xref: /sqlite-3.40.0/src/where.c (revision 6f050aa2)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 **
19 ** $Id: where.c,v 1.390 2009/04/24 15:46:22 drh Exp $
20 */
21 #include "sqliteInt.h"
22 
23 /*
24 ** Trace output macros
25 */
26 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
27 int sqlite3WhereTrace = 0;
28 #endif
29 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
30 # define WHERETRACE(X)  if(sqlite3WhereTrace) sqlite3DebugPrintf X
31 #else
32 # define WHERETRACE(X)
33 #endif
34 
35 /* Forward reference
36 */
37 typedef struct WhereClause WhereClause;
38 typedef struct WhereMaskSet WhereMaskSet;
39 typedef struct WhereOrInfo WhereOrInfo;
40 typedef struct WhereAndInfo WhereAndInfo;
41 typedef struct WhereCost WhereCost;
42 
43 /*
44 ** The query generator uses an array of instances of this structure to
45 ** help it analyze the subexpressions of the WHERE clause.  Each WHERE
46 ** clause subexpression is separated from the others by AND operators,
47 ** usually, or sometimes subexpressions separated by OR.
48 **
49 ** All WhereTerms are collected into a single WhereClause structure.
50 ** The following identity holds:
51 **
52 **        WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
53 **
54 ** When a term is of the form:
55 **
56 **              X <op> <expr>
57 **
58 ** where X is a column name and <op> is one of certain operators,
59 ** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the
60 ** cursor number and column number for X.  WhereTerm.eOperator records
61 ** the <op> using a bitmask encoding defined by WO_xxx below.  The
62 ** use of a bitmask encoding for the operator allows us to search
63 ** quickly for terms that match any of several different operators.
64 **
65 ** A WhereTerm might also be two or more subterms connected by OR:
66 **
67 **         (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR ....
68 **
69 ** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR
70 ** and the WhereTerm.u.pOrInfo field points to auxiliary information that
71 ** is collected about the
72 **
73 ** If a term in the WHERE clause does not match either of the two previous
74 ** categories, then eOperator==0.  The WhereTerm.pExpr field is still set
75 ** to the original subexpression content and wtFlags is set up appropriately
76 ** but no other fields in the WhereTerm object are meaningful.
77 **
78 ** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers,
79 ** but they do so indirectly.  A single WhereMaskSet structure translates
80 ** cursor number into bits and the translated bit is stored in the prereq
81 ** fields.  The translation is used in order to maximize the number of
82 ** bits that will fit in a Bitmask.  The VDBE cursor numbers might be
83 ** spread out over the non-negative integers.  For example, the cursor
84 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45.  The WhereMaskSet
85 ** translates these sparse cursor numbers into consecutive integers
86 ** beginning with 0 in order to make the best possible use of the available
87 ** bits in the Bitmask.  So, in the example above, the cursor numbers
88 ** would be mapped into integers 0 through 7.
89 **
90 ** The number of terms in a join is limited by the number of bits
91 ** in prereqRight and prereqAll.  The default is 64 bits, hence SQLite
92 ** is only able to process joins with 64 or fewer tables.
93 */
94 typedef struct WhereTerm WhereTerm;
95 struct WhereTerm {
96   Expr *pExpr;            /* Pointer to the subexpression that is this term */
97   int iParent;            /* Disable pWC->a[iParent] when this term disabled */
98   int leftCursor;         /* Cursor number of X in "X <op> <expr>" */
99   union {
100     int leftColumn;         /* Column number of X in "X <op> <expr>" */
101     WhereOrInfo *pOrInfo;   /* Extra information if eOperator==WO_OR */
102     WhereAndInfo *pAndInfo; /* Extra information if eOperator==WO_AND */
103   } u;
104   u16 eOperator;          /* A WO_xx value describing <op> */
105   u8 wtFlags;             /* TERM_xxx bit flags.  See below */
106   u8 nChild;              /* Number of children that must disable us */
107   WhereClause *pWC;       /* The clause this term is part of */
108   Bitmask prereqRight;    /* Bitmask of tables used by pExpr->pRight */
109   Bitmask prereqAll;      /* Bitmask of tables referenced by pExpr */
110 };
111 
112 /*
113 ** Allowed values of WhereTerm.wtFlags
114 */
115 #define TERM_DYNAMIC    0x01   /* Need to call sqlite3ExprDelete(db, pExpr) */
116 #define TERM_VIRTUAL    0x02   /* Added by the optimizer.  Do not code */
117 #define TERM_CODED      0x04   /* This term is already coded */
118 #define TERM_COPIED     0x08   /* Has a child */
119 #define TERM_ORINFO     0x10   /* Need to free the WhereTerm.u.pOrInfo object */
120 #define TERM_ANDINFO    0x20   /* Need to free the WhereTerm.u.pAndInfo obj */
121 #define TERM_OR_OK      0x40   /* Used during OR-clause processing */
122 
123 /*
124 ** An instance of the following structure holds all information about a
125 ** WHERE clause.  Mostly this is a container for one or more WhereTerms.
126 */
127 struct WhereClause {
128   Parse *pParse;           /* The parser context */
129   WhereMaskSet *pMaskSet;  /* Mapping of table cursor numbers to bitmasks */
130   u8 op;                   /* Split operator.  TK_AND or TK_OR */
131   int nTerm;               /* Number of terms */
132   int nSlot;               /* Number of entries in a[] */
133   WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
134   WhereTerm aStatic[4];    /* Initial static space for a[] */
135 };
136 
137 /*
138 ** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to
139 ** a dynamically allocated instance of the following structure.
140 */
141 struct WhereOrInfo {
142   WhereClause wc;          /* Decomposition into subterms */
143   Bitmask indexable;       /* Bitmask of all indexable tables in the clause */
144 };
145 
146 /*
147 ** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to
148 ** a dynamically allocated instance of the following structure.
149 */
150 struct WhereAndInfo {
151   WhereClause wc;          /* The subexpression broken out */
152 };
153 
154 /*
155 ** An instance of the following structure keeps track of a mapping
156 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
157 **
158 ** The VDBE cursor numbers are small integers contained in
159 ** SrcList_item.iCursor and Expr.iTable fields.  For any given WHERE
160 ** clause, the cursor numbers might not begin with 0 and they might
161 ** contain gaps in the numbering sequence.  But we want to make maximum
162 ** use of the bits in our bitmasks.  This structure provides a mapping
163 ** from the sparse cursor numbers into consecutive integers beginning
164 ** with 0.
165 **
166 ** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
167 ** corresponds VDBE cursor number B.  The A-th bit of a bitmask is 1<<A.
168 **
169 ** For example, if the WHERE clause expression used these VDBE
170 ** cursors:  4, 5, 8, 29, 57, 73.  Then the  WhereMaskSet structure
171 ** would map those cursor numbers into bits 0 through 5.
172 **
173 ** Note that the mapping is not necessarily ordered.  In the example
174 ** above, the mapping might go like this:  4->3, 5->1, 8->2, 29->0,
175 ** 57->5, 73->4.  Or one of 719 other combinations might be used. It
176 ** does not really matter.  What is important is that sparse cursor
177 ** numbers all get mapped into bit numbers that begin with 0 and contain
178 ** no gaps.
179 */
180 struct WhereMaskSet {
181   int n;                        /* Number of assigned cursor values */
182   int ix[BMS];                  /* Cursor assigned to each bit */
183 };
184 
185 /*
186 ** A WhereCost object records a lookup strategy and the estimated
187 ** cost of pursuing that strategy.
188 */
189 struct WhereCost {
190   WherePlan plan;    /* The lookup strategy */
191   double rCost;      /* Overall cost of pursuing this search strategy */
192   double nRow;       /* Estimated number of output rows */
193 };
194 
195 /*
196 ** Bitmasks for the operators that indices are able to exploit.  An
197 ** OR-ed combination of these values can be used when searching for
198 ** terms in the where clause.
199 */
200 #define WO_IN     0x001
201 #define WO_EQ     0x002
202 #define WO_LT     (WO_EQ<<(TK_LT-TK_EQ))
203 #define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
204 #define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
205 #define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))
206 #define WO_MATCH  0x040
207 #define WO_ISNULL 0x080
208 #define WO_OR     0x100       /* Two or more OR-connected terms */
209 #define WO_AND    0x200       /* Two or more AND-connected terms */
210 
211 #define WO_ALL    0xfff       /* Mask of all possible WO_* values */
212 #define WO_SINGLE 0x0ff       /* Mask of all non-compound WO_* values */
213 
214 /*
215 ** Value for wsFlags returned by bestIndex() and stored in
216 ** WhereLevel.wsFlags.  These flags determine which search
217 ** strategies are appropriate.
218 **
219 ** The least significant 12 bits is reserved as a mask for WO_ values above.
220 ** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
221 ** But if the table is the right table of a left join, WhereLevel.wsFlags
222 ** is set to WO_IN|WO_EQ.  The WhereLevel.wsFlags field can then be used as
223 ** the "op" parameter to findTerm when we are resolving equality constraints.
224 ** ISNULL constraints will then not be used on the right table of a left
225 ** join.  Tickets #2177 and #2189.
226 */
227 #define WHERE_ROWID_EQ     0x00001000  /* rowid=EXPR or rowid IN (...) */
228 #define WHERE_ROWID_RANGE  0x00002000  /* rowid<EXPR and/or rowid>EXPR */
229 #define WHERE_COLUMN_EQ    0x00010000  /* x=EXPR or x IN (...) or x IS NULL */
230 #define WHERE_COLUMN_RANGE 0x00020000  /* x<EXPR and/or x>EXPR */
231 #define WHERE_COLUMN_IN    0x00040000  /* x IN (...) */
232 #define WHERE_COLUMN_NULL  0x00080000  /* x IS NULL */
233 #define WHERE_INDEXED      0x000f0000  /* Anything that uses an index */
234 #define WHERE_IN_ABLE      0x000f1000  /* Able to support an IN operator */
235 #define WHERE_TOP_LIMIT    0x00100000  /* x<EXPR or x<=EXPR constraint */
236 #define WHERE_BTM_LIMIT    0x00200000  /* x>EXPR or x>=EXPR constraint */
237 #define WHERE_IDX_ONLY     0x00800000  /* Use index only - omit table */
238 #define WHERE_ORDERBY      0x01000000  /* Output will appear in correct order */
239 #define WHERE_REVERSE      0x02000000  /* Scan in reverse order */
240 #define WHERE_UNIQUE       0x04000000  /* Selects no more than one row */
241 #define WHERE_VIRTUALTABLE 0x08000000  /* Use virtual-table processing */
242 #define WHERE_MULTI_OR     0x10000000  /* OR using multiple indices */
243 
244 /*
245 ** Initialize a preallocated WhereClause structure.
246 */
247 static void whereClauseInit(
248   WhereClause *pWC,        /* The WhereClause to be initialized */
249   Parse *pParse,           /* The parsing context */
250   WhereMaskSet *pMaskSet   /* Mapping from table cursor numbers to bitmasks */
251 ){
252   pWC->pParse = pParse;
253   pWC->pMaskSet = pMaskSet;
254   pWC->nTerm = 0;
255   pWC->nSlot = ArraySize(pWC->aStatic);
256   pWC->a = pWC->aStatic;
257 }
258 
259 /* Forward reference */
260 static void whereClauseClear(WhereClause*);
261 
262 /*
263 ** Deallocate all memory associated with a WhereOrInfo object.
264 */
265 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
266   whereClauseClear(&p->wc);
267   sqlite3DbFree(db, p);
268 }
269 
270 /*
271 ** Deallocate all memory associated with a WhereAndInfo object.
272 */
273 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
274   whereClauseClear(&p->wc);
275   sqlite3DbFree(db, p);
276 }
277 
278 /*
279 ** Deallocate a WhereClause structure.  The WhereClause structure
280 ** itself is not freed.  This routine is the inverse of whereClauseInit().
281 */
282 static void whereClauseClear(WhereClause *pWC){
283   int i;
284   WhereTerm *a;
285   sqlite3 *db = pWC->pParse->db;
286   for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
287     if( a->wtFlags & TERM_DYNAMIC ){
288       sqlite3ExprDelete(db, a->pExpr);
289     }
290     if( a->wtFlags & TERM_ORINFO ){
291       whereOrInfoDelete(db, a->u.pOrInfo);
292     }else if( a->wtFlags & TERM_ANDINFO ){
293       whereAndInfoDelete(db, a->u.pAndInfo);
294     }
295   }
296   if( pWC->a!=pWC->aStatic ){
297     sqlite3DbFree(db, pWC->a);
298   }
299 }
300 
301 /*
302 ** Add a single new WhereTerm entry to the WhereClause object pWC.
303 ** The new WhereTerm object is constructed from Expr p and with wtFlags.
304 ** The index in pWC->a[] of the new WhereTerm is returned on success.
305 ** 0 is returned if the new WhereTerm could not be added due to a memory
306 ** allocation error.  The memory allocation failure will be recorded in
307 ** the db->mallocFailed flag so that higher-level functions can detect it.
308 **
309 ** This routine will increase the size of the pWC->a[] array as necessary.
310 **
311 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
312 ** for freeing the expression p is assumed by the WhereClause object pWC.
313 ** This is true even if this routine fails to allocate a new WhereTerm.
314 **
315 ** WARNING:  This routine might reallocate the space used to store
316 ** WhereTerms.  All pointers to WhereTerms should be invalidated after
317 ** calling this routine.  Such pointers may be reinitialized by referencing
318 ** the pWC->a[] array.
319 */
320 static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){
321   WhereTerm *pTerm;
322   int idx;
323   if( pWC->nTerm>=pWC->nSlot ){
324     WhereTerm *pOld = pWC->a;
325     sqlite3 *db = pWC->pParse->db;
326     pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
327     if( pWC->a==0 ){
328       if( wtFlags & TERM_DYNAMIC ){
329         sqlite3ExprDelete(db, p);
330       }
331       pWC->a = pOld;
332       return 0;
333     }
334     memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
335     if( pOld!=pWC->aStatic ){
336       sqlite3DbFree(db, pOld);
337     }
338     pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
339   }
340   pTerm = &pWC->a[idx = pWC->nTerm++];
341   pTerm->pExpr = p;
342   pTerm->wtFlags = wtFlags;
343   pTerm->pWC = pWC;
344   pTerm->iParent = -1;
345   return idx;
346 }
347 
348 /*
349 ** This routine identifies subexpressions in the WHERE clause where
350 ** each subexpression is separated by the AND operator or some other
351 ** operator specified in the op parameter.  The WhereClause structure
352 ** is filled with pointers to subexpressions.  For example:
353 **
354 **    WHERE  a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
355 **           \________/     \_______________/     \________________/
356 **            slot[0]            slot[1]               slot[2]
357 **
358 ** The original WHERE clause in pExpr is unaltered.  All this routine
359 ** does is make slot[] entries point to substructure within pExpr.
360 **
361 ** In the previous sentence and in the diagram, "slot[]" refers to
362 ** the WhereClause.a[] array.  The slot[] array grows as needed to contain
363 ** all terms of the WHERE clause.
364 */
365 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
366   pWC->op = (u8)op;
367   if( pExpr==0 ) return;
368   if( pExpr->op!=op ){
369     whereClauseInsert(pWC, pExpr, 0);
370   }else{
371     whereSplit(pWC, pExpr->pLeft, op);
372     whereSplit(pWC, pExpr->pRight, op);
373   }
374 }
375 
376 /*
377 ** Initialize an expression mask set (a WhereMaskSet object)
378 */
379 #define initMaskSet(P)  memset(P, 0, sizeof(*P))
380 
381 /*
382 ** Return the bitmask for the given cursor number.  Return 0 if
383 ** iCursor is not in the set.
384 */
385 static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){
386   int i;
387   for(i=0; i<pMaskSet->n; i++){
388     if( pMaskSet->ix[i]==iCursor ){
389       return ((Bitmask)1)<<i;
390     }
391   }
392   return 0;
393 }
394 
395 /*
396 ** Create a new mask for cursor iCursor.
397 **
398 ** There is one cursor per table in the FROM clause.  The number of
399 ** tables in the FROM clause is limited by a test early in the
400 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
401 ** array will never overflow.
402 */
403 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
404   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
405   pMaskSet->ix[pMaskSet->n++] = iCursor;
406 }
407 
408 /*
409 ** This routine walks (recursively) an expression tree and generates
410 ** a bitmask indicating which tables are used in that expression
411 ** tree.
412 **
413 ** In order for this routine to work, the calling function must have
414 ** previously invoked sqlite3ResolveExprNames() on the expression.  See
415 ** the header comment on that routine for additional information.
416 ** The sqlite3ResolveExprNames() routines looks for column names and
417 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
418 ** the VDBE cursor number of the table.  This routine just has to
419 ** translate the cursor numbers into bitmask values and OR all
420 ** the bitmasks together.
421 */
422 static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*);
423 static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*);
424 static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){
425   Bitmask mask = 0;
426   if( p==0 ) return 0;
427   if( p->op==TK_COLUMN ){
428     mask = getMask(pMaskSet, p->iTable);
429     return mask;
430   }
431   mask = exprTableUsage(pMaskSet, p->pRight);
432   mask |= exprTableUsage(pMaskSet, p->pLeft);
433   if( ExprHasProperty(p, EP_xIsSelect) ){
434     mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect);
435   }else{
436     mask |= exprListTableUsage(pMaskSet, p->x.pList);
437   }
438   return mask;
439 }
440 static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){
441   int i;
442   Bitmask mask = 0;
443   if( pList ){
444     for(i=0; i<pList->nExpr; i++){
445       mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
446     }
447   }
448   return mask;
449 }
450 static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){
451   Bitmask mask = 0;
452   while( pS ){
453     mask |= exprListTableUsage(pMaskSet, pS->pEList);
454     mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
455     mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
456     mask |= exprTableUsage(pMaskSet, pS->pWhere);
457     mask |= exprTableUsage(pMaskSet, pS->pHaving);
458     pS = pS->pPrior;
459   }
460   return mask;
461 }
462 
463 /*
464 ** Return TRUE if the given operator is one of the operators that is
465 ** allowed for an indexable WHERE clause term.  The allowed operators are
466 ** "=", "<", ">", "<=", ">=", and "IN".
467 */
468 static int allowedOp(int op){
469   assert( TK_GT>TK_EQ && TK_GT<TK_GE );
470   assert( TK_LT>TK_EQ && TK_LT<TK_GE );
471   assert( TK_LE>TK_EQ && TK_LE<TK_GE );
472   assert( TK_GE==TK_EQ+4 );
473   return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
474 }
475 
476 /*
477 ** Swap two objects of type TYPE.
478 */
479 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
480 
481 /*
482 ** Commute a comparison operator.  Expressions of the form "X op Y"
483 ** are converted into "Y op X".
484 **
485 ** If a collation sequence is associated with either the left or right
486 ** side of the comparison, it remains associated with the same side after
487 ** the commutation. So "Y collate NOCASE op X" becomes
488 ** "X collate NOCASE op Y". This is because any collation sequence on
489 ** the left hand side of a comparison overrides any collation sequence
490 ** attached to the right. For the same reason the EP_ExpCollate flag
491 ** is not commuted.
492 */
493 static void exprCommute(Parse *pParse, Expr *pExpr){
494   u16 expRight = (pExpr->pRight->flags & EP_ExpCollate);
495   u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate);
496   assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
497   pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight);
498   pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
499   SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
500   pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft;
501   pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight;
502   SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
503   if( pExpr->op>=TK_GT ){
504     assert( TK_LT==TK_GT+2 );
505     assert( TK_GE==TK_LE+2 );
506     assert( TK_GT>TK_EQ );
507     assert( TK_GT<TK_LE );
508     assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
509     pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
510   }
511 }
512 
513 /*
514 ** Translate from TK_xx operator to WO_xx bitmask.
515 */
516 static u16 operatorMask(int op){
517   u16 c;
518   assert( allowedOp(op) );
519   if( op==TK_IN ){
520     c = WO_IN;
521   }else if( op==TK_ISNULL ){
522     c = WO_ISNULL;
523   }else{
524     assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
525     c = (u16)(WO_EQ<<(op-TK_EQ));
526   }
527   assert( op!=TK_ISNULL || c==WO_ISNULL );
528   assert( op!=TK_IN || c==WO_IN );
529   assert( op!=TK_EQ || c==WO_EQ );
530   assert( op!=TK_LT || c==WO_LT );
531   assert( op!=TK_LE || c==WO_LE );
532   assert( op!=TK_GT || c==WO_GT );
533   assert( op!=TK_GE || c==WO_GE );
534   return c;
535 }
536 
537 /*
538 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
539 ** where X is a reference to the iColumn of table iCur and <op> is one of
540 ** the WO_xx operator codes specified by the op parameter.
541 ** Return a pointer to the term.  Return 0 if not found.
542 */
543 static WhereTerm *findTerm(
544   WhereClause *pWC,     /* The WHERE clause to be searched */
545   int iCur,             /* Cursor number of LHS */
546   int iColumn,          /* Column number of LHS */
547   Bitmask notReady,     /* RHS must not overlap with this mask */
548   u32 op,               /* Mask of WO_xx values describing operator */
549   Index *pIdx           /* Must be compatible with this index, if not NULL */
550 ){
551   WhereTerm *pTerm;
552   int k;
553   assert( iCur>=0 );
554   op &= WO_ALL;
555   for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
556     if( pTerm->leftCursor==iCur
557        && (pTerm->prereqRight & notReady)==0
558        && pTerm->u.leftColumn==iColumn
559        && (pTerm->eOperator & op)!=0
560     ){
561       if( pIdx && pTerm->eOperator!=WO_ISNULL ){
562         Expr *pX = pTerm->pExpr;
563         CollSeq *pColl;
564         char idxaff;
565         int j;
566         Parse *pParse = pWC->pParse;
567 
568         idxaff = pIdx->pTable->aCol[iColumn].affinity;
569         if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
570 
571         /* Figure out the collation sequence required from an index for
572         ** it to be useful for optimising expression pX. Store this
573         ** value in variable pColl.
574         */
575         assert(pX->pLeft);
576         pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
577         assert(pColl || pParse->nErr);
578 
579         for(j=0; pIdx->aiColumn[j]!=iColumn; j++){
580           if( NEVER(j>=pIdx->nColumn) ) return 0;
581         }
582         if( pColl && sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
583       }
584       return pTerm;
585     }
586   }
587   return 0;
588 }
589 
590 /* Forward reference */
591 static void exprAnalyze(SrcList*, WhereClause*, int);
592 
593 /*
594 ** Call exprAnalyze on all terms in a WHERE clause.
595 **
596 **
597 */
598 static void exprAnalyzeAll(
599   SrcList *pTabList,       /* the FROM clause */
600   WhereClause *pWC         /* the WHERE clause to be analyzed */
601 ){
602   int i;
603   for(i=pWC->nTerm-1; i>=0; i--){
604     exprAnalyze(pTabList, pWC, i);
605   }
606 }
607 
608 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
609 /*
610 ** Check to see if the given expression is a LIKE or GLOB operator that
611 ** can be optimized using inequality constraints.  Return TRUE if it is
612 ** so and false if not.
613 **
614 ** In order for the operator to be optimizible, the RHS must be a string
615 ** literal that does not begin with a wildcard.
616 */
617 static int isLikeOrGlob(
618   Parse *pParse,    /* Parsing and code generating context */
619   Expr *pExpr,      /* Test this expression */
620   int *pnPattern,   /* Number of non-wildcard prefix characters */
621   int *pisComplete, /* True if the only wildcard is % in the last character */
622   int *pnoCase      /* True if uppercase is equivalent to lowercase */
623 ){
624   const char *z;             /* String on RHS of LIKE operator */
625   Expr *pRight, *pLeft;      /* Right and left size of LIKE operator */
626   ExprList *pList;           /* List of operands to the LIKE operator */
627   int c;                     /* One character in z[] */
628   int cnt;                   /* Number of non-wildcard prefix characters */
629   char wc[3];                /* Wildcard characters */
630   CollSeq *pColl;            /* Collating sequence for LHS */
631   sqlite3 *db = pParse->db;  /* Database connection */
632 
633   if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
634     return 0;
635   }
636 #ifdef SQLITE_EBCDIC
637   if( *pnoCase ) return 0;
638 #endif
639   pList = pExpr->x.pList;
640   pRight = pList->a[0].pExpr;
641   if( pRight->op!=TK_STRING ){
642     return 0;
643   }
644   pLeft = pList->a[1].pExpr;
645   if( pLeft->op!=TK_COLUMN ){
646     return 0;
647   }
648   pColl = sqlite3ExprCollSeq(pParse, pLeft);
649   assert( pColl!=0 || pLeft->iColumn==-1 );
650   if( pColl==0 ){
651     /* No collation is defined for the ROWID.  Use the default. */
652     pColl = db->pDfltColl;
653   }
654   if( (pColl->type!=SQLITE_COLL_BINARY || *pnoCase) &&
655       (pColl->type!=SQLITE_COLL_NOCASE || !*pnoCase) ){
656     return 0;
657   }
658   sqlite3DequoteExpr(pRight);
659   z = (char *)pRight->token.z;
660   cnt = 0;
661   if( z ){
662     while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ cnt++; }
663   }
664   if( cnt==0 || 255==(u8)z[cnt-1] ){
665     return 0;
666   }
667   *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0;
668   *pnPattern = cnt;
669   return 1;
670 }
671 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
672 
673 
674 #ifndef SQLITE_OMIT_VIRTUALTABLE
675 /*
676 ** Check to see if the given expression is of the form
677 **
678 **         column MATCH expr
679 **
680 ** If it is then return TRUE.  If not, return FALSE.
681 */
682 static int isMatchOfColumn(
683   Expr *pExpr      /* Test this expression */
684 ){
685   ExprList *pList;
686 
687   if( pExpr->op!=TK_FUNCTION ){
688     return 0;
689   }
690   if( pExpr->token.n!=5 ||
691        sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){
692     return 0;
693   }
694   pList = pExpr->x.pList;
695   if( pList->nExpr!=2 ){
696     return 0;
697   }
698   if( pList->a[1].pExpr->op != TK_COLUMN ){
699     return 0;
700   }
701   return 1;
702 }
703 #endif /* SQLITE_OMIT_VIRTUALTABLE */
704 
705 /*
706 ** If the pBase expression originated in the ON or USING clause of
707 ** a join, then transfer the appropriate markings over to derived.
708 */
709 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
710   pDerived->flags |= pBase->flags & EP_FromJoin;
711   pDerived->iRightJoinTable = pBase->iRightJoinTable;
712 }
713 
714 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
715 /*
716 ** Analyze a term that consists of two or more OR-connected
717 ** subterms.  So in:
718 **
719 **     ... WHERE  (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
720 **                          ^^^^^^^^^^^^^^^^^^^^
721 **
722 ** This routine analyzes terms such as the middle term in the above example.
723 ** A WhereOrTerm object is computed and attached to the term under
724 ** analysis, regardless of the outcome of the analysis.  Hence:
725 **
726 **     WhereTerm.wtFlags   |=  TERM_ORINFO
727 **     WhereTerm.u.pOrInfo  =  a dynamically allocated WhereOrTerm object
728 **
729 ** The term being analyzed must have two or more of OR-connected subterms.
730 ** A single subterm might be a set of AND-connected sub-subterms.
731 ** Examples of terms under analysis:
732 **
733 **     (A)     t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
734 **     (B)     x=expr1 OR expr2=x OR x=expr3
735 **     (C)     t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
736 **     (D)     x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
737 **     (E)     (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
738 **
739 ** CASE 1:
740 **
741 ** If all subterms are of the form T.C=expr for some single column of C
742 ** a single table T (as shown in example B above) then create a new virtual
743 ** term that is an equivalent IN expression.  In other words, if the term
744 ** being analyzed is:
745 **
746 **      x = expr1  OR  expr2 = x  OR  x = expr3
747 **
748 ** then create a new virtual term like this:
749 **
750 **      x IN (expr1,expr2,expr3)
751 **
752 ** CASE 2:
753 **
754 ** If all subterms are indexable by a single table T, then set
755 **
756 **     WhereTerm.eOperator              =  WO_OR
757 **     WhereTerm.u.pOrInfo->indexable  |=  the cursor number for table T
758 **
759 ** A subterm is "indexable" if it is of the form
760 ** "T.C <op> <expr>" where C is any column of table T and
761 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
762 ** A subterm is also indexable if it is an AND of two or more
763 ** subsubterms at least one of which is indexable.  Indexable AND
764 ** subterms have their eOperator set to WO_AND and they have
765 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
766 **
767 ** From another point of view, "indexable" means that the subterm could
768 ** potentially be used with an index if an appropriate index exists.
769 ** This analysis does not consider whether or not the index exists; that
770 ** is something the bestIndex() routine will determine.  This analysis
771 ** only looks at whether subterms appropriate for indexing exist.
772 **
773 ** All examples A through E above all satisfy case 2.  But if a term
774 ** also statisfies case 1 (such as B) we know that the optimizer will
775 ** always prefer case 1, so in that case we pretend that case 2 is not
776 ** satisfied.
777 **
778 ** It might be the case that multiple tables are indexable.  For example,
779 ** (E) above is indexable on tables P, Q, and R.
780 **
781 ** Terms that satisfy case 2 are candidates for lookup by using
782 ** separate indices to find rowids for each subterm and composing
783 ** the union of all rowids using a RowSet object.  This is similar
784 ** to "bitmap indices" in other database engines.
785 **
786 ** OTHERWISE:
787 **
788 ** If neither case 1 nor case 2 apply, then leave the eOperator set to
789 ** zero.  This term is not useful for search.
790 */
791 static void exprAnalyzeOrTerm(
792   SrcList *pSrc,            /* the FROM clause */
793   WhereClause *pWC,         /* the complete WHERE clause */
794   int idxTerm               /* Index of the OR-term to be analyzed */
795 ){
796   Parse *pParse = pWC->pParse;            /* Parser context */
797   sqlite3 *db = pParse->db;               /* Database connection */
798   WhereTerm *pTerm = &pWC->a[idxTerm];    /* The term to be analyzed */
799   Expr *pExpr = pTerm->pExpr;             /* The expression of the term */
800   WhereMaskSet *pMaskSet = pWC->pMaskSet; /* Table use masks */
801   int i;                                  /* Loop counters */
802   WhereClause *pOrWc;       /* Breakup of pTerm into subterms */
803   WhereTerm *pOrTerm;       /* A Sub-term within the pOrWc */
804   WhereOrInfo *pOrInfo;     /* Additional information associated with pTerm */
805   Bitmask chngToIN;         /* Tables that might satisfy case 1 */
806   Bitmask indexable;        /* Tables that are indexable, satisfying case 2 */
807 
808   /*
809   ** Break the OR clause into its separate subterms.  The subterms are
810   ** stored in a WhereClause structure containing within the WhereOrInfo
811   ** object that is attached to the original OR clause term.
812   */
813   assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
814   assert( pExpr->op==TK_OR );
815   pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
816   if( pOrInfo==0 ) return;
817   pTerm->wtFlags |= TERM_ORINFO;
818   pOrWc = &pOrInfo->wc;
819   whereClauseInit(pOrWc, pWC->pParse, pMaskSet);
820   whereSplit(pOrWc, pExpr, TK_OR);
821   exprAnalyzeAll(pSrc, pOrWc);
822   if( db->mallocFailed ) return;
823   assert( pOrWc->nTerm>=2 );
824 
825   /*
826   ** Compute the set of tables that might satisfy cases 1 or 2.
827   */
828   indexable = chngToIN = ~(Bitmask)0;
829   for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
830     if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
831       WhereAndInfo *pAndInfo;
832       assert( pOrTerm->eOperator==0 );
833       assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
834       chngToIN = 0;
835       pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo));
836       if( pAndInfo ){
837         WhereClause *pAndWC;
838         WhereTerm *pAndTerm;
839         int j;
840         Bitmask b = 0;
841         pOrTerm->u.pAndInfo = pAndInfo;
842         pOrTerm->wtFlags |= TERM_ANDINFO;
843         pOrTerm->eOperator = WO_AND;
844         pAndWC = &pAndInfo->wc;
845         whereClauseInit(pAndWC, pWC->pParse, pMaskSet);
846         whereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
847         exprAnalyzeAll(pSrc, pAndWC);
848         testcase( db->mallocFailed );
849         if( !db->mallocFailed ){
850           for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
851             assert( pAndTerm->pExpr );
852             if( allowedOp(pAndTerm->pExpr->op) ){
853               b |= getMask(pMaskSet, pAndTerm->leftCursor);
854             }
855           }
856         }
857         indexable &= b;
858       }
859     }else if( pOrTerm->wtFlags & TERM_COPIED ){
860       /* Skip this term for now.  We revisit it when we process the
861       ** corresponding TERM_VIRTUAL term */
862     }else{
863       Bitmask b;
864       b = getMask(pMaskSet, pOrTerm->leftCursor);
865       if( pOrTerm->wtFlags & TERM_VIRTUAL ){
866         WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
867         b |= getMask(pMaskSet, pOther->leftCursor);
868       }
869       indexable &= b;
870       if( pOrTerm->eOperator!=WO_EQ ){
871         chngToIN = 0;
872       }else{
873         chngToIN &= b;
874       }
875     }
876   }
877 
878   /*
879   ** Record the set of tables that satisfy case 2.  The set might be
880   ** empty.
881   */
882   pOrInfo->indexable = indexable;
883   pTerm->eOperator = indexable==0 ? 0 : WO_OR;
884 
885   /*
886   ** chngToIN holds a set of tables that *might* satisfy case 1.  But
887   ** we have to do some additional checking to see if case 1 really
888   ** is satisfied.
889   */
890   if( chngToIN ){
891     int okToChngToIN = 0;     /* True if the conversion to IN is valid */
892     int iColumn = -1;         /* Column index on lhs of IN operator */
893     int iCursor = -1;         /* Table cursor common to all terms */
894     int j = 0;                /* Loop counter */
895 
896     /* Search for a table and column that appears on one side or the
897     ** other of the == operator in every subterm.  That table and column
898     ** will be recorded in iCursor and iColumn.  There might not be any
899     ** such table and column.  Set okToChngToIN if an appropriate table
900     ** and column is found but leave okToChngToIN false if not found.
901     */
902     for(j=0; j<2 && !okToChngToIN; j++){
903       pOrTerm = pOrWc->a;
904       for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
905         assert( pOrTerm->eOperator==WO_EQ );
906         pOrTerm->wtFlags &= ~TERM_OR_OK;
907         if( pOrTerm->leftCursor==iColumn ) continue;
908         if( (chngToIN & getMask(pMaskSet, pOrTerm->leftCursor))==0 ) continue;
909         iColumn = pOrTerm->u.leftColumn;
910         iCursor = pOrTerm->leftCursor;
911         break;
912       }
913       if( i<0 ){
914         assert( j==1 );
915         assert( (chngToIN&(chngToIN-1))==0 );
916         assert( chngToIN==getMask(pMaskSet, iColumn) );
917         break;
918       }
919       okToChngToIN = 1;
920       for(; i>=0 && okToChngToIN; i--, pOrTerm++){
921         assert( pOrTerm->eOperator==WO_EQ );
922         if( pOrTerm->leftCursor!=iCursor ){
923           pOrTerm->wtFlags &= ~TERM_OR_OK;
924         }else if( pOrTerm->u.leftColumn!=iColumn ){
925           okToChngToIN = 0;
926         }else{
927           int affLeft, affRight;
928           /* If the right-hand side is also a column, then the affinities
929           ** of both right and left sides must be such that no type
930           ** conversions are required on the right.  (Ticket #2249)
931           */
932           affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
933           affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
934           if( affRight!=0 && affRight!=affLeft ){
935             okToChngToIN = 0;
936           }else{
937             pOrTerm->wtFlags |= TERM_OR_OK;
938           }
939         }
940       }
941     }
942 
943     /* At this point, okToChngToIN is true if original pTerm satisfies
944     ** case 1.  In that case, construct a new virtual term that is
945     ** pTerm converted into an IN operator.
946     */
947     if( okToChngToIN ){
948       Expr *pDup;            /* A transient duplicate expression */
949       ExprList *pList = 0;   /* The RHS of the IN operator */
950       Expr *pLeft = 0;       /* The LHS of the IN operator */
951       Expr *pNew;            /* The complete IN operator */
952 
953       for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
954         if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
955         assert( pOrTerm->eOperator==WO_EQ );
956         assert( pOrTerm->leftCursor==iCursor );
957         assert( pOrTerm->u.leftColumn==iColumn );
958         pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
959         pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup, 0);
960         pLeft = pOrTerm->pExpr->pLeft;
961       }
962       assert( pLeft!=0 );
963       pDup = sqlite3ExprDup(db, pLeft, 0);
964       pNew = sqlite3Expr(db, TK_IN, pDup, 0, 0);
965       if( pNew ){
966         int idxNew;
967         transferJoinMarkings(pNew, pExpr);
968         assert( !ExprHasProperty(pNew, EP_xIsSelect) );
969         pNew->x.pList = pList;
970         idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
971         testcase( idxNew==0 );
972         exprAnalyze(pSrc, pWC, idxNew);
973         pTerm = &pWC->a[idxTerm];
974         pWC->a[idxNew].iParent = idxTerm;
975         pTerm->nChild = 1;
976       }else{
977         sqlite3ExprListDelete(db, pList);
978       }
979       pTerm->eOperator = 0;  /* case 1 trumps case 2 */
980     }
981   }
982 }
983 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
984 
985 
986 /*
987 ** The input to this routine is an WhereTerm structure with only the
988 ** "pExpr" field filled in.  The job of this routine is to analyze the
989 ** subexpression and populate all the other fields of the WhereTerm
990 ** structure.
991 **
992 ** If the expression is of the form "<expr> <op> X" it gets commuted
993 ** to the standard form of "X <op> <expr>".
994 **
995 ** If the expression is of the form "X <op> Y" where both X and Y are
996 ** columns, then the original expression is unchanged and a new virtual
997 ** term of the form "Y <op> X" is added to the WHERE clause and
998 ** analyzed separately.  The original term is marked with TERM_COPIED
999 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr
1000 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
1001 ** is a commuted copy of a prior term.)  The original term has nChild=1
1002 ** and the copy has idxParent set to the index of the original term.
1003 */
1004 static void exprAnalyze(
1005   SrcList *pSrc,            /* the FROM clause */
1006   WhereClause *pWC,         /* the WHERE clause */
1007   int idxTerm               /* Index of the term to be analyzed */
1008 ){
1009   WhereTerm *pTerm;                /* The term to be analyzed */
1010   WhereMaskSet *pMaskSet;          /* Set of table index masks */
1011   Expr *pExpr;                     /* The expression to be analyzed */
1012   Bitmask prereqLeft;              /* Prerequesites of the pExpr->pLeft */
1013   Bitmask prereqAll;               /* Prerequesites of pExpr */
1014   Bitmask extraRight = 0;
1015   int nPattern;
1016   int isComplete;
1017   int noCase;
1018   int op;                          /* Top-level operator.  pExpr->op */
1019   Parse *pParse = pWC->pParse;     /* Parsing context */
1020   sqlite3 *db = pParse->db;        /* Database connection */
1021 
1022   if( db->mallocFailed ){
1023     return;
1024   }
1025   pTerm = &pWC->a[idxTerm];
1026   pMaskSet = pWC->pMaskSet;
1027   pExpr = pTerm->pExpr;
1028   prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
1029   op = pExpr->op;
1030   if( op==TK_IN ){
1031     assert( pExpr->pRight==0 );
1032     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1033       pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect);
1034     }else{
1035       pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList);
1036     }
1037   }else if( op==TK_ISNULL ){
1038     pTerm->prereqRight = 0;
1039   }else{
1040     pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
1041   }
1042   prereqAll = exprTableUsage(pMaskSet, pExpr);
1043   if( ExprHasProperty(pExpr, EP_FromJoin) ){
1044     Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable);
1045     prereqAll |= x;
1046     extraRight = x-1;  /* ON clause terms may not be used with an index
1047                        ** on left table of a LEFT JOIN.  Ticket #3015 */
1048   }
1049   pTerm->prereqAll = prereqAll;
1050   pTerm->leftCursor = -1;
1051   pTerm->iParent = -1;
1052   pTerm->eOperator = 0;
1053   if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
1054     Expr *pLeft = pExpr->pLeft;
1055     Expr *pRight = pExpr->pRight;
1056     if( pLeft->op==TK_COLUMN ){
1057       pTerm->leftCursor = pLeft->iTable;
1058       pTerm->u.leftColumn = pLeft->iColumn;
1059       pTerm->eOperator = operatorMask(op);
1060     }
1061     if( pRight && pRight->op==TK_COLUMN ){
1062       WhereTerm *pNew;
1063       Expr *pDup;
1064       if( pTerm->leftCursor>=0 ){
1065         int idxNew;
1066         pDup = sqlite3ExprDup(db, pExpr, 0);
1067         if( db->mallocFailed ){
1068           sqlite3ExprDelete(db, pDup);
1069           return;
1070         }
1071         idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
1072         if( idxNew==0 ) return;
1073         pNew = &pWC->a[idxNew];
1074         pNew->iParent = idxTerm;
1075         pTerm = &pWC->a[idxTerm];
1076         pTerm->nChild = 1;
1077         pTerm->wtFlags |= TERM_COPIED;
1078       }else{
1079         pDup = pExpr;
1080         pNew = pTerm;
1081       }
1082       exprCommute(pParse, pDup);
1083       pLeft = pDup->pLeft;
1084       pNew->leftCursor = pLeft->iTable;
1085       pNew->u.leftColumn = pLeft->iColumn;
1086       pNew->prereqRight = prereqLeft;
1087       pNew->prereqAll = prereqAll;
1088       pNew->eOperator = operatorMask(pDup->op);
1089     }
1090   }
1091 
1092 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
1093   /* If a term is the BETWEEN operator, create two new virtual terms
1094   ** that define the range that the BETWEEN implements.  For example:
1095   **
1096   **      a BETWEEN b AND c
1097   **
1098   ** is converted into:
1099   **
1100   **      (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
1101   **
1102   ** The two new terms are added onto the end of the WhereClause object.
1103   ** The new terms are "dynamic" and are children of the original BETWEEN
1104   ** term.  That means that if the BETWEEN term is coded, the children are
1105   ** skipped.  Or, if the children are satisfied by an index, the original
1106   ** BETWEEN term is skipped.
1107   */
1108   else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
1109     ExprList *pList = pExpr->x.pList;
1110     int i;
1111     static const u8 ops[] = {TK_GE, TK_LE};
1112     assert( pList!=0 );
1113     assert( pList->nExpr==2 );
1114     for(i=0; i<2; i++){
1115       Expr *pNewExpr;
1116       int idxNew;
1117       pNewExpr = sqlite3Expr(db, ops[i], sqlite3ExprDup(db, pExpr->pLeft, 0),
1118                              sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0);
1119       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
1120       testcase( idxNew==0 );
1121       exprAnalyze(pSrc, pWC, idxNew);
1122       pTerm = &pWC->a[idxTerm];
1123       pWC->a[idxNew].iParent = idxTerm;
1124     }
1125     pTerm->nChild = 2;
1126   }
1127 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
1128 
1129 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
1130   /* Analyze a term that is composed of two or more subterms connected by
1131   ** an OR operator.
1132   */
1133   else if( pExpr->op==TK_OR ){
1134     assert( pWC->op==TK_AND );
1135     exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
1136   }
1137 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1138 
1139 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
1140   /* Add constraints to reduce the search space on a LIKE or GLOB
1141   ** operator.
1142   **
1143   ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
1144   **
1145   **          x>='abc' AND x<'abd' AND x LIKE 'abc%'
1146   **
1147   ** The last character of the prefix "abc" is incremented to form the
1148   ** termination condition "abd".
1149   */
1150   if( isLikeOrGlob(pParse, pExpr, &nPattern, &isComplete, &noCase)
1151          && pWC->op==TK_AND ){
1152     Expr *pLeft, *pRight;
1153     Expr *pStr1, *pStr2;
1154     Expr *pNewExpr1, *pNewExpr2;
1155     int idxNew1, idxNew2;
1156 
1157     pLeft = pExpr->x.pList->a[1].pExpr;
1158     pRight = pExpr->x.pList->a[0].pExpr;
1159     pStr1 = sqlite3PExpr(pParse, TK_STRING, 0, 0, 0);
1160     if( pStr1 ){
1161       sqlite3TokenCopy(db, &pStr1->token, &pRight->token);
1162       pStr1->token.n = nPattern;
1163       pStr1->flags = EP_Dequoted;
1164     }
1165     pStr2 = sqlite3ExprDup(db, pStr1, 0);
1166     if( !db->mallocFailed ){
1167       u8 c, *pC;
1168       /* assert( pStr2->token.dyn ); */
1169       pC = (u8*)&pStr2->token.z[nPattern-1];
1170       c = *pC;
1171       if( noCase ){
1172         if( c=='@' ) isComplete = 0;
1173         c = sqlite3UpperToLower[c];
1174       }
1175       *pC = c + 1;
1176     }
1177     pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft,0),pStr1,0);
1178     idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
1179     testcase( idxNew1==0 );
1180     exprAnalyze(pSrc, pWC, idxNew1);
1181     pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft,0),pStr2,0);
1182     idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
1183     testcase( idxNew2==0 );
1184     exprAnalyze(pSrc, pWC, idxNew2);
1185     pTerm = &pWC->a[idxTerm];
1186     if( isComplete ){
1187       pWC->a[idxNew1].iParent = idxTerm;
1188       pWC->a[idxNew2].iParent = idxTerm;
1189       pTerm->nChild = 2;
1190     }
1191   }
1192 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
1193 
1194 #ifndef SQLITE_OMIT_VIRTUALTABLE
1195   /* Add a WO_MATCH auxiliary term to the constraint set if the
1196   ** current expression is of the form:  column MATCH expr.
1197   ** This information is used by the xBestIndex methods of
1198   ** virtual tables.  The native query optimizer does not attempt
1199   ** to do anything with MATCH functions.
1200   */
1201   if( isMatchOfColumn(pExpr) ){
1202     int idxNew;
1203     Expr *pRight, *pLeft;
1204     WhereTerm *pNewTerm;
1205     Bitmask prereqColumn, prereqExpr;
1206 
1207     pRight = pExpr->x.pList->a[0].pExpr;
1208     pLeft = pExpr->x.pList->a[1].pExpr;
1209     prereqExpr = exprTableUsage(pMaskSet, pRight);
1210     prereqColumn = exprTableUsage(pMaskSet, pLeft);
1211     if( (prereqExpr & prereqColumn)==0 ){
1212       Expr *pNewExpr;
1213       pNewExpr = sqlite3Expr(db, TK_MATCH, 0, sqlite3ExprDup(db, pRight, 0), 0);
1214       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
1215       testcase( idxNew==0 );
1216       pNewTerm = &pWC->a[idxNew];
1217       pNewTerm->prereqRight = prereqExpr;
1218       pNewTerm->leftCursor = pLeft->iTable;
1219       pNewTerm->u.leftColumn = pLeft->iColumn;
1220       pNewTerm->eOperator = WO_MATCH;
1221       pNewTerm->iParent = idxTerm;
1222       pTerm = &pWC->a[idxTerm];
1223       pTerm->nChild = 1;
1224       pTerm->wtFlags |= TERM_COPIED;
1225       pNewTerm->prereqAll = pTerm->prereqAll;
1226     }
1227   }
1228 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1229 
1230   /* Prevent ON clause terms of a LEFT JOIN from being used to drive
1231   ** an index for tables to the left of the join.
1232   */
1233   pTerm->prereqRight |= extraRight;
1234 }
1235 
1236 /*
1237 ** Return TRUE if any of the expressions in pList->a[iFirst...] contain
1238 ** a reference to any table other than the iBase table.
1239 */
1240 static int referencesOtherTables(
1241   ExprList *pList,          /* Search expressions in ths list */
1242   WhereMaskSet *pMaskSet,   /* Mapping from tables to bitmaps */
1243   int iFirst,               /* Be searching with the iFirst-th expression */
1244   int iBase                 /* Ignore references to this table */
1245 ){
1246   Bitmask allowed = ~getMask(pMaskSet, iBase);
1247   while( iFirst<pList->nExpr ){
1248     if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
1249       return 1;
1250     }
1251   }
1252   return 0;
1253 }
1254 
1255 
1256 /*
1257 ** This routine decides if pIdx can be used to satisfy the ORDER BY
1258 ** clause.  If it can, it returns 1.  If pIdx cannot satisfy the
1259 ** ORDER BY clause, this routine returns 0.
1260 **
1261 ** pOrderBy is an ORDER BY clause from a SELECT statement.  pTab is the
1262 ** left-most table in the FROM clause of that same SELECT statement and
1263 ** the table has a cursor number of "base".  pIdx is an index on pTab.
1264 **
1265 ** nEqCol is the number of columns of pIdx that are used as equality
1266 ** constraints.  Any of these columns may be missing from the ORDER BY
1267 ** clause and the match can still be a success.
1268 **
1269 ** All terms of the ORDER BY that match against the index must be either
1270 ** ASC or DESC.  (Terms of the ORDER BY clause past the end of a UNIQUE
1271 ** index do not need to satisfy this constraint.)  The *pbRev value is
1272 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
1273 ** the ORDER BY clause is all ASC.
1274 */
1275 static int isSortingIndex(
1276   Parse *pParse,          /* Parsing context */
1277   WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmaps */
1278   Index *pIdx,            /* The index we are testing */
1279   int base,               /* Cursor number for the table to be sorted */
1280   ExprList *pOrderBy,     /* The ORDER BY clause */
1281   int nEqCol,             /* Number of index columns with == constraints */
1282   int *pbRev              /* Set to 1 if ORDER BY is DESC */
1283 ){
1284   int i, j;                       /* Loop counters */
1285   int sortOrder = 0;              /* XOR of index and ORDER BY sort direction */
1286   int nTerm;                      /* Number of ORDER BY terms */
1287   struct ExprList_item *pTerm;    /* A term of the ORDER BY clause */
1288   sqlite3 *db = pParse->db;
1289 
1290   assert( pOrderBy!=0 );
1291   nTerm = pOrderBy->nExpr;
1292   assert( nTerm>0 );
1293 
1294   /* Match terms of the ORDER BY clause against columns of
1295   ** the index.
1296   **
1297   ** Note that indices have pIdx->nColumn regular columns plus
1298   ** one additional column containing the rowid.  The rowid column
1299   ** of the index is also allowed to match against the ORDER BY
1300   ** clause.
1301   */
1302   for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
1303     Expr *pExpr;       /* The expression of the ORDER BY pTerm */
1304     CollSeq *pColl;    /* The collating sequence of pExpr */
1305     int termSortOrder; /* Sort order for this term */
1306     int iColumn;       /* The i-th column of the index.  -1 for rowid */
1307     int iSortOrder;    /* 1 for DESC, 0 for ASC on the i-th index term */
1308     const char *zColl; /* Name of the collating sequence for i-th index term */
1309 
1310     pExpr = pTerm->pExpr;
1311     if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
1312       /* Can not use an index sort on anything that is not a column in the
1313       ** left-most table of the FROM clause */
1314       break;
1315     }
1316     pColl = sqlite3ExprCollSeq(pParse, pExpr);
1317     if( !pColl ){
1318       pColl = db->pDfltColl;
1319     }
1320     if( i<pIdx->nColumn ){
1321       iColumn = pIdx->aiColumn[i];
1322       if( iColumn==pIdx->pTable->iPKey ){
1323         iColumn = -1;
1324       }
1325       iSortOrder = pIdx->aSortOrder[i];
1326       zColl = pIdx->azColl[i];
1327     }else{
1328       iColumn = -1;
1329       iSortOrder = 0;
1330       zColl = pColl->zName;
1331     }
1332     if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
1333       /* Term j of the ORDER BY clause does not match column i of the index */
1334       if( i<nEqCol ){
1335         /* If an index column that is constrained by == fails to match an
1336         ** ORDER BY term, that is OK.  Just ignore that column of the index
1337         */
1338         continue;
1339       }else if( i==pIdx->nColumn ){
1340         /* Index column i is the rowid.  All other terms match. */
1341         break;
1342       }else{
1343         /* If an index column fails to match and is not constrained by ==
1344         ** then the index cannot satisfy the ORDER BY constraint.
1345         */
1346         return 0;
1347       }
1348     }
1349     assert( pIdx->aSortOrder!=0 );
1350     assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
1351     assert( iSortOrder==0 || iSortOrder==1 );
1352     termSortOrder = iSortOrder ^ pTerm->sortOrder;
1353     if( i>nEqCol ){
1354       if( termSortOrder!=sortOrder ){
1355         /* Indices can only be used if all ORDER BY terms past the
1356         ** equality constraints are all either DESC or ASC. */
1357         return 0;
1358       }
1359     }else{
1360       sortOrder = termSortOrder;
1361     }
1362     j++;
1363     pTerm++;
1364     if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
1365       /* If the indexed column is the primary key and everything matches
1366       ** so far and none of the ORDER BY terms to the right reference other
1367       ** tables in the join, then we are assured that the index can be used
1368       ** to sort because the primary key is unique and so none of the other
1369       ** columns will make any difference
1370       */
1371       j = nTerm;
1372     }
1373   }
1374 
1375   *pbRev = sortOrder!=0;
1376   if( j>=nTerm ){
1377     /* All terms of the ORDER BY clause are covered by this index so
1378     ** this index can be used for sorting. */
1379     return 1;
1380   }
1381   if( pIdx->onError!=OE_None && i==pIdx->nColumn
1382       && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
1383     /* All terms of this index match some prefix of the ORDER BY clause
1384     ** and the index is UNIQUE and no terms on the tail of the ORDER BY
1385     ** clause reference other tables in a join.  If this is all true then
1386     ** the order by clause is superfluous. */
1387     return 1;
1388   }
1389   return 0;
1390 }
1391 
1392 /*
1393 ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
1394 ** by sorting in order of ROWID.  Return true if so and set *pbRev to be
1395 ** true for reverse ROWID and false for forward ROWID order.
1396 */
1397 static int sortableByRowid(
1398   int base,               /* Cursor number for table to be sorted */
1399   ExprList *pOrderBy,     /* The ORDER BY clause */
1400   WhereMaskSet *pMaskSet, /* Mapping from table cursors to bitmaps */
1401   int *pbRev              /* Set to 1 if ORDER BY is DESC */
1402 ){
1403   Expr *p;
1404 
1405   assert( pOrderBy!=0 );
1406   assert( pOrderBy->nExpr>0 );
1407   p = pOrderBy->a[0].pExpr;
1408   if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1
1409     && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){
1410     *pbRev = pOrderBy->a[0].sortOrder;
1411     return 1;
1412   }
1413   return 0;
1414 }
1415 
1416 /*
1417 ** Prepare a crude estimate of the logarithm of the input value.
1418 ** The results need not be exact.  This is only used for estimating
1419 ** the total cost of performing operations with O(logN) or O(NlogN)
1420 ** complexity.  Because N is just a guess, it is no great tragedy if
1421 ** logN is a little off.
1422 */
1423 static double estLog(double N){
1424   double logN = 1;
1425   double x = 10;
1426   while( N>x ){
1427     logN += 1;
1428     x *= 10;
1429   }
1430   return logN;
1431 }
1432 
1433 /*
1434 ** Two routines for printing the content of an sqlite3_index_info
1435 ** structure.  Used for testing and debugging only.  If neither
1436 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
1437 ** are no-ops.
1438 */
1439 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
1440 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
1441   int i;
1442   if( !sqlite3WhereTrace ) return;
1443   for(i=0; i<p->nConstraint; i++){
1444     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
1445        i,
1446        p->aConstraint[i].iColumn,
1447        p->aConstraint[i].iTermOffset,
1448        p->aConstraint[i].op,
1449        p->aConstraint[i].usable);
1450   }
1451   for(i=0; i<p->nOrderBy; i++){
1452     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
1453        i,
1454        p->aOrderBy[i].iColumn,
1455        p->aOrderBy[i].desc);
1456   }
1457 }
1458 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
1459   int i;
1460   if( !sqlite3WhereTrace ) return;
1461   for(i=0; i<p->nConstraint; i++){
1462     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
1463        i,
1464        p->aConstraintUsage[i].argvIndex,
1465        p->aConstraintUsage[i].omit);
1466   }
1467   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
1468   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
1469   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
1470   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
1471 }
1472 #else
1473 #define TRACE_IDX_INPUTS(A)
1474 #define TRACE_IDX_OUTPUTS(A)
1475 #endif
1476 
1477 /*
1478 ** Required because bestIndex() is called by bestOrClauseIndex()
1479 */
1480 static void bestIndex(
1481     Parse*, WhereClause*, struct SrcList_item*, Bitmask, ExprList*, WhereCost*);
1482 
1483 /*
1484 ** This routine attempts to find an scanning strategy that can be used
1485 ** to optimize an 'OR' expression that is part of a WHERE clause.
1486 **
1487 ** The table associated with FROM clause term pSrc may be either a
1488 ** regular B-Tree table or a virtual table.
1489 */
1490 static void bestOrClauseIndex(
1491   Parse *pParse,              /* The parsing context */
1492   WhereClause *pWC,           /* The WHERE clause */
1493   struct SrcList_item *pSrc,  /* The FROM clause term to search */
1494   Bitmask notReady,           /* Mask of cursors that are not available */
1495   ExprList *pOrderBy,         /* The ORDER BY clause */
1496   WhereCost *pCost            /* Lowest cost query plan */
1497 ){
1498 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
1499   const int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
1500   const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur);  /* Bitmask for pSrc */
1501   WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm];        /* End of pWC->a[] */
1502   WhereTerm *pTerm;                 /* A single term of the WHERE clause */
1503 
1504   /* Search the WHERE clause terms for a usable WO_OR term. */
1505   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
1506     if( pTerm->eOperator==WO_OR
1507      && ((pTerm->prereqAll & ~maskSrc) & notReady)==0
1508      && (pTerm->u.pOrInfo->indexable & maskSrc)!=0
1509     ){
1510       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
1511       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
1512       WhereTerm *pOrTerm;
1513       int flags = WHERE_MULTI_OR;
1514       double rTotal = 0;
1515       double nRow = 0;
1516 
1517       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
1518         WhereCost sTermCost;
1519         WHERETRACE(("... Multi-index OR testing for term %d of %d....\n",
1520           (pOrTerm - pOrWC->a), (pTerm - pWC->a)
1521         ));
1522         if( pOrTerm->eOperator==WO_AND ){
1523           WhereClause *pAndWC = &pOrTerm->u.pAndInfo->wc;
1524           bestIndex(pParse, pAndWC, pSrc, notReady, 0, &sTermCost);
1525         }else if( pOrTerm->leftCursor==iCur ){
1526           WhereClause tempWC;
1527           tempWC.pParse = pWC->pParse;
1528           tempWC.pMaskSet = pWC->pMaskSet;
1529           tempWC.op = TK_AND;
1530           tempWC.a = pOrTerm;
1531           tempWC.nTerm = 1;
1532           bestIndex(pParse, &tempWC, pSrc, notReady, 0, &sTermCost);
1533         }else{
1534           continue;
1535         }
1536         rTotal += sTermCost.rCost;
1537         nRow += sTermCost.nRow;
1538         if( rTotal>=pCost->rCost ) break;
1539       }
1540 
1541       /* If there is an ORDER BY clause, increase the scan cost to account
1542       ** for the cost of the sort. */
1543       if( pOrderBy!=0 ){
1544         rTotal += nRow*estLog(nRow);
1545         WHERETRACE(("... sorting increases OR cost to %.9g\n", rTotal));
1546       }
1547 
1548       /* If the cost of scanning using this OR term for optimization is
1549       ** less than the current cost stored in pCost, replace the contents
1550       ** of pCost. */
1551       WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow));
1552       if( rTotal<pCost->rCost ){
1553         pCost->rCost = rTotal;
1554         pCost->nRow = nRow;
1555         pCost->plan.wsFlags = flags;
1556         pCost->plan.u.pTerm = pTerm;
1557       }
1558     }
1559   }
1560 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1561 }
1562 
1563 #ifndef SQLITE_OMIT_VIRTUALTABLE
1564 /*
1565 ** Allocate and populate an sqlite3_index_info structure. It is the
1566 ** responsibility of the caller to eventually release the structure
1567 ** by passing the pointer returned by this function to sqlite3_free().
1568 */
1569 static sqlite3_index_info *allocateIndexInfo(
1570   Parse *pParse,
1571   WhereClause *pWC,
1572   struct SrcList_item *pSrc,
1573   ExprList *pOrderBy
1574 ){
1575   int i, j;
1576   int nTerm;
1577   struct sqlite3_index_constraint *pIdxCons;
1578   struct sqlite3_index_orderby *pIdxOrderBy;
1579   struct sqlite3_index_constraint_usage *pUsage;
1580   WhereTerm *pTerm;
1581   int nOrderBy;
1582   sqlite3_index_info *pIdxInfo;
1583 
1584   WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName));
1585 
1586   /* Count the number of possible WHERE clause constraints referring
1587   ** to this virtual table */
1588   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1589     if( pTerm->leftCursor != pSrc->iCursor ) continue;
1590     assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
1591     testcase( pTerm->eOperator==WO_IN );
1592     testcase( pTerm->eOperator==WO_ISNULL );
1593     if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
1594     nTerm++;
1595   }
1596 
1597   /* If the ORDER BY clause contains only columns in the current
1598   ** virtual table then allocate space for the aOrderBy part of
1599   ** the sqlite3_index_info structure.
1600   */
1601   nOrderBy = 0;
1602   if( pOrderBy ){
1603     for(i=0; i<pOrderBy->nExpr; i++){
1604       Expr *pExpr = pOrderBy->a[i].pExpr;
1605       if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
1606     }
1607     if( i==pOrderBy->nExpr ){
1608       nOrderBy = pOrderBy->nExpr;
1609     }
1610   }
1611 
1612   /* Allocate the sqlite3_index_info structure
1613   */
1614   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
1615                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1616                            + sizeof(*pIdxOrderBy)*nOrderBy );
1617   if( pIdxInfo==0 ){
1618     sqlite3ErrorMsg(pParse, "out of memory");
1619     /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1620     return 0;
1621   }
1622 
1623   /* Initialize the structure.  The sqlite3_index_info structure contains
1624   ** many fields that are declared "const" to prevent xBestIndex from
1625   ** changing them.  We have to do some funky casting in order to
1626   ** initialize those fields.
1627   */
1628   pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
1629   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1630   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1631   *(int*)&pIdxInfo->nConstraint = nTerm;
1632   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
1633   *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
1634   *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
1635   *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
1636                                                                    pUsage;
1637 
1638   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1639     if( pTerm->leftCursor != pSrc->iCursor ) continue;
1640     assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 );
1641     testcase( pTerm->eOperator==WO_IN );
1642     testcase( pTerm->eOperator==WO_ISNULL );
1643     if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue;
1644     pIdxCons[j].iColumn = pTerm->u.leftColumn;
1645     pIdxCons[j].iTermOffset = i;
1646     pIdxCons[j].op = (u8)pTerm->eOperator;
1647     /* The direct assignment in the previous line is possible only because
1648     ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
1649     ** following asserts verify this fact. */
1650     assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1651     assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1652     assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1653     assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1654     assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1655     assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
1656     assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
1657     j++;
1658   }
1659   for(i=0; i<nOrderBy; i++){
1660     Expr *pExpr = pOrderBy->a[i].pExpr;
1661     pIdxOrderBy[i].iColumn = pExpr->iColumn;
1662     pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
1663   }
1664 
1665   return pIdxInfo;
1666 }
1667 
1668 /*
1669 ** The table object reference passed as the second argument to this function
1670 ** must represent a virtual table. This function invokes the xBestIndex()
1671 ** method of the virtual table with the sqlite3_index_info pointer passed
1672 ** as the argument.
1673 **
1674 ** If an error occurs, pParse is populated with an error message and a
1675 ** non-zero value is returned. Otherwise, 0 is returned and the output
1676 ** part of the sqlite3_index_info structure is left populated.
1677 **
1678 ** Whether or not an error is returned, it is the responsibility of the
1679 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1680 ** that this is required.
1681 */
1682 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
1683   sqlite3_vtab *pVtab = pTab->pVtab;
1684   int i;
1685   int rc;
1686 
1687   (void)sqlite3SafetyOff(pParse->db);
1688   WHERETRACE(("xBestIndex for %s\n", pTab->zName));
1689   TRACE_IDX_INPUTS(p);
1690   rc = pVtab->pModule->xBestIndex(pVtab, p);
1691   TRACE_IDX_OUTPUTS(p);
1692   (void)sqlite3SafetyOn(pParse->db);
1693 
1694   if( rc!=SQLITE_OK ){
1695     if( rc==SQLITE_NOMEM ){
1696       pParse->db->mallocFailed = 1;
1697     }else if( !pVtab->zErrMsg ){
1698       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1699     }else{
1700       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1701     }
1702   }
1703   sqlite3DbFree(pParse->db, pVtab->zErrMsg);
1704   pVtab->zErrMsg = 0;
1705 
1706   for(i=0; i<p->nConstraint; i++){
1707     if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
1708       sqlite3ErrorMsg(pParse,
1709           "table %s: xBestIndex returned an invalid plan", pTab->zName);
1710     }
1711   }
1712 
1713   return pParse->nErr;
1714 }
1715 
1716 
1717 /*
1718 ** Compute the best index for a virtual table.
1719 **
1720 ** The best index is computed by the xBestIndex method of the virtual
1721 ** table module.  This routine is really just a wrapper that sets up
1722 ** the sqlite3_index_info structure that is used to communicate with
1723 ** xBestIndex.
1724 **
1725 ** In a join, this routine might be called multiple times for the
1726 ** same virtual table.  The sqlite3_index_info structure is created
1727 ** and initialized on the first invocation and reused on all subsequent
1728 ** invocations.  The sqlite3_index_info structure is also used when
1729 ** code is generated to access the virtual table.  The whereInfoDelete()
1730 ** routine takes care of freeing the sqlite3_index_info structure after
1731 ** everybody has finished with it.
1732 */
1733 static void bestVirtualIndex(
1734   Parse *pParse,                  /* The parsing context */
1735   WhereClause *pWC,               /* The WHERE clause */
1736   struct SrcList_item *pSrc,      /* The FROM clause term to search */
1737   Bitmask notReady,               /* Mask of cursors that are not available */
1738   ExprList *pOrderBy,             /* The order by clause */
1739   WhereCost *pCost,               /* Lowest cost query plan */
1740   sqlite3_index_info **ppIdxInfo  /* Index information passed to xBestIndex */
1741 ){
1742   Table *pTab = pSrc->pTab;
1743   sqlite3_index_info *pIdxInfo;
1744   struct sqlite3_index_constraint *pIdxCons;
1745   struct sqlite3_index_constraint_usage *pUsage;
1746   WhereTerm *pTerm;
1747   int i, j;
1748   int nOrderBy;
1749 
1750   /* If the sqlite3_index_info structure has not been previously
1751   ** allocated and initialized, then allocate and initialize it now.
1752   */
1753   pIdxInfo = *ppIdxInfo;
1754   if( pIdxInfo==0 ){
1755     *ppIdxInfo = pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pOrderBy);
1756   }
1757   if( pIdxInfo==0 ){
1758     return;
1759   }
1760 
1761   /* At this point, the sqlite3_index_info structure that pIdxInfo points
1762   ** to will have been initialized, either during the current invocation or
1763   ** during some prior invocation.  Now we just have to customize the
1764   ** details of pIdxInfo for the current invocation and pass it to
1765   ** xBestIndex.
1766   */
1767 
1768   /* The module name must be defined. Also, by this point there must
1769   ** be a pointer to an sqlite3_vtab structure. Otherwise
1770   ** sqlite3ViewGetColumnNames() would have picked up the error.
1771   */
1772   assert( pTab->azModuleArg && pTab->azModuleArg[0] );
1773   assert( pTab->pVtab );
1774 
1775   /* Set the aConstraint[].usable fields and initialize all
1776   ** output variables to zero.
1777   **
1778   ** aConstraint[].usable is true for constraints where the right-hand
1779   ** side contains only references to tables to the left of the current
1780   ** table.  In other words, if the constraint is of the form:
1781   **
1782   **           column = expr
1783   **
1784   ** and we are evaluating a join, then the constraint on column is
1785   ** only valid if all tables referenced in expr occur to the left
1786   ** of the table containing column.
1787   **
1788   ** The aConstraints[] array contains entries for all constraints
1789   ** on the current table.  That way we only have to compute it once
1790   ** even though we might try to pick the best index multiple times.
1791   ** For each attempt at picking an index, the order of tables in the
1792   ** join might be different so we have to recompute the usable flag
1793   ** each time.
1794   */
1795   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
1796   pUsage = pIdxInfo->aConstraintUsage;
1797   for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
1798     j = pIdxCons->iTermOffset;
1799     pTerm = &pWC->a[j];
1800     pIdxCons->usable =  (pTerm->prereqRight & notReady)==0 ?1:0;
1801   }
1802   memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
1803   if( pIdxInfo->needToFreeIdxStr ){
1804     sqlite3_free(pIdxInfo->idxStr);
1805   }
1806   pIdxInfo->idxStr = 0;
1807   pIdxInfo->idxNum = 0;
1808   pIdxInfo->needToFreeIdxStr = 0;
1809   pIdxInfo->orderByConsumed = 0;
1810   /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */
1811   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2);
1812   nOrderBy = pIdxInfo->nOrderBy;
1813   if( !pOrderBy ){
1814     pIdxInfo->nOrderBy = 0;
1815   }
1816 
1817   if( vtabBestIndex(pParse, pTab, pIdxInfo) ){
1818     return;
1819   }
1820 
1821   /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
1822   ** inital value of lowestCost in this loop. If it is, then the
1823   ** (cost<lowestCost) test below will never be true.
1824   **
1825   ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT
1826   ** is defined.
1827   */
1828   if( (SQLITE_BIG_DBL/((double)2))<pIdxInfo->estimatedCost ){
1829     pCost->rCost = (SQLITE_BIG_DBL/((double)2));
1830   }else{
1831     pCost->rCost = pIdxInfo->estimatedCost;
1832   }
1833   pCost->plan.wsFlags = WHERE_VIRTUALTABLE;
1834   pCost->plan.u.pVtabIdx = pIdxInfo;
1835   if( pIdxInfo && pIdxInfo->orderByConsumed ){
1836     pCost->plan.wsFlags |= WHERE_ORDERBY;
1837   }
1838   pCost->plan.nEq = 0;
1839   pIdxInfo->nOrderBy = nOrderBy;
1840 
1841   /* Try to find a more efficient access pattern by using multiple indexes
1842   ** to optimize an OR expression within the WHERE clause.
1843   */
1844   bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
1845 }
1846 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1847 
1848 /*
1849 ** Find the query plan for accessing a particular table.  Write the
1850 ** best query plan and its cost into the WhereCost object supplied as the
1851 ** last parameter.
1852 **
1853 ** The lowest cost plan wins.  The cost is an estimate of the amount of
1854 ** CPU and disk I/O need to process the request using the selected plan.
1855 ** Factors that influence cost include:
1856 **
1857 **    *  The estimated number of rows that will be retrieved.  (The
1858 **       fewer the better.)
1859 **
1860 **    *  Whether or not sorting must occur.
1861 **
1862 **    *  Whether or not there must be separate lookups in the
1863 **       index and in the main table.
1864 **
1865 ** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in
1866 ** the SQL statement, then this function only considers plans using the
1867 ** named index. If no such plan is found, then the returned cost is
1868 ** SQLITE_BIG_DBL. If a plan is found that uses the named index,
1869 ** then the cost is calculated in the usual way.
1870 **
1871 ** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table
1872 ** in the SELECT statement, then no indexes are considered. However, the
1873 ** selected plan may still take advantage of the tables built-in rowid
1874 ** index.
1875 */
1876 static void bestBtreeIndex(
1877   Parse *pParse,              /* The parsing context */
1878   WhereClause *pWC,           /* The WHERE clause */
1879   struct SrcList_item *pSrc,  /* The FROM clause term to search */
1880   Bitmask notReady,           /* Mask of cursors that are not available */
1881   ExprList *pOrderBy,         /* The ORDER BY clause */
1882   WhereCost *pCost            /* Lowest cost query plan */
1883 ){
1884   WhereTerm *pTerm;           /* A single term of the WHERE clause */
1885   int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
1886   Index *pProbe;              /* An index we are evaluating */
1887   int rev;                    /* True to scan in reverse order */
1888   int wsFlags;                /* Flags associated with pProbe */
1889   int nEq;                    /* Number of == or IN constraints */
1890   int eqTermMask;             /* Mask of valid equality operators */
1891   double cost;                /* Cost of using pProbe */
1892   double nRow;                /* Estimated number of rows in result set */
1893   int i;                      /* Loop counter */
1894 
1895   WHERETRACE(("bestIndex: tbl=%s notReady=%llx\n", pSrc->pTab->zName,notReady));
1896   pProbe = pSrc->pTab->pIndex;
1897   if( pSrc->notIndexed ){
1898     pProbe = 0;
1899   }
1900 
1901   /* If the table has no indices and there are no terms in the where
1902   ** clause that refer to the ROWID, then we will never be able to do
1903   ** anything other than a full table scan on this table.  We might as
1904   ** well put it first in the join order.  That way, perhaps it can be
1905   ** referenced by other tables in the join.
1906   */
1907   memset(pCost, 0, sizeof(*pCost));
1908   if( pProbe==0 &&
1909      findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 &&
1910      (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){
1911      if( pParse->db->flags & SQLITE_ReverseOrder ){
1912       /* For application testing, randomly reverse the output order for
1913       ** SELECT statements that omit the ORDER BY clause.  This will help
1914       ** to find cases where
1915       */
1916       pCost->plan.wsFlags |= WHERE_REVERSE;
1917     }
1918     return;
1919   }
1920   pCost->rCost = SQLITE_BIG_DBL;
1921 
1922   /* Check for a rowid=EXPR or rowid IN (...) constraints. If there was
1923   ** an INDEXED BY clause attached to this table, skip this step.
1924   */
1925   if( !pSrc->pIndex ){
1926     pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
1927     if( pTerm ){
1928       Expr *pExpr;
1929       pCost->plan.wsFlags = WHERE_ROWID_EQ;
1930       if( pTerm->eOperator & WO_EQ ){
1931         /* Rowid== is always the best pick.  Look no further.  Because only
1932         ** a single row is generated, output is always in sorted order */
1933         pCost->plan.wsFlags = WHERE_ROWID_EQ | WHERE_UNIQUE;
1934         pCost->plan.nEq = 1;
1935         WHERETRACE(("... best is rowid\n"));
1936         pCost->rCost = 0;
1937         pCost->nRow = 1;
1938         return;
1939       }else if( !ExprHasProperty((pExpr = pTerm->pExpr), EP_xIsSelect)
1940              && pExpr->x.pList
1941       ){
1942         /* Rowid IN (LIST): cost is NlogN where N is the number of list
1943         ** elements.  */
1944         pCost->rCost = pCost->nRow = pExpr->x.pList->nExpr;
1945         pCost->rCost *= estLog(pCost->rCost);
1946       }else{
1947         /* Rowid IN (SELECT): cost is NlogN where N is the number of rows
1948         ** in the result of the inner select.  We have no way to estimate
1949         ** that value so make a wild guess. */
1950         pCost->nRow = 100;
1951         pCost->rCost = 200;
1952       }
1953       WHERETRACE(("... rowid IN cost: %.9g\n", pCost->rCost));
1954     }
1955 
1956     /* Estimate the cost of a table scan.  If we do not know how many
1957     ** entries are in the table, use 1 million as a guess.
1958     */
1959     cost = pProbe ? pProbe->aiRowEst[0] : 1000000;
1960     WHERETRACE(("... table scan base cost: %.9g\n", cost));
1961     wsFlags = WHERE_ROWID_RANGE;
1962 
1963     /* Check for constraints on a range of rowids in a table scan.
1964     */
1965     pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0);
1966     if( pTerm ){
1967       if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){
1968         wsFlags |= WHERE_TOP_LIMIT;
1969         cost /= 3;  /* Guess that rowid<EXPR eliminates two-thirds of rows */
1970       }
1971       if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){
1972         wsFlags |= WHERE_BTM_LIMIT;
1973         cost /= 3;  /* Guess that rowid>EXPR eliminates two-thirds of rows */
1974       }
1975       WHERETRACE(("... rowid range reduces cost to %.9g\n", cost));
1976     }else{
1977       wsFlags = 0;
1978     }
1979     nRow = cost;
1980 
1981     /* If the table scan does not satisfy the ORDER BY clause, increase
1982     ** the cost by NlogN to cover the expense of sorting. */
1983     if( pOrderBy ){
1984       if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){
1985         wsFlags |= WHERE_ORDERBY|WHERE_ROWID_RANGE;
1986         if( rev ){
1987           wsFlags |= WHERE_REVERSE;
1988         }
1989       }else{
1990         cost += cost*estLog(cost);
1991         WHERETRACE(("... sorting increases cost to %.9g\n", cost));
1992       }
1993     }else if( pParse->db->flags & SQLITE_ReverseOrder ){
1994       /* For application testing, randomly reverse the output order for
1995       ** SELECT statements that omit the ORDER BY clause.  This will help
1996       ** to find cases where
1997       */
1998       wsFlags |= WHERE_REVERSE;
1999     }
2000 
2001     /* Remember this case if it is the best so far */
2002     if( cost<pCost->rCost ){
2003       pCost->rCost = cost;
2004       pCost->nRow = nRow;
2005       pCost->plan.wsFlags = wsFlags;
2006     }
2007   }
2008 
2009   bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
2010 
2011   /* If the pSrc table is the right table of a LEFT JOIN then we may not
2012   ** use an index to satisfy IS NULL constraints on that table.  This is
2013   ** because columns might end up being NULL if the table does not match -
2014   ** a circumstance which the index cannot help us discover.  Ticket #2177.
2015   */
2016   if( (pSrc->jointype & JT_LEFT)!=0 ){
2017     eqTermMask = WO_EQ|WO_IN;
2018   }else{
2019     eqTermMask = WO_EQ|WO_IN|WO_ISNULL;
2020   }
2021 
2022   /* Look at each index.
2023   */
2024   if( pSrc->pIndex ){
2025     pProbe = pSrc->pIndex;
2026   }
2027   for(; pProbe; pProbe=(pSrc->pIndex ? 0 : pProbe->pNext)){
2028     double inMultiplier = 1;  /* Number of equality look-ups needed */
2029     int inMultIsEst = 0;      /* True if inMultiplier is an estimate */
2030 
2031     WHERETRACE(("... index %s:\n", pProbe->zName));
2032 
2033     /* Count the number of columns in the index that are satisfied
2034     ** by x=EXPR or x IS NULL constraints or x IN (...) constraints.
2035     ** For a term of the form x=EXPR or x IS NULL we only have to do
2036     ** a single binary search.  But for x IN (...) we have to do a
2037     ** number of binary searched
2038     ** equal to the number of entries on the RHS of the IN operator.
2039     ** The inMultipler variable with try to estimate the number of
2040     ** binary searches needed.
2041     */
2042     wsFlags = 0;
2043     for(i=0; i<pProbe->nColumn; i++){
2044       int j = pProbe->aiColumn[i];
2045       pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe);
2046       if( pTerm==0 ) break;
2047       wsFlags |= WHERE_COLUMN_EQ;
2048       if( pTerm->eOperator & WO_IN ){
2049         Expr *pExpr = pTerm->pExpr;
2050         wsFlags |= WHERE_COLUMN_IN;
2051         if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2052           inMultiplier *= 25;
2053           inMultIsEst = 1;
2054         }else if( pExpr->x.pList ){
2055           inMultiplier *= pExpr->x.pList->nExpr + 1;
2056         }
2057       }else if( pTerm->eOperator & WO_ISNULL ){
2058         wsFlags |= WHERE_COLUMN_NULL;
2059       }
2060     }
2061     nRow = pProbe->aiRowEst[i] * inMultiplier;
2062     /* If inMultiplier is an estimate and that estimate results in an
2063     ** nRow it that is more than half number of rows in the table,
2064     ** then reduce inMultipler */
2065     if( inMultIsEst && nRow*2 > pProbe->aiRowEst[0] ){
2066       nRow = pProbe->aiRowEst[0]/2;
2067       inMultiplier = nRow/pProbe->aiRowEst[i];
2068     }
2069     cost = nRow + inMultiplier*estLog(pProbe->aiRowEst[0]);
2070     nEq = i;
2071     if( pProbe->onError!=OE_None && nEq==pProbe->nColumn ){
2072       testcase( wsFlags & WHERE_COLUMN_IN );
2073       testcase( wsFlags & WHERE_COLUMN_NULL );
2074       if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){
2075         wsFlags |= WHERE_UNIQUE;
2076       }
2077     }
2078     WHERETRACE(("...... nEq=%d inMult=%.9g nRow=%.9g cost=%.9g\n",
2079                 nEq, inMultiplier, nRow, cost));
2080 
2081     /* Look for range constraints.  Assume that each range constraint
2082     ** makes the search space 1/3rd smaller.
2083     */
2084     if( nEq<pProbe->nColumn ){
2085       int j = pProbe->aiColumn[nEq];
2086       pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe);
2087       if( pTerm ){
2088         wsFlags |= WHERE_COLUMN_RANGE;
2089         if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){
2090           wsFlags |= WHERE_TOP_LIMIT;
2091           cost /= 3;
2092           nRow /= 3;
2093         }
2094         if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){
2095           wsFlags |= WHERE_BTM_LIMIT;
2096           cost /= 3;
2097           nRow /= 3;
2098         }
2099         WHERETRACE(("...... range reduces nRow to %.9g and cost to %.9g\n",
2100                     nRow, cost));
2101       }
2102     }
2103 
2104     /* Add the additional cost of sorting if that is a factor.
2105     */
2106     if( pOrderBy ){
2107       if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0
2108        && isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev)
2109       ){
2110         if( wsFlags==0 ){
2111           wsFlags = WHERE_COLUMN_RANGE;
2112         }
2113         wsFlags |= WHERE_ORDERBY;
2114         if( rev ){
2115           wsFlags |= WHERE_REVERSE;
2116         }
2117       }else{
2118         cost += cost*estLog(cost);
2119         WHERETRACE(("...... orderby increases cost to %.9g\n", cost));
2120       }
2121     }else if( pParse->db->flags & SQLITE_ReverseOrder ){
2122       /* For application testing, randomly reverse the output order for
2123       ** SELECT statements that omit the ORDER BY clause.  This will help
2124       ** to find cases where
2125       */
2126       wsFlags |= WHERE_REVERSE;
2127     }
2128 
2129     /* Check to see if we can get away with using just the index without
2130     ** ever reading the table.  If that is the case, then halve the
2131     ** cost of this index.
2132     */
2133     if( wsFlags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){
2134       Bitmask m = pSrc->colUsed;
2135       int j;
2136       for(j=0; j<pProbe->nColumn; j++){
2137         int x = pProbe->aiColumn[j];
2138         if( x<BMS-1 ){
2139           m &= ~(((Bitmask)1)<<x);
2140         }
2141       }
2142       if( m==0 ){
2143         wsFlags |= WHERE_IDX_ONLY;
2144         cost /= 2;
2145         WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost));
2146       }
2147     }
2148 
2149     /* If this index has achieved the lowest cost so far, then use it.
2150     */
2151     if( wsFlags!=0 && cost < pCost->rCost ){
2152       pCost->rCost = cost;
2153       pCost->nRow = nRow;
2154       pCost->plan.wsFlags = wsFlags;
2155       pCost->plan.nEq = nEq;
2156       assert( pCost->plan.wsFlags & WHERE_INDEXED );
2157       pCost->plan.u.pIdx = pProbe;
2158     }
2159   }
2160 
2161   /* Report the best result
2162   */
2163   pCost->plan.wsFlags |= eqTermMask;
2164   WHERETRACE(("best index is %s, cost=%.9g, nrow=%.9g, wsFlags=%x, nEq=%d\n",
2165         (pCost->plan.wsFlags & WHERE_INDEXED)!=0 ?
2166              pCost->plan.u.pIdx->zName : "(none)", pCost->nRow,
2167         pCost->rCost, pCost->plan.wsFlags, pCost->plan.nEq));
2168 }
2169 
2170 /*
2171 ** Find the query plan for accessing table pSrc->pTab. Write the
2172 ** best query plan and its cost into the WhereCost object supplied
2173 ** as the last parameter. This function may calculate the cost of
2174 ** both real and virtual table scans.
2175 */
2176 static void bestIndex(
2177   Parse *pParse,              /* The parsing context */
2178   WhereClause *pWC,           /* The WHERE clause */
2179   struct SrcList_item *pSrc,  /* The FROM clause term to search */
2180   Bitmask notReady,           /* Mask of cursors that are not available */
2181   ExprList *pOrderBy,         /* The ORDER BY clause */
2182   WhereCost *pCost            /* Lowest cost query plan */
2183 ){
2184   if( IsVirtual(pSrc->pTab) ){
2185     sqlite3_index_info *p = 0;
2186     bestVirtualIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost, &p);
2187     if( p->needToFreeIdxStr ){
2188       sqlite3_free(p->idxStr);
2189     }
2190     sqlite3DbFree(pParse->db, p);
2191   }else{
2192     bestBtreeIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost);
2193   }
2194 }
2195 
2196 /*
2197 ** Disable a term in the WHERE clause.  Except, do not disable the term
2198 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
2199 ** or USING clause of that join.
2200 **
2201 ** Consider the term t2.z='ok' in the following queries:
2202 **
2203 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
2204 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
2205 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
2206 **
2207 ** The t2.z='ok' is disabled in the in (2) because it originates
2208 ** in the ON clause.  The term is disabled in (3) because it is not part
2209 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
2210 **
2211 ** Disabling a term causes that term to not be tested in the inner loop
2212 ** of the join.  Disabling is an optimization.  When terms are satisfied
2213 ** by indices, we disable them to prevent redundant tests in the inner
2214 ** loop.  We would get the correct results if nothing were ever disabled,
2215 ** but joins might run a little slower.  The trick is to disable as much
2216 ** as we can without disabling too much.  If we disabled in (1), we'd get
2217 ** the wrong answer.  See ticket #813.
2218 */
2219 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
2220   if( pTerm
2221       && ALWAYS((pTerm->wtFlags & TERM_CODED)==0)
2222       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
2223   ){
2224     pTerm->wtFlags |= TERM_CODED;
2225     if( pTerm->iParent>=0 ){
2226       WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
2227       if( (--pOther->nChild)==0 ){
2228         disableTerm(pLevel, pOther);
2229       }
2230     }
2231   }
2232 }
2233 
2234 /*
2235 ** Apply the affinities associated with the first n columns of index
2236 ** pIdx to the values in the n registers starting at base.
2237 */
2238 static void codeApplyAffinity(Parse *pParse, int base, int n, Index *pIdx){
2239   if( n>0 ){
2240     Vdbe *v = pParse->pVdbe;
2241     assert( v!=0 );
2242     sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
2243     sqlite3IndexAffinityStr(v, pIdx);
2244     sqlite3ExprCacheAffinityChange(pParse, base, n);
2245   }
2246 }
2247 
2248 
2249 /*
2250 ** Generate code for a single equality term of the WHERE clause.  An equality
2251 ** term can be either X=expr or X IN (...).   pTerm is the term to be
2252 ** coded.
2253 **
2254 ** The current value for the constraint is left in register iReg.
2255 **
2256 ** For a constraint of the form X=expr, the expression is evaluated and its
2257 ** result is left on the stack.  For constraints of the form X IN (...)
2258 ** this routine sets up a loop that will iterate over all values of X.
2259 */
2260 static int codeEqualityTerm(
2261   Parse *pParse,      /* The parsing context */
2262   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
2263   WhereLevel *pLevel, /* When level of the FROM clause we are working on */
2264   int iTarget         /* Attempt to leave results in this register */
2265 ){
2266   Expr *pX = pTerm->pExpr;
2267   Vdbe *v = pParse->pVdbe;
2268   int iReg;                  /* Register holding results */
2269 
2270   assert( iTarget>0 );
2271   if( pX->op==TK_EQ ){
2272     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
2273   }else if( pX->op==TK_ISNULL ){
2274     iReg = iTarget;
2275     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
2276 #ifndef SQLITE_OMIT_SUBQUERY
2277   }else{
2278     int eType;
2279     int iTab;
2280     struct InLoop *pIn;
2281 
2282     assert( pX->op==TK_IN );
2283     iReg = iTarget;
2284     eType = sqlite3FindInIndex(pParse, pX, 0);
2285     iTab = pX->iTable;
2286     sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
2287     VdbeComment((v, "%.*s", pX->span.n, pX->span.z));
2288     assert( pLevel->plan.wsFlags & WHERE_IN_ABLE );
2289     if( pLevel->u.in.nIn==0 ){
2290       pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
2291     }
2292     pLevel->u.in.nIn++;
2293     pLevel->u.in.aInLoop =
2294        sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
2295                               sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
2296     pIn = pLevel->u.in.aInLoop;
2297     if( pIn ){
2298       pIn += pLevel->u.in.nIn - 1;
2299       pIn->iCur = iTab;
2300       if( eType==IN_INDEX_ROWID ){
2301         pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
2302       }else{
2303         pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
2304       }
2305       sqlite3VdbeAddOp1(v, OP_IsNull, iReg);
2306     }else{
2307       pLevel->u.in.nIn = 0;
2308     }
2309 #endif
2310   }
2311   disableTerm(pLevel, pTerm);
2312   return iReg;
2313 }
2314 
2315 /*
2316 ** Generate code that will evaluate all == and IN constraints for an
2317 ** index.  The values for all constraints are left on the stack.
2318 **
2319 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
2320 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
2321 ** The index has as many as three equality constraints, but in this
2322 ** example, the third "c" value is an inequality.  So only two
2323 ** constraints are coded.  This routine will generate code to evaluate
2324 ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
2325 ** in consecutive registers and the index of the first register is returned.
2326 **
2327 ** In the example above nEq==2.  But this subroutine works for any value
2328 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
2329 ** The only thing it does is allocate the pLevel->iMem memory cell.
2330 **
2331 ** This routine always allocates at least one memory cell and returns
2332 ** the index of that memory cell. The code that
2333 ** calls this routine will use that memory cell to store the termination
2334 ** key value of the loop.  If one or more IN operators appear, then
2335 ** this routine allocates an additional nEq memory cells for internal
2336 ** use.
2337 */
2338 static int codeAllEqualityTerms(
2339   Parse *pParse,        /* Parsing context */
2340   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
2341   WhereClause *pWC,     /* The WHERE clause */
2342   Bitmask notReady,     /* Which parts of FROM have not yet been coded */
2343   int nExtraReg         /* Number of extra registers to allocate */
2344 ){
2345   int nEq = pLevel->plan.nEq;   /* The number of == or IN constraints to code */
2346   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
2347   Index *pIdx;                  /* The index being used for this loop */
2348   int iCur = pLevel->iTabCur;   /* The cursor of the table */
2349   WhereTerm *pTerm;             /* A single constraint term */
2350   int j;                        /* Loop counter */
2351   int regBase;                  /* Base register */
2352   int nReg;                     /* Number of registers to allocate */
2353 
2354   /* This module is only called on query plans that use an index. */
2355   assert( pLevel->plan.wsFlags & WHERE_INDEXED );
2356   pIdx = pLevel->plan.u.pIdx;
2357 
2358   /* Figure out how many memory cells we will need then allocate them.
2359   */
2360   regBase = pParse->nMem + 1;
2361   nReg = pLevel->plan.nEq + nExtraReg;
2362   pParse->nMem += nReg;
2363 
2364   /* Evaluate the equality constraints
2365   */
2366   assert( pIdx->nColumn>=nEq );
2367   for(j=0; j<nEq; j++){
2368     int r1;
2369     int k = pIdx->aiColumn[j];
2370     pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx);
2371     if( NEVER(pTerm==0) ) break;
2372     assert( (pTerm->wtFlags & TERM_CODED)==0 );
2373     r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j);
2374     if( r1!=regBase+j ){
2375       if( nReg==1 ){
2376         sqlite3ReleaseTempReg(pParse, regBase);
2377         regBase = r1;
2378       }else{
2379         sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
2380       }
2381     }
2382     testcase( pTerm->eOperator & WO_ISNULL );
2383     testcase( pTerm->eOperator & WO_IN );
2384     if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
2385       sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
2386     }
2387   }
2388   return regBase;
2389 }
2390 
2391 /*
2392 ** Generate code for the start of the iLevel-th loop in the WHERE clause
2393 ** implementation described by pWInfo.
2394 */
2395 static Bitmask codeOneLoopStart(
2396   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
2397   int iLevel,          /* Which level of pWInfo->a[] should be coded */
2398   u16 wctrlFlags,      /* One of the WHERE_* flags defined in sqliteInt.h */
2399   Bitmask notReady     /* Which tables are currently available */
2400 ){
2401   int j, k;            /* Loop counters */
2402   int iCur;            /* The VDBE cursor for the table */
2403   int addrNxt;         /* Where to jump to continue with the next IN case */
2404   int omitTable;       /* True if we use the index only */
2405   int bRev;            /* True if we need to scan in reverse order */
2406   WhereLevel *pLevel;  /* The where level to be coded */
2407   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
2408   WhereTerm *pTerm;               /* A WHERE clause term */
2409   Parse *pParse;                  /* Parsing context */
2410   Vdbe *v;                        /* The prepared stmt under constructions */
2411   struct SrcList_item *pTabItem;  /* FROM clause term being coded */
2412   int addrBrk;                    /* Jump here to break out of the loop */
2413   int addrCont;                   /* Jump here to continue with next cycle */
2414   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
2415   int iReleaseReg = 0;      /* Temp register to free before returning */
2416 
2417   pParse = pWInfo->pParse;
2418   v = pParse->pVdbe;
2419   pWC = pWInfo->pWC;
2420   pLevel = &pWInfo->a[iLevel];
2421   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
2422   iCur = pTabItem->iCursor;
2423   bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0;
2424   omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0
2425            && (wctrlFlags & WHERE_FORCE_TABLE)==0;
2426 
2427   /* Create labels for the "break" and "continue" instructions
2428   ** for the current loop.  Jump to addrBrk to break out of a loop.
2429   ** Jump to cont to go immediately to the next iteration of the
2430   ** loop.
2431   **
2432   ** When there is an IN operator, we also have a "addrNxt" label that
2433   ** means to continue with the next IN value combination.  When
2434   ** there are no IN operators in the constraints, the "addrNxt" label
2435   ** is the same as "addrBrk".
2436   */
2437   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
2438   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
2439 
2440   /* If this is the right table of a LEFT OUTER JOIN, allocate and
2441   ** initialize a memory cell that records if this table matches any
2442   ** row of the left table of the join.
2443   */
2444   if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
2445     pLevel->iLeftJoin = ++pParse->nMem;
2446     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
2447     VdbeComment((v, "init LEFT JOIN no-match flag"));
2448   }
2449 
2450 #ifndef SQLITE_OMIT_VIRTUALTABLE
2451   if(  (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
2452     /* Case 0:  The table is a virtual-table.  Use the VFilter and VNext
2453     **          to access the data.
2454     */
2455     int iReg;   /* P3 Value for OP_VFilter */
2456     sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
2457     int nConstraint = pVtabIdx->nConstraint;
2458     struct sqlite3_index_constraint_usage *aUsage =
2459                                                 pVtabIdx->aConstraintUsage;
2460     const struct sqlite3_index_constraint *aConstraint =
2461                                                 pVtabIdx->aConstraint;
2462 
2463     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
2464     for(j=1; j<=nConstraint; j++){
2465       for(k=0; k<nConstraint; k++){
2466         if( aUsage[k].argvIndex==j ){
2467           int iTerm = aConstraint[k].iTermOffset;
2468           sqlite3ExprCode(pParse, pWC->a[iTerm].pExpr->pRight, iReg+j+1);
2469           break;
2470         }
2471       }
2472       if( k==nConstraint ) break;
2473     }
2474     sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg);
2475     sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1);
2476     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrBrk, iReg, pVtabIdx->idxStr,
2477                       pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC);
2478     pVtabIdx->needToFreeIdxStr = 0;
2479     for(j=0; j<nConstraint; j++){
2480       if( aUsage[j].omit ){
2481         int iTerm = aConstraint[j].iTermOffset;
2482         disableTerm(pLevel, &pWC->a[iTerm]);
2483       }
2484     }
2485     pLevel->op = OP_VNext;
2486     pLevel->p1 = iCur;
2487     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2488     sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
2489   }else
2490 #endif /* SQLITE_OMIT_VIRTUALTABLE */
2491 
2492   if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){
2493     /* Case 1:  We can directly reference a single row using an
2494     **          equality comparison against the ROWID field.  Or
2495     **          we reference multiple rows using a "rowid IN (...)"
2496     **          construct.
2497     */
2498     iReleaseReg = sqlite3GetTempReg(pParse);
2499     pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
2500     assert( pTerm!=0 );
2501     assert( pTerm->pExpr!=0 );
2502     assert( pTerm->leftCursor==iCur );
2503     assert( omitTable==0 );
2504     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg);
2505     addrNxt = pLevel->addrNxt;
2506     sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt);
2507     sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
2508     sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
2509     VdbeComment((v, "pk"));
2510     pLevel->op = OP_Noop;
2511   }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){
2512     /* Case 2:  We have an inequality comparison against the ROWID field.
2513     */
2514     int testOp = OP_Noop;
2515     int start;
2516     int memEndValue = 0;
2517     WhereTerm *pStart, *pEnd;
2518 
2519     assert( omitTable==0 );
2520     pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0);
2521     pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0);
2522     if( bRev ){
2523       pTerm = pStart;
2524       pStart = pEnd;
2525       pEnd = pTerm;
2526     }
2527     if( pStart ){
2528       Expr *pX;             /* The expression that defines the start bound */
2529       int r1, rTemp;        /* Registers for holding the start boundary */
2530 
2531       /* The following constant maps TK_xx codes into corresponding
2532       ** seek opcodes.  It depends on a particular ordering of TK_xx
2533       */
2534       const u8 aMoveOp[] = {
2535            /* TK_GT */  OP_SeekGt,
2536            /* TK_LE */  OP_SeekLe,
2537            /* TK_LT */  OP_SeekLt,
2538            /* TK_GE */  OP_SeekGe
2539       };
2540       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
2541       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
2542       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
2543 
2544       pX = pStart->pExpr;
2545       assert( pX!=0 );
2546       assert( pStart->leftCursor==iCur );
2547       r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
2548       sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
2549       VdbeComment((v, "pk"));
2550       sqlite3ExprCacheAffinityChange(pParse, r1, 1);
2551       sqlite3ReleaseTempReg(pParse, rTemp);
2552       disableTerm(pLevel, pStart);
2553     }else{
2554       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
2555     }
2556     if( pEnd ){
2557       Expr *pX;
2558       pX = pEnd->pExpr;
2559       assert( pX!=0 );
2560       assert( pEnd->leftCursor==iCur );
2561       memEndValue = ++pParse->nMem;
2562       sqlite3ExprCode(pParse, pX->pRight, memEndValue);
2563       if( pX->op==TK_LT || pX->op==TK_GT ){
2564         testOp = bRev ? OP_Le : OP_Ge;
2565       }else{
2566         testOp = bRev ? OP_Lt : OP_Gt;
2567       }
2568       disableTerm(pLevel, pEnd);
2569     }
2570     start = sqlite3VdbeCurrentAddr(v);
2571     pLevel->op = bRev ? OP_Prev : OP_Next;
2572     pLevel->p1 = iCur;
2573     pLevel->p2 = start;
2574     pLevel->p5 = (pStart==0 && pEnd==0) ?1:0;
2575     if( testOp!=OP_Noop ){
2576       iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
2577       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
2578       sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
2579       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
2580       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
2581     }
2582   }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){
2583     /* Case 3: A scan using an index.
2584     **
2585     **         The WHERE clause may contain zero or more equality
2586     **         terms ("==" or "IN" operators) that refer to the N
2587     **         left-most columns of the index. It may also contain
2588     **         inequality constraints (>, <, >= or <=) on the indexed
2589     **         column that immediately follows the N equalities. Only
2590     **         the right-most column can be an inequality - the rest must
2591     **         use the "==" and "IN" operators. For example, if the
2592     **         index is on (x,y,z), then the following clauses are all
2593     **         optimized:
2594     **
2595     **            x=5
2596     **            x=5 AND y=10
2597     **            x=5 AND y<10
2598     **            x=5 AND y>5 AND y<10
2599     **            x=5 AND y=5 AND z<=10
2600     **
2601     **         The z<10 term of the following cannot be used, only
2602     **         the x=5 term:
2603     **
2604     **            x=5 AND z<10
2605     **
2606     **         N may be zero if there are inequality constraints.
2607     **         If there are no inequality constraints, then N is at
2608     **         least one.
2609     **
2610     **         This case is also used when there are no WHERE clause
2611     **         constraints but an index is selected anyway, in order
2612     **         to force the output order to conform to an ORDER BY.
2613     */
2614     int aStartOp[] = {
2615       0,
2616       0,
2617       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
2618       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
2619       OP_SeekGt,           /* 4: (start_constraints  && !startEq && !bRev) */
2620       OP_SeekLt,           /* 5: (start_constraints  && !startEq &&  bRev) */
2621       OP_SeekGe,           /* 6: (start_constraints  &&  startEq && !bRev) */
2622       OP_SeekLe            /* 7: (start_constraints  &&  startEq &&  bRev) */
2623     };
2624     int aEndOp[] = {
2625       OP_Noop,             /* 0: (!end_constraints) */
2626       OP_IdxGE,            /* 1: (end_constraints && !bRev) */
2627       OP_IdxLT             /* 2: (end_constraints && bRev) */
2628     };
2629     int nEq = pLevel->plan.nEq;
2630     int isMinQuery = 0;          /* If this is an optimized SELECT min(x).. */
2631     int regBase;                 /* Base register holding constraint values */
2632     int r1;                      /* Temp register */
2633     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
2634     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
2635     int startEq;                 /* True if range start uses ==, >= or <= */
2636     int endEq;                   /* True if range end uses ==, >= or <= */
2637     int start_constraints;       /* Start of range is constrained */
2638     int nConstraint;             /* Number of constraint terms */
2639     Index *pIdx;         /* The index we will be using */
2640     int iIdxCur;         /* The VDBE cursor for the index */
2641     int nExtraReg = 0;   /* Number of extra registers needed */
2642     int op;              /* Instruction opcode */
2643 
2644     pIdx = pLevel->plan.u.pIdx;
2645     iIdxCur = pLevel->iIdxCur;
2646     k = pIdx->aiColumn[nEq];     /* Column for inequality constraints */
2647 
2648     /* If this loop satisfies a sort order (pOrderBy) request that
2649     ** was passed to this function to implement a "SELECT min(x) ..."
2650     ** query, then the caller will only allow the loop to run for
2651     ** a single iteration. This means that the first row returned
2652     ** should not have a NULL value stored in 'x'. If column 'x' is
2653     ** the first one after the nEq equality constraints in the index,
2654     ** this requires some special handling.
2655     */
2656     if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0
2657      && (pLevel->plan.wsFlags&WHERE_ORDERBY)
2658      && (pIdx->nColumn>nEq)
2659     ){
2660       /* assert( pOrderBy->nExpr==1 ); */
2661       /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */
2662       isMinQuery = 1;
2663       nExtraReg = 1;
2664     }
2665 
2666     /* Find any inequality constraint terms for the start and end
2667     ** of the range.
2668     */
2669     if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){
2670       pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx);
2671       nExtraReg = 1;
2672     }
2673     if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){
2674       pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx);
2675       nExtraReg = 1;
2676     }
2677 
2678     /* Generate code to evaluate all constraint terms using == or IN
2679     ** and store the values of those terms in an array of registers
2680     ** starting at regBase.
2681     */
2682     regBase = codeAllEqualityTerms(pParse, pLevel, pWC, notReady, nExtraReg);
2683     addrNxt = pLevel->addrNxt;
2684 
2685 
2686     /* If we are doing a reverse order scan on an ascending index, or
2687     ** a forward order scan on a descending index, interchange the
2688     ** start and end terms (pRangeStart and pRangeEnd).
2689     */
2690     if( bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){
2691       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
2692     }
2693 
2694     testcase( pRangeStart && pRangeStart->eOperator & WO_LE );
2695     testcase( pRangeStart && pRangeStart->eOperator & WO_GE );
2696     testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE );
2697     testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE );
2698     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
2699     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
2700     start_constraints = pRangeStart || nEq>0;
2701 
2702     /* Seek the index cursor to the start of the range. */
2703     nConstraint = nEq;
2704     if( pRangeStart ){
2705       sqlite3ExprCode(pParse, pRangeStart->pExpr->pRight, regBase+nEq);
2706       sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
2707       nConstraint++;
2708     }else if( isMinQuery ){
2709       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
2710       nConstraint++;
2711       startEq = 0;
2712       start_constraints = 1;
2713     }
2714     codeApplyAffinity(pParse, regBase, nConstraint, pIdx);
2715     op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
2716     assert( op!=0 );
2717     testcase( op==OP_Rewind );
2718     testcase( op==OP_Last );
2719     testcase( op==OP_SeekGt );
2720     testcase( op==OP_SeekGe );
2721     testcase( op==OP_SeekLe );
2722     testcase( op==OP_SeekLt );
2723     sqlite3VdbeAddOp4(v, op, iIdxCur, addrNxt, regBase,
2724                       SQLITE_INT_TO_PTR(nConstraint), P4_INT32);
2725 
2726     /* Load the value for the inequality constraint at the end of the
2727     ** range (if any).
2728     */
2729     nConstraint = nEq;
2730     if( pRangeEnd ){
2731       sqlite3ExprCacheRemove(pParse, regBase+nEq);
2732       sqlite3ExprCode(pParse, pRangeEnd->pExpr->pRight, regBase+nEq);
2733       sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
2734       codeApplyAffinity(pParse, regBase, nEq+1, pIdx);
2735       nConstraint++;
2736     }
2737 
2738     /* Top of the loop body */
2739     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2740 
2741     /* Check if the index cursor is past the end of the range. */
2742     op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)];
2743     testcase( op==OP_Noop );
2744     testcase( op==OP_IdxGE );
2745     testcase( op==OP_IdxLT );
2746     if( op!=OP_Noop ){
2747       sqlite3VdbeAddOp4(v, op, iIdxCur, addrNxt, regBase,
2748                         SQLITE_INT_TO_PTR(nConstraint), P4_INT32);
2749       sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0);
2750     }
2751 
2752     /* If there are inequality constraints, check that the value
2753     ** of the table column that the inequality contrains is not NULL.
2754     ** If it is, jump to the next iteration of the loop.
2755     */
2756     r1 = sqlite3GetTempReg(pParse);
2757     testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT );
2758     testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT );
2759     if( pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT) ){
2760       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1);
2761       sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont);
2762     }
2763     sqlite3ReleaseTempReg(pParse, r1);
2764 
2765     /* Seek the table cursor, if required */
2766     disableTerm(pLevel, pRangeStart);
2767     disableTerm(pLevel, pRangeEnd);
2768     if( !omitTable ){
2769       iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse);
2770       sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
2771       sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
2772       sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg);  /* Deferred seek */
2773     }
2774 
2775     /* Record the instruction used to terminate the loop. Disable
2776     ** WHERE clause terms made redundant by the index range scan.
2777     */
2778     pLevel->op = bRev ? OP_Prev : OP_Next;
2779     pLevel->p1 = iIdxCur;
2780   }else
2781 
2782 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
2783   if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
2784     /* Case 4:  Two or more separately indexed terms connected by OR
2785     **
2786     ** Example:
2787     **
2788     **   CREATE TABLE t1(a,b,c,d);
2789     **   CREATE INDEX i1 ON t1(a);
2790     **   CREATE INDEX i2 ON t1(b);
2791     **   CREATE INDEX i3 ON t1(c);
2792     **
2793     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
2794     **
2795     ** In the example, there are three indexed terms connected by OR.
2796     ** The top of the loop looks like this:
2797     **
2798     **          Null       1                # Zero the rowset in reg 1
2799     **
2800     ** Then, for each indexed term, the following. The arguments to
2801     ** RowSetTest are such that the rowid of the current row is inserted
2802     ** into the RowSet. If it is already present, control skips the
2803     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
2804     **
2805     **        sqlite3WhereBegin(<term>)
2806     **          RowSetTest                  # Insert rowid into rowset
2807     **          Gosub      2 A
2808     **        sqlite3WhereEnd()
2809     **
2810     ** Following the above, code to terminate the loop. Label A, the target
2811     ** of the Gosub above, jumps to the instruction right after the Goto.
2812     **
2813     **          Null       1                # Zero the rowset in reg 1
2814     **          Goto       B                # The loop is finished.
2815     **
2816     **       A: <loop body>                 # Return data, whatever.
2817     **
2818     **          Return     2                # Jump back to the Gosub
2819     **
2820     **       B: <after the loop>
2821     **
2822     */
2823     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
2824     WhereTerm *pFinal;     /* Final subterm within the OR-clause. */
2825     SrcList oneTab;        /* Shortened table list */
2826 
2827     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
2828     int regRowset;                            /* Register for RowSet object */
2829     int regRowid;                             /* Register holding rowid */
2830     int iLoopBody = sqlite3VdbeMakeLabel(v);  /* Start of loop body */
2831     int iRetInit;                             /* Address of regReturn init */
2832     int ii;
2833 
2834     pTerm = pLevel->plan.u.pTerm;
2835     assert( pTerm!=0 );
2836     assert( pTerm->eOperator==WO_OR );
2837     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
2838     pOrWc = &pTerm->u.pOrInfo->wc;
2839     pFinal = &pOrWc->a[pOrWc->nTerm-1];
2840 
2841     /* Set up a SrcList containing just the table being scanned by this loop. */
2842     oneTab.nSrc = 1;
2843     oneTab.nAlloc = 1;
2844     oneTab.a[0] = *pTabItem;
2845 
2846     /* Initialize the rowset register to contain NULL. An SQL NULL is
2847     ** equivalent to an empty rowset.
2848     **
2849     ** Also initialize regReturn to contain the address of the instruction
2850     ** immediately following the OP_Return at the bottom of the loop. This
2851     ** is required in a few obscure LEFT JOIN cases where control jumps
2852     ** over the top of the loop into the body of it. In this case the
2853     ** correct response for the end-of-loop code (the OP_Return) is to
2854     ** fall through to the next instruction, just as an OP_Next does if
2855     ** called on an uninitialized cursor.
2856     */
2857     if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2858       regRowset = ++pParse->nMem;
2859       regRowid = ++pParse->nMem;
2860       sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
2861     }
2862     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
2863 
2864     for(ii=0; ii<pOrWc->nTerm; ii++){
2865       WhereTerm *pOrTerm = &pOrWc->a[ii];
2866       if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){
2867         WhereInfo *pSubWInfo;          /* Info for single OR-term scan */
2868 
2869         /* Loop through table entries that match term pOrTerm. */
2870         pSubWInfo = sqlite3WhereBegin(pParse, &oneTab, pOrTerm->pExpr, 0,
2871                         WHERE_OMIT_OPEN | WHERE_OMIT_CLOSE | WHERE_FORCE_TABLE);
2872         if( pSubWInfo ){
2873           if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2874             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
2875             int r;
2876             r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur,
2877                                          regRowid, 0);
2878             sqlite3VdbeAddOp4(v, OP_RowSetTest, regRowset,
2879                              sqlite3VdbeCurrentAddr(v)+2,
2880                              r, (char*)iSet, P4_INT32);
2881           }
2882           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
2883 
2884           /* Finish the loop through table entries that match term pOrTerm. */
2885           sqlite3WhereEnd(pSubWInfo);
2886         }
2887       }
2888     }
2889     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
2890     /* sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); */
2891     sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk);
2892     sqlite3VdbeResolveLabel(v, iLoopBody);
2893 
2894     pLevel->op = OP_Return;
2895     pLevel->p1 = regReturn;
2896     disableTerm(pLevel, pTerm);
2897   }else
2898 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
2899 
2900   {
2901     /* Case 5:  There is no usable index.  We must do a complete
2902     **          scan of the entire table.
2903     */
2904     static const u8 aStep[] = { OP_Next, OP_Prev };
2905     static const u8 aStart[] = { OP_Rewind, OP_Last };
2906     assert( bRev==0 || bRev==1 );
2907     assert( omitTable==0 );
2908     pLevel->op = aStep[bRev];
2909     pLevel->p1 = iCur;
2910     pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
2911     pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2912   }
2913   notReady &= ~getMask(pWC->pMaskSet, iCur);
2914 
2915   /* Insert code to test every subexpression that can be completely
2916   ** computed using the current set of tables.
2917   */
2918   k = 0;
2919   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2920     Expr *pE;
2921     testcase( pTerm->wtFlags & TERM_VIRTUAL );
2922     testcase( pTerm->wtFlags & TERM_CODED );
2923     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2924     if( (pTerm->prereqAll & notReady)!=0 ) continue;
2925     pE = pTerm->pExpr;
2926     assert( pE!=0 );
2927     if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
2928       continue;
2929     }
2930     sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
2931     k = 1;
2932     pTerm->wtFlags |= TERM_CODED;
2933   }
2934 
2935   /* For a LEFT OUTER JOIN, generate code that will record the fact that
2936   ** at least one row of the right table has matched the left table.
2937   */
2938   if( pLevel->iLeftJoin ){
2939     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2940     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2941     VdbeComment((v, "record LEFT JOIN hit"));
2942     sqlite3ExprCacheClear(pParse);
2943     for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
2944       testcase( pTerm->wtFlags & TERM_VIRTUAL );
2945       testcase( pTerm->wtFlags & TERM_CODED );
2946       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2947       if( (pTerm->prereqAll & notReady)!=0 ) continue;
2948       assert( pTerm->pExpr );
2949       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2950       pTerm->wtFlags |= TERM_CODED;
2951     }
2952   }
2953   sqlite3ReleaseTempReg(pParse, iReleaseReg);
2954 
2955   return notReady;
2956 }
2957 
2958 #if defined(SQLITE_TEST)
2959 /*
2960 ** The following variable holds a text description of query plan generated
2961 ** by the most recent call to sqlite3WhereBegin().  Each call to WhereBegin
2962 ** overwrites the previous.  This information is used for testing and
2963 ** analysis only.
2964 */
2965 char sqlite3_query_plan[BMS*2*40];  /* Text of the join */
2966 static int nQPlan = 0;              /* Next free slow in _query_plan[] */
2967 
2968 #endif /* SQLITE_TEST */
2969 
2970 
2971 /*
2972 ** Free a WhereInfo structure
2973 */
2974 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
2975   if( pWInfo ){
2976     int i;
2977     for(i=0; i<pWInfo->nLevel; i++){
2978       sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
2979       if( pInfo ){
2980         /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */
2981         if( pInfo->needToFreeIdxStr ){
2982           sqlite3_free(pInfo->idxStr);
2983         }
2984         sqlite3DbFree(db, pInfo);
2985       }
2986     }
2987     whereClauseClear(pWInfo->pWC);
2988     sqlite3DbFree(db, pWInfo);
2989   }
2990 }
2991 
2992 
2993 /*
2994 ** Generate the beginning of the loop used for WHERE clause processing.
2995 ** The return value is a pointer to an opaque structure that contains
2996 ** information needed to terminate the loop.  Later, the calling routine
2997 ** should invoke sqlite3WhereEnd() with the return value of this function
2998 ** in order to complete the WHERE clause processing.
2999 **
3000 ** If an error occurs, this routine returns NULL.
3001 **
3002 ** The basic idea is to do a nested loop, one loop for each table in
3003 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
3004 ** same as a SELECT with only a single table in the FROM clause.)  For
3005 ** example, if the SQL is this:
3006 **
3007 **       SELECT * FROM t1, t2, t3 WHERE ...;
3008 **
3009 ** Then the code generated is conceptually like the following:
3010 **
3011 **      foreach row1 in t1 do       \    Code generated
3012 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
3013 **          foreach row3 in t3 do   /
3014 **            ...
3015 **          end                     \    Code generated
3016 **        end                        |-- by sqlite3WhereEnd()
3017 **      end                         /
3018 **
3019 ** Note that the loops might not be nested in the order in which they
3020 ** appear in the FROM clause if a different order is better able to make
3021 ** use of indices.  Note also that when the IN operator appears in
3022 ** the WHERE clause, it might result in additional nested loops for
3023 ** scanning through all values on the right-hand side of the IN.
3024 **
3025 ** There are Btree cursors associated with each table.  t1 uses cursor
3026 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
3027 ** And so forth.  This routine generates code to open those VDBE cursors
3028 ** and sqlite3WhereEnd() generates the code to close them.
3029 **
3030 ** The code that sqlite3WhereBegin() generates leaves the cursors named
3031 ** in pTabList pointing at their appropriate entries.  The [...] code
3032 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
3033 ** data from the various tables of the loop.
3034 **
3035 ** If the WHERE clause is empty, the foreach loops must each scan their
3036 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
3037 ** the tables have indices and there are terms in the WHERE clause that
3038 ** refer to those indices, a complete table scan can be avoided and the
3039 ** code will run much faster.  Most of the work of this routine is checking
3040 ** to see if there are indices that can be used to speed up the loop.
3041 **
3042 ** Terms of the WHERE clause are also used to limit which rows actually
3043 ** make it to the "..." in the middle of the loop.  After each "foreach",
3044 ** terms of the WHERE clause that use only terms in that loop and outer
3045 ** loops are evaluated and if false a jump is made around all subsequent
3046 ** inner loops (or around the "..." if the test occurs within the inner-
3047 ** most loop)
3048 **
3049 ** OUTER JOINS
3050 **
3051 ** An outer join of tables t1 and t2 is conceptally coded as follows:
3052 **
3053 **    foreach row1 in t1 do
3054 **      flag = 0
3055 **      foreach row2 in t2 do
3056 **        start:
3057 **          ...
3058 **          flag = 1
3059 **      end
3060 **      if flag==0 then
3061 **        move the row2 cursor to a null row
3062 **        goto start
3063 **      fi
3064 **    end
3065 **
3066 ** ORDER BY CLAUSE PROCESSING
3067 **
3068 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
3069 ** if there is one.  If there is no ORDER BY clause or if this routine
3070 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
3071 **
3072 ** If an index can be used so that the natural output order of the table
3073 ** scan is correct for the ORDER BY clause, then that index is used and
3074 ** *ppOrderBy is set to NULL.  This is an optimization that prevents an
3075 ** unnecessary sort of the result set if an index appropriate for the
3076 ** ORDER BY clause already exists.
3077 **
3078 ** If the where clause loops cannot be arranged to provide the correct
3079 ** output order, then the *ppOrderBy is unchanged.
3080 */
3081 WhereInfo *sqlite3WhereBegin(
3082   Parse *pParse,        /* The parser context */
3083   SrcList *pTabList,    /* A list of all tables to be scanned */
3084   Expr *pWhere,         /* The WHERE clause */
3085   ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */
3086   u16 wctrlFlags        /* One of the WHERE_* flags defined in sqliteInt.h */
3087 ){
3088   int i;                     /* Loop counter */
3089   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
3090   WhereInfo *pWInfo;         /* Will become the return value of this function */
3091   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
3092   Bitmask notReady;          /* Cursors that are not yet positioned */
3093   WhereMaskSet *pMaskSet;    /* The expression mask set */
3094   WhereClause *pWC;               /* Decomposition of the WHERE clause */
3095   struct SrcList_item *pTabItem;  /* A single entry from pTabList */
3096   WhereLevel *pLevel;             /* A single level in the pWInfo list */
3097   int iFrom;                      /* First unused FROM clause element */
3098   int andFlags;              /* AND-ed combination of all pWC->a[].wtFlags */
3099   sqlite3 *db;               /* Database connection */
3100   ExprList *pOrderBy = 0;
3101 
3102   /* The number of tables in the FROM clause is limited by the number of
3103   ** bits in a Bitmask
3104   */
3105   if( pTabList->nSrc>BMS ){
3106     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
3107     return 0;
3108   }
3109 
3110   if( ppOrderBy ){
3111     pOrderBy = *ppOrderBy;
3112   }
3113 
3114   /* Allocate and initialize the WhereInfo structure that will become the
3115   ** return value. A single allocation is used to store the WhereInfo
3116   ** struct, the contents of WhereInfo.a[], the WhereClause structure
3117   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
3118   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
3119   ** some architectures. Hence the ROUND8() below.
3120   */
3121   db = pParse->db;
3122   nByteWInfo = ROUND8(sizeof(WhereInfo)+(pTabList->nSrc-1)*sizeof(WhereLevel));
3123   pWInfo = sqlite3DbMallocZero(db,
3124       nByteWInfo +
3125       sizeof(WhereClause) +
3126       sizeof(WhereMaskSet)
3127   );
3128   if( db->mallocFailed ){
3129     goto whereBeginError;
3130   }
3131   pWInfo->nLevel = pTabList->nSrc;
3132   pWInfo->pParse = pParse;
3133   pWInfo->pTabList = pTabList;
3134   pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
3135   pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo];
3136   pWInfo->wctrlFlags = wctrlFlags;
3137   pMaskSet = (WhereMaskSet*)&pWC[1];
3138 
3139   /* Split the WHERE clause into separate subexpressions where each
3140   ** subexpression is separated by an AND operator.
3141   */
3142   initMaskSet(pMaskSet);
3143   whereClauseInit(pWC, pParse, pMaskSet);
3144   sqlite3ExprCodeConstants(pParse, pWhere);
3145   whereSplit(pWC, pWhere, TK_AND);
3146 
3147   /* Special case: a WHERE clause that is constant.  Evaluate the
3148   ** expression and either jump over all of the code or fall thru.
3149   */
3150   if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){
3151     sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL);
3152     pWhere = 0;
3153   }
3154 
3155   /* Assign a bit from the bitmask to every term in the FROM clause.
3156   **
3157   ** When assigning bitmask values to FROM clause cursors, it must be
3158   ** the case that if X is the bitmask for the N-th FROM clause term then
3159   ** the bitmask for all FROM clause terms to the left of the N-th term
3160   ** is (X-1).   An expression from the ON clause of a LEFT JOIN can use
3161   ** its Expr.iRightJoinTable value to find the bitmask of the right table
3162   ** of the join.  Subtracting one from the right table bitmask gives a
3163   ** bitmask for all tables to the left of the join.  Knowing the bitmask
3164   ** for all tables to the left of a left join is important.  Ticket #3015.
3165   */
3166   for(i=0; i<pTabList->nSrc; i++){
3167     createMask(pMaskSet, pTabList->a[i].iCursor);
3168   }
3169 #ifndef NDEBUG
3170   {
3171     Bitmask toTheLeft = 0;
3172     for(i=0; i<pTabList->nSrc; i++){
3173       Bitmask m = getMask(pMaskSet, pTabList->a[i].iCursor);
3174       assert( (m-1)==toTheLeft );
3175       toTheLeft |= m;
3176     }
3177   }
3178 #endif
3179 
3180   /* Analyze all of the subexpressions.  Note that exprAnalyze() might
3181   ** add new virtual terms onto the end of the WHERE clause.  We do not
3182   ** want to analyze these virtual terms, so start analyzing at the end
3183   ** and work forward so that the added virtual terms are never processed.
3184   */
3185   exprAnalyzeAll(pTabList, pWC);
3186   if( db->mallocFailed ){
3187     goto whereBeginError;
3188   }
3189 
3190   /* Chose the best index to use for each table in the FROM clause.
3191   **
3192   ** This loop fills in the following fields:
3193   **
3194   **   pWInfo->a[].pIdx      The index to use for this level of the loop.
3195   **   pWInfo->a[].wsFlags   WHERE_xxx flags associated with pIdx
3196   **   pWInfo->a[].nEq       The number of == and IN constraints
3197   **   pWInfo->a[].iFrom     Which term of the FROM clause is being coded
3198   **   pWInfo->a[].iTabCur   The VDBE cursor for the database table
3199   **   pWInfo->a[].iIdxCur   The VDBE cursor for the index
3200   **   pWInfo->a[].pTerm     When wsFlags==WO_OR, the OR-clause term
3201   **
3202   ** This loop also figures out the nesting order of tables in the FROM
3203   ** clause.
3204   */
3205   notReady = ~(Bitmask)0;
3206   pTabItem = pTabList->a;
3207   pLevel = pWInfo->a;
3208   andFlags = ~0;
3209   WHERETRACE(("*** Optimizer Start ***\n"));
3210   for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
3211     WhereCost bestPlan;         /* Most efficient plan seen so far */
3212     Index *pIdx;                /* Index for FROM table at pTabItem */
3213     int j;                      /* For looping over FROM tables */
3214     int bestJ = 0;              /* The value of j */
3215     Bitmask m;                  /* Bitmask value for j or bestJ */
3216     int once = 0;               /* True when first table is seen */
3217 
3218     memset(&bestPlan, 0, sizeof(bestPlan));
3219     bestPlan.rCost = SQLITE_BIG_DBL;
3220     for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){
3221       int doNotReorder;    /* True if this table should not be reordered */
3222       WhereCost sCost;     /* Cost information from best[Virtual]Index() */
3223       ExprList *pOrderBy;  /* ORDER BY clause for index to optimize */
3224 
3225       doNotReorder =  (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
3226       if( once && doNotReorder ) break;
3227       m = getMask(pMaskSet, pTabItem->iCursor);
3228       if( (m & notReady)==0 ){
3229         if( j==iFrom ) iFrom++;
3230         continue;
3231       }
3232       pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0);
3233 
3234       assert( pTabItem->pTab );
3235 #ifndef SQLITE_OMIT_VIRTUALTABLE
3236       if( IsVirtual(pTabItem->pTab) ){
3237         sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo;
3238         bestVirtualIndex(pParse, pWC, pTabItem, notReady, pOrderBy, &sCost, pp);
3239       }else
3240 #endif
3241       {
3242         bestBtreeIndex(pParse, pWC, pTabItem, notReady, pOrderBy, &sCost);
3243       }
3244       if( once==0 || sCost.rCost<bestPlan.rCost ){
3245         once = 1;
3246         bestPlan = sCost;
3247         bestJ = j;
3248       }
3249       if( doNotReorder ) break;
3250     }
3251     assert( once );
3252     assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) );
3253     WHERETRACE(("*** Optimizer selects table %d for loop %d\n", bestJ,
3254            pLevel-pWInfo->a));
3255     if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 ){
3256       *ppOrderBy = 0;
3257     }
3258     andFlags &= bestPlan.plan.wsFlags;
3259     pLevel->plan = bestPlan.plan;
3260     if( bestPlan.plan.wsFlags & WHERE_INDEXED ){
3261       pLevel->iIdxCur = pParse->nTab++;
3262     }else{
3263       pLevel->iIdxCur = -1;
3264     }
3265     notReady &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor);
3266     pLevel->iFrom = (u8)bestJ;
3267 
3268     /* Check that if the table scanned by this loop iteration had an
3269     ** INDEXED BY clause attached to it, that the named index is being
3270     ** used for the scan. If not, then query compilation has failed.
3271     ** Return an error.
3272     */
3273     pIdx = pTabList->a[bestJ].pIndex;
3274     if( pIdx ){
3275       if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){
3276         sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName);
3277         goto whereBeginError;
3278       }else{
3279         /* If an INDEXED BY clause is used, the bestIndex() function is
3280         ** guaranteed to find the index specified in the INDEXED BY clause
3281         ** if it find an index at all. */
3282         assert( bestPlan.plan.u.pIdx==pIdx );
3283       }
3284     }
3285   }
3286   WHERETRACE(("*** Optimizer Finished ***\n"));
3287   if( pParse->nErr || db->mallocFailed ){
3288     goto whereBeginError;
3289   }
3290 
3291   /* If the total query only selects a single row, then the ORDER BY
3292   ** clause is irrelevant.
3293   */
3294   if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
3295     *ppOrderBy = 0;
3296   }
3297 
3298   /* If the caller is an UPDATE or DELETE statement that is requesting
3299   ** to use a one-pass algorithm, determine if this is appropriate.
3300   ** The one-pass algorithm only works if the WHERE clause constraints
3301   ** the statement to update a single row.
3302   */
3303   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
3304   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){
3305     pWInfo->okOnePass = 1;
3306     pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY;
3307   }
3308 
3309   /* Open all tables in the pTabList and any indices selected for
3310   ** searching those tables.
3311   */
3312   sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
3313   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
3314     Table *pTab;     /* Table to open */
3315     int iDb;         /* Index of database containing table/index */
3316 
3317 #ifndef SQLITE_OMIT_EXPLAIN
3318     if( pParse->explain==2 ){
3319       char *zMsg;
3320       struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
3321       zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName);
3322       if( pItem->zAlias ){
3323         zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias);
3324       }
3325       if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
3326         zMsg = sqlite3MAppendf(db, zMsg, "%s WITH INDEX %s",
3327            zMsg, pLevel->plan.u.pIdx->zName);
3328       }else if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){
3329         zMsg = sqlite3MAppendf(db, zMsg, "%s VIA MULTI-INDEX UNION", zMsg);
3330       }else if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
3331         zMsg = sqlite3MAppendf(db, zMsg, "%s USING PRIMARY KEY", zMsg);
3332       }
3333 #ifndef SQLITE_OMIT_VIRTUALTABLE
3334       else if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
3335         sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx;
3336         zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg,
3337                     pVtabIdx->idxNum, pVtabIdx->idxStr);
3338       }
3339 #endif
3340       if( pLevel->plan.wsFlags & WHERE_ORDERBY ){
3341         zMsg = sqlite3MAppendf(db, zMsg, "%s ORDER BY", zMsg);
3342       }
3343       sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC);
3344     }
3345 #endif /* SQLITE_OMIT_EXPLAIN */
3346     pTabItem = &pTabList->a[pLevel->iFrom];
3347     pTab = pTabItem->pTab;
3348     iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
3349     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue;
3350 #ifndef SQLITE_OMIT_VIRTUALTABLE
3351     if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){
3352       int iCur = pTabItem->iCursor;
3353       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0,
3354                         (const char*)pTab->pVtab, P4_VTAB);
3355     }else
3356 #endif
3357     if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0
3358          && (wctrlFlags & WHERE_OMIT_OPEN)==0 ){
3359       int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead;
3360       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
3361       if( !pWInfo->okOnePass && pTab->nCol<BMS ){
3362         Bitmask b = pTabItem->colUsed;
3363         int n = 0;
3364         for(; b; b=b>>1, n++){}
3365         sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, SQLITE_INT_TO_PTR(n), P4_INT32);
3366         assert( n<=pTab->nCol );
3367       }
3368     }else{
3369       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
3370     }
3371     pLevel->iTabCur = pTabItem->iCursor;
3372     if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
3373       Index *pIx = pLevel->plan.u.pIdx;
3374       KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
3375       int iIdxCur = pLevel->iIdxCur;
3376       assert( pIx->pSchema==pTab->pSchema );
3377       assert( iIdxCur>=0 );
3378       sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb,
3379                         (char*)pKey, P4_KEYINFO_HANDOFF);
3380       VdbeComment((v, "%s", pIx->zName));
3381     }
3382     sqlite3CodeVerifySchema(pParse, iDb);
3383   }
3384   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
3385 
3386   /* Generate the code to do the search.  Each iteration of the for
3387   ** loop below generates code for a single nested loop of the VM
3388   ** program.
3389   */
3390   notReady = ~(Bitmask)0;
3391   for(i=0; i<pTabList->nSrc; i++){
3392     notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady);
3393     pWInfo->iContinue = pWInfo->a[i].addrCont;
3394   }
3395 
3396 #ifdef SQLITE_TEST  /* For testing and debugging use only */
3397   /* Record in the query plan information about the current table
3398   ** and the index used to access it (if any).  If the table itself
3399   ** is not used, its name is just '{}'.  If no index is used
3400   ** the index is listed as "{}".  If the primary key is used the
3401   ** index name is '*'.
3402   */
3403   for(i=0; i<pTabList->nSrc; i++){
3404     char *z;
3405     int n;
3406     pLevel = &pWInfo->a[i];
3407     pTabItem = &pTabList->a[pLevel->iFrom];
3408     z = pTabItem->zAlias;
3409     if( z==0 ) z = pTabItem->pTab->zName;
3410     n = sqlite3Strlen30(z);
3411     if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
3412       if( pLevel->plan.wsFlags & WHERE_IDX_ONLY ){
3413         memcpy(&sqlite3_query_plan[nQPlan], "{}", 2);
3414         nQPlan += 2;
3415       }else{
3416         memcpy(&sqlite3_query_plan[nQPlan], z, n);
3417         nQPlan += n;
3418       }
3419       sqlite3_query_plan[nQPlan++] = ' ';
3420     }
3421     testcase( pLevel->plan.wsFlags & WHERE_ROWID_EQ );
3422     testcase( pLevel->plan.wsFlags & WHERE_ROWID_RANGE );
3423     if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
3424       memcpy(&sqlite3_query_plan[nQPlan], "* ", 2);
3425       nQPlan += 2;
3426     }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
3427       n = sqlite3Strlen30(pLevel->plan.u.pIdx->zName);
3428       if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
3429         memcpy(&sqlite3_query_plan[nQPlan], pLevel->plan.u.pIdx->zName, n);
3430         nQPlan += n;
3431         sqlite3_query_plan[nQPlan++] = ' ';
3432       }
3433     }else{
3434       memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3);
3435       nQPlan += 3;
3436     }
3437   }
3438   while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
3439     sqlite3_query_plan[--nQPlan] = 0;
3440   }
3441   sqlite3_query_plan[nQPlan] = 0;
3442   nQPlan = 0;
3443 #endif /* SQLITE_TEST // Testing and debugging use only */
3444 
3445   /* Record the continuation address in the WhereInfo structure.  Then
3446   ** clean up and return.
3447   */
3448   return pWInfo;
3449 
3450   /* Jump here if malloc fails */
3451 whereBeginError:
3452   whereInfoFree(db, pWInfo);
3453   return 0;
3454 }
3455 
3456 /*
3457 ** Generate the end of the WHERE loop.  See comments on
3458 ** sqlite3WhereBegin() for additional information.
3459 */
3460 void sqlite3WhereEnd(WhereInfo *pWInfo){
3461   Parse *pParse = pWInfo->pParse;
3462   Vdbe *v = pParse->pVdbe;
3463   int i;
3464   WhereLevel *pLevel;
3465   SrcList *pTabList = pWInfo->pTabList;
3466   sqlite3 *db = pParse->db;
3467 
3468   /* Generate loop termination code.
3469   */
3470   sqlite3ExprCacheClear(pParse);
3471   for(i=pTabList->nSrc-1; i>=0; i--){
3472     pLevel = &pWInfo->a[i];
3473     sqlite3VdbeResolveLabel(v, pLevel->addrCont);
3474     if( pLevel->op!=OP_Noop ){
3475       sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2);
3476       sqlite3VdbeChangeP5(v, pLevel->p5);
3477     }
3478     if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
3479       struct InLoop *pIn;
3480       int j;
3481       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
3482       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
3483         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
3484         sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->addrInTop);
3485         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
3486       }
3487       sqlite3DbFree(db, pLevel->u.in.aInLoop);
3488     }
3489     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
3490     if( pLevel->iLeftJoin ){
3491       int addr;
3492       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin);
3493       sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
3494       if( pLevel->iIdxCur>=0 ){
3495         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
3496       }
3497       if( pLevel->op==OP_Return ){
3498         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
3499       }else{
3500         sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst);
3501       }
3502       sqlite3VdbeJumpHere(v, addr);
3503     }
3504   }
3505 
3506   /* The "break" point is here, just past the end of the outer loop.
3507   ** Set it.
3508   */
3509   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
3510 
3511   /* Close all of the cursors that were opened by sqlite3WhereBegin.
3512   */
3513   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
3514     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
3515     Table *pTab = pTabItem->pTab;
3516     assert( pTab!=0 );
3517     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue;
3518     if( (pWInfo->wctrlFlags & WHERE_OMIT_CLOSE)==0 ){
3519       if( !pWInfo->okOnePass && (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){
3520         sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
3521       }
3522       if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
3523         sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
3524       }
3525     }
3526 
3527     /* If this scan uses an index, make code substitutions to read data
3528     ** from the index in preference to the table. Sometimes, this means
3529     ** the table need never be read from. This is a performance boost,
3530     ** as the vdbe level waits until the table is read before actually
3531     ** seeking the table cursor to the record corresponding to the current
3532     ** position in the index.
3533     **
3534     ** Calls to the code generator in between sqlite3WhereBegin and
3535     ** sqlite3WhereEnd will have created code that references the table
3536     ** directly.  This loop scans all that code looking for opcodes
3537     ** that reference the table and converts them into opcodes that
3538     ** reference the index.
3539     */
3540     if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){
3541       int k, j, last;
3542       VdbeOp *pOp;
3543       Index *pIdx = pLevel->plan.u.pIdx;
3544       int useIndexOnly = pLevel->plan.wsFlags & WHERE_IDX_ONLY;
3545 
3546       assert( pIdx!=0 );
3547       pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
3548       last = sqlite3VdbeCurrentAddr(v);
3549       for(k=pWInfo->iTop; k<last; k++, pOp++){
3550         if( pOp->p1!=pLevel->iTabCur ) continue;
3551         if( pOp->opcode==OP_Column ){
3552           for(j=0; j<pIdx->nColumn; j++){
3553             if( pOp->p2==pIdx->aiColumn[j] ){
3554               pOp->p2 = j;
3555               pOp->p1 = pLevel->iIdxCur;
3556               break;
3557             }
3558           }
3559           assert(!useIndexOnly || j<pIdx->nColumn);
3560         }else if( pOp->opcode==OP_Rowid ){
3561           pOp->p1 = pLevel->iIdxCur;
3562           pOp->opcode = OP_IdxRowid;
3563         }else if( pOp->opcode==OP_NullRow && useIndexOnly ){
3564           pOp->opcode = OP_Noop;
3565         }
3566       }
3567     }
3568   }
3569 
3570   /* Final cleanup
3571   */
3572   whereInfoFree(db, pWInfo);
3573   return;
3574 }
3575