xref: /sqlite-3.40.0/src/where.c (revision 7f2eb8ff)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /*
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly.  The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
26 **
27 ** This object is not an API and can be changed from one release to the
28 ** next.  As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
30 */
31 typedef struct HiddenIndexInfo HiddenIndexInfo;
32 struct HiddenIndexInfo {
33   WhereClause *pWC;   /* The Where clause being analyzed */
34   Parse *pParse;      /* The parsing context */
35 };
36 
37 /* Forward declaration of methods */
38 static int whereLoopResize(sqlite3*, WhereLoop*, int);
39 
40 /*
41 ** Return the estimated number of output rows from a WHERE clause
42 */
43 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
44   return pWInfo->nRowOut;
45 }
46 
47 /*
48 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
49 ** WHERE clause returns outputs for DISTINCT processing.
50 */
51 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
52   return pWInfo->eDistinct;
53 }
54 
55 /*
56 ** Return the number of ORDER BY terms that are satisfied by the
57 ** WHERE clause.  A return of 0 means that the output must be
58 ** completely sorted.  A return equal to the number of ORDER BY
59 ** terms means that no sorting is needed at all.  A return that
60 ** is positive but less than the number of ORDER BY terms means that
61 ** block sorting is required.
62 */
63 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
64   return pWInfo->nOBSat;
65 }
66 
67 /*
68 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known
69 ** to emit rows in increasing order, and if the last row emitted by the
70 ** inner-most loop did not fit within the sorter, then we can skip all
71 ** subsequent rows for the current iteration of the inner loop (because they
72 ** will not fit in the sorter either) and continue with the second inner
73 ** loop - the loop immediately outside the inner-most.
74 **
75 ** When a row does not fit in the sorter (because the sorter already
76 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
77 ** label returned by this function.
78 **
79 ** If the ORDER BY LIMIT optimization applies, the jump destination should
80 ** be the continuation for the second-inner-most loop.  If the ORDER BY
81 ** LIMIT optimization does not apply, then the jump destination should
82 ** be the continuation for the inner-most loop.
83 **
84 ** It is always safe for this routine to return the continuation of the
85 ** inner-most loop, in the sense that a correct answer will result.
86 ** Returning the continuation the second inner loop is an optimization
87 ** that might make the code run a little faster, but should not change
88 ** the final answer.
89 */
90 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){
91   WhereLevel *pInner;
92   if( !pWInfo->bOrderedInnerLoop ){
93     /* The ORDER BY LIMIT optimization does not apply.  Jump to the
94     ** continuation of the inner-most loop. */
95     return pWInfo->iContinue;
96   }
97   pInner = &pWInfo->a[pWInfo->nLevel-1];
98   assert( pInner->addrNxt!=0 );
99   return pInner->addrNxt;
100 }
101 
102 /*
103 ** While generating code for the min/max optimization, after handling
104 ** the aggregate-step call to min() or max(), check to see if any
105 ** additional looping is required.  If the output order is such that
106 ** we are certain that the correct answer has already been found, then
107 ** code an OP_Goto to by pass subsequent processing.
108 **
109 ** Any extra OP_Goto that is coded here is an optimization.  The
110 ** correct answer should be obtained regardless.  This OP_Goto just
111 ** makes the answer appear faster.
112 */
113 void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){
114   WhereLevel *pInner;
115   int i;
116   if( !pWInfo->bOrderedInnerLoop ) return;
117   if( pWInfo->nOBSat==0 ) return;
118   for(i=pWInfo->nLevel-1; i>=0; i--){
119     pInner = &pWInfo->a[i];
120     if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){
121       sqlite3VdbeGoto(v, pInner->addrNxt);
122       return;
123     }
124   }
125   sqlite3VdbeGoto(v, pWInfo->iBreak);
126 }
127 
128 /*
129 ** Return the VDBE address or label to jump to in order to continue
130 ** immediately with the next row of a WHERE clause.
131 */
132 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
133   assert( pWInfo->iContinue!=0 );
134   return pWInfo->iContinue;
135 }
136 
137 /*
138 ** Return the VDBE address or label to jump to in order to break
139 ** out of a WHERE loop.
140 */
141 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
142   return pWInfo->iBreak;
143 }
144 
145 /*
146 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
147 ** operate directly on the rowids returned by a WHERE clause.  Return
148 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
149 ** a single row is to be changed.  Return ONEPASS_MULTI (2) if the one-pass
150 ** optimization can be used on multiple
151 **
152 ** If the ONEPASS optimization is used (if this routine returns true)
153 ** then also write the indices of open cursors used by ONEPASS
154 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
155 ** table and iaCur[1] gets the cursor used by an auxiliary index.
156 ** Either value may be -1, indicating that cursor is not used.
157 ** Any cursors returned will have been opened for writing.
158 **
159 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
160 ** unable to use the ONEPASS optimization.
161 */
162 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
163   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
164 #ifdef WHERETRACE_ENABLED
165   if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
166     sqlite3DebugPrintf("%s cursors: %d %d\n",
167          pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
168          aiCur[0], aiCur[1]);
169   }
170 #endif
171   return pWInfo->eOnePass;
172 }
173 
174 /*
175 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move
176 ** the data cursor to the row selected by the index cursor.
177 */
178 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){
179   return pWInfo->bDeferredSeek;
180 }
181 
182 /*
183 ** Move the content of pSrc into pDest
184 */
185 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
186   pDest->n = pSrc->n;
187   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
188 }
189 
190 /*
191 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
192 **
193 ** The new entry might overwrite an existing entry, or it might be
194 ** appended, or it might be discarded.  Do whatever is the right thing
195 ** so that pSet keeps the N_OR_COST best entries seen so far.
196 */
197 static int whereOrInsert(
198   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
199   Bitmask prereq,        /* Prerequisites of the new entry */
200   LogEst rRun,           /* Run-cost of the new entry */
201   LogEst nOut            /* Number of outputs for the new entry */
202 ){
203   u16 i;
204   WhereOrCost *p;
205   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
206     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
207       goto whereOrInsert_done;
208     }
209     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
210       return 0;
211     }
212   }
213   if( pSet->n<N_OR_COST ){
214     p = &pSet->a[pSet->n++];
215     p->nOut = nOut;
216   }else{
217     p = pSet->a;
218     for(i=1; i<pSet->n; i++){
219       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
220     }
221     if( p->rRun<=rRun ) return 0;
222   }
223 whereOrInsert_done:
224   p->prereq = prereq;
225   p->rRun = rRun;
226   if( p->nOut>nOut ) p->nOut = nOut;
227   return 1;
228 }
229 
230 /*
231 ** Return the bitmask for the given cursor number.  Return 0 if
232 ** iCursor is not in the set.
233 */
234 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
235   int i;
236   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
237   for(i=0; i<pMaskSet->n; i++){
238     if( pMaskSet->ix[i]==iCursor ){
239       return MASKBIT(i);
240     }
241   }
242   return 0;
243 }
244 
245 /*
246 ** Create a new mask for cursor iCursor.
247 **
248 ** There is one cursor per table in the FROM clause.  The number of
249 ** tables in the FROM clause is limited by a test early in the
250 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
251 ** array will never overflow.
252 */
253 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
254   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
255   pMaskSet->ix[pMaskSet->n++] = iCursor;
256 }
257 
258 /*
259 ** If the right-hand branch of the expression is a TK_COLUMN, then return
260 ** a pointer to the right-hand branch.  Otherwise, return NULL.
261 */
262 static Expr *whereRightSubexprIsColumn(Expr *p){
263   p = sqlite3ExprSkipCollateAndLikely(p->pRight);
264   if( ALWAYS(p!=0) && p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){
265     return p;
266   }
267   return 0;
268 }
269 
270 /*
271 ** Advance to the next WhereTerm that matches according to the criteria
272 ** established when the pScan object was initialized by whereScanInit().
273 ** Return NULL if there are no more matching WhereTerms.
274 */
275 static WhereTerm *whereScanNext(WhereScan *pScan){
276   int iCur;            /* The cursor on the LHS of the term */
277   i16 iColumn;         /* The column on the LHS of the term.  -1 for IPK */
278   Expr *pX;            /* An expression being tested */
279   WhereClause *pWC;    /* Shorthand for pScan->pWC */
280   WhereTerm *pTerm;    /* The term being tested */
281   int k = pScan->k;    /* Where to start scanning */
282 
283   assert( pScan->iEquiv<=pScan->nEquiv );
284   pWC = pScan->pWC;
285   while(1){
286     iColumn = pScan->aiColumn[pScan->iEquiv-1];
287     iCur = pScan->aiCur[pScan->iEquiv-1];
288     assert( pWC!=0 );
289     do{
290       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
291         if( pTerm->leftCursor==iCur
292          && pTerm->u.x.leftColumn==iColumn
293          && (iColumn!=XN_EXPR
294              || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
295                                        pScan->pIdxExpr,iCur)==0)
296          && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
297         ){
298           if( (pTerm->eOperator & WO_EQUIV)!=0
299            && pScan->nEquiv<ArraySize(pScan->aiCur)
300            && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0
301           ){
302             int j;
303             for(j=0; j<pScan->nEquiv; j++){
304               if( pScan->aiCur[j]==pX->iTable
305                && pScan->aiColumn[j]==pX->iColumn ){
306                   break;
307               }
308             }
309             if( j==pScan->nEquiv ){
310               pScan->aiCur[j] = pX->iTable;
311               pScan->aiColumn[j] = pX->iColumn;
312               pScan->nEquiv++;
313             }
314           }
315           if( (pTerm->eOperator & pScan->opMask)!=0 ){
316             /* Verify the affinity and collating sequence match */
317             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
318               CollSeq *pColl;
319               Parse *pParse = pWC->pWInfo->pParse;
320               pX = pTerm->pExpr;
321               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
322                 continue;
323               }
324               assert(pX->pLeft);
325               pColl = sqlite3ExprCompareCollSeq(pParse, pX);
326               if( pColl==0 ) pColl = pParse->db->pDfltColl;
327               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
328                 continue;
329               }
330             }
331             if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
332              && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
333              && pX->iTable==pScan->aiCur[0]
334              && pX->iColumn==pScan->aiColumn[0]
335             ){
336               testcase( pTerm->eOperator & WO_IS );
337               continue;
338             }
339             pScan->pWC = pWC;
340             pScan->k = k+1;
341             return pTerm;
342           }
343         }
344       }
345       pWC = pWC->pOuter;
346       k = 0;
347     }while( pWC!=0 );
348     if( pScan->iEquiv>=pScan->nEquiv ) break;
349     pWC = pScan->pOrigWC;
350     k = 0;
351     pScan->iEquiv++;
352   }
353   return 0;
354 }
355 
356 /*
357 ** This is whereScanInit() for the case of an index on an expression.
358 ** It is factored out into a separate tail-recursion subroutine so that
359 ** the normal whereScanInit() routine, which is a high-runner, does not
360 ** need to push registers onto the stack as part of its prologue.
361 */
362 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){
363   pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr);
364   return whereScanNext(pScan);
365 }
366 
367 /*
368 ** Initialize a WHERE clause scanner object.  Return a pointer to the
369 ** first match.  Return NULL if there are no matches.
370 **
371 ** The scanner will be searching the WHERE clause pWC.  It will look
372 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
373 ** iCur.   Or if pIdx!=0 then X is column iColumn of index pIdx.  pIdx
374 ** must be one of the indexes of table iCur.
375 **
376 ** The <op> must be one of the operators described by opMask.
377 **
378 ** If the search is for X and the WHERE clause contains terms of the
379 ** form X=Y then this routine might also return terms of the form
380 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
381 ** but is enough to handle most commonly occurring SQL statements.
382 **
383 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
384 ** index pIdx.
385 */
386 static WhereTerm *whereScanInit(
387   WhereScan *pScan,       /* The WhereScan object being initialized */
388   WhereClause *pWC,       /* The WHERE clause to be scanned */
389   int iCur,               /* Cursor to scan for */
390   int iColumn,            /* Column to scan for */
391   u32 opMask,             /* Operator(s) to scan for */
392   Index *pIdx             /* Must be compatible with this index */
393 ){
394   pScan->pOrigWC = pWC;
395   pScan->pWC = pWC;
396   pScan->pIdxExpr = 0;
397   pScan->idxaff = 0;
398   pScan->zCollName = 0;
399   pScan->opMask = opMask;
400   pScan->k = 0;
401   pScan->aiCur[0] = iCur;
402   pScan->nEquiv = 1;
403   pScan->iEquiv = 1;
404   if( pIdx ){
405     int j = iColumn;
406     iColumn = pIdx->aiColumn[j];
407     if( iColumn==XN_EXPR ){
408       pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
409       pScan->zCollName = pIdx->azColl[j];
410       pScan->aiColumn[0] = XN_EXPR;
411       return whereScanInitIndexExpr(pScan);
412     }else if( iColumn==pIdx->pTable->iPKey ){
413       iColumn = XN_ROWID;
414     }else if( iColumn>=0 ){
415       pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
416       pScan->zCollName = pIdx->azColl[j];
417     }
418   }else if( iColumn==XN_EXPR ){
419     return 0;
420   }
421   pScan->aiColumn[0] = iColumn;
422   return whereScanNext(pScan);
423 }
424 
425 /*
426 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
427 ** where X is a reference to the iColumn of table iCur or of index pIdx
428 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
429 ** the op parameter.  Return a pointer to the term.  Return 0 if not found.
430 **
431 ** If pIdx!=0 then it must be one of the indexes of table iCur.
432 ** Search for terms matching the iColumn-th column of pIdx
433 ** rather than the iColumn-th column of table iCur.
434 **
435 ** The term returned might by Y=<expr> if there is another constraint in
436 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
437 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
438 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
439 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
440 ** other equivalent values.  Hence a search for X will return <expr> if X=A1
441 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
442 **
443 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
444 ** then try for the one with no dependencies on <expr> - in other words where
445 ** <expr> is a constant expression of some kind.  Only return entries of
446 ** the form "X <op> Y" where Y is a column in another table if no terms of
447 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
448 ** exist, try to return a term that does not use WO_EQUIV.
449 */
450 WhereTerm *sqlite3WhereFindTerm(
451   WhereClause *pWC,     /* The WHERE clause to be searched */
452   int iCur,             /* Cursor number of LHS */
453   int iColumn,          /* Column number of LHS */
454   Bitmask notReady,     /* RHS must not overlap with this mask */
455   u32 op,               /* Mask of WO_xx values describing operator */
456   Index *pIdx           /* Must be compatible with this index, if not NULL */
457 ){
458   WhereTerm *pResult = 0;
459   WhereTerm *p;
460   WhereScan scan;
461 
462   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
463   op &= WO_EQ|WO_IS;
464   while( p ){
465     if( (p->prereqRight & notReady)==0 ){
466       if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
467         testcase( p->eOperator & WO_IS );
468         return p;
469       }
470       if( pResult==0 ) pResult = p;
471     }
472     p = whereScanNext(&scan);
473   }
474   return pResult;
475 }
476 
477 /*
478 ** This function searches pList for an entry that matches the iCol-th column
479 ** of index pIdx.
480 **
481 ** If such an expression is found, its index in pList->a[] is returned. If
482 ** no expression is found, -1 is returned.
483 */
484 static int findIndexCol(
485   Parse *pParse,                  /* Parse context */
486   ExprList *pList,                /* Expression list to search */
487   int iBase,                      /* Cursor for table associated with pIdx */
488   Index *pIdx,                    /* Index to match column of */
489   int iCol                        /* Column of index to match */
490 ){
491   int i;
492   const char *zColl = pIdx->azColl[iCol];
493 
494   for(i=0; i<pList->nExpr; i++){
495     Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr);
496     if( ALWAYS(p!=0)
497      && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN)
498      && p->iColumn==pIdx->aiColumn[iCol]
499      && p->iTable==iBase
500     ){
501       CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
502       if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
503         return i;
504       }
505     }
506   }
507 
508   return -1;
509 }
510 
511 /*
512 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
513 */
514 static int indexColumnNotNull(Index *pIdx, int iCol){
515   int j;
516   assert( pIdx!=0 );
517   assert( iCol>=0 && iCol<pIdx->nColumn );
518   j = pIdx->aiColumn[iCol];
519   if( j>=0 ){
520     return pIdx->pTable->aCol[j].notNull;
521   }else if( j==(-1) ){
522     return 1;
523   }else{
524     assert( j==(-2) );
525     return 0;  /* Assume an indexed expression can always yield a NULL */
526 
527   }
528 }
529 
530 /*
531 ** Return true if the DISTINCT expression-list passed as the third argument
532 ** is redundant.
533 **
534 ** A DISTINCT list is redundant if any subset of the columns in the
535 ** DISTINCT list are collectively unique and individually non-null.
536 */
537 static int isDistinctRedundant(
538   Parse *pParse,            /* Parsing context */
539   SrcList *pTabList,        /* The FROM clause */
540   WhereClause *pWC,         /* The WHERE clause */
541   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
542 ){
543   Table *pTab;
544   Index *pIdx;
545   int i;
546   int iBase;
547 
548   /* If there is more than one table or sub-select in the FROM clause of
549   ** this query, then it will not be possible to show that the DISTINCT
550   ** clause is redundant. */
551   if( pTabList->nSrc!=1 ) return 0;
552   iBase = pTabList->a[0].iCursor;
553   pTab = pTabList->a[0].pTab;
554 
555   /* If any of the expressions is an IPK column on table iBase, then return
556   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
557   ** current SELECT is a correlated sub-query.
558   */
559   for(i=0; i<pDistinct->nExpr; i++){
560     Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr);
561     if( NEVER(p==0) ) continue;
562     if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue;
563     if( p->iTable==iBase && p->iColumn<0 ) return 1;
564   }
565 
566   /* Loop through all indices on the table, checking each to see if it makes
567   ** the DISTINCT qualifier redundant. It does so if:
568   **
569   **   1. The index is itself UNIQUE, and
570   **
571   **   2. All of the columns in the index are either part of the pDistinct
572   **      list, or else the WHERE clause contains a term of the form "col=X",
573   **      where X is a constant value. The collation sequences of the
574   **      comparison and select-list expressions must match those of the index.
575   **
576   **   3. All of those index columns for which the WHERE clause does not
577   **      contain a "col=X" term are subject to a NOT NULL constraint.
578   */
579   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
580     if( !IsUniqueIndex(pIdx) ) continue;
581     if( pIdx->pPartIdxWhere ) continue;
582     for(i=0; i<pIdx->nKeyCol; i++){
583       if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
584         if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
585         if( indexColumnNotNull(pIdx, i)==0 ) break;
586       }
587     }
588     if( i==pIdx->nKeyCol ){
589       /* This index implies that the DISTINCT qualifier is redundant. */
590       return 1;
591     }
592   }
593 
594   return 0;
595 }
596 
597 
598 /*
599 ** Estimate the logarithm of the input value to base 2.
600 */
601 static LogEst estLog(LogEst N){
602   return N<=10 ? 0 : sqlite3LogEst(N) - 33;
603 }
604 
605 /*
606 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
607 **
608 ** This routine runs over generated VDBE code and translates OP_Column
609 ** opcodes into OP_Copy when the table is being accessed via co-routine
610 ** instead of via table lookup.
611 **
612 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
613 ** cursor iTabCur are transformed into OP_Sequence opcode for the
614 ** iAutoidxCur cursor, in order to generate unique rowids for the
615 ** automatic index being generated.
616 */
617 static void translateColumnToCopy(
618   Parse *pParse,      /* Parsing context */
619   int iStart,         /* Translate from this opcode to the end */
620   int iTabCur,        /* OP_Column/OP_Rowid references to this table */
621   int iRegister,      /* The first column is in this register */
622   int iAutoidxCur     /* If non-zero, cursor of autoindex being generated */
623 ){
624   Vdbe *v = pParse->pVdbe;
625   VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
626   int iEnd = sqlite3VdbeCurrentAddr(v);
627   if( pParse->db->mallocFailed ) return;
628   for(; iStart<iEnd; iStart++, pOp++){
629     if( pOp->p1!=iTabCur ) continue;
630     if( pOp->opcode==OP_Column ){
631       pOp->opcode = OP_Copy;
632       pOp->p1 = pOp->p2 + iRegister;
633       pOp->p2 = pOp->p3;
634       pOp->p3 = 0;
635     }else if( pOp->opcode==OP_Rowid ){
636       pOp->opcode = OP_Sequence;
637       pOp->p1 = iAutoidxCur;
638 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
639       if( iAutoidxCur==0 ){
640         pOp->opcode = OP_Null;
641         pOp->p3 = 0;
642       }
643 #endif
644     }
645   }
646 }
647 
648 /*
649 ** Two routines for printing the content of an sqlite3_index_info
650 ** structure.  Used for testing and debugging only.  If neither
651 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
652 ** are no-ops.
653 */
654 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
655 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){
656   int i;
657   if( !sqlite3WhereTrace ) return;
658   for(i=0; i<p->nConstraint; i++){
659     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
660        i,
661        p->aConstraint[i].iColumn,
662        p->aConstraint[i].iTermOffset,
663        p->aConstraint[i].op,
664        p->aConstraint[i].usable);
665   }
666   for(i=0; i<p->nOrderBy; i++){
667     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
668        i,
669        p->aOrderBy[i].iColumn,
670        p->aOrderBy[i].desc);
671   }
672 }
673 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){
674   int i;
675   if( !sqlite3WhereTrace ) return;
676   for(i=0; i<p->nConstraint; i++){
677     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
678        i,
679        p->aConstraintUsage[i].argvIndex,
680        p->aConstraintUsage[i].omit);
681   }
682   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
683   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
684   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
685   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
686   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
687 }
688 #else
689 #define whereTraceIndexInfoInputs(A)
690 #define whereTraceIndexInfoOutputs(A)
691 #endif
692 
693 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
694 /*
695 ** Return TRUE if the WHERE clause term pTerm is of a form where it
696 ** could be used with an index to access pSrc, assuming an appropriate
697 ** index existed.
698 */
699 static int termCanDriveIndex(
700   WhereTerm *pTerm,              /* WHERE clause term to check */
701   SrcItem *pSrc,                 /* Table we are trying to access */
702   Bitmask notReady               /* Tables in outer loops of the join */
703 ){
704   char aff;
705   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
706   if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
707   if( (pSrc->fg.jointype & JT_LEFT)
708    && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
709    && (pTerm->eOperator & WO_IS)
710   ){
711     /* Cannot use an IS term from the WHERE clause as an index driver for
712     ** the RHS of a LEFT JOIN. Such a term can only be used if it is from
713     ** the ON clause.  */
714     return 0;
715   }
716   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
717   if( pTerm->u.x.leftColumn<0 ) return 0;
718   aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity;
719   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
720   testcase( pTerm->pExpr->op==TK_IS );
721   return 1;
722 }
723 #endif
724 
725 
726 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
727 /*
728 ** Generate code to construct the Index object for an automatic index
729 ** and to set up the WhereLevel object pLevel so that the code generator
730 ** makes use of the automatic index.
731 */
732 static void constructAutomaticIndex(
733   Parse *pParse,              /* The parsing context */
734   WhereClause *pWC,           /* The WHERE clause */
735   SrcItem *pSrc,              /* The FROM clause term to get the next index */
736   Bitmask notReady,           /* Mask of cursors that are not available */
737   WhereLevel *pLevel          /* Write new index here */
738 ){
739   int nKeyCol;                /* Number of columns in the constructed index */
740   WhereTerm *pTerm;           /* A single term of the WHERE clause */
741   WhereTerm *pWCEnd;          /* End of pWC->a[] */
742   Index *pIdx;                /* Object describing the transient index */
743   Vdbe *v;                    /* Prepared statement under construction */
744   int addrInit;               /* Address of the initialization bypass jump */
745   Table *pTable;              /* The table being indexed */
746   int addrTop;                /* Top of the index fill loop */
747   int regRecord;              /* Register holding an index record */
748   int n;                      /* Column counter */
749   int i;                      /* Loop counter */
750   int mxBitCol;               /* Maximum column in pSrc->colUsed */
751   CollSeq *pColl;             /* Collating sequence to on a column */
752   WhereLoop *pLoop;           /* The Loop object */
753   char *zNotUsed;             /* Extra space on the end of pIdx */
754   Bitmask idxCols;            /* Bitmap of columns used for indexing */
755   Bitmask extraCols;          /* Bitmap of additional columns */
756   u8 sentWarning = 0;         /* True if a warnning has been issued */
757   Expr *pPartial = 0;         /* Partial Index Expression */
758   int iContinue = 0;          /* Jump here to skip excluded rows */
759   SrcItem *pTabItem;          /* FROM clause term being indexed */
760   int addrCounter = 0;        /* Address where integer counter is initialized */
761   int regBase;                /* Array of registers where record is assembled */
762 
763   /* Generate code to skip over the creation and initialization of the
764   ** transient index on 2nd and subsequent iterations of the loop. */
765   v = pParse->pVdbe;
766   assert( v!=0 );
767   addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
768 
769   /* Count the number of columns that will be added to the index
770   ** and used to match WHERE clause constraints */
771   nKeyCol = 0;
772   pTable = pSrc->pTab;
773   pWCEnd = &pWC->a[pWC->nTerm];
774   pLoop = pLevel->pWLoop;
775   idxCols = 0;
776   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
777     Expr *pExpr = pTerm->pExpr;
778     assert( !ExprHasProperty(pExpr, EP_FromJoin)    /* prereq always non-zero */
779          || pExpr->iRightJoinTable!=pSrc->iCursor   /*   for the right-hand   */
780          || pLoop->prereq!=0 );                     /*   table of a LEFT JOIN */
781     if( pLoop->prereq==0
782      && (pTerm->wtFlags & TERM_VIRTUAL)==0
783      && !ExprHasProperty(pExpr, EP_FromJoin)
784      && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){
785       pPartial = sqlite3ExprAnd(pParse, pPartial,
786                                 sqlite3ExprDup(pParse->db, pExpr, 0));
787     }
788     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
789       int iCol = pTerm->u.x.leftColumn;
790       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
791       testcase( iCol==BMS );
792       testcase( iCol==BMS-1 );
793       if( !sentWarning ){
794         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
795             "automatic index on %s(%s)", pTable->zName,
796             pTable->aCol[iCol].zName);
797         sentWarning = 1;
798       }
799       if( (idxCols & cMask)==0 ){
800         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
801           goto end_auto_index_create;
802         }
803         pLoop->aLTerm[nKeyCol++] = pTerm;
804         idxCols |= cMask;
805       }
806     }
807   }
808   assert( nKeyCol>0 || pParse->db->mallocFailed );
809   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
810   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
811                      | WHERE_AUTO_INDEX;
812 
813   /* Count the number of additional columns needed to create a
814   ** covering index.  A "covering index" is an index that contains all
815   ** columns that are needed by the query.  With a covering index, the
816   ** original table never needs to be accessed.  Automatic indices must
817   ** be a covering index because the index will not be updated if the
818   ** original table changes and the index and table cannot both be used
819   ** if they go out of sync.
820   */
821   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
822   mxBitCol = MIN(BMS-1,pTable->nCol);
823   testcase( pTable->nCol==BMS-1 );
824   testcase( pTable->nCol==BMS-2 );
825   for(i=0; i<mxBitCol; i++){
826     if( extraCols & MASKBIT(i) ) nKeyCol++;
827   }
828   if( pSrc->colUsed & MASKBIT(BMS-1) ){
829     nKeyCol += pTable->nCol - BMS + 1;
830   }
831 
832   /* Construct the Index object to describe this index */
833   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
834   if( pIdx==0 ) goto end_auto_index_create;
835   pLoop->u.btree.pIndex = pIdx;
836   pIdx->zName = "auto-index";
837   pIdx->pTable = pTable;
838   n = 0;
839   idxCols = 0;
840   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
841     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
842       int iCol = pTerm->u.x.leftColumn;
843       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
844       testcase( iCol==BMS-1 );
845       testcase( iCol==BMS );
846       if( (idxCols & cMask)==0 ){
847         Expr *pX = pTerm->pExpr;
848         idxCols |= cMask;
849         pIdx->aiColumn[n] = pTerm->u.x.leftColumn;
850         pColl = sqlite3ExprCompareCollSeq(pParse, pX);
851         assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */
852         pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
853         n++;
854       }
855     }
856   }
857   assert( (u32)n==pLoop->u.btree.nEq );
858 
859   /* Add additional columns needed to make the automatic index into
860   ** a covering index */
861   for(i=0; i<mxBitCol; i++){
862     if( extraCols & MASKBIT(i) ){
863       pIdx->aiColumn[n] = i;
864       pIdx->azColl[n] = sqlite3StrBINARY;
865       n++;
866     }
867   }
868   if( pSrc->colUsed & MASKBIT(BMS-1) ){
869     for(i=BMS-1; i<pTable->nCol; i++){
870       pIdx->aiColumn[n] = i;
871       pIdx->azColl[n] = sqlite3StrBINARY;
872       n++;
873     }
874   }
875   assert( n==nKeyCol );
876   pIdx->aiColumn[n] = XN_ROWID;
877   pIdx->azColl[n] = sqlite3StrBINARY;
878 
879   /* Create the automatic index */
880   assert( pLevel->iIdxCur>=0 );
881   pLevel->iIdxCur = pParse->nTab++;
882   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
883   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
884   VdbeComment((v, "for %s", pTable->zName));
885 
886   /* Fill the automatic index with content */
887   pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
888   if( pTabItem->fg.viaCoroutine ){
889     int regYield = pTabItem->regReturn;
890     addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
891     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
892     addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
893     VdbeCoverage(v);
894     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
895   }else{
896     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
897   }
898   if( pPartial ){
899     iContinue = sqlite3VdbeMakeLabel(pParse);
900     sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
901     pLoop->wsFlags |= WHERE_PARTIALIDX;
902   }
903   regRecord = sqlite3GetTempReg(pParse);
904   regBase = sqlite3GenerateIndexKey(
905       pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
906   );
907   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
908   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
909   if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
910   if( pTabItem->fg.viaCoroutine ){
911     sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
912     testcase( pParse->db->mallocFailed );
913     assert( pLevel->iIdxCur>0 );
914     translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
915                           pTabItem->regResult, pLevel->iIdxCur);
916     sqlite3VdbeGoto(v, addrTop);
917     pTabItem->fg.viaCoroutine = 0;
918   }else{
919     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
920     sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
921   }
922   sqlite3VdbeJumpHere(v, addrTop);
923   sqlite3ReleaseTempReg(pParse, regRecord);
924 
925   /* Jump here when skipping the initialization */
926   sqlite3VdbeJumpHere(v, addrInit);
927 
928 end_auto_index_create:
929   sqlite3ExprDelete(pParse->db, pPartial);
930 }
931 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
932 
933 #ifndef SQLITE_OMIT_VIRTUALTABLE
934 /*
935 ** Allocate and populate an sqlite3_index_info structure. It is the
936 ** responsibility of the caller to eventually release the structure
937 ** by passing the pointer returned by this function to sqlite3_free().
938 */
939 static sqlite3_index_info *allocateIndexInfo(
940   Parse *pParse,                  /* The parsing context */
941   WhereClause *pWC,               /* The WHERE clause being analyzed */
942   Bitmask mUnusable,              /* Ignore terms with these prereqs */
943   SrcItem *pSrc,                  /* The FROM clause term that is the vtab */
944   ExprList *pOrderBy,             /* The ORDER BY clause */
945   u16 *pmNoOmit                   /* Mask of terms not to omit */
946 ){
947   int i, j;
948   int nTerm;
949   struct sqlite3_index_constraint *pIdxCons;
950   struct sqlite3_index_orderby *pIdxOrderBy;
951   struct sqlite3_index_constraint_usage *pUsage;
952   struct HiddenIndexInfo *pHidden;
953   WhereTerm *pTerm;
954   int nOrderBy;
955   sqlite3_index_info *pIdxInfo;
956   u16 mNoOmit = 0;
957 
958   /* Count the number of possible WHERE clause constraints referring
959   ** to this virtual table */
960   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
961     if( pTerm->leftCursor != pSrc->iCursor ) continue;
962     if( pTerm->prereqRight & mUnusable ) continue;
963     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
964     testcase( pTerm->eOperator & WO_IN );
965     testcase( pTerm->eOperator & WO_ISNULL );
966     testcase( pTerm->eOperator & WO_IS );
967     testcase( pTerm->eOperator & WO_ALL );
968     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
969     if( pTerm->wtFlags & TERM_VNULL ) continue;
970     assert( pTerm->u.x.leftColumn>=(-1) );
971     nTerm++;
972   }
973 
974   /* If the ORDER BY clause contains only columns in the current
975   ** virtual table then allocate space for the aOrderBy part of
976   ** the sqlite3_index_info structure.
977   */
978   nOrderBy = 0;
979   if( pOrderBy ){
980     int n = pOrderBy->nExpr;
981     for(i=0; i<n; i++){
982       Expr *pExpr = pOrderBy->a[i].pExpr;
983       if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
984       if( pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL ) break;
985     }
986     if( i==n){
987       nOrderBy = n;
988     }
989   }
990 
991   /* Allocate the sqlite3_index_info structure
992   */
993   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
994                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
995                            + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) );
996   if( pIdxInfo==0 ){
997     sqlite3ErrorMsg(pParse, "out of memory");
998     return 0;
999   }
1000   pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
1001   pIdxCons = (struct sqlite3_index_constraint*)&pHidden[1];
1002   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1003   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1004   pIdxInfo->nOrderBy = nOrderBy;
1005   pIdxInfo->aConstraint = pIdxCons;
1006   pIdxInfo->aOrderBy = pIdxOrderBy;
1007   pIdxInfo->aConstraintUsage = pUsage;
1008   pHidden->pWC = pWC;
1009   pHidden->pParse = pParse;
1010   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1011     u16 op;
1012     if( pTerm->leftCursor != pSrc->iCursor ) continue;
1013     if( pTerm->prereqRight & mUnusable ) continue;
1014     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
1015     testcase( pTerm->eOperator & WO_IN );
1016     testcase( pTerm->eOperator & WO_IS );
1017     testcase( pTerm->eOperator & WO_ISNULL );
1018     testcase( pTerm->eOperator & WO_ALL );
1019     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
1020     if( pTerm->wtFlags & TERM_VNULL ) continue;
1021 
1022     /* tag-20191211-002: WHERE-clause constraints are not useful to the
1023     ** right-hand table of a LEFT JOIN.  See tag-20191211-001 for the
1024     ** equivalent restriction for ordinary tables. */
1025     if( (pSrc->fg.jointype & JT_LEFT)!=0
1026      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
1027     ){
1028       continue;
1029     }
1030     assert( pTerm->u.x.leftColumn>=(-1) );
1031     pIdxCons[j].iColumn = pTerm->u.x.leftColumn;
1032     pIdxCons[j].iTermOffset = i;
1033     op = pTerm->eOperator & WO_ALL;
1034     if( op==WO_IN ) op = WO_EQ;
1035     if( op==WO_AUX ){
1036       pIdxCons[j].op = pTerm->eMatchOp;
1037     }else if( op & (WO_ISNULL|WO_IS) ){
1038       if( op==WO_ISNULL ){
1039         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
1040       }else{
1041         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
1042       }
1043     }else{
1044       pIdxCons[j].op = (u8)op;
1045       /* The direct assignment in the previous line is possible only because
1046       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
1047       ** following asserts verify this fact. */
1048       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1049       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1050       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1051       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1052       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1053       assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
1054 
1055       if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
1056        && sqlite3ExprIsVector(pTerm->pExpr->pRight)
1057       ){
1058         testcase( j!=i );
1059         if( j<16 ) mNoOmit |= (1 << j);
1060         if( op==WO_LT ) pIdxCons[j].op = WO_LE;
1061         if( op==WO_GT ) pIdxCons[j].op = WO_GE;
1062       }
1063     }
1064 
1065     j++;
1066   }
1067   pIdxInfo->nConstraint = j;
1068   for(i=0; i<nOrderBy; i++){
1069     Expr *pExpr = pOrderBy->a[i].pExpr;
1070     pIdxOrderBy[i].iColumn = pExpr->iColumn;
1071     pIdxOrderBy[i].desc = pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC;
1072   }
1073 
1074   *pmNoOmit = mNoOmit;
1075   return pIdxInfo;
1076 }
1077 
1078 /*
1079 ** The table object reference passed as the second argument to this function
1080 ** must represent a virtual table. This function invokes the xBestIndex()
1081 ** method of the virtual table with the sqlite3_index_info object that
1082 ** comes in as the 3rd argument to this function.
1083 **
1084 ** If an error occurs, pParse is populated with an error message and an
1085 ** appropriate error code is returned.  A return of SQLITE_CONSTRAINT from
1086 ** xBestIndex is not considered an error.  SQLITE_CONSTRAINT indicates that
1087 ** the current configuration of "unusable" flags in sqlite3_index_info can
1088 ** not result in a valid plan.
1089 **
1090 ** Whether or not an error is returned, it is the responsibility of the
1091 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1092 ** that this is required.
1093 */
1094 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
1095   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
1096   int rc;
1097 
1098   whereTraceIndexInfoInputs(p);
1099   rc = pVtab->pModule->xBestIndex(pVtab, p);
1100   whereTraceIndexInfoOutputs(p);
1101 
1102   if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){
1103     if( rc==SQLITE_NOMEM ){
1104       sqlite3OomFault(pParse->db);
1105     }else if( !pVtab->zErrMsg ){
1106       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1107     }else{
1108       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1109     }
1110   }
1111   sqlite3_free(pVtab->zErrMsg);
1112   pVtab->zErrMsg = 0;
1113   return rc;
1114 }
1115 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1116 
1117 #ifdef SQLITE_ENABLE_STAT4
1118 /*
1119 ** Estimate the location of a particular key among all keys in an
1120 ** index.  Store the results in aStat as follows:
1121 **
1122 **    aStat[0]      Est. number of rows less than pRec
1123 **    aStat[1]      Est. number of rows equal to pRec
1124 **
1125 ** Return the index of the sample that is the smallest sample that
1126 ** is greater than or equal to pRec. Note that this index is not an index
1127 ** into the aSample[] array - it is an index into a virtual set of samples
1128 ** based on the contents of aSample[] and the number of fields in record
1129 ** pRec.
1130 */
1131 static int whereKeyStats(
1132   Parse *pParse,              /* Database connection */
1133   Index *pIdx,                /* Index to consider domain of */
1134   UnpackedRecord *pRec,       /* Vector of values to consider */
1135   int roundUp,                /* Round up if true.  Round down if false */
1136   tRowcnt *aStat              /* OUT: stats written here */
1137 ){
1138   IndexSample *aSample = pIdx->aSample;
1139   int iCol;                   /* Index of required stats in anEq[] etc. */
1140   int i;                      /* Index of first sample >= pRec */
1141   int iSample;                /* Smallest sample larger than or equal to pRec */
1142   int iMin = 0;               /* Smallest sample not yet tested */
1143   int iTest;                  /* Next sample to test */
1144   int res;                    /* Result of comparison operation */
1145   int nField;                 /* Number of fields in pRec */
1146   tRowcnt iLower = 0;         /* anLt[] + anEq[] of largest sample pRec is > */
1147 
1148 #ifndef SQLITE_DEBUG
1149   UNUSED_PARAMETER( pParse );
1150 #endif
1151   assert( pRec!=0 );
1152   assert( pIdx->nSample>0 );
1153   assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
1154 
1155   /* Do a binary search to find the first sample greater than or equal
1156   ** to pRec. If pRec contains a single field, the set of samples to search
1157   ** is simply the aSample[] array. If the samples in aSample[] contain more
1158   ** than one fields, all fields following the first are ignored.
1159   **
1160   ** If pRec contains N fields, where N is more than one, then as well as the
1161   ** samples in aSample[] (truncated to N fields), the search also has to
1162   ** consider prefixes of those samples. For example, if the set of samples
1163   ** in aSample is:
1164   **
1165   **     aSample[0] = (a, 5)
1166   **     aSample[1] = (a, 10)
1167   **     aSample[2] = (b, 5)
1168   **     aSample[3] = (c, 100)
1169   **     aSample[4] = (c, 105)
1170   **
1171   ** Then the search space should ideally be the samples above and the
1172   ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1173   ** the code actually searches this set:
1174   **
1175   **     0: (a)
1176   **     1: (a, 5)
1177   **     2: (a, 10)
1178   **     3: (a, 10)
1179   **     4: (b)
1180   **     5: (b, 5)
1181   **     6: (c)
1182   **     7: (c, 100)
1183   **     8: (c, 105)
1184   **     9: (c, 105)
1185   **
1186   ** For each sample in the aSample[] array, N samples are present in the
1187   ** effective sample array. In the above, samples 0 and 1 are based on
1188   ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1189   **
1190   ** Often, sample i of each block of N effective samples has (i+1) fields.
1191   ** Except, each sample may be extended to ensure that it is greater than or
1192   ** equal to the previous sample in the array. For example, in the above,
1193   ** sample 2 is the first sample of a block of N samples, so at first it
1194   ** appears that it should be 1 field in size. However, that would make it
1195   ** smaller than sample 1, so the binary search would not work. As a result,
1196   ** it is extended to two fields. The duplicates that this creates do not
1197   ** cause any problems.
1198   */
1199   nField = pRec->nField;
1200   iCol = 0;
1201   iSample = pIdx->nSample * nField;
1202   do{
1203     int iSamp;                    /* Index in aSample[] of test sample */
1204     int n;                        /* Number of fields in test sample */
1205 
1206     iTest = (iMin+iSample)/2;
1207     iSamp = iTest / nField;
1208     if( iSamp>0 ){
1209       /* The proposed effective sample is a prefix of sample aSample[iSamp].
1210       ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1211       ** fields that is greater than the previous effective sample.  */
1212       for(n=(iTest % nField) + 1; n<nField; n++){
1213         if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1214       }
1215     }else{
1216       n = iTest + 1;
1217     }
1218 
1219     pRec->nField = n;
1220     res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1221     if( res<0 ){
1222       iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1223       iMin = iTest+1;
1224     }else if( res==0 && n<nField ){
1225       iLower = aSample[iSamp].anLt[n-1];
1226       iMin = iTest+1;
1227       res = -1;
1228     }else{
1229       iSample = iTest;
1230       iCol = n-1;
1231     }
1232   }while( res && iMin<iSample );
1233   i = iSample / nField;
1234 
1235 #ifdef SQLITE_DEBUG
1236   /* The following assert statements check that the binary search code
1237   ** above found the right answer. This block serves no purpose other
1238   ** than to invoke the asserts.  */
1239   if( pParse->db->mallocFailed==0 ){
1240     if( res==0 ){
1241       /* If (res==0) is true, then pRec must be equal to sample i. */
1242       assert( i<pIdx->nSample );
1243       assert( iCol==nField-1 );
1244       pRec->nField = nField;
1245       assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1246            || pParse->db->mallocFailed
1247       );
1248     }else{
1249       /* Unless i==pIdx->nSample, indicating that pRec is larger than
1250       ** all samples in the aSample[] array, pRec must be smaller than the
1251       ** (iCol+1) field prefix of sample i.  */
1252       assert( i<=pIdx->nSample && i>=0 );
1253       pRec->nField = iCol+1;
1254       assert( i==pIdx->nSample
1255            || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1256            || pParse->db->mallocFailed );
1257 
1258       /* if i==0 and iCol==0, then record pRec is smaller than all samples
1259       ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1260       ** be greater than or equal to the (iCol) field prefix of sample i.
1261       ** If (i>0), then pRec must also be greater than sample (i-1).  */
1262       if( iCol>0 ){
1263         pRec->nField = iCol;
1264         assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1265              || pParse->db->mallocFailed );
1266       }
1267       if( i>0 ){
1268         pRec->nField = nField;
1269         assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1270              || pParse->db->mallocFailed );
1271       }
1272     }
1273   }
1274 #endif /* ifdef SQLITE_DEBUG */
1275 
1276   if( res==0 ){
1277     /* Record pRec is equal to sample i */
1278     assert( iCol==nField-1 );
1279     aStat[0] = aSample[i].anLt[iCol];
1280     aStat[1] = aSample[i].anEq[iCol];
1281   }else{
1282     /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1283     ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1284     ** is larger than all samples in the array. */
1285     tRowcnt iUpper, iGap;
1286     if( i>=pIdx->nSample ){
1287       iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1288     }else{
1289       iUpper = aSample[i].anLt[iCol];
1290     }
1291 
1292     if( iLower>=iUpper ){
1293       iGap = 0;
1294     }else{
1295       iGap = iUpper - iLower;
1296     }
1297     if( roundUp ){
1298       iGap = (iGap*2)/3;
1299     }else{
1300       iGap = iGap/3;
1301     }
1302     aStat[0] = iLower + iGap;
1303     aStat[1] = pIdx->aAvgEq[nField-1];
1304   }
1305 
1306   /* Restore the pRec->nField value before returning.  */
1307   pRec->nField = nField;
1308   return i;
1309 }
1310 #endif /* SQLITE_ENABLE_STAT4 */
1311 
1312 /*
1313 ** If it is not NULL, pTerm is a term that provides an upper or lower
1314 ** bound on a range scan. Without considering pTerm, it is estimated
1315 ** that the scan will visit nNew rows. This function returns the number
1316 ** estimated to be visited after taking pTerm into account.
1317 **
1318 ** If the user explicitly specified a likelihood() value for this term,
1319 ** then the return value is the likelihood multiplied by the number of
1320 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1321 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1322 */
1323 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1324   LogEst nRet = nNew;
1325   if( pTerm ){
1326     if( pTerm->truthProb<=0 ){
1327       nRet += pTerm->truthProb;
1328     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1329       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
1330     }
1331   }
1332   return nRet;
1333 }
1334 
1335 
1336 #ifdef SQLITE_ENABLE_STAT4
1337 /*
1338 ** Return the affinity for a single column of an index.
1339 */
1340 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1341   assert( iCol>=0 && iCol<pIdx->nColumn );
1342   if( !pIdx->zColAff ){
1343     if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1344   }
1345   assert( pIdx->zColAff[iCol]!=0 );
1346   return pIdx->zColAff[iCol];
1347 }
1348 #endif
1349 
1350 
1351 #ifdef SQLITE_ENABLE_STAT4
1352 /*
1353 ** This function is called to estimate the number of rows visited by a
1354 ** range-scan on a skip-scan index. For example:
1355 **
1356 **   CREATE INDEX i1 ON t1(a, b, c);
1357 **   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1358 **
1359 ** Value pLoop->nOut is currently set to the estimated number of rows
1360 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1361 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1362 ** on the stat4 data for the index. this scan will be peformed multiple
1363 ** times (once for each (a,b) combination that matches a=?) is dealt with
1364 ** by the caller.
1365 **
1366 ** It does this by scanning through all stat4 samples, comparing values
1367 ** extracted from pLower and pUpper with the corresponding column in each
1368 ** sample. If L and U are the number of samples found to be less than or
1369 ** equal to the values extracted from pLower and pUpper respectively, and
1370 ** N is the total number of samples, the pLoop->nOut value is adjusted
1371 ** as follows:
1372 **
1373 **   nOut = nOut * ( min(U - L, 1) / N )
1374 **
1375 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1376 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1377 ** U is set to N.
1378 **
1379 ** Normally, this function sets *pbDone to 1 before returning. However,
1380 ** if no value can be extracted from either pLower or pUpper (and so the
1381 ** estimate of the number of rows delivered remains unchanged), *pbDone
1382 ** is left as is.
1383 **
1384 ** If an error occurs, an SQLite error code is returned. Otherwise,
1385 ** SQLITE_OK.
1386 */
1387 static int whereRangeSkipScanEst(
1388   Parse *pParse,       /* Parsing & code generating context */
1389   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1390   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1391   WhereLoop *pLoop,    /* Update the .nOut value of this loop */
1392   int *pbDone          /* Set to true if at least one expr. value extracted */
1393 ){
1394   Index *p = pLoop->u.btree.pIndex;
1395   int nEq = pLoop->u.btree.nEq;
1396   sqlite3 *db = pParse->db;
1397   int nLower = -1;
1398   int nUpper = p->nSample+1;
1399   int rc = SQLITE_OK;
1400   u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1401   CollSeq *pColl;
1402 
1403   sqlite3_value *p1 = 0;          /* Value extracted from pLower */
1404   sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
1405   sqlite3_value *pVal = 0;        /* Value extracted from record */
1406 
1407   pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1408   if( pLower ){
1409     rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1410     nLower = 0;
1411   }
1412   if( pUpper && rc==SQLITE_OK ){
1413     rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1414     nUpper = p2 ? 0 : p->nSample;
1415   }
1416 
1417   if( p1 || p2 ){
1418     int i;
1419     int nDiff;
1420     for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1421       rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1422       if( rc==SQLITE_OK && p1 ){
1423         int res = sqlite3MemCompare(p1, pVal, pColl);
1424         if( res>=0 ) nLower++;
1425       }
1426       if( rc==SQLITE_OK && p2 ){
1427         int res = sqlite3MemCompare(p2, pVal, pColl);
1428         if( res>=0 ) nUpper++;
1429       }
1430     }
1431     nDiff = (nUpper - nLower);
1432     if( nDiff<=0 ) nDiff = 1;
1433 
1434     /* If there is both an upper and lower bound specified, and the
1435     ** comparisons indicate that they are close together, use the fallback
1436     ** method (assume that the scan visits 1/64 of the rows) for estimating
1437     ** the number of rows visited. Otherwise, estimate the number of rows
1438     ** using the method described in the header comment for this function. */
1439     if( nDiff!=1 || pUpper==0 || pLower==0 ){
1440       int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1441       pLoop->nOut -= nAdjust;
1442       *pbDone = 1;
1443       WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n",
1444                            nLower, nUpper, nAdjust*-1, pLoop->nOut));
1445     }
1446 
1447   }else{
1448     assert( *pbDone==0 );
1449   }
1450 
1451   sqlite3ValueFree(p1);
1452   sqlite3ValueFree(p2);
1453   sqlite3ValueFree(pVal);
1454 
1455   return rc;
1456 }
1457 #endif /* SQLITE_ENABLE_STAT4 */
1458 
1459 /*
1460 ** This function is used to estimate the number of rows that will be visited
1461 ** by scanning an index for a range of values. The range may have an upper
1462 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1463 ** and lower bounds are represented by pLower and pUpper respectively. For
1464 ** example, assuming that index p is on t1(a):
1465 **
1466 **   ... FROM t1 WHERE a > ? AND a < ? ...
1467 **                    |_____|   |_____|
1468 **                       |         |
1469 **                     pLower    pUpper
1470 **
1471 ** If either of the upper or lower bound is not present, then NULL is passed in
1472 ** place of the corresponding WhereTerm.
1473 **
1474 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1475 ** column subject to the range constraint. Or, equivalently, the number of
1476 ** equality constraints optimized by the proposed index scan. For example,
1477 ** assuming index p is on t1(a, b), and the SQL query is:
1478 **
1479 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1480 **
1481 ** then nEq is set to 1 (as the range restricted column, b, is the second
1482 ** left-most column of the index). Or, if the query is:
1483 **
1484 **   ... FROM t1 WHERE a > ? AND a < ? ...
1485 **
1486 ** then nEq is set to 0.
1487 **
1488 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1489 ** number of rows that the index scan is expected to visit without
1490 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1491 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1492 ** to account for the range constraints pLower and pUpper.
1493 **
1494 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1495 ** used, a single range inequality reduces the search space by a factor of 4.
1496 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1497 ** rows visited by a factor of 64.
1498 */
1499 static int whereRangeScanEst(
1500   Parse *pParse,       /* Parsing & code generating context */
1501   WhereLoopBuilder *pBuilder,
1502   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1503   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1504   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
1505 ){
1506   int rc = SQLITE_OK;
1507   int nOut = pLoop->nOut;
1508   LogEst nNew;
1509 
1510 #ifdef SQLITE_ENABLE_STAT4
1511   Index *p = pLoop->u.btree.pIndex;
1512   int nEq = pLoop->u.btree.nEq;
1513 
1514   if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol)
1515    && OptimizationEnabled(pParse->db, SQLITE_Stat4)
1516   ){
1517     if( nEq==pBuilder->nRecValid ){
1518       UnpackedRecord *pRec = pBuilder->pRec;
1519       tRowcnt a[2];
1520       int nBtm = pLoop->u.btree.nBtm;
1521       int nTop = pLoop->u.btree.nTop;
1522 
1523       /* Variable iLower will be set to the estimate of the number of rows in
1524       ** the index that are less than the lower bound of the range query. The
1525       ** lower bound being the concatenation of $P and $L, where $P is the
1526       ** key-prefix formed by the nEq values matched against the nEq left-most
1527       ** columns of the index, and $L is the value in pLower.
1528       **
1529       ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1530       ** is not a simple variable or literal value), the lower bound of the
1531       ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1532       ** if $L is available, whereKeyStats() is called for both ($P) and
1533       ** ($P:$L) and the larger of the two returned values is used.
1534       **
1535       ** Similarly, iUpper is to be set to the estimate of the number of rows
1536       ** less than the upper bound of the range query. Where the upper bound
1537       ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1538       ** of iUpper are requested of whereKeyStats() and the smaller used.
1539       **
1540       ** The number of rows between the two bounds is then just iUpper-iLower.
1541       */
1542       tRowcnt iLower;     /* Rows less than the lower bound */
1543       tRowcnt iUpper;     /* Rows less than the upper bound */
1544       int iLwrIdx = -2;   /* aSample[] for the lower bound */
1545       int iUprIdx = -1;   /* aSample[] for the upper bound */
1546 
1547       if( pRec ){
1548         testcase( pRec->nField!=pBuilder->nRecValid );
1549         pRec->nField = pBuilder->nRecValid;
1550       }
1551       /* Determine iLower and iUpper using ($P) only. */
1552       if( nEq==0 ){
1553         iLower = 0;
1554         iUpper = p->nRowEst0;
1555       }else{
1556         /* Note: this call could be optimized away - since the same values must
1557         ** have been requested when testing key $P in whereEqualScanEst().  */
1558         whereKeyStats(pParse, p, pRec, 0, a);
1559         iLower = a[0];
1560         iUpper = a[0] + a[1];
1561       }
1562 
1563       assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1564       assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1565       assert( p->aSortOrder!=0 );
1566       if( p->aSortOrder[nEq] ){
1567         /* The roles of pLower and pUpper are swapped for a DESC index */
1568         SWAP(WhereTerm*, pLower, pUpper);
1569         SWAP(int, nBtm, nTop);
1570       }
1571 
1572       /* If possible, improve on the iLower estimate using ($P:$L). */
1573       if( pLower ){
1574         int n;                    /* Values extracted from pExpr */
1575         Expr *pExpr = pLower->pExpr->pRight;
1576         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1577         if( rc==SQLITE_OK && n ){
1578           tRowcnt iNew;
1579           u16 mask = WO_GT|WO_LE;
1580           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1581           iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1582           iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1583           if( iNew>iLower ) iLower = iNew;
1584           nOut--;
1585           pLower = 0;
1586         }
1587       }
1588 
1589       /* If possible, improve on the iUpper estimate using ($P:$U). */
1590       if( pUpper ){
1591         int n;                    /* Values extracted from pExpr */
1592         Expr *pExpr = pUpper->pExpr->pRight;
1593         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1594         if( rc==SQLITE_OK && n ){
1595           tRowcnt iNew;
1596           u16 mask = WO_GT|WO_LE;
1597           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1598           iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1599           iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1600           if( iNew<iUpper ) iUpper = iNew;
1601           nOut--;
1602           pUpper = 0;
1603         }
1604       }
1605 
1606       pBuilder->pRec = pRec;
1607       if( rc==SQLITE_OK ){
1608         if( iUpper>iLower ){
1609           nNew = sqlite3LogEst(iUpper - iLower);
1610           /* TUNING:  If both iUpper and iLower are derived from the same
1611           ** sample, then assume they are 4x more selective.  This brings
1612           ** the estimated selectivity more in line with what it would be
1613           ** if estimated without the use of STAT4 tables. */
1614           if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
1615         }else{
1616           nNew = 10;        assert( 10==sqlite3LogEst(2) );
1617         }
1618         if( nNew<nOut ){
1619           nOut = nNew;
1620         }
1621         WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
1622                            (u32)iLower, (u32)iUpper, nOut));
1623       }
1624     }else{
1625       int bDone = 0;
1626       rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1627       if( bDone ) return rc;
1628     }
1629   }
1630 #else
1631   UNUSED_PARAMETER(pParse);
1632   UNUSED_PARAMETER(pBuilder);
1633   assert( pLower || pUpper );
1634 #endif
1635   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1636   nNew = whereRangeAdjust(pLower, nOut);
1637   nNew = whereRangeAdjust(pUpper, nNew);
1638 
1639   /* TUNING: If there is both an upper and lower limit and neither limit
1640   ** has an application-defined likelihood(), assume the range is
1641   ** reduced by an additional 75%. This means that, by default, an open-ended
1642   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1643   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1644   ** match 1/64 of the index. */
1645   if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1646     nNew -= 20;
1647   }
1648 
1649   nOut -= (pLower!=0) + (pUpper!=0);
1650   if( nNew<10 ) nNew = 10;
1651   if( nNew<nOut ) nOut = nNew;
1652 #if defined(WHERETRACE_ENABLED)
1653   if( pLoop->nOut>nOut ){
1654     WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1655                     pLoop->nOut, nOut));
1656   }
1657 #endif
1658   pLoop->nOut = (LogEst)nOut;
1659   return rc;
1660 }
1661 
1662 #ifdef SQLITE_ENABLE_STAT4
1663 /*
1664 ** Estimate the number of rows that will be returned based on
1665 ** an equality constraint x=VALUE and where that VALUE occurs in
1666 ** the histogram data.  This only works when x is the left-most
1667 ** column of an index and sqlite_stat4 histogram data is available
1668 ** for that index.  When pExpr==NULL that means the constraint is
1669 ** "x IS NULL" instead of "x=VALUE".
1670 **
1671 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1672 ** If unable to make an estimate, leave *pnRow unchanged and return
1673 ** non-zero.
1674 **
1675 ** This routine can fail if it is unable to load a collating sequence
1676 ** required for string comparison, or if unable to allocate memory
1677 ** for a UTF conversion required for comparison.  The error is stored
1678 ** in the pParse structure.
1679 */
1680 static int whereEqualScanEst(
1681   Parse *pParse,       /* Parsing & code generating context */
1682   WhereLoopBuilder *pBuilder,
1683   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
1684   tRowcnt *pnRow       /* Write the revised row estimate here */
1685 ){
1686   Index *p = pBuilder->pNew->u.btree.pIndex;
1687   int nEq = pBuilder->pNew->u.btree.nEq;
1688   UnpackedRecord *pRec = pBuilder->pRec;
1689   int rc;                   /* Subfunction return code */
1690   tRowcnt a[2];             /* Statistics */
1691   int bOk;
1692 
1693   assert( nEq>=1 );
1694   assert( nEq<=p->nColumn );
1695   assert( p->aSample!=0 );
1696   assert( p->nSample>0 );
1697   assert( pBuilder->nRecValid<nEq );
1698 
1699   /* If values are not available for all fields of the index to the left
1700   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1701   if( pBuilder->nRecValid<(nEq-1) ){
1702     return SQLITE_NOTFOUND;
1703   }
1704 
1705   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1706   ** below would return the same value.  */
1707   if( nEq>=p->nColumn ){
1708     *pnRow = 1;
1709     return SQLITE_OK;
1710   }
1711 
1712   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1713   pBuilder->pRec = pRec;
1714   if( rc!=SQLITE_OK ) return rc;
1715   if( bOk==0 ) return SQLITE_NOTFOUND;
1716   pBuilder->nRecValid = nEq;
1717 
1718   whereKeyStats(pParse, p, pRec, 0, a);
1719   WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1720                    p->zName, nEq-1, (int)a[1]));
1721   *pnRow = a[1];
1722 
1723   return rc;
1724 }
1725 #endif /* SQLITE_ENABLE_STAT4 */
1726 
1727 #ifdef SQLITE_ENABLE_STAT4
1728 /*
1729 ** Estimate the number of rows that will be returned based on
1730 ** an IN constraint where the right-hand side of the IN operator
1731 ** is a list of values.  Example:
1732 **
1733 **        WHERE x IN (1,2,3,4)
1734 **
1735 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1736 ** If unable to make an estimate, leave *pnRow unchanged and return
1737 ** non-zero.
1738 **
1739 ** This routine can fail if it is unable to load a collating sequence
1740 ** required for string comparison, or if unable to allocate memory
1741 ** for a UTF conversion required for comparison.  The error is stored
1742 ** in the pParse structure.
1743 */
1744 static int whereInScanEst(
1745   Parse *pParse,       /* Parsing & code generating context */
1746   WhereLoopBuilder *pBuilder,
1747   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1748   tRowcnt *pnRow       /* Write the revised row estimate here */
1749 ){
1750   Index *p = pBuilder->pNew->u.btree.pIndex;
1751   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1752   int nRecValid = pBuilder->nRecValid;
1753   int rc = SQLITE_OK;     /* Subfunction return code */
1754   tRowcnt nEst;           /* Number of rows for a single term */
1755   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
1756   int i;                  /* Loop counter */
1757 
1758   assert( p->aSample!=0 );
1759   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
1760     nEst = nRow0;
1761     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
1762     nRowEst += nEst;
1763     pBuilder->nRecValid = nRecValid;
1764   }
1765 
1766   if( rc==SQLITE_OK ){
1767     if( nRowEst > nRow0 ) nRowEst = nRow0;
1768     *pnRow = nRowEst;
1769     WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
1770   }
1771   assert( pBuilder->nRecValid==nRecValid );
1772   return rc;
1773 }
1774 #endif /* SQLITE_ENABLE_STAT4 */
1775 
1776 
1777 #ifdef WHERETRACE_ENABLED
1778 /*
1779 ** Print the content of a WhereTerm object
1780 */
1781 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){
1782   if( pTerm==0 ){
1783     sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
1784   }else{
1785     char zType[8];
1786     char zLeft[50];
1787     memcpy(zType, "....", 5);
1788     if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
1789     if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
1790     if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
1791     if( pTerm->wtFlags & TERM_CODED  ) zType[3] = 'C';
1792     if( pTerm->eOperator & WO_SINGLE ){
1793       sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
1794                        pTerm->leftCursor, pTerm->u.x.leftColumn);
1795     }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
1796       sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx",
1797                        pTerm->u.pOrInfo->indexable);
1798     }else{
1799       sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
1800     }
1801     sqlite3DebugPrintf(
1802        "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x",
1803        iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags);
1804     /* The 0x10000 .wheretrace flag causes extra information to be
1805     ** shown about each Term */
1806     if( sqlite3WhereTrace & 0x10000 ){
1807       sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx",
1808         pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight);
1809     }
1810     if( pTerm->u.x.iField ){
1811       sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField);
1812     }
1813     if( pTerm->iParent>=0 ){
1814       sqlite3DebugPrintf(" iParent=%d", pTerm->iParent);
1815     }
1816     sqlite3DebugPrintf("\n");
1817     sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
1818   }
1819 }
1820 #endif
1821 
1822 #ifdef WHERETRACE_ENABLED
1823 /*
1824 ** Show the complete content of a WhereClause
1825 */
1826 void sqlite3WhereClausePrint(WhereClause *pWC){
1827   int i;
1828   for(i=0; i<pWC->nTerm; i++){
1829     sqlite3WhereTermPrint(&pWC->a[i], i);
1830   }
1831 }
1832 #endif
1833 
1834 #ifdef WHERETRACE_ENABLED
1835 /*
1836 ** Print a WhereLoop object for debugging purposes
1837 */
1838 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){
1839   WhereInfo *pWInfo = pWC->pWInfo;
1840   int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
1841   SrcItem *pItem = pWInfo->pTabList->a + p->iTab;
1842   Table *pTab = pItem->pTab;
1843   Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
1844   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
1845                      p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
1846   sqlite3DebugPrintf(" %12s",
1847                      pItem->zAlias ? pItem->zAlias : pTab->zName);
1848   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
1849     const char *zName;
1850     if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
1851       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
1852         int i = sqlite3Strlen30(zName) - 1;
1853         while( zName[i]!='_' ) i--;
1854         zName += i;
1855       }
1856       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
1857     }else{
1858       sqlite3DebugPrintf("%20s","");
1859     }
1860   }else{
1861     char *z;
1862     if( p->u.vtab.idxStr ){
1863       z = sqlite3_mprintf("(%d,\"%s\",%#x)",
1864                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
1865     }else{
1866       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
1867     }
1868     sqlite3DebugPrintf(" %-19s", z);
1869     sqlite3_free(z);
1870   }
1871   if( p->wsFlags & WHERE_SKIPSCAN ){
1872     sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
1873   }else{
1874     sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
1875   }
1876   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
1877   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
1878     int i;
1879     for(i=0; i<p->nLTerm; i++){
1880       sqlite3WhereTermPrint(p->aLTerm[i], i);
1881     }
1882   }
1883 }
1884 #endif
1885 
1886 /*
1887 ** Convert bulk memory into a valid WhereLoop that can be passed
1888 ** to whereLoopClear harmlessly.
1889 */
1890 static void whereLoopInit(WhereLoop *p){
1891   p->aLTerm = p->aLTermSpace;
1892   p->nLTerm = 0;
1893   p->nLSlot = ArraySize(p->aLTermSpace);
1894   p->wsFlags = 0;
1895 }
1896 
1897 /*
1898 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
1899 */
1900 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
1901   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
1902     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
1903       sqlite3_free(p->u.vtab.idxStr);
1904       p->u.vtab.needFree = 0;
1905       p->u.vtab.idxStr = 0;
1906     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
1907       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
1908       sqlite3DbFreeNN(db, p->u.btree.pIndex);
1909       p->u.btree.pIndex = 0;
1910     }
1911   }
1912 }
1913 
1914 /*
1915 ** Deallocate internal memory used by a WhereLoop object
1916 */
1917 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
1918   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1919   whereLoopClearUnion(db, p);
1920   whereLoopInit(p);
1921 }
1922 
1923 /*
1924 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
1925 */
1926 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
1927   WhereTerm **paNew;
1928   if( p->nLSlot>=n ) return SQLITE_OK;
1929   n = (n+7)&~7;
1930   paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
1931   if( paNew==0 ) return SQLITE_NOMEM_BKPT;
1932   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
1933   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1934   p->aLTerm = paNew;
1935   p->nLSlot = n;
1936   return SQLITE_OK;
1937 }
1938 
1939 /*
1940 ** Transfer content from the second pLoop into the first.
1941 */
1942 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
1943   whereLoopClearUnion(db, pTo);
1944   if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
1945     memset(&pTo->u, 0, sizeof(pTo->u));
1946     return SQLITE_NOMEM_BKPT;
1947   }
1948   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
1949   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
1950   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
1951     pFrom->u.vtab.needFree = 0;
1952   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
1953     pFrom->u.btree.pIndex = 0;
1954   }
1955   return SQLITE_OK;
1956 }
1957 
1958 /*
1959 ** Delete a WhereLoop object
1960 */
1961 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
1962   whereLoopClear(db, p);
1963   sqlite3DbFreeNN(db, p);
1964 }
1965 
1966 /*
1967 ** Free a WhereInfo structure
1968 */
1969 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
1970   int i;
1971   assert( pWInfo!=0 );
1972   for(i=0; i<pWInfo->nLevel; i++){
1973     WhereLevel *pLevel = &pWInfo->a[i];
1974     if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){
1975       sqlite3DbFree(db, pLevel->u.in.aInLoop);
1976     }
1977   }
1978   sqlite3WhereClauseClear(&pWInfo->sWC);
1979   while( pWInfo->pLoops ){
1980     WhereLoop *p = pWInfo->pLoops;
1981     pWInfo->pLoops = p->pNextLoop;
1982     whereLoopDelete(db, p);
1983   }
1984   assert( pWInfo->pExprMods==0 );
1985   sqlite3DbFreeNN(db, pWInfo);
1986 }
1987 
1988 /* Undo all Expr node modifications
1989 */
1990 static void whereUndoExprMods(WhereInfo *pWInfo){
1991   while( pWInfo->pExprMods ){
1992     WhereExprMod *p = pWInfo->pExprMods;
1993     pWInfo->pExprMods = p->pNext;
1994     memcpy(p->pExpr, &p->orig, sizeof(p->orig));
1995     sqlite3DbFree(pWInfo->pParse->db, p);
1996   }
1997 }
1998 
1999 /*
2000 ** Return TRUE if all of the following are true:
2001 **
2002 **   (1)  X has the same or lower cost that Y
2003 **   (2)  X uses fewer WHERE clause terms than Y
2004 **   (3)  Every WHERE clause term used by X is also used by Y
2005 **   (4)  X skips at least as many columns as Y
2006 **   (5)  If X is a covering index, than Y is too
2007 **
2008 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
2009 ** If X is a proper subset of Y then Y is a better choice and ought
2010 ** to have a lower cost.  This routine returns TRUE when that cost
2011 ** relationship is inverted and needs to be adjusted.  Constraint (4)
2012 ** was added because if X uses skip-scan less than Y it still might
2013 ** deserve a lower cost even if it is a proper subset of Y.  Constraint (5)
2014 ** was added because a covering index probably deserves to have a lower cost
2015 ** than a non-covering index even if it is a proper subset.
2016 */
2017 static int whereLoopCheaperProperSubset(
2018   const WhereLoop *pX,       /* First WhereLoop to compare */
2019   const WhereLoop *pY        /* Compare against this WhereLoop */
2020 ){
2021   int i, j;
2022   if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
2023     return 0; /* X is not a subset of Y */
2024   }
2025   if( pY->nSkip > pX->nSkip ) return 0;
2026   if( pX->rRun >= pY->rRun ){
2027     if( pX->rRun > pY->rRun ) return 0;    /* X costs more than Y */
2028     if( pX->nOut > pY->nOut ) return 0;    /* X costs more than Y */
2029   }
2030   for(i=pX->nLTerm-1; i>=0; i--){
2031     if( pX->aLTerm[i]==0 ) continue;
2032     for(j=pY->nLTerm-1; j>=0; j--){
2033       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
2034     }
2035     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
2036   }
2037   if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
2038    && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
2039     return 0;  /* Constraint (5) */
2040   }
2041   return 1;  /* All conditions meet */
2042 }
2043 
2044 /*
2045 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
2046 ** that:
2047 **
2048 **   (1) pTemplate costs less than any other WhereLoops that are a proper
2049 **       subset of pTemplate
2050 **
2051 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
2052 **       is a proper subset.
2053 **
2054 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
2055 ** WHERE clause terms than Y and that every WHERE clause term used by X is
2056 ** also used by Y.
2057 */
2058 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
2059   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
2060   for(; p; p=p->pNextLoop){
2061     if( p->iTab!=pTemplate->iTab ) continue;
2062     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
2063     if( whereLoopCheaperProperSubset(p, pTemplate) ){
2064       /* Adjust pTemplate cost downward so that it is cheaper than its
2065       ** subset p. */
2066       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2067                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1));
2068       pTemplate->rRun = p->rRun;
2069       pTemplate->nOut = p->nOut - 1;
2070     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
2071       /* Adjust pTemplate cost upward so that it is costlier than p since
2072       ** pTemplate is a proper subset of p */
2073       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2074                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1));
2075       pTemplate->rRun = p->rRun;
2076       pTemplate->nOut = p->nOut + 1;
2077     }
2078   }
2079 }
2080 
2081 /*
2082 ** Search the list of WhereLoops in *ppPrev looking for one that can be
2083 ** replaced by pTemplate.
2084 **
2085 ** Return NULL if pTemplate does not belong on the WhereLoop list.
2086 ** In other words if pTemplate ought to be dropped from further consideration.
2087 **
2088 ** If pX is a WhereLoop that pTemplate can replace, then return the
2089 ** link that points to pX.
2090 **
2091 ** If pTemplate cannot replace any existing element of the list but needs
2092 ** to be added to the list as a new entry, then return a pointer to the
2093 ** tail of the list.
2094 */
2095 static WhereLoop **whereLoopFindLesser(
2096   WhereLoop **ppPrev,
2097   const WhereLoop *pTemplate
2098 ){
2099   WhereLoop *p;
2100   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
2101     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
2102       /* If either the iTab or iSortIdx values for two WhereLoop are different
2103       ** then those WhereLoops need to be considered separately.  Neither is
2104       ** a candidate to replace the other. */
2105       continue;
2106     }
2107     /* In the current implementation, the rSetup value is either zero
2108     ** or the cost of building an automatic index (NlogN) and the NlogN
2109     ** is the same for compatible WhereLoops. */
2110     assert( p->rSetup==0 || pTemplate->rSetup==0
2111                  || p->rSetup==pTemplate->rSetup );
2112 
2113     /* whereLoopAddBtree() always generates and inserts the automatic index
2114     ** case first.  Hence compatible candidate WhereLoops never have a larger
2115     ** rSetup. Call this SETUP-INVARIANT */
2116     assert( p->rSetup>=pTemplate->rSetup );
2117 
2118     /* Any loop using an appliation-defined index (or PRIMARY KEY or
2119     ** UNIQUE constraint) with one or more == constraints is better
2120     ** than an automatic index. Unless it is a skip-scan. */
2121     if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
2122      && (pTemplate->nSkip)==0
2123      && (pTemplate->wsFlags & WHERE_INDEXED)!=0
2124      && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
2125      && (p->prereq & pTemplate->prereq)==pTemplate->prereq
2126     ){
2127       break;
2128     }
2129 
2130     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2131     ** discarded.  WhereLoop p is better if:
2132     **   (1)  p has no more dependencies than pTemplate, and
2133     **   (2)  p has an equal or lower cost than pTemplate
2134     */
2135     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
2136      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
2137      && p->rRun<=pTemplate->rRun                      /* (2b) */
2138      && p->nOut<=pTemplate->nOut                      /* (2c) */
2139     ){
2140       return 0;  /* Discard pTemplate */
2141     }
2142 
2143     /* If pTemplate is always better than p, then cause p to be overwritten
2144     ** with pTemplate.  pTemplate is better than p if:
2145     **   (1)  pTemplate has no more dependences than p, and
2146     **   (2)  pTemplate has an equal or lower cost than p.
2147     */
2148     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
2149      && p->rRun>=pTemplate->rRun                             /* (2a) */
2150      && p->nOut>=pTemplate->nOut                             /* (2b) */
2151     ){
2152       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2153       break;   /* Cause p to be overwritten by pTemplate */
2154     }
2155   }
2156   return ppPrev;
2157 }
2158 
2159 /*
2160 ** Insert or replace a WhereLoop entry using the template supplied.
2161 **
2162 ** An existing WhereLoop entry might be overwritten if the new template
2163 ** is better and has fewer dependencies.  Or the template will be ignored
2164 ** and no insert will occur if an existing WhereLoop is faster and has
2165 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
2166 ** added based on the template.
2167 **
2168 ** If pBuilder->pOrSet is not NULL then we care about only the
2169 ** prerequisites and rRun and nOut costs of the N best loops.  That
2170 ** information is gathered in the pBuilder->pOrSet object.  This special
2171 ** processing mode is used only for OR clause processing.
2172 **
2173 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2174 ** still might overwrite similar loops with the new template if the
2175 ** new template is better.  Loops may be overwritten if the following
2176 ** conditions are met:
2177 **
2178 **    (1)  They have the same iTab.
2179 **    (2)  They have the same iSortIdx.
2180 **    (3)  The template has same or fewer dependencies than the current loop
2181 **    (4)  The template has the same or lower cost than the current loop
2182 */
2183 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2184   WhereLoop **ppPrev, *p;
2185   WhereInfo *pWInfo = pBuilder->pWInfo;
2186   sqlite3 *db = pWInfo->pParse->db;
2187   int rc;
2188 
2189   /* Stop the search once we hit the query planner search limit */
2190   if( pBuilder->iPlanLimit==0 ){
2191     WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
2192     if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0;
2193     return SQLITE_DONE;
2194   }
2195   pBuilder->iPlanLimit--;
2196 
2197   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2198 
2199   /* If pBuilder->pOrSet is defined, then only keep track of the costs
2200   ** and prereqs.
2201   */
2202   if( pBuilder->pOrSet!=0 ){
2203     if( pTemplate->nLTerm ){
2204 #if WHERETRACE_ENABLED
2205       u16 n = pBuilder->pOrSet->n;
2206       int x =
2207 #endif
2208       whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2209                                     pTemplate->nOut);
2210 #if WHERETRACE_ENABLED /* 0x8 */
2211       if( sqlite3WhereTrace & 0x8 ){
2212         sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
2213         sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2214       }
2215 #endif
2216     }
2217     return SQLITE_OK;
2218   }
2219 
2220   /* Look for an existing WhereLoop to replace with pTemplate
2221   */
2222   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2223 
2224   if( ppPrev==0 ){
2225     /* There already exists a WhereLoop on the list that is better
2226     ** than pTemplate, so just ignore pTemplate */
2227 #if WHERETRACE_ENABLED /* 0x8 */
2228     if( sqlite3WhereTrace & 0x8 ){
2229       sqlite3DebugPrintf("   skip: ");
2230       sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2231     }
2232 #endif
2233     return SQLITE_OK;
2234   }else{
2235     p = *ppPrev;
2236   }
2237 
2238   /* If we reach this point it means that either p[] should be overwritten
2239   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2240   ** WhereLoop and insert it.
2241   */
2242 #if WHERETRACE_ENABLED /* 0x8 */
2243   if( sqlite3WhereTrace & 0x8 ){
2244     if( p!=0 ){
2245       sqlite3DebugPrintf("replace: ");
2246       sqlite3WhereLoopPrint(p, pBuilder->pWC);
2247       sqlite3DebugPrintf("   with: ");
2248     }else{
2249       sqlite3DebugPrintf("    add: ");
2250     }
2251     sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2252   }
2253 #endif
2254   if( p==0 ){
2255     /* Allocate a new WhereLoop to add to the end of the list */
2256     *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2257     if( p==0 ) return SQLITE_NOMEM_BKPT;
2258     whereLoopInit(p);
2259     p->pNextLoop = 0;
2260   }else{
2261     /* We will be overwriting WhereLoop p[].  But before we do, first
2262     ** go through the rest of the list and delete any other entries besides
2263     ** p[] that are also supplated by pTemplate */
2264     WhereLoop **ppTail = &p->pNextLoop;
2265     WhereLoop *pToDel;
2266     while( *ppTail ){
2267       ppTail = whereLoopFindLesser(ppTail, pTemplate);
2268       if( ppTail==0 ) break;
2269       pToDel = *ppTail;
2270       if( pToDel==0 ) break;
2271       *ppTail = pToDel->pNextLoop;
2272 #if WHERETRACE_ENABLED /* 0x8 */
2273       if( sqlite3WhereTrace & 0x8 ){
2274         sqlite3DebugPrintf(" delete: ");
2275         sqlite3WhereLoopPrint(pToDel, pBuilder->pWC);
2276       }
2277 #endif
2278       whereLoopDelete(db, pToDel);
2279     }
2280   }
2281   rc = whereLoopXfer(db, p, pTemplate);
2282   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2283     Index *pIndex = p->u.btree.pIndex;
2284     if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){
2285       p->u.btree.pIndex = 0;
2286     }
2287   }
2288   return rc;
2289 }
2290 
2291 /*
2292 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2293 ** WHERE clause that reference the loop but which are not used by an
2294 ** index.
2295 *
2296 ** For every WHERE clause term that is not used by the index
2297 ** and which has a truth probability assigned by one of the likelihood(),
2298 ** likely(), or unlikely() SQL functions, reduce the estimated number
2299 ** of output rows by the probability specified.
2300 **
2301 ** TUNING:  For every WHERE clause term that is not used by the index
2302 ** and which does not have an assigned truth probability, heuristics
2303 ** described below are used to try to estimate the truth probability.
2304 ** TODO --> Perhaps this is something that could be improved by better
2305 ** table statistics.
2306 **
2307 ** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
2308 ** value corresponds to -1 in LogEst notation, so this means decrement
2309 ** the WhereLoop.nOut field for every such WHERE clause term.
2310 **
2311 ** Heuristic 2:  If there exists one or more WHERE clause terms of the
2312 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2313 ** final output row estimate is no greater than 1/4 of the total number
2314 ** of rows in the table.  In other words, assume that x==EXPR will filter
2315 ** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
2316 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2317 ** on the "x" column and so in that case only cap the output row estimate
2318 ** at 1/2 instead of 1/4.
2319 */
2320 static void whereLoopOutputAdjust(
2321   WhereClause *pWC,      /* The WHERE clause */
2322   WhereLoop *pLoop,      /* The loop to adjust downward */
2323   LogEst nRow            /* Number of rows in the entire table */
2324 ){
2325   WhereTerm *pTerm, *pX;
2326   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2327   int i, j;
2328   LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */
2329 
2330   assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2331   for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
2332     assert( pTerm!=0 );
2333     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
2334     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2335     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2336     for(j=pLoop->nLTerm-1; j>=0; j--){
2337       pX = pLoop->aLTerm[j];
2338       if( pX==0 ) continue;
2339       if( pX==pTerm ) break;
2340       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2341     }
2342     if( j<0 ){
2343       if( pTerm->truthProb<=0 ){
2344         /* If a truth probability is specified using the likelihood() hints,
2345         ** then use the probability provided by the application. */
2346         pLoop->nOut += pTerm->truthProb;
2347       }else{
2348         /* In the absence of explicit truth probabilities, use heuristics to
2349         ** guess a reasonable truth probability. */
2350         pLoop->nOut--;
2351         if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0
2352          && (pTerm->wtFlags & TERM_HIGHTRUTH)==0  /* tag-20200224-1 */
2353         ){
2354           Expr *pRight = pTerm->pExpr->pRight;
2355           int k = 0;
2356           testcase( pTerm->pExpr->op==TK_IS );
2357           if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2358             k = 10;
2359           }else{
2360             k = 20;
2361           }
2362           if( iReduce<k ){
2363             pTerm->wtFlags |= TERM_HEURTRUTH;
2364             iReduce = k;
2365           }
2366         }
2367       }
2368     }
2369   }
2370   if( pLoop->nOut > nRow-iReduce )  pLoop->nOut = nRow - iReduce;
2371 }
2372 
2373 /*
2374 ** Term pTerm is a vector range comparison operation. The first comparison
2375 ** in the vector can be optimized using column nEq of the index. This
2376 ** function returns the total number of vector elements that can be used
2377 ** as part of the range comparison.
2378 **
2379 ** For example, if the query is:
2380 **
2381 **   WHERE a = ? AND (b, c, d) > (?, ?, ?)
2382 **
2383 ** and the index:
2384 **
2385 **   CREATE INDEX ... ON (a, b, c, d, e)
2386 **
2387 ** then this function would be invoked with nEq=1. The value returned in
2388 ** this case is 3.
2389 */
2390 static int whereRangeVectorLen(
2391   Parse *pParse,       /* Parsing context */
2392   int iCur,            /* Cursor open on pIdx */
2393   Index *pIdx,         /* The index to be used for a inequality constraint */
2394   int nEq,             /* Number of prior equality constraints on same index */
2395   WhereTerm *pTerm     /* The vector inequality constraint */
2396 ){
2397   int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2398   int i;
2399 
2400   nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2401   for(i=1; i<nCmp; i++){
2402     /* Test if comparison i of pTerm is compatible with column (i+nEq)
2403     ** of the index. If not, exit the loop.  */
2404     char aff;                     /* Comparison affinity */
2405     char idxaff = 0;              /* Indexed columns affinity */
2406     CollSeq *pColl;               /* Comparison collation sequence */
2407     Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2408     Expr *pRhs = pTerm->pExpr->pRight;
2409     if( pRhs->flags & EP_xIsSelect ){
2410       pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2411     }else{
2412       pRhs = pRhs->x.pList->a[i].pExpr;
2413     }
2414 
2415     /* Check that the LHS of the comparison is a column reference to
2416     ** the right column of the right source table. And that the sort
2417     ** order of the index column is the same as the sort order of the
2418     ** leftmost index column.  */
2419     if( pLhs->op!=TK_COLUMN
2420      || pLhs->iTable!=iCur
2421      || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2422      || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2423     ){
2424       break;
2425     }
2426 
2427     testcase( pLhs->iColumn==XN_ROWID );
2428     aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2429     idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2430     if( aff!=idxaff ) break;
2431 
2432     pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2433     if( pColl==0 ) break;
2434     if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2435   }
2436   return i;
2437 }
2438 
2439 /*
2440 ** Adjust the cost C by the costMult facter T.  This only occurs if
2441 ** compiled with -DSQLITE_ENABLE_COSTMULT
2442 */
2443 #ifdef SQLITE_ENABLE_COSTMULT
2444 # define ApplyCostMultiplier(C,T)  C += T
2445 #else
2446 # define ApplyCostMultiplier(C,T)
2447 #endif
2448 
2449 /*
2450 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2451 ** index pIndex. Try to match one more.
2452 **
2453 ** When this function is called, pBuilder->pNew->nOut contains the
2454 ** number of rows expected to be visited by filtering using the nEq
2455 ** terms only. If it is modified, this value is restored before this
2456 ** function returns.
2457 **
2458 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
2459 ** a fake index used for the INTEGER PRIMARY KEY.
2460 */
2461 static int whereLoopAddBtreeIndex(
2462   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
2463   SrcItem *pSrc,                  /* FROM clause term being analyzed */
2464   Index *pProbe,                  /* An index on pSrc */
2465   LogEst nInMul                   /* log(Number of iterations due to IN) */
2466 ){
2467   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
2468   Parse *pParse = pWInfo->pParse;        /* Parsing context */
2469   sqlite3 *db = pParse->db;       /* Database connection malloc context */
2470   WhereLoop *pNew;                /* Template WhereLoop under construction */
2471   WhereTerm *pTerm;               /* A WhereTerm under consideration */
2472   int opMask;                     /* Valid operators for constraints */
2473   WhereScan scan;                 /* Iterator for WHERE terms */
2474   Bitmask saved_prereq;           /* Original value of pNew->prereq */
2475   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
2476   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
2477   u16 saved_nBtm;                 /* Original value of pNew->u.btree.nBtm */
2478   u16 saved_nTop;                 /* Original value of pNew->u.btree.nTop */
2479   u16 saved_nSkip;                /* Original value of pNew->nSkip */
2480   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
2481   LogEst saved_nOut;              /* Original value of pNew->nOut */
2482   int rc = SQLITE_OK;             /* Return code */
2483   LogEst rSize;                   /* Number of rows in the table */
2484   LogEst rLogSize;                /* Logarithm of table size */
2485   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2486 
2487   pNew = pBuilder->pNew;
2488   if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2489   WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n",
2490                      pProbe->pTable->zName,pProbe->zName,
2491                      pNew->u.btree.nEq, pNew->nSkip, pNew->rRun));
2492 
2493   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2494   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2495   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2496     opMask = WO_LT|WO_LE;
2497   }else{
2498     assert( pNew->u.btree.nBtm==0 );
2499     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2500   }
2501   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2502 
2503   assert( pNew->u.btree.nEq<pProbe->nColumn );
2504 
2505   saved_nEq = pNew->u.btree.nEq;
2506   saved_nBtm = pNew->u.btree.nBtm;
2507   saved_nTop = pNew->u.btree.nTop;
2508   saved_nSkip = pNew->nSkip;
2509   saved_nLTerm = pNew->nLTerm;
2510   saved_wsFlags = pNew->wsFlags;
2511   saved_prereq = pNew->prereq;
2512   saved_nOut = pNew->nOut;
2513   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2514                         opMask, pProbe);
2515   pNew->rSetup = 0;
2516   rSize = pProbe->aiRowLogEst[0];
2517   rLogSize = estLog(rSize);
2518   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2519     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
2520     LogEst rCostIdx;
2521     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
2522     int nIn = 0;
2523 #ifdef SQLITE_ENABLE_STAT4
2524     int nRecValid = pBuilder->nRecValid;
2525 #endif
2526     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2527      && indexColumnNotNull(pProbe, saved_nEq)
2528     ){
2529       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2530     }
2531     if( pTerm->prereqRight & pNew->maskSelf ) continue;
2532 
2533     /* Do not allow the upper bound of a LIKE optimization range constraint
2534     ** to mix with a lower range bound from some other source */
2535     if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2536 
2537     /* tag-20191211-001:  Do not allow constraints from the WHERE clause to
2538     ** be used by the right table of a LEFT JOIN.  Only constraints in the
2539     ** ON clause are allowed.  See tag-20191211-002 for the vtab equivalent. */
2540     if( (pSrc->fg.jointype & JT_LEFT)!=0
2541      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
2542     ){
2543       continue;
2544     }
2545 
2546     if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2547       pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE;
2548     }else{
2549       pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED;
2550     }
2551     pNew->wsFlags = saved_wsFlags;
2552     pNew->u.btree.nEq = saved_nEq;
2553     pNew->u.btree.nBtm = saved_nBtm;
2554     pNew->u.btree.nTop = saved_nTop;
2555     pNew->nLTerm = saved_nLTerm;
2556     if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2557     pNew->aLTerm[pNew->nLTerm++] = pTerm;
2558     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2559 
2560     assert( nInMul==0
2561         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2562         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2563         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2564     );
2565 
2566     if( eOp & WO_IN ){
2567       Expr *pExpr = pTerm->pExpr;
2568       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2569         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
2570         int i;
2571         nIn = 46;  assert( 46==sqlite3LogEst(25) );
2572 
2573         /* The expression may actually be of the form (x, y) IN (SELECT...).
2574         ** In this case there is a separate term for each of (x) and (y).
2575         ** However, the nIn multiplier should only be applied once, not once
2576         ** for each such term. The following loop checks that pTerm is the
2577         ** first such term in use, and sets nIn back to 0 if it is not. */
2578         for(i=0; i<pNew->nLTerm-1; i++){
2579           if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2580         }
2581       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2582         /* "x IN (value, value, ...)" */
2583         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2584       }
2585       if( pProbe->hasStat1 && rLogSize>=10 ){
2586         LogEst M, logK, safetyMargin;
2587         /* Let:
2588         **   N = the total number of rows in the table
2589         **   K = the number of entries on the RHS of the IN operator
2590         **   M = the number of rows in the table that match terms to the
2591         **       to the left in the same index.  If the IN operator is on
2592         **       the left-most index column, M==N.
2593         **
2594         ** Given the definitions above, it is better to omit the IN operator
2595         ** from the index lookup and instead do a scan of the M elements,
2596         ** testing each scanned row against the IN operator separately, if:
2597         **
2598         **        M*log(K) < K*log(N)
2599         **
2600         ** Our estimates for M, K, and N might be inaccurate, so we build in
2601         ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
2602         ** with the index, as using an index has better worst-case behavior.
2603         ** If we do not have real sqlite_stat1 data, always prefer to use
2604         ** the index.  Do not bother with this optimization on very small
2605         ** tables (less than 2 rows) as it is pointless in that case.
2606         */
2607         M = pProbe->aiRowLogEst[saved_nEq];
2608         logK = estLog(nIn);
2609         safetyMargin = 10;  /* TUNING: extra weight for indexed IN */
2610         if( M + logK + safetyMargin < nIn + rLogSize ){
2611           WHERETRACE(0x40,
2612             ("Scan preferred over IN operator on column %d of \"%s\" (%d<%d)\n",
2613              saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize));
2614           pNew->wsFlags |= WHERE_IN_SEEKSCAN;
2615         }else{
2616           WHERETRACE(0x40,
2617             ("IN operator preferred on column %d of \"%s\" (%d>=%d)\n",
2618              saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize));
2619         }
2620       }
2621       pNew->wsFlags |= WHERE_COLUMN_IN;
2622     }else if( eOp & (WO_EQ|WO_IS) ){
2623       int iCol = pProbe->aiColumn[saved_nEq];
2624       pNew->wsFlags |= WHERE_COLUMN_EQ;
2625       assert( saved_nEq==pNew->u.btree.nEq );
2626       if( iCol==XN_ROWID
2627        || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2628       ){
2629         if( iCol==XN_ROWID || pProbe->uniqNotNull
2630          || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
2631         ){
2632           pNew->wsFlags |= WHERE_ONEROW;
2633         }else{
2634           pNew->wsFlags |= WHERE_UNQ_WANTED;
2635         }
2636       }
2637     }else if( eOp & WO_ISNULL ){
2638       pNew->wsFlags |= WHERE_COLUMN_NULL;
2639     }else if( eOp & (WO_GT|WO_GE) ){
2640       testcase( eOp & WO_GT );
2641       testcase( eOp & WO_GE );
2642       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2643       pNew->u.btree.nBtm = whereRangeVectorLen(
2644           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2645       );
2646       pBtm = pTerm;
2647       pTop = 0;
2648       if( pTerm->wtFlags & TERM_LIKEOPT ){
2649         /* Range constraints that come from the LIKE optimization are
2650         ** always used in pairs. */
2651         pTop = &pTerm[1];
2652         assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2653         assert( pTop->wtFlags & TERM_LIKEOPT );
2654         assert( pTop->eOperator==WO_LT );
2655         if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2656         pNew->aLTerm[pNew->nLTerm++] = pTop;
2657         pNew->wsFlags |= WHERE_TOP_LIMIT;
2658         pNew->u.btree.nTop = 1;
2659       }
2660     }else{
2661       assert( eOp & (WO_LT|WO_LE) );
2662       testcase( eOp & WO_LT );
2663       testcase( eOp & WO_LE );
2664       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2665       pNew->u.btree.nTop = whereRangeVectorLen(
2666           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2667       );
2668       pTop = pTerm;
2669       pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2670                      pNew->aLTerm[pNew->nLTerm-2] : 0;
2671     }
2672 
2673     /* At this point pNew->nOut is set to the number of rows expected to
2674     ** be visited by the index scan before considering term pTerm, or the
2675     ** values of nIn and nInMul. In other words, assuming that all
2676     ** "x IN(...)" terms are replaced with "x = ?". This block updates
2677     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
2678     assert( pNew->nOut==saved_nOut );
2679     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2680       /* Adjust nOut using stat4 data. Or, if there is no stat4
2681       ** data, using some other estimate.  */
2682       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2683     }else{
2684       int nEq = ++pNew->u.btree.nEq;
2685       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2686 
2687       assert( pNew->nOut==saved_nOut );
2688       if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2689         assert( (eOp & WO_IN) || nIn==0 );
2690         testcase( eOp & WO_IN );
2691         pNew->nOut += pTerm->truthProb;
2692         pNew->nOut -= nIn;
2693       }else{
2694 #ifdef SQLITE_ENABLE_STAT4
2695         tRowcnt nOut = 0;
2696         if( nInMul==0
2697          && pProbe->nSample
2698          && pNew->u.btree.nEq<=pProbe->nSampleCol
2699          && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
2700          && OptimizationEnabled(db, SQLITE_Stat4)
2701         ){
2702           Expr *pExpr = pTerm->pExpr;
2703           if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2704             testcase( eOp & WO_EQ );
2705             testcase( eOp & WO_IS );
2706             testcase( eOp & WO_ISNULL );
2707             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2708           }else{
2709             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2710           }
2711           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2712           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
2713           if( nOut ){
2714             pNew->nOut = sqlite3LogEst(nOut);
2715             if( nEq==1
2716              /* TUNING: Mark terms as "low selectivity" if they seem likely
2717              ** to be true for half or more of the rows in the table.
2718              ** See tag-202002240-1 */
2719              && pNew->nOut+10 > pProbe->aiRowLogEst[0]
2720             ){
2721 #if WHERETRACE_ENABLED /* 0x01 */
2722               if( sqlite3WhereTrace & 0x01 ){
2723                 sqlite3DebugPrintf(
2724                    "STAT4 determines term has low selectivity:\n");
2725                 sqlite3WhereTermPrint(pTerm, 999);
2726               }
2727 #endif
2728               pTerm->wtFlags |= TERM_HIGHTRUTH;
2729               if( pTerm->wtFlags & TERM_HEURTRUTH ){
2730                 /* If the term has previously been used with an assumption of
2731                 ** higher selectivity, then set the flag to rerun the
2732                 ** loop computations. */
2733                 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS;
2734               }
2735             }
2736             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
2737             pNew->nOut -= nIn;
2738           }
2739         }
2740         if( nOut==0 )
2741 #endif
2742         {
2743           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
2744           if( eOp & WO_ISNULL ){
2745             /* TUNING: If there is no likelihood() value, assume that a
2746             ** "col IS NULL" expression matches twice as many rows
2747             ** as (col=?). */
2748             pNew->nOut += 10;
2749           }
2750         }
2751       }
2752     }
2753 
2754     /* Set rCostIdx to the cost of visiting selected rows in index. Add
2755     ** it to pNew->rRun, which is currently set to the cost of the index
2756     ** seek only. Then, if this is a non-covering index, add the cost of
2757     ** visiting the rows in the main table.  */
2758     assert( pSrc->pTab->szTabRow>0 );
2759     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
2760     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
2761     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
2762       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
2763     }
2764     ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
2765 
2766     nOutUnadjusted = pNew->nOut;
2767     pNew->rRun += nInMul + nIn;
2768     pNew->nOut += nInMul + nIn;
2769     whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
2770     rc = whereLoopInsert(pBuilder, pNew);
2771 
2772     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2773       pNew->nOut = saved_nOut;
2774     }else{
2775       pNew->nOut = nOutUnadjusted;
2776     }
2777 
2778     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
2779      && pNew->u.btree.nEq<pProbe->nColumn
2780     ){
2781       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
2782     }
2783     pNew->nOut = saved_nOut;
2784 #ifdef SQLITE_ENABLE_STAT4
2785     pBuilder->nRecValid = nRecValid;
2786 #endif
2787   }
2788   pNew->prereq = saved_prereq;
2789   pNew->u.btree.nEq = saved_nEq;
2790   pNew->u.btree.nBtm = saved_nBtm;
2791   pNew->u.btree.nTop = saved_nTop;
2792   pNew->nSkip = saved_nSkip;
2793   pNew->wsFlags = saved_wsFlags;
2794   pNew->nOut = saved_nOut;
2795   pNew->nLTerm = saved_nLTerm;
2796 
2797   /* Consider using a skip-scan if there are no WHERE clause constraints
2798   ** available for the left-most terms of the index, and if the average
2799   ** number of repeats in the left-most terms is at least 18.
2800   **
2801   ** The magic number 18 is selected on the basis that scanning 17 rows
2802   ** is almost always quicker than an index seek (even though if the index
2803   ** contains fewer than 2^17 rows we assume otherwise in other parts of
2804   ** the code). And, even if it is not, it should not be too much slower.
2805   ** On the other hand, the extra seeks could end up being significantly
2806   ** more expensive.  */
2807   assert( 42==sqlite3LogEst(18) );
2808   if( saved_nEq==saved_nSkip
2809    && saved_nEq+1<pProbe->nKeyCol
2810    && saved_nEq==pNew->nLTerm
2811    && pProbe->noSkipScan==0
2812    && pProbe->hasStat1!=0
2813    && OptimizationEnabled(db, SQLITE_SkipScan)
2814    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
2815    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
2816   ){
2817     LogEst nIter;
2818     pNew->u.btree.nEq++;
2819     pNew->nSkip++;
2820     pNew->aLTerm[pNew->nLTerm++] = 0;
2821     pNew->wsFlags |= WHERE_SKIPSCAN;
2822     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
2823     pNew->nOut -= nIter;
2824     /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
2825     ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
2826     nIter += 5;
2827     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
2828     pNew->nOut = saved_nOut;
2829     pNew->u.btree.nEq = saved_nEq;
2830     pNew->nSkip = saved_nSkip;
2831     pNew->wsFlags = saved_wsFlags;
2832   }
2833 
2834   WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
2835                       pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
2836   return rc;
2837 }
2838 
2839 /*
2840 ** Return True if it is possible that pIndex might be useful in
2841 ** implementing the ORDER BY clause in pBuilder.
2842 **
2843 ** Return False if pBuilder does not contain an ORDER BY clause or
2844 ** if there is no way for pIndex to be useful in implementing that
2845 ** ORDER BY clause.
2846 */
2847 static int indexMightHelpWithOrderBy(
2848   WhereLoopBuilder *pBuilder,
2849   Index *pIndex,
2850   int iCursor
2851 ){
2852   ExprList *pOB;
2853   ExprList *aColExpr;
2854   int ii, jj;
2855 
2856   if( pIndex->bUnordered ) return 0;
2857   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
2858   for(ii=0; ii<pOB->nExpr; ii++){
2859     Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr);
2860     if( NEVER(pExpr==0) ) continue;
2861     if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
2862       if( pExpr->iColumn<0 ) return 1;
2863       for(jj=0; jj<pIndex->nKeyCol; jj++){
2864         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
2865       }
2866     }else if( (aColExpr = pIndex->aColExpr)!=0 ){
2867       for(jj=0; jj<pIndex->nKeyCol; jj++){
2868         if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
2869         if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
2870           return 1;
2871         }
2872       }
2873     }
2874   }
2875   return 0;
2876 }
2877 
2878 /* Check to see if a partial index with pPartIndexWhere can be used
2879 ** in the current query.  Return true if it can be and false if not.
2880 */
2881 static int whereUsablePartialIndex(
2882   int iTab,             /* The table for which we want an index */
2883   int isLeft,           /* True if iTab is the right table of a LEFT JOIN */
2884   WhereClause *pWC,     /* The WHERE clause of the query */
2885   Expr *pWhere          /* The WHERE clause from the partial index */
2886 ){
2887   int i;
2888   WhereTerm *pTerm;
2889   Parse *pParse = pWC->pWInfo->pParse;
2890   while( pWhere->op==TK_AND ){
2891     if( !whereUsablePartialIndex(iTab,isLeft,pWC,pWhere->pLeft) ) return 0;
2892     pWhere = pWhere->pRight;
2893   }
2894   if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
2895   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
2896     Expr *pExpr;
2897     pExpr = pTerm->pExpr;
2898     if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
2899      && (isLeft==0 || ExprHasProperty(pExpr, EP_FromJoin))
2900      && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
2901     ){
2902       return 1;
2903     }
2904   }
2905   return 0;
2906 }
2907 
2908 /*
2909 ** Add all WhereLoop objects for a single table of the join where the table
2910 ** is identified by pBuilder->pNew->iTab.  That table is guaranteed to be
2911 ** a b-tree table, not a virtual table.
2912 **
2913 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
2914 ** are calculated as follows:
2915 **
2916 ** For a full scan, assuming the table (or index) contains nRow rows:
2917 **
2918 **     cost = nRow * 3.0                    // full-table scan
2919 **     cost = nRow * K                      // scan of covering index
2920 **     cost = nRow * (K+3.0)                // scan of non-covering index
2921 **
2922 ** where K is a value between 1.1 and 3.0 set based on the relative
2923 ** estimated average size of the index and table records.
2924 **
2925 ** For an index scan, where nVisit is the number of index rows visited
2926 ** by the scan, and nSeek is the number of seek operations required on
2927 ** the index b-tree:
2928 **
2929 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
2930 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
2931 **
2932 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
2933 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
2934 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
2935 **
2936 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
2937 ** of uncertainty.  For this reason, scoring is designed to pick plans that
2938 ** "do the least harm" if the estimates are inaccurate.  For example, a
2939 ** log(nRow) factor is omitted from a non-covering index scan in order to
2940 ** bias the scoring in favor of using an index, since the worst-case
2941 ** performance of using an index is far better than the worst-case performance
2942 ** of a full table scan.
2943 */
2944 static int whereLoopAddBtree(
2945   WhereLoopBuilder *pBuilder, /* WHERE clause information */
2946   Bitmask mPrereq             /* Extra prerequesites for using this table */
2947 ){
2948   WhereInfo *pWInfo;          /* WHERE analysis context */
2949   Index *pProbe;              /* An index we are evaluating */
2950   Index sPk;                  /* A fake index object for the primary key */
2951   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
2952   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
2953   SrcList *pTabList;          /* The FROM clause */
2954   SrcItem *pSrc;              /* The FROM clause btree term to add */
2955   WhereLoop *pNew;            /* Template WhereLoop object */
2956   int rc = SQLITE_OK;         /* Return code */
2957   int iSortIdx = 1;           /* Index number */
2958   int b;                      /* A boolean value */
2959   LogEst rSize;               /* number of rows in the table */
2960   LogEst rLogSize;            /* Logarithm of the number of rows in the table */
2961   WhereClause *pWC;           /* The parsed WHERE clause */
2962   Table *pTab;                /* Table being queried */
2963 
2964   pNew = pBuilder->pNew;
2965   pWInfo = pBuilder->pWInfo;
2966   pTabList = pWInfo->pTabList;
2967   pSrc = pTabList->a + pNew->iTab;
2968   pTab = pSrc->pTab;
2969   pWC = pBuilder->pWC;
2970   assert( !IsVirtual(pSrc->pTab) );
2971 
2972   if( pSrc->fg.isIndexedBy ){
2973     /* An INDEXED BY clause specifies a particular index to use */
2974     pProbe = pSrc->u2.pIBIndex;
2975   }else if( !HasRowid(pTab) ){
2976     pProbe = pTab->pIndex;
2977   }else{
2978     /* There is no INDEXED BY clause.  Create a fake Index object in local
2979     ** variable sPk to represent the rowid primary key index.  Make this
2980     ** fake index the first in a chain of Index objects with all of the real
2981     ** indices to follow */
2982     Index *pFirst;                  /* First of real indices on the table */
2983     memset(&sPk, 0, sizeof(Index));
2984     sPk.nKeyCol = 1;
2985     sPk.nColumn = 1;
2986     sPk.aiColumn = &aiColumnPk;
2987     sPk.aiRowLogEst = aiRowEstPk;
2988     sPk.onError = OE_Replace;
2989     sPk.pTable = pTab;
2990     sPk.szIdxRow = pTab->szTabRow;
2991     sPk.idxType = SQLITE_IDXTYPE_IPK;
2992     aiRowEstPk[0] = pTab->nRowLogEst;
2993     aiRowEstPk[1] = 0;
2994     pFirst = pSrc->pTab->pIndex;
2995     if( pSrc->fg.notIndexed==0 ){
2996       /* The real indices of the table are only considered if the
2997       ** NOT INDEXED qualifier is omitted from the FROM clause */
2998       sPk.pNext = pFirst;
2999     }
3000     pProbe = &sPk;
3001   }
3002   rSize = pTab->nRowLogEst;
3003   rLogSize = estLog(rSize);
3004 
3005 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
3006   /* Automatic indexes */
3007   if( !pBuilder->pOrSet      /* Not part of an OR optimization */
3008    && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
3009    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
3010    && !pSrc->fg.isIndexedBy  /* Has no INDEXED BY clause */
3011    && !pSrc->fg.notIndexed   /* Has no NOT INDEXED clause */
3012    && HasRowid(pTab)         /* Not WITHOUT ROWID table. (FIXME: Why not?) */
3013    && !pSrc->fg.isCorrelated /* Not a correlated subquery */
3014    && !pSrc->fg.isRecursive  /* Not a recursive common table expression. */
3015   ){
3016     /* Generate auto-index WhereLoops */
3017     WhereTerm *pTerm;
3018     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
3019     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
3020       if( pTerm->prereqRight & pNew->maskSelf ) continue;
3021       if( termCanDriveIndex(pTerm, pSrc, 0) ){
3022         pNew->u.btree.nEq = 1;
3023         pNew->nSkip = 0;
3024         pNew->u.btree.pIndex = 0;
3025         pNew->nLTerm = 1;
3026         pNew->aLTerm[0] = pTerm;
3027         /* TUNING: One-time cost for computing the automatic index is
3028         ** estimated to be X*N*log2(N) where N is the number of rows in
3029         ** the table being indexed and where X is 7 (LogEst=28) for normal
3030         ** tables or 0.5 (LogEst=-10) for views and subqueries.  The value
3031         ** of X is smaller for views and subqueries so that the query planner
3032         ** will be more aggressive about generating automatic indexes for
3033         ** those objects, since there is no opportunity to add schema
3034         ** indexes on subqueries and views. */
3035         pNew->rSetup = rLogSize + rSize;
3036         if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){
3037           pNew->rSetup += 28;
3038         }else{
3039           pNew->rSetup -= 10;
3040         }
3041         ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
3042         if( pNew->rSetup<0 ) pNew->rSetup = 0;
3043         /* TUNING: Each index lookup yields 20 rows in the table.  This
3044         ** is more than the usual guess of 10 rows, since we have no way
3045         ** of knowing how selective the index will ultimately be.  It would
3046         ** not be unreasonable to make this value much larger. */
3047         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
3048         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
3049         pNew->wsFlags = WHERE_AUTO_INDEX;
3050         pNew->prereq = mPrereq | pTerm->prereqRight;
3051         rc = whereLoopInsert(pBuilder, pNew);
3052       }
3053     }
3054   }
3055 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
3056 
3057   /* Loop over all indices. If there was an INDEXED BY clause, then only
3058   ** consider index pProbe.  */
3059   for(; rc==SQLITE_OK && pProbe;
3060       pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++
3061   ){
3062     int isLeft = (pSrc->fg.jointype & JT_OUTER)!=0;
3063     if( pProbe->pPartIdxWhere!=0
3064      && !whereUsablePartialIndex(pSrc->iCursor, isLeft, pWC,
3065                                  pProbe->pPartIdxWhere)
3066     ){
3067       testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
3068       continue;  /* Partial index inappropriate for this query */
3069     }
3070     if( pProbe->bNoQuery ) continue;
3071     rSize = pProbe->aiRowLogEst[0];
3072     pNew->u.btree.nEq = 0;
3073     pNew->u.btree.nBtm = 0;
3074     pNew->u.btree.nTop = 0;
3075     pNew->nSkip = 0;
3076     pNew->nLTerm = 0;
3077     pNew->iSortIdx = 0;
3078     pNew->rSetup = 0;
3079     pNew->prereq = mPrereq;
3080     pNew->nOut = rSize;
3081     pNew->u.btree.pIndex = pProbe;
3082     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
3083 
3084     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
3085     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
3086     if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){
3087       /* Integer primary key index */
3088       pNew->wsFlags = WHERE_IPK;
3089 
3090       /* Full table scan */
3091       pNew->iSortIdx = b ? iSortIdx : 0;
3092       /* TUNING: Cost of full table scan is 3.0*N.  The 3.0 factor is an
3093       ** extra cost designed to discourage the use of full table scans,
3094       ** since index lookups have better worst-case performance if our
3095       ** stat guesses are wrong.  Reduce the 3.0 penalty slightly
3096       ** (to 2.75) if we have valid STAT4 information for the table.
3097       ** At 2.75, a full table scan is preferred over using an index on
3098       ** a column with just two distinct values where each value has about
3099       ** an equal number of appearances.  Without STAT4 data, we still want
3100       ** to use an index in that case, since the constraint might be for
3101       ** the scarcer of the two values, and in that case an index lookup is
3102       ** better.
3103       */
3104 #ifdef SQLITE_ENABLE_STAT4
3105       pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0);
3106 #else
3107       pNew->rRun = rSize + 16;
3108 #endif
3109       ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3110       whereLoopOutputAdjust(pWC, pNew, rSize);
3111       rc = whereLoopInsert(pBuilder, pNew);
3112       pNew->nOut = rSize;
3113       if( rc ) break;
3114     }else{
3115       Bitmask m;
3116       if( pProbe->isCovering ){
3117         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
3118         m = 0;
3119       }else{
3120         m = pSrc->colUsed & pProbe->colNotIdxed;
3121         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
3122       }
3123 
3124       /* Full scan via index */
3125       if( b
3126        || !HasRowid(pTab)
3127        || pProbe->pPartIdxWhere!=0
3128        || pSrc->fg.isIndexedBy
3129        || ( m==0
3130          && pProbe->bUnordered==0
3131          && (pProbe->szIdxRow<pTab->szTabRow)
3132          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
3133          && sqlite3GlobalConfig.bUseCis
3134          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
3135           )
3136       ){
3137         pNew->iSortIdx = b ? iSortIdx : 0;
3138 
3139         /* The cost of visiting the index rows is N*K, where K is
3140         ** between 1.1 and 3.0, depending on the relative sizes of the
3141         ** index and table rows. */
3142         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
3143         if( m!=0 ){
3144           /* If this is a non-covering index scan, add in the cost of
3145           ** doing table lookups.  The cost will be 3x the number of
3146           ** lookups.  Take into account WHERE clause terms that can be
3147           ** satisfied using just the index, and that do not require a
3148           ** table lookup. */
3149           LogEst nLookup = rSize + 16;  /* Base cost:  N*3 */
3150           int ii;
3151           int iCur = pSrc->iCursor;
3152           WhereClause *pWC2 = &pWInfo->sWC;
3153           for(ii=0; ii<pWC2->nTerm; ii++){
3154             WhereTerm *pTerm = &pWC2->a[ii];
3155             if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
3156               break;
3157             }
3158             /* pTerm can be evaluated using just the index.  So reduce
3159             ** the expected number of table lookups accordingly */
3160             if( pTerm->truthProb<=0 ){
3161               nLookup += pTerm->truthProb;
3162             }else{
3163               nLookup--;
3164               if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
3165             }
3166           }
3167 
3168           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
3169         }
3170         ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3171         whereLoopOutputAdjust(pWC, pNew, rSize);
3172         rc = whereLoopInsert(pBuilder, pNew);
3173         pNew->nOut = rSize;
3174         if( rc ) break;
3175       }
3176     }
3177 
3178     pBuilder->bldFlags1 = 0;
3179     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
3180     if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){
3181       /* If a non-unique index is used, or if a prefix of the key for
3182       ** unique index is used (making the index functionally non-unique)
3183       ** then the sqlite_stat1 data becomes important for scoring the
3184       ** plan */
3185       pTab->tabFlags |= TF_StatsUsed;
3186     }
3187 #ifdef SQLITE_ENABLE_STAT4
3188     sqlite3Stat4ProbeFree(pBuilder->pRec);
3189     pBuilder->nRecValid = 0;
3190     pBuilder->pRec = 0;
3191 #endif
3192   }
3193   return rc;
3194 }
3195 
3196 #ifndef SQLITE_OMIT_VIRTUALTABLE
3197 
3198 /*
3199 ** Argument pIdxInfo is already populated with all constraints that may
3200 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3201 ** function marks a subset of those constraints usable, invokes the
3202 ** xBestIndex method and adds the returned plan to pBuilder.
3203 **
3204 ** A constraint is marked usable if:
3205 **
3206 **   * Argument mUsable indicates that its prerequisites are available, and
3207 **
3208 **   * It is not one of the operators specified in the mExclude mask passed
3209 **     as the fourth argument (which in practice is either WO_IN or 0).
3210 **
3211 ** Argument mPrereq is a mask of tables that must be scanned before the
3212 ** virtual table in question. These are added to the plans prerequisites
3213 ** before it is added to pBuilder.
3214 **
3215 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3216 ** uses one or more WO_IN terms, or false otherwise.
3217 */
3218 static int whereLoopAddVirtualOne(
3219   WhereLoopBuilder *pBuilder,
3220   Bitmask mPrereq,                /* Mask of tables that must be used. */
3221   Bitmask mUsable,                /* Mask of usable tables */
3222   u16 mExclude,                   /* Exclude terms using these operators */
3223   sqlite3_index_info *pIdxInfo,   /* Populated object for xBestIndex */
3224   u16 mNoOmit,                    /* Do not omit these constraints */
3225   int *pbIn                       /* OUT: True if plan uses an IN(...) op */
3226 ){
3227   WhereClause *pWC = pBuilder->pWC;
3228   struct sqlite3_index_constraint *pIdxCons;
3229   struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3230   int i;
3231   int mxTerm;
3232   int rc = SQLITE_OK;
3233   WhereLoop *pNew = pBuilder->pNew;
3234   Parse *pParse = pBuilder->pWInfo->pParse;
3235   SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3236   int nConstraint = pIdxInfo->nConstraint;
3237 
3238   assert( (mUsable & mPrereq)==mPrereq );
3239   *pbIn = 0;
3240   pNew->prereq = mPrereq;
3241 
3242   /* Set the usable flag on the subset of constraints identified by
3243   ** arguments mUsable and mExclude. */
3244   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3245   for(i=0; i<nConstraint; i++, pIdxCons++){
3246     WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3247     pIdxCons->usable = 0;
3248     if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3249      && (pTerm->eOperator & mExclude)==0
3250     ){
3251       pIdxCons->usable = 1;
3252     }
3253   }
3254 
3255   /* Initialize the output fields of the sqlite3_index_info structure */
3256   memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3257   assert( pIdxInfo->needToFreeIdxStr==0 );
3258   pIdxInfo->idxStr = 0;
3259   pIdxInfo->idxNum = 0;
3260   pIdxInfo->orderByConsumed = 0;
3261   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3262   pIdxInfo->estimatedRows = 25;
3263   pIdxInfo->idxFlags = 0;
3264   pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3265 
3266   /* Invoke the virtual table xBestIndex() method */
3267   rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3268   if( rc ){
3269     if( rc==SQLITE_CONSTRAINT ){
3270       /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
3271       ** that the particular combination of parameters provided is unusable.
3272       ** Make no entries in the loop table.
3273       */
3274       WHERETRACE(0xffff, ("  ^^^^--- non-viable plan rejected!\n"));
3275       return SQLITE_OK;
3276     }
3277     return rc;
3278   }
3279 
3280   mxTerm = -1;
3281   assert( pNew->nLSlot>=nConstraint );
3282   for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
3283   pNew->u.vtab.omitMask = 0;
3284   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3285   for(i=0; i<nConstraint; i++, pIdxCons++){
3286     int iTerm;
3287     if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3288       WhereTerm *pTerm;
3289       int j = pIdxCons->iTermOffset;
3290       if( iTerm>=nConstraint
3291        || j<0
3292        || j>=pWC->nTerm
3293        || pNew->aLTerm[iTerm]!=0
3294        || pIdxCons->usable==0
3295       ){
3296         sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3297         testcase( pIdxInfo->needToFreeIdxStr );
3298         return SQLITE_ERROR;
3299       }
3300       testcase( iTerm==nConstraint-1 );
3301       testcase( j==0 );
3302       testcase( j==pWC->nTerm-1 );
3303       pTerm = &pWC->a[j];
3304       pNew->prereq |= pTerm->prereqRight;
3305       assert( iTerm<pNew->nLSlot );
3306       pNew->aLTerm[iTerm] = pTerm;
3307       if( iTerm>mxTerm ) mxTerm = iTerm;
3308       testcase( iTerm==15 );
3309       testcase( iTerm==16 );
3310       if( pUsage[i].omit ){
3311         if( i<16 && ((1<<i)&mNoOmit)==0 ){
3312           testcase( i!=iTerm );
3313           pNew->u.vtab.omitMask |= 1<<iTerm;
3314         }else{
3315           testcase( i!=iTerm );
3316         }
3317       }
3318       if( (pTerm->eOperator & WO_IN)!=0 ){
3319         /* A virtual table that is constrained by an IN clause may not
3320         ** consume the ORDER BY clause because (1) the order of IN terms
3321         ** is not necessarily related to the order of output terms and
3322         ** (2) Multiple outputs from a single IN value will not merge
3323         ** together.  */
3324         pIdxInfo->orderByConsumed = 0;
3325         pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3326         *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3327       }
3328     }
3329   }
3330 
3331   pNew->nLTerm = mxTerm+1;
3332   for(i=0; i<=mxTerm; i++){
3333     if( pNew->aLTerm[i]==0 ){
3334       /* The non-zero argvIdx values must be contiguous.  Raise an
3335       ** error if they are not */
3336       sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3337       testcase( pIdxInfo->needToFreeIdxStr );
3338       return SQLITE_ERROR;
3339     }
3340   }
3341   assert( pNew->nLTerm<=pNew->nLSlot );
3342   pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3343   pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3344   pIdxInfo->needToFreeIdxStr = 0;
3345   pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3346   pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3347       pIdxInfo->nOrderBy : 0);
3348   pNew->rSetup = 0;
3349   pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3350   pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3351 
3352   /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3353   ** that the scan will visit at most one row. Clear it otherwise. */
3354   if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3355     pNew->wsFlags |= WHERE_ONEROW;
3356   }else{
3357     pNew->wsFlags &= ~WHERE_ONEROW;
3358   }
3359   rc = whereLoopInsert(pBuilder, pNew);
3360   if( pNew->u.vtab.needFree ){
3361     sqlite3_free(pNew->u.vtab.idxStr);
3362     pNew->u.vtab.needFree = 0;
3363   }
3364   WHERETRACE(0xffff, ("  bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3365                       *pbIn, (sqlite3_uint64)mPrereq,
3366                       (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3367 
3368   return rc;
3369 }
3370 
3371 /*
3372 ** If this function is invoked from within an xBestIndex() callback, it
3373 ** returns a pointer to a buffer containing the name of the collation
3374 ** sequence associated with element iCons of the sqlite3_index_info.aConstraint
3375 ** array. Or, if iCons is out of range or there is no active xBestIndex
3376 ** call, return NULL.
3377 */
3378 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
3379   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3380   const char *zRet = 0;
3381   if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
3382     CollSeq *pC = 0;
3383     int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
3384     Expr *pX = pHidden->pWC->a[iTerm].pExpr;
3385     if( pX->pLeft ){
3386       pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX);
3387     }
3388     zRet = (pC ? pC->zName : sqlite3StrBINARY);
3389   }
3390   return zRet;
3391 }
3392 
3393 /*
3394 ** Add all WhereLoop objects for a table of the join identified by
3395 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
3396 **
3397 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3398 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3399 ** entries that occur before the virtual table in the FROM clause and are
3400 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3401 ** mUnusable mask contains all FROM clause entries that occur after the
3402 ** virtual table and are separated from it by at least one LEFT or
3403 ** CROSS JOIN.
3404 **
3405 ** For example, if the query were:
3406 **
3407 **   ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3408 **
3409 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3410 **
3411 ** All the tables in mPrereq must be scanned before the current virtual
3412 ** table. So any terms for which all prerequisites are satisfied by
3413 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3414 ** Conversely, all tables in mUnusable must be scanned after the current
3415 ** virtual table, so any terms for which the prerequisites overlap with
3416 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3417 */
3418 static int whereLoopAddVirtual(
3419   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
3420   Bitmask mPrereq,             /* Tables that must be scanned before this one */
3421   Bitmask mUnusable            /* Tables that must be scanned after this one */
3422 ){
3423   int rc = SQLITE_OK;          /* Return code */
3424   WhereInfo *pWInfo;           /* WHERE analysis context */
3425   Parse *pParse;               /* The parsing context */
3426   WhereClause *pWC;            /* The WHERE clause */
3427   SrcItem *pSrc;               /* The FROM clause term to search */
3428   sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
3429   int nConstraint;             /* Number of constraints in p */
3430   int bIn;                     /* True if plan uses IN(...) operator */
3431   WhereLoop *pNew;
3432   Bitmask mBest;               /* Tables used by best possible plan */
3433   u16 mNoOmit;
3434 
3435   assert( (mPrereq & mUnusable)==0 );
3436   pWInfo = pBuilder->pWInfo;
3437   pParse = pWInfo->pParse;
3438   pWC = pBuilder->pWC;
3439   pNew = pBuilder->pNew;
3440   pSrc = &pWInfo->pTabList->a[pNew->iTab];
3441   assert( IsVirtual(pSrc->pTab) );
3442   p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy,
3443       &mNoOmit);
3444   if( p==0 ) return SQLITE_NOMEM_BKPT;
3445   pNew->rSetup = 0;
3446   pNew->wsFlags = WHERE_VIRTUALTABLE;
3447   pNew->nLTerm = 0;
3448   pNew->u.vtab.needFree = 0;
3449   nConstraint = p->nConstraint;
3450   if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3451     sqlite3DbFree(pParse->db, p);
3452     return SQLITE_NOMEM_BKPT;
3453   }
3454 
3455   /* First call xBestIndex() with all constraints usable. */
3456   WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
3457   WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
3458   rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn);
3459 
3460   /* If the call to xBestIndex() with all terms enabled produced a plan
3461   ** that does not require any source tables (IOW: a plan with mBest==0)
3462   ** and does not use an IN(...) operator, then there is no point in making
3463   ** any further calls to xBestIndex() since they will all return the same
3464   ** result (if the xBestIndex() implementation is sane). */
3465   if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){
3466     int seenZero = 0;             /* True if a plan with no prereqs seen */
3467     int seenZeroNoIN = 0;         /* Plan with no prereqs and no IN(...) seen */
3468     Bitmask mPrev = 0;
3469     Bitmask mBestNoIn = 0;
3470 
3471     /* If the plan produced by the earlier call uses an IN(...) term, call
3472     ** xBestIndex again, this time with IN(...) terms disabled. */
3473     if( bIn ){
3474       WHERETRACE(0x40, ("  VirtualOne: all usable w/o IN\n"));
3475       rc = whereLoopAddVirtualOne(
3476           pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn);
3477       assert( bIn==0 );
3478       mBestNoIn = pNew->prereq & ~mPrereq;
3479       if( mBestNoIn==0 ){
3480         seenZero = 1;
3481         seenZeroNoIN = 1;
3482       }
3483     }
3484 
3485     /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3486     ** in the set of terms that apply to the current virtual table.  */
3487     while( rc==SQLITE_OK ){
3488       int i;
3489       Bitmask mNext = ALLBITS;
3490       assert( mNext>0 );
3491       for(i=0; i<nConstraint; i++){
3492         Bitmask mThis = (
3493             pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3494         );
3495         if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3496       }
3497       mPrev = mNext;
3498       if( mNext==ALLBITS ) break;
3499       if( mNext==mBest || mNext==mBestNoIn ) continue;
3500       WHERETRACE(0x40, ("  VirtualOne: mPrev=%04llx mNext=%04llx\n",
3501                        (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3502       rc = whereLoopAddVirtualOne(
3503           pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn);
3504       if( pNew->prereq==mPrereq ){
3505         seenZero = 1;
3506         if( bIn==0 ) seenZeroNoIN = 1;
3507       }
3508     }
3509 
3510     /* If the calls to xBestIndex() in the above loop did not find a plan
3511     ** that requires no source tables at all (i.e. one guaranteed to be
3512     ** usable), make a call here with all source tables disabled */
3513     if( rc==SQLITE_OK && seenZero==0 ){
3514       WHERETRACE(0x40, ("  VirtualOne: all disabled\n"));
3515       rc = whereLoopAddVirtualOne(
3516           pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn);
3517       if( bIn==0 ) seenZeroNoIN = 1;
3518     }
3519 
3520     /* If the calls to xBestIndex() have so far failed to find a plan
3521     ** that requires no source tables at all and does not use an IN(...)
3522     ** operator, make a final call to obtain one here.  */
3523     if( rc==SQLITE_OK && seenZeroNoIN==0 ){
3524       WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
3525       rc = whereLoopAddVirtualOne(
3526           pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn);
3527     }
3528   }
3529 
3530   if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
3531   sqlite3DbFreeNN(pParse->db, p);
3532   WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
3533   return rc;
3534 }
3535 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3536 
3537 /*
3538 ** Add WhereLoop entries to handle OR terms.  This works for either
3539 ** btrees or virtual tables.
3540 */
3541 static int whereLoopAddOr(
3542   WhereLoopBuilder *pBuilder,
3543   Bitmask mPrereq,
3544   Bitmask mUnusable
3545 ){
3546   WhereInfo *pWInfo = pBuilder->pWInfo;
3547   WhereClause *pWC;
3548   WhereLoop *pNew;
3549   WhereTerm *pTerm, *pWCEnd;
3550   int rc = SQLITE_OK;
3551   int iCur;
3552   WhereClause tempWC;
3553   WhereLoopBuilder sSubBuild;
3554   WhereOrSet sSum, sCur;
3555   SrcItem *pItem;
3556 
3557   pWC = pBuilder->pWC;
3558   pWCEnd = pWC->a + pWC->nTerm;
3559   pNew = pBuilder->pNew;
3560   memset(&sSum, 0, sizeof(sSum));
3561   pItem = pWInfo->pTabList->a + pNew->iTab;
3562   iCur = pItem->iCursor;
3563 
3564   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
3565     if( (pTerm->eOperator & WO_OR)!=0
3566      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
3567     ){
3568       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
3569       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
3570       WhereTerm *pOrTerm;
3571       int once = 1;
3572       int i, j;
3573 
3574       sSubBuild = *pBuilder;
3575       sSubBuild.pOrderBy = 0;
3576       sSubBuild.pOrSet = &sCur;
3577 
3578       WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
3579       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
3580         if( (pOrTerm->eOperator & WO_AND)!=0 ){
3581           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
3582         }else if( pOrTerm->leftCursor==iCur ){
3583           tempWC.pWInfo = pWC->pWInfo;
3584           tempWC.pOuter = pWC;
3585           tempWC.op = TK_AND;
3586           tempWC.nTerm = 1;
3587           tempWC.a = pOrTerm;
3588           sSubBuild.pWC = &tempWC;
3589         }else{
3590           continue;
3591         }
3592         sCur.n = 0;
3593 #ifdef WHERETRACE_ENABLED
3594         WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3595                    (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
3596         if( sqlite3WhereTrace & 0x400 ){
3597           sqlite3WhereClausePrint(sSubBuild.pWC);
3598         }
3599 #endif
3600 #ifndef SQLITE_OMIT_VIRTUALTABLE
3601         if( IsVirtual(pItem->pTab) ){
3602           rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
3603         }else
3604 #endif
3605         {
3606           rc = whereLoopAddBtree(&sSubBuild, mPrereq);
3607         }
3608         if( rc==SQLITE_OK ){
3609           rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
3610         }
3611         assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0
3612                 || rc==SQLITE_NOMEM );
3613         testcase( rc==SQLITE_NOMEM && sCur.n>0 );
3614         testcase( rc==SQLITE_DONE );
3615         if( sCur.n==0 ){
3616           sSum.n = 0;
3617           break;
3618         }else if( once ){
3619           whereOrMove(&sSum, &sCur);
3620           once = 0;
3621         }else{
3622           WhereOrSet sPrev;
3623           whereOrMove(&sPrev, &sSum);
3624           sSum.n = 0;
3625           for(i=0; i<sPrev.n; i++){
3626             for(j=0; j<sCur.n; j++){
3627               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
3628                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
3629                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
3630             }
3631           }
3632         }
3633       }
3634       pNew->nLTerm = 1;
3635       pNew->aLTerm[0] = pTerm;
3636       pNew->wsFlags = WHERE_MULTI_OR;
3637       pNew->rSetup = 0;
3638       pNew->iSortIdx = 0;
3639       memset(&pNew->u, 0, sizeof(pNew->u));
3640       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
3641         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
3642         ** of all sub-scans required by the OR-scan. However, due to rounding
3643         ** errors, it may be that the cost of the OR-scan is equal to its
3644         ** most expensive sub-scan. Add the smallest possible penalty
3645         ** (equivalent to multiplying the cost by 1.07) to ensure that
3646         ** this does not happen. Otherwise, for WHERE clauses such as the
3647         ** following where there is an index on "y":
3648         **
3649         **     WHERE likelihood(x=?, 0.99) OR y=?
3650         **
3651         ** the planner may elect to "OR" together a full-table scan and an
3652         ** index lookup. And other similarly odd results.  */
3653         pNew->rRun = sSum.a[i].rRun + 1;
3654         pNew->nOut = sSum.a[i].nOut;
3655         pNew->prereq = sSum.a[i].prereq;
3656         rc = whereLoopInsert(pBuilder, pNew);
3657       }
3658       WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
3659     }
3660   }
3661   return rc;
3662 }
3663 
3664 /*
3665 ** Add all WhereLoop objects for all tables
3666 */
3667 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
3668   WhereInfo *pWInfo = pBuilder->pWInfo;
3669   Bitmask mPrereq = 0;
3670   Bitmask mPrior = 0;
3671   int iTab;
3672   SrcList *pTabList = pWInfo->pTabList;
3673   SrcItem *pItem;
3674   SrcItem *pEnd = &pTabList->a[pWInfo->nLevel];
3675   sqlite3 *db = pWInfo->pParse->db;
3676   int rc = SQLITE_OK;
3677   WhereLoop *pNew;
3678 
3679   /* Loop over the tables in the join, from left to right */
3680   pNew = pBuilder->pNew;
3681   whereLoopInit(pNew);
3682   pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT;
3683   for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
3684     Bitmask mUnusable = 0;
3685     pNew->iTab = iTab;
3686     pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR;
3687     pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
3688     if( (pItem->fg.jointype & (JT_LEFT|JT_CROSS))!=0 ){
3689       /* This condition is true when pItem is the FROM clause term on the
3690       ** right-hand-side of a LEFT or CROSS JOIN.  */
3691       mPrereq = mPrior;
3692     }else{
3693       mPrereq = 0;
3694     }
3695 #ifndef SQLITE_OMIT_VIRTUALTABLE
3696     if( IsVirtual(pItem->pTab) ){
3697       SrcItem *p;
3698       for(p=&pItem[1]; p<pEnd; p++){
3699         if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
3700           mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
3701         }
3702       }
3703       rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
3704     }else
3705 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3706     {
3707       rc = whereLoopAddBtree(pBuilder, mPrereq);
3708     }
3709     if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
3710       rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
3711     }
3712     mPrior |= pNew->maskSelf;
3713     if( rc || db->mallocFailed ){
3714       if( rc==SQLITE_DONE ){
3715         /* We hit the query planner search limit set by iPlanLimit */
3716         sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search");
3717         rc = SQLITE_OK;
3718       }else{
3719         break;
3720       }
3721     }
3722   }
3723 
3724   whereLoopClear(db, pNew);
3725   return rc;
3726 }
3727 
3728 /*
3729 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
3730 ** parameters) to see if it outputs rows in the requested ORDER BY
3731 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
3732 **
3733 **   N>0:   N terms of the ORDER BY clause are satisfied
3734 **   N==0:  No terms of the ORDER BY clause are satisfied
3735 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
3736 **
3737 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
3738 ** strict.  With GROUP BY and DISTINCT the only requirement is that
3739 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
3740 ** and DISTINCT do not require rows to appear in any particular order as long
3741 ** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT
3742 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
3743 ** pOrderBy terms must be matched in strict left-to-right order.
3744 */
3745 static i8 wherePathSatisfiesOrderBy(
3746   WhereInfo *pWInfo,    /* The WHERE clause */
3747   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
3748   WherePath *pPath,     /* The WherePath to check */
3749   u16 wctrlFlags,       /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
3750   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
3751   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
3752   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
3753 ){
3754   u8 revSet;            /* True if rev is known */
3755   u8 rev;               /* Composite sort order */
3756   u8 revIdx;            /* Index sort order */
3757   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
3758   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
3759   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
3760   u16 eqOpMask;         /* Allowed equality operators */
3761   u16 nKeyCol;          /* Number of key columns in pIndex */
3762   u16 nColumn;          /* Total number of ordered columns in the index */
3763   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
3764   int iLoop;            /* Index of WhereLoop in pPath being processed */
3765   int i, j;             /* Loop counters */
3766   int iCur;             /* Cursor number for current WhereLoop */
3767   int iColumn;          /* A column number within table iCur */
3768   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
3769   WhereTerm *pTerm;     /* A single term of the WHERE clause */
3770   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
3771   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
3772   Index *pIndex;        /* The index associated with pLoop */
3773   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
3774   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
3775   Bitmask obDone;       /* Mask of all ORDER BY terms */
3776   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
3777   Bitmask ready;              /* Mask of inner loops */
3778 
3779   /*
3780   ** We say the WhereLoop is "one-row" if it generates no more than one
3781   ** row of output.  A WhereLoop is one-row if all of the following are true:
3782   **  (a) All index columns match with WHERE_COLUMN_EQ.
3783   **  (b) The index is unique
3784   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
3785   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
3786   **
3787   ** We say the WhereLoop is "order-distinct" if the set of columns from
3788   ** that WhereLoop that are in the ORDER BY clause are different for every
3789   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
3790   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
3791   ** is not order-distinct. To be order-distinct is not quite the same as being
3792   ** UNIQUE since a UNIQUE column or index can have multiple rows that
3793   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
3794   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
3795   **
3796   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
3797   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
3798   ** automatically order-distinct.
3799   */
3800 
3801   assert( pOrderBy!=0 );
3802   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
3803 
3804   nOrderBy = pOrderBy->nExpr;
3805   testcase( nOrderBy==BMS-1 );
3806   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
3807   isOrderDistinct = 1;
3808   obDone = MASKBIT(nOrderBy)-1;
3809   orderDistinctMask = 0;
3810   ready = 0;
3811   eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
3812   if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){
3813     eqOpMask |= WO_IN;
3814   }
3815   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
3816     if( iLoop>0 ) ready |= pLoop->maskSelf;
3817     if( iLoop<nLoop ){
3818       pLoop = pPath->aLoop[iLoop];
3819       if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
3820     }else{
3821       pLoop = pLast;
3822     }
3823     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
3824       if( pLoop->u.vtab.isOrdered && (wctrlFlags & WHERE_DISTINCTBY)==0 ){
3825         obSat = obDone;
3826       }
3827       break;
3828     }else if( wctrlFlags & WHERE_DISTINCTBY ){
3829       pLoop->u.btree.nDistinctCol = 0;
3830     }
3831     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
3832 
3833     /* Mark off any ORDER BY term X that is a column in the table of
3834     ** the current loop for which there is term in the WHERE
3835     ** clause of the form X IS NULL or X=? that reference only outer
3836     ** loops.
3837     */
3838     for(i=0; i<nOrderBy; i++){
3839       if( MASKBIT(i) & obSat ) continue;
3840       pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
3841       if( NEVER(pOBExpr==0) ) continue;
3842       if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
3843       if( pOBExpr->iTable!=iCur ) continue;
3844       pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
3845                        ~ready, eqOpMask, 0);
3846       if( pTerm==0 ) continue;
3847       if( pTerm->eOperator==WO_IN ){
3848         /* IN terms are only valid for sorting in the ORDER BY LIMIT
3849         ** optimization, and then only if they are actually used
3850         ** by the query plan */
3851         assert( wctrlFlags &
3852                (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) );
3853         for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
3854         if( j>=pLoop->nLTerm ) continue;
3855       }
3856       if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
3857         Parse *pParse = pWInfo->pParse;
3858         CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr);
3859         CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr);
3860         assert( pColl1 );
3861         if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){
3862           continue;
3863         }
3864         testcase( pTerm->pExpr->op==TK_IS );
3865       }
3866       obSat |= MASKBIT(i);
3867     }
3868 
3869     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
3870       if( pLoop->wsFlags & WHERE_IPK ){
3871         pIndex = 0;
3872         nKeyCol = 0;
3873         nColumn = 1;
3874       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
3875         return 0;
3876       }else{
3877         nKeyCol = pIndex->nKeyCol;
3878         nColumn = pIndex->nColumn;
3879         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
3880         assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
3881                           || !HasRowid(pIndex->pTable));
3882         isOrderDistinct = IsUniqueIndex(pIndex)
3883                           && (pLoop->wsFlags & WHERE_SKIPSCAN)==0;
3884       }
3885 
3886       /* Loop through all columns of the index and deal with the ones
3887       ** that are not constrained by == or IN.
3888       */
3889       rev = revSet = 0;
3890       distinctColumns = 0;
3891       for(j=0; j<nColumn; j++){
3892         u8 bOnce = 1; /* True to run the ORDER BY search loop */
3893 
3894         assert( j>=pLoop->u.btree.nEq
3895             || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
3896         );
3897         if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
3898           u16 eOp = pLoop->aLTerm[j]->eOperator;
3899 
3900           /* Skip over == and IS and ISNULL terms.  (Also skip IN terms when
3901           ** doing WHERE_ORDERBY_LIMIT processing).  Except, IS and ISNULL
3902           ** terms imply that the index is not UNIQUE NOT NULL in which case
3903           ** the loop need to be marked as not order-distinct because it can
3904           ** have repeated NULL rows.
3905           **
3906           ** If the current term is a column of an ((?,?) IN (SELECT...))
3907           ** expression for which the SELECT returns more than one column,
3908           ** check that it is the only column used by this loop. Otherwise,
3909           ** if it is one of two or more, none of the columns can be
3910           ** considered to match an ORDER BY term.
3911           */
3912           if( (eOp & eqOpMask)!=0 ){
3913             if( eOp & (WO_ISNULL|WO_IS) ){
3914               testcase( eOp & WO_ISNULL );
3915               testcase( eOp & WO_IS );
3916               testcase( isOrderDistinct );
3917               isOrderDistinct = 0;
3918             }
3919             continue;
3920           }else if( ALWAYS(eOp & WO_IN) ){
3921             /* ALWAYS() justification: eOp is an equality operator due to the
3922             ** j<pLoop->u.btree.nEq constraint above.  Any equality other
3923             ** than WO_IN is captured by the previous "if".  So this one
3924             ** always has to be WO_IN. */
3925             Expr *pX = pLoop->aLTerm[j]->pExpr;
3926             for(i=j+1; i<pLoop->u.btree.nEq; i++){
3927               if( pLoop->aLTerm[i]->pExpr==pX ){
3928                 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
3929                 bOnce = 0;
3930                 break;
3931               }
3932             }
3933           }
3934         }
3935 
3936         /* Get the column number in the table (iColumn) and sort order
3937         ** (revIdx) for the j-th column of the index.
3938         */
3939         if( pIndex ){
3940           iColumn = pIndex->aiColumn[j];
3941           revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC;
3942           if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
3943         }else{
3944           iColumn = XN_ROWID;
3945           revIdx = 0;
3946         }
3947 
3948         /* An unconstrained column that might be NULL means that this
3949         ** WhereLoop is not well-ordered
3950         */
3951         if( isOrderDistinct
3952          && iColumn>=0
3953          && j>=pLoop->u.btree.nEq
3954          && pIndex->pTable->aCol[iColumn].notNull==0
3955         ){
3956           isOrderDistinct = 0;
3957         }
3958 
3959         /* Find the ORDER BY term that corresponds to the j-th column
3960         ** of the index and mark that ORDER BY term off
3961         */
3962         isMatch = 0;
3963         for(i=0; bOnce && i<nOrderBy; i++){
3964           if( MASKBIT(i) & obSat ) continue;
3965           pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
3966           testcase( wctrlFlags & WHERE_GROUPBY );
3967           testcase( wctrlFlags & WHERE_DISTINCTBY );
3968           if( NEVER(pOBExpr==0) ) continue;
3969           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
3970           if( iColumn>=XN_ROWID ){
3971             if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
3972             if( pOBExpr->iTable!=iCur ) continue;
3973             if( pOBExpr->iColumn!=iColumn ) continue;
3974           }else{
3975             Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
3976             if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
3977               continue;
3978             }
3979           }
3980           if( iColumn!=XN_ROWID ){
3981             pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
3982             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
3983           }
3984           if( wctrlFlags & WHERE_DISTINCTBY ){
3985             pLoop->u.btree.nDistinctCol = j+1;
3986           }
3987           isMatch = 1;
3988           break;
3989         }
3990         if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
3991           /* Make sure the sort order is compatible in an ORDER BY clause.
3992           ** Sort order is irrelevant for a GROUP BY clause. */
3993           if( revSet ){
3994             if( (rev ^ revIdx)!=(pOrderBy->a[i].sortFlags&KEYINFO_ORDER_DESC) ){
3995               isMatch = 0;
3996             }
3997           }else{
3998             rev = revIdx ^ (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC);
3999             if( rev ) *pRevMask |= MASKBIT(iLoop);
4000             revSet = 1;
4001           }
4002         }
4003         if( isMatch && (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL) ){
4004           if( j==pLoop->u.btree.nEq ){
4005             pLoop->wsFlags |= WHERE_BIGNULL_SORT;
4006           }else{
4007             isMatch = 0;
4008           }
4009         }
4010         if( isMatch ){
4011           if( iColumn==XN_ROWID ){
4012             testcase( distinctColumns==0 );
4013             distinctColumns = 1;
4014           }
4015           obSat |= MASKBIT(i);
4016         }else{
4017           /* No match found */
4018           if( j==0 || j<nKeyCol ){
4019             testcase( isOrderDistinct!=0 );
4020             isOrderDistinct = 0;
4021           }
4022           break;
4023         }
4024       } /* end Loop over all index columns */
4025       if( distinctColumns ){
4026         testcase( isOrderDistinct==0 );
4027         isOrderDistinct = 1;
4028       }
4029     } /* end-if not one-row */
4030 
4031     /* Mark off any other ORDER BY terms that reference pLoop */
4032     if( isOrderDistinct ){
4033       orderDistinctMask |= pLoop->maskSelf;
4034       for(i=0; i<nOrderBy; i++){
4035         Expr *p;
4036         Bitmask mTerm;
4037         if( MASKBIT(i) & obSat ) continue;
4038         p = pOrderBy->a[i].pExpr;
4039         mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
4040         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
4041         if( (mTerm&~orderDistinctMask)==0 ){
4042           obSat |= MASKBIT(i);
4043         }
4044       }
4045     }
4046   } /* End the loop over all WhereLoops from outer-most down to inner-most */
4047   if( obSat==obDone ) return (i8)nOrderBy;
4048   if( !isOrderDistinct ){
4049     for(i=nOrderBy-1; i>0; i--){
4050       Bitmask m = MASKBIT(i) - 1;
4051       if( (obSat&m)==m ) return i;
4052     }
4053     return 0;
4054   }
4055   return -1;
4056 }
4057 
4058 
4059 /*
4060 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
4061 ** the planner assumes that the specified pOrderBy list is actually a GROUP
4062 ** BY clause - and so any order that groups rows as required satisfies the
4063 ** request.
4064 **
4065 ** Normally, in this case it is not possible for the caller to determine
4066 ** whether or not the rows are really being delivered in sorted order, or
4067 ** just in some other order that provides the required grouping. However,
4068 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
4069 ** this function may be called on the returned WhereInfo object. It returns
4070 ** true if the rows really will be sorted in the specified order, or false
4071 ** otherwise.
4072 **
4073 ** For example, assuming:
4074 **
4075 **   CREATE INDEX i1 ON t1(x, Y);
4076 **
4077 ** then
4078 **
4079 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
4080 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
4081 */
4082 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
4083   assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
4084   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
4085   return pWInfo->sorted;
4086 }
4087 
4088 #ifdef WHERETRACE_ENABLED
4089 /* For debugging use only: */
4090 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
4091   static char zName[65];
4092   int i;
4093   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
4094   if( pLast ) zName[i++] = pLast->cId;
4095   zName[i] = 0;
4096   return zName;
4097 }
4098 #endif
4099 
4100 /*
4101 ** Return the cost of sorting nRow rows, assuming that the keys have
4102 ** nOrderby columns and that the first nSorted columns are already in
4103 ** order.
4104 */
4105 static LogEst whereSortingCost(
4106   WhereInfo *pWInfo,
4107   LogEst nRow,
4108   int nOrderBy,
4109   int nSorted
4110 ){
4111   /* TUNING: Estimated cost of a full external sort, where N is
4112   ** the number of rows to sort is:
4113   **
4114   **   cost = (3.0 * N * log(N)).
4115   **
4116   ** Or, if the order-by clause has X terms but only the last Y
4117   ** terms are out of order, then block-sorting will reduce the
4118   ** sorting cost to:
4119   **
4120   **   cost = (3.0 * N * log(N)) * (Y/X)
4121   **
4122   ** The (Y/X) term is implemented using stack variable rScale
4123   ** below.
4124   */
4125   LogEst rScale, rSortCost;
4126   assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
4127   rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
4128   rSortCost = nRow + rScale + 16;
4129 
4130   /* Multiple by log(M) where M is the number of output rows.
4131   ** Use the LIMIT for M if it is smaller.  Or if this sort is for
4132   ** a DISTINCT operator, M will be the number of distinct output
4133   ** rows, so fudge it downwards a bit.
4134   */
4135   if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
4136     nRow = pWInfo->iLimit;
4137   }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){
4138     /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT
4139     ** reduces the number of output rows by a factor of 2 */
4140     if( nRow>10 ) nRow -= 10;  assert( 10==sqlite3LogEst(2) );
4141   }
4142   rSortCost += estLog(nRow);
4143   return rSortCost;
4144 }
4145 
4146 /*
4147 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
4148 ** attempts to find the lowest cost path that visits each WhereLoop
4149 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
4150 **
4151 ** Assume that the total number of output rows that will need to be sorted
4152 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
4153 ** costs if nRowEst==0.
4154 **
4155 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
4156 ** error occurs.
4157 */
4158 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
4159   int mxChoice;             /* Maximum number of simultaneous paths tracked */
4160   int nLoop;                /* Number of terms in the join */
4161   Parse *pParse;            /* Parsing context */
4162   sqlite3 *db;              /* The database connection */
4163   int iLoop;                /* Loop counter over the terms of the join */
4164   int ii, jj;               /* Loop counters */
4165   int mxI = 0;              /* Index of next entry to replace */
4166   int nOrderBy;             /* Number of ORDER BY clause terms */
4167   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
4168   LogEst mxUnsorted = 0;    /* Maximum unsorted cost of a set of path */
4169   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
4170   WherePath *aFrom;         /* All nFrom paths at the previous level */
4171   WherePath *aTo;           /* The nTo best paths at the current level */
4172   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
4173   WherePath *pTo;           /* An element of aTo[] that we are working on */
4174   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
4175   WhereLoop **pX;           /* Used to divy up the pSpace memory */
4176   LogEst *aSortCost = 0;    /* Sorting and partial sorting costs */
4177   char *pSpace;             /* Temporary memory used by this routine */
4178   int nSpace;               /* Bytes of space allocated at pSpace */
4179 
4180   pParse = pWInfo->pParse;
4181   db = pParse->db;
4182   nLoop = pWInfo->nLevel;
4183   /* TUNING: For simple queries, only the best path is tracked.
4184   ** For 2-way joins, the 5 best paths are followed.
4185   ** For joins of 3 or more tables, track the 10 best paths */
4186   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
4187   assert( nLoop<=pWInfo->pTabList->nSrc );
4188   WHERETRACE(0x002, ("---- begin solver.  (nRowEst=%d)\n", nRowEst));
4189 
4190   /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
4191   ** case the purpose of this call is to estimate the number of rows returned
4192   ** by the overall query. Once this estimate has been obtained, the caller
4193   ** will invoke this function a second time, passing the estimate as the
4194   ** nRowEst parameter.  */
4195   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
4196     nOrderBy = 0;
4197   }else{
4198     nOrderBy = pWInfo->pOrderBy->nExpr;
4199   }
4200 
4201   /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
4202   nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
4203   nSpace += sizeof(LogEst) * nOrderBy;
4204   pSpace = sqlite3DbMallocRawNN(db, nSpace);
4205   if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
4206   aTo = (WherePath*)pSpace;
4207   aFrom = aTo+mxChoice;
4208   memset(aFrom, 0, sizeof(aFrom[0]));
4209   pX = (WhereLoop**)(aFrom+mxChoice);
4210   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
4211     pFrom->aLoop = pX;
4212   }
4213   if( nOrderBy ){
4214     /* If there is an ORDER BY clause and it is not being ignored, set up
4215     ** space for the aSortCost[] array. Each element of the aSortCost array
4216     ** is either zero - meaning it has not yet been initialized - or the
4217     ** cost of sorting nRowEst rows of data where the first X terms of
4218     ** the ORDER BY clause are already in order, where X is the array
4219     ** index.  */
4220     aSortCost = (LogEst*)pX;
4221     memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
4222   }
4223   assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
4224   assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
4225 
4226   /* Seed the search with a single WherePath containing zero WhereLoops.
4227   **
4228   ** TUNING: Do not let the number of iterations go above 28.  If the cost
4229   ** of computing an automatic index is not paid back within the first 28
4230   ** rows, then do not use the automatic index. */
4231   aFrom[0].nRow = MIN(pParse->nQueryLoop, 48);  assert( 48==sqlite3LogEst(28) );
4232   nFrom = 1;
4233   assert( aFrom[0].isOrdered==0 );
4234   if( nOrderBy ){
4235     /* If nLoop is zero, then there are no FROM terms in the query. Since
4236     ** in this case the query may return a maximum of one row, the results
4237     ** are already in the requested order. Set isOrdered to nOrderBy to
4238     ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
4239     ** -1, indicating that the result set may or may not be ordered,
4240     ** depending on the loops added to the current plan.  */
4241     aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
4242   }
4243 
4244   /* Compute successively longer WherePaths using the previous generation
4245   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
4246   ** best paths at each generation */
4247   for(iLoop=0; iLoop<nLoop; iLoop++){
4248     nTo = 0;
4249     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
4250       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
4251         LogEst nOut;                      /* Rows visited by (pFrom+pWLoop) */
4252         LogEst rCost;                     /* Cost of path (pFrom+pWLoop) */
4253         LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
4254         i8 isOrdered = pFrom->isOrdered;  /* isOrdered for (pFrom+pWLoop) */
4255         Bitmask maskNew;                  /* Mask of src visited by (..) */
4256         Bitmask revMask = 0;              /* Mask of rev-order loops for (..) */
4257 
4258         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
4259         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
4260         if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
4261           /* Do not use an automatic index if the this loop is expected
4262           ** to run less than 1.25 times.  It is tempting to also exclude
4263           ** automatic index usage on an outer loop, but sometimes an automatic
4264           ** index is useful in the outer loop of a correlated subquery. */
4265           assert( 10==sqlite3LogEst(2) );
4266           continue;
4267         }
4268 
4269         /* At this point, pWLoop is a candidate to be the next loop.
4270         ** Compute its cost */
4271         rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
4272         rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
4273         nOut = pFrom->nRow + pWLoop->nOut;
4274         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
4275         if( isOrdered<0 ){
4276           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
4277                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
4278                        iLoop, pWLoop, &revMask);
4279         }else{
4280           revMask = pFrom->revLoop;
4281         }
4282         if( isOrdered>=0 && isOrdered<nOrderBy ){
4283           if( aSortCost[isOrdered]==0 ){
4284             aSortCost[isOrdered] = whereSortingCost(
4285                 pWInfo, nRowEst, nOrderBy, isOrdered
4286             );
4287           }
4288           /* TUNING:  Add a small extra penalty (5) to sorting as an
4289           ** extra encouragment to the query planner to select a plan
4290           ** where the rows emerge in the correct order without any sorting
4291           ** required. */
4292           rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5;
4293 
4294           WHERETRACE(0x002,
4295               ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
4296                aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
4297                rUnsorted, rCost));
4298         }else{
4299           rCost = rUnsorted;
4300           rUnsorted -= 2;  /* TUNING:  Slight bias in favor of no-sort plans */
4301         }
4302 
4303         /* Check to see if pWLoop should be added to the set of
4304         ** mxChoice best-so-far paths.
4305         **
4306         ** First look for an existing path among best-so-far paths
4307         ** that covers the same set of loops and has the same isOrdered
4308         ** setting as the current path candidate.
4309         **
4310         ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4311         ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4312         ** of legal values for isOrdered, -1..64.
4313         */
4314         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
4315           if( pTo->maskLoop==maskNew
4316            && ((pTo->isOrdered^isOrdered)&0x80)==0
4317           ){
4318             testcase( jj==nTo-1 );
4319             break;
4320           }
4321         }
4322         if( jj>=nTo ){
4323           /* None of the existing best-so-far paths match the candidate. */
4324           if( nTo>=mxChoice
4325            && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4326           ){
4327             /* The current candidate is no better than any of the mxChoice
4328             ** paths currently in the best-so-far buffer.  So discard
4329             ** this candidate as not viable. */
4330 #ifdef WHERETRACE_ENABLED /* 0x4 */
4331             if( sqlite3WhereTrace&0x4 ){
4332               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d,%3d order=%c\n",
4333                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4334                   isOrdered>=0 ? isOrdered+'0' : '?');
4335             }
4336 #endif
4337             continue;
4338           }
4339           /* If we reach this points it means that the new candidate path
4340           ** needs to be added to the set of best-so-far paths. */
4341           if( nTo<mxChoice ){
4342             /* Increase the size of the aTo set by one */
4343             jj = nTo++;
4344           }else{
4345             /* New path replaces the prior worst to keep count below mxChoice */
4346             jj = mxI;
4347           }
4348           pTo = &aTo[jj];
4349 #ifdef WHERETRACE_ENABLED /* 0x4 */
4350           if( sqlite3WhereTrace&0x4 ){
4351             sqlite3DebugPrintf("New    %s cost=%-3d,%3d,%3d order=%c\n",
4352                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4353                 isOrdered>=0 ? isOrdered+'0' : '?');
4354           }
4355 #endif
4356         }else{
4357           /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4358           ** same set of loops and has the same isOrdered setting as the
4359           ** candidate path.  Check to see if the candidate should replace
4360           ** pTo or if the candidate should be skipped.
4361           **
4362           ** The conditional is an expanded vector comparison equivalent to:
4363           **   (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4364           */
4365           if( pTo->rCost<rCost
4366            || (pTo->rCost==rCost
4367                && (pTo->nRow<nOut
4368                    || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4369                   )
4370               )
4371           ){
4372 #ifdef WHERETRACE_ENABLED /* 0x4 */
4373             if( sqlite3WhereTrace&0x4 ){
4374               sqlite3DebugPrintf(
4375                   "Skip   %s cost=%-3d,%3d,%3d order=%c",
4376                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4377                   isOrdered>=0 ? isOrdered+'0' : '?');
4378               sqlite3DebugPrintf("   vs %s cost=%-3d,%3d,%3d order=%c\n",
4379                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4380                   pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4381             }
4382 #endif
4383             /* Discard the candidate path from further consideration */
4384             testcase( pTo->rCost==rCost );
4385             continue;
4386           }
4387           testcase( pTo->rCost==rCost+1 );
4388           /* Control reaches here if the candidate path is better than the
4389           ** pTo path.  Replace pTo with the candidate. */
4390 #ifdef WHERETRACE_ENABLED /* 0x4 */
4391           if( sqlite3WhereTrace&0x4 ){
4392             sqlite3DebugPrintf(
4393                 "Update %s cost=%-3d,%3d,%3d order=%c",
4394                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4395                 isOrdered>=0 ? isOrdered+'0' : '?');
4396             sqlite3DebugPrintf("  was %s cost=%-3d,%3d,%3d order=%c\n",
4397                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4398                 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4399           }
4400 #endif
4401         }
4402         /* pWLoop is a winner.  Add it to the set of best so far */
4403         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4404         pTo->revLoop = revMask;
4405         pTo->nRow = nOut;
4406         pTo->rCost = rCost;
4407         pTo->rUnsorted = rUnsorted;
4408         pTo->isOrdered = isOrdered;
4409         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4410         pTo->aLoop[iLoop] = pWLoop;
4411         if( nTo>=mxChoice ){
4412           mxI = 0;
4413           mxCost = aTo[0].rCost;
4414           mxUnsorted = aTo[0].nRow;
4415           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4416             if( pTo->rCost>mxCost
4417              || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4418             ){
4419               mxCost = pTo->rCost;
4420               mxUnsorted = pTo->rUnsorted;
4421               mxI = jj;
4422             }
4423           }
4424         }
4425       }
4426     }
4427 
4428 #ifdef WHERETRACE_ENABLED  /* >=2 */
4429     if( sqlite3WhereTrace & 0x02 ){
4430       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4431       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4432         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4433            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4434            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4435         if( pTo->isOrdered>0 ){
4436           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4437         }else{
4438           sqlite3DebugPrintf("\n");
4439         }
4440       }
4441     }
4442 #endif
4443 
4444     /* Swap the roles of aFrom and aTo for the next generation */
4445     pFrom = aTo;
4446     aTo = aFrom;
4447     aFrom = pFrom;
4448     nFrom = nTo;
4449   }
4450 
4451   if( nFrom==0 ){
4452     sqlite3ErrorMsg(pParse, "no query solution");
4453     sqlite3DbFreeNN(db, pSpace);
4454     return SQLITE_ERROR;
4455   }
4456 
4457   /* Find the lowest cost path.  pFrom will be left pointing to that path */
4458   pFrom = aFrom;
4459   for(ii=1; ii<nFrom; ii++){
4460     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4461   }
4462   assert( pWInfo->nLevel==nLoop );
4463   /* Load the lowest cost path into pWInfo */
4464   for(iLoop=0; iLoop<nLoop; iLoop++){
4465     WhereLevel *pLevel = pWInfo->a + iLoop;
4466     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
4467     pLevel->iFrom = pWLoop->iTab;
4468     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
4469   }
4470   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
4471    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
4472    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
4473    && nRowEst
4474   ){
4475     Bitmask notUsed;
4476     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
4477                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
4478     if( rc==pWInfo->pResultSet->nExpr ){
4479       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4480     }
4481   }
4482   pWInfo->bOrderedInnerLoop = 0;
4483   if( pWInfo->pOrderBy ){
4484     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
4485       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
4486         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4487       }
4488     }else{
4489       pWInfo->nOBSat = pFrom->isOrdered;
4490       pWInfo->revMask = pFrom->revLoop;
4491       if( pWInfo->nOBSat<=0 ){
4492         pWInfo->nOBSat = 0;
4493         if( nLoop>0 ){
4494           u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
4495           if( (wsFlags & WHERE_ONEROW)==0
4496            && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
4497           ){
4498             Bitmask m = 0;
4499             int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
4500                       WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
4501             testcase( wsFlags & WHERE_IPK );
4502             testcase( wsFlags & WHERE_COLUMN_IN );
4503             if( rc==pWInfo->pOrderBy->nExpr ){
4504               pWInfo->bOrderedInnerLoop = 1;
4505               pWInfo->revMask = m;
4506             }
4507           }
4508         }
4509       }else if( nLoop
4510             && pWInfo->nOBSat==1
4511             && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0
4512             ){
4513         pWInfo->bOrderedInnerLoop = 1;
4514       }
4515     }
4516     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
4517         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
4518     ){
4519       Bitmask revMask = 0;
4520       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
4521           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
4522       );
4523       assert( pWInfo->sorted==0 );
4524       if( nOrder==pWInfo->pOrderBy->nExpr ){
4525         pWInfo->sorted = 1;
4526         pWInfo->revMask = revMask;
4527       }
4528     }
4529   }
4530 
4531 
4532   pWInfo->nRowOut = pFrom->nRow;
4533 
4534   /* Free temporary memory and return success */
4535   sqlite3DbFreeNN(db, pSpace);
4536   return SQLITE_OK;
4537 }
4538 
4539 /*
4540 ** Most queries use only a single table (they are not joins) and have
4541 ** simple == constraints against indexed fields.  This routine attempts
4542 ** to plan those simple cases using much less ceremony than the
4543 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4544 ** times for the common case.
4545 **
4546 ** Return non-zero on success, if this query can be handled by this
4547 ** no-frills query planner.  Return zero if this query needs the
4548 ** general-purpose query planner.
4549 */
4550 static int whereShortCut(WhereLoopBuilder *pBuilder){
4551   WhereInfo *pWInfo;
4552   SrcItem *pItem;
4553   WhereClause *pWC;
4554   WhereTerm *pTerm;
4555   WhereLoop *pLoop;
4556   int iCur;
4557   int j;
4558   Table *pTab;
4559   Index *pIdx;
4560 
4561   pWInfo = pBuilder->pWInfo;
4562   if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
4563   assert( pWInfo->pTabList->nSrc>=1 );
4564   pItem = pWInfo->pTabList->a;
4565   pTab = pItem->pTab;
4566   if( IsVirtual(pTab) ) return 0;
4567   if( pItem->fg.isIndexedBy ) return 0;
4568   iCur = pItem->iCursor;
4569   pWC = &pWInfo->sWC;
4570   pLoop = pBuilder->pNew;
4571   pLoop->wsFlags = 0;
4572   pLoop->nSkip = 0;
4573   pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0);
4574   if( pTerm ){
4575     testcase( pTerm->eOperator & WO_IS );
4576     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
4577     pLoop->aLTerm[0] = pTerm;
4578     pLoop->nLTerm = 1;
4579     pLoop->u.btree.nEq = 1;
4580     /* TUNING: Cost of a rowid lookup is 10 */
4581     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
4582   }else{
4583     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4584       int opMask;
4585       assert( pLoop->aLTermSpace==pLoop->aLTerm );
4586       if( !IsUniqueIndex(pIdx)
4587        || pIdx->pPartIdxWhere!=0
4588        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
4589       ) continue;
4590       opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
4591       for(j=0; j<pIdx->nKeyCol; j++){
4592         pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx);
4593         if( pTerm==0 ) break;
4594         testcase( pTerm->eOperator & WO_IS );
4595         pLoop->aLTerm[j] = pTerm;
4596       }
4597       if( j!=pIdx->nKeyCol ) continue;
4598       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
4599       if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
4600         pLoop->wsFlags |= WHERE_IDX_ONLY;
4601       }
4602       pLoop->nLTerm = j;
4603       pLoop->u.btree.nEq = j;
4604       pLoop->u.btree.pIndex = pIdx;
4605       /* TUNING: Cost of a unique index lookup is 15 */
4606       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
4607       break;
4608     }
4609   }
4610   if( pLoop->wsFlags ){
4611     pLoop->nOut = (LogEst)1;
4612     pWInfo->a[0].pWLoop = pLoop;
4613     assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
4614     pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
4615     pWInfo->a[0].iTabCur = iCur;
4616     pWInfo->nRowOut = 1;
4617     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
4618     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
4619       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4620     }
4621 #ifdef SQLITE_DEBUG
4622     pLoop->cId = '0';
4623 #endif
4624     return 1;
4625   }
4626   return 0;
4627 }
4628 
4629 /*
4630 ** Helper function for exprIsDeterministic().
4631 */
4632 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
4633   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
4634     pWalker->eCode = 0;
4635     return WRC_Abort;
4636   }
4637   return WRC_Continue;
4638 }
4639 
4640 /*
4641 ** Return true if the expression contains no non-deterministic SQL
4642 ** functions. Do not consider non-deterministic SQL functions that are
4643 ** part of sub-select statements.
4644 */
4645 static int exprIsDeterministic(Expr *p){
4646   Walker w;
4647   memset(&w, 0, sizeof(w));
4648   w.eCode = 1;
4649   w.xExprCallback = exprNodeIsDeterministic;
4650   w.xSelectCallback = sqlite3SelectWalkFail;
4651   sqlite3WalkExpr(&w, p);
4652   return w.eCode;
4653 }
4654 
4655 
4656 #ifdef WHERETRACE_ENABLED
4657 /*
4658 ** Display all WhereLoops in pWInfo
4659 */
4660 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){
4661   if( sqlite3WhereTrace ){    /* Display all of the WhereLoop objects */
4662     WhereLoop *p;
4663     int i;
4664     static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
4665                                            "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
4666     for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
4667       p->cId = zLabel[i%(sizeof(zLabel)-1)];
4668       sqlite3WhereLoopPrint(p, pWC);
4669     }
4670   }
4671 }
4672 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C)
4673 #else
4674 # define WHERETRACE_ALL_LOOPS(W,C)
4675 #endif
4676 
4677 /*
4678 ** Generate the beginning of the loop used for WHERE clause processing.
4679 ** The return value is a pointer to an opaque structure that contains
4680 ** information needed to terminate the loop.  Later, the calling routine
4681 ** should invoke sqlite3WhereEnd() with the return value of this function
4682 ** in order to complete the WHERE clause processing.
4683 **
4684 ** If an error occurs, this routine returns NULL.
4685 **
4686 ** The basic idea is to do a nested loop, one loop for each table in
4687 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
4688 ** same as a SELECT with only a single table in the FROM clause.)  For
4689 ** example, if the SQL is this:
4690 **
4691 **       SELECT * FROM t1, t2, t3 WHERE ...;
4692 **
4693 ** Then the code generated is conceptually like the following:
4694 **
4695 **      foreach row1 in t1 do       \    Code generated
4696 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
4697 **          foreach row3 in t3 do   /
4698 **            ...
4699 **          end                     \    Code generated
4700 **        end                        |-- by sqlite3WhereEnd()
4701 **      end                         /
4702 **
4703 ** Note that the loops might not be nested in the order in which they
4704 ** appear in the FROM clause if a different order is better able to make
4705 ** use of indices.  Note also that when the IN operator appears in
4706 ** the WHERE clause, it might result in additional nested loops for
4707 ** scanning through all values on the right-hand side of the IN.
4708 **
4709 ** There are Btree cursors associated with each table.  t1 uses cursor
4710 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
4711 ** And so forth.  This routine generates code to open those VDBE cursors
4712 ** and sqlite3WhereEnd() generates the code to close them.
4713 **
4714 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4715 ** in pTabList pointing at their appropriate entries.  The [...] code
4716 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4717 ** data from the various tables of the loop.
4718 **
4719 ** If the WHERE clause is empty, the foreach loops must each scan their
4720 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
4721 ** the tables have indices and there are terms in the WHERE clause that
4722 ** refer to those indices, a complete table scan can be avoided and the
4723 ** code will run much faster.  Most of the work of this routine is checking
4724 ** to see if there are indices that can be used to speed up the loop.
4725 **
4726 ** Terms of the WHERE clause are also used to limit which rows actually
4727 ** make it to the "..." in the middle of the loop.  After each "foreach",
4728 ** terms of the WHERE clause that use only terms in that loop and outer
4729 ** loops are evaluated and if false a jump is made around all subsequent
4730 ** inner loops (or around the "..." if the test occurs within the inner-
4731 ** most loop)
4732 **
4733 ** OUTER JOINS
4734 **
4735 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4736 **
4737 **    foreach row1 in t1 do
4738 **      flag = 0
4739 **      foreach row2 in t2 do
4740 **        start:
4741 **          ...
4742 **          flag = 1
4743 **      end
4744 **      if flag==0 then
4745 **        move the row2 cursor to a null row
4746 **        goto start
4747 **      fi
4748 **    end
4749 **
4750 ** ORDER BY CLAUSE PROCESSING
4751 **
4752 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
4753 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
4754 ** if there is one.  If there is no ORDER BY clause or if this routine
4755 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
4756 **
4757 ** The iIdxCur parameter is the cursor number of an index.  If
4758 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
4759 ** to use for OR clause processing.  The WHERE clause should use this
4760 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
4761 ** the first cursor in an array of cursors for all indices.  iIdxCur should
4762 ** be used to compute the appropriate cursor depending on which index is
4763 ** used.
4764 */
4765 WhereInfo *sqlite3WhereBegin(
4766   Parse *pParse,          /* The parser context */
4767   SrcList *pTabList,      /* FROM clause: A list of all tables to be scanned */
4768   Expr *pWhere,           /* The WHERE clause */
4769   ExprList *pOrderBy,     /* An ORDER BY (or GROUP BY) clause, or NULL */
4770   ExprList *pResultSet,   /* Query result set.  Req'd for DISTINCT */
4771   u16 wctrlFlags,         /* The WHERE_* flags defined in sqliteInt.h */
4772   int iAuxArg             /* If WHERE_OR_SUBCLAUSE is set, index cursor number
4773                           ** If WHERE_USE_LIMIT, then the limit amount */
4774 ){
4775   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
4776   int nTabList;              /* Number of elements in pTabList */
4777   WhereInfo *pWInfo;         /* Will become the return value of this function */
4778   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
4779   Bitmask notReady;          /* Cursors that are not yet positioned */
4780   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
4781   WhereMaskSet *pMaskSet;    /* The expression mask set */
4782   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
4783   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
4784   int ii;                    /* Loop counter */
4785   sqlite3 *db;               /* Database connection */
4786   int rc;                    /* Return code */
4787   u8 bFordelete = 0;         /* OPFLAG_FORDELETE or zero, as appropriate */
4788 
4789   assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
4790         (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
4791      && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4792   ));
4793 
4794   /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
4795   assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4796             || (wctrlFlags & WHERE_USE_LIMIT)==0 );
4797 
4798   /* Variable initialization */
4799   db = pParse->db;
4800   memset(&sWLB, 0, sizeof(sWLB));
4801 
4802   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
4803   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
4804   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
4805   sWLB.pOrderBy = pOrderBy;
4806 
4807   /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
4808   ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
4809   if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
4810     wctrlFlags &= ~WHERE_WANT_DISTINCT;
4811   }
4812 
4813   /* The number of tables in the FROM clause is limited by the number of
4814   ** bits in a Bitmask
4815   */
4816   testcase( pTabList->nSrc==BMS );
4817   if( pTabList->nSrc>BMS ){
4818     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
4819     return 0;
4820   }
4821 
4822   /* This function normally generates a nested loop for all tables in
4823   ** pTabList.  But if the WHERE_OR_SUBCLAUSE flag is set, then we should
4824   ** only generate code for the first table in pTabList and assume that
4825   ** any cursors associated with subsequent tables are uninitialized.
4826   */
4827   nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
4828 
4829   /* Allocate and initialize the WhereInfo structure that will become the
4830   ** return value. A single allocation is used to store the WhereInfo
4831   ** struct, the contents of WhereInfo.a[], the WhereClause structure
4832   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4833   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4834   ** some architectures. Hence the ROUND8() below.
4835   */
4836   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
4837   pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
4838   if( db->mallocFailed ){
4839     sqlite3DbFree(db, pWInfo);
4840     pWInfo = 0;
4841     goto whereBeginError;
4842   }
4843   pWInfo->pParse = pParse;
4844   pWInfo->pTabList = pTabList;
4845   pWInfo->pOrderBy = pOrderBy;
4846   pWInfo->pWhere = pWhere;
4847   pWInfo->pResultSet = pResultSet;
4848   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
4849   pWInfo->nLevel = nTabList;
4850   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse);
4851   pWInfo->wctrlFlags = wctrlFlags;
4852   pWInfo->iLimit = iAuxArg;
4853   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
4854   memset(&pWInfo->nOBSat, 0,
4855          offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
4856   memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
4857   assert( pWInfo->eOnePass==ONEPASS_OFF );  /* ONEPASS defaults to OFF */
4858   pMaskSet = &pWInfo->sMaskSet;
4859   sWLB.pWInfo = pWInfo;
4860   sWLB.pWC = &pWInfo->sWC;
4861   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
4862   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
4863   whereLoopInit(sWLB.pNew);
4864 #ifdef SQLITE_DEBUG
4865   sWLB.pNew->cId = '*';
4866 #endif
4867 
4868   /* Split the WHERE clause into separate subexpressions where each
4869   ** subexpression is separated by an AND operator.
4870   */
4871   initMaskSet(pMaskSet);
4872   sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
4873   sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
4874 
4875   /* Special case: No FROM clause
4876   */
4877   if( nTabList==0 ){
4878     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
4879     if( wctrlFlags & WHERE_WANT_DISTINCT ){
4880       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4881     }
4882     ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
4883   }else{
4884     /* Assign a bit from the bitmask to every term in the FROM clause.
4885     **
4886     ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
4887     **
4888     ** The rule of the previous sentence ensures thta if X is the bitmask for
4889     ** a table T, then X-1 is the bitmask for all other tables to the left of T.
4890     ** Knowing the bitmask for all tables to the left of a left join is
4891     ** important.  Ticket #3015.
4892     **
4893     ** Note that bitmasks are created for all pTabList->nSrc tables in
4894     ** pTabList, not just the first nTabList tables.  nTabList is normally
4895     ** equal to pTabList->nSrc but might be shortened to 1 if the
4896     ** WHERE_OR_SUBCLAUSE flag is set.
4897     */
4898     ii = 0;
4899     do{
4900       createMask(pMaskSet, pTabList->a[ii].iCursor);
4901       sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
4902     }while( (++ii)<pTabList->nSrc );
4903   #ifdef SQLITE_DEBUG
4904     {
4905       Bitmask mx = 0;
4906       for(ii=0; ii<pTabList->nSrc; ii++){
4907         Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
4908         assert( m>=mx );
4909         mx = m;
4910       }
4911     }
4912   #endif
4913   }
4914 
4915   /* Analyze all of the subexpressions. */
4916   sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
4917   if( db->mallocFailed ) goto whereBeginError;
4918 
4919   /* Special case: WHERE terms that do not refer to any tables in the join
4920   ** (constant expressions). Evaluate each such term, and jump over all the
4921   ** generated code if the result is not true.
4922   **
4923   ** Do not do this if the expression contains non-deterministic functions
4924   ** that are not within a sub-select. This is not strictly required, but
4925   ** preserves SQLite's legacy behaviour in the following two cases:
4926   **
4927   **   FROM ... WHERE random()>0;           -- eval random() once per row
4928   **   FROM ... WHERE (SELECT random())>0;  -- eval random() once overall
4929   */
4930   for(ii=0; ii<sWLB.pWC->nTerm; ii++){
4931     WhereTerm *pT = &sWLB.pWC->a[ii];
4932     if( pT->wtFlags & TERM_VIRTUAL ) continue;
4933     if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
4934       sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
4935       pT->wtFlags |= TERM_CODED;
4936     }
4937   }
4938 
4939   if( wctrlFlags & WHERE_WANT_DISTINCT ){
4940     if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
4941       /* The DISTINCT marking is pointless.  Ignore it. */
4942       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4943     }else if( pOrderBy==0 ){
4944       /* Try to ORDER BY the result set to make distinct processing easier */
4945       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
4946       pWInfo->pOrderBy = pResultSet;
4947     }
4948   }
4949 
4950   /* Construct the WhereLoop objects */
4951 #if defined(WHERETRACE_ENABLED)
4952   if( sqlite3WhereTrace & 0xffff ){
4953     sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
4954     if( wctrlFlags & WHERE_USE_LIMIT ){
4955       sqlite3DebugPrintf(", limit: %d", iAuxArg);
4956     }
4957     sqlite3DebugPrintf(")\n");
4958     if( sqlite3WhereTrace & 0x100 ){
4959       Select sSelect;
4960       memset(&sSelect, 0, sizeof(sSelect));
4961       sSelect.selFlags = SF_WhereBegin;
4962       sSelect.pSrc = pTabList;
4963       sSelect.pWhere = pWhere;
4964       sSelect.pOrderBy = pOrderBy;
4965       sSelect.pEList = pResultSet;
4966       sqlite3TreeViewSelect(0, &sSelect, 0);
4967     }
4968   }
4969   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
4970     sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
4971     sqlite3WhereClausePrint(sWLB.pWC);
4972   }
4973 #endif
4974 
4975   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
4976     rc = whereLoopAddAll(&sWLB);
4977     if( rc ) goto whereBeginError;
4978 
4979 #ifdef SQLITE_ENABLE_STAT4
4980     /* If one or more WhereTerm.truthProb values were used in estimating
4981     ** loop parameters, but then those truthProb values were subsequently
4982     ** changed based on STAT4 information while computing subsequent loops,
4983     ** then we need to rerun the whole loop building process so that all
4984     ** loops will be built using the revised truthProb values. */
4985     if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){
4986       WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
4987       WHERETRACE(0xffff,
4988            ("**** Redo all loop computations due to"
4989             " TERM_HIGHTRUTH changes ****\n"));
4990       while( pWInfo->pLoops ){
4991         WhereLoop *p = pWInfo->pLoops;
4992         pWInfo->pLoops = p->pNextLoop;
4993         whereLoopDelete(db, p);
4994       }
4995       rc = whereLoopAddAll(&sWLB);
4996       if( rc ) goto whereBeginError;
4997     }
4998 #endif
4999     WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
5000 
5001     wherePathSolver(pWInfo, 0);
5002     if( db->mallocFailed ) goto whereBeginError;
5003     if( pWInfo->pOrderBy ){
5004        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
5005        if( db->mallocFailed ) goto whereBeginError;
5006     }
5007   }
5008   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
5009      pWInfo->revMask = ALLBITS;
5010   }
5011   if( pParse->nErr || db->mallocFailed ){
5012     goto whereBeginError;
5013   }
5014 #ifdef WHERETRACE_ENABLED
5015   if( sqlite3WhereTrace ){
5016     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
5017     if( pWInfo->nOBSat>0 ){
5018       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
5019     }
5020     switch( pWInfo->eDistinct ){
5021       case WHERE_DISTINCT_UNIQUE: {
5022         sqlite3DebugPrintf("  DISTINCT=unique");
5023         break;
5024       }
5025       case WHERE_DISTINCT_ORDERED: {
5026         sqlite3DebugPrintf("  DISTINCT=ordered");
5027         break;
5028       }
5029       case WHERE_DISTINCT_UNORDERED: {
5030         sqlite3DebugPrintf("  DISTINCT=unordered");
5031         break;
5032       }
5033     }
5034     sqlite3DebugPrintf("\n");
5035     for(ii=0; ii<pWInfo->nLevel; ii++){
5036       sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
5037     }
5038   }
5039 #endif
5040 
5041   /* Attempt to omit tables from the join that do not affect the result.
5042   ** For a table to not affect the result, the following must be true:
5043   **
5044   **   1) The query must not be an aggregate.
5045   **   2) The table must be the RHS of a LEFT JOIN.
5046   **   3) Either the query must be DISTINCT, or else the ON or USING clause
5047   **      must contain a constraint that limits the scan of the table to
5048   **      at most a single row.
5049   **   4) The table must not be referenced by any part of the query apart
5050   **      from its own USING or ON clause.
5051   **
5052   ** For example, given:
5053   **
5054   **     CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
5055   **     CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
5056   **     CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
5057   **
5058   ** then table t2 can be omitted from the following:
5059   **
5060   **     SELECT v1, v3 FROM t1
5061   **       LEFT JOIN t2 ON (t1.ipk=t2.ipk)
5062   **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5063   **
5064   ** or from:
5065   **
5066   **     SELECT DISTINCT v1, v3 FROM t1
5067   **       LEFT JOIN t2
5068   **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5069   */
5070   notReady = ~(Bitmask)0;
5071   if( pWInfo->nLevel>=2
5072    && pResultSet!=0                         /* these two combine to guarantee */
5073    && 0==(wctrlFlags & WHERE_AGG_DISTINCT)  /* condition (1) above */
5074    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
5075   ){
5076     int i;
5077     Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet);
5078     if( sWLB.pOrderBy ){
5079       tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy);
5080     }
5081     for(i=pWInfo->nLevel-1; i>=1; i--){
5082       WhereTerm *pTerm, *pEnd;
5083       SrcItem *pItem;
5084       pLoop = pWInfo->a[i].pWLoop;
5085       pItem = &pWInfo->pTabList->a[pLoop->iTab];
5086       if( (pItem->fg.jointype & JT_LEFT)==0 ) continue;
5087       if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
5088        && (pLoop->wsFlags & WHERE_ONEROW)==0
5089       ){
5090         continue;
5091       }
5092       if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
5093       pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
5094       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
5095         if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5096           if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
5097            || pTerm->pExpr->iRightJoinTable!=pItem->iCursor
5098           ){
5099             break;
5100           }
5101         }
5102       }
5103       if( pTerm<pEnd ) continue;
5104       WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
5105       notReady &= ~pLoop->maskSelf;
5106       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
5107         if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5108           pTerm->wtFlags |= TERM_CODED;
5109         }
5110       }
5111       if( i!=pWInfo->nLevel-1 ){
5112         int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
5113         memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
5114       }
5115       pWInfo->nLevel--;
5116       nTabList--;
5117     }
5118   }
5119 #if defined(WHERETRACE_ENABLED)
5120   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5121     sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
5122     sqlite3WhereClausePrint(sWLB.pWC);
5123   }
5124   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
5125 #endif
5126   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
5127 
5128   /* If the caller is an UPDATE or DELETE statement that is requesting
5129   ** to use a one-pass algorithm, determine if this is appropriate.
5130   **
5131   ** A one-pass approach can be used if the caller has requested one
5132   ** and either (a) the scan visits at most one row or (b) each
5133   ** of the following are true:
5134   **
5135   **   * the caller has indicated that a one-pass approach can be used
5136   **     with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
5137   **   * the table is not a virtual table, and
5138   **   * either the scan does not use the OR optimization or the caller
5139   **     is a DELETE operation (WHERE_DUPLICATES_OK is only specified
5140   **     for DELETE).
5141   **
5142   ** The last qualification is because an UPDATE statement uses
5143   ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
5144   ** use a one-pass approach, and this is not set accurately for scans
5145   ** that use the OR optimization.
5146   */
5147   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
5148   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
5149     int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
5150     int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
5151     assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) );
5152     if( bOnerow || (
5153         0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
5154      && !IsVirtual(pTabList->a[0].pTab)
5155      && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
5156     )){
5157       pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
5158       if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
5159         if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
5160           bFordelete = OPFLAG_FORDELETE;
5161         }
5162         pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
5163       }
5164     }
5165   }
5166 
5167   /* Open all tables in the pTabList and any indices selected for
5168   ** searching those tables.
5169   */
5170   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
5171     Table *pTab;     /* Table to open */
5172     int iDb;         /* Index of database containing table/index */
5173     SrcItem *pTabItem;
5174 
5175     pTabItem = &pTabList->a[pLevel->iFrom];
5176     pTab = pTabItem->pTab;
5177     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5178     pLoop = pLevel->pWLoop;
5179     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
5180       /* Do nothing */
5181     }else
5182 #ifndef SQLITE_OMIT_VIRTUALTABLE
5183     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
5184       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
5185       int iCur = pTabItem->iCursor;
5186       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
5187     }else if( IsVirtual(pTab) ){
5188       /* noop */
5189     }else
5190 #endif
5191     if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
5192          && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
5193       int op = OP_OpenRead;
5194       if( pWInfo->eOnePass!=ONEPASS_OFF ){
5195         op = OP_OpenWrite;
5196         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
5197       };
5198       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
5199       assert( pTabItem->iCursor==pLevel->iTabCur );
5200       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
5201       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
5202       if( pWInfo->eOnePass==ONEPASS_OFF
5203        && pTab->nCol<BMS
5204        && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0
5205       ){
5206         /* If we know that only a prefix of the record will be used,
5207         ** it is advantageous to reduce the "column count" field in
5208         ** the P4 operand of the OP_OpenRead/Write opcode. */
5209         Bitmask b = pTabItem->colUsed;
5210         int n = 0;
5211         for(; b; b=b>>1, n++){}
5212         sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
5213         assert( n<=pTab->nCol );
5214       }
5215 #ifdef SQLITE_ENABLE_CURSOR_HINTS
5216       if( pLoop->u.btree.pIndex!=0 ){
5217         sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
5218       }else
5219 #endif
5220       {
5221         sqlite3VdbeChangeP5(v, bFordelete);
5222       }
5223 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5224       sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
5225                             (const u8*)&pTabItem->colUsed, P4_INT64);
5226 #endif
5227     }else{
5228       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5229     }
5230     if( pLoop->wsFlags & WHERE_INDEXED ){
5231       Index *pIx = pLoop->u.btree.pIndex;
5232       int iIndexCur;
5233       int op = OP_OpenRead;
5234       /* iAuxArg is always set to a positive value if ONEPASS is possible */
5235       assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
5236       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
5237        && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
5238       ){
5239         /* This is one term of an OR-optimization using the PRIMARY KEY of a
5240         ** WITHOUT ROWID table.  No need for a separate index */
5241         iIndexCur = pLevel->iTabCur;
5242         op = 0;
5243       }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
5244         Index *pJ = pTabItem->pTab->pIndex;
5245         iIndexCur = iAuxArg;
5246         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
5247         while( ALWAYS(pJ) && pJ!=pIx ){
5248           iIndexCur++;
5249           pJ = pJ->pNext;
5250         }
5251         op = OP_OpenWrite;
5252         pWInfo->aiCurOnePass[1] = iIndexCur;
5253       }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
5254         iIndexCur = iAuxArg;
5255         op = OP_ReopenIdx;
5256       }else{
5257         iIndexCur = pParse->nTab++;
5258       }
5259       pLevel->iIdxCur = iIndexCur;
5260       assert( pIx->pSchema==pTab->pSchema );
5261       assert( iIndexCur>=0 );
5262       if( op ){
5263         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
5264         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
5265         if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
5266          && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
5267          && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0
5268          && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
5269          && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
5270          && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
5271         ){
5272           sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ);
5273         }
5274         VdbeComment((v, "%s", pIx->zName));
5275 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5276         {
5277           u64 colUsed = 0;
5278           int ii, jj;
5279           for(ii=0; ii<pIx->nColumn; ii++){
5280             jj = pIx->aiColumn[ii];
5281             if( jj<0 ) continue;
5282             if( jj>63 ) jj = 63;
5283             if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
5284             colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
5285           }
5286           sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
5287                                 (u8*)&colUsed, P4_INT64);
5288         }
5289 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
5290       }
5291     }
5292     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
5293   }
5294   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
5295   if( db->mallocFailed ) goto whereBeginError;
5296 
5297   /* Generate the code to do the search.  Each iteration of the for
5298   ** loop below generates code for a single nested loop of the VM
5299   ** program.
5300   */
5301   for(ii=0; ii<nTabList; ii++){
5302     int addrExplain;
5303     int wsFlags;
5304     pLevel = &pWInfo->a[ii];
5305     wsFlags = pLevel->pWLoop->wsFlags;
5306 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
5307     if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
5308       constructAutomaticIndex(pParse, &pWInfo->sWC,
5309                 &pTabList->a[pLevel->iFrom], notReady, pLevel);
5310       if( db->mallocFailed ) goto whereBeginError;
5311     }
5312 #endif
5313     addrExplain = sqlite3WhereExplainOneScan(
5314         pParse, pTabList, pLevel, wctrlFlags
5315     );
5316     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
5317     notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady);
5318     pWInfo->iContinue = pLevel->addrCont;
5319     if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
5320       sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
5321     }
5322   }
5323 
5324   /* Done. */
5325   VdbeModuleComment((v, "Begin WHERE-core"));
5326   pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v);
5327   return pWInfo;
5328 
5329   /* Jump here if malloc fails */
5330 whereBeginError:
5331   if( pWInfo ){
5332     testcase( pWInfo->pExprMods!=0 );
5333     whereUndoExprMods(pWInfo);
5334     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5335     whereInfoFree(db, pWInfo);
5336   }
5337   return 0;
5338 }
5339 
5340 /*
5341 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
5342 ** index rather than the main table.  In SQLITE_DEBUG mode, we want
5343 ** to trace those changes if PRAGMA vdbe_addoptrace=on.  This routine
5344 ** does that.
5345 */
5346 #ifndef SQLITE_DEBUG
5347 # define OpcodeRewriteTrace(D,K,P) /* no-op */
5348 #else
5349 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
5350   static void sqlite3WhereOpcodeRewriteTrace(
5351     sqlite3 *db,
5352     int pc,
5353     VdbeOp *pOp
5354   ){
5355     if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
5356     sqlite3VdbePrintOp(0, pc, pOp);
5357   }
5358 #endif
5359 
5360 /*
5361 ** Generate the end of the WHERE loop.  See comments on
5362 ** sqlite3WhereBegin() for additional information.
5363 */
5364 void sqlite3WhereEnd(WhereInfo *pWInfo){
5365   Parse *pParse = pWInfo->pParse;
5366   Vdbe *v = pParse->pVdbe;
5367   int i;
5368   WhereLevel *pLevel;
5369   WhereLoop *pLoop;
5370   SrcList *pTabList = pWInfo->pTabList;
5371   sqlite3 *db = pParse->db;
5372   int iEnd = sqlite3VdbeCurrentAddr(v);
5373 
5374   /* Generate loop termination code.
5375   */
5376   VdbeModuleComment((v, "End WHERE-core"));
5377   for(i=pWInfo->nLevel-1; i>=0; i--){
5378     int addr;
5379     pLevel = &pWInfo->a[i];
5380     pLoop = pLevel->pWLoop;
5381     if( pLevel->op!=OP_Noop ){
5382 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5383       int addrSeek = 0;
5384       Index *pIdx;
5385       int n;
5386       if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
5387        && i==pWInfo->nLevel-1  /* Ticket [ef9318757b152e3] 2017-10-21 */
5388        && (pLoop->wsFlags & WHERE_INDEXED)!=0
5389        && (pIdx = pLoop->u.btree.pIndex)->hasStat1
5390        && (n = pLoop->u.btree.nDistinctCol)>0
5391        && pIdx->aiRowLogEst[n]>=36
5392       ){
5393         int r1 = pParse->nMem+1;
5394         int j, op;
5395         for(j=0; j<n; j++){
5396           sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
5397         }
5398         pParse->nMem += n+1;
5399         op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
5400         addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
5401         VdbeCoverageIf(v, op==OP_SeekLT);
5402         VdbeCoverageIf(v, op==OP_SeekGT);
5403         sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
5404       }
5405 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
5406       /* The common case: Advance to the next row */
5407       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5408       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
5409       sqlite3VdbeChangeP5(v, pLevel->p5);
5410       VdbeCoverage(v);
5411       VdbeCoverageIf(v, pLevel->op==OP_Next);
5412       VdbeCoverageIf(v, pLevel->op==OP_Prev);
5413       VdbeCoverageIf(v, pLevel->op==OP_VNext);
5414       if( pLevel->regBignull ){
5415         sqlite3VdbeResolveLabel(v, pLevel->addrBignull);
5416         sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1);
5417         VdbeCoverage(v);
5418       }
5419 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5420       if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
5421 #endif
5422     }else{
5423       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5424     }
5425     if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
5426       struct InLoop *pIn;
5427       int j;
5428       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
5429       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
5430         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5431         if( pIn->eEndLoopOp!=OP_Noop ){
5432           if( pIn->nPrefix ){
5433             int bEarlyOut =
5434                 (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
5435                  && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0;
5436             if( pLevel->iLeftJoin ){
5437               /* For LEFT JOIN queries, cursor pIn->iCur may not have been
5438               ** opened yet. This occurs for WHERE clauses such as
5439               ** "a = ? AND b IN (...)", where the index is on (a, b). If
5440               ** the RHS of the (a=?) is NULL, then the "b IN (...)" may
5441               ** never have been coded, but the body of the loop run to
5442               ** return the null-row. So, if the cursor is not open yet,
5443               ** jump over the OP_Next or OP_Prev instruction about to
5444               ** be coded.  */
5445               sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur,
5446                   sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut);
5447               VdbeCoverage(v);
5448             }
5449             if( bEarlyOut ){
5450               sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
5451                   sqlite3VdbeCurrentAddr(v)+2,
5452                   pIn->iBase, pIn->nPrefix);
5453               VdbeCoverage(v);
5454             }
5455           }
5456           sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
5457           VdbeCoverage(v);
5458           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
5459           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
5460         }
5461         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
5462       }
5463     }
5464     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
5465     if( pLevel->addrSkip ){
5466       sqlite3VdbeGoto(v, pLevel->addrSkip);
5467       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
5468       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
5469       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
5470     }
5471 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
5472     if( pLevel->addrLikeRep ){
5473       sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
5474                         pLevel->addrLikeRep);
5475       VdbeCoverage(v);
5476     }
5477 #endif
5478     if( pLevel->iLeftJoin ){
5479       int ws = pLoop->wsFlags;
5480       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
5481       assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
5482       if( (ws & WHERE_IDX_ONLY)==0 ){
5483         assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
5484         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
5485       }
5486       if( (ws & WHERE_INDEXED)
5487        || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx)
5488       ){
5489         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
5490       }
5491       if( pLevel->op==OP_Return ){
5492         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
5493       }else{
5494         sqlite3VdbeGoto(v, pLevel->addrFirst);
5495       }
5496       sqlite3VdbeJumpHere(v, addr);
5497     }
5498     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
5499                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
5500   }
5501 
5502   /* The "break" point is here, just past the end of the outer loop.
5503   ** Set it.
5504   */
5505   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
5506 
5507   assert( pWInfo->nLevel<=pTabList->nSrc );
5508   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
5509     int k, last;
5510     VdbeOp *pOp, *pLastOp;
5511     Index *pIdx = 0;
5512     SrcItem *pTabItem = &pTabList->a[pLevel->iFrom];
5513     Table *pTab = pTabItem->pTab;
5514     assert( pTab!=0 );
5515     pLoop = pLevel->pWLoop;
5516 
5517     /* For a co-routine, change all OP_Column references to the table of
5518     ** the co-routine into OP_Copy of result contained in a register.
5519     ** OP_Rowid becomes OP_Null.
5520     */
5521     if( pTabItem->fg.viaCoroutine ){
5522       testcase( pParse->db->mallocFailed );
5523       translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
5524                             pTabItem->regResult, 0);
5525       continue;
5526     }
5527 
5528 #ifdef SQLITE_ENABLE_EARLY_CURSOR_CLOSE
5529     /* Close all of the cursors that were opened by sqlite3WhereBegin.
5530     ** Except, do not close cursors that will be reused by the OR optimization
5531     ** (WHERE_OR_SUBCLAUSE).  And do not close the OP_OpenWrite cursors
5532     ** created for the ONEPASS optimization.
5533     */
5534     if( (pTab->tabFlags & TF_Ephemeral)==0
5535      && pTab->pSelect==0
5536      && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5537     ){
5538       int ws = pLoop->wsFlags;
5539       if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){
5540         sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
5541       }
5542       if( (ws & WHERE_INDEXED)!=0
5543        && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0
5544        && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1]
5545       ){
5546         sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
5547       }
5548     }
5549 #endif
5550 
5551     /* If this scan uses an index, make VDBE code substitutions to read data
5552     ** from the index instead of from the table where possible.  In some cases
5553     ** this optimization prevents the table from ever being read, which can
5554     ** yield a significant performance boost.
5555     **
5556     ** Calls to the code generator in between sqlite3WhereBegin and
5557     ** sqlite3WhereEnd will have created code that references the table
5558     ** directly.  This loop scans all that code looking for opcodes
5559     ** that reference the table and converts them into opcodes that
5560     ** reference the index.
5561     */
5562     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
5563       pIdx = pLoop->u.btree.pIndex;
5564     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
5565       pIdx = pLevel->u.pCovidx;
5566     }
5567     if( pIdx
5568      && !db->mallocFailed
5569     ){
5570       if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){
5571         last = iEnd;
5572       }else{
5573         last = pWInfo->iEndWhere;
5574       }
5575       k = pLevel->addrBody + 1;
5576 #ifdef SQLITE_DEBUG
5577       if( db->flags & SQLITE_VdbeAddopTrace ){
5578         printf("TRANSLATE opcodes in range %d..%d\n", k, last-1);
5579       }
5580       /* Proof that the "+1" on the k value above is safe */
5581       pOp = sqlite3VdbeGetOp(v, k - 1);
5582       assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur );
5583       assert( pOp->opcode!=OP_Rowid  || pOp->p1!=pLevel->iTabCur );
5584       assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur );
5585 #endif
5586       pOp = sqlite3VdbeGetOp(v, k);
5587       pLastOp = pOp + (last - k);
5588       assert( pOp<=pLastOp );
5589       do{
5590         if( pOp->p1!=pLevel->iTabCur ){
5591           /* no-op */
5592         }else if( pOp->opcode==OP_Column
5593 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
5594          || pOp->opcode==OP_Offset
5595 #endif
5596         ){
5597           int x = pOp->p2;
5598           assert( pIdx->pTable==pTab );
5599           if( !HasRowid(pTab) ){
5600             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
5601             x = pPk->aiColumn[x];
5602             assert( x>=0 );
5603           }else{
5604             testcase( x!=sqlite3StorageColumnToTable(pTab,x) );
5605             x = sqlite3StorageColumnToTable(pTab,x);
5606           }
5607           x = sqlite3TableColumnToIndex(pIdx, x);
5608           if( x>=0 ){
5609             pOp->p2 = x;
5610             pOp->p1 = pLevel->iIdxCur;
5611             OpcodeRewriteTrace(db, k, pOp);
5612           }
5613           assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0
5614               || pWInfo->eOnePass );
5615         }else if( pOp->opcode==OP_Rowid ){
5616           pOp->p1 = pLevel->iIdxCur;
5617           pOp->opcode = OP_IdxRowid;
5618           OpcodeRewriteTrace(db, k, pOp);
5619         }else if( pOp->opcode==OP_IfNullRow ){
5620           pOp->p1 = pLevel->iIdxCur;
5621           OpcodeRewriteTrace(db, k, pOp);
5622         }
5623 #ifdef SQLITE_DEBUG
5624         k++;
5625 #endif
5626       }while( (++pOp)<pLastOp );
5627 #ifdef SQLITE_DEBUG
5628       if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
5629 #endif
5630     }
5631   }
5632 
5633   /* Final cleanup
5634   */
5635   if( pWInfo->pExprMods ) whereUndoExprMods(pWInfo);
5636   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5637   whereInfoFree(db, pWInfo);
5638   return;
5639 }
5640