xref: /sqlite-3.40.0/src/where.c (revision 7ef4d75b)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /*
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly.  The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
26 **
27 ** This object is not an API and can be changed from one release to the
28 ** next.  As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
30 */
31 typedef struct HiddenIndexInfo HiddenIndexInfo;
32 struct HiddenIndexInfo {
33   WhereClause *pWC;        /* The Where clause being analyzed */
34   Parse *pParse;           /* The parsing context */
35   int eDistinct;           /* Value to return from sqlite3_vtab_distinct() */
36   u32 mIn;                 /* Mask of terms that are <col> IN (...) */
37   u32 mHandleIn;           /* Terms that vtab will handle as <col> IN (...) */
38   sqlite3_value *aRhs[1];  /* RHS values for constraints. MUST BE LAST
39                            ** because extra space is allocated to hold up
40                            ** to nTerm such values */
41 };
42 
43 /* Forward declaration of methods */
44 static int whereLoopResize(sqlite3*, WhereLoop*, int);
45 
46 /*
47 ** Return the estimated number of output rows from a WHERE clause
48 */
49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
50   return pWInfo->nRowOut;
51 }
52 
53 /*
54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
55 ** WHERE clause returns outputs for DISTINCT processing.
56 */
57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
58   return pWInfo->eDistinct;
59 }
60 
61 /*
62 ** Return the number of ORDER BY terms that are satisfied by the
63 ** WHERE clause.  A return of 0 means that the output must be
64 ** completely sorted.  A return equal to the number of ORDER BY
65 ** terms means that no sorting is needed at all.  A return that
66 ** is positive but less than the number of ORDER BY terms means that
67 ** block sorting is required.
68 */
69 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
70   return pWInfo->nOBSat;
71 }
72 
73 /*
74 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known
75 ** to emit rows in increasing order, and if the last row emitted by the
76 ** inner-most loop did not fit within the sorter, then we can skip all
77 ** subsequent rows for the current iteration of the inner loop (because they
78 ** will not fit in the sorter either) and continue with the second inner
79 ** loop - the loop immediately outside the inner-most.
80 **
81 ** When a row does not fit in the sorter (because the sorter already
82 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
83 ** label returned by this function.
84 **
85 ** If the ORDER BY LIMIT optimization applies, the jump destination should
86 ** be the continuation for the second-inner-most loop.  If the ORDER BY
87 ** LIMIT optimization does not apply, then the jump destination should
88 ** be the continuation for the inner-most loop.
89 **
90 ** It is always safe for this routine to return the continuation of the
91 ** inner-most loop, in the sense that a correct answer will result.
92 ** Returning the continuation the second inner loop is an optimization
93 ** that might make the code run a little faster, but should not change
94 ** the final answer.
95 */
96 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){
97   WhereLevel *pInner;
98   if( !pWInfo->bOrderedInnerLoop ){
99     /* The ORDER BY LIMIT optimization does not apply.  Jump to the
100     ** continuation of the inner-most loop. */
101     return pWInfo->iContinue;
102   }
103   pInner = &pWInfo->a[pWInfo->nLevel-1];
104   assert( pInner->addrNxt!=0 );
105   return pInner->addrNxt;
106 }
107 
108 /*
109 ** While generating code for the min/max optimization, after handling
110 ** the aggregate-step call to min() or max(), check to see if any
111 ** additional looping is required.  If the output order is such that
112 ** we are certain that the correct answer has already been found, then
113 ** code an OP_Goto to by pass subsequent processing.
114 **
115 ** Any extra OP_Goto that is coded here is an optimization.  The
116 ** correct answer should be obtained regardless.  This OP_Goto just
117 ** makes the answer appear faster.
118 */
119 void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){
120   WhereLevel *pInner;
121   int i;
122   if( !pWInfo->bOrderedInnerLoop ) return;
123   if( pWInfo->nOBSat==0 ) return;
124   for(i=pWInfo->nLevel-1; i>=0; i--){
125     pInner = &pWInfo->a[i];
126     if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){
127       sqlite3VdbeGoto(v, pInner->addrNxt);
128       return;
129     }
130   }
131   sqlite3VdbeGoto(v, pWInfo->iBreak);
132 }
133 
134 /*
135 ** Return the VDBE address or label to jump to in order to continue
136 ** immediately with the next row of a WHERE clause.
137 */
138 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
139   assert( pWInfo->iContinue!=0 );
140   return pWInfo->iContinue;
141 }
142 
143 /*
144 ** Return the VDBE address or label to jump to in order to break
145 ** out of a WHERE loop.
146 */
147 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
148   return pWInfo->iBreak;
149 }
150 
151 /*
152 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
153 ** operate directly on the rowids returned by a WHERE clause.  Return
154 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
155 ** a single row is to be changed.  Return ONEPASS_MULTI (2) if the one-pass
156 ** optimization can be used on multiple
157 **
158 ** If the ONEPASS optimization is used (if this routine returns true)
159 ** then also write the indices of open cursors used by ONEPASS
160 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
161 ** table and iaCur[1] gets the cursor used by an auxiliary index.
162 ** Either value may be -1, indicating that cursor is not used.
163 ** Any cursors returned will have been opened for writing.
164 **
165 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
166 ** unable to use the ONEPASS optimization.
167 */
168 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
169   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
170 #ifdef WHERETRACE_ENABLED
171   if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
172     sqlite3DebugPrintf("%s cursors: %d %d\n",
173          pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
174          aiCur[0], aiCur[1]);
175   }
176 #endif
177   return pWInfo->eOnePass;
178 }
179 
180 /*
181 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move
182 ** the data cursor to the row selected by the index cursor.
183 */
184 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){
185   return pWInfo->bDeferredSeek;
186 }
187 
188 /*
189 ** Move the content of pSrc into pDest
190 */
191 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
192   pDest->n = pSrc->n;
193   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
194 }
195 
196 /*
197 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
198 **
199 ** The new entry might overwrite an existing entry, or it might be
200 ** appended, or it might be discarded.  Do whatever is the right thing
201 ** so that pSet keeps the N_OR_COST best entries seen so far.
202 */
203 static int whereOrInsert(
204   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
205   Bitmask prereq,        /* Prerequisites of the new entry */
206   LogEst rRun,           /* Run-cost of the new entry */
207   LogEst nOut            /* Number of outputs for the new entry */
208 ){
209   u16 i;
210   WhereOrCost *p;
211   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
212     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
213       goto whereOrInsert_done;
214     }
215     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
216       return 0;
217     }
218   }
219   if( pSet->n<N_OR_COST ){
220     p = &pSet->a[pSet->n++];
221     p->nOut = nOut;
222   }else{
223     p = pSet->a;
224     for(i=1; i<pSet->n; i++){
225       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
226     }
227     if( p->rRun<=rRun ) return 0;
228   }
229 whereOrInsert_done:
230   p->prereq = prereq;
231   p->rRun = rRun;
232   if( p->nOut>nOut ) p->nOut = nOut;
233   return 1;
234 }
235 
236 /*
237 ** Return the bitmask for the given cursor number.  Return 0 if
238 ** iCursor is not in the set.
239 */
240 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
241   int i;
242   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
243   assert( pMaskSet->n>0 || pMaskSet->ix[0]<0 );
244   assert( iCursor>=-1 );
245   if( pMaskSet->ix[0]==iCursor ){
246     return 1;
247   }
248   for(i=1; i<pMaskSet->n; i++){
249     if( pMaskSet->ix[i]==iCursor ){
250       return MASKBIT(i);
251     }
252   }
253   return 0;
254 }
255 
256 /*
257 ** Create a new mask for cursor iCursor.
258 **
259 ** There is one cursor per table in the FROM clause.  The number of
260 ** tables in the FROM clause is limited by a test early in the
261 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
262 ** array will never overflow.
263 */
264 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
265   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
266   pMaskSet->ix[pMaskSet->n++] = iCursor;
267 }
268 
269 /*
270 ** If the right-hand branch of the expression is a TK_COLUMN, then return
271 ** a pointer to the right-hand branch.  Otherwise, return NULL.
272 */
273 static Expr *whereRightSubexprIsColumn(Expr *p){
274   p = sqlite3ExprSkipCollateAndLikely(p->pRight);
275   if( ALWAYS(p!=0) && p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){
276     return p;
277   }
278   return 0;
279 }
280 
281 /*
282 ** Advance to the next WhereTerm that matches according to the criteria
283 ** established when the pScan object was initialized by whereScanInit().
284 ** Return NULL if there are no more matching WhereTerms.
285 */
286 static WhereTerm *whereScanNext(WhereScan *pScan){
287   int iCur;            /* The cursor on the LHS of the term */
288   i16 iColumn;         /* The column on the LHS of the term.  -1 for IPK */
289   Expr *pX;            /* An expression being tested */
290   WhereClause *pWC;    /* Shorthand for pScan->pWC */
291   WhereTerm *pTerm;    /* The term being tested */
292   int k = pScan->k;    /* Where to start scanning */
293 
294   assert( pScan->iEquiv<=pScan->nEquiv );
295   pWC = pScan->pWC;
296   while(1){
297     iColumn = pScan->aiColumn[pScan->iEquiv-1];
298     iCur = pScan->aiCur[pScan->iEquiv-1];
299     assert( pWC!=0 );
300     assert( iCur>=0 );
301     do{
302       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
303         assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 || pTerm->leftCursor<0 );
304         if( pTerm->leftCursor==iCur
305          && pTerm->u.x.leftColumn==iColumn
306          && (iColumn!=XN_EXPR
307              || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
308                                        pScan->pIdxExpr,iCur)==0)
309          && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
310         ){
311           if( (pTerm->eOperator & WO_EQUIV)!=0
312            && pScan->nEquiv<ArraySize(pScan->aiCur)
313            && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0
314           ){
315             int j;
316             for(j=0; j<pScan->nEquiv; j++){
317               if( pScan->aiCur[j]==pX->iTable
318                && pScan->aiColumn[j]==pX->iColumn ){
319                   break;
320               }
321             }
322             if( j==pScan->nEquiv ){
323               pScan->aiCur[j] = pX->iTable;
324               pScan->aiColumn[j] = pX->iColumn;
325               pScan->nEquiv++;
326             }
327           }
328           if( (pTerm->eOperator & pScan->opMask)!=0 ){
329             /* Verify the affinity and collating sequence match */
330             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
331               CollSeq *pColl;
332               Parse *pParse = pWC->pWInfo->pParse;
333               pX = pTerm->pExpr;
334               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
335                 continue;
336               }
337               assert(pX->pLeft);
338               pColl = sqlite3ExprCompareCollSeq(pParse, pX);
339               if( pColl==0 ) pColl = pParse->db->pDfltColl;
340               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
341                 continue;
342               }
343             }
344             if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
345              && (pX = pTerm->pExpr->pRight, ALWAYS(pX!=0))
346              && pX->op==TK_COLUMN
347              && pX->iTable==pScan->aiCur[0]
348              && pX->iColumn==pScan->aiColumn[0]
349             ){
350               testcase( pTerm->eOperator & WO_IS );
351               continue;
352             }
353             pScan->pWC = pWC;
354             pScan->k = k+1;
355 #ifdef WHERETRACE_ENABLED
356             if( sqlite3WhereTrace & 0x20000 ){
357               int ii;
358               sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d",
359                  pTerm, pScan->nEquiv);
360               for(ii=0; ii<pScan->nEquiv; ii++){
361                 sqlite3DebugPrintf(" {%d:%d}",
362                    pScan->aiCur[ii], pScan->aiColumn[ii]);
363               }
364               sqlite3DebugPrintf("\n");
365             }
366 #endif
367             return pTerm;
368           }
369         }
370       }
371       pWC = pWC->pOuter;
372       k = 0;
373     }while( pWC!=0 );
374     if( pScan->iEquiv>=pScan->nEquiv ) break;
375     pWC = pScan->pOrigWC;
376     k = 0;
377     pScan->iEquiv++;
378   }
379   return 0;
380 }
381 
382 /*
383 ** This is whereScanInit() for the case of an index on an expression.
384 ** It is factored out into a separate tail-recursion subroutine so that
385 ** the normal whereScanInit() routine, which is a high-runner, does not
386 ** need to push registers onto the stack as part of its prologue.
387 */
388 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){
389   pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr);
390   return whereScanNext(pScan);
391 }
392 
393 /*
394 ** Initialize a WHERE clause scanner object.  Return a pointer to the
395 ** first match.  Return NULL if there are no matches.
396 **
397 ** The scanner will be searching the WHERE clause pWC.  It will look
398 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
399 ** iCur.   Or if pIdx!=0 then X is column iColumn of index pIdx.  pIdx
400 ** must be one of the indexes of table iCur.
401 **
402 ** The <op> must be one of the operators described by opMask.
403 **
404 ** If the search is for X and the WHERE clause contains terms of the
405 ** form X=Y then this routine might also return terms of the form
406 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
407 ** but is enough to handle most commonly occurring SQL statements.
408 **
409 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
410 ** index pIdx.
411 */
412 static WhereTerm *whereScanInit(
413   WhereScan *pScan,       /* The WhereScan object being initialized */
414   WhereClause *pWC,       /* The WHERE clause to be scanned */
415   int iCur,               /* Cursor to scan for */
416   int iColumn,            /* Column to scan for */
417   u32 opMask,             /* Operator(s) to scan for */
418   Index *pIdx             /* Must be compatible with this index */
419 ){
420   pScan->pOrigWC = pWC;
421   pScan->pWC = pWC;
422   pScan->pIdxExpr = 0;
423   pScan->idxaff = 0;
424   pScan->zCollName = 0;
425   pScan->opMask = opMask;
426   pScan->k = 0;
427   pScan->aiCur[0] = iCur;
428   pScan->nEquiv = 1;
429   pScan->iEquiv = 1;
430   if( pIdx ){
431     int j = iColumn;
432     iColumn = pIdx->aiColumn[j];
433     if( iColumn==pIdx->pTable->iPKey ){
434       iColumn = XN_ROWID;
435     }else if( iColumn>=0 ){
436       pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
437       pScan->zCollName = pIdx->azColl[j];
438     }else if( iColumn==XN_EXPR ){
439       pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
440       pScan->zCollName = pIdx->azColl[j];
441       pScan->aiColumn[0] = XN_EXPR;
442       return whereScanInitIndexExpr(pScan);
443     }
444   }else if( iColumn==XN_EXPR ){
445     return 0;
446   }
447   pScan->aiColumn[0] = iColumn;
448   return whereScanNext(pScan);
449 }
450 
451 /*
452 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
453 ** where X is a reference to the iColumn of table iCur or of index pIdx
454 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
455 ** the op parameter.  Return a pointer to the term.  Return 0 if not found.
456 **
457 ** If pIdx!=0 then it must be one of the indexes of table iCur.
458 ** Search for terms matching the iColumn-th column of pIdx
459 ** rather than the iColumn-th column of table iCur.
460 **
461 ** The term returned might by Y=<expr> if there is another constraint in
462 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
463 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
464 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
465 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
466 ** other equivalent values.  Hence a search for X will return <expr> if X=A1
467 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
468 **
469 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
470 ** then try for the one with no dependencies on <expr> - in other words where
471 ** <expr> is a constant expression of some kind.  Only return entries of
472 ** the form "X <op> Y" where Y is a column in another table if no terms of
473 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
474 ** exist, try to return a term that does not use WO_EQUIV.
475 */
476 WhereTerm *sqlite3WhereFindTerm(
477   WhereClause *pWC,     /* The WHERE clause to be searched */
478   int iCur,             /* Cursor number of LHS */
479   int iColumn,          /* Column number of LHS */
480   Bitmask notReady,     /* RHS must not overlap with this mask */
481   u32 op,               /* Mask of WO_xx values describing operator */
482   Index *pIdx           /* Must be compatible with this index, if not NULL */
483 ){
484   WhereTerm *pResult = 0;
485   WhereTerm *p;
486   WhereScan scan;
487 
488   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
489   op &= WO_EQ|WO_IS;
490   while( p ){
491     if( (p->prereqRight & notReady)==0 ){
492       if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
493         testcase( p->eOperator & WO_IS );
494         return p;
495       }
496       if( pResult==0 ) pResult = p;
497     }
498     p = whereScanNext(&scan);
499   }
500   return pResult;
501 }
502 
503 /*
504 ** This function searches pList for an entry that matches the iCol-th column
505 ** of index pIdx.
506 **
507 ** If such an expression is found, its index in pList->a[] is returned. If
508 ** no expression is found, -1 is returned.
509 */
510 static int findIndexCol(
511   Parse *pParse,                  /* Parse context */
512   ExprList *pList,                /* Expression list to search */
513   int iBase,                      /* Cursor for table associated with pIdx */
514   Index *pIdx,                    /* Index to match column of */
515   int iCol                        /* Column of index to match */
516 ){
517   int i;
518   const char *zColl = pIdx->azColl[iCol];
519 
520   for(i=0; i<pList->nExpr; i++){
521     Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr);
522     if( ALWAYS(p!=0)
523      && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN)
524      && p->iColumn==pIdx->aiColumn[iCol]
525      && p->iTable==iBase
526     ){
527       CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
528       if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
529         return i;
530       }
531     }
532   }
533 
534   return -1;
535 }
536 
537 /*
538 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
539 */
540 static int indexColumnNotNull(Index *pIdx, int iCol){
541   int j;
542   assert( pIdx!=0 );
543   assert( iCol>=0 && iCol<pIdx->nColumn );
544   j = pIdx->aiColumn[iCol];
545   if( j>=0 ){
546     return pIdx->pTable->aCol[j].notNull;
547   }else if( j==(-1) ){
548     return 1;
549   }else{
550     assert( j==(-2) );
551     return 0;  /* Assume an indexed expression can always yield a NULL */
552 
553   }
554 }
555 
556 /*
557 ** Return true if the DISTINCT expression-list passed as the third argument
558 ** is redundant.
559 **
560 ** A DISTINCT list is redundant if any subset of the columns in the
561 ** DISTINCT list are collectively unique and individually non-null.
562 */
563 static int isDistinctRedundant(
564   Parse *pParse,            /* Parsing context */
565   SrcList *pTabList,        /* The FROM clause */
566   WhereClause *pWC,         /* The WHERE clause */
567   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
568 ){
569   Table *pTab;
570   Index *pIdx;
571   int i;
572   int iBase;
573 
574   /* If there is more than one table or sub-select in the FROM clause of
575   ** this query, then it will not be possible to show that the DISTINCT
576   ** clause is redundant. */
577   if( pTabList->nSrc!=1 ) return 0;
578   iBase = pTabList->a[0].iCursor;
579   pTab = pTabList->a[0].pTab;
580 
581   /* If any of the expressions is an IPK column on table iBase, then return
582   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
583   ** current SELECT is a correlated sub-query.
584   */
585   for(i=0; i<pDistinct->nExpr; i++){
586     Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr);
587     if( NEVER(p==0) ) continue;
588     if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue;
589     if( p->iTable==iBase && p->iColumn<0 ) return 1;
590   }
591 
592   /* Loop through all indices on the table, checking each to see if it makes
593   ** the DISTINCT qualifier redundant. It does so if:
594   **
595   **   1. The index is itself UNIQUE, and
596   **
597   **   2. All of the columns in the index are either part of the pDistinct
598   **      list, or else the WHERE clause contains a term of the form "col=X",
599   **      where X is a constant value. The collation sequences of the
600   **      comparison and select-list expressions must match those of the index.
601   **
602   **   3. All of those index columns for which the WHERE clause does not
603   **      contain a "col=X" term are subject to a NOT NULL constraint.
604   */
605   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
606     if( !IsUniqueIndex(pIdx) ) continue;
607     if( pIdx->pPartIdxWhere ) continue;
608     for(i=0; i<pIdx->nKeyCol; i++){
609       if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
610         if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
611         if( indexColumnNotNull(pIdx, i)==0 ) break;
612       }
613     }
614     if( i==pIdx->nKeyCol ){
615       /* This index implies that the DISTINCT qualifier is redundant. */
616       return 1;
617     }
618   }
619 
620   return 0;
621 }
622 
623 
624 /*
625 ** Estimate the logarithm of the input value to base 2.
626 */
627 static LogEst estLog(LogEst N){
628   return N<=10 ? 0 : sqlite3LogEst(N) - 33;
629 }
630 
631 /*
632 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
633 **
634 ** This routine runs over generated VDBE code and translates OP_Column
635 ** opcodes into OP_Copy when the table is being accessed via co-routine
636 ** instead of via table lookup.
637 **
638 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
639 ** cursor iTabCur are transformed into OP_Sequence opcode for the
640 ** iAutoidxCur cursor, in order to generate unique rowids for the
641 ** automatic index being generated.
642 */
643 static void translateColumnToCopy(
644   Parse *pParse,      /* Parsing context */
645   int iStart,         /* Translate from this opcode to the end */
646   int iTabCur,        /* OP_Column/OP_Rowid references to this table */
647   int iRegister,      /* The first column is in this register */
648   int iAutoidxCur     /* If non-zero, cursor of autoindex being generated */
649 ){
650   Vdbe *v = pParse->pVdbe;
651   VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
652   int iEnd = sqlite3VdbeCurrentAddr(v);
653   if( pParse->db->mallocFailed ) return;
654   for(; iStart<iEnd; iStart++, pOp++){
655     if( pOp->p1!=iTabCur ) continue;
656     if( pOp->opcode==OP_Column ){
657       pOp->opcode = OP_Copy;
658       pOp->p1 = pOp->p2 + iRegister;
659       pOp->p2 = pOp->p3;
660       pOp->p3 = 0;
661     }else if( pOp->opcode==OP_Rowid ){
662       pOp->opcode = OP_Sequence;
663       pOp->p1 = iAutoidxCur;
664 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
665       if( iAutoidxCur==0 ){
666         pOp->opcode = OP_Null;
667         pOp->p3 = 0;
668       }
669 #endif
670     }
671   }
672 }
673 
674 /*
675 ** Two routines for printing the content of an sqlite3_index_info
676 ** structure.  Used for testing and debugging only.  If neither
677 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
678 ** are no-ops.
679 */
680 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
681 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){
682   int i;
683   if( !sqlite3WhereTrace ) return;
684   for(i=0; i<p->nConstraint; i++){
685     sqlite3DebugPrintf(
686        "  constraint[%d]: col=%d termid=%d op=%d usabled=%d collseq=%s\n",
687        i,
688        p->aConstraint[i].iColumn,
689        p->aConstraint[i].iTermOffset,
690        p->aConstraint[i].op,
691        p->aConstraint[i].usable,
692        sqlite3_vtab_collation(p,i));
693   }
694   for(i=0; i<p->nOrderBy; i++){
695     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
696        i,
697        p->aOrderBy[i].iColumn,
698        p->aOrderBy[i].desc);
699   }
700 }
701 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){
702   int i;
703   if( !sqlite3WhereTrace ) return;
704   for(i=0; i<p->nConstraint; i++){
705     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
706        i,
707        p->aConstraintUsage[i].argvIndex,
708        p->aConstraintUsage[i].omit);
709   }
710   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
711   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
712   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
713   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
714   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
715 }
716 #else
717 #define whereTraceIndexInfoInputs(A)
718 #define whereTraceIndexInfoOutputs(A)
719 #endif
720 
721 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
722 /*
723 ** Return TRUE if the WHERE clause term pTerm is of a form where it
724 ** could be used with an index to access pSrc, assuming an appropriate
725 ** index existed.
726 */
727 static int termCanDriveIndex(
728   const WhereTerm *pTerm,        /* WHERE clause term to check */
729   const SrcItem *pSrc,           /* Table we are trying to access */
730   const Bitmask notReady         /* Tables in outer loops of the join */
731 ){
732   char aff;
733   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
734   if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
735   if( (pSrc->fg.jointype & JT_LEFT)
736    && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
737    && (pTerm->eOperator & WO_IS)
738   ){
739     /* Cannot use an IS term from the WHERE clause as an index driver for
740     ** the RHS of a LEFT JOIN. Such a term can only be used if it is from
741     ** the ON clause.  */
742     return 0;
743   }
744   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
745   assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
746   if( pTerm->u.x.leftColumn<0 ) return 0;
747   aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity;
748   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
749   testcase( pTerm->pExpr->op==TK_IS );
750   return 1;
751 }
752 #endif
753 
754 
755 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
756 /*
757 ** Generate code to construct the Index object for an automatic index
758 ** and to set up the WhereLevel object pLevel so that the code generator
759 ** makes use of the automatic index.
760 */
761 static SQLITE_NOINLINE void constructAutomaticIndex(
762   Parse *pParse,              /* The parsing context */
763   const WhereClause *pWC,     /* The WHERE clause */
764   const SrcItem *pSrc,        /* The FROM clause term to get the next index */
765   const Bitmask notReady,     /* Mask of cursors that are not available */
766   WhereLevel *pLevel          /* Write new index here */
767 ){
768   int nKeyCol;                /* Number of columns in the constructed index */
769   WhereTerm *pTerm;           /* A single term of the WHERE clause */
770   WhereTerm *pWCEnd;          /* End of pWC->a[] */
771   Index *pIdx;                /* Object describing the transient index */
772   Vdbe *v;                    /* Prepared statement under construction */
773   int addrInit;               /* Address of the initialization bypass jump */
774   Table *pTable;              /* The table being indexed */
775   int addrTop;                /* Top of the index fill loop */
776   int regRecord;              /* Register holding an index record */
777   int n;                      /* Column counter */
778   int i;                      /* Loop counter */
779   int mxBitCol;               /* Maximum column in pSrc->colUsed */
780   CollSeq *pColl;             /* Collating sequence to on a column */
781   WhereLoop *pLoop;           /* The Loop object */
782   char *zNotUsed;             /* Extra space on the end of pIdx */
783   Bitmask idxCols;            /* Bitmap of columns used for indexing */
784   Bitmask extraCols;          /* Bitmap of additional columns */
785   u8 sentWarning = 0;         /* True if a warnning has been issued */
786   Expr *pPartial = 0;         /* Partial Index Expression */
787   int iContinue = 0;          /* Jump here to skip excluded rows */
788   SrcItem *pTabItem;          /* FROM clause term being indexed */
789   int addrCounter = 0;        /* Address where integer counter is initialized */
790   int regBase;                /* Array of registers where record is assembled */
791 
792   /* Generate code to skip over the creation and initialization of the
793   ** transient index on 2nd and subsequent iterations of the loop. */
794   v = pParse->pVdbe;
795   assert( v!=0 );
796   addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
797 
798   /* Count the number of columns that will be added to the index
799   ** and used to match WHERE clause constraints */
800   nKeyCol = 0;
801   pTable = pSrc->pTab;
802   pWCEnd = &pWC->a[pWC->nTerm];
803   pLoop = pLevel->pWLoop;
804   idxCols = 0;
805   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
806     Expr *pExpr = pTerm->pExpr;
807     /* Make the automatic index a partial index if there are terms in the
808     ** WHERE clause (or the ON clause of a LEFT join) that constrain which
809     ** rows of the target table (pSrc) that can be used. */
810     if( (pTerm->wtFlags & TERM_VIRTUAL)==0
811      && ((pSrc->fg.jointype&JT_LEFT)==0 || ExprHasProperty(pExpr,EP_FromJoin))
812      && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor)
813     ){
814       pPartial = sqlite3ExprAnd(pParse, pPartial,
815                                 sqlite3ExprDup(pParse->db, pExpr, 0));
816     }
817     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
818       int iCol;
819       Bitmask cMask;
820       assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
821       iCol = pTerm->u.x.leftColumn;
822       cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
823       testcase( iCol==BMS );
824       testcase( iCol==BMS-1 );
825       if( !sentWarning ){
826         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
827             "automatic index on %s(%s)", pTable->zName,
828             pTable->aCol[iCol].zCnName);
829         sentWarning = 1;
830       }
831       if( (idxCols & cMask)==0 ){
832         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
833           goto end_auto_index_create;
834         }
835         pLoop->aLTerm[nKeyCol++] = pTerm;
836         idxCols |= cMask;
837       }
838     }
839   }
840   assert( nKeyCol>0 || pParse->db->mallocFailed );
841   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
842   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
843                      | WHERE_AUTO_INDEX;
844 
845   /* Count the number of additional columns needed to create a
846   ** covering index.  A "covering index" is an index that contains all
847   ** columns that are needed by the query.  With a covering index, the
848   ** original table never needs to be accessed.  Automatic indices must
849   ** be a covering index because the index will not be updated if the
850   ** original table changes and the index and table cannot both be used
851   ** if they go out of sync.
852   */
853   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
854   mxBitCol = MIN(BMS-1,pTable->nCol);
855   testcase( pTable->nCol==BMS-1 );
856   testcase( pTable->nCol==BMS-2 );
857   for(i=0; i<mxBitCol; i++){
858     if( extraCols & MASKBIT(i) ) nKeyCol++;
859   }
860   if( pSrc->colUsed & MASKBIT(BMS-1) ){
861     nKeyCol += pTable->nCol - BMS + 1;
862   }
863 
864   /* Construct the Index object to describe this index */
865   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
866   if( pIdx==0 ) goto end_auto_index_create;
867   pLoop->u.btree.pIndex = pIdx;
868   pIdx->zName = "auto-index";
869   pIdx->pTable = pTable;
870   n = 0;
871   idxCols = 0;
872   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
873     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
874       int iCol;
875       Bitmask cMask;
876       assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
877       iCol = pTerm->u.x.leftColumn;
878       cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
879       testcase( iCol==BMS-1 );
880       testcase( iCol==BMS );
881       if( (idxCols & cMask)==0 ){
882         Expr *pX = pTerm->pExpr;
883         idxCols |= cMask;
884         pIdx->aiColumn[n] = pTerm->u.x.leftColumn;
885         pColl = sqlite3ExprCompareCollSeq(pParse, pX);
886         assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */
887         pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
888         n++;
889       }
890     }
891   }
892   assert( (u32)n==pLoop->u.btree.nEq );
893 
894   /* Add additional columns needed to make the automatic index into
895   ** a covering index */
896   for(i=0; i<mxBitCol; i++){
897     if( extraCols & MASKBIT(i) ){
898       pIdx->aiColumn[n] = i;
899       pIdx->azColl[n] = sqlite3StrBINARY;
900       n++;
901     }
902   }
903   if( pSrc->colUsed & MASKBIT(BMS-1) ){
904     for(i=BMS-1; i<pTable->nCol; i++){
905       pIdx->aiColumn[n] = i;
906       pIdx->azColl[n] = sqlite3StrBINARY;
907       n++;
908     }
909   }
910   assert( n==nKeyCol );
911   pIdx->aiColumn[n] = XN_ROWID;
912   pIdx->azColl[n] = sqlite3StrBINARY;
913 
914   /* Create the automatic index */
915   assert( pLevel->iIdxCur>=0 );
916   pLevel->iIdxCur = pParse->nTab++;
917   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
918   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
919   VdbeComment((v, "for %s", pTable->zName));
920   if( OptimizationEnabled(pParse->db, SQLITE_BloomFilter) ){
921     pLevel->regFilter = ++pParse->nMem;
922     sqlite3VdbeAddOp2(v, OP_Blob, 10000, pLevel->regFilter);
923   }
924 
925   /* Fill the automatic index with content */
926   pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
927   if( pTabItem->fg.viaCoroutine ){
928     int regYield = pTabItem->regReturn;
929     addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
930     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
931     addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
932     VdbeCoverage(v);
933     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
934   }else{
935     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
936   }
937   if( pPartial ){
938     iContinue = sqlite3VdbeMakeLabel(pParse);
939     sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
940     pLoop->wsFlags |= WHERE_PARTIALIDX;
941   }
942   regRecord = sqlite3GetTempReg(pParse);
943   regBase = sqlite3GenerateIndexKey(
944       pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
945   );
946   if( pLevel->regFilter ){
947     sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0,
948                          regBase, pLoop->u.btree.nEq);
949   }
950   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
951   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
952   if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
953   if( pTabItem->fg.viaCoroutine ){
954     sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
955     testcase( pParse->db->mallocFailed );
956     assert( pLevel->iIdxCur>0 );
957     translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
958                           pTabItem->regResult, pLevel->iIdxCur);
959     sqlite3VdbeGoto(v, addrTop);
960     pTabItem->fg.viaCoroutine = 0;
961   }else{
962     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
963     sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
964   }
965   sqlite3VdbeJumpHere(v, addrTop);
966   sqlite3ReleaseTempReg(pParse, regRecord);
967 
968   /* Jump here when skipping the initialization */
969   sqlite3VdbeJumpHere(v, addrInit);
970 
971 end_auto_index_create:
972   sqlite3ExprDelete(pParse->db, pPartial);
973 }
974 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
975 
976 /*
977 ** Generate bytecode that will initialize a Bloom filter that is appropriate
978 ** for pLevel.
979 **
980 ** If there are inner loops within pLevel that have the WHERE_BLOOMFILTER
981 ** flag set, initialize a Bloomfilter for them as well.  Except don't do
982 ** this recursive initialization if the SQLITE_BloomPulldown optimization has
983 ** been turned off.
984 **
985 ** When the Bloom filter is initialized, the WHERE_BLOOMFILTER flag is cleared
986 ** from the loop, but the regFilter value is set to a register that implements
987 ** the Bloom filter.  When regFilter is positive, the
988 ** sqlite3WhereCodeOneLoopStart() will generate code to test the Bloom filter
989 ** and skip the subsequence B-Tree seek if the Bloom filter indicates that
990 ** no matching rows exist.
991 **
992 ** This routine may only be called if it has previously been determined that
993 ** the loop would benefit from a Bloom filter, and the WHERE_BLOOMFILTER bit
994 ** is set.
995 */
996 static SQLITE_NOINLINE void sqlite3ConstructBloomFilter(
997   WhereInfo *pWInfo,    /* The WHERE clause */
998   int iLevel,           /* Index in pWInfo->a[] that is pLevel */
999   WhereLevel *pLevel,   /* Make a Bloom filter for this FROM term */
1000   Bitmask notReady      /* Loops that are not ready */
1001 ){
1002   int addrOnce;                        /* Address of opening OP_Once */
1003   int addrTop;                         /* Address of OP_Rewind */
1004   int addrCont;                        /* Jump here to skip a row */
1005   const WhereTerm *pTerm;              /* For looping over WHERE clause terms */
1006   const WhereTerm *pWCEnd;             /* Last WHERE clause term */
1007   Parse *pParse = pWInfo->pParse;      /* Parsing context */
1008   Vdbe *v = pParse->pVdbe;             /* VDBE under construction */
1009   WhereLoop *pLoop = pLevel->pWLoop;   /* The loop being coded */
1010   int iCur;                            /* Cursor for table getting the filter */
1011 
1012   assert( pLoop!=0 );
1013   assert( v!=0 );
1014   assert( pLoop->wsFlags & WHERE_BLOOMFILTER );
1015 
1016   addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1017   do{
1018     const SrcItem *pItem;
1019     const Table *pTab;
1020     u64 sz;
1021     sqlite3WhereExplainBloomFilter(pParse, pWInfo, pLevel);
1022     addrCont = sqlite3VdbeMakeLabel(pParse);
1023     iCur = pLevel->iTabCur;
1024     pLevel->regFilter = ++pParse->nMem;
1025 
1026     /* The Bloom filter is a Blob held in a register.  Initialize it
1027     ** to zero-filled blob of at least 80K bits, but maybe more if the
1028     ** estimated size of the table is larger.  We could actually
1029     ** measure the size of the table at run-time using OP_Count with
1030     ** P3==1 and use that value to initialize the blob.  But that makes
1031     ** testing complicated.  By basing the blob size on the value in the
1032     ** sqlite_stat1 table, testing is much easier.
1033     */
1034     pItem = &pWInfo->pTabList->a[pLevel->iFrom];
1035     assert( pItem!=0 );
1036     pTab = pItem->pTab;
1037     assert( pTab!=0 );
1038     sz = sqlite3LogEstToInt(pTab->nRowLogEst);
1039     if( sz<10000 ){
1040       sz = 10000;
1041     }else if( sz>10000000 ){
1042       sz = 10000000;
1043     }
1044     sqlite3VdbeAddOp2(v, OP_Blob, (int)sz, pLevel->regFilter);
1045 
1046     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
1047     pWCEnd = &pWInfo->sWC.a[pWInfo->sWC.nTerm];
1048     for(pTerm=pWInfo->sWC.a; pTerm<pWCEnd; pTerm++){
1049       Expr *pExpr = pTerm->pExpr;
1050       if( (pTerm->wtFlags & TERM_VIRTUAL)==0
1051        && sqlite3ExprIsTableConstant(pExpr, iCur)
1052       ){
1053         sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
1054       }
1055     }
1056     if( pLoop->wsFlags & WHERE_IPK ){
1057       int r1 = sqlite3GetTempReg(pParse);
1058       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1);
1059       sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, 1);
1060       sqlite3ReleaseTempReg(pParse, r1);
1061     }else{
1062       Index *pIdx = pLoop->u.btree.pIndex;
1063       int n = pLoop->u.btree.nEq;
1064       int r1 = sqlite3GetTempRange(pParse, n);
1065       int jj;
1066       for(jj=0; jj<n; jj++){
1067         int iCol = pIdx->aiColumn[jj];
1068         assert( pIdx->pTable==pItem->pTab );
1069         sqlite3ExprCodeGetColumnOfTable(v, pIdx->pTable, iCur, iCol,r1+jj);
1070       }
1071       sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, n);
1072       sqlite3ReleaseTempRange(pParse, r1, n);
1073     }
1074     sqlite3VdbeResolveLabel(v, addrCont);
1075     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1);
1076     VdbeCoverage(v);
1077     sqlite3VdbeJumpHere(v, addrTop);
1078     pLoop->wsFlags &= ~WHERE_BLOOMFILTER;
1079     if( OptimizationDisabled(pParse->db, SQLITE_BloomPulldown) ) break;
1080     while( ++iLevel < pWInfo->nLevel ){
1081       const SrcItem *pTabItem;
1082       pLevel = &pWInfo->a[iLevel];
1083       pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1084       if( pTabItem->fg.jointype & JT_LEFT ) continue;
1085       pLoop = pLevel->pWLoop;
1086       if( NEVER(pLoop==0) ) continue;
1087       if( pLoop->prereq & notReady ) continue;
1088       if( (pLoop->wsFlags & (WHERE_BLOOMFILTER|WHERE_COLUMN_IN))
1089                  ==WHERE_BLOOMFILTER
1090       ){
1091         /* This is a candidate for bloom-filter pull-down (early evaluation).
1092         ** The test that WHERE_COLUMN_IN is omitted is important, as we are
1093         ** not able to do early evaluation of bloom filters that make use of
1094         ** the IN operator */
1095         break;
1096       }
1097     }
1098   }while( iLevel < pWInfo->nLevel );
1099   sqlite3VdbeJumpHere(v, addrOnce);
1100 }
1101 
1102 
1103 #ifndef SQLITE_OMIT_VIRTUALTABLE
1104 /*
1105 ** Allocate and populate an sqlite3_index_info structure. It is the
1106 ** responsibility of the caller to eventually release the structure
1107 ** by passing the pointer returned by this function to freeIndexInfo().
1108 */
1109 static sqlite3_index_info *allocateIndexInfo(
1110   WhereInfo *pWInfo,              /* The WHERE clause */
1111   WhereClause *pWC,               /* The WHERE clause being analyzed */
1112   Bitmask mUnusable,              /* Ignore terms with these prereqs */
1113   SrcItem *pSrc,                  /* The FROM clause term that is the vtab */
1114   u16 *pmNoOmit                   /* Mask of terms not to omit */
1115 ){
1116   int i, j;
1117   int nTerm;
1118   Parse *pParse = pWInfo->pParse;
1119   struct sqlite3_index_constraint *pIdxCons;
1120   struct sqlite3_index_orderby *pIdxOrderBy;
1121   struct sqlite3_index_constraint_usage *pUsage;
1122   struct HiddenIndexInfo *pHidden;
1123   WhereTerm *pTerm;
1124   int nOrderBy;
1125   sqlite3_index_info *pIdxInfo;
1126   u16 mNoOmit = 0;
1127   const Table *pTab;
1128   int eDistinct = 0;
1129   ExprList *pOrderBy = pWInfo->pOrderBy;
1130 
1131   assert( pSrc!=0 );
1132   pTab = pSrc->pTab;
1133   assert( pTab!=0 );
1134   assert( IsVirtual(pTab) );
1135 
1136   /* Find all WHERE clause constraints referring to this virtual table.
1137   ** Mark each term with the TERM_OK flag.  Set nTerm to the number of
1138   ** terms found.
1139   */
1140   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1141     pTerm->wtFlags &= ~TERM_OK;
1142     if( pTerm->leftCursor != pSrc->iCursor ) continue;
1143     if( pTerm->prereqRight & mUnusable ) continue;
1144     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
1145     testcase( pTerm->eOperator & WO_IN );
1146     testcase( pTerm->eOperator & WO_ISNULL );
1147     testcase( pTerm->eOperator & WO_IS );
1148     testcase( pTerm->eOperator & WO_ALL );
1149     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
1150     if( pTerm->wtFlags & TERM_VNULL ) continue;
1151 
1152     assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
1153     assert( pTerm->u.x.leftColumn>=XN_ROWID );
1154     assert( pTerm->u.x.leftColumn<pTab->nCol );
1155 
1156     /* tag-20191211-002: WHERE-clause constraints are not useful to the
1157     ** right-hand table of a LEFT JOIN.  See tag-20191211-001 for the
1158     ** equivalent restriction for ordinary tables. */
1159     if( (pSrc->fg.jointype & JT_LEFT)!=0
1160      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
1161     ){
1162       continue;
1163     }
1164     nTerm++;
1165     pTerm->wtFlags |= TERM_OK;
1166   }
1167 
1168   /* If the ORDER BY clause contains only columns in the current
1169   ** virtual table then allocate space for the aOrderBy part of
1170   ** the sqlite3_index_info structure.
1171   */
1172   nOrderBy = 0;
1173   if( pOrderBy ){
1174     int n = pOrderBy->nExpr;
1175     for(i=0; i<n; i++){
1176       Expr *pExpr = pOrderBy->a[i].pExpr;
1177       Expr *pE2;
1178 
1179       /* Skip over constant terms in the ORDER BY clause */
1180       if( sqlite3ExprIsConstant(pExpr) ){
1181         continue;
1182       }
1183 
1184       /* Virtual tables are unable to deal with NULLS FIRST */
1185       if( pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL ) break;
1186 
1187       /* First case - a direct column references without a COLLATE operator */
1188       if( pExpr->op==TK_COLUMN && pExpr->iTable==pSrc->iCursor ){
1189         assert( pExpr->iColumn>=XN_ROWID && pExpr->iColumn<pTab->nCol );
1190         continue;
1191       }
1192 
1193       /* 2nd case - a column reference with a COLLATE operator.  Only match
1194       ** of the COLLATE operator matches the collation of the column. */
1195       if( pExpr->op==TK_COLLATE
1196        && (pE2 = pExpr->pLeft)->op==TK_COLUMN
1197        && pE2->iTable==pSrc->iCursor
1198       ){
1199         const char *zColl;  /* The collating sequence name */
1200         assert( !ExprHasProperty(pExpr, EP_IntValue) );
1201         assert( pExpr->u.zToken!=0 );
1202         assert( pE2->iColumn>=XN_ROWID && pE2->iColumn<pTab->nCol );
1203         pExpr->iColumn = pE2->iColumn;
1204         if( pE2->iColumn<0 ) continue;  /* Collseq does not matter for rowid */
1205         zColl = sqlite3ColumnColl(&pTab->aCol[pE2->iColumn]);
1206         if( zColl==0 ) zColl = sqlite3StrBINARY;
1207         if( sqlite3_stricmp(pExpr->u.zToken, zColl)==0 ) continue;
1208       }
1209 
1210       /* No matches cause a break out of the loop */
1211       break;
1212     }
1213     if( i==n ){
1214       nOrderBy = n;
1215       if( (pWInfo->wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY)) ){
1216         eDistinct = 1 + ((pWInfo->wctrlFlags & WHERE_DISTINCTBY)!=0);
1217       }
1218     }
1219   }
1220 
1221   /* Allocate the sqlite3_index_info structure
1222   */
1223   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
1224                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1225                            + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden)
1226                            + sizeof(sqlite3_value*)*nTerm );
1227   if( pIdxInfo==0 ){
1228     sqlite3ErrorMsg(pParse, "out of memory");
1229     return 0;
1230   }
1231   pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
1232   pIdxCons = (struct sqlite3_index_constraint*)&pHidden->aRhs[nTerm];
1233   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1234   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1235   pIdxInfo->aConstraint = pIdxCons;
1236   pIdxInfo->aOrderBy = pIdxOrderBy;
1237   pIdxInfo->aConstraintUsage = pUsage;
1238   pHidden->pWC = pWC;
1239   pHidden->pParse = pParse;
1240   pHidden->eDistinct = eDistinct;
1241   pHidden->mIn = 0;
1242   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1243     u16 op;
1244     if( (pTerm->wtFlags & TERM_OK)==0 ) continue;
1245     pIdxCons[j].iColumn = pTerm->u.x.leftColumn;
1246     pIdxCons[j].iTermOffset = i;
1247     op = pTerm->eOperator & WO_ALL;
1248     if( op==WO_IN ){
1249       if( (pTerm->wtFlags & TERM_SLICE)==0 ){
1250         pHidden->mIn |= SMASKBIT32(j);
1251       }
1252       op = WO_EQ;
1253     }
1254     if( op==WO_AUX ){
1255       pIdxCons[j].op = pTerm->eMatchOp;
1256     }else if( op & (WO_ISNULL|WO_IS) ){
1257       if( op==WO_ISNULL ){
1258         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
1259       }else{
1260         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
1261       }
1262     }else{
1263       pIdxCons[j].op = (u8)op;
1264       /* The direct assignment in the previous line is possible only because
1265       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
1266       ** following asserts verify this fact. */
1267       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1268       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1269       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1270       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1271       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1272       assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
1273 
1274       if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
1275        && sqlite3ExprIsVector(pTerm->pExpr->pRight)
1276       ){
1277         testcase( j!=i );
1278         if( j<16 ) mNoOmit |= (1 << j);
1279         if( op==WO_LT ) pIdxCons[j].op = WO_LE;
1280         if( op==WO_GT ) pIdxCons[j].op = WO_GE;
1281       }
1282     }
1283 
1284     j++;
1285   }
1286   assert( j==nTerm );
1287   pIdxInfo->nConstraint = j;
1288   for(i=j=0; i<nOrderBy; i++){
1289     Expr *pExpr = pOrderBy->a[i].pExpr;
1290     if( sqlite3ExprIsConstant(pExpr) ) continue;
1291     assert( pExpr->op==TK_COLUMN
1292          || (pExpr->op==TK_COLLATE && pExpr->pLeft->op==TK_COLUMN
1293               && pExpr->iColumn==pExpr->pLeft->iColumn) );
1294     pIdxOrderBy[j].iColumn = pExpr->iColumn;
1295     pIdxOrderBy[j].desc = pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC;
1296     j++;
1297   }
1298   pIdxInfo->nOrderBy = j;
1299 
1300   *pmNoOmit = mNoOmit;
1301   return pIdxInfo;
1302 }
1303 
1304 /*
1305 ** Free an sqlite3_index_info structure allocated by allocateIndexInfo()
1306 ** and possibly modified by xBestIndex methods.
1307 */
1308 static void freeIndexInfo(sqlite3 *db, sqlite3_index_info *pIdxInfo){
1309   HiddenIndexInfo *pHidden;
1310   int i;
1311   assert( pIdxInfo!=0 );
1312   pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
1313   assert( pHidden->pParse!=0 );
1314   assert( pHidden->pParse->db==db );
1315   for(i=0; i<pIdxInfo->nConstraint; i++){
1316     sqlite3ValueFree(pHidden->aRhs[i]); /* IMP: R-14553-25174 */
1317     pHidden->aRhs[i] = 0;
1318   }
1319   sqlite3DbFree(db, pIdxInfo);
1320 }
1321 
1322 /*
1323 ** The table object reference passed as the second argument to this function
1324 ** must represent a virtual table. This function invokes the xBestIndex()
1325 ** method of the virtual table with the sqlite3_index_info object that
1326 ** comes in as the 3rd argument to this function.
1327 **
1328 ** If an error occurs, pParse is populated with an error message and an
1329 ** appropriate error code is returned.  A return of SQLITE_CONSTRAINT from
1330 ** xBestIndex is not considered an error.  SQLITE_CONSTRAINT indicates that
1331 ** the current configuration of "unusable" flags in sqlite3_index_info can
1332 ** not result in a valid plan.
1333 **
1334 ** Whether or not an error is returned, it is the responsibility of the
1335 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1336 ** that this is required.
1337 */
1338 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
1339   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
1340   int rc;
1341 
1342   whereTraceIndexInfoInputs(p);
1343   pParse->db->nSchemaLock++;
1344   rc = pVtab->pModule->xBestIndex(pVtab, p);
1345   pParse->db->nSchemaLock--;
1346   whereTraceIndexInfoOutputs(p);
1347 
1348   if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){
1349     if( rc==SQLITE_NOMEM ){
1350       sqlite3OomFault(pParse->db);
1351     }else if( !pVtab->zErrMsg ){
1352       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1353     }else{
1354       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1355     }
1356   }
1357   sqlite3_free(pVtab->zErrMsg);
1358   pVtab->zErrMsg = 0;
1359   return rc;
1360 }
1361 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1362 
1363 #ifdef SQLITE_ENABLE_STAT4
1364 /*
1365 ** Estimate the location of a particular key among all keys in an
1366 ** index.  Store the results in aStat as follows:
1367 **
1368 **    aStat[0]      Est. number of rows less than pRec
1369 **    aStat[1]      Est. number of rows equal to pRec
1370 **
1371 ** Return the index of the sample that is the smallest sample that
1372 ** is greater than or equal to pRec. Note that this index is not an index
1373 ** into the aSample[] array - it is an index into a virtual set of samples
1374 ** based on the contents of aSample[] and the number of fields in record
1375 ** pRec.
1376 */
1377 static int whereKeyStats(
1378   Parse *pParse,              /* Database connection */
1379   Index *pIdx,                /* Index to consider domain of */
1380   UnpackedRecord *pRec,       /* Vector of values to consider */
1381   int roundUp,                /* Round up if true.  Round down if false */
1382   tRowcnt *aStat              /* OUT: stats written here */
1383 ){
1384   IndexSample *aSample = pIdx->aSample;
1385   int iCol;                   /* Index of required stats in anEq[] etc. */
1386   int i;                      /* Index of first sample >= pRec */
1387   int iSample;                /* Smallest sample larger than or equal to pRec */
1388   int iMin = 0;               /* Smallest sample not yet tested */
1389   int iTest;                  /* Next sample to test */
1390   int res;                    /* Result of comparison operation */
1391   int nField;                 /* Number of fields in pRec */
1392   tRowcnt iLower = 0;         /* anLt[] + anEq[] of largest sample pRec is > */
1393 
1394 #ifndef SQLITE_DEBUG
1395   UNUSED_PARAMETER( pParse );
1396 #endif
1397   assert( pRec!=0 );
1398   assert( pIdx->nSample>0 );
1399   assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
1400 
1401   /* Do a binary search to find the first sample greater than or equal
1402   ** to pRec. If pRec contains a single field, the set of samples to search
1403   ** is simply the aSample[] array. If the samples in aSample[] contain more
1404   ** than one fields, all fields following the first are ignored.
1405   **
1406   ** If pRec contains N fields, where N is more than one, then as well as the
1407   ** samples in aSample[] (truncated to N fields), the search also has to
1408   ** consider prefixes of those samples. For example, if the set of samples
1409   ** in aSample is:
1410   **
1411   **     aSample[0] = (a, 5)
1412   **     aSample[1] = (a, 10)
1413   **     aSample[2] = (b, 5)
1414   **     aSample[3] = (c, 100)
1415   **     aSample[4] = (c, 105)
1416   **
1417   ** Then the search space should ideally be the samples above and the
1418   ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1419   ** the code actually searches this set:
1420   **
1421   **     0: (a)
1422   **     1: (a, 5)
1423   **     2: (a, 10)
1424   **     3: (a, 10)
1425   **     4: (b)
1426   **     5: (b, 5)
1427   **     6: (c)
1428   **     7: (c, 100)
1429   **     8: (c, 105)
1430   **     9: (c, 105)
1431   **
1432   ** For each sample in the aSample[] array, N samples are present in the
1433   ** effective sample array. In the above, samples 0 and 1 are based on
1434   ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1435   **
1436   ** Often, sample i of each block of N effective samples has (i+1) fields.
1437   ** Except, each sample may be extended to ensure that it is greater than or
1438   ** equal to the previous sample in the array. For example, in the above,
1439   ** sample 2 is the first sample of a block of N samples, so at first it
1440   ** appears that it should be 1 field in size. However, that would make it
1441   ** smaller than sample 1, so the binary search would not work. As a result,
1442   ** it is extended to two fields. The duplicates that this creates do not
1443   ** cause any problems.
1444   */
1445   nField = pRec->nField;
1446   iCol = 0;
1447   iSample = pIdx->nSample * nField;
1448   do{
1449     int iSamp;                    /* Index in aSample[] of test sample */
1450     int n;                        /* Number of fields in test sample */
1451 
1452     iTest = (iMin+iSample)/2;
1453     iSamp = iTest / nField;
1454     if( iSamp>0 ){
1455       /* The proposed effective sample is a prefix of sample aSample[iSamp].
1456       ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1457       ** fields that is greater than the previous effective sample.  */
1458       for(n=(iTest % nField) + 1; n<nField; n++){
1459         if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1460       }
1461     }else{
1462       n = iTest + 1;
1463     }
1464 
1465     pRec->nField = n;
1466     res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1467     if( res<0 ){
1468       iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1469       iMin = iTest+1;
1470     }else if( res==0 && n<nField ){
1471       iLower = aSample[iSamp].anLt[n-1];
1472       iMin = iTest+1;
1473       res = -1;
1474     }else{
1475       iSample = iTest;
1476       iCol = n-1;
1477     }
1478   }while( res && iMin<iSample );
1479   i = iSample / nField;
1480 
1481 #ifdef SQLITE_DEBUG
1482   /* The following assert statements check that the binary search code
1483   ** above found the right answer. This block serves no purpose other
1484   ** than to invoke the asserts.  */
1485   if( pParse->db->mallocFailed==0 ){
1486     if( res==0 ){
1487       /* If (res==0) is true, then pRec must be equal to sample i. */
1488       assert( i<pIdx->nSample );
1489       assert( iCol==nField-1 );
1490       pRec->nField = nField;
1491       assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1492            || pParse->db->mallocFailed
1493       );
1494     }else{
1495       /* Unless i==pIdx->nSample, indicating that pRec is larger than
1496       ** all samples in the aSample[] array, pRec must be smaller than the
1497       ** (iCol+1) field prefix of sample i.  */
1498       assert( i<=pIdx->nSample && i>=0 );
1499       pRec->nField = iCol+1;
1500       assert( i==pIdx->nSample
1501            || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1502            || pParse->db->mallocFailed );
1503 
1504       /* if i==0 and iCol==0, then record pRec is smaller than all samples
1505       ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1506       ** be greater than or equal to the (iCol) field prefix of sample i.
1507       ** If (i>0), then pRec must also be greater than sample (i-1).  */
1508       if( iCol>0 ){
1509         pRec->nField = iCol;
1510         assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1511              || pParse->db->mallocFailed );
1512       }
1513       if( i>0 ){
1514         pRec->nField = nField;
1515         assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1516              || pParse->db->mallocFailed );
1517       }
1518     }
1519   }
1520 #endif /* ifdef SQLITE_DEBUG */
1521 
1522   if( res==0 ){
1523     /* Record pRec is equal to sample i */
1524     assert( iCol==nField-1 );
1525     aStat[0] = aSample[i].anLt[iCol];
1526     aStat[1] = aSample[i].anEq[iCol];
1527   }else{
1528     /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1529     ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1530     ** is larger than all samples in the array. */
1531     tRowcnt iUpper, iGap;
1532     if( i>=pIdx->nSample ){
1533       iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1534     }else{
1535       iUpper = aSample[i].anLt[iCol];
1536     }
1537 
1538     if( iLower>=iUpper ){
1539       iGap = 0;
1540     }else{
1541       iGap = iUpper - iLower;
1542     }
1543     if( roundUp ){
1544       iGap = (iGap*2)/3;
1545     }else{
1546       iGap = iGap/3;
1547     }
1548     aStat[0] = iLower + iGap;
1549     aStat[1] = pIdx->aAvgEq[nField-1];
1550   }
1551 
1552   /* Restore the pRec->nField value before returning.  */
1553   pRec->nField = nField;
1554   return i;
1555 }
1556 #endif /* SQLITE_ENABLE_STAT4 */
1557 
1558 /*
1559 ** If it is not NULL, pTerm is a term that provides an upper or lower
1560 ** bound on a range scan. Without considering pTerm, it is estimated
1561 ** that the scan will visit nNew rows. This function returns the number
1562 ** estimated to be visited after taking pTerm into account.
1563 **
1564 ** If the user explicitly specified a likelihood() value for this term,
1565 ** then the return value is the likelihood multiplied by the number of
1566 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1567 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1568 */
1569 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1570   LogEst nRet = nNew;
1571   if( pTerm ){
1572     if( pTerm->truthProb<=0 ){
1573       nRet += pTerm->truthProb;
1574     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1575       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
1576     }
1577   }
1578   return nRet;
1579 }
1580 
1581 
1582 #ifdef SQLITE_ENABLE_STAT4
1583 /*
1584 ** Return the affinity for a single column of an index.
1585 */
1586 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1587   assert( iCol>=0 && iCol<pIdx->nColumn );
1588   if( !pIdx->zColAff ){
1589     if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1590   }
1591   assert( pIdx->zColAff[iCol]!=0 );
1592   return pIdx->zColAff[iCol];
1593 }
1594 #endif
1595 
1596 
1597 #ifdef SQLITE_ENABLE_STAT4
1598 /*
1599 ** This function is called to estimate the number of rows visited by a
1600 ** range-scan on a skip-scan index. For example:
1601 **
1602 **   CREATE INDEX i1 ON t1(a, b, c);
1603 **   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1604 **
1605 ** Value pLoop->nOut is currently set to the estimated number of rows
1606 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1607 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1608 ** on the stat4 data for the index. this scan will be peformed multiple
1609 ** times (once for each (a,b) combination that matches a=?) is dealt with
1610 ** by the caller.
1611 **
1612 ** It does this by scanning through all stat4 samples, comparing values
1613 ** extracted from pLower and pUpper with the corresponding column in each
1614 ** sample. If L and U are the number of samples found to be less than or
1615 ** equal to the values extracted from pLower and pUpper respectively, and
1616 ** N is the total number of samples, the pLoop->nOut value is adjusted
1617 ** as follows:
1618 **
1619 **   nOut = nOut * ( min(U - L, 1) / N )
1620 **
1621 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1622 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1623 ** U is set to N.
1624 **
1625 ** Normally, this function sets *pbDone to 1 before returning. However,
1626 ** if no value can be extracted from either pLower or pUpper (and so the
1627 ** estimate of the number of rows delivered remains unchanged), *pbDone
1628 ** is left as is.
1629 **
1630 ** If an error occurs, an SQLite error code is returned. Otherwise,
1631 ** SQLITE_OK.
1632 */
1633 static int whereRangeSkipScanEst(
1634   Parse *pParse,       /* Parsing & code generating context */
1635   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1636   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1637   WhereLoop *pLoop,    /* Update the .nOut value of this loop */
1638   int *pbDone          /* Set to true if at least one expr. value extracted */
1639 ){
1640   Index *p = pLoop->u.btree.pIndex;
1641   int nEq = pLoop->u.btree.nEq;
1642   sqlite3 *db = pParse->db;
1643   int nLower = -1;
1644   int nUpper = p->nSample+1;
1645   int rc = SQLITE_OK;
1646   u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1647   CollSeq *pColl;
1648 
1649   sqlite3_value *p1 = 0;          /* Value extracted from pLower */
1650   sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
1651   sqlite3_value *pVal = 0;        /* Value extracted from record */
1652 
1653   pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1654   if( pLower ){
1655     rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1656     nLower = 0;
1657   }
1658   if( pUpper && rc==SQLITE_OK ){
1659     rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1660     nUpper = p2 ? 0 : p->nSample;
1661   }
1662 
1663   if( p1 || p2 ){
1664     int i;
1665     int nDiff;
1666     for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1667       rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1668       if( rc==SQLITE_OK && p1 ){
1669         int res = sqlite3MemCompare(p1, pVal, pColl);
1670         if( res>=0 ) nLower++;
1671       }
1672       if( rc==SQLITE_OK && p2 ){
1673         int res = sqlite3MemCompare(p2, pVal, pColl);
1674         if( res>=0 ) nUpper++;
1675       }
1676     }
1677     nDiff = (nUpper - nLower);
1678     if( nDiff<=0 ) nDiff = 1;
1679 
1680     /* If there is both an upper and lower bound specified, and the
1681     ** comparisons indicate that they are close together, use the fallback
1682     ** method (assume that the scan visits 1/64 of the rows) for estimating
1683     ** the number of rows visited. Otherwise, estimate the number of rows
1684     ** using the method described in the header comment for this function. */
1685     if( nDiff!=1 || pUpper==0 || pLower==0 ){
1686       int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1687       pLoop->nOut -= nAdjust;
1688       *pbDone = 1;
1689       WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n",
1690                            nLower, nUpper, nAdjust*-1, pLoop->nOut));
1691     }
1692 
1693   }else{
1694     assert( *pbDone==0 );
1695   }
1696 
1697   sqlite3ValueFree(p1);
1698   sqlite3ValueFree(p2);
1699   sqlite3ValueFree(pVal);
1700 
1701   return rc;
1702 }
1703 #endif /* SQLITE_ENABLE_STAT4 */
1704 
1705 /*
1706 ** This function is used to estimate the number of rows that will be visited
1707 ** by scanning an index for a range of values. The range may have an upper
1708 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1709 ** and lower bounds are represented by pLower and pUpper respectively. For
1710 ** example, assuming that index p is on t1(a):
1711 **
1712 **   ... FROM t1 WHERE a > ? AND a < ? ...
1713 **                    |_____|   |_____|
1714 **                       |         |
1715 **                     pLower    pUpper
1716 **
1717 ** If either of the upper or lower bound is not present, then NULL is passed in
1718 ** place of the corresponding WhereTerm.
1719 **
1720 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1721 ** column subject to the range constraint. Or, equivalently, the number of
1722 ** equality constraints optimized by the proposed index scan. For example,
1723 ** assuming index p is on t1(a, b), and the SQL query is:
1724 **
1725 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1726 **
1727 ** then nEq is set to 1 (as the range restricted column, b, is the second
1728 ** left-most column of the index). Or, if the query is:
1729 **
1730 **   ... FROM t1 WHERE a > ? AND a < ? ...
1731 **
1732 ** then nEq is set to 0.
1733 **
1734 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1735 ** number of rows that the index scan is expected to visit without
1736 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1737 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1738 ** to account for the range constraints pLower and pUpper.
1739 **
1740 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1741 ** used, a single range inequality reduces the search space by a factor of 4.
1742 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1743 ** rows visited by a factor of 64.
1744 */
1745 static int whereRangeScanEst(
1746   Parse *pParse,       /* Parsing & code generating context */
1747   WhereLoopBuilder *pBuilder,
1748   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1749   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1750   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
1751 ){
1752   int rc = SQLITE_OK;
1753   int nOut = pLoop->nOut;
1754   LogEst nNew;
1755 
1756 #ifdef SQLITE_ENABLE_STAT4
1757   Index *p = pLoop->u.btree.pIndex;
1758   int nEq = pLoop->u.btree.nEq;
1759 
1760   if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol)
1761    && OptimizationEnabled(pParse->db, SQLITE_Stat4)
1762   ){
1763     if( nEq==pBuilder->nRecValid ){
1764       UnpackedRecord *pRec = pBuilder->pRec;
1765       tRowcnt a[2];
1766       int nBtm = pLoop->u.btree.nBtm;
1767       int nTop = pLoop->u.btree.nTop;
1768 
1769       /* Variable iLower will be set to the estimate of the number of rows in
1770       ** the index that are less than the lower bound of the range query. The
1771       ** lower bound being the concatenation of $P and $L, where $P is the
1772       ** key-prefix formed by the nEq values matched against the nEq left-most
1773       ** columns of the index, and $L is the value in pLower.
1774       **
1775       ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1776       ** is not a simple variable or literal value), the lower bound of the
1777       ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1778       ** if $L is available, whereKeyStats() is called for both ($P) and
1779       ** ($P:$L) and the larger of the two returned values is used.
1780       **
1781       ** Similarly, iUpper is to be set to the estimate of the number of rows
1782       ** less than the upper bound of the range query. Where the upper bound
1783       ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1784       ** of iUpper are requested of whereKeyStats() and the smaller used.
1785       **
1786       ** The number of rows between the two bounds is then just iUpper-iLower.
1787       */
1788       tRowcnt iLower;     /* Rows less than the lower bound */
1789       tRowcnt iUpper;     /* Rows less than the upper bound */
1790       int iLwrIdx = -2;   /* aSample[] for the lower bound */
1791       int iUprIdx = -1;   /* aSample[] for the upper bound */
1792 
1793       if( pRec ){
1794         testcase( pRec->nField!=pBuilder->nRecValid );
1795         pRec->nField = pBuilder->nRecValid;
1796       }
1797       /* Determine iLower and iUpper using ($P) only. */
1798       if( nEq==0 ){
1799         iLower = 0;
1800         iUpper = p->nRowEst0;
1801       }else{
1802         /* Note: this call could be optimized away - since the same values must
1803         ** have been requested when testing key $P in whereEqualScanEst().  */
1804         whereKeyStats(pParse, p, pRec, 0, a);
1805         iLower = a[0];
1806         iUpper = a[0] + a[1];
1807       }
1808 
1809       assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1810       assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1811       assert( p->aSortOrder!=0 );
1812       if( p->aSortOrder[nEq] ){
1813         /* The roles of pLower and pUpper are swapped for a DESC index */
1814         SWAP(WhereTerm*, pLower, pUpper);
1815         SWAP(int, nBtm, nTop);
1816       }
1817 
1818       /* If possible, improve on the iLower estimate using ($P:$L). */
1819       if( pLower ){
1820         int n;                    /* Values extracted from pExpr */
1821         Expr *pExpr = pLower->pExpr->pRight;
1822         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1823         if( rc==SQLITE_OK && n ){
1824           tRowcnt iNew;
1825           u16 mask = WO_GT|WO_LE;
1826           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1827           iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1828           iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1829           if( iNew>iLower ) iLower = iNew;
1830           nOut--;
1831           pLower = 0;
1832         }
1833       }
1834 
1835       /* If possible, improve on the iUpper estimate using ($P:$U). */
1836       if( pUpper ){
1837         int n;                    /* Values extracted from pExpr */
1838         Expr *pExpr = pUpper->pExpr->pRight;
1839         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1840         if( rc==SQLITE_OK && n ){
1841           tRowcnt iNew;
1842           u16 mask = WO_GT|WO_LE;
1843           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1844           iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1845           iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1846           if( iNew<iUpper ) iUpper = iNew;
1847           nOut--;
1848           pUpper = 0;
1849         }
1850       }
1851 
1852       pBuilder->pRec = pRec;
1853       if( rc==SQLITE_OK ){
1854         if( iUpper>iLower ){
1855           nNew = sqlite3LogEst(iUpper - iLower);
1856           /* TUNING:  If both iUpper and iLower are derived from the same
1857           ** sample, then assume they are 4x more selective.  This brings
1858           ** the estimated selectivity more in line with what it would be
1859           ** if estimated without the use of STAT4 tables. */
1860           if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
1861         }else{
1862           nNew = 10;        assert( 10==sqlite3LogEst(2) );
1863         }
1864         if( nNew<nOut ){
1865           nOut = nNew;
1866         }
1867         WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
1868                            (u32)iLower, (u32)iUpper, nOut));
1869       }
1870     }else{
1871       int bDone = 0;
1872       rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1873       if( bDone ) return rc;
1874     }
1875   }
1876 #else
1877   UNUSED_PARAMETER(pParse);
1878   UNUSED_PARAMETER(pBuilder);
1879   assert( pLower || pUpper );
1880 #endif
1881   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1882   nNew = whereRangeAdjust(pLower, nOut);
1883   nNew = whereRangeAdjust(pUpper, nNew);
1884 
1885   /* TUNING: If there is both an upper and lower limit and neither limit
1886   ** has an application-defined likelihood(), assume the range is
1887   ** reduced by an additional 75%. This means that, by default, an open-ended
1888   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1889   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1890   ** match 1/64 of the index. */
1891   if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1892     nNew -= 20;
1893   }
1894 
1895   nOut -= (pLower!=0) + (pUpper!=0);
1896   if( nNew<10 ) nNew = 10;
1897   if( nNew<nOut ) nOut = nNew;
1898 #if defined(WHERETRACE_ENABLED)
1899   if( pLoop->nOut>nOut ){
1900     WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1901                     pLoop->nOut, nOut));
1902   }
1903 #endif
1904   pLoop->nOut = (LogEst)nOut;
1905   return rc;
1906 }
1907 
1908 #ifdef SQLITE_ENABLE_STAT4
1909 /*
1910 ** Estimate the number of rows that will be returned based on
1911 ** an equality constraint x=VALUE and where that VALUE occurs in
1912 ** the histogram data.  This only works when x is the left-most
1913 ** column of an index and sqlite_stat4 histogram data is available
1914 ** for that index.  When pExpr==NULL that means the constraint is
1915 ** "x IS NULL" instead of "x=VALUE".
1916 **
1917 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1918 ** If unable to make an estimate, leave *pnRow unchanged and return
1919 ** non-zero.
1920 **
1921 ** This routine can fail if it is unable to load a collating sequence
1922 ** required for string comparison, or if unable to allocate memory
1923 ** for a UTF conversion required for comparison.  The error is stored
1924 ** in the pParse structure.
1925 */
1926 static int whereEqualScanEst(
1927   Parse *pParse,       /* Parsing & code generating context */
1928   WhereLoopBuilder *pBuilder,
1929   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
1930   tRowcnt *pnRow       /* Write the revised row estimate here */
1931 ){
1932   Index *p = pBuilder->pNew->u.btree.pIndex;
1933   int nEq = pBuilder->pNew->u.btree.nEq;
1934   UnpackedRecord *pRec = pBuilder->pRec;
1935   int rc;                   /* Subfunction return code */
1936   tRowcnt a[2];             /* Statistics */
1937   int bOk;
1938 
1939   assert( nEq>=1 );
1940   assert( nEq<=p->nColumn );
1941   assert( p->aSample!=0 );
1942   assert( p->nSample>0 );
1943   assert( pBuilder->nRecValid<nEq );
1944 
1945   /* If values are not available for all fields of the index to the left
1946   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1947   if( pBuilder->nRecValid<(nEq-1) ){
1948     return SQLITE_NOTFOUND;
1949   }
1950 
1951   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1952   ** below would return the same value.  */
1953   if( nEq>=p->nColumn ){
1954     *pnRow = 1;
1955     return SQLITE_OK;
1956   }
1957 
1958   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1959   pBuilder->pRec = pRec;
1960   if( rc!=SQLITE_OK ) return rc;
1961   if( bOk==0 ) return SQLITE_NOTFOUND;
1962   pBuilder->nRecValid = nEq;
1963 
1964   whereKeyStats(pParse, p, pRec, 0, a);
1965   WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1966                    p->zName, nEq-1, (int)a[1]));
1967   *pnRow = a[1];
1968 
1969   return rc;
1970 }
1971 #endif /* SQLITE_ENABLE_STAT4 */
1972 
1973 #ifdef SQLITE_ENABLE_STAT4
1974 /*
1975 ** Estimate the number of rows that will be returned based on
1976 ** an IN constraint where the right-hand side of the IN operator
1977 ** is a list of values.  Example:
1978 **
1979 **        WHERE x IN (1,2,3,4)
1980 **
1981 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1982 ** If unable to make an estimate, leave *pnRow unchanged and return
1983 ** non-zero.
1984 **
1985 ** This routine can fail if it is unable to load a collating sequence
1986 ** required for string comparison, or if unable to allocate memory
1987 ** for a UTF conversion required for comparison.  The error is stored
1988 ** in the pParse structure.
1989 */
1990 static int whereInScanEst(
1991   Parse *pParse,       /* Parsing & code generating context */
1992   WhereLoopBuilder *pBuilder,
1993   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1994   tRowcnt *pnRow       /* Write the revised row estimate here */
1995 ){
1996   Index *p = pBuilder->pNew->u.btree.pIndex;
1997   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1998   int nRecValid = pBuilder->nRecValid;
1999   int rc = SQLITE_OK;     /* Subfunction return code */
2000   tRowcnt nEst;           /* Number of rows for a single term */
2001   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
2002   int i;                  /* Loop counter */
2003 
2004   assert( p->aSample!=0 );
2005   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
2006     nEst = nRow0;
2007     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
2008     nRowEst += nEst;
2009     pBuilder->nRecValid = nRecValid;
2010   }
2011 
2012   if( rc==SQLITE_OK ){
2013     if( nRowEst > nRow0 ) nRowEst = nRow0;
2014     *pnRow = nRowEst;
2015     WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
2016   }
2017   assert( pBuilder->nRecValid==nRecValid );
2018   return rc;
2019 }
2020 #endif /* SQLITE_ENABLE_STAT4 */
2021 
2022 
2023 #ifdef WHERETRACE_ENABLED
2024 /*
2025 ** Print the content of a WhereTerm object
2026 */
2027 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){
2028   if( pTerm==0 ){
2029     sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
2030   }else{
2031     char zType[8];
2032     char zLeft[50];
2033     memcpy(zType, "....", 5);
2034     if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
2035     if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
2036     if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
2037     if( pTerm->wtFlags & TERM_CODED  ) zType[3] = 'C';
2038     if( pTerm->eOperator & WO_SINGLE ){
2039       assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
2040       sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
2041                        pTerm->leftCursor, pTerm->u.x.leftColumn);
2042     }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
2043       sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx",
2044                        pTerm->u.pOrInfo->indexable);
2045     }else{
2046       sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
2047     }
2048     sqlite3DebugPrintf(
2049        "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x",
2050        iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags);
2051     /* The 0x10000 .wheretrace flag causes extra information to be
2052     ** shown about each Term */
2053     if( sqlite3WhereTrace & 0x10000 ){
2054       sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx",
2055         pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight);
2056     }
2057     if( (pTerm->eOperator & (WO_OR|WO_AND))==0 && pTerm->u.x.iField ){
2058       sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField);
2059     }
2060     if( pTerm->iParent>=0 ){
2061       sqlite3DebugPrintf(" iParent=%d", pTerm->iParent);
2062     }
2063     sqlite3DebugPrintf("\n");
2064     sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
2065   }
2066 }
2067 #endif
2068 
2069 #ifdef WHERETRACE_ENABLED
2070 /*
2071 ** Show the complete content of a WhereClause
2072 */
2073 void sqlite3WhereClausePrint(WhereClause *pWC){
2074   int i;
2075   for(i=0; i<pWC->nTerm; i++){
2076     sqlite3WhereTermPrint(&pWC->a[i], i);
2077   }
2078 }
2079 #endif
2080 
2081 #ifdef WHERETRACE_ENABLED
2082 /*
2083 ** Print a WhereLoop object for debugging purposes
2084 */
2085 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){
2086   WhereInfo *pWInfo = pWC->pWInfo;
2087   int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
2088   SrcItem *pItem = pWInfo->pTabList->a + p->iTab;
2089   Table *pTab = pItem->pTab;
2090   Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
2091   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
2092                      p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
2093   sqlite3DebugPrintf(" %12s",
2094                      pItem->zAlias ? pItem->zAlias : pTab->zName);
2095   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2096     const char *zName;
2097     if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
2098       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
2099         int i = sqlite3Strlen30(zName) - 1;
2100         while( zName[i]!='_' ) i--;
2101         zName += i;
2102       }
2103       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
2104     }else{
2105       sqlite3DebugPrintf("%20s","");
2106     }
2107   }else{
2108     char *z;
2109     if( p->u.vtab.idxStr ){
2110       z = sqlite3_mprintf("(%d,\"%s\",%#x)",
2111                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
2112     }else{
2113       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
2114     }
2115     sqlite3DebugPrintf(" %-19s", z);
2116     sqlite3_free(z);
2117   }
2118   if( p->wsFlags & WHERE_SKIPSCAN ){
2119     sqlite3DebugPrintf(" f %06x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
2120   }else{
2121     sqlite3DebugPrintf(" f %06x N %d", p->wsFlags, p->nLTerm);
2122   }
2123   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
2124   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
2125     int i;
2126     for(i=0; i<p->nLTerm; i++){
2127       sqlite3WhereTermPrint(p->aLTerm[i], i);
2128     }
2129   }
2130 }
2131 #endif
2132 
2133 /*
2134 ** Convert bulk memory into a valid WhereLoop that can be passed
2135 ** to whereLoopClear harmlessly.
2136 */
2137 static void whereLoopInit(WhereLoop *p){
2138   p->aLTerm = p->aLTermSpace;
2139   p->nLTerm = 0;
2140   p->nLSlot = ArraySize(p->aLTermSpace);
2141   p->wsFlags = 0;
2142 }
2143 
2144 /*
2145 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
2146 */
2147 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
2148   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
2149     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
2150       sqlite3_free(p->u.vtab.idxStr);
2151       p->u.vtab.needFree = 0;
2152       p->u.vtab.idxStr = 0;
2153     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
2154       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
2155       sqlite3DbFreeNN(db, p->u.btree.pIndex);
2156       p->u.btree.pIndex = 0;
2157     }
2158   }
2159 }
2160 
2161 /*
2162 ** Deallocate internal memory used by a WhereLoop object
2163 */
2164 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
2165   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
2166   whereLoopClearUnion(db, p);
2167   whereLoopInit(p);
2168 }
2169 
2170 /*
2171 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
2172 */
2173 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
2174   WhereTerm **paNew;
2175   if( p->nLSlot>=n ) return SQLITE_OK;
2176   n = (n+7)&~7;
2177   paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
2178   if( paNew==0 ) return SQLITE_NOMEM_BKPT;
2179   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
2180   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
2181   p->aLTerm = paNew;
2182   p->nLSlot = n;
2183   return SQLITE_OK;
2184 }
2185 
2186 /*
2187 ** Transfer content from the second pLoop into the first.
2188 */
2189 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
2190   whereLoopClearUnion(db, pTo);
2191   if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
2192     memset(pTo, 0, WHERE_LOOP_XFER_SZ);
2193     return SQLITE_NOMEM_BKPT;
2194   }
2195   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
2196   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
2197   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
2198     pFrom->u.vtab.needFree = 0;
2199   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
2200     pFrom->u.btree.pIndex = 0;
2201   }
2202   return SQLITE_OK;
2203 }
2204 
2205 /*
2206 ** Delete a WhereLoop object
2207 */
2208 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
2209   whereLoopClear(db, p);
2210   sqlite3DbFreeNN(db, p);
2211 }
2212 
2213 /*
2214 ** Free a WhereInfo structure
2215 */
2216 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
2217   int i;
2218   assert( pWInfo!=0 );
2219   for(i=0; i<pWInfo->nLevel; i++){
2220     WhereLevel *pLevel = &pWInfo->a[i];
2221     if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE)!=0 ){
2222       assert( (pLevel->pWLoop->wsFlags & WHERE_MULTI_OR)==0 );
2223       sqlite3DbFree(db, pLevel->u.in.aInLoop);
2224     }
2225   }
2226   sqlite3WhereClauseClear(&pWInfo->sWC);
2227   while( pWInfo->pLoops ){
2228     WhereLoop *p = pWInfo->pLoops;
2229     pWInfo->pLoops = p->pNextLoop;
2230     whereLoopDelete(db, p);
2231   }
2232   assert( pWInfo->pExprMods==0 );
2233   sqlite3DbFreeNN(db, pWInfo);
2234 }
2235 
2236 /* Undo all Expr node modifications
2237 */
2238 static void whereUndoExprMods(WhereInfo *pWInfo){
2239   while( pWInfo->pExprMods ){
2240     WhereExprMod *p = pWInfo->pExprMods;
2241     pWInfo->pExprMods = p->pNext;
2242     memcpy(p->pExpr, &p->orig, sizeof(p->orig));
2243     sqlite3DbFree(pWInfo->pParse->db, p);
2244   }
2245 }
2246 
2247 /*
2248 ** Return TRUE if all of the following are true:
2249 **
2250 **   (1)  X has the same or lower cost, or returns the same or fewer rows,
2251 **        than Y.
2252 **   (2)  X uses fewer WHERE clause terms than Y
2253 **   (3)  Every WHERE clause term used by X is also used by Y
2254 **   (4)  X skips at least as many columns as Y
2255 **   (5)  If X is a covering index, than Y is too
2256 **
2257 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
2258 ** If X is a proper subset of Y then Y is a better choice and ought
2259 ** to have a lower cost.  This routine returns TRUE when that cost
2260 ** relationship is inverted and needs to be adjusted.  Constraint (4)
2261 ** was added because if X uses skip-scan less than Y it still might
2262 ** deserve a lower cost even if it is a proper subset of Y.  Constraint (5)
2263 ** was added because a covering index probably deserves to have a lower cost
2264 ** than a non-covering index even if it is a proper subset.
2265 */
2266 static int whereLoopCheaperProperSubset(
2267   const WhereLoop *pX,       /* First WhereLoop to compare */
2268   const WhereLoop *pY        /* Compare against this WhereLoop */
2269 ){
2270   int i, j;
2271   if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
2272     return 0; /* X is not a subset of Y */
2273   }
2274   if( pX->rRun>pY->rRun && pX->nOut>pY->nOut ) return 0;
2275   if( pY->nSkip > pX->nSkip ) return 0;
2276   for(i=pX->nLTerm-1; i>=0; i--){
2277     if( pX->aLTerm[i]==0 ) continue;
2278     for(j=pY->nLTerm-1; j>=0; j--){
2279       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
2280     }
2281     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
2282   }
2283   if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
2284    && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
2285     return 0;  /* Constraint (5) */
2286   }
2287   return 1;  /* All conditions meet */
2288 }
2289 
2290 /*
2291 ** Try to adjust the cost and number of output rows of WhereLoop pTemplate
2292 ** upwards or downwards so that:
2293 **
2294 **   (1) pTemplate costs less than any other WhereLoops that are a proper
2295 **       subset of pTemplate
2296 **
2297 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
2298 **       is a proper subset.
2299 **
2300 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
2301 ** WHERE clause terms than Y and that every WHERE clause term used by X is
2302 ** also used by Y.
2303 */
2304 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
2305   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
2306   for(; p; p=p->pNextLoop){
2307     if( p->iTab!=pTemplate->iTab ) continue;
2308     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
2309     if( whereLoopCheaperProperSubset(p, pTemplate) ){
2310       /* Adjust pTemplate cost downward so that it is cheaper than its
2311       ** subset p. */
2312       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2313                        pTemplate->rRun, pTemplate->nOut,
2314                        MIN(p->rRun, pTemplate->rRun),
2315                        MIN(p->nOut - 1, pTemplate->nOut)));
2316       pTemplate->rRun = MIN(p->rRun, pTemplate->rRun);
2317       pTemplate->nOut = MIN(p->nOut - 1, pTemplate->nOut);
2318     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
2319       /* Adjust pTemplate cost upward so that it is costlier than p since
2320       ** pTemplate is a proper subset of p */
2321       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2322                        pTemplate->rRun, pTemplate->nOut,
2323                        MAX(p->rRun, pTemplate->rRun),
2324                        MAX(p->nOut + 1, pTemplate->nOut)));
2325       pTemplate->rRun = MAX(p->rRun, pTemplate->rRun);
2326       pTemplate->nOut = MAX(p->nOut + 1, pTemplate->nOut);
2327     }
2328   }
2329 }
2330 
2331 /*
2332 ** Search the list of WhereLoops in *ppPrev looking for one that can be
2333 ** replaced by pTemplate.
2334 **
2335 ** Return NULL if pTemplate does not belong on the WhereLoop list.
2336 ** In other words if pTemplate ought to be dropped from further consideration.
2337 **
2338 ** If pX is a WhereLoop that pTemplate can replace, then return the
2339 ** link that points to pX.
2340 **
2341 ** If pTemplate cannot replace any existing element of the list but needs
2342 ** to be added to the list as a new entry, then return a pointer to the
2343 ** tail of the list.
2344 */
2345 static WhereLoop **whereLoopFindLesser(
2346   WhereLoop **ppPrev,
2347   const WhereLoop *pTemplate
2348 ){
2349   WhereLoop *p;
2350   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
2351     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
2352       /* If either the iTab or iSortIdx values for two WhereLoop are different
2353       ** then those WhereLoops need to be considered separately.  Neither is
2354       ** a candidate to replace the other. */
2355       continue;
2356     }
2357     /* In the current implementation, the rSetup value is either zero
2358     ** or the cost of building an automatic index (NlogN) and the NlogN
2359     ** is the same for compatible WhereLoops. */
2360     assert( p->rSetup==0 || pTemplate->rSetup==0
2361                  || p->rSetup==pTemplate->rSetup );
2362 
2363     /* whereLoopAddBtree() always generates and inserts the automatic index
2364     ** case first.  Hence compatible candidate WhereLoops never have a larger
2365     ** rSetup. Call this SETUP-INVARIANT */
2366     assert( p->rSetup>=pTemplate->rSetup );
2367 
2368     /* Any loop using an appliation-defined index (or PRIMARY KEY or
2369     ** UNIQUE constraint) with one or more == constraints is better
2370     ** than an automatic index. Unless it is a skip-scan. */
2371     if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
2372      && (pTemplate->nSkip)==0
2373      && (pTemplate->wsFlags & WHERE_INDEXED)!=0
2374      && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
2375      && (p->prereq & pTemplate->prereq)==pTemplate->prereq
2376     ){
2377       break;
2378     }
2379 
2380     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2381     ** discarded.  WhereLoop p is better if:
2382     **   (1)  p has no more dependencies than pTemplate, and
2383     **   (2)  p has an equal or lower cost than pTemplate
2384     */
2385     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
2386      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
2387      && p->rRun<=pTemplate->rRun                      /* (2b) */
2388      && p->nOut<=pTemplate->nOut                      /* (2c) */
2389     ){
2390       return 0;  /* Discard pTemplate */
2391     }
2392 
2393     /* If pTemplate is always better than p, then cause p to be overwritten
2394     ** with pTemplate.  pTemplate is better than p if:
2395     **   (1)  pTemplate has no more dependences than p, and
2396     **   (2)  pTemplate has an equal or lower cost than p.
2397     */
2398     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
2399      && p->rRun>=pTemplate->rRun                             /* (2a) */
2400      && p->nOut>=pTemplate->nOut                             /* (2b) */
2401     ){
2402       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2403       break;   /* Cause p to be overwritten by pTemplate */
2404     }
2405   }
2406   return ppPrev;
2407 }
2408 
2409 /*
2410 ** Insert or replace a WhereLoop entry using the template supplied.
2411 **
2412 ** An existing WhereLoop entry might be overwritten if the new template
2413 ** is better and has fewer dependencies.  Or the template will be ignored
2414 ** and no insert will occur if an existing WhereLoop is faster and has
2415 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
2416 ** added based on the template.
2417 **
2418 ** If pBuilder->pOrSet is not NULL then we care about only the
2419 ** prerequisites and rRun and nOut costs of the N best loops.  That
2420 ** information is gathered in the pBuilder->pOrSet object.  This special
2421 ** processing mode is used only for OR clause processing.
2422 **
2423 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2424 ** still might overwrite similar loops with the new template if the
2425 ** new template is better.  Loops may be overwritten if the following
2426 ** conditions are met:
2427 **
2428 **    (1)  They have the same iTab.
2429 **    (2)  They have the same iSortIdx.
2430 **    (3)  The template has same or fewer dependencies than the current loop
2431 **    (4)  The template has the same or lower cost than the current loop
2432 */
2433 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2434   WhereLoop **ppPrev, *p;
2435   WhereInfo *pWInfo = pBuilder->pWInfo;
2436   sqlite3 *db = pWInfo->pParse->db;
2437   int rc;
2438 
2439   /* Stop the search once we hit the query planner search limit */
2440   if( pBuilder->iPlanLimit==0 ){
2441     WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
2442     if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0;
2443     return SQLITE_DONE;
2444   }
2445   pBuilder->iPlanLimit--;
2446 
2447   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2448 
2449   /* If pBuilder->pOrSet is defined, then only keep track of the costs
2450   ** and prereqs.
2451   */
2452   if( pBuilder->pOrSet!=0 ){
2453     if( pTemplate->nLTerm ){
2454 #if WHERETRACE_ENABLED
2455       u16 n = pBuilder->pOrSet->n;
2456       int x =
2457 #endif
2458       whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2459                                     pTemplate->nOut);
2460 #if WHERETRACE_ENABLED /* 0x8 */
2461       if( sqlite3WhereTrace & 0x8 ){
2462         sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
2463         sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2464       }
2465 #endif
2466     }
2467     return SQLITE_OK;
2468   }
2469 
2470   /* Look for an existing WhereLoop to replace with pTemplate
2471   */
2472   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2473 
2474   if( ppPrev==0 ){
2475     /* There already exists a WhereLoop on the list that is better
2476     ** than pTemplate, so just ignore pTemplate */
2477 #if WHERETRACE_ENABLED /* 0x8 */
2478     if( sqlite3WhereTrace & 0x8 ){
2479       sqlite3DebugPrintf("   skip: ");
2480       sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2481     }
2482 #endif
2483     return SQLITE_OK;
2484   }else{
2485     p = *ppPrev;
2486   }
2487 
2488   /* If we reach this point it means that either p[] should be overwritten
2489   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2490   ** WhereLoop and insert it.
2491   */
2492 #if WHERETRACE_ENABLED /* 0x8 */
2493   if( sqlite3WhereTrace & 0x8 ){
2494     if( p!=0 ){
2495       sqlite3DebugPrintf("replace: ");
2496       sqlite3WhereLoopPrint(p, pBuilder->pWC);
2497       sqlite3DebugPrintf("   with: ");
2498     }else{
2499       sqlite3DebugPrintf("    add: ");
2500     }
2501     sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2502   }
2503 #endif
2504   if( p==0 ){
2505     /* Allocate a new WhereLoop to add to the end of the list */
2506     *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2507     if( p==0 ) return SQLITE_NOMEM_BKPT;
2508     whereLoopInit(p);
2509     p->pNextLoop = 0;
2510   }else{
2511     /* We will be overwriting WhereLoop p[].  But before we do, first
2512     ** go through the rest of the list and delete any other entries besides
2513     ** p[] that are also supplated by pTemplate */
2514     WhereLoop **ppTail = &p->pNextLoop;
2515     WhereLoop *pToDel;
2516     while( *ppTail ){
2517       ppTail = whereLoopFindLesser(ppTail, pTemplate);
2518       if( ppTail==0 ) break;
2519       pToDel = *ppTail;
2520       if( pToDel==0 ) break;
2521       *ppTail = pToDel->pNextLoop;
2522 #if WHERETRACE_ENABLED /* 0x8 */
2523       if( sqlite3WhereTrace & 0x8 ){
2524         sqlite3DebugPrintf(" delete: ");
2525         sqlite3WhereLoopPrint(pToDel, pBuilder->pWC);
2526       }
2527 #endif
2528       whereLoopDelete(db, pToDel);
2529     }
2530   }
2531   rc = whereLoopXfer(db, p, pTemplate);
2532   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2533     Index *pIndex = p->u.btree.pIndex;
2534     if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){
2535       p->u.btree.pIndex = 0;
2536     }
2537   }
2538   return rc;
2539 }
2540 
2541 /*
2542 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2543 ** WHERE clause that reference the loop but which are not used by an
2544 ** index.
2545 *
2546 ** For every WHERE clause term that is not used by the index
2547 ** and which has a truth probability assigned by one of the likelihood(),
2548 ** likely(), or unlikely() SQL functions, reduce the estimated number
2549 ** of output rows by the probability specified.
2550 **
2551 ** TUNING:  For every WHERE clause term that is not used by the index
2552 ** and which does not have an assigned truth probability, heuristics
2553 ** described below are used to try to estimate the truth probability.
2554 ** TODO --> Perhaps this is something that could be improved by better
2555 ** table statistics.
2556 **
2557 ** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
2558 ** value corresponds to -1 in LogEst notation, so this means decrement
2559 ** the WhereLoop.nOut field for every such WHERE clause term.
2560 **
2561 ** Heuristic 2:  If there exists one or more WHERE clause terms of the
2562 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2563 ** final output row estimate is no greater than 1/4 of the total number
2564 ** of rows in the table.  In other words, assume that x==EXPR will filter
2565 ** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
2566 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2567 ** on the "x" column and so in that case only cap the output row estimate
2568 ** at 1/2 instead of 1/4.
2569 */
2570 static void whereLoopOutputAdjust(
2571   WhereClause *pWC,      /* The WHERE clause */
2572   WhereLoop *pLoop,      /* The loop to adjust downward */
2573   LogEst nRow            /* Number of rows in the entire table */
2574 ){
2575   WhereTerm *pTerm, *pX;
2576   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2577   int i, j;
2578   LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */
2579 
2580   assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2581   for(i=pWC->nBase, pTerm=pWC->a; i>0; i--, pTerm++){
2582     assert( pTerm!=0 );
2583     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2584     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2585     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) continue;
2586     for(j=pLoop->nLTerm-1; j>=0; j--){
2587       pX = pLoop->aLTerm[j];
2588       if( pX==0 ) continue;
2589       if( pX==pTerm ) break;
2590       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2591     }
2592     if( j<0 ){
2593       if( pLoop->maskSelf==pTerm->prereqAll ){
2594         /* If there are extra terms in the WHERE clause not used by an index
2595         ** that depend only on the table being scanned, and that will tend to
2596         ** cause many rows to be omitted, then mark that table as
2597         ** "self-culling". */
2598         pLoop->wsFlags |= WHERE_SELFCULL;
2599       }
2600       if( pTerm->truthProb<=0 ){
2601         /* If a truth probability is specified using the likelihood() hints,
2602         ** then use the probability provided by the application. */
2603         pLoop->nOut += pTerm->truthProb;
2604       }else{
2605         /* In the absence of explicit truth probabilities, use heuristics to
2606         ** guess a reasonable truth probability. */
2607         pLoop->nOut--;
2608         if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0
2609          && (pTerm->wtFlags & TERM_HIGHTRUTH)==0  /* tag-20200224-1 */
2610         ){
2611           Expr *pRight = pTerm->pExpr->pRight;
2612           int k = 0;
2613           testcase( pTerm->pExpr->op==TK_IS );
2614           if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2615             k = 10;
2616           }else{
2617             k = 20;
2618           }
2619           if( iReduce<k ){
2620             pTerm->wtFlags |= TERM_HEURTRUTH;
2621             iReduce = k;
2622           }
2623         }
2624       }
2625     }
2626   }
2627   if( pLoop->nOut > nRow-iReduce ){
2628     pLoop->nOut = nRow - iReduce;
2629   }
2630 }
2631 
2632 /*
2633 ** Term pTerm is a vector range comparison operation. The first comparison
2634 ** in the vector can be optimized using column nEq of the index. This
2635 ** function returns the total number of vector elements that can be used
2636 ** as part of the range comparison.
2637 **
2638 ** For example, if the query is:
2639 **
2640 **   WHERE a = ? AND (b, c, d) > (?, ?, ?)
2641 **
2642 ** and the index:
2643 **
2644 **   CREATE INDEX ... ON (a, b, c, d, e)
2645 **
2646 ** then this function would be invoked with nEq=1. The value returned in
2647 ** this case is 3.
2648 */
2649 static int whereRangeVectorLen(
2650   Parse *pParse,       /* Parsing context */
2651   int iCur,            /* Cursor open on pIdx */
2652   Index *pIdx,         /* The index to be used for a inequality constraint */
2653   int nEq,             /* Number of prior equality constraints on same index */
2654   WhereTerm *pTerm     /* The vector inequality constraint */
2655 ){
2656   int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2657   int i;
2658 
2659   nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2660   for(i=1; i<nCmp; i++){
2661     /* Test if comparison i of pTerm is compatible with column (i+nEq)
2662     ** of the index. If not, exit the loop.  */
2663     char aff;                     /* Comparison affinity */
2664     char idxaff = 0;              /* Indexed columns affinity */
2665     CollSeq *pColl;               /* Comparison collation sequence */
2666     Expr *pLhs, *pRhs;
2667 
2668     assert( ExprUseXList(pTerm->pExpr->pLeft) );
2669     pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2670     pRhs = pTerm->pExpr->pRight;
2671     if( ExprUseXSelect(pRhs) ){
2672       pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2673     }else{
2674       pRhs = pRhs->x.pList->a[i].pExpr;
2675     }
2676 
2677     /* Check that the LHS of the comparison is a column reference to
2678     ** the right column of the right source table. And that the sort
2679     ** order of the index column is the same as the sort order of the
2680     ** leftmost index column.  */
2681     if( pLhs->op!=TK_COLUMN
2682      || pLhs->iTable!=iCur
2683      || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2684      || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2685     ){
2686       break;
2687     }
2688 
2689     testcase( pLhs->iColumn==XN_ROWID );
2690     aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2691     idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2692     if( aff!=idxaff ) break;
2693 
2694     pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2695     if( pColl==0 ) break;
2696     if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2697   }
2698   return i;
2699 }
2700 
2701 /*
2702 ** Adjust the cost C by the costMult facter T.  This only occurs if
2703 ** compiled with -DSQLITE_ENABLE_COSTMULT
2704 */
2705 #ifdef SQLITE_ENABLE_COSTMULT
2706 # define ApplyCostMultiplier(C,T)  C += T
2707 #else
2708 # define ApplyCostMultiplier(C,T)
2709 #endif
2710 
2711 /*
2712 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2713 ** index pIndex. Try to match one more.
2714 **
2715 ** When this function is called, pBuilder->pNew->nOut contains the
2716 ** number of rows expected to be visited by filtering using the nEq
2717 ** terms only. If it is modified, this value is restored before this
2718 ** function returns.
2719 **
2720 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
2721 ** a fake index used for the INTEGER PRIMARY KEY.
2722 */
2723 static int whereLoopAddBtreeIndex(
2724   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
2725   SrcItem *pSrc,                  /* FROM clause term being analyzed */
2726   Index *pProbe,                  /* An index on pSrc */
2727   LogEst nInMul                   /* log(Number of iterations due to IN) */
2728 ){
2729   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
2730   Parse *pParse = pWInfo->pParse;        /* Parsing context */
2731   sqlite3 *db = pParse->db;       /* Database connection malloc context */
2732   WhereLoop *pNew;                /* Template WhereLoop under construction */
2733   WhereTerm *pTerm;               /* A WhereTerm under consideration */
2734   int opMask;                     /* Valid operators for constraints */
2735   WhereScan scan;                 /* Iterator for WHERE terms */
2736   Bitmask saved_prereq;           /* Original value of pNew->prereq */
2737   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
2738   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
2739   u16 saved_nBtm;                 /* Original value of pNew->u.btree.nBtm */
2740   u16 saved_nTop;                 /* Original value of pNew->u.btree.nTop */
2741   u16 saved_nSkip;                /* Original value of pNew->nSkip */
2742   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
2743   LogEst saved_nOut;              /* Original value of pNew->nOut */
2744   int rc = SQLITE_OK;             /* Return code */
2745   LogEst rSize;                   /* Number of rows in the table */
2746   LogEst rLogSize;                /* Logarithm of table size */
2747   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2748 
2749   pNew = pBuilder->pNew;
2750   if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2751   WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n",
2752                      pProbe->pTable->zName,pProbe->zName,
2753                      pNew->u.btree.nEq, pNew->nSkip, pNew->rRun));
2754 
2755   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2756   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2757   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2758     opMask = WO_LT|WO_LE;
2759   }else{
2760     assert( pNew->u.btree.nBtm==0 );
2761     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2762   }
2763   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2764 
2765   assert( pNew->u.btree.nEq<pProbe->nColumn );
2766   assert( pNew->u.btree.nEq<pProbe->nKeyCol
2767        || pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY );
2768 
2769   saved_nEq = pNew->u.btree.nEq;
2770   saved_nBtm = pNew->u.btree.nBtm;
2771   saved_nTop = pNew->u.btree.nTop;
2772   saved_nSkip = pNew->nSkip;
2773   saved_nLTerm = pNew->nLTerm;
2774   saved_wsFlags = pNew->wsFlags;
2775   saved_prereq = pNew->prereq;
2776   saved_nOut = pNew->nOut;
2777   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2778                         opMask, pProbe);
2779   pNew->rSetup = 0;
2780   rSize = pProbe->aiRowLogEst[0];
2781   rLogSize = estLog(rSize);
2782   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2783     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
2784     LogEst rCostIdx;
2785     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
2786     int nIn = 0;
2787 #ifdef SQLITE_ENABLE_STAT4
2788     int nRecValid = pBuilder->nRecValid;
2789 #endif
2790     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2791      && indexColumnNotNull(pProbe, saved_nEq)
2792     ){
2793       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2794     }
2795     if( pTerm->prereqRight & pNew->maskSelf ) continue;
2796 
2797     /* Do not allow the upper bound of a LIKE optimization range constraint
2798     ** to mix with a lower range bound from some other source */
2799     if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2800 
2801     /* tag-20191211-001:  Do not allow constraints from the WHERE clause to
2802     ** be used by the right table of a LEFT JOIN.  Only constraints in the
2803     ** ON clause are allowed.  See tag-20191211-002 for the vtab equivalent. */
2804     if( (pSrc->fg.jointype & JT_LEFT)!=0
2805      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
2806     ){
2807       continue;
2808     }
2809 
2810     if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2811       pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE;
2812     }else{
2813       pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED;
2814     }
2815     pNew->wsFlags = saved_wsFlags;
2816     pNew->u.btree.nEq = saved_nEq;
2817     pNew->u.btree.nBtm = saved_nBtm;
2818     pNew->u.btree.nTop = saved_nTop;
2819     pNew->nLTerm = saved_nLTerm;
2820     if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2821     pNew->aLTerm[pNew->nLTerm++] = pTerm;
2822     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2823 
2824     assert( nInMul==0
2825         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2826         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2827         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2828     );
2829 
2830     if( eOp & WO_IN ){
2831       Expr *pExpr = pTerm->pExpr;
2832       if( ExprUseXSelect(pExpr) ){
2833         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
2834         int i;
2835         nIn = 46;  assert( 46==sqlite3LogEst(25) );
2836 
2837         /* The expression may actually be of the form (x, y) IN (SELECT...).
2838         ** In this case there is a separate term for each of (x) and (y).
2839         ** However, the nIn multiplier should only be applied once, not once
2840         ** for each such term. The following loop checks that pTerm is the
2841         ** first such term in use, and sets nIn back to 0 if it is not. */
2842         for(i=0; i<pNew->nLTerm-1; i++){
2843           if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2844         }
2845       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2846         /* "x IN (value, value, ...)" */
2847         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2848       }
2849       if( pProbe->hasStat1 && rLogSize>=10 ){
2850         LogEst M, logK, x;
2851         /* Let:
2852         **   N = the total number of rows in the table
2853         **   K = the number of entries on the RHS of the IN operator
2854         **   M = the number of rows in the table that match terms to the
2855         **       to the left in the same index.  If the IN operator is on
2856         **       the left-most index column, M==N.
2857         **
2858         ** Given the definitions above, it is better to omit the IN operator
2859         ** from the index lookup and instead do a scan of the M elements,
2860         ** testing each scanned row against the IN operator separately, if:
2861         **
2862         **        M*log(K) < K*log(N)
2863         **
2864         ** Our estimates for M, K, and N might be inaccurate, so we build in
2865         ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
2866         ** with the index, as using an index has better worst-case behavior.
2867         ** If we do not have real sqlite_stat1 data, always prefer to use
2868         ** the index.  Do not bother with this optimization on very small
2869         ** tables (less than 2 rows) as it is pointless in that case.
2870         */
2871         M = pProbe->aiRowLogEst[saved_nEq];
2872         logK = estLog(nIn);
2873         /* TUNING      v-----  10 to bias toward indexed IN */
2874         x = M + logK + 10 - (nIn + rLogSize);
2875         if( x>=0 ){
2876           WHERETRACE(0x40,
2877             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) "
2878              "prefers indexed lookup\n",
2879              saved_nEq, M, logK, nIn, rLogSize, x));
2880         }else if( nInMul<2 && OptimizationEnabled(db, SQLITE_SeekScan) ){
2881           WHERETRACE(0x40,
2882             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2883              " nInMul=%d) prefers skip-scan\n",
2884              saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
2885           pNew->wsFlags |= WHERE_IN_SEEKSCAN;
2886         }else{
2887           WHERETRACE(0x40,
2888             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2889              " nInMul=%d) prefers normal scan\n",
2890              saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
2891           continue;
2892         }
2893       }
2894       pNew->wsFlags |= WHERE_COLUMN_IN;
2895     }else if( eOp & (WO_EQ|WO_IS) ){
2896       int iCol = pProbe->aiColumn[saved_nEq];
2897       pNew->wsFlags |= WHERE_COLUMN_EQ;
2898       assert( saved_nEq==pNew->u.btree.nEq );
2899       if( iCol==XN_ROWID
2900        || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2901       ){
2902         if( iCol==XN_ROWID || pProbe->uniqNotNull
2903          || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
2904         ){
2905           pNew->wsFlags |= WHERE_ONEROW;
2906         }else{
2907           pNew->wsFlags |= WHERE_UNQ_WANTED;
2908         }
2909       }
2910       if( scan.iEquiv>1 ) pNew->wsFlags |= WHERE_TRANSCONS;
2911     }else if( eOp & WO_ISNULL ){
2912       pNew->wsFlags |= WHERE_COLUMN_NULL;
2913     }else if( eOp & (WO_GT|WO_GE) ){
2914       testcase( eOp & WO_GT );
2915       testcase( eOp & WO_GE );
2916       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2917       pNew->u.btree.nBtm = whereRangeVectorLen(
2918           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2919       );
2920       pBtm = pTerm;
2921       pTop = 0;
2922       if( pTerm->wtFlags & TERM_LIKEOPT ){
2923         /* Range constraints that come from the LIKE optimization are
2924         ** always used in pairs. */
2925         pTop = &pTerm[1];
2926         assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2927         assert( pTop->wtFlags & TERM_LIKEOPT );
2928         assert( pTop->eOperator==WO_LT );
2929         if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2930         pNew->aLTerm[pNew->nLTerm++] = pTop;
2931         pNew->wsFlags |= WHERE_TOP_LIMIT;
2932         pNew->u.btree.nTop = 1;
2933       }
2934     }else{
2935       assert( eOp & (WO_LT|WO_LE) );
2936       testcase( eOp & WO_LT );
2937       testcase( eOp & WO_LE );
2938       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2939       pNew->u.btree.nTop = whereRangeVectorLen(
2940           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2941       );
2942       pTop = pTerm;
2943       pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2944                      pNew->aLTerm[pNew->nLTerm-2] : 0;
2945     }
2946 
2947     /* At this point pNew->nOut is set to the number of rows expected to
2948     ** be visited by the index scan before considering term pTerm, or the
2949     ** values of nIn and nInMul. In other words, assuming that all
2950     ** "x IN(...)" terms are replaced with "x = ?". This block updates
2951     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
2952     assert( pNew->nOut==saved_nOut );
2953     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2954       /* Adjust nOut using stat4 data. Or, if there is no stat4
2955       ** data, using some other estimate.  */
2956       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2957     }else{
2958       int nEq = ++pNew->u.btree.nEq;
2959       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2960 
2961       assert( pNew->nOut==saved_nOut );
2962       if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2963         assert( (eOp & WO_IN) || nIn==0 );
2964         testcase( eOp & WO_IN );
2965         pNew->nOut += pTerm->truthProb;
2966         pNew->nOut -= nIn;
2967       }else{
2968 #ifdef SQLITE_ENABLE_STAT4
2969         tRowcnt nOut = 0;
2970         if( nInMul==0
2971          && pProbe->nSample
2972          && ALWAYS(pNew->u.btree.nEq<=pProbe->nSampleCol)
2973          && ((eOp & WO_IN)==0 || ExprUseXList(pTerm->pExpr))
2974          && OptimizationEnabled(db, SQLITE_Stat4)
2975         ){
2976           Expr *pExpr = pTerm->pExpr;
2977           if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2978             testcase( eOp & WO_EQ );
2979             testcase( eOp & WO_IS );
2980             testcase( eOp & WO_ISNULL );
2981             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2982           }else{
2983             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2984           }
2985           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2986           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
2987           if( nOut ){
2988             pNew->nOut = sqlite3LogEst(nOut);
2989             if( nEq==1
2990              /* TUNING: Mark terms as "low selectivity" if they seem likely
2991              ** to be true for half or more of the rows in the table.
2992              ** See tag-202002240-1 */
2993              && pNew->nOut+10 > pProbe->aiRowLogEst[0]
2994             ){
2995 #if WHERETRACE_ENABLED /* 0x01 */
2996               if( sqlite3WhereTrace & 0x01 ){
2997                 sqlite3DebugPrintf(
2998                    "STAT4 determines term has low selectivity:\n");
2999                 sqlite3WhereTermPrint(pTerm, 999);
3000               }
3001 #endif
3002               pTerm->wtFlags |= TERM_HIGHTRUTH;
3003               if( pTerm->wtFlags & TERM_HEURTRUTH ){
3004                 /* If the term has previously been used with an assumption of
3005                 ** higher selectivity, then set the flag to rerun the
3006                 ** loop computations. */
3007                 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS;
3008               }
3009             }
3010             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
3011             pNew->nOut -= nIn;
3012           }
3013         }
3014         if( nOut==0 )
3015 #endif
3016         {
3017           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
3018           if( eOp & WO_ISNULL ){
3019             /* TUNING: If there is no likelihood() value, assume that a
3020             ** "col IS NULL" expression matches twice as many rows
3021             ** as (col=?). */
3022             pNew->nOut += 10;
3023           }
3024         }
3025       }
3026     }
3027 
3028     /* Set rCostIdx to the cost of visiting selected rows in index. Add
3029     ** it to pNew->rRun, which is currently set to the cost of the index
3030     ** seek only. Then, if this is a non-covering index, add the cost of
3031     ** visiting the rows in the main table.  */
3032     assert( pSrc->pTab->szTabRow>0 );
3033     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
3034     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
3035     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
3036       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
3037     }
3038     ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
3039 
3040     nOutUnadjusted = pNew->nOut;
3041     pNew->rRun += nInMul + nIn;
3042     pNew->nOut += nInMul + nIn;
3043     whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
3044     rc = whereLoopInsert(pBuilder, pNew);
3045 
3046     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
3047       pNew->nOut = saved_nOut;
3048     }else{
3049       pNew->nOut = nOutUnadjusted;
3050     }
3051 
3052     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
3053      && pNew->u.btree.nEq<pProbe->nColumn
3054      && (pNew->u.btree.nEq<pProbe->nKeyCol ||
3055            pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY)
3056     ){
3057       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
3058     }
3059     pNew->nOut = saved_nOut;
3060 #ifdef SQLITE_ENABLE_STAT4
3061     pBuilder->nRecValid = nRecValid;
3062 #endif
3063   }
3064   pNew->prereq = saved_prereq;
3065   pNew->u.btree.nEq = saved_nEq;
3066   pNew->u.btree.nBtm = saved_nBtm;
3067   pNew->u.btree.nTop = saved_nTop;
3068   pNew->nSkip = saved_nSkip;
3069   pNew->wsFlags = saved_wsFlags;
3070   pNew->nOut = saved_nOut;
3071   pNew->nLTerm = saved_nLTerm;
3072 
3073   /* Consider using a skip-scan if there are no WHERE clause constraints
3074   ** available for the left-most terms of the index, and if the average
3075   ** number of repeats in the left-most terms is at least 18.
3076   **
3077   ** The magic number 18 is selected on the basis that scanning 17 rows
3078   ** is almost always quicker than an index seek (even though if the index
3079   ** contains fewer than 2^17 rows we assume otherwise in other parts of
3080   ** the code). And, even if it is not, it should not be too much slower.
3081   ** On the other hand, the extra seeks could end up being significantly
3082   ** more expensive.  */
3083   assert( 42==sqlite3LogEst(18) );
3084   if( saved_nEq==saved_nSkip
3085    && saved_nEq+1<pProbe->nKeyCol
3086    && saved_nEq==pNew->nLTerm
3087    && pProbe->noSkipScan==0
3088    && pProbe->hasStat1!=0
3089    && OptimizationEnabled(db, SQLITE_SkipScan)
3090    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
3091    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
3092   ){
3093     LogEst nIter;
3094     pNew->u.btree.nEq++;
3095     pNew->nSkip++;
3096     pNew->aLTerm[pNew->nLTerm++] = 0;
3097     pNew->wsFlags |= WHERE_SKIPSCAN;
3098     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
3099     pNew->nOut -= nIter;
3100     /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
3101     ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
3102     nIter += 5;
3103     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
3104     pNew->nOut = saved_nOut;
3105     pNew->u.btree.nEq = saved_nEq;
3106     pNew->nSkip = saved_nSkip;
3107     pNew->wsFlags = saved_wsFlags;
3108   }
3109 
3110   WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
3111                       pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
3112   return rc;
3113 }
3114 
3115 /*
3116 ** Return True if it is possible that pIndex might be useful in
3117 ** implementing the ORDER BY clause in pBuilder.
3118 **
3119 ** Return False if pBuilder does not contain an ORDER BY clause or
3120 ** if there is no way for pIndex to be useful in implementing that
3121 ** ORDER BY clause.
3122 */
3123 static int indexMightHelpWithOrderBy(
3124   WhereLoopBuilder *pBuilder,
3125   Index *pIndex,
3126   int iCursor
3127 ){
3128   ExprList *pOB;
3129   ExprList *aColExpr;
3130   int ii, jj;
3131 
3132   if( pIndex->bUnordered ) return 0;
3133   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
3134   for(ii=0; ii<pOB->nExpr; ii++){
3135     Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr);
3136     if( NEVER(pExpr==0) ) continue;
3137     if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
3138       if( pExpr->iColumn<0 ) return 1;
3139       for(jj=0; jj<pIndex->nKeyCol; jj++){
3140         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
3141       }
3142     }else if( (aColExpr = pIndex->aColExpr)!=0 ){
3143       for(jj=0; jj<pIndex->nKeyCol; jj++){
3144         if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
3145         if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
3146           return 1;
3147         }
3148       }
3149     }
3150   }
3151   return 0;
3152 }
3153 
3154 /* Check to see if a partial index with pPartIndexWhere can be used
3155 ** in the current query.  Return true if it can be and false if not.
3156 */
3157 static int whereUsablePartialIndex(
3158   int iTab,             /* The table for which we want an index */
3159   int isLeft,           /* True if iTab is the right table of a LEFT JOIN */
3160   WhereClause *pWC,     /* The WHERE clause of the query */
3161   Expr *pWhere          /* The WHERE clause from the partial index */
3162 ){
3163   int i;
3164   WhereTerm *pTerm;
3165   Parse *pParse = pWC->pWInfo->pParse;
3166   while( pWhere->op==TK_AND ){
3167     if( !whereUsablePartialIndex(iTab,isLeft,pWC,pWhere->pLeft) ) return 0;
3168     pWhere = pWhere->pRight;
3169   }
3170   if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
3171   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
3172     Expr *pExpr;
3173     pExpr = pTerm->pExpr;
3174     if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->w.iRightJoinTable==iTab)
3175      && (isLeft==0 || ExprHasProperty(pExpr, EP_FromJoin))
3176      && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
3177      && (pTerm->wtFlags & TERM_VNULL)==0
3178     ){
3179       return 1;
3180     }
3181   }
3182   return 0;
3183 }
3184 
3185 /*
3186 ** Add all WhereLoop objects for a single table of the join where the table
3187 ** is identified by pBuilder->pNew->iTab.  That table is guaranteed to be
3188 ** a b-tree table, not a virtual table.
3189 **
3190 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
3191 ** are calculated as follows:
3192 **
3193 ** For a full scan, assuming the table (or index) contains nRow rows:
3194 **
3195 **     cost = nRow * 3.0                    // full-table scan
3196 **     cost = nRow * K                      // scan of covering index
3197 **     cost = nRow * (K+3.0)                // scan of non-covering index
3198 **
3199 ** where K is a value between 1.1 and 3.0 set based on the relative
3200 ** estimated average size of the index and table records.
3201 **
3202 ** For an index scan, where nVisit is the number of index rows visited
3203 ** by the scan, and nSeek is the number of seek operations required on
3204 ** the index b-tree:
3205 **
3206 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
3207 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
3208 **
3209 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
3210 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
3211 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
3212 **
3213 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
3214 ** of uncertainty.  For this reason, scoring is designed to pick plans that
3215 ** "do the least harm" if the estimates are inaccurate.  For example, a
3216 ** log(nRow) factor is omitted from a non-covering index scan in order to
3217 ** bias the scoring in favor of using an index, since the worst-case
3218 ** performance of using an index is far better than the worst-case performance
3219 ** of a full table scan.
3220 */
3221 static int whereLoopAddBtree(
3222   WhereLoopBuilder *pBuilder, /* WHERE clause information */
3223   Bitmask mPrereq             /* Extra prerequesites for using this table */
3224 ){
3225   WhereInfo *pWInfo;          /* WHERE analysis context */
3226   Index *pProbe;              /* An index we are evaluating */
3227   Index sPk;                  /* A fake index object for the primary key */
3228   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
3229   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
3230   SrcList *pTabList;          /* The FROM clause */
3231   SrcItem *pSrc;              /* The FROM clause btree term to add */
3232   WhereLoop *pNew;            /* Template WhereLoop object */
3233   int rc = SQLITE_OK;         /* Return code */
3234   int iSortIdx = 1;           /* Index number */
3235   int b;                      /* A boolean value */
3236   LogEst rSize;               /* number of rows in the table */
3237   WhereClause *pWC;           /* The parsed WHERE clause */
3238   Table *pTab;                /* Table being queried */
3239 
3240   pNew = pBuilder->pNew;
3241   pWInfo = pBuilder->pWInfo;
3242   pTabList = pWInfo->pTabList;
3243   pSrc = pTabList->a + pNew->iTab;
3244   pTab = pSrc->pTab;
3245   pWC = pBuilder->pWC;
3246   assert( !IsVirtual(pSrc->pTab) );
3247 
3248   if( pSrc->fg.isIndexedBy ){
3249     assert( pSrc->fg.isCte==0 );
3250     /* An INDEXED BY clause specifies a particular index to use */
3251     pProbe = pSrc->u2.pIBIndex;
3252   }else if( !HasRowid(pTab) ){
3253     pProbe = pTab->pIndex;
3254   }else{
3255     /* There is no INDEXED BY clause.  Create a fake Index object in local
3256     ** variable sPk to represent the rowid primary key index.  Make this
3257     ** fake index the first in a chain of Index objects with all of the real
3258     ** indices to follow */
3259     Index *pFirst;                  /* First of real indices on the table */
3260     memset(&sPk, 0, sizeof(Index));
3261     sPk.nKeyCol = 1;
3262     sPk.nColumn = 1;
3263     sPk.aiColumn = &aiColumnPk;
3264     sPk.aiRowLogEst = aiRowEstPk;
3265     sPk.onError = OE_Replace;
3266     sPk.pTable = pTab;
3267     sPk.szIdxRow = pTab->szTabRow;
3268     sPk.idxType = SQLITE_IDXTYPE_IPK;
3269     aiRowEstPk[0] = pTab->nRowLogEst;
3270     aiRowEstPk[1] = 0;
3271     pFirst = pSrc->pTab->pIndex;
3272     if( pSrc->fg.notIndexed==0 ){
3273       /* The real indices of the table are only considered if the
3274       ** NOT INDEXED qualifier is omitted from the FROM clause */
3275       sPk.pNext = pFirst;
3276     }
3277     pProbe = &sPk;
3278   }
3279   rSize = pTab->nRowLogEst;
3280 
3281 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
3282   /* Automatic indexes */
3283   if( !pBuilder->pOrSet      /* Not part of an OR optimization */
3284    && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
3285    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
3286    && !pSrc->fg.isIndexedBy  /* Has no INDEXED BY clause */
3287    && !pSrc->fg.notIndexed   /* Has no NOT INDEXED clause */
3288    && HasRowid(pTab)         /* Not WITHOUT ROWID table. (FIXME: Why not?) */
3289    && !pSrc->fg.isCorrelated /* Not a correlated subquery */
3290    && !pSrc->fg.isRecursive  /* Not a recursive common table expression. */
3291   ){
3292     /* Generate auto-index WhereLoops */
3293     LogEst rLogSize;         /* Logarithm of the number of rows in the table */
3294     WhereTerm *pTerm;
3295     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
3296     rLogSize = estLog(rSize);
3297     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
3298       if( pTerm->prereqRight & pNew->maskSelf ) continue;
3299       if( termCanDriveIndex(pTerm, pSrc, 0) ){
3300         pNew->u.btree.nEq = 1;
3301         pNew->nSkip = 0;
3302         pNew->u.btree.pIndex = 0;
3303         pNew->nLTerm = 1;
3304         pNew->aLTerm[0] = pTerm;
3305         /* TUNING: One-time cost for computing the automatic index is
3306         ** estimated to be X*N*log2(N) where N is the number of rows in
3307         ** the table being indexed and where X is 7 (LogEst=28) for normal
3308         ** tables or 0.5 (LogEst=-10) for views and subqueries.  The value
3309         ** of X is smaller for views and subqueries so that the query planner
3310         ** will be more aggressive about generating automatic indexes for
3311         ** those objects, since there is no opportunity to add schema
3312         ** indexes on subqueries and views. */
3313         pNew->rSetup = rLogSize + rSize;
3314         if( !IsView(pTab) && (pTab->tabFlags & TF_Ephemeral)==0 ){
3315           pNew->rSetup += 28;
3316         }else{
3317           pNew->rSetup -= 10;
3318         }
3319         ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
3320         if( pNew->rSetup<0 ) pNew->rSetup = 0;
3321         /* TUNING: Each index lookup yields 20 rows in the table.  This
3322         ** is more than the usual guess of 10 rows, since we have no way
3323         ** of knowing how selective the index will ultimately be.  It would
3324         ** not be unreasonable to make this value much larger. */
3325         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
3326         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
3327         pNew->wsFlags = WHERE_AUTO_INDEX;
3328         pNew->prereq = mPrereq | pTerm->prereqRight;
3329         rc = whereLoopInsert(pBuilder, pNew);
3330       }
3331     }
3332   }
3333 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
3334 
3335   /* Loop over all indices. If there was an INDEXED BY clause, then only
3336   ** consider index pProbe.  */
3337   for(; rc==SQLITE_OK && pProbe;
3338       pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++
3339   ){
3340     int isLeft = (pSrc->fg.jointype & JT_OUTER)!=0;
3341     if( pProbe->pPartIdxWhere!=0
3342      && !whereUsablePartialIndex(pSrc->iCursor, isLeft, pWC,
3343                                  pProbe->pPartIdxWhere)
3344     ){
3345       testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
3346       continue;  /* Partial index inappropriate for this query */
3347     }
3348     if( pProbe->bNoQuery ) continue;
3349     rSize = pProbe->aiRowLogEst[0];
3350     pNew->u.btree.nEq = 0;
3351     pNew->u.btree.nBtm = 0;
3352     pNew->u.btree.nTop = 0;
3353     pNew->nSkip = 0;
3354     pNew->nLTerm = 0;
3355     pNew->iSortIdx = 0;
3356     pNew->rSetup = 0;
3357     pNew->prereq = mPrereq;
3358     pNew->nOut = rSize;
3359     pNew->u.btree.pIndex = pProbe;
3360     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
3361 
3362     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
3363     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
3364     if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){
3365       /* Integer primary key index */
3366       pNew->wsFlags = WHERE_IPK;
3367 
3368       /* Full table scan */
3369       pNew->iSortIdx = b ? iSortIdx : 0;
3370       /* TUNING: Cost of full table scan is 3.0*N.  The 3.0 factor is an
3371       ** extra cost designed to discourage the use of full table scans,
3372       ** since index lookups have better worst-case performance if our
3373       ** stat guesses are wrong.  Reduce the 3.0 penalty slightly
3374       ** (to 2.75) if we have valid STAT4 information for the table.
3375       ** At 2.75, a full table scan is preferred over using an index on
3376       ** a column with just two distinct values where each value has about
3377       ** an equal number of appearances.  Without STAT4 data, we still want
3378       ** to use an index in that case, since the constraint might be for
3379       ** the scarcer of the two values, and in that case an index lookup is
3380       ** better.
3381       */
3382 #ifdef SQLITE_ENABLE_STAT4
3383       pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0);
3384 #else
3385       pNew->rRun = rSize + 16;
3386 #endif
3387       ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3388       whereLoopOutputAdjust(pWC, pNew, rSize);
3389       rc = whereLoopInsert(pBuilder, pNew);
3390       pNew->nOut = rSize;
3391       if( rc ) break;
3392     }else{
3393       Bitmask m;
3394       if( pProbe->isCovering ){
3395         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
3396         m = 0;
3397       }else{
3398         m = pSrc->colUsed & pProbe->colNotIdxed;
3399         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
3400       }
3401 
3402       /* Full scan via index */
3403       if( b
3404        || !HasRowid(pTab)
3405        || pProbe->pPartIdxWhere!=0
3406        || pSrc->fg.isIndexedBy
3407        || ( m==0
3408          && pProbe->bUnordered==0
3409          && (pProbe->szIdxRow<pTab->szTabRow)
3410          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
3411          && sqlite3GlobalConfig.bUseCis
3412          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
3413           )
3414       ){
3415         pNew->iSortIdx = b ? iSortIdx : 0;
3416 
3417         /* The cost of visiting the index rows is N*K, where K is
3418         ** between 1.1 and 3.0, depending on the relative sizes of the
3419         ** index and table rows. */
3420         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
3421         if( m!=0 ){
3422           /* If this is a non-covering index scan, add in the cost of
3423           ** doing table lookups.  The cost will be 3x the number of
3424           ** lookups.  Take into account WHERE clause terms that can be
3425           ** satisfied using just the index, and that do not require a
3426           ** table lookup. */
3427           LogEst nLookup = rSize + 16;  /* Base cost:  N*3 */
3428           int ii;
3429           int iCur = pSrc->iCursor;
3430           WhereClause *pWC2 = &pWInfo->sWC;
3431           for(ii=0; ii<pWC2->nTerm; ii++){
3432             WhereTerm *pTerm = &pWC2->a[ii];
3433             if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
3434               break;
3435             }
3436             /* pTerm can be evaluated using just the index.  So reduce
3437             ** the expected number of table lookups accordingly */
3438             if( pTerm->truthProb<=0 ){
3439               nLookup += pTerm->truthProb;
3440             }else{
3441               nLookup--;
3442               if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
3443             }
3444           }
3445 
3446           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
3447         }
3448         ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3449         whereLoopOutputAdjust(pWC, pNew, rSize);
3450         rc = whereLoopInsert(pBuilder, pNew);
3451         pNew->nOut = rSize;
3452         if( rc ) break;
3453       }
3454     }
3455 
3456     pBuilder->bldFlags1 = 0;
3457     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
3458     if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){
3459       /* If a non-unique index is used, or if a prefix of the key for
3460       ** unique index is used (making the index functionally non-unique)
3461       ** then the sqlite_stat1 data becomes important for scoring the
3462       ** plan */
3463       pTab->tabFlags |= TF_StatsUsed;
3464     }
3465 #ifdef SQLITE_ENABLE_STAT4
3466     sqlite3Stat4ProbeFree(pBuilder->pRec);
3467     pBuilder->nRecValid = 0;
3468     pBuilder->pRec = 0;
3469 #endif
3470   }
3471   return rc;
3472 }
3473 
3474 #ifndef SQLITE_OMIT_VIRTUALTABLE
3475 
3476 /*
3477 ** Return true if pTerm is a virtual table LIMIT or OFFSET term.
3478 */
3479 static int isLimitTerm(WhereTerm *pTerm){
3480   assert( pTerm->eOperator==WO_AUX || pTerm->eMatchOp==0 );
3481   return pTerm->eMatchOp>=SQLITE_INDEX_CONSTRAINT_LIMIT
3482       && pTerm->eMatchOp<=SQLITE_INDEX_CONSTRAINT_OFFSET;
3483 }
3484 
3485 /*
3486 ** Argument pIdxInfo is already populated with all constraints that may
3487 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3488 ** function marks a subset of those constraints usable, invokes the
3489 ** xBestIndex method and adds the returned plan to pBuilder.
3490 **
3491 ** A constraint is marked usable if:
3492 **
3493 **   * Argument mUsable indicates that its prerequisites are available, and
3494 **
3495 **   * It is not one of the operators specified in the mExclude mask passed
3496 **     as the fourth argument (which in practice is either WO_IN or 0).
3497 **
3498 ** Argument mPrereq is a mask of tables that must be scanned before the
3499 ** virtual table in question. These are added to the plans prerequisites
3500 ** before it is added to pBuilder.
3501 **
3502 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3503 ** uses one or more WO_IN terms, or false otherwise.
3504 */
3505 static int whereLoopAddVirtualOne(
3506   WhereLoopBuilder *pBuilder,
3507   Bitmask mPrereq,                /* Mask of tables that must be used. */
3508   Bitmask mUsable,                /* Mask of usable tables */
3509   u16 mExclude,                   /* Exclude terms using these operators */
3510   sqlite3_index_info *pIdxInfo,   /* Populated object for xBestIndex */
3511   u16 mNoOmit,                    /* Do not omit these constraints */
3512   int *pbIn,                      /* OUT: True if plan uses an IN(...) op */
3513   int *pbRetryLimit               /* OUT: Retry without LIMIT/OFFSET */
3514 ){
3515   WhereClause *pWC = pBuilder->pWC;
3516   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3517   struct sqlite3_index_constraint *pIdxCons;
3518   struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3519   int i;
3520   int mxTerm;
3521   int rc = SQLITE_OK;
3522   WhereLoop *pNew = pBuilder->pNew;
3523   Parse *pParse = pBuilder->pWInfo->pParse;
3524   SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3525   int nConstraint = pIdxInfo->nConstraint;
3526 
3527   assert( (mUsable & mPrereq)==mPrereq );
3528   *pbIn = 0;
3529   pNew->prereq = mPrereq;
3530 
3531   /* Set the usable flag on the subset of constraints identified by
3532   ** arguments mUsable and mExclude. */
3533   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3534   for(i=0; i<nConstraint; i++, pIdxCons++){
3535     WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3536     pIdxCons->usable = 0;
3537     if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3538      && (pTerm->eOperator & mExclude)==0
3539      && (pbRetryLimit || !isLimitTerm(pTerm))
3540     ){
3541       pIdxCons->usable = 1;
3542     }
3543   }
3544 
3545   /* Initialize the output fields of the sqlite3_index_info structure */
3546   memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3547   assert( pIdxInfo->needToFreeIdxStr==0 );
3548   pIdxInfo->idxStr = 0;
3549   pIdxInfo->idxNum = 0;
3550   pIdxInfo->orderByConsumed = 0;
3551   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3552   pIdxInfo->estimatedRows = 25;
3553   pIdxInfo->idxFlags = 0;
3554   pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3555   pHidden->mHandleIn = 0;
3556 
3557   /* Invoke the virtual table xBestIndex() method */
3558   rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3559   if( rc ){
3560     if( rc==SQLITE_CONSTRAINT ){
3561       /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
3562       ** that the particular combination of parameters provided is unusable.
3563       ** Make no entries in the loop table.
3564       */
3565       WHERETRACE(0xffff, ("  ^^^^--- non-viable plan rejected!\n"));
3566       return SQLITE_OK;
3567     }
3568     return rc;
3569   }
3570 
3571   mxTerm = -1;
3572   assert( pNew->nLSlot>=nConstraint );
3573   memset(pNew->aLTerm, 0, sizeof(pNew->aLTerm[0])*nConstraint );
3574   memset(&pNew->u.vtab, 0, sizeof(pNew->u.vtab));
3575   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3576   for(i=0; i<nConstraint; i++, pIdxCons++){
3577     int iTerm;
3578     if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3579       WhereTerm *pTerm;
3580       int j = pIdxCons->iTermOffset;
3581       if( iTerm>=nConstraint
3582        || j<0
3583        || j>=pWC->nTerm
3584        || pNew->aLTerm[iTerm]!=0
3585        || pIdxCons->usable==0
3586       ){
3587         sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3588         testcase( pIdxInfo->needToFreeIdxStr );
3589         return SQLITE_ERROR;
3590       }
3591       testcase( iTerm==nConstraint-1 );
3592       testcase( j==0 );
3593       testcase( j==pWC->nTerm-1 );
3594       pTerm = &pWC->a[j];
3595       pNew->prereq |= pTerm->prereqRight;
3596       assert( iTerm<pNew->nLSlot );
3597       pNew->aLTerm[iTerm] = pTerm;
3598       if( iTerm>mxTerm ) mxTerm = iTerm;
3599       testcase( iTerm==15 );
3600       testcase( iTerm==16 );
3601       if( pUsage[i].omit ){
3602         if( i<16 && ((1<<i)&mNoOmit)==0 ){
3603           testcase( i!=iTerm );
3604           pNew->u.vtab.omitMask |= 1<<iTerm;
3605         }else{
3606           testcase( i!=iTerm );
3607         }
3608         if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET ){
3609           pNew->u.vtab.bOmitOffset = 1;
3610         }
3611       }
3612       if( SMASKBIT32(i) & pHidden->mHandleIn ){
3613         pNew->u.vtab.mHandleIn |= MASKBIT32(iTerm);
3614       }else if( (pTerm->eOperator & WO_IN)!=0 ){
3615         /* A virtual table that is constrained by an IN clause may not
3616         ** consume the ORDER BY clause because (1) the order of IN terms
3617         ** is not necessarily related to the order of output terms and
3618         ** (2) Multiple outputs from a single IN value will not merge
3619         ** together.  */
3620         pIdxInfo->orderByConsumed = 0;
3621         pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3622         *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3623       }
3624 
3625       if( isLimitTerm(pTerm) && *pbIn ){
3626         /* If there is an IN(...) term handled as an == (separate call to
3627         ** xFilter for each value on the RHS of the IN) and a LIMIT or
3628         ** OFFSET term handled as well, the plan is unusable. Set output
3629         ** variable *pbRetryLimit to true to tell the caller to retry with
3630         ** LIMIT and OFFSET disabled. */
3631         if( pIdxInfo->needToFreeIdxStr ){
3632           sqlite3_free(pIdxInfo->idxStr);
3633           pIdxInfo->idxStr = 0;
3634           pIdxInfo->needToFreeIdxStr = 0;
3635         }
3636         *pbRetryLimit = 1;
3637         return SQLITE_OK;
3638       }
3639     }
3640   }
3641 
3642   pNew->nLTerm = mxTerm+1;
3643   for(i=0; i<=mxTerm; i++){
3644     if( pNew->aLTerm[i]==0 ){
3645       /* The non-zero argvIdx values must be contiguous.  Raise an
3646       ** error if they are not */
3647       sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3648       testcase( pIdxInfo->needToFreeIdxStr );
3649       return SQLITE_ERROR;
3650     }
3651   }
3652   assert( pNew->nLTerm<=pNew->nLSlot );
3653   pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3654   pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3655   pIdxInfo->needToFreeIdxStr = 0;
3656   pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3657   pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3658       pIdxInfo->nOrderBy : 0);
3659   pNew->rSetup = 0;
3660   pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3661   pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3662 
3663   /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3664   ** that the scan will visit at most one row. Clear it otherwise. */
3665   if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3666     pNew->wsFlags |= WHERE_ONEROW;
3667   }else{
3668     pNew->wsFlags &= ~WHERE_ONEROW;
3669   }
3670   rc = whereLoopInsert(pBuilder, pNew);
3671   if( pNew->u.vtab.needFree ){
3672     sqlite3_free(pNew->u.vtab.idxStr);
3673     pNew->u.vtab.needFree = 0;
3674   }
3675   WHERETRACE(0xffff, ("  bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3676                       *pbIn, (sqlite3_uint64)mPrereq,
3677                       (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3678 
3679   return rc;
3680 }
3681 
3682 /*
3683 ** Return the collating sequence for a constraint passed into xBestIndex.
3684 **
3685 ** pIdxInfo must be an sqlite3_index_info structure passed into xBestIndex.
3686 ** This routine depends on there being a HiddenIndexInfo structure immediately
3687 ** following the sqlite3_index_info structure.
3688 **
3689 ** Return a pointer to the collation name:
3690 **
3691 **    1. If there is an explicit COLLATE operator on the constaint, return it.
3692 **
3693 **    2. Else, if the column has an alternative collation, return that.
3694 **
3695 **    3. Otherwise, return "BINARY".
3696 */
3697 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
3698   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3699   const char *zRet = 0;
3700   if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
3701     CollSeq *pC = 0;
3702     int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
3703     Expr *pX = pHidden->pWC->a[iTerm].pExpr;
3704     if( pX->pLeft ){
3705       pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX);
3706     }
3707     zRet = (pC ? pC->zName : sqlite3StrBINARY);
3708   }
3709   return zRet;
3710 }
3711 
3712 /*
3713 ** Return true if constraint iCons is really an IN(...) constraint, or
3714 ** false otherwise. If iCons is an IN(...) constraint, set (if bHandle!=0)
3715 ** or clear (if bHandle==0) the flag to handle it using an iterator.
3716 */
3717 int sqlite3_vtab_in(sqlite3_index_info *pIdxInfo, int iCons, int bHandle){
3718   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3719   u32 m = SMASKBIT32(iCons);
3720   if( m & pHidden->mIn ){
3721     if( bHandle==0 ){
3722       pHidden->mHandleIn &= ~m;
3723     }else if( bHandle>0 ){
3724       pHidden->mHandleIn |= m;
3725     }
3726     return 1;
3727   }
3728   return 0;
3729 }
3730 
3731 /*
3732 ** This interface is callable from within the xBestIndex callback only.
3733 **
3734 ** If possible, set (*ppVal) to point to an object containing the value
3735 ** on the right-hand-side of constraint iCons.
3736 */
3737 int sqlite3_vtab_rhs_value(
3738   sqlite3_index_info *pIdxInfo,   /* Copy of first argument to xBestIndex */
3739   int iCons,                      /* Constraint for which RHS is wanted */
3740   sqlite3_value **ppVal           /* Write value extracted here */
3741 ){
3742   HiddenIndexInfo *pH = (HiddenIndexInfo*)&pIdxInfo[1];
3743   sqlite3_value *pVal = 0;
3744   int rc = SQLITE_OK;
3745   if( iCons<0 || iCons>=pIdxInfo->nConstraint ){
3746     rc = SQLITE_MISUSE; /* EV: R-30545-25046 */
3747   }else{
3748     if( pH->aRhs[iCons]==0 ){
3749       WhereTerm *pTerm = &pH->pWC->a[pIdxInfo->aConstraint[iCons].iTermOffset];
3750       rc = sqlite3ValueFromExpr(
3751           pH->pParse->db, pTerm->pExpr->pRight, ENC(pH->pParse->db),
3752           SQLITE_AFF_BLOB, &pH->aRhs[iCons]
3753       );
3754       testcase( rc!=SQLITE_OK );
3755     }
3756     pVal = pH->aRhs[iCons];
3757   }
3758   *ppVal = pVal;
3759 
3760   if( rc==SQLITE_OK && pVal==0 ){  /* IMP: R-19933-32160 */
3761     rc = SQLITE_NOTFOUND;          /* IMP: R-36424-56542 */
3762   }
3763 
3764   return rc;
3765 }
3766 
3767 /*
3768 ** Return true if ORDER BY clause may be handled as DISTINCT.
3769 */
3770 int sqlite3_vtab_distinct(sqlite3_index_info *pIdxInfo){
3771   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3772   assert( pHidden->eDistinct==0
3773        || pHidden->eDistinct==1
3774        || pHidden->eDistinct==2 );
3775   return pHidden->eDistinct;
3776 }
3777 
3778 #if (defined(SQLITE_ENABLE_DBPAGE_VTAB) || defined(SQLITE_TEST)) \
3779     && !defined(SQLITE_OMIT_VIRTUALTABLE)
3780 /*
3781 ** Cause the prepared statement that is associated with a call to
3782 ** xBestIndex to open write transactions on all attached schemas.
3783 ** This is used by the (built-in) sqlite_dbpage virtual table.
3784 */
3785 void sqlite3VtabWriteAll(sqlite3_index_info *pIdxInfo){
3786   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3787   Parse *pParse = pHidden->pParse;
3788   int nDb = pParse->db->nDb;
3789   int i;
3790   for(i=0; i<nDb; i++) sqlite3BeginWriteOperation(pParse, 0, i);
3791 }
3792 #endif
3793 
3794 /*
3795 ** Add all WhereLoop objects for a table of the join identified by
3796 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
3797 **
3798 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3799 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3800 ** entries that occur before the virtual table in the FROM clause and are
3801 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3802 ** mUnusable mask contains all FROM clause entries that occur after the
3803 ** virtual table and are separated from it by at least one LEFT or
3804 ** CROSS JOIN.
3805 **
3806 ** For example, if the query were:
3807 **
3808 **   ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3809 **
3810 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3811 **
3812 ** All the tables in mPrereq must be scanned before the current virtual
3813 ** table. So any terms for which all prerequisites are satisfied by
3814 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3815 ** Conversely, all tables in mUnusable must be scanned after the current
3816 ** virtual table, so any terms for which the prerequisites overlap with
3817 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3818 */
3819 static int whereLoopAddVirtual(
3820   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
3821   Bitmask mPrereq,             /* Tables that must be scanned before this one */
3822   Bitmask mUnusable            /* Tables that must be scanned after this one */
3823 ){
3824   int rc = SQLITE_OK;          /* Return code */
3825   WhereInfo *pWInfo;           /* WHERE analysis context */
3826   Parse *pParse;               /* The parsing context */
3827   WhereClause *pWC;            /* The WHERE clause */
3828   SrcItem *pSrc;               /* The FROM clause term to search */
3829   sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
3830   int nConstraint;             /* Number of constraints in p */
3831   int bIn;                     /* True if plan uses IN(...) operator */
3832   WhereLoop *pNew;
3833   Bitmask mBest;               /* Tables used by best possible plan */
3834   u16 mNoOmit;
3835   int bRetry = 0;              /* True to retry with LIMIT/OFFSET disabled */
3836 
3837   assert( (mPrereq & mUnusable)==0 );
3838   pWInfo = pBuilder->pWInfo;
3839   pParse = pWInfo->pParse;
3840   pWC = pBuilder->pWC;
3841   pNew = pBuilder->pNew;
3842   pSrc = &pWInfo->pTabList->a[pNew->iTab];
3843   assert( IsVirtual(pSrc->pTab) );
3844   p = allocateIndexInfo(pWInfo, pWC, mUnusable, pSrc, &mNoOmit);
3845   if( p==0 ) return SQLITE_NOMEM_BKPT;
3846   pNew->rSetup = 0;
3847   pNew->wsFlags = WHERE_VIRTUALTABLE;
3848   pNew->nLTerm = 0;
3849   pNew->u.vtab.needFree = 0;
3850   nConstraint = p->nConstraint;
3851   if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3852     freeIndexInfo(pParse->db, p);
3853     return SQLITE_NOMEM_BKPT;
3854   }
3855 
3856   /* First call xBestIndex() with all constraints usable. */
3857   WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
3858   WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
3859   rc = whereLoopAddVirtualOne(
3860       pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, &bRetry
3861   );
3862   if( bRetry ){
3863     assert( rc==SQLITE_OK );
3864     rc = whereLoopAddVirtualOne(
3865         pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, 0
3866     );
3867   }
3868 
3869   /* If the call to xBestIndex() with all terms enabled produced a plan
3870   ** that does not require any source tables (IOW: a plan with mBest==0)
3871   ** and does not use an IN(...) operator, then there is no point in making
3872   ** any further calls to xBestIndex() since they will all return the same
3873   ** result (if the xBestIndex() implementation is sane). */
3874   if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){
3875     int seenZero = 0;             /* True if a plan with no prereqs seen */
3876     int seenZeroNoIN = 0;         /* Plan with no prereqs and no IN(...) seen */
3877     Bitmask mPrev = 0;
3878     Bitmask mBestNoIn = 0;
3879 
3880     /* If the plan produced by the earlier call uses an IN(...) term, call
3881     ** xBestIndex again, this time with IN(...) terms disabled. */
3882     if( bIn ){
3883       WHERETRACE(0x40, ("  VirtualOne: all usable w/o IN\n"));
3884       rc = whereLoopAddVirtualOne(
3885           pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn, 0);
3886       assert( bIn==0 );
3887       mBestNoIn = pNew->prereq & ~mPrereq;
3888       if( mBestNoIn==0 ){
3889         seenZero = 1;
3890         seenZeroNoIN = 1;
3891       }
3892     }
3893 
3894     /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3895     ** in the set of terms that apply to the current virtual table.  */
3896     while( rc==SQLITE_OK ){
3897       int i;
3898       Bitmask mNext = ALLBITS;
3899       assert( mNext>0 );
3900       for(i=0; i<nConstraint; i++){
3901         Bitmask mThis = (
3902             pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3903         );
3904         if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3905       }
3906       mPrev = mNext;
3907       if( mNext==ALLBITS ) break;
3908       if( mNext==mBest || mNext==mBestNoIn ) continue;
3909       WHERETRACE(0x40, ("  VirtualOne: mPrev=%04llx mNext=%04llx\n",
3910                        (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3911       rc = whereLoopAddVirtualOne(
3912           pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn, 0);
3913       if( pNew->prereq==mPrereq ){
3914         seenZero = 1;
3915         if( bIn==0 ) seenZeroNoIN = 1;
3916       }
3917     }
3918 
3919     /* If the calls to xBestIndex() in the above loop did not find a plan
3920     ** that requires no source tables at all (i.e. one guaranteed to be
3921     ** usable), make a call here with all source tables disabled */
3922     if( rc==SQLITE_OK && seenZero==0 ){
3923       WHERETRACE(0x40, ("  VirtualOne: all disabled\n"));
3924       rc = whereLoopAddVirtualOne(
3925           pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn, 0);
3926       if( bIn==0 ) seenZeroNoIN = 1;
3927     }
3928 
3929     /* If the calls to xBestIndex() have so far failed to find a plan
3930     ** that requires no source tables at all and does not use an IN(...)
3931     ** operator, make a final call to obtain one here.  */
3932     if( rc==SQLITE_OK && seenZeroNoIN==0 ){
3933       WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
3934       rc = whereLoopAddVirtualOne(
3935           pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn, 0);
3936     }
3937   }
3938 
3939   if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
3940   freeIndexInfo(pParse->db, p);
3941   WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
3942   return rc;
3943 }
3944 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3945 
3946 /*
3947 ** Add WhereLoop entries to handle OR terms.  This works for either
3948 ** btrees or virtual tables.
3949 */
3950 static int whereLoopAddOr(
3951   WhereLoopBuilder *pBuilder,
3952   Bitmask mPrereq,
3953   Bitmask mUnusable
3954 ){
3955   WhereInfo *pWInfo = pBuilder->pWInfo;
3956   WhereClause *pWC;
3957   WhereLoop *pNew;
3958   WhereTerm *pTerm, *pWCEnd;
3959   int rc = SQLITE_OK;
3960   int iCur;
3961   WhereClause tempWC;
3962   WhereLoopBuilder sSubBuild;
3963   WhereOrSet sSum, sCur;
3964   SrcItem *pItem;
3965 
3966   pWC = pBuilder->pWC;
3967   pWCEnd = pWC->a + pWC->nTerm;
3968   pNew = pBuilder->pNew;
3969   memset(&sSum, 0, sizeof(sSum));
3970   pItem = pWInfo->pTabList->a + pNew->iTab;
3971   iCur = pItem->iCursor;
3972 
3973   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
3974     if( (pTerm->eOperator & WO_OR)!=0
3975      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
3976     ){
3977       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
3978       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
3979       WhereTerm *pOrTerm;
3980       int once = 1;
3981       int i, j;
3982 
3983       sSubBuild = *pBuilder;
3984       sSubBuild.pOrSet = &sCur;
3985 
3986       WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
3987       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
3988         if( (pOrTerm->eOperator & WO_AND)!=0 ){
3989           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
3990         }else if( pOrTerm->leftCursor==iCur ){
3991           tempWC.pWInfo = pWC->pWInfo;
3992           tempWC.pOuter = pWC;
3993           tempWC.op = TK_AND;
3994           tempWC.nTerm = 1;
3995           tempWC.nBase = 1;
3996           tempWC.a = pOrTerm;
3997           sSubBuild.pWC = &tempWC;
3998         }else{
3999           continue;
4000         }
4001         sCur.n = 0;
4002 #ifdef WHERETRACE_ENABLED
4003         WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
4004                    (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
4005         if( sqlite3WhereTrace & 0x400 ){
4006           sqlite3WhereClausePrint(sSubBuild.pWC);
4007         }
4008 #endif
4009 #ifndef SQLITE_OMIT_VIRTUALTABLE
4010         if( IsVirtual(pItem->pTab) ){
4011           rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
4012         }else
4013 #endif
4014         {
4015           rc = whereLoopAddBtree(&sSubBuild, mPrereq);
4016         }
4017         if( rc==SQLITE_OK ){
4018           rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
4019         }
4020         assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0
4021                 || rc==SQLITE_NOMEM );
4022         testcase( rc==SQLITE_NOMEM && sCur.n>0 );
4023         testcase( rc==SQLITE_DONE );
4024         if( sCur.n==0 ){
4025           sSum.n = 0;
4026           break;
4027         }else if( once ){
4028           whereOrMove(&sSum, &sCur);
4029           once = 0;
4030         }else{
4031           WhereOrSet sPrev;
4032           whereOrMove(&sPrev, &sSum);
4033           sSum.n = 0;
4034           for(i=0; i<sPrev.n; i++){
4035             for(j=0; j<sCur.n; j++){
4036               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
4037                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
4038                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
4039             }
4040           }
4041         }
4042       }
4043       pNew->nLTerm = 1;
4044       pNew->aLTerm[0] = pTerm;
4045       pNew->wsFlags = WHERE_MULTI_OR;
4046       pNew->rSetup = 0;
4047       pNew->iSortIdx = 0;
4048       memset(&pNew->u, 0, sizeof(pNew->u));
4049       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
4050         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
4051         ** of all sub-scans required by the OR-scan. However, due to rounding
4052         ** errors, it may be that the cost of the OR-scan is equal to its
4053         ** most expensive sub-scan. Add the smallest possible penalty
4054         ** (equivalent to multiplying the cost by 1.07) to ensure that
4055         ** this does not happen. Otherwise, for WHERE clauses such as the
4056         ** following where there is an index on "y":
4057         **
4058         **     WHERE likelihood(x=?, 0.99) OR y=?
4059         **
4060         ** the planner may elect to "OR" together a full-table scan and an
4061         ** index lookup. And other similarly odd results.  */
4062         pNew->rRun = sSum.a[i].rRun + 1;
4063         pNew->nOut = sSum.a[i].nOut;
4064         pNew->prereq = sSum.a[i].prereq;
4065         rc = whereLoopInsert(pBuilder, pNew);
4066       }
4067       WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
4068     }
4069   }
4070   return rc;
4071 }
4072 
4073 /*
4074 ** Add all WhereLoop objects for all tables
4075 */
4076 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
4077   WhereInfo *pWInfo = pBuilder->pWInfo;
4078   Bitmask mPrereq = 0;
4079   Bitmask mPrior = 0;
4080   int iTab;
4081   SrcList *pTabList = pWInfo->pTabList;
4082   SrcItem *pItem;
4083   SrcItem *pEnd = &pTabList->a[pWInfo->nLevel];
4084   sqlite3 *db = pWInfo->pParse->db;
4085   int rc = SQLITE_OK;
4086   WhereLoop *pNew;
4087 
4088   /* Loop over the tables in the join, from left to right */
4089   pNew = pBuilder->pNew;
4090   whereLoopInit(pNew);
4091   pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT;
4092   for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
4093     Bitmask mUnusable = 0;
4094     pNew->iTab = iTab;
4095     pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR;
4096     pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
4097     if( (pItem->fg.jointype & (JT_LEFT|JT_CROSS))!=0 ){
4098       /* This condition is true when pItem is the FROM clause term on the
4099       ** right-hand-side of a LEFT or CROSS JOIN.  */
4100       mPrereq = mPrior;
4101     }else{
4102       mPrereq = 0;
4103     }
4104 #ifndef SQLITE_OMIT_VIRTUALTABLE
4105     if( IsVirtual(pItem->pTab) ){
4106       SrcItem *p;
4107       for(p=&pItem[1]; p<pEnd; p++){
4108         if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
4109           mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
4110         }
4111       }
4112       rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
4113     }else
4114 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4115     {
4116       rc = whereLoopAddBtree(pBuilder, mPrereq);
4117     }
4118     if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
4119       rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
4120     }
4121     mPrior |= pNew->maskSelf;
4122     if( rc || db->mallocFailed ){
4123       if( rc==SQLITE_DONE ){
4124         /* We hit the query planner search limit set by iPlanLimit */
4125         sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search");
4126         rc = SQLITE_OK;
4127       }else{
4128         break;
4129       }
4130     }
4131   }
4132 
4133   whereLoopClear(db, pNew);
4134   return rc;
4135 }
4136 
4137 /*
4138 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
4139 ** parameters) to see if it outputs rows in the requested ORDER BY
4140 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
4141 **
4142 **   N>0:   N terms of the ORDER BY clause are satisfied
4143 **   N==0:  No terms of the ORDER BY clause are satisfied
4144 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
4145 **
4146 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
4147 ** strict.  With GROUP BY and DISTINCT the only requirement is that
4148 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
4149 ** and DISTINCT do not require rows to appear in any particular order as long
4150 ** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT
4151 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
4152 ** pOrderBy terms must be matched in strict left-to-right order.
4153 */
4154 static i8 wherePathSatisfiesOrderBy(
4155   WhereInfo *pWInfo,    /* The WHERE clause */
4156   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
4157   WherePath *pPath,     /* The WherePath to check */
4158   u16 wctrlFlags,       /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
4159   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
4160   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
4161   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
4162 ){
4163   u8 revSet;            /* True if rev is known */
4164   u8 rev;               /* Composite sort order */
4165   u8 revIdx;            /* Index sort order */
4166   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
4167   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
4168   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
4169   u16 eqOpMask;         /* Allowed equality operators */
4170   u16 nKeyCol;          /* Number of key columns in pIndex */
4171   u16 nColumn;          /* Total number of ordered columns in the index */
4172   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
4173   int iLoop;            /* Index of WhereLoop in pPath being processed */
4174   int i, j;             /* Loop counters */
4175   int iCur;             /* Cursor number for current WhereLoop */
4176   int iColumn;          /* A column number within table iCur */
4177   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
4178   WhereTerm *pTerm;     /* A single term of the WHERE clause */
4179   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
4180   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
4181   Index *pIndex;        /* The index associated with pLoop */
4182   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
4183   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
4184   Bitmask obDone;       /* Mask of all ORDER BY terms */
4185   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
4186   Bitmask ready;              /* Mask of inner loops */
4187 
4188   /*
4189   ** We say the WhereLoop is "one-row" if it generates no more than one
4190   ** row of output.  A WhereLoop is one-row if all of the following are true:
4191   **  (a) All index columns match with WHERE_COLUMN_EQ.
4192   **  (b) The index is unique
4193   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
4194   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
4195   **
4196   ** We say the WhereLoop is "order-distinct" if the set of columns from
4197   ** that WhereLoop that are in the ORDER BY clause are different for every
4198   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
4199   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
4200   ** is not order-distinct. To be order-distinct is not quite the same as being
4201   ** UNIQUE since a UNIQUE column or index can have multiple rows that
4202   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
4203   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
4204   **
4205   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
4206   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
4207   ** automatically order-distinct.
4208   */
4209 
4210   assert( pOrderBy!=0 );
4211   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
4212 
4213   nOrderBy = pOrderBy->nExpr;
4214   testcase( nOrderBy==BMS-1 );
4215   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
4216   isOrderDistinct = 1;
4217   obDone = MASKBIT(nOrderBy)-1;
4218   orderDistinctMask = 0;
4219   ready = 0;
4220   eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
4221   if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){
4222     eqOpMask |= WO_IN;
4223   }
4224   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
4225     if( iLoop>0 ) ready |= pLoop->maskSelf;
4226     if( iLoop<nLoop ){
4227       pLoop = pPath->aLoop[iLoop];
4228       if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
4229     }else{
4230       pLoop = pLast;
4231     }
4232     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
4233       if( pLoop->u.vtab.isOrdered && (wctrlFlags & WHERE_DISTINCTBY)==0 ){
4234         obSat = obDone;
4235       }
4236       break;
4237     }else if( wctrlFlags & WHERE_DISTINCTBY ){
4238       pLoop->u.btree.nDistinctCol = 0;
4239     }
4240     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
4241 
4242     /* Mark off any ORDER BY term X that is a column in the table of
4243     ** the current loop for which there is term in the WHERE
4244     ** clause of the form X IS NULL or X=? that reference only outer
4245     ** loops.
4246     */
4247     for(i=0; i<nOrderBy; i++){
4248       if( MASKBIT(i) & obSat ) continue;
4249       pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
4250       if( NEVER(pOBExpr==0) ) continue;
4251       if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
4252       if( pOBExpr->iTable!=iCur ) continue;
4253       pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
4254                        ~ready, eqOpMask, 0);
4255       if( pTerm==0 ) continue;
4256       if( pTerm->eOperator==WO_IN ){
4257         /* IN terms are only valid for sorting in the ORDER BY LIMIT
4258         ** optimization, and then only if they are actually used
4259         ** by the query plan */
4260         assert( wctrlFlags &
4261                (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) );
4262         for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
4263         if( j>=pLoop->nLTerm ) continue;
4264       }
4265       if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
4266         Parse *pParse = pWInfo->pParse;
4267         CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr);
4268         CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr);
4269         assert( pColl1 );
4270         if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){
4271           continue;
4272         }
4273         testcase( pTerm->pExpr->op==TK_IS );
4274       }
4275       obSat |= MASKBIT(i);
4276     }
4277 
4278     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
4279       if( pLoop->wsFlags & WHERE_IPK ){
4280         pIndex = 0;
4281         nKeyCol = 0;
4282         nColumn = 1;
4283       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
4284         return 0;
4285       }else{
4286         nKeyCol = pIndex->nKeyCol;
4287         nColumn = pIndex->nColumn;
4288         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
4289         assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
4290                           || !HasRowid(pIndex->pTable));
4291         /* All relevant terms of the index must also be non-NULL in order
4292         ** for isOrderDistinct to be true.  So the isOrderDistint value
4293         ** computed here might be a false positive.  Corrections will be
4294         ** made at tag-20210426-1 below */
4295         isOrderDistinct = IsUniqueIndex(pIndex)
4296                           && (pLoop->wsFlags & WHERE_SKIPSCAN)==0;
4297       }
4298 
4299       /* Loop through all columns of the index and deal with the ones
4300       ** that are not constrained by == or IN.
4301       */
4302       rev = revSet = 0;
4303       distinctColumns = 0;
4304       for(j=0; j<nColumn; j++){
4305         u8 bOnce = 1; /* True to run the ORDER BY search loop */
4306 
4307         assert( j>=pLoop->u.btree.nEq
4308             || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
4309         );
4310         if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
4311           u16 eOp = pLoop->aLTerm[j]->eOperator;
4312 
4313           /* Skip over == and IS and ISNULL terms.  (Also skip IN terms when
4314           ** doing WHERE_ORDERBY_LIMIT processing).  Except, IS and ISNULL
4315           ** terms imply that the index is not UNIQUE NOT NULL in which case
4316           ** the loop need to be marked as not order-distinct because it can
4317           ** have repeated NULL rows.
4318           **
4319           ** If the current term is a column of an ((?,?) IN (SELECT...))
4320           ** expression for which the SELECT returns more than one column,
4321           ** check that it is the only column used by this loop. Otherwise,
4322           ** if it is one of two or more, none of the columns can be
4323           ** considered to match an ORDER BY term.
4324           */
4325           if( (eOp & eqOpMask)!=0 ){
4326             if( eOp & (WO_ISNULL|WO_IS) ){
4327               testcase( eOp & WO_ISNULL );
4328               testcase( eOp & WO_IS );
4329               testcase( isOrderDistinct );
4330               isOrderDistinct = 0;
4331             }
4332             continue;
4333           }else if( ALWAYS(eOp & WO_IN) ){
4334             /* ALWAYS() justification: eOp is an equality operator due to the
4335             ** j<pLoop->u.btree.nEq constraint above.  Any equality other
4336             ** than WO_IN is captured by the previous "if".  So this one
4337             ** always has to be WO_IN. */
4338             Expr *pX = pLoop->aLTerm[j]->pExpr;
4339             for(i=j+1; i<pLoop->u.btree.nEq; i++){
4340               if( pLoop->aLTerm[i]->pExpr==pX ){
4341                 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
4342                 bOnce = 0;
4343                 break;
4344               }
4345             }
4346           }
4347         }
4348 
4349         /* Get the column number in the table (iColumn) and sort order
4350         ** (revIdx) for the j-th column of the index.
4351         */
4352         if( pIndex ){
4353           iColumn = pIndex->aiColumn[j];
4354           revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC;
4355           if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
4356         }else{
4357           iColumn = XN_ROWID;
4358           revIdx = 0;
4359         }
4360 
4361         /* An unconstrained column that might be NULL means that this
4362         ** WhereLoop is not well-ordered.  tag-20210426-1
4363         */
4364         if( isOrderDistinct ){
4365           if( iColumn>=0
4366            && j>=pLoop->u.btree.nEq
4367            && pIndex->pTable->aCol[iColumn].notNull==0
4368           ){
4369             isOrderDistinct = 0;
4370           }
4371           if( iColumn==XN_EXPR ){
4372             isOrderDistinct = 0;
4373           }
4374         }
4375 
4376         /* Find the ORDER BY term that corresponds to the j-th column
4377         ** of the index and mark that ORDER BY term off
4378         */
4379         isMatch = 0;
4380         for(i=0; bOnce && i<nOrderBy; i++){
4381           if( MASKBIT(i) & obSat ) continue;
4382           pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
4383           testcase( wctrlFlags & WHERE_GROUPBY );
4384           testcase( wctrlFlags & WHERE_DISTINCTBY );
4385           if( NEVER(pOBExpr==0) ) continue;
4386           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
4387           if( iColumn>=XN_ROWID ){
4388             if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
4389             if( pOBExpr->iTable!=iCur ) continue;
4390             if( pOBExpr->iColumn!=iColumn ) continue;
4391           }else{
4392             Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
4393             if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
4394               continue;
4395             }
4396           }
4397           if( iColumn!=XN_ROWID ){
4398             pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
4399             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
4400           }
4401           if( wctrlFlags & WHERE_DISTINCTBY ){
4402             pLoop->u.btree.nDistinctCol = j+1;
4403           }
4404           isMatch = 1;
4405           break;
4406         }
4407         if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
4408           /* Make sure the sort order is compatible in an ORDER BY clause.
4409           ** Sort order is irrelevant for a GROUP BY clause. */
4410           if( revSet ){
4411             if( (rev ^ revIdx)!=(pOrderBy->a[i].sortFlags&KEYINFO_ORDER_DESC) ){
4412               isMatch = 0;
4413             }
4414           }else{
4415             rev = revIdx ^ (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC);
4416             if( rev ) *pRevMask |= MASKBIT(iLoop);
4417             revSet = 1;
4418           }
4419         }
4420         if( isMatch && (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL) ){
4421           if( j==pLoop->u.btree.nEq ){
4422             pLoop->wsFlags |= WHERE_BIGNULL_SORT;
4423           }else{
4424             isMatch = 0;
4425           }
4426         }
4427         if( isMatch ){
4428           if( iColumn==XN_ROWID ){
4429             testcase( distinctColumns==0 );
4430             distinctColumns = 1;
4431           }
4432           obSat |= MASKBIT(i);
4433         }else{
4434           /* No match found */
4435           if( j==0 || j<nKeyCol ){
4436             testcase( isOrderDistinct!=0 );
4437             isOrderDistinct = 0;
4438           }
4439           break;
4440         }
4441       } /* end Loop over all index columns */
4442       if( distinctColumns ){
4443         testcase( isOrderDistinct==0 );
4444         isOrderDistinct = 1;
4445       }
4446     } /* end-if not one-row */
4447 
4448     /* Mark off any other ORDER BY terms that reference pLoop */
4449     if( isOrderDistinct ){
4450       orderDistinctMask |= pLoop->maskSelf;
4451       for(i=0; i<nOrderBy; i++){
4452         Expr *p;
4453         Bitmask mTerm;
4454         if( MASKBIT(i) & obSat ) continue;
4455         p = pOrderBy->a[i].pExpr;
4456         mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
4457         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
4458         if( (mTerm&~orderDistinctMask)==0 ){
4459           obSat |= MASKBIT(i);
4460         }
4461       }
4462     }
4463   } /* End the loop over all WhereLoops from outer-most down to inner-most */
4464   if( obSat==obDone ) return (i8)nOrderBy;
4465   if( !isOrderDistinct ){
4466     for(i=nOrderBy-1; i>0; i--){
4467       Bitmask m = ALWAYS(i<BMS) ? MASKBIT(i) - 1 : 0;
4468       if( (obSat&m)==m ) return i;
4469     }
4470     return 0;
4471   }
4472   return -1;
4473 }
4474 
4475 
4476 /*
4477 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
4478 ** the planner assumes that the specified pOrderBy list is actually a GROUP
4479 ** BY clause - and so any order that groups rows as required satisfies the
4480 ** request.
4481 **
4482 ** Normally, in this case it is not possible for the caller to determine
4483 ** whether or not the rows are really being delivered in sorted order, or
4484 ** just in some other order that provides the required grouping. However,
4485 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
4486 ** this function may be called on the returned WhereInfo object. It returns
4487 ** true if the rows really will be sorted in the specified order, or false
4488 ** otherwise.
4489 **
4490 ** For example, assuming:
4491 **
4492 **   CREATE INDEX i1 ON t1(x, Y);
4493 **
4494 ** then
4495 **
4496 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
4497 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
4498 */
4499 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
4500   assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
4501   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
4502   return pWInfo->sorted;
4503 }
4504 
4505 #ifdef WHERETRACE_ENABLED
4506 /* For debugging use only: */
4507 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
4508   static char zName[65];
4509   int i;
4510   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
4511   if( pLast ) zName[i++] = pLast->cId;
4512   zName[i] = 0;
4513   return zName;
4514 }
4515 #endif
4516 
4517 /*
4518 ** Return the cost of sorting nRow rows, assuming that the keys have
4519 ** nOrderby columns and that the first nSorted columns are already in
4520 ** order.
4521 */
4522 static LogEst whereSortingCost(
4523   WhereInfo *pWInfo,
4524   LogEst nRow,
4525   int nOrderBy,
4526   int nSorted
4527 ){
4528   /* TUNING: Estimated cost of a full external sort, where N is
4529   ** the number of rows to sort is:
4530   **
4531   **   cost = (3.0 * N * log(N)).
4532   **
4533   ** Or, if the order-by clause has X terms but only the last Y
4534   ** terms are out of order, then block-sorting will reduce the
4535   ** sorting cost to:
4536   **
4537   **   cost = (3.0 * N * log(N)) * (Y/X)
4538   **
4539   ** The (Y/X) term is implemented using stack variable rScale
4540   ** below.
4541   */
4542   LogEst rScale, rSortCost;
4543   assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
4544   rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
4545   rSortCost = nRow + rScale + 16;
4546 
4547   /* Multiple by log(M) where M is the number of output rows.
4548   ** Use the LIMIT for M if it is smaller.  Or if this sort is for
4549   ** a DISTINCT operator, M will be the number of distinct output
4550   ** rows, so fudge it downwards a bit.
4551   */
4552   if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
4553     nRow = pWInfo->iLimit;
4554   }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){
4555     /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT
4556     ** reduces the number of output rows by a factor of 2 */
4557     if( nRow>10 ){ nRow -= 10;  assert( 10==sqlite3LogEst(2) ); }
4558   }
4559   rSortCost += estLog(nRow);
4560   return rSortCost;
4561 }
4562 
4563 /*
4564 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
4565 ** attempts to find the lowest cost path that visits each WhereLoop
4566 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
4567 **
4568 ** Assume that the total number of output rows that will need to be sorted
4569 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
4570 ** costs if nRowEst==0.
4571 **
4572 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
4573 ** error occurs.
4574 */
4575 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
4576   int mxChoice;             /* Maximum number of simultaneous paths tracked */
4577   int nLoop;                /* Number of terms in the join */
4578   Parse *pParse;            /* Parsing context */
4579   sqlite3 *db;              /* The database connection */
4580   int iLoop;                /* Loop counter over the terms of the join */
4581   int ii, jj;               /* Loop counters */
4582   int mxI = 0;              /* Index of next entry to replace */
4583   int nOrderBy;             /* Number of ORDER BY clause terms */
4584   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
4585   LogEst mxUnsorted = 0;    /* Maximum unsorted cost of a set of path */
4586   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
4587   WherePath *aFrom;         /* All nFrom paths at the previous level */
4588   WherePath *aTo;           /* The nTo best paths at the current level */
4589   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
4590   WherePath *pTo;           /* An element of aTo[] that we are working on */
4591   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
4592   WhereLoop **pX;           /* Used to divy up the pSpace memory */
4593   LogEst *aSortCost = 0;    /* Sorting and partial sorting costs */
4594   char *pSpace;             /* Temporary memory used by this routine */
4595   int nSpace;               /* Bytes of space allocated at pSpace */
4596 
4597   pParse = pWInfo->pParse;
4598   db = pParse->db;
4599   nLoop = pWInfo->nLevel;
4600   /* TUNING: For simple queries, only the best path is tracked.
4601   ** For 2-way joins, the 5 best paths are followed.
4602   ** For joins of 3 or more tables, track the 10 best paths */
4603   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
4604   assert( nLoop<=pWInfo->pTabList->nSrc );
4605   WHERETRACE(0x002, ("---- begin solver.  (nRowEst=%d)\n", nRowEst));
4606 
4607   /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
4608   ** case the purpose of this call is to estimate the number of rows returned
4609   ** by the overall query. Once this estimate has been obtained, the caller
4610   ** will invoke this function a second time, passing the estimate as the
4611   ** nRowEst parameter.  */
4612   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
4613     nOrderBy = 0;
4614   }else{
4615     nOrderBy = pWInfo->pOrderBy->nExpr;
4616   }
4617 
4618   /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
4619   nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
4620   nSpace += sizeof(LogEst) * nOrderBy;
4621   pSpace = sqlite3DbMallocRawNN(db, nSpace);
4622   if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
4623   aTo = (WherePath*)pSpace;
4624   aFrom = aTo+mxChoice;
4625   memset(aFrom, 0, sizeof(aFrom[0]));
4626   pX = (WhereLoop**)(aFrom+mxChoice);
4627   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
4628     pFrom->aLoop = pX;
4629   }
4630   if( nOrderBy ){
4631     /* If there is an ORDER BY clause and it is not being ignored, set up
4632     ** space for the aSortCost[] array. Each element of the aSortCost array
4633     ** is either zero - meaning it has not yet been initialized - or the
4634     ** cost of sorting nRowEst rows of data where the first X terms of
4635     ** the ORDER BY clause are already in order, where X is the array
4636     ** index.  */
4637     aSortCost = (LogEst*)pX;
4638     memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
4639   }
4640   assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
4641   assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
4642 
4643   /* Seed the search with a single WherePath containing zero WhereLoops.
4644   **
4645   ** TUNING: Do not let the number of iterations go above 28.  If the cost
4646   ** of computing an automatic index is not paid back within the first 28
4647   ** rows, then do not use the automatic index. */
4648   aFrom[0].nRow = MIN(pParse->nQueryLoop, 48);  assert( 48==sqlite3LogEst(28) );
4649   nFrom = 1;
4650   assert( aFrom[0].isOrdered==0 );
4651   if( nOrderBy ){
4652     /* If nLoop is zero, then there are no FROM terms in the query. Since
4653     ** in this case the query may return a maximum of one row, the results
4654     ** are already in the requested order. Set isOrdered to nOrderBy to
4655     ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
4656     ** -1, indicating that the result set may or may not be ordered,
4657     ** depending on the loops added to the current plan.  */
4658     aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
4659   }
4660 
4661   /* Compute successively longer WherePaths using the previous generation
4662   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
4663   ** best paths at each generation */
4664   for(iLoop=0; iLoop<nLoop; iLoop++){
4665     nTo = 0;
4666     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
4667       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
4668         LogEst nOut;                      /* Rows visited by (pFrom+pWLoop) */
4669         LogEst rCost;                     /* Cost of path (pFrom+pWLoop) */
4670         LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
4671         i8 isOrdered = pFrom->isOrdered;  /* isOrdered for (pFrom+pWLoop) */
4672         Bitmask maskNew;                  /* Mask of src visited by (..) */
4673         Bitmask revMask = 0;              /* Mask of rev-order loops for (..) */
4674 
4675         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
4676         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
4677         if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
4678           /* Do not use an automatic index if the this loop is expected
4679           ** to run less than 1.25 times.  It is tempting to also exclude
4680           ** automatic index usage on an outer loop, but sometimes an automatic
4681           ** index is useful in the outer loop of a correlated subquery. */
4682           assert( 10==sqlite3LogEst(2) );
4683           continue;
4684         }
4685 
4686         /* At this point, pWLoop is a candidate to be the next loop.
4687         ** Compute its cost */
4688         rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
4689         rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
4690         nOut = pFrom->nRow + pWLoop->nOut;
4691         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
4692         if( isOrdered<0 ){
4693           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
4694                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
4695                        iLoop, pWLoop, &revMask);
4696         }else{
4697           revMask = pFrom->revLoop;
4698         }
4699         if( isOrdered>=0 && isOrdered<nOrderBy ){
4700           if( aSortCost[isOrdered]==0 ){
4701             aSortCost[isOrdered] = whereSortingCost(
4702                 pWInfo, nRowEst, nOrderBy, isOrdered
4703             );
4704           }
4705           /* TUNING:  Add a small extra penalty (5) to sorting as an
4706           ** extra encouragment to the query planner to select a plan
4707           ** where the rows emerge in the correct order without any sorting
4708           ** required. */
4709           rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5;
4710 
4711           WHERETRACE(0x002,
4712               ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
4713                aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
4714                rUnsorted, rCost));
4715         }else{
4716           rCost = rUnsorted;
4717           rUnsorted -= 2;  /* TUNING:  Slight bias in favor of no-sort plans */
4718         }
4719 
4720         /* Check to see if pWLoop should be added to the set of
4721         ** mxChoice best-so-far paths.
4722         **
4723         ** First look for an existing path among best-so-far paths
4724         ** that covers the same set of loops and has the same isOrdered
4725         ** setting as the current path candidate.
4726         **
4727         ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4728         ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4729         ** of legal values for isOrdered, -1..64.
4730         */
4731         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
4732           if( pTo->maskLoop==maskNew
4733            && ((pTo->isOrdered^isOrdered)&0x80)==0
4734           ){
4735             testcase( jj==nTo-1 );
4736             break;
4737           }
4738         }
4739         if( jj>=nTo ){
4740           /* None of the existing best-so-far paths match the candidate. */
4741           if( nTo>=mxChoice
4742            && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4743           ){
4744             /* The current candidate is no better than any of the mxChoice
4745             ** paths currently in the best-so-far buffer.  So discard
4746             ** this candidate as not viable. */
4747 #ifdef WHERETRACE_ENABLED /* 0x4 */
4748             if( sqlite3WhereTrace&0x4 ){
4749               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d,%3d order=%c\n",
4750                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4751                   isOrdered>=0 ? isOrdered+'0' : '?');
4752             }
4753 #endif
4754             continue;
4755           }
4756           /* If we reach this points it means that the new candidate path
4757           ** needs to be added to the set of best-so-far paths. */
4758           if( nTo<mxChoice ){
4759             /* Increase the size of the aTo set by one */
4760             jj = nTo++;
4761           }else{
4762             /* New path replaces the prior worst to keep count below mxChoice */
4763             jj = mxI;
4764           }
4765           pTo = &aTo[jj];
4766 #ifdef WHERETRACE_ENABLED /* 0x4 */
4767           if( sqlite3WhereTrace&0x4 ){
4768             sqlite3DebugPrintf("New    %s cost=%-3d,%3d,%3d order=%c\n",
4769                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4770                 isOrdered>=0 ? isOrdered+'0' : '?');
4771           }
4772 #endif
4773         }else{
4774           /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4775           ** same set of loops and has the same isOrdered setting as the
4776           ** candidate path.  Check to see if the candidate should replace
4777           ** pTo or if the candidate should be skipped.
4778           **
4779           ** The conditional is an expanded vector comparison equivalent to:
4780           **   (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4781           */
4782           if( pTo->rCost<rCost
4783            || (pTo->rCost==rCost
4784                && (pTo->nRow<nOut
4785                    || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4786                   )
4787               )
4788           ){
4789 #ifdef WHERETRACE_ENABLED /* 0x4 */
4790             if( sqlite3WhereTrace&0x4 ){
4791               sqlite3DebugPrintf(
4792                   "Skip   %s cost=%-3d,%3d,%3d order=%c",
4793                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4794                   isOrdered>=0 ? isOrdered+'0' : '?');
4795               sqlite3DebugPrintf("   vs %s cost=%-3d,%3d,%3d order=%c\n",
4796                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4797                   pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4798             }
4799 #endif
4800             /* Discard the candidate path from further consideration */
4801             testcase( pTo->rCost==rCost );
4802             continue;
4803           }
4804           testcase( pTo->rCost==rCost+1 );
4805           /* Control reaches here if the candidate path is better than the
4806           ** pTo path.  Replace pTo with the candidate. */
4807 #ifdef WHERETRACE_ENABLED /* 0x4 */
4808           if( sqlite3WhereTrace&0x4 ){
4809             sqlite3DebugPrintf(
4810                 "Update %s cost=%-3d,%3d,%3d order=%c",
4811                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4812                 isOrdered>=0 ? isOrdered+'0' : '?');
4813             sqlite3DebugPrintf("  was %s cost=%-3d,%3d,%3d order=%c\n",
4814                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4815                 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4816           }
4817 #endif
4818         }
4819         /* pWLoop is a winner.  Add it to the set of best so far */
4820         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4821         pTo->revLoop = revMask;
4822         pTo->nRow = nOut;
4823         pTo->rCost = rCost;
4824         pTo->rUnsorted = rUnsorted;
4825         pTo->isOrdered = isOrdered;
4826         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4827         pTo->aLoop[iLoop] = pWLoop;
4828         if( nTo>=mxChoice ){
4829           mxI = 0;
4830           mxCost = aTo[0].rCost;
4831           mxUnsorted = aTo[0].nRow;
4832           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4833             if( pTo->rCost>mxCost
4834              || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4835             ){
4836               mxCost = pTo->rCost;
4837               mxUnsorted = pTo->rUnsorted;
4838               mxI = jj;
4839             }
4840           }
4841         }
4842       }
4843     }
4844 
4845 #ifdef WHERETRACE_ENABLED  /* >=2 */
4846     if( sqlite3WhereTrace & 0x02 ){
4847       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4848       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4849         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4850            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4851            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4852         if( pTo->isOrdered>0 ){
4853           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4854         }else{
4855           sqlite3DebugPrintf("\n");
4856         }
4857       }
4858     }
4859 #endif
4860 
4861     /* Swap the roles of aFrom and aTo for the next generation */
4862     pFrom = aTo;
4863     aTo = aFrom;
4864     aFrom = pFrom;
4865     nFrom = nTo;
4866   }
4867 
4868   if( nFrom==0 ){
4869     sqlite3ErrorMsg(pParse, "no query solution");
4870     sqlite3DbFreeNN(db, pSpace);
4871     return SQLITE_ERROR;
4872   }
4873 
4874   /* Find the lowest cost path.  pFrom will be left pointing to that path */
4875   pFrom = aFrom;
4876   for(ii=1; ii<nFrom; ii++){
4877     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4878   }
4879   assert( pWInfo->nLevel==nLoop );
4880   /* Load the lowest cost path into pWInfo */
4881   for(iLoop=0; iLoop<nLoop; iLoop++){
4882     WhereLevel *pLevel = pWInfo->a + iLoop;
4883     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
4884     pLevel->iFrom = pWLoop->iTab;
4885     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
4886   }
4887   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
4888    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
4889    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
4890    && nRowEst
4891   ){
4892     Bitmask notUsed;
4893     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
4894                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
4895     if( rc==pWInfo->pResultSet->nExpr ){
4896       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4897     }
4898   }
4899   pWInfo->bOrderedInnerLoop = 0;
4900   if( pWInfo->pOrderBy ){
4901     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
4902       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
4903         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4904       }
4905     }else{
4906       pWInfo->nOBSat = pFrom->isOrdered;
4907       pWInfo->revMask = pFrom->revLoop;
4908       if( pWInfo->nOBSat<=0 ){
4909         pWInfo->nOBSat = 0;
4910         if( nLoop>0 ){
4911           u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
4912           if( (wsFlags & WHERE_ONEROW)==0
4913            && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
4914           ){
4915             Bitmask m = 0;
4916             int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
4917                       WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
4918             testcase( wsFlags & WHERE_IPK );
4919             testcase( wsFlags & WHERE_COLUMN_IN );
4920             if( rc==pWInfo->pOrderBy->nExpr ){
4921               pWInfo->bOrderedInnerLoop = 1;
4922               pWInfo->revMask = m;
4923             }
4924           }
4925         }
4926       }else if( nLoop
4927             && pWInfo->nOBSat==1
4928             && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0
4929             ){
4930         pWInfo->bOrderedInnerLoop = 1;
4931       }
4932     }
4933     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
4934         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
4935     ){
4936       Bitmask revMask = 0;
4937       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
4938           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
4939       );
4940       assert( pWInfo->sorted==0 );
4941       if( nOrder==pWInfo->pOrderBy->nExpr ){
4942         pWInfo->sorted = 1;
4943         pWInfo->revMask = revMask;
4944       }
4945     }
4946   }
4947 
4948 
4949   pWInfo->nRowOut = pFrom->nRow;
4950 
4951   /* Free temporary memory and return success */
4952   sqlite3DbFreeNN(db, pSpace);
4953   return SQLITE_OK;
4954 }
4955 
4956 /*
4957 ** Most queries use only a single table (they are not joins) and have
4958 ** simple == constraints against indexed fields.  This routine attempts
4959 ** to plan those simple cases using much less ceremony than the
4960 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4961 ** times for the common case.
4962 **
4963 ** Return non-zero on success, if this query can be handled by this
4964 ** no-frills query planner.  Return zero if this query needs the
4965 ** general-purpose query planner.
4966 */
4967 static int whereShortCut(WhereLoopBuilder *pBuilder){
4968   WhereInfo *pWInfo;
4969   SrcItem *pItem;
4970   WhereClause *pWC;
4971   WhereTerm *pTerm;
4972   WhereLoop *pLoop;
4973   int iCur;
4974   int j;
4975   Table *pTab;
4976   Index *pIdx;
4977   WhereScan scan;
4978 
4979   pWInfo = pBuilder->pWInfo;
4980   if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
4981   assert( pWInfo->pTabList->nSrc>=1 );
4982   pItem = pWInfo->pTabList->a;
4983   pTab = pItem->pTab;
4984   if( IsVirtual(pTab) ) return 0;
4985   if( pItem->fg.isIndexedBy ) return 0;
4986   iCur = pItem->iCursor;
4987   pWC = &pWInfo->sWC;
4988   pLoop = pBuilder->pNew;
4989   pLoop->wsFlags = 0;
4990   pLoop->nSkip = 0;
4991   pTerm = whereScanInit(&scan, pWC, iCur, -1, WO_EQ|WO_IS, 0);
4992   while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
4993   if( pTerm ){
4994     testcase( pTerm->eOperator & WO_IS );
4995     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
4996     pLoop->aLTerm[0] = pTerm;
4997     pLoop->nLTerm = 1;
4998     pLoop->u.btree.nEq = 1;
4999     /* TUNING: Cost of a rowid lookup is 10 */
5000     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
5001   }else{
5002     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5003       int opMask;
5004       assert( pLoop->aLTermSpace==pLoop->aLTerm );
5005       if( !IsUniqueIndex(pIdx)
5006        || pIdx->pPartIdxWhere!=0
5007        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
5008       ) continue;
5009       opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
5010       for(j=0; j<pIdx->nKeyCol; j++){
5011         pTerm = whereScanInit(&scan, pWC, iCur, j, opMask, pIdx);
5012         while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
5013         if( pTerm==0 ) break;
5014         testcase( pTerm->eOperator & WO_IS );
5015         pLoop->aLTerm[j] = pTerm;
5016       }
5017       if( j!=pIdx->nKeyCol ) continue;
5018       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
5019       if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
5020         pLoop->wsFlags |= WHERE_IDX_ONLY;
5021       }
5022       pLoop->nLTerm = j;
5023       pLoop->u.btree.nEq = j;
5024       pLoop->u.btree.pIndex = pIdx;
5025       /* TUNING: Cost of a unique index lookup is 15 */
5026       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
5027       break;
5028     }
5029   }
5030   if( pLoop->wsFlags ){
5031     pLoop->nOut = (LogEst)1;
5032     pWInfo->a[0].pWLoop = pLoop;
5033     assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
5034     pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
5035     pWInfo->a[0].iTabCur = iCur;
5036     pWInfo->nRowOut = 1;
5037     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
5038     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
5039       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
5040     }
5041     if( scan.iEquiv>1 ) pLoop->wsFlags |= WHERE_TRANSCONS;
5042 #ifdef SQLITE_DEBUG
5043     pLoop->cId = '0';
5044 #endif
5045 #ifdef WHERETRACE_ENABLED
5046     if( sqlite3WhereTrace ){
5047       sqlite3DebugPrintf("whereShortCut() used to compute solution\n");
5048     }
5049 #endif
5050     return 1;
5051   }
5052   return 0;
5053 }
5054 
5055 /*
5056 ** Helper function for exprIsDeterministic().
5057 */
5058 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
5059   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
5060     pWalker->eCode = 0;
5061     return WRC_Abort;
5062   }
5063   return WRC_Continue;
5064 }
5065 
5066 /*
5067 ** Return true if the expression contains no non-deterministic SQL
5068 ** functions. Do not consider non-deterministic SQL functions that are
5069 ** part of sub-select statements.
5070 */
5071 static int exprIsDeterministic(Expr *p){
5072   Walker w;
5073   memset(&w, 0, sizeof(w));
5074   w.eCode = 1;
5075   w.xExprCallback = exprNodeIsDeterministic;
5076   w.xSelectCallback = sqlite3SelectWalkFail;
5077   sqlite3WalkExpr(&w, p);
5078   return w.eCode;
5079 }
5080 
5081 
5082 #ifdef WHERETRACE_ENABLED
5083 /*
5084 ** Display all WhereLoops in pWInfo
5085 */
5086 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){
5087   if( sqlite3WhereTrace ){    /* Display all of the WhereLoop objects */
5088     WhereLoop *p;
5089     int i;
5090     static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
5091                                            "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
5092     for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
5093       p->cId = zLabel[i%(sizeof(zLabel)-1)];
5094       sqlite3WhereLoopPrint(p, pWC);
5095     }
5096   }
5097 }
5098 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C)
5099 #else
5100 # define WHERETRACE_ALL_LOOPS(W,C)
5101 #endif
5102 
5103 /* Attempt to omit tables from a join that do not affect the result.
5104 ** For a table to not affect the result, the following must be true:
5105 **
5106 **   1) The query must not be an aggregate.
5107 **   2) The table must be the RHS of a LEFT JOIN.
5108 **   3) Either the query must be DISTINCT, or else the ON or USING clause
5109 **      must contain a constraint that limits the scan of the table to
5110 **      at most a single row.
5111 **   4) The table must not be referenced by any part of the query apart
5112 **      from its own USING or ON clause.
5113 **
5114 ** For example, given:
5115 **
5116 **     CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
5117 **     CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
5118 **     CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
5119 **
5120 ** then table t2 can be omitted from the following:
5121 **
5122 **     SELECT v1, v3 FROM t1
5123 **       LEFT JOIN t2 ON (t1.ipk=t2.ipk)
5124 **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5125 **
5126 ** or from:
5127 **
5128 **     SELECT DISTINCT v1, v3 FROM t1
5129 **       LEFT JOIN t2
5130 **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5131 */
5132 static SQLITE_NOINLINE Bitmask whereOmitNoopJoin(
5133   WhereInfo *pWInfo,
5134   Bitmask notReady
5135 ){
5136   int i;
5137   Bitmask tabUsed;
5138 
5139   /* Preconditions checked by the caller */
5140   assert( pWInfo->nLevel>=2 );
5141   assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_OmitNoopJoin) );
5142 
5143   /* These two preconditions checked by the caller combine to guarantee
5144   ** condition (1) of the header comment */
5145   assert( pWInfo->pResultSet!=0 );
5146   assert( 0==(pWInfo->wctrlFlags & WHERE_AGG_DISTINCT) );
5147 
5148   tabUsed = sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pResultSet);
5149   if( pWInfo->pOrderBy ){
5150     tabUsed |= sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pOrderBy);
5151   }
5152   for(i=pWInfo->nLevel-1; i>=1; i--){
5153     WhereTerm *pTerm, *pEnd;
5154     SrcItem *pItem;
5155     WhereLoop *pLoop;
5156     pLoop = pWInfo->a[i].pWLoop;
5157     pItem = &pWInfo->pTabList->a[pLoop->iTab];
5158     if( (pItem->fg.jointype & JT_LEFT)==0 ) continue;
5159     if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)==0
5160      && (pLoop->wsFlags & WHERE_ONEROW)==0
5161     ){
5162       continue;
5163     }
5164     if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
5165     pEnd = pWInfo->sWC.a + pWInfo->sWC.nTerm;
5166     for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){
5167       if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5168         if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
5169          || pTerm->pExpr->w.iRightJoinTable!=pItem->iCursor
5170         ){
5171           break;
5172         }
5173       }
5174     }
5175     if( pTerm<pEnd ) continue;
5176     WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
5177     notReady &= ~pLoop->maskSelf;
5178     for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){
5179       if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5180         pTerm->wtFlags |= TERM_CODED;
5181       }
5182     }
5183     if( i!=pWInfo->nLevel-1 ){
5184       int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
5185       memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
5186     }
5187     pWInfo->nLevel--;
5188     assert( pWInfo->nLevel>0 );
5189   }
5190   return notReady;
5191 }
5192 
5193 /*
5194 ** Check to see if there are any SEARCH loops that might benefit from
5195 ** using a Bloom filter.  Consider a Bloom filter if:
5196 **
5197 **   (1)  The SEARCH happens more than N times where N is the number
5198 **        of rows in the table that is being considered for the Bloom
5199 **        filter.
5200 **   (2)  Some searches are expected to find zero rows.  (This is determined
5201 **        by the WHERE_SELFCULL flag on the term.)
5202 **   (3)  Bloom-filter processing is not disabled.  (Checked by the
5203 **        caller.)
5204 **   (4)  The size of the table being searched is known by ANALYZE.
5205 **
5206 ** This block of code merely checks to see if a Bloom filter would be
5207 ** appropriate, and if so sets the WHERE_BLOOMFILTER flag on the
5208 ** WhereLoop.  The implementation of the Bloom filter comes further
5209 ** down where the code for each WhereLoop is generated.
5210 */
5211 static SQLITE_NOINLINE void whereCheckIfBloomFilterIsUseful(
5212   const WhereInfo *pWInfo
5213 ){
5214   int i;
5215   LogEst nSearch;
5216 
5217   assert( pWInfo->nLevel>=2 );
5218   assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_BloomFilter) );
5219   nSearch = pWInfo->a[0].pWLoop->nOut;
5220   for(i=1; i<pWInfo->nLevel; i++){
5221     WhereLoop *pLoop = pWInfo->a[i].pWLoop;
5222     const unsigned int reqFlags = (WHERE_SELFCULL|WHERE_COLUMN_EQ);
5223     if( (pLoop->wsFlags & reqFlags)==reqFlags
5224      /* vvvvvv--- Always the case if WHERE_COLUMN_EQ is defined */
5225      && ALWAYS((pLoop->wsFlags & (WHERE_IPK|WHERE_INDEXED))!=0)
5226     ){
5227       SrcItem *pItem = &pWInfo->pTabList->a[pLoop->iTab];
5228       Table *pTab = pItem->pTab;
5229       pTab->tabFlags |= TF_StatsUsed;
5230       if( nSearch > pTab->nRowLogEst
5231        && (pTab->tabFlags & TF_HasStat1)!=0
5232       ){
5233         testcase( pItem->fg.jointype & JT_LEFT );
5234         pLoop->wsFlags |= WHERE_BLOOMFILTER;
5235         pLoop->wsFlags &= ~WHERE_IDX_ONLY;
5236         WHERETRACE(0xffff, (
5237            "-> use Bloom-filter on loop %c because there are ~%.1e "
5238            "lookups into %s which has only ~%.1e rows\n",
5239            pLoop->cId, (double)sqlite3LogEstToInt(nSearch), pTab->zName,
5240            (double)sqlite3LogEstToInt(pTab->nRowLogEst)));
5241       }
5242     }
5243     nSearch += pLoop->nOut;
5244   }
5245 }
5246 
5247 /*
5248 ** Generate the beginning of the loop used for WHERE clause processing.
5249 ** The return value is a pointer to an opaque structure that contains
5250 ** information needed to terminate the loop.  Later, the calling routine
5251 ** should invoke sqlite3WhereEnd() with the return value of this function
5252 ** in order to complete the WHERE clause processing.
5253 **
5254 ** If an error occurs, this routine returns NULL.
5255 **
5256 ** The basic idea is to do a nested loop, one loop for each table in
5257 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
5258 ** same as a SELECT with only a single table in the FROM clause.)  For
5259 ** example, if the SQL is this:
5260 **
5261 **       SELECT * FROM t1, t2, t3 WHERE ...;
5262 **
5263 ** Then the code generated is conceptually like the following:
5264 **
5265 **      foreach row1 in t1 do       \    Code generated
5266 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
5267 **          foreach row3 in t3 do   /
5268 **            ...
5269 **          end                     \    Code generated
5270 **        end                        |-- by sqlite3WhereEnd()
5271 **      end                         /
5272 **
5273 ** Note that the loops might not be nested in the order in which they
5274 ** appear in the FROM clause if a different order is better able to make
5275 ** use of indices.  Note also that when the IN operator appears in
5276 ** the WHERE clause, it might result in additional nested loops for
5277 ** scanning through all values on the right-hand side of the IN.
5278 **
5279 ** There are Btree cursors associated with each table.  t1 uses cursor
5280 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
5281 ** And so forth.  This routine generates code to open those VDBE cursors
5282 ** and sqlite3WhereEnd() generates the code to close them.
5283 **
5284 ** The code that sqlite3WhereBegin() generates leaves the cursors named
5285 ** in pTabList pointing at their appropriate entries.  The [...] code
5286 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
5287 ** data from the various tables of the loop.
5288 **
5289 ** If the WHERE clause is empty, the foreach loops must each scan their
5290 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
5291 ** the tables have indices and there are terms in the WHERE clause that
5292 ** refer to those indices, a complete table scan can be avoided and the
5293 ** code will run much faster.  Most of the work of this routine is checking
5294 ** to see if there are indices that can be used to speed up the loop.
5295 **
5296 ** Terms of the WHERE clause are also used to limit which rows actually
5297 ** make it to the "..." in the middle of the loop.  After each "foreach",
5298 ** terms of the WHERE clause that use only terms in that loop and outer
5299 ** loops are evaluated and if false a jump is made around all subsequent
5300 ** inner loops (or around the "..." if the test occurs within the inner-
5301 ** most loop)
5302 **
5303 ** OUTER JOINS
5304 **
5305 ** An outer join of tables t1 and t2 is conceptally coded as follows:
5306 **
5307 **    foreach row1 in t1 do
5308 **      flag = 0
5309 **      foreach row2 in t2 do
5310 **        start:
5311 **          ...
5312 **          flag = 1
5313 **      end
5314 **      if flag==0 then
5315 **        move the row2 cursor to a null row
5316 **        goto start
5317 **      fi
5318 **    end
5319 **
5320 ** ORDER BY CLAUSE PROCESSING
5321 **
5322 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
5323 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
5324 ** if there is one.  If there is no ORDER BY clause or if this routine
5325 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
5326 **
5327 ** The iIdxCur parameter is the cursor number of an index.  If
5328 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
5329 ** to use for OR clause processing.  The WHERE clause should use this
5330 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
5331 ** the first cursor in an array of cursors for all indices.  iIdxCur should
5332 ** be used to compute the appropriate cursor depending on which index is
5333 ** used.
5334 */
5335 WhereInfo *sqlite3WhereBegin(
5336   Parse *pParse,          /* The parser context */
5337   SrcList *pTabList,      /* FROM clause: A list of all tables to be scanned */
5338   Expr *pWhere,           /* The WHERE clause */
5339   ExprList *pOrderBy,     /* An ORDER BY (or GROUP BY) clause, or NULL */
5340   ExprList *pResultSet,   /* Query result set.  Req'd for DISTINCT */
5341   Select *pLimit,         /* Use this LIMIT/OFFSET clause, if any */
5342   u16 wctrlFlags,         /* The WHERE_* flags defined in sqliteInt.h */
5343   int iAuxArg             /* If WHERE_OR_SUBCLAUSE is set, index cursor number
5344                           ** If WHERE_USE_LIMIT, then the limit amount */
5345 ){
5346   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
5347   int nTabList;              /* Number of elements in pTabList */
5348   WhereInfo *pWInfo;         /* Will become the return value of this function */
5349   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
5350   Bitmask notReady;          /* Cursors that are not yet positioned */
5351   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
5352   WhereMaskSet *pMaskSet;    /* The expression mask set */
5353   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
5354   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
5355   int ii;                    /* Loop counter */
5356   sqlite3 *db;               /* Database connection */
5357   int rc;                    /* Return code */
5358   u8 bFordelete = 0;         /* OPFLAG_FORDELETE or zero, as appropriate */
5359 
5360   assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
5361         (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
5362      && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5363   ));
5364 
5365   /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
5366   assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5367             || (wctrlFlags & WHERE_USE_LIMIT)==0 );
5368 
5369   /* Variable initialization */
5370   db = pParse->db;
5371   memset(&sWLB, 0, sizeof(sWLB));
5372 
5373   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
5374   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
5375   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
5376 
5377   /* The number of tables in the FROM clause is limited by the number of
5378   ** bits in a Bitmask
5379   */
5380   testcase( pTabList->nSrc==BMS );
5381   if( pTabList->nSrc>BMS ){
5382     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
5383     return 0;
5384   }
5385 
5386   /* This function normally generates a nested loop for all tables in
5387   ** pTabList.  But if the WHERE_OR_SUBCLAUSE flag is set, then we should
5388   ** only generate code for the first table in pTabList and assume that
5389   ** any cursors associated with subsequent tables are uninitialized.
5390   */
5391   nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
5392 
5393   /* Allocate and initialize the WhereInfo structure that will become the
5394   ** return value. A single allocation is used to store the WhereInfo
5395   ** struct, the contents of WhereInfo.a[], the WhereClause structure
5396   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
5397   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
5398   ** some architectures. Hence the ROUND8() below.
5399   */
5400   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
5401   pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
5402   if( db->mallocFailed ){
5403     sqlite3DbFree(db, pWInfo);
5404     pWInfo = 0;
5405     goto whereBeginError;
5406   }
5407   pWInfo->pParse = pParse;
5408   pWInfo->pTabList = pTabList;
5409   pWInfo->pOrderBy = pOrderBy;
5410   pWInfo->pWhere = pWhere;
5411   pWInfo->pResultSet = pResultSet;
5412   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
5413   pWInfo->nLevel = nTabList;
5414   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse);
5415   pWInfo->wctrlFlags = wctrlFlags;
5416   pWInfo->iLimit = iAuxArg;
5417   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
5418 #ifndef SQLITE_OMIT_VIRTUALTABLE
5419   pWInfo->pLimit = pLimit;
5420 #endif
5421   memset(&pWInfo->nOBSat, 0,
5422          offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
5423   memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
5424   assert( pWInfo->eOnePass==ONEPASS_OFF );  /* ONEPASS defaults to OFF */
5425   pMaskSet = &pWInfo->sMaskSet;
5426   pMaskSet->n = 0;
5427   pMaskSet->ix[0] = -99; /* Initialize ix[0] to a value that can never be
5428                          ** a valid cursor number, to avoid an initial
5429                          ** test for pMaskSet->n==0 in sqlite3WhereGetMask() */
5430   sWLB.pWInfo = pWInfo;
5431   sWLB.pWC = &pWInfo->sWC;
5432   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
5433   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
5434   whereLoopInit(sWLB.pNew);
5435 #ifdef SQLITE_DEBUG
5436   sWLB.pNew->cId = '*';
5437 #endif
5438 
5439   /* Split the WHERE clause into separate subexpressions where each
5440   ** subexpression is separated by an AND operator.
5441   */
5442   sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
5443   sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
5444 
5445   /* Special case: No FROM clause
5446   */
5447   if( nTabList==0 ){
5448     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
5449     if( (wctrlFlags & WHERE_WANT_DISTINCT)!=0
5450      && OptimizationEnabled(db, SQLITE_DistinctOpt)
5451     ){
5452       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
5453     }
5454     ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
5455   }else{
5456     /* Assign a bit from the bitmask to every term in the FROM clause.
5457     **
5458     ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
5459     **
5460     ** The rule of the previous sentence ensures thta if X is the bitmask for
5461     ** a table T, then X-1 is the bitmask for all other tables to the left of T.
5462     ** Knowing the bitmask for all tables to the left of a left join is
5463     ** important.  Ticket #3015.
5464     **
5465     ** Note that bitmasks are created for all pTabList->nSrc tables in
5466     ** pTabList, not just the first nTabList tables.  nTabList is normally
5467     ** equal to pTabList->nSrc but might be shortened to 1 if the
5468     ** WHERE_OR_SUBCLAUSE flag is set.
5469     */
5470     ii = 0;
5471     do{
5472       createMask(pMaskSet, pTabList->a[ii].iCursor);
5473       sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
5474     }while( (++ii)<pTabList->nSrc );
5475   #ifdef SQLITE_DEBUG
5476     {
5477       Bitmask mx = 0;
5478       for(ii=0; ii<pTabList->nSrc; ii++){
5479         Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
5480         assert( m>=mx );
5481         mx = m;
5482       }
5483     }
5484   #endif
5485   }
5486 
5487   /* Analyze all of the subexpressions. */
5488   sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
5489   sqlite3WhereAddLimit(&pWInfo->sWC, pLimit);
5490   if( db->mallocFailed ) goto whereBeginError;
5491 
5492   /* Special case: WHERE terms that do not refer to any tables in the join
5493   ** (constant expressions). Evaluate each such term, and jump over all the
5494   ** generated code if the result is not true.
5495   **
5496   ** Do not do this if the expression contains non-deterministic functions
5497   ** that are not within a sub-select. This is not strictly required, but
5498   ** preserves SQLite's legacy behaviour in the following two cases:
5499   **
5500   **   FROM ... WHERE random()>0;           -- eval random() once per row
5501   **   FROM ... WHERE (SELECT random())>0;  -- eval random() once overall
5502   */
5503   for(ii=0; ii<sWLB.pWC->nBase; ii++){
5504     WhereTerm *pT = &sWLB.pWC->a[ii];
5505     if( pT->wtFlags & TERM_VIRTUAL ) continue;
5506     if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
5507       sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
5508       pT->wtFlags |= TERM_CODED;
5509     }
5510   }
5511 
5512   if( wctrlFlags & WHERE_WANT_DISTINCT ){
5513     if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
5514       /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
5515       ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
5516       wctrlFlags &= ~WHERE_WANT_DISTINCT;
5517       pWInfo->wctrlFlags &= ~WHERE_WANT_DISTINCT;
5518     }else if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
5519       /* The DISTINCT marking is pointless.  Ignore it. */
5520       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
5521     }else if( pOrderBy==0 ){
5522       /* Try to ORDER BY the result set to make distinct processing easier */
5523       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
5524       pWInfo->pOrderBy = pResultSet;
5525     }
5526   }
5527 
5528   /* Construct the WhereLoop objects */
5529 #if defined(WHERETRACE_ENABLED)
5530   if( sqlite3WhereTrace & 0xffff ){
5531     sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
5532     if( wctrlFlags & WHERE_USE_LIMIT ){
5533       sqlite3DebugPrintf(", limit: %d", iAuxArg);
5534     }
5535     sqlite3DebugPrintf(")\n");
5536     if( sqlite3WhereTrace & 0x100 ){
5537       Select sSelect;
5538       memset(&sSelect, 0, sizeof(sSelect));
5539       sSelect.selFlags = SF_WhereBegin;
5540       sSelect.pSrc = pTabList;
5541       sSelect.pWhere = pWhere;
5542       sSelect.pOrderBy = pOrderBy;
5543       sSelect.pEList = pResultSet;
5544       sqlite3TreeViewSelect(0, &sSelect, 0);
5545     }
5546   }
5547   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5548     sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
5549     sqlite3WhereClausePrint(sWLB.pWC);
5550   }
5551 #endif
5552 
5553   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
5554     rc = whereLoopAddAll(&sWLB);
5555     if( rc ) goto whereBeginError;
5556 
5557 #ifdef SQLITE_ENABLE_STAT4
5558     /* If one or more WhereTerm.truthProb values were used in estimating
5559     ** loop parameters, but then those truthProb values were subsequently
5560     ** changed based on STAT4 information while computing subsequent loops,
5561     ** then we need to rerun the whole loop building process so that all
5562     ** loops will be built using the revised truthProb values. */
5563     if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){
5564       WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
5565       WHERETRACE(0xffff,
5566            ("**** Redo all loop computations due to"
5567             " TERM_HIGHTRUTH changes ****\n"));
5568       while( pWInfo->pLoops ){
5569         WhereLoop *p = pWInfo->pLoops;
5570         pWInfo->pLoops = p->pNextLoop;
5571         whereLoopDelete(db, p);
5572       }
5573       rc = whereLoopAddAll(&sWLB);
5574       if( rc ) goto whereBeginError;
5575     }
5576 #endif
5577     WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
5578 
5579     wherePathSolver(pWInfo, 0);
5580     if( db->mallocFailed ) goto whereBeginError;
5581     if( pWInfo->pOrderBy ){
5582        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
5583        if( db->mallocFailed ) goto whereBeginError;
5584     }
5585   }
5586   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
5587      pWInfo->revMask = ALLBITS;
5588   }
5589   if( pParse->nErr ){
5590     goto whereBeginError;
5591   }
5592   assert( db->mallocFailed==0 );
5593 #ifdef WHERETRACE_ENABLED
5594   if( sqlite3WhereTrace ){
5595     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
5596     if( pWInfo->nOBSat>0 ){
5597       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
5598     }
5599     switch( pWInfo->eDistinct ){
5600       case WHERE_DISTINCT_UNIQUE: {
5601         sqlite3DebugPrintf("  DISTINCT=unique");
5602         break;
5603       }
5604       case WHERE_DISTINCT_ORDERED: {
5605         sqlite3DebugPrintf("  DISTINCT=ordered");
5606         break;
5607       }
5608       case WHERE_DISTINCT_UNORDERED: {
5609         sqlite3DebugPrintf("  DISTINCT=unordered");
5610         break;
5611       }
5612     }
5613     sqlite3DebugPrintf("\n");
5614     for(ii=0; ii<pWInfo->nLevel; ii++){
5615       sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
5616     }
5617   }
5618 #endif
5619 
5620   /* Attempt to omit tables from a join that do not affect the result.
5621   ** See the comment on whereOmitNoopJoin() for further information.
5622   **
5623   ** This query optimization is factored out into a separate "no-inline"
5624   ** procedure to keep the sqlite3WhereBegin() procedure from becoming
5625   ** too large.  If sqlite3WhereBegin() becomes too large, that prevents
5626   ** some C-compiler optimizers from in-lining the
5627   ** sqlite3WhereCodeOneLoopStart() procedure, and it is important to
5628   ** in-line sqlite3WhereCodeOneLoopStart() for performance reasons.
5629   */
5630   notReady = ~(Bitmask)0;
5631   if( pWInfo->nLevel>=2
5632    && pResultSet!=0                         /* these two combine to guarantee */
5633    && 0==(wctrlFlags & WHERE_AGG_DISTINCT)  /* condition (1) above */
5634    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
5635   ){
5636     notReady = whereOmitNoopJoin(pWInfo, notReady);
5637     nTabList = pWInfo->nLevel;
5638     assert( nTabList>0 );
5639   }
5640 
5641   /* Check to see if there are any SEARCH loops that might benefit from
5642   ** using a Bloom filter.
5643   */
5644   if( pWInfo->nLevel>=2
5645    && OptimizationEnabled(db, SQLITE_BloomFilter)
5646   ){
5647     whereCheckIfBloomFilterIsUseful(pWInfo);
5648   }
5649 
5650 #if defined(WHERETRACE_ENABLED)
5651   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5652     sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
5653     sqlite3WhereClausePrint(sWLB.pWC);
5654   }
5655   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
5656 #endif
5657   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
5658 
5659   /* If the caller is an UPDATE or DELETE statement that is requesting
5660   ** to use a one-pass algorithm, determine if this is appropriate.
5661   **
5662   ** A one-pass approach can be used if the caller has requested one
5663   ** and either (a) the scan visits at most one row or (b) each
5664   ** of the following are true:
5665   **
5666   **   * the caller has indicated that a one-pass approach can be used
5667   **     with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
5668   **   * the table is not a virtual table, and
5669   **   * either the scan does not use the OR optimization or the caller
5670   **     is a DELETE operation (WHERE_DUPLICATES_OK is only specified
5671   **     for DELETE).
5672   **
5673   ** The last qualification is because an UPDATE statement uses
5674   ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
5675   ** use a one-pass approach, and this is not set accurately for scans
5676   ** that use the OR optimization.
5677   */
5678   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
5679   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
5680     int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
5681     int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
5682     assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) );
5683     if( bOnerow || (
5684         0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
5685      && !IsVirtual(pTabList->a[0].pTab)
5686      && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
5687     )){
5688       pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
5689       if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
5690         if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
5691           bFordelete = OPFLAG_FORDELETE;
5692         }
5693         pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
5694       }
5695     }
5696   }
5697 
5698   /* Open all tables in the pTabList and any indices selected for
5699   ** searching those tables.
5700   */
5701   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
5702     Table *pTab;     /* Table to open */
5703     int iDb;         /* Index of database containing table/index */
5704     SrcItem *pTabItem;
5705 
5706     pTabItem = &pTabList->a[pLevel->iFrom];
5707     pTab = pTabItem->pTab;
5708     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5709     pLoop = pLevel->pWLoop;
5710     if( (pTab->tabFlags & TF_Ephemeral)!=0 || IsView(pTab) ){
5711       /* Do nothing */
5712     }else
5713 #ifndef SQLITE_OMIT_VIRTUALTABLE
5714     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
5715       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
5716       int iCur = pTabItem->iCursor;
5717       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
5718     }else if( IsVirtual(pTab) ){
5719       /* noop */
5720     }else
5721 #endif
5722     if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
5723          && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
5724       int op = OP_OpenRead;
5725       if( pWInfo->eOnePass!=ONEPASS_OFF ){
5726         op = OP_OpenWrite;
5727         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
5728       };
5729       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
5730       assert( pTabItem->iCursor==pLevel->iTabCur );
5731       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
5732       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
5733       if( pWInfo->eOnePass==ONEPASS_OFF
5734        && pTab->nCol<BMS
5735        && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0
5736        && (pLoop->wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))==0
5737       ){
5738         /* If we know that only a prefix of the record will be used,
5739         ** it is advantageous to reduce the "column count" field in
5740         ** the P4 operand of the OP_OpenRead/Write opcode. */
5741         Bitmask b = pTabItem->colUsed;
5742         int n = 0;
5743         for(; b; b=b>>1, n++){}
5744         sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
5745         assert( n<=pTab->nCol );
5746       }
5747 #ifdef SQLITE_ENABLE_CURSOR_HINTS
5748       if( pLoop->u.btree.pIndex!=0 ){
5749         sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
5750       }else
5751 #endif
5752       {
5753         sqlite3VdbeChangeP5(v, bFordelete);
5754       }
5755 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5756       sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
5757                             (const u8*)&pTabItem->colUsed, P4_INT64);
5758 #endif
5759     }else{
5760       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5761     }
5762     if( pLoop->wsFlags & WHERE_INDEXED ){
5763       Index *pIx = pLoop->u.btree.pIndex;
5764       int iIndexCur;
5765       int op = OP_OpenRead;
5766       /* iAuxArg is always set to a positive value if ONEPASS is possible */
5767       assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
5768       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
5769        && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
5770       ){
5771         /* This is one term of an OR-optimization using the PRIMARY KEY of a
5772         ** WITHOUT ROWID table.  No need for a separate index */
5773         iIndexCur = pLevel->iTabCur;
5774         op = 0;
5775       }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
5776         Index *pJ = pTabItem->pTab->pIndex;
5777         iIndexCur = iAuxArg;
5778         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
5779         while( ALWAYS(pJ) && pJ!=pIx ){
5780           iIndexCur++;
5781           pJ = pJ->pNext;
5782         }
5783         op = OP_OpenWrite;
5784         pWInfo->aiCurOnePass[1] = iIndexCur;
5785       }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
5786         iIndexCur = iAuxArg;
5787         op = OP_ReopenIdx;
5788       }else{
5789         iIndexCur = pParse->nTab++;
5790       }
5791       pLevel->iIdxCur = iIndexCur;
5792       assert( pIx->pSchema==pTab->pSchema );
5793       assert( iIndexCur>=0 );
5794       if( op ){
5795         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
5796         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
5797         if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
5798          && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
5799          && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0
5800          && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
5801          && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
5802          && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
5803         ){
5804           sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ);
5805         }
5806         VdbeComment((v, "%s", pIx->zName));
5807 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5808         {
5809           u64 colUsed = 0;
5810           int ii, jj;
5811           for(ii=0; ii<pIx->nColumn; ii++){
5812             jj = pIx->aiColumn[ii];
5813             if( jj<0 ) continue;
5814             if( jj>63 ) jj = 63;
5815             if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
5816             colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
5817           }
5818           sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
5819                                 (u8*)&colUsed, P4_INT64);
5820         }
5821 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
5822       }
5823     }
5824     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
5825   }
5826   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
5827   if( db->mallocFailed ) goto whereBeginError;
5828 
5829   /* Generate the code to do the search.  Each iteration of the for
5830   ** loop below generates code for a single nested loop of the VM
5831   ** program.
5832   */
5833   for(ii=0; ii<nTabList; ii++){
5834     int addrExplain;
5835     int wsFlags;
5836     if( pParse->nErr ) goto whereBeginError;
5837     pLevel = &pWInfo->a[ii];
5838     wsFlags = pLevel->pWLoop->wsFlags;
5839     if( (wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))!=0 ){
5840       if( (wsFlags & WHERE_AUTO_INDEX)!=0 ){
5841 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
5842         constructAutomaticIndex(pParse, &pWInfo->sWC,
5843                   &pTabList->a[pLevel->iFrom], notReady, pLevel);
5844 #endif
5845       }else{
5846         sqlite3ConstructBloomFilter(pWInfo, ii, pLevel, notReady);
5847       }
5848       if( db->mallocFailed ) goto whereBeginError;
5849     }
5850     addrExplain = sqlite3WhereExplainOneScan(
5851         pParse, pTabList, pLevel, wctrlFlags
5852     );
5853     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
5854     notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady);
5855     pWInfo->iContinue = pLevel->addrCont;
5856     if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
5857       sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
5858     }
5859   }
5860 
5861   /* Done. */
5862   VdbeModuleComment((v, "Begin WHERE-core"));
5863   pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v);
5864   return pWInfo;
5865 
5866   /* Jump here if malloc fails */
5867 whereBeginError:
5868   if( pWInfo ){
5869     testcase( pWInfo->pExprMods!=0 );
5870     whereUndoExprMods(pWInfo);
5871     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5872     whereInfoFree(db, pWInfo);
5873   }
5874   return 0;
5875 }
5876 
5877 /*
5878 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
5879 ** index rather than the main table.  In SQLITE_DEBUG mode, we want
5880 ** to trace those changes if PRAGMA vdbe_addoptrace=on.  This routine
5881 ** does that.
5882 */
5883 #ifndef SQLITE_DEBUG
5884 # define OpcodeRewriteTrace(D,K,P) /* no-op */
5885 #else
5886 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
5887   static void sqlite3WhereOpcodeRewriteTrace(
5888     sqlite3 *db,
5889     int pc,
5890     VdbeOp *pOp
5891   ){
5892     if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
5893     sqlite3VdbePrintOp(0, pc, pOp);
5894   }
5895 #endif
5896 
5897 /*
5898 ** Generate the end of the WHERE loop.  See comments on
5899 ** sqlite3WhereBegin() for additional information.
5900 */
5901 void sqlite3WhereEnd(WhereInfo *pWInfo){
5902   Parse *pParse = pWInfo->pParse;
5903   Vdbe *v = pParse->pVdbe;
5904   int i;
5905   WhereLevel *pLevel;
5906   WhereLoop *pLoop;
5907   SrcList *pTabList = pWInfo->pTabList;
5908   sqlite3 *db = pParse->db;
5909   int iEnd = sqlite3VdbeCurrentAddr(v);
5910 
5911   /* Generate loop termination code.
5912   */
5913   VdbeModuleComment((v, "End WHERE-core"));
5914   for(i=pWInfo->nLevel-1; i>=0; i--){
5915     int addr;
5916     pLevel = &pWInfo->a[i];
5917     pLoop = pLevel->pWLoop;
5918     if( pLevel->op!=OP_Noop ){
5919 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5920       int addrSeek = 0;
5921       Index *pIdx;
5922       int n;
5923       if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
5924        && i==pWInfo->nLevel-1  /* Ticket [ef9318757b152e3] 2017-10-21 */
5925        && (pLoop->wsFlags & WHERE_INDEXED)!=0
5926        && (pIdx = pLoop->u.btree.pIndex)->hasStat1
5927        && (n = pLoop->u.btree.nDistinctCol)>0
5928        && pIdx->aiRowLogEst[n]>=36
5929       ){
5930         int r1 = pParse->nMem+1;
5931         int j, op;
5932         for(j=0; j<n; j++){
5933           sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
5934         }
5935         pParse->nMem += n+1;
5936         op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
5937         addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
5938         VdbeCoverageIf(v, op==OP_SeekLT);
5939         VdbeCoverageIf(v, op==OP_SeekGT);
5940         sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
5941       }
5942 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
5943       /* The common case: Advance to the next row */
5944       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5945       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
5946       sqlite3VdbeChangeP5(v, pLevel->p5);
5947       VdbeCoverage(v);
5948       VdbeCoverageIf(v, pLevel->op==OP_Next);
5949       VdbeCoverageIf(v, pLevel->op==OP_Prev);
5950       VdbeCoverageIf(v, pLevel->op==OP_VNext);
5951       if( pLevel->regBignull ){
5952         sqlite3VdbeResolveLabel(v, pLevel->addrBignull);
5953         sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1);
5954         VdbeCoverage(v);
5955       }
5956 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5957       if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
5958 #endif
5959     }else{
5960       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5961     }
5962     if( (pLoop->wsFlags & WHERE_IN_ABLE)!=0 && pLevel->u.in.nIn>0 ){
5963       struct InLoop *pIn;
5964       int j;
5965       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
5966       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
5967         assert( sqlite3VdbeGetOp(v, pIn->addrInTop+1)->opcode==OP_IsNull
5968                  || pParse->db->mallocFailed );
5969         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5970         if( pIn->eEndLoopOp!=OP_Noop ){
5971           if( pIn->nPrefix ){
5972             int bEarlyOut =
5973                 (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
5974                  && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0;
5975             if( pLevel->iLeftJoin ){
5976               /* For LEFT JOIN queries, cursor pIn->iCur may not have been
5977               ** opened yet. This occurs for WHERE clauses such as
5978               ** "a = ? AND b IN (...)", where the index is on (a, b). If
5979               ** the RHS of the (a=?) is NULL, then the "b IN (...)" may
5980               ** never have been coded, but the body of the loop run to
5981               ** return the null-row. So, if the cursor is not open yet,
5982               ** jump over the OP_Next or OP_Prev instruction about to
5983               ** be coded.  */
5984               sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur,
5985                   sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut);
5986               VdbeCoverage(v);
5987             }
5988             if( bEarlyOut ){
5989               sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
5990                   sqlite3VdbeCurrentAddr(v)+2,
5991                   pIn->iBase, pIn->nPrefix);
5992               VdbeCoverage(v);
5993               /* Retarget the OP_IsNull against the left operand of IN so
5994               ** it jumps past the OP_IfNoHope.  This is because the
5995               ** OP_IsNull also bypasses the OP_Affinity opcode that is
5996               ** required by OP_IfNoHope. */
5997               sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5998             }
5999           }
6000           sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
6001           VdbeCoverage(v);
6002           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
6003           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
6004         }
6005         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
6006       }
6007     }
6008     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
6009     if( pLevel->addrSkip ){
6010       sqlite3VdbeGoto(v, pLevel->addrSkip);
6011       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
6012       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
6013       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
6014     }
6015 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
6016     if( pLevel->addrLikeRep ){
6017       sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
6018                         pLevel->addrLikeRep);
6019       VdbeCoverage(v);
6020     }
6021 #endif
6022     if( pLevel->iLeftJoin ){
6023       int ws = pLoop->wsFlags;
6024       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
6025       assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
6026       if( (ws & WHERE_IDX_ONLY)==0 ){
6027         assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
6028         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
6029       }
6030       if( (ws & WHERE_INDEXED)
6031        || ((ws & WHERE_MULTI_OR) && pLevel->u.pCoveringIdx)
6032       ){
6033         if( ws & WHERE_MULTI_OR ){
6034           Index *pIx = pLevel->u.pCoveringIdx;
6035           int iDb = sqlite3SchemaToIndex(db, pIx->pSchema);
6036           sqlite3VdbeAddOp3(v, OP_ReopenIdx, pLevel->iIdxCur, pIx->tnum, iDb);
6037           sqlite3VdbeSetP4KeyInfo(pParse, pIx);
6038         }
6039         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
6040       }
6041       if( pLevel->op==OP_Return ){
6042         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
6043       }else{
6044         sqlite3VdbeGoto(v, pLevel->addrFirst);
6045       }
6046       sqlite3VdbeJumpHere(v, addr);
6047     }
6048     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
6049                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
6050   }
6051 
6052   /* The "break" point is here, just past the end of the outer loop.
6053   ** Set it.
6054   */
6055   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
6056 
6057   assert( pWInfo->nLevel<=pTabList->nSrc );
6058   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
6059     int k, last;
6060     VdbeOp *pOp, *pLastOp;
6061     Index *pIdx = 0;
6062     SrcItem *pTabItem = &pTabList->a[pLevel->iFrom];
6063     Table *pTab = pTabItem->pTab;
6064     assert( pTab!=0 );
6065     pLoop = pLevel->pWLoop;
6066 
6067     /* For a co-routine, change all OP_Column references to the table of
6068     ** the co-routine into OP_Copy of result contained in a register.
6069     ** OP_Rowid becomes OP_Null.
6070     */
6071     if( pTabItem->fg.viaCoroutine ){
6072       testcase( pParse->db->mallocFailed );
6073       translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
6074                             pTabItem->regResult, 0);
6075       continue;
6076     }
6077 
6078 #ifdef SQLITE_ENABLE_EARLY_CURSOR_CLOSE
6079     /* Close all of the cursors that were opened by sqlite3WhereBegin.
6080     ** Except, do not close cursors that will be reused by the OR optimization
6081     ** (WHERE_OR_SUBCLAUSE).  And do not close the OP_OpenWrite cursors
6082     ** created for the ONEPASS optimization.
6083     */
6084     if( (pTab->tabFlags & TF_Ephemeral)==0
6085      && !IsView(pTab)
6086      && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
6087     ){
6088       int ws = pLoop->wsFlags;
6089       if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){
6090         sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
6091       }
6092       if( (ws & WHERE_INDEXED)!=0
6093        && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0
6094        && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1]
6095       ){
6096         sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
6097       }
6098     }
6099 #endif
6100 
6101     /* If this scan uses an index, make VDBE code substitutions to read data
6102     ** from the index instead of from the table where possible.  In some cases
6103     ** this optimization prevents the table from ever being read, which can
6104     ** yield a significant performance boost.
6105     **
6106     ** Calls to the code generator in between sqlite3WhereBegin and
6107     ** sqlite3WhereEnd will have created code that references the table
6108     ** directly.  This loop scans all that code looking for opcodes
6109     ** that reference the table and converts them into opcodes that
6110     ** reference the index.
6111     */
6112     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
6113       pIdx = pLoop->u.btree.pIndex;
6114     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
6115       pIdx = pLevel->u.pCoveringIdx;
6116     }
6117     if( pIdx
6118      && !db->mallocFailed
6119     ){
6120       if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){
6121         last = iEnd;
6122       }else{
6123         last = pWInfo->iEndWhere;
6124       }
6125       k = pLevel->addrBody + 1;
6126 #ifdef SQLITE_DEBUG
6127       if( db->flags & SQLITE_VdbeAddopTrace ){
6128         printf("TRANSLATE opcodes in range %d..%d\n", k, last-1);
6129       }
6130       /* Proof that the "+1" on the k value above is safe */
6131       pOp = sqlite3VdbeGetOp(v, k - 1);
6132       assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur );
6133       assert( pOp->opcode!=OP_Rowid  || pOp->p1!=pLevel->iTabCur );
6134       assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur );
6135 #endif
6136       pOp = sqlite3VdbeGetOp(v, k);
6137       pLastOp = pOp + (last - k);
6138       assert( pOp<=pLastOp );
6139       do{
6140         if( pOp->p1!=pLevel->iTabCur ){
6141           /* no-op */
6142         }else if( pOp->opcode==OP_Column
6143 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6144          || pOp->opcode==OP_Offset
6145 #endif
6146         ){
6147           int x = pOp->p2;
6148           assert( pIdx->pTable==pTab );
6149           if( !HasRowid(pTab) ){
6150             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
6151             x = pPk->aiColumn[x];
6152             assert( x>=0 );
6153 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6154           }else if( pOp->opcode==OP_Offset ){
6155             /* Do not need to translate the column number */
6156 #endif
6157           }else{
6158             testcase( x!=sqlite3StorageColumnToTable(pTab,x) );
6159             x = sqlite3StorageColumnToTable(pTab,x);
6160           }
6161           x = sqlite3TableColumnToIndex(pIdx, x);
6162           if( x>=0 ){
6163             pOp->p2 = x;
6164             pOp->p1 = pLevel->iIdxCur;
6165             OpcodeRewriteTrace(db, k, pOp);
6166           }
6167           assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0
6168               || pWInfo->eOnePass );
6169         }else if( pOp->opcode==OP_Rowid ){
6170           pOp->p1 = pLevel->iIdxCur;
6171           pOp->opcode = OP_IdxRowid;
6172           OpcodeRewriteTrace(db, k, pOp);
6173         }else if( pOp->opcode==OP_IfNullRow ){
6174           pOp->p1 = pLevel->iIdxCur;
6175           OpcodeRewriteTrace(db, k, pOp);
6176         }
6177 #ifdef SQLITE_DEBUG
6178         k++;
6179 #endif
6180       }while( (++pOp)<pLastOp );
6181 #ifdef SQLITE_DEBUG
6182       if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
6183 #endif
6184     }
6185   }
6186 
6187   /* Final cleanup
6188   */
6189   if( pWInfo->pExprMods ) whereUndoExprMods(pWInfo);
6190   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
6191   whereInfoFree(db, pWInfo);
6192   return;
6193 }
6194