1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* Forward declaration of methods */ 23 static int whereLoopResize(sqlite3*, WhereLoop*, int); 24 25 /* Test variable that can be set to enable WHERE tracing */ 26 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 27 /***/ int sqlite3WhereTrace = 0; 28 #endif 29 30 31 /* 32 ** Return the estimated number of output rows from a WHERE clause 33 */ 34 u64 sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ 35 return sqlite3LogEstToInt(pWInfo->nRowOut); 36 } 37 38 /* 39 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this 40 ** WHERE clause returns outputs for DISTINCT processing. 41 */ 42 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ 43 return pWInfo->eDistinct; 44 } 45 46 /* 47 ** Return TRUE if the WHERE clause returns rows in ORDER BY order. 48 ** Return FALSE if the output needs to be sorted. 49 */ 50 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ 51 return pWInfo->nOBSat; 52 } 53 54 /* 55 ** Return the VDBE address or label to jump to in order to continue 56 ** immediately with the next row of a WHERE clause. 57 */ 58 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ 59 assert( pWInfo->iContinue!=0 ); 60 return pWInfo->iContinue; 61 } 62 63 /* 64 ** Return the VDBE address or label to jump to in order to break 65 ** out of a WHERE loop. 66 */ 67 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ 68 return pWInfo->iBreak; 69 } 70 71 /* 72 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to 73 ** operate directly on the rowis returned by a WHERE clause. Return 74 ** ONEPASS_SINGLE (1) if the statement can operation directly because only 75 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass 76 ** optimization can be used on multiple 77 ** 78 ** If the ONEPASS optimization is used (if this routine returns true) 79 ** then also write the indices of open cursors used by ONEPASS 80 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data 81 ** table and iaCur[1] gets the cursor used by an auxiliary index. 82 ** Either value may be -1, indicating that cursor is not used. 83 ** Any cursors returned will have been opened for writing. 84 ** 85 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is 86 ** unable to use the ONEPASS optimization. 87 */ 88 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ 89 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); 90 #ifdef WHERETRACE_ENABLED 91 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){ 92 sqlite3DebugPrintf("%s cursors: %d %d\n", 93 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI", 94 aiCur[0], aiCur[1]); 95 } 96 #endif 97 return pWInfo->eOnePass; 98 } 99 100 /* 101 ** Move the content of pSrc into pDest 102 */ 103 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ 104 pDest->n = pSrc->n; 105 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); 106 } 107 108 /* 109 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. 110 ** 111 ** The new entry might overwrite an existing entry, or it might be 112 ** appended, or it might be discarded. Do whatever is the right thing 113 ** so that pSet keeps the N_OR_COST best entries seen so far. 114 */ 115 static int whereOrInsert( 116 WhereOrSet *pSet, /* The WhereOrSet to be updated */ 117 Bitmask prereq, /* Prerequisites of the new entry */ 118 LogEst rRun, /* Run-cost of the new entry */ 119 LogEst nOut /* Number of outputs for the new entry */ 120 ){ 121 u16 i; 122 WhereOrCost *p; 123 for(i=pSet->n, p=pSet->a; i>0; i--, p++){ 124 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ 125 goto whereOrInsert_done; 126 } 127 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ 128 return 0; 129 } 130 } 131 if( pSet->n<N_OR_COST ){ 132 p = &pSet->a[pSet->n++]; 133 p->nOut = nOut; 134 }else{ 135 p = pSet->a; 136 for(i=1; i<pSet->n; i++){ 137 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; 138 } 139 if( p->rRun<=rRun ) return 0; 140 } 141 whereOrInsert_done: 142 p->prereq = prereq; 143 p->rRun = rRun; 144 if( p->nOut>nOut ) p->nOut = nOut; 145 return 1; 146 } 147 148 /* 149 ** Return the bitmask for the given cursor number. Return 0 if 150 ** iCursor is not in the set. 151 */ 152 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ 153 int i; 154 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); 155 for(i=0; i<pMaskSet->n; i++){ 156 if( pMaskSet->ix[i]==iCursor ){ 157 return MASKBIT(i); 158 } 159 } 160 return 0; 161 } 162 163 /* 164 ** Create a new mask for cursor iCursor. 165 ** 166 ** There is one cursor per table in the FROM clause. The number of 167 ** tables in the FROM clause is limited by a test early in the 168 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 169 ** array will never overflow. 170 */ 171 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 172 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 173 pMaskSet->ix[pMaskSet->n++] = iCursor; 174 } 175 176 /* 177 ** Advance to the next WhereTerm that matches according to the criteria 178 ** established when the pScan object was initialized by whereScanInit(). 179 ** Return NULL if there are no more matching WhereTerms. 180 */ 181 static WhereTerm *whereScanNext(WhereScan *pScan){ 182 int iCur; /* The cursor on the LHS of the term */ 183 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */ 184 Expr *pX; /* An expression being tested */ 185 WhereClause *pWC; /* Shorthand for pScan->pWC */ 186 WhereTerm *pTerm; /* The term being tested */ 187 int k = pScan->k; /* Where to start scanning */ 188 189 while( pScan->iEquiv<=pScan->nEquiv ){ 190 iCur = pScan->aiCur[pScan->iEquiv-1]; 191 iColumn = pScan->aiColumn[pScan->iEquiv-1]; 192 if( iColumn==XN_EXPR && pScan->pIdxExpr==0 ) return 0; 193 while( (pWC = pScan->pWC)!=0 ){ 194 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ 195 if( pTerm->leftCursor==iCur 196 && pTerm->u.leftColumn==iColumn 197 && (iColumn!=XN_EXPR 198 || sqlite3ExprCompare(pTerm->pExpr->pLeft,pScan->pIdxExpr,iCur)==0) 199 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 200 ){ 201 if( (pTerm->eOperator & WO_EQUIV)!=0 202 && pScan->nEquiv<ArraySize(pScan->aiCur) 203 && (pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight))->op==TK_COLUMN 204 ){ 205 int j; 206 for(j=0; j<pScan->nEquiv; j++){ 207 if( pScan->aiCur[j]==pX->iTable 208 && pScan->aiColumn[j]==pX->iColumn ){ 209 break; 210 } 211 } 212 if( j==pScan->nEquiv ){ 213 pScan->aiCur[j] = pX->iTable; 214 pScan->aiColumn[j] = pX->iColumn; 215 pScan->nEquiv++; 216 } 217 } 218 if( (pTerm->eOperator & pScan->opMask)!=0 ){ 219 /* Verify the affinity and collating sequence match */ 220 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ 221 CollSeq *pColl; 222 Parse *pParse = pWC->pWInfo->pParse; 223 pX = pTerm->pExpr; 224 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ 225 continue; 226 } 227 assert(pX->pLeft); 228 pColl = sqlite3BinaryCompareCollSeq(pParse, 229 pX->pLeft, pX->pRight); 230 if( pColl==0 ) pColl = pParse->db->pDfltColl; 231 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ 232 continue; 233 } 234 } 235 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0 236 && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN 237 && pX->iTable==pScan->aiCur[0] 238 && pX->iColumn==pScan->aiColumn[0] 239 ){ 240 testcase( pTerm->eOperator & WO_IS ); 241 continue; 242 } 243 pScan->k = k+1; 244 return pTerm; 245 } 246 } 247 } 248 pScan->pWC = pScan->pWC->pOuter; 249 k = 0; 250 } 251 pScan->pWC = pScan->pOrigWC; 252 k = 0; 253 pScan->iEquiv++; 254 } 255 return 0; 256 } 257 258 /* 259 ** Initialize a WHERE clause scanner object. Return a pointer to the 260 ** first match. Return NULL if there are no matches. 261 ** 262 ** The scanner will be searching the WHERE clause pWC. It will look 263 ** for terms of the form "X <op> <expr>" where X is column iColumn of table 264 ** iCur. The <op> must be one of the operators described by opMask. 265 ** 266 ** If the search is for X and the WHERE clause contains terms of the 267 ** form X=Y then this routine might also return terms of the form 268 ** "Y <op> <expr>". The number of levels of transitivity is limited, 269 ** but is enough to handle most commonly occurring SQL statements. 270 ** 271 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with 272 ** index pIdx. 273 */ 274 static WhereTerm *whereScanInit( 275 WhereScan *pScan, /* The WhereScan object being initialized */ 276 WhereClause *pWC, /* The WHERE clause to be scanned */ 277 int iCur, /* Cursor to scan for */ 278 int iColumn, /* Column to scan for */ 279 u32 opMask, /* Operator(s) to scan for */ 280 Index *pIdx /* Must be compatible with this index */ 281 ){ 282 int j = 0; 283 284 /* memset(pScan, 0, sizeof(*pScan)); */ 285 pScan->pOrigWC = pWC; 286 pScan->pWC = pWC; 287 pScan->pIdxExpr = 0; 288 if( pIdx ){ 289 j = iColumn; 290 iColumn = pIdx->aiColumn[j]; 291 if( iColumn==XN_EXPR ) pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr; 292 } 293 if( pIdx && iColumn>=0 ){ 294 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; 295 pScan->zCollName = pIdx->azColl[j]; 296 }else{ 297 pScan->idxaff = 0; 298 pScan->zCollName = 0; 299 } 300 pScan->opMask = opMask; 301 pScan->k = 0; 302 pScan->aiCur[0] = iCur; 303 pScan->aiColumn[0] = iColumn; 304 pScan->nEquiv = 1; 305 pScan->iEquiv = 1; 306 return whereScanNext(pScan); 307 } 308 309 /* 310 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 311 ** where X is a reference to the iColumn of table iCur and <op> is one of 312 ** the WO_xx operator codes specified by the op parameter. 313 ** Return a pointer to the term. Return 0 if not found. 314 ** 315 ** If pIdx!=0 then search for terms matching the iColumn-th column of pIdx 316 ** rather than the iColumn-th column of table iCur. 317 ** 318 ** The term returned might by Y=<expr> if there is another constraint in 319 ** the WHERE clause that specifies that X=Y. Any such constraints will be 320 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The 321 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11 322 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10 323 ** other equivalent values. Hence a search for X will return <expr> if X=A1 324 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>. 325 ** 326 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" 327 ** then try for the one with no dependencies on <expr> - in other words where 328 ** <expr> is a constant expression of some kind. Only return entries of 329 ** the form "X <op> Y" where Y is a column in another table if no terms of 330 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS 331 ** exist, try to return a term that does not use WO_EQUIV. 332 */ 333 WhereTerm *sqlite3WhereFindTerm( 334 WhereClause *pWC, /* The WHERE clause to be searched */ 335 int iCur, /* Cursor number of LHS */ 336 int iColumn, /* Column number of LHS */ 337 Bitmask notReady, /* RHS must not overlap with this mask */ 338 u32 op, /* Mask of WO_xx values describing operator */ 339 Index *pIdx /* Must be compatible with this index, if not NULL */ 340 ){ 341 WhereTerm *pResult = 0; 342 WhereTerm *p; 343 WhereScan scan; 344 345 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); 346 op &= WO_EQ|WO_IS; 347 while( p ){ 348 if( (p->prereqRight & notReady)==0 ){ 349 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){ 350 testcase( p->eOperator & WO_IS ); 351 return p; 352 } 353 if( pResult==0 ) pResult = p; 354 } 355 p = whereScanNext(&scan); 356 } 357 return pResult; 358 } 359 360 /* 361 ** This function searches pList for an entry that matches the iCol-th column 362 ** of index pIdx. 363 ** 364 ** If such an expression is found, its index in pList->a[] is returned. If 365 ** no expression is found, -1 is returned. 366 */ 367 static int findIndexCol( 368 Parse *pParse, /* Parse context */ 369 ExprList *pList, /* Expression list to search */ 370 int iBase, /* Cursor for table associated with pIdx */ 371 Index *pIdx, /* Index to match column of */ 372 int iCol /* Column of index to match */ 373 ){ 374 int i; 375 const char *zColl = pIdx->azColl[iCol]; 376 377 for(i=0; i<pList->nExpr; i++){ 378 Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr); 379 if( p->op==TK_COLUMN 380 && p->iColumn==pIdx->aiColumn[iCol] 381 && p->iTable==iBase 382 ){ 383 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); 384 if( pColl && 0==sqlite3StrICmp(pColl->zName, zColl) ){ 385 return i; 386 } 387 } 388 } 389 390 return -1; 391 } 392 393 /* 394 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL 395 */ 396 static int indexColumnNotNull(Index *pIdx, int iCol){ 397 int j; 398 assert( pIdx!=0 ); 399 assert( iCol>=0 && iCol<pIdx->nColumn ); 400 j = pIdx->aiColumn[iCol]; 401 if( j>=0 ){ 402 return pIdx->pTable->aCol[j].notNull; 403 }else if( j==(-1) ){ 404 return 1; 405 }else{ 406 assert( j==(-2) ); 407 return 0; /* Assume an indexed expression can always yield a NULL */ 408 409 } 410 } 411 412 /* 413 ** Return true if the DISTINCT expression-list passed as the third argument 414 ** is redundant. 415 ** 416 ** A DISTINCT list is redundant if any subset of the columns in the 417 ** DISTINCT list are collectively unique and individually non-null. 418 */ 419 static int isDistinctRedundant( 420 Parse *pParse, /* Parsing context */ 421 SrcList *pTabList, /* The FROM clause */ 422 WhereClause *pWC, /* The WHERE clause */ 423 ExprList *pDistinct /* The result set that needs to be DISTINCT */ 424 ){ 425 Table *pTab; 426 Index *pIdx; 427 int i; 428 int iBase; 429 430 /* If there is more than one table or sub-select in the FROM clause of 431 ** this query, then it will not be possible to show that the DISTINCT 432 ** clause is redundant. */ 433 if( pTabList->nSrc!=1 ) return 0; 434 iBase = pTabList->a[0].iCursor; 435 pTab = pTabList->a[0].pTab; 436 437 /* If any of the expressions is an IPK column on table iBase, then return 438 ** true. Note: The (p->iTable==iBase) part of this test may be false if the 439 ** current SELECT is a correlated sub-query. 440 */ 441 for(i=0; i<pDistinct->nExpr; i++){ 442 Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr); 443 if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1; 444 } 445 446 /* Loop through all indices on the table, checking each to see if it makes 447 ** the DISTINCT qualifier redundant. It does so if: 448 ** 449 ** 1. The index is itself UNIQUE, and 450 ** 451 ** 2. All of the columns in the index are either part of the pDistinct 452 ** list, or else the WHERE clause contains a term of the form "col=X", 453 ** where X is a constant value. The collation sequences of the 454 ** comparison and select-list expressions must match those of the index. 455 ** 456 ** 3. All of those index columns for which the WHERE clause does not 457 ** contain a "col=X" term are subject to a NOT NULL constraint. 458 */ 459 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 460 if( !IsUniqueIndex(pIdx) ) continue; 461 for(i=0; i<pIdx->nKeyCol; i++){ 462 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){ 463 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break; 464 if( indexColumnNotNull(pIdx, i)==0 ) break; 465 } 466 } 467 if( i==pIdx->nKeyCol ){ 468 /* This index implies that the DISTINCT qualifier is redundant. */ 469 return 1; 470 } 471 } 472 473 return 0; 474 } 475 476 477 /* 478 ** Estimate the logarithm of the input value to base 2. 479 */ 480 static LogEst estLog(LogEst N){ 481 return N<=10 ? 0 : sqlite3LogEst(N) - 33; 482 } 483 484 /* 485 ** Convert OP_Column opcodes to OP_Copy in previously generated code. 486 ** 487 ** This routine runs over generated VDBE code and translates OP_Column 488 ** opcodes into OP_Copy when the table is being accessed via co-routine 489 ** instead of via table lookup. 490 ** 491 ** If the bIncrRowid parameter is 0, then any OP_Rowid instructions on 492 ** cursor iTabCur are transformed into OP_Null. Or, if bIncrRowid is non-zero, 493 ** then each OP_Rowid is transformed into an instruction to increment the 494 ** value stored in its output register. 495 */ 496 static void translateColumnToCopy( 497 Vdbe *v, /* The VDBE containing code to translate */ 498 int iStart, /* Translate from this opcode to the end */ 499 int iTabCur, /* OP_Column/OP_Rowid references to this table */ 500 int iRegister, /* The first column is in this register */ 501 int bIncrRowid /* If non-zero, transform OP_rowid to OP_AddImm(1) */ 502 ){ 503 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart); 504 int iEnd = sqlite3VdbeCurrentAddr(v); 505 for(; iStart<iEnd; iStart++, pOp++){ 506 if( pOp->p1!=iTabCur ) continue; 507 if( pOp->opcode==OP_Column ){ 508 pOp->opcode = OP_Copy; 509 pOp->p1 = pOp->p2 + iRegister; 510 pOp->p2 = pOp->p3; 511 pOp->p3 = 0; 512 }else if( pOp->opcode==OP_Rowid ){ 513 if( bIncrRowid ){ 514 /* Increment the value stored in the P2 operand of the OP_Rowid. */ 515 pOp->opcode = OP_AddImm; 516 pOp->p1 = pOp->p2; 517 pOp->p2 = 1; 518 }else{ 519 pOp->opcode = OP_Null; 520 pOp->p1 = 0; 521 pOp->p3 = 0; 522 } 523 } 524 } 525 } 526 527 /* 528 ** Two routines for printing the content of an sqlite3_index_info 529 ** structure. Used for testing and debugging only. If neither 530 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 531 ** are no-ops. 532 */ 533 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) 534 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ 535 int i; 536 if( !sqlite3WhereTrace ) return; 537 for(i=0; i<p->nConstraint; i++){ 538 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 539 i, 540 p->aConstraint[i].iColumn, 541 p->aConstraint[i].iTermOffset, 542 p->aConstraint[i].op, 543 p->aConstraint[i].usable); 544 } 545 for(i=0; i<p->nOrderBy; i++){ 546 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 547 i, 548 p->aOrderBy[i].iColumn, 549 p->aOrderBy[i].desc); 550 } 551 } 552 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ 553 int i; 554 if( !sqlite3WhereTrace ) return; 555 for(i=0; i<p->nConstraint; i++){ 556 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 557 i, 558 p->aConstraintUsage[i].argvIndex, 559 p->aConstraintUsage[i].omit); 560 } 561 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 562 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 563 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 564 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 565 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); 566 } 567 #else 568 #define TRACE_IDX_INPUTS(A) 569 #define TRACE_IDX_OUTPUTS(A) 570 #endif 571 572 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 573 /* 574 ** Return TRUE if the WHERE clause term pTerm is of a form where it 575 ** could be used with an index to access pSrc, assuming an appropriate 576 ** index existed. 577 */ 578 static int termCanDriveIndex( 579 WhereTerm *pTerm, /* WHERE clause term to check */ 580 struct SrcList_item *pSrc, /* Table we are trying to access */ 581 Bitmask notReady /* Tables in outer loops of the join */ 582 ){ 583 char aff; 584 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; 585 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0; 586 if( (pTerm->prereqRight & notReady)!=0 ) return 0; 587 if( pTerm->u.leftColumn<0 ) return 0; 588 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; 589 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; 590 testcase( pTerm->pExpr->op==TK_IS ); 591 return 1; 592 } 593 #endif 594 595 596 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 597 /* 598 ** Generate code to construct the Index object for an automatic index 599 ** and to set up the WhereLevel object pLevel so that the code generator 600 ** makes use of the automatic index. 601 */ 602 static void constructAutomaticIndex( 603 Parse *pParse, /* The parsing context */ 604 WhereClause *pWC, /* The WHERE clause */ 605 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */ 606 Bitmask notReady, /* Mask of cursors that are not available */ 607 WhereLevel *pLevel /* Write new index here */ 608 ){ 609 int nKeyCol; /* Number of columns in the constructed index */ 610 WhereTerm *pTerm; /* A single term of the WHERE clause */ 611 WhereTerm *pWCEnd; /* End of pWC->a[] */ 612 Index *pIdx; /* Object describing the transient index */ 613 Vdbe *v; /* Prepared statement under construction */ 614 int addrInit; /* Address of the initialization bypass jump */ 615 Table *pTable; /* The table being indexed */ 616 int addrTop; /* Top of the index fill loop */ 617 int regRecord; /* Register holding an index record */ 618 int n; /* Column counter */ 619 int i; /* Loop counter */ 620 int mxBitCol; /* Maximum column in pSrc->colUsed */ 621 CollSeq *pColl; /* Collating sequence to on a column */ 622 WhereLoop *pLoop; /* The Loop object */ 623 char *zNotUsed; /* Extra space on the end of pIdx */ 624 Bitmask idxCols; /* Bitmap of columns used for indexing */ 625 Bitmask extraCols; /* Bitmap of additional columns */ 626 u8 sentWarning = 0; /* True if a warnning has been issued */ 627 Expr *pPartial = 0; /* Partial Index Expression */ 628 int iContinue = 0; /* Jump here to skip excluded rows */ 629 struct SrcList_item *pTabItem; /* FROM clause term being indexed */ 630 int addrCounter = 0; /* Address where integer counter is initialized */ 631 int regBase; /* Array of registers where record is assembled */ 632 633 /* Generate code to skip over the creation and initialization of the 634 ** transient index on 2nd and subsequent iterations of the loop. */ 635 v = pParse->pVdbe; 636 assert( v!=0 ); 637 addrInit = sqlite3CodeOnce(pParse); VdbeCoverage(v); 638 639 /* Count the number of columns that will be added to the index 640 ** and used to match WHERE clause constraints */ 641 nKeyCol = 0; 642 pTable = pSrc->pTab; 643 pWCEnd = &pWC->a[pWC->nTerm]; 644 pLoop = pLevel->pWLoop; 645 idxCols = 0; 646 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 647 Expr *pExpr = pTerm->pExpr; 648 assert( !ExprHasProperty(pExpr, EP_FromJoin) /* prereq always non-zero */ 649 || pExpr->iRightJoinTable!=pSrc->iCursor /* for the right-hand */ 650 || pLoop->prereq!=0 ); /* table of a LEFT JOIN */ 651 if( pLoop->prereq==0 652 && (pTerm->wtFlags & TERM_VIRTUAL)==0 653 && !ExprHasProperty(pExpr, EP_FromJoin) 654 && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){ 655 pPartial = sqlite3ExprAnd(pParse->db, pPartial, 656 sqlite3ExprDup(pParse->db, pExpr, 0)); 657 } 658 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 659 int iCol = pTerm->u.leftColumn; 660 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 661 testcase( iCol==BMS ); 662 testcase( iCol==BMS-1 ); 663 if( !sentWarning ){ 664 sqlite3_log(SQLITE_WARNING_AUTOINDEX, 665 "automatic index on %s(%s)", pTable->zName, 666 pTable->aCol[iCol].zName); 667 sentWarning = 1; 668 } 669 if( (idxCols & cMask)==0 ){ 670 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ 671 goto end_auto_index_create; 672 } 673 pLoop->aLTerm[nKeyCol++] = pTerm; 674 idxCols |= cMask; 675 } 676 } 677 } 678 assert( nKeyCol>0 ); 679 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; 680 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED 681 | WHERE_AUTO_INDEX; 682 683 /* Count the number of additional columns needed to create a 684 ** covering index. A "covering index" is an index that contains all 685 ** columns that are needed by the query. With a covering index, the 686 ** original table never needs to be accessed. Automatic indices must 687 ** be a covering index because the index will not be updated if the 688 ** original table changes and the index and table cannot both be used 689 ** if they go out of sync. 690 */ 691 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); 692 mxBitCol = MIN(BMS-1,pTable->nCol); 693 testcase( pTable->nCol==BMS-1 ); 694 testcase( pTable->nCol==BMS-2 ); 695 for(i=0; i<mxBitCol; i++){ 696 if( extraCols & MASKBIT(i) ) nKeyCol++; 697 } 698 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 699 nKeyCol += pTable->nCol - BMS + 1; 700 } 701 702 /* Construct the Index object to describe this index */ 703 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); 704 if( pIdx==0 ) goto end_auto_index_create; 705 pLoop->u.btree.pIndex = pIdx; 706 pIdx->zName = "auto-index"; 707 pIdx->pTable = pTable; 708 n = 0; 709 idxCols = 0; 710 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 711 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 712 int iCol = pTerm->u.leftColumn; 713 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 714 testcase( iCol==BMS-1 ); 715 testcase( iCol==BMS ); 716 if( (idxCols & cMask)==0 ){ 717 Expr *pX = pTerm->pExpr; 718 idxCols |= cMask; 719 pIdx->aiColumn[n] = pTerm->u.leftColumn; 720 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); 721 pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY; 722 n++; 723 } 724 } 725 } 726 assert( (u32)n==pLoop->u.btree.nEq ); 727 728 /* Add additional columns needed to make the automatic index into 729 ** a covering index */ 730 for(i=0; i<mxBitCol; i++){ 731 if( extraCols & MASKBIT(i) ){ 732 pIdx->aiColumn[n] = i; 733 pIdx->azColl[n] = sqlite3StrBINARY; 734 n++; 735 } 736 } 737 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 738 for(i=BMS-1; i<pTable->nCol; i++){ 739 pIdx->aiColumn[n] = i; 740 pIdx->azColl[n] = sqlite3StrBINARY; 741 n++; 742 } 743 } 744 assert( n==nKeyCol ); 745 pIdx->aiColumn[n] = XN_ROWID; 746 pIdx->azColl[n] = sqlite3StrBINARY; 747 748 /* Create the automatic index */ 749 assert( pLevel->iIdxCur>=0 ); 750 pLevel->iIdxCur = pParse->nTab++; 751 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); 752 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 753 VdbeComment((v, "for %s", pTable->zName)); 754 755 /* Fill the automatic index with content */ 756 sqlite3ExprCachePush(pParse); 757 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom]; 758 if( pTabItem->fg.viaCoroutine ){ 759 int regYield = pTabItem->regReturn; 760 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0); 761 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 762 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); 763 VdbeCoverage(v); 764 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); 765 }else{ 766 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); 767 } 768 if( pPartial ){ 769 iContinue = sqlite3VdbeMakeLabel(v); 770 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); 771 pLoop->wsFlags |= WHERE_PARTIALIDX; 772 } 773 regRecord = sqlite3GetTempReg(pParse); 774 regBase = sqlite3GenerateIndexKey( 775 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0 776 ); 777 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); 778 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 779 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); 780 if( pTabItem->fg.viaCoroutine ){ 781 sqlite3VdbeChangeP2(v, addrCounter, regBase+n); 782 translateColumnToCopy(v, addrTop, pLevel->iTabCur, pTabItem->regResult, 1); 783 sqlite3VdbeGoto(v, addrTop); 784 pTabItem->fg.viaCoroutine = 0; 785 }else{ 786 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); 787 } 788 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); 789 sqlite3VdbeJumpHere(v, addrTop); 790 sqlite3ReleaseTempReg(pParse, regRecord); 791 sqlite3ExprCachePop(pParse); 792 793 /* Jump here when skipping the initialization */ 794 sqlite3VdbeJumpHere(v, addrInit); 795 796 end_auto_index_create: 797 sqlite3ExprDelete(pParse->db, pPartial); 798 } 799 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 800 801 #ifndef SQLITE_OMIT_VIRTUALTABLE 802 /* 803 ** Allocate and populate an sqlite3_index_info structure. It is the 804 ** responsibility of the caller to eventually release the structure 805 ** by passing the pointer returned by this function to sqlite3_free(). 806 */ 807 static sqlite3_index_info *allocateIndexInfo( 808 Parse *pParse, 809 WhereClause *pWC, 810 Bitmask mUnusable, /* Ignore terms with these prereqs */ 811 struct SrcList_item *pSrc, 812 ExprList *pOrderBy 813 ){ 814 int i, j; 815 int nTerm; 816 struct sqlite3_index_constraint *pIdxCons; 817 struct sqlite3_index_orderby *pIdxOrderBy; 818 struct sqlite3_index_constraint_usage *pUsage; 819 WhereTerm *pTerm; 820 int nOrderBy; 821 sqlite3_index_info *pIdxInfo; 822 823 /* Count the number of possible WHERE clause constraints referring 824 ** to this virtual table */ 825 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 826 if( pTerm->leftCursor != pSrc->iCursor ) continue; 827 if( pTerm->prereqRight & mUnusable ) continue; 828 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 829 testcase( pTerm->eOperator & WO_IN ); 830 testcase( pTerm->eOperator & WO_ISNULL ); 831 testcase( pTerm->eOperator & WO_IS ); 832 testcase( pTerm->eOperator & WO_ALL ); 833 if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue; 834 if( pTerm->wtFlags & TERM_VNULL ) continue; 835 assert( pTerm->u.leftColumn>=(-1) ); 836 nTerm++; 837 } 838 839 /* If the ORDER BY clause contains only columns in the current 840 ** virtual table then allocate space for the aOrderBy part of 841 ** the sqlite3_index_info structure. 842 */ 843 nOrderBy = 0; 844 if( pOrderBy ){ 845 int n = pOrderBy->nExpr; 846 for(i=0; i<n; i++){ 847 Expr *pExpr = pOrderBy->a[i].pExpr; 848 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 849 } 850 if( i==n){ 851 nOrderBy = n; 852 } 853 } 854 855 /* Allocate the sqlite3_index_info structure 856 */ 857 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 858 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 859 + sizeof(*pIdxOrderBy)*nOrderBy ); 860 if( pIdxInfo==0 ){ 861 sqlite3ErrorMsg(pParse, "out of memory"); 862 return 0; 863 } 864 865 /* Initialize the structure. The sqlite3_index_info structure contains 866 ** many fields that are declared "const" to prevent xBestIndex from 867 ** changing them. We have to do some funky casting in order to 868 ** initialize those fields. 869 */ 870 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; 871 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 872 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 873 *(int*)&pIdxInfo->nConstraint = nTerm; 874 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 875 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; 876 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; 877 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = 878 pUsage; 879 880 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 881 u8 op; 882 if( pTerm->leftCursor != pSrc->iCursor ) continue; 883 if( pTerm->prereqRight & mUnusable ) continue; 884 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 885 testcase( pTerm->eOperator & WO_IN ); 886 testcase( pTerm->eOperator & WO_IS ); 887 testcase( pTerm->eOperator & WO_ISNULL ); 888 testcase( pTerm->eOperator & WO_ALL ); 889 if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue; 890 if( pTerm->wtFlags & TERM_VNULL ) continue; 891 assert( pTerm->u.leftColumn>=(-1) ); 892 pIdxCons[j].iColumn = pTerm->u.leftColumn; 893 pIdxCons[j].iTermOffset = i; 894 op = (u8)pTerm->eOperator & WO_ALL; 895 if( op==WO_IN ) op = WO_EQ; 896 if( op==WO_MATCH ){ 897 op = pTerm->eMatchOp; 898 } 899 pIdxCons[j].op = op; 900 /* The direct assignment in the previous line is possible only because 901 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 902 ** following asserts verify this fact. */ 903 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 904 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 905 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 906 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 907 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 908 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); 909 assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); 910 j++; 911 } 912 for(i=0; i<nOrderBy; i++){ 913 Expr *pExpr = pOrderBy->a[i].pExpr; 914 pIdxOrderBy[i].iColumn = pExpr->iColumn; 915 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; 916 } 917 918 return pIdxInfo; 919 } 920 921 /* 922 ** The table object reference passed as the second argument to this function 923 ** must represent a virtual table. This function invokes the xBestIndex() 924 ** method of the virtual table with the sqlite3_index_info object that 925 ** comes in as the 3rd argument to this function. 926 ** 927 ** If an error occurs, pParse is populated with an error message and a 928 ** non-zero value is returned. Otherwise, 0 is returned and the output 929 ** part of the sqlite3_index_info structure is left populated. 930 ** 931 ** Whether or not an error is returned, it is the responsibility of the 932 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates 933 ** that this is required. 934 */ 935 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ 936 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; 937 int i; 938 int rc; 939 940 TRACE_IDX_INPUTS(p); 941 rc = pVtab->pModule->xBestIndex(pVtab, p); 942 TRACE_IDX_OUTPUTS(p); 943 944 if( rc!=SQLITE_OK ){ 945 if( rc==SQLITE_NOMEM ){ 946 sqlite3OomFault(pParse->db); 947 }else if( !pVtab->zErrMsg ){ 948 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 949 }else{ 950 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 951 } 952 } 953 sqlite3_free(pVtab->zErrMsg); 954 pVtab->zErrMsg = 0; 955 956 for(i=0; i<p->nConstraint; i++){ 957 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){ 958 sqlite3ErrorMsg(pParse, 959 "table %s: xBestIndex returned an invalid plan", pTab->zName); 960 } 961 } 962 963 return pParse->nErr; 964 } 965 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ 966 967 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 968 /* 969 ** Estimate the location of a particular key among all keys in an 970 ** index. Store the results in aStat as follows: 971 ** 972 ** aStat[0] Est. number of rows less than pRec 973 ** aStat[1] Est. number of rows equal to pRec 974 ** 975 ** Return the index of the sample that is the smallest sample that 976 ** is greater than or equal to pRec. Note that this index is not an index 977 ** into the aSample[] array - it is an index into a virtual set of samples 978 ** based on the contents of aSample[] and the number of fields in record 979 ** pRec. 980 */ 981 static int whereKeyStats( 982 Parse *pParse, /* Database connection */ 983 Index *pIdx, /* Index to consider domain of */ 984 UnpackedRecord *pRec, /* Vector of values to consider */ 985 int roundUp, /* Round up if true. Round down if false */ 986 tRowcnt *aStat /* OUT: stats written here */ 987 ){ 988 IndexSample *aSample = pIdx->aSample; 989 int iCol; /* Index of required stats in anEq[] etc. */ 990 int i; /* Index of first sample >= pRec */ 991 int iSample; /* Smallest sample larger than or equal to pRec */ 992 int iMin = 0; /* Smallest sample not yet tested */ 993 int iTest; /* Next sample to test */ 994 int res; /* Result of comparison operation */ 995 int nField; /* Number of fields in pRec */ 996 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ 997 998 #ifndef SQLITE_DEBUG 999 UNUSED_PARAMETER( pParse ); 1000 #endif 1001 assert( pRec!=0 ); 1002 assert( pIdx->nSample>0 ); 1003 assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol ); 1004 1005 /* Do a binary search to find the first sample greater than or equal 1006 ** to pRec. If pRec contains a single field, the set of samples to search 1007 ** is simply the aSample[] array. If the samples in aSample[] contain more 1008 ** than one fields, all fields following the first are ignored. 1009 ** 1010 ** If pRec contains N fields, where N is more than one, then as well as the 1011 ** samples in aSample[] (truncated to N fields), the search also has to 1012 ** consider prefixes of those samples. For example, if the set of samples 1013 ** in aSample is: 1014 ** 1015 ** aSample[0] = (a, 5) 1016 ** aSample[1] = (a, 10) 1017 ** aSample[2] = (b, 5) 1018 ** aSample[3] = (c, 100) 1019 ** aSample[4] = (c, 105) 1020 ** 1021 ** Then the search space should ideally be the samples above and the 1022 ** unique prefixes [a], [b] and [c]. But since that is hard to organize, 1023 ** the code actually searches this set: 1024 ** 1025 ** 0: (a) 1026 ** 1: (a, 5) 1027 ** 2: (a, 10) 1028 ** 3: (a, 10) 1029 ** 4: (b) 1030 ** 5: (b, 5) 1031 ** 6: (c) 1032 ** 7: (c, 100) 1033 ** 8: (c, 105) 1034 ** 9: (c, 105) 1035 ** 1036 ** For each sample in the aSample[] array, N samples are present in the 1037 ** effective sample array. In the above, samples 0 and 1 are based on 1038 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. 1039 ** 1040 ** Often, sample i of each block of N effective samples has (i+1) fields. 1041 ** Except, each sample may be extended to ensure that it is greater than or 1042 ** equal to the previous sample in the array. For example, in the above, 1043 ** sample 2 is the first sample of a block of N samples, so at first it 1044 ** appears that it should be 1 field in size. However, that would make it 1045 ** smaller than sample 1, so the binary search would not work. As a result, 1046 ** it is extended to two fields. The duplicates that this creates do not 1047 ** cause any problems. 1048 */ 1049 nField = pRec->nField; 1050 iCol = 0; 1051 iSample = pIdx->nSample * nField; 1052 do{ 1053 int iSamp; /* Index in aSample[] of test sample */ 1054 int n; /* Number of fields in test sample */ 1055 1056 iTest = (iMin+iSample)/2; 1057 iSamp = iTest / nField; 1058 if( iSamp>0 ){ 1059 /* The proposed effective sample is a prefix of sample aSample[iSamp]. 1060 ** Specifically, the shortest prefix of at least (1 + iTest%nField) 1061 ** fields that is greater than the previous effective sample. */ 1062 for(n=(iTest % nField) + 1; n<nField; n++){ 1063 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break; 1064 } 1065 }else{ 1066 n = iTest + 1; 1067 } 1068 1069 pRec->nField = n; 1070 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); 1071 if( res<0 ){ 1072 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; 1073 iMin = iTest+1; 1074 }else if( res==0 && n<nField ){ 1075 iLower = aSample[iSamp].anLt[n-1]; 1076 iMin = iTest+1; 1077 res = -1; 1078 }else{ 1079 iSample = iTest; 1080 iCol = n-1; 1081 } 1082 }while( res && iMin<iSample ); 1083 i = iSample / nField; 1084 1085 #ifdef SQLITE_DEBUG 1086 /* The following assert statements check that the binary search code 1087 ** above found the right answer. This block serves no purpose other 1088 ** than to invoke the asserts. */ 1089 if( pParse->db->mallocFailed==0 ){ 1090 if( res==0 ){ 1091 /* If (res==0) is true, then pRec must be equal to sample i. */ 1092 assert( i<pIdx->nSample ); 1093 assert( iCol==nField-1 ); 1094 pRec->nField = nField; 1095 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) 1096 || pParse->db->mallocFailed 1097 ); 1098 }else{ 1099 /* Unless i==pIdx->nSample, indicating that pRec is larger than 1100 ** all samples in the aSample[] array, pRec must be smaller than the 1101 ** (iCol+1) field prefix of sample i. */ 1102 assert( i<=pIdx->nSample && i>=0 ); 1103 pRec->nField = iCol+1; 1104 assert( i==pIdx->nSample 1105 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 1106 || pParse->db->mallocFailed ); 1107 1108 /* if i==0 and iCol==0, then record pRec is smaller than all samples 1109 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must 1110 ** be greater than or equal to the (iCol) field prefix of sample i. 1111 ** If (i>0), then pRec must also be greater than sample (i-1). */ 1112 if( iCol>0 ){ 1113 pRec->nField = iCol; 1114 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 1115 || pParse->db->mallocFailed ); 1116 } 1117 if( i>0 ){ 1118 pRec->nField = nField; 1119 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 1120 || pParse->db->mallocFailed ); 1121 } 1122 } 1123 } 1124 #endif /* ifdef SQLITE_DEBUG */ 1125 1126 if( res==0 ){ 1127 /* Record pRec is equal to sample i */ 1128 assert( iCol==nField-1 ); 1129 aStat[0] = aSample[i].anLt[iCol]; 1130 aStat[1] = aSample[i].anEq[iCol]; 1131 }else{ 1132 /* At this point, the (iCol+1) field prefix of aSample[i] is the first 1133 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec 1134 ** is larger than all samples in the array. */ 1135 tRowcnt iUpper, iGap; 1136 if( i>=pIdx->nSample ){ 1137 iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); 1138 }else{ 1139 iUpper = aSample[i].anLt[iCol]; 1140 } 1141 1142 if( iLower>=iUpper ){ 1143 iGap = 0; 1144 }else{ 1145 iGap = iUpper - iLower; 1146 } 1147 if( roundUp ){ 1148 iGap = (iGap*2)/3; 1149 }else{ 1150 iGap = iGap/3; 1151 } 1152 aStat[0] = iLower + iGap; 1153 aStat[1] = pIdx->aAvgEq[iCol]; 1154 } 1155 1156 /* Restore the pRec->nField value before returning. */ 1157 pRec->nField = nField; 1158 return i; 1159 } 1160 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1161 1162 /* 1163 ** If it is not NULL, pTerm is a term that provides an upper or lower 1164 ** bound on a range scan. Without considering pTerm, it is estimated 1165 ** that the scan will visit nNew rows. This function returns the number 1166 ** estimated to be visited after taking pTerm into account. 1167 ** 1168 ** If the user explicitly specified a likelihood() value for this term, 1169 ** then the return value is the likelihood multiplied by the number of 1170 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term 1171 ** has a likelihood of 0.50, and any other term a likelihood of 0.25. 1172 */ 1173 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ 1174 LogEst nRet = nNew; 1175 if( pTerm ){ 1176 if( pTerm->truthProb<=0 ){ 1177 nRet += pTerm->truthProb; 1178 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ 1179 nRet -= 20; assert( 20==sqlite3LogEst(4) ); 1180 } 1181 } 1182 return nRet; 1183 } 1184 1185 1186 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1187 /* 1188 ** Return the affinity for a single column of an index. 1189 */ 1190 static char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){ 1191 assert( iCol>=0 && iCol<pIdx->nColumn ); 1192 if( !pIdx->zColAff ){ 1193 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB; 1194 } 1195 return pIdx->zColAff[iCol]; 1196 } 1197 #endif 1198 1199 1200 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1201 /* 1202 ** This function is called to estimate the number of rows visited by a 1203 ** range-scan on a skip-scan index. For example: 1204 ** 1205 ** CREATE INDEX i1 ON t1(a, b, c); 1206 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; 1207 ** 1208 ** Value pLoop->nOut is currently set to the estimated number of rows 1209 ** visited for scanning (a=? AND b=?). This function reduces that estimate 1210 ** by some factor to account for the (c BETWEEN ? AND ?) expression based 1211 ** on the stat4 data for the index. this scan will be peformed multiple 1212 ** times (once for each (a,b) combination that matches a=?) is dealt with 1213 ** by the caller. 1214 ** 1215 ** It does this by scanning through all stat4 samples, comparing values 1216 ** extracted from pLower and pUpper with the corresponding column in each 1217 ** sample. If L and U are the number of samples found to be less than or 1218 ** equal to the values extracted from pLower and pUpper respectively, and 1219 ** N is the total number of samples, the pLoop->nOut value is adjusted 1220 ** as follows: 1221 ** 1222 ** nOut = nOut * ( min(U - L, 1) / N ) 1223 ** 1224 ** If pLower is NULL, or a value cannot be extracted from the term, L is 1225 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, 1226 ** U is set to N. 1227 ** 1228 ** Normally, this function sets *pbDone to 1 before returning. However, 1229 ** if no value can be extracted from either pLower or pUpper (and so the 1230 ** estimate of the number of rows delivered remains unchanged), *pbDone 1231 ** is left as is. 1232 ** 1233 ** If an error occurs, an SQLite error code is returned. Otherwise, 1234 ** SQLITE_OK. 1235 */ 1236 static int whereRangeSkipScanEst( 1237 Parse *pParse, /* Parsing & code generating context */ 1238 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1239 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1240 WhereLoop *pLoop, /* Update the .nOut value of this loop */ 1241 int *pbDone /* Set to true if at least one expr. value extracted */ 1242 ){ 1243 Index *p = pLoop->u.btree.pIndex; 1244 int nEq = pLoop->u.btree.nEq; 1245 sqlite3 *db = pParse->db; 1246 int nLower = -1; 1247 int nUpper = p->nSample+1; 1248 int rc = SQLITE_OK; 1249 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq); 1250 CollSeq *pColl; 1251 1252 sqlite3_value *p1 = 0; /* Value extracted from pLower */ 1253 sqlite3_value *p2 = 0; /* Value extracted from pUpper */ 1254 sqlite3_value *pVal = 0; /* Value extracted from record */ 1255 1256 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); 1257 if( pLower ){ 1258 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); 1259 nLower = 0; 1260 } 1261 if( pUpper && rc==SQLITE_OK ){ 1262 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); 1263 nUpper = p2 ? 0 : p->nSample; 1264 } 1265 1266 if( p1 || p2 ){ 1267 int i; 1268 int nDiff; 1269 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ 1270 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); 1271 if( rc==SQLITE_OK && p1 ){ 1272 int res = sqlite3MemCompare(p1, pVal, pColl); 1273 if( res>=0 ) nLower++; 1274 } 1275 if( rc==SQLITE_OK && p2 ){ 1276 int res = sqlite3MemCompare(p2, pVal, pColl); 1277 if( res>=0 ) nUpper++; 1278 } 1279 } 1280 nDiff = (nUpper - nLower); 1281 if( nDiff<=0 ) nDiff = 1; 1282 1283 /* If there is both an upper and lower bound specified, and the 1284 ** comparisons indicate that they are close together, use the fallback 1285 ** method (assume that the scan visits 1/64 of the rows) for estimating 1286 ** the number of rows visited. Otherwise, estimate the number of rows 1287 ** using the method described in the header comment for this function. */ 1288 if( nDiff!=1 || pUpper==0 || pLower==0 ){ 1289 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); 1290 pLoop->nOut -= nAdjust; 1291 *pbDone = 1; 1292 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", 1293 nLower, nUpper, nAdjust*-1, pLoop->nOut)); 1294 } 1295 1296 }else{ 1297 assert( *pbDone==0 ); 1298 } 1299 1300 sqlite3ValueFree(p1); 1301 sqlite3ValueFree(p2); 1302 sqlite3ValueFree(pVal); 1303 1304 return rc; 1305 } 1306 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1307 1308 /* 1309 ** This function is used to estimate the number of rows that will be visited 1310 ** by scanning an index for a range of values. The range may have an upper 1311 ** bound, a lower bound, or both. The WHERE clause terms that set the upper 1312 ** and lower bounds are represented by pLower and pUpper respectively. For 1313 ** example, assuming that index p is on t1(a): 1314 ** 1315 ** ... FROM t1 WHERE a > ? AND a < ? ... 1316 ** |_____| |_____| 1317 ** | | 1318 ** pLower pUpper 1319 ** 1320 ** If either of the upper or lower bound is not present, then NULL is passed in 1321 ** place of the corresponding WhereTerm. 1322 ** 1323 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index 1324 ** column subject to the range constraint. Or, equivalently, the number of 1325 ** equality constraints optimized by the proposed index scan. For example, 1326 ** assuming index p is on t1(a, b), and the SQL query is: 1327 ** 1328 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... 1329 ** 1330 ** then nEq is set to 1 (as the range restricted column, b, is the second 1331 ** left-most column of the index). Or, if the query is: 1332 ** 1333 ** ... FROM t1 WHERE a > ? AND a < ? ... 1334 ** 1335 ** then nEq is set to 0. 1336 ** 1337 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the 1338 ** number of rows that the index scan is expected to visit without 1339 ** considering the range constraints. If nEq is 0, then *pnOut is the number of 1340 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) 1341 ** to account for the range constraints pLower and pUpper. 1342 ** 1343 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be 1344 ** used, a single range inequality reduces the search space by a factor of 4. 1345 ** and a pair of constraints (x>? AND x<?) reduces the expected number of 1346 ** rows visited by a factor of 64. 1347 */ 1348 static int whereRangeScanEst( 1349 Parse *pParse, /* Parsing & code generating context */ 1350 WhereLoopBuilder *pBuilder, 1351 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1352 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1353 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ 1354 ){ 1355 int rc = SQLITE_OK; 1356 int nOut = pLoop->nOut; 1357 LogEst nNew; 1358 1359 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1360 Index *p = pLoop->u.btree.pIndex; 1361 int nEq = pLoop->u.btree.nEq; 1362 1363 if( p->nSample>0 && nEq<p->nSampleCol ){ 1364 if( nEq==pBuilder->nRecValid ){ 1365 UnpackedRecord *pRec = pBuilder->pRec; 1366 tRowcnt a[2]; 1367 u8 aff; 1368 1369 /* Variable iLower will be set to the estimate of the number of rows in 1370 ** the index that are less than the lower bound of the range query. The 1371 ** lower bound being the concatenation of $P and $L, where $P is the 1372 ** key-prefix formed by the nEq values matched against the nEq left-most 1373 ** columns of the index, and $L is the value in pLower. 1374 ** 1375 ** Or, if pLower is NULL or $L cannot be extracted from it (because it 1376 ** is not a simple variable or literal value), the lower bound of the 1377 ** range is $P. Due to a quirk in the way whereKeyStats() works, even 1378 ** if $L is available, whereKeyStats() is called for both ($P) and 1379 ** ($P:$L) and the larger of the two returned values is used. 1380 ** 1381 ** Similarly, iUpper is to be set to the estimate of the number of rows 1382 ** less than the upper bound of the range query. Where the upper bound 1383 ** is either ($P) or ($P:$U). Again, even if $U is available, both values 1384 ** of iUpper are requested of whereKeyStats() and the smaller used. 1385 ** 1386 ** The number of rows between the two bounds is then just iUpper-iLower. 1387 */ 1388 tRowcnt iLower; /* Rows less than the lower bound */ 1389 tRowcnt iUpper; /* Rows less than the upper bound */ 1390 int iLwrIdx = -2; /* aSample[] for the lower bound */ 1391 int iUprIdx = -1; /* aSample[] for the upper bound */ 1392 1393 if( pRec ){ 1394 testcase( pRec->nField!=pBuilder->nRecValid ); 1395 pRec->nField = pBuilder->nRecValid; 1396 } 1397 aff = sqlite3IndexColumnAffinity(pParse->db, p, nEq); 1398 assert( nEq!=p->nKeyCol || aff==SQLITE_AFF_INTEGER ); 1399 /* Determine iLower and iUpper using ($P) only. */ 1400 if( nEq==0 ){ 1401 iLower = 0; 1402 iUpper = p->nRowEst0; 1403 }else{ 1404 /* Note: this call could be optimized away - since the same values must 1405 ** have been requested when testing key $P in whereEqualScanEst(). */ 1406 whereKeyStats(pParse, p, pRec, 0, a); 1407 iLower = a[0]; 1408 iUpper = a[0] + a[1]; 1409 } 1410 1411 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); 1412 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); 1413 assert( p->aSortOrder!=0 ); 1414 if( p->aSortOrder[nEq] ){ 1415 /* The roles of pLower and pUpper are swapped for a DESC index */ 1416 SWAP(WhereTerm*, pLower, pUpper); 1417 } 1418 1419 /* If possible, improve on the iLower estimate using ($P:$L). */ 1420 if( pLower ){ 1421 int bOk; /* True if value is extracted from pExpr */ 1422 Expr *pExpr = pLower->pExpr->pRight; 1423 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk); 1424 if( rc==SQLITE_OK && bOk ){ 1425 tRowcnt iNew; 1426 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); 1427 iNew = a[0] + ((pLower->eOperator & (WO_GT|WO_LE)) ? a[1] : 0); 1428 if( iNew>iLower ) iLower = iNew; 1429 nOut--; 1430 pLower = 0; 1431 } 1432 } 1433 1434 /* If possible, improve on the iUpper estimate using ($P:$U). */ 1435 if( pUpper ){ 1436 int bOk; /* True if value is extracted from pExpr */ 1437 Expr *pExpr = pUpper->pExpr->pRight; 1438 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk); 1439 if( rc==SQLITE_OK && bOk ){ 1440 tRowcnt iNew; 1441 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); 1442 iNew = a[0] + ((pUpper->eOperator & (WO_GT|WO_LE)) ? a[1] : 0); 1443 if( iNew<iUpper ) iUpper = iNew; 1444 nOut--; 1445 pUpper = 0; 1446 } 1447 } 1448 1449 pBuilder->pRec = pRec; 1450 if( rc==SQLITE_OK ){ 1451 if( iUpper>iLower ){ 1452 nNew = sqlite3LogEst(iUpper - iLower); 1453 /* TUNING: If both iUpper and iLower are derived from the same 1454 ** sample, then assume they are 4x more selective. This brings 1455 ** the estimated selectivity more in line with what it would be 1456 ** if estimated without the use of STAT3/4 tables. */ 1457 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) ); 1458 }else{ 1459 nNew = 10; assert( 10==sqlite3LogEst(2) ); 1460 } 1461 if( nNew<nOut ){ 1462 nOut = nNew; 1463 } 1464 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", 1465 (u32)iLower, (u32)iUpper, nOut)); 1466 } 1467 }else{ 1468 int bDone = 0; 1469 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); 1470 if( bDone ) return rc; 1471 } 1472 } 1473 #else 1474 UNUSED_PARAMETER(pParse); 1475 UNUSED_PARAMETER(pBuilder); 1476 assert( pLower || pUpper ); 1477 #endif 1478 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); 1479 nNew = whereRangeAdjust(pLower, nOut); 1480 nNew = whereRangeAdjust(pUpper, nNew); 1481 1482 /* TUNING: If there is both an upper and lower limit and neither limit 1483 ** has an application-defined likelihood(), assume the range is 1484 ** reduced by an additional 75%. This means that, by default, an open-ended 1485 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the 1486 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to 1487 ** match 1/64 of the index. */ 1488 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ 1489 nNew -= 20; 1490 } 1491 1492 nOut -= (pLower!=0) + (pUpper!=0); 1493 if( nNew<10 ) nNew = 10; 1494 if( nNew<nOut ) nOut = nNew; 1495 #if defined(WHERETRACE_ENABLED) 1496 if( pLoop->nOut>nOut ){ 1497 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", 1498 pLoop->nOut, nOut)); 1499 } 1500 #endif 1501 pLoop->nOut = (LogEst)nOut; 1502 return rc; 1503 } 1504 1505 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1506 /* 1507 ** Estimate the number of rows that will be returned based on 1508 ** an equality constraint x=VALUE and where that VALUE occurs in 1509 ** the histogram data. This only works when x is the left-most 1510 ** column of an index and sqlite_stat3 histogram data is available 1511 ** for that index. When pExpr==NULL that means the constraint is 1512 ** "x IS NULL" instead of "x=VALUE". 1513 ** 1514 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1515 ** If unable to make an estimate, leave *pnRow unchanged and return 1516 ** non-zero. 1517 ** 1518 ** This routine can fail if it is unable to load a collating sequence 1519 ** required for string comparison, or if unable to allocate memory 1520 ** for a UTF conversion required for comparison. The error is stored 1521 ** in the pParse structure. 1522 */ 1523 static int whereEqualScanEst( 1524 Parse *pParse, /* Parsing & code generating context */ 1525 WhereLoopBuilder *pBuilder, 1526 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ 1527 tRowcnt *pnRow /* Write the revised row estimate here */ 1528 ){ 1529 Index *p = pBuilder->pNew->u.btree.pIndex; 1530 int nEq = pBuilder->pNew->u.btree.nEq; 1531 UnpackedRecord *pRec = pBuilder->pRec; 1532 u8 aff; /* Column affinity */ 1533 int rc; /* Subfunction return code */ 1534 tRowcnt a[2]; /* Statistics */ 1535 int bOk; 1536 1537 assert( nEq>=1 ); 1538 assert( nEq<=p->nColumn ); 1539 assert( p->aSample!=0 ); 1540 assert( p->nSample>0 ); 1541 assert( pBuilder->nRecValid<nEq ); 1542 1543 /* If values are not available for all fields of the index to the left 1544 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ 1545 if( pBuilder->nRecValid<(nEq-1) ){ 1546 return SQLITE_NOTFOUND; 1547 } 1548 1549 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() 1550 ** below would return the same value. */ 1551 if( nEq>=p->nColumn ){ 1552 *pnRow = 1; 1553 return SQLITE_OK; 1554 } 1555 1556 aff = sqlite3IndexColumnAffinity(pParse->db, p, nEq-1); 1557 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq-1, &bOk); 1558 pBuilder->pRec = pRec; 1559 if( rc!=SQLITE_OK ) return rc; 1560 if( bOk==0 ) return SQLITE_NOTFOUND; 1561 pBuilder->nRecValid = nEq; 1562 1563 whereKeyStats(pParse, p, pRec, 0, a); 1564 WHERETRACE(0x10,("equality scan regions: %d\n", (int)a[1])); 1565 *pnRow = a[1]; 1566 1567 return rc; 1568 } 1569 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1570 1571 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1572 /* 1573 ** Estimate the number of rows that will be returned based on 1574 ** an IN constraint where the right-hand side of the IN operator 1575 ** is a list of values. Example: 1576 ** 1577 ** WHERE x IN (1,2,3,4) 1578 ** 1579 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1580 ** If unable to make an estimate, leave *pnRow unchanged and return 1581 ** non-zero. 1582 ** 1583 ** This routine can fail if it is unable to load a collating sequence 1584 ** required for string comparison, or if unable to allocate memory 1585 ** for a UTF conversion required for comparison. The error is stored 1586 ** in the pParse structure. 1587 */ 1588 static int whereInScanEst( 1589 Parse *pParse, /* Parsing & code generating context */ 1590 WhereLoopBuilder *pBuilder, 1591 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ 1592 tRowcnt *pnRow /* Write the revised row estimate here */ 1593 ){ 1594 Index *p = pBuilder->pNew->u.btree.pIndex; 1595 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); 1596 int nRecValid = pBuilder->nRecValid; 1597 int rc = SQLITE_OK; /* Subfunction return code */ 1598 tRowcnt nEst; /* Number of rows for a single term */ 1599 tRowcnt nRowEst = 0; /* New estimate of the number of rows */ 1600 int i; /* Loop counter */ 1601 1602 assert( p->aSample!=0 ); 1603 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ 1604 nEst = nRow0; 1605 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); 1606 nRowEst += nEst; 1607 pBuilder->nRecValid = nRecValid; 1608 } 1609 1610 if( rc==SQLITE_OK ){ 1611 if( nRowEst > nRow0 ) nRowEst = nRow0; 1612 *pnRow = nRowEst; 1613 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); 1614 } 1615 assert( pBuilder->nRecValid==nRecValid ); 1616 return rc; 1617 } 1618 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1619 1620 1621 #ifdef WHERETRACE_ENABLED 1622 /* 1623 ** Print the content of a WhereTerm object 1624 */ 1625 static void whereTermPrint(WhereTerm *pTerm, int iTerm){ 1626 if( pTerm==0 ){ 1627 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); 1628 }else{ 1629 char zType[4]; 1630 memcpy(zType, "...", 4); 1631 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; 1632 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; 1633 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L'; 1634 sqlite3DebugPrintf( 1635 "TERM-%-3d %p %s cursor=%-3d prob=%-3d op=0x%03x wtFlags=0x%04x\n", 1636 iTerm, pTerm, zType, pTerm->leftCursor, pTerm->truthProb, 1637 pTerm->eOperator, pTerm->wtFlags); 1638 sqlite3TreeViewExpr(0, pTerm->pExpr, 0); 1639 } 1640 } 1641 #endif 1642 1643 #ifdef WHERETRACE_ENABLED 1644 /* 1645 ** Print a WhereLoop object for debugging purposes 1646 */ 1647 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){ 1648 WhereInfo *pWInfo = pWC->pWInfo; 1649 int nb = 1+(pWInfo->pTabList->nSrc+7)/8; 1650 struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab; 1651 Table *pTab = pItem->pTab; 1652 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, 1653 p->iTab, nb, p->maskSelf, nb, p->prereq); 1654 sqlite3DebugPrintf(" %12s", 1655 pItem->zAlias ? pItem->zAlias : pTab->zName); 1656 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 1657 const char *zName; 1658 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ 1659 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ 1660 int i = sqlite3Strlen30(zName) - 1; 1661 while( zName[i]!='_' ) i--; 1662 zName += i; 1663 } 1664 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); 1665 }else{ 1666 sqlite3DebugPrintf("%20s",""); 1667 } 1668 }else{ 1669 char *z; 1670 if( p->u.vtab.idxStr ){ 1671 z = sqlite3_mprintf("(%d,\"%s\",%x)", 1672 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); 1673 }else{ 1674 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); 1675 } 1676 sqlite3DebugPrintf(" %-19s", z); 1677 sqlite3_free(z); 1678 } 1679 if( p->wsFlags & WHERE_SKIPSCAN ){ 1680 sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); 1681 }else{ 1682 sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm); 1683 } 1684 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); 1685 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ 1686 int i; 1687 for(i=0; i<p->nLTerm; i++){ 1688 whereTermPrint(p->aLTerm[i], i); 1689 } 1690 } 1691 } 1692 #endif 1693 1694 /* 1695 ** Convert bulk memory into a valid WhereLoop that can be passed 1696 ** to whereLoopClear harmlessly. 1697 */ 1698 static void whereLoopInit(WhereLoop *p){ 1699 p->aLTerm = p->aLTermSpace; 1700 p->nLTerm = 0; 1701 p->nLSlot = ArraySize(p->aLTermSpace); 1702 p->wsFlags = 0; 1703 } 1704 1705 /* 1706 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. 1707 */ 1708 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ 1709 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ 1710 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ 1711 sqlite3_free(p->u.vtab.idxStr); 1712 p->u.vtab.needFree = 0; 1713 p->u.vtab.idxStr = 0; 1714 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ 1715 sqlite3DbFree(db, p->u.btree.pIndex->zColAff); 1716 sqlite3DbFree(db, p->u.btree.pIndex); 1717 p->u.btree.pIndex = 0; 1718 } 1719 } 1720 } 1721 1722 /* 1723 ** Deallocate internal memory used by a WhereLoop object 1724 */ 1725 static void whereLoopClear(sqlite3 *db, WhereLoop *p){ 1726 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); 1727 whereLoopClearUnion(db, p); 1728 whereLoopInit(p); 1729 } 1730 1731 /* 1732 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. 1733 */ 1734 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ 1735 WhereTerm **paNew; 1736 if( p->nLSlot>=n ) return SQLITE_OK; 1737 n = (n+7)&~7; 1738 paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n); 1739 if( paNew==0 ) return SQLITE_NOMEM_BKPT; 1740 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); 1741 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); 1742 p->aLTerm = paNew; 1743 p->nLSlot = n; 1744 return SQLITE_OK; 1745 } 1746 1747 /* 1748 ** Transfer content from the second pLoop into the first. 1749 */ 1750 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ 1751 whereLoopClearUnion(db, pTo); 1752 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){ 1753 memset(&pTo->u, 0, sizeof(pTo->u)); 1754 return SQLITE_NOMEM_BKPT; 1755 } 1756 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); 1757 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); 1758 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ 1759 pFrom->u.vtab.needFree = 0; 1760 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 1761 pFrom->u.btree.pIndex = 0; 1762 } 1763 return SQLITE_OK; 1764 } 1765 1766 /* 1767 ** Delete a WhereLoop object 1768 */ 1769 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ 1770 whereLoopClear(db, p); 1771 sqlite3DbFree(db, p); 1772 } 1773 1774 /* 1775 ** Free a WhereInfo structure 1776 */ 1777 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 1778 if( ALWAYS(pWInfo) ){ 1779 int i; 1780 for(i=0; i<pWInfo->nLevel; i++){ 1781 WhereLevel *pLevel = &pWInfo->a[i]; 1782 if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){ 1783 sqlite3DbFree(db, pLevel->u.in.aInLoop); 1784 } 1785 } 1786 sqlite3WhereClauseClear(&pWInfo->sWC); 1787 while( pWInfo->pLoops ){ 1788 WhereLoop *p = pWInfo->pLoops; 1789 pWInfo->pLoops = p->pNextLoop; 1790 whereLoopDelete(db, p); 1791 } 1792 sqlite3DbFree(db, pWInfo); 1793 } 1794 } 1795 1796 /* 1797 ** Return TRUE if all of the following are true: 1798 ** 1799 ** (1) X has the same or lower cost that Y 1800 ** (2) X is a proper subset of Y 1801 ** (3) X skips at least as many columns as Y 1802 ** 1803 ** By "proper subset" we mean that X uses fewer WHERE clause terms 1804 ** than Y and that every WHERE clause term used by X is also used 1805 ** by Y. 1806 ** 1807 ** If X is a proper subset of Y then Y is a better choice and ought 1808 ** to have a lower cost. This routine returns TRUE when that cost 1809 ** relationship is inverted and needs to be adjusted. The third rule 1810 ** was added because if X uses skip-scan less than Y it still might 1811 ** deserve a lower cost even if it is a proper subset of Y. 1812 */ 1813 static int whereLoopCheaperProperSubset( 1814 const WhereLoop *pX, /* First WhereLoop to compare */ 1815 const WhereLoop *pY /* Compare against this WhereLoop */ 1816 ){ 1817 int i, j; 1818 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ 1819 return 0; /* X is not a subset of Y */ 1820 } 1821 if( pY->nSkip > pX->nSkip ) return 0; 1822 if( pX->rRun >= pY->rRun ){ 1823 if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */ 1824 if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */ 1825 } 1826 for(i=pX->nLTerm-1; i>=0; i--){ 1827 if( pX->aLTerm[i]==0 ) continue; 1828 for(j=pY->nLTerm-1; j>=0; j--){ 1829 if( pY->aLTerm[j]==pX->aLTerm[i] ) break; 1830 } 1831 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ 1832 } 1833 return 1; /* All conditions meet */ 1834 } 1835 1836 /* 1837 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so 1838 ** that: 1839 ** 1840 ** (1) pTemplate costs less than any other WhereLoops that are a proper 1841 ** subset of pTemplate 1842 ** 1843 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate 1844 ** is a proper subset. 1845 ** 1846 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer 1847 ** WHERE clause terms than Y and that every WHERE clause term used by X is 1848 ** also used by Y. 1849 */ 1850 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ 1851 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; 1852 for(; p; p=p->pNextLoop){ 1853 if( p->iTab!=pTemplate->iTab ) continue; 1854 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; 1855 if( whereLoopCheaperProperSubset(p, pTemplate) ){ 1856 /* Adjust pTemplate cost downward so that it is cheaper than its 1857 ** subset p. */ 1858 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 1859 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1)); 1860 pTemplate->rRun = p->rRun; 1861 pTemplate->nOut = p->nOut - 1; 1862 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ 1863 /* Adjust pTemplate cost upward so that it is costlier than p since 1864 ** pTemplate is a proper subset of p */ 1865 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 1866 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1)); 1867 pTemplate->rRun = p->rRun; 1868 pTemplate->nOut = p->nOut + 1; 1869 } 1870 } 1871 } 1872 1873 /* 1874 ** Search the list of WhereLoops in *ppPrev looking for one that can be 1875 ** supplanted by pTemplate. 1876 ** 1877 ** Return NULL if the WhereLoop list contains an entry that can supplant 1878 ** pTemplate, in other words if pTemplate does not belong on the list. 1879 ** 1880 ** If pX is a WhereLoop that pTemplate can supplant, then return the 1881 ** link that points to pX. 1882 ** 1883 ** If pTemplate cannot supplant any existing element of the list but needs 1884 ** to be added to the list, then return a pointer to the tail of the list. 1885 */ 1886 static WhereLoop **whereLoopFindLesser( 1887 WhereLoop **ppPrev, 1888 const WhereLoop *pTemplate 1889 ){ 1890 WhereLoop *p; 1891 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ 1892 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ 1893 /* If either the iTab or iSortIdx values for two WhereLoop are different 1894 ** then those WhereLoops need to be considered separately. Neither is 1895 ** a candidate to replace the other. */ 1896 continue; 1897 } 1898 /* In the current implementation, the rSetup value is either zero 1899 ** or the cost of building an automatic index (NlogN) and the NlogN 1900 ** is the same for compatible WhereLoops. */ 1901 assert( p->rSetup==0 || pTemplate->rSetup==0 1902 || p->rSetup==pTemplate->rSetup ); 1903 1904 /* whereLoopAddBtree() always generates and inserts the automatic index 1905 ** case first. Hence compatible candidate WhereLoops never have a larger 1906 ** rSetup. Call this SETUP-INVARIANT */ 1907 assert( p->rSetup>=pTemplate->rSetup ); 1908 1909 /* Any loop using an appliation-defined index (or PRIMARY KEY or 1910 ** UNIQUE constraint) with one or more == constraints is better 1911 ** than an automatic index. Unless it is a skip-scan. */ 1912 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 1913 && (pTemplate->nSkip)==0 1914 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 1915 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 1916 && (p->prereq & pTemplate->prereq)==pTemplate->prereq 1917 ){ 1918 break; 1919 } 1920 1921 /* If existing WhereLoop p is better than pTemplate, pTemplate can be 1922 ** discarded. WhereLoop p is better if: 1923 ** (1) p has no more dependencies than pTemplate, and 1924 ** (2) p has an equal or lower cost than pTemplate 1925 */ 1926 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ 1927 && p->rSetup<=pTemplate->rSetup /* (2a) */ 1928 && p->rRun<=pTemplate->rRun /* (2b) */ 1929 && p->nOut<=pTemplate->nOut /* (2c) */ 1930 ){ 1931 return 0; /* Discard pTemplate */ 1932 } 1933 1934 /* If pTemplate is always better than p, then cause p to be overwritten 1935 ** with pTemplate. pTemplate is better than p if: 1936 ** (1) pTemplate has no more dependences than p, and 1937 ** (2) pTemplate has an equal or lower cost than p. 1938 */ 1939 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ 1940 && p->rRun>=pTemplate->rRun /* (2a) */ 1941 && p->nOut>=pTemplate->nOut /* (2b) */ 1942 ){ 1943 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ 1944 break; /* Cause p to be overwritten by pTemplate */ 1945 } 1946 } 1947 return ppPrev; 1948 } 1949 1950 /* 1951 ** Insert or replace a WhereLoop entry using the template supplied. 1952 ** 1953 ** An existing WhereLoop entry might be overwritten if the new template 1954 ** is better and has fewer dependencies. Or the template will be ignored 1955 ** and no insert will occur if an existing WhereLoop is faster and has 1956 ** fewer dependencies than the template. Otherwise a new WhereLoop is 1957 ** added based on the template. 1958 ** 1959 ** If pBuilder->pOrSet is not NULL then we care about only the 1960 ** prerequisites and rRun and nOut costs of the N best loops. That 1961 ** information is gathered in the pBuilder->pOrSet object. This special 1962 ** processing mode is used only for OR clause processing. 1963 ** 1964 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we 1965 ** still might overwrite similar loops with the new template if the 1966 ** new template is better. Loops may be overwritten if the following 1967 ** conditions are met: 1968 ** 1969 ** (1) They have the same iTab. 1970 ** (2) They have the same iSortIdx. 1971 ** (3) The template has same or fewer dependencies than the current loop 1972 ** (4) The template has the same or lower cost than the current loop 1973 */ 1974 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ 1975 WhereLoop **ppPrev, *p; 1976 WhereInfo *pWInfo = pBuilder->pWInfo; 1977 sqlite3 *db = pWInfo->pParse->db; 1978 1979 /* If pBuilder->pOrSet is defined, then only keep track of the costs 1980 ** and prereqs. 1981 */ 1982 if( pBuilder->pOrSet!=0 ){ 1983 if( pTemplate->nLTerm ){ 1984 #if WHERETRACE_ENABLED 1985 u16 n = pBuilder->pOrSet->n; 1986 int x = 1987 #endif 1988 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, 1989 pTemplate->nOut); 1990 #if WHERETRACE_ENABLED /* 0x8 */ 1991 if( sqlite3WhereTrace & 0x8 ){ 1992 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); 1993 whereLoopPrint(pTemplate, pBuilder->pWC); 1994 } 1995 #endif 1996 } 1997 return SQLITE_OK; 1998 } 1999 2000 /* Look for an existing WhereLoop to replace with pTemplate 2001 */ 2002 whereLoopAdjustCost(pWInfo->pLoops, pTemplate); 2003 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); 2004 2005 if( ppPrev==0 ){ 2006 /* There already exists a WhereLoop on the list that is better 2007 ** than pTemplate, so just ignore pTemplate */ 2008 #if WHERETRACE_ENABLED /* 0x8 */ 2009 if( sqlite3WhereTrace & 0x8 ){ 2010 sqlite3DebugPrintf(" skip: "); 2011 whereLoopPrint(pTemplate, pBuilder->pWC); 2012 } 2013 #endif 2014 return SQLITE_OK; 2015 }else{ 2016 p = *ppPrev; 2017 } 2018 2019 /* If we reach this point it means that either p[] should be overwritten 2020 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new 2021 ** WhereLoop and insert it. 2022 */ 2023 #if WHERETRACE_ENABLED /* 0x8 */ 2024 if( sqlite3WhereTrace & 0x8 ){ 2025 if( p!=0 ){ 2026 sqlite3DebugPrintf("replace: "); 2027 whereLoopPrint(p, pBuilder->pWC); 2028 } 2029 sqlite3DebugPrintf(" add: "); 2030 whereLoopPrint(pTemplate, pBuilder->pWC); 2031 } 2032 #endif 2033 if( p==0 ){ 2034 /* Allocate a new WhereLoop to add to the end of the list */ 2035 *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop)); 2036 if( p==0 ) return SQLITE_NOMEM_BKPT; 2037 whereLoopInit(p); 2038 p->pNextLoop = 0; 2039 }else{ 2040 /* We will be overwriting WhereLoop p[]. But before we do, first 2041 ** go through the rest of the list and delete any other entries besides 2042 ** p[] that are also supplated by pTemplate */ 2043 WhereLoop **ppTail = &p->pNextLoop; 2044 WhereLoop *pToDel; 2045 while( *ppTail ){ 2046 ppTail = whereLoopFindLesser(ppTail, pTemplate); 2047 if( ppTail==0 ) break; 2048 pToDel = *ppTail; 2049 if( pToDel==0 ) break; 2050 *ppTail = pToDel->pNextLoop; 2051 #if WHERETRACE_ENABLED /* 0x8 */ 2052 if( sqlite3WhereTrace & 0x8 ){ 2053 sqlite3DebugPrintf(" delete: "); 2054 whereLoopPrint(pToDel, pBuilder->pWC); 2055 } 2056 #endif 2057 whereLoopDelete(db, pToDel); 2058 } 2059 } 2060 whereLoopXfer(db, p, pTemplate); 2061 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 2062 Index *pIndex = p->u.btree.pIndex; 2063 if( pIndex && pIndex->tnum==0 ){ 2064 p->u.btree.pIndex = 0; 2065 } 2066 } 2067 return SQLITE_OK; 2068 } 2069 2070 /* 2071 ** Adjust the WhereLoop.nOut value downward to account for terms of the 2072 ** WHERE clause that reference the loop but which are not used by an 2073 ** index. 2074 * 2075 ** For every WHERE clause term that is not used by the index 2076 ** and which has a truth probability assigned by one of the likelihood(), 2077 ** likely(), or unlikely() SQL functions, reduce the estimated number 2078 ** of output rows by the probability specified. 2079 ** 2080 ** TUNING: For every WHERE clause term that is not used by the index 2081 ** and which does not have an assigned truth probability, heuristics 2082 ** described below are used to try to estimate the truth probability. 2083 ** TODO --> Perhaps this is something that could be improved by better 2084 ** table statistics. 2085 ** 2086 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% 2087 ** value corresponds to -1 in LogEst notation, so this means decrement 2088 ** the WhereLoop.nOut field for every such WHERE clause term. 2089 ** 2090 ** Heuristic 2: If there exists one or more WHERE clause terms of the 2091 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the 2092 ** final output row estimate is no greater than 1/4 of the total number 2093 ** of rows in the table. In other words, assume that x==EXPR will filter 2094 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the 2095 ** "x" column is boolean or else -1 or 0 or 1 is a common default value 2096 ** on the "x" column and so in that case only cap the output row estimate 2097 ** at 1/2 instead of 1/4. 2098 */ 2099 static void whereLoopOutputAdjust( 2100 WhereClause *pWC, /* The WHERE clause */ 2101 WhereLoop *pLoop, /* The loop to adjust downward */ 2102 LogEst nRow /* Number of rows in the entire table */ 2103 ){ 2104 WhereTerm *pTerm, *pX; 2105 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); 2106 int i, j, k; 2107 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ 2108 2109 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2110 for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){ 2111 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break; 2112 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; 2113 if( (pTerm->prereqAll & notAllowed)!=0 ) continue; 2114 for(j=pLoop->nLTerm-1; j>=0; j--){ 2115 pX = pLoop->aLTerm[j]; 2116 if( pX==0 ) continue; 2117 if( pX==pTerm ) break; 2118 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; 2119 } 2120 if( j<0 ){ 2121 if( pTerm->truthProb<=0 ){ 2122 /* If a truth probability is specified using the likelihood() hints, 2123 ** then use the probability provided by the application. */ 2124 pLoop->nOut += pTerm->truthProb; 2125 }else{ 2126 /* In the absence of explicit truth probabilities, use heuristics to 2127 ** guess a reasonable truth probability. */ 2128 pLoop->nOut--; 2129 if( pTerm->eOperator&(WO_EQ|WO_IS) ){ 2130 Expr *pRight = pTerm->pExpr->pRight; 2131 testcase( pTerm->pExpr->op==TK_IS ); 2132 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){ 2133 k = 10; 2134 }else{ 2135 k = 20; 2136 } 2137 if( iReduce<k ) iReduce = k; 2138 } 2139 } 2140 } 2141 } 2142 if( pLoop->nOut > nRow-iReduce ) pLoop->nOut = nRow - iReduce; 2143 } 2144 2145 /* 2146 ** Adjust the cost C by the costMult facter T. This only occurs if 2147 ** compiled with -DSQLITE_ENABLE_COSTMULT 2148 */ 2149 #ifdef SQLITE_ENABLE_COSTMULT 2150 # define ApplyCostMultiplier(C,T) C += T 2151 #else 2152 # define ApplyCostMultiplier(C,T) 2153 #endif 2154 2155 /* 2156 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the 2157 ** index pIndex. Try to match one more. 2158 ** 2159 ** When this function is called, pBuilder->pNew->nOut contains the 2160 ** number of rows expected to be visited by filtering using the nEq 2161 ** terms only. If it is modified, this value is restored before this 2162 ** function returns. 2163 ** 2164 ** If pProbe->tnum==0, that means pIndex is a fake index used for the 2165 ** INTEGER PRIMARY KEY. 2166 */ 2167 static int whereLoopAddBtreeIndex( 2168 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ 2169 struct SrcList_item *pSrc, /* FROM clause term being analyzed */ 2170 Index *pProbe, /* An index on pSrc */ 2171 LogEst nInMul /* log(Number of iterations due to IN) */ 2172 ){ 2173 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ 2174 Parse *pParse = pWInfo->pParse; /* Parsing context */ 2175 sqlite3 *db = pParse->db; /* Database connection malloc context */ 2176 WhereLoop *pNew; /* Template WhereLoop under construction */ 2177 WhereTerm *pTerm; /* A WhereTerm under consideration */ 2178 int opMask; /* Valid operators for constraints */ 2179 WhereScan scan; /* Iterator for WHERE terms */ 2180 Bitmask saved_prereq; /* Original value of pNew->prereq */ 2181 u16 saved_nLTerm; /* Original value of pNew->nLTerm */ 2182 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ 2183 u16 saved_nSkip; /* Original value of pNew->nSkip */ 2184 u32 saved_wsFlags; /* Original value of pNew->wsFlags */ 2185 LogEst saved_nOut; /* Original value of pNew->nOut */ 2186 int rc = SQLITE_OK; /* Return code */ 2187 LogEst rSize; /* Number of rows in the table */ 2188 LogEst rLogSize; /* Logarithm of table size */ 2189 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ 2190 2191 pNew = pBuilder->pNew; 2192 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 2193 2194 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); 2195 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); 2196 if( pNew->wsFlags & WHERE_BTM_LIMIT ){ 2197 opMask = WO_LT|WO_LE; 2198 }else if( /*pProbe->tnum<=0 ||*/ (pSrc->fg.jointype & JT_LEFT)!=0 ){ 2199 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE; 2200 }else{ 2201 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS; 2202 } 2203 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); 2204 2205 assert( pNew->u.btree.nEq<pProbe->nColumn ); 2206 2207 saved_nEq = pNew->u.btree.nEq; 2208 saved_nSkip = pNew->nSkip; 2209 saved_nLTerm = pNew->nLTerm; 2210 saved_wsFlags = pNew->wsFlags; 2211 saved_prereq = pNew->prereq; 2212 saved_nOut = pNew->nOut; 2213 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq, 2214 opMask, pProbe); 2215 pNew->rSetup = 0; 2216 rSize = pProbe->aiRowLogEst[0]; 2217 rLogSize = estLog(rSize); 2218 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ 2219 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ 2220 LogEst rCostIdx; 2221 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ 2222 int nIn = 0; 2223 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2224 int nRecValid = pBuilder->nRecValid; 2225 #endif 2226 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) 2227 && indexColumnNotNull(pProbe, saved_nEq) 2228 ){ 2229 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ 2230 } 2231 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2232 2233 /* Do not allow the upper bound of a LIKE optimization range constraint 2234 ** to mix with a lower range bound from some other source */ 2235 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; 2236 2237 pNew->wsFlags = saved_wsFlags; 2238 pNew->u.btree.nEq = saved_nEq; 2239 pNew->nLTerm = saved_nLTerm; 2240 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2241 pNew->aLTerm[pNew->nLTerm++] = pTerm; 2242 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; 2243 2244 assert( nInMul==0 2245 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 2246 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 2247 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 2248 ); 2249 2250 if( eOp & WO_IN ){ 2251 Expr *pExpr = pTerm->pExpr; 2252 pNew->wsFlags |= WHERE_COLUMN_IN; 2253 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2254 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ 2255 nIn = 46; assert( 46==sqlite3LogEst(25) ); 2256 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ 2257 /* "x IN (value, value, ...)" */ 2258 nIn = sqlite3LogEst(pExpr->x.pList->nExpr); 2259 } 2260 assert( nIn>0 ); /* RHS always has 2 or more terms... The parser 2261 ** changes "x IN (?)" into "x=?". */ 2262 2263 }else if( eOp & (WO_EQ|WO_IS) ){ 2264 int iCol = pProbe->aiColumn[saved_nEq]; 2265 pNew->wsFlags |= WHERE_COLUMN_EQ; 2266 assert( saved_nEq==pNew->u.btree.nEq ); 2267 if( iCol==XN_ROWID 2268 || (iCol>0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) 2269 ){ 2270 if( iCol>=0 && pProbe->uniqNotNull==0 ){ 2271 pNew->wsFlags |= WHERE_UNQ_WANTED; 2272 }else{ 2273 pNew->wsFlags |= WHERE_ONEROW; 2274 } 2275 } 2276 }else if( eOp & WO_ISNULL ){ 2277 pNew->wsFlags |= WHERE_COLUMN_NULL; 2278 }else if( eOp & (WO_GT|WO_GE) ){ 2279 testcase( eOp & WO_GT ); 2280 testcase( eOp & WO_GE ); 2281 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; 2282 pBtm = pTerm; 2283 pTop = 0; 2284 if( pTerm->wtFlags & TERM_LIKEOPT ){ 2285 /* Range contraints that come from the LIKE optimization are 2286 ** always used in pairs. */ 2287 pTop = &pTerm[1]; 2288 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm ); 2289 assert( pTop->wtFlags & TERM_LIKEOPT ); 2290 assert( pTop->eOperator==WO_LT ); 2291 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2292 pNew->aLTerm[pNew->nLTerm++] = pTop; 2293 pNew->wsFlags |= WHERE_TOP_LIMIT; 2294 } 2295 }else{ 2296 assert( eOp & (WO_LT|WO_LE) ); 2297 testcase( eOp & WO_LT ); 2298 testcase( eOp & WO_LE ); 2299 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; 2300 pTop = pTerm; 2301 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? 2302 pNew->aLTerm[pNew->nLTerm-2] : 0; 2303 } 2304 2305 /* At this point pNew->nOut is set to the number of rows expected to 2306 ** be visited by the index scan before considering term pTerm, or the 2307 ** values of nIn and nInMul. In other words, assuming that all 2308 ** "x IN(...)" terms are replaced with "x = ?". This block updates 2309 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ 2310 assert( pNew->nOut==saved_nOut ); 2311 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2312 /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4 2313 ** data, using some other estimate. */ 2314 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); 2315 }else{ 2316 int nEq = ++pNew->u.btree.nEq; 2317 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) ); 2318 2319 assert( pNew->nOut==saved_nOut ); 2320 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){ 2321 assert( (eOp & WO_IN) || nIn==0 ); 2322 testcase( eOp & WO_IN ); 2323 pNew->nOut += pTerm->truthProb; 2324 pNew->nOut -= nIn; 2325 }else{ 2326 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2327 tRowcnt nOut = 0; 2328 if( nInMul==0 2329 && pProbe->nSample 2330 && pNew->u.btree.nEq<=pProbe->nSampleCol 2331 && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect)) 2332 ){ 2333 Expr *pExpr = pTerm->pExpr; 2334 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){ 2335 testcase( eOp & WO_EQ ); 2336 testcase( eOp & WO_IS ); 2337 testcase( eOp & WO_ISNULL ); 2338 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); 2339 }else{ 2340 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); 2341 } 2342 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 2343 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ 2344 if( nOut ){ 2345 pNew->nOut = sqlite3LogEst(nOut); 2346 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; 2347 pNew->nOut -= nIn; 2348 } 2349 } 2350 if( nOut==0 ) 2351 #endif 2352 { 2353 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); 2354 if( eOp & WO_ISNULL ){ 2355 /* TUNING: If there is no likelihood() value, assume that a 2356 ** "col IS NULL" expression matches twice as many rows 2357 ** as (col=?). */ 2358 pNew->nOut += 10; 2359 } 2360 } 2361 } 2362 } 2363 2364 /* Set rCostIdx to the cost of visiting selected rows in index. Add 2365 ** it to pNew->rRun, which is currently set to the cost of the index 2366 ** seek only. Then, if this is a non-covering index, add the cost of 2367 ** visiting the rows in the main table. */ 2368 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; 2369 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); 2370 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ 2371 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); 2372 } 2373 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); 2374 2375 nOutUnadjusted = pNew->nOut; 2376 pNew->rRun += nInMul + nIn; 2377 pNew->nOut += nInMul + nIn; 2378 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); 2379 rc = whereLoopInsert(pBuilder, pNew); 2380 2381 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2382 pNew->nOut = saved_nOut; 2383 }else{ 2384 pNew->nOut = nOutUnadjusted; 2385 } 2386 2387 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 2388 && pNew->u.btree.nEq<pProbe->nColumn 2389 ){ 2390 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); 2391 } 2392 pNew->nOut = saved_nOut; 2393 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2394 pBuilder->nRecValid = nRecValid; 2395 #endif 2396 } 2397 pNew->prereq = saved_prereq; 2398 pNew->u.btree.nEq = saved_nEq; 2399 pNew->nSkip = saved_nSkip; 2400 pNew->wsFlags = saved_wsFlags; 2401 pNew->nOut = saved_nOut; 2402 pNew->nLTerm = saved_nLTerm; 2403 2404 /* Consider using a skip-scan if there are no WHERE clause constraints 2405 ** available for the left-most terms of the index, and if the average 2406 ** number of repeats in the left-most terms is at least 18. 2407 ** 2408 ** The magic number 18 is selected on the basis that scanning 17 rows 2409 ** is almost always quicker than an index seek (even though if the index 2410 ** contains fewer than 2^17 rows we assume otherwise in other parts of 2411 ** the code). And, even if it is not, it should not be too much slower. 2412 ** On the other hand, the extra seeks could end up being significantly 2413 ** more expensive. */ 2414 assert( 42==sqlite3LogEst(18) ); 2415 if( saved_nEq==saved_nSkip 2416 && saved_nEq+1<pProbe->nKeyCol 2417 && pProbe->noSkipScan==0 2418 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ 2419 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK 2420 ){ 2421 LogEst nIter; 2422 pNew->u.btree.nEq++; 2423 pNew->nSkip++; 2424 pNew->aLTerm[pNew->nLTerm++] = 0; 2425 pNew->wsFlags |= WHERE_SKIPSCAN; 2426 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; 2427 pNew->nOut -= nIter; 2428 /* TUNING: Because uncertainties in the estimates for skip-scan queries, 2429 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ 2430 nIter += 5; 2431 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); 2432 pNew->nOut = saved_nOut; 2433 pNew->u.btree.nEq = saved_nEq; 2434 pNew->nSkip = saved_nSkip; 2435 pNew->wsFlags = saved_wsFlags; 2436 } 2437 2438 return rc; 2439 } 2440 2441 /* 2442 ** Return True if it is possible that pIndex might be useful in 2443 ** implementing the ORDER BY clause in pBuilder. 2444 ** 2445 ** Return False if pBuilder does not contain an ORDER BY clause or 2446 ** if there is no way for pIndex to be useful in implementing that 2447 ** ORDER BY clause. 2448 */ 2449 static int indexMightHelpWithOrderBy( 2450 WhereLoopBuilder *pBuilder, 2451 Index *pIndex, 2452 int iCursor 2453 ){ 2454 ExprList *pOB; 2455 ExprList *aColExpr; 2456 int ii, jj; 2457 2458 if( pIndex->bUnordered ) return 0; 2459 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; 2460 for(ii=0; ii<pOB->nExpr; ii++){ 2461 Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr); 2462 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){ 2463 if( pExpr->iColumn<0 ) return 1; 2464 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2465 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; 2466 } 2467 }else if( (aColExpr = pIndex->aColExpr)!=0 ){ 2468 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2469 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue; 2470 if( sqlite3ExprCompare(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){ 2471 return 1; 2472 } 2473 } 2474 } 2475 } 2476 return 0; 2477 } 2478 2479 /* 2480 ** Return a bitmask where 1s indicate that the corresponding column of 2481 ** the table is used by an index. Only the first 63 columns are considered. 2482 */ 2483 static Bitmask columnsInIndex(Index *pIdx){ 2484 Bitmask m = 0; 2485 int j; 2486 for(j=pIdx->nColumn-1; j>=0; j--){ 2487 int x = pIdx->aiColumn[j]; 2488 if( x>=0 ){ 2489 testcase( x==BMS-1 ); 2490 testcase( x==BMS-2 ); 2491 if( x<BMS-1 ) m |= MASKBIT(x); 2492 } 2493 } 2494 return m; 2495 } 2496 2497 /* Check to see if a partial index with pPartIndexWhere can be used 2498 ** in the current query. Return true if it can be and false if not. 2499 */ 2500 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){ 2501 int i; 2502 WhereTerm *pTerm; 2503 while( pWhere->op==TK_AND ){ 2504 if( !whereUsablePartialIndex(iTab,pWC,pWhere->pLeft) ) return 0; 2505 pWhere = pWhere->pRight; 2506 } 2507 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 2508 Expr *pExpr = pTerm->pExpr; 2509 if( sqlite3ExprImpliesExpr(pExpr, pWhere, iTab) 2510 && (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab) 2511 ){ 2512 return 1; 2513 } 2514 } 2515 return 0; 2516 } 2517 2518 /* 2519 ** Add all WhereLoop objects for a single table of the join where the table 2520 ** is idenfied by pBuilder->pNew->iTab. That table is guaranteed to be 2521 ** a b-tree table, not a virtual table. 2522 ** 2523 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function 2524 ** are calculated as follows: 2525 ** 2526 ** For a full scan, assuming the table (or index) contains nRow rows: 2527 ** 2528 ** cost = nRow * 3.0 // full-table scan 2529 ** cost = nRow * K // scan of covering index 2530 ** cost = nRow * (K+3.0) // scan of non-covering index 2531 ** 2532 ** where K is a value between 1.1 and 3.0 set based on the relative 2533 ** estimated average size of the index and table records. 2534 ** 2535 ** For an index scan, where nVisit is the number of index rows visited 2536 ** by the scan, and nSeek is the number of seek operations required on 2537 ** the index b-tree: 2538 ** 2539 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index 2540 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index 2541 ** 2542 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the 2543 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when 2544 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. 2545 ** 2546 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount 2547 ** of uncertainty. For this reason, scoring is designed to pick plans that 2548 ** "do the least harm" if the estimates are inaccurate. For example, a 2549 ** log(nRow) factor is omitted from a non-covering index scan in order to 2550 ** bias the scoring in favor of using an index, since the worst-case 2551 ** performance of using an index is far better than the worst-case performance 2552 ** of a full table scan. 2553 */ 2554 static int whereLoopAddBtree( 2555 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 2556 Bitmask mExtra /* Extra prerequesites for using this table */ 2557 ){ 2558 WhereInfo *pWInfo; /* WHERE analysis context */ 2559 Index *pProbe; /* An index we are evaluating */ 2560 Index sPk; /* A fake index object for the primary key */ 2561 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ 2562 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ 2563 SrcList *pTabList; /* The FROM clause */ 2564 struct SrcList_item *pSrc; /* The FROM clause btree term to add */ 2565 WhereLoop *pNew; /* Template WhereLoop object */ 2566 int rc = SQLITE_OK; /* Return code */ 2567 int iSortIdx = 1; /* Index number */ 2568 int b; /* A boolean value */ 2569 LogEst rSize; /* number of rows in the table */ 2570 LogEst rLogSize; /* Logarithm of the number of rows in the table */ 2571 WhereClause *pWC; /* The parsed WHERE clause */ 2572 Table *pTab; /* Table being queried */ 2573 2574 pNew = pBuilder->pNew; 2575 pWInfo = pBuilder->pWInfo; 2576 pTabList = pWInfo->pTabList; 2577 pSrc = pTabList->a + pNew->iTab; 2578 pTab = pSrc->pTab; 2579 pWC = pBuilder->pWC; 2580 assert( !IsVirtual(pSrc->pTab) ); 2581 2582 if( pSrc->pIBIndex ){ 2583 /* An INDEXED BY clause specifies a particular index to use */ 2584 pProbe = pSrc->pIBIndex; 2585 }else if( !HasRowid(pTab) ){ 2586 pProbe = pTab->pIndex; 2587 }else{ 2588 /* There is no INDEXED BY clause. Create a fake Index object in local 2589 ** variable sPk to represent the rowid primary key index. Make this 2590 ** fake index the first in a chain of Index objects with all of the real 2591 ** indices to follow */ 2592 Index *pFirst; /* First of real indices on the table */ 2593 memset(&sPk, 0, sizeof(Index)); 2594 sPk.nKeyCol = 1; 2595 sPk.nColumn = 1; 2596 sPk.aiColumn = &aiColumnPk; 2597 sPk.aiRowLogEst = aiRowEstPk; 2598 sPk.onError = OE_Replace; 2599 sPk.pTable = pTab; 2600 sPk.szIdxRow = pTab->szTabRow; 2601 aiRowEstPk[0] = pTab->nRowLogEst; 2602 aiRowEstPk[1] = 0; 2603 pFirst = pSrc->pTab->pIndex; 2604 if( pSrc->fg.notIndexed==0 ){ 2605 /* The real indices of the table are only considered if the 2606 ** NOT INDEXED qualifier is omitted from the FROM clause */ 2607 sPk.pNext = pFirst; 2608 } 2609 pProbe = &sPk; 2610 } 2611 rSize = pTab->nRowLogEst; 2612 rLogSize = estLog(rSize); 2613 2614 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 2615 /* Automatic indexes */ 2616 if( !pBuilder->pOrSet /* Not part of an OR optimization */ 2617 && (pWInfo->wctrlFlags & WHERE_NO_AUTOINDEX)==0 2618 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 2619 && pSrc->pIBIndex==0 /* Has no INDEXED BY clause */ 2620 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */ 2621 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */ 2622 && !pSrc->fg.isCorrelated /* Not a correlated subquery */ 2623 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */ 2624 ){ 2625 /* Generate auto-index WhereLoops */ 2626 WhereTerm *pTerm; 2627 WhereTerm *pWCEnd = pWC->a + pWC->nTerm; 2628 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ 2629 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2630 if( termCanDriveIndex(pTerm, pSrc, 0) ){ 2631 pNew->u.btree.nEq = 1; 2632 pNew->nSkip = 0; 2633 pNew->u.btree.pIndex = 0; 2634 pNew->nLTerm = 1; 2635 pNew->aLTerm[0] = pTerm; 2636 /* TUNING: One-time cost for computing the automatic index is 2637 ** estimated to be X*N*log2(N) where N is the number of rows in 2638 ** the table being indexed and where X is 7 (LogEst=28) for normal 2639 ** tables or 1.375 (LogEst=4) for views and subqueries. The value 2640 ** of X is smaller for views and subqueries so that the query planner 2641 ** will be more aggressive about generating automatic indexes for 2642 ** those objects, since there is no opportunity to add schema 2643 ** indexes on subqueries and views. */ 2644 pNew->rSetup = rLogSize + rSize + 4; 2645 if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){ 2646 pNew->rSetup += 24; 2647 } 2648 ApplyCostMultiplier(pNew->rSetup, pTab->costMult); 2649 /* TUNING: Each index lookup yields 20 rows in the table. This 2650 ** is more than the usual guess of 10 rows, since we have no way 2651 ** of knowing how selective the index will ultimately be. It would 2652 ** not be unreasonable to make this value much larger. */ 2653 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); 2654 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); 2655 pNew->wsFlags = WHERE_AUTO_INDEX; 2656 pNew->prereq = mExtra | pTerm->prereqRight; 2657 rc = whereLoopInsert(pBuilder, pNew); 2658 } 2659 } 2660 } 2661 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 2662 2663 /* Loop over all indices 2664 */ 2665 for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){ 2666 if( pProbe->pPartIdxWhere!=0 2667 && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){ 2668 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ 2669 continue; /* Partial index inappropriate for this query */ 2670 } 2671 rSize = pProbe->aiRowLogEst[0]; 2672 pNew->u.btree.nEq = 0; 2673 pNew->nSkip = 0; 2674 pNew->nLTerm = 0; 2675 pNew->iSortIdx = 0; 2676 pNew->rSetup = 0; 2677 pNew->prereq = mExtra; 2678 pNew->nOut = rSize; 2679 pNew->u.btree.pIndex = pProbe; 2680 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); 2681 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ 2682 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); 2683 if( pProbe->tnum<=0 ){ 2684 /* Integer primary key index */ 2685 pNew->wsFlags = WHERE_IPK; 2686 2687 /* Full table scan */ 2688 pNew->iSortIdx = b ? iSortIdx : 0; 2689 /* TUNING: Cost of full table scan is (N*3.0). */ 2690 pNew->rRun = rSize + 16; 2691 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 2692 whereLoopOutputAdjust(pWC, pNew, rSize); 2693 rc = whereLoopInsert(pBuilder, pNew); 2694 pNew->nOut = rSize; 2695 if( rc ) break; 2696 }else{ 2697 Bitmask m; 2698 if( pProbe->isCovering ){ 2699 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; 2700 m = 0; 2701 }else{ 2702 m = pSrc->colUsed & ~columnsInIndex(pProbe); 2703 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; 2704 } 2705 2706 /* Full scan via index */ 2707 if( b 2708 || !HasRowid(pTab) 2709 || ( m==0 2710 && pProbe->bUnordered==0 2711 && (pProbe->szIdxRow<pTab->szTabRow) 2712 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 2713 && sqlite3GlobalConfig.bUseCis 2714 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) 2715 ) 2716 ){ 2717 pNew->iSortIdx = b ? iSortIdx : 0; 2718 2719 /* The cost of visiting the index rows is N*K, where K is 2720 ** between 1.1 and 3.0, depending on the relative sizes of the 2721 ** index and table rows. If this is a non-covering index scan, 2722 ** also add the cost of visiting table rows (N*3.0). */ 2723 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; 2724 if( m!=0 ){ 2725 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, rSize+16); 2726 } 2727 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 2728 whereLoopOutputAdjust(pWC, pNew, rSize); 2729 rc = whereLoopInsert(pBuilder, pNew); 2730 pNew->nOut = rSize; 2731 if( rc ) break; 2732 } 2733 } 2734 2735 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); 2736 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2737 sqlite3Stat4ProbeFree(pBuilder->pRec); 2738 pBuilder->nRecValid = 0; 2739 pBuilder->pRec = 0; 2740 #endif 2741 2742 /* If there was an INDEXED BY clause, then only that one index is 2743 ** considered. */ 2744 if( pSrc->pIBIndex ) break; 2745 } 2746 return rc; 2747 } 2748 2749 #ifndef SQLITE_OMIT_VIRTUALTABLE 2750 /* 2751 ** Add all WhereLoop objects for a table of the join identified by 2752 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. 2753 ** 2754 ** If there are no LEFT or CROSS JOIN joins in the query, both mExtra and 2755 ** mUnusable are set to 0. Otherwise, mExtra is a mask of all FROM clause 2756 ** entries that occur before the virtual table in the FROM clause and are 2757 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the 2758 ** mUnusable mask contains all FROM clause entries that occur after the 2759 ** virtual table and are separated from it by at least one LEFT or 2760 ** CROSS JOIN. 2761 ** 2762 ** For example, if the query were: 2763 ** 2764 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; 2765 ** 2766 ** then mExtra corresponds to (t1, t2) and mUnusable to (t5, t6). 2767 ** 2768 ** All the tables in mExtra must be scanned before the current virtual 2769 ** table. So any terms for which all prerequisites are satisfied by 2770 ** mExtra may be specified as "usable" in all calls to xBestIndex. 2771 ** Conversely, all tables in mUnusable must be scanned after the current 2772 ** virtual table, so any terms for which the prerequisites overlap with 2773 ** mUnusable should always be configured as "not-usable" for xBestIndex. 2774 */ 2775 static int whereLoopAddVirtual( 2776 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 2777 Bitmask mExtra, /* Tables that must be scanned before this one */ 2778 Bitmask mUnusable /* Tables that must be scanned after this one */ 2779 ){ 2780 WhereInfo *pWInfo; /* WHERE analysis context */ 2781 Parse *pParse; /* The parsing context */ 2782 WhereClause *pWC; /* The WHERE clause */ 2783 struct SrcList_item *pSrc; /* The FROM clause term to search */ 2784 Table *pTab; 2785 sqlite3 *db; 2786 sqlite3_index_info *pIdxInfo; 2787 struct sqlite3_index_constraint *pIdxCons; 2788 struct sqlite3_index_constraint_usage *pUsage; 2789 WhereTerm *pTerm; 2790 int i, j; 2791 int iTerm, mxTerm; 2792 int nConstraint; 2793 int seenIn = 0; /* True if an IN operator is seen */ 2794 int seenVar = 0; /* True if a non-constant constraint is seen */ 2795 int iPhase; /* 0: const w/o IN, 1: const, 2: no IN, 2: IN */ 2796 WhereLoop *pNew; 2797 int rc = SQLITE_OK; 2798 2799 assert( (mExtra & mUnusable)==0 ); 2800 pWInfo = pBuilder->pWInfo; 2801 pParse = pWInfo->pParse; 2802 db = pParse->db; 2803 pWC = pBuilder->pWC; 2804 pNew = pBuilder->pNew; 2805 pSrc = &pWInfo->pTabList->a[pNew->iTab]; 2806 pTab = pSrc->pTab; 2807 assert( IsVirtual(pTab) ); 2808 pIdxInfo = allocateIndexInfo(pParse, pWC, mUnusable, pSrc,pBuilder->pOrderBy); 2809 if( pIdxInfo==0 ) return SQLITE_NOMEM_BKPT; 2810 pNew->prereq = 0; 2811 pNew->rSetup = 0; 2812 pNew->wsFlags = WHERE_VIRTUALTABLE; 2813 pNew->nLTerm = 0; 2814 pNew->u.vtab.needFree = 0; 2815 pUsage = pIdxInfo->aConstraintUsage; 2816 nConstraint = pIdxInfo->nConstraint; 2817 if( whereLoopResize(db, pNew, nConstraint) ){ 2818 sqlite3DbFree(db, pIdxInfo); 2819 return SQLITE_NOMEM_BKPT; 2820 } 2821 2822 for(iPhase=0; iPhase<=3; iPhase++){ 2823 if( !seenIn && (iPhase&1)!=0 ){ 2824 iPhase++; 2825 if( iPhase>3 ) break; 2826 } 2827 if( !seenVar && iPhase>1 ) break; 2828 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 2829 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ 2830 j = pIdxCons->iTermOffset; 2831 pTerm = &pWC->a[j]; 2832 switch( iPhase ){ 2833 case 0: /* Constants without IN operator */ 2834 pIdxCons->usable = 0; 2835 if( (pTerm->eOperator & WO_IN)!=0 ){ 2836 seenIn = 1; 2837 } 2838 if( (pTerm->prereqRight & ~mExtra)!=0 ){ 2839 seenVar = 1; 2840 }else if( (pTerm->eOperator & WO_IN)==0 ){ 2841 pIdxCons->usable = 1; 2842 } 2843 break; 2844 case 1: /* Constants with IN operators */ 2845 assert( seenIn ); 2846 pIdxCons->usable = (pTerm->prereqRight & ~mExtra)==0; 2847 break; 2848 case 2: /* Variables without IN */ 2849 assert( seenVar ); 2850 pIdxCons->usable = (pTerm->eOperator & WO_IN)==0; 2851 break; 2852 default: /* Variables with IN */ 2853 assert( seenVar && seenIn ); 2854 pIdxCons->usable = 1; 2855 break; 2856 } 2857 } 2858 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); 2859 if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr); 2860 pIdxInfo->idxStr = 0; 2861 pIdxInfo->idxNum = 0; 2862 pIdxInfo->needToFreeIdxStr = 0; 2863 pIdxInfo->orderByConsumed = 0; 2864 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; 2865 pIdxInfo->estimatedRows = 25; 2866 pIdxInfo->idxFlags = 0; 2867 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed; 2868 rc = vtabBestIndex(pParse, pTab, pIdxInfo); 2869 if( rc ) goto whereLoopAddVtab_exit; 2870 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 2871 pNew->prereq = mExtra; 2872 mxTerm = -1; 2873 assert( pNew->nLSlot>=nConstraint ); 2874 for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0; 2875 pNew->u.vtab.omitMask = 0; 2876 for(i=0; i<nConstraint; i++, pIdxCons++){ 2877 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ 2878 j = pIdxCons->iTermOffset; 2879 if( iTerm>=nConstraint 2880 || j<0 2881 || j>=pWC->nTerm 2882 || pNew->aLTerm[iTerm]!=0 2883 ){ 2884 rc = SQLITE_ERROR; 2885 sqlite3ErrorMsg(pParse, "%s.xBestIndex() malfunction", pTab->zName); 2886 goto whereLoopAddVtab_exit; 2887 } 2888 testcase( iTerm==nConstraint-1 ); 2889 testcase( j==0 ); 2890 testcase( j==pWC->nTerm-1 ); 2891 pTerm = &pWC->a[j]; 2892 pNew->prereq |= pTerm->prereqRight; 2893 assert( iTerm<pNew->nLSlot ); 2894 pNew->aLTerm[iTerm] = pTerm; 2895 if( iTerm>mxTerm ) mxTerm = iTerm; 2896 testcase( iTerm==15 ); 2897 testcase( iTerm==16 ); 2898 if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm; 2899 if( (pTerm->eOperator & WO_IN)!=0 ){ 2900 if( pUsage[i].omit==0 ){ 2901 /* Do not attempt to use an IN constraint if the virtual table 2902 ** says that the equivalent EQ constraint cannot be safely omitted. 2903 ** If we do attempt to use such a constraint, some rows might be 2904 ** repeated in the output. */ 2905 break; 2906 } 2907 /* A virtual table that is constrained by an IN clause may not 2908 ** consume the ORDER BY clause because (1) the order of IN terms 2909 ** is not necessarily related to the order of output terms and 2910 ** (2) Multiple outputs from a single IN value will not merge 2911 ** together. */ 2912 pIdxInfo->orderByConsumed = 0; 2913 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE; 2914 } 2915 } 2916 } 2917 if( i>=nConstraint ){ 2918 pNew->nLTerm = mxTerm+1; 2919 assert( pNew->nLTerm<=pNew->nLSlot ); 2920 pNew->u.vtab.idxNum = pIdxInfo->idxNum; 2921 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; 2922 pIdxInfo->needToFreeIdxStr = 0; 2923 pNew->u.vtab.idxStr = pIdxInfo->idxStr; 2924 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? 2925 pIdxInfo->nOrderBy : 0); 2926 pNew->rSetup = 0; 2927 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); 2928 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); 2929 2930 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated 2931 ** that the scan will visit at most one row. Clear it otherwise. */ 2932 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){ 2933 pNew->wsFlags |= WHERE_ONEROW; 2934 }else{ 2935 pNew->wsFlags &= ~WHERE_ONEROW; 2936 } 2937 whereLoopInsert(pBuilder, pNew); 2938 if( pNew->u.vtab.needFree ){ 2939 sqlite3_free(pNew->u.vtab.idxStr); 2940 pNew->u.vtab.needFree = 0; 2941 } 2942 } 2943 } 2944 2945 whereLoopAddVtab_exit: 2946 if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr); 2947 sqlite3DbFree(db, pIdxInfo); 2948 return rc; 2949 } 2950 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 2951 2952 /* 2953 ** Add WhereLoop entries to handle OR terms. This works for either 2954 ** btrees or virtual tables. 2955 */ 2956 static int whereLoopAddOr( 2957 WhereLoopBuilder *pBuilder, 2958 Bitmask mExtra, 2959 Bitmask mUnusable 2960 ){ 2961 WhereInfo *pWInfo = pBuilder->pWInfo; 2962 WhereClause *pWC; 2963 WhereLoop *pNew; 2964 WhereTerm *pTerm, *pWCEnd; 2965 int rc = SQLITE_OK; 2966 int iCur; 2967 WhereClause tempWC; 2968 WhereLoopBuilder sSubBuild; 2969 WhereOrSet sSum, sCur; 2970 struct SrcList_item *pItem; 2971 2972 pWC = pBuilder->pWC; 2973 pWCEnd = pWC->a + pWC->nTerm; 2974 pNew = pBuilder->pNew; 2975 memset(&sSum, 0, sizeof(sSum)); 2976 pItem = pWInfo->pTabList->a + pNew->iTab; 2977 iCur = pItem->iCursor; 2978 2979 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ 2980 if( (pTerm->eOperator & WO_OR)!=0 2981 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 2982 ){ 2983 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; 2984 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; 2985 WhereTerm *pOrTerm; 2986 int once = 1; 2987 int i, j; 2988 2989 sSubBuild = *pBuilder; 2990 sSubBuild.pOrderBy = 0; 2991 sSubBuild.pOrSet = &sCur; 2992 2993 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); 2994 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ 2995 if( (pOrTerm->eOperator & WO_AND)!=0 ){ 2996 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; 2997 }else if( pOrTerm->leftCursor==iCur ){ 2998 tempWC.pWInfo = pWC->pWInfo; 2999 tempWC.pOuter = pWC; 3000 tempWC.op = TK_AND; 3001 tempWC.nTerm = 1; 3002 tempWC.a = pOrTerm; 3003 sSubBuild.pWC = &tempWC; 3004 }else{ 3005 continue; 3006 } 3007 sCur.n = 0; 3008 #ifdef WHERETRACE_ENABLED 3009 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", 3010 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); 3011 if( sqlite3WhereTrace & 0x400 ){ 3012 for(i=0; i<sSubBuild.pWC->nTerm; i++){ 3013 whereTermPrint(&sSubBuild.pWC->a[i], i); 3014 } 3015 } 3016 #endif 3017 #ifndef SQLITE_OMIT_VIRTUALTABLE 3018 if( IsVirtual(pItem->pTab) ){ 3019 rc = whereLoopAddVirtual(&sSubBuild, mExtra, mUnusable); 3020 }else 3021 #endif 3022 { 3023 rc = whereLoopAddBtree(&sSubBuild, mExtra); 3024 } 3025 if( rc==SQLITE_OK ){ 3026 rc = whereLoopAddOr(&sSubBuild, mExtra, mUnusable); 3027 } 3028 assert( rc==SQLITE_OK || sCur.n==0 ); 3029 if( sCur.n==0 ){ 3030 sSum.n = 0; 3031 break; 3032 }else if( once ){ 3033 whereOrMove(&sSum, &sCur); 3034 once = 0; 3035 }else{ 3036 WhereOrSet sPrev; 3037 whereOrMove(&sPrev, &sSum); 3038 sSum.n = 0; 3039 for(i=0; i<sPrev.n; i++){ 3040 for(j=0; j<sCur.n; j++){ 3041 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, 3042 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), 3043 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); 3044 } 3045 } 3046 } 3047 } 3048 pNew->nLTerm = 1; 3049 pNew->aLTerm[0] = pTerm; 3050 pNew->wsFlags = WHERE_MULTI_OR; 3051 pNew->rSetup = 0; 3052 pNew->iSortIdx = 0; 3053 memset(&pNew->u, 0, sizeof(pNew->u)); 3054 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ 3055 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs 3056 ** of all sub-scans required by the OR-scan. However, due to rounding 3057 ** errors, it may be that the cost of the OR-scan is equal to its 3058 ** most expensive sub-scan. Add the smallest possible penalty 3059 ** (equivalent to multiplying the cost by 1.07) to ensure that 3060 ** this does not happen. Otherwise, for WHERE clauses such as the 3061 ** following where there is an index on "y": 3062 ** 3063 ** WHERE likelihood(x=?, 0.99) OR y=? 3064 ** 3065 ** the planner may elect to "OR" together a full-table scan and an 3066 ** index lookup. And other similarly odd results. */ 3067 pNew->rRun = sSum.a[i].rRun + 1; 3068 pNew->nOut = sSum.a[i].nOut; 3069 pNew->prereq = sSum.a[i].prereq; 3070 rc = whereLoopInsert(pBuilder, pNew); 3071 } 3072 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); 3073 } 3074 } 3075 return rc; 3076 } 3077 3078 /* 3079 ** Add all WhereLoop objects for all tables 3080 */ 3081 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ 3082 WhereInfo *pWInfo = pBuilder->pWInfo; 3083 Bitmask mExtra = 0; 3084 Bitmask mPrior = 0; 3085 int iTab; 3086 SrcList *pTabList = pWInfo->pTabList; 3087 struct SrcList_item *pItem; 3088 struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel]; 3089 sqlite3 *db = pWInfo->pParse->db; 3090 int rc = SQLITE_OK; 3091 WhereLoop *pNew; 3092 u8 priorJointype = 0; 3093 3094 /* Loop over the tables in the join, from left to right */ 3095 pNew = pBuilder->pNew; 3096 whereLoopInit(pNew); 3097 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){ 3098 Bitmask mUnusable = 0; 3099 pNew->iTab = iTab; 3100 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); 3101 if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){ 3102 /* This condition is true when pItem is the FROM clause term on the 3103 ** right-hand-side of a LEFT or CROSS JOIN. */ 3104 mExtra = mPrior; 3105 } 3106 priorJointype = pItem->fg.jointype; 3107 if( IsVirtual(pItem->pTab) ){ 3108 struct SrcList_item *p; 3109 for(p=&pItem[1]; p<pEnd; p++){ 3110 if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){ 3111 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); 3112 } 3113 } 3114 rc = whereLoopAddVirtual(pBuilder, mExtra, mUnusable); 3115 }else{ 3116 rc = whereLoopAddBtree(pBuilder, mExtra); 3117 } 3118 if( rc==SQLITE_OK ){ 3119 rc = whereLoopAddOr(pBuilder, mExtra, mUnusable); 3120 } 3121 mPrior |= pNew->maskSelf; 3122 if( rc || db->mallocFailed ) break; 3123 } 3124 3125 whereLoopClear(db, pNew); 3126 return rc; 3127 } 3128 3129 /* 3130 ** Examine a WherePath (with the addition of the extra WhereLoop of the 5th 3131 ** parameters) to see if it outputs rows in the requested ORDER BY 3132 ** (or GROUP BY) without requiring a separate sort operation. Return N: 3133 ** 3134 ** N>0: N terms of the ORDER BY clause are satisfied 3135 ** N==0: No terms of the ORDER BY clause are satisfied 3136 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. 3137 ** 3138 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as 3139 ** strict. With GROUP BY and DISTINCT the only requirement is that 3140 ** equivalent rows appear immediately adjacent to one another. GROUP BY 3141 ** and DISTINCT do not require rows to appear in any particular order as long 3142 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT 3143 ** the pOrderBy terms can be matched in any order. With ORDER BY, the 3144 ** pOrderBy terms must be matched in strict left-to-right order. 3145 */ 3146 static i8 wherePathSatisfiesOrderBy( 3147 WhereInfo *pWInfo, /* The WHERE clause */ 3148 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ 3149 WherePath *pPath, /* The WherePath to check */ 3150 u16 wctrlFlags, /* Might contain WHERE_GROUPBY or WHERE_DISTINCTBY */ 3151 u16 nLoop, /* Number of entries in pPath->aLoop[] */ 3152 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ 3153 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ 3154 ){ 3155 u8 revSet; /* True if rev is known */ 3156 u8 rev; /* Composite sort order */ 3157 u8 revIdx; /* Index sort order */ 3158 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ 3159 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ 3160 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ 3161 u16 nKeyCol; /* Number of key columns in pIndex */ 3162 u16 nColumn; /* Total number of ordered columns in the index */ 3163 u16 nOrderBy; /* Number terms in the ORDER BY clause */ 3164 int iLoop; /* Index of WhereLoop in pPath being processed */ 3165 int i, j; /* Loop counters */ 3166 int iCur; /* Cursor number for current WhereLoop */ 3167 int iColumn; /* A column number within table iCur */ 3168 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ 3169 WhereTerm *pTerm; /* A single term of the WHERE clause */ 3170 Expr *pOBExpr; /* An expression from the ORDER BY clause */ 3171 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ 3172 Index *pIndex; /* The index associated with pLoop */ 3173 sqlite3 *db = pWInfo->pParse->db; /* Database connection */ 3174 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ 3175 Bitmask obDone; /* Mask of all ORDER BY terms */ 3176 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ 3177 Bitmask ready; /* Mask of inner loops */ 3178 3179 /* 3180 ** We say the WhereLoop is "one-row" if it generates no more than one 3181 ** row of output. A WhereLoop is one-row if all of the following are true: 3182 ** (a) All index columns match with WHERE_COLUMN_EQ. 3183 ** (b) The index is unique 3184 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. 3185 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. 3186 ** 3187 ** We say the WhereLoop is "order-distinct" if the set of columns from 3188 ** that WhereLoop that are in the ORDER BY clause are different for every 3189 ** row of the WhereLoop. Every one-row WhereLoop is automatically 3190 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause 3191 ** is not order-distinct. To be order-distinct is not quite the same as being 3192 ** UNIQUE since a UNIQUE column or index can have multiple rows that 3193 ** are NULL and NULL values are equivalent for the purpose of order-distinct. 3194 ** To be order-distinct, the columns must be UNIQUE and NOT NULL. 3195 ** 3196 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the 3197 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is 3198 ** automatically order-distinct. 3199 */ 3200 3201 assert( pOrderBy!=0 ); 3202 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; 3203 3204 nOrderBy = pOrderBy->nExpr; 3205 testcase( nOrderBy==BMS-1 ); 3206 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ 3207 isOrderDistinct = 1; 3208 obDone = MASKBIT(nOrderBy)-1; 3209 orderDistinctMask = 0; 3210 ready = 0; 3211 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ 3212 if( iLoop>0 ) ready |= pLoop->maskSelf; 3213 pLoop = iLoop<nLoop ? pPath->aLoop[iLoop] : pLast; 3214 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ 3215 if( pLoop->u.vtab.isOrdered ) obSat = obDone; 3216 break; 3217 } 3218 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; 3219 3220 /* Mark off any ORDER BY term X that is a column in the table of 3221 ** the current loop for which there is term in the WHERE 3222 ** clause of the form X IS NULL or X=? that reference only outer 3223 ** loops. 3224 */ 3225 for(i=0; i<nOrderBy; i++){ 3226 if( MASKBIT(i) & obSat ) continue; 3227 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); 3228 if( pOBExpr->op!=TK_COLUMN ) continue; 3229 if( pOBExpr->iTable!=iCur ) continue; 3230 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, 3231 ~ready, WO_EQ|WO_ISNULL|WO_IS, 0); 3232 if( pTerm==0 ) continue; 3233 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ 3234 const char *z1, *z2; 3235 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 3236 if( !pColl ) pColl = db->pDfltColl; 3237 z1 = pColl->zName; 3238 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pTerm->pExpr); 3239 if( !pColl ) pColl = db->pDfltColl; 3240 z2 = pColl->zName; 3241 if( sqlite3StrICmp(z1, z2)!=0 ) continue; 3242 testcase( pTerm->pExpr->op==TK_IS ); 3243 } 3244 obSat |= MASKBIT(i); 3245 } 3246 3247 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ 3248 if( pLoop->wsFlags & WHERE_IPK ){ 3249 pIndex = 0; 3250 nKeyCol = 0; 3251 nColumn = 1; 3252 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ 3253 return 0; 3254 }else{ 3255 nKeyCol = pIndex->nKeyCol; 3256 nColumn = pIndex->nColumn; 3257 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); 3258 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID 3259 || !HasRowid(pIndex->pTable)); 3260 isOrderDistinct = IsUniqueIndex(pIndex); 3261 } 3262 3263 /* Loop through all columns of the index and deal with the ones 3264 ** that are not constrained by == or IN. 3265 */ 3266 rev = revSet = 0; 3267 distinctColumns = 0; 3268 for(j=0; j<nColumn; j++){ 3269 u8 bOnce; /* True to run the ORDER BY search loop */ 3270 3271 /* Skip over == and IS NULL terms */ 3272 if( j<pLoop->u.btree.nEq 3273 && pLoop->nSkip==0 3274 && ((i = pLoop->aLTerm[j]->eOperator) & (WO_EQ|WO_ISNULL|WO_IS))!=0 3275 ){ 3276 if( i & WO_ISNULL ){ 3277 testcase( isOrderDistinct ); 3278 isOrderDistinct = 0; 3279 } 3280 continue; 3281 } 3282 3283 /* Get the column number in the table (iColumn) and sort order 3284 ** (revIdx) for the j-th column of the index. 3285 */ 3286 if( pIndex ){ 3287 iColumn = pIndex->aiColumn[j]; 3288 revIdx = pIndex->aSortOrder[j]; 3289 if( iColumn==pIndex->pTable->iPKey ) iColumn = -1; 3290 }else{ 3291 iColumn = XN_ROWID; 3292 revIdx = 0; 3293 } 3294 3295 /* An unconstrained column that might be NULL means that this 3296 ** WhereLoop is not well-ordered 3297 */ 3298 if( isOrderDistinct 3299 && iColumn>=0 3300 && j>=pLoop->u.btree.nEq 3301 && pIndex->pTable->aCol[iColumn].notNull==0 3302 ){ 3303 isOrderDistinct = 0; 3304 } 3305 3306 /* Find the ORDER BY term that corresponds to the j-th column 3307 ** of the index and mark that ORDER BY term off 3308 */ 3309 bOnce = 1; 3310 isMatch = 0; 3311 for(i=0; bOnce && i<nOrderBy; i++){ 3312 if( MASKBIT(i) & obSat ) continue; 3313 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); 3314 testcase( wctrlFlags & WHERE_GROUPBY ); 3315 testcase( wctrlFlags & WHERE_DISTINCTBY ); 3316 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; 3317 if( iColumn>=(-1) ){ 3318 if( pOBExpr->op!=TK_COLUMN ) continue; 3319 if( pOBExpr->iTable!=iCur ) continue; 3320 if( pOBExpr->iColumn!=iColumn ) continue; 3321 }else{ 3322 if( sqlite3ExprCompare(pOBExpr,pIndex->aColExpr->a[j].pExpr,iCur) ){ 3323 continue; 3324 } 3325 } 3326 if( iColumn>=0 ){ 3327 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 3328 if( !pColl ) pColl = db->pDfltColl; 3329 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; 3330 } 3331 isMatch = 1; 3332 break; 3333 } 3334 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ 3335 /* Make sure the sort order is compatible in an ORDER BY clause. 3336 ** Sort order is irrelevant for a GROUP BY clause. */ 3337 if( revSet ){ 3338 if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0; 3339 }else{ 3340 rev = revIdx ^ pOrderBy->a[i].sortOrder; 3341 if( rev ) *pRevMask |= MASKBIT(iLoop); 3342 revSet = 1; 3343 } 3344 } 3345 if( isMatch ){ 3346 if( iColumn<0 ){ 3347 testcase( distinctColumns==0 ); 3348 distinctColumns = 1; 3349 } 3350 obSat |= MASKBIT(i); 3351 }else{ 3352 /* No match found */ 3353 if( j==0 || j<nKeyCol ){ 3354 testcase( isOrderDistinct!=0 ); 3355 isOrderDistinct = 0; 3356 } 3357 break; 3358 } 3359 } /* end Loop over all index columns */ 3360 if( distinctColumns ){ 3361 testcase( isOrderDistinct==0 ); 3362 isOrderDistinct = 1; 3363 } 3364 } /* end-if not one-row */ 3365 3366 /* Mark off any other ORDER BY terms that reference pLoop */ 3367 if( isOrderDistinct ){ 3368 orderDistinctMask |= pLoop->maskSelf; 3369 for(i=0; i<nOrderBy; i++){ 3370 Expr *p; 3371 Bitmask mTerm; 3372 if( MASKBIT(i) & obSat ) continue; 3373 p = pOrderBy->a[i].pExpr; 3374 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); 3375 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; 3376 if( (mTerm&~orderDistinctMask)==0 ){ 3377 obSat |= MASKBIT(i); 3378 } 3379 } 3380 } 3381 } /* End the loop over all WhereLoops from outer-most down to inner-most */ 3382 if( obSat==obDone ) return (i8)nOrderBy; 3383 if( !isOrderDistinct ){ 3384 for(i=nOrderBy-1; i>0; i--){ 3385 Bitmask m = MASKBIT(i) - 1; 3386 if( (obSat&m)==m ) return i; 3387 } 3388 return 0; 3389 } 3390 return -1; 3391 } 3392 3393 3394 /* 3395 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), 3396 ** the planner assumes that the specified pOrderBy list is actually a GROUP 3397 ** BY clause - and so any order that groups rows as required satisfies the 3398 ** request. 3399 ** 3400 ** Normally, in this case it is not possible for the caller to determine 3401 ** whether or not the rows are really being delivered in sorted order, or 3402 ** just in some other order that provides the required grouping. However, 3403 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then 3404 ** this function may be called on the returned WhereInfo object. It returns 3405 ** true if the rows really will be sorted in the specified order, or false 3406 ** otherwise. 3407 ** 3408 ** For example, assuming: 3409 ** 3410 ** CREATE INDEX i1 ON t1(x, Y); 3411 ** 3412 ** then 3413 ** 3414 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 3415 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 3416 */ 3417 int sqlite3WhereIsSorted(WhereInfo *pWInfo){ 3418 assert( pWInfo->wctrlFlags & WHERE_GROUPBY ); 3419 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); 3420 return pWInfo->sorted; 3421 } 3422 3423 #ifdef WHERETRACE_ENABLED 3424 /* For debugging use only: */ 3425 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ 3426 static char zName[65]; 3427 int i; 3428 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } 3429 if( pLast ) zName[i++] = pLast->cId; 3430 zName[i] = 0; 3431 return zName; 3432 } 3433 #endif 3434 3435 /* 3436 ** Return the cost of sorting nRow rows, assuming that the keys have 3437 ** nOrderby columns and that the first nSorted columns are already in 3438 ** order. 3439 */ 3440 static LogEst whereSortingCost( 3441 LogEst nRow, 3442 int nOrderBy, 3443 int nSorted 3444 ){ 3445 /* TUNING: Estimated cost of a full external sort, where N is 3446 ** the number of rows to sort is: 3447 ** 3448 ** cost = (3.0 * N * log(N)). 3449 ** 3450 ** Or, if the order-by clause has X terms but only the last Y 3451 ** terms are out of order, then block-sorting will reduce the 3452 ** sorting cost to: 3453 ** 3454 ** cost = (3.0 * N * log(N)) * (Y/X) 3455 ** 3456 ** The (Y/X) term is implemented using stack variable rScale 3457 ** below. */ 3458 LogEst rScale, rSortCost; 3459 assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); 3460 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; 3461 rSortCost = nRow + estLog(nRow) + rScale + 16; 3462 return rSortCost; 3463 } 3464 3465 /* 3466 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine 3467 ** attempts to find the lowest cost path that visits each WhereLoop 3468 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. 3469 ** 3470 ** Assume that the total number of output rows that will need to be sorted 3471 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting 3472 ** costs if nRowEst==0. 3473 ** 3474 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation 3475 ** error occurs. 3476 */ 3477 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ 3478 int mxChoice; /* Maximum number of simultaneous paths tracked */ 3479 int nLoop; /* Number of terms in the join */ 3480 Parse *pParse; /* Parsing context */ 3481 sqlite3 *db; /* The database connection */ 3482 int iLoop; /* Loop counter over the terms of the join */ 3483 int ii, jj; /* Loop counters */ 3484 int mxI = 0; /* Index of next entry to replace */ 3485 int nOrderBy; /* Number of ORDER BY clause terms */ 3486 LogEst mxCost = 0; /* Maximum cost of a set of paths */ 3487 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ 3488 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ 3489 WherePath *aFrom; /* All nFrom paths at the previous level */ 3490 WherePath *aTo; /* The nTo best paths at the current level */ 3491 WherePath *pFrom; /* An element of aFrom[] that we are working on */ 3492 WherePath *pTo; /* An element of aTo[] that we are working on */ 3493 WhereLoop *pWLoop; /* One of the WhereLoop objects */ 3494 WhereLoop **pX; /* Used to divy up the pSpace memory */ 3495 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ 3496 char *pSpace; /* Temporary memory used by this routine */ 3497 int nSpace; /* Bytes of space allocated at pSpace */ 3498 3499 pParse = pWInfo->pParse; 3500 db = pParse->db; 3501 nLoop = pWInfo->nLevel; 3502 /* TUNING: For simple queries, only the best path is tracked. 3503 ** For 2-way joins, the 5 best paths are followed. 3504 ** For joins of 3 or more tables, track the 10 best paths */ 3505 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); 3506 assert( nLoop<=pWInfo->pTabList->nSrc ); 3507 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); 3508 3509 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this 3510 ** case the purpose of this call is to estimate the number of rows returned 3511 ** by the overall query. Once this estimate has been obtained, the caller 3512 ** will invoke this function a second time, passing the estimate as the 3513 ** nRowEst parameter. */ 3514 if( pWInfo->pOrderBy==0 || nRowEst==0 ){ 3515 nOrderBy = 0; 3516 }else{ 3517 nOrderBy = pWInfo->pOrderBy->nExpr; 3518 } 3519 3520 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ 3521 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; 3522 nSpace += sizeof(LogEst) * nOrderBy; 3523 pSpace = sqlite3DbMallocRawNN(db, nSpace); 3524 if( pSpace==0 ) return SQLITE_NOMEM_BKPT; 3525 aTo = (WherePath*)pSpace; 3526 aFrom = aTo+mxChoice; 3527 memset(aFrom, 0, sizeof(aFrom[0])); 3528 pX = (WhereLoop**)(aFrom+mxChoice); 3529 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ 3530 pFrom->aLoop = pX; 3531 } 3532 if( nOrderBy ){ 3533 /* If there is an ORDER BY clause and it is not being ignored, set up 3534 ** space for the aSortCost[] array. Each element of the aSortCost array 3535 ** is either zero - meaning it has not yet been initialized - or the 3536 ** cost of sorting nRowEst rows of data where the first X terms of 3537 ** the ORDER BY clause are already in order, where X is the array 3538 ** index. */ 3539 aSortCost = (LogEst*)pX; 3540 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); 3541 } 3542 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); 3543 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); 3544 3545 /* Seed the search with a single WherePath containing zero WhereLoops. 3546 ** 3547 ** TUNING: Do not let the number of iterations go above 28. If the cost 3548 ** of computing an automatic index is not paid back within the first 28 3549 ** rows, then do not use the automatic index. */ 3550 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) ); 3551 nFrom = 1; 3552 assert( aFrom[0].isOrdered==0 ); 3553 if( nOrderBy ){ 3554 /* If nLoop is zero, then there are no FROM terms in the query. Since 3555 ** in this case the query may return a maximum of one row, the results 3556 ** are already in the requested order. Set isOrdered to nOrderBy to 3557 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to 3558 ** -1, indicating that the result set may or may not be ordered, 3559 ** depending on the loops added to the current plan. */ 3560 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; 3561 } 3562 3563 /* Compute successively longer WherePaths using the previous generation 3564 ** of WherePaths as the basis for the next. Keep track of the mxChoice 3565 ** best paths at each generation */ 3566 for(iLoop=0; iLoop<nLoop; iLoop++){ 3567 nTo = 0; 3568 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ 3569 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ 3570 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ 3571 LogEst rCost; /* Cost of path (pFrom+pWLoop) */ 3572 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ 3573 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */ 3574 Bitmask maskNew; /* Mask of src visited by (..) */ 3575 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */ 3576 3577 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; 3578 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; 3579 /* At this point, pWLoop is a candidate to be the next loop. 3580 ** Compute its cost */ 3581 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); 3582 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); 3583 nOut = pFrom->nRow + pWLoop->nOut; 3584 maskNew = pFrom->maskLoop | pWLoop->maskSelf; 3585 if( isOrdered<0 ){ 3586 isOrdered = wherePathSatisfiesOrderBy(pWInfo, 3587 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, 3588 iLoop, pWLoop, &revMask); 3589 }else{ 3590 revMask = pFrom->revLoop; 3591 } 3592 if( isOrdered>=0 && isOrdered<nOrderBy ){ 3593 if( aSortCost[isOrdered]==0 ){ 3594 aSortCost[isOrdered] = whereSortingCost( 3595 nRowEst, nOrderBy, isOrdered 3596 ); 3597 } 3598 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]); 3599 3600 WHERETRACE(0x002, 3601 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", 3602 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, 3603 rUnsorted, rCost)); 3604 }else{ 3605 rCost = rUnsorted; 3606 } 3607 3608 /* Check to see if pWLoop should be added to the set of 3609 ** mxChoice best-so-far paths. 3610 ** 3611 ** First look for an existing path among best-so-far paths 3612 ** that covers the same set of loops and has the same isOrdered 3613 ** setting as the current path candidate. 3614 ** 3615 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent 3616 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range 3617 ** of legal values for isOrdered, -1..64. 3618 */ 3619 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ 3620 if( pTo->maskLoop==maskNew 3621 && ((pTo->isOrdered^isOrdered)&0x80)==0 3622 ){ 3623 testcase( jj==nTo-1 ); 3624 break; 3625 } 3626 } 3627 if( jj>=nTo ){ 3628 /* None of the existing best-so-far paths match the candidate. */ 3629 if( nTo>=mxChoice 3630 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) 3631 ){ 3632 /* The current candidate is no better than any of the mxChoice 3633 ** paths currently in the best-so-far buffer. So discard 3634 ** this candidate as not viable. */ 3635 #ifdef WHERETRACE_ENABLED /* 0x4 */ 3636 if( sqlite3WhereTrace&0x4 ){ 3637 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d order=%c\n", 3638 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 3639 isOrdered>=0 ? isOrdered+'0' : '?'); 3640 } 3641 #endif 3642 continue; 3643 } 3644 /* If we reach this points it means that the new candidate path 3645 ** needs to be added to the set of best-so-far paths. */ 3646 if( nTo<mxChoice ){ 3647 /* Increase the size of the aTo set by one */ 3648 jj = nTo++; 3649 }else{ 3650 /* New path replaces the prior worst to keep count below mxChoice */ 3651 jj = mxI; 3652 } 3653 pTo = &aTo[jj]; 3654 #ifdef WHERETRACE_ENABLED /* 0x4 */ 3655 if( sqlite3WhereTrace&0x4 ){ 3656 sqlite3DebugPrintf("New %s cost=%-3d,%3d order=%c\n", 3657 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 3658 isOrdered>=0 ? isOrdered+'0' : '?'); 3659 } 3660 #endif 3661 }else{ 3662 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the 3663 ** same set of loops and has the sam isOrdered setting as the 3664 ** candidate path. Check to see if the candidate should replace 3665 ** pTo or if the candidate should be skipped */ 3666 if( pTo->rCost<rCost || (pTo->rCost==rCost && pTo->nRow<=nOut) ){ 3667 #ifdef WHERETRACE_ENABLED /* 0x4 */ 3668 if( sqlite3WhereTrace&0x4 ){ 3669 sqlite3DebugPrintf( 3670 "Skip %s cost=%-3d,%3d order=%c", 3671 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 3672 isOrdered>=0 ? isOrdered+'0' : '?'); 3673 sqlite3DebugPrintf(" vs %s cost=%-3d,%d order=%c\n", 3674 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 3675 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 3676 } 3677 #endif 3678 /* Discard the candidate path from further consideration */ 3679 testcase( pTo->rCost==rCost ); 3680 continue; 3681 } 3682 testcase( pTo->rCost==rCost+1 ); 3683 /* Control reaches here if the candidate path is better than the 3684 ** pTo path. Replace pTo with the candidate. */ 3685 #ifdef WHERETRACE_ENABLED /* 0x4 */ 3686 if( sqlite3WhereTrace&0x4 ){ 3687 sqlite3DebugPrintf( 3688 "Update %s cost=%-3d,%3d order=%c", 3689 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 3690 isOrdered>=0 ? isOrdered+'0' : '?'); 3691 sqlite3DebugPrintf(" was %s cost=%-3d,%3d order=%c\n", 3692 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 3693 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 3694 } 3695 #endif 3696 } 3697 /* pWLoop is a winner. Add it to the set of best so far */ 3698 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; 3699 pTo->revLoop = revMask; 3700 pTo->nRow = nOut; 3701 pTo->rCost = rCost; 3702 pTo->rUnsorted = rUnsorted; 3703 pTo->isOrdered = isOrdered; 3704 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); 3705 pTo->aLoop[iLoop] = pWLoop; 3706 if( nTo>=mxChoice ){ 3707 mxI = 0; 3708 mxCost = aTo[0].rCost; 3709 mxUnsorted = aTo[0].nRow; 3710 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ 3711 if( pTo->rCost>mxCost 3712 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) 3713 ){ 3714 mxCost = pTo->rCost; 3715 mxUnsorted = pTo->rUnsorted; 3716 mxI = jj; 3717 } 3718 } 3719 } 3720 } 3721 } 3722 3723 #ifdef WHERETRACE_ENABLED /* >=2 */ 3724 if( sqlite3WhereTrace & 0x02 ){ 3725 sqlite3DebugPrintf("---- after round %d ----\n", iLoop); 3726 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ 3727 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", 3728 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 3729 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); 3730 if( pTo->isOrdered>0 ){ 3731 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); 3732 }else{ 3733 sqlite3DebugPrintf("\n"); 3734 } 3735 } 3736 } 3737 #endif 3738 3739 /* Swap the roles of aFrom and aTo for the next generation */ 3740 pFrom = aTo; 3741 aTo = aFrom; 3742 aFrom = pFrom; 3743 nFrom = nTo; 3744 } 3745 3746 if( nFrom==0 ){ 3747 sqlite3ErrorMsg(pParse, "no query solution"); 3748 sqlite3DbFree(db, pSpace); 3749 return SQLITE_ERROR; 3750 } 3751 3752 /* Find the lowest cost path. pFrom will be left pointing to that path */ 3753 pFrom = aFrom; 3754 for(ii=1; ii<nFrom; ii++){ 3755 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; 3756 } 3757 assert( pWInfo->nLevel==nLoop ); 3758 /* Load the lowest cost path into pWInfo */ 3759 for(iLoop=0; iLoop<nLoop; iLoop++){ 3760 WhereLevel *pLevel = pWInfo->a + iLoop; 3761 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; 3762 pLevel->iFrom = pWLoop->iTab; 3763 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; 3764 } 3765 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 3766 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 3767 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP 3768 && nRowEst 3769 ){ 3770 Bitmask notUsed; 3771 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, 3772 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); 3773 if( rc==pWInfo->pResultSet->nExpr ){ 3774 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 3775 } 3776 } 3777 if( pWInfo->pOrderBy ){ 3778 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ 3779 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ 3780 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 3781 } 3782 }else{ 3783 pWInfo->nOBSat = pFrom->isOrdered; 3784 if( pWInfo->nOBSat<0 ) pWInfo->nOBSat = 0; 3785 pWInfo->revMask = pFrom->revLoop; 3786 } 3787 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) 3788 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 3789 ){ 3790 Bitmask revMask = 0; 3791 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, 3792 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask 3793 ); 3794 assert( pWInfo->sorted==0 ); 3795 if( nOrder==pWInfo->pOrderBy->nExpr ){ 3796 pWInfo->sorted = 1; 3797 pWInfo->revMask = revMask; 3798 } 3799 } 3800 } 3801 3802 3803 pWInfo->nRowOut = pFrom->nRow; 3804 3805 /* Free temporary memory and return success */ 3806 sqlite3DbFree(db, pSpace); 3807 return SQLITE_OK; 3808 } 3809 3810 /* 3811 ** Most queries use only a single table (they are not joins) and have 3812 ** simple == constraints against indexed fields. This routine attempts 3813 ** to plan those simple cases using much less ceremony than the 3814 ** general-purpose query planner, and thereby yield faster sqlite3_prepare() 3815 ** times for the common case. 3816 ** 3817 ** Return non-zero on success, if this query can be handled by this 3818 ** no-frills query planner. Return zero if this query needs the 3819 ** general-purpose query planner. 3820 */ 3821 static int whereShortCut(WhereLoopBuilder *pBuilder){ 3822 WhereInfo *pWInfo; 3823 struct SrcList_item *pItem; 3824 WhereClause *pWC; 3825 WhereTerm *pTerm; 3826 WhereLoop *pLoop; 3827 int iCur; 3828 int j; 3829 Table *pTab; 3830 Index *pIdx; 3831 3832 pWInfo = pBuilder->pWInfo; 3833 if( pWInfo->wctrlFlags & WHERE_FORCE_TABLE ) return 0; 3834 assert( pWInfo->pTabList->nSrc>=1 ); 3835 pItem = pWInfo->pTabList->a; 3836 pTab = pItem->pTab; 3837 if( IsVirtual(pTab) ) return 0; 3838 if( pItem->fg.isIndexedBy ) return 0; 3839 iCur = pItem->iCursor; 3840 pWC = &pWInfo->sWC; 3841 pLoop = pBuilder->pNew; 3842 pLoop->wsFlags = 0; 3843 pLoop->nSkip = 0; 3844 pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0); 3845 if( pTerm ){ 3846 testcase( pTerm->eOperator & WO_IS ); 3847 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; 3848 pLoop->aLTerm[0] = pTerm; 3849 pLoop->nLTerm = 1; 3850 pLoop->u.btree.nEq = 1; 3851 /* TUNING: Cost of a rowid lookup is 10 */ 3852 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ 3853 }else{ 3854 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3855 int opMask; 3856 assert( pLoop->aLTermSpace==pLoop->aLTerm ); 3857 if( !IsUniqueIndex(pIdx) 3858 || pIdx->pPartIdxWhere!=0 3859 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) 3860 ) continue; 3861 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; 3862 for(j=0; j<pIdx->nKeyCol; j++){ 3863 pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx); 3864 if( pTerm==0 ) break; 3865 testcase( pTerm->eOperator & WO_IS ); 3866 pLoop->aLTerm[j] = pTerm; 3867 } 3868 if( j!=pIdx->nKeyCol ) continue; 3869 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; 3870 if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){ 3871 pLoop->wsFlags |= WHERE_IDX_ONLY; 3872 } 3873 pLoop->nLTerm = j; 3874 pLoop->u.btree.nEq = j; 3875 pLoop->u.btree.pIndex = pIdx; 3876 /* TUNING: Cost of a unique index lookup is 15 */ 3877 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ 3878 break; 3879 } 3880 } 3881 if( pLoop->wsFlags ){ 3882 pLoop->nOut = (LogEst)1; 3883 pWInfo->a[0].pWLoop = pLoop; 3884 pLoop->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 3885 pWInfo->a[0].iTabCur = iCur; 3886 pWInfo->nRowOut = 1; 3887 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; 3888 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ 3889 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 3890 } 3891 #ifdef SQLITE_DEBUG 3892 pLoop->cId = '0'; 3893 #endif 3894 return 1; 3895 } 3896 return 0; 3897 } 3898 3899 /* 3900 ** Generate the beginning of the loop used for WHERE clause processing. 3901 ** The return value is a pointer to an opaque structure that contains 3902 ** information needed to terminate the loop. Later, the calling routine 3903 ** should invoke sqlite3WhereEnd() with the return value of this function 3904 ** in order to complete the WHERE clause processing. 3905 ** 3906 ** If an error occurs, this routine returns NULL. 3907 ** 3908 ** The basic idea is to do a nested loop, one loop for each table in 3909 ** the FROM clause of a select. (INSERT and UPDATE statements are the 3910 ** same as a SELECT with only a single table in the FROM clause.) For 3911 ** example, if the SQL is this: 3912 ** 3913 ** SELECT * FROM t1, t2, t3 WHERE ...; 3914 ** 3915 ** Then the code generated is conceptually like the following: 3916 ** 3917 ** foreach row1 in t1 do \ Code generated 3918 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 3919 ** foreach row3 in t3 do / 3920 ** ... 3921 ** end \ Code generated 3922 ** end |-- by sqlite3WhereEnd() 3923 ** end / 3924 ** 3925 ** Note that the loops might not be nested in the order in which they 3926 ** appear in the FROM clause if a different order is better able to make 3927 ** use of indices. Note also that when the IN operator appears in 3928 ** the WHERE clause, it might result in additional nested loops for 3929 ** scanning through all values on the right-hand side of the IN. 3930 ** 3931 ** There are Btree cursors associated with each table. t1 uses cursor 3932 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 3933 ** And so forth. This routine generates code to open those VDBE cursors 3934 ** and sqlite3WhereEnd() generates the code to close them. 3935 ** 3936 ** The code that sqlite3WhereBegin() generates leaves the cursors named 3937 ** in pTabList pointing at their appropriate entries. The [...] code 3938 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 3939 ** data from the various tables of the loop. 3940 ** 3941 ** If the WHERE clause is empty, the foreach loops must each scan their 3942 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 3943 ** the tables have indices and there are terms in the WHERE clause that 3944 ** refer to those indices, a complete table scan can be avoided and the 3945 ** code will run much faster. Most of the work of this routine is checking 3946 ** to see if there are indices that can be used to speed up the loop. 3947 ** 3948 ** Terms of the WHERE clause are also used to limit which rows actually 3949 ** make it to the "..." in the middle of the loop. After each "foreach", 3950 ** terms of the WHERE clause that use only terms in that loop and outer 3951 ** loops are evaluated and if false a jump is made around all subsequent 3952 ** inner loops (or around the "..." if the test occurs within the inner- 3953 ** most loop) 3954 ** 3955 ** OUTER JOINS 3956 ** 3957 ** An outer join of tables t1 and t2 is conceptally coded as follows: 3958 ** 3959 ** foreach row1 in t1 do 3960 ** flag = 0 3961 ** foreach row2 in t2 do 3962 ** start: 3963 ** ... 3964 ** flag = 1 3965 ** end 3966 ** if flag==0 then 3967 ** move the row2 cursor to a null row 3968 ** goto start 3969 ** fi 3970 ** end 3971 ** 3972 ** ORDER BY CLAUSE PROCESSING 3973 ** 3974 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause 3975 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement 3976 ** if there is one. If there is no ORDER BY clause or if this routine 3977 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. 3978 ** 3979 ** The iIdxCur parameter is the cursor number of an index. If 3980 ** WHERE_ONETABLE_ONLY is set, iIdxCur is the cursor number of an index 3981 ** to use for OR clause processing. The WHERE clause should use this 3982 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is 3983 ** the first cursor in an array of cursors for all indices. iIdxCur should 3984 ** be used to compute the appropriate cursor depending on which index is 3985 ** used. 3986 */ 3987 WhereInfo *sqlite3WhereBegin( 3988 Parse *pParse, /* The parser context */ 3989 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ 3990 Expr *pWhere, /* The WHERE clause */ 3991 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ 3992 ExprList *pResultSet, /* Result set of the query */ 3993 u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */ 3994 int iIdxCur /* If WHERE_ONETABLE_ONLY is set, index cursor number */ 3995 ){ 3996 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ 3997 int nTabList; /* Number of elements in pTabList */ 3998 WhereInfo *pWInfo; /* Will become the return value of this function */ 3999 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 4000 Bitmask notReady; /* Cursors that are not yet positioned */ 4001 WhereLoopBuilder sWLB; /* The WhereLoop builder */ 4002 WhereMaskSet *pMaskSet; /* The expression mask set */ 4003 WhereLevel *pLevel; /* A single level in pWInfo->a[] */ 4004 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ 4005 int ii; /* Loop counter */ 4006 sqlite3 *db; /* Database connection */ 4007 int rc; /* Return code */ 4008 u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */ 4009 4010 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || ( 4011 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 4012 && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 4013 )); 4014 4015 /* Variable initialization */ 4016 db = pParse->db; 4017 memset(&sWLB, 0, sizeof(sWLB)); 4018 4019 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ 4020 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); 4021 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; 4022 sWLB.pOrderBy = pOrderBy; 4023 4024 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via 4025 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ 4026 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ 4027 wctrlFlags &= ~WHERE_WANT_DISTINCT; 4028 } 4029 4030 /* The number of tables in the FROM clause is limited by the number of 4031 ** bits in a Bitmask 4032 */ 4033 testcase( pTabList->nSrc==BMS ); 4034 if( pTabList->nSrc>BMS ){ 4035 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 4036 return 0; 4037 } 4038 4039 /* This function normally generates a nested loop for all tables in 4040 ** pTabList. But if the WHERE_ONETABLE_ONLY flag is set, then we should 4041 ** only generate code for the first table in pTabList and assume that 4042 ** any cursors associated with subsequent tables are uninitialized. 4043 */ 4044 nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc; 4045 4046 /* Allocate and initialize the WhereInfo structure that will become the 4047 ** return value. A single allocation is used to store the WhereInfo 4048 ** struct, the contents of WhereInfo.a[], the WhereClause structure 4049 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte 4050 ** field (type Bitmask) it must be aligned on an 8-byte boundary on 4051 ** some architectures. Hence the ROUND8() below. 4052 */ 4053 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); 4054 pWInfo = sqlite3DbMallocZero(db, nByteWInfo + sizeof(WhereLoop)); 4055 if( db->mallocFailed ){ 4056 sqlite3DbFree(db, pWInfo); 4057 pWInfo = 0; 4058 goto whereBeginError; 4059 } 4060 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; 4061 pWInfo->nLevel = nTabList; 4062 pWInfo->pParse = pParse; 4063 pWInfo->pTabList = pTabList; 4064 pWInfo->pOrderBy = pOrderBy; 4065 pWInfo->pResultSet = pResultSet; 4066 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v); 4067 pWInfo->wctrlFlags = wctrlFlags; 4068 pWInfo->savedNQueryLoop = pParse->nQueryLoop; 4069 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */ 4070 pMaskSet = &pWInfo->sMaskSet; 4071 sWLB.pWInfo = pWInfo; 4072 sWLB.pWC = &pWInfo->sWC; 4073 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); 4074 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); 4075 whereLoopInit(sWLB.pNew); 4076 #ifdef SQLITE_DEBUG 4077 sWLB.pNew->cId = '*'; 4078 #endif 4079 4080 /* Split the WHERE clause into separate subexpressions where each 4081 ** subexpression is separated by an AND operator. 4082 */ 4083 initMaskSet(pMaskSet); 4084 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); 4085 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); 4086 4087 /* Special case: a WHERE clause that is constant. Evaluate the 4088 ** expression and either jump over all of the code or fall thru. 4089 */ 4090 for(ii=0; ii<sWLB.pWC->nTerm; ii++){ 4091 if( nTabList==0 || sqlite3ExprIsConstantNotJoin(sWLB.pWC->a[ii].pExpr) ){ 4092 sqlite3ExprIfFalse(pParse, sWLB.pWC->a[ii].pExpr, pWInfo->iBreak, 4093 SQLITE_JUMPIFNULL); 4094 sWLB.pWC->a[ii].wtFlags |= TERM_CODED; 4095 } 4096 } 4097 4098 /* Special case: No FROM clause 4099 */ 4100 if( nTabList==0 ){ 4101 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; 4102 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4103 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4104 } 4105 } 4106 4107 /* Assign a bit from the bitmask to every term in the FROM clause. 4108 ** 4109 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. 4110 ** 4111 ** The rule of the previous sentence ensures thta if X is the bitmask for 4112 ** a table T, then X-1 is the bitmask for all other tables to the left of T. 4113 ** Knowing the bitmask for all tables to the left of a left join is 4114 ** important. Ticket #3015. 4115 ** 4116 ** Note that bitmasks are created for all pTabList->nSrc tables in 4117 ** pTabList, not just the first nTabList tables. nTabList is normally 4118 ** equal to pTabList->nSrc but might be shortened to 1 if the 4119 ** WHERE_ONETABLE_ONLY flag is set. 4120 */ 4121 for(ii=0; ii<pTabList->nSrc; ii++){ 4122 createMask(pMaskSet, pTabList->a[ii].iCursor); 4123 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC); 4124 } 4125 #ifdef SQLITE_DEBUG 4126 for(ii=0; ii<pTabList->nSrc; ii++){ 4127 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); 4128 assert( m==MASKBIT(ii) ); 4129 } 4130 #endif 4131 4132 /* Analyze all of the subexpressions. */ 4133 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); 4134 if( db->mallocFailed ) goto whereBeginError; 4135 4136 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4137 if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ 4138 /* The DISTINCT marking is pointless. Ignore it. */ 4139 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4140 }else if( pOrderBy==0 ){ 4141 /* Try to ORDER BY the result set to make distinct processing easier */ 4142 pWInfo->wctrlFlags |= WHERE_DISTINCTBY; 4143 pWInfo->pOrderBy = pResultSet; 4144 } 4145 } 4146 4147 /* Construct the WhereLoop objects */ 4148 WHERETRACE(0xffff,("*** Optimizer Start *** (wctrlFlags: 0x%x)\n", 4149 wctrlFlags)); 4150 #if defined(WHERETRACE_ENABLED) 4151 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 4152 int i; 4153 for(i=0; i<sWLB.pWC->nTerm; i++){ 4154 whereTermPrint(&sWLB.pWC->a[i], i); 4155 } 4156 } 4157 #endif 4158 4159 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ 4160 rc = whereLoopAddAll(&sWLB); 4161 if( rc ) goto whereBeginError; 4162 4163 #ifdef WHERETRACE_ENABLED 4164 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ 4165 WhereLoop *p; 4166 int i; 4167 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" 4168 "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; 4169 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ 4170 p->cId = zLabel[i%sizeof(zLabel)]; 4171 whereLoopPrint(p, sWLB.pWC); 4172 } 4173 } 4174 #endif 4175 4176 wherePathSolver(pWInfo, 0); 4177 if( db->mallocFailed ) goto whereBeginError; 4178 if( pWInfo->pOrderBy ){ 4179 wherePathSolver(pWInfo, pWInfo->nRowOut+1); 4180 if( db->mallocFailed ) goto whereBeginError; 4181 } 4182 } 4183 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ 4184 pWInfo->revMask = (Bitmask)(-1); 4185 } 4186 if( pParse->nErr || NEVER(db->mallocFailed) ){ 4187 goto whereBeginError; 4188 } 4189 #ifdef WHERETRACE_ENABLED 4190 if( sqlite3WhereTrace ){ 4191 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); 4192 if( pWInfo->nOBSat>0 ){ 4193 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); 4194 } 4195 switch( pWInfo->eDistinct ){ 4196 case WHERE_DISTINCT_UNIQUE: { 4197 sqlite3DebugPrintf(" DISTINCT=unique"); 4198 break; 4199 } 4200 case WHERE_DISTINCT_ORDERED: { 4201 sqlite3DebugPrintf(" DISTINCT=ordered"); 4202 break; 4203 } 4204 case WHERE_DISTINCT_UNORDERED: { 4205 sqlite3DebugPrintf(" DISTINCT=unordered"); 4206 break; 4207 } 4208 } 4209 sqlite3DebugPrintf("\n"); 4210 for(ii=0; ii<pWInfo->nLevel; ii++){ 4211 whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); 4212 } 4213 } 4214 #endif 4215 /* Attempt to omit tables from the join that do not effect the result */ 4216 if( pWInfo->nLevel>=2 4217 && pResultSet!=0 4218 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) 4219 ){ 4220 Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet); 4221 if( sWLB.pOrderBy ){ 4222 tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy); 4223 } 4224 while( pWInfo->nLevel>=2 ){ 4225 WhereTerm *pTerm, *pEnd; 4226 pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop; 4227 if( (pWInfo->pTabList->a[pLoop->iTab].fg.jointype & JT_LEFT)==0 ) break; 4228 if( (wctrlFlags & WHERE_WANT_DISTINCT)==0 4229 && (pLoop->wsFlags & WHERE_ONEROW)==0 4230 ){ 4231 break; 4232 } 4233 if( (tabUsed & pLoop->maskSelf)!=0 ) break; 4234 pEnd = sWLB.pWC->a + sWLB.pWC->nTerm; 4235 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ 4236 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 4237 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 4238 ){ 4239 break; 4240 } 4241 } 4242 if( pTerm<pEnd ) break; 4243 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); 4244 pWInfo->nLevel--; 4245 nTabList--; 4246 } 4247 } 4248 WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); 4249 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; 4250 4251 /* If the caller is an UPDATE or DELETE statement that is requesting 4252 ** to use a one-pass algorithm, determine if this is appropriate. 4253 */ 4254 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 4255 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){ 4256 int wsFlags = pWInfo->a[0].pWLoop->wsFlags; 4257 int bOnerow = (wsFlags & WHERE_ONEROW)!=0; 4258 if( bOnerow 4259 || ((wctrlFlags & WHERE_ONEPASS_MULTIROW)!=0 4260 && 0==(wsFlags & WHERE_VIRTUALTABLE)) 4261 ){ 4262 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; 4263 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){ 4264 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){ 4265 bFordelete = OPFLAG_FORDELETE; 4266 } 4267 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY); 4268 } 4269 } 4270 } 4271 4272 /* Open all tables in the pTabList and any indices selected for 4273 ** searching those tables. 4274 */ 4275 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ 4276 Table *pTab; /* Table to open */ 4277 int iDb; /* Index of database containing table/index */ 4278 struct SrcList_item *pTabItem; 4279 4280 pTabItem = &pTabList->a[pLevel->iFrom]; 4281 pTab = pTabItem->pTab; 4282 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4283 pLoop = pLevel->pWLoop; 4284 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){ 4285 /* Do nothing */ 4286 }else 4287 #ifndef SQLITE_OMIT_VIRTUALTABLE 4288 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 4289 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 4290 int iCur = pTabItem->iCursor; 4291 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); 4292 }else if( IsVirtual(pTab) ){ 4293 /* noop */ 4294 }else 4295 #endif 4296 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 4297 && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){ 4298 int op = OP_OpenRead; 4299 if( pWInfo->eOnePass!=ONEPASS_OFF ){ 4300 op = OP_OpenWrite; 4301 pWInfo->aiCurOnePass[0] = pTabItem->iCursor; 4302 }; 4303 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 4304 assert( pTabItem->iCursor==pLevel->iTabCur ); 4305 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 ); 4306 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS ); 4307 if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){ 4308 Bitmask b = pTabItem->colUsed; 4309 int n = 0; 4310 for(; b; b=b>>1, n++){} 4311 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32); 4312 assert( n<=pTab->nCol ); 4313 } 4314 #ifdef SQLITE_ENABLE_CURSOR_HINTS 4315 if( pLoop->u.btree.pIndex!=0 ){ 4316 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete); 4317 }else 4318 #endif 4319 { 4320 sqlite3VdbeChangeP5(v, bFordelete); 4321 } 4322 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4323 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, 4324 (const u8*)&pTabItem->colUsed, P4_INT64); 4325 #endif 4326 }else{ 4327 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 4328 } 4329 if( pLoop->wsFlags & WHERE_INDEXED ){ 4330 Index *pIx = pLoop->u.btree.pIndex; 4331 int iIndexCur; 4332 int op = OP_OpenRead; 4333 /* iIdxCur is always set if to a positive value if ONEPASS is possible */ 4334 assert( iIdxCur!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); 4335 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) 4336 && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 4337 ){ 4338 /* This is one term of an OR-optimization using the PRIMARY KEY of a 4339 ** WITHOUT ROWID table. No need for a separate index */ 4340 iIndexCur = pLevel->iTabCur; 4341 op = 0; 4342 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){ 4343 Index *pJ = pTabItem->pTab->pIndex; 4344 iIndexCur = iIdxCur; 4345 assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); 4346 while( ALWAYS(pJ) && pJ!=pIx ){ 4347 iIndexCur++; 4348 pJ = pJ->pNext; 4349 } 4350 op = OP_OpenWrite; 4351 pWInfo->aiCurOnePass[1] = iIndexCur; 4352 }else if( iIdxCur && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ){ 4353 iIndexCur = iIdxCur; 4354 if( wctrlFlags & WHERE_REOPEN_IDX ) op = OP_ReopenIdx; 4355 }else{ 4356 iIndexCur = pParse->nTab++; 4357 } 4358 pLevel->iIdxCur = iIndexCur; 4359 assert( pIx->pSchema==pTab->pSchema ); 4360 assert( iIndexCur>=0 ); 4361 if( op ){ 4362 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); 4363 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 4364 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 4365 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 4366 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 4367 ){ 4368 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */ 4369 } 4370 VdbeComment((v, "%s", pIx->zName)); 4371 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4372 { 4373 u64 colUsed = 0; 4374 int ii, jj; 4375 for(ii=0; ii<pIx->nColumn; ii++){ 4376 jj = pIx->aiColumn[ii]; 4377 if( jj<0 ) continue; 4378 if( jj>63 ) jj = 63; 4379 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue; 4380 colUsed |= ((u64)1)<<(ii<63 ? ii : 63); 4381 } 4382 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, 4383 (u8*)&colUsed, P4_INT64); 4384 } 4385 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ 4386 } 4387 } 4388 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); 4389 } 4390 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 4391 if( db->mallocFailed ) goto whereBeginError; 4392 4393 /* Generate the code to do the search. Each iteration of the for 4394 ** loop below generates code for a single nested loop of the VM 4395 ** program. 4396 */ 4397 notReady = ~(Bitmask)0; 4398 for(ii=0; ii<nTabList; ii++){ 4399 int addrExplain; 4400 int wsFlags; 4401 pLevel = &pWInfo->a[ii]; 4402 wsFlags = pLevel->pWLoop->wsFlags; 4403 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 4404 if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 4405 constructAutomaticIndex(pParse, &pWInfo->sWC, 4406 &pTabList->a[pLevel->iFrom], notReady, pLevel); 4407 if( db->mallocFailed ) goto whereBeginError; 4408 } 4409 #endif 4410 addrExplain = sqlite3WhereExplainOneScan( 4411 pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags 4412 ); 4413 pLevel->addrBody = sqlite3VdbeCurrentAddr(v); 4414 notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady); 4415 pWInfo->iContinue = pLevel->addrCont; 4416 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_ONETABLE_ONLY)==0 ){ 4417 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); 4418 } 4419 } 4420 4421 /* Done. */ 4422 VdbeModuleComment((v, "Begin WHERE-core")); 4423 return pWInfo; 4424 4425 /* Jump here if malloc fails */ 4426 whereBeginError: 4427 if( pWInfo ){ 4428 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 4429 whereInfoFree(db, pWInfo); 4430 } 4431 return 0; 4432 } 4433 4434 /* 4435 ** Generate the end of the WHERE loop. See comments on 4436 ** sqlite3WhereBegin() for additional information. 4437 */ 4438 void sqlite3WhereEnd(WhereInfo *pWInfo){ 4439 Parse *pParse = pWInfo->pParse; 4440 Vdbe *v = pParse->pVdbe; 4441 int i; 4442 WhereLevel *pLevel; 4443 WhereLoop *pLoop; 4444 SrcList *pTabList = pWInfo->pTabList; 4445 sqlite3 *db = pParse->db; 4446 4447 /* Generate loop termination code. 4448 */ 4449 VdbeModuleComment((v, "End WHERE-core")); 4450 sqlite3ExprCacheClear(pParse); 4451 for(i=pWInfo->nLevel-1; i>=0; i--){ 4452 int addr; 4453 pLevel = &pWInfo->a[i]; 4454 pLoop = pLevel->pWLoop; 4455 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 4456 if( pLevel->op!=OP_Noop ){ 4457 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); 4458 sqlite3VdbeChangeP5(v, pLevel->p5); 4459 VdbeCoverage(v); 4460 VdbeCoverageIf(v, pLevel->op==OP_Next); 4461 VdbeCoverageIf(v, pLevel->op==OP_Prev); 4462 VdbeCoverageIf(v, pLevel->op==OP_VNext); 4463 } 4464 if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ 4465 struct InLoop *pIn; 4466 int j; 4467 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 4468 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 4469 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 4470 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); 4471 VdbeCoverage(v); 4472 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen); 4473 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen); 4474 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 4475 } 4476 } 4477 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 4478 if( pLevel->addrSkip ){ 4479 sqlite3VdbeGoto(v, pLevel->addrSkip); 4480 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); 4481 sqlite3VdbeJumpHere(v, pLevel->addrSkip); 4482 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); 4483 } 4484 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 4485 if( pLevel->addrLikeRep ){ 4486 int op; 4487 if( sqlite3VdbeGetOp(v, pLevel->addrLikeRep-1)->p1 ){ 4488 op = OP_DecrJumpZero; 4489 }else{ 4490 op = OP_JumpZeroIncr; 4491 } 4492 sqlite3VdbeAddOp2(v, op, pLevel->iLikeRepCntr, pLevel->addrLikeRep); 4493 VdbeCoverage(v); 4494 } 4495 #endif 4496 if( pLevel->iLeftJoin ){ 4497 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); 4498 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 4499 || (pLoop->wsFlags & WHERE_INDEXED)!=0 ); 4500 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){ 4501 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); 4502 } 4503 if( pLoop->wsFlags & WHERE_INDEXED ){ 4504 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 4505 } 4506 if( pLevel->op==OP_Return ){ 4507 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); 4508 }else{ 4509 sqlite3VdbeGoto(v, pLevel->addrFirst); 4510 } 4511 sqlite3VdbeJumpHere(v, addr); 4512 } 4513 VdbeModuleComment((v, "End WHERE-loop%d: %s", i, 4514 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); 4515 } 4516 4517 /* The "break" point is here, just past the end of the outer loop. 4518 ** Set it. 4519 */ 4520 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 4521 4522 assert( pWInfo->nLevel<=pTabList->nSrc ); 4523 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ 4524 int k, last; 4525 VdbeOp *pOp; 4526 Index *pIdx = 0; 4527 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 4528 Table *pTab = pTabItem->pTab; 4529 assert( pTab!=0 ); 4530 pLoop = pLevel->pWLoop; 4531 4532 /* For a co-routine, change all OP_Column references to the table of 4533 ** the co-routine into OP_Copy of result contained in a register. 4534 ** OP_Rowid becomes OP_Null. 4535 */ 4536 if( pTabItem->fg.viaCoroutine && !db->mallocFailed ){ 4537 translateColumnToCopy(v, pLevel->addrBody, pLevel->iTabCur, 4538 pTabItem->regResult, 0); 4539 continue; 4540 } 4541 4542 /* Close all of the cursors that were opened by sqlite3WhereBegin. 4543 ** Except, do not close cursors that will be reused by the OR optimization 4544 ** (WHERE_OMIT_OPEN_CLOSE). And do not close the OP_OpenWrite cursors 4545 ** created for the ONEPASS optimization. 4546 */ 4547 if( (pTab->tabFlags & TF_Ephemeral)==0 4548 && pTab->pSelect==0 4549 && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 4550 ){ 4551 int ws = pLoop->wsFlags; 4552 if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){ 4553 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); 4554 } 4555 if( (ws & WHERE_INDEXED)!=0 4556 && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0 4557 && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1] 4558 ){ 4559 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); 4560 } 4561 } 4562 4563 /* If this scan uses an index, make VDBE code substitutions to read data 4564 ** from the index instead of from the table where possible. In some cases 4565 ** this optimization prevents the table from ever being read, which can 4566 ** yield a significant performance boost. 4567 ** 4568 ** Calls to the code generator in between sqlite3WhereBegin and 4569 ** sqlite3WhereEnd will have created code that references the table 4570 ** directly. This loop scans all that code looking for opcodes 4571 ** that reference the table and converts them into opcodes that 4572 ** reference the index. 4573 */ 4574 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ 4575 pIdx = pLoop->u.btree.pIndex; 4576 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ 4577 pIdx = pLevel->u.pCovidx; 4578 } 4579 if( pIdx 4580 && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable)) 4581 && !db->mallocFailed 4582 ){ 4583 last = sqlite3VdbeCurrentAddr(v); 4584 k = pLevel->addrBody; 4585 pOp = sqlite3VdbeGetOp(v, k); 4586 for(; k<last; k++, pOp++){ 4587 if( pOp->p1!=pLevel->iTabCur ) continue; 4588 if( pOp->opcode==OP_Column ){ 4589 int x = pOp->p2; 4590 assert( pIdx->pTable==pTab ); 4591 if( !HasRowid(pTab) ){ 4592 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 4593 x = pPk->aiColumn[x]; 4594 assert( x>=0 ); 4595 } 4596 x = sqlite3ColumnOfIndex(pIdx, x); 4597 if( x>=0 ){ 4598 pOp->p2 = x; 4599 pOp->p1 = pLevel->iIdxCur; 4600 } 4601 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 ); 4602 }else if( pOp->opcode==OP_Rowid ){ 4603 pOp->p1 = pLevel->iIdxCur; 4604 pOp->opcode = OP_IdxRowid; 4605 } 4606 } 4607 } 4608 } 4609 4610 /* Final cleanup 4611 */ 4612 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 4613 whereInfoFree(db, pWInfo); 4614 return; 4615 } 4616