1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is reponsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 ** 19 ** $Id: where.c,v 1.253 2007/06/11 12:56:15 drh Exp $ 20 */ 21 #include "sqliteInt.h" 22 23 /* 24 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 25 */ 26 #define BMS (sizeof(Bitmask)*8) 27 28 /* 29 ** Trace output macros 30 */ 31 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 32 int sqlite3_where_trace = 0; 33 # define WHERETRACE(X) if(sqlite3_where_trace) sqlite3DebugPrintf X 34 #else 35 # define WHERETRACE(X) 36 #endif 37 38 /* Forward reference 39 */ 40 typedef struct WhereClause WhereClause; 41 typedef struct ExprMaskSet ExprMaskSet; 42 43 /* 44 ** The query generator uses an array of instances of this structure to 45 ** help it analyze the subexpressions of the WHERE clause. Each WHERE 46 ** clause subexpression is separated from the others by an AND operator. 47 ** 48 ** All WhereTerms are collected into a single WhereClause structure. 49 ** The following identity holds: 50 ** 51 ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm 52 ** 53 ** When a term is of the form: 54 ** 55 ** X <op> <expr> 56 ** 57 ** where X is a column name and <op> is one of certain operators, 58 ** then WhereTerm.leftCursor and WhereTerm.leftColumn record the 59 ** cursor number and column number for X. WhereTerm.operator records 60 ** the <op> using a bitmask encoding defined by WO_xxx below. The 61 ** use of a bitmask encoding for the operator allows us to search 62 ** quickly for terms that match any of several different operators. 63 ** 64 ** prereqRight and prereqAll record sets of cursor numbers, 65 ** but they do so indirectly. A single ExprMaskSet structure translates 66 ** cursor number into bits and the translated bit is stored in the prereq 67 ** fields. The translation is used in order to maximize the number of 68 ** bits that will fit in a Bitmask. The VDBE cursor numbers might be 69 ** spread out over the non-negative integers. For example, the cursor 70 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The ExprMaskSet 71 ** translates these sparse cursor numbers into consecutive integers 72 ** beginning with 0 in order to make the best possible use of the available 73 ** bits in the Bitmask. So, in the example above, the cursor numbers 74 ** would be mapped into integers 0 through 7. 75 */ 76 typedef struct WhereTerm WhereTerm; 77 struct WhereTerm { 78 Expr *pExpr; /* Pointer to the subexpression */ 79 i16 iParent; /* Disable pWC->a[iParent] when this term disabled */ 80 i16 leftCursor; /* Cursor number of X in "X <op> <expr>" */ 81 i16 leftColumn; /* Column number of X in "X <op> <expr>" */ 82 u16 eOperator; /* A WO_xx value describing <op> */ 83 u8 flags; /* Bit flags. See below */ 84 u8 nChild; /* Number of children that must disable us */ 85 WhereClause *pWC; /* The clause this term is part of */ 86 Bitmask prereqRight; /* Bitmask of tables used by pRight */ 87 Bitmask prereqAll; /* Bitmask of tables referenced by p */ 88 }; 89 90 /* 91 ** Allowed values of WhereTerm.flags 92 */ 93 #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(pExpr) */ 94 #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */ 95 #define TERM_CODED 0x04 /* This term is already coded */ 96 #define TERM_COPIED 0x08 /* Has a child */ 97 #define TERM_OR_OK 0x10 /* Used during OR-clause processing */ 98 99 /* 100 ** An instance of the following structure holds all information about a 101 ** WHERE clause. Mostly this is a container for one or more WhereTerms. 102 */ 103 struct WhereClause { 104 Parse *pParse; /* The parser context */ 105 ExprMaskSet *pMaskSet; /* Mapping of table indices to bitmasks */ 106 int nTerm; /* Number of terms */ 107 int nSlot; /* Number of entries in a[] */ 108 WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */ 109 WhereTerm aStatic[10]; /* Initial static space for a[] */ 110 }; 111 112 /* 113 ** An instance of the following structure keeps track of a mapping 114 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm. 115 ** 116 ** The VDBE cursor numbers are small integers contained in 117 ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE 118 ** clause, the cursor numbers might not begin with 0 and they might 119 ** contain gaps in the numbering sequence. But we want to make maximum 120 ** use of the bits in our bitmasks. This structure provides a mapping 121 ** from the sparse cursor numbers into consecutive integers beginning 122 ** with 0. 123 ** 124 ** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask 125 ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A. 126 ** 127 ** For example, if the WHERE clause expression used these VDBE 128 ** cursors: 4, 5, 8, 29, 57, 73. Then the ExprMaskSet structure 129 ** would map those cursor numbers into bits 0 through 5. 130 ** 131 ** Note that the mapping is not necessarily ordered. In the example 132 ** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0, 133 ** 57->5, 73->4. Or one of 719 other combinations might be used. It 134 ** does not really matter. What is important is that sparse cursor 135 ** numbers all get mapped into bit numbers that begin with 0 and contain 136 ** no gaps. 137 */ 138 struct ExprMaskSet { 139 int n; /* Number of assigned cursor values */ 140 int ix[sizeof(Bitmask)*8]; /* Cursor assigned to each bit */ 141 }; 142 143 144 /* 145 ** Bitmasks for the operators that indices are able to exploit. An 146 ** OR-ed combination of these values can be used when searching for 147 ** terms in the where clause. 148 */ 149 #define WO_IN 1 150 #define WO_EQ 2 151 #define WO_LT (WO_EQ<<(TK_LT-TK_EQ)) 152 #define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) 153 #define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) 154 #define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) 155 #define WO_MATCH 64 156 #define WO_ISNULL 128 157 158 /* 159 ** Value for flags returned by bestIndex(). 160 ** 161 ** The least significant byte is reserved as a mask for WO_ values above. 162 ** The WhereLevel.flags field is usually set to WO_IN|WO_EQ|WO_ISNULL. 163 ** But if the table is the right table of a left join, WhereLevel.flags 164 ** is set to WO_IN|WO_EQ. The WhereLevel.flags field can then be used as 165 ** the "op" parameter to findTerm when we are resolving equality constraints. 166 ** ISNULL constraints will then not be used on the right table of a left 167 ** join. Tickets #2177 and #2189. 168 */ 169 #define WHERE_ROWID_EQ 0x000100 /* rowid=EXPR or rowid IN (...) */ 170 #define WHERE_ROWID_RANGE 0x000200 /* rowid<EXPR and/or rowid>EXPR */ 171 #define WHERE_COLUMN_EQ 0x001000 /* x=EXPR or x IN (...) */ 172 #define WHERE_COLUMN_RANGE 0x002000 /* x<EXPR and/or x>EXPR */ 173 #define WHERE_COLUMN_IN 0x004000 /* x IN (...) */ 174 #define WHERE_TOP_LIMIT 0x010000 /* x<EXPR or x<=EXPR constraint */ 175 #define WHERE_BTM_LIMIT 0x020000 /* x>EXPR or x>=EXPR constraint */ 176 #define WHERE_IDX_ONLY 0x080000 /* Use index only - omit table */ 177 #define WHERE_ORDERBY 0x100000 /* Output will appear in correct order */ 178 #define WHERE_REVERSE 0x200000 /* Scan in reverse order */ 179 #define WHERE_UNIQUE 0x400000 /* Selects no more than one row */ 180 #define WHERE_VIRTUALTABLE 0x800000 /* Use virtual-table processing */ 181 182 /* 183 ** Initialize a preallocated WhereClause structure. 184 */ 185 static void whereClauseInit( 186 WhereClause *pWC, /* The WhereClause to be initialized */ 187 Parse *pParse, /* The parsing context */ 188 ExprMaskSet *pMaskSet /* Mapping from table indices to bitmasks */ 189 ){ 190 pWC->pParse = pParse; 191 pWC->pMaskSet = pMaskSet; 192 pWC->nTerm = 0; 193 pWC->nSlot = ArraySize(pWC->aStatic); 194 pWC->a = pWC->aStatic; 195 } 196 197 /* 198 ** Deallocate a WhereClause structure. The WhereClause structure 199 ** itself is not freed. This routine is the inverse of whereClauseInit(). 200 */ 201 static void whereClauseClear(WhereClause *pWC){ 202 int i; 203 WhereTerm *a; 204 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ 205 if( a->flags & TERM_DYNAMIC ){ 206 sqlite3ExprDelete(a->pExpr); 207 } 208 } 209 if( pWC->a!=pWC->aStatic ){ 210 sqliteFree(pWC->a); 211 } 212 } 213 214 /* 215 ** Add a new entries to the WhereClause structure. Increase the allocated 216 ** space as necessary. 217 ** 218 ** If the flags argument includes TERM_DYNAMIC, then responsibility 219 ** for freeing the expression p is assumed by the WhereClause object. 220 ** 221 ** WARNING: This routine might reallocate the space used to store 222 ** WhereTerms. All pointers to WhereTerms should be invalided after 223 ** calling this routine. Such pointers may be reinitialized by referencing 224 ** the pWC->a[] array. 225 */ 226 static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){ 227 WhereTerm *pTerm; 228 int idx; 229 if( pWC->nTerm>=pWC->nSlot ){ 230 WhereTerm *pOld = pWC->a; 231 pWC->a = sqliteMalloc( sizeof(pWC->a[0])*pWC->nSlot*2 ); 232 if( pWC->a==0 ){ 233 if( flags & TERM_DYNAMIC ){ 234 sqlite3ExprDelete(p); 235 } 236 return 0; 237 } 238 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); 239 if( pOld!=pWC->aStatic ){ 240 sqliteFree(pOld); 241 } 242 pWC->nSlot *= 2; 243 } 244 pTerm = &pWC->a[idx = pWC->nTerm]; 245 pWC->nTerm++; 246 pTerm->pExpr = p; 247 pTerm->flags = flags; 248 pTerm->pWC = pWC; 249 pTerm->iParent = -1; 250 return idx; 251 } 252 253 /* 254 ** This routine identifies subexpressions in the WHERE clause where 255 ** each subexpression is separated by the AND operator or some other 256 ** operator specified in the op parameter. The WhereClause structure 257 ** is filled with pointers to subexpressions. For example: 258 ** 259 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) 260 ** \________/ \_______________/ \________________/ 261 ** slot[0] slot[1] slot[2] 262 ** 263 ** The original WHERE clause in pExpr is unaltered. All this routine 264 ** does is make slot[] entries point to substructure within pExpr. 265 ** 266 ** In the previous sentence and in the diagram, "slot[]" refers to 267 ** the WhereClause.a[] array. This array grows as needed to contain 268 ** all terms of the WHERE clause. 269 */ 270 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){ 271 if( pExpr==0 ) return; 272 if( pExpr->op!=op ){ 273 whereClauseInsert(pWC, pExpr, 0); 274 }else{ 275 whereSplit(pWC, pExpr->pLeft, op); 276 whereSplit(pWC, pExpr->pRight, op); 277 } 278 } 279 280 /* 281 ** Initialize an expression mask set 282 */ 283 #define initMaskSet(P) memset(P, 0, sizeof(*P)) 284 285 /* 286 ** Return the bitmask for the given cursor number. Return 0 if 287 ** iCursor is not in the set. 288 */ 289 static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){ 290 int i; 291 for(i=0; i<pMaskSet->n; i++){ 292 if( pMaskSet->ix[i]==iCursor ){ 293 return ((Bitmask)1)<<i; 294 } 295 } 296 return 0; 297 } 298 299 /* 300 ** Create a new mask for cursor iCursor. 301 ** 302 ** There is one cursor per table in the FROM clause. The number of 303 ** tables in the FROM clause is limited by a test early in the 304 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 305 ** array will never overflow. 306 */ 307 static void createMask(ExprMaskSet *pMaskSet, int iCursor){ 308 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 309 pMaskSet->ix[pMaskSet->n++] = iCursor; 310 } 311 312 /* 313 ** This routine walks (recursively) an expression tree and generates 314 ** a bitmask indicating which tables are used in that expression 315 ** tree. 316 ** 317 ** In order for this routine to work, the calling function must have 318 ** previously invoked sqlite3ExprResolveNames() on the expression. See 319 ** the header comment on that routine for additional information. 320 ** The sqlite3ExprResolveNames() routines looks for column names and 321 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to 322 ** the VDBE cursor number of the table. This routine just has to 323 ** translate the cursor numbers into bitmask values and OR all 324 ** the bitmasks together. 325 */ 326 static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*); 327 static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*); 328 static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){ 329 Bitmask mask = 0; 330 if( p==0 ) return 0; 331 if( p->op==TK_COLUMN ){ 332 mask = getMask(pMaskSet, p->iTable); 333 return mask; 334 } 335 mask = exprTableUsage(pMaskSet, p->pRight); 336 mask |= exprTableUsage(pMaskSet, p->pLeft); 337 mask |= exprListTableUsage(pMaskSet, p->pList); 338 mask |= exprSelectTableUsage(pMaskSet, p->pSelect); 339 return mask; 340 } 341 static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){ 342 int i; 343 Bitmask mask = 0; 344 if( pList ){ 345 for(i=0; i<pList->nExpr; i++){ 346 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); 347 } 348 } 349 return mask; 350 } 351 static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){ 352 Bitmask mask; 353 if( pS==0 ){ 354 mask = 0; 355 }else{ 356 mask = exprListTableUsage(pMaskSet, pS->pEList); 357 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); 358 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); 359 mask |= exprTableUsage(pMaskSet, pS->pWhere); 360 mask |= exprTableUsage(pMaskSet, pS->pHaving); 361 } 362 return mask; 363 } 364 365 /* 366 ** Return TRUE if the given operator is one of the operators that is 367 ** allowed for an indexable WHERE clause term. The allowed operators are 368 ** "=", "<", ">", "<=", ">=", and "IN". 369 */ 370 static int allowedOp(int op){ 371 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); 372 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); 373 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); 374 assert( TK_GE==TK_EQ+4 ); 375 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; 376 } 377 378 /* 379 ** Swap two objects of type T. 380 */ 381 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 382 383 /* 384 ** Commute a comparision operator. Expressions of the form "X op Y" 385 ** are converted into "Y op X". 386 */ 387 static void exprCommute(Expr *pExpr){ 388 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); 389 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl); 390 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); 391 if( pExpr->op>=TK_GT ){ 392 assert( TK_LT==TK_GT+2 ); 393 assert( TK_GE==TK_LE+2 ); 394 assert( TK_GT>TK_EQ ); 395 assert( TK_GT<TK_LE ); 396 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); 397 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; 398 } 399 } 400 401 /* 402 ** Translate from TK_xx operator to WO_xx bitmask. 403 */ 404 static int operatorMask(int op){ 405 int c; 406 assert( allowedOp(op) ); 407 if( op==TK_IN ){ 408 c = WO_IN; 409 }else if( op==TK_ISNULL ){ 410 c = WO_ISNULL; 411 }else{ 412 c = WO_EQ<<(op-TK_EQ); 413 } 414 assert( op!=TK_ISNULL || c==WO_ISNULL ); 415 assert( op!=TK_IN || c==WO_IN ); 416 assert( op!=TK_EQ || c==WO_EQ ); 417 assert( op!=TK_LT || c==WO_LT ); 418 assert( op!=TK_LE || c==WO_LE ); 419 assert( op!=TK_GT || c==WO_GT ); 420 assert( op!=TK_GE || c==WO_GE ); 421 return c; 422 } 423 424 /* 425 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 426 ** where X is a reference to the iColumn of table iCur and <op> is one of 427 ** the WO_xx operator codes specified by the op parameter. 428 ** Return a pointer to the term. Return 0 if not found. 429 */ 430 static WhereTerm *findTerm( 431 WhereClause *pWC, /* The WHERE clause to be searched */ 432 int iCur, /* Cursor number of LHS */ 433 int iColumn, /* Column number of LHS */ 434 Bitmask notReady, /* RHS must not overlap with this mask */ 435 u16 op, /* Mask of WO_xx values describing operator */ 436 Index *pIdx /* Must be compatible with this index, if not NULL */ 437 ){ 438 WhereTerm *pTerm; 439 int k; 440 for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){ 441 if( pTerm->leftCursor==iCur 442 && (pTerm->prereqRight & notReady)==0 443 && pTerm->leftColumn==iColumn 444 && (pTerm->eOperator & op)!=0 445 ){ 446 if( iCur>=0 && pIdx && pTerm->eOperator!=WO_ISNULL ){ 447 Expr *pX = pTerm->pExpr; 448 CollSeq *pColl; 449 char idxaff; 450 int j; 451 Parse *pParse = pWC->pParse; 452 453 idxaff = pIdx->pTable->aCol[iColumn].affinity; 454 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue; 455 456 /* Figure out the collation sequence required from an index for 457 ** it to be useful for optimising expression pX. Store this 458 ** value in variable pColl. 459 */ 460 assert(pX->pLeft); 461 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); 462 if( !pColl ){ 463 pColl = pParse->db->pDfltColl; 464 } 465 466 for(j=0; j<pIdx->nColumn && pIdx->aiColumn[j]!=iColumn; j++){} 467 assert( j<pIdx->nColumn ); 468 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue; 469 } 470 return pTerm; 471 } 472 } 473 return 0; 474 } 475 476 /* Forward reference */ 477 static void exprAnalyze(SrcList*, WhereClause*, int); 478 479 /* 480 ** Call exprAnalyze on all terms in a WHERE clause. 481 ** 482 ** 483 */ 484 static void exprAnalyzeAll( 485 SrcList *pTabList, /* the FROM clause */ 486 WhereClause *pWC /* the WHERE clause to be analyzed */ 487 ){ 488 int i; 489 for(i=pWC->nTerm-1; i>=0; i--){ 490 exprAnalyze(pTabList, pWC, i); 491 } 492 } 493 494 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 495 /* 496 ** Check to see if the given expression is a LIKE or GLOB operator that 497 ** can be optimized using inequality constraints. Return TRUE if it is 498 ** so and false if not. 499 ** 500 ** In order for the operator to be optimizible, the RHS must be a string 501 ** literal that does not begin with a wildcard. 502 */ 503 static int isLikeOrGlob( 504 sqlite3 *db, /* The database */ 505 Expr *pExpr, /* Test this expression */ 506 int *pnPattern, /* Number of non-wildcard prefix characters */ 507 int *pisComplete /* True if the only wildcard is % in the last character */ 508 ){ 509 const char *z; 510 Expr *pRight, *pLeft; 511 ExprList *pList; 512 int c, cnt; 513 int noCase; 514 char wc[3]; 515 CollSeq *pColl; 516 517 if( !sqlite3IsLikeFunction(db, pExpr, &noCase, wc) ){ 518 return 0; 519 } 520 pList = pExpr->pList; 521 pRight = pList->a[0].pExpr; 522 if( pRight->op!=TK_STRING ){ 523 return 0; 524 } 525 pLeft = pList->a[1].pExpr; 526 if( pLeft->op!=TK_COLUMN ){ 527 return 0; 528 } 529 pColl = pLeft->pColl; 530 if( pColl==0 ){ 531 /* TODO: Coverage testing doesn't get this case. Is it actually possible 532 ** for an expression of type TK_COLUMN to not have an assigned collation 533 ** sequence at this point? 534 */ 535 pColl = db->pDfltColl; 536 } 537 if( (pColl->type!=SQLITE_COLL_BINARY || noCase) && 538 (pColl->type!=SQLITE_COLL_NOCASE || !noCase) ){ 539 return 0; 540 } 541 sqlite3DequoteExpr(pRight); 542 z = (char *)pRight->token.z; 543 for(cnt=0; (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2]; cnt++){} 544 if( cnt==0 || 255==(u8)z[cnt] ){ 545 return 0; 546 } 547 *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0; 548 *pnPattern = cnt; 549 return 1; 550 } 551 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 552 553 554 #ifndef SQLITE_OMIT_VIRTUALTABLE 555 /* 556 ** Check to see if the given expression is of the form 557 ** 558 ** column MATCH expr 559 ** 560 ** If it is then return TRUE. If not, return FALSE. 561 */ 562 static int isMatchOfColumn( 563 Expr *pExpr /* Test this expression */ 564 ){ 565 ExprList *pList; 566 567 if( pExpr->op!=TK_FUNCTION ){ 568 return 0; 569 } 570 if( pExpr->token.n!=5 || 571 sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){ 572 return 0; 573 } 574 pList = pExpr->pList; 575 if( pList->nExpr!=2 ){ 576 return 0; 577 } 578 if( pList->a[1].pExpr->op != TK_COLUMN ){ 579 return 0; 580 } 581 return 1; 582 } 583 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 584 585 /* 586 ** If the pBase expression originated in the ON or USING clause of 587 ** a join, then transfer the appropriate markings over to derived. 588 */ 589 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ 590 pDerived->flags |= pBase->flags & EP_FromJoin; 591 pDerived->iRightJoinTable = pBase->iRightJoinTable; 592 } 593 594 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 595 /* 596 ** Return TRUE if the given term of an OR clause can be converted 597 ** into an IN clause. The iCursor and iColumn define the left-hand 598 ** side of the IN clause. 599 ** 600 ** The context is that we have multiple OR-connected equality terms 601 ** like this: 602 ** 603 ** a=<expr1> OR a=<expr2> OR b=<expr3> OR ... 604 ** 605 ** The pOrTerm input to this routine corresponds to a single term of 606 ** this OR clause. In order for the term to be a condidate for 607 ** conversion to an IN operator, the following must be true: 608 ** 609 ** * The left-hand side of the term must be the column which 610 ** is identified by iCursor and iColumn. 611 ** 612 ** * If the right-hand side is also a column, then the affinities 613 ** of both right and left sides must be such that no type 614 ** conversions are required on the right. (Ticket #2249) 615 ** 616 ** If both of these conditions are true, then return true. Otherwise 617 ** return false. 618 */ 619 static int orTermIsOptCandidate(WhereTerm *pOrTerm, int iCursor, int iColumn){ 620 int affLeft, affRight; 621 assert( pOrTerm->eOperator==WO_EQ ); 622 if( pOrTerm->leftCursor!=iCursor ){ 623 return 0; 624 } 625 if( pOrTerm->leftColumn!=iColumn ){ 626 return 0; 627 } 628 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); 629 if( affRight==0 ){ 630 return 1; 631 } 632 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); 633 if( affRight!=affLeft ){ 634 return 0; 635 } 636 return 1; 637 } 638 639 /* 640 ** Return true if the given term of an OR clause can be ignored during 641 ** a check to make sure all OR terms are candidates for optimization. 642 ** In other words, return true if a call to the orTermIsOptCandidate() 643 ** above returned false but it is not necessary to disqualify the 644 ** optimization. 645 ** 646 ** Suppose the original OR phrase was this: 647 ** 648 ** a=4 OR a=11 OR a=b 649 ** 650 ** During analysis, the third term gets flipped around and duplicate 651 ** so that we are left with this: 652 ** 653 ** a=4 OR a=11 OR a=b OR b=a 654 ** 655 ** Since the last two terms are duplicates, only one of them 656 ** has to qualify in order for the whole phrase to qualify. When 657 ** this routine is called, we know that pOrTerm did not qualify. 658 ** This routine merely checks to see if pOrTerm has a duplicate that 659 ** might qualify. If there is a duplicate that has not yet been 660 ** disqualified, then return true. If there are no duplicates, or 661 ** the duplicate has also been disqualifed, return false. 662 */ 663 static int orTermHasOkDuplicate(WhereClause *pOr, WhereTerm *pOrTerm){ 664 if( pOrTerm->flags & TERM_COPIED ){ 665 /* This is the original term. The duplicate is to the left had 666 ** has not yet been analyzed and thus has not yet been disqualified. */ 667 return 1; 668 } 669 if( (pOrTerm->flags & TERM_VIRTUAL)!=0 670 && (pOr->a[pOrTerm->iParent].flags & TERM_OR_OK)!=0 ){ 671 /* This is a duplicate term. The original qualified so this one 672 ** does not have to. */ 673 return 1; 674 } 675 /* This is either a singleton term or else it is a duplicate for 676 ** which the original did not qualify. Either way we are done for. */ 677 return 0; 678 } 679 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ 680 681 /* 682 ** The input to this routine is an WhereTerm structure with only the 683 ** "pExpr" field filled in. The job of this routine is to analyze the 684 ** subexpression and populate all the other fields of the WhereTerm 685 ** structure. 686 ** 687 ** If the expression is of the form "<expr> <op> X" it gets commuted 688 ** to the standard form of "X <op> <expr>". If the expression is of 689 ** the form "X <op> Y" where both X and Y are columns, then the original 690 ** expression is unchanged and a new virtual expression of the form 691 ** "Y <op> X" is added to the WHERE clause and analyzed separately. 692 */ 693 static void exprAnalyze( 694 SrcList *pSrc, /* the FROM clause */ 695 WhereClause *pWC, /* the WHERE clause */ 696 int idxTerm /* Index of the term to be analyzed */ 697 ){ 698 WhereTerm *pTerm = &pWC->a[idxTerm]; 699 ExprMaskSet *pMaskSet = pWC->pMaskSet; 700 Expr *pExpr = pTerm->pExpr; 701 Bitmask prereqLeft; 702 Bitmask prereqAll; 703 int nPattern; 704 int isComplete; 705 int op; 706 707 if( sqlite3MallocFailed() ) return; 708 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); 709 op = pExpr->op; 710 if( op==TK_IN ){ 711 assert( pExpr->pRight==0 ); 712 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList) 713 | exprSelectTableUsage(pMaskSet, pExpr->pSelect); 714 }else if( op==TK_ISNULL ){ 715 pTerm->prereqRight = 0; 716 }else{ 717 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); 718 } 719 prereqAll = exprTableUsage(pMaskSet, pExpr); 720 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 721 prereqAll |= getMask(pMaskSet, pExpr->iRightJoinTable); 722 } 723 pTerm->prereqAll = prereqAll; 724 pTerm->leftCursor = -1; 725 pTerm->iParent = -1; 726 pTerm->eOperator = 0; 727 if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){ 728 Expr *pLeft = pExpr->pLeft; 729 Expr *pRight = pExpr->pRight; 730 if( pLeft->op==TK_COLUMN ){ 731 pTerm->leftCursor = pLeft->iTable; 732 pTerm->leftColumn = pLeft->iColumn; 733 pTerm->eOperator = operatorMask(op); 734 } 735 if( pRight && pRight->op==TK_COLUMN ){ 736 WhereTerm *pNew; 737 Expr *pDup; 738 if( pTerm->leftCursor>=0 ){ 739 int idxNew; 740 pDup = sqlite3ExprDup(pExpr); 741 if( sqlite3MallocFailed() ){ 742 sqlite3ExprDelete(pDup); 743 return; 744 } 745 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); 746 if( idxNew==0 ) return; 747 pNew = &pWC->a[idxNew]; 748 pNew->iParent = idxTerm; 749 pTerm = &pWC->a[idxTerm]; 750 pTerm->nChild = 1; 751 pTerm->flags |= TERM_COPIED; 752 }else{ 753 pDup = pExpr; 754 pNew = pTerm; 755 } 756 exprCommute(pDup); 757 pLeft = pDup->pLeft; 758 pNew->leftCursor = pLeft->iTable; 759 pNew->leftColumn = pLeft->iColumn; 760 pNew->prereqRight = prereqLeft; 761 pNew->prereqAll = prereqAll; 762 pNew->eOperator = operatorMask(pDup->op); 763 } 764 } 765 766 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION 767 /* If a term is the BETWEEN operator, create two new virtual terms 768 ** that define the range that the BETWEEN implements. 769 */ 770 else if( pExpr->op==TK_BETWEEN ){ 771 ExprList *pList = pExpr->pList; 772 int i; 773 static const u8 ops[] = {TK_GE, TK_LE}; 774 assert( pList!=0 ); 775 assert( pList->nExpr==2 ); 776 for(i=0; i<2; i++){ 777 Expr *pNewExpr; 778 int idxNew; 779 pNewExpr = sqlite3Expr(ops[i], sqlite3ExprDup(pExpr->pLeft), 780 sqlite3ExprDup(pList->a[i].pExpr), 0); 781 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 782 exprAnalyze(pSrc, pWC, idxNew); 783 pTerm = &pWC->a[idxTerm]; 784 pWC->a[idxNew].iParent = idxTerm; 785 } 786 pTerm->nChild = 2; 787 } 788 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ 789 790 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 791 /* Attempt to convert OR-connected terms into an IN operator so that 792 ** they can make use of indices. Example: 793 ** 794 ** x = expr1 OR expr2 = x OR x = expr3 795 ** 796 ** is converted into 797 ** 798 ** x IN (expr1,expr2,expr3) 799 ** 800 ** This optimization must be omitted if OMIT_SUBQUERY is defined because 801 ** the compiler for the the IN operator is part of sub-queries. 802 */ 803 else if( pExpr->op==TK_OR ){ 804 int ok; 805 int i, j; 806 int iColumn, iCursor; 807 WhereClause sOr; 808 WhereTerm *pOrTerm; 809 810 assert( (pTerm->flags & TERM_DYNAMIC)==0 ); 811 whereClauseInit(&sOr, pWC->pParse, pMaskSet); 812 whereSplit(&sOr, pExpr, TK_OR); 813 exprAnalyzeAll(pSrc, &sOr); 814 assert( sOr.nTerm>=2 ); 815 j = 0; 816 do{ 817 assert( j<sOr.nTerm ); 818 iColumn = sOr.a[j].leftColumn; 819 iCursor = sOr.a[j].leftCursor; 820 ok = iCursor>=0; 821 for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){ 822 if( pOrTerm->eOperator!=WO_EQ ){ 823 goto or_not_possible; 824 } 825 if( orTermIsOptCandidate(pOrTerm, iCursor, iColumn) ){ 826 pOrTerm->flags |= TERM_OR_OK; 827 }else if( orTermHasOkDuplicate(&sOr, pOrTerm) ){ 828 pOrTerm->flags &= ~TERM_OR_OK; 829 }else{ 830 ok = 0; 831 } 832 } 833 }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<2 ); 834 if( ok ){ 835 ExprList *pList = 0; 836 Expr *pNew, *pDup; 837 Expr *pLeft = 0; 838 for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){ 839 if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue; 840 pDup = sqlite3ExprDup(pOrTerm->pExpr->pRight); 841 pList = sqlite3ExprListAppend(pList, pDup, 0); 842 pLeft = pOrTerm->pExpr->pLeft; 843 } 844 assert( pLeft!=0 ); 845 pDup = sqlite3ExprDup(pLeft); 846 pNew = sqlite3Expr(TK_IN, pDup, 0, 0); 847 if( pNew ){ 848 int idxNew; 849 transferJoinMarkings(pNew, pExpr); 850 pNew->pList = pList; 851 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 852 exprAnalyze(pSrc, pWC, idxNew); 853 pTerm = &pWC->a[idxTerm]; 854 pWC->a[idxNew].iParent = idxTerm; 855 pTerm->nChild = 1; 856 }else{ 857 sqlite3ExprListDelete(pList); 858 } 859 } 860 or_not_possible: 861 whereClauseClear(&sOr); 862 } 863 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 864 865 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 866 /* Add constraints to reduce the search space on a LIKE or GLOB 867 ** operator. 868 */ 869 if( isLikeOrGlob(pWC->pParse->db, pExpr, &nPattern, &isComplete) ){ 870 Expr *pLeft, *pRight; 871 Expr *pStr1, *pStr2; 872 Expr *pNewExpr1, *pNewExpr2; 873 int idxNew1, idxNew2; 874 875 pLeft = pExpr->pList->a[1].pExpr; 876 pRight = pExpr->pList->a[0].pExpr; 877 pStr1 = sqlite3Expr(TK_STRING, 0, 0, 0); 878 if( pStr1 ){ 879 sqlite3TokenCopy(&pStr1->token, &pRight->token); 880 pStr1->token.n = nPattern; 881 pStr1->flags = EP_Dequoted; 882 } 883 pStr2 = sqlite3ExprDup(pStr1); 884 if( pStr2 ){ 885 assert( pStr2->token.dyn ); 886 ++*(u8*)&pStr2->token.z[nPattern-1]; 887 } 888 pNewExpr1 = sqlite3Expr(TK_GE, sqlite3ExprDup(pLeft), pStr1, 0); 889 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); 890 exprAnalyze(pSrc, pWC, idxNew1); 891 pNewExpr2 = sqlite3Expr(TK_LT, sqlite3ExprDup(pLeft), pStr2, 0); 892 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); 893 exprAnalyze(pSrc, pWC, idxNew2); 894 pTerm = &pWC->a[idxTerm]; 895 if( isComplete ){ 896 pWC->a[idxNew1].iParent = idxTerm; 897 pWC->a[idxNew2].iParent = idxTerm; 898 pTerm->nChild = 2; 899 } 900 } 901 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 902 903 #ifndef SQLITE_OMIT_VIRTUALTABLE 904 /* Add a WO_MATCH auxiliary term to the constraint set if the 905 ** current expression is of the form: column MATCH expr. 906 ** This information is used by the xBestIndex methods of 907 ** virtual tables. The native query optimizer does not attempt 908 ** to do anything with MATCH functions. 909 */ 910 if( isMatchOfColumn(pExpr) ){ 911 int idxNew; 912 Expr *pRight, *pLeft; 913 WhereTerm *pNewTerm; 914 Bitmask prereqColumn, prereqExpr; 915 916 pRight = pExpr->pList->a[0].pExpr; 917 pLeft = pExpr->pList->a[1].pExpr; 918 prereqExpr = exprTableUsage(pMaskSet, pRight); 919 prereqColumn = exprTableUsage(pMaskSet, pLeft); 920 if( (prereqExpr & prereqColumn)==0 ){ 921 Expr *pNewExpr; 922 pNewExpr = sqlite3Expr(TK_MATCH, 0, sqlite3ExprDup(pRight), 0); 923 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 924 pNewTerm = &pWC->a[idxNew]; 925 pNewTerm->prereqRight = prereqExpr; 926 pNewTerm->leftCursor = pLeft->iTable; 927 pNewTerm->leftColumn = pLeft->iColumn; 928 pNewTerm->eOperator = WO_MATCH; 929 pNewTerm->iParent = idxTerm; 930 pTerm = &pWC->a[idxTerm]; 931 pTerm->nChild = 1; 932 pTerm->flags |= TERM_COPIED; 933 pNewTerm->prereqAll = pTerm->prereqAll; 934 } 935 } 936 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 937 } 938 939 /* 940 ** Return TRUE if any of the expressions in pList->a[iFirst...] contain 941 ** a reference to any table other than the iBase table. 942 */ 943 static int referencesOtherTables( 944 ExprList *pList, /* Search expressions in ths list */ 945 ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ 946 int iFirst, /* Be searching with the iFirst-th expression */ 947 int iBase /* Ignore references to this table */ 948 ){ 949 Bitmask allowed = ~getMask(pMaskSet, iBase); 950 while( iFirst<pList->nExpr ){ 951 if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){ 952 return 1; 953 } 954 } 955 return 0; 956 } 957 958 959 /* 960 ** This routine decides if pIdx can be used to satisfy the ORDER BY 961 ** clause. If it can, it returns 1. If pIdx cannot satisfy the 962 ** ORDER BY clause, this routine returns 0. 963 ** 964 ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the 965 ** left-most table in the FROM clause of that same SELECT statement and 966 ** the table has a cursor number of "base". pIdx is an index on pTab. 967 ** 968 ** nEqCol is the number of columns of pIdx that are used as equality 969 ** constraints. Any of these columns may be missing from the ORDER BY 970 ** clause and the match can still be a success. 971 ** 972 ** All terms of the ORDER BY that match against the index must be either 973 ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE 974 ** index do not need to satisfy this constraint.) The *pbRev value is 975 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if 976 ** the ORDER BY clause is all ASC. 977 */ 978 static int isSortingIndex( 979 Parse *pParse, /* Parsing context */ 980 ExprMaskSet *pMaskSet, /* Mapping from table indices to bitmaps */ 981 Index *pIdx, /* The index we are testing */ 982 int base, /* Cursor number for the table to be sorted */ 983 ExprList *pOrderBy, /* The ORDER BY clause */ 984 int nEqCol, /* Number of index columns with == constraints */ 985 int *pbRev /* Set to 1 if ORDER BY is DESC */ 986 ){ 987 int i, j; /* Loop counters */ 988 int sortOrder = 0; /* XOR of index and ORDER BY sort direction */ 989 int nTerm; /* Number of ORDER BY terms */ 990 struct ExprList_item *pTerm; /* A term of the ORDER BY clause */ 991 sqlite3 *db = pParse->db; 992 993 assert( pOrderBy!=0 ); 994 nTerm = pOrderBy->nExpr; 995 assert( nTerm>0 ); 996 997 /* Match terms of the ORDER BY clause against columns of 998 ** the index. 999 ** 1000 ** Note that indices have pIdx->nColumn regular columns plus 1001 ** one additional column containing the rowid. The rowid column 1002 ** of the index is also allowed to match against the ORDER BY 1003 ** clause. 1004 */ 1005 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){ 1006 Expr *pExpr; /* The expression of the ORDER BY pTerm */ 1007 CollSeq *pColl; /* The collating sequence of pExpr */ 1008 int termSortOrder; /* Sort order for this term */ 1009 int iColumn; /* The i-th column of the index. -1 for rowid */ 1010 int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */ 1011 const char *zColl; /* Name of the collating sequence for i-th index term */ 1012 1013 pExpr = pTerm->pExpr; 1014 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){ 1015 /* Can not use an index sort on anything that is not a column in the 1016 ** left-most table of the FROM clause */ 1017 break; 1018 } 1019 pColl = sqlite3ExprCollSeq(pParse, pExpr); 1020 if( !pColl ){ 1021 pColl = db->pDfltColl; 1022 } 1023 if( i<pIdx->nColumn ){ 1024 iColumn = pIdx->aiColumn[i]; 1025 if( iColumn==pIdx->pTable->iPKey ){ 1026 iColumn = -1; 1027 } 1028 iSortOrder = pIdx->aSortOrder[i]; 1029 zColl = pIdx->azColl[i]; 1030 }else{ 1031 iColumn = -1; 1032 iSortOrder = 0; 1033 zColl = pColl->zName; 1034 } 1035 if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){ 1036 /* Term j of the ORDER BY clause does not match column i of the index */ 1037 if( i<nEqCol ){ 1038 /* If an index column that is constrained by == fails to match an 1039 ** ORDER BY term, that is OK. Just ignore that column of the index 1040 */ 1041 continue; 1042 }else{ 1043 /* If an index column fails to match and is not constrained by == 1044 ** then the index cannot satisfy the ORDER BY constraint. 1045 */ 1046 return 0; 1047 } 1048 } 1049 assert( pIdx->aSortOrder!=0 ); 1050 assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 ); 1051 assert( iSortOrder==0 || iSortOrder==1 ); 1052 termSortOrder = iSortOrder ^ pTerm->sortOrder; 1053 if( i>nEqCol ){ 1054 if( termSortOrder!=sortOrder ){ 1055 /* Indices can only be used if all ORDER BY terms past the 1056 ** equality constraints are all either DESC or ASC. */ 1057 return 0; 1058 } 1059 }else{ 1060 sortOrder = termSortOrder; 1061 } 1062 j++; 1063 pTerm++; 1064 if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ 1065 /* If the indexed column is the primary key and everything matches 1066 ** so far and none of the ORDER BY terms to the right reference other 1067 ** tables in the join, then we are assured that the index can be used 1068 ** to sort because the primary key is unique and so none of the other 1069 ** columns will make any difference 1070 */ 1071 j = nTerm; 1072 } 1073 } 1074 1075 *pbRev = sortOrder!=0; 1076 if( j>=nTerm ){ 1077 /* All terms of the ORDER BY clause are covered by this index so 1078 ** this index can be used for sorting. */ 1079 return 1; 1080 } 1081 if( pIdx->onError!=OE_None && i==pIdx->nColumn 1082 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ 1083 /* All terms of this index match some prefix of the ORDER BY clause 1084 ** and the index is UNIQUE and no terms on the tail of the ORDER BY 1085 ** clause reference other tables in a join. If this is all true then 1086 ** the order by clause is superfluous. */ 1087 return 1; 1088 } 1089 return 0; 1090 } 1091 1092 /* 1093 ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied 1094 ** by sorting in order of ROWID. Return true if so and set *pbRev to be 1095 ** true for reverse ROWID and false for forward ROWID order. 1096 */ 1097 static int sortableByRowid( 1098 int base, /* Cursor number for table to be sorted */ 1099 ExprList *pOrderBy, /* The ORDER BY clause */ 1100 ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ 1101 int *pbRev /* Set to 1 if ORDER BY is DESC */ 1102 ){ 1103 Expr *p; 1104 1105 assert( pOrderBy!=0 ); 1106 assert( pOrderBy->nExpr>0 ); 1107 p = pOrderBy->a[0].pExpr; 1108 if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1 1109 && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){ 1110 *pbRev = pOrderBy->a[0].sortOrder; 1111 return 1; 1112 } 1113 return 0; 1114 } 1115 1116 /* 1117 ** Prepare a crude estimate of the logarithm of the input value. 1118 ** The results need not be exact. This is only used for estimating 1119 ** the total cost of performing operatings with O(logN) or O(NlogN) 1120 ** complexity. Because N is just a guess, it is no great tragedy if 1121 ** logN is a little off. 1122 */ 1123 static double estLog(double N){ 1124 double logN = 1; 1125 double x = 10; 1126 while( N>x ){ 1127 logN += 1; 1128 x *= 10; 1129 } 1130 return logN; 1131 } 1132 1133 /* 1134 ** Two routines for printing the content of an sqlite3_index_info 1135 ** structure. Used for testing and debugging only. If neither 1136 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 1137 ** are no-ops. 1138 */ 1139 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG) 1140 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ 1141 int i; 1142 if( !sqlite3_where_trace ) return; 1143 for(i=0; i<p->nConstraint; i++){ 1144 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 1145 i, 1146 p->aConstraint[i].iColumn, 1147 p->aConstraint[i].iTermOffset, 1148 p->aConstraint[i].op, 1149 p->aConstraint[i].usable); 1150 } 1151 for(i=0; i<p->nOrderBy; i++){ 1152 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 1153 i, 1154 p->aOrderBy[i].iColumn, 1155 p->aOrderBy[i].desc); 1156 } 1157 } 1158 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ 1159 int i; 1160 if( !sqlite3_where_trace ) return; 1161 for(i=0; i<p->nConstraint; i++){ 1162 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 1163 i, 1164 p->aConstraintUsage[i].argvIndex, 1165 p->aConstraintUsage[i].omit); 1166 } 1167 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 1168 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 1169 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 1170 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 1171 } 1172 #else 1173 #define TRACE_IDX_INPUTS(A) 1174 #define TRACE_IDX_OUTPUTS(A) 1175 #endif 1176 1177 #ifndef SQLITE_OMIT_VIRTUALTABLE 1178 /* 1179 ** Compute the best index for a virtual table. 1180 ** 1181 ** The best index is computed by the xBestIndex method of the virtual 1182 ** table module. This routine is really just a wrapper that sets up 1183 ** the sqlite3_index_info structure that is used to communicate with 1184 ** xBestIndex. 1185 ** 1186 ** In a join, this routine might be called multiple times for the 1187 ** same virtual table. The sqlite3_index_info structure is created 1188 ** and initialized on the first invocation and reused on all subsequent 1189 ** invocations. The sqlite3_index_info structure is also used when 1190 ** code is generated to access the virtual table. The whereInfoDelete() 1191 ** routine takes care of freeing the sqlite3_index_info structure after 1192 ** everybody has finished with it. 1193 */ 1194 static double bestVirtualIndex( 1195 Parse *pParse, /* The parsing context */ 1196 WhereClause *pWC, /* The WHERE clause */ 1197 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1198 Bitmask notReady, /* Mask of cursors that are not available */ 1199 ExprList *pOrderBy, /* The order by clause */ 1200 int orderByUsable, /* True if we can potential sort */ 1201 sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */ 1202 ){ 1203 Table *pTab = pSrc->pTab; 1204 sqlite3_index_info *pIdxInfo; 1205 struct sqlite3_index_constraint *pIdxCons; 1206 struct sqlite3_index_orderby *pIdxOrderBy; 1207 struct sqlite3_index_constraint_usage *pUsage; 1208 WhereTerm *pTerm; 1209 int i, j; 1210 int nOrderBy; 1211 int rc; 1212 1213 /* If the sqlite3_index_info structure has not been previously 1214 ** allocated and initialized for this virtual table, then allocate 1215 ** and initialize it now 1216 */ 1217 pIdxInfo = *ppIdxInfo; 1218 if( pIdxInfo==0 ){ 1219 WhereTerm *pTerm; 1220 int nTerm; 1221 WHERETRACE(("Recomputing index info for %s...\n", pTab->zName)); 1222 1223 /* Count the number of possible WHERE clause constraints referring 1224 ** to this virtual table */ 1225 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1226 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1227 if( pTerm->eOperator==WO_IN ) continue; 1228 nTerm++; 1229 } 1230 1231 /* If the ORDER BY clause contains only columns in the current 1232 ** virtual table then allocate space for the aOrderBy part of 1233 ** the sqlite3_index_info structure. 1234 */ 1235 nOrderBy = 0; 1236 if( pOrderBy ){ 1237 for(i=0; i<pOrderBy->nExpr; i++){ 1238 Expr *pExpr = pOrderBy->a[i].pExpr; 1239 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 1240 } 1241 if( i==pOrderBy->nExpr ){ 1242 nOrderBy = pOrderBy->nExpr; 1243 } 1244 } 1245 1246 /* Allocate the sqlite3_index_info structure 1247 */ 1248 pIdxInfo = sqliteMalloc( sizeof(*pIdxInfo) 1249 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 1250 + sizeof(*pIdxOrderBy)*nOrderBy ); 1251 if( pIdxInfo==0 ){ 1252 sqlite3ErrorMsg(pParse, "out of memory"); 1253 return 0.0; 1254 } 1255 *ppIdxInfo = pIdxInfo; 1256 1257 /* Initialize the structure. The sqlite3_index_info structure contains 1258 ** many fields that are declared "const" to prevent xBestIndex from 1259 ** changing them. We have to do some funky casting in order to 1260 ** initialize those fields. 1261 */ 1262 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; 1263 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 1264 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 1265 *(int*)&pIdxInfo->nConstraint = nTerm; 1266 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 1267 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; 1268 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; 1269 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = 1270 pUsage; 1271 1272 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1273 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1274 if( pTerm->eOperator==WO_IN ) continue; 1275 pIdxCons[j].iColumn = pTerm->leftColumn; 1276 pIdxCons[j].iTermOffset = i; 1277 pIdxCons[j].op = pTerm->eOperator; 1278 /* The direct assignment in the previous line is possible only because 1279 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 1280 ** following asserts verify this fact. */ 1281 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 1282 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 1283 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 1284 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 1285 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 1286 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); 1287 assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); 1288 j++; 1289 } 1290 for(i=0; i<nOrderBy; i++){ 1291 Expr *pExpr = pOrderBy->a[i].pExpr; 1292 pIdxOrderBy[i].iColumn = pExpr->iColumn; 1293 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; 1294 } 1295 } 1296 1297 /* At this point, the sqlite3_index_info structure that pIdxInfo points 1298 ** to will have been initialized, either during the current invocation or 1299 ** during some prior invocation. Now we just have to customize the 1300 ** details of pIdxInfo for the current invocation and pass it to 1301 ** xBestIndex. 1302 */ 1303 1304 /* The module name must be defined. Also, by this point there must 1305 ** be a pointer to an sqlite3_vtab structure. Otherwise 1306 ** sqlite3ViewGetColumnNames() would have picked up the error. 1307 */ 1308 assert( pTab->azModuleArg && pTab->azModuleArg[0] ); 1309 assert( pTab->pVtab ); 1310 #if 0 1311 if( pTab->pVtab==0 ){ 1312 sqlite3ErrorMsg(pParse, "undefined module %s for table %s", 1313 pTab->azModuleArg[0], pTab->zName); 1314 return 0.0; 1315 } 1316 #endif 1317 1318 /* Set the aConstraint[].usable fields and initialize all 1319 ** output variables to zero. 1320 ** 1321 ** aConstraint[].usable is true for constraints where the right-hand 1322 ** side contains only references to tables to the left of the current 1323 ** table. In other words, if the constraint is of the form: 1324 ** 1325 ** column = expr 1326 ** 1327 ** and we are evaluating a join, then the constraint on column is 1328 ** only valid if all tables referenced in expr occur to the left 1329 ** of the table containing column. 1330 ** 1331 ** The aConstraints[] array contains entries for all constraints 1332 ** on the current table. That way we only have to compute it once 1333 ** even though we might try to pick the best index multiple times. 1334 ** For each attempt at picking an index, the order of tables in the 1335 ** join might be different so we have to recompute the usable flag 1336 ** each time. 1337 */ 1338 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 1339 pUsage = pIdxInfo->aConstraintUsage; 1340 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ 1341 j = pIdxCons->iTermOffset; 1342 pTerm = &pWC->a[j]; 1343 pIdxCons->usable = (pTerm->prereqRight & notReady)==0; 1344 } 1345 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); 1346 if( pIdxInfo->needToFreeIdxStr ){ 1347 sqlite3_free(pIdxInfo->idxStr); 1348 } 1349 pIdxInfo->idxStr = 0; 1350 pIdxInfo->idxNum = 0; 1351 pIdxInfo->needToFreeIdxStr = 0; 1352 pIdxInfo->orderByConsumed = 0; 1353 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0; 1354 nOrderBy = pIdxInfo->nOrderBy; 1355 if( pIdxInfo->nOrderBy && !orderByUsable ){ 1356 *(int*)&pIdxInfo->nOrderBy = 0; 1357 } 1358 1359 sqlite3SafetyOff(pParse->db); 1360 WHERETRACE(("xBestIndex for %s\n", pTab->zName)); 1361 TRACE_IDX_INPUTS(pIdxInfo); 1362 rc = pTab->pVtab->pModule->xBestIndex(pTab->pVtab, pIdxInfo); 1363 TRACE_IDX_OUTPUTS(pIdxInfo); 1364 if( rc!=SQLITE_OK ){ 1365 if( rc==SQLITE_NOMEM ){ 1366 sqlite3FailedMalloc(); 1367 }else { 1368 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 1369 } 1370 sqlite3SafetyOn(pParse->db); 1371 }else{ 1372 rc = sqlite3SafetyOn(pParse->db); 1373 } 1374 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 1375 1376 return pIdxInfo->estimatedCost; 1377 } 1378 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1379 1380 /* 1381 ** Find the best index for accessing a particular table. Return a pointer 1382 ** to the index, flags that describe how the index should be used, the 1383 ** number of equality constraints, and the "cost" for this index. 1384 ** 1385 ** The lowest cost index wins. The cost is an estimate of the amount of 1386 ** CPU and disk I/O need to process the request using the selected index. 1387 ** Factors that influence cost include: 1388 ** 1389 ** * The estimated number of rows that will be retrieved. (The 1390 ** fewer the better.) 1391 ** 1392 ** * Whether or not sorting must occur. 1393 ** 1394 ** * Whether or not there must be separate lookups in the 1395 ** index and in the main table. 1396 ** 1397 */ 1398 static double bestIndex( 1399 Parse *pParse, /* The parsing context */ 1400 WhereClause *pWC, /* The WHERE clause */ 1401 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1402 Bitmask notReady, /* Mask of cursors that are not available */ 1403 ExprList *pOrderBy, /* The order by clause */ 1404 Index **ppIndex, /* Make *ppIndex point to the best index */ 1405 int *pFlags, /* Put flags describing this choice in *pFlags */ 1406 int *pnEq /* Put the number of == or IN constraints here */ 1407 ){ 1408 WhereTerm *pTerm; 1409 Index *bestIdx = 0; /* Index that gives the lowest cost */ 1410 double lowestCost; /* The cost of using bestIdx */ 1411 int bestFlags = 0; /* Flags associated with bestIdx */ 1412 int bestNEq = 0; /* Best value for nEq */ 1413 int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ 1414 Index *pProbe; /* An index we are evaluating */ 1415 int rev; /* True to scan in reverse order */ 1416 int flags; /* Flags associated with pProbe */ 1417 int nEq; /* Number of == or IN constraints */ 1418 int eqTermMask; /* Mask of valid equality operators */ 1419 double cost; /* Cost of using pProbe */ 1420 1421 WHERETRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady)); 1422 lowestCost = SQLITE_BIG_DBL; 1423 pProbe = pSrc->pTab->pIndex; 1424 1425 /* If the table has no indices and there are no terms in the where 1426 ** clause that refer to the ROWID, then we will never be able to do 1427 ** anything other than a full table scan on this table. We might as 1428 ** well put it first in the join order. That way, perhaps it can be 1429 ** referenced by other tables in the join. 1430 */ 1431 if( pProbe==0 && 1432 findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 && 1433 (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){ 1434 *pFlags = 0; 1435 *ppIndex = 0; 1436 *pnEq = 0; 1437 return 0.0; 1438 } 1439 1440 /* Check for a rowid=EXPR or rowid IN (...) constraints 1441 */ 1442 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); 1443 if( pTerm ){ 1444 Expr *pExpr; 1445 *ppIndex = 0; 1446 bestFlags = WHERE_ROWID_EQ; 1447 if( pTerm->eOperator & WO_EQ ){ 1448 /* Rowid== is always the best pick. Look no further. Because only 1449 ** a single row is generated, output is always in sorted order */ 1450 *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE; 1451 *pnEq = 1; 1452 WHERETRACE(("... best is rowid\n")); 1453 return 0.0; 1454 }else if( (pExpr = pTerm->pExpr)->pList!=0 ){ 1455 /* Rowid IN (LIST): cost is NlogN where N is the number of list 1456 ** elements. */ 1457 lowestCost = pExpr->pList->nExpr; 1458 lowestCost *= estLog(lowestCost); 1459 }else{ 1460 /* Rowid IN (SELECT): cost is NlogN where N is the number of rows 1461 ** in the result of the inner select. We have no way to estimate 1462 ** that value so make a wild guess. */ 1463 lowestCost = 200; 1464 } 1465 WHERETRACE(("... rowid IN cost: %.9g\n", lowestCost)); 1466 } 1467 1468 /* Estimate the cost of a table scan. If we do not know how many 1469 ** entries are in the table, use 1 million as a guess. 1470 */ 1471 cost = pProbe ? pProbe->aiRowEst[0] : 1000000; 1472 WHERETRACE(("... table scan base cost: %.9g\n", cost)); 1473 flags = WHERE_ROWID_RANGE; 1474 1475 /* Check for constraints on a range of rowids in a table scan. 1476 */ 1477 pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0); 1478 if( pTerm ){ 1479 if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){ 1480 flags |= WHERE_TOP_LIMIT; 1481 cost /= 3; /* Guess that rowid<EXPR eliminates two-thirds or rows */ 1482 } 1483 if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){ 1484 flags |= WHERE_BTM_LIMIT; 1485 cost /= 3; /* Guess that rowid>EXPR eliminates two-thirds of rows */ 1486 } 1487 WHERETRACE(("... rowid range reduces cost to %.9g\n", cost)); 1488 }else{ 1489 flags = 0; 1490 } 1491 1492 /* If the table scan does not satisfy the ORDER BY clause, increase 1493 ** the cost by NlogN to cover the expense of sorting. */ 1494 if( pOrderBy ){ 1495 if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){ 1496 flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE; 1497 if( rev ){ 1498 flags |= WHERE_REVERSE; 1499 } 1500 }else{ 1501 cost += cost*estLog(cost); 1502 WHERETRACE(("... sorting increases cost to %.9g\n", cost)); 1503 } 1504 } 1505 if( cost<lowestCost ){ 1506 lowestCost = cost; 1507 bestFlags = flags; 1508 } 1509 1510 /* If the pSrc table is the right table of a LEFT JOIN then we may not 1511 ** use an index to satisfy IS NULL constraints on that table. This is 1512 ** because columns might end up being NULL if the table does not match - 1513 ** a circumstance which the index cannot help us discover. Ticket #2177. 1514 */ 1515 if( (pSrc->jointype & JT_LEFT)!=0 ){ 1516 eqTermMask = WO_EQ|WO_IN; 1517 }else{ 1518 eqTermMask = WO_EQ|WO_IN|WO_ISNULL; 1519 } 1520 1521 /* Look at each index. 1522 */ 1523 for(; pProbe; pProbe=pProbe->pNext){ 1524 int i; /* Loop counter */ 1525 double inMultiplier = 1; 1526 1527 WHERETRACE(("... index %s:\n", pProbe->zName)); 1528 1529 /* Count the number of columns in the index that are satisfied 1530 ** by x=EXPR constraints or x IN (...) constraints. 1531 */ 1532 flags = 0; 1533 for(i=0; i<pProbe->nColumn; i++){ 1534 int j = pProbe->aiColumn[i]; 1535 pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe); 1536 if( pTerm==0 ) break; 1537 flags |= WHERE_COLUMN_EQ; 1538 if( pTerm->eOperator & WO_IN ){ 1539 Expr *pExpr = pTerm->pExpr; 1540 flags |= WHERE_COLUMN_IN; 1541 if( pExpr->pSelect!=0 ){ 1542 inMultiplier *= 25; 1543 }else if( pExpr->pList!=0 ){ 1544 inMultiplier *= pExpr->pList->nExpr + 1; 1545 } 1546 } 1547 } 1548 cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier); 1549 nEq = i; 1550 if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0 1551 && nEq==pProbe->nColumn ){ 1552 flags |= WHERE_UNIQUE; 1553 } 1554 WHERETRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n", nEq, inMultiplier, cost)); 1555 1556 /* Look for range constraints 1557 */ 1558 if( nEq<pProbe->nColumn ){ 1559 int j = pProbe->aiColumn[nEq]; 1560 pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe); 1561 if( pTerm ){ 1562 flags |= WHERE_COLUMN_RANGE; 1563 if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){ 1564 flags |= WHERE_TOP_LIMIT; 1565 cost /= 3; 1566 } 1567 if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){ 1568 flags |= WHERE_BTM_LIMIT; 1569 cost /= 3; 1570 } 1571 WHERETRACE(("...... range reduces cost to %.9g\n", cost)); 1572 } 1573 } 1574 1575 /* Add the additional cost of sorting if that is a factor. 1576 */ 1577 if( pOrderBy ){ 1578 if( (flags & WHERE_COLUMN_IN)==0 && 1579 isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){ 1580 if( flags==0 ){ 1581 flags = WHERE_COLUMN_RANGE; 1582 } 1583 flags |= WHERE_ORDERBY; 1584 if( rev ){ 1585 flags |= WHERE_REVERSE; 1586 } 1587 }else{ 1588 cost += cost*estLog(cost); 1589 WHERETRACE(("...... orderby increases cost to %.9g\n", cost)); 1590 } 1591 } 1592 1593 /* Check to see if we can get away with using just the index without 1594 ** ever reading the table. If that is the case, then halve the 1595 ** cost of this index. 1596 */ 1597 if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){ 1598 Bitmask m = pSrc->colUsed; 1599 int j; 1600 for(j=0; j<pProbe->nColumn; j++){ 1601 int x = pProbe->aiColumn[j]; 1602 if( x<BMS-1 ){ 1603 m &= ~(((Bitmask)1)<<x); 1604 } 1605 } 1606 if( m==0 ){ 1607 flags |= WHERE_IDX_ONLY; 1608 cost /= 2; 1609 WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost)); 1610 } 1611 } 1612 1613 /* If this index has achieved the lowest cost so far, then use it. 1614 */ 1615 if( cost < lowestCost ){ 1616 bestIdx = pProbe; 1617 lowestCost = cost; 1618 assert( flags!=0 ); 1619 bestFlags = flags; 1620 bestNEq = nEq; 1621 } 1622 } 1623 1624 /* Report the best result 1625 */ 1626 *ppIndex = bestIdx; 1627 WHERETRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n", 1628 bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq)); 1629 *pFlags = bestFlags | eqTermMask; 1630 *pnEq = bestNEq; 1631 return lowestCost; 1632 } 1633 1634 1635 /* 1636 ** Disable a term in the WHERE clause. Except, do not disable the term 1637 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 1638 ** or USING clause of that join. 1639 ** 1640 ** Consider the term t2.z='ok' in the following queries: 1641 ** 1642 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 1643 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 1644 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 1645 ** 1646 ** The t2.z='ok' is disabled in the in (2) because it originates 1647 ** in the ON clause. The term is disabled in (3) because it is not part 1648 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 1649 ** 1650 ** Disabling a term causes that term to not be tested in the inner loop 1651 ** of the join. Disabling is an optimization. When terms are satisfied 1652 ** by indices, we disable them to prevent redundant tests in the inner 1653 ** loop. We would get the correct results if nothing were ever disabled, 1654 ** but joins might run a little slower. The trick is to disable as much 1655 ** as we can without disabling too much. If we disabled in (1), we'd get 1656 ** the wrong answer. See ticket #813. 1657 */ 1658 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 1659 if( pTerm 1660 && (pTerm->flags & TERM_CODED)==0 1661 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 1662 ){ 1663 pTerm->flags |= TERM_CODED; 1664 if( pTerm->iParent>=0 ){ 1665 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; 1666 if( (--pOther->nChild)==0 ){ 1667 disableTerm(pLevel, pOther); 1668 } 1669 } 1670 } 1671 } 1672 1673 /* 1674 ** Generate code that builds a probe for an index. 1675 ** 1676 ** There should be nColumn values on the stack. The index 1677 ** to be probed is pIdx. Pop the values from the stack and 1678 ** replace them all with a single record that is the index 1679 ** problem. 1680 */ 1681 static void buildIndexProbe( 1682 Vdbe *v, /* Generate code into this VM */ 1683 int nColumn, /* The number of columns to check for NULL */ 1684 Index *pIdx /* Index that we will be searching */ 1685 ){ 1686 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 1687 sqlite3IndexAffinityStr(v, pIdx); 1688 } 1689 1690 1691 /* 1692 ** Generate code for a single equality term of the WHERE clause. An equality 1693 ** term can be either X=expr or X IN (...). pTerm is the term to be 1694 ** coded. 1695 ** 1696 ** The current value for the constraint is left on the top of the stack. 1697 ** 1698 ** For a constraint of the form X=expr, the expression is evaluated and its 1699 ** result is left on the stack. For constraints of the form X IN (...) 1700 ** this routine sets up a loop that will iterate over all values of X. 1701 */ 1702 static void codeEqualityTerm( 1703 Parse *pParse, /* The parsing context */ 1704 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 1705 WhereLevel *pLevel /* When level of the FROM clause we are working on */ 1706 ){ 1707 Expr *pX = pTerm->pExpr; 1708 Vdbe *v = pParse->pVdbe; 1709 if( pX->op==TK_EQ ){ 1710 sqlite3ExprCode(pParse, pX->pRight); 1711 }else if( pX->op==TK_ISNULL ){ 1712 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1713 #ifndef SQLITE_OMIT_SUBQUERY 1714 }else{ 1715 int iTab; 1716 struct InLoop *pIn; 1717 1718 assert( pX->op==TK_IN ); 1719 sqlite3CodeSubselect(pParse, pX); 1720 iTab = pX->iTable; 1721 sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0); 1722 VdbeComment((v, "# %.*s", pX->span.n, pX->span.z)); 1723 if( pLevel->nIn==0 ){ 1724 pLevel->nxt = sqlite3VdbeMakeLabel(v); 1725 } 1726 pLevel->nIn++; 1727 pLevel->aInLoop = sqliteReallocOrFree(pLevel->aInLoop, 1728 sizeof(pLevel->aInLoop[0])*pLevel->nIn); 1729 pIn = pLevel->aInLoop; 1730 if( pIn ){ 1731 pIn += pLevel->nIn - 1; 1732 pIn->iCur = iTab; 1733 pIn->topAddr = sqlite3VdbeAddOp(v, OP_Column, iTab, 0); 1734 sqlite3VdbeAddOp(v, OP_IsNull, -1, 0); 1735 }else{ 1736 pLevel->nIn = 0; 1737 } 1738 #endif 1739 } 1740 disableTerm(pLevel, pTerm); 1741 } 1742 1743 /* 1744 ** Generate code that will evaluate all == and IN constraints for an 1745 ** index. The values for all constraints are left on the stack. 1746 ** 1747 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 1748 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 1749 ** The index has as many as three equality constraints, but in this 1750 ** example, the third "c" value is an inequality. So only two 1751 ** constraints are coded. This routine will generate code to evaluate 1752 ** a==5 and b IN (1,2,3). The current values for a and b will be left 1753 ** on the stack - a is the deepest and b the shallowest. 1754 ** 1755 ** In the example above nEq==2. But this subroutine works for any value 1756 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 1757 ** The only thing it does is allocate the pLevel->iMem memory cell. 1758 ** 1759 ** This routine always allocates at least one memory cell and puts 1760 ** the address of that memory cell in pLevel->iMem. The code that 1761 ** calls this routine will use pLevel->iMem to store the termination 1762 ** key value of the loop. If one or more IN operators appear, then 1763 ** this routine allocates an additional nEq memory cells for internal 1764 ** use. 1765 */ 1766 static void codeAllEqualityTerms( 1767 Parse *pParse, /* Parsing context */ 1768 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 1769 WhereClause *pWC, /* The WHERE clause */ 1770 Bitmask notReady /* Which parts of FROM have not yet been coded */ 1771 ){ 1772 int nEq = pLevel->nEq; /* The number of == or IN constraints to code */ 1773 int termsInMem = 0; /* If true, store value in mem[] cells */ 1774 Vdbe *v = pParse->pVdbe; /* The virtual machine under construction */ 1775 Index *pIdx = pLevel->pIdx; /* The index being used for this loop */ 1776 int iCur = pLevel->iTabCur; /* The cursor of the table */ 1777 WhereTerm *pTerm; /* A single constraint term */ 1778 int j; /* Loop counter */ 1779 1780 /* Figure out how many memory cells we will need then allocate them. 1781 ** We always need at least one used to store the loop terminator 1782 ** value. If there are IN operators we'll need one for each == or 1783 ** IN constraint. 1784 */ 1785 pLevel->iMem = pParse->nMem++; 1786 if( pLevel->flags & WHERE_COLUMN_IN ){ 1787 pParse->nMem += pLevel->nEq; 1788 termsInMem = 1; 1789 } 1790 1791 /* Evaluate the equality constraints 1792 */ 1793 assert( pIdx->nColumn>=nEq ); 1794 for(j=0; j<nEq; j++){ 1795 int k = pIdx->aiColumn[j]; 1796 pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx); 1797 if( pTerm==0 ) break; 1798 assert( (pTerm->flags & TERM_CODED)==0 ); 1799 codeEqualityTerm(pParse, pTerm, pLevel); 1800 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ 1801 sqlite3VdbeAddOp(v, OP_IsNull, termsInMem ? -1 : -(j+1), pLevel->brk); 1802 } 1803 if( termsInMem ){ 1804 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem+j+1, 1); 1805 } 1806 } 1807 1808 /* Make sure all the constraint values are on the top of the stack 1809 */ 1810 if( termsInMem ){ 1811 for(j=0; j<nEq; j++){ 1812 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem+j+1, 0); 1813 } 1814 } 1815 } 1816 1817 #if defined(SQLITE_TEST) 1818 /* 1819 ** The following variable holds a text description of query plan generated 1820 ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin 1821 ** overwrites the previous. This information is used for testing and 1822 ** analysis only. 1823 */ 1824 char sqlite3_query_plan[BMS*2*40]; /* Text of the join */ 1825 static int nQPlan = 0; /* Next free slow in _query_plan[] */ 1826 1827 #endif /* SQLITE_TEST */ 1828 1829 1830 /* 1831 ** Free a WhereInfo structure 1832 */ 1833 static void whereInfoFree(WhereInfo *pWInfo){ 1834 if( pWInfo ){ 1835 int i; 1836 for(i=0; i<pWInfo->nLevel; i++){ 1837 sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo; 1838 if( pInfo ){ 1839 if( pInfo->needToFreeIdxStr ){ 1840 /* Coverage: Don't think this can be reached. By the time this 1841 ** function is called, the index-strings have been passed 1842 ** to the vdbe layer for deletion. 1843 */ 1844 sqlite3_free(pInfo->idxStr); 1845 } 1846 sqliteFree(pInfo); 1847 } 1848 } 1849 sqliteFree(pWInfo); 1850 } 1851 } 1852 1853 1854 /* 1855 ** Generate the beginning of the loop used for WHERE clause processing. 1856 ** The return value is a pointer to an opaque structure that contains 1857 ** information needed to terminate the loop. Later, the calling routine 1858 ** should invoke sqlite3WhereEnd() with the return value of this function 1859 ** in order to complete the WHERE clause processing. 1860 ** 1861 ** If an error occurs, this routine returns NULL. 1862 ** 1863 ** The basic idea is to do a nested loop, one loop for each table in 1864 ** the FROM clause of a select. (INSERT and UPDATE statements are the 1865 ** same as a SELECT with only a single table in the FROM clause.) For 1866 ** example, if the SQL is this: 1867 ** 1868 ** SELECT * FROM t1, t2, t3 WHERE ...; 1869 ** 1870 ** Then the code generated is conceptually like the following: 1871 ** 1872 ** foreach row1 in t1 do \ Code generated 1873 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 1874 ** foreach row3 in t3 do / 1875 ** ... 1876 ** end \ Code generated 1877 ** end |-- by sqlite3WhereEnd() 1878 ** end / 1879 ** 1880 ** Note that the loops might not be nested in the order in which they 1881 ** appear in the FROM clause if a different order is better able to make 1882 ** use of indices. Note also that when the IN operator appears in 1883 ** the WHERE clause, it might result in additional nested loops for 1884 ** scanning through all values on the right-hand side of the IN. 1885 ** 1886 ** There are Btree cursors associated with each table. t1 uses cursor 1887 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 1888 ** And so forth. This routine generates code to open those VDBE cursors 1889 ** and sqlite3WhereEnd() generates the code to close them. 1890 ** 1891 ** The code that sqlite3WhereBegin() generates leaves the cursors named 1892 ** in pTabList pointing at their appropriate entries. The [...] code 1893 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 1894 ** data from the various tables of the loop. 1895 ** 1896 ** If the WHERE clause is empty, the foreach loops must each scan their 1897 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 1898 ** the tables have indices and there are terms in the WHERE clause that 1899 ** refer to those indices, a complete table scan can be avoided and the 1900 ** code will run much faster. Most of the work of this routine is checking 1901 ** to see if there are indices that can be used to speed up the loop. 1902 ** 1903 ** Terms of the WHERE clause are also used to limit which rows actually 1904 ** make it to the "..." in the middle of the loop. After each "foreach", 1905 ** terms of the WHERE clause that use only terms in that loop and outer 1906 ** loops are evaluated and if false a jump is made around all subsequent 1907 ** inner loops (or around the "..." if the test occurs within the inner- 1908 ** most loop) 1909 ** 1910 ** OUTER JOINS 1911 ** 1912 ** An outer join of tables t1 and t2 is conceptally coded as follows: 1913 ** 1914 ** foreach row1 in t1 do 1915 ** flag = 0 1916 ** foreach row2 in t2 do 1917 ** start: 1918 ** ... 1919 ** flag = 1 1920 ** end 1921 ** if flag==0 then 1922 ** move the row2 cursor to a null row 1923 ** goto start 1924 ** fi 1925 ** end 1926 ** 1927 ** ORDER BY CLAUSE PROCESSING 1928 ** 1929 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, 1930 ** if there is one. If there is no ORDER BY clause or if this routine 1931 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. 1932 ** 1933 ** If an index can be used so that the natural output order of the table 1934 ** scan is correct for the ORDER BY clause, then that index is used and 1935 ** *ppOrderBy is set to NULL. This is an optimization that prevents an 1936 ** unnecessary sort of the result set if an index appropriate for the 1937 ** ORDER BY clause already exists. 1938 ** 1939 ** If the where clause loops cannot be arranged to provide the correct 1940 ** output order, then the *ppOrderBy is unchanged. 1941 */ 1942 WhereInfo *sqlite3WhereBegin( 1943 Parse *pParse, /* The parser context */ 1944 SrcList *pTabList, /* A list of all tables to be scanned */ 1945 Expr *pWhere, /* The WHERE clause */ 1946 ExprList **ppOrderBy /* An ORDER BY clause, or NULL */ 1947 ){ 1948 int i; /* Loop counter */ 1949 WhereInfo *pWInfo; /* Will become the return value of this function */ 1950 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 1951 int brk, cont = 0; /* Addresses used during code generation */ 1952 Bitmask notReady; /* Cursors that are not yet positioned */ 1953 WhereTerm *pTerm; /* A single term in the WHERE clause */ 1954 ExprMaskSet maskSet; /* The expression mask set */ 1955 WhereClause wc; /* The WHERE clause is divided into these terms */ 1956 struct SrcList_item *pTabItem; /* A single entry from pTabList */ 1957 WhereLevel *pLevel; /* A single level in the pWInfo list */ 1958 int iFrom; /* First unused FROM clause element */ 1959 int andFlags; /* AND-ed combination of all wc.a[].flags */ 1960 1961 /* The number of tables in the FROM clause is limited by the number of 1962 ** bits in a Bitmask 1963 */ 1964 if( pTabList->nSrc>BMS ){ 1965 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 1966 return 0; 1967 } 1968 1969 /* Split the WHERE clause into separate subexpressions where each 1970 ** subexpression is separated by an AND operator. 1971 */ 1972 initMaskSet(&maskSet); 1973 whereClauseInit(&wc, pParse, &maskSet); 1974 whereSplit(&wc, pWhere, TK_AND); 1975 1976 /* Allocate and initialize the WhereInfo structure that will become the 1977 ** return value. 1978 */ 1979 pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel)); 1980 if( sqlite3MallocFailed() ){ 1981 goto whereBeginNoMem; 1982 } 1983 pWInfo->nLevel = pTabList->nSrc; 1984 pWInfo->pParse = pParse; 1985 pWInfo->pTabList = pTabList; 1986 pWInfo->iBreak = sqlite3VdbeMakeLabel(v); 1987 1988 /* Special case: a WHERE clause that is constant. Evaluate the 1989 ** expression and either jump over all of the code or fall thru. 1990 */ 1991 if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){ 1992 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1); 1993 pWhere = 0; 1994 } 1995 1996 /* Analyze all of the subexpressions. Note that exprAnalyze() might 1997 ** add new virtual terms onto the end of the WHERE clause. We do not 1998 ** want to analyze these virtual terms, so start analyzing at the end 1999 ** and work forward so that the added virtual terms are never processed. 2000 */ 2001 for(i=0; i<pTabList->nSrc; i++){ 2002 createMask(&maskSet, pTabList->a[i].iCursor); 2003 } 2004 exprAnalyzeAll(pTabList, &wc); 2005 if( sqlite3MallocFailed() ){ 2006 goto whereBeginNoMem; 2007 } 2008 2009 /* Chose the best index to use for each table in the FROM clause. 2010 ** 2011 ** This loop fills in the following fields: 2012 ** 2013 ** pWInfo->a[].pIdx The index to use for this level of the loop. 2014 ** pWInfo->a[].flags WHERE_xxx flags associated with pIdx 2015 ** pWInfo->a[].nEq The number of == and IN constraints 2016 ** pWInfo->a[].iFrom When term of the FROM clause is being coded 2017 ** pWInfo->a[].iTabCur The VDBE cursor for the database table 2018 ** pWInfo->a[].iIdxCur The VDBE cursor for the index 2019 ** 2020 ** This loop also figures out the nesting order of tables in the FROM 2021 ** clause. 2022 */ 2023 notReady = ~(Bitmask)0; 2024 pTabItem = pTabList->a; 2025 pLevel = pWInfo->a; 2026 andFlags = ~0; 2027 WHERETRACE(("*** Optimizer Start ***\n")); 2028 for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 2029 Index *pIdx; /* Index for FROM table at pTabItem */ 2030 int flags; /* Flags asssociated with pIdx */ 2031 int nEq; /* Number of == or IN constraints */ 2032 double cost; /* The cost for pIdx */ 2033 int j; /* For looping over FROM tables */ 2034 Index *pBest = 0; /* The best index seen so far */ 2035 int bestFlags = 0; /* Flags associated with pBest */ 2036 int bestNEq = 0; /* nEq associated with pBest */ 2037 double lowestCost; /* Cost of the pBest */ 2038 int bestJ = 0; /* The value of j */ 2039 Bitmask m; /* Bitmask value for j or bestJ */ 2040 int once = 0; /* True when first table is seen */ 2041 sqlite3_index_info *pIndex; /* Current virtual index */ 2042 2043 lowestCost = SQLITE_BIG_DBL; 2044 for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){ 2045 int doNotReorder; /* True if this table should not be reordered */ 2046 2047 doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0; 2048 if( once && doNotReorder ) break; 2049 m = getMask(&maskSet, pTabItem->iCursor); 2050 if( (m & notReady)==0 ){ 2051 if( j==iFrom ) iFrom++; 2052 continue; 2053 } 2054 assert( pTabItem->pTab ); 2055 #ifndef SQLITE_OMIT_VIRTUALTABLE 2056 if( IsVirtual(pTabItem->pTab) ){ 2057 sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo; 2058 cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady, 2059 ppOrderBy ? *ppOrderBy : 0, i==0, 2060 ppIdxInfo); 2061 flags = WHERE_VIRTUALTABLE; 2062 pIndex = *ppIdxInfo; 2063 if( pIndex && pIndex->orderByConsumed ){ 2064 flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY; 2065 } 2066 pIdx = 0; 2067 nEq = 0; 2068 if( (SQLITE_BIG_DBL/2.0)<cost ){ 2069 /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the 2070 ** inital value of lowestCost in this loop. If it is, then 2071 ** the (cost<lowestCost) test below will never be true and 2072 ** pLevel->pBestIdx never set. 2073 */ 2074 cost = (SQLITE_BIG_DBL/2.0); 2075 } 2076 }else 2077 #endif 2078 { 2079 cost = bestIndex(pParse, &wc, pTabItem, notReady, 2080 (i==0 && ppOrderBy) ? *ppOrderBy : 0, 2081 &pIdx, &flags, &nEq); 2082 pIndex = 0; 2083 } 2084 if( cost<lowestCost ){ 2085 once = 1; 2086 lowestCost = cost; 2087 pBest = pIdx; 2088 bestFlags = flags; 2089 bestNEq = nEq; 2090 bestJ = j; 2091 pLevel->pBestIdx = pIndex; 2092 } 2093 if( doNotReorder ) break; 2094 } 2095 WHERETRACE(("*** Optimizer choose table %d for loop %d\n", bestJ, 2096 pLevel-pWInfo->a)); 2097 if( (bestFlags & WHERE_ORDERBY)!=0 ){ 2098 *ppOrderBy = 0; 2099 } 2100 andFlags &= bestFlags; 2101 pLevel->flags = bestFlags; 2102 pLevel->pIdx = pBest; 2103 pLevel->nEq = bestNEq; 2104 pLevel->aInLoop = 0; 2105 pLevel->nIn = 0; 2106 if( pBest ){ 2107 pLevel->iIdxCur = pParse->nTab++; 2108 }else{ 2109 pLevel->iIdxCur = -1; 2110 } 2111 notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor); 2112 pLevel->iFrom = bestJ; 2113 } 2114 WHERETRACE(("*** Optimizer Finished ***\n")); 2115 2116 /* If the total query only selects a single row, then the ORDER BY 2117 ** clause is irrelevant. 2118 */ 2119 if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){ 2120 *ppOrderBy = 0; 2121 } 2122 2123 /* Open all tables in the pTabList and any indices selected for 2124 ** searching those tables. 2125 */ 2126 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ 2127 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 2128 Table *pTab; /* Table to open */ 2129 Index *pIx; /* Index used to access pTab (if any) */ 2130 int iDb; /* Index of database containing table/index */ 2131 int iIdxCur = pLevel->iIdxCur; 2132 2133 #ifndef SQLITE_OMIT_EXPLAIN 2134 if( pParse->explain==2 ){ 2135 char *zMsg; 2136 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 2137 zMsg = sqlite3MPrintf("TABLE %s", pItem->zName); 2138 if( pItem->zAlias ){ 2139 zMsg = sqlite3MPrintf("%z AS %s", zMsg, pItem->zAlias); 2140 } 2141 if( (pIx = pLevel->pIdx)!=0 ){ 2142 zMsg = sqlite3MPrintf("%z WITH INDEX %s", zMsg, pIx->zName); 2143 }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ 2144 zMsg = sqlite3MPrintf("%z USING PRIMARY KEY", zMsg); 2145 } 2146 #ifndef SQLITE_OMIT_VIRTUALTABLE 2147 else if( pLevel->pBestIdx ){ 2148 sqlite3_index_info *pBestIdx = pLevel->pBestIdx; 2149 zMsg = sqlite3MPrintf("%z VIRTUAL TABLE INDEX %d:%s", zMsg, 2150 pBestIdx->idxNum, pBestIdx->idxStr); 2151 } 2152 #endif 2153 if( pLevel->flags & WHERE_ORDERBY ){ 2154 zMsg = sqlite3MPrintf("%z ORDER BY", zMsg); 2155 } 2156 sqlite3VdbeOp3(v, OP_Explain, i, pLevel->iFrom, zMsg, P3_DYNAMIC); 2157 } 2158 #endif /* SQLITE_OMIT_EXPLAIN */ 2159 pTabItem = &pTabList->a[pLevel->iFrom]; 2160 pTab = pTabItem->pTab; 2161 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2162 if( pTab->isEphem || pTab->pSelect ) continue; 2163 #ifndef SQLITE_OMIT_VIRTUALTABLE 2164 if( pLevel->pBestIdx ){ 2165 int iCur = pTabItem->iCursor; 2166 sqlite3VdbeOp3(v, OP_VOpen, iCur, 0, (const char*)pTab->pVtab, P3_VTAB); 2167 }else 2168 #endif 2169 if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){ 2170 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, OP_OpenRead); 2171 if( pTab->nCol<(sizeof(Bitmask)*8) ){ 2172 Bitmask b = pTabItem->colUsed; 2173 int n = 0; 2174 for(; b; b=b>>1, n++){} 2175 sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-1, n); 2176 assert( n<=pTab->nCol ); 2177 } 2178 }else{ 2179 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2180 } 2181 pLevel->iTabCur = pTabItem->iCursor; 2182 if( (pIx = pLevel->pIdx)!=0 ){ 2183 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx); 2184 assert( pIx->pSchema==pTab->pSchema ); 2185 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); 2186 VdbeComment((v, "# %s", pIx->zName)); 2187 sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum, 2188 (char*)pKey, P3_KEYINFO_HANDOFF); 2189 } 2190 if( (pLevel->flags & (WHERE_IDX_ONLY|WHERE_COLUMN_RANGE))!=0 ){ 2191 /* Only call OP_SetNumColumns on the index if we might later use 2192 ** OP_Column on the index. */ 2193 sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1); 2194 } 2195 sqlite3CodeVerifySchema(pParse, iDb); 2196 } 2197 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 2198 2199 /* Generate the code to do the search. Each iteration of the for 2200 ** loop below generates code for a single nested loop of the VM 2201 ** program. 2202 */ 2203 notReady = ~(Bitmask)0; 2204 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 2205 int j; 2206 int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */ 2207 Index *pIdx; /* The index we will be using */ 2208 int nxt; /* Where to jump to continue with the next IN case */ 2209 int iIdxCur; /* The VDBE cursor for the index */ 2210 int omitTable; /* True if we use the index only */ 2211 int bRev; /* True if we need to scan in reverse order */ 2212 2213 pTabItem = &pTabList->a[pLevel->iFrom]; 2214 iCur = pTabItem->iCursor; 2215 pIdx = pLevel->pIdx; 2216 iIdxCur = pLevel->iIdxCur; 2217 bRev = (pLevel->flags & WHERE_REVERSE)!=0; 2218 omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0; 2219 2220 /* Create labels for the "break" and "continue" instructions 2221 ** for the current loop. Jump to brk to break out of a loop. 2222 ** Jump to cont to go immediately to the next iteration of the 2223 ** loop. 2224 ** 2225 ** When there is an IN operator, we also have a "nxt" label that 2226 ** means to continue with the next IN value combination. When 2227 ** there are no IN operators in the constraints, the "nxt" label 2228 ** is the same as "brk". 2229 */ 2230 brk = pLevel->brk = pLevel->nxt = sqlite3VdbeMakeLabel(v); 2231 cont = pLevel->cont = sqlite3VdbeMakeLabel(v); 2232 2233 /* If this is the right table of a LEFT OUTER JOIN, allocate and 2234 ** initialize a memory cell that records if this table matches any 2235 ** row of the left table of the join. 2236 */ 2237 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ 2238 if( !pParse->nMem ) pParse->nMem++; 2239 pLevel->iLeftJoin = pParse->nMem++; 2240 sqlite3VdbeAddOp(v, OP_MemInt, 0, pLevel->iLeftJoin); 2241 VdbeComment((v, "# init LEFT JOIN no-match flag")); 2242 } 2243 2244 #ifndef SQLITE_OMIT_VIRTUALTABLE 2245 if( pLevel->pBestIdx ){ 2246 /* Case 0: The table is a virtual-table. Use the VFilter and VNext 2247 ** to access the data. 2248 */ 2249 int j; 2250 sqlite3_index_info *pBestIdx = pLevel->pBestIdx; 2251 int nConstraint = pBestIdx->nConstraint; 2252 struct sqlite3_index_constraint_usage *aUsage = 2253 pBestIdx->aConstraintUsage; 2254 const struct sqlite3_index_constraint *aConstraint = 2255 pBestIdx->aConstraint; 2256 2257 for(j=1; j<=nConstraint; j++){ 2258 int k; 2259 for(k=0; k<nConstraint; k++){ 2260 if( aUsage[k].argvIndex==j ){ 2261 int iTerm = aConstraint[k].iTermOffset; 2262 sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight); 2263 break; 2264 } 2265 } 2266 if( k==nConstraint ) break; 2267 } 2268 sqlite3VdbeAddOp(v, OP_Integer, j-1, 0); 2269 sqlite3VdbeAddOp(v, OP_Integer, pBestIdx->idxNum, 0); 2270 sqlite3VdbeOp3(v, OP_VFilter, iCur, brk, pBestIdx->idxStr, 2271 pBestIdx->needToFreeIdxStr ? P3_MPRINTF : P3_STATIC); 2272 pBestIdx->needToFreeIdxStr = 0; 2273 for(j=0; j<pBestIdx->nConstraint; j++){ 2274 if( aUsage[j].omit ){ 2275 int iTerm = aConstraint[j].iTermOffset; 2276 disableTerm(pLevel, &wc.a[iTerm]); 2277 } 2278 } 2279 pLevel->op = OP_VNext; 2280 pLevel->p1 = iCur; 2281 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2282 }else 2283 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 2284 2285 if( pLevel->flags & WHERE_ROWID_EQ ){ 2286 /* Case 1: We can directly reference a single row using an 2287 ** equality comparison against the ROWID field. Or 2288 ** we reference multiple rows using a "rowid IN (...)" 2289 ** construct. 2290 */ 2291 pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0); 2292 assert( pTerm!=0 ); 2293 assert( pTerm->pExpr!=0 ); 2294 assert( pTerm->leftCursor==iCur ); 2295 assert( omitTable==0 ); 2296 codeEqualityTerm(pParse, pTerm, pLevel); 2297 nxt = pLevel->nxt; 2298 sqlite3VdbeAddOp(v, OP_MustBeInt, 1, nxt); 2299 sqlite3VdbeAddOp(v, OP_NotExists, iCur, nxt); 2300 VdbeComment((v, "pk")); 2301 pLevel->op = OP_Noop; 2302 }else if( pLevel->flags & WHERE_ROWID_RANGE ){ 2303 /* Case 2: We have an inequality comparison against the ROWID field. 2304 */ 2305 int testOp = OP_Noop; 2306 int start; 2307 WhereTerm *pStart, *pEnd; 2308 2309 assert( omitTable==0 ); 2310 pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0); 2311 pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0); 2312 if( bRev ){ 2313 pTerm = pStart; 2314 pStart = pEnd; 2315 pEnd = pTerm; 2316 } 2317 if( pStart ){ 2318 Expr *pX; 2319 pX = pStart->pExpr; 2320 assert( pX!=0 ); 2321 assert( pStart->leftCursor==iCur ); 2322 sqlite3ExprCode(pParse, pX->pRight); 2323 sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk); 2324 sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk); 2325 VdbeComment((v, "pk")); 2326 disableTerm(pLevel, pStart); 2327 }else{ 2328 sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk); 2329 } 2330 if( pEnd ){ 2331 Expr *pX; 2332 pX = pEnd->pExpr; 2333 assert( pX!=0 ); 2334 assert( pEnd->leftCursor==iCur ); 2335 sqlite3ExprCode(pParse, pX->pRight); 2336 pLevel->iMem = pParse->nMem++; 2337 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); 2338 if( pX->op==TK_LT || pX->op==TK_GT ){ 2339 testOp = bRev ? OP_Le : OP_Ge; 2340 }else{ 2341 testOp = bRev ? OP_Lt : OP_Gt; 2342 } 2343 disableTerm(pLevel, pEnd); 2344 } 2345 start = sqlite3VdbeCurrentAddr(v); 2346 pLevel->op = bRev ? OP_Prev : OP_Next; 2347 pLevel->p1 = iCur; 2348 pLevel->p2 = start; 2349 if( testOp!=OP_Noop ){ 2350 sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0); 2351 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 2352 sqlite3VdbeAddOp(v, testOp, SQLITE_AFF_NUMERIC|0x100, brk); 2353 } 2354 }else if( pLevel->flags & WHERE_COLUMN_RANGE ){ 2355 /* Case 3: The WHERE clause term that refers to the right-most 2356 ** column of the index is an inequality. For example, if 2357 ** the index is on (x,y,z) and the WHERE clause is of the 2358 ** form "x=5 AND y<10" then this case is used. Only the 2359 ** right-most column can be an inequality - the rest must 2360 ** use the "==" and "IN" operators. 2361 ** 2362 ** This case is also used when there are no WHERE clause 2363 ** constraints but an index is selected anyway, in order 2364 ** to force the output order to conform to an ORDER BY. 2365 */ 2366 int start; 2367 int nEq = pLevel->nEq; 2368 int topEq=0; /* True if top limit uses ==. False is strictly < */ 2369 int btmEq=0; /* True if btm limit uses ==. False if strictly > */ 2370 int topOp, btmOp; /* Operators for the top and bottom search bounds */ 2371 int testOp; 2372 int topLimit = (pLevel->flags & WHERE_TOP_LIMIT)!=0; 2373 int btmLimit = (pLevel->flags & WHERE_BTM_LIMIT)!=0; 2374 2375 /* Generate code to evaluate all constraint terms using == or IN 2376 ** and level the values of those terms on the stack. 2377 */ 2378 codeAllEqualityTerms(pParse, pLevel, &wc, notReady); 2379 2380 /* Duplicate the equality term values because they will all be 2381 ** used twice: once to make the termination key and once to make the 2382 ** start key. 2383 */ 2384 for(j=0; j<nEq; j++){ 2385 sqlite3VdbeAddOp(v, OP_Dup, nEq-1, 0); 2386 } 2387 2388 /* Figure out what comparison operators to use for top and bottom 2389 ** search bounds. For an ascending index, the bottom bound is a > or >= 2390 ** operator and the top bound is a < or <= operator. For a descending 2391 ** index the operators are reversed. 2392 */ 2393 if( pIdx->aSortOrder[nEq]==SQLITE_SO_ASC ){ 2394 topOp = WO_LT|WO_LE; 2395 btmOp = WO_GT|WO_GE; 2396 }else{ 2397 topOp = WO_GT|WO_GE; 2398 btmOp = WO_LT|WO_LE; 2399 SWAP(int, topLimit, btmLimit); 2400 } 2401 2402 /* Generate the termination key. This is the key value that 2403 ** will end the search. There is no termination key if there 2404 ** are no equality terms and no "X<..." term. 2405 ** 2406 ** 2002-Dec-04: On a reverse-order scan, the so-called "termination" 2407 ** key computed here really ends up being the start key. 2408 */ 2409 nxt = pLevel->nxt; 2410 if( topLimit ){ 2411 Expr *pX; 2412 int k = pIdx->aiColumn[j]; 2413 pTerm = findTerm(&wc, iCur, k, notReady, topOp, pIdx); 2414 assert( pTerm!=0 ); 2415 pX = pTerm->pExpr; 2416 assert( (pTerm->flags & TERM_CODED)==0 ); 2417 sqlite3ExprCode(pParse, pX->pRight); 2418 sqlite3VdbeAddOp(v, OP_IsNull, -(nEq*2+1), nxt); 2419 topEq = pTerm->eOperator & (WO_LE|WO_GE); 2420 disableTerm(pLevel, pTerm); 2421 testOp = OP_IdxGE; 2422 }else{ 2423 testOp = nEq>0 ? OP_IdxGE : OP_Noop; 2424 topEq = 1; 2425 } 2426 if( testOp!=OP_Noop ){ 2427 int nCol = nEq + topLimit; 2428 pLevel->iMem = pParse->nMem++; 2429 buildIndexProbe(v, nCol, pIdx); 2430 if( bRev ){ 2431 int op = topEq ? OP_MoveLe : OP_MoveLt; 2432 sqlite3VdbeAddOp(v, op, iIdxCur, nxt); 2433 }else{ 2434 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); 2435 } 2436 }else if( bRev ){ 2437 sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk); 2438 } 2439 2440 /* Generate the start key. This is the key that defines the lower 2441 ** bound on the search. There is no start key if there are no 2442 ** equality terms and if there is no "X>..." term. In 2443 ** that case, generate a "Rewind" instruction in place of the 2444 ** start key search. 2445 ** 2446 ** 2002-Dec-04: In the case of a reverse-order search, the so-called 2447 ** "start" key really ends up being used as the termination key. 2448 */ 2449 if( btmLimit ){ 2450 Expr *pX; 2451 int k = pIdx->aiColumn[j]; 2452 pTerm = findTerm(&wc, iCur, k, notReady, btmOp, pIdx); 2453 assert( pTerm!=0 ); 2454 pX = pTerm->pExpr; 2455 assert( (pTerm->flags & TERM_CODED)==0 ); 2456 sqlite3ExprCode(pParse, pX->pRight); 2457 sqlite3VdbeAddOp(v, OP_IsNull, -(nEq+1), nxt); 2458 btmEq = pTerm->eOperator & (WO_LE|WO_GE); 2459 disableTerm(pLevel, pTerm); 2460 }else{ 2461 btmEq = 1; 2462 } 2463 if( nEq>0 || btmLimit ){ 2464 int nCol = nEq + btmLimit; 2465 buildIndexProbe(v, nCol, pIdx); 2466 if( bRev ){ 2467 pLevel->iMem = pParse->nMem++; 2468 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); 2469 testOp = OP_IdxLT; 2470 }else{ 2471 int op = btmEq ? OP_MoveGe : OP_MoveGt; 2472 sqlite3VdbeAddOp(v, op, iIdxCur, nxt); 2473 } 2474 }else if( bRev ){ 2475 testOp = OP_Noop; 2476 }else{ 2477 sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk); 2478 } 2479 2480 /* Generate the the top of the loop. If there is a termination 2481 ** key we have to test for that key and abort at the top of the 2482 ** loop. 2483 */ 2484 start = sqlite3VdbeCurrentAddr(v); 2485 if( testOp!=OP_Noop ){ 2486 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 2487 sqlite3VdbeAddOp(v, testOp, iIdxCur, nxt); 2488 if( (topEq && !bRev) || (!btmEq && bRev) ){ 2489 sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC); 2490 } 2491 } 2492 if( topLimit | btmLimit ){ 2493 sqlite3VdbeAddOp(v, OP_Column, iIdxCur, nEq); 2494 sqlite3VdbeAddOp(v, OP_IsNull, 1, cont); 2495 } 2496 if( !omitTable ){ 2497 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0); 2498 sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); 2499 } 2500 2501 /* Record the instruction used to terminate the loop. 2502 */ 2503 pLevel->op = bRev ? OP_Prev : OP_Next; 2504 pLevel->p1 = iIdxCur; 2505 pLevel->p2 = start; 2506 }else if( pLevel->flags & WHERE_COLUMN_EQ ){ 2507 /* Case 4: There is an index and all terms of the WHERE clause that 2508 ** refer to the index using the "==" or "IN" operators. 2509 */ 2510 int start; 2511 int nEq = pLevel->nEq; 2512 2513 /* Generate code to evaluate all constraint terms using == or IN 2514 ** and leave the values of those terms on the stack. 2515 */ 2516 codeAllEqualityTerms(pParse, pLevel, &wc, notReady); 2517 nxt = pLevel->nxt; 2518 2519 /* Generate a single key that will be used to both start and terminate 2520 ** the search 2521 */ 2522 buildIndexProbe(v, nEq, pIdx); 2523 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0); 2524 2525 /* Generate code (1) to move to the first matching element of the table. 2526 ** Then generate code (2) that jumps to "nxt" after the cursor is past 2527 ** the last matching element of the table. The code (1) is executed 2528 ** once to initialize the search, the code (2) is executed before each 2529 ** iteration of the scan to see if the scan has finished. */ 2530 if( bRev ){ 2531 /* Scan in reverse order */ 2532 sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, nxt); 2533 start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 2534 sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, nxt); 2535 pLevel->op = OP_Prev; 2536 }else{ 2537 /* Scan in the forward order */ 2538 sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, nxt); 2539 start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 2540 sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, nxt, "+", P3_STATIC); 2541 pLevel->op = OP_Next; 2542 } 2543 if( !omitTable ){ 2544 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0); 2545 sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); 2546 } 2547 pLevel->p1 = iIdxCur; 2548 pLevel->p2 = start; 2549 }else{ 2550 /* Case 5: There is no usable index. We must do a complete 2551 ** scan of the entire table. 2552 */ 2553 assert( omitTable==0 ); 2554 assert( bRev==0 ); 2555 pLevel->op = OP_Next; 2556 pLevel->p1 = iCur; 2557 pLevel->p2 = 1 + sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk); 2558 } 2559 notReady &= ~getMask(&maskSet, iCur); 2560 2561 /* Insert code to test every subexpression that can be completely 2562 ** computed using the current set of tables. 2563 */ 2564 for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){ 2565 Expr *pE; 2566 if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2567 if( (pTerm->prereqAll & notReady)!=0 ) continue; 2568 pE = pTerm->pExpr; 2569 assert( pE!=0 ); 2570 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ 2571 continue; 2572 } 2573 sqlite3ExprIfFalse(pParse, pE, cont, 1); 2574 pTerm->flags |= TERM_CODED; 2575 } 2576 2577 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2578 ** at least one row of the right table has matched the left table. 2579 */ 2580 if( pLevel->iLeftJoin ){ 2581 pLevel->top = sqlite3VdbeCurrentAddr(v); 2582 sqlite3VdbeAddOp(v, OP_MemInt, 1, pLevel->iLeftJoin); 2583 VdbeComment((v, "# record LEFT JOIN hit")); 2584 for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){ 2585 if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2586 if( (pTerm->prereqAll & notReady)!=0 ) continue; 2587 assert( pTerm->pExpr ); 2588 sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, 1); 2589 pTerm->flags |= TERM_CODED; 2590 } 2591 } 2592 } 2593 2594 #ifdef SQLITE_TEST /* For testing and debugging use only */ 2595 /* Record in the query plan information about the current table 2596 ** and the index used to access it (if any). If the table itself 2597 ** is not used, its name is just '{}'. If no index is used 2598 ** the index is listed as "{}". If the primary key is used the 2599 ** index name is '*'. 2600 */ 2601 for(i=0; i<pTabList->nSrc; i++){ 2602 char *z; 2603 int n; 2604 pLevel = &pWInfo->a[i]; 2605 pTabItem = &pTabList->a[pLevel->iFrom]; 2606 z = pTabItem->zAlias; 2607 if( z==0 ) z = pTabItem->pTab->zName; 2608 n = strlen(z); 2609 if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){ 2610 if( pLevel->flags & WHERE_IDX_ONLY ){ 2611 memcpy(&sqlite3_query_plan[nQPlan], "{}", 2); 2612 nQPlan += 2; 2613 }else{ 2614 memcpy(&sqlite3_query_plan[nQPlan], z, n); 2615 nQPlan += n; 2616 } 2617 sqlite3_query_plan[nQPlan++] = ' '; 2618 } 2619 if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ 2620 memcpy(&sqlite3_query_plan[nQPlan], "* ", 2); 2621 nQPlan += 2; 2622 }else if( pLevel->pIdx==0 ){ 2623 memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3); 2624 nQPlan += 3; 2625 }else{ 2626 n = strlen(pLevel->pIdx->zName); 2627 if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){ 2628 memcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName, n); 2629 nQPlan += n; 2630 sqlite3_query_plan[nQPlan++] = ' '; 2631 } 2632 } 2633 } 2634 while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){ 2635 sqlite3_query_plan[--nQPlan] = 0; 2636 } 2637 sqlite3_query_plan[nQPlan] = 0; 2638 nQPlan = 0; 2639 #endif /* SQLITE_TEST // Testing and debugging use only */ 2640 2641 /* Record the continuation address in the WhereInfo structure. Then 2642 ** clean up and return. 2643 */ 2644 pWInfo->iContinue = cont; 2645 whereClauseClear(&wc); 2646 return pWInfo; 2647 2648 /* Jump here if malloc fails */ 2649 whereBeginNoMem: 2650 whereClauseClear(&wc); 2651 whereInfoFree(pWInfo); 2652 return 0; 2653 } 2654 2655 /* 2656 ** Generate the end of the WHERE loop. See comments on 2657 ** sqlite3WhereBegin() for additional information. 2658 */ 2659 void sqlite3WhereEnd(WhereInfo *pWInfo){ 2660 Vdbe *v = pWInfo->pParse->pVdbe; 2661 int i; 2662 WhereLevel *pLevel; 2663 SrcList *pTabList = pWInfo->pTabList; 2664 2665 /* Generate loop termination code. 2666 */ 2667 for(i=pTabList->nSrc-1; i>=0; i--){ 2668 pLevel = &pWInfo->a[i]; 2669 sqlite3VdbeResolveLabel(v, pLevel->cont); 2670 if( pLevel->op!=OP_Noop ){ 2671 sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2); 2672 } 2673 if( pLevel->nIn ){ 2674 struct InLoop *pIn; 2675 int j; 2676 sqlite3VdbeResolveLabel(v, pLevel->nxt); 2677 for(j=pLevel->nIn, pIn=&pLevel->aInLoop[j-1]; j>0; j--, pIn--){ 2678 sqlite3VdbeJumpHere(v, pIn->topAddr+1); 2679 sqlite3VdbeAddOp(v, OP_Next, pIn->iCur, pIn->topAddr); 2680 sqlite3VdbeJumpHere(v, pIn->topAddr-1); 2681 } 2682 sqliteFree(pLevel->aInLoop); 2683 } 2684 sqlite3VdbeResolveLabel(v, pLevel->brk); 2685 if( pLevel->iLeftJoin ){ 2686 int addr; 2687 addr = sqlite3VdbeAddOp(v, OP_IfMemPos, pLevel->iLeftJoin, 0); 2688 sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0); 2689 if( pLevel->iIdxCur>=0 ){ 2690 sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0); 2691 } 2692 sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top); 2693 sqlite3VdbeJumpHere(v, addr); 2694 } 2695 } 2696 2697 /* The "break" point is here, just past the end of the outer loop. 2698 ** Set it. 2699 */ 2700 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 2701 2702 /* Close all of the cursors that were opened by sqlite3WhereBegin. 2703 */ 2704 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 2705 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 2706 Table *pTab = pTabItem->pTab; 2707 assert( pTab!=0 ); 2708 if( pTab->isEphem || pTab->pSelect ) continue; 2709 if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){ 2710 sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0); 2711 } 2712 if( pLevel->pIdx!=0 ){ 2713 sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0); 2714 } 2715 2716 /* Make cursor substitutions for cases where we want to use 2717 ** just the index and never reference the table. 2718 ** 2719 ** Calls to the code generator in between sqlite3WhereBegin and 2720 ** sqlite3WhereEnd will have created code that references the table 2721 ** directly. This loop scans all that code looking for opcodes 2722 ** that reference the table and converts them into opcodes that 2723 ** reference the index. 2724 */ 2725 if( pLevel->flags & WHERE_IDX_ONLY ){ 2726 int k, j, last; 2727 VdbeOp *pOp; 2728 Index *pIdx = pLevel->pIdx; 2729 2730 assert( pIdx!=0 ); 2731 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop); 2732 last = sqlite3VdbeCurrentAddr(v); 2733 for(k=pWInfo->iTop; k<last; k++, pOp++){ 2734 if( pOp->p1!=pLevel->iTabCur ) continue; 2735 if( pOp->opcode==OP_Column ){ 2736 pOp->p1 = pLevel->iIdxCur; 2737 for(j=0; j<pIdx->nColumn; j++){ 2738 if( pOp->p2==pIdx->aiColumn[j] ){ 2739 pOp->p2 = j; 2740 break; 2741 } 2742 } 2743 }else if( pOp->opcode==OP_Rowid ){ 2744 pOp->p1 = pLevel->iIdxCur; 2745 pOp->opcode = OP_IdxRowid; 2746 }else if( pOp->opcode==OP_NullRow ){ 2747 pOp->opcode = OP_Noop; 2748 } 2749 } 2750 } 2751 } 2752 2753 /* Final cleanup 2754 */ 2755 whereInfoFree(pWInfo); 2756 return; 2757 } 2758