xref: /sqlite-3.40.0/src/where.c (revision 69871baa)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /*
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly.  The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
26 **
27 ** This object is not an API and can be changed from one release to the
28 ** next.  As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
30 */
31 typedef struct HiddenIndexInfo HiddenIndexInfo;
32 struct HiddenIndexInfo {
33   WhereClause *pWC;   /* The Where clause being analyzed */
34   Parse *pParse;      /* The parsing context */
35 };
36 
37 /* Forward declaration of methods */
38 static int whereLoopResize(sqlite3*, WhereLoop*, int);
39 
40 /*
41 ** Return the estimated number of output rows from a WHERE clause
42 */
43 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
44   return pWInfo->nRowOut;
45 }
46 
47 /*
48 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
49 ** WHERE clause returns outputs for DISTINCT processing.
50 */
51 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
52   return pWInfo->eDistinct;
53 }
54 
55 /*
56 ** Return the number of ORDER BY terms that are satisfied by the
57 ** WHERE clause.  A return of 0 means that the output must be
58 ** completely sorted.  A return equal to the number of ORDER BY
59 ** terms means that no sorting is needed at all.  A return that
60 ** is positive but less than the number of ORDER BY terms means that
61 ** block sorting is required.
62 */
63 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
64   return pWInfo->nOBSat;
65 }
66 
67 /*
68 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known
69 ** to emit rows in increasing order, and if the last row emitted by the
70 ** inner-most loop did not fit within the sorter, then we can skip all
71 ** subsequent rows for the current iteration of the inner loop (because they
72 ** will not fit in the sorter either) and continue with the second inner
73 ** loop - the loop immediately outside the inner-most.
74 **
75 ** When a row does not fit in the sorter (because the sorter already
76 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
77 ** label returned by this function.
78 **
79 ** If the ORDER BY LIMIT optimization applies, the jump destination should
80 ** be the continuation for the second-inner-most loop.  If the ORDER BY
81 ** LIMIT optimization does not apply, then the jump destination should
82 ** be the continuation for the inner-most loop.
83 **
84 ** It is always safe for this routine to return the continuation of the
85 ** inner-most loop, in the sense that a correct answer will result.
86 ** Returning the continuation the second inner loop is an optimization
87 ** that might make the code run a little faster, but should not change
88 ** the final answer.
89 */
90 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){
91   WhereLevel *pInner;
92   if( !pWInfo->bOrderedInnerLoop ){
93     /* The ORDER BY LIMIT optimization does not apply.  Jump to the
94     ** continuation of the inner-most loop. */
95     return pWInfo->iContinue;
96   }
97   pInner = &pWInfo->a[pWInfo->nLevel-1];
98   assert( pInner->addrNxt!=0 );
99   return pInner->addrNxt;
100 }
101 
102 /*
103 ** Return the VDBE address or label to jump to in order to continue
104 ** immediately with the next row of a WHERE clause.
105 */
106 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
107   assert( pWInfo->iContinue!=0 );
108   return pWInfo->iContinue;
109 }
110 
111 /*
112 ** Return the VDBE address or label to jump to in order to break
113 ** out of a WHERE loop.
114 */
115 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
116   return pWInfo->iBreak;
117 }
118 
119 /*
120 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
121 ** operate directly on the rowids returned by a WHERE clause.  Return
122 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
123 ** a single row is to be changed.  Return ONEPASS_MULTI (2) if the one-pass
124 ** optimization can be used on multiple
125 **
126 ** If the ONEPASS optimization is used (if this routine returns true)
127 ** then also write the indices of open cursors used by ONEPASS
128 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
129 ** table and iaCur[1] gets the cursor used by an auxiliary index.
130 ** Either value may be -1, indicating that cursor is not used.
131 ** Any cursors returned will have been opened for writing.
132 **
133 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
134 ** unable to use the ONEPASS optimization.
135 */
136 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
137   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
138 #ifdef WHERETRACE_ENABLED
139   if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
140     sqlite3DebugPrintf("%s cursors: %d %d\n",
141          pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
142          aiCur[0], aiCur[1]);
143   }
144 #endif
145   return pWInfo->eOnePass;
146 }
147 
148 /*
149 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move
150 ** the data cursor to the row selected by the index cursor.
151 */
152 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){
153   return pWInfo->bDeferredSeek;
154 }
155 
156 /*
157 ** Move the content of pSrc into pDest
158 */
159 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
160   pDest->n = pSrc->n;
161   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
162 }
163 
164 /*
165 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
166 **
167 ** The new entry might overwrite an existing entry, or it might be
168 ** appended, or it might be discarded.  Do whatever is the right thing
169 ** so that pSet keeps the N_OR_COST best entries seen so far.
170 */
171 static int whereOrInsert(
172   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
173   Bitmask prereq,        /* Prerequisites of the new entry */
174   LogEst rRun,           /* Run-cost of the new entry */
175   LogEst nOut            /* Number of outputs for the new entry */
176 ){
177   u16 i;
178   WhereOrCost *p;
179   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
180     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
181       goto whereOrInsert_done;
182     }
183     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
184       return 0;
185     }
186   }
187   if( pSet->n<N_OR_COST ){
188     p = &pSet->a[pSet->n++];
189     p->nOut = nOut;
190   }else{
191     p = pSet->a;
192     for(i=1; i<pSet->n; i++){
193       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
194     }
195     if( p->rRun<=rRun ) return 0;
196   }
197 whereOrInsert_done:
198   p->prereq = prereq;
199   p->rRun = rRun;
200   if( p->nOut>nOut ) p->nOut = nOut;
201   return 1;
202 }
203 
204 /*
205 ** Return the bitmask for the given cursor number.  Return 0 if
206 ** iCursor is not in the set.
207 */
208 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
209   int i;
210   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
211   for(i=0; i<pMaskSet->n; i++){
212     if( pMaskSet->ix[i]==iCursor ){
213       return MASKBIT(i);
214     }
215   }
216   return 0;
217 }
218 
219 /*
220 ** Create a new mask for cursor iCursor.
221 **
222 ** There is one cursor per table in the FROM clause.  The number of
223 ** tables in the FROM clause is limited by a test early in the
224 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
225 ** array will never overflow.
226 */
227 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
228   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
229   pMaskSet->ix[pMaskSet->n++] = iCursor;
230 }
231 
232 /*
233 ** If the right-hand branch of the expression is a TK_COLUMN, then return
234 ** a pointer to the right-hand branch.  Otherwise, return NULL.
235 */
236 static Expr *whereRightSubexprIsColumn(Expr *p){
237   p = sqlite3ExprSkipCollateAndLikely(p->pRight);
238   if( ALWAYS(p!=0) && p->op==TK_COLUMN ) return p;
239   return 0;
240 }
241 
242 /*
243 ** Advance to the next WhereTerm that matches according to the criteria
244 ** established when the pScan object was initialized by whereScanInit().
245 ** Return NULL if there are no more matching WhereTerms.
246 */
247 static WhereTerm *whereScanNext(WhereScan *pScan){
248   int iCur;            /* The cursor on the LHS of the term */
249   i16 iColumn;         /* The column on the LHS of the term.  -1 for IPK */
250   Expr *pX;            /* An expression being tested */
251   WhereClause *pWC;    /* Shorthand for pScan->pWC */
252   WhereTerm *pTerm;    /* The term being tested */
253   int k = pScan->k;    /* Where to start scanning */
254 
255   assert( pScan->iEquiv<=pScan->nEquiv );
256   pWC = pScan->pWC;
257   while(1){
258     iColumn = pScan->aiColumn[pScan->iEquiv-1];
259     iCur = pScan->aiCur[pScan->iEquiv-1];
260     assert( pWC!=0 );
261     do{
262       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
263         if( pTerm->leftCursor==iCur
264          && pTerm->u.x.leftColumn==iColumn
265          && (iColumn!=XN_EXPR
266              || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
267                                        pScan->pIdxExpr,iCur)==0)
268          && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
269         ){
270           if( (pTerm->eOperator & WO_EQUIV)!=0
271            && pScan->nEquiv<ArraySize(pScan->aiCur)
272            && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0
273           ){
274             int j;
275             for(j=0; j<pScan->nEquiv; j++){
276               if( pScan->aiCur[j]==pX->iTable
277                && pScan->aiColumn[j]==pX->iColumn ){
278                   break;
279               }
280             }
281             if( j==pScan->nEquiv ){
282               pScan->aiCur[j] = pX->iTable;
283               pScan->aiColumn[j] = pX->iColumn;
284               pScan->nEquiv++;
285             }
286           }
287           if( (pTerm->eOperator & pScan->opMask)!=0 ){
288             /* Verify the affinity and collating sequence match */
289             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
290               CollSeq *pColl;
291               Parse *pParse = pWC->pWInfo->pParse;
292               pX = pTerm->pExpr;
293               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
294                 continue;
295               }
296               assert(pX->pLeft);
297               pColl = sqlite3ExprCompareCollSeq(pParse, pX);
298               if( pColl==0 ) pColl = pParse->db->pDfltColl;
299               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
300                 continue;
301               }
302             }
303             if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
304              && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
305              && pX->iTable==pScan->aiCur[0]
306              && pX->iColumn==pScan->aiColumn[0]
307             ){
308               testcase( pTerm->eOperator & WO_IS );
309               continue;
310             }
311             pScan->pWC = pWC;
312             pScan->k = k+1;
313             return pTerm;
314           }
315         }
316       }
317       pWC = pWC->pOuter;
318       k = 0;
319     }while( pWC!=0 );
320     if( pScan->iEquiv>=pScan->nEquiv ) break;
321     pWC = pScan->pOrigWC;
322     k = 0;
323     pScan->iEquiv++;
324   }
325   return 0;
326 }
327 
328 /*
329 ** This is whereScanInit() for the case of an index on an expression.
330 ** It is factored out into a separate tail-recursion subroutine so that
331 ** the normal whereScanInit() routine, which is a high-runner, does not
332 ** need to push registers onto the stack as part of its prologue.
333 */
334 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){
335   pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr);
336   return whereScanNext(pScan);
337 }
338 
339 /*
340 ** Initialize a WHERE clause scanner object.  Return a pointer to the
341 ** first match.  Return NULL if there are no matches.
342 **
343 ** The scanner will be searching the WHERE clause pWC.  It will look
344 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
345 ** iCur.   Or if pIdx!=0 then X is column iColumn of index pIdx.  pIdx
346 ** must be one of the indexes of table iCur.
347 **
348 ** The <op> must be one of the operators described by opMask.
349 **
350 ** If the search is for X and the WHERE clause contains terms of the
351 ** form X=Y then this routine might also return terms of the form
352 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
353 ** but is enough to handle most commonly occurring SQL statements.
354 **
355 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
356 ** index pIdx.
357 */
358 static WhereTerm *whereScanInit(
359   WhereScan *pScan,       /* The WhereScan object being initialized */
360   WhereClause *pWC,       /* The WHERE clause to be scanned */
361   int iCur,               /* Cursor to scan for */
362   int iColumn,            /* Column to scan for */
363   u32 opMask,             /* Operator(s) to scan for */
364   Index *pIdx             /* Must be compatible with this index */
365 ){
366   pScan->pOrigWC = pWC;
367   pScan->pWC = pWC;
368   pScan->pIdxExpr = 0;
369   pScan->idxaff = 0;
370   pScan->zCollName = 0;
371   pScan->opMask = opMask;
372   pScan->k = 0;
373   pScan->aiCur[0] = iCur;
374   pScan->nEquiv = 1;
375   pScan->iEquiv = 1;
376   if( pIdx ){
377     int j = iColumn;
378     iColumn = pIdx->aiColumn[j];
379     if( iColumn==XN_EXPR ){
380       pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
381       pScan->zCollName = pIdx->azColl[j];
382       pScan->aiColumn[0] = XN_EXPR;
383       return whereScanInitIndexExpr(pScan);
384     }else if( iColumn==pIdx->pTable->iPKey ){
385       iColumn = XN_ROWID;
386     }else if( iColumn>=0 ){
387       pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
388       pScan->zCollName = pIdx->azColl[j];
389     }
390   }else if( iColumn==XN_EXPR ){
391     return 0;
392   }
393   pScan->aiColumn[0] = iColumn;
394   return whereScanNext(pScan);
395 }
396 
397 /*
398 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
399 ** where X is a reference to the iColumn of table iCur or of index pIdx
400 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
401 ** the op parameter.  Return a pointer to the term.  Return 0 if not found.
402 **
403 ** If pIdx!=0 then it must be one of the indexes of table iCur.
404 ** Search for terms matching the iColumn-th column of pIdx
405 ** rather than the iColumn-th column of table iCur.
406 **
407 ** The term returned might by Y=<expr> if there is another constraint in
408 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
409 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
410 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
411 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
412 ** other equivalent values.  Hence a search for X will return <expr> if X=A1
413 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
414 **
415 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
416 ** then try for the one with no dependencies on <expr> - in other words where
417 ** <expr> is a constant expression of some kind.  Only return entries of
418 ** the form "X <op> Y" where Y is a column in another table if no terms of
419 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
420 ** exist, try to return a term that does not use WO_EQUIV.
421 */
422 WhereTerm *sqlite3WhereFindTerm(
423   WhereClause *pWC,     /* The WHERE clause to be searched */
424   int iCur,             /* Cursor number of LHS */
425   int iColumn,          /* Column number of LHS */
426   Bitmask notReady,     /* RHS must not overlap with this mask */
427   u32 op,               /* Mask of WO_xx values describing operator */
428   Index *pIdx           /* Must be compatible with this index, if not NULL */
429 ){
430   WhereTerm *pResult = 0;
431   WhereTerm *p;
432   WhereScan scan;
433 
434   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
435   op &= WO_EQ|WO_IS;
436   while( p ){
437     if( (p->prereqRight & notReady)==0 ){
438       if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
439         testcase( p->eOperator & WO_IS );
440         return p;
441       }
442       if( pResult==0 ) pResult = p;
443     }
444     p = whereScanNext(&scan);
445   }
446   return pResult;
447 }
448 
449 /*
450 ** This function searches pList for an entry that matches the iCol-th column
451 ** of index pIdx.
452 **
453 ** If such an expression is found, its index in pList->a[] is returned. If
454 ** no expression is found, -1 is returned.
455 */
456 static int findIndexCol(
457   Parse *pParse,                  /* Parse context */
458   ExprList *pList,                /* Expression list to search */
459   int iBase,                      /* Cursor for table associated with pIdx */
460   Index *pIdx,                    /* Index to match column of */
461   int iCol                        /* Column of index to match */
462 ){
463   int i;
464   const char *zColl = pIdx->azColl[iCol];
465 
466   for(i=0; i<pList->nExpr; i++){
467     Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr);
468     if( ALWAYS(p!=0)
469      && p->op==TK_COLUMN
470      && p->iColumn==pIdx->aiColumn[iCol]
471      && p->iTable==iBase
472     ){
473       CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
474       if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
475         return i;
476       }
477     }
478   }
479 
480   return -1;
481 }
482 
483 /*
484 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
485 */
486 static int indexColumnNotNull(Index *pIdx, int iCol){
487   int j;
488   assert( pIdx!=0 );
489   assert( iCol>=0 && iCol<pIdx->nColumn );
490   j = pIdx->aiColumn[iCol];
491   if( j>=0 ){
492     return pIdx->pTable->aCol[j].notNull;
493   }else if( j==(-1) ){
494     return 1;
495   }else{
496     assert( j==(-2) );
497     return 0;  /* Assume an indexed expression can always yield a NULL */
498 
499   }
500 }
501 
502 /*
503 ** Return true if the DISTINCT expression-list passed as the third argument
504 ** is redundant.
505 **
506 ** A DISTINCT list is redundant if any subset of the columns in the
507 ** DISTINCT list are collectively unique and individually non-null.
508 */
509 static int isDistinctRedundant(
510   Parse *pParse,            /* Parsing context */
511   SrcList *pTabList,        /* The FROM clause */
512   WhereClause *pWC,         /* The WHERE clause */
513   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
514 ){
515   Table *pTab;
516   Index *pIdx;
517   int i;
518   int iBase;
519 
520   /* If there is more than one table or sub-select in the FROM clause of
521   ** this query, then it will not be possible to show that the DISTINCT
522   ** clause is redundant. */
523   if( pTabList->nSrc!=1 ) return 0;
524   iBase = pTabList->a[0].iCursor;
525   pTab = pTabList->a[0].pTab;
526 
527   /* If any of the expressions is an IPK column on table iBase, then return
528   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
529   ** current SELECT is a correlated sub-query.
530   */
531   for(i=0; i<pDistinct->nExpr; i++){
532     Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr);
533     if( NEVER(p==0) ) continue;
534     if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1;
535   }
536 
537   /* Loop through all indices on the table, checking each to see if it makes
538   ** the DISTINCT qualifier redundant. It does so if:
539   **
540   **   1. The index is itself UNIQUE, and
541   **
542   **   2. All of the columns in the index are either part of the pDistinct
543   **      list, or else the WHERE clause contains a term of the form "col=X",
544   **      where X is a constant value. The collation sequences of the
545   **      comparison and select-list expressions must match those of the index.
546   **
547   **   3. All of those index columns for which the WHERE clause does not
548   **      contain a "col=X" term are subject to a NOT NULL constraint.
549   */
550   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
551     if( !IsUniqueIndex(pIdx) ) continue;
552     for(i=0; i<pIdx->nKeyCol; i++){
553       if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
554         if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
555         if( indexColumnNotNull(pIdx, i)==0 ) break;
556       }
557     }
558     if( i==pIdx->nKeyCol ){
559       /* This index implies that the DISTINCT qualifier is redundant. */
560       return 1;
561     }
562   }
563 
564   return 0;
565 }
566 
567 
568 /*
569 ** Estimate the logarithm of the input value to base 2.
570 */
571 static LogEst estLog(LogEst N){
572   return N<=10 ? 0 : sqlite3LogEst(N) - 33;
573 }
574 
575 /*
576 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
577 **
578 ** This routine runs over generated VDBE code and translates OP_Column
579 ** opcodes into OP_Copy when the table is being accessed via co-routine
580 ** instead of via table lookup.
581 **
582 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
583 ** cursor iTabCur are transformed into OP_Sequence opcode for the
584 ** iAutoidxCur cursor, in order to generate unique rowids for the
585 ** automatic index being generated.
586 */
587 static void translateColumnToCopy(
588   Parse *pParse,      /* Parsing context */
589   int iStart,         /* Translate from this opcode to the end */
590   int iTabCur,        /* OP_Column/OP_Rowid references to this table */
591   int iRegister,      /* The first column is in this register */
592   int iAutoidxCur     /* If non-zero, cursor of autoindex being generated */
593 ){
594   Vdbe *v = pParse->pVdbe;
595   VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
596   int iEnd = sqlite3VdbeCurrentAddr(v);
597   if( pParse->db->mallocFailed ) return;
598   for(; iStart<iEnd; iStart++, pOp++){
599     if( pOp->p1!=iTabCur ) continue;
600     if( pOp->opcode==OP_Column ){
601       pOp->opcode = OP_Copy;
602       pOp->p1 = pOp->p2 + iRegister;
603       pOp->p2 = pOp->p3;
604       pOp->p3 = 0;
605     }else if( pOp->opcode==OP_Rowid ){
606       if( iAutoidxCur ){
607         pOp->opcode = OP_Sequence;
608         pOp->p1 = iAutoidxCur;
609       }else{
610         pOp->opcode = OP_Null;
611         pOp->p1 = 0;
612         pOp->p3 = 0;
613       }
614     }
615   }
616 }
617 
618 /*
619 ** Two routines for printing the content of an sqlite3_index_info
620 ** structure.  Used for testing and debugging only.  If neither
621 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
622 ** are no-ops.
623 */
624 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
625 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){
626   int i;
627   if( !sqlite3WhereTrace ) return;
628   for(i=0; i<p->nConstraint; i++){
629     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
630        i,
631        p->aConstraint[i].iColumn,
632        p->aConstraint[i].iTermOffset,
633        p->aConstraint[i].op,
634        p->aConstraint[i].usable);
635   }
636   for(i=0; i<p->nOrderBy; i++){
637     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
638        i,
639        p->aOrderBy[i].iColumn,
640        p->aOrderBy[i].desc);
641   }
642 }
643 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){
644   int i;
645   if( !sqlite3WhereTrace ) return;
646   for(i=0; i<p->nConstraint; i++){
647     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
648        i,
649        p->aConstraintUsage[i].argvIndex,
650        p->aConstraintUsage[i].omit);
651   }
652   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
653   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
654   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
655   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
656   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
657 }
658 #else
659 #define whereTraceIndexInfoInputs(A)
660 #define whereTraceIndexInfoOutputs(A)
661 #endif
662 
663 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
664 /*
665 ** Return TRUE if the WHERE clause term pTerm is of a form where it
666 ** could be used with an index to access pSrc, assuming an appropriate
667 ** index existed.
668 */
669 static int termCanDriveIndex(
670   WhereTerm *pTerm,              /* WHERE clause term to check */
671   struct SrcList_item *pSrc,     /* Table we are trying to access */
672   Bitmask notReady               /* Tables in outer loops of the join */
673 ){
674   char aff;
675   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
676   if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
677   if( (pSrc->fg.jointype & JT_LEFT)
678    && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
679    && (pTerm->eOperator & WO_IS)
680   ){
681     /* Cannot use an IS term from the WHERE clause as an index driver for
682     ** the RHS of a LEFT JOIN. Such a term can only be used if it is from
683     ** the ON clause.  */
684     return 0;
685   }
686   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
687   if( pTerm->u.x.leftColumn<0 ) return 0;
688   aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity;
689   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
690   testcase( pTerm->pExpr->op==TK_IS );
691   return 1;
692 }
693 #endif
694 
695 
696 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
697 /*
698 ** Generate code to construct the Index object for an automatic index
699 ** and to set up the WhereLevel object pLevel so that the code generator
700 ** makes use of the automatic index.
701 */
702 static void constructAutomaticIndex(
703   Parse *pParse,              /* The parsing context */
704   WhereClause *pWC,           /* The WHERE clause */
705   struct SrcList_item *pSrc,  /* The FROM clause term to get the next index */
706   Bitmask notReady,           /* Mask of cursors that are not available */
707   WhereLevel *pLevel          /* Write new index here */
708 ){
709   int nKeyCol;                /* Number of columns in the constructed index */
710   WhereTerm *pTerm;           /* A single term of the WHERE clause */
711   WhereTerm *pWCEnd;          /* End of pWC->a[] */
712   Index *pIdx;                /* Object describing the transient index */
713   Vdbe *v;                    /* Prepared statement under construction */
714   int addrInit;               /* Address of the initialization bypass jump */
715   Table *pTable;              /* The table being indexed */
716   int addrTop;                /* Top of the index fill loop */
717   int regRecord;              /* Register holding an index record */
718   int n;                      /* Column counter */
719   int i;                      /* Loop counter */
720   int mxBitCol;               /* Maximum column in pSrc->colUsed */
721   CollSeq *pColl;             /* Collating sequence to on a column */
722   WhereLoop *pLoop;           /* The Loop object */
723   char *zNotUsed;             /* Extra space on the end of pIdx */
724   Bitmask idxCols;            /* Bitmap of columns used for indexing */
725   Bitmask extraCols;          /* Bitmap of additional columns */
726   u8 sentWarning = 0;         /* True if a warnning has been issued */
727   Expr *pPartial = 0;         /* Partial Index Expression */
728   int iContinue = 0;          /* Jump here to skip excluded rows */
729   struct SrcList_item *pTabItem;  /* FROM clause term being indexed */
730   int addrCounter = 0;        /* Address where integer counter is initialized */
731   int regBase;                /* Array of registers where record is assembled */
732 
733   /* Generate code to skip over the creation and initialization of the
734   ** transient index on 2nd and subsequent iterations of the loop. */
735   v = pParse->pVdbe;
736   assert( v!=0 );
737   addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
738 
739   /* Count the number of columns that will be added to the index
740   ** and used to match WHERE clause constraints */
741   nKeyCol = 0;
742   pTable = pSrc->pTab;
743   pWCEnd = &pWC->a[pWC->nTerm];
744   pLoop = pLevel->pWLoop;
745   idxCols = 0;
746   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
747     Expr *pExpr = pTerm->pExpr;
748     assert( !ExprHasProperty(pExpr, EP_FromJoin)    /* prereq always non-zero */
749          || pExpr->iRightJoinTable!=pSrc->iCursor   /*   for the right-hand   */
750          || pLoop->prereq!=0 );                     /*   table of a LEFT JOIN */
751     if( pLoop->prereq==0
752      && (pTerm->wtFlags & TERM_VIRTUAL)==0
753      && !ExprHasProperty(pExpr, EP_FromJoin)
754      && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){
755       pPartial = sqlite3ExprAnd(pParse, pPartial,
756                                 sqlite3ExprDup(pParse->db, pExpr, 0));
757     }
758     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
759       int iCol = pTerm->u.x.leftColumn;
760       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
761       testcase( iCol==BMS );
762       testcase( iCol==BMS-1 );
763       if( !sentWarning ){
764         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
765             "automatic index on %s(%s)", pTable->zName,
766             pTable->aCol[iCol].zName);
767         sentWarning = 1;
768       }
769       if( (idxCols & cMask)==0 ){
770         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
771           goto end_auto_index_create;
772         }
773         pLoop->aLTerm[nKeyCol++] = pTerm;
774         idxCols |= cMask;
775       }
776     }
777   }
778   assert( nKeyCol>0 );
779   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
780   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
781                      | WHERE_AUTO_INDEX;
782 
783   /* Count the number of additional columns needed to create a
784   ** covering index.  A "covering index" is an index that contains all
785   ** columns that are needed by the query.  With a covering index, the
786   ** original table never needs to be accessed.  Automatic indices must
787   ** be a covering index because the index will not be updated if the
788   ** original table changes and the index and table cannot both be used
789   ** if they go out of sync.
790   */
791   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
792   mxBitCol = MIN(BMS-1,pTable->nCol);
793   testcase( pTable->nCol==BMS-1 );
794   testcase( pTable->nCol==BMS-2 );
795   for(i=0; i<mxBitCol; i++){
796     if( extraCols & MASKBIT(i) ) nKeyCol++;
797   }
798   if( pSrc->colUsed & MASKBIT(BMS-1) ){
799     nKeyCol += pTable->nCol - BMS + 1;
800   }
801 
802   /* Construct the Index object to describe this index */
803   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
804   if( pIdx==0 ) goto end_auto_index_create;
805   pLoop->u.btree.pIndex = pIdx;
806   pIdx->zName = "auto-index";
807   pIdx->pTable = pTable;
808   n = 0;
809   idxCols = 0;
810   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
811     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
812       int iCol = pTerm->u.x.leftColumn;
813       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
814       testcase( iCol==BMS-1 );
815       testcase( iCol==BMS );
816       if( (idxCols & cMask)==0 ){
817         Expr *pX = pTerm->pExpr;
818         idxCols |= cMask;
819         pIdx->aiColumn[n] = pTerm->u.x.leftColumn;
820         pColl = sqlite3ExprCompareCollSeq(pParse, pX);
821         assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */
822         pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
823         n++;
824       }
825     }
826   }
827   assert( (u32)n==pLoop->u.btree.nEq );
828 
829   /* Add additional columns needed to make the automatic index into
830   ** a covering index */
831   for(i=0; i<mxBitCol; i++){
832     if( extraCols & MASKBIT(i) ){
833       pIdx->aiColumn[n] = i;
834       pIdx->azColl[n] = sqlite3StrBINARY;
835       n++;
836     }
837   }
838   if( pSrc->colUsed & MASKBIT(BMS-1) ){
839     for(i=BMS-1; i<pTable->nCol; i++){
840       pIdx->aiColumn[n] = i;
841       pIdx->azColl[n] = sqlite3StrBINARY;
842       n++;
843     }
844   }
845   assert( n==nKeyCol );
846   pIdx->aiColumn[n] = XN_ROWID;
847   pIdx->azColl[n] = sqlite3StrBINARY;
848 
849   /* Create the automatic index */
850   assert( pLevel->iIdxCur>=0 );
851   pLevel->iIdxCur = pParse->nTab++;
852   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
853   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
854   VdbeComment((v, "for %s", pTable->zName));
855 
856   /* Fill the automatic index with content */
857   pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
858   if( pTabItem->fg.viaCoroutine ){
859     int regYield = pTabItem->regReturn;
860     addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
861     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
862     addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
863     VdbeCoverage(v);
864     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
865   }else{
866     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
867   }
868   if( pPartial ){
869     iContinue = sqlite3VdbeMakeLabel(pParse);
870     sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
871     pLoop->wsFlags |= WHERE_PARTIALIDX;
872   }
873   regRecord = sqlite3GetTempReg(pParse);
874   regBase = sqlite3GenerateIndexKey(
875       pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
876   );
877   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
878   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
879   if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
880   if( pTabItem->fg.viaCoroutine ){
881     sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
882     testcase( pParse->db->mallocFailed );
883     assert( pLevel->iIdxCur>0 );
884     translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
885                           pTabItem->regResult, pLevel->iIdxCur);
886     sqlite3VdbeGoto(v, addrTop);
887     pTabItem->fg.viaCoroutine = 0;
888   }else{
889     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
890     sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
891   }
892   sqlite3VdbeJumpHere(v, addrTop);
893   sqlite3ReleaseTempReg(pParse, regRecord);
894 
895   /* Jump here when skipping the initialization */
896   sqlite3VdbeJumpHere(v, addrInit);
897 
898 end_auto_index_create:
899   sqlite3ExprDelete(pParse->db, pPartial);
900 }
901 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
902 
903 #ifndef SQLITE_OMIT_VIRTUALTABLE
904 /*
905 ** Allocate and populate an sqlite3_index_info structure. It is the
906 ** responsibility of the caller to eventually release the structure
907 ** by passing the pointer returned by this function to sqlite3_free().
908 */
909 static sqlite3_index_info *allocateIndexInfo(
910   Parse *pParse,                  /* The parsing context */
911   WhereClause *pWC,               /* The WHERE clause being analyzed */
912   Bitmask mUnusable,              /* Ignore terms with these prereqs */
913   struct SrcList_item *pSrc,      /* The FROM clause term that is the vtab */
914   ExprList *pOrderBy,             /* The ORDER BY clause */
915   u16 *pmNoOmit                   /* Mask of terms not to omit */
916 ){
917   int i, j;
918   int nTerm;
919   struct sqlite3_index_constraint *pIdxCons;
920   struct sqlite3_index_orderby *pIdxOrderBy;
921   struct sqlite3_index_constraint_usage *pUsage;
922   struct HiddenIndexInfo *pHidden;
923   WhereTerm *pTerm;
924   int nOrderBy;
925   sqlite3_index_info *pIdxInfo;
926   u16 mNoOmit = 0;
927 
928   /* Count the number of possible WHERE clause constraints referring
929   ** to this virtual table */
930   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
931     if( pTerm->leftCursor != pSrc->iCursor ) continue;
932     if( pTerm->prereqRight & mUnusable ) continue;
933     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
934     testcase( pTerm->eOperator & WO_IN );
935     testcase( pTerm->eOperator & WO_ISNULL );
936     testcase( pTerm->eOperator & WO_IS );
937     testcase( pTerm->eOperator & WO_ALL );
938     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
939     if( pTerm->wtFlags & TERM_VNULL ) continue;
940     assert( pTerm->u.x.leftColumn>=(-1) );
941     nTerm++;
942   }
943 
944   /* If the ORDER BY clause contains only columns in the current
945   ** virtual table then allocate space for the aOrderBy part of
946   ** the sqlite3_index_info structure.
947   */
948   nOrderBy = 0;
949   if( pOrderBy ){
950     int n = pOrderBy->nExpr;
951     for(i=0; i<n; i++){
952       Expr *pExpr = pOrderBy->a[i].pExpr;
953       if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
954       if( pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL ) break;
955     }
956     if( i==n){
957       nOrderBy = n;
958     }
959   }
960 
961   /* Allocate the sqlite3_index_info structure
962   */
963   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
964                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
965                            + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden) );
966   if( pIdxInfo==0 ){
967     sqlite3ErrorMsg(pParse, "out of memory");
968     return 0;
969   }
970   pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
971   pIdxCons = (struct sqlite3_index_constraint*)&pHidden[1];
972   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
973   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
974   pIdxInfo->nOrderBy = nOrderBy;
975   pIdxInfo->aConstraint = pIdxCons;
976   pIdxInfo->aOrderBy = pIdxOrderBy;
977   pIdxInfo->aConstraintUsage = pUsage;
978   pHidden->pWC = pWC;
979   pHidden->pParse = pParse;
980   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
981     u16 op;
982     if( pTerm->leftCursor != pSrc->iCursor ) continue;
983     if( pTerm->prereqRight & mUnusable ) continue;
984     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
985     testcase( pTerm->eOperator & WO_IN );
986     testcase( pTerm->eOperator & WO_IS );
987     testcase( pTerm->eOperator & WO_ISNULL );
988     testcase( pTerm->eOperator & WO_ALL );
989     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
990     if( pTerm->wtFlags & TERM_VNULL ) continue;
991 
992     /* tag-20191211-002: WHERE-clause constraints are not useful to the
993     ** right-hand table of a LEFT JOIN.  See tag-20191211-001 for the
994     ** equivalent restriction for ordinary tables. */
995     if( (pSrc->fg.jointype & JT_LEFT)!=0
996      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
997     ){
998       continue;
999     }
1000     assert( pTerm->u.x.leftColumn>=(-1) );
1001     pIdxCons[j].iColumn = pTerm->u.x.leftColumn;
1002     pIdxCons[j].iTermOffset = i;
1003     op = pTerm->eOperator & WO_ALL;
1004     if( op==WO_IN ) op = WO_EQ;
1005     if( op==WO_AUX ){
1006       pIdxCons[j].op = pTerm->eMatchOp;
1007     }else if( op & (WO_ISNULL|WO_IS) ){
1008       if( op==WO_ISNULL ){
1009         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
1010       }else{
1011         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
1012       }
1013     }else{
1014       pIdxCons[j].op = (u8)op;
1015       /* The direct assignment in the previous line is possible only because
1016       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
1017       ** following asserts verify this fact. */
1018       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1019       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1020       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1021       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1022       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1023       assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
1024 
1025       if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
1026        && sqlite3ExprIsVector(pTerm->pExpr->pRight)
1027       ){
1028         testcase( j!=i );
1029         if( j<16 ) mNoOmit |= (1 << j);
1030         if( op==WO_LT ) pIdxCons[j].op = WO_LE;
1031         if( op==WO_GT ) pIdxCons[j].op = WO_GE;
1032       }
1033     }
1034 
1035     j++;
1036   }
1037   pIdxInfo->nConstraint = j;
1038   for(i=0; i<nOrderBy; i++){
1039     Expr *pExpr = pOrderBy->a[i].pExpr;
1040     pIdxOrderBy[i].iColumn = pExpr->iColumn;
1041     pIdxOrderBy[i].desc = pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC;
1042   }
1043 
1044   *pmNoOmit = mNoOmit;
1045   return pIdxInfo;
1046 }
1047 
1048 /*
1049 ** The table object reference passed as the second argument to this function
1050 ** must represent a virtual table. This function invokes the xBestIndex()
1051 ** method of the virtual table with the sqlite3_index_info object that
1052 ** comes in as the 3rd argument to this function.
1053 **
1054 ** If an error occurs, pParse is populated with an error message and an
1055 ** appropriate error code is returned.  A return of SQLITE_CONSTRAINT from
1056 ** xBestIndex is not considered an error.  SQLITE_CONSTRAINT indicates that
1057 ** the current configuration of "unusable" flags in sqlite3_index_info can
1058 ** not result in a valid plan.
1059 **
1060 ** Whether or not an error is returned, it is the responsibility of the
1061 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1062 ** that this is required.
1063 */
1064 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
1065   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
1066   int rc;
1067 
1068   whereTraceIndexInfoInputs(p);
1069   rc = pVtab->pModule->xBestIndex(pVtab, p);
1070   whereTraceIndexInfoOutputs(p);
1071 
1072   if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){
1073     if( rc==SQLITE_NOMEM ){
1074       sqlite3OomFault(pParse->db);
1075     }else if( !pVtab->zErrMsg ){
1076       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1077     }else{
1078       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1079     }
1080   }
1081   sqlite3_free(pVtab->zErrMsg);
1082   pVtab->zErrMsg = 0;
1083   return rc;
1084 }
1085 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1086 
1087 #ifdef SQLITE_ENABLE_STAT4
1088 /*
1089 ** Estimate the location of a particular key among all keys in an
1090 ** index.  Store the results in aStat as follows:
1091 **
1092 **    aStat[0]      Est. number of rows less than pRec
1093 **    aStat[1]      Est. number of rows equal to pRec
1094 **
1095 ** Return the index of the sample that is the smallest sample that
1096 ** is greater than or equal to pRec. Note that this index is not an index
1097 ** into the aSample[] array - it is an index into a virtual set of samples
1098 ** based on the contents of aSample[] and the number of fields in record
1099 ** pRec.
1100 */
1101 static int whereKeyStats(
1102   Parse *pParse,              /* Database connection */
1103   Index *pIdx,                /* Index to consider domain of */
1104   UnpackedRecord *pRec,       /* Vector of values to consider */
1105   int roundUp,                /* Round up if true.  Round down if false */
1106   tRowcnt *aStat              /* OUT: stats written here */
1107 ){
1108   IndexSample *aSample = pIdx->aSample;
1109   int iCol;                   /* Index of required stats in anEq[] etc. */
1110   int i;                      /* Index of first sample >= pRec */
1111   int iSample;                /* Smallest sample larger than or equal to pRec */
1112   int iMin = 0;               /* Smallest sample not yet tested */
1113   int iTest;                  /* Next sample to test */
1114   int res;                    /* Result of comparison operation */
1115   int nField;                 /* Number of fields in pRec */
1116   tRowcnt iLower = 0;         /* anLt[] + anEq[] of largest sample pRec is > */
1117 
1118 #ifndef SQLITE_DEBUG
1119   UNUSED_PARAMETER( pParse );
1120 #endif
1121   assert( pRec!=0 );
1122   assert( pIdx->nSample>0 );
1123   assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
1124 
1125   /* Do a binary search to find the first sample greater than or equal
1126   ** to pRec. If pRec contains a single field, the set of samples to search
1127   ** is simply the aSample[] array. If the samples in aSample[] contain more
1128   ** than one fields, all fields following the first are ignored.
1129   **
1130   ** If pRec contains N fields, where N is more than one, then as well as the
1131   ** samples in aSample[] (truncated to N fields), the search also has to
1132   ** consider prefixes of those samples. For example, if the set of samples
1133   ** in aSample is:
1134   **
1135   **     aSample[0] = (a, 5)
1136   **     aSample[1] = (a, 10)
1137   **     aSample[2] = (b, 5)
1138   **     aSample[3] = (c, 100)
1139   **     aSample[4] = (c, 105)
1140   **
1141   ** Then the search space should ideally be the samples above and the
1142   ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1143   ** the code actually searches this set:
1144   **
1145   **     0: (a)
1146   **     1: (a, 5)
1147   **     2: (a, 10)
1148   **     3: (a, 10)
1149   **     4: (b)
1150   **     5: (b, 5)
1151   **     6: (c)
1152   **     7: (c, 100)
1153   **     8: (c, 105)
1154   **     9: (c, 105)
1155   **
1156   ** For each sample in the aSample[] array, N samples are present in the
1157   ** effective sample array. In the above, samples 0 and 1 are based on
1158   ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1159   **
1160   ** Often, sample i of each block of N effective samples has (i+1) fields.
1161   ** Except, each sample may be extended to ensure that it is greater than or
1162   ** equal to the previous sample in the array. For example, in the above,
1163   ** sample 2 is the first sample of a block of N samples, so at first it
1164   ** appears that it should be 1 field in size. However, that would make it
1165   ** smaller than sample 1, so the binary search would not work. As a result,
1166   ** it is extended to two fields. The duplicates that this creates do not
1167   ** cause any problems.
1168   */
1169   nField = pRec->nField;
1170   iCol = 0;
1171   iSample = pIdx->nSample * nField;
1172   do{
1173     int iSamp;                    /* Index in aSample[] of test sample */
1174     int n;                        /* Number of fields in test sample */
1175 
1176     iTest = (iMin+iSample)/2;
1177     iSamp = iTest / nField;
1178     if( iSamp>0 ){
1179       /* The proposed effective sample is a prefix of sample aSample[iSamp].
1180       ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1181       ** fields that is greater than the previous effective sample.  */
1182       for(n=(iTest % nField) + 1; n<nField; n++){
1183         if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1184       }
1185     }else{
1186       n = iTest + 1;
1187     }
1188 
1189     pRec->nField = n;
1190     res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1191     if( res<0 ){
1192       iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1193       iMin = iTest+1;
1194     }else if( res==0 && n<nField ){
1195       iLower = aSample[iSamp].anLt[n-1];
1196       iMin = iTest+1;
1197       res = -1;
1198     }else{
1199       iSample = iTest;
1200       iCol = n-1;
1201     }
1202   }while( res && iMin<iSample );
1203   i = iSample / nField;
1204 
1205 #ifdef SQLITE_DEBUG
1206   /* The following assert statements check that the binary search code
1207   ** above found the right answer. This block serves no purpose other
1208   ** than to invoke the asserts.  */
1209   if( pParse->db->mallocFailed==0 ){
1210     if( res==0 ){
1211       /* If (res==0) is true, then pRec must be equal to sample i. */
1212       assert( i<pIdx->nSample );
1213       assert( iCol==nField-1 );
1214       pRec->nField = nField;
1215       assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1216            || pParse->db->mallocFailed
1217       );
1218     }else{
1219       /* Unless i==pIdx->nSample, indicating that pRec is larger than
1220       ** all samples in the aSample[] array, pRec must be smaller than the
1221       ** (iCol+1) field prefix of sample i.  */
1222       assert( i<=pIdx->nSample && i>=0 );
1223       pRec->nField = iCol+1;
1224       assert( i==pIdx->nSample
1225            || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1226            || pParse->db->mallocFailed );
1227 
1228       /* if i==0 and iCol==0, then record pRec is smaller than all samples
1229       ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1230       ** be greater than or equal to the (iCol) field prefix of sample i.
1231       ** If (i>0), then pRec must also be greater than sample (i-1).  */
1232       if( iCol>0 ){
1233         pRec->nField = iCol;
1234         assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1235              || pParse->db->mallocFailed );
1236       }
1237       if( i>0 ){
1238         pRec->nField = nField;
1239         assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1240              || pParse->db->mallocFailed );
1241       }
1242     }
1243   }
1244 #endif /* ifdef SQLITE_DEBUG */
1245 
1246   if( res==0 ){
1247     /* Record pRec is equal to sample i */
1248     assert( iCol==nField-1 );
1249     aStat[0] = aSample[i].anLt[iCol];
1250     aStat[1] = aSample[i].anEq[iCol];
1251   }else{
1252     /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1253     ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1254     ** is larger than all samples in the array. */
1255     tRowcnt iUpper, iGap;
1256     if( i>=pIdx->nSample ){
1257       iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1258     }else{
1259       iUpper = aSample[i].anLt[iCol];
1260     }
1261 
1262     if( iLower>=iUpper ){
1263       iGap = 0;
1264     }else{
1265       iGap = iUpper - iLower;
1266     }
1267     if( roundUp ){
1268       iGap = (iGap*2)/3;
1269     }else{
1270       iGap = iGap/3;
1271     }
1272     aStat[0] = iLower + iGap;
1273     aStat[1] = pIdx->aAvgEq[nField-1];
1274   }
1275 
1276   /* Restore the pRec->nField value before returning.  */
1277   pRec->nField = nField;
1278   return i;
1279 }
1280 #endif /* SQLITE_ENABLE_STAT4 */
1281 
1282 /*
1283 ** If it is not NULL, pTerm is a term that provides an upper or lower
1284 ** bound on a range scan. Without considering pTerm, it is estimated
1285 ** that the scan will visit nNew rows. This function returns the number
1286 ** estimated to be visited after taking pTerm into account.
1287 **
1288 ** If the user explicitly specified a likelihood() value for this term,
1289 ** then the return value is the likelihood multiplied by the number of
1290 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1291 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1292 */
1293 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1294   LogEst nRet = nNew;
1295   if( pTerm ){
1296     if( pTerm->truthProb<=0 ){
1297       nRet += pTerm->truthProb;
1298     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1299       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
1300     }
1301   }
1302   return nRet;
1303 }
1304 
1305 
1306 #ifdef SQLITE_ENABLE_STAT4
1307 /*
1308 ** Return the affinity for a single column of an index.
1309 */
1310 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1311   assert( iCol>=0 && iCol<pIdx->nColumn );
1312   if( !pIdx->zColAff ){
1313     if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1314   }
1315   assert( pIdx->zColAff[iCol]!=0 );
1316   return pIdx->zColAff[iCol];
1317 }
1318 #endif
1319 
1320 
1321 #ifdef SQLITE_ENABLE_STAT4
1322 /*
1323 ** This function is called to estimate the number of rows visited by a
1324 ** range-scan on a skip-scan index. For example:
1325 **
1326 **   CREATE INDEX i1 ON t1(a, b, c);
1327 **   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1328 **
1329 ** Value pLoop->nOut is currently set to the estimated number of rows
1330 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1331 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1332 ** on the stat4 data for the index. this scan will be peformed multiple
1333 ** times (once for each (a,b) combination that matches a=?) is dealt with
1334 ** by the caller.
1335 **
1336 ** It does this by scanning through all stat4 samples, comparing values
1337 ** extracted from pLower and pUpper with the corresponding column in each
1338 ** sample. If L and U are the number of samples found to be less than or
1339 ** equal to the values extracted from pLower and pUpper respectively, and
1340 ** N is the total number of samples, the pLoop->nOut value is adjusted
1341 ** as follows:
1342 **
1343 **   nOut = nOut * ( min(U - L, 1) / N )
1344 **
1345 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1346 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1347 ** U is set to N.
1348 **
1349 ** Normally, this function sets *pbDone to 1 before returning. However,
1350 ** if no value can be extracted from either pLower or pUpper (and so the
1351 ** estimate of the number of rows delivered remains unchanged), *pbDone
1352 ** is left as is.
1353 **
1354 ** If an error occurs, an SQLite error code is returned. Otherwise,
1355 ** SQLITE_OK.
1356 */
1357 static int whereRangeSkipScanEst(
1358   Parse *pParse,       /* Parsing & code generating context */
1359   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1360   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1361   WhereLoop *pLoop,    /* Update the .nOut value of this loop */
1362   int *pbDone          /* Set to true if at least one expr. value extracted */
1363 ){
1364   Index *p = pLoop->u.btree.pIndex;
1365   int nEq = pLoop->u.btree.nEq;
1366   sqlite3 *db = pParse->db;
1367   int nLower = -1;
1368   int nUpper = p->nSample+1;
1369   int rc = SQLITE_OK;
1370   u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1371   CollSeq *pColl;
1372 
1373   sqlite3_value *p1 = 0;          /* Value extracted from pLower */
1374   sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
1375   sqlite3_value *pVal = 0;        /* Value extracted from record */
1376 
1377   pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1378   if( pLower ){
1379     rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1380     nLower = 0;
1381   }
1382   if( pUpper && rc==SQLITE_OK ){
1383     rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1384     nUpper = p2 ? 0 : p->nSample;
1385   }
1386 
1387   if( p1 || p2 ){
1388     int i;
1389     int nDiff;
1390     for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1391       rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1392       if( rc==SQLITE_OK && p1 ){
1393         int res = sqlite3MemCompare(p1, pVal, pColl);
1394         if( res>=0 ) nLower++;
1395       }
1396       if( rc==SQLITE_OK && p2 ){
1397         int res = sqlite3MemCompare(p2, pVal, pColl);
1398         if( res>=0 ) nUpper++;
1399       }
1400     }
1401     nDiff = (nUpper - nLower);
1402     if( nDiff<=0 ) nDiff = 1;
1403 
1404     /* If there is both an upper and lower bound specified, and the
1405     ** comparisons indicate that they are close together, use the fallback
1406     ** method (assume that the scan visits 1/64 of the rows) for estimating
1407     ** the number of rows visited. Otherwise, estimate the number of rows
1408     ** using the method described in the header comment for this function. */
1409     if( nDiff!=1 || pUpper==0 || pLower==0 ){
1410       int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1411       pLoop->nOut -= nAdjust;
1412       *pbDone = 1;
1413       WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n",
1414                            nLower, nUpper, nAdjust*-1, pLoop->nOut));
1415     }
1416 
1417   }else{
1418     assert( *pbDone==0 );
1419   }
1420 
1421   sqlite3ValueFree(p1);
1422   sqlite3ValueFree(p2);
1423   sqlite3ValueFree(pVal);
1424 
1425   return rc;
1426 }
1427 #endif /* SQLITE_ENABLE_STAT4 */
1428 
1429 /*
1430 ** This function is used to estimate the number of rows that will be visited
1431 ** by scanning an index for a range of values. The range may have an upper
1432 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1433 ** and lower bounds are represented by pLower and pUpper respectively. For
1434 ** example, assuming that index p is on t1(a):
1435 **
1436 **   ... FROM t1 WHERE a > ? AND a < ? ...
1437 **                    |_____|   |_____|
1438 **                       |         |
1439 **                     pLower    pUpper
1440 **
1441 ** If either of the upper or lower bound is not present, then NULL is passed in
1442 ** place of the corresponding WhereTerm.
1443 **
1444 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1445 ** column subject to the range constraint. Or, equivalently, the number of
1446 ** equality constraints optimized by the proposed index scan. For example,
1447 ** assuming index p is on t1(a, b), and the SQL query is:
1448 **
1449 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1450 **
1451 ** then nEq is set to 1 (as the range restricted column, b, is the second
1452 ** left-most column of the index). Or, if the query is:
1453 **
1454 **   ... FROM t1 WHERE a > ? AND a < ? ...
1455 **
1456 ** then nEq is set to 0.
1457 **
1458 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1459 ** number of rows that the index scan is expected to visit without
1460 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1461 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1462 ** to account for the range constraints pLower and pUpper.
1463 **
1464 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1465 ** used, a single range inequality reduces the search space by a factor of 4.
1466 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1467 ** rows visited by a factor of 64.
1468 */
1469 static int whereRangeScanEst(
1470   Parse *pParse,       /* Parsing & code generating context */
1471   WhereLoopBuilder *pBuilder,
1472   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1473   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1474   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
1475 ){
1476   int rc = SQLITE_OK;
1477   int nOut = pLoop->nOut;
1478   LogEst nNew;
1479 
1480 #ifdef SQLITE_ENABLE_STAT4
1481   Index *p = pLoop->u.btree.pIndex;
1482   int nEq = pLoop->u.btree.nEq;
1483 
1484   if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol)
1485    && OptimizationEnabled(pParse->db, SQLITE_Stat4)
1486   ){
1487     if( nEq==pBuilder->nRecValid ){
1488       UnpackedRecord *pRec = pBuilder->pRec;
1489       tRowcnt a[2];
1490       int nBtm = pLoop->u.btree.nBtm;
1491       int nTop = pLoop->u.btree.nTop;
1492 
1493       /* Variable iLower will be set to the estimate of the number of rows in
1494       ** the index that are less than the lower bound of the range query. The
1495       ** lower bound being the concatenation of $P and $L, where $P is the
1496       ** key-prefix formed by the nEq values matched against the nEq left-most
1497       ** columns of the index, and $L is the value in pLower.
1498       **
1499       ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1500       ** is not a simple variable or literal value), the lower bound of the
1501       ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1502       ** if $L is available, whereKeyStats() is called for both ($P) and
1503       ** ($P:$L) and the larger of the two returned values is used.
1504       **
1505       ** Similarly, iUpper is to be set to the estimate of the number of rows
1506       ** less than the upper bound of the range query. Where the upper bound
1507       ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1508       ** of iUpper are requested of whereKeyStats() and the smaller used.
1509       **
1510       ** The number of rows between the two bounds is then just iUpper-iLower.
1511       */
1512       tRowcnt iLower;     /* Rows less than the lower bound */
1513       tRowcnt iUpper;     /* Rows less than the upper bound */
1514       int iLwrIdx = -2;   /* aSample[] for the lower bound */
1515       int iUprIdx = -1;   /* aSample[] for the upper bound */
1516 
1517       if( pRec ){
1518         testcase( pRec->nField!=pBuilder->nRecValid );
1519         pRec->nField = pBuilder->nRecValid;
1520       }
1521       /* Determine iLower and iUpper using ($P) only. */
1522       if( nEq==0 ){
1523         iLower = 0;
1524         iUpper = p->nRowEst0;
1525       }else{
1526         /* Note: this call could be optimized away - since the same values must
1527         ** have been requested when testing key $P in whereEqualScanEst().  */
1528         whereKeyStats(pParse, p, pRec, 0, a);
1529         iLower = a[0];
1530         iUpper = a[0] + a[1];
1531       }
1532 
1533       assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1534       assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1535       assert( p->aSortOrder!=0 );
1536       if( p->aSortOrder[nEq] ){
1537         /* The roles of pLower and pUpper are swapped for a DESC index */
1538         SWAP(WhereTerm*, pLower, pUpper);
1539         SWAP(int, nBtm, nTop);
1540       }
1541 
1542       /* If possible, improve on the iLower estimate using ($P:$L). */
1543       if( pLower ){
1544         int n;                    /* Values extracted from pExpr */
1545         Expr *pExpr = pLower->pExpr->pRight;
1546         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1547         if( rc==SQLITE_OK && n ){
1548           tRowcnt iNew;
1549           u16 mask = WO_GT|WO_LE;
1550           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1551           iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1552           iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1553           if( iNew>iLower ) iLower = iNew;
1554           nOut--;
1555           pLower = 0;
1556         }
1557       }
1558 
1559       /* If possible, improve on the iUpper estimate using ($P:$U). */
1560       if( pUpper ){
1561         int n;                    /* Values extracted from pExpr */
1562         Expr *pExpr = pUpper->pExpr->pRight;
1563         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1564         if( rc==SQLITE_OK && n ){
1565           tRowcnt iNew;
1566           u16 mask = WO_GT|WO_LE;
1567           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1568           iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1569           iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1570           if( iNew<iUpper ) iUpper = iNew;
1571           nOut--;
1572           pUpper = 0;
1573         }
1574       }
1575 
1576       pBuilder->pRec = pRec;
1577       if( rc==SQLITE_OK ){
1578         if( iUpper>iLower ){
1579           nNew = sqlite3LogEst(iUpper - iLower);
1580           /* TUNING:  If both iUpper and iLower are derived from the same
1581           ** sample, then assume they are 4x more selective.  This brings
1582           ** the estimated selectivity more in line with what it would be
1583           ** if estimated without the use of STAT4 tables. */
1584           if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
1585         }else{
1586           nNew = 10;        assert( 10==sqlite3LogEst(2) );
1587         }
1588         if( nNew<nOut ){
1589           nOut = nNew;
1590         }
1591         WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
1592                            (u32)iLower, (u32)iUpper, nOut));
1593       }
1594     }else{
1595       int bDone = 0;
1596       rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1597       if( bDone ) return rc;
1598     }
1599   }
1600 #else
1601   UNUSED_PARAMETER(pParse);
1602   UNUSED_PARAMETER(pBuilder);
1603   assert( pLower || pUpper );
1604 #endif
1605   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1606   nNew = whereRangeAdjust(pLower, nOut);
1607   nNew = whereRangeAdjust(pUpper, nNew);
1608 
1609   /* TUNING: If there is both an upper and lower limit and neither limit
1610   ** has an application-defined likelihood(), assume the range is
1611   ** reduced by an additional 75%. This means that, by default, an open-ended
1612   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1613   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1614   ** match 1/64 of the index. */
1615   if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1616     nNew -= 20;
1617   }
1618 
1619   nOut -= (pLower!=0) + (pUpper!=0);
1620   if( nNew<10 ) nNew = 10;
1621   if( nNew<nOut ) nOut = nNew;
1622 #if defined(WHERETRACE_ENABLED)
1623   if( pLoop->nOut>nOut ){
1624     WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1625                     pLoop->nOut, nOut));
1626   }
1627 #endif
1628   pLoop->nOut = (LogEst)nOut;
1629   return rc;
1630 }
1631 
1632 #ifdef SQLITE_ENABLE_STAT4
1633 /*
1634 ** Estimate the number of rows that will be returned based on
1635 ** an equality constraint x=VALUE and where that VALUE occurs in
1636 ** the histogram data.  This only works when x is the left-most
1637 ** column of an index and sqlite_stat4 histogram data is available
1638 ** for that index.  When pExpr==NULL that means the constraint is
1639 ** "x IS NULL" instead of "x=VALUE".
1640 **
1641 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1642 ** If unable to make an estimate, leave *pnRow unchanged and return
1643 ** non-zero.
1644 **
1645 ** This routine can fail if it is unable to load a collating sequence
1646 ** required for string comparison, or if unable to allocate memory
1647 ** for a UTF conversion required for comparison.  The error is stored
1648 ** in the pParse structure.
1649 */
1650 static int whereEqualScanEst(
1651   Parse *pParse,       /* Parsing & code generating context */
1652   WhereLoopBuilder *pBuilder,
1653   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
1654   tRowcnt *pnRow       /* Write the revised row estimate here */
1655 ){
1656   Index *p = pBuilder->pNew->u.btree.pIndex;
1657   int nEq = pBuilder->pNew->u.btree.nEq;
1658   UnpackedRecord *pRec = pBuilder->pRec;
1659   int rc;                   /* Subfunction return code */
1660   tRowcnt a[2];             /* Statistics */
1661   int bOk;
1662 
1663   assert( nEq>=1 );
1664   assert( nEq<=p->nColumn );
1665   assert( p->aSample!=0 );
1666   assert( p->nSample>0 );
1667   assert( pBuilder->nRecValid<nEq );
1668 
1669   /* If values are not available for all fields of the index to the left
1670   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1671   if( pBuilder->nRecValid<(nEq-1) ){
1672     return SQLITE_NOTFOUND;
1673   }
1674 
1675   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1676   ** below would return the same value.  */
1677   if( nEq>=p->nColumn ){
1678     *pnRow = 1;
1679     return SQLITE_OK;
1680   }
1681 
1682   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1683   pBuilder->pRec = pRec;
1684   if( rc!=SQLITE_OK ) return rc;
1685   if( bOk==0 ) return SQLITE_NOTFOUND;
1686   pBuilder->nRecValid = nEq;
1687 
1688   whereKeyStats(pParse, p, pRec, 0, a);
1689   WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1690                    p->zName, nEq-1, (int)a[1]));
1691   *pnRow = a[1];
1692 
1693   return rc;
1694 }
1695 #endif /* SQLITE_ENABLE_STAT4 */
1696 
1697 #ifdef SQLITE_ENABLE_STAT4
1698 /*
1699 ** Estimate the number of rows that will be returned based on
1700 ** an IN constraint where the right-hand side of the IN operator
1701 ** is a list of values.  Example:
1702 **
1703 **        WHERE x IN (1,2,3,4)
1704 **
1705 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1706 ** If unable to make an estimate, leave *pnRow unchanged and return
1707 ** non-zero.
1708 **
1709 ** This routine can fail if it is unable to load a collating sequence
1710 ** required for string comparison, or if unable to allocate memory
1711 ** for a UTF conversion required for comparison.  The error is stored
1712 ** in the pParse structure.
1713 */
1714 static int whereInScanEst(
1715   Parse *pParse,       /* Parsing & code generating context */
1716   WhereLoopBuilder *pBuilder,
1717   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1718   tRowcnt *pnRow       /* Write the revised row estimate here */
1719 ){
1720   Index *p = pBuilder->pNew->u.btree.pIndex;
1721   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1722   int nRecValid = pBuilder->nRecValid;
1723   int rc = SQLITE_OK;     /* Subfunction return code */
1724   tRowcnt nEst;           /* Number of rows for a single term */
1725   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
1726   int i;                  /* Loop counter */
1727 
1728   assert( p->aSample!=0 );
1729   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
1730     nEst = nRow0;
1731     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
1732     nRowEst += nEst;
1733     pBuilder->nRecValid = nRecValid;
1734   }
1735 
1736   if( rc==SQLITE_OK ){
1737     if( nRowEst > nRow0 ) nRowEst = nRow0;
1738     *pnRow = nRowEst;
1739     WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
1740   }
1741   assert( pBuilder->nRecValid==nRecValid );
1742   return rc;
1743 }
1744 #endif /* SQLITE_ENABLE_STAT4 */
1745 
1746 
1747 #ifdef WHERETRACE_ENABLED
1748 /*
1749 ** Print the content of a WhereTerm object
1750 */
1751 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){
1752   if( pTerm==0 ){
1753     sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
1754   }else{
1755     char zType[8];
1756     char zLeft[50];
1757     memcpy(zType, "....", 5);
1758     if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
1759     if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
1760     if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
1761     if( pTerm->wtFlags & TERM_CODED  ) zType[3] = 'C';
1762     if( pTerm->eOperator & WO_SINGLE ){
1763       sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
1764                        pTerm->leftCursor, pTerm->u.x.leftColumn);
1765     }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
1766       sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx",
1767                        pTerm->u.pOrInfo->indexable);
1768     }else{
1769       sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
1770     }
1771     sqlite3DebugPrintf(
1772        "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x",
1773        iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags);
1774     /* The 0x10000 .wheretrace flag causes extra information to be
1775     ** shown about each Term */
1776     if( sqlite3WhereTrace & 0x10000 ){
1777       sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx",
1778         pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight);
1779     }
1780     if( pTerm->u.x.iField ){
1781       sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField);
1782     }
1783     if( pTerm->iParent>=0 ){
1784       sqlite3DebugPrintf(" iParent=%d", pTerm->iParent);
1785     }
1786     sqlite3DebugPrintf("\n");
1787     sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
1788   }
1789 }
1790 #endif
1791 
1792 #ifdef WHERETRACE_ENABLED
1793 /*
1794 ** Show the complete content of a WhereClause
1795 */
1796 void sqlite3WhereClausePrint(WhereClause *pWC){
1797   int i;
1798   for(i=0; i<pWC->nTerm; i++){
1799     sqlite3WhereTermPrint(&pWC->a[i], i);
1800   }
1801 }
1802 #endif
1803 
1804 #ifdef WHERETRACE_ENABLED
1805 /*
1806 ** Print a WhereLoop object for debugging purposes
1807 */
1808 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){
1809   WhereInfo *pWInfo = pWC->pWInfo;
1810   int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
1811   struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab;
1812   Table *pTab = pItem->pTab;
1813   Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
1814   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
1815                      p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
1816   sqlite3DebugPrintf(" %12s",
1817                      pItem->zAlias ? pItem->zAlias : pTab->zName);
1818   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
1819     const char *zName;
1820     if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
1821       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
1822         int i = sqlite3Strlen30(zName) - 1;
1823         while( zName[i]!='_' ) i--;
1824         zName += i;
1825       }
1826       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
1827     }else{
1828       sqlite3DebugPrintf("%20s","");
1829     }
1830   }else{
1831     char *z;
1832     if( p->u.vtab.idxStr ){
1833       z = sqlite3_mprintf("(%d,\"%s\",%#x)",
1834                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
1835     }else{
1836       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
1837     }
1838     sqlite3DebugPrintf(" %-19s", z);
1839     sqlite3_free(z);
1840   }
1841   if( p->wsFlags & WHERE_SKIPSCAN ){
1842     sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
1843   }else{
1844     sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
1845   }
1846   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
1847   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
1848     int i;
1849     for(i=0; i<p->nLTerm; i++){
1850       sqlite3WhereTermPrint(p->aLTerm[i], i);
1851     }
1852   }
1853 }
1854 #endif
1855 
1856 /*
1857 ** Convert bulk memory into a valid WhereLoop that can be passed
1858 ** to whereLoopClear harmlessly.
1859 */
1860 static void whereLoopInit(WhereLoop *p){
1861   p->aLTerm = p->aLTermSpace;
1862   p->nLTerm = 0;
1863   p->nLSlot = ArraySize(p->aLTermSpace);
1864   p->wsFlags = 0;
1865 }
1866 
1867 /*
1868 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
1869 */
1870 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
1871   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
1872     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
1873       sqlite3_free(p->u.vtab.idxStr);
1874       p->u.vtab.needFree = 0;
1875       p->u.vtab.idxStr = 0;
1876     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
1877       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
1878       sqlite3DbFreeNN(db, p->u.btree.pIndex);
1879       p->u.btree.pIndex = 0;
1880     }
1881   }
1882 }
1883 
1884 /*
1885 ** Deallocate internal memory used by a WhereLoop object
1886 */
1887 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
1888   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1889   whereLoopClearUnion(db, p);
1890   whereLoopInit(p);
1891 }
1892 
1893 /*
1894 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
1895 */
1896 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
1897   WhereTerm **paNew;
1898   if( p->nLSlot>=n ) return SQLITE_OK;
1899   n = (n+7)&~7;
1900   paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
1901   if( paNew==0 ) return SQLITE_NOMEM_BKPT;
1902   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
1903   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1904   p->aLTerm = paNew;
1905   p->nLSlot = n;
1906   return SQLITE_OK;
1907 }
1908 
1909 /*
1910 ** Transfer content from the second pLoop into the first.
1911 */
1912 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
1913   whereLoopClearUnion(db, pTo);
1914   if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
1915     memset(&pTo->u, 0, sizeof(pTo->u));
1916     return SQLITE_NOMEM_BKPT;
1917   }
1918   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
1919   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
1920   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
1921     pFrom->u.vtab.needFree = 0;
1922   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
1923     pFrom->u.btree.pIndex = 0;
1924   }
1925   return SQLITE_OK;
1926 }
1927 
1928 /*
1929 ** Delete a WhereLoop object
1930 */
1931 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
1932   whereLoopClear(db, p);
1933   sqlite3DbFreeNN(db, p);
1934 }
1935 
1936 /*
1937 ** Free a WhereInfo structure
1938 */
1939 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
1940   int i;
1941   assert( pWInfo!=0 );
1942   for(i=0; i<pWInfo->nLevel; i++){
1943     WhereLevel *pLevel = &pWInfo->a[i];
1944     if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){
1945       sqlite3DbFree(db, pLevel->u.in.aInLoop);
1946     }
1947   }
1948   sqlite3WhereClauseClear(&pWInfo->sWC);
1949   while( pWInfo->pLoops ){
1950     WhereLoop *p = pWInfo->pLoops;
1951     pWInfo->pLoops = p->pNextLoop;
1952     whereLoopDelete(db, p);
1953   }
1954   assert( pWInfo->pExprMods==0 );
1955   sqlite3DbFreeNN(db, pWInfo);
1956 }
1957 
1958 /*
1959 ** Return TRUE if all of the following are true:
1960 **
1961 **   (1)  X has the same or lower cost that Y
1962 **   (2)  X uses fewer WHERE clause terms than Y
1963 **   (3)  Every WHERE clause term used by X is also used by Y
1964 **   (4)  X skips at least as many columns as Y
1965 **   (5)  If X is a covering index, than Y is too
1966 **
1967 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
1968 ** If X is a proper subset of Y then Y is a better choice and ought
1969 ** to have a lower cost.  This routine returns TRUE when that cost
1970 ** relationship is inverted and needs to be adjusted.  Constraint (4)
1971 ** was added because if X uses skip-scan less than Y it still might
1972 ** deserve a lower cost even if it is a proper subset of Y.  Constraint (5)
1973 ** was added because a covering index probably deserves to have a lower cost
1974 ** than a non-covering index even if it is a proper subset.
1975 */
1976 static int whereLoopCheaperProperSubset(
1977   const WhereLoop *pX,       /* First WhereLoop to compare */
1978   const WhereLoop *pY        /* Compare against this WhereLoop */
1979 ){
1980   int i, j;
1981   if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
1982     return 0; /* X is not a subset of Y */
1983   }
1984   if( pY->nSkip > pX->nSkip ) return 0;
1985   if( pX->rRun >= pY->rRun ){
1986     if( pX->rRun > pY->rRun ) return 0;    /* X costs more than Y */
1987     if( pX->nOut > pY->nOut ) return 0;    /* X costs more than Y */
1988   }
1989   for(i=pX->nLTerm-1; i>=0; i--){
1990     if( pX->aLTerm[i]==0 ) continue;
1991     for(j=pY->nLTerm-1; j>=0; j--){
1992       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
1993     }
1994     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
1995   }
1996   if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
1997    && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
1998     return 0;  /* Constraint (5) */
1999   }
2000   return 1;  /* All conditions meet */
2001 }
2002 
2003 /*
2004 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
2005 ** that:
2006 **
2007 **   (1) pTemplate costs less than any other WhereLoops that are a proper
2008 **       subset of pTemplate
2009 **
2010 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
2011 **       is a proper subset.
2012 **
2013 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
2014 ** WHERE clause terms than Y and that every WHERE clause term used by X is
2015 ** also used by Y.
2016 */
2017 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
2018   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
2019   for(; p; p=p->pNextLoop){
2020     if( p->iTab!=pTemplate->iTab ) continue;
2021     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
2022     if( whereLoopCheaperProperSubset(p, pTemplate) ){
2023       /* Adjust pTemplate cost downward so that it is cheaper than its
2024       ** subset p. */
2025       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2026                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1));
2027       pTemplate->rRun = p->rRun;
2028       pTemplate->nOut = p->nOut - 1;
2029     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
2030       /* Adjust pTemplate cost upward so that it is costlier than p since
2031       ** pTemplate is a proper subset of p */
2032       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2033                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1));
2034       pTemplate->rRun = p->rRun;
2035       pTemplate->nOut = p->nOut + 1;
2036     }
2037   }
2038 }
2039 
2040 /*
2041 ** Search the list of WhereLoops in *ppPrev looking for one that can be
2042 ** replaced by pTemplate.
2043 **
2044 ** Return NULL if pTemplate does not belong on the WhereLoop list.
2045 ** In other words if pTemplate ought to be dropped from further consideration.
2046 **
2047 ** If pX is a WhereLoop that pTemplate can replace, then return the
2048 ** link that points to pX.
2049 **
2050 ** If pTemplate cannot replace any existing element of the list but needs
2051 ** to be added to the list as a new entry, then return a pointer to the
2052 ** tail of the list.
2053 */
2054 static WhereLoop **whereLoopFindLesser(
2055   WhereLoop **ppPrev,
2056   const WhereLoop *pTemplate
2057 ){
2058   WhereLoop *p;
2059   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
2060     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
2061       /* If either the iTab or iSortIdx values for two WhereLoop are different
2062       ** then those WhereLoops need to be considered separately.  Neither is
2063       ** a candidate to replace the other. */
2064       continue;
2065     }
2066     /* In the current implementation, the rSetup value is either zero
2067     ** or the cost of building an automatic index (NlogN) and the NlogN
2068     ** is the same for compatible WhereLoops. */
2069     assert( p->rSetup==0 || pTemplate->rSetup==0
2070                  || p->rSetup==pTemplate->rSetup );
2071 
2072     /* whereLoopAddBtree() always generates and inserts the automatic index
2073     ** case first.  Hence compatible candidate WhereLoops never have a larger
2074     ** rSetup. Call this SETUP-INVARIANT */
2075     assert( p->rSetup>=pTemplate->rSetup );
2076 
2077     /* Any loop using an appliation-defined index (or PRIMARY KEY or
2078     ** UNIQUE constraint) with one or more == constraints is better
2079     ** than an automatic index. Unless it is a skip-scan. */
2080     if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
2081      && (pTemplate->nSkip)==0
2082      && (pTemplate->wsFlags & WHERE_INDEXED)!=0
2083      && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
2084      && (p->prereq & pTemplate->prereq)==pTemplate->prereq
2085     ){
2086       break;
2087     }
2088 
2089     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2090     ** discarded.  WhereLoop p is better if:
2091     **   (1)  p has no more dependencies than pTemplate, and
2092     **   (2)  p has an equal or lower cost than pTemplate
2093     */
2094     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
2095      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
2096      && p->rRun<=pTemplate->rRun                      /* (2b) */
2097      && p->nOut<=pTemplate->nOut                      /* (2c) */
2098     ){
2099       return 0;  /* Discard pTemplate */
2100     }
2101 
2102     /* If pTemplate is always better than p, then cause p to be overwritten
2103     ** with pTemplate.  pTemplate is better than p if:
2104     **   (1)  pTemplate has no more dependences than p, and
2105     **   (2)  pTemplate has an equal or lower cost than p.
2106     */
2107     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
2108      && p->rRun>=pTemplate->rRun                             /* (2a) */
2109      && p->nOut>=pTemplate->nOut                             /* (2b) */
2110     ){
2111       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2112       break;   /* Cause p to be overwritten by pTemplate */
2113     }
2114   }
2115   return ppPrev;
2116 }
2117 
2118 /*
2119 ** Insert or replace a WhereLoop entry using the template supplied.
2120 **
2121 ** An existing WhereLoop entry might be overwritten if the new template
2122 ** is better and has fewer dependencies.  Or the template will be ignored
2123 ** and no insert will occur if an existing WhereLoop is faster and has
2124 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
2125 ** added based on the template.
2126 **
2127 ** If pBuilder->pOrSet is not NULL then we care about only the
2128 ** prerequisites and rRun and nOut costs of the N best loops.  That
2129 ** information is gathered in the pBuilder->pOrSet object.  This special
2130 ** processing mode is used only for OR clause processing.
2131 **
2132 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2133 ** still might overwrite similar loops with the new template if the
2134 ** new template is better.  Loops may be overwritten if the following
2135 ** conditions are met:
2136 **
2137 **    (1)  They have the same iTab.
2138 **    (2)  They have the same iSortIdx.
2139 **    (3)  The template has same or fewer dependencies than the current loop
2140 **    (4)  The template has the same or lower cost than the current loop
2141 */
2142 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2143   WhereLoop **ppPrev, *p;
2144   WhereInfo *pWInfo = pBuilder->pWInfo;
2145   sqlite3 *db = pWInfo->pParse->db;
2146   int rc;
2147 
2148   /* Stop the search once we hit the query planner search limit */
2149   if( pBuilder->iPlanLimit==0 ){
2150     WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
2151     if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0;
2152     return SQLITE_DONE;
2153   }
2154   pBuilder->iPlanLimit--;
2155 
2156   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2157 
2158   /* If pBuilder->pOrSet is defined, then only keep track of the costs
2159   ** and prereqs.
2160   */
2161   if( pBuilder->pOrSet!=0 ){
2162     if( pTemplate->nLTerm ){
2163 #if WHERETRACE_ENABLED
2164       u16 n = pBuilder->pOrSet->n;
2165       int x =
2166 #endif
2167       whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2168                                     pTemplate->nOut);
2169 #if WHERETRACE_ENABLED /* 0x8 */
2170       if( sqlite3WhereTrace & 0x8 ){
2171         sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
2172         sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2173       }
2174 #endif
2175     }
2176     return SQLITE_OK;
2177   }
2178 
2179   /* Look for an existing WhereLoop to replace with pTemplate
2180   */
2181   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2182 
2183   if( ppPrev==0 ){
2184     /* There already exists a WhereLoop on the list that is better
2185     ** than pTemplate, so just ignore pTemplate */
2186 #if WHERETRACE_ENABLED /* 0x8 */
2187     if( sqlite3WhereTrace & 0x8 ){
2188       sqlite3DebugPrintf("   skip: ");
2189       sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2190     }
2191 #endif
2192     return SQLITE_OK;
2193   }else{
2194     p = *ppPrev;
2195   }
2196 
2197   /* If we reach this point it means that either p[] should be overwritten
2198   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2199   ** WhereLoop and insert it.
2200   */
2201 #if WHERETRACE_ENABLED /* 0x8 */
2202   if( sqlite3WhereTrace & 0x8 ){
2203     if( p!=0 ){
2204       sqlite3DebugPrintf("replace: ");
2205       sqlite3WhereLoopPrint(p, pBuilder->pWC);
2206       sqlite3DebugPrintf("   with: ");
2207     }else{
2208       sqlite3DebugPrintf("    add: ");
2209     }
2210     sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2211   }
2212 #endif
2213   if( p==0 ){
2214     /* Allocate a new WhereLoop to add to the end of the list */
2215     *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2216     if( p==0 ) return SQLITE_NOMEM_BKPT;
2217     whereLoopInit(p);
2218     p->pNextLoop = 0;
2219   }else{
2220     /* We will be overwriting WhereLoop p[].  But before we do, first
2221     ** go through the rest of the list and delete any other entries besides
2222     ** p[] that are also supplated by pTemplate */
2223     WhereLoop **ppTail = &p->pNextLoop;
2224     WhereLoop *pToDel;
2225     while( *ppTail ){
2226       ppTail = whereLoopFindLesser(ppTail, pTemplate);
2227       if( ppTail==0 ) break;
2228       pToDel = *ppTail;
2229       if( pToDel==0 ) break;
2230       *ppTail = pToDel->pNextLoop;
2231 #if WHERETRACE_ENABLED /* 0x8 */
2232       if( sqlite3WhereTrace & 0x8 ){
2233         sqlite3DebugPrintf(" delete: ");
2234         sqlite3WhereLoopPrint(pToDel, pBuilder->pWC);
2235       }
2236 #endif
2237       whereLoopDelete(db, pToDel);
2238     }
2239   }
2240   rc = whereLoopXfer(db, p, pTemplate);
2241   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2242     Index *pIndex = p->u.btree.pIndex;
2243     if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){
2244       p->u.btree.pIndex = 0;
2245     }
2246   }
2247   return rc;
2248 }
2249 
2250 /*
2251 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2252 ** WHERE clause that reference the loop but which are not used by an
2253 ** index.
2254 *
2255 ** For every WHERE clause term that is not used by the index
2256 ** and which has a truth probability assigned by one of the likelihood(),
2257 ** likely(), or unlikely() SQL functions, reduce the estimated number
2258 ** of output rows by the probability specified.
2259 **
2260 ** TUNING:  For every WHERE clause term that is not used by the index
2261 ** and which does not have an assigned truth probability, heuristics
2262 ** described below are used to try to estimate the truth probability.
2263 ** TODO --> Perhaps this is something that could be improved by better
2264 ** table statistics.
2265 **
2266 ** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
2267 ** value corresponds to -1 in LogEst notation, so this means decrement
2268 ** the WhereLoop.nOut field for every such WHERE clause term.
2269 **
2270 ** Heuristic 2:  If there exists one or more WHERE clause terms of the
2271 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2272 ** final output row estimate is no greater than 1/4 of the total number
2273 ** of rows in the table.  In other words, assume that x==EXPR will filter
2274 ** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
2275 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2276 ** on the "x" column and so in that case only cap the output row estimate
2277 ** at 1/2 instead of 1/4.
2278 */
2279 static void whereLoopOutputAdjust(
2280   WhereClause *pWC,      /* The WHERE clause */
2281   WhereLoop *pLoop,      /* The loop to adjust downward */
2282   LogEst nRow            /* Number of rows in the entire table */
2283 ){
2284   WhereTerm *pTerm, *pX;
2285   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2286   int i, j;
2287   LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */
2288 
2289   assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2290   for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
2291     assert( pTerm!=0 );
2292     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
2293     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2294     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2295     for(j=pLoop->nLTerm-1; j>=0; j--){
2296       pX = pLoop->aLTerm[j];
2297       if( pX==0 ) continue;
2298       if( pX==pTerm ) break;
2299       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2300     }
2301     if( j<0 ){
2302       if( pTerm->truthProb<=0 ){
2303         /* If a truth probability is specified using the likelihood() hints,
2304         ** then use the probability provided by the application. */
2305         pLoop->nOut += pTerm->truthProb;
2306       }else{
2307         /* In the absence of explicit truth probabilities, use heuristics to
2308         ** guess a reasonable truth probability. */
2309         pLoop->nOut--;
2310         if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0
2311          && (pTerm->wtFlags & TERM_HIGHTRUTH)==0  /* tag-20200224-1 */
2312         ){
2313           Expr *pRight = pTerm->pExpr->pRight;
2314           int k = 0;
2315           testcase( pTerm->pExpr->op==TK_IS );
2316           if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2317             k = 10;
2318           }else{
2319             k = 20;
2320           }
2321           if( iReduce<k ){
2322             pTerm->wtFlags |= TERM_HEURTRUTH;
2323             iReduce = k;
2324           }
2325         }
2326       }
2327     }
2328   }
2329   if( pLoop->nOut > nRow-iReduce )  pLoop->nOut = nRow - iReduce;
2330 }
2331 
2332 /*
2333 ** Term pTerm is a vector range comparison operation. The first comparison
2334 ** in the vector can be optimized using column nEq of the index. This
2335 ** function returns the total number of vector elements that can be used
2336 ** as part of the range comparison.
2337 **
2338 ** For example, if the query is:
2339 **
2340 **   WHERE a = ? AND (b, c, d) > (?, ?, ?)
2341 **
2342 ** and the index:
2343 **
2344 **   CREATE INDEX ... ON (a, b, c, d, e)
2345 **
2346 ** then this function would be invoked with nEq=1. The value returned in
2347 ** this case is 3.
2348 */
2349 static int whereRangeVectorLen(
2350   Parse *pParse,       /* Parsing context */
2351   int iCur,            /* Cursor open on pIdx */
2352   Index *pIdx,         /* The index to be used for a inequality constraint */
2353   int nEq,             /* Number of prior equality constraints on same index */
2354   WhereTerm *pTerm     /* The vector inequality constraint */
2355 ){
2356   int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2357   int i;
2358 
2359   nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2360   for(i=1; i<nCmp; i++){
2361     /* Test if comparison i of pTerm is compatible with column (i+nEq)
2362     ** of the index. If not, exit the loop.  */
2363     char aff;                     /* Comparison affinity */
2364     char idxaff = 0;              /* Indexed columns affinity */
2365     CollSeq *pColl;               /* Comparison collation sequence */
2366     Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2367     Expr *pRhs = pTerm->pExpr->pRight;
2368     if( pRhs->flags & EP_xIsSelect ){
2369       pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2370     }else{
2371       pRhs = pRhs->x.pList->a[i].pExpr;
2372     }
2373 
2374     /* Check that the LHS of the comparison is a column reference to
2375     ** the right column of the right source table. And that the sort
2376     ** order of the index column is the same as the sort order of the
2377     ** leftmost index column.  */
2378     if( pLhs->op!=TK_COLUMN
2379      || pLhs->iTable!=iCur
2380      || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2381      || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2382     ){
2383       break;
2384     }
2385 
2386     testcase( pLhs->iColumn==XN_ROWID );
2387     aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2388     idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2389     if( aff!=idxaff ) break;
2390 
2391     pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2392     if( pColl==0 ) break;
2393     if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2394   }
2395   return i;
2396 }
2397 
2398 /*
2399 ** Adjust the cost C by the costMult facter T.  This only occurs if
2400 ** compiled with -DSQLITE_ENABLE_COSTMULT
2401 */
2402 #ifdef SQLITE_ENABLE_COSTMULT
2403 # define ApplyCostMultiplier(C,T)  C += T
2404 #else
2405 # define ApplyCostMultiplier(C,T)
2406 #endif
2407 
2408 /*
2409 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2410 ** index pIndex. Try to match one more.
2411 **
2412 ** When this function is called, pBuilder->pNew->nOut contains the
2413 ** number of rows expected to be visited by filtering using the nEq
2414 ** terms only. If it is modified, this value is restored before this
2415 ** function returns.
2416 **
2417 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
2418 ** a fake index used for the INTEGER PRIMARY KEY.
2419 */
2420 static int whereLoopAddBtreeIndex(
2421   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
2422   struct SrcList_item *pSrc,      /* FROM clause term being analyzed */
2423   Index *pProbe,                  /* An index on pSrc */
2424   LogEst nInMul                   /* log(Number of iterations due to IN) */
2425 ){
2426   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
2427   Parse *pParse = pWInfo->pParse;        /* Parsing context */
2428   sqlite3 *db = pParse->db;       /* Database connection malloc context */
2429   WhereLoop *pNew;                /* Template WhereLoop under construction */
2430   WhereTerm *pTerm;               /* A WhereTerm under consideration */
2431   int opMask;                     /* Valid operators for constraints */
2432   WhereScan scan;                 /* Iterator for WHERE terms */
2433   Bitmask saved_prereq;           /* Original value of pNew->prereq */
2434   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
2435   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
2436   u16 saved_nBtm;                 /* Original value of pNew->u.btree.nBtm */
2437   u16 saved_nTop;                 /* Original value of pNew->u.btree.nTop */
2438   u16 saved_nSkip;                /* Original value of pNew->nSkip */
2439   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
2440   LogEst saved_nOut;              /* Original value of pNew->nOut */
2441   int rc = SQLITE_OK;             /* Return code */
2442   LogEst rSize;                   /* Number of rows in the table */
2443   LogEst rLogSize;                /* Logarithm of table size */
2444   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2445 
2446   pNew = pBuilder->pNew;
2447   if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2448   WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n",
2449                      pProbe->pTable->zName,pProbe->zName,
2450                      pNew->u.btree.nEq, pNew->nSkip, pNew->rRun));
2451 
2452   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2453   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2454   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2455     opMask = WO_LT|WO_LE;
2456   }else{
2457     assert( pNew->u.btree.nBtm==0 );
2458     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2459   }
2460   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2461 
2462   assert( pNew->u.btree.nEq<pProbe->nColumn );
2463 
2464   saved_nEq = pNew->u.btree.nEq;
2465   saved_nBtm = pNew->u.btree.nBtm;
2466   saved_nTop = pNew->u.btree.nTop;
2467   saved_nSkip = pNew->nSkip;
2468   saved_nLTerm = pNew->nLTerm;
2469   saved_wsFlags = pNew->wsFlags;
2470   saved_prereq = pNew->prereq;
2471   saved_nOut = pNew->nOut;
2472   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2473                         opMask, pProbe);
2474   pNew->rSetup = 0;
2475   rSize = pProbe->aiRowLogEst[0];
2476   rLogSize = estLog(rSize);
2477   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2478     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
2479     LogEst rCostIdx;
2480     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
2481     int nIn = 0;
2482 #ifdef SQLITE_ENABLE_STAT4
2483     int nRecValid = pBuilder->nRecValid;
2484 #endif
2485     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2486      && indexColumnNotNull(pProbe, saved_nEq)
2487     ){
2488       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2489     }
2490     if( pTerm->prereqRight & pNew->maskSelf ) continue;
2491 
2492     /* Do not allow the upper bound of a LIKE optimization range constraint
2493     ** to mix with a lower range bound from some other source */
2494     if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2495 
2496     /* tag-20191211-001:  Do not allow constraints from the WHERE clause to
2497     ** be used by the right table of a LEFT JOIN.  Only constraints in the
2498     ** ON clause are allowed.  See tag-20191211-002 for the vtab equivalent. */
2499     if( (pSrc->fg.jointype & JT_LEFT)!=0
2500      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
2501     ){
2502       continue;
2503     }
2504 
2505     if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2506       pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE;
2507     }else{
2508       pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED;
2509     }
2510     pNew->wsFlags = saved_wsFlags;
2511     pNew->u.btree.nEq = saved_nEq;
2512     pNew->u.btree.nBtm = saved_nBtm;
2513     pNew->u.btree.nTop = saved_nTop;
2514     pNew->nLTerm = saved_nLTerm;
2515     if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2516     pNew->aLTerm[pNew->nLTerm++] = pTerm;
2517     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2518 
2519     assert( nInMul==0
2520         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2521         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2522         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2523     );
2524 
2525     if( eOp & WO_IN ){
2526       Expr *pExpr = pTerm->pExpr;
2527       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2528         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
2529         int i;
2530         nIn = 46;  assert( 46==sqlite3LogEst(25) );
2531 
2532         /* The expression may actually be of the form (x, y) IN (SELECT...).
2533         ** In this case there is a separate term for each of (x) and (y).
2534         ** However, the nIn multiplier should only be applied once, not once
2535         ** for each such term. The following loop checks that pTerm is the
2536         ** first such term in use, and sets nIn back to 0 if it is not. */
2537         for(i=0; i<pNew->nLTerm-1; i++){
2538           if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2539         }
2540       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2541         /* "x IN (value, value, ...)" */
2542         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2543       }
2544       if( pProbe->hasStat1 && rLogSize>=10 ){
2545         LogEst M, logK, safetyMargin;
2546         /* Let:
2547         **   N = the total number of rows in the table
2548         **   K = the number of entries on the RHS of the IN operator
2549         **   M = the number of rows in the table that match terms to the
2550         **       to the left in the same index.  If the IN operator is on
2551         **       the left-most index column, M==N.
2552         **
2553         ** Given the definitions above, it is better to omit the IN operator
2554         ** from the index lookup and instead do a scan of the M elements,
2555         ** testing each scanned row against the IN operator separately, if:
2556         **
2557         **        M*log(K) < K*log(N)
2558         **
2559         ** Our estimates for M, K, and N might be inaccurate, so we build in
2560         ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
2561         ** with the index, as using an index has better worst-case behavior.
2562         ** If we do not have real sqlite_stat1 data, always prefer to use
2563         ** the index.  Do not bother with this optimization on very small
2564         ** tables (less than 2 rows) as it is pointless in that case.
2565         */
2566         M = pProbe->aiRowLogEst[saved_nEq];
2567         logK = estLog(nIn);
2568         safetyMargin = 10;  /* TUNING: extra weight for indexed IN */
2569         if( M + logK + safetyMargin < nIn + rLogSize ){
2570           WHERETRACE(0x40,
2571             ("Scan preferred over IN operator on column %d of \"%s\" (%d<%d)\n",
2572              saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize));
2573           pNew->wsFlags |= WHERE_IN_SEEKSCAN;
2574         }else{
2575           WHERETRACE(0x40,
2576             ("IN operator preferred on column %d of \"%s\" (%d>=%d)\n",
2577              saved_nEq, pProbe->zName, M+logK+10, nIn+rLogSize));
2578         }
2579       }
2580       pNew->wsFlags |= WHERE_COLUMN_IN;
2581     }else if( eOp & (WO_EQ|WO_IS) ){
2582       int iCol = pProbe->aiColumn[saved_nEq];
2583       pNew->wsFlags |= WHERE_COLUMN_EQ;
2584       assert( saved_nEq==pNew->u.btree.nEq );
2585       if( iCol==XN_ROWID
2586        || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2587       ){
2588         if( iCol==XN_ROWID || pProbe->uniqNotNull
2589          || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
2590         ){
2591           pNew->wsFlags |= WHERE_ONEROW;
2592         }else{
2593           pNew->wsFlags |= WHERE_UNQ_WANTED;
2594         }
2595       }
2596     }else if( eOp & WO_ISNULL ){
2597       pNew->wsFlags |= WHERE_COLUMN_NULL;
2598     }else if( eOp & (WO_GT|WO_GE) ){
2599       testcase( eOp & WO_GT );
2600       testcase( eOp & WO_GE );
2601       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2602       pNew->u.btree.nBtm = whereRangeVectorLen(
2603           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2604       );
2605       pBtm = pTerm;
2606       pTop = 0;
2607       if( pTerm->wtFlags & TERM_LIKEOPT ){
2608         /* Range contraints that come from the LIKE optimization are
2609         ** always used in pairs. */
2610         pTop = &pTerm[1];
2611         assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2612         assert( pTop->wtFlags & TERM_LIKEOPT );
2613         assert( pTop->eOperator==WO_LT );
2614         if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2615         pNew->aLTerm[pNew->nLTerm++] = pTop;
2616         pNew->wsFlags |= WHERE_TOP_LIMIT;
2617         pNew->u.btree.nTop = 1;
2618       }
2619     }else{
2620       assert( eOp & (WO_LT|WO_LE) );
2621       testcase( eOp & WO_LT );
2622       testcase( eOp & WO_LE );
2623       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2624       pNew->u.btree.nTop = whereRangeVectorLen(
2625           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2626       );
2627       pTop = pTerm;
2628       pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2629                      pNew->aLTerm[pNew->nLTerm-2] : 0;
2630     }
2631 
2632     /* At this point pNew->nOut is set to the number of rows expected to
2633     ** be visited by the index scan before considering term pTerm, or the
2634     ** values of nIn and nInMul. In other words, assuming that all
2635     ** "x IN(...)" terms are replaced with "x = ?". This block updates
2636     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
2637     assert( pNew->nOut==saved_nOut );
2638     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2639       /* Adjust nOut using stat4 data. Or, if there is no stat4
2640       ** data, using some other estimate.  */
2641       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2642     }else{
2643       int nEq = ++pNew->u.btree.nEq;
2644       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2645 
2646       assert( pNew->nOut==saved_nOut );
2647       if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2648         assert( (eOp & WO_IN) || nIn==0 );
2649         testcase( eOp & WO_IN );
2650         pNew->nOut += pTerm->truthProb;
2651         pNew->nOut -= nIn;
2652       }else{
2653 #ifdef SQLITE_ENABLE_STAT4
2654         tRowcnt nOut = 0;
2655         if( nInMul==0
2656          && pProbe->nSample
2657          && pNew->u.btree.nEq<=pProbe->nSampleCol
2658          && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
2659          && OptimizationEnabled(db, SQLITE_Stat4)
2660         ){
2661           Expr *pExpr = pTerm->pExpr;
2662           if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2663             testcase( eOp & WO_EQ );
2664             testcase( eOp & WO_IS );
2665             testcase( eOp & WO_ISNULL );
2666             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2667           }else{
2668             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2669           }
2670           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2671           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
2672           if( nOut ){
2673             pNew->nOut = sqlite3LogEst(nOut);
2674             if( nEq==1
2675              /* TUNING: Mark terms as "low selectivity" if they seem likely
2676              ** to be true for half or more of the rows in the table.
2677              ** See tag-202002240-1 */
2678              && pNew->nOut+10 > pProbe->aiRowLogEst[0]
2679             ){
2680 #if WHERETRACE_ENABLED /* 0x01 */
2681               if( sqlite3WhereTrace & 0x01 ){
2682                 sqlite3DebugPrintf(
2683                    "STAT4 determines term has low selectivity:\n");
2684                 sqlite3WhereTermPrint(pTerm, 999);
2685               }
2686 #endif
2687               pTerm->wtFlags |= TERM_HIGHTRUTH;
2688               if( pTerm->wtFlags & TERM_HEURTRUTH ){
2689                 /* If the term has previously been used with an assumption of
2690                 ** higher selectivity, then set the flag to rerun the
2691                 ** loop computations. */
2692                 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS;
2693               }
2694             }
2695             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
2696             pNew->nOut -= nIn;
2697           }
2698         }
2699         if( nOut==0 )
2700 #endif
2701         {
2702           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
2703           if( eOp & WO_ISNULL ){
2704             /* TUNING: If there is no likelihood() value, assume that a
2705             ** "col IS NULL" expression matches twice as many rows
2706             ** as (col=?). */
2707             pNew->nOut += 10;
2708           }
2709         }
2710       }
2711     }
2712 
2713     /* Set rCostIdx to the cost of visiting selected rows in index. Add
2714     ** it to pNew->rRun, which is currently set to the cost of the index
2715     ** seek only. Then, if this is a non-covering index, add the cost of
2716     ** visiting the rows in the main table.  */
2717     assert( pSrc->pTab->szTabRow>0 );
2718     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
2719     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
2720     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
2721       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
2722     }
2723     ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
2724 
2725     nOutUnadjusted = pNew->nOut;
2726     pNew->rRun += nInMul + nIn;
2727     pNew->nOut += nInMul + nIn;
2728     whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
2729     rc = whereLoopInsert(pBuilder, pNew);
2730 
2731     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2732       pNew->nOut = saved_nOut;
2733     }else{
2734       pNew->nOut = nOutUnadjusted;
2735     }
2736 
2737     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
2738      && pNew->u.btree.nEq<pProbe->nColumn
2739     ){
2740       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
2741     }
2742     pNew->nOut = saved_nOut;
2743 #ifdef SQLITE_ENABLE_STAT4
2744     pBuilder->nRecValid = nRecValid;
2745 #endif
2746   }
2747   pNew->prereq = saved_prereq;
2748   pNew->u.btree.nEq = saved_nEq;
2749   pNew->u.btree.nBtm = saved_nBtm;
2750   pNew->u.btree.nTop = saved_nTop;
2751   pNew->nSkip = saved_nSkip;
2752   pNew->wsFlags = saved_wsFlags;
2753   pNew->nOut = saved_nOut;
2754   pNew->nLTerm = saved_nLTerm;
2755 
2756   /* Consider using a skip-scan if there are no WHERE clause constraints
2757   ** available for the left-most terms of the index, and if the average
2758   ** number of repeats in the left-most terms is at least 18.
2759   **
2760   ** The magic number 18 is selected on the basis that scanning 17 rows
2761   ** is almost always quicker than an index seek (even though if the index
2762   ** contains fewer than 2^17 rows we assume otherwise in other parts of
2763   ** the code). And, even if it is not, it should not be too much slower.
2764   ** On the other hand, the extra seeks could end up being significantly
2765   ** more expensive.  */
2766   assert( 42==sqlite3LogEst(18) );
2767   if( saved_nEq==saved_nSkip
2768    && saved_nEq+1<pProbe->nKeyCol
2769    && saved_nEq==pNew->nLTerm
2770    && pProbe->noSkipScan==0
2771    && pProbe->hasStat1!=0
2772    && OptimizationEnabled(db, SQLITE_SkipScan)
2773    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
2774    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
2775   ){
2776     LogEst nIter;
2777     pNew->u.btree.nEq++;
2778     pNew->nSkip++;
2779     pNew->aLTerm[pNew->nLTerm++] = 0;
2780     pNew->wsFlags |= WHERE_SKIPSCAN;
2781     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
2782     pNew->nOut -= nIter;
2783     /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
2784     ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
2785     nIter += 5;
2786     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
2787     pNew->nOut = saved_nOut;
2788     pNew->u.btree.nEq = saved_nEq;
2789     pNew->nSkip = saved_nSkip;
2790     pNew->wsFlags = saved_wsFlags;
2791   }
2792 
2793   WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
2794                       pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
2795   return rc;
2796 }
2797 
2798 /*
2799 ** Return True if it is possible that pIndex might be useful in
2800 ** implementing the ORDER BY clause in pBuilder.
2801 **
2802 ** Return False if pBuilder does not contain an ORDER BY clause or
2803 ** if there is no way for pIndex to be useful in implementing that
2804 ** ORDER BY clause.
2805 */
2806 static int indexMightHelpWithOrderBy(
2807   WhereLoopBuilder *pBuilder,
2808   Index *pIndex,
2809   int iCursor
2810 ){
2811   ExprList *pOB;
2812   ExprList *aColExpr;
2813   int ii, jj;
2814 
2815   if( pIndex->bUnordered ) return 0;
2816   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
2817   for(ii=0; ii<pOB->nExpr; ii++){
2818     Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr);
2819     if( NEVER(pExpr==0) ) continue;
2820     if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
2821       if( pExpr->iColumn<0 ) return 1;
2822       for(jj=0; jj<pIndex->nKeyCol; jj++){
2823         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
2824       }
2825     }else if( (aColExpr = pIndex->aColExpr)!=0 ){
2826       for(jj=0; jj<pIndex->nKeyCol; jj++){
2827         if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
2828         if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
2829           return 1;
2830         }
2831       }
2832     }
2833   }
2834   return 0;
2835 }
2836 
2837 /* Check to see if a partial index with pPartIndexWhere can be used
2838 ** in the current query.  Return true if it can be and false if not.
2839 */
2840 static int whereUsablePartialIndex(
2841   int iTab,             /* The table for which we want an index */
2842   int isLeft,           /* True if iTab is the right table of a LEFT JOIN */
2843   WhereClause *pWC,     /* The WHERE clause of the query */
2844   Expr *pWhere          /* The WHERE clause from the partial index */
2845 ){
2846   int i;
2847   WhereTerm *pTerm;
2848   Parse *pParse = pWC->pWInfo->pParse;
2849   while( pWhere->op==TK_AND ){
2850     if( !whereUsablePartialIndex(iTab,isLeft,pWC,pWhere->pLeft) ) return 0;
2851     pWhere = pWhere->pRight;
2852   }
2853   if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
2854   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
2855     Expr *pExpr;
2856     pExpr = pTerm->pExpr;
2857     if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
2858      && (isLeft==0 || ExprHasProperty(pExpr, EP_FromJoin))
2859      && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
2860     ){
2861       return 1;
2862     }
2863   }
2864   return 0;
2865 }
2866 
2867 /*
2868 ** Add all WhereLoop objects for a single table of the join where the table
2869 ** is identified by pBuilder->pNew->iTab.  That table is guaranteed to be
2870 ** a b-tree table, not a virtual table.
2871 **
2872 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
2873 ** are calculated as follows:
2874 **
2875 ** For a full scan, assuming the table (or index) contains nRow rows:
2876 **
2877 **     cost = nRow * 3.0                    // full-table scan
2878 **     cost = nRow * K                      // scan of covering index
2879 **     cost = nRow * (K+3.0)                // scan of non-covering index
2880 **
2881 ** where K is a value between 1.1 and 3.0 set based on the relative
2882 ** estimated average size of the index and table records.
2883 **
2884 ** For an index scan, where nVisit is the number of index rows visited
2885 ** by the scan, and nSeek is the number of seek operations required on
2886 ** the index b-tree:
2887 **
2888 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
2889 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
2890 **
2891 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
2892 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
2893 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
2894 **
2895 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
2896 ** of uncertainty.  For this reason, scoring is designed to pick plans that
2897 ** "do the least harm" if the estimates are inaccurate.  For example, a
2898 ** log(nRow) factor is omitted from a non-covering index scan in order to
2899 ** bias the scoring in favor of using an index, since the worst-case
2900 ** performance of using an index is far better than the worst-case performance
2901 ** of a full table scan.
2902 */
2903 static int whereLoopAddBtree(
2904   WhereLoopBuilder *pBuilder, /* WHERE clause information */
2905   Bitmask mPrereq             /* Extra prerequesites for using this table */
2906 ){
2907   WhereInfo *pWInfo;          /* WHERE analysis context */
2908   Index *pProbe;              /* An index we are evaluating */
2909   Index sPk;                  /* A fake index object for the primary key */
2910   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
2911   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
2912   SrcList *pTabList;          /* The FROM clause */
2913   struct SrcList_item *pSrc;  /* The FROM clause btree term to add */
2914   WhereLoop *pNew;            /* Template WhereLoop object */
2915   int rc = SQLITE_OK;         /* Return code */
2916   int iSortIdx = 1;           /* Index number */
2917   int b;                      /* A boolean value */
2918   LogEst rSize;               /* number of rows in the table */
2919   LogEst rLogSize;            /* Logarithm of the number of rows in the table */
2920   WhereClause *pWC;           /* The parsed WHERE clause */
2921   Table *pTab;                /* Table being queried */
2922 
2923   pNew = pBuilder->pNew;
2924   pWInfo = pBuilder->pWInfo;
2925   pTabList = pWInfo->pTabList;
2926   pSrc = pTabList->a + pNew->iTab;
2927   pTab = pSrc->pTab;
2928   pWC = pBuilder->pWC;
2929   assert( !IsVirtual(pSrc->pTab) );
2930 
2931   if( pSrc->pIBIndex ){
2932     /* An INDEXED BY clause specifies a particular index to use */
2933     pProbe = pSrc->pIBIndex;
2934   }else if( !HasRowid(pTab) ){
2935     pProbe = pTab->pIndex;
2936   }else{
2937     /* There is no INDEXED BY clause.  Create a fake Index object in local
2938     ** variable sPk to represent the rowid primary key index.  Make this
2939     ** fake index the first in a chain of Index objects with all of the real
2940     ** indices to follow */
2941     Index *pFirst;                  /* First of real indices on the table */
2942     memset(&sPk, 0, sizeof(Index));
2943     sPk.nKeyCol = 1;
2944     sPk.nColumn = 1;
2945     sPk.aiColumn = &aiColumnPk;
2946     sPk.aiRowLogEst = aiRowEstPk;
2947     sPk.onError = OE_Replace;
2948     sPk.pTable = pTab;
2949     sPk.szIdxRow = pTab->szTabRow;
2950     sPk.idxType = SQLITE_IDXTYPE_IPK;
2951     aiRowEstPk[0] = pTab->nRowLogEst;
2952     aiRowEstPk[1] = 0;
2953     pFirst = pSrc->pTab->pIndex;
2954     if( pSrc->fg.notIndexed==0 ){
2955       /* The real indices of the table are only considered if the
2956       ** NOT INDEXED qualifier is omitted from the FROM clause */
2957       sPk.pNext = pFirst;
2958     }
2959     pProbe = &sPk;
2960   }
2961   rSize = pTab->nRowLogEst;
2962   rLogSize = estLog(rSize);
2963 
2964 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
2965   /* Automatic indexes */
2966   if( !pBuilder->pOrSet      /* Not part of an OR optimization */
2967    && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
2968    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
2969    && pSrc->pIBIndex==0      /* Has no INDEXED BY clause */
2970    && !pSrc->fg.notIndexed   /* Has no NOT INDEXED clause */
2971    && HasRowid(pTab)         /* Not WITHOUT ROWID table. (FIXME: Why not?) */
2972    && !pSrc->fg.isCorrelated /* Not a correlated subquery */
2973    && !pSrc->fg.isRecursive  /* Not a recursive common table expression. */
2974   ){
2975     /* Generate auto-index WhereLoops */
2976     WhereTerm *pTerm;
2977     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
2978     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
2979       if( pTerm->prereqRight & pNew->maskSelf ) continue;
2980       if( termCanDriveIndex(pTerm, pSrc, 0) ){
2981         pNew->u.btree.nEq = 1;
2982         pNew->nSkip = 0;
2983         pNew->u.btree.pIndex = 0;
2984         pNew->nLTerm = 1;
2985         pNew->aLTerm[0] = pTerm;
2986         /* TUNING: One-time cost for computing the automatic index is
2987         ** estimated to be X*N*log2(N) where N is the number of rows in
2988         ** the table being indexed and where X is 7 (LogEst=28) for normal
2989         ** tables or 0.5 (LogEst=-10) for views and subqueries.  The value
2990         ** of X is smaller for views and subqueries so that the query planner
2991         ** will be more aggressive about generating automatic indexes for
2992         ** those objects, since there is no opportunity to add schema
2993         ** indexes on subqueries and views. */
2994         pNew->rSetup = rLogSize + rSize;
2995         if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){
2996           pNew->rSetup += 28;
2997         }else{
2998           pNew->rSetup -= 10;
2999         }
3000         ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
3001         if( pNew->rSetup<0 ) pNew->rSetup = 0;
3002         /* TUNING: Each index lookup yields 20 rows in the table.  This
3003         ** is more than the usual guess of 10 rows, since we have no way
3004         ** of knowing how selective the index will ultimately be.  It would
3005         ** not be unreasonable to make this value much larger. */
3006         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
3007         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
3008         pNew->wsFlags = WHERE_AUTO_INDEX;
3009         pNew->prereq = mPrereq | pTerm->prereqRight;
3010         rc = whereLoopInsert(pBuilder, pNew);
3011       }
3012     }
3013   }
3014 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
3015 
3016   /* Loop over all indices. If there was an INDEXED BY clause, then only
3017   ** consider index pProbe.  */
3018   for(; rc==SQLITE_OK && pProbe;
3019       pProbe=(pSrc->pIBIndex ? 0 : pProbe->pNext), iSortIdx++
3020   ){
3021     int isLeft = (pSrc->fg.jointype & JT_OUTER)!=0;
3022     if( pProbe->pPartIdxWhere!=0
3023      && !whereUsablePartialIndex(pSrc->iCursor, isLeft, pWC,
3024                                  pProbe->pPartIdxWhere)
3025     ){
3026       testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
3027       continue;  /* Partial index inappropriate for this query */
3028     }
3029     if( pProbe->bNoQuery ) continue;
3030     rSize = pProbe->aiRowLogEst[0];
3031     pNew->u.btree.nEq = 0;
3032     pNew->u.btree.nBtm = 0;
3033     pNew->u.btree.nTop = 0;
3034     pNew->nSkip = 0;
3035     pNew->nLTerm = 0;
3036     pNew->iSortIdx = 0;
3037     pNew->rSetup = 0;
3038     pNew->prereq = mPrereq;
3039     pNew->nOut = rSize;
3040     pNew->u.btree.pIndex = pProbe;
3041     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
3042 
3043     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
3044     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
3045     if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){
3046       /* Integer primary key index */
3047       pNew->wsFlags = WHERE_IPK;
3048 
3049       /* Full table scan */
3050       pNew->iSortIdx = b ? iSortIdx : 0;
3051       /* TUNING: Cost of full table scan is 3.0*N.  The 3.0 factor is an
3052       ** extra cost designed to discourage the use of full table scans,
3053       ** since index lookups have better worst-case performance if our
3054       ** stat guesses are wrong.  Reduce the 3.0 penalty slightly
3055       ** (to 2.75) if we have valid STAT4 information for the table.
3056       ** At 2.75, a full table scan is preferred over using an index on
3057       ** a column with just two distinct values where each value has about
3058       ** an equal number of appearances.  Without STAT4 data, we still want
3059       ** to use an index in that case, since the constraint might be for
3060       ** the scarcer of the two values, and in that case an index lookup is
3061       ** better.
3062       */
3063 #ifdef SQLITE_ENABLE_STAT4
3064       pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0);
3065 #else
3066       pNew->rRun = rSize + 16;
3067 #endif
3068       ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3069       whereLoopOutputAdjust(pWC, pNew, rSize);
3070       rc = whereLoopInsert(pBuilder, pNew);
3071       pNew->nOut = rSize;
3072       if( rc ) break;
3073     }else{
3074       Bitmask m;
3075       if( pProbe->isCovering ){
3076         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
3077         m = 0;
3078       }else{
3079         m = pSrc->colUsed & pProbe->colNotIdxed;
3080         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
3081       }
3082 
3083       /* Full scan via index */
3084       if( b
3085        || !HasRowid(pTab)
3086        || pProbe->pPartIdxWhere!=0
3087        || pSrc->fg.isIndexedBy
3088        || ( m==0
3089          && pProbe->bUnordered==0
3090          && (pProbe->szIdxRow<pTab->szTabRow)
3091          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
3092          && sqlite3GlobalConfig.bUseCis
3093          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
3094           )
3095       ){
3096         pNew->iSortIdx = b ? iSortIdx : 0;
3097 
3098         /* The cost of visiting the index rows is N*K, where K is
3099         ** between 1.1 and 3.0, depending on the relative sizes of the
3100         ** index and table rows. */
3101         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
3102         if( m!=0 ){
3103           /* If this is a non-covering index scan, add in the cost of
3104           ** doing table lookups.  The cost will be 3x the number of
3105           ** lookups.  Take into account WHERE clause terms that can be
3106           ** satisfied using just the index, and that do not require a
3107           ** table lookup. */
3108           LogEst nLookup = rSize + 16;  /* Base cost:  N*3 */
3109           int ii;
3110           int iCur = pSrc->iCursor;
3111           WhereClause *pWC2 = &pWInfo->sWC;
3112           for(ii=0; ii<pWC2->nTerm; ii++){
3113             WhereTerm *pTerm = &pWC2->a[ii];
3114             if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
3115               break;
3116             }
3117             /* pTerm can be evaluated using just the index.  So reduce
3118             ** the expected number of table lookups accordingly */
3119             if( pTerm->truthProb<=0 ){
3120               nLookup += pTerm->truthProb;
3121             }else{
3122               nLookup--;
3123               if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
3124             }
3125           }
3126 
3127           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
3128         }
3129         ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3130         whereLoopOutputAdjust(pWC, pNew, rSize);
3131         rc = whereLoopInsert(pBuilder, pNew);
3132         pNew->nOut = rSize;
3133         if( rc ) break;
3134       }
3135     }
3136 
3137     pBuilder->bldFlags1 = 0;
3138     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
3139     if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){
3140       /* If a non-unique index is used, or if a prefix of the key for
3141       ** unique index is used (making the index functionally non-unique)
3142       ** then the sqlite_stat1 data becomes important for scoring the
3143       ** plan */
3144       pTab->tabFlags |= TF_StatsUsed;
3145     }
3146 #ifdef SQLITE_ENABLE_STAT4
3147     sqlite3Stat4ProbeFree(pBuilder->pRec);
3148     pBuilder->nRecValid = 0;
3149     pBuilder->pRec = 0;
3150 #endif
3151   }
3152   return rc;
3153 }
3154 
3155 #ifndef SQLITE_OMIT_VIRTUALTABLE
3156 
3157 /*
3158 ** Argument pIdxInfo is already populated with all constraints that may
3159 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3160 ** function marks a subset of those constraints usable, invokes the
3161 ** xBestIndex method and adds the returned plan to pBuilder.
3162 **
3163 ** A constraint is marked usable if:
3164 **
3165 **   * Argument mUsable indicates that its prerequisites are available, and
3166 **
3167 **   * It is not one of the operators specified in the mExclude mask passed
3168 **     as the fourth argument (which in practice is either WO_IN or 0).
3169 **
3170 ** Argument mPrereq is a mask of tables that must be scanned before the
3171 ** virtual table in question. These are added to the plans prerequisites
3172 ** before it is added to pBuilder.
3173 **
3174 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3175 ** uses one or more WO_IN terms, or false otherwise.
3176 */
3177 static int whereLoopAddVirtualOne(
3178   WhereLoopBuilder *pBuilder,
3179   Bitmask mPrereq,                /* Mask of tables that must be used. */
3180   Bitmask mUsable,                /* Mask of usable tables */
3181   u16 mExclude,                   /* Exclude terms using these operators */
3182   sqlite3_index_info *pIdxInfo,   /* Populated object for xBestIndex */
3183   u16 mNoOmit,                    /* Do not omit these constraints */
3184   int *pbIn                       /* OUT: True if plan uses an IN(...) op */
3185 ){
3186   WhereClause *pWC = pBuilder->pWC;
3187   struct sqlite3_index_constraint *pIdxCons;
3188   struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3189   int i;
3190   int mxTerm;
3191   int rc = SQLITE_OK;
3192   WhereLoop *pNew = pBuilder->pNew;
3193   Parse *pParse = pBuilder->pWInfo->pParse;
3194   struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3195   int nConstraint = pIdxInfo->nConstraint;
3196 
3197   assert( (mUsable & mPrereq)==mPrereq );
3198   *pbIn = 0;
3199   pNew->prereq = mPrereq;
3200 
3201   /* Set the usable flag on the subset of constraints identified by
3202   ** arguments mUsable and mExclude. */
3203   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3204   for(i=0; i<nConstraint; i++, pIdxCons++){
3205     WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3206     pIdxCons->usable = 0;
3207     if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3208      && (pTerm->eOperator & mExclude)==0
3209     ){
3210       pIdxCons->usable = 1;
3211     }
3212   }
3213 
3214   /* Initialize the output fields of the sqlite3_index_info structure */
3215   memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3216   assert( pIdxInfo->needToFreeIdxStr==0 );
3217   pIdxInfo->idxStr = 0;
3218   pIdxInfo->idxNum = 0;
3219   pIdxInfo->orderByConsumed = 0;
3220   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3221   pIdxInfo->estimatedRows = 25;
3222   pIdxInfo->idxFlags = 0;
3223   pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3224 
3225   /* Invoke the virtual table xBestIndex() method */
3226   rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3227   if( rc ){
3228     if( rc==SQLITE_CONSTRAINT ){
3229       /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
3230       ** that the particular combination of parameters provided is unusable.
3231       ** Make no entries in the loop table.
3232       */
3233       WHERETRACE(0xffff, ("  ^^^^--- non-viable plan rejected!\n"));
3234       return SQLITE_OK;
3235     }
3236     return rc;
3237   }
3238 
3239   mxTerm = -1;
3240   assert( pNew->nLSlot>=nConstraint );
3241   for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
3242   pNew->u.vtab.omitMask = 0;
3243   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3244   for(i=0; i<nConstraint; i++, pIdxCons++){
3245     int iTerm;
3246     if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3247       WhereTerm *pTerm;
3248       int j = pIdxCons->iTermOffset;
3249       if( iTerm>=nConstraint
3250        || j<0
3251        || j>=pWC->nTerm
3252        || pNew->aLTerm[iTerm]!=0
3253        || pIdxCons->usable==0
3254       ){
3255         sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3256         testcase( pIdxInfo->needToFreeIdxStr );
3257         return SQLITE_ERROR;
3258       }
3259       testcase( iTerm==nConstraint-1 );
3260       testcase( j==0 );
3261       testcase( j==pWC->nTerm-1 );
3262       pTerm = &pWC->a[j];
3263       pNew->prereq |= pTerm->prereqRight;
3264       assert( iTerm<pNew->nLSlot );
3265       pNew->aLTerm[iTerm] = pTerm;
3266       if( iTerm>mxTerm ) mxTerm = iTerm;
3267       testcase( iTerm==15 );
3268       testcase( iTerm==16 );
3269       if( pUsage[i].omit ){
3270         if( i<16 && ((1<<i)&mNoOmit)==0 ){
3271           testcase( i!=iTerm );
3272           pNew->u.vtab.omitMask |= 1<<iTerm;
3273         }else{
3274           testcase( i!=iTerm );
3275         }
3276       }
3277       if( (pTerm->eOperator & WO_IN)!=0 ){
3278         /* A virtual table that is constrained by an IN clause may not
3279         ** consume the ORDER BY clause because (1) the order of IN terms
3280         ** is not necessarily related to the order of output terms and
3281         ** (2) Multiple outputs from a single IN value will not merge
3282         ** together.  */
3283         pIdxInfo->orderByConsumed = 0;
3284         pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3285         *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3286       }
3287     }
3288   }
3289 
3290   pNew->nLTerm = mxTerm+1;
3291   for(i=0; i<=mxTerm; i++){
3292     if( pNew->aLTerm[i]==0 ){
3293       /* The non-zero argvIdx values must be contiguous.  Raise an
3294       ** error if they are not */
3295       sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3296       testcase( pIdxInfo->needToFreeIdxStr );
3297       return SQLITE_ERROR;
3298     }
3299   }
3300   assert( pNew->nLTerm<=pNew->nLSlot );
3301   pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3302   pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3303   pIdxInfo->needToFreeIdxStr = 0;
3304   pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3305   pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3306       pIdxInfo->nOrderBy : 0);
3307   pNew->rSetup = 0;
3308   pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3309   pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3310 
3311   /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3312   ** that the scan will visit at most one row. Clear it otherwise. */
3313   if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3314     pNew->wsFlags |= WHERE_ONEROW;
3315   }else{
3316     pNew->wsFlags &= ~WHERE_ONEROW;
3317   }
3318   rc = whereLoopInsert(pBuilder, pNew);
3319   if( pNew->u.vtab.needFree ){
3320     sqlite3_free(pNew->u.vtab.idxStr);
3321     pNew->u.vtab.needFree = 0;
3322   }
3323   WHERETRACE(0xffff, ("  bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3324                       *pbIn, (sqlite3_uint64)mPrereq,
3325                       (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3326 
3327   return rc;
3328 }
3329 
3330 /*
3331 ** If this function is invoked from within an xBestIndex() callback, it
3332 ** returns a pointer to a buffer containing the name of the collation
3333 ** sequence associated with element iCons of the sqlite3_index_info.aConstraint
3334 ** array. Or, if iCons is out of range or there is no active xBestIndex
3335 ** call, return NULL.
3336 */
3337 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
3338   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3339   const char *zRet = 0;
3340   if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
3341     CollSeq *pC = 0;
3342     int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
3343     Expr *pX = pHidden->pWC->a[iTerm].pExpr;
3344     if( pX->pLeft ){
3345       pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX);
3346     }
3347     zRet = (pC ? pC->zName : sqlite3StrBINARY);
3348   }
3349   return zRet;
3350 }
3351 
3352 /*
3353 ** Add all WhereLoop objects for a table of the join identified by
3354 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
3355 **
3356 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3357 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3358 ** entries that occur before the virtual table in the FROM clause and are
3359 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3360 ** mUnusable mask contains all FROM clause entries that occur after the
3361 ** virtual table and are separated from it by at least one LEFT or
3362 ** CROSS JOIN.
3363 **
3364 ** For example, if the query were:
3365 **
3366 **   ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3367 **
3368 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3369 **
3370 ** All the tables in mPrereq must be scanned before the current virtual
3371 ** table. So any terms for which all prerequisites are satisfied by
3372 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3373 ** Conversely, all tables in mUnusable must be scanned after the current
3374 ** virtual table, so any terms for which the prerequisites overlap with
3375 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3376 */
3377 static int whereLoopAddVirtual(
3378   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
3379   Bitmask mPrereq,             /* Tables that must be scanned before this one */
3380   Bitmask mUnusable            /* Tables that must be scanned after this one */
3381 ){
3382   int rc = SQLITE_OK;          /* Return code */
3383   WhereInfo *pWInfo;           /* WHERE analysis context */
3384   Parse *pParse;               /* The parsing context */
3385   WhereClause *pWC;            /* The WHERE clause */
3386   struct SrcList_item *pSrc;   /* The FROM clause term to search */
3387   sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
3388   int nConstraint;             /* Number of constraints in p */
3389   int bIn;                     /* True if plan uses IN(...) operator */
3390   WhereLoop *pNew;
3391   Bitmask mBest;               /* Tables used by best possible plan */
3392   u16 mNoOmit;
3393 
3394   assert( (mPrereq & mUnusable)==0 );
3395   pWInfo = pBuilder->pWInfo;
3396   pParse = pWInfo->pParse;
3397   pWC = pBuilder->pWC;
3398   pNew = pBuilder->pNew;
3399   pSrc = &pWInfo->pTabList->a[pNew->iTab];
3400   assert( IsVirtual(pSrc->pTab) );
3401   p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy,
3402       &mNoOmit);
3403   if( p==0 ) return SQLITE_NOMEM_BKPT;
3404   pNew->rSetup = 0;
3405   pNew->wsFlags = WHERE_VIRTUALTABLE;
3406   pNew->nLTerm = 0;
3407   pNew->u.vtab.needFree = 0;
3408   nConstraint = p->nConstraint;
3409   if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3410     sqlite3DbFree(pParse->db, p);
3411     return SQLITE_NOMEM_BKPT;
3412   }
3413 
3414   /* First call xBestIndex() with all constraints usable. */
3415   WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
3416   WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
3417   rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn);
3418 
3419   /* If the call to xBestIndex() with all terms enabled produced a plan
3420   ** that does not require any source tables (IOW: a plan with mBest==0)
3421   ** and does not use an IN(...) operator, then there is no point in making
3422   ** any further calls to xBestIndex() since they will all return the same
3423   ** result (if the xBestIndex() implementation is sane). */
3424   if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){
3425     int seenZero = 0;             /* True if a plan with no prereqs seen */
3426     int seenZeroNoIN = 0;         /* Plan with no prereqs and no IN(...) seen */
3427     Bitmask mPrev = 0;
3428     Bitmask mBestNoIn = 0;
3429 
3430     /* If the plan produced by the earlier call uses an IN(...) term, call
3431     ** xBestIndex again, this time with IN(...) terms disabled. */
3432     if( bIn ){
3433       WHERETRACE(0x40, ("  VirtualOne: all usable w/o IN\n"));
3434       rc = whereLoopAddVirtualOne(
3435           pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn);
3436       assert( bIn==0 );
3437       mBestNoIn = pNew->prereq & ~mPrereq;
3438       if( mBestNoIn==0 ){
3439         seenZero = 1;
3440         seenZeroNoIN = 1;
3441       }
3442     }
3443 
3444     /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3445     ** in the set of terms that apply to the current virtual table.  */
3446     while( rc==SQLITE_OK ){
3447       int i;
3448       Bitmask mNext = ALLBITS;
3449       assert( mNext>0 );
3450       for(i=0; i<nConstraint; i++){
3451         Bitmask mThis = (
3452             pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3453         );
3454         if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3455       }
3456       mPrev = mNext;
3457       if( mNext==ALLBITS ) break;
3458       if( mNext==mBest || mNext==mBestNoIn ) continue;
3459       WHERETRACE(0x40, ("  VirtualOne: mPrev=%04llx mNext=%04llx\n",
3460                        (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3461       rc = whereLoopAddVirtualOne(
3462           pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn);
3463       if( pNew->prereq==mPrereq ){
3464         seenZero = 1;
3465         if( bIn==0 ) seenZeroNoIN = 1;
3466       }
3467     }
3468 
3469     /* If the calls to xBestIndex() in the above loop did not find a plan
3470     ** that requires no source tables at all (i.e. one guaranteed to be
3471     ** usable), make a call here with all source tables disabled */
3472     if( rc==SQLITE_OK && seenZero==0 ){
3473       WHERETRACE(0x40, ("  VirtualOne: all disabled\n"));
3474       rc = whereLoopAddVirtualOne(
3475           pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn);
3476       if( bIn==0 ) seenZeroNoIN = 1;
3477     }
3478 
3479     /* If the calls to xBestIndex() have so far failed to find a plan
3480     ** that requires no source tables at all and does not use an IN(...)
3481     ** operator, make a final call to obtain one here.  */
3482     if( rc==SQLITE_OK && seenZeroNoIN==0 ){
3483       WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
3484       rc = whereLoopAddVirtualOne(
3485           pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn);
3486     }
3487   }
3488 
3489   if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
3490   sqlite3DbFreeNN(pParse->db, p);
3491   WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
3492   return rc;
3493 }
3494 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3495 
3496 /*
3497 ** Add WhereLoop entries to handle OR terms.  This works for either
3498 ** btrees or virtual tables.
3499 */
3500 static int whereLoopAddOr(
3501   WhereLoopBuilder *pBuilder,
3502   Bitmask mPrereq,
3503   Bitmask mUnusable
3504 ){
3505   WhereInfo *pWInfo = pBuilder->pWInfo;
3506   WhereClause *pWC;
3507   WhereLoop *pNew;
3508   WhereTerm *pTerm, *pWCEnd;
3509   int rc = SQLITE_OK;
3510   int iCur;
3511   WhereClause tempWC;
3512   WhereLoopBuilder sSubBuild;
3513   WhereOrSet sSum, sCur;
3514   struct SrcList_item *pItem;
3515 
3516   pWC = pBuilder->pWC;
3517   pWCEnd = pWC->a + pWC->nTerm;
3518   pNew = pBuilder->pNew;
3519   memset(&sSum, 0, sizeof(sSum));
3520   pItem = pWInfo->pTabList->a + pNew->iTab;
3521   iCur = pItem->iCursor;
3522 
3523   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
3524     if( (pTerm->eOperator & WO_OR)!=0
3525      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
3526     ){
3527       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
3528       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
3529       WhereTerm *pOrTerm;
3530       int once = 1;
3531       int i, j;
3532 
3533       sSubBuild = *pBuilder;
3534       sSubBuild.pOrderBy = 0;
3535       sSubBuild.pOrSet = &sCur;
3536 
3537       WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
3538       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
3539         if( (pOrTerm->eOperator & WO_AND)!=0 ){
3540           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
3541         }else if( pOrTerm->leftCursor==iCur ){
3542           tempWC.pWInfo = pWC->pWInfo;
3543           tempWC.pOuter = pWC;
3544           tempWC.op = TK_AND;
3545           tempWC.nTerm = 1;
3546           tempWC.a = pOrTerm;
3547           sSubBuild.pWC = &tempWC;
3548         }else{
3549           continue;
3550         }
3551         sCur.n = 0;
3552 #ifdef WHERETRACE_ENABLED
3553         WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3554                    (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
3555         if( sqlite3WhereTrace & 0x400 ){
3556           sqlite3WhereClausePrint(sSubBuild.pWC);
3557         }
3558 #endif
3559 #ifndef SQLITE_OMIT_VIRTUALTABLE
3560         if( IsVirtual(pItem->pTab) ){
3561           rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
3562         }else
3563 #endif
3564         {
3565           rc = whereLoopAddBtree(&sSubBuild, mPrereq);
3566         }
3567         if( rc==SQLITE_OK ){
3568           rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
3569         }
3570         assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0 );
3571         testcase( rc==SQLITE_DONE );
3572         if( sCur.n==0 ){
3573           sSum.n = 0;
3574           break;
3575         }else if( once ){
3576           whereOrMove(&sSum, &sCur);
3577           once = 0;
3578         }else{
3579           WhereOrSet sPrev;
3580           whereOrMove(&sPrev, &sSum);
3581           sSum.n = 0;
3582           for(i=0; i<sPrev.n; i++){
3583             for(j=0; j<sCur.n; j++){
3584               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
3585                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
3586                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
3587             }
3588           }
3589         }
3590       }
3591       pNew->nLTerm = 1;
3592       pNew->aLTerm[0] = pTerm;
3593       pNew->wsFlags = WHERE_MULTI_OR;
3594       pNew->rSetup = 0;
3595       pNew->iSortIdx = 0;
3596       memset(&pNew->u, 0, sizeof(pNew->u));
3597       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
3598         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
3599         ** of all sub-scans required by the OR-scan. However, due to rounding
3600         ** errors, it may be that the cost of the OR-scan is equal to its
3601         ** most expensive sub-scan. Add the smallest possible penalty
3602         ** (equivalent to multiplying the cost by 1.07) to ensure that
3603         ** this does not happen. Otherwise, for WHERE clauses such as the
3604         ** following where there is an index on "y":
3605         **
3606         **     WHERE likelihood(x=?, 0.99) OR y=?
3607         **
3608         ** the planner may elect to "OR" together a full-table scan and an
3609         ** index lookup. And other similarly odd results.  */
3610         pNew->rRun = sSum.a[i].rRun + 1;
3611         pNew->nOut = sSum.a[i].nOut;
3612         pNew->prereq = sSum.a[i].prereq;
3613         rc = whereLoopInsert(pBuilder, pNew);
3614       }
3615       WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
3616     }
3617   }
3618   return rc;
3619 }
3620 
3621 /*
3622 ** Add all WhereLoop objects for all tables
3623 */
3624 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
3625   WhereInfo *pWInfo = pBuilder->pWInfo;
3626   Bitmask mPrereq = 0;
3627   Bitmask mPrior = 0;
3628   int iTab;
3629   SrcList *pTabList = pWInfo->pTabList;
3630   struct SrcList_item *pItem;
3631   struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel];
3632   sqlite3 *db = pWInfo->pParse->db;
3633   int rc = SQLITE_OK;
3634   WhereLoop *pNew;
3635 
3636   /* Loop over the tables in the join, from left to right */
3637   pNew = pBuilder->pNew;
3638   whereLoopInit(pNew);
3639   pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT;
3640   for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
3641     Bitmask mUnusable = 0;
3642     pNew->iTab = iTab;
3643     pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR;
3644     pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
3645     if( (pItem->fg.jointype & (JT_LEFT|JT_CROSS))!=0 ){
3646       /* This condition is true when pItem is the FROM clause term on the
3647       ** right-hand-side of a LEFT or CROSS JOIN.  */
3648       mPrereq = mPrior;
3649     }else{
3650       mPrereq = 0;
3651     }
3652 #ifndef SQLITE_OMIT_VIRTUALTABLE
3653     if( IsVirtual(pItem->pTab) ){
3654       struct SrcList_item *p;
3655       for(p=&pItem[1]; p<pEnd; p++){
3656         if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
3657           mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
3658         }
3659       }
3660       rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
3661     }else
3662 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3663     {
3664       rc = whereLoopAddBtree(pBuilder, mPrereq);
3665     }
3666     if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
3667       rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
3668     }
3669     mPrior |= pNew->maskSelf;
3670     if( rc || db->mallocFailed ){
3671       if( rc==SQLITE_DONE ){
3672         /* We hit the query planner search limit set by iPlanLimit */
3673         sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search");
3674         rc = SQLITE_OK;
3675       }else{
3676         break;
3677       }
3678     }
3679   }
3680 
3681   whereLoopClear(db, pNew);
3682   return rc;
3683 }
3684 
3685 /*
3686 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
3687 ** parameters) to see if it outputs rows in the requested ORDER BY
3688 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
3689 **
3690 **   N>0:   N terms of the ORDER BY clause are satisfied
3691 **   N==0:  No terms of the ORDER BY clause are satisfied
3692 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
3693 **
3694 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
3695 ** strict.  With GROUP BY and DISTINCT the only requirement is that
3696 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
3697 ** and DISTINCT do not require rows to appear in any particular order as long
3698 ** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT
3699 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
3700 ** pOrderBy terms must be matched in strict left-to-right order.
3701 */
3702 static i8 wherePathSatisfiesOrderBy(
3703   WhereInfo *pWInfo,    /* The WHERE clause */
3704   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
3705   WherePath *pPath,     /* The WherePath to check */
3706   u16 wctrlFlags,       /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
3707   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
3708   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
3709   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
3710 ){
3711   u8 revSet;            /* True if rev is known */
3712   u8 rev;               /* Composite sort order */
3713   u8 revIdx;            /* Index sort order */
3714   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
3715   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
3716   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
3717   u16 eqOpMask;         /* Allowed equality operators */
3718   u16 nKeyCol;          /* Number of key columns in pIndex */
3719   u16 nColumn;          /* Total number of ordered columns in the index */
3720   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
3721   int iLoop;            /* Index of WhereLoop in pPath being processed */
3722   int i, j;             /* Loop counters */
3723   int iCur;             /* Cursor number for current WhereLoop */
3724   int iColumn;          /* A column number within table iCur */
3725   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
3726   WhereTerm *pTerm;     /* A single term of the WHERE clause */
3727   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
3728   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
3729   Index *pIndex;        /* The index associated with pLoop */
3730   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
3731   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
3732   Bitmask obDone;       /* Mask of all ORDER BY terms */
3733   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
3734   Bitmask ready;              /* Mask of inner loops */
3735 
3736   /*
3737   ** We say the WhereLoop is "one-row" if it generates no more than one
3738   ** row of output.  A WhereLoop is one-row if all of the following are true:
3739   **  (a) All index columns match with WHERE_COLUMN_EQ.
3740   **  (b) The index is unique
3741   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
3742   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
3743   **
3744   ** We say the WhereLoop is "order-distinct" if the set of columns from
3745   ** that WhereLoop that are in the ORDER BY clause are different for every
3746   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
3747   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
3748   ** is not order-distinct. To be order-distinct is not quite the same as being
3749   ** UNIQUE since a UNIQUE column or index can have multiple rows that
3750   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
3751   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
3752   **
3753   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
3754   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
3755   ** automatically order-distinct.
3756   */
3757 
3758   assert( pOrderBy!=0 );
3759   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
3760 
3761   nOrderBy = pOrderBy->nExpr;
3762   testcase( nOrderBy==BMS-1 );
3763   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
3764   isOrderDistinct = 1;
3765   obDone = MASKBIT(nOrderBy)-1;
3766   orderDistinctMask = 0;
3767   ready = 0;
3768   eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
3769   if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){
3770     eqOpMask |= WO_IN;
3771   }
3772   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
3773     if( iLoop>0 ) ready |= pLoop->maskSelf;
3774     if( iLoop<nLoop ){
3775       pLoop = pPath->aLoop[iLoop];
3776       if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
3777     }else{
3778       pLoop = pLast;
3779     }
3780     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
3781       if( pLoop->u.vtab.isOrdered && (wctrlFlags & WHERE_DISTINCTBY)==0 ){
3782         obSat = obDone;
3783       }
3784       break;
3785     }else if( wctrlFlags & WHERE_DISTINCTBY ){
3786       pLoop->u.btree.nDistinctCol = 0;
3787     }
3788     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
3789 
3790     /* Mark off any ORDER BY term X that is a column in the table of
3791     ** the current loop for which there is term in the WHERE
3792     ** clause of the form X IS NULL or X=? that reference only outer
3793     ** loops.
3794     */
3795     for(i=0; i<nOrderBy; i++){
3796       if( MASKBIT(i) & obSat ) continue;
3797       pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
3798       if( NEVER(pOBExpr==0) ) continue;
3799       if( pOBExpr->op!=TK_COLUMN ) continue;
3800       if( pOBExpr->iTable!=iCur ) continue;
3801       pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
3802                        ~ready, eqOpMask, 0);
3803       if( pTerm==0 ) continue;
3804       if( pTerm->eOperator==WO_IN ){
3805         /* IN terms are only valid for sorting in the ORDER BY LIMIT
3806         ** optimization, and then only if they are actually used
3807         ** by the query plan */
3808         assert( wctrlFlags &
3809                (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) );
3810         for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
3811         if( j>=pLoop->nLTerm ) continue;
3812       }
3813       if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
3814         Parse *pParse = pWInfo->pParse;
3815         CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr);
3816         CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr);
3817         assert( pColl1 );
3818         if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){
3819           continue;
3820         }
3821         testcase( pTerm->pExpr->op==TK_IS );
3822       }
3823       obSat |= MASKBIT(i);
3824     }
3825 
3826     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
3827       if( pLoop->wsFlags & WHERE_IPK ){
3828         pIndex = 0;
3829         nKeyCol = 0;
3830         nColumn = 1;
3831       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
3832         return 0;
3833       }else{
3834         nKeyCol = pIndex->nKeyCol;
3835         nColumn = pIndex->nColumn;
3836         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
3837         assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
3838                           || !HasRowid(pIndex->pTable));
3839         isOrderDistinct = IsUniqueIndex(pIndex)
3840                           && (pLoop->wsFlags & WHERE_SKIPSCAN)==0;
3841       }
3842 
3843       /* Loop through all columns of the index and deal with the ones
3844       ** that are not constrained by == or IN.
3845       */
3846       rev = revSet = 0;
3847       distinctColumns = 0;
3848       for(j=0; j<nColumn; j++){
3849         u8 bOnce = 1; /* True to run the ORDER BY search loop */
3850 
3851         assert( j>=pLoop->u.btree.nEq
3852             || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
3853         );
3854         if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
3855           u16 eOp = pLoop->aLTerm[j]->eOperator;
3856 
3857           /* Skip over == and IS and ISNULL terms.  (Also skip IN terms when
3858           ** doing WHERE_ORDERBY_LIMIT processing).  Except, IS and ISNULL
3859           ** terms imply that the index is not UNIQUE NOT NULL in which case
3860           ** the loop need to be marked as not order-distinct because it can
3861           ** have repeated NULL rows.
3862           **
3863           ** If the current term is a column of an ((?,?) IN (SELECT...))
3864           ** expression for which the SELECT returns more than one column,
3865           ** check that it is the only column used by this loop. Otherwise,
3866           ** if it is one of two or more, none of the columns can be
3867           ** considered to match an ORDER BY term.
3868           */
3869           if( (eOp & eqOpMask)!=0 ){
3870             if( eOp & (WO_ISNULL|WO_IS) ){
3871               testcase( eOp & WO_ISNULL );
3872               testcase( eOp & WO_IS );
3873               testcase( isOrderDistinct );
3874               isOrderDistinct = 0;
3875             }
3876             continue;
3877           }else if( ALWAYS(eOp & WO_IN) ){
3878             /* ALWAYS() justification: eOp is an equality operator due to the
3879             ** j<pLoop->u.btree.nEq constraint above.  Any equality other
3880             ** than WO_IN is captured by the previous "if".  So this one
3881             ** always has to be WO_IN. */
3882             Expr *pX = pLoop->aLTerm[j]->pExpr;
3883             for(i=j+1; i<pLoop->u.btree.nEq; i++){
3884               if( pLoop->aLTerm[i]->pExpr==pX ){
3885                 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
3886                 bOnce = 0;
3887                 break;
3888               }
3889             }
3890           }
3891         }
3892 
3893         /* Get the column number in the table (iColumn) and sort order
3894         ** (revIdx) for the j-th column of the index.
3895         */
3896         if( pIndex ){
3897           iColumn = pIndex->aiColumn[j];
3898           revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC;
3899           if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
3900         }else{
3901           iColumn = XN_ROWID;
3902           revIdx = 0;
3903         }
3904 
3905         /* An unconstrained column that might be NULL means that this
3906         ** WhereLoop is not well-ordered
3907         */
3908         if( isOrderDistinct
3909          && iColumn>=0
3910          && j>=pLoop->u.btree.nEq
3911          && pIndex->pTable->aCol[iColumn].notNull==0
3912         ){
3913           isOrderDistinct = 0;
3914         }
3915 
3916         /* Find the ORDER BY term that corresponds to the j-th column
3917         ** of the index and mark that ORDER BY term off
3918         */
3919         isMatch = 0;
3920         for(i=0; bOnce && i<nOrderBy; i++){
3921           if( MASKBIT(i) & obSat ) continue;
3922           pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
3923           testcase( wctrlFlags & WHERE_GROUPBY );
3924           testcase( wctrlFlags & WHERE_DISTINCTBY );
3925           if( NEVER(pOBExpr==0) ) continue;
3926           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
3927           if( iColumn>=XN_ROWID ){
3928             if( pOBExpr->op!=TK_COLUMN ) continue;
3929             if( pOBExpr->iTable!=iCur ) continue;
3930             if( pOBExpr->iColumn!=iColumn ) continue;
3931           }else{
3932             Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
3933             if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
3934               continue;
3935             }
3936           }
3937           if( iColumn!=XN_ROWID ){
3938             pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
3939             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
3940           }
3941           if( wctrlFlags & WHERE_DISTINCTBY ){
3942             pLoop->u.btree.nDistinctCol = j+1;
3943           }
3944           isMatch = 1;
3945           break;
3946         }
3947         if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
3948           /* Make sure the sort order is compatible in an ORDER BY clause.
3949           ** Sort order is irrelevant for a GROUP BY clause. */
3950           if( revSet ){
3951             if( (rev ^ revIdx)!=(pOrderBy->a[i].sortFlags&KEYINFO_ORDER_DESC) ){
3952               isMatch = 0;
3953             }
3954           }else{
3955             rev = revIdx ^ (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC);
3956             if( rev ) *pRevMask |= MASKBIT(iLoop);
3957             revSet = 1;
3958           }
3959         }
3960         if( isMatch && (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL) ){
3961           if( j==pLoop->u.btree.nEq ){
3962             pLoop->wsFlags |= WHERE_BIGNULL_SORT;
3963           }else{
3964             isMatch = 0;
3965           }
3966         }
3967         if( isMatch ){
3968           if( iColumn==XN_ROWID ){
3969             testcase( distinctColumns==0 );
3970             distinctColumns = 1;
3971           }
3972           obSat |= MASKBIT(i);
3973         }else{
3974           /* No match found */
3975           if( j==0 || j<nKeyCol ){
3976             testcase( isOrderDistinct!=0 );
3977             isOrderDistinct = 0;
3978           }
3979           break;
3980         }
3981       } /* end Loop over all index columns */
3982       if( distinctColumns ){
3983         testcase( isOrderDistinct==0 );
3984         isOrderDistinct = 1;
3985       }
3986     } /* end-if not one-row */
3987 
3988     /* Mark off any other ORDER BY terms that reference pLoop */
3989     if( isOrderDistinct ){
3990       orderDistinctMask |= pLoop->maskSelf;
3991       for(i=0; i<nOrderBy; i++){
3992         Expr *p;
3993         Bitmask mTerm;
3994         if( MASKBIT(i) & obSat ) continue;
3995         p = pOrderBy->a[i].pExpr;
3996         mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
3997         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
3998         if( (mTerm&~orderDistinctMask)==0 ){
3999           obSat |= MASKBIT(i);
4000         }
4001       }
4002     }
4003   } /* End the loop over all WhereLoops from outer-most down to inner-most */
4004   if( obSat==obDone ) return (i8)nOrderBy;
4005   if( !isOrderDistinct ){
4006     for(i=nOrderBy-1; i>0; i--){
4007       Bitmask m = MASKBIT(i) - 1;
4008       if( (obSat&m)==m ) return i;
4009     }
4010     return 0;
4011   }
4012   return -1;
4013 }
4014 
4015 
4016 /*
4017 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
4018 ** the planner assumes that the specified pOrderBy list is actually a GROUP
4019 ** BY clause - and so any order that groups rows as required satisfies the
4020 ** request.
4021 **
4022 ** Normally, in this case it is not possible for the caller to determine
4023 ** whether or not the rows are really being delivered in sorted order, or
4024 ** just in some other order that provides the required grouping. However,
4025 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
4026 ** this function may be called on the returned WhereInfo object. It returns
4027 ** true if the rows really will be sorted in the specified order, or false
4028 ** otherwise.
4029 **
4030 ** For example, assuming:
4031 **
4032 **   CREATE INDEX i1 ON t1(x, Y);
4033 **
4034 ** then
4035 **
4036 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
4037 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
4038 */
4039 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
4040   assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
4041   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
4042   return pWInfo->sorted;
4043 }
4044 
4045 #ifdef WHERETRACE_ENABLED
4046 /* For debugging use only: */
4047 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
4048   static char zName[65];
4049   int i;
4050   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
4051   if( pLast ) zName[i++] = pLast->cId;
4052   zName[i] = 0;
4053   return zName;
4054 }
4055 #endif
4056 
4057 /*
4058 ** Return the cost of sorting nRow rows, assuming that the keys have
4059 ** nOrderby columns and that the first nSorted columns are already in
4060 ** order.
4061 */
4062 static LogEst whereSortingCost(
4063   WhereInfo *pWInfo,
4064   LogEst nRow,
4065   int nOrderBy,
4066   int nSorted
4067 ){
4068   /* TUNING: Estimated cost of a full external sort, where N is
4069   ** the number of rows to sort is:
4070   **
4071   **   cost = (3.0 * N * log(N)).
4072   **
4073   ** Or, if the order-by clause has X terms but only the last Y
4074   ** terms are out of order, then block-sorting will reduce the
4075   ** sorting cost to:
4076   **
4077   **   cost = (3.0 * N * log(N)) * (Y/X)
4078   **
4079   ** The (Y/X) term is implemented using stack variable rScale
4080   ** below.
4081   */
4082   LogEst rScale, rSortCost;
4083   assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
4084   rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
4085   rSortCost = nRow + rScale + 16;
4086 
4087   /* Multiple by log(M) where M is the number of output rows.
4088   ** Use the LIMIT for M if it is smaller.  Or if this sort is for
4089   ** a DISTINCT operator, M will be the number of distinct output
4090   ** rows, so fudge it downwards a bit.
4091   */
4092   if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
4093     nRow = pWInfo->iLimit;
4094   }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){
4095     /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT
4096     ** reduces the number of output rows by a factor of 2 */
4097     if( nRow>10 ) nRow -= 10;  assert( 10==sqlite3LogEst(2) );
4098   }
4099   rSortCost += estLog(nRow);
4100   return rSortCost;
4101 }
4102 
4103 /*
4104 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
4105 ** attempts to find the lowest cost path that visits each WhereLoop
4106 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
4107 **
4108 ** Assume that the total number of output rows that will need to be sorted
4109 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
4110 ** costs if nRowEst==0.
4111 **
4112 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
4113 ** error occurs.
4114 */
4115 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
4116   int mxChoice;             /* Maximum number of simultaneous paths tracked */
4117   int nLoop;                /* Number of terms in the join */
4118   Parse *pParse;            /* Parsing context */
4119   sqlite3 *db;              /* The database connection */
4120   int iLoop;                /* Loop counter over the terms of the join */
4121   int ii, jj;               /* Loop counters */
4122   int mxI = 0;              /* Index of next entry to replace */
4123   int nOrderBy;             /* Number of ORDER BY clause terms */
4124   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
4125   LogEst mxUnsorted = 0;    /* Maximum unsorted cost of a set of path */
4126   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
4127   WherePath *aFrom;         /* All nFrom paths at the previous level */
4128   WherePath *aTo;           /* The nTo best paths at the current level */
4129   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
4130   WherePath *pTo;           /* An element of aTo[] that we are working on */
4131   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
4132   WhereLoop **pX;           /* Used to divy up the pSpace memory */
4133   LogEst *aSortCost = 0;    /* Sorting and partial sorting costs */
4134   char *pSpace;             /* Temporary memory used by this routine */
4135   int nSpace;               /* Bytes of space allocated at pSpace */
4136 
4137   pParse = pWInfo->pParse;
4138   db = pParse->db;
4139   nLoop = pWInfo->nLevel;
4140   /* TUNING: For simple queries, only the best path is tracked.
4141   ** For 2-way joins, the 5 best paths are followed.
4142   ** For joins of 3 or more tables, track the 10 best paths */
4143   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
4144   assert( nLoop<=pWInfo->pTabList->nSrc );
4145   WHERETRACE(0x002, ("---- begin solver.  (nRowEst=%d)\n", nRowEst));
4146 
4147   /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
4148   ** case the purpose of this call is to estimate the number of rows returned
4149   ** by the overall query. Once this estimate has been obtained, the caller
4150   ** will invoke this function a second time, passing the estimate as the
4151   ** nRowEst parameter.  */
4152   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
4153     nOrderBy = 0;
4154   }else{
4155     nOrderBy = pWInfo->pOrderBy->nExpr;
4156   }
4157 
4158   /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
4159   nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
4160   nSpace += sizeof(LogEst) * nOrderBy;
4161   pSpace = sqlite3DbMallocRawNN(db, nSpace);
4162   if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
4163   aTo = (WherePath*)pSpace;
4164   aFrom = aTo+mxChoice;
4165   memset(aFrom, 0, sizeof(aFrom[0]));
4166   pX = (WhereLoop**)(aFrom+mxChoice);
4167   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
4168     pFrom->aLoop = pX;
4169   }
4170   if( nOrderBy ){
4171     /* If there is an ORDER BY clause and it is not being ignored, set up
4172     ** space for the aSortCost[] array. Each element of the aSortCost array
4173     ** is either zero - meaning it has not yet been initialized - or the
4174     ** cost of sorting nRowEst rows of data where the first X terms of
4175     ** the ORDER BY clause are already in order, where X is the array
4176     ** index.  */
4177     aSortCost = (LogEst*)pX;
4178     memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
4179   }
4180   assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
4181   assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
4182 
4183   /* Seed the search with a single WherePath containing zero WhereLoops.
4184   **
4185   ** TUNING: Do not let the number of iterations go above 28.  If the cost
4186   ** of computing an automatic index is not paid back within the first 28
4187   ** rows, then do not use the automatic index. */
4188   aFrom[0].nRow = MIN(pParse->nQueryLoop, 48);  assert( 48==sqlite3LogEst(28) );
4189   nFrom = 1;
4190   assert( aFrom[0].isOrdered==0 );
4191   if( nOrderBy ){
4192     /* If nLoop is zero, then there are no FROM terms in the query. Since
4193     ** in this case the query may return a maximum of one row, the results
4194     ** are already in the requested order. Set isOrdered to nOrderBy to
4195     ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
4196     ** -1, indicating that the result set may or may not be ordered,
4197     ** depending on the loops added to the current plan.  */
4198     aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
4199   }
4200 
4201   /* Compute successively longer WherePaths using the previous generation
4202   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
4203   ** best paths at each generation */
4204   for(iLoop=0; iLoop<nLoop; iLoop++){
4205     nTo = 0;
4206     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
4207       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
4208         LogEst nOut;                      /* Rows visited by (pFrom+pWLoop) */
4209         LogEst rCost;                     /* Cost of path (pFrom+pWLoop) */
4210         LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
4211         i8 isOrdered = pFrom->isOrdered;  /* isOrdered for (pFrom+pWLoop) */
4212         Bitmask maskNew;                  /* Mask of src visited by (..) */
4213         Bitmask revMask = 0;              /* Mask of rev-order loops for (..) */
4214 
4215         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
4216         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
4217         if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
4218           /* Do not use an automatic index if the this loop is expected
4219           ** to run less than 1.25 times.  It is tempting to also exclude
4220           ** automatic index usage on an outer loop, but sometimes an automatic
4221           ** index is useful in the outer loop of a correlated subquery. */
4222           assert( 10==sqlite3LogEst(2) );
4223           continue;
4224         }
4225 
4226         /* At this point, pWLoop is a candidate to be the next loop.
4227         ** Compute its cost */
4228         rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
4229         rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
4230         nOut = pFrom->nRow + pWLoop->nOut;
4231         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
4232         if( isOrdered<0 ){
4233           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
4234                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
4235                        iLoop, pWLoop, &revMask);
4236         }else{
4237           revMask = pFrom->revLoop;
4238         }
4239         if( isOrdered>=0 && isOrdered<nOrderBy ){
4240           if( aSortCost[isOrdered]==0 ){
4241             aSortCost[isOrdered] = whereSortingCost(
4242                 pWInfo, nRowEst, nOrderBy, isOrdered
4243             );
4244           }
4245           /* TUNING:  Add a small extra penalty (5) to sorting as an
4246           ** extra encouragment to the query planner to select a plan
4247           ** where the rows emerge in the correct order without any sorting
4248           ** required. */
4249           rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5;
4250 
4251           WHERETRACE(0x002,
4252               ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
4253                aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
4254                rUnsorted, rCost));
4255         }else{
4256           rCost = rUnsorted;
4257           rUnsorted -= 2;  /* TUNING:  Slight bias in favor of no-sort plans */
4258         }
4259 
4260         /* Check to see if pWLoop should be added to the set of
4261         ** mxChoice best-so-far paths.
4262         **
4263         ** First look for an existing path among best-so-far paths
4264         ** that covers the same set of loops and has the same isOrdered
4265         ** setting as the current path candidate.
4266         **
4267         ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4268         ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4269         ** of legal values for isOrdered, -1..64.
4270         */
4271         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
4272           if( pTo->maskLoop==maskNew
4273            && ((pTo->isOrdered^isOrdered)&0x80)==0
4274           ){
4275             testcase( jj==nTo-1 );
4276             break;
4277           }
4278         }
4279         if( jj>=nTo ){
4280           /* None of the existing best-so-far paths match the candidate. */
4281           if( nTo>=mxChoice
4282            && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4283           ){
4284             /* The current candidate is no better than any of the mxChoice
4285             ** paths currently in the best-so-far buffer.  So discard
4286             ** this candidate as not viable. */
4287 #ifdef WHERETRACE_ENABLED /* 0x4 */
4288             if( sqlite3WhereTrace&0x4 ){
4289               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d,%3d order=%c\n",
4290                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4291                   isOrdered>=0 ? isOrdered+'0' : '?');
4292             }
4293 #endif
4294             continue;
4295           }
4296           /* If we reach this points it means that the new candidate path
4297           ** needs to be added to the set of best-so-far paths. */
4298           if( nTo<mxChoice ){
4299             /* Increase the size of the aTo set by one */
4300             jj = nTo++;
4301           }else{
4302             /* New path replaces the prior worst to keep count below mxChoice */
4303             jj = mxI;
4304           }
4305           pTo = &aTo[jj];
4306 #ifdef WHERETRACE_ENABLED /* 0x4 */
4307           if( sqlite3WhereTrace&0x4 ){
4308             sqlite3DebugPrintf("New    %s cost=%-3d,%3d,%3d order=%c\n",
4309                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4310                 isOrdered>=0 ? isOrdered+'0' : '?');
4311           }
4312 #endif
4313         }else{
4314           /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4315           ** same set of loops and has the same isOrdered setting as the
4316           ** candidate path.  Check to see if the candidate should replace
4317           ** pTo or if the candidate should be skipped.
4318           **
4319           ** The conditional is an expanded vector comparison equivalent to:
4320           **   (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4321           */
4322           if( pTo->rCost<rCost
4323            || (pTo->rCost==rCost
4324                && (pTo->nRow<nOut
4325                    || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4326                   )
4327               )
4328           ){
4329 #ifdef WHERETRACE_ENABLED /* 0x4 */
4330             if( sqlite3WhereTrace&0x4 ){
4331               sqlite3DebugPrintf(
4332                   "Skip   %s cost=%-3d,%3d,%3d order=%c",
4333                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4334                   isOrdered>=0 ? isOrdered+'0' : '?');
4335               sqlite3DebugPrintf("   vs %s cost=%-3d,%3d,%3d order=%c\n",
4336                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4337                   pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4338             }
4339 #endif
4340             /* Discard the candidate path from further consideration */
4341             testcase( pTo->rCost==rCost );
4342             continue;
4343           }
4344           testcase( pTo->rCost==rCost+1 );
4345           /* Control reaches here if the candidate path is better than the
4346           ** pTo path.  Replace pTo with the candidate. */
4347 #ifdef WHERETRACE_ENABLED /* 0x4 */
4348           if( sqlite3WhereTrace&0x4 ){
4349             sqlite3DebugPrintf(
4350                 "Update %s cost=%-3d,%3d,%3d order=%c",
4351                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4352                 isOrdered>=0 ? isOrdered+'0' : '?');
4353             sqlite3DebugPrintf("  was %s cost=%-3d,%3d,%3d order=%c\n",
4354                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4355                 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4356           }
4357 #endif
4358         }
4359         /* pWLoop is a winner.  Add it to the set of best so far */
4360         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4361         pTo->revLoop = revMask;
4362         pTo->nRow = nOut;
4363         pTo->rCost = rCost;
4364         pTo->rUnsorted = rUnsorted;
4365         pTo->isOrdered = isOrdered;
4366         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4367         pTo->aLoop[iLoop] = pWLoop;
4368         if( nTo>=mxChoice ){
4369           mxI = 0;
4370           mxCost = aTo[0].rCost;
4371           mxUnsorted = aTo[0].nRow;
4372           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4373             if( pTo->rCost>mxCost
4374              || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4375             ){
4376               mxCost = pTo->rCost;
4377               mxUnsorted = pTo->rUnsorted;
4378               mxI = jj;
4379             }
4380           }
4381         }
4382       }
4383     }
4384 
4385 #ifdef WHERETRACE_ENABLED  /* >=2 */
4386     if( sqlite3WhereTrace & 0x02 ){
4387       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4388       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4389         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4390            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4391            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4392         if( pTo->isOrdered>0 ){
4393           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4394         }else{
4395           sqlite3DebugPrintf("\n");
4396         }
4397       }
4398     }
4399 #endif
4400 
4401     /* Swap the roles of aFrom and aTo for the next generation */
4402     pFrom = aTo;
4403     aTo = aFrom;
4404     aFrom = pFrom;
4405     nFrom = nTo;
4406   }
4407 
4408   if( nFrom==0 ){
4409     sqlite3ErrorMsg(pParse, "no query solution");
4410     sqlite3DbFreeNN(db, pSpace);
4411     return SQLITE_ERROR;
4412   }
4413 
4414   /* Find the lowest cost path.  pFrom will be left pointing to that path */
4415   pFrom = aFrom;
4416   for(ii=1; ii<nFrom; ii++){
4417     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4418   }
4419   assert( pWInfo->nLevel==nLoop );
4420   /* Load the lowest cost path into pWInfo */
4421   for(iLoop=0; iLoop<nLoop; iLoop++){
4422     WhereLevel *pLevel = pWInfo->a + iLoop;
4423     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
4424     pLevel->iFrom = pWLoop->iTab;
4425     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
4426   }
4427   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
4428    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
4429    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
4430    && nRowEst
4431   ){
4432     Bitmask notUsed;
4433     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
4434                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
4435     if( rc==pWInfo->pResultSet->nExpr ){
4436       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4437     }
4438   }
4439   pWInfo->bOrderedInnerLoop = 0;
4440   if( pWInfo->pOrderBy ){
4441     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
4442       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
4443         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4444       }
4445     }else{
4446       pWInfo->nOBSat = pFrom->isOrdered;
4447       pWInfo->revMask = pFrom->revLoop;
4448       if( pWInfo->nOBSat<=0 ){
4449         pWInfo->nOBSat = 0;
4450         if( nLoop>0 ){
4451           u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
4452           if( (wsFlags & WHERE_ONEROW)==0
4453            && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
4454           ){
4455             Bitmask m = 0;
4456             int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
4457                       WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
4458             testcase( wsFlags & WHERE_IPK );
4459             testcase( wsFlags & WHERE_COLUMN_IN );
4460             if( rc==pWInfo->pOrderBy->nExpr ){
4461               pWInfo->bOrderedInnerLoop = 1;
4462               pWInfo->revMask = m;
4463             }
4464           }
4465         }
4466       }else if( nLoop
4467             && pWInfo->nOBSat==1
4468             && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0
4469             ){
4470         pWInfo->bOrderedInnerLoop = 1;
4471       }
4472     }
4473     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
4474         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
4475     ){
4476       Bitmask revMask = 0;
4477       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
4478           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
4479       );
4480       assert( pWInfo->sorted==0 );
4481       if( nOrder==pWInfo->pOrderBy->nExpr ){
4482         pWInfo->sorted = 1;
4483         pWInfo->revMask = revMask;
4484       }
4485     }
4486   }
4487 
4488 
4489   pWInfo->nRowOut = pFrom->nRow;
4490 
4491   /* Free temporary memory and return success */
4492   sqlite3DbFreeNN(db, pSpace);
4493   return SQLITE_OK;
4494 }
4495 
4496 /*
4497 ** Most queries use only a single table (they are not joins) and have
4498 ** simple == constraints against indexed fields.  This routine attempts
4499 ** to plan those simple cases using much less ceremony than the
4500 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4501 ** times for the common case.
4502 **
4503 ** Return non-zero on success, if this query can be handled by this
4504 ** no-frills query planner.  Return zero if this query needs the
4505 ** general-purpose query planner.
4506 */
4507 static int whereShortCut(WhereLoopBuilder *pBuilder){
4508   WhereInfo *pWInfo;
4509   struct SrcList_item *pItem;
4510   WhereClause *pWC;
4511   WhereTerm *pTerm;
4512   WhereLoop *pLoop;
4513   int iCur;
4514   int j;
4515   Table *pTab;
4516   Index *pIdx;
4517 
4518   pWInfo = pBuilder->pWInfo;
4519   if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
4520   assert( pWInfo->pTabList->nSrc>=1 );
4521   pItem = pWInfo->pTabList->a;
4522   pTab = pItem->pTab;
4523   if( IsVirtual(pTab) ) return 0;
4524   if( pItem->fg.isIndexedBy ) return 0;
4525   iCur = pItem->iCursor;
4526   pWC = &pWInfo->sWC;
4527   pLoop = pBuilder->pNew;
4528   pLoop->wsFlags = 0;
4529   pLoop->nSkip = 0;
4530   pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0);
4531   if( pTerm ){
4532     testcase( pTerm->eOperator & WO_IS );
4533     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
4534     pLoop->aLTerm[0] = pTerm;
4535     pLoop->nLTerm = 1;
4536     pLoop->u.btree.nEq = 1;
4537     /* TUNING: Cost of a rowid lookup is 10 */
4538     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
4539   }else{
4540     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4541       int opMask;
4542       assert( pLoop->aLTermSpace==pLoop->aLTerm );
4543       if( !IsUniqueIndex(pIdx)
4544        || pIdx->pPartIdxWhere!=0
4545        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
4546       ) continue;
4547       opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
4548       for(j=0; j<pIdx->nKeyCol; j++){
4549         pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx);
4550         if( pTerm==0 ) break;
4551         testcase( pTerm->eOperator & WO_IS );
4552         pLoop->aLTerm[j] = pTerm;
4553       }
4554       if( j!=pIdx->nKeyCol ) continue;
4555       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
4556       if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
4557         pLoop->wsFlags |= WHERE_IDX_ONLY;
4558       }
4559       pLoop->nLTerm = j;
4560       pLoop->u.btree.nEq = j;
4561       pLoop->u.btree.pIndex = pIdx;
4562       /* TUNING: Cost of a unique index lookup is 15 */
4563       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
4564       break;
4565     }
4566   }
4567   if( pLoop->wsFlags ){
4568     pLoop->nOut = (LogEst)1;
4569     pWInfo->a[0].pWLoop = pLoop;
4570     assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
4571     pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
4572     pWInfo->a[0].iTabCur = iCur;
4573     pWInfo->nRowOut = 1;
4574     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
4575     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
4576       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4577     }
4578 #ifdef SQLITE_DEBUG
4579     pLoop->cId = '0';
4580 #endif
4581     return 1;
4582   }
4583   return 0;
4584 }
4585 
4586 /*
4587 ** Helper function for exprIsDeterministic().
4588 */
4589 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
4590   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
4591     pWalker->eCode = 0;
4592     return WRC_Abort;
4593   }
4594   return WRC_Continue;
4595 }
4596 
4597 /*
4598 ** Return true if the expression contains no non-deterministic SQL
4599 ** functions. Do not consider non-deterministic SQL functions that are
4600 ** part of sub-select statements.
4601 */
4602 static int exprIsDeterministic(Expr *p){
4603   Walker w;
4604   memset(&w, 0, sizeof(w));
4605   w.eCode = 1;
4606   w.xExprCallback = exprNodeIsDeterministic;
4607   w.xSelectCallback = sqlite3SelectWalkFail;
4608   sqlite3WalkExpr(&w, p);
4609   return w.eCode;
4610 }
4611 
4612 
4613 #ifdef WHERETRACE_ENABLED
4614 /*
4615 ** Display all WhereLoops in pWInfo
4616 */
4617 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){
4618   if( sqlite3WhereTrace ){    /* Display all of the WhereLoop objects */
4619     WhereLoop *p;
4620     int i;
4621     static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
4622                                            "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
4623     for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
4624       p->cId = zLabel[i%(sizeof(zLabel)-1)];
4625       sqlite3WhereLoopPrint(p, pWC);
4626     }
4627   }
4628 }
4629 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C)
4630 #else
4631 # define WHERETRACE_ALL_LOOPS(W,C)
4632 #endif
4633 
4634 /*
4635 ** Generate the beginning of the loop used for WHERE clause processing.
4636 ** The return value is a pointer to an opaque structure that contains
4637 ** information needed to terminate the loop.  Later, the calling routine
4638 ** should invoke sqlite3WhereEnd() with the return value of this function
4639 ** in order to complete the WHERE clause processing.
4640 **
4641 ** If an error occurs, this routine returns NULL.
4642 **
4643 ** The basic idea is to do a nested loop, one loop for each table in
4644 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
4645 ** same as a SELECT with only a single table in the FROM clause.)  For
4646 ** example, if the SQL is this:
4647 **
4648 **       SELECT * FROM t1, t2, t3 WHERE ...;
4649 **
4650 ** Then the code generated is conceptually like the following:
4651 **
4652 **      foreach row1 in t1 do       \    Code generated
4653 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
4654 **          foreach row3 in t3 do   /
4655 **            ...
4656 **          end                     \    Code generated
4657 **        end                        |-- by sqlite3WhereEnd()
4658 **      end                         /
4659 **
4660 ** Note that the loops might not be nested in the order in which they
4661 ** appear in the FROM clause if a different order is better able to make
4662 ** use of indices.  Note also that when the IN operator appears in
4663 ** the WHERE clause, it might result in additional nested loops for
4664 ** scanning through all values on the right-hand side of the IN.
4665 **
4666 ** There are Btree cursors associated with each table.  t1 uses cursor
4667 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
4668 ** And so forth.  This routine generates code to open those VDBE cursors
4669 ** and sqlite3WhereEnd() generates the code to close them.
4670 **
4671 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4672 ** in pTabList pointing at their appropriate entries.  The [...] code
4673 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4674 ** data from the various tables of the loop.
4675 **
4676 ** If the WHERE clause is empty, the foreach loops must each scan their
4677 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
4678 ** the tables have indices and there are terms in the WHERE clause that
4679 ** refer to those indices, a complete table scan can be avoided and the
4680 ** code will run much faster.  Most of the work of this routine is checking
4681 ** to see if there are indices that can be used to speed up the loop.
4682 **
4683 ** Terms of the WHERE clause are also used to limit which rows actually
4684 ** make it to the "..." in the middle of the loop.  After each "foreach",
4685 ** terms of the WHERE clause that use only terms in that loop and outer
4686 ** loops are evaluated and if false a jump is made around all subsequent
4687 ** inner loops (or around the "..." if the test occurs within the inner-
4688 ** most loop)
4689 **
4690 ** OUTER JOINS
4691 **
4692 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4693 **
4694 **    foreach row1 in t1 do
4695 **      flag = 0
4696 **      foreach row2 in t2 do
4697 **        start:
4698 **          ...
4699 **          flag = 1
4700 **      end
4701 **      if flag==0 then
4702 **        move the row2 cursor to a null row
4703 **        goto start
4704 **      fi
4705 **    end
4706 **
4707 ** ORDER BY CLAUSE PROCESSING
4708 **
4709 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
4710 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
4711 ** if there is one.  If there is no ORDER BY clause or if this routine
4712 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
4713 **
4714 ** The iIdxCur parameter is the cursor number of an index.  If
4715 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
4716 ** to use for OR clause processing.  The WHERE clause should use this
4717 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
4718 ** the first cursor in an array of cursors for all indices.  iIdxCur should
4719 ** be used to compute the appropriate cursor depending on which index is
4720 ** used.
4721 */
4722 WhereInfo *sqlite3WhereBegin(
4723   Parse *pParse,          /* The parser context */
4724   SrcList *pTabList,      /* FROM clause: A list of all tables to be scanned */
4725   Expr *pWhere,           /* The WHERE clause */
4726   ExprList *pOrderBy,     /* An ORDER BY (or GROUP BY) clause, or NULL */
4727   ExprList *pResultSet,   /* Query result set.  Req'd for DISTINCT */
4728   u16 wctrlFlags,         /* The WHERE_* flags defined in sqliteInt.h */
4729   int iAuxArg             /* If WHERE_OR_SUBCLAUSE is set, index cursor number
4730                           ** If WHERE_USE_LIMIT, then the limit amount */
4731 ){
4732   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
4733   int nTabList;              /* Number of elements in pTabList */
4734   WhereInfo *pWInfo;         /* Will become the return value of this function */
4735   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
4736   Bitmask notReady;          /* Cursors that are not yet positioned */
4737   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
4738   WhereMaskSet *pMaskSet;    /* The expression mask set */
4739   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
4740   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
4741   int ii;                    /* Loop counter */
4742   sqlite3 *db;               /* Database connection */
4743   int rc;                    /* Return code */
4744   u8 bFordelete = 0;         /* OPFLAG_FORDELETE or zero, as appropriate */
4745 
4746   assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
4747         (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
4748      && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4749   ));
4750 
4751   /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
4752   assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4753             || (wctrlFlags & WHERE_USE_LIMIT)==0 );
4754 
4755   /* Variable initialization */
4756   db = pParse->db;
4757   memset(&sWLB, 0, sizeof(sWLB));
4758 
4759   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
4760   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
4761   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
4762   sWLB.pOrderBy = pOrderBy;
4763 
4764   /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
4765   ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
4766   if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
4767     wctrlFlags &= ~WHERE_WANT_DISTINCT;
4768   }
4769 
4770   /* The number of tables in the FROM clause is limited by the number of
4771   ** bits in a Bitmask
4772   */
4773   testcase( pTabList->nSrc==BMS );
4774   if( pTabList->nSrc>BMS ){
4775     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
4776     return 0;
4777   }
4778 
4779   /* This function normally generates a nested loop for all tables in
4780   ** pTabList.  But if the WHERE_OR_SUBCLAUSE flag is set, then we should
4781   ** only generate code for the first table in pTabList and assume that
4782   ** any cursors associated with subsequent tables are uninitialized.
4783   */
4784   nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
4785 
4786   /* Allocate and initialize the WhereInfo structure that will become the
4787   ** return value. A single allocation is used to store the WhereInfo
4788   ** struct, the contents of WhereInfo.a[], the WhereClause structure
4789   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4790   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4791   ** some architectures. Hence the ROUND8() below.
4792   */
4793   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
4794   pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
4795   if( db->mallocFailed ){
4796     sqlite3DbFree(db, pWInfo);
4797     pWInfo = 0;
4798     goto whereBeginError;
4799   }
4800   pWInfo->pParse = pParse;
4801   pWInfo->pTabList = pTabList;
4802   pWInfo->pOrderBy = pOrderBy;
4803   pWInfo->pWhere = pWhere;
4804   pWInfo->pResultSet = pResultSet;
4805   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
4806   pWInfo->nLevel = nTabList;
4807   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse);
4808   pWInfo->wctrlFlags = wctrlFlags;
4809   pWInfo->iLimit = iAuxArg;
4810   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
4811   memset(&pWInfo->nOBSat, 0,
4812          offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
4813   memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
4814   assert( pWInfo->eOnePass==ONEPASS_OFF );  /* ONEPASS defaults to OFF */
4815   pMaskSet = &pWInfo->sMaskSet;
4816   sWLB.pWInfo = pWInfo;
4817   sWLB.pWC = &pWInfo->sWC;
4818   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
4819   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
4820   whereLoopInit(sWLB.pNew);
4821 #ifdef SQLITE_DEBUG
4822   sWLB.pNew->cId = '*';
4823 #endif
4824 
4825   /* Split the WHERE clause into separate subexpressions where each
4826   ** subexpression is separated by an AND operator.
4827   */
4828   initMaskSet(pMaskSet);
4829   sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
4830   sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
4831 
4832   /* Special case: No FROM clause
4833   */
4834   if( nTabList==0 ){
4835     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
4836     if( wctrlFlags & WHERE_WANT_DISTINCT ){
4837       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4838     }
4839     ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
4840   }else{
4841     /* Assign a bit from the bitmask to every term in the FROM clause.
4842     **
4843     ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
4844     **
4845     ** The rule of the previous sentence ensures thta if X is the bitmask for
4846     ** a table T, then X-1 is the bitmask for all other tables to the left of T.
4847     ** Knowing the bitmask for all tables to the left of a left join is
4848     ** important.  Ticket #3015.
4849     **
4850     ** Note that bitmasks are created for all pTabList->nSrc tables in
4851     ** pTabList, not just the first nTabList tables.  nTabList is normally
4852     ** equal to pTabList->nSrc but might be shortened to 1 if the
4853     ** WHERE_OR_SUBCLAUSE flag is set.
4854     */
4855     ii = 0;
4856     do{
4857       createMask(pMaskSet, pTabList->a[ii].iCursor);
4858       sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
4859     }while( (++ii)<pTabList->nSrc );
4860   #ifdef SQLITE_DEBUG
4861     {
4862       Bitmask mx = 0;
4863       for(ii=0; ii<pTabList->nSrc; ii++){
4864         Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
4865         assert( m>=mx );
4866         mx = m;
4867       }
4868     }
4869   #endif
4870   }
4871 
4872   /* Analyze all of the subexpressions. */
4873   sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
4874   if( db->mallocFailed ) goto whereBeginError;
4875 
4876   /* Special case: WHERE terms that do not refer to any tables in the join
4877   ** (constant expressions). Evaluate each such term, and jump over all the
4878   ** generated code if the result is not true.
4879   **
4880   ** Do not do this if the expression contains non-deterministic functions
4881   ** that are not within a sub-select. This is not strictly required, but
4882   ** preserves SQLite's legacy behaviour in the following two cases:
4883   **
4884   **   FROM ... WHERE random()>0;           -- eval random() once per row
4885   **   FROM ... WHERE (SELECT random())>0;  -- eval random() once overall
4886   */
4887   for(ii=0; ii<sWLB.pWC->nTerm; ii++){
4888     WhereTerm *pT = &sWLB.pWC->a[ii];
4889     if( pT->wtFlags & TERM_VIRTUAL ) continue;
4890     if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
4891       sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
4892       pT->wtFlags |= TERM_CODED;
4893     }
4894   }
4895 
4896   if( wctrlFlags & WHERE_WANT_DISTINCT ){
4897     if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
4898       /* The DISTINCT marking is pointless.  Ignore it. */
4899       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4900     }else if( pOrderBy==0 ){
4901       /* Try to ORDER BY the result set to make distinct processing easier */
4902       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
4903       pWInfo->pOrderBy = pResultSet;
4904     }
4905   }
4906 
4907   /* Construct the WhereLoop objects */
4908 #if defined(WHERETRACE_ENABLED)
4909   if( sqlite3WhereTrace & 0xffff ){
4910     sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
4911     if( wctrlFlags & WHERE_USE_LIMIT ){
4912       sqlite3DebugPrintf(", limit: %d", iAuxArg);
4913     }
4914     sqlite3DebugPrintf(")\n");
4915     if( sqlite3WhereTrace & 0x100 ){
4916       Select sSelect;
4917       memset(&sSelect, 0, sizeof(sSelect));
4918       sSelect.selFlags = SF_WhereBegin;
4919       sSelect.pSrc = pTabList;
4920       sSelect.pWhere = pWhere;
4921       sSelect.pOrderBy = pOrderBy;
4922       sSelect.pEList = pResultSet;
4923       sqlite3TreeViewSelect(0, &sSelect, 0);
4924     }
4925   }
4926   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
4927     sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
4928     sqlite3WhereClausePrint(sWLB.pWC);
4929   }
4930 #endif
4931 
4932   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
4933     rc = whereLoopAddAll(&sWLB);
4934     if( rc ) goto whereBeginError;
4935 
4936 #ifdef SQLITE_ENABLE_STAT4
4937     /* If one or more WhereTerm.truthProb values were used in estimating
4938     ** loop parameters, but then those truthProb values were subsequently
4939     ** changed based on STAT4 information while computing subsequent loops,
4940     ** then we need to rerun the whole loop building process so that all
4941     ** loops will be built using the revised truthProb values. */
4942     if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){
4943       WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
4944       WHERETRACE(0xffff,
4945            ("**** Redo all loop computations due to"
4946             " TERM_HIGHTRUTH changes ****\n"));
4947       while( pWInfo->pLoops ){
4948         WhereLoop *p = pWInfo->pLoops;
4949         pWInfo->pLoops = p->pNextLoop;
4950         whereLoopDelete(db, p);
4951       }
4952       rc = whereLoopAddAll(&sWLB);
4953       if( rc ) goto whereBeginError;
4954     }
4955 #endif
4956     WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
4957 
4958     wherePathSolver(pWInfo, 0);
4959     if( db->mallocFailed ) goto whereBeginError;
4960     if( pWInfo->pOrderBy ){
4961        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
4962        if( db->mallocFailed ) goto whereBeginError;
4963     }
4964   }
4965   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
4966      pWInfo->revMask = ALLBITS;
4967   }
4968   if( pParse->nErr || NEVER(db->mallocFailed) ){
4969     goto whereBeginError;
4970   }
4971 #ifdef WHERETRACE_ENABLED
4972   if( sqlite3WhereTrace ){
4973     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
4974     if( pWInfo->nOBSat>0 ){
4975       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
4976     }
4977     switch( pWInfo->eDistinct ){
4978       case WHERE_DISTINCT_UNIQUE: {
4979         sqlite3DebugPrintf("  DISTINCT=unique");
4980         break;
4981       }
4982       case WHERE_DISTINCT_ORDERED: {
4983         sqlite3DebugPrintf("  DISTINCT=ordered");
4984         break;
4985       }
4986       case WHERE_DISTINCT_UNORDERED: {
4987         sqlite3DebugPrintf("  DISTINCT=unordered");
4988         break;
4989       }
4990     }
4991     sqlite3DebugPrintf("\n");
4992     for(ii=0; ii<pWInfo->nLevel; ii++){
4993       sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
4994     }
4995   }
4996 #endif
4997 
4998   /* Attempt to omit tables from the join that do not affect the result.
4999   ** For a table to not affect the result, the following must be true:
5000   **
5001   **   1) The query must not be an aggregate.
5002   **   2) The table must be the RHS of a LEFT JOIN.
5003   **   3) Either the query must be DISTINCT, or else the ON or USING clause
5004   **      must contain a constraint that limits the scan of the table to
5005   **      at most a single row.
5006   **   4) The table must not be referenced by any part of the query apart
5007   **      from its own USING or ON clause.
5008   **
5009   ** For example, given:
5010   **
5011   **     CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
5012   **     CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
5013   **     CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
5014   **
5015   ** then table t2 can be omitted from the following:
5016   **
5017   **     SELECT v1, v3 FROM t1
5018   **       LEFT JOIN t2 ON (t1.ipk=t2.ipk)
5019   **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5020   **
5021   ** or from:
5022   **
5023   **     SELECT DISTINCT v1, v3 FROM t1
5024   **       LEFT JOIN t2
5025   **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5026   */
5027   notReady = ~(Bitmask)0;
5028   if( pWInfo->nLevel>=2
5029    && pResultSet!=0               /* guarantees condition (1) above */
5030    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
5031   ){
5032     int i;
5033     Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet);
5034     if( sWLB.pOrderBy ){
5035       tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy);
5036     }
5037     for(i=pWInfo->nLevel-1; i>=1; i--){
5038       WhereTerm *pTerm, *pEnd;
5039       struct SrcList_item *pItem;
5040       pLoop = pWInfo->a[i].pWLoop;
5041       pItem = &pWInfo->pTabList->a[pLoop->iTab];
5042       if( (pItem->fg.jointype & JT_LEFT)==0 ) continue;
5043       if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
5044        && (pLoop->wsFlags & WHERE_ONEROW)==0
5045       ){
5046         continue;
5047       }
5048       if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
5049       pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
5050       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
5051         if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5052           if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
5053            || pTerm->pExpr->iRightJoinTable!=pItem->iCursor
5054           ){
5055             break;
5056           }
5057         }
5058       }
5059       if( pTerm<pEnd ) continue;
5060       WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
5061       notReady &= ~pLoop->maskSelf;
5062       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
5063         if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5064           pTerm->wtFlags |= TERM_CODED;
5065         }
5066       }
5067       if( i!=pWInfo->nLevel-1 ){
5068         int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
5069         memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
5070       }
5071       pWInfo->nLevel--;
5072       nTabList--;
5073     }
5074   }
5075 #if defined(WHERETRACE_ENABLED)
5076   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5077     sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
5078     sqlite3WhereClausePrint(sWLB.pWC);
5079   }
5080   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
5081 #endif
5082   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
5083 
5084   /* If the caller is an UPDATE or DELETE statement that is requesting
5085   ** to use a one-pass algorithm, determine if this is appropriate.
5086   **
5087   ** A one-pass approach can be used if the caller has requested one
5088   ** and either (a) the scan visits at most one row or (b) each
5089   ** of the following are true:
5090   **
5091   **   * the caller has indicated that a one-pass approach can be used
5092   **     with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
5093   **   * the table is not a virtual table, and
5094   **   * either the scan does not use the OR optimization or the caller
5095   **     is a DELETE operation (WHERE_DUPLICATES_OK is only specified
5096   **     for DELETE).
5097   **
5098   ** The last qualification is because an UPDATE statement uses
5099   ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
5100   ** use a one-pass approach, and this is not set accurately for scans
5101   ** that use the OR optimization.
5102   */
5103   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
5104   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
5105     int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
5106     int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
5107     assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) );
5108     if( bOnerow || (
5109         0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
5110      && !IsVirtual(pTabList->a[0].pTab)
5111      && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
5112     )){
5113       pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
5114       if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
5115         if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
5116           bFordelete = OPFLAG_FORDELETE;
5117         }
5118         pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
5119       }
5120     }
5121   }
5122 
5123   /* Open all tables in the pTabList and any indices selected for
5124   ** searching those tables.
5125   */
5126   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
5127     Table *pTab;     /* Table to open */
5128     int iDb;         /* Index of database containing table/index */
5129     struct SrcList_item *pTabItem;
5130 
5131     pTabItem = &pTabList->a[pLevel->iFrom];
5132     pTab = pTabItem->pTab;
5133     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5134     pLoop = pLevel->pWLoop;
5135     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
5136       /* Do nothing */
5137     }else
5138 #ifndef SQLITE_OMIT_VIRTUALTABLE
5139     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
5140       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
5141       int iCur = pTabItem->iCursor;
5142       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
5143     }else if( IsVirtual(pTab) ){
5144       /* noop */
5145     }else
5146 #endif
5147     if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
5148          && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
5149       int op = OP_OpenRead;
5150       if( pWInfo->eOnePass!=ONEPASS_OFF ){
5151         op = OP_OpenWrite;
5152         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
5153       };
5154       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
5155       assert( pTabItem->iCursor==pLevel->iTabCur );
5156       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
5157       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
5158       if( pWInfo->eOnePass==ONEPASS_OFF
5159        && pTab->nCol<BMS
5160        && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0
5161       ){
5162         /* If we know that only a prefix of the record will be used,
5163         ** it is advantageous to reduce the "column count" field in
5164         ** the P4 operand of the OP_OpenRead/Write opcode. */
5165         Bitmask b = pTabItem->colUsed;
5166         int n = 0;
5167         for(; b; b=b>>1, n++){}
5168         sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
5169         assert( n<=pTab->nCol );
5170       }
5171 #ifdef SQLITE_ENABLE_CURSOR_HINTS
5172       if( pLoop->u.btree.pIndex!=0 ){
5173         sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
5174       }else
5175 #endif
5176       {
5177         sqlite3VdbeChangeP5(v, bFordelete);
5178       }
5179 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5180       sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
5181                             (const u8*)&pTabItem->colUsed, P4_INT64);
5182 #endif
5183     }else{
5184       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5185     }
5186     if( pLoop->wsFlags & WHERE_INDEXED ){
5187       Index *pIx = pLoop->u.btree.pIndex;
5188       int iIndexCur;
5189       int op = OP_OpenRead;
5190       /* iAuxArg is always set to a positive value if ONEPASS is possible */
5191       assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
5192       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
5193        && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
5194       ){
5195         /* This is one term of an OR-optimization using the PRIMARY KEY of a
5196         ** WITHOUT ROWID table.  No need for a separate index */
5197         iIndexCur = pLevel->iTabCur;
5198         op = 0;
5199       }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
5200         Index *pJ = pTabItem->pTab->pIndex;
5201         iIndexCur = iAuxArg;
5202         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
5203         while( ALWAYS(pJ) && pJ!=pIx ){
5204           iIndexCur++;
5205           pJ = pJ->pNext;
5206         }
5207         op = OP_OpenWrite;
5208         pWInfo->aiCurOnePass[1] = iIndexCur;
5209       }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
5210         iIndexCur = iAuxArg;
5211         op = OP_ReopenIdx;
5212       }else{
5213         iIndexCur = pParse->nTab++;
5214       }
5215       pLevel->iIdxCur = iIndexCur;
5216       assert( pIx->pSchema==pTab->pSchema );
5217       assert( iIndexCur>=0 );
5218       if( op ){
5219         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
5220         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
5221         if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
5222          && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
5223          && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0
5224          && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
5225          && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
5226          && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
5227         ){
5228           sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ);
5229         }
5230         VdbeComment((v, "%s", pIx->zName));
5231 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5232         {
5233           u64 colUsed = 0;
5234           int ii, jj;
5235           for(ii=0; ii<pIx->nColumn; ii++){
5236             jj = pIx->aiColumn[ii];
5237             if( jj<0 ) continue;
5238             if( jj>63 ) jj = 63;
5239             if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
5240             colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
5241           }
5242           sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
5243                                 (u8*)&colUsed, P4_INT64);
5244         }
5245 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
5246       }
5247     }
5248     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
5249   }
5250   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
5251   if( db->mallocFailed ) goto whereBeginError;
5252 
5253   /* Generate the code to do the search.  Each iteration of the for
5254   ** loop below generates code for a single nested loop of the VM
5255   ** program.
5256   */
5257   for(ii=0; ii<nTabList; ii++){
5258     int addrExplain;
5259     int wsFlags;
5260     pLevel = &pWInfo->a[ii];
5261     wsFlags = pLevel->pWLoop->wsFlags;
5262 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
5263     if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
5264       constructAutomaticIndex(pParse, &pWInfo->sWC,
5265                 &pTabList->a[pLevel->iFrom], notReady, pLevel);
5266       if( db->mallocFailed ) goto whereBeginError;
5267     }
5268 #endif
5269     addrExplain = sqlite3WhereExplainOneScan(
5270         pParse, pTabList, pLevel, wctrlFlags
5271     );
5272     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
5273     notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady);
5274     pWInfo->iContinue = pLevel->addrCont;
5275     if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
5276       sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
5277     }
5278   }
5279 
5280   /* Done. */
5281   VdbeModuleComment((v, "Begin WHERE-core"));
5282   pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v);
5283   return pWInfo;
5284 
5285   /* Jump here if malloc fails */
5286 whereBeginError:
5287   if( pWInfo ){
5288     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5289     whereInfoFree(db, pWInfo);
5290   }
5291   return 0;
5292 }
5293 
5294 /*
5295 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
5296 ** index rather than the main table.  In SQLITE_DEBUG mode, we want
5297 ** to trace those changes if PRAGMA vdbe_addoptrace=on.  This routine
5298 ** does that.
5299 */
5300 #ifndef SQLITE_DEBUG
5301 # define OpcodeRewriteTrace(D,K,P) /* no-op */
5302 #else
5303 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
5304   static void sqlite3WhereOpcodeRewriteTrace(
5305     sqlite3 *db,
5306     int pc,
5307     VdbeOp *pOp
5308   ){
5309     if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
5310     sqlite3VdbePrintOp(0, pc, pOp);
5311   }
5312 #endif
5313 
5314 /*
5315 ** Generate the end of the WHERE loop.  See comments on
5316 ** sqlite3WhereBegin() for additional information.
5317 */
5318 void sqlite3WhereEnd(WhereInfo *pWInfo){
5319   Parse *pParse = pWInfo->pParse;
5320   Vdbe *v = pParse->pVdbe;
5321   int i;
5322   WhereLevel *pLevel;
5323   WhereLoop *pLoop;
5324   SrcList *pTabList = pWInfo->pTabList;
5325   sqlite3 *db = pParse->db;
5326   int iEnd = sqlite3VdbeCurrentAddr(v);
5327 
5328   /* Generate loop termination code.
5329   */
5330   VdbeModuleComment((v, "End WHERE-core"));
5331   for(i=pWInfo->nLevel-1; i>=0; i--){
5332     int addr;
5333     pLevel = &pWInfo->a[i];
5334     pLoop = pLevel->pWLoop;
5335     if( pLevel->op!=OP_Noop ){
5336 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5337       int addrSeek = 0;
5338       Index *pIdx;
5339       int n;
5340       if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
5341        && i==pWInfo->nLevel-1  /* Ticket [ef9318757b152e3] 2017-10-21 */
5342        && (pLoop->wsFlags & WHERE_INDEXED)!=0
5343        && (pIdx = pLoop->u.btree.pIndex)->hasStat1
5344        && (n = pLoop->u.btree.nDistinctCol)>0
5345        && pIdx->aiRowLogEst[n]>=36
5346       ){
5347         int r1 = pParse->nMem+1;
5348         int j, op;
5349         for(j=0; j<n; j++){
5350           sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
5351         }
5352         pParse->nMem += n+1;
5353         op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
5354         addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
5355         VdbeCoverageIf(v, op==OP_SeekLT);
5356         VdbeCoverageIf(v, op==OP_SeekGT);
5357         sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
5358       }
5359 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
5360       /* The common case: Advance to the next row */
5361       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5362       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
5363       sqlite3VdbeChangeP5(v, pLevel->p5);
5364       VdbeCoverage(v);
5365       VdbeCoverageIf(v, pLevel->op==OP_Next);
5366       VdbeCoverageIf(v, pLevel->op==OP_Prev);
5367       VdbeCoverageIf(v, pLevel->op==OP_VNext);
5368       if( pLevel->regBignull ){
5369         sqlite3VdbeResolveLabel(v, pLevel->addrBignull);
5370         sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1);
5371         VdbeCoverage(v);
5372       }
5373 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5374       if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
5375 #endif
5376     }else{
5377       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5378     }
5379     if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
5380       struct InLoop *pIn;
5381       int j;
5382       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
5383       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
5384         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5385         if( pIn->eEndLoopOp!=OP_Noop ){
5386           if( pIn->nPrefix ){
5387             int bEarlyOut =
5388                 (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
5389                  && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0;
5390             if( pLevel->iLeftJoin ){
5391               /* For LEFT JOIN queries, cursor pIn->iCur may not have been
5392               ** opened yet. This occurs for WHERE clauses such as
5393               ** "a = ? AND b IN (...)", where the index is on (a, b). If
5394               ** the RHS of the (a=?) is NULL, then the "b IN (...)" may
5395               ** never have been coded, but the body of the loop run to
5396               ** return the null-row. So, if the cursor is not open yet,
5397               ** jump over the OP_Next or OP_Prev instruction about to
5398               ** be coded.  */
5399               sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur,
5400                   sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut);
5401               VdbeCoverage(v);
5402             }
5403             if( bEarlyOut ){
5404               sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
5405                   sqlite3VdbeCurrentAddr(v)+2,
5406                   pIn->iBase, pIn->nPrefix);
5407               VdbeCoverage(v);
5408             }
5409           }
5410           sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
5411           VdbeCoverage(v);
5412           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
5413           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
5414         }
5415         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
5416       }
5417     }
5418     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
5419     if( pLevel->addrSkip ){
5420       sqlite3VdbeGoto(v, pLevel->addrSkip);
5421       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
5422       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
5423       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
5424     }
5425 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
5426     if( pLevel->addrLikeRep ){
5427       sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
5428                         pLevel->addrLikeRep);
5429       VdbeCoverage(v);
5430     }
5431 #endif
5432     if( pLevel->iLeftJoin ){
5433       int ws = pLoop->wsFlags;
5434       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
5435       assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
5436       if( (ws & WHERE_IDX_ONLY)==0 ){
5437         assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
5438         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
5439       }
5440       if( (ws & WHERE_INDEXED)
5441        || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx)
5442       ){
5443         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
5444       }
5445       if( pLevel->op==OP_Return ){
5446         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
5447       }else{
5448         sqlite3VdbeGoto(v, pLevel->addrFirst);
5449       }
5450       sqlite3VdbeJumpHere(v, addr);
5451     }
5452     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
5453                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
5454   }
5455 
5456   /* The "break" point is here, just past the end of the outer loop.
5457   ** Set it.
5458   */
5459   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
5460 
5461   assert( pWInfo->nLevel<=pTabList->nSrc );
5462   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
5463     int k, last;
5464     VdbeOp *pOp, *pLastOp;
5465     Index *pIdx = 0;
5466     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
5467     Table *pTab = pTabItem->pTab;
5468     assert( pTab!=0 );
5469     pLoop = pLevel->pWLoop;
5470 
5471     /* For a co-routine, change all OP_Column references to the table of
5472     ** the co-routine into OP_Copy of result contained in a register.
5473     ** OP_Rowid becomes OP_Null.
5474     */
5475     if( pTabItem->fg.viaCoroutine ){
5476       testcase( pParse->db->mallocFailed );
5477       translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
5478                             pTabItem->regResult, 0);
5479       continue;
5480     }
5481 
5482 #ifdef SQLITE_ENABLE_EARLY_CURSOR_CLOSE
5483     /* Close all of the cursors that were opened by sqlite3WhereBegin.
5484     ** Except, do not close cursors that will be reused by the OR optimization
5485     ** (WHERE_OR_SUBCLAUSE).  And do not close the OP_OpenWrite cursors
5486     ** created for the ONEPASS optimization.
5487     */
5488     if( (pTab->tabFlags & TF_Ephemeral)==0
5489      && pTab->pSelect==0
5490      && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5491     ){
5492       int ws = pLoop->wsFlags;
5493       if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){
5494         sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
5495       }
5496       if( (ws & WHERE_INDEXED)!=0
5497        && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0
5498        && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1]
5499       ){
5500         sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
5501       }
5502     }
5503 #endif
5504 
5505     /* If this scan uses an index, make VDBE code substitutions to read data
5506     ** from the index instead of from the table where possible.  In some cases
5507     ** this optimization prevents the table from ever being read, which can
5508     ** yield a significant performance boost.
5509     **
5510     ** Calls to the code generator in between sqlite3WhereBegin and
5511     ** sqlite3WhereEnd will have created code that references the table
5512     ** directly.  This loop scans all that code looking for opcodes
5513     ** that reference the table and converts them into opcodes that
5514     ** reference the index.
5515     */
5516     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
5517       pIdx = pLoop->u.btree.pIndex;
5518     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
5519       pIdx = pLevel->u.pCovidx;
5520     }
5521     if( pIdx
5522      && !db->mallocFailed
5523     ){
5524       if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){
5525         last = iEnd;
5526       }else{
5527         last = pWInfo->iEndWhere;
5528       }
5529       k = pLevel->addrBody + 1;
5530 #ifdef SQLITE_DEBUG
5531       if( db->flags & SQLITE_VdbeAddopTrace ){
5532         printf("TRANSLATE opcodes in range %d..%d\n", k, last-1);
5533       }
5534       /* Proof that the "+1" on the k value above is safe */
5535       pOp = sqlite3VdbeGetOp(v, k - 1);
5536       assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur );
5537       assert( pOp->opcode!=OP_Rowid  || pOp->p1!=pLevel->iTabCur );
5538       assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur );
5539 #endif
5540       pOp = sqlite3VdbeGetOp(v, k);
5541       pLastOp = pOp + (last - k);
5542       assert( pOp<pLastOp );
5543       do{
5544         if( pOp->p1!=pLevel->iTabCur ){
5545           /* no-op */
5546         }else if( pOp->opcode==OP_Column
5547 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
5548          || pOp->opcode==OP_Offset
5549 #endif
5550         ){
5551           int x = pOp->p2;
5552           assert( pIdx->pTable==pTab );
5553           if( !HasRowid(pTab) ){
5554             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
5555             x = pPk->aiColumn[x];
5556             assert( x>=0 );
5557           }else{
5558             testcase( x!=sqlite3StorageColumnToTable(pTab,x) );
5559             x = sqlite3StorageColumnToTable(pTab,x);
5560           }
5561           x = sqlite3TableColumnToIndex(pIdx, x);
5562           if( x>=0 ){
5563             pOp->p2 = x;
5564             pOp->p1 = pLevel->iIdxCur;
5565             OpcodeRewriteTrace(db, k, pOp);
5566           }
5567           assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0
5568               || pWInfo->eOnePass );
5569         }else if( pOp->opcode==OP_Rowid ){
5570           pOp->p1 = pLevel->iIdxCur;
5571           pOp->opcode = OP_IdxRowid;
5572           OpcodeRewriteTrace(db, k, pOp);
5573         }else if( pOp->opcode==OP_IfNullRow ){
5574           pOp->p1 = pLevel->iIdxCur;
5575           OpcodeRewriteTrace(db, k, pOp);
5576         }
5577 #ifdef SQLITE_DEBUG
5578         k++;
5579 #endif
5580       }while( (++pOp)<pLastOp );
5581 #ifdef SQLITE_DEBUG
5582       if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
5583 #endif
5584     }
5585   }
5586 
5587   /* Undo all Expr node modifications */
5588   while( pWInfo->pExprMods ){
5589     WhereExprMod *p = pWInfo->pExprMods;
5590     pWInfo->pExprMods = p->pNext;
5591     memcpy(p->pExpr, &p->orig, sizeof(p->orig));
5592     sqlite3DbFree(db, p);
5593   }
5594 
5595   /* Final cleanup
5596   */
5597   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5598   whereInfoFree(db, pWInfo);
5599   return;
5600 }
5601