113 if( cost<lowestCost ){ 2114 once = 1; 2115 lowestCost = cost; 2116 pBest = pIdx; 2117 bestFlags = flags; 2118 bestNEq = nEq; 2119 bestJ = j; 2120 pLevel->pBestIdx = pIndex; 2121 } 2122 if( doNotReorder ) break; 2123 } 2124 WHERETRACE(("*** Optimizer choose table %d for loop %d\n", bestJ, 2125 pLevel-pWInfo->a)); 2126 if( (bestFlags & WHERE_ORDERBY)!=0 ){ 2127 *ppOrderBy = 0; 2128 } 2129 andFlags &= bestFlags; 2130 pLevel->flags = bestFlags; 2131 pLevel->pIdx = pBest; 2132 pLevel->nEq = bestNEq; 2133 pLevel->aInLoop = 0; 2134 pLevel->nIn = 0; 2135 if( pBest ){ 2136 pLevel->iIdxCur = pParse->nTab++; 2137 }else{ 2138 pLevel->iIdxCur = -1; 2139 } 2140 notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor); 2141 pLevel->iFrom = bestJ; 2142 } 2143 WHERETRACE(("*** Optimizer Finished ***\n")); 2144 2145 /* If the total query only selects a single row, then the ORDER BY 2146 ** clause is irrelevant. 2147 */ 2148 if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){ 2149 *ppOrderBy = 0; 2150 } 2151 2152 /* Open all tables in the pTabList and any indices selected for 2153 ** searching those tables. 2154 */ 2155 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ 2156 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 2157 Table *pTab; /* Table to open */ 2158 Index *pIx; /* Index used to access pTab (if any) */ 2159 int iDb; /* Index of database containing table/index */ 2160 int iIdxCur = pLevel->iIdxCur; 2161 2162 #ifndef SQLITE_OMIT_EXPLAIN 2163 if( pParse->explain==2 ){ 2164 char *zMsg; 2165 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 2166 zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName); 2167 if( pItem->zAlias ){ 2168 zMsg = sqlite3MPrintf(db, "%z AS %s", zMsg, pItem->zAlias); 2169 } 2170 if( (pIx = pLevel->pIdx)!=0 ){ 2171 zMsg = sqlite3MPrintf(db, "%z WITH INDEX %s", zMsg, pIx->zName); 2172 }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ 2173 zMsg = sqlite3MPrintf(db, "%z USING PRIMARY KEY", zMsg); 2174 } 2175 #ifndef SQLITE_OMIT_VIRTUALTABLE 2176 else if( pLevel->pBestIdx ){ 2177 sqlite3_index_info *pBestIdx = pLevel->pBestIdx; 2178 zMsg = sqlite3MPrintf(db, "%z VIRTUAL TABLE INDEX %d:%s", zMsg, 2179 pBestIdx->idxNum, pBestIdx->idxStr); 2180 } 2181 #endif 2182 if( pLevel->flags & WHERE_ORDERBY ){ 2183 zMsg = sqlite3MPrintf(db, "%z ORDER BY", zMsg); 2184 } 2185 sqlite3VdbeOp3(v, OP_Explain, i, pLevel->iFrom, zMsg, P3_DYNAMIC); 2186 } 2187 #endif /* SQLITE_OMIT_EXPLAIN */ 2188 pTabItem = &pTabList->a[pLevel->iFrom]; 2189 pTab = pTabItem->pTab; 2190 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2191 if( pTab->isEphem || pTab->pSelect ) continue; 2192 #ifndef SQLITE_OMIT_VIRTUALTABLE 2193 if( pLevel->pBestIdx ){ 2194 int iCur = pTabItem->iCursor; 2195 sqlite3VdbeOp3(v, OP_VOpen, iCur, 0, (const char*)pTab->pVtab, P3_VTAB); 2196 }else 2197 #endif 2198 if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){ 2199 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, OP_OpenRead); 2200 if( pTab->nCol<(sizeof(Bitmask)*8) ){ 2201 Bitmask b = pTabItem->colUsed; 2202 int n = 0; 2203 for(; b; b=b>>1, n++){} 2204 sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-1, n); 2205 assert( n<=pTab->nCol ); 2206 } 2207 }else{ 2208 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2209 } 2210 pLevel->iTabCur = pTabItem->iCursor; 2211 if( (pIx = pLevel->pIdx)!=0 ){ 2212 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx); 2213 assert( pIx->pSchema==pTab->pSchema ); 2214 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); 2215 VdbeComment((v, "# %s", pIx->zName)); 2216 sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum, 2217 (char*)pKey, P3_KEYINFO_HANDOFF); 2218 sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1); 2219 } 2220 sqlite3CodeVerifySchema(pParse, iDb); 2221 } 2222 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 2223 2224 /* Generate the code to do the search. Each iteration of the for 2225 ** loop below generates code for a single nested loop of the VM 2226 ** program. 2227 */ 2228 notReady = ~(Bitmask)0; 2229 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 2230 int j; 2231 int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */ 2232 Index *pIdx; /* The index we will be using */ 2233 int nxt; /* Where to jump to continue with the next IN case */ 2234 int iIdxCur; /* The VDBE cursor for the index */ 2235 int omitTable; /* True if we use the index only */ 2236 int bRev; /* True if we need to scan in reverse order */ 2237 2238 pTabItem = &pTabList->a[pLevel->iFrom]; 2239 iCur = pTabItem->iCursor; 2240 pIdx = pLevel->pIdx; 2241 iIdxCur = pLevel->iIdxCur; 2242 bRev = (pLevel->flags & WHERE_REVERSE)!=0; 2243 omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0; 2244 2245 /* Create labels for the "break" and "continue" instructions 2246 ** for the current loop. Jump to brk to break out of a loop. 2247 ** Jump to cont to go immediately to the next iteration of the 2248 ** loop. 2249 ** 2250 ** When there is an IN operator, we also have a "nxt" label that 2251 ** means to continue with the next IN value combination. When 2252 ** there are no IN operators in the constraints, the "nxt" label 2253 ** is the same as "brk". 2254 */ 2255 brk = pLevel->brk = pLevel->nxt = sqlite3VdbeMakeLabel(v); 2256 cont = pLevel->cont = sqlite3VdbeMakeLabel(v); 2257 2258 /* If this is the right table of a LEFT OUTER JOIN, allocate and 2259 ** initialize a memory cell that records if this table matches any 2260 ** row of the left table of the join. 2261 */ 2262 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ 2263 if( !pParse->nMem ) pParse->nMem++; 2264 pLevel->iLeftJoin = pParse->nMem++; 2265 sqlite3VdbeAddOp(v, OP_MemInt, 0, pLevel->iLeftJoin); 2266 VdbeComment((v, "# init LEFT JOIN no-match flag")); 2267 } 2268 2269 #ifndef SQLITE_OMIT_VIRTUALTABLE 2270 if( pLevel->pBestIdx ){ 2271 /* Case 0: The table is a virtual-table. Use the VFilter and VNext 2272 ** to access the data. 2273 */ 2274 int j; 2275 sqlite3_index_info *pBestIdx = pLevel->pBestIdx; 2276 int nConstraint = pBestIdx->nConstraint; 2277 struct sqlite3_index_constraint_usage *aUsage = 2278 pBestIdx->aConstraintUsage; 2279 const struct sqlite3_index_constraint *aConstraint = 2280 pBestIdx->aConstraint; 2281 2282 for(j=1; j<=nConstraint; j++){ 2283 int k; 2284 for(k=0; k<nConstraint; k++){ 2285 if( aUsage[k].argvIndex==j ){ 2286 int iTerm = aConstraint[k].iTermOffset; 2287 sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight); 2288 break; 2289 } 2290 } 2291 if( k==nConstraint ) break; 2292 } 2293 sqlite3VdbeAddOp(v, OP_Integer, j-1, 0); 2294 sqlite3VdbeAddOp(v, OP_Integer, pBestIdx->idxNum, 0); 2295 sqlite3VdbeOp3(v, OP_VFilter, iCur, brk, pBestIdx->idxStr, 2296 pBestIdx->needToFreeIdxStr ? P3_MPRINTF : P3_STATIC); 2297 pBestIdx->needToFreeIdxStr = 0; 2298 for(j=0; j<pBestIdx->nConstraint; j++){ 2299 if( aUsage[j].omit ){ 2300 int iTerm = aConstraint[j].iTermOffset; 2301 disableTerm(pLevel, &wc.a[iTerm]); 2302 } 2303 } 2304 pLevel->op = OP_VNext; 2305 pLevel->p1 = iCur; 2306 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2307 }else 2308 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 2309 2310 if( pLevel->flags & WHERE_ROWID_EQ ){ 2311 /* Case 1: We can directly reference a single row using an 2312 ** equality comparison against the ROWID field. Or 2313 ** we reference multiple rows using a "rowid IN (...)" 2314 ** construct. 2315 */ 2316 pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0); 2317 assert( pTerm!=0 ); 2318 assert( pTerm->pExpr!=0 ); 2319 assert( pTerm->leftCursor==iCur ); 2320 assert( omitTable==0 ); 2321 codeEqualityTerm(pParse, pTerm, pLevel); 2322 nxt = pLevel->nxt; 2323 sqlite3VdbeAddOp(v, OP_MustBeInt, 1, nxt); 2324 sqlite3VdbeAddOp(v, OP_NotExists, iCur, nxt); 2325 VdbeComment((v, "pk")); 2326 pLevel->op = OP_Noop; 2327 }else if( pLevel->flags & WHERE_ROWID_RANGE ){ 2328 /* Case 2: We have an inequality comparison against the ROWID field. 2329 */ 2330 int testOp = OP_Noop; 2331 int start; 2332 WhereTerm *pStart, *pEnd; 2333 2334 assert( omitTable==0 ); 2335 pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0); 2336 pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0); 2337 if( bRev ){ 2338 pTerm = pStart; 2339 pStart = pEnd; 2340 pEnd = pTerm; 2341 } 2342 if( pStart ){ 2343 Expr *pX; 2344 pX = pStart->pExpr; 2345 assert( pX!=0 ); 2346 assert( pStart->leftCursor==iCur ); 2347 sqlite3ExprCode(pParse, pX->pRight); 2348 sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk); 2349 sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk); 2350 VdbeComment((v, "pk")); 2351 disableTerm(pLevel, pStart); 2352 }else{ 2353 sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk); 2354 } 2355 if( pEnd ){ 2356 Expr *pX; 2357 pX = pEnd->pExpr; 2358 assert( pX!=0 ); 2359 assert( pEnd->leftCursor==iCur ); 2360 sqlite3ExprCode(pParse, pX->pRight); 2361 pLevel->iMem = pParse->nMem++; 2362 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); 2363 if( pX->op==TK_LT || pX->op==TK_GT ){ 2364 testOp = bRev ? OP_Le : OP_Ge; 2365 }else{ 2366 testOp = bRev ? OP_Lt : OP_Gt; 2367 } 2368 disableTerm(pLevel, pEnd); 2369 } 2370 start = sqlite3VdbeCurrentAddr(v); 2371 pLevel->op = bRev ? OP_Prev : OP_Next; 2372 pLevel->p1 = iCur; 2373 pLevel->p2 = start; 2374 if( testOp!=OP_Noop ){ 2375 sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0); 2376 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 2377 sqlite3VdbeAddOp(v, testOp, SQLITE_AFF_NUMERIC|0x100, brk); 2378 } 2379 }else if( pLevel->flags & WHERE_COLUMN_RANGE ){ 2380 /* Case 3: The WHERE clause term that refers to the right-most 2381 ** column of the index is an inequality. For example, if 2382 ** the index is on (x,y,z) and the WHERE clause is of the 2383 ** form "x=5 AND y<10" then this case is used. Only the 2384 ** right-most column can be an inequality - the rest must 2385 ** use the "==" and "IN" operators. 2386 ** 2387 ** This case is also used when there are no WHERE clause 2388 ** constraints but an index is selected anyway, in order 2389 ** to force the output order to conform to an ORDER BY. 2390 */ 2391 int start; 2392 int nEq = pLevel->nEq; 2393 int topEq=0; /* True if top limit uses ==. False is strictly < */ 2394 int btmEq=0; /* True if btm limit uses ==. False if strictly > */ 2395 int topOp, btmOp; /* Operators for the top and bottom search bounds */ 2396 int testOp; 2397 int topLimit = (pLevel->flags & WHERE_TOP_LIMIT)!=0; 2398 int btmLimit = (pLevel->flags & WHERE_BTM_LIMIT)!=0; 2399 2400 /* Generate code to evaluate all constraint terms using == or IN 2401 ** and level the values of those terms on the stack. 2402 */ 2403 codeAllEqualityTerms(pParse, pLevel, &wc, notReady); 2404 2405 /* Duplicate the equality term values because they will all be 2406 ** used twice: once to make the termination key and once to make the 2407 ** start key. 2408 */ 2409 for(j=0; j<nEq; j++){ 2410 sqlite3VdbeAddOp(v, OP_Dup, nEq-1, 0); 2411 } 2412 2413 /* Figure out what comparison operators to use for top and bottom 2414 ** search bounds. For an ascending index, the bottom bound is a > or >= 2415 ** operator and the top bound is a < or <= operator. For a descending 2416 ** index the operators are reversed. 2417 */ 2418 if( pIdx->aSortOrder[nEq]==SQLITE_SO_ASC ){ 2419 topOp = WO_LT|WO_LE; 2420 btmOp = WO_GT|WO_GE; 2421 }else{ 2422 topOp = WO_GT|WO_GE; 2423 btmOp = WO_LT|WO_LE; 2424 SWAP(int, topLimit, btmLimit); 2425 } 2426 2427 /* Generate the termination key. This is the key value that 2428 ** will end the search. There is no termination key if there 2429 ** are no equality terms and no "X<..." term. 2430 ** 2431 ** 2002-Dec-04: On a reverse-order scan, the so-called "termination" 2432 ** key computed here really ends up being the start key. 2433 */ 2434 nxt = pLevel->nxt; 2435 if( topLimit ){ 2436 Expr *pX; 2437 int k = pIdx->aiColumn[j]; 2438 pTerm = findTerm(&wc, iCur, k, notReady, topOp, pIdx); 2439 assert( pTerm!=0 ); 2440 pX = pTerm->pExpr; 2441 assert( (pTerm->flags & TERM_CODED)==0 ); 2442 sqlite3ExprCode(pParse, pX->pRight); 2443 sqlite3VdbeAddOp(v, OP_IsNull, -(nEq*2+1), nxt); 2444 topEq = pTerm->eOperator & (WO_LE|WO_GE); 2445 disableTerm(pLevel, pTerm); 2446 testOp = OP_IdxGE; 2447 }else{ 2448 testOp = nEq>0 ? OP_IdxGE : OP_Noop; 2449 topEq = 1; 2450 } 2451 if( testOp!=OP_Noop ){ 2452 int nCol = nEq + topLimit; 2453 pLevel->iMem = pParse->nMem++; 2454 buildIndexProbe(v, nCol, pIdx); 2455 if( bRev ){ 2456 int op = topEq ? OP_MoveLe : OP_MoveLt; 2457 sqlite3VdbeAddOp(v, op, iIdxCur, nxt); 2458 }else{ 2459 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); 2460 } 2461 }else if( bRev ){ 2462 sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk); 2463 } 2464 2465 /* Generate the start key. This is the key that defines the lower 2466 ** bound on the search. There is no start key if there are no 2467 ** equality terms and if there is no "X>..." term. In 2468 ** that case, generate a "Rewind" instruction in place of the 2469 ** start key search. 2470 ** 2471 ** 2002-Dec-04: In the case of a reverse-order search, the so-called 2472 ** "start" key really ends up being used as the termination key. 2473 */ 2474 if( btmLimit ){ 2475 Expr *pX; 2476 int k = pIdx->aiColumn[j]; 2477 pTerm = findTerm(&wc, iCur, k, notReady, btmOp, pIdx); 2478 assert( pTerm!=0 ); 2479 pX = pTerm->pExpr; 2480 assert( (pTerm->flags & TERM_CODED)==0 ); 2481 sqlite3ExprCode(pParse, pX->pRight); 2482 sqlite3VdbeAddOp(v, OP_IsNull, -(nEq+1), nxt); 2483 btmEq = pTerm->eOperator & (WO_LE|WO_GE); 2484 disableTerm(pLevel, pTerm); 2485 }else{ 2486 btmEq = 1; 2487 } 2488 if( nEq>0 || btmLimit ){ 2489 int nCol = nEq + btmLimit; 2490 buildIndexProbe(v, nCol, pIdx); 2491 if( bRev ){ 2492 pLevel->iMem = pParse->nMem++; 2493 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); 2494 testOp = OP_IdxLT; 2495 }else{ 2496 int op = btmEq ? OP_MoveGe : OP_MoveGt; 2497 sqlite3VdbeAddOp(v, op, iIdxCur, nxt); 2498 } 2499 }else if( bRev ){ 2500 testOp = OP_Noop; 2501 }else{ 2502 sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk); 2503 } 2504 2505 /* Generate the the top of the loop. If there is a termination 2506 ** key we have to test for that key and abort at the top of the 2507 ** loop. 2508 */ 2509 start = sqlite3VdbeCurrentAddr(v); 2510 if( testOp!=OP_Noop ){ 2511 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 2512 sqlite3VdbeAddOp(v, testOp, iIdxCur, nxt); 2513 if( (topEq && !bRev) || (!btmEq && bRev) ){ 2514 sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC); 2515 } 2516 } 2517 if( topLimit | btmLimit ){ 2518 sqlite3VdbeAddOp(v, OP_Column, iIdxCur, nEq); 2519 sqlite3VdbeAddOp(v, OP_IsNull, 1, cont); 2520 } 2521 if( !omitTable ){ 2522 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0); 2523 sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); 2524 } 2525 2526 /* Record the instruction used to terminate the loop. 2527 */ 2528 pLevel->op = bRev ? OP_Prev : OP_Next; 2529 pLevel->p1 = iIdxCur; 2530 pLevel->p2 = start; 2531 }else if( pLevel->flags & WHERE_COLUMN_EQ ){ 2532 /* Case 4: There is an index and all terms of the WHERE clause that 2533 ** refer to the index using the "==" or "IN" operators. 2534 */ 2535 int start; 2536 int nEq = pLevel->nEq; 2537 2538 /* Generate code to evaluate all constraint terms using == or IN 2539 ** and leave the values of those terms on the stack. 2540 */ 2541 codeAllEqualityTerms(pParse, pLevel, &wc, notReady); 2542 nxt = pLevel->nxt; 2543 2544 /* Generate a single key that will be used to both start and terminate 2545 ** the search 2546 */ 2547 buildIndexProbe(v, nEq, pIdx); 2548 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0); 2549 2550 /* Generate code (1) to move to the first matching element of the table. 2551 ** Then generate code (2) that jumps to "nxt" after the cursor is past 2552 ** the last matching element of the table. The code (1) is executed 2553 ** once to initialize the search, the code (2) is executed before each 2554 ** iteration of the scan to see if the scan has finished. */ 2555 if( bRev ){ 2556 /* Scan in reverse order */ 2557 sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, nxt); 2558 start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 2559 sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, nxt); 2560 pLevel->op = OP_Prev; 2561 }else{ 2562 /* Scan in the forward order */ 2563 sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, nxt); 2564 start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 2565 sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, nxt, "+", P3_STATIC); 2566 pLevel->op = OP_Next; 2567 } 2568 if( !omitTable ){ 2569 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0); 2570 sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); 2571 } 2572 pLevel->p1 = iIdxCur; 2573 pLevel->p2 = start; 2574 }else{ 2575 /* Case 5: There is no usable index. We must do a complete 2576 ** scan of the entire table. 2577 */ 2578 assert( omitTable==0 ); 2579 assert( bRev==0 ); 2580 pLevel->op = OP_Next; 2581 pLevel->p1 = iCur; 2582 pLevel->p2 = 1 + sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk); 2583 } 2584 notReady &= ~getMask(&maskSet, iCur); 2585 sqlite3VdbeAddOp(v, OP_StackDepth, -1, 0); 2586 2587 /* Insert code to test every subexpression that can be completely 2588 ** computed using the current set of tables. 2589 */ 2590 for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){ 2591 Expr *pE; 2592 if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2593 if( (pTerm->prereqAll & notReady)!=0 ) continue; 2594 pE = pTerm->pExpr; 2595 assert( pE!=0 ); 2596 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ 2597 continue; 2598 } 2599 sqlite3ExprIfFalse(pParse, pE, cont, 1); 2600 pTerm->flags |= TERM_CODED; 2601 } 2602 2603 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2604 ** at least one row of the right table has matched the left table. 2605 */ 2606 if( pLevel->iLeftJoin ){ 2607 pLevel->top = sqlite3VdbeCurrentAddr(v); 2608 sqlite3VdbeAddOp(v, OP_MemInt, 1, pLevel->iLeftJoin); 2609 VdbeComment((v, "# record LEFT JOIN hit")); 2610 for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){ 2611 if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2612 if( (pTerm->prereqAll & notReady)!=0 ) continue; 2613 assert( pTerm->pExpr ); 2614 sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, 1); 2615 pTerm->flags |= TERM_CODED; 2616 } 2617 } 2618 } 2619 2620 #ifdef SQLITE_TEST /* For testing and debugging use only */ 2621 /* Record in the query plan information about the current table 2622 ** and the index used to access it (if any). If the table itself 2623 ** is not used, its name is just '{}'. If no index is used 2624 ** the index is listed as "{}". If the primary key is used the 2625 ** index name is '*'. 2626 */ 2627 for(i=0; i<pTabList->nSrc; i++){ 2628 char *z; 2629 int n; 2630 pLevel = &pWInfo->a[i]; 2631 pTabItem = &pTabList->a[pLevel->iFrom]; 2632 z = pTabItem->zAlias; 2633 if( z==0 ) z = pTabItem->pTab->zName; 2634 n = strlen(z); 2635 if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){ 2636 if( pLevel->flags & WHERE_IDX_ONLY ){ 2637 memcpy(&sqlite3_query_plan[nQPlan], "{}", 2); 2638 nQPlan += 2; 2639 }else{ 2640 memcpy(&sqlite3_query_plan[nQPlan], z, n); 2641 nQPlan += n; 2642 } 2643 sqlite3_query_plan[nQPlan++] = ' '; 2644 } 2645 if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ 2646 memcpy(&sqlite3_query_plan[nQPlan], "* ", 2); 2647 nQPlan += 2; 2648 }else if( pLevel->pIdx==0 ){ 2649 memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3); 2650 nQPlan += 3; 2651 }else{ 2652 n = strlen(pLevel->pIdx->zName); 2653 if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){ 2654 memcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName, n); 2655 nQPlan += n; 2656 sqlite3_query_plan[nQPlan++] = ' '; 2657 } 2658 } 2659 } 2660 while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){ 2661 sqlite3_query_plan[--nQPlan] = 0; 2662 } 2663 sqlite3_query_plan[nQPlan] = 0; 2664 nQPlan = 0; 2665 #endif /* SQLITE_TEST // Testing and debugging use only */ 2666 2667 /* Record the continuation address in the WhereInfo structure. Then 2668 ** clean up and return. 2669 */ 2670 pWInfo->iContinue = cont; 2671 whereClauseClear(&wc); 2672 return pWInfo; 2673 2674 /* Jump here if malloc fails */ 2675 whereBeginNoMem: 2676 whereClauseClear(&wc); 2677 whereInfoFree(pWInfo); 2678 return 0; 2679 } 2680 2681 /* 2682 ** Generate the end of the WHERE loop. See comments on 2683 ** sqlite3WhereBegin() for additional information. 2684 */ 2685 void sqlite3WhereEnd(WhereInfo *pWInfo){ 2686 Vdbe *v = pWInfo->pParse->pVdbe; 2687 int i; 2688 WhereLevel *pLevel; 2689 SrcList *pTabList = pWInfo->pTabList; 2690 2691 /* Generate loop termination code. 2692 */ 2693 for(i=pTabList->nSrc-1; i>=0; i--){ 2694 pLevel = &pWInfo->a[i]; 2695 sqlite3VdbeResolveLabel(v, pLevel->cont); 2696 if( pLevel->op!=OP_Noop ){ 2697 sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2); 2698 } 2699 if( pLevel->nIn ){ 2700 struct InLoop *pIn; 2701 int j; 2702 sqlite3VdbeResolveLabel(v, pLevel->nxt); 2703 for(j=pLevel->nIn, pIn=&pLevel->aInLoop[j-1]; j>0; j--, pIn--){ 2704 sqlite3VdbeJumpHere(v, pIn->topAddr+1); 2705 sqlite3VdbeAddOp(v, OP_Next, pIn->iCur, pIn->topAddr); 2706 sqlite3VdbeJumpHere(v, pIn->topAddr-1); 2707 } 2708 sqlite3_free(pLevel->aInLoop); 2709 } 2710 sqlite3VdbeResolveLabel(v, pLevel->brk); 2711 if( pLevel->iLeftJoin ){ 2712 int addr; 2713 addr = sqlite3VdbeAddOp(v, OP_IfMemPos, pLevel->iLeftJoin, 0); 2714 sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0); 2715 if( pLevel->iIdxCur>=0 ){ 2716 sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0); 2717 } 2718 sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top); 2719 sqlite3VdbeJumpHere(v, addr); 2720 } 2721 } 2722 2723 /* The "break" point is here, just past the end of the outer loop. 2724 ** Set it. 2725 */ 2726 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 2727 2728 /* Close all of the cursors that were opened by sqlite3WhereBegin. 2729 */ 2730 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 2731 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 2732 Table *pTab = pTabItem->pTab; 2733 assert( pTab!=0 ); 2734 if( pTab->isEphem || pTab->pSelect ) continue; 2735 if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){ 2736 sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0); 2737 } 2738 if( pLevel->pIdx!=0 ){ 2739 sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0); 2740 } 2741 2742 /* If this scan uses an index, make code substitutions to read data 2743 ** from the index in preference to the table. Sometimes, this means 2744 ** the table need never be read from. This is a performance boost, 2745 ** as the vdbe level waits until the table is read before actually 2746 ** seeking the table cursor to the record corresponding to the current 2747 ** position in the index. 2748 ** 2749 ** Calls to the code generator in between sqlite3WhereBegin and 2750 ** sqlite3WhereEnd will have created code that references the table 2751 ** directly. This loop scans all that code looking for opcodes 2752 ** that reference the table and converts them into opcodes that 2753 ** reference the index. 2754 */ 2755 if( pLevel->pIdx ){ 2756 int k, j, last; 2757 VdbeOp *pOp; 2758 Index *pIdx = pLevel->pIdx; 2759 int useIndexOnly = pLevel->flags & WHERE_IDX_ONLY; 2760 2761 assert( pIdx!=0 ); 2762 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop); 2763 last = sqlite3VdbeCurrentAddr(v); 2764 for(k=pWInfo->iTop; k<last; k++, pOp++){ 2765 if( pOp->p1!=pLevel->iTabCur ) continue; 2766 if( pOp->opcode==OP_Column ){ 2767 for(j=0; j<pIdx->nColumn; j++){ 2768 if( pOp->p2==pIdx->aiColumn[j] ){ 2769 pOp->p2 = j; 2770 pOp->p1 = pLevel->iIdxCur; 2771 break; 2772 } 2773 } 2774 assert(!useIndexOnly || j<pIdx->nColumn); 2775 }else if( pOp->opcode==OP_Rowid ){ 2776 pOp->p1 = pLevel->iIdxCur; 2777 pOp->opcode = OP_IdxRowid; 2778 }else if( pOp->opcode==OP_NullRow && useIndexOnly ){ 2779 pOp->opcode = OP_Noop; 2780 } 2781 } 2782 } 2783 } 2784 2785 /* Final cleanup 2786 */ 2787 whereInfoFree(pWInfo); 2788 return; 2789 } 2790