1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* 23 ** Extra information appended to the end of sqlite3_index_info but not 24 ** visible to the xBestIndex function, at least not directly. The 25 ** sqlite3_vtab_collation() interface knows how to reach it, however. 26 ** 27 ** This object is not an API and can be changed from one release to the 28 ** next. As long as allocateIndexInfo() and sqlite3_vtab_collation() 29 ** agree on the structure, all will be well. 30 */ 31 typedef struct HiddenIndexInfo HiddenIndexInfo; 32 struct HiddenIndexInfo { 33 WhereClause *pWC; /* The Where clause being analyzed */ 34 Parse *pParse; /* The parsing context */ 35 }; 36 37 /* Forward declaration of methods */ 38 static int whereLoopResize(sqlite3*, WhereLoop*, int); 39 40 /* Test variable that can be set to enable WHERE tracing */ 41 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 42 /***/ int sqlite3WhereTrace = 0; 43 #endif 44 45 46 /* 47 ** Return the estimated number of output rows from a WHERE clause 48 */ 49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ 50 return pWInfo->nRowOut; 51 } 52 53 /* 54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this 55 ** WHERE clause returns outputs for DISTINCT processing. 56 */ 57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ 58 return pWInfo->eDistinct; 59 } 60 61 /* 62 ** Return TRUE if the WHERE clause returns rows in ORDER BY order. 63 ** Return FALSE if the output needs to be sorted. 64 */ 65 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ 66 return pWInfo->nOBSat; 67 } 68 69 /* 70 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known 71 ** to emit rows in increasing order, and if the last row emitted by the 72 ** inner-most loop did not fit within the sorter, then we can skip all 73 ** subsequent rows for the current iteration of the inner loop (because they 74 ** will not fit in the sorter either) and continue with the second inner 75 ** loop - the loop immediately outside the inner-most. 76 ** 77 ** When a row does not fit in the sorter (because the sorter already 78 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the 79 ** label returned by this function. 80 ** 81 ** If the ORDER BY LIMIT optimization applies, the jump destination should 82 ** be the continuation for the second-inner-most loop. If the ORDER BY 83 ** LIMIT optimization does not apply, then the jump destination should 84 ** be the continuation for the inner-most loop. 85 ** 86 ** It is always safe for this routine to return the continuation of the 87 ** inner-most loop, in the sense that a correct answer will result. 88 ** Returning the continuation the second inner loop is an optimization 89 ** that might make the code run a little faster, but should not change 90 ** the final answer. 91 */ 92 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){ 93 WhereLevel *pInner; 94 if( !pWInfo->bOrderedInnerLoop ){ 95 /* The ORDER BY LIMIT optimization does not apply. Jump to the 96 ** continuation of the inner-most loop. */ 97 return pWInfo->iContinue; 98 } 99 pInner = &pWInfo->a[pWInfo->nLevel-1]; 100 assert( pInner->addrNxt!=0 ); 101 return pInner->addrNxt; 102 } 103 104 /* 105 ** Return the VDBE address or label to jump to in order to continue 106 ** immediately with the next row of a WHERE clause. 107 */ 108 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ 109 assert( pWInfo->iContinue!=0 ); 110 return pWInfo->iContinue; 111 } 112 113 /* 114 ** Return the VDBE address or label to jump to in order to break 115 ** out of a WHERE loop. 116 */ 117 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ 118 return pWInfo->iBreak; 119 } 120 121 /* 122 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to 123 ** operate directly on the rowids returned by a WHERE clause. Return 124 ** ONEPASS_SINGLE (1) if the statement can operation directly because only 125 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass 126 ** optimization can be used on multiple 127 ** 128 ** If the ONEPASS optimization is used (if this routine returns true) 129 ** then also write the indices of open cursors used by ONEPASS 130 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data 131 ** table and iaCur[1] gets the cursor used by an auxiliary index. 132 ** Either value may be -1, indicating that cursor is not used. 133 ** Any cursors returned will have been opened for writing. 134 ** 135 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is 136 ** unable to use the ONEPASS optimization. 137 */ 138 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ 139 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); 140 #ifdef WHERETRACE_ENABLED 141 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){ 142 sqlite3DebugPrintf("%s cursors: %d %d\n", 143 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI", 144 aiCur[0], aiCur[1]); 145 } 146 #endif 147 return pWInfo->eOnePass; 148 } 149 150 /* 151 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move 152 ** the data cursor to the row selected by the index cursor. 153 */ 154 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){ 155 return pWInfo->bDeferredSeek; 156 } 157 158 /* 159 ** Move the content of pSrc into pDest 160 */ 161 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ 162 pDest->n = pSrc->n; 163 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); 164 } 165 166 /* 167 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. 168 ** 169 ** The new entry might overwrite an existing entry, or it might be 170 ** appended, or it might be discarded. Do whatever is the right thing 171 ** so that pSet keeps the N_OR_COST best entries seen so far. 172 */ 173 static int whereOrInsert( 174 WhereOrSet *pSet, /* The WhereOrSet to be updated */ 175 Bitmask prereq, /* Prerequisites of the new entry */ 176 LogEst rRun, /* Run-cost of the new entry */ 177 LogEst nOut /* Number of outputs for the new entry */ 178 ){ 179 u16 i; 180 WhereOrCost *p; 181 for(i=pSet->n, p=pSet->a; i>0; i--, p++){ 182 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ 183 goto whereOrInsert_done; 184 } 185 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ 186 return 0; 187 } 188 } 189 if( pSet->n<N_OR_COST ){ 190 p = &pSet->a[pSet->n++]; 191 p->nOut = nOut; 192 }else{ 193 p = pSet->a; 194 for(i=1; i<pSet->n; i++){ 195 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; 196 } 197 if( p->rRun<=rRun ) return 0; 198 } 199 whereOrInsert_done: 200 p->prereq = prereq; 201 p->rRun = rRun; 202 if( p->nOut>nOut ) p->nOut = nOut; 203 return 1; 204 } 205 206 /* 207 ** Return the bitmask for the given cursor number. Return 0 if 208 ** iCursor is not in the set. 209 */ 210 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ 211 int i; 212 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); 213 for(i=0; i<pMaskSet->n; i++){ 214 if( pMaskSet->ix[i]==iCursor ){ 215 return MASKBIT(i); 216 } 217 } 218 return 0; 219 } 220 221 /* 222 ** Create a new mask for cursor iCursor. 223 ** 224 ** There is one cursor per table in the FROM clause. The number of 225 ** tables in the FROM clause is limited by a test early in the 226 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 227 ** array will never overflow. 228 */ 229 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 230 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 231 pMaskSet->ix[pMaskSet->n++] = iCursor; 232 } 233 234 /* 235 ** Advance to the next WhereTerm that matches according to the criteria 236 ** established when the pScan object was initialized by whereScanInit(). 237 ** Return NULL if there are no more matching WhereTerms. 238 */ 239 static WhereTerm *whereScanNext(WhereScan *pScan){ 240 int iCur; /* The cursor on the LHS of the term */ 241 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */ 242 Expr *pX; /* An expression being tested */ 243 WhereClause *pWC; /* Shorthand for pScan->pWC */ 244 WhereTerm *pTerm; /* The term being tested */ 245 int k = pScan->k; /* Where to start scanning */ 246 247 assert( pScan->iEquiv<=pScan->nEquiv ); 248 pWC = pScan->pWC; 249 while(1){ 250 iColumn = pScan->aiColumn[pScan->iEquiv-1]; 251 iCur = pScan->aiCur[pScan->iEquiv-1]; 252 assert( pWC!=0 ); 253 do{ 254 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ 255 if( pTerm->leftCursor==iCur 256 && pTerm->u.leftColumn==iColumn 257 && (iColumn!=XN_EXPR 258 || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft, 259 pScan->pIdxExpr,iCur)==0) 260 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 261 ){ 262 if( (pTerm->eOperator & WO_EQUIV)!=0 263 && pScan->nEquiv<ArraySize(pScan->aiCur) 264 && (pX = sqlite3ExprSkipCollateAndLikely(pTerm->pExpr->pRight))->op 265 ==TK_COLUMN 266 ){ 267 int j; 268 for(j=0; j<pScan->nEquiv; j++){ 269 if( pScan->aiCur[j]==pX->iTable 270 && pScan->aiColumn[j]==pX->iColumn ){ 271 break; 272 } 273 } 274 if( j==pScan->nEquiv ){ 275 pScan->aiCur[j] = pX->iTable; 276 pScan->aiColumn[j] = pX->iColumn; 277 pScan->nEquiv++; 278 } 279 } 280 if( (pTerm->eOperator & pScan->opMask)!=0 ){ 281 /* Verify the affinity and collating sequence match */ 282 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ 283 CollSeq *pColl; 284 Parse *pParse = pWC->pWInfo->pParse; 285 pX = pTerm->pExpr; 286 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ 287 continue; 288 } 289 assert(pX->pLeft); 290 pColl = sqlite3ExprCompareCollSeq(pParse, pX); 291 if( pColl==0 ) pColl = pParse->db->pDfltColl; 292 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ 293 continue; 294 } 295 } 296 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0 297 && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN 298 && pX->iTable==pScan->aiCur[0] 299 && pX->iColumn==pScan->aiColumn[0] 300 ){ 301 testcase( pTerm->eOperator & WO_IS ); 302 continue; 303 } 304 pScan->pWC = pWC; 305 pScan->k = k+1; 306 return pTerm; 307 } 308 } 309 } 310 pWC = pWC->pOuter; 311 k = 0; 312 }while( pWC!=0 ); 313 if( pScan->iEquiv>=pScan->nEquiv ) break; 314 pWC = pScan->pOrigWC; 315 k = 0; 316 pScan->iEquiv++; 317 } 318 return 0; 319 } 320 321 /* 322 ** This is whereScanInit() for the case of an index on an expression. 323 ** It is factored out into a separate tail-recursion subroutine so that 324 ** the normal whereScanInit() routine, which is a high-runner, does not 325 ** need to push registers onto the stack as part of its prologue. 326 */ 327 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){ 328 pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr); 329 return whereScanNext(pScan); 330 } 331 332 /* 333 ** Initialize a WHERE clause scanner object. Return a pointer to the 334 ** first match. Return NULL if there are no matches. 335 ** 336 ** The scanner will be searching the WHERE clause pWC. It will look 337 ** for terms of the form "X <op> <expr>" where X is column iColumn of table 338 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx 339 ** must be one of the indexes of table iCur. 340 ** 341 ** The <op> must be one of the operators described by opMask. 342 ** 343 ** If the search is for X and the WHERE clause contains terms of the 344 ** form X=Y then this routine might also return terms of the form 345 ** "Y <op> <expr>". The number of levels of transitivity is limited, 346 ** but is enough to handle most commonly occurring SQL statements. 347 ** 348 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with 349 ** index pIdx. 350 */ 351 static WhereTerm *whereScanInit( 352 WhereScan *pScan, /* The WhereScan object being initialized */ 353 WhereClause *pWC, /* The WHERE clause to be scanned */ 354 int iCur, /* Cursor to scan for */ 355 int iColumn, /* Column to scan for */ 356 u32 opMask, /* Operator(s) to scan for */ 357 Index *pIdx /* Must be compatible with this index */ 358 ){ 359 pScan->pOrigWC = pWC; 360 pScan->pWC = pWC; 361 pScan->pIdxExpr = 0; 362 pScan->idxaff = 0; 363 pScan->zCollName = 0; 364 pScan->opMask = opMask; 365 pScan->k = 0; 366 pScan->aiCur[0] = iCur; 367 pScan->nEquiv = 1; 368 pScan->iEquiv = 1; 369 if( pIdx ){ 370 int j = iColumn; 371 iColumn = pIdx->aiColumn[j]; 372 if( iColumn==XN_EXPR ){ 373 pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr; 374 pScan->zCollName = pIdx->azColl[j]; 375 pScan->aiColumn[0] = XN_EXPR; 376 return whereScanInitIndexExpr(pScan); 377 }else if( iColumn==pIdx->pTable->iPKey ){ 378 iColumn = XN_ROWID; 379 }else if( iColumn>=0 ){ 380 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; 381 pScan->zCollName = pIdx->azColl[j]; 382 } 383 }else if( iColumn==XN_EXPR ){ 384 return 0; 385 } 386 pScan->aiColumn[0] = iColumn; 387 return whereScanNext(pScan); 388 } 389 390 /* 391 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 392 ** where X is a reference to the iColumn of table iCur or of index pIdx 393 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by 394 ** the op parameter. Return a pointer to the term. Return 0 if not found. 395 ** 396 ** If pIdx!=0 then it must be one of the indexes of table iCur. 397 ** Search for terms matching the iColumn-th column of pIdx 398 ** rather than the iColumn-th column of table iCur. 399 ** 400 ** The term returned might by Y=<expr> if there is another constraint in 401 ** the WHERE clause that specifies that X=Y. Any such constraints will be 402 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The 403 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11 404 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10 405 ** other equivalent values. Hence a search for X will return <expr> if X=A1 406 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>. 407 ** 408 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" 409 ** then try for the one with no dependencies on <expr> - in other words where 410 ** <expr> is a constant expression of some kind. Only return entries of 411 ** the form "X <op> Y" where Y is a column in another table if no terms of 412 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS 413 ** exist, try to return a term that does not use WO_EQUIV. 414 */ 415 WhereTerm *sqlite3WhereFindTerm( 416 WhereClause *pWC, /* The WHERE clause to be searched */ 417 int iCur, /* Cursor number of LHS */ 418 int iColumn, /* Column number of LHS */ 419 Bitmask notReady, /* RHS must not overlap with this mask */ 420 u32 op, /* Mask of WO_xx values describing operator */ 421 Index *pIdx /* Must be compatible with this index, if not NULL */ 422 ){ 423 WhereTerm *pResult = 0; 424 WhereTerm *p; 425 WhereScan scan; 426 427 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); 428 op &= WO_EQ|WO_IS; 429 while( p ){ 430 if( (p->prereqRight & notReady)==0 ){ 431 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){ 432 testcase( p->eOperator & WO_IS ); 433 return p; 434 } 435 if( pResult==0 ) pResult = p; 436 } 437 p = whereScanNext(&scan); 438 } 439 return pResult; 440 } 441 442 /* 443 ** This function searches pList for an entry that matches the iCol-th column 444 ** of index pIdx. 445 ** 446 ** If such an expression is found, its index in pList->a[] is returned. If 447 ** no expression is found, -1 is returned. 448 */ 449 static int findIndexCol( 450 Parse *pParse, /* Parse context */ 451 ExprList *pList, /* Expression list to search */ 452 int iBase, /* Cursor for table associated with pIdx */ 453 Index *pIdx, /* Index to match column of */ 454 int iCol /* Column of index to match */ 455 ){ 456 int i; 457 const char *zColl = pIdx->azColl[iCol]; 458 459 for(i=0; i<pList->nExpr; i++){ 460 Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr); 461 if( p->op==TK_COLUMN 462 && p->iColumn==pIdx->aiColumn[iCol] 463 && p->iTable==iBase 464 ){ 465 CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr); 466 if( 0==sqlite3StrICmp(pColl->zName, zColl) ){ 467 return i; 468 } 469 } 470 } 471 472 return -1; 473 } 474 475 /* 476 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL 477 */ 478 static int indexColumnNotNull(Index *pIdx, int iCol){ 479 int j; 480 assert( pIdx!=0 ); 481 assert( iCol>=0 && iCol<pIdx->nColumn ); 482 j = pIdx->aiColumn[iCol]; 483 if( j>=0 ){ 484 return pIdx->pTable->aCol[j].notNull; 485 }else if( j==(-1) ){ 486 return 1; 487 }else{ 488 assert( j==(-2) ); 489 return 0; /* Assume an indexed expression can always yield a NULL */ 490 491 } 492 } 493 494 /* 495 ** Return true if the DISTINCT expression-list passed as the third argument 496 ** is redundant. 497 ** 498 ** A DISTINCT list is redundant if any subset of the columns in the 499 ** DISTINCT list are collectively unique and individually non-null. 500 */ 501 static int isDistinctRedundant( 502 Parse *pParse, /* Parsing context */ 503 SrcList *pTabList, /* The FROM clause */ 504 WhereClause *pWC, /* The WHERE clause */ 505 ExprList *pDistinct /* The result set that needs to be DISTINCT */ 506 ){ 507 Table *pTab; 508 Index *pIdx; 509 int i; 510 int iBase; 511 512 /* If there is more than one table or sub-select in the FROM clause of 513 ** this query, then it will not be possible to show that the DISTINCT 514 ** clause is redundant. */ 515 if( pTabList->nSrc!=1 ) return 0; 516 iBase = pTabList->a[0].iCursor; 517 pTab = pTabList->a[0].pTab; 518 519 /* If any of the expressions is an IPK column on table iBase, then return 520 ** true. Note: The (p->iTable==iBase) part of this test may be false if the 521 ** current SELECT is a correlated sub-query. 522 */ 523 for(i=0; i<pDistinct->nExpr; i++){ 524 Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr); 525 if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1; 526 } 527 528 /* Loop through all indices on the table, checking each to see if it makes 529 ** the DISTINCT qualifier redundant. It does so if: 530 ** 531 ** 1. The index is itself UNIQUE, and 532 ** 533 ** 2. All of the columns in the index are either part of the pDistinct 534 ** list, or else the WHERE clause contains a term of the form "col=X", 535 ** where X is a constant value. The collation sequences of the 536 ** comparison and select-list expressions must match those of the index. 537 ** 538 ** 3. All of those index columns for which the WHERE clause does not 539 ** contain a "col=X" term are subject to a NOT NULL constraint. 540 */ 541 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 542 if( !IsUniqueIndex(pIdx) ) continue; 543 for(i=0; i<pIdx->nKeyCol; i++){ 544 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){ 545 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break; 546 if( indexColumnNotNull(pIdx, i)==0 ) break; 547 } 548 } 549 if( i==pIdx->nKeyCol ){ 550 /* This index implies that the DISTINCT qualifier is redundant. */ 551 return 1; 552 } 553 } 554 555 return 0; 556 } 557 558 559 /* 560 ** Estimate the logarithm of the input value to base 2. 561 */ 562 static LogEst estLog(LogEst N){ 563 return N<=10 ? 0 : sqlite3LogEst(N) - 33; 564 } 565 566 /* 567 ** Convert OP_Column opcodes to OP_Copy in previously generated code. 568 ** 569 ** This routine runs over generated VDBE code and translates OP_Column 570 ** opcodes into OP_Copy when the table is being accessed via co-routine 571 ** instead of via table lookup. 572 ** 573 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on 574 ** cursor iTabCur are transformed into OP_Sequence opcode for the 575 ** iAutoidxCur cursor, in order to generate unique rowids for the 576 ** automatic index being generated. 577 */ 578 static void translateColumnToCopy( 579 Parse *pParse, /* Parsing context */ 580 int iStart, /* Translate from this opcode to the end */ 581 int iTabCur, /* OP_Column/OP_Rowid references to this table */ 582 int iRegister, /* The first column is in this register */ 583 int iAutoidxCur /* If non-zero, cursor of autoindex being generated */ 584 ){ 585 Vdbe *v = pParse->pVdbe; 586 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart); 587 int iEnd = sqlite3VdbeCurrentAddr(v); 588 if( pParse->db->mallocFailed ) return; 589 for(; iStart<iEnd; iStart++, pOp++){ 590 if( pOp->p1!=iTabCur ) continue; 591 if( pOp->opcode==OP_Column ){ 592 pOp->opcode = OP_Copy; 593 pOp->p1 = pOp->p2 + iRegister; 594 pOp->p2 = pOp->p3; 595 pOp->p3 = 0; 596 }else if( pOp->opcode==OP_Rowid ){ 597 if( iAutoidxCur ){ 598 pOp->opcode = OP_Sequence; 599 pOp->p1 = iAutoidxCur; 600 }else{ 601 pOp->opcode = OP_Null; 602 pOp->p1 = 0; 603 pOp->p3 = 0; 604 } 605 } 606 } 607 } 608 609 /* 610 ** Two routines for printing the content of an sqlite3_index_info 611 ** structure. Used for testing and debugging only. If neither 612 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 613 ** are no-ops. 614 */ 615 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) 616 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){ 617 int i; 618 if( !sqlite3WhereTrace ) return; 619 for(i=0; i<p->nConstraint; i++){ 620 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 621 i, 622 p->aConstraint[i].iColumn, 623 p->aConstraint[i].iTermOffset, 624 p->aConstraint[i].op, 625 p->aConstraint[i].usable); 626 } 627 for(i=0; i<p->nOrderBy; i++){ 628 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 629 i, 630 p->aOrderBy[i].iColumn, 631 p->aOrderBy[i].desc); 632 } 633 } 634 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){ 635 int i; 636 if( !sqlite3WhereTrace ) return; 637 for(i=0; i<p->nConstraint; i++){ 638 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 639 i, 640 p->aConstraintUsage[i].argvIndex, 641 p->aConstraintUsage[i].omit); 642 } 643 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 644 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 645 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 646 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 647 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); 648 } 649 #else 650 #define whereTraceIndexInfoInputs(A) 651 #define whereTraceIndexInfoOutputs(A) 652 #endif 653 654 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 655 /* 656 ** Return TRUE if the WHERE clause term pTerm is of a form where it 657 ** could be used with an index to access pSrc, assuming an appropriate 658 ** index existed. 659 */ 660 static int termCanDriveIndex( 661 WhereTerm *pTerm, /* WHERE clause term to check */ 662 struct SrcList_item *pSrc, /* Table we are trying to access */ 663 Bitmask notReady /* Tables in outer loops of the join */ 664 ){ 665 char aff; 666 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; 667 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0; 668 if( (pSrc->fg.jointype & JT_LEFT) 669 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 670 && (pTerm->eOperator & WO_IS) 671 ){ 672 /* Cannot use an IS term from the WHERE clause as an index driver for 673 ** the RHS of a LEFT JOIN. Such a term can only be used if it is from 674 ** the ON clause. */ 675 return 0; 676 } 677 if( (pTerm->prereqRight & notReady)!=0 ) return 0; 678 if( pTerm->u.leftColumn<0 ) return 0; 679 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; 680 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; 681 testcase( pTerm->pExpr->op==TK_IS ); 682 return 1; 683 } 684 #endif 685 686 687 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 688 /* 689 ** Generate code to construct the Index object for an automatic index 690 ** and to set up the WhereLevel object pLevel so that the code generator 691 ** makes use of the automatic index. 692 */ 693 static void constructAutomaticIndex( 694 Parse *pParse, /* The parsing context */ 695 WhereClause *pWC, /* The WHERE clause */ 696 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */ 697 Bitmask notReady, /* Mask of cursors that are not available */ 698 WhereLevel *pLevel /* Write new index here */ 699 ){ 700 int nKeyCol; /* Number of columns in the constructed index */ 701 WhereTerm *pTerm; /* A single term of the WHERE clause */ 702 WhereTerm *pWCEnd; /* End of pWC->a[] */ 703 Index *pIdx; /* Object describing the transient index */ 704 Vdbe *v; /* Prepared statement under construction */ 705 int addrInit; /* Address of the initialization bypass jump */ 706 Table *pTable; /* The table being indexed */ 707 int addrTop; /* Top of the index fill loop */ 708 int regRecord; /* Register holding an index record */ 709 int n; /* Column counter */ 710 int i; /* Loop counter */ 711 int mxBitCol; /* Maximum column in pSrc->colUsed */ 712 CollSeq *pColl; /* Collating sequence to on a column */ 713 WhereLoop *pLoop; /* The Loop object */ 714 char *zNotUsed; /* Extra space on the end of pIdx */ 715 Bitmask idxCols; /* Bitmap of columns used for indexing */ 716 Bitmask extraCols; /* Bitmap of additional columns */ 717 u8 sentWarning = 0; /* True if a warnning has been issued */ 718 Expr *pPartial = 0; /* Partial Index Expression */ 719 int iContinue = 0; /* Jump here to skip excluded rows */ 720 struct SrcList_item *pTabItem; /* FROM clause term being indexed */ 721 int addrCounter = 0; /* Address where integer counter is initialized */ 722 int regBase; /* Array of registers where record is assembled */ 723 724 /* Generate code to skip over the creation and initialization of the 725 ** transient index on 2nd and subsequent iterations of the loop. */ 726 v = pParse->pVdbe; 727 assert( v!=0 ); 728 addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 729 730 /* Count the number of columns that will be added to the index 731 ** and used to match WHERE clause constraints */ 732 nKeyCol = 0; 733 pTable = pSrc->pTab; 734 pWCEnd = &pWC->a[pWC->nTerm]; 735 pLoop = pLevel->pWLoop; 736 idxCols = 0; 737 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 738 Expr *pExpr = pTerm->pExpr; 739 assert( !ExprHasProperty(pExpr, EP_FromJoin) /* prereq always non-zero */ 740 || pExpr->iRightJoinTable!=pSrc->iCursor /* for the right-hand */ 741 || pLoop->prereq!=0 ); /* table of a LEFT JOIN */ 742 if( pLoop->prereq==0 743 && (pTerm->wtFlags & TERM_VIRTUAL)==0 744 && !ExprHasProperty(pExpr, EP_FromJoin) 745 && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){ 746 pPartial = sqlite3ExprAnd(pParse, pPartial, 747 sqlite3ExprDup(pParse->db, pExpr, 0)); 748 } 749 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 750 int iCol = pTerm->u.leftColumn; 751 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 752 testcase( iCol==BMS ); 753 testcase( iCol==BMS-1 ); 754 if( !sentWarning ){ 755 sqlite3_log(SQLITE_WARNING_AUTOINDEX, 756 "automatic index on %s(%s)", pTable->zName, 757 pTable->aCol[iCol].zName); 758 sentWarning = 1; 759 } 760 if( (idxCols & cMask)==0 ){ 761 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ 762 goto end_auto_index_create; 763 } 764 pLoop->aLTerm[nKeyCol++] = pTerm; 765 idxCols |= cMask; 766 } 767 } 768 } 769 assert( nKeyCol>0 ); 770 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; 771 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED 772 | WHERE_AUTO_INDEX; 773 774 /* Count the number of additional columns needed to create a 775 ** covering index. A "covering index" is an index that contains all 776 ** columns that are needed by the query. With a covering index, the 777 ** original table never needs to be accessed. Automatic indices must 778 ** be a covering index because the index will not be updated if the 779 ** original table changes and the index and table cannot both be used 780 ** if they go out of sync. 781 */ 782 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); 783 mxBitCol = MIN(BMS-1,pTable->nCol); 784 testcase( pTable->nCol==BMS-1 ); 785 testcase( pTable->nCol==BMS-2 ); 786 for(i=0; i<mxBitCol; i++){ 787 if( extraCols & MASKBIT(i) ) nKeyCol++; 788 } 789 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 790 nKeyCol += pTable->nCol - BMS + 1; 791 } 792 793 /* Construct the Index object to describe this index */ 794 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); 795 if( pIdx==0 ) goto end_auto_index_create; 796 pLoop->u.btree.pIndex = pIdx; 797 pIdx->zName = "auto-index"; 798 pIdx->pTable = pTable; 799 n = 0; 800 idxCols = 0; 801 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 802 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 803 int iCol = pTerm->u.leftColumn; 804 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 805 testcase( iCol==BMS-1 ); 806 testcase( iCol==BMS ); 807 if( (idxCols & cMask)==0 ){ 808 Expr *pX = pTerm->pExpr; 809 idxCols |= cMask; 810 pIdx->aiColumn[n] = pTerm->u.leftColumn; 811 pColl = sqlite3ExprCompareCollSeq(pParse, pX); 812 assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */ 813 pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY; 814 n++; 815 } 816 } 817 } 818 assert( (u32)n==pLoop->u.btree.nEq ); 819 820 /* Add additional columns needed to make the automatic index into 821 ** a covering index */ 822 for(i=0; i<mxBitCol; i++){ 823 if( extraCols & MASKBIT(i) ){ 824 pIdx->aiColumn[n] = i; 825 pIdx->azColl[n] = sqlite3StrBINARY; 826 n++; 827 } 828 } 829 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 830 for(i=BMS-1; i<pTable->nCol; i++){ 831 pIdx->aiColumn[n] = i; 832 pIdx->azColl[n] = sqlite3StrBINARY; 833 n++; 834 } 835 } 836 assert( n==nKeyCol ); 837 pIdx->aiColumn[n] = XN_ROWID; 838 pIdx->azColl[n] = sqlite3StrBINARY; 839 840 /* Create the automatic index */ 841 assert( pLevel->iIdxCur>=0 ); 842 pLevel->iIdxCur = pParse->nTab++; 843 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); 844 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 845 VdbeComment((v, "for %s", pTable->zName)); 846 847 /* Fill the automatic index with content */ 848 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom]; 849 if( pTabItem->fg.viaCoroutine ){ 850 int regYield = pTabItem->regReturn; 851 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0); 852 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 853 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); 854 VdbeCoverage(v); 855 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 856 }else{ 857 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); 858 } 859 if( pPartial ){ 860 iContinue = sqlite3VdbeMakeLabel(pParse); 861 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); 862 pLoop->wsFlags |= WHERE_PARTIALIDX; 863 } 864 regRecord = sqlite3GetTempReg(pParse); 865 regBase = sqlite3GenerateIndexKey( 866 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0 867 ); 868 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); 869 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 870 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); 871 if( pTabItem->fg.viaCoroutine ){ 872 sqlite3VdbeChangeP2(v, addrCounter, regBase+n); 873 testcase( pParse->db->mallocFailed ); 874 assert( pLevel->iIdxCur>0 ); 875 translateColumnToCopy(pParse, addrTop, pLevel->iTabCur, 876 pTabItem->regResult, pLevel->iIdxCur); 877 sqlite3VdbeGoto(v, addrTop); 878 pTabItem->fg.viaCoroutine = 0; 879 }else{ 880 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); 881 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); 882 } 883 sqlite3VdbeJumpHere(v, addrTop); 884 sqlite3ReleaseTempReg(pParse, regRecord); 885 886 /* Jump here when skipping the initialization */ 887 sqlite3VdbeJumpHere(v, addrInit); 888 889 end_auto_index_create: 890 sqlite3ExprDelete(pParse->db, pPartial); 891 } 892 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 893 894 #ifndef SQLITE_OMIT_VIRTUALTABLE 895 /* 896 ** Allocate and populate an sqlite3_index_info structure. It is the 897 ** responsibility of the caller to eventually release the structure 898 ** by passing the pointer returned by this function to sqlite3_free(). 899 */ 900 static sqlite3_index_info *allocateIndexInfo( 901 Parse *pParse, /* The parsing context */ 902 WhereClause *pWC, /* The WHERE clause being analyzed */ 903 Bitmask mUnusable, /* Ignore terms with these prereqs */ 904 struct SrcList_item *pSrc, /* The FROM clause term that is the vtab */ 905 ExprList *pOrderBy, /* The ORDER BY clause */ 906 u16 *pmNoOmit /* Mask of terms not to omit */ 907 ){ 908 int i, j; 909 int nTerm; 910 struct sqlite3_index_constraint *pIdxCons; 911 struct sqlite3_index_orderby *pIdxOrderBy; 912 struct sqlite3_index_constraint_usage *pUsage; 913 struct HiddenIndexInfo *pHidden; 914 WhereTerm *pTerm; 915 int nOrderBy; 916 sqlite3_index_info *pIdxInfo; 917 u16 mNoOmit = 0; 918 919 /* Count the number of possible WHERE clause constraints referring 920 ** to this virtual table */ 921 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 922 if( pTerm->leftCursor != pSrc->iCursor ) continue; 923 if( pTerm->prereqRight & mUnusable ) continue; 924 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 925 testcase( pTerm->eOperator & WO_IN ); 926 testcase( pTerm->eOperator & WO_ISNULL ); 927 testcase( pTerm->eOperator & WO_IS ); 928 testcase( pTerm->eOperator & WO_ALL ); 929 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue; 930 if( pTerm->wtFlags & TERM_VNULL ) continue; 931 assert( pTerm->u.leftColumn>=(-1) ); 932 nTerm++; 933 } 934 935 /* If the ORDER BY clause contains only columns in the current 936 ** virtual table then allocate space for the aOrderBy part of 937 ** the sqlite3_index_info structure. 938 */ 939 nOrderBy = 0; 940 if( pOrderBy ){ 941 int n = pOrderBy->nExpr; 942 for(i=0; i<n; i++){ 943 Expr *pExpr = pOrderBy->a[i].pExpr; 944 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 945 if( pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL ) break; 946 } 947 if( i==n){ 948 nOrderBy = n; 949 } 950 } 951 952 /* Allocate the sqlite3_index_info structure 953 */ 954 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 955 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 956 + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) ); 957 if( pIdxInfo==0 ){ 958 sqlite3ErrorMsg(pParse, "out of memory"); 959 return 0; 960 } 961 pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1]; 962 pIdxCons = (struct sqlite3_index_constraint*)&pHidden[1]; 963 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 964 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 965 pIdxInfo->nOrderBy = nOrderBy; 966 pIdxInfo->aConstraint = pIdxCons; 967 pIdxInfo->aOrderBy = pIdxOrderBy; 968 pIdxInfo->aConstraintUsage = pUsage; 969 pHidden->pWC = pWC; 970 pHidden->pParse = pParse; 971 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 972 u16 op; 973 if( pTerm->leftCursor != pSrc->iCursor ) continue; 974 if( pTerm->prereqRight & mUnusable ) continue; 975 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 976 testcase( pTerm->eOperator & WO_IN ); 977 testcase( pTerm->eOperator & WO_IS ); 978 testcase( pTerm->eOperator & WO_ISNULL ); 979 testcase( pTerm->eOperator & WO_ALL ); 980 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue; 981 if( pTerm->wtFlags & TERM_VNULL ) continue; 982 983 /* tag-20191211-002: WHERE-clause constraints are not useful to the 984 ** right-hand table of a LEFT JOIN. See tag-20191211-001 for the 985 ** equivalent restriction for ordinary tables. */ 986 if( (pSrc->fg.jointype & JT_LEFT)!=0 987 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 988 ){ 989 continue; 990 } 991 assert( pTerm->u.leftColumn>=(-1) ); 992 pIdxCons[j].iColumn = pTerm->u.leftColumn; 993 pIdxCons[j].iTermOffset = i; 994 op = pTerm->eOperator & WO_ALL; 995 if( op==WO_IN ) op = WO_EQ; 996 if( op==WO_AUX ){ 997 pIdxCons[j].op = pTerm->eMatchOp; 998 }else if( op & (WO_ISNULL|WO_IS) ){ 999 if( op==WO_ISNULL ){ 1000 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL; 1001 }else{ 1002 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS; 1003 } 1004 }else{ 1005 pIdxCons[j].op = (u8)op; 1006 /* The direct assignment in the previous line is possible only because 1007 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 1008 ** following asserts verify this fact. */ 1009 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 1010 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 1011 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 1012 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 1013 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 1014 assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) ); 1015 1016 if( op & (WO_LT|WO_LE|WO_GT|WO_GE) 1017 && sqlite3ExprIsVector(pTerm->pExpr->pRight) 1018 ){ 1019 testcase( j!=i ); 1020 if( j<16 ) mNoOmit |= (1 << j); 1021 if( op==WO_LT ) pIdxCons[j].op = WO_LE; 1022 if( op==WO_GT ) pIdxCons[j].op = WO_GE; 1023 } 1024 } 1025 1026 j++; 1027 } 1028 pIdxInfo->nConstraint = j; 1029 for(i=0; i<nOrderBy; i++){ 1030 Expr *pExpr = pOrderBy->a[i].pExpr; 1031 pIdxOrderBy[i].iColumn = pExpr->iColumn; 1032 pIdxOrderBy[i].desc = pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC; 1033 } 1034 1035 *pmNoOmit = mNoOmit; 1036 return pIdxInfo; 1037 } 1038 1039 /* 1040 ** The table object reference passed as the second argument to this function 1041 ** must represent a virtual table. This function invokes the xBestIndex() 1042 ** method of the virtual table with the sqlite3_index_info object that 1043 ** comes in as the 3rd argument to this function. 1044 ** 1045 ** If an error occurs, pParse is populated with an error message and an 1046 ** appropriate error code is returned. A return of SQLITE_CONSTRAINT from 1047 ** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that 1048 ** the current configuration of "unusable" flags in sqlite3_index_info can 1049 ** not result in a valid plan. 1050 ** 1051 ** Whether or not an error is returned, it is the responsibility of the 1052 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates 1053 ** that this is required. 1054 */ 1055 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ 1056 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; 1057 int rc; 1058 1059 whereTraceIndexInfoInputs(p); 1060 rc = pVtab->pModule->xBestIndex(pVtab, p); 1061 whereTraceIndexInfoOutputs(p); 1062 1063 if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){ 1064 if( rc==SQLITE_NOMEM ){ 1065 sqlite3OomFault(pParse->db); 1066 }else if( !pVtab->zErrMsg ){ 1067 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 1068 }else{ 1069 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 1070 } 1071 } 1072 sqlite3_free(pVtab->zErrMsg); 1073 pVtab->zErrMsg = 0; 1074 return rc; 1075 } 1076 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1077 1078 #ifdef SQLITE_ENABLE_STAT4 1079 /* 1080 ** Estimate the location of a particular key among all keys in an 1081 ** index. Store the results in aStat as follows: 1082 ** 1083 ** aStat[0] Est. number of rows less than pRec 1084 ** aStat[1] Est. number of rows equal to pRec 1085 ** 1086 ** Return the index of the sample that is the smallest sample that 1087 ** is greater than or equal to pRec. Note that this index is not an index 1088 ** into the aSample[] array - it is an index into a virtual set of samples 1089 ** based on the contents of aSample[] and the number of fields in record 1090 ** pRec. 1091 */ 1092 static int whereKeyStats( 1093 Parse *pParse, /* Database connection */ 1094 Index *pIdx, /* Index to consider domain of */ 1095 UnpackedRecord *pRec, /* Vector of values to consider */ 1096 int roundUp, /* Round up if true. Round down if false */ 1097 tRowcnt *aStat /* OUT: stats written here */ 1098 ){ 1099 IndexSample *aSample = pIdx->aSample; 1100 int iCol; /* Index of required stats in anEq[] etc. */ 1101 int i; /* Index of first sample >= pRec */ 1102 int iSample; /* Smallest sample larger than or equal to pRec */ 1103 int iMin = 0; /* Smallest sample not yet tested */ 1104 int iTest; /* Next sample to test */ 1105 int res; /* Result of comparison operation */ 1106 int nField; /* Number of fields in pRec */ 1107 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ 1108 1109 #ifndef SQLITE_DEBUG 1110 UNUSED_PARAMETER( pParse ); 1111 #endif 1112 assert( pRec!=0 ); 1113 assert( pIdx->nSample>0 ); 1114 assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol ); 1115 1116 /* Do a binary search to find the first sample greater than or equal 1117 ** to pRec. If pRec contains a single field, the set of samples to search 1118 ** is simply the aSample[] array. If the samples in aSample[] contain more 1119 ** than one fields, all fields following the first are ignored. 1120 ** 1121 ** If pRec contains N fields, where N is more than one, then as well as the 1122 ** samples in aSample[] (truncated to N fields), the search also has to 1123 ** consider prefixes of those samples. For example, if the set of samples 1124 ** in aSample is: 1125 ** 1126 ** aSample[0] = (a, 5) 1127 ** aSample[1] = (a, 10) 1128 ** aSample[2] = (b, 5) 1129 ** aSample[3] = (c, 100) 1130 ** aSample[4] = (c, 105) 1131 ** 1132 ** Then the search space should ideally be the samples above and the 1133 ** unique prefixes [a], [b] and [c]. But since that is hard to organize, 1134 ** the code actually searches this set: 1135 ** 1136 ** 0: (a) 1137 ** 1: (a, 5) 1138 ** 2: (a, 10) 1139 ** 3: (a, 10) 1140 ** 4: (b) 1141 ** 5: (b, 5) 1142 ** 6: (c) 1143 ** 7: (c, 100) 1144 ** 8: (c, 105) 1145 ** 9: (c, 105) 1146 ** 1147 ** For each sample in the aSample[] array, N samples are present in the 1148 ** effective sample array. In the above, samples 0 and 1 are based on 1149 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. 1150 ** 1151 ** Often, sample i of each block of N effective samples has (i+1) fields. 1152 ** Except, each sample may be extended to ensure that it is greater than or 1153 ** equal to the previous sample in the array. For example, in the above, 1154 ** sample 2 is the first sample of a block of N samples, so at first it 1155 ** appears that it should be 1 field in size. However, that would make it 1156 ** smaller than sample 1, so the binary search would not work. As a result, 1157 ** it is extended to two fields. The duplicates that this creates do not 1158 ** cause any problems. 1159 */ 1160 nField = pRec->nField; 1161 iCol = 0; 1162 iSample = pIdx->nSample * nField; 1163 do{ 1164 int iSamp; /* Index in aSample[] of test sample */ 1165 int n; /* Number of fields in test sample */ 1166 1167 iTest = (iMin+iSample)/2; 1168 iSamp = iTest / nField; 1169 if( iSamp>0 ){ 1170 /* The proposed effective sample is a prefix of sample aSample[iSamp]. 1171 ** Specifically, the shortest prefix of at least (1 + iTest%nField) 1172 ** fields that is greater than the previous effective sample. */ 1173 for(n=(iTest % nField) + 1; n<nField; n++){ 1174 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break; 1175 } 1176 }else{ 1177 n = iTest + 1; 1178 } 1179 1180 pRec->nField = n; 1181 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); 1182 if( res<0 ){ 1183 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; 1184 iMin = iTest+1; 1185 }else if( res==0 && n<nField ){ 1186 iLower = aSample[iSamp].anLt[n-1]; 1187 iMin = iTest+1; 1188 res = -1; 1189 }else{ 1190 iSample = iTest; 1191 iCol = n-1; 1192 } 1193 }while( res && iMin<iSample ); 1194 i = iSample / nField; 1195 1196 #ifdef SQLITE_DEBUG 1197 /* The following assert statements check that the binary search code 1198 ** above found the right answer. This block serves no purpose other 1199 ** than to invoke the asserts. */ 1200 if( pParse->db->mallocFailed==0 ){ 1201 if( res==0 ){ 1202 /* If (res==0) is true, then pRec must be equal to sample i. */ 1203 assert( i<pIdx->nSample ); 1204 assert( iCol==nField-1 ); 1205 pRec->nField = nField; 1206 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) 1207 || pParse->db->mallocFailed 1208 ); 1209 }else{ 1210 /* Unless i==pIdx->nSample, indicating that pRec is larger than 1211 ** all samples in the aSample[] array, pRec must be smaller than the 1212 ** (iCol+1) field prefix of sample i. */ 1213 assert( i<=pIdx->nSample && i>=0 ); 1214 pRec->nField = iCol+1; 1215 assert( i==pIdx->nSample 1216 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 1217 || pParse->db->mallocFailed ); 1218 1219 /* if i==0 and iCol==0, then record pRec is smaller than all samples 1220 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must 1221 ** be greater than or equal to the (iCol) field prefix of sample i. 1222 ** If (i>0), then pRec must also be greater than sample (i-1). */ 1223 if( iCol>0 ){ 1224 pRec->nField = iCol; 1225 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 1226 || pParse->db->mallocFailed ); 1227 } 1228 if( i>0 ){ 1229 pRec->nField = nField; 1230 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 1231 || pParse->db->mallocFailed ); 1232 } 1233 } 1234 } 1235 #endif /* ifdef SQLITE_DEBUG */ 1236 1237 if( res==0 ){ 1238 /* Record pRec is equal to sample i */ 1239 assert( iCol==nField-1 ); 1240 aStat[0] = aSample[i].anLt[iCol]; 1241 aStat[1] = aSample[i].anEq[iCol]; 1242 }else{ 1243 /* At this point, the (iCol+1) field prefix of aSample[i] is the first 1244 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec 1245 ** is larger than all samples in the array. */ 1246 tRowcnt iUpper, iGap; 1247 if( i>=pIdx->nSample ){ 1248 iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); 1249 }else{ 1250 iUpper = aSample[i].anLt[iCol]; 1251 } 1252 1253 if( iLower>=iUpper ){ 1254 iGap = 0; 1255 }else{ 1256 iGap = iUpper - iLower; 1257 } 1258 if( roundUp ){ 1259 iGap = (iGap*2)/3; 1260 }else{ 1261 iGap = iGap/3; 1262 } 1263 aStat[0] = iLower + iGap; 1264 aStat[1] = pIdx->aAvgEq[nField-1]; 1265 } 1266 1267 /* Restore the pRec->nField value before returning. */ 1268 pRec->nField = nField; 1269 return i; 1270 } 1271 #endif /* SQLITE_ENABLE_STAT4 */ 1272 1273 /* 1274 ** If it is not NULL, pTerm is a term that provides an upper or lower 1275 ** bound on a range scan. Without considering pTerm, it is estimated 1276 ** that the scan will visit nNew rows. This function returns the number 1277 ** estimated to be visited after taking pTerm into account. 1278 ** 1279 ** If the user explicitly specified a likelihood() value for this term, 1280 ** then the return value is the likelihood multiplied by the number of 1281 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term 1282 ** has a likelihood of 0.50, and any other term a likelihood of 0.25. 1283 */ 1284 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ 1285 LogEst nRet = nNew; 1286 if( pTerm ){ 1287 if( pTerm->truthProb<=0 ){ 1288 nRet += pTerm->truthProb; 1289 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ 1290 nRet -= 20; assert( 20==sqlite3LogEst(4) ); 1291 } 1292 } 1293 return nRet; 1294 } 1295 1296 1297 #ifdef SQLITE_ENABLE_STAT4 1298 /* 1299 ** Return the affinity for a single column of an index. 1300 */ 1301 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){ 1302 assert( iCol>=0 && iCol<pIdx->nColumn ); 1303 if( !pIdx->zColAff ){ 1304 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB; 1305 } 1306 assert( pIdx->zColAff[iCol]!=0 ); 1307 return pIdx->zColAff[iCol]; 1308 } 1309 #endif 1310 1311 1312 #ifdef SQLITE_ENABLE_STAT4 1313 /* 1314 ** This function is called to estimate the number of rows visited by a 1315 ** range-scan on a skip-scan index. For example: 1316 ** 1317 ** CREATE INDEX i1 ON t1(a, b, c); 1318 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; 1319 ** 1320 ** Value pLoop->nOut is currently set to the estimated number of rows 1321 ** visited for scanning (a=? AND b=?). This function reduces that estimate 1322 ** by some factor to account for the (c BETWEEN ? AND ?) expression based 1323 ** on the stat4 data for the index. this scan will be peformed multiple 1324 ** times (once for each (a,b) combination that matches a=?) is dealt with 1325 ** by the caller. 1326 ** 1327 ** It does this by scanning through all stat4 samples, comparing values 1328 ** extracted from pLower and pUpper with the corresponding column in each 1329 ** sample. If L and U are the number of samples found to be less than or 1330 ** equal to the values extracted from pLower and pUpper respectively, and 1331 ** N is the total number of samples, the pLoop->nOut value is adjusted 1332 ** as follows: 1333 ** 1334 ** nOut = nOut * ( min(U - L, 1) / N ) 1335 ** 1336 ** If pLower is NULL, or a value cannot be extracted from the term, L is 1337 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, 1338 ** U is set to N. 1339 ** 1340 ** Normally, this function sets *pbDone to 1 before returning. However, 1341 ** if no value can be extracted from either pLower or pUpper (and so the 1342 ** estimate of the number of rows delivered remains unchanged), *pbDone 1343 ** is left as is. 1344 ** 1345 ** If an error occurs, an SQLite error code is returned. Otherwise, 1346 ** SQLITE_OK. 1347 */ 1348 static int whereRangeSkipScanEst( 1349 Parse *pParse, /* Parsing & code generating context */ 1350 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1351 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1352 WhereLoop *pLoop, /* Update the .nOut value of this loop */ 1353 int *pbDone /* Set to true if at least one expr. value extracted */ 1354 ){ 1355 Index *p = pLoop->u.btree.pIndex; 1356 int nEq = pLoop->u.btree.nEq; 1357 sqlite3 *db = pParse->db; 1358 int nLower = -1; 1359 int nUpper = p->nSample+1; 1360 int rc = SQLITE_OK; 1361 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq); 1362 CollSeq *pColl; 1363 1364 sqlite3_value *p1 = 0; /* Value extracted from pLower */ 1365 sqlite3_value *p2 = 0; /* Value extracted from pUpper */ 1366 sqlite3_value *pVal = 0; /* Value extracted from record */ 1367 1368 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); 1369 if( pLower ){ 1370 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); 1371 nLower = 0; 1372 } 1373 if( pUpper && rc==SQLITE_OK ){ 1374 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); 1375 nUpper = p2 ? 0 : p->nSample; 1376 } 1377 1378 if( p1 || p2 ){ 1379 int i; 1380 int nDiff; 1381 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ 1382 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); 1383 if( rc==SQLITE_OK && p1 ){ 1384 int res = sqlite3MemCompare(p1, pVal, pColl); 1385 if( res>=0 ) nLower++; 1386 } 1387 if( rc==SQLITE_OK && p2 ){ 1388 int res = sqlite3MemCompare(p2, pVal, pColl); 1389 if( res>=0 ) nUpper++; 1390 } 1391 } 1392 nDiff = (nUpper - nLower); 1393 if( nDiff<=0 ) nDiff = 1; 1394 1395 /* If there is both an upper and lower bound specified, and the 1396 ** comparisons indicate that they are close together, use the fallback 1397 ** method (assume that the scan visits 1/64 of the rows) for estimating 1398 ** the number of rows visited. Otherwise, estimate the number of rows 1399 ** using the method described in the header comment for this function. */ 1400 if( nDiff!=1 || pUpper==0 || pLower==0 ){ 1401 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); 1402 pLoop->nOut -= nAdjust; 1403 *pbDone = 1; 1404 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", 1405 nLower, nUpper, nAdjust*-1, pLoop->nOut)); 1406 } 1407 1408 }else{ 1409 assert( *pbDone==0 ); 1410 } 1411 1412 sqlite3ValueFree(p1); 1413 sqlite3ValueFree(p2); 1414 sqlite3ValueFree(pVal); 1415 1416 return rc; 1417 } 1418 #endif /* SQLITE_ENABLE_STAT4 */ 1419 1420 /* 1421 ** This function is used to estimate the number of rows that will be visited 1422 ** by scanning an index for a range of values. The range may have an upper 1423 ** bound, a lower bound, or both. The WHERE clause terms that set the upper 1424 ** and lower bounds are represented by pLower and pUpper respectively. For 1425 ** example, assuming that index p is on t1(a): 1426 ** 1427 ** ... FROM t1 WHERE a > ? AND a < ? ... 1428 ** |_____| |_____| 1429 ** | | 1430 ** pLower pUpper 1431 ** 1432 ** If either of the upper or lower bound is not present, then NULL is passed in 1433 ** place of the corresponding WhereTerm. 1434 ** 1435 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index 1436 ** column subject to the range constraint. Or, equivalently, the number of 1437 ** equality constraints optimized by the proposed index scan. For example, 1438 ** assuming index p is on t1(a, b), and the SQL query is: 1439 ** 1440 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... 1441 ** 1442 ** then nEq is set to 1 (as the range restricted column, b, is the second 1443 ** left-most column of the index). Or, if the query is: 1444 ** 1445 ** ... FROM t1 WHERE a > ? AND a < ? ... 1446 ** 1447 ** then nEq is set to 0. 1448 ** 1449 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the 1450 ** number of rows that the index scan is expected to visit without 1451 ** considering the range constraints. If nEq is 0, then *pnOut is the number of 1452 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) 1453 ** to account for the range constraints pLower and pUpper. 1454 ** 1455 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be 1456 ** used, a single range inequality reduces the search space by a factor of 4. 1457 ** and a pair of constraints (x>? AND x<?) reduces the expected number of 1458 ** rows visited by a factor of 64. 1459 */ 1460 static int whereRangeScanEst( 1461 Parse *pParse, /* Parsing & code generating context */ 1462 WhereLoopBuilder *pBuilder, 1463 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1464 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1465 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ 1466 ){ 1467 int rc = SQLITE_OK; 1468 int nOut = pLoop->nOut; 1469 LogEst nNew; 1470 1471 #ifdef SQLITE_ENABLE_STAT4 1472 Index *p = pLoop->u.btree.pIndex; 1473 int nEq = pLoop->u.btree.nEq; 1474 1475 if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol) 1476 && OptimizationEnabled(pParse->db, SQLITE_Stat4) 1477 ){ 1478 if( nEq==pBuilder->nRecValid ){ 1479 UnpackedRecord *pRec = pBuilder->pRec; 1480 tRowcnt a[2]; 1481 int nBtm = pLoop->u.btree.nBtm; 1482 int nTop = pLoop->u.btree.nTop; 1483 1484 /* Variable iLower will be set to the estimate of the number of rows in 1485 ** the index that are less than the lower bound of the range query. The 1486 ** lower bound being the concatenation of $P and $L, where $P is the 1487 ** key-prefix formed by the nEq values matched against the nEq left-most 1488 ** columns of the index, and $L is the value in pLower. 1489 ** 1490 ** Or, if pLower is NULL or $L cannot be extracted from it (because it 1491 ** is not a simple variable or literal value), the lower bound of the 1492 ** range is $P. Due to a quirk in the way whereKeyStats() works, even 1493 ** if $L is available, whereKeyStats() is called for both ($P) and 1494 ** ($P:$L) and the larger of the two returned values is used. 1495 ** 1496 ** Similarly, iUpper is to be set to the estimate of the number of rows 1497 ** less than the upper bound of the range query. Where the upper bound 1498 ** is either ($P) or ($P:$U). Again, even if $U is available, both values 1499 ** of iUpper are requested of whereKeyStats() and the smaller used. 1500 ** 1501 ** The number of rows between the two bounds is then just iUpper-iLower. 1502 */ 1503 tRowcnt iLower; /* Rows less than the lower bound */ 1504 tRowcnt iUpper; /* Rows less than the upper bound */ 1505 int iLwrIdx = -2; /* aSample[] for the lower bound */ 1506 int iUprIdx = -1; /* aSample[] for the upper bound */ 1507 1508 if( pRec ){ 1509 testcase( pRec->nField!=pBuilder->nRecValid ); 1510 pRec->nField = pBuilder->nRecValid; 1511 } 1512 /* Determine iLower and iUpper using ($P) only. */ 1513 if( nEq==0 ){ 1514 iLower = 0; 1515 iUpper = p->nRowEst0; 1516 }else{ 1517 /* Note: this call could be optimized away - since the same values must 1518 ** have been requested when testing key $P in whereEqualScanEst(). */ 1519 whereKeyStats(pParse, p, pRec, 0, a); 1520 iLower = a[0]; 1521 iUpper = a[0] + a[1]; 1522 } 1523 1524 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); 1525 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); 1526 assert( p->aSortOrder!=0 ); 1527 if( p->aSortOrder[nEq] ){ 1528 /* The roles of pLower and pUpper are swapped for a DESC index */ 1529 SWAP(WhereTerm*, pLower, pUpper); 1530 SWAP(int, nBtm, nTop); 1531 } 1532 1533 /* If possible, improve on the iLower estimate using ($P:$L). */ 1534 if( pLower ){ 1535 int n; /* Values extracted from pExpr */ 1536 Expr *pExpr = pLower->pExpr->pRight; 1537 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n); 1538 if( rc==SQLITE_OK && n ){ 1539 tRowcnt iNew; 1540 u16 mask = WO_GT|WO_LE; 1541 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1542 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); 1543 iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0); 1544 if( iNew>iLower ) iLower = iNew; 1545 nOut--; 1546 pLower = 0; 1547 } 1548 } 1549 1550 /* If possible, improve on the iUpper estimate using ($P:$U). */ 1551 if( pUpper ){ 1552 int n; /* Values extracted from pExpr */ 1553 Expr *pExpr = pUpper->pExpr->pRight; 1554 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n); 1555 if( rc==SQLITE_OK && n ){ 1556 tRowcnt iNew; 1557 u16 mask = WO_GT|WO_LE; 1558 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1559 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); 1560 iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0); 1561 if( iNew<iUpper ) iUpper = iNew; 1562 nOut--; 1563 pUpper = 0; 1564 } 1565 } 1566 1567 pBuilder->pRec = pRec; 1568 if( rc==SQLITE_OK ){ 1569 if( iUpper>iLower ){ 1570 nNew = sqlite3LogEst(iUpper - iLower); 1571 /* TUNING: If both iUpper and iLower are derived from the same 1572 ** sample, then assume they are 4x more selective. This brings 1573 ** the estimated selectivity more in line with what it would be 1574 ** if estimated without the use of STAT4 tables. */ 1575 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) ); 1576 }else{ 1577 nNew = 10; assert( 10==sqlite3LogEst(2) ); 1578 } 1579 if( nNew<nOut ){ 1580 nOut = nNew; 1581 } 1582 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", 1583 (u32)iLower, (u32)iUpper, nOut)); 1584 } 1585 }else{ 1586 int bDone = 0; 1587 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); 1588 if( bDone ) return rc; 1589 } 1590 } 1591 #else 1592 UNUSED_PARAMETER(pParse); 1593 UNUSED_PARAMETER(pBuilder); 1594 assert( pLower || pUpper ); 1595 #endif 1596 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); 1597 nNew = whereRangeAdjust(pLower, nOut); 1598 nNew = whereRangeAdjust(pUpper, nNew); 1599 1600 /* TUNING: If there is both an upper and lower limit and neither limit 1601 ** has an application-defined likelihood(), assume the range is 1602 ** reduced by an additional 75%. This means that, by default, an open-ended 1603 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the 1604 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to 1605 ** match 1/64 of the index. */ 1606 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ 1607 nNew -= 20; 1608 } 1609 1610 nOut -= (pLower!=0) + (pUpper!=0); 1611 if( nNew<10 ) nNew = 10; 1612 if( nNew<nOut ) nOut = nNew; 1613 #if defined(WHERETRACE_ENABLED) 1614 if( pLoop->nOut>nOut ){ 1615 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", 1616 pLoop->nOut, nOut)); 1617 } 1618 #endif 1619 pLoop->nOut = (LogEst)nOut; 1620 return rc; 1621 } 1622 1623 #ifdef SQLITE_ENABLE_STAT4 1624 /* 1625 ** Estimate the number of rows that will be returned based on 1626 ** an equality constraint x=VALUE and where that VALUE occurs in 1627 ** the histogram data. This only works when x is the left-most 1628 ** column of an index and sqlite_stat4 histogram data is available 1629 ** for that index. When pExpr==NULL that means the constraint is 1630 ** "x IS NULL" instead of "x=VALUE". 1631 ** 1632 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1633 ** If unable to make an estimate, leave *pnRow unchanged and return 1634 ** non-zero. 1635 ** 1636 ** This routine can fail if it is unable to load a collating sequence 1637 ** required for string comparison, or if unable to allocate memory 1638 ** for a UTF conversion required for comparison. The error is stored 1639 ** in the pParse structure. 1640 */ 1641 static int whereEqualScanEst( 1642 Parse *pParse, /* Parsing & code generating context */ 1643 WhereLoopBuilder *pBuilder, 1644 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ 1645 tRowcnt *pnRow /* Write the revised row estimate here */ 1646 ){ 1647 Index *p = pBuilder->pNew->u.btree.pIndex; 1648 int nEq = pBuilder->pNew->u.btree.nEq; 1649 UnpackedRecord *pRec = pBuilder->pRec; 1650 int rc; /* Subfunction return code */ 1651 tRowcnt a[2]; /* Statistics */ 1652 int bOk; 1653 1654 assert( nEq>=1 ); 1655 assert( nEq<=p->nColumn ); 1656 assert( p->aSample!=0 ); 1657 assert( p->nSample>0 ); 1658 assert( pBuilder->nRecValid<nEq ); 1659 1660 /* If values are not available for all fields of the index to the left 1661 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ 1662 if( pBuilder->nRecValid<(nEq-1) ){ 1663 return SQLITE_NOTFOUND; 1664 } 1665 1666 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() 1667 ** below would return the same value. */ 1668 if( nEq>=p->nColumn ){ 1669 *pnRow = 1; 1670 return SQLITE_OK; 1671 } 1672 1673 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk); 1674 pBuilder->pRec = pRec; 1675 if( rc!=SQLITE_OK ) return rc; 1676 if( bOk==0 ) return SQLITE_NOTFOUND; 1677 pBuilder->nRecValid = nEq; 1678 1679 whereKeyStats(pParse, p, pRec, 0, a); 1680 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n", 1681 p->zName, nEq-1, (int)a[1])); 1682 *pnRow = a[1]; 1683 1684 return rc; 1685 } 1686 #endif /* SQLITE_ENABLE_STAT4 */ 1687 1688 #ifdef SQLITE_ENABLE_STAT4 1689 /* 1690 ** Estimate the number of rows that will be returned based on 1691 ** an IN constraint where the right-hand side of the IN operator 1692 ** is a list of values. Example: 1693 ** 1694 ** WHERE x IN (1,2,3,4) 1695 ** 1696 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1697 ** If unable to make an estimate, leave *pnRow unchanged and return 1698 ** non-zero. 1699 ** 1700 ** This routine can fail if it is unable to load a collating sequence 1701 ** required for string comparison, or if unable to allocate memory 1702 ** for a UTF conversion required for comparison. The error is stored 1703 ** in the pParse structure. 1704 */ 1705 static int whereInScanEst( 1706 Parse *pParse, /* Parsing & code generating context */ 1707 WhereLoopBuilder *pBuilder, 1708 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ 1709 tRowcnt *pnRow /* Write the revised row estimate here */ 1710 ){ 1711 Index *p = pBuilder->pNew->u.btree.pIndex; 1712 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); 1713 int nRecValid = pBuilder->nRecValid; 1714 int rc = SQLITE_OK; /* Subfunction return code */ 1715 tRowcnt nEst; /* Number of rows for a single term */ 1716 tRowcnt nRowEst = 0; /* New estimate of the number of rows */ 1717 int i; /* Loop counter */ 1718 1719 assert( p->aSample!=0 ); 1720 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ 1721 nEst = nRow0; 1722 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); 1723 nRowEst += nEst; 1724 pBuilder->nRecValid = nRecValid; 1725 } 1726 1727 if( rc==SQLITE_OK ){ 1728 if( nRowEst > nRow0 ) nRowEst = nRow0; 1729 *pnRow = nRowEst; 1730 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); 1731 } 1732 assert( pBuilder->nRecValid==nRecValid ); 1733 return rc; 1734 } 1735 #endif /* SQLITE_ENABLE_STAT4 */ 1736 1737 1738 #ifdef WHERETRACE_ENABLED 1739 /* 1740 ** Print the content of a WhereTerm object 1741 */ 1742 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){ 1743 if( pTerm==0 ){ 1744 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); 1745 }else{ 1746 char zType[8]; 1747 char zLeft[50]; 1748 memcpy(zType, "....", 5); 1749 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; 1750 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; 1751 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L'; 1752 if( pTerm->wtFlags & TERM_CODED ) zType[3] = 'C'; 1753 if( pTerm->eOperator & WO_SINGLE ){ 1754 sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}", 1755 pTerm->leftCursor, pTerm->u.leftColumn); 1756 }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){ 1757 sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%lld", 1758 pTerm->u.pOrInfo->indexable); 1759 }else{ 1760 sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor); 1761 } 1762 sqlite3DebugPrintf( 1763 "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x", 1764 iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags); 1765 /* The 0x10000 .wheretrace flag causes extra information to be 1766 ** shown about each Term */ 1767 if( sqlite3WhereTrace & 0x10000 ){ 1768 sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx", 1769 pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight); 1770 } 1771 if( pTerm->iField ){ 1772 sqlite3DebugPrintf(" iField=%d", pTerm->iField); 1773 } 1774 if( pTerm->iParent>=0 ){ 1775 sqlite3DebugPrintf(" iParent=%d", pTerm->iParent); 1776 } 1777 sqlite3DebugPrintf("\n"); 1778 sqlite3TreeViewExpr(0, pTerm->pExpr, 0); 1779 } 1780 } 1781 #endif 1782 1783 #ifdef WHERETRACE_ENABLED 1784 /* 1785 ** Show the complete content of a WhereClause 1786 */ 1787 void sqlite3WhereClausePrint(WhereClause *pWC){ 1788 int i; 1789 for(i=0; i<pWC->nTerm; i++){ 1790 sqlite3WhereTermPrint(&pWC->a[i], i); 1791 } 1792 } 1793 #endif 1794 1795 #ifdef WHERETRACE_ENABLED 1796 /* 1797 ** Print a WhereLoop object for debugging purposes 1798 */ 1799 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){ 1800 WhereInfo *pWInfo = pWC->pWInfo; 1801 int nb = 1+(pWInfo->pTabList->nSrc+3)/4; 1802 struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab; 1803 Table *pTab = pItem->pTab; 1804 Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1; 1805 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, 1806 p->iTab, nb, p->maskSelf, nb, p->prereq & mAll); 1807 sqlite3DebugPrintf(" %12s", 1808 pItem->zAlias ? pItem->zAlias : pTab->zName); 1809 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 1810 const char *zName; 1811 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ 1812 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ 1813 int i = sqlite3Strlen30(zName) - 1; 1814 while( zName[i]!='_' ) i--; 1815 zName += i; 1816 } 1817 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); 1818 }else{ 1819 sqlite3DebugPrintf("%20s",""); 1820 } 1821 }else{ 1822 char *z; 1823 if( p->u.vtab.idxStr ){ 1824 z = sqlite3_mprintf("(%d,\"%s\",%#x)", 1825 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); 1826 }else{ 1827 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); 1828 } 1829 sqlite3DebugPrintf(" %-19s", z); 1830 sqlite3_free(z); 1831 } 1832 if( p->wsFlags & WHERE_SKIPSCAN ){ 1833 sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); 1834 }else{ 1835 sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm); 1836 } 1837 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); 1838 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ 1839 int i; 1840 for(i=0; i<p->nLTerm; i++){ 1841 sqlite3WhereTermPrint(p->aLTerm[i], i); 1842 } 1843 } 1844 } 1845 #endif 1846 1847 /* 1848 ** Convert bulk memory into a valid WhereLoop that can be passed 1849 ** to whereLoopClear harmlessly. 1850 */ 1851 static void whereLoopInit(WhereLoop *p){ 1852 p->aLTerm = p->aLTermSpace; 1853 p->nLTerm = 0; 1854 p->nLSlot = ArraySize(p->aLTermSpace); 1855 p->wsFlags = 0; 1856 } 1857 1858 /* 1859 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. 1860 */ 1861 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ 1862 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ 1863 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ 1864 sqlite3_free(p->u.vtab.idxStr); 1865 p->u.vtab.needFree = 0; 1866 p->u.vtab.idxStr = 0; 1867 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ 1868 sqlite3DbFree(db, p->u.btree.pIndex->zColAff); 1869 sqlite3DbFreeNN(db, p->u.btree.pIndex); 1870 p->u.btree.pIndex = 0; 1871 } 1872 } 1873 } 1874 1875 /* 1876 ** Deallocate internal memory used by a WhereLoop object 1877 */ 1878 static void whereLoopClear(sqlite3 *db, WhereLoop *p){ 1879 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm); 1880 whereLoopClearUnion(db, p); 1881 whereLoopInit(p); 1882 } 1883 1884 /* 1885 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. 1886 */ 1887 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ 1888 WhereTerm **paNew; 1889 if( p->nLSlot>=n ) return SQLITE_OK; 1890 n = (n+7)&~7; 1891 paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n); 1892 if( paNew==0 ) return SQLITE_NOMEM_BKPT; 1893 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); 1894 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm); 1895 p->aLTerm = paNew; 1896 p->nLSlot = n; 1897 return SQLITE_OK; 1898 } 1899 1900 /* 1901 ** Transfer content from the second pLoop into the first. 1902 */ 1903 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ 1904 whereLoopClearUnion(db, pTo); 1905 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){ 1906 memset(&pTo->u, 0, sizeof(pTo->u)); 1907 return SQLITE_NOMEM_BKPT; 1908 } 1909 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); 1910 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); 1911 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ 1912 pFrom->u.vtab.needFree = 0; 1913 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 1914 pFrom->u.btree.pIndex = 0; 1915 } 1916 return SQLITE_OK; 1917 } 1918 1919 /* 1920 ** Delete a WhereLoop object 1921 */ 1922 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ 1923 whereLoopClear(db, p); 1924 sqlite3DbFreeNN(db, p); 1925 } 1926 1927 /* 1928 ** Free a WhereInfo structure 1929 */ 1930 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 1931 int i; 1932 assert( pWInfo!=0 ); 1933 for(i=0; i<pWInfo->nLevel; i++){ 1934 WhereLevel *pLevel = &pWInfo->a[i]; 1935 if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){ 1936 sqlite3DbFree(db, pLevel->u.in.aInLoop); 1937 } 1938 } 1939 sqlite3WhereClauseClear(&pWInfo->sWC); 1940 while( pWInfo->pLoops ){ 1941 WhereLoop *p = pWInfo->pLoops; 1942 pWInfo->pLoops = p->pNextLoop; 1943 whereLoopDelete(db, p); 1944 } 1945 assert( pWInfo->pExprMods==0 ); 1946 sqlite3DbFreeNN(db, pWInfo); 1947 } 1948 1949 /* 1950 ** Return TRUE if all of the following are true: 1951 ** 1952 ** (1) X has the same or lower cost that Y 1953 ** (2) X uses fewer WHERE clause terms than Y 1954 ** (3) Every WHERE clause term used by X is also used by Y 1955 ** (4) X skips at least as many columns as Y 1956 ** (5) If X is a covering index, than Y is too 1957 ** 1958 ** Conditions (2) and (3) mean that X is a "proper subset" of Y. 1959 ** If X is a proper subset of Y then Y is a better choice and ought 1960 ** to have a lower cost. This routine returns TRUE when that cost 1961 ** relationship is inverted and needs to be adjusted. Constraint (4) 1962 ** was added because if X uses skip-scan less than Y it still might 1963 ** deserve a lower cost even if it is a proper subset of Y. Constraint (5) 1964 ** was added because a covering index probably deserves to have a lower cost 1965 ** than a non-covering index even if it is a proper subset. 1966 */ 1967 static int whereLoopCheaperProperSubset( 1968 const WhereLoop *pX, /* First WhereLoop to compare */ 1969 const WhereLoop *pY /* Compare against this WhereLoop */ 1970 ){ 1971 int i, j; 1972 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ 1973 return 0; /* X is not a subset of Y */ 1974 } 1975 if( pY->nSkip > pX->nSkip ) return 0; 1976 if( pX->rRun >= pY->rRun ){ 1977 if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */ 1978 if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */ 1979 } 1980 for(i=pX->nLTerm-1; i>=0; i--){ 1981 if( pX->aLTerm[i]==0 ) continue; 1982 for(j=pY->nLTerm-1; j>=0; j--){ 1983 if( pY->aLTerm[j]==pX->aLTerm[i] ) break; 1984 } 1985 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ 1986 } 1987 if( (pX->wsFlags&WHERE_IDX_ONLY)!=0 1988 && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){ 1989 return 0; /* Constraint (5) */ 1990 } 1991 return 1; /* All conditions meet */ 1992 } 1993 1994 /* 1995 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so 1996 ** that: 1997 ** 1998 ** (1) pTemplate costs less than any other WhereLoops that are a proper 1999 ** subset of pTemplate 2000 ** 2001 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate 2002 ** is a proper subset. 2003 ** 2004 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer 2005 ** WHERE clause terms than Y and that every WHERE clause term used by X is 2006 ** also used by Y. 2007 */ 2008 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ 2009 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; 2010 for(; p; p=p->pNextLoop){ 2011 if( p->iTab!=pTemplate->iTab ) continue; 2012 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; 2013 if( whereLoopCheaperProperSubset(p, pTemplate) ){ 2014 /* Adjust pTemplate cost downward so that it is cheaper than its 2015 ** subset p. */ 2016 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 2017 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1)); 2018 pTemplate->rRun = p->rRun; 2019 pTemplate->nOut = p->nOut - 1; 2020 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ 2021 /* Adjust pTemplate cost upward so that it is costlier than p since 2022 ** pTemplate is a proper subset of p */ 2023 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 2024 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1)); 2025 pTemplate->rRun = p->rRun; 2026 pTemplate->nOut = p->nOut + 1; 2027 } 2028 } 2029 } 2030 2031 /* 2032 ** Search the list of WhereLoops in *ppPrev looking for one that can be 2033 ** replaced by pTemplate. 2034 ** 2035 ** Return NULL if pTemplate does not belong on the WhereLoop list. 2036 ** In other words if pTemplate ought to be dropped from further consideration. 2037 ** 2038 ** If pX is a WhereLoop that pTemplate can replace, then return the 2039 ** link that points to pX. 2040 ** 2041 ** If pTemplate cannot replace any existing element of the list but needs 2042 ** to be added to the list as a new entry, then return a pointer to the 2043 ** tail of the list. 2044 */ 2045 static WhereLoop **whereLoopFindLesser( 2046 WhereLoop **ppPrev, 2047 const WhereLoop *pTemplate 2048 ){ 2049 WhereLoop *p; 2050 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ 2051 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ 2052 /* If either the iTab or iSortIdx values for two WhereLoop are different 2053 ** then those WhereLoops need to be considered separately. Neither is 2054 ** a candidate to replace the other. */ 2055 continue; 2056 } 2057 /* In the current implementation, the rSetup value is either zero 2058 ** or the cost of building an automatic index (NlogN) and the NlogN 2059 ** is the same for compatible WhereLoops. */ 2060 assert( p->rSetup==0 || pTemplate->rSetup==0 2061 || p->rSetup==pTemplate->rSetup ); 2062 2063 /* whereLoopAddBtree() always generates and inserts the automatic index 2064 ** case first. Hence compatible candidate WhereLoops never have a larger 2065 ** rSetup. Call this SETUP-INVARIANT */ 2066 assert( p->rSetup>=pTemplate->rSetup ); 2067 2068 /* Any loop using an appliation-defined index (or PRIMARY KEY or 2069 ** UNIQUE constraint) with one or more == constraints is better 2070 ** than an automatic index. Unless it is a skip-scan. */ 2071 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 2072 && (pTemplate->nSkip)==0 2073 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 2074 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 2075 && (p->prereq & pTemplate->prereq)==pTemplate->prereq 2076 ){ 2077 break; 2078 } 2079 2080 /* If existing WhereLoop p is better than pTemplate, pTemplate can be 2081 ** discarded. WhereLoop p is better if: 2082 ** (1) p has no more dependencies than pTemplate, and 2083 ** (2) p has an equal or lower cost than pTemplate 2084 */ 2085 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ 2086 && p->rSetup<=pTemplate->rSetup /* (2a) */ 2087 && p->rRun<=pTemplate->rRun /* (2b) */ 2088 && p->nOut<=pTemplate->nOut /* (2c) */ 2089 ){ 2090 return 0; /* Discard pTemplate */ 2091 } 2092 2093 /* If pTemplate is always better than p, then cause p to be overwritten 2094 ** with pTemplate. pTemplate is better than p if: 2095 ** (1) pTemplate has no more dependences than p, and 2096 ** (2) pTemplate has an equal or lower cost than p. 2097 */ 2098 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ 2099 && p->rRun>=pTemplate->rRun /* (2a) */ 2100 && p->nOut>=pTemplate->nOut /* (2b) */ 2101 ){ 2102 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ 2103 break; /* Cause p to be overwritten by pTemplate */ 2104 } 2105 } 2106 return ppPrev; 2107 } 2108 2109 /* 2110 ** Insert or replace a WhereLoop entry using the template supplied. 2111 ** 2112 ** An existing WhereLoop entry might be overwritten if the new template 2113 ** is better and has fewer dependencies. Or the template will be ignored 2114 ** and no insert will occur if an existing WhereLoop is faster and has 2115 ** fewer dependencies than the template. Otherwise a new WhereLoop is 2116 ** added based on the template. 2117 ** 2118 ** If pBuilder->pOrSet is not NULL then we care about only the 2119 ** prerequisites and rRun and nOut costs of the N best loops. That 2120 ** information is gathered in the pBuilder->pOrSet object. This special 2121 ** processing mode is used only for OR clause processing. 2122 ** 2123 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we 2124 ** still might overwrite similar loops with the new template if the 2125 ** new template is better. Loops may be overwritten if the following 2126 ** conditions are met: 2127 ** 2128 ** (1) They have the same iTab. 2129 ** (2) They have the same iSortIdx. 2130 ** (3) The template has same or fewer dependencies than the current loop 2131 ** (4) The template has the same or lower cost than the current loop 2132 */ 2133 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ 2134 WhereLoop **ppPrev, *p; 2135 WhereInfo *pWInfo = pBuilder->pWInfo; 2136 sqlite3 *db = pWInfo->pParse->db; 2137 int rc; 2138 2139 /* Stop the search once we hit the query planner search limit */ 2140 if( pBuilder->iPlanLimit==0 ){ 2141 WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n")); 2142 if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0; 2143 return SQLITE_DONE; 2144 } 2145 pBuilder->iPlanLimit--; 2146 2147 whereLoopAdjustCost(pWInfo->pLoops, pTemplate); 2148 2149 /* If pBuilder->pOrSet is defined, then only keep track of the costs 2150 ** and prereqs. 2151 */ 2152 if( pBuilder->pOrSet!=0 ){ 2153 if( pTemplate->nLTerm ){ 2154 #if WHERETRACE_ENABLED 2155 u16 n = pBuilder->pOrSet->n; 2156 int x = 2157 #endif 2158 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, 2159 pTemplate->nOut); 2160 #if WHERETRACE_ENABLED /* 0x8 */ 2161 if( sqlite3WhereTrace & 0x8 ){ 2162 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); 2163 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2164 } 2165 #endif 2166 } 2167 return SQLITE_OK; 2168 } 2169 2170 /* Look for an existing WhereLoop to replace with pTemplate 2171 */ 2172 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); 2173 2174 if( ppPrev==0 ){ 2175 /* There already exists a WhereLoop on the list that is better 2176 ** than pTemplate, so just ignore pTemplate */ 2177 #if WHERETRACE_ENABLED /* 0x8 */ 2178 if( sqlite3WhereTrace & 0x8 ){ 2179 sqlite3DebugPrintf(" skip: "); 2180 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2181 } 2182 #endif 2183 return SQLITE_OK; 2184 }else{ 2185 p = *ppPrev; 2186 } 2187 2188 /* If we reach this point it means that either p[] should be overwritten 2189 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new 2190 ** WhereLoop and insert it. 2191 */ 2192 #if WHERETRACE_ENABLED /* 0x8 */ 2193 if( sqlite3WhereTrace & 0x8 ){ 2194 if( p!=0 ){ 2195 sqlite3DebugPrintf("replace: "); 2196 sqlite3WhereLoopPrint(p, pBuilder->pWC); 2197 sqlite3DebugPrintf(" with: "); 2198 }else{ 2199 sqlite3DebugPrintf(" add: "); 2200 } 2201 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2202 } 2203 #endif 2204 if( p==0 ){ 2205 /* Allocate a new WhereLoop to add to the end of the list */ 2206 *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop)); 2207 if( p==0 ) return SQLITE_NOMEM_BKPT; 2208 whereLoopInit(p); 2209 p->pNextLoop = 0; 2210 }else{ 2211 /* We will be overwriting WhereLoop p[]. But before we do, first 2212 ** go through the rest of the list and delete any other entries besides 2213 ** p[] that are also supplated by pTemplate */ 2214 WhereLoop **ppTail = &p->pNextLoop; 2215 WhereLoop *pToDel; 2216 while( *ppTail ){ 2217 ppTail = whereLoopFindLesser(ppTail, pTemplate); 2218 if( ppTail==0 ) break; 2219 pToDel = *ppTail; 2220 if( pToDel==0 ) break; 2221 *ppTail = pToDel->pNextLoop; 2222 #if WHERETRACE_ENABLED /* 0x8 */ 2223 if( sqlite3WhereTrace & 0x8 ){ 2224 sqlite3DebugPrintf(" delete: "); 2225 sqlite3WhereLoopPrint(pToDel, pBuilder->pWC); 2226 } 2227 #endif 2228 whereLoopDelete(db, pToDel); 2229 } 2230 } 2231 rc = whereLoopXfer(db, p, pTemplate); 2232 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 2233 Index *pIndex = p->u.btree.pIndex; 2234 if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){ 2235 p->u.btree.pIndex = 0; 2236 } 2237 } 2238 return rc; 2239 } 2240 2241 /* 2242 ** Adjust the WhereLoop.nOut value downward to account for terms of the 2243 ** WHERE clause that reference the loop but which are not used by an 2244 ** index. 2245 * 2246 ** For every WHERE clause term that is not used by the index 2247 ** and which has a truth probability assigned by one of the likelihood(), 2248 ** likely(), or unlikely() SQL functions, reduce the estimated number 2249 ** of output rows by the probability specified. 2250 ** 2251 ** TUNING: For every WHERE clause term that is not used by the index 2252 ** and which does not have an assigned truth probability, heuristics 2253 ** described below are used to try to estimate the truth probability. 2254 ** TODO --> Perhaps this is something that could be improved by better 2255 ** table statistics. 2256 ** 2257 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% 2258 ** value corresponds to -1 in LogEst notation, so this means decrement 2259 ** the WhereLoop.nOut field for every such WHERE clause term. 2260 ** 2261 ** Heuristic 2: If there exists one or more WHERE clause terms of the 2262 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the 2263 ** final output row estimate is no greater than 1/4 of the total number 2264 ** of rows in the table. In other words, assume that x==EXPR will filter 2265 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the 2266 ** "x" column is boolean or else -1 or 0 or 1 is a common default value 2267 ** on the "x" column and so in that case only cap the output row estimate 2268 ** at 1/2 instead of 1/4. 2269 */ 2270 static void whereLoopOutputAdjust( 2271 WhereClause *pWC, /* The WHERE clause */ 2272 WhereLoop *pLoop, /* The loop to adjust downward */ 2273 LogEst nRow /* Number of rows in the entire table */ 2274 ){ 2275 WhereTerm *pTerm, *pX; 2276 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); 2277 int i, j; 2278 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ 2279 2280 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2281 for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){ 2282 assert( pTerm!=0 ); 2283 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break; 2284 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; 2285 if( (pTerm->prereqAll & notAllowed)!=0 ) continue; 2286 for(j=pLoop->nLTerm-1; j>=0; j--){ 2287 pX = pLoop->aLTerm[j]; 2288 if( pX==0 ) continue; 2289 if( pX==pTerm ) break; 2290 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; 2291 } 2292 if( j<0 ){ 2293 if( pTerm->truthProb<=0 ){ 2294 /* If a truth probability is specified using the likelihood() hints, 2295 ** then use the probability provided by the application. */ 2296 pLoop->nOut += pTerm->truthProb; 2297 }else{ 2298 /* In the absence of explicit truth probabilities, use heuristics to 2299 ** guess a reasonable truth probability. */ 2300 pLoop->nOut--; 2301 if( pTerm->eOperator&(WO_EQ|WO_IS) ){ 2302 Expr *pRight = pTerm->pExpr->pRight; 2303 int k = 0; 2304 testcase( pTerm->pExpr->op==TK_IS ); 2305 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){ 2306 k = 10; 2307 }else{ 2308 k = 20; 2309 } 2310 if( iReduce<k ) iReduce = k; 2311 } 2312 } 2313 } 2314 } 2315 if( pLoop->nOut > nRow-iReduce ) pLoop->nOut = nRow - iReduce; 2316 } 2317 2318 /* 2319 ** Term pTerm is a vector range comparison operation. The first comparison 2320 ** in the vector can be optimized using column nEq of the index. This 2321 ** function returns the total number of vector elements that can be used 2322 ** as part of the range comparison. 2323 ** 2324 ** For example, if the query is: 2325 ** 2326 ** WHERE a = ? AND (b, c, d) > (?, ?, ?) 2327 ** 2328 ** and the index: 2329 ** 2330 ** CREATE INDEX ... ON (a, b, c, d, e) 2331 ** 2332 ** then this function would be invoked with nEq=1. The value returned in 2333 ** this case is 3. 2334 */ 2335 static int whereRangeVectorLen( 2336 Parse *pParse, /* Parsing context */ 2337 int iCur, /* Cursor open on pIdx */ 2338 Index *pIdx, /* The index to be used for a inequality constraint */ 2339 int nEq, /* Number of prior equality constraints on same index */ 2340 WhereTerm *pTerm /* The vector inequality constraint */ 2341 ){ 2342 int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft); 2343 int i; 2344 2345 nCmp = MIN(nCmp, (pIdx->nColumn - nEq)); 2346 for(i=1; i<nCmp; i++){ 2347 /* Test if comparison i of pTerm is compatible with column (i+nEq) 2348 ** of the index. If not, exit the loop. */ 2349 char aff; /* Comparison affinity */ 2350 char idxaff = 0; /* Indexed columns affinity */ 2351 CollSeq *pColl; /* Comparison collation sequence */ 2352 Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr; 2353 Expr *pRhs = pTerm->pExpr->pRight; 2354 if( pRhs->flags & EP_xIsSelect ){ 2355 pRhs = pRhs->x.pSelect->pEList->a[i].pExpr; 2356 }else{ 2357 pRhs = pRhs->x.pList->a[i].pExpr; 2358 } 2359 2360 /* Check that the LHS of the comparison is a column reference to 2361 ** the right column of the right source table. And that the sort 2362 ** order of the index column is the same as the sort order of the 2363 ** leftmost index column. */ 2364 if( pLhs->op!=TK_COLUMN 2365 || pLhs->iTable!=iCur 2366 || pLhs->iColumn!=pIdx->aiColumn[i+nEq] 2367 || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq] 2368 ){ 2369 break; 2370 } 2371 2372 testcase( pLhs->iColumn==XN_ROWID ); 2373 aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs)); 2374 idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn); 2375 if( aff!=idxaff ) break; 2376 2377 pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2378 if( pColl==0 ) break; 2379 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break; 2380 } 2381 return i; 2382 } 2383 2384 /* 2385 ** Adjust the cost C by the costMult facter T. This only occurs if 2386 ** compiled with -DSQLITE_ENABLE_COSTMULT 2387 */ 2388 #ifdef SQLITE_ENABLE_COSTMULT 2389 # define ApplyCostMultiplier(C,T) C += T 2390 #else 2391 # define ApplyCostMultiplier(C,T) 2392 #endif 2393 2394 /* 2395 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the 2396 ** index pIndex. Try to match one more. 2397 ** 2398 ** When this function is called, pBuilder->pNew->nOut contains the 2399 ** number of rows expected to be visited by filtering using the nEq 2400 ** terms only. If it is modified, this value is restored before this 2401 ** function returns. 2402 ** 2403 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is 2404 ** a fake index used for the INTEGER PRIMARY KEY. 2405 */ 2406 static int whereLoopAddBtreeIndex( 2407 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ 2408 struct SrcList_item *pSrc, /* FROM clause term being analyzed */ 2409 Index *pProbe, /* An index on pSrc */ 2410 LogEst nInMul /* log(Number of iterations due to IN) */ 2411 ){ 2412 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ 2413 Parse *pParse = pWInfo->pParse; /* Parsing context */ 2414 sqlite3 *db = pParse->db; /* Database connection malloc context */ 2415 WhereLoop *pNew; /* Template WhereLoop under construction */ 2416 WhereTerm *pTerm; /* A WhereTerm under consideration */ 2417 int opMask; /* Valid operators for constraints */ 2418 WhereScan scan; /* Iterator for WHERE terms */ 2419 Bitmask saved_prereq; /* Original value of pNew->prereq */ 2420 u16 saved_nLTerm; /* Original value of pNew->nLTerm */ 2421 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ 2422 u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */ 2423 u16 saved_nTop; /* Original value of pNew->u.btree.nTop */ 2424 u16 saved_nSkip; /* Original value of pNew->nSkip */ 2425 u32 saved_wsFlags; /* Original value of pNew->wsFlags */ 2426 LogEst saved_nOut; /* Original value of pNew->nOut */ 2427 int rc = SQLITE_OK; /* Return code */ 2428 LogEst rSize; /* Number of rows in the table */ 2429 LogEst rLogSize; /* Logarithm of table size */ 2430 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ 2431 2432 pNew = pBuilder->pNew; 2433 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 2434 WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d\n", 2435 pProbe->pTable->zName,pProbe->zName, pNew->u.btree.nEq)); 2436 2437 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); 2438 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); 2439 if( pNew->wsFlags & WHERE_BTM_LIMIT ){ 2440 opMask = WO_LT|WO_LE; 2441 }else{ 2442 assert( pNew->u.btree.nBtm==0 ); 2443 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS; 2444 } 2445 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); 2446 2447 assert( pNew->u.btree.nEq<pProbe->nColumn ); 2448 2449 saved_nEq = pNew->u.btree.nEq; 2450 saved_nBtm = pNew->u.btree.nBtm; 2451 saved_nTop = pNew->u.btree.nTop; 2452 saved_nSkip = pNew->nSkip; 2453 saved_nLTerm = pNew->nLTerm; 2454 saved_wsFlags = pNew->wsFlags; 2455 saved_prereq = pNew->prereq; 2456 saved_nOut = pNew->nOut; 2457 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq, 2458 opMask, pProbe); 2459 pNew->rSetup = 0; 2460 rSize = pProbe->aiRowLogEst[0]; 2461 rLogSize = estLog(rSize); 2462 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ 2463 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ 2464 LogEst rCostIdx; 2465 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ 2466 int nIn = 0; 2467 #ifdef SQLITE_ENABLE_STAT4 2468 int nRecValid = pBuilder->nRecValid; 2469 #endif 2470 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) 2471 && indexColumnNotNull(pProbe, saved_nEq) 2472 ){ 2473 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ 2474 } 2475 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2476 2477 /* Do not allow the upper bound of a LIKE optimization range constraint 2478 ** to mix with a lower range bound from some other source */ 2479 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; 2480 2481 /* tag-20191211-001: Do not allow constraints from the WHERE clause to 2482 ** be used by the right table of a LEFT JOIN. Only constraints in the 2483 ** ON clause are allowed. See tag-20191211-002 for the vtab equivalent. */ 2484 if( (pSrc->fg.jointype & JT_LEFT)!=0 2485 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 2486 ){ 2487 continue; 2488 } 2489 2490 if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){ 2491 pBuilder->bldFlags |= SQLITE_BLDF_UNIQUE; 2492 }else{ 2493 pBuilder->bldFlags |= SQLITE_BLDF_INDEXED; 2494 } 2495 pNew->wsFlags = saved_wsFlags; 2496 pNew->u.btree.nEq = saved_nEq; 2497 pNew->u.btree.nBtm = saved_nBtm; 2498 pNew->u.btree.nTop = saved_nTop; 2499 pNew->nLTerm = saved_nLTerm; 2500 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2501 pNew->aLTerm[pNew->nLTerm++] = pTerm; 2502 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; 2503 2504 assert( nInMul==0 2505 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 2506 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 2507 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 2508 ); 2509 2510 if( eOp & WO_IN ){ 2511 Expr *pExpr = pTerm->pExpr; 2512 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2513 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ 2514 int i; 2515 nIn = 46; assert( 46==sqlite3LogEst(25) ); 2516 2517 /* The expression may actually be of the form (x, y) IN (SELECT...). 2518 ** In this case there is a separate term for each of (x) and (y). 2519 ** However, the nIn multiplier should only be applied once, not once 2520 ** for each such term. The following loop checks that pTerm is the 2521 ** first such term in use, and sets nIn back to 0 if it is not. */ 2522 for(i=0; i<pNew->nLTerm-1; i++){ 2523 if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0; 2524 } 2525 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ 2526 /* "x IN (value, value, ...)" */ 2527 nIn = sqlite3LogEst(pExpr->x.pList->nExpr); 2528 } 2529 if( pProbe->hasStat1 ){ 2530 LogEst M, logK, safetyMargin; 2531 /* Let: 2532 ** N = the total number of rows in the table 2533 ** K = the number of entries on the RHS of the IN operator 2534 ** M = the number of rows in the table that match terms to the 2535 ** to the left in the same index. If the IN operator is on 2536 ** the left-most index column, M==N. 2537 ** 2538 ** Given the definitions above, it is better to omit the IN operator 2539 ** from the index lookup and instead do a scan of the M elements, 2540 ** testing each scanned row against the IN operator separately, if: 2541 ** 2542 ** M*log(K) < K*log(N) 2543 ** 2544 ** Our estimates for M, K, and N might be inaccurate, so we build in 2545 ** a safety margin of 2 (LogEst: 10) that favors using the IN operator 2546 ** with the index, as using an index has better worst-case behavior. 2547 ** If we do not have real sqlite_stat1 data, always prefer to use 2548 ** the index. 2549 */ 2550 M = pProbe->aiRowLogEst[saved_nEq]; 2551 logK = estLog(nIn); 2552 safetyMargin = 10; /* TUNING: extra weight for indexed IN */ 2553 if( M + logK + safetyMargin < nIn + rLogSize ){ 2554 WHERETRACE(0x40, 2555 ("Scan preferred over IN operator on column %d of \"%s\" (%d<%d)\n", 2556 saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize)); 2557 continue; 2558 }else{ 2559 WHERETRACE(0x40, 2560 ("IN operator preferred on column %d of \"%s\" (%d>=%d)\n", 2561 saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize)); 2562 } 2563 } 2564 pNew->wsFlags |= WHERE_COLUMN_IN; 2565 }else if( eOp & (WO_EQ|WO_IS) ){ 2566 int iCol = pProbe->aiColumn[saved_nEq]; 2567 pNew->wsFlags |= WHERE_COLUMN_EQ; 2568 assert( saved_nEq==pNew->u.btree.nEq ); 2569 if( iCol==XN_ROWID 2570 || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) 2571 ){ 2572 if( iCol==XN_ROWID || pProbe->uniqNotNull 2573 || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ) 2574 ){ 2575 pNew->wsFlags |= WHERE_ONEROW; 2576 }else{ 2577 pNew->wsFlags |= WHERE_UNQ_WANTED; 2578 } 2579 } 2580 }else if( eOp & WO_ISNULL ){ 2581 pNew->wsFlags |= WHERE_COLUMN_NULL; 2582 }else if( eOp & (WO_GT|WO_GE) ){ 2583 testcase( eOp & WO_GT ); 2584 testcase( eOp & WO_GE ); 2585 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; 2586 pNew->u.btree.nBtm = whereRangeVectorLen( 2587 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2588 ); 2589 pBtm = pTerm; 2590 pTop = 0; 2591 if( pTerm->wtFlags & TERM_LIKEOPT ){ 2592 /* Range contraints that come from the LIKE optimization are 2593 ** always used in pairs. */ 2594 pTop = &pTerm[1]; 2595 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm ); 2596 assert( pTop->wtFlags & TERM_LIKEOPT ); 2597 assert( pTop->eOperator==WO_LT ); 2598 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2599 pNew->aLTerm[pNew->nLTerm++] = pTop; 2600 pNew->wsFlags |= WHERE_TOP_LIMIT; 2601 pNew->u.btree.nTop = 1; 2602 } 2603 }else{ 2604 assert( eOp & (WO_LT|WO_LE) ); 2605 testcase( eOp & WO_LT ); 2606 testcase( eOp & WO_LE ); 2607 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; 2608 pNew->u.btree.nTop = whereRangeVectorLen( 2609 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2610 ); 2611 pTop = pTerm; 2612 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? 2613 pNew->aLTerm[pNew->nLTerm-2] : 0; 2614 } 2615 2616 /* At this point pNew->nOut is set to the number of rows expected to 2617 ** be visited by the index scan before considering term pTerm, or the 2618 ** values of nIn and nInMul. In other words, assuming that all 2619 ** "x IN(...)" terms are replaced with "x = ?". This block updates 2620 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ 2621 assert( pNew->nOut==saved_nOut ); 2622 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2623 /* Adjust nOut using stat4 data. Or, if there is no stat4 2624 ** data, using some other estimate. */ 2625 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); 2626 }else{ 2627 int nEq = ++pNew->u.btree.nEq; 2628 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) ); 2629 2630 assert( pNew->nOut==saved_nOut ); 2631 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){ 2632 assert( (eOp & WO_IN) || nIn==0 ); 2633 testcase( eOp & WO_IN ); 2634 pNew->nOut += pTerm->truthProb; 2635 pNew->nOut -= nIn; 2636 }else{ 2637 #ifdef SQLITE_ENABLE_STAT4 2638 tRowcnt nOut = 0; 2639 if( nInMul==0 2640 && pProbe->nSample 2641 && pNew->u.btree.nEq<=pProbe->nSampleCol 2642 && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect)) 2643 && OptimizationEnabled(db, SQLITE_Stat4) 2644 ){ 2645 Expr *pExpr = pTerm->pExpr; 2646 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){ 2647 testcase( eOp & WO_EQ ); 2648 testcase( eOp & WO_IS ); 2649 testcase( eOp & WO_ISNULL ); 2650 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); 2651 }else{ 2652 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); 2653 } 2654 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 2655 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ 2656 if( nOut ){ 2657 pNew->nOut = sqlite3LogEst(nOut); 2658 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; 2659 pNew->nOut -= nIn; 2660 } 2661 } 2662 if( nOut==0 ) 2663 #endif 2664 { 2665 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); 2666 if( eOp & WO_ISNULL ){ 2667 /* TUNING: If there is no likelihood() value, assume that a 2668 ** "col IS NULL" expression matches twice as many rows 2669 ** as (col=?). */ 2670 pNew->nOut += 10; 2671 } 2672 } 2673 } 2674 } 2675 2676 /* Set rCostIdx to the cost of visiting selected rows in index. Add 2677 ** it to pNew->rRun, which is currently set to the cost of the index 2678 ** seek only. Then, if this is a non-covering index, add the cost of 2679 ** visiting the rows in the main table. */ 2680 assert( pSrc->pTab->szTabRow>0 ); 2681 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; 2682 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); 2683 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ 2684 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); 2685 } 2686 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); 2687 2688 nOutUnadjusted = pNew->nOut; 2689 pNew->rRun += nInMul + nIn; 2690 pNew->nOut += nInMul + nIn; 2691 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); 2692 rc = whereLoopInsert(pBuilder, pNew); 2693 2694 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2695 pNew->nOut = saved_nOut; 2696 }else{ 2697 pNew->nOut = nOutUnadjusted; 2698 } 2699 2700 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 2701 && pNew->u.btree.nEq<pProbe->nColumn 2702 ){ 2703 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); 2704 } 2705 pNew->nOut = saved_nOut; 2706 #ifdef SQLITE_ENABLE_STAT4 2707 pBuilder->nRecValid = nRecValid; 2708 #endif 2709 } 2710 pNew->prereq = saved_prereq; 2711 pNew->u.btree.nEq = saved_nEq; 2712 pNew->u.btree.nBtm = saved_nBtm; 2713 pNew->u.btree.nTop = saved_nTop; 2714 pNew->nSkip = saved_nSkip; 2715 pNew->wsFlags = saved_wsFlags; 2716 pNew->nOut = saved_nOut; 2717 pNew->nLTerm = saved_nLTerm; 2718 2719 /* Consider using a skip-scan if there are no WHERE clause constraints 2720 ** available for the left-most terms of the index, and if the average 2721 ** number of repeats in the left-most terms is at least 18. 2722 ** 2723 ** The magic number 18 is selected on the basis that scanning 17 rows 2724 ** is almost always quicker than an index seek (even though if the index 2725 ** contains fewer than 2^17 rows we assume otherwise in other parts of 2726 ** the code). And, even if it is not, it should not be too much slower. 2727 ** On the other hand, the extra seeks could end up being significantly 2728 ** more expensive. */ 2729 assert( 42==sqlite3LogEst(18) ); 2730 if( saved_nEq==saved_nSkip 2731 && saved_nEq+1<pProbe->nKeyCol 2732 && pProbe->noSkipScan==0 2733 && OptimizationEnabled(db, SQLITE_SkipScan) 2734 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ 2735 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK 2736 ){ 2737 LogEst nIter; 2738 pNew->u.btree.nEq++; 2739 pNew->nSkip++; 2740 pNew->aLTerm[pNew->nLTerm++] = 0; 2741 pNew->wsFlags |= WHERE_SKIPSCAN; 2742 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; 2743 pNew->nOut -= nIter; 2744 /* TUNING: Because uncertainties in the estimates for skip-scan queries, 2745 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ 2746 nIter += 5; 2747 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); 2748 pNew->nOut = saved_nOut; 2749 pNew->u.btree.nEq = saved_nEq; 2750 pNew->nSkip = saved_nSkip; 2751 pNew->wsFlags = saved_wsFlags; 2752 } 2753 2754 WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n", 2755 pProbe->pTable->zName, pProbe->zName, saved_nEq, rc)); 2756 return rc; 2757 } 2758 2759 /* 2760 ** Return True if it is possible that pIndex might be useful in 2761 ** implementing the ORDER BY clause in pBuilder. 2762 ** 2763 ** Return False if pBuilder does not contain an ORDER BY clause or 2764 ** if there is no way for pIndex to be useful in implementing that 2765 ** ORDER BY clause. 2766 */ 2767 static int indexMightHelpWithOrderBy( 2768 WhereLoopBuilder *pBuilder, 2769 Index *pIndex, 2770 int iCursor 2771 ){ 2772 ExprList *pOB; 2773 ExprList *aColExpr; 2774 int ii, jj; 2775 2776 if( pIndex->bUnordered ) return 0; 2777 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; 2778 for(ii=0; ii<pOB->nExpr; ii++){ 2779 Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr); 2780 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){ 2781 if( pExpr->iColumn<0 ) return 1; 2782 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2783 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; 2784 } 2785 }else if( (aColExpr = pIndex->aColExpr)!=0 ){ 2786 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2787 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue; 2788 if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){ 2789 return 1; 2790 } 2791 } 2792 } 2793 } 2794 return 0; 2795 } 2796 2797 /* Check to see if a partial index with pPartIndexWhere can be used 2798 ** in the current query. Return true if it can be and false if not. 2799 */ 2800 static int whereUsablePartialIndex( 2801 int iTab, /* The table for which we want an index */ 2802 int isLeft, /* True if iTab is the right table of a LEFT JOIN */ 2803 WhereClause *pWC, /* The WHERE clause of the query */ 2804 Expr *pWhere /* The WHERE clause from the partial index */ 2805 ){ 2806 int i; 2807 WhereTerm *pTerm; 2808 Parse *pParse = pWC->pWInfo->pParse; 2809 while( pWhere->op==TK_AND ){ 2810 if( !whereUsablePartialIndex(iTab,isLeft,pWC,pWhere->pLeft) ) return 0; 2811 pWhere = pWhere->pRight; 2812 } 2813 if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0; 2814 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 2815 Expr *pExpr; 2816 pExpr = pTerm->pExpr; 2817 if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab) 2818 && (isLeft==0 || ExprHasProperty(pExpr, EP_FromJoin)) 2819 && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab) 2820 ){ 2821 return 1; 2822 } 2823 } 2824 return 0; 2825 } 2826 2827 /* 2828 ** Add all WhereLoop objects for a single table of the join where the table 2829 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be 2830 ** a b-tree table, not a virtual table. 2831 ** 2832 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function 2833 ** are calculated as follows: 2834 ** 2835 ** For a full scan, assuming the table (or index) contains nRow rows: 2836 ** 2837 ** cost = nRow * 3.0 // full-table scan 2838 ** cost = nRow * K // scan of covering index 2839 ** cost = nRow * (K+3.0) // scan of non-covering index 2840 ** 2841 ** where K is a value between 1.1 and 3.0 set based on the relative 2842 ** estimated average size of the index and table records. 2843 ** 2844 ** For an index scan, where nVisit is the number of index rows visited 2845 ** by the scan, and nSeek is the number of seek operations required on 2846 ** the index b-tree: 2847 ** 2848 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index 2849 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index 2850 ** 2851 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the 2852 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when 2853 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. 2854 ** 2855 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount 2856 ** of uncertainty. For this reason, scoring is designed to pick plans that 2857 ** "do the least harm" if the estimates are inaccurate. For example, a 2858 ** log(nRow) factor is omitted from a non-covering index scan in order to 2859 ** bias the scoring in favor of using an index, since the worst-case 2860 ** performance of using an index is far better than the worst-case performance 2861 ** of a full table scan. 2862 */ 2863 static int whereLoopAddBtree( 2864 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 2865 Bitmask mPrereq /* Extra prerequesites for using this table */ 2866 ){ 2867 WhereInfo *pWInfo; /* WHERE analysis context */ 2868 Index *pProbe; /* An index we are evaluating */ 2869 Index sPk; /* A fake index object for the primary key */ 2870 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ 2871 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ 2872 SrcList *pTabList; /* The FROM clause */ 2873 struct SrcList_item *pSrc; /* The FROM clause btree term to add */ 2874 WhereLoop *pNew; /* Template WhereLoop object */ 2875 int rc = SQLITE_OK; /* Return code */ 2876 int iSortIdx = 1; /* Index number */ 2877 int b; /* A boolean value */ 2878 LogEst rSize; /* number of rows in the table */ 2879 LogEst rLogSize; /* Logarithm of the number of rows in the table */ 2880 WhereClause *pWC; /* The parsed WHERE clause */ 2881 Table *pTab; /* Table being queried */ 2882 2883 pNew = pBuilder->pNew; 2884 pWInfo = pBuilder->pWInfo; 2885 pTabList = pWInfo->pTabList; 2886 pSrc = pTabList->a + pNew->iTab; 2887 pTab = pSrc->pTab; 2888 pWC = pBuilder->pWC; 2889 assert( !IsVirtual(pSrc->pTab) ); 2890 2891 if( pSrc->pIBIndex ){ 2892 /* An INDEXED BY clause specifies a particular index to use */ 2893 pProbe = pSrc->pIBIndex; 2894 }else if( !HasRowid(pTab) ){ 2895 pProbe = pTab->pIndex; 2896 }else{ 2897 /* There is no INDEXED BY clause. Create a fake Index object in local 2898 ** variable sPk to represent the rowid primary key index. Make this 2899 ** fake index the first in a chain of Index objects with all of the real 2900 ** indices to follow */ 2901 Index *pFirst; /* First of real indices on the table */ 2902 memset(&sPk, 0, sizeof(Index)); 2903 sPk.nKeyCol = 1; 2904 sPk.nColumn = 1; 2905 sPk.aiColumn = &aiColumnPk; 2906 sPk.aiRowLogEst = aiRowEstPk; 2907 sPk.onError = OE_Replace; 2908 sPk.pTable = pTab; 2909 sPk.szIdxRow = pTab->szTabRow; 2910 sPk.idxType = SQLITE_IDXTYPE_IPK; 2911 aiRowEstPk[0] = pTab->nRowLogEst; 2912 aiRowEstPk[1] = 0; 2913 pFirst = pSrc->pTab->pIndex; 2914 if( pSrc->fg.notIndexed==0 ){ 2915 /* The real indices of the table are only considered if the 2916 ** NOT INDEXED qualifier is omitted from the FROM clause */ 2917 sPk.pNext = pFirst; 2918 } 2919 pProbe = &sPk; 2920 } 2921 rSize = pTab->nRowLogEst; 2922 rLogSize = estLog(rSize); 2923 2924 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 2925 /* Automatic indexes */ 2926 if( !pBuilder->pOrSet /* Not part of an OR optimization */ 2927 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 2928 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 2929 && pSrc->pIBIndex==0 /* Has no INDEXED BY clause */ 2930 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */ 2931 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */ 2932 && !pSrc->fg.isCorrelated /* Not a correlated subquery */ 2933 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */ 2934 ){ 2935 /* Generate auto-index WhereLoops */ 2936 WhereTerm *pTerm; 2937 WhereTerm *pWCEnd = pWC->a + pWC->nTerm; 2938 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ 2939 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2940 if( termCanDriveIndex(pTerm, pSrc, 0) ){ 2941 pNew->u.btree.nEq = 1; 2942 pNew->nSkip = 0; 2943 pNew->u.btree.pIndex = 0; 2944 pNew->nLTerm = 1; 2945 pNew->aLTerm[0] = pTerm; 2946 /* TUNING: One-time cost for computing the automatic index is 2947 ** estimated to be X*N*log2(N) where N is the number of rows in 2948 ** the table being indexed and where X is 7 (LogEst=28) for normal 2949 ** tables or 0.5 (LogEst=-10) for views and subqueries. The value 2950 ** of X is smaller for views and subqueries so that the query planner 2951 ** will be more aggressive about generating automatic indexes for 2952 ** those objects, since there is no opportunity to add schema 2953 ** indexes on subqueries and views. */ 2954 pNew->rSetup = rLogSize + rSize; 2955 if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){ 2956 pNew->rSetup += 28; 2957 }else{ 2958 pNew->rSetup -= 10; 2959 } 2960 ApplyCostMultiplier(pNew->rSetup, pTab->costMult); 2961 if( pNew->rSetup<0 ) pNew->rSetup = 0; 2962 /* TUNING: Each index lookup yields 20 rows in the table. This 2963 ** is more than the usual guess of 10 rows, since we have no way 2964 ** of knowing how selective the index will ultimately be. It would 2965 ** not be unreasonable to make this value much larger. */ 2966 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); 2967 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); 2968 pNew->wsFlags = WHERE_AUTO_INDEX; 2969 pNew->prereq = mPrereq | pTerm->prereqRight; 2970 rc = whereLoopInsert(pBuilder, pNew); 2971 } 2972 } 2973 } 2974 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 2975 2976 /* Loop over all indices. If there was an INDEXED BY clause, then only 2977 ** consider index pProbe. */ 2978 for(; rc==SQLITE_OK && pProbe; 2979 pProbe=(pSrc->pIBIndex ? 0 : pProbe->pNext), iSortIdx++ 2980 ){ 2981 int isLeft = (pSrc->fg.jointype & JT_OUTER)!=0; 2982 if( pProbe->pPartIdxWhere!=0 2983 && !whereUsablePartialIndex(pSrc->iCursor, isLeft, pWC, 2984 pProbe->pPartIdxWhere) 2985 ){ 2986 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ 2987 continue; /* Partial index inappropriate for this query */ 2988 } 2989 if( pProbe->bNoQuery ) continue; 2990 rSize = pProbe->aiRowLogEst[0]; 2991 pNew->u.btree.nEq = 0; 2992 pNew->u.btree.nBtm = 0; 2993 pNew->u.btree.nTop = 0; 2994 pNew->nSkip = 0; 2995 pNew->nLTerm = 0; 2996 pNew->iSortIdx = 0; 2997 pNew->rSetup = 0; 2998 pNew->prereq = mPrereq; 2999 pNew->nOut = rSize; 3000 pNew->u.btree.pIndex = pProbe; 3001 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); 3002 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ 3003 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); 3004 if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){ 3005 /* Integer primary key index */ 3006 pNew->wsFlags = WHERE_IPK; 3007 3008 /* Full table scan */ 3009 pNew->iSortIdx = b ? iSortIdx : 0; 3010 /* TUNING: Cost of full table scan is (N*3.0). */ 3011 pNew->rRun = rSize + 16; 3012 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 3013 whereLoopOutputAdjust(pWC, pNew, rSize); 3014 rc = whereLoopInsert(pBuilder, pNew); 3015 pNew->nOut = rSize; 3016 if( rc ) break; 3017 }else{ 3018 Bitmask m; 3019 if( pProbe->isCovering ){ 3020 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; 3021 m = 0; 3022 }else{ 3023 m = pSrc->colUsed & pProbe->colNotIdxed; 3024 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; 3025 } 3026 3027 /* Full scan via index */ 3028 if( b 3029 || !HasRowid(pTab) 3030 || pProbe->pPartIdxWhere!=0 3031 || ( m==0 3032 && pProbe->bUnordered==0 3033 && (pProbe->szIdxRow<pTab->szTabRow) 3034 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 3035 && sqlite3GlobalConfig.bUseCis 3036 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) 3037 ) 3038 ){ 3039 pNew->iSortIdx = b ? iSortIdx : 0; 3040 3041 /* The cost of visiting the index rows is N*K, where K is 3042 ** between 1.1 and 3.0, depending on the relative sizes of the 3043 ** index and table rows. */ 3044 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; 3045 if( m!=0 ){ 3046 /* If this is a non-covering index scan, add in the cost of 3047 ** doing table lookups. The cost will be 3x the number of 3048 ** lookups. Take into account WHERE clause terms that can be 3049 ** satisfied using just the index, and that do not require a 3050 ** table lookup. */ 3051 LogEst nLookup = rSize + 16; /* Base cost: N*3 */ 3052 int ii; 3053 int iCur = pSrc->iCursor; 3054 WhereClause *pWC2 = &pWInfo->sWC; 3055 for(ii=0; ii<pWC2->nTerm; ii++){ 3056 WhereTerm *pTerm = &pWC2->a[ii]; 3057 if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){ 3058 break; 3059 } 3060 /* pTerm can be evaluated using just the index. So reduce 3061 ** the expected number of table lookups accordingly */ 3062 if( pTerm->truthProb<=0 ){ 3063 nLookup += pTerm->truthProb; 3064 }else{ 3065 nLookup--; 3066 if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19; 3067 } 3068 } 3069 3070 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup); 3071 } 3072 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 3073 whereLoopOutputAdjust(pWC, pNew, rSize); 3074 rc = whereLoopInsert(pBuilder, pNew); 3075 pNew->nOut = rSize; 3076 if( rc ) break; 3077 } 3078 } 3079 3080 pBuilder->bldFlags = 0; 3081 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); 3082 if( pBuilder->bldFlags==SQLITE_BLDF_INDEXED ){ 3083 /* If a non-unique index is used, or if a prefix of the key for 3084 ** unique index is used (making the index functionally non-unique) 3085 ** then the sqlite_stat1 data becomes important for scoring the 3086 ** plan */ 3087 pTab->tabFlags |= TF_StatsUsed; 3088 } 3089 #ifdef SQLITE_ENABLE_STAT4 3090 sqlite3Stat4ProbeFree(pBuilder->pRec); 3091 pBuilder->nRecValid = 0; 3092 pBuilder->pRec = 0; 3093 #endif 3094 } 3095 return rc; 3096 } 3097 3098 #ifndef SQLITE_OMIT_VIRTUALTABLE 3099 3100 /* 3101 ** Argument pIdxInfo is already populated with all constraints that may 3102 ** be used by the virtual table identified by pBuilder->pNew->iTab. This 3103 ** function marks a subset of those constraints usable, invokes the 3104 ** xBestIndex method and adds the returned plan to pBuilder. 3105 ** 3106 ** A constraint is marked usable if: 3107 ** 3108 ** * Argument mUsable indicates that its prerequisites are available, and 3109 ** 3110 ** * It is not one of the operators specified in the mExclude mask passed 3111 ** as the fourth argument (which in practice is either WO_IN or 0). 3112 ** 3113 ** Argument mPrereq is a mask of tables that must be scanned before the 3114 ** virtual table in question. These are added to the plans prerequisites 3115 ** before it is added to pBuilder. 3116 ** 3117 ** Output parameter *pbIn is set to true if the plan added to pBuilder 3118 ** uses one or more WO_IN terms, or false otherwise. 3119 */ 3120 static int whereLoopAddVirtualOne( 3121 WhereLoopBuilder *pBuilder, 3122 Bitmask mPrereq, /* Mask of tables that must be used. */ 3123 Bitmask mUsable, /* Mask of usable tables */ 3124 u16 mExclude, /* Exclude terms using these operators */ 3125 sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */ 3126 u16 mNoOmit, /* Do not omit these constraints */ 3127 int *pbIn /* OUT: True if plan uses an IN(...) op */ 3128 ){ 3129 WhereClause *pWC = pBuilder->pWC; 3130 struct sqlite3_index_constraint *pIdxCons; 3131 struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage; 3132 int i; 3133 int mxTerm; 3134 int rc = SQLITE_OK; 3135 WhereLoop *pNew = pBuilder->pNew; 3136 Parse *pParse = pBuilder->pWInfo->pParse; 3137 struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab]; 3138 int nConstraint = pIdxInfo->nConstraint; 3139 3140 assert( (mUsable & mPrereq)==mPrereq ); 3141 *pbIn = 0; 3142 pNew->prereq = mPrereq; 3143 3144 /* Set the usable flag on the subset of constraints identified by 3145 ** arguments mUsable and mExclude. */ 3146 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3147 for(i=0; i<nConstraint; i++, pIdxCons++){ 3148 WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset]; 3149 pIdxCons->usable = 0; 3150 if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight 3151 && (pTerm->eOperator & mExclude)==0 3152 ){ 3153 pIdxCons->usable = 1; 3154 } 3155 } 3156 3157 /* Initialize the output fields of the sqlite3_index_info structure */ 3158 memset(pUsage, 0, sizeof(pUsage[0])*nConstraint); 3159 assert( pIdxInfo->needToFreeIdxStr==0 ); 3160 pIdxInfo->idxStr = 0; 3161 pIdxInfo->idxNum = 0; 3162 pIdxInfo->orderByConsumed = 0; 3163 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; 3164 pIdxInfo->estimatedRows = 25; 3165 pIdxInfo->idxFlags = 0; 3166 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed; 3167 3168 /* Invoke the virtual table xBestIndex() method */ 3169 rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo); 3170 if( rc ){ 3171 if( rc==SQLITE_CONSTRAINT ){ 3172 /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means 3173 ** that the particular combination of parameters provided is unusable. 3174 ** Make no entries in the loop table. 3175 */ 3176 WHERETRACE(0xffff, (" ^^^^--- non-viable plan rejected!\n")); 3177 return SQLITE_OK; 3178 } 3179 return rc; 3180 } 3181 3182 mxTerm = -1; 3183 assert( pNew->nLSlot>=nConstraint ); 3184 for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0; 3185 pNew->u.vtab.omitMask = 0; 3186 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3187 for(i=0; i<nConstraint; i++, pIdxCons++){ 3188 int iTerm; 3189 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ 3190 WhereTerm *pTerm; 3191 int j = pIdxCons->iTermOffset; 3192 if( iTerm>=nConstraint 3193 || j<0 3194 || j>=pWC->nTerm 3195 || pNew->aLTerm[iTerm]!=0 3196 || pIdxCons->usable==0 3197 ){ 3198 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3199 testcase( pIdxInfo->needToFreeIdxStr ); 3200 return SQLITE_ERROR; 3201 } 3202 testcase( iTerm==nConstraint-1 ); 3203 testcase( j==0 ); 3204 testcase( j==pWC->nTerm-1 ); 3205 pTerm = &pWC->a[j]; 3206 pNew->prereq |= pTerm->prereqRight; 3207 assert( iTerm<pNew->nLSlot ); 3208 pNew->aLTerm[iTerm] = pTerm; 3209 if( iTerm>mxTerm ) mxTerm = iTerm; 3210 testcase( iTerm==15 ); 3211 testcase( iTerm==16 ); 3212 if( pUsage[i].omit ){ 3213 if( i<16 && ((1<<i)&mNoOmit)==0 ){ 3214 testcase( i!=iTerm ); 3215 pNew->u.vtab.omitMask |= 1<<iTerm; 3216 }else{ 3217 testcase( i!=iTerm ); 3218 } 3219 } 3220 if( (pTerm->eOperator & WO_IN)!=0 ){ 3221 /* A virtual table that is constrained by an IN clause may not 3222 ** consume the ORDER BY clause because (1) the order of IN terms 3223 ** is not necessarily related to the order of output terms and 3224 ** (2) Multiple outputs from a single IN value will not merge 3225 ** together. */ 3226 pIdxInfo->orderByConsumed = 0; 3227 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE; 3228 *pbIn = 1; assert( (mExclude & WO_IN)==0 ); 3229 } 3230 } 3231 } 3232 3233 pNew->nLTerm = mxTerm+1; 3234 for(i=0; i<=mxTerm; i++){ 3235 if( pNew->aLTerm[i]==0 ){ 3236 /* The non-zero argvIdx values must be contiguous. Raise an 3237 ** error if they are not */ 3238 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3239 testcase( pIdxInfo->needToFreeIdxStr ); 3240 return SQLITE_ERROR; 3241 } 3242 } 3243 assert( pNew->nLTerm<=pNew->nLSlot ); 3244 pNew->u.vtab.idxNum = pIdxInfo->idxNum; 3245 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; 3246 pIdxInfo->needToFreeIdxStr = 0; 3247 pNew->u.vtab.idxStr = pIdxInfo->idxStr; 3248 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? 3249 pIdxInfo->nOrderBy : 0); 3250 pNew->rSetup = 0; 3251 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); 3252 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); 3253 3254 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated 3255 ** that the scan will visit at most one row. Clear it otherwise. */ 3256 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){ 3257 pNew->wsFlags |= WHERE_ONEROW; 3258 }else{ 3259 pNew->wsFlags &= ~WHERE_ONEROW; 3260 } 3261 rc = whereLoopInsert(pBuilder, pNew); 3262 if( pNew->u.vtab.needFree ){ 3263 sqlite3_free(pNew->u.vtab.idxStr); 3264 pNew->u.vtab.needFree = 0; 3265 } 3266 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n", 3267 *pbIn, (sqlite3_uint64)mPrereq, 3268 (sqlite3_uint64)(pNew->prereq & ~mPrereq))); 3269 3270 return rc; 3271 } 3272 3273 /* 3274 ** If this function is invoked from within an xBestIndex() callback, it 3275 ** returns a pointer to a buffer containing the name of the collation 3276 ** sequence associated with element iCons of the sqlite3_index_info.aConstraint 3277 ** array. Or, if iCons is out of range or there is no active xBestIndex 3278 ** call, return NULL. 3279 */ 3280 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){ 3281 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3282 const char *zRet = 0; 3283 if( iCons>=0 && iCons<pIdxInfo->nConstraint ){ 3284 CollSeq *pC = 0; 3285 int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset; 3286 Expr *pX = pHidden->pWC->a[iTerm].pExpr; 3287 if( pX->pLeft ){ 3288 pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX); 3289 } 3290 zRet = (pC ? pC->zName : sqlite3StrBINARY); 3291 } 3292 return zRet; 3293 } 3294 3295 /* 3296 ** Add all WhereLoop objects for a table of the join identified by 3297 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. 3298 ** 3299 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and 3300 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause 3301 ** entries that occur before the virtual table in the FROM clause and are 3302 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the 3303 ** mUnusable mask contains all FROM clause entries that occur after the 3304 ** virtual table and are separated from it by at least one LEFT or 3305 ** CROSS JOIN. 3306 ** 3307 ** For example, if the query were: 3308 ** 3309 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; 3310 ** 3311 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6). 3312 ** 3313 ** All the tables in mPrereq must be scanned before the current virtual 3314 ** table. So any terms for which all prerequisites are satisfied by 3315 ** mPrereq may be specified as "usable" in all calls to xBestIndex. 3316 ** Conversely, all tables in mUnusable must be scanned after the current 3317 ** virtual table, so any terms for which the prerequisites overlap with 3318 ** mUnusable should always be configured as "not-usable" for xBestIndex. 3319 */ 3320 static int whereLoopAddVirtual( 3321 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 3322 Bitmask mPrereq, /* Tables that must be scanned before this one */ 3323 Bitmask mUnusable /* Tables that must be scanned after this one */ 3324 ){ 3325 int rc = SQLITE_OK; /* Return code */ 3326 WhereInfo *pWInfo; /* WHERE analysis context */ 3327 Parse *pParse; /* The parsing context */ 3328 WhereClause *pWC; /* The WHERE clause */ 3329 struct SrcList_item *pSrc; /* The FROM clause term to search */ 3330 sqlite3_index_info *p; /* Object to pass to xBestIndex() */ 3331 int nConstraint; /* Number of constraints in p */ 3332 int bIn; /* True if plan uses IN(...) operator */ 3333 WhereLoop *pNew; 3334 Bitmask mBest; /* Tables used by best possible plan */ 3335 u16 mNoOmit; 3336 3337 assert( (mPrereq & mUnusable)==0 ); 3338 pWInfo = pBuilder->pWInfo; 3339 pParse = pWInfo->pParse; 3340 pWC = pBuilder->pWC; 3341 pNew = pBuilder->pNew; 3342 pSrc = &pWInfo->pTabList->a[pNew->iTab]; 3343 assert( IsVirtual(pSrc->pTab) ); 3344 p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy, 3345 &mNoOmit); 3346 if( p==0 ) return SQLITE_NOMEM_BKPT; 3347 pNew->rSetup = 0; 3348 pNew->wsFlags = WHERE_VIRTUALTABLE; 3349 pNew->nLTerm = 0; 3350 pNew->u.vtab.needFree = 0; 3351 nConstraint = p->nConstraint; 3352 if( whereLoopResize(pParse->db, pNew, nConstraint) ){ 3353 sqlite3DbFree(pParse->db, p); 3354 return SQLITE_NOMEM_BKPT; 3355 } 3356 3357 /* First call xBestIndex() with all constraints usable. */ 3358 WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName)); 3359 WHERETRACE(0x40, (" VirtualOne: all usable\n")); 3360 rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn); 3361 3362 /* If the call to xBestIndex() with all terms enabled produced a plan 3363 ** that does not require any source tables (IOW: a plan with mBest==0) 3364 ** and does not use an IN(...) operator, then there is no point in making 3365 ** any further calls to xBestIndex() since they will all return the same 3366 ** result (if the xBestIndex() implementation is sane). */ 3367 if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){ 3368 int seenZero = 0; /* True if a plan with no prereqs seen */ 3369 int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */ 3370 Bitmask mPrev = 0; 3371 Bitmask mBestNoIn = 0; 3372 3373 /* If the plan produced by the earlier call uses an IN(...) term, call 3374 ** xBestIndex again, this time with IN(...) terms disabled. */ 3375 if( bIn ){ 3376 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n")); 3377 rc = whereLoopAddVirtualOne( 3378 pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn); 3379 assert( bIn==0 ); 3380 mBestNoIn = pNew->prereq & ~mPrereq; 3381 if( mBestNoIn==0 ){ 3382 seenZero = 1; 3383 seenZeroNoIN = 1; 3384 } 3385 } 3386 3387 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq) 3388 ** in the set of terms that apply to the current virtual table. */ 3389 while( rc==SQLITE_OK ){ 3390 int i; 3391 Bitmask mNext = ALLBITS; 3392 assert( mNext>0 ); 3393 for(i=0; i<nConstraint; i++){ 3394 Bitmask mThis = ( 3395 pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq 3396 ); 3397 if( mThis>mPrev && mThis<mNext ) mNext = mThis; 3398 } 3399 mPrev = mNext; 3400 if( mNext==ALLBITS ) break; 3401 if( mNext==mBest || mNext==mBestNoIn ) continue; 3402 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n", 3403 (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext)); 3404 rc = whereLoopAddVirtualOne( 3405 pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn); 3406 if( pNew->prereq==mPrereq ){ 3407 seenZero = 1; 3408 if( bIn==0 ) seenZeroNoIN = 1; 3409 } 3410 } 3411 3412 /* If the calls to xBestIndex() in the above loop did not find a plan 3413 ** that requires no source tables at all (i.e. one guaranteed to be 3414 ** usable), make a call here with all source tables disabled */ 3415 if( rc==SQLITE_OK && seenZero==0 ){ 3416 WHERETRACE(0x40, (" VirtualOne: all disabled\n")); 3417 rc = whereLoopAddVirtualOne( 3418 pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn); 3419 if( bIn==0 ) seenZeroNoIN = 1; 3420 } 3421 3422 /* If the calls to xBestIndex() have so far failed to find a plan 3423 ** that requires no source tables at all and does not use an IN(...) 3424 ** operator, make a final call to obtain one here. */ 3425 if( rc==SQLITE_OK && seenZeroNoIN==0 ){ 3426 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n")); 3427 rc = whereLoopAddVirtualOne( 3428 pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn); 3429 } 3430 } 3431 3432 if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr); 3433 sqlite3DbFreeNN(pParse->db, p); 3434 WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc)); 3435 return rc; 3436 } 3437 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3438 3439 /* 3440 ** Add WhereLoop entries to handle OR terms. This works for either 3441 ** btrees or virtual tables. 3442 */ 3443 static int whereLoopAddOr( 3444 WhereLoopBuilder *pBuilder, 3445 Bitmask mPrereq, 3446 Bitmask mUnusable 3447 ){ 3448 WhereInfo *pWInfo = pBuilder->pWInfo; 3449 WhereClause *pWC; 3450 WhereLoop *pNew; 3451 WhereTerm *pTerm, *pWCEnd; 3452 int rc = SQLITE_OK; 3453 int iCur; 3454 WhereClause tempWC; 3455 WhereLoopBuilder sSubBuild; 3456 WhereOrSet sSum, sCur; 3457 struct SrcList_item *pItem; 3458 3459 pWC = pBuilder->pWC; 3460 pWCEnd = pWC->a + pWC->nTerm; 3461 pNew = pBuilder->pNew; 3462 memset(&sSum, 0, sizeof(sSum)); 3463 pItem = pWInfo->pTabList->a + pNew->iTab; 3464 iCur = pItem->iCursor; 3465 3466 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ 3467 if( (pTerm->eOperator & WO_OR)!=0 3468 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 3469 ){ 3470 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; 3471 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; 3472 WhereTerm *pOrTerm; 3473 int once = 1; 3474 int i, j; 3475 3476 sSubBuild = *pBuilder; 3477 sSubBuild.pOrderBy = 0; 3478 sSubBuild.pOrSet = &sCur; 3479 3480 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); 3481 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ 3482 if( (pOrTerm->eOperator & WO_AND)!=0 ){ 3483 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; 3484 }else if( pOrTerm->leftCursor==iCur ){ 3485 tempWC.pWInfo = pWC->pWInfo; 3486 tempWC.pOuter = pWC; 3487 tempWC.op = TK_AND; 3488 tempWC.nTerm = 1; 3489 tempWC.a = pOrTerm; 3490 sSubBuild.pWC = &tempWC; 3491 }else{ 3492 continue; 3493 } 3494 sCur.n = 0; 3495 #ifdef WHERETRACE_ENABLED 3496 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", 3497 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); 3498 if( sqlite3WhereTrace & 0x400 ){ 3499 sqlite3WhereClausePrint(sSubBuild.pWC); 3500 } 3501 #endif 3502 #ifndef SQLITE_OMIT_VIRTUALTABLE 3503 if( IsVirtual(pItem->pTab) ){ 3504 rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable); 3505 }else 3506 #endif 3507 { 3508 rc = whereLoopAddBtree(&sSubBuild, mPrereq); 3509 } 3510 if( rc==SQLITE_OK ){ 3511 rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable); 3512 } 3513 assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0 ); 3514 testcase( rc==SQLITE_DONE ); 3515 if( sCur.n==0 ){ 3516 sSum.n = 0; 3517 break; 3518 }else if( once ){ 3519 whereOrMove(&sSum, &sCur); 3520 once = 0; 3521 }else{ 3522 WhereOrSet sPrev; 3523 whereOrMove(&sPrev, &sSum); 3524 sSum.n = 0; 3525 for(i=0; i<sPrev.n; i++){ 3526 for(j=0; j<sCur.n; j++){ 3527 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, 3528 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), 3529 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); 3530 } 3531 } 3532 } 3533 } 3534 pNew->nLTerm = 1; 3535 pNew->aLTerm[0] = pTerm; 3536 pNew->wsFlags = WHERE_MULTI_OR; 3537 pNew->rSetup = 0; 3538 pNew->iSortIdx = 0; 3539 memset(&pNew->u, 0, sizeof(pNew->u)); 3540 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ 3541 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs 3542 ** of all sub-scans required by the OR-scan. However, due to rounding 3543 ** errors, it may be that the cost of the OR-scan is equal to its 3544 ** most expensive sub-scan. Add the smallest possible penalty 3545 ** (equivalent to multiplying the cost by 1.07) to ensure that 3546 ** this does not happen. Otherwise, for WHERE clauses such as the 3547 ** following where there is an index on "y": 3548 ** 3549 ** WHERE likelihood(x=?, 0.99) OR y=? 3550 ** 3551 ** the planner may elect to "OR" together a full-table scan and an 3552 ** index lookup. And other similarly odd results. */ 3553 pNew->rRun = sSum.a[i].rRun + 1; 3554 pNew->nOut = sSum.a[i].nOut; 3555 pNew->prereq = sSum.a[i].prereq; 3556 rc = whereLoopInsert(pBuilder, pNew); 3557 } 3558 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); 3559 } 3560 } 3561 return rc; 3562 } 3563 3564 /* 3565 ** Add all WhereLoop objects for all tables 3566 */ 3567 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ 3568 WhereInfo *pWInfo = pBuilder->pWInfo; 3569 Bitmask mPrereq = 0; 3570 Bitmask mPrior = 0; 3571 int iTab; 3572 SrcList *pTabList = pWInfo->pTabList; 3573 struct SrcList_item *pItem; 3574 struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel]; 3575 sqlite3 *db = pWInfo->pParse->db; 3576 int rc = SQLITE_OK; 3577 WhereLoop *pNew; 3578 u8 priorJointype = 0; 3579 3580 /* Loop over the tables in the join, from left to right */ 3581 pNew = pBuilder->pNew; 3582 whereLoopInit(pNew); 3583 pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT; 3584 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){ 3585 Bitmask mUnusable = 0; 3586 pNew->iTab = iTab; 3587 pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR; 3588 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); 3589 if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){ 3590 /* This condition is true when pItem is the FROM clause term on the 3591 ** right-hand-side of a LEFT or CROSS JOIN. */ 3592 mPrereq = mPrior; 3593 } 3594 priorJointype = pItem->fg.jointype; 3595 #ifndef SQLITE_OMIT_VIRTUALTABLE 3596 if( IsVirtual(pItem->pTab) ){ 3597 struct SrcList_item *p; 3598 for(p=&pItem[1]; p<pEnd; p++){ 3599 if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){ 3600 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); 3601 } 3602 } 3603 rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable); 3604 }else 3605 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3606 { 3607 rc = whereLoopAddBtree(pBuilder, mPrereq); 3608 } 3609 if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){ 3610 rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable); 3611 } 3612 mPrior |= pNew->maskSelf; 3613 if( rc || db->mallocFailed ){ 3614 if( rc==SQLITE_DONE ){ 3615 /* We hit the query planner search limit set by iPlanLimit */ 3616 sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search"); 3617 rc = SQLITE_OK; 3618 }else{ 3619 break; 3620 } 3621 } 3622 } 3623 3624 whereLoopClear(db, pNew); 3625 return rc; 3626 } 3627 3628 /* 3629 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th 3630 ** parameters) to see if it outputs rows in the requested ORDER BY 3631 ** (or GROUP BY) without requiring a separate sort operation. Return N: 3632 ** 3633 ** N>0: N terms of the ORDER BY clause are satisfied 3634 ** N==0: No terms of the ORDER BY clause are satisfied 3635 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. 3636 ** 3637 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as 3638 ** strict. With GROUP BY and DISTINCT the only requirement is that 3639 ** equivalent rows appear immediately adjacent to one another. GROUP BY 3640 ** and DISTINCT do not require rows to appear in any particular order as long 3641 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT 3642 ** the pOrderBy terms can be matched in any order. With ORDER BY, the 3643 ** pOrderBy terms must be matched in strict left-to-right order. 3644 */ 3645 static i8 wherePathSatisfiesOrderBy( 3646 WhereInfo *pWInfo, /* The WHERE clause */ 3647 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ 3648 WherePath *pPath, /* The WherePath to check */ 3649 u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */ 3650 u16 nLoop, /* Number of entries in pPath->aLoop[] */ 3651 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ 3652 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ 3653 ){ 3654 u8 revSet; /* True if rev is known */ 3655 u8 rev; /* Composite sort order */ 3656 u8 revIdx; /* Index sort order */ 3657 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ 3658 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ 3659 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ 3660 u16 eqOpMask; /* Allowed equality operators */ 3661 u16 nKeyCol; /* Number of key columns in pIndex */ 3662 u16 nColumn; /* Total number of ordered columns in the index */ 3663 u16 nOrderBy; /* Number terms in the ORDER BY clause */ 3664 int iLoop; /* Index of WhereLoop in pPath being processed */ 3665 int i, j; /* Loop counters */ 3666 int iCur; /* Cursor number for current WhereLoop */ 3667 int iColumn; /* A column number within table iCur */ 3668 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ 3669 WhereTerm *pTerm; /* A single term of the WHERE clause */ 3670 Expr *pOBExpr; /* An expression from the ORDER BY clause */ 3671 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ 3672 Index *pIndex; /* The index associated with pLoop */ 3673 sqlite3 *db = pWInfo->pParse->db; /* Database connection */ 3674 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ 3675 Bitmask obDone; /* Mask of all ORDER BY terms */ 3676 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ 3677 Bitmask ready; /* Mask of inner loops */ 3678 3679 /* 3680 ** We say the WhereLoop is "one-row" if it generates no more than one 3681 ** row of output. A WhereLoop is one-row if all of the following are true: 3682 ** (a) All index columns match with WHERE_COLUMN_EQ. 3683 ** (b) The index is unique 3684 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. 3685 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. 3686 ** 3687 ** We say the WhereLoop is "order-distinct" if the set of columns from 3688 ** that WhereLoop that are in the ORDER BY clause are different for every 3689 ** row of the WhereLoop. Every one-row WhereLoop is automatically 3690 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause 3691 ** is not order-distinct. To be order-distinct is not quite the same as being 3692 ** UNIQUE since a UNIQUE column or index can have multiple rows that 3693 ** are NULL and NULL values are equivalent for the purpose of order-distinct. 3694 ** To be order-distinct, the columns must be UNIQUE and NOT NULL. 3695 ** 3696 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the 3697 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is 3698 ** automatically order-distinct. 3699 */ 3700 3701 assert( pOrderBy!=0 ); 3702 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; 3703 3704 nOrderBy = pOrderBy->nExpr; 3705 testcase( nOrderBy==BMS-1 ); 3706 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ 3707 isOrderDistinct = 1; 3708 obDone = MASKBIT(nOrderBy)-1; 3709 orderDistinctMask = 0; 3710 ready = 0; 3711 eqOpMask = WO_EQ | WO_IS | WO_ISNULL; 3712 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) eqOpMask |= WO_IN; 3713 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ 3714 if( iLoop>0 ) ready |= pLoop->maskSelf; 3715 if( iLoop<nLoop ){ 3716 pLoop = pPath->aLoop[iLoop]; 3717 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue; 3718 }else{ 3719 pLoop = pLast; 3720 } 3721 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ 3722 if( pLoop->u.vtab.isOrdered && (wctrlFlags & WHERE_DISTINCTBY)==0 ){ 3723 obSat = obDone; 3724 } 3725 break; 3726 }else if( wctrlFlags & WHERE_DISTINCTBY ){ 3727 pLoop->u.btree.nDistinctCol = 0; 3728 } 3729 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; 3730 3731 /* Mark off any ORDER BY term X that is a column in the table of 3732 ** the current loop for which there is term in the WHERE 3733 ** clause of the form X IS NULL or X=? that reference only outer 3734 ** loops. 3735 */ 3736 for(i=0; i<nOrderBy; i++){ 3737 if( MASKBIT(i) & obSat ) continue; 3738 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr); 3739 if( pOBExpr->op!=TK_COLUMN ) continue; 3740 if( pOBExpr->iTable!=iCur ) continue; 3741 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, 3742 ~ready, eqOpMask, 0); 3743 if( pTerm==0 ) continue; 3744 if( pTerm->eOperator==WO_IN ){ 3745 /* IN terms are only valid for sorting in the ORDER BY LIMIT 3746 ** optimization, and then only if they are actually used 3747 ** by the query plan */ 3748 assert( wctrlFlags & WHERE_ORDERBY_LIMIT ); 3749 for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){} 3750 if( j>=pLoop->nLTerm ) continue; 3751 } 3752 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ 3753 if( sqlite3ExprCollSeqMatch(pWInfo->pParse, 3754 pOrderBy->a[i].pExpr, pTerm->pExpr)==0 ){ 3755 continue; 3756 } 3757 testcase( pTerm->pExpr->op==TK_IS ); 3758 } 3759 obSat |= MASKBIT(i); 3760 } 3761 3762 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ 3763 if( pLoop->wsFlags & WHERE_IPK ){ 3764 pIndex = 0; 3765 nKeyCol = 0; 3766 nColumn = 1; 3767 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ 3768 return 0; 3769 }else{ 3770 nKeyCol = pIndex->nKeyCol; 3771 nColumn = pIndex->nColumn; 3772 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); 3773 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID 3774 || !HasRowid(pIndex->pTable)); 3775 isOrderDistinct = IsUniqueIndex(pIndex) 3776 && (pLoop->wsFlags & WHERE_SKIPSCAN)==0; 3777 } 3778 3779 /* Loop through all columns of the index and deal with the ones 3780 ** that are not constrained by == or IN. 3781 */ 3782 rev = revSet = 0; 3783 distinctColumns = 0; 3784 for(j=0; j<nColumn; j++){ 3785 u8 bOnce = 1; /* True to run the ORDER BY search loop */ 3786 3787 assert( j>=pLoop->u.btree.nEq 3788 || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip) 3789 ); 3790 if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){ 3791 u16 eOp = pLoop->aLTerm[j]->eOperator; 3792 3793 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when 3794 ** doing WHERE_ORDERBY_LIMIT processing). Except, IS and ISNULL 3795 ** terms imply that the index is not UNIQUE NOT NULL in which case 3796 ** the loop need to be marked as not order-distinct because it can 3797 ** have repeated NULL rows. 3798 ** 3799 ** If the current term is a column of an ((?,?) IN (SELECT...)) 3800 ** expression for which the SELECT returns more than one column, 3801 ** check that it is the only column used by this loop. Otherwise, 3802 ** if it is one of two or more, none of the columns can be 3803 ** considered to match an ORDER BY term. 3804 */ 3805 if( (eOp & eqOpMask)!=0 ){ 3806 if( eOp & (WO_ISNULL|WO_IS) ){ 3807 testcase( eOp & WO_ISNULL ); 3808 testcase( eOp & WO_IS ); 3809 testcase( isOrderDistinct ); 3810 isOrderDistinct = 0; 3811 } 3812 continue; 3813 }else if( ALWAYS(eOp & WO_IN) ){ 3814 /* ALWAYS() justification: eOp is an equality operator due to the 3815 ** j<pLoop->u.btree.nEq constraint above. Any equality other 3816 ** than WO_IN is captured by the previous "if". So this one 3817 ** always has to be WO_IN. */ 3818 Expr *pX = pLoop->aLTerm[j]->pExpr; 3819 for(i=j+1; i<pLoop->u.btree.nEq; i++){ 3820 if( pLoop->aLTerm[i]->pExpr==pX ){ 3821 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) ); 3822 bOnce = 0; 3823 break; 3824 } 3825 } 3826 } 3827 } 3828 3829 /* Get the column number in the table (iColumn) and sort order 3830 ** (revIdx) for the j-th column of the index. 3831 */ 3832 if( pIndex ){ 3833 iColumn = pIndex->aiColumn[j]; 3834 revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC; 3835 if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID; 3836 }else{ 3837 iColumn = XN_ROWID; 3838 revIdx = 0; 3839 } 3840 3841 /* An unconstrained column that might be NULL means that this 3842 ** WhereLoop is not well-ordered 3843 */ 3844 if( isOrderDistinct 3845 && iColumn>=0 3846 && j>=pLoop->u.btree.nEq 3847 && pIndex->pTable->aCol[iColumn].notNull==0 3848 ){ 3849 isOrderDistinct = 0; 3850 } 3851 3852 /* Find the ORDER BY term that corresponds to the j-th column 3853 ** of the index and mark that ORDER BY term off 3854 */ 3855 isMatch = 0; 3856 for(i=0; bOnce && i<nOrderBy; i++){ 3857 if( MASKBIT(i) & obSat ) continue; 3858 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr); 3859 testcase( wctrlFlags & WHERE_GROUPBY ); 3860 testcase( wctrlFlags & WHERE_DISTINCTBY ); 3861 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; 3862 if( iColumn>=XN_ROWID ){ 3863 if( pOBExpr->op!=TK_COLUMN ) continue; 3864 if( pOBExpr->iTable!=iCur ) continue; 3865 if( pOBExpr->iColumn!=iColumn ) continue; 3866 }else{ 3867 Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr; 3868 if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){ 3869 continue; 3870 } 3871 } 3872 if( iColumn!=XN_ROWID ){ 3873 pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 3874 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; 3875 } 3876 if( wctrlFlags & WHERE_DISTINCTBY ){ 3877 pLoop->u.btree.nDistinctCol = j+1; 3878 } 3879 isMatch = 1; 3880 break; 3881 } 3882 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ 3883 /* Make sure the sort order is compatible in an ORDER BY clause. 3884 ** Sort order is irrelevant for a GROUP BY clause. */ 3885 if( revSet ){ 3886 if( (rev ^ revIdx)!=(pOrderBy->a[i].sortFlags&KEYINFO_ORDER_DESC) ){ 3887 isMatch = 0; 3888 } 3889 }else{ 3890 rev = revIdx ^ (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC); 3891 if( rev ) *pRevMask |= MASKBIT(iLoop); 3892 revSet = 1; 3893 } 3894 } 3895 if( isMatch && (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL) ){ 3896 if( j==pLoop->u.btree.nEq ){ 3897 pLoop->wsFlags |= WHERE_BIGNULL_SORT; 3898 }else{ 3899 isMatch = 0; 3900 } 3901 } 3902 if( isMatch ){ 3903 if( iColumn==XN_ROWID ){ 3904 testcase( distinctColumns==0 ); 3905 distinctColumns = 1; 3906 } 3907 obSat |= MASKBIT(i); 3908 }else{ 3909 /* No match found */ 3910 if( j==0 || j<nKeyCol ){ 3911 testcase( isOrderDistinct!=0 ); 3912 isOrderDistinct = 0; 3913 } 3914 break; 3915 } 3916 } /* end Loop over all index columns */ 3917 if( distinctColumns ){ 3918 testcase( isOrderDistinct==0 ); 3919 isOrderDistinct = 1; 3920 } 3921 } /* end-if not one-row */ 3922 3923 /* Mark off any other ORDER BY terms that reference pLoop */ 3924 if( isOrderDistinct ){ 3925 orderDistinctMask |= pLoop->maskSelf; 3926 for(i=0; i<nOrderBy; i++){ 3927 Expr *p; 3928 Bitmask mTerm; 3929 if( MASKBIT(i) & obSat ) continue; 3930 p = pOrderBy->a[i].pExpr; 3931 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); 3932 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; 3933 if( (mTerm&~orderDistinctMask)==0 ){ 3934 obSat |= MASKBIT(i); 3935 } 3936 } 3937 } 3938 } /* End the loop over all WhereLoops from outer-most down to inner-most */ 3939 if( obSat==obDone ) return (i8)nOrderBy; 3940 if( !isOrderDistinct ){ 3941 for(i=nOrderBy-1; i>0; i--){ 3942 Bitmask m = MASKBIT(i) - 1; 3943 if( (obSat&m)==m ) return i; 3944 } 3945 return 0; 3946 } 3947 return -1; 3948 } 3949 3950 3951 /* 3952 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), 3953 ** the planner assumes that the specified pOrderBy list is actually a GROUP 3954 ** BY clause - and so any order that groups rows as required satisfies the 3955 ** request. 3956 ** 3957 ** Normally, in this case it is not possible for the caller to determine 3958 ** whether or not the rows are really being delivered in sorted order, or 3959 ** just in some other order that provides the required grouping. However, 3960 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then 3961 ** this function may be called on the returned WhereInfo object. It returns 3962 ** true if the rows really will be sorted in the specified order, or false 3963 ** otherwise. 3964 ** 3965 ** For example, assuming: 3966 ** 3967 ** CREATE INDEX i1 ON t1(x, Y); 3968 ** 3969 ** then 3970 ** 3971 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 3972 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 3973 */ 3974 int sqlite3WhereIsSorted(WhereInfo *pWInfo){ 3975 assert( pWInfo->wctrlFlags & WHERE_GROUPBY ); 3976 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); 3977 return pWInfo->sorted; 3978 } 3979 3980 #ifdef WHERETRACE_ENABLED 3981 /* For debugging use only: */ 3982 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ 3983 static char zName[65]; 3984 int i; 3985 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } 3986 if( pLast ) zName[i++] = pLast->cId; 3987 zName[i] = 0; 3988 return zName; 3989 } 3990 #endif 3991 3992 /* 3993 ** Return the cost of sorting nRow rows, assuming that the keys have 3994 ** nOrderby columns and that the first nSorted columns are already in 3995 ** order. 3996 */ 3997 static LogEst whereSortingCost( 3998 WhereInfo *pWInfo, 3999 LogEst nRow, 4000 int nOrderBy, 4001 int nSorted 4002 ){ 4003 /* TUNING: Estimated cost of a full external sort, where N is 4004 ** the number of rows to sort is: 4005 ** 4006 ** cost = (3.0 * N * log(N)). 4007 ** 4008 ** Or, if the order-by clause has X terms but only the last Y 4009 ** terms are out of order, then block-sorting will reduce the 4010 ** sorting cost to: 4011 ** 4012 ** cost = (3.0 * N * log(N)) * (Y/X) 4013 ** 4014 ** The (Y/X) term is implemented using stack variable rScale 4015 ** below. */ 4016 LogEst rScale, rSortCost; 4017 assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); 4018 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; 4019 rSortCost = nRow + rScale + 16; 4020 4021 /* Multiple by log(M) where M is the number of output rows. 4022 ** Use the LIMIT for M if it is smaller */ 4023 if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){ 4024 nRow = pWInfo->iLimit; 4025 } 4026 rSortCost += estLog(nRow); 4027 return rSortCost; 4028 } 4029 4030 /* 4031 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine 4032 ** attempts to find the lowest cost path that visits each WhereLoop 4033 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. 4034 ** 4035 ** Assume that the total number of output rows that will need to be sorted 4036 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting 4037 ** costs if nRowEst==0. 4038 ** 4039 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation 4040 ** error occurs. 4041 */ 4042 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ 4043 int mxChoice; /* Maximum number of simultaneous paths tracked */ 4044 int nLoop; /* Number of terms in the join */ 4045 Parse *pParse; /* Parsing context */ 4046 sqlite3 *db; /* The database connection */ 4047 int iLoop; /* Loop counter over the terms of the join */ 4048 int ii, jj; /* Loop counters */ 4049 int mxI = 0; /* Index of next entry to replace */ 4050 int nOrderBy; /* Number of ORDER BY clause terms */ 4051 LogEst mxCost = 0; /* Maximum cost of a set of paths */ 4052 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ 4053 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ 4054 WherePath *aFrom; /* All nFrom paths at the previous level */ 4055 WherePath *aTo; /* The nTo best paths at the current level */ 4056 WherePath *pFrom; /* An element of aFrom[] that we are working on */ 4057 WherePath *pTo; /* An element of aTo[] that we are working on */ 4058 WhereLoop *pWLoop; /* One of the WhereLoop objects */ 4059 WhereLoop **pX; /* Used to divy up the pSpace memory */ 4060 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ 4061 char *pSpace; /* Temporary memory used by this routine */ 4062 int nSpace; /* Bytes of space allocated at pSpace */ 4063 4064 pParse = pWInfo->pParse; 4065 db = pParse->db; 4066 nLoop = pWInfo->nLevel; 4067 /* TUNING: For simple queries, only the best path is tracked. 4068 ** For 2-way joins, the 5 best paths are followed. 4069 ** For joins of 3 or more tables, track the 10 best paths */ 4070 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); 4071 assert( nLoop<=pWInfo->pTabList->nSrc ); 4072 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); 4073 4074 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this 4075 ** case the purpose of this call is to estimate the number of rows returned 4076 ** by the overall query. Once this estimate has been obtained, the caller 4077 ** will invoke this function a second time, passing the estimate as the 4078 ** nRowEst parameter. */ 4079 if( pWInfo->pOrderBy==0 || nRowEst==0 ){ 4080 nOrderBy = 0; 4081 }else{ 4082 nOrderBy = pWInfo->pOrderBy->nExpr; 4083 } 4084 4085 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ 4086 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; 4087 nSpace += sizeof(LogEst) * nOrderBy; 4088 pSpace = sqlite3DbMallocRawNN(db, nSpace); 4089 if( pSpace==0 ) return SQLITE_NOMEM_BKPT; 4090 aTo = (WherePath*)pSpace; 4091 aFrom = aTo+mxChoice; 4092 memset(aFrom, 0, sizeof(aFrom[0])); 4093 pX = (WhereLoop**)(aFrom+mxChoice); 4094 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ 4095 pFrom->aLoop = pX; 4096 } 4097 if( nOrderBy ){ 4098 /* If there is an ORDER BY clause and it is not being ignored, set up 4099 ** space for the aSortCost[] array. Each element of the aSortCost array 4100 ** is either zero - meaning it has not yet been initialized - or the 4101 ** cost of sorting nRowEst rows of data where the first X terms of 4102 ** the ORDER BY clause are already in order, where X is the array 4103 ** index. */ 4104 aSortCost = (LogEst*)pX; 4105 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); 4106 } 4107 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); 4108 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); 4109 4110 /* Seed the search with a single WherePath containing zero WhereLoops. 4111 ** 4112 ** TUNING: Do not let the number of iterations go above 28. If the cost 4113 ** of computing an automatic index is not paid back within the first 28 4114 ** rows, then do not use the automatic index. */ 4115 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) ); 4116 nFrom = 1; 4117 assert( aFrom[0].isOrdered==0 ); 4118 if( nOrderBy ){ 4119 /* If nLoop is zero, then there are no FROM terms in the query. Since 4120 ** in this case the query may return a maximum of one row, the results 4121 ** are already in the requested order. Set isOrdered to nOrderBy to 4122 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to 4123 ** -1, indicating that the result set may or may not be ordered, 4124 ** depending on the loops added to the current plan. */ 4125 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; 4126 } 4127 4128 /* Compute successively longer WherePaths using the previous generation 4129 ** of WherePaths as the basis for the next. Keep track of the mxChoice 4130 ** best paths at each generation */ 4131 for(iLoop=0; iLoop<nLoop; iLoop++){ 4132 nTo = 0; 4133 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ 4134 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ 4135 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ 4136 LogEst rCost; /* Cost of path (pFrom+pWLoop) */ 4137 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ 4138 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */ 4139 Bitmask maskNew; /* Mask of src visited by (..) */ 4140 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */ 4141 4142 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; 4143 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; 4144 if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){ 4145 /* Do not use an automatic index if the this loop is expected 4146 ** to run less than 1.25 times. It is tempting to also exclude 4147 ** automatic index usage on an outer loop, but sometimes an automatic 4148 ** index is useful in the outer loop of a correlated subquery. */ 4149 assert( 10==sqlite3LogEst(2) ); 4150 continue; 4151 } 4152 4153 /* At this point, pWLoop is a candidate to be the next loop. 4154 ** Compute its cost */ 4155 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); 4156 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); 4157 nOut = pFrom->nRow + pWLoop->nOut; 4158 maskNew = pFrom->maskLoop | pWLoop->maskSelf; 4159 if( isOrdered<0 ){ 4160 isOrdered = wherePathSatisfiesOrderBy(pWInfo, 4161 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, 4162 iLoop, pWLoop, &revMask); 4163 }else{ 4164 revMask = pFrom->revLoop; 4165 } 4166 if( isOrdered>=0 && isOrdered<nOrderBy ){ 4167 if( aSortCost[isOrdered]==0 ){ 4168 aSortCost[isOrdered] = whereSortingCost( 4169 pWInfo, nRowEst, nOrderBy, isOrdered 4170 ); 4171 } 4172 /* TUNING: Add a small extra penalty (5) to sorting as an 4173 ** extra encouragment to the query planner to select a plan 4174 ** where the rows emerge in the correct order without any sorting 4175 ** required. */ 4176 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5; 4177 4178 WHERETRACE(0x002, 4179 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", 4180 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, 4181 rUnsorted, rCost)); 4182 }else{ 4183 rCost = rUnsorted; 4184 rUnsorted -= 2; /* TUNING: Slight bias in favor of no-sort plans */ 4185 } 4186 4187 /* Check to see if pWLoop should be added to the set of 4188 ** mxChoice best-so-far paths. 4189 ** 4190 ** First look for an existing path among best-so-far paths 4191 ** that covers the same set of loops and has the same isOrdered 4192 ** setting as the current path candidate. 4193 ** 4194 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent 4195 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range 4196 ** of legal values for isOrdered, -1..64. 4197 */ 4198 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ 4199 if( pTo->maskLoop==maskNew 4200 && ((pTo->isOrdered^isOrdered)&0x80)==0 4201 ){ 4202 testcase( jj==nTo-1 ); 4203 break; 4204 } 4205 } 4206 if( jj>=nTo ){ 4207 /* None of the existing best-so-far paths match the candidate. */ 4208 if( nTo>=mxChoice 4209 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) 4210 ){ 4211 /* The current candidate is no better than any of the mxChoice 4212 ** paths currently in the best-so-far buffer. So discard 4213 ** this candidate as not viable. */ 4214 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4215 if( sqlite3WhereTrace&0x4 ){ 4216 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n", 4217 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4218 isOrdered>=0 ? isOrdered+'0' : '?'); 4219 } 4220 #endif 4221 continue; 4222 } 4223 /* If we reach this points it means that the new candidate path 4224 ** needs to be added to the set of best-so-far paths. */ 4225 if( nTo<mxChoice ){ 4226 /* Increase the size of the aTo set by one */ 4227 jj = nTo++; 4228 }else{ 4229 /* New path replaces the prior worst to keep count below mxChoice */ 4230 jj = mxI; 4231 } 4232 pTo = &aTo[jj]; 4233 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4234 if( sqlite3WhereTrace&0x4 ){ 4235 sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n", 4236 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4237 isOrdered>=0 ? isOrdered+'0' : '?'); 4238 } 4239 #endif 4240 }else{ 4241 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the 4242 ** same set of loops and has the same isOrdered setting as the 4243 ** candidate path. Check to see if the candidate should replace 4244 ** pTo or if the candidate should be skipped. 4245 ** 4246 ** The conditional is an expanded vector comparison equivalent to: 4247 ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted) 4248 */ 4249 if( pTo->rCost<rCost 4250 || (pTo->rCost==rCost 4251 && (pTo->nRow<nOut 4252 || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted) 4253 ) 4254 ) 4255 ){ 4256 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4257 if( sqlite3WhereTrace&0x4 ){ 4258 sqlite3DebugPrintf( 4259 "Skip %s cost=%-3d,%3d,%3d order=%c", 4260 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4261 isOrdered>=0 ? isOrdered+'0' : '?'); 4262 sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n", 4263 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4264 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4265 } 4266 #endif 4267 /* Discard the candidate path from further consideration */ 4268 testcase( pTo->rCost==rCost ); 4269 continue; 4270 } 4271 testcase( pTo->rCost==rCost+1 ); 4272 /* Control reaches here if the candidate path is better than the 4273 ** pTo path. Replace pTo with the candidate. */ 4274 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4275 if( sqlite3WhereTrace&0x4 ){ 4276 sqlite3DebugPrintf( 4277 "Update %s cost=%-3d,%3d,%3d order=%c", 4278 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4279 isOrdered>=0 ? isOrdered+'0' : '?'); 4280 sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n", 4281 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4282 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4283 } 4284 #endif 4285 } 4286 /* pWLoop is a winner. Add it to the set of best so far */ 4287 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; 4288 pTo->revLoop = revMask; 4289 pTo->nRow = nOut; 4290 pTo->rCost = rCost; 4291 pTo->rUnsorted = rUnsorted; 4292 pTo->isOrdered = isOrdered; 4293 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); 4294 pTo->aLoop[iLoop] = pWLoop; 4295 if( nTo>=mxChoice ){ 4296 mxI = 0; 4297 mxCost = aTo[0].rCost; 4298 mxUnsorted = aTo[0].nRow; 4299 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ 4300 if( pTo->rCost>mxCost 4301 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) 4302 ){ 4303 mxCost = pTo->rCost; 4304 mxUnsorted = pTo->rUnsorted; 4305 mxI = jj; 4306 } 4307 } 4308 } 4309 } 4310 } 4311 4312 #ifdef WHERETRACE_ENABLED /* >=2 */ 4313 if( sqlite3WhereTrace & 0x02 ){ 4314 sqlite3DebugPrintf("---- after round %d ----\n", iLoop); 4315 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ 4316 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", 4317 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4318 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); 4319 if( pTo->isOrdered>0 ){ 4320 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); 4321 }else{ 4322 sqlite3DebugPrintf("\n"); 4323 } 4324 } 4325 } 4326 #endif 4327 4328 /* Swap the roles of aFrom and aTo for the next generation */ 4329 pFrom = aTo; 4330 aTo = aFrom; 4331 aFrom = pFrom; 4332 nFrom = nTo; 4333 } 4334 4335 if( nFrom==0 ){ 4336 sqlite3ErrorMsg(pParse, "no query solution"); 4337 sqlite3DbFreeNN(db, pSpace); 4338 return SQLITE_ERROR; 4339 } 4340 4341 /* Find the lowest cost path. pFrom will be left pointing to that path */ 4342 pFrom = aFrom; 4343 for(ii=1; ii<nFrom; ii++){ 4344 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; 4345 } 4346 assert( pWInfo->nLevel==nLoop ); 4347 /* Load the lowest cost path into pWInfo */ 4348 for(iLoop=0; iLoop<nLoop; iLoop++){ 4349 WhereLevel *pLevel = pWInfo->a + iLoop; 4350 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; 4351 pLevel->iFrom = pWLoop->iTab; 4352 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; 4353 } 4354 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 4355 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 4356 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP 4357 && nRowEst 4358 ){ 4359 Bitmask notUsed; 4360 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, 4361 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); 4362 if( rc==pWInfo->pResultSet->nExpr ){ 4363 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 4364 } 4365 } 4366 pWInfo->bOrderedInnerLoop = 0; 4367 if( pWInfo->pOrderBy ){ 4368 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ 4369 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ 4370 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 4371 } 4372 }else{ 4373 pWInfo->nOBSat = pFrom->isOrdered; 4374 pWInfo->revMask = pFrom->revLoop; 4375 if( pWInfo->nOBSat<=0 ){ 4376 pWInfo->nOBSat = 0; 4377 if( nLoop>0 ){ 4378 u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags; 4379 if( (wsFlags & WHERE_ONEROW)==0 4380 && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN) 4381 ){ 4382 Bitmask m = 0; 4383 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, 4384 WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m); 4385 testcase( wsFlags & WHERE_IPK ); 4386 testcase( wsFlags & WHERE_COLUMN_IN ); 4387 if( rc==pWInfo->pOrderBy->nExpr ){ 4388 pWInfo->bOrderedInnerLoop = 1; 4389 pWInfo->revMask = m; 4390 } 4391 } 4392 } 4393 } 4394 } 4395 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) 4396 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 4397 ){ 4398 Bitmask revMask = 0; 4399 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, 4400 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask 4401 ); 4402 assert( pWInfo->sorted==0 ); 4403 if( nOrder==pWInfo->pOrderBy->nExpr ){ 4404 pWInfo->sorted = 1; 4405 pWInfo->revMask = revMask; 4406 } 4407 } 4408 } 4409 4410 4411 pWInfo->nRowOut = pFrom->nRow; 4412 4413 /* Free temporary memory and return success */ 4414 sqlite3DbFreeNN(db, pSpace); 4415 return SQLITE_OK; 4416 } 4417 4418 /* 4419 ** Most queries use only a single table (they are not joins) and have 4420 ** simple == constraints against indexed fields. This routine attempts 4421 ** to plan those simple cases using much less ceremony than the 4422 ** general-purpose query planner, and thereby yield faster sqlite3_prepare() 4423 ** times for the common case. 4424 ** 4425 ** Return non-zero on success, if this query can be handled by this 4426 ** no-frills query planner. Return zero if this query needs the 4427 ** general-purpose query planner. 4428 */ 4429 static int whereShortCut(WhereLoopBuilder *pBuilder){ 4430 WhereInfo *pWInfo; 4431 struct SrcList_item *pItem; 4432 WhereClause *pWC; 4433 WhereTerm *pTerm; 4434 WhereLoop *pLoop; 4435 int iCur; 4436 int j; 4437 Table *pTab; 4438 Index *pIdx; 4439 4440 pWInfo = pBuilder->pWInfo; 4441 if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0; 4442 assert( pWInfo->pTabList->nSrc>=1 ); 4443 pItem = pWInfo->pTabList->a; 4444 pTab = pItem->pTab; 4445 if( IsVirtual(pTab) ) return 0; 4446 if( pItem->fg.isIndexedBy ) return 0; 4447 iCur = pItem->iCursor; 4448 pWC = &pWInfo->sWC; 4449 pLoop = pBuilder->pNew; 4450 pLoop->wsFlags = 0; 4451 pLoop->nSkip = 0; 4452 pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0); 4453 if( pTerm ){ 4454 testcase( pTerm->eOperator & WO_IS ); 4455 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; 4456 pLoop->aLTerm[0] = pTerm; 4457 pLoop->nLTerm = 1; 4458 pLoop->u.btree.nEq = 1; 4459 /* TUNING: Cost of a rowid lookup is 10 */ 4460 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ 4461 }else{ 4462 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4463 int opMask; 4464 assert( pLoop->aLTermSpace==pLoop->aLTerm ); 4465 if( !IsUniqueIndex(pIdx) 4466 || pIdx->pPartIdxWhere!=0 4467 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) 4468 ) continue; 4469 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; 4470 for(j=0; j<pIdx->nKeyCol; j++){ 4471 pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx); 4472 if( pTerm==0 ) break; 4473 testcase( pTerm->eOperator & WO_IS ); 4474 pLoop->aLTerm[j] = pTerm; 4475 } 4476 if( j!=pIdx->nKeyCol ) continue; 4477 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; 4478 if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){ 4479 pLoop->wsFlags |= WHERE_IDX_ONLY; 4480 } 4481 pLoop->nLTerm = j; 4482 pLoop->u.btree.nEq = j; 4483 pLoop->u.btree.pIndex = pIdx; 4484 /* TUNING: Cost of a unique index lookup is 15 */ 4485 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ 4486 break; 4487 } 4488 } 4489 if( pLoop->wsFlags ){ 4490 pLoop->nOut = (LogEst)1; 4491 pWInfo->a[0].pWLoop = pLoop; 4492 assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] ); 4493 pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */ 4494 pWInfo->a[0].iTabCur = iCur; 4495 pWInfo->nRowOut = 1; 4496 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; 4497 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ 4498 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4499 } 4500 #ifdef SQLITE_DEBUG 4501 pLoop->cId = '0'; 4502 #endif 4503 return 1; 4504 } 4505 return 0; 4506 } 4507 4508 /* 4509 ** Helper function for exprIsDeterministic(). 4510 */ 4511 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){ 4512 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){ 4513 pWalker->eCode = 0; 4514 return WRC_Abort; 4515 } 4516 return WRC_Continue; 4517 } 4518 4519 /* 4520 ** Return true if the expression contains no non-deterministic SQL 4521 ** functions. Do not consider non-deterministic SQL functions that are 4522 ** part of sub-select statements. 4523 */ 4524 static int exprIsDeterministic(Expr *p){ 4525 Walker w; 4526 memset(&w, 0, sizeof(w)); 4527 w.eCode = 1; 4528 w.xExprCallback = exprNodeIsDeterministic; 4529 w.xSelectCallback = sqlite3SelectWalkFail; 4530 sqlite3WalkExpr(&w, p); 4531 return w.eCode; 4532 } 4533 4534 /* 4535 ** Generate the beginning of the loop used for WHERE clause processing. 4536 ** The return value is a pointer to an opaque structure that contains 4537 ** information needed to terminate the loop. Later, the calling routine 4538 ** should invoke sqlite3WhereEnd() with the return value of this function 4539 ** in order to complete the WHERE clause processing. 4540 ** 4541 ** If an error occurs, this routine returns NULL. 4542 ** 4543 ** The basic idea is to do a nested loop, one loop for each table in 4544 ** the FROM clause of a select. (INSERT and UPDATE statements are the 4545 ** same as a SELECT with only a single table in the FROM clause.) For 4546 ** example, if the SQL is this: 4547 ** 4548 ** SELECT * FROM t1, t2, t3 WHERE ...; 4549 ** 4550 ** Then the code generated is conceptually like the following: 4551 ** 4552 ** foreach row1 in t1 do \ Code generated 4553 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 4554 ** foreach row3 in t3 do / 4555 ** ... 4556 ** end \ Code generated 4557 ** end |-- by sqlite3WhereEnd() 4558 ** end / 4559 ** 4560 ** Note that the loops might not be nested in the order in which they 4561 ** appear in the FROM clause if a different order is better able to make 4562 ** use of indices. Note also that when the IN operator appears in 4563 ** the WHERE clause, it might result in additional nested loops for 4564 ** scanning through all values on the right-hand side of the IN. 4565 ** 4566 ** There are Btree cursors associated with each table. t1 uses cursor 4567 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 4568 ** And so forth. This routine generates code to open those VDBE cursors 4569 ** and sqlite3WhereEnd() generates the code to close them. 4570 ** 4571 ** The code that sqlite3WhereBegin() generates leaves the cursors named 4572 ** in pTabList pointing at their appropriate entries. The [...] code 4573 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 4574 ** data from the various tables of the loop. 4575 ** 4576 ** If the WHERE clause is empty, the foreach loops must each scan their 4577 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 4578 ** the tables have indices and there are terms in the WHERE clause that 4579 ** refer to those indices, a complete table scan can be avoided and the 4580 ** code will run much faster. Most of the work of this routine is checking 4581 ** to see if there are indices that can be used to speed up the loop. 4582 ** 4583 ** Terms of the WHERE clause are also used to limit which rows actually 4584 ** make it to the "..." in the middle of the loop. After each "foreach", 4585 ** terms of the WHERE clause that use only terms in that loop and outer 4586 ** loops are evaluated and if false a jump is made around all subsequent 4587 ** inner loops (or around the "..." if the test occurs within the inner- 4588 ** most loop) 4589 ** 4590 ** OUTER JOINS 4591 ** 4592 ** An outer join of tables t1 and t2 is conceptally coded as follows: 4593 ** 4594 ** foreach row1 in t1 do 4595 ** flag = 0 4596 ** foreach row2 in t2 do 4597 ** start: 4598 ** ... 4599 ** flag = 1 4600 ** end 4601 ** if flag==0 then 4602 ** move the row2 cursor to a null row 4603 ** goto start 4604 ** fi 4605 ** end 4606 ** 4607 ** ORDER BY CLAUSE PROCESSING 4608 ** 4609 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause 4610 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement 4611 ** if there is one. If there is no ORDER BY clause or if this routine 4612 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. 4613 ** 4614 ** The iIdxCur parameter is the cursor number of an index. If 4615 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index 4616 ** to use for OR clause processing. The WHERE clause should use this 4617 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is 4618 ** the first cursor in an array of cursors for all indices. iIdxCur should 4619 ** be used to compute the appropriate cursor depending on which index is 4620 ** used. 4621 */ 4622 WhereInfo *sqlite3WhereBegin( 4623 Parse *pParse, /* The parser context */ 4624 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ 4625 Expr *pWhere, /* The WHERE clause */ 4626 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ 4627 ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */ 4628 u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */ 4629 int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number 4630 ** If WHERE_USE_LIMIT, then the limit amount */ 4631 ){ 4632 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ 4633 int nTabList; /* Number of elements in pTabList */ 4634 WhereInfo *pWInfo; /* Will become the return value of this function */ 4635 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 4636 Bitmask notReady; /* Cursors that are not yet positioned */ 4637 WhereLoopBuilder sWLB; /* The WhereLoop builder */ 4638 WhereMaskSet *pMaskSet; /* The expression mask set */ 4639 WhereLevel *pLevel; /* A single level in pWInfo->a[] */ 4640 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ 4641 int ii; /* Loop counter */ 4642 sqlite3 *db; /* Database connection */ 4643 int rc; /* Return code */ 4644 u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */ 4645 4646 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || ( 4647 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 4648 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 4649 )); 4650 4651 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */ 4652 assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 4653 || (wctrlFlags & WHERE_USE_LIMIT)==0 ); 4654 4655 /* Variable initialization */ 4656 db = pParse->db; 4657 memset(&sWLB, 0, sizeof(sWLB)); 4658 4659 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ 4660 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); 4661 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; 4662 sWLB.pOrderBy = pOrderBy; 4663 4664 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via 4665 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ 4666 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ 4667 wctrlFlags &= ~WHERE_WANT_DISTINCT; 4668 } 4669 4670 /* The number of tables in the FROM clause is limited by the number of 4671 ** bits in a Bitmask 4672 */ 4673 testcase( pTabList->nSrc==BMS ); 4674 if( pTabList->nSrc>BMS ){ 4675 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 4676 return 0; 4677 } 4678 4679 /* This function normally generates a nested loop for all tables in 4680 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should 4681 ** only generate code for the first table in pTabList and assume that 4682 ** any cursors associated with subsequent tables are uninitialized. 4683 */ 4684 nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc; 4685 4686 /* Allocate and initialize the WhereInfo structure that will become the 4687 ** return value. A single allocation is used to store the WhereInfo 4688 ** struct, the contents of WhereInfo.a[], the WhereClause structure 4689 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte 4690 ** field (type Bitmask) it must be aligned on an 8-byte boundary on 4691 ** some architectures. Hence the ROUND8() below. 4692 */ 4693 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); 4694 pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop)); 4695 if( db->mallocFailed ){ 4696 sqlite3DbFree(db, pWInfo); 4697 pWInfo = 0; 4698 goto whereBeginError; 4699 } 4700 pWInfo->pParse = pParse; 4701 pWInfo->pTabList = pTabList; 4702 pWInfo->pOrderBy = pOrderBy; 4703 pWInfo->pWhere = pWhere; 4704 pWInfo->pResultSet = pResultSet; 4705 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; 4706 pWInfo->nLevel = nTabList; 4707 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse); 4708 pWInfo->wctrlFlags = wctrlFlags; 4709 pWInfo->iLimit = iAuxArg; 4710 pWInfo->savedNQueryLoop = pParse->nQueryLoop; 4711 memset(&pWInfo->nOBSat, 0, 4712 offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat)); 4713 memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel)); 4714 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */ 4715 pMaskSet = &pWInfo->sMaskSet; 4716 sWLB.pWInfo = pWInfo; 4717 sWLB.pWC = &pWInfo->sWC; 4718 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); 4719 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); 4720 whereLoopInit(sWLB.pNew); 4721 #ifdef SQLITE_DEBUG 4722 sWLB.pNew->cId = '*'; 4723 #endif 4724 4725 /* Split the WHERE clause into separate subexpressions where each 4726 ** subexpression is separated by an AND operator. 4727 */ 4728 initMaskSet(pMaskSet); 4729 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); 4730 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); 4731 4732 /* Special case: No FROM clause 4733 */ 4734 if( nTabList==0 ){ 4735 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; 4736 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4737 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4738 } 4739 ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW")); 4740 }else{ 4741 /* Assign a bit from the bitmask to every term in the FROM clause. 4742 ** 4743 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. 4744 ** 4745 ** The rule of the previous sentence ensures thta if X is the bitmask for 4746 ** a table T, then X-1 is the bitmask for all other tables to the left of T. 4747 ** Knowing the bitmask for all tables to the left of a left join is 4748 ** important. Ticket #3015. 4749 ** 4750 ** Note that bitmasks are created for all pTabList->nSrc tables in 4751 ** pTabList, not just the first nTabList tables. nTabList is normally 4752 ** equal to pTabList->nSrc but might be shortened to 1 if the 4753 ** WHERE_OR_SUBCLAUSE flag is set. 4754 */ 4755 ii = 0; 4756 do{ 4757 createMask(pMaskSet, pTabList->a[ii].iCursor); 4758 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC); 4759 }while( (++ii)<pTabList->nSrc ); 4760 #ifdef SQLITE_DEBUG 4761 { 4762 Bitmask mx = 0; 4763 for(ii=0; ii<pTabList->nSrc; ii++){ 4764 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); 4765 assert( m>=mx ); 4766 mx = m; 4767 } 4768 } 4769 #endif 4770 } 4771 4772 /* Analyze all of the subexpressions. */ 4773 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); 4774 if( db->mallocFailed ) goto whereBeginError; 4775 4776 /* Special case: WHERE terms that do not refer to any tables in the join 4777 ** (constant expressions). Evaluate each such term, and jump over all the 4778 ** generated code if the result is not true. 4779 ** 4780 ** Do not do this if the expression contains non-deterministic functions 4781 ** that are not within a sub-select. This is not strictly required, but 4782 ** preserves SQLite's legacy behaviour in the following two cases: 4783 ** 4784 ** FROM ... WHERE random()>0; -- eval random() once per row 4785 ** FROM ... WHERE (SELECT random())>0; -- eval random() once overall 4786 */ 4787 for(ii=0; ii<sWLB.pWC->nTerm; ii++){ 4788 WhereTerm *pT = &sWLB.pWC->a[ii]; 4789 if( pT->wtFlags & TERM_VIRTUAL ) continue; 4790 if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){ 4791 sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL); 4792 pT->wtFlags |= TERM_CODED; 4793 } 4794 } 4795 4796 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4797 if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ 4798 /* The DISTINCT marking is pointless. Ignore it. */ 4799 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4800 }else if( pOrderBy==0 ){ 4801 /* Try to ORDER BY the result set to make distinct processing easier */ 4802 pWInfo->wctrlFlags |= WHERE_DISTINCTBY; 4803 pWInfo->pOrderBy = pResultSet; 4804 } 4805 } 4806 4807 /* Construct the WhereLoop objects */ 4808 #if defined(WHERETRACE_ENABLED) 4809 if( sqlite3WhereTrace & 0xffff ){ 4810 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags); 4811 if( wctrlFlags & WHERE_USE_LIMIT ){ 4812 sqlite3DebugPrintf(", limit: %d", iAuxArg); 4813 } 4814 sqlite3DebugPrintf(")\n"); 4815 if( sqlite3WhereTrace & 0x100 ){ 4816 Select sSelect; 4817 memset(&sSelect, 0, sizeof(sSelect)); 4818 sSelect.selFlags = SF_WhereBegin; 4819 sSelect.pSrc = pTabList; 4820 sSelect.pWhere = pWhere; 4821 sSelect.pOrderBy = pOrderBy; 4822 sSelect.pEList = pResultSet; 4823 sqlite3TreeViewSelect(0, &sSelect, 0); 4824 } 4825 } 4826 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 4827 sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n"); 4828 sqlite3WhereClausePrint(sWLB.pWC); 4829 } 4830 #endif 4831 4832 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ 4833 rc = whereLoopAddAll(&sWLB); 4834 if( rc ) goto whereBeginError; 4835 4836 #ifdef WHERETRACE_ENABLED 4837 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ 4838 WhereLoop *p; 4839 int i; 4840 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" 4841 "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; 4842 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ 4843 p->cId = zLabel[i%(sizeof(zLabel)-1)]; 4844 sqlite3WhereLoopPrint(p, sWLB.pWC); 4845 } 4846 } 4847 #endif 4848 4849 wherePathSolver(pWInfo, 0); 4850 if( db->mallocFailed ) goto whereBeginError; 4851 if( pWInfo->pOrderBy ){ 4852 wherePathSolver(pWInfo, pWInfo->nRowOut+1); 4853 if( db->mallocFailed ) goto whereBeginError; 4854 } 4855 } 4856 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ 4857 pWInfo->revMask = ALLBITS; 4858 } 4859 if( pParse->nErr || NEVER(db->mallocFailed) ){ 4860 goto whereBeginError; 4861 } 4862 #ifdef WHERETRACE_ENABLED 4863 if( sqlite3WhereTrace ){ 4864 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); 4865 if( pWInfo->nOBSat>0 ){ 4866 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); 4867 } 4868 switch( pWInfo->eDistinct ){ 4869 case WHERE_DISTINCT_UNIQUE: { 4870 sqlite3DebugPrintf(" DISTINCT=unique"); 4871 break; 4872 } 4873 case WHERE_DISTINCT_ORDERED: { 4874 sqlite3DebugPrintf(" DISTINCT=ordered"); 4875 break; 4876 } 4877 case WHERE_DISTINCT_UNORDERED: { 4878 sqlite3DebugPrintf(" DISTINCT=unordered"); 4879 break; 4880 } 4881 } 4882 sqlite3DebugPrintf("\n"); 4883 for(ii=0; ii<pWInfo->nLevel; ii++){ 4884 sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); 4885 } 4886 } 4887 #endif 4888 4889 /* Attempt to omit tables from the join that do not affect the result. 4890 ** For a table to not affect the result, the following must be true: 4891 ** 4892 ** 1) The query must not be an aggregate. 4893 ** 2) The table must be the RHS of a LEFT JOIN. 4894 ** 3) Either the query must be DISTINCT, or else the ON or USING clause 4895 ** must contain a constraint that limits the scan of the table to 4896 ** at most a single row. 4897 ** 4) The table must not be referenced by any part of the query apart 4898 ** from its own USING or ON clause. 4899 ** 4900 ** For example, given: 4901 ** 4902 ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1); 4903 ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2); 4904 ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3); 4905 ** 4906 ** then table t2 can be omitted from the following: 4907 ** 4908 ** SELECT v1, v3 FROM t1 4909 ** LEFT JOIN t2 USING (t1.ipk=t2.ipk) 4910 ** LEFT JOIN t3 USING (t1.ipk=t3.ipk) 4911 ** 4912 ** or from: 4913 ** 4914 ** SELECT DISTINCT v1, v3 FROM t1 4915 ** LEFT JOIN t2 4916 ** LEFT JOIN t3 USING (t1.ipk=t3.ipk) 4917 */ 4918 notReady = ~(Bitmask)0; 4919 if( pWInfo->nLevel>=2 4920 && pResultSet!=0 /* guarantees condition (1) above */ 4921 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) 4922 ){ 4923 int i; 4924 Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet); 4925 if( sWLB.pOrderBy ){ 4926 tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy); 4927 } 4928 for(i=pWInfo->nLevel-1; i>=1; i--){ 4929 WhereTerm *pTerm, *pEnd; 4930 struct SrcList_item *pItem; 4931 pLoop = pWInfo->a[i].pWLoop; 4932 pItem = &pWInfo->pTabList->a[pLoop->iTab]; 4933 if( (pItem->fg.jointype & JT_LEFT)==0 ) continue; 4934 if( (wctrlFlags & WHERE_WANT_DISTINCT)==0 4935 && (pLoop->wsFlags & WHERE_ONEROW)==0 4936 ){ 4937 continue; 4938 } 4939 if( (tabUsed & pLoop->maskSelf)!=0 ) continue; 4940 pEnd = sWLB.pWC->a + sWLB.pWC->nTerm; 4941 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ 4942 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 4943 if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 4944 || pTerm->pExpr->iRightJoinTable!=pItem->iCursor 4945 ){ 4946 break; 4947 } 4948 } 4949 } 4950 if( pTerm<pEnd ) continue; 4951 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); 4952 notReady &= ~pLoop->maskSelf; 4953 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ 4954 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 4955 pTerm->wtFlags |= TERM_CODED; 4956 } 4957 } 4958 if( i!=pWInfo->nLevel-1 ){ 4959 int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel); 4960 memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte); 4961 } 4962 pWInfo->nLevel--; 4963 nTabList--; 4964 } 4965 } 4966 #if defined(WHERETRACE_ENABLED) 4967 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 4968 sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n"); 4969 sqlite3WhereClausePrint(sWLB.pWC); 4970 } 4971 WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); 4972 #endif 4973 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; 4974 4975 /* If the caller is an UPDATE or DELETE statement that is requesting 4976 ** to use a one-pass algorithm, determine if this is appropriate. 4977 ** 4978 ** A one-pass approach can be used if the caller has requested one 4979 ** and either (a) the scan visits at most one row or (b) each 4980 ** of the following are true: 4981 ** 4982 ** * the caller has indicated that a one-pass approach can be used 4983 ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and 4984 ** * the table is not a virtual table, and 4985 ** * either the scan does not use the OR optimization or the caller 4986 ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified 4987 ** for DELETE). 4988 ** 4989 ** The last qualification is because an UPDATE statement uses 4990 ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can 4991 ** use a one-pass approach, and this is not set accurately for scans 4992 ** that use the OR optimization. 4993 */ 4994 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 4995 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){ 4996 int wsFlags = pWInfo->a[0].pWLoop->wsFlags; 4997 int bOnerow = (wsFlags & WHERE_ONEROW)!=0; 4998 assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) ); 4999 if( bOnerow || ( 5000 0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW) 5001 && !IsVirtual(pTabList->a[0].pTab) 5002 && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK)) 5003 )){ 5004 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; 5005 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){ 5006 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){ 5007 bFordelete = OPFLAG_FORDELETE; 5008 } 5009 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY); 5010 } 5011 } 5012 } 5013 5014 /* Open all tables in the pTabList and any indices selected for 5015 ** searching those tables. 5016 */ 5017 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ 5018 Table *pTab; /* Table to open */ 5019 int iDb; /* Index of database containing table/index */ 5020 struct SrcList_item *pTabItem; 5021 5022 pTabItem = &pTabList->a[pLevel->iFrom]; 5023 pTab = pTabItem->pTab; 5024 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5025 pLoop = pLevel->pWLoop; 5026 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){ 5027 /* Do nothing */ 5028 }else 5029 #ifndef SQLITE_OMIT_VIRTUALTABLE 5030 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 5031 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 5032 int iCur = pTabItem->iCursor; 5033 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); 5034 }else if( IsVirtual(pTab) ){ 5035 /* noop */ 5036 }else 5037 #endif 5038 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 5039 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){ 5040 int op = OP_OpenRead; 5041 if( pWInfo->eOnePass!=ONEPASS_OFF ){ 5042 op = OP_OpenWrite; 5043 pWInfo->aiCurOnePass[0] = pTabItem->iCursor; 5044 }; 5045 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 5046 assert( pTabItem->iCursor==pLevel->iTabCur ); 5047 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 ); 5048 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS ); 5049 if( pWInfo->eOnePass==ONEPASS_OFF 5050 && pTab->nCol<BMS 5051 && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0 5052 ){ 5053 /* If we know that only a prefix of the record will be used, 5054 ** it is advantageous to reduce the "column count" field in 5055 ** the P4 operand of the OP_OpenRead/Write opcode. */ 5056 Bitmask b = pTabItem->colUsed; 5057 int n = 0; 5058 for(; b; b=b>>1, n++){} 5059 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32); 5060 assert( n<=pTab->nCol ); 5061 } 5062 #ifdef SQLITE_ENABLE_CURSOR_HINTS 5063 if( pLoop->u.btree.pIndex!=0 ){ 5064 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete); 5065 }else 5066 #endif 5067 { 5068 sqlite3VdbeChangeP5(v, bFordelete); 5069 } 5070 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 5071 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, 5072 (const u8*)&pTabItem->colUsed, P4_INT64); 5073 #endif 5074 }else{ 5075 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5076 } 5077 if( pLoop->wsFlags & WHERE_INDEXED ){ 5078 Index *pIx = pLoop->u.btree.pIndex; 5079 int iIndexCur; 5080 int op = OP_OpenRead; 5081 /* iAuxArg is always set to a positive value if ONEPASS is possible */ 5082 assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); 5083 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) 5084 && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 5085 ){ 5086 /* This is one term of an OR-optimization using the PRIMARY KEY of a 5087 ** WITHOUT ROWID table. No need for a separate index */ 5088 iIndexCur = pLevel->iTabCur; 5089 op = 0; 5090 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){ 5091 Index *pJ = pTabItem->pTab->pIndex; 5092 iIndexCur = iAuxArg; 5093 assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); 5094 while( ALWAYS(pJ) && pJ!=pIx ){ 5095 iIndexCur++; 5096 pJ = pJ->pNext; 5097 } 5098 op = OP_OpenWrite; 5099 pWInfo->aiCurOnePass[1] = iIndexCur; 5100 }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){ 5101 iIndexCur = iAuxArg; 5102 op = OP_ReopenIdx; 5103 }else{ 5104 iIndexCur = pParse->nTab++; 5105 } 5106 pLevel->iIdxCur = iIndexCur; 5107 assert( pIx->pSchema==pTab->pSchema ); 5108 assert( iIndexCur>=0 ); 5109 if( op ){ 5110 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); 5111 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 5112 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 5113 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 5114 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0 5115 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 5116 && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED 5117 ){ 5118 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */ 5119 } 5120 VdbeComment((v, "%s", pIx->zName)); 5121 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 5122 { 5123 u64 colUsed = 0; 5124 int ii, jj; 5125 for(ii=0; ii<pIx->nColumn; ii++){ 5126 jj = pIx->aiColumn[ii]; 5127 if( jj<0 ) continue; 5128 if( jj>63 ) jj = 63; 5129 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue; 5130 colUsed |= ((u64)1)<<(ii<63 ? ii : 63); 5131 } 5132 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, 5133 (u8*)&colUsed, P4_INT64); 5134 } 5135 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ 5136 } 5137 } 5138 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); 5139 } 5140 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 5141 if( db->mallocFailed ) goto whereBeginError; 5142 5143 /* Generate the code to do the search. Each iteration of the for 5144 ** loop below generates code for a single nested loop of the VM 5145 ** program. 5146 */ 5147 for(ii=0; ii<nTabList; ii++){ 5148 int addrExplain; 5149 int wsFlags; 5150 pLevel = &pWInfo->a[ii]; 5151 wsFlags = pLevel->pWLoop->wsFlags; 5152 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 5153 if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 5154 constructAutomaticIndex(pParse, &pWInfo->sWC, 5155 &pTabList->a[pLevel->iFrom], notReady, pLevel); 5156 if( db->mallocFailed ) goto whereBeginError; 5157 } 5158 #endif 5159 addrExplain = sqlite3WhereExplainOneScan( 5160 pParse, pTabList, pLevel, wctrlFlags 5161 ); 5162 pLevel->addrBody = sqlite3VdbeCurrentAddr(v); 5163 notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady); 5164 pWInfo->iContinue = pLevel->addrCont; 5165 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){ 5166 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); 5167 } 5168 } 5169 5170 /* Done. */ 5171 VdbeModuleComment((v, "Begin WHERE-core")); 5172 return pWInfo; 5173 5174 /* Jump here if malloc fails */ 5175 whereBeginError: 5176 if( pWInfo ){ 5177 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 5178 whereInfoFree(db, pWInfo); 5179 } 5180 return 0; 5181 } 5182 5183 /* 5184 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the 5185 ** index rather than the main table. In SQLITE_DEBUG mode, we want 5186 ** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine 5187 ** does that. 5188 */ 5189 #ifndef SQLITE_DEBUG 5190 # define OpcodeRewriteTrace(D,K,P) /* no-op */ 5191 #else 5192 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P) 5193 static void sqlite3WhereOpcodeRewriteTrace( 5194 sqlite3 *db, 5195 int pc, 5196 VdbeOp *pOp 5197 ){ 5198 if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return; 5199 sqlite3VdbePrintOp(0, pc, pOp); 5200 } 5201 #endif 5202 5203 /* 5204 ** Generate the end of the WHERE loop. See comments on 5205 ** sqlite3WhereBegin() for additional information. 5206 */ 5207 void sqlite3WhereEnd(WhereInfo *pWInfo){ 5208 Parse *pParse = pWInfo->pParse; 5209 Vdbe *v = pParse->pVdbe; 5210 int i; 5211 WhereLevel *pLevel; 5212 WhereLoop *pLoop; 5213 SrcList *pTabList = pWInfo->pTabList; 5214 sqlite3 *db = pParse->db; 5215 5216 /* Generate loop termination code. 5217 */ 5218 VdbeModuleComment((v, "End WHERE-core")); 5219 for(i=pWInfo->nLevel-1; i>=0; i--){ 5220 int addr; 5221 pLevel = &pWInfo->a[i]; 5222 pLoop = pLevel->pWLoop; 5223 if( pLevel->op!=OP_Noop ){ 5224 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 5225 int addrSeek = 0; 5226 Index *pIdx; 5227 int n; 5228 if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED 5229 && i==pWInfo->nLevel-1 /* Ticket [ef9318757b152e3] 2017-10-21 */ 5230 && (pLoop->wsFlags & WHERE_INDEXED)!=0 5231 && (pIdx = pLoop->u.btree.pIndex)->hasStat1 5232 && (n = pLoop->u.btree.nDistinctCol)>0 5233 && pIdx->aiRowLogEst[n]>=36 5234 ){ 5235 int r1 = pParse->nMem+1; 5236 int j, op; 5237 for(j=0; j<n; j++){ 5238 sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j); 5239 } 5240 pParse->nMem += n+1; 5241 op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT; 5242 addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n); 5243 VdbeCoverageIf(v, op==OP_SeekLT); 5244 VdbeCoverageIf(v, op==OP_SeekGT); 5245 sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2); 5246 } 5247 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */ 5248 /* The common case: Advance to the next row */ 5249 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 5250 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); 5251 sqlite3VdbeChangeP5(v, pLevel->p5); 5252 VdbeCoverage(v); 5253 VdbeCoverageIf(v, pLevel->op==OP_Next); 5254 VdbeCoverageIf(v, pLevel->op==OP_Prev); 5255 VdbeCoverageIf(v, pLevel->op==OP_VNext); 5256 if( pLevel->regBignull ){ 5257 sqlite3VdbeResolveLabel(v, pLevel->addrBignull); 5258 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1); 5259 VdbeCoverage(v); 5260 } 5261 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 5262 if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek); 5263 #endif 5264 }else{ 5265 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 5266 } 5267 if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ 5268 struct InLoop *pIn; 5269 int j; 5270 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 5271 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 5272 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 5273 if( pIn->eEndLoopOp!=OP_Noop ){ 5274 if( pIn->nPrefix ){ 5275 assert( pLoop->wsFlags & WHERE_IN_EARLYOUT ); 5276 sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur, 5277 sqlite3VdbeCurrentAddr(v)+2, 5278 pIn->iBase, pIn->nPrefix); 5279 VdbeCoverage(v); 5280 } 5281 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); 5282 VdbeCoverage(v); 5283 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev); 5284 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next); 5285 } 5286 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 5287 } 5288 } 5289 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 5290 if( pLevel->addrSkip ){ 5291 sqlite3VdbeGoto(v, pLevel->addrSkip); 5292 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); 5293 sqlite3VdbeJumpHere(v, pLevel->addrSkip); 5294 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); 5295 } 5296 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 5297 if( pLevel->addrLikeRep ){ 5298 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1), 5299 pLevel->addrLikeRep); 5300 VdbeCoverage(v); 5301 } 5302 #endif 5303 if( pLevel->iLeftJoin ){ 5304 int ws = pLoop->wsFlags; 5305 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); 5306 assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 ); 5307 if( (ws & WHERE_IDX_ONLY)==0 ){ 5308 assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor ); 5309 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur); 5310 } 5311 if( (ws & WHERE_INDEXED) 5312 || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx) 5313 ){ 5314 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 5315 } 5316 if( pLevel->op==OP_Return ){ 5317 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); 5318 }else{ 5319 sqlite3VdbeGoto(v, pLevel->addrFirst); 5320 } 5321 sqlite3VdbeJumpHere(v, addr); 5322 } 5323 VdbeModuleComment((v, "End WHERE-loop%d: %s", i, 5324 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); 5325 } 5326 5327 /* The "break" point is here, just past the end of the outer loop. 5328 ** Set it. 5329 */ 5330 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 5331 5332 assert( pWInfo->nLevel<=pTabList->nSrc ); 5333 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ 5334 int k, last; 5335 VdbeOp *pOp; 5336 Index *pIdx = 0; 5337 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 5338 Table *pTab = pTabItem->pTab; 5339 assert( pTab!=0 ); 5340 pLoop = pLevel->pWLoop; 5341 5342 /* For a co-routine, change all OP_Column references to the table of 5343 ** the co-routine into OP_Copy of result contained in a register. 5344 ** OP_Rowid becomes OP_Null. 5345 */ 5346 if( pTabItem->fg.viaCoroutine ){ 5347 testcase( pParse->db->mallocFailed ); 5348 translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur, 5349 pTabItem->regResult, 0); 5350 continue; 5351 } 5352 5353 #ifdef SQLITE_ENABLE_EARLY_CURSOR_CLOSE 5354 /* Close all of the cursors that were opened by sqlite3WhereBegin. 5355 ** Except, do not close cursors that will be reused by the OR optimization 5356 ** (WHERE_OR_SUBCLAUSE). And do not close the OP_OpenWrite cursors 5357 ** created for the ONEPASS optimization. 5358 */ 5359 if( (pTab->tabFlags & TF_Ephemeral)==0 5360 && pTab->pSelect==0 5361 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 5362 ){ 5363 int ws = pLoop->wsFlags; 5364 if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){ 5365 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); 5366 } 5367 if( (ws & WHERE_INDEXED)!=0 5368 && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0 5369 && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1] 5370 ){ 5371 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); 5372 } 5373 } 5374 #endif 5375 5376 /* If this scan uses an index, make VDBE code substitutions to read data 5377 ** from the index instead of from the table where possible. In some cases 5378 ** this optimization prevents the table from ever being read, which can 5379 ** yield a significant performance boost. 5380 ** 5381 ** Calls to the code generator in between sqlite3WhereBegin and 5382 ** sqlite3WhereEnd will have created code that references the table 5383 ** directly. This loop scans all that code looking for opcodes 5384 ** that reference the table and converts them into opcodes that 5385 ** reference the index. 5386 */ 5387 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ 5388 pIdx = pLoop->u.btree.pIndex; 5389 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ 5390 pIdx = pLevel->u.pCovidx; 5391 } 5392 if( pIdx 5393 && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable)) 5394 && !db->mallocFailed 5395 ){ 5396 last = sqlite3VdbeCurrentAddr(v); 5397 k = pLevel->addrBody; 5398 #ifdef SQLITE_DEBUG 5399 if( db->flags & SQLITE_VdbeAddopTrace ){ 5400 printf("TRANSLATE opcodes in range %d..%d\n", k, last-1); 5401 } 5402 #endif 5403 pOp = sqlite3VdbeGetOp(v, k); 5404 for(; k<last; k++, pOp++){ 5405 if( pOp->p1!=pLevel->iTabCur ) continue; 5406 if( pOp->opcode==OP_Column 5407 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 5408 || pOp->opcode==OP_Offset 5409 #endif 5410 ){ 5411 int x = pOp->p2; 5412 assert( pIdx->pTable==pTab ); 5413 if( !HasRowid(pTab) ){ 5414 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 5415 x = pPk->aiColumn[x]; 5416 assert( x>=0 ); 5417 }else{ 5418 testcase( x!=sqlite3StorageColumnToTable(pTab,x) ); 5419 x = sqlite3StorageColumnToTable(pTab,x); 5420 } 5421 x = sqlite3TableColumnToIndex(pIdx, x); 5422 if( x>=0 ){ 5423 pOp->p2 = x; 5424 pOp->p1 = pLevel->iIdxCur; 5425 OpcodeRewriteTrace(db, k, pOp); 5426 } 5427 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 5428 || pWInfo->eOnePass ); 5429 }else if( pOp->opcode==OP_Rowid ){ 5430 pOp->p1 = pLevel->iIdxCur; 5431 pOp->opcode = OP_IdxRowid; 5432 OpcodeRewriteTrace(db, k, pOp); 5433 }else if( pOp->opcode==OP_IfNullRow ){ 5434 pOp->p1 = pLevel->iIdxCur; 5435 OpcodeRewriteTrace(db, k, pOp); 5436 } 5437 } 5438 #ifdef SQLITE_DEBUG 5439 if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n"); 5440 #endif 5441 } 5442 } 5443 5444 /* Undo all Expr node modifications */ 5445 while( pWInfo->pExprMods ){ 5446 WhereExprMod *p = pWInfo->pExprMods; 5447 pWInfo->pExprMods = p->pNext; 5448 memcpy(p->pExpr, &p->orig, sizeof(p->orig)); 5449 sqlite3DbFree(db, p); 5450 } 5451 5452 /* Final cleanup 5453 */ 5454 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 5455 whereInfoFree(db, pWInfo); 5456 return; 5457 } 5458