1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 ** 19 ** $Id: where.c,v 1.390 2009/04/24 15:46:22 drh Exp $ 20 */ 21 #include "sqliteInt.h" 22 23 /* 24 ** Trace output macros 25 */ 26 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 27 int sqlite3WhereTrace = 0; 28 #endif 29 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 30 # define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X 31 #else 32 # define WHERETRACE(X) 33 #endif 34 35 /* Forward reference 36 */ 37 typedef struct WhereClause WhereClause; 38 typedef struct WhereMaskSet WhereMaskSet; 39 typedef struct WhereOrInfo WhereOrInfo; 40 typedef struct WhereAndInfo WhereAndInfo; 41 typedef struct WhereCost WhereCost; 42 43 /* 44 ** The query generator uses an array of instances of this structure to 45 ** help it analyze the subexpressions of the WHERE clause. Each WHERE 46 ** clause subexpression is separated from the others by AND operators, 47 ** usually, or sometimes subexpressions separated by OR. 48 ** 49 ** All WhereTerms are collected into a single WhereClause structure. 50 ** The following identity holds: 51 ** 52 ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm 53 ** 54 ** When a term is of the form: 55 ** 56 ** X <op> <expr> 57 ** 58 ** where X is a column name and <op> is one of certain operators, 59 ** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the 60 ** cursor number and column number for X. WhereTerm.eOperator records 61 ** the <op> using a bitmask encoding defined by WO_xxx below. The 62 ** use of a bitmask encoding for the operator allows us to search 63 ** quickly for terms that match any of several different operators. 64 ** 65 ** A WhereTerm might also be two or more subterms connected by OR: 66 ** 67 ** (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR .... 68 ** 69 ** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR 70 ** and the WhereTerm.u.pOrInfo field points to auxiliary information that 71 ** is collected about the 72 ** 73 ** If a term in the WHERE clause does not match either of the two previous 74 ** categories, then eOperator==0. The WhereTerm.pExpr field is still set 75 ** to the original subexpression content and wtFlags is set up appropriately 76 ** but no other fields in the WhereTerm object are meaningful. 77 ** 78 ** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers, 79 ** but they do so indirectly. A single WhereMaskSet structure translates 80 ** cursor number into bits and the translated bit is stored in the prereq 81 ** fields. The translation is used in order to maximize the number of 82 ** bits that will fit in a Bitmask. The VDBE cursor numbers might be 83 ** spread out over the non-negative integers. For example, the cursor 84 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The WhereMaskSet 85 ** translates these sparse cursor numbers into consecutive integers 86 ** beginning with 0 in order to make the best possible use of the available 87 ** bits in the Bitmask. So, in the example above, the cursor numbers 88 ** would be mapped into integers 0 through 7. 89 ** 90 ** The number of terms in a join is limited by the number of bits 91 ** in prereqRight and prereqAll. The default is 64 bits, hence SQLite 92 ** is only able to process joins with 64 or fewer tables. 93 */ 94 typedef struct WhereTerm WhereTerm; 95 struct WhereTerm { 96 Expr *pExpr; /* Pointer to the subexpression that is this term */ 97 int iParent; /* Disable pWC->a[iParent] when this term disabled */ 98 int leftCursor; /* Cursor number of X in "X <op> <expr>" */ 99 union { 100 int leftColumn; /* Column number of X in "X <op> <expr>" */ 101 WhereOrInfo *pOrInfo; /* Extra information if eOperator==WO_OR */ 102 WhereAndInfo *pAndInfo; /* Extra information if eOperator==WO_AND */ 103 } u; 104 u16 eOperator; /* A WO_xx value describing <op> */ 105 u8 wtFlags; /* TERM_xxx bit flags. See below */ 106 u8 nChild; /* Number of children that must disable us */ 107 WhereClause *pWC; /* The clause this term is part of */ 108 Bitmask prereqRight; /* Bitmask of tables used by pExpr->pRight */ 109 Bitmask prereqAll; /* Bitmask of tables referenced by pExpr */ 110 }; 111 112 /* 113 ** Allowed values of WhereTerm.wtFlags 114 */ 115 #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */ 116 #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */ 117 #define TERM_CODED 0x04 /* This term is already coded */ 118 #define TERM_COPIED 0x08 /* Has a child */ 119 #define TERM_ORINFO 0x10 /* Need to free the WhereTerm.u.pOrInfo object */ 120 #define TERM_ANDINFO 0x20 /* Need to free the WhereTerm.u.pAndInfo obj */ 121 #define TERM_OR_OK 0x40 /* Used during OR-clause processing */ 122 123 /* 124 ** An instance of the following structure holds all information about a 125 ** WHERE clause. Mostly this is a container for one or more WhereTerms. 126 */ 127 struct WhereClause { 128 Parse *pParse; /* The parser context */ 129 WhereMaskSet *pMaskSet; /* Mapping of table cursor numbers to bitmasks */ 130 u8 op; /* Split operator. TK_AND or TK_OR */ 131 int nTerm; /* Number of terms */ 132 int nSlot; /* Number of entries in a[] */ 133 WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */ 134 WhereTerm aStatic[4]; /* Initial static space for a[] */ 135 }; 136 137 /* 138 ** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to 139 ** a dynamically allocated instance of the following structure. 140 */ 141 struct WhereOrInfo { 142 WhereClause wc; /* Decomposition into subterms */ 143 Bitmask indexable; /* Bitmask of all indexable tables in the clause */ 144 }; 145 146 /* 147 ** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to 148 ** a dynamically allocated instance of the following structure. 149 */ 150 struct WhereAndInfo { 151 WhereClause wc; /* The subexpression broken out */ 152 }; 153 154 /* 155 ** An instance of the following structure keeps track of a mapping 156 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm. 157 ** 158 ** The VDBE cursor numbers are small integers contained in 159 ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE 160 ** clause, the cursor numbers might not begin with 0 and they might 161 ** contain gaps in the numbering sequence. But we want to make maximum 162 ** use of the bits in our bitmasks. This structure provides a mapping 163 ** from the sparse cursor numbers into consecutive integers beginning 164 ** with 0. 165 ** 166 ** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask 167 ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A. 168 ** 169 ** For example, if the WHERE clause expression used these VDBE 170 ** cursors: 4, 5, 8, 29, 57, 73. Then the WhereMaskSet structure 171 ** would map those cursor numbers into bits 0 through 5. 172 ** 173 ** Note that the mapping is not necessarily ordered. In the example 174 ** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0, 175 ** 57->5, 73->4. Or one of 719 other combinations might be used. It 176 ** does not really matter. What is important is that sparse cursor 177 ** numbers all get mapped into bit numbers that begin with 0 and contain 178 ** no gaps. 179 */ 180 struct WhereMaskSet { 181 int n; /* Number of assigned cursor values */ 182 int ix[BMS]; /* Cursor assigned to each bit */ 183 }; 184 185 /* 186 ** A WhereCost object records a lookup strategy and the estimated 187 ** cost of pursuing that strategy. 188 */ 189 struct WhereCost { 190 WherePlan plan; /* The lookup strategy */ 191 double rCost; /* Overall cost of pursuing this search strategy */ 192 double nRow; /* Estimated number of output rows */ 193 }; 194 195 /* 196 ** Bitmasks for the operators that indices are able to exploit. An 197 ** OR-ed combination of these values can be used when searching for 198 ** terms in the where clause. 199 */ 200 #define WO_IN 0x001 201 #define WO_EQ 0x002 202 #define WO_LT (WO_EQ<<(TK_LT-TK_EQ)) 203 #define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) 204 #define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) 205 #define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) 206 #define WO_MATCH 0x040 207 #define WO_ISNULL 0x080 208 #define WO_OR 0x100 /* Two or more OR-connected terms */ 209 #define WO_AND 0x200 /* Two or more AND-connected terms */ 210 211 #define WO_ALL 0xfff /* Mask of all possible WO_* values */ 212 #define WO_SINGLE 0x0ff /* Mask of all non-compound WO_* values */ 213 214 /* 215 ** Value for wsFlags returned by bestIndex() and stored in 216 ** WhereLevel.wsFlags. These flags determine which search 217 ** strategies are appropriate. 218 ** 219 ** The least significant 12 bits is reserved as a mask for WO_ values above. 220 ** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL. 221 ** But if the table is the right table of a left join, WhereLevel.wsFlags 222 ** is set to WO_IN|WO_EQ. The WhereLevel.wsFlags field can then be used as 223 ** the "op" parameter to findTerm when we are resolving equality constraints. 224 ** ISNULL constraints will then not be used on the right table of a left 225 ** join. Tickets #2177 and #2189. 226 */ 227 #define WHERE_ROWID_EQ 0x00001000 /* rowid=EXPR or rowid IN (...) */ 228 #define WHERE_ROWID_RANGE 0x00002000 /* rowid<EXPR and/or rowid>EXPR */ 229 #define WHERE_COLUMN_EQ 0x00010000 /* x=EXPR or x IN (...) or x IS NULL */ 230 #define WHERE_COLUMN_RANGE 0x00020000 /* x<EXPR and/or x>EXPR */ 231 #define WHERE_COLUMN_IN 0x00040000 /* x IN (...) */ 232 #define WHERE_COLUMN_NULL 0x00080000 /* x IS NULL */ 233 #define WHERE_INDEXED 0x000f0000 /* Anything that uses an index */ 234 #define WHERE_IN_ABLE 0x000f1000 /* Able to support an IN operator */ 235 #define WHERE_TOP_LIMIT 0x00100000 /* x<EXPR or x<=EXPR constraint */ 236 #define WHERE_BTM_LIMIT 0x00200000 /* x>EXPR or x>=EXPR constraint */ 237 #define WHERE_IDX_ONLY 0x00800000 /* Use index only - omit table */ 238 #define WHERE_ORDERBY 0x01000000 /* Output will appear in correct order */ 239 #define WHERE_REVERSE 0x02000000 /* Scan in reverse order */ 240 #define WHERE_UNIQUE 0x04000000 /* Selects no more than one row */ 241 #define WHERE_VIRTUALTABLE 0x08000000 /* Use virtual-table processing */ 242 #define WHERE_MULTI_OR 0x10000000 /* OR using multiple indices */ 243 244 /* 245 ** Initialize a preallocated WhereClause structure. 246 */ 247 static void whereClauseInit( 248 WhereClause *pWC, /* The WhereClause to be initialized */ 249 Parse *pParse, /* The parsing context */ 250 WhereMaskSet *pMaskSet /* Mapping from table cursor numbers to bitmasks */ 251 ){ 252 pWC->pParse = pParse; 253 pWC->pMaskSet = pMaskSet; 254 pWC->nTerm = 0; 255 pWC->nSlot = ArraySize(pWC->aStatic); 256 pWC->a = pWC->aStatic; 257 } 258 259 /* Forward reference */ 260 static void whereClauseClear(WhereClause*); 261 262 /* 263 ** Deallocate all memory associated with a WhereOrInfo object. 264 */ 265 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ 266 whereClauseClear(&p->wc); 267 sqlite3DbFree(db, p); 268 } 269 270 /* 271 ** Deallocate all memory associated with a WhereAndInfo object. 272 */ 273 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ 274 whereClauseClear(&p->wc); 275 sqlite3DbFree(db, p); 276 } 277 278 /* 279 ** Deallocate a WhereClause structure. The WhereClause structure 280 ** itself is not freed. This routine is the inverse of whereClauseInit(). 281 */ 282 static void whereClauseClear(WhereClause *pWC){ 283 int i; 284 WhereTerm *a; 285 sqlite3 *db = pWC->pParse->db; 286 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ 287 if( a->wtFlags & TERM_DYNAMIC ){ 288 sqlite3ExprDelete(db, a->pExpr); 289 } 290 if( a->wtFlags & TERM_ORINFO ){ 291 whereOrInfoDelete(db, a->u.pOrInfo); 292 }else if( a->wtFlags & TERM_ANDINFO ){ 293 whereAndInfoDelete(db, a->u.pAndInfo); 294 } 295 } 296 if( pWC->a!=pWC->aStatic ){ 297 sqlite3DbFree(db, pWC->a); 298 } 299 } 300 301 /* 302 ** Add a single new WhereTerm entry to the WhereClause object pWC. 303 ** The new WhereTerm object is constructed from Expr p and with wtFlags. 304 ** The index in pWC->a[] of the new WhereTerm is returned on success. 305 ** 0 is returned if the new WhereTerm could not be added due to a memory 306 ** allocation error. The memory allocation failure will be recorded in 307 ** the db->mallocFailed flag so that higher-level functions can detect it. 308 ** 309 ** This routine will increase the size of the pWC->a[] array as necessary. 310 ** 311 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility 312 ** for freeing the expression p is assumed by the WhereClause object pWC. 313 ** This is true even if this routine fails to allocate a new WhereTerm. 314 ** 315 ** WARNING: This routine might reallocate the space used to store 316 ** WhereTerms. All pointers to WhereTerms should be invalidated after 317 ** calling this routine. Such pointers may be reinitialized by referencing 318 ** the pWC->a[] array. 319 */ 320 static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){ 321 WhereTerm *pTerm; 322 int idx; 323 if( pWC->nTerm>=pWC->nSlot ){ 324 WhereTerm *pOld = pWC->a; 325 sqlite3 *db = pWC->pParse->db; 326 pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); 327 if( pWC->a==0 ){ 328 if( wtFlags & TERM_DYNAMIC ){ 329 sqlite3ExprDelete(db, p); 330 } 331 pWC->a = pOld; 332 return 0; 333 } 334 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); 335 if( pOld!=pWC->aStatic ){ 336 sqlite3DbFree(db, pOld); 337 } 338 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); 339 } 340 pTerm = &pWC->a[idx = pWC->nTerm++]; 341 pTerm->pExpr = p; 342 pTerm->wtFlags = wtFlags; 343 pTerm->pWC = pWC; 344 pTerm->iParent = -1; 345 return idx; 346 } 347 348 /* 349 ** This routine identifies subexpressions in the WHERE clause where 350 ** each subexpression is separated by the AND operator or some other 351 ** operator specified in the op parameter. The WhereClause structure 352 ** is filled with pointers to subexpressions. For example: 353 ** 354 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) 355 ** \________/ \_______________/ \________________/ 356 ** slot[0] slot[1] slot[2] 357 ** 358 ** The original WHERE clause in pExpr is unaltered. All this routine 359 ** does is make slot[] entries point to substructure within pExpr. 360 ** 361 ** In the previous sentence and in the diagram, "slot[]" refers to 362 ** the WhereClause.a[] array. The slot[] array grows as needed to contain 363 ** all terms of the WHERE clause. 364 */ 365 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){ 366 pWC->op = (u8)op; 367 if( pExpr==0 ) return; 368 if( pExpr->op!=op ){ 369 whereClauseInsert(pWC, pExpr, 0); 370 }else{ 371 whereSplit(pWC, pExpr->pLeft, op); 372 whereSplit(pWC, pExpr->pRight, op); 373 } 374 } 375 376 /* 377 ** Initialize an expression mask set (a WhereMaskSet object) 378 */ 379 #define initMaskSet(P) memset(P, 0, sizeof(*P)) 380 381 /* 382 ** Return the bitmask for the given cursor number. Return 0 if 383 ** iCursor is not in the set. 384 */ 385 static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){ 386 int i; 387 for(i=0; i<pMaskSet->n; i++){ 388 if( pMaskSet->ix[i]==iCursor ){ 389 return ((Bitmask)1)<<i; 390 } 391 } 392 return 0; 393 } 394 395 /* 396 ** Create a new mask for cursor iCursor. 397 ** 398 ** There is one cursor per table in the FROM clause. The number of 399 ** tables in the FROM clause is limited by a test early in the 400 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 401 ** array will never overflow. 402 */ 403 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 404 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 405 pMaskSet->ix[pMaskSet->n++] = iCursor; 406 } 407 408 /* 409 ** This routine walks (recursively) an expression tree and generates 410 ** a bitmask indicating which tables are used in that expression 411 ** tree. 412 ** 413 ** In order for this routine to work, the calling function must have 414 ** previously invoked sqlite3ResolveExprNames() on the expression. See 415 ** the header comment on that routine for additional information. 416 ** The sqlite3ResolveExprNames() routines looks for column names and 417 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to 418 ** the VDBE cursor number of the table. This routine just has to 419 ** translate the cursor numbers into bitmask values and OR all 420 ** the bitmasks together. 421 */ 422 static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*); 423 static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*); 424 static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){ 425 Bitmask mask = 0; 426 if( p==0 ) return 0; 427 if( p->op==TK_COLUMN ){ 428 mask = getMask(pMaskSet, p->iTable); 429 return mask; 430 } 431 mask = exprTableUsage(pMaskSet, p->pRight); 432 mask |= exprTableUsage(pMaskSet, p->pLeft); 433 if( ExprHasProperty(p, EP_xIsSelect) ){ 434 mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect); 435 }else{ 436 mask |= exprListTableUsage(pMaskSet, p->x.pList); 437 } 438 return mask; 439 } 440 static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){ 441 int i; 442 Bitmask mask = 0; 443 if( pList ){ 444 for(i=0; i<pList->nExpr; i++){ 445 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); 446 } 447 } 448 return mask; 449 } 450 static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){ 451 Bitmask mask = 0; 452 while( pS ){ 453 mask |= exprListTableUsage(pMaskSet, pS->pEList); 454 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); 455 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); 456 mask |= exprTableUsage(pMaskSet, pS->pWhere); 457 mask |= exprTableUsage(pMaskSet, pS->pHaving); 458 pS = pS->pPrior; 459 } 460 return mask; 461 } 462 463 /* 464 ** Return TRUE if the given operator is one of the operators that is 465 ** allowed for an indexable WHERE clause term. The allowed operators are 466 ** "=", "<", ">", "<=", ">=", and "IN". 467 */ 468 static int allowedOp(int op){ 469 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); 470 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); 471 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); 472 assert( TK_GE==TK_EQ+4 ); 473 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; 474 } 475 476 /* 477 ** Swap two objects of type TYPE. 478 */ 479 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 480 481 /* 482 ** Commute a comparison operator. Expressions of the form "X op Y" 483 ** are converted into "Y op X". 484 ** 485 ** If a collation sequence is associated with either the left or right 486 ** side of the comparison, it remains associated with the same side after 487 ** the commutation. So "Y collate NOCASE op X" becomes 488 ** "X collate NOCASE op Y". This is because any collation sequence on 489 ** the left hand side of a comparison overrides any collation sequence 490 ** attached to the right. For the same reason the EP_ExpCollate flag 491 ** is not commuted. 492 */ 493 static void exprCommute(Parse *pParse, Expr *pExpr){ 494 u16 expRight = (pExpr->pRight->flags & EP_ExpCollate); 495 u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate); 496 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); 497 pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight); 498 pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 499 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl); 500 pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft; 501 pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight; 502 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); 503 if( pExpr->op>=TK_GT ){ 504 assert( TK_LT==TK_GT+2 ); 505 assert( TK_GE==TK_LE+2 ); 506 assert( TK_GT>TK_EQ ); 507 assert( TK_GT<TK_LE ); 508 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); 509 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; 510 } 511 } 512 513 /* 514 ** Translate from TK_xx operator to WO_xx bitmask. 515 */ 516 static u16 operatorMask(int op){ 517 u16 c; 518 assert( allowedOp(op) ); 519 if( op==TK_IN ){ 520 c = WO_IN; 521 }else if( op==TK_ISNULL ){ 522 c = WO_ISNULL; 523 }else{ 524 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); 525 c = (u16)(WO_EQ<<(op-TK_EQ)); 526 } 527 assert( op!=TK_ISNULL || c==WO_ISNULL ); 528 assert( op!=TK_IN || c==WO_IN ); 529 assert( op!=TK_EQ || c==WO_EQ ); 530 assert( op!=TK_LT || c==WO_LT ); 531 assert( op!=TK_LE || c==WO_LE ); 532 assert( op!=TK_GT || c==WO_GT ); 533 assert( op!=TK_GE || c==WO_GE ); 534 return c; 535 } 536 537 /* 538 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 539 ** where X is a reference to the iColumn of table iCur and <op> is one of 540 ** the WO_xx operator codes specified by the op parameter. 541 ** Return a pointer to the term. Return 0 if not found. 542 */ 543 static WhereTerm *findTerm( 544 WhereClause *pWC, /* The WHERE clause to be searched */ 545 int iCur, /* Cursor number of LHS */ 546 int iColumn, /* Column number of LHS */ 547 Bitmask notReady, /* RHS must not overlap with this mask */ 548 u32 op, /* Mask of WO_xx values describing operator */ 549 Index *pIdx /* Must be compatible with this index, if not NULL */ 550 ){ 551 WhereTerm *pTerm; 552 int k; 553 assert( iCur>=0 ); 554 op &= WO_ALL; 555 for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){ 556 if( pTerm->leftCursor==iCur 557 && (pTerm->prereqRight & notReady)==0 558 && pTerm->u.leftColumn==iColumn 559 && (pTerm->eOperator & op)!=0 560 ){ 561 if( pIdx && pTerm->eOperator!=WO_ISNULL ){ 562 Expr *pX = pTerm->pExpr; 563 CollSeq *pColl; 564 char idxaff; 565 int j; 566 Parse *pParse = pWC->pParse; 567 568 idxaff = pIdx->pTable->aCol[iColumn].affinity; 569 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue; 570 571 /* Figure out the collation sequence required from an index for 572 ** it to be useful for optimising expression pX. Store this 573 ** value in variable pColl. 574 */ 575 assert(pX->pLeft); 576 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); 577 assert(pColl || pParse->nErr); 578 579 for(j=0; pIdx->aiColumn[j]!=iColumn; j++){ 580 if( NEVER(j>=pIdx->nColumn) ) return 0; 581 } 582 if( pColl && sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue; 583 } 584 return pTerm; 585 } 586 } 587 return 0; 588 } 589 590 /* Forward reference */ 591 static void exprAnalyze(SrcList*, WhereClause*, int); 592 593 /* 594 ** Call exprAnalyze on all terms in a WHERE clause. 595 ** 596 ** 597 */ 598 static void exprAnalyzeAll( 599 SrcList *pTabList, /* the FROM clause */ 600 WhereClause *pWC /* the WHERE clause to be analyzed */ 601 ){ 602 int i; 603 for(i=pWC->nTerm-1; i>=0; i--){ 604 exprAnalyze(pTabList, pWC, i); 605 } 606 } 607 608 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 609 /* 610 ** Check to see if the given expression is a LIKE or GLOB operator that 611 ** can be optimized using inequality constraints. Return TRUE if it is 612 ** so and false if not. 613 ** 614 ** In order for the operator to be optimizible, the RHS must be a string 615 ** literal that does not begin with a wildcard. 616 */ 617 static int isLikeOrGlob( 618 Parse *pParse, /* Parsing and code generating context */ 619 Expr *pExpr, /* Test this expression */ 620 int *pnPattern, /* Number of non-wildcard prefix characters */ 621 int *pisComplete, /* True if the only wildcard is % in the last character */ 622 int *pnoCase /* True if uppercase is equivalent to lowercase */ 623 ){ 624 const char *z; /* String on RHS of LIKE operator */ 625 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ 626 ExprList *pList; /* List of operands to the LIKE operator */ 627 int c; /* One character in z[] */ 628 int cnt; /* Number of non-wildcard prefix characters */ 629 char wc[3]; /* Wildcard characters */ 630 CollSeq *pColl; /* Collating sequence for LHS */ 631 sqlite3 *db = pParse->db; /* Database connection */ 632 633 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ 634 return 0; 635 } 636 #ifdef SQLITE_EBCDIC 637 if( *pnoCase ) return 0; 638 #endif 639 pList = pExpr->x.pList; 640 pRight = pList->a[0].pExpr; 641 if( pRight->op!=TK_STRING ){ 642 return 0; 643 } 644 pLeft = pList->a[1].pExpr; 645 if( pLeft->op!=TK_COLUMN ){ 646 return 0; 647 } 648 pColl = sqlite3ExprCollSeq(pParse, pLeft); 649 assert( pColl!=0 || pLeft->iColumn==-1 ); 650 if( pColl==0 ){ 651 /* No collation is defined for the ROWID. Use the default. */ 652 pColl = db->pDfltColl; 653 } 654 if( (pColl->type!=SQLITE_COLL_BINARY || *pnoCase) && 655 (pColl->type!=SQLITE_COLL_NOCASE || !*pnoCase) ){ 656 return 0; 657 } 658 sqlite3DequoteExpr(pRight); 659 z = (char *)pRight->token.z; 660 cnt = 0; 661 if( z ){ 662 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ cnt++; } 663 } 664 if( cnt==0 || 255==(u8)z[cnt-1] ){ 665 return 0; 666 } 667 *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0; 668 *pnPattern = cnt; 669 return 1; 670 } 671 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 672 673 674 #ifndef SQLITE_OMIT_VIRTUALTABLE 675 /* 676 ** Check to see if the given expression is of the form 677 ** 678 ** column MATCH expr 679 ** 680 ** If it is then return TRUE. If not, return FALSE. 681 */ 682 static int isMatchOfColumn( 683 Expr *pExpr /* Test this expression */ 684 ){ 685 ExprList *pList; 686 687 if( pExpr->op!=TK_FUNCTION ){ 688 return 0; 689 } 690 if( pExpr->token.n!=5 || 691 sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){ 692 return 0; 693 } 694 pList = pExpr->x.pList; 695 if( pList->nExpr!=2 ){ 696 return 0; 697 } 698 if( pList->a[1].pExpr->op != TK_COLUMN ){ 699 return 0; 700 } 701 return 1; 702 } 703 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 704 705 /* 706 ** If the pBase expression originated in the ON or USING clause of 707 ** a join, then transfer the appropriate markings over to derived. 708 */ 709 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ 710 pDerived->flags |= pBase->flags & EP_FromJoin; 711 pDerived->iRightJoinTable = pBase->iRightJoinTable; 712 } 713 714 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 715 /* 716 ** Analyze a term that consists of two or more OR-connected 717 ** subterms. So in: 718 ** 719 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) 720 ** ^^^^^^^^^^^^^^^^^^^^ 721 ** 722 ** This routine analyzes terms such as the middle term in the above example. 723 ** A WhereOrTerm object is computed and attached to the term under 724 ** analysis, regardless of the outcome of the analysis. Hence: 725 ** 726 ** WhereTerm.wtFlags |= TERM_ORINFO 727 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object 728 ** 729 ** The term being analyzed must have two or more of OR-connected subterms. 730 ** A single subterm might be a set of AND-connected sub-subterms. 731 ** Examples of terms under analysis: 732 ** 733 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 734 ** (B) x=expr1 OR expr2=x OR x=expr3 735 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) 736 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') 737 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) 738 ** 739 ** CASE 1: 740 ** 741 ** If all subterms are of the form T.C=expr for some single column of C 742 ** a single table T (as shown in example B above) then create a new virtual 743 ** term that is an equivalent IN expression. In other words, if the term 744 ** being analyzed is: 745 ** 746 ** x = expr1 OR expr2 = x OR x = expr3 747 ** 748 ** then create a new virtual term like this: 749 ** 750 ** x IN (expr1,expr2,expr3) 751 ** 752 ** CASE 2: 753 ** 754 ** If all subterms are indexable by a single table T, then set 755 ** 756 ** WhereTerm.eOperator = WO_OR 757 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T 758 ** 759 ** A subterm is "indexable" if it is of the form 760 ** "T.C <op> <expr>" where C is any column of table T and 761 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". 762 ** A subterm is also indexable if it is an AND of two or more 763 ** subsubterms at least one of which is indexable. Indexable AND 764 ** subterms have their eOperator set to WO_AND and they have 765 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. 766 ** 767 ** From another point of view, "indexable" means that the subterm could 768 ** potentially be used with an index if an appropriate index exists. 769 ** This analysis does not consider whether or not the index exists; that 770 ** is something the bestIndex() routine will determine. This analysis 771 ** only looks at whether subterms appropriate for indexing exist. 772 ** 773 ** All examples A through E above all satisfy case 2. But if a term 774 ** also statisfies case 1 (such as B) we know that the optimizer will 775 ** always prefer case 1, so in that case we pretend that case 2 is not 776 ** satisfied. 777 ** 778 ** It might be the case that multiple tables are indexable. For example, 779 ** (E) above is indexable on tables P, Q, and R. 780 ** 781 ** Terms that satisfy case 2 are candidates for lookup by using 782 ** separate indices to find rowids for each subterm and composing 783 ** the union of all rowids using a RowSet object. This is similar 784 ** to "bitmap indices" in other database engines. 785 ** 786 ** OTHERWISE: 787 ** 788 ** If neither case 1 nor case 2 apply, then leave the eOperator set to 789 ** zero. This term is not useful for search. 790 */ 791 static void exprAnalyzeOrTerm( 792 SrcList *pSrc, /* the FROM clause */ 793 WhereClause *pWC, /* the complete WHERE clause */ 794 int idxTerm /* Index of the OR-term to be analyzed */ 795 ){ 796 Parse *pParse = pWC->pParse; /* Parser context */ 797 sqlite3 *db = pParse->db; /* Database connection */ 798 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ 799 Expr *pExpr = pTerm->pExpr; /* The expression of the term */ 800 WhereMaskSet *pMaskSet = pWC->pMaskSet; /* Table use masks */ 801 int i; /* Loop counters */ 802 WhereClause *pOrWc; /* Breakup of pTerm into subterms */ 803 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ 804 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ 805 Bitmask chngToIN; /* Tables that might satisfy case 1 */ 806 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ 807 808 /* 809 ** Break the OR clause into its separate subterms. The subterms are 810 ** stored in a WhereClause structure containing within the WhereOrInfo 811 ** object that is attached to the original OR clause term. 812 */ 813 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); 814 assert( pExpr->op==TK_OR ); 815 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); 816 if( pOrInfo==0 ) return; 817 pTerm->wtFlags |= TERM_ORINFO; 818 pOrWc = &pOrInfo->wc; 819 whereClauseInit(pOrWc, pWC->pParse, pMaskSet); 820 whereSplit(pOrWc, pExpr, TK_OR); 821 exprAnalyzeAll(pSrc, pOrWc); 822 if( db->mallocFailed ) return; 823 assert( pOrWc->nTerm>=2 ); 824 825 /* 826 ** Compute the set of tables that might satisfy cases 1 or 2. 827 */ 828 indexable = chngToIN = ~(Bitmask)0; 829 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ 830 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ 831 WhereAndInfo *pAndInfo; 832 assert( pOrTerm->eOperator==0 ); 833 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); 834 chngToIN = 0; 835 pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo)); 836 if( pAndInfo ){ 837 WhereClause *pAndWC; 838 WhereTerm *pAndTerm; 839 int j; 840 Bitmask b = 0; 841 pOrTerm->u.pAndInfo = pAndInfo; 842 pOrTerm->wtFlags |= TERM_ANDINFO; 843 pOrTerm->eOperator = WO_AND; 844 pAndWC = &pAndInfo->wc; 845 whereClauseInit(pAndWC, pWC->pParse, pMaskSet); 846 whereSplit(pAndWC, pOrTerm->pExpr, TK_AND); 847 exprAnalyzeAll(pSrc, pAndWC); 848 testcase( db->mallocFailed ); 849 if( !db->mallocFailed ){ 850 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ 851 assert( pAndTerm->pExpr ); 852 if( allowedOp(pAndTerm->pExpr->op) ){ 853 b |= getMask(pMaskSet, pAndTerm->leftCursor); 854 } 855 } 856 } 857 indexable &= b; 858 } 859 }else if( pOrTerm->wtFlags & TERM_COPIED ){ 860 /* Skip this term for now. We revisit it when we process the 861 ** corresponding TERM_VIRTUAL term */ 862 }else{ 863 Bitmask b; 864 b = getMask(pMaskSet, pOrTerm->leftCursor); 865 if( pOrTerm->wtFlags & TERM_VIRTUAL ){ 866 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; 867 b |= getMask(pMaskSet, pOther->leftCursor); 868 } 869 indexable &= b; 870 if( pOrTerm->eOperator!=WO_EQ ){ 871 chngToIN = 0; 872 }else{ 873 chngToIN &= b; 874 } 875 } 876 } 877 878 /* 879 ** Record the set of tables that satisfy case 2. The set might be 880 ** empty. 881 */ 882 pOrInfo->indexable = indexable; 883 pTerm->eOperator = indexable==0 ? 0 : WO_OR; 884 885 /* 886 ** chngToIN holds a set of tables that *might* satisfy case 1. But 887 ** we have to do some additional checking to see if case 1 really 888 ** is satisfied. 889 */ 890 if( chngToIN ){ 891 int okToChngToIN = 0; /* True if the conversion to IN is valid */ 892 int iColumn = -1; /* Column index on lhs of IN operator */ 893 int iCursor = -1; /* Table cursor common to all terms */ 894 int j = 0; /* Loop counter */ 895 896 /* Search for a table and column that appears on one side or the 897 ** other of the == operator in every subterm. That table and column 898 ** will be recorded in iCursor and iColumn. There might not be any 899 ** such table and column. Set okToChngToIN if an appropriate table 900 ** and column is found but leave okToChngToIN false if not found. 901 */ 902 for(j=0; j<2 && !okToChngToIN; j++){ 903 pOrTerm = pOrWc->a; 904 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ 905 assert( pOrTerm->eOperator==WO_EQ ); 906 pOrTerm->wtFlags &= ~TERM_OR_OK; 907 if( pOrTerm->leftCursor==iColumn ) continue; 908 if( (chngToIN & getMask(pMaskSet, pOrTerm->leftCursor))==0 ) continue; 909 iColumn = pOrTerm->u.leftColumn; 910 iCursor = pOrTerm->leftCursor; 911 break; 912 } 913 if( i<0 ){ 914 assert( j==1 ); 915 assert( (chngToIN&(chngToIN-1))==0 ); 916 assert( chngToIN==getMask(pMaskSet, iColumn) ); 917 break; 918 } 919 okToChngToIN = 1; 920 for(; i>=0 && okToChngToIN; i--, pOrTerm++){ 921 assert( pOrTerm->eOperator==WO_EQ ); 922 if( pOrTerm->leftCursor!=iCursor ){ 923 pOrTerm->wtFlags &= ~TERM_OR_OK; 924 }else if( pOrTerm->u.leftColumn!=iColumn ){ 925 okToChngToIN = 0; 926 }else{ 927 int affLeft, affRight; 928 /* If the right-hand side is also a column, then the affinities 929 ** of both right and left sides must be such that no type 930 ** conversions are required on the right. (Ticket #2249) 931 */ 932 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); 933 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); 934 if( affRight!=0 && affRight!=affLeft ){ 935 okToChngToIN = 0; 936 }else{ 937 pOrTerm->wtFlags |= TERM_OR_OK; 938 } 939 } 940 } 941 } 942 943 /* At this point, okToChngToIN is true if original pTerm satisfies 944 ** case 1. In that case, construct a new virtual term that is 945 ** pTerm converted into an IN operator. 946 */ 947 if( okToChngToIN ){ 948 Expr *pDup; /* A transient duplicate expression */ 949 ExprList *pList = 0; /* The RHS of the IN operator */ 950 Expr *pLeft = 0; /* The LHS of the IN operator */ 951 Expr *pNew; /* The complete IN operator */ 952 953 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ 954 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; 955 assert( pOrTerm->eOperator==WO_EQ ); 956 assert( pOrTerm->leftCursor==iCursor ); 957 assert( pOrTerm->u.leftColumn==iColumn ); 958 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); 959 pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup, 0); 960 pLeft = pOrTerm->pExpr->pLeft; 961 } 962 assert( pLeft!=0 ); 963 pDup = sqlite3ExprDup(db, pLeft, 0); 964 pNew = sqlite3Expr(db, TK_IN, pDup, 0, 0); 965 if( pNew ){ 966 int idxNew; 967 transferJoinMarkings(pNew, pExpr); 968 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 969 pNew->x.pList = pList; 970 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 971 testcase( idxNew==0 ); 972 exprAnalyze(pSrc, pWC, idxNew); 973 pTerm = &pWC->a[idxTerm]; 974 pWC->a[idxNew].iParent = idxTerm; 975 pTerm->nChild = 1; 976 }else{ 977 sqlite3ExprListDelete(db, pList); 978 } 979 pTerm->eOperator = 0; /* case 1 trumps case 2 */ 980 } 981 } 982 } 983 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ 984 985 986 /* 987 ** The input to this routine is an WhereTerm structure with only the 988 ** "pExpr" field filled in. The job of this routine is to analyze the 989 ** subexpression and populate all the other fields of the WhereTerm 990 ** structure. 991 ** 992 ** If the expression is of the form "<expr> <op> X" it gets commuted 993 ** to the standard form of "X <op> <expr>". 994 ** 995 ** If the expression is of the form "X <op> Y" where both X and Y are 996 ** columns, then the original expression is unchanged and a new virtual 997 ** term of the form "Y <op> X" is added to the WHERE clause and 998 ** analyzed separately. The original term is marked with TERM_COPIED 999 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr 1000 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it 1001 ** is a commuted copy of a prior term.) The original term has nChild=1 1002 ** and the copy has idxParent set to the index of the original term. 1003 */ 1004 static void exprAnalyze( 1005 SrcList *pSrc, /* the FROM clause */ 1006 WhereClause *pWC, /* the WHERE clause */ 1007 int idxTerm /* Index of the term to be analyzed */ 1008 ){ 1009 WhereTerm *pTerm; /* The term to be analyzed */ 1010 WhereMaskSet *pMaskSet; /* Set of table index masks */ 1011 Expr *pExpr; /* The expression to be analyzed */ 1012 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ 1013 Bitmask prereqAll; /* Prerequesites of pExpr */ 1014 Bitmask extraRight = 0; 1015 int nPattern; 1016 int isComplete; 1017 int noCase; 1018 int op; /* Top-level operator. pExpr->op */ 1019 Parse *pParse = pWC->pParse; /* Parsing context */ 1020 sqlite3 *db = pParse->db; /* Database connection */ 1021 1022 if( db->mallocFailed ){ 1023 return; 1024 } 1025 pTerm = &pWC->a[idxTerm]; 1026 pMaskSet = pWC->pMaskSet; 1027 pExpr = pTerm->pExpr; 1028 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); 1029 op = pExpr->op; 1030 if( op==TK_IN ){ 1031 assert( pExpr->pRight==0 ); 1032 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1033 pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect); 1034 }else{ 1035 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList); 1036 } 1037 }else if( op==TK_ISNULL ){ 1038 pTerm->prereqRight = 0; 1039 }else{ 1040 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); 1041 } 1042 prereqAll = exprTableUsage(pMaskSet, pExpr); 1043 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 1044 Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable); 1045 prereqAll |= x; 1046 extraRight = x-1; /* ON clause terms may not be used with an index 1047 ** on left table of a LEFT JOIN. Ticket #3015 */ 1048 } 1049 pTerm->prereqAll = prereqAll; 1050 pTerm->leftCursor = -1; 1051 pTerm->iParent = -1; 1052 pTerm->eOperator = 0; 1053 if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){ 1054 Expr *pLeft = pExpr->pLeft; 1055 Expr *pRight = pExpr->pRight; 1056 if( pLeft->op==TK_COLUMN ){ 1057 pTerm->leftCursor = pLeft->iTable; 1058 pTerm->u.leftColumn = pLeft->iColumn; 1059 pTerm->eOperator = operatorMask(op); 1060 } 1061 if( pRight && pRight->op==TK_COLUMN ){ 1062 WhereTerm *pNew; 1063 Expr *pDup; 1064 if( pTerm->leftCursor>=0 ){ 1065 int idxNew; 1066 pDup = sqlite3ExprDup(db, pExpr, 0); 1067 if( db->mallocFailed ){ 1068 sqlite3ExprDelete(db, pDup); 1069 return; 1070 } 1071 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); 1072 if( idxNew==0 ) return; 1073 pNew = &pWC->a[idxNew]; 1074 pNew->iParent = idxTerm; 1075 pTerm = &pWC->a[idxTerm]; 1076 pTerm->nChild = 1; 1077 pTerm->wtFlags |= TERM_COPIED; 1078 }else{ 1079 pDup = pExpr; 1080 pNew = pTerm; 1081 } 1082 exprCommute(pParse, pDup); 1083 pLeft = pDup->pLeft; 1084 pNew->leftCursor = pLeft->iTable; 1085 pNew->u.leftColumn = pLeft->iColumn; 1086 pNew->prereqRight = prereqLeft; 1087 pNew->prereqAll = prereqAll; 1088 pNew->eOperator = operatorMask(pDup->op); 1089 } 1090 } 1091 1092 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION 1093 /* If a term is the BETWEEN operator, create two new virtual terms 1094 ** that define the range that the BETWEEN implements. For example: 1095 ** 1096 ** a BETWEEN b AND c 1097 ** 1098 ** is converted into: 1099 ** 1100 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) 1101 ** 1102 ** The two new terms are added onto the end of the WhereClause object. 1103 ** The new terms are "dynamic" and are children of the original BETWEEN 1104 ** term. That means that if the BETWEEN term is coded, the children are 1105 ** skipped. Or, if the children are satisfied by an index, the original 1106 ** BETWEEN term is skipped. 1107 */ 1108 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ 1109 ExprList *pList = pExpr->x.pList; 1110 int i; 1111 static const u8 ops[] = {TK_GE, TK_LE}; 1112 assert( pList!=0 ); 1113 assert( pList->nExpr==2 ); 1114 for(i=0; i<2; i++){ 1115 Expr *pNewExpr; 1116 int idxNew; 1117 pNewExpr = sqlite3Expr(db, ops[i], sqlite3ExprDup(db, pExpr->pLeft, 0), 1118 sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0); 1119 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1120 testcase( idxNew==0 ); 1121 exprAnalyze(pSrc, pWC, idxNew); 1122 pTerm = &pWC->a[idxTerm]; 1123 pWC->a[idxNew].iParent = idxTerm; 1124 } 1125 pTerm->nChild = 2; 1126 } 1127 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ 1128 1129 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 1130 /* Analyze a term that is composed of two or more subterms connected by 1131 ** an OR operator. 1132 */ 1133 else if( pExpr->op==TK_OR ){ 1134 assert( pWC->op==TK_AND ); 1135 exprAnalyzeOrTerm(pSrc, pWC, idxTerm); 1136 } 1137 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1138 1139 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 1140 /* Add constraints to reduce the search space on a LIKE or GLOB 1141 ** operator. 1142 ** 1143 ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints 1144 ** 1145 ** x>='abc' AND x<'abd' AND x LIKE 'abc%' 1146 ** 1147 ** The last character of the prefix "abc" is incremented to form the 1148 ** termination condition "abd". 1149 */ 1150 if( isLikeOrGlob(pParse, pExpr, &nPattern, &isComplete, &noCase) 1151 && pWC->op==TK_AND ){ 1152 Expr *pLeft, *pRight; 1153 Expr *pStr1, *pStr2; 1154 Expr *pNewExpr1, *pNewExpr2; 1155 int idxNew1, idxNew2; 1156 1157 pLeft = pExpr->x.pList->a[1].pExpr; 1158 pRight = pExpr->x.pList->a[0].pExpr; 1159 pStr1 = sqlite3PExpr(pParse, TK_STRING, 0, 0, 0); 1160 if( pStr1 ){ 1161 sqlite3TokenCopy(db, &pStr1->token, &pRight->token); 1162 pStr1->token.n = nPattern; 1163 pStr1->flags = EP_Dequoted; 1164 } 1165 pStr2 = sqlite3ExprDup(db, pStr1, 0); 1166 if( !db->mallocFailed ){ 1167 u8 c, *pC; 1168 /* assert( pStr2->token.dyn ); */ 1169 pC = (u8*)&pStr2->token.z[nPattern-1]; 1170 c = *pC; 1171 if( noCase ){ 1172 if( c=='@' ) isComplete = 0; 1173 c = sqlite3UpperToLower[c]; 1174 } 1175 *pC = c + 1; 1176 } 1177 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft,0),pStr1,0); 1178 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); 1179 testcase( idxNew1==0 ); 1180 exprAnalyze(pSrc, pWC, idxNew1); 1181 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft,0),pStr2,0); 1182 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); 1183 testcase( idxNew2==0 ); 1184 exprAnalyze(pSrc, pWC, idxNew2); 1185 pTerm = &pWC->a[idxTerm]; 1186 if( isComplete ){ 1187 pWC->a[idxNew1].iParent = idxTerm; 1188 pWC->a[idxNew2].iParent = idxTerm; 1189 pTerm->nChild = 2; 1190 } 1191 } 1192 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 1193 1194 #ifndef SQLITE_OMIT_VIRTUALTABLE 1195 /* Add a WO_MATCH auxiliary term to the constraint set if the 1196 ** current expression is of the form: column MATCH expr. 1197 ** This information is used by the xBestIndex methods of 1198 ** virtual tables. The native query optimizer does not attempt 1199 ** to do anything with MATCH functions. 1200 */ 1201 if( isMatchOfColumn(pExpr) ){ 1202 int idxNew; 1203 Expr *pRight, *pLeft; 1204 WhereTerm *pNewTerm; 1205 Bitmask prereqColumn, prereqExpr; 1206 1207 pRight = pExpr->x.pList->a[0].pExpr; 1208 pLeft = pExpr->x.pList->a[1].pExpr; 1209 prereqExpr = exprTableUsage(pMaskSet, pRight); 1210 prereqColumn = exprTableUsage(pMaskSet, pLeft); 1211 if( (prereqExpr & prereqColumn)==0 ){ 1212 Expr *pNewExpr; 1213 pNewExpr = sqlite3Expr(db, TK_MATCH, 0, sqlite3ExprDup(db, pRight, 0), 0); 1214 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1215 testcase( idxNew==0 ); 1216 pNewTerm = &pWC->a[idxNew]; 1217 pNewTerm->prereqRight = prereqExpr; 1218 pNewTerm->leftCursor = pLeft->iTable; 1219 pNewTerm->u.leftColumn = pLeft->iColumn; 1220 pNewTerm->eOperator = WO_MATCH; 1221 pNewTerm->iParent = idxTerm; 1222 pTerm = &pWC->a[idxTerm]; 1223 pTerm->nChild = 1; 1224 pTerm->wtFlags |= TERM_COPIED; 1225 pNewTerm->prereqAll = pTerm->prereqAll; 1226 } 1227 } 1228 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1229 1230 /* Prevent ON clause terms of a LEFT JOIN from being used to drive 1231 ** an index for tables to the left of the join. 1232 */ 1233 pTerm->prereqRight |= extraRight; 1234 } 1235 1236 /* 1237 ** Return TRUE if any of the expressions in pList->a[iFirst...] contain 1238 ** a reference to any table other than the iBase table. 1239 */ 1240 static int referencesOtherTables( 1241 ExprList *pList, /* Search expressions in ths list */ 1242 WhereMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ 1243 int iFirst, /* Be searching with the iFirst-th expression */ 1244 int iBase /* Ignore references to this table */ 1245 ){ 1246 Bitmask allowed = ~getMask(pMaskSet, iBase); 1247 while( iFirst<pList->nExpr ){ 1248 if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){ 1249 return 1; 1250 } 1251 } 1252 return 0; 1253 } 1254 1255 1256 /* 1257 ** This routine decides if pIdx can be used to satisfy the ORDER BY 1258 ** clause. If it can, it returns 1. If pIdx cannot satisfy the 1259 ** ORDER BY clause, this routine returns 0. 1260 ** 1261 ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the 1262 ** left-most table in the FROM clause of that same SELECT statement and 1263 ** the table has a cursor number of "base". pIdx is an index on pTab. 1264 ** 1265 ** nEqCol is the number of columns of pIdx that are used as equality 1266 ** constraints. Any of these columns may be missing from the ORDER BY 1267 ** clause and the match can still be a success. 1268 ** 1269 ** All terms of the ORDER BY that match against the index must be either 1270 ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE 1271 ** index do not need to satisfy this constraint.) The *pbRev value is 1272 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if 1273 ** the ORDER BY clause is all ASC. 1274 */ 1275 static int isSortingIndex( 1276 Parse *pParse, /* Parsing context */ 1277 WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmaps */ 1278 Index *pIdx, /* The index we are testing */ 1279 int base, /* Cursor number for the table to be sorted */ 1280 ExprList *pOrderBy, /* The ORDER BY clause */ 1281 int nEqCol, /* Number of index columns with == constraints */ 1282 int *pbRev /* Set to 1 if ORDER BY is DESC */ 1283 ){ 1284 int i, j; /* Loop counters */ 1285 int sortOrder = 0; /* XOR of index and ORDER BY sort direction */ 1286 int nTerm; /* Number of ORDER BY terms */ 1287 struct ExprList_item *pTerm; /* A term of the ORDER BY clause */ 1288 sqlite3 *db = pParse->db; 1289 1290 assert( pOrderBy!=0 ); 1291 nTerm = pOrderBy->nExpr; 1292 assert( nTerm>0 ); 1293 1294 /* Match terms of the ORDER BY clause against columns of 1295 ** the index. 1296 ** 1297 ** Note that indices have pIdx->nColumn regular columns plus 1298 ** one additional column containing the rowid. The rowid column 1299 ** of the index is also allowed to match against the ORDER BY 1300 ** clause. 1301 */ 1302 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){ 1303 Expr *pExpr; /* The expression of the ORDER BY pTerm */ 1304 CollSeq *pColl; /* The collating sequence of pExpr */ 1305 int termSortOrder; /* Sort order for this term */ 1306 int iColumn; /* The i-th column of the index. -1 for rowid */ 1307 int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */ 1308 const char *zColl; /* Name of the collating sequence for i-th index term */ 1309 1310 pExpr = pTerm->pExpr; 1311 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){ 1312 /* Can not use an index sort on anything that is not a column in the 1313 ** left-most table of the FROM clause */ 1314 break; 1315 } 1316 pColl = sqlite3ExprCollSeq(pParse, pExpr); 1317 if( !pColl ){ 1318 pColl = db->pDfltColl; 1319 } 1320 if( i<pIdx->nColumn ){ 1321 iColumn = pIdx->aiColumn[i]; 1322 if( iColumn==pIdx->pTable->iPKey ){ 1323 iColumn = -1; 1324 } 1325 iSortOrder = pIdx->aSortOrder[i]; 1326 zColl = pIdx->azColl[i]; 1327 }else{ 1328 iColumn = -1; 1329 iSortOrder = 0; 1330 zColl = pColl->zName; 1331 } 1332 if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){ 1333 /* Term j of the ORDER BY clause does not match column i of the index */ 1334 if( i<nEqCol ){ 1335 /* If an index column that is constrained by == fails to match an 1336 ** ORDER BY term, that is OK. Just ignore that column of the index 1337 */ 1338 continue; 1339 }else if( i==pIdx->nColumn ){ 1340 /* Index column i is the rowid. All other terms match. */ 1341 break; 1342 }else{ 1343 /* If an index column fails to match and is not constrained by == 1344 ** then the index cannot satisfy the ORDER BY constraint. 1345 */ 1346 return 0; 1347 } 1348 } 1349 assert( pIdx->aSortOrder!=0 ); 1350 assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 ); 1351 assert( iSortOrder==0 || iSortOrder==1 ); 1352 termSortOrder = iSortOrder ^ pTerm->sortOrder; 1353 if( i>nEqCol ){ 1354 if( termSortOrder!=sortOrder ){ 1355 /* Indices can only be used if all ORDER BY terms past the 1356 ** equality constraints are all either DESC or ASC. */ 1357 return 0; 1358 } 1359 }else{ 1360 sortOrder = termSortOrder; 1361 } 1362 j++; 1363 pTerm++; 1364 if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ 1365 /* If the indexed column is the primary key and everything matches 1366 ** so far and none of the ORDER BY terms to the right reference other 1367 ** tables in the join, then we are assured that the index can be used 1368 ** to sort because the primary key is unique and so none of the other 1369 ** columns will make any difference 1370 */ 1371 j = nTerm; 1372 } 1373 } 1374 1375 *pbRev = sortOrder!=0; 1376 if( j>=nTerm ){ 1377 /* All terms of the ORDER BY clause are covered by this index so 1378 ** this index can be used for sorting. */ 1379 return 1; 1380 } 1381 if( pIdx->onError!=OE_None && i==pIdx->nColumn 1382 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ 1383 /* All terms of this index match some prefix of the ORDER BY clause 1384 ** and the index is UNIQUE and no terms on the tail of the ORDER BY 1385 ** clause reference other tables in a join. If this is all true then 1386 ** the order by clause is superfluous. */ 1387 return 1; 1388 } 1389 return 0; 1390 } 1391 1392 /* 1393 ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied 1394 ** by sorting in order of ROWID. Return true if so and set *pbRev to be 1395 ** true for reverse ROWID and false for forward ROWID order. 1396 */ 1397 static int sortableByRowid( 1398 int base, /* Cursor number for table to be sorted */ 1399 ExprList *pOrderBy, /* The ORDER BY clause */ 1400 WhereMaskSet *pMaskSet, /* Mapping from table cursors to bitmaps */ 1401 int *pbRev /* Set to 1 if ORDER BY is DESC */ 1402 ){ 1403 Expr *p; 1404 1405 assert( pOrderBy!=0 ); 1406 assert( pOrderBy->nExpr>0 ); 1407 p = pOrderBy->a[0].pExpr; 1408 if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1 1409 && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){ 1410 *pbRev = pOrderBy->a[0].sortOrder; 1411 return 1; 1412 } 1413 return 0; 1414 } 1415 1416 /* 1417 ** Prepare a crude estimate of the logarithm of the input value. 1418 ** The results need not be exact. This is only used for estimating 1419 ** the total cost of performing operations with O(logN) or O(NlogN) 1420 ** complexity. Because N is just a guess, it is no great tragedy if 1421 ** logN is a little off. 1422 */ 1423 static double estLog(double N){ 1424 double logN = 1; 1425 double x = 10; 1426 while( N>x ){ 1427 logN += 1; 1428 x *= 10; 1429 } 1430 return logN; 1431 } 1432 1433 /* 1434 ** Two routines for printing the content of an sqlite3_index_info 1435 ** structure. Used for testing and debugging only. If neither 1436 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 1437 ** are no-ops. 1438 */ 1439 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG) 1440 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ 1441 int i; 1442 if( !sqlite3WhereTrace ) return; 1443 for(i=0; i<p->nConstraint; i++){ 1444 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 1445 i, 1446 p->aConstraint[i].iColumn, 1447 p->aConstraint[i].iTermOffset, 1448 p->aConstraint[i].op, 1449 p->aConstraint[i].usable); 1450 } 1451 for(i=0; i<p->nOrderBy; i++){ 1452 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 1453 i, 1454 p->aOrderBy[i].iColumn, 1455 p->aOrderBy[i].desc); 1456 } 1457 } 1458 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ 1459 int i; 1460 if( !sqlite3WhereTrace ) return; 1461 for(i=0; i<p->nConstraint; i++){ 1462 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 1463 i, 1464 p->aConstraintUsage[i].argvIndex, 1465 p->aConstraintUsage[i].omit); 1466 } 1467 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 1468 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 1469 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 1470 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 1471 } 1472 #else 1473 #define TRACE_IDX_INPUTS(A) 1474 #define TRACE_IDX_OUTPUTS(A) 1475 #endif 1476 1477 /* 1478 ** Required because bestIndex() is called by bestOrClauseIndex() 1479 */ 1480 static void bestIndex( 1481 Parse*, WhereClause*, struct SrcList_item*, Bitmask, ExprList*, WhereCost*); 1482 1483 /* 1484 ** This routine attempts to find an scanning strategy that can be used 1485 ** to optimize an 'OR' expression that is part of a WHERE clause. 1486 ** 1487 ** The table associated with FROM clause term pSrc may be either a 1488 ** regular B-Tree table or a virtual table. 1489 */ 1490 static void bestOrClauseIndex( 1491 Parse *pParse, /* The parsing context */ 1492 WhereClause *pWC, /* The WHERE clause */ 1493 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1494 Bitmask notReady, /* Mask of cursors that are not available */ 1495 ExprList *pOrderBy, /* The ORDER BY clause */ 1496 WhereCost *pCost /* Lowest cost query plan */ 1497 ){ 1498 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 1499 const int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ 1500 const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur); /* Bitmask for pSrc */ 1501 WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm]; /* End of pWC->a[] */ 1502 WhereTerm *pTerm; /* A single term of the WHERE clause */ 1503 1504 /* Search the WHERE clause terms for a usable WO_OR term. */ 1505 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 1506 if( pTerm->eOperator==WO_OR 1507 && ((pTerm->prereqAll & ~maskSrc) & notReady)==0 1508 && (pTerm->u.pOrInfo->indexable & maskSrc)!=0 1509 ){ 1510 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; 1511 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; 1512 WhereTerm *pOrTerm; 1513 int flags = WHERE_MULTI_OR; 1514 double rTotal = 0; 1515 double nRow = 0; 1516 1517 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ 1518 WhereCost sTermCost; 1519 WHERETRACE(("... Multi-index OR testing for term %d of %d....\n", 1520 (pOrTerm - pOrWC->a), (pTerm - pWC->a) 1521 )); 1522 if( pOrTerm->eOperator==WO_AND ){ 1523 WhereClause *pAndWC = &pOrTerm->u.pAndInfo->wc; 1524 bestIndex(pParse, pAndWC, pSrc, notReady, 0, &sTermCost); 1525 }else if( pOrTerm->leftCursor==iCur ){ 1526 WhereClause tempWC; 1527 tempWC.pParse = pWC->pParse; 1528 tempWC.pMaskSet = pWC->pMaskSet; 1529 tempWC.op = TK_AND; 1530 tempWC.a = pOrTerm; 1531 tempWC.nTerm = 1; 1532 bestIndex(pParse, &tempWC, pSrc, notReady, 0, &sTermCost); 1533 }else{ 1534 continue; 1535 } 1536 rTotal += sTermCost.rCost; 1537 nRow += sTermCost.nRow; 1538 if( rTotal>=pCost->rCost ) break; 1539 } 1540 1541 /* If there is an ORDER BY clause, increase the scan cost to account 1542 ** for the cost of the sort. */ 1543 if( pOrderBy!=0 ){ 1544 rTotal += nRow*estLog(nRow); 1545 WHERETRACE(("... sorting increases OR cost to %.9g\n", rTotal)); 1546 } 1547 1548 /* If the cost of scanning using this OR term for optimization is 1549 ** less than the current cost stored in pCost, replace the contents 1550 ** of pCost. */ 1551 WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow)); 1552 if( rTotal<pCost->rCost ){ 1553 pCost->rCost = rTotal; 1554 pCost->nRow = nRow; 1555 pCost->plan.wsFlags = flags; 1556 pCost->plan.u.pTerm = pTerm; 1557 } 1558 } 1559 } 1560 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1561 } 1562 1563 #ifndef SQLITE_OMIT_VIRTUALTABLE 1564 /* 1565 ** Allocate and populate an sqlite3_index_info structure. It is the 1566 ** responsibility of the caller to eventually release the structure 1567 ** by passing the pointer returned by this function to sqlite3_free(). 1568 */ 1569 static sqlite3_index_info *allocateIndexInfo( 1570 Parse *pParse, 1571 WhereClause *pWC, 1572 struct SrcList_item *pSrc, 1573 ExprList *pOrderBy 1574 ){ 1575 int i, j; 1576 int nTerm; 1577 struct sqlite3_index_constraint *pIdxCons; 1578 struct sqlite3_index_orderby *pIdxOrderBy; 1579 struct sqlite3_index_constraint_usage *pUsage; 1580 WhereTerm *pTerm; 1581 int nOrderBy; 1582 sqlite3_index_info *pIdxInfo; 1583 1584 WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName)); 1585 1586 /* Count the number of possible WHERE clause constraints referring 1587 ** to this virtual table */ 1588 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1589 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1590 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); 1591 testcase( pTerm->eOperator==WO_IN ); 1592 testcase( pTerm->eOperator==WO_ISNULL ); 1593 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; 1594 nTerm++; 1595 } 1596 1597 /* If the ORDER BY clause contains only columns in the current 1598 ** virtual table then allocate space for the aOrderBy part of 1599 ** the sqlite3_index_info structure. 1600 */ 1601 nOrderBy = 0; 1602 if( pOrderBy ){ 1603 for(i=0; i<pOrderBy->nExpr; i++){ 1604 Expr *pExpr = pOrderBy->a[i].pExpr; 1605 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 1606 } 1607 if( i==pOrderBy->nExpr ){ 1608 nOrderBy = pOrderBy->nExpr; 1609 } 1610 } 1611 1612 /* Allocate the sqlite3_index_info structure 1613 */ 1614 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 1615 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 1616 + sizeof(*pIdxOrderBy)*nOrderBy ); 1617 if( pIdxInfo==0 ){ 1618 sqlite3ErrorMsg(pParse, "out of memory"); 1619 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1620 return 0; 1621 } 1622 1623 /* Initialize the structure. The sqlite3_index_info structure contains 1624 ** many fields that are declared "const" to prevent xBestIndex from 1625 ** changing them. We have to do some funky casting in order to 1626 ** initialize those fields. 1627 */ 1628 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; 1629 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 1630 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 1631 *(int*)&pIdxInfo->nConstraint = nTerm; 1632 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 1633 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; 1634 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; 1635 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = 1636 pUsage; 1637 1638 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1639 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1640 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); 1641 testcase( pTerm->eOperator==WO_IN ); 1642 testcase( pTerm->eOperator==WO_ISNULL ); 1643 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; 1644 pIdxCons[j].iColumn = pTerm->u.leftColumn; 1645 pIdxCons[j].iTermOffset = i; 1646 pIdxCons[j].op = (u8)pTerm->eOperator; 1647 /* The direct assignment in the previous line is possible only because 1648 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 1649 ** following asserts verify this fact. */ 1650 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 1651 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 1652 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 1653 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 1654 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 1655 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); 1656 assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); 1657 j++; 1658 } 1659 for(i=0; i<nOrderBy; i++){ 1660 Expr *pExpr = pOrderBy->a[i].pExpr; 1661 pIdxOrderBy[i].iColumn = pExpr->iColumn; 1662 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; 1663 } 1664 1665 return pIdxInfo; 1666 } 1667 1668 /* 1669 ** The table object reference passed as the second argument to this function 1670 ** must represent a virtual table. This function invokes the xBestIndex() 1671 ** method of the virtual table with the sqlite3_index_info pointer passed 1672 ** as the argument. 1673 ** 1674 ** If an error occurs, pParse is populated with an error message and a 1675 ** non-zero value is returned. Otherwise, 0 is returned and the output 1676 ** part of the sqlite3_index_info structure is left populated. 1677 ** 1678 ** Whether or not an error is returned, it is the responsibility of the 1679 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates 1680 ** that this is required. 1681 */ 1682 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ 1683 sqlite3_vtab *pVtab = pTab->pVtab; 1684 int i; 1685 int rc; 1686 1687 (void)sqlite3SafetyOff(pParse->db); 1688 WHERETRACE(("xBestIndex for %s\n", pTab->zName)); 1689 TRACE_IDX_INPUTS(p); 1690 rc = pVtab->pModule->xBestIndex(pVtab, p); 1691 TRACE_IDX_OUTPUTS(p); 1692 (void)sqlite3SafetyOn(pParse->db); 1693 1694 if( rc!=SQLITE_OK ){ 1695 if( rc==SQLITE_NOMEM ){ 1696 pParse->db->mallocFailed = 1; 1697 }else if( !pVtab->zErrMsg ){ 1698 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 1699 }else{ 1700 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 1701 } 1702 } 1703 sqlite3DbFree(pParse->db, pVtab->zErrMsg); 1704 pVtab->zErrMsg = 0; 1705 1706 for(i=0; i<p->nConstraint; i++){ 1707 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){ 1708 sqlite3ErrorMsg(pParse, 1709 "table %s: xBestIndex returned an invalid plan", pTab->zName); 1710 } 1711 } 1712 1713 return pParse->nErr; 1714 } 1715 1716 1717 /* 1718 ** Compute the best index for a virtual table. 1719 ** 1720 ** The best index is computed by the xBestIndex method of the virtual 1721 ** table module. This routine is really just a wrapper that sets up 1722 ** the sqlite3_index_info structure that is used to communicate with 1723 ** xBestIndex. 1724 ** 1725 ** In a join, this routine might be called multiple times for the 1726 ** same virtual table. The sqlite3_index_info structure is created 1727 ** and initialized on the first invocation and reused on all subsequent 1728 ** invocations. The sqlite3_index_info structure is also used when 1729 ** code is generated to access the virtual table. The whereInfoDelete() 1730 ** routine takes care of freeing the sqlite3_index_info structure after 1731 ** everybody has finished with it. 1732 */ 1733 static void bestVirtualIndex( 1734 Parse *pParse, /* The parsing context */ 1735 WhereClause *pWC, /* The WHERE clause */ 1736 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1737 Bitmask notReady, /* Mask of cursors that are not available */ 1738 ExprList *pOrderBy, /* The order by clause */ 1739 WhereCost *pCost, /* Lowest cost query plan */ 1740 sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */ 1741 ){ 1742 Table *pTab = pSrc->pTab; 1743 sqlite3_index_info *pIdxInfo; 1744 struct sqlite3_index_constraint *pIdxCons; 1745 struct sqlite3_index_constraint_usage *pUsage; 1746 WhereTerm *pTerm; 1747 int i, j; 1748 int nOrderBy; 1749 1750 /* If the sqlite3_index_info structure has not been previously 1751 ** allocated and initialized, then allocate and initialize it now. 1752 */ 1753 pIdxInfo = *ppIdxInfo; 1754 if( pIdxInfo==0 ){ 1755 *ppIdxInfo = pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pOrderBy); 1756 } 1757 if( pIdxInfo==0 ){ 1758 return; 1759 } 1760 1761 /* At this point, the sqlite3_index_info structure that pIdxInfo points 1762 ** to will have been initialized, either during the current invocation or 1763 ** during some prior invocation. Now we just have to customize the 1764 ** details of pIdxInfo for the current invocation and pass it to 1765 ** xBestIndex. 1766 */ 1767 1768 /* The module name must be defined. Also, by this point there must 1769 ** be a pointer to an sqlite3_vtab structure. Otherwise 1770 ** sqlite3ViewGetColumnNames() would have picked up the error. 1771 */ 1772 assert( pTab->azModuleArg && pTab->azModuleArg[0] ); 1773 assert( pTab->pVtab ); 1774 1775 /* Set the aConstraint[].usable fields and initialize all 1776 ** output variables to zero. 1777 ** 1778 ** aConstraint[].usable is true for constraints where the right-hand 1779 ** side contains only references to tables to the left of the current 1780 ** table. In other words, if the constraint is of the form: 1781 ** 1782 ** column = expr 1783 ** 1784 ** and we are evaluating a join, then the constraint on column is 1785 ** only valid if all tables referenced in expr occur to the left 1786 ** of the table containing column. 1787 ** 1788 ** The aConstraints[] array contains entries for all constraints 1789 ** on the current table. That way we only have to compute it once 1790 ** even though we might try to pick the best index multiple times. 1791 ** For each attempt at picking an index, the order of tables in the 1792 ** join might be different so we have to recompute the usable flag 1793 ** each time. 1794 */ 1795 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 1796 pUsage = pIdxInfo->aConstraintUsage; 1797 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ 1798 j = pIdxCons->iTermOffset; 1799 pTerm = &pWC->a[j]; 1800 pIdxCons->usable = (pTerm->prereqRight & notReady)==0 ?1:0; 1801 } 1802 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); 1803 if( pIdxInfo->needToFreeIdxStr ){ 1804 sqlite3_free(pIdxInfo->idxStr); 1805 } 1806 pIdxInfo->idxStr = 0; 1807 pIdxInfo->idxNum = 0; 1808 pIdxInfo->needToFreeIdxStr = 0; 1809 pIdxInfo->orderByConsumed = 0; 1810 /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */ 1811 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2); 1812 nOrderBy = pIdxInfo->nOrderBy; 1813 if( !pOrderBy ){ 1814 pIdxInfo->nOrderBy = 0; 1815 } 1816 1817 if( vtabBestIndex(pParse, pTab, pIdxInfo) ){ 1818 return; 1819 } 1820 1821 /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the 1822 ** inital value of lowestCost in this loop. If it is, then the 1823 ** (cost<lowestCost) test below will never be true. 1824 ** 1825 ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT 1826 ** is defined. 1827 */ 1828 if( (SQLITE_BIG_DBL/((double)2))<pIdxInfo->estimatedCost ){ 1829 pCost->rCost = (SQLITE_BIG_DBL/((double)2)); 1830 }else{ 1831 pCost->rCost = pIdxInfo->estimatedCost; 1832 } 1833 pCost->plan.wsFlags = WHERE_VIRTUALTABLE; 1834 pCost->plan.u.pVtabIdx = pIdxInfo; 1835 if( pIdxInfo && pIdxInfo->orderByConsumed ){ 1836 pCost->plan.wsFlags |= WHERE_ORDERBY; 1837 } 1838 pCost->plan.nEq = 0; 1839 pIdxInfo->nOrderBy = nOrderBy; 1840 1841 /* Try to find a more efficient access pattern by using multiple indexes 1842 ** to optimize an OR expression within the WHERE clause. 1843 */ 1844 bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost); 1845 } 1846 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1847 1848 /* 1849 ** Find the query plan for accessing a particular table. Write the 1850 ** best query plan and its cost into the WhereCost object supplied as the 1851 ** last parameter. 1852 ** 1853 ** The lowest cost plan wins. The cost is an estimate of the amount of 1854 ** CPU and disk I/O need to process the request using the selected plan. 1855 ** Factors that influence cost include: 1856 ** 1857 ** * The estimated number of rows that will be retrieved. (The 1858 ** fewer the better.) 1859 ** 1860 ** * Whether or not sorting must occur. 1861 ** 1862 ** * Whether or not there must be separate lookups in the 1863 ** index and in the main table. 1864 ** 1865 ** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in 1866 ** the SQL statement, then this function only considers plans using the 1867 ** named index. If no such plan is found, then the returned cost is 1868 ** SQLITE_BIG_DBL. If a plan is found that uses the named index, 1869 ** then the cost is calculated in the usual way. 1870 ** 1871 ** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table 1872 ** in the SELECT statement, then no indexes are considered. However, the 1873 ** selected plan may still take advantage of the tables built-in rowid 1874 ** index. 1875 */ 1876 static void bestBtreeIndex( 1877 Parse *pParse, /* The parsing context */ 1878 WhereClause *pWC, /* The WHERE clause */ 1879 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1880 Bitmask notReady, /* Mask of cursors that are not available */ 1881 ExprList *pOrderBy, /* The ORDER BY clause */ 1882 WhereCost *pCost /* Lowest cost query plan */ 1883 ){ 1884 WhereTerm *pTerm; /* A single term of the WHERE clause */ 1885 int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ 1886 Index *pProbe; /* An index we are evaluating */ 1887 int rev; /* True to scan in reverse order */ 1888 int wsFlags; /* Flags associated with pProbe */ 1889 int nEq; /* Number of == or IN constraints */ 1890 int eqTermMask; /* Mask of valid equality operators */ 1891 double cost; /* Cost of using pProbe */ 1892 double nRow; /* Estimated number of rows in result set */ 1893 int i; /* Loop counter */ 1894 1895 WHERETRACE(("bestIndex: tbl=%s notReady=%llx\n", pSrc->pTab->zName,notReady)); 1896 pProbe = pSrc->pTab->pIndex; 1897 if( pSrc->notIndexed ){ 1898 pProbe = 0; 1899 } 1900 1901 /* If the table has no indices and there are no terms in the where 1902 ** clause that refer to the ROWID, then we will never be able to do 1903 ** anything other than a full table scan on this table. We might as 1904 ** well put it first in the join order. That way, perhaps it can be 1905 ** referenced by other tables in the join. 1906 */ 1907 memset(pCost, 0, sizeof(*pCost)); 1908 if( pProbe==0 && 1909 findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 && 1910 (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){ 1911 if( pParse->db->flags & SQLITE_ReverseOrder ){ 1912 /* For application testing, randomly reverse the output order for 1913 ** SELECT statements that omit the ORDER BY clause. This will help 1914 ** to find cases where 1915 */ 1916 pCost->plan.wsFlags |= WHERE_REVERSE; 1917 } 1918 return; 1919 } 1920 pCost->rCost = SQLITE_BIG_DBL; 1921 1922 /* Check for a rowid=EXPR or rowid IN (...) constraints. If there was 1923 ** an INDEXED BY clause attached to this table, skip this step. 1924 */ 1925 if( !pSrc->pIndex ){ 1926 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); 1927 if( pTerm ){ 1928 Expr *pExpr; 1929 pCost->plan.wsFlags = WHERE_ROWID_EQ; 1930 if( pTerm->eOperator & WO_EQ ){ 1931 /* Rowid== is always the best pick. Look no further. Because only 1932 ** a single row is generated, output is always in sorted order */ 1933 pCost->plan.wsFlags = WHERE_ROWID_EQ | WHERE_UNIQUE; 1934 pCost->plan.nEq = 1; 1935 WHERETRACE(("... best is rowid\n")); 1936 pCost->rCost = 0; 1937 pCost->nRow = 1; 1938 return; 1939 }else if( !ExprHasProperty((pExpr = pTerm->pExpr), EP_xIsSelect) 1940 && pExpr->x.pList 1941 ){ 1942 /* Rowid IN (LIST): cost is NlogN where N is the number of list 1943 ** elements. */ 1944 pCost->rCost = pCost->nRow = pExpr->x.pList->nExpr; 1945 pCost->rCost *= estLog(pCost->rCost); 1946 }else{ 1947 /* Rowid IN (SELECT): cost is NlogN where N is the number of rows 1948 ** in the result of the inner select. We have no way to estimate 1949 ** that value so make a wild guess. */ 1950 pCost->nRow = 100; 1951 pCost->rCost = 200; 1952 } 1953 WHERETRACE(("... rowid IN cost: %.9g\n", pCost->rCost)); 1954 } 1955 1956 /* Estimate the cost of a table scan. If we do not know how many 1957 ** entries are in the table, use 1 million as a guess. 1958 */ 1959 cost = pProbe ? pProbe->aiRowEst[0] : 1000000; 1960 WHERETRACE(("... table scan base cost: %.9g\n", cost)); 1961 wsFlags = WHERE_ROWID_RANGE; 1962 1963 /* Check for constraints on a range of rowids in a table scan. 1964 */ 1965 pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0); 1966 if( pTerm ){ 1967 if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){ 1968 wsFlags |= WHERE_TOP_LIMIT; 1969 cost /= 3; /* Guess that rowid<EXPR eliminates two-thirds of rows */ 1970 } 1971 if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){ 1972 wsFlags |= WHERE_BTM_LIMIT; 1973 cost /= 3; /* Guess that rowid>EXPR eliminates two-thirds of rows */ 1974 } 1975 WHERETRACE(("... rowid range reduces cost to %.9g\n", cost)); 1976 }else{ 1977 wsFlags = 0; 1978 } 1979 nRow = cost; 1980 1981 /* If the table scan does not satisfy the ORDER BY clause, increase 1982 ** the cost by NlogN to cover the expense of sorting. */ 1983 if( pOrderBy ){ 1984 if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){ 1985 wsFlags |= WHERE_ORDERBY|WHERE_ROWID_RANGE; 1986 if( rev ){ 1987 wsFlags |= WHERE_REVERSE; 1988 } 1989 }else{ 1990 cost += cost*estLog(cost); 1991 WHERETRACE(("... sorting increases cost to %.9g\n", cost)); 1992 } 1993 }else if( pParse->db->flags & SQLITE_ReverseOrder ){ 1994 /* For application testing, randomly reverse the output order for 1995 ** SELECT statements that omit the ORDER BY clause. This will help 1996 ** to find cases where 1997 */ 1998 wsFlags |= WHERE_REVERSE; 1999 } 2000 2001 /* Remember this case if it is the best so far */ 2002 if( cost<pCost->rCost ){ 2003 pCost->rCost = cost; 2004 pCost->nRow = nRow; 2005 pCost->plan.wsFlags = wsFlags; 2006 } 2007 } 2008 2009 bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost); 2010 2011 /* If the pSrc table is the right table of a LEFT JOIN then we may not 2012 ** use an index to satisfy IS NULL constraints on that table. This is 2013 ** because columns might end up being NULL if the table does not match - 2014 ** a circumstance which the index cannot help us discover. Ticket #2177. 2015 */ 2016 if( (pSrc->jointype & JT_LEFT)!=0 ){ 2017 eqTermMask = WO_EQ|WO_IN; 2018 }else{ 2019 eqTermMask = WO_EQ|WO_IN|WO_ISNULL; 2020 } 2021 2022 /* Look at each index. 2023 */ 2024 if( pSrc->pIndex ){ 2025 pProbe = pSrc->pIndex; 2026 } 2027 for(; pProbe; pProbe=(pSrc->pIndex ? 0 : pProbe->pNext)){ 2028 double inMultiplier = 1; /* Number of equality look-ups needed */ 2029 int inMultIsEst = 0; /* True if inMultiplier is an estimate */ 2030 2031 WHERETRACE(("... index %s:\n", pProbe->zName)); 2032 2033 /* Count the number of columns in the index that are satisfied 2034 ** by x=EXPR or x IS NULL constraints or x IN (...) constraints. 2035 ** For a term of the form x=EXPR or x IS NULL we only have to do 2036 ** a single binary search. But for x IN (...) we have to do a 2037 ** number of binary searched 2038 ** equal to the number of entries on the RHS of the IN operator. 2039 ** The inMultipler variable with try to estimate the number of 2040 ** binary searches needed. 2041 */ 2042 wsFlags = 0; 2043 for(i=0; i<pProbe->nColumn; i++){ 2044 int j = pProbe->aiColumn[i]; 2045 pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe); 2046 if( pTerm==0 ) break; 2047 wsFlags |= WHERE_COLUMN_EQ; 2048 if( pTerm->eOperator & WO_IN ){ 2049 Expr *pExpr = pTerm->pExpr; 2050 wsFlags |= WHERE_COLUMN_IN; 2051 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2052 inMultiplier *= 25; 2053 inMultIsEst = 1; 2054 }else if( pExpr->x.pList ){ 2055 inMultiplier *= pExpr->x.pList->nExpr + 1; 2056 } 2057 }else if( pTerm->eOperator & WO_ISNULL ){ 2058 wsFlags |= WHERE_COLUMN_NULL; 2059 } 2060 } 2061 nRow = pProbe->aiRowEst[i] * inMultiplier; 2062 /* If inMultiplier is an estimate and that estimate results in an 2063 ** nRow it that is more than half number of rows in the table, 2064 ** then reduce inMultipler */ 2065 if( inMultIsEst && nRow*2 > pProbe->aiRowEst[0] ){ 2066 nRow = pProbe->aiRowEst[0]/2; 2067 inMultiplier = nRow/pProbe->aiRowEst[i]; 2068 } 2069 cost = nRow + inMultiplier*estLog(pProbe->aiRowEst[0]); 2070 nEq = i; 2071 if( pProbe->onError!=OE_None && nEq==pProbe->nColumn ){ 2072 testcase( wsFlags & WHERE_COLUMN_IN ); 2073 testcase( wsFlags & WHERE_COLUMN_NULL ); 2074 if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){ 2075 wsFlags |= WHERE_UNIQUE; 2076 } 2077 } 2078 WHERETRACE(("...... nEq=%d inMult=%.9g nRow=%.9g cost=%.9g\n", 2079 nEq, inMultiplier, nRow, cost)); 2080 2081 /* Look for range constraints. Assume that each range constraint 2082 ** makes the search space 1/3rd smaller. 2083 */ 2084 if( nEq<pProbe->nColumn ){ 2085 int j = pProbe->aiColumn[nEq]; 2086 pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe); 2087 if( pTerm ){ 2088 wsFlags |= WHERE_COLUMN_RANGE; 2089 if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){ 2090 wsFlags |= WHERE_TOP_LIMIT; 2091 cost /= 3; 2092 nRow /= 3; 2093 } 2094 if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){ 2095 wsFlags |= WHERE_BTM_LIMIT; 2096 cost /= 3; 2097 nRow /= 3; 2098 } 2099 WHERETRACE(("...... range reduces nRow to %.9g and cost to %.9g\n", 2100 nRow, cost)); 2101 } 2102 } 2103 2104 /* Add the additional cost of sorting if that is a factor. 2105 */ 2106 if( pOrderBy ){ 2107 if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 2108 && isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) 2109 ){ 2110 if( wsFlags==0 ){ 2111 wsFlags = WHERE_COLUMN_RANGE; 2112 } 2113 wsFlags |= WHERE_ORDERBY; 2114 if( rev ){ 2115 wsFlags |= WHERE_REVERSE; 2116 } 2117 }else{ 2118 cost += cost*estLog(cost); 2119 WHERETRACE(("...... orderby increases cost to %.9g\n", cost)); 2120 } 2121 }else if( pParse->db->flags & SQLITE_ReverseOrder ){ 2122 /* For application testing, randomly reverse the output order for 2123 ** SELECT statements that omit the ORDER BY clause. This will help 2124 ** to find cases where 2125 */ 2126 wsFlags |= WHERE_REVERSE; 2127 } 2128 2129 /* Check to see if we can get away with using just the index without 2130 ** ever reading the table. If that is the case, then halve the 2131 ** cost of this index. 2132 */ 2133 if( wsFlags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){ 2134 Bitmask m = pSrc->colUsed; 2135 int j; 2136 for(j=0; j<pProbe->nColumn; j++){ 2137 int x = pProbe->aiColumn[j]; 2138 if( x<BMS-1 ){ 2139 m &= ~(((Bitmask)1)<<x); 2140 } 2141 } 2142 if( m==0 ){ 2143 wsFlags |= WHERE_IDX_ONLY; 2144 cost /= 2; 2145 WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost)); 2146 } 2147 } 2148 2149 /* If this index has achieved the lowest cost so far, then use it. 2150 */ 2151 if( wsFlags!=0 && cost < pCost->rCost ){ 2152 pCost->rCost = cost; 2153 pCost->nRow = nRow; 2154 pCost->plan.wsFlags = wsFlags; 2155 pCost->plan.nEq = nEq; 2156 assert( pCost->plan.wsFlags & WHERE_INDEXED ); 2157 pCost->plan.u.pIdx = pProbe; 2158 } 2159 } 2160 2161 /* Report the best result 2162 */ 2163 pCost->plan.wsFlags |= eqTermMask; 2164 WHERETRACE(("best index is %s, cost=%.9g, nrow=%.9g, wsFlags=%x, nEq=%d\n", 2165 (pCost->plan.wsFlags & WHERE_INDEXED)!=0 ? 2166 pCost->plan.u.pIdx->zName : "(none)", pCost->nRow, 2167 pCost->rCost, pCost->plan.wsFlags, pCost->plan.nEq)); 2168 } 2169 2170 /* 2171 ** Find the query plan for accessing table pSrc->pTab. Write the 2172 ** best query plan and its cost into the WhereCost object supplied 2173 ** as the last parameter. This function may calculate the cost of 2174 ** both real and virtual table scans. 2175 */ 2176 static void bestIndex( 2177 Parse *pParse, /* The parsing context */ 2178 WhereClause *pWC, /* The WHERE clause */ 2179 struct SrcList_item *pSrc, /* The FROM clause term to search */ 2180 Bitmask notReady, /* Mask of cursors that are not available */ 2181 ExprList *pOrderBy, /* The ORDER BY clause */ 2182 WhereCost *pCost /* Lowest cost query plan */ 2183 ){ 2184 if( IsVirtual(pSrc->pTab) ){ 2185 sqlite3_index_info *p = 0; 2186 bestVirtualIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost, &p); 2187 if( p->needToFreeIdxStr ){ 2188 sqlite3_free(p->idxStr); 2189 } 2190 sqlite3DbFree(pParse->db, p); 2191 }else{ 2192 bestBtreeIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost); 2193 } 2194 } 2195 2196 /* 2197 ** Disable a term in the WHERE clause. Except, do not disable the term 2198 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 2199 ** or USING clause of that join. 2200 ** 2201 ** Consider the term t2.z='ok' in the following queries: 2202 ** 2203 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 2204 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 2205 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 2206 ** 2207 ** The t2.z='ok' is disabled in the in (2) because it originates 2208 ** in the ON clause. The term is disabled in (3) because it is not part 2209 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 2210 ** 2211 ** Disabling a term causes that term to not be tested in the inner loop 2212 ** of the join. Disabling is an optimization. When terms are satisfied 2213 ** by indices, we disable them to prevent redundant tests in the inner 2214 ** loop. We would get the correct results if nothing were ever disabled, 2215 ** but joins might run a little slower. The trick is to disable as much 2216 ** as we can without disabling too much. If we disabled in (1), we'd get 2217 ** the wrong answer. See ticket #813. 2218 */ 2219 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 2220 if( pTerm 2221 && ALWAYS((pTerm->wtFlags & TERM_CODED)==0) 2222 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 2223 ){ 2224 pTerm->wtFlags |= TERM_CODED; 2225 if( pTerm->iParent>=0 ){ 2226 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; 2227 if( (--pOther->nChild)==0 ){ 2228 disableTerm(pLevel, pOther); 2229 } 2230 } 2231 } 2232 } 2233 2234 /* 2235 ** Apply the affinities associated with the first n columns of index 2236 ** pIdx to the values in the n registers starting at base. 2237 */ 2238 static void codeApplyAffinity(Parse *pParse, int base, int n, Index *pIdx){ 2239 if( n>0 ){ 2240 Vdbe *v = pParse->pVdbe; 2241 assert( v!=0 ); 2242 sqlite3VdbeAddOp2(v, OP_Affinity, base, n); 2243 sqlite3IndexAffinityStr(v, pIdx); 2244 sqlite3ExprCacheAffinityChange(pParse, base, n); 2245 } 2246 } 2247 2248 2249 /* 2250 ** Generate code for a single equality term of the WHERE clause. An equality 2251 ** term can be either X=expr or X IN (...). pTerm is the term to be 2252 ** coded. 2253 ** 2254 ** The current value for the constraint is left in register iReg. 2255 ** 2256 ** For a constraint of the form X=expr, the expression is evaluated and its 2257 ** result is left on the stack. For constraints of the form X IN (...) 2258 ** this routine sets up a loop that will iterate over all values of X. 2259 */ 2260 static int codeEqualityTerm( 2261 Parse *pParse, /* The parsing context */ 2262 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 2263 WhereLevel *pLevel, /* When level of the FROM clause we are working on */ 2264 int iTarget /* Attempt to leave results in this register */ 2265 ){ 2266 Expr *pX = pTerm->pExpr; 2267 Vdbe *v = pParse->pVdbe; 2268 int iReg; /* Register holding results */ 2269 2270 assert( iTarget>0 ); 2271 if( pX->op==TK_EQ ){ 2272 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 2273 }else if( pX->op==TK_ISNULL ){ 2274 iReg = iTarget; 2275 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 2276 #ifndef SQLITE_OMIT_SUBQUERY 2277 }else{ 2278 int eType; 2279 int iTab; 2280 struct InLoop *pIn; 2281 2282 assert( pX->op==TK_IN ); 2283 iReg = iTarget; 2284 eType = sqlite3FindInIndex(pParse, pX, 0); 2285 iTab = pX->iTable; 2286 sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); 2287 VdbeComment((v, "%.*s", pX->span.n, pX->span.z)); 2288 assert( pLevel->plan.wsFlags & WHERE_IN_ABLE ); 2289 if( pLevel->u.in.nIn==0 ){ 2290 pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 2291 } 2292 pLevel->u.in.nIn++; 2293 pLevel->u.in.aInLoop = 2294 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, 2295 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 2296 pIn = pLevel->u.in.aInLoop; 2297 if( pIn ){ 2298 pIn += pLevel->u.in.nIn - 1; 2299 pIn->iCur = iTab; 2300 if( eType==IN_INDEX_ROWID ){ 2301 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); 2302 }else{ 2303 pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); 2304 } 2305 sqlite3VdbeAddOp1(v, OP_IsNull, iReg); 2306 }else{ 2307 pLevel->u.in.nIn = 0; 2308 } 2309 #endif 2310 } 2311 disableTerm(pLevel, pTerm); 2312 return iReg; 2313 } 2314 2315 /* 2316 ** Generate code that will evaluate all == and IN constraints for an 2317 ** index. The values for all constraints are left on the stack. 2318 ** 2319 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 2320 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 2321 ** The index has as many as three equality constraints, but in this 2322 ** example, the third "c" value is an inequality. So only two 2323 ** constraints are coded. This routine will generate code to evaluate 2324 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 2325 ** in consecutive registers and the index of the first register is returned. 2326 ** 2327 ** In the example above nEq==2. But this subroutine works for any value 2328 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 2329 ** The only thing it does is allocate the pLevel->iMem memory cell. 2330 ** 2331 ** This routine always allocates at least one memory cell and returns 2332 ** the index of that memory cell. The code that 2333 ** calls this routine will use that memory cell to store the termination 2334 ** key value of the loop. If one or more IN operators appear, then 2335 ** this routine allocates an additional nEq memory cells for internal 2336 ** use. 2337 */ 2338 static int codeAllEqualityTerms( 2339 Parse *pParse, /* Parsing context */ 2340 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 2341 WhereClause *pWC, /* The WHERE clause */ 2342 Bitmask notReady, /* Which parts of FROM have not yet been coded */ 2343 int nExtraReg /* Number of extra registers to allocate */ 2344 ){ 2345 int nEq = pLevel->plan.nEq; /* The number of == or IN constraints to code */ 2346 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 2347 Index *pIdx; /* The index being used for this loop */ 2348 int iCur = pLevel->iTabCur; /* The cursor of the table */ 2349 WhereTerm *pTerm; /* A single constraint term */ 2350 int j; /* Loop counter */ 2351 int regBase; /* Base register */ 2352 int nReg; /* Number of registers to allocate */ 2353 2354 /* This module is only called on query plans that use an index. */ 2355 assert( pLevel->plan.wsFlags & WHERE_INDEXED ); 2356 pIdx = pLevel->plan.u.pIdx; 2357 2358 /* Figure out how many memory cells we will need then allocate them. 2359 */ 2360 regBase = pParse->nMem + 1; 2361 nReg = pLevel->plan.nEq + nExtraReg; 2362 pParse->nMem += nReg; 2363 2364 /* Evaluate the equality constraints 2365 */ 2366 assert( pIdx->nColumn>=nEq ); 2367 for(j=0; j<nEq; j++){ 2368 int r1; 2369 int k = pIdx->aiColumn[j]; 2370 pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx); 2371 if( NEVER(pTerm==0) ) break; 2372 assert( (pTerm->wtFlags & TERM_CODED)==0 ); 2373 r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j); 2374 if( r1!=regBase+j ){ 2375 if( nReg==1 ){ 2376 sqlite3ReleaseTempReg(pParse, regBase); 2377 regBase = r1; 2378 }else{ 2379 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); 2380 } 2381 } 2382 testcase( pTerm->eOperator & WO_ISNULL ); 2383 testcase( pTerm->eOperator & WO_IN ); 2384 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ 2385 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 2386 } 2387 } 2388 return regBase; 2389 } 2390 2391 /* 2392 ** Generate code for the start of the iLevel-th loop in the WHERE clause 2393 ** implementation described by pWInfo. 2394 */ 2395 static Bitmask codeOneLoopStart( 2396 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 2397 int iLevel, /* Which level of pWInfo->a[] should be coded */ 2398 u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */ 2399 Bitmask notReady /* Which tables are currently available */ 2400 ){ 2401 int j, k; /* Loop counters */ 2402 int iCur; /* The VDBE cursor for the table */ 2403 int addrNxt; /* Where to jump to continue with the next IN case */ 2404 int omitTable; /* True if we use the index only */ 2405 int bRev; /* True if we need to scan in reverse order */ 2406 WhereLevel *pLevel; /* The where level to be coded */ 2407 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 2408 WhereTerm *pTerm; /* A WHERE clause term */ 2409 Parse *pParse; /* Parsing context */ 2410 Vdbe *v; /* The prepared stmt under constructions */ 2411 struct SrcList_item *pTabItem; /* FROM clause term being coded */ 2412 int addrBrk; /* Jump here to break out of the loop */ 2413 int addrCont; /* Jump here to continue with next cycle */ 2414 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 2415 int iReleaseReg = 0; /* Temp register to free before returning */ 2416 2417 pParse = pWInfo->pParse; 2418 v = pParse->pVdbe; 2419 pWC = pWInfo->pWC; 2420 pLevel = &pWInfo->a[iLevel]; 2421 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 2422 iCur = pTabItem->iCursor; 2423 bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0; 2424 omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0 2425 && (wctrlFlags & WHERE_FORCE_TABLE)==0; 2426 2427 /* Create labels for the "break" and "continue" instructions 2428 ** for the current loop. Jump to addrBrk to break out of a loop. 2429 ** Jump to cont to go immediately to the next iteration of the 2430 ** loop. 2431 ** 2432 ** When there is an IN operator, we also have a "addrNxt" label that 2433 ** means to continue with the next IN value combination. When 2434 ** there are no IN operators in the constraints, the "addrNxt" label 2435 ** is the same as "addrBrk". 2436 */ 2437 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 2438 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); 2439 2440 /* If this is the right table of a LEFT OUTER JOIN, allocate and 2441 ** initialize a memory cell that records if this table matches any 2442 ** row of the left table of the join. 2443 */ 2444 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ 2445 pLevel->iLeftJoin = ++pParse->nMem; 2446 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 2447 VdbeComment((v, "init LEFT JOIN no-match flag")); 2448 } 2449 2450 #ifndef SQLITE_OMIT_VIRTUALTABLE 2451 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 2452 /* Case 0: The table is a virtual-table. Use the VFilter and VNext 2453 ** to access the data. 2454 */ 2455 int iReg; /* P3 Value for OP_VFilter */ 2456 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx; 2457 int nConstraint = pVtabIdx->nConstraint; 2458 struct sqlite3_index_constraint_usage *aUsage = 2459 pVtabIdx->aConstraintUsage; 2460 const struct sqlite3_index_constraint *aConstraint = 2461 pVtabIdx->aConstraint; 2462 2463 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 2464 for(j=1; j<=nConstraint; j++){ 2465 for(k=0; k<nConstraint; k++){ 2466 if( aUsage[k].argvIndex==j ){ 2467 int iTerm = aConstraint[k].iTermOffset; 2468 sqlite3ExprCode(pParse, pWC->a[iTerm].pExpr->pRight, iReg+j+1); 2469 break; 2470 } 2471 } 2472 if( k==nConstraint ) break; 2473 } 2474 sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg); 2475 sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1); 2476 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrBrk, iReg, pVtabIdx->idxStr, 2477 pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC); 2478 pVtabIdx->needToFreeIdxStr = 0; 2479 for(j=0; j<nConstraint; j++){ 2480 if( aUsage[j].omit ){ 2481 int iTerm = aConstraint[j].iTermOffset; 2482 disableTerm(pLevel, &pWC->a[iTerm]); 2483 } 2484 } 2485 pLevel->op = OP_VNext; 2486 pLevel->p1 = iCur; 2487 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2488 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 2489 }else 2490 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 2491 2492 if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){ 2493 /* Case 1: We can directly reference a single row using an 2494 ** equality comparison against the ROWID field. Or 2495 ** we reference multiple rows using a "rowid IN (...)" 2496 ** construct. 2497 */ 2498 iReleaseReg = sqlite3GetTempReg(pParse); 2499 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); 2500 assert( pTerm!=0 ); 2501 assert( pTerm->pExpr!=0 ); 2502 assert( pTerm->leftCursor==iCur ); 2503 assert( omitTable==0 ); 2504 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg); 2505 addrNxt = pLevel->addrNxt; 2506 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); 2507 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg); 2508 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 2509 VdbeComment((v, "pk")); 2510 pLevel->op = OP_Noop; 2511 }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){ 2512 /* Case 2: We have an inequality comparison against the ROWID field. 2513 */ 2514 int testOp = OP_Noop; 2515 int start; 2516 int memEndValue = 0; 2517 WhereTerm *pStart, *pEnd; 2518 2519 assert( omitTable==0 ); 2520 pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0); 2521 pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0); 2522 if( bRev ){ 2523 pTerm = pStart; 2524 pStart = pEnd; 2525 pEnd = pTerm; 2526 } 2527 if( pStart ){ 2528 Expr *pX; /* The expression that defines the start bound */ 2529 int r1, rTemp; /* Registers for holding the start boundary */ 2530 2531 /* The following constant maps TK_xx codes into corresponding 2532 ** seek opcodes. It depends on a particular ordering of TK_xx 2533 */ 2534 const u8 aMoveOp[] = { 2535 /* TK_GT */ OP_SeekGt, 2536 /* TK_LE */ OP_SeekLe, 2537 /* TK_LT */ OP_SeekLt, 2538 /* TK_GE */ OP_SeekGe 2539 }; 2540 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 2541 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 2542 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 2543 2544 pX = pStart->pExpr; 2545 assert( pX!=0 ); 2546 assert( pStart->leftCursor==iCur ); 2547 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 2548 sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1); 2549 VdbeComment((v, "pk")); 2550 sqlite3ExprCacheAffinityChange(pParse, r1, 1); 2551 sqlite3ReleaseTempReg(pParse, rTemp); 2552 disableTerm(pLevel, pStart); 2553 }else{ 2554 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); 2555 } 2556 if( pEnd ){ 2557 Expr *pX; 2558 pX = pEnd->pExpr; 2559 assert( pX!=0 ); 2560 assert( pEnd->leftCursor==iCur ); 2561 memEndValue = ++pParse->nMem; 2562 sqlite3ExprCode(pParse, pX->pRight, memEndValue); 2563 if( pX->op==TK_LT || pX->op==TK_GT ){ 2564 testOp = bRev ? OP_Le : OP_Ge; 2565 }else{ 2566 testOp = bRev ? OP_Lt : OP_Gt; 2567 } 2568 disableTerm(pLevel, pEnd); 2569 } 2570 start = sqlite3VdbeCurrentAddr(v); 2571 pLevel->op = bRev ? OP_Prev : OP_Next; 2572 pLevel->p1 = iCur; 2573 pLevel->p2 = start; 2574 pLevel->p5 = (pStart==0 && pEnd==0) ?1:0; 2575 if( testOp!=OP_Noop ){ 2576 iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse); 2577 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 2578 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 2579 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 2580 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 2581 } 2582 }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){ 2583 /* Case 3: A scan using an index. 2584 ** 2585 ** The WHERE clause may contain zero or more equality 2586 ** terms ("==" or "IN" operators) that refer to the N 2587 ** left-most columns of the index. It may also contain 2588 ** inequality constraints (>, <, >= or <=) on the indexed 2589 ** column that immediately follows the N equalities. Only 2590 ** the right-most column can be an inequality - the rest must 2591 ** use the "==" and "IN" operators. For example, if the 2592 ** index is on (x,y,z), then the following clauses are all 2593 ** optimized: 2594 ** 2595 ** x=5 2596 ** x=5 AND y=10 2597 ** x=5 AND y<10 2598 ** x=5 AND y>5 AND y<10 2599 ** x=5 AND y=5 AND z<=10 2600 ** 2601 ** The z<10 term of the following cannot be used, only 2602 ** the x=5 term: 2603 ** 2604 ** x=5 AND z<10 2605 ** 2606 ** N may be zero if there are inequality constraints. 2607 ** If there are no inequality constraints, then N is at 2608 ** least one. 2609 ** 2610 ** This case is also used when there are no WHERE clause 2611 ** constraints but an index is selected anyway, in order 2612 ** to force the output order to conform to an ORDER BY. 2613 */ 2614 int aStartOp[] = { 2615 0, 2616 0, 2617 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 2618 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 2619 OP_SeekGt, /* 4: (start_constraints && !startEq && !bRev) */ 2620 OP_SeekLt, /* 5: (start_constraints && !startEq && bRev) */ 2621 OP_SeekGe, /* 6: (start_constraints && startEq && !bRev) */ 2622 OP_SeekLe /* 7: (start_constraints && startEq && bRev) */ 2623 }; 2624 int aEndOp[] = { 2625 OP_Noop, /* 0: (!end_constraints) */ 2626 OP_IdxGE, /* 1: (end_constraints && !bRev) */ 2627 OP_IdxLT /* 2: (end_constraints && bRev) */ 2628 }; 2629 int nEq = pLevel->plan.nEq; 2630 int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */ 2631 int regBase; /* Base register holding constraint values */ 2632 int r1; /* Temp register */ 2633 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 2634 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 2635 int startEq; /* True if range start uses ==, >= or <= */ 2636 int endEq; /* True if range end uses ==, >= or <= */ 2637 int start_constraints; /* Start of range is constrained */ 2638 int nConstraint; /* Number of constraint terms */ 2639 Index *pIdx; /* The index we will be using */ 2640 int iIdxCur; /* The VDBE cursor for the index */ 2641 int nExtraReg = 0; /* Number of extra registers needed */ 2642 int op; /* Instruction opcode */ 2643 2644 pIdx = pLevel->plan.u.pIdx; 2645 iIdxCur = pLevel->iIdxCur; 2646 k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */ 2647 2648 /* If this loop satisfies a sort order (pOrderBy) request that 2649 ** was passed to this function to implement a "SELECT min(x) ..." 2650 ** query, then the caller will only allow the loop to run for 2651 ** a single iteration. This means that the first row returned 2652 ** should not have a NULL value stored in 'x'. If column 'x' is 2653 ** the first one after the nEq equality constraints in the index, 2654 ** this requires some special handling. 2655 */ 2656 if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0 2657 && (pLevel->plan.wsFlags&WHERE_ORDERBY) 2658 && (pIdx->nColumn>nEq) 2659 ){ 2660 /* assert( pOrderBy->nExpr==1 ); */ 2661 /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */ 2662 isMinQuery = 1; 2663 nExtraReg = 1; 2664 } 2665 2666 /* Find any inequality constraint terms for the start and end 2667 ** of the range. 2668 */ 2669 if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){ 2670 pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx); 2671 nExtraReg = 1; 2672 } 2673 if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){ 2674 pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx); 2675 nExtraReg = 1; 2676 } 2677 2678 /* Generate code to evaluate all constraint terms using == or IN 2679 ** and store the values of those terms in an array of registers 2680 ** starting at regBase. 2681 */ 2682 regBase = codeAllEqualityTerms(pParse, pLevel, pWC, notReady, nExtraReg); 2683 addrNxt = pLevel->addrNxt; 2684 2685 2686 /* If we are doing a reverse order scan on an ascending index, or 2687 ** a forward order scan on a descending index, interchange the 2688 ** start and end terms (pRangeStart and pRangeEnd). 2689 */ 2690 if( bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){ 2691 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 2692 } 2693 2694 testcase( pRangeStart && pRangeStart->eOperator & WO_LE ); 2695 testcase( pRangeStart && pRangeStart->eOperator & WO_GE ); 2696 testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE ); 2697 testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE ); 2698 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 2699 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 2700 start_constraints = pRangeStart || nEq>0; 2701 2702 /* Seek the index cursor to the start of the range. */ 2703 nConstraint = nEq; 2704 if( pRangeStart ){ 2705 sqlite3ExprCode(pParse, pRangeStart->pExpr->pRight, regBase+nEq); 2706 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 2707 nConstraint++; 2708 }else if( isMinQuery ){ 2709 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 2710 nConstraint++; 2711 startEq = 0; 2712 start_constraints = 1; 2713 } 2714 codeApplyAffinity(pParse, regBase, nConstraint, pIdx); 2715 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 2716 assert( op!=0 ); 2717 testcase( op==OP_Rewind ); 2718 testcase( op==OP_Last ); 2719 testcase( op==OP_SeekGt ); 2720 testcase( op==OP_SeekGe ); 2721 testcase( op==OP_SeekLe ); 2722 testcase( op==OP_SeekLt ); 2723 sqlite3VdbeAddOp4(v, op, iIdxCur, addrNxt, regBase, 2724 SQLITE_INT_TO_PTR(nConstraint), P4_INT32); 2725 2726 /* Load the value for the inequality constraint at the end of the 2727 ** range (if any). 2728 */ 2729 nConstraint = nEq; 2730 if( pRangeEnd ){ 2731 sqlite3ExprCacheRemove(pParse, regBase+nEq); 2732 sqlite3ExprCode(pParse, pRangeEnd->pExpr->pRight, regBase+nEq); 2733 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 2734 codeApplyAffinity(pParse, regBase, nEq+1, pIdx); 2735 nConstraint++; 2736 } 2737 2738 /* Top of the loop body */ 2739 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2740 2741 /* Check if the index cursor is past the end of the range. */ 2742 op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)]; 2743 testcase( op==OP_Noop ); 2744 testcase( op==OP_IdxGE ); 2745 testcase( op==OP_IdxLT ); 2746 if( op!=OP_Noop ){ 2747 sqlite3VdbeAddOp4(v, op, iIdxCur, addrNxt, regBase, 2748 SQLITE_INT_TO_PTR(nConstraint), P4_INT32); 2749 sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0); 2750 } 2751 2752 /* If there are inequality constraints, check that the value 2753 ** of the table column that the inequality contrains is not NULL. 2754 ** If it is, jump to the next iteration of the loop. 2755 */ 2756 r1 = sqlite3GetTempReg(pParse); 2757 testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ); 2758 testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ); 2759 if( pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT) ){ 2760 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1); 2761 sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont); 2762 } 2763 sqlite3ReleaseTempReg(pParse, r1); 2764 2765 /* Seek the table cursor, if required */ 2766 disableTerm(pLevel, pRangeStart); 2767 disableTerm(pLevel, pRangeEnd); 2768 if( !omitTable ){ 2769 iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse); 2770 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); 2771 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 2772 sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */ 2773 } 2774 2775 /* Record the instruction used to terminate the loop. Disable 2776 ** WHERE clause terms made redundant by the index range scan. 2777 */ 2778 pLevel->op = bRev ? OP_Prev : OP_Next; 2779 pLevel->p1 = iIdxCur; 2780 }else 2781 2782 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 2783 if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){ 2784 /* Case 4: Two or more separately indexed terms connected by OR 2785 ** 2786 ** Example: 2787 ** 2788 ** CREATE TABLE t1(a,b,c,d); 2789 ** CREATE INDEX i1 ON t1(a); 2790 ** CREATE INDEX i2 ON t1(b); 2791 ** CREATE INDEX i3 ON t1(c); 2792 ** 2793 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 2794 ** 2795 ** In the example, there are three indexed terms connected by OR. 2796 ** The top of the loop looks like this: 2797 ** 2798 ** Null 1 # Zero the rowset in reg 1 2799 ** 2800 ** Then, for each indexed term, the following. The arguments to 2801 ** RowSetTest are such that the rowid of the current row is inserted 2802 ** into the RowSet. If it is already present, control skips the 2803 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 2804 ** 2805 ** sqlite3WhereBegin(<term>) 2806 ** RowSetTest # Insert rowid into rowset 2807 ** Gosub 2 A 2808 ** sqlite3WhereEnd() 2809 ** 2810 ** Following the above, code to terminate the loop. Label A, the target 2811 ** of the Gosub above, jumps to the instruction right after the Goto. 2812 ** 2813 ** Null 1 # Zero the rowset in reg 1 2814 ** Goto B # The loop is finished. 2815 ** 2816 ** A: <loop body> # Return data, whatever. 2817 ** 2818 ** Return 2 # Jump back to the Gosub 2819 ** 2820 ** B: <after the loop> 2821 ** 2822 */ 2823 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 2824 WhereTerm *pFinal; /* Final subterm within the OR-clause. */ 2825 SrcList oneTab; /* Shortened table list */ 2826 2827 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 2828 int regRowset; /* Register for RowSet object */ 2829 int regRowid; /* Register holding rowid */ 2830 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ 2831 int iRetInit; /* Address of regReturn init */ 2832 int ii; 2833 2834 pTerm = pLevel->plan.u.pTerm; 2835 assert( pTerm!=0 ); 2836 assert( pTerm->eOperator==WO_OR ); 2837 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 2838 pOrWc = &pTerm->u.pOrInfo->wc; 2839 pFinal = &pOrWc->a[pOrWc->nTerm-1]; 2840 2841 /* Set up a SrcList containing just the table being scanned by this loop. */ 2842 oneTab.nSrc = 1; 2843 oneTab.nAlloc = 1; 2844 oneTab.a[0] = *pTabItem; 2845 2846 /* Initialize the rowset register to contain NULL. An SQL NULL is 2847 ** equivalent to an empty rowset. 2848 ** 2849 ** Also initialize regReturn to contain the address of the instruction 2850 ** immediately following the OP_Return at the bottom of the loop. This 2851 ** is required in a few obscure LEFT JOIN cases where control jumps 2852 ** over the top of the loop into the body of it. In this case the 2853 ** correct response for the end-of-loop code (the OP_Return) is to 2854 ** fall through to the next instruction, just as an OP_Next does if 2855 ** called on an uninitialized cursor. 2856 */ 2857 if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2858 regRowset = ++pParse->nMem; 2859 regRowid = ++pParse->nMem; 2860 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 2861 } 2862 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 2863 2864 for(ii=0; ii<pOrWc->nTerm; ii++){ 2865 WhereTerm *pOrTerm = &pOrWc->a[ii]; 2866 if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){ 2867 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 2868 2869 /* Loop through table entries that match term pOrTerm. */ 2870 pSubWInfo = sqlite3WhereBegin(pParse, &oneTab, pOrTerm->pExpr, 0, 2871 WHERE_OMIT_OPEN | WHERE_OMIT_CLOSE | WHERE_FORCE_TABLE); 2872 if( pSubWInfo ){ 2873 if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2874 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 2875 int r; 2876 r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur, 2877 regRowid, 0); 2878 sqlite3VdbeAddOp4(v, OP_RowSetTest, regRowset, 2879 sqlite3VdbeCurrentAddr(v)+2, 2880 r, (char*)iSet, P4_INT32); 2881 } 2882 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 2883 2884 /* Finish the loop through table entries that match term pOrTerm. */ 2885 sqlite3WhereEnd(pSubWInfo); 2886 } 2887 } 2888 } 2889 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 2890 /* sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); */ 2891 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk); 2892 sqlite3VdbeResolveLabel(v, iLoopBody); 2893 2894 pLevel->op = OP_Return; 2895 pLevel->p1 = regReturn; 2896 disableTerm(pLevel, pTerm); 2897 }else 2898 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 2899 2900 { 2901 /* Case 5: There is no usable index. We must do a complete 2902 ** scan of the entire table. 2903 */ 2904 static const u8 aStep[] = { OP_Next, OP_Prev }; 2905 static const u8 aStart[] = { OP_Rewind, OP_Last }; 2906 assert( bRev==0 || bRev==1 ); 2907 assert( omitTable==0 ); 2908 pLevel->op = aStep[bRev]; 2909 pLevel->p1 = iCur; 2910 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); 2911 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2912 } 2913 notReady &= ~getMask(pWC->pMaskSet, iCur); 2914 2915 /* Insert code to test every subexpression that can be completely 2916 ** computed using the current set of tables. 2917 */ 2918 k = 0; 2919 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2920 Expr *pE; 2921 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2922 testcase( pTerm->wtFlags & TERM_CODED ); 2923 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2924 if( (pTerm->prereqAll & notReady)!=0 ) continue; 2925 pE = pTerm->pExpr; 2926 assert( pE!=0 ); 2927 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ 2928 continue; 2929 } 2930 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 2931 k = 1; 2932 pTerm->wtFlags |= TERM_CODED; 2933 } 2934 2935 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2936 ** at least one row of the right table has matched the left table. 2937 */ 2938 if( pLevel->iLeftJoin ){ 2939 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 2940 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 2941 VdbeComment((v, "record LEFT JOIN hit")); 2942 sqlite3ExprCacheClear(pParse); 2943 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ 2944 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2945 testcase( pTerm->wtFlags & TERM_CODED ); 2946 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2947 if( (pTerm->prereqAll & notReady)!=0 ) continue; 2948 assert( pTerm->pExpr ); 2949 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 2950 pTerm->wtFlags |= TERM_CODED; 2951 } 2952 } 2953 sqlite3ReleaseTempReg(pParse, iReleaseReg); 2954 2955 return notReady; 2956 } 2957 2958 #if defined(SQLITE_TEST) 2959 /* 2960 ** The following variable holds a text description of query plan generated 2961 ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin 2962 ** overwrites the previous. This information is used for testing and 2963 ** analysis only. 2964 */ 2965 char sqlite3_query_plan[BMS*2*40]; /* Text of the join */ 2966 static int nQPlan = 0; /* Next free slow in _query_plan[] */ 2967 2968 #endif /* SQLITE_TEST */ 2969 2970 2971 /* 2972 ** Free a WhereInfo structure 2973 */ 2974 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 2975 if( pWInfo ){ 2976 int i; 2977 for(i=0; i<pWInfo->nLevel; i++){ 2978 sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo; 2979 if( pInfo ){ 2980 /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */ 2981 if( pInfo->needToFreeIdxStr ){ 2982 sqlite3_free(pInfo->idxStr); 2983 } 2984 sqlite3DbFree(db, pInfo); 2985 } 2986 } 2987 whereClauseClear(pWInfo->pWC); 2988 sqlite3DbFree(db, pWInfo); 2989 } 2990 } 2991 2992 2993 /* 2994 ** Generate the beginning of the loop used for WHERE clause processing. 2995 ** The return value is a pointer to an opaque structure that contains 2996 ** information needed to terminate the loop. Later, the calling routine 2997 ** should invoke sqlite3WhereEnd() with the return value of this function 2998 ** in order to complete the WHERE clause processing. 2999 ** 3000 ** If an error occurs, this routine returns NULL. 3001 ** 3002 ** The basic idea is to do a nested loop, one loop for each table in 3003 ** the FROM clause of a select. (INSERT and UPDATE statements are the 3004 ** same as a SELECT with only a single table in the FROM clause.) For 3005 ** example, if the SQL is this: 3006 ** 3007 ** SELECT * FROM t1, t2, t3 WHERE ...; 3008 ** 3009 ** Then the code generated is conceptually like the following: 3010 ** 3011 ** foreach row1 in t1 do \ Code generated 3012 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 3013 ** foreach row3 in t3 do / 3014 ** ... 3015 ** end \ Code generated 3016 ** end |-- by sqlite3WhereEnd() 3017 ** end / 3018 ** 3019 ** Note that the loops might not be nested in the order in which they 3020 ** appear in the FROM clause if a different order is better able to make 3021 ** use of indices. Note also that when the IN operator appears in 3022 ** the WHERE clause, it might result in additional nested loops for 3023 ** scanning through all values on the right-hand side of the IN. 3024 ** 3025 ** There are Btree cursors associated with each table. t1 uses cursor 3026 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 3027 ** And so forth. This routine generates code to open those VDBE cursors 3028 ** and sqlite3WhereEnd() generates the code to close them. 3029 ** 3030 ** The code that sqlite3WhereBegin() generates leaves the cursors named 3031 ** in pTabList pointing at their appropriate entries. The [...] code 3032 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 3033 ** data from the various tables of the loop. 3034 ** 3035 ** If the WHERE clause is empty, the foreach loops must each scan their 3036 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 3037 ** the tables have indices and there are terms in the WHERE clause that 3038 ** refer to those indices, a complete table scan can be avoided and the 3039 ** code will run much faster. Most of the work of this routine is checking 3040 ** to see if there are indices that can be used to speed up the loop. 3041 ** 3042 ** Terms of the WHERE clause are also used to limit which rows actually 3043 ** make it to the "..." in the middle of the loop. After each "foreach", 3044 ** terms of the WHERE clause that use only terms in that loop and outer 3045 ** loops are evaluated and if false a jump is made around all subsequent 3046 ** inner loops (or around the "..." if the test occurs within the inner- 3047 ** most loop) 3048 ** 3049 ** OUTER JOINS 3050 ** 3051 ** An outer join of tables t1 and t2 is conceptally coded as follows: 3052 ** 3053 ** foreach row1 in t1 do 3054 ** flag = 0 3055 ** foreach row2 in t2 do 3056 ** start: 3057 ** ... 3058 ** flag = 1 3059 ** end 3060 ** if flag==0 then 3061 ** move the row2 cursor to a null row 3062 ** goto start 3063 ** fi 3064 ** end 3065 ** 3066 ** ORDER BY CLAUSE PROCESSING 3067 ** 3068 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, 3069 ** if there is one. If there is no ORDER BY clause or if this routine 3070 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. 3071 ** 3072 ** If an index can be used so that the natural output order of the table 3073 ** scan is correct for the ORDER BY clause, then that index is used and 3074 ** *ppOrderBy is set to NULL. This is an optimization that prevents an 3075 ** unnecessary sort of the result set if an index appropriate for the 3076 ** ORDER BY clause already exists. 3077 ** 3078 ** If the where clause loops cannot be arranged to provide the correct 3079 ** output order, then the *ppOrderBy is unchanged. 3080 */ 3081 WhereInfo *sqlite3WhereBegin( 3082 Parse *pParse, /* The parser context */ 3083 SrcList *pTabList, /* A list of all tables to be scanned */ 3084 Expr *pWhere, /* The WHERE clause */ 3085 ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */ 3086 u16 wctrlFlags /* One of the WHERE_* flags defined in sqliteInt.h */ 3087 ){ 3088 int i; /* Loop counter */ 3089 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ 3090 WhereInfo *pWInfo; /* Will become the return value of this function */ 3091 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 3092 Bitmask notReady; /* Cursors that are not yet positioned */ 3093 WhereMaskSet *pMaskSet; /* The expression mask set */ 3094 WhereClause *pWC; /* Decomposition of the WHERE clause */ 3095 struct SrcList_item *pTabItem; /* A single entry from pTabList */ 3096 WhereLevel *pLevel; /* A single level in the pWInfo list */ 3097 int iFrom; /* First unused FROM clause element */ 3098 int andFlags; /* AND-ed combination of all pWC->a[].wtFlags */ 3099 sqlite3 *db; /* Database connection */ 3100 ExprList *pOrderBy = 0; 3101 3102 /* The number of tables in the FROM clause is limited by the number of 3103 ** bits in a Bitmask 3104 */ 3105 if( pTabList->nSrc>BMS ){ 3106 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 3107 return 0; 3108 } 3109 3110 if( ppOrderBy ){ 3111 pOrderBy = *ppOrderBy; 3112 } 3113 3114 /* Allocate and initialize the WhereInfo structure that will become the 3115 ** return value. A single allocation is used to store the WhereInfo 3116 ** struct, the contents of WhereInfo.a[], the WhereClause structure 3117 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte 3118 ** field (type Bitmask) it must be aligned on an 8-byte boundary on 3119 ** some architectures. Hence the ROUND8() below. 3120 */ 3121 db = pParse->db; 3122 nByteWInfo = ROUND8(sizeof(WhereInfo)+(pTabList->nSrc-1)*sizeof(WhereLevel)); 3123 pWInfo = sqlite3DbMallocZero(db, 3124 nByteWInfo + 3125 sizeof(WhereClause) + 3126 sizeof(WhereMaskSet) 3127 ); 3128 if( db->mallocFailed ){ 3129 goto whereBeginError; 3130 } 3131 pWInfo->nLevel = pTabList->nSrc; 3132 pWInfo->pParse = pParse; 3133 pWInfo->pTabList = pTabList; 3134 pWInfo->iBreak = sqlite3VdbeMakeLabel(v); 3135 pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo]; 3136 pWInfo->wctrlFlags = wctrlFlags; 3137 pMaskSet = (WhereMaskSet*)&pWC[1]; 3138 3139 /* Split the WHERE clause into separate subexpressions where each 3140 ** subexpression is separated by an AND operator. 3141 */ 3142 initMaskSet(pMaskSet); 3143 whereClauseInit(pWC, pParse, pMaskSet); 3144 sqlite3ExprCodeConstants(pParse, pWhere); 3145 whereSplit(pWC, pWhere, TK_AND); 3146 3147 /* Special case: a WHERE clause that is constant. Evaluate the 3148 ** expression and either jump over all of the code or fall thru. 3149 */ 3150 if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){ 3151 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL); 3152 pWhere = 0; 3153 } 3154 3155 /* Assign a bit from the bitmask to every term in the FROM clause. 3156 ** 3157 ** When assigning bitmask values to FROM clause cursors, it must be 3158 ** the case that if X is the bitmask for the N-th FROM clause term then 3159 ** the bitmask for all FROM clause terms to the left of the N-th term 3160 ** is (X-1). An expression from the ON clause of a LEFT JOIN can use 3161 ** its Expr.iRightJoinTable value to find the bitmask of the right table 3162 ** of the join. Subtracting one from the right table bitmask gives a 3163 ** bitmask for all tables to the left of the join. Knowing the bitmask 3164 ** for all tables to the left of a left join is important. Ticket #3015. 3165 */ 3166 for(i=0; i<pTabList->nSrc; i++){ 3167 createMask(pMaskSet, pTabList->a[i].iCursor); 3168 } 3169 #ifndef NDEBUG 3170 { 3171 Bitmask toTheLeft = 0; 3172 for(i=0; i<pTabList->nSrc; i++){ 3173 Bitmask m = getMask(pMaskSet, pTabList->a[i].iCursor); 3174 assert( (m-1)==toTheLeft ); 3175 toTheLeft |= m; 3176 } 3177 } 3178 #endif 3179 3180 /* Analyze all of the subexpressions. Note that exprAnalyze() might 3181 ** add new virtual terms onto the end of the WHERE clause. We do not 3182 ** want to analyze these virtual terms, so start analyzing at the end 3183 ** and work forward so that the added virtual terms are never processed. 3184 */ 3185 exprAnalyzeAll(pTabList, pWC); 3186 if( db->mallocFailed ){ 3187 goto whereBeginError; 3188 } 3189 3190 /* Chose the best index to use for each table in the FROM clause. 3191 ** 3192 ** This loop fills in the following fields: 3193 ** 3194 ** pWInfo->a[].pIdx The index to use for this level of the loop. 3195 ** pWInfo->a[].wsFlags WHERE_xxx flags associated with pIdx 3196 ** pWInfo->a[].nEq The number of == and IN constraints 3197 ** pWInfo->a[].iFrom Which term of the FROM clause is being coded 3198 ** pWInfo->a[].iTabCur The VDBE cursor for the database table 3199 ** pWInfo->a[].iIdxCur The VDBE cursor for the index 3200 ** pWInfo->a[].pTerm When wsFlags==WO_OR, the OR-clause term 3201 ** 3202 ** This loop also figures out the nesting order of tables in the FROM 3203 ** clause. 3204 */ 3205 notReady = ~(Bitmask)0; 3206 pTabItem = pTabList->a; 3207 pLevel = pWInfo->a; 3208 andFlags = ~0; 3209 WHERETRACE(("*** Optimizer Start ***\n")); 3210 for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 3211 WhereCost bestPlan; /* Most efficient plan seen so far */ 3212 Index *pIdx; /* Index for FROM table at pTabItem */ 3213 int j; /* For looping over FROM tables */ 3214 int bestJ = 0; /* The value of j */ 3215 Bitmask m; /* Bitmask value for j or bestJ */ 3216 int once = 0; /* True when first table is seen */ 3217 3218 memset(&bestPlan, 0, sizeof(bestPlan)); 3219 bestPlan.rCost = SQLITE_BIG_DBL; 3220 for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){ 3221 int doNotReorder; /* True if this table should not be reordered */ 3222 WhereCost sCost; /* Cost information from best[Virtual]Index() */ 3223 ExprList *pOrderBy; /* ORDER BY clause for index to optimize */ 3224 3225 doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0; 3226 if( once && doNotReorder ) break; 3227 m = getMask(pMaskSet, pTabItem->iCursor); 3228 if( (m & notReady)==0 ){ 3229 if( j==iFrom ) iFrom++; 3230 continue; 3231 } 3232 pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0); 3233 3234 assert( pTabItem->pTab ); 3235 #ifndef SQLITE_OMIT_VIRTUALTABLE 3236 if( IsVirtual(pTabItem->pTab) ){ 3237 sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo; 3238 bestVirtualIndex(pParse, pWC, pTabItem, notReady, pOrderBy, &sCost, pp); 3239 }else 3240 #endif 3241 { 3242 bestBtreeIndex(pParse, pWC, pTabItem, notReady, pOrderBy, &sCost); 3243 } 3244 if( once==0 || sCost.rCost<bestPlan.rCost ){ 3245 once = 1; 3246 bestPlan = sCost; 3247 bestJ = j; 3248 } 3249 if( doNotReorder ) break; 3250 } 3251 assert( once ); 3252 assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) ); 3253 WHERETRACE(("*** Optimizer selects table %d for loop %d\n", bestJ, 3254 pLevel-pWInfo->a)); 3255 if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 ){ 3256 *ppOrderBy = 0; 3257 } 3258 andFlags &= bestPlan.plan.wsFlags; 3259 pLevel->plan = bestPlan.plan; 3260 if( bestPlan.plan.wsFlags & WHERE_INDEXED ){ 3261 pLevel->iIdxCur = pParse->nTab++; 3262 }else{ 3263 pLevel->iIdxCur = -1; 3264 } 3265 notReady &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor); 3266 pLevel->iFrom = (u8)bestJ; 3267 3268 /* Check that if the table scanned by this loop iteration had an 3269 ** INDEXED BY clause attached to it, that the named index is being 3270 ** used for the scan. If not, then query compilation has failed. 3271 ** Return an error. 3272 */ 3273 pIdx = pTabList->a[bestJ].pIndex; 3274 if( pIdx ){ 3275 if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){ 3276 sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName); 3277 goto whereBeginError; 3278 }else{ 3279 /* If an INDEXED BY clause is used, the bestIndex() function is 3280 ** guaranteed to find the index specified in the INDEXED BY clause 3281 ** if it find an index at all. */ 3282 assert( bestPlan.plan.u.pIdx==pIdx ); 3283 } 3284 } 3285 } 3286 WHERETRACE(("*** Optimizer Finished ***\n")); 3287 if( pParse->nErr || db->mallocFailed ){ 3288 goto whereBeginError; 3289 } 3290 3291 /* If the total query only selects a single row, then the ORDER BY 3292 ** clause is irrelevant. 3293 */ 3294 if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){ 3295 *ppOrderBy = 0; 3296 } 3297 3298 /* If the caller is an UPDATE or DELETE statement that is requesting 3299 ** to use a one-pass algorithm, determine if this is appropriate. 3300 ** The one-pass algorithm only works if the WHERE clause constraints 3301 ** the statement to update a single row. 3302 */ 3303 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 3304 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){ 3305 pWInfo->okOnePass = 1; 3306 pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY; 3307 } 3308 3309 /* Open all tables in the pTabList and any indices selected for 3310 ** searching those tables. 3311 */ 3312 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ 3313 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 3314 Table *pTab; /* Table to open */ 3315 int iDb; /* Index of database containing table/index */ 3316 3317 #ifndef SQLITE_OMIT_EXPLAIN 3318 if( pParse->explain==2 ){ 3319 char *zMsg; 3320 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 3321 zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName); 3322 if( pItem->zAlias ){ 3323 zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias); 3324 } 3325 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ 3326 zMsg = sqlite3MAppendf(db, zMsg, "%s WITH INDEX %s", 3327 zMsg, pLevel->plan.u.pIdx->zName); 3328 }else if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){ 3329 zMsg = sqlite3MAppendf(db, zMsg, "%s VIA MULTI-INDEX UNION", zMsg); 3330 }else if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ 3331 zMsg = sqlite3MAppendf(db, zMsg, "%s USING PRIMARY KEY", zMsg); 3332 } 3333 #ifndef SQLITE_OMIT_VIRTUALTABLE 3334 else if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 3335 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx; 3336 zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg, 3337 pVtabIdx->idxNum, pVtabIdx->idxStr); 3338 } 3339 #endif 3340 if( pLevel->plan.wsFlags & WHERE_ORDERBY ){ 3341 zMsg = sqlite3MAppendf(db, zMsg, "%s ORDER BY", zMsg); 3342 } 3343 sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC); 3344 } 3345 #endif /* SQLITE_OMIT_EXPLAIN */ 3346 pTabItem = &pTabList->a[pLevel->iFrom]; 3347 pTab = pTabItem->pTab; 3348 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 3349 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue; 3350 #ifndef SQLITE_OMIT_VIRTUALTABLE 3351 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 3352 int iCur = pTabItem->iCursor; 3353 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, 3354 (const char*)pTab->pVtab, P4_VTAB); 3355 }else 3356 #endif 3357 if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 3358 && (wctrlFlags & WHERE_OMIT_OPEN)==0 ){ 3359 int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead; 3360 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 3361 if( !pWInfo->okOnePass && pTab->nCol<BMS ){ 3362 Bitmask b = pTabItem->colUsed; 3363 int n = 0; 3364 for(; b; b=b>>1, n++){} 3365 sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, SQLITE_INT_TO_PTR(n), P4_INT32); 3366 assert( n<=pTab->nCol ); 3367 } 3368 }else{ 3369 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 3370 } 3371 pLevel->iTabCur = pTabItem->iCursor; 3372 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ 3373 Index *pIx = pLevel->plan.u.pIdx; 3374 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx); 3375 int iIdxCur = pLevel->iIdxCur; 3376 assert( pIx->pSchema==pTab->pSchema ); 3377 assert( iIdxCur>=0 ); 3378 sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb, 3379 (char*)pKey, P4_KEYINFO_HANDOFF); 3380 VdbeComment((v, "%s", pIx->zName)); 3381 } 3382 sqlite3CodeVerifySchema(pParse, iDb); 3383 } 3384 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 3385 3386 /* Generate the code to do the search. Each iteration of the for 3387 ** loop below generates code for a single nested loop of the VM 3388 ** program. 3389 */ 3390 notReady = ~(Bitmask)0; 3391 for(i=0; i<pTabList->nSrc; i++){ 3392 notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady); 3393 pWInfo->iContinue = pWInfo->a[i].addrCont; 3394 } 3395 3396 #ifdef SQLITE_TEST /* For testing and debugging use only */ 3397 /* Record in the query plan information about the current table 3398 ** and the index used to access it (if any). If the table itself 3399 ** is not used, its name is just '{}'. If no index is used 3400 ** the index is listed as "{}". If the primary key is used the 3401 ** index name is '*'. 3402 */ 3403 for(i=0; i<pTabList->nSrc; i++){ 3404 char *z; 3405 int n; 3406 pLevel = &pWInfo->a[i]; 3407 pTabItem = &pTabList->a[pLevel->iFrom]; 3408 z = pTabItem->zAlias; 3409 if( z==0 ) z = pTabItem->pTab->zName; 3410 n = sqlite3Strlen30(z); 3411 if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){ 3412 if( pLevel->plan.wsFlags & WHERE_IDX_ONLY ){ 3413 memcpy(&sqlite3_query_plan[nQPlan], "{}", 2); 3414 nQPlan += 2; 3415 }else{ 3416 memcpy(&sqlite3_query_plan[nQPlan], z, n); 3417 nQPlan += n; 3418 } 3419 sqlite3_query_plan[nQPlan++] = ' '; 3420 } 3421 testcase( pLevel->plan.wsFlags & WHERE_ROWID_EQ ); 3422 testcase( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ); 3423 if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ 3424 memcpy(&sqlite3_query_plan[nQPlan], "* ", 2); 3425 nQPlan += 2; 3426 }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ 3427 n = sqlite3Strlen30(pLevel->plan.u.pIdx->zName); 3428 if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){ 3429 memcpy(&sqlite3_query_plan[nQPlan], pLevel->plan.u.pIdx->zName, n); 3430 nQPlan += n; 3431 sqlite3_query_plan[nQPlan++] = ' '; 3432 } 3433 }else{ 3434 memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3); 3435 nQPlan += 3; 3436 } 3437 } 3438 while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){ 3439 sqlite3_query_plan[--nQPlan] = 0; 3440 } 3441 sqlite3_query_plan[nQPlan] = 0; 3442 nQPlan = 0; 3443 #endif /* SQLITE_TEST // Testing and debugging use only */ 3444 3445 /* Record the continuation address in the WhereInfo structure. Then 3446 ** clean up and return. 3447 */ 3448 return pWInfo; 3449 3450 /* Jump here if malloc fails */ 3451 whereBeginError: 3452 whereInfoFree(db, pWInfo); 3453 return 0; 3454 } 3455 3456 /* 3457 ** Generate the end of the WHERE loop. See comments on 3458 ** sqlite3WhereBegin() for additional information. 3459 */ 3460 void sqlite3WhereEnd(WhereInfo *pWInfo){ 3461 Parse *pParse = pWInfo->pParse; 3462 Vdbe *v = pParse->pVdbe; 3463 int i; 3464 WhereLevel *pLevel; 3465 SrcList *pTabList = pWInfo->pTabList; 3466 sqlite3 *db = pParse->db; 3467 3468 /* Generate loop termination code. 3469 */ 3470 sqlite3ExprCacheClear(pParse); 3471 for(i=pTabList->nSrc-1; i>=0; i--){ 3472 pLevel = &pWInfo->a[i]; 3473 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 3474 if( pLevel->op!=OP_Noop ){ 3475 sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2); 3476 sqlite3VdbeChangeP5(v, pLevel->p5); 3477 } 3478 if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ 3479 struct InLoop *pIn; 3480 int j; 3481 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 3482 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 3483 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 3484 sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->addrInTop); 3485 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 3486 } 3487 sqlite3DbFree(db, pLevel->u.in.aInLoop); 3488 } 3489 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 3490 if( pLevel->iLeftJoin ){ 3491 int addr; 3492 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); 3493 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); 3494 if( pLevel->iIdxCur>=0 ){ 3495 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 3496 } 3497 if( pLevel->op==OP_Return ){ 3498 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); 3499 }else{ 3500 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst); 3501 } 3502 sqlite3VdbeJumpHere(v, addr); 3503 } 3504 } 3505 3506 /* The "break" point is here, just past the end of the outer loop. 3507 ** Set it. 3508 */ 3509 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 3510 3511 /* Close all of the cursors that were opened by sqlite3WhereBegin. 3512 */ 3513 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 3514 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 3515 Table *pTab = pTabItem->pTab; 3516 assert( pTab!=0 ); 3517 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue; 3518 if( (pWInfo->wctrlFlags & WHERE_OMIT_CLOSE)==0 ){ 3519 if( !pWInfo->okOnePass && (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){ 3520 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); 3521 } 3522 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ 3523 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); 3524 } 3525 } 3526 3527 /* If this scan uses an index, make code substitutions to read data 3528 ** from the index in preference to the table. Sometimes, this means 3529 ** the table need never be read from. This is a performance boost, 3530 ** as the vdbe level waits until the table is read before actually 3531 ** seeking the table cursor to the record corresponding to the current 3532 ** position in the index. 3533 ** 3534 ** Calls to the code generator in between sqlite3WhereBegin and 3535 ** sqlite3WhereEnd will have created code that references the table 3536 ** directly. This loop scans all that code looking for opcodes 3537 ** that reference the table and converts them into opcodes that 3538 ** reference the index. 3539 */ 3540 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ 3541 int k, j, last; 3542 VdbeOp *pOp; 3543 Index *pIdx = pLevel->plan.u.pIdx; 3544 int useIndexOnly = pLevel->plan.wsFlags & WHERE_IDX_ONLY; 3545 3546 assert( pIdx!=0 ); 3547 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop); 3548 last = sqlite3VdbeCurrentAddr(v); 3549 for(k=pWInfo->iTop; k<last; k++, pOp++){ 3550 if( pOp->p1!=pLevel->iTabCur ) continue; 3551 if( pOp->opcode==OP_Column ){ 3552 for(j=0; j<pIdx->nColumn; j++){ 3553 if( pOp->p2==pIdx->aiColumn[j] ){ 3554 pOp->p2 = j; 3555 pOp->p1 = pLevel->iIdxCur; 3556 break; 3557 } 3558 } 3559 assert(!useIndexOnly || j<pIdx->nColumn); 3560 }else if( pOp->opcode==OP_Rowid ){ 3561 pOp->p1 = pLevel->iIdxCur; 3562 pOp->opcode = OP_IdxRowid; 3563 }else if( pOp->opcode==OP_NullRow && useIndexOnly ){ 3564 pOp->opcode = OP_Noop; 3565 } 3566 } 3567 } 3568 } 3569 3570 /* Final cleanup 3571 */ 3572 whereInfoFree(db, pWInfo); 3573 return; 3574 } 3575