1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 */ 19 #include "sqliteInt.h" 20 21 /* 22 ** Trace output macros 23 */ 24 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 25 int sqlite3WhereTrace = 0; 26 #endif 27 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 28 # define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X 29 #else 30 # define WHERETRACE(X) 31 #endif 32 33 /* Forward reference 34 */ 35 typedef struct WhereClause WhereClause; 36 typedef struct WhereMaskSet WhereMaskSet; 37 typedef struct WhereOrInfo WhereOrInfo; 38 typedef struct WhereAndInfo WhereAndInfo; 39 typedef struct WhereCost WhereCost; 40 41 /* 42 ** The query generator uses an array of instances of this structure to 43 ** help it analyze the subexpressions of the WHERE clause. Each WHERE 44 ** clause subexpression is separated from the others by AND operators, 45 ** usually, or sometimes subexpressions separated by OR. 46 ** 47 ** All WhereTerms are collected into a single WhereClause structure. 48 ** The following identity holds: 49 ** 50 ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm 51 ** 52 ** When a term is of the form: 53 ** 54 ** X <op> <expr> 55 ** 56 ** where X is a column name and <op> is one of certain operators, 57 ** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the 58 ** cursor number and column number for X. WhereTerm.eOperator records 59 ** the <op> using a bitmask encoding defined by WO_xxx below. The 60 ** use of a bitmask encoding for the operator allows us to search 61 ** quickly for terms that match any of several different operators. 62 ** 63 ** A WhereTerm might also be two or more subterms connected by OR: 64 ** 65 ** (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR .... 66 ** 67 ** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR 68 ** and the WhereTerm.u.pOrInfo field points to auxiliary information that 69 ** is collected about the 70 ** 71 ** If a term in the WHERE clause does not match either of the two previous 72 ** categories, then eOperator==0. The WhereTerm.pExpr field is still set 73 ** to the original subexpression content and wtFlags is set up appropriately 74 ** but no other fields in the WhereTerm object are meaningful. 75 ** 76 ** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers, 77 ** but they do so indirectly. A single WhereMaskSet structure translates 78 ** cursor number into bits and the translated bit is stored in the prereq 79 ** fields. The translation is used in order to maximize the number of 80 ** bits that will fit in a Bitmask. The VDBE cursor numbers might be 81 ** spread out over the non-negative integers. For example, the cursor 82 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The WhereMaskSet 83 ** translates these sparse cursor numbers into consecutive integers 84 ** beginning with 0 in order to make the best possible use of the available 85 ** bits in the Bitmask. So, in the example above, the cursor numbers 86 ** would be mapped into integers 0 through 7. 87 ** 88 ** The number of terms in a join is limited by the number of bits 89 ** in prereqRight and prereqAll. The default is 64 bits, hence SQLite 90 ** is only able to process joins with 64 or fewer tables. 91 */ 92 typedef struct WhereTerm WhereTerm; 93 struct WhereTerm { 94 Expr *pExpr; /* Pointer to the subexpression that is this term */ 95 int iParent; /* Disable pWC->a[iParent] when this term disabled */ 96 int leftCursor; /* Cursor number of X in "X <op> <expr>" */ 97 union { 98 int leftColumn; /* Column number of X in "X <op> <expr>" */ 99 WhereOrInfo *pOrInfo; /* Extra information if eOperator==WO_OR */ 100 WhereAndInfo *pAndInfo; /* Extra information if eOperator==WO_AND */ 101 } u; 102 u16 eOperator; /* A WO_xx value describing <op> */ 103 u8 wtFlags; /* TERM_xxx bit flags. See below */ 104 u8 nChild; /* Number of children that must disable us */ 105 WhereClause *pWC; /* The clause this term is part of */ 106 Bitmask prereqRight; /* Bitmask of tables used by pExpr->pRight */ 107 Bitmask prereqAll; /* Bitmask of tables referenced by pExpr */ 108 }; 109 110 /* 111 ** Allowed values of WhereTerm.wtFlags 112 */ 113 #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */ 114 #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */ 115 #define TERM_CODED 0x04 /* This term is already coded */ 116 #define TERM_COPIED 0x08 /* Has a child */ 117 #define TERM_ORINFO 0x10 /* Need to free the WhereTerm.u.pOrInfo object */ 118 #define TERM_ANDINFO 0x20 /* Need to free the WhereTerm.u.pAndInfo obj */ 119 #define TERM_OR_OK 0x40 /* Used during OR-clause processing */ 120 121 /* 122 ** An instance of the following structure holds all information about a 123 ** WHERE clause. Mostly this is a container for one or more WhereTerms. 124 */ 125 struct WhereClause { 126 Parse *pParse; /* The parser context */ 127 WhereMaskSet *pMaskSet; /* Mapping of table cursor numbers to bitmasks */ 128 Bitmask vmask; /* Bitmask identifying virtual table cursors */ 129 u8 op; /* Split operator. TK_AND or TK_OR */ 130 int nTerm; /* Number of terms */ 131 int nSlot; /* Number of entries in a[] */ 132 WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */ 133 #if defined(SQLITE_SMALL_STACK) 134 WhereTerm aStatic[1]; /* Initial static space for a[] */ 135 #else 136 WhereTerm aStatic[8]; /* Initial static space for a[] */ 137 #endif 138 }; 139 140 /* 141 ** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to 142 ** a dynamically allocated instance of the following structure. 143 */ 144 struct WhereOrInfo { 145 WhereClause wc; /* Decomposition into subterms */ 146 Bitmask indexable; /* Bitmask of all indexable tables in the clause */ 147 }; 148 149 /* 150 ** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to 151 ** a dynamically allocated instance of the following structure. 152 */ 153 struct WhereAndInfo { 154 WhereClause wc; /* The subexpression broken out */ 155 }; 156 157 /* 158 ** An instance of the following structure keeps track of a mapping 159 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm. 160 ** 161 ** The VDBE cursor numbers are small integers contained in 162 ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE 163 ** clause, the cursor numbers might not begin with 0 and they might 164 ** contain gaps in the numbering sequence. But we want to make maximum 165 ** use of the bits in our bitmasks. This structure provides a mapping 166 ** from the sparse cursor numbers into consecutive integers beginning 167 ** with 0. 168 ** 169 ** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask 170 ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A. 171 ** 172 ** For example, if the WHERE clause expression used these VDBE 173 ** cursors: 4, 5, 8, 29, 57, 73. Then the WhereMaskSet structure 174 ** would map those cursor numbers into bits 0 through 5. 175 ** 176 ** Note that the mapping is not necessarily ordered. In the example 177 ** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0, 178 ** 57->5, 73->4. Or one of 719 other combinations might be used. It 179 ** does not really matter. What is important is that sparse cursor 180 ** numbers all get mapped into bit numbers that begin with 0 and contain 181 ** no gaps. 182 */ 183 struct WhereMaskSet { 184 int n; /* Number of assigned cursor values */ 185 int ix[BMS]; /* Cursor assigned to each bit */ 186 }; 187 188 /* 189 ** A WhereCost object records a lookup strategy and the estimated 190 ** cost of pursuing that strategy. 191 */ 192 struct WhereCost { 193 WherePlan plan; /* The lookup strategy */ 194 double rCost; /* Overall cost of pursuing this search strategy */ 195 double nRow; /* Estimated number of output rows */ 196 Bitmask used; /* Bitmask of cursors used by this plan */ 197 }; 198 199 /* 200 ** Bitmasks for the operators that indices are able to exploit. An 201 ** OR-ed combination of these values can be used when searching for 202 ** terms in the where clause. 203 */ 204 #define WO_IN 0x001 205 #define WO_EQ 0x002 206 #define WO_LT (WO_EQ<<(TK_LT-TK_EQ)) 207 #define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) 208 #define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) 209 #define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) 210 #define WO_MATCH 0x040 211 #define WO_ISNULL 0x080 212 #define WO_OR 0x100 /* Two or more OR-connected terms */ 213 #define WO_AND 0x200 /* Two or more AND-connected terms */ 214 215 #define WO_ALL 0xfff /* Mask of all possible WO_* values */ 216 #define WO_SINGLE 0x0ff /* Mask of all non-compound WO_* values */ 217 218 /* 219 ** Value for wsFlags returned by bestIndex() and stored in 220 ** WhereLevel.wsFlags. These flags determine which search 221 ** strategies are appropriate. 222 ** 223 ** The least significant 12 bits is reserved as a mask for WO_ values above. 224 ** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL. 225 ** But if the table is the right table of a left join, WhereLevel.wsFlags 226 ** is set to WO_IN|WO_EQ. The WhereLevel.wsFlags field can then be used as 227 ** the "op" parameter to findTerm when we are resolving equality constraints. 228 ** ISNULL constraints will then not be used on the right table of a left 229 ** join. Tickets #2177 and #2189. 230 */ 231 #define WHERE_ROWID_EQ 0x00001000 /* rowid=EXPR or rowid IN (...) */ 232 #define WHERE_ROWID_RANGE 0x00002000 /* rowid<EXPR and/or rowid>EXPR */ 233 #define WHERE_COLUMN_EQ 0x00010000 /* x=EXPR or x IN (...) or x IS NULL */ 234 #define WHERE_COLUMN_RANGE 0x00020000 /* x<EXPR and/or x>EXPR */ 235 #define WHERE_COLUMN_IN 0x00040000 /* x IN (...) */ 236 #define WHERE_COLUMN_NULL 0x00080000 /* x IS NULL */ 237 #define WHERE_INDEXED 0x000f0000 /* Anything that uses an index */ 238 #define WHERE_NOT_FULLSCAN 0x000f3000 /* Does not do a full table scan */ 239 #define WHERE_IN_ABLE 0x000f1000 /* Able to support an IN operator */ 240 #define WHERE_TOP_LIMIT 0x00100000 /* x<EXPR or x<=EXPR constraint */ 241 #define WHERE_BTM_LIMIT 0x00200000 /* x>EXPR or x>=EXPR constraint */ 242 #define WHERE_IDX_ONLY 0x00800000 /* Use index only - omit table */ 243 #define WHERE_ORDERBY 0x01000000 /* Output will appear in correct order */ 244 #define WHERE_REVERSE 0x02000000 /* Scan in reverse order */ 245 #define WHERE_UNIQUE 0x04000000 /* Selects no more than one row */ 246 #define WHERE_VIRTUALTABLE 0x08000000 /* Use virtual-table processing */ 247 #define WHERE_MULTI_OR 0x10000000 /* OR using multiple indices */ 248 #define WHERE_TEMP_INDEX 0x20000000 /* Uses an ephemeral index */ 249 250 /* 251 ** Initialize a preallocated WhereClause structure. 252 */ 253 static void whereClauseInit( 254 WhereClause *pWC, /* The WhereClause to be initialized */ 255 Parse *pParse, /* The parsing context */ 256 WhereMaskSet *pMaskSet /* Mapping from table cursor numbers to bitmasks */ 257 ){ 258 pWC->pParse = pParse; 259 pWC->pMaskSet = pMaskSet; 260 pWC->nTerm = 0; 261 pWC->nSlot = ArraySize(pWC->aStatic); 262 pWC->a = pWC->aStatic; 263 pWC->vmask = 0; 264 } 265 266 /* Forward reference */ 267 static void whereClauseClear(WhereClause*); 268 269 /* 270 ** Deallocate all memory associated with a WhereOrInfo object. 271 */ 272 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ 273 whereClauseClear(&p->wc); 274 sqlite3DbFree(db, p); 275 } 276 277 /* 278 ** Deallocate all memory associated with a WhereAndInfo object. 279 */ 280 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ 281 whereClauseClear(&p->wc); 282 sqlite3DbFree(db, p); 283 } 284 285 /* 286 ** Deallocate a WhereClause structure. The WhereClause structure 287 ** itself is not freed. This routine is the inverse of whereClauseInit(). 288 */ 289 static void whereClauseClear(WhereClause *pWC){ 290 int i; 291 WhereTerm *a; 292 sqlite3 *db = pWC->pParse->db; 293 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ 294 if( a->wtFlags & TERM_DYNAMIC ){ 295 sqlite3ExprDelete(db, a->pExpr); 296 } 297 if( a->wtFlags & TERM_ORINFO ){ 298 whereOrInfoDelete(db, a->u.pOrInfo); 299 }else if( a->wtFlags & TERM_ANDINFO ){ 300 whereAndInfoDelete(db, a->u.pAndInfo); 301 } 302 } 303 if( pWC->a!=pWC->aStatic ){ 304 sqlite3DbFree(db, pWC->a); 305 } 306 } 307 308 /* 309 ** Add a single new WhereTerm entry to the WhereClause object pWC. 310 ** The new WhereTerm object is constructed from Expr p and with wtFlags. 311 ** The index in pWC->a[] of the new WhereTerm is returned on success. 312 ** 0 is returned if the new WhereTerm could not be added due to a memory 313 ** allocation error. The memory allocation failure will be recorded in 314 ** the db->mallocFailed flag so that higher-level functions can detect it. 315 ** 316 ** This routine will increase the size of the pWC->a[] array as necessary. 317 ** 318 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility 319 ** for freeing the expression p is assumed by the WhereClause object pWC. 320 ** This is true even if this routine fails to allocate a new WhereTerm. 321 ** 322 ** WARNING: This routine might reallocate the space used to store 323 ** WhereTerms. All pointers to WhereTerms should be invalidated after 324 ** calling this routine. Such pointers may be reinitialized by referencing 325 ** the pWC->a[] array. 326 */ 327 static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){ 328 WhereTerm *pTerm; 329 int idx; 330 testcase( wtFlags & TERM_VIRTUAL ); /* EV: R-00211-15100 */ 331 if( pWC->nTerm>=pWC->nSlot ){ 332 WhereTerm *pOld = pWC->a; 333 sqlite3 *db = pWC->pParse->db; 334 pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); 335 if( pWC->a==0 ){ 336 if( wtFlags & TERM_DYNAMIC ){ 337 sqlite3ExprDelete(db, p); 338 } 339 pWC->a = pOld; 340 return 0; 341 } 342 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); 343 if( pOld!=pWC->aStatic ){ 344 sqlite3DbFree(db, pOld); 345 } 346 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); 347 } 348 pTerm = &pWC->a[idx = pWC->nTerm++]; 349 pTerm->pExpr = p; 350 pTerm->wtFlags = wtFlags; 351 pTerm->pWC = pWC; 352 pTerm->iParent = -1; 353 return idx; 354 } 355 356 /* 357 ** This routine identifies subexpressions in the WHERE clause where 358 ** each subexpression is separated by the AND operator or some other 359 ** operator specified in the op parameter. The WhereClause structure 360 ** is filled with pointers to subexpressions. For example: 361 ** 362 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) 363 ** \________/ \_______________/ \________________/ 364 ** slot[0] slot[1] slot[2] 365 ** 366 ** The original WHERE clause in pExpr is unaltered. All this routine 367 ** does is make slot[] entries point to substructure within pExpr. 368 ** 369 ** In the previous sentence and in the diagram, "slot[]" refers to 370 ** the WhereClause.a[] array. The slot[] array grows as needed to contain 371 ** all terms of the WHERE clause. 372 */ 373 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){ 374 pWC->op = (u8)op; 375 if( pExpr==0 ) return; 376 if( pExpr->op!=op ){ 377 whereClauseInsert(pWC, pExpr, 0); 378 }else{ 379 whereSplit(pWC, pExpr->pLeft, op); 380 whereSplit(pWC, pExpr->pRight, op); 381 } 382 } 383 384 /* 385 ** Initialize an expression mask set (a WhereMaskSet object) 386 */ 387 #define initMaskSet(P) memset(P, 0, sizeof(*P)) 388 389 /* 390 ** Return the bitmask for the given cursor number. Return 0 if 391 ** iCursor is not in the set. 392 */ 393 static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){ 394 int i; 395 assert( pMaskSet->n<=sizeof(Bitmask)*8 ); 396 for(i=0; i<pMaskSet->n; i++){ 397 if( pMaskSet->ix[i]==iCursor ){ 398 return ((Bitmask)1)<<i; 399 } 400 } 401 return 0; 402 } 403 404 /* 405 ** Create a new mask for cursor iCursor. 406 ** 407 ** There is one cursor per table in the FROM clause. The number of 408 ** tables in the FROM clause is limited by a test early in the 409 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 410 ** array will never overflow. 411 */ 412 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 413 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 414 pMaskSet->ix[pMaskSet->n++] = iCursor; 415 } 416 417 /* 418 ** This routine walks (recursively) an expression tree and generates 419 ** a bitmask indicating which tables are used in that expression 420 ** tree. 421 ** 422 ** In order for this routine to work, the calling function must have 423 ** previously invoked sqlite3ResolveExprNames() on the expression. See 424 ** the header comment on that routine for additional information. 425 ** The sqlite3ResolveExprNames() routines looks for column names and 426 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to 427 ** the VDBE cursor number of the table. This routine just has to 428 ** translate the cursor numbers into bitmask values and OR all 429 ** the bitmasks together. 430 */ 431 static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*); 432 static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*); 433 static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){ 434 Bitmask mask = 0; 435 if( p==0 ) return 0; 436 if( p->op==TK_COLUMN ){ 437 mask = getMask(pMaskSet, p->iTable); 438 return mask; 439 } 440 mask = exprTableUsage(pMaskSet, p->pRight); 441 mask |= exprTableUsage(pMaskSet, p->pLeft); 442 if( ExprHasProperty(p, EP_xIsSelect) ){ 443 mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect); 444 }else{ 445 mask |= exprListTableUsage(pMaskSet, p->x.pList); 446 } 447 return mask; 448 } 449 static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){ 450 int i; 451 Bitmask mask = 0; 452 if( pList ){ 453 for(i=0; i<pList->nExpr; i++){ 454 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); 455 } 456 } 457 return mask; 458 } 459 static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){ 460 Bitmask mask = 0; 461 while( pS ){ 462 mask |= exprListTableUsage(pMaskSet, pS->pEList); 463 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); 464 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); 465 mask |= exprTableUsage(pMaskSet, pS->pWhere); 466 mask |= exprTableUsage(pMaskSet, pS->pHaving); 467 pS = pS->pPrior; 468 } 469 return mask; 470 } 471 472 /* 473 ** Return TRUE if the given operator is one of the operators that is 474 ** allowed for an indexable WHERE clause term. The allowed operators are 475 ** "=", "<", ">", "<=", ">=", and "IN". 476 ** 477 ** IMPLEMENTATION-OF: R-59926-26393 To be usable by an index a term must be 478 ** of one of the following forms: column = expression column > expression 479 ** column >= expression column < expression column <= expression 480 ** expression = column expression > column expression >= column 481 ** expression < column expression <= column column IN 482 ** (expression-list) column IN (subquery) column IS NULL 483 */ 484 static int allowedOp(int op){ 485 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); 486 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); 487 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); 488 assert( TK_GE==TK_EQ+4 ); 489 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; 490 } 491 492 /* 493 ** Swap two objects of type TYPE. 494 */ 495 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 496 497 /* 498 ** Commute a comparison operator. Expressions of the form "X op Y" 499 ** are converted into "Y op X". 500 ** 501 ** If a collation sequence is associated with either the left or right 502 ** side of the comparison, it remains associated with the same side after 503 ** the commutation. So "Y collate NOCASE op X" becomes 504 ** "X collate NOCASE op Y". This is because any collation sequence on 505 ** the left hand side of a comparison overrides any collation sequence 506 ** attached to the right. For the same reason the EP_ExpCollate flag 507 ** is not commuted. 508 */ 509 static void exprCommute(Parse *pParse, Expr *pExpr){ 510 u16 expRight = (pExpr->pRight->flags & EP_ExpCollate); 511 u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate); 512 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); 513 pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight); 514 pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 515 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl); 516 pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft; 517 pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight; 518 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); 519 if( pExpr->op>=TK_GT ){ 520 assert( TK_LT==TK_GT+2 ); 521 assert( TK_GE==TK_LE+2 ); 522 assert( TK_GT>TK_EQ ); 523 assert( TK_GT<TK_LE ); 524 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); 525 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; 526 } 527 } 528 529 /* 530 ** Translate from TK_xx operator to WO_xx bitmask. 531 */ 532 static u16 operatorMask(int op){ 533 u16 c; 534 assert( allowedOp(op) ); 535 if( op==TK_IN ){ 536 c = WO_IN; 537 }else if( op==TK_ISNULL ){ 538 c = WO_ISNULL; 539 }else{ 540 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); 541 c = (u16)(WO_EQ<<(op-TK_EQ)); 542 } 543 assert( op!=TK_ISNULL || c==WO_ISNULL ); 544 assert( op!=TK_IN || c==WO_IN ); 545 assert( op!=TK_EQ || c==WO_EQ ); 546 assert( op!=TK_LT || c==WO_LT ); 547 assert( op!=TK_LE || c==WO_LE ); 548 assert( op!=TK_GT || c==WO_GT ); 549 assert( op!=TK_GE || c==WO_GE ); 550 return c; 551 } 552 553 /* 554 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 555 ** where X is a reference to the iColumn of table iCur and <op> is one of 556 ** the WO_xx operator codes specified by the op parameter. 557 ** Return a pointer to the term. Return 0 if not found. 558 */ 559 static WhereTerm *findTerm( 560 WhereClause *pWC, /* The WHERE clause to be searched */ 561 int iCur, /* Cursor number of LHS */ 562 int iColumn, /* Column number of LHS */ 563 Bitmask notReady, /* RHS must not overlap with this mask */ 564 u32 op, /* Mask of WO_xx values describing operator */ 565 Index *pIdx /* Must be compatible with this index, if not NULL */ 566 ){ 567 WhereTerm *pTerm; 568 int k; 569 assert( iCur>=0 ); 570 op &= WO_ALL; 571 for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){ 572 if( pTerm->leftCursor==iCur 573 && (pTerm->prereqRight & notReady)==0 574 && pTerm->u.leftColumn==iColumn 575 && (pTerm->eOperator & op)!=0 576 ){ 577 if( pIdx && pTerm->eOperator!=WO_ISNULL ){ 578 Expr *pX = pTerm->pExpr; 579 CollSeq *pColl; 580 char idxaff; 581 int j; 582 Parse *pParse = pWC->pParse; 583 584 idxaff = pIdx->pTable->aCol[iColumn].affinity; 585 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue; 586 587 /* Figure out the collation sequence required from an index for 588 ** it to be useful for optimising expression pX. Store this 589 ** value in variable pColl. 590 */ 591 assert(pX->pLeft); 592 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); 593 assert(pColl || pParse->nErr); 594 595 for(j=0; pIdx->aiColumn[j]!=iColumn; j++){ 596 if( NEVER(j>=pIdx->nColumn) ) return 0; 597 } 598 if( pColl && sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue; 599 } 600 return pTerm; 601 } 602 } 603 return 0; 604 } 605 606 /* Forward reference */ 607 static void exprAnalyze(SrcList*, WhereClause*, int); 608 609 /* 610 ** Call exprAnalyze on all terms in a WHERE clause. 611 ** 612 ** 613 */ 614 static void exprAnalyzeAll( 615 SrcList *pTabList, /* the FROM clause */ 616 WhereClause *pWC /* the WHERE clause to be analyzed */ 617 ){ 618 int i; 619 for(i=pWC->nTerm-1; i>=0; i--){ 620 exprAnalyze(pTabList, pWC, i); 621 } 622 } 623 624 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 625 /* 626 ** Check to see if the given expression is a LIKE or GLOB operator that 627 ** can be optimized using inequality constraints. Return TRUE if it is 628 ** so and false if not. 629 ** 630 ** In order for the operator to be optimizible, the RHS must be a string 631 ** literal that does not begin with a wildcard. 632 */ 633 static int isLikeOrGlob( 634 Parse *pParse, /* Parsing and code generating context */ 635 Expr *pExpr, /* Test this expression */ 636 Expr **ppPrefix, /* Pointer to TK_STRING expression with pattern prefix */ 637 int *pisComplete, /* True if the only wildcard is % in the last character */ 638 int *pnoCase /* True if uppercase is equivalent to lowercase */ 639 ){ 640 const char *z = 0; /* String on RHS of LIKE operator */ 641 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ 642 ExprList *pList; /* List of operands to the LIKE operator */ 643 int c; /* One character in z[] */ 644 int cnt; /* Number of non-wildcard prefix characters */ 645 char wc[3]; /* Wildcard characters */ 646 sqlite3 *db = pParse->db; /* Database connection */ 647 sqlite3_value *pVal = 0; 648 int op; /* Opcode of pRight */ 649 650 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ 651 return 0; 652 } 653 #ifdef SQLITE_EBCDIC 654 if( *pnoCase ) return 0; 655 #endif 656 pList = pExpr->x.pList; 657 pLeft = pList->a[1].pExpr; 658 if( pLeft->op!=TK_COLUMN || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT ){ 659 /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must 660 ** be the name of an indexed column with TEXT affinity. */ 661 return 0; 662 } 663 assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */ 664 665 pRight = pList->a[0].pExpr; 666 op = pRight->op; 667 if( op==TK_REGISTER ){ 668 op = pRight->op2; 669 } 670 if( op==TK_VARIABLE ){ 671 Vdbe *pReprepare = pParse->pReprepare; 672 pVal = sqlite3VdbeGetValue(pReprepare, pRight->iColumn, SQLITE_AFF_NONE); 673 if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){ 674 z = (char *)sqlite3_value_text(pVal); 675 } 676 sqlite3VdbeSetVarmask(pParse->pVdbe, pRight->iColumn); 677 assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER ); 678 }else if( op==TK_STRING ){ 679 z = pRight->u.zToken; 680 } 681 if( z ){ 682 cnt = 0; 683 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ 684 cnt++; 685 } 686 if( cnt!=0 && 255!=(u8)z[cnt-1] ){ 687 Expr *pPrefix; 688 *pisComplete = c==wc[0] && z[cnt+1]==0; 689 pPrefix = sqlite3Expr(db, TK_STRING, z); 690 if( pPrefix ) pPrefix->u.zToken[cnt] = 0; 691 *ppPrefix = pPrefix; 692 if( op==TK_VARIABLE ){ 693 Vdbe *v = pParse->pVdbe; 694 sqlite3VdbeSetVarmask(v, pRight->iColumn); 695 if( *pisComplete && pRight->u.zToken[1] ){ 696 /* If the rhs of the LIKE expression is a variable, and the current 697 ** value of the variable means there is no need to invoke the LIKE 698 ** function, then no OP_Variable will be added to the program. 699 ** This causes problems for the sqlite3_bind_parameter_name() 700 ** API. To workaround them, add a dummy OP_Variable here. 701 */ 702 int r1 = sqlite3GetTempReg(pParse); 703 sqlite3ExprCodeTarget(pParse, pRight, r1); 704 sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0); 705 sqlite3ReleaseTempReg(pParse, r1); 706 } 707 } 708 }else{ 709 z = 0; 710 } 711 } 712 713 sqlite3ValueFree(pVal); 714 return (z!=0); 715 } 716 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 717 718 719 #ifndef SQLITE_OMIT_VIRTUALTABLE 720 /* 721 ** Check to see if the given expression is of the form 722 ** 723 ** column MATCH expr 724 ** 725 ** If it is then return TRUE. If not, return FALSE. 726 */ 727 static int isMatchOfColumn( 728 Expr *pExpr /* Test this expression */ 729 ){ 730 ExprList *pList; 731 732 if( pExpr->op!=TK_FUNCTION ){ 733 return 0; 734 } 735 if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){ 736 return 0; 737 } 738 pList = pExpr->x.pList; 739 if( pList->nExpr!=2 ){ 740 return 0; 741 } 742 if( pList->a[1].pExpr->op != TK_COLUMN ){ 743 return 0; 744 } 745 return 1; 746 } 747 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 748 749 /* 750 ** If the pBase expression originated in the ON or USING clause of 751 ** a join, then transfer the appropriate markings over to derived. 752 */ 753 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ 754 pDerived->flags |= pBase->flags & EP_FromJoin; 755 pDerived->iRightJoinTable = pBase->iRightJoinTable; 756 } 757 758 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 759 /* 760 ** Analyze a term that consists of two or more OR-connected 761 ** subterms. So in: 762 ** 763 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) 764 ** ^^^^^^^^^^^^^^^^^^^^ 765 ** 766 ** This routine analyzes terms such as the middle term in the above example. 767 ** A WhereOrTerm object is computed and attached to the term under 768 ** analysis, regardless of the outcome of the analysis. Hence: 769 ** 770 ** WhereTerm.wtFlags |= TERM_ORINFO 771 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object 772 ** 773 ** The term being analyzed must have two or more of OR-connected subterms. 774 ** A single subterm might be a set of AND-connected sub-subterms. 775 ** Examples of terms under analysis: 776 ** 777 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 778 ** (B) x=expr1 OR expr2=x OR x=expr3 779 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) 780 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') 781 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) 782 ** 783 ** CASE 1: 784 ** 785 ** If all subterms are of the form T.C=expr for some single column of C 786 ** a single table T (as shown in example B above) then create a new virtual 787 ** term that is an equivalent IN expression. In other words, if the term 788 ** being analyzed is: 789 ** 790 ** x = expr1 OR expr2 = x OR x = expr3 791 ** 792 ** then create a new virtual term like this: 793 ** 794 ** x IN (expr1,expr2,expr3) 795 ** 796 ** CASE 2: 797 ** 798 ** If all subterms are indexable by a single table T, then set 799 ** 800 ** WhereTerm.eOperator = WO_OR 801 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T 802 ** 803 ** A subterm is "indexable" if it is of the form 804 ** "T.C <op> <expr>" where C is any column of table T and 805 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". 806 ** A subterm is also indexable if it is an AND of two or more 807 ** subsubterms at least one of which is indexable. Indexable AND 808 ** subterms have their eOperator set to WO_AND and they have 809 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. 810 ** 811 ** From another point of view, "indexable" means that the subterm could 812 ** potentially be used with an index if an appropriate index exists. 813 ** This analysis does not consider whether or not the index exists; that 814 ** is something the bestIndex() routine will determine. This analysis 815 ** only looks at whether subterms appropriate for indexing exist. 816 ** 817 ** All examples A through E above all satisfy case 2. But if a term 818 ** also statisfies case 1 (such as B) we know that the optimizer will 819 ** always prefer case 1, so in that case we pretend that case 2 is not 820 ** satisfied. 821 ** 822 ** It might be the case that multiple tables are indexable. For example, 823 ** (E) above is indexable on tables P, Q, and R. 824 ** 825 ** Terms that satisfy case 2 are candidates for lookup by using 826 ** separate indices to find rowids for each subterm and composing 827 ** the union of all rowids using a RowSet object. This is similar 828 ** to "bitmap indices" in other database engines. 829 ** 830 ** OTHERWISE: 831 ** 832 ** If neither case 1 nor case 2 apply, then leave the eOperator set to 833 ** zero. This term is not useful for search. 834 */ 835 static void exprAnalyzeOrTerm( 836 SrcList *pSrc, /* the FROM clause */ 837 WhereClause *pWC, /* the complete WHERE clause */ 838 int idxTerm /* Index of the OR-term to be analyzed */ 839 ){ 840 Parse *pParse = pWC->pParse; /* Parser context */ 841 sqlite3 *db = pParse->db; /* Database connection */ 842 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ 843 Expr *pExpr = pTerm->pExpr; /* The expression of the term */ 844 WhereMaskSet *pMaskSet = pWC->pMaskSet; /* Table use masks */ 845 int i; /* Loop counters */ 846 WhereClause *pOrWc; /* Breakup of pTerm into subterms */ 847 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ 848 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ 849 Bitmask chngToIN; /* Tables that might satisfy case 1 */ 850 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ 851 852 /* 853 ** Break the OR clause into its separate subterms. The subterms are 854 ** stored in a WhereClause structure containing within the WhereOrInfo 855 ** object that is attached to the original OR clause term. 856 */ 857 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); 858 assert( pExpr->op==TK_OR ); 859 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); 860 if( pOrInfo==0 ) return; 861 pTerm->wtFlags |= TERM_ORINFO; 862 pOrWc = &pOrInfo->wc; 863 whereClauseInit(pOrWc, pWC->pParse, pMaskSet); 864 whereSplit(pOrWc, pExpr, TK_OR); 865 exprAnalyzeAll(pSrc, pOrWc); 866 if( db->mallocFailed ) return; 867 assert( pOrWc->nTerm>=2 ); 868 869 /* 870 ** Compute the set of tables that might satisfy cases 1 or 2. 871 */ 872 indexable = ~(Bitmask)0; 873 chngToIN = ~(pWC->vmask); 874 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ 875 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ 876 WhereAndInfo *pAndInfo; 877 assert( pOrTerm->eOperator==0 ); 878 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); 879 chngToIN = 0; 880 pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo)); 881 if( pAndInfo ){ 882 WhereClause *pAndWC; 883 WhereTerm *pAndTerm; 884 int j; 885 Bitmask b = 0; 886 pOrTerm->u.pAndInfo = pAndInfo; 887 pOrTerm->wtFlags |= TERM_ANDINFO; 888 pOrTerm->eOperator = WO_AND; 889 pAndWC = &pAndInfo->wc; 890 whereClauseInit(pAndWC, pWC->pParse, pMaskSet); 891 whereSplit(pAndWC, pOrTerm->pExpr, TK_AND); 892 exprAnalyzeAll(pSrc, pAndWC); 893 testcase( db->mallocFailed ); 894 if( !db->mallocFailed ){ 895 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ 896 assert( pAndTerm->pExpr ); 897 if( allowedOp(pAndTerm->pExpr->op) ){ 898 b |= getMask(pMaskSet, pAndTerm->leftCursor); 899 } 900 } 901 } 902 indexable &= b; 903 } 904 }else if( pOrTerm->wtFlags & TERM_COPIED ){ 905 /* Skip this term for now. We revisit it when we process the 906 ** corresponding TERM_VIRTUAL term */ 907 }else{ 908 Bitmask b; 909 b = getMask(pMaskSet, pOrTerm->leftCursor); 910 if( pOrTerm->wtFlags & TERM_VIRTUAL ){ 911 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; 912 b |= getMask(pMaskSet, pOther->leftCursor); 913 } 914 indexable &= b; 915 if( pOrTerm->eOperator!=WO_EQ ){ 916 chngToIN = 0; 917 }else{ 918 chngToIN &= b; 919 } 920 } 921 } 922 923 /* 924 ** Record the set of tables that satisfy case 2. The set might be 925 ** empty. 926 */ 927 pOrInfo->indexable = indexable; 928 pTerm->eOperator = indexable==0 ? 0 : WO_OR; 929 930 /* 931 ** chngToIN holds a set of tables that *might* satisfy case 1. But 932 ** we have to do some additional checking to see if case 1 really 933 ** is satisfied. 934 ** 935 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means 936 ** that there is no possibility of transforming the OR clause into an 937 ** IN operator because one or more terms in the OR clause contain 938 ** something other than == on a column in the single table. The 1-bit 939 ** case means that every term of the OR clause is of the form 940 ** "table.column=expr" for some single table. The one bit that is set 941 ** will correspond to the common table. We still need to check to make 942 ** sure the same column is used on all terms. The 2-bit case is when 943 ** the all terms are of the form "table1.column=table2.column". It 944 ** might be possible to form an IN operator with either table1.column 945 ** or table2.column as the LHS if either is common to every term of 946 ** the OR clause. 947 ** 948 ** Note that terms of the form "table.column1=table.column2" (the 949 ** same table on both sizes of the ==) cannot be optimized. 950 */ 951 if( chngToIN ){ 952 int okToChngToIN = 0; /* True if the conversion to IN is valid */ 953 int iColumn = -1; /* Column index on lhs of IN operator */ 954 int iCursor = -1; /* Table cursor common to all terms */ 955 int j = 0; /* Loop counter */ 956 957 /* Search for a table and column that appears on one side or the 958 ** other of the == operator in every subterm. That table and column 959 ** will be recorded in iCursor and iColumn. There might not be any 960 ** such table and column. Set okToChngToIN if an appropriate table 961 ** and column is found but leave okToChngToIN false if not found. 962 */ 963 for(j=0; j<2 && !okToChngToIN; j++){ 964 pOrTerm = pOrWc->a; 965 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ 966 assert( pOrTerm->eOperator==WO_EQ ); 967 pOrTerm->wtFlags &= ~TERM_OR_OK; 968 if( pOrTerm->leftCursor==iCursor ){ 969 /* This is the 2-bit case and we are on the second iteration and 970 ** current term is from the first iteration. So skip this term. */ 971 assert( j==1 ); 972 continue; 973 } 974 if( (chngToIN & getMask(pMaskSet, pOrTerm->leftCursor))==0 ){ 975 /* This term must be of the form t1.a==t2.b where t2 is in the 976 ** chngToIN set but t1 is not. This term will be either preceeded 977 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term 978 ** and use its inversion. */ 979 testcase( pOrTerm->wtFlags & TERM_COPIED ); 980 testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); 981 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); 982 continue; 983 } 984 iColumn = pOrTerm->u.leftColumn; 985 iCursor = pOrTerm->leftCursor; 986 break; 987 } 988 if( i<0 ){ 989 /* No candidate table+column was found. This can only occur 990 ** on the second iteration */ 991 assert( j==1 ); 992 assert( (chngToIN&(chngToIN-1))==0 ); 993 assert( chngToIN==getMask(pMaskSet, iCursor) ); 994 break; 995 } 996 testcase( j==1 ); 997 998 /* We have found a candidate table and column. Check to see if that 999 ** table and column is common to every term in the OR clause */ 1000 okToChngToIN = 1; 1001 for(; i>=0 && okToChngToIN; i--, pOrTerm++){ 1002 assert( pOrTerm->eOperator==WO_EQ ); 1003 if( pOrTerm->leftCursor!=iCursor ){ 1004 pOrTerm->wtFlags &= ~TERM_OR_OK; 1005 }else if( pOrTerm->u.leftColumn!=iColumn ){ 1006 okToChngToIN = 0; 1007 }else{ 1008 int affLeft, affRight; 1009 /* If the right-hand side is also a column, then the affinities 1010 ** of both right and left sides must be such that no type 1011 ** conversions are required on the right. (Ticket #2249) 1012 */ 1013 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); 1014 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); 1015 if( affRight!=0 && affRight!=affLeft ){ 1016 okToChngToIN = 0; 1017 }else{ 1018 pOrTerm->wtFlags |= TERM_OR_OK; 1019 } 1020 } 1021 } 1022 } 1023 1024 /* At this point, okToChngToIN is true if original pTerm satisfies 1025 ** case 1. In that case, construct a new virtual term that is 1026 ** pTerm converted into an IN operator. 1027 ** 1028 ** EV: R-00211-15100 1029 */ 1030 if( okToChngToIN ){ 1031 Expr *pDup; /* A transient duplicate expression */ 1032 ExprList *pList = 0; /* The RHS of the IN operator */ 1033 Expr *pLeft = 0; /* The LHS of the IN operator */ 1034 Expr *pNew; /* The complete IN operator */ 1035 1036 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ 1037 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; 1038 assert( pOrTerm->eOperator==WO_EQ ); 1039 assert( pOrTerm->leftCursor==iCursor ); 1040 assert( pOrTerm->u.leftColumn==iColumn ); 1041 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); 1042 pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup); 1043 pLeft = pOrTerm->pExpr->pLeft; 1044 } 1045 assert( pLeft!=0 ); 1046 pDup = sqlite3ExprDup(db, pLeft, 0); 1047 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0); 1048 if( pNew ){ 1049 int idxNew; 1050 transferJoinMarkings(pNew, pExpr); 1051 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 1052 pNew->x.pList = pList; 1053 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 1054 testcase( idxNew==0 ); 1055 exprAnalyze(pSrc, pWC, idxNew); 1056 pTerm = &pWC->a[idxTerm]; 1057 pWC->a[idxNew].iParent = idxTerm; 1058 pTerm->nChild = 1; 1059 }else{ 1060 sqlite3ExprListDelete(db, pList); 1061 } 1062 pTerm->eOperator = 0; /* case 1 trumps case 2 */ 1063 } 1064 } 1065 } 1066 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ 1067 1068 1069 /* 1070 ** The input to this routine is an WhereTerm structure with only the 1071 ** "pExpr" field filled in. The job of this routine is to analyze the 1072 ** subexpression and populate all the other fields of the WhereTerm 1073 ** structure. 1074 ** 1075 ** If the expression is of the form "<expr> <op> X" it gets commuted 1076 ** to the standard form of "X <op> <expr>". 1077 ** 1078 ** If the expression is of the form "X <op> Y" where both X and Y are 1079 ** columns, then the original expression is unchanged and a new virtual 1080 ** term of the form "Y <op> X" is added to the WHERE clause and 1081 ** analyzed separately. The original term is marked with TERM_COPIED 1082 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr 1083 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it 1084 ** is a commuted copy of a prior term.) The original term has nChild=1 1085 ** and the copy has idxParent set to the index of the original term. 1086 */ 1087 static void exprAnalyze( 1088 SrcList *pSrc, /* the FROM clause */ 1089 WhereClause *pWC, /* the WHERE clause */ 1090 int idxTerm /* Index of the term to be analyzed */ 1091 ){ 1092 WhereTerm *pTerm; /* The term to be analyzed */ 1093 WhereMaskSet *pMaskSet; /* Set of table index masks */ 1094 Expr *pExpr; /* The expression to be analyzed */ 1095 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ 1096 Bitmask prereqAll; /* Prerequesites of pExpr */ 1097 Bitmask extraRight = 0; /* Extra dependencies on LEFT JOIN */ 1098 Expr *pStr1 = 0; /* RHS of LIKE/GLOB operator */ 1099 int isComplete = 0; /* RHS of LIKE/GLOB ends with wildcard */ 1100 int noCase = 0; /* LIKE/GLOB distinguishes case */ 1101 int op; /* Top-level operator. pExpr->op */ 1102 Parse *pParse = pWC->pParse; /* Parsing context */ 1103 sqlite3 *db = pParse->db; /* Database connection */ 1104 1105 if( db->mallocFailed ){ 1106 return; 1107 } 1108 pTerm = &pWC->a[idxTerm]; 1109 pMaskSet = pWC->pMaskSet; 1110 pExpr = pTerm->pExpr; 1111 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); 1112 op = pExpr->op; 1113 if( op==TK_IN ){ 1114 assert( pExpr->pRight==0 ); 1115 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1116 pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect); 1117 }else{ 1118 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList); 1119 } 1120 }else if( op==TK_ISNULL ){ 1121 pTerm->prereqRight = 0; 1122 }else{ 1123 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); 1124 } 1125 prereqAll = exprTableUsage(pMaskSet, pExpr); 1126 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 1127 Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable); 1128 prereqAll |= x; 1129 extraRight = x-1; /* ON clause terms may not be used with an index 1130 ** on left table of a LEFT JOIN. Ticket #3015 */ 1131 } 1132 pTerm->prereqAll = prereqAll; 1133 pTerm->leftCursor = -1; 1134 pTerm->iParent = -1; 1135 pTerm->eOperator = 0; 1136 if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){ 1137 Expr *pLeft = pExpr->pLeft; 1138 Expr *pRight = pExpr->pRight; 1139 if( pLeft->op==TK_COLUMN ){ 1140 pTerm->leftCursor = pLeft->iTable; 1141 pTerm->u.leftColumn = pLeft->iColumn; 1142 pTerm->eOperator = operatorMask(op); 1143 } 1144 if( pRight && pRight->op==TK_COLUMN ){ 1145 WhereTerm *pNew; 1146 Expr *pDup; 1147 if( pTerm->leftCursor>=0 ){ 1148 int idxNew; 1149 pDup = sqlite3ExprDup(db, pExpr, 0); 1150 if( db->mallocFailed ){ 1151 sqlite3ExprDelete(db, pDup); 1152 return; 1153 } 1154 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); 1155 if( idxNew==0 ) return; 1156 pNew = &pWC->a[idxNew]; 1157 pNew->iParent = idxTerm; 1158 pTerm = &pWC->a[idxTerm]; 1159 pTerm->nChild = 1; 1160 pTerm->wtFlags |= TERM_COPIED; 1161 }else{ 1162 pDup = pExpr; 1163 pNew = pTerm; 1164 } 1165 exprCommute(pParse, pDup); 1166 pLeft = pDup->pLeft; 1167 pNew->leftCursor = pLeft->iTable; 1168 pNew->u.leftColumn = pLeft->iColumn; 1169 testcase( (prereqLeft | extraRight) != prereqLeft ); 1170 pNew->prereqRight = prereqLeft | extraRight; 1171 pNew->prereqAll = prereqAll; 1172 pNew->eOperator = operatorMask(pDup->op); 1173 } 1174 } 1175 1176 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION 1177 /* If a term is the BETWEEN operator, create two new virtual terms 1178 ** that define the range that the BETWEEN implements. For example: 1179 ** 1180 ** a BETWEEN b AND c 1181 ** 1182 ** is converted into: 1183 ** 1184 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) 1185 ** 1186 ** The two new terms are added onto the end of the WhereClause object. 1187 ** The new terms are "dynamic" and are children of the original BETWEEN 1188 ** term. That means that if the BETWEEN term is coded, the children are 1189 ** skipped. Or, if the children are satisfied by an index, the original 1190 ** BETWEEN term is skipped. 1191 */ 1192 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ 1193 ExprList *pList = pExpr->x.pList; 1194 int i; 1195 static const u8 ops[] = {TK_GE, TK_LE}; 1196 assert( pList!=0 ); 1197 assert( pList->nExpr==2 ); 1198 for(i=0; i<2; i++){ 1199 Expr *pNewExpr; 1200 int idxNew; 1201 pNewExpr = sqlite3PExpr(pParse, ops[i], 1202 sqlite3ExprDup(db, pExpr->pLeft, 0), 1203 sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0); 1204 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1205 testcase( idxNew==0 ); 1206 exprAnalyze(pSrc, pWC, idxNew); 1207 pTerm = &pWC->a[idxTerm]; 1208 pWC->a[idxNew].iParent = idxTerm; 1209 } 1210 pTerm->nChild = 2; 1211 } 1212 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ 1213 1214 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 1215 /* Analyze a term that is composed of two or more subterms connected by 1216 ** an OR operator. 1217 */ 1218 else if( pExpr->op==TK_OR ){ 1219 assert( pWC->op==TK_AND ); 1220 exprAnalyzeOrTerm(pSrc, pWC, idxTerm); 1221 pTerm = &pWC->a[idxTerm]; 1222 } 1223 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1224 1225 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 1226 /* Add constraints to reduce the search space on a LIKE or GLOB 1227 ** operator. 1228 ** 1229 ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints 1230 ** 1231 ** x>='abc' AND x<'abd' AND x LIKE 'abc%' 1232 ** 1233 ** The last character of the prefix "abc" is incremented to form the 1234 ** termination condition "abd". 1235 */ 1236 if( pWC->op==TK_AND 1237 && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase) 1238 ){ 1239 Expr *pLeft; /* LHS of LIKE/GLOB operator */ 1240 Expr *pStr2; /* Copy of pStr1 - RHS of LIKE/GLOB operator */ 1241 Expr *pNewExpr1; 1242 Expr *pNewExpr2; 1243 int idxNew1; 1244 int idxNew2; 1245 CollSeq *pColl; /* Collating sequence to use */ 1246 1247 pLeft = pExpr->x.pList->a[1].pExpr; 1248 pStr2 = sqlite3ExprDup(db, pStr1, 0); 1249 if( !db->mallocFailed ){ 1250 u8 c, *pC; /* Last character before the first wildcard */ 1251 pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1]; 1252 c = *pC; 1253 if( noCase ){ 1254 /* The point is to increment the last character before the first 1255 ** wildcard. But if we increment '@', that will push it into the 1256 ** alphabetic range where case conversions will mess up the 1257 ** inequality. To avoid this, make sure to also run the full 1258 ** LIKE on all candidate expressions by clearing the isComplete flag 1259 */ 1260 if( c=='A'-1 ) isComplete = 0; /* EV: R-64339-08207 */ 1261 1262 1263 c = sqlite3UpperToLower[c]; 1264 } 1265 *pC = c + 1; 1266 } 1267 pColl = sqlite3FindCollSeq(db, SQLITE_UTF8, noCase ? "NOCASE" : "BINARY",0); 1268 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, 1269 sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl), 1270 pStr1, 0); 1271 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); 1272 testcase( idxNew1==0 ); 1273 exprAnalyze(pSrc, pWC, idxNew1); 1274 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, 1275 sqlite3ExprSetColl(sqlite3ExprDup(db,pLeft,0), pColl), 1276 pStr2, 0); 1277 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); 1278 testcase( idxNew2==0 ); 1279 exprAnalyze(pSrc, pWC, idxNew2); 1280 pTerm = &pWC->a[idxTerm]; 1281 if( isComplete ){ 1282 pWC->a[idxNew1].iParent = idxTerm; 1283 pWC->a[idxNew2].iParent = idxTerm; 1284 pTerm->nChild = 2; 1285 } 1286 } 1287 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 1288 1289 #ifndef SQLITE_OMIT_VIRTUALTABLE 1290 /* Add a WO_MATCH auxiliary term to the constraint set if the 1291 ** current expression is of the form: column MATCH expr. 1292 ** This information is used by the xBestIndex methods of 1293 ** virtual tables. The native query optimizer does not attempt 1294 ** to do anything with MATCH functions. 1295 */ 1296 if( isMatchOfColumn(pExpr) ){ 1297 int idxNew; 1298 Expr *pRight, *pLeft; 1299 WhereTerm *pNewTerm; 1300 Bitmask prereqColumn, prereqExpr; 1301 1302 pRight = pExpr->x.pList->a[0].pExpr; 1303 pLeft = pExpr->x.pList->a[1].pExpr; 1304 prereqExpr = exprTableUsage(pMaskSet, pRight); 1305 prereqColumn = exprTableUsage(pMaskSet, pLeft); 1306 if( (prereqExpr & prereqColumn)==0 ){ 1307 Expr *pNewExpr; 1308 pNewExpr = sqlite3PExpr(pParse, TK_MATCH, 1309 0, sqlite3ExprDup(db, pRight, 0), 0); 1310 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1311 testcase( idxNew==0 ); 1312 pNewTerm = &pWC->a[idxNew]; 1313 pNewTerm->prereqRight = prereqExpr; 1314 pNewTerm->leftCursor = pLeft->iTable; 1315 pNewTerm->u.leftColumn = pLeft->iColumn; 1316 pNewTerm->eOperator = WO_MATCH; 1317 pNewTerm->iParent = idxTerm; 1318 pTerm = &pWC->a[idxTerm]; 1319 pTerm->nChild = 1; 1320 pTerm->wtFlags |= TERM_COPIED; 1321 pNewTerm->prereqAll = pTerm->prereqAll; 1322 } 1323 } 1324 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1325 1326 /* Prevent ON clause terms of a LEFT JOIN from being used to drive 1327 ** an index for tables to the left of the join. 1328 */ 1329 pTerm->prereqRight |= extraRight; 1330 } 1331 1332 /* 1333 ** Return TRUE if any of the expressions in pList->a[iFirst...] contain 1334 ** a reference to any table other than the iBase table. 1335 */ 1336 static int referencesOtherTables( 1337 ExprList *pList, /* Search expressions in ths list */ 1338 WhereMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ 1339 int iFirst, /* Be searching with the iFirst-th expression */ 1340 int iBase /* Ignore references to this table */ 1341 ){ 1342 Bitmask allowed = ~getMask(pMaskSet, iBase); 1343 while( iFirst<pList->nExpr ){ 1344 if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){ 1345 return 1; 1346 } 1347 } 1348 return 0; 1349 } 1350 1351 1352 /* 1353 ** This routine decides if pIdx can be used to satisfy the ORDER BY 1354 ** clause. If it can, it returns 1. If pIdx cannot satisfy the 1355 ** ORDER BY clause, this routine returns 0. 1356 ** 1357 ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the 1358 ** left-most table in the FROM clause of that same SELECT statement and 1359 ** the table has a cursor number of "base". pIdx is an index on pTab. 1360 ** 1361 ** nEqCol is the number of columns of pIdx that are used as equality 1362 ** constraints. Any of these columns may be missing from the ORDER BY 1363 ** clause and the match can still be a success. 1364 ** 1365 ** All terms of the ORDER BY that match against the index must be either 1366 ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE 1367 ** index do not need to satisfy this constraint.) The *pbRev value is 1368 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if 1369 ** the ORDER BY clause is all ASC. 1370 */ 1371 static int isSortingIndex( 1372 Parse *pParse, /* Parsing context */ 1373 WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmaps */ 1374 Index *pIdx, /* The index we are testing */ 1375 int base, /* Cursor number for the table to be sorted */ 1376 ExprList *pOrderBy, /* The ORDER BY clause */ 1377 int nEqCol, /* Number of index columns with == constraints */ 1378 int *pbRev /* Set to 1 if ORDER BY is DESC */ 1379 ){ 1380 int i, j; /* Loop counters */ 1381 int sortOrder = 0; /* XOR of index and ORDER BY sort direction */ 1382 int nTerm; /* Number of ORDER BY terms */ 1383 struct ExprList_item *pTerm; /* A term of the ORDER BY clause */ 1384 sqlite3 *db = pParse->db; 1385 1386 assert( pOrderBy!=0 ); 1387 nTerm = pOrderBy->nExpr; 1388 assert( nTerm>0 ); 1389 1390 /* Argument pIdx must either point to a 'real' named index structure, 1391 ** or an index structure allocated on the stack by bestBtreeIndex() to 1392 ** represent the rowid index that is part of every table. */ 1393 assert( pIdx->zName || (pIdx->nColumn==1 && pIdx->aiColumn[0]==-1) ); 1394 1395 /* Match terms of the ORDER BY clause against columns of 1396 ** the index. 1397 ** 1398 ** Note that indices have pIdx->nColumn regular columns plus 1399 ** one additional column containing the rowid. The rowid column 1400 ** of the index is also allowed to match against the ORDER BY 1401 ** clause. 1402 */ 1403 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){ 1404 Expr *pExpr; /* The expression of the ORDER BY pTerm */ 1405 CollSeq *pColl; /* The collating sequence of pExpr */ 1406 int termSortOrder; /* Sort order for this term */ 1407 int iColumn; /* The i-th column of the index. -1 for rowid */ 1408 int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */ 1409 const char *zColl; /* Name of the collating sequence for i-th index term */ 1410 1411 pExpr = pTerm->pExpr; 1412 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){ 1413 /* Can not use an index sort on anything that is not a column in the 1414 ** left-most table of the FROM clause */ 1415 break; 1416 } 1417 pColl = sqlite3ExprCollSeq(pParse, pExpr); 1418 if( !pColl ){ 1419 pColl = db->pDfltColl; 1420 } 1421 if( pIdx->zName && i<pIdx->nColumn ){ 1422 iColumn = pIdx->aiColumn[i]; 1423 if( iColumn==pIdx->pTable->iPKey ){ 1424 iColumn = -1; 1425 } 1426 iSortOrder = pIdx->aSortOrder[i]; 1427 zColl = pIdx->azColl[i]; 1428 }else{ 1429 iColumn = -1; 1430 iSortOrder = 0; 1431 zColl = pColl->zName; 1432 } 1433 if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){ 1434 /* Term j of the ORDER BY clause does not match column i of the index */ 1435 if( i<nEqCol ){ 1436 /* If an index column that is constrained by == fails to match an 1437 ** ORDER BY term, that is OK. Just ignore that column of the index 1438 */ 1439 continue; 1440 }else if( i==pIdx->nColumn ){ 1441 /* Index column i is the rowid. All other terms match. */ 1442 break; 1443 }else{ 1444 /* If an index column fails to match and is not constrained by == 1445 ** then the index cannot satisfy the ORDER BY constraint. 1446 */ 1447 return 0; 1448 } 1449 } 1450 assert( pIdx->aSortOrder!=0 || iColumn==-1 ); 1451 assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 ); 1452 assert( iSortOrder==0 || iSortOrder==1 ); 1453 termSortOrder = iSortOrder ^ pTerm->sortOrder; 1454 if( i>nEqCol ){ 1455 if( termSortOrder!=sortOrder ){ 1456 /* Indices can only be used if all ORDER BY terms past the 1457 ** equality constraints are all either DESC or ASC. */ 1458 return 0; 1459 } 1460 }else{ 1461 sortOrder = termSortOrder; 1462 } 1463 j++; 1464 pTerm++; 1465 if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ 1466 /* If the indexed column is the primary key and everything matches 1467 ** so far and none of the ORDER BY terms to the right reference other 1468 ** tables in the join, then we are assured that the index can be used 1469 ** to sort because the primary key is unique and so none of the other 1470 ** columns will make any difference 1471 */ 1472 j = nTerm; 1473 } 1474 } 1475 1476 *pbRev = sortOrder!=0; 1477 if( j>=nTerm ){ 1478 /* All terms of the ORDER BY clause are covered by this index so 1479 ** this index can be used for sorting. */ 1480 return 1; 1481 } 1482 if( pIdx->onError!=OE_None && i==pIdx->nColumn 1483 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ 1484 /* All terms of this index match some prefix of the ORDER BY clause 1485 ** and the index is UNIQUE and no terms on the tail of the ORDER BY 1486 ** clause reference other tables in a join. If this is all true then 1487 ** the order by clause is superfluous. */ 1488 return 1; 1489 } 1490 return 0; 1491 } 1492 1493 /* 1494 ** Prepare a crude estimate of the logarithm of the input value. 1495 ** The results need not be exact. This is only used for estimating 1496 ** the total cost of performing operations with O(logN) or O(NlogN) 1497 ** complexity. Because N is just a guess, it is no great tragedy if 1498 ** logN is a little off. 1499 */ 1500 static double estLog(double N){ 1501 double logN = 1; 1502 double x = 10; 1503 while( N>x ){ 1504 logN += 1; 1505 x *= 10; 1506 } 1507 return logN; 1508 } 1509 1510 /* 1511 ** Two routines for printing the content of an sqlite3_index_info 1512 ** structure. Used for testing and debugging only. If neither 1513 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 1514 ** are no-ops. 1515 */ 1516 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG) 1517 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ 1518 int i; 1519 if( !sqlite3WhereTrace ) return; 1520 for(i=0; i<p->nConstraint; i++){ 1521 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 1522 i, 1523 p->aConstraint[i].iColumn, 1524 p->aConstraint[i].iTermOffset, 1525 p->aConstraint[i].op, 1526 p->aConstraint[i].usable); 1527 } 1528 for(i=0; i<p->nOrderBy; i++){ 1529 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 1530 i, 1531 p->aOrderBy[i].iColumn, 1532 p->aOrderBy[i].desc); 1533 } 1534 } 1535 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ 1536 int i; 1537 if( !sqlite3WhereTrace ) return; 1538 for(i=0; i<p->nConstraint; i++){ 1539 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 1540 i, 1541 p->aConstraintUsage[i].argvIndex, 1542 p->aConstraintUsage[i].omit); 1543 } 1544 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 1545 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 1546 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 1547 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 1548 } 1549 #else 1550 #define TRACE_IDX_INPUTS(A) 1551 #define TRACE_IDX_OUTPUTS(A) 1552 #endif 1553 1554 /* 1555 ** Required because bestIndex() is called by bestOrClauseIndex() 1556 */ 1557 static void bestIndex( 1558 Parse*, WhereClause*, struct SrcList_item*, Bitmask, ExprList*, WhereCost*); 1559 1560 /* 1561 ** This routine attempts to find an scanning strategy that can be used 1562 ** to optimize an 'OR' expression that is part of a WHERE clause. 1563 ** 1564 ** The table associated with FROM clause term pSrc may be either a 1565 ** regular B-Tree table or a virtual table. 1566 */ 1567 static void bestOrClauseIndex( 1568 Parse *pParse, /* The parsing context */ 1569 WhereClause *pWC, /* The WHERE clause */ 1570 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1571 Bitmask notReady, /* Mask of cursors that are not available */ 1572 ExprList *pOrderBy, /* The ORDER BY clause */ 1573 WhereCost *pCost /* Lowest cost query plan */ 1574 ){ 1575 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 1576 const int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ 1577 const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur); /* Bitmask for pSrc */ 1578 WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm]; /* End of pWC->a[] */ 1579 WhereTerm *pTerm; /* A single term of the WHERE clause */ 1580 1581 /* No OR-clause optimization allowed if the NOT INDEXED clause is used */ 1582 if( pSrc->notIndexed ){ 1583 return; 1584 } 1585 1586 /* Search the WHERE clause terms for a usable WO_OR term. */ 1587 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 1588 if( pTerm->eOperator==WO_OR 1589 && ((pTerm->prereqAll & ~maskSrc) & notReady)==0 1590 && (pTerm->u.pOrInfo->indexable & maskSrc)!=0 1591 ){ 1592 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; 1593 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; 1594 WhereTerm *pOrTerm; 1595 int flags = WHERE_MULTI_OR; 1596 double rTotal = 0; 1597 double nRow = 0; 1598 Bitmask used = 0; 1599 1600 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ 1601 WhereCost sTermCost; 1602 WHERETRACE(("... Multi-index OR testing for term %d of %d....\n", 1603 (pOrTerm - pOrWC->a), (pTerm - pWC->a) 1604 )); 1605 if( pOrTerm->eOperator==WO_AND ){ 1606 WhereClause *pAndWC = &pOrTerm->u.pAndInfo->wc; 1607 bestIndex(pParse, pAndWC, pSrc, notReady, 0, &sTermCost); 1608 }else if( pOrTerm->leftCursor==iCur ){ 1609 WhereClause tempWC; 1610 tempWC.pParse = pWC->pParse; 1611 tempWC.pMaskSet = pWC->pMaskSet; 1612 tempWC.op = TK_AND; 1613 tempWC.a = pOrTerm; 1614 tempWC.nTerm = 1; 1615 bestIndex(pParse, &tempWC, pSrc, notReady, 0, &sTermCost); 1616 }else{ 1617 continue; 1618 } 1619 rTotal += sTermCost.rCost; 1620 nRow += sTermCost.nRow; 1621 used |= sTermCost.used; 1622 if( rTotal>=pCost->rCost ) break; 1623 } 1624 1625 /* If there is an ORDER BY clause, increase the scan cost to account 1626 ** for the cost of the sort. */ 1627 if( pOrderBy!=0 ){ 1628 WHERETRACE(("... sorting increases OR cost %.9g to %.9g\n", 1629 rTotal, rTotal+nRow*estLog(nRow))); 1630 rTotal += nRow*estLog(nRow); 1631 } 1632 1633 /* If the cost of scanning using this OR term for optimization is 1634 ** less than the current cost stored in pCost, replace the contents 1635 ** of pCost. */ 1636 WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow)); 1637 if( rTotal<pCost->rCost ){ 1638 pCost->rCost = rTotal; 1639 pCost->nRow = nRow; 1640 pCost->used = used; 1641 pCost->plan.wsFlags = flags; 1642 pCost->plan.u.pTerm = pTerm; 1643 } 1644 } 1645 } 1646 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1647 } 1648 1649 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 1650 /* 1651 ** Return TRUE if the WHERE clause term pTerm is of a form where it 1652 ** could be used with an index to access pSrc, assuming an appropriate 1653 ** index existed. 1654 */ 1655 static int termCanDriveIndex( 1656 WhereTerm *pTerm, /* WHERE clause term to check */ 1657 struct SrcList_item *pSrc, /* Table we are trying to access */ 1658 Bitmask notReady /* Tables in outer loops of the join */ 1659 ){ 1660 char aff; 1661 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; 1662 if( pTerm->eOperator!=WO_EQ ) return 0; 1663 if( (pTerm->prereqRight & notReady)!=0 ) return 0; 1664 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; 1665 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; 1666 return 1; 1667 } 1668 #endif 1669 1670 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 1671 /* 1672 ** If the query plan for pSrc specified in pCost is a full table scan 1673 ** and indexing is allows (if there is no NOT INDEXED clause) and it 1674 ** possible to construct a transient index that would perform better 1675 ** than a full table scan even when the cost of constructing the index 1676 ** is taken into account, then alter the query plan to use the 1677 ** transient index. 1678 */ 1679 static void bestAutomaticIndex( 1680 Parse *pParse, /* The parsing context */ 1681 WhereClause *pWC, /* The WHERE clause */ 1682 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1683 Bitmask notReady, /* Mask of cursors that are not available */ 1684 WhereCost *pCost /* Lowest cost query plan */ 1685 ){ 1686 double nTableRow; /* Rows in the input table */ 1687 double logN; /* log(nTableRow) */ 1688 double costTempIdx; /* per-query cost of the transient index */ 1689 WhereTerm *pTerm; /* A single term of the WHERE clause */ 1690 WhereTerm *pWCEnd; /* End of pWC->a[] */ 1691 Table *pTable; /* Table tht might be indexed */ 1692 1693 if( (pParse->db->flags & SQLITE_AutoIndex)==0 ){ 1694 /* Automatic indices are disabled at run-time */ 1695 return; 1696 } 1697 if( (pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)!=0 ){ 1698 /* We already have some kind of index in use for this query. */ 1699 return; 1700 } 1701 if( pSrc->notIndexed ){ 1702 /* The NOT INDEXED clause appears in the SQL. */ 1703 return; 1704 } 1705 1706 assert( pParse->nQueryLoop >= (double)1 ); 1707 pTable = pSrc->pTab; 1708 nTableRow = pTable->pIndex ? pTable->pIndex->aiRowEst[0] : 1000000; 1709 logN = estLog(nTableRow); 1710 costTempIdx = 2*logN*(nTableRow/pParse->nQueryLoop + 1); 1711 if( costTempIdx>=pCost->rCost ){ 1712 /* The cost of creating the transient table would be greater than 1713 ** doing the full table scan */ 1714 return; 1715 } 1716 1717 /* Search for any equality comparison term */ 1718 pWCEnd = &pWC->a[pWC->nTerm]; 1719 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 1720 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 1721 WHERETRACE(("auto-index reduces cost from %.2f to %.2f\n", 1722 pCost->rCost, costTempIdx)); 1723 pCost->rCost = costTempIdx; 1724 pCost->nRow = logN + 1; 1725 pCost->plan.wsFlags = WHERE_TEMP_INDEX; 1726 pCost->used = pTerm->prereqRight; 1727 break; 1728 } 1729 } 1730 } 1731 #else 1732 # define bestAutomaticIndex(A,B,C,D,E) /* no-op */ 1733 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 1734 1735 1736 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 1737 /* 1738 ** Generate code to construct the Index object for an automatic index 1739 ** and to set up the WhereLevel object pLevel so that the code generator 1740 ** makes use of the automatic index. 1741 */ 1742 static void constructAutomaticIndex( 1743 Parse *pParse, /* The parsing context */ 1744 WhereClause *pWC, /* The WHERE clause */ 1745 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */ 1746 Bitmask notReady, /* Mask of cursors that are not available */ 1747 WhereLevel *pLevel /* Write new index here */ 1748 ){ 1749 int nColumn; /* Number of columns in the constructed index */ 1750 WhereTerm *pTerm; /* A single term of the WHERE clause */ 1751 WhereTerm *pWCEnd; /* End of pWC->a[] */ 1752 int nByte; /* Byte of memory needed for pIdx */ 1753 Index *pIdx; /* Object describing the transient index */ 1754 Vdbe *v; /* Prepared statement under construction */ 1755 int regIsInit; /* Register set by initialization */ 1756 int addrInit; /* Address of the initialization bypass jump */ 1757 Table *pTable; /* The table being indexed */ 1758 KeyInfo *pKeyinfo; /* Key information for the index */ 1759 int addrTop; /* Top of the index fill loop */ 1760 int regRecord; /* Register holding an index record */ 1761 int n; /* Column counter */ 1762 int i; /* Loop counter */ 1763 int mxBitCol; /* Maximum column in pSrc->colUsed */ 1764 CollSeq *pColl; /* Collating sequence to on a column */ 1765 Bitmask idxCols; /* Bitmap of columns used for indexing */ 1766 Bitmask extraCols; /* Bitmap of additional columns */ 1767 1768 /* Generate code to skip over the creation and initialization of the 1769 ** transient index on 2nd and subsequent iterations of the loop. */ 1770 v = pParse->pVdbe; 1771 assert( v!=0 ); 1772 regIsInit = ++pParse->nMem; 1773 addrInit = sqlite3VdbeAddOp1(v, OP_If, regIsInit); 1774 sqlite3VdbeAddOp2(v, OP_Integer, 1, regIsInit); 1775 1776 /* Count the number of columns that will be added to the index 1777 ** and used to match WHERE clause constraints */ 1778 nColumn = 0; 1779 pTable = pSrc->pTab; 1780 pWCEnd = &pWC->a[pWC->nTerm]; 1781 idxCols = 0; 1782 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 1783 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 1784 int iCol = pTerm->u.leftColumn; 1785 Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol; 1786 testcase( iCol==BMS ); 1787 testcase( iCol==BMS-1 ); 1788 if( (idxCols & cMask)==0 ){ 1789 nColumn++; 1790 idxCols |= cMask; 1791 } 1792 } 1793 } 1794 assert( nColumn>0 ); 1795 pLevel->plan.nEq = nColumn; 1796 1797 /* Count the number of additional columns needed to create a 1798 ** covering index. A "covering index" is an index that contains all 1799 ** columns that are needed by the query. With a covering index, the 1800 ** original table never needs to be accessed. Automatic indices must 1801 ** be a covering index because the index will not be updated if the 1802 ** original table changes and the index and table cannot both be used 1803 ** if they go out of sync. 1804 */ 1805 extraCols = pSrc->colUsed & (~idxCols | (((Bitmask)1)<<(BMS-1))); 1806 mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol; 1807 testcase( pTable->nCol==BMS-1 ); 1808 testcase( pTable->nCol==BMS-2 ); 1809 for(i=0; i<mxBitCol; i++){ 1810 if( extraCols & (((Bitmask)1)<<i) ) nColumn++; 1811 } 1812 if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){ 1813 nColumn += pTable->nCol - BMS + 1; 1814 } 1815 pLevel->plan.wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WO_EQ; 1816 1817 /* Construct the Index object to describe this index */ 1818 nByte = sizeof(Index); 1819 nByte += nColumn*sizeof(int); /* Index.aiColumn */ 1820 nByte += nColumn*sizeof(char*); /* Index.azColl */ 1821 nByte += nColumn; /* Index.aSortOrder */ 1822 pIdx = sqlite3DbMallocZero(pParse->db, nByte); 1823 if( pIdx==0 ) return; 1824 pLevel->plan.u.pIdx = pIdx; 1825 pIdx->azColl = (char**)&pIdx[1]; 1826 pIdx->aiColumn = (int*)&pIdx->azColl[nColumn]; 1827 pIdx->aSortOrder = (u8*)&pIdx->aiColumn[nColumn]; 1828 pIdx->zName = "auto-index"; 1829 pIdx->nColumn = nColumn; 1830 pIdx->pTable = pTable; 1831 n = 0; 1832 idxCols = 0; 1833 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 1834 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 1835 int iCol = pTerm->u.leftColumn; 1836 Bitmask cMask = iCol>=BMS ? ((Bitmask)1)<<(BMS-1) : ((Bitmask)1)<<iCol; 1837 if( (idxCols & cMask)==0 ){ 1838 Expr *pX = pTerm->pExpr; 1839 idxCols |= cMask; 1840 pIdx->aiColumn[n] = pTerm->u.leftColumn; 1841 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); 1842 pIdx->azColl[n] = pColl->zName; 1843 n++; 1844 } 1845 } 1846 } 1847 assert( (u32)n==pLevel->plan.nEq ); 1848 1849 /* Add additional columns needed to make the automatic index into 1850 ** a covering index */ 1851 for(i=0; i<mxBitCol; i++){ 1852 if( extraCols & (((Bitmask)1)<<i) ){ 1853 pIdx->aiColumn[n] = i; 1854 pIdx->azColl[n] = "BINARY"; 1855 n++; 1856 } 1857 } 1858 if( pSrc->colUsed & (((Bitmask)1)<<(BMS-1)) ){ 1859 for(i=BMS-1; i<pTable->nCol; i++){ 1860 pIdx->aiColumn[n] = i; 1861 pIdx->azColl[n] = "BINARY"; 1862 n++; 1863 } 1864 } 1865 assert( n==nColumn ); 1866 1867 /* Create the automatic index */ 1868 pKeyinfo = sqlite3IndexKeyinfo(pParse, pIdx); 1869 assert( pLevel->iIdxCur>=0 ); 1870 sqlite3VdbeAddOp4(v, OP_OpenAutoindex, pLevel->iIdxCur, nColumn+1, 0, 1871 (char*)pKeyinfo, P4_KEYINFO_HANDOFF); 1872 VdbeComment((v, "for %s", pTable->zName)); 1873 1874 /* Fill the automatic index with content */ 1875 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); 1876 regRecord = sqlite3GetTempReg(pParse); 1877 sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 1); 1878 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); 1879 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 1880 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); 1881 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); 1882 sqlite3VdbeJumpHere(v, addrTop); 1883 sqlite3ReleaseTempReg(pParse, regRecord); 1884 1885 /* Jump here when skipping the initialization */ 1886 sqlite3VdbeJumpHere(v, addrInit); 1887 } 1888 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 1889 1890 #ifndef SQLITE_OMIT_VIRTUALTABLE 1891 /* 1892 ** Allocate and populate an sqlite3_index_info structure. It is the 1893 ** responsibility of the caller to eventually release the structure 1894 ** by passing the pointer returned by this function to sqlite3_free(). 1895 */ 1896 static sqlite3_index_info *allocateIndexInfo( 1897 Parse *pParse, 1898 WhereClause *pWC, 1899 struct SrcList_item *pSrc, 1900 ExprList *pOrderBy 1901 ){ 1902 int i, j; 1903 int nTerm; 1904 struct sqlite3_index_constraint *pIdxCons; 1905 struct sqlite3_index_orderby *pIdxOrderBy; 1906 struct sqlite3_index_constraint_usage *pUsage; 1907 WhereTerm *pTerm; 1908 int nOrderBy; 1909 sqlite3_index_info *pIdxInfo; 1910 1911 WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName)); 1912 1913 /* Count the number of possible WHERE clause constraints referring 1914 ** to this virtual table */ 1915 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1916 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1917 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); 1918 testcase( pTerm->eOperator==WO_IN ); 1919 testcase( pTerm->eOperator==WO_ISNULL ); 1920 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; 1921 nTerm++; 1922 } 1923 1924 /* If the ORDER BY clause contains only columns in the current 1925 ** virtual table then allocate space for the aOrderBy part of 1926 ** the sqlite3_index_info structure. 1927 */ 1928 nOrderBy = 0; 1929 if( pOrderBy ){ 1930 for(i=0; i<pOrderBy->nExpr; i++){ 1931 Expr *pExpr = pOrderBy->a[i].pExpr; 1932 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 1933 } 1934 if( i==pOrderBy->nExpr ){ 1935 nOrderBy = pOrderBy->nExpr; 1936 } 1937 } 1938 1939 /* Allocate the sqlite3_index_info structure 1940 */ 1941 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 1942 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 1943 + sizeof(*pIdxOrderBy)*nOrderBy ); 1944 if( pIdxInfo==0 ){ 1945 sqlite3ErrorMsg(pParse, "out of memory"); 1946 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1947 return 0; 1948 } 1949 1950 /* Initialize the structure. The sqlite3_index_info structure contains 1951 ** many fields that are declared "const" to prevent xBestIndex from 1952 ** changing them. We have to do some funky casting in order to 1953 ** initialize those fields. 1954 */ 1955 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; 1956 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 1957 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 1958 *(int*)&pIdxInfo->nConstraint = nTerm; 1959 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 1960 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; 1961 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; 1962 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = 1963 pUsage; 1964 1965 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1966 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1967 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); 1968 testcase( pTerm->eOperator==WO_IN ); 1969 testcase( pTerm->eOperator==WO_ISNULL ); 1970 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; 1971 pIdxCons[j].iColumn = pTerm->u.leftColumn; 1972 pIdxCons[j].iTermOffset = i; 1973 pIdxCons[j].op = (u8)pTerm->eOperator; 1974 /* The direct assignment in the previous line is possible only because 1975 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 1976 ** following asserts verify this fact. */ 1977 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 1978 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 1979 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 1980 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 1981 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 1982 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); 1983 assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); 1984 j++; 1985 } 1986 for(i=0; i<nOrderBy; i++){ 1987 Expr *pExpr = pOrderBy->a[i].pExpr; 1988 pIdxOrderBy[i].iColumn = pExpr->iColumn; 1989 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; 1990 } 1991 1992 return pIdxInfo; 1993 } 1994 1995 /* 1996 ** The table object reference passed as the second argument to this function 1997 ** must represent a virtual table. This function invokes the xBestIndex() 1998 ** method of the virtual table with the sqlite3_index_info pointer passed 1999 ** as the argument. 2000 ** 2001 ** If an error occurs, pParse is populated with an error message and a 2002 ** non-zero value is returned. Otherwise, 0 is returned and the output 2003 ** part of the sqlite3_index_info structure is left populated. 2004 ** 2005 ** Whether or not an error is returned, it is the responsibility of the 2006 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates 2007 ** that this is required. 2008 */ 2009 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ 2010 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; 2011 int i; 2012 int rc; 2013 2014 WHERETRACE(("xBestIndex for %s\n", pTab->zName)); 2015 TRACE_IDX_INPUTS(p); 2016 rc = pVtab->pModule->xBestIndex(pVtab, p); 2017 TRACE_IDX_OUTPUTS(p); 2018 2019 if( rc!=SQLITE_OK ){ 2020 if( rc==SQLITE_NOMEM ){ 2021 pParse->db->mallocFailed = 1; 2022 }else if( !pVtab->zErrMsg ){ 2023 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 2024 }else{ 2025 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 2026 } 2027 } 2028 sqlite3_free(pVtab->zErrMsg); 2029 pVtab->zErrMsg = 0; 2030 2031 for(i=0; i<p->nConstraint; i++){ 2032 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){ 2033 sqlite3ErrorMsg(pParse, 2034 "table %s: xBestIndex returned an invalid plan", pTab->zName); 2035 } 2036 } 2037 2038 return pParse->nErr; 2039 } 2040 2041 2042 /* 2043 ** Compute the best index for a virtual table. 2044 ** 2045 ** The best index is computed by the xBestIndex method of the virtual 2046 ** table module. This routine is really just a wrapper that sets up 2047 ** the sqlite3_index_info structure that is used to communicate with 2048 ** xBestIndex. 2049 ** 2050 ** In a join, this routine might be called multiple times for the 2051 ** same virtual table. The sqlite3_index_info structure is created 2052 ** and initialized on the first invocation and reused on all subsequent 2053 ** invocations. The sqlite3_index_info structure is also used when 2054 ** code is generated to access the virtual table. The whereInfoDelete() 2055 ** routine takes care of freeing the sqlite3_index_info structure after 2056 ** everybody has finished with it. 2057 */ 2058 static void bestVirtualIndex( 2059 Parse *pParse, /* The parsing context */ 2060 WhereClause *pWC, /* The WHERE clause */ 2061 struct SrcList_item *pSrc, /* The FROM clause term to search */ 2062 Bitmask notReady, /* Mask of cursors that are not available */ 2063 ExprList *pOrderBy, /* The order by clause */ 2064 WhereCost *pCost, /* Lowest cost query plan */ 2065 sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */ 2066 ){ 2067 Table *pTab = pSrc->pTab; 2068 sqlite3_index_info *pIdxInfo; 2069 struct sqlite3_index_constraint *pIdxCons; 2070 struct sqlite3_index_constraint_usage *pUsage; 2071 WhereTerm *pTerm; 2072 int i, j; 2073 int nOrderBy; 2074 double rCost; 2075 2076 /* Make sure wsFlags is initialized to some sane value. Otherwise, if the 2077 ** malloc in allocateIndexInfo() fails and this function returns leaving 2078 ** wsFlags in an uninitialized state, the caller may behave unpredictably. 2079 */ 2080 memset(pCost, 0, sizeof(*pCost)); 2081 pCost->plan.wsFlags = WHERE_VIRTUALTABLE; 2082 2083 /* If the sqlite3_index_info structure has not been previously 2084 ** allocated and initialized, then allocate and initialize it now. 2085 */ 2086 pIdxInfo = *ppIdxInfo; 2087 if( pIdxInfo==0 ){ 2088 *ppIdxInfo = pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pOrderBy); 2089 } 2090 if( pIdxInfo==0 ){ 2091 return; 2092 } 2093 2094 /* At this point, the sqlite3_index_info structure that pIdxInfo points 2095 ** to will have been initialized, either during the current invocation or 2096 ** during some prior invocation. Now we just have to customize the 2097 ** details of pIdxInfo for the current invocation and pass it to 2098 ** xBestIndex. 2099 */ 2100 2101 /* The module name must be defined. Also, by this point there must 2102 ** be a pointer to an sqlite3_vtab structure. Otherwise 2103 ** sqlite3ViewGetColumnNames() would have picked up the error. 2104 */ 2105 assert( pTab->azModuleArg && pTab->azModuleArg[0] ); 2106 assert( sqlite3GetVTable(pParse->db, pTab) ); 2107 2108 /* Set the aConstraint[].usable fields and initialize all 2109 ** output variables to zero. 2110 ** 2111 ** aConstraint[].usable is true for constraints where the right-hand 2112 ** side contains only references to tables to the left of the current 2113 ** table. In other words, if the constraint is of the form: 2114 ** 2115 ** column = expr 2116 ** 2117 ** and we are evaluating a join, then the constraint on column is 2118 ** only valid if all tables referenced in expr occur to the left 2119 ** of the table containing column. 2120 ** 2121 ** The aConstraints[] array contains entries for all constraints 2122 ** on the current table. That way we only have to compute it once 2123 ** even though we might try to pick the best index multiple times. 2124 ** For each attempt at picking an index, the order of tables in the 2125 ** join might be different so we have to recompute the usable flag 2126 ** each time. 2127 */ 2128 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 2129 pUsage = pIdxInfo->aConstraintUsage; 2130 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ 2131 j = pIdxCons->iTermOffset; 2132 pTerm = &pWC->a[j]; 2133 pIdxCons->usable = (pTerm->prereqRight¬Ready) ? 0 : 1; 2134 } 2135 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); 2136 if( pIdxInfo->needToFreeIdxStr ){ 2137 sqlite3_free(pIdxInfo->idxStr); 2138 } 2139 pIdxInfo->idxStr = 0; 2140 pIdxInfo->idxNum = 0; 2141 pIdxInfo->needToFreeIdxStr = 0; 2142 pIdxInfo->orderByConsumed = 0; 2143 /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */ 2144 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2); 2145 nOrderBy = pIdxInfo->nOrderBy; 2146 if( !pOrderBy ){ 2147 pIdxInfo->nOrderBy = 0; 2148 } 2149 2150 if( vtabBestIndex(pParse, pTab, pIdxInfo) ){ 2151 return; 2152 } 2153 2154 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 2155 for(i=0; i<pIdxInfo->nConstraint; i++){ 2156 if( pUsage[i].argvIndex>0 ){ 2157 pCost->used |= pWC->a[pIdxCons[i].iTermOffset].prereqRight; 2158 } 2159 } 2160 2161 /* If there is an ORDER BY clause, and the selected virtual table index 2162 ** does not satisfy it, increase the cost of the scan accordingly. This 2163 ** matches the processing for non-virtual tables in bestBtreeIndex(). 2164 */ 2165 rCost = pIdxInfo->estimatedCost; 2166 if( pOrderBy && pIdxInfo->orderByConsumed==0 ){ 2167 rCost += estLog(rCost)*rCost; 2168 } 2169 2170 /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the 2171 ** inital value of lowestCost in this loop. If it is, then the 2172 ** (cost<lowestCost) test below will never be true. 2173 ** 2174 ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT 2175 ** is defined. 2176 */ 2177 if( (SQLITE_BIG_DBL/((double)2))<rCost ){ 2178 pCost->rCost = (SQLITE_BIG_DBL/((double)2)); 2179 }else{ 2180 pCost->rCost = rCost; 2181 } 2182 pCost->plan.u.pVtabIdx = pIdxInfo; 2183 if( pIdxInfo->orderByConsumed ){ 2184 pCost->plan.wsFlags |= WHERE_ORDERBY; 2185 } 2186 pCost->plan.nEq = 0; 2187 pIdxInfo->nOrderBy = nOrderBy; 2188 2189 /* Try to find a more efficient access pattern by using multiple indexes 2190 ** to optimize an OR expression within the WHERE clause. 2191 */ 2192 bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost); 2193 } 2194 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 2195 2196 /* 2197 ** Argument pIdx is a pointer to an index structure that has an array of 2198 ** SQLITE_INDEX_SAMPLES evenly spaced samples of the first indexed column 2199 ** stored in Index.aSample. The domain of values stored in said column 2200 ** may be thought of as divided into (SQLITE_INDEX_SAMPLES+1) regions. 2201 ** Region 0 contains all values smaller than the first sample value. Region 2202 ** 1 contains values larger than or equal to the value of the first sample, 2203 ** but smaller than the value of the second. And so on. 2204 ** 2205 ** If successful, this function determines which of the regions value 2206 ** pVal lies in, sets *piRegion to the region index (a value between 0 2207 ** and SQLITE_INDEX_SAMPLES+1, inclusive) and returns SQLITE_OK. 2208 ** Or, if an OOM occurs while converting text values between encodings, 2209 ** SQLITE_NOMEM is returned and *piRegion is undefined. 2210 */ 2211 #ifdef SQLITE_ENABLE_STAT2 2212 static int whereRangeRegion( 2213 Parse *pParse, /* Database connection */ 2214 Index *pIdx, /* Index to consider domain of */ 2215 sqlite3_value *pVal, /* Value to consider */ 2216 int *piRegion /* OUT: Region of domain in which value lies */ 2217 ){ 2218 if( ALWAYS(pVal) ){ 2219 IndexSample *aSample = pIdx->aSample; 2220 int i = 0; 2221 int eType = sqlite3_value_type(pVal); 2222 2223 if( eType==SQLITE_INTEGER || eType==SQLITE_FLOAT ){ 2224 double r = sqlite3_value_double(pVal); 2225 for(i=0; i<SQLITE_INDEX_SAMPLES; i++){ 2226 if( aSample[i].eType==SQLITE_NULL ) continue; 2227 if( aSample[i].eType>=SQLITE_TEXT || aSample[i].u.r>r ) break; 2228 } 2229 }else{ 2230 sqlite3 *db = pParse->db; 2231 CollSeq *pColl; 2232 const u8 *z; 2233 int n; 2234 2235 /* pVal comes from sqlite3ValueFromExpr() so the type cannot be NULL */ 2236 assert( eType==SQLITE_TEXT || eType==SQLITE_BLOB ); 2237 2238 if( eType==SQLITE_BLOB ){ 2239 z = (const u8 *)sqlite3_value_blob(pVal); 2240 pColl = db->pDfltColl; 2241 assert( pColl->enc==SQLITE_UTF8 ); 2242 }else{ 2243 pColl = sqlite3GetCollSeq(db, SQLITE_UTF8, 0, *pIdx->azColl); 2244 if( pColl==0 ){ 2245 sqlite3ErrorMsg(pParse, "no such collation sequence: %s", 2246 *pIdx->azColl); 2247 return SQLITE_ERROR; 2248 } 2249 z = (const u8 *)sqlite3ValueText(pVal, pColl->enc); 2250 if( !z ){ 2251 return SQLITE_NOMEM; 2252 } 2253 assert( z && pColl && pColl->xCmp ); 2254 } 2255 n = sqlite3ValueBytes(pVal, pColl->enc); 2256 2257 for(i=0; i<SQLITE_INDEX_SAMPLES; i++){ 2258 int r; 2259 int eSampletype = aSample[i].eType; 2260 if( eSampletype==SQLITE_NULL || eSampletype<eType ) continue; 2261 if( (eSampletype!=eType) ) break; 2262 #ifndef SQLITE_OMIT_UTF16 2263 if( pColl->enc!=SQLITE_UTF8 ){ 2264 int nSample; 2265 char *zSample = sqlite3Utf8to16( 2266 db, pColl->enc, aSample[i].u.z, aSample[i].nByte, &nSample 2267 ); 2268 if( !zSample ){ 2269 assert( db->mallocFailed ); 2270 return SQLITE_NOMEM; 2271 } 2272 r = pColl->xCmp(pColl->pUser, nSample, zSample, n, z); 2273 sqlite3DbFree(db, zSample); 2274 }else 2275 #endif 2276 { 2277 r = pColl->xCmp(pColl->pUser, aSample[i].nByte, aSample[i].u.z, n, z); 2278 } 2279 if( r>0 ) break; 2280 } 2281 } 2282 2283 assert( i>=0 && i<=SQLITE_INDEX_SAMPLES ); 2284 *piRegion = i; 2285 } 2286 return SQLITE_OK; 2287 } 2288 #endif /* #ifdef SQLITE_ENABLE_STAT2 */ 2289 2290 /* 2291 ** If expression pExpr represents a literal value, set *pp to point to 2292 ** an sqlite3_value structure containing the same value, with affinity 2293 ** aff applied to it, before returning. It is the responsibility of the 2294 ** caller to eventually release this structure by passing it to 2295 ** sqlite3ValueFree(). 2296 ** 2297 ** If the current parse is a recompile (sqlite3Reprepare()) and pExpr 2298 ** is an SQL variable that currently has a non-NULL value bound to it, 2299 ** create an sqlite3_value structure containing this value, again with 2300 ** affinity aff applied to it, instead. 2301 ** 2302 ** If neither of the above apply, set *pp to NULL. 2303 ** 2304 ** If an error occurs, return an error code. Otherwise, SQLITE_OK. 2305 */ 2306 #ifdef SQLITE_ENABLE_STAT2 2307 static int valueFromExpr( 2308 Parse *pParse, 2309 Expr *pExpr, 2310 u8 aff, 2311 sqlite3_value **pp 2312 ){ 2313 /* The evalConstExpr() function will have already converted any TK_VARIABLE 2314 ** expression involved in an comparison into a TK_REGISTER. */ 2315 assert( pExpr->op!=TK_VARIABLE ); 2316 if( pExpr->op==TK_REGISTER && pExpr->op2==TK_VARIABLE ){ 2317 int iVar = pExpr->iColumn; 2318 sqlite3VdbeSetVarmask(pParse->pVdbe, iVar); 2319 *pp = sqlite3VdbeGetValue(pParse->pReprepare, iVar, aff); 2320 return SQLITE_OK; 2321 } 2322 return sqlite3ValueFromExpr(pParse->db, pExpr, SQLITE_UTF8, aff, pp); 2323 } 2324 #endif 2325 2326 /* 2327 ** This function is used to estimate the number of rows that will be visited 2328 ** by scanning an index for a range of values. The range may have an upper 2329 ** bound, a lower bound, or both. The WHERE clause terms that set the upper 2330 ** and lower bounds are represented by pLower and pUpper respectively. For 2331 ** example, assuming that index p is on t1(a): 2332 ** 2333 ** ... FROM t1 WHERE a > ? AND a < ? ... 2334 ** |_____| |_____| 2335 ** | | 2336 ** pLower pUpper 2337 ** 2338 ** If either of the upper or lower bound is not present, then NULL is passed in 2339 ** place of the corresponding WhereTerm. 2340 ** 2341 ** The nEq parameter is passed the index of the index column subject to the 2342 ** range constraint. Or, equivalently, the number of equality constraints 2343 ** optimized by the proposed index scan. For example, assuming index p is 2344 ** on t1(a, b), and the SQL query is: 2345 ** 2346 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... 2347 ** 2348 ** then nEq should be passed the value 1 (as the range restricted column, 2349 ** b, is the second left-most column of the index). Or, if the query is: 2350 ** 2351 ** ... FROM t1 WHERE a > ? AND a < ? ... 2352 ** 2353 ** then nEq should be passed 0. 2354 ** 2355 ** The returned value is an integer between 1 and 100, inclusive. A return 2356 ** value of 1 indicates that the proposed range scan is expected to visit 2357 ** approximately 1/100th (1%) of the rows selected by the nEq equality 2358 ** constraints (if any). A return value of 100 indicates that it is expected 2359 ** that the range scan will visit every row (100%) selected by the equality 2360 ** constraints. 2361 ** 2362 ** In the absence of sqlite_stat2 ANALYZE data, each range inequality 2363 ** reduces the search space by 2/3rds. Hence a single constraint (x>?) 2364 ** results in a return of 33 and a range constraint (x>? AND x<?) results 2365 ** in a return of 11. 2366 */ 2367 static int whereRangeScanEst( 2368 Parse *pParse, /* Parsing & code generating context */ 2369 Index *p, /* The index containing the range-compared column; "x" */ 2370 int nEq, /* index into p->aCol[] of the range-compared column */ 2371 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 2372 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 2373 int *piEst /* OUT: Return value */ 2374 ){ 2375 int rc = SQLITE_OK; 2376 2377 #ifdef SQLITE_ENABLE_STAT2 2378 2379 if( nEq==0 && p->aSample ){ 2380 sqlite3_value *pLowerVal = 0; 2381 sqlite3_value *pUpperVal = 0; 2382 int iEst; 2383 int iLower = 0; 2384 int iUpper = SQLITE_INDEX_SAMPLES; 2385 u8 aff = p->pTable->aCol[p->aiColumn[0]].affinity; 2386 2387 if( pLower ){ 2388 Expr *pExpr = pLower->pExpr->pRight; 2389 rc = valueFromExpr(pParse, pExpr, aff, &pLowerVal); 2390 } 2391 if( rc==SQLITE_OK && pUpper ){ 2392 Expr *pExpr = pUpper->pExpr->pRight; 2393 rc = valueFromExpr(pParse, pExpr, aff, &pUpperVal); 2394 } 2395 2396 if( rc!=SQLITE_OK || (pLowerVal==0 && pUpperVal==0) ){ 2397 sqlite3ValueFree(pLowerVal); 2398 sqlite3ValueFree(pUpperVal); 2399 goto range_est_fallback; 2400 }else if( pLowerVal==0 ){ 2401 rc = whereRangeRegion(pParse, p, pUpperVal, &iUpper); 2402 if( pLower ) iLower = iUpper/2; 2403 }else if( pUpperVal==0 ){ 2404 rc = whereRangeRegion(pParse, p, pLowerVal, &iLower); 2405 if( pUpper ) iUpper = (iLower + SQLITE_INDEX_SAMPLES + 1)/2; 2406 }else{ 2407 rc = whereRangeRegion(pParse, p, pUpperVal, &iUpper); 2408 if( rc==SQLITE_OK ){ 2409 rc = whereRangeRegion(pParse, p, pLowerVal, &iLower); 2410 } 2411 } 2412 2413 iEst = iUpper - iLower; 2414 testcase( iEst==SQLITE_INDEX_SAMPLES ); 2415 assert( iEst<=SQLITE_INDEX_SAMPLES ); 2416 if( iEst<1 ){ 2417 iEst = 1; 2418 } 2419 2420 sqlite3ValueFree(pLowerVal); 2421 sqlite3ValueFree(pUpperVal); 2422 *piEst = (iEst * 100)/SQLITE_INDEX_SAMPLES; 2423 return rc; 2424 } 2425 range_est_fallback: 2426 #else 2427 UNUSED_PARAMETER(pParse); 2428 UNUSED_PARAMETER(p); 2429 UNUSED_PARAMETER(nEq); 2430 #endif 2431 assert( pLower || pUpper ); 2432 if( pLower && pUpper ){ 2433 *piEst = 11; 2434 }else{ 2435 *piEst = 33; 2436 } 2437 return rc; 2438 } 2439 2440 2441 /* 2442 ** Find the query plan for accessing a particular table. Write the 2443 ** best query plan and its cost into the WhereCost object supplied as the 2444 ** last parameter. 2445 ** 2446 ** The lowest cost plan wins. The cost is an estimate of the amount of 2447 ** CPU and disk I/O need to process the request using the selected plan. 2448 ** Factors that influence cost include: 2449 ** 2450 ** * The estimated number of rows that will be retrieved. (The 2451 ** fewer the better.) 2452 ** 2453 ** * Whether or not sorting must occur. 2454 ** 2455 ** * Whether or not there must be separate lookups in the 2456 ** index and in the main table. 2457 ** 2458 ** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in 2459 ** the SQL statement, then this function only considers plans using the 2460 ** named index. If no such plan is found, then the returned cost is 2461 ** SQLITE_BIG_DBL. If a plan is found that uses the named index, 2462 ** then the cost is calculated in the usual way. 2463 ** 2464 ** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table 2465 ** in the SELECT statement, then no indexes are considered. However, the 2466 ** selected plan may still take advantage of the tables built-in rowid 2467 ** index. 2468 */ 2469 static void bestBtreeIndex( 2470 Parse *pParse, /* The parsing context */ 2471 WhereClause *pWC, /* The WHERE clause */ 2472 struct SrcList_item *pSrc, /* The FROM clause term to search */ 2473 Bitmask notReady, /* Mask of cursors that are not available */ 2474 ExprList *pOrderBy, /* The ORDER BY clause */ 2475 WhereCost *pCost /* Lowest cost query plan */ 2476 ){ 2477 int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ 2478 Index *pProbe; /* An index we are evaluating */ 2479 Index *pIdx; /* Copy of pProbe, or zero for IPK index */ 2480 int eqTermMask; /* Current mask of valid equality operators */ 2481 int idxEqTermMask; /* Index mask of valid equality operators */ 2482 Index sPk; /* A fake index object for the primary key */ 2483 unsigned int aiRowEstPk[2]; /* The aiRowEst[] value for the sPk index */ 2484 int aiColumnPk = -1; /* The aColumn[] value for the sPk index */ 2485 int wsFlagMask; /* Allowed flags in pCost->plan.wsFlag */ 2486 2487 /* Initialize the cost to a worst-case value */ 2488 memset(pCost, 0, sizeof(*pCost)); 2489 pCost->rCost = SQLITE_BIG_DBL; 2490 2491 /* If the pSrc table is the right table of a LEFT JOIN then we may not 2492 ** use an index to satisfy IS NULL constraints on that table. This is 2493 ** because columns might end up being NULL if the table does not match - 2494 ** a circumstance which the index cannot help us discover. Ticket #2177. 2495 */ 2496 if( pSrc->jointype & JT_LEFT ){ 2497 idxEqTermMask = WO_EQ|WO_IN; 2498 }else{ 2499 idxEqTermMask = WO_EQ|WO_IN|WO_ISNULL; 2500 } 2501 2502 if( pSrc->pIndex ){ 2503 /* An INDEXED BY clause specifies a particular index to use */ 2504 pIdx = pProbe = pSrc->pIndex; 2505 wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE); 2506 eqTermMask = idxEqTermMask; 2507 }else{ 2508 /* There is no INDEXED BY clause. Create a fake Index object to 2509 ** represent the primary key */ 2510 Index *pFirst; /* Any other index on the table */ 2511 memset(&sPk, 0, sizeof(Index)); 2512 sPk.nColumn = 1; 2513 sPk.aiColumn = &aiColumnPk; 2514 sPk.aiRowEst = aiRowEstPk; 2515 aiRowEstPk[1] = 1; 2516 sPk.onError = OE_Replace; 2517 sPk.pTable = pSrc->pTab; 2518 pFirst = pSrc->pTab->pIndex; 2519 if( pSrc->notIndexed==0 ){ 2520 sPk.pNext = pFirst; 2521 } 2522 /* The aiRowEstPk[0] is an estimate of the total number of rows in the 2523 ** table. Get this information from the ANALYZE information if it is 2524 ** available. If not available, assume the table 1 million rows in size. 2525 */ 2526 if( pFirst ){ 2527 assert( pFirst->aiRowEst!=0 ); /* Allocated together with pFirst */ 2528 aiRowEstPk[0] = pFirst->aiRowEst[0]; 2529 }else{ 2530 aiRowEstPk[0] = 1000000; 2531 } 2532 pProbe = &sPk; 2533 wsFlagMask = ~( 2534 WHERE_COLUMN_IN|WHERE_COLUMN_EQ|WHERE_COLUMN_NULL|WHERE_COLUMN_RANGE 2535 ); 2536 eqTermMask = WO_EQ|WO_IN; 2537 pIdx = 0; 2538 } 2539 2540 /* Loop over all indices looking for the best one to use 2541 */ 2542 for(; pProbe; pIdx=pProbe=pProbe->pNext){ 2543 const unsigned int * const aiRowEst = pProbe->aiRowEst; 2544 double cost; /* Cost of using pProbe */ 2545 double nRow; /* Estimated number of rows in result set */ 2546 int rev; /* True to scan in reverse order */ 2547 int wsFlags = 0; 2548 Bitmask used = 0; 2549 2550 /* The following variables are populated based on the properties of 2551 ** scan being evaluated. They are then used to determine the expected 2552 ** cost and number of rows returned. 2553 ** 2554 ** nEq: 2555 ** Number of equality terms that can be implemented using the index. 2556 ** 2557 ** nInMul: 2558 ** The "in-multiplier". This is an estimate of how many seek operations 2559 ** SQLite must perform on the index in question. For example, if the 2560 ** WHERE clause is: 2561 ** 2562 ** WHERE a IN (1, 2, 3) AND b IN (4, 5, 6) 2563 ** 2564 ** SQLite must perform 9 lookups on an index on (a, b), so nInMul is 2565 ** set to 9. Given the same schema and either of the following WHERE 2566 ** clauses: 2567 ** 2568 ** WHERE a = 1 2569 ** WHERE a >= 2 2570 ** 2571 ** nInMul is set to 1. 2572 ** 2573 ** If there exists a WHERE term of the form "x IN (SELECT ...)", then 2574 ** the sub-select is assumed to return 25 rows for the purposes of 2575 ** determining nInMul. 2576 ** 2577 ** bInEst: 2578 ** Set to true if there was at least one "x IN (SELECT ...)" term used 2579 ** in determining the value of nInMul. 2580 ** 2581 ** estBound: 2582 ** An estimate on the amount of the table that must be searched. A 2583 ** value of 100 means the entire table is searched. Range constraints 2584 ** might reduce this to a value less than 100 to indicate that only 2585 ** a fraction of the table needs searching. In the absence of 2586 ** sqlite_stat2 ANALYZE data, a single inequality reduces the search 2587 ** space to 1/3rd its original size. So an x>? constraint reduces 2588 ** estBound to 33. Two constraints (x>? AND x<?) reduce estBound to 11. 2589 ** 2590 ** bSort: 2591 ** Boolean. True if there is an ORDER BY clause that will require an 2592 ** external sort (i.e. scanning the index being evaluated will not 2593 ** correctly order records). 2594 ** 2595 ** bLookup: 2596 ** Boolean. True if for each index entry visited a lookup on the 2597 ** corresponding table b-tree is required. This is always false 2598 ** for the rowid index. For other indexes, it is true unless all the 2599 ** columns of the table used by the SELECT statement are present in 2600 ** the index (such an index is sometimes described as a covering index). 2601 ** For example, given the index on (a, b), the second of the following 2602 ** two queries requires table b-tree lookups, but the first does not. 2603 ** 2604 ** SELECT a, b FROM tbl WHERE a = 1; 2605 ** SELECT a, b, c FROM tbl WHERE a = 1; 2606 */ 2607 int nEq; 2608 int bInEst = 0; 2609 int nInMul = 1; 2610 int estBound = 100; 2611 int nBound = 0; /* Number of range constraints seen */ 2612 int bSort = 0; 2613 int bLookup = 0; 2614 WhereTerm *pTerm; /* A single term of the WHERE clause */ 2615 2616 /* Determine the values of nEq and nInMul */ 2617 for(nEq=0; nEq<pProbe->nColumn; nEq++){ 2618 int j = pProbe->aiColumn[nEq]; 2619 pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pIdx); 2620 if( pTerm==0 ) break; 2621 wsFlags |= (WHERE_COLUMN_EQ|WHERE_ROWID_EQ); 2622 if( pTerm->eOperator & WO_IN ){ 2623 Expr *pExpr = pTerm->pExpr; 2624 wsFlags |= WHERE_COLUMN_IN; 2625 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2626 nInMul *= 25; 2627 bInEst = 1; 2628 }else if( ALWAYS(pExpr->x.pList) ){ 2629 nInMul *= pExpr->x.pList->nExpr + 1; 2630 } 2631 }else if( pTerm->eOperator & WO_ISNULL ){ 2632 wsFlags |= WHERE_COLUMN_NULL; 2633 } 2634 used |= pTerm->prereqRight; 2635 } 2636 2637 /* Determine the value of estBound. */ 2638 if( nEq<pProbe->nColumn ){ 2639 int j = pProbe->aiColumn[nEq]; 2640 if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pIdx) ){ 2641 WhereTerm *pTop = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pIdx); 2642 WhereTerm *pBtm = findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pIdx); 2643 whereRangeScanEst(pParse, pProbe, nEq, pBtm, pTop, &estBound); 2644 if( pTop ){ 2645 nBound = 1; 2646 wsFlags |= WHERE_TOP_LIMIT; 2647 used |= pTop->prereqRight; 2648 } 2649 if( pBtm ){ 2650 nBound++; 2651 wsFlags |= WHERE_BTM_LIMIT; 2652 used |= pBtm->prereqRight; 2653 } 2654 wsFlags |= (WHERE_COLUMN_RANGE|WHERE_ROWID_RANGE); 2655 } 2656 }else if( pProbe->onError!=OE_None ){ 2657 testcase( wsFlags & WHERE_COLUMN_IN ); 2658 testcase( wsFlags & WHERE_COLUMN_NULL ); 2659 if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){ 2660 wsFlags |= WHERE_UNIQUE; 2661 } 2662 } 2663 2664 /* If there is an ORDER BY clause and the index being considered will 2665 ** naturally scan rows in the required order, set the appropriate flags 2666 ** in wsFlags. Otherwise, if there is an ORDER BY clause but the index 2667 ** will scan rows in a different order, set the bSort variable. */ 2668 if( pOrderBy ){ 2669 if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 2670 && isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) 2671 ){ 2672 wsFlags |= WHERE_ROWID_RANGE|WHERE_COLUMN_RANGE|WHERE_ORDERBY; 2673 wsFlags |= (rev ? WHERE_REVERSE : 0); 2674 }else{ 2675 bSort = 1; 2676 } 2677 } 2678 2679 /* If currently calculating the cost of using an index (not the IPK 2680 ** index), determine if all required column data may be obtained without 2681 ** using the main table (i.e. if the index is a covering 2682 ** index for this query). If it is, set the WHERE_IDX_ONLY flag in 2683 ** wsFlags. Otherwise, set the bLookup variable to true. */ 2684 if( pIdx && wsFlags ){ 2685 Bitmask m = pSrc->colUsed; 2686 int j; 2687 for(j=0; j<pIdx->nColumn; j++){ 2688 int x = pIdx->aiColumn[j]; 2689 if( x<BMS-1 ){ 2690 m &= ~(((Bitmask)1)<<x); 2691 } 2692 } 2693 if( m==0 ){ 2694 wsFlags |= WHERE_IDX_ONLY; 2695 }else{ 2696 bLookup = 1; 2697 } 2698 } 2699 2700 /* 2701 ** Estimate the number of rows of output. For an IN operator, 2702 ** do not let the estimate exceed half the rows in the table. 2703 */ 2704 nRow = (double)(aiRowEst[nEq] * nInMul); 2705 if( bInEst && nRow*2>aiRowEst[0] ){ 2706 nRow = aiRowEst[0]/2; 2707 nInMul = (int)(nRow / aiRowEst[nEq]); 2708 } 2709 2710 /* Assume constant cost to access a row and logarithmic cost to 2711 ** do a binary search. Hence, the initial cost is the number of output 2712 ** rows plus log2(table-size) times the number of binary searches. 2713 */ 2714 cost = nRow + nInMul*estLog(aiRowEst[0]); 2715 2716 /* Adjust the number of rows and the cost downward to reflect rows 2717 ** that are excluded by range constraints. 2718 */ 2719 nRow = (nRow * (double)estBound) / (double)100; 2720 cost = (cost * (double)estBound) / (double)100; 2721 2722 /* Add in the estimated cost of sorting the result 2723 */ 2724 if( bSort ){ 2725 cost += cost*estLog(cost); 2726 } 2727 2728 /* If all information can be taken directly from the index, we avoid 2729 ** doing table lookups. This reduces the cost by half. (Not really - 2730 ** this needs to be fixed.) 2731 */ 2732 if( pIdx && bLookup==0 ){ 2733 cost /= (double)2; 2734 } 2735 /**** Cost of using this index has now been computed ****/ 2736 2737 /* If there are additional constraints on this table that cannot 2738 ** be used with the current index, but which might lower the number 2739 ** of output rows, adjust the nRow value accordingly. This only 2740 ** matters if the current index is the least costly, so do not bother 2741 ** with this step if we already know this index will not be chosen. 2742 ** Also, never reduce the output row count below 2 using this step. 2743 ** 2744 ** Do not reduce the output row count if pSrc is the only table that 2745 ** is notReady; if notReady is a power of two. This will be the case 2746 ** when the main sqlite3WhereBegin() loop is scanning for a table with 2747 ** and "optimal" index, and on such a scan the output row count 2748 ** reduction is not valid because it does not update the "pCost->used" 2749 ** bitmap. The notReady bitmap will also be a power of two when we 2750 ** are scanning for the last table in a 64-way join. We are willing 2751 ** to bypass this optimization in that corner case. 2752 */ 2753 if( nRow>2 && cost<=pCost->rCost && (notReady & (notReady-1))!=0 ){ 2754 int k; /* Loop counter */ 2755 int nSkipEq = nEq; /* Number of == constraints to skip */ 2756 int nSkipRange = nBound; /* Number of < constraints to skip */ 2757 Bitmask thisTab; /* Bitmap for pSrc */ 2758 2759 thisTab = getMask(pWC->pMaskSet, iCur); 2760 for(pTerm=pWC->a, k=pWC->nTerm; nRow>2 && k; k--, pTerm++){ 2761 if( pTerm->wtFlags & TERM_VIRTUAL ) continue; 2762 if( (pTerm->prereqAll & notReady)!=thisTab ) continue; 2763 if( pTerm->eOperator & (WO_EQ|WO_IN|WO_ISNULL) ){ 2764 if( nSkipEq ){ 2765 /* Ignore the first nEq equality matches since the index 2766 ** has already accounted for these */ 2767 nSkipEq--; 2768 }else{ 2769 /* Assume each additional equality match reduces the result 2770 ** set size by a factor of 10 */ 2771 nRow /= 10; 2772 } 2773 }else if( pTerm->eOperator & (WO_LT|WO_LE|WO_GT|WO_GE) ){ 2774 if( nSkipRange ){ 2775 /* Ignore the first nBound range constraints since the index 2776 ** has already accounted for these */ 2777 nSkipRange--; 2778 }else{ 2779 /* Assume each additional range constraint reduces the result 2780 ** set size by a factor of 3 */ 2781 nRow /= 3; 2782 } 2783 }else{ 2784 /* Any other expression lowers the output row count by half */ 2785 nRow /= 2; 2786 } 2787 } 2788 if( nRow<2 ) nRow = 2; 2789 } 2790 2791 2792 WHERETRACE(( 2793 "%s(%s): nEq=%d nInMul=%d estBound=%d bSort=%d bLookup=%d wsFlags=0x%x\n" 2794 " notReady=0x%llx nRow=%.2f cost=%.2f used=0x%llx\n", 2795 pSrc->pTab->zName, (pIdx ? pIdx->zName : "ipk"), 2796 nEq, nInMul, estBound, bSort, bLookup, wsFlags, 2797 notReady, nRow, cost, used 2798 )); 2799 2800 /* If this index is the best we have seen so far, then record this 2801 ** index and its cost in the pCost structure. 2802 */ 2803 if( (!pIdx || wsFlags) 2804 && (cost<pCost->rCost || (cost<=pCost->rCost && nRow<pCost->nRow)) 2805 ){ 2806 pCost->rCost = cost; 2807 pCost->nRow = nRow; 2808 pCost->used = used; 2809 pCost->plan.wsFlags = (wsFlags&wsFlagMask); 2810 pCost->plan.nEq = nEq; 2811 pCost->plan.u.pIdx = pIdx; 2812 } 2813 2814 /* If there was an INDEXED BY clause, then only that one index is 2815 ** considered. */ 2816 if( pSrc->pIndex ) break; 2817 2818 /* Reset masks for the next index in the loop */ 2819 wsFlagMask = ~(WHERE_ROWID_EQ|WHERE_ROWID_RANGE); 2820 eqTermMask = idxEqTermMask; 2821 } 2822 2823 /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag 2824 ** is set, then reverse the order that the index will be scanned 2825 ** in. This is used for application testing, to help find cases 2826 ** where application behaviour depends on the (undefined) order that 2827 ** SQLite outputs rows in in the absence of an ORDER BY clause. */ 2828 if( !pOrderBy && pParse->db->flags & SQLITE_ReverseOrder ){ 2829 pCost->plan.wsFlags |= WHERE_REVERSE; 2830 } 2831 2832 assert( pOrderBy || (pCost->plan.wsFlags&WHERE_ORDERBY)==0 ); 2833 assert( pCost->plan.u.pIdx==0 || (pCost->plan.wsFlags&WHERE_ROWID_EQ)==0 ); 2834 assert( pSrc->pIndex==0 2835 || pCost->plan.u.pIdx==0 2836 || pCost->plan.u.pIdx==pSrc->pIndex 2837 ); 2838 2839 WHERETRACE(("best index is: %s\n", 2840 ((pCost->plan.wsFlags & WHERE_NOT_FULLSCAN)==0 ? "none" : 2841 pCost->plan.u.pIdx ? pCost->plan.u.pIdx->zName : "ipk") 2842 )); 2843 2844 bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost); 2845 bestAutomaticIndex(pParse, pWC, pSrc, notReady, pCost); 2846 pCost->plan.wsFlags |= eqTermMask; 2847 } 2848 2849 /* 2850 ** Find the query plan for accessing table pSrc->pTab. Write the 2851 ** best query plan and its cost into the WhereCost object supplied 2852 ** as the last parameter. This function may calculate the cost of 2853 ** both real and virtual table scans. 2854 */ 2855 static void bestIndex( 2856 Parse *pParse, /* The parsing context */ 2857 WhereClause *pWC, /* The WHERE clause */ 2858 struct SrcList_item *pSrc, /* The FROM clause term to search */ 2859 Bitmask notReady, /* Mask of cursors that are not available */ 2860 ExprList *pOrderBy, /* The ORDER BY clause */ 2861 WhereCost *pCost /* Lowest cost query plan */ 2862 ){ 2863 #ifndef SQLITE_OMIT_VIRTUALTABLE 2864 if( IsVirtual(pSrc->pTab) ){ 2865 sqlite3_index_info *p = 0; 2866 bestVirtualIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost, &p); 2867 if( p->needToFreeIdxStr ){ 2868 sqlite3_free(p->idxStr); 2869 } 2870 sqlite3DbFree(pParse->db, p); 2871 }else 2872 #endif 2873 { 2874 bestBtreeIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost); 2875 } 2876 } 2877 2878 /* 2879 ** Disable a term in the WHERE clause. Except, do not disable the term 2880 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 2881 ** or USING clause of that join. 2882 ** 2883 ** Consider the term t2.z='ok' in the following queries: 2884 ** 2885 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 2886 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 2887 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 2888 ** 2889 ** The t2.z='ok' is disabled in the in (2) because it originates 2890 ** in the ON clause. The term is disabled in (3) because it is not part 2891 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 2892 ** 2893 ** IMPLEMENTATION-OF: R-24597-58655 No tests are done for terms that are 2894 ** completely satisfied by indices. 2895 ** 2896 ** Disabling a term causes that term to not be tested in the inner loop 2897 ** of the join. Disabling is an optimization. When terms are satisfied 2898 ** by indices, we disable them to prevent redundant tests in the inner 2899 ** loop. We would get the correct results if nothing were ever disabled, 2900 ** but joins might run a little slower. The trick is to disable as much 2901 ** as we can without disabling too much. If we disabled in (1), we'd get 2902 ** the wrong answer. See ticket #813. 2903 */ 2904 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 2905 if( pTerm 2906 && (pTerm->wtFlags & TERM_CODED)==0 2907 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 2908 ){ 2909 pTerm->wtFlags |= TERM_CODED; 2910 if( pTerm->iParent>=0 ){ 2911 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; 2912 if( (--pOther->nChild)==0 ){ 2913 disableTerm(pLevel, pOther); 2914 } 2915 } 2916 } 2917 } 2918 2919 /* 2920 ** Code an OP_Affinity opcode to apply the column affinity string zAff 2921 ** to the n registers starting at base. 2922 ** 2923 ** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the 2924 ** beginning and end of zAff are ignored. If all entries in zAff are 2925 ** SQLITE_AFF_NONE, then no code gets generated. 2926 ** 2927 ** This routine makes its own copy of zAff so that the caller is free 2928 ** to modify zAff after this routine returns. 2929 */ 2930 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){ 2931 Vdbe *v = pParse->pVdbe; 2932 if( zAff==0 ){ 2933 assert( pParse->db->mallocFailed ); 2934 return; 2935 } 2936 assert( v!=0 ); 2937 2938 /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning 2939 ** and end of the affinity string. 2940 */ 2941 while( n>0 && zAff[0]==SQLITE_AFF_NONE ){ 2942 n--; 2943 base++; 2944 zAff++; 2945 } 2946 while( n>1 && zAff[n-1]==SQLITE_AFF_NONE ){ 2947 n--; 2948 } 2949 2950 /* Code the OP_Affinity opcode if there is anything left to do. */ 2951 if( n>0 ){ 2952 sqlite3VdbeAddOp2(v, OP_Affinity, base, n); 2953 sqlite3VdbeChangeP4(v, -1, zAff, n); 2954 sqlite3ExprCacheAffinityChange(pParse, base, n); 2955 } 2956 } 2957 2958 2959 /* 2960 ** Generate code for a single equality term of the WHERE clause. An equality 2961 ** term can be either X=expr or X IN (...). pTerm is the term to be 2962 ** coded. 2963 ** 2964 ** The current value for the constraint is left in register iReg. 2965 ** 2966 ** For a constraint of the form X=expr, the expression is evaluated and its 2967 ** result is left on the stack. For constraints of the form X IN (...) 2968 ** this routine sets up a loop that will iterate over all values of X. 2969 */ 2970 static int codeEqualityTerm( 2971 Parse *pParse, /* The parsing context */ 2972 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 2973 WhereLevel *pLevel, /* When level of the FROM clause we are working on */ 2974 int iTarget /* Attempt to leave results in this register */ 2975 ){ 2976 Expr *pX = pTerm->pExpr; 2977 Vdbe *v = pParse->pVdbe; 2978 int iReg; /* Register holding results */ 2979 2980 assert( iTarget>0 ); 2981 if( pX->op==TK_EQ ){ 2982 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 2983 }else if( pX->op==TK_ISNULL ){ 2984 iReg = iTarget; 2985 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 2986 #ifndef SQLITE_OMIT_SUBQUERY 2987 }else{ 2988 int eType; 2989 int iTab; 2990 struct InLoop *pIn; 2991 2992 assert( pX->op==TK_IN ); 2993 iReg = iTarget; 2994 eType = sqlite3FindInIndex(pParse, pX, 0); 2995 iTab = pX->iTable; 2996 sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); 2997 assert( pLevel->plan.wsFlags & WHERE_IN_ABLE ); 2998 if( pLevel->u.in.nIn==0 ){ 2999 pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 3000 } 3001 pLevel->u.in.nIn++; 3002 pLevel->u.in.aInLoop = 3003 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, 3004 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 3005 pIn = pLevel->u.in.aInLoop; 3006 if( pIn ){ 3007 pIn += pLevel->u.in.nIn - 1; 3008 pIn->iCur = iTab; 3009 if( eType==IN_INDEX_ROWID ){ 3010 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); 3011 }else{ 3012 pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); 3013 } 3014 sqlite3VdbeAddOp1(v, OP_IsNull, iReg); 3015 }else{ 3016 pLevel->u.in.nIn = 0; 3017 } 3018 #endif 3019 } 3020 disableTerm(pLevel, pTerm); 3021 return iReg; 3022 } 3023 3024 /* 3025 ** Generate code that will evaluate all == and IN constraints for an 3026 ** index. 3027 ** 3028 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 3029 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 3030 ** The index has as many as three equality constraints, but in this 3031 ** example, the third "c" value is an inequality. So only two 3032 ** constraints are coded. This routine will generate code to evaluate 3033 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 3034 ** in consecutive registers and the index of the first register is returned. 3035 ** 3036 ** In the example above nEq==2. But this subroutine works for any value 3037 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 3038 ** The only thing it does is allocate the pLevel->iMem memory cell and 3039 ** compute the affinity string. 3040 ** 3041 ** This routine always allocates at least one memory cell and returns 3042 ** the index of that memory cell. The code that 3043 ** calls this routine will use that memory cell to store the termination 3044 ** key value of the loop. If one or more IN operators appear, then 3045 ** this routine allocates an additional nEq memory cells for internal 3046 ** use. 3047 ** 3048 ** Before returning, *pzAff is set to point to a buffer containing a 3049 ** copy of the column affinity string of the index allocated using 3050 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated 3051 ** with equality constraints that use NONE affinity are set to 3052 ** SQLITE_AFF_NONE. This is to deal with SQL such as the following: 3053 ** 3054 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b); 3055 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b; 3056 ** 3057 ** In the example above, the index on t1(a) has TEXT affinity. But since 3058 ** the right hand side of the equality constraint (t2.b) has NONE affinity, 3059 ** no conversion should be attempted before using a t2.b value as part of 3060 ** a key to search the index. Hence the first byte in the returned affinity 3061 ** string in this example would be set to SQLITE_AFF_NONE. 3062 */ 3063 static int codeAllEqualityTerms( 3064 Parse *pParse, /* Parsing context */ 3065 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 3066 WhereClause *pWC, /* The WHERE clause */ 3067 Bitmask notReady, /* Which parts of FROM have not yet been coded */ 3068 int nExtraReg, /* Number of extra registers to allocate */ 3069 char **pzAff /* OUT: Set to point to affinity string */ 3070 ){ 3071 int nEq = pLevel->plan.nEq; /* The number of == or IN constraints to code */ 3072 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 3073 Index *pIdx; /* The index being used for this loop */ 3074 int iCur = pLevel->iTabCur; /* The cursor of the table */ 3075 WhereTerm *pTerm; /* A single constraint term */ 3076 int j; /* Loop counter */ 3077 int regBase; /* Base register */ 3078 int nReg; /* Number of registers to allocate */ 3079 char *zAff; /* Affinity string to return */ 3080 3081 /* This module is only called on query plans that use an index. */ 3082 assert( pLevel->plan.wsFlags & WHERE_INDEXED ); 3083 pIdx = pLevel->plan.u.pIdx; 3084 3085 /* Figure out how many memory cells we will need then allocate them. 3086 */ 3087 regBase = pParse->nMem + 1; 3088 nReg = pLevel->plan.nEq + nExtraReg; 3089 pParse->nMem += nReg; 3090 3091 zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx)); 3092 if( !zAff ){ 3093 pParse->db->mallocFailed = 1; 3094 } 3095 3096 /* Evaluate the equality constraints 3097 */ 3098 assert( pIdx->nColumn>=nEq ); 3099 for(j=0; j<nEq; j++){ 3100 int r1; 3101 int k = pIdx->aiColumn[j]; 3102 pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx); 3103 if( NEVER(pTerm==0) ) break; 3104 /* The following true for indices with redundant columns. 3105 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */ 3106 testcase( (pTerm->wtFlags & TERM_CODED)!=0 ); 3107 testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ 3108 r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j); 3109 if( r1!=regBase+j ){ 3110 if( nReg==1 ){ 3111 sqlite3ReleaseTempReg(pParse, regBase); 3112 regBase = r1; 3113 }else{ 3114 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); 3115 } 3116 } 3117 testcase( pTerm->eOperator & WO_ISNULL ); 3118 testcase( pTerm->eOperator & WO_IN ); 3119 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ 3120 Expr *pRight = pTerm->pExpr->pRight; 3121 sqlite3ExprCodeIsNullJump(v, pRight, regBase+j, pLevel->addrBrk); 3122 if( zAff ){ 3123 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_NONE ){ 3124 zAff[j] = SQLITE_AFF_NONE; 3125 } 3126 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){ 3127 zAff[j] = SQLITE_AFF_NONE; 3128 } 3129 } 3130 } 3131 } 3132 *pzAff = zAff; 3133 return regBase; 3134 } 3135 3136 /* 3137 ** Generate code for the start of the iLevel-th loop in the WHERE clause 3138 ** implementation described by pWInfo. 3139 */ 3140 static Bitmask codeOneLoopStart( 3141 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 3142 int iLevel, /* Which level of pWInfo->a[] should be coded */ 3143 u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */ 3144 Bitmask notReady /* Which tables are currently available */ 3145 ){ 3146 int j, k; /* Loop counters */ 3147 int iCur; /* The VDBE cursor for the table */ 3148 int addrNxt; /* Where to jump to continue with the next IN case */ 3149 int omitTable; /* True if we use the index only */ 3150 int bRev; /* True if we need to scan in reverse order */ 3151 WhereLevel *pLevel; /* The where level to be coded */ 3152 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 3153 WhereTerm *pTerm; /* A WHERE clause term */ 3154 Parse *pParse; /* Parsing context */ 3155 Vdbe *v; /* The prepared stmt under constructions */ 3156 struct SrcList_item *pTabItem; /* FROM clause term being coded */ 3157 int addrBrk; /* Jump here to break out of the loop */ 3158 int addrCont; /* Jump here to continue with next cycle */ 3159 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 3160 int iReleaseReg = 0; /* Temp register to free before returning */ 3161 3162 pParse = pWInfo->pParse; 3163 v = pParse->pVdbe; 3164 pWC = pWInfo->pWC; 3165 pLevel = &pWInfo->a[iLevel]; 3166 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 3167 iCur = pTabItem->iCursor; 3168 bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0; 3169 omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0 3170 && (wctrlFlags & WHERE_FORCE_TABLE)==0; 3171 3172 /* Create labels for the "break" and "continue" instructions 3173 ** for the current loop. Jump to addrBrk to break out of a loop. 3174 ** Jump to cont to go immediately to the next iteration of the 3175 ** loop. 3176 ** 3177 ** When there is an IN operator, we also have a "addrNxt" label that 3178 ** means to continue with the next IN value combination. When 3179 ** there are no IN operators in the constraints, the "addrNxt" label 3180 ** is the same as "addrBrk". 3181 */ 3182 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 3183 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); 3184 3185 /* If this is the right table of a LEFT OUTER JOIN, allocate and 3186 ** initialize a memory cell that records if this table matches any 3187 ** row of the left table of the join. 3188 */ 3189 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ 3190 pLevel->iLeftJoin = ++pParse->nMem; 3191 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 3192 VdbeComment((v, "init LEFT JOIN no-match flag")); 3193 } 3194 3195 #ifndef SQLITE_OMIT_VIRTUALTABLE 3196 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 3197 /* Case 0: The table is a virtual-table. Use the VFilter and VNext 3198 ** to access the data. 3199 */ 3200 int iReg; /* P3 Value for OP_VFilter */ 3201 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx; 3202 int nConstraint = pVtabIdx->nConstraint; 3203 struct sqlite3_index_constraint_usage *aUsage = 3204 pVtabIdx->aConstraintUsage; 3205 const struct sqlite3_index_constraint *aConstraint = 3206 pVtabIdx->aConstraint; 3207 3208 sqlite3ExprCachePush(pParse); 3209 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 3210 for(j=1; j<=nConstraint; j++){ 3211 for(k=0; k<nConstraint; k++){ 3212 if( aUsage[k].argvIndex==j ){ 3213 int iTerm = aConstraint[k].iTermOffset; 3214 sqlite3ExprCode(pParse, pWC->a[iTerm].pExpr->pRight, iReg+j+1); 3215 break; 3216 } 3217 } 3218 if( k==nConstraint ) break; 3219 } 3220 sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg); 3221 sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1); 3222 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrBrk, iReg, pVtabIdx->idxStr, 3223 pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC); 3224 pVtabIdx->needToFreeIdxStr = 0; 3225 for(j=0; j<nConstraint; j++){ 3226 if( aUsage[j].omit ){ 3227 int iTerm = aConstraint[j].iTermOffset; 3228 disableTerm(pLevel, &pWC->a[iTerm]); 3229 } 3230 } 3231 pLevel->op = OP_VNext; 3232 pLevel->p1 = iCur; 3233 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 3234 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 3235 sqlite3ExprCachePop(pParse, 1); 3236 }else 3237 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3238 3239 if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){ 3240 /* Case 1: We can directly reference a single row using an 3241 ** equality comparison against the ROWID field. Or 3242 ** we reference multiple rows using a "rowid IN (...)" 3243 ** construct. 3244 */ 3245 iReleaseReg = sqlite3GetTempReg(pParse); 3246 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); 3247 assert( pTerm!=0 ); 3248 assert( pTerm->pExpr!=0 ); 3249 assert( pTerm->leftCursor==iCur ); 3250 assert( omitTable==0 ); 3251 testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ 3252 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg); 3253 addrNxt = pLevel->addrNxt; 3254 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); 3255 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg); 3256 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 3257 VdbeComment((v, "pk")); 3258 pLevel->op = OP_Noop; 3259 }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){ 3260 /* Case 2: We have an inequality comparison against the ROWID field. 3261 */ 3262 int testOp = OP_Noop; 3263 int start; 3264 int memEndValue = 0; 3265 WhereTerm *pStart, *pEnd; 3266 3267 assert( omitTable==0 ); 3268 pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0); 3269 pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0); 3270 if( bRev ){ 3271 pTerm = pStart; 3272 pStart = pEnd; 3273 pEnd = pTerm; 3274 } 3275 if( pStart ){ 3276 Expr *pX; /* The expression that defines the start bound */ 3277 int r1, rTemp; /* Registers for holding the start boundary */ 3278 3279 /* The following constant maps TK_xx codes into corresponding 3280 ** seek opcodes. It depends on a particular ordering of TK_xx 3281 */ 3282 const u8 aMoveOp[] = { 3283 /* TK_GT */ OP_SeekGt, 3284 /* TK_LE */ OP_SeekLe, 3285 /* TK_LT */ OP_SeekLt, 3286 /* TK_GE */ OP_SeekGe 3287 }; 3288 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 3289 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 3290 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 3291 3292 testcase( pStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ 3293 pX = pStart->pExpr; 3294 assert( pX!=0 ); 3295 assert( pStart->leftCursor==iCur ); 3296 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 3297 sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1); 3298 VdbeComment((v, "pk")); 3299 sqlite3ExprCacheAffinityChange(pParse, r1, 1); 3300 sqlite3ReleaseTempReg(pParse, rTemp); 3301 disableTerm(pLevel, pStart); 3302 }else{ 3303 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); 3304 } 3305 if( pEnd ){ 3306 Expr *pX; 3307 pX = pEnd->pExpr; 3308 assert( pX!=0 ); 3309 assert( pEnd->leftCursor==iCur ); 3310 testcase( pEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ 3311 memEndValue = ++pParse->nMem; 3312 sqlite3ExprCode(pParse, pX->pRight, memEndValue); 3313 if( pX->op==TK_LT || pX->op==TK_GT ){ 3314 testOp = bRev ? OP_Le : OP_Ge; 3315 }else{ 3316 testOp = bRev ? OP_Lt : OP_Gt; 3317 } 3318 disableTerm(pLevel, pEnd); 3319 } 3320 start = sqlite3VdbeCurrentAddr(v); 3321 pLevel->op = bRev ? OP_Prev : OP_Next; 3322 pLevel->p1 = iCur; 3323 pLevel->p2 = start; 3324 if( pStart==0 && pEnd==0 ){ 3325 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 3326 }else{ 3327 assert( pLevel->p5==0 ); 3328 } 3329 if( testOp!=OP_Noop ){ 3330 iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse); 3331 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 3332 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 3333 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 3334 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 3335 } 3336 }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){ 3337 /* Case 3: A scan using an index. 3338 ** 3339 ** The WHERE clause may contain zero or more equality 3340 ** terms ("==" or "IN" operators) that refer to the N 3341 ** left-most columns of the index. It may also contain 3342 ** inequality constraints (>, <, >= or <=) on the indexed 3343 ** column that immediately follows the N equalities. Only 3344 ** the right-most column can be an inequality - the rest must 3345 ** use the "==" and "IN" operators. For example, if the 3346 ** index is on (x,y,z), then the following clauses are all 3347 ** optimized: 3348 ** 3349 ** x=5 3350 ** x=5 AND y=10 3351 ** x=5 AND y<10 3352 ** x=5 AND y>5 AND y<10 3353 ** x=5 AND y=5 AND z<=10 3354 ** 3355 ** The z<10 term of the following cannot be used, only 3356 ** the x=5 term: 3357 ** 3358 ** x=5 AND z<10 3359 ** 3360 ** N may be zero if there are inequality constraints. 3361 ** If there are no inequality constraints, then N is at 3362 ** least one. 3363 ** 3364 ** This case is also used when there are no WHERE clause 3365 ** constraints but an index is selected anyway, in order 3366 ** to force the output order to conform to an ORDER BY. 3367 */ 3368 int aStartOp[] = { 3369 0, 3370 0, 3371 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 3372 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 3373 OP_SeekGt, /* 4: (start_constraints && !startEq && !bRev) */ 3374 OP_SeekLt, /* 5: (start_constraints && !startEq && bRev) */ 3375 OP_SeekGe, /* 6: (start_constraints && startEq && !bRev) */ 3376 OP_SeekLe /* 7: (start_constraints && startEq && bRev) */ 3377 }; 3378 int aEndOp[] = { 3379 OP_Noop, /* 0: (!end_constraints) */ 3380 OP_IdxGE, /* 1: (end_constraints && !bRev) */ 3381 OP_IdxLT /* 2: (end_constraints && bRev) */ 3382 }; 3383 int nEq = pLevel->plan.nEq; 3384 int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */ 3385 int regBase; /* Base register holding constraint values */ 3386 int r1; /* Temp register */ 3387 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 3388 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 3389 int startEq; /* True if range start uses ==, >= or <= */ 3390 int endEq; /* True if range end uses ==, >= or <= */ 3391 int start_constraints; /* Start of range is constrained */ 3392 int nConstraint; /* Number of constraint terms */ 3393 Index *pIdx; /* The index we will be using */ 3394 int iIdxCur; /* The VDBE cursor for the index */ 3395 int nExtraReg = 0; /* Number of extra registers needed */ 3396 int op; /* Instruction opcode */ 3397 char *zStartAff; /* Affinity for start of range constraint */ 3398 char *zEndAff; /* Affinity for end of range constraint */ 3399 3400 pIdx = pLevel->plan.u.pIdx; 3401 iIdxCur = pLevel->iIdxCur; 3402 k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */ 3403 3404 /* If this loop satisfies a sort order (pOrderBy) request that 3405 ** was passed to this function to implement a "SELECT min(x) ..." 3406 ** query, then the caller will only allow the loop to run for 3407 ** a single iteration. This means that the first row returned 3408 ** should not have a NULL value stored in 'x'. If column 'x' is 3409 ** the first one after the nEq equality constraints in the index, 3410 ** this requires some special handling. 3411 */ 3412 if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0 3413 && (pLevel->plan.wsFlags&WHERE_ORDERBY) 3414 && (pIdx->nColumn>nEq) 3415 ){ 3416 /* assert( pOrderBy->nExpr==1 ); */ 3417 /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */ 3418 isMinQuery = 1; 3419 nExtraReg = 1; 3420 } 3421 3422 /* Find any inequality constraint terms for the start and end 3423 ** of the range. 3424 */ 3425 if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){ 3426 pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx); 3427 nExtraReg = 1; 3428 } 3429 if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){ 3430 pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx); 3431 nExtraReg = 1; 3432 } 3433 3434 /* Generate code to evaluate all constraint terms using == or IN 3435 ** and store the values of those terms in an array of registers 3436 ** starting at regBase. 3437 */ 3438 regBase = codeAllEqualityTerms( 3439 pParse, pLevel, pWC, notReady, nExtraReg, &zStartAff 3440 ); 3441 zEndAff = sqlite3DbStrDup(pParse->db, zStartAff); 3442 addrNxt = pLevel->addrNxt; 3443 3444 /* If we are doing a reverse order scan on an ascending index, or 3445 ** a forward order scan on a descending index, interchange the 3446 ** start and end terms (pRangeStart and pRangeEnd). 3447 */ 3448 if( nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){ 3449 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 3450 } 3451 3452 testcase( pRangeStart && pRangeStart->eOperator & WO_LE ); 3453 testcase( pRangeStart && pRangeStart->eOperator & WO_GE ); 3454 testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE ); 3455 testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE ); 3456 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 3457 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 3458 start_constraints = pRangeStart || nEq>0; 3459 3460 /* Seek the index cursor to the start of the range. */ 3461 nConstraint = nEq; 3462 if( pRangeStart ){ 3463 Expr *pRight = pRangeStart->pExpr->pRight; 3464 sqlite3ExprCode(pParse, pRight, regBase+nEq); 3465 sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt); 3466 if( zStartAff ){ 3467 if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_NONE){ 3468 /* Since the comparison is to be performed with no conversions 3469 ** applied to the operands, set the affinity to apply to pRight to 3470 ** SQLITE_AFF_NONE. */ 3471 zStartAff[nEq] = SQLITE_AFF_NONE; 3472 } 3473 if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){ 3474 zStartAff[nEq] = SQLITE_AFF_NONE; 3475 } 3476 } 3477 nConstraint++; 3478 testcase( pRangeStart->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ 3479 }else if( isMinQuery ){ 3480 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 3481 nConstraint++; 3482 startEq = 0; 3483 start_constraints = 1; 3484 } 3485 codeApplyAffinity(pParse, regBase, nConstraint, zStartAff); 3486 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 3487 assert( op!=0 ); 3488 testcase( op==OP_Rewind ); 3489 testcase( op==OP_Last ); 3490 testcase( op==OP_SeekGt ); 3491 testcase( op==OP_SeekGe ); 3492 testcase( op==OP_SeekLe ); 3493 testcase( op==OP_SeekLt ); 3494 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 3495 3496 /* Load the value for the inequality constraint at the end of the 3497 ** range (if any). 3498 */ 3499 nConstraint = nEq; 3500 if( pRangeEnd ){ 3501 Expr *pRight = pRangeEnd->pExpr->pRight; 3502 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1); 3503 sqlite3ExprCode(pParse, pRight, regBase+nEq); 3504 sqlite3ExprCodeIsNullJump(v, pRight, regBase+nEq, addrNxt); 3505 if( zEndAff ){ 3506 if( sqlite3CompareAffinity(pRight, zEndAff[nEq])==SQLITE_AFF_NONE){ 3507 /* Since the comparison is to be performed with no conversions 3508 ** applied to the operands, set the affinity to apply to pRight to 3509 ** SQLITE_AFF_NONE. */ 3510 zEndAff[nEq] = SQLITE_AFF_NONE; 3511 } 3512 if( sqlite3ExprNeedsNoAffinityChange(pRight, zEndAff[nEq]) ){ 3513 zEndAff[nEq] = SQLITE_AFF_NONE; 3514 } 3515 } 3516 codeApplyAffinity(pParse, regBase, nEq+1, zEndAff); 3517 nConstraint++; 3518 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL ); /* EV: R-30575-11662 */ 3519 } 3520 sqlite3DbFree(pParse->db, zStartAff); 3521 sqlite3DbFree(pParse->db, zEndAff); 3522 3523 /* Top of the loop body */ 3524 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 3525 3526 /* Check if the index cursor is past the end of the range. */ 3527 op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)]; 3528 testcase( op==OP_Noop ); 3529 testcase( op==OP_IdxGE ); 3530 testcase( op==OP_IdxLT ); 3531 if( op!=OP_Noop ){ 3532 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint); 3533 sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0); 3534 } 3535 3536 /* If there are inequality constraints, check that the value 3537 ** of the table column that the inequality contrains is not NULL. 3538 ** If it is, jump to the next iteration of the loop. 3539 */ 3540 r1 = sqlite3GetTempReg(pParse); 3541 testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ); 3542 testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ); 3543 if( pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT) ){ 3544 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1); 3545 sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont); 3546 } 3547 sqlite3ReleaseTempReg(pParse, r1); 3548 3549 /* Seek the table cursor, if required */ 3550 disableTerm(pLevel, pRangeStart); 3551 disableTerm(pLevel, pRangeEnd); 3552 if( !omitTable ){ 3553 iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse); 3554 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); 3555 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 3556 sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */ 3557 } 3558 3559 /* Record the instruction used to terminate the loop. Disable 3560 ** WHERE clause terms made redundant by the index range scan. 3561 */ 3562 pLevel->op = bRev ? OP_Prev : OP_Next; 3563 pLevel->p1 = iIdxCur; 3564 }else 3565 3566 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 3567 if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){ 3568 /* Case 4: Two or more separately indexed terms connected by OR 3569 ** 3570 ** Example: 3571 ** 3572 ** CREATE TABLE t1(a,b,c,d); 3573 ** CREATE INDEX i1 ON t1(a); 3574 ** CREATE INDEX i2 ON t1(b); 3575 ** CREATE INDEX i3 ON t1(c); 3576 ** 3577 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 3578 ** 3579 ** In the example, there are three indexed terms connected by OR. 3580 ** The top of the loop looks like this: 3581 ** 3582 ** Null 1 # Zero the rowset in reg 1 3583 ** 3584 ** Then, for each indexed term, the following. The arguments to 3585 ** RowSetTest are such that the rowid of the current row is inserted 3586 ** into the RowSet. If it is already present, control skips the 3587 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 3588 ** 3589 ** sqlite3WhereBegin(<term>) 3590 ** RowSetTest # Insert rowid into rowset 3591 ** Gosub 2 A 3592 ** sqlite3WhereEnd() 3593 ** 3594 ** Following the above, code to terminate the loop. Label A, the target 3595 ** of the Gosub above, jumps to the instruction right after the Goto. 3596 ** 3597 ** Null 1 # Zero the rowset in reg 1 3598 ** Goto B # The loop is finished. 3599 ** 3600 ** A: <loop body> # Return data, whatever. 3601 ** 3602 ** Return 2 # Jump back to the Gosub 3603 ** 3604 ** B: <after the loop> 3605 ** 3606 */ 3607 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 3608 WhereTerm *pFinal; /* Final subterm within the OR-clause. */ 3609 SrcList *pOrTab; /* Shortened table list or OR-clause generation */ 3610 3611 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 3612 int regRowset = 0; /* Register for RowSet object */ 3613 int regRowid = 0; /* Register holding rowid */ 3614 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ 3615 int iRetInit; /* Address of regReturn init */ 3616 int untestedTerms = 0; /* Some terms not completely tested */ 3617 int ii; 3618 3619 pTerm = pLevel->plan.u.pTerm; 3620 assert( pTerm!=0 ); 3621 assert( pTerm->eOperator==WO_OR ); 3622 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 3623 pOrWc = &pTerm->u.pOrInfo->wc; 3624 pFinal = &pOrWc->a[pOrWc->nTerm-1]; 3625 pLevel->op = OP_Return; 3626 pLevel->p1 = regReturn; 3627 3628 /* Set up a new SrcList ni pOrTab containing the table being scanned 3629 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots. 3630 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin(). 3631 */ 3632 if( pWInfo->nLevel>1 ){ 3633 int nNotReady; /* The number of notReady tables */ 3634 struct SrcList_item *origSrc; /* Original list of tables */ 3635 nNotReady = pWInfo->nLevel - iLevel - 1; 3636 pOrTab = sqlite3StackAllocRaw(pParse->db, 3637 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0])); 3638 if( pOrTab==0 ) return notReady; 3639 pOrTab->nAlloc = (i16)(nNotReady + 1); 3640 pOrTab->nSrc = pOrTab->nAlloc; 3641 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem)); 3642 origSrc = pWInfo->pTabList->a; 3643 for(k=1; k<=nNotReady; k++){ 3644 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k])); 3645 } 3646 }else{ 3647 pOrTab = pWInfo->pTabList; 3648 } 3649 3650 /* Initialize the rowset register to contain NULL. An SQL NULL is 3651 ** equivalent to an empty rowset. 3652 ** 3653 ** Also initialize regReturn to contain the address of the instruction 3654 ** immediately following the OP_Return at the bottom of the loop. This 3655 ** is required in a few obscure LEFT JOIN cases where control jumps 3656 ** over the top of the loop into the body of it. In this case the 3657 ** correct response for the end-of-loop code (the OP_Return) is to 3658 ** fall through to the next instruction, just as an OP_Next does if 3659 ** called on an uninitialized cursor. 3660 */ 3661 if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 3662 regRowset = ++pParse->nMem; 3663 regRowid = ++pParse->nMem; 3664 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 3665 } 3666 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 3667 3668 for(ii=0; ii<pOrWc->nTerm; ii++){ 3669 WhereTerm *pOrTerm = &pOrWc->a[ii]; 3670 if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){ 3671 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 3672 /* Loop through table entries that match term pOrTerm. */ 3673 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrTerm->pExpr, 0, 3674 WHERE_OMIT_OPEN | WHERE_OMIT_CLOSE | 3675 WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY); 3676 if( pSubWInfo ){ 3677 if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 3678 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 3679 int r; 3680 r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur, 3681 regRowid); 3682 sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 3683 sqlite3VdbeCurrentAddr(v)+2, r, iSet); 3684 } 3685 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 3686 3687 /* The pSubWInfo->untestedTerms flag means that this OR term 3688 ** contained one or more AND term from a notReady table. The 3689 ** terms from the notReady table could not be tested and will 3690 ** need to be tested later. 3691 */ 3692 if( pSubWInfo->untestedTerms ) untestedTerms = 1; 3693 3694 /* Finish the loop through table entries that match term pOrTerm. */ 3695 sqlite3WhereEnd(pSubWInfo); 3696 } 3697 } 3698 } 3699 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 3700 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk); 3701 sqlite3VdbeResolveLabel(v, iLoopBody); 3702 3703 if( pWInfo->nLevel>1 ) sqlite3StackFree(pParse->db, pOrTab); 3704 if( !untestedTerms ) disableTerm(pLevel, pTerm); 3705 }else 3706 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 3707 3708 { 3709 /* Case 5: There is no usable index. We must do a complete 3710 ** scan of the entire table. 3711 */ 3712 static const u8 aStep[] = { OP_Next, OP_Prev }; 3713 static const u8 aStart[] = { OP_Rewind, OP_Last }; 3714 assert( bRev==0 || bRev==1 ); 3715 assert( omitTable==0 ); 3716 pLevel->op = aStep[bRev]; 3717 pLevel->p1 = iCur; 3718 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); 3719 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 3720 } 3721 notReady &= ~getMask(pWC->pMaskSet, iCur); 3722 3723 /* Insert code to test every subexpression that can be completely 3724 ** computed using the current set of tables. 3725 ** 3726 ** IMPLEMENTATION-OF: R-49525-50935 Terms that cannot be satisfied through 3727 ** the use of indices become tests that are evaluated against each row of 3728 ** the relevant input tables. 3729 */ 3730 k = 0; 3731 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 3732 Expr *pE; 3733 testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */ 3734 testcase( pTerm->wtFlags & TERM_CODED ); 3735 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 3736 if( (pTerm->prereqAll & notReady)!=0 ){ 3737 testcase( pWInfo->untestedTerms==0 3738 && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ); 3739 pWInfo->untestedTerms = 1; 3740 continue; 3741 } 3742 pE = pTerm->pExpr; 3743 assert( pE!=0 ); 3744 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ 3745 continue; 3746 } 3747 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 3748 k = 1; 3749 pTerm->wtFlags |= TERM_CODED; 3750 } 3751 3752 /* For a LEFT OUTER JOIN, generate code that will record the fact that 3753 ** at least one row of the right table has matched the left table. 3754 */ 3755 if( pLevel->iLeftJoin ){ 3756 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 3757 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 3758 VdbeComment((v, "record LEFT JOIN hit")); 3759 sqlite3ExprCacheClear(pParse); 3760 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ 3761 testcase( pTerm->wtFlags & TERM_VIRTUAL ); /* IMP: R-30575-11662 */ 3762 testcase( pTerm->wtFlags & TERM_CODED ); 3763 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 3764 if( (pTerm->prereqAll & notReady)!=0 ){ 3765 assert( pWInfo->untestedTerms ); 3766 continue; 3767 } 3768 assert( pTerm->pExpr ); 3769 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 3770 pTerm->wtFlags |= TERM_CODED; 3771 } 3772 } 3773 sqlite3ReleaseTempReg(pParse, iReleaseReg); 3774 3775 return notReady; 3776 } 3777 3778 #if defined(SQLITE_TEST) 3779 /* 3780 ** The following variable holds a text description of query plan generated 3781 ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin 3782 ** overwrites the previous. This information is used for testing and 3783 ** analysis only. 3784 */ 3785 char sqlite3_query_plan[BMS*2*40]; /* Text of the join */ 3786 static int nQPlan = 0; /* Next free slow in _query_plan[] */ 3787 3788 #endif /* SQLITE_TEST */ 3789 3790 3791 /* 3792 ** Free a WhereInfo structure 3793 */ 3794 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 3795 if( ALWAYS(pWInfo) ){ 3796 int i; 3797 for(i=0; i<pWInfo->nLevel; i++){ 3798 sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo; 3799 if( pInfo ){ 3800 /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */ 3801 if( pInfo->needToFreeIdxStr ){ 3802 sqlite3_free(pInfo->idxStr); 3803 } 3804 sqlite3DbFree(db, pInfo); 3805 } 3806 if( pWInfo->a[i].plan.wsFlags & WHERE_TEMP_INDEX ){ 3807 Index *pIdx = pWInfo->a[i].plan.u.pIdx; 3808 if( pIdx ){ 3809 sqlite3DbFree(db, pIdx->zColAff); 3810 sqlite3DbFree(db, pIdx); 3811 } 3812 } 3813 } 3814 whereClauseClear(pWInfo->pWC); 3815 sqlite3DbFree(db, pWInfo); 3816 } 3817 } 3818 3819 3820 /* 3821 ** Generate the beginning of the loop used for WHERE clause processing. 3822 ** The return value is a pointer to an opaque structure that contains 3823 ** information needed to terminate the loop. Later, the calling routine 3824 ** should invoke sqlite3WhereEnd() with the return value of this function 3825 ** in order to complete the WHERE clause processing. 3826 ** 3827 ** If an error occurs, this routine returns NULL. 3828 ** 3829 ** The basic idea is to do a nested loop, one loop for each table in 3830 ** the FROM clause of a select. (INSERT and UPDATE statements are the 3831 ** same as a SELECT with only a single table in the FROM clause.) For 3832 ** example, if the SQL is this: 3833 ** 3834 ** SELECT * FROM t1, t2, t3 WHERE ...; 3835 ** 3836 ** Then the code generated is conceptually like the following: 3837 ** 3838 ** foreach row1 in t1 do \ Code generated 3839 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 3840 ** foreach row3 in t3 do / 3841 ** ... 3842 ** end \ Code generated 3843 ** end |-- by sqlite3WhereEnd() 3844 ** end / 3845 ** 3846 ** Note that the loops might not be nested in the order in which they 3847 ** appear in the FROM clause if a different order is better able to make 3848 ** use of indices. Note also that when the IN operator appears in 3849 ** the WHERE clause, it might result in additional nested loops for 3850 ** scanning through all values on the right-hand side of the IN. 3851 ** 3852 ** There are Btree cursors associated with each table. t1 uses cursor 3853 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 3854 ** And so forth. This routine generates code to open those VDBE cursors 3855 ** and sqlite3WhereEnd() generates the code to close them. 3856 ** 3857 ** The code that sqlite3WhereBegin() generates leaves the cursors named 3858 ** in pTabList pointing at their appropriate entries. The [...] code 3859 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 3860 ** data from the various tables of the loop. 3861 ** 3862 ** If the WHERE clause is empty, the foreach loops must each scan their 3863 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 3864 ** the tables have indices and there are terms in the WHERE clause that 3865 ** refer to those indices, a complete table scan can be avoided and the 3866 ** code will run much faster. Most of the work of this routine is checking 3867 ** to see if there are indices that can be used to speed up the loop. 3868 ** 3869 ** Terms of the WHERE clause are also used to limit which rows actually 3870 ** make it to the "..." in the middle of the loop. After each "foreach", 3871 ** terms of the WHERE clause that use only terms in that loop and outer 3872 ** loops are evaluated and if false a jump is made around all subsequent 3873 ** inner loops (or around the "..." if the test occurs within the inner- 3874 ** most loop) 3875 ** 3876 ** OUTER JOINS 3877 ** 3878 ** An outer join of tables t1 and t2 is conceptally coded as follows: 3879 ** 3880 ** foreach row1 in t1 do 3881 ** flag = 0 3882 ** foreach row2 in t2 do 3883 ** start: 3884 ** ... 3885 ** flag = 1 3886 ** end 3887 ** if flag==0 then 3888 ** move the row2 cursor to a null row 3889 ** goto start 3890 ** fi 3891 ** end 3892 ** 3893 ** ORDER BY CLAUSE PROCESSING 3894 ** 3895 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, 3896 ** if there is one. If there is no ORDER BY clause or if this routine 3897 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. 3898 ** 3899 ** If an index can be used so that the natural output order of the table 3900 ** scan is correct for the ORDER BY clause, then that index is used and 3901 ** *ppOrderBy is set to NULL. This is an optimization that prevents an 3902 ** unnecessary sort of the result set if an index appropriate for the 3903 ** ORDER BY clause already exists. 3904 ** 3905 ** If the where clause loops cannot be arranged to provide the correct 3906 ** output order, then the *ppOrderBy is unchanged. 3907 */ 3908 WhereInfo *sqlite3WhereBegin( 3909 Parse *pParse, /* The parser context */ 3910 SrcList *pTabList, /* A list of all tables to be scanned */ 3911 Expr *pWhere, /* The WHERE clause */ 3912 ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */ 3913 u16 wctrlFlags /* One of the WHERE_* flags defined in sqliteInt.h */ 3914 ){ 3915 int i; /* Loop counter */ 3916 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ 3917 int nTabList; /* Number of elements in pTabList */ 3918 WhereInfo *pWInfo; /* Will become the return value of this function */ 3919 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 3920 Bitmask notReady; /* Cursors that are not yet positioned */ 3921 WhereMaskSet *pMaskSet; /* The expression mask set */ 3922 WhereClause *pWC; /* Decomposition of the WHERE clause */ 3923 struct SrcList_item *pTabItem; /* A single entry from pTabList */ 3924 WhereLevel *pLevel; /* A single level in the pWInfo list */ 3925 int iFrom; /* First unused FROM clause element */ 3926 int andFlags; /* AND-ed combination of all pWC->a[].wtFlags */ 3927 sqlite3 *db; /* Database connection */ 3928 3929 /* The number of tables in the FROM clause is limited by the number of 3930 ** bits in a Bitmask 3931 */ 3932 testcase( pTabList->nSrc==BMS ); 3933 if( pTabList->nSrc>BMS ){ 3934 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 3935 return 0; 3936 } 3937 3938 /* This function normally generates a nested loop for all tables in 3939 ** pTabList. But if the WHERE_ONETABLE_ONLY flag is set, then we should 3940 ** only generate code for the first table in pTabList and assume that 3941 ** any cursors associated with subsequent tables are uninitialized. 3942 */ 3943 nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc; 3944 3945 /* Allocate and initialize the WhereInfo structure that will become the 3946 ** return value. A single allocation is used to store the WhereInfo 3947 ** struct, the contents of WhereInfo.a[], the WhereClause structure 3948 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte 3949 ** field (type Bitmask) it must be aligned on an 8-byte boundary on 3950 ** some architectures. Hence the ROUND8() below. 3951 */ 3952 db = pParse->db; 3953 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); 3954 pWInfo = sqlite3DbMallocZero(db, 3955 nByteWInfo + 3956 sizeof(WhereClause) + 3957 sizeof(WhereMaskSet) 3958 ); 3959 if( db->mallocFailed ){ 3960 sqlite3DbFree(db, pWInfo); 3961 pWInfo = 0; 3962 goto whereBeginError; 3963 } 3964 pWInfo->nLevel = nTabList; 3965 pWInfo->pParse = pParse; 3966 pWInfo->pTabList = pTabList; 3967 pWInfo->iBreak = sqlite3VdbeMakeLabel(v); 3968 pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo]; 3969 pWInfo->wctrlFlags = wctrlFlags; 3970 pWInfo->savedNQueryLoop = pParse->nQueryLoop; 3971 pMaskSet = (WhereMaskSet*)&pWC[1]; 3972 3973 /* Split the WHERE clause into separate subexpressions where each 3974 ** subexpression is separated by an AND operator. 3975 */ 3976 initMaskSet(pMaskSet); 3977 whereClauseInit(pWC, pParse, pMaskSet); 3978 sqlite3ExprCodeConstants(pParse, pWhere); 3979 whereSplit(pWC, pWhere, TK_AND); /* IMP: R-15842-53296 */ 3980 3981 /* Special case: a WHERE clause that is constant. Evaluate the 3982 ** expression and either jump over all of the code or fall thru. 3983 */ 3984 if( pWhere && (nTabList==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){ 3985 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL); 3986 pWhere = 0; 3987 } 3988 3989 /* Assign a bit from the bitmask to every term in the FROM clause. 3990 ** 3991 ** When assigning bitmask values to FROM clause cursors, it must be 3992 ** the case that if X is the bitmask for the N-th FROM clause term then 3993 ** the bitmask for all FROM clause terms to the left of the N-th term 3994 ** is (X-1). An expression from the ON clause of a LEFT JOIN can use 3995 ** its Expr.iRightJoinTable value to find the bitmask of the right table 3996 ** of the join. Subtracting one from the right table bitmask gives a 3997 ** bitmask for all tables to the left of the join. Knowing the bitmask 3998 ** for all tables to the left of a left join is important. Ticket #3015. 3999 ** 4000 ** Configure the WhereClause.vmask variable so that bits that correspond 4001 ** to virtual table cursors are set. This is used to selectively disable 4002 ** the OR-to-IN transformation in exprAnalyzeOrTerm(). It is not helpful 4003 ** with virtual tables. 4004 ** 4005 ** Note that bitmasks are created for all pTabList->nSrc tables in 4006 ** pTabList, not just the first nTabList tables. nTabList is normally 4007 ** equal to pTabList->nSrc but might be shortened to 1 if the 4008 ** WHERE_ONETABLE_ONLY flag is set. 4009 */ 4010 assert( pWC->vmask==0 && pMaskSet->n==0 ); 4011 for(i=0; i<pTabList->nSrc; i++){ 4012 createMask(pMaskSet, pTabList->a[i].iCursor); 4013 #ifndef SQLITE_OMIT_VIRTUALTABLE 4014 if( ALWAYS(pTabList->a[i].pTab) && IsVirtual(pTabList->a[i].pTab) ){ 4015 pWC->vmask |= ((Bitmask)1 << i); 4016 } 4017 #endif 4018 } 4019 #ifndef NDEBUG 4020 { 4021 Bitmask toTheLeft = 0; 4022 for(i=0; i<pTabList->nSrc; i++){ 4023 Bitmask m = getMask(pMaskSet, pTabList->a[i].iCursor); 4024 assert( (m-1)==toTheLeft ); 4025 toTheLeft |= m; 4026 } 4027 } 4028 #endif 4029 4030 /* Analyze all of the subexpressions. Note that exprAnalyze() might 4031 ** add new virtual terms onto the end of the WHERE clause. We do not 4032 ** want to analyze these virtual terms, so start analyzing at the end 4033 ** and work forward so that the added virtual terms are never processed. 4034 */ 4035 exprAnalyzeAll(pTabList, pWC); 4036 if( db->mallocFailed ){ 4037 goto whereBeginError; 4038 } 4039 4040 /* Chose the best index to use for each table in the FROM clause. 4041 ** 4042 ** This loop fills in the following fields: 4043 ** 4044 ** pWInfo->a[].pIdx The index to use for this level of the loop. 4045 ** pWInfo->a[].wsFlags WHERE_xxx flags associated with pIdx 4046 ** pWInfo->a[].nEq The number of == and IN constraints 4047 ** pWInfo->a[].iFrom Which term of the FROM clause is being coded 4048 ** pWInfo->a[].iTabCur The VDBE cursor for the database table 4049 ** pWInfo->a[].iIdxCur The VDBE cursor for the index 4050 ** pWInfo->a[].pTerm When wsFlags==WO_OR, the OR-clause term 4051 ** 4052 ** This loop also figures out the nesting order of tables in the FROM 4053 ** clause. 4054 */ 4055 notReady = ~(Bitmask)0; 4056 pTabItem = pTabList->a; 4057 pLevel = pWInfo->a; 4058 andFlags = ~0; 4059 WHERETRACE(("*** Optimizer Start ***\n")); 4060 for(i=iFrom=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){ 4061 WhereCost bestPlan; /* Most efficient plan seen so far */ 4062 Index *pIdx; /* Index for FROM table at pTabItem */ 4063 int j; /* For looping over FROM tables */ 4064 int bestJ = -1; /* The value of j */ 4065 Bitmask m; /* Bitmask value for j or bestJ */ 4066 int isOptimal; /* Iterator for optimal/non-optimal search */ 4067 4068 memset(&bestPlan, 0, sizeof(bestPlan)); 4069 bestPlan.rCost = SQLITE_BIG_DBL; 4070 4071 /* Loop through the remaining entries in the FROM clause to find the 4072 ** next nested loop. The loop tests all FROM clause entries 4073 ** either once or twice. 4074 ** 4075 ** The first test is always performed if there are two or more entries 4076 ** remaining and never performed if there is only one FROM clause entry 4077 ** to choose from. The first test looks for an "optimal" scan. In 4078 ** this context an optimal scan is one that uses the same strategy 4079 ** for the given FROM clause entry as would be selected if the entry 4080 ** were used as the innermost nested loop. In other words, a table 4081 ** is chosen such that the cost of running that table cannot be reduced 4082 ** by waiting for other tables to run first. This "optimal" test works 4083 ** by first assuming that the FROM clause is on the inner loop and finding 4084 ** its query plan, then checking to see if that query plan uses any 4085 ** other FROM clause terms that are notReady. If no notReady terms are 4086 ** used then the "optimal" query plan works. 4087 ** 4088 ** The second loop iteration is only performed if no optimal scan 4089 ** strategies were found by the first loop. This 2nd iteration is used to 4090 ** search for the lowest cost scan overall. 4091 ** 4092 ** Previous versions of SQLite performed only the second iteration - 4093 ** the next outermost loop was always that with the lowest overall 4094 ** cost. However, this meant that SQLite could select the wrong plan 4095 ** for scripts such as the following: 4096 ** 4097 ** CREATE TABLE t1(a, b); 4098 ** CREATE TABLE t2(c, d); 4099 ** SELECT * FROM t2, t1 WHERE t2.rowid = t1.a; 4100 ** 4101 ** The best strategy is to iterate through table t1 first. However it 4102 ** is not possible to determine this with a simple greedy algorithm. 4103 ** However, since the cost of a linear scan through table t2 is the same 4104 ** as the cost of a linear scan through table t1, a simple greedy 4105 ** algorithm may choose to use t2 for the outer loop, which is a much 4106 ** costlier approach. 4107 */ 4108 for(isOptimal=(iFrom<nTabList-1); isOptimal>=0; isOptimal--){ 4109 Bitmask mask; /* Mask of tables not yet ready */ 4110 for(j=iFrom, pTabItem=&pTabList->a[j]; j<nTabList; j++, pTabItem++){ 4111 int doNotReorder; /* True if this table should not be reordered */ 4112 WhereCost sCost; /* Cost information from best[Virtual]Index() */ 4113 ExprList *pOrderBy; /* ORDER BY clause for index to optimize */ 4114 4115 doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0; 4116 if( j!=iFrom && doNotReorder ) break; 4117 m = getMask(pMaskSet, pTabItem->iCursor); 4118 if( (m & notReady)==0 ){ 4119 if( j==iFrom ) iFrom++; 4120 continue; 4121 } 4122 mask = (isOptimal ? m : notReady); 4123 pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0); 4124 4125 assert( pTabItem->pTab ); 4126 #ifndef SQLITE_OMIT_VIRTUALTABLE 4127 if( IsVirtual(pTabItem->pTab) ){ 4128 sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo; 4129 bestVirtualIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost, pp); 4130 }else 4131 #endif 4132 { 4133 bestBtreeIndex(pParse, pWC, pTabItem, mask, pOrderBy, &sCost); 4134 } 4135 assert( isOptimal || (sCost.used¬Ready)==0 ); 4136 4137 if( (sCost.used¬Ready)==0 4138 && (bestJ<0 || sCost.rCost<bestPlan.rCost 4139 || (sCost.rCost<=bestPlan.rCost && sCost.nRow<bestPlan.nRow)) 4140 ){ 4141 WHERETRACE(("... best so far with cost=%g and nRow=%g\n", 4142 sCost.rCost, sCost.nRow)); 4143 bestPlan = sCost; 4144 bestJ = j; 4145 } 4146 if( doNotReorder ) break; 4147 } 4148 } 4149 assert( bestJ>=0 ); 4150 assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) ); 4151 WHERETRACE(("*** Optimizer selects table %d for loop %d\n", bestJ, 4152 pLevel-pWInfo->a)); 4153 if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 ){ 4154 *ppOrderBy = 0; 4155 } 4156 andFlags &= bestPlan.plan.wsFlags; 4157 pLevel->plan = bestPlan.plan; 4158 testcase( bestPlan.plan.wsFlags & WHERE_INDEXED ); 4159 testcase( bestPlan.plan.wsFlags & WHERE_TEMP_INDEX ); 4160 if( bestPlan.plan.wsFlags & (WHERE_INDEXED|WHERE_TEMP_INDEX) ){ 4161 pLevel->iIdxCur = pParse->nTab++; 4162 }else{ 4163 pLevel->iIdxCur = -1; 4164 } 4165 notReady &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor); 4166 pLevel->iFrom = (u8)bestJ; 4167 if( bestPlan.nRow>=(double)1 ) pParse->nQueryLoop *= bestPlan.nRow; 4168 4169 /* Check that if the table scanned by this loop iteration had an 4170 ** INDEXED BY clause attached to it, that the named index is being 4171 ** used for the scan. If not, then query compilation has failed. 4172 ** Return an error. 4173 */ 4174 pIdx = pTabList->a[bestJ].pIndex; 4175 if( pIdx ){ 4176 if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){ 4177 sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName); 4178 goto whereBeginError; 4179 }else{ 4180 /* If an INDEXED BY clause is used, the bestIndex() function is 4181 ** guaranteed to find the index specified in the INDEXED BY clause 4182 ** if it find an index at all. */ 4183 assert( bestPlan.plan.u.pIdx==pIdx ); 4184 } 4185 } 4186 } 4187 WHERETRACE(("*** Optimizer Finished ***\n")); 4188 if( pParse->nErr || db->mallocFailed ){ 4189 goto whereBeginError; 4190 } 4191 4192 /* If the total query only selects a single row, then the ORDER BY 4193 ** clause is irrelevant. 4194 */ 4195 if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){ 4196 *ppOrderBy = 0; 4197 } 4198 4199 /* If the caller is an UPDATE or DELETE statement that is requesting 4200 ** to use a one-pass algorithm, determine if this is appropriate. 4201 ** The one-pass algorithm only works if the WHERE clause constraints 4202 ** the statement to update a single row. 4203 */ 4204 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 4205 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){ 4206 pWInfo->okOnePass = 1; 4207 pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY; 4208 } 4209 4210 /* Open all tables in the pTabList and any indices selected for 4211 ** searching those tables. 4212 */ 4213 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ 4214 notReady = ~(Bitmask)0; 4215 for(i=0, pLevel=pWInfo->a; i<nTabList; i++, pLevel++){ 4216 Table *pTab; /* Table to open */ 4217 int iDb; /* Index of database containing table/index */ 4218 4219 #ifndef SQLITE_OMIT_EXPLAIN 4220 if( pParse->explain==2 ){ 4221 char *zMsg; 4222 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 4223 zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName); 4224 if( pItem->zAlias ){ 4225 zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias); 4226 } 4227 if( (pLevel->plan.wsFlags & WHERE_TEMP_INDEX)!=0 ){ 4228 zMsg = sqlite3MAppendf(db, zMsg, "%s WITH AUTOMATIC INDEX", zMsg); 4229 }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ 4230 zMsg = sqlite3MAppendf(db, zMsg, "%s WITH INDEX %s", 4231 zMsg, pLevel->plan.u.pIdx->zName); 4232 }else if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){ 4233 zMsg = sqlite3MAppendf(db, zMsg, "%s VIA MULTI-INDEX UNION", zMsg); 4234 }else if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ 4235 zMsg = sqlite3MAppendf(db, zMsg, "%s USING PRIMARY KEY", zMsg); 4236 } 4237 #ifndef SQLITE_OMIT_VIRTUALTABLE 4238 else if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 4239 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx; 4240 zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg, 4241 pVtabIdx->idxNum, pVtabIdx->idxStr); 4242 } 4243 #endif 4244 if( pLevel->plan.wsFlags & WHERE_ORDERBY ){ 4245 zMsg = sqlite3MAppendf(db, zMsg, "%s ORDER BY", zMsg); 4246 } 4247 sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC); 4248 } 4249 #endif /* SQLITE_OMIT_EXPLAIN */ 4250 pTabItem = &pTabList->a[pLevel->iFrom]; 4251 pTab = pTabItem->pTab; 4252 pLevel->iTabCur = pTabItem->iCursor; 4253 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4254 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){ 4255 /* Do nothing */ 4256 }else 4257 #ifndef SQLITE_OMIT_VIRTUALTABLE 4258 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 4259 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 4260 int iCur = pTabItem->iCursor; 4261 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); 4262 }else 4263 #endif 4264 if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 4265 && (wctrlFlags & WHERE_OMIT_OPEN)==0 ){ 4266 int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead; 4267 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 4268 testcase( pTab->nCol==BMS-1 ); 4269 testcase( pTab->nCol==BMS ); 4270 if( !pWInfo->okOnePass && pTab->nCol<BMS ){ 4271 Bitmask b = pTabItem->colUsed; 4272 int n = 0; 4273 for(; b; b=b>>1, n++){} 4274 sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, 4275 SQLITE_INT_TO_PTR(n), P4_INT32); 4276 assert( n<=pTab->nCol ); 4277 } 4278 }else{ 4279 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 4280 } 4281 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 4282 if( (pLevel->plan.wsFlags & WHERE_TEMP_INDEX)!=0 ){ 4283 constructAutomaticIndex(pParse, pWC, pTabItem, notReady, pLevel); 4284 }else 4285 #endif 4286 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ 4287 Index *pIx = pLevel->plan.u.pIdx; 4288 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx); 4289 int iIdxCur = pLevel->iIdxCur; 4290 assert( pIx->pSchema==pTab->pSchema ); 4291 assert( iIdxCur>=0 ); 4292 sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb, 4293 (char*)pKey, P4_KEYINFO_HANDOFF); 4294 VdbeComment((v, "%s", pIx->zName)); 4295 } 4296 sqlite3CodeVerifySchema(pParse, iDb); 4297 notReady &= ~getMask(pWC->pMaskSet, pTabItem->iCursor); 4298 } 4299 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 4300 if( db->mallocFailed ) goto whereBeginError; 4301 4302 /* Generate the code to do the search. Each iteration of the for 4303 ** loop below generates code for a single nested loop of the VM 4304 ** program. 4305 */ 4306 notReady = ~(Bitmask)0; 4307 for(i=0; i<nTabList; i++){ 4308 notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady); 4309 pWInfo->iContinue = pWInfo->a[i].addrCont; 4310 } 4311 4312 #ifdef SQLITE_TEST /* For testing and debugging use only */ 4313 /* Record in the query plan information about the current table 4314 ** and the index used to access it (if any). If the table itself 4315 ** is not used, its name is just '{}'. If no index is used 4316 ** the index is listed as "{}". If the primary key is used the 4317 ** index name is '*'. 4318 */ 4319 for(i=0; i<nTabList; i++){ 4320 char *z; 4321 int n; 4322 pLevel = &pWInfo->a[i]; 4323 pTabItem = &pTabList->a[pLevel->iFrom]; 4324 z = pTabItem->zAlias; 4325 if( z==0 ) z = pTabItem->pTab->zName; 4326 n = sqlite3Strlen30(z); 4327 if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){ 4328 if( pLevel->plan.wsFlags & WHERE_IDX_ONLY ){ 4329 memcpy(&sqlite3_query_plan[nQPlan], "{}", 2); 4330 nQPlan += 2; 4331 }else{ 4332 memcpy(&sqlite3_query_plan[nQPlan], z, n); 4333 nQPlan += n; 4334 } 4335 sqlite3_query_plan[nQPlan++] = ' '; 4336 } 4337 testcase( pLevel->plan.wsFlags & WHERE_ROWID_EQ ); 4338 testcase( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ); 4339 if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ 4340 memcpy(&sqlite3_query_plan[nQPlan], "* ", 2); 4341 nQPlan += 2; 4342 }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ 4343 n = sqlite3Strlen30(pLevel->plan.u.pIdx->zName); 4344 if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){ 4345 memcpy(&sqlite3_query_plan[nQPlan], pLevel->plan.u.pIdx->zName, n); 4346 nQPlan += n; 4347 sqlite3_query_plan[nQPlan++] = ' '; 4348 } 4349 }else{ 4350 memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3); 4351 nQPlan += 3; 4352 } 4353 } 4354 while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){ 4355 sqlite3_query_plan[--nQPlan] = 0; 4356 } 4357 sqlite3_query_plan[nQPlan] = 0; 4358 nQPlan = 0; 4359 #endif /* SQLITE_TEST // Testing and debugging use only */ 4360 4361 /* Record the continuation address in the WhereInfo structure. Then 4362 ** clean up and return. 4363 */ 4364 return pWInfo; 4365 4366 /* Jump here if malloc fails */ 4367 whereBeginError: 4368 if( pWInfo ){ 4369 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 4370 whereInfoFree(db, pWInfo); 4371 } 4372 return 0; 4373 } 4374 4375 /* 4376 ** Generate the end of the WHERE loop. See comments on 4377 ** sqlite3WhereBegin() for additional information. 4378 */ 4379 void sqlite3WhereEnd(WhereInfo *pWInfo){ 4380 Parse *pParse = pWInfo->pParse; 4381 Vdbe *v = pParse->pVdbe; 4382 int i; 4383 WhereLevel *pLevel; 4384 SrcList *pTabList = pWInfo->pTabList; 4385 sqlite3 *db = pParse->db; 4386 4387 /* Generate loop termination code. 4388 */ 4389 sqlite3ExprCacheClear(pParse); 4390 for(i=pWInfo->nLevel-1; i>=0; i--){ 4391 pLevel = &pWInfo->a[i]; 4392 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 4393 if( pLevel->op!=OP_Noop ){ 4394 sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2); 4395 sqlite3VdbeChangeP5(v, pLevel->p5); 4396 } 4397 if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ 4398 struct InLoop *pIn; 4399 int j; 4400 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 4401 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 4402 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 4403 sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->addrInTop); 4404 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 4405 } 4406 sqlite3DbFree(db, pLevel->u.in.aInLoop); 4407 } 4408 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 4409 if( pLevel->iLeftJoin ){ 4410 int addr; 4411 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); 4412 assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 4413 || (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ); 4414 if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){ 4415 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); 4416 } 4417 if( pLevel->iIdxCur>=0 ){ 4418 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 4419 } 4420 if( pLevel->op==OP_Return ){ 4421 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); 4422 }else{ 4423 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst); 4424 } 4425 sqlite3VdbeJumpHere(v, addr); 4426 } 4427 } 4428 4429 /* The "break" point is here, just past the end of the outer loop. 4430 ** Set it. 4431 */ 4432 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 4433 4434 /* Close all of the cursors that were opened by sqlite3WhereBegin. 4435 */ 4436 assert( pWInfo->nLevel==1 || pWInfo->nLevel==pTabList->nSrc ); 4437 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ 4438 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 4439 Table *pTab = pTabItem->pTab; 4440 assert( pTab!=0 ); 4441 if( (pTab->tabFlags & TF_Ephemeral)==0 4442 && pTab->pSelect==0 4443 && (pWInfo->wctrlFlags & WHERE_OMIT_CLOSE)==0 4444 ){ 4445 int ws = pLevel->plan.wsFlags; 4446 if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){ 4447 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); 4448 } 4449 if( (ws & WHERE_INDEXED)!=0 && (ws & WHERE_TEMP_INDEX)==0 ){ 4450 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); 4451 } 4452 } 4453 4454 /* If this scan uses an index, make code substitutions to read data 4455 ** from the index in preference to the table. Sometimes, this means 4456 ** the table need never be read from. This is a performance boost, 4457 ** as the vdbe level waits until the table is read before actually 4458 ** seeking the table cursor to the record corresponding to the current 4459 ** position in the index. 4460 ** 4461 ** Calls to the code generator in between sqlite3WhereBegin and 4462 ** sqlite3WhereEnd will have created code that references the table 4463 ** directly. This loop scans all that code looking for opcodes 4464 ** that reference the table and converts them into opcodes that 4465 ** reference the index. 4466 */ 4467 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 && !db->mallocFailed){ 4468 int k, j, last; 4469 VdbeOp *pOp; 4470 Index *pIdx = pLevel->plan.u.pIdx; 4471 4472 assert( pIdx!=0 ); 4473 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop); 4474 last = sqlite3VdbeCurrentAddr(v); 4475 for(k=pWInfo->iTop; k<last; k++, pOp++){ 4476 if( pOp->p1!=pLevel->iTabCur ) continue; 4477 if( pOp->opcode==OP_Column ){ 4478 for(j=0; j<pIdx->nColumn; j++){ 4479 if( pOp->p2==pIdx->aiColumn[j] ){ 4480 pOp->p2 = j; 4481 pOp->p1 = pLevel->iIdxCur; 4482 break; 4483 } 4484 } 4485 assert( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 4486 || j<pIdx->nColumn ); 4487 }else if( pOp->opcode==OP_Rowid ){ 4488 pOp->p1 = pLevel->iIdxCur; 4489 pOp->opcode = OP_IdxRowid; 4490 } 4491 } 4492 } 4493 } 4494 4495 /* Final cleanup 4496 */ 4497 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 4498 whereInfoFree(db, pWInfo); 4499 return; 4500 } 4501