xref: /sqlite-3.40.0/src/where.c (revision 85b623f2)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is reponsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 **
19 ** $Id: where.c,v 1.266 2007/12/12 17:42:53 danielk1977 Exp $
20 */
21 #include "sqliteInt.h"
22 
23 /*
24 ** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
25 */
26 #define BMS  (sizeof(Bitmask)*8)
27 
28 /*
29 ** Trace output macros
30 */
31 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
32 int sqlite3_where_trace = 0;
33 # define WHERETRACE(X)  if(sqlite3_where_trace) sqlite3DebugPrintf X
34 #else
35 # define WHERETRACE(X)
36 #endif
37 
38 /* Forward reference
39 */
40 typedef struct WhereClause WhereClause;
41 typedef struct ExprMaskSet ExprMaskSet;
42 
43 /*
44 ** The query generator uses an array of instances of this structure to
45 ** help it analyze the subexpressions of the WHERE clause.  Each WHERE
46 ** clause subexpression is separated from the others by an AND operator.
47 **
48 ** All WhereTerms are collected into a single WhereClause structure.
49 ** The following identity holds:
50 **
51 **        WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
52 **
53 ** When a term is of the form:
54 **
55 **              X <op> <expr>
56 **
57 ** where X is a column name and <op> is one of certain operators,
58 ** then WhereTerm.leftCursor and WhereTerm.leftColumn record the
59 ** cursor number and column number for X.  WhereTerm.operator records
60 ** the <op> using a bitmask encoding defined by WO_xxx below.  The
61 ** use of a bitmask encoding for the operator allows us to search
62 ** quickly for terms that match any of several different operators.
63 **
64 ** prereqRight and prereqAll record sets of cursor numbers,
65 ** but they do so indirectly.  A single ExprMaskSet structure translates
66 ** cursor number into bits and the translated bit is stored in the prereq
67 ** fields.  The translation is used in order to maximize the number of
68 ** bits that will fit in a Bitmask.  The VDBE cursor numbers might be
69 ** spread out over the non-negative integers.  For example, the cursor
70 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45.  The ExprMaskSet
71 ** translates these sparse cursor numbers into consecutive integers
72 ** beginning with 0 in order to make the best possible use of the available
73 ** bits in the Bitmask.  So, in the example above, the cursor numbers
74 ** would be mapped into integers 0 through 7.
75 */
76 typedef struct WhereTerm WhereTerm;
77 struct WhereTerm {
78   Expr *pExpr;            /* Pointer to the subexpression */
79   i16 iParent;            /* Disable pWC->a[iParent] when this term disabled */
80   i16 leftCursor;         /* Cursor number of X in "X <op> <expr>" */
81   i16 leftColumn;         /* Column number of X in "X <op> <expr>" */
82   u16 eOperator;          /* A WO_xx value describing <op> */
83   u8 flags;               /* Bit flags.  See below */
84   u8 nChild;              /* Number of children that must disable us */
85   WhereClause *pWC;       /* The clause this term is part of */
86   Bitmask prereqRight;    /* Bitmask of tables used by pRight */
87   Bitmask prereqAll;      /* Bitmask of tables referenced by p */
88 };
89 
90 /*
91 ** Allowed values of WhereTerm.flags
92 */
93 #define TERM_DYNAMIC    0x01   /* Need to call sqlite3ExprDelete(pExpr) */
94 #define TERM_VIRTUAL    0x02   /* Added by the optimizer.  Do not code */
95 #define TERM_CODED      0x04   /* This term is already coded */
96 #define TERM_COPIED     0x08   /* Has a child */
97 #define TERM_OR_OK      0x10   /* Used during OR-clause processing */
98 
99 /*
100 ** An instance of the following structure holds all information about a
101 ** WHERE clause.  Mostly this is a container for one or more WhereTerms.
102 */
103 struct WhereClause {
104   Parse *pParse;           /* The parser context */
105   ExprMaskSet *pMaskSet;   /* Mapping of table indices to bitmasks */
106   int nTerm;               /* Number of terms */
107   int nSlot;               /* Number of entries in a[] */
108   WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
109   WhereTerm aStatic[10];   /* Initial static space for a[] */
110 };
111 
112 /*
113 ** An instance of the following structure keeps track of a mapping
114 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
115 **
116 ** The VDBE cursor numbers are small integers contained in
117 ** SrcList_item.iCursor and Expr.iTable fields.  For any given WHERE
118 ** clause, the cursor numbers might not begin with 0 and they might
119 ** contain gaps in the numbering sequence.  But we want to make maximum
120 ** use of the bits in our bitmasks.  This structure provides a mapping
121 ** from the sparse cursor numbers into consecutive integers beginning
122 ** with 0.
123 **
124 ** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
125 ** corresponds VDBE cursor number B.  The A-th bit of a bitmask is 1<<A.
126 **
127 ** For example, if the WHERE clause expression used these VDBE
128 ** cursors:  4, 5, 8, 29, 57, 73.  Then the  ExprMaskSet structure
129 ** would map those cursor numbers into bits 0 through 5.
130 **
131 ** Note that the mapping is not necessarily ordered.  In the example
132 ** above, the mapping might go like this:  4->3, 5->1, 8->2, 29->0,
133 ** 57->5, 73->4.  Or one of 719 other combinations might be used. It
134 ** does not really matter.  What is important is that sparse cursor
135 ** numbers all get mapped into bit numbers that begin with 0 and contain
136 ** no gaps.
137 */
138 struct ExprMaskSet {
139   int n;                        /* Number of assigned cursor values */
140   int ix[sizeof(Bitmask)*8];    /* Cursor assigned to each bit */
141 };
142 
143 
144 /*
145 ** Bitmasks for the operators that indices are able to exploit.  An
146 ** OR-ed combination of these values can be used when searching for
147 ** terms in the where clause.
148 */
149 #define WO_IN     1
150 #define WO_EQ     2
151 #define WO_LT     (WO_EQ<<(TK_LT-TK_EQ))
152 #define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
153 #define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
154 #define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))
155 #define WO_MATCH  64
156 #define WO_ISNULL 128
157 
158 /*
159 ** Value for flags returned by bestIndex().
160 **
161 ** The least significant byte is reserved as a mask for WO_ values above.
162 ** The WhereLevel.flags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
163 ** But if the table is the right table of a left join, WhereLevel.flags
164 ** is set to WO_IN|WO_EQ.  The WhereLevel.flags field can then be used as
165 ** the "op" parameter to findTerm when we are resolving equality constraints.
166 ** ISNULL constraints will then not be used on the right table of a left
167 ** join.  Tickets #2177 and #2189.
168 */
169 #define WHERE_ROWID_EQ     0x000100   /* rowid=EXPR or rowid IN (...) */
170 #define WHERE_ROWID_RANGE  0x000200   /* rowid<EXPR and/or rowid>EXPR */
171 #define WHERE_COLUMN_EQ    0x001000   /* x=EXPR or x IN (...) */
172 #define WHERE_COLUMN_RANGE 0x002000   /* x<EXPR and/or x>EXPR */
173 #define WHERE_COLUMN_IN    0x004000   /* x IN (...) */
174 #define WHERE_TOP_LIMIT    0x010000   /* x<EXPR or x<=EXPR constraint */
175 #define WHERE_BTM_LIMIT    0x020000   /* x>EXPR or x>=EXPR constraint */
176 #define WHERE_IDX_ONLY     0x080000   /* Use index only - omit table */
177 #define WHERE_ORDERBY      0x100000   /* Output will appear in correct order */
178 #define WHERE_REVERSE      0x200000   /* Scan in reverse order */
179 #define WHERE_UNIQUE       0x400000   /* Selects no more than one row */
180 #define WHERE_VIRTUALTABLE 0x800000   /* Use virtual-table processing */
181 
182 /*
183 ** Initialize a preallocated WhereClause structure.
184 */
185 static void whereClauseInit(
186   WhereClause *pWC,        /* The WhereClause to be initialized */
187   Parse *pParse,           /* The parsing context */
188   ExprMaskSet *pMaskSet    /* Mapping from table indices to bitmasks */
189 ){
190   pWC->pParse = pParse;
191   pWC->pMaskSet = pMaskSet;
192   pWC->nTerm = 0;
193   pWC->nSlot = ArraySize(pWC->aStatic);
194   pWC->a = pWC->aStatic;
195 }
196 
197 /*
198 ** Deallocate a WhereClause structure.  The WhereClause structure
199 ** itself is not freed.  This routine is the inverse of whereClauseInit().
200 */
201 static void whereClauseClear(WhereClause *pWC){
202   int i;
203   WhereTerm *a;
204   for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
205     if( a->flags & TERM_DYNAMIC ){
206       sqlite3ExprDelete(a->pExpr);
207     }
208   }
209   if( pWC->a!=pWC->aStatic ){
210     sqlite3_free(pWC->a);
211   }
212 }
213 
214 /*
215 ** Add a new entries to the WhereClause structure.  Increase the allocated
216 ** space as necessary.
217 **
218 ** If the flags argument includes TERM_DYNAMIC, then responsibility
219 ** for freeing the expression p is assumed by the WhereClause object.
220 **
221 ** WARNING:  This routine might reallocate the space used to store
222 ** WhereTerms.  All pointers to WhereTerms should be invalided after
223 ** calling this routine.  Such pointers may be reinitialized by referencing
224 ** the pWC->a[] array.
225 */
226 static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){
227   WhereTerm *pTerm;
228   int idx;
229   if( pWC->nTerm>=pWC->nSlot ){
230     WhereTerm *pOld = pWC->a;
231     pWC->a = sqlite3_malloc( sizeof(pWC->a[0])*pWC->nSlot*2 );
232     if( pWC->a==0 ){
233       pWC->pParse->db->mallocFailed = 1;
234       if( flags & TERM_DYNAMIC ){
235         sqlite3ExprDelete(p);
236       }
237       pWC->a = pOld;
238       return 0;
239     }
240     memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
241     if( pOld!=pWC->aStatic ){
242       sqlite3_free(pOld);
243     }
244     pWC->nSlot *= 2;
245   }
246   pTerm = &pWC->a[idx = pWC->nTerm];
247   pWC->nTerm++;
248   pTerm->pExpr = p;
249   pTerm->flags = flags;
250   pTerm->pWC = pWC;
251   pTerm->iParent = -1;
252   return idx;
253 }
254 
255 /*
256 ** This routine identifies subexpressions in the WHERE clause where
257 ** each subexpression is separated by the AND operator or some other
258 ** operator specified in the op parameter.  The WhereClause structure
259 ** is filled with pointers to subexpressions.  For example:
260 **
261 **    WHERE  a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
262 **           \________/     \_______________/     \________________/
263 **            slot[0]            slot[1]               slot[2]
264 **
265 ** The original WHERE clause in pExpr is unaltered.  All this routine
266 ** does is make slot[] entries point to substructure within pExpr.
267 **
268 ** In the previous sentence and in the diagram, "slot[]" refers to
269 ** the WhereClause.a[] array.  This array grows as needed to contain
270 ** all terms of the WHERE clause.
271 */
272 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
273   if( pExpr==0 ) return;
274   if( pExpr->op!=op ){
275     whereClauseInsert(pWC, pExpr, 0);
276   }else{
277     whereSplit(pWC, pExpr->pLeft, op);
278     whereSplit(pWC, pExpr->pRight, op);
279   }
280 }
281 
282 /*
283 ** Initialize an expression mask set
284 */
285 #define initMaskSet(P)  memset(P, 0, sizeof(*P))
286 
287 /*
288 ** Return the bitmask for the given cursor number.  Return 0 if
289 ** iCursor is not in the set.
290 */
291 static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){
292   int i;
293   for(i=0; i<pMaskSet->n; i++){
294     if( pMaskSet->ix[i]==iCursor ){
295       return ((Bitmask)1)<<i;
296     }
297   }
298   return 0;
299 }
300 
301 /*
302 ** Create a new mask for cursor iCursor.
303 **
304 ** There is one cursor per table in the FROM clause.  The number of
305 ** tables in the FROM clause is limited by a test early in the
306 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
307 ** array will never overflow.
308 */
309 static void createMask(ExprMaskSet *pMaskSet, int iCursor){
310   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
311   pMaskSet->ix[pMaskSet->n++] = iCursor;
312 }
313 
314 /*
315 ** This routine walks (recursively) an expression tree and generates
316 ** a bitmask indicating which tables are used in that expression
317 ** tree.
318 **
319 ** In order for this routine to work, the calling function must have
320 ** previously invoked sqlite3ExprResolveNames() on the expression.  See
321 ** the header comment on that routine for additional information.
322 ** The sqlite3ExprResolveNames() routines looks for column names and
323 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
324 ** the VDBE cursor number of the table.  This routine just has to
325 ** translate the cursor numbers into bitmask values and OR all
326 ** the bitmasks together.
327 */
328 static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*);
329 static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*);
330 static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
331   Bitmask mask = 0;
332   if( p==0 ) return 0;
333   if( p->op==TK_COLUMN ){
334     mask = getMask(pMaskSet, p->iTable);
335     return mask;
336   }
337   mask = exprTableUsage(pMaskSet, p->pRight);
338   mask |= exprTableUsage(pMaskSet, p->pLeft);
339   mask |= exprListTableUsage(pMaskSet, p->pList);
340   mask |= exprSelectTableUsage(pMaskSet, p->pSelect);
341   return mask;
342 }
343 static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){
344   int i;
345   Bitmask mask = 0;
346   if( pList ){
347     for(i=0; i<pList->nExpr; i++){
348       mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
349     }
350   }
351   return mask;
352 }
353 static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){
354   Bitmask mask = 0;
355   while( pS ){
356     mask |= exprListTableUsage(pMaskSet, pS->pEList);
357     mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
358     mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
359     mask |= exprTableUsage(pMaskSet, pS->pWhere);
360     mask |= exprTableUsage(pMaskSet, pS->pHaving);
361     pS = pS->pPrior;
362   }
363   return mask;
364 }
365 
366 /*
367 ** Return TRUE if the given operator is one of the operators that is
368 ** allowed for an indexable WHERE clause term.  The allowed operators are
369 ** "=", "<", ">", "<=", ">=", and "IN".
370 */
371 static int allowedOp(int op){
372   assert( TK_GT>TK_EQ && TK_GT<TK_GE );
373   assert( TK_LT>TK_EQ && TK_LT<TK_GE );
374   assert( TK_LE>TK_EQ && TK_LE<TK_GE );
375   assert( TK_GE==TK_EQ+4 );
376   return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
377 }
378 
379 /*
380 ** Swap two objects of type T.
381 */
382 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
383 
384 /*
385 ** Commute a comparision operator.  Expressions of the form "X op Y"
386 ** are converted into "Y op X".
387 **
388 ** If a collation sequence is associated with either the left or right
389 ** side of the comparison, it remains associated with the same side after
390 ** the commutation. So "Y collate NOCASE op X" becomes
391 ** "X collate NOCASE op Y". This is because any collation sequence on
392 ** the left hand side of a comparison overrides any collation sequence
393 ** attached to the right. For the same reason the EP_ExpCollate flag
394 ** is not commuted.
395 */
396 static void exprCommute(Expr *pExpr){
397   u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
398   u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
399   assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
400   SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
401   pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
402   pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
403   SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
404   if( pExpr->op>=TK_GT ){
405     assert( TK_LT==TK_GT+2 );
406     assert( TK_GE==TK_LE+2 );
407     assert( TK_GT>TK_EQ );
408     assert( TK_GT<TK_LE );
409     assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
410     pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
411   }
412 }
413 
414 /*
415 ** Translate from TK_xx operator to WO_xx bitmask.
416 */
417 static int operatorMask(int op){
418   int c;
419   assert( allowedOp(op) );
420   if( op==TK_IN ){
421     c = WO_IN;
422   }else if( op==TK_ISNULL ){
423     c = WO_ISNULL;
424   }else{
425     c = WO_EQ<<(op-TK_EQ);
426   }
427   assert( op!=TK_ISNULL || c==WO_ISNULL );
428   assert( op!=TK_IN || c==WO_IN );
429   assert( op!=TK_EQ || c==WO_EQ );
430   assert( op!=TK_LT || c==WO_LT );
431   assert( op!=TK_LE || c==WO_LE );
432   assert( op!=TK_GT || c==WO_GT );
433   assert( op!=TK_GE || c==WO_GE );
434   return c;
435 }
436 
437 /*
438 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
439 ** where X is a reference to the iColumn of table iCur and <op> is one of
440 ** the WO_xx operator codes specified by the op parameter.
441 ** Return a pointer to the term.  Return 0 if not found.
442 */
443 static WhereTerm *findTerm(
444   WhereClause *pWC,     /* The WHERE clause to be searched */
445   int iCur,             /* Cursor number of LHS */
446   int iColumn,          /* Column number of LHS */
447   Bitmask notReady,     /* RHS must not overlap with this mask */
448   u16 op,               /* Mask of WO_xx values describing operator */
449   Index *pIdx           /* Must be compatible with this index, if not NULL */
450 ){
451   WhereTerm *pTerm;
452   int k;
453   for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
454     if( pTerm->leftCursor==iCur
455        && (pTerm->prereqRight & notReady)==0
456        && pTerm->leftColumn==iColumn
457        && (pTerm->eOperator & op)!=0
458     ){
459       if( iCur>=0 && pIdx && pTerm->eOperator!=WO_ISNULL ){
460         Expr *pX = pTerm->pExpr;
461         CollSeq *pColl;
462         char idxaff;
463         int j;
464         Parse *pParse = pWC->pParse;
465 
466         idxaff = pIdx->pTable->aCol[iColumn].affinity;
467         if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
468 
469         /* Figure out the collation sequence required from an index for
470         ** it to be useful for optimising expression pX. Store this
471         ** value in variable pColl.
472         */
473         assert(pX->pLeft);
474         pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
475         if( !pColl ){
476           pColl = pParse->db->pDfltColl;
477         }
478 
479         for(j=0; j<pIdx->nColumn && pIdx->aiColumn[j]!=iColumn; j++){}
480         assert( j<pIdx->nColumn );
481         if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
482       }
483       return pTerm;
484     }
485   }
486   return 0;
487 }
488 
489 /* Forward reference */
490 static void exprAnalyze(SrcList*, WhereClause*, int);
491 
492 /*
493 ** Call exprAnalyze on all terms in a WHERE clause.
494 **
495 **
496 */
497 static void exprAnalyzeAll(
498   SrcList *pTabList,       /* the FROM clause */
499   WhereClause *pWC         /* the WHERE clause to be analyzed */
500 ){
501   int i;
502   for(i=pWC->nTerm-1; i>=0; i--){
503     exprAnalyze(pTabList, pWC, i);
504   }
505 }
506 
507 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
508 /*
509 ** Check to see if the given expression is a LIKE or GLOB operator that
510 ** can be optimized using inequality constraints.  Return TRUE if it is
511 ** so and false if not.
512 **
513 ** In order for the operator to be optimizible, the RHS must be a string
514 ** literal that does not begin with a wildcard.
515 */
516 static int isLikeOrGlob(
517   sqlite3 *db,      /* The database */
518   Expr *pExpr,      /* Test this expression */
519   int *pnPattern,   /* Number of non-wildcard prefix characters */
520   int *pisComplete  /* True if the only wildcard is % in the last character */
521 ){
522   const char *z;
523   Expr *pRight, *pLeft;
524   ExprList *pList;
525   int c, cnt;
526   int noCase;
527   char wc[3];
528   CollSeq *pColl;
529 
530   if( !sqlite3IsLikeFunction(db, pExpr, &noCase, wc) ){
531     return 0;
532   }
533   pList = pExpr->pList;
534   pRight = pList->a[0].pExpr;
535   if( pRight->op!=TK_STRING ){
536     return 0;
537   }
538   pLeft = pList->a[1].pExpr;
539   if( pLeft->op!=TK_COLUMN ){
540     return 0;
541   }
542   pColl = pLeft->pColl;
543   if( pColl==0 ){
544     /* TODO: Coverage testing doesn't get this case. Is it actually possible
545     ** for an expression of type TK_COLUMN to not have an assigned collation
546     ** sequence at this point?
547     */
548     pColl = db->pDfltColl;
549   }
550   if( (pColl->type!=SQLITE_COLL_BINARY || noCase) &&
551       (pColl->type!=SQLITE_COLL_NOCASE || !noCase) ){
552     return 0;
553   }
554   sqlite3DequoteExpr(db, pRight);
555   z = (char *)pRight->token.z;
556   cnt = 0;
557   if( z ){
558     while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ cnt++; }
559   }
560   if( cnt==0 || 255==(u8)z[cnt] ){
561     return 0;
562   }
563   *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0;
564   *pnPattern = cnt;
565   return 1;
566 }
567 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
568 
569 
570 #ifndef SQLITE_OMIT_VIRTUALTABLE
571 /*
572 ** Check to see if the given expression is of the form
573 **
574 **         column MATCH expr
575 **
576 ** If it is then return TRUE.  If not, return FALSE.
577 */
578 static int isMatchOfColumn(
579   Expr *pExpr      /* Test this expression */
580 ){
581   ExprList *pList;
582 
583   if( pExpr->op!=TK_FUNCTION ){
584     return 0;
585   }
586   if( pExpr->token.n!=5 ||
587        sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){
588     return 0;
589   }
590   pList = pExpr->pList;
591   if( pList->nExpr!=2 ){
592     return 0;
593   }
594   if( pList->a[1].pExpr->op != TK_COLUMN ){
595     return 0;
596   }
597   return 1;
598 }
599 #endif /* SQLITE_OMIT_VIRTUALTABLE */
600 
601 /*
602 ** If the pBase expression originated in the ON or USING clause of
603 ** a join, then transfer the appropriate markings over to derived.
604 */
605 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
606   pDerived->flags |= pBase->flags & EP_FromJoin;
607   pDerived->iRightJoinTable = pBase->iRightJoinTable;
608 }
609 
610 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
611 /*
612 ** Return TRUE if the given term of an OR clause can be converted
613 ** into an IN clause.  The iCursor and iColumn define the left-hand
614 ** side of the IN clause.
615 **
616 ** The context is that we have multiple OR-connected equality terms
617 ** like this:
618 **
619 **           a=<expr1> OR  a=<expr2> OR b=<expr3>  OR ...
620 **
621 ** The pOrTerm input to this routine corresponds to a single term of
622 ** this OR clause.  In order for the term to be a condidate for
623 ** conversion to an IN operator, the following must be true:
624 **
625 **     *  The left-hand side of the term must be the column which
626 **        is identified by iCursor and iColumn.
627 **
628 **     *  If the right-hand side is also a column, then the affinities
629 **        of both right and left sides must be such that no type
630 **        conversions are required on the right.  (Ticket #2249)
631 **
632 ** If both of these conditions are true, then return true.  Otherwise
633 ** return false.
634 */
635 static int orTermIsOptCandidate(WhereTerm *pOrTerm, int iCursor, int iColumn){
636   int affLeft, affRight;
637   assert( pOrTerm->eOperator==WO_EQ );
638   if( pOrTerm->leftCursor!=iCursor ){
639     return 0;
640   }
641   if( pOrTerm->leftColumn!=iColumn ){
642     return 0;
643   }
644   affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
645   if( affRight==0 ){
646     return 1;
647   }
648   affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
649   if( affRight!=affLeft ){
650     return 0;
651   }
652   return 1;
653 }
654 
655 /*
656 ** Return true if the given term of an OR clause can be ignored during
657 ** a check to make sure all OR terms are candidates for optimization.
658 ** In other words, return true if a call to the orTermIsOptCandidate()
659 ** above returned false but it is not necessary to disqualify the
660 ** optimization.
661 **
662 ** Suppose the original OR phrase was this:
663 **
664 **           a=4  OR  a=11  OR  a=b
665 **
666 ** During analysis, the third term gets flipped around and duplicate
667 ** so that we are left with this:
668 **
669 **           a=4  OR  a=11  OR  a=b  OR  b=a
670 **
671 ** Since the last two terms are duplicates, only one of them
672 ** has to qualify in order for the whole phrase to qualify.  When
673 ** this routine is called, we know that pOrTerm did not qualify.
674 ** This routine merely checks to see if pOrTerm has a duplicate that
675 ** might qualify.  If there is a duplicate that has not yet been
676 ** disqualified, then return true.  If there are no duplicates, or
677 ** the duplicate has also been disqualifed, return false.
678 */
679 static int orTermHasOkDuplicate(WhereClause *pOr, WhereTerm *pOrTerm){
680   if( pOrTerm->flags & TERM_COPIED ){
681     /* This is the original term.  The duplicate is to the left had
682     ** has not yet been analyzed and thus has not yet been disqualified. */
683     return 1;
684   }
685   if( (pOrTerm->flags & TERM_VIRTUAL)!=0
686      && (pOr->a[pOrTerm->iParent].flags & TERM_OR_OK)!=0 ){
687     /* This is a duplicate term.  The original qualified so this one
688     ** does not have to. */
689     return 1;
690   }
691   /* This is either a singleton term or else it is a duplicate for
692   ** which the original did not qualify.  Either way we are done for. */
693   return 0;
694 }
695 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
696 
697 /*
698 ** The input to this routine is an WhereTerm structure with only the
699 ** "pExpr" field filled in.  The job of this routine is to analyze the
700 ** subexpression and populate all the other fields of the WhereTerm
701 ** structure.
702 **
703 ** If the expression is of the form "<expr> <op> X" it gets commuted
704 ** to the standard form of "X <op> <expr>".  If the expression is of
705 ** the form "X <op> Y" where both X and Y are columns, then the original
706 ** expression is unchanged and a new virtual expression of the form
707 ** "Y <op> X" is added to the WHERE clause and analyzed separately.
708 */
709 static void exprAnalyze(
710   SrcList *pSrc,            /* the FROM clause */
711   WhereClause *pWC,         /* the WHERE clause */
712   int idxTerm               /* Index of the term to be analyzed */
713 ){
714   WhereTerm *pTerm;
715   ExprMaskSet *pMaskSet;
716   Expr *pExpr;
717   Bitmask prereqLeft;
718   Bitmask prereqAll;
719   int nPattern;
720   int isComplete;
721   int op;
722   Parse *pParse = pWC->pParse;
723   sqlite3 *db = pParse->db;
724 
725   if( db->mallocFailed ){
726     return;
727   }
728   pTerm = &pWC->a[idxTerm];
729   pMaskSet = pWC->pMaskSet;
730   pExpr = pTerm->pExpr;
731   prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
732   op = pExpr->op;
733   if( op==TK_IN ){
734     assert( pExpr->pRight==0 );
735     pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList)
736                           | exprSelectTableUsage(pMaskSet, pExpr->pSelect);
737   }else if( op==TK_ISNULL ){
738     pTerm->prereqRight = 0;
739   }else{
740     pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
741   }
742   prereqAll = exprTableUsage(pMaskSet, pExpr);
743   if( ExprHasProperty(pExpr, EP_FromJoin) ){
744     prereqAll |= getMask(pMaskSet, pExpr->iRightJoinTable);
745   }
746   pTerm->prereqAll = prereqAll;
747   pTerm->leftCursor = -1;
748   pTerm->iParent = -1;
749   pTerm->eOperator = 0;
750   if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
751     Expr *pLeft = pExpr->pLeft;
752     Expr *pRight = pExpr->pRight;
753     if( pLeft->op==TK_COLUMN ){
754       pTerm->leftCursor = pLeft->iTable;
755       pTerm->leftColumn = pLeft->iColumn;
756       pTerm->eOperator = operatorMask(op);
757     }
758     if( pRight && pRight->op==TK_COLUMN ){
759       WhereTerm *pNew;
760       Expr *pDup;
761       if( pTerm->leftCursor>=0 ){
762         int idxNew;
763         pDup = sqlite3ExprDup(db, pExpr);
764         if( db->mallocFailed ){
765           sqlite3ExprDelete(pDup);
766           return;
767         }
768         idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
769         if( idxNew==0 ) return;
770         pNew = &pWC->a[idxNew];
771         pNew->iParent = idxTerm;
772         pTerm = &pWC->a[idxTerm];
773         pTerm->nChild = 1;
774         pTerm->flags |= TERM_COPIED;
775       }else{
776         pDup = pExpr;
777         pNew = pTerm;
778       }
779       exprCommute(pDup);
780       pLeft = pDup->pLeft;
781       pNew->leftCursor = pLeft->iTable;
782       pNew->leftColumn = pLeft->iColumn;
783       pNew->prereqRight = prereqLeft;
784       pNew->prereqAll = prereqAll;
785       pNew->eOperator = operatorMask(pDup->op);
786     }
787   }
788 
789 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
790   /* If a term is the BETWEEN operator, create two new virtual terms
791   ** that define the range that the BETWEEN implements.
792   */
793   else if( pExpr->op==TK_BETWEEN ){
794     ExprList *pList = pExpr->pList;
795     int i;
796     static const u8 ops[] = {TK_GE, TK_LE};
797     assert( pList!=0 );
798     assert( pList->nExpr==2 );
799     for(i=0; i<2; i++){
800       Expr *pNewExpr;
801       int idxNew;
802       pNewExpr = sqlite3Expr(db, ops[i], sqlite3ExprDup(db, pExpr->pLeft),
803                              sqlite3ExprDup(db, pList->a[i].pExpr), 0);
804       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
805       exprAnalyze(pSrc, pWC, idxNew);
806       pTerm = &pWC->a[idxTerm];
807       pWC->a[idxNew].iParent = idxTerm;
808     }
809     pTerm->nChild = 2;
810   }
811 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
812 
813 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
814   /* Attempt to convert OR-connected terms into an IN operator so that
815   ** they can make use of indices.  Example:
816   **
817   **      x = expr1  OR  expr2 = x  OR  x = expr3
818   **
819   ** is converted into
820   **
821   **      x IN (expr1,expr2,expr3)
822   **
823   ** This optimization must be omitted if OMIT_SUBQUERY is defined because
824   ** the compiler for the the IN operator is part of sub-queries.
825   */
826   else if( pExpr->op==TK_OR ){
827     int ok;
828     int i, j;
829     int iColumn, iCursor;
830     WhereClause sOr;
831     WhereTerm *pOrTerm;
832 
833     assert( (pTerm->flags & TERM_DYNAMIC)==0 );
834     whereClauseInit(&sOr, pWC->pParse, pMaskSet);
835     whereSplit(&sOr, pExpr, TK_OR);
836     exprAnalyzeAll(pSrc, &sOr);
837     assert( sOr.nTerm>=2 );
838     j = 0;
839     do{
840       assert( j<sOr.nTerm );
841       iColumn = sOr.a[j].leftColumn;
842       iCursor = sOr.a[j].leftCursor;
843       ok = iCursor>=0;
844       for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
845         if( pOrTerm->eOperator!=WO_EQ ){
846           goto or_not_possible;
847         }
848         if( orTermIsOptCandidate(pOrTerm, iCursor, iColumn) ){
849           pOrTerm->flags |= TERM_OR_OK;
850         }else if( orTermHasOkDuplicate(&sOr, pOrTerm) ){
851           pOrTerm->flags &= ~TERM_OR_OK;
852         }else{
853           ok = 0;
854         }
855       }
856     }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<2 );
857     if( ok ){
858       ExprList *pList = 0;
859       Expr *pNew, *pDup;
860       Expr *pLeft = 0;
861       for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
862         if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue;
863         pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight);
864         pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup, 0);
865         pLeft = pOrTerm->pExpr->pLeft;
866       }
867       assert( pLeft!=0 );
868       pDup = sqlite3ExprDup(db, pLeft);
869       pNew = sqlite3Expr(db, TK_IN, pDup, 0, 0);
870       if( pNew ){
871         int idxNew;
872         transferJoinMarkings(pNew, pExpr);
873         pNew->pList = pList;
874         idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
875         exprAnalyze(pSrc, pWC, idxNew);
876         pTerm = &pWC->a[idxTerm];
877         pWC->a[idxNew].iParent = idxTerm;
878         pTerm->nChild = 1;
879       }else{
880         sqlite3ExprListDelete(pList);
881       }
882     }
883 or_not_possible:
884     whereClauseClear(&sOr);
885   }
886 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
887 
888 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
889   /* Add constraints to reduce the search space on a LIKE or GLOB
890   ** operator.
891   */
892   if( isLikeOrGlob(db, pExpr, &nPattern, &isComplete) ){
893     Expr *pLeft, *pRight;
894     Expr *pStr1, *pStr2;
895     Expr *pNewExpr1, *pNewExpr2;
896     int idxNew1, idxNew2;
897 
898     pLeft = pExpr->pList->a[1].pExpr;
899     pRight = pExpr->pList->a[0].pExpr;
900     pStr1 = sqlite3PExpr(pParse, TK_STRING, 0, 0, 0);
901     if( pStr1 ){
902       sqlite3TokenCopy(db, &pStr1->token, &pRight->token);
903       pStr1->token.n = nPattern;
904       pStr1->flags = EP_Dequoted;
905     }
906     pStr2 = sqlite3ExprDup(db, pStr1);
907     if( !db->mallocFailed ){
908       assert( pStr2->token.dyn );
909       ++*(u8*)&pStr2->token.z[nPattern-1];
910     }
911     pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft), pStr1, 0);
912     idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
913     exprAnalyze(pSrc, pWC, idxNew1);
914     pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft), pStr2, 0);
915     idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
916     exprAnalyze(pSrc, pWC, idxNew2);
917     pTerm = &pWC->a[idxTerm];
918     if( isComplete ){
919       pWC->a[idxNew1].iParent = idxTerm;
920       pWC->a[idxNew2].iParent = idxTerm;
921       pTerm->nChild = 2;
922     }
923   }
924 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
925 
926 #ifndef SQLITE_OMIT_VIRTUALTABLE
927   /* Add a WO_MATCH auxiliary term to the constraint set if the
928   ** current expression is of the form:  column MATCH expr.
929   ** This information is used by the xBestIndex methods of
930   ** virtual tables.  The native query optimizer does not attempt
931   ** to do anything with MATCH functions.
932   */
933   if( isMatchOfColumn(pExpr) ){
934     int idxNew;
935     Expr *pRight, *pLeft;
936     WhereTerm *pNewTerm;
937     Bitmask prereqColumn, prereqExpr;
938 
939     pRight = pExpr->pList->a[0].pExpr;
940     pLeft = pExpr->pList->a[1].pExpr;
941     prereqExpr = exprTableUsage(pMaskSet, pRight);
942     prereqColumn = exprTableUsage(pMaskSet, pLeft);
943     if( (prereqExpr & prereqColumn)==0 ){
944       Expr *pNewExpr;
945       pNewExpr = sqlite3Expr(db, TK_MATCH, 0, sqlite3ExprDup(db, pRight), 0);
946       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
947       pNewTerm = &pWC->a[idxNew];
948       pNewTerm->prereqRight = prereqExpr;
949       pNewTerm->leftCursor = pLeft->iTable;
950       pNewTerm->leftColumn = pLeft->iColumn;
951       pNewTerm->eOperator = WO_MATCH;
952       pNewTerm->iParent = idxTerm;
953       pTerm = &pWC->a[idxTerm];
954       pTerm->nChild = 1;
955       pTerm->flags |= TERM_COPIED;
956       pNewTerm->prereqAll = pTerm->prereqAll;
957     }
958   }
959 #endif /* SQLITE_OMIT_VIRTUALTABLE */
960 }
961 
962 /*
963 ** Return TRUE if any of the expressions in pList->a[iFirst...] contain
964 ** a reference to any table other than the iBase table.
965 */
966 static int referencesOtherTables(
967   ExprList *pList,          /* Search expressions in ths list */
968   ExprMaskSet *pMaskSet,    /* Mapping from tables to bitmaps */
969   int iFirst,               /* Be searching with the iFirst-th expression */
970   int iBase                 /* Ignore references to this table */
971 ){
972   Bitmask allowed = ~getMask(pMaskSet, iBase);
973   while( iFirst<pList->nExpr ){
974     if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
975       return 1;
976     }
977   }
978   return 0;
979 }
980 
981 
982 /*
983 ** This routine decides if pIdx can be used to satisfy the ORDER BY
984 ** clause.  If it can, it returns 1.  If pIdx cannot satisfy the
985 ** ORDER BY clause, this routine returns 0.
986 **
987 ** pOrderBy is an ORDER BY clause from a SELECT statement.  pTab is the
988 ** left-most table in the FROM clause of that same SELECT statement and
989 ** the table has a cursor number of "base".  pIdx is an index on pTab.
990 **
991 ** nEqCol is the number of columns of pIdx that are used as equality
992 ** constraints.  Any of these columns may be missing from the ORDER BY
993 ** clause and the match can still be a success.
994 **
995 ** All terms of the ORDER BY that match against the index must be either
996 ** ASC or DESC.  (Terms of the ORDER BY clause past the end of a UNIQUE
997 ** index do not need to satisfy this constraint.)  The *pbRev value is
998 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
999 ** the ORDER BY clause is all ASC.
1000 */
1001 static int isSortingIndex(
1002   Parse *pParse,          /* Parsing context */
1003   ExprMaskSet *pMaskSet,  /* Mapping from table indices to bitmaps */
1004   Index *pIdx,            /* The index we are testing */
1005   int base,               /* Cursor number for the table to be sorted */
1006   ExprList *pOrderBy,     /* The ORDER BY clause */
1007   int nEqCol,             /* Number of index columns with == constraints */
1008   int *pbRev              /* Set to 1 if ORDER BY is DESC */
1009 ){
1010   int i, j;                       /* Loop counters */
1011   int sortOrder = 0;              /* XOR of index and ORDER BY sort direction */
1012   int nTerm;                      /* Number of ORDER BY terms */
1013   struct ExprList_item *pTerm;    /* A term of the ORDER BY clause */
1014   sqlite3 *db = pParse->db;
1015 
1016   assert( pOrderBy!=0 );
1017   nTerm = pOrderBy->nExpr;
1018   assert( nTerm>0 );
1019 
1020   /* Match terms of the ORDER BY clause against columns of
1021   ** the index.
1022   **
1023   ** Note that indices have pIdx->nColumn regular columns plus
1024   ** one additional column containing the rowid.  The rowid column
1025   ** of the index is also allowed to match against the ORDER BY
1026   ** clause.
1027   */
1028   for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
1029     Expr *pExpr;       /* The expression of the ORDER BY pTerm */
1030     CollSeq *pColl;    /* The collating sequence of pExpr */
1031     int termSortOrder; /* Sort order for this term */
1032     int iColumn;       /* The i-th column of the index.  -1 for rowid */
1033     int iSortOrder;    /* 1 for DESC, 0 for ASC on the i-th index term */
1034     const char *zColl; /* Name of the collating sequence for i-th index term */
1035 
1036     pExpr = pTerm->pExpr;
1037     if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
1038       /* Can not use an index sort on anything that is not a column in the
1039       ** left-most table of the FROM clause */
1040       break;
1041     }
1042     pColl = sqlite3ExprCollSeq(pParse, pExpr);
1043     if( !pColl ){
1044       pColl = db->pDfltColl;
1045     }
1046     if( i<pIdx->nColumn ){
1047       iColumn = pIdx->aiColumn[i];
1048       if( iColumn==pIdx->pTable->iPKey ){
1049         iColumn = -1;
1050       }
1051       iSortOrder = pIdx->aSortOrder[i];
1052       zColl = pIdx->azColl[i];
1053     }else{
1054       iColumn = -1;
1055       iSortOrder = 0;
1056       zColl = pColl->zName;
1057     }
1058     if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
1059       /* Term j of the ORDER BY clause does not match column i of the index */
1060       if( i<nEqCol ){
1061         /* If an index column that is constrained by == fails to match an
1062         ** ORDER BY term, that is OK.  Just ignore that column of the index
1063         */
1064         continue;
1065       }else{
1066         /* If an index column fails to match and is not constrained by ==
1067         ** then the index cannot satisfy the ORDER BY constraint.
1068         */
1069         return 0;
1070       }
1071     }
1072     assert( pIdx->aSortOrder!=0 );
1073     assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
1074     assert( iSortOrder==0 || iSortOrder==1 );
1075     termSortOrder = iSortOrder ^ pTerm->sortOrder;
1076     if( i>nEqCol ){
1077       if( termSortOrder!=sortOrder ){
1078         /* Indices can only be used if all ORDER BY terms past the
1079         ** equality constraints are all either DESC or ASC. */
1080         return 0;
1081       }
1082     }else{
1083       sortOrder = termSortOrder;
1084     }
1085     j++;
1086     pTerm++;
1087     if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
1088       /* If the indexed column is the primary key and everything matches
1089       ** so far and none of the ORDER BY terms to the right reference other
1090       ** tables in the join, then we are assured that the index can be used
1091       ** to sort because the primary key is unique and so none of the other
1092       ** columns will make any difference
1093       */
1094       j = nTerm;
1095     }
1096   }
1097 
1098   *pbRev = sortOrder!=0;
1099   if( j>=nTerm ){
1100     /* All terms of the ORDER BY clause are covered by this index so
1101     ** this index can be used for sorting. */
1102     return 1;
1103   }
1104   if( pIdx->onError!=OE_None && i==pIdx->nColumn
1105       && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
1106     /* All terms of this index match some prefix of the ORDER BY clause
1107     ** and the index is UNIQUE and no terms on the tail of the ORDER BY
1108     ** clause reference other tables in a join.  If this is all true then
1109     ** the order by clause is superfluous. */
1110     return 1;
1111   }
1112   return 0;
1113 }
1114 
1115 /*
1116 ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
1117 ** by sorting in order of ROWID.  Return true if so and set *pbRev to be
1118 ** true for reverse ROWID and false for forward ROWID order.
1119 */
1120 static int sortableByRowid(
1121   int base,               /* Cursor number for table to be sorted */
1122   ExprList *pOrderBy,     /* The ORDER BY clause */
1123   ExprMaskSet *pMaskSet,  /* Mapping from tables to bitmaps */
1124   int *pbRev              /* Set to 1 if ORDER BY is DESC */
1125 ){
1126   Expr *p;
1127 
1128   assert( pOrderBy!=0 );
1129   assert( pOrderBy->nExpr>0 );
1130   p = pOrderBy->a[0].pExpr;
1131   if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1
1132     && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){
1133     *pbRev = pOrderBy->a[0].sortOrder;
1134     return 1;
1135   }
1136   return 0;
1137 }
1138 
1139 /*
1140 ** Prepare a crude estimate of the logarithm of the input value.
1141 ** The results need not be exact.  This is only used for estimating
1142 ** the total cost of performing operatings with O(logN) or O(NlogN)
1143 ** complexity.  Because N is just a guess, it is no great tragedy if
1144 ** logN is a little off.
1145 */
1146 static double estLog(double N){
1147   double logN = 1;
1148   double x = 10;
1149   while( N>x ){
1150     logN += 1;
1151     x *= 10;
1152   }
1153   return logN;
1154 }
1155 
1156 /*
1157 ** Two routines for printing the content of an sqlite3_index_info
1158 ** structure.  Used for testing and debugging only.  If neither
1159 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
1160 ** are no-ops.
1161 */
1162 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
1163 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
1164   int i;
1165   if( !sqlite3_where_trace ) return;
1166   for(i=0; i<p->nConstraint; i++){
1167     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
1168        i,
1169        p->aConstraint[i].iColumn,
1170        p->aConstraint[i].iTermOffset,
1171        p->aConstraint[i].op,
1172        p->aConstraint[i].usable);
1173   }
1174   for(i=0; i<p->nOrderBy; i++){
1175     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
1176        i,
1177        p->aOrderBy[i].iColumn,
1178        p->aOrderBy[i].desc);
1179   }
1180 }
1181 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
1182   int i;
1183   if( !sqlite3_where_trace ) return;
1184   for(i=0; i<p->nConstraint; i++){
1185     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
1186        i,
1187        p->aConstraintUsage[i].argvIndex,
1188        p->aConstraintUsage[i].omit);
1189   }
1190   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
1191   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
1192   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
1193   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
1194 }
1195 #else
1196 #define TRACE_IDX_INPUTS(A)
1197 #define TRACE_IDX_OUTPUTS(A)
1198 #endif
1199 
1200 #ifndef SQLITE_OMIT_VIRTUALTABLE
1201 /*
1202 ** Compute the best index for a virtual table.
1203 **
1204 ** The best index is computed by the xBestIndex method of the virtual
1205 ** table module.  This routine is really just a wrapper that sets up
1206 ** the sqlite3_index_info structure that is used to communicate with
1207 ** xBestIndex.
1208 **
1209 ** In a join, this routine might be called multiple times for the
1210 ** same virtual table.  The sqlite3_index_info structure is created
1211 ** and initialized on the first invocation and reused on all subsequent
1212 ** invocations.  The sqlite3_index_info structure is also used when
1213 ** code is generated to access the virtual table.  The whereInfoDelete()
1214 ** routine takes care of freeing the sqlite3_index_info structure after
1215 ** everybody has finished with it.
1216 */
1217 static double bestVirtualIndex(
1218   Parse *pParse,                 /* The parsing context */
1219   WhereClause *pWC,              /* The WHERE clause */
1220   struct SrcList_item *pSrc,     /* The FROM clause term to search */
1221   Bitmask notReady,              /* Mask of cursors that are not available */
1222   ExprList *pOrderBy,            /* The order by clause */
1223   int orderByUsable,             /* True if we can potential sort */
1224   sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */
1225 ){
1226   Table *pTab = pSrc->pTab;
1227   sqlite3_index_info *pIdxInfo;
1228   struct sqlite3_index_constraint *pIdxCons;
1229   struct sqlite3_index_orderby *pIdxOrderBy;
1230   struct sqlite3_index_constraint_usage *pUsage;
1231   WhereTerm *pTerm;
1232   int i, j;
1233   int nOrderBy;
1234   int rc;
1235 
1236   /* If the sqlite3_index_info structure has not been previously
1237   ** allocated and initialized for this virtual table, then allocate
1238   ** and initialize it now
1239   */
1240   pIdxInfo = *ppIdxInfo;
1241   if( pIdxInfo==0 ){
1242     WhereTerm *pTerm;
1243     int nTerm;
1244     WHERETRACE(("Recomputing index info for %s...\n", pTab->zName));
1245 
1246     /* Count the number of possible WHERE clause constraints referring
1247     ** to this virtual table */
1248     for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1249       if( pTerm->leftCursor != pSrc->iCursor ) continue;
1250       if( pTerm->eOperator==WO_IN ) continue;
1251       if( pTerm->eOperator==WO_ISNULL ) continue;
1252       nTerm++;
1253     }
1254 
1255     /* If the ORDER BY clause contains only columns in the current
1256     ** virtual table then allocate space for the aOrderBy part of
1257     ** the sqlite3_index_info structure.
1258     */
1259     nOrderBy = 0;
1260     if( pOrderBy ){
1261       for(i=0; i<pOrderBy->nExpr; i++){
1262         Expr *pExpr = pOrderBy->a[i].pExpr;
1263         if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
1264       }
1265       if( i==pOrderBy->nExpr ){
1266         nOrderBy = pOrderBy->nExpr;
1267       }
1268     }
1269 
1270     /* Allocate the sqlite3_index_info structure
1271     */
1272     pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
1273                              + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1274                              + sizeof(*pIdxOrderBy)*nOrderBy );
1275     if( pIdxInfo==0 ){
1276       sqlite3ErrorMsg(pParse, "out of memory");
1277       return 0.0;
1278     }
1279     *ppIdxInfo = pIdxInfo;
1280 
1281     /* Initialize the structure.  The sqlite3_index_info structure contains
1282     ** many fields that are declared "const" to prevent xBestIndex from
1283     ** changing them.  We have to do some funky casting in order to
1284     ** initialize those fields.
1285     */
1286     pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
1287     pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1288     pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1289     *(int*)&pIdxInfo->nConstraint = nTerm;
1290     *(int*)&pIdxInfo->nOrderBy = nOrderBy;
1291     *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
1292     *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
1293     *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
1294                                                                      pUsage;
1295 
1296     for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1297       if( pTerm->leftCursor != pSrc->iCursor ) continue;
1298       if( pTerm->eOperator==WO_IN ) continue;
1299       if( pTerm->eOperator==WO_ISNULL ) continue;
1300       pIdxCons[j].iColumn = pTerm->leftColumn;
1301       pIdxCons[j].iTermOffset = i;
1302       pIdxCons[j].op = pTerm->eOperator;
1303       /* The direct assignment in the previous line is possible only because
1304       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
1305       ** following asserts verify this fact. */
1306       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1307       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1308       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1309       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1310       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1311       assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
1312       assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
1313       j++;
1314     }
1315     for(i=0; i<nOrderBy; i++){
1316       Expr *pExpr = pOrderBy->a[i].pExpr;
1317       pIdxOrderBy[i].iColumn = pExpr->iColumn;
1318       pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
1319     }
1320   }
1321 
1322   /* At this point, the sqlite3_index_info structure that pIdxInfo points
1323   ** to will have been initialized, either during the current invocation or
1324   ** during some prior invocation.  Now we just have to customize the
1325   ** details of pIdxInfo for the current invocation and pass it to
1326   ** xBestIndex.
1327   */
1328 
1329   /* The module name must be defined. Also, by this point there must
1330   ** be a pointer to an sqlite3_vtab structure. Otherwise
1331   ** sqlite3ViewGetColumnNames() would have picked up the error.
1332   */
1333   assert( pTab->azModuleArg && pTab->azModuleArg[0] );
1334   assert( pTab->pVtab );
1335 #if 0
1336   if( pTab->pVtab==0 ){
1337     sqlite3ErrorMsg(pParse, "undefined module %s for table %s",
1338         pTab->azModuleArg[0], pTab->zName);
1339     return 0.0;
1340   }
1341 #endif
1342 
1343   /* Set the aConstraint[].usable fields and initialize all
1344   ** output variables to zero.
1345   **
1346   ** aConstraint[].usable is true for constraints where the right-hand
1347   ** side contains only references to tables to the left of the current
1348   ** table.  In other words, if the constraint is of the form:
1349   **
1350   **           column = expr
1351   **
1352   ** and we are evaluating a join, then the constraint on column is
1353   ** only valid if all tables referenced in expr occur to the left
1354   ** of the table containing column.
1355   **
1356   ** The aConstraints[] array contains entries for all constraints
1357   ** on the current table.  That way we only have to compute it once
1358   ** even though we might try to pick the best index multiple times.
1359   ** For each attempt at picking an index, the order of tables in the
1360   ** join might be different so we have to recompute the usable flag
1361   ** each time.
1362   */
1363   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
1364   pUsage = pIdxInfo->aConstraintUsage;
1365   for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
1366     j = pIdxCons->iTermOffset;
1367     pTerm = &pWC->a[j];
1368     pIdxCons->usable =  (pTerm->prereqRight & notReady)==0;
1369   }
1370   memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
1371   if( pIdxInfo->needToFreeIdxStr ){
1372     sqlite3_free(pIdxInfo->idxStr);
1373   }
1374   pIdxInfo->idxStr = 0;
1375   pIdxInfo->idxNum = 0;
1376   pIdxInfo->needToFreeIdxStr = 0;
1377   pIdxInfo->orderByConsumed = 0;
1378   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0;
1379   nOrderBy = pIdxInfo->nOrderBy;
1380   if( pIdxInfo->nOrderBy && !orderByUsable ){
1381     *(int*)&pIdxInfo->nOrderBy = 0;
1382   }
1383 
1384   sqlite3SafetyOff(pParse->db);
1385   WHERETRACE(("xBestIndex for %s\n", pTab->zName));
1386   TRACE_IDX_INPUTS(pIdxInfo);
1387   rc = pTab->pVtab->pModule->xBestIndex(pTab->pVtab, pIdxInfo);
1388   TRACE_IDX_OUTPUTS(pIdxInfo);
1389   if( rc!=SQLITE_OK ){
1390     if( rc==SQLITE_NOMEM ){
1391       pParse->db->mallocFailed = 1;
1392     }else {
1393       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1394     }
1395     sqlite3SafetyOn(pParse->db);
1396   }else{
1397     rc = sqlite3SafetyOn(pParse->db);
1398   }
1399   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
1400 
1401   return pIdxInfo->estimatedCost;
1402 }
1403 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1404 
1405 /*
1406 ** Find the best index for accessing a particular table.  Return a pointer
1407 ** to the index, flags that describe how the index should be used, the
1408 ** number of equality constraints, and the "cost" for this index.
1409 **
1410 ** The lowest cost index wins.  The cost is an estimate of the amount of
1411 ** CPU and disk I/O need to process the request using the selected index.
1412 ** Factors that influence cost include:
1413 **
1414 **    *  The estimated number of rows that will be retrieved.  (The
1415 **       fewer the better.)
1416 **
1417 **    *  Whether or not sorting must occur.
1418 **
1419 **    *  Whether or not there must be separate lookups in the
1420 **       index and in the main table.
1421 **
1422 */
1423 static double bestIndex(
1424   Parse *pParse,              /* The parsing context */
1425   WhereClause *pWC,           /* The WHERE clause */
1426   struct SrcList_item *pSrc,  /* The FROM clause term to search */
1427   Bitmask notReady,           /* Mask of cursors that are not available */
1428   ExprList *pOrderBy,         /* The order by clause */
1429   Index **ppIndex,            /* Make *ppIndex point to the best index */
1430   int *pFlags,                /* Put flags describing this choice in *pFlags */
1431   int *pnEq                   /* Put the number of == or IN constraints here */
1432 ){
1433   WhereTerm *pTerm;
1434   Index *bestIdx = 0;         /* Index that gives the lowest cost */
1435   double lowestCost;          /* The cost of using bestIdx */
1436   int bestFlags = 0;          /* Flags associated with bestIdx */
1437   int bestNEq = 0;            /* Best value for nEq */
1438   int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
1439   Index *pProbe;              /* An index we are evaluating */
1440   int rev;                    /* True to scan in reverse order */
1441   int flags;                  /* Flags associated with pProbe */
1442   int nEq;                    /* Number of == or IN constraints */
1443   int eqTermMask;             /* Mask of valid equality operators */
1444   double cost;                /* Cost of using pProbe */
1445 
1446   WHERETRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady));
1447   lowestCost = SQLITE_BIG_DBL;
1448   pProbe = pSrc->pTab->pIndex;
1449 
1450   /* If the table has no indices and there are no terms in the where
1451   ** clause that refer to the ROWID, then we will never be able to do
1452   ** anything other than a full table scan on this table.  We might as
1453   ** well put it first in the join order.  That way, perhaps it can be
1454   ** referenced by other tables in the join.
1455   */
1456   if( pProbe==0 &&
1457      findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 &&
1458      (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){
1459     *pFlags = 0;
1460     *ppIndex = 0;
1461     *pnEq = 0;
1462     return 0.0;
1463   }
1464 
1465   /* Check for a rowid=EXPR or rowid IN (...) constraints
1466   */
1467   pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
1468   if( pTerm ){
1469     Expr *pExpr;
1470     *ppIndex = 0;
1471     bestFlags = WHERE_ROWID_EQ;
1472     if( pTerm->eOperator & WO_EQ ){
1473       /* Rowid== is always the best pick.  Look no further.  Because only
1474       ** a single row is generated, output is always in sorted order */
1475       *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE;
1476       *pnEq = 1;
1477       WHERETRACE(("... best is rowid\n"));
1478       return 0.0;
1479     }else if( (pExpr = pTerm->pExpr)->pList!=0 ){
1480       /* Rowid IN (LIST): cost is NlogN where N is the number of list
1481       ** elements.  */
1482       lowestCost = pExpr->pList->nExpr;
1483       lowestCost *= estLog(lowestCost);
1484     }else{
1485       /* Rowid IN (SELECT): cost is NlogN where N is the number of rows
1486       ** in the result of the inner select.  We have no way to estimate
1487       ** that value so make a wild guess. */
1488       lowestCost = 200;
1489     }
1490     WHERETRACE(("... rowid IN cost: %.9g\n", lowestCost));
1491   }
1492 
1493   /* Estimate the cost of a table scan.  If we do not know how many
1494   ** entries are in the table, use 1 million as a guess.
1495   */
1496   cost = pProbe ? pProbe->aiRowEst[0] : 1000000;
1497   WHERETRACE(("... table scan base cost: %.9g\n", cost));
1498   flags = WHERE_ROWID_RANGE;
1499 
1500   /* Check for constraints on a range of rowids in a table scan.
1501   */
1502   pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0);
1503   if( pTerm ){
1504     if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){
1505       flags |= WHERE_TOP_LIMIT;
1506       cost /= 3;  /* Guess that rowid<EXPR eliminates two-thirds or rows */
1507     }
1508     if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){
1509       flags |= WHERE_BTM_LIMIT;
1510       cost /= 3;  /* Guess that rowid>EXPR eliminates two-thirds of rows */
1511     }
1512     WHERETRACE(("... rowid range reduces cost to %.9g\n", cost));
1513   }else{
1514     flags = 0;
1515   }
1516 
1517   /* If the table scan does not satisfy the ORDER BY clause, increase
1518   ** the cost by NlogN to cover the expense of sorting. */
1519   if( pOrderBy ){
1520     if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){
1521       flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE;
1522       if( rev ){
1523         flags |= WHERE_REVERSE;
1524       }
1525     }else{
1526       cost += cost*estLog(cost);
1527       WHERETRACE(("... sorting increases cost to %.9g\n", cost));
1528     }
1529   }
1530   if( cost<lowestCost ){
1531     lowestCost = cost;
1532     bestFlags = flags;
1533   }
1534 
1535   /* If the pSrc table is the right table of a LEFT JOIN then we may not
1536   ** use an index to satisfy IS NULL constraints on that table.  This is
1537   ** because columns might end up being NULL if the table does not match -
1538   ** a circumstance which the index cannot help us discover.  Ticket #2177.
1539   */
1540   if( (pSrc->jointype & JT_LEFT)!=0 ){
1541     eqTermMask = WO_EQ|WO_IN;
1542   }else{
1543     eqTermMask = WO_EQ|WO_IN|WO_ISNULL;
1544   }
1545 
1546   /* Look at each index.
1547   */
1548   for(; pProbe; pProbe=pProbe->pNext){
1549     int i;                       /* Loop counter */
1550     double inMultiplier = 1;
1551 
1552     WHERETRACE(("... index %s:\n", pProbe->zName));
1553 
1554     /* Count the number of columns in the index that are satisfied
1555     ** by x=EXPR constraints or x IN (...) constraints.
1556     */
1557     flags = 0;
1558     for(i=0; i<pProbe->nColumn; i++){
1559       int j = pProbe->aiColumn[i];
1560       pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe);
1561       if( pTerm==0 ) break;
1562       flags |= WHERE_COLUMN_EQ;
1563       if( pTerm->eOperator & WO_IN ){
1564         Expr *pExpr = pTerm->pExpr;
1565         flags |= WHERE_COLUMN_IN;
1566         if( pExpr->pSelect!=0 ){
1567           inMultiplier *= 25;
1568         }else if( pExpr->pList!=0 ){
1569           inMultiplier *= pExpr->pList->nExpr + 1;
1570         }
1571       }
1572     }
1573     cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier);
1574     nEq = i;
1575     if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0
1576          && nEq==pProbe->nColumn ){
1577       flags |= WHERE_UNIQUE;
1578     }
1579     WHERETRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n",nEq,inMultiplier,cost));
1580 
1581     /* Look for range constraints
1582     */
1583     if( nEq<pProbe->nColumn ){
1584       int j = pProbe->aiColumn[nEq];
1585       pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe);
1586       if( pTerm ){
1587         flags |= WHERE_COLUMN_RANGE;
1588         if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){
1589           flags |= WHERE_TOP_LIMIT;
1590           cost /= 3;
1591         }
1592         if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){
1593           flags |= WHERE_BTM_LIMIT;
1594           cost /= 3;
1595         }
1596         WHERETRACE(("...... range reduces cost to %.9g\n", cost));
1597       }
1598     }
1599 
1600     /* Add the additional cost of sorting if that is a factor.
1601     */
1602     if( pOrderBy ){
1603       if( (flags & WHERE_COLUMN_IN)==0 &&
1604            isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){
1605         if( flags==0 ){
1606           flags = WHERE_COLUMN_RANGE;
1607         }
1608         flags |= WHERE_ORDERBY;
1609         if( rev ){
1610           flags |= WHERE_REVERSE;
1611         }
1612       }else{
1613         cost += cost*estLog(cost);
1614         WHERETRACE(("...... orderby increases cost to %.9g\n", cost));
1615       }
1616     }
1617 
1618     /* Check to see if we can get away with using just the index without
1619     ** ever reading the table.  If that is the case, then halve the
1620     ** cost of this index.
1621     */
1622     if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){
1623       Bitmask m = pSrc->colUsed;
1624       int j;
1625       for(j=0; j<pProbe->nColumn; j++){
1626         int x = pProbe->aiColumn[j];
1627         if( x<BMS-1 ){
1628           m &= ~(((Bitmask)1)<<x);
1629         }
1630       }
1631       if( m==0 ){
1632         flags |= WHERE_IDX_ONLY;
1633         cost /= 2;
1634         WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost));
1635       }
1636     }
1637 
1638     /* If this index has achieved the lowest cost so far, then use it.
1639     */
1640     if( flags && cost < lowestCost ){
1641       bestIdx = pProbe;
1642       lowestCost = cost;
1643       bestFlags = flags;
1644       bestNEq = nEq;
1645     }
1646   }
1647 
1648   /* Report the best result
1649   */
1650   *ppIndex = bestIdx;
1651   WHERETRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n",
1652         bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq));
1653   *pFlags = bestFlags | eqTermMask;
1654   *pnEq = bestNEq;
1655   return lowestCost;
1656 }
1657 
1658 
1659 /*
1660 ** Disable a term in the WHERE clause.  Except, do not disable the term
1661 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
1662 ** or USING clause of that join.
1663 **
1664 ** Consider the term t2.z='ok' in the following queries:
1665 **
1666 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
1667 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
1668 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
1669 **
1670 ** The t2.z='ok' is disabled in the in (2) because it originates
1671 ** in the ON clause.  The term is disabled in (3) because it is not part
1672 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
1673 **
1674 ** Disabling a term causes that term to not be tested in the inner loop
1675 ** of the join.  Disabling is an optimization.  When terms are satisfied
1676 ** by indices, we disable them to prevent redundant tests in the inner
1677 ** loop.  We would get the correct results if nothing were ever disabled,
1678 ** but joins might run a little slower.  The trick is to disable as much
1679 ** as we can without disabling too much.  If we disabled in (1), we'd get
1680 ** the wrong answer.  See ticket #813.
1681 */
1682 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
1683   if( pTerm
1684       && (pTerm->flags & TERM_CODED)==0
1685       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
1686   ){
1687     pTerm->flags |= TERM_CODED;
1688     if( pTerm->iParent>=0 ){
1689       WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
1690       if( (--pOther->nChild)==0 ){
1691         disableTerm(pLevel, pOther);
1692       }
1693     }
1694   }
1695 }
1696 
1697 /*
1698 ** Generate code that builds a probe for an index.
1699 **
1700 ** There should be nColumn values on the stack.  The index
1701 ** to be probed is pIdx.  Pop the values from the stack and
1702 ** replace them all with a single record that is the index
1703 ** problem.
1704 */
1705 static void buildIndexProbe(
1706   Vdbe *v,        /* Generate code into this VM */
1707   int nColumn,    /* The number of columns to check for NULL */
1708   Index *pIdx     /* Index that we will be searching */
1709 ){
1710   sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
1711   sqlite3IndexAffinityStr(v, pIdx);
1712 }
1713 
1714 
1715 /*
1716 ** Generate code for a single equality term of the WHERE clause.  An equality
1717 ** term can be either X=expr or X IN (...).   pTerm is the term to be
1718 ** coded.
1719 **
1720 ** The current value for the constraint is left on the top of the stack.
1721 **
1722 ** For a constraint of the form X=expr, the expression is evaluated and its
1723 ** result is left on the stack.  For constraints of the form X IN (...)
1724 ** this routine sets up a loop that will iterate over all values of X.
1725 */
1726 static void codeEqualityTerm(
1727   Parse *pParse,      /* The parsing context */
1728   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
1729   WhereLevel *pLevel  /* When level of the FROM clause we are working on */
1730 ){
1731   Expr *pX = pTerm->pExpr;
1732   Vdbe *v = pParse->pVdbe;
1733   if( pX->op==TK_EQ ){
1734     sqlite3ExprCode(pParse, pX->pRight);
1735   }else if( pX->op==TK_ISNULL ){
1736     sqlite3VdbeAddOp(v, OP_Null, 0, 0);
1737 #ifndef SQLITE_OMIT_SUBQUERY
1738   }else{
1739     int eType;
1740     int iTab;
1741     struct InLoop *pIn;
1742 
1743     assert( pX->op==TK_IN );
1744     eType = sqlite3FindInIndex(pParse, pX, 1);
1745     iTab = pX->iTable;
1746     sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0);
1747     VdbeComment((v, "# %.*s", pX->span.n, pX->span.z));
1748     if( pLevel->nIn==0 ){
1749       pLevel->nxt = sqlite3VdbeMakeLabel(v);
1750     }
1751     pLevel->nIn++;
1752     pLevel->aInLoop = sqlite3DbReallocOrFree(pParse->db, pLevel->aInLoop,
1753                                     sizeof(pLevel->aInLoop[0])*pLevel->nIn);
1754     pIn = pLevel->aInLoop;
1755     if( pIn ){
1756       int op = ((eType==IN_INDEX_ROWID)?OP_Rowid:OP_Column);
1757       pIn += pLevel->nIn - 1;
1758       pIn->iCur = iTab;
1759       pIn->topAddr = sqlite3VdbeAddOp(v, op, iTab, 0);
1760       sqlite3VdbeAddOp(v, OP_IsNull, -1, 0);
1761     }else{
1762       pLevel->nIn = 0;
1763     }
1764 #endif
1765   }
1766   disableTerm(pLevel, pTerm);
1767 }
1768 
1769 /*
1770 ** Generate code that will evaluate all == and IN constraints for an
1771 ** index.  The values for all constraints are left on the stack.
1772 **
1773 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
1774 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
1775 ** The index has as many as three equality constraints, but in this
1776 ** example, the third "c" value is an inequality.  So only two
1777 ** constraints are coded.  This routine will generate code to evaluate
1778 ** a==5 and b IN (1,2,3).  The current values for a and b will be left
1779 ** on the stack - a is the deepest and b the shallowest.
1780 **
1781 ** In the example above nEq==2.  But this subroutine works for any value
1782 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
1783 ** The only thing it does is allocate the pLevel->iMem memory cell.
1784 **
1785 ** This routine always allocates at least one memory cell and puts
1786 ** the address of that memory cell in pLevel->iMem.  The code that
1787 ** calls this routine will use pLevel->iMem to store the termination
1788 ** key value of the loop.  If one or more IN operators appear, then
1789 ** this routine allocates an additional nEq memory cells for internal
1790 ** use.
1791 */
1792 static void codeAllEqualityTerms(
1793   Parse *pParse,        /* Parsing context */
1794   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
1795   WhereClause *pWC,     /* The WHERE clause */
1796   Bitmask notReady      /* Which parts of FROM have not yet been coded */
1797 ){
1798   int nEq = pLevel->nEq;        /* The number of == or IN constraints to code */
1799   int termsInMem = 0;           /* If true, store value in mem[] cells */
1800   Vdbe *v = pParse->pVdbe;      /* The virtual machine under construction */
1801   Index *pIdx = pLevel->pIdx;   /* The index being used for this loop */
1802   int iCur = pLevel->iTabCur;   /* The cursor of the table */
1803   WhereTerm *pTerm;             /* A single constraint term */
1804   int j;                        /* Loop counter */
1805 
1806   /* Figure out how many memory cells we will need then allocate them.
1807   ** We always need at least one used to store the loop terminator
1808   ** value.  If there are IN operators we'll need one for each == or
1809   ** IN constraint.
1810   */
1811   pLevel->iMem = pParse->nMem++;
1812   if( pLevel->flags & WHERE_COLUMN_IN ){
1813     pParse->nMem += pLevel->nEq;
1814     termsInMem = 1;
1815   }
1816 
1817   /* Evaluate the equality constraints
1818   */
1819   assert( pIdx->nColumn>=nEq );
1820   for(j=0; j<nEq; j++){
1821     int k = pIdx->aiColumn[j];
1822     pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx);
1823     if( pTerm==0 ) break;
1824     assert( (pTerm->flags & TERM_CODED)==0 );
1825     codeEqualityTerm(pParse, pTerm, pLevel);
1826     if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
1827       sqlite3VdbeAddOp(v, OP_IsNull, termsInMem ? -1 : -(j+1), pLevel->brk);
1828     }
1829     if( termsInMem ){
1830       sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem+j+1, 1);
1831     }
1832   }
1833 
1834   /* Make sure all the constraint values are on the top of the stack
1835   */
1836   if( termsInMem ){
1837     for(j=0; j<nEq; j++){
1838       sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem+j+1, 0);
1839     }
1840   }
1841 }
1842 
1843 #if defined(SQLITE_TEST)
1844 /*
1845 ** The following variable holds a text description of query plan generated
1846 ** by the most recent call to sqlite3WhereBegin().  Each call to WhereBegin
1847 ** overwrites the previous.  This information is used for testing and
1848 ** analysis only.
1849 */
1850 char sqlite3_query_plan[BMS*2*40];  /* Text of the join */
1851 static int nQPlan = 0;              /* Next free slow in _query_plan[] */
1852 
1853 #endif /* SQLITE_TEST */
1854 
1855 
1856 /*
1857 ** Free a WhereInfo structure
1858 */
1859 static void whereInfoFree(WhereInfo *pWInfo){
1860   if( pWInfo ){
1861     int i;
1862     for(i=0; i<pWInfo->nLevel; i++){
1863       sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
1864       if( pInfo ){
1865         if( pInfo->needToFreeIdxStr ){
1866           /* Coverage: Don't think this can be reached. By the time this
1867           ** function is called, the index-strings have been passed
1868           ** to the vdbe layer for deletion.
1869           */
1870           sqlite3_free(pInfo->idxStr);
1871         }
1872         sqlite3_free(pInfo);
1873       }
1874     }
1875     sqlite3_free(pWInfo);
1876   }
1877 }
1878 
1879 
1880 /*
1881 ** Generate the beginning of the loop used for WHERE clause processing.
1882 ** The return value is a pointer to an opaque structure that contains
1883 ** information needed to terminate the loop.  Later, the calling routine
1884 ** should invoke sqlite3WhereEnd() with the return value of this function
1885 ** in order to complete the WHERE clause processing.
1886 **
1887 ** If an error occurs, this routine returns NULL.
1888 **
1889 ** The basic idea is to do a nested loop, one loop for each table in
1890 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
1891 ** same as a SELECT with only a single table in the FROM clause.)  For
1892 ** example, if the SQL is this:
1893 **
1894 **       SELECT * FROM t1, t2, t3 WHERE ...;
1895 **
1896 ** Then the code generated is conceptually like the following:
1897 **
1898 **      foreach row1 in t1 do       \    Code generated
1899 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
1900 **          foreach row3 in t3 do   /
1901 **            ...
1902 **          end                     \    Code generated
1903 **        end                        |-- by sqlite3WhereEnd()
1904 **      end                         /
1905 **
1906 ** Note that the loops might not be nested in the order in which they
1907 ** appear in the FROM clause if a different order is better able to make
1908 ** use of indices.  Note also that when the IN operator appears in
1909 ** the WHERE clause, it might result in additional nested loops for
1910 ** scanning through all values on the right-hand side of the IN.
1911 **
1912 ** There are Btree cursors associated with each table.  t1 uses cursor
1913 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
1914 ** And so forth.  This routine generates code to open those VDBE cursors
1915 ** and sqlite3WhereEnd() generates the code to close them.
1916 **
1917 ** The code that sqlite3WhereBegin() generates leaves the cursors named
1918 ** in pTabList pointing at their appropriate entries.  The [...] code
1919 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
1920 ** data from the various tables of the loop.
1921 **
1922 ** If the WHERE clause is empty, the foreach loops must each scan their
1923 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
1924 ** the tables have indices and there are terms in the WHERE clause that
1925 ** refer to those indices, a complete table scan can be avoided and the
1926 ** code will run much faster.  Most of the work of this routine is checking
1927 ** to see if there are indices that can be used to speed up the loop.
1928 **
1929 ** Terms of the WHERE clause are also used to limit which rows actually
1930 ** make it to the "..." in the middle of the loop.  After each "foreach",
1931 ** terms of the WHERE clause that use only terms in that loop and outer
1932 ** loops are evaluated and if false a jump is made around all subsequent
1933 ** inner loops (or around the "..." if the test occurs within the inner-
1934 ** most loop)
1935 **
1936 ** OUTER JOINS
1937 **
1938 ** An outer join of tables t1 and t2 is conceptally coded as follows:
1939 **
1940 **    foreach row1 in t1 do
1941 **      flag = 0
1942 **      foreach row2 in t2 do
1943 **        start:
1944 **          ...
1945 **          flag = 1
1946 **      end
1947 **      if flag==0 then
1948 **        move the row2 cursor to a null row
1949 **        goto start
1950 **      fi
1951 **    end
1952 **
1953 ** ORDER BY CLAUSE PROCESSING
1954 **
1955 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
1956 ** if there is one.  If there is no ORDER BY clause or if this routine
1957 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
1958 **
1959 ** If an index can be used so that the natural output order of the table
1960 ** scan is correct for the ORDER BY clause, then that index is used and
1961 ** *ppOrderBy is set to NULL.  This is an optimization that prevents an
1962 ** unnecessary sort of the result set if an index appropriate for the
1963 ** ORDER BY clause already exists.
1964 **
1965 ** If the where clause loops cannot be arranged to provide the correct
1966 ** output order, then the *ppOrderBy is unchanged.
1967 */
1968 WhereInfo *sqlite3WhereBegin(
1969   Parse *pParse,        /* The parser context */
1970   SrcList *pTabList,    /* A list of all tables to be scanned */
1971   Expr *pWhere,         /* The WHERE clause */
1972   ExprList **ppOrderBy  /* An ORDER BY clause, or NULL */
1973 ){
1974   int i;                     /* Loop counter */
1975   WhereInfo *pWInfo;         /* Will become the return value of this function */
1976   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
1977   int brk, cont = 0;         /* Addresses used during code generation */
1978   Bitmask notReady;          /* Cursors that are not yet positioned */
1979   WhereTerm *pTerm;          /* A single term in the WHERE clause */
1980   ExprMaskSet maskSet;       /* The expression mask set */
1981   WhereClause wc;            /* The WHERE clause is divided into these terms */
1982   struct SrcList_item *pTabItem;  /* A single entry from pTabList */
1983   WhereLevel *pLevel;             /* A single level in the pWInfo list */
1984   int iFrom;                      /* First unused FROM clause element */
1985   int andFlags;              /* AND-ed combination of all wc.a[].flags */
1986   sqlite3 *db;               /* Database connection */
1987 
1988   /* The number of tables in the FROM clause is limited by the number of
1989   ** bits in a Bitmask
1990   */
1991   if( pTabList->nSrc>BMS ){
1992     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
1993     return 0;
1994   }
1995 
1996   /* Split the WHERE clause into separate subexpressions where each
1997   ** subexpression is separated by an AND operator.
1998   */
1999   initMaskSet(&maskSet);
2000   whereClauseInit(&wc, pParse, &maskSet);
2001   whereSplit(&wc, pWhere, TK_AND);
2002 
2003   /* Allocate and initialize the WhereInfo structure that will become the
2004   ** return value.
2005   */
2006   db = pParse->db;
2007   pWInfo = sqlite3DbMallocZero(db,
2008                       sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
2009   if( db->mallocFailed ){
2010     goto whereBeginNoMem;
2011   }
2012   pWInfo->nLevel = pTabList->nSrc;
2013   pWInfo->pParse = pParse;
2014   pWInfo->pTabList = pTabList;
2015   pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
2016 
2017   /* Special case: a WHERE clause that is constant.  Evaluate the
2018   ** expression and either jump over all of the code or fall thru.
2019   */
2020   if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
2021     sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
2022     pWhere = 0;
2023   }
2024 
2025   /* Analyze all of the subexpressions.  Note that exprAnalyze() might
2026   ** add new virtual terms onto the end of the WHERE clause.  We do not
2027   ** want to analyze these virtual terms, so start analyzing at the end
2028   ** and work forward so that the added virtual terms are never processed.
2029   */
2030   for(i=0; i<pTabList->nSrc; i++){
2031     createMask(&maskSet, pTabList->a[i].iCursor);
2032   }
2033   exprAnalyzeAll(pTabList, &wc);
2034   if( db->mallocFailed ){
2035     goto whereBeginNoMem;
2036   }
2037 
2038   /* Chose the best index to use for each table in the FROM clause.
2039   **
2040   ** This loop fills in the following fields:
2041   **
2042   **   pWInfo->a[].pIdx      The index to use for this level of the loop.
2043   **   pWInfo->a[].flags     WHERE_xxx flags associated with pIdx
2044   **   pWInfo->a[].nEq       The number of == and IN constraints
2045   **   pWInfo->a[].iFrom     When term of the FROM clause is being coded
2046   **   pWInfo->a[].iTabCur   The VDBE cursor for the database table
2047   **   pWInfo->a[].iIdxCur   The VDBE cursor for the index
2048   **
2049   ** This loop also figures out the nesting order of tables in the FROM
2050   ** clause.
2051   */
2052   notReady = ~(Bitmask)0;
2053   pTabItem = pTabList->a;
2054   pLevel = pWInfo->a;
2055   andFlags = ~0;
2056   WHERETRACE(("*** Optimizer Start ***\n"));
2057   for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
2058     Index *pIdx;                /* Index for FROM table at pTabItem */
2059     int flags;                  /* Flags asssociated with pIdx */
2060     int nEq;                    /* Number of == or IN constraints */
2061     double cost;                /* The cost for pIdx */
2062     int j;                      /* For looping over FROM tables */
2063     Index *pBest = 0;           /* The best index seen so far */
2064     int bestFlags = 0;          /* Flags associated with pBest */
2065     int bestNEq = 0;            /* nEq associated with pBest */
2066     double lowestCost;          /* Cost of the pBest */
2067     int bestJ = 0;              /* The value of j */
2068     Bitmask m;                  /* Bitmask value for j or bestJ */
2069     int once = 0;               /* True when first table is seen */
2070     sqlite3_index_info *pIndex; /* Current virtual index */
2071 
2072     lowestCost = SQLITE_BIG_DBL;
2073     for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){
2074       int doNotReorder;  /* True if this table should not be reordered */
2075 
2076       doNotReorder =  (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
2077       if( once && doNotReorder ) break;
2078       m = getMask(&maskSet, pTabItem->iCursor);
2079       if( (m & notReady)==0 ){
2080         if( j==iFrom ) iFrom++;
2081         continue;
2082       }
2083       assert( pTabItem->pTab );
2084 #ifndef SQLITE_OMIT_VIRTUALTABLE
2085       if( IsVirtual(pTabItem->pTab) ){
2086         sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo;
2087         cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady,
2088                                 ppOrderBy ? *ppOrderBy : 0, i==0,
2089                                 ppIdxInfo);
2090         flags = WHERE_VIRTUALTABLE;
2091         pIndex = *ppIdxInfo;
2092         if( pIndex && pIndex->orderByConsumed ){
2093           flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY;
2094         }
2095         pIdx = 0;
2096         nEq = 0;
2097         if( (SQLITE_BIG_DBL/2.0)<cost ){
2098           /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
2099           ** inital value of lowestCost in this loop. If it is, then
2100           ** the (cost<lowestCost) test below will never be true and
2101           ** pLevel->pBestIdx never set.
2102           */
2103           cost = (SQLITE_BIG_DBL/2.0);
2104         }
2105       }else
2106 #endif
2107       {
2108         cost = bestIndex(pParse, &wc, pTabItem, notReady,
2109                          (i==0 && ppOrderBy) ? *ppOrderBy : 0,
2110                          &pIdx, &flags, &nEq);
2111         pIndex = 0;
2112       }
2113       if( cost<lowestCost ){
2114         once = 1;
2115         lowestCost = cost;
2116         pBest = pIdx;
2117         bestFlags = flags;
2118         bestNEq = nEq;
2119         bestJ = j;
2120         pLevel->pBestIdx = pIndex;
2121       }
2122       if( doNotReorder ) break;
2123     }
2124     WHERETRACE(("*** Optimizer choose table %d for loop %d\n", bestJ,
2125            pLevel-pWInfo->a));
2126     if( (bestFlags & WHERE_ORDERBY)!=0 ){
2127       *ppOrderBy = 0;
2128     }
2129     andFlags &= bestFlags;
2130     pLevel->flags = bestFlags;
2131     pLevel->pIdx = pBest;
2132     pLevel->nEq = bestNEq;
2133     pLevel->aInLoop = 0;
2134     pLevel->nIn = 0;
2135     if( pBest ){
2136       pLevel->iIdxCur = pParse->nTab++;
2137     }else{
2138       pLevel->iIdxCur = -1;
2139     }
2140     notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor);
2141     pLevel->iFrom = bestJ;
2142   }
2143   WHERETRACE(("*** Optimizer Finished ***\n"));
2144 
2145   /* If the total query only selects a single row, then the ORDER BY
2146   ** clause is irrelevant.
2147   */
2148   if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
2149     *ppOrderBy = 0;
2150   }
2151 
2152   /* Open all tables in the pTabList and any indices selected for
2153   ** searching those tables.
2154   */
2155   sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
2156   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
2157     Table *pTab;     /* Table to open */
2158     Index *pIx;      /* Index used to access pTab (if any) */
2159     int iDb;         /* Index of database containing table/index */
2160     int iIdxCur = pLevel->iIdxCur;
2161 
2162 #ifndef SQLITE_OMIT_EXPLAIN
2163     if( pParse->explain==2 ){
2164       char *zMsg;
2165       struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
2166       zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName);
2167       if( pItem->zAlias ){
2168         zMsg = sqlite3MPrintf(db, "%z AS %s", zMsg, pItem->zAlias);
2169       }
2170       if( (pIx = pLevel->pIdx)!=0 ){
2171         zMsg = sqlite3MPrintf(db, "%z WITH INDEX %s", zMsg, pIx->zName);
2172       }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
2173         zMsg = sqlite3MPrintf(db, "%z USING PRIMARY KEY", zMsg);
2174       }
2175 #ifndef SQLITE_OMIT_VIRTUALTABLE
2176       else if( pLevel->pBestIdx ){
2177         sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
2178         zMsg = sqlite3MPrintf(db, "%z VIRTUAL TABLE INDEX %d:%s", zMsg,
2179                     pBestIdx->idxNum, pBestIdx->idxStr);
2180       }
2181 #endif
2182       if( pLevel->flags & WHERE_ORDERBY ){
2183         zMsg = sqlite3MPrintf(db, "%z ORDER BY", zMsg);
2184       }
2185       sqlite3VdbeOp3(v, OP_Explain, i, pLevel->iFrom, zMsg, P3_DYNAMIC);
2186     }
2187 #endif /* SQLITE_OMIT_EXPLAIN */
2188     pTabItem = &pTabList->a[pLevel->iFrom];
2189     pTab = pTabItem->pTab;
2190     iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2191     if( pTab->isEphem || pTab->pSelect ) continue;
2192 #ifndef SQLITE_OMIT_VIRTUALTABLE
2193     if( pLevel->pBestIdx ){
2194       int iCur = pTabItem->iCursor;
2195       sqlite3VdbeOp3(v, OP_VOpen, iCur, 0, (const char*)pTab->pVtab, P3_VTAB);
2196     }else
2197 #endif
2198     if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
2199       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, OP_OpenRead);
2200       if( pTab->nCol<(sizeof(Bitmask)*8) ){
2201         Bitmask b = pTabItem->colUsed;
2202         int n = 0;
2203         for(; b; b=b>>1, n++){}
2204         sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-1, n);
2205         assert( n<=pTab->nCol );
2206       }
2207     }else{
2208       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2209     }
2210     pLevel->iTabCur = pTabItem->iCursor;
2211     if( (pIx = pLevel->pIdx)!=0 ){
2212       KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
2213       assert( pIx->pSchema==pTab->pSchema );
2214       sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
2215       VdbeComment((v, "# %s", pIx->zName));
2216       sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum,
2217                      (char*)pKey, P3_KEYINFO_HANDOFF);
2218       sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1);
2219     }
2220     sqlite3CodeVerifySchema(pParse, iDb);
2221   }
2222   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
2223 
2224   /* Generate the code to do the search.  Each iteration of the for
2225   ** loop below generates code for a single nested loop of the VM
2226   ** program.
2227   */
2228   notReady = ~(Bitmask)0;
2229   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
2230     int j;
2231     int iCur = pTabItem->iCursor;  /* The VDBE cursor for the table */
2232     Index *pIdx;       /* The index we will be using */
2233     int nxt;           /* Where to jump to continue with the next IN case */
2234     int iIdxCur;       /* The VDBE cursor for the index */
2235     int omitTable;     /* True if we use the index only */
2236     int bRev;          /* True if we need to scan in reverse order */
2237 
2238     pTabItem = &pTabList->a[pLevel->iFrom];
2239     iCur = pTabItem->iCursor;
2240     pIdx = pLevel->pIdx;
2241     iIdxCur = pLevel->iIdxCur;
2242     bRev = (pLevel->flags & WHERE_REVERSE)!=0;
2243     omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0;
2244 
2245     /* Create labels for the "break" and "continue" instructions
2246     ** for the current loop.  Jump to brk to break out of a loop.
2247     ** Jump to cont to go immediately to the next iteration of the
2248     ** loop.
2249     **
2250     ** When there is an IN operator, we also have a "nxt" label that
2251     ** means to continue with the next IN value combination.  When
2252     ** there are no IN operators in the constraints, the "nxt" label
2253     ** is the same as "brk".
2254     */
2255     brk = pLevel->brk = pLevel->nxt = sqlite3VdbeMakeLabel(v);
2256     cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
2257 
2258     /* If this is the right table of a LEFT OUTER JOIN, allocate and
2259     ** initialize a memory cell that records if this table matches any
2260     ** row of the left table of the join.
2261     */
2262     if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
2263       if( !pParse->nMem ) pParse->nMem++;
2264       pLevel->iLeftJoin = pParse->nMem++;
2265       sqlite3VdbeAddOp(v, OP_MemInt, 0, pLevel->iLeftJoin);
2266       VdbeComment((v, "# init LEFT JOIN no-match flag"));
2267     }
2268 
2269 #ifndef SQLITE_OMIT_VIRTUALTABLE
2270     if( pLevel->pBestIdx ){
2271       /* Case 0:  The table is a virtual-table.  Use the VFilter and VNext
2272       **          to access the data.
2273       */
2274       int j;
2275       sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
2276       int nConstraint = pBestIdx->nConstraint;
2277       struct sqlite3_index_constraint_usage *aUsage =
2278                                                   pBestIdx->aConstraintUsage;
2279       const struct sqlite3_index_constraint *aConstraint =
2280                                                   pBestIdx->aConstraint;
2281 
2282       for(j=1; j<=nConstraint; j++){
2283         int k;
2284         for(k=0; k<nConstraint; k++){
2285           if( aUsage[k].argvIndex==j ){
2286             int iTerm = aConstraint[k].iTermOffset;
2287             sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight);
2288             break;
2289           }
2290         }
2291         if( k==nConstraint ) break;
2292       }
2293       sqlite3VdbeAddOp(v, OP_Integer, j-1, 0);
2294       sqlite3VdbeAddOp(v, OP_Integer, pBestIdx->idxNum, 0);
2295       sqlite3VdbeOp3(v, OP_VFilter, iCur, brk, pBestIdx->idxStr,
2296                       pBestIdx->needToFreeIdxStr ? P3_MPRINTF : P3_STATIC);
2297       pBestIdx->needToFreeIdxStr = 0;
2298       for(j=0; j<pBestIdx->nConstraint; j++){
2299         if( aUsage[j].omit ){
2300           int iTerm = aConstraint[j].iTermOffset;
2301           disableTerm(pLevel, &wc.a[iTerm]);
2302         }
2303       }
2304       pLevel->op = OP_VNext;
2305       pLevel->p1 = iCur;
2306       pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2307     }else
2308 #endif /* SQLITE_OMIT_VIRTUALTABLE */
2309 
2310     if( pLevel->flags & WHERE_ROWID_EQ ){
2311       /* Case 1:  We can directly reference a single row using an
2312       **          equality comparison against the ROWID field.  Or
2313       **          we reference multiple rows using a "rowid IN (...)"
2314       **          construct.
2315       */
2316       pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0);
2317       assert( pTerm!=0 );
2318       assert( pTerm->pExpr!=0 );
2319       assert( pTerm->leftCursor==iCur );
2320       assert( omitTable==0 );
2321       codeEqualityTerm(pParse, pTerm, pLevel);
2322       nxt = pLevel->nxt;
2323       sqlite3VdbeAddOp(v, OP_MustBeInt, 1, nxt);
2324       sqlite3VdbeAddOp(v, OP_NotExists, iCur, nxt);
2325       VdbeComment((v, "pk"));
2326       pLevel->op = OP_Noop;
2327     }else if( pLevel->flags & WHERE_ROWID_RANGE ){
2328       /* Case 2:  We have an inequality comparison against the ROWID field.
2329       */
2330       int testOp = OP_Noop;
2331       int start;
2332       WhereTerm *pStart, *pEnd;
2333 
2334       assert( omitTable==0 );
2335       pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0);
2336       pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0);
2337       if( bRev ){
2338         pTerm = pStart;
2339         pStart = pEnd;
2340         pEnd = pTerm;
2341       }
2342       if( pStart ){
2343         Expr *pX;
2344         pX = pStart->pExpr;
2345         assert( pX!=0 );
2346         assert( pStart->leftCursor==iCur );
2347         sqlite3ExprCode(pParse, pX->pRight);
2348         sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk);
2349         sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk);
2350         VdbeComment((v, "pk"));
2351         disableTerm(pLevel, pStart);
2352       }else{
2353         sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
2354       }
2355       if( pEnd ){
2356         Expr *pX;
2357         pX = pEnd->pExpr;
2358         assert( pX!=0 );
2359         assert( pEnd->leftCursor==iCur );
2360         sqlite3ExprCode(pParse, pX->pRight);
2361         pLevel->iMem = pParse->nMem++;
2362         sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
2363         if( pX->op==TK_LT || pX->op==TK_GT ){
2364           testOp = bRev ? OP_Le : OP_Ge;
2365         }else{
2366           testOp = bRev ? OP_Lt : OP_Gt;
2367         }
2368         disableTerm(pLevel, pEnd);
2369       }
2370       start = sqlite3VdbeCurrentAddr(v);
2371       pLevel->op = bRev ? OP_Prev : OP_Next;
2372       pLevel->p1 = iCur;
2373       pLevel->p2 = start;
2374       if( testOp!=OP_Noop ){
2375         sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
2376         sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
2377         sqlite3VdbeAddOp(v, testOp, SQLITE_AFF_NUMERIC|0x100, brk);
2378       }
2379     }else if( pLevel->flags & WHERE_COLUMN_RANGE ){
2380       /* Case 3: The WHERE clause term that refers to the right-most
2381       **         column of the index is an inequality.  For example, if
2382       **         the index is on (x,y,z) and the WHERE clause is of the
2383       **         form "x=5 AND y<10" then this case is used.  Only the
2384       **         right-most column can be an inequality - the rest must
2385       **         use the "==" and "IN" operators.
2386       **
2387       **         This case is also used when there are no WHERE clause
2388       **         constraints but an index is selected anyway, in order
2389       **         to force the output order to conform to an ORDER BY.
2390       */
2391       int start;
2392       int nEq = pLevel->nEq;
2393       int topEq=0;        /* True if top limit uses ==. False is strictly < */
2394       int btmEq=0;        /* True if btm limit uses ==. False if strictly > */
2395       int topOp, btmOp;   /* Operators for the top and bottom search bounds */
2396       int testOp;
2397       int topLimit = (pLevel->flags & WHERE_TOP_LIMIT)!=0;
2398       int btmLimit = (pLevel->flags & WHERE_BTM_LIMIT)!=0;
2399 
2400       /* Generate code to evaluate all constraint terms using == or IN
2401       ** and level the values of those terms on the stack.
2402       */
2403       codeAllEqualityTerms(pParse, pLevel, &wc, notReady);
2404 
2405       /* Duplicate the equality term values because they will all be
2406       ** used twice: once to make the termination key and once to make the
2407       ** start key.
2408       */
2409       for(j=0; j<nEq; j++){
2410         sqlite3VdbeAddOp(v, OP_Dup, nEq-1, 0);
2411       }
2412 
2413       /* Figure out what comparison operators to use for top and bottom
2414       ** search bounds. For an ascending index, the bottom bound is a > or >=
2415       ** operator and the top bound is a < or <= operator.  For a descending
2416       ** index the operators are reversed.
2417       */
2418       if( pIdx->aSortOrder[nEq]==SQLITE_SO_ASC ){
2419         topOp = WO_LT|WO_LE;
2420         btmOp = WO_GT|WO_GE;
2421       }else{
2422         topOp = WO_GT|WO_GE;
2423         btmOp = WO_LT|WO_LE;
2424         SWAP(int, topLimit, btmLimit);
2425       }
2426 
2427       /* Generate the termination key.  This is the key value that
2428       ** will end the search.  There is no termination key if there
2429       ** are no equality terms and no "X<..." term.
2430       **
2431       ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
2432       ** key computed here really ends up being the start key.
2433       */
2434       nxt = pLevel->nxt;
2435       if( topLimit ){
2436         Expr *pX;
2437         int k = pIdx->aiColumn[j];
2438         pTerm = findTerm(&wc, iCur, k, notReady, topOp, pIdx);
2439         assert( pTerm!=0 );
2440         pX = pTerm->pExpr;
2441         assert( (pTerm->flags & TERM_CODED)==0 );
2442         sqlite3ExprCode(pParse, pX->pRight);
2443         sqlite3VdbeAddOp(v, OP_IsNull, -(nEq*2+1), nxt);
2444         topEq = pTerm->eOperator & (WO_LE|WO_GE);
2445         disableTerm(pLevel, pTerm);
2446         testOp = OP_IdxGE;
2447       }else{
2448         testOp = nEq>0 ? OP_IdxGE : OP_Noop;
2449         topEq = 1;
2450       }
2451       if( testOp!=OP_Noop ){
2452         int nCol = nEq + topLimit;
2453         pLevel->iMem = pParse->nMem++;
2454         buildIndexProbe(v, nCol, pIdx);
2455         if( bRev ){
2456           int op = topEq ? OP_MoveLe : OP_MoveLt;
2457           sqlite3VdbeAddOp(v, op, iIdxCur, nxt);
2458         }else{
2459           sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
2460         }
2461       }else if( bRev ){
2462         sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk);
2463       }
2464 
2465       /* Generate the start key.  This is the key that defines the lower
2466       ** bound on the search.  There is no start key if there are no
2467       ** equality terms and if there is no "X>..." term.  In
2468       ** that case, generate a "Rewind" instruction in place of the
2469       ** start key search.
2470       **
2471       ** 2002-Dec-04: In the case of a reverse-order search, the so-called
2472       ** "start" key really ends up being used as the termination key.
2473       */
2474       if( btmLimit ){
2475         Expr *pX;
2476         int k = pIdx->aiColumn[j];
2477         pTerm = findTerm(&wc, iCur, k, notReady, btmOp, pIdx);
2478         assert( pTerm!=0 );
2479         pX = pTerm->pExpr;
2480         assert( (pTerm->flags & TERM_CODED)==0 );
2481         sqlite3ExprCode(pParse, pX->pRight);
2482         sqlite3VdbeAddOp(v, OP_IsNull, -(nEq+1), nxt);
2483         btmEq = pTerm->eOperator & (WO_LE|WO_GE);
2484         disableTerm(pLevel, pTerm);
2485       }else{
2486         btmEq = 1;
2487       }
2488       if( nEq>0 || btmLimit ){
2489         int nCol = nEq + btmLimit;
2490         buildIndexProbe(v, nCol, pIdx);
2491         if( bRev ){
2492           pLevel->iMem = pParse->nMem++;
2493           sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
2494           testOp = OP_IdxLT;
2495         }else{
2496           int op = btmEq ? OP_MoveGe : OP_MoveGt;
2497           sqlite3VdbeAddOp(v, op, iIdxCur, nxt);
2498         }
2499       }else if( bRev ){
2500         testOp = OP_Noop;
2501       }else{
2502         sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk);
2503       }
2504 
2505       /* Generate the the top of the loop.  If there is a termination
2506       ** key we have to test for that key and abort at the top of the
2507       ** loop.
2508       */
2509       start = sqlite3VdbeCurrentAddr(v);
2510       if( testOp!=OP_Noop ){
2511         sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
2512         sqlite3VdbeAddOp(v, testOp, iIdxCur, nxt);
2513         if( (topEq && !bRev) || (!btmEq && bRev) ){
2514           sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC);
2515         }
2516       }
2517       if( topLimit | btmLimit ){
2518         sqlite3VdbeAddOp(v, OP_Column, iIdxCur, nEq);
2519         sqlite3VdbeAddOp(v, OP_IsNull, 1, cont);
2520       }
2521       if( !omitTable ){
2522         sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
2523         sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
2524       }
2525 
2526       /* Record the instruction used to terminate the loop.
2527       */
2528       pLevel->op = bRev ? OP_Prev : OP_Next;
2529       pLevel->p1 = iIdxCur;
2530       pLevel->p2 = start;
2531     }else if( pLevel->flags & WHERE_COLUMN_EQ ){
2532       /* Case 4:  There is an index and all terms of the WHERE clause that
2533       **          refer to the index using the "==" or "IN" operators.
2534       */
2535       int start;
2536       int nEq = pLevel->nEq;
2537 
2538       /* Generate code to evaluate all constraint terms using == or IN
2539       ** and leave the values of those terms on the stack.
2540       */
2541       codeAllEqualityTerms(pParse, pLevel, &wc, notReady);
2542       nxt = pLevel->nxt;
2543 
2544       /* Generate a single key that will be used to both start and terminate
2545       ** the search
2546       */
2547       buildIndexProbe(v, nEq, pIdx);
2548       sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
2549 
2550       /* Generate code (1) to move to the first matching element of the table.
2551       ** Then generate code (2) that jumps to "nxt" after the cursor is past
2552       ** the last matching element of the table.  The code (1) is executed
2553       ** once to initialize the search, the code (2) is executed before each
2554       ** iteration of the scan to see if the scan has finished. */
2555       if( bRev ){
2556         /* Scan in reverse order */
2557         sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, nxt);
2558         start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
2559         sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, nxt);
2560         pLevel->op = OP_Prev;
2561       }else{
2562         /* Scan in the forward order */
2563         sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, nxt);
2564         start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
2565         sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, nxt, "+", P3_STATIC);
2566         pLevel->op = OP_Next;
2567       }
2568       if( !omitTable ){
2569         sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
2570         sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
2571       }
2572       pLevel->p1 = iIdxCur;
2573       pLevel->p2 = start;
2574     }else{
2575       /* Case 5:  There is no usable index.  We must do a complete
2576       **          scan of the entire table.
2577       */
2578       assert( omitTable==0 );
2579       assert( bRev==0 );
2580       pLevel->op = OP_Next;
2581       pLevel->p1 = iCur;
2582       pLevel->p2 = 1 + sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk);
2583     }
2584     notReady &= ~getMask(&maskSet, iCur);
2585     sqlite3VdbeAddOp(v, OP_StackDepth, -1, 0);
2586 
2587     /* Insert code to test every subexpression that can be completely
2588     ** computed using the current set of tables.
2589     */
2590     for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){
2591       Expr *pE;
2592       if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2593       if( (pTerm->prereqAll & notReady)!=0 ) continue;
2594       pE = pTerm->pExpr;
2595       assert( pE!=0 );
2596       if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
2597         continue;
2598       }
2599       sqlite3ExprIfFalse(pParse, pE, cont, 1);
2600       pTerm->flags |= TERM_CODED;
2601     }
2602 
2603     /* For a LEFT OUTER JOIN, generate code that will record the fact that
2604     ** at least one row of the right table has matched the left table.
2605     */
2606     if( pLevel->iLeftJoin ){
2607       pLevel->top = sqlite3VdbeCurrentAddr(v);
2608       sqlite3VdbeAddOp(v, OP_MemInt, 1, pLevel->iLeftJoin);
2609       VdbeComment((v, "# record LEFT JOIN hit"));
2610       for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){
2611         if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2612         if( (pTerm->prereqAll & notReady)!=0 ) continue;
2613         assert( pTerm->pExpr );
2614         sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, 1);
2615         pTerm->flags |= TERM_CODED;
2616       }
2617     }
2618   }
2619 
2620 #ifdef SQLITE_TEST  /* For testing and debugging use only */
2621   /* Record in the query plan information about the current table
2622   ** and the index used to access it (if any).  If the table itself
2623   ** is not used, its name is just '{}'.  If no index is used
2624   ** the index is listed as "{}".  If the primary key is used the
2625   ** index name is '*'.
2626   */
2627   for(i=0; i<pTabList->nSrc; i++){
2628     char *z;
2629     int n;
2630     pLevel = &pWInfo->a[i];
2631     pTabItem = &pTabList->a[pLevel->iFrom];
2632     z = pTabItem->zAlias;
2633     if( z==0 ) z = pTabItem->pTab->zName;
2634     n = strlen(z);
2635     if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
2636       if( pLevel->flags & WHERE_IDX_ONLY ){
2637         memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
2638         nQPlan += 2;
2639       }else{
2640         memcpy(&sqlite3_query_plan[nQPlan], z, n);
2641         nQPlan += n;
2642       }
2643       sqlite3_query_plan[nQPlan++] = ' ';
2644     }
2645     if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
2646       memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
2647       nQPlan += 2;
2648     }else if( pLevel->pIdx==0 ){
2649       memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
2650       nQPlan += 3;
2651     }else{
2652       n = strlen(pLevel->pIdx->zName);
2653       if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
2654         memcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName, n);
2655         nQPlan += n;
2656         sqlite3_query_plan[nQPlan++] = ' ';
2657       }
2658     }
2659   }
2660   while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
2661     sqlite3_query_plan[--nQPlan] = 0;
2662   }
2663   sqlite3_query_plan[nQPlan] = 0;
2664   nQPlan = 0;
2665 #endif /* SQLITE_TEST // Testing and debugging use only */
2666 
2667   /* Record the continuation address in the WhereInfo structure.  Then
2668   ** clean up and return.
2669   */
2670   pWInfo->iContinue = cont;
2671   whereClauseClear(&wc);
2672   return pWInfo;
2673 
2674   /* Jump here if malloc fails */
2675 whereBeginNoMem:
2676   whereClauseClear(&wc);
2677   whereInfoFree(pWInfo);
2678   return 0;
2679 }
2680 
2681 /*
2682 ** Generate the end of the WHERE loop.  See comments on
2683 ** sqlite3WhereBegin() for additional information.
2684 */
2685 void sqlite3WhereEnd(WhereInfo *pWInfo){
2686   Vdbe *v = pWInfo->pParse->pVdbe;
2687   int i;
2688   WhereLevel *pLevel;
2689   SrcList *pTabList = pWInfo->pTabList;
2690 
2691   /* Generate loop termination code.
2692   */
2693   for(i=pTabList->nSrc-1; i>=0; i--){
2694     pLevel = &pWInfo->a[i];
2695     sqlite3VdbeResolveLabel(v, pLevel->cont);
2696     if( pLevel->op!=OP_Noop ){
2697       sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
2698     }
2699     if( pLevel->nIn ){
2700       struct InLoop *pIn;
2701       int j;
2702       sqlite3VdbeResolveLabel(v, pLevel->nxt);
2703       for(j=pLevel->nIn, pIn=&pLevel->aInLoop[j-1]; j>0; j--, pIn--){
2704         sqlite3VdbeJumpHere(v, pIn->topAddr+1);
2705         sqlite3VdbeAddOp(v, OP_Next, pIn->iCur, pIn->topAddr);
2706         sqlite3VdbeJumpHere(v, pIn->topAddr-1);
2707       }
2708       sqlite3_free(pLevel->aInLoop);
2709     }
2710     sqlite3VdbeResolveLabel(v, pLevel->brk);
2711     if( pLevel->iLeftJoin ){
2712       int addr;
2713       addr = sqlite3VdbeAddOp(v, OP_IfMemPos, pLevel->iLeftJoin, 0);
2714       sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
2715       if( pLevel->iIdxCur>=0 ){
2716         sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0);
2717       }
2718       sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top);
2719       sqlite3VdbeJumpHere(v, addr);
2720     }
2721   }
2722 
2723   /* The "break" point is here, just past the end of the outer loop.
2724   ** Set it.
2725   */
2726   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
2727 
2728   /* Close all of the cursors that were opened by sqlite3WhereBegin.
2729   */
2730   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
2731     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
2732     Table *pTab = pTabItem->pTab;
2733     assert( pTab!=0 );
2734     if( pTab->isEphem || pTab->pSelect ) continue;
2735     if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
2736       sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0);
2737     }
2738     if( pLevel->pIdx!=0 ){
2739       sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0);
2740     }
2741 
2742     /* If this scan uses an index, make code substitutions to read data
2743     ** from the index in preference to the table. Sometimes, this means
2744     ** the table need never be read from. This is a performance boost,
2745     ** as the vdbe level waits until the table is read before actually
2746     ** seeking the table cursor to the record corresponding to the current
2747     ** position in the index.
2748     **
2749     ** Calls to the code generator in between sqlite3WhereBegin and
2750     ** sqlite3WhereEnd will have created code that references the table
2751     ** directly.  This loop scans all that code looking for opcodes
2752     ** that reference the table and converts them into opcodes that
2753     ** reference the index.
2754     */
2755     if( pLevel->pIdx ){
2756       int k, j, last;
2757       VdbeOp *pOp;
2758       Index *pIdx = pLevel->pIdx;
2759       int useIndexOnly = pLevel->flags & WHERE_IDX_ONLY;
2760 
2761       assert( pIdx!=0 );
2762       pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
2763       last = sqlite3VdbeCurrentAddr(v);
2764       for(k=pWInfo->iTop; k<last; k++, pOp++){
2765         if( pOp->p1!=pLevel->iTabCur ) continue;
2766         if( pOp->opcode==OP_Column ){
2767           for(j=0; j<pIdx->nColumn; j++){
2768             if( pOp->p2==pIdx->aiColumn[j] ){
2769               pOp->p2 = j;
2770               pOp->p1 = pLevel->iIdxCur;
2771               break;
2772             }
2773           }
2774           assert(!useIndexOnly || j<pIdx->nColumn);
2775         }else if( pOp->opcode==OP_Rowid ){
2776           pOp->p1 = pLevel->iIdxCur;
2777           pOp->opcode = OP_IdxRowid;
2778         }else if( pOp->opcode==OP_NullRow && useIndexOnly ){
2779           pOp->opcode = OP_Noop;
2780         }
2781       }
2782     }
2783   }
2784 
2785   /* Final cleanup
2786   */
2787   whereInfoFree(pWInfo);
2788   return;
2789 }
2790