xref: /sqlite-3.40.0/src/where.c (revision 697c50b9)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /*
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly.  The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
26 **
27 ** This object is not an API and can be changed from one release to the
28 ** next.  As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
30 */
31 typedef struct HiddenIndexInfo HiddenIndexInfo;
32 struct HiddenIndexInfo {
33   WhereClause *pWC;        /* The Where clause being analyzed */
34   Parse *pParse;           /* The parsing context */
35   int eDistinct;           /* Value to return from sqlite3_vtab_distinct() */
36   u32 mIn;                 /* Mask of terms that are <col> IN (...) */
37   u32 mHandleIn;           /* Terms that vtab will handle as <col> IN (...) */
38   sqlite3_value *aRhs[1];  /* RHS values for constraints. MUST BE LAST
39                            ** because extra space is allocated to hold up
40                            ** to nTerm such values */
41 };
42 
43 /* Forward declaration of methods */
44 static int whereLoopResize(sqlite3*, WhereLoop*, int);
45 
46 /*
47 ** Return the estimated number of output rows from a WHERE clause
48 */
49 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
50   return pWInfo->nRowOut;
51 }
52 
53 /*
54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
55 ** WHERE clause returns outputs for DISTINCT processing.
56 */
57 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
58   return pWInfo->eDistinct;
59 }
60 
61 /*
62 ** Return the number of ORDER BY terms that are satisfied by the
63 ** WHERE clause.  A return of 0 means that the output must be
64 ** completely sorted.  A return equal to the number of ORDER BY
65 ** terms means that no sorting is needed at all.  A return that
66 ** is positive but less than the number of ORDER BY terms means that
67 ** block sorting is required.
68 */
69 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
70   return pWInfo->nOBSat;
71 }
72 
73 /*
74 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known
75 ** to emit rows in increasing order, and if the last row emitted by the
76 ** inner-most loop did not fit within the sorter, then we can skip all
77 ** subsequent rows for the current iteration of the inner loop (because they
78 ** will not fit in the sorter either) and continue with the second inner
79 ** loop - the loop immediately outside the inner-most.
80 **
81 ** When a row does not fit in the sorter (because the sorter already
82 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
83 ** label returned by this function.
84 **
85 ** If the ORDER BY LIMIT optimization applies, the jump destination should
86 ** be the continuation for the second-inner-most loop.  If the ORDER BY
87 ** LIMIT optimization does not apply, then the jump destination should
88 ** be the continuation for the inner-most loop.
89 **
90 ** It is always safe for this routine to return the continuation of the
91 ** inner-most loop, in the sense that a correct answer will result.
92 ** Returning the continuation the second inner loop is an optimization
93 ** that might make the code run a little faster, but should not change
94 ** the final answer.
95 */
96 int sqlite3WhereOrderByLimitOptLabel(WhereInfo *pWInfo){
97   WhereLevel *pInner;
98   if( !pWInfo->bOrderedInnerLoop ){
99     /* The ORDER BY LIMIT optimization does not apply.  Jump to the
100     ** continuation of the inner-most loop. */
101     return pWInfo->iContinue;
102   }
103   pInner = &pWInfo->a[pWInfo->nLevel-1];
104   assert( pInner->addrNxt!=0 );
105   return pInner->addrNxt;
106 }
107 
108 /*
109 ** While generating code for the min/max optimization, after handling
110 ** the aggregate-step call to min() or max(), check to see if any
111 ** additional looping is required.  If the output order is such that
112 ** we are certain that the correct answer has already been found, then
113 ** code an OP_Goto to by pass subsequent processing.
114 **
115 ** Any extra OP_Goto that is coded here is an optimization.  The
116 ** correct answer should be obtained regardless.  This OP_Goto just
117 ** makes the answer appear faster.
118 */
119 void sqlite3WhereMinMaxOptEarlyOut(Vdbe *v, WhereInfo *pWInfo){
120   WhereLevel *pInner;
121   int i;
122   if( !pWInfo->bOrderedInnerLoop ) return;
123   if( pWInfo->nOBSat==0 ) return;
124   for(i=pWInfo->nLevel-1; i>=0; i--){
125     pInner = &pWInfo->a[i];
126     if( (pInner->pWLoop->wsFlags & WHERE_COLUMN_IN)!=0 ){
127       sqlite3VdbeGoto(v, pInner->addrNxt);
128       return;
129     }
130   }
131   sqlite3VdbeGoto(v, pWInfo->iBreak);
132 }
133 
134 /*
135 ** Return the VDBE address or label to jump to in order to continue
136 ** immediately with the next row of a WHERE clause.
137 */
138 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
139   assert( pWInfo->iContinue!=0 );
140   return pWInfo->iContinue;
141 }
142 
143 /*
144 ** Return the VDBE address or label to jump to in order to break
145 ** out of a WHERE loop.
146 */
147 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
148   return pWInfo->iBreak;
149 }
150 
151 /*
152 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
153 ** operate directly on the rowids returned by a WHERE clause.  Return
154 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
155 ** a single row is to be changed.  Return ONEPASS_MULTI (2) if the one-pass
156 ** optimization can be used on multiple
157 **
158 ** If the ONEPASS optimization is used (if this routine returns true)
159 ** then also write the indices of open cursors used by ONEPASS
160 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
161 ** table and iaCur[1] gets the cursor used by an auxiliary index.
162 ** Either value may be -1, indicating that cursor is not used.
163 ** Any cursors returned will have been opened for writing.
164 **
165 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
166 ** unable to use the ONEPASS optimization.
167 */
168 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
169   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
170 #ifdef WHERETRACE_ENABLED
171   if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
172     sqlite3DebugPrintf("%s cursors: %d %d\n",
173          pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
174          aiCur[0], aiCur[1]);
175   }
176 #endif
177   return pWInfo->eOnePass;
178 }
179 
180 /*
181 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move
182 ** the data cursor to the row selected by the index cursor.
183 */
184 int sqlite3WhereUsesDeferredSeek(WhereInfo *pWInfo){
185   return pWInfo->bDeferredSeek;
186 }
187 
188 /*
189 ** Move the content of pSrc into pDest
190 */
191 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
192   pDest->n = pSrc->n;
193   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
194 }
195 
196 /*
197 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
198 **
199 ** The new entry might overwrite an existing entry, or it might be
200 ** appended, or it might be discarded.  Do whatever is the right thing
201 ** so that pSet keeps the N_OR_COST best entries seen so far.
202 */
203 static int whereOrInsert(
204   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
205   Bitmask prereq,        /* Prerequisites of the new entry */
206   LogEst rRun,           /* Run-cost of the new entry */
207   LogEst nOut            /* Number of outputs for the new entry */
208 ){
209   u16 i;
210   WhereOrCost *p;
211   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
212     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
213       goto whereOrInsert_done;
214     }
215     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
216       return 0;
217     }
218   }
219   if( pSet->n<N_OR_COST ){
220     p = &pSet->a[pSet->n++];
221     p->nOut = nOut;
222   }else{
223     p = pSet->a;
224     for(i=1; i<pSet->n; i++){
225       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
226     }
227     if( p->rRun<=rRun ) return 0;
228   }
229 whereOrInsert_done:
230   p->prereq = prereq;
231   p->rRun = rRun;
232   if( p->nOut>nOut ) p->nOut = nOut;
233   return 1;
234 }
235 
236 /*
237 ** Return the bitmask for the given cursor number.  Return 0 if
238 ** iCursor is not in the set.
239 */
240 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
241   int i;
242   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
243   assert( pMaskSet->n>0 || pMaskSet->ix[0]<0 );
244   assert( iCursor>=-1 );
245   if( pMaskSet->ix[0]==iCursor ){
246     return 1;
247   }
248   for(i=1; i<pMaskSet->n; i++){
249     if( pMaskSet->ix[i]==iCursor ){
250       return MASKBIT(i);
251     }
252   }
253   return 0;
254 }
255 
256 /*
257 ** Create a new mask for cursor iCursor.
258 **
259 ** There is one cursor per table in the FROM clause.  The number of
260 ** tables in the FROM clause is limited by a test early in the
261 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
262 ** array will never overflow.
263 */
264 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
265   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
266   pMaskSet->ix[pMaskSet->n++] = iCursor;
267 }
268 
269 /*
270 ** If the right-hand branch of the expression is a TK_COLUMN, then return
271 ** a pointer to the right-hand branch.  Otherwise, return NULL.
272 */
273 static Expr *whereRightSubexprIsColumn(Expr *p){
274   p = sqlite3ExprSkipCollateAndLikely(p->pRight);
275   if( ALWAYS(p!=0) && p->op==TK_COLUMN && !ExprHasProperty(p, EP_FixedCol) ){
276     return p;
277   }
278   return 0;
279 }
280 
281 /*
282 ** Advance to the next WhereTerm that matches according to the criteria
283 ** established when the pScan object was initialized by whereScanInit().
284 ** Return NULL if there are no more matching WhereTerms.
285 */
286 static WhereTerm *whereScanNext(WhereScan *pScan){
287   int iCur;            /* The cursor on the LHS of the term */
288   i16 iColumn;         /* The column on the LHS of the term.  -1 for IPK */
289   Expr *pX;            /* An expression being tested */
290   WhereClause *pWC;    /* Shorthand for pScan->pWC */
291   WhereTerm *pTerm;    /* The term being tested */
292   int k = pScan->k;    /* Where to start scanning */
293 
294   assert( pScan->iEquiv<=pScan->nEquiv );
295   pWC = pScan->pWC;
296   while(1){
297     iColumn = pScan->aiColumn[pScan->iEquiv-1];
298     iCur = pScan->aiCur[pScan->iEquiv-1];
299     assert( pWC!=0 );
300     assert( iCur>=0 );
301     do{
302       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
303         assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 || pTerm->leftCursor<0 );
304         if( pTerm->leftCursor==iCur
305          && pTerm->u.x.leftColumn==iColumn
306          && (iColumn!=XN_EXPR
307              || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
308                                        pScan->pIdxExpr,iCur)==0)
309          && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
310         ){
311           if( (pTerm->eOperator & WO_EQUIV)!=0
312            && pScan->nEquiv<ArraySize(pScan->aiCur)
313            && (pX = whereRightSubexprIsColumn(pTerm->pExpr))!=0
314           ){
315             int j;
316             for(j=0; j<pScan->nEquiv; j++){
317               if( pScan->aiCur[j]==pX->iTable
318                && pScan->aiColumn[j]==pX->iColumn ){
319                   break;
320               }
321             }
322             if( j==pScan->nEquiv ){
323               pScan->aiCur[j] = pX->iTable;
324               pScan->aiColumn[j] = pX->iColumn;
325               pScan->nEquiv++;
326             }
327           }
328           if( (pTerm->eOperator & pScan->opMask)!=0 ){
329             /* Verify the affinity and collating sequence match */
330             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
331               CollSeq *pColl;
332               Parse *pParse = pWC->pWInfo->pParse;
333               pX = pTerm->pExpr;
334               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
335                 continue;
336               }
337               assert(pX->pLeft);
338               pColl = sqlite3ExprCompareCollSeq(pParse, pX);
339               if( pColl==0 ) pColl = pParse->db->pDfltColl;
340               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
341                 continue;
342               }
343             }
344             if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
345              && (pX = pTerm->pExpr->pRight, ALWAYS(pX!=0))
346              && pX->op==TK_COLUMN
347              && pX->iTable==pScan->aiCur[0]
348              && pX->iColumn==pScan->aiColumn[0]
349             ){
350               testcase( pTerm->eOperator & WO_IS );
351               continue;
352             }
353             pScan->pWC = pWC;
354             pScan->k = k+1;
355 #ifdef WHERETRACE_ENABLED
356             if( sqlite3WhereTrace & 0x20000 ){
357               int ii;
358               sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d",
359                  pTerm, pScan->nEquiv);
360               for(ii=0; ii<pScan->nEquiv; ii++){
361                 sqlite3DebugPrintf(" {%d:%d}",
362                    pScan->aiCur[ii], pScan->aiColumn[ii]);
363               }
364               sqlite3DebugPrintf("\n");
365             }
366 #endif
367             return pTerm;
368           }
369         }
370       }
371       pWC = pWC->pOuter;
372       k = 0;
373     }while( pWC!=0 );
374     if( pScan->iEquiv>=pScan->nEquiv ) break;
375     pWC = pScan->pOrigWC;
376     k = 0;
377     pScan->iEquiv++;
378   }
379   return 0;
380 }
381 
382 /*
383 ** This is whereScanInit() for the case of an index on an expression.
384 ** It is factored out into a separate tail-recursion subroutine so that
385 ** the normal whereScanInit() routine, which is a high-runner, does not
386 ** need to push registers onto the stack as part of its prologue.
387 */
388 static SQLITE_NOINLINE WhereTerm *whereScanInitIndexExpr(WhereScan *pScan){
389   pScan->idxaff = sqlite3ExprAffinity(pScan->pIdxExpr);
390   return whereScanNext(pScan);
391 }
392 
393 /*
394 ** Initialize a WHERE clause scanner object.  Return a pointer to the
395 ** first match.  Return NULL if there are no matches.
396 **
397 ** The scanner will be searching the WHERE clause pWC.  It will look
398 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
399 ** iCur.   Or if pIdx!=0 then X is column iColumn of index pIdx.  pIdx
400 ** must be one of the indexes of table iCur.
401 **
402 ** The <op> must be one of the operators described by opMask.
403 **
404 ** If the search is for X and the WHERE clause contains terms of the
405 ** form X=Y then this routine might also return terms of the form
406 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
407 ** but is enough to handle most commonly occurring SQL statements.
408 **
409 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
410 ** index pIdx.
411 */
412 static WhereTerm *whereScanInit(
413   WhereScan *pScan,       /* The WhereScan object being initialized */
414   WhereClause *pWC,       /* The WHERE clause to be scanned */
415   int iCur,               /* Cursor to scan for */
416   int iColumn,            /* Column to scan for */
417   u32 opMask,             /* Operator(s) to scan for */
418   Index *pIdx             /* Must be compatible with this index */
419 ){
420   pScan->pOrigWC = pWC;
421   pScan->pWC = pWC;
422   pScan->pIdxExpr = 0;
423   pScan->idxaff = 0;
424   pScan->zCollName = 0;
425   pScan->opMask = opMask;
426   pScan->k = 0;
427   pScan->aiCur[0] = iCur;
428   pScan->nEquiv = 1;
429   pScan->iEquiv = 1;
430   if( pIdx ){
431     int j = iColumn;
432     iColumn = pIdx->aiColumn[j];
433     if( iColumn==pIdx->pTable->iPKey ){
434       iColumn = XN_ROWID;
435     }else if( iColumn>=0 ){
436       pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
437       pScan->zCollName = pIdx->azColl[j];
438     }else if( iColumn==XN_EXPR ){
439       pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
440       pScan->zCollName = pIdx->azColl[j];
441       pScan->aiColumn[0] = XN_EXPR;
442       return whereScanInitIndexExpr(pScan);
443     }
444   }else if( iColumn==XN_EXPR ){
445     return 0;
446   }
447   pScan->aiColumn[0] = iColumn;
448   return whereScanNext(pScan);
449 }
450 
451 /*
452 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
453 ** where X is a reference to the iColumn of table iCur or of index pIdx
454 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
455 ** the op parameter.  Return a pointer to the term.  Return 0 if not found.
456 **
457 ** If pIdx!=0 then it must be one of the indexes of table iCur.
458 ** Search for terms matching the iColumn-th column of pIdx
459 ** rather than the iColumn-th column of table iCur.
460 **
461 ** The term returned might by Y=<expr> if there is another constraint in
462 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
463 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
464 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
465 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
466 ** other equivalent values.  Hence a search for X will return <expr> if X=A1
467 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
468 **
469 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
470 ** then try for the one with no dependencies on <expr> - in other words where
471 ** <expr> is a constant expression of some kind.  Only return entries of
472 ** the form "X <op> Y" where Y is a column in another table if no terms of
473 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
474 ** exist, try to return a term that does not use WO_EQUIV.
475 */
476 WhereTerm *sqlite3WhereFindTerm(
477   WhereClause *pWC,     /* The WHERE clause to be searched */
478   int iCur,             /* Cursor number of LHS */
479   int iColumn,          /* Column number of LHS */
480   Bitmask notReady,     /* RHS must not overlap with this mask */
481   u32 op,               /* Mask of WO_xx values describing operator */
482   Index *pIdx           /* Must be compatible with this index, if not NULL */
483 ){
484   WhereTerm *pResult = 0;
485   WhereTerm *p;
486   WhereScan scan;
487 
488   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
489   op &= WO_EQ|WO_IS;
490   while( p ){
491     if( (p->prereqRight & notReady)==0 ){
492       if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
493         testcase( p->eOperator & WO_IS );
494         return p;
495       }
496       if( pResult==0 ) pResult = p;
497     }
498     p = whereScanNext(&scan);
499   }
500   return pResult;
501 }
502 
503 /*
504 ** This function searches pList for an entry that matches the iCol-th column
505 ** of index pIdx.
506 **
507 ** If such an expression is found, its index in pList->a[] is returned. If
508 ** no expression is found, -1 is returned.
509 */
510 static int findIndexCol(
511   Parse *pParse,                  /* Parse context */
512   ExprList *pList,                /* Expression list to search */
513   int iBase,                      /* Cursor for table associated with pIdx */
514   Index *pIdx,                    /* Index to match column of */
515   int iCol                        /* Column of index to match */
516 ){
517   int i;
518   const char *zColl = pIdx->azColl[iCol];
519 
520   for(i=0; i<pList->nExpr; i++){
521     Expr *p = sqlite3ExprSkipCollateAndLikely(pList->a[i].pExpr);
522     if( ALWAYS(p!=0)
523      && (p->op==TK_COLUMN || p->op==TK_AGG_COLUMN)
524      && p->iColumn==pIdx->aiColumn[iCol]
525      && p->iTable==iBase
526     ){
527       CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
528       if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
529         return i;
530       }
531     }
532   }
533 
534   return -1;
535 }
536 
537 /*
538 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
539 */
540 static int indexColumnNotNull(Index *pIdx, int iCol){
541   int j;
542   assert( pIdx!=0 );
543   assert( iCol>=0 && iCol<pIdx->nColumn );
544   j = pIdx->aiColumn[iCol];
545   if( j>=0 ){
546     return pIdx->pTable->aCol[j].notNull;
547   }else if( j==(-1) ){
548     return 1;
549   }else{
550     assert( j==(-2) );
551     return 0;  /* Assume an indexed expression can always yield a NULL */
552 
553   }
554 }
555 
556 /*
557 ** Return true if the DISTINCT expression-list passed as the third argument
558 ** is redundant.
559 **
560 ** A DISTINCT list is redundant if any subset of the columns in the
561 ** DISTINCT list are collectively unique and individually non-null.
562 */
563 static int isDistinctRedundant(
564   Parse *pParse,            /* Parsing context */
565   SrcList *pTabList,        /* The FROM clause */
566   WhereClause *pWC,         /* The WHERE clause */
567   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
568 ){
569   Table *pTab;
570   Index *pIdx;
571   int i;
572   int iBase;
573 
574   /* If there is more than one table or sub-select in the FROM clause of
575   ** this query, then it will not be possible to show that the DISTINCT
576   ** clause is redundant. */
577   if( pTabList->nSrc!=1 ) return 0;
578   iBase = pTabList->a[0].iCursor;
579   pTab = pTabList->a[0].pTab;
580 
581   /* If any of the expressions is an IPK column on table iBase, then return
582   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
583   ** current SELECT is a correlated sub-query.
584   */
585   for(i=0; i<pDistinct->nExpr; i++){
586     Expr *p = sqlite3ExprSkipCollateAndLikely(pDistinct->a[i].pExpr);
587     if( NEVER(p==0) ) continue;
588     if( p->op!=TK_COLUMN && p->op!=TK_AGG_COLUMN ) continue;
589     if( p->iTable==iBase && p->iColumn<0 ) return 1;
590   }
591 
592   /* Loop through all indices on the table, checking each to see if it makes
593   ** the DISTINCT qualifier redundant. It does so if:
594   **
595   **   1. The index is itself UNIQUE, and
596   **
597   **   2. All of the columns in the index are either part of the pDistinct
598   **      list, or else the WHERE clause contains a term of the form "col=X",
599   **      where X is a constant value. The collation sequences of the
600   **      comparison and select-list expressions must match those of the index.
601   **
602   **   3. All of those index columns for which the WHERE clause does not
603   **      contain a "col=X" term are subject to a NOT NULL constraint.
604   */
605   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
606     if( !IsUniqueIndex(pIdx) ) continue;
607     if( pIdx->pPartIdxWhere ) continue;
608     for(i=0; i<pIdx->nKeyCol; i++){
609       if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
610         if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
611         if( indexColumnNotNull(pIdx, i)==0 ) break;
612       }
613     }
614     if( i==pIdx->nKeyCol ){
615       /* This index implies that the DISTINCT qualifier is redundant. */
616       return 1;
617     }
618   }
619 
620   return 0;
621 }
622 
623 
624 /*
625 ** Estimate the logarithm of the input value to base 2.
626 */
627 static LogEst estLog(LogEst N){
628   return N<=10 ? 0 : sqlite3LogEst(N) - 33;
629 }
630 
631 /*
632 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
633 **
634 ** This routine runs over generated VDBE code and translates OP_Column
635 ** opcodes into OP_Copy when the table is being accessed via co-routine
636 ** instead of via table lookup.
637 **
638 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
639 ** cursor iTabCur are transformed into OP_Sequence opcode for the
640 ** iAutoidxCur cursor, in order to generate unique rowids for the
641 ** automatic index being generated.
642 */
643 static void translateColumnToCopy(
644   Parse *pParse,      /* Parsing context */
645   int iStart,         /* Translate from this opcode to the end */
646   int iTabCur,        /* OP_Column/OP_Rowid references to this table */
647   int iRegister,      /* The first column is in this register */
648   int iAutoidxCur     /* If non-zero, cursor of autoindex being generated */
649 ){
650   Vdbe *v = pParse->pVdbe;
651   VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
652   int iEnd = sqlite3VdbeCurrentAddr(v);
653   if( pParse->db->mallocFailed ) return;
654   for(; iStart<iEnd; iStart++, pOp++){
655     if( pOp->p1!=iTabCur ) continue;
656     if( pOp->opcode==OP_Column ){
657       pOp->opcode = OP_Copy;
658       pOp->p1 = pOp->p2 + iRegister;
659       pOp->p2 = pOp->p3;
660       pOp->p3 = 0;
661     }else if( pOp->opcode==OP_Rowid ){
662       pOp->opcode = OP_Sequence;
663       pOp->p1 = iAutoidxCur;
664 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
665       if( iAutoidxCur==0 ){
666         pOp->opcode = OP_Null;
667         pOp->p3 = 0;
668       }
669 #endif
670     }
671   }
672 }
673 
674 /*
675 ** Two routines for printing the content of an sqlite3_index_info
676 ** structure.  Used for testing and debugging only.  If neither
677 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
678 ** are no-ops.
679 */
680 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
681 static void whereTraceIndexInfoInputs(sqlite3_index_info *p){
682   int i;
683   if( !sqlite3WhereTrace ) return;
684   for(i=0; i<p->nConstraint; i++){
685     sqlite3DebugPrintf(
686        "  constraint[%d]: col=%d termid=%d op=%d usabled=%d collseq=%s\n",
687        i,
688        p->aConstraint[i].iColumn,
689        p->aConstraint[i].iTermOffset,
690        p->aConstraint[i].op,
691        p->aConstraint[i].usable,
692        sqlite3_vtab_collation(p,i));
693   }
694   for(i=0; i<p->nOrderBy; i++){
695     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
696        i,
697        p->aOrderBy[i].iColumn,
698        p->aOrderBy[i].desc);
699   }
700 }
701 static void whereTraceIndexInfoOutputs(sqlite3_index_info *p){
702   int i;
703   if( !sqlite3WhereTrace ) return;
704   for(i=0; i<p->nConstraint; i++){
705     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
706        i,
707        p->aConstraintUsage[i].argvIndex,
708        p->aConstraintUsage[i].omit);
709   }
710   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
711   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
712   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
713   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
714   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
715 }
716 #else
717 #define whereTraceIndexInfoInputs(A)
718 #define whereTraceIndexInfoOutputs(A)
719 #endif
720 
721 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
722 /*
723 ** Return TRUE if the WHERE clause term pTerm is of a form where it
724 ** could be used with an index to access pSrc, assuming an appropriate
725 ** index existed.
726 */
727 static int termCanDriveIndex(
728   const WhereTerm *pTerm,        /* WHERE clause term to check */
729   const SrcItem *pSrc,           /* Table we are trying to access */
730   const Bitmask notReady         /* Tables in outer loops of the join */
731 ){
732   char aff;
733   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
734   if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
735   if( (pSrc->fg.jointype & JT_LEFT)
736    && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
737    && (pTerm->eOperator & WO_IS)
738   ){
739     /* Cannot use an IS term from the WHERE clause as an index driver for
740     ** the RHS of a LEFT JOIN. Such a term can only be used if it is from
741     ** the ON clause.  */
742     return 0;
743   }
744   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
745   assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
746   if( pTerm->u.x.leftColumn<0 ) return 0;
747   aff = pSrc->pTab->aCol[pTerm->u.x.leftColumn].affinity;
748   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
749   testcase( pTerm->pExpr->op==TK_IS );
750   return 1;
751 }
752 #endif
753 
754 
755 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
756 /*
757 ** Generate code to construct the Index object for an automatic index
758 ** and to set up the WhereLevel object pLevel so that the code generator
759 ** makes use of the automatic index.
760 */
761 static SQLITE_NOINLINE void constructAutomaticIndex(
762   Parse *pParse,              /* The parsing context */
763   const WhereClause *pWC,     /* The WHERE clause */
764   const SrcItem *pSrc,        /* The FROM clause term to get the next index */
765   const Bitmask notReady,     /* Mask of cursors that are not available */
766   WhereLevel *pLevel          /* Write new index here */
767 ){
768   int nKeyCol;                /* Number of columns in the constructed index */
769   WhereTerm *pTerm;           /* A single term of the WHERE clause */
770   WhereTerm *pWCEnd;          /* End of pWC->a[] */
771   Index *pIdx;                /* Object describing the transient index */
772   Vdbe *v;                    /* Prepared statement under construction */
773   int addrInit;               /* Address of the initialization bypass jump */
774   Table *pTable;              /* The table being indexed */
775   int addrTop;                /* Top of the index fill loop */
776   int regRecord;              /* Register holding an index record */
777   int n;                      /* Column counter */
778   int i;                      /* Loop counter */
779   int mxBitCol;               /* Maximum column in pSrc->colUsed */
780   CollSeq *pColl;             /* Collating sequence to on a column */
781   WhereLoop *pLoop;           /* The Loop object */
782   char *zNotUsed;             /* Extra space on the end of pIdx */
783   Bitmask idxCols;            /* Bitmap of columns used for indexing */
784   Bitmask extraCols;          /* Bitmap of additional columns */
785   u8 sentWarning = 0;         /* True if a warnning has been issued */
786   Expr *pPartial = 0;         /* Partial Index Expression */
787   int iContinue = 0;          /* Jump here to skip excluded rows */
788   SrcItem *pTabItem;          /* FROM clause term being indexed */
789   int addrCounter = 0;        /* Address where integer counter is initialized */
790   int regBase;                /* Array of registers where record is assembled */
791 
792   /* Generate code to skip over the creation and initialization of the
793   ** transient index on 2nd and subsequent iterations of the loop. */
794   v = pParse->pVdbe;
795   assert( v!=0 );
796   addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
797 
798   /* Count the number of columns that will be added to the index
799   ** and used to match WHERE clause constraints */
800   nKeyCol = 0;
801   pTable = pSrc->pTab;
802   pWCEnd = &pWC->a[pWC->nTerm];
803   pLoop = pLevel->pWLoop;
804   idxCols = 0;
805   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
806     Expr *pExpr = pTerm->pExpr;
807     /* Make the automatic index a partial index if there are terms in the
808     ** WHERE clause (or the ON clause of a LEFT join) that constrain which
809     ** rows of the target table (pSrc) that can be used. */
810     if( (pTerm->wtFlags & TERM_VIRTUAL)==0
811      && ((pSrc->fg.jointype&JT_LEFT)==0 || ExprHasProperty(pExpr,EP_FromJoin))
812      && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor)
813     ){
814       pPartial = sqlite3ExprAnd(pParse, pPartial,
815                                 sqlite3ExprDup(pParse->db, pExpr, 0));
816     }
817     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
818       int iCol;
819       Bitmask cMask;
820       assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
821       iCol = pTerm->u.x.leftColumn;
822       cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
823       testcase( iCol==BMS );
824       testcase( iCol==BMS-1 );
825       if( !sentWarning ){
826         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
827             "automatic index on %s(%s)", pTable->zName,
828             pTable->aCol[iCol].zCnName);
829         sentWarning = 1;
830       }
831       if( (idxCols & cMask)==0 ){
832         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
833           goto end_auto_index_create;
834         }
835         pLoop->aLTerm[nKeyCol++] = pTerm;
836         idxCols |= cMask;
837       }
838     }
839   }
840   assert( nKeyCol>0 || pParse->db->mallocFailed );
841   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
842   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
843                      | WHERE_AUTO_INDEX;
844 
845   /* Count the number of additional columns needed to create a
846   ** covering index.  A "covering index" is an index that contains all
847   ** columns that are needed by the query.  With a covering index, the
848   ** original table never needs to be accessed.  Automatic indices must
849   ** be a covering index because the index will not be updated if the
850   ** original table changes and the index and table cannot both be used
851   ** if they go out of sync.
852   */
853   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
854   mxBitCol = MIN(BMS-1,pTable->nCol);
855   testcase( pTable->nCol==BMS-1 );
856   testcase( pTable->nCol==BMS-2 );
857   for(i=0; i<mxBitCol; i++){
858     if( extraCols & MASKBIT(i) ) nKeyCol++;
859   }
860   if( pSrc->colUsed & MASKBIT(BMS-1) ){
861     nKeyCol += pTable->nCol - BMS + 1;
862   }
863 
864   /* Construct the Index object to describe this index */
865   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
866   if( pIdx==0 ) goto end_auto_index_create;
867   pLoop->u.btree.pIndex = pIdx;
868   pIdx->zName = "auto-index";
869   pIdx->pTable = pTable;
870   n = 0;
871   idxCols = 0;
872   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
873     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
874       int iCol;
875       Bitmask cMask;
876       assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
877       iCol = pTerm->u.x.leftColumn;
878       cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
879       testcase( iCol==BMS-1 );
880       testcase( iCol==BMS );
881       if( (idxCols & cMask)==0 ){
882         Expr *pX = pTerm->pExpr;
883         idxCols |= cMask;
884         pIdx->aiColumn[n] = pTerm->u.x.leftColumn;
885         pColl = sqlite3ExprCompareCollSeq(pParse, pX);
886         assert( pColl!=0 || pParse->nErr>0 ); /* TH3 collate01.800 */
887         pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
888         n++;
889       }
890     }
891   }
892   assert( (u32)n==pLoop->u.btree.nEq );
893 
894   /* Add additional columns needed to make the automatic index into
895   ** a covering index */
896   for(i=0; i<mxBitCol; i++){
897     if( extraCols & MASKBIT(i) ){
898       pIdx->aiColumn[n] = i;
899       pIdx->azColl[n] = sqlite3StrBINARY;
900       n++;
901     }
902   }
903   if( pSrc->colUsed & MASKBIT(BMS-1) ){
904     for(i=BMS-1; i<pTable->nCol; i++){
905       pIdx->aiColumn[n] = i;
906       pIdx->azColl[n] = sqlite3StrBINARY;
907       n++;
908     }
909   }
910   assert( n==nKeyCol );
911   pIdx->aiColumn[n] = XN_ROWID;
912   pIdx->azColl[n] = sqlite3StrBINARY;
913 
914   /* Create the automatic index */
915   assert( pLevel->iIdxCur>=0 );
916   pLevel->iIdxCur = pParse->nTab++;
917   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
918   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
919   VdbeComment((v, "for %s", pTable->zName));
920   if( OptimizationEnabled(pParse->db, SQLITE_BloomFilter) ){
921     pLevel->regFilter = ++pParse->nMem;
922     sqlite3VdbeAddOp2(v, OP_Blob, 10000, pLevel->regFilter);
923   }
924 
925   /* Fill the automatic index with content */
926   pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
927   if( pTabItem->fg.viaCoroutine ){
928     int regYield = pTabItem->regReturn;
929     addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
930     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
931     addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
932     VdbeCoverage(v);
933     VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
934   }else{
935     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
936   }
937   if( pPartial ){
938     iContinue = sqlite3VdbeMakeLabel(pParse);
939     sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
940     pLoop->wsFlags |= WHERE_PARTIALIDX;
941   }
942   regRecord = sqlite3GetTempReg(pParse);
943   regBase = sqlite3GenerateIndexKey(
944       pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
945   );
946   if( pLevel->regFilter ){
947     sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0,
948                          regBase, pLoop->u.btree.nEq);
949   }
950   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
951   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
952   if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
953   if( pTabItem->fg.viaCoroutine ){
954     sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
955     testcase( pParse->db->mallocFailed );
956     assert( pLevel->iIdxCur>0 );
957     translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
958                           pTabItem->regResult, pLevel->iIdxCur);
959     sqlite3VdbeGoto(v, addrTop);
960     pTabItem->fg.viaCoroutine = 0;
961   }else{
962     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
963     sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
964   }
965   sqlite3VdbeJumpHere(v, addrTop);
966   sqlite3ReleaseTempReg(pParse, regRecord);
967 
968   /* Jump here when skipping the initialization */
969   sqlite3VdbeJumpHere(v, addrInit);
970 
971 end_auto_index_create:
972   sqlite3ExprDelete(pParse->db, pPartial);
973 }
974 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
975 
976 /*
977 ** Generate bytecode that will initialize a Bloom filter that is appropriate
978 ** for pLevel.
979 **
980 ** If there are inner loops within pLevel that have the WHERE_BLOOMFILTER
981 ** flag set, initialize a Bloomfilter for them as well.  Except don't do
982 ** this recursive initialization if the SQLITE_BloomPulldown optimization has
983 ** been turned off.
984 **
985 ** When the Bloom filter is initialized, the WHERE_BLOOMFILTER flag is cleared
986 ** from the loop, but the regFilter value is set to a register that implements
987 ** the Bloom filter.  When regFilter is positive, the
988 ** sqlite3WhereCodeOneLoopStart() will generate code to test the Bloom filter
989 ** and skip the subsequence B-Tree seek if the Bloom filter indicates that
990 ** no matching rows exist.
991 **
992 ** This routine may only be called if it has previously been determined that
993 ** the loop would benefit from a Bloom filter, and the WHERE_BLOOMFILTER bit
994 ** is set.
995 */
996 static SQLITE_NOINLINE void sqlite3ConstructBloomFilter(
997   WhereInfo *pWInfo,    /* The WHERE clause */
998   int iLevel,           /* Index in pWInfo->a[] that is pLevel */
999   WhereLevel *pLevel,   /* Make a Bloom filter for this FROM term */
1000   Bitmask notReady      /* Loops that are not ready */
1001 ){
1002   int addrOnce;                        /* Address of opening OP_Once */
1003   int addrTop;                         /* Address of OP_Rewind */
1004   int addrCont;                        /* Jump here to skip a row */
1005   const WhereTerm *pTerm;              /* For looping over WHERE clause terms */
1006   const WhereTerm *pWCEnd;             /* Last WHERE clause term */
1007   Parse *pParse = pWInfo->pParse;      /* Parsing context */
1008   Vdbe *v = pParse->pVdbe;             /* VDBE under construction */
1009   WhereLoop *pLoop = pLevel->pWLoop;   /* The loop being coded */
1010   int iCur;                            /* Cursor for table getting the filter */
1011 
1012   assert( pLoop!=0 );
1013   assert( v!=0 );
1014   assert( pLoop->wsFlags & WHERE_BLOOMFILTER );
1015 
1016   addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1017   do{
1018     const SrcItem *pItem;
1019     const Table *pTab;
1020     u64 sz;
1021     sqlite3WhereExplainBloomFilter(pParse, pWInfo, pLevel);
1022     addrCont = sqlite3VdbeMakeLabel(pParse);
1023     iCur = pLevel->iTabCur;
1024     pLevel->regFilter = ++pParse->nMem;
1025 
1026     /* The Bloom filter is a Blob held in a register.  Initialize it
1027     ** to zero-filled blob of at least 80K bits, but maybe more if the
1028     ** estimated size of the table is larger.  We could actually
1029     ** measure the size of the table at run-time using OP_Count with
1030     ** P3==1 and use that value to initialize the blob.  But that makes
1031     ** testing complicated.  By basing the blob size on the value in the
1032     ** sqlite_stat1 table, testing is much easier.
1033     */
1034     pItem = &pWInfo->pTabList->a[pLevel->iFrom];
1035     assert( pItem!=0 );
1036     pTab = pItem->pTab;
1037     assert( pTab!=0 );
1038     sz = sqlite3LogEstToInt(pTab->nRowLogEst);
1039     if( sz<10000 ){
1040       sz = 10000;
1041     }else if( sz>10000000 ){
1042       sz = 10000000;
1043     }
1044     sqlite3VdbeAddOp2(v, OP_Blob, (int)sz, pLevel->regFilter);
1045 
1046     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
1047     pWCEnd = &pWInfo->sWC.a[pWInfo->sWC.nTerm];
1048     for(pTerm=pWInfo->sWC.a; pTerm<pWCEnd; pTerm++){
1049       Expr *pExpr = pTerm->pExpr;
1050       if( (pTerm->wtFlags & TERM_VIRTUAL)==0
1051        && sqlite3ExprIsTableConstant(pExpr, iCur)
1052       ){
1053         sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
1054       }
1055     }
1056     if( pLoop->wsFlags & WHERE_IPK ){
1057       int r1 = sqlite3GetTempReg(pParse);
1058       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, r1);
1059       sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, 1);
1060       sqlite3ReleaseTempReg(pParse, r1);
1061     }else{
1062       Index *pIdx = pLoop->u.btree.pIndex;
1063       int n = pLoop->u.btree.nEq;
1064       int r1 = sqlite3GetTempRange(pParse, n);
1065       int jj;
1066       for(jj=0; jj<n; jj++){
1067         int iCol = pIdx->aiColumn[jj];
1068         assert( pIdx->pTable==pItem->pTab );
1069         sqlite3ExprCodeGetColumnOfTable(v, pIdx->pTable, iCur, iCol,r1+jj);
1070       }
1071       sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pLevel->regFilter, 0, r1, n);
1072       sqlite3ReleaseTempRange(pParse, r1, n);
1073     }
1074     sqlite3VdbeResolveLabel(v, addrCont);
1075     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1);
1076     VdbeCoverage(v);
1077     sqlite3VdbeJumpHere(v, addrTop);
1078     pLoop->wsFlags &= ~WHERE_BLOOMFILTER;
1079     if( OptimizationDisabled(pParse->db, SQLITE_BloomPulldown) ) break;
1080     while( ++iLevel < pWInfo->nLevel ){
1081       pLevel = &pWInfo->a[iLevel];
1082       pLoop = pLevel->pWLoop;
1083       if( NEVER(pLoop==0) ) continue;
1084       if( pLoop->prereq & notReady ) continue;
1085       if( (pLoop->wsFlags & (WHERE_BLOOMFILTER|WHERE_COLUMN_IN))
1086                  ==WHERE_BLOOMFILTER
1087       ){
1088         /* This is a candidate for bloom-filter pull-down (early evaluation).
1089         ** The test that WHERE_COLUMN_IN is omitted is important, as we are
1090         ** not able to do early evaluation of bloom filters that make use of
1091         ** the IN operator */
1092         break;
1093       }
1094     }
1095   }while( iLevel < pWInfo->nLevel );
1096   sqlite3VdbeJumpHere(v, addrOnce);
1097 }
1098 
1099 
1100 #ifndef SQLITE_OMIT_VIRTUALTABLE
1101 /*
1102 ** Allocate and populate an sqlite3_index_info structure. It is the
1103 ** responsibility of the caller to eventually release the structure
1104 ** by passing the pointer returned by this function to freeIndexInfo().
1105 */
1106 static sqlite3_index_info *allocateIndexInfo(
1107   WhereInfo *pWInfo,              /* The WHERE clause */
1108   WhereClause *pWC,               /* The WHERE clause being analyzed */
1109   Bitmask mUnusable,              /* Ignore terms with these prereqs */
1110   SrcItem *pSrc,                  /* The FROM clause term that is the vtab */
1111   u16 *pmNoOmit                   /* Mask of terms not to omit */
1112 ){
1113   int i, j;
1114   int nTerm;
1115   Parse *pParse = pWInfo->pParse;
1116   struct sqlite3_index_constraint *pIdxCons;
1117   struct sqlite3_index_orderby *pIdxOrderBy;
1118   struct sqlite3_index_constraint_usage *pUsage;
1119   struct HiddenIndexInfo *pHidden;
1120   WhereTerm *pTerm;
1121   int nOrderBy;
1122   sqlite3_index_info *pIdxInfo;
1123   u16 mNoOmit = 0;
1124   const Table *pTab;
1125   int eDistinct = 0;
1126   ExprList *pOrderBy = pWInfo->pOrderBy;
1127 
1128   assert( pSrc!=0 );
1129   pTab = pSrc->pTab;
1130   assert( pTab!=0 );
1131   assert( IsVirtual(pTab) );
1132 
1133   /* Find all WHERE clause constraints referring to this virtual table.
1134   ** Mark each term with the TERM_OK flag.  Set nTerm to the number of
1135   ** terms found.
1136   */
1137   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1138     pTerm->wtFlags &= ~TERM_OK;
1139     if( pTerm->leftCursor != pSrc->iCursor ) continue;
1140     if( pTerm->prereqRight & mUnusable ) continue;
1141     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
1142     testcase( pTerm->eOperator & WO_IN );
1143     testcase( pTerm->eOperator & WO_ISNULL );
1144     testcase( pTerm->eOperator & WO_IS );
1145     testcase( pTerm->eOperator & WO_ALL );
1146     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
1147     if( pTerm->wtFlags & TERM_VNULL ) continue;
1148 
1149     assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
1150     assert( pTerm->u.x.leftColumn>=XN_ROWID );
1151     assert( pTerm->u.x.leftColumn<pTab->nCol );
1152 
1153     /* tag-20191211-002: WHERE-clause constraints are not useful to the
1154     ** right-hand table of a LEFT JOIN.  See tag-20191211-001 for the
1155     ** equivalent restriction for ordinary tables. */
1156     if( (pSrc->fg.jointype & JT_LEFT)!=0
1157      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
1158     ){
1159       continue;
1160     }
1161     nTerm++;
1162     pTerm->wtFlags |= TERM_OK;
1163   }
1164 
1165   /* If the ORDER BY clause contains only columns in the current
1166   ** virtual table then allocate space for the aOrderBy part of
1167   ** the sqlite3_index_info structure.
1168   */
1169   nOrderBy = 0;
1170   if( pOrderBy ){
1171     int n = pOrderBy->nExpr;
1172     for(i=0; i<n; i++){
1173       Expr *pExpr = pOrderBy->a[i].pExpr;
1174       Expr *pE2;
1175 
1176       /* Skip over constant terms in the ORDER BY clause */
1177       if( sqlite3ExprIsConstant(pExpr) ){
1178         continue;
1179       }
1180 
1181       /* Virtual tables are unable to deal with NULLS FIRST */
1182       if( pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL ) break;
1183 
1184       /* First case - a direct column references without a COLLATE operator */
1185       if( pExpr->op==TK_COLUMN && pExpr->iTable==pSrc->iCursor ){
1186         assert( pExpr->iColumn>=XN_ROWID && pExpr->iColumn<pTab->nCol );
1187         continue;
1188       }
1189 
1190       /* 2nd case - a column reference with a COLLATE operator.  Only match
1191       ** of the COLLATE operator matches the collation of the column. */
1192       if( pExpr->op==TK_COLLATE
1193        && (pE2 = pExpr->pLeft)->op==TK_COLUMN
1194        && pE2->iTable==pSrc->iCursor
1195       ){
1196         const char *zColl;  /* The collating sequence name */
1197         assert( !ExprHasProperty(pExpr, EP_IntValue) );
1198         assert( pExpr->u.zToken!=0 );
1199         assert( pE2->iColumn>=XN_ROWID && pE2->iColumn<pTab->nCol );
1200         pExpr->iColumn = pE2->iColumn;
1201         if( pE2->iColumn<0 ) continue;  /* Collseq does not matter for rowid */
1202         zColl = sqlite3ColumnColl(&pTab->aCol[pE2->iColumn]);
1203         if( zColl==0 ) zColl = sqlite3StrBINARY;
1204         if( sqlite3_stricmp(pExpr->u.zToken, zColl)==0 ) continue;
1205       }
1206 
1207       /* No matches cause a break out of the loop */
1208       break;
1209     }
1210     if( i==n ){
1211       nOrderBy = n;
1212       if( (pWInfo->wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY)) ){
1213         eDistinct = 1 + ((pWInfo->wctrlFlags & WHERE_DISTINCTBY)!=0);
1214       }
1215     }
1216   }
1217 
1218   /* Allocate the sqlite3_index_info structure
1219   */
1220   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
1221                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1222                            + sizeof(*pIdxOrderBy)*nOrderBy + sizeof(*pHidden)
1223                            + sizeof(sqlite3_value*)*nTerm );
1224   if( pIdxInfo==0 ){
1225     sqlite3ErrorMsg(pParse, "out of memory");
1226     return 0;
1227   }
1228   pHidden = (struct HiddenIndexInfo*)&pIdxInfo[1];
1229   pIdxCons = (struct sqlite3_index_constraint*)&pHidden->aRhs[nTerm];
1230   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1231   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1232   pIdxInfo->aConstraint = pIdxCons;
1233   pIdxInfo->aOrderBy = pIdxOrderBy;
1234   pIdxInfo->aConstraintUsage = pUsage;
1235   pHidden->pWC = pWC;
1236   pHidden->pParse = pParse;
1237   pHidden->eDistinct = eDistinct;
1238   pHidden->mIn = 0;
1239   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1240     u16 op;
1241     if( (pTerm->wtFlags & TERM_OK)==0 ) continue;
1242     pIdxCons[j].iColumn = pTerm->u.x.leftColumn;
1243     pIdxCons[j].iTermOffset = i;
1244     op = pTerm->eOperator & WO_ALL;
1245     if( op==WO_IN ){
1246       pHidden->mIn |= SMASKBIT32(j);
1247       op = WO_EQ;
1248     }
1249     if( op==WO_AUX ){
1250       pIdxCons[j].op = pTerm->eMatchOp;
1251     }else if( op & (WO_ISNULL|WO_IS) ){
1252       if( op==WO_ISNULL ){
1253         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
1254       }else{
1255         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
1256       }
1257     }else{
1258       pIdxCons[j].op = (u8)op;
1259       /* The direct assignment in the previous line is possible only because
1260       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
1261       ** following asserts verify this fact. */
1262       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1263       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1264       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1265       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1266       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1267       assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
1268 
1269       if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
1270        && sqlite3ExprIsVector(pTerm->pExpr->pRight)
1271       ){
1272         testcase( j!=i );
1273         if( j<16 ) mNoOmit |= (1 << j);
1274         if( op==WO_LT ) pIdxCons[j].op = WO_LE;
1275         if( op==WO_GT ) pIdxCons[j].op = WO_GE;
1276       }
1277     }
1278 
1279     j++;
1280   }
1281   assert( j==nTerm );
1282   pIdxInfo->nConstraint = j;
1283   for(i=j=0; i<nOrderBy; i++){
1284     Expr *pExpr = pOrderBy->a[i].pExpr;
1285     if( sqlite3ExprIsConstant(pExpr) ) continue;
1286     assert( pExpr->op==TK_COLUMN
1287          || (pExpr->op==TK_COLLATE && pExpr->pLeft->op==TK_COLUMN
1288               && pExpr->iColumn==pExpr->pLeft->iColumn) );
1289     pIdxOrderBy[j].iColumn = pExpr->iColumn;
1290     pIdxOrderBy[j].desc = pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC;
1291     j++;
1292   }
1293   pIdxInfo->nOrderBy = j;
1294 
1295   *pmNoOmit = mNoOmit;
1296   return pIdxInfo;
1297 }
1298 
1299 /*
1300 ** Free an sqlite3_index_info structure allocated by allocateIndexInfo()
1301 ** and possibly modified by xBestIndex methods.
1302 */
1303 static void freeIndexInfo(sqlite3 *db, sqlite3_index_info *pIdxInfo){
1304   HiddenIndexInfo *pHidden;
1305   int i;
1306   assert( pIdxInfo!=0 );
1307   pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
1308   assert( pHidden->pParse!=0 );
1309   assert( pHidden->pParse->db==db );
1310   for(i=0; i<pIdxInfo->nConstraint; i++){
1311     sqlite3ValueFree(pHidden->aRhs[i]); /* IMP: R-14553-25174 */
1312     pHidden->aRhs[i] = 0;
1313   }
1314   sqlite3DbFree(db, pIdxInfo);
1315 }
1316 
1317 /*
1318 ** The table object reference passed as the second argument to this function
1319 ** must represent a virtual table. This function invokes the xBestIndex()
1320 ** method of the virtual table with the sqlite3_index_info object that
1321 ** comes in as the 3rd argument to this function.
1322 **
1323 ** If an error occurs, pParse is populated with an error message and an
1324 ** appropriate error code is returned.  A return of SQLITE_CONSTRAINT from
1325 ** xBestIndex is not considered an error.  SQLITE_CONSTRAINT indicates that
1326 ** the current configuration of "unusable" flags in sqlite3_index_info can
1327 ** not result in a valid plan.
1328 **
1329 ** Whether or not an error is returned, it is the responsibility of the
1330 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1331 ** that this is required.
1332 */
1333 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
1334   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
1335   int rc;
1336 
1337   whereTraceIndexInfoInputs(p);
1338   pParse->db->nSchemaLock++;
1339   rc = pVtab->pModule->xBestIndex(pVtab, p);
1340   pParse->db->nSchemaLock--;
1341   whereTraceIndexInfoOutputs(p);
1342 
1343   if( rc!=SQLITE_OK && rc!=SQLITE_CONSTRAINT ){
1344     if( rc==SQLITE_NOMEM ){
1345       sqlite3OomFault(pParse->db);
1346     }else if( !pVtab->zErrMsg ){
1347       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1348     }else{
1349       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1350     }
1351   }
1352   sqlite3_free(pVtab->zErrMsg);
1353   pVtab->zErrMsg = 0;
1354   return rc;
1355 }
1356 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1357 
1358 #ifdef SQLITE_ENABLE_STAT4
1359 /*
1360 ** Estimate the location of a particular key among all keys in an
1361 ** index.  Store the results in aStat as follows:
1362 **
1363 **    aStat[0]      Est. number of rows less than pRec
1364 **    aStat[1]      Est. number of rows equal to pRec
1365 **
1366 ** Return the index of the sample that is the smallest sample that
1367 ** is greater than or equal to pRec. Note that this index is not an index
1368 ** into the aSample[] array - it is an index into a virtual set of samples
1369 ** based on the contents of aSample[] and the number of fields in record
1370 ** pRec.
1371 */
1372 static int whereKeyStats(
1373   Parse *pParse,              /* Database connection */
1374   Index *pIdx,                /* Index to consider domain of */
1375   UnpackedRecord *pRec,       /* Vector of values to consider */
1376   int roundUp,                /* Round up if true.  Round down if false */
1377   tRowcnt *aStat              /* OUT: stats written here */
1378 ){
1379   IndexSample *aSample = pIdx->aSample;
1380   int iCol;                   /* Index of required stats in anEq[] etc. */
1381   int i;                      /* Index of first sample >= pRec */
1382   int iSample;                /* Smallest sample larger than or equal to pRec */
1383   int iMin = 0;               /* Smallest sample not yet tested */
1384   int iTest;                  /* Next sample to test */
1385   int res;                    /* Result of comparison operation */
1386   int nField;                 /* Number of fields in pRec */
1387   tRowcnt iLower = 0;         /* anLt[] + anEq[] of largest sample pRec is > */
1388 
1389 #ifndef SQLITE_DEBUG
1390   UNUSED_PARAMETER( pParse );
1391 #endif
1392   assert( pRec!=0 );
1393   assert( pIdx->nSample>0 );
1394   assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
1395 
1396   /* Do a binary search to find the first sample greater than or equal
1397   ** to pRec. If pRec contains a single field, the set of samples to search
1398   ** is simply the aSample[] array. If the samples in aSample[] contain more
1399   ** than one fields, all fields following the first are ignored.
1400   **
1401   ** If pRec contains N fields, where N is more than one, then as well as the
1402   ** samples in aSample[] (truncated to N fields), the search also has to
1403   ** consider prefixes of those samples. For example, if the set of samples
1404   ** in aSample is:
1405   **
1406   **     aSample[0] = (a, 5)
1407   **     aSample[1] = (a, 10)
1408   **     aSample[2] = (b, 5)
1409   **     aSample[3] = (c, 100)
1410   **     aSample[4] = (c, 105)
1411   **
1412   ** Then the search space should ideally be the samples above and the
1413   ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1414   ** the code actually searches this set:
1415   **
1416   **     0: (a)
1417   **     1: (a, 5)
1418   **     2: (a, 10)
1419   **     3: (a, 10)
1420   **     4: (b)
1421   **     5: (b, 5)
1422   **     6: (c)
1423   **     7: (c, 100)
1424   **     8: (c, 105)
1425   **     9: (c, 105)
1426   **
1427   ** For each sample in the aSample[] array, N samples are present in the
1428   ** effective sample array. In the above, samples 0 and 1 are based on
1429   ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1430   **
1431   ** Often, sample i of each block of N effective samples has (i+1) fields.
1432   ** Except, each sample may be extended to ensure that it is greater than or
1433   ** equal to the previous sample in the array. For example, in the above,
1434   ** sample 2 is the first sample of a block of N samples, so at first it
1435   ** appears that it should be 1 field in size. However, that would make it
1436   ** smaller than sample 1, so the binary search would not work. As a result,
1437   ** it is extended to two fields. The duplicates that this creates do not
1438   ** cause any problems.
1439   */
1440   nField = pRec->nField;
1441   iCol = 0;
1442   iSample = pIdx->nSample * nField;
1443   do{
1444     int iSamp;                    /* Index in aSample[] of test sample */
1445     int n;                        /* Number of fields in test sample */
1446 
1447     iTest = (iMin+iSample)/2;
1448     iSamp = iTest / nField;
1449     if( iSamp>0 ){
1450       /* The proposed effective sample is a prefix of sample aSample[iSamp].
1451       ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1452       ** fields that is greater than the previous effective sample.  */
1453       for(n=(iTest % nField) + 1; n<nField; n++){
1454         if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1455       }
1456     }else{
1457       n = iTest + 1;
1458     }
1459 
1460     pRec->nField = n;
1461     res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1462     if( res<0 ){
1463       iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1464       iMin = iTest+1;
1465     }else if( res==0 && n<nField ){
1466       iLower = aSample[iSamp].anLt[n-1];
1467       iMin = iTest+1;
1468       res = -1;
1469     }else{
1470       iSample = iTest;
1471       iCol = n-1;
1472     }
1473   }while( res && iMin<iSample );
1474   i = iSample / nField;
1475 
1476 #ifdef SQLITE_DEBUG
1477   /* The following assert statements check that the binary search code
1478   ** above found the right answer. This block serves no purpose other
1479   ** than to invoke the asserts.  */
1480   if( pParse->db->mallocFailed==0 ){
1481     if( res==0 ){
1482       /* If (res==0) is true, then pRec must be equal to sample i. */
1483       assert( i<pIdx->nSample );
1484       assert( iCol==nField-1 );
1485       pRec->nField = nField;
1486       assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1487            || pParse->db->mallocFailed
1488       );
1489     }else{
1490       /* Unless i==pIdx->nSample, indicating that pRec is larger than
1491       ** all samples in the aSample[] array, pRec must be smaller than the
1492       ** (iCol+1) field prefix of sample i.  */
1493       assert( i<=pIdx->nSample && i>=0 );
1494       pRec->nField = iCol+1;
1495       assert( i==pIdx->nSample
1496            || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1497            || pParse->db->mallocFailed );
1498 
1499       /* if i==0 and iCol==0, then record pRec is smaller than all samples
1500       ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1501       ** be greater than or equal to the (iCol) field prefix of sample i.
1502       ** If (i>0), then pRec must also be greater than sample (i-1).  */
1503       if( iCol>0 ){
1504         pRec->nField = iCol;
1505         assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1506              || pParse->db->mallocFailed );
1507       }
1508       if( i>0 ){
1509         pRec->nField = nField;
1510         assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1511              || pParse->db->mallocFailed );
1512       }
1513     }
1514   }
1515 #endif /* ifdef SQLITE_DEBUG */
1516 
1517   if( res==0 ){
1518     /* Record pRec is equal to sample i */
1519     assert( iCol==nField-1 );
1520     aStat[0] = aSample[i].anLt[iCol];
1521     aStat[1] = aSample[i].anEq[iCol];
1522   }else{
1523     /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1524     ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1525     ** is larger than all samples in the array. */
1526     tRowcnt iUpper, iGap;
1527     if( i>=pIdx->nSample ){
1528       iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1529     }else{
1530       iUpper = aSample[i].anLt[iCol];
1531     }
1532 
1533     if( iLower>=iUpper ){
1534       iGap = 0;
1535     }else{
1536       iGap = iUpper - iLower;
1537     }
1538     if( roundUp ){
1539       iGap = (iGap*2)/3;
1540     }else{
1541       iGap = iGap/3;
1542     }
1543     aStat[0] = iLower + iGap;
1544     aStat[1] = pIdx->aAvgEq[nField-1];
1545   }
1546 
1547   /* Restore the pRec->nField value before returning.  */
1548   pRec->nField = nField;
1549   return i;
1550 }
1551 #endif /* SQLITE_ENABLE_STAT4 */
1552 
1553 /*
1554 ** If it is not NULL, pTerm is a term that provides an upper or lower
1555 ** bound on a range scan. Without considering pTerm, it is estimated
1556 ** that the scan will visit nNew rows. This function returns the number
1557 ** estimated to be visited after taking pTerm into account.
1558 **
1559 ** If the user explicitly specified a likelihood() value for this term,
1560 ** then the return value is the likelihood multiplied by the number of
1561 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1562 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1563 */
1564 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1565   LogEst nRet = nNew;
1566   if( pTerm ){
1567     if( pTerm->truthProb<=0 ){
1568       nRet += pTerm->truthProb;
1569     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1570       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
1571     }
1572   }
1573   return nRet;
1574 }
1575 
1576 
1577 #ifdef SQLITE_ENABLE_STAT4
1578 /*
1579 ** Return the affinity for a single column of an index.
1580 */
1581 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1582   assert( iCol>=0 && iCol<pIdx->nColumn );
1583   if( !pIdx->zColAff ){
1584     if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1585   }
1586   assert( pIdx->zColAff[iCol]!=0 );
1587   return pIdx->zColAff[iCol];
1588 }
1589 #endif
1590 
1591 
1592 #ifdef SQLITE_ENABLE_STAT4
1593 /*
1594 ** This function is called to estimate the number of rows visited by a
1595 ** range-scan on a skip-scan index. For example:
1596 **
1597 **   CREATE INDEX i1 ON t1(a, b, c);
1598 **   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1599 **
1600 ** Value pLoop->nOut is currently set to the estimated number of rows
1601 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1602 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1603 ** on the stat4 data for the index. this scan will be peformed multiple
1604 ** times (once for each (a,b) combination that matches a=?) is dealt with
1605 ** by the caller.
1606 **
1607 ** It does this by scanning through all stat4 samples, comparing values
1608 ** extracted from pLower and pUpper with the corresponding column in each
1609 ** sample. If L and U are the number of samples found to be less than or
1610 ** equal to the values extracted from pLower and pUpper respectively, and
1611 ** N is the total number of samples, the pLoop->nOut value is adjusted
1612 ** as follows:
1613 **
1614 **   nOut = nOut * ( min(U - L, 1) / N )
1615 **
1616 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1617 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1618 ** U is set to N.
1619 **
1620 ** Normally, this function sets *pbDone to 1 before returning. However,
1621 ** if no value can be extracted from either pLower or pUpper (and so the
1622 ** estimate of the number of rows delivered remains unchanged), *pbDone
1623 ** is left as is.
1624 **
1625 ** If an error occurs, an SQLite error code is returned. Otherwise,
1626 ** SQLITE_OK.
1627 */
1628 static int whereRangeSkipScanEst(
1629   Parse *pParse,       /* Parsing & code generating context */
1630   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1631   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1632   WhereLoop *pLoop,    /* Update the .nOut value of this loop */
1633   int *pbDone          /* Set to true if at least one expr. value extracted */
1634 ){
1635   Index *p = pLoop->u.btree.pIndex;
1636   int nEq = pLoop->u.btree.nEq;
1637   sqlite3 *db = pParse->db;
1638   int nLower = -1;
1639   int nUpper = p->nSample+1;
1640   int rc = SQLITE_OK;
1641   u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1642   CollSeq *pColl;
1643 
1644   sqlite3_value *p1 = 0;          /* Value extracted from pLower */
1645   sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
1646   sqlite3_value *pVal = 0;        /* Value extracted from record */
1647 
1648   pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1649   if( pLower ){
1650     rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1651     nLower = 0;
1652   }
1653   if( pUpper && rc==SQLITE_OK ){
1654     rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1655     nUpper = p2 ? 0 : p->nSample;
1656   }
1657 
1658   if( p1 || p2 ){
1659     int i;
1660     int nDiff;
1661     for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1662       rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1663       if( rc==SQLITE_OK && p1 ){
1664         int res = sqlite3MemCompare(p1, pVal, pColl);
1665         if( res>=0 ) nLower++;
1666       }
1667       if( rc==SQLITE_OK && p2 ){
1668         int res = sqlite3MemCompare(p2, pVal, pColl);
1669         if( res>=0 ) nUpper++;
1670       }
1671     }
1672     nDiff = (nUpper - nLower);
1673     if( nDiff<=0 ) nDiff = 1;
1674 
1675     /* If there is both an upper and lower bound specified, and the
1676     ** comparisons indicate that they are close together, use the fallback
1677     ** method (assume that the scan visits 1/64 of the rows) for estimating
1678     ** the number of rows visited. Otherwise, estimate the number of rows
1679     ** using the method described in the header comment for this function. */
1680     if( nDiff!=1 || pUpper==0 || pLower==0 ){
1681       int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1682       pLoop->nOut -= nAdjust;
1683       *pbDone = 1;
1684       WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n",
1685                            nLower, nUpper, nAdjust*-1, pLoop->nOut));
1686     }
1687 
1688   }else{
1689     assert( *pbDone==0 );
1690   }
1691 
1692   sqlite3ValueFree(p1);
1693   sqlite3ValueFree(p2);
1694   sqlite3ValueFree(pVal);
1695 
1696   return rc;
1697 }
1698 #endif /* SQLITE_ENABLE_STAT4 */
1699 
1700 /*
1701 ** This function is used to estimate the number of rows that will be visited
1702 ** by scanning an index for a range of values. The range may have an upper
1703 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1704 ** and lower bounds are represented by pLower and pUpper respectively. For
1705 ** example, assuming that index p is on t1(a):
1706 **
1707 **   ... FROM t1 WHERE a > ? AND a < ? ...
1708 **                    |_____|   |_____|
1709 **                       |         |
1710 **                     pLower    pUpper
1711 **
1712 ** If either of the upper or lower bound is not present, then NULL is passed in
1713 ** place of the corresponding WhereTerm.
1714 **
1715 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1716 ** column subject to the range constraint. Or, equivalently, the number of
1717 ** equality constraints optimized by the proposed index scan. For example,
1718 ** assuming index p is on t1(a, b), and the SQL query is:
1719 **
1720 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1721 **
1722 ** then nEq is set to 1 (as the range restricted column, b, is the second
1723 ** left-most column of the index). Or, if the query is:
1724 **
1725 **   ... FROM t1 WHERE a > ? AND a < ? ...
1726 **
1727 ** then nEq is set to 0.
1728 **
1729 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1730 ** number of rows that the index scan is expected to visit without
1731 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1732 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1733 ** to account for the range constraints pLower and pUpper.
1734 **
1735 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1736 ** used, a single range inequality reduces the search space by a factor of 4.
1737 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1738 ** rows visited by a factor of 64.
1739 */
1740 static int whereRangeScanEst(
1741   Parse *pParse,       /* Parsing & code generating context */
1742   WhereLoopBuilder *pBuilder,
1743   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1744   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1745   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
1746 ){
1747   int rc = SQLITE_OK;
1748   int nOut = pLoop->nOut;
1749   LogEst nNew;
1750 
1751 #ifdef SQLITE_ENABLE_STAT4
1752   Index *p = pLoop->u.btree.pIndex;
1753   int nEq = pLoop->u.btree.nEq;
1754 
1755   if( p->nSample>0 && ALWAYS(nEq<p->nSampleCol)
1756    && OptimizationEnabled(pParse->db, SQLITE_Stat4)
1757   ){
1758     if( nEq==pBuilder->nRecValid ){
1759       UnpackedRecord *pRec = pBuilder->pRec;
1760       tRowcnt a[2];
1761       int nBtm = pLoop->u.btree.nBtm;
1762       int nTop = pLoop->u.btree.nTop;
1763 
1764       /* Variable iLower will be set to the estimate of the number of rows in
1765       ** the index that are less than the lower bound of the range query. The
1766       ** lower bound being the concatenation of $P and $L, where $P is the
1767       ** key-prefix formed by the nEq values matched against the nEq left-most
1768       ** columns of the index, and $L is the value in pLower.
1769       **
1770       ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1771       ** is not a simple variable or literal value), the lower bound of the
1772       ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1773       ** if $L is available, whereKeyStats() is called for both ($P) and
1774       ** ($P:$L) and the larger of the two returned values is used.
1775       **
1776       ** Similarly, iUpper is to be set to the estimate of the number of rows
1777       ** less than the upper bound of the range query. Where the upper bound
1778       ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1779       ** of iUpper are requested of whereKeyStats() and the smaller used.
1780       **
1781       ** The number of rows between the two bounds is then just iUpper-iLower.
1782       */
1783       tRowcnt iLower;     /* Rows less than the lower bound */
1784       tRowcnt iUpper;     /* Rows less than the upper bound */
1785       int iLwrIdx = -2;   /* aSample[] for the lower bound */
1786       int iUprIdx = -1;   /* aSample[] for the upper bound */
1787 
1788       if( pRec ){
1789         testcase( pRec->nField!=pBuilder->nRecValid );
1790         pRec->nField = pBuilder->nRecValid;
1791       }
1792       /* Determine iLower and iUpper using ($P) only. */
1793       if( nEq==0 ){
1794         iLower = 0;
1795         iUpper = p->nRowEst0;
1796       }else{
1797         /* Note: this call could be optimized away - since the same values must
1798         ** have been requested when testing key $P in whereEqualScanEst().  */
1799         whereKeyStats(pParse, p, pRec, 0, a);
1800         iLower = a[0];
1801         iUpper = a[0] + a[1];
1802       }
1803 
1804       assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1805       assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1806       assert( p->aSortOrder!=0 );
1807       if( p->aSortOrder[nEq] ){
1808         /* The roles of pLower and pUpper are swapped for a DESC index */
1809         SWAP(WhereTerm*, pLower, pUpper);
1810         SWAP(int, nBtm, nTop);
1811       }
1812 
1813       /* If possible, improve on the iLower estimate using ($P:$L). */
1814       if( pLower ){
1815         int n;                    /* Values extracted from pExpr */
1816         Expr *pExpr = pLower->pExpr->pRight;
1817         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1818         if( rc==SQLITE_OK && n ){
1819           tRowcnt iNew;
1820           u16 mask = WO_GT|WO_LE;
1821           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1822           iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1823           iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1824           if( iNew>iLower ) iLower = iNew;
1825           nOut--;
1826           pLower = 0;
1827         }
1828       }
1829 
1830       /* If possible, improve on the iUpper estimate using ($P:$U). */
1831       if( pUpper ){
1832         int n;                    /* Values extracted from pExpr */
1833         Expr *pExpr = pUpper->pExpr->pRight;
1834         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1835         if( rc==SQLITE_OK && n ){
1836           tRowcnt iNew;
1837           u16 mask = WO_GT|WO_LE;
1838           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1839           iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1840           iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1841           if( iNew<iUpper ) iUpper = iNew;
1842           nOut--;
1843           pUpper = 0;
1844         }
1845       }
1846 
1847       pBuilder->pRec = pRec;
1848       if( rc==SQLITE_OK ){
1849         if( iUpper>iLower ){
1850           nNew = sqlite3LogEst(iUpper - iLower);
1851           /* TUNING:  If both iUpper and iLower are derived from the same
1852           ** sample, then assume they are 4x more selective.  This brings
1853           ** the estimated selectivity more in line with what it would be
1854           ** if estimated without the use of STAT4 tables. */
1855           if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
1856         }else{
1857           nNew = 10;        assert( 10==sqlite3LogEst(2) );
1858         }
1859         if( nNew<nOut ){
1860           nOut = nNew;
1861         }
1862         WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
1863                            (u32)iLower, (u32)iUpper, nOut));
1864       }
1865     }else{
1866       int bDone = 0;
1867       rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1868       if( bDone ) return rc;
1869     }
1870   }
1871 #else
1872   UNUSED_PARAMETER(pParse);
1873   UNUSED_PARAMETER(pBuilder);
1874   assert( pLower || pUpper );
1875 #endif
1876   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1877   nNew = whereRangeAdjust(pLower, nOut);
1878   nNew = whereRangeAdjust(pUpper, nNew);
1879 
1880   /* TUNING: If there is both an upper and lower limit and neither limit
1881   ** has an application-defined likelihood(), assume the range is
1882   ** reduced by an additional 75%. This means that, by default, an open-ended
1883   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1884   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1885   ** match 1/64 of the index. */
1886   if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1887     nNew -= 20;
1888   }
1889 
1890   nOut -= (pLower!=0) + (pUpper!=0);
1891   if( nNew<10 ) nNew = 10;
1892   if( nNew<nOut ) nOut = nNew;
1893 #if defined(WHERETRACE_ENABLED)
1894   if( pLoop->nOut>nOut ){
1895     WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1896                     pLoop->nOut, nOut));
1897   }
1898 #endif
1899   pLoop->nOut = (LogEst)nOut;
1900   return rc;
1901 }
1902 
1903 #ifdef SQLITE_ENABLE_STAT4
1904 /*
1905 ** Estimate the number of rows that will be returned based on
1906 ** an equality constraint x=VALUE and where that VALUE occurs in
1907 ** the histogram data.  This only works when x is the left-most
1908 ** column of an index and sqlite_stat4 histogram data is available
1909 ** for that index.  When pExpr==NULL that means the constraint is
1910 ** "x IS NULL" instead of "x=VALUE".
1911 **
1912 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1913 ** If unable to make an estimate, leave *pnRow unchanged and return
1914 ** non-zero.
1915 **
1916 ** This routine can fail if it is unable to load a collating sequence
1917 ** required for string comparison, or if unable to allocate memory
1918 ** for a UTF conversion required for comparison.  The error is stored
1919 ** in the pParse structure.
1920 */
1921 static int whereEqualScanEst(
1922   Parse *pParse,       /* Parsing & code generating context */
1923   WhereLoopBuilder *pBuilder,
1924   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
1925   tRowcnt *pnRow       /* Write the revised row estimate here */
1926 ){
1927   Index *p = pBuilder->pNew->u.btree.pIndex;
1928   int nEq = pBuilder->pNew->u.btree.nEq;
1929   UnpackedRecord *pRec = pBuilder->pRec;
1930   int rc;                   /* Subfunction return code */
1931   tRowcnt a[2];             /* Statistics */
1932   int bOk;
1933 
1934   assert( nEq>=1 );
1935   assert( nEq<=p->nColumn );
1936   assert( p->aSample!=0 );
1937   assert( p->nSample>0 );
1938   assert( pBuilder->nRecValid<nEq );
1939 
1940   /* If values are not available for all fields of the index to the left
1941   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1942   if( pBuilder->nRecValid<(nEq-1) ){
1943     return SQLITE_NOTFOUND;
1944   }
1945 
1946   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1947   ** below would return the same value.  */
1948   if( nEq>=p->nColumn ){
1949     *pnRow = 1;
1950     return SQLITE_OK;
1951   }
1952 
1953   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1954   pBuilder->pRec = pRec;
1955   if( rc!=SQLITE_OK ) return rc;
1956   if( bOk==0 ) return SQLITE_NOTFOUND;
1957   pBuilder->nRecValid = nEq;
1958 
1959   whereKeyStats(pParse, p, pRec, 0, a);
1960   WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1961                    p->zName, nEq-1, (int)a[1]));
1962   *pnRow = a[1];
1963 
1964   return rc;
1965 }
1966 #endif /* SQLITE_ENABLE_STAT4 */
1967 
1968 #ifdef SQLITE_ENABLE_STAT4
1969 /*
1970 ** Estimate the number of rows that will be returned based on
1971 ** an IN constraint where the right-hand side of the IN operator
1972 ** is a list of values.  Example:
1973 **
1974 **        WHERE x IN (1,2,3,4)
1975 **
1976 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1977 ** If unable to make an estimate, leave *pnRow unchanged and return
1978 ** non-zero.
1979 **
1980 ** This routine can fail if it is unable to load a collating sequence
1981 ** required for string comparison, or if unable to allocate memory
1982 ** for a UTF conversion required for comparison.  The error is stored
1983 ** in the pParse structure.
1984 */
1985 static int whereInScanEst(
1986   Parse *pParse,       /* Parsing & code generating context */
1987   WhereLoopBuilder *pBuilder,
1988   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1989   tRowcnt *pnRow       /* Write the revised row estimate here */
1990 ){
1991   Index *p = pBuilder->pNew->u.btree.pIndex;
1992   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1993   int nRecValid = pBuilder->nRecValid;
1994   int rc = SQLITE_OK;     /* Subfunction return code */
1995   tRowcnt nEst;           /* Number of rows for a single term */
1996   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
1997   int i;                  /* Loop counter */
1998 
1999   assert( p->aSample!=0 );
2000   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
2001     nEst = nRow0;
2002     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
2003     nRowEst += nEst;
2004     pBuilder->nRecValid = nRecValid;
2005   }
2006 
2007   if( rc==SQLITE_OK ){
2008     if( nRowEst > nRow0 ) nRowEst = nRow0;
2009     *pnRow = nRowEst;
2010     WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
2011   }
2012   assert( pBuilder->nRecValid==nRecValid );
2013   return rc;
2014 }
2015 #endif /* SQLITE_ENABLE_STAT4 */
2016 
2017 
2018 #ifdef WHERETRACE_ENABLED
2019 /*
2020 ** Print the content of a WhereTerm object
2021 */
2022 void sqlite3WhereTermPrint(WhereTerm *pTerm, int iTerm){
2023   if( pTerm==0 ){
2024     sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
2025   }else{
2026     char zType[8];
2027     char zLeft[50];
2028     memcpy(zType, "....", 5);
2029     if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
2030     if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
2031     if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
2032     if( pTerm->wtFlags & TERM_CODED  ) zType[3] = 'C';
2033     if( pTerm->eOperator & WO_SINGLE ){
2034       assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
2035       sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
2036                        pTerm->leftCursor, pTerm->u.x.leftColumn);
2037     }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
2038       sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%llx",
2039                        pTerm->u.pOrInfo->indexable);
2040     }else{
2041       sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
2042     }
2043     sqlite3DebugPrintf(
2044        "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x",
2045        iTerm, pTerm, zType, zLeft, pTerm->eOperator, pTerm->wtFlags);
2046     /* The 0x10000 .wheretrace flag causes extra information to be
2047     ** shown about each Term */
2048     if( sqlite3WhereTrace & 0x10000 ){
2049       sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx",
2050         pTerm->truthProb, (u64)pTerm->prereqAll, (u64)pTerm->prereqRight);
2051     }
2052     if( (pTerm->eOperator & (WO_OR|WO_AND))==0 && pTerm->u.x.iField ){
2053       sqlite3DebugPrintf(" iField=%d", pTerm->u.x.iField);
2054     }
2055     if( pTerm->iParent>=0 ){
2056       sqlite3DebugPrintf(" iParent=%d", pTerm->iParent);
2057     }
2058     sqlite3DebugPrintf("\n");
2059     sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
2060   }
2061 }
2062 #endif
2063 
2064 #ifdef WHERETRACE_ENABLED
2065 /*
2066 ** Show the complete content of a WhereClause
2067 */
2068 void sqlite3WhereClausePrint(WhereClause *pWC){
2069   int i;
2070   for(i=0; i<pWC->nTerm; i++){
2071     sqlite3WhereTermPrint(&pWC->a[i], i);
2072   }
2073 }
2074 #endif
2075 
2076 #ifdef WHERETRACE_ENABLED
2077 /*
2078 ** Print a WhereLoop object for debugging purposes
2079 */
2080 void sqlite3WhereLoopPrint(WhereLoop *p, WhereClause *pWC){
2081   WhereInfo *pWInfo = pWC->pWInfo;
2082   int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
2083   SrcItem *pItem = pWInfo->pTabList->a + p->iTab;
2084   Table *pTab = pItem->pTab;
2085   Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
2086   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
2087                      p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
2088   sqlite3DebugPrintf(" %12s",
2089                      pItem->zAlias ? pItem->zAlias : pTab->zName);
2090   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2091     const char *zName;
2092     if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
2093       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
2094         int i = sqlite3Strlen30(zName) - 1;
2095         while( zName[i]!='_' ) i--;
2096         zName += i;
2097       }
2098       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
2099     }else{
2100       sqlite3DebugPrintf("%20s","");
2101     }
2102   }else{
2103     char *z;
2104     if( p->u.vtab.idxStr ){
2105       z = sqlite3_mprintf("(%d,\"%s\",%#x)",
2106                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
2107     }else{
2108       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
2109     }
2110     sqlite3DebugPrintf(" %-19s", z);
2111     sqlite3_free(z);
2112   }
2113   if( p->wsFlags & WHERE_SKIPSCAN ){
2114     sqlite3DebugPrintf(" f %06x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
2115   }else{
2116     sqlite3DebugPrintf(" f %06x N %d", p->wsFlags, p->nLTerm);
2117   }
2118   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
2119   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
2120     int i;
2121     for(i=0; i<p->nLTerm; i++){
2122       sqlite3WhereTermPrint(p->aLTerm[i], i);
2123     }
2124   }
2125 }
2126 #endif
2127 
2128 /*
2129 ** Convert bulk memory into a valid WhereLoop that can be passed
2130 ** to whereLoopClear harmlessly.
2131 */
2132 static void whereLoopInit(WhereLoop *p){
2133   p->aLTerm = p->aLTermSpace;
2134   p->nLTerm = 0;
2135   p->nLSlot = ArraySize(p->aLTermSpace);
2136   p->wsFlags = 0;
2137 }
2138 
2139 /*
2140 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
2141 */
2142 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
2143   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
2144     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
2145       sqlite3_free(p->u.vtab.idxStr);
2146       p->u.vtab.needFree = 0;
2147       p->u.vtab.idxStr = 0;
2148     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
2149       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
2150       sqlite3DbFreeNN(db, p->u.btree.pIndex);
2151       p->u.btree.pIndex = 0;
2152     }
2153   }
2154 }
2155 
2156 /*
2157 ** Deallocate internal memory used by a WhereLoop object
2158 */
2159 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
2160   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
2161   whereLoopClearUnion(db, p);
2162   whereLoopInit(p);
2163 }
2164 
2165 /*
2166 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
2167 */
2168 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
2169   WhereTerm **paNew;
2170   if( p->nLSlot>=n ) return SQLITE_OK;
2171   n = (n+7)&~7;
2172   paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
2173   if( paNew==0 ) return SQLITE_NOMEM_BKPT;
2174   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
2175   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
2176   p->aLTerm = paNew;
2177   p->nLSlot = n;
2178   return SQLITE_OK;
2179 }
2180 
2181 /*
2182 ** Transfer content from the second pLoop into the first.
2183 */
2184 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
2185   whereLoopClearUnion(db, pTo);
2186   if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
2187     memset(pTo, 0, WHERE_LOOP_XFER_SZ);
2188     return SQLITE_NOMEM_BKPT;
2189   }
2190   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
2191   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
2192   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
2193     pFrom->u.vtab.needFree = 0;
2194   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
2195     pFrom->u.btree.pIndex = 0;
2196   }
2197   return SQLITE_OK;
2198 }
2199 
2200 /*
2201 ** Delete a WhereLoop object
2202 */
2203 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
2204   whereLoopClear(db, p);
2205   sqlite3DbFreeNN(db, p);
2206 }
2207 
2208 /*
2209 ** Free a WhereInfo structure
2210 */
2211 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
2212   int i;
2213   assert( pWInfo!=0 );
2214   for(i=0; i<pWInfo->nLevel; i++){
2215     WhereLevel *pLevel = &pWInfo->a[i];
2216     if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE)!=0 ){
2217       assert( (pLevel->pWLoop->wsFlags & WHERE_MULTI_OR)==0 );
2218       sqlite3DbFree(db, pLevel->u.in.aInLoop);
2219     }
2220   }
2221   sqlite3WhereClauseClear(&pWInfo->sWC);
2222   while( pWInfo->pLoops ){
2223     WhereLoop *p = pWInfo->pLoops;
2224     pWInfo->pLoops = p->pNextLoop;
2225     whereLoopDelete(db, p);
2226   }
2227   assert( pWInfo->pExprMods==0 );
2228   sqlite3DbFreeNN(db, pWInfo);
2229 }
2230 
2231 /* Undo all Expr node modifications
2232 */
2233 static void whereUndoExprMods(WhereInfo *pWInfo){
2234   while( pWInfo->pExprMods ){
2235     WhereExprMod *p = pWInfo->pExprMods;
2236     pWInfo->pExprMods = p->pNext;
2237     memcpy(p->pExpr, &p->orig, sizeof(p->orig));
2238     sqlite3DbFree(pWInfo->pParse->db, p);
2239   }
2240 }
2241 
2242 /*
2243 ** Return TRUE if all of the following are true:
2244 **
2245 **   (1)  X has the same or lower cost, or returns the same or fewer rows,
2246 **        than Y.
2247 **   (2)  X uses fewer WHERE clause terms than Y
2248 **   (3)  Every WHERE clause term used by X is also used by Y
2249 **   (4)  X skips at least as many columns as Y
2250 **   (5)  If X is a covering index, than Y is too
2251 **
2252 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
2253 ** If X is a proper subset of Y then Y is a better choice and ought
2254 ** to have a lower cost.  This routine returns TRUE when that cost
2255 ** relationship is inverted and needs to be adjusted.  Constraint (4)
2256 ** was added because if X uses skip-scan less than Y it still might
2257 ** deserve a lower cost even if it is a proper subset of Y.  Constraint (5)
2258 ** was added because a covering index probably deserves to have a lower cost
2259 ** than a non-covering index even if it is a proper subset.
2260 */
2261 static int whereLoopCheaperProperSubset(
2262   const WhereLoop *pX,       /* First WhereLoop to compare */
2263   const WhereLoop *pY        /* Compare against this WhereLoop */
2264 ){
2265   int i, j;
2266   if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
2267     return 0; /* X is not a subset of Y */
2268   }
2269   if( pX->rRun>pY->rRun && pX->nOut>pY->nOut ) return 0;
2270   if( pY->nSkip > pX->nSkip ) return 0;
2271   for(i=pX->nLTerm-1; i>=0; i--){
2272     if( pX->aLTerm[i]==0 ) continue;
2273     for(j=pY->nLTerm-1; j>=0; j--){
2274       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
2275     }
2276     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
2277   }
2278   if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
2279    && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
2280     return 0;  /* Constraint (5) */
2281   }
2282   return 1;  /* All conditions meet */
2283 }
2284 
2285 /*
2286 ** Try to adjust the cost and number of output rows of WhereLoop pTemplate
2287 ** upwards or downwards so that:
2288 **
2289 **   (1) pTemplate costs less than any other WhereLoops that are a proper
2290 **       subset of pTemplate
2291 **
2292 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
2293 **       is a proper subset.
2294 **
2295 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
2296 ** WHERE clause terms than Y and that every WHERE clause term used by X is
2297 ** also used by Y.
2298 */
2299 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
2300   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
2301   for(; p; p=p->pNextLoop){
2302     if( p->iTab!=pTemplate->iTab ) continue;
2303     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
2304     if( whereLoopCheaperProperSubset(p, pTemplate) ){
2305       /* Adjust pTemplate cost downward so that it is cheaper than its
2306       ** subset p. */
2307       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2308                        pTemplate->rRun, pTemplate->nOut,
2309                        MIN(p->rRun, pTemplate->rRun),
2310                        MIN(p->nOut - 1, pTemplate->nOut)));
2311       pTemplate->rRun = MIN(p->rRun, pTemplate->rRun);
2312       pTemplate->nOut = MIN(p->nOut - 1, pTemplate->nOut);
2313     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
2314       /* Adjust pTemplate cost upward so that it is costlier than p since
2315       ** pTemplate is a proper subset of p */
2316       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2317                        pTemplate->rRun, pTemplate->nOut,
2318                        MAX(p->rRun, pTemplate->rRun),
2319                        MAX(p->nOut + 1, pTemplate->nOut)));
2320       pTemplate->rRun = MAX(p->rRun, pTemplate->rRun);
2321       pTemplate->nOut = MAX(p->nOut + 1, pTemplate->nOut);
2322     }
2323   }
2324 }
2325 
2326 /*
2327 ** Search the list of WhereLoops in *ppPrev looking for one that can be
2328 ** replaced by pTemplate.
2329 **
2330 ** Return NULL if pTemplate does not belong on the WhereLoop list.
2331 ** In other words if pTemplate ought to be dropped from further consideration.
2332 **
2333 ** If pX is a WhereLoop that pTemplate can replace, then return the
2334 ** link that points to pX.
2335 **
2336 ** If pTemplate cannot replace any existing element of the list but needs
2337 ** to be added to the list as a new entry, then return a pointer to the
2338 ** tail of the list.
2339 */
2340 static WhereLoop **whereLoopFindLesser(
2341   WhereLoop **ppPrev,
2342   const WhereLoop *pTemplate
2343 ){
2344   WhereLoop *p;
2345   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
2346     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
2347       /* If either the iTab or iSortIdx values for two WhereLoop are different
2348       ** then those WhereLoops need to be considered separately.  Neither is
2349       ** a candidate to replace the other. */
2350       continue;
2351     }
2352     /* In the current implementation, the rSetup value is either zero
2353     ** or the cost of building an automatic index (NlogN) and the NlogN
2354     ** is the same for compatible WhereLoops. */
2355     assert( p->rSetup==0 || pTemplate->rSetup==0
2356                  || p->rSetup==pTemplate->rSetup );
2357 
2358     /* whereLoopAddBtree() always generates and inserts the automatic index
2359     ** case first.  Hence compatible candidate WhereLoops never have a larger
2360     ** rSetup. Call this SETUP-INVARIANT */
2361     assert( p->rSetup>=pTemplate->rSetup );
2362 
2363     /* Any loop using an appliation-defined index (or PRIMARY KEY or
2364     ** UNIQUE constraint) with one or more == constraints is better
2365     ** than an automatic index. Unless it is a skip-scan. */
2366     if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
2367      && (pTemplate->nSkip)==0
2368      && (pTemplate->wsFlags & WHERE_INDEXED)!=0
2369      && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
2370      && (p->prereq & pTemplate->prereq)==pTemplate->prereq
2371     ){
2372       break;
2373     }
2374 
2375     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2376     ** discarded.  WhereLoop p is better if:
2377     **   (1)  p has no more dependencies than pTemplate, and
2378     **   (2)  p has an equal or lower cost than pTemplate
2379     */
2380     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
2381      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
2382      && p->rRun<=pTemplate->rRun                      /* (2b) */
2383      && p->nOut<=pTemplate->nOut                      /* (2c) */
2384     ){
2385       return 0;  /* Discard pTemplate */
2386     }
2387 
2388     /* If pTemplate is always better than p, then cause p to be overwritten
2389     ** with pTemplate.  pTemplate is better than p if:
2390     **   (1)  pTemplate has no more dependences than p, and
2391     **   (2)  pTemplate has an equal or lower cost than p.
2392     */
2393     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
2394      && p->rRun>=pTemplate->rRun                             /* (2a) */
2395      && p->nOut>=pTemplate->nOut                             /* (2b) */
2396     ){
2397       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2398       break;   /* Cause p to be overwritten by pTemplate */
2399     }
2400   }
2401   return ppPrev;
2402 }
2403 
2404 /*
2405 ** Insert or replace a WhereLoop entry using the template supplied.
2406 **
2407 ** An existing WhereLoop entry might be overwritten if the new template
2408 ** is better and has fewer dependencies.  Or the template will be ignored
2409 ** and no insert will occur if an existing WhereLoop is faster and has
2410 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
2411 ** added based on the template.
2412 **
2413 ** If pBuilder->pOrSet is not NULL then we care about only the
2414 ** prerequisites and rRun and nOut costs of the N best loops.  That
2415 ** information is gathered in the pBuilder->pOrSet object.  This special
2416 ** processing mode is used only for OR clause processing.
2417 **
2418 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2419 ** still might overwrite similar loops with the new template if the
2420 ** new template is better.  Loops may be overwritten if the following
2421 ** conditions are met:
2422 **
2423 **    (1)  They have the same iTab.
2424 **    (2)  They have the same iSortIdx.
2425 **    (3)  The template has same or fewer dependencies than the current loop
2426 **    (4)  The template has the same or lower cost than the current loop
2427 */
2428 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2429   WhereLoop **ppPrev, *p;
2430   WhereInfo *pWInfo = pBuilder->pWInfo;
2431   sqlite3 *db = pWInfo->pParse->db;
2432   int rc;
2433 
2434   /* Stop the search once we hit the query planner search limit */
2435   if( pBuilder->iPlanLimit==0 ){
2436     WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
2437     if( pBuilder->pOrSet ) pBuilder->pOrSet->n = 0;
2438     return SQLITE_DONE;
2439   }
2440   pBuilder->iPlanLimit--;
2441 
2442   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2443 
2444   /* If pBuilder->pOrSet is defined, then only keep track of the costs
2445   ** and prereqs.
2446   */
2447   if( pBuilder->pOrSet!=0 ){
2448     if( pTemplate->nLTerm ){
2449 #if WHERETRACE_ENABLED
2450       u16 n = pBuilder->pOrSet->n;
2451       int x =
2452 #endif
2453       whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2454                                     pTemplate->nOut);
2455 #if WHERETRACE_ENABLED /* 0x8 */
2456       if( sqlite3WhereTrace & 0x8 ){
2457         sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
2458         sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2459       }
2460 #endif
2461     }
2462     return SQLITE_OK;
2463   }
2464 
2465   /* Look for an existing WhereLoop to replace with pTemplate
2466   */
2467   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2468 
2469   if( ppPrev==0 ){
2470     /* There already exists a WhereLoop on the list that is better
2471     ** than pTemplate, so just ignore pTemplate */
2472 #if WHERETRACE_ENABLED /* 0x8 */
2473     if( sqlite3WhereTrace & 0x8 ){
2474       sqlite3DebugPrintf("   skip: ");
2475       sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2476     }
2477 #endif
2478     return SQLITE_OK;
2479   }else{
2480     p = *ppPrev;
2481   }
2482 
2483   /* If we reach this point it means that either p[] should be overwritten
2484   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2485   ** WhereLoop and insert it.
2486   */
2487 #if WHERETRACE_ENABLED /* 0x8 */
2488   if( sqlite3WhereTrace & 0x8 ){
2489     if( p!=0 ){
2490       sqlite3DebugPrintf("replace: ");
2491       sqlite3WhereLoopPrint(p, pBuilder->pWC);
2492       sqlite3DebugPrintf("   with: ");
2493     }else{
2494       sqlite3DebugPrintf("    add: ");
2495     }
2496     sqlite3WhereLoopPrint(pTemplate, pBuilder->pWC);
2497   }
2498 #endif
2499   if( p==0 ){
2500     /* Allocate a new WhereLoop to add to the end of the list */
2501     *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2502     if( p==0 ) return SQLITE_NOMEM_BKPT;
2503     whereLoopInit(p);
2504     p->pNextLoop = 0;
2505   }else{
2506     /* We will be overwriting WhereLoop p[].  But before we do, first
2507     ** go through the rest of the list and delete any other entries besides
2508     ** p[] that are also supplated by pTemplate */
2509     WhereLoop **ppTail = &p->pNextLoop;
2510     WhereLoop *pToDel;
2511     while( *ppTail ){
2512       ppTail = whereLoopFindLesser(ppTail, pTemplate);
2513       if( ppTail==0 ) break;
2514       pToDel = *ppTail;
2515       if( pToDel==0 ) break;
2516       *ppTail = pToDel->pNextLoop;
2517 #if WHERETRACE_ENABLED /* 0x8 */
2518       if( sqlite3WhereTrace & 0x8 ){
2519         sqlite3DebugPrintf(" delete: ");
2520         sqlite3WhereLoopPrint(pToDel, pBuilder->pWC);
2521       }
2522 #endif
2523       whereLoopDelete(db, pToDel);
2524     }
2525   }
2526   rc = whereLoopXfer(db, p, pTemplate);
2527   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2528     Index *pIndex = p->u.btree.pIndex;
2529     if( pIndex && pIndex->idxType==SQLITE_IDXTYPE_IPK ){
2530       p->u.btree.pIndex = 0;
2531     }
2532   }
2533   return rc;
2534 }
2535 
2536 /*
2537 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2538 ** WHERE clause that reference the loop but which are not used by an
2539 ** index.
2540 *
2541 ** For every WHERE clause term that is not used by the index
2542 ** and which has a truth probability assigned by one of the likelihood(),
2543 ** likely(), or unlikely() SQL functions, reduce the estimated number
2544 ** of output rows by the probability specified.
2545 **
2546 ** TUNING:  For every WHERE clause term that is not used by the index
2547 ** and which does not have an assigned truth probability, heuristics
2548 ** described below are used to try to estimate the truth probability.
2549 ** TODO --> Perhaps this is something that could be improved by better
2550 ** table statistics.
2551 **
2552 ** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
2553 ** value corresponds to -1 in LogEst notation, so this means decrement
2554 ** the WhereLoop.nOut field for every such WHERE clause term.
2555 **
2556 ** Heuristic 2:  If there exists one or more WHERE clause terms of the
2557 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2558 ** final output row estimate is no greater than 1/4 of the total number
2559 ** of rows in the table.  In other words, assume that x==EXPR will filter
2560 ** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
2561 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2562 ** on the "x" column and so in that case only cap the output row estimate
2563 ** at 1/2 instead of 1/4.
2564 */
2565 static void whereLoopOutputAdjust(
2566   WhereClause *pWC,      /* The WHERE clause */
2567   WhereLoop *pLoop,      /* The loop to adjust downward */
2568   LogEst nRow            /* Number of rows in the entire table */
2569 ){
2570   WhereTerm *pTerm, *pX;
2571   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2572   int i, j;
2573   LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */
2574 
2575   assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2576   for(i=pWC->nBase, pTerm=pWC->a; i>0; i--, pTerm++){
2577     assert( pTerm!=0 );
2578     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2579     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2580     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) continue;
2581     for(j=pLoop->nLTerm-1; j>=0; j--){
2582       pX = pLoop->aLTerm[j];
2583       if( pX==0 ) continue;
2584       if( pX==pTerm ) break;
2585       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2586     }
2587     if( j<0 ){
2588       if( pLoop->maskSelf==pTerm->prereqAll ){
2589         /* If there are extra terms in the WHERE clause not used by an index
2590         ** that depend only on the table being scanned, and that will tend to
2591         ** cause many rows to be omitted, then mark that table as
2592         ** "self-culling". */
2593         pLoop->wsFlags |= WHERE_SELFCULL;
2594       }
2595       if( pTerm->truthProb<=0 ){
2596         /* If a truth probability is specified using the likelihood() hints,
2597         ** then use the probability provided by the application. */
2598         pLoop->nOut += pTerm->truthProb;
2599       }else{
2600         /* In the absence of explicit truth probabilities, use heuristics to
2601         ** guess a reasonable truth probability. */
2602         pLoop->nOut--;
2603         if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0
2604          && (pTerm->wtFlags & TERM_HIGHTRUTH)==0  /* tag-20200224-1 */
2605         ){
2606           Expr *pRight = pTerm->pExpr->pRight;
2607           int k = 0;
2608           testcase( pTerm->pExpr->op==TK_IS );
2609           if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2610             k = 10;
2611           }else{
2612             k = 20;
2613           }
2614           if( iReduce<k ){
2615             pTerm->wtFlags |= TERM_HEURTRUTH;
2616             iReduce = k;
2617           }
2618         }
2619       }
2620     }
2621   }
2622   if( pLoop->nOut > nRow-iReduce ){
2623     pLoop->nOut = nRow - iReduce;
2624   }
2625 }
2626 
2627 /*
2628 ** Term pTerm is a vector range comparison operation. The first comparison
2629 ** in the vector can be optimized using column nEq of the index. This
2630 ** function returns the total number of vector elements that can be used
2631 ** as part of the range comparison.
2632 **
2633 ** For example, if the query is:
2634 **
2635 **   WHERE a = ? AND (b, c, d) > (?, ?, ?)
2636 **
2637 ** and the index:
2638 **
2639 **   CREATE INDEX ... ON (a, b, c, d, e)
2640 **
2641 ** then this function would be invoked with nEq=1. The value returned in
2642 ** this case is 3.
2643 */
2644 static int whereRangeVectorLen(
2645   Parse *pParse,       /* Parsing context */
2646   int iCur,            /* Cursor open on pIdx */
2647   Index *pIdx,         /* The index to be used for a inequality constraint */
2648   int nEq,             /* Number of prior equality constraints on same index */
2649   WhereTerm *pTerm     /* The vector inequality constraint */
2650 ){
2651   int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2652   int i;
2653 
2654   nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2655   for(i=1; i<nCmp; i++){
2656     /* Test if comparison i of pTerm is compatible with column (i+nEq)
2657     ** of the index. If not, exit the loop.  */
2658     char aff;                     /* Comparison affinity */
2659     char idxaff = 0;              /* Indexed columns affinity */
2660     CollSeq *pColl;               /* Comparison collation sequence */
2661     Expr *pLhs, *pRhs;
2662 
2663     assert( ExprUseXList(pTerm->pExpr->pLeft) );
2664     pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2665     pRhs = pTerm->pExpr->pRight;
2666     if( ExprUseXSelect(pRhs) ){
2667       pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2668     }else{
2669       pRhs = pRhs->x.pList->a[i].pExpr;
2670     }
2671 
2672     /* Check that the LHS of the comparison is a column reference to
2673     ** the right column of the right source table. And that the sort
2674     ** order of the index column is the same as the sort order of the
2675     ** leftmost index column.  */
2676     if( pLhs->op!=TK_COLUMN
2677      || pLhs->iTable!=iCur
2678      || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2679      || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2680     ){
2681       break;
2682     }
2683 
2684     testcase( pLhs->iColumn==XN_ROWID );
2685     aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2686     idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2687     if( aff!=idxaff ) break;
2688 
2689     pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2690     if( pColl==0 ) break;
2691     if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2692   }
2693   return i;
2694 }
2695 
2696 /*
2697 ** Adjust the cost C by the costMult facter T.  This only occurs if
2698 ** compiled with -DSQLITE_ENABLE_COSTMULT
2699 */
2700 #ifdef SQLITE_ENABLE_COSTMULT
2701 # define ApplyCostMultiplier(C,T)  C += T
2702 #else
2703 # define ApplyCostMultiplier(C,T)
2704 #endif
2705 
2706 /*
2707 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2708 ** index pIndex. Try to match one more.
2709 **
2710 ** When this function is called, pBuilder->pNew->nOut contains the
2711 ** number of rows expected to be visited by filtering using the nEq
2712 ** terms only. If it is modified, this value is restored before this
2713 ** function returns.
2714 **
2715 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
2716 ** a fake index used for the INTEGER PRIMARY KEY.
2717 */
2718 static int whereLoopAddBtreeIndex(
2719   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
2720   SrcItem *pSrc,                  /* FROM clause term being analyzed */
2721   Index *pProbe,                  /* An index on pSrc */
2722   LogEst nInMul                   /* log(Number of iterations due to IN) */
2723 ){
2724   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
2725   Parse *pParse = pWInfo->pParse;        /* Parsing context */
2726   sqlite3 *db = pParse->db;       /* Database connection malloc context */
2727   WhereLoop *pNew;                /* Template WhereLoop under construction */
2728   WhereTerm *pTerm;               /* A WhereTerm under consideration */
2729   int opMask;                     /* Valid operators for constraints */
2730   WhereScan scan;                 /* Iterator for WHERE terms */
2731   Bitmask saved_prereq;           /* Original value of pNew->prereq */
2732   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
2733   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
2734   u16 saved_nBtm;                 /* Original value of pNew->u.btree.nBtm */
2735   u16 saved_nTop;                 /* Original value of pNew->u.btree.nTop */
2736   u16 saved_nSkip;                /* Original value of pNew->nSkip */
2737   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
2738   LogEst saved_nOut;              /* Original value of pNew->nOut */
2739   int rc = SQLITE_OK;             /* Return code */
2740   LogEst rSize;                   /* Number of rows in the table */
2741   LogEst rLogSize;                /* Logarithm of table size */
2742   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2743 
2744   pNew = pBuilder->pNew;
2745   if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2746   WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n",
2747                      pProbe->pTable->zName,pProbe->zName,
2748                      pNew->u.btree.nEq, pNew->nSkip, pNew->rRun));
2749 
2750   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2751   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2752   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2753     opMask = WO_LT|WO_LE;
2754   }else{
2755     assert( pNew->u.btree.nBtm==0 );
2756     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2757   }
2758   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2759 
2760   assert( pNew->u.btree.nEq<pProbe->nColumn );
2761   assert( pNew->u.btree.nEq<pProbe->nKeyCol
2762        || pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY );
2763 
2764   saved_nEq = pNew->u.btree.nEq;
2765   saved_nBtm = pNew->u.btree.nBtm;
2766   saved_nTop = pNew->u.btree.nTop;
2767   saved_nSkip = pNew->nSkip;
2768   saved_nLTerm = pNew->nLTerm;
2769   saved_wsFlags = pNew->wsFlags;
2770   saved_prereq = pNew->prereq;
2771   saved_nOut = pNew->nOut;
2772   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2773                         opMask, pProbe);
2774   pNew->rSetup = 0;
2775   rSize = pProbe->aiRowLogEst[0];
2776   rLogSize = estLog(rSize);
2777   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2778     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
2779     LogEst rCostIdx;
2780     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
2781     int nIn = 0;
2782 #ifdef SQLITE_ENABLE_STAT4
2783     int nRecValid = pBuilder->nRecValid;
2784 #endif
2785     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2786      && indexColumnNotNull(pProbe, saved_nEq)
2787     ){
2788       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2789     }
2790     if( pTerm->prereqRight & pNew->maskSelf ) continue;
2791 
2792     /* Do not allow the upper bound of a LIKE optimization range constraint
2793     ** to mix with a lower range bound from some other source */
2794     if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2795 
2796     /* tag-20191211-001:  Do not allow constraints from the WHERE clause to
2797     ** be used by the right table of a LEFT JOIN.  Only constraints in the
2798     ** ON clause are allowed.  See tag-20191211-002 for the vtab equivalent. */
2799     if( (pSrc->fg.jointype & JT_LEFT)!=0
2800      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
2801     ){
2802       continue;
2803     }
2804 
2805     if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2806       pBuilder->bldFlags1 |= SQLITE_BLDF1_UNIQUE;
2807     }else{
2808       pBuilder->bldFlags1 |= SQLITE_BLDF1_INDEXED;
2809     }
2810     pNew->wsFlags = saved_wsFlags;
2811     pNew->u.btree.nEq = saved_nEq;
2812     pNew->u.btree.nBtm = saved_nBtm;
2813     pNew->u.btree.nTop = saved_nTop;
2814     pNew->nLTerm = saved_nLTerm;
2815     if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2816     pNew->aLTerm[pNew->nLTerm++] = pTerm;
2817     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2818 
2819     assert( nInMul==0
2820         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2821         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2822         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2823     );
2824 
2825     if( eOp & WO_IN ){
2826       Expr *pExpr = pTerm->pExpr;
2827       if( ExprUseXSelect(pExpr) ){
2828         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
2829         int i;
2830         nIn = 46;  assert( 46==sqlite3LogEst(25) );
2831 
2832         /* The expression may actually be of the form (x, y) IN (SELECT...).
2833         ** In this case there is a separate term for each of (x) and (y).
2834         ** However, the nIn multiplier should only be applied once, not once
2835         ** for each such term. The following loop checks that pTerm is the
2836         ** first such term in use, and sets nIn back to 0 if it is not. */
2837         for(i=0; i<pNew->nLTerm-1; i++){
2838           if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2839         }
2840       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2841         /* "x IN (value, value, ...)" */
2842         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2843       }
2844       if( pProbe->hasStat1 && rLogSize>=10 ){
2845         LogEst M, logK, x;
2846         /* Let:
2847         **   N = the total number of rows in the table
2848         **   K = the number of entries on the RHS of the IN operator
2849         **   M = the number of rows in the table that match terms to the
2850         **       to the left in the same index.  If the IN operator is on
2851         **       the left-most index column, M==N.
2852         **
2853         ** Given the definitions above, it is better to omit the IN operator
2854         ** from the index lookup and instead do a scan of the M elements,
2855         ** testing each scanned row against the IN operator separately, if:
2856         **
2857         **        M*log(K) < K*log(N)
2858         **
2859         ** Our estimates for M, K, and N might be inaccurate, so we build in
2860         ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
2861         ** with the index, as using an index has better worst-case behavior.
2862         ** If we do not have real sqlite_stat1 data, always prefer to use
2863         ** the index.  Do not bother with this optimization on very small
2864         ** tables (less than 2 rows) as it is pointless in that case.
2865         */
2866         M = pProbe->aiRowLogEst[saved_nEq];
2867         logK = estLog(nIn);
2868         /* TUNING      v-----  10 to bias toward indexed IN */
2869         x = M + logK + 10 - (nIn + rLogSize);
2870         if( x>=0 ){
2871           WHERETRACE(0x40,
2872             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) "
2873              "prefers indexed lookup\n",
2874              saved_nEq, M, logK, nIn, rLogSize, x));
2875         }else if( nInMul<2 && OptimizationEnabled(db, SQLITE_SeekScan) ){
2876           WHERETRACE(0x40,
2877             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2878              " nInMul=%d) prefers skip-scan\n",
2879              saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
2880           pNew->wsFlags |= WHERE_IN_SEEKSCAN;
2881         }else{
2882           WHERETRACE(0x40,
2883             ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
2884              " nInMul=%d) prefers normal scan\n",
2885              saved_nEq, M, logK, nIn, rLogSize, x, nInMul));
2886           continue;
2887         }
2888       }
2889       pNew->wsFlags |= WHERE_COLUMN_IN;
2890     }else if( eOp & (WO_EQ|WO_IS) ){
2891       int iCol = pProbe->aiColumn[saved_nEq];
2892       pNew->wsFlags |= WHERE_COLUMN_EQ;
2893       assert( saved_nEq==pNew->u.btree.nEq );
2894       if( iCol==XN_ROWID
2895        || (iCol>=0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2896       ){
2897         if( iCol==XN_ROWID || pProbe->uniqNotNull
2898          || (pProbe->nKeyCol==1 && pProbe->onError && eOp==WO_EQ)
2899         ){
2900           pNew->wsFlags |= WHERE_ONEROW;
2901         }else{
2902           pNew->wsFlags |= WHERE_UNQ_WANTED;
2903         }
2904       }
2905       if( scan.iEquiv>1 ) pNew->wsFlags |= WHERE_TRANSCONS;
2906     }else if( eOp & WO_ISNULL ){
2907       pNew->wsFlags |= WHERE_COLUMN_NULL;
2908     }else if( eOp & (WO_GT|WO_GE) ){
2909       testcase( eOp & WO_GT );
2910       testcase( eOp & WO_GE );
2911       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2912       pNew->u.btree.nBtm = whereRangeVectorLen(
2913           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2914       );
2915       pBtm = pTerm;
2916       pTop = 0;
2917       if( pTerm->wtFlags & TERM_LIKEOPT ){
2918         /* Range constraints that come from the LIKE optimization are
2919         ** always used in pairs. */
2920         pTop = &pTerm[1];
2921         assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2922         assert( pTop->wtFlags & TERM_LIKEOPT );
2923         assert( pTop->eOperator==WO_LT );
2924         if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2925         pNew->aLTerm[pNew->nLTerm++] = pTop;
2926         pNew->wsFlags |= WHERE_TOP_LIMIT;
2927         pNew->u.btree.nTop = 1;
2928       }
2929     }else{
2930       assert( eOp & (WO_LT|WO_LE) );
2931       testcase( eOp & WO_LT );
2932       testcase( eOp & WO_LE );
2933       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2934       pNew->u.btree.nTop = whereRangeVectorLen(
2935           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2936       );
2937       pTop = pTerm;
2938       pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2939                      pNew->aLTerm[pNew->nLTerm-2] : 0;
2940     }
2941 
2942     /* At this point pNew->nOut is set to the number of rows expected to
2943     ** be visited by the index scan before considering term pTerm, or the
2944     ** values of nIn and nInMul. In other words, assuming that all
2945     ** "x IN(...)" terms are replaced with "x = ?". This block updates
2946     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
2947     assert( pNew->nOut==saved_nOut );
2948     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2949       /* Adjust nOut using stat4 data. Or, if there is no stat4
2950       ** data, using some other estimate.  */
2951       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2952     }else{
2953       int nEq = ++pNew->u.btree.nEq;
2954       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2955 
2956       assert( pNew->nOut==saved_nOut );
2957       if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2958         assert( (eOp & WO_IN) || nIn==0 );
2959         testcase( eOp & WO_IN );
2960         pNew->nOut += pTerm->truthProb;
2961         pNew->nOut -= nIn;
2962       }else{
2963 #ifdef SQLITE_ENABLE_STAT4
2964         tRowcnt nOut = 0;
2965         if( nInMul==0
2966          && pProbe->nSample
2967          && ALWAYS(pNew->u.btree.nEq<=pProbe->nSampleCol)
2968          && ((eOp & WO_IN)==0 || ExprUseXList(pTerm->pExpr))
2969          && OptimizationEnabled(db, SQLITE_Stat4)
2970         ){
2971           Expr *pExpr = pTerm->pExpr;
2972           if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2973             testcase( eOp & WO_EQ );
2974             testcase( eOp & WO_IS );
2975             testcase( eOp & WO_ISNULL );
2976             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2977           }else{
2978             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2979           }
2980           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2981           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
2982           if( nOut ){
2983             pNew->nOut = sqlite3LogEst(nOut);
2984             if( nEq==1
2985              /* TUNING: Mark terms as "low selectivity" if they seem likely
2986              ** to be true for half or more of the rows in the table.
2987              ** See tag-202002240-1 */
2988              && pNew->nOut+10 > pProbe->aiRowLogEst[0]
2989             ){
2990 #if WHERETRACE_ENABLED /* 0x01 */
2991               if( sqlite3WhereTrace & 0x01 ){
2992                 sqlite3DebugPrintf(
2993                    "STAT4 determines term has low selectivity:\n");
2994                 sqlite3WhereTermPrint(pTerm, 999);
2995               }
2996 #endif
2997               pTerm->wtFlags |= TERM_HIGHTRUTH;
2998               if( pTerm->wtFlags & TERM_HEURTRUTH ){
2999                 /* If the term has previously been used with an assumption of
3000                 ** higher selectivity, then set the flag to rerun the
3001                 ** loop computations. */
3002                 pBuilder->bldFlags2 |= SQLITE_BLDF2_2NDPASS;
3003               }
3004             }
3005             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
3006             pNew->nOut -= nIn;
3007           }
3008         }
3009         if( nOut==0 )
3010 #endif
3011         {
3012           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
3013           if( eOp & WO_ISNULL ){
3014             /* TUNING: If there is no likelihood() value, assume that a
3015             ** "col IS NULL" expression matches twice as many rows
3016             ** as (col=?). */
3017             pNew->nOut += 10;
3018           }
3019         }
3020       }
3021     }
3022 
3023     /* Set rCostIdx to the cost of visiting selected rows in index. Add
3024     ** it to pNew->rRun, which is currently set to the cost of the index
3025     ** seek only. Then, if this is a non-covering index, add the cost of
3026     ** visiting the rows in the main table.  */
3027     assert( pSrc->pTab->szTabRow>0 );
3028     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
3029     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
3030     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
3031       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
3032     }
3033     ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
3034 
3035     nOutUnadjusted = pNew->nOut;
3036     pNew->rRun += nInMul + nIn;
3037     pNew->nOut += nInMul + nIn;
3038     whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
3039     rc = whereLoopInsert(pBuilder, pNew);
3040 
3041     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
3042       pNew->nOut = saved_nOut;
3043     }else{
3044       pNew->nOut = nOutUnadjusted;
3045     }
3046 
3047     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
3048      && pNew->u.btree.nEq<pProbe->nColumn
3049      && (pNew->u.btree.nEq<pProbe->nKeyCol ||
3050            pProbe->idxType!=SQLITE_IDXTYPE_PRIMARYKEY)
3051     ){
3052       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
3053     }
3054     pNew->nOut = saved_nOut;
3055 #ifdef SQLITE_ENABLE_STAT4
3056     pBuilder->nRecValid = nRecValid;
3057 #endif
3058   }
3059   pNew->prereq = saved_prereq;
3060   pNew->u.btree.nEq = saved_nEq;
3061   pNew->u.btree.nBtm = saved_nBtm;
3062   pNew->u.btree.nTop = saved_nTop;
3063   pNew->nSkip = saved_nSkip;
3064   pNew->wsFlags = saved_wsFlags;
3065   pNew->nOut = saved_nOut;
3066   pNew->nLTerm = saved_nLTerm;
3067 
3068   /* Consider using a skip-scan if there are no WHERE clause constraints
3069   ** available for the left-most terms of the index, and if the average
3070   ** number of repeats in the left-most terms is at least 18.
3071   **
3072   ** The magic number 18 is selected on the basis that scanning 17 rows
3073   ** is almost always quicker than an index seek (even though if the index
3074   ** contains fewer than 2^17 rows we assume otherwise in other parts of
3075   ** the code). And, even if it is not, it should not be too much slower.
3076   ** On the other hand, the extra seeks could end up being significantly
3077   ** more expensive.  */
3078   assert( 42==sqlite3LogEst(18) );
3079   if( saved_nEq==saved_nSkip
3080    && saved_nEq+1<pProbe->nKeyCol
3081    && saved_nEq==pNew->nLTerm
3082    && pProbe->noSkipScan==0
3083    && pProbe->hasStat1!=0
3084    && OptimizationEnabled(db, SQLITE_SkipScan)
3085    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
3086    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
3087   ){
3088     LogEst nIter;
3089     pNew->u.btree.nEq++;
3090     pNew->nSkip++;
3091     pNew->aLTerm[pNew->nLTerm++] = 0;
3092     pNew->wsFlags |= WHERE_SKIPSCAN;
3093     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
3094     pNew->nOut -= nIter;
3095     /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
3096     ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
3097     nIter += 5;
3098     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
3099     pNew->nOut = saved_nOut;
3100     pNew->u.btree.nEq = saved_nEq;
3101     pNew->nSkip = saved_nSkip;
3102     pNew->wsFlags = saved_wsFlags;
3103   }
3104 
3105   WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
3106                       pProbe->pTable->zName, pProbe->zName, saved_nEq, rc));
3107   return rc;
3108 }
3109 
3110 /*
3111 ** Return True if it is possible that pIndex might be useful in
3112 ** implementing the ORDER BY clause in pBuilder.
3113 **
3114 ** Return False if pBuilder does not contain an ORDER BY clause or
3115 ** if there is no way for pIndex to be useful in implementing that
3116 ** ORDER BY clause.
3117 */
3118 static int indexMightHelpWithOrderBy(
3119   WhereLoopBuilder *pBuilder,
3120   Index *pIndex,
3121   int iCursor
3122 ){
3123   ExprList *pOB;
3124   ExprList *aColExpr;
3125   int ii, jj;
3126 
3127   if( pIndex->bUnordered ) return 0;
3128   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
3129   for(ii=0; ii<pOB->nExpr; ii++){
3130     Expr *pExpr = sqlite3ExprSkipCollateAndLikely(pOB->a[ii].pExpr);
3131     if( NEVER(pExpr==0) ) continue;
3132     if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
3133       if( pExpr->iColumn<0 ) return 1;
3134       for(jj=0; jj<pIndex->nKeyCol; jj++){
3135         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
3136       }
3137     }else if( (aColExpr = pIndex->aColExpr)!=0 ){
3138       for(jj=0; jj<pIndex->nKeyCol; jj++){
3139         if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
3140         if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
3141           return 1;
3142         }
3143       }
3144     }
3145   }
3146   return 0;
3147 }
3148 
3149 /* Check to see if a partial index with pPartIndexWhere can be used
3150 ** in the current query.  Return true if it can be and false if not.
3151 */
3152 static int whereUsablePartialIndex(
3153   int iTab,             /* The table for which we want an index */
3154   int isLeft,           /* True if iTab is the right table of a LEFT JOIN */
3155   WhereClause *pWC,     /* The WHERE clause of the query */
3156   Expr *pWhere          /* The WHERE clause from the partial index */
3157 ){
3158   int i;
3159   WhereTerm *pTerm;
3160   Parse *pParse = pWC->pWInfo->pParse;
3161   while( pWhere->op==TK_AND ){
3162     if( !whereUsablePartialIndex(iTab,isLeft,pWC,pWhere->pLeft) ) return 0;
3163     pWhere = pWhere->pRight;
3164   }
3165   if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
3166   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
3167     Expr *pExpr;
3168     pExpr = pTerm->pExpr;
3169     if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
3170      && (isLeft==0 || ExprHasProperty(pExpr, EP_FromJoin))
3171      && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
3172      && (pTerm->wtFlags & TERM_VNULL)==0
3173     ){
3174       return 1;
3175     }
3176   }
3177   return 0;
3178 }
3179 
3180 /*
3181 ** Add all WhereLoop objects for a single table of the join where the table
3182 ** is identified by pBuilder->pNew->iTab.  That table is guaranteed to be
3183 ** a b-tree table, not a virtual table.
3184 **
3185 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
3186 ** are calculated as follows:
3187 **
3188 ** For a full scan, assuming the table (or index) contains nRow rows:
3189 **
3190 **     cost = nRow * 3.0                    // full-table scan
3191 **     cost = nRow * K                      // scan of covering index
3192 **     cost = nRow * (K+3.0)                // scan of non-covering index
3193 **
3194 ** where K is a value between 1.1 and 3.0 set based on the relative
3195 ** estimated average size of the index and table records.
3196 **
3197 ** For an index scan, where nVisit is the number of index rows visited
3198 ** by the scan, and nSeek is the number of seek operations required on
3199 ** the index b-tree:
3200 **
3201 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
3202 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
3203 **
3204 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
3205 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
3206 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
3207 **
3208 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
3209 ** of uncertainty.  For this reason, scoring is designed to pick plans that
3210 ** "do the least harm" if the estimates are inaccurate.  For example, a
3211 ** log(nRow) factor is omitted from a non-covering index scan in order to
3212 ** bias the scoring in favor of using an index, since the worst-case
3213 ** performance of using an index is far better than the worst-case performance
3214 ** of a full table scan.
3215 */
3216 static int whereLoopAddBtree(
3217   WhereLoopBuilder *pBuilder, /* WHERE clause information */
3218   Bitmask mPrereq             /* Extra prerequesites for using this table */
3219 ){
3220   WhereInfo *pWInfo;          /* WHERE analysis context */
3221   Index *pProbe;              /* An index we are evaluating */
3222   Index sPk;                  /* A fake index object for the primary key */
3223   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
3224   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
3225   SrcList *pTabList;          /* The FROM clause */
3226   SrcItem *pSrc;              /* The FROM clause btree term to add */
3227   WhereLoop *pNew;            /* Template WhereLoop object */
3228   int rc = SQLITE_OK;         /* Return code */
3229   int iSortIdx = 1;           /* Index number */
3230   int b;                      /* A boolean value */
3231   LogEst rSize;               /* number of rows in the table */
3232   WhereClause *pWC;           /* The parsed WHERE clause */
3233   Table *pTab;                /* Table being queried */
3234 
3235   pNew = pBuilder->pNew;
3236   pWInfo = pBuilder->pWInfo;
3237   pTabList = pWInfo->pTabList;
3238   pSrc = pTabList->a + pNew->iTab;
3239   pTab = pSrc->pTab;
3240   pWC = pBuilder->pWC;
3241   assert( !IsVirtual(pSrc->pTab) );
3242 
3243   if( pSrc->fg.isIndexedBy ){
3244     assert( pSrc->fg.isCte==0 );
3245     /* An INDEXED BY clause specifies a particular index to use */
3246     pProbe = pSrc->u2.pIBIndex;
3247   }else if( !HasRowid(pTab) ){
3248     pProbe = pTab->pIndex;
3249   }else{
3250     /* There is no INDEXED BY clause.  Create a fake Index object in local
3251     ** variable sPk to represent the rowid primary key index.  Make this
3252     ** fake index the first in a chain of Index objects with all of the real
3253     ** indices to follow */
3254     Index *pFirst;                  /* First of real indices on the table */
3255     memset(&sPk, 0, sizeof(Index));
3256     sPk.nKeyCol = 1;
3257     sPk.nColumn = 1;
3258     sPk.aiColumn = &aiColumnPk;
3259     sPk.aiRowLogEst = aiRowEstPk;
3260     sPk.onError = OE_Replace;
3261     sPk.pTable = pTab;
3262     sPk.szIdxRow = pTab->szTabRow;
3263     sPk.idxType = SQLITE_IDXTYPE_IPK;
3264     aiRowEstPk[0] = pTab->nRowLogEst;
3265     aiRowEstPk[1] = 0;
3266     pFirst = pSrc->pTab->pIndex;
3267     if( pSrc->fg.notIndexed==0 ){
3268       /* The real indices of the table are only considered if the
3269       ** NOT INDEXED qualifier is omitted from the FROM clause */
3270       sPk.pNext = pFirst;
3271     }
3272     pProbe = &sPk;
3273   }
3274   rSize = pTab->nRowLogEst;
3275 
3276 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
3277   /* Automatic indexes */
3278   if( !pBuilder->pOrSet      /* Not part of an OR optimization */
3279    && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
3280    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
3281    && !pSrc->fg.isIndexedBy  /* Has no INDEXED BY clause */
3282    && !pSrc->fg.notIndexed   /* Has no NOT INDEXED clause */
3283    && HasRowid(pTab)         /* Not WITHOUT ROWID table. (FIXME: Why not?) */
3284    && !pSrc->fg.isCorrelated /* Not a correlated subquery */
3285    && !pSrc->fg.isRecursive  /* Not a recursive common table expression. */
3286   ){
3287     /* Generate auto-index WhereLoops */
3288     LogEst rLogSize;         /* Logarithm of the number of rows in the table */
3289     WhereTerm *pTerm;
3290     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
3291     rLogSize = estLog(rSize);
3292     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
3293       if( pTerm->prereqRight & pNew->maskSelf ) continue;
3294       if( termCanDriveIndex(pTerm, pSrc, 0) ){
3295         pNew->u.btree.nEq = 1;
3296         pNew->nSkip = 0;
3297         pNew->u.btree.pIndex = 0;
3298         pNew->nLTerm = 1;
3299         pNew->aLTerm[0] = pTerm;
3300         /* TUNING: One-time cost for computing the automatic index is
3301         ** estimated to be X*N*log2(N) where N is the number of rows in
3302         ** the table being indexed and where X is 7 (LogEst=28) for normal
3303         ** tables or 0.5 (LogEst=-10) for views and subqueries.  The value
3304         ** of X is smaller for views and subqueries so that the query planner
3305         ** will be more aggressive about generating automatic indexes for
3306         ** those objects, since there is no opportunity to add schema
3307         ** indexes on subqueries and views. */
3308         pNew->rSetup = rLogSize + rSize;
3309         if( !IsView(pTab) && (pTab->tabFlags & TF_Ephemeral)==0 ){
3310           pNew->rSetup += 28;
3311         }else{
3312           pNew->rSetup -= 10;
3313         }
3314         ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
3315         if( pNew->rSetup<0 ) pNew->rSetup = 0;
3316         /* TUNING: Each index lookup yields 20 rows in the table.  This
3317         ** is more than the usual guess of 10 rows, since we have no way
3318         ** of knowing how selective the index will ultimately be.  It would
3319         ** not be unreasonable to make this value much larger. */
3320         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
3321         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
3322         pNew->wsFlags = WHERE_AUTO_INDEX;
3323         pNew->prereq = mPrereq | pTerm->prereqRight;
3324         rc = whereLoopInsert(pBuilder, pNew);
3325       }
3326     }
3327   }
3328 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
3329 
3330   /* Loop over all indices. If there was an INDEXED BY clause, then only
3331   ** consider index pProbe.  */
3332   for(; rc==SQLITE_OK && pProbe;
3333       pProbe=(pSrc->fg.isIndexedBy ? 0 : pProbe->pNext), iSortIdx++
3334   ){
3335     int isLeft = (pSrc->fg.jointype & JT_OUTER)!=0;
3336     if( pProbe->pPartIdxWhere!=0
3337      && !whereUsablePartialIndex(pSrc->iCursor, isLeft, pWC,
3338                                  pProbe->pPartIdxWhere)
3339     ){
3340       testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
3341       continue;  /* Partial index inappropriate for this query */
3342     }
3343     if( pProbe->bNoQuery ) continue;
3344     rSize = pProbe->aiRowLogEst[0];
3345     pNew->u.btree.nEq = 0;
3346     pNew->u.btree.nBtm = 0;
3347     pNew->u.btree.nTop = 0;
3348     pNew->nSkip = 0;
3349     pNew->nLTerm = 0;
3350     pNew->iSortIdx = 0;
3351     pNew->rSetup = 0;
3352     pNew->prereq = mPrereq;
3353     pNew->nOut = rSize;
3354     pNew->u.btree.pIndex = pProbe;
3355     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
3356 
3357     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
3358     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
3359     if( pProbe->idxType==SQLITE_IDXTYPE_IPK ){
3360       /* Integer primary key index */
3361       pNew->wsFlags = WHERE_IPK;
3362 
3363       /* Full table scan */
3364       pNew->iSortIdx = b ? iSortIdx : 0;
3365       /* TUNING: Cost of full table scan is 3.0*N.  The 3.0 factor is an
3366       ** extra cost designed to discourage the use of full table scans,
3367       ** since index lookups have better worst-case performance if our
3368       ** stat guesses are wrong.  Reduce the 3.0 penalty slightly
3369       ** (to 2.75) if we have valid STAT4 information for the table.
3370       ** At 2.75, a full table scan is preferred over using an index on
3371       ** a column with just two distinct values where each value has about
3372       ** an equal number of appearances.  Without STAT4 data, we still want
3373       ** to use an index in that case, since the constraint might be for
3374       ** the scarcer of the two values, and in that case an index lookup is
3375       ** better.
3376       */
3377 #ifdef SQLITE_ENABLE_STAT4
3378       pNew->rRun = rSize + 16 - 2*((pTab->tabFlags & TF_HasStat4)!=0);
3379 #else
3380       pNew->rRun = rSize + 16;
3381 #endif
3382       ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3383       whereLoopOutputAdjust(pWC, pNew, rSize);
3384       rc = whereLoopInsert(pBuilder, pNew);
3385       pNew->nOut = rSize;
3386       if( rc ) break;
3387     }else{
3388       Bitmask m;
3389       if( pProbe->isCovering ){
3390         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
3391         m = 0;
3392       }else{
3393         m = pSrc->colUsed & pProbe->colNotIdxed;
3394         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
3395       }
3396 
3397       /* Full scan via index */
3398       if( b
3399        || !HasRowid(pTab)
3400        || pProbe->pPartIdxWhere!=0
3401        || pSrc->fg.isIndexedBy
3402        || ( m==0
3403          && pProbe->bUnordered==0
3404          && (pProbe->szIdxRow<pTab->szTabRow)
3405          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
3406          && sqlite3GlobalConfig.bUseCis
3407          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
3408           )
3409       ){
3410         pNew->iSortIdx = b ? iSortIdx : 0;
3411 
3412         /* The cost of visiting the index rows is N*K, where K is
3413         ** between 1.1 and 3.0, depending on the relative sizes of the
3414         ** index and table rows. */
3415         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
3416         if( m!=0 ){
3417           /* If this is a non-covering index scan, add in the cost of
3418           ** doing table lookups.  The cost will be 3x the number of
3419           ** lookups.  Take into account WHERE clause terms that can be
3420           ** satisfied using just the index, and that do not require a
3421           ** table lookup. */
3422           LogEst nLookup = rSize + 16;  /* Base cost:  N*3 */
3423           int ii;
3424           int iCur = pSrc->iCursor;
3425           WhereClause *pWC2 = &pWInfo->sWC;
3426           for(ii=0; ii<pWC2->nTerm; ii++){
3427             WhereTerm *pTerm = &pWC2->a[ii];
3428             if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
3429               break;
3430             }
3431             /* pTerm can be evaluated using just the index.  So reduce
3432             ** the expected number of table lookups accordingly */
3433             if( pTerm->truthProb<=0 ){
3434               nLookup += pTerm->truthProb;
3435             }else{
3436               nLookup--;
3437               if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
3438             }
3439           }
3440 
3441           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
3442         }
3443         ApplyCostMultiplier(pNew->rRun, pTab->costMult);
3444         whereLoopOutputAdjust(pWC, pNew, rSize);
3445         rc = whereLoopInsert(pBuilder, pNew);
3446         pNew->nOut = rSize;
3447         if( rc ) break;
3448       }
3449     }
3450 
3451     pBuilder->bldFlags1 = 0;
3452     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
3453     if( pBuilder->bldFlags1==SQLITE_BLDF1_INDEXED ){
3454       /* If a non-unique index is used, or if a prefix of the key for
3455       ** unique index is used (making the index functionally non-unique)
3456       ** then the sqlite_stat1 data becomes important for scoring the
3457       ** plan */
3458       pTab->tabFlags |= TF_StatsUsed;
3459     }
3460 #ifdef SQLITE_ENABLE_STAT4
3461     sqlite3Stat4ProbeFree(pBuilder->pRec);
3462     pBuilder->nRecValid = 0;
3463     pBuilder->pRec = 0;
3464 #endif
3465   }
3466   return rc;
3467 }
3468 
3469 #ifndef SQLITE_OMIT_VIRTUALTABLE
3470 
3471 /*
3472 ** Return true if pTerm is a virtual table LIMIT or OFFSET term.
3473 */
3474 static int isLimitTerm(WhereTerm *pTerm){
3475   assert( pTerm->eOperator==WO_AUX || pTerm->eMatchOp==0 );
3476   return pTerm->eMatchOp>=SQLITE_INDEX_CONSTRAINT_LIMIT
3477       && pTerm->eMatchOp<=SQLITE_INDEX_CONSTRAINT_OFFSET;
3478 }
3479 
3480 /*
3481 ** Argument pIdxInfo is already populated with all constraints that may
3482 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3483 ** function marks a subset of those constraints usable, invokes the
3484 ** xBestIndex method and adds the returned plan to pBuilder.
3485 **
3486 ** A constraint is marked usable if:
3487 **
3488 **   * Argument mUsable indicates that its prerequisites are available, and
3489 **
3490 **   * It is not one of the operators specified in the mExclude mask passed
3491 **     as the fourth argument (which in practice is either WO_IN or 0).
3492 **
3493 ** Argument mPrereq is a mask of tables that must be scanned before the
3494 ** virtual table in question. These are added to the plans prerequisites
3495 ** before it is added to pBuilder.
3496 **
3497 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3498 ** uses one or more WO_IN terms, or false otherwise.
3499 */
3500 static int whereLoopAddVirtualOne(
3501   WhereLoopBuilder *pBuilder,
3502   Bitmask mPrereq,                /* Mask of tables that must be used. */
3503   Bitmask mUsable,                /* Mask of usable tables */
3504   u16 mExclude,                   /* Exclude terms using these operators */
3505   sqlite3_index_info *pIdxInfo,   /* Populated object for xBestIndex */
3506   u16 mNoOmit,                    /* Do not omit these constraints */
3507   int *pbIn,                      /* OUT: True if plan uses an IN(...) op */
3508   int *pbRetryLimit               /* OUT: Retry without LIMIT/OFFSET */
3509 ){
3510   WhereClause *pWC = pBuilder->pWC;
3511   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3512   struct sqlite3_index_constraint *pIdxCons;
3513   struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3514   int i;
3515   int mxTerm;
3516   int rc = SQLITE_OK;
3517   WhereLoop *pNew = pBuilder->pNew;
3518   Parse *pParse = pBuilder->pWInfo->pParse;
3519   SrcItem *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3520   int nConstraint = pIdxInfo->nConstraint;
3521 
3522   assert( (mUsable & mPrereq)==mPrereq );
3523   *pbIn = 0;
3524   pNew->prereq = mPrereq;
3525 
3526   /* Set the usable flag on the subset of constraints identified by
3527   ** arguments mUsable and mExclude. */
3528   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3529   for(i=0; i<nConstraint; i++, pIdxCons++){
3530     WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3531     pIdxCons->usable = 0;
3532     if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3533      && (pTerm->eOperator & mExclude)==0
3534      && (pbRetryLimit || !isLimitTerm(pTerm))
3535     ){
3536       pIdxCons->usable = 1;
3537     }
3538   }
3539 
3540   /* Initialize the output fields of the sqlite3_index_info structure */
3541   memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3542   assert( pIdxInfo->needToFreeIdxStr==0 );
3543   pIdxInfo->idxStr = 0;
3544   pIdxInfo->idxNum = 0;
3545   pIdxInfo->orderByConsumed = 0;
3546   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3547   pIdxInfo->estimatedRows = 25;
3548   pIdxInfo->idxFlags = 0;
3549   pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3550   pHidden->mHandleIn = 0;
3551 
3552   /* Invoke the virtual table xBestIndex() method */
3553   rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3554   if( rc ){
3555     if( rc==SQLITE_CONSTRAINT ){
3556       /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
3557       ** that the particular combination of parameters provided is unusable.
3558       ** Make no entries in the loop table.
3559       */
3560       WHERETRACE(0xffff, ("  ^^^^--- non-viable plan rejected!\n"));
3561       return SQLITE_OK;
3562     }
3563     return rc;
3564   }
3565 
3566   mxTerm = -1;
3567   assert( pNew->nLSlot>=nConstraint );
3568   memset(pNew->aLTerm, 0, sizeof(pNew->aLTerm[0])*nConstraint );
3569   memset(&pNew->u.vtab, 0, sizeof(pNew->u.vtab));
3570   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3571   for(i=0; i<nConstraint; i++, pIdxCons++){
3572     int iTerm;
3573     if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3574       WhereTerm *pTerm;
3575       int j = pIdxCons->iTermOffset;
3576       if( iTerm>=nConstraint
3577        || j<0
3578        || j>=pWC->nTerm
3579        || pNew->aLTerm[iTerm]!=0
3580        || pIdxCons->usable==0
3581       ){
3582         sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3583         testcase( pIdxInfo->needToFreeIdxStr );
3584         return SQLITE_ERROR;
3585       }
3586       testcase( iTerm==nConstraint-1 );
3587       testcase( j==0 );
3588       testcase( j==pWC->nTerm-1 );
3589       pTerm = &pWC->a[j];
3590       pNew->prereq |= pTerm->prereqRight;
3591       assert( iTerm<pNew->nLSlot );
3592       pNew->aLTerm[iTerm] = pTerm;
3593       if( iTerm>mxTerm ) mxTerm = iTerm;
3594       testcase( iTerm==15 );
3595       testcase( iTerm==16 );
3596       if( pUsage[i].omit ){
3597         if( i<16 && ((1<<i)&mNoOmit)==0 ){
3598           testcase( i!=iTerm );
3599           pNew->u.vtab.omitMask |= 1<<iTerm;
3600         }else{
3601           testcase( i!=iTerm );
3602         }
3603         if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET ){
3604           pNew->u.vtab.bOmitOffset = 1;
3605         }
3606       }
3607       if( SMASKBIT32(i) & pHidden->mHandleIn ){
3608         pNew->u.vtab.mHandleIn |= MASKBIT32(iTerm);
3609       }else if( (pTerm->eOperator & WO_IN)!=0 ){
3610         /* A virtual table that is constrained by an IN clause may not
3611         ** consume the ORDER BY clause because (1) the order of IN terms
3612         ** is not necessarily related to the order of output terms and
3613         ** (2) Multiple outputs from a single IN value will not merge
3614         ** together.  */
3615         pIdxInfo->orderByConsumed = 0;
3616         pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3617         *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3618       }
3619 
3620       if( isLimitTerm(pTerm) && *pbIn ){
3621         /* If there is an IN(...) term handled as an == (separate call to
3622         ** xFilter for each value on the RHS of the IN) and a LIMIT or
3623         ** OFFSET term handled as well, the plan is unusable. Set output
3624         ** variable *pbRetryLimit to true to tell the caller to retry with
3625         ** LIMIT and OFFSET disabled. */
3626         if( pIdxInfo->needToFreeIdxStr ){
3627           sqlite3_free(pIdxInfo->idxStr);
3628           pIdxInfo->idxStr = 0;
3629           pIdxInfo->needToFreeIdxStr = 0;
3630         }
3631         *pbRetryLimit = 1;
3632         return SQLITE_OK;
3633       }
3634     }
3635   }
3636 
3637   pNew->nLTerm = mxTerm+1;
3638   for(i=0; i<=mxTerm; i++){
3639     if( pNew->aLTerm[i]==0 ){
3640       /* The non-zero argvIdx values must be contiguous.  Raise an
3641       ** error if they are not */
3642       sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3643       testcase( pIdxInfo->needToFreeIdxStr );
3644       return SQLITE_ERROR;
3645     }
3646   }
3647   assert( pNew->nLTerm<=pNew->nLSlot );
3648   pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3649   pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3650   pIdxInfo->needToFreeIdxStr = 0;
3651   pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3652   pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3653       pIdxInfo->nOrderBy : 0);
3654   pNew->rSetup = 0;
3655   pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3656   pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3657 
3658   /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3659   ** that the scan will visit at most one row. Clear it otherwise. */
3660   if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3661     pNew->wsFlags |= WHERE_ONEROW;
3662   }else{
3663     pNew->wsFlags &= ~WHERE_ONEROW;
3664   }
3665   rc = whereLoopInsert(pBuilder, pNew);
3666   if( pNew->u.vtab.needFree ){
3667     sqlite3_free(pNew->u.vtab.idxStr);
3668     pNew->u.vtab.needFree = 0;
3669   }
3670   WHERETRACE(0xffff, ("  bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3671                       *pbIn, (sqlite3_uint64)mPrereq,
3672                       (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3673 
3674   return rc;
3675 }
3676 
3677 /*
3678 ** Return the collating sequence for a constraint passed into xBestIndex.
3679 **
3680 ** pIdxInfo must be an sqlite3_index_info structure passed into xBestIndex.
3681 ** This routine depends on there being a HiddenIndexInfo structure immediately
3682 ** following the sqlite3_index_info structure.
3683 **
3684 ** Return a pointer to the collation name:
3685 **
3686 **    1. If there is an explicit COLLATE operator on the constaint, return it.
3687 **
3688 **    2. Else, if the column has an alternative collation, return that.
3689 **
3690 **    3. Otherwise, return "BINARY".
3691 */
3692 const char *sqlite3_vtab_collation(sqlite3_index_info *pIdxInfo, int iCons){
3693   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3694   const char *zRet = 0;
3695   if( iCons>=0 && iCons<pIdxInfo->nConstraint ){
3696     CollSeq *pC = 0;
3697     int iTerm = pIdxInfo->aConstraint[iCons].iTermOffset;
3698     Expr *pX = pHidden->pWC->a[iTerm].pExpr;
3699     if( pX->pLeft ){
3700       pC = sqlite3ExprCompareCollSeq(pHidden->pParse, pX);
3701     }
3702     zRet = (pC ? pC->zName : sqlite3StrBINARY);
3703   }
3704   return zRet;
3705 }
3706 
3707 /*
3708 ** Return true if constraint iCons is really an IN(...) constraint, or
3709 ** false otherwise. If iCons is an IN(...) constraint, set (if bHandle!=0)
3710 ** or clear (if bHandle==0) the flag to handle it using an iterator.
3711 */
3712 int sqlite3_vtab_in(sqlite3_index_info *pIdxInfo, int iCons, int bHandle){
3713   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3714   u32 m = SMASKBIT32(iCons);
3715   if( m & pHidden->mIn ){
3716     if( bHandle==0 ){
3717       pHidden->mHandleIn &= ~m;
3718     }else if( bHandle>0 ){
3719       pHidden->mHandleIn |= m;
3720     }
3721     return 1;
3722   }
3723   return 0;
3724 }
3725 
3726 /*
3727 ** This interface is callable from within the xBestIndex callback only.
3728 **
3729 ** If possible, set (*ppVal) to point to an object containing the value
3730 ** on the right-hand-side of constraint iCons.
3731 */
3732 int sqlite3_vtab_rhs_value(
3733   sqlite3_index_info *pIdxInfo,   /* Copy of first argument to xBestIndex */
3734   int iCons,                      /* Constraint for which RHS is wanted */
3735   sqlite3_value **ppVal           /* Write value extracted here */
3736 ){
3737   HiddenIndexInfo *pH = (HiddenIndexInfo*)&pIdxInfo[1];
3738   sqlite3_value *pVal = 0;
3739   int rc = SQLITE_OK;
3740   if( iCons<0 || iCons>=pIdxInfo->nConstraint ){
3741     rc = SQLITE_MISUSE; /* EV: R-30545-25046 */
3742   }else{
3743     if( pH->aRhs[iCons]==0 ){
3744       WhereTerm *pTerm = &pH->pWC->a[pIdxInfo->aConstraint[iCons].iTermOffset];
3745       rc = sqlite3ValueFromExpr(
3746           pH->pParse->db, pTerm->pExpr->pRight, ENC(pH->pParse->db),
3747           SQLITE_AFF_BLOB, &pH->aRhs[iCons]
3748       );
3749       testcase( rc!=SQLITE_OK );
3750     }
3751     pVal = pH->aRhs[iCons];
3752   }
3753   *ppVal = pVal;
3754 
3755   if( rc==SQLITE_OK && pVal==0 ){  /* IMP: R-19933-32160 */
3756     rc = SQLITE_NOTFOUND;          /* IMP: R-36424-56542 */
3757   }
3758 
3759   return rc;
3760 }
3761 
3762 
3763 /*
3764 ** Return true if ORDER BY clause may be handled as DISTINCT.
3765 */
3766 int sqlite3_vtab_distinct(sqlite3_index_info *pIdxInfo){
3767   HiddenIndexInfo *pHidden = (HiddenIndexInfo*)&pIdxInfo[1];
3768   assert( pHidden->eDistinct==0
3769        || pHidden->eDistinct==1
3770        || pHidden->eDistinct==2 );
3771   return pHidden->eDistinct;
3772 }
3773 
3774 /*
3775 ** Add all WhereLoop objects for a table of the join identified by
3776 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
3777 **
3778 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3779 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3780 ** entries that occur before the virtual table in the FROM clause and are
3781 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3782 ** mUnusable mask contains all FROM clause entries that occur after the
3783 ** virtual table and are separated from it by at least one LEFT or
3784 ** CROSS JOIN.
3785 **
3786 ** For example, if the query were:
3787 **
3788 **   ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3789 **
3790 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3791 **
3792 ** All the tables in mPrereq must be scanned before the current virtual
3793 ** table. So any terms for which all prerequisites are satisfied by
3794 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3795 ** Conversely, all tables in mUnusable must be scanned after the current
3796 ** virtual table, so any terms for which the prerequisites overlap with
3797 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3798 */
3799 static int whereLoopAddVirtual(
3800   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
3801   Bitmask mPrereq,             /* Tables that must be scanned before this one */
3802   Bitmask mUnusable            /* Tables that must be scanned after this one */
3803 ){
3804   int rc = SQLITE_OK;          /* Return code */
3805   WhereInfo *pWInfo;           /* WHERE analysis context */
3806   Parse *pParse;               /* The parsing context */
3807   WhereClause *pWC;            /* The WHERE clause */
3808   SrcItem *pSrc;               /* The FROM clause term to search */
3809   sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
3810   int nConstraint;             /* Number of constraints in p */
3811   int bIn;                     /* True if plan uses IN(...) operator */
3812   WhereLoop *pNew;
3813   Bitmask mBest;               /* Tables used by best possible plan */
3814   u16 mNoOmit;
3815   int bRetry = 0;              /* True to retry with LIMIT/OFFSET disabled */
3816 
3817   assert( (mPrereq & mUnusable)==0 );
3818   pWInfo = pBuilder->pWInfo;
3819   pParse = pWInfo->pParse;
3820   pWC = pBuilder->pWC;
3821   pNew = pBuilder->pNew;
3822   pSrc = &pWInfo->pTabList->a[pNew->iTab];
3823   assert( IsVirtual(pSrc->pTab) );
3824   p = allocateIndexInfo(pWInfo, pWC, mUnusable, pSrc, &mNoOmit);
3825   if( p==0 ) return SQLITE_NOMEM_BKPT;
3826   pNew->rSetup = 0;
3827   pNew->wsFlags = WHERE_VIRTUALTABLE;
3828   pNew->nLTerm = 0;
3829   pNew->u.vtab.needFree = 0;
3830   nConstraint = p->nConstraint;
3831   if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3832     freeIndexInfo(pParse->db, p);
3833     return SQLITE_NOMEM_BKPT;
3834   }
3835 
3836   /* First call xBestIndex() with all constraints usable. */
3837   WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc->pTab->zName));
3838   WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
3839   rc = whereLoopAddVirtualOne(
3840       pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, &bRetry
3841   );
3842   if( bRetry ){
3843     assert( rc==SQLITE_OK );
3844     rc = whereLoopAddVirtualOne(
3845         pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn, 0
3846     );
3847   }
3848 
3849   /* If the call to xBestIndex() with all terms enabled produced a plan
3850   ** that does not require any source tables (IOW: a plan with mBest==0)
3851   ** and does not use an IN(...) operator, then there is no point in making
3852   ** any further calls to xBestIndex() since they will all return the same
3853   ** result (if the xBestIndex() implementation is sane). */
3854   if( rc==SQLITE_OK && ((mBest = (pNew->prereq & ~mPrereq))!=0 || bIn) ){
3855     int seenZero = 0;             /* True if a plan with no prereqs seen */
3856     int seenZeroNoIN = 0;         /* Plan with no prereqs and no IN(...) seen */
3857     Bitmask mPrev = 0;
3858     Bitmask mBestNoIn = 0;
3859 
3860     /* If the plan produced by the earlier call uses an IN(...) term, call
3861     ** xBestIndex again, this time with IN(...) terms disabled. */
3862     if( bIn ){
3863       WHERETRACE(0x40, ("  VirtualOne: all usable w/o IN\n"));
3864       rc = whereLoopAddVirtualOne(
3865           pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn, 0);
3866       assert( bIn==0 );
3867       mBestNoIn = pNew->prereq & ~mPrereq;
3868       if( mBestNoIn==0 ){
3869         seenZero = 1;
3870         seenZeroNoIN = 1;
3871       }
3872     }
3873 
3874     /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3875     ** in the set of terms that apply to the current virtual table.  */
3876     while( rc==SQLITE_OK ){
3877       int i;
3878       Bitmask mNext = ALLBITS;
3879       assert( mNext>0 );
3880       for(i=0; i<nConstraint; i++){
3881         Bitmask mThis = (
3882             pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3883         );
3884         if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3885       }
3886       mPrev = mNext;
3887       if( mNext==ALLBITS ) break;
3888       if( mNext==mBest || mNext==mBestNoIn ) continue;
3889       WHERETRACE(0x40, ("  VirtualOne: mPrev=%04llx mNext=%04llx\n",
3890                        (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3891       rc = whereLoopAddVirtualOne(
3892           pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn, 0);
3893       if( pNew->prereq==mPrereq ){
3894         seenZero = 1;
3895         if( bIn==0 ) seenZeroNoIN = 1;
3896       }
3897     }
3898 
3899     /* If the calls to xBestIndex() in the above loop did not find a plan
3900     ** that requires no source tables at all (i.e. one guaranteed to be
3901     ** usable), make a call here with all source tables disabled */
3902     if( rc==SQLITE_OK && seenZero==0 ){
3903       WHERETRACE(0x40, ("  VirtualOne: all disabled\n"));
3904       rc = whereLoopAddVirtualOne(
3905           pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn, 0);
3906       if( bIn==0 ) seenZeroNoIN = 1;
3907     }
3908 
3909     /* If the calls to xBestIndex() have so far failed to find a plan
3910     ** that requires no source tables at all and does not use an IN(...)
3911     ** operator, make a final call to obtain one here.  */
3912     if( rc==SQLITE_OK && seenZeroNoIN==0 ){
3913       WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
3914       rc = whereLoopAddVirtualOne(
3915           pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn, 0);
3916     }
3917   }
3918 
3919   if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
3920   freeIndexInfo(pParse->db, p);
3921   WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc->pTab->zName, rc));
3922   return rc;
3923 }
3924 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3925 
3926 /*
3927 ** Add WhereLoop entries to handle OR terms.  This works for either
3928 ** btrees or virtual tables.
3929 */
3930 static int whereLoopAddOr(
3931   WhereLoopBuilder *pBuilder,
3932   Bitmask mPrereq,
3933   Bitmask mUnusable
3934 ){
3935   WhereInfo *pWInfo = pBuilder->pWInfo;
3936   WhereClause *pWC;
3937   WhereLoop *pNew;
3938   WhereTerm *pTerm, *pWCEnd;
3939   int rc = SQLITE_OK;
3940   int iCur;
3941   WhereClause tempWC;
3942   WhereLoopBuilder sSubBuild;
3943   WhereOrSet sSum, sCur;
3944   SrcItem *pItem;
3945 
3946   pWC = pBuilder->pWC;
3947   pWCEnd = pWC->a + pWC->nTerm;
3948   pNew = pBuilder->pNew;
3949   memset(&sSum, 0, sizeof(sSum));
3950   pItem = pWInfo->pTabList->a + pNew->iTab;
3951   iCur = pItem->iCursor;
3952 
3953   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
3954     if( (pTerm->eOperator & WO_OR)!=0
3955      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
3956     ){
3957       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
3958       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
3959       WhereTerm *pOrTerm;
3960       int once = 1;
3961       int i, j;
3962 
3963       sSubBuild = *pBuilder;
3964       sSubBuild.pOrSet = &sCur;
3965 
3966       WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
3967       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
3968         if( (pOrTerm->eOperator & WO_AND)!=0 ){
3969           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
3970         }else if( pOrTerm->leftCursor==iCur ){
3971           tempWC.pWInfo = pWC->pWInfo;
3972           tempWC.pOuter = pWC;
3973           tempWC.op = TK_AND;
3974           tempWC.nTerm = 1;
3975           tempWC.nBase = 1;
3976           tempWC.a = pOrTerm;
3977           sSubBuild.pWC = &tempWC;
3978         }else{
3979           continue;
3980         }
3981         sCur.n = 0;
3982 #ifdef WHERETRACE_ENABLED
3983         WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3984                    (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
3985         if( sqlite3WhereTrace & 0x400 ){
3986           sqlite3WhereClausePrint(sSubBuild.pWC);
3987         }
3988 #endif
3989 #ifndef SQLITE_OMIT_VIRTUALTABLE
3990         if( IsVirtual(pItem->pTab) ){
3991           rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
3992         }else
3993 #endif
3994         {
3995           rc = whereLoopAddBtree(&sSubBuild, mPrereq);
3996         }
3997         if( rc==SQLITE_OK ){
3998           rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
3999         }
4000         assert( rc==SQLITE_OK || rc==SQLITE_DONE || sCur.n==0
4001                 || rc==SQLITE_NOMEM );
4002         testcase( rc==SQLITE_NOMEM && sCur.n>0 );
4003         testcase( rc==SQLITE_DONE );
4004         if( sCur.n==0 ){
4005           sSum.n = 0;
4006           break;
4007         }else if( once ){
4008           whereOrMove(&sSum, &sCur);
4009           once = 0;
4010         }else{
4011           WhereOrSet sPrev;
4012           whereOrMove(&sPrev, &sSum);
4013           sSum.n = 0;
4014           for(i=0; i<sPrev.n; i++){
4015             for(j=0; j<sCur.n; j++){
4016               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
4017                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
4018                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
4019             }
4020           }
4021         }
4022       }
4023       pNew->nLTerm = 1;
4024       pNew->aLTerm[0] = pTerm;
4025       pNew->wsFlags = WHERE_MULTI_OR;
4026       pNew->rSetup = 0;
4027       pNew->iSortIdx = 0;
4028       memset(&pNew->u, 0, sizeof(pNew->u));
4029       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
4030         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
4031         ** of all sub-scans required by the OR-scan. However, due to rounding
4032         ** errors, it may be that the cost of the OR-scan is equal to its
4033         ** most expensive sub-scan. Add the smallest possible penalty
4034         ** (equivalent to multiplying the cost by 1.07) to ensure that
4035         ** this does not happen. Otherwise, for WHERE clauses such as the
4036         ** following where there is an index on "y":
4037         **
4038         **     WHERE likelihood(x=?, 0.99) OR y=?
4039         **
4040         ** the planner may elect to "OR" together a full-table scan and an
4041         ** index lookup. And other similarly odd results.  */
4042         pNew->rRun = sSum.a[i].rRun + 1;
4043         pNew->nOut = sSum.a[i].nOut;
4044         pNew->prereq = sSum.a[i].prereq;
4045         rc = whereLoopInsert(pBuilder, pNew);
4046       }
4047       WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
4048     }
4049   }
4050   return rc;
4051 }
4052 
4053 /*
4054 ** Add all WhereLoop objects for all tables
4055 */
4056 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
4057   WhereInfo *pWInfo = pBuilder->pWInfo;
4058   Bitmask mPrereq = 0;
4059   Bitmask mPrior = 0;
4060   int iTab;
4061   SrcList *pTabList = pWInfo->pTabList;
4062   SrcItem *pItem;
4063   SrcItem *pEnd = &pTabList->a[pWInfo->nLevel];
4064   sqlite3 *db = pWInfo->pParse->db;
4065   int rc = SQLITE_OK;
4066   WhereLoop *pNew;
4067 
4068   /* Loop over the tables in the join, from left to right */
4069   pNew = pBuilder->pNew;
4070   whereLoopInit(pNew);
4071   pBuilder->iPlanLimit = SQLITE_QUERY_PLANNER_LIMIT;
4072   for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
4073     Bitmask mUnusable = 0;
4074     pNew->iTab = iTab;
4075     pBuilder->iPlanLimit += SQLITE_QUERY_PLANNER_LIMIT_INCR;
4076     pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
4077     if( (pItem->fg.jointype & (JT_LEFT|JT_CROSS))!=0 ){
4078       /* This condition is true when pItem is the FROM clause term on the
4079       ** right-hand-side of a LEFT or CROSS JOIN.  */
4080       mPrereq = mPrior;
4081     }else{
4082       mPrereq = 0;
4083     }
4084 #ifndef SQLITE_OMIT_VIRTUALTABLE
4085     if( IsVirtual(pItem->pTab) ){
4086       SrcItem *p;
4087       for(p=&pItem[1]; p<pEnd; p++){
4088         if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
4089           mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
4090         }
4091       }
4092       rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
4093     }else
4094 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4095     {
4096       rc = whereLoopAddBtree(pBuilder, mPrereq);
4097     }
4098     if( rc==SQLITE_OK && pBuilder->pWC->hasOr ){
4099       rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
4100     }
4101     mPrior |= pNew->maskSelf;
4102     if( rc || db->mallocFailed ){
4103       if( rc==SQLITE_DONE ){
4104         /* We hit the query planner search limit set by iPlanLimit */
4105         sqlite3_log(SQLITE_WARNING, "abbreviated query algorithm search");
4106         rc = SQLITE_OK;
4107       }else{
4108         break;
4109       }
4110     }
4111   }
4112 
4113   whereLoopClear(db, pNew);
4114   return rc;
4115 }
4116 
4117 /*
4118 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
4119 ** parameters) to see if it outputs rows in the requested ORDER BY
4120 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
4121 **
4122 **   N>0:   N terms of the ORDER BY clause are satisfied
4123 **   N==0:  No terms of the ORDER BY clause are satisfied
4124 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
4125 **
4126 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
4127 ** strict.  With GROUP BY and DISTINCT the only requirement is that
4128 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
4129 ** and DISTINCT do not require rows to appear in any particular order as long
4130 ** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT
4131 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
4132 ** pOrderBy terms must be matched in strict left-to-right order.
4133 */
4134 static i8 wherePathSatisfiesOrderBy(
4135   WhereInfo *pWInfo,    /* The WHERE clause */
4136   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
4137   WherePath *pPath,     /* The WherePath to check */
4138   u16 wctrlFlags,       /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
4139   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
4140   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
4141   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
4142 ){
4143   u8 revSet;            /* True if rev is known */
4144   u8 rev;               /* Composite sort order */
4145   u8 revIdx;            /* Index sort order */
4146   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
4147   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
4148   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
4149   u16 eqOpMask;         /* Allowed equality operators */
4150   u16 nKeyCol;          /* Number of key columns in pIndex */
4151   u16 nColumn;          /* Total number of ordered columns in the index */
4152   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
4153   int iLoop;            /* Index of WhereLoop in pPath being processed */
4154   int i, j;             /* Loop counters */
4155   int iCur;             /* Cursor number for current WhereLoop */
4156   int iColumn;          /* A column number within table iCur */
4157   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
4158   WhereTerm *pTerm;     /* A single term of the WHERE clause */
4159   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
4160   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
4161   Index *pIndex;        /* The index associated with pLoop */
4162   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
4163   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
4164   Bitmask obDone;       /* Mask of all ORDER BY terms */
4165   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
4166   Bitmask ready;              /* Mask of inner loops */
4167 
4168   /*
4169   ** We say the WhereLoop is "one-row" if it generates no more than one
4170   ** row of output.  A WhereLoop is one-row if all of the following are true:
4171   **  (a) All index columns match with WHERE_COLUMN_EQ.
4172   **  (b) The index is unique
4173   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
4174   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
4175   **
4176   ** We say the WhereLoop is "order-distinct" if the set of columns from
4177   ** that WhereLoop that are in the ORDER BY clause are different for every
4178   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
4179   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
4180   ** is not order-distinct. To be order-distinct is not quite the same as being
4181   ** UNIQUE since a UNIQUE column or index can have multiple rows that
4182   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
4183   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
4184   **
4185   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
4186   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
4187   ** automatically order-distinct.
4188   */
4189 
4190   assert( pOrderBy!=0 );
4191   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
4192 
4193   nOrderBy = pOrderBy->nExpr;
4194   testcase( nOrderBy==BMS-1 );
4195   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
4196   isOrderDistinct = 1;
4197   obDone = MASKBIT(nOrderBy)-1;
4198   orderDistinctMask = 0;
4199   ready = 0;
4200   eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
4201   if( wctrlFlags & (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MAX|WHERE_ORDERBY_MIN) ){
4202     eqOpMask |= WO_IN;
4203   }
4204   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
4205     if( iLoop>0 ) ready |= pLoop->maskSelf;
4206     if( iLoop<nLoop ){
4207       pLoop = pPath->aLoop[iLoop];
4208       if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
4209     }else{
4210       pLoop = pLast;
4211     }
4212     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
4213       if( pLoop->u.vtab.isOrdered && (wctrlFlags & WHERE_DISTINCTBY)==0 ){
4214         obSat = obDone;
4215       }
4216       break;
4217     }else if( wctrlFlags & WHERE_DISTINCTBY ){
4218       pLoop->u.btree.nDistinctCol = 0;
4219     }
4220     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
4221 
4222     /* Mark off any ORDER BY term X that is a column in the table of
4223     ** the current loop for which there is term in the WHERE
4224     ** clause of the form X IS NULL or X=? that reference only outer
4225     ** loops.
4226     */
4227     for(i=0; i<nOrderBy; i++){
4228       if( MASKBIT(i) & obSat ) continue;
4229       pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
4230       if( NEVER(pOBExpr==0) ) continue;
4231       if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
4232       if( pOBExpr->iTable!=iCur ) continue;
4233       pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
4234                        ~ready, eqOpMask, 0);
4235       if( pTerm==0 ) continue;
4236       if( pTerm->eOperator==WO_IN ){
4237         /* IN terms are only valid for sorting in the ORDER BY LIMIT
4238         ** optimization, and then only if they are actually used
4239         ** by the query plan */
4240         assert( wctrlFlags &
4241                (WHERE_ORDERBY_LIMIT|WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX) );
4242         for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
4243         if( j>=pLoop->nLTerm ) continue;
4244       }
4245       if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
4246         Parse *pParse = pWInfo->pParse;
4247         CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[i].pExpr);
4248         CollSeq *pColl2 = sqlite3ExprCompareCollSeq(pParse, pTerm->pExpr);
4249         assert( pColl1 );
4250         if( pColl2==0 || sqlite3StrICmp(pColl1->zName, pColl2->zName) ){
4251           continue;
4252         }
4253         testcase( pTerm->pExpr->op==TK_IS );
4254       }
4255       obSat |= MASKBIT(i);
4256     }
4257 
4258     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
4259       if( pLoop->wsFlags & WHERE_IPK ){
4260         pIndex = 0;
4261         nKeyCol = 0;
4262         nColumn = 1;
4263       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
4264         return 0;
4265       }else{
4266         nKeyCol = pIndex->nKeyCol;
4267         nColumn = pIndex->nColumn;
4268         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
4269         assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
4270                           || !HasRowid(pIndex->pTable));
4271         /* All relevant terms of the index must also be non-NULL in order
4272         ** for isOrderDistinct to be true.  So the isOrderDistint value
4273         ** computed here might be a false positive.  Corrections will be
4274         ** made at tag-20210426-1 below */
4275         isOrderDistinct = IsUniqueIndex(pIndex)
4276                           && (pLoop->wsFlags & WHERE_SKIPSCAN)==0;
4277       }
4278 
4279       /* Loop through all columns of the index and deal with the ones
4280       ** that are not constrained by == or IN.
4281       */
4282       rev = revSet = 0;
4283       distinctColumns = 0;
4284       for(j=0; j<nColumn; j++){
4285         u8 bOnce = 1; /* True to run the ORDER BY search loop */
4286 
4287         assert( j>=pLoop->u.btree.nEq
4288             || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
4289         );
4290         if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
4291           u16 eOp = pLoop->aLTerm[j]->eOperator;
4292 
4293           /* Skip over == and IS and ISNULL terms.  (Also skip IN terms when
4294           ** doing WHERE_ORDERBY_LIMIT processing).  Except, IS and ISNULL
4295           ** terms imply that the index is not UNIQUE NOT NULL in which case
4296           ** the loop need to be marked as not order-distinct because it can
4297           ** have repeated NULL rows.
4298           **
4299           ** If the current term is a column of an ((?,?) IN (SELECT...))
4300           ** expression for which the SELECT returns more than one column,
4301           ** check that it is the only column used by this loop. Otherwise,
4302           ** if it is one of two or more, none of the columns can be
4303           ** considered to match an ORDER BY term.
4304           */
4305           if( (eOp & eqOpMask)!=0 ){
4306             if( eOp & (WO_ISNULL|WO_IS) ){
4307               testcase( eOp & WO_ISNULL );
4308               testcase( eOp & WO_IS );
4309               testcase( isOrderDistinct );
4310               isOrderDistinct = 0;
4311             }
4312             continue;
4313           }else if( ALWAYS(eOp & WO_IN) ){
4314             /* ALWAYS() justification: eOp is an equality operator due to the
4315             ** j<pLoop->u.btree.nEq constraint above.  Any equality other
4316             ** than WO_IN is captured by the previous "if".  So this one
4317             ** always has to be WO_IN. */
4318             Expr *pX = pLoop->aLTerm[j]->pExpr;
4319             for(i=j+1; i<pLoop->u.btree.nEq; i++){
4320               if( pLoop->aLTerm[i]->pExpr==pX ){
4321                 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
4322                 bOnce = 0;
4323                 break;
4324               }
4325             }
4326           }
4327         }
4328 
4329         /* Get the column number in the table (iColumn) and sort order
4330         ** (revIdx) for the j-th column of the index.
4331         */
4332         if( pIndex ){
4333           iColumn = pIndex->aiColumn[j];
4334           revIdx = pIndex->aSortOrder[j] & KEYINFO_ORDER_DESC;
4335           if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
4336         }else{
4337           iColumn = XN_ROWID;
4338           revIdx = 0;
4339         }
4340 
4341         /* An unconstrained column that might be NULL means that this
4342         ** WhereLoop is not well-ordered.  tag-20210426-1
4343         */
4344         if( isOrderDistinct ){
4345           if( iColumn>=0
4346            && j>=pLoop->u.btree.nEq
4347            && pIndex->pTable->aCol[iColumn].notNull==0
4348           ){
4349             isOrderDistinct = 0;
4350           }
4351           if( iColumn==XN_EXPR ){
4352             isOrderDistinct = 0;
4353           }
4354         }
4355 
4356         /* Find the ORDER BY term that corresponds to the j-th column
4357         ** of the index and mark that ORDER BY term off
4358         */
4359         isMatch = 0;
4360         for(i=0; bOnce && i<nOrderBy; i++){
4361           if( MASKBIT(i) & obSat ) continue;
4362           pOBExpr = sqlite3ExprSkipCollateAndLikely(pOrderBy->a[i].pExpr);
4363           testcase( wctrlFlags & WHERE_GROUPBY );
4364           testcase( wctrlFlags & WHERE_DISTINCTBY );
4365           if( NEVER(pOBExpr==0) ) continue;
4366           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
4367           if( iColumn>=XN_ROWID ){
4368             if( pOBExpr->op!=TK_COLUMN && pOBExpr->op!=TK_AGG_COLUMN ) continue;
4369             if( pOBExpr->iTable!=iCur ) continue;
4370             if( pOBExpr->iColumn!=iColumn ) continue;
4371           }else{
4372             Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
4373             if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
4374               continue;
4375             }
4376           }
4377           if( iColumn!=XN_ROWID ){
4378             pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
4379             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
4380           }
4381           if( wctrlFlags & WHERE_DISTINCTBY ){
4382             pLoop->u.btree.nDistinctCol = j+1;
4383           }
4384           isMatch = 1;
4385           break;
4386         }
4387         if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
4388           /* Make sure the sort order is compatible in an ORDER BY clause.
4389           ** Sort order is irrelevant for a GROUP BY clause. */
4390           if( revSet ){
4391             if( (rev ^ revIdx)!=(pOrderBy->a[i].sortFlags&KEYINFO_ORDER_DESC) ){
4392               isMatch = 0;
4393             }
4394           }else{
4395             rev = revIdx ^ (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_DESC);
4396             if( rev ) *pRevMask |= MASKBIT(iLoop);
4397             revSet = 1;
4398           }
4399         }
4400         if( isMatch && (pOrderBy->a[i].sortFlags & KEYINFO_ORDER_BIGNULL) ){
4401           if( j==pLoop->u.btree.nEq ){
4402             pLoop->wsFlags |= WHERE_BIGNULL_SORT;
4403           }else{
4404             isMatch = 0;
4405           }
4406         }
4407         if( isMatch ){
4408           if( iColumn==XN_ROWID ){
4409             testcase( distinctColumns==0 );
4410             distinctColumns = 1;
4411           }
4412           obSat |= MASKBIT(i);
4413         }else{
4414           /* No match found */
4415           if( j==0 || j<nKeyCol ){
4416             testcase( isOrderDistinct!=0 );
4417             isOrderDistinct = 0;
4418           }
4419           break;
4420         }
4421       } /* end Loop over all index columns */
4422       if( distinctColumns ){
4423         testcase( isOrderDistinct==0 );
4424         isOrderDistinct = 1;
4425       }
4426     } /* end-if not one-row */
4427 
4428     /* Mark off any other ORDER BY terms that reference pLoop */
4429     if( isOrderDistinct ){
4430       orderDistinctMask |= pLoop->maskSelf;
4431       for(i=0; i<nOrderBy; i++){
4432         Expr *p;
4433         Bitmask mTerm;
4434         if( MASKBIT(i) & obSat ) continue;
4435         p = pOrderBy->a[i].pExpr;
4436         mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
4437         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
4438         if( (mTerm&~orderDistinctMask)==0 ){
4439           obSat |= MASKBIT(i);
4440         }
4441       }
4442     }
4443   } /* End the loop over all WhereLoops from outer-most down to inner-most */
4444   if( obSat==obDone ) return (i8)nOrderBy;
4445   if( !isOrderDistinct ){
4446     for(i=nOrderBy-1; i>0; i--){
4447       Bitmask m = ALWAYS(i<BMS) ? MASKBIT(i) - 1 : 0;
4448       if( (obSat&m)==m ) return i;
4449     }
4450     return 0;
4451   }
4452   return -1;
4453 }
4454 
4455 
4456 /*
4457 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
4458 ** the planner assumes that the specified pOrderBy list is actually a GROUP
4459 ** BY clause - and so any order that groups rows as required satisfies the
4460 ** request.
4461 **
4462 ** Normally, in this case it is not possible for the caller to determine
4463 ** whether or not the rows are really being delivered in sorted order, or
4464 ** just in some other order that provides the required grouping. However,
4465 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
4466 ** this function may be called on the returned WhereInfo object. It returns
4467 ** true if the rows really will be sorted in the specified order, or false
4468 ** otherwise.
4469 **
4470 ** For example, assuming:
4471 **
4472 **   CREATE INDEX i1 ON t1(x, Y);
4473 **
4474 ** then
4475 **
4476 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
4477 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
4478 */
4479 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
4480   assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
4481   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
4482   return pWInfo->sorted;
4483 }
4484 
4485 #ifdef WHERETRACE_ENABLED
4486 /* For debugging use only: */
4487 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
4488   static char zName[65];
4489   int i;
4490   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
4491   if( pLast ) zName[i++] = pLast->cId;
4492   zName[i] = 0;
4493   return zName;
4494 }
4495 #endif
4496 
4497 /*
4498 ** Return the cost of sorting nRow rows, assuming that the keys have
4499 ** nOrderby columns and that the first nSorted columns are already in
4500 ** order.
4501 */
4502 static LogEst whereSortingCost(
4503   WhereInfo *pWInfo,
4504   LogEst nRow,
4505   int nOrderBy,
4506   int nSorted
4507 ){
4508   /* TUNING: Estimated cost of a full external sort, where N is
4509   ** the number of rows to sort is:
4510   **
4511   **   cost = (3.0 * N * log(N)).
4512   **
4513   ** Or, if the order-by clause has X terms but only the last Y
4514   ** terms are out of order, then block-sorting will reduce the
4515   ** sorting cost to:
4516   **
4517   **   cost = (3.0 * N * log(N)) * (Y/X)
4518   **
4519   ** The (Y/X) term is implemented using stack variable rScale
4520   ** below.
4521   */
4522   LogEst rScale, rSortCost;
4523   assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
4524   rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
4525   rSortCost = nRow + rScale + 16;
4526 
4527   /* Multiple by log(M) where M is the number of output rows.
4528   ** Use the LIMIT for M if it is smaller.  Or if this sort is for
4529   ** a DISTINCT operator, M will be the number of distinct output
4530   ** rows, so fudge it downwards a bit.
4531   */
4532   if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
4533     nRow = pWInfo->iLimit;
4534   }else if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT) ){
4535     /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT
4536     ** reduces the number of output rows by a factor of 2 */
4537     if( nRow>10 ){ nRow -= 10;  assert( 10==sqlite3LogEst(2) ); }
4538   }
4539   rSortCost += estLog(nRow);
4540   return rSortCost;
4541 }
4542 
4543 /*
4544 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
4545 ** attempts to find the lowest cost path that visits each WhereLoop
4546 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
4547 **
4548 ** Assume that the total number of output rows that will need to be sorted
4549 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
4550 ** costs if nRowEst==0.
4551 **
4552 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
4553 ** error occurs.
4554 */
4555 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
4556   int mxChoice;             /* Maximum number of simultaneous paths tracked */
4557   int nLoop;                /* Number of terms in the join */
4558   Parse *pParse;            /* Parsing context */
4559   sqlite3 *db;              /* The database connection */
4560   int iLoop;                /* Loop counter over the terms of the join */
4561   int ii, jj;               /* Loop counters */
4562   int mxI = 0;              /* Index of next entry to replace */
4563   int nOrderBy;             /* Number of ORDER BY clause terms */
4564   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
4565   LogEst mxUnsorted = 0;    /* Maximum unsorted cost of a set of path */
4566   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
4567   WherePath *aFrom;         /* All nFrom paths at the previous level */
4568   WherePath *aTo;           /* The nTo best paths at the current level */
4569   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
4570   WherePath *pTo;           /* An element of aTo[] that we are working on */
4571   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
4572   WhereLoop **pX;           /* Used to divy up the pSpace memory */
4573   LogEst *aSortCost = 0;    /* Sorting and partial sorting costs */
4574   char *pSpace;             /* Temporary memory used by this routine */
4575   int nSpace;               /* Bytes of space allocated at pSpace */
4576 
4577   pParse = pWInfo->pParse;
4578   db = pParse->db;
4579   nLoop = pWInfo->nLevel;
4580   /* TUNING: For simple queries, only the best path is tracked.
4581   ** For 2-way joins, the 5 best paths are followed.
4582   ** For joins of 3 or more tables, track the 10 best paths */
4583   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
4584   assert( nLoop<=pWInfo->pTabList->nSrc );
4585   WHERETRACE(0x002, ("---- begin solver.  (nRowEst=%d)\n", nRowEst));
4586 
4587   /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
4588   ** case the purpose of this call is to estimate the number of rows returned
4589   ** by the overall query. Once this estimate has been obtained, the caller
4590   ** will invoke this function a second time, passing the estimate as the
4591   ** nRowEst parameter.  */
4592   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
4593     nOrderBy = 0;
4594   }else{
4595     nOrderBy = pWInfo->pOrderBy->nExpr;
4596   }
4597 
4598   /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
4599   nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
4600   nSpace += sizeof(LogEst) * nOrderBy;
4601   pSpace = sqlite3DbMallocRawNN(db, nSpace);
4602   if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
4603   aTo = (WherePath*)pSpace;
4604   aFrom = aTo+mxChoice;
4605   memset(aFrom, 0, sizeof(aFrom[0]));
4606   pX = (WhereLoop**)(aFrom+mxChoice);
4607   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
4608     pFrom->aLoop = pX;
4609   }
4610   if( nOrderBy ){
4611     /* If there is an ORDER BY clause and it is not being ignored, set up
4612     ** space for the aSortCost[] array. Each element of the aSortCost array
4613     ** is either zero - meaning it has not yet been initialized - or the
4614     ** cost of sorting nRowEst rows of data where the first X terms of
4615     ** the ORDER BY clause are already in order, where X is the array
4616     ** index.  */
4617     aSortCost = (LogEst*)pX;
4618     memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
4619   }
4620   assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
4621   assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
4622 
4623   /* Seed the search with a single WherePath containing zero WhereLoops.
4624   **
4625   ** TUNING: Do not let the number of iterations go above 28.  If the cost
4626   ** of computing an automatic index is not paid back within the first 28
4627   ** rows, then do not use the automatic index. */
4628   aFrom[0].nRow = MIN(pParse->nQueryLoop, 48);  assert( 48==sqlite3LogEst(28) );
4629   nFrom = 1;
4630   assert( aFrom[0].isOrdered==0 );
4631   if( nOrderBy ){
4632     /* If nLoop is zero, then there are no FROM terms in the query. Since
4633     ** in this case the query may return a maximum of one row, the results
4634     ** are already in the requested order. Set isOrdered to nOrderBy to
4635     ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
4636     ** -1, indicating that the result set may or may not be ordered,
4637     ** depending on the loops added to the current plan.  */
4638     aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
4639   }
4640 
4641   /* Compute successively longer WherePaths using the previous generation
4642   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
4643   ** best paths at each generation */
4644   for(iLoop=0; iLoop<nLoop; iLoop++){
4645     nTo = 0;
4646     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
4647       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
4648         LogEst nOut;                      /* Rows visited by (pFrom+pWLoop) */
4649         LogEst rCost;                     /* Cost of path (pFrom+pWLoop) */
4650         LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
4651         i8 isOrdered = pFrom->isOrdered;  /* isOrdered for (pFrom+pWLoop) */
4652         Bitmask maskNew;                  /* Mask of src visited by (..) */
4653         Bitmask revMask = 0;              /* Mask of rev-order loops for (..) */
4654 
4655         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
4656         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
4657         if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<3 ){
4658           /* Do not use an automatic index if the this loop is expected
4659           ** to run less than 1.25 times.  It is tempting to also exclude
4660           ** automatic index usage on an outer loop, but sometimes an automatic
4661           ** index is useful in the outer loop of a correlated subquery. */
4662           assert( 10==sqlite3LogEst(2) );
4663           continue;
4664         }
4665 
4666         /* At this point, pWLoop is a candidate to be the next loop.
4667         ** Compute its cost */
4668         rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
4669         rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
4670         nOut = pFrom->nRow + pWLoop->nOut;
4671         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
4672         if( isOrdered<0 ){
4673           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
4674                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
4675                        iLoop, pWLoop, &revMask);
4676         }else{
4677           revMask = pFrom->revLoop;
4678         }
4679         if( isOrdered>=0 && isOrdered<nOrderBy ){
4680           if( aSortCost[isOrdered]==0 ){
4681             aSortCost[isOrdered] = whereSortingCost(
4682                 pWInfo, nRowEst, nOrderBy, isOrdered
4683             );
4684           }
4685           /* TUNING:  Add a small extra penalty (5) to sorting as an
4686           ** extra encouragment to the query planner to select a plan
4687           ** where the rows emerge in the correct order without any sorting
4688           ** required. */
4689           rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]) + 5;
4690 
4691           WHERETRACE(0x002,
4692               ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
4693                aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
4694                rUnsorted, rCost));
4695         }else{
4696           rCost = rUnsorted;
4697           rUnsorted -= 2;  /* TUNING:  Slight bias in favor of no-sort plans */
4698         }
4699 
4700         /* Check to see if pWLoop should be added to the set of
4701         ** mxChoice best-so-far paths.
4702         **
4703         ** First look for an existing path among best-so-far paths
4704         ** that covers the same set of loops and has the same isOrdered
4705         ** setting as the current path candidate.
4706         **
4707         ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4708         ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4709         ** of legal values for isOrdered, -1..64.
4710         */
4711         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
4712           if( pTo->maskLoop==maskNew
4713            && ((pTo->isOrdered^isOrdered)&0x80)==0
4714           ){
4715             testcase( jj==nTo-1 );
4716             break;
4717           }
4718         }
4719         if( jj>=nTo ){
4720           /* None of the existing best-so-far paths match the candidate. */
4721           if( nTo>=mxChoice
4722            && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4723           ){
4724             /* The current candidate is no better than any of the mxChoice
4725             ** paths currently in the best-so-far buffer.  So discard
4726             ** this candidate as not viable. */
4727 #ifdef WHERETRACE_ENABLED /* 0x4 */
4728             if( sqlite3WhereTrace&0x4 ){
4729               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d,%3d order=%c\n",
4730                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4731                   isOrdered>=0 ? isOrdered+'0' : '?');
4732             }
4733 #endif
4734             continue;
4735           }
4736           /* If we reach this points it means that the new candidate path
4737           ** needs to be added to the set of best-so-far paths. */
4738           if( nTo<mxChoice ){
4739             /* Increase the size of the aTo set by one */
4740             jj = nTo++;
4741           }else{
4742             /* New path replaces the prior worst to keep count below mxChoice */
4743             jj = mxI;
4744           }
4745           pTo = &aTo[jj];
4746 #ifdef WHERETRACE_ENABLED /* 0x4 */
4747           if( sqlite3WhereTrace&0x4 ){
4748             sqlite3DebugPrintf("New    %s cost=%-3d,%3d,%3d order=%c\n",
4749                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4750                 isOrdered>=0 ? isOrdered+'0' : '?');
4751           }
4752 #endif
4753         }else{
4754           /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4755           ** same set of loops and has the same isOrdered setting as the
4756           ** candidate path.  Check to see if the candidate should replace
4757           ** pTo or if the candidate should be skipped.
4758           **
4759           ** The conditional is an expanded vector comparison equivalent to:
4760           **   (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4761           */
4762           if( pTo->rCost<rCost
4763            || (pTo->rCost==rCost
4764                && (pTo->nRow<nOut
4765                    || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4766                   )
4767               )
4768           ){
4769 #ifdef WHERETRACE_ENABLED /* 0x4 */
4770             if( sqlite3WhereTrace&0x4 ){
4771               sqlite3DebugPrintf(
4772                   "Skip   %s cost=%-3d,%3d,%3d order=%c",
4773                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4774                   isOrdered>=0 ? isOrdered+'0' : '?');
4775               sqlite3DebugPrintf("   vs %s cost=%-3d,%3d,%3d order=%c\n",
4776                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4777                   pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4778             }
4779 #endif
4780             /* Discard the candidate path from further consideration */
4781             testcase( pTo->rCost==rCost );
4782             continue;
4783           }
4784           testcase( pTo->rCost==rCost+1 );
4785           /* Control reaches here if the candidate path is better than the
4786           ** pTo path.  Replace pTo with the candidate. */
4787 #ifdef WHERETRACE_ENABLED /* 0x4 */
4788           if( sqlite3WhereTrace&0x4 ){
4789             sqlite3DebugPrintf(
4790                 "Update %s cost=%-3d,%3d,%3d order=%c",
4791                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4792                 isOrdered>=0 ? isOrdered+'0' : '?');
4793             sqlite3DebugPrintf("  was %s cost=%-3d,%3d,%3d order=%c\n",
4794                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4795                 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4796           }
4797 #endif
4798         }
4799         /* pWLoop is a winner.  Add it to the set of best so far */
4800         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4801         pTo->revLoop = revMask;
4802         pTo->nRow = nOut;
4803         pTo->rCost = rCost;
4804         pTo->rUnsorted = rUnsorted;
4805         pTo->isOrdered = isOrdered;
4806         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4807         pTo->aLoop[iLoop] = pWLoop;
4808         if( nTo>=mxChoice ){
4809           mxI = 0;
4810           mxCost = aTo[0].rCost;
4811           mxUnsorted = aTo[0].nRow;
4812           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4813             if( pTo->rCost>mxCost
4814              || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4815             ){
4816               mxCost = pTo->rCost;
4817               mxUnsorted = pTo->rUnsorted;
4818               mxI = jj;
4819             }
4820           }
4821         }
4822       }
4823     }
4824 
4825 #ifdef WHERETRACE_ENABLED  /* >=2 */
4826     if( sqlite3WhereTrace & 0x02 ){
4827       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4828       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4829         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4830            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4831            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4832         if( pTo->isOrdered>0 ){
4833           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4834         }else{
4835           sqlite3DebugPrintf("\n");
4836         }
4837       }
4838     }
4839 #endif
4840 
4841     /* Swap the roles of aFrom and aTo for the next generation */
4842     pFrom = aTo;
4843     aTo = aFrom;
4844     aFrom = pFrom;
4845     nFrom = nTo;
4846   }
4847 
4848   if( nFrom==0 ){
4849     sqlite3ErrorMsg(pParse, "no query solution");
4850     sqlite3DbFreeNN(db, pSpace);
4851     return SQLITE_ERROR;
4852   }
4853 
4854   /* Find the lowest cost path.  pFrom will be left pointing to that path */
4855   pFrom = aFrom;
4856   for(ii=1; ii<nFrom; ii++){
4857     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4858   }
4859   assert( pWInfo->nLevel==nLoop );
4860   /* Load the lowest cost path into pWInfo */
4861   for(iLoop=0; iLoop<nLoop; iLoop++){
4862     WhereLevel *pLevel = pWInfo->a + iLoop;
4863     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
4864     pLevel->iFrom = pWLoop->iTab;
4865     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
4866   }
4867   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
4868    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
4869    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
4870    && nRowEst
4871   ){
4872     Bitmask notUsed;
4873     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
4874                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
4875     if( rc==pWInfo->pResultSet->nExpr ){
4876       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4877     }
4878   }
4879   pWInfo->bOrderedInnerLoop = 0;
4880   if( pWInfo->pOrderBy ){
4881     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
4882       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
4883         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4884       }
4885     }else{
4886       pWInfo->nOBSat = pFrom->isOrdered;
4887       pWInfo->revMask = pFrom->revLoop;
4888       if( pWInfo->nOBSat<=0 ){
4889         pWInfo->nOBSat = 0;
4890         if( nLoop>0 ){
4891           u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
4892           if( (wsFlags & WHERE_ONEROW)==0
4893            && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
4894           ){
4895             Bitmask m = 0;
4896             int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
4897                       WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
4898             testcase( wsFlags & WHERE_IPK );
4899             testcase( wsFlags & WHERE_COLUMN_IN );
4900             if( rc==pWInfo->pOrderBy->nExpr ){
4901               pWInfo->bOrderedInnerLoop = 1;
4902               pWInfo->revMask = m;
4903             }
4904           }
4905         }
4906       }else if( nLoop
4907             && pWInfo->nOBSat==1
4908             && (pWInfo->wctrlFlags & (WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX))!=0
4909             ){
4910         pWInfo->bOrderedInnerLoop = 1;
4911       }
4912     }
4913     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
4914         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
4915     ){
4916       Bitmask revMask = 0;
4917       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
4918           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
4919       );
4920       assert( pWInfo->sorted==0 );
4921       if( nOrder==pWInfo->pOrderBy->nExpr ){
4922         pWInfo->sorted = 1;
4923         pWInfo->revMask = revMask;
4924       }
4925     }
4926   }
4927 
4928 
4929   pWInfo->nRowOut = pFrom->nRow;
4930 
4931   /* Free temporary memory and return success */
4932   sqlite3DbFreeNN(db, pSpace);
4933   return SQLITE_OK;
4934 }
4935 
4936 /*
4937 ** Most queries use only a single table (they are not joins) and have
4938 ** simple == constraints against indexed fields.  This routine attempts
4939 ** to plan those simple cases using much less ceremony than the
4940 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4941 ** times for the common case.
4942 **
4943 ** Return non-zero on success, if this query can be handled by this
4944 ** no-frills query planner.  Return zero if this query needs the
4945 ** general-purpose query planner.
4946 */
4947 static int whereShortCut(WhereLoopBuilder *pBuilder){
4948   WhereInfo *pWInfo;
4949   SrcItem *pItem;
4950   WhereClause *pWC;
4951   WhereTerm *pTerm;
4952   WhereLoop *pLoop;
4953   int iCur;
4954   int j;
4955   Table *pTab;
4956   Index *pIdx;
4957   WhereScan scan;
4958 
4959   pWInfo = pBuilder->pWInfo;
4960   if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
4961   assert( pWInfo->pTabList->nSrc>=1 );
4962   pItem = pWInfo->pTabList->a;
4963   pTab = pItem->pTab;
4964   if( IsVirtual(pTab) ) return 0;
4965   if( pItem->fg.isIndexedBy ) return 0;
4966   iCur = pItem->iCursor;
4967   pWC = &pWInfo->sWC;
4968   pLoop = pBuilder->pNew;
4969   pLoop->wsFlags = 0;
4970   pLoop->nSkip = 0;
4971   pTerm = whereScanInit(&scan, pWC, iCur, -1, WO_EQ|WO_IS, 0);
4972   while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
4973   if( pTerm ){
4974     testcase( pTerm->eOperator & WO_IS );
4975     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
4976     pLoop->aLTerm[0] = pTerm;
4977     pLoop->nLTerm = 1;
4978     pLoop->u.btree.nEq = 1;
4979     /* TUNING: Cost of a rowid lookup is 10 */
4980     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
4981   }else{
4982     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4983       int opMask;
4984       assert( pLoop->aLTermSpace==pLoop->aLTerm );
4985       if( !IsUniqueIndex(pIdx)
4986        || pIdx->pPartIdxWhere!=0
4987        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
4988       ) continue;
4989       opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
4990       for(j=0; j<pIdx->nKeyCol; j++){
4991         pTerm = whereScanInit(&scan, pWC, iCur, j, opMask, pIdx);
4992         while( pTerm && pTerm->prereqRight ) pTerm = whereScanNext(&scan);
4993         if( pTerm==0 ) break;
4994         testcase( pTerm->eOperator & WO_IS );
4995         pLoop->aLTerm[j] = pTerm;
4996       }
4997       if( j!=pIdx->nKeyCol ) continue;
4998       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
4999       if( pIdx->isCovering || (pItem->colUsed & pIdx->colNotIdxed)==0 ){
5000         pLoop->wsFlags |= WHERE_IDX_ONLY;
5001       }
5002       pLoop->nLTerm = j;
5003       pLoop->u.btree.nEq = j;
5004       pLoop->u.btree.pIndex = pIdx;
5005       /* TUNING: Cost of a unique index lookup is 15 */
5006       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
5007       break;
5008     }
5009   }
5010   if( pLoop->wsFlags ){
5011     pLoop->nOut = (LogEst)1;
5012     pWInfo->a[0].pWLoop = pLoop;
5013     assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
5014     pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
5015     pWInfo->a[0].iTabCur = iCur;
5016     pWInfo->nRowOut = 1;
5017     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
5018     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
5019       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
5020     }
5021     if( scan.iEquiv>1 ) pLoop->wsFlags |= WHERE_TRANSCONS;
5022 #ifdef SQLITE_DEBUG
5023     pLoop->cId = '0';
5024 #endif
5025 #ifdef WHERETRACE_ENABLED
5026     if( sqlite3WhereTrace ){
5027       sqlite3DebugPrintf("whereShortCut() used to compute solution\n");
5028     }
5029 #endif
5030     return 1;
5031   }
5032   return 0;
5033 }
5034 
5035 /*
5036 ** Helper function for exprIsDeterministic().
5037 */
5038 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
5039   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
5040     pWalker->eCode = 0;
5041     return WRC_Abort;
5042   }
5043   return WRC_Continue;
5044 }
5045 
5046 /*
5047 ** Return true if the expression contains no non-deterministic SQL
5048 ** functions. Do not consider non-deterministic SQL functions that are
5049 ** part of sub-select statements.
5050 */
5051 static int exprIsDeterministic(Expr *p){
5052   Walker w;
5053   memset(&w, 0, sizeof(w));
5054   w.eCode = 1;
5055   w.xExprCallback = exprNodeIsDeterministic;
5056   w.xSelectCallback = sqlite3SelectWalkFail;
5057   sqlite3WalkExpr(&w, p);
5058   return w.eCode;
5059 }
5060 
5061 
5062 #ifdef WHERETRACE_ENABLED
5063 /*
5064 ** Display all WhereLoops in pWInfo
5065 */
5066 static void showAllWhereLoops(WhereInfo *pWInfo, WhereClause *pWC){
5067   if( sqlite3WhereTrace ){    /* Display all of the WhereLoop objects */
5068     WhereLoop *p;
5069     int i;
5070     static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
5071                                            "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
5072     for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
5073       p->cId = zLabel[i%(sizeof(zLabel)-1)];
5074       sqlite3WhereLoopPrint(p, pWC);
5075     }
5076   }
5077 }
5078 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C)
5079 #else
5080 # define WHERETRACE_ALL_LOOPS(W,C)
5081 #endif
5082 
5083 /* Attempt to omit tables from a join that do not affect the result.
5084 ** For a table to not affect the result, the following must be true:
5085 **
5086 **   1) The query must not be an aggregate.
5087 **   2) The table must be the RHS of a LEFT JOIN.
5088 **   3) Either the query must be DISTINCT, or else the ON or USING clause
5089 **      must contain a constraint that limits the scan of the table to
5090 **      at most a single row.
5091 **   4) The table must not be referenced by any part of the query apart
5092 **      from its own USING or ON clause.
5093 **
5094 ** For example, given:
5095 **
5096 **     CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
5097 **     CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
5098 **     CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
5099 **
5100 ** then table t2 can be omitted from the following:
5101 **
5102 **     SELECT v1, v3 FROM t1
5103 **       LEFT JOIN t2 ON (t1.ipk=t2.ipk)
5104 **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5105 **
5106 ** or from:
5107 **
5108 **     SELECT DISTINCT v1, v3 FROM t1
5109 **       LEFT JOIN t2
5110 **       LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5111 */
5112 static SQLITE_NOINLINE Bitmask whereOmitNoopJoin(
5113   WhereInfo *pWInfo,
5114   Bitmask notReady
5115 ){
5116   int i;
5117   Bitmask tabUsed;
5118 
5119   /* Preconditions checked by the caller */
5120   assert( pWInfo->nLevel>=2 );
5121   assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_OmitNoopJoin) );
5122 
5123   /* These two preconditions checked by the caller combine to guarantee
5124   ** condition (1) of the header comment */
5125   assert( pWInfo->pResultSet!=0 );
5126   assert( 0==(pWInfo->wctrlFlags & WHERE_AGG_DISTINCT) );
5127 
5128   tabUsed = sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pResultSet);
5129   if( pWInfo->pOrderBy ){
5130     tabUsed |= sqlite3WhereExprListUsage(&pWInfo->sMaskSet, pWInfo->pOrderBy);
5131   }
5132   for(i=pWInfo->nLevel-1; i>=1; i--){
5133     WhereTerm *pTerm, *pEnd;
5134     SrcItem *pItem;
5135     WhereLoop *pLoop;
5136     pLoop = pWInfo->a[i].pWLoop;
5137     pItem = &pWInfo->pTabList->a[pLoop->iTab];
5138     if( (pItem->fg.jointype & JT_LEFT)==0 ) continue;
5139     if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)==0
5140      && (pLoop->wsFlags & WHERE_ONEROW)==0
5141     ){
5142       continue;
5143     }
5144     if( (tabUsed & pLoop->maskSelf)!=0 ) continue;
5145     pEnd = pWInfo->sWC.a + pWInfo->sWC.nTerm;
5146     for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){
5147       if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5148         if( !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
5149          || pTerm->pExpr->iRightJoinTable!=pItem->iCursor
5150         ){
5151           break;
5152         }
5153       }
5154     }
5155     if( pTerm<pEnd ) continue;
5156     WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
5157     notReady &= ~pLoop->maskSelf;
5158     for(pTerm=pWInfo->sWC.a; pTerm<pEnd; pTerm++){
5159       if( (pTerm->prereqAll & pLoop->maskSelf)!=0 ){
5160         pTerm->wtFlags |= TERM_CODED;
5161       }
5162     }
5163     if( i!=pWInfo->nLevel-1 ){
5164       int nByte = (pWInfo->nLevel-1-i) * sizeof(WhereLevel);
5165       memmove(&pWInfo->a[i], &pWInfo->a[i+1], nByte);
5166     }
5167     pWInfo->nLevel--;
5168     assert( pWInfo->nLevel>0 );
5169   }
5170   return notReady;
5171 }
5172 
5173 /*
5174 ** Check to see if there are any SEARCH loops that might benefit from
5175 ** using a Bloom filter.  Consider a Bloom filter if:
5176 **
5177 **   (1)  The SEARCH happens more than N times where N is the number
5178 **        of rows in the table that is being considered for the Bloom
5179 **        filter.
5180 **   (2)  Some searches are expected to find zero rows.  (This is determined
5181 **        by the WHERE_SELFCULL flag on the term.)
5182 **   (3)  Bloom-filter processing is not disabled.  (Checked by the
5183 **        caller.)
5184 **   (4)  The size of the table being searched is known by ANALYZE.
5185 **
5186 ** This block of code merely checks to see if a Bloom filter would be
5187 ** appropriate, and if so sets the WHERE_BLOOMFILTER flag on the
5188 ** WhereLoop.  The implementation of the Bloom filter comes further
5189 ** down where the code for each WhereLoop is generated.
5190 */
5191 static SQLITE_NOINLINE void whereCheckIfBloomFilterIsUseful(
5192   const WhereInfo *pWInfo
5193 ){
5194   int i;
5195   LogEst nSearch;
5196 
5197   assert( pWInfo->nLevel>=2 );
5198   assert( OptimizationEnabled(pWInfo->pParse->db, SQLITE_BloomFilter) );
5199   nSearch = pWInfo->a[0].pWLoop->nOut;
5200   for(i=1; i<pWInfo->nLevel; i++){
5201     WhereLoop *pLoop = pWInfo->a[i].pWLoop;
5202     const unsigned int reqFlags = (WHERE_SELFCULL|WHERE_COLUMN_EQ);
5203     if( (pLoop->wsFlags & reqFlags)==reqFlags
5204      /* vvvvvv--- Always the case if WHERE_COLUMN_EQ is defined */
5205      && ALWAYS((pLoop->wsFlags & (WHERE_IPK|WHERE_INDEXED))!=0)
5206     ){
5207       SrcItem *pItem = &pWInfo->pTabList->a[pLoop->iTab];
5208       Table *pTab = pItem->pTab;
5209       pTab->tabFlags |= TF_StatsUsed;
5210       if( nSearch > pTab->nRowLogEst
5211        && (pTab->tabFlags & TF_HasStat1)!=0
5212       ){
5213         testcase( pItem->fg.jointype & JT_LEFT );
5214         pLoop->wsFlags |= WHERE_BLOOMFILTER;
5215         pLoop->wsFlags &= ~WHERE_IDX_ONLY;
5216         WHERETRACE(0xffff, (
5217            "-> use Bloom-filter on loop %c because there are ~%.1e "
5218            "lookups into %s which has only ~%.1e rows\n",
5219            pLoop->cId, (double)sqlite3LogEstToInt(nSearch), pTab->zName,
5220            (double)sqlite3LogEstToInt(pTab->nRowLogEst)));
5221       }
5222     }
5223     nSearch += pLoop->nOut;
5224   }
5225 }
5226 
5227 /*
5228 ** Generate the beginning of the loop used for WHERE clause processing.
5229 ** The return value is a pointer to an opaque structure that contains
5230 ** information needed to terminate the loop.  Later, the calling routine
5231 ** should invoke sqlite3WhereEnd() with the return value of this function
5232 ** in order to complete the WHERE clause processing.
5233 **
5234 ** If an error occurs, this routine returns NULL.
5235 **
5236 ** The basic idea is to do a nested loop, one loop for each table in
5237 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
5238 ** same as a SELECT with only a single table in the FROM clause.)  For
5239 ** example, if the SQL is this:
5240 **
5241 **       SELECT * FROM t1, t2, t3 WHERE ...;
5242 **
5243 ** Then the code generated is conceptually like the following:
5244 **
5245 **      foreach row1 in t1 do       \    Code generated
5246 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
5247 **          foreach row3 in t3 do   /
5248 **            ...
5249 **          end                     \    Code generated
5250 **        end                        |-- by sqlite3WhereEnd()
5251 **      end                         /
5252 **
5253 ** Note that the loops might not be nested in the order in which they
5254 ** appear in the FROM clause if a different order is better able to make
5255 ** use of indices.  Note also that when the IN operator appears in
5256 ** the WHERE clause, it might result in additional nested loops for
5257 ** scanning through all values on the right-hand side of the IN.
5258 **
5259 ** There are Btree cursors associated with each table.  t1 uses cursor
5260 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
5261 ** And so forth.  This routine generates code to open those VDBE cursors
5262 ** and sqlite3WhereEnd() generates the code to close them.
5263 **
5264 ** The code that sqlite3WhereBegin() generates leaves the cursors named
5265 ** in pTabList pointing at their appropriate entries.  The [...] code
5266 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
5267 ** data from the various tables of the loop.
5268 **
5269 ** If the WHERE clause is empty, the foreach loops must each scan their
5270 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
5271 ** the tables have indices and there are terms in the WHERE clause that
5272 ** refer to those indices, a complete table scan can be avoided and the
5273 ** code will run much faster.  Most of the work of this routine is checking
5274 ** to see if there are indices that can be used to speed up the loop.
5275 **
5276 ** Terms of the WHERE clause are also used to limit which rows actually
5277 ** make it to the "..." in the middle of the loop.  After each "foreach",
5278 ** terms of the WHERE clause that use only terms in that loop and outer
5279 ** loops are evaluated and if false a jump is made around all subsequent
5280 ** inner loops (or around the "..." if the test occurs within the inner-
5281 ** most loop)
5282 **
5283 ** OUTER JOINS
5284 **
5285 ** An outer join of tables t1 and t2 is conceptally coded as follows:
5286 **
5287 **    foreach row1 in t1 do
5288 **      flag = 0
5289 **      foreach row2 in t2 do
5290 **        start:
5291 **          ...
5292 **          flag = 1
5293 **      end
5294 **      if flag==0 then
5295 **        move the row2 cursor to a null row
5296 **        goto start
5297 **      fi
5298 **    end
5299 **
5300 ** ORDER BY CLAUSE PROCESSING
5301 **
5302 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
5303 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
5304 ** if there is one.  If there is no ORDER BY clause or if this routine
5305 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
5306 **
5307 ** The iIdxCur parameter is the cursor number of an index.  If
5308 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
5309 ** to use for OR clause processing.  The WHERE clause should use this
5310 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
5311 ** the first cursor in an array of cursors for all indices.  iIdxCur should
5312 ** be used to compute the appropriate cursor depending on which index is
5313 ** used.
5314 */
5315 WhereInfo *sqlite3WhereBegin(
5316   Parse *pParse,          /* The parser context */
5317   SrcList *pTabList,      /* FROM clause: A list of all tables to be scanned */
5318   Expr *pWhere,           /* The WHERE clause */
5319   ExprList *pOrderBy,     /* An ORDER BY (or GROUP BY) clause, or NULL */
5320   ExprList *pResultSet,   /* Query result set.  Req'd for DISTINCT */
5321   Select *pLimit,         /* Use this LIMIT/OFFSET clause, if any */
5322   u16 wctrlFlags,         /* The WHERE_* flags defined in sqliteInt.h */
5323   int iAuxArg             /* If WHERE_OR_SUBCLAUSE is set, index cursor number
5324                           ** If WHERE_USE_LIMIT, then the limit amount */
5325 ){
5326   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
5327   int nTabList;              /* Number of elements in pTabList */
5328   WhereInfo *pWInfo;         /* Will become the return value of this function */
5329   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
5330   Bitmask notReady;          /* Cursors that are not yet positioned */
5331   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
5332   WhereMaskSet *pMaskSet;    /* The expression mask set */
5333   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
5334   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
5335   int ii;                    /* Loop counter */
5336   sqlite3 *db;               /* Database connection */
5337   int rc;                    /* Return code */
5338   u8 bFordelete = 0;         /* OPFLAG_FORDELETE or zero, as appropriate */
5339 
5340   assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
5341         (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
5342      && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5343   ));
5344 
5345   /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
5346   assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
5347             || (wctrlFlags & WHERE_USE_LIMIT)==0 );
5348 
5349   /* Variable initialization */
5350   db = pParse->db;
5351   memset(&sWLB, 0, sizeof(sWLB));
5352 
5353   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
5354   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
5355   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
5356 
5357   /* The number of tables in the FROM clause is limited by the number of
5358   ** bits in a Bitmask
5359   */
5360   testcase( pTabList->nSrc==BMS );
5361   if( pTabList->nSrc>BMS ){
5362     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
5363     return 0;
5364   }
5365 
5366   /* This function normally generates a nested loop for all tables in
5367   ** pTabList.  But if the WHERE_OR_SUBCLAUSE flag is set, then we should
5368   ** only generate code for the first table in pTabList and assume that
5369   ** any cursors associated with subsequent tables are uninitialized.
5370   */
5371   nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
5372 
5373   /* Allocate and initialize the WhereInfo structure that will become the
5374   ** return value. A single allocation is used to store the WhereInfo
5375   ** struct, the contents of WhereInfo.a[], the WhereClause structure
5376   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
5377   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
5378   ** some architectures. Hence the ROUND8() below.
5379   */
5380   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
5381   pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
5382   if( db->mallocFailed ){
5383     sqlite3DbFree(db, pWInfo);
5384     pWInfo = 0;
5385     goto whereBeginError;
5386   }
5387   pWInfo->pParse = pParse;
5388   pWInfo->pTabList = pTabList;
5389   pWInfo->pOrderBy = pOrderBy;
5390   pWInfo->pWhere = pWhere;
5391   pWInfo->pResultSet = pResultSet;
5392   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
5393   pWInfo->nLevel = nTabList;
5394   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(pParse);
5395   pWInfo->wctrlFlags = wctrlFlags;
5396   pWInfo->iLimit = iAuxArg;
5397   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
5398 #ifndef SQLITE_OMIT_VIRTUALTABLE
5399   pWInfo->pLimit = pLimit;
5400 #endif
5401   memset(&pWInfo->nOBSat, 0,
5402          offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
5403   memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
5404   assert( pWInfo->eOnePass==ONEPASS_OFF );  /* ONEPASS defaults to OFF */
5405   pMaskSet = &pWInfo->sMaskSet;
5406   pMaskSet->n = 0;
5407   pMaskSet->ix[0] = -99; /* Initialize ix[0] to a value that can never be
5408                          ** a valid cursor number, to avoid an initial
5409                          ** test for pMaskSet->n==0 in sqlite3WhereGetMask() */
5410   sWLB.pWInfo = pWInfo;
5411   sWLB.pWC = &pWInfo->sWC;
5412   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
5413   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
5414   whereLoopInit(sWLB.pNew);
5415 #ifdef SQLITE_DEBUG
5416   sWLB.pNew->cId = '*';
5417 #endif
5418 
5419   /* Split the WHERE clause into separate subexpressions where each
5420   ** subexpression is separated by an AND operator.
5421   */
5422   sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
5423   sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
5424 
5425   /* Special case: No FROM clause
5426   */
5427   if( nTabList==0 ){
5428     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
5429     if( (wctrlFlags & WHERE_WANT_DISTINCT)!=0
5430      && OptimizationEnabled(db, SQLITE_DistinctOpt)
5431     ){
5432       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
5433     }
5434     ExplainQueryPlan((pParse, 0, "SCAN CONSTANT ROW"));
5435   }else{
5436     /* Assign a bit from the bitmask to every term in the FROM clause.
5437     **
5438     ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
5439     **
5440     ** The rule of the previous sentence ensures thta if X is the bitmask for
5441     ** a table T, then X-1 is the bitmask for all other tables to the left of T.
5442     ** Knowing the bitmask for all tables to the left of a left join is
5443     ** important.  Ticket #3015.
5444     **
5445     ** Note that bitmasks are created for all pTabList->nSrc tables in
5446     ** pTabList, not just the first nTabList tables.  nTabList is normally
5447     ** equal to pTabList->nSrc but might be shortened to 1 if the
5448     ** WHERE_OR_SUBCLAUSE flag is set.
5449     */
5450     ii = 0;
5451     do{
5452       createMask(pMaskSet, pTabList->a[ii].iCursor);
5453       sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
5454     }while( (++ii)<pTabList->nSrc );
5455   #ifdef SQLITE_DEBUG
5456     {
5457       Bitmask mx = 0;
5458       for(ii=0; ii<pTabList->nSrc; ii++){
5459         Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
5460         assert( m>=mx );
5461         mx = m;
5462       }
5463     }
5464   #endif
5465   }
5466 
5467   /* Analyze all of the subexpressions. */
5468   sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
5469   sqlite3WhereAddLimit(&pWInfo->sWC, pLimit);
5470   if( db->mallocFailed ) goto whereBeginError;
5471 
5472   /* Special case: WHERE terms that do not refer to any tables in the join
5473   ** (constant expressions). Evaluate each such term, and jump over all the
5474   ** generated code if the result is not true.
5475   **
5476   ** Do not do this if the expression contains non-deterministic functions
5477   ** that are not within a sub-select. This is not strictly required, but
5478   ** preserves SQLite's legacy behaviour in the following two cases:
5479   **
5480   **   FROM ... WHERE random()>0;           -- eval random() once per row
5481   **   FROM ... WHERE (SELECT random())>0;  -- eval random() once overall
5482   */
5483   for(ii=0; ii<sWLB.pWC->nBase; ii++){
5484     WhereTerm *pT = &sWLB.pWC->a[ii];
5485     if( pT->wtFlags & TERM_VIRTUAL ) continue;
5486     if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
5487       sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
5488       pT->wtFlags |= TERM_CODED;
5489     }
5490   }
5491 
5492   if( wctrlFlags & WHERE_WANT_DISTINCT ){
5493     if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
5494       /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
5495       ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
5496       wctrlFlags &= ~WHERE_WANT_DISTINCT;
5497       pWInfo->wctrlFlags &= ~WHERE_WANT_DISTINCT;
5498     }else if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
5499       /* The DISTINCT marking is pointless.  Ignore it. */
5500       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
5501     }else if( pOrderBy==0 ){
5502       /* Try to ORDER BY the result set to make distinct processing easier */
5503       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
5504       pWInfo->pOrderBy = pResultSet;
5505     }
5506   }
5507 
5508   /* Construct the WhereLoop objects */
5509 #if defined(WHERETRACE_ENABLED)
5510   if( sqlite3WhereTrace & 0xffff ){
5511     sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
5512     if( wctrlFlags & WHERE_USE_LIMIT ){
5513       sqlite3DebugPrintf(", limit: %d", iAuxArg);
5514     }
5515     sqlite3DebugPrintf(")\n");
5516     if( sqlite3WhereTrace & 0x100 ){
5517       Select sSelect;
5518       memset(&sSelect, 0, sizeof(sSelect));
5519       sSelect.selFlags = SF_WhereBegin;
5520       sSelect.pSrc = pTabList;
5521       sSelect.pWhere = pWhere;
5522       sSelect.pOrderBy = pOrderBy;
5523       sSelect.pEList = pResultSet;
5524       sqlite3TreeViewSelect(0, &sSelect, 0);
5525     }
5526   }
5527   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5528     sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
5529     sqlite3WhereClausePrint(sWLB.pWC);
5530   }
5531 #endif
5532 
5533   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
5534     rc = whereLoopAddAll(&sWLB);
5535     if( rc ) goto whereBeginError;
5536 
5537 #ifdef SQLITE_ENABLE_STAT4
5538     /* If one or more WhereTerm.truthProb values were used in estimating
5539     ** loop parameters, but then those truthProb values were subsequently
5540     ** changed based on STAT4 information while computing subsequent loops,
5541     ** then we need to rerun the whole loop building process so that all
5542     ** loops will be built using the revised truthProb values. */
5543     if( sWLB.bldFlags2 & SQLITE_BLDF2_2NDPASS ){
5544       WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
5545       WHERETRACE(0xffff,
5546            ("**** Redo all loop computations due to"
5547             " TERM_HIGHTRUTH changes ****\n"));
5548       while( pWInfo->pLoops ){
5549         WhereLoop *p = pWInfo->pLoops;
5550         pWInfo->pLoops = p->pNextLoop;
5551         whereLoopDelete(db, p);
5552       }
5553       rc = whereLoopAddAll(&sWLB);
5554       if( rc ) goto whereBeginError;
5555     }
5556 #endif
5557     WHERETRACE_ALL_LOOPS(pWInfo, sWLB.pWC);
5558 
5559     wherePathSolver(pWInfo, 0);
5560     if( db->mallocFailed ) goto whereBeginError;
5561     if( pWInfo->pOrderBy ){
5562        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
5563        if( db->mallocFailed ) goto whereBeginError;
5564     }
5565   }
5566   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
5567      pWInfo->revMask = ALLBITS;
5568   }
5569   if( pParse->nErr ){
5570     goto whereBeginError;
5571   }
5572   assert( db->mallocFailed==0 );
5573 #ifdef WHERETRACE_ENABLED
5574   if( sqlite3WhereTrace ){
5575     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
5576     if( pWInfo->nOBSat>0 ){
5577       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
5578     }
5579     switch( pWInfo->eDistinct ){
5580       case WHERE_DISTINCT_UNIQUE: {
5581         sqlite3DebugPrintf("  DISTINCT=unique");
5582         break;
5583       }
5584       case WHERE_DISTINCT_ORDERED: {
5585         sqlite3DebugPrintf("  DISTINCT=ordered");
5586         break;
5587       }
5588       case WHERE_DISTINCT_UNORDERED: {
5589         sqlite3DebugPrintf("  DISTINCT=unordered");
5590         break;
5591       }
5592     }
5593     sqlite3DebugPrintf("\n");
5594     for(ii=0; ii<pWInfo->nLevel; ii++){
5595       sqlite3WhereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
5596     }
5597   }
5598 #endif
5599 
5600   /* Attempt to omit tables from a join that do not affect the result.
5601   ** See the comment on whereOmitNoopJoin() for further information.
5602   **
5603   ** This query optimization is factored out into a separate "no-inline"
5604   ** procedure to keep the sqlite3WhereBegin() procedure from becoming
5605   ** too large.  If sqlite3WhereBegin() becomes too large, that prevents
5606   ** some C-compiler optimizers from in-lining the
5607   ** sqlite3WhereCodeOneLoopStart() procedure, and it is important to
5608   ** in-line sqlite3WhereCodeOneLoopStart() for performance reasons.
5609   */
5610   notReady = ~(Bitmask)0;
5611   if( pWInfo->nLevel>=2
5612    && pResultSet!=0                         /* these two combine to guarantee */
5613    && 0==(wctrlFlags & WHERE_AGG_DISTINCT)  /* condition (1) above */
5614    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
5615   ){
5616     notReady = whereOmitNoopJoin(pWInfo, notReady);
5617     nTabList = pWInfo->nLevel;
5618     assert( nTabList>0 );
5619   }
5620 
5621   /* Check to see if there are any SEARCH loops that might benefit from
5622   ** using a Bloom filter.
5623   */
5624   if( pWInfo->nLevel>=2
5625    && OptimizationEnabled(db, SQLITE_BloomFilter)
5626   ){
5627     whereCheckIfBloomFilterIsUseful(pWInfo);
5628   }
5629 
5630 #if defined(WHERETRACE_ENABLED)
5631   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
5632     sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
5633     sqlite3WhereClausePrint(sWLB.pWC);
5634   }
5635   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
5636 #endif
5637   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
5638 
5639   /* If the caller is an UPDATE or DELETE statement that is requesting
5640   ** to use a one-pass algorithm, determine if this is appropriate.
5641   **
5642   ** A one-pass approach can be used if the caller has requested one
5643   ** and either (a) the scan visits at most one row or (b) each
5644   ** of the following are true:
5645   **
5646   **   * the caller has indicated that a one-pass approach can be used
5647   **     with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
5648   **   * the table is not a virtual table, and
5649   **   * either the scan does not use the OR optimization or the caller
5650   **     is a DELETE operation (WHERE_DUPLICATES_OK is only specified
5651   **     for DELETE).
5652   **
5653   ** The last qualification is because an UPDATE statement uses
5654   ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
5655   ** use a one-pass approach, and this is not set accurately for scans
5656   ** that use the OR optimization.
5657   */
5658   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
5659   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
5660     int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
5661     int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
5662     assert( !(wsFlags & WHERE_VIRTUALTABLE) || IsVirtual(pTabList->a[0].pTab) );
5663     if( bOnerow || (
5664         0!=(wctrlFlags & WHERE_ONEPASS_MULTIROW)
5665      && !IsVirtual(pTabList->a[0].pTab)
5666      && (0==(wsFlags & WHERE_MULTI_OR) || (wctrlFlags & WHERE_DUPLICATES_OK))
5667     )){
5668       pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
5669       if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
5670         if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
5671           bFordelete = OPFLAG_FORDELETE;
5672         }
5673         pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
5674       }
5675     }
5676   }
5677 
5678   /* Open all tables in the pTabList and any indices selected for
5679   ** searching those tables.
5680   */
5681   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
5682     Table *pTab;     /* Table to open */
5683     int iDb;         /* Index of database containing table/index */
5684     SrcItem *pTabItem;
5685 
5686     pTabItem = &pTabList->a[pLevel->iFrom];
5687     pTab = pTabItem->pTab;
5688     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5689     pLoop = pLevel->pWLoop;
5690     if( (pTab->tabFlags & TF_Ephemeral)!=0 || IsView(pTab) ){
5691       /* Do nothing */
5692     }else
5693 #ifndef SQLITE_OMIT_VIRTUALTABLE
5694     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
5695       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
5696       int iCur = pTabItem->iCursor;
5697       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
5698     }else if( IsVirtual(pTab) ){
5699       /* noop */
5700     }else
5701 #endif
5702     if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
5703          && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
5704       int op = OP_OpenRead;
5705       if( pWInfo->eOnePass!=ONEPASS_OFF ){
5706         op = OP_OpenWrite;
5707         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
5708       };
5709       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
5710       assert( pTabItem->iCursor==pLevel->iTabCur );
5711       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
5712       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
5713       if( pWInfo->eOnePass==ONEPASS_OFF
5714        && pTab->nCol<BMS
5715        && (pTab->tabFlags & (TF_HasGenerated|TF_WithoutRowid))==0
5716        && (pLoop->wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))==0
5717       ){
5718         /* If we know that only a prefix of the record will be used,
5719         ** it is advantageous to reduce the "column count" field in
5720         ** the P4 operand of the OP_OpenRead/Write opcode. */
5721         Bitmask b = pTabItem->colUsed;
5722         int n = 0;
5723         for(; b; b=b>>1, n++){}
5724         sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
5725         assert( n<=pTab->nCol );
5726       }
5727 #ifdef SQLITE_ENABLE_CURSOR_HINTS
5728       if( pLoop->u.btree.pIndex!=0 ){
5729         sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
5730       }else
5731 #endif
5732       {
5733         sqlite3VdbeChangeP5(v, bFordelete);
5734       }
5735 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5736       sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
5737                             (const u8*)&pTabItem->colUsed, P4_INT64);
5738 #endif
5739     }else{
5740       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
5741     }
5742     if( pLoop->wsFlags & WHERE_INDEXED ){
5743       Index *pIx = pLoop->u.btree.pIndex;
5744       int iIndexCur;
5745       int op = OP_OpenRead;
5746       /* iAuxArg is always set to a positive value if ONEPASS is possible */
5747       assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
5748       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
5749        && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
5750       ){
5751         /* This is one term of an OR-optimization using the PRIMARY KEY of a
5752         ** WITHOUT ROWID table.  No need for a separate index */
5753         iIndexCur = pLevel->iTabCur;
5754         op = 0;
5755       }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
5756         Index *pJ = pTabItem->pTab->pIndex;
5757         iIndexCur = iAuxArg;
5758         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
5759         while( ALWAYS(pJ) && pJ!=pIx ){
5760           iIndexCur++;
5761           pJ = pJ->pNext;
5762         }
5763         op = OP_OpenWrite;
5764         pWInfo->aiCurOnePass[1] = iIndexCur;
5765       }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
5766         iIndexCur = iAuxArg;
5767         op = OP_ReopenIdx;
5768       }else{
5769         iIndexCur = pParse->nTab++;
5770       }
5771       pLevel->iIdxCur = iIndexCur;
5772       assert( pIx->pSchema==pTab->pSchema );
5773       assert( iIndexCur>=0 );
5774       if( op ){
5775         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
5776         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
5777         if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
5778          && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
5779          && (pLoop->wsFlags & WHERE_BIGNULL_SORT)==0
5780          && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
5781          && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
5782          && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
5783         ){
5784           sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ);
5785         }
5786         VdbeComment((v, "%s", pIx->zName));
5787 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
5788         {
5789           u64 colUsed = 0;
5790           int ii, jj;
5791           for(ii=0; ii<pIx->nColumn; ii++){
5792             jj = pIx->aiColumn[ii];
5793             if( jj<0 ) continue;
5794             if( jj>63 ) jj = 63;
5795             if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
5796             colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
5797           }
5798           sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
5799                                 (u8*)&colUsed, P4_INT64);
5800         }
5801 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
5802       }
5803     }
5804     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
5805   }
5806   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
5807   if( db->mallocFailed ) goto whereBeginError;
5808 
5809   /* Generate the code to do the search.  Each iteration of the for
5810   ** loop below generates code for a single nested loop of the VM
5811   ** program.
5812   */
5813   for(ii=0; ii<nTabList; ii++){
5814     int addrExplain;
5815     int wsFlags;
5816     if( pParse->nErr ) goto whereBeginError;
5817     pLevel = &pWInfo->a[ii];
5818     wsFlags = pLevel->pWLoop->wsFlags;
5819     if( (wsFlags & (WHERE_AUTO_INDEX|WHERE_BLOOMFILTER))!=0 ){
5820       if( (wsFlags & WHERE_AUTO_INDEX)!=0 ){
5821 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
5822         constructAutomaticIndex(pParse, &pWInfo->sWC,
5823                   &pTabList->a[pLevel->iFrom], notReady, pLevel);
5824 #endif
5825       }else{
5826         sqlite3ConstructBloomFilter(pWInfo, ii, pLevel, notReady);
5827       }
5828       if( db->mallocFailed ) goto whereBeginError;
5829     }
5830     addrExplain = sqlite3WhereExplainOneScan(
5831         pParse, pTabList, pLevel, wctrlFlags
5832     );
5833     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
5834     notReady = sqlite3WhereCodeOneLoopStart(pParse,v,pWInfo,ii,pLevel,notReady);
5835     pWInfo->iContinue = pLevel->addrCont;
5836     if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
5837       sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
5838     }
5839   }
5840 
5841   /* Done. */
5842   VdbeModuleComment((v, "Begin WHERE-core"));
5843   pWInfo->iEndWhere = sqlite3VdbeCurrentAddr(v);
5844   return pWInfo;
5845 
5846   /* Jump here if malloc fails */
5847 whereBeginError:
5848   if( pWInfo ){
5849     testcase( pWInfo->pExprMods!=0 );
5850     whereUndoExprMods(pWInfo);
5851     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5852     whereInfoFree(db, pWInfo);
5853   }
5854   return 0;
5855 }
5856 
5857 /*
5858 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
5859 ** index rather than the main table.  In SQLITE_DEBUG mode, we want
5860 ** to trace those changes if PRAGMA vdbe_addoptrace=on.  This routine
5861 ** does that.
5862 */
5863 #ifndef SQLITE_DEBUG
5864 # define OpcodeRewriteTrace(D,K,P) /* no-op */
5865 #else
5866 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
5867   static void sqlite3WhereOpcodeRewriteTrace(
5868     sqlite3 *db,
5869     int pc,
5870     VdbeOp *pOp
5871   ){
5872     if( (db->flags & SQLITE_VdbeAddopTrace)==0 ) return;
5873     sqlite3VdbePrintOp(0, pc, pOp);
5874   }
5875 #endif
5876 
5877 /*
5878 ** Generate the end of the WHERE loop.  See comments on
5879 ** sqlite3WhereBegin() for additional information.
5880 */
5881 void sqlite3WhereEnd(WhereInfo *pWInfo){
5882   Parse *pParse = pWInfo->pParse;
5883   Vdbe *v = pParse->pVdbe;
5884   int i;
5885   WhereLevel *pLevel;
5886   WhereLoop *pLoop;
5887   SrcList *pTabList = pWInfo->pTabList;
5888   sqlite3 *db = pParse->db;
5889   int iEnd = sqlite3VdbeCurrentAddr(v);
5890 
5891   /* Generate loop termination code.
5892   */
5893   VdbeModuleComment((v, "End WHERE-core"));
5894   for(i=pWInfo->nLevel-1; i>=0; i--){
5895     int addr;
5896     pLevel = &pWInfo->a[i];
5897     pLoop = pLevel->pWLoop;
5898     if( pLevel->op!=OP_Noop ){
5899 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5900       int addrSeek = 0;
5901       Index *pIdx;
5902       int n;
5903       if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
5904        && i==pWInfo->nLevel-1  /* Ticket [ef9318757b152e3] 2017-10-21 */
5905        && (pLoop->wsFlags & WHERE_INDEXED)!=0
5906        && (pIdx = pLoop->u.btree.pIndex)->hasStat1
5907        && (n = pLoop->u.btree.nDistinctCol)>0
5908        && pIdx->aiRowLogEst[n]>=36
5909       ){
5910         int r1 = pParse->nMem+1;
5911         int j, op;
5912         for(j=0; j<n; j++){
5913           sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
5914         }
5915         pParse->nMem += n+1;
5916         op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
5917         addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
5918         VdbeCoverageIf(v, op==OP_SeekLT);
5919         VdbeCoverageIf(v, op==OP_SeekGT);
5920         sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
5921       }
5922 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
5923       /* The common case: Advance to the next row */
5924       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5925       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
5926       sqlite3VdbeChangeP5(v, pLevel->p5);
5927       VdbeCoverage(v);
5928       VdbeCoverageIf(v, pLevel->op==OP_Next);
5929       VdbeCoverageIf(v, pLevel->op==OP_Prev);
5930       VdbeCoverageIf(v, pLevel->op==OP_VNext);
5931       if( pLevel->regBignull ){
5932         sqlite3VdbeResolveLabel(v, pLevel->addrBignull);
5933         sqlite3VdbeAddOp2(v, OP_DecrJumpZero, pLevel->regBignull, pLevel->p2-1);
5934         VdbeCoverage(v);
5935       }
5936 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
5937       if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
5938 #endif
5939     }else{
5940       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
5941     }
5942     if( (pLoop->wsFlags & WHERE_IN_ABLE)!=0 && pLevel->u.in.nIn>0 ){
5943       struct InLoop *pIn;
5944       int j;
5945       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
5946       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
5947         assert( sqlite3VdbeGetOp(v, pIn->addrInTop+1)->opcode==OP_IsNull
5948                  || pParse->db->mallocFailed );
5949         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5950         if( pIn->eEndLoopOp!=OP_Noop ){
5951           if( pIn->nPrefix ){
5952             int bEarlyOut =
5953                 (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
5954                  && (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0;
5955             if( pLevel->iLeftJoin ){
5956               /* For LEFT JOIN queries, cursor pIn->iCur may not have been
5957               ** opened yet. This occurs for WHERE clauses such as
5958               ** "a = ? AND b IN (...)", where the index is on (a, b). If
5959               ** the RHS of the (a=?) is NULL, then the "b IN (...)" may
5960               ** never have been coded, but the body of the loop run to
5961               ** return the null-row. So, if the cursor is not open yet,
5962               ** jump over the OP_Next or OP_Prev instruction about to
5963               ** be coded.  */
5964               sqlite3VdbeAddOp2(v, OP_IfNotOpen, pIn->iCur,
5965                   sqlite3VdbeCurrentAddr(v) + 2 + bEarlyOut);
5966               VdbeCoverage(v);
5967             }
5968             if( bEarlyOut ){
5969               sqlite3VdbeAddOp4Int(v, OP_IfNoHope, pLevel->iIdxCur,
5970                   sqlite3VdbeCurrentAddr(v)+2,
5971                   pIn->iBase, pIn->nPrefix);
5972               VdbeCoverage(v);
5973               /* Retarget the OP_IsNull against the left operand of IN so
5974               ** it jumps past the OP_IfNoHope.  This is because the
5975               ** OP_IsNull also bypasses the OP_Affinity opcode that is
5976               ** required by OP_IfNoHope. */
5977               sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
5978             }
5979           }
5980           sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
5981           VdbeCoverage(v);
5982           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Prev);
5983           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_Next);
5984         }
5985         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
5986       }
5987     }
5988     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
5989     if( pLevel->addrSkip ){
5990       sqlite3VdbeGoto(v, pLevel->addrSkip);
5991       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
5992       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
5993       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
5994     }
5995 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
5996     if( pLevel->addrLikeRep ){
5997       sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
5998                         pLevel->addrLikeRep);
5999       VdbeCoverage(v);
6000     }
6001 #endif
6002     if( pLevel->iLeftJoin ){
6003       int ws = pLoop->wsFlags;
6004       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
6005       assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
6006       if( (ws & WHERE_IDX_ONLY)==0 ){
6007         assert( pLevel->iTabCur==pTabList->a[pLevel->iFrom].iCursor );
6008         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iTabCur);
6009       }
6010       if( (ws & WHERE_INDEXED)
6011        || ((ws & WHERE_MULTI_OR) && pLevel->u.pCoveringIdx)
6012       ){
6013         if( ws & WHERE_MULTI_OR ){
6014           Index *pIx = pLevel->u.pCoveringIdx;
6015           int iDb = sqlite3SchemaToIndex(db, pIx->pSchema);
6016           sqlite3VdbeAddOp3(v, OP_ReopenIdx, pLevel->iIdxCur, pIx->tnum, iDb);
6017           sqlite3VdbeSetP4KeyInfo(pParse, pIx);
6018         }
6019         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
6020       }
6021       if( pLevel->op==OP_Return ){
6022         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
6023       }else{
6024         sqlite3VdbeGoto(v, pLevel->addrFirst);
6025       }
6026       sqlite3VdbeJumpHere(v, addr);
6027     }
6028     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
6029                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
6030   }
6031 
6032   /* The "break" point is here, just past the end of the outer loop.
6033   ** Set it.
6034   */
6035   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
6036 
6037   assert( pWInfo->nLevel<=pTabList->nSrc );
6038   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
6039     int k, last;
6040     VdbeOp *pOp, *pLastOp;
6041     Index *pIdx = 0;
6042     SrcItem *pTabItem = &pTabList->a[pLevel->iFrom];
6043     Table *pTab = pTabItem->pTab;
6044     assert( pTab!=0 );
6045     pLoop = pLevel->pWLoop;
6046 
6047     /* For a co-routine, change all OP_Column references to the table of
6048     ** the co-routine into OP_Copy of result contained in a register.
6049     ** OP_Rowid becomes OP_Null.
6050     */
6051     if( pTabItem->fg.viaCoroutine ){
6052       testcase( pParse->db->mallocFailed );
6053       translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
6054                             pTabItem->regResult, 0);
6055       continue;
6056     }
6057 
6058 #ifdef SQLITE_ENABLE_EARLY_CURSOR_CLOSE
6059     /* Close all of the cursors that were opened by sqlite3WhereBegin.
6060     ** Except, do not close cursors that will be reused by the OR optimization
6061     ** (WHERE_OR_SUBCLAUSE).  And do not close the OP_OpenWrite cursors
6062     ** created for the ONEPASS optimization.
6063     */
6064     if( (pTab->tabFlags & TF_Ephemeral)==0
6065      && !IsView(pTab)
6066      && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
6067     ){
6068       int ws = pLoop->wsFlags;
6069       if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){
6070         sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
6071       }
6072       if( (ws & WHERE_INDEXED)!=0
6073        && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0
6074        && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1]
6075       ){
6076         sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
6077       }
6078     }
6079 #endif
6080 
6081     /* If this scan uses an index, make VDBE code substitutions to read data
6082     ** from the index instead of from the table where possible.  In some cases
6083     ** this optimization prevents the table from ever being read, which can
6084     ** yield a significant performance boost.
6085     **
6086     ** Calls to the code generator in between sqlite3WhereBegin and
6087     ** sqlite3WhereEnd will have created code that references the table
6088     ** directly.  This loop scans all that code looking for opcodes
6089     ** that reference the table and converts them into opcodes that
6090     ** reference the index.
6091     */
6092     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
6093       pIdx = pLoop->u.btree.pIndex;
6094     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
6095       pIdx = pLevel->u.pCoveringIdx;
6096     }
6097     if( pIdx
6098      && !db->mallocFailed
6099     ){
6100       if( pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable) ){
6101         last = iEnd;
6102       }else{
6103         last = pWInfo->iEndWhere;
6104       }
6105       k = pLevel->addrBody + 1;
6106 #ifdef SQLITE_DEBUG
6107       if( db->flags & SQLITE_VdbeAddopTrace ){
6108         printf("TRANSLATE opcodes in range %d..%d\n", k, last-1);
6109       }
6110       /* Proof that the "+1" on the k value above is safe */
6111       pOp = sqlite3VdbeGetOp(v, k - 1);
6112       assert( pOp->opcode!=OP_Column || pOp->p1!=pLevel->iTabCur );
6113       assert( pOp->opcode!=OP_Rowid  || pOp->p1!=pLevel->iTabCur );
6114       assert( pOp->opcode!=OP_IfNullRow || pOp->p1!=pLevel->iTabCur );
6115 #endif
6116       pOp = sqlite3VdbeGetOp(v, k);
6117       pLastOp = pOp + (last - k);
6118       assert( pOp<=pLastOp );
6119       do{
6120         if( pOp->p1!=pLevel->iTabCur ){
6121           /* no-op */
6122         }else if( pOp->opcode==OP_Column
6123 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6124          || pOp->opcode==OP_Offset
6125 #endif
6126         ){
6127           int x = pOp->p2;
6128           assert( pIdx->pTable==pTab );
6129           if( !HasRowid(pTab) ){
6130             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
6131             x = pPk->aiColumn[x];
6132             assert( x>=0 );
6133           }else{
6134             testcase( x!=sqlite3StorageColumnToTable(pTab,x) );
6135             x = sqlite3StorageColumnToTable(pTab,x);
6136           }
6137           x = sqlite3TableColumnToIndex(pIdx, x);
6138           if( x>=0 ){
6139             pOp->p2 = x;
6140             pOp->p1 = pLevel->iIdxCur;
6141             OpcodeRewriteTrace(db, k, pOp);
6142           }
6143           assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0
6144               || pWInfo->eOnePass );
6145         }else if( pOp->opcode==OP_Rowid ){
6146           pOp->p1 = pLevel->iIdxCur;
6147           pOp->opcode = OP_IdxRowid;
6148           OpcodeRewriteTrace(db, k, pOp);
6149         }else if( pOp->opcode==OP_IfNullRow ){
6150           pOp->p1 = pLevel->iIdxCur;
6151           OpcodeRewriteTrace(db, k, pOp);
6152         }
6153 #ifdef SQLITE_DEBUG
6154         k++;
6155 #endif
6156       }while( (++pOp)<pLastOp );
6157 #ifdef SQLITE_DEBUG
6158       if( db->flags & SQLITE_VdbeAddopTrace ) printf("TRANSLATE complete\n");
6159 #endif
6160     }
6161   }
6162 
6163   /* Final cleanup
6164   */
6165   if( pWInfo->pExprMods ) whereUndoExprMods(pWInfo);
6166   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
6167   whereInfoFree(db, pWInfo);
6168   return;
6169 }
6170