1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is reponsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 ** 19 ** $Id: where.c,v 1.232 2006/11/06 15:10:05 drh Exp $ 20 */ 21 #include "sqliteInt.h" 22 23 /* 24 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 25 */ 26 #define BMS (sizeof(Bitmask)*8) 27 28 /* 29 ** Determine the number of elements in an array. 30 */ 31 #define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0])) 32 33 /* 34 ** Trace output macros 35 */ 36 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 37 int sqlite3_where_trace = 0; 38 # define TRACE(X) if(sqlite3_where_trace) sqlite3DebugPrintf X 39 #else 40 # define TRACE(X) 41 #endif 42 43 /* Forward reference 44 */ 45 typedef struct WhereClause WhereClause; 46 47 /* 48 ** The query generator uses an array of instances of this structure to 49 ** help it analyze the subexpressions of the WHERE clause. Each WHERE 50 ** clause subexpression is separated from the others by an AND operator. 51 ** 52 ** All WhereTerms are collected into a single WhereClause structure. 53 ** The following identity holds: 54 ** 55 ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm 56 ** 57 ** When a term is of the form: 58 ** 59 ** X <op> <expr> 60 ** 61 ** where X is a column name and <op> is one of certain operators, 62 ** then WhereTerm.leftCursor and WhereTerm.leftColumn record the 63 ** cursor number and column number for X. WhereTerm.operator records 64 ** the <op> using a bitmask encoding defined by WO_xxx below. The 65 ** use of a bitmask encoding for the operator allows us to search 66 ** quickly for terms that match any of several different operators. 67 ** 68 ** prereqRight and prereqAll record sets of cursor numbers, 69 ** but they do so indirectly. A single ExprMaskSet structure translates 70 ** cursor number into bits and the translated bit is stored in the prereq 71 ** fields. The translation is used in order to maximize the number of 72 ** bits that will fit in a Bitmask. The VDBE cursor numbers might be 73 ** spread out over the non-negative integers. For example, the cursor 74 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The ExprMaskSet 75 ** translates these sparse cursor numbers into consecutive integers 76 ** beginning with 0 in order to make the best possible use of the available 77 ** bits in the Bitmask. So, in the example above, the cursor numbers 78 ** would be mapped into integers 0 through 7. 79 */ 80 typedef struct WhereTerm WhereTerm; 81 struct WhereTerm { 82 Expr *pExpr; /* Pointer to the subexpression */ 83 i16 iParent; /* Disable pWC->a[iParent] when this term disabled */ 84 i16 leftCursor; /* Cursor number of X in "X <op> <expr>" */ 85 i16 leftColumn; /* Column number of X in "X <op> <expr>" */ 86 u16 eOperator; /* A WO_xx value describing <op> */ 87 u8 flags; /* Bit flags. See below */ 88 u8 nChild; /* Number of children that must disable us */ 89 WhereClause *pWC; /* The clause this term is part of */ 90 Bitmask prereqRight; /* Bitmask of tables used by pRight */ 91 Bitmask prereqAll; /* Bitmask of tables referenced by p */ 92 }; 93 94 /* 95 ** Allowed values of WhereTerm.flags 96 */ 97 #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(pExpr) */ 98 #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */ 99 #define TERM_CODED 0x04 /* This term is already coded */ 100 #define TERM_COPIED 0x08 /* Has a child */ 101 #define TERM_OR_OK 0x10 /* Used during OR-clause processing */ 102 103 /* 104 ** An instance of the following structure holds all information about a 105 ** WHERE clause. Mostly this is a container for one or more WhereTerms. 106 */ 107 struct WhereClause { 108 Parse *pParse; /* The parser context */ 109 int nTerm; /* Number of terms */ 110 int nSlot; /* Number of entries in a[] */ 111 WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */ 112 WhereTerm aStatic[10]; /* Initial static space for a[] */ 113 }; 114 115 /* 116 ** An instance of the following structure keeps track of a mapping 117 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm. 118 ** 119 ** The VDBE cursor numbers are small integers contained in 120 ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE 121 ** clause, the cursor numbers might not begin with 0 and they might 122 ** contain gaps in the numbering sequence. But we want to make maximum 123 ** use of the bits in our bitmasks. This structure provides a mapping 124 ** from the sparse cursor numbers into consecutive integers beginning 125 ** with 0. 126 ** 127 ** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask 128 ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A. 129 ** 130 ** For example, if the WHERE clause expression used these VDBE 131 ** cursors: 4, 5, 8, 29, 57, 73. Then the ExprMaskSet structure 132 ** would map those cursor numbers into bits 0 through 5. 133 ** 134 ** Note that the mapping is not necessarily ordered. In the example 135 ** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0, 136 ** 57->5, 73->4. Or one of 719 other combinations might be used. It 137 ** does not really matter. What is important is that sparse cursor 138 ** numbers all get mapped into bit numbers that begin with 0 and contain 139 ** no gaps. 140 */ 141 typedef struct ExprMaskSet ExprMaskSet; 142 struct ExprMaskSet { 143 int n; /* Number of assigned cursor values */ 144 int ix[sizeof(Bitmask)*8]; /* Cursor assigned to each bit */ 145 }; 146 147 148 /* 149 ** Bitmasks for the operators that indices are able to exploit. An 150 ** OR-ed combination of these values can be used when searching for 151 ** terms in the where clause. 152 */ 153 #define WO_IN 1 154 #define WO_EQ 2 155 #define WO_LT (WO_EQ<<(TK_LT-TK_EQ)) 156 #define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) 157 #define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) 158 #define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) 159 #define WO_MATCH 64 160 #define WO_ISNULL 128 161 162 /* 163 ** Value for flags returned by bestIndex() 164 */ 165 #define WHERE_ROWID_EQ 0x0001 /* rowid=EXPR or rowid IN (...) */ 166 #define WHERE_ROWID_RANGE 0x0002 /* rowid<EXPR and/or rowid>EXPR */ 167 #define WHERE_COLUMN_EQ 0x0010 /* x=EXPR or x IN (...) */ 168 #define WHERE_COLUMN_RANGE 0x0020 /* x<EXPR and/or x>EXPR */ 169 #define WHERE_COLUMN_IN 0x0040 /* x IN (...) */ 170 #define WHERE_TOP_LIMIT 0x0100 /* x<EXPR or x<=EXPR constraint */ 171 #define WHERE_BTM_LIMIT 0x0200 /* x>EXPR or x>=EXPR constraint */ 172 #define WHERE_IDX_ONLY 0x0800 /* Use index only - omit table */ 173 #define WHERE_ORDERBY 0x1000 /* Output will appear in correct order */ 174 #define WHERE_REVERSE 0x2000 /* Scan in reverse order */ 175 #define WHERE_UNIQUE 0x4000 /* Selects no more than one row */ 176 #define WHERE_VIRTUALTABLE 0x8000 /* Use virtual-table processing */ 177 178 /* 179 ** Initialize a preallocated WhereClause structure. 180 */ 181 static void whereClauseInit(WhereClause *pWC, Parse *pParse){ 182 pWC->pParse = pParse; 183 pWC->nTerm = 0; 184 pWC->nSlot = ARRAYSIZE(pWC->aStatic); 185 pWC->a = pWC->aStatic; 186 } 187 188 /* 189 ** Deallocate a WhereClause structure. The WhereClause structure 190 ** itself is not freed. This routine is the inverse of whereClauseInit(). 191 */ 192 static void whereClauseClear(WhereClause *pWC){ 193 int i; 194 WhereTerm *a; 195 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ 196 if( a->flags & TERM_DYNAMIC ){ 197 sqlite3ExprDelete(a->pExpr); 198 } 199 } 200 if( pWC->a!=pWC->aStatic ){ 201 sqliteFree(pWC->a); 202 } 203 } 204 205 /* 206 ** Add a new entries to the WhereClause structure. Increase the allocated 207 ** space as necessary. 208 ** 209 ** WARNING: This routine might reallocate the space used to store 210 ** WhereTerms. All pointers to WhereTerms should be invalided after 211 ** calling this routine. Such pointers may be reinitialized by referencing 212 ** the pWC->a[] array. 213 */ 214 static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){ 215 WhereTerm *pTerm; 216 int idx; 217 if( pWC->nTerm>=pWC->nSlot ){ 218 WhereTerm *pOld = pWC->a; 219 pWC->a = sqliteMalloc( sizeof(pWC->a[0])*pWC->nSlot*2 ); 220 if( pWC->a==0 ) return 0; 221 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); 222 if( pOld!=pWC->aStatic ){ 223 sqliteFree(pOld); 224 } 225 pWC->nSlot *= 2; 226 } 227 pTerm = &pWC->a[idx = pWC->nTerm]; 228 pWC->nTerm++; 229 pTerm->pExpr = p; 230 pTerm->flags = flags; 231 pTerm->pWC = pWC; 232 pTerm->iParent = -1; 233 return idx; 234 } 235 236 /* 237 ** This routine identifies subexpressions in the WHERE clause where 238 ** each subexpression is separated by the AND operator or some other 239 ** operator specified in the op parameter. The WhereClause structure 240 ** is filled with pointers to subexpressions. For example: 241 ** 242 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) 243 ** \________/ \_______________/ \________________/ 244 ** slot[0] slot[1] slot[2] 245 ** 246 ** The original WHERE clause in pExpr is unaltered. All this routine 247 ** does is make slot[] entries point to substructure within pExpr. 248 ** 249 ** In the previous sentence and in the diagram, "slot[]" refers to 250 ** the WhereClause.a[] array. This array grows as needed to contain 251 ** all terms of the WHERE clause. 252 */ 253 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){ 254 if( pExpr==0 ) return; 255 if( pExpr->op!=op ){ 256 whereClauseInsert(pWC, pExpr, 0); 257 }else{ 258 whereSplit(pWC, pExpr->pLeft, op); 259 whereSplit(pWC, pExpr->pRight, op); 260 } 261 } 262 263 /* 264 ** Initialize an expression mask set 265 */ 266 #define initMaskSet(P) memset(P, 0, sizeof(*P)) 267 268 /* 269 ** Return the bitmask for the given cursor number. Return 0 if 270 ** iCursor is not in the set. 271 */ 272 static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){ 273 int i; 274 for(i=0; i<pMaskSet->n; i++){ 275 if( pMaskSet->ix[i]==iCursor ){ 276 return ((Bitmask)1)<<i; 277 } 278 } 279 return 0; 280 } 281 282 /* 283 ** Create a new mask for cursor iCursor. 284 ** 285 ** There is one cursor per table in the FROM clause. The number of 286 ** tables in the FROM clause is limited by a test early in the 287 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 288 ** array will never overflow. 289 */ 290 static void createMask(ExprMaskSet *pMaskSet, int iCursor){ 291 assert( pMaskSet->n < ARRAYSIZE(pMaskSet->ix) ); 292 pMaskSet->ix[pMaskSet->n++] = iCursor; 293 } 294 295 /* 296 ** This routine walks (recursively) an expression tree and generates 297 ** a bitmask indicating which tables are used in that expression 298 ** tree. 299 ** 300 ** In order for this routine to work, the calling function must have 301 ** previously invoked sqlite3ExprResolveNames() on the expression. See 302 ** the header comment on that routine for additional information. 303 ** The sqlite3ExprResolveNames() routines looks for column names and 304 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to 305 ** the VDBE cursor number of the table. This routine just has to 306 ** translate the cursor numbers into bitmask values and OR all 307 ** the bitmasks together. 308 */ 309 static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*); 310 static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*); 311 static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){ 312 Bitmask mask = 0; 313 if( p==0 ) return 0; 314 if( p->op==TK_COLUMN ){ 315 mask = getMask(pMaskSet, p->iTable); 316 return mask; 317 } 318 mask = exprTableUsage(pMaskSet, p->pRight); 319 mask |= exprTableUsage(pMaskSet, p->pLeft); 320 mask |= exprListTableUsage(pMaskSet, p->pList); 321 mask |= exprSelectTableUsage(pMaskSet, p->pSelect); 322 return mask; 323 } 324 static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){ 325 int i; 326 Bitmask mask = 0; 327 if( pList ){ 328 for(i=0; i<pList->nExpr; i++){ 329 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); 330 } 331 } 332 return mask; 333 } 334 static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){ 335 Bitmask mask; 336 if( pS==0 ){ 337 mask = 0; 338 }else{ 339 mask = exprListTableUsage(pMaskSet, pS->pEList); 340 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); 341 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); 342 mask |= exprTableUsage(pMaskSet, pS->pWhere); 343 mask |= exprTableUsage(pMaskSet, pS->pHaving); 344 } 345 return mask; 346 } 347 348 /* 349 ** Return TRUE if the given operator is one of the operators that is 350 ** allowed for an indexable WHERE clause term. The allowed operators are 351 ** "=", "<", ">", "<=", ">=", and "IN". 352 */ 353 static int allowedOp(int op){ 354 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); 355 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); 356 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); 357 assert( TK_GE==TK_EQ+4 ); 358 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; 359 } 360 361 /* 362 ** Swap two objects of type T. 363 */ 364 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 365 366 /* 367 ** Commute a comparision operator. Expressions of the form "X op Y" 368 ** are converted into "Y op X". 369 */ 370 static void exprCommute(Expr *pExpr){ 371 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); 372 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl); 373 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); 374 if( pExpr->op>=TK_GT ){ 375 assert( TK_LT==TK_GT+2 ); 376 assert( TK_GE==TK_LE+2 ); 377 assert( TK_GT>TK_EQ ); 378 assert( TK_GT<TK_LE ); 379 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); 380 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; 381 } 382 } 383 384 /* 385 ** Translate from TK_xx operator to WO_xx bitmask. 386 */ 387 static int operatorMask(int op){ 388 int c; 389 assert( allowedOp(op) ); 390 if( op==TK_IN ){ 391 c = WO_IN; 392 }else if( op==TK_ISNULL ){ 393 c = WO_ISNULL; 394 }else{ 395 c = WO_EQ<<(op-TK_EQ); 396 } 397 assert( op!=TK_ISNULL || c==WO_ISNULL ); 398 assert( op!=TK_IN || c==WO_IN ); 399 assert( op!=TK_EQ || c==WO_EQ ); 400 assert( op!=TK_LT || c==WO_LT ); 401 assert( op!=TK_LE || c==WO_LE ); 402 assert( op!=TK_GT || c==WO_GT ); 403 assert( op!=TK_GE || c==WO_GE ); 404 return c; 405 } 406 407 /* 408 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 409 ** where X is a reference to the iColumn of table iCur and <op> is one of 410 ** the WO_xx operator codes specified by the op parameter. 411 ** Return a pointer to the term. Return 0 if not found. 412 */ 413 static WhereTerm *findTerm( 414 WhereClause *pWC, /* The WHERE clause to be searched */ 415 int iCur, /* Cursor number of LHS */ 416 int iColumn, /* Column number of LHS */ 417 Bitmask notReady, /* RHS must not overlap with this mask */ 418 u16 op, /* Mask of WO_xx values describing operator */ 419 Index *pIdx /* Must be compatible with this index, if not NULL */ 420 ){ 421 WhereTerm *pTerm; 422 int k; 423 for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){ 424 if( pTerm->leftCursor==iCur 425 && (pTerm->prereqRight & notReady)==0 426 && pTerm->leftColumn==iColumn 427 && (pTerm->eOperator & op)!=0 428 ){ 429 if( iCur>=0 && pIdx && pTerm->eOperator!=WO_ISNULL ){ 430 Expr *pX = pTerm->pExpr; 431 CollSeq *pColl; 432 char idxaff; 433 int j; 434 Parse *pParse = pWC->pParse; 435 436 idxaff = pIdx->pTable->aCol[iColumn].affinity; 437 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue; 438 pColl = sqlite3ExprCollSeq(pParse, pX->pLeft); 439 if( !pColl ){ 440 if( pX->pRight ){ 441 pColl = sqlite3ExprCollSeq(pParse, pX->pRight); 442 } 443 if( !pColl ){ 444 pColl = pParse->db->pDfltColl; 445 } 446 } 447 for(j=0; j<pIdx->nColumn && pIdx->aiColumn[j]!=iColumn; j++){} 448 assert( j<pIdx->nColumn ); 449 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue; 450 } 451 return pTerm; 452 } 453 } 454 return 0; 455 } 456 457 /* Forward reference */ 458 static void exprAnalyze(SrcList*, ExprMaskSet*, WhereClause*, int); 459 460 /* 461 ** Call exprAnalyze on all terms in a WHERE clause. 462 ** 463 ** 464 */ 465 static void exprAnalyzeAll( 466 SrcList *pTabList, /* the FROM clause */ 467 ExprMaskSet *pMaskSet, /* table masks */ 468 WhereClause *pWC /* the WHERE clause to be analyzed */ 469 ){ 470 int i; 471 for(i=pWC->nTerm-1; i>=0; i--){ 472 exprAnalyze(pTabList, pMaskSet, pWC, i); 473 } 474 } 475 476 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 477 /* 478 ** Check to see if the given expression is a LIKE or GLOB operator that 479 ** can be optimized using inequality constraints. Return TRUE if it is 480 ** so and false if not. 481 ** 482 ** In order for the operator to be optimizible, the RHS must be a string 483 ** literal that does not begin with a wildcard. 484 */ 485 static int isLikeOrGlob( 486 sqlite3 *db, /* The database */ 487 Expr *pExpr, /* Test this expression */ 488 int *pnPattern, /* Number of non-wildcard prefix characters */ 489 int *pisComplete /* True if the only wildcard is % in the last character */ 490 ){ 491 const char *z; 492 Expr *pRight, *pLeft; 493 ExprList *pList; 494 int c, cnt; 495 int noCase; 496 char wc[3]; 497 CollSeq *pColl; 498 499 if( !sqlite3IsLikeFunction(db, pExpr, &noCase, wc) ){ 500 return 0; 501 } 502 pList = pExpr->pList; 503 pRight = pList->a[0].pExpr; 504 if( pRight->op!=TK_STRING ){ 505 return 0; 506 } 507 pLeft = pList->a[1].pExpr; 508 if( pLeft->op!=TK_COLUMN ){ 509 return 0; 510 } 511 pColl = pLeft->pColl; 512 if( pColl==0 ){ 513 pColl = db->pDfltColl; 514 } 515 if( (pColl->type!=SQLITE_COLL_BINARY || noCase) && 516 (pColl->type!=SQLITE_COLL_NOCASE || !noCase) ){ 517 return 0; 518 } 519 sqlite3DequoteExpr(pRight); 520 z = (char *)pRight->token.z; 521 for(cnt=0; (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2]; cnt++){} 522 if( cnt==0 || 255==(u8)z[cnt] ){ 523 return 0; 524 } 525 *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0; 526 *pnPattern = cnt; 527 return 1; 528 } 529 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 530 531 532 #ifndef SQLITE_OMIT_VIRTUALTABLE 533 /* 534 ** Check to see if the given expression is of the form 535 ** 536 ** column MATCH expr 537 ** 538 ** If it is then return TRUE. If not, return FALSE. 539 */ 540 static int isMatchOfColumn( 541 Expr *pExpr /* Test this expression */ 542 ){ 543 ExprList *pList; 544 545 if( pExpr->op!=TK_FUNCTION ){ 546 return 0; 547 } 548 if( pExpr->token.n!=5 || 549 sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){ 550 return 0; 551 } 552 pList = pExpr->pList; 553 if( pList->nExpr!=2 ){ 554 return 0; 555 } 556 if( pList->a[1].pExpr->op != TK_COLUMN ){ 557 return 0; 558 } 559 return 1; 560 } 561 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 562 563 /* 564 ** If the pBase expression originated in the ON or USING clause of 565 ** a join, then transfer the appropriate markings over to derived. 566 */ 567 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ 568 pDerived->flags |= pBase->flags & EP_FromJoin; 569 pDerived->iRightJoinTable = pBase->iRightJoinTable; 570 } 571 572 573 /* 574 ** The input to this routine is an WhereTerm structure with only the 575 ** "pExpr" field filled in. The job of this routine is to analyze the 576 ** subexpression and populate all the other fields of the WhereTerm 577 ** structure. 578 ** 579 ** If the expression is of the form "<expr> <op> X" it gets commuted 580 ** to the standard form of "X <op> <expr>". If the expression is of 581 ** the form "X <op> Y" where both X and Y are columns, then the original 582 ** expression is unchanged and a new virtual expression of the form 583 ** "Y <op> X" is added to the WHERE clause and analyzed separately. 584 */ 585 static void exprAnalyze( 586 SrcList *pSrc, /* the FROM clause */ 587 ExprMaskSet *pMaskSet, /* table masks */ 588 WhereClause *pWC, /* the WHERE clause */ 589 int idxTerm /* Index of the term to be analyzed */ 590 ){ 591 WhereTerm *pTerm = &pWC->a[idxTerm]; 592 Expr *pExpr = pTerm->pExpr; 593 Bitmask prereqLeft; 594 Bitmask prereqAll; 595 int nPattern; 596 int isComplete; 597 int op; 598 599 if( sqlite3MallocFailed() ) return; 600 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); 601 op = pExpr->op; 602 if( op==TK_IN ){ 603 assert( pExpr->pRight==0 ); 604 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList) 605 | exprSelectTableUsage(pMaskSet, pExpr->pSelect); 606 }else if( op==TK_ISNULL ){ 607 pTerm->prereqRight = 0; 608 }else{ 609 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); 610 } 611 prereqAll = exprTableUsage(pMaskSet, pExpr); 612 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 613 prereqAll |= getMask(pMaskSet, pExpr->iRightJoinTable); 614 } 615 pTerm->prereqAll = prereqAll; 616 pTerm->leftCursor = -1; 617 pTerm->iParent = -1; 618 pTerm->eOperator = 0; 619 if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){ 620 Expr *pLeft = pExpr->pLeft; 621 Expr *pRight = pExpr->pRight; 622 if( pLeft->op==TK_COLUMN ){ 623 pTerm->leftCursor = pLeft->iTable; 624 pTerm->leftColumn = pLeft->iColumn; 625 pTerm->eOperator = operatorMask(op); 626 } 627 if( pRight && pRight->op==TK_COLUMN ){ 628 WhereTerm *pNew; 629 Expr *pDup; 630 if( pTerm->leftCursor>=0 ){ 631 int idxNew; 632 pDup = sqlite3ExprDup(pExpr); 633 if( sqlite3MallocFailed() ){ 634 sqliteFree(pDup); 635 return; 636 } 637 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); 638 if( idxNew==0 ) return; 639 pNew = &pWC->a[idxNew]; 640 pNew->iParent = idxTerm; 641 pTerm = &pWC->a[idxTerm]; 642 pTerm->nChild = 1; 643 pTerm->flags |= TERM_COPIED; 644 }else{ 645 pDup = pExpr; 646 pNew = pTerm; 647 } 648 exprCommute(pDup); 649 pLeft = pDup->pLeft; 650 pNew->leftCursor = pLeft->iTable; 651 pNew->leftColumn = pLeft->iColumn; 652 pNew->prereqRight = prereqLeft; 653 pNew->prereqAll = prereqAll; 654 pNew->eOperator = operatorMask(pDup->op); 655 } 656 } 657 658 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION 659 /* If a term is the BETWEEN operator, create two new virtual terms 660 ** that define the range that the BETWEEN implements. 661 */ 662 else if( pExpr->op==TK_BETWEEN ){ 663 ExprList *pList = pExpr->pList; 664 int i; 665 static const u8 ops[] = {TK_GE, TK_LE}; 666 assert( pList!=0 ); 667 assert( pList->nExpr==2 ); 668 for(i=0; i<2; i++){ 669 Expr *pNewExpr; 670 int idxNew; 671 pNewExpr = sqlite3Expr(ops[i], sqlite3ExprDup(pExpr->pLeft), 672 sqlite3ExprDup(pList->a[i].pExpr), 0); 673 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 674 exprAnalyze(pSrc, pMaskSet, pWC, idxNew); 675 pTerm = &pWC->a[idxTerm]; 676 pWC->a[idxNew].iParent = idxTerm; 677 } 678 pTerm->nChild = 2; 679 } 680 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ 681 682 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 683 /* Attempt to convert OR-connected terms into an IN operator so that 684 ** they can make use of indices. Example: 685 ** 686 ** x = expr1 OR expr2 = x OR x = expr3 687 ** 688 ** is converted into 689 ** 690 ** x IN (expr1,expr2,expr3) 691 ** 692 ** This optimization must be omitted if OMIT_SUBQUERY is defined because 693 ** the compiler for the the IN operator is part of sub-queries. 694 */ 695 else if( pExpr->op==TK_OR ){ 696 int ok; 697 int i, j; 698 int iColumn, iCursor; 699 WhereClause sOr; 700 WhereTerm *pOrTerm; 701 702 assert( (pTerm->flags & TERM_DYNAMIC)==0 ); 703 whereClauseInit(&sOr, pWC->pParse); 704 whereSplit(&sOr, pExpr, TK_OR); 705 exprAnalyzeAll(pSrc, pMaskSet, &sOr); 706 assert( sOr.nTerm>0 ); 707 j = 0; 708 do{ 709 iColumn = sOr.a[j].leftColumn; 710 iCursor = sOr.a[j].leftCursor; 711 ok = iCursor>=0; 712 for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){ 713 if( pOrTerm->eOperator!=WO_EQ ){ 714 goto or_not_possible; 715 } 716 if( pOrTerm->leftCursor==iCursor && pOrTerm->leftColumn==iColumn ){ 717 pOrTerm->flags |= TERM_OR_OK; 718 }else if( (pOrTerm->flags & TERM_COPIED)!=0 || 719 ((pOrTerm->flags & TERM_VIRTUAL)!=0 && 720 (sOr.a[pOrTerm->iParent].flags & TERM_OR_OK)!=0) ){ 721 pOrTerm->flags &= ~TERM_OR_OK; 722 }else{ 723 ok = 0; 724 } 725 } 726 }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<sOr.nTerm ); 727 if( ok ){ 728 ExprList *pList = 0; 729 Expr *pNew, *pDup; 730 Expr *pLeft = 0; 731 for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){ 732 if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue; 733 pDup = sqlite3ExprDup(pOrTerm->pExpr->pRight); 734 pList = sqlite3ExprListAppend(pList, pDup, 0); 735 pLeft = pOrTerm->pExpr->pLeft; 736 } 737 assert( pLeft!=0 ); 738 pDup = sqlite3ExprDup(pLeft); 739 pNew = sqlite3Expr(TK_IN, pDup, 0, 0); 740 if( pNew ){ 741 int idxNew; 742 transferJoinMarkings(pNew, pExpr); 743 pNew->pList = pList; 744 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 745 exprAnalyze(pSrc, pMaskSet, pWC, idxNew); 746 pTerm = &pWC->a[idxTerm]; 747 pWC->a[idxNew].iParent = idxTerm; 748 pTerm->nChild = 1; 749 }else{ 750 sqlite3ExprListDelete(pList); 751 } 752 } 753 or_not_possible: 754 whereClauseClear(&sOr); 755 } 756 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 757 758 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 759 /* Add constraints to reduce the search space on a LIKE or GLOB 760 ** operator. 761 */ 762 if( isLikeOrGlob(pWC->pParse->db, pExpr, &nPattern, &isComplete) ){ 763 Expr *pLeft, *pRight; 764 Expr *pStr1, *pStr2; 765 Expr *pNewExpr1, *pNewExpr2; 766 int idxNew1, idxNew2; 767 768 pLeft = pExpr->pList->a[1].pExpr; 769 pRight = pExpr->pList->a[0].pExpr; 770 pStr1 = sqlite3Expr(TK_STRING, 0, 0, 0); 771 if( pStr1 ){ 772 sqlite3TokenCopy(&pStr1->token, &pRight->token); 773 pStr1->token.n = nPattern; 774 } 775 pStr2 = sqlite3ExprDup(pStr1); 776 if( pStr2 ){ 777 assert( pStr2->token.dyn ); 778 ++*(u8*)&pStr2->token.z[nPattern-1]; 779 } 780 pNewExpr1 = sqlite3Expr(TK_GE, sqlite3ExprDup(pLeft), pStr1, 0); 781 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); 782 exprAnalyze(pSrc, pMaskSet, pWC, idxNew1); 783 pNewExpr2 = sqlite3Expr(TK_LT, sqlite3ExprDup(pLeft), pStr2, 0); 784 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); 785 exprAnalyze(pSrc, pMaskSet, pWC, idxNew2); 786 pTerm = &pWC->a[idxTerm]; 787 if( isComplete ){ 788 pWC->a[idxNew1].iParent = idxTerm; 789 pWC->a[idxNew2].iParent = idxTerm; 790 pTerm->nChild = 2; 791 } 792 } 793 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 794 795 #ifndef SQLITE_OMIT_VIRTUALTABLE 796 /* Add a WO_MATCH auxiliary term to the constraint set if the 797 ** current expression is of the form: column MATCH expr. 798 ** This information is used by the xBestIndex methods of 799 ** virtual tables. The native query optimizer does not attempt 800 ** to do anything with MATCH functions. 801 */ 802 if( isMatchOfColumn(pExpr) ){ 803 int idxNew; 804 Expr *pRight, *pLeft; 805 WhereTerm *pNewTerm; 806 Bitmask prereqColumn, prereqExpr; 807 808 pRight = pExpr->pList->a[0].pExpr; 809 pLeft = pExpr->pList->a[1].pExpr; 810 prereqExpr = exprTableUsage(pMaskSet, pRight); 811 prereqColumn = exprTableUsage(pMaskSet, pLeft); 812 if( (prereqExpr & prereqColumn)==0 ){ 813 Expr *pNewExpr; 814 pNewExpr = sqlite3Expr(TK_MATCH, 0, sqlite3ExprDup(pRight), 0); 815 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 816 pNewTerm = &pWC->a[idxNew]; 817 pNewTerm->prereqRight = prereqExpr; 818 pNewTerm->leftCursor = pLeft->iTable; 819 pNewTerm->leftColumn = pLeft->iColumn; 820 pNewTerm->eOperator = WO_MATCH; 821 pNewTerm->iParent = idxTerm; 822 pTerm = &pWC->a[idxTerm]; 823 pTerm->nChild = 1; 824 pTerm->flags |= TERM_COPIED; 825 pNewTerm->prereqAll = pTerm->prereqAll; 826 } 827 } 828 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 829 } 830 831 832 /* 833 ** This routine decides if pIdx can be used to satisfy the ORDER BY 834 ** clause. If it can, it returns 1. If pIdx cannot satisfy the 835 ** ORDER BY clause, this routine returns 0. 836 ** 837 ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the 838 ** left-most table in the FROM clause of that same SELECT statement and 839 ** the table has a cursor number of "base". pIdx is an index on pTab. 840 ** 841 ** nEqCol is the number of columns of pIdx that are used as equality 842 ** constraints. Any of these columns may be missing from the ORDER BY 843 ** clause and the match can still be a success. 844 ** 845 ** All terms of the ORDER BY that match against the index must be either 846 ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE 847 ** index do not need to satisfy this constraint.) The *pbRev value is 848 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if 849 ** the ORDER BY clause is all ASC. 850 */ 851 static int isSortingIndex( 852 Parse *pParse, /* Parsing context */ 853 Index *pIdx, /* The index we are testing */ 854 int base, /* Cursor number for the table to be sorted */ 855 ExprList *pOrderBy, /* The ORDER BY clause */ 856 int nEqCol, /* Number of index columns with == constraints */ 857 int *pbRev /* Set to 1 if ORDER BY is DESC */ 858 ){ 859 int i, j; /* Loop counters */ 860 int sortOrder = 0; /* XOR of index and ORDER BY sort direction */ 861 int nTerm; /* Number of ORDER BY terms */ 862 struct ExprList_item *pTerm; /* A term of the ORDER BY clause */ 863 sqlite3 *db = pParse->db; 864 865 assert( pOrderBy!=0 ); 866 nTerm = pOrderBy->nExpr; 867 assert( nTerm>0 ); 868 869 /* Match terms of the ORDER BY clause against columns of 870 ** the index. 871 */ 872 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<pIdx->nColumn; i++){ 873 Expr *pExpr; /* The expression of the ORDER BY pTerm */ 874 CollSeq *pColl; /* The collating sequence of pExpr */ 875 int termSortOrder; /* Sort order for this term */ 876 877 pExpr = pTerm->pExpr; 878 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){ 879 /* Can not use an index sort on anything that is not a column in the 880 ** left-most table of the FROM clause */ 881 return 0; 882 } 883 pColl = sqlite3ExprCollSeq(pParse, pExpr); 884 if( !pColl ) pColl = db->pDfltColl; 885 if( pExpr->iColumn!=pIdx->aiColumn[i] || 886 sqlite3StrICmp(pColl->zName, pIdx->azColl[i]) ){ 887 /* Term j of the ORDER BY clause does not match column i of the index */ 888 if( i<nEqCol ){ 889 /* If an index column that is constrained by == fails to match an 890 ** ORDER BY term, that is OK. Just ignore that column of the index 891 */ 892 continue; 893 }else{ 894 /* If an index column fails to match and is not constrained by == 895 ** then the index cannot satisfy the ORDER BY constraint. 896 */ 897 return 0; 898 } 899 } 900 assert( pIdx->aSortOrder!=0 ); 901 assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 ); 902 assert( pIdx->aSortOrder[i]==0 || pIdx->aSortOrder[i]==1 ); 903 termSortOrder = pIdx->aSortOrder[i] ^ pTerm->sortOrder; 904 if( i>nEqCol ){ 905 if( termSortOrder!=sortOrder ){ 906 /* Indices can only be used if all ORDER BY terms past the 907 ** equality constraints are all either DESC or ASC. */ 908 return 0; 909 } 910 }else{ 911 sortOrder = termSortOrder; 912 } 913 j++; 914 pTerm++; 915 } 916 917 /* The index can be used for sorting if all terms of the ORDER BY clause 918 ** are covered. 919 */ 920 if( j>=nTerm ){ 921 *pbRev = sortOrder!=0; 922 return 1; 923 } 924 return 0; 925 } 926 927 /* 928 ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied 929 ** by sorting in order of ROWID. Return true if so and set *pbRev to be 930 ** true for reverse ROWID and false for forward ROWID order. 931 */ 932 static int sortableByRowid( 933 int base, /* Cursor number for table to be sorted */ 934 ExprList *pOrderBy, /* The ORDER BY clause */ 935 int *pbRev /* Set to 1 if ORDER BY is DESC */ 936 ){ 937 Expr *p; 938 939 assert( pOrderBy!=0 ); 940 assert( pOrderBy->nExpr>0 ); 941 p = pOrderBy->a[0].pExpr; 942 if( pOrderBy->nExpr==1 && p->op==TK_COLUMN && p->iTable==base 943 && p->iColumn==-1 ){ 944 *pbRev = pOrderBy->a[0].sortOrder; 945 return 1; 946 } 947 return 0; 948 } 949 950 /* 951 ** Prepare a crude estimate of the logarithm of the input value. 952 ** The results need not be exact. This is only used for estimating 953 ** the total cost of performing operatings with O(logN) or O(NlogN) 954 ** complexity. Because N is just a guess, it is no great tragedy if 955 ** logN is a little off. 956 */ 957 static double estLog(double N){ 958 double logN = 1; 959 double x = 10; 960 while( N>x ){ 961 logN += 1; 962 x *= 10; 963 } 964 return logN; 965 } 966 967 /* 968 ** Two routines for printing the content of an sqlite3_index_info 969 ** structure. Used for testing and debugging only. If neither 970 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 971 ** are no-ops. 972 */ 973 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && \ 974 (defined(SQLITE_TEST) || defined(SQLITE_DEBUG)) 975 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ 976 int i; 977 if( !sqlite3_where_trace ) return; 978 for(i=0; i<p->nConstraint; i++){ 979 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 980 i, 981 p->aConstraint[i].iColumn, 982 p->aConstraint[i].iTermOffset, 983 p->aConstraint[i].op, 984 p->aConstraint[i].usable); 985 } 986 for(i=0; i<p->nOrderBy; i++){ 987 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 988 i, 989 p->aOrderBy[i].iColumn, 990 p->aOrderBy[i].desc); 991 } 992 } 993 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ 994 int i; 995 if( !sqlite3_where_trace ) return; 996 for(i=0; i<p->nConstraint; i++){ 997 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 998 i, 999 p->aConstraintUsage[i].argvIndex, 1000 p->aConstraintUsage[i].omit); 1001 } 1002 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 1003 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 1004 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 1005 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 1006 } 1007 #else 1008 #define TRACE_IDX_INPUTS(A) 1009 #define TRACE_IDX_OUTPUTS(A) 1010 #endif 1011 1012 #ifndef SQLITE_OMIT_VIRTUALTABLE 1013 /* 1014 ** Compute the best index for a virtual table. 1015 ** 1016 ** The best index is computed by the xBestIndex method of the virtual 1017 ** table module. This routine is really just a wrapper that sets up 1018 ** the sqlite3_index_info structure that is used to communicate with 1019 ** xBestIndex. 1020 ** 1021 ** In a join, this routine might be called multiple times for the 1022 ** same virtual table. The sqlite3_index_info structure is created 1023 ** and initialized on the first invocation and reused on all subsequent 1024 ** invocations. The sqlite3_index_info structure is also used when 1025 ** code is generated to access the virtual table. The whereInfoDelete() 1026 ** routine takes care of freeing the sqlite3_index_info structure after 1027 ** everybody has finished with it. 1028 */ 1029 static double bestVirtualIndex( 1030 Parse *pParse, /* The parsing context */ 1031 WhereClause *pWC, /* The WHERE clause */ 1032 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1033 Bitmask notReady, /* Mask of cursors that are not available */ 1034 ExprList *pOrderBy, /* The order by clause */ 1035 int orderByUsable, /* True if we can potential sort */ 1036 sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */ 1037 ){ 1038 Table *pTab = pSrc->pTab; 1039 sqlite3_index_info *pIdxInfo; 1040 struct sqlite3_index_constraint *pIdxCons; 1041 struct sqlite3_index_orderby *pIdxOrderBy; 1042 struct sqlite3_index_constraint_usage *pUsage; 1043 WhereTerm *pTerm; 1044 int i, j; 1045 int nOrderBy; 1046 int rc; 1047 1048 /* If the sqlite3_index_info structure has not been previously 1049 ** allocated and initialized for this virtual table, then allocate 1050 ** and initialize it now 1051 */ 1052 pIdxInfo = *ppIdxInfo; 1053 if( pIdxInfo==0 ){ 1054 WhereTerm *pTerm; 1055 int nTerm; 1056 TRACE(("Recomputing index info for %s...\n", pTab->zName)); 1057 1058 /* Count the number of possible WHERE clause constraints referring 1059 ** to this virtual table */ 1060 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1061 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1062 if( pTerm->eOperator==WO_IN ) continue; 1063 nTerm++; 1064 } 1065 1066 /* If the ORDER BY clause contains only columns in the current 1067 ** virtual table then allocate space for the aOrderBy part of 1068 ** the sqlite3_index_info structure. 1069 */ 1070 nOrderBy = 0; 1071 if( pOrderBy ){ 1072 for(i=0; i<pOrderBy->nExpr; i++){ 1073 Expr *pExpr = pOrderBy->a[i].pExpr; 1074 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 1075 } 1076 if( i==pOrderBy->nExpr ){ 1077 nOrderBy = pOrderBy->nExpr; 1078 } 1079 } 1080 1081 /* Allocate the sqlite3_index_info structure 1082 */ 1083 pIdxInfo = sqliteMalloc( sizeof(*pIdxInfo) 1084 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 1085 + sizeof(*pIdxOrderBy)*nOrderBy ); 1086 if( pIdxInfo==0 ){ 1087 sqlite3ErrorMsg(pParse, "out of memory"); 1088 return 0.0; 1089 } 1090 *ppIdxInfo = pIdxInfo; 1091 1092 /* Initialize the structure. The sqlite3_index_info structure contains 1093 ** many fields that are declared "const" to prevent xBestIndex from 1094 ** changing them. We have to do some funky casting in order to 1095 ** initialize those fields. 1096 */ 1097 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; 1098 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 1099 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 1100 *(int*)&pIdxInfo->nConstraint = nTerm; 1101 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 1102 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; 1103 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; 1104 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = 1105 pUsage; 1106 1107 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1108 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1109 if( pTerm->eOperator==WO_IN ) continue; 1110 pIdxCons[j].iColumn = pTerm->leftColumn; 1111 pIdxCons[j].iTermOffset = i; 1112 pIdxCons[j].op = pTerm->eOperator; 1113 /* The direct assignment in the previous line is possible only because 1114 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 1115 ** following asserts verify this fact. */ 1116 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 1117 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 1118 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 1119 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 1120 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 1121 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); 1122 assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); 1123 j++; 1124 } 1125 for(i=0; i<nOrderBy; i++){ 1126 Expr *pExpr = pOrderBy->a[i].pExpr; 1127 pIdxOrderBy[i].iColumn = pExpr->iColumn; 1128 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; 1129 } 1130 } 1131 1132 /* At this point, the sqlite3_index_info structure that pIdxInfo points 1133 ** to will have been initialized, either during the current invocation or 1134 ** during some prior invocation. Now we just have to customize the 1135 ** details of pIdxInfo for the current invocation and pass it to 1136 ** xBestIndex. 1137 */ 1138 1139 /* The module name must be defined */ 1140 assert( pTab->azModuleArg && pTab->azModuleArg[0] ); 1141 if( pTab->pVtab==0 ){ 1142 sqlite3ErrorMsg(pParse, "undefined module %s for table %s", 1143 pTab->azModuleArg[0], pTab->zName); 1144 return 0.0; 1145 } 1146 1147 /* Set the aConstraint[].usable fields and initialize all 1148 ** output variables to zero. 1149 ** 1150 ** aConstraint[].usable is true for constraints where the right-hand 1151 ** side contains only references to tables to the left of the current 1152 ** table. In other words, if the constraint is of the form: 1153 ** 1154 ** column = expr 1155 ** 1156 ** and we are evaluating a join, then the constraint on column is 1157 ** only valid if all tables referenced in expr occur to the left 1158 ** of the table containing column. 1159 ** 1160 ** The aConstraints[] array contains entries for all constraints 1161 ** on the current table. That way we only have to compute it once 1162 ** even though we might try to pick the best index multiple times. 1163 ** For each attempt at picking an index, the order of tables in the 1164 ** join might be different so we have to recompute the usable flag 1165 ** each time. 1166 */ 1167 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 1168 pUsage = pIdxInfo->aConstraintUsage; 1169 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ 1170 j = pIdxCons->iTermOffset; 1171 pTerm = &pWC->a[j]; 1172 pIdxCons->usable = (pTerm->prereqRight & notReady)==0; 1173 } 1174 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); 1175 if( pIdxInfo->needToFreeIdxStr ){ 1176 sqlite3_free(pIdxInfo->idxStr); 1177 } 1178 pIdxInfo->idxStr = 0; 1179 pIdxInfo->idxNum = 0; 1180 pIdxInfo->needToFreeIdxStr = 0; 1181 pIdxInfo->orderByConsumed = 0; 1182 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0; 1183 nOrderBy = pIdxInfo->nOrderBy; 1184 if( pIdxInfo->nOrderBy && !orderByUsable ){ 1185 *(int*)&pIdxInfo->nOrderBy = 0; 1186 } 1187 1188 sqlite3SafetyOff(pParse->db); 1189 TRACE(("xBestIndex for %s\n", pTab->zName)); 1190 TRACE_IDX_INPUTS(pIdxInfo); 1191 rc = pTab->pVtab->pModule->xBestIndex(pTab->pVtab, pIdxInfo); 1192 TRACE_IDX_OUTPUTS(pIdxInfo); 1193 if( rc!=SQLITE_OK ){ 1194 if( rc==SQLITE_NOMEM ){ 1195 sqlite3FailedMalloc(); 1196 }else { 1197 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 1198 } 1199 sqlite3SafetyOn(pParse->db); 1200 }else{ 1201 rc = sqlite3SafetyOn(pParse->db); 1202 } 1203 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 1204 return pIdxInfo->estimatedCost; 1205 } 1206 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1207 1208 /* 1209 ** Find the best index for accessing a particular table. Return a pointer 1210 ** to the index, flags that describe how the index should be used, the 1211 ** number of equality constraints, and the "cost" for this index. 1212 ** 1213 ** The lowest cost index wins. The cost is an estimate of the amount of 1214 ** CPU and disk I/O need to process the request using the selected index. 1215 ** Factors that influence cost include: 1216 ** 1217 ** * The estimated number of rows that will be retrieved. (The 1218 ** fewer the better.) 1219 ** 1220 ** * Whether or not sorting must occur. 1221 ** 1222 ** * Whether or not there must be separate lookups in the 1223 ** index and in the main table. 1224 ** 1225 */ 1226 static double bestIndex( 1227 Parse *pParse, /* The parsing context */ 1228 WhereClause *pWC, /* The WHERE clause */ 1229 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1230 Bitmask notReady, /* Mask of cursors that are not available */ 1231 ExprList *pOrderBy, /* The order by clause */ 1232 Index **ppIndex, /* Make *ppIndex point to the best index */ 1233 int *pFlags, /* Put flags describing this choice in *pFlags */ 1234 int *pnEq /* Put the number of == or IN constraints here */ 1235 ){ 1236 WhereTerm *pTerm; 1237 Index *bestIdx = 0; /* Index that gives the lowest cost */ 1238 double lowestCost; /* The cost of using bestIdx */ 1239 int bestFlags = 0; /* Flags associated with bestIdx */ 1240 int bestNEq = 0; /* Best value for nEq */ 1241 int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ 1242 Index *pProbe; /* An index we are evaluating */ 1243 int rev; /* True to scan in reverse order */ 1244 int flags; /* Flags associated with pProbe */ 1245 int nEq; /* Number of == or IN constraints */ 1246 double cost; /* Cost of using pProbe */ 1247 1248 TRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady)); 1249 lowestCost = SQLITE_BIG_DBL; 1250 pProbe = pSrc->pTab->pIndex; 1251 1252 /* If the table has no indices and there are no terms in the where 1253 ** clause that refer to the ROWID, then we will never be able to do 1254 ** anything other than a full table scan on this table. We might as 1255 ** well put it first in the join order. That way, perhaps it can be 1256 ** referenced by other tables in the join. 1257 */ 1258 if( pProbe==0 && 1259 findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 && 1260 (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, &rev)) ){ 1261 *pFlags = 0; 1262 *ppIndex = 0; 1263 *pnEq = 0; 1264 return 0.0; 1265 } 1266 1267 /* Check for a rowid=EXPR or rowid IN (...) constraints 1268 */ 1269 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); 1270 if( pTerm ){ 1271 Expr *pExpr; 1272 *ppIndex = 0; 1273 bestFlags = WHERE_ROWID_EQ; 1274 if( pTerm->eOperator & WO_EQ ){ 1275 /* Rowid== is always the best pick. Look no further. Because only 1276 ** a single row is generated, output is always in sorted order */ 1277 *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE; 1278 *pnEq = 1; 1279 TRACE(("... best is rowid\n")); 1280 return 0.0; 1281 }else if( (pExpr = pTerm->pExpr)->pList!=0 ){ 1282 /* Rowid IN (LIST): cost is NlogN where N is the number of list 1283 ** elements. */ 1284 lowestCost = pExpr->pList->nExpr; 1285 lowestCost *= estLog(lowestCost); 1286 }else{ 1287 /* Rowid IN (SELECT): cost is NlogN where N is the number of rows 1288 ** in the result of the inner select. We have no way to estimate 1289 ** that value so make a wild guess. */ 1290 lowestCost = 200; 1291 } 1292 TRACE(("... rowid IN cost: %.9g\n", lowestCost)); 1293 } 1294 1295 /* Estimate the cost of a table scan. If we do not know how many 1296 ** entries are in the table, use 1 million as a guess. 1297 */ 1298 cost = pProbe ? pProbe->aiRowEst[0] : 1000000; 1299 TRACE(("... table scan base cost: %.9g\n", cost)); 1300 flags = WHERE_ROWID_RANGE; 1301 1302 /* Check for constraints on a range of rowids in a table scan. 1303 */ 1304 pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0); 1305 if( pTerm ){ 1306 if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){ 1307 flags |= WHERE_TOP_LIMIT; 1308 cost /= 3; /* Guess that rowid<EXPR eliminates two-thirds or rows */ 1309 } 1310 if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){ 1311 flags |= WHERE_BTM_LIMIT; 1312 cost /= 3; /* Guess that rowid>EXPR eliminates two-thirds of rows */ 1313 } 1314 TRACE(("... rowid range reduces cost to %.9g\n", cost)); 1315 }else{ 1316 flags = 0; 1317 } 1318 1319 /* If the table scan does not satisfy the ORDER BY clause, increase 1320 ** the cost by NlogN to cover the expense of sorting. */ 1321 if( pOrderBy ){ 1322 if( sortableByRowid(iCur, pOrderBy, &rev) ){ 1323 flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE; 1324 if( rev ){ 1325 flags |= WHERE_REVERSE; 1326 } 1327 }else{ 1328 cost += cost*estLog(cost); 1329 TRACE(("... sorting increases cost to %.9g\n", cost)); 1330 } 1331 } 1332 if( cost<lowestCost ){ 1333 lowestCost = cost; 1334 bestFlags = flags; 1335 } 1336 1337 /* Look at each index. 1338 */ 1339 for(; pProbe; pProbe=pProbe->pNext){ 1340 int i; /* Loop counter */ 1341 double inMultiplier = 1; 1342 1343 TRACE(("... index %s:\n", pProbe->zName)); 1344 1345 /* Count the number of columns in the index that are satisfied 1346 ** by x=EXPR constraints or x IN (...) constraints. 1347 */ 1348 flags = 0; 1349 for(i=0; i<pProbe->nColumn; i++){ 1350 int j = pProbe->aiColumn[i]; 1351 pTerm = findTerm(pWC, iCur, j, notReady, WO_EQ|WO_IN|WO_ISNULL, pProbe); 1352 if( pTerm==0 ) break; 1353 flags |= WHERE_COLUMN_EQ; 1354 if( pTerm->eOperator & WO_IN ){ 1355 Expr *pExpr = pTerm->pExpr; 1356 flags |= WHERE_COLUMN_IN; 1357 if( pExpr->pSelect!=0 ){ 1358 inMultiplier *= 25; 1359 }else if( pExpr->pList!=0 ){ 1360 inMultiplier *= pExpr->pList->nExpr + 1; 1361 } 1362 } 1363 } 1364 cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier); 1365 nEq = i; 1366 if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0 1367 && nEq==pProbe->nColumn ){ 1368 flags |= WHERE_UNIQUE; 1369 } 1370 TRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n", nEq, inMultiplier, cost)); 1371 1372 /* Look for range constraints 1373 */ 1374 if( nEq<pProbe->nColumn ){ 1375 int j = pProbe->aiColumn[nEq]; 1376 pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe); 1377 if( pTerm ){ 1378 flags |= WHERE_COLUMN_RANGE; 1379 if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){ 1380 flags |= WHERE_TOP_LIMIT; 1381 cost /= 3; 1382 } 1383 if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){ 1384 flags |= WHERE_BTM_LIMIT; 1385 cost /= 3; 1386 } 1387 TRACE(("...... range reduces cost to %.9g\n", cost)); 1388 } 1389 } 1390 1391 /* Add the additional cost of sorting if that is a factor. 1392 */ 1393 if( pOrderBy ){ 1394 if( (flags & WHERE_COLUMN_IN)==0 && 1395 isSortingIndex(pParse,pProbe,iCur,pOrderBy,nEq,&rev) ){ 1396 if( flags==0 ){ 1397 flags = WHERE_COLUMN_RANGE; 1398 } 1399 flags |= WHERE_ORDERBY; 1400 if( rev ){ 1401 flags |= WHERE_REVERSE; 1402 } 1403 }else{ 1404 cost += cost*estLog(cost); 1405 TRACE(("...... orderby increases cost to %.9g\n", cost)); 1406 } 1407 } 1408 1409 /* Check to see if we can get away with using just the index without 1410 ** ever reading the table. If that is the case, then halve the 1411 ** cost of this index. 1412 */ 1413 if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){ 1414 Bitmask m = pSrc->colUsed; 1415 int j; 1416 for(j=0; j<pProbe->nColumn; j++){ 1417 int x = pProbe->aiColumn[j]; 1418 if( x<BMS-1 ){ 1419 m &= ~(((Bitmask)1)<<x); 1420 } 1421 } 1422 if( m==0 ){ 1423 flags |= WHERE_IDX_ONLY; 1424 cost /= 2; 1425 TRACE(("...... idx-only reduces cost to %.9g\n", cost)); 1426 } 1427 } 1428 1429 /* If this index has achieved the lowest cost so far, then use it. 1430 */ 1431 if( cost < lowestCost ){ 1432 bestIdx = pProbe; 1433 lowestCost = cost; 1434 assert( flags!=0 ); 1435 bestFlags = flags; 1436 bestNEq = nEq; 1437 } 1438 } 1439 1440 /* Report the best result 1441 */ 1442 *ppIndex = bestIdx; 1443 TRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n", 1444 bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq)); 1445 *pFlags = bestFlags; 1446 *pnEq = bestNEq; 1447 return lowestCost; 1448 } 1449 1450 1451 /* 1452 ** Disable a term in the WHERE clause. Except, do not disable the term 1453 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 1454 ** or USING clause of that join. 1455 ** 1456 ** Consider the term t2.z='ok' in the following queries: 1457 ** 1458 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 1459 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 1460 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 1461 ** 1462 ** The t2.z='ok' is disabled in the in (2) because it originates 1463 ** in the ON clause. The term is disabled in (3) because it is not part 1464 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 1465 ** 1466 ** Disabling a term causes that term to not be tested in the inner loop 1467 ** of the join. Disabling is an optimization. When terms are satisfied 1468 ** by indices, we disable them to prevent redundant tests in the inner 1469 ** loop. We would get the correct results if nothing were ever disabled, 1470 ** but joins might run a little slower. The trick is to disable as much 1471 ** as we can without disabling too much. If we disabled in (1), we'd get 1472 ** the wrong answer. See ticket #813. 1473 */ 1474 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 1475 if( pTerm 1476 && (pTerm->flags & TERM_CODED)==0 1477 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 1478 ){ 1479 pTerm->flags |= TERM_CODED; 1480 if( pTerm->iParent>=0 ){ 1481 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; 1482 if( (--pOther->nChild)==0 ){ 1483 disableTerm(pLevel, pOther); 1484 } 1485 } 1486 } 1487 } 1488 1489 /* 1490 ** Generate code that builds a probe for an index. 1491 ** 1492 ** There should be nColumn values on the stack. The index 1493 ** to be probed is pIdx. Pop the values from the stack and 1494 ** replace them all with a single record that is the index 1495 ** problem. 1496 */ 1497 static void buildIndexProbe( 1498 Vdbe *v, /* Generate code into this VM */ 1499 int nColumn, /* The number of columns to check for NULL */ 1500 Index *pIdx /* Index that we will be searching */ 1501 ){ 1502 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 1503 sqlite3IndexAffinityStr(v, pIdx); 1504 } 1505 1506 1507 /* 1508 ** Generate code for a single equality term of the WHERE clause. An equality 1509 ** term can be either X=expr or X IN (...). pTerm is the term to be 1510 ** coded. 1511 ** 1512 ** The current value for the constraint is left on the top of the stack. 1513 ** 1514 ** For a constraint of the form X=expr, the expression is evaluated and its 1515 ** result is left on the stack. For constraints of the form X IN (...) 1516 ** this routine sets up a loop that will iterate over all values of X. 1517 */ 1518 static void codeEqualityTerm( 1519 Parse *pParse, /* The parsing context */ 1520 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 1521 int brk, /* Jump here to abandon the loop */ 1522 WhereLevel *pLevel /* When level of the FROM clause we are working on */ 1523 ){ 1524 Expr *pX = pTerm->pExpr; 1525 Vdbe *v = pParse->pVdbe; 1526 if( pX->op==TK_EQ ){ 1527 sqlite3ExprCode(pParse, pX->pRight); 1528 }else if( pX->op==TK_ISNULL ){ 1529 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1530 #ifndef SQLITE_OMIT_SUBQUERY 1531 }else{ 1532 int iTab; 1533 int *aIn; 1534 1535 assert( pX->op==TK_IN ); 1536 sqlite3CodeSubselect(pParse, pX); 1537 iTab = pX->iTable; 1538 sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0); 1539 VdbeComment((v, "# %.*s", pX->span.n, pX->span.z)); 1540 pLevel->nIn++; 1541 sqliteReallocOrFree((void**)&pLevel->aInLoop, 1542 sizeof(pLevel->aInLoop[0])*2*pLevel->nIn); 1543 aIn = pLevel->aInLoop; 1544 if( aIn ){ 1545 aIn += pLevel->nIn*2 - 2; 1546 aIn[0] = iTab; 1547 aIn[1] = sqlite3VdbeAddOp(v, OP_Column, iTab, 0); 1548 }else{ 1549 pLevel->nIn = 0; 1550 } 1551 #endif 1552 } 1553 disableTerm(pLevel, pTerm); 1554 } 1555 1556 /* 1557 ** Generate code that will evaluate all == and IN constraints for an 1558 ** index. The values for all constraints are left on the stack. 1559 ** 1560 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 1561 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 1562 ** The index has as many as three equality constraints, but in this 1563 ** example, the third "c" value is an inequality. So only two 1564 ** constraints are coded. This routine will generate code to evaluate 1565 ** a==5 and b IN (1,2,3). The current values for a and b will be left 1566 ** on the stack - a is the deepest and b the shallowest. 1567 ** 1568 ** In the example above nEq==2. But this subroutine works for any value 1569 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 1570 ** The only thing it does is allocate the pLevel->iMem memory cell. 1571 ** 1572 ** This routine always allocates at least one memory cell and puts 1573 ** the address of that memory cell in pLevel->iMem. The code that 1574 ** calls this routine will use pLevel->iMem to store the termination 1575 ** key value of the loop. If one or more IN operators appear, then 1576 ** this routine allocates an additional nEq memory cells for internal 1577 ** use. 1578 */ 1579 static void codeAllEqualityTerms( 1580 Parse *pParse, /* Parsing context */ 1581 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 1582 WhereClause *pWC, /* The WHERE clause */ 1583 Bitmask notReady, /* Which parts of FROM have not yet been coded */ 1584 int brk /* Jump here to end the loop */ 1585 ){ 1586 int nEq = pLevel->nEq; /* The number of == or IN constraints to code */ 1587 int termsInMem = 0; /* If true, store value in mem[] cells */ 1588 Vdbe *v = pParse->pVdbe; /* The virtual machine under construction */ 1589 Index *pIdx = pLevel->pIdx; /* The index being used for this loop */ 1590 int iCur = pLevel->iTabCur; /* The cursor of the table */ 1591 WhereTerm *pTerm; /* A single constraint term */ 1592 int j; /* Loop counter */ 1593 1594 /* Figure out how many memory cells we will need then allocate them. 1595 ** We always need at least one used to store the loop terminator 1596 ** value. If there are IN operators we'll need one for each == or 1597 ** IN constraint. 1598 */ 1599 pLevel->iMem = pParse->nMem++; 1600 if( pLevel->flags & WHERE_COLUMN_IN ){ 1601 pParse->nMem += pLevel->nEq; 1602 termsInMem = 1; 1603 } 1604 1605 /* Evaluate the equality constraints 1606 */ 1607 for(j=0; j<pIdx->nColumn; j++){ 1608 int k = pIdx->aiColumn[j]; 1609 pTerm = findTerm(pWC, iCur, k, notReady, WO_EQ|WO_IN|WO_ISNULL, pIdx); 1610 if( pTerm==0 ) break; 1611 assert( (pTerm->flags & TERM_CODED)==0 ); 1612 codeEqualityTerm(pParse, pTerm, brk, pLevel); 1613 if( (pTerm->eOperator & WO_ISNULL)==0 ){ 1614 sqlite3VdbeAddOp(v, OP_IsNull, termsInMem ? -1 : -(j+1), brk); 1615 } 1616 if( termsInMem ){ 1617 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem+j+1, 1); 1618 } 1619 } 1620 assert( j==nEq ); 1621 1622 /* Make sure all the constraint values are on the top of the stack 1623 */ 1624 if( termsInMem ){ 1625 for(j=0; j<nEq; j++){ 1626 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem+j+1, 0); 1627 } 1628 } 1629 } 1630 1631 #if defined(SQLITE_TEST) 1632 /* 1633 ** The following variable holds a text description of query plan generated 1634 ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin 1635 ** overwrites the previous. This information is used for testing and 1636 ** analysis only. 1637 */ 1638 char sqlite3_query_plan[BMS*2*40]; /* Text of the join */ 1639 static int nQPlan = 0; /* Next free slow in _query_plan[] */ 1640 1641 #endif /* SQLITE_TEST */ 1642 1643 1644 /* 1645 ** Free a WhereInfo structure 1646 */ 1647 static void whereInfoFree(WhereInfo *pWInfo){ 1648 if( pWInfo ){ 1649 int i; 1650 for(i=0; i<pWInfo->nLevel; i++){ 1651 sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo; 1652 if( pInfo ){ 1653 if( pInfo->needToFreeIdxStr ){ 1654 sqlite3_free(pInfo->idxStr); 1655 } 1656 sqliteFree(pInfo); 1657 } 1658 } 1659 sqliteFree(pWInfo); 1660 } 1661 } 1662 1663 1664 /* 1665 ** Generate the beginning of the loop used for WHERE clause processing. 1666 ** The return value is a pointer to an opaque structure that contains 1667 ** information needed to terminate the loop. Later, the calling routine 1668 ** should invoke sqlite3WhereEnd() with the return value of this function 1669 ** in order to complete the WHERE clause processing. 1670 ** 1671 ** If an error occurs, this routine returns NULL. 1672 ** 1673 ** The basic idea is to do a nested loop, one loop for each table in 1674 ** the FROM clause of a select. (INSERT and UPDATE statements are the 1675 ** same as a SELECT with only a single table in the FROM clause.) For 1676 ** example, if the SQL is this: 1677 ** 1678 ** SELECT * FROM t1, t2, t3 WHERE ...; 1679 ** 1680 ** Then the code generated is conceptually like the following: 1681 ** 1682 ** foreach row1 in t1 do \ Code generated 1683 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 1684 ** foreach row3 in t3 do / 1685 ** ... 1686 ** end \ Code generated 1687 ** end |-- by sqlite3WhereEnd() 1688 ** end / 1689 ** 1690 ** Note that the loops might not be nested in the order in which they 1691 ** appear in the FROM clause if a different order is better able to make 1692 ** use of indices. Note also that when the IN operator appears in 1693 ** the WHERE clause, it might result in additional nested loops for 1694 ** scanning through all values on the right-hand side of the IN. 1695 ** 1696 ** There are Btree cursors associated with each table. t1 uses cursor 1697 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 1698 ** And so forth. This routine generates code to open those VDBE cursors 1699 ** and sqlite3WhereEnd() generates the code to close them. 1700 ** 1701 ** The code that sqlite3WhereBegin() generates leaves the cursors named 1702 ** in pTabList pointing at their appropriate entries. The [...] code 1703 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 1704 ** data from the various tables of the loop. 1705 ** 1706 ** If the WHERE clause is empty, the foreach loops must each scan their 1707 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 1708 ** the tables have indices and there are terms in the WHERE clause that 1709 ** refer to those indices, a complete table scan can be avoided and the 1710 ** code will run much faster. Most of the work of this routine is checking 1711 ** to see if there are indices that can be used to speed up the loop. 1712 ** 1713 ** Terms of the WHERE clause are also used to limit which rows actually 1714 ** make it to the "..." in the middle of the loop. After each "foreach", 1715 ** terms of the WHERE clause that use only terms in that loop and outer 1716 ** loops are evaluated and if false a jump is made around all subsequent 1717 ** inner loops (or around the "..." if the test occurs within the inner- 1718 ** most loop) 1719 ** 1720 ** OUTER JOINS 1721 ** 1722 ** An outer join of tables t1 and t2 is conceptally coded as follows: 1723 ** 1724 ** foreach row1 in t1 do 1725 ** flag = 0 1726 ** foreach row2 in t2 do 1727 ** start: 1728 ** ... 1729 ** flag = 1 1730 ** end 1731 ** if flag==0 then 1732 ** move the row2 cursor to a null row 1733 ** goto start 1734 ** fi 1735 ** end 1736 ** 1737 ** ORDER BY CLAUSE PROCESSING 1738 ** 1739 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, 1740 ** if there is one. If there is no ORDER BY clause or if this routine 1741 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. 1742 ** 1743 ** If an index can be used so that the natural output order of the table 1744 ** scan is correct for the ORDER BY clause, then that index is used and 1745 ** *ppOrderBy is set to NULL. This is an optimization that prevents an 1746 ** unnecessary sort of the result set if an index appropriate for the 1747 ** ORDER BY clause already exists. 1748 ** 1749 ** If the where clause loops cannot be arranged to provide the correct 1750 ** output order, then the *ppOrderBy is unchanged. 1751 */ 1752 WhereInfo *sqlite3WhereBegin( 1753 Parse *pParse, /* The parser context */ 1754 SrcList *pTabList, /* A list of all tables to be scanned */ 1755 Expr *pWhere, /* The WHERE clause */ 1756 ExprList **ppOrderBy /* An ORDER BY clause, or NULL */ 1757 ){ 1758 int i; /* Loop counter */ 1759 WhereInfo *pWInfo; /* Will become the return value of this function */ 1760 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 1761 int brk, cont = 0; /* Addresses used during code generation */ 1762 Bitmask notReady; /* Cursors that are not yet positioned */ 1763 WhereTerm *pTerm; /* A single term in the WHERE clause */ 1764 ExprMaskSet maskSet; /* The expression mask set */ 1765 WhereClause wc; /* The WHERE clause is divided into these terms */ 1766 struct SrcList_item *pTabItem; /* A single entry from pTabList */ 1767 WhereLevel *pLevel; /* A single level in the pWInfo list */ 1768 int iFrom; /* First unused FROM clause element */ 1769 int andFlags; /* AND-ed combination of all wc.a[].flags */ 1770 1771 /* The number of tables in the FROM clause is limited by the number of 1772 ** bits in a Bitmask 1773 */ 1774 if( pTabList->nSrc>BMS ){ 1775 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 1776 return 0; 1777 } 1778 1779 /* Split the WHERE clause into separate subexpressions where each 1780 ** subexpression is separated by an AND operator. 1781 */ 1782 initMaskSet(&maskSet); 1783 whereClauseInit(&wc, pParse); 1784 whereSplit(&wc, pWhere, TK_AND); 1785 1786 /* Allocate and initialize the WhereInfo structure that will become the 1787 ** return value. 1788 */ 1789 pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel)); 1790 if( sqlite3MallocFailed() ){ 1791 goto whereBeginNoMem; 1792 } 1793 pWInfo->nLevel = pTabList->nSrc; 1794 pWInfo->pParse = pParse; 1795 pWInfo->pTabList = pTabList; 1796 pWInfo->iBreak = sqlite3VdbeMakeLabel(v); 1797 1798 /* Special case: a WHERE clause that is constant. Evaluate the 1799 ** expression and either jump over all of the code or fall thru. 1800 */ 1801 if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstant(pWhere)) ){ 1802 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1); 1803 pWhere = 0; 1804 } 1805 1806 /* Analyze all of the subexpressions. Note that exprAnalyze() might 1807 ** add new virtual terms onto the end of the WHERE clause. We do not 1808 ** want to analyze these virtual terms, so start analyzing at the end 1809 ** and work forward so that the added virtual terms are never processed. 1810 */ 1811 for(i=0; i<pTabList->nSrc; i++){ 1812 createMask(&maskSet, pTabList->a[i].iCursor); 1813 } 1814 exprAnalyzeAll(pTabList, &maskSet, &wc); 1815 if( sqlite3MallocFailed() ){ 1816 goto whereBeginNoMem; 1817 } 1818 1819 /* Chose the best index to use for each table in the FROM clause. 1820 ** 1821 ** This loop fills in the following fields: 1822 ** 1823 ** pWInfo->a[].pIdx The index to use for this level of the loop. 1824 ** pWInfo->a[].flags WHERE_xxx flags associated with pIdx 1825 ** pWInfo->a[].nEq The number of == and IN constraints 1826 ** pWInfo->a[].iFrom When term of the FROM clause is being coded 1827 ** pWInfo->a[].iTabCur The VDBE cursor for the database table 1828 ** pWInfo->a[].iIdxCur The VDBE cursor for the index 1829 ** 1830 ** This loop also figures out the nesting order of tables in the FROM 1831 ** clause. 1832 */ 1833 notReady = ~(Bitmask)0; 1834 pTabItem = pTabList->a; 1835 pLevel = pWInfo->a; 1836 andFlags = ~0; 1837 TRACE(("*** Optimizer Start ***\n")); 1838 for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 1839 Index *pIdx; /* Index for FROM table at pTabItem */ 1840 int flags; /* Flags asssociated with pIdx */ 1841 int nEq; /* Number of == or IN constraints */ 1842 double cost; /* The cost for pIdx */ 1843 int j; /* For looping over FROM tables */ 1844 Index *pBest = 0; /* The best index seen so far */ 1845 int bestFlags = 0; /* Flags associated with pBest */ 1846 int bestNEq = 0; /* nEq associated with pBest */ 1847 double lowestCost; /* Cost of the pBest */ 1848 int bestJ = 0; /* The value of j */ 1849 Bitmask m; /* Bitmask value for j or bestJ */ 1850 int once = 0; /* True when first table is seen */ 1851 sqlite3_index_info *pIndex; /* Current virtual index */ 1852 1853 lowestCost = SQLITE_BIG_DBL; 1854 for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){ 1855 int doNotReorder; /* True if this table should not be reordered */ 1856 1857 doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0 1858 || (j>0 && (pTabItem[-1].jointype & (JT_LEFT|JT_CROSS))!=0); 1859 if( once && doNotReorder ) break; 1860 m = getMask(&maskSet, pTabItem->iCursor); 1861 if( (m & notReady)==0 ){ 1862 if( j==iFrom ) iFrom++; 1863 continue; 1864 } 1865 assert( pTabItem->pTab ); 1866 #ifndef SQLITE_OMIT_VIRTUALTABLE 1867 if( IsVirtual(pTabItem->pTab) ){ 1868 sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo; 1869 cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady, 1870 ppOrderBy ? *ppOrderBy : 0, i==0, 1871 ppIdxInfo); 1872 flags = WHERE_VIRTUALTABLE; 1873 pIndex = *ppIdxInfo; 1874 if( pIndex && pIndex->orderByConsumed ){ 1875 flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY; 1876 } 1877 pIdx = 0; 1878 nEq = 0; 1879 }else 1880 #endif 1881 { 1882 cost = bestIndex(pParse, &wc, pTabItem, notReady, 1883 (i==0 && ppOrderBy) ? *ppOrderBy : 0, 1884 &pIdx, &flags, &nEq); 1885 pIndex = 0; 1886 } 1887 if( cost<lowestCost ){ 1888 once = 1; 1889 lowestCost = cost; 1890 pBest = pIdx; 1891 bestFlags = flags; 1892 bestNEq = nEq; 1893 bestJ = j; 1894 pLevel->pBestIdx = pIndex; 1895 } 1896 if( doNotReorder ) break; 1897 } 1898 TRACE(("*** Optimizer choose table %d for loop %d\n", bestJ, 1899 pLevel-pWInfo->a)); 1900 if( (bestFlags & WHERE_ORDERBY)!=0 ){ 1901 *ppOrderBy = 0; 1902 } 1903 andFlags &= bestFlags; 1904 pLevel->flags = bestFlags; 1905 pLevel->pIdx = pBest; 1906 pLevel->nEq = bestNEq; 1907 pLevel->aInLoop = 0; 1908 pLevel->nIn = 0; 1909 if( pBest ){ 1910 pLevel->iIdxCur = pParse->nTab++; 1911 }else{ 1912 pLevel->iIdxCur = -1; 1913 } 1914 notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor); 1915 pLevel->iFrom = bestJ; 1916 } 1917 TRACE(("*** Optimizer Finished ***\n")); 1918 1919 /* If the total query only selects a single row, then the ORDER BY 1920 ** clause is irrelevant. 1921 */ 1922 if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){ 1923 *ppOrderBy = 0; 1924 } 1925 1926 /* Open all tables in the pTabList and any indices selected for 1927 ** searching those tables. 1928 */ 1929 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ 1930 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 1931 Table *pTab; /* Table to open */ 1932 Index *pIx; /* Index used to access pTab (if any) */ 1933 int iDb; /* Index of database containing table/index */ 1934 int iIdxCur = pLevel->iIdxCur; 1935 1936 #ifndef SQLITE_OMIT_EXPLAIN 1937 if( pParse->explain==2 ){ 1938 char *zMsg; 1939 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 1940 zMsg = sqlite3MPrintf("TABLE %s", pItem->zName); 1941 if( pItem->zAlias ){ 1942 zMsg = sqlite3MPrintf("%z AS %s", zMsg, pItem->zAlias); 1943 } 1944 if( (pIx = pLevel->pIdx)!=0 ){ 1945 zMsg = sqlite3MPrintf("%z WITH INDEX %s", zMsg, pIx->zName); 1946 }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ 1947 zMsg = sqlite3MPrintf("%z USING PRIMARY KEY", zMsg); 1948 } 1949 #ifndef SQLITE_OMIT_VIRTUALTABLE 1950 else if( pLevel->pBestIdx ){ 1951 sqlite3_index_info *pBestIdx = pLevel->pBestIdx; 1952 zMsg = sqlite3MPrintf("%z VIRTUAL TABLE INDEX %d:%s", zMsg, 1953 pBestIdx->idxNum, pBestIdx->idxStr); 1954 } 1955 #endif 1956 if( pLevel->flags & WHERE_ORDERBY ){ 1957 zMsg = sqlite3MPrintf("%z ORDER BY", zMsg); 1958 } 1959 sqlite3VdbeOp3(v, OP_Explain, i, pLevel->iFrom, zMsg, P3_DYNAMIC); 1960 } 1961 #endif /* SQLITE_OMIT_EXPLAIN */ 1962 pTabItem = &pTabList->a[pLevel->iFrom]; 1963 pTab = pTabItem->pTab; 1964 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 1965 if( pTab->isEphem || pTab->pSelect ) continue; 1966 #ifndef SQLITE_OMIT_VIRTUALTABLE 1967 if( pLevel->pBestIdx ){ 1968 int iCur = pTabItem->iCursor; 1969 sqlite3VdbeOp3(v, OP_VOpen, iCur, 0, (const char*)pTab->pVtab, P3_VTAB); 1970 }else 1971 #endif 1972 if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){ 1973 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, OP_OpenRead); 1974 if( pTab->nCol<(sizeof(Bitmask)*8) ){ 1975 Bitmask b = pTabItem->colUsed; 1976 int n = 0; 1977 for(; b; b=b>>1, n++){} 1978 sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-1, n); 1979 assert( n<=pTab->nCol ); 1980 } 1981 }else{ 1982 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 1983 } 1984 pLevel->iTabCur = pTabItem->iCursor; 1985 if( (pIx = pLevel->pIdx)!=0 ){ 1986 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx); 1987 assert( pIx->pSchema==pTab->pSchema ); 1988 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); 1989 VdbeComment((v, "# %s", pIx->zName)); 1990 sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum, 1991 (char*)pKey, P3_KEYINFO_HANDOFF); 1992 } 1993 if( (pLevel->flags & (WHERE_IDX_ONLY|WHERE_COLUMN_RANGE))!=0 ){ 1994 /* Only call OP_SetNumColumns on the index if we might later use 1995 ** OP_Column on the index. */ 1996 sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1); 1997 } 1998 sqlite3CodeVerifySchema(pParse, iDb); 1999 } 2000 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 2001 2002 /* Generate the code to do the search. Each iteration of the for 2003 ** loop below generates code for a single nested loop of the VM 2004 ** program. 2005 */ 2006 notReady = ~(Bitmask)0; 2007 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 2008 int j; 2009 int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */ 2010 Index *pIdx; /* The index we will be using */ 2011 int iIdxCur; /* The VDBE cursor for the index */ 2012 int omitTable; /* True if we use the index only */ 2013 int bRev; /* True if we need to scan in reverse order */ 2014 2015 pTabItem = &pTabList->a[pLevel->iFrom]; 2016 iCur = pTabItem->iCursor; 2017 pIdx = pLevel->pIdx; 2018 iIdxCur = pLevel->iIdxCur; 2019 bRev = (pLevel->flags & WHERE_REVERSE)!=0; 2020 omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0; 2021 2022 /* Create labels for the "break" and "continue" instructions 2023 ** for the current loop. Jump to brk to break out of a loop. 2024 ** Jump to cont to go immediately to the next iteration of the 2025 ** loop. 2026 */ 2027 brk = pLevel->brk = sqlite3VdbeMakeLabel(v); 2028 cont = pLevel->cont = sqlite3VdbeMakeLabel(v); 2029 2030 /* If this is the right table of a LEFT OUTER JOIN, allocate and 2031 ** initialize a memory cell that records if this table matches any 2032 ** row of the left table of the join. 2033 */ 2034 if( pLevel->iFrom>0 && (pTabItem[-1].jointype & JT_LEFT)!=0 ){ 2035 if( !pParse->nMem ) pParse->nMem++; 2036 pLevel->iLeftJoin = pParse->nMem++; 2037 sqlite3VdbeAddOp(v, OP_MemInt, 0, pLevel->iLeftJoin); 2038 VdbeComment((v, "# init LEFT JOIN no-match flag")); 2039 } 2040 2041 #ifndef SQLITE_OMIT_VIRTUALTABLE 2042 if( pLevel->pBestIdx ){ 2043 /* Case 0: The table is a virtual-table. Use the VFilter and VNext 2044 ** to access the data. 2045 */ 2046 int j; 2047 sqlite3_index_info *pBestIdx = pLevel->pBestIdx; 2048 int nConstraint = pBestIdx->nConstraint; 2049 struct sqlite3_index_constraint_usage *aUsage = 2050 pBestIdx->aConstraintUsage; 2051 const struct sqlite3_index_constraint *aConstraint = 2052 pBestIdx->aConstraint; 2053 2054 for(j=1; j<=nConstraint; j++){ 2055 int k; 2056 for(k=0; k<nConstraint; k++){ 2057 if( aUsage[k].argvIndex==j ){ 2058 int iTerm = aConstraint[k].iTermOffset; 2059 sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight); 2060 break; 2061 } 2062 } 2063 if( k==nConstraint ) break; 2064 } 2065 sqlite3VdbeAddOp(v, OP_Integer, j-1, 0); 2066 sqlite3VdbeAddOp(v, OP_Integer, pBestIdx->idxNum, 0); 2067 sqlite3VdbeOp3(v, OP_VFilter, iCur, brk, pBestIdx->idxStr, 2068 pBestIdx->needToFreeIdxStr ? P3_MPRINTF : P3_STATIC); 2069 pBestIdx->needToFreeIdxStr = 0; 2070 for(j=0; j<pBestIdx->nConstraint; j++){ 2071 if( aUsage[j].omit ){ 2072 int iTerm = aConstraint[j].iTermOffset; 2073 disableTerm(pLevel, &wc.a[iTerm]); 2074 } 2075 } 2076 pLevel->op = OP_VNext; 2077 pLevel->p1 = iCur; 2078 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2079 }else 2080 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 2081 2082 if( pLevel->flags & WHERE_ROWID_EQ ){ 2083 /* Case 1: We can directly reference a single row using an 2084 ** equality comparison against the ROWID field. Or 2085 ** we reference multiple rows using a "rowid IN (...)" 2086 ** construct. 2087 */ 2088 pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0); 2089 assert( pTerm!=0 ); 2090 assert( pTerm->pExpr!=0 ); 2091 assert( pTerm->leftCursor==iCur ); 2092 assert( omitTable==0 ); 2093 codeEqualityTerm(pParse, pTerm, brk, pLevel); 2094 sqlite3VdbeAddOp(v, OP_MustBeInt, 1, brk); 2095 sqlite3VdbeAddOp(v, OP_NotExists, iCur, brk); 2096 VdbeComment((v, "pk")); 2097 pLevel->op = OP_Noop; 2098 }else if( pLevel->flags & WHERE_ROWID_RANGE ){ 2099 /* Case 2: We have an inequality comparison against the ROWID field. 2100 */ 2101 int testOp = OP_Noop; 2102 int start; 2103 WhereTerm *pStart, *pEnd; 2104 2105 assert( omitTable==0 ); 2106 pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0); 2107 pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0); 2108 if( bRev ){ 2109 pTerm = pStart; 2110 pStart = pEnd; 2111 pEnd = pTerm; 2112 } 2113 if( pStart ){ 2114 Expr *pX; 2115 pX = pStart->pExpr; 2116 assert( pX!=0 ); 2117 assert( pStart->leftCursor==iCur ); 2118 sqlite3ExprCode(pParse, pX->pRight); 2119 sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk); 2120 sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk); 2121 VdbeComment((v, "pk")); 2122 disableTerm(pLevel, pStart); 2123 }else{ 2124 sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk); 2125 } 2126 if( pEnd ){ 2127 Expr *pX; 2128 pX = pEnd->pExpr; 2129 assert( pX!=0 ); 2130 assert( pEnd->leftCursor==iCur ); 2131 sqlite3ExprCode(pParse, pX->pRight); 2132 pLevel->iMem = pParse->nMem++; 2133 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); 2134 if( pX->op==TK_LT || pX->op==TK_GT ){ 2135 testOp = bRev ? OP_Le : OP_Ge; 2136 }else{ 2137 testOp = bRev ? OP_Lt : OP_Gt; 2138 } 2139 disableTerm(pLevel, pEnd); 2140 } 2141 start = sqlite3VdbeCurrentAddr(v); 2142 pLevel->op = bRev ? OP_Prev : OP_Next; 2143 pLevel->p1 = iCur; 2144 pLevel->p2 = start; 2145 if( testOp!=OP_Noop ){ 2146 sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0); 2147 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 2148 sqlite3VdbeAddOp(v, testOp, SQLITE_AFF_NUMERIC, brk); 2149 } 2150 }else if( pLevel->flags & WHERE_COLUMN_RANGE ){ 2151 /* Case 3: The WHERE clause term that refers to the right-most 2152 ** column of the index is an inequality. For example, if 2153 ** the index is on (x,y,z) and the WHERE clause is of the 2154 ** form "x=5 AND y<10" then this case is used. Only the 2155 ** right-most column can be an inequality - the rest must 2156 ** use the "==" and "IN" operators. 2157 ** 2158 ** This case is also used when there are no WHERE clause 2159 ** constraints but an index is selected anyway, in order 2160 ** to force the output order to conform to an ORDER BY. 2161 */ 2162 int start; 2163 int nEq = pLevel->nEq; 2164 int topEq=0; /* True if top limit uses ==. False is strictly < */ 2165 int btmEq=0; /* True if btm limit uses ==. False if strictly > */ 2166 int topOp, btmOp; /* Operators for the top and bottom search bounds */ 2167 int testOp; 2168 int topLimit = (pLevel->flags & WHERE_TOP_LIMIT)!=0; 2169 int btmLimit = (pLevel->flags & WHERE_BTM_LIMIT)!=0; 2170 2171 /* Generate code to evaluate all constraint terms using == or IN 2172 ** and level the values of those terms on the stack. 2173 */ 2174 codeAllEqualityTerms(pParse, pLevel, &wc, notReady, brk); 2175 2176 /* Duplicate the equality term values because they will all be 2177 ** used twice: once to make the termination key and once to make the 2178 ** start key. 2179 */ 2180 for(j=0; j<nEq; j++){ 2181 sqlite3VdbeAddOp(v, OP_Dup, nEq-1, 0); 2182 } 2183 2184 /* Figure out what comparison operators to use for top and bottom 2185 ** search bounds. For an ascending index, the bottom bound is a > or >= 2186 ** operator and the top bound is a < or <= operator. For a descending 2187 ** index the operators are reversed. 2188 */ 2189 if( pIdx->aSortOrder[nEq]==SQLITE_SO_ASC ){ 2190 topOp = WO_LT|WO_LE; 2191 btmOp = WO_GT|WO_GE; 2192 }else{ 2193 topOp = WO_GT|WO_GE; 2194 btmOp = WO_LT|WO_LE; 2195 SWAP(int, topLimit, btmLimit); 2196 } 2197 2198 /* Generate the termination key. This is the key value that 2199 ** will end the search. There is no termination key if there 2200 ** are no equality terms and no "X<..." term. 2201 ** 2202 ** 2002-Dec-04: On a reverse-order scan, the so-called "termination" 2203 ** key computed here really ends up being the start key. 2204 */ 2205 if( topLimit ){ 2206 Expr *pX; 2207 int k = pIdx->aiColumn[j]; 2208 pTerm = findTerm(&wc, iCur, k, notReady, topOp, pIdx); 2209 assert( pTerm!=0 ); 2210 pX = pTerm->pExpr; 2211 assert( (pTerm->flags & TERM_CODED)==0 ); 2212 sqlite3ExprCode(pParse, pX->pRight); 2213 sqlite3VdbeAddOp(v, OP_IsNull, -(nEq+1), brk); 2214 topEq = pTerm->eOperator & (WO_LE|WO_GE); 2215 disableTerm(pLevel, pTerm); 2216 testOp = OP_IdxGE; 2217 }else{ 2218 testOp = nEq>0 ? OP_IdxGE : OP_Noop; 2219 topEq = 1; 2220 } 2221 if( testOp!=OP_Noop ){ 2222 int nCol = nEq + topLimit; 2223 pLevel->iMem = pParse->nMem++; 2224 buildIndexProbe(v, nCol, pIdx); 2225 if( bRev ){ 2226 int op = topEq ? OP_MoveLe : OP_MoveLt; 2227 sqlite3VdbeAddOp(v, op, iIdxCur, brk); 2228 }else{ 2229 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); 2230 } 2231 }else if( bRev ){ 2232 sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk); 2233 } 2234 2235 /* Generate the start key. This is the key that defines the lower 2236 ** bound on the search. There is no start key if there are no 2237 ** equality terms and if there is no "X>..." term. In 2238 ** that case, generate a "Rewind" instruction in place of the 2239 ** start key search. 2240 ** 2241 ** 2002-Dec-04: In the case of a reverse-order search, the so-called 2242 ** "start" key really ends up being used as the termination key. 2243 */ 2244 if( btmLimit ){ 2245 Expr *pX; 2246 int k = pIdx->aiColumn[j]; 2247 pTerm = findTerm(&wc, iCur, k, notReady, btmOp, pIdx); 2248 assert( pTerm!=0 ); 2249 pX = pTerm->pExpr; 2250 assert( (pTerm->flags & TERM_CODED)==0 ); 2251 sqlite3ExprCode(pParse, pX->pRight); 2252 sqlite3VdbeAddOp(v, OP_IsNull, -(nEq+1), brk); 2253 btmEq = pTerm->eOperator & (WO_LE|WO_GE); 2254 disableTerm(pLevel, pTerm); 2255 }else{ 2256 btmEq = 1; 2257 } 2258 if( nEq>0 || btmLimit ){ 2259 int nCol = nEq + btmLimit; 2260 buildIndexProbe(v, nCol, pIdx); 2261 if( bRev ){ 2262 pLevel->iMem = pParse->nMem++; 2263 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); 2264 testOp = OP_IdxLT; 2265 }else{ 2266 int op = btmEq ? OP_MoveGe : OP_MoveGt; 2267 sqlite3VdbeAddOp(v, op, iIdxCur, brk); 2268 } 2269 }else if( bRev ){ 2270 testOp = OP_Noop; 2271 }else{ 2272 sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk); 2273 } 2274 2275 /* Generate the the top of the loop. If there is a termination 2276 ** key we have to test for that key and abort at the top of the 2277 ** loop. 2278 */ 2279 start = sqlite3VdbeCurrentAddr(v); 2280 if( testOp!=OP_Noop ){ 2281 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 2282 sqlite3VdbeAddOp(v, testOp, iIdxCur, brk); 2283 if( (topEq && !bRev) || (!btmEq && bRev) ){ 2284 sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC); 2285 } 2286 } 2287 if( topLimit | btmLimit ){ 2288 sqlite3VdbeAddOp(v, OP_Column, iIdxCur, nEq); 2289 sqlite3VdbeAddOp(v, OP_IsNull, 1, cont); 2290 } 2291 if( !omitTable ){ 2292 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0); 2293 sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); 2294 } 2295 2296 /* Record the instruction used to terminate the loop. 2297 */ 2298 pLevel->op = bRev ? OP_Prev : OP_Next; 2299 pLevel->p1 = iIdxCur; 2300 pLevel->p2 = start; 2301 }else if( pLevel->flags & WHERE_COLUMN_EQ ){ 2302 /* Case 4: There is an index and all terms of the WHERE clause that 2303 ** refer to the index using the "==" or "IN" operators. 2304 */ 2305 int start; 2306 int nEq = pLevel->nEq; 2307 2308 /* Generate code to evaluate all constraint terms using == or IN 2309 ** and leave the values of those terms on the stack. 2310 */ 2311 codeAllEqualityTerms(pParse, pLevel, &wc, notReady, brk); 2312 2313 /* Generate a single key that will be used to both start and terminate 2314 ** the search 2315 */ 2316 buildIndexProbe(v, nEq, pIdx); 2317 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0); 2318 2319 /* Generate code (1) to move to the first matching element of the table. 2320 ** Then generate code (2) that jumps to "brk" after the cursor is past 2321 ** the last matching element of the table. The code (1) is executed 2322 ** once to initialize the search, the code (2) is executed before each 2323 ** iteration of the scan to see if the scan has finished. */ 2324 if( bRev ){ 2325 /* Scan in reverse order */ 2326 sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, brk); 2327 start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 2328 sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, brk); 2329 pLevel->op = OP_Prev; 2330 }else{ 2331 /* Scan in the forward order */ 2332 sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, brk); 2333 start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 2334 sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, brk, "+", P3_STATIC); 2335 pLevel->op = OP_Next; 2336 } 2337 if( !omitTable ){ 2338 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0); 2339 sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); 2340 } 2341 pLevel->p1 = iIdxCur; 2342 pLevel->p2 = start; 2343 }else{ 2344 /* Case 5: There is no usable index. We must do a complete 2345 ** scan of the entire table. 2346 */ 2347 assert( omitTable==0 ); 2348 assert( bRev==0 ); 2349 pLevel->op = OP_Next; 2350 pLevel->p1 = iCur; 2351 pLevel->p2 = 1 + sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk); 2352 } 2353 notReady &= ~getMask(&maskSet, iCur); 2354 2355 /* Insert code to test every subexpression that can be completely 2356 ** computed using the current set of tables. 2357 */ 2358 for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){ 2359 Expr *pE; 2360 if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2361 if( (pTerm->prereqAll & notReady)!=0 ) continue; 2362 pE = pTerm->pExpr; 2363 assert( pE!=0 ); 2364 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ 2365 continue; 2366 } 2367 sqlite3ExprIfFalse(pParse, pE, cont, 1); 2368 pTerm->flags |= TERM_CODED; 2369 } 2370 2371 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2372 ** at least one row of the right table has matched the left table. 2373 */ 2374 if( pLevel->iLeftJoin ){ 2375 pLevel->top = sqlite3VdbeCurrentAddr(v); 2376 sqlite3VdbeAddOp(v, OP_MemInt, 1, pLevel->iLeftJoin); 2377 VdbeComment((v, "# record LEFT JOIN hit")); 2378 for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){ 2379 if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2380 if( (pTerm->prereqAll & notReady)!=0 ) continue; 2381 assert( pTerm->pExpr ); 2382 sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, 1); 2383 pTerm->flags |= TERM_CODED; 2384 } 2385 } 2386 } 2387 2388 #ifdef SQLITE_TEST /* For testing and debugging use only */ 2389 /* Record in the query plan information about the current table 2390 ** and the index used to access it (if any). If the table itself 2391 ** is not used, its name is just '{}'. If no index is used 2392 ** the index is listed as "{}". If the primary key is used the 2393 ** index name is '*'. 2394 */ 2395 for(i=0; i<pTabList->nSrc; i++){ 2396 char *z; 2397 int n; 2398 pLevel = &pWInfo->a[i]; 2399 pTabItem = &pTabList->a[pLevel->iFrom]; 2400 z = pTabItem->zAlias; 2401 if( z==0 ) z = pTabItem->pTab->zName; 2402 n = strlen(z); 2403 if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){ 2404 if( pLevel->flags & WHERE_IDX_ONLY ){ 2405 strcpy(&sqlite3_query_plan[nQPlan], "{}"); 2406 nQPlan += 2; 2407 }else{ 2408 strcpy(&sqlite3_query_plan[nQPlan], z); 2409 nQPlan += n; 2410 } 2411 sqlite3_query_plan[nQPlan++] = ' '; 2412 } 2413 if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ 2414 strcpy(&sqlite3_query_plan[nQPlan], "* "); 2415 nQPlan += 2; 2416 }else if( pLevel->pIdx==0 ){ 2417 strcpy(&sqlite3_query_plan[nQPlan], "{} "); 2418 nQPlan += 3; 2419 }else{ 2420 n = strlen(pLevel->pIdx->zName); 2421 if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){ 2422 strcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName); 2423 nQPlan += n; 2424 sqlite3_query_plan[nQPlan++] = ' '; 2425 } 2426 } 2427 } 2428 while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){ 2429 sqlite3_query_plan[--nQPlan] = 0; 2430 } 2431 sqlite3_query_plan[nQPlan] = 0; 2432 nQPlan = 0; 2433 #endif /* SQLITE_TEST // Testing and debugging use only */ 2434 2435 /* Record the continuation address in the WhereInfo structure. Then 2436 ** clean up and return. 2437 */ 2438 pWInfo->iContinue = cont; 2439 whereClauseClear(&wc); 2440 return pWInfo; 2441 2442 /* Jump here if malloc fails */ 2443 whereBeginNoMem: 2444 whereClauseClear(&wc); 2445 whereInfoFree(pWInfo); 2446 return 0; 2447 } 2448 2449 /* 2450 ** Generate the end of the WHERE loop. See comments on 2451 ** sqlite3WhereBegin() for additional information. 2452 */ 2453 void sqlite3WhereEnd(WhereInfo *pWInfo){ 2454 Vdbe *v = pWInfo->pParse->pVdbe; 2455 int i; 2456 WhereLevel *pLevel; 2457 SrcList *pTabList = pWInfo->pTabList; 2458 2459 /* Generate loop termination code. 2460 */ 2461 for(i=pTabList->nSrc-1; i>=0; i--){ 2462 pLevel = &pWInfo->a[i]; 2463 sqlite3VdbeResolveLabel(v, pLevel->cont); 2464 if( pLevel->op!=OP_Noop ){ 2465 sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2); 2466 } 2467 sqlite3VdbeResolveLabel(v, pLevel->brk); 2468 if( pLevel->nIn ){ 2469 int *a; 2470 int j; 2471 for(j=pLevel->nIn, a=&pLevel->aInLoop[j*2-2]; j>0; j--, a-=2){ 2472 sqlite3VdbeAddOp(v, OP_Next, a[0], a[1]); 2473 sqlite3VdbeJumpHere(v, a[1]-1); 2474 } 2475 sqliteFree(pLevel->aInLoop); 2476 } 2477 if( pLevel->iLeftJoin ){ 2478 int addr; 2479 addr = sqlite3VdbeAddOp(v, OP_IfMemPos, pLevel->iLeftJoin, 0); 2480 sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0); 2481 if( pLevel->iIdxCur>=0 ){ 2482 sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0); 2483 } 2484 sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top); 2485 sqlite3VdbeJumpHere(v, addr); 2486 } 2487 } 2488 2489 /* The "break" point is here, just past the end of the outer loop. 2490 ** Set it. 2491 */ 2492 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 2493 2494 /* Close all of the cursors that were opened by sqlite3WhereBegin. 2495 */ 2496 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 2497 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 2498 Table *pTab = pTabItem->pTab; 2499 assert( pTab!=0 ); 2500 if( pTab->isEphem || pTab->pSelect ) continue; 2501 if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){ 2502 sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0); 2503 } 2504 if( pLevel->pIdx!=0 ){ 2505 sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0); 2506 } 2507 2508 /* Make cursor substitutions for cases where we want to use 2509 ** just the index and never reference the table. 2510 ** 2511 ** Calls to the code generator in between sqlite3WhereBegin and 2512 ** sqlite3WhereEnd will have created code that references the table 2513 ** directly. This loop scans all that code looking for opcodes 2514 ** that reference the table and converts them into opcodes that 2515 ** reference the index. 2516 */ 2517 if( pLevel->flags & WHERE_IDX_ONLY ){ 2518 int k, j, last; 2519 VdbeOp *pOp; 2520 Index *pIdx = pLevel->pIdx; 2521 2522 assert( pIdx!=0 ); 2523 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop); 2524 last = sqlite3VdbeCurrentAddr(v); 2525 for(k=pWInfo->iTop; k<last; k++, pOp++){ 2526 if( pOp->p1!=pLevel->iTabCur ) continue; 2527 if( pOp->opcode==OP_Column ){ 2528 pOp->p1 = pLevel->iIdxCur; 2529 for(j=0; j<pIdx->nColumn; j++){ 2530 if( pOp->p2==pIdx->aiColumn[j] ){ 2531 pOp->p2 = j; 2532 break; 2533 } 2534 } 2535 }else if( pOp->opcode==OP_Rowid ){ 2536 pOp->p1 = pLevel->iIdxCur; 2537 pOp->opcode = OP_IdxRowid; 2538 }else if( pOp->opcode==OP_NullRow ){ 2539 pOp->opcode = OP_Noop; 2540 } 2541 } 2542 } 2543 } 2544 2545 /* Final cleanup 2546 */ 2547 whereInfoFree(pWInfo); 2548 return; 2549 } 2550