1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* 23 ** Extra information appended to the end of sqlite3_index_info but not 24 ** visible to the xBestIndex function, at least not directly. The 25 ** sqlite3_vtab_collation() interface knows how to reach it, however. 26 ** 27 ** This object is not an API and can be changed from one release to the 28 ** next. As long as allocateIndexInfo() and sqlite3_vtab_collation() 29 ** agree on the structure, all will be well. 30 */ 31 typedef struct HiddenIndexInfo HiddenIndexInfo; 32 struct HiddenIndexInfo { 33 WhereClause *pWC; /* The Where clause being analyzed */ 34 Parse *pParse; /* The parsing context */ 35 }; 36 37 /* Forward declaration of methods */ 38 static int whereLoopResize(sqlite3*, WhereLoop*, int); 39 40 /* Test variable that can be set to enable WHERE tracing */ 41 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 42 /***/ int sqlite3WhereTrace = 0; 43 #endif 44 45 46 /* 47 ** Return the estimated number of output rows from a WHERE clause 48 */ 49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ 50 return pWInfo->nRowOut; 51 } 52 53 /* 54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this 55 ** WHERE clause returns outputs for DISTINCT processing. 56 */ 57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ 58 return pWInfo->eDistinct; 59 } 60 61 /* 62 ** Return TRUE if the WHERE clause returns rows in ORDER BY order. 63 ** Return FALSE if the output needs to be sorted. 64 */ 65 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ 66 return pWInfo->nOBSat; 67 } 68 69 /* 70 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known 71 ** to emit rows in increasing order, and if the last row emitted by the 72 ** inner-most loop did not fit within the sorter, then we can skip all 73 ** subsequent rows for the current iteration of the inner loop (because they 74 ** will not fit in the sorter either) and continue with the second inner 75 ** loop - the loop immediately outside the inner-most. 76 ** 77 ** When a row does not fit in the sorter (because the sorter already 78 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the 79 ** label returned by this function. 80 ** 81 ** If the ORDER BY LIMIT optimization applies, the jump destination should 82 ** be the continuation for the second-inner-most loop. If the ORDER BY 83 ** LIMIT optimization does not apply, then the jump destination should 84 ** be the continuation for the inner-most loop. 85 ** 86 ** It is always safe for this routine to return the continuation of the 87 ** inner-most loop, in the sense that a correct answer will result. 88 ** Returning the continuation the second inner loop is an optimization 89 ** that might make the code run a little faster, but should not change 90 ** the final answer. 91 */ 92 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){ 93 WhereLevel *pInner; 94 if( !pWInfo->bOrderedInnerLoop ){ 95 /* The ORDER BY LIMIT optimization does not apply. Jump to the 96 ** continuation of the inner-most loop. */ 97 return pWInfo->iContinue; 98 } 99 pInner = &pWInfo->a[pWInfo->nLevel-1]; 100 assert( pInner->addrNxt!=0 ); 101 return pInner->addrNxt; 102 } 103 104 /* 105 ** Return the VDBE address or label to jump to in order to continue 106 ** immediately with the next row of a WHERE clause. 107 */ 108 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ 109 assert( pWInfo->iContinue!=0 ); 110 return pWInfo->iContinue; 111 } 112 113 /* 114 ** Return the VDBE address or label to jump to in order to break 115 ** out of a WHERE loop. 116 */ 117 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ 118 return pWInfo->iBreak; 119 } 120 121 /* 122 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to 123 ** operate directly on the rowids returned by a WHERE clause. Return 124 ** ONEPASS_SINGLE (1) if the statement can operation directly because only 125 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass 126 ** optimization can be used on multiple 127 ** 128 ** If the ONEPASS optimization is used (if this routine returns true) 129 ** then also write the indices of open cursors used by ONEPASS 130 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data 131 ** table and iaCur[1] gets the cursor used by an auxiliary index. 132 ** Either value may be -1, indicating that cursor is not used. 133 ** Any cursors returned will have been opened for writing. 134 ** 135 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is 136 ** unable to use the ONEPASS optimization. 137 */ 138 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ 139 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); 140 #ifdef WHERETRACE_ENABLED 141 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){ 142 sqlite3DebugPrintf("%s cursors: %d %d\n", 143 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI", 144 aiCur[0], aiCur[1]); 145 } 146 #endif 147 return pWInfo->eOnePass; 148 } 149 150 /* 151 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move 152 ** the data cursor to the row selected by the index cursor. 153 */ 154 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){ 155 return pWInfo->bDeferredSeek; 156 } 157 158 /* 159 ** Move the content of pSrc into pDest 160 */ 161 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ 162 pDest->n = pSrc->n; 163 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); 164 } 165 166 /* 167 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. 168 ** 169 ** The new entry might overwrite an existing entry, or it might be 170 ** appended, or it might be discarded. Do whatever is the right thing 171 ** so that pSet keeps the N_OR_COST best entries seen so far. 172 */ 173 static int whereOrInsert( 174 WhereOrSet *pSet, /* The WhereOrSet to be updated */ 175 Bitmask prereq, /* Prerequisites of the new entry */ 176 LogEst rRun, /* Run-cost of the new entry */ 177 LogEst nOut /* Number of outputs for the new entry */ 178 ){ 179 u16 i; 180 WhereOrCost *p; 181 for(i=pSet->n, p=pSet->a; i>0; i--, p++){ 182 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ 183 goto whereOrInsert_done; 184 } 185 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ 186 return 0; 187 } 188 } 189 if( pSet->n<N_OR_COST ){ 190 p = &pSet->a[pSet->n++]; 191 p->nOut = nOut; 192 }else{ 193 p = pSet->a; 194 for(i=1; i<pSet->n; i++){ 195 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; 196 } 197 if( p->rRun<=rRun ) return 0; 198 } 199 whereOrInsert_done: 200 p->prereq = prereq; 201 p->rRun = rRun; 202 if( p->nOut>nOut ) p->nOut = nOut; 203 return 1; 204 } 205 206 /* 207 ** Return the bitmask for the given cursor number. Return 0 if 208 ** iCursor is not in the set. 209 */ 210 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ 211 int i; 212 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); 213 for(i=0; i<pMaskSet->n; i++){ 214 if( pMaskSet->ix[i]==iCursor ){ 215 return MASKBIT(i); 216 } 217 } 218 return 0; 219 } 220 221 /* 222 ** Create a new mask for cursor iCursor. 223 ** 224 ** There is one cursor per table in the FROM clause. The number of 225 ** tables in the FROM clause is limited by a test early in the 226 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 227 ** array will never overflow. 228 */ 229 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 230 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 231 pMaskSet->ix[pMaskSet->n++] = iCursor; 232 } 233 234 /* 235 ** Advance to the next WhereTerm that matches according to the criteria 236 ** established when the pScan object was initialized by whereScanInit(). 237 ** Return NULL if there are no more matching WhereTerms. 238 */ 239 static WhereTerm *whereScanNext(WhereScan *pScan){ 240 int iCur; /* The cursor on the LHS of the term */ 241 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */ 242 Expr *pX; /* An expression being tested */ 243 WhereClause *pWC; /* Shorthand for pScan->pWC */ 244 WhereTerm *pTerm; /* The term being tested */ 245 int k = pScan->k; /* Where to start scanning */ 246 247 assert( pScan->iEquiv<=pScan->nEquiv ); 248 pWC = pScan->pWC; 249 while(1){ 250 iColumn = pScan->aiColumn[pScan->iEquiv-1]; 251 iCur = pScan->aiCur[pScan->iEquiv-1]; 252 assert( pWC!=0 ); 253 do{ 254 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ 255 if( pTerm->leftCursor==iCur 256 && pTerm->u.leftColumn==iColumn 257 && (iColumn!=XN_EXPR 258 || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft, 259 pScan->pIdxExpr,iCur)==0) 260 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 261 ){ 262 if( (pTerm->eOperator & WO_EQUIV)!=0 263 && pScan->nEquiv<ArraySize(pScan->aiCur) 264 && (pX = sqlite3ExprSkipCollateAndLikely(pTerm->pExpr->pRight))->op 265 ==TK_COLUMN 266 ){ 267 int j; 268 for(j=0; j<pScan->nEquiv; j++){ 269 if( pScan->aiCur[j]==pX->iTable 270 && pScan->aiColumn[j]==pX->iColumn ){ 271 break; 272 } 273 } 274 if( j==pScan->nEquiv ){ 275 pScan->aiCur[j] = pX->iTable; 276 pScan->aiColumn[j] = pX->iColumn; 277 pScan->nEquiv++; 278 } 279 } 280 if( (pTerm->eOperator & pScan->opMask)!=0 ){ 281 /* Verify the affinity and collating sequence match */ 282 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ 283 CollSeq *pColl; 284 Parse *pParse = pWC->pWInfo->pParse; 285 pX = pTerm->pExpr; 286 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ 287 continue; 288 } 289 assert(pX->pLeft); 290 pColl = sqlite3ExprCompareCollSeq(pParse, pX); 291 if( pColl==0 ) pColl = pParse->db->pDfltColl; 292 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ 293 continue; 294 } 295 } 296 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0 297 && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN 298 && pX->iTable==pScan->aiCur[0] 299 && pX->iColumn==pScan->aiColumn[0] 300 ){ 301 testcase( pTerm->eOperator & WO_IS ); 302 continue; 303 } 304 pScan->pWC = pWC; 305 pScan->k = k+1; 306 return pTerm; 307 } 308 } 309 } 310 pWC = pWC->pOuter; 311 k = 0; 312 }while( pWC!=0 ); 313 if( pScan->iEquiv>=pScan->nEquiv ) break; 314 pWC = pScan->pOrigWC; 315 k = 0; 316 pScan->iEquiv++; 317 } 318 return 0; 319 } 320 321 /* 322 ** This is whereScanInit() for the case of an index on an expression. 323 ** It is factored out into a separate tail-recursion subroutine so that 324 ** the normal whereScanInit() routine, which is a high-runner, does not 325 ** need to push registers onto the stack as part of its prologue. 326 */ 327 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){ 328 pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr); 329 return whereScanNext(pScan); 330 } 331 332 /* 333 ** Initialize a WHERE clause scanner object. Return a pointer to the 334 ** first match. Return NULL if there are no matches. 335 ** 336 ** The scanner will be searching the WHERE clause pWC. It will look 337 ** for terms of the form "X <op> <expr>" where X is column iColumn of table 338 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx 339 ** must be one of the indexes of table iCur. 340 ** 341 ** The <op> must be one of the operators described by opMask. 342 ** 343 ** If the search is for X and the WHERE clause contains terms of the 344 ** form X=Y then this routine might also return terms of the form 345 ** "Y <op> <expr>". The number of levels of transitivity is limited, 346 ** but is enough to handle most commonly occurring SQL statements. 347 ** 348 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with 349 ** index pIdx. 350 */ 351 static WhereTerm *whereScanInit( 352 WhereScan *pScan, /* The WhereScan object being initialized */ 353 WhereClause *pWC, /* The WHERE clause to be scanned */ 354 int iCur, /* Cursor to scan for */ 355 int iColumn, /* Column to scan for */ 356 u32 opMask, /* Operator(s) to scan for */ 357 Index *pIdx /* Must be compatible with this index */ 358 ){ 359 pScan->pOrigWC = pWC; 360 pScan->pWC = pWC; 361 pScan->pIdxExpr = 0; 362 pScan->idxaff = 0; 363 pScan->zCollName = 0; 364 pScan->opMask = opMask; 365 pScan->k = 0; 366 pScan->aiCur[0] = iCur; 367 pScan->nEquiv = 1; 368 pScan->iEquiv = 1; 369 if( pIdx ){ 370 int j = iColumn; 371 iColumn = pIdx->aiColumn[j]; 372 if( iColumn==XN_EXPR ){ 373 pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr; 374 pScan->zCollName = pIdx->azColl[j]; 375 pScan->aiColumn[0] = XN_EXPR; 376 return whereScanInitIndexExpr(pScan); 377 }else if( iColumn==pIdx->pTable->iPKey ){ 378 iColumn = XN_ROWID; 379 }else if( iColumn>=0 ){ 380 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; 381 pScan->zCollName = pIdx->azColl[j]; 382 } 383 }else if( iColumn==XN_EXPR ){ 384 return 0; 385 } 386 pScan->aiColumn[0] = iColumn; 387 return whereScanNext(pScan); 388 } 389 390 /* 391 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 392 ** where X is a reference to the iColumn of table iCur or of index pIdx 393 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by 394 ** the op parameter. Return a pointer to the term. Return 0 if not found. 395 ** 396 ** If pIdx!=0 then it must be one of the indexes of table iCur. 397 ** Search for terms matching the iColumn-th column of pIdx 398 ** rather than the iColumn-th column of table iCur. 399 ** 400 ** The term returned might by Y=<expr> if there is another constraint in 401 ** the WHERE clause that specifies that X=Y. Any such constraints will be 402 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The 403 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11 404 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10 405 ** other equivalent values. Hence a search for X will return <expr> if X=A1 406 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>. 407 ** 408 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" 409 ** then try for the one with no dependencies on <expr> - in other words where 410 ** <expr> is a constant expression of some kind. Only return entries of 411 ** the form "X <op> Y" where Y is a column in another table if no terms of 412 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS 413 ** exist, try to return a term that does not use WO_EQUIV. 414 */ 415 WhereTerm *sqlite3WhereFindTerm( 416 WhereClause *pWC, /* The WHERE clause to be searched */ 417 int iCur, /* Cursor number of LHS */ 418 int iColumn, /* Column number of LHS */ 419 Bitmask notReady, /* RHS must not overlap with this mask */ 420 u32 op, /* Mask of WO_xx values describing operator */ 421 Index *pIdx /* Must be compatible with this index, if not NULL */ 422 ){ 423 WhereTerm *pResult = 0; 424 WhereTerm *p; 425 WhereScan scan; 426 427 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); 428 op &= WO_EQ|WO_IS; 429 while( p ){ 430 if( (p->prereqRight & notReady)==0 ){ 431 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){ 432 testcase( p->eOperator & WO_IS ); 433 return p; 434 } 435 if( pResult==0 ) pResult = p; 436 } 437 p = whereScanNext(&scan); 438 } 439 return pResult; 440 } 441 442 /* 443 ** This function searches pList for an entry that matches the iCol-th column 444 ** of index pIdx. 445 ** 446 ** If such an expression is found, its index in pList->a[] is returned. If 447 ** no expression is found, -1 is returned. 448 */ 449 static int findIndexCol( 450 Parse *pParse, /* Parse context */ 451 ExprList *pList, /* Expression list to search */ 452 int iBase, /* Cursor for table associated with pIdx */ 453 Index *pIdx, /* Index to match column of */ 454 int iCol /* Column of index to match */ 455 ){ 456 int i; 457 const char *zColl = pIdx->azColl[iCol]; 458 459 for(i=0; i<pList->nExpr; i++){ 460 Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr); 461 if( p->op==TK_COLUMN 462 && p->iColumn==pIdx->aiColumn[iCol] 463 && p->iTable==iBase 464 ){ 465 CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr); 466 if( 0==sqlite3StrICmp(pColl->zName, zColl) ){ 467 return i; 468 } 469 } 470 } 471 472 return -1; 473 } 474 475 /* 476 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL 477 */ 478 static int indexColumnNotNull(Index *pIdx, int iCol){ 479 int j; 480 assert( pIdx!=0 ); 481 assert( iCol>=0 && iCol<pIdx->nColumn ); 482 j = pIdx->aiColumn[iCol]; 483 if( j>=0 ){ 484 return pIdx->pTable->aCol[j].notNull; 485 }else if( j==(-1) ){ 486 return 1; 487 }else{ 488 assert( j==(-2) ); 489 return 0; /* Assume an indexed expression can always yield a NULL */ 490 491 } 492 } 493 494 /* 495 ** Return true if the DISTINCT expression-list passed as the third argument 496 ** is redundant. 497 ** 498 ** A DISTINCT list is redundant if any subset of the columns in the 499 ** DISTINCT list are collectively unique and individually non-null. 500 */ 501 static int isDistinctRedundant( 502 Parse *pParse, /* Parsing context */ 503 SrcList *pTabList, /* The FROM clause */ 504 WhereClause *pWC, /* The WHERE clause */ 505 ExprList *pDistinct /* The result set that needs to be DISTINCT */ 506 ){ 507 Table *pTab; 508 Index *pIdx; 509 int i; 510 int iBase; 511 512 /* If there is more than one table or sub-select in the FROM clause of 513 ** this query, then it will not be possible to show that the DISTINCT 514 ** clause is redundant. */ 515 if( pTabList->nSrc!=1 ) return 0; 516 iBase = pTabList->a[0].iCursor; 517 pTab = pTabList->a[0].pTab; 518 519 /* If any of the expressions is an IPK column on table iBase, then return 520 ** true. Note: The (p->iTable==iBase) part of this test may be false if the 521 ** current SELECT is a correlated sub-query. 522 */ 523 for(i=0; i<pDistinct->nExpr; i++){ 524 Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr); 525 if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1; 526 } 527 528 /* Loop through all indices on the table, checking each to see if it makes 529 ** the DISTINCT qualifier redundant. It does so if: 530 ** 531 ** 1. The index is itself UNIQUE, and 532 ** 533 ** 2. All of the columns in the index are either part of the pDistinct 534 ** list, or else the WHERE clause contains a term of the form "col=X", 535 ** where X is a constant value. The collation sequences of the 536 ** comparison and select-list expressions must match those of the index. 537 ** 538 ** 3. All of those index columns for which the WHERE clause does not 539 ** contain a "col=X" term are subject to a NOT NULL constraint. 540 */ 541 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 542 if( !IsUniqueIndex(pIdx) ) continue; 543 for(i=0; i<pIdx->nKeyCol; i++){ 544 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){ 545 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break; 546 if( indexColumnNotNull(pIdx, i)==0 ) break; 547 } 548 } 549 if( i==pIdx->nKeyCol ){ 550 /* This index implies that the DISTINCT qualifier is redundant. */ 551 return 1; 552 } 553 } 554 555 return 0; 556 } 557 558 559 /* 560 ** Estimate the logarithm of the input value to base 2. 561 */ 562 static LogEst estLog(LogEst N){ 563 return N<=10 ? 0 : sqlite3LogEst(N) - 33; 564 } 565 566 /* 567 ** Convert OP_Column opcodes to OP_Copy in previously generated code. 568 ** 569 ** This routine runs over generated VDBE code and translates OP_Column 570 ** opcodes into OP_Copy when the table is being accessed via co-routine 571 ** instead of via table lookup. 572 ** 573 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on 574 ** cursor iTabCur are transformed into OP_Sequence opcode for the 575 ** iAutoidxCur cursor, in order to generate unique rowids for the 576 ** automatic index being generated. 577 */ 578 static void translateColumnToCopy( 579 Parse *pParse, /* Parsing context */ 580 int iStart, /* Translate from this opcode to the end */ 581 int iTabCur, /* OP_Column/OP_Rowid references to this table */ 582 int iRegister, /* The first column is in this register */ 583 int iAutoidxCur /* If non-zero, cursor of autoindex being generated */ 584 ){ 585 Vdbe *v = pParse->pVdbe; 586 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart); 587 int iEnd = sqlite3VdbeCurrentAddr(v); 588 if( pParse->db->mallocFailed ) return; 589 for(; iStart<iEnd; iStart++, pOp++){ 590 if( pOp->p1!=iTabCur ) continue; 591 if( pOp->opcode==OP_Column ){ 592 pOp->opcode = OP_Copy; 593 pOp->p1 = pOp->p2 + iRegister; 594 pOp->p2 = pOp->p3; 595 pOp->p3 = 0; 596 }else if( pOp->opcode==OP_Rowid ){ 597 if( iAutoidxCur ){ 598 pOp->opcode = OP_Sequence; 599 pOp->p1 = iAutoidxCur; 600 }else{ 601 pOp->opcode = OP_Null; 602 pOp->p1 = 0; 603 pOp->p3 = 0; 604 } 605 } 606 } 607 } 608 609 /* 610 ** Two routines for printing the content of an sqlite3_index_info 611 ** structure. Used for testing and debugging only. If neither 612 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 613 ** are no-ops. 614 */ 615 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) 616 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){ 617 int i; 618 if( !sqlite3WhereTrace ) return; 619 for(i=0; i<p->nConstraint; i++){ 620 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 621 i, 622 p->aConstraint[i].iColumn, 623 p->aConstraint[i].iTermOffset, 624 p->aConstraint[i].op, 625 p->aConstraint[i].usable); 626 } 627 for(i=0; i<p->nOrderBy; i++){ 628 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 629 i, 630 p->aOrderBy[i].iColumn, 631 p->aOrderBy[i].desc); 632 } 633 } 634 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){ 635 int i; 636 if( !sqlite3WhereTrace ) return; 637 for(i=0; i<p->nConstraint; i++){ 638 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 639 i, 640 p->aConstraintUsage[i].argvIndex, 641 p->aConstraintUsage[i].omit); 642 } 643 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 644 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 645 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 646 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 647 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); 648 } 649 #else 650 #define whereTraceIndexInfoInputs(A) 651 #define whereTraceIndexInfoOutputs(A) 652 #endif 653 654 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 655 /* 656 ** Return TRUE if the WHERE clause term pTerm is of a form where it 657 ** could be used with an index to access pSrc, assuming an appropriate 658 ** index existed. 659 */ 660 static int termCanDriveIndex( 661 WhereTerm *pTerm, /* WHERE clause term to check */ 662 struct SrcList_item *pSrc, /* Table we are trying to access */ 663 Bitmask notReady /* Tables in outer loops of the join */ 664 ){ 665 char aff; 666 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; 667 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0; 668 if( (pSrc->fg.jointype & JT_LEFT) 669 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 670 && (pTerm->eOperator & WO_IS) 671 ){ 672 /* Cannot use an IS term from the WHERE clause as an index driver for 673 ** the RHS of a LEFT JOIN. Such a term can only be used if it is from 674 ** the ON clause. */ 675 return 0; 676 } 677 if( (pTerm->prereqRight & notReady)!=0 ) return 0; 678 if( pTerm->u.leftColumn<0 ) return 0; 679 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; 680 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; 681 testcase( pTerm->pExpr->op==TK_IS ); 682 return 1; 683 } 684 #endif 685 686 687 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 688 /* 689 ** Generate code to construct the Index object for an automatic index 690 ** and to set up the WhereLevel object pLevel so that the code generator 691 ** makes use of the automatic index. 692 */ 693 static void constructAutomaticIndex( 694 Parse *pParse, /* The parsing context */ 695 WhereClause *pWC, /* The WHERE clause */ 696 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */ 697 Bitmask notReady, /* Mask of cursors that are not available */ 698 WhereLevel *pLevel /* Write new index here */ 699 ){ 700 int nKeyCol; /* Number of columns in the constructed index */ 701 WhereTerm *pTerm; /* A single term of the WHERE clause */ 702 WhereTerm *pWCEnd; /* End of pWC->a[] */ 703 Index *pIdx; /* Object describing the transient index */ 704 Vdbe *v; /* Prepared statement under construction */ 705 int addrInit; /* Address of the initialization bypass jump */ 706 Table *pTable; /* The table being indexed */ 707 int addrTop; /* Top of the index fill loop */ 708 int regRecord; /* Register holding an index record */ 709 int n; /* Column counter */ 710 int i; /* Loop counter */ 711 int mxBitCol; /* Maximum column in pSrc->colUsed */ 712 CollSeq *pColl; /* Collating sequence to on a column */ 713 WhereLoop *pLoop; /* The Loop object */ 714 char *zNotUsed; /* Extra space on the end of pIdx */ 715 Bitmask idxCols; /* Bitmap of columns used for indexing */ 716 Bitmask extraCols; /* Bitmap of additional columns */ 717 u8 sentWarning = 0; /* True if a warnning has been issued */ 718 Expr *pPartial = 0; /* Partial Index Expression */ 719 int iContinue = 0; /* Jump here to skip excluded rows */ 720 struct SrcList_item *pTabItem; /* FROM clause term being indexed */ 721 int addrCounter = 0; /* Address where integer counter is initialized */ 722 int regBase; /* Array of registers where record is assembled */ 723 724 /* Generate code to skip over the creation and initialization of the 725 ** transient index on 2nd and subsequent iterations of the loop. */ 726 v = pParse->pVdbe; 727 assert( v!=0 ); 728 addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 729 730 /* Count the number of columns that will be added to the index 731 ** and used to match WHERE clause constraints */ 732 nKeyCol = 0; 733 pTable = pSrc->pTab; 734 pWCEnd = &pWC->a[pWC->nTerm]; 735 pLoop = pLevel->pWLoop; 736 idxCols = 0; 737 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 738 Expr *pExpr = pTerm->pExpr; 739 assert( !ExprHasProperty(pExpr, EP_FromJoin) /* prereq always non-zero */ 740 || pExpr->iRightJoinTable!=pSrc->iCursor /* for the right-hand */ 741 || pLoop->prereq!=0 ); /* table of a LEFT JOIN */ 742 if( pLoop->prereq==0 743 && (pTerm->wtFlags & TERM_VIRTUAL)==0 744 && !ExprHasProperty(pExpr, EP_FromJoin) 745 && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){ 746 pPartial = sqlite3ExprAnd(pParse, pPartial, 747 sqlite3ExprDup(pParse->db, pExpr, 0)); 748 } 749 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 750 int iCol = pTerm->u.leftColumn; 751 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 752 testcase( iCol==BMS ); 753 testcase( iCol==BMS-1 ); 754 if( !sentWarning ){ 755 sqlite3_log(SQLITE_WARNING_AUTOINDEX, 756 "automatic index on %s(%s)", pTable->zName, 757 pTable->aCol[iCol].zName); 758 sentWarning = 1; 759 } 760 if( (idxCols & cMask)==0 ){ 761 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ 762 goto end_auto_index_create; 763 } 764 pLoop->aLTerm[nKeyCol++] = pTerm; 765 idxCols |= cMask; 766 } 767 } 768 } 769 assert( nKeyCol>0 ); 770 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; 771 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED 772 | WHERE_AUTO_INDEX; 773 774 /* Count the number of additional columns needed to create a 775 ** covering index. A "covering index" is an index that contains all 776 ** columns that are needed by the query. With a covering index, the 777 ** original table never needs to be accessed. Automatic indices must 778 ** be a covering index because the index will not be updated if the 779 ** original table changes and the index and table cannot both be used 780 ** if they go out of sync. 781 */ 782 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); 783 mxBitCol = MIN(BMS-1,pTable->nCol); 784 testcase( pTable->nCol==BMS-1 ); 785 testcase( pTable->nCol==BMS-2 ); 786 for(i=0; i<mxBitCol; i++){ 787 if( extraCols & MASKBIT(i) ) nKeyCol++; 788 } 789 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 790 nKeyCol += pTable->nCol - BMS + 1; 791 } 792 793 /* Construct the Index object to describe this index */ 794 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); 795 if( pIdx==0 ) goto end_auto_index_create; 796 pLoop->u.btree.pIndex = pIdx; 797 pIdx->zName = "auto-index"; 798 pIdx->pTable = pTable; 799 n = 0; 800 idxCols = 0; 801 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 802 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 803 int iCol = pTerm->u.leftColumn; 804 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 805 testcase( iCol==BMS-1 ); 806 testcase( iCol==BMS ); 807 if( (idxCols & cMask)==0 ){ 808 Expr *pX = pTerm->pExpr; 809 idxCols |= cMask; 810 pIdx->aiColumn[n] = pTerm->u.leftColumn; 811 pColl = sqlite3ExprCompareCollSeq(pParse, pX); 812 assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */ 813 pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY; 814 n++; 815 } 816 } 817 } 818 assert( (u32)n==pLoop->u.btree.nEq ); 819 820 /* Add additional columns needed to make the automatic index into 821 ** a covering index */ 822 for(i=0; i<mxBitCol; i++){ 823 if( extraCols & MASKBIT(i) ){ 824 pIdx->aiColumn[n] = i; 825 pIdx->azColl[n] = sqlite3StrBINARY; 826 n++; 827 } 828 } 829 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 830 for(i=BMS-1; i<pTable->nCol; i++){ 831 pIdx->aiColumn[n] = i; 832 pIdx->azColl[n] = sqlite3StrBINARY; 833 n++; 834 } 835 } 836 assert( n==nKeyCol ); 837 pIdx->aiColumn[n] = XN_ROWID; 838 pIdx->azColl[n] = sqlite3StrBINARY; 839 840 /* Create the automatic index */ 841 assert( pLevel->iIdxCur>=0 ); 842 pLevel->iIdxCur = pParse->nTab++; 843 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); 844 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 845 VdbeComment((v, "for %s", pTable->zName)); 846 847 /* Fill the automatic index with content */ 848 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom]; 849 if( pTabItem->fg.viaCoroutine ){ 850 int regYield = pTabItem->regReturn; 851 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0); 852 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 853 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); 854 VdbeCoverage(v); 855 VdbeComment((v, "next row of %s", pTabItem->pTab->zName)); 856 }else{ 857 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); 858 } 859 if( pPartial ){ 860 iContinue = sqlite3VdbeMakeLabel(pParse); 861 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); 862 pLoop->wsFlags |= WHERE_PARTIALIDX; 863 } 864 regRecord = sqlite3GetTempReg(pParse); 865 regBase = sqlite3GenerateIndexKey( 866 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0 867 ); 868 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); 869 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 870 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); 871 if( pTabItem->fg.viaCoroutine ){ 872 sqlite3VdbeChangeP2(v, addrCounter, regBase+n); 873 testcase( pParse->db->mallocFailed ); 874 assert( pLevel->iIdxCur>0 ); 875 translateColumnToCopy(pParse, addrTop, pLevel->iTabCur, 876 pTabItem->regResult, pLevel->iIdxCur); 877 sqlite3VdbeGoto(v, addrTop); 878 pTabItem->fg.viaCoroutine = 0; 879 }else{ 880 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); 881 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); 882 } 883 sqlite3VdbeJumpHere(v, addrTop); 884 sqlite3ReleaseTempReg(pParse, regRecord); 885 886 /* Jump here when skipping the initialization */ 887 sqlite3VdbeJumpHere(v, addrInit); 888 889 end_auto_index_create: 890 sqlite3ExprDelete(pParse->db, pPartial); 891 } 892 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 893 894 #ifndef SQLITE_OMIT_VIRTUALTABLE 895 /* 896 ** Allocate and populate an sqlite3_index_info structure. It is the 897 ** responsibility of the caller to eventually release the structure 898 ** by passing the pointer returned by this function to sqlite3_free(). 899 */ 900 static sqlite3_index_info *allocateIndexInfo( 901 Parse *pParse, /* The parsing context */ 902 WhereClause *pWC, /* The WHERE clause being analyzed */ 903 Bitmask mUnusable, /* Ignore terms with these prereqs */ 904 struct SrcList_item *pSrc, /* The FROM clause term that is the vtab */ 905 ExprList *pOrderBy, /* The ORDER BY clause */ 906 u16 *pmNoOmit /* Mask of terms not to omit */ 907 ){ 908 int i, j; 909 int nTerm; 910 struct sqlite3_index_constraint *pIdxCons; 911 struct sqlite3_index_orderby *pIdxOrderBy; 912 struct sqlite3_index_constraint_usage *pUsage; 913 struct HiddenIndexInfo *pHidden; 914 WhereTerm *pTerm; 915 int nOrderBy; 916 sqlite3_index_info *pIdxInfo; 917 u16 mNoOmit = 0; 918 919 /* Count the number of possible WHERE clause constraints referring 920 ** to this virtual table */ 921 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 922 if( pTerm->leftCursor != pSrc->iCursor ) continue; 923 if( pTerm->prereqRight & mUnusable ) continue; 924 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 925 testcase( pTerm->eOperator & WO_IN ); 926 testcase( pTerm->eOperator & WO_ISNULL ); 927 testcase( pTerm->eOperator & WO_IS ); 928 testcase( pTerm->eOperator & WO_ALL ); 929 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue; 930 if( pTerm->wtFlags & TERM_VNULL ) continue; 931 assert( pTerm->u.leftColumn>=(-1) ); 932 nTerm++; 933 } 934 935 /* If the ORDER BY clause contains only columns in the current 936 ** virtual table then allocate space for the aOrderBy part of 937 ** the sqlite3_index_info structure. 938 */ 939 nOrderBy = 0; 940 if( pOrderBy ){ 941 int n = pOrderBy->nExpr; 942 for(i=0; i<n; i++){ 943 Expr *pExpr = pOrderBy->a[i].pExpr; 944 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 945 if( pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL ) break; 946 } 947 if( i==n){ 948 nOrderBy = n; 949 } 950 } 951 952 /* Allocate the sqlite3_index_info structure 953 */ 954 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 955 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 956 + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) ); 957 if( pIdxInfo==0 ){ 958 sqlite3ErrorMsg(pParse, "out of memory"); 959 return 0; 960 } 961 pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1]; 962 pIdxCons = (struct sqlite3_index_constraint*)&pHidden[1]; 963 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 964 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 965 pIdxInfo->nOrderBy = nOrderBy; 966 pIdxInfo->aConstraint = pIdxCons; 967 pIdxInfo->aOrderBy = pIdxOrderBy; 968 pIdxInfo->aConstraintUsage = pUsage; 969 pHidden->pWC = pWC; 970 pHidden->pParse = pParse; 971 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 972 u16 op; 973 if( pTerm->leftCursor != pSrc->iCursor ) continue; 974 if( pTerm->prereqRight & mUnusable ) continue; 975 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 976 testcase( pTerm->eOperator & WO_IN ); 977 testcase( pTerm->eOperator & WO_IS ); 978 testcase( pTerm->eOperator & WO_ISNULL ); 979 testcase( pTerm->eOperator & WO_ALL ); 980 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue; 981 if( pTerm->wtFlags & TERM_VNULL ) continue; 982 983 /* tag-20191211-002: WHERE-clause constraints are not useful to the 984 ** right-hand table of a LEFT JOIN. See tag-20191211-001 for the 985 ** equivalent restriction for ordinary tables. */ 986 if( (pSrc->fg.jointype & JT_LEFT)!=0 987 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 988 ){ 989 continue; 990 } 991 assert( pTerm->u.leftColumn>=(-1) ); 992 pIdxCons[j].iColumn = pTerm->u.leftColumn; 993 pIdxCons[j].iTermOffset = i; 994 op = pTerm->eOperator & WO_ALL; 995 if( op==WO_IN ) op = WO_EQ; 996 if( op==WO_AUX ){ 997 pIdxCons[j].op = pTerm->eMatchOp; 998 }else if( op & (WO_ISNULL|WO_IS) ){ 999 if( op==WO_ISNULL ){ 1000 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL; 1001 }else{ 1002 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS; 1003 } 1004 }else{ 1005 pIdxCons[j].op = (u8)op; 1006 /* The direct assignment in the previous line is possible only because 1007 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 1008 ** following asserts verify this fact. */ 1009 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 1010 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 1011 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 1012 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 1013 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 1014 assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) ); 1015 1016 if( op & (WO_LT|WO_LE|WO_GT|WO_GE) 1017 && sqlite3ExprIsVector(pTerm->pExpr->pRight) 1018 ){ 1019 testcase( j!=i ); 1020 if( j<16 ) mNoOmit |= (1 << j); 1021 if( op==WO_LT ) pIdxCons[j].op = WO_LE; 1022 if( op==WO_GT ) pIdxCons[j].op = WO_GE; 1023 } 1024 } 1025 1026 j++; 1027 } 1028 pIdxInfo->nConstraint = j; 1029 for(i=0; i<nOrderBy; i++){ 1030 Expr *pExpr = pOrderBy->a[i].pExpr; 1031 pIdxOrderBy[i].iColumn = pExpr->iColumn; 1032 pIdxOrderBy[i].desc = pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC; 1033 } 1034 1035 *pmNoOmit = mNoOmit; 1036 return pIdxInfo; 1037 } 1038 1039 /* 1040 ** The table object reference passed as the second argument to this function 1041 ** must represent a virtual table. This function invokes the xBestIndex() 1042 ** method of the virtual table with the sqlite3_index_info object that 1043 ** comes in as the 3rd argument to this function. 1044 ** 1045 ** If an error occurs, pParse is populated with an error message and an 1046 ** appropriate error code is returned. A return of SQLITE_CONSTRAINT from 1047 ** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that 1048 ** the current configuration of "unusable" flags in sqlite3_index_info can 1049 ** not result in a valid plan. 1050 ** 1051 ** Whether or not an error is returned, it is the responsibility of the 1052 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates 1053 ** that this is required. 1054 */ 1055 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ 1056 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; 1057 int rc; 1058 1059 whereTraceIndexInfoInputs(p); 1060 rc = pVtab->pModule->xBestIndex(pVtab, p); 1061 whereTraceIndexInfoOutputs(p); 1062 1063 if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){ 1064 if( rc==SQLITE_NOMEM ){ 1065 sqlite3OomFault(pParse->db); 1066 }else if( !pVtab->zErrMsg ){ 1067 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 1068 }else{ 1069 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 1070 } 1071 } 1072 sqlite3_free(pVtab->zErrMsg); 1073 pVtab->zErrMsg = 0; 1074 return rc; 1075 } 1076 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1077 1078 #ifdef SQLITE_ENABLE_STAT4 1079 /* 1080 ** Estimate the location of a particular key among all keys in an 1081 ** index. Store the results in aStat as follows: 1082 ** 1083 ** aStat[0] Est. number of rows less than pRec 1084 ** aStat[1] Est. number of rows equal to pRec 1085 ** 1086 ** Return the index of the sample that is the smallest sample that 1087 ** is greater than or equal to pRec. Note that this index is not an index 1088 ** into the aSample[] array - it is an index into a virtual set of samples 1089 ** based on the contents of aSample[] and the number of fields in record 1090 ** pRec. 1091 */ 1092 static int whereKeyStats( 1093 Parse *pParse, /* Database connection */ 1094 Index *pIdx, /* Index to consider domain of */ 1095 UnpackedRecord *pRec, /* Vector of values to consider */ 1096 int roundUp, /* Round up if true. Round down if false */ 1097 tRowcnt *aStat /* OUT: stats written here */ 1098 ){ 1099 IndexSample *aSample = pIdx->aSample; 1100 int iCol; /* Index of required stats in anEq[] etc. */ 1101 int i; /* Index of first sample >= pRec */ 1102 int iSample; /* Smallest sample larger than or equal to pRec */ 1103 int iMin = 0; /* Smallest sample not yet tested */ 1104 int iTest; /* Next sample to test */ 1105 int res; /* Result of comparison operation */ 1106 int nField; /* Number of fields in pRec */ 1107 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ 1108 1109 #ifndef SQLITE_DEBUG 1110 UNUSED_PARAMETER( pParse ); 1111 #endif 1112 assert( pRec!=0 ); 1113 assert( pIdx->nSample>0 ); 1114 assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol ); 1115 1116 /* Do a binary search to find the first sample greater than or equal 1117 ** to pRec. If pRec contains a single field, the set of samples to search 1118 ** is simply the aSample[] array. If the samples in aSample[] contain more 1119 ** than one fields, all fields following the first are ignored. 1120 ** 1121 ** If pRec contains N fields, where N is more than one, then as well as the 1122 ** samples in aSample[] (truncated to N fields), the search also has to 1123 ** consider prefixes of those samples. For example, if the set of samples 1124 ** in aSample is: 1125 ** 1126 ** aSample[0] = (a, 5) 1127 ** aSample[1] = (a, 10) 1128 ** aSample[2] = (b, 5) 1129 ** aSample[3] = (c, 100) 1130 ** aSample[4] = (c, 105) 1131 ** 1132 ** Then the search space should ideally be the samples above and the 1133 ** unique prefixes [a], [b] and [c]. But since that is hard to organize, 1134 ** the code actually searches this set: 1135 ** 1136 ** 0: (a) 1137 ** 1: (a, 5) 1138 ** 2: (a, 10) 1139 ** 3: (a, 10) 1140 ** 4: (b) 1141 ** 5: (b, 5) 1142 ** 6: (c) 1143 ** 7: (c, 100) 1144 ** 8: (c, 105) 1145 ** 9: (c, 105) 1146 ** 1147 ** For each sample in the aSample[] array, N samples are present in the 1148 ** effective sample array. In the above, samples 0 and 1 are based on 1149 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. 1150 ** 1151 ** Often, sample i of each block of N effective samples has (i+1) fields. 1152 ** Except, each sample may be extended to ensure that it is greater than or 1153 ** equal to the previous sample in the array. For example, in the above, 1154 ** sample 2 is the first sample of a block of N samples, so at first it 1155 ** appears that it should be 1 field in size. However, that would make it 1156 ** smaller than sample 1, so the binary search would not work. As a result, 1157 ** it is extended to two fields. The duplicates that this creates do not 1158 ** cause any problems. 1159 */ 1160 nField = pRec->nField; 1161 iCol = 0; 1162 iSample = pIdx->nSample * nField; 1163 do{ 1164 int iSamp; /* Index in aSample[] of test sample */ 1165 int n; /* Number of fields in test sample */ 1166 1167 iTest = (iMin+iSample)/2; 1168 iSamp = iTest / nField; 1169 if( iSamp>0 ){ 1170 /* The proposed effective sample is a prefix of sample aSample[iSamp]. 1171 ** Specifically, the shortest prefix of at least (1 + iTest%nField) 1172 ** fields that is greater than the previous effective sample. */ 1173 for(n=(iTest % nField) + 1; n<nField; n++){ 1174 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break; 1175 } 1176 }else{ 1177 n = iTest + 1; 1178 } 1179 1180 pRec->nField = n; 1181 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); 1182 if( res<0 ){ 1183 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; 1184 iMin = iTest+1; 1185 }else if( res==0 && n<nField ){ 1186 iLower = aSample[iSamp].anLt[n-1]; 1187 iMin = iTest+1; 1188 res = -1; 1189 }else{ 1190 iSample = iTest; 1191 iCol = n-1; 1192 } 1193 }while( res && iMin<iSample ); 1194 i = iSample / nField; 1195 1196 #ifdef SQLITE_DEBUG 1197 /* The following assert statements check that the binary search code 1198 ** above found the right answer. This block serves no purpose other 1199 ** than to invoke the asserts. */ 1200 if( pParse->db->mallocFailed==0 ){ 1201 if( res==0 ){ 1202 /* If (res==0) is true, then pRec must be equal to sample i. */ 1203 assert( i<pIdx->nSample ); 1204 assert( iCol==nField-1 ); 1205 pRec->nField = nField; 1206 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) 1207 || pParse->db->mallocFailed 1208 ); 1209 }else{ 1210 /* Unless i==pIdx->nSample, indicating that pRec is larger than 1211 ** all samples in the aSample[] array, pRec must be smaller than the 1212 ** (iCol+1) field prefix of sample i. */ 1213 assert( i<=pIdx->nSample && i>=0 ); 1214 pRec->nField = iCol+1; 1215 assert( i==pIdx->nSample 1216 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 1217 || pParse->db->mallocFailed ); 1218 1219 /* if i==0 and iCol==0, then record pRec is smaller than all samples 1220 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must 1221 ** be greater than or equal to the (iCol) field prefix of sample i. 1222 ** If (i>0), then pRec must also be greater than sample (i-1). */ 1223 if( iCol>0 ){ 1224 pRec->nField = iCol; 1225 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 1226 || pParse->db->mallocFailed ); 1227 } 1228 if( i>0 ){ 1229 pRec->nField = nField; 1230 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 1231 || pParse->db->mallocFailed ); 1232 } 1233 } 1234 } 1235 #endif /* ifdef SQLITE_DEBUG */ 1236 1237 if( res==0 ){ 1238 /* Record pRec is equal to sample i */ 1239 assert( iCol==nField-1 ); 1240 aStat[0] = aSample[i].anLt[iCol]; 1241 aStat[1] = aSample[i].anEq[iCol]; 1242 }else{ 1243 /* At this point, the (iCol+1) field prefix of aSample[i] is the first 1244 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec 1245 ** is larger than all samples in the array. */ 1246 tRowcnt iUpper, iGap; 1247 if( i>=pIdx->nSample ){ 1248 iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); 1249 }else{ 1250 iUpper = aSample[i].anLt[iCol]; 1251 } 1252 1253 if( iLower>=iUpper ){ 1254 iGap = 0; 1255 }else{ 1256 iGap = iUpper - iLower; 1257 } 1258 if( roundUp ){ 1259 iGap = (iGap*2)/3; 1260 }else{ 1261 iGap = iGap/3; 1262 } 1263 aStat[0] = iLower + iGap; 1264 aStat[1] = pIdx->aAvgEq[nField-1]; 1265 } 1266 1267 /* Restore the pRec->nField value before returning. */ 1268 pRec->nField = nField; 1269 return i; 1270 } 1271 #endif /* SQLITE_ENABLE_STAT4 */ 1272 1273 /* 1274 ** If it is not NULL, pTerm is a term that provides an upper or lower 1275 ** bound on a range scan. Without considering pTerm, it is estimated 1276 ** that the scan will visit nNew rows. This function returns the number 1277 ** estimated to be visited after taking pTerm into account. 1278 ** 1279 ** If the user explicitly specified a likelihood() value for this term, 1280 ** then the return value is the likelihood multiplied by the number of 1281 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term 1282 ** has a likelihood of 0.50, and any other term a likelihood of 0.25. 1283 */ 1284 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ 1285 LogEst nRet = nNew; 1286 if( pTerm ){ 1287 if( pTerm->truthProb<=0 ){ 1288 nRet += pTerm->truthProb; 1289 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ 1290 nRet -= 20; assert( 20==sqlite3LogEst(4) ); 1291 } 1292 } 1293 return nRet; 1294 } 1295 1296 1297 #ifdef SQLITE_ENABLE_STAT4 1298 /* 1299 ** Return the affinity for a single column of an index. 1300 */ 1301 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){ 1302 assert( iCol>=0 && iCol<pIdx->nColumn ); 1303 if( !pIdx->zColAff ){ 1304 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB; 1305 } 1306 assert( pIdx->zColAff[iCol]!=0 ); 1307 return pIdx->zColAff[iCol]; 1308 } 1309 #endif 1310 1311 1312 #ifdef SQLITE_ENABLE_STAT4 1313 /* 1314 ** This function is called to estimate the number of rows visited by a 1315 ** range-scan on a skip-scan index. For example: 1316 ** 1317 ** CREATE INDEX i1 ON t1(a, b, c); 1318 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; 1319 ** 1320 ** Value pLoop->nOut is currently set to the estimated number of rows 1321 ** visited for scanning (a=? AND b=?). This function reduces that estimate 1322 ** by some factor to account for the (c BETWEEN ? AND ?) expression based 1323 ** on the stat4 data for the index. this scan will be peformed multiple 1324 ** times (once for each (a,b) combination that matches a=?) is dealt with 1325 ** by the caller. 1326 ** 1327 ** It does this by scanning through all stat4 samples, comparing values 1328 ** extracted from pLower and pUpper with the corresponding column in each 1329 ** sample. If L and U are the number of samples found to be less than or 1330 ** equal to the values extracted from pLower and pUpper respectively, and 1331 ** N is the total number of samples, the pLoop->nOut value is adjusted 1332 ** as follows: 1333 ** 1334 ** nOut = nOut * ( min(U - L, 1) / N ) 1335 ** 1336 ** If pLower is NULL, or a value cannot be extracted from the term, L is 1337 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, 1338 ** U is set to N. 1339 ** 1340 ** Normally, this function sets *pbDone to 1 before returning. However, 1341 ** if no value can be extracted from either pLower or pUpper (and so the 1342 ** estimate of the number of rows delivered remains unchanged), *pbDone 1343 ** is left as is. 1344 ** 1345 ** If an error occurs, an SQLite error code is returned. Otherwise, 1346 ** SQLITE_OK. 1347 */ 1348 static int whereRangeSkipScanEst( 1349 Parse *pParse, /* Parsing & code generating context */ 1350 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1351 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1352 WhereLoop *pLoop, /* Update the .nOut value of this loop */ 1353 int *pbDone /* Set to true if at least one expr. value extracted */ 1354 ){ 1355 Index *p = pLoop->u.btree.pIndex; 1356 int nEq = pLoop->u.btree.nEq; 1357 sqlite3 *db = pParse->db; 1358 int nLower = -1; 1359 int nUpper = p->nSample+1; 1360 int rc = SQLITE_OK; 1361 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq); 1362 CollSeq *pColl; 1363 1364 sqlite3_value *p1 = 0; /* Value extracted from pLower */ 1365 sqlite3_value *p2 = 0; /* Value extracted from pUpper */ 1366 sqlite3_value *pVal = 0; /* Value extracted from record */ 1367 1368 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); 1369 if( pLower ){ 1370 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); 1371 nLower = 0; 1372 } 1373 if( pUpper && rc==SQLITE_OK ){ 1374 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); 1375 nUpper = p2 ? 0 : p->nSample; 1376 } 1377 1378 if( p1 || p2 ){ 1379 int i; 1380 int nDiff; 1381 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ 1382 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); 1383 if( rc==SQLITE_OK && p1 ){ 1384 int res = sqlite3MemCompare(p1, pVal, pColl); 1385 if( res>=0 ) nLower++; 1386 } 1387 if( rc==SQLITE_OK && p2 ){ 1388 int res = sqlite3MemCompare(p2, pVal, pColl); 1389 if( res>=0 ) nUpper++; 1390 } 1391 } 1392 nDiff = (nUpper - nLower); 1393 if( nDiff<=0 ) nDiff = 1; 1394 1395 /* If there is both an upper and lower bound specified, and the 1396 ** comparisons indicate that they are close together, use the fallback 1397 ** method (assume that the scan visits 1/64 of the rows) for estimating 1398 ** the number of rows visited. Otherwise, estimate the number of rows 1399 ** using the method described in the header comment for this function. */ 1400 if( nDiff!=1 || pUpper==0 || pLower==0 ){ 1401 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); 1402 pLoop->nOut -= nAdjust; 1403 *pbDone = 1; 1404 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", 1405 nLower, nUpper, nAdjust*-1, pLoop->nOut)); 1406 } 1407 1408 }else{ 1409 assert( *pbDone==0 ); 1410 } 1411 1412 sqlite3ValueFree(p1); 1413 sqlite3ValueFree(p2); 1414 sqlite3ValueFree(pVal); 1415 1416 return rc; 1417 } 1418 #endif /* SQLITE_ENABLE_STAT4 */ 1419 1420 /* 1421 ** This function is used to estimate the number of rows that will be visited 1422 ** by scanning an index for a range of values. The range may have an upper 1423 ** bound, a lower bound, or both. The WHERE clause terms that set the upper 1424 ** and lower bounds are represented by pLower and pUpper respectively. For 1425 ** example, assuming that index p is on t1(a): 1426 ** 1427 ** ... FROM t1 WHERE a > ? AND a < ? ... 1428 ** |_____| |_____| 1429 ** | | 1430 ** pLower pUpper 1431 ** 1432 ** If either of the upper or lower bound is not present, then NULL is passed in 1433 ** place of the corresponding WhereTerm. 1434 ** 1435 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index 1436 ** column subject to the range constraint. Or, equivalently, the number of 1437 ** equality constraints optimized by the proposed index scan. For example, 1438 ** assuming index p is on t1(a, b), and the SQL query is: 1439 ** 1440 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... 1441 ** 1442 ** then nEq is set to 1 (as the range restricted column, b, is the second 1443 ** left-most column of the index). Or, if the query is: 1444 ** 1445 ** ... FROM t1 WHERE a > ? AND a < ? ... 1446 ** 1447 ** then nEq is set to 0. 1448 ** 1449 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the 1450 ** number of rows that the index scan is expected to visit without 1451 ** considering the range constraints. If nEq is 0, then *pnOut is the number of 1452 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) 1453 ** to account for the range constraints pLower and pUpper. 1454 ** 1455 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be 1456 ** used, a single range inequality reduces the search space by a factor of 4. 1457 ** and a pair of constraints (x>? AND x<?) reduces the expected number of 1458 ** rows visited by a factor of 64. 1459 */ 1460 static int whereRangeScanEst( 1461 Parse *pParse, /* Parsing & code generating context */ 1462 WhereLoopBuilder *pBuilder, 1463 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1464 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1465 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ 1466 ){ 1467 int rc = SQLITE_OK; 1468 int nOut = pLoop->nOut; 1469 LogEst nNew; 1470 1471 #ifdef SQLITE_ENABLE_STAT4 1472 Index *p = pLoop->u.btree.pIndex; 1473 int nEq = pLoop->u.btree.nEq; 1474 1475 if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol) 1476 && OptimizationEnabled(pParse->db, SQLITE_Stat4) 1477 ){ 1478 if( nEq==pBuilder->nRecValid ){ 1479 UnpackedRecord *pRec = pBuilder->pRec; 1480 tRowcnt a[2]; 1481 int nBtm = pLoop->u.btree.nBtm; 1482 int nTop = pLoop->u.btree.nTop; 1483 1484 /* Variable iLower will be set to the estimate of the number of rows in 1485 ** the index that are less than the lower bound of the range query. The 1486 ** lower bound being the concatenation of $P and $L, where $P is the 1487 ** key-prefix formed by the nEq values matched against the nEq left-most 1488 ** columns of the index, and $L is the value in pLower. 1489 ** 1490 ** Or, if pLower is NULL or $L cannot be extracted from it (because it 1491 ** is not a simple variable or literal value), the lower bound of the 1492 ** range is $P. Due to a quirk in the way whereKeyStats() works, even 1493 ** if $L is available, whereKeyStats() is called for both ($P) and 1494 ** ($P:$L) and the larger of the two returned values is used. 1495 ** 1496 ** Similarly, iUpper is to be set to the estimate of the number of rows 1497 ** less than the upper bound of the range query. Where the upper bound 1498 ** is either ($P) or ($P:$U). Again, even if $U is available, both values 1499 ** of iUpper are requested of whereKeyStats() and the smaller used. 1500 ** 1501 ** The number of rows between the two bounds is then just iUpper-iLower. 1502 */ 1503 tRowcnt iLower; /* Rows less than the lower bound */ 1504 tRowcnt iUpper; /* Rows less than the upper bound */ 1505 int iLwrIdx = -2; /* aSample[] for the lower bound */ 1506 int iUprIdx = -1; /* aSample[] for the upper bound */ 1507 1508 if( pRec ){ 1509 testcase( pRec->nField!=pBuilder->nRecValid ); 1510 pRec->nField = pBuilder->nRecValid; 1511 } 1512 /* Determine iLower and iUpper using ($P) only. */ 1513 if( nEq==0 ){ 1514 iLower = 0; 1515 iUpper = p->nRowEst0; 1516 }else{ 1517 /* Note: this call could be optimized away - since the same values must 1518 ** have been requested when testing key $P in whereEqualScanEst(). */ 1519 whereKeyStats(pParse, p, pRec, 0, a); 1520 iLower = a[0]; 1521 iUpper = a[0] + a[1]; 1522 } 1523 1524 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); 1525 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); 1526 assert( p->aSortOrder!=0 ); 1527 if( p->aSortOrder[nEq] ){ 1528 /* The roles of pLower and pUpper are swapped for a DESC index */ 1529 SWAP(WhereTerm*, pLower, pUpper); 1530 SWAP(int, nBtm, nTop); 1531 } 1532 1533 /* If possible, improve on the iLower estimate using ($P:$L). */ 1534 if( pLower ){ 1535 int n; /* Values extracted from pExpr */ 1536 Expr *pExpr = pLower->pExpr->pRight; 1537 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n); 1538 if( rc==SQLITE_OK && n ){ 1539 tRowcnt iNew; 1540 u16 mask = WO_GT|WO_LE; 1541 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1542 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); 1543 iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0); 1544 if( iNew>iLower ) iLower = iNew; 1545 nOut--; 1546 pLower = 0; 1547 } 1548 } 1549 1550 /* If possible, improve on the iUpper estimate using ($P:$U). */ 1551 if( pUpper ){ 1552 int n; /* Values extracted from pExpr */ 1553 Expr *pExpr = pUpper->pExpr->pRight; 1554 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n); 1555 if( rc==SQLITE_OK && n ){ 1556 tRowcnt iNew; 1557 u16 mask = WO_GT|WO_LE; 1558 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1559 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); 1560 iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0); 1561 if( iNew<iUpper ) iUpper = iNew; 1562 nOut--; 1563 pUpper = 0; 1564 } 1565 } 1566 1567 pBuilder->pRec = pRec; 1568 if( rc==SQLITE_OK ){ 1569 if( iUpper>iLower ){ 1570 nNew = sqlite3LogEst(iUpper - iLower); 1571 /* TUNING: If both iUpper and iLower are derived from the same 1572 ** sample, then assume they are 4x more selective. This brings 1573 ** the estimated selectivity more in line with what it would be 1574 ** if estimated without the use of STAT4 tables. */ 1575 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) ); 1576 }else{ 1577 nNew = 10; assert( 10==sqlite3LogEst(2) ); 1578 } 1579 if( nNew<nOut ){ 1580 nOut = nNew; 1581 } 1582 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", 1583 (u32)iLower, (u32)iUpper, nOut)); 1584 } 1585 }else{ 1586 int bDone = 0; 1587 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); 1588 if( bDone ) return rc; 1589 } 1590 } 1591 #else 1592 UNUSED_PARAMETER(pParse); 1593 UNUSED_PARAMETER(pBuilder); 1594 assert( pLower || pUpper ); 1595 #endif 1596 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); 1597 nNew = whereRangeAdjust(pLower, nOut); 1598 nNew = whereRangeAdjust(pUpper, nNew); 1599 1600 /* TUNING: If there is both an upper and lower limit and neither limit 1601 ** has an application-defined likelihood(), assume the range is 1602 ** reduced by an additional 75%. This means that, by default, an open-ended 1603 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the 1604 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to 1605 ** match 1/64 of the index. */ 1606 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ 1607 nNew -= 20; 1608 } 1609 1610 nOut -= (pLower!=0) + (pUpper!=0); 1611 if( nNew<10 ) nNew = 10; 1612 if( nNew<nOut ) nOut = nNew; 1613 #if defined(WHERETRACE_ENABLED) 1614 if( pLoop->nOut>nOut ){ 1615 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", 1616 pLoop->nOut, nOut)); 1617 } 1618 #endif 1619 pLoop->nOut = (LogEst)nOut; 1620 return rc; 1621 } 1622 1623 #ifdef SQLITE_ENABLE_STAT4 1624 /* 1625 ** Estimate the number of rows that will be returned based on 1626 ** an equality constraint x=VALUE and where that VALUE occurs in 1627 ** the histogram data. This only works when x is the left-most 1628 ** column of an index and sqlite_stat4 histogram data is available 1629 ** for that index. When pExpr==NULL that means the constraint is 1630 ** "x IS NULL" instead of "x=VALUE". 1631 ** 1632 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1633 ** If unable to make an estimate, leave *pnRow unchanged and return 1634 ** non-zero. 1635 ** 1636 ** This routine can fail if it is unable to load a collating sequence 1637 ** required for string comparison, or if unable to allocate memory 1638 ** for a UTF conversion required for comparison. The error is stored 1639 ** in the pParse structure. 1640 */ 1641 static int whereEqualScanEst( 1642 Parse *pParse, /* Parsing & code generating context */ 1643 WhereLoopBuilder *pBuilder, 1644 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ 1645 tRowcnt *pnRow /* Write the revised row estimate here */ 1646 ){ 1647 Index *p = pBuilder->pNew->u.btree.pIndex; 1648 int nEq = pBuilder->pNew->u.btree.nEq; 1649 UnpackedRecord *pRec = pBuilder->pRec; 1650 int rc; /* Subfunction return code */ 1651 tRowcnt a[2]; /* Statistics */ 1652 int bOk; 1653 1654 assert( nEq>=1 ); 1655 assert( nEq<=p->nColumn ); 1656 assert( p->aSample!=0 ); 1657 assert( p->nSample>0 ); 1658 assert( pBuilder->nRecValid<nEq ); 1659 1660 /* If values are not available for all fields of the index to the left 1661 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ 1662 if( pBuilder->nRecValid<(nEq-1) ){ 1663 return SQLITE_NOTFOUND; 1664 } 1665 1666 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() 1667 ** below would return the same value. */ 1668 if( nEq>=p->nColumn ){ 1669 *pnRow = 1; 1670 return SQLITE_OK; 1671 } 1672 1673 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk); 1674 pBuilder->pRec = pRec; 1675 if( rc!=SQLITE_OK ) return rc; 1676 if( bOk==0 ) return SQLITE_NOTFOUND; 1677 pBuilder->nRecValid = nEq; 1678 1679 whereKeyStats(pParse, p, pRec, 0, a); 1680 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n", 1681 p->zName, nEq-1, (int)a[1])); 1682 *pnRow = a[1]; 1683 1684 return rc; 1685 } 1686 #endif /* SQLITE_ENABLE_STAT4 */ 1687 1688 #ifdef SQLITE_ENABLE_STAT4 1689 /* 1690 ** Estimate the number of rows that will be returned based on 1691 ** an IN constraint where the right-hand side of the IN operator 1692 ** is a list of values. Example: 1693 ** 1694 ** WHERE x IN (1,2,3,4) 1695 ** 1696 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1697 ** If unable to make an estimate, leave *pnRow unchanged and return 1698 ** non-zero. 1699 ** 1700 ** This routine can fail if it is unable to load a collating sequence 1701 ** required for string comparison, or if unable to allocate memory 1702 ** for a UTF conversion required for comparison. The error is stored 1703 ** in the pParse structure. 1704 */ 1705 static int whereInScanEst( 1706 Parse *pParse, /* Parsing & code generating context */ 1707 WhereLoopBuilder *pBuilder, 1708 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ 1709 tRowcnt *pnRow /* Write the revised row estimate here */ 1710 ){ 1711 Index *p = pBuilder->pNew->u.btree.pIndex; 1712 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); 1713 int nRecValid = pBuilder->nRecValid; 1714 int rc = SQLITE_OK; /* Subfunction return code */ 1715 tRowcnt nEst; /* Number of rows for a single term */ 1716 tRowcnt nRowEst = 0; /* New estimate of the number of rows */ 1717 int i; /* Loop counter */ 1718 1719 assert( p->aSample!=0 ); 1720 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ 1721 nEst = nRow0; 1722 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); 1723 nRowEst += nEst; 1724 pBuilder->nRecValid = nRecValid; 1725 } 1726 1727 if( rc==SQLITE_OK ){ 1728 if( nRowEst > nRow0 ) nRowEst = nRow0; 1729 *pnRow = nRowEst; 1730 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); 1731 } 1732 assert( pBuilder->nRecValid==nRecValid ); 1733 return rc; 1734 } 1735 #endif /* SQLITE_ENABLE_STAT4 */ 1736 1737 1738 #ifdef WHERETRACE_ENABLED 1739 /* 1740 ** Print the content of a WhereTerm object 1741 */ 1742 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){ 1743 if( pTerm==0 ){ 1744 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); 1745 }else{ 1746 char zType[8]; 1747 char zLeft[50]; 1748 memcpy(zType, "....", 5); 1749 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; 1750 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; 1751 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L'; 1752 if( pTerm->wtFlags & TERM_CODED ) zType[3] = 'C'; 1753 if( pTerm->eOperator & WO_SINGLE ){ 1754 sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}", 1755 pTerm->leftCursor, pTerm->u.leftColumn); 1756 }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){ 1757 sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%lld", 1758 pTerm->u.pOrInfo->indexable); 1759 }else{ 1760 sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor); 1761 } 1762 sqlite3DebugPrintf( 1763 "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x", 1764 iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags); 1765 /* The 0x10000 .wheretrace flag causes extra information to be 1766 ** shown about each Term */ 1767 if( sqlite3WhereTrace & 0x10000 ){ 1768 sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx", 1769 pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight); 1770 } 1771 if( pTerm->iField ){ 1772 sqlite3DebugPrintf(" iField=%d", pTerm->iField); 1773 } 1774 if( pTerm->iParent>=0 ){ 1775 sqlite3DebugPrintf(" iParent=%d", pTerm->iParent); 1776 } 1777 sqlite3DebugPrintf("\n"); 1778 sqlite3TreeViewExpr(0, pTerm->pExpr, 0); 1779 } 1780 } 1781 #endif 1782 1783 #ifdef WHERETRACE_ENABLED 1784 /* 1785 ** Show the complete content of a WhereClause 1786 */ 1787 void sqlite3WhereClausePrint(WhereClause *pWC){ 1788 int i; 1789 for(i=0; i<pWC->nTerm; i++){ 1790 sqlite3WhereTermPrint(&pWC->a[i], i); 1791 } 1792 } 1793 #endif 1794 1795 #ifdef WHERETRACE_ENABLED 1796 /* 1797 ** Print a WhereLoop object for debugging purposes 1798 */ 1799 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){ 1800 WhereInfo *pWInfo = pWC->pWInfo; 1801 int nb = 1+(pWInfo->pTabList->nSrc+3)/4; 1802 struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab; 1803 Table *pTab = pItem->pTab; 1804 Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1; 1805 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, 1806 p->iTab, nb, p->maskSelf, nb, p->prereq & mAll); 1807 sqlite3DebugPrintf(" %12s", 1808 pItem->zAlias ? pItem->zAlias : pTab->zName); 1809 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 1810 const char *zName; 1811 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ 1812 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ 1813 int i = sqlite3Strlen30(zName) - 1; 1814 while( zName[i]!='_' ) i--; 1815 zName += i; 1816 } 1817 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); 1818 }else{ 1819 sqlite3DebugPrintf("%20s",""); 1820 } 1821 }else{ 1822 char *z; 1823 if( p->u.vtab.idxStr ){ 1824 z = sqlite3_mprintf("(%d,\"%s\",%#x)", 1825 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); 1826 }else{ 1827 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); 1828 } 1829 sqlite3DebugPrintf(" %-19s", z); 1830 sqlite3_free(z); 1831 } 1832 if( p->wsFlags & WHERE_SKIPSCAN ){ 1833 sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); 1834 }else{ 1835 sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm); 1836 } 1837 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); 1838 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ 1839 int i; 1840 for(i=0; i<p->nLTerm; i++){ 1841 sqlite3WhereTermPrint(p->aLTerm[i], i); 1842 } 1843 } 1844 } 1845 #endif 1846 1847 /* 1848 ** Convert bulk memory into a valid WhereLoop that can be passed 1849 ** to whereLoopClear harmlessly. 1850 */ 1851 static void whereLoopInit(WhereLoop *p){ 1852 p->aLTerm = p->aLTermSpace; 1853 p->nLTerm = 0; 1854 p->nLSlot = ArraySize(p->aLTermSpace); 1855 p->wsFlags = 0; 1856 } 1857 1858 /* 1859 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. 1860 */ 1861 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ 1862 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ 1863 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ 1864 sqlite3_free(p->u.vtab.idxStr); 1865 p->u.vtab.needFree = 0; 1866 p->u.vtab.idxStr = 0; 1867 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ 1868 sqlite3DbFree(db, p->u.btree.pIndex->zColAff); 1869 sqlite3DbFreeNN(db, p->u.btree.pIndex); 1870 p->u.btree.pIndex = 0; 1871 } 1872 } 1873 } 1874 1875 /* 1876 ** Deallocate internal memory used by a WhereLoop object 1877 */ 1878 static void whereLoopClear(sqlite3 *db, WhereLoop *p){ 1879 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm); 1880 whereLoopClearUnion(db, p); 1881 whereLoopInit(p); 1882 } 1883 1884 /* 1885 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. 1886 */ 1887 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ 1888 WhereTerm **paNew; 1889 if( p->nLSlot>=n ) return SQLITE_OK; 1890 n = (n+7)&~7; 1891 paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n); 1892 if( paNew==0 ) return SQLITE_NOMEM_BKPT; 1893 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); 1894 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm); 1895 p->aLTerm = paNew; 1896 p->nLSlot = n; 1897 return SQLITE_OK; 1898 } 1899 1900 /* 1901 ** Transfer content from the second pLoop into the first. 1902 */ 1903 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ 1904 whereLoopClearUnion(db, pTo); 1905 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){ 1906 memset(&pTo->u, 0, sizeof(pTo->u)); 1907 return SQLITE_NOMEM_BKPT; 1908 } 1909 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); 1910 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); 1911 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ 1912 pFrom->u.vtab.needFree = 0; 1913 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 1914 pFrom->u.btree.pIndex = 0; 1915 } 1916 return SQLITE_OK; 1917 } 1918 1919 /* 1920 ** Delete a WhereLoop object 1921 */ 1922 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ 1923 whereLoopClear(db, p); 1924 sqlite3DbFreeNN(db, p); 1925 } 1926 1927 /* 1928 ** Free a WhereInfo structure 1929 */ 1930 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 1931 int i; 1932 assert( pWInfo!=0 ); 1933 for(i=0; i<pWInfo->nLevel; i++){ 1934 WhereLevel *pLevel = &pWInfo->a[i]; 1935 if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){ 1936 sqlite3DbFree(db, pLevel->u.in.aInLoop); 1937 } 1938 } 1939 sqlite3WhereClauseClear(&pWInfo->sWC); 1940 while( pWInfo->pLoops ){ 1941 WhereLoop *p = pWInfo->pLoops; 1942 pWInfo->pLoops = p->pNextLoop; 1943 whereLoopDelete(db, p); 1944 } 1945 assert( pWInfo->pExprMods==0 ); 1946 sqlite3DbFreeNN(db, pWInfo); 1947 } 1948 1949 /* 1950 ** Return TRUE if all of the following are true: 1951 ** 1952 ** (1) X has the same or lower cost that Y 1953 ** (2) X uses fewer WHERE clause terms than Y 1954 ** (3) Every WHERE clause term used by X is also used by Y 1955 ** (4) X skips at least as many columns as Y 1956 ** (5) If X is a covering index, than Y is too 1957 ** 1958 ** Conditions (2) and (3) mean that X is a "proper subset" of Y. 1959 ** If X is a proper subset of Y then Y is a better choice and ought 1960 ** to have a lower cost. This routine returns TRUE when that cost 1961 ** relationship is inverted and needs to be adjusted. Constraint (4) 1962 ** was added because if X uses skip-scan less than Y it still might 1963 ** deserve a lower cost even if it is a proper subset of Y. Constraint (5) 1964 ** was added because a covering index probably deserves to have a lower cost 1965 ** than a non-covering index even if it is a proper subset. 1966 */ 1967 static int whereLoopCheaperProperSubset( 1968 const WhereLoop *pX, /* First WhereLoop to compare */ 1969 const WhereLoop *pY /* Compare against this WhereLoop */ 1970 ){ 1971 int i, j; 1972 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ 1973 return 0; /* X is not a subset of Y */ 1974 } 1975 if( pY->nSkip > pX->nSkip ) return 0; 1976 if( pX->rRun >= pY->rRun ){ 1977 if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */ 1978 if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */ 1979 } 1980 for(i=pX->nLTerm-1; i>=0; i--){ 1981 if( pX->aLTerm[i]==0 ) continue; 1982 for(j=pY->nLTerm-1; j>=0; j--){ 1983 if( pY->aLTerm[j]==pX->aLTerm[i] ) break; 1984 } 1985 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ 1986 } 1987 if( (pX->wsFlags&WHERE_IDX_ONLY)!=0 1988 && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){ 1989 return 0; /* Constraint (5) */ 1990 } 1991 return 1; /* All conditions meet */ 1992 } 1993 1994 /* 1995 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so 1996 ** that: 1997 ** 1998 ** (1) pTemplate costs less than any other WhereLoops that are a proper 1999 ** subset of pTemplate 2000 ** 2001 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate 2002 ** is a proper subset. 2003 ** 2004 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer 2005 ** WHERE clause terms than Y and that every WHERE clause term used by X is 2006 ** also used by Y. 2007 */ 2008 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ 2009 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; 2010 for(; p; p=p->pNextLoop){ 2011 if( p->iTab!=pTemplate->iTab ) continue; 2012 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; 2013 if( whereLoopCheaperProperSubset(p, pTemplate) ){ 2014 /* Adjust pTemplate cost downward so that it is cheaper than its 2015 ** subset p. */ 2016 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 2017 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1)); 2018 pTemplate->rRun = p->rRun; 2019 pTemplate->nOut = p->nOut - 1; 2020 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ 2021 /* Adjust pTemplate cost upward so that it is costlier than p since 2022 ** pTemplate is a proper subset of p */ 2023 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 2024 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1)); 2025 pTemplate->rRun = p->rRun; 2026 pTemplate->nOut = p->nOut + 1; 2027 } 2028 } 2029 } 2030 2031 /* 2032 ** Search the list of WhereLoops in *ppPrev looking for one that can be 2033 ** replaced by pTemplate. 2034 ** 2035 ** Return NULL if pTemplate does not belong on the WhereLoop list. 2036 ** In other words if pTemplate ought to be dropped from further consideration. 2037 ** 2038 ** If pX is a WhereLoop that pTemplate can replace, then return the 2039 ** link that points to pX. 2040 ** 2041 ** If pTemplate cannot replace any existing element of the list but needs 2042 ** to be added to the list as a new entry, then return a pointer to the 2043 ** tail of the list. 2044 */ 2045 static WhereLoop **whereLoopFindLesser( 2046 WhereLoop **ppPrev, 2047 const WhereLoop *pTemplate 2048 ){ 2049 WhereLoop *p; 2050 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ 2051 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ 2052 /* If either the iTab or iSortIdx values for two WhereLoop are different 2053 ** then those WhereLoops need to be considered separately. Neither is 2054 ** a candidate to replace the other. */ 2055 continue; 2056 } 2057 /* In the current implementation, the rSetup value is either zero 2058 ** or the cost of building an automatic index (NlogN) and the NlogN 2059 ** is the same for compatible WhereLoops. */ 2060 assert( p->rSetup==0 || pTemplate->rSetup==0 2061 || p->rSetup==pTemplate->rSetup ); 2062 2063 /* whereLoopAddBtree() always generates and inserts the automatic index 2064 ** case first. Hence compatible candidate WhereLoops never have a larger 2065 ** rSetup. Call this SETUP-INVARIANT */ 2066 assert( p->rSetup>=pTemplate->rSetup ); 2067 2068 /* Any loop using an appliation-defined index (or PRIMARY KEY or 2069 ** UNIQUE constraint) with one or more == constraints is better 2070 ** than an automatic index. Unless it is a skip-scan. */ 2071 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 2072 && (pTemplate->nSkip)==0 2073 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 2074 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 2075 && (p->prereq & pTemplate->prereq)==pTemplate->prereq 2076 ){ 2077 break; 2078 } 2079 2080 /* If existing WhereLoop p is better than pTemplate, pTemplate can be 2081 ** discarded. WhereLoop p is better if: 2082 ** (1) p has no more dependencies than pTemplate, and 2083 ** (2) p has an equal or lower cost than pTemplate 2084 */ 2085 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ 2086 && p->rSetup<=pTemplate->rSetup /* (2a) */ 2087 && p->rRun<=pTemplate->rRun /* (2b) */ 2088 && p->nOut<=pTemplate->nOut /* (2c) */ 2089 ){ 2090 return 0; /* Discard pTemplate */ 2091 } 2092 2093 /* If pTemplate is always better than p, then cause p to be overwritten 2094 ** with pTemplate. pTemplate is better than p if: 2095 ** (1) pTemplate has no more dependences than p, and 2096 ** (2) pTemplate has an equal or lower cost than p. 2097 */ 2098 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ 2099 && p->rRun>=pTemplate->rRun /* (2a) */ 2100 && p->nOut>=pTemplate->nOut /* (2b) */ 2101 ){ 2102 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ 2103 break; /* Cause p to be overwritten by pTemplate */ 2104 } 2105 } 2106 return ppPrev; 2107 } 2108 2109 /* 2110 ** Insert or replace a WhereLoop entry using the template supplied. 2111 ** 2112 ** An existing WhereLoop entry might be overwritten if the new template 2113 ** is better and has fewer dependencies. Or the template will be ignored 2114 ** and no insert will occur if an existing WhereLoop is faster and has 2115 ** fewer dependencies than the template. Otherwise a new WhereLoop is 2116 ** added based on the template. 2117 ** 2118 ** If pBuilder->pOrSet is not NULL then we care about only the 2119 ** prerequisites and rRun and nOut costs of the N best loops. That 2120 ** information is gathered in the pBuilder->pOrSet object. This special 2121 ** processing mode is used only for OR clause processing. 2122 ** 2123 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we 2124 ** still might overwrite similar loops with the new template if the 2125 ** new template is better. Loops may be overwritten if the following 2126 ** conditions are met: 2127 ** 2128 ** (1) They have the same iTab. 2129 ** (2) They have the same iSortIdx. 2130 ** (3) The template has same or fewer dependencies than the current loop 2131 ** (4) The template has the same or lower cost than the current loop 2132 */ 2133 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ 2134 WhereLoop **ppPrev, *p; 2135 WhereInfo *pWInfo = pBuilder->pWInfo; 2136 sqlite3 *db = pWInfo->pParse->db; 2137 int rc; 2138 2139 /* Stop the search once we hit the query planner search limit */ 2140 if( pBuilder->iPlanLimit==0 ){ 2141 WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n")); 2142 if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0; 2143 return SQLITE_DONE; 2144 } 2145 pBuilder->iPlanLimit--; 2146 2147 whereLoopAdjustCost(pWInfo->pLoops, pTemplate); 2148 2149 /* If pBuilder->pOrSet is defined, then only keep track of the costs 2150 ** and prereqs. 2151 */ 2152 if( pBuilder->pOrSet!=0 ){ 2153 if( pTemplate->nLTerm ){ 2154 #if WHERETRACE_ENABLED 2155 u16 n = pBuilder->pOrSet->n; 2156 int x = 2157 #endif 2158 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, 2159 pTemplate->nOut); 2160 #if WHERETRACE_ENABLED /* 0x8 */ 2161 if( sqlite3WhereTrace & 0x8 ){ 2162 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); 2163 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2164 } 2165 #endif 2166 } 2167 return SQLITE_OK; 2168 } 2169 2170 /* Look for an existing WhereLoop to replace with pTemplate 2171 */ 2172 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); 2173 2174 if( ppPrev==0 ){ 2175 /* There already exists a WhereLoop on the list that is better 2176 ** than pTemplate, so just ignore pTemplate */ 2177 #if WHERETRACE_ENABLED /* 0x8 */ 2178 if( sqlite3WhereTrace & 0x8 ){ 2179 sqlite3DebugPrintf(" skip: "); 2180 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2181 } 2182 #endif 2183 return SQLITE_OK; 2184 }else{ 2185 p = *ppPrev; 2186 } 2187 2188 /* If we reach this point it means that either p[] should be overwritten 2189 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new 2190 ** WhereLoop and insert it. 2191 */ 2192 #if WHERETRACE_ENABLED /* 0x8 */ 2193 if( sqlite3WhereTrace & 0x8 ){ 2194 if( p!=0 ){ 2195 sqlite3DebugPrintf("replace: "); 2196 sqlite3WhereLoopPrint(p, pBuilder->pWC); 2197 sqlite3DebugPrintf(" with: "); 2198 }else{ 2199 sqlite3DebugPrintf(" add: "); 2200 } 2201 sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC); 2202 } 2203 #endif 2204 if( p==0 ){ 2205 /* Allocate a new WhereLoop to add to the end of the list */ 2206 *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop)); 2207 if( p==0 ) return SQLITE_NOMEM_BKPT; 2208 whereLoopInit(p); 2209 p->pNextLoop = 0; 2210 }else{ 2211 /* We will be overwriting WhereLoop p[]. But before we do, first 2212 ** go through the rest of the list and delete any other entries besides 2213 ** p[] that are also supplated by pTemplate */ 2214 WhereLoop **ppTail = &p->pNextLoop; 2215 WhereLoop *pToDel; 2216 while( *ppTail ){ 2217 ppTail = whereLoopFindLesser(ppTail, pTemplate); 2218 if( ppTail==0 ) break; 2219 pToDel = *ppTail; 2220 if( pToDel==0 ) break; 2221 *ppTail = pToDel->pNextLoop; 2222 #if WHERETRACE_ENABLED /* 0x8 */ 2223 if( sqlite3WhereTrace & 0x8 ){ 2224 sqlite3DebugPrintf(" delete: "); 2225 sqlite3WhereLoopPrint(pToDel, pBuilder->pWC); 2226 } 2227 #endif 2228 whereLoopDelete(db, pToDel); 2229 } 2230 } 2231 rc = whereLoopXfer(db, p, pTemplate); 2232 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 2233 Index *pIndex = p->u.btree.pIndex; 2234 if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){ 2235 p->u.btree.pIndex = 0; 2236 } 2237 } 2238 return rc; 2239 } 2240 2241 /* 2242 ** Adjust the WhereLoop.nOut value downward to account for terms of the 2243 ** WHERE clause that reference the loop but which are not used by an 2244 ** index. 2245 * 2246 ** For every WHERE clause term that is not used by the index 2247 ** and which has a truth probability assigned by one of the likelihood(), 2248 ** likely(), or unlikely() SQL functions, reduce the estimated number 2249 ** of output rows by the probability specified. 2250 ** 2251 ** TUNING: For every WHERE clause term that is not used by the index 2252 ** and which does not have an assigned truth probability, heuristics 2253 ** described below are used to try to estimate the truth probability. 2254 ** TODO --> Perhaps this is something that could be improved by better 2255 ** table statistics. 2256 ** 2257 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% 2258 ** value corresponds to -1 in LogEst notation, so this means decrement 2259 ** the WhereLoop.nOut field for every such WHERE clause term. 2260 ** 2261 ** Heuristic 2: If there exists one or more WHERE clause terms of the 2262 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the 2263 ** final output row estimate is no greater than 1/4 of the total number 2264 ** of rows in the table. In other words, assume that x==EXPR will filter 2265 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the 2266 ** "x" column is boolean or else -1 or 0 or 1 is a common default value 2267 ** on the "x" column and so in that case only cap the output row estimate 2268 ** at 1/2 instead of 1/4. 2269 */ 2270 static void whereLoopOutputAdjust( 2271 WhereClause *pWC, /* The WHERE clause */ 2272 WhereLoop *pLoop, /* The loop to adjust downward */ 2273 LogEst nRow /* Number of rows in the entire table */ 2274 ){ 2275 WhereTerm *pTerm, *pX; 2276 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); 2277 int i, j; 2278 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ 2279 2280 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2281 for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){ 2282 assert( pTerm!=0 ); 2283 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break; 2284 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; 2285 if( (pTerm->prereqAll & notAllowed)!=0 ) continue; 2286 for(j=pLoop->nLTerm-1; j>=0; j--){ 2287 pX = pLoop->aLTerm[j]; 2288 if( pX==0 ) continue; 2289 if( pX==pTerm ) break; 2290 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; 2291 } 2292 if( j<0 ){ 2293 if( pTerm->truthProb<=0 ){ 2294 /* If a truth probability is specified using the likelihood() hints, 2295 ** then use the probability provided by the application. */ 2296 pLoop->nOut += pTerm->truthProb; 2297 }else{ 2298 /* In the absence of explicit truth probabilities, use heuristics to 2299 ** guess a reasonable truth probability. */ 2300 pLoop->nOut--; 2301 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 2302 && (pTerm->wtFlags & TERM_HIGHTRUTH)==0 /* tag-20200224-1 */ 2303 ){ 2304 Expr *pRight = pTerm->pExpr->pRight; 2305 int k = 0; 2306 testcase( pTerm->pExpr->op==TK_IS ); 2307 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){ 2308 k = 10; 2309 }else{ 2310 k = 20; 2311 } 2312 if( iReduce<k ){ 2313 pTerm->wtFlags |= TERM_HEURTRUTH; 2314 iReduce = k; 2315 } 2316 } 2317 } 2318 } 2319 } 2320 if( pLoop->nOut > nRow-iReduce ) pLoop->nOut = nRow - iReduce; 2321 } 2322 2323 /* 2324 ** Term pTerm is a vector range comparison operation. The first comparison 2325 ** in the vector can be optimized using column nEq of the index. This 2326 ** function returns the total number of vector elements that can be used 2327 ** as part of the range comparison. 2328 ** 2329 ** For example, if the query is: 2330 ** 2331 ** WHERE a = ? AND (b, c, d) > (?, ?, ?) 2332 ** 2333 ** and the index: 2334 ** 2335 ** CREATE INDEX ... ON (a, b, c, d, e) 2336 ** 2337 ** then this function would be invoked with nEq=1. The value returned in 2338 ** this case is 3. 2339 */ 2340 static int whereRangeVectorLen( 2341 Parse *pParse, /* Parsing context */ 2342 int iCur, /* Cursor open on pIdx */ 2343 Index *pIdx, /* The index to be used for a inequality constraint */ 2344 int nEq, /* Number of prior equality constraints on same index */ 2345 WhereTerm *pTerm /* The vector inequality constraint */ 2346 ){ 2347 int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft); 2348 int i; 2349 2350 nCmp = MIN(nCmp, (pIdx->nColumn - nEq)); 2351 for(i=1; i<nCmp; i++){ 2352 /* Test if comparison i of pTerm is compatible with column (i+nEq) 2353 ** of the index. If not, exit the loop. */ 2354 char aff; /* Comparison affinity */ 2355 char idxaff = 0; /* Indexed columns affinity */ 2356 CollSeq *pColl; /* Comparison collation sequence */ 2357 Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr; 2358 Expr *pRhs = pTerm->pExpr->pRight; 2359 if( pRhs->flags & EP_xIsSelect ){ 2360 pRhs = pRhs->x.pSelect->pEList->a[i].pExpr; 2361 }else{ 2362 pRhs = pRhs->x.pList->a[i].pExpr; 2363 } 2364 2365 /* Check that the LHS of the comparison is a column reference to 2366 ** the right column of the right source table. And that the sort 2367 ** order of the index column is the same as the sort order of the 2368 ** leftmost index column. */ 2369 if( pLhs->op!=TK_COLUMN 2370 || pLhs->iTable!=iCur 2371 || pLhs->iColumn!=pIdx->aiColumn[i+nEq] 2372 || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq] 2373 ){ 2374 break; 2375 } 2376 2377 testcase( pLhs->iColumn==XN_ROWID ); 2378 aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs)); 2379 idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn); 2380 if( aff!=idxaff ) break; 2381 2382 pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2383 if( pColl==0 ) break; 2384 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break; 2385 } 2386 return i; 2387 } 2388 2389 /* 2390 ** Adjust the cost C by the costMult facter T. This only occurs if 2391 ** compiled with -DSQLITE_ENABLE_COSTMULT 2392 */ 2393 #ifdef SQLITE_ENABLE_COSTMULT 2394 # define ApplyCostMultiplier(C,T) C += T 2395 #else 2396 # define ApplyCostMultiplier(C,T) 2397 #endif 2398 2399 /* 2400 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the 2401 ** index pIndex. Try to match one more. 2402 ** 2403 ** When this function is called, pBuilder->pNew->nOut contains the 2404 ** number of rows expected to be visited by filtering using the nEq 2405 ** terms only. If it is modified, this value is restored before this 2406 ** function returns. 2407 ** 2408 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is 2409 ** a fake index used for the INTEGER PRIMARY KEY. 2410 */ 2411 static int whereLoopAddBtreeIndex( 2412 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ 2413 struct SrcList_item *pSrc, /* FROM clause term being analyzed */ 2414 Index *pProbe, /* An index on pSrc */ 2415 LogEst nInMul /* log(Number of iterations due to IN) */ 2416 ){ 2417 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ 2418 Parse *pParse = pWInfo->pParse; /* Parsing context */ 2419 sqlite3 *db = pParse->db; /* Database connection malloc context */ 2420 WhereLoop *pNew; /* Template WhereLoop under construction */ 2421 WhereTerm *pTerm; /* A WhereTerm under consideration */ 2422 int opMask; /* Valid operators for constraints */ 2423 WhereScan scan; /* Iterator for WHERE terms */ 2424 Bitmask saved_prereq; /* Original value of pNew->prereq */ 2425 u16 saved_nLTerm; /* Original value of pNew->nLTerm */ 2426 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ 2427 u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */ 2428 u16 saved_nTop; /* Original value of pNew->u.btree.nTop */ 2429 u16 saved_nSkip; /* Original value of pNew->nSkip */ 2430 u32 saved_wsFlags; /* Original value of pNew->wsFlags */ 2431 LogEst saved_nOut; /* Original value of pNew->nOut */ 2432 int rc = SQLITE_OK; /* Return code */ 2433 LogEst rSize; /* Number of rows in the table */ 2434 LogEst rLogSize; /* Logarithm of table size */ 2435 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ 2436 2437 pNew = pBuilder->pNew; 2438 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 2439 WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d\n", 2440 pProbe->pTable->zName,pProbe->zName, 2441 pNew->u.btree.nEq, pNew->nSkip)); 2442 2443 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); 2444 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); 2445 if( pNew->wsFlags & WHERE_BTM_LIMIT ){ 2446 opMask = WO_LT|WO_LE; 2447 }else{ 2448 assert( pNew->u.btree.nBtm==0 ); 2449 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS; 2450 } 2451 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); 2452 2453 assert( pNew->u.btree.nEq<pProbe->nColumn ); 2454 2455 saved_nEq = pNew->u.btree.nEq; 2456 saved_nBtm = pNew->u.btree.nBtm; 2457 saved_nTop = pNew->u.btree.nTop; 2458 saved_nSkip = pNew->nSkip; 2459 saved_nLTerm = pNew->nLTerm; 2460 saved_wsFlags = pNew->wsFlags; 2461 saved_prereq = pNew->prereq; 2462 saved_nOut = pNew->nOut; 2463 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq, 2464 opMask, pProbe); 2465 pNew->rSetup = 0; 2466 rSize = pProbe->aiRowLogEst[0]; 2467 rLogSize = estLog(rSize); 2468 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ 2469 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ 2470 LogEst rCostIdx; 2471 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ 2472 int nIn = 0; 2473 #ifdef SQLITE_ENABLE_STAT4 2474 int nRecValid = pBuilder->nRecValid; 2475 #endif 2476 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) 2477 && indexColumnNotNull(pProbe, saved_nEq) 2478 ){ 2479 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ 2480 } 2481 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2482 2483 /* Do not allow the upper bound of a LIKE optimization range constraint 2484 ** to mix with a lower range bound from some other source */ 2485 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; 2486 2487 /* tag-20191211-001: Do not allow constraints from the WHERE clause to 2488 ** be used by the right table of a LEFT JOIN. Only constraints in the 2489 ** ON clause are allowed. See tag-20191211-002 for the vtab equivalent. */ 2490 if( (pSrc->fg.jointype & JT_LEFT)!=0 2491 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 2492 ){ 2493 continue; 2494 } 2495 2496 if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){ 2497 pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE; 2498 }else{ 2499 pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED; 2500 } 2501 pNew->wsFlags = saved_wsFlags; 2502 pNew->u.btree.nEq = saved_nEq; 2503 pNew->u.btree.nBtm = saved_nBtm; 2504 pNew->u.btree.nTop = saved_nTop; 2505 pNew->nLTerm = saved_nLTerm; 2506 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2507 pNew->aLTerm[pNew->nLTerm++] = pTerm; 2508 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; 2509 2510 assert( nInMul==0 2511 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 2512 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 2513 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 2514 ); 2515 2516 if( eOp & WO_IN ){ 2517 Expr *pExpr = pTerm->pExpr; 2518 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2519 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ 2520 int i; 2521 nIn = 46; assert( 46==sqlite3LogEst(25) ); 2522 2523 /* The expression may actually be of the form (x, y) IN (SELECT...). 2524 ** In this case there is a separate term for each of (x) and (y). 2525 ** However, the nIn multiplier should only be applied once, not once 2526 ** for each such term. The following loop checks that pTerm is the 2527 ** first such term in use, and sets nIn back to 0 if it is not. */ 2528 for(i=0; i<pNew->nLTerm-1; i++){ 2529 if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0; 2530 } 2531 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ 2532 /* "x IN (value, value, ...)" */ 2533 nIn = sqlite3LogEst(pExpr->x.pList->nExpr); 2534 } 2535 if( pProbe->hasStat1 ){ 2536 LogEst M, logK, safetyMargin; 2537 /* Let: 2538 ** N = the total number of rows in the table 2539 ** K = the number of entries on the RHS of the IN operator 2540 ** M = the number of rows in the table that match terms to the 2541 ** to the left in the same index. If the IN operator is on 2542 ** the left-most index column, M==N. 2543 ** 2544 ** Given the definitions above, it is better to omit the IN operator 2545 ** from the index lookup and instead do a scan of the M elements, 2546 ** testing each scanned row against the IN operator separately, if: 2547 ** 2548 ** M*log(K) < K*log(N) 2549 ** 2550 ** Our estimates for M, K, and N might be inaccurate, so we build in 2551 ** a safety margin of 2 (LogEst: 10) that favors using the IN operator 2552 ** with the index, as using an index has better worst-case behavior. 2553 ** If we do not have real sqlite_stat1 data, always prefer to use 2554 ** the index. 2555 */ 2556 M = pProbe->aiRowLogEst[saved_nEq]; 2557 logK = estLog(nIn); 2558 safetyMargin = 10; /* TUNING: extra weight for indexed IN */ 2559 if( M + logK + safetyMargin < nIn + rLogSize ){ 2560 WHERETRACE(0x40, 2561 ("Scan preferred over IN operator on column %d of \"%s\" (%d<%d)\n", 2562 saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize)); 2563 continue; 2564 }else{ 2565 WHERETRACE(0x40, 2566 ("IN operator preferred on column %d of \"%s\" (%d>=%d)\n", 2567 saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize)); 2568 } 2569 } 2570 pNew->wsFlags |= WHERE_COLUMN_IN; 2571 }else if( eOp & (WO_EQ|WO_IS) ){ 2572 int iCol = pProbe->aiColumn[saved_nEq]; 2573 pNew->wsFlags |= WHERE_COLUMN_EQ; 2574 assert( saved_nEq==pNew->u.btree.nEq ); 2575 if( iCol==XN_ROWID 2576 || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) 2577 ){ 2578 if( iCol==XN_ROWID || pProbe->uniqNotNull 2579 || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ) 2580 ){ 2581 pNew->wsFlags |= WHERE_ONEROW; 2582 }else{ 2583 pNew->wsFlags |= WHERE_UNQ_WANTED; 2584 } 2585 } 2586 }else if( eOp & WO_ISNULL ){ 2587 pNew->wsFlags |= WHERE_COLUMN_NULL; 2588 }else if( eOp & (WO_GT|WO_GE) ){ 2589 testcase( eOp & WO_GT ); 2590 testcase( eOp & WO_GE ); 2591 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; 2592 pNew->u.btree.nBtm = whereRangeVectorLen( 2593 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2594 ); 2595 pBtm = pTerm; 2596 pTop = 0; 2597 if( pTerm->wtFlags & TERM_LIKEOPT ){ 2598 /* Range contraints that come from the LIKE optimization are 2599 ** always used in pairs. */ 2600 pTop = &pTerm[1]; 2601 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm ); 2602 assert( pTop->wtFlags & TERM_LIKEOPT ); 2603 assert( pTop->eOperator==WO_LT ); 2604 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2605 pNew->aLTerm[pNew->nLTerm++] = pTop; 2606 pNew->wsFlags |= WHERE_TOP_LIMIT; 2607 pNew->u.btree.nTop = 1; 2608 } 2609 }else{ 2610 assert( eOp & (WO_LT|WO_LE) ); 2611 testcase( eOp & WO_LT ); 2612 testcase( eOp & WO_LE ); 2613 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; 2614 pNew->u.btree.nTop = whereRangeVectorLen( 2615 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2616 ); 2617 pTop = pTerm; 2618 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? 2619 pNew->aLTerm[pNew->nLTerm-2] : 0; 2620 } 2621 2622 /* At this point pNew->nOut is set to the number of rows expected to 2623 ** be visited by the index scan before considering term pTerm, or the 2624 ** values of nIn and nInMul. In other words, assuming that all 2625 ** "x IN(...)" terms are replaced with "x = ?". This block updates 2626 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ 2627 assert( pNew->nOut==saved_nOut ); 2628 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2629 /* Adjust nOut using stat4 data. Or, if there is no stat4 2630 ** data, using some other estimate. */ 2631 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); 2632 }else{ 2633 int nEq = ++pNew->u.btree.nEq; 2634 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) ); 2635 2636 assert( pNew->nOut==saved_nOut ); 2637 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){ 2638 assert( (eOp & WO_IN) || nIn==0 ); 2639 testcase( eOp & WO_IN ); 2640 pNew->nOut += pTerm->truthProb; 2641 pNew->nOut -= nIn; 2642 }else{ 2643 #ifdef SQLITE_ENABLE_STAT4 2644 tRowcnt nOut = 0; 2645 if( nInMul==0 2646 && pProbe->nSample 2647 && pNew->u.btree.nEq<=pProbe->nSampleCol 2648 && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect)) 2649 && OptimizationEnabled(db, SQLITE_Stat4) 2650 ){ 2651 Expr *pExpr = pTerm->pExpr; 2652 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){ 2653 testcase( eOp & WO_EQ ); 2654 testcase( eOp & WO_IS ); 2655 testcase( eOp & WO_ISNULL ); 2656 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); 2657 }else{ 2658 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); 2659 } 2660 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 2661 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ 2662 if( nOut ){ 2663 pNew->nOut = sqlite3LogEst(nOut); 2664 if( nEq==1 2665 /* TUNING: Mark terms as "low selectivity" if they seem likely 2666 ** to be true for half or more of the rows in the table. 2667 ** See tag-202002240-1 */ 2668 && pNew->nOut+10 > pProbe->aiRowLogEst[0] 2669 ){ 2670 #if WHERETRACE_ENABLED /* 0x01 */ 2671 if( sqlite3WhereTrace & 0x01 ){ 2672 sqlite3DebugPrintf( 2673 "STAT4 determines term has low selectivity:\n"); 2674 sqlite3WhereTermPrint(pTerm, 999); 2675 } 2676 #endif 2677 pTerm->wtFlags |= TERM_HIGHTRUTH; 2678 if( pTerm->wtFlags & TERM_HEURTRUTH ){ 2679 /* If the term has previously been used with an assumption of 2680 ** higher selectivity, then set the flag to rerun the 2681 ** loop computations. */ 2682 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS; 2683 } 2684 } 2685 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; 2686 pNew->nOut -= nIn; 2687 } 2688 } 2689 if( nOut==0 ) 2690 #endif 2691 { 2692 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); 2693 if( eOp & WO_ISNULL ){ 2694 /* TUNING: If there is no likelihood() value, assume that a 2695 ** "col IS NULL" expression matches twice as many rows 2696 ** as (col=?). */ 2697 pNew->nOut += 10; 2698 } 2699 } 2700 } 2701 } 2702 2703 /* Set rCostIdx to the cost of visiting selected rows in index. Add 2704 ** it to pNew->rRun, which is currently set to the cost of the index 2705 ** seek only. Then, if this is a non-covering index, add the cost of 2706 ** visiting the rows in the main table. */ 2707 assert( pSrc->pTab->szTabRow>0 ); 2708 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; 2709 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); 2710 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ 2711 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); 2712 } 2713 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); 2714 2715 nOutUnadjusted = pNew->nOut; 2716 pNew->rRun += nInMul + nIn; 2717 pNew->nOut += nInMul + nIn; 2718 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); 2719 rc = whereLoopInsert(pBuilder, pNew); 2720 2721 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2722 pNew->nOut = saved_nOut; 2723 }else{ 2724 pNew->nOut = nOutUnadjusted; 2725 } 2726 2727 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 2728 && pNew->u.btree.nEq<pProbe->nColumn 2729 ){ 2730 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); 2731 } 2732 pNew->nOut = saved_nOut; 2733 #ifdef SQLITE_ENABLE_STAT4 2734 pBuilder->nRecValid = nRecValid; 2735 #endif 2736 } 2737 pNew->prereq = saved_prereq; 2738 pNew->u.btree.nEq = saved_nEq; 2739 pNew->u.btree.nBtm = saved_nBtm; 2740 pNew->u.btree.nTop = saved_nTop; 2741 pNew->nSkip = saved_nSkip; 2742 pNew->wsFlags = saved_wsFlags; 2743 pNew->nOut = saved_nOut; 2744 pNew->nLTerm = saved_nLTerm; 2745 2746 /* Consider using a skip-scan if there are no WHERE clause constraints 2747 ** available for the left-most terms of the index, and if the average 2748 ** number of repeats in the left-most terms is at least 18. 2749 ** 2750 ** The magic number 18 is selected on the basis that scanning 17 rows 2751 ** is almost always quicker than an index seek (even though if the index 2752 ** contains fewer than 2^17 rows we assume otherwise in other parts of 2753 ** the code). And, even if it is not, it should not be too much slower. 2754 ** On the other hand, the extra seeks could end up being significantly 2755 ** more expensive. */ 2756 assert( 42==sqlite3LogEst(18) ); 2757 if( saved_nEq==saved_nSkip 2758 && saved_nEq+1<pProbe->nKeyCol 2759 && saved_nEq==pNew->nLTerm 2760 && pProbe->noSkipScan==0 2761 && pProbe->hasStat1!=0 2762 && OptimizationEnabled(db, SQLITE_SkipScan) 2763 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ 2764 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK 2765 ){ 2766 LogEst nIter; 2767 pNew->u.btree.nEq++; 2768 pNew->nSkip++; 2769 pNew->aLTerm[pNew->nLTerm++] = 0; 2770 pNew->wsFlags |= WHERE_SKIPSCAN; 2771 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; 2772 pNew->nOut -= nIter; 2773 /* TUNING: Because uncertainties in the estimates for skip-scan queries, 2774 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ 2775 nIter += 5; 2776 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); 2777 pNew->nOut = saved_nOut; 2778 pNew->u.btree.nEq = saved_nEq; 2779 pNew->nSkip = saved_nSkip; 2780 pNew->wsFlags = saved_wsFlags; 2781 } 2782 2783 WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n", 2784 pProbe->pTable->zName, pProbe->zName, saved_nEq, rc)); 2785 return rc; 2786 } 2787 2788 /* 2789 ** Return True if it is possible that pIndex might be useful in 2790 ** implementing the ORDER BY clause in pBuilder. 2791 ** 2792 ** Return False if pBuilder does not contain an ORDER BY clause or 2793 ** if there is no way for pIndex to be useful in implementing that 2794 ** ORDER BY clause. 2795 */ 2796 static int indexMightHelpWithOrderBy( 2797 WhereLoopBuilder *pBuilder, 2798 Index *pIndex, 2799 int iCursor 2800 ){ 2801 ExprList *pOB; 2802 ExprList *aColExpr; 2803 int ii, jj; 2804 2805 if( pIndex->bUnordered ) return 0; 2806 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; 2807 for(ii=0; ii<pOB->nExpr; ii++){ 2808 Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr); 2809 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){ 2810 if( pExpr->iColumn<0 ) return 1; 2811 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2812 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; 2813 } 2814 }else if( (aColExpr = pIndex->aColExpr)!=0 ){ 2815 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2816 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue; 2817 if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){ 2818 return 1; 2819 } 2820 } 2821 } 2822 } 2823 return 0; 2824 } 2825 2826 /* Check to see if a partial index with pPartIndexWhere can be used 2827 ** in the current query. Return true if it can be and false if not. 2828 */ 2829 static int whereUsablePartialIndex( 2830 int iTab, /* The table for which we want an index */ 2831 int isLeft, /* True if iTab is the right table of a LEFT JOIN */ 2832 WhereClause *pWC, /* The WHERE clause of the query */ 2833 Expr *pWhere /* The WHERE clause from the partial index */ 2834 ){ 2835 int i; 2836 WhereTerm *pTerm; 2837 Parse *pParse = pWC->pWInfo->pParse; 2838 while( pWhere->op==TK_AND ){ 2839 if( !whereUsablePartialIndex(iTab,isLeft,pWC,pWhere->pLeft) ) return 0; 2840 pWhere = pWhere->pRight; 2841 } 2842 if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0; 2843 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 2844 Expr *pExpr; 2845 pExpr = pTerm->pExpr; 2846 if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab) 2847 && (isLeft==0 || ExprHasProperty(pExpr, EP_FromJoin)) 2848 && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab) 2849 ){ 2850 return 1; 2851 } 2852 } 2853 return 0; 2854 } 2855 2856 /* 2857 ** Add all WhereLoop objects for a single table of the join where the table 2858 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be 2859 ** a b-tree table, not a virtual table. 2860 ** 2861 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function 2862 ** are calculated as follows: 2863 ** 2864 ** For a full scan, assuming the table (or index) contains nRow rows: 2865 ** 2866 ** cost = nRow * 3.0 // full-table scan 2867 ** cost = nRow * K // scan of covering index 2868 ** cost = nRow * (K+3.0) // scan of non-covering index 2869 ** 2870 ** where K is a value between 1.1 and 3.0 set based on the relative 2871 ** estimated average size of the index and table records. 2872 ** 2873 ** For an index scan, where nVisit is the number of index rows visited 2874 ** by the scan, and nSeek is the number of seek operations required on 2875 ** the index b-tree: 2876 ** 2877 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index 2878 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index 2879 ** 2880 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the 2881 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when 2882 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. 2883 ** 2884 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount 2885 ** of uncertainty. For this reason, scoring is designed to pick plans that 2886 ** "do the least harm" if the estimates are inaccurate. For example, a 2887 ** log(nRow) factor is omitted from a non-covering index scan in order to 2888 ** bias the scoring in favor of using an index, since the worst-case 2889 ** performance of using an index is far better than the worst-case performance 2890 ** of a full table scan. 2891 */ 2892 static int whereLoopAddBtree( 2893 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 2894 Bitmask mPrereq /* Extra prerequesites for using this table */ 2895 ){ 2896 WhereInfo *pWInfo; /* WHERE analysis context */ 2897 Index *pProbe; /* An index we are evaluating */ 2898 Index sPk; /* A fake index object for the primary key */ 2899 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ 2900 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ 2901 SrcList *pTabList; /* The FROM clause */ 2902 struct SrcList_item *pSrc; /* The FROM clause btree term to add */ 2903 WhereLoop *pNew; /* Template WhereLoop object */ 2904 int rc = SQLITE_OK; /* Return code */ 2905 int iSortIdx = 1; /* Index number */ 2906 int b; /* A boolean value */ 2907 LogEst rSize; /* number of rows in the table */ 2908 LogEst rLogSize; /* Logarithm of the number of rows in the table */ 2909 WhereClause *pWC; /* The parsed WHERE clause */ 2910 Table *pTab; /* Table being queried */ 2911 2912 pNew = pBuilder->pNew; 2913 pWInfo = pBuilder->pWInfo; 2914 pTabList = pWInfo->pTabList; 2915 pSrc = pTabList->a + pNew->iTab; 2916 pTab = pSrc->pTab; 2917 pWC = pBuilder->pWC; 2918 assert( !IsVirtual(pSrc->pTab) ); 2919 2920 if( pSrc->pIBIndex ){ 2921 /* An INDEXED BY clause specifies a particular index to use */ 2922 pProbe = pSrc->pIBIndex; 2923 }else if( !HasRowid(pTab) ){ 2924 pProbe = pTab->pIndex; 2925 }else{ 2926 /* There is no INDEXED BY clause. Create a fake Index object in local 2927 ** variable sPk to represent the rowid primary key index. Make this 2928 ** fake index the first in a chain of Index objects with all of the real 2929 ** indices to follow */ 2930 Index *pFirst; /* First of real indices on the table */ 2931 memset(&sPk, 0, sizeof(Index)); 2932 sPk.nKeyCol = 1; 2933 sPk.nColumn = 1; 2934 sPk.aiColumn = &aiColumnPk; 2935 sPk.aiRowLogEst = aiRowEstPk; 2936 sPk.onError = OE_Replace; 2937 sPk.pTable = pTab; 2938 sPk.szIdxRow = pTab->szTabRow; 2939 sPk.idxType = SQLITE_IDXTYPE_IPK; 2940 aiRowEstPk[0] = pTab->nRowLogEst; 2941 aiRowEstPk[1] = 0; 2942 pFirst = pSrc->pTab->pIndex; 2943 if( pSrc->fg.notIndexed==0 ){ 2944 /* The real indices of the table are only considered if the 2945 ** NOT INDEXED qualifier is omitted from the FROM clause */ 2946 sPk.pNext = pFirst; 2947 } 2948 pProbe = &sPk; 2949 } 2950 rSize = pTab->nRowLogEst; 2951 rLogSize = estLog(rSize); 2952 2953 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 2954 /* Automatic indexes */ 2955 if( !pBuilder->pOrSet /* Not part of an OR optimization */ 2956 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 2957 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 2958 && pSrc->pIBIndex==0 /* Has no INDEXED BY clause */ 2959 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */ 2960 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */ 2961 && !pSrc->fg.isCorrelated /* Not a correlated subquery */ 2962 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */ 2963 ){ 2964 /* Generate auto-index WhereLoops */ 2965 WhereTerm *pTerm; 2966 WhereTerm *pWCEnd = pWC->a + pWC->nTerm; 2967 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ 2968 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2969 if( termCanDriveIndex(pTerm, pSrc, 0) ){ 2970 pNew->u.btree.nEq = 1; 2971 pNew->nSkip = 0; 2972 pNew->u.btree.pIndex = 0; 2973 pNew->nLTerm = 1; 2974 pNew->aLTerm[0] = pTerm; 2975 /* TUNING: One-time cost for computing the automatic index is 2976 ** estimated to be X*N*log2(N) where N is the number of rows in 2977 ** the table being indexed and where X is 7 (LogEst=28) for normal 2978 ** tables or 0.5 (LogEst=-10) for views and subqueries. The value 2979 ** of X is smaller for views and subqueries so that the query planner 2980 ** will be more aggressive about generating automatic indexes for 2981 ** those objects, since there is no opportunity to add schema 2982 ** indexes on subqueries and views. */ 2983 pNew->rSetup = rLogSize + rSize; 2984 if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){ 2985 pNew->rSetup += 28; 2986 }else{ 2987 pNew->rSetup -= 10; 2988 } 2989 ApplyCostMultiplier(pNew->rSetup, pTab->costMult); 2990 if( pNew->rSetup<0 ) pNew->rSetup = 0; 2991 /* TUNING: Each index lookup yields 20 rows in the table. This 2992 ** is more than the usual guess of 10 rows, since we have no way 2993 ** of knowing how selective the index will ultimately be. It would 2994 ** not be unreasonable to make this value much larger. */ 2995 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); 2996 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); 2997 pNew->wsFlags = WHERE_AUTO_INDEX; 2998 pNew->prereq = mPrereq | pTerm->prereqRight; 2999 rc = whereLoopInsert(pBuilder, pNew); 3000 } 3001 } 3002 } 3003 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 3004 3005 /* Loop over all indices. If there was an INDEXED BY clause, then only 3006 ** consider index pProbe. */ 3007 for(; rc==SQLITE_OK && pProbe; 3008 pProbe=(pSrc->pIBIndex ? 0 : pProbe->pNext), iSortIdx++ 3009 ){ 3010 int isLeft = (pSrc->fg.jointype & JT_OUTER)!=0; 3011 if( pProbe->pPartIdxWhere!=0 3012 && !whereUsablePartialIndex(pSrc->iCursor, isLeft, pWC, 3013 pProbe->pPartIdxWhere) 3014 ){ 3015 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ 3016 continue; /* Partial index inappropriate for this query */ 3017 } 3018 if( pProbe->bNoQuery ) continue; 3019 rSize = pProbe->aiRowLogEst[0]; 3020 pNew->u.btree.nEq = 0; 3021 pNew->u.btree.nBtm = 0; 3022 pNew->u.btree.nTop = 0; 3023 pNew->nSkip = 0; 3024 pNew->nLTerm = 0; 3025 pNew->iSortIdx = 0; 3026 pNew->rSetup = 0; 3027 pNew->prereq = mPrereq; 3028 pNew->nOut = rSize; 3029 pNew->u.btree.pIndex = pProbe; 3030 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); 3031 3032 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ 3033 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); 3034 if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){ 3035 /* Integer primary key index */ 3036 pNew->wsFlags = WHERE_IPK; 3037 3038 /* Full table scan */ 3039 pNew->iSortIdx = b ? iSortIdx : 0; 3040 /* TUNING: Cost of full table scan is (N*3.0). */ 3041 pNew->rRun = rSize + 16; 3042 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 3043 whereLoopOutputAdjust(pWC, pNew, rSize); 3044 rc = whereLoopInsert(pBuilder, pNew); 3045 pNew->nOut = rSize; 3046 if( rc ) break; 3047 }else{ 3048 Bitmask m; 3049 if( pProbe->isCovering ){ 3050 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; 3051 m = 0; 3052 }else{ 3053 m = pSrc->colUsed & pProbe->colNotIdxed; 3054 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; 3055 } 3056 3057 /* Full scan via index */ 3058 if( b 3059 || !HasRowid(pTab) 3060 || pProbe->pPartIdxWhere!=0 3061 || pSrc->fg.isIndexedBy 3062 || ( m==0 3063 && pProbe->bUnordered==0 3064 && (pProbe->szIdxRow<pTab->szTabRow) 3065 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 3066 && sqlite3GlobalConfig.bUseCis 3067 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) 3068 ) 3069 ){ 3070 pNew->iSortIdx = b ? iSortIdx : 0; 3071 3072 /* The cost of visiting the index rows is N*K, where K is 3073 ** between 1.1 and 3.0, depending on the relative sizes of the 3074 ** index and table rows. */ 3075 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; 3076 if( m!=0 ){ 3077 /* If this is a non-covering index scan, add in the cost of 3078 ** doing table lookups. The cost will be 3x the number of 3079 ** lookups. Take into account WHERE clause terms that can be 3080 ** satisfied using just the index, and that do not require a 3081 ** table lookup. */ 3082 LogEst nLookup = rSize + 16; /* Base cost: N*3 */ 3083 int ii; 3084 int iCur = pSrc->iCursor; 3085 WhereClause *pWC2 = &pWInfo->sWC; 3086 for(ii=0; ii<pWC2->nTerm; ii++){ 3087 WhereTerm *pTerm = &pWC2->a[ii]; 3088 if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){ 3089 break; 3090 } 3091 /* pTerm can be evaluated using just the index. So reduce 3092 ** the expected number of table lookups accordingly */ 3093 if( pTerm->truthProb<=0 ){ 3094 nLookup += pTerm->truthProb; 3095 }else{ 3096 nLookup--; 3097 if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19; 3098 } 3099 } 3100 3101 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup); 3102 } 3103 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 3104 whereLoopOutputAdjust(pWC, pNew, rSize); 3105 rc = whereLoopInsert(pBuilder, pNew); 3106 pNew->nOut = rSize; 3107 if( rc ) break; 3108 } 3109 } 3110 3111 pBuilder->bldFlags1 = 0; 3112 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); 3113 if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){ 3114 /* If a non-unique index is used, or if a prefix of the key for 3115 ** unique index is used (making the index functionally non-unique) 3116 ** then the sqlite_stat1 data becomes important for scoring the 3117 ** plan */ 3118 pTab->tabFlags |= TF_StatsUsed; 3119 } 3120 #ifdef SQLITE_ENABLE_STAT4 3121 sqlite3Stat4ProbeFree(pBuilder->pRec); 3122 pBuilder->nRecValid = 0; 3123 pBuilder->pRec = 0; 3124 #endif 3125 } 3126 return rc; 3127 } 3128 3129 #ifndef SQLITE_OMIT_VIRTUALTABLE 3130 3131 /* 3132 ** Argument pIdxInfo is already populated with all constraints that may 3133 ** be used by the virtual table identified by pBuilder->pNew->iTab. This 3134 ** function marks a subset of those constraints usable, invokes the 3135 ** xBestIndex method and adds the returned plan to pBuilder. 3136 ** 3137 ** A constraint is marked usable if: 3138 ** 3139 ** * Argument mUsable indicates that its prerequisites are available, and 3140 ** 3141 ** * It is not one of the operators specified in the mExclude mask passed 3142 ** as the fourth argument (which in practice is either WO_IN or 0). 3143 ** 3144 ** Argument mPrereq is a mask of tables that must be scanned before the 3145 ** virtual table in question. These are added to the plans prerequisites 3146 ** before it is added to pBuilder. 3147 ** 3148 ** Output parameter *pbIn is set to true if the plan added to pBuilder 3149 ** uses one or more WO_IN terms, or false otherwise. 3150 */ 3151 static int whereLoopAddVirtualOne( 3152 WhereLoopBuilder *pBuilder, 3153 Bitmask mPrereq, /* Mask of tables that must be used. */ 3154 Bitmask mUsable, /* Mask of usable tables */ 3155 u16 mExclude, /* Exclude terms using these operators */ 3156 sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */ 3157 u16 mNoOmit, /* Do not omit these constraints */ 3158 int *pbIn /* OUT: True if plan uses an IN(...) op */ 3159 ){ 3160 WhereClause *pWC = pBuilder->pWC; 3161 struct sqlite3_index_constraint *pIdxCons; 3162 struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage; 3163 int i; 3164 int mxTerm; 3165 int rc = SQLITE_OK; 3166 WhereLoop *pNew = pBuilder->pNew; 3167 Parse *pParse = pBuilder->pWInfo->pParse; 3168 struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab]; 3169 int nConstraint = pIdxInfo->nConstraint; 3170 3171 assert( (mUsable & mPrereq)==mPrereq ); 3172 *pbIn = 0; 3173 pNew->prereq = mPrereq; 3174 3175 /* Set the usable flag on the subset of constraints identified by 3176 ** arguments mUsable and mExclude. */ 3177 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3178 for(i=0; i<nConstraint; i++, pIdxCons++){ 3179 WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset]; 3180 pIdxCons->usable = 0; 3181 if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight 3182 && (pTerm->eOperator & mExclude)==0 3183 ){ 3184 pIdxCons->usable = 1; 3185 } 3186 } 3187 3188 /* Initialize the output fields of the sqlite3_index_info structure */ 3189 memset(pUsage, 0, sizeof(pUsage[0])*nConstraint); 3190 assert( pIdxInfo->needToFreeIdxStr==0 ); 3191 pIdxInfo->idxStr = 0; 3192 pIdxInfo->idxNum = 0; 3193 pIdxInfo->orderByConsumed = 0; 3194 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; 3195 pIdxInfo->estimatedRows = 25; 3196 pIdxInfo->idxFlags = 0; 3197 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed; 3198 3199 /* Invoke the virtual table xBestIndex() method */ 3200 rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo); 3201 if( rc ){ 3202 if( rc==SQLITE_CONSTRAINT ){ 3203 /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means 3204 ** that the particular combination of parameters provided is unusable. 3205 ** Make no entries in the loop table. 3206 */ 3207 WHERETRACE(0xffff, (" ^^^^--- non-viable plan rejected!\n")); 3208 return SQLITE_OK; 3209 } 3210 return rc; 3211 } 3212 3213 mxTerm = -1; 3214 assert( pNew->nLSlot>=nConstraint ); 3215 for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0; 3216 pNew->u.vtab.omitMask = 0; 3217 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3218 for(i=0; i<nConstraint; i++, pIdxCons++){ 3219 int iTerm; 3220 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ 3221 WhereTerm *pTerm; 3222 int j = pIdxCons->iTermOffset; 3223 if( iTerm>=nConstraint 3224 || j<0 3225 || j>=pWC->nTerm 3226 || pNew->aLTerm[iTerm]!=0 3227 || pIdxCons->usable==0 3228 ){ 3229 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3230 testcase( pIdxInfo->needToFreeIdxStr ); 3231 return SQLITE_ERROR; 3232 } 3233 testcase( iTerm==nConstraint-1 ); 3234 testcase( j==0 ); 3235 testcase( j==pWC->nTerm-1 ); 3236 pTerm = &pWC->a[j]; 3237 pNew->prereq |= pTerm->prereqRight; 3238 assert( iTerm<pNew->nLSlot ); 3239 pNew->aLTerm[iTerm] = pTerm; 3240 if( iTerm>mxTerm ) mxTerm = iTerm; 3241 testcase( iTerm==15 ); 3242 testcase( iTerm==16 ); 3243 if( pUsage[i].omit ){ 3244 if( i<16 && ((1<<i)&mNoOmit)==0 ){ 3245 testcase( i!=iTerm ); 3246 pNew->u.vtab.omitMask |= 1<<iTerm; 3247 }else{ 3248 testcase( i!=iTerm ); 3249 } 3250 } 3251 if( (pTerm->eOperator & WO_IN)!=0 ){ 3252 /* A virtual table that is constrained by an IN clause may not 3253 ** consume the ORDER BY clause because (1) the order of IN terms 3254 ** is not necessarily related to the order of output terms and 3255 ** (2) Multiple outputs from a single IN value will not merge 3256 ** together. */ 3257 pIdxInfo->orderByConsumed = 0; 3258 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE; 3259 *pbIn = 1; assert( (mExclude & WO_IN)==0 ); 3260 } 3261 } 3262 } 3263 3264 pNew->nLTerm = mxTerm+1; 3265 for(i=0; i<=mxTerm; i++){ 3266 if( pNew->aLTerm[i]==0 ){ 3267 /* The non-zero argvIdx values must be contiguous. Raise an 3268 ** error if they are not */ 3269 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3270 testcase( pIdxInfo->needToFreeIdxStr ); 3271 return SQLITE_ERROR; 3272 } 3273 } 3274 assert( pNew->nLTerm<=pNew->nLSlot ); 3275 pNew->u.vtab.idxNum = pIdxInfo->idxNum; 3276 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; 3277 pIdxInfo->needToFreeIdxStr = 0; 3278 pNew->u.vtab.idxStr = pIdxInfo->idxStr; 3279 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? 3280 pIdxInfo->nOrderBy : 0); 3281 pNew->rSetup = 0; 3282 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); 3283 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); 3284 3285 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated 3286 ** that the scan will visit at most one row. Clear it otherwise. */ 3287 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){ 3288 pNew->wsFlags |= WHERE_ONEROW; 3289 }else{ 3290 pNew->wsFlags &= ~WHERE_ONEROW; 3291 } 3292 rc = whereLoopInsert(pBuilder, pNew); 3293 if( pNew->u.vtab.needFree ){ 3294 sqlite3_free(pNew->u.vtab.idxStr); 3295 pNew->u.vtab.needFree = 0; 3296 } 3297 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n", 3298 *pbIn, (sqlite3_uint64)mPrereq, 3299 (sqlite3_uint64)(pNew->prereq & ~mPrereq))); 3300 3301 return rc; 3302 } 3303 3304 /* 3305 ** If this function is invoked from within an xBestIndex() callback, it 3306 ** returns a pointer to a buffer containing the name of the collation 3307 ** sequence associated with element iCons of the sqlite3_index_info.aConstraint 3308 ** array. Or, if iCons is out of range or there is no active xBestIndex 3309 ** call, return NULL. 3310 */ 3311 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){ 3312 HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1]; 3313 const char *zRet = 0; 3314 if( iCons>=0 && iCons<pIdxInfo->nConstraint ){ 3315 CollSeq *pC = 0; 3316 int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset; 3317 Expr *pX = pHidden->pWC->a[iTerm].pExpr; 3318 if( pX->pLeft ){ 3319 pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX); 3320 } 3321 zRet = (pC ? pC->zName : sqlite3StrBINARY); 3322 } 3323 return zRet; 3324 } 3325 3326 /* 3327 ** Add all WhereLoop objects for a table of the join identified by 3328 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. 3329 ** 3330 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and 3331 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause 3332 ** entries that occur before the virtual table in the FROM clause and are 3333 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the 3334 ** mUnusable mask contains all FROM clause entries that occur after the 3335 ** virtual table and are separated from it by at least one LEFT or 3336 ** CROSS JOIN. 3337 ** 3338 ** For example, if the query were: 3339 ** 3340 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; 3341 ** 3342 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6). 3343 ** 3344 ** All the tables in mPrereq must be scanned before the current virtual 3345 ** table. So any terms for which all prerequisites are satisfied by 3346 ** mPrereq may be specified as "usable" in all calls to xBestIndex. 3347 ** Conversely, all tables in mUnusable must be scanned after the current 3348 ** virtual table, so any terms for which the prerequisites overlap with 3349 ** mUnusable should always be configured as "not-usable" for xBestIndex. 3350 */ 3351 static int whereLoopAddVirtual( 3352 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 3353 Bitmask mPrereq, /* Tables that must be scanned before this one */ 3354 Bitmask mUnusable /* Tables that must be scanned after this one */ 3355 ){ 3356 int rc = SQLITE_OK; /* Return code */ 3357 WhereInfo *pWInfo; /* WHERE analysis context */ 3358 Parse *pParse; /* The parsing context */ 3359 WhereClause *pWC; /* The WHERE clause */ 3360 struct SrcList_item *pSrc; /* The FROM clause term to search */ 3361 sqlite3_index_info *p; /* Object to pass to xBestIndex() */ 3362 int nConstraint; /* Number of constraints in p */ 3363 int bIn; /* True if plan uses IN(...) operator */ 3364 WhereLoop *pNew; 3365 Bitmask mBest; /* Tables used by best possible plan */ 3366 u16 mNoOmit; 3367 3368 assert( (mPrereq & mUnusable)==0 ); 3369 pWInfo = pBuilder->pWInfo; 3370 pParse = pWInfo->pParse; 3371 pWC = pBuilder->pWC; 3372 pNew = pBuilder->pNew; 3373 pSrc = &pWInfo->pTabList->a[pNew->iTab]; 3374 assert( IsVirtual(pSrc->pTab) ); 3375 p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy, 3376 &mNoOmit); 3377 if( p==0 ) return SQLITE_NOMEM_BKPT; 3378 pNew->rSetup = 0; 3379 pNew->wsFlags = WHERE_VIRTUALTABLE; 3380 pNew->nLTerm = 0; 3381 pNew->u.vtab.needFree = 0; 3382 nConstraint = p->nConstraint; 3383 if( whereLoopResize(pParse->db, pNew, nConstraint) ){ 3384 sqlite3DbFree(pParse->db, p); 3385 return SQLITE_NOMEM_BKPT; 3386 } 3387 3388 /* First call xBestIndex() with all constraints usable. */ 3389 WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName)); 3390 WHERETRACE(0x40, (" VirtualOne: all usable\n")); 3391 rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn); 3392 3393 /* If the call to xBestIndex() with all terms enabled produced a plan 3394 ** that does not require any source tables (IOW: a plan with mBest==0) 3395 ** and does not use an IN(...) operator, then there is no point in making 3396 ** any further calls to xBestIndex() since they will all return the same 3397 ** result (if the xBestIndex() implementation is sane). */ 3398 if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){ 3399 int seenZero = 0; /* True if a plan with no prereqs seen */ 3400 int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */ 3401 Bitmask mPrev = 0; 3402 Bitmask mBestNoIn = 0; 3403 3404 /* If the plan produced by the earlier call uses an IN(...) term, call 3405 ** xBestIndex again, this time with IN(...) terms disabled. */ 3406 if( bIn ){ 3407 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n")); 3408 rc = whereLoopAddVirtualOne( 3409 pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn); 3410 assert( bIn==0 ); 3411 mBestNoIn = pNew->prereq & ~mPrereq; 3412 if( mBestNoIn==0 ){ 3413 seenZero = 1; 3414 seenZeroNoIN = 1; 3415 } 3416 } 3417 3418 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq) 3419 ** in the set of terms that apply to the current virtual table. */ 3420 while( rc==SQLITE_OK ){ 3421 int i; 3422 Bitmask mNext = ALLBITS; 3423 assert( mNext>0 ); 3424 for(i=0; i<nConstraint; i++){ 3425 Bitmask mThis = ( 3426 pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq 3427 ); 3428 if( mThis>mPrev && mThis<mNext ) mNext = mThis; 3429 } 3430 mPrev = mNext; 3431 if( mNext==ALLBITS ) break; 3432 if( mNext==mBest || mNext==mBestNoIn ) continue; 3433 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n", 3434 (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext)); 3435 rc = whereLoopAddVirtualOne( 3436 pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn); 3437 if( pNew->prereq==mPrereq ){ 3438 seenZero = 1; 3439 if( bIn==0 ) seenZeroNoIN = 1; 3440 } 3441 } 3442 3443 /* If the calls to xBestIndex() in the above loop did not find a plan 3444 ** that requires no source tables at all (i.e. one guaranteed to be 3445 ** usable), make a call here with all source tables disabled */ 3446 if( rc==SQLITE_OK && seenZero==0 ){ 3447 WHERETRACE(0x40, (" VirtualOne: all disabled\n")); 3448 rc = whereLoopAddVirtualOne( 3449 pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn); 3450 if( bIn==0 ) seenZeroNoIN = 1; 3451 } 3452 3453 /* If the calls to xBestIndex() have so far failed to find a plan 3454 ** that requires no source tables at all and does not use an IN(...) 3455 ** operator, make a final call to obtain one here. */ 3456 if( rc==SQLITE_OK && seenZeroNoIN==0 ){ 3457 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n")); 3458 rc = whereLoopAddVirtualOne( 3459 pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn); 3460 } 3461 } 3462 3463 if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr); 3464 sqlite3DbFreeNN(pParse->db, p); 3465 WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc)); 3466 return rc; 3467 } 3468 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3469 3470 /* 3471 ** Add WhereLoop entries to handle OR terms. This works for either 3472 ** btrees or virtual tables. 3473 */ 3474 static int whereLoopAddOr( 3475 WhereLoopBuilder *pBuilder, 3476 Bitmask mPrereq, 3477 Bitmask mUnusable 3478 ){ 3479 WhereInfo *pWInfo = pBuilder->pWInfo; 3480 WhereClause *pWC; 3481 WhereLoop *pNew; 3482 WhereTerm *pTerm, *pWCEnd; 3483 int rc = SQLITE_OK; 3484 int iCur; 3485 WhereClause tempWC; 3486 WhereLoopBuilder sSubBuild; 3487 WhereOrSet sSum, sCur; 3488 struct SrcList_item *pItem; 3489 3490 pWC = pBuilder->pWC; 3491 pWCEnd = pWC->a + pWC->nTerm; 3492 pNew = pBuilder->pNew; 3493 memset(&sSum, 0, sizeof(sSum)); 3494 pItem = pWInfo->pTabList->a + pNew->iTab; 3495 iCur = pItem->iCursor; 3496 3497 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ 3498 if( (pTerm->eOperator & WO_OR)!=0 3499 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 3500 ){ 3501 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; 3502 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; 3503 WhereTerm *pOrTerm; 3504 int once = 1; 3505 int i, j; 3506 3507 sSubBuild = *pBuilder; 3508 sSubBuild.pOrderBy = 0; 3509 sSubBuild.pOrSet = &sCur; 3510 3511 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); 3512 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ 3513 if( (pOrTerm->eOperator & WO_AND)!=0 ){ 3514 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; 3515 }else if( pOrTerm->leftCursor==iCur ){ 3516 tempWC.pWInfo = pWC->pWInfo; 3517 tempWC.pOuter = pWC; 3518 tempWC.op = TK_AND; 3519 tempWC.nTerm = 1; 3520 tempWC.a = pOrTerm; 3521 sSubBuild.pWC = &tempWC; 3522 }else{ 3523 continue; 3524 } 3525 sCur.n = 0; 3526 #ifdef WHERETRACE_ENABLED 3527 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", 3528 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); 3529 if( sqlite3WhereTrace & 0x400 ){ 3530 sqlite3WhereClausePrint(sSubBuild.pWC); 3531 } 3532 #endif 3533 #ifndef SQLITE_OMIT_VIRTUALTABLE 3534 if( IsVirtual(pItem->pTab) ){ 3535 rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable); 3536 }else 3537 #endif 3538 { 3539 rc = whereLoopAddBtree(&sSubBuild, mPrereq); 3540 } 3541 if( rc==SQLITE_OK ){ 3542 rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable); 3543 } 3544 assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0 ); 3545 testcase( rc==SQLITE_DONE ); 3546 if( sCur.n==0 ){ 3547 sSum.n = 0; 3548 break; 3549 }else if( once ){ 3550 whereOrMove(&sSum, &sCur); 3551 once = 0; 3552 }else{ 3553 WhereOrSet sPrev; 3554 whereOrMove(&sPrev, &sSum); 3555 sSum.n = 0; 3556 for(i=0; i<sPrev.n; i++){ 3557 for(j=0; j<sCur.n; j++){ 3558 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, 3559 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), 3560 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); 3561 } 3562 } 3563 } 3564 } 3565 pNew->nLTerm = 1; 3566 pNew->aLTerm[0] = pTerm; 3567 pNew->wsFlags = WHERE_MULTI_OR; 3568 pNew->rSetup = 0; 3569 pNew->iSortIdx = 0; 3570 memset(&pNew->u, 0, sizeof(pNew->u)); 3571 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ 3572 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs 3573 ** of all sub-scans required by the OR-scan. However, due to rounding 3574 ** errors, it may be that the cost of the OR-scan is equal to its 3575 ** most expensive sub-scan. Add the smallest possible penalty 3576 ** (equivalent to multiplying the cost by 1.07) to ensure that 3577 ** this does not happen. Otherwise, for WHERE clauses such as the 3578 ** following where there is an index on "y": 3579 ** 3580 ** WHERE likelihood(x=?, 0.99) OR y=? 3581 ** 3582 ** the planner may elect to "OR" together a full-table scan and an 3583 ** index lookup. And other similarly odd results. */ 3584 pNew->rRun = sSum.a[i].rRun + 1; 3585 pNew->nOut = sSum.a[i].nOut; 3586 pNew->prereq = sSum.a[i].prereq; 3587 rc = whereLoopInsert(pBuilder, pNew); 3588 } 3589 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); 3590 } 3591 } 3592 return rc; 3593 } 3594 3595 /* 3596 ** Add all WhereLoop objects for all tables 3597 */ 3598 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ 3599 WhereInfo *pWInfo = pBuilder->pWInfo; 3600 Bitmask mPrereq = 0; 3601 Bitmask mPrior = 0; 3602 int iTab; 3603 SrcList *pTabList = pWInfo->pTabList; 3604 struct SrcList_item *pItem; 3605 struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel]; 3606 sqlite3 *db = pWInfo->pParse->db; 3607 int rc = SQLITE_OK; 3608 WhereLoop *pNew; 3609 u8 priorJointype = 0; 3610 3611 /* Loop over the tables in the join, from left to right */ 3612 pNew = pBuilder->pNew; 3613 whereLoopInit(pNew); 3614 pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT; 3615 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){ 3616 Bitmask mUnusable = 0; 3617 pNew->iTab = iTab; 3618 pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR; 3619 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); 3620 if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){ 3621 /* This condition is true when pItem is the FROM clause term on the 3622 ** right-hand-side of a LEFT or CROSS JOIN. */ 3623 mPrereq = mPrior; 3624 } 3625 priorJointype = pItem->fg.jointype; 3626 #ifndef SQLITE_OMIT_VIRTUALTABLE 3627 if( IsVirtual(pItem->pTab) ){ 3628 struct SrcList_item *p; 3629 for(p=&pItem[1]; p<pEnd; p++){ 3630 if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){ 3631 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); 3632 } 3633 } 3634 rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable); 3635 }else 3636 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3637 { 3638 rc = whereLoopAddBtree(pBuilder, mPrereq); 3639 } 3640 if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){ 3641 rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable); 3642 } 3643 mPrior |= pNew->maskSelf; 3644 if( rc || db->mallocFailed ){ 3645 if( rc==SQLITE_DONE ){ 3646 /* We hit the query planner search limit set by iPlanLimit */ 3647 sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search"); 3648 rc = SQLITE_OK; 3649 }else{ 3650 break; 3651 } 3652 } 3653 } 3654 3655 whereLoopClear(db, pNew); 3656 return rc; 3657 } 3658 3659 /* 3660 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th 3661 ** parameters) to see if it outputs rows in the requested ORDER BY 3662 ** (or GROUP BY) without requiring a separate sort operation. Return N: 3663 ** 3664 ** N>0: N terms of the ORDER BY clause are satisfied 3665 ** N==0: No terms of the ORDER BY clause are satisfied 3666 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. 3667 ** 3668 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as 3669 ** strict. With GROUP BY and DISTINCT the only requirement is that 3670 ** equivalent rows appear immediately adjacent to one another. GROUP BY 3671 ** and DISTINCT do not require rows to appear in any particular order as long 3672 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT 3673 ** the pOrderBy terms can be matched in any order. With ORDER BY, the 3674 ** pOrderBy terms must be matched in strict left-to-right order. 3675 */ 3676 static i8 wherePathSatisfiesOrderBy( 3677 WhereInfo *pWInfo, /* The WHERE clause */ 3678 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ 3679 WherePath *pPath, /* The WherePath to check */ 3680 u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */ 3681 u16 nLoop, /* Number of entries in pPath->aLoop[] */ 3682 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ 3683 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ 3684 ){ 3685 u8 revSet; /* True if rev is known */ 3686 u8 rev; /* Composite sort order */ 3687 u8 revIdx; /* Index sort order */ 3688 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ 3689 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ 3690 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ 3691 u16 eqOpMask; /* Allowed equality operators */ 3692 u16 nKeyCol; /* Number of key columns in pIndex */ 3693 u16 nColumn; /* Total number of ordered columns in the index */ 3694 u16 nOrderBy; /* Number terms in the ORDER BY clause */ 3695 int iLoop; /* Index of WhereLoop in pPath being processed */ 3696 int i, j; /* Loop counters */ 3697 int iCur; /* Cursor number for current WhereLoop */ 3698 int iColumn; /* A column number within table iCur */ 3699 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ 3700 WhereTerm *pTerm; /* A single term of the WHERE clause */ 3701 Expr *pOBExpr; /* An expression from the ORDER BY clause */ 3702 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ 3703 Index *pIndex; /* The index associated with pLoop */ 3704 sqlite3 *db = pWInfo->pParse->db; /* Database connection */ 3705 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ 3706 Bitmask obDone; /* Mask of all ORDER BY terms */ 3707 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ 3708 Bitmask ready; /* Mask of inner loops */ 3709 3710 /* 3711 ** We say the WhereLoop is "one-row" if it generates no more than one 3712 ** row of output. A WhereLoop is one-row if all of the following are true: 3713 ** (a) All index columns match with WHERE_COLUMN_EQ. 3714 ** (b) The index is unique 3715 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. 3716 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. 3717 ** 3718 ** We say the WhereLoop is "order-distinct" if the set of columns from 3719 ** that WhereLoop that are in the ORDER BY clause are different for every 3720 ** row of the WhereLoop. Every one-row WhereLoop is automatically 3721 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause 3722 ** is not order-distinct. To be order-distinct is not quite the same as being 3723 ** UNIQUE since a UNIQUE column or index can have multiple rows that 3724 ** are NULL and NULL values are equivalent for the purpose of order-distinct. 3725 ** To be order-distinct, the columns must be UNIQUE and NOT NULL. 3726 ** 3727 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the 3728 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is 3729 ** automatically order-distinct. 3730 */ 3731 3732 assert( pOrderBy!=0 ); 3733 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; 3734 3735 nOrderBy = pOrderBy->nExpr; 3736 testcase( nOrderBy==BMS-1 ); 3737 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ 3738 isOrderDistinct = 1; 3739 obDone = MASKBIT(nOrderBy)-1; 3740 orderDistinctMask = 0; 3741 ready = 0; 3742 eqOpMask = WO_EQ | WO_IS | WO_ISNULL; 3743 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) eqOpMask |= WO_IN; 3744 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ 3745 if( iLoop>0 ) ready |= pLoop->maskSelf; 3746 if( iLoop<nLoop ){ 3747 pLoop = pPath->aLoop[iLoop]; 3748 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue; 3749 }else{ 3750 pLoop = pLast; 3751 } 3752 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ 3753 if( pLoop->u.vtab.isOrdered && (wctrlFlags & WHERE_DISTINCTBY)==0 ){ 3754 obSat = obDone; 3755 } 3756 break; 3757 }else if( wctrlFlags & WHERE_DISTINCTBY ){ 3758 pLoop->u.btree.nDistinctCol = 0; 3759 } 3760 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; 3761 3762 /* Mark off any ORDER BY term X that is a column in the table of 3763 ** the current loop for which there is term in the WHERE 3764 ** clause of the form X IS NULL or X=? that reference only outer 3765 ** loops. 3766 */ 3767 for(i=0; i<nOrderBy; i++){ 3768 if( MASKBIT(i) & obSat ) continue; 3769 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr); 3770 if( pOBExpr->op!=TK_COLUMN ) continue; 3771 if( pOBExpr->iTable!=iCur ) continue; 3772 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, 3773 ~ready, eqOpMask, 0); 3774 if( pTerm==0 ) continue; 3775 if( pTerm->eOperator==WO_IN ){ 3776 /* IN terms are only valid for sorting in the ORDER BY LIMIT 3777 ** optimization, and then only if they are actually used 3778 ** by the query plan */ 3779 assert( wctrlFlags & WHERE_ORDERBY_LIMIT ); 3780 for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){} 3781 if( j>=pLoop->nLTerm ) continue; 3782 } 3783 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ 3784 Parse *pParse = pWInfo->pParse; 3785 CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr); 3786 CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr); 3787 assert( pColl1 ); 3788 if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){ 3789 continue; 3790 } 3791 testcase( pTerm->pExpr->op==TK_IS ); 3792 } 3793 obSat |= MASKBIT(i); 3794 } 3795 3796 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ 3797 if( pLoop->wsFlags & WHERE_IPK ){ 3798 pIndex = 0; 3799 nKeyCol = 0; 3800 nColumn = 1; 3801 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ 3802 return 0; 3803 }else{ 3804 nKeyCol = pIndex->nKeyCol; 3805 nColumn = pIndex->nColumn; 3806 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); 3807 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID 3808 || !HasRowid(pIndex->pTable)); 3809 isOrderDistinct = IsUniqueIndex(pIndex) 3810 && (pLoop->wsFlags & WHERE_SKIPSCAN)==0; 3811 } 3812 3813 /* Loop through all columns of the index and deal with the ones 3814 ** that are not constrained by == or IN. 3815 */ 3816 rev = revSet = 0; 3817 distinctColumns = 0; 3818 for(j=0; j<nColumn; j++){ 3819 u8 bOnce = 1; /* True to run the ORDER BY search loop */ 3820 3821 assert( j>=pLoop->u.btree.nEq 3822 || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip) 3823 ); 3824 if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){ 3825 u16 eOp = pLoop->aLTerm[j]->eOperator; 3826 3827 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when 3828 ** doing WHERE_ORDERBY_LIMIT processing). Except, IS and ISNULL 3829 ** terms imply that the index is not UNIQUE NOT NULL in which case 3830 ** the loop need to be marked as not order-distinct because it can 3831 ** have repeated NULL rows. 3832 ** 3833 ** If the current term is a column of an ((?,?) IN (SELECT...)) 3834 ** expression for which the SELECT returns more than one column, 3835 ** check that it is the only column used by this loop. Otherwise, 3836 ** if it is one of two or more, none of the columns can be 3837 ** considered to match an ORDER BY term. 3838 */ 3839 if( (eOp & eqOpMask)!=0 ){ 3840 if( eOp & (WO_ISNULL|WO_IS) ){ 3841 testcase( eOp & WO_ISNULL ); 3842 testcase( eOp & WO_IS ); 3843 testcase( isOrderDistinct ); 3844 isOrderDistinct = 0; 3845 } 3846 continue; 3847 }else if( ALWAYS(eOp & WO_IN) ){ 3848 /* ALWAYS() justification: eOp is an equality operator due to the 3849 ** j<pLoop->u.btree.nEq constraint above. Any equality other 3850 ** than WO_IN is captured by the previous "if". So this one 3851 ** always has to be WO_IN. */ 3852 Expr *pX = pLoop->aLTerm[j]->pExpr; 3853 for(i=j+1; i<pLoop->u.btree.nEq; i++){ 3854 if( pLoop->aLTerm[i]->pExpr==pX ){ 3855 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) ); 3856 bOnce = 0; 3857 break; 3858 } 3859 } 3860 } 3861 } 3862 3863 /* Get the column number in the table (iColumn) and sort order 3864 ** (revIdx) for the j-th column of the index. 3865 */ 3866 if( pIndex ){ 3867 iColumn = pIndex->aiColumn[j]; 3868 revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC; 3869 if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID; 3870 }else{ 3871 iColumn = XN_ROWID; 3872 revIdx = 0; 3873 } 3874 3875 /* An unconstrained column that might be NULL means that this 3876 ** WhereLoop is not well-ordered 3877 */ 3878 if( isOrderDistinct 3879 && iColumn>=0 3880 && j>=pLoop->u.btree.nEq 3881 && pIndex->pTable->aCol[iColumn].notNull==0 3882 ){ 3883 isOrderDistinct = 0; 3884 } 3885 3886 /* Find the ORDER BY term that corresponds to the j-th column 3887 ** of the index and mark that ORDER BY term off 3888 */ 3889 isMatch = 0; 3890 for(i=0; bOnce && i<nOrderBy; i++){ 3891 if( MASKBIT(i) & obSat ) continue; 3892 pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr); 3893 testcase( wctrlFlags & WHERE_GROUPBY ); 3894 testcase( wctrlFlags & WHERE_DISTINCTBY ); 3895 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; 3896 if( iColumn>=XN_ROWID ){ 3897 if( pOBExpr->op!=TK_COLUMN ) continue; 3898 if( pOBExpr->iTable!=iCur ) continue; 3899 if( pOBExpr->iColumn!=iColumn ) continue; 3900 }else{ 3901 Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr; 3902 if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){ 3903 continue; 3904 } 3905 } 3906 if( iColumn!=XN_ROWID ){ 3907 pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 3908 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; 3909 } 3910 if( wctrlFlags & WHERE_DISTINCTBY ){ 3911 pLoop->u.btree.nDistinctCol = j+1; 3912 } 3913 isMatch = 1; 3914 break; 3915 } 3916 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ 3917 /* Make sure the sort order is compatible in an ORDER BY clause. 3918 ** Sort order is irrelevant for a GROUP BY clause. */ 3919 if( revSet ){ 3920 if( (rev ^ revIdx)!=(pOrderBy->a[i].sortFlags&KEYINFO_ORDER_DESC) ){ 3921 isMatch = 0; 3922 } 3923 }else{ 3924 rev = revIdx ^ (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC); 3925 if( rev ) *pRevMask |= MASKBIT(iLoop); 3926 revSet = 1; 3927 } 3928 } 3929 if( isMatch && (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL) ){ 3930 if( j==pLoop->u.btree.nEq ){ 3931 pLoop->wsFlags |= WHERE_BIGNULL_SORT; 3932 }else{ 3933 isMatch = 0; 3934 } 3935 } 3936 if( isMatch ){ 3937 if( iColumn==XN_ROWID ){ 3938 testcase( distinctColumns==0 ); 3939 distinctColumns = 1; 3940 } 3941 obSat |= MASKBIT(i); 3942 }else{ 3943 /* No match found */ 3944 if( j==0 || j<nKeyCol ){ 3945 testcase( isOrderDistinct!=0 ); 3946 isOrderDistinct = 0; 3947 } 3948 break; 3949 } 3950 } /* end Loop over all index columns */ 3951 if( distinctColumns ){ 3952 testcase( isOrderDistinct==0 ); 3953 isOrderDistinct = 1; 3954 } 3955 } /* end-if not one-row */ 3956 3957 /* Mark off any other ORDER BY terms that reference pLoop */ 3958 if( isOrderDistinct ){ 3959 orderDistinctMask |= pLoop->maskSelf; 3960 for(i=0; i<nOrderBy; i++){ 3961 Expr *p; 3962 Bitmask mTerm; 3963 if( MASKBIT(i) & obSat ) continue; 3964 p = pOrderBy->a[i].pExpr; 3965 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); 3966 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; 3967 if( (mTerm&~orderDistinctMask)==0 ){ 3968 obSat |= MASKBIT(i); 3969 } 3970 } 3971 } 3972 } /* End the loop over all WhereLoops from outer-most down to inner-most */ 3973 if( obSat==obDone ) return (i8)nOrderBy; 3974 if( !isOrderDistinct ){ 3975 for(i=nOrderBy-1; i>0; i--){ 3976 Bitmask m = MASKBIT(i) - 1; 3977 if( (obSat&m)==m ) return i; 3978 } 3979 return 0; 3980 } 3981 return -1; 3982 } 3983 3984 3985 /* 3986 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), 3987 ** the planner assumes that the specified pOrderBy list is actually a GROUP 3988 ** BY clause - and so any order that groups rows as required satisfies the 3989 ** request. 3990 ** 3991 ** Normally, in this case it is not possible for the caller to determine 3992 ** whether or not the rows are really being delivered in sorted order, or 3993 ** just in some other order that provides the required grouping. However, 3994 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then 3995 ** this function may be called on the returned WhereInfo object. It returns 3996 ** true if the rows really will be sorted in the specified order, or false 3997 ** otherwise. 3998 ** 3999 ** For example, assuming: 4000 ** 4001 ** CREATE INDEX i1 ON t1(x, Y); 4002 ** 4003 ** then 4004 ** 4005 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 4006 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 4007 */ 4008 int sqlite3WhereIsSorted(WhereInfo *pWInfo){ 4009 assert( pWInfo->wctrlFlags & WHERE_GROUPBY ); 4010 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); 4011 return pWInfo->sorted; 4012 } 4013 4014 #ifdef WHERETRACE_ENABLED 4015 /* For debugging use only: */ 4016 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ 4017 static char zName[65]; 4018 int i; 4019 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } 4020 if( pLast ) zName[i++] = pLast->cId; 4021 zName[i] = 0; 4022 return zName; 4023 } 4024 #endif 4025 4026 /* 4027 ** Return the cost of sorting nRow rows, assuming that the keys have 4028 ** nOrderby columns and that the first nSorted columns are already in 4029 ** order. 4030 */ 4031 static LogEst whereSortingCost( 4032 WhereInfo *pWInfo, 4033 LogEst nRow, 4034 int nOrderBy, 4035 int nSorted 4036 ){ 4037 /* TUNING: Estimated cost of a full external sort, where N is 4038 ** the number of rows to sort is: 4039 ** 4040 ** cost = (3.0 * N * log(N)). 4041 ** 4042 ** Or, if the order-by clause has X terms but only the last Y 4043 ** terms are out of order, then block-sorting will reduce the 4044 ** sorting cost to: 4045 ** 4046 ** cost = (3.0 * N * log(N)) * (Y/X) 4047 ** 4048 ** The (Y/X) term is implemented using stack variable rScale 4049 ** below. */ 4050 LogEst rScale, rSortCost; 4051 assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); 4052 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; 4053 rSortCost = nRow + rScale + 16; 4054 4055 /* Multiple by log(M) where M is the number of output rows. 4056 ** Use the LIMIT for M if it is smaller */ 4057 if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){ 4058 nRow = pWInfo->iLimit; 4059 } 4060 rSortCost += estLog(nRow); 4061 return rSortCost; 4062 } 4063 4064 /* 4065 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine 4066 ** attempts to find the lowest cost path that visits each WhereLoop 4067 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. 4068 ** 4069 ** Assume that the total number of output rows that will need to be sorted 4070 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting 4071 ** costs if nRowEst==0. 4072 ** 4073 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation 4074 ** error occurs. 4075 */ 4076 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ 4077 int mxChoice; /* Maximum number of simultaneous paths tracked */ 4078 int nLoop; /* Number of terms in the join */ 4079 Parse *pParse; /* Parsing context */ 4080 sqlite3 *db; /* The database connection */ 4081 int iLoop; /* Loop counter over the terms of the join */ 4082 int ii, jj; /* Loop counters */ 4083 int mxI = 0; /* Index of next entry to replace */ 4084 int nOrderBy; /* Number of ORDER BY clause terms */ 4085 LogEst mxCost = 0; /* Maximum cost of a set of paths */ 4086 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ 4087 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ 4088 WherePath *aFrom; /* All nFrom paths at the previous level */ 4089 WherePath *aTo; /* The nTo best paths at the current level */ 4090 WherePath *pFrom; /* An element of aFrom[] that we are working on */ 4091 WherePath *pTo; /* An element of aTo[] that we are working on */ 4092 WhereLoop *pWLoop; /* One of the WhereLoop objects */ 4093 WhereLoop **pX; /* Used to divy up the pSpace memory */ 4094 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ 4095 char *pSpace; /* Temporary memory used by this routine */ 4096 int nSpace; /* Bytes of space allocated at pSpace */ 4097 4098 pParse = pWInfo->pParse; 4099 db = pParse->db; 4100 nLoop = pWInfo->nLevel; 4101 /* TUNING: For simple queries, only the best path is tracked. 4102 ** For 2-way joins, the 5 best paths are followed. 4103 ** For joins of 3 or more tables, track the 10 best paths */ 4104 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); 4105 assert( nLoop<=pWInfo->pTabList->nSrc ); 4106 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); 4107 4108 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this 4109 ** case the purpose of this call is to estimate the number of rows returned 4110 ** by the overall query. Once this estimate has been obtained, the caller 4111 ** will invoke this function a second time, passing the estimate as the 4112 ** nRowEst parameter. */ 4113 if( pWInfo->pOrderBy==0 || nRowEst==0 ){ 4114 nOrderBy = 0; 4115 }else{ 4116 nOrderBy = pWInfo->pOrderBy->nExpr; 4117 } 4118 4119 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ 4120 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; 4121 nSpace += sizeof(LogEst) * nOrderBy; 4122 pSpace = sqlite3DbMallocRawNN(db, nSpace); 4123 if( pSpace==0 ) return SQLITE_NOMEM_BKPT; 4124 aTo = (WherePath*)pSpace; 4125 aFrom = aTo+mxChoice; 4126 memset(aFrom, 0, sizeof(aFrom[0])); 4127 pX = (WhereLoop**)(aFrom+mxChoice); 4128 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ 4129 pFrom->aLoop = pX; 4130 } 4131 if( nOrderBy ){ 4132 /* If there is an ORDER BY clause and it is not being ignored, set up 4133 ** space for the aSortCost[] array. Each element of the aSortCost array 4134 ** is either zero - meaning it has not yet been initialized - or the 4135 ** cost of sorting nRowEst rows of data where the first X terms of 4136 ** the ORDER BY clause are already in order, where X is the array 4137 ** index. */ 4138 aSortCost = (LogEst*)pX; 4139 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); 4140 } 4141 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); 4142 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); 4143 4144 /* Seed the search with a single WherePath containing zero WhereLoops. 4145 ** 4146 ** TUNING: Do not let the number of iterations go above 28. If the cost 4147 ** of computing an automatic index is not paid back within the first 28 4148 ** rows, then do not use the automatic index. */ 4149 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) ); 4150 nFrom = 1; 4151 assert( aFrom[0].isOrdered==0 ); 4152 if( nOrderBy ){ 4153 /* If nLoop is zero, then there are no FROM terms in the query. Since 4154 ** in this case the query may return a maximum of one row, the results 4155 ** are already in the requested order. Set isOrdered to nOrderBy to 4156 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to 4157 ** -1, indicating that the result set may or may not be ordered, 4158 ** depending on the loops added to the current plan. */ 4159 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; 4160 } 4161 4162 /* Compute successively longer WherePaths using the previous generation 4163 ** of WherePaths as the basis for the next. Keep track of the mxChoice 4164 ** best paths at each generation */ 4165 for(iLoop=0; iLoop<nLoop; iLoop++){ 4166 nTo = 0; 4167 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ 4168 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ 4169 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ 4170 LogEst rCost; /* Cost of path (pFrom+pWLoop) */ 4171 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ 4172 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */ 4173 Bitmask maskNew; /* Mask of src visited by (..) */ 4174 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */ 4175 4176 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; 4177 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; 4178 if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){ 4179 /* Do not use an automatic index if the this loop is expected 4180 ** to run less than 1.25 times. It is tempting to also exclude 4181 ** automatic index usage on an outer loop, but sometimes an automatic 4182 ** index is useful in the outer loop of a correlated subquery. */ 4183 assert( 10==sqlite3LogEst(2) ); 4184 continue; 4185 } 4186 4187 /* At this point, pWLoop is a candidate to be the next loop. 4188 ** Compute its cost */ 4189 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); 4190 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); 4191 nOut = pFrom->nRow + pWLoop->nOut; 4192 maskNew = pFrom->maskLoop | pWLoop->maskSelf; 4193 if( isOrdered<0 ){ 4194 isOrdered = wherePathSatisfiesOrderBy(pWInfo, 4195 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, 4196 iLoop, pWLoop, &revMask); 4197 }else{ 4198 revMask = pFrom->revLoop; 4199 } 4200 if( isOrdered>=0 && isOrdered<nOrderBy ){ 4201 if( aSortCost[isOrdered]==0 ){ 4202 aSortCost[isOrdered] = whereSortingCost( 4203 pWInfo, nRowEst, nOrderBy, isOrdered 4204 ); 4205 } 4206 /* TUNING: Add a small extra penalty (5) to sorting as an 4207 ** extra encouragment to the query planner to select a plan 4208 ** where the rows emerge in the correct order without any sorting 4209 ** required. */ 4210 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5; 4211 4212 WHERETRACE(0x002, 4213 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", 4214 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, 4215 rUnsorted, rCost)); 4216 }else{ 4217 rCost = rUnsorted; 4218 rUnsorted -= 2; /* TUNING: Slight bias in favor of no-sort plans */ 4219 } 4220 4221 /* Check to see if pWLoop should be added to the set of 4222 ** mxChoice best-so-far paths. 4223 ** 4224 ** First look for an existing path among best-so-far paths 4225 ** that covers the same set of loops and has the same isOrdered 4226 ** setting as the current path candidate. 4227 ** 4228 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent 4229 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range 4230 ** of legal values for isOrdered, -1..64. 4231 */ 4232 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ 4233 if( pTo->maskLoop==maskNew 4234 && ((pTo->isOrdered^isOrdered)&0x80)==0 4235 ){ 4236 testcase( jj==nTo-1 ); 4237 break; 4238 } 4239 } 4240 if( jj>=nTo ){ 4241 /* None of the existing best-so-far paths match the candidate. */ 4242 if( nTo>=mxChoice 4243 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) 4244 ){ 4245 /* The current candidate is no better than any of the mxChoice 4246 ** paths currently in the best-so-far buffer. So discard 4247 ** this candidate as not viable. */ 4248 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4249 if( sqlite3WhereTrace&0x4 ){ 4250 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n", 4251 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4252 isOrdered>=0 ? isOrdered+'0' : '?'); 4253 } 4254 #endif 4255 continue; 4256 } 4257 /* If we reach this points it means that the new candidate path 4258 ** needs to be added to the set of best-so-far paths. */ 4259 if( nTo<mxChoice ){ 4260 /* Increase the size of the aTo set by one */ 4261 jj = nTo++; 4262 }else{ 4263 /* New path replaces the prior worst to keep count below mxChoice */ 4264 jj = mxI; 4265 } 4266 pTo = &aTo[jj]; 4267 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4268 if( sqlite3WhereTrace&0x4 ){ 4269 sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n", 4270 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4271 isOrdered>=0 ? isOrdered+'0' : '?'); 4272 } 4273 #endif 4274 }else{ 4275 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the 4276 ** same set of loops and has the same isOrdered setting as the 4277 ** candidate path. Check to see if the candidate should replace 4278 ** pTo or if the candidate should be skipped. 4279 ** 4280 ** The conditional is an expanded vector comparison equivalent to: 4281 ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted) 4282 */ 4283 if( pTo->rCost<rCost 4284 || (pTo->rCost==rCost 4285 && (pTo->nRow<nOut 4286 || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted) 4287 ) 4288 ) 4289 ){ 4290 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4291 if( sqlite3WhereTrace&0x4 ){ 4292 sqlite3DebugPrintf( 4293 "Skip %s cost=%-3d,%3d,%3d order=%c", 4294 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4295 isOrdered>=0 ? isOrdered+'0' : '?'); 4296 sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n", 4297 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4298 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4299 } 4300 #endif 4301 /* Discard the candidate path from further consideration */ 4302 testcase( pTo->rCost==rCost ); 4303 continue; 4304 } 4305 testcase( pTo->rCost==rCost+1 ); 4306 /* Control reaches here if the candidate path is better than the 4307 ** pTo path. Replace pTo with the candidate. */ 4308 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4309 if( sqlite3WhereTrace&0x4 ){ 4310 sqlite3DebugPrintf( 4311 "Update %s cost=%-3d,%3d,%3d order=%c", 4312 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4313 isOrdered>=0 ? isOrdered+'0' : '?'); 4314 sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n", 4315 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4316 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4317 } 4318 #endif 4319 } 4320 /* pWLoop is a winner. Add it to the set of best so far */ 4321 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; 4322 pTo->revLoop = revMask; 4323 pTo->nRow = nOut; 4324 pTo->rCost = rCost; 4325 pTo->rUnsorted = rUnsorted; 4326 pTo->isOrdered = isOrdered; 4327 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); 4328 pTo->aLoop[iLoop] = pWLoop; 4329 if( nTo>=mxChoice ){ 4330 mxI = 0; 4331 mxCost = aTo[0].rCost; 4332 mxUnsorted = aTo[0].nRow; 4333 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ 4334 if( pTo->rCost>mxCost 4335 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) 4336 ){ 4337 mxCost = pTo->rCost; 4338 mxUnsorted = pTo->rUnsorted; 4339 mxI = jj; 4340 } 4341 } 4342 } 4343 } 4344 } 4345 4346 #ifdef WHERETRACE_ENABLED /* >=2 */ 4347 if( sqlite3WhereTrace & 0x02 ){ 4348 sqlite3DebugPrintf("---- after round %d ----\n", iLoop); 4349 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ 4350 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", 4351 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4352 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); 4353 if( pTo->isOrdered>0 ){ 4354 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); 4355 }else{ 4356 sqlite3DebugPrintf("\n"); 4357 } 4358 } 4359 } 4360 #endif 4361 4362 /* Swap the roles of aFrom and aTo for the next generation */ 4363 pFrom = aTo; 4364 aTo = aFrom; 4365 aFrom = pFrom; 4366 nFrom = nTo; 4367 } 4368 4369 if( nFrom==0 ){ 4370 sqlite3ErrorMsg(pParse, "no query solution"); 4371 sqlite3DbFreeNN(db, pSpace); 4372 return SQLITE_ERROR; 4373 } 4374 4375 /* Find the lowest cost path. pFrom will be left pointing to that path */ 4376 pFrom = aFrom; 4377 for(ii=1; ii<nFrom; ii++){ 4378 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; 4379 } 4380 assert( pWInfo->nLevel==nLoop ); 4381 /* Load the lowest cost path into pWInfo */ 4382 for(iLoop=0; iLoop<nLoop; iLoop++){ 4383 WhereLevel *pLevel = pWInfo->a + iLoop; 4384 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; 4385 pLevel->iFrom = pWLoop->iTab; 4386 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; 4387 } 4388 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 4389 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 4390 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP 4391 && nRowEst 4392 ){ 4393 Bitmask notUsed; 4394 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, 4395 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); 4396 if( rc==pWInfo->pResultSet->nExpr ){ 4397 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 4398 } 4399 } 4400 pWInfo->bOrderedInnerLoop = 0; 4401 if( pWInfo->pOrderBy ){ 4402 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ 4403 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ 4404 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 4405 } 4406 }else{ 4407 pWInfo->nOBSat = pFrom->isOrdered; 4408 pWInfo->revMask = pFrom->revLoop; 4409 if( pWInfo->nOBSat<=0 ){ 4410 pWInfo->nOBSat = 0; 4411 if( nLoop>0 ){ 4412 u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags; 4413 if( (wsFlags & WHERE_ONEROW)==0 4414 && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN) 4415 ){ 4416 Bitmask m = 0; 4417 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, 4418 WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m); 4419 testcase( wsFlags & WHERE_IPK ); 4420 testcase( wsFlags & WHERE_COLUMN_IN ); 4421 if( rc==pWInfo->pOrderBy->nExpr ){ 4422 pWInfo->bOrderedInnerLoop = 1; 4423 pWInfo->revMask = m; 4424 } 4425 } 4426 } 4427 } 4428 } 4429 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) 4430 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 4431 ){ 4432 Bitmask revMask = 0; 4433 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, 4434 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask 4435 ); 4436 assert( pWInfo->sorted==0 ); 4437 if( nOrder==pWInfo->pOrderBy->nExpr ){ 4438 pWInfo->sorted = 1; 4439 pWInfo->revMask = revMask; 4440 } 4441 } 4442 } 4443 4444 4445 pWInfo->nRowOut = pFrom->nRow; 4446 4447 /* Free temporary memory and return success */ 4448 sqlite3DbFreeNN(db, pSpace); 4449 return SQLITE_OK; 4450 } 4451 4452 /* 4453 ** Most queries use only a single table (they are not joins) and have 4454 ** simple == constraints against indexed fields. This routine attempts 4455 ** to plan those simple cases using much less ceremony than the 4456 ** general-purpose query planner, and thereby yield faster sqlite3_prepare() 4457 ** times for the common case. 4458 ** 4459 ** Return non-zero on success, if this query can be handled by this 4460 ** no-frills query planner. Return zero if this query needs the 4461 ** general-purpose query planner. 4462 */ 4463 static int whereShortCut(WhereLoopBuilder *pBuilder){ 4464 WhereInfo *pWInfo; 4465 struct SrcList_item *pItem; 4466 WhereClause *pWC; 4467 WhereTerm *pTerm; 4468 WhereLoop *pLoop; 4469 int iCur; 4470 int j; 4471 Table *pTab; 4472 Index *pIdx; 4473 4474 pWInfo = pBuilder->pWInfo; 4475 if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0; 4476 assert( pWInfo->pTabList->nSrc>=1 ); 4477 pItem = pWInfo->pTabList->a; 4478 pTab = pItem->pTab; 4479 if( IsVirtual(pTab) ) return 0; 4480 if( pItem->fg.isIndexedBy ) return 0; 4481 iCur = pItem->iCursor; 4482 pWC = &pWInfo->sWC; 4483 pLoop = pBuilder->pNew; 4484 pLoop->wsFlags = 0; 4485 pLoop->nSkip = 0; 4486 pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0); 4487 if( pTerm ){ 4488 testcase( pTerm->eOperator & WO_IS ); 4489 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; 4490 pLoop->aLTerm[0] = pTerm; 4491 pLoop->nLTerm = 1; 4492 pLoop->u.btree.nEq = 1; 4493 /* TUNING: Cost of a rowid lookup is 10 */ 4494 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ 4495 }else{ 4496 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4497 int opMask; 4498 assert( pLoop->aLTermSpace==pLoop->aLTerm ); 4499 if( !IsUniqueIndex(pIdx) 4500 || pIdx->pPartIdxWhere!=0 4501 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) 4502 ) continue; 4503 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; 4504 for(j=0; j<pIdx->nKeyCol; j++){ 4505 pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx); 4506 if( pTerm==0 ) break; 4507 testcase( pTerm->eOperator & WO_IS ); 4508 pLoop->aLTerm[j] = pTerm; 4509 } 4510 if( j!=pIdx->nKeyCol ) continue; 4511 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; 4512 if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){ 4513 pLoop->wsFlags |= WHERE_IDX_ONLY; 4514 } 4515 pLoop->nLTerm = j; 4516 pLoop->u.btree.nEq = j; 4517 pLoop->u.btree.pIndex = pIdx; 4518 /* TUNING: Cost of a unique index lookup is 15 */ 4519 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ 4520 break; 4521 } 4522 } 4523 if( pLoop->wsFlags ){ 4524 pLoop->nOut = (LogEst)1; 4525 pWInfo->a[0].pWLoop = pLoop; 4526 assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] ); 4527 pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */ 4528 pWInfo->a[0].iTabCur = iCur; 4529 pWInfo->nRowOut = 1; 4530 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; 4531 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ 4532 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4533 } 4534 #ifdef SQLITE_DEBUG 4535 pLoop->cId = '0'; 4536 #endif 4537 return 1; 4538 } 4539 return 0; 4540 } 4541 4542 /* 4543 ** Helper function for exprIsDeterministic(). 4544 */ 4545 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){ 4546 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){ 4547 pWalker->eCode = 0; 4548 return WRC_Abort; 4549 } 4550 return WRC_Continue; 4551 } 4552 4553 /* 4554 ** Return true if the expression contains no non-deterministic SQL 4555 ** functions. Do not consider non-deterministic SQL functions that are 4556 ** part of sub-select statements. 4557 */ 4558 static int exprIsDeterministic(Expr *p){ 4559 Walker w; 4560 memset(&w, 0, sizeof(w)); 4561 w.eCode = 1; 4562 w.xExprCallback = exprNodeIsDeterministic; 4563 w.xSelectCallback = sqlite3SelectWalkFail; 4564 sqlite3WalkExpr(&w, p); 4565 return w.eCode; 4566 } 4567 4568 4569 #ifdef WHERETRACE_ENABLED 4570 /* 4571 ** Display all WhereLoops in pWInfo 4572 */ 4573 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){ 4574 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ 4575 WhereLoop *p; 4576 int i; 4577 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" 4578 "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; 4579 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ 4580 p->cId = zLabel[i%(sizeof(zLabel)-1)]; 4581 sqlite3WhereLoopPrint(p, pWC); 4582 } 4583 } 4584 } 4585 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C) 4586 #else 4587 # define WHERETRACE_ALL_LOOPS(W,C) 4588 #endif 4589 4590 /* 4591 ** Generate the beginning of the loop used for WHERE clause processing. 4592 ** The return value is a pointer to an opaque structure that contains 4593 ** information needed to terminate the loop. Later, the calling routine 4594 ** should invoke sqlite3WhereEnd() with the return value of this function 4595 ** in order to complete the WHERE clause processing. 4596 ** 4597 ** If an error occurs, this routine returns NULL. 4598 ** 4599 ** The basic idea is to do a nested loop, one loop for each table in 4600 ** the FROM clause of a select. (INSERT and UPDATE statements are the 4601 ** same as a SELECT with only a single table in the FROM clause.) For 4602 ** example, if the SQL is this: 4603 ** 4604 ** SELECT * FROM t1, t2, t3 WHERE ...; 4605 ** 4606 ** Then the code generated is conceptually like the following: 4607 ** 4608 ** foreach row1 in t1 do \ Code generated 4609 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 4610 ** foreach row3 in t3 do / 4611 ** ... 4612 ** end \ Code generated 4613 ** end |-- by sqlite3WhereEnd() 4614 ** end / 4615 ** 4616 ** Note that the loops might not be nested in the order in which they 4617 ** appear in the FROM clause if a different order is better able to make 4618 ** use of indices. Note also that when the IN operator appears in 4619 ** the WHERE clause, it might result in additional nested loops for 4620 ** scanning through all values on the right-hand side of the IN. 4621 ** 4622 ** There are Btree cursors associated with each table. t1 uses cursor 4623 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 4624 ** And so forth. This routine generates code to open those VDBE cursors 4625 ** and sqlite3WhereEnd() generates the code to close them. 4626 ** 4627 ** The code that sqlite3WhereBegin() generates leaves the cursors named 4628 ** in pTabList pointing at their appropriate entries. The [...] code 4629 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 4630 ** data from the various tables of the loop. 4631 ** 4632 ** If the WHERE clause is empty, the foreach loops must each scan their 4633 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 4634 ** the tables have indices and there are terms in the WHERE clause that 4635 ** refer to those indices, a complete table scan can be avoided and the 4636 ** code will run much faster. Most of the work of this routine is checking 4637 ** to see if there are indices that can be used to speed up the loop. 4638 ** 4639 ** Terms of the WHERE clause are also used to limit which rows actually 4640 ** make it to the "..." in the middle of the loop. After each "foreach", 4641 ** terms of the WHERE clause that use only terms in that loop and outer 4642 ** loops are evaluated and if false a jump is made around all subsequent 4643 ** inner loops (or around the "..." if the test occurs within the inner- 4644 ** most loop) 4645 ** 4646 ** OUTER JOINS 4647 ** 4648 ** An outer join of tables t1 and t2 is conceptally coded as follows: 4649 ** 4650 ** foreach row1 in t1 do 4651 ** flag = 0 4652 ** foreach row2 in t2 do 4653 ** start: 4654 ** ... 4655 ** flag = 1 4656 ** end 4657 ** if flag==0 then 4658 ** move the row2 cursor to a null row 4659 ** goto start 4660 ** fi 4661 ** end 4662 ** 4663 ** ORDER BY CLAUSE PROCESSING 4664 ** 4665 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause 4666 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement 4667 ** if there is one. If there is no ORDER BY clause or if this routine 4668 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. 4669 ** 4670 ** The iIdxCur parameter is the cursor number of an index. If 4671 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index 4672 ** to use for OR clause processing. The WHERE clause should use this 4673 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is 4674 ** the first cursor in an array of cursors for all indices. iIdxCur should 4675 ** be used to compute the appropriate cursor depending on which index is 4676 ** used. 4677 */ 4678 WhereInfo *sqlite3WhereBegin( 4679 Parse *pParse, /* The parser context */ 4680 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ 4681 Expr *pWhere, /* The WHERE clause */ 4682 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ 4683 ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */ 4684 u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */ 4685 int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number 4686 ** If WHERE_USE_LIMIT, then the limit amount */ 4687 ){ 4688 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ 4689 int nTabList; /* Number of elements in pTabList */ 4690 WhereInfo *pWInfo; /* Will become the return value of this function */ 4691 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 4692 Bitmask notReady; /* Cursors that are not yet positioned */ 4693 WhereLoopBuilder sWLB; /* The WhereLoop builder */ 4694 WhereMaskSet *pMaskSet; /* The expression mask set */ 4695 WhereLevel *pLevel; /* A single level in pWInfo->a[] */ 4696 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ 4697 int ii; /* Loop counter */ 4698 sqlite3 *db; /* Database connection */ 4699 int rc; /* Return code */ 4700 u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */ 4701 4702 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || ( 4703 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 4704 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 4705 )); 4706 4707 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */ 4708 assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 4709 || (wctrlFlags & WHERE_USE_LIMIT)==0 ); 4710 4711 /* Variable initialization */ 4712 db = pParse->db; 4713 memset(&sWLB, 0, sizeof(sWLB)); 4714 4715 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ 4716 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); 4717 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; 4718 sWLB.pOrderBy = pOrderBy; 4719 4720 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via 4721 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ 4722 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ 4723 wctrlFlags &= ~WHERE_WANT_DISTINCT; 4724 } 4725 4726 /* The number of tables in the FROM clause is limited by the number of 4727 ** bits in a Bitmask 4728 */ 4729 testcase( pTabList->nSrc==BMS ); 4730 if( pTabList->nSrc>BMS ){ 4731 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 4732 return 0; 4733 } 4734 4735 /* This function normally generates a nested loop for all tables in 4736 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should 4737 ** only generate code for the first table in pTabList and assume that 4738 ** any cursors associated with subsequent tables are uninitialized. 4739 */ 4740 nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc; 4741 4742 /* Allocate and initialize the WhereInfo structure that will become the 4743 ** return value. A single allocation is used to store the WhereInfo 4744 ** struct, the contents of WhereInfo.a[], the WhereClause structure 4745 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte 4746 ** field (type Bitmask) it must be aligned on an 8-byte boundary on 4747 ** some architectures. Hence the ROUND8() below. 4748 */ 4749 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); 4750 pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop)); 4751 if( db->mallocFailed ){ 4752 sqlite3DbFree(db, pWInfo); 4753 pWInfo = 0; 4754 goto whereBeginError; 4755 } 4756 pWInfo->pParse = pParse; 4757 pWInfo->pTabList = pTabList; 4758 pWInfo->pOrderBy = pOrderBy; 4759 pWInfo->pWhere = pWhere; 4760 pWInfo->pResultSet = pResultSet; 4761 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; 4762 pWInfo->nLevel = nTabList; 4763 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse); 4764 pWInfo->wctrlFlags = wctrlFlags; 4765 pWInfo->iLimit = iAuxArg; 4766 pWInfo->savedNQueryLoop = pParse->nQueryLoop; 4767 memset(&pWInfo->nOBSat, 0, 4768 offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat)); 4769 memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel)); 4770 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */ 4771 pMaskSet = &pWInfo->sMaskSet; 4772 sWLB.pWInfo = pWInfo; 4773 sWLB.pWC = &pWInfo->sWC; 4774 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); 4775 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); 4776 whereLoopInit(sWLB.pNew); 4777 #ifdef SQLITE_DEBUG 4778 sWLB.pNew->cId = '*'; 4779 #endif 4780 4781 /* Split the WHERE clause into separate subexpressions where each 4782 ** subexpression is separated by an AND operator. 4783 */ 4784 initMaskSet(pMaskSet); 4785 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); 4786 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); 4787 4788 /* Special case: No FROM clause 4789 */ 4790 if( nTabList==0 ){ 4791 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; 4792 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4793 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4794 } 4795 ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW")); 4796 }else{ 4797 /* Assign a bit from the bitmask to every term in the FROM clause. 4798 ** 4799 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. 4800 ** 4801 ** The rule of the previous sentence ensures thta if X is the bitmask for 4802 ** a table T, then X-1 is the bitmask for all other tables to the left of T. 4803 ** Knowing the bitmask for all tables to the left of a left join is 4804 ** important. Ticket #3015. 4805 ** 4806 ** Note that bitmasks are created for all pTabList->nSrc tables in 4807 ** pTabList, not just the first nTabList tables. nTabList is normally 4808 ** equal to pTabList->nSrc but might be shortened to 1 if the 4809 ** WHERE_OR_SUBCLAUSE flag is set. 4810 */ 4811 ii = 0; 4812 do{ 4813 createMask(pMaskSet, pTabList->a[ii].iCursor); 4814 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC); 4815 }while( (++ii)<pTabList->nSrc ); 4816 #ifdef SQLITE_DEBUG 4817 { 4818 Bitmask mx = 0; 4819 for(ii=0; ii<pTabList->nSrc; ii++){ 4820 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); 4821 assert( m>=mx ); 4822 mx = m; 4823 } 4824 } 4825 #endif 4826 } 4827 4828 /* Analyze all of the subexpressions. */ 4829 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); 4830 if( db->mallocFailed ) goto whereBeginError; 4831 4832 /* Special case: WHERE terms that do not refer to any tables in the join 4833 ** (constant expressions). Evaluate each such term, and jump over all the 4834 ** generated code if the result is not true. 4835 ** 4836 ** Do not do this if the expression contains non-deterministic functions 4837 ** that are not within a sub-select. This is not strictly required, but 4838 ** preserves SQLite's legacy behaviour in the following two cases: 4839 ** 4840 ** FROM ... WHERE random()>0; -- eval random() once per row 4841 ** FROM ... WHERE (SELECT random())>0; -- eval random() once overall 4842 */ 4843 for(ii=0; ii<sWLB.pWC->nTerm; ii++){ 4844 WhereTerm *pT = &sWLB.pWC->a[ii]; 4845 if( pT->wtFlags & TERM_VIRTUAL ) continue; 4846 if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){ 4847 sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL); 4848 pT->wtFlags |= TERM_CODED; 4849 } 4850 } 4851 4852 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4853 if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ 4854 /* The DISTINCT marking is pointless. Ignore it. */ 4855 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4856 }else if( pOrderBy==0 ){ 4857 /* Try to ORDER BY the result set to make distinct processing easier */ 4858 pWInfo->wctrlFlags |= WHERE_DISTINCTBY; 4859 pWInfo->pOrderBy = pResultSet; 4860 } 4861 } 4862 4863 /* Construct the WhereLoop objects */ 4864 #if defined(WHERETRACE_ENABLED) 4865 if( sqlite3WhereTrace & 0xffff ){ 4866 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags); 4867 if( wctrlFlags & WHERE_USE_LIMIT ){ 4868 sqlite3DebugPrintf(", limit: %d", iAuxArg); 4869 } 4870 sqlite3DebugPrintf(")\n"); 4871 if( sqlite3WhereTrace & 0x100 ){ 4872 Select sSelect; 4873 memset(&sSelect, 0, sizeof(sSelect)); 4874 sSelect.selFlags = SF_WhereBegin; 4875 sSelect.pSrc = pTabList; 4876 sSelect.pWhere = pWhere; 4877 sSelect.pOrderBy = pOrderBy; 4878 sSelect.pEList = pResultSet; 4879 sqlite3TreeViewSelect(0, &sSelect, 0); 4880 } 4881 } 4882 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 4883 sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n"); 4884 sqlite3WhereClausePrint(sWLB.pWC); 4885 } 4886 #endif 4887 4888 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ 4889 rc = whereLoopAddAll(&sWLB); 4890 if( rc ) goto whereBeginError; 4891 4892 #ifdef SQLITE_ENABLE_STAT4 4893 /* If one or more WhereTerm.truthProb values were used in estimating 4894 ** loop parameters, but then those truthProb values were subsequently 4895 ** changed based on STAT4 information while computing subsequent loops, 4896 ** then we need to rerun the whole loop building process so that all 4897 ** loops will be built using the revised truthProb values. */ 4898 if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){ 4899 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC); 4900 WHERETRACE(0xffff, 4901 ("**** Redo all loop computations due to" 4902 " TERM_HIGHTRUTH changes ****\n")); 4903 while( pWInfo->pLoops ){ 4904 WhereLoop *p = pWInfo->pLoops; 4905 pWInfo->pLoops = p->pNextLoop; 4906 whereLoopDelete(db, p); 4907 } 4908 rc = whereLoopAddAll(&sWLB); 4909 if( rc ) goto whereBeginError; 4910 } 4911 #endif 4912 WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC); 4913 4914 wherePathSolver(pWInfo, 0); 4915 if( db->mallocFailed ) goto whereBeginError; 4916 if( pWInfo->pOrderBy ){ 4917 wherePathSolver(pWInfo, pWInfo->nRowOut+1); 4918 if( db->mallocFailed ) goto whereBeginError; 4919 } 4920 } 4921 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ 4922 pWInfo->revMask = ALLBITS; 4923 } 4924 if( pParse->nErr || NEVER(db->mallocFailed) ){ 4925 goto whereBeginError; 4926 } 4927 #ifdef WHERETRACE_ENABLED 4928 if( sqlite3WhereTrace ){ 4929 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); 4930 if( pWInfo->nOBSat>0 ){ 4931 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); 4932 } 4933 switch( pWInfo->eDistinct ){ 4934 case WHERE_DISTINCT_UNIQUE: { 4935 sqlite3DebugPrintf(" DISTINCT=unique"); 4936 break; 4937 } 4938 case WHERE_DISTINCT_ORDERED: { 4939 sqlite3DebugPrintf(" DISTINCT=ordered"); 4940 break; 4941 } 4942 case WHERE_DISTINCT_UNORDERED: { 4943 sqlite3DebugPrintf(" DISTINCT=unordered"); 4944 break; 4945 } 4946 } 4947 sqlite3DebugPrintf("\n"); 4948 for(ii=0; ii<pWInfo->nLevel; ii++){ 4949 sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); 4950 } 4951 } 4952 #endif 4953 4954 /* Attempt to omit tables from the join that do not affect the result. 4955 ** For a table to not affect the result, the following must be true: 4956 ** 4957 ** 1) The query must not be an aggregate. 4958 ** 2) The table must be the RHS of a LEFT JOIN. 4959 ** 3) Either the query must be DISTINCT, or else the ON or USING clause 4960 ** must contain a constraint that limits the scan of the table to 4961 ** at most a single row. 4962 ** 4) The table must not be referenced by any part of the query apart 4963 ** from its own USING or ON clause. 4964 ** 4965 ** For example, given: 4966 ** 4967 ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1); 4968 ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2); 4969 ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3); 4970 ** 4971 ** then table t2 can be omitted from the following: 4972 ** 4973 ** SELECT v1, v3 FROM t1 4974 ** LEFT JOIN t2 ON (t1.ipk=t2.ipk) 4975 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk) 4976 ** 4977 ** or from: 4978 ** 4979 ** SELECT DISTINCT v1, v3 FROM t1 4980 ** LEFT JOIN t2 4981 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk) 4982 */ 4983 notReady = ~(Bitmask)0; 4984 if( pWInfo->nLevel>=2 4985 && pResultSet!=0 /* guarantees condition (1) above */ 4986 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) 4987 ){ 4988 int i; 4989 Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet); 4990 if( sWLB.pOrderBy ){ 4991 tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy); 4992 } 4993 for(i=pWInfo->nLevel-1; i>=1; i--){ 4994 WhereTerm *pTerm, *pEnd; 4995 struct SrcList_item *pItem; 4996 pLoop = pWInfo->a[i].pWLoop; 4997 pItem = &pWInfo->pTabList->a[pLoop->iTab]; 4998 if( (pItem->fg.jointype & JT_LEFT)==0 ) continue; 4999 if( (wctrlFlags & WHERE_WANT_DISTINCT)==0 5000 && (pLoop->wsFlags & WHERE_ONEROW)==0 5001 ){ 5002 continue; 5003 } 5004 if( (tabUsed & pLoop->maskSelf)!=0 ) continue; 5005 pEnd = sWLB.pWC->a + sWLB.pWC->nTerm; 5006 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ 5007 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 5008 if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 5009 || pTerm->pExpr->iRightJoinTable!=pItem->iCursor 5010 ){ 5011 break; 5012 } 5013 } 5014 } 5015 if( pTerm<pEnd ) continue; 5016 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); 5017 notReady &= ~pLoop->maskSelf; 5018 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ 5019 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){ 5020 pTerm->wtFlags |= TERM_CODED; 5021 } 5022 } 5023 if( i!=pWInfo->nLevel-1 ){ 5024 int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel); 5025 memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte); 5026 } 5027 pWInfo->nLevel--; 5028 nTabList--; 5029 } 5030 } 5031 #if defined(WHERETRACE_ENABLED) 5032 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 5033 sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n"); 5034 sqlite3WhereClausePrint(sWLB.pWC); 5035 } 5036 WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); 5037 #endif 5038 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; 5039 5040 /* If the caller is an UPDATE or DELETE statement that is requesting 5041 ** to use a one-pass algorithm, determine if this is appropriate. 5042 ** 5043 ** A one-pass approach can be used if the caller has requested one 5044 ** and either (a) the scan visits at most one row or (b) each 5045 ** of the following are true: 5046 ** 5047 ** * the caller has indicated that a one-pass approach can be used 5048 ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and 5049 ** * the table is not a virtual table, and 5050 ** * either the scan does not use the OR optimization or the caller 5051 ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified 5052 ** for DELETE). 5053 ** 5054 ** The last qualification is because an UPDATE statement uses 5055 ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can 5056 ** use a one-pass approach, and this is not set accurately for scans 5057 ** that use the OR optimization. 5058 */ 5059 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 5060 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){ 5061 int wsFlags = pWInfo->a[0].pWLoop->wsFlags; 5062 int bOnerow = (wsFlags & WHERE_ONEROW)!=0; 5063 assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) ); 5064 if( bOnerow || ( 5065 0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW) 5066 && !IsVirtual(pTabList->a[0].pTab) 5067 && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK)) 5068 )){ 5069 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; 5070 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){ 5071 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){ 5072 bFordelete = OPFLAG_FORDELETE; 5073 } 5074 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY); 5075 } 5076 } 5077 } 5078 5079 /* Open all tables in the pTabList and any indices selected for 5080 ** searching those tables. 5081 */ 5082 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ 5083 Table *pTab; /* Table to open */ 5084 int iDb; /* Index of database containing table/index */ 5085 struct SrcList_item *pTabItem; 5086 5087 pTabItem = &pTabList->a[pLevel->iFrom]; 5088 pTab = pTabItem->pTab; 5089 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 5090 pLoop = pLevel->pWLoop; 5091 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){ 5092 /* Do nothing */ 5093 }else 5094 #ifndef SQLITE_OMIT_VIRTUALTABLE 5095 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 5096 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 5097 int iCur = pTabItem->iCursor; 5098 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); 5099 }else if( IsVirtual(pTab) ){ 5100 /* noop */ 5101 }else 5102 #endif 5103 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 5104 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){ 5105 int op = OP_OpenRead; 5106 if( pWInfo->eOnePass!=ONEPASS_OFF ){ 5107 op = OP_OpenWrite; 5108 pWInfo->aiCurOnePass[0] = pTabItem->iCursor; 5109 }; 5110 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 5111 assert( pTabItem->iCursor==pLevel->iTabCur ); 5112 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 ); 5113 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS ); 5114 if( pWInfo->eOnePass==ONEPASS_OFF 5115 && pTab->nCol<BMS 5116 && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0 5117 ){ 5118 /* If we know that only a prefix of the record will be used, 5119 ** it is advantageous to reduce the "column count" field in 5120 ** the P4 operand of the OP_OpenRead/Write opcode. */ 5121 Bitmask b = pTabItem->colUsed; 5122 int n = 0; 5123 for(; b; b=b>>1, n++){} 5124 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32); 5125 assert( n<=pTab->nCol ); 5126 } 5127 #ifdef SQLITE_ENABLE_CURSOR_HINTS 5128 if( pLoop->u.btree.pIndex!=0 ){ 5129 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete); 5130 }else 5131 #endif 5132 { 5133 sqlite3VdbeChangeP5(v, bFordelete); 5134 } 5135 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 5136 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, 5137 (const u8*)&pTabItem->colUsed, P4_INT64); 5138 #endif 5139 }else{ 5140 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 5141 } 5142 if( pLoop->wsFlags & WHERE_INDEXED ){ 5143 Index *pIx = pLoop->u.btree.pIndex; 5144 int iIndexCur; 5145 int op = OP_OpenRead; 5146 /* iAuxArg is always set to a positive value if ONEPASS is possible */ 5147 assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); 5148 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) 5149 && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 5150 ){ 5151 /* This is one term of an OR-optimization using the PRIMARY KEY of a 5152 ** WITHOUT ROWID table. No need for a separate index */ 5153 iIndexCur = pLevel->iTabCur; 5154 op = 0; 5155 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){ 5156 Index *pJ = pTabItem->pTab->pIndex; 5157 iIndexCur = iAuxArg; 5158 assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); 5159 while( ALWAYS(pJ) && pJ!=pIx ){ 5160 iIndexCur++; 5161 pJ = pJ->pNext; 5162 } 5163 op = OP_OpenWrite; 5164 pWInfo->aiCurOnePass[1] = iIndexCur; 5165 }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){ 5166 iIndexCur = iAuxArg; 5167 op = OP_ReopenIdx; 5168 }else{ 5169 iIndexCur = pParse->nTab++; 5170 } 5171 pLevel->iIdxCur = iIndexCur; 5172 assert( pIx->pSchema==pTab->pSchema ); 5173 assert( iIndexCur>=0 ); 5174 if( op ){ 5175 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); 5176 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 5177 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 5178 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 5179 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0 5180 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 5181 && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED 5182 ){ 5183 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); 5184 } 5185 VdbeComment((v, "%s", pIx->zName)); 5186 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 5187 { 5188 u64 colUsed = 0; 5189 int ii, jj; 5190 for(ii=0; ii<pIx->nColumn; ii++){ 5191 jj = pIx->aiColumn[ii]; 5192 if( jj<0 ) continue; 5193 if( jj>63 ) jj = 63; 5194 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue; 5195 colUsed |= ((u64)1)<<(ii<63 ? ii : 63); 5196 } 5197 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, 5198 (u8*)&colUsed, P4_INT64); 5199 } 5200 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ 5201 } 5202 } 5203 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); 5204 } 5205 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 5206 if( db->mallocFailed ) goto whereBeginError; 5207 5208 /* Generate the code to do the search. Each iteration of the for 5209 ** loop below generates code for a single nested loop of the VM 5210 ** program. 5211 */ 5212 for(ii=0; ii<nTabList; ii++){ 5213 int addrExplain; 5214 int wsFlags; 5215 pLevel = &pWInfo->a[ii]; 5216 wsFlags = pLevel->pWLoop->wsFlags; 5217 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 5218 if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 5219 constructAutomaticIndex(pParse, &pWInfo->sWC, 5220 &pTabList->a[pLevel->iFrom], notReady, pLevel); 5221 if( db->mallocFailed ) goto whereBeginError; 5222 } 5223 #endif 5224 addrExplain = sqlite3WhereExplainOneScan( 5225 pParse, pTabList, pLevel, wctrlFlags 5226 ); 5227 pLevel->addrBody = sqlite3VdbeCurrentAddr(v); 5228 notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady); 5229 pWInfo->iContinue = pLevel->addrCont; 5230 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){ 5231 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); 5232 } 5233 } 5234 5235 /* Done. */ 5236 VdbeModuleComment((v, "Begin WHERE-core")); 5237 return pWInfo; 5238 5239 /* Jump here if malloc fails */ 5240 whereBeginError: 5241 if( pWInfo ){ 5242 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 5243 whereInfoFree(db, pWInfo); 5244 } 5245 return 0; 5246 } 5247 5248 /* 5249 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the 5250 ** index rather than the main table. In SQLITE_DEBUG mode, we want 5251 ** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine 5252 ** does that. 5253 */ 5254 #ifndef SQLITE_DEBUG 5255 # define OpcodeRewriteTrace(D,K,P) /* no-op */ 5256 #else 5257 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P) 5258 static void sqlite3WhereOpcodeRewriteTrace( 5259 sqlite3 *db, 5260 int pc, 5261 VdbeOp *pOp 5262 ){ 5263 if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return; 5264 sqlite3VdbePrintOp(0, pc, pOp); 5265 } 5266 #endif 5267 5268 /* 5269 ** Generate the end of the WHERE loop. See comments on 5270 ** sqlite3WhereBegin() for additional information. 5271 */ 5272 void sqlite3WhereEnd(WhereInfo *pWInfo){ 5273 Parse *pParse = pWInfo->pParse; 5274 Vdbe *v = pParse->pVdbe; 5275 int i; 5276 WhereLevel *pLevel; 5277 WhereLoop *pLoop; 5278 SrcList *pTabList = pWInfo->pTabList; 5279 sqlite3 *db = pParse->db; 5280 5281 /* Generate loop termination code. 5282 */ 5283 VdbeModuleComment((v, "End WHERE-core")); 5284 for(i=pWInfo->nLevel-1; i>=0; i--){ 5285 int addr; 5286 pLevel = &pWInfo->a[i]; 5287 pLoop = pLevel->pWLoop; 5288 if( pLevel->op!=OP_Noop ){ 5289 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 5290 int addrSeek = 0; 5291 Index *pIdx; 5292 int n; 5293 if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED 5294 && i==pWInfo->nLevel-1 /* Ticket [ef9318757b152e3] 2017-10-21 */ 5295 && (pLoop->wsFlags & WHERE_INDEXED)!=0 5296 && (pIdx = pLoop->u.btree.pIndex)->hasStat1 5297 && (n = pLoop->u.btree.nDistinctCol)>0 5298 && pIdx->aiRowLogEst[n]>=36 5299 ){ 5300 int r1 = pParse->nMem+1; 5301 int j, op; 5302 for(j=0; j<n; j++){ 5303 sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j); 5304 } 5305 pParse->nMem += n+1; 5306 op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT; 5307 addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n); 5308 VdbeCoverageIf(v, op==OP_SeekLT); 5309 VdbeCoverageIf(v, op==OP_SeekGT); 5310 sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2); 5311 } 5312 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */ 5313 /* The common case: Advance to the next row */ 5314 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 5315 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); 5316 sqlite3VdbeChangeP5(v, pLevel->p5); 5317 VdbeCoverage(v); 5318 VdbeCoverageIf(v, pLevel->op==OP_Next); 5319 VdbeCoverageIf(v, pLevel->op==OP_Prev); 5320 VdbeCoverageIf(v, pLevel->op==OP_VNext); 5321 if( pLevel->regBignull ){ 5322 sqlite3VdbeResolveLabel(v, pLevel->addrBignull); 5323 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1); 5324 VdbeCoverage(v); 5325 } 5326 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 5327 if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek); 5328 #endif 5329 }else{ 5330 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 5331 } 5332 if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ 5333 struct InLoop *pIn; 5334 int j; 5335 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 5336 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 5337 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 5338 if( pIn->eEndLoopOp!=OP_Noop ){ 5339 if( pIn->nPrefix ){ 5340 assert( pLoop->wsFlags & WHERE_IN_EARLYOUT ); 5341 if( pLevel->iLeftJoin ){ 5342 /* For LEFT JOIN queries, cursor pIn->iCur may not have been 5343 ** opened yet. This occurs for WHERE clauses such as 5344 ** "a = ? AND b IN (...)", where the index is on (a, b). If 5345 ** the RHS of the (a=?) is NULL, then the "b IN (...)" may 5346 ** never have been coded, but the body of the loop run to 5347 ** return the null-row. So, if the cursor is not open yet, 5348 ** jump over the OP_Next or OP_Prev instruction about to 5349 ** be coded. */ 5350 sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur, 5351 sqlite3VdbeCurrentAddr(v) + 2 + 5352 ((pLoop->wsFlags & WHERE_VIRTUALTABLE)==0) 5353 ); 5354 VdbeCoverage(v); 5355 } 5356 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 5357 sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur, 5358 sqlite3VdbeCurrentAddr(v)+2, 5359 pIn->iBase, pIn->nPrefix); 5360 VdbeCoverage(v); 5361 } 5362 } 5363 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); 5364 VdbeCoverage(v); 5365 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev); 5366 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next); 5367 } 5368 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 5369 } 5370 } 5371 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 5372 if( pLevel->addrSkip ){ 5373 sqlite3VdbeGoto(v, pLevel->addrSkip); 5374 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); 5375 sqlite3VdbeJumpHere(v, pLevel->addrSkip); 5376 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); 5377 } 5378 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 5379 if( pLevel->addrLikeRep ){ 5380 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1), 5381 pLevel->addrLikeRep); 5382 VdbeCoverage(v); 5383 } 5384 #endif 5385 if( pLevel->iLeftJoin ){ 5386 int ws = pLoop->wsFlags; 5387 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); 5388 assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 ); 5389 if( (ws & WHERE_IDX_ONLY)==0 ){ 5390 assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor ); 5391 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur); 5392 } 5393 if( (ws & WHERE_INDEXED) 5394 || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx) 5395 ){ 5396 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 5397 } 5398 if( pLevel->op==OP_Return ){ 5399 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); 5400 }else{ 5401 sqlite3VdbeGoto(v, pLevel->addrFirst); 5402 } 5403 sqlite3VdbeJumpHere(v, addr); 5404 } 5405 VdbeModuleComment((v, "End WHERE-loop%d: %s", i, 5406 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); 5407 } 5408 5409 /* The "break" point is here, just past the end of the outer loop. 5410 ** Set it. 5411 */ 5412 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 5413 5414 assert( pWInfo->nLevel<=pTabList->nSrc ); 5415 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ 5416 int k, last; 5417 VdbeOp *pOp; 5418 Index *pIdx = 0; 5419 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 5420 Table *pTab = pTabItem->pTab; 5421 assert( pTab!=0 ); 5422 pLoop = pLevel->pWLoop; 5423 5424 /* For a co-routine, change all OP_Column references to the table of 5425 ** the co-routine into OP_Copy of result contained in a register. 5426 ** OP_Rowid becomes OP_Null. 5427 */ 5428 if( pTabItem->fg.viaCoroutine ){ 5429 testcase( pParse->db->mallocFailed ); 5430 translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur, 5431 pTabItem->regResult, 0); 5432 continue; 5433 } 5434 5435 #ifdef SQLITE_ENABLE_EARLY_CURSOR_CLOSE 5436 /* Close all of the cursors that were opened by sqlite3WhereBegin. 5437 ** Except, do not close cursors that will be reused by the OR optimization 5438 ** (WHERE_OR_SUBCLAUSE). And do not close the OP_OpenWrite cursors 5439 ** created for the ONEPASS optimization. 5440 */ 5441 if( (pTab->tabFlags & TF_Ephemeral)==0 5442 && pTab->pSelect==0 5443 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 5444 ){ 5445 int ws = pLoop->wsFlags; 5446 if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){ 5447 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); 5448 } 5449 if( (ws & WHERE_INDEXED)!=0 5450 && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0 5451 && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1] 5452 ){ 5453 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); 5454 } 5455 } 5456 #endif 5457 5458 /* If this scan uses an index, make VDBE code substitutions to read data 5459 ** from the index instead of from the table where possible. In some cases 5460 ** this optimization prevents the table from ever being read, which can 5461 ** yield a significant performance boost. 5462 ** 5463 ** Calls to the code generator in between sqlite3WhereBegin and 5464 ** sqlite3WhereEnd will have created code that references the table 5465 ** directly. This loop scans all that code looking for opcodes 5466 ** that reference the table and converts them into opcodes that 5467 ** reference the index. 5468 */ 5469 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ 5470 pIdx = pLoop->u.btree.pIndex; 5471 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ 5472 pIdx = pLevel->u.pCovidx; 5473 } 5474 if( pIdx 5475 && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable)) 5476 && !db->mallocFailed 5477 ){ 5478 last = sqlite3VdbeCurrentAddr(v); 5479 k = pLevel->addrBody; 5480 #ifdef SQLITE_DEBUG 5481 if( db->flags & SQLITE_VdbeAddopTrace ){ 5482 printf("TRANSLATE opcodes in range %d..%d\n", k, last-1); 5483 } 5484 #endif 5485 pOp = sqlite3VdbeGetOp(v, k); 5486 for(; k<last; k++, pOp++){ 5487 if( pOp->p1!=pLevel->iTabCur ) continue; 5488 if( pOp->opcode==OP_Column 5489 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC 5490 || pOp->opcode==OP_Offset 5491 #endif 5492 ){ 5493 int x = pOp->p2; 5494 assert( pIdx->pTable==pTab ); 5495 if( !HasRowid(pTab) ){ 5496 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 5497 x = pPk->aiColumn[x]; 5498 assert( x>=0 ); 5499 }else{ 5500 testcase( x!=sqlite3StorageColumnToTable(pTab,x) ); 5501 x = sqlite3StorageColumnToTable(pTab,x); 5502 } 5503 x = sqlite3TableColumnToIndex(pIdx, x); 5504 if( x>=0 ){ 5505 pOp->p2 = x; 5506 pOp->p1 = pLevel->iIdxCur; 5507 OpcodeRewriteTrace(db, k, pOp); 5508 } 5509 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 5510 || pWInfo->eOnePass ); 5511 }else if( pOp->opcode==OP_Rowid ){ 5512 pOp->p1 = pLevel->iIdxCur; 5513 pOp->opcode = OP_IdxRowid; 5514 OpcodeRewriteTrace(db, k, pOp); 5515 }else if( pOp->opcode==OP_IfNullRow ){ 5516 pOp->p1 = pLevel->iIdxCur; 5517 OpcodeRewriteTrace(db, k, pOp); 5518 } 5519 } 5520 #ifdef SQLITE_DEBUG 5521 if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n"); 5522 #endif 5523 } 5524 } 5525 5526 /* Undo all Expr node modifications */ 5527 while( pWInfo->pExprMods ){ 5528 WhereExprMod *p = pWInfo->pExprMods; 5529 pWInfo->pExprMods = p->pNext; 5530 memcpy(p->pExpr, &p->orig, sizeof(p->orig)); 5531 sqlite3DbFree(db, p); 5532 } 5533 5534 /* Final cleanup 5535 */ 5536 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 5537 whereInfoFree(db, pWInfo); 5538 return; 5539 } 5540