1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 ** 19 ** $Id: where.c,v 1.318 2008/07/28 19:34:54 drh Exp $ 20 */ 21 #include "sqliteInt.h" 22 23 /* 24 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 25 */ 26 #define BMS (sizeof(Bitmask)*8) 27 28 /* 29 ** Trace output macros 30 */ 31 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 32 int sqlite3WhereTrace = 0; 33 #endif 34 #if 0 35 # define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X 36 #else 37 # define WHERETRACE(X) 38 #endif 39 40 /* Forward reference 41 */ 42 typedef struct WhereClause WhereClause; 43 typedef struct ExprMaskSet ExprMaskSet; 44 45 /* 46 ** The query generator uses an array of instances of this structure to 47 ** help it analyze the subexpressions of the WHERE clause. Each WHERE 48 ** clause subexpression is separated from the others by an AND operator. 49 ** 50 ** All WhereTerms are collected into a single WhereClause structure. 51 ** The following identity holds: 52 ** 53 ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm 54 ** 55 ** When a term is of the form: 56 ** 57 ** X <op> <expr> 58 ** 59 ** where X is a column name and <op> is one of certain operators, 60 ** then WhereTerm.leftCursor and WhereTerm.leftColumn record the 61 ** cursor number and column number for X. WhereTerm.operator records 62 ** the <op> using a bitmask encoding defined by WO_xxx below. The 63 ** use of a bitmask encoding for the operator allows us to search 64 ** quickly for terms that match any of several different operators. 65 ** 66 ** prereqRight and prereqAll record sets of cursor numbers, 67 ** but they do so indirectly. A single ExprMaskSet structure translates 68 ** cursor number into bits and the translated bit is stored in the prereq 69 ** fields. The translation is used in order to maximize the number of 70 ** bits that will fit in a Bitmask. The VDBE cursor numbers might be 71 ** spread out over the non-negative integers. For example, the cursor 72 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The ExprMaskSet 73 ** translates these sparse cursor numbers into consecutive integers 74 ** beginning with 0 in order to make the best possible use of the available 75 ** bits in the Bitmask. So, in the example above, the cursor numbers 76 ** would be mapped into integers 0 through 7. 77 */ 78 typedef struct WhereTerm WhereTerm; 79 struct WhereTerm { 80 Expr *pExpr; /* Pointer to the subexpression */ 81 i16 iParent; /* Disable pWC->a[iParent] when this term disabled */ 82 i16 leftCursor; /* Cursor number of X in "X <op> <expr>" */ 83 i16 leftColumn; /* Column number of X in "X <op> <expr>" */ 84 u16 eOperator; /* A WO_xx value describing <op> */ 85 u8 flags; /* Bit flags. See below */ 86 u8 nChild; /* Number of children that must disable us */ 87 WhereClause *pWC; /* The clause this term is part of */ 88 Bitmask prereqRight; /* Bitmask of tables used by pRight */ 89 Bitmask prereqAll; /* Bitmask of tables referenced by p */ 90 }; 91 92 /* 93 ** Allowed values of WhereTerm.flags 94 */ 95 #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */ 96 #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */ 97 #define TERM_CODED 0x04 /* This term is already coded */ 98 #define TERM_COPIED 0x08 /* Has a child */ 99 #define TERM_OR_OK 0x10 /* Used during OR-clause processing */ 100 101 /* 102 ** An instance of the following structure holds all information about a 103 ** WHERE clause. Mostly this is a container for one or more WhereTerms. 104 */ 105 struct WhereClause { 106 Parse *pParse; /* The parser context */ 107 ExprMaskSet *pMaskSet; /* Mapping of table indices to bitmasks */ 108 int nTerm; /* Number of terms */ 109 int nSlot; /* Number of entries in a[] */ 110 WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */ 111 WhereTerm aStatic[10]; /* Initial static space for a[] */ 112 }; 113 114 /* 115 ** An instance of the following structure keeps track of a mapping 116 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm. 117 ** 118 ** The VDBE cursor numbers are small integers contained in 119 ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE 120 ** clause, the cursor numbers might not begin with 0 and they might 121 ** contain gaps in the numbering sequence. But we want to make maximum 122 ** use of the bits in our bitmasks. This structure provides a mapping 123 ** from the sparse cursor numbers into consecutive integers beginning 124 ** with 0. 125 ** 126 ** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask 127 ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A. 128 ** 129 ** For example, if the WHERE clause expression used these VDBE 130 ** cursors: 4, 5, 8, 29, 57, 73. Then the ExprMaskSet structure 131 ** would map those cursor numbers into bits 0 through 5. 132 ** 133 ** Note that the mapping is not necessarily ordered. In the example 134 ** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0, 135 ** 57->5, 73->4. Or one of 719 other combinations might be used. It 136 ** does not really matter. What is important is that sparse cursor 137 ** numbers all get mapped into bit numbers that begin with 0 and contain 138 ** no gaps. 139 */ 140 struct ExprMaskSet { 141 int n; /* Number of assigned cursor values */ 142 int ix[sizeof(Bitmask)*8]; /* Cursor assigned to each bit */ 143 }; 144 145 146 /* 147 ** Bitmasks for the operators that indices are able to exploit. An 148 ** OR-ed combination of these values can be used when searching for 149 ** terms in the where clause. 150 */ 151 #define WO_IN 1 152 #define WO_EQ 2 153 #define WO_LT (WO_EQ<<(TK_LT-TK_EQ)) 154 #define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) 155 #define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) 156 #define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) 157 #define WO_MATCH 64 158 #define WO_ISNULL 128 159 160 /* 161 ** Value for flags returned by bestIndex(). 162 ** 163 ** The least significant byte is reserved as a mask for WO_ values above. 164 ** The WhereLevel.flags field is usually set to WO_IN|WO_EQ|WO_ISNULL. 165 ** But if the table is the right table of a left join, WhereLevel.flags 166 ** is set to WO_IN|WO_EQ. The WhereLevel.flags field can then be used as 167 ** the "op" parameter to findTerm when we are resolving equality constraints. 168 ** ISNULL constraints will then not be used on the right table of a left 169 ** join. Tickets #2177 and #2189. 170 */ 171 #define WHERE_ROWID_EQ 0x000100 /* rowid=EXPR or rowid IN (...) */ 172 #define WHERE_ROWID_RANGE 0x000200 /* rowid<EXPR and/or rowid>EXPR */ 173 #define WHERE_COLUMN_EQ 0x001000 /* x=EXPR or x IN (...) */ 174 #define WHERE_COLUMN_RANGE 0x002000 /* x<EXPR and/or x>EXPR */ 175 #define WHERE_COLUMN_IN 0x004000 /* x IN (...) */ 176 #define WHERE_TOP_LIMIT 0x010000 /* x<EXPR or x<=EXPR constraint */ 177 #define WHERE_BTM_LIMIT 0x020000 /* x>EXPR or x>=EXPR constraint */ 178 #define WHERE_IDX_ONLY 0x080000 /* Use index only - omit table */ 179 #define WHERE_ORDERBY 0x100000 /* Output will appear in correct order */ 180 #define WHERE_REVERSE 0x200000 /* Scan in reverse order */ 181 #define WHERE_UNIQUE 0x400000 /* Selects no more than one row */ 182 #define WHERE_VIRTUALTABLE 0x800000 /* Use virtual-table processing */ 183 184 /* 185 ** Initialize a preallocated WhereClause structure. 186 */ 187 static void whereClauseInit( 188 WhereClause *pWC, /* The WhereClause to be initialized */ 189 Parse *pParse, /* The parsing context */ 190 ExprMaskSet *pMaskSet /* Mapping from table indices to bitmasks */ 191 ){ 192 pWC->pParse = pParse; 193 pWC->pMaskSet = pMaskSet; 194 pWC->nTerm = 0; 195 pWC->nSlot = ArraySize(pWC->aStatic); 196 pWC->a = pWC->aStatic; 197 } 198 199 /* 200 ** Deallocate a WhereClause structure. The WhereClause structure 201 ** itself is not freed. This routine is the inverse of whereClauseInit(). 202 */ 203 static void whereClauseClear(WhereClause *pWC){ 204 int i; 205 WhereTerm *a; 206 sqlite3 *db = pWC->pParse->db; 207 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ 208 if( a->flags & TERM_DYNAMIC ){ 209 sqlite3ExprDelete(db, a->pExpr); 210 } 211 } 212 if( pWC->a!=pWC->aStatic ){ 213 sqlite3DbFree(db, pWC->a); 214 } 215 } 216 217 /* 218 ** Add a new entries to the WhereClause structure. Increase the allocated 219 ** space as necessary. 220 ** 221 ** If the flags argument includes TERM_DYNAMIC, then responsibility 222 ** for freeing the expression p is assumed by the WhereClause object. 223 ** 224 ** WARNING: This routine might reallocate the space used to store 225 ** WhereTerms. All pointers to WhereTerms should be invalidated after 226 ** calling this routine. Such pointers may be reinitialized by referencing 227 ** the pWC->a[] array. 228 */ 229 static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){ 230 WhereTerm *pTerm; 231 int idx; 232 if( pWC->nTerm>=pWC->nSlot ){ 233 WhereTerm *pOld = pWC->a; 234 sqlite3 *db = pWC->pParse->db; 235 pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); 236 if( pWC->a==0 ){ 237 if( flags & TERM_DYNAMIC ){ 238 sqlite3ExprDelete(db, p); 239 } 240 pWC->a = pOld; 241 return 0; 242 } 243 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); 244 if( pOld!=pWC->aStatic ){ 245 sqlite3DbFree(db, pOld); 246 } 247 pWC->nSlot *= 2; 248 } 249 pTerm = &pWC->a[idx = pWC->nTerm]; 250 pWC->nTerm++; 251 pTerm->pExpr = p; 252 pTerm->flags = flags; 253 pTerm->pWC = pWC; 254 pTerm->iParent = -1; 255 return idx; 256 } 257 258 /* 259 ** This routine identifies subexpressions in the WHERE clause where 260 ** each subexpression is separated by the AND operator or some other 261 ** operator specified in the op parameter. The WhereClause structure 262 ** is filled with pointers to subexpressions. For example: 263 ** 264 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) 265 ** \________/ \_______________/ \________________/ 266 ** slot[0] slot[1] slot[2] 267 ** 268 ** The original WHERE clause in pExpr is unaltered. All this routine 269 ** does is make slot[] entries point to substructure within pExpr. 270 ** 271 ** In the previous sentence and in the diagram, "slot[]" refers to 272 ** the WhereClause.a[] array. This array grows as needed to contain 273 ** all terms of the WHERE clause. 274 */ 275 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){ 276 if( pExpr==0 ) return; 277 if( pExpr->op!=op ){ 278 whereClauseInsert(pWC, pExpr, 0); 279 }else{ 280 whereSplit(pWC, pExpr->pLeft, op); 281 whereSplit(pWC, pExpr->pRight, op); 282 } 283 } 284 285 /* 286 ** Initialize an expression mask set 287 */ 288 #define initMaskSet(P) memset(P, 0, sizeof(*P)) 289 290 /* 291 ** Return the bitmask for the given cursor number. Return 0 if 292 ** iCursor is not in the set. 293 */ 294 static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){ 295 int i; 296 for(i=0; i<pMaskSet->n; i++){ 297 if( pMaskSet->ix[i]==iCursor ){ 298 return ((Bitmask)1)<<i; 299 } 300 } 301 return 0; 302 } 303 304 /* 305 ** Create a new mask for cursor iCursor. 306 ** 307 ** There is one cursor per table in the FROM clause. The number of 308 ** tables in the FROM clause is limited by a test early in the 309 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 310 ** array will never overflow. 311 */ 312 static void createMask(ExprMaskSet *pMaskSet, int iCursor){ 313 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 314 pMaskSet->ix[pMaskSet->n++] = iCursor; 315 } 316 317 /* 318 ** This routine walks (recursively) an expression tree and generates 319 ** a bitmask indicating which tables are used in that expression 320 ** tree. 321 ** 322 ** In order for this routine to work, the calling function must have 323 ** previously invoked sqlite3ExprResolveNames() on the expression. See 324 ** the header comment on that routine for additional information. 325 ** The sqlite3ExprResolveNames() routines looks for column names and 326 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to 327 ** the VDBE cursor number of the table. This routine just has to 328 ** translate the cursor numbers into bitmask values and OR all 329 ** the bitmasks together. 330 */ 331 static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*); 332 static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*); 333 static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){ 334 Bitmask mask = 0; 335 if( p==0 ) return 0; 336 if( p->op==TK_COLUMN ){ 337 mask = getMask(pMaskSet, p->iTable); 338 return mask; 339 } 340 mask = exprTableUsage(pMaskSet, p->pRight); 341 mask |= exprTableUsage(pMaskSet, p->pLeft); 342 mask |= exprListTableUsage(pMaskSet, p->pList); 343 mask |= exprSelectTableUsage(pMaskSet, p->pSelect); 344 return mask; 345 } 346 static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){ 347 int i; 348 Bitmask mask = 0; 349 if( pList ){ 350 for(i=0; i<pList->nExpr; i++){ 351 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); 352 } 353 } 354 return mask; 355 } 356 static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){ 357 Bitmask mask = 0; 358 while( pS ){ 359 mask |= exprListTableUsage(pMaskSet, pS->pEList); 360 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); 361 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); 362 mask |= exprTableUsage(pMaskSet, pS->pWhere); 363 mask |= exprTableUsage(pMaskSet, pS->pHaving); 364 pS = pS->pPrior; 365 } 366 return mask; 367 } 368 369 /* 370 ** Return TRUE if the given operator is one of the operators that is 371 ** allowed for an indexable WHERE clause term. The allowed operators are 372 ** "=", "<", ">", "<=", ">=", and "IN". 373 */ 374 static int allowedOp(int op){ 375 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); 376 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); 377 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); 378 assert( TK_GE==TK_EQ+4 ); 379 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; 380 } 381 382 /* 383 ** Swap two objects of type T. 384 */ 385 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 386 387 /* 388 ** Commute a comparison operator. Expressions of the form "X op Y" 389 ** are converted into "Y op X". 390 ** 391 ** If a collation sequence is associated with either the left or right 392 ** side of the comparison, it remains associated with the same side after 393 ** the commutation. So "Y collate NOCASE op X" becomes 394 ** "X collate NOCASE op Y". This is because any collation sequence on 395 ** the left hand side of a comparison overrides any collation sequence 396 ** attached to the right. For the same reason the EP_ExpCollate flag 397 ** is not commuted. 398 */ 399 static void exprCommute(Expr *pExpr){ 400 u16 expRight = (pExpr->pRight->flags & EP_ExpCollate); 401 u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate); 402 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); 403 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl); 404 pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft; 405 pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight; 406 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); 407 if( pExpr->op>=TK_GT ){ 408 assert( TK_LT==TK_GT+2 ); 409 assert( TK_GE==TK_LE+2 ); 410 assert( TK_GT>TK_EQ ); 411 assert( TK_GT<TK_LE ); 412 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); 413 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; 414 } 415 } 416 417 /* 418 ** Translate from TK_xx operator to WO_xx bitmask. 419 */ 420 static int operatorMask(int op){ 421 int c; 422 assert( allowedOp(op) ); 423 if( op==TK_IN ){ 424 c = WO_IN; 425 }else if( op==TK_ISNULL ){ 426 c = WO_ISNULL; 427 }else{ 428 c = WO_EQ<<(op-TK_EQ); 429 } 430 assert( op!=TK_ISNULL || c==WO_ISNULL ); 431 assert( op!=TK_IN || c==WO_IN ); 432 assert( op!=TK_EQ || c==WO_EQ ); 433 assert( op!=TK_LT || c==WO_LT ); 434 assert( op!=TK_LE || c==WO_LE ); 435 assert( op!=TK_GT || c==WO_GT ); 436 assert( op!=TK_GE || c==WO_GE ); 437 return c; 438 } 439 440 /* 441 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 442 ** where X is a reference to the iColumn of table iCur and <op> is one of 443 ** the WO_xx operator codes specified by the op parameter. 444 ** Return a pointer to the term. Return 0 if not found. 445 */ 446 static WhereTerm *findTerm( 447 WhereClause *pWC, /* The WHERE clause to be searched */ 448 int iCur, /* Cursor number of LHS */ 449 int iColumn, /* Column number of LHS */ 450 Bitmask notReady, /* RHS must not overlap with this mask */ 451 u16 op, /* Mask of WO_xx values describing operator */ 452 Index *pIdx /* Must be compatible with this index, if not NULL */ 453 ){ 454 WhereTerm *pTerm; 455 int k; 456 assert( iCur>=0 ); 457 for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){ 458 if( pTerm->leftCursor==iCur 459 && (pTerm->prereqRight & notReady)==0 460 && pTerm->leftColumn==iColumn 461 && (pTerm->eOperator & op)!=0 462 ){ 463 if( pIdx && pTerm->eOperator!=WO_ISNULL ){ 464 Expr *pX = pTerm->pExpr; 465 CollSeq *pColl; 466 char idxaff; 467 int j; 468 Parse *pParse = pWC->pParse; 469 470 idxaff = pIdx->pTable->aCol[iColumn].affinity; 471 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue; 472 473 /* Figure out the collation sequence required from an index for 474 ** it to be useful for optimising expression pX. Store this 475 ** value in variable pColl. 476 */ 477 assert(pX->pLeft); 478 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); 479 if( !pColl ){ 480 pColl = pParse->db->pDfltColl; 481 } 482 483 for(j=0; pIdx->aiColumn[j]!=iColumn; j++){ 484 if( NEVER(j>=pIdx->nColumn) ) return 0; 485 } 486 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue; 487 } 488 return pTerm; 489 } 490 } 491 return 0; 492 } 493 494 /* Forward reference */ 495 static void exprAnalyze(SrcList*, WhereClause*, int); 496 497 /* 498 ** Call exprAnalyze on all terms in a WHERE clause. 499 ** 500 ** 501 */ 502 static void exprAnalyzeAll( 503 SrcList *pTabList, /* the FROM clause */ 504 WhereClause *pWC /* the WHERE clause to be analyzed */ 505 ){ 506 int i; 507 for(i=pWC->nTerm-1; i>=0; i--){ 508 exprAnalyze(pTabList, pWC, i); 509 } 510 } 511 512 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 513 /* 514 ** Check to see if the given expression is a LIKE or GLOB operator that 515 ** can be optimized using inequality constraints. Return TRUE if it is 516 ** so and false if not. 517 ** 518 ** In order for the operator to be optimizible, the RHS must be a string 519 ** literal that does not begin with a wildcard. 520 */ 521 static int isLikeOrGlob( 522 sqlite3 *db, /* The database */ 523 Expr *pExpr, /* Test this expression */ 524 int *pnPattern, /* Number of non-wildcard prefix characters */ 525 int *pisComplete, /* True if the only wildcard is % in the last character */ 526 int *pnoCase /* True if uppercase is equivalent to lowercase */ 527 ){ 528 const char *z; 529 Expr *pRight, *pLeft; 530 ExprList *pList; 531 int c, cnt; 532 char wc[3]; 533 CollSeq *pColl; 534 535 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ 536 return 0; 537 } 538 #ifdef SQLITE_EBCDIC 539 if( *pnoCase ) return 0; 540 #endif 541 pList = pExpr->pList; 542 pRight = pList->a[0].pExpr; 543 if( pRight->op!=TK_STRING 544 && (pRight->op!=TK_REGISTER || pRight->iColumn!=TK_STRING) ){ 545 return 0; 546 } 547 pLeft = pList->a[1].pExpr; 548 if( pLeft->op!=TK_COLUMN ){ 549 return 0; 550 } 551 pColl = pLeft->pColl; 552 assert( pColl!=0 || pLeft->iColumn==-1 ); 553 if( pColl==0 ){ 554 /* No collation is defined for the ROWID. Use the default. */ 555 pColl = db->pDfltColl; 556 } 557 if( (pColl->type!=SQLITE_COLL_BINARY || *pnoCase) && 558 (pColl->type!=SQLITE_COLL_NOCASE || !*pnoCase) ){ 559 return 0; 560 } 561 sqlite3DequoteExpr(db, pRight); 562 z = (char *)pRight->token.z; 563 cnt = 0; 564 if( z ){ 565 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ cnt++; } 566 } 567 if( cnt==0 || 255==(u8)z[cnt] ){ 568 return 0; 569 } 570 *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0; 571 *pnPattern = cnt; 572 return 1; 573 } 574 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 575 576 577 #ifndef SQLITE_OMIT_VIRTUALTABLE 578 /* 579 ** Check to see if the given expression is of the form 580 ** 581 ** column MATCH expr 582 ** 583 ** If it is then return TRUE. If not, return FALSE. 584 */ 585 static int isMatchOfColumn( 586 Expr *pExpr /* Test this expression */ 587 ){ 588 ExprList *pList; 589 590 if( pExpr->op!=TK_FUNCTION ){ 591 return 0; 592 } 593 if( pExpr->token.n!=5 || 594 sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){ 595 return 0; 596 } 597 pList = pExpr->pList; 598 if( pList->nExpr!=2 ){ 599 return 0; 600 } 601 if( pList->a[1].pExpr->op != TK_COLUMN ){ 602 return 0; 603 } 604 return 1; 605 } 606 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 607 608 /* 609 ** If the pBase expression originated in the ON or USING clause of 610 ** a join, then transfer the appropriate markings over to derived. 611 */ 612 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ 613 pDerived->flags |= pBase->flags & EP_FromJoin; 614 pDerived->iRightJoinTable = pBase->iRightJoinTable; 615 } 616 617 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 618 /* 619 ** Return TRUE if the given term of an OR clause can be converted 620 ** into an IN clause. The iCursor and iColumn define the left-hand 621 ** side of the IN clause. 622 ** 623 ** The context is that we have multiple OR-connected equality terms 624 ** like this: 625 ** 626 ** a=<expr1> OR a=<expr2> OR b=<expr3> OR ... 627 ** 628 ** The pOrTerm input to this routine corresponds to a single term of 629 ** this OR clause. In order for the term to be a candidate for 630 ** conversion to an IN operator, the following must be true: 631 ** 632 ** * The left-hand side of the term must be the column which 633 ** is identified by iCursor and iColumn. 634 ** 635 ** * If the right-hand side is also a column, then the affinities 636 ** of both right and left sides must be such that no type 637 ** conversions are required on the right. (Ticket #2249) 638 ** 639 ** If both of these conditions are true, then return true. Otherwise 640 ** return false. 641 */ 642 static int orTermIsOptCandidate(WhereTerm *pOrTerm, int iCursor, int iColumn){ 643 int affLeft, affRight; 644 assert( pOrTerm->eOperator==WO_EQ ); 645 if( pOrTerm->leftCursor!=iCursor ){ 646 return 0; 647 } 648 if( pOrTerm->leftColumn!=iColumn ){ 649 return 0; 650 } 651 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); 652 if( affRight==0 ){ 653 return 1; 654 } 655 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); 656 if( affRight!=affLeft ){ 657 return 0; 658 } 659 return 1; 660 } 661 662 /* 663 ** Return true if the given term of an OR clause can be ignored during 664 ** a check to make sure all OR terms are candidates for optimization. 665 ** In other words, return true if a call to the orTermIsOptCandidate() 666 ** above returned false but it is not necessary to disqualify the 667 ** optimization. 668 ** 669 ** Suppose the original OR phrase was this: 670 ** 671 ** a=4 OR a=11 OR a=b 672 ** 673 ** During analysis, the third term gets flipped around and duplicate 674 ** so that we are left with this: 675 ** 676 ** a=4 OR a=11 OR a=b OR b=a 677 ** 678 ** Since the last two terms are duplicates, only one of them 679 ** has to qualify in order for the whole phrase to qualify. When 680 ** this routine is called, we know that pOrTerm did not qualify. 681 ** This routine merely checks to see if pOrTerm has a duplicate that 682 ** might qualify. If there is a duplicate that has not yet been 683 ** disqualified, then return true. If there are no duplicates, or 684 ** the duplicate has also been disqualified, return false. 685 */ 686 static int orTermHasOkDuplicate(WhereClause *pOr, WhereTerm *pOrTerm){ 687 if( pOrTerm->flags & TERM_COPIED ){ 688 /* This is the original term. The duplicate is to the left had 689 ** has not yet been analyzed and thus has not yet been disqualified. */ 690 return 1; 691 } 692 if( (pOrTerm->flags & TERM_VIRTUAL)!=0 693 && (pOr->a[pOrTerm->iParent].flags & TERM_OR_OK)!=0 ){ 694 /* This is a duplicate term. The original qualified so this one 695 ** does not have to. */ 696 return 1; 697 } 698 /* This is either a singleton term or else it is a duplicate for 699 ** which the original did not qualify. Either way we are done for. */ 700 return 0; 701 } 702 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ 703 704 /* 705 ** The input to this routine is an WhereTerm structure with only the 706 ** "pExpr" field filled in. The job of this routine is to analyze the 707 ** subexpression and populate all the other fields of the WhereTerm 708 ** structure. 709 ** 710 ** If the expression is of the form "<expr> <op> X" it gets commuted 711 ** to the standard form of "X <op> <expr>". If the expression is of 712 ** the form "X <op> Y" where both X and Y are columns, then the original 713 ** expression is unchanged and a new virtual expression of the form 714 ** "Y <op> X" is added to the WHERE clause and analyzed separately. 715 */ 716 static void exprAnalyze( 717 SrcList *pSrc, /* the FROM clause */ 718 WhereClause *pWC, /* the WHERE clause */ 719 int idxTerm /* Index of the term to be analyzed */ 720 ){ 721 WhereTerm *pTerm; 722 ExprMaskSet *pMaskSet; 723 Expr *pExpr; 724 Bitmask prereqLeft; 725 Bitmask prereqAll; 726 Bitmask extraRight = 0; 727 int nPattern; 728 int isComplete; 729 int noCase; 730 int op; 731 Parse *pParse = pWC->pParse; 732 sqlite3 *db = pParse->db; 733 734 if( db->mallocFailed ){ 735 return; 736 } 737 pTerm = &pWC->a[idxTerm]; 738 pMaskSet = pWC->pMaskSet; 739 pExpr = pTerm->pExpr; 740 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); 741 op = pExpr->op; 742 if( op==TK_IN ){ 743 assert( pExpr->pRight==0 ); 744 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList) 745 | exprSelectTableUsage(pMaskSet, pExpr->pSelect); 746 }else if( op==TK_ISNULL ){ 747 pTerm->prereqRight = 0; 748 }else{ 749 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); 750 } 751 prereqAll = exprTableUsage(pMaskSet, pExpr); 752 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 753 Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable); 754 prereqAll |= x; 755 extraRight = x-1; /* ON clause terms may not be used with an index 756 ** on left table of a LEFT JOIN. Ticket #3015 */ 757 } 758 pTerm->prereqAll = prereqAll; 759 pTerm->leftCursor = -1; 760 pTerm->iParent = -1; 761 pTerm->eOperator = 0; 762 if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){ 763 Expr *pLeft = pExpr->pLeft; 764 Expr *pRight = pExpr->pRight; 765 if( pLeft->op==TK_COLUMN ){ 766 pTerm->leftCursor = pLeft->iTable; 767 pTerm->leftColumn = pLeft->iColumn; 768 pTerm->eOperator = operatorMask(op); 769 } 770 if( pRight && pRight->op==TK_COLUMN ){ 771 WhereTerm *pNew; 772 Expr *pDup; 773 if( pTerm->leftCursor>=0 ){ 774 int idxNew; 775 pDup = sqlite3ExprDup(db, pExpr); 776 if( db->mallocFailed ){ 777 sqlite3ExprDelete(db, pDup); 778 return; 779 } 780 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); 781 if( idxNew==0 ) return; 782 pNew = &pWC->a[idxNew]; 783 pNew->iParent = idxTerm; 784 pTerm = &pWC->a[idxTerm]; 785 pTerm->nChild = 1; 786 pTerm->flags |= TERM_COPIED; 787 }else{ 788 pDup = pExpr; 789 pNew = pTerm; 790 } 791 exprCommute(pDup); 792 pLeft = pDup->pLeft; 793 pNew->leftCursor = pLeft->iTable; 794 pNew->leftColumn = pLeft->iColumn; 795 pNew->prereqRight = prereqLeft; 796 pNew->prereqAll = prereqAll; 797 pNew->eOperator = operatorMask(pDup->op); 798 } 799 } 800 801 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION 802 /* If a term is the BETWEEN operator, create two new virtual terms 803 ** that define the range that the BETWEEN implements. 804 */ 805 else if( pExpr->op==TK_BETWEEN ){ 806 ExprList *pList = pExpr->pList; 807 int i; 808 static const u8 ops[] = {TK_GE, TK_LE}; 809 assert( pList!=0 ); 810 assert( pList->nExpr==2 ); 811 for(i=0; i<2; i++){ 812 Expr *pNewExpr; 813 int idxNew; 814 pNewExpr = sqlite3Expr(db, ops[i], sqlite3ExprDup(db, pExpr->pLeft), 815 sqlite3ExprDup(db, pList->a[i].pExpr), 0); 816 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 817 exprAnalyze(pSrc, pWC, idxNew); 818 pTerm = &pWC->a[idxTerm]; 819 pWC->a[idxNew].iParent = idxTerm; 820 } 821 pTerm->nChild = 2; 822 } 823 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ 824 825 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 826 /* Attempt to convert OR-connected terms into an IN operator so that 827 ** they can make use of indices. Example: 828 ** 829 ** x = expr1 OR expr2 = x OR x = expr3 830 ** 831 ** is converted into 832 ** 833 ** x IN (expr1,expr2,expr3) 834 ** 835 ** This optimization must be omitted if OMIT_SUBQUERY is defined because 836 ** the compiler for the the IN operator is part of sub-queries. 837 */ 838 else if( pExpr->op==TK_OR ){ 839 int ok; 840 int i, j; 841 int iColumn, iCursor; 842 WhereClause sOr; 843 WhereTerm *pOrTerm; 844 845 assert( (pTerm->flags & TERM_DYNAMIC)==0 ); 846 whereClauseInit(&sOr, pWC->pParse, pMaskSet); 847 whereSplit(&sOr, pExpr, TK_OR); 848 exprAnalyzeAll(pSrc, &sOr); 849 assert( sOr.nTerm>=2 ); 850 j = 0; 851 if( db->mallocFailed ) goto or_not_possible; 852 do{ 853 assert( j<sOr.nTerm ); 854 iColumn = sOr.a[j].leftColumn; 855 iCursor = sOr.a[j].leftCursor; 856 ok = iCursor>=0; 857 for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){ 858 if( pOrTerm->eOperator!=WO_EQ ){ 859 goto or_not_possible; 860 } 861 if( orTermIsOptCandidate(pOrTerm, iCursor, iColumn) ){ 862 pOrTerm->flags |= TERM_OR_OK; 863 }else if( orTermHasOkDuplicate(&sOr, pOrTerm) ){ 864 pOrTerm->flags &= ~TERM_OR_OK; 865 }else{ 866 ok = 0; 867 } 868 } 869 }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<2 ); 870 if( ok ){ 871 ExprList *pList = 0; 872 Expr *pNew, *pDup; 873 Expr *pLeft = 0; 874 for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0; i--, pOrTerm++){ 875 if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue; 876 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight); 877 pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup, 0); 878 pLeft = pOrTerm->pExpr->pLeft; 879 } 880 assert( pLeft!=0 ); 881 pDup = sqlite3ExprDup(db, pLeft); 882 pNew = sqlite3Expr(db, TK_IN, pDup, 0, 0); 883 if( pNew ){ 884 int idxNew; 885 transferJoinMarkings(pNew, pExpr); 886 pNew->pList = pList; 887 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 888 exprAnalyze(pSrc, pWC, idxNew); 889 pTerm = &pWC->a[idxTerm]; 890 pWC->a[idxNew].iParent = idxTerm; 891 pTerm->nChild = 1; 892 }else{ 893 sqlite3ExprListDelete(db, pList); 894 } 895 } 896 or_not_possible: 897 whereClauseClear(&sOr); 898 } 899 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 900 901 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 902 /* Add constraints to reduce the search space on a LIKE or GLOB 903 ** operator. 904 ** 905 ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints 906 ** 907 ** x>='abc' AND x<'abd' AND x LIKE 'abc%' 908 ** 909 ** The last character of the prefix "abc" is incremented to form the 910 ** termination condition "abd". 911 */ 912 if( isLikeOrGlob(db, pExpr, &nPattern, &isComplete, &noCase) ){ 913 Expr *pLeft, *pRight; 914 Expr *pStr1, *pStr2; 915 Expr *pNewExpr1, *pNewExpr2; 916 int idxNew1, idxNew2; 917 918 pLeft = pExpr->pList->a[1].pExpr; 919 pRight = pExpr->pList->a[0].pExpr; 920 pStr1 = sqlite3PExpr(pParse, TK_STRING, 0, 0, 0); 921 if( pStr1 ){ 922 sqlite3TokenCopy(db, &pStr1->token, &pRight->token); 923 pStr1->token.n = nPattern; 924 pStr1->flags = EP_Dequoted; 925 } 926 pStr2 = sqlite3ExprDup(db, pStr1); 927 if( !db->mallocFailed ){ 928 u8 c, *pC; 929 assert( pStr2->token.dyn ); 930 pC = (u8*)&pStr2->token.z[nPattern-1]; 931 c = *pC; 932 if( noCase ){ 933 if( c=='@' ) isComplete = 0; 934 c = sqlite3UpperToLower[c]; 935 } 936 *pC = c + 1; 937 } 938 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft), pStr1, 0); 939 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); 940 exprAnalyze(pSrc, pWC, idxNew1); 941 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft), pStr2, 0); 942 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); 943 exprAnalyze(pSrc, pWC, idxNew2); 944 pTerm = &pWC->a[idxTerm]; 945 if( isComplete ){ 946 pWC->a[idxNew1].iParent = idxTerm; 947 pWC->a[idxNew2].iParent = idxTerm; 948 pTerm->nChild = 2; 949 } 950 } 951 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 952 953 #ifndef SQLITE_OMIT_VIRTUALTABLE 954 /* Add a WO_MATCH auxiliary term to the constraint set if the 955 ** current expression is of the form: column MATCH expr. 956 ** This information is used by the xBestIndex methods of 957 ** virtual tables. The native query optimizer does not attempt 958 ** to do anything with MATCH functions. 959 */ 960 if( isMatchOfColumn(pExpr) ){ 961 int idxNew; 962 Expr *pRight, *pLeft; 963 WhereTerm *pNewTerm; 964 Bitmask prereqColumn, prereqExpr; 965 966 pRight = pExpr->pList->a[0].pExpr; 967 pLeft = pExpr->pList->a[1].pExpr; 968 prereqExpr = exprTableUsage(pMaskSet, pRight); 969 prereqColumn = exprTableUsage(pMaskSet, pLeft); 970 if( (prereqExpr & prereqColumn)==0 ){ 971 Expr *pNewExpr; 972 pNewExpr = sqlite3Expr(db, TK_MATCH, 0, sqlite3ExprDup(db, pRight), 0); 973 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 974 pNewTerm = &pWC->a[idxNew]; 975 pNewTerm->prereqRight = prereqExpr; 976 pNewTerm->leftCursor = pLeft->iTable; 977 pNewTerm->leftColumn = pLeft->iColumn; 978 pNewTerm->eOperator = WO_MATCH; 979 pNewTerm->iParent = idxTerm; 980 pTerm = &pWC->a[idxTerm]; 981 pTerm->nChild = 1; 982 pTerm->flags |= TERM_COPIED; 983 pNewTerm->prereqAll = pTerm->prereqAll; 984 } 985 } 986 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 987 988 /* Prevent ON clause terms of a LEFT JOIN from being used to drive 989 ** an index for tables to the left of the join. 990 */ 991 pTerm->prereqRight |= extraRight; 992 } 993 994 /* 995 ** Return TRUE if any of the expressions in pList->a[iFirst...] contain 996 ** a reference to any table other than the iBase table. 997 */ 998 static int referencesOtherTables( 999 ExprList *pList, /* Search expressions in ths list */ 1000 ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ 1001 int iFirst, /* Be searching with the iFirst-th expression */ 1002 int iBase /* Ignore references to this table */ 1003 ){ 1004 Bitmask allowed = ~getMask(pMaskSet, iBase); 1005 while( iFirst<pList->nExpr ){ 1006 if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){ 1007 return 1; 1008 } 1009 } 1010 return 0; 1011 } 1012 1013 1014 /* 1015 ** This routine decides if pIdx can be used to satisfy the ORDER BY 1016 ** clause. If it can, it returns 1. If pIdx cannot satisfy the 1017 ** ORDER BY clause, this routine returns 0. 1018 ** 1019 ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the 1020 ** left-most table in the FROM clause of that same SELECT statement and 1021 ** the table has a cursor number of "base". pIdx is an index on pTab. 1022 ** 1023 ** nEqCol is the number of columns of pIdx that are used as equality 1024 ** constraints. Any of these columns may be missing from the ORDER BY 1025 ** clause and the match can still be a success. 1026 ** 1027 ** All terms of the ORDER BY that match against the index must be either 1028 ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE 1029 ** index do not need to satisfy this constraint.) The *pbRev value is 1030 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if 1031 ** the ORDER BY clause is all ASC. 1032 */ 1033 static int isSortingIndex( 1034 Parse *pParse, /* Parsing context */ 1035 ExprMaskSet *pMaskSet, /* Mapping from table indices to bitmaps */ 1036 Index *pIdx, /* The index we are testing */ 1037 int base, /* Cursor number for the table to be sorted */ 1038 ExprList *pOrderBy, /* The ORDER BY clause */ 1039 int nEqCol, /* Number of index columns with == constraints */ 1040 int *pbRev /* Set to 1 if ORDER BY is DESC */ 1041 ){ 1042 int i, j; /* Loop counters */ 1043 int sortOrder = 0; /* XOR of index and ORDER BY sort direction */ 1044 int nTerm; /* Number of ORDER BY terms */ 1045 struct ExprList_item *pTerm; /* A term of the ORDER BY clause */ 1046 sqlite3 *db = pParse->db; 1047 1048 assert( pOrderBy!=0 ); 1049 nTerm = pOrderBy->nExpr; 1050 assert( nTerm>0 ); 1051 1052 /* Match terms of the ORDER BY clause against columns of 1053 ** the index. 1054 ** 1055 ** Note that indices have pIdx->nColumn regular columns plus 1056 ** one additional column containing the rowid. The rowid column 1057 ** of the index is also allowed to match against the ORDER BY 1058 ** clause. 1059 */ 1060 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){ 1061 Expr *pExpr; /* The expression of the ORDER BY pTerm */ 1062 CollSeq *pColl; /* The collating sequence of pExpr */ 1063 int termSortOrder; /* Sort order for this term */ 1064 int iColumn; /* The i-th column of the index. -1 for rowid */ 1065 int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */ 1066 const char *zColl; /* Name of the collating sequence for i-th index term */ 1067 1068 pExpr = pTerm->pExpr; 1069 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){ 1070 /* Can not use an index sort on anything that is not a column in the 1071 ** left-most table of the FROM clause */ 1072 break; 1073 } 1074 pColl = sqlite3ExprCollSeq(pParse, pExpr); 1075 if( !pColl ){ 1076 pColl = db->pDfltColl; 1077 } 1078 if( i<pIdx->nColumn ){ 1079 iColumn = pIdx->aiColumn[i]; 1080 if( iColumn==pIdx->pTable->iPKey ){ 1081 iColumn = -1; 1082 } 1083 iSortOrder = pIdx->aSortOrder[i]; 1084 zColl = pIdx->azColl[i]; 1085 }else{ 1086 iColumn = -1; 1087 iSortOrder = 0; 1088 zColl = pColl->zName; 1089 } 1090 if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){ 1091 /* Term j of the ORDER BY clause does not match column i of the index */ 1092 if( i<nEqCol ){ 1093 /* If an index column that is constrained by == fails to match an 1094 ** ORDER BY term, that is OK. Just ignore that column of the index 1095 */ 1096 continue; 1097 }else if( i==pIdx->nColumn ){ 1098 /* Index column i is the rowid. All other terms match. */ 1099 break; 1100 }else{ 1101 /* If an index column fails to match and is not constrained by == 1102 ** then the index cannot satisfy the ORDER BY constraint. 1103 */ 1104 return 0; 1105 } 1106 } 1107 assert( pIdx->aSortOrder!=0 ); 1108 assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 ); 1109 assert( iSortOrder==0 || iSortOrder==1 ); 1110 termSortOrder = iSortOrder ^ pTerm->sortOrder; 1111 if( i>nEqCol ){ 1112 if( termSortOrder!=sortOrder ){ 1113 /* Indices can only be used if all ORDER BY terms past the 1114 ** equality constraints are all either DESC or ASC. */ 1115 return 0; 1116 } 1117 }else{ 1118 sortOrder = termSortOrder; 1119 } 1120 j++; 1121 pTerm++; 1122 if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ 1123 /* If the indexed column is the primary key and everything matches 1124 ** so far and none of the ORDER BY terms to the right reference other 1125 ** tables in the join, then we are assured that the index can be used 1126 ** to sort because the primary key is unique and so none of the other 1127 ** columns will make any difference 1128 */ 1129 j = nTerm; 1130 } 1131 } 1132 1133 *pbRev = sortOrder!=0; 1134 if( j>=nTerm ){ 1135 /* All terms of the ORDER BY clause are covered by this index so 1136 ** this index can be used for sorting. */ 1137 return 1; 1138 } 1139 if( pIdx->onError!=OE_None && i==pIdx->nColumn 1140 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ 1141 /* All terms of this index match some prefix of the ORDER BY clause 1142 ** and the index is UNIQUE and no terms on the tail of the ORDER BY 1143 ** clause reference other tables in a join. If this is all true then 1144 ** the order by clause is superfluous. */ 1145 return 1; 1146 } 1147 return 0; 1148 } 1149 1150 /* 1151 ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied 1152 ** by sorting in order of ROWID. Return true if so and set *pbRev to be 1153 ** true for reverse ROWID and false for forward ROWID order. 1154 */ 1155 static int sortableByRowid( 1156 int base, /* Cursor number for table to be sorted */ 1157 ExprList *pOrderBy, /* The ORDER BY clause */ 1158 ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ 1159 int *pbRev /* Set to 1 if ORDER BY is DESC */ 1160 ){ 1161 Expr *p; 1162 1163 assert( pOrderBy!=0 ); 1164 assert( pOrderBy->nExpr>0 ); 1165 p = pOrderBy->a[0].pExpr; 1166 if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1 1167 && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){ 1168 *pbRev = pOrderBy->a[0].sortOrder; 1169 return 1; 1170 } 1171 return 0; 1172 } 1173 1174 /* 1175 ** Prepare a crude estimate of the logarithm of the input value. 1176 ** The results need not be exact. This is only used for estimating 1177 ** the total cost of performing operations with O(logN) or O(NlogN) 1178 ** complexity. Because N is just a guess, it is no great tragedy if 1179 ** logN is a little off. 1180 */ 1181 static double estLog(double N){ 1182 double logN = 1; 1183 double x = 10; 1184 while( N>x ){ 1185 logN += 1; 1186 x *= 10; 1187 } 1188 return logN; 1189 } 1190 1191 /* 1192 ** Two routines for printing the content of an sqlite3_index_info 1193 ** structure. Used for testing and debugging only. If neither 1194 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 1195 ** are no-ops. 1196 */ 1197 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG) 1198 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ 1199 int i; 1200 if( !sqlite3WhereTrace ) return; 1201 for(i=0; i<p->nConstraint; i++){ 1202 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 1203 i, 1204 p->aConstraint[i].iColumn, 1205 p->aConstraint[i].iTermOffset, 1206 p->aConstraint[i].op, 1207 p->aConstraint[i].usable); 1208 } 1209 for(i=0; i<p->nOrderBy; i++){ 1210 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 1211 i, 1212 p->aOrderBy[i].iColumn, 1213 p->aOrderBy[i].desc); 1214 } 1215 } 1216 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ 1217 int i; 1218 if( !sqlite3WhereTrace ) return; 1219 for(i=0; i<p->nConstraint; i++){ 1220 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 1221 i, 1222 p->aConstraintUsage[i].argvIndex, 1223 p->aConstraintUsage[i].omit); 1224 } 1225 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 1226 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 1227 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 1228 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 1229 } 1230 #else 1231 #define TRACE_IDX_INPUTS(A) 1232 #define TRACE_IDX_OUTPUTS(A) 1233 #endif 1234 1235 #ifndef SQLITE_OMIT_VIRTUALTABLE 1236 /* 1237 ** Compute the best index for a virtual table. 1238 ** 1239 ** The best index is computed by the xBestIndex method of the virtual 1240 ** table module. This routine is really just a wrapper that sets up 1241 ** the sqlite3_index_info structure that is used to communicate with 1242 ** xBestIndex. 1243 ** 1244 ** In a join, this routine might be called multiple times for the 1245 ** same virtual table. The sqlite3_index_info structure is created 1246 ** and initialized on the first invocation and reused on all subsequent 1247 ** invocations. The sqlite3_index_info structure is also used when 1248 ** code is generated to access the virtual table. The whereInfoDelete() 1249 ** routine takes care of freeing the sqlite3_index_info structure after 1250 ** everybody has finished with it. 1251 */ 1252 static double bestVirtualIndex( 1253 Parse *pParse, /* The parsing context */ 1254 WhereClause *pWC, /* The WHERE clause */ 1255 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1256 Bitmask notReady, /* Mask of cursors that are not available */ 1257 ExprList *pOrderBy, /* The order by clause */ 1258 int orderByUsable, /* True if we can potential sort */ 1259 sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */ 1260 ){ 1261 Table *pTab = pSrc->pTab; 1262 sqlite3_index_info *pIdxInfo; 1263 struct sqlite3_index_constraint *pIdxCons; 1264 struct sqlite3_index_orderby *pIdxOrderBy; 1265 struct sqlite3_index_constraint_usage *pUsage; 1266 WhereTerm *pTerm; 1267 int i, j; 1268 int nOrderBy; 1269 int rc; 1270 1271 /* If the sqlite3_index_info structure has not been previously 1272 ** allocated and initialized for this virtual table, then allocate 1273 ** and initialize it now 1274 */ 1275 pIdxInfo = *ppIdxInfo; 1276 if( pIdxInfo==0 ){ 1277 WhereTerm *pTerm; 1278 int nTerm; 1279 WHERETRACE(("Recomputing index info for %s...\n", pTab->zName)); 1280 1281 /* Count the number of possible WHERE clause constraints referring 1282 ** to this virtual table */ 1283 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1284 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1285 if( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); 1286 testcase( pTerm->eOperator==WO_IN ); 1287 testcase( pTerm->eOperator==WO_ISNULL ); 1288 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; 1289 nTerm++; 1290 } 1291 1292 /* If the ORDER BY clause contains only columns in the current 1293 ** virtual table then allocate space for the aOrderBy part of 1294 ** the sqlite3_index_info structure. 1295 */ 1296 nOrderBy = 0; 1297 if( pOrderBy ){ 1298 for(i=0; i<pOrderBy->nExpr; i++){ 1299 Expr *pExpr = pOrderBy->a[i].pExpr; 1300 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 1301 } 1302 if( i==pOrderBy->nExpr ){ 1303 nOrderBy = pOrderBy->nExpr; 1304 } 1305 } 1306 1307 /* Allocate the sqlite3_index_info structure 1308 */ 1309 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 1310 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 1311 + sizeof(*pIdxOrderBy)*nOrderBy ); 1312 if( pIdxInfo==0 ){ 1313 sqlite3ErrorMsg(pParse, "out of memory"); 1314 return 0.0; 1315 } 1316 *ppIdxInfo = pIdxInfo; 1317 1318 /* Initialize the structure. The sqlite3_index_info structure contains 1319 ** many fields that are declared "const" to prevent xBestIndex from 1320 ** changing them. We have to do some funky casting in order to 1321 ** initialize those fields. 1322 */ 1323 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; 1324 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 1325 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 1326 *(int*)&pIdxInfo->nConstraint = nTerm; 1327 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 1328 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; 1329 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; 1330 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = 1331 pUsage; 1332 1333 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1334 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1335 if( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); 1336 testcase( pTerm->eOperator==WO_IN ); 1337 testcase( pTerm->eOperator==WO_ISNULL ); 1338 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; 1339 pIdxCons[j].iColumn = pTerm->leftColumn; 1340 pIdxCons[j].iTermOffset = i; 1341 pIdxCons[j].op = pTerm->eOperator; 1342 /* The direct assignment in the previous line is possible only because 1343 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 1344 ** following asserts verify this fact. */ 1345 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 1346 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 1347 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 1348 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 1349 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 1350 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); 1351 assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); 1352 j++; 1353 } 1354 for(i=0; i<nOrderBy; i++){ 1355 Expr *pExpr = pOrderBy->a[i].pExpr; 1356 pIdxOrderBy[i].iColumn = pExpr->iColumn; 1357 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; 1358 } 1359 } 1360 1361 /* At this point, the sqlite3_index_info structure that pIdxInfo points 1362 ** to will have been initialized, either during the current invocation or 1363 ** during some prior invocation. Now we just have to customize the 1364 ** details of pIdxInfo for the current invocation and pass it to 1365 ** xBestIndex. 1366 */ 1367 1368 /* The module name must be defined. Also, by this point there must 1369 ** be a pointer to an sqlite3_vtab structure. Otherwise 1370 ** sqlite3ViewGetColumnNames() would have picked up the error. 1371 */ 1372 assert( pTab->azModuleArg && pTab->azModuleArg[0] ); 1373 assert( pTab->pVtab ); 1374 #if 0 1375 if( pTab->pVtab==0 ){ 1376 sqlite3ErrorMsg(pParse, "undefined module %s for table %s", 1377 pTab->azModuleArg[0], pTab->zName); 1378 return 0.0; 1379 } 1380 #endif 1381 1382 /* Set the aConstraint[].usable fields and initialize all 1383 ** output variables to zero. 1384 ** 1385 ** aConstraint[].usable is true for constraints where the right-hand 1386 ** side contains only references to tables to the left of the current 1387 ** table. In other words, if the constraint is of the form: 1388 ** 1389 ** column = expr 1390 ** 1391 ** and we are evaluating a join, then the constraint on column is 1392 ** only valid if all tables referenced in expr occur to the left 1393 ** of the table containing column. 1394 ** 1395 ** The aConstraints[] array contains entries for all constraints 1396 ** on the current table. That way we only have to compute it once 1397 ** even though we might try to pick the best index multiple times. 1398 ** For each attempt at picking an index, the order of tables in the 1399 ** join might be different so we have to recompute the usable flag 1400 ** each time. 1401 */ 1402 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 1403 pUsage = pIdxInfo->aConstraintUsage; 1404 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ 1405 j = pIdxCons->iTermOffset; 1406 pTerm = &pWC->a[j]; 1407 pIdxCons->usable = (pTerm->prereqRight & notReady)==0; 1408 } 1409 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); 1410 if( pIdxInfo->needToFreeIdxStr ){ 1411 sqlite3_free(pIdxInfo->idxStr); 1412 } 1413 pIdxInfo->idxStr = 0; 1414 pIdxInfo->idxNum = 0; 1415 pIdxInfo->needToFreeIdxStr = 0; 1416 pIdxInfo->orderByConsumed = 0; 1417 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0; 1418 nOrderBy = pIdxInfo->nOrderBy; 1419 if( pIdxInfo->nOrderBy && !orderByUsable ){ 1420 *(int*)&pIdxInfo->nOrderBy = 0; 1421 } 1422 1423 (void)sqlite3SafetyOff(pParse->db); 1424 WHERETRACE(("xBestIndex for %s\n", pTab->zName)); 1425 TRACE_IDX_INPUTS(pIdxInfo); 1426 rc = pTab->pVtab->pModule->xBestIndex(pTab->pVtab, pIdxInfo); 1427 TRACE_IDX_OUTPUTS(pIdxInfo); 1428 (void)sqlite3SafetyOn(pParse->db); 1429 1430 for(i=0; i<pIdxInfo->nConstraint; i++){ 1431 if( !pIdxInfo->aConstraint[i].usable && pUsage[i].argvIndex>0 ){ 1432 sqlite3ErrorMsg(pParse, 1433 "table %s: xBestIndex returned an invalid plan", pTab->zName); 1434 return 0.0; 1435 } 1436 } 1437 1438 if( rc!=SQLITE_OK ){ 1439 if( rc==SQLITE_NOMEM ){ 1440 pParse->db->mallocFailed = 1; 1441 }else { 1442 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 1443 } 1444 } 1445 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 1446 1447 return pIdxInfo->estimatedCost; 1448 } 1449 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1450 1451 /* 1452 ** Find the best index for accessing a particular table. Return a pointer 1453 ** to the index, flags that describe how the index should be used, the 1454 ** number of equality constraints, and the "cost" for this index. 1455 ** 1456 ** The lowest cost index wins. The cost is an estimate of the amount of 1457 ** CPU and disk I/O need to process the request using the selected index. 1458 ** Factors that influence cost include: 1459 ** 1460 ** * The estimated number of rows that will be retrieved. (The 1461 ** fewer the better.) 1462 ** 1463 ** * Whether or not sorting must occur. 1464 ** 1465 ** * Whether or not there must be separate lookups in the 1466 ** index and in the main table. 1467 ** 1468 */ 1469 static double bestIndex( 1470 Parse *pParse, /* The parsing context */ 1471 WhereClause *pWC, /* The WHERE clause */ 1472 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1473 Bitmask notReady, /* Mask of cursors that are not available */ 1474 ExprList *pOrderBy, /* The order by clause */ 1475 Index **ppIndex, /* Make *ppIndex point to the best index */ 1476 int *pFlags, /* Put flags describing this choice in *pFlags */ 1477 int *pnEq /* Put the number of == or IN constraints here */ 1478 ){ 1479 WhereTerm *pTerm; 1480 Index *bestIdx = 0; /* Index that gives the lowest cost */ 1481 double lowestCost; /* The cost of using bestIdx */ 1482 int bestFlags = 0; /* Flags associated with bestIdx */ 1483 int bestNEq = 0; /* Best value for nEq */ 1484 int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ 1485 Index *pProbe; /* An index we are evaluating */ 1486 int rev; /* True to scan in reverse order */ 1487 int flags; /* Flags associated with pProbe */ 1488 int nEq; /* Number of == or IN constraints */ 1489 int eqTermMask; /* Mask of valid equality operators */ 1490 double cost; /* Cost of using pProbe */ 1491 1492 WHERETRACE(("bestIndex: tbl=%s notReady=%llx\n", pSrc->pTab->zName, notReady)); 1493 lowestCost = SQLITE_BIG_DBL; 1494 pProbe = pSrc->pTab->pIndex; 1495 1496 /* If the table has no indices and there are no terms in the where 1497 ** clause that refer to the ROWID, then we will never be able to do 1498 ** anything other than a full table scan on this table. We might as 1499 ** well put it first in the join order. That way, perhaps it can be 1500 ** referenced by other tables in the join. 1501 */ 1502 if( pProbe==0 && 1503 findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 && 1504 (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){ 1505 *pFlags = 0; 1506 *ppIndex = 0; 1507 *pnEq = 0; 1508 return 0.0; 1509 } 1510 1511 /* Check for a rowid=EXPR or rowid IN (...) constraints 1512 */ 1513 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); 1514 if( pTerm ){ 1515 Expr *pExpr; 1516 *ppIndex = 0; 1517 bestFlags = WHERE_ROWID_EQ; 1518 if( pTerm->eOperator & WO_EQ ){ 1519 /* Rowid== is always the best pick. Look no further. Because only 1520 ** a single row is generated, output is always in sorted order */ 1521 *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE; 1522 *pnEq = 1; 1523 WHERETRACE(("... best is rowid\n")); 1524 return 0.0; 1525 }else if( (pExpr = pTerm->pExpr)->pList!=0 ){ 1526 /* Rowid IN (LIST): cost is NlogN where N is the number of list 1527 ** elements. */ 1528 lowestCost = pExpr->pList->nExpr; 1529 lowestCost *= estLog(lowestCost); 1530 }else{ 1531 /* Rowid IN (SELECT): cost is NlogN where N is the number of rows 1532 ** in the result of the inner select. We have no way to estimate 1533 ** that value so make a wild guess. */ 1534 lowestCost = 200; 1535 } 1536 WHERETRACE(("... rowid IN cost: %.9g\n", lowestCost)); 1537 } 1538 1539 /* Estimate the cost of a table scan. If we do not know how many 1540 ** entries are in the table, use 1 million as a guess. 1541 */ 1542 cost = pProbe ? pProbe->aiRowEst[0] : 1000000; 1543 WHERETRACE(("... table scan base cost: %.9g\n", cost)); 1544 flags = WHERE_ROWID_RANGE; 1545 1546 /* Check for constraints on a range of rowids in a table scan. 1547 */ 1548 pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0); 1549 if( pTerm ){ 1550 if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){ 1551 flags |= WHERE_TOP_LIMIT; 1552 cost /= 3; /* Guess that rowid<EXPR eliminates two-thirds or rows */ 1553 } 1554 if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){ 1555 flags |= WHERE_BTM_LIMIT; 1556 cost /= 3; /* Guess that rowid>EXPR eliminates two-thirds of rows */ 1557 } 1558 WHERETRACE(("... rowid range reduces cost to %.9g\n", cost)); 1559 }else{ 1560 flags = 0; 1561 } 1562 1563 /* If the table scan does not satisfy the ORDER BY clause, increase 1564 ** the cost by NlogN to cover the expense of sorting. */ 1565 if( pOrderBy ){ 1566 if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){ 1567 flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE; 1568 if( rev ){ 1569 flags |= WHERE_REVERSE; 1570 } 1571 }else{ 1572 cost += cost*estLog(cost); 1573 WHERETRACE(("... sorting increases cost to %.9g\n", cost)); 1574 } 1575 } 1576 if( cost<lowestCost ){ 1577 lowestCost = cost; 1578 bestFlags = flags; 1579 } 1580 1581 /* If the pSrc table is the right table of a LEFT JOIN then we may not 1582 ** use an index to satisfy IS NULL constraints on that table. This is 1583 ** because columns might end up being NULL if the table does not match - 1584 ** a circumstance which the index cannot help us discover. Ticket #2177. 1585 */ 1586 if( (pSrc->jointype & JT_LEFT)!=0 ){ 1587 eqTermMask = WO_EQ|WO_IN; 1588 }else{ 1589 eqTermMask = WO_EQ|WO_IN|WO_ISNULL; 1590 } 1591 1592 /* Look at each index. 1593 */ 1594 for(; pProbe; pProbe=pProbe->pNext){ 1595 int i; /* Loop counter */ 1596 double inMultiplier = 1; 1597 1598 WHERETRACE(("... index %s:\n", pProbe->zName)); 1599 1600 /* Count the number of columns in the index that are satisfied 1601 ** by x=EXPR constraints or x IN (...) constraints. 1602 */ 1603 flags = 0; 1604 for(i=0; i<pProbe->nColumn; i++){ 1605 int j = pProbe->aiColumn[i]; 1606 pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe); 1607 if( pTerm==0 ) break; 1608 flags |= WHERE_COLUMN_EQ; 1609 if( pTerm->eOperator & WO_IN ){ 1610 Expr *pExpr = pTerm->pExpr; 1611 flags |= WHERE_COLUMN_IN; 1612 if( pExpr->pSelect!=0 ){ 1613 inMultiplier *= 25; 1614 }else if( ALWAYS(pExpr->pList) ){ 1615 inMultiplier *= pExpr->pList->nExpr + 1; 1616 } 1617 } 1618 } 1619 cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier); 1620 nEq = i; 1621 if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0 1622 && nEq==pProbe->nColumn ){ 1623 flags |= WHERE_UNIQUE; 1624 } 1625 WHERETRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n",nEq,inMultiplier,cost)); 1626 1627 /* Look for range constraints 1628 */ 1629 if( nEq<pProbe->nColumn ){ 1630 int j = pProbe->aiColumn[nEq]; 1631 pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe); 1632 if( pTerm ){ 1633 flags |= WHERE_COLUMN_RANGE; 1634 if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){ 1635 flags |= WHERE_TOP_LIMIT; 1636 cost /= 3; 1637 } 1638 if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){ 1639 flags |= WHERE_BTM_LIMIT; 1640 cost /= 3; 1641 } 1642 WHERETRACE(("...... range reduces cost to %.9g\n", cost)); 1643 } 1644 } 1645 1646 /* Add the additional cost of sorting if that is a factor. 1647 */ 1648 if( pOrderBy ){ 1649 if( (flags & WHERE_COLUMN_IN)==0 && 1650 isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){ 1651 if( flags==0 ){ 1652 flags = WHERE_COLUMN_RANGE; 1653 } 1654 flags |= WHERE_ORDERBY; 1655 if( rev ){ 1656 flags |= WHERE_REVERSE; 1657 } 1658 }else{ 1659 cost += cost*estLog(cost); 1660 WHERETRACE(("...... orderby increases cost to %.9g\n", cost)); 1661 } 1662 } 1663 1664 /* Check to see if we can get away with using just the index without 1665 ** ever reading the table. If that is the case, then halve the 1666 ** cost of this index. 1667 */ 1668 if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){ 1669 Bitmask m = pSrc->colUsed; 1670 int j; 1671 for(j=0; j<pProbe->nColumn; j++){ 1672 int x = pProbe->aiColumn[j]; 1673 if( x<BMS-1 ){ 1674 m &= ~(((Bitmask)1)<<x); 1675 } 1676 } 1677 if( m==0 ){ 1678 flags |= WHERE_IDX_ONLY; 1679 cost /= 2; 1680 WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost)); 1681 } 1682 } 1683 1684 /* If this index has achieved the lowest cost so far, then use it. 1685 */ 1686 if( flags && cost < lowestCost ){ 1687 bestIdx = pProbe; 1688 lowestCost = cost; 1689 bestFlags = flags; 1690 bestNEq = nEq; 1691 } 1692 } 1693 1694 /* Report the best result 1695 */ 1696 *ppIndex = bestIdx; 1697 WHERETRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n", 1698 bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq)); 1699 *pFlags = bestFlags | eqTermMask; 1700 *pnEq = bestNEq; 1701 return lowestCost; 1702 } 1703 1704 1705 /* 1706 ** Disable a term in the WHERE clause. Except, do not disable the term 1707 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 1708 ** or USING clause of that join. 1709 ** 1710 ** Consider the term t2.z='ok' in the following queries: 1711 ** 1712 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 1713 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 1714 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 1715 ** 1716 ** The t2.z='ok' is disabled in the in (2) because it originates 1717 ** in the ON clause. The term is disabled in (3) because it is not part 1718 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 1719 ** 1720 ** Disabling a term causes that term to not be tested in the inner loop 1721 ** of the join. Disabling is an optimization. When terms are satisfied 1722 ** by indices, we disable them to prevent redundant tests in the inner 1723 ** loop. We would get the correct results if nothing were ever disabled, 1724 ** but joins might run a little slower. The trick is to disable as much 1725 ** as we can without disabling too much. If we disabled in (1), we'd get 1726 ** the wrong answer. See ticket #813. 1727 */ 1728 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 1729 if( pTerm 1730 && ALWAYS((pTerm->flags & TERM_CODED)==0) 1731 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 1732 ){ 1733 pTerm->flags |= TERM_CODED; 1734 if( pTerm->iParent>=0 ){ 1735 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; 1736 if( (--pOther->nChild)==0 ){ 1737 disableTerm(pLevel, pOther); 1738 } 1739 } 1740 } 1741 } 1742 1743 /* 1744 ** Apply the affinities associated with the first n columns of index 1745 ** pIdx to the values in the n registers starting at base. 1746 */ 1747 static void codeApplyAffinity(Parse *pParse, int base, int n, Index *pIdx){ 1748 if( n>0 ){ 1749 Vdbe *v = pParse->pVdbe; 1750 assert( v!=0 ); 1751 sqlite3VdbeAddOp2(v, OP_Affinity, base, n); 1752 sqlite3IndexAffinityStr(v, pIdx); 1753 sqlite3ExprCacheAffinityChange(pParse, base, n); 1754 } 1755 } 1756 1757 1758 /* 1759 ** Generate code for a single equality term of the WHERE clause. An equality 1760 ** term can be either X=expr or X IN (...). pTerm is the term to be 1761 ** coded. 1762 ** 1763 ** The current value for the constraint is left in register iReg. 1764 ** 1765 ** For a constraint of the form X=expr, the expression is evaluated and its 1766 ** result is left on the stack. For constraints of the form X IN (...) 1767 ** this routine sets up a loop that will iterate over all values of X. 1768 */ 1769 static int codeEqualityTerm( 1770 Parse *pParse, /* The parsing context */ 1771 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 1772 WhereLevel *pLevel, /* When level of the FROM clause we are working on */ 1773 int iTarget /* Attempt to leave results in this register */ 1774 ){ 1775 Expr *pX = pTerm->pExpr; 1776 Vdbe *v = pParse->pVdbe; 1777 int iReg; /* Register holding results */ 1778 1779 if( iTarget<=0 ){ 1780 iReg = iTarget = sqlite3GetTempReg(pParse); 1781 } 1782 if( pX->op==TK_EQ ){ 1783 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 1784 }else if( pX->op==TK_ISNULL ){ 1785 iReg = iTarget; 1786 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 1787 #ifndef SQLITE_OMIT_SUBQUERY 1788 }else{ 1789 int eType; 1790 int iTab; 1791 struct InLoop *pIn; 1792 1793 assert( pX->op==TK_IN ); 1794 iReg = iTarget; 1795 eType = sqlite3FindInIndex(pParse, pX, 0); 1796 iTab = pX->iTable; 1797 sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); 1798 VdbeComment((v, "%.*s", pX->span.n, pX->span.z)); 1799 if( pLevel->nIn==0 ){ 1800 pLevel->nxt = sqlite3VdbeMakeLabel(v); 1801 } 1802 pLevel->nIn++; 1803 pLevel->aInLoop = sqlite3DbReallocOrFree(pParse->db, pLevel->aInLoop, 1804 sizeof(pLevel->aInLoop[0])*pLevel->nIn); 1805 pIn = pLevel->aInLoop; 1806 if( pIn ){ 1807 pIn += pLevel->nIn - 1; 1808 pIn->iCur = iTab; 1809 if( eType==IN_INDEX_ROWID ){ 1810 pIn->topAddr = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); 1811 }else{ 1812 pIn->topAddr = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); 1813 } 1814 sqlite3VdbeAddOp1(v, OP_IsNull, iReg); 1815 }else{ 1816 pLevel->nIn = 0; 1817 } 1818 #endif 1819 } 1820 disableTerm(pLevel, pTerm); 1821 return iReg; 1822 } 1823 1824 /* 1825 ** Generate code that will evaluate all == and IN constraints for an 1826 ** index. The values for all constraints are left on the stack. 1827 ** 1828 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 1829 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 1830 ** The index has as many as three equality constraints, but in this 1831 ** example, the third "c" value is an inequality. So only two 1832 ** constraints are coded. This routine will generate code to evaluate 1833 ** a==5 and b IN (1,2,3). The current values for a and b will be left 1834 ** on the stack - a is the deepest and b the shallowest. 1835 ** 1836 ** In the example above nEq==2. But this subroutine works for any value 1837 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 1838 ** The only thing it does is allocate the pLevel->iMem memory cell. 1839 ** 1840 ** This routine always allocates at least one memory cell and puts 1841 ** the address of that memory cell in pLevel->iMem. The code that 1842 ** calls this routine will use pLevel->iMem to store the termination 1843 ** key value of the loop. If one or more IN operators appear, then 1844 ** this routine allocates an additional nEq memory cells for internal 1845 ** use. 1846 */ 1847 static int codeAllEqualityTerms( 1848 Parse *pParse, /* Parsing context */ 1849 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 1850 WhereClause *pWC, /* The WHERE clause */ 1851 Bitmask notReady, /* Which parts of FROM have not yet been coded */ 1852 int nExtraReg /* Number of extra registers to allocate */ 1853 ){ 1854 int nEq = pLevel->nEq; /* The number of == or IN constraints to code */ 1855 Vdbe *v = pParse->pVdbe; /* The virtual machine under construction */ 1856 Index *pIdx = pLevel->pIdx; /* The index being used for this loop */ 1857 int iCur = pLevel->iTabCur; /* The cursor of the table */ 1858 WhereTerm *pTerm; /* A single constraint term */ 1859 int j; /* Loop counter */ 1860 int regBase; /* Base register */ 1861 1862 /* Figure out how many memory cells we will need then allocate them. 1863 ** We always need at least one used to store the loop terminator 1864 ** value. If there are IN operators we'll need one for each == or 1865 ** IN constraint. 1866 */ 1867 pLevel->iMem = pParse->nMem + 1; 1868 regBase = pParse->nMem + 2; 1869 pParse->nMem += pLevel->nEq + 2 + nExtraReg; 1870 1871 /* Evaluate the equality constraints 1872 */ 1873 assert( pIdx->nColumn>=nEq ); 1874 for(j=0; j<nEq; j++){ 1875 int r1; 1876 int k = pIdx->aiColumn[j]; 1877 pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx); 1878 if( NEVER(pTerm==0) ) break; 1879 assert( (pTerm->flags & TERM_CODED)==0 ); 1880 r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j); 1881 if( r1!=regBase+j ){ 1882 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); 1883 } 1884 testcase( pTerm->eOperator & WO_ISNULL ); 1885 testcase( pTerm->eOperator & WO_IN ); 1886 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ 1887 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->brk); 1888 } 1889 } 1890 return regBase; 1891 } 1892 1893 #if defined(SQLITE_TEST) 1894 /* 1895 ** The following variable holds a text description of query plan generated 1896 ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin 1897 ** overwrites the previous. This information is used for testing and 1898 ** analysis only. 1899 */ 1900 char sqlite3_query_plan[BMS*2*40]; /* Text of the join */ 1901 static int nQPlan = 0; /* Next free slow in _query_plan[] */ 1902 1903 #endif /* SQLITE_TEST */ 1904 1905 1906 /* 1907 ** Free a WhereInfo structure 1908 */ 1909 static void whereInfoFree(WhereInfo *pWInfo){ 1910 if( pWInfo ){ 1911 int i; 1912 sqlite3 *db = pWInfo->pParse->db; 1913 for(i=0; i<pWInfo->nLevel; i++){ 1914 sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo; 1915 if( pInfo ){ 1916 assert( pInfo->needToFreeIdxStr==0 ); 1917 sqlite3DbFree(db, pInfo); 1918 } 1919 } 1920 sqlite3DbFree(db, pWInfo); 1921 } 1922 } 1923 1924 1925 /* 1926 ** Generate the beginning of the loop used for WHERE clause processing. 1927 ** The return value is a pointer to an opaque structure that contains 1928 ** information needed to terminate the loop. Later, the calling routine 1929 ** should invoke sqlite3WhereEnd() with the return value of this function 1930 ** in order to complete the WHERE clause processing. 1931 ** 1932 ** If an error occurs, this routine returns NULL. 1933 ** 1934 ** The basic idea is to do a nested loop, one loop for each table in 1935 ** the FROM clause of a select. (INSERT and UPDATE statements are the 1936 ** same as a SELECT with only a single table in the FROM clause.) For 1937 ** example, if the SQL is this: 1938 ** 1939 ** SELECT * FROM t1, t2, t3 WHERE ...; 1940 ** 1941 ** Then the code generated is conceptually like the following: 1942 ** 1943 ** foreach row1 in t1 do \ Code generated 1944 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 1945 ** foreach row3 in t3 do / 1946 ** ... 1947 ** end \ Code generated 1948 ** end |-- by sqlite3WhereEnd() 1949 ** end / 1950 ** 1951 ** Note that the loops might not be nested in the order in which they 1952 ** appear in the FROM clause if a different order is better able to make 1953 ** use of indices. Note also that when the IN operator appears in 1954 ** the WHERE clause, it might result in additional nested loops for 1955 ** scanning through all values on the right-hand side of the IN. 1956 ** 1957 ** There are Btree cursors associated with each table. t1 uses cursor 1958 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 1959 ** And so forth. This routine generates code to open those VDBE cursors 1960 ** and sqlite3WhereEnd() generates the code to close them. 1961 ** 1962 ** The code that sqlite3WhereBegin() generates leaves the cursors named 1963 ** in pTabList pointing at their appropriate entries. The [...] code 1964 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 1965 ** data from the various tables of the loop. 1966 ** 1967 ** If the WHERE clause is empty, the foreach loops must each scan their 1968 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 1969 ** the tables have indices and there are terms in the WHERE clause that 1970 ** refer to those indices, a complete table scan can be avoided and the 1971 ** code will run much faster. Most of the work of this routine is checking 1972 ** to see if there are indices that can be used to speed up the loop. 1973 ** 1974 ** Terms of the WHERE clause are also used to limit which rows actually 1975 ** make it to the "..." in the middle of the loop. After each "foreach", 1976 ** terms of the WHERE clause that use only terms in that loop and outer 1977 ** loops are evaluated and if false a jump is made around all subsequent 1978 ** inner loops (or around the "..." if the test occurs within the inner- 1979 ** most loop) 1980 ** 1981 ** OUTER JOINS 1982 ** 1983 ** An outer join of tables t1 and t2 is conceptally coded as follows: 1984 ** 1985 ** foreach row1 in t1 do 1986 ** flag = 0 1987 ** foreach row2 in t2 do 1988 ** start: 1989 ** ... 1990 ** flag = 1 1991 ** end 1992 ** if flag==0 then 1993 ** move the row2 cursor to a null row 1994 ** goto start 1995 ** fi 1996 ** end 1997 ** 1998 ** ORDER BY CLAUSE PROCESSING 1999 ** 2000 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, 2001 ** if there is one. If there is no ORDER BY clause or if this routine 2002 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. 2003 ** 2004 ** If an index can be used so that the natural output order of the table 2005 ** scan is correct for the ORDER BY clause, then that index is used and 2006 ** *ppOrderBy is set to NULL. This is an optimization that prevents an 2007 ** unnecessary sort of the result set if an index appropriate for the 2008 ** ORDER BY clause already exists. 2009 ** 2010 ** If the where clause loops cannot be arranged to provide the correct 2011 ** output order, then the *ppOrderBy is unchanged. 2012 */ 2013 WhereInfo *sqlite3WhereBegin( 2014 Parse *pParse, /* The parser context */ 2015 SrcList *pTabList, /* A list of all tables to be scanned */ 2016 Expr *pWhere, /* The WHERE clause */ 2017 ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */ 2018 u8 wflags /* One of the WHERE_* flags defined in sqliteInt.h */ 2019 ){ 2020 int i; /* Loop counter */ 2021 WhereInfo *pWInfo; /* Will become the return value of this function */ 2022 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 2023 int brk, cont = 0; /* Addresses used during code generation */ 2024 Bitmask notReady; /* Cursors that are not yet positioned */ 2025 WhereTerm *pTerm; /* A single term in the WHERE clause */ 2026 ExprMaskSet maskSet; /* The expression mask set */ 2027 WhereClause wc; /* The WHERE clause is divided into these terms */ 2028 struct SrcList_item *pTabItem; /* A single entry from pTabList */ 2029 WhereLevel *pLevel; /* A single level in the pWInfo list */ 2030 int iFrom; /* First unused FROM clause element */ 2031 int andFlags; /* AND-ed combination of all wc.a[].flags */ 2032 sqlite3 *db; /* Database connection */ 2033 ExprList *pOrderBy = 0; 2034 2035 /* The number of tables in the FROM clause is limited by the number of 2036 ** bits in a Bitmask 2037 */ 2038 if( pTabList->nSrc>BMS ){ 2039 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 2040 return 0; 2041 } 2042 2043 if( ppOrderBy ){ 2044 pOrderBy = *ppOrderBy; 2045 } 2046 2047 /* Split the WHERE clause into separate subexpressions where each 2048 ** subexpression is separated by an AND operator. 2049 */ 2050 initMaskSet(&maskSet); 2051 whereClauseInit(&wc, pParse, &maskSet); 2052 sqlite3ExprCodeConstants(pParse, pWhere); 2053 whereSplit(&wc, pWhere, TK_AND); 2054 2055 /* Allocate and initialize the WhereInfo structure that will become the 2056 ** return value. 2057 */ 2058 db = pParse->db; 2059 pWInfo = sqlite3DbMallocZero(db, 2060 sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel)); 2061 if( db->mallocFailed ){ 2062 goto whereBeginNoMem; 2063 } 2064 pWInfo->nLevel = pTabList->nSrc; 2065 pWInfo->pParse = pParse; 2066 pWInfo->pTabList = pTabList; 2067 pWInfo->iBreak = sqlite3VdbeMakeLabel(v); 2068 2069 /* Special case: a WHERE clause that is constant. Evaluate the 2070 ** expression and either jump over all of the code or fall thru. 2071 */ 2072 if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){ 2073 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL); 2074 pWhere = 0; 2075 } 2076 2077 /* Assign a bit from the bitmask to every term in the FROM clause. 2078 ** 2079 ** When assigning bitmask values to FROM clause cursors, it must be 2080 ** the case that if X is the bitmask for the N-th FROM clause term then 2081 ** the bitmask for all FROM clause terms to the left of the N-th term 2082 ** is (X-1). An expression from the ON clause of a LEFT JOIN can use 2083 ** its Expr.iRightJoinTable value to find the bitmask of the right table 2084 ** of the join. Subtracting one from the right table bitmask gives a 2085 ** bitmask for all tables to the left of the join. Knowing the bitmask 2086 ** for all tables to the left of a left join is important. Ticket #3015. 2087 */ 2088 for(i=0; i<pTabList->nSrc; i++){ 2089 createMask(&maskSet, pTabList->a[i].iCursor); 2090 } 2091 #ifndef NDEBUG 2092 { 2093 Bitmask toTheLeft = 0; 2094 for(i=0; i<pTabList->nSrc; i++){ 2095 Bitmask m = getMask(&maskSet, pTabList->a[i].iCursor); 2096 assert( (m-1)==toTheLeft ); 2097 toTheLeft |= m; 2098 } 2099 } 2100 #endif 2101 2102 /* Analyze all of the subexpressions. Note that exprAnalyze() might 2103 ** add new virtual terms onto the end of the WHERE clause. We do not 2104 ** want to analyze these virtual terms, so start analyzing at the end 2105 ** and work forward so that the added virtual terms are never processed. 2106 */ 2107 exprAnalyzeAll(pTabList, &wc); 2108 if( db->mallocFailed ){ 2109 goto whereBeginNoMem; 2110 } 2111 2112 /* Chose the best index to use for each table in the FROM clause. 2113 ** 2114 ** This loop fills in the following fields: 2115 ** 2116 ** pWInfo->a[].pIdx The index to use for this level of the loop. 2117 ** pWInfo->a[].flags WHERE_xxx flags associated with pIdx 2118 ** pWInfo->a[].nEq The number of == and IN constraints 2119 ** pWInfo->a[].iFrom When term of the FROM clause is being coded 2120 ** pWInfo->a[].iTabCur The VDBE cursor for the database table 2121 ** pWInfo->a[].iIdxCur The VDBE cursor for the index 2122 ** 2123 ** This loop also figures out the nesting order of tables in the FROM 2124 ** clause. 2125 */ 2126 notReady = ~(Bitmask)0; 2127 pTabItem = pTabList->a; 2128 pLevel = pWInfo->a; 2129 andFlags = ~0; 2130 WHERETRACE(("*** Optimizer Start ***\n")); 2131 for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 2132 Index *pIdx; /* Index for FROM table at pTabItem */ 2133 int flags; /* Flags asssociated with pIdx */ 2134 int nEq; /* Number of == or IN constraints */ 2135 double cost; /* The cost for pIdx */ 2136 int j; /* For looping over FROM tables */ 2137 Index *pBest = 0; /* The best index seen so far */ 2138 int bestFlags = 0; /* Flags associated with pBest */ 2139 int bestNEq = 0; /* nEq associated with pBest */ 2140 double lowestCost; /* Cost of the pBest */ 2141 int bestJ = 0; /* The value of j */ 2142 Bitmask m; /* Bitmask value for j or bestJ */ 2143 int once = 0; /* True when first table is seen */ 2144 sqlite3_index_info *pIndex; /* Current virtual index */ 2145 2146 lowestCost = SQLITE_BIG_DBL; 2147 for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){ 2148 int doNotReorder; /* True if this table should not be reordered */ 2149 2150 doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0; 2151 if( once && doNotReorder ) break; 2152 m = getMask(&maskSet, pTabItem->iCursor); 2153 if( (m & notReady)==0 ){ 2154 if( j==iFrom ) iFrom++; 2155 continue; 2156 } 2157 assert( pTabItem->pTab ); 2158 #ifndef SQLITE_OMIT_VIRTUALTABLE 2159 if( IsVirtual(pTabItem->pTab) ){ 2160 sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo; 2161 cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady, 2162 ppOrderBy ? *ppOrderBy : 0, i==0, 2163 ppIdxInfo); 2164 flags = WHERE_VIRTUALTABLE; 2165 pIndex = *ppIdxInfo; 2166 if( pIndex && pIndex->orderByConsumed ){ 2167 flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY; 2168 } 2169 pIdx = 0; 2170 nEq = 0; 2171 if( (SQLITE_BIG_DBL/2.0)<cost ){ 2172 /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the 2173 ** inital value of lowestCost in this loop. If it is, then 2174 ** the (cost<lowestCost) test below will never be true and 2175 ** pLevel->pBestIdx never set. 2176 */ 2177 cost = (SQLITE_BIG_DBL/2.0); 2178 } 2179 }else 2180 #endif 2181 { 2182 cost = bestIndex(pParse, &wc, pTabItem, notReady, 2183 (i==0 && ppOrderBy) ? *ppOrderBy : 0, 2184 &pIdx, &flags, &nEq); 2185 pIndex = 0; 2186 } 2187 if( cost<lowestCost ){ 2188 once = 1; 2189 lowestCost = cost; 2190 pBest = pIdx; 2191 bestFlags = flags; 2192 bestNEq = nEq; 2193 bestJ = j; 2194 pLevel->pBestIdx = pIndex; 2195 } 2196 if( doNotReorder ) break; 2197 } 2198 WHERETRACE(("*** Optimizer selects table %d for loop %d\n", bestJ, 2199 pLevel-pWInfo->a)); 2200 if( (bestFlags & WHERE_ORDERBY)!=0 ){ 2201 *ppOrderBy = 0; 2202 } 2203 andFlags &= bestFlags; 2204 pLevel->flags = bestFlags; 2205 pLevel->pIdx = pBest; 2206 pLevel->nEq = bestNEq; 2207 pLevel->aInLoop = 0; 2208 pLevel->nIn = 0; 2209 if( pBest ){ 2210 pLevel->iIdxCur = pParse->nTab++; 2211 }else{ 2212 pLevel->iIdxCur = -1; 2213 } 2214 notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor); 2215 pLevel->iFrom = bestJ; 2216 } 2217 WHERETRACE(("*** Optimizer Finished ***\n")); 2218 2219 /* If the total query only selects a single row, then the ORDER BY 2220 ** clause is irrelevant. 2221 */ 2222 if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){ 2223 *ppOrderBy = 0; 2224 } 2225 2226 /* If the caller is an UPDATE or DELETE statement that is requesting 2227 ** to use a one-pass algorithm, determine if this is appropriate. 2228 ** The one-pass algorithm only works if the WHERE clause constraints 2229 ** the statement to update a single row. 2230 */ 2231 assert( (wflags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 2232 if( (wflags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){ 2233 pWInfo->okOnePass = 1; 2234 pWInfo->a[0].flags &= ~WHERE_IDX_ONLY; 2235 } 2236 2237 /* Open all tables in the pTabList and any indices selected for 2238 ** searching those tables. 2239 */ 2240 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ 2241 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 2242 Table *pTab; /* Table to open */ 2243 Index *pIx; /* Index used to access pTab (if any) */ 2244 int iDb; /* Index of database containing table/index */ 2245 int iIdxCur = pLevel->iIdxCur; 2246 2247 #ifndef SQLITE_OMIT_EXPLAIN 2248 if( pParse->explain==2 ){ 2249 char *zMsg; 2250 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 2251 zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName); 2252 if( pItem->zAlias ){ 2253 zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias); 2254 } 2255 if( (pIx = pLevel->pIdx)!=0 ){ 2256 zMsg = sqlite3MAppendf(db, zMsg, "%s WITH INDEX %s", zMsg, pIx->zName); 2257 }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ 2258 zMsg = sqlite3MAppendf(db, zMsg, "%s USING PRIMARY KEY", zMsg); 2259 } 2260 #ifndef SQLITE_OMIT_VIRTUALTABLE 2261 else if( pLevel->pBestIdx ){ 2262 sqlite3_index_info *pBestIdx = pLevel->pBestIdx; 2263 zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg, 2264 pBestIdx->idxNum, pBestIdx->idxStr); 2265 } 2266 #endif 2267 if( pLevel->flags & WHERE_ORDERBY ){ 2268 zMsg = sqlite3MAppendf(db, zMsg, "%s ORDER BY", zMsg); 2269 } 2270 sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC); 2271 } 2272 #endif /* SQLITE_OMIT_EXPLAIN */ 2273 pTabItem = &pTabList->a[pLevel->iFrom]; 2274 pTab = pTabItem->pTab; 2275 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2276 if( pTab->isEphem || pTab->pSelect ) continue; 2277 #ifndef SQLITE_OMIT_VIRTUALTABLE 2278 if( pLevel->pBestIdx ){ 2279 int iCur = pTabItem->iCursor; 2280 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, 2281 (const char*)pTab->pVtab, P4_VTAB); 2282 }else 2283 #endif 2284 if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){ 2285 int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead; 2286 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 2287 if( !pWInfo->okOnePass && pTab->nCol<(sizeof(Bitmask)*8) ){ 2288 Bitmask b = pTabItem->colUsed; 2289 int n = 0; 2290 for(; b; b=b>>1, n++){} 2291 sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-2, n); 2292 assert( n<=pTab->nCol ); 2293 } 2294 }else{ 2295 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2296 } 2297 pLevel->iTabCur = pTabItem->iCursor; 2298 if( (pIx = pLevel->pIdx)!=0 ){ 2299 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx); 2300 assert( pIx->pSchema==pTab->pSchema ); 2301 sqlite3VdbeAddOp2(v, OP_SetNumColumns, 0, pIx->nColumn+1); 2302 sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb, 2303 (char*)pKey, P4_KEYINFO_HANDOFF); 2304 VdbeComment((v, "%s", pIx->zName)); 2305 } 2306 sqlite3CodeVerifySchema(pParse, iDb); 2307 } 2308 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 2309 2310 /* Generate the code to do the search. Each iteration of the for 2311 ** loop below generates code for a single nested loop of the VM 2312 ** program. 2313 */ 2314 notReady = ~(Bitmask)0; 2315 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 2316 int j; 2317 int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */ 2318 Index *pIdx; /* The index we will be using */ 2319 int nxt; /* Where to jump to continue with the next IN case */ 2320 int iIdxCur; /* The VDBE cursor for the index */ 2321 int omitTable; /* True if we use the index only */ 2322 int bRev; /* True if we need to scan in reverse order */ 2323 2324 pTabItem = &pTabList->a[pLevel->iFrom]; 2325 iCur = pTabItem->iCursor; 2326 pIdx = pLevel->pIdx; 2327 iIdxCur = pLevel->iIdxCur; 2328 bRev = (pLevel->flags & WHERE_REVERSE)!=0; 2329 omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0; 2330 2331 /* Create labels for the "break" and "continue" instructions 2332 ** for the current loop. Jump to brk to break out of a loop. 2333 ** Jump to cont to go immediately to the next iteration of the 2334 ** loop. 2335 ** 2336 ** When there is an IN operator, we also have a "nxt" label that 2337 ** means to continue with the next IN value combination. When 2338 ** there are no IN operators in the constraints, the "nxt" label 2339 ** is the same as "brk". 2340 */ 2341 brk = pLevel->brk = pLevel->nxt = sqlite3VdbeMakeLabel(v); 2342 cont = pLevel->cont = sqlite3VdbeMakeLabel(v); 2343 2344 /* If this is the right table of a LEFT OUTER JOIN, allocate and 2345 ** initialize a memory cell that records if this table matches any 2346 ** row of the left table of the join. 2347 */ 2348 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ 2349 pLevel->iLeftJoin = ++pParse->nMem; 2350 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 2351 VdbeComment((v, "init LEFT JOIN no-match flag")); 2352 } 2353 2354 #ifndef SQLITE_OMIT_VIRTUALTABLE 2355 if( pLevel->pBestIdx ){ 2356 /* Case 0: The table is a virtual-table. Use the VFilter and VNext 2357 ** to access the data. 2358 */ 2359 int j; 2360 int iReg; /* P3 Value for OP_VFilter */ 2361 sqlite3_index_info *pBestIdx = pLevel->pBestIdx; 2362 int nConstraint = pBestIdx->nConstraint; 2363 struct sqlite3_index_constraint_usage *aUsage = 2364 pBestIdx->aConstraintUsage; 2365 const struct sqlite3_index_constraint *aConstraint = 2366 pBestIdx->aConstraint; 2367 2368 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 2369 pParse->disableColCache++; 2370 for(j=1; j<=nConstraint; j++){ 2371 int k; 2372 for(k=0; k<nConstraint; k++){ 2373 if( aUsage[k].argvIndex==j ){ 2374 int iTerm = aConstraint[k].iTermOffset; 2375 assert( pParse->disableColCache ); 2376 sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight, iReg+j+1); 2377 break; 2378 } 2379 } 2380 if( k==nConstraint ) break; 2381 } 2382 assert( pParse->disableColCache ); 2383 pParse->disableColCache--; 2384 sqlite3VdbeAddOp2(v, OP_Integer, pBestIdx->idxNum, iReg); 2385 sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1); 2386 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, brk, iReg, pBestIdx->idxStr, 2387 pBestIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC); 2388 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 2389 pBestIdx->needToFreeIdxStr = 0; 2390 for(j=0; j<nConstraint; j++){ 2391 if( aUsage[j].omit ){ 2392 int iTerm = aConstraint[j].iTermOffset; 2393 disableTerm(pLevel, &wc.a[iTerm]); 2394 } 2395 } 2396 pLevel->op = OP_VNext; 2397 pLevel->p1 = iCur; 2398 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2399 }else 2400 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 2401 2402 if( pLevel->flags & WHERE_ROWID_EQ ){ 2403 /* Case 1: We can directly reference a single row using an 2404 ** equality comparison against the ROWID field. Or 2405 ** we reference multiple rows using a "rowid IN (...)" 2406 ** construct. 2407 */ 2408 int r1; 2409 pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0); 2410 assert( pTerm!=0 ); 2411 assert( pTerm->pExpr!=0 ); 2412 assert( pTerm->leftCursor==iCur ); 2413 assert( omitTable==0 ); 2414 r1 = codeEqualityTerm(pParse, pTerm, pLevel, 0); 2415 nxt = pLevel->nxt; 2416 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, nxt); 2417 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, nxt, r1); 2418 VdbeComment((v, "pk")); 2419 pLevel->op = OP_Noop; 2420 }else if( pLevel->flags & WHERE_ROWID_RANGE ){ 2421 /* Case 2: We have an inequality comparison against the ROWID field. 2422 */ 2423 int testOp = OP_Noop; 2424 int start; 2425 WhereTerm *pStart, *pEnd; 2426 2427 assert( omitTable==0 ); 2428 pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0); 2429 pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0); 2430 if( bRev ){ 2431 pTerm = pStart; 2432 pStart = pEnd; 2433 pEnd = pTerm; 2434 } 2435 if( pStart ){ 2436 Expr *pX; 2437 int r1, regFree1; 2438 pX = pStart->pExpr; 2439 assert( pX!=0 ); 2440 assert( pStart->leftCursor==iCur ); 2441 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, ®Free1); 2442 sqlite3VdbeAddOp3(v, OP_ForceInt, r1, brk, 2443 pX->op==TK_LE || pX->op==TK_GT); 2444 sqlite3VdbeAddOp3(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk, r1); 2445 VdbeComment((v, "pk")); 2446 sqlite3ReleaseTempReg(pParse, regFree1); 2447 disableTerm(pLevel, pStart); 2448 }else{ 2449 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, brk); 2450 } 2451 if( pEnd ){ 2452 Expr *pX; 2453 pX = pEnd->pExpr; 2454 assert( pX!=0 ); 2455 assert( pEnd->leftCursor==iCur ); 2456 pLevel->iMem = ++pParse->nMem; 2457 sqlite3ExprCode(pParse, pX->pRight, pLevel->iMem); 2458 if( pX->op==TK_LT || pX->op==TK_GT ){ 2459 testOp = bRev ? OP_Le : OP_Ge; 2460 }else{ 2461 testOp = bRev ? OP_Lt : OP_Gt; 2462 } 2463 disableTerm(pLevel, pEnd); 2464 } 2465 start = sqlite3VdbeCurrentAddr(v); 2466 pLevel->op = bRev ? OP_Prev : OP_Next; 2467 pLevel->p1 = iCur; 2468 pLevel->p2 = start; 2469 if( testOp!=OP_Noop ){ 2470 int r1 = sqlite3GetTempReg(pParse); 2471 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1); 2472 /* sqlite3VdbeAddOp2(v, OP_SCopy, pLevel->iMem, 0); */ 2473 sqlite3VdbeAddOp3(v, testOp, pLevel->iMem, brk, r1); 2474 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 2475 sqlite3ReleaseTempReg(pParse, r1); 2476 } 2477 }else if( pLevel->flags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){ 2478 /* Case 3: A scan using an index. 2479 ** 2480 ** The WHERE clause may contain zero or more equality 2481 ** terms ("==" or "IN" operators) that refer to the N 2482 ** left-most columns of the index. It may also contain 2483 ** inequality constraints (>, <, >= or <=) on the indexed 2484 ** column that immediately follows the N equalities. Only 2485 ** the right-most column can be an inequality - the rest must 2486 ** use the "==" and "IN" operators. For example, if the 2487 ** index is on (x,y,z), then the following clauses are all 2488 ** optimized: 2489 ** 2490 ** x=5 2491 ** x=5 AND y=10 2492 ** x=5 AND y<10 2493 ** x=5 AND y>5 AND y<10 2494 ** x=5 AND y=5 AND z<=10 2495 ** 2496 ** The z<10 term of the following cannot be used, only 2497 ** the x=5 term: 2498 ** 2499 ** x=5 AND z<10 2500 ** 2501 ** N may be zero if there are inequality constraints. 2502 ** If there are no inequality constraints, then N is at 2503 ** least one. 2504 ** 2505 ** This case is also used when there are no WHERE clause 2506 ** constraints but an index is selected anyway, in order 2507 ** to force the output order to conform to an ORDER BY. 2508 */ 2509 int aStartOp[] = { 2510 0, 2511 0, 2512 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 2513 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 2514 OP_MoveGt, /* 4: (start_constraints && !startEq && !bRev) */ 2515 OP_MoveLt, /* 5: (start_constraints && !startEq && bRev) */ 2516 OP_MoveGe, /* 6: (start_constraints && startEq && !bRev) */ 2517 OP_MoveLe /* 7: (start_constraints && startEq && bRev) */ 2518 }; 2519 int aEndOp[] = { 2520 OP_Noop, /* 0: (!end_constraints) */ 2521 OP_IdxGE, /* 1: (end_constraints && !bRev) */ 2522 OP_IdxLT /* 2: (end_constraints && bRev) */ 2523 }; 2524 int nEq = pLevel->nEq; 2525 int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */ 2526 int regBase; /* Base register holding constraint values */ 2527 int r1; /* Temp register */ 2528 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 2529 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 2530 int startEq; /* True if range start uses ==, >= or <= */ 2531 int endEq; /* True if range end uses ==, >= or <= */ 2532 int start_constraints; /* Start of range is constrained */ 2533 int k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */ 2534 int nConstraint; /* Number of constraint terms */ 2535 int op; 2536 2537 /* Generate code to evaluate all constraint terms using == or IN 2538 ** and store the values of those terms in an array of registers 2539 ** starting at regBase. 2540 */ 2541 regBase = codeAllEqualityTerms(pParse, pLevel, &wc, notReady, 2); 2542 nxt = pLevel->nxt; 2543 2544 /* If this loop satisfies a sort order (pOrderBy) request that 2545 ** was passed to this function to implement a "SELECT min(x) ..." 2546 ** query, then the caller will only allow the loop to run for 2547 ** a single iteration. This means that the first row returned 2548 ** should not have a NULL value stored in 'x'. If column 'x' is 2549 ** the first one after the nEq equality constraints in the index, 2550 ** this requires some special handling. 2551 */ 2552 if( (wflags&WHERE_ORDERBY_MIN)!=0 2553 && (pLevel->flags&WHERE_ORDERBY) 2554 && (pIdx->nColumn>nEq) 2555 ){ 2556 assert( pOrderBy->nExpr==1 ); 2557 assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); 2558 isMinQuery = 1; 2559 } 2560 2561 /* Find any inequality constraint terms for the start and end 2562 ** of the range. 2563 */ 2564 if( pLevel->flags & WHERE_TOP_LIMIT ){ 2565 pRangeEnd = findTerm(&wc, iCur, k, notReady, (WO_LT|WO_LE), pIdx); 2566 } 2567 if( pLevel->flags & WHERE_BTM_LIMIT ){ 2568 pRangeStart = findTerm(&wc, iCur, k, notReady, (WO_GT|WO_GE), pIdx); 2569 } 2570 2571 /* If we are doing a reverse order scan on an ascending index, or 2572 ** a forward order scan on a descending index, interchange the 2573 ** start and end terms (pRangeStart and pRangeEnd). 2574 */ 2575 if( bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){ 2576 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 2577 } 2578 2579 testcase( pRangeStart && pRangeStart->eOperator & WO_LE ); 2580 testcase( pRangeStart && pRangeStart->eOperator & WO_GE ); 2581 testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE ); 2582 testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE ); 2583 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 2584 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 2585 start_constraints = pRangeStart || nEq>0; 2586 2587 /* Seek the index cursor to the start of the range. */ 2588 nConstraint = nEq; 2589 if( pRangeStart ){ 2590 int dcc = pParse->disableColCache; 2591 if( pRangeEnd ){ 2592 pParse->disableColCache++; 2593 } 2594 sqlite3ExprCode(pParse, pRangeStart->pExpr->pRight, regBase+nEq); 2595 pParse->disableColCache = dcc; 2596 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, nxt); 2597 nConstraint++; 2598 }else if( isMinQuery ){ 2599 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 2600 nConstraint++; 2601 startEq = 0; 2602 start_constraints = 1; 2603 } 2604 codeApplyAffinity(pParse, regBase, nConstraint, pIdx); 2605 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 2606 assert( op!=0 ); 2607 testcase( op==OP_Rewind ); 2608 testcase( op==OP_Last ); 2609 testcase( op==OP_MoveGt ); 2610 testcase( op==OP_MoveGe ); 2611 testcase( op==OP_MoveLe ); 2612 testcase( op==OP_MoveLt ); 2613 sqlite3VdbeAddOp4(v, op, iIdxCur, nxt, regBase, 2614 SQLITE_INT_TO_PTR(nConstraint), P4_INT32); 2615 2616 /* Load the value for the inequality constraint at the end of the 2617 ** range (if any). 2618 */ 2619 nConstraint = nEq; 2620 if( pRangeEnd ){ 2621 sqlite3ExprCode(pParse, pRangeEnd->pExpr->pRight, regBase+nEq); 2622 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, nxt); 2623 codeApplyAffinity(pParse, regBase, nEq+1, pIdx); 2624 nConstraint++; 2625 } 2626 2627 /* Top of the loop body */ 2628 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2629 2630 /* Check if the index cursor is past the end of the range. */ 2631 op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)]; 2632 testcase( op==OP_Noop ); 2633 testcase( op==OP_IdxGE ); 2634 testcase( op==OP_IdxLT ); 2635 sqlite3VdbeAddOp4(v, op, iIdxCur, nxt, regBase, 2636 SQLITE_INT_TO_PTR(nConstraint), P4_INT32); 2637 sqlite3VdbeChangeP5(v, endEq!=bRev); 2638 2639 /* If there are inequality constraints, check that the value 2640 ** of the table column that the inequality contrains is not NULL. 2641 ** If it is, jump to the next iteration of the loop. 2642 */ 2643 r1 = sqlite3GetTempReg(pParse); 2644 testcase( pLevel->flags & WHERE_BTM_LIMIT ); 2645 testcase( pLevel->flags & WHERE_TOP_LIMIT ); 2646 if( pLevel->flags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT) ){ 2647 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1); 2648 sqlite3VdbeAddOp2(v, OP_IsNull, r1, cont); 2649 } 2650 2651 /* Seek the table cursor, if required */ 2652 if( !omitTable ){ 2653 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, r1); 2654 sqlite3VdbeAddOp3(v, OP_MoveGe, iCur, 0, r1); /* Deferred seek */ 2655 } 2656 sqlite3ReleaseTempReg(pParse, r1); 2657 2658 /* Record the instruction used to terminate the loop. Disable 2659 ** WHERE clause terms made redundant by the index range scan. 2660 */ 2661 pLevel->op = bRev ? OP_Prev : OP_Next; 2662 pLevel->p1 = iIdxCur; 2663 disableTerm(pLevel, pRangeStart); 2664 disableTerm(pLevel, pRangeEnd); 2665 }else{ 2666 /* Case 4: There is no usable index. We must do a complete 2667 ** scan of the entire table. 2668 */ 2669 assert( omitTable==0 ); 2670 assert( bRev==0 ); 2671 pLevel->op = OP_Next; 2672 pLevel->p1 = iCur; 2673 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, OP_Rewind, iCur, brk); 2674 } 2675 notReady &= ~getMask(&maskSet, iCur); 2676 2677 /* Insert code to test every subexpression that can be completely 2678 ** computed using the current set of tables. 2679 */ 2680 for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){ 2681 Expr *pE; 2682 testcase( pTerm->flags & TERM_VIRTUAL ); 2683 testcase( pTerm->flags & TERM_CODED ); 2684 if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2685 if( (pTerm->prereqAll & notReady)!=0 ) continue; 2686 pE = pTerm->pExpr; 2687 assert( pE!=0 ); 2688 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ 2689 continue; 2690 } 2691 sqlite3ExprIfFalse(pParse, pE, cont, SQLITE_JUMPIFNULL); 2692 pTerm->flags |= TERM_CODED; 2693 } 2694 2695 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2696 ** at least one row of the right table has matched the left table. 2697 */ 2698 if( pLevel->iLeftJoin ){ 2699 pLevel->top = sqlite3VdbeCurrentAddr(v); 2700 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 2701 VdbeComment((v, "record LEFT JOIN hit")); 2702 sqlite3ExprClearColumnCache(pParse, pLevel->iTabCur); 2703 sqlite3ExprClearColumnCache(pParse, pLevel->iIdxCur); 2704 for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){ 2705 testcase( pTerm->flags & TERM_VIRTUAL ); 2706 testcase( pTerm->flags & TERM_CODED ); 2707 if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2708 if( (pTerm->prereqAll & notReady)!=0 ) continue; 2709 assert( pTerm->pExpr ); 2710 sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, SQLITE_JUMPIFNULL); 2711 pTerm->flags |= TERM_CODED; 2712 } 2713 } 2714 } 2715 2716 #ifdef SQLITE_TEST /* For testing and debugging use only */ 2717 /* Record in the query plan information about the current table 2718 ** and the index used to access it (if any). If the table itself 2719 ** is not used, its name is just '{}'. If no index is used 2720 ** the index is listed as "{}". If the primary key is used the 2721 ** index name is '*'. 2722 */ 2723 for(i=0; i<pTabList->nSrc; i++){ 2724 char *z; 2725 int n; 2726 pLevel = &pWInfo->a[i]; 2727 pTabItem = &pTabList->a[pLevel->iFrom]; 2728 z = pTabItem->zAlias; 2729 if( z==0 ) z = pTabItem->pTab->zName; 2730 n = strlen(z); 2731 if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){ 2732 if( pLevel->flags & WHERE_IDX_ONLY ){ 2733 memcpy(&sqlite3_query_plan[nQPlan], "{}", 2); 2734 nQPlan += 2; 2735 }else{ 2736 memcpy(&sqlite3_query_plan[nQPlan], z, n); 2737 nQPlan += n; 2738 } 2739 sqlite3_query_plan[nQPlan++] = ' '; 2740 } 2741 testcase( pLevel->flags & WHERE_ROWID_EQ ); 2742 testcase( pLevel->flags & WHERE_ROWID_RANGE ); 2743 if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ 2744 memcpy(&sqlite3_query_plan[nQPlan], "* ", 2); 2745 nQPlan += 2; 2746 }else if( pLevel->pIdx==0 ){ 2747 memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3); 2748 nQPlan += 3; 2749 }else{ 2750 n = strlen(pLevel->pIdx->zName); 2751 if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){ 2752 memcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName, n); 2753 nQPlan += n; 2754 sqlite3_query_plan[nQPlan++] = ' '; 2755 } 2756 } 2757 } 2758 while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){ 2759 sqlite3_query_plan[--nQPlan] = 0; 2760 } 2761 sqlite3_query_plan[nQPlan] = 0; 2762 nQPlan = 0; 2763 #endif /* SQLITE_TEST // Testing and debugging use only */ 2764 2765 /* Record the continuation address in the WhereInfo structure. Then 2766 ** clean up and return. 2767 */ 2768 pWInfo->iContinue = cont; 2769 whereClauseClear(&wc); 2770 return pWInfo; 2771 2772 /* Jump here if malloc fails */ 2773 whereBeginNoMem: 2774 whereClauseClear(&wc); 2775 whereInfoFree(pWInfo); 2776 return 0; 2777 } 2778 2779 /* 2780 ** Generate the end of the WHERE loop. See comments on 2781 ** sqlite3WhereBegin() for additional information. 2782 */ 2783 void sqlite3WhereEnd(WhereInfo *pWInfo){ 2784 Parse *pParse = pWInfo->pParse; 2785 Vdbe *v = pParse->pVdbe; 2786 int i; 2787 WhereLevel *pLevel; 2788 SrcList *pTabList = pWInfo->pTabList; 2789 sqlite3 *db = pParse->db; 2790 2791 /* Generate loop termination code. 2792 */ 2793 sqlite3ExprClearColumnCache(pParse, -1); 2794 for(i=pTabList->nSrc-1; i>=0; i--){ 2795 pLevel = &pWInfo->a[i]; 2796 sqlite3VdbeResolveLabel(v, pLevel->cont); 2797 if( pLevel->op!=OP_Noop ){ 2798 sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2); 2799 } 2800 if( pLevel->nIn ){ 2801 struct InLoop *pIn; 2802 int j; 2803 sqlite3VdbeResolveLabel(v, pLevel->nxt); 2804 for(j=pLevel->nIn, pIn=&pLevel->aInLoop[j-1]; j>0; j--, pIn--){ 2805 sqlite3VdbeJumpHere(v, pIn->topAddr+1); 2806 sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->topAddr); 2807 sqlite3VdbeJumpHere(v, pIn->topAddr-1); 2808 } 2809 sqlite3DbFree(db, pLevel->aInLoop); 2810 } 2811 sqlite3VdbeResolveLabel(v, pLevel->brk); 2812 if( pLevel->iLeftJoin ){ 2813 int addr; 2814 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); 2815 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); 2816 if( pLevel->iIdxCur>=0 ){ 2817 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 2818 } 2819 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->top); 2820 sqlite3VdbeJumpHere(v, addr); 2821 } 2822 } 2823 2824 /* The "break" point is here, just past the end of the outer loop. 2825 ** Set it. 2826 */ 2827 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 2828 2829 /* Close all of the cursors that were opened by sqlite3WhereBegin. 2830 */ 2831 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 2832 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 2833 Table *pTab = pTabItem->pTab; 2834 assert( pTab!=0 ); 2835 if( pTab->isEphem || pTab->pSelect ) continue; 2836 if( !pWInfo->okOnePass && (pLevel->flags & WHERE_IDX_ONLY)==0 ){ 2837 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); 2838 } 2839 if( pLevel->pIdx!=0 ){ 2840 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); 2841 } 2842 2843 /* If this scan uses an index, make code substitutions to read data 2844 ** from the index in preference to the table. Sometimes, this means 2845 ** the table need never be read from. This is a performance boost, 2846 ** as the vdbe level waits until the table is read before actually 2847 ** seeking the table cursor to the record corresponding to the current 2848 ** position in the index. 2849 ** 2850 ** Calls to the code generator in between sqlite3WhereBegin and 2851 ** sqlite3WhereEnd will have created code that references the table 2852 ** directly. This loop scans all that code looking for opcodes 2853 ** that reference the table and converts them into opcodes that 2854 ** reference the index. 2855 */ 2856 if( pLevel->pIdx ){ 2857 int k, j, last; 2858 VdbeOp *pOp; 2859 Index *pIdx = pLevel->pIdx; 2860 int useIndexOnly = pLevel->flags & WHERE_IDX_ONLY; 2861 2862 assert( pIdx!=0 ); 2863 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop); 2864 last = sqlite3VdbeCurrentAddr(v); 2865 for(k=pWInfo->iTop; k<last; k++, pOp++){ 2866 if( pOp->p1!=pLevel->iTabCur ) continue; 2867 if( pOp->opcode==OP_Column ){ 2868 for(j=0; j<pIdx->nColumn; j++){ 2869 if( pOp->p2==pIdx->aiColumn[j] ){ 2870 pOp->p2 = j; 2871 pOp->p1 = pLevel->iIdxCur; 2872 break; 2873 } 2874 } 2875 assert(!useIndexOnly || j<pIdx->nColumn); 2876 }else if( pOp->opcode==OP_Rowid ){ 2877 pOp->p1 = pLevel->iIdxCur; 2878 pOp->opcode = OP_IdxRowid; 2879 }else if( pOp->opcode==OP_NullRow && useIndexOnly ){ 2880 pOp->opcode = OP_Noop; 2881 } 2882 } 2883 } 2884 } 2885 2886 /* Final cleanup 2887 */ 2888 whereInfoFree(pWInfo); 2889 return; 2890 } 2891