1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 ** 19 ** $Id: where.c,v 1.408 2009/06/16 14:15:22 shane Exp $ 20 */ 21 #include "sqliteInt.h" 22 23 /* 24 ** Trace output macros 25 */ 26 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 27 int sqlite3WhereTrace = 0; 28 #endif 29 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) 30 # define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X 31 #else 32 # define WHERETRACE(X) 33 #endif 34 35 /* Forward reference 36 */ 37 typedef struct WhereClause WhereClause; 38 typedef struct WhereMaskSet WhereMaskSet; 39 typedef struct WhereOrInfo WhereOrInfo; 40 typedef struct WhereAndInfo WhereAndInfo; 41 typedef struct WhereCost WhereCost; 42 43 /* 44 ** The query generator uses an array of instances of this structure to 45 ** help it analyze the subexpressions of the WHERE clause. Each WHERE 46 ** clause subexpression is separated from the others by AND operators, 47 ** usually, or sometimes subexpressions separated by OR. 48 ** 49 ** All WhereTerms are collected into a single WhereClause structure. 50 ** The following identity holds: 51 ** 52 ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm 53 ** 54 ** When a term is of the form: 55 ** 56 ** X <op> <expr> 57 ** 58 ** where X is a column name and <op> is one of certain operators, 59 ** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the 60 ** cursor number and column number for X. WhereTerm.eOperator records 61 ** the <op> using a bitmask encoding defined by WO_xxx below. The 62 ** use of a bitmask encoding for the operator allows us to search 63 ** quickly for terms that match any of several different operators. 64 ** 65 ** A WhereTerm might also be two or more subterms connected by OR: 66 ** 67 ** (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR .... 68 ** 69 ** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR 70 ** and the WhereTerm.u.pOrInfo field points to auxiliary information that 71 ** is collected about the 72 ** 73 ** If a term in the WHERE clause does not match either of the two previous 74 ** categories, then eOperator==0. The WhereTerm.pExpr field is still set 75 ** to the original subexpression content and wtFlags is set up appropriately 76 ** but no other fields in the WhereTerm object are meaningful. 77 ** 78 ** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers, 79 ** but they do so indirectly. A single WhereMaskSet structure translates 80 ** cursor number into bits and the translated bit is stored in the prereq 81 ** fields. The translation is used in order to maximize the number of 82 ** bits that will fit in a Bitmask. The VDBE cursor numbers might be 83 ** spread out over the non-negative integers. For example, the cursor 84 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The WhereMaskSet 85 ** translates these sparse cursor numbers into consecutive integers 86 ** beginning with 0 in order to make the best possible use of the available 87 ** bits in the Bitmask. So, in the example above, the cursor numbers 88 ** would be mapped into integers 0 through 7. 89 ** 90 ** The number of terms in a join is limited by the number of bits 91 ** in prereqRight and prereqAll. The default is 64 bits, hence SQLite 92 ** is only able to process joins with 64 or fewer tables. 93 */ 94 typedef struct WhereTerm WhereTerm; 95 struct WhereTerm { 96 Expr *pExpr; /* Pointer to the subexpression that is this term */ 97 int iParent; /* Disable pWC->a[iParent] when this term disabled */ 98 int leftCursor; /* Cursor number of X in "X <op> <expr>" */ 99 union { 100 int leftColumn; /* Column number of X in "X <op> <expr>" */ 101 WhereOrInfo *pOrInfo; /* Extra information if eOperator==WO_OR */ 102 WhereAndInfo *pAndInfo; /* Extra information if eOperator==WO_AND */ 103 } u; 104 u16 eOperator; /* A WO_xx value describing <op> */ 105 u8 wtFlags; /* TERM_xxx bit flags. See below */ 106 u8 nChild; /* Number of children that must disable us */ 107 WhereClause *pWC; /* The clause this term is part of */ 108 Bitmask prereqRight; /* Bitmask of tables used by pExpr->pRight */ 109 Bitmask prereqAll; /* Bitmask of tables referenced by pExpr */ 110 }; 111 112 /* 113 ** Allowed values of WhereTerm.wtFlags 114 */ 115 #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */ 116 #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */ 117 #define TERM_CODED 0x04 /* This term is already coded */ 118 #define TERM_COPIED 0x08 /* Has a child */ 119 #define TERM_ORINFO 0x10 /* Need to free the WhereTerm.u.pOrInfo object */ 120 #define TERM_ANDINFO 0x20 /* Need to free the WhereTerm.u.pAndInfo obj */ 121 #define TERM_OR_OK 0x40 /* Used during OR-clause processing */ 122 123 /* 124 ** An instance of the following structure holds all information about a 125 ** WHERE clause. Mostly this is a container for one or more WhereTerms. 126 */ 127 struct WhereClause { 128 Parse *pParse; /* The parser context */ 129 WhereMaskSet *pMaskSet; /* Mapping of table cursor numbers to bitmasks */ 130 Bitmask vmask; /* Bitmask identifying virtual table cursors */ 131 u8 op; /* Split operator. TK_AND or TK_OR */ 132 int nTerm; /* Number of terms */ 133 int nSlot; /* Number of entries in a[] */ 134 WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */ 135 #if defined(SQLITE_SMALL_STACK) 136 WhereTerm aStatic[1]; /* Initial static space for a[] */ 137 #else 138 WhereTerm aStatic[8]; /* Initial static space for a[] */ 139 #endif 140 }; 141 142 /* 143 ** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to 144 ** a dynamically allocated instance of the following structure. 145 */ 146 struct WhereOrInfo { 147 WhereClause wc; /* Decomposition into subterms */ 148 Bitmask indexable; /* Bitmask of all indexable tables in the clause */ 149 }; 150 151 /* 152 ** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to 153 ** a dynamically allocated instance of the following structure. 154 */ 155 struct WhereAndInfo { 156 WhereClause wc; /* The subexpression broken out */ 157 }; 158 159 /* 160 ** An instance of the following structure keeps track of a mapping 161 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm. 162 ** 163 ** The VDBE cursor numbers are small integers contained in 164 ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE 165 ** clause, the cursor numbers might not begin with 0 and they might 166 ** contain gaps in the numbering sequence. But we want to make maximum 167 ** use of the bits in our bitmasks. This structure provides a mapping 168 ** from the sparse cursor numbers into consecutive integers beginning 169 ** with 0. 170 ** 171 ** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask 172 ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A. 173 ** 174 ** For example, if the WHERE clause expression used these VDBE 175 ** cursors: 4, 5, 8, 29, 57, 73. Then the WhereMaskSet structure 176 ** would map those cursor numbers into bits 0 through 5. 177 ** 178 ** Note that the mapping is not necessarily ordered. In the example 179 ** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0, 180 ** 57->5, 73->4. Or one of 719 other combinations might be used. It 181 ** does not really matter. What is important is that sparse cursor 182 ** numbers all get mapped into bit numbers that begin with 0 and contain 183 ** no gaps. 184 */ 185 struct WhereMaskSet { 186 int n; /* Number of assigned cursor values */ 187 int ix[BMS]; /* Cursor assigned to each bit */ 188 }; 189 190 /* 191 ** A WhereCost object records a lookup strategy and the estimated 192 ** cost of pursuing that strategy. 193 */ 194 struct WhereCost { 195 WherePlan plan; /* The lookup strategy */ 196 double rCost; /* Overall cost of pursuing this search strategy */ 197 double nRow; /* Estimated number of output rows */ 198 }; 199 200 /* 201 ** Bitmasks for the operators that indices are able to exploit. An 202 ** OR-ed combination of these values can be used when searching for 203 ** terms in the where clause. 204 */ 205 #define WO_IN 0x001 206 #define WO_EQ 0x002 207 #define WO_LT (WO_EQ<<(TK_LT-TK_EQ)) 208 #define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) 209 #define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) 210 #define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) 211 #define WO_MATCH 0x040 212 #define WO_ISNULL 0x080 213 #define WO_OR 0x100 /* Two or more OR-connected terms */ 214 #define WO_AND 0x200 /* Two or more AND-connected terms */ 215 216 #define WO_ALL 0xfff /* Mask of all possible WO_* values */ 217 #define WO_SINGLE 0x0ff /* Mask of all non-compound WO_* values */ 218 219 /* 220 ** Value for wsFlags returned by bestIndex() and stored in 221 ** WhereLevel.wsFlags. These flags determine which search 222 ** strategies are appropriate. 223 ** 224 ** The least significant 12 bits is reserved as a mask for WO_ values above. 225 ** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL. 226 ** But if the table is the right table of a left join, WhereLevel.wsFlags 227 ** is set to WO_IN|WO_EQ. The WhereLevel.wsFlags field can then be used as 228 ** the "op" parameter to findTerm when we are resolving equality constraints. 229 ** ISNULL constraints will then not be used on the right table of a left 230 ** join. Tickets #2177 and #2189. 231 */ 232 #define WHERE_ROWID_EQ 0x00001000 /* rowid=EXPR or rowid IN (...) */ 233 #define WHERE_ROWID_RANGE 0x00002000 /* rowid<EXPR and/or rowid>EXPR */ 234 #define WHERE_COLUMN_EQ 0x00010000 /* x=EXPR or x IN (...) or x IS NULL */ 235 #define WHERE_COLUMN_RANGE 0x00020000 /* x<EXPR and/or x>EXPR */ 236 #define WHERE_COLUMN_IN 0x00040000 /* x IN (...) */ 237 #define WHERE_COLUMN_NULL 0x00080000 /* x IS NULL */ 238 #define WHERE_INDEXED 0x000f0000 /* Anything that uses an index */ 239 #define WHERE_IN_ABLE 0x000f1000 /* Able to support an IN operator */ 240 #define WHERE_TOP_LIMIT 0x00100000 /* x<EXPR or x<=EXPR constraint */ 241 #define WHERE_BTM_LIMIT 0x00200000 /* x>EXPR or x>=EXPR constraint */ 242 #define WHERE_IDX_ONLY 0x00800000 /* Use index only - omit table */ 243 #define WHERE_ORDERBY 0x01000000 /* Output will appear in correct order */ 244 #define WHERE_REVERSE 0x02000000 /* Scan in reverse order */ 245 #define WHERE_UNIQUE 0x04000000 /* Selects no more than one row */ 246 #define WHERE_VIRTUALTABLE 0x08000000 /* Use virtual-table processing */ 247 #define WHERE_MULTI_OR 0x10000000 /* OR using multiple indices */ 248 249 /* 250 ** Initialize a preallocated WhereClause structure. 251 */ 252 static void whereClauseInit( 253 WhereClause *pWC, /* The WhereClause to be initialized */ 254 Parse *pParse, /* The parsing context */ 255 WhereMaskSet *pMaskSet /* Mapping from table cursor numbers to bitmasks */ 256 ){ 257 pWC->pParse = pParse; 258 pWC->pMaskSet = pMaskSet; 259 pWC->nTerm = 0; 260 pWC->nSlot = ArraySize(pWC->aStatic); 261 pWC->a = pWC->aStatic; 262 pWC->vmask = 0; 263 } 264 265 /* Forward reference */ 266 static void whereClauseClear(WhereClause*); 267 268 /* 269 ** Deallocate all memory associated with a WhereOrInfo object. 270 */ 271 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){ 272 whereClauseClear(&p->wc); 273 sqlite3DbFree(db, p); 274 } 275 276 /* 277 ** Deallocate all memory associated with a WhereAndInfo object. 278 */ 279 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){ 280 whereClauseClear(&p->wc); 281 sqlite3DbFree(db, p); 282 } 283 284 /* 285 ** Deallocate a WhereClause structure. The WhereClause structure 286 ** itself is not freed. This routine is the inverse of whereClauseInit(). 287 */ 288 static void whereClauseClear(WhereClause *pWC){ 289 int i; 290 WhereTerm *a; 291 sqlite3 *db = pWC->pParse->db; 292 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ 293 if( a->wtFlags & TERM_DYNAMIC ){ 294 sqlite3ExprDelete(db, a->pExpr); 295 } 296 if( a->wtFlags & TERM_ORINFO ){ 297 whereOrInfoDelete(db, a->u.pOrInfo); 298 }else if( a->wtFlags & TERM_ANDINFO ){ 299 whereAndInfoDelete(db, a->u.pAndInfo); 300 } 301 } 302 if( pWC->a!=pWC->aStatic ){ 303 sqlite3DbFree(db, pWC->a); 304 } 305 } 306 307 /* 308 ** Add a single new WhereTerm entry to the WhereClause object pWC. 309 ** The new WhereTerm object is constructed from Expr p and with wtFlags. 310 ** The index in pWC->a[] of the new WhereTerm is returned on success. 311 ** 0 is returned if the new WhereTerm could not be added due to a memory 312 ** allocation error. The memory allocation failure will be recorded in 313 ** the db->mallocFailed flag so that higher-level functions can detect it. 314 ** 315 ** This routine will increase the size of the pWC->a[] array as necessary. 316 ** 317 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility 318 ** for freeing the expression p is assumed by the WhereClause object pWC. 319 ** This is true even if this routine fails to allocate a new WhereTerm. 320 ** 321 ** WARNING: This routine might reallocate the space used to store 322 ** WhereTerms. All pointers to WhereTerms should be invalidated after 323 ** calling this routine. Such pointers may be reinitialized by referencing 324 ** the pWC->a[] array. 325 */ 326 static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){ 327 WhereTerm *pTerm; 328 int idx; 329 if( pWC->nTerm>=pWC->nSlot ){ 330 WhereTerm *pOld = pWC->a; 331 sqlite3 *db = pWC->pParse->db; 332 pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 ); 333 if( pWC->a==0 ){ 334 if( wtFlags & TERM_DYNAMIC ){ 335 sqlite3ExprDelete(db, p); 336 } 337 pWC->a = pOld; 338 return 0; 339 } 340 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); 341 if( pOld!=pWC->aStatic ){ 342 sqlite3DbFree(db, pOld); 343 } 344 pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]); 345 } 346 pTerm = &pWC->a[idx = pWC->nTerm++]; 347 pTerm->pExpr = p; 348 pTerm->wtFlags = wtFlags; 349 pTerm->pWC = pWC; 350 pTerm->iParent = -1; 351 return idx; 352 } 353 354 /* 355 ** This routine identifies subexpressions in the WHERE clause where 356 ** each subexpression is separated by the AND operator or some other 357 ** operator specified in the op parameter. The WhereClause structure 358 ** is filled with pointers to subexpressions. For example: 359 ** 360 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) 361 ** \________/ \_______________/ \________________/ 362 ** slot[0] slot[1] slot[2] 363 ** 364 ** The original WHERE clause in pExpr is unaltered. All this routine 365 ** does is make slot[] entries point to substructure within pExpr. 366 ** 367 ** In the previous sentence and in the diagram, "slot[]" refers to 368 ** the WhereClause.a[] array. The slot[] array grows as needed to contain 369 ** all terms of the WHERE clause. 370 */ 371 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){ 372 pWC->op = (u8)op; 373 if( pExpr==0 ) return; 374 if( pExpr->op!=op ){ 375 whereClauseInsert(pWC, pExpr, 0); 376 }else{ 377 whereSplit(pWC, pExpr->pLeft, op); 378 whereSplit(pWC, pExpr->pRight, op); 379 } 380 } 381 382 /* 383 ** Initialize an expression mask set (a WhereMaskSet object) 384 */ 385 #define initMaskSet(P) memset(P, 0, sizeof(*P)) 386 387 /* 388 ** Return the bitmask for the given cursor number. Return 0 if 389 ** iCursor is not in the set. 390 */ 391 static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){ 392 int i; 393 assert( pMaskSet->n<=sizeof(Bitmask)*8 ); 394 for(i=0; i<pMaskSet->n; i++){ 395 if( pMaskSet->ix[i]==iCursor ){ 396 return ((Bitmask)1)<<i; 397 } 398 } 399 return 0; 400 } 401 402 /* 403 ** Create a new mask for cursor iCursor. 404 ** 405 ** There is one cursor per table in the FROM clause. The number of 406 ** tables in the FROM clause is limited by a test early in the 407 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 408 ** array will never overflow. 409 */ 410 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 411 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 412 pMaskSet->ix[pMaskSet->n++] = iCursor; 413 } 414 415 /* 416 ** This routine walks (recursively) an expression tree and generates 417 ** a bitmask indicating which tables are used in that expression 418 ** tree. 419 ** 420 ** In order for this routine to work, the calling function must have 421 ** previously invoked sqlite3ResolveExprNames() on the expression. See 422 ** the header comment on that routine for additional information. 423 ** The sqlite3ResolveExprNames() routines looks for column names and 424 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to 425 ** the VDBE cursor number of the table. This routine just has to 426 ** translate the cursor numbers into bitmask values and OR all 427 ** the bitmasks together. 428 */ 429 static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*); 430 static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*); 431 static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){ 432 Bitmask mask = 0; 433 if( p==0 ) return 0; 434 if( p->op==TK_COLUMN ){ 435 mask = getMask(pMaskSet, p->iTable); 436 return mask; 437 } 438 mask = exprTableUsage(pMaskSet, p->pRight); 439 mask |= exprTableUsage(pMaskSet, p->pLeft); 440 if( ExprHasProperty(p, EP_xIsSelect) ){ 441 mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect); 442 }else{ 443 mask |= exprListTableUsage(pMaskSet, p->x.pList); 444 } 445 return mask; 446 } 447 static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){ 448 int i; 449 Bitmask mask = 0; 450 if( pList ){ 451 for(i=0; i<pList->nExpr; i++){ 452 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); 453 } 454 } 455 return mask; 456 } 457 static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){ 458 Bitmask mask = 0; 459 while( pS ){ 460 mask |= exprListTableUsage(pMaskSet, pS->pEList); 461 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); 462 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); 463 mask |= exprTableUsage(pMaskSet, pS->pWhere); 464 mask |= exprTableUsage(pMaskSet, pS->pHaving); 465 pS = pS->pPrior; 466 } 467 return mask; 468 } 469 470 /* 471 ** Return TRUE if the given operator is one of the operators that is 472 ** allowed for an indexable WHERE clause term. The allowed operators are 473 ** "=", "<", ">", "<=", ">=", and "IN". 474 */ 475 static int allowedOp(int op){ 476 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); 477 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); 478 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); 479 assert( TK_GE==TK_EQ+4 ); 480 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; 481 } 482 483 /* 484 ** Swap two objects of type TYPE. 485 */ 486 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 487 488 /* 489 ** Commute a comparison operator. Expressions of the form "X op Y" 490 ** are converted into "Y op X". 491 ** 492 ** If a collation sequence is associated with either the left or right 493 ** side of the comparison, it remains associated with the same side after 494 ** the commutation. So "Y collate NOCASE op X" becomes 495 ** "X collate NOCASE op Y". This is because any collation sequence on 496 ** the left hand side of a comparison overrides any collation sequence 497 ** attached to the right. For the same reason the EP_ExpCollate flag 498 ** is not commuted. 499 */ 500 static void exprCommute(Parse *pParse, Expr *pExpr){ 501 u16 expRight = (pExpr->pRight->flags & EP_ExpCollate); 502 u16 expLeft = (pExpr->pLeft->flags & EP_ExpCollate); 503 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); 504 pExpr->pRight->pColl = sqlite3ExprCollSeq(pParse, pExpr->pRight); 505 pExpr->pLeft->pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); 506 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl); 507 pExpr->pRight->flags = (pExpr->pRight->flags & ~EP_ExpCollate) | expLeft; 508 pExpr->pLeft->flags = (pExpr->pLeft->flags & ~EP_ExpCollate) | expRight; 509 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); 510 if( pExpr->op>=TK_GT ){ 511 assert( TK_LT==TK_GT+2 ); 512 assert( TK_GE==TK_LE+2 ); 513 assert( TK_GT>TK_EQ ); 514 assert( TK_GT<TK_LE ); 515 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); 516 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; 517 } 518 } 519 520 /* 521 ** Translate from TK_xx operator to WO_xx bitmask. 522 */ 523 static u16 operatorMask(int op){ 524 u16 c; 525 assert( allowedOp(op) ); 526 if( op==TK_IN ){ 527 c = WO_IN; 528 }else if( op==TK_ISNULL ){ 529 c = WO_ISNULL; 530 }else{ 531 assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff ); 532 c = (u16)(WO_EQ<<(op-TK_EQ)); 533 } 534 assert( op!=TK_ISNULL || c==WO_ISNULL ); 535 assert( op!=TK_IN || c==WO_IN ); 536 assert( op!=TK_EQ || c==WO_EQ ); 537 assert( op!=TK_LT || c==WO_LT ); 538 assert( op!=TK_LE || c==WO_LE ); 539 assert( op!=TK_GT || c==WO_GT ); 540 assert( op!=TK_GE || c==WO_GE ); 541 return c; 542 } 543 544 /* 545 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 546 ** where X is a reference to the iColumn of table iCur and <op> is one of 547 ** the WO_xx operator codes specified by the op parameter. 548 ** Return a pointer to the term. Return 0 if not found. 549 */ 550 static WhereTerm *findTerm( 551 WhereClause *pWC, /* The WHERE clause to be searched */ 552 int iCur, /* Cursor number of LHS */ 553 int iColumn, /* Column number of LHS */ 554 Bitmask notReady, /* RHS must not overlap with this mask */ 555 u32 op, /* Mask of WO_xx values describing operator */ 556 Index *pIdx /* Must be compatible with this index, if not NULL */ 557 ){ 558 WhereTerm *pTerm; 559 int k; 560 assert( iCur>=0 ); 561 op &= WO_ALL; 562 for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){ 563 if( pTerm->leftCursor==iCur 564 && (pTerm->prereqRight & notReady)==0 565 && pTerm->u.leftColumn==iColumn 566 && (pTerm->eOperator & op)!=0 567 ){ 568 if( pIdx && pTerm->eOperator!=WO_ISNULL ){ 569 Expr *pX = pTerm->pExpr; 570 CollSeq *pColl; 571 char idxaff; 572 int j; 573 Parse *pParse = pWC->pParse; 574 575 idxaff = pIdx->pTable->aCol[iColumn].affinity; 576 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue; 577 578 /* Figure out the collation sequence required from an index for 579 ** it to be useful for optimising expression pX. Store this 580 ** value in variable pColl. 581 */ 582 assert(pX->pLeft); 583 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); 584 assert(pColl || pParse->nErr); 585 586 for(j=0; pIdx->aiColumn[j]!=iColumn; j++){ 587 if( NEVER(j>=pIdx->nColumn) ) return 0; 588 } 589 if( pColl && sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue; 590 } 591 return pTerm; 592 } 593 } 594 return 0; 595 } 596 597 /* Forward reference */ 598 static void exprAnalyze(SrcList*, WhereClause*, int); 599 600 /* 601 ** Call exprAnalyze on all terms in a WHERE clause. 602 ** 603 ** 604 */ 605 static void exprAnalyzeAll( 606 SrcList *pTabList, /* the FROM clause */ 607 WhereClause *pWC /* the WHERE clause to be analyzed */ 608 ){ 609 int i; 610 for(i=pWC->nTerm-1; i>=0; i--){ 611 exprAnalyze(pTabList, pWC, i); 612 } 613 } 614 615 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 616 /* 617 ** Check to see if the given expression is a LIKE or GLOB operator that 618 ** can be optimized using inequality constraints. Return TRUE if it is 619 ** so and false if not. 620 ** 621 ** In order for the operator to be optimizible, the RHS must be a string 622 ** literal that does not begin with a wildcard. 623 */ 624 static int isLikeOrGlob( 625 Parse *pParse, /* Parsing and code generating context */ 626 Expr *pExpr, /* Test this expression */ 627 int *pnPattern, /* Number of non-wildcard prefix characters */ 628 int *pisComplete, /* True if the only wildcard is % in the last character */ 629 int *pnoCase /* True if uppercase is equivalent to lowercase */ 630 ){ 631 const char *z; /* String on RHS of LIKE operator */ 632 Expr *pRight, *pLeft; /* Right and left size of LIKE operator */ 633 ExprList *pList; /* List of operands to the LIKE operator */ 634 int c; /* One character in z[] */ 635 int cnt; /* Number of non-wildcard prefix characters */ 636 char wc[3]; /* Wildcard characters */ 637 CollSeq *pColl; /* Collating sequence for LHS */ 638 sqlite3 *db = pParse->db; /* Database connection */ 639 640 if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){ 641 return 0; 642 } 643 #ifdef SQLITE_EBCDIC 644 if( *pnoCase ) return 0; 645 #endif 646 pList = pExpr->x.pList; 647 pRight = pList->a[0].pExpr; 648 if( pRight->op!=TK_STRING ){ 649 return 0; 650 } 651 pLeft = pList->a[1].pExpr; 652 if( pLeft->op!=TK_COLUMN ){ 653 return 0; 654 } 655 pColl = sqlite3ExprCollSeq(pParse, pLeft); 656 assert( pColl!=0 || pLeft->iColumn==-1 ); 657 if( pColl==0 ) return 0; 658 if( (pColl->type!=SQLITE_COLL_BINARY || *pnoCase) && 659 (pColl->type!=SQLITE_COLL_NOCASE || !*pnoCase) ){ 660 return 0; 661 } 662 if( sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT ) return 0; 663 z = pRight->u.zToken; 664 if( ALWAYS(z) ){ 665 cnt = 0; 666 while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){ 667 cnt++; 668 } 669 if( cnt!=0 && c!=0 && 255!=(u8)z[cnt-1] ){ 670 *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0; 671 *pnPattern = cnt; 672 return 1; 673 } 674 } 675 return 0; 676 } 677 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 678 679 680 #ifndef SQLITE_OMIT_VIRTUALTABLE 681 /* 682 ** Check to see if the given expression is of the form 683 ** 684 ** column MATCH expr 685 ** 686 ** If it is then return TRUE. If not, return FALSE. 687 */ 688 static int isMatchOfColumn( 689 Expr *pExpr /* Test this expression */ 690 ){ 691 ExprList *pList; 692 693 if( pExpr->op!=TK_FUNCTION ){ 694 return 0; 695 } 696 if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){ 697 return 0; 698 } 699 pList = pExpr->x.pList; 700 if( pList->nExpr!=2 ){ 701 return 0; 702 } 703 if( pList->a[1].pExpr->op != TK_COLUMN ){ 704 return 0; 705 } 706 return 1; 707 } 708 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 709 710 /* 711 ** If the pBase expression originated in the ON or USING clause of 712 ** a join, then transfer the appropriate markings over to derived. 713 */ 714 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ 715 pDerived->flags |= pBase->flags & EP_FromJoin; 716 pDerived->iRightJoinTable = pBase->iRightJoinTable; 717 } 718 719 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 720 /* 721 ** Analyze a term that consists of two or more OR-connected 722 ** subterms. So in: 723 ** 724 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13) 725 ** ^^^^^^^^^^^^^^^^^^^^ 726 ** 727 ** This routine analyzes terms such as the middle term in the above example. 728 ** A WhereOrTerm object is computed and attached to the term under 729 ** analysis, regardless of the outcome of the analysis. Hence: 730 ** 731 ** WhereTerm.wtFlags |= TERM_ORINFO 732 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object 733 ** 734 ** The term being analyzed must have two or more of OR-connected subterms. 735 ** A single subterm might be a set of AND-connected sub-subterms. 736 ** Examples of terms under analysis: 737 ** 738 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5 739 ** (B) x=expr1 OR expr2=x OR x=expr3 740 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15) 741 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*') 742 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6) 743 ** 744 ** CASE 1: 745 ** 746 ** If all subterms are of the form T.C=expr for some single column of C 747 ** a single table T (as shown in example B above) then create a new virtual 748 ** term that is an equivalent IN expression. In other words, if the term 749 ** being analyzed is: 750 ** 751 ** x = expr1 OR expr2 = x OR x = expr3 752 ** 753 ** then create a new virtual term like this: 754 ** 755 ** x IN (expr1,expr2,expr3) 756 ** 757 ** CASE 2: 758 ** 759 ** If all subterms are indexable by a single table T, then set 760 ** 761 ** WhereTerm.eOperator = WO_OR 762 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T 763 ** 764 ** A subterm is "indexable" if it is of the form 765 ** "T.C <op> <expr>" where C is any column of table T and 766 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN". 767 ** A subterm is also indexable if it is an AND of two or more 768 ** subsubterms at least one of which is indexable. Indexable AND 769 ** subterms have their eOperator set to WO_AND and they have 770 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object. 771 ** 772 ** From another point of view, "indexable" means that the subterm could 773 ** potentially be used with an index if an appropriate index exists. 774 ** This analysis does not consider whether or not the index exists; that 775 ** is something the bestIndex() routine will determine. This analysis 776 ** only looks at whether subterms appropriate for indexing exist. 777 ** 778 ** All examples A through E above all satisfy case 2. But if a term 779 ** also statisfies case 1 (such as B) we know that the optimizer will 780 ** always prefer case 1, so in that case we pretend that case 2 is not 781 ** satisfied. 782 ** 783 ** It might be the case that multiple tables are indexable. For example, 784 ** (E) above is indexable on tables P, Q, and R. 785 ** 786 ** Terms that satisfy case 2 are candidates for lookup by using 787 ** separate indices to find rowids for each subterm and composing 788 ** the union of all rowids using a RowSet object. This is similar 789 ** to "bitmap indices" in other database engines. 790 ** 791 ** OTHERWISE: 792 ** 793 ** If neither case 1 nor case 2 apply, then leave the eOperator set to 794 ** zero. This term is not useful for search. 795 */ 796 static void exprAnalyzeOrTerm( 797 SrcList *pSrc, /* the FROM clause */ 798 WhereClause *pWC, /* the complete WHERE clause */ 799 int idxTerm /* Index of the OR-term to be analyzed */ 800 ){ 801 Parse *pParse = pWC->pParse; /* Parser context */ 802 sqlite3 *db = pParse->db; /* Database connection */ 803 WhereTerm *pTerm = &pWC->a[idxTerm]; /* The term to be analyzed */ 804 Expr *pExpr = pTerm->pExpr; /* The expression of the term */ 805 WhereMaskSet *pMaskSet = pWC->pMaskSet; /* Table use masks */ 806 int i; /* Loop counters */ 807 WhereClause *pOrWc; /* Breakup of pTerm into subterms */ 808 WhereTerm *pOrTerm; /* A Sub-term within the pOrWc */ 809 WhereOrInfo *pOrInfo; /* Additional information associated with pTerm */ 810 Bitmask chngToIN; /* Tables that might satisfy case 1 */ 811 Bitmask indexable; /* Tables that are indexable, satisfying case 2 */ 812 813 /* 814 ** Break the OR clause into its separate subterms. The subterms are 815 ** stored in a WhereClause structure containing within the WhereOrInfo 816 ** object that is attached to the original OR clause term. 817 */ 818 assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 ); 819 assert( pExpr->op==TK_OR ); 820 pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo)); 821 if( pOrInfo==0 ) return; 822 pTerm->wtFlags |= TERM_ORINFO; 823 pOrWc = &pOrInfo->wc; 824 whereClauseInit(pOrWc, pWC->pParse, pMaskSet); 825 whereSplit(pOrWc, pExpr, TK_OR); 826 exprAnalyzeAll(pSrc, pOrWc); 827 if( db->mallocFailed ) return; 828 assert( pOrWc->nTerm>=2 ); 829 830 /* 831 ** Compute the set of tables that might satisfy cases 1 or 2. 832 */ 833 indexable = ~(Bitmask)0; 834 chngToIN = ~(pWC->vmask); 835 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){ 836 if( (pOrTerm->eOperator & WO_SINGLE)==0 ){ 837 WhereAndInfo *pAndInfo; 838 assert( pOrTerm->eOperator==0 ); 839 assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 ); 840 chngToIN = 0; 841 pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo)); 842 if( pAndInfo ){ 843 WhereClause *pAndWC; 844 WhereTerm *pAndTerm; 845 int j; 846 Bitmask b = 0; 847 pOrTerm->u.pAndInfo = pAndInfo; 848 pOrTerm->wtFlags |= TERM_ANDINFO; 849 pOrTerm->eOperator = WO_AND; 850 pAndWC = &pAndInfo->wc; 851 whereClauseInit(pAndWC, pWC->pParse, pMaskSet); 852 whereSplit(pAndWC, pOrTerm->pExpr, TK_AND); 853 exprAnalyzeAll(pSrc, pAndWC); 854 testcase( db->mallocFailed ); 855 if( !db->mallocFailed ){ 856 for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){ 857 assert( pAndTerm->pExpr ); 858 if( allowedOp(pAndTerm->pExpr->op) ){ 859 b |= getMask(pMaskSet, pAndTerm->leftCursor); 860 } 861 } 862 } 863 indexable &= b; 864 } 865 }else if( pOrTerm->wtFlags & TERM_COPIED ){ 866 /* Skip this term for now. We revisit it when we process the 867 ** corresponding TERM_VIRTUAL term */ 868 }else{ 869 Bitmask b; 870 b = getMask(pMaskSet, pOrTerm->leftCursor); 871 if( pOrTerm->wtFlags & TERM_VIRTUAL ){ 872 WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent]; 873 b |= getMask(pMaskSet, pOther->leftCursor); 874 } 875 indexable &= b; 876 if( pOrTerm->eOperator!=WO_EQ ){ 877 chngToIN = 0; 878 }else{ 879 chngToIN &= b; 880 } 881 } 882 } 883 884 /* 885 ** Record the set of tables that satisfy case 2. The set might be 886 ** empty. 887 */ 888 pOrInfo->indexable = indexable; 889 pTerm->eOperator = indexable==0 ? 0 : WO_OR; 890 891 /* 892 ** chngToIN holds a set of tables that *might* satisfy case 1. But 893 ** we have to do some additional checking to see if case 1 really 894 ** is satisfied. 895 ** 896 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means 897 ** that there is no possibility of transforming the OR clause into an 898 ** IN operator because one or more terms in the OR clause contain 899 ** something other than == on a column in the single table. The 1-bit 900 ** case means that every term of the OR clause is of the form 901 ** "table.column=expr" for some single table. The one bit that is set 902 ** will correspond to the common table. We still need to check to make 903 ** sure the same column is used on all terms. The 2-bit case is when 904 ** the all terms are of the form "table1.column=table2.column". It 905 ** might be possible to form an IN operator with either table1.column 906 ** or table2.column as the LHS if either is common to every term of 907 ** the OR clause. 908 ** 909 ** Note that terms of the form "table.column1=table.column2" (the 910 ** same table on both sizes of the ==) cannot be optimized. 911 */ 912 if( chngToIN ){ 913 int okToChngToIN = 0; /* True if the conversion to IN is valid */ 914 int iColumn = -1; /* Column index on lhs of IN operator */ 915 int iCursor = -1; /* Table cursor common to all terms */ 916 int j = 0; /* Loop counter */ 917 918 /* Search for a table and column that appears on one side or the 919 ** other of the == operator in every subterm. That table and column 920 ** will be recorded in iCursor and iColumn. There might not be any 921 ** such table and column. Set okToChngToIN if an appropriate table 922 ** and column is found but leave okToChngToIN false if not found. 923 */ 924 for(j=0; j<2 && !okToChngToIN; j++){ 925 pOrTerm = pOrWc->a; 926 for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){ 927 assert( pOrTerm->eOperator==WO_EQ ); 928 pOrTerm->wtFlags &= ~TERM_OR_OK; 929 if( pOrTerm->leftCursor==iCursor ){ 930 /* This is the 2-bit case and we are on the second iteration and 931 ** current term is from the first iteration. So skip this term. */ 932 assert( j==1 ); 933 continue; 934 } 935 if( (chngToIN & getMask(pMaskSet, pOrTerm->leftCursor))==0 ){ 936 /* This term must be of the form t1.a==t2.b where t2 is in the 937 ** chngToIN set but t1 is not. This term will be either preceeded 938 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term 939 ** and use its inversion. */ 940 testcase( pOrTerm->wtFlags & TERM_COPIED ); 941 testcase( pOrTerm->wtFlags & TERM_VIRTUAL ); 942 assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) ); 943 continue; 944 } 945 iColumn = pOrTerm->u.leftColumn; 946 iCursor = pOrTerm->leftCursor; 947 break; 948 } 949 if( i<0 ){ 950 /* No candidate table+column was found. This can only occur 951 ** on the second iteration */ 952 assert( j==1 ); 953 assert( (chngToIN&(chngToIN-1))==0 ); 954 assert( chngToIN==getMask(pMaskSet, iCursor) ); 955 break; 956 } 957 testcase( j==1 ); 958 959 /* We have found a candidate table and column. Check to see if that 960 ** table and column is common to every term in the OR clause */ 961 okToChngToIN = 1; 962 for(; i>=0 && okToChngToIN; i--, pOrTerm++){ 963 assert( pOrTerm->eOperator==WO_EQ ); 964 if( pOrTerm->leftCursor!=iCursor ){ 965 pOrTerm->wtFlags &= ~TERM_OR_OK; 966 }else if( pOrTerm->u.leftColumn!=iColumn ){ 967 okToChngToIN = 0; 968 }else{ 969 int affLeft, affRight; 970 /* If the right-hand side is also a column, then the affinities 971 ** of both right and left sides must be such that no type 972 ** conversions are required on the right. (Ticket #2249) 973 */ 974 affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight); 975 affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft); 976 if( affRight!=0 && affRight!=affLeft ){ 977 okToChngToIN = 0; 978 }else{ 979 pOrTerm->wtFlags |= TERM_OR_OK; 980 } 981 } 982 } 983 } 984 985 /* At this point, okToChngToIN is true if original pTerm satisfies 986 ** case 1. In that case, construct a new virtual term that is 987 ** pTerm converted into an IN operator. 988 */ 989 if( okToChngToIN ){ 990 Expr *pDup; /* A transient duplicate expression */ 991 ExprList *pList = 0; /* The RHS of the IN operator */ 992 Expr *pLeft = 0; /* The LHS of the IN operator */ 993 Expr *pNew; /* The complete IN operator */ 994 995 for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){ 996 if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue; 997 assert( pOrTerm->eOperator==WO_EQ ); 998 assert( pOrTerm->leftCursor==iCursor ); 999 assert( pOrTerm->u.leftColumn==iColumn ); 1000 pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0); 1001 pList = sqlite3ExprListAppend(pWC->pParse, pList, pDup); 1002 pLeft = pOrTerm->pExpr->pLeft; 1003 } 1004 assert( pLeft!=0 ); 1005 pDup = sqlite3ExprDup(db, pLeft, 0); 1006 pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0); 1007 if( pNew ){ 1008 int idxNew; 1009 transferJoinMarkings(pNew, pExpr); 1010 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); 1011 pNew->x.pList = pList; 1012 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 1013 testcase( idxNew==0 ); 1014 exprAnalyze(pSrc, pWC, idxNew); 1015 pTerm = &pWC->a[idxTerm]; 1016 pWC->a[idxNew].iParent = idxTerm; 1017 pTerm->nChild = 1; 1018 }else{ 1019 sqlite3ExprListDelete(db, pList); 1020 } 1021 pTerm->eOperator = 0; /* case 1 trumps case 2 */ 1022 } 1023 } 1024 } 1025 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */ 1026 1027 1028 /* 1029 ** The input to this routine is an WhereTerm structure with only the 1030 ** "pExpr" field filled in. The job of this routine is to analyze the 1031 ** subexpression and populate all the other fields of the WhereTerm 1032 ** structure. 1033 ** 1034 ** If the expression is of the form "<expr> <op> X" it gets commuted 1035 ** to the standard form of "X <op> <expr>". 1036 ** 1037 ** If the expression is of the form "X <op> Y" where both X and Y are 1038 ** columns, then the original expression is unchanged and a new virtual 1039 ** term of the form "Y <op> X" is added to the WHERE clause and 1040 ** analyzed separately. The original term is marked with TERM_COPIED 1041 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr 1042 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it 1043 ** is a commuted copy of a prior term.) The original term has nChild=1 1044 ** and the copy has idxParent set to the index of the original term. 1045 */ 1046 static void exprAnalyze( 1047 SrcList *pSrc, /* the FROM clause */ 1048 WhereClause *pWC, /* the WHERE clause */ 1049 int idxTerm /* Index of the term to be analyzed */ 1050 ){ 1051 WhereTerm *pTerm; /* The term to be analyzed */ 1052 WhereMaskSet *pMaskSet; /* Set of table index masks */ 1053 Expr *pExpr; /* The expression to be analyzed */ 1054 Bitmask prereqLeft; /* Prerequesites of the pExpr->pLeft */ 1055 Bitmask prereqAll; /* Prerequesites of pExpr */ 1056 Bitmask extraRight = 0; 1057 int nPattern; 1058 int isComplete; 1059 int noCase; 1060 int op; /* Top-level operator. pExpr->op */ 1061 Parse *pParse = pWC->pParse; /* Parsing context */ 1062 sqlite3 *db = pParse->db; /* Database connection */ 1063 1064 if( db->mallocFailed ){ 1065 return; 1066 } 1067 pTerm = &pWC->a[idxTerm]; 1068 pMaskSet = pWC->pMaskSet; 1069 pExpr = pTerm->pExpr; 1070 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); 1071 op = pExpr->op; 1072 if( op==TK_IN ){ 1073 assert( pExpr->pRight==0 ); 1074 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 1075 pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect); 1076 }else{ 1077 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList); 1078 } 1079 }else if( op==TK_ISNULL ){ 1080 pTerm->prereqRight = 0; 1081 }else{ 1082 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); 1083 } 1084 prereqAll = exprTableUsage(pMaskSet, pExpr); 1085 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 1086 Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable); 1087 prereqAll |= x; 1088 extraRight = x-1; /* ON clause terms may not be used with an index 1089 ** on left table of a LEFT JOIN. Ticket #3015 */ 1090 } 1091 pTerm->prereqAll = prereqAll; 1092 pTerm->leftCursor = -1; 1093 pTerm->iParent = -1; 1094 pTerm->eOperator = 0; 1095 if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){ 1096 Expr *pLeft = pExpr->pLeft; 1097 Expr *pRight = pExpr->pRight; 1098 if( pLeft->op==TK_COLUMN ){ 1099 pTerm->leftCursor = pLeft->iTable; 1100 pTerm->u.leftColumn = pLeft->iColumn; 1101 pTerm->eOperator = operatorMask(op); 1102 } 1103 if( pRight && pRight->op==TK_COLUMN ){ 1104 WhereTerm *pNew; 1105 Expr *pDup; 1106 if( pTerm->leftCursor>=0 ){ 1107 int idxNew; 1108 pDup = sqlite3ExprDup(db, pExpr, 0); 1109 if( db->mallocFailed ){ 1110 sqlite3ExprDelete(db, pDup); 1111 return; 1112 } 1113 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); 1114 if( idxNew==0 ) return; 1115 pNew = &pWC->a[idxNew]; 1116 pNew->iParent = idxTerm; 1117 pTerm = &pWC->a[idxTerm]; 1118 pTerm->nChild = 1; 1119 pTerm->wtFlags |= TERM_COPIED; 1120 }else{ 1121 pDup = pExpr; 1122 pNew = pTerm; 1123 } 1124 exprCommute(pParse, pDup); 1125 pLeft = pDup->pLeft; 1126 pNew->leftCursor = pLeft->iTable; 1127 pNew->u.leftColumn = pLeft->iColumn; 1128 pNew->prereqRight = prereqLeft; 1129 pNew->prereqAll = prereqAll; 1130 pNew->eOperator = operatorMask(pDup->op); 1131 } 1132 } 1133 1134 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION 1135 /* If a term is the BETWEEN operator, create two new virtual terms 1136 ** that define the range that the BETWEEN implements. For example: 1137 ** 1138 ** a BETWEEN b AND c 1139 ** 1140 ** is converted into: 1141 ** 1142 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c) 1143 ** 1144 ** The two new terms are added onto the end of the WhereClause object. 1145 ** The new terms are "dynamic" and are children of the original BETWEEN 1146 ** term. That means that if the BETWEEN term is coded, the children are 1147 ** skipped. Or, if the children are satisfied by an index, the original 1148 ** BETWEEN term is skipped. 1149 */ 1150 else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){ 1151 ExprList *pList = pExpr->x.pList; 1152 int i; 1153 static const u8 ops[] = {TK_GE, TK_LE}; 1154 assert( pList!=0 ); 1155 assert( pList->nExpr==2 ); 1156 for(i=0; i<2; i++){ 1157 Expr *pNewExpr; 1158 int idxNew; 1159 pNewExpr = sqlite3PExpr(pParse, ops[i], 1160 sqlite3ExprDup(db, pExpr->pLeft, 0), 1161 sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0); 1162 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1163 testcase( idxNew==0 ); 1164 exprAnalyze(pSrc, pWC, idxNew); 1165 pTerm = &pWC->a[idxTerm]; 1166 pWC->a[idxNew].iParent = idxTerm; 1167 } 1168 pTerm->nChild = 2; 1169 } 1170 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ 1171 1172 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 1173 /* Analyze a term that is composed of two or more subterms connected by 1174 ** an OR operator. 1175 */ 1176 else if( pExpr->op==TK_OR ){ 1177 assert( pWC->op==TK_AND ); 1178 exprAnalyzeOrTerm(pSrc, pWC, idxTerm); 1179 } 1180 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1181 1182 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 1183 /* Add constraints to reduce the search space on a LIKE or GLOB 1184 ** operator. 1185 ** 1186 ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints 1187 ** 1188 ** x>='abc' AND x<'abd' AND x LIKE 'abc%' 1189 ** 1190 ** The last character of the prefix "abc" is incremented to form the 1191 ** termination condition "abd". 1192 */ 1193 if( isLikeOrGlob(pParse, pExpr, &nPattern, &isComplete, &noCase) 1194 && pWC->op==TK_AND ){ 1195 Expr *pLeft, *pRight; 1196 Expr *pStr1, *pStr2; 1197 Expr *pNewExpr1, *pNewExpr2; 1198 int idxNew1, idxNew2; 1199 1200 pLeft = pExpr->x.pList->a[1].pExpr; 1201 pRight = pExpr->x.pList->a[0].pExpr; 1202 pStr1 = sqlite3Expr(db, TK_STRING, pRight->u.zToken); 1203 if( pStr1 ) pStr1->u.zToken[nPattern] = 0; 1204 pStr2 = sqlite3ExprDup(db, pStr1, 0); 1205 if( !db->mallocFailed ){ 1206 u8 c, *pC; /* Last character before the first wildcard */ 1207 pC = (u8*)&pStr2->u.zToken[nPattern-1]; 1208 c = *pC; 1209 if( noCase ){ 1210 /* The point is to increment the last character before the first 1211 ** wildcard. But if we increment '@', that will push it into the 1212 ** alphabetic range where case conversions will mess up the 1213 ** inequality. To avoid this, make sure to also run the full 1214 ** LIKE on all candidate expressions by clearing the isComplete flag 1215 */ 1216 if( c=='A'-1 ) isComplete = 0; 1217 1218 c = sqlite3UpperToLower[c]; 1219 } 1220 *pC = c + 1; 1221 } 1222 pNewExpr1 = sqlite3PExpr(pParse, TK_GE, sqlite3ExprDup(db,pLeft,0),pStr1,0); 1223 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); 1224 testcase( idxNew1==0 ); 1225 exprAnalyze(pSrc, pWC, idxNew1); 1226 pNewExpr2 = sqlite3PExpr(pParse, TK_LT, sqlite3ExprDup(db,pLeft,0),pStr2,0); 1227 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); 1228 testcase( idxNew2==0 ); 1229 exprAnalyze(pSrc, pWC, idxNew2); 1230 pTerm = &pWC->a[idxTerm]; 1231 if( isComplete ){ 1232 pWC->a[idxNew1].iParent = idxTerm; 1233 pWC->a[idxNew2].iParent = idxTerm; 1234 pTerm->nChild = 2; 1235 } 1236 } 1237 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 1238 1239 #ifndef SQLITE_OMIT_VIRTUALTABLE 1240 /* Add a WO_MATCH auxiliary term to the constraint set if the 1241 ** current expression is of the form: column MATCH expr. 1242 ** This information is used by the xBestIndex methods of 1243 ** virtual tables. The native query optimizer does not attempt 1244 ** to do anything with MATCH functions. 1245 */ 1246 if( isMatchOfColumn(pExpr) ){ 1247 int idxNew; 1248 Expr *pRight, *pLeft; 1249 WhereTerm *pNewTerm; 1250 Bitmask prereqColumn, prereqExpr; 1251 1252 pRight = pExpr->x.pList->a[0].pExpr; 1253 pLeft = pExpr->x.pList->a[1].pExpr; 1254 prereqExpr = exprTableUsage(pMaskSet, pRight); 1255 prereqColumn = exprTableUsage(pMaskSet, pLeft); 1256 if( (prereqExpr & prereqColumn)==0 ){ 1257 Expr *pNewExpr; 1258 pNewExpr = sqlite3PExpr(pParse, TK_MATCH, 1259 0, sqlite3ExprDup(db, pRight, 0), 0); 1260 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 1261 testcase( idxNew==0 ); 1262 pNewTerm = &pWC->a[idxNew]; 1263 pNewTerm->prereqRight = prereqExpr; 1264 pNewTerm->leftCursor = pLeft->iTable; 1265 pNewTerm->u.leftColumn = pLeft->iColumn; 1266 pNewTerm->eOperator = WO_MATCH; 1267 pNewTerm->iParent = idxTerm; 1268 pTerm = &pWC->a[idxTerm]; 1269 pTerm->nChild = 1; 1270 pTerm->wtFlags |= TERM_COPIED; 1271 pNewTerm->prereqAll = pTerm->prereqAll; 1272 } 1273 } 1274 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1275 1276 /* Prevent ON clause terms of a LEFT JOIN from being used to drive 1277 ** an index for tables to the left of the join. 1278 */ 1279 pTerm->prereqRight |= extraRight; 1280 } 1281 1282 /* 1283 ** Return TRUE if any of the expressions in pList->a[iFirst...] contain 1284 ** a reference to any table other than the iBase table. 1285 */ 1286 static int referencesOtherTables( 1287 ExprList *pList, /* Search expressions in ths list */ 1288 WhereMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ 1289 int iFirst, /* Be searching with the iFirst-th expression */ 1290 int iBase /* Ignore references to this table */ 1291 ){ 1292 Bitmask allowed = ~getMask(pMaskSet, iBase); 1293 while( iFirst<pList->nExpr ){ 1294 if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){ 1295 return 1; 1296 } 1297 } 1298 return 0; 1299 } 1300 1301 1302 /* 1303 ** This routine decides if pIdx can be used to satisfy the ORDER BY 1304 ** clause. If it can, it returns 1. If pIdx cannot satisfy the 1305 ** ORDER BY clause, this routine returns 0. 1306 ** 1307 ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the 1308 ** left-most table in the FROM clause of that same SELECT statement and 1309 ** the table has a cursor number of "base". pIdx is an index on pTab. 1310 ** 1311 ** nEqCol is the number of columns of pIdx that are used as equality 1312 ** constraints. Any of these columns may be missing from the ORDER BY 1313 ** clause and the match can still be a success. 1314 ** 1315 ** All terms of the ORDER BY that match against the index must be either 1316 ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE 1317 ** index do not need to satisfy this constraint.) The *pbRev value is 1318 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if 1319 ** the ORDER BY clause is all ASC. 1320 */ 1321 static int isSortingIndex( 1322 Parse *pParse, /* Parsing context */ 1323 WhereMaskSet *pMaskSet, /* Mapping from table cursor numbers to bitmaps */ 1324 Index *pIdx, /* The index we are testing */ 1325 int base, /* Cursor number for the table to be sorted */ 1326 ExprList *pOrderBy, /* The ORDER BY clause */ 1327 int nEqCol, /* Number of index columns with == constraints */ 1328 int *pbRev /* Set to 1 if ORDER BY is DESC */ 1329 ){ 1330 int i, j; /* Loop counters */ 1331 int sortOrder = 0; /* XOR of index and ORDER BY sort direction */ 1332 int nTerm; /* Number of ORDER BY terms */ 1333 struct ExprList_item *pTerm; /* A term of the ORDER BY clause */ 1334 sqlite3 *db = pParse->db; 1335 1336 assert( pOrderBy!=0 ); 1337 nTerm = pOrderBy->nExpr; 1338 assert( nTerm>0 ); 1339 1340 /* Match terms of the ORDER BY clause against columns of 1341 ** the index. 1342 ** 1343 ** Note that indices have pIdx->nColumn regular columns plus 1344 ** one additional column containing the rowid. The rowid column 1345 ** of the index is also allowed to match against the ORDER BY 1346 ** clause. 1347 */ 1348 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){ 1349 Expr *pExpr; /* The expression of the ORDER BY pTerm */ 1350 CollSeq *pColl; /* The collating sequence of pExpr */ 1351 int termSortOrder; /* Sort order for this term */ 1352 int iColumn; /* The i-th column of the index. -1 for rowid */ 1353 int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */ 1354 const char *zColl; /* Name of the collating sequence for i-th index term */ 1355 1356 pExpr = pTerm->pExpr; 1357 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){ 1358 /* Can not use an index sort on anything that is not a column in the 1359 ** left-most table of the FROM clause */ 1360 break; 1361 } 1362 pColl = sqlite3ExprCollSeq(pParse, pExpr); 1363 if( !pColl ){ 1364 pColl = db->pDfltColl; 1365 } 1366 if( i<pIdx->nColumn ){ 1367 iColumn = pIdx->aiColumn[i]; 1368 if( iColumn==pIdx->pTable->iPKey ){ 1369 iColumn = -1; 1370 } 1371 iSortOrder = pIdx->aSortOrder[i]; 1372 zColl = pIdx->azColl[i]; 1373 }else{ 1374 iColumn = -1; 1375 iSortOrder = 0; 1376 zColl = pColl->zName; 1377 } 1378 if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){ 1379 /* Term j of the ORDER BY clause does not match column i of the index */ 1380 if( i<nEqCol ){ 1381 /* If an index column that is constrained by == fails to match an 1382 ** ORDER BY term, that is OK. Just ignore that column of the index 1383 */ 1384 continue; 1385 }else if( i==pIdx->nColumn ){ 1386 /* Index column i is the rowid. All other terms match. */ 1387 break; 1388 }else{ 1389 /* If an index column fails to match and is not constrained by == 1390 ** then the index cannot satisfy the ORDER BY constraint. 1391 */ 1392 return 0; 1393 } 1394 } 1395 assert( pIdx->aSortOrder!=0 ); 1396 assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 ); 1397 assert( iSortOrder==0 || iSortOrder==1 ); 1398 termSortOrder = iSortOrder ^ pTerm->sortOrder; 1399 if( i>nEqCol ){ 1400 if( termSortOrder!=sortOrder ){ 1401 /* Indices can only be used if all ORDER BY terms past the 1402 ** equality constraints are all either DESC or ASC. */ 1403 return 0; 1404 } 1405 }else{ 1406 sortOrder = termSortOrder; 1407 } 1408 j++; 1409 pTerm++; 1410 if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ 1411 /* If the indexed column is the primary key and everything matches 1412 ** so far and none of the ORDER BY terms to the right reference other 1413 ** tables in the join, then we are assured that the index can be used 1414 ** to sort because the primary key is unique and so none of the other 1415 ** columns will make any difference 1416 */ 1417 j = nTerm; 1418 } 1419 } 1420 1421 *pbRev = sortOrder!=0; 1422 if( j>=nTerm ){ 1423 /* All terms of the ORDER BY clause are covered by this index so 1424 ** this index can be used for sorting. */ 1425 return 1; 1426 } 1427 if( pIdx->onError!=OE_None && i==pIdx->nColumn 1428 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ 1429 /* All terms of this index match some prefix of the ORDER BY clause 1430 ** and the index is UNIQUE and no terms on the tail of the ORDER BY 1431 ** clause reference other tables in a join. If this is all true then 1432 ** the order by clause is superfluous. */ 1433 return 1; 1434 } 1435 return 0; 1436 } 1437 1438 /* 1439 ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied 1440 ** by sorting in order of ROWID. Return true if so and set *pbRev to be 1441 ** true for reverse ROWID and false for forward ROWID order. 1442 */ 1443 static int sortableByRowid( 1444 int base, /* Cursor number for table to be sorted */ 1445 ExprList *pOrderBy, /* The ORDER BY clause */ 1446 WhereMaskSet *pMaskSet, /* Mapping from table cursors to bitmaps */ 1447 int *pbRev /* Set to 1 if ORDER BY is DESC */ 1448 ){ 1449 Expr *p; 1450 1451 assert( pOrderBy!=0 ); 1452 assert( pOrderBy->nExpr>0 ); 1453 p = pOrderBy->a[0].pExpr; 1454 if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1 1455 && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){ 1456 *pbRev = pOrderBy->a[0].sortOrder; 1457 return 1; 1458 } 1459 return 0; 1460 } 1461 1462 /* 1463 ** Prepare a crude estimate of the logarithm of the input value. 1464 ** The results need not be exact. This is only used for estimating 1465 ** the total cost of performing operations with O(logN) or O(NlogN) 1466 ** complexity. Because N is just a guess, it is no great tragedy if 1467 ** logN is a little off. 1468 */ 1469 static double estLog(double N){ 1470 double logN = 1; 1471 double x = 10; 1472 while( N>x ){ 1473 logN += 1; 1474 x *= 10; 1475 } 1476 return logN; 1477 } 1478 1479 /* 1480 ** Two routines for printing the content of an sqlite3_index_info 1481 ** structure. Used for testing and debugging only. If neither 1482 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 1483 ** are no-ops. 1484 */ 1485 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG) 1486 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ 1487 int i; 1488 if( !sqlite3WhereTrace ) return; 1489 for(i=0; i<p->nConstraint; i++){ 1490 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 1491 i, 1492 p->aConstraint[i].iColumn, 1493 p->aConstraint[i].iTermOffset, 1494 p->aConstraint[i].op, 1495 p->aConstraint[i].usable); 1496 } 1497 for(i=0; i<p->nOrderBy; i++){ 1498 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 1499 i, 1500 p->aOrderBy[i].iColumn, 1501 p->aOrderBy[i].desc); 1502 } 1503 } 1504 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ 1505 int i; 1506 if( !sqlite3WhereTrace ) return; 1507 for(i=0; i<p->nConstraint; i++){ 1508 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 1509 i, 1510 p->aConstraintUsage[i].argvIndex, 1511 p->aConstraintUsage[i].omit); 1512 } 1513 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 1514 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 1515 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 1516 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 1517 } 1518 #else 1519 #define TRACE_IDX_INPUTS(A) 1520 #define TRACE_IDX_OUTPUTS(A) 1521 #endif 1522 1523 /* 1524 ** Required because bestIndex() is called by bestOrClauseIndex() 1525 */ 1526 static void bestIndex( 1527 Parse*, WhereClause*, struct SrcList_item*, Bitmask, ExprList*, WhereCost*); 1528 1529 /* 1530 ** This routine attempts to find an scanning strategy that can be used 1531 ** to optimize an 'OR' expression that is part of a WHERE clause. 1532 ** 1533 ** The table associated with FROM clause term pSrc may be either a 1534 ** regular B-Tree table or a virtual table. 1535 */ 1536 static void bestOrClauseIndex( 1537 Parse *pParse, /* The parsing context */ 1538 WhereClause *pWC, /* The WHERE clause */ 1539 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1540 Bitmask notReady, /* Mask of cursors that are not available */ 1541 ExprList *pOrderBy, /* The ORDER BY clause */ 1542 WhereCost *pCost /* Lowest cost query plan */ 1543 ){ 1544 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 1545 const int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ 1546 const Bitmask maskSrc = getMask(pWC->pMaskSet, iCur); /* Bitmask for pSrc */ 1547 WhereTerm * const pWCEnd = &pWC->a[pWC->nTerm]; /* End of pWC->a[] */ 1548 WhereTerm *pTerm; /* A single term of the WHERE clause */ 1549 1550 /* Search the WHERE clause terms for a usable WO_OR term. */ 1551 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 1552 if( pTerm->eOperator==WO_OR 1553 && ((pTerm->prereqAll & ~maskSrc) & notReady)==0 1554 && (pTerm->u.pOrInfo->indexable & maskSrc)!=0 1555 ){ 1556 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; 1557 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; 1558 WhereTerm *pOrTerm; 1559 int flags = WHERE_MULTI_OR; 1560 double rTotal = 0; 1561 double nRow = 0; 1562 1563 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ 1564 WhereCost sTermCost; 1565 WHERETRACE(("... Multi-index OR testing for term %d of %d....\n", 1566 (pOrTerm - pOrWC->a), (pTerm - pWC->a) 1567 )); 1568 if( pOrTerm->eOperator==WO_AND ){ 1569 WhereClause *pAndWC = &pOrTerm->u.pAndInfo->wc; 1570 bestIndex(pParse, pAndWC, pSrc, notReady, 0, &sTermCost); 1571 }else if( pOrTerm->leftCursor==iCur ){ 1572 WhereClause tempWC; 1573 tempWC.pParse = pWC->pParse; 1574 tempWC.pMaskSet = pWC->pMaskSet; 1575 tempWC.op = TK_AND; 1576 tempWC.a = pOrTerm; 1577 tempWC.nTerm = 1; 1578 bestIndex(pParse, &tempWC, pSrc, notReady, 0, &sTermCost); 1579 }else{ 1580 continue; 1581 } 1582 rTotal += sTermCost.rCost; 1583 nRow += sTermCost.nRow; 1584 if( rTotal>=pCost->rCost ) break; 1585 } 1586 1587 /* If there is an ORDER BY clause, increase the scan cost to account 1588 ** for the cost of the sort. */ 1589 if( pOrderBy!=0 ){ 1590 rTotal += nRow*estLog(nRow); 1591 WHERETRACE(("... sorting increases OR cost to %.9g\n", rTotal)); 1592 } 1593 1594 /* If the cost of scanning using this OR term for optimization is 1595 ** less than the current cost stored in pCost, replace the contents 1596 ** of pCost. */ 1597 WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal, nRow)); 1598 if( rTotal<pCost->rCost ){ 1599 pCost->rCost = rTotal; 1600 pCost->nRow = nRow; 1601 pCost->plan.wsFlags = flags; 1602 pCost->plan.u.pTerm = pTerm; 1603 } 1604 } 1605 } 1606 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 1607 } 1608 1609 #ifndef SQLITE_OMIT_VIRTUALTABLE 1610 /* 1611 ** Allocate and populate an sqlite3_index_info structure. It is the 1612 ** responsibility of the caller to eventually release the structure 1613 ** by passing the pointer returned by this function to sqlite3_free(). 1614 */ 1615 static sqlite3_index_info *allocateIndexInfo( 1616 Parse *pParse, 1617 WhereClause *pWC, 1618 struct SrcList_item *pSrc, 1619 ExprList *pOrderBy 1620 ){ 1621 int i, j; 1622 int nTerm; 1623 struct sqlite3_index_constraint *pIdxCons; 1624 struct sqlite3_index_orderby *pIdxOrderBy; 1625 struct sqlite3_index_constraint_usage *pUsage; 1626 WhereTerm *pTerm; 1627 int nOrderBy; 1628 sqlite3_index_info *pIdxInfo; 1629 1630 WHERETRACE(("Recomputing index info for %s...\n", pSrc->pTab->zName)); 1631 1632 /* Count the number of possible WHERE clause constraints referring 1633 ** to this virtual table */ 1634 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1635 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1636 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); 1637 testcase( pTerm->eOperator==WO_IN ); 1638 testcase( pTerm->eOperator==WO_ISNULL ); 1639 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; 1640 nTerm++; 1641 } 1642 1643 /* If the ORDER BY clause contains only columns in the current 1644 ** virtual table then allocate space for the aOrderBy part of 1645 ** the sqlite3_index_info structure. 1646 */ 1647 nOrderBy = 0; 1648 if( pOrderBy ){ 1649 for(i=0; i<pOrderBy->nExpr; i++){ 1650 Expr *pExpr = pOrderBy->a[i].pExpr; 1651 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 1652 } 1653 if( i==pOrderBy->nExpr ){ 1654 nOrderBy = pOrderBy->nExpr; 1655 } 1656 } 1657 1658 /* Allocate the sqlite3_index_info structure 1659 */ 1660 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 1661 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 1662 + sizeof(*pIdxOrderBy)*nOrderBy ); 1663 if( pIdxInfo==0 ){ 1664 sqlite3ErrorMsg(pParse, "out of memory"); 1665 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ 1666 return 0; 1667 } 1668 1669 /* Initialize the structure. The sqlite3_index_info structure contains 1670 ** many fields that are declared "const" to prevent xBestIndex from 1671 ** changing them. We have to do some funky casting in order to 1672 ** initialize those fields. 1673 */ 1674 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; 1675 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 1676 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 1677 *(int*)&pIdxInfo->nConstraint = nTerm; 1678 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 1679 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; 1680 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; 1681 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = 1682 pUsage; 1683 1684 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1685 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1686 assert( (pTerm->eOperator&(pTerm->eOperator-1))==0 ); 1687 testcase( pTerm->eOperator==WO_IN ); 1688 testcase( pTerm->eOperator==WO_ISNULL ); 1689 if( pTerm->eOperator & (WO_IN|WO_ISNULL) ) continue; 1690 pIdxCons[j].iColumn = pTerm->u.leftColumn; 1691 pIdxCons[j].iTermOffset = i; 1692 pIdxCons[j].op = (u8)pTerm->eOperator; 1693 /* The direct assignment in the previous line is possible only because 1694 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 1695 ** following asserts verify this fact. */ 1696 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 1697 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 1698 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 1699 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 1700 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 1701 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); 1702 assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); 1703 j++; 1704 } 1705 for(i=0; i<nOrderBy; i++){ 1706 Expr *pExpr = pOrderBy->a[i].pExpr; 1707 pIdxOrderBy[i].iColumn = pExpr->iColumn; 1708 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; 1709 } 1710 1711 return pIdxInfo; 1712 } 1713 1714 /* 1715 ** The table object reference passed as the second argument to this function 1716 ** must represent a virtual table. This function invokes the xBestIndex() 1717 ** method of the virtual table with the sqlite3_index_info pointer passed 1718 ** as the argument. 1719 ** 1720 ** If an error occurs, pParse is populated with an error message and a 1721 ** non-zero value is returned. Otherwise, 0 is returned and the output 1722 ** part of the sqlite3_index_info structure is left populated. 1723 ** 1724 ** Whether or not an error is returned, it is the responsibility of the 1725 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates 1726 ** that this is required. 1727 */ 1728 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ 1729 sqlite3_vtab *pVtab = pTab->pVtab; 1730 int i; 1731 int rc; 1732 1733 (void)sqlite3SafetyOff(pParse->db); 1734 WHERETRACE(("xBestIndex for %s\n", pTab->zName)); 1735 TRACE_IDX_INPUTS(p); 1736 rc = pVtab->pModule->xBestIndex(pVtab, p); 1737 TRACE_IDX_OUTPUTS(p); 1738 (void)sqlite3SafetyOn(pParse->db); 1739 1740 if( rc!=SQLITE_OK ){ 1741 if( rc==SQLITE_NOMEM ){ 1742 pParse->db->mallocFailed = 1; 1743 }else if( !pVtab->zErrMsg ){ 1744 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 1745 }else{ 1746 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 1747 } 1748 } 1749 sqlite3DbFree(pParse->db, pVtab->zErrMsg); 1750 pVtab->zErrMsg = 0; 1751 1752 for(i=0; i<p->nConstraint; i++){ 1753 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){ 1754 sqlite3ErrorMsg(pParse, 1755 "table %s: xBestIndex returned an invalid plan", pTab->zName); 1756 } 1757 } 1758 1759 return pParse->nErr; 1760 } 1761 1762 1763 /* 1764 ** Compute the best index for a virtual table. 1765 ** 1766 ** The best index is computed by the xBestIndex method of the virtual 1767 ** table module. This routine is really just a wrapper that sets up 1768 ** the sqlite3_index_info structure that is used to communicate with 1769 ** xBestIndex. 1770 ** 1771 ** In a join, this routine might be called multiple times for the 1772 ** same virtual table. The sqlite3_index_info structure is created 1773 ** and initialized on the first invocation and reused on all subsequent 1774 ** invocations. The sqlite3_index_info structure is also used when 1775 ** code is generated to access the virtual table. The whereInfoDelete() 1776 ** routine takes care of freeing the sqlite3_index_info structure after 1777 ** everybody has finished with it. 1778 */ 1779 static void bestVirtualIndex( 1780 Parse *pParse, /* The parsing context */ 1781 WhereClause *pWC, /* The WHERE clause */ 1782 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1783 Bitmask notReady, /* Mask of cursors that are not available */ 1784 ExprList *pOrderBy, /* The order by clause */ 1785 WhereCost *pCost, /* Lowest cost query plan */ 1786 sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */ 1787 ){ 1788 Table *pTab = pSrc->pTab; 1789 sqlite3_index_info *pIdxInfo; 1790 struct sqlite3_index_constraint *pIdxCons; 1791 struct sqlite3_index_constraint_usage *pUsage; 1792 WhereTerm *pTerm; 1793 int i, j; 1794 int nOrderBy; 1795 1796 /* Make sure wsFlags is initialized to some sane value. Otherwise, if the 1797 ** malloc in allocateIndexInfo() fails and this function returns leaving 1798 ** wsFlags in an uninitialized state, the caller may behave unpredictably. 1799 */ 1800 memset(pCost, 0, sizeof(*pCost)); 1801 pCost->plan.wsFlags = WHERE_VIRTUALTABLE; 1802 1803 /* If the sqlite3_index_info structure has not been previously 1804 ** allocated and initialized, then allocate and initialize it now. 1805 */ 1806 pIdxInfo = *ppIdxInfo; 1807 if( pIdxInfo==0 ){ 1808 *ppIdxInfo = pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pOrderBy); 1809 } 1810 if( pIdxInfo==0 ){ 1811 return; 1812 } 1813 1814 /* At this point, the sqlite3_index_info structure that pIdxInfo points 1815 ** to will have been initialized, either during the current invocation or 1816 ** during some prior invocation. Now we just have to customize the 1817 ** details of pIdxInfo for the current invocation and pass it to 1818 ** xBestIndex. 1819 */ 1820 1821 /* The module name must be defined. Also, by this point there must 1822 ** be a pointer to an sqlite3_vtab structure. Otherwise 1823 ** sqlite3ViewGetColumnNames() would have picked up the error. 1824 */ 1825 assert( pTab->azModuleArg && pTab->azModuleArg[0] ); 1826 assert( pTab->pVtab ); 1827 1828 /* Set the aConstraint[].usable fields and initialize all 1829 ** output variables to zero. 1830 ** 1831 ** aConstraint[].usable is true for constraints where the right-hand 1832 ** side contains only references to tables to the left of the current 1833 ** table. In other words, if the constraint is of the form: 1834 ** 1835 ** column = expr 1836 ** 1837 ** and we are evaluating a join, then the constraint on column is 1838 ** only valid if all tables referenced in expr occur to the left 1839 ** of the table containing column. 1840 ** 1841 ** The aConstraints[] array contains entries for all constraints 1842 ** on the current table. That way we only have to compute it once 1843 ** even though we might try to pick the best index multiple times. 1844 ** For each attempt at picking an index, the order of tables in the 1845 ** join might be different so we have to recompute the usable flag 1846 ** each time. 1847 */ 1848 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 1849 pUsage = pIdxInfo->aConstraintUsage; 1850 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ 1851 j = pIdxCons->iTermOffset; 1852 pTerm = &pWC->a[j]; 1853 pIdxCons->usable = (pTerm->prereqRight & notReady)==0 ?1:0; 1854 } 1855 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); 1856 if( pIdxInfo->needToFreeIdxStr ){ 1857 sqlite3_free(pIdxInfo->idxStr); 1858 } 1859 pIdxInfo->idxStr = 0; 1860 pIdxInfo->idxNum = 0; 1861 pIdxInfo->needToFreeIdxStr = 0; 1862 pIdxInfo->orderByConsumed = 0; 1863 /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */ 1864 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / ((double)2); 1865 nOrderBy = pIdxInfo->nOrderBy; 1866 if( !pOrderBy ){ 1867 pIdxInfo->nOrderBy = 0; 1868 } 1869 1870 if( vtabBestIndex(pParse, pTab, pIdxInfo) ){ 1871 return; 1872 } 1873 1874 /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the 1875 ** inital value of lowestCost in this loop. If it is, then the 1876 ** (cost<lowestCost) test below will never be true. 1877 ** 1878 ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT 1879 ** is defined. 1880 */ 1881 if( (SQLITE_BIG_DBL/((double)2))<pIdxInfo->estimatedCost ){ 1882 pCost->rCost = (SQLITE_BIG_DBL/((double)2)); 1883 }else{ 1884 pCost->rCost = pIdxInfo->estimatedCost; 1885 } 1886 pCost->plan.u.pVtabIdx = pIdxInfo; 1887 if( pIdxInfo->orderByConsumed ){ 1888 pCost->plan.wsFlags |= WHERE_ORDERBY; 1889 } 1890 pCost->plan.nEq = 0; 1891 pIdxInfo->nOrderBy = nOrderBy; 1892 1893 /* Try to find a more efficient access pattern by using multiple indexes 1894 ** to optimize an OR expression within the WHERE clause. 1895 */ 1896 bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost); 1897 } 1898 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1899 1900 /* 1901 ** Find the query plan for accessing a particular table. Write the 1902 ** best query plan and its cost into the WhereCost object supplied as the 1903 ** last parameter. 1904 ** 1905 ** The lowest cost plan wins. The cost is an estimate of the amount of 1906 ** CPU and disk I/O need to process the request using the selected plan. 1907 ** Factors that influence cost include: 1908 ** 1909 ** * The estimated number of rows that will be retrieved. (The 1910 ** fewer the better.) 1911 ** 1912 ** * Whether or not sorting must occur. 1913 ** 1914 ** * Whether or not there must be separate lookups in the 1915 ** index and in the main table. 1916 ** 1917 ** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in 1918 ** the SQL statement, then this function only considers plans using the 1919 ** named index. If no such plan is found, then the returned cost is 1920 ** SQLITE_BIG_DBL. If a plan is found that uses the named index, 1921 ** then the cost is calculated in the usual way. 1922 ** 1923 ** If a NOT INDEXED clause (pSrc->notIndexed!=0) was attached to the table 1924 ** in the SELECT statement, then no indexes are considered. However, the 1925 ** selected plan may still take advantage of the tables built-in rowid 1926 ** index. 1927 */ 1928 static void bestBtreeIndex( 1929 Parse *pParse, /* The parsing context */ 1930 WhereClause *pWC, /* The WHERE clause */ 1931 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1932 Bitmask notReady, /* Mask of cursors that are not available */ 1933 ExprList *pOrderBy, /* The ORDER BY clause */ 1934 WhereCost *pCost /* Lowest cost query plan */ 1935 ){ 1936 WhereTerm *pTerm; /* A single term of the WHERE clause */ 1937 int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ 1938 Index *pProbe; /* An index we are evaluating */ 1939 int rev; /* True to scan in reverse order */ 1940 int wsFlags; /* Flags associated with pProbe */ 1941 int nEq; /* Number of == or IN constraints */ 1942 int eqTermMask; /* Mask of valid equality operators */ 1943 double cost; /* Cost of using pProbe */ 1944 double nRow; /* Estimated number of rows in result set */ 1945 int i; /* Loop counter */ 1946 1947 WHERETRACE(("bestIndex: tbl=%s notReady=%llx\n", pSrc->pTab->zName,notReady)); 1948 pProbe = pSrc->pTab->pIndex; 1949 if( pSrc->notIndexed ){ 1950 pProbe = 0; 1951 } 1952 1953 /* If the table has no indices and there are no terms in the where 1954 ** clause that refer to the ROWID, then we will never be able to do 1955 ** anything other than a full table scan on this table. We might as 1956 ** well put it first in the join order. That way, perhaps it can be 1957 ** referenced by other tables in the join. 1958 */ 1959 memset(pCost, 0, sizeof(*pCost)); 1960 if( pProbe==0 && 1961 findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 && 1962 (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){ 1963 if( pParse->db->flags & SQLITE_ReverseOrder ){ 1964 /* For application testing, randomly reverse the output order for 1965 ** SELECT statements that omit the ORDER BY clause. This will help 1966 ** to find cases where 1967 */ 1968 pCost->plan.wsFlags |= WHERE_REVERSE; 1969 } 1970 return; 1971 } 1972 pCost->rCost = SQLITE_BIG_DBL; 1973 1974 /* Check for a rowid=EXPR or rowid IN (...) constraints. If there was 1975 ** an INDEXED BY clause attached to this table, skip this step. 1976 */ 1977 if( !pSrc->pIndex ){ 1978 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); 1979 if( pTerm ){ 1980 Expr *pExpr; 1981 pCost->plan.wsFlags = WHERE_ROWID_EQ; 1982 if( pTerm->eOperator & WO_EQ ){ 1983 /* Rowid== is always the best pick. Look no further. Because only 1984 ** a single row is generated, output is always in sorted order */ 1985 pCost->plan.wsFlags = WHERE_ROWID_EQ | WHERE_UNIQUE; 1986 pCost->plan.nEq = 1; 1987 WHERETRACE(("... best is rowid\n")); 1988 pCost->rCost = 0; 1989 pCost->nRow = 1; 1990 return; 1991 }else if( !ExprHasProperty((pExpr = pTerm->pExpr), EP_xIsSelect) 1992 && pExpr->x.pList 1993 ){ 1994 /* Rowid IN (LIST): cost is NlogN where N is the number of list 1995 ** elements. */ 1996 pCost->rCost = pCost->nRow = pExpr->x.pList->nExpr; 1997 pCost->rCost *= estLog(pCost->rCost); 1998 }else{ 1999 /* Rowid IN (SELECT): cost is NlogN where N is the number of rows 2000 ** in the result of the inner select. We have no way to estimate 2001 ** that value so make a wild guess. */ 2002 pCost->nRow = 100; 2003 pCost->rCost = 200; 2004 } 2005 WHERETRACE(("... rowid IN cost: %.9g\n", pCost->rCost)); 2006 } 2007 2008 /* Estimate the cost of a table scan. If we do not know how many 2009 ** entries are in the table, use 1 million as a guess. 2010 */ 2011 cost = pProbe ? pProbe->aiRowEst[0] : 1000000; 2012 WHERETRACE(("... table scan base cost: %.9g\n", cost)); 2013 wsFlags = WHERE_ROWID_RANGE; 2014 2015 /* Check for constraints on a range of rowids in a table scan. 2016 */ 2017 pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0); 2018 if( pTerm ){ 2019 if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){ 2020 wsFlags |= WHERE_TOP_LIMIT; 2021 cost /= 3; /* Guess that rowid<EXPR eliminates two-thirds of rows */ 2022 } 2023 if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){ 2024 wsFlags |= WHERE_BTM_LIMIT; 2025 cost /= 3; /* Guess that rowid>EXPR eliminates two-thirds of rows */ 2026 } 2027 WHERETRACE(("... rowid range reduces cost to %.9g\n", cost)); 2028 }else{ 2029 wsFlags = 0; 2030 } 2031 nRow = cost; 2032 2033 /* If the table scan does not satisfy the ORDER BY clause, increase 2034 ** the cost by NlogN to cover the expense of sorting. */ 2035 if( pOrderBy ){ 2036 if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){ 2037 wsFlags |= WHERE_ORDERBY|WHERE_ROWID_RANGE; 2038 if( rev ){ 2039 wsFlags |= WHERE_REVERSE; 2040 } 2041 }else{ 2042 cost += cost*estLog(cost); 2043 WHERETRACE(("... sorting increases cost to %.9g\n", cost)); 2044 } 2045 }else if( pParse->db->flags & SQLITE_ReverseOrder ){ 2046 /* For application testing, randomly reverse the output order for 2047 ** SELECT statements that omit the ORDER BY clause. This will help 2048 ** to find cases where 2049 */ 2050 wsFlags |= WHERE_REVERSE; 2051 } 2052 2053 /* Remember this case if it is the best so far */ 2054 if( cost<pCost->rCost ){ 2055 pCost->rCost = cost; 2056 pCost->nRow = nRow; 2057 pCost->plan.wsFlags = wsFlags; 2058 } 2059 } 2060 2061 bestOrClauseIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost); 2062 2063 /* If the pSrc table is the right table of a LEFT JOIN then we may not 2064 ** use an index to satisfy IS NULL constraints on that table. This is 2065 ** because columns might end up being NULL if the table does not match - 2066 ** a circumstance which the index cannot help us discover. Ticket #2177. 2067 */ 2068 if( (pSrc->jointype & JT_LEFT)!=0 ){ 2069 eqTermMask = WO_EQ|WO_IN; 2070 }else{ 2071 eqTermMask = WO_EQ|WO_IN|WO_ISNULL; 2072 } 2073 2074 /* Look at each index. 2075 */ 2076 if( pSrc->pIndex ){ 2077 pProbe = pSrc->pIndex; 2078 } 2079 for(; pProbe; pProbe=(pSrc->pIndex ? 0 : pProbe->pNext)){ 2080 double inMultiplier = 1; /* Number of equality look-ups needed */ 2081 int inMultIsEst = 0; /* True if inMultiplier is an estimate */ 2082 2083 WHERETRACE(("... index %s:\n", pProbe->zName)); 2084 2085 /* Count the number of columns in the index that are satisfied 2086 ** by x=EXPR or x IS NULL constraints or x IN (...) constraints. 2087 ** For a term of the form x=EXPR or x IS NULL we only have to do 2088 ** a single binary search. But for x IN (...) we have to do a 2089 ** number of binary searched 2090 ** equal to the number of entries on the RHS of the IN operator. 2091 ** The inMultipler variable with try to estimate the number of 2092 ** binary searches needed. 2093 */ 2094 wsFlags = 0; 2095 for(i=0; i<pProbe->nColumn; i++){ 2096 int j = pProbe->aiColumn[i]; 2097 pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe); 2098 if( pTerm==0 ) break; 2099 wsFlags |= WHERE_COLUMN_EQ; 2100 if( pTerm->eOperator & WO_IN ){ 2101 Expr *pExpr = pTerm->pExpr; 2102 wsFlags |= WHERE_COLUMN_IN; 2103 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2104 inMultiplier *= 25; 2105 inMultIsEst = 1; 2106 }else if( pExpr->x.pList ){ 2107 inMultiplier *= pExpr->x.pList->nExpr + 1; 2108 } 2109 }else if( pTerm->eOperator & WO_ISNULL ){ 2110 wsFlags |= WHERE_COLUMN_NULL; 2111 } 2112 } 2113 nRow = pProbe->aiRowEst[i] * inMultiplier; 2114 /* If inMultiplier is an estimate and that estimate results in an 2115 ** nRow it that is more than half number of rows in the table, 2116 ** then reduce inMultipler */ 2117 if( inMultIsEst && nRow*2 > pProbe->aiRowEst[0] ){ 2118 nRow = pProbe->aiRowEst[0]/2; 2119 inMultiplier = nRow/pProbe->aiRowEst[i]; 2120 } 2121 cost = nRow + inMultiplier*estLog(pProbe->aiRowEst[0]); 2122 nEq = i; 2123 if( pProbe->onError!=OE_None && nEq==pProbe->nColumn ){ 2124 testcase( wsFlags & WHERE_COLUMN_IN ); 2125 testcase( wsFlags & WHERE_COLUMN_NULL ); 2126 if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 ){ 2127 wsFlags |= WHERE_UNIQUE; 2128 } 2129 } 2130 WHERETRACE(("...... nEq=%d inMult=%.9g nRow=%.9g cost=%.9g\n", 2131 nEq, inMultiplier, nRow, cost)); 2132 2133 /* Look for range constraints. Assume that each range constraint 2134 ** makes the search space 1/3rd smaller. 2135 */ 2136 if( nEq<pProbe->nColumn ){ 2137 int j = pProbe->aiColumn[nEq]; 2138 pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe); 2139 if( pTerm ){ 2140 wsFlags |= WHERE_COLUMN_RANGE; 2141 if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){ 2142 wsFlags |= WHERE_TOP_LIMIT; 2143 cost /= 3; 2144 nRow /= 3; 2145 } 2146 if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){ 2147 wsFlags |= WHERE_BTM_LIMIT; 2148 cost /= 3; 2149 nRow /= 3; 2150 } 2151 WHERETRACE(("...... range reduces nRow to %.9g and cost to %.9g\n", 2152 nRow, cost)); 2153 } 2154 } 2155 2156 /* Add the additional cost of sorting if that is a factor. 2157 */ 2158 if( pOrderBy ){ 2159 if( (wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_NULL))==0 2160 && isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) 2161 ){ 2162 if( wsFlags==0 ){ 2163 wsFlags = WHERE_COLUMN_RANGE; 2164 } 2165 wsFlags |= WHERE_ORDERBY; 2166 if( rev ){ 2167 wsFlags |= WHERE_REVERSE; 2168 } 2169 }else{ 2170 cost += cost*estLog(cost); 2171 WHERETRACE(("...... orderby increases cost to %.9g\n", cost)); 2172 } 2173 }else if( wsFlags!=0 && (pParse->db->flags & SQLITE_ReverseOrder)!=0 ){ 2174 /* For application testing, randomly reverse the output order for 2175 ** SELECT statements that omit the ORDER BY clause. This will help 2176 ** to find cases where 2177 */ 2178 wsFlags |= WHERE_REVERSE; 2179 } 2180 2181 /* Check to see if we can get away with using just the index without 2182 ** ever reading the table. If that is the case, then halve the 2183 ** cost of this index. 2184 */ 2185 if( wsFlags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){ 2186 Bitmask m = pSrc->colUsed; 2187 int j; 2188 for(j=0; j<pProbe->nColumn; j++){ 2189 int x = pProbe->aiColumn[j]; 2190 if( x<BMS-1 ){ 2191 m &= ~(((Bitmask)1)<<x); 2192 } 2193 } 2194 if( m==0 ){ 2195 wsFlags |= WHERE_IDX_ONLY; 2196 cost /= 2; 2197 WHERETRACE(("...... idx-only reduces cost to %.9g\n", cost)); 2198 } 2199 } 2200 2201 /* If this index has achieved the lowest cost so far, then use it. 2202 */ 2203 if( wsFlags!=0 && cost < pCost->rCost ){ 2204 pCost->rCost = cost; 2205 pCost->nRow = nRow; 2206 pCost->plan.wsFlags = wsFlags; 2207 pCost->plan.nEq = nEq; 2208 assert( pCost->plan.wsFlags & WHERE_INDEXED ); 2209 pCost->plan.u.pIdx = pProbe; 2210 } 2211 } 2212 2213 /* Report the best result 2214 */ 2215 pCost->plan.wsFlags |= eqTermMask; 2216 WHERETRACE(("best index is %s, cost=%.9g, nrow=%.9g, wsFlags=%x, nEq=%d\n", 2217 (pCost->plan.wsFlags & WHERE_INDEXED)!=0 ? 2218 pCost->plan.u.pIdx->zName : "(none)", pCost->nRow, 2219 pCost->rCost, pCost->plan.wsFlags, pCost->plan.nEq)); 2220 } 2221 2222 /* 2223 ** Find the query plan for accessing table pSrc->pTab. Write the 2224 ** best query plan and its cost into the WhereCost object supplied 2225 ** as the last parameter. This function may calculate the cost of 2226 ** both real and virtual table scans. 2227 */ 2228 static void bestIndex( 2229 Parse *pParse, /* The parsing context */ 2230 WhereClause *pWC, /* The WHERE clause */ 2231 struct SrcList_item *pSrc, /* The FROM clause term to search */ 2232 Bitmask notReady, /* Mask of cursors that are not available */ 2233 ExprList *pOrderBy, /* The ORDER BY clause */ 2234 WhereCost *pCost /* Lowest cost query plan */ 2235 ){ 2236 #ifndef SQLITE_OMIT_VIRTUALTABLE 2237 if( IsVirtual(pSrc->pTab) ){ 2238 sqlite3_index_info *p = 0; 2239 bestVirtualIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost, &p); 2240 if( p->needToFreeIdxStr ){ 2241 sqlite3_free(p->idxStr); 2242 } 2243 sqlite3DbFree(pParse->db, p); 2244 }else 2245 #endif 2246 { 2247 bestBtreeIndex(pParse, pWC, pSrc, notReady, pOrderBy, pCost); 2248 } 2249 } 2250 2251 /* 2252 ** Disable a term in the WHERE clause. Except, do not disable the term 2253 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 2254 ** or USING clause of that join. 2255 ** 2256 ** Consider the term t2.z='ok' in the following queries: 2257 ** 2258 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 2259 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 2260 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 2261 ** 2262 ** The t2.z='ok' is disabled in the in (2) because it originates 2263 ** in the ON clause. The term is disabled in (3) because it is not part 2264 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 2265 ** 2266 ** Disabling a term causes that term to not be tested in the inner loop 2267 ** of the join. Disabling is an optimization. When terms are satisfied 2268 ** by indices, we disable them to prevent redundant tests in the inner 2269 ** loop. We would get the correct results if nothing were ever disabled, 2270 ** but joins might run a little slower. The trick is to disable as much 2271 ** as we can without disabling too much. If we disabled in (1), we'd get 2272 ** the wrong answer. See ticket #813. 2273 */ 2274 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 2275 if( pTerm 2276 && ALWAYS((pTerm->wtFlags & TERM_CODED)==0) 2277 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 2278 ){ 2279 pTerm->wtFlags |= TERM_CODED; 2280 if( pTerm->iParent>=0 ){ 2281 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; 2282 if( (--pOther->nChild)==0 ){ 2283 disableTerm(pLevel, pOther); 2284 } 2285 } 2286 } 2287 } 2288 2289 /* 2290 ** Apply the affinities associated with the first n columns of index 2291 ** pIdx to the values in the n registers starting at base. 2292 */ 2293 static void codeApplyAffinity(Parse *pParse, int base, int n, Index *pIdx){ 2294 if( n>0 ){ 2295 Vdbe *v = pParse->pVdbe; 2296 assert( v!=0 ); 2297 sqlite3VdbeAddOp2(v, OP_Affinity, base, n); 2298 sqlite3IndexAffinityStr(v, pIdx); 2299 sqlite3ExprCacheAffinityChange(pParse, base, n); 2300 } 2301 } 2302 2303 2304 /* 2305 ** Generate code for a single equality term of the WHERE clause. An equality 2306 ** term can be either X=expr or X IN (...). pTerm is the term to be 2307 ** coded. 2308 ** 2309 ** The current value for the constraint is left in register iReg. 2310 ** 2311 ** For a constraint of the form X=expr, the expression is evaluated and its 2312 ** result is left on the stack. For constraints of the form X IN (...) 2313 ** this routine sets up a loop that will iterate over all values of X. 2314 */ 2315 static int codeEqualityTerm( 2316 Parse *pParse, /* The parsing context */ 2317 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 2318 WhereLevel *pLevel, /* When level of the FROM clause we are working on */ 2319 int iTarget /* Attempt to leave results in this register */ 2320 ){ 2321 Expr *pX = pTerm->pExpr; 2322 Vdbe *v = pParse->pVdbe; 2323 int iReg; /* Register holding results */ 2324 2325 assert( iTarget>0 ); 2326 if( pX->op==TK_EQ ){ 2327 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget); 2328 }else if( pX->op==TK_ISNULL ){ 2329 iReg = iTarget; 2330 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg); 2331 #ifndef SQLITE_OMIT_SUBQUERY 2332 }else{ 2333 int eType; 2334 int iTab; 2335 struct InLoop *pIn; 2336 2337 assert( pX->op==TK_IN ); 2338 iReg = iTarget; 2339 eType = sqlite3FindInIndex(pParse, pX, 0); 2340 iTab = pX->iTable; 2341 sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); 2342 assert( pLevel->plan.wsFlags & WHERE_IN_ABLE ); 2343 if( pLevel->u.in.nIn==0 ){ 2344 pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 2345 } 2346 pLevel->u.in.nIn++; 2347 pLevel->u.in.aInLoop = 2348 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop, 2349 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn); 2350 pIn = pLevel->u.in.aInLoop; 2351 if( pIn ){ 2352 pIn += pLevel->u.in.nIn - 1; 2353 pIn->iCur = iTab; 2354 if( eType==IN_INDEX_ROWID ){ 2355 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg); 2356 }else{ 2357 pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg); 2358 } 2359 sqlite3VdbeAddOp1(v, OP_IsNull, iReg); 2360 }else{ 2361 pLevel->u.in.nIn = 0; 2362 } 2363 #endif 2364 } 2365 disableTerm(pLevel, pTerm); 2366 return iReg; 2367 } 2368 2369 /* 2370 ** Generate code that will evaluate all == and IN constraints for an 2371 ** index. The values for all constraints are left on the stack. 2372 ** 2373 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 2374 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 2375 ** The index has as many as three equality constraints, but in this 2376 ** example, the third "c" value is an inequality. So only two 2377 ** constraints are coded. This routine will generate code to evaluate 2378 ** a==5 and b IN (1,2,3). The current values for a and b will be stored 2379 ** in consecutive registers and the index of the first register is returned. 2380 ** 2381 ** In the example above nEq==2. But this subroutine works for any value 2382 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 2383 ** The only thing it does is allocate the pLevel->iMem memory cell. 2384 ** 2385 ** This routine always allocates at least one memory cell and returns 2386 ** the index of that memory cell. The code that 2387 ** calls this routine will use that memory cell to store the termination 2388 ** key value of the loop. If one or more IN operators appear, then 2389 ** this routine allocates an additional nEq memory cells for internal 2390 ** use. 2391 */ 2392 static int codeAllEqualityTerms( 2393 Parse *pParse, /* Parsing context */ 2394 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 2395 WhereClause *pWC, /* The WHERE clause */ 2396 Bitmask notReady, /* Which parts of FROM have not yet been coded */ 2397 int nExtraReg /* Number of extra registers to allocate */ 2398 ){ 2399 int nEq = pLevel->plan.nEq; /* The number of == or IN constraints to code */ 2400 Vdbe *v = pParse->pVdbe; /* The vm under construction */ 2401 Index *pIdx; /* The index being used for this loop */ 2402 int iCur = pLevel->iTabCur; /* The cursor of the table */ 2403 WhereTerm *pTerm; /* A single constraint term */ 2404 int j; /* Loop counter */ 2405 int regBase; /* Base register */ 2406 int nReg; /* Number of registers to allocate */ 2407 2408 /* This module is only called on query plans that use an index. */ 2409 assert( pLevel->plan.wsFlags & WHERE_INDEXED ); 2410 pIdx = pLevel->plan.u.pIdx; 2411 2412 /* Figure out how many memory cells we will need then allocate them. 2413 */ 2414 regBase = pParse->nMem + 1; 2415 nReg = pLevel->plan.nEq + nExtraReg; 2416 pParse->nMem += nReg; 2417 2418 /* Evaluate the equality constraints 2419 */ 2420 assert( pIdx->nColumn>=nEq ); 2421 for(j=0; j<nEq; j++){ 2422 int r1; 2423 int k = pIdx->aiColumn[j]; 2424 pTerm = findTerm(pWC, iCur, k, notReady, pLevel->plan.wsFlags, pIdx); 2425 if( NEVER(pTerm==0) ) break; 2426 assert( (pTerm->wtFlags & TERM_CODED)==0 ); 2427 r1 = codeEqualityTerm(pParse, pTerm, pLevel, regBase+j); 2428 if( r1!=regBase+j ){ 2429 if( nReg==1 ){ 2430 sqlite3ReleaseTempReg(pParse, regBase); 2431 regBase = r1; 2432 }else{ 2433 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j); 2434 } 2435 } 2436 testcase( pTerm->eOperator & WO_ISNULL ); 2437 testcase( pTerm->eOperator & WO_IN ); 2438 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){ 2439 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk); 2440 } 2441 } 2442 return regBase; 2443 } 2444 2445 /* 2446 ** Generate code for the start of the iLevel-th loop in the WHERE clause 2447 ** implementation described by pWInfo. 2448 */ 2449 static Bitmask codeOneLoopStart( 2450 WhereInfo *pWInfo, /* Complete information about the WHERE clause */ 2451 int iLevel, /* Which level of pWInfo->a[] should be coded */ 2452 u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */ 2453 Bitmask notReady /* Which tables are currently available */ 2454 ){ 2455 int j, k; /* Loop counters */ 2456 int iCur; /* The VDBE cursor for the table */ 2457 int addrNxt; /* Where to jump to continue with the next IN case */ 2458 int omitTable; /* True if we use the index only */ 2459 int bRev; /* True if we need to scan in reverse order */ 2460 WhereLevel *pLevel; /* The where level to be coded */ 2461 WhereClause *pWC; /* Decomposition of the entire WHERE clause */ 2462 WhereTerm *pTerm; /* A WHERE clause term */ 2463 Parse *pParse; /* Parsing context */ 2464 Vdbe *v; /* The prepared stmt under constructions */ 2465 struct SrcList_item *pTabItem; /* FROM clause term being coded */ 2466 int addrBrk; /* Jump here to break out of the loop */ 2467 int addrCont; /* Jump here to continue with next cycle */ 2468 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */ 2469 int iReleaseReg = 0; /* Temp register to free before returning */ 2470 2471 pParse = pWInfo->pParse; 2472 v = pParse->pVdbe; 2473 pWC = pWInfo->pWC; 2474 pLevel = &pWInfo->a[iLevel]; 2475 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom]; 2476 iCur = pTabItem->iCursor; 2477 bRev = (pLevel->plan.wsFlags & WHERE_REVERSE)!=0; 2478 omitTable = (pLevel->plan.wsFlags & WHERE_IDX_ONLY)!=0 2479 && (wctrlFlags & WHERE_FORCE_TABLE)==0; 2480 2481 /* Create labels for the "break" and "continue" instructions 2482 ** for the current loop. Jump to addrBrk to break out of a loop. 2483 ** Jump to cont to go immediately to the next iteration of the 2484 ** loop. 2485 ** 2486 ** When there is an IN operator, we also have a "addrNxt" label that 2487 ** means to continue with the next IN value combination. When 2488 ** there are no IN operators in the constraints, the "addrNxt" label 2489 ** is the same as "addrBrk". 2490 */ 2491 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v); 2492 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v); 2493 2494 /* If this is the right table of a LEFT OUTER JOIN, allocate and 2495 ** initialize a memory cell that records if this table matches any 2496 ** row of the left table of the join. 2497 */ 2498 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ 2499 pLevel->iLeftJoin = ++pParse->nMem; 2500 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin); 2501 VdbeComment((v, "init LEFT JOIN no-match flag")); 2502 } 2503 2504 #ifndef SQLITE_OMIT_VIRTUALTABLE 2505 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 2506 /* Case 0: The table is a virtual-table. Use the VFilter and VNext 2507 ** to access the data. 2508 */ 2509 int iReg; /* P3 Value for OP_VFilter */ 2510 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx; 2511 int nConstraint = pVtabIdx->nConstraint; 2512 struct sqlite3_index_constraint_usage *aUsage = 2513 pVtabIdx->aConstraintUsage; 2514 const struct sqlite3_index_constraint *aConstraint = 2515 pVtabIdx->aConstraint; 2516 2517 iReg = sqlite3GetTempRange(pParse, nConstraint+2); 2518 for(j=1; j<=nConstraint; j++){ 2519 for(k=0; k<nConstraint; k++){ 2520 if( aUsage[k].argvIndex==j ){ 2521 int iTerm = aConstraint[k].iTermOffset; 2522 sqlite3ExprCode(pParse, pWC->a[iTerm].pExpr->pRight, iReg+j+1); 2523 break; 2524 } 2525 } 2526 if( k==nConstraint ) break; 2527 } 2528 sqlite3VdbeAddOp2(v, OP_Integer, pVtabIdx->idxNum, iReg); 2529 sqlite3VdbeAddOp2(v, OP_Integer, j-1, iReg+1); 2530 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrBrk, iReg, pVtabIdx->idxStr, 2531 pVtabIdx->needToFreeIdxStr ? P4_MPRINTF : P4_STATIC); 2532 pVtabIdx->needToFreeIdxStr = 0; 2533 for(j=0; j<nConstraint; j++){ 2534 if( aUsage[j].omit ){ 2535 int iTerm = aConstraint[j].iTermOffset; 2536 disableTerm(pLevel, &pWC->a[iTerm]); 2537 } 2538 } 2539 pLevel->op = OP_VNext; 2540 pLevel->p1 = iCur; 2541 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2542 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2); 2543 }else 2544 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 2545 2546 if( pLevel->plan.wsFlags & WHERE_ROWID_EQ ){ 2547 /* Case 1: We can directly reference a single row using an 2548 ** equality comparison against the ROWID field. Or 2549 ** we reference multiple rows using a "rowid IN (...)" 2550 ** construct. 2551 */ 2552 iReleaseReg = sqlite3GetTempReg(pParse); 2553 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); 2554 assert( pTerm!=0 ); 2555 assert( pTerm->pExpr!=0 ); 2556 assert( pTerm->leftCursor==iCur ); 2557 assert( omitTable==0 ); 2558 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, iReleaseReg); 2559 addrNxt = pLevel->addrNxt; 2560 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); 2561 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg); 2562 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 2563 VdbeComment((v, "pk")); 2564 pLevel->op = OP_Noop; 2565 }else if( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ){ 2566 /* Case 2: We have an inequality comparison against the ROWID field. 2567 */ 2568 int testOp = OP_Noop; 2569 int start; 2570 int memEndValue = 0; 2571 WhereTerm *pStart, *pEnd; 2572 2573 assert( omitTable==0 ); 2574 pStart = findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0); 2575 pEnd = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0); 2576 if( bRev ){ 2577 pTerm = pStart; 2578 pStart = pEnd; 2579 pEnd = pTerm; 2580 } 2581 if( pStart ){ 2582 Expr *pX; /* The expression that defines the start bound */ 2583 int r1, rTemp; /* Registers for holding the start boundary */ 2584 2585 /* The following constant maps TK_xx codes into corresponding 2586 ** seek opcodes. It depends on a particular ordering of TK_xx 2587 */ 2588 const u8 aMoveOp[] = { 2589 /* TK_GT */ OP_SeekGt, 2590 /* TK_LE */ OP_SeekLe, 2591 /* TK_LT */ OP_SeekLt, 2592 /* TK_GE */ OP_SeekGe 2593 }; 2594 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */ 2595 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */ 2596 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */ 2597 2598 pX = pStart->pExpr; 2599 assert( pX!=0 ); 2600 assert( pStart->leftCursor==iCur ); 2601 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp); 2602 sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1); 2603 VdbeComment((v, "pk")); 2604 sqlite3ExprCacheAffinityChange(pParse, r1, 1); 2605 sqlite3ReleaseTempReg(pParse, rTemp); 2606 disableTerm(pLevel, pStart); 2607 }else{ 2608 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk); 2609 } 2610 if( pEnd ){ 2611 Expr *pX; 2612 pX = pEnd->pExpr; 2613 assert( pX!=0 ); 2614 assert( pEnd->leftCursor==iCur ); 2615 memEndValue = ++pParse->nMem; 2616 sqlite3ExprCode(pParse, pX->pRight, memEndValue); 2617 if( pX->op==TK_LT || pX->op==TK_GT ){ 2618 testOp = bRev ? OP_Le : OP_Ge; 2619 }else{ 2620 testOp = bRev ? OP_Lt : OP_Gt; 2621 } 2622 disableTerm(pLevel, pEnd); 2623 } 2624 start = sqlite3VdbeCurrentAddr(v); 2625 pLevel->op = bRev ? OP_Prev : OP_Next; 2626 pLevel->p1 = iCur; 2627 pLevel->p2 = start; 2628 pLevel->p5 = (pStart==0 && pEnd==0) ?1:0; 2629 if( testOp!=OP_Noop ){ 2630 iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse); 2631 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg); 2632 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 2633 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg); 2634 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL); 2635 } 2636 }else if( pLevel->plan.wsFlags & (WHERE_COLUMN_RANGE|WHERE_COLUMN_EQ) ){ 2637 /* Case 3: A scan using an index. 2638 ** 2639 ** The WHERE clause may contain zero or more equality 2640 ** terms ("==" or "IN" operators) that refer to the N 2641 ** left-most columns of the index. It may also contain 2642 ** inequality constraints (>, <, >= or <=) on the indexed 2643 ** column that immediately follows the N equalities. Only 2644 ** the right-most column can be an inequality - the rest must 2645 ** use the "==" and "IN" operators. For example, if the 2646 ** index is on (x,y,z), then the following clauses are all 2647 ** optimized: 2648 ** 2649 ** x=5 2650 ** x=5 AND y=10 2651 ** x=5 AND y<10 2652 ** x=5 AND y>5 AND y<10 2653 ** x=5 AND y=5 AND z<=10 2654 ** 2655 ** The z<10 term of the following cannot be used, only 2656 ** the x=5 term: 2657 ** 2658 ** x=5 AND z<10 2659 ** 2660 ** N may be zero if there are inequality constraints. 2661 ** If there are no inequality constraints, then N is at 2662 ** least one. 2663 ** 2664 ** This case is also used when there are no WHERE clause 2665 ** constraints but an index is selected anyway, in order 2666 ** to force the output order to conform to an ORDER BY. 2667 */ 2668 int aStartOp[] = { 2669 0, 2670 0, 2671 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */ 2672 OP_Last, /* 3: (!start_constraints && startEq && bRev) */ 2673 OP_SeekGt, /* 4: (start_constraints && !startEq && !bRev) */ 2674 OP_SeekLt, /* 5: (start_constraints && !startEq && bRev) */ 2675 OP_SeekGe, /* 6: (start_constraints && startEq && !bRev) */ 2676 OP_SeekLe /* 7: (start_constraints && startEq && bRev) */ 2677 }; 2678 int aEndOp[] = { 2679 OP_Noop, /* 0: (!end_constraints) */ 2680 OP_IdxGE, /* 1: (end_constraints && !bRev) */ 2681 OP_IdxLT /* 2: (end_constraints && bRev) */ 2682 }; 2683 int nEq = pLevel->plan.nEq; 2684 int isMinQuery = 0; /* If this is an optimized SELECT min(x).. */ 2685 int regBase; /* Base register holding constraint values */ 2686 int r1; /* Temp register */ 2687 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */ 2688 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */ 2689 int startEq; /* True if range start uses ==, >= or <= */ 2690 int endEq; /* True if range end uses ==, >= or <= */ 2691 int start_constraints; /* Start of range is constrained */ 2692 int nConstraint; /* Number of constraint terms */ 2693 Index *pIdx; /* The index we will be using */ 2694 int iIdxCur; /* The VDBE cursor for the index */ 2695 int nExtraReg = 0; /* Number of extra registers needed */ 2696 int op; /* Instruction opcode */ 2697 2698 pIdx = pLevel->plan.u.pIdx; 2699 iIdxCur = pLevel->iIdxCur; 2700 k = pIdx->aiColumn[nEq]; /* Column for inequality constraints */ 2701 2702 /* If this loop satisfies a sort order (pOrderBy) request that 2703 ** was passed to this function to implement a "SELECT min(x) ..." 2704 ** query, then the caller will only allow the loop to run for 2705 ** a single iteration. This means that the first row returned 2706 ** should not have a NULL value stored in 'x'. If column 'x' is 2707 ** the first one after the nEq equality constraints in the index, 2708 ** this requires some special handling. 2709 */ 2710 if( (wctrlFlags&WHERE_ORDERBY_MIN)!=0 2711 && (pLevel->plan.wsFlags&WHERE_ORDERBY) 2712 && (pIdx->nColumn>nEq) 2713 ){ 2714 /* assert( pOrderBy->nExpr==1 ); */ 2715 /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */ 2716 isMinQuery = 1; 2717 nExtraReg = 1; 2718 } 2719 2720 /* Find any inequality constraint terms for the start and end 2721 ** of the range. 2722 */ 2723 if( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ){ 2724 pRangeEnd = findTerm(pWC, iCur, k, notReady, (WO_LT|WO_LE), pIdx); 2725 nExtraReg = 1; 2726 } 2727 if( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ){ 2728 pRangeStart = findTerm(pWC, iCur, k, notReady, (WO_GT|WO_GE), pIdx); 2729 nExtraReg = 1; 2730 } 2731 2732 /* Generate code to evaluate all constraint terms using == or IN 2733 ** and store the values of those terms in an array of registers 2734 ** starting at regBase. 2735 */ 2736 regBase = codeAllEqualityTerms(pParse, pLevel, pWC, notReady, nExtraReg); 2737 addrNxt = pLevel->addrNxt; 2738 2739 2740 /* If we are doing a reverse order scan on an ascending index, or 2741 ** a forward order scan on a descending index, interchange the 2742 ** start and end terms (pRangeStart and pRangeEnd). 2743 */ 2744 if( bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC) ){ 2745 SWAP(WhereTerm *, pRangeEnd, pRangeStart); 2746 } 2747 2748 testcase( pRangeStart && pRangeStart->eOperator & WO_LE ); 2749 testcase( pRangeStart && pRangeStart->eOperator & WO_GE ); 2750 testcase( pRangeEnd && pRangeEnd->eOperator & WO_LE ); 2751 testcase( pRangeEnd && pRangeEnd->eOperator & WO_GE ); 2752 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE); 2753 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE); 2754 start_constraints = pRangeStart || nEq>0; 2755 2756 /* Seek the index cursor to the start of the range. */ 2757 nConstraint = nEq; 2758 if( pRangeStart ){ 2759 sqlite3ExprCode(pParse, pRangeStart->pExpr->pRight, regBase+nEq); 2760 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 2761 nConstraint++; 2762 }else if( isMinQuery ){ 2763 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq); 2764 nConstraint++; 2765 startEq = 0; 2766 start_constraints = 1; 2767 } 2768 codeApplyAffinity(pParse, regBase, nConstraint, pIdx); 2769 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev]; 2770 assert( op!=0 ); 2771 testcase( op==OP_Rewind ); 2772 testcase( op==OP_Last ); 2773 testcase( op==OP_SeekGt ); 2774 testcase( op==OP_SeekGe ); 2775 testcase( op==OP_SeekLe ); 2776 testcase( op==OP_SeekLt ); 2777 sqlite3VdbeAddOp4(v, op, iIdxCur, addrNxt, regBase, 2778 SQLITE_INT_TO_PTR(nConstraint), P4_INT32); 2779 2780 /* Load the value for the inequality constraint at the end of the 2781 ** range (if any). 2782 */ 2783 nConstraint = nEq; 2784 if( pRangeEnd ){ 2785 sqlite3ExprCacheRemove(pParse, regBase+nEq); 2786 sqlite3ExprCode(pParse, pRangeEnd->pExpr->pRight, regBase+nEq); 2787 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt); 2788 codeApplyAffinity(pParse, regBase, nEq+1, pIdx); 2789 nConstraint++; 2790 } 2791 2792 /* Top of the loop body */ 2793 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2794 2795 /* Check if the index cursor is past the end of the range. */ 2796 op = aEndOp[(pRangeEnd || nEq) * (1 + bRev)]; 2797 testcase( op==OP_Noop ); 2798 testcase( op==OP_IdxGE ); 2799 testcase( op==OP_IdxLT ); 2800 if( op!=OP_Noop ){ 2801 sqlite3VdbeAddOp4(v, op, iIdxCur, addrNxt, regBase, 2802 SQLITE_INT_TO_PTR(nConstraint), P4_INT32); 2803 sqlite3VdbeChangeP5(v, endEq!=bRev ?1:0); 2804 } 2805 2806 /* If there are inequality constraints, check that the value 2807 ** of the table column that the inequality contrains is not NULL. 2808 ** If it is, jump to the next iteration of the loop. 2809 */ 2810 r1 = sqlite3GetTempReg(pParse); 2811 testcase( pLevel->plan.wsFlags & WHERE_BTM_LIMIT ); 2812 testcase( pLevel->plan.wsFlags & WHERE_TOP_LIMIT ); 2813 if( pLevel->plan.wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT) ){ 2814 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, nEq, r1); 2815 sqlite3VdbeAddOp2(v, OP_IsNull, r1, addrCont); 2816 } 2817 sqlite3ReleaseTempReg(pParse, r1); 2818 2819 /* Seek the table cursor, if required */ 2820 disableTerm(pLevel, pRangeStart); 2821 disableTerm(pLevel, pRangeEnd); 2822 if( !omitTable ){ 2823 iRowidReg = iReleaseReg = sqlite3GetTempReg(pParse); 2824 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg); 2825 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg); 2826 sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */ 2827 } 2828 2829 /* Record the instruction used to terminate the loop. Disable 2830 ** WHERE clause terms made redundant by the index range scan. 2831 */ 2832 pLevel->op = bRev ? OP_Prev : OP_Next; 2833 pLevel->p1 = iIdxCur; 2834 }else 2835 2836 #ifndef SQLITE_OMIT_OR_OPTIMIZATION 2837 if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){ 2838 /* Case 4: Two or more separately indexed terms connected by OR 2839 ** 2840 ** Example: 2841 ** 2842 ** CREATE TABLE t1(a,b,c,d); 2843 ** CREATE INDEX i1 ON t1(a); 2844 ** CREATE INDEX i2 ON t1(b); 2845 ** CREATE INDEX i3 ON t1(c); 2846 ** 2847 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13) 2848 ** 2849 ** In the example, there are three indexed terms connected by OR. 2850 ** The top of the loop looks like this: 2851 ** 2852 ** Null 1 # Zero the rowset in reg 1 2853 ** 2854 ** Then, for each indexed term, the following. The arguments to 2855 ** RowSetTest are such that the rowid of the current row is inserted 2856 ** into the RowSet. If it is already present, control skips the 2857 ** Gosub opcode and jumps straight to the code generated by WhereEnd(). 2858 ** 2859 ** sqlite3WhereBegin(<term>) 2860 ** RowSetTest # Insert rowid into rowset 2861 ** Gosub 2 A 2862 ** sqlite3WhereEnd() 2863 ** 2864 ** Following the above, code to terminate the loop. Label A, the target 2865 ** of the Gosub above, jumps to the instruction right after the Goto. 2866 ** 2867 ** Null 1 # Zero the rowset in reg 1 2868 ** Goto B # The loop is finished. 2869 ** 2870 ** A: <loop body> # Return data, whatever. 2871 ** 2872 ** Return 2 # Jump back to the Gosub 2873 ** 2874 ** B: <after the loop> 2875 ** 2876 */ 2877 WhereClause *pOrWc; /* The OR-clause broken out into subterms */ 2878 WhereTerm *pFinal; /* Final subterm within the OR-clause. */ 2879 SrcList oneTab; /* Shortened table list */ 2880 2881 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */ 2882 int regRowset = 0; /* Register for RowSet object */ 2883 int regRowid = 0; /* Register holding rowid */ 2884 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */ 2885 int iRetInit; /* Address of regReturn init */ 2886 int ii; 2887 2888 pTerm = pLevel->plan.u.pTerm; 2889 assert( pTerm!=0 ); 2890 assert( pTerm->eOperator==WO_OR ); 2891 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 ); 2892 pOrWc = &pTerm->u.pOrInfo->wc; 2893 pFinal = &pOrWc->a[pOrWc->nTerm-1]; 2894 2895 /* Set up a SrcList containing just the table being scanned by this loop. */ 2896 oneTab.nSrc = 1; 2897 oneTab.nAlloc = 1; 2898 oneTab.a[0] = *pTabItem; 2899 2900 /* Initialize the rowset register to contain NULL. An SQL NULL is 2901 ** equivalent to an empty rowset. 2902 ** 2903 ** Also initialize regReturn to contain the address of the instruction 2904 ** immediately following the OP_Return at the bottom of the loop. This 2905 ** is required in a few obscure LEFT JOIN cases where control jumps 2906 ** over the top of the loop into the body of it. In this case the 2907 ** correct response for the end-of-loop code (the OP_Return) is to 2908 ** fall through to the next instruction, just as an OP_Next does if 2909 ** called on an uninitialized cursor. 2910 */ 2911 if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2912 regRowset = ++pParse->nMem; 2913 regRowid = ++pParse->nMem; 2914 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); 2915 } 2916 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn); 2917 2918 for(ii=0; ii<pOrWc->nTerm; ii++){ 2919 WhereTerm *pOrTerm = &pOrWc->a[ii]; 2920 if( pOrTerm->leftCursor==iCur || pOrTerm->eOperator==WO_AND ){ 2921 WhereInfo *pSubWInfo; /* Info for single OR-term scan */ 2922 /* Loop through table entries that match term pOrTerm. */ 2923 pSubWInfo = sqlite3WhereBegin(pParse, &oneTab, pOrTerm->pExpr, 0, 2924 WHERE_OMIT_OPEN | WHERE_OMIT_CLOSE | WHERE_FORCE_TABLE); 2925 if( pSubWInfo ){ 2926 if( (wctrlFlags & WHERE_DUPLICATES_OK)==0 ){ 2927 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii); 2928 int r; 2929 r = sqlite3ExprCodeGetColumn(pParse, pTabItem->pTab, -1, iCur, 2930 regRowid, 0); 2931 sqlite3VdbeAddOp4(v, OP_RowSetTest, regRowset, 2932 sqlite3VdbeCurrentAddr(v)+2, 2933 r, SQLITE_INT_TO_PTR(iSet), P4_INT32); 2934 } 2935 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody); 2936 2937 /* Finish the loop through table entries that match term pOrTerm. */ 2938 sqlite3WhereEnd(pSubWInfo); 2939 } 2940 } 2941 } 2942 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v)); 2943 /* sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset); */ 2944 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk); 2945 sqlite3VdbeResolveLabel(v, iLoopBody); 2946 2947 pLevel->op = OP_Return; 2948 pLevel->p1 = regReturn; 2949 disableTerm(pLevel, pTerm); 2950 }else 2951 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 2952 2953 { 2954 /* Case 5: There is no usable index. We must do a complete 2955 ** scan of the entire table. 2956 */ 2957 static const u8 aStep[] = { OP_Next, OP_Prev }; 2958 static const u8 aStart[] = { OP_Rewind, OP_Last }; 2959 assert( bRev==0 || bRev==1 ); 2960 assert( omitTable==0 ); 2961 pLevel->op = aStep[bRev]; 2962 pLevel->p1 = iCur; 2963 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk); 2964 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP; 2965 } 2966 notReady &= ~getMask(pWC->pMaskSet, iCur); 2967 2968 /* Insert code to test every subexpression that can be completely 2969 ** computed using the current set of tables. 2970 */ 2971 k = 0; 2972 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){ 2973 Expr *pE; 2974 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2975 testcase( pTerm->wtFlags & TERM_CODED ); 2976 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2977 if( (pTerm->prereqAll & notReady)!=0 ) continue; 2978 pE = pTerm->pExpr; 2979 assert( pE!=0 ); 2980 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ 2981 continue; 2982 } 2983 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL); 2984 k = 1; 2985 pTerm->wtFlags |= TERM_CODED; 2986 } 2987 2988 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2989 ** at least one row of the right table has matched the left table. 2990 */ 2991 if( pLevel->iLeftJoin ){ 2992 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v); 2993 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin); 2994 VdbeComment((v, "record LEFT JOIN hit")); 2995 sqlite3ExprCacheClear(pParse); 2996 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){ 2997 testcase( pTerm->wtFlags & TERM_VIRTUAL ); 2998 testcase( pTerm->wtFlags & TERM_CODED ); 2999 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue; 3000 if( (pTerm->prereqAll & notReady)!=0 ) continue; 3001 assert( pTerm->pExpr ); 3002 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL); 3003 pTerm->wtFlags |= TERM_CODED; 3004 } 3005 } 3006 sqlite3ReleaseTempReg(pParse, iReleaseReg); 3007 3008 return notReady; 3009 } 3010 3011 #if defined(SQLITE_TEST) 3012 /* 3013 ** The following variable holds a text description of query plan generated 3014 ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin 3015 ** overwrites the previous. This information is used for testing and 3016 ** analysis only. 3017 */ 3018 char sqlite3_query_plan[BMS*2*40]; /* Text of the join */ 3019 static int nQPlan = 0; /* Next free slow in _query_plan[] */ 3020 3021 #endif /* SQLITE_TEST */ 3022 3023 3024 /* 3025 ** Free a WhereInfo structure 3026 */ 3027 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 3028 if( pWInfo ){ 3029 int i; 3030 for(i=0; i<pWInfo->nLevel; i++){ 3031 sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo; 3032 if( pInfo ){ 3033 /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */ 3034 if( pInfo->needToFreeIdxStr ){ 3035 sqlite3_free(pInfo->idxStr); 3036 } 3037 sqlite3DbFree(db, pInfo); 3038 } 3039 } 3040 whereClauseClear(pWInfo->pWC); 3041 sqlite3DbFree(db, pWInfo); 3042 } 3043 } 3044 3045 3046 /* 3047 ** Generate the beginning of the loop used for WHERE clause processing. 3048 ** The return value is a pointer to an opaque structure that contains 3049 ** information needed to terminate the loop. Later, the calling routine 3050 ** should invoke sqlite3WhereEnd() with the return value of this function 3051 ** in order to complete the WHERE clause processing. 3052 ** 3053 ** If an error occurs, this routine returns NULL. 3054 ** 3055 ** The basic idea is to do a nested loop, one loop for each table in 3056 ** the FROM clause of a select. (INSERT and UPDATE statements are the 3057 ** same as a SELECT with only a single table in the FROM clause.) For 3058 ** example, if the SQL is this: 3059 ** 3060 ** SELECT * FROM t1, t2, t3 WHERE ...; 3061 ** 3062 ** Then the code generated is conceptually like the following: 3063 ** 3064 ** foreach row1 in t1 do \ Code generated 3065 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 3066 ** foreach row3 in t3 do / 3067 ** ... 3068 ** end \ Code generated 3069 ** end |-- by sqlite3WhereEnd() 3070 ** end / 3071 ** 3072 ** Note that the loops might not be nested in the order in which they 3073 ** appear in the FROM clause if a different order is better able to make 3074 ** use of indices. Note also that when the IN operator appears in 3075 ** the WHERE clause, it might result in additional nested loops for 3076 ** scanning through all values on the right-hand side of the IN. 3077 ** 3078 ** There are Btree cursors associated with each table. t1 uses cursor 3079 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 3080 ** And so forth. This routine generates code to open those VDBE cursors 3081 ** and sqlite3WhereEnd() generates the code to close them. 3082 ** 3083 ** The code that sqlite3WhereBegin() generates leaves the cursors named 3084 ** in pTabList pointing at their appropriate entries. The [...] code 3085 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 3086 ** data from the various tables of the loop. 3087 ** 3088 ** If the WHERE clause is empty, the foreach loops must each scan their 3089 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 3090 ** the tables have indices and there are terms in the WHERE clause that 3091 ** refer to those indices, a complete table scan can be avoided and the 3092 ** code will run much faster. Most of the work of this routine is checking 3093 ** to see if there are indices that can be used to speed up the loop. 3094 ** 3095 ** Terms of the WHERE clause are also used to limit which rows actually 3096 ** make it to the "..." in the middle of the loop. After each "foreach", 3097 ** terms of the WHERE clause that use only terms in that loop and outer 3098 ** loops are evaluated and if false a jump is made around all subsequent 3099 ** inner loops (or around the "..." if the test occurs within the inner- 3100 ** most loop) 3101 ** 3102 ** OUTER JOINS 3103 ** 3104 ** An outer join of tables t1 and t2 is conceptally coded as follows: 3105 ** 3106 ** foreach row1 in t1 do 3107 ** flag = 0 3108 ** foreach row2 in t2 do 3109 ** start: 3110 ** ... 3111 ** flag = 1 3112 ** end 3113 ** if flag==0 then 3114 ** move the row2 cursor to a null row 3115 ** goto start 3116 ** fi 3117 ** end 3118 ** 3119 ** ORDER BY CLAUSE PROCESSING 3120 ** 3121 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, 3122 ** if there is one. If there is no ORDER BY clause or if this routine 3123 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. 3124 ** 3125 ** If an index can be used so that the natural output order of the table 3126 ** scan is correct for the ORDER BY clause, then that index is used and 3127 ** *ppOrderBy is set to NULL. This is an optimization that prevents an 3128 ** unnecessary sort of the result set if an index appropriate for the 3129 ** ORDER BY clause already exists. 3130 ** 3131 ** If the where clause loops cannot be arranged to provide the correct 3132 ** output order, then the *ppOrderBy is unchanged. 3133 */ 3134 WhereInfo *sqlite3WhereBegin( 3135 Parse *pParse, /* The parser context */ 3136 SrcList *pTabList, /* A list of all tables to be scanned */ 3137 Expr *pWhere, /* The WHERE clause */ 3138 ExprList **ppOrderBy, /* An ORDER BY clause, or NULL */ 3139 u16 wctrlFlags /* One of the WHERE_* flags defined in sqliteInt.h */ 3140 ){ 3141 int i; /* Loop counter */ 3142 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ 3143 WhereInfo *pWInfo; /* Will become the return value of this function */ 3144 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 3145 Bitmask notReady; /* Cursors that are not yet positioned */ 3146 WhereMaskSet *pMaskSet; /* The expression mask set */ 3147 WhereClause *pWC; /* Decomposition of the WHERE clause */ 3148 struct SrcList_item *pTabItem; /* A single entry from pTabList */ 3149 WhereLevel *pLevel; /* A single level in the pWInfo list */ 3150 int iFrom; /* First unused FROM clause element */ 3151 int andFlags; /* AND-ed combination of all pWC->a[].wtFlags */ 3152 sqlite3 *db; /* Database connection */ 3153 3154 /* The number of tables in the FROM clause is limited by the number of 3155 ** bits in a Bitmask 3156 */ 3157 if( pTabList->nSrc>BMS ){ 3158 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 3159 return 0; 3160 } 3161 3162 /* Allocate and initialize the WhereInfo structure that will become the 3163 ** return value. A single allocation is used to store the WhereInfo 3164 ** struct, the contents of WhereInfo.a[], the WhereClause structure 3165 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte 3166 ** field (type Bitmask) it must be aligned on an 8-byte boundary on 3167 ** some architectures. Hence the ROUND8() below. 3168 */ 3169 db = pParse->db; 3170 nByteWInfo = ROUND8(sizeof(WhereInfo)+(pTabList->nSrc-1)*sizeof(WhereLevel)); 3171 pWInfo = sqlite3DbMallocZero(db, 3172 nByteWInfo + 3173 sizeof(WhereClause) + 3174 sizeof(WhereMaskSet) 3175 ); 3176 if( db->mallocFailed ){ 3177 goto whereBeginError; 3178 } 3179 pWInfo->nLevel = pTabList->nSrc; 3180 pWInfo->pParse = pParse; 3181 pWInfo->pTabList = pTabList; 3182 pWInfo->iBreak = sqlite3VdbeMakeLabel(v); 3183 pWInfo->pWC = pWC = (WhereClause *)&((u8 *)pWInfo)[nByteWInfo]; 3184 pWInfo->wctrlFlags = wctrlFlags; 3185 pMaskSet = (WhereMaskSet*)&pWC[1]; 3186 3187 /* Split the WHERE clause into separate subexpressions where each 3188 ** subexpression is separated by an AND operator. 3189 */ 3190 initMaskSet(pMaskSet); 3191 whereClauseInit(pWC, pParse, pMaskSet); 3192 sqlite3ExprCodeConstants(pParse, pWhere); 3193 whereSplit(pWC, pWhere, TK_AND); 3194 3195 /* Special case: a WHERE clause that is constant. Evaluate the 3196 ** expression and either jump over all of the code or fall thru. 3197 */ 3198 if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstantNotJoin(pWhere)) ){ 3199 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, SQLITE_JUMPIFNULL); 3200 pWhere = 0; 3201 } 3202 3203 /* Assign a bit from the bitmask to every term in the FROM clause. 3204 ** 3205 ** When assigning bitmask values to FROM clause cursors, it must be 3206 ** the case that if X is the bitmask for the N-th FROM clause term then 3207 ** the bitmask for all FROM clause terms to the left of the N-th term 3208 ** is (X-1). An expression from the ON clause of a LEFT JOIN can use 3209 ** its Expr.iRightJoinTable value to find the bitmask of the right table 3210 ** of the join. Subtracting one from the right table bitmask gives a 3211 ** bitmask for all tables to the left of the join. Knowing the bitmask 3212 ** for all tables to the left of a left join is important. Ticket #3015. 3213 ** 3214 ** Configure the WhereClause.vmask variable so that bits that correspond 3215 ** to virtual table cursors are set. This is used to selectively disable 3216 ** the OR-to-IN transformation in exprAnalyzeOrTerm(). It is not helpful 3217 ** with virtual tables. 3218 */ 3219 assert( pWC->vmask==0 && pMaskSet->n==0 ); 3220 for(i=0; i<pTabList->nSrc; i++){ 3221 createMask(pMaskSet, pTabList->a[i].iCursor); 3222 #ifndef SQLITE_OMIT_VIRTUALTABLE 3223 if( ALWAYS(pTabList->a[i].pTab) && IsVirtual(pTabList->a[i].pTab) ){ 3224 pWC->vmask |= ((Bitmask)1 << i); 3225 } 3226 #endif 3227 } 3228 #ifndef NDEBUG 3229 { 3230 Bitmask toTheLeft = 0; 3231 for(i=0; i<pTabList->nSrc; i++){ 3232 Bitmask m = getMask(pMaskSet, pTabList->a[i].iCursor); 3233 assert( (m-1)==toTheLeft ); 3234 toTheLeft |= m; 3235 } 3236 } 3237 #endif 3238 3239 /* Analyze all of the subexpressions. Note that exprAnalyze() might 3240 ** add new virtual terms onto the end of the WHERE clause. We do not 3241 ** want to analyze these virtual terms, so start analyzing at the end 3242 ** and work forward so that the added virtual terms are never processed. 3243 */ 3244 exprAnalyzeAll(pTabList, pWC); 3245 if( db->mallocFailed ){ 3246 goto whereBeginError; 3247 } 3248 3249 /* Chose the best index to use for each table in the FROM clause. 3250 ** 3251 ** This loop fills in the following fields: 3252 ** 3253 ** pWInfo->a[].pIdx The index to use for this level of the loop. 3254 ** pWInfo->a[].wsFlags WHERE_xxx flags associated with pIdx 3255 ** pWInfo->a[].nEq The number of == and IN constraints 3256 ** pWInfo->a[].iFrom Which term of the FROM clause is being coded 3257 ** pWInfo->a[].iTabCur The VDBE cursor for the database table 3258 ** pWInfo->a[].iIdxCur The VDBE cursor for the index 3259 ** pWInfo->a[].pTerm When wsFlags==WO_OR, the OR-clause term 3260 ** 3261 ** This loop also figures out the nesting order of tables in the FROM 3262 ** clause. 3263 */ 3264 notReady = ~(Bitmask)0; 3265 pTabItem = pTabList->a; 3266 pLevel = pWInfo->a; 3267 andFlags = ~0; 3268 WHERETRACE(("*** Optimizer Start ***\n")); 3269 for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 3270 WhereCost bestPlan; /* Most efficient plan seen so far */ 3271 Index *pIdx; /* Index for FROM table at pTabItem */ 3272 int j; /* For looping over FROM tables */ 3273 int bestJ = 0; /* The value of j */ 3274 Bitmask m; /* Bitmask value for j or bestJ */ 3275 int once = 0; /* True when first table is seen */ 3276 3277 memset(&bestPlan, 0, sizeof(bestPlan)); 3278 bestPlan.rCost = SQLITE_BIG_DBL; 3279 for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){ 3280 int doNotReorder; /* True if this table should not be reordered */ 3281 WhereCost sCost; /* Cost information from best[Virtual]Index() */ 3282 ExprList *pOrderBy; /* ORDER BY clause for index to optimize */ 3283 3284 doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0; 3285 if( once && doNotReorder ) break; 3286 m = getMask(pMaskSet, pTabItem->iCursor); 3287 if( (m & notReady)==0 ){ 3288 if( j==iFrom ) iFrom++; 3289 continue; 3290 } 3291 pOrderBy = ((i==0 && ppOrderBy )?*ppOrderBy:0); 3292 3293 assert( pTabItem->pTab ); 3294 #ifndef SQLITE_OMIT_VIRTUALTABLE 3295 if( IsVirtual(pTabItem->pTab) ){ 3296 sqlite3_index_info **pp = &pWInfo->a[j].pIdxInfo; 3297 bestVirtualIndex(pParse, pWC, pTabItem, notReady, pOrderBy, &sCost, pp); 3298 }else 3299 #endif 3300 { 3301 bestBtreeIndex(pParse, pWC, pTabItem, notReady, pOrderBy, &sCost); 3302 } 3303 if( once==0 || sCost.rCost<bestPlan.rCost ){ 3304 once = 1; 3305 bestPlan = sCost; 3306 bestJ = j; 3307 } 3308 if( doNotReorder ) break; 3309 } 3310 assert( once ); 3311 assert( notReady & getMask(pMaskSet, pTabList->a[bestJ].iCursor) ); 3312 WHERETRACE(("*** Optimizer selects table %d for loop %d\n", bestJ, 3313 pLevel-pWInfo->a)); 3314 if( (bestPlan.plan.wsFlags & WHERE_ORDERBY)!=0 ){ 3315 *ppOrderBy = 0; 3316 } 3317 andFlags &= bestPlan.plan.wsFlags; 3318 pLevel->plan = bestPlan.plan; 3319 if( bestPlan.plan.wsFlags & WHERE_INDEXED ){ 3320 pLevel->iIdxCur = pParse->nTab++; 3321 }else{ 3322 pLevel->iIdxCur = -1; 3323 } 3324 notReady &= ~getMask(pMaskSet, pTabList->a[bestJ].iCursor); 3325 pLevel->iFrom = (u8)bestJ; 3326 3327 /* Check that if the table scanned by this loop iteration had an 3328 ** INDEXED BY clause attached to it, that the named index is being 3329 ** used for the scan. If not, then query compilation has failed. 3330 ** Return an error. 3331 */ 3332 pIdx = pTabList->a[bestJ].pIndex; 3333 if( pIdx ){ 3334 if( (bestPlan.plan.wsFlags & WHERE_INDEXED)==0 ){ 3335 sqlite3ErrorMsg(pParse, "cannot use index: %s", pIdx->zName); 3336 goto whereBeginError; 3337 }else{ 3338 /* If an INDEXED BY clause is used, the bestIndex() function is 3339 ** guaranteed to find the index specified in the INDEXED BY clause 3340 ** if it find an index at all. */ 3341 assert( bestPlan.plan.u.pIdx==pIdx ); 3342 } 3343 } 3344 } 3345 WHERETRACE(("*** Optimizer Finished ***\n")); 3346 if( pParse->nErr || db->mallocFailed ){ 3347 goto whereBeginError; 3348 } 3349 3350 /* If the total query only selects a single row, then the ORDER BY 3351 ** clause is irrelevant. 3352 */ 3353 if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){ 3354 *ppOrderBy = 0; 3355 } 3356 3357 /* If the caller is an UPDATE or DELETE statement that is requesting 3358 ** to use a one-pass algorithm, determine if this is appropriate. 3359 ** The one-pass algorithm only works if the WHERE clause constraints 3360 ** the statement to update a single row. 3361 */ 3362 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 3363 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 && (andFlags & WHERE_UNIQUE)!=0 ){ 3364 pWInfo->okOnePass = 1; 3365 pWInfo->a[0].plan.wsFlags &= ~WHERE_IDX_ONLY; 3366 } 3367 3368 /* Open all tables in the pTabList and any indices selected for 3369 ** searching those tables. 3370 */ 3371 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ 3372 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 3373 Table *pTab; /* Table to open */ 3374 int iDb; /* Index of database containing table/index */ 3375 3376 #ifndef SQLITE_OMIT_EXPLAIN 3377 if( pParse->explain==2 ){ 3378 char *zMsg; 3379 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 3380 zMsg = sqlite3MPrintf(db, "TABLE %s", pItem->zName); 3381 if( pItem->zAlias ){ 3382 zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias); 3383 } 3384 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ 3385 zMsg = sqlite3MAppendf(db, zMsg, "%s WITH INDEX %s", 3386 zMsg, pLevel->plan.u.pIdx->zName); 3387 }else if( pLevel->plan.wsFlags & WHERE_MULTI_OR ){ 3388 zMsg = sqlite3MAppendf(db, zMsg, "%s VIA MULTI-INDEX UNION", zMsg); 3389 }else if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ 3390 zMsg = sqlite3MAppendf(db, zMsg, "%s USING PRIMARY KEY", zMsg); 3391 } 3392 #ifndef SQLITE_OMIT_VIRTUALTABLE 3393 else if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 3394 sqlite3_index_info *pVtabIdx = pLevel->plan.u.pVtabIdx; 3395 zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg, 3396 pVtabIdx->idxNum, pVtabIdx->idxStr); 3397 } 3398 #endif 3399 if( pLevel->plan.wsFlags & WHERE_ORDERBY ){ 3400 zMsg = sqlite3MAppendf(db, zMsg, "%s ORDER BY", zMsg); 3401 } 3402 sqlite3VdbeAddOp4(v, OP_Explain, i, pLevel->iFrom, 0, zMsg, P4_DYNAMIC); 3403 } 3404 #endif /* SQLITE_OMIT_EXPLAIN */ 3405 pTabItem = &pTabList->a[pLevel->iFrom]; 3406 pTab = pTabItem->pTab; 3407 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 3408 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue; 3409 #ifndef SQLITE_OMIT_VIRTUALTABLE 3410 if( (pLevel->plan.wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 3411 int iCur = pTabItem->iCursor; 3412 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, 3413 (const char*)pTab->pVtab, P4_VTAB); 3414 }else 3415 #endif 3416 if( (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 3417 && (wctrlFlags & WHERE_OMIT_OPEN)==0 ){ 3418 int op = pWInfo->okOnePass ? OP_OpenWrite : OP_OpenRead; 3419 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 3420 if( !pWInfo->okOnePass && pTab->nCol<BMS ){ 3421 Bitmask b = pTabItem->colUsed; 3422 int n = 0; 3423 for(; b; b=b>>1, n++){} 3424 sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, SQLITE_INT_TO_PTR(n), P4_INT32); 3425 assert( n<=pTab->nCol ); 3426 } 3427 }else{ 3428 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 3429 } 3430 pLevel->iTabCur = pTabItem->iCursor; 3431 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ 3432 Index *pIx = pLevel->plan.u.pIdx; 3433 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx); 3434 int iIdxCur = pLevel->iIdxCur; 3435 assert( pIx->pSchema==pTab->pSchema ); 3436 assert( iIdxCur>=0 ); 3437 sqlite3VdbeAddOp4(v, OP_OpenRead, iIdxCur, pIx->tnum, iDb, 3438 (char*)pKey, P4_KEYINFO_HANDOFF); 3439 VdbeComment((v, "%s", pIx->zName)); 3440 } 3441 sqlite3CodeVerifySchema(pParse, iDb); 3442 } 3443 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 3444 3445 /* Generate the code to do the search. Each iteration of the for 3446 ** loop below generates code for a single nested loop of the VM 3447 ** program. 3448 */ 3449 notReady = ~(Bitmask)0; 3450 for(i=0; i<pTabList->nSrc; i++){ 3451 notReady = codeOneLoopStart(pWInfo, i, wctrlFlags, notReady); 3452 pWInfo->iContinue = pWInfo->a[i].addrCont; 3453 } 3454 3455 #ifdef SQLITE_TEST /* For testing and debugging use only */ 3456 /* Record in the query plan information about the current table 3457 ** and the index used to access it (if any). If the table itself 3458 ** is not used, its name is just '{}'. If no index is used 3459 ** the index is listed as "{}". If the primary key is used the 3460 ** index name is '*'. 3461 */ 3462 for(i=0; i<pTabList->nSrc; i++){ 3463 char *z; 3464 int n; 3465 pLevel = &pWInfo->a[i]; 3466 pTabItem = &pTabList->a[pLevel->iFrom]; 3467 z = pTabItem->zAlias; 3468 if( z==0 ) z = pTabItem->pTab->zName; 3469 n = sqlite3Strlen30(z); 3470 if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){ 3471 if( pLevel->plan.wsFlags & WHERE_IDX_ONLY ){ 3472 memcpy(&sqlite3_query_plan[nQPlan], "{}", 2); 3473 nQPlan += 2; 3474 }else{ 3475 memcpy(&sqlite3_query_plan[nQPlan], z, n); 3476 nQPlan += n; 3477 } 3478 sqlite3_query_plan[nQPlan++] = ' '; 3479 } 3480 testcase( pLevel->plan.wsFlags & WHERE_ROWID_EQ ); 3481 testcase( pLevel->plan.wsFlags & WHERE_ROWID_RANGE ); 3482 if( pLevel->plan.wsFlags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ 3483 memcpy(&sqlite3_query_plan[nQPlan], "* ", 2); 3484 nQPlan += 2; 3485 }else if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ 3486 n = sqlite3Strlen30(pLevel->plan.u.pIdx->zName); 3487 if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){ 3488 memcpy(&sqlite3_query_plan[nQPlan], pLevel->plan.u.pIdx->zName, n); 3489 nQPlan += n; 3490 sqlite3_query_plan[nQPlan++] = ' '; 3491 } 3492 }else{ 3493 memcpy(&sqlite3_query_plan[nQPlan], "{} ", 3); 3494 nQPlan += 3; 3495 } 3496 } 3497 while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){ 3498 sqlite3_query_plan[--nQPlan] = 0; 3499 } 3500 sqlite3_query_plan[nQPlan] = 0; 3501 nQPlan = 0; 3502 #endif /* SQLITE_TEST // Testing and debugging use only */ 3503 3504 /* Record the continuation address in the WhereInfo structure. Then 3505 ** clean up and return. 3506 */ 3507 return pWInfo; 3508 3509 /* Jump here if malloc fails */ 3510 whereBeginError: 3511 whereInfoFree(db, pWInfo); 3512 return 0; 3513 } 3514 3515 /* 3516 ** Generate the end of the WHERE loop. See comments on 3517 ** sqlite3WhereBegin() for additional information. 3518 */ 3519 void sqlite3WhereEnd(WhereInfo *pWInfo){ 3520 Parse *pParse = pWInfo->pParse; 3521 Vdbe *v = pParse->pVdbe; 3522 int i; 3523 WhereLevel *pLevel; 3524 SrcList *pTabList = pWInfo->pTabList; 3525 sqlite3 *db = pParse->db; 3526 3527 /* Generate loop termination code. 3528 */ 3529 sqlite3ExprCacheClear(pParse); 3530 for(i=pTabList->nSrc-1; i>=0; i--){ 3531 pLevel = &pWInfo->a[i]; 3532 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 3533 if( pLevel->op!=OP_Noop ){ 3534 sqlite3VdbeAddOp2(v, pLevel->op, pLevel->p1, pLevel->p2); 3535 sqlite3VdbeChangeP5(v, pLevel->p5); 3536 } 3537 if( pLevel->plan.wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ 3538 struct InLoop *pIn; 3539 int j; 3540 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 3541 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 3542 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 3543 sqlite3VdbeAddOp2(v, OP_Next, pIn->iCur, pIn->addrInTop); 3544 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 3545 } 3546 sqlite3DbFree(db, pLevel->u.in.aInLoop); 3547 } 3548 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 3549 if( pLevel->iLeftJoin ){ 3550 int addr; 3551 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); 3552 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); 3553 if( pLevel->iIdxCur>=0 ){ 3554 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 3555 } 3556 if( pLevel->op==OP_Return ){ 3557 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); 3558 }else{ 3559 sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst); 3560 } 3561 sqlite3VdbeJumpHere(v, addr); 3562 } 3563 } 3564 3565 /* The "break" point is here, just past the end of the outer loop. 3566 ** Set it. 3567 */ 3568 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 3569 3570 /* Close all of the cursors that were opened by sqlite3WhereBegin. 3571 */ 3572 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 3573 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 3574 Table *pTab = pTabItem->pTab; 3575 assert( pTab!=0 ); 3576 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ) continue; 3577 if( (pWInfo->wctrlFlags & WHERE_OMIT_CLOSE)==0 ){ 3578 if( !pWInfo->okOnePass && (pLevel->plan.wsFlags & WHERE_IDX_ONLY)==0 ){ 3579 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); 3580 } 3581 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 ){ 3582 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); 3583 } 3584 } 3585 3586 /* If this scan uses an index, make code substitutions to read data 3587 ** from the index in preference to the table. Sometimes, this means 3588 ** the table need never be read from. This is a performance boost, 3589 ** as the vdbe level waits until the table is read before actually 3590 ** seeking the table cursor to the record corresponding to the current 3591 ** position in the index. 3592 ** 3593 ** Calls to the code generator in between sqlite3WhereBegin and 3594 ** sqlite3WhereEnd will have created code that references the table 3595 ** directly. This loop scans all that code looking for opcodes 3596 ** that reference the table and converts them into opcodes that 3597 ** reference the index. 3598 */ 3599 if( (pLevel->plan.wsFlags & WHERE_INDEXED)!=0 && !db->mallocFailed){ 3600 int k, j, last; 3601 VdbeOp *pOp; 3602 Index *pIdx = pLevel->plan.u.pIdx; 3603 int useIndexOnly = pLevel->plan.wsFlags & WHERE_IDX_ONLY; 3604 3605 assert( pIdx!=0 ); 3606 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop); 3607 last = sqlite3VdbeCurrentAddr(v); 3608 for(k=pWInfo->iTop; k<last; k++, pOp++){ 3609 if( pOp->p1!=pLevel->iTabCur ) continue; 3610 if( pOp->opcode==OP_Column ){ 3611 for(j=0; j<pIdx->nColumn; j++){ 3612 if( pOp->p2==pIdx->aiColumn[j] ){ 3613 pOp->p2 = j; 3614 pOp->p1 = pLevel->iIdxCur; 3615 break; 3616 } 3617 } 3618 assert(!useIndexOnly || j<pIdx->nColumn); 3619 }else if( pOp->opcode==OP_Rowid ){ 3620 pOp->p1 = pLevel->iIdxCur; 3621 pOp->opcode = OP_IdxRowid; 3622 }else if( pOp->opcode==OP_NullRow && useIndexOnly ){ 3623 pOp->opcode = OP_Noop; 3624 } 3625 } 3626 } 3627 } 3628 3629 /* Final cleanup 3630 */ 3631 whereInfoFree(db, pWInfo); 3632 return; 3633 } 3634