1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* Forward declaration of methods */ 23 static int whereLoopResize(sqlite3*, WhereLoop*, int); 24 25 /* Test variable that can be set to enable WHERE tracing */ 26 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 27 /***/ int sqlite3WhereTrace = 0; 28 #endif 29 30 31 /* 32 ** Return the estimated number of output rows from a WHERE clause 33 */ 34 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ 35 return pWInfo->nRowOut; 36 } 37 38 /* 39 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this 40 ** WHERE clause returns outputs for DISTINCT processing. 41 */ 42 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ 43 return pWInfo->eDistinct; 44 } 45 46 /* 47 ** Return TRUE if the WHERE clause returns rows in ORDER BY order. 48 ** Return FALSE if the output needs to be sorted. 49 */ 50 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ 51 return pWInfo->nOBSat; 52 } 53 54 /* 55 ** Return TRUE if the innermost loop of the WHERE clause implementation 56 ** returns rows in ORDER BY order for complete run of the inner loop. 57 ** 58 ** Across multiple iterations of outer loops, the output rows need not be 59 ** sorted. As long as rows are sorted for just the innermost loop, this 60 ** routine can return TRUE. 61 */ 62 int sqlite3WhereOrderedInnerLoop(WhereInfo *pWInfo){ 63 return pWInfo->bOrderedInnerLoop; 64 } 65 66 /* 67 ** Return the VDBE address or label to jump to in order to continue 68 ** immediately with the next row of a WHERE clause. 69 */ 70 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ 71 assert( pWInfo->iContinue!=0 ); 72 return pWInfo->iContinue; 73 } 74 75 /* 76 ** Return the VDBE address or label to jump to in order to break 77 ** out of a WHERE loop. 78 */ 79 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ 80 return pWInfo->iBreak; 81 } 82 83 /* 84 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to 85 ** operate directly on the rowis returned by a WHERE clause. Return 86 ** ONEPASS_SINGLE (1) if the statement can operation directly because only 87 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass 88 ** optimization can be used on multiple 89 ** 90 ** If the ONEPASS optimization is used (if this routine returns true) 91 ** then also write the indices of open cursors used by ONEPASS 92 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data 93 ** table and iaCur[1] gets the cursor used by an auxiliary index. 94 ** Either value may be -1, indicating that cursor is not used. 95 ** Any cursors returned will have been opened for writing. 96 ** 97 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is 98 ** unable to use the ONEPASS optimization. 99 */ 100 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ 101 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); 102 #ifdef WHERETRACE_ENABLED 103 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){ 104 sqlite3DebugPrintf("%s cursors: %d %d\n", 105 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI", 106 aiCur[0], aiCur[1]); 107 } 108 #endif 109 return pWInfo->eOnePass; 110 } 111 112 /* 113 ** Move the content of pSrc into pDest 114 */ 115 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ 116 pDest->n = pSrc->n; 117 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); 118 } 119 120 /* 121 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. 122 ** 123 ** The new entry might overwrite an existing entry, or it might be 124 ** appended, or it might be discarded. Do whatever is the right thing 125 ** so that pSet keeps the N_OR_COST best entries seen so far. 126 */ 127 static int whereOrInsert( 128 WhereOrSet *pSet, /* The WhereOrSet to be updated */ 129 Bitmask prereq, /* Prerequisites of the new entry */ 130 LogEst rRun, /* Run-cost of the new entry */ 131 LogEst nOut /* Number of outputs for the new entry */ 132 ){ 133 u16 i; 134 WhereOrCost *p; 135 for(i=pSet->n, p=pSet->a; i>0; i--, p++){ 136 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ 137 goto whereOrInsert_done; 138 } 139 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ 140 return 0; 141 } 142 } 143 if( pSet->n<N_OR_COST ){ 144 p = &pSet->a[pSet->n++]; 145 p->nOut = nOut; 146 }else{ 147 p = pSet->a; 148 for(i=1; i<pSet->n; i++){ 149 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; 150 } 151 if( p->rRun<=rRun ) return 0; 152 } 153 whereOrInsert_done: 154 p->prereq = prereq; 155 p->rRun = rRun; 156 if( p->nOut>nOut ) p->nOut = nOut; 157 return 1; 158 } 159 160 /* 161 ** Return the bitmask for the given cursor number. Return 0 if 162 ** iCursor is not in the set. 163 */ 164 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ 165 int i; 166 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); 167 for(i=0; i<pMaskSet->n; i++){ 168 if( pMaskSet->ix[i]==iCursor ){ 169 return MASKBIT(i); 170 } 171 } 172 return 0; 173 } 174 175 /* 176 ** Create a new mask for cursor iCursor. 177 ** 178 ** There is one cursor per table in the FROM clause. The number of 179 ** tables in the FROM clause is limited by a test early in the 180 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 181 ** array will never overflow. 182 */ 183 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 184 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 185 pMaskSet->ix[pMaskSet->n++] = iCursor; 186 } 187 188 /* 189 ** Advance to the next WhereTerm that matches according to the criteria 190 ** established when the pScan object was initialized by whereScanInit(). 191 ** Return NULL if there are no more matching WhereTerms. 192 */ 193 static WhereTerm *whereScanNext(WhereScan *pScan){ 194 int iCur; /* The cursor on the LHS of the term */ 195 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */ 196 Expr *pX; /* An expression being tested */ 197 WhereClause *pWC; /* Shorthand for pScan->pWC */ 198 WhereTerm *pTerm; /* The term being tested */ 199 int k = pScan->k; /* Where to start scanning */ 200 201 assert( pScan->iEquiv<=pScan->nEquiv ); 202 pWC = pScan->pWC; 203 while(1){ 204 iColumn = pScan->aiColumn[pScan->iEquiv-1]; 205 iCur = pScan->aiCur[pScan->iEquiv-1]; 206 assert( pWC!=0 ); 207 do{ 208 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ 209 if( pTerm->leftCursor==iCur 210 && pTerm->u.leftColumn==iColumn 211 && (iColumn!=XN_EXPR 212 || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft, 213 pScan->pIdxExpr,iCur)==0) 214 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 215 ){ 216 if( (pTerm->eOperator & WO_EQUIV)!=0 217 && pScan->nEquiv<ArraySize(pScan->aiCur) 218 && (pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight))->op==TK_COLUMN 219 ){ 220 int j; 221 for(j=0; j<pScan->nEquiv; j++){ 222 if( pScan->aiCur[j]==pX->iTable 223 && pScan->aiColumn[j]==pX->iColumn ){ 224 break; 225 } 226 } 227 if( j==pScan->nEquiv ){ 228 pScan->aiCur[j] = pX->iTable; 229 pScan->aiColumn[j] = pX->iColumn; 230 pScan->nEquiv++; 231 } 232 } 233 if( (pTerm->eOperator & pScan->opMask)!=0 ){ 234 /* Verify the affinity and collating sequence match */ 235 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ 236 CollSeq *pColl; 237 Parse *pParse = pWC->pWInfo->pParse; 238 pX = pTerm->pExpr; 239 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ 240 continue; 241 } 242 assert(pX->pLeft); 243 pColl = sqlite3BinaryCompareCollSeq(pParse, 244 pX->pLeft, pX->pRight); 245 if( pColl==0 ) pColl = pParse->db->pDfltColl; 246 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ 247 continue; 248 } 249 } 250 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0 251 && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN 252 && pX->iTable==pScan->aiCur[0] 253 && pX->iColumn==pScan->aiColumn[0] 254 ){ 255 testcase( pTerm->eOperator & WO_IS ); 256 continue; 257 } 258 pScan->pWC = pWC; 259 pScan->k = k+1; 260 return pTerm; 261 } 262 } 263 } 264 pWC = pWC->pOuter; 265 k = 0; 266 }while( pWC!=0 ); 267 if( pScan->iEquiv>=pScan->nEquiv ) break; 268 pWC = pScan->pOrigWC; 269 k = 0; 270 pScan->iEquiv++; 271 } 272 return 0; 273 } 274 275 /* 276 ** Initialize a WHERE clause scanner object. Return a pointer to the 277 ** first match. Return NULL if there are no matches. 278 ** 279 ** The scanner will be searching the WHERE clause pWC. It will look 280 ** for terms of the form "X <op> <expr>" where X is column iColumn of table 281 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx 282 ** must be one of the indexes of table iCur. 283 ** 284 ** The <op> must be one of the operators described by opMask. 285 ** 286 ** If the search is for X and the WHERE clause contains terms of the 287 ** form X=Y then this routine might also return terms of the form 288 ** "Y <op> <expr>". The number of levels of transitivity is limited, 289 ** but is enough to handle most commonly occurring SQL statements. 290 ** 291 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with 292 ** index pIdx. 293 */ 294 static WhereTerm *whereScanInit( 295 WhereScan *pScan, /* The WhereScan object being initialized */ 296 WhereClause *pWC, /* The WHERE clause to be scanned */ 297 int iCur, /* Cursor to scan for */ 298 int iColumn, /* Column to scan for */ 299 u32 opMask, /* Operator(s) to scan for */ 300 Index *pIdx /* Must be compatible with this index */ 301 ){ 302 pScan->pOrigWC = pWC; 303 pScan->pWC = pWC; 304 pScan->pIdxExpr = 0; 305 pScan->idxaff = 0; 306 pScan->zCollName = 0; 307 if( pIdx ){ 308 int j = iColumn; 309 iColumn = pIdx->aiColumn[j]; 310 if( iColumn==XN_EXPR ){ 311 pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr; 312 pScan->zCollName = pIdx->azColl[j]; 313 }else if( iColumn==pIdx->pTable->iPKey ){ 314 iColumn = XN_ROWID; 315 }else if( iColumn>=0 ){ 316 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; 317 pScan->zCollName = pIdx->azColl[j]; 318 } 319 }else if( iColumn==XN_EXPR ){ 320 return 0; 321 } 322 pScan->opMask = opMask; 323 pScan->k = 0; 324 pScan->aiCur[0] = iCur; 325 pScan->aiColumn[0] = iColumn; 326 pScan->nEquiv = 1; 327 pScan->iEquiv = 1; 328 return whereScanNext(pScan); 329 } 330 331 /* 332 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 333 ** where X is a reference to the iColumn of table iCur or of index pIdx 334 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by 335 ** the op parameter. Return a pointer to the term. Return 0 if not found. 336 ** 337 ** If pIdx!=0 then it must be one of the indexes of table iCur. 338 ** Search for terms matching the iColumn-th column of pIdx 339 ** rather than the iColumn-th column of table iCur. 340 ** 341 ** The term returned might by Y=<expr> if there is another constraint in 342 ** the WHERE clause that specifies that X=Y. Any such constraints will be 343 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The 344 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11 345 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10 346 ** other equivalent values. Hence a search for X will return <expr> if X=A1 347 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>. 348 ** 349 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" 350 ** then try for the one with no dependencies on <expr> - in other words where 351 ** <expr> is a constant expression of some kind. Only return entries of 352 ** the form "X <op> Y" where Y is a column in another table if no terms of 353 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS 354 ** exist, try to return a term that does not use WO_EQUIV. 355 */ 356 WhereTerm *sqlite3WhereFindTerm( 357 WhereClause *pWC, /* The WHERE clause to be searched */ 358 int iCur, /* Cursor number of LHS */ 359 int iColumn, /* Column number of LHS */ 360 Bitmask notReady, /* RHS must not overlap with this mask */ 361 u32 op, /* Mask of WO_xx values describing operator */ 362 Index *pIdx /* Must be compatible with this index, if not NULL */ 363 ){ 364 WhereTerm *pResult = 0; 365 WhereTerm *p; 366 WhereScan scan; 367 368 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); 369 op &= WO_EQ|WO_IS; 370 while( p ){ 371 if( (p->prereqRight & notReady)==0 ){ 372 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){ 373 testcase( p->eOperator & WO_IS ); 374 return p; 375 } 376 if( pResult==0 ) pResult = p; 377 } 378 p = whereScanNext(&scan); 379 } 380 return pResult; 381 } 382 383 /* 384 ** This function searches pList for an entry that matches the iCol-th column 385 ** of index pIdx. 386 ** 387 ** If such an expression is found, its index in pList->a[] is returned. If 388 ** no expression is found, -1 is returned. 389 */ 390 static int findIndexCol( 391 Parse *pParse, /* Parse context */ 392 ExprList *pList, /* Expression list to search */ 393 int iBase, /* Cursor for table associated with pIdx */ 394 Index *pIdx, /* Index to match column of */ 395 int iCol /* Column of index to match */ 396 ){ 397 int i; 398 const char *zColl = pIdx->azColl[iCol]; 399 400 for(i=0; i<pList->nExpr; i++){ 401 Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr); 402 if( p->op==TK_COLUMN 403 && p->iColumn==pIdx->aiColumn[iCol] 404 && p->iTable==iBase 405 ){ 406 CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr); 407 if( 0==sqlite3StrICmp(pColl->zName, zColl) ){ 408 return i; 409 } 410 } 411 } 412 413 return -1; 414 } 415 416 /* 417 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL 418 */ 419 static int indexColumnNotNull(Index *pIdx, int iCol){ 420 int j; 421 assert( pIdx!=0 ); 422 assert( iCol>=0 && iCol<pIdx->nColumn ); 423 j = pIdx->aiColumn[iCol]; 424 if( j>=0 ){ 425 return pIdx->pTable->aCol[j].notNull; 426 }else if( j==(-1) ){ 427 return 1; 428 }else{ 429 assert( j==(-2) ); 430 return 0; /* Assume an indexed expression can always yield a NULL */ 431 432 } 433 } 434 435 /* 436 ** Return true if the DISTINCT expression-list passed as the third argument 437 ** is redundant. 438 ** 439 ** A DISTINCT list is redundant if any subset of the columns in the 440 ** DISTINCT list are collectively unique and individually non-null. 441 */ 442 static int isDistinctRedundant( 443 Parse *pParse, /* Parsing context */ 444 SrcList *pTabList, /* The FROM clause */ 445 WhereClause *pWC, /* The WHERE clause */ 446 ExprList *pDistinct /* The result set that needs to be DISTINCT */ 447 ){ 448 Table *pTab; 449 Index *pIdx; 450 int i; 451 int iBase; 452 453 /* If there is more than one table or sub-select in the FROM clause of 454 ** this query, then it will not be possible to show that the DISTINCT 455 ** clause is redundant. */ 456 if( pTabList->nSrc!=1 ) return 0; 457 iBase = pTabList->a[0].iCursor; 458 pTab = pTabList->a[0].pTab; 459 460 /* If any of the expressions is an IPK column on table iBase, then return 461 ** true. Note: The (p->iTable==iBase) part of this test may be false if the 462 ** current SELECT is a correlated sub-query. 463 */ 464 for(i=0; i<pDistinct->nExpr; i++){ 465 Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr); 466 if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1; 467 } 468 469 /* Loop through all indices on the table, checking each to see if it makes 470 ** the DISTINCT qualifier redundant. It does so if: 471 ** 472 ** 1. The index is itself UNIQUE, and 473 ** 474 ** 2. All of the columns in the index are either part of the pDistinct 475 ** list, or else the WHERE clause contains a term of the form "col=X", 476 ** where X is a constant value. The collation sequences of the 477 ** comparison and select-list expressions must match those of the index. 478 ** 479 ** 3. All of those index columns for which the WHERE clause does not 480 ** contain a "col=X" term are subject to a NOT NULL constraint. 481 */ 482 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 483 if( !IsUniqueIndex(pIdx) ) continue; 484 for(i=0; i<pIdx->nKeyCol; i++){ 485 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){ 486 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break; 487 if( indexColumnNotNull(pIdx, i)==0 ) break; 488 } 489 } 490 if( i==pIdx->nKeyCol ){ 491 /* This index implies that the DISTINCT qualifier is redundant. */ 492 return 1; 493 } 494 } 495 496 return 0; 497 } 498 499 500 /* 501 ** Estimate the logarithm of the input value to base 2. 502 */ 503 static LogEst estLog(LogEst N){ 504 return N<=10 ? 0 : sqlite3LogEst(N) - 33; 505 } 506 507 /* 508 ** Convert OP_Column opcodes to OP_Copy in previously generated code. 509 ** 510 ** This routine runs over generated VDBE code and translates OP_Column 511 ** opcodes into OP_Copy when the table is being accessed via co-routine 512 ** instead of via table lookup. 513 ** 514 ** If the bIncrRowid parameter is 0, then any OP_Rowid instructions on 515 ** cursor iTabCur are transformed into OP_Null. Or, if bIncrRowid is non-zero, 516 ** then each OP_Rowid is transformed into an instruction to increment the 517 ** value stored in its output register. 518 */ 519 static void translateColumnToCopy( 520 Parse *pParse, /* Parsing context */ 521 int iStart, /* Translate from this opcode to the end */ 522 int iTabCur, /* OP_Column/OP_Rowid references to this table */ 523 int iRegister, /* The first column is in this register */ 524 int bIncrRowid /* If non-zero, transform OP_rowid to OP_AddImm(1) */ 525 ){ 526 Vdbe *v = pParse->pVdbe; 527 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart); 528 int iEnd = sqlite3VdbeCurrentAddr(v); 529 if( pParse->db->mallocFailed ) return; 530 for(; iStart<iEnd; iStart++, pOp++){ 531 if( pOp->p1!=iTabCur ) continue; 532 if( pOp->opcode==OP_Column ){ 533 pOp->opcode = OP_Copy; 534 pOp->p1 = pOp->p2 + iRegister; 535 pOp->p2 = pOp->p3; 536 pOp->p3 = 0; 537 }else if( pOp->opcode==OP_Rowid ){ 538 if( bIncrRowid ){ 539 /* Increment the value stored in the P2 operand of the OP_Rowid. */ 540 pOp->opcode = OP_AddImm; 541 pOp->p1 = pOp->p2; 542 pOp->p2 = 1; 543 }else{ 544 pOp->opcode = OP_Null; 545 pOp->p1 = 0; 546 pOp->p3 = 0; 547 } 548 } 549 } 550 } 551 552 /* 553 ** Two routines for printing the content of an sqlite3_index_info 554 ** structure. Used for testing and debugging only. If neither 555 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 556 ** are no-ops. 557 */ 558 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) 559 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ 560 int i; 561 if( !sqlite3WhereTrace ) return; 562 for(i=0; i<p->nConstraint; i++){ 563 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 564 i, 565 p->aConstraint[i].iColumn, 566 p->aConstraint[i].iTermOffset, 567 p->aConstraint[i].op, 568 p->aConstraint[i].usable); 569 } 570 for(i=0; i<p->nOrderBy; i++){ 571 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 572 i, 573 p->aOrderBy[i].iColumn, 574 p->aOrderBy[i].desc); 575 } 576 } 577 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ 578 int i; 579 if( !sqlite3WhereTrace ) return; 580 for(i=0; i<p->nConstraint; i++){ 581 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 582 i, 583 p->aConstraintUsage[i].argvIndex, 584 p->aConstraintUsage[i].omit); 585 } 586 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 587 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 588 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 589 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 590 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); 591 } 592 #else 593 #define TRACE_IDX_INPUTS(A) 594 #define TRACE_IDX_OUTPUTS(A) 595 #endif 596 597 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 598 /* 599 ** Return TRUE if the WHERE clause term pTerm is of a form where it 600 ** could be used with an index to access pSrc, assuming an appropriate 601 ** index existed. 602 */ 603 static int termCanDriveIndex( 604 WhereTerm *pTerm, /* WHERE clause term to check */ 605 struct SrcList_item *pSrc, /* Table we are trying to access */ 606 Bitmask notReady /* Tables in outer loops of the join */ 607 ){ 608 char aff; 609 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; 610 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0; 611 if( (pSrc->fg.jointype & JT_LEFT) 612 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 613 && (pTerm->eOperator & WO_IS) 614 ){ 615 /* Cannot use an IS term from the WHERE clause as an index driver for 616 ** the RHS of a LEFT JOIN. Such a term can only be used if it is from 617 ** the ON clause. */ 618 return 0; 619 } 620 if( (pTerm->prereqRight & notReady)!=0 ) return 0; 621 if( pTerm->u.leftColumn<0 ) return 0; 622 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; 623 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; 624 testcase( pTerm->pExpr->op==TK_IS ); 625 return 1; 626 } 627 #endif 628 629 630 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 631 /* 632 ** Generate code to construct the Index object for an automatic index 633 ** and to set up the WhereLevel object pLevel so that the code generator 634 ** makes use of the automatic index. 635 */ 636 static void constructAutomaticIndex( 637 Parse *pParse, /* The parsing context */ 638 WhereClause *pWC, /* The WHERE clause */ 639 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */ 640 Bitmask notReady, /* Mask of cursors that are not available */ 641 WhereLevel *pLevel /* Write new index here */ 642 ){ 643 int nKeyCol; /* Number of columns in the constructed index */ 644 WhereTerm *pTerm; /* A single term of the WHERE clause */ 645 WhereTerm *pWCEnd; /* End of pWC->a[] */ 646 Index *pIdx; /* Object describing the transient index */ 647 Vdbe *v; /* Prepared statement under construction */ 648 int addrInit; /* Address of the initialization bypass jump */ 649 Table *pTable; /* The table being indexed */ 650 int addrTop; /* Top of the index fill loop */ 651 int regRecord; /* Register holding an index record */ 652 int n; /* Column counter */ 653 int i; /* Loop counter */ 654 int mxBitCol; /* Maximum column in pSrc->colUsed */ 655 CollSeq *pColl; /* Collating sequence to on a column */ 656 WhereLoop *pLoop; /* The Loop object */ 657 char *zNotUsed; /* Extra space on the end of pIdx */ 658 Bitmask idxCols; /* Bitmap of columns used for indexing */ 659 Bitmask extraCols; /* Bitmap of additional columns */ 660 u8 sentWarning = 0; /* True if a warnning has been issued */ 661 Expr *pPartial = 0; /* Partial Index Expression */ 662 int iContinue = 0; /* Jump here to skip excluded rows */ 663 struct SrcList_item *pTabItem; /* FROM clause term being indexed */ 664 int addrCounter = 0; /* Address where integer counter is initialized */ 665 int regBase; /* Array of registers where record is assembled */ 666 667 /* Generate code to skip over the creation and initialization of the 668 ** transient index on 2nd and subsequent iterations of the loop. */ 669 v = pParse->pVdbe; 670 assert( v!=0 ); 671 addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); 672 673 /* Count the number of columns that will be added to the index 674 ** and used to match WHERE clause constraints */ 675 nKeyCol = 0; 676 pTable = pSrc->pTab; 677 pWCEnd = &pWC->a[pWC->nTerm]; 678 pLoop = pLevel->pWLoop; 679 idxCols = 0; 680 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 681 Expr *pExpr = pTerm->pExpr; 682 assert( !ExprHasProperty(pExpr, EP_FromJoin) /* prereq always non-zero */ 683 || pExpr->iRightJoinTable!=pSrc->iCursor /* for the right-hand */ 684 || pLoop->prereq!=0 ); /* table of a LEFT JOIN */ 685 if( pLoop->prereq==0 686 && (pTerm->wtFlags & TERM_VIRTUAL)==0 687 && !ExprHasProperty(pExpr, EP_FromJoin) 688 && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){ 689 pPartial = sqlite3ExprAnd(pParse->db, pPartial, 690 sqlite3ExprDup(pParse->db, pExpr, 0)); 691 } 692 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 693 int iCol = pTerm->u.leftColumn; 694 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 695 testcase( iCol==BMS ); 696 testcase( iCol==BMS-1 ); 697 if( !sentWarning ){ 698 sqlite3_log(SQLITE_WARNING_AUTOINDEX, 699 "automatic index on %s(%s)", pTable->zName, 700 pTable->aCol[iCol].zName); 701 sentWarning = 1; 702 } 703 if( (idxCols & cMask)==0 ){ 704 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ 705 goto end_auto_index_create; 706 } 707 pLoop->aLTerm[nKeyCol++] = pTerm; 708 idxCols |= cMask; 709 } 710 } 711 } 712 assert( nKeyCol>0 ); 713 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; 714 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED 715 | WHERE_AUTO_INDEX; 716 717 /* Count the number of additional columns needed to create a 718 ** covering index. A "covering index" is an index that contains all 719 ** columns that are needed by the query. With a covering index, the 720 ** original table never needs to be accessed. Automatic indices must 721 ** be a covering index because the index will not be updated if the 722 ** original table changes and the index and table cannot both be used 723 ** if they go out of sync. 724 */ 725 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); 726 mxBitCol = MIN(BMS-1,pTable->nCol); 727 testcase( pTable->nCol==BMS-1 ); 728 testcase( pTable->nCol==BMS-2 ); 729 for(i=0; i<mxBitCol; i++){ 730 if( extraCols & MASKBIT(i) ) nKeyCol++; 731 } 732 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 733 nKeyCol += pTable->nCol - BMS + 1; 734 } 735 736 /* Construct the Index object to describe this index */ 737 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); 738 if( pIdx==0 ) goto end_auto_index_create; 739 pLoop->u.btree.pIndex = pIdx; 740 pIdx->zName = "auto-index"; 741 pIdx->pTable = pTable; 742 n = 0; 743 idxCols = 0; 744 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 745 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 746 int iCol = pTerm->u.leftColumn; 747 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 748 testcase( iCol==BMS-1 ); 749 testcase( iCol==BMS ); 750 if( (idxCols & cMask)==0 ){ 751 Expr *pX = pTerm->pExpr; 752 idxCols |= cMask; 753 pIdx->aiColumn[n] = pTerm->u.leftColumn; 754 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); 755 pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY; 756 n++; 757 } 758 } 759 } 760 assert( (u32)n==pLoop->u.btree.nEq ); 761 762 /* Add additional columns needed to make the automatic index into 763 ** a covering index */ 764 for(i=0; i<mxBitCol; i++){ 765 if( extraCols & MASKBIT(i) ){ 766 pIdx->aiColumn[n] = i; 767 pIdx->azColl[n] = sqlite3StrBINARY; 768 n++; 769 } 770 } 771 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 772 for(i=BMS-1; i<pTable->nCol; i++){ 773 pIdx->aiColumn[n] = i; 774 pIdx->azColl[n] = sqlite3StrBINARY; 775 n++; 776 } 777 } 778 assert( n==nKeyCol ); 779 pIdx->aiColumn[n] = XN_ROWID; 780 pIdx->azColl[n] = sqlite3StrBINARY; 781 782 /* Create the automatic index */ 783 assert( pLevel->iIdxCur>=0 ); 784 pLevel->iIdxCur = pParse->nTab++; 785 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); 786 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 787 VdbeComment((v, "for %s", pTable->zName)); 788 789 /* Fill the automatic index with content */ 790 sqlite3ExprCachePush(pParse); 791 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom]; 792 if( pTabItem->fg.viaCoroutine ){ 793 int regYield = pTabItem->regReturn; 794 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0); 795 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 796 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); 797 VdbeCoverage(v); 798 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); 799 }else{ 800 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); 801 } 802 if( pPartial ){ 803 iContinue = sqlite3VdbeMakeLabel(v); 804 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); 805 pLoop->wsFlags |= WHERE_PARTIALIDX; 806 } 807 regRecord = sqlite3GetTempReg(pParse); 808 regBase = sqlite3GenerateIndexKey( 809 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0 810 ); 811 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); 812 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 813 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); 814 if( pTabItem->fg.viaCoroutine ){ 815 sqlite3VdbeChangeP2(v, addrCounter, regBase+n); 816 testcase( pParse->db->mallocFailed ); 817 translateColumnToCopy(pParse, addrTop, pLevel->iTabCur, 818 pTabItem->regResult, 1); 819 sqlite3VdbeGoto(v, addrTop); 820 pTabItem->fg.viaCoroutine = 0; 821 }else{ 822 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); 823 } 824 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); 825 sqlite3VdbeJumpHere(v, addrTop); 826 sqlite3ReleaseTempReg(pParse, regRecord); 827 sqlite3ExprCachePop(pParse); 828 829 /* Jump here when skipping the initialization */ 830 sqlite3VdbeJumpHere(v, addrInit); 831 832 end_auto_index_create: 833 sqlite3ExprDelete(pParse->db, pPartial); 834 } 835 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 836 837 #ifndef SQLITE_OMIT_VIRTUALTABLE 838 /* 839 ** Allocate and populate an sqlite3_index_info structure. It is the 840 ** responsibility of the caller to eventually release the structure 841 ** by passing the pointer returned by this function to sqlite3_free(). 842 */ 843 static sqlite3_index_info *allocateIndexInfo( 844 Parse *pParse, 845 WhereClause *pWC, 846 Bitmask mUnusable, /* Ignore terms with these prereqs */ 847 struct SrcList_item *pSrc, 848 ExprList *pOrderBy, 849 u16 *pmNoOmit /* Mask of terms not to omit */ 850 ){ 851 int i, j; 852 int nTerm; 853 struct sqlite3_index_constraint *pIdxCons; 854 struct sqlite3_index_orderby *pIdxOrderBy; 855 struct sqlite3_index_constraint_usage *pUsage; 856 WhereTerm *pTerm; 857 int nOrderBy; 858 sqlite3_index_info *pIdxInfo; 859 u16 mNoOmit = 0; 860 861 /* Count the number of possible WHERE clause constraints referring 862 ** to this virtual table */ 863 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 864 if( pTerm->leftCursor != pSrc->iCursor ) continue; 865 if( pTerm->prereqRight & mUnusable ) continue; 866 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 867 testcase( pTerm->eOperator & WO_IN ); 868 testcase( pTerm->eOperator & WO_ISNULL ); 869 testcase( pTerm->eOperator & WO_IS ); 870 testcase( pTerm->eOperator & WO_ALL ); 871 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue; 872 if( pTerm->wtFlags & TERM_VNULL ) continue; 873 assert( pTerm->u.leftColumn>=(-1) ); 874 nTerm++; 875 } 876 877 /* If the ORDER BY clause contains only columns in the current 878 ** virtual table then allocate space for the aOrderBy part of 879 ** the sqlite3_index_info structure. 880 */ 881 nOrderBy = 0; 882 if( pOrderBy ){ 883 int n = pOrderBy->nExpr; 884 for(i=0; i<n; i++){ 885 Expr *pExpr = pOrderBy->a[i].pExpr; 886 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 887 } 888 if( i==n){ 889 nOrderBy = n; 890 } 891 } 892 893 /* Allocate the sqlite3_index_info structure 894 */ 895 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 896 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 897 + sizeof(*pIdxOrderBy)*nOrderBy ); 898 if( pIdxInfo==0 ){ 899 sqlite3ErrorMsg(pParse, "out of memory"); 900 return 0; 901 } 902 903 /* Initialize the structure. The sqlite3_index_info structure contains 904 ** many fields that are declared "const" to prevent xBestIndex from 905 ** changing them. We have to do some funky casting in order to 906 ** initialize those fields. 907 */ 908 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; 909 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 910 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 911 *(int*)&pIdxInfo->nConstraint = nTerm; 912 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 913 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; 914 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; 915 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = 916 pUsage; 917 918 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 919 u16 op; 920 if( pTerm->leftCursor != pSrc->iCursor ) continue; 921 if( pTerm->prereqRight & mUnusable ) continue; 922 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 923 testcase( pTerm->eOperator & WO_IN ); 924 testcase( pTerm->eOperator & WO_IS ); 925 testcase( pTerm->eOperator & WO_ISNULL ); 926 testcase( pTerm->eOperator & WO_ALL ); 927 if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue; 928 if( pTerm->wtFlags & TERM_VNULL ) continue; 929 assert( pTerm->u.leftColumn>=(-1) ); 930 pIdxCons[j].iColumn = pTerm->u.leftColumn; 931 pIdxCons[j].iTermOffset = i; 932 op = pTerm->eOperator & WO_ALL; 933 if( op==WO_IN ) op = WO_EQ; 934 if( op==WO_AUX ){ 935 pIdxCons[j].op = pTerm->eMatchOp; 936 }else if( op & (WO_ISNULL|WO_IS) ){ 937 if( op==WO_ISNULL ){ 938 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL; 939 }else{ 940 pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS; 941 } 942 }else{ 943 pIdxCons[j].op = (u8)op; 944 /* The direct assignment in the previous line is possible only because 945 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 946 ** following asserts verify this fact. */ 947 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 948 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 949 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 950 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 951 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 952 assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) ); 953 954 if( op & (WO_LT|WO_LE|WO_GT|WO_GE) 955 && sqlite3ExprIsVector(pTerm->pExpr->pRight) 956 ){ 957 if( i<16 ) mNoOmit |= (1 << i); 958 if( op==WO_LT ) pIdxCons[j].op = WO_LE; 959 if( op==WO_GT ) pIdxCons[j].op = WO_GE; 960 } 961 } 962 963 j++; 964 } 965 for(i=0; i<nOrderBy; i++){ 966 Expr *pExpr = pOrderBy->a[i].pExpr; 967 pIdxOrderBy[i].iColumn = pExpr->iColumn; 968 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; 969 } 970 971 *pmNoOmit = mNoOmit; 972 return pIdxInfo; 973 } 974 975 /* 976 ** The table object reference passed as the second argument to this function 977 ** must represent a virtual table. This function invokes the xBestIndex() 978 ** method of the virtual table with the sqlite3_index_info object that 979 ** comes in as the 3rd argument to this function. 980 ** 981 ** If an error occurs, pParse is populated with an error message and a 982 ** non-zero value is returned. Otherwise, 0 is returned and the output 983 ** part of the sqlite3_index_info structure is left populated. 984 ** 985 ** Whether or not an error is returned, it is the responsibility of the 986 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates 987 ** that this is required. 988 */ 989 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ 990 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; 991 int rc; 992 993 TRACE_IDX_INPUTS(p); 994 rc = pVtab->pModule->xBestIndex(pVtab, p); 995 TRACE_IDX_OUTPUTS(p); 996 997 if( rc!=SQLITE_OK ){ 998 if( rc==SQLITE_NOMEM ){ 999 sqlite3OomFault(pParse->db); 1000 }else if( !pVtab->zErrMsg ){ 1001 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 1002 }else{ 1003 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 1004 } 1005 } 1006 sqlite3_free(pVtab->zErrMsg); 1007 pVtab->zErrMsg = 0; 1008 1009 #if 0 1010 /* This error is now caught by the caller. 1011 ** Search for "xBestIndex malfunction" below */ 1012 for(i=0; i<p->nConstraint; i++){ 1013 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){ 1014 sqlite3ErrorMsg(pParse, 1015 "table %s: xBestIndex returned an invalid plan", pTab->zName); 1016 } 1017 } 1018 #endif 1019 1020 return pParse->nErr; 1021 } 1022 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ 1023 1024 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1025 /* 1026 ** Estimate the location of a particular key among all keys in an 1027 ** index. Store the results in aStat as follows: 1028 ** 1029 ** aStat[0] Est. number of rows less than pRec 1030 ** aStat[1] Est. number of rows equal to pRec 1031 ** 1032 ** Return the index of the sample that is the smallest sample that 1033 ** is greater than or equal to pRec. Note that this index is not an index 1034 ** into the aSample[] array - it is an index into a virtual set of samples 1035 ** based on the contents of aSample[] and the number of fields in record 1036 ** pRec. 1037 */ 1038 static int whereKeyStats( 1039 Parse *pParse, /* Database connection */ 1040 Index *pIdx, /* Index to consider domain of */ 1041 UnpackedRecord *pRec, /* Vector of values to consider */ 1042 int roundUp, /* Round up if true. Round down if false */ 1043 tRowcnt *aStat /* OUT: stats written here */ 1044 ){ 1045 IndexSample *aSample = pIdx->aSample; 1046 int iCol; /* Index of required stats in anEq[] etc. */ 1047 int i; /* Index of first sample >= pRec */ 1048 int iSample; /* Smallest sample larger than or equal to pRec */ 1049 int iMin = 0; /* Smallest sample not yet tested */ 1050 int iTest; /* Next sample to test */ 1051 int res; /* Result of comparison operation */ 1052 int nField; /* Number of fields in pRec */ 1053 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ 1054 1055 #ifndef SQLITE_DEBUG 1056 UNUSED_PARAMETER( pParse ); 1057 #endif 1058 assert( pRec!=0 ); 1059 assert( pIdx->nSample>0 ); 1060 assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol ); 1061 1062 /* Do a binary search to find the first sample greater than or equal 1063 ** to pRec. If pRec contains a single field, the set of samples to search 1064 ** is simply the aSample[] array. If the samples in aSample[] contain more 1065 ** than one fields, all fields following the first are ignored. 1066 ** 1067 ** If pRec contains N fields, where N is more than one, then as well as the 1068 ** samples in aSample[] (truncated to N fields), the search also has to 1069 ** consider prefixes of those samples. For example, if the set of samples 1070 ** in aSample is: 1071 ** 1072 ** aSample[0] = (a, 5) 1073 ** aSample[1] = (a, 10) 1074 ** aSample[2] = (b, 5) 1075 ** aSample[3] = (c, 100) 1076 ** aSample[4] = (c, 105) 1077 ** 1078 ** Then the search space should ideally be the samples above and the 1079 ** unique prefixes [a], [b] and [c]. But since that is hard to organize, 1080 ** the code actually searches this set: 1081 ** 1082 ** 0: (a) 1083 ** 1: (a, 5) 1084 ** 2: (a, 10) 1085 ** 3: (a, 10) 1086 ** 4: (b) 1087 ** 5: (b, 5) 1088 ** 6: (c) 1089 ** 7: (c, 100) 1090 ** 8: (c, 105) 1091 ** 9: (c, 105) 1092 ** 1093 ** For each sample in the aSample[] array, N samples are present in the 1094 ** effective sample array. In the above, samples 0 and 1 are based on 1095 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. 1096 ** 1097 ** Often, sample i of each block of N effective samples has (i+1) fields. 1098 ** Except, each sample may be extended to ensure that it is greater than or 1099 ** equal to the previous sample in the array. For example, in the above, 1100 ** sample 2 is the first sample of a block of N samples, so at first it 1101 ** appears that it should be 1 field in size. However, that would make it 1102 ** smaller than sample 1, so the binary search would not work. As a result, 1103 ** it is extended to two fields. The duplicates that this creates do not 1104 ** cause any problems. 1105 */ 1106 nField = pRec->nField; 1107 iCol = 0; 1108 iSample = pIdx->nSample * nField; 1109 do{ 1110 int iSamp; /* Index in aSample[] of test sample */ 1111 int n; /* Number of fields in test sample */ 1112 1113 iTest = (iMin+iSample)/2; 1114 iSamp = iTest / nField; 1115 if( iSamp>0 ){ 1116 /* The proposed effective sample is a prefix of sample aSample[iSamp]. 1117 ** Specifically, the shortest prefix of at least (1 + iTest%nField) 1118 ** fields that is greater than the previous effective sample. */ 1119 for(n=(iTest % nField) + 1; n<nField; n++){ 1120 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break; 1121 } 1122 }else{ 1123 n = iTest + 1; 1124 } 1125 1126 pRec->nField = n; 1127 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); 1128 if( res<0 ){ 1129 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; 1130 iMin = iTest+1; 1131 }else if( res==0 && n<nField ){ 1132 iLower = aSample[iSamp].anLt[n-1]; 1133 iMin = iTest+1; 1134 res = -1; 1135 }else{ 1136 iSample = iTest; 1137 iCol = n-1; 1138 } 1139 }while( res && iMin<iSample ); 1140 i = iSample / nField; 1141 1142 #ifdef SQLITE_DEBUG 1143 /* The following assert statements check that the binary search code 1144 ** above found the right answer. This block serves no purpose other 1145 ** than to invoke the asserts. */ 1146 if( pParse->db->mallocFailed==0 ){ 1147 if( res==0 ){ 1148 /* If (res==0) is true, then pRec must be equal to sample i. */ 1149 assert( i<pIdx->nSample ); 1150 assert( iCol==nField-1 ); 1151 pRec->nField = nField; 1152 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) 1153 || pParse->db->mallocFailed 1154 ); 1155 }else{ 1156 /* Unless i==pIdx->nSample, indicating that pRec is larger than 1157 ** all samples in the aSample[] array, pRec must be smaller than the 1158 ** (iCol+1) field prefix of sample i. */ 1159 assert( i<=pIdx->nSample && i>=0 ); 1160 pRec->nField = iCol+1; 1161 assert( i==pIdx->nSample 1162 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 1163 || pParse->db->mallocFailed ); 1164 1165 /* if i==0 and iCol==0, then record pRec is smaller than all samples 1166 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must 1167 ** be greater than or equal to the (iCol) field prefix of sample i. 1168 ** If (i>0), then pRec must also be greater than sample (i-1). */ 1169 if( iCol>0 ){ 1170 pRec->nField = iCol; 1171 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 1172 || pParse->db->mallocFailed ); 1173 } 1174 if( i>0 ){ 1175 pRec->nField = nField; 1176 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 1177 || pParse->db->mallocFailed ); 1178 } 1179 } 1180 } 1181 #endif /* ifdef SQLITE_DEBUG */ 1182 1183 if( res==0 ){ 1184 /* Record pRec is equal to sample i */ 1185 assert( iCol==nField-1 ); 1186 aStat[0] = aSample[i].anLt[iCol]; 1187 aStat[1] = aSample[i].anEq[iCol]; 1188 }else{ 1189 /* At this point, the (iCol+1) field prefix of aSample[i] is the first 1190 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec 1191 ** is larger than all samples in the array. */ 1192 tRowcnt iUpper, iGap; 1193 if( i>=pIdx->nSample ){ 1194 iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); 1195 }else{ 1196 iUpper = aSample[i].anLt[iCol]; 1197 } 1198 1199 if( iLower>=iUpper ){ 1200 iGap = 0; 1201 }else{ 1202 iGap = iUpper - iLower; 1203 } 1204 if( roundUp ){ 1205 iGap = (iGap*2)/3; 1206 }else{ 1207 iGap = iGap/3; 1208 } 1209 aStat[0] = iLower + iGap; 1210 aStat[1] = pIdx->aAvgEq[nField-1]; 1211 } 1212 1213 /* Restore the pRec->nField value before returning. */ 1214 pRec->nField = nField; 1215 return i; 1216 } 1217 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1218 1219 /* 1220 ** If it is not NULL, pTerm is a term that provides an upper or lower 1221 ** bound on a range scan. Without considering pTerm, it is estimated 1222 ** that the scan will visit nNew rows. This function returns the number 1223 ** estimated to be visited after taking pTerm into account. 1224 ** 1225 ** If the user explicitly specified a likelihood() value for this term, 1226 ** then the return value is the likelihood multiplied by the number of 1227 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term 1228 ** has a likelihood of 0.50, and any other term a likelihood of 0.25. 1229 */ 1230 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ 1231 LogEst nRet = nNew; 1232 if( pTerm ){ 1233 if( pTerm->truthProb<=0 ){ 1234 nRet += pTerm->truthProb; 1235 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ 1236 nRet -= 20; assert( 20==sqlite3LogEst(4) ); 1237 } 1238 } 1239 return nRet; 1240 } 1241 1242 1243 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1244 /* 1245 ** Return the affinity for a single column of an index. 1246 */ 1247 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){ 1248 assert( iCol>=0 && iCol<pIdx->nColumn ); 1249 if( !pIdx->zColAff ){ 1250 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB; 1251 } 1252 return pIdx->zColAff[iCol]; 1253 } 1254 #endif 1255 1256 1257 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1258 /* 1259 ** This function is called to estimate the number of rows visited by a 1260 ** range-scan on a skip-scan index. For example: 1261 ** 1262 ** CREATE INDEX i1 ON t1(a, b, c); 1263 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; 1264 ** 1265 ** Value pLoop->nOut is currently set to the estimated number of rows 1266 ** visited for scanning (a=? AND b=?). This function reduces that estimate 1267 ** by some factor to account for the (c BETWEEN ? AND ?) expression based 1268 ** on the stat4 data for the index. this scan will be peformed multiple 1269 ** times (once for each (a,b) combination that matches a=?) is dealt with 1270 ** by the caller. 1271 ** 1272 ** It does this by scanning through all stat4 samples, comparing values 1273 ** extracted from pLower and pUpper with the corresponding column in each 1274 ** sample. If L and U are the number of samples found to be less than or 1275 ** equal to the values extracted from pLower and pUpper respectively, and 1276 ** N is the total number of samples, the pLoop->nOut value is adjusted 1277 ** as follows: 1278 ** 1279 ** nOut = nOut * ( min(U - L, 1) / N ) 1280 ** 1281 ** If pLower is NULL, or a value cannot be extracted from the term, L is 1282 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, 1283 ** U is set to N. 1284 ** 1285 ** Normally, this function sets *pbDone to 1 before returning. However, 1286 ** if no value can be extracted from either pLower or pUpper (and so the 1287 ** estimate of the number of rows delivered remains unchanged), *pbDone 1288 ** is left as is. 1289 ** 1290 ** If an error occurs, an SQLite error code is returned. Otherwise, 1291 ** SQLITE_OK. 1292 */ 1293 static int whereRangeSkipScanEst( 1294 Parse *pParse, /* Parsing & code generating context */ 1295 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1296 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1297 WhereLoop *pLoop, /* Update the .nOut value of this loop */ 1298 int *pbDone /* Set to true if at least one expr. value extracted */ 1299 ){ 1300 Index *p = pLoop->u.btree.pIndex; 1301 int nEq = pLoop->u.btree.nEq; 1302 sqlite3 *db = pParse->db; 1303 int nLower = -1; 1304 int nUpper = p->nSample+1; 1305 int rc = SQLITE_OK; 1306 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq); 1307 CollSeq *pColl; 1308 1309 sqlite3_value *p1 = 0; /* Value extracted from pLower */ 1310 sqlite3_value *p2 = 0; /* Value extracted from pUpper */ 1311 sqlite3_value *pVal = 0; /* Value extracted from record */ 1312 1313 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); 1314 if( pLower ){ 1315 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); 1316 nLower = 0; 1317 } 1318 if( pUpper && rc==SQLITE_OK ){ 1319 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); 1320 nUpper = p2 ? 0 : p->nSample; 1321 } 1322 1323 if( p1 || p2 ){ 1324 int i; 1325 int nDiff; 1326 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ 1327 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); 1328 if( rc==SQLITE_OK && p1 ){ 1329 int res = sqlite3MemCompare(p1, pVal, pColl); 1330 if( res>=0 ) nLower++; 1331 } 1332 if( rc==SQLITE_OK && p2 ){ 1333 int res = sqlite3MemCompare(p2, pVal, pColl); 1334 if( res>=0 ) nUpper++; 1335 } 1336 } 1337 nDiff = (nUpper - nLower); 1338 if( nDiff<=0 ) nDiff = 1; 1339 1340 /* If there is both an upper and lower bound specified, and the 1341 ** comparisons indicate that they are close together, use the fallback 1342 ** method (assume that the scan visits 1/64 of the rows) for estimating 1343 ** the number of rows visited. Otherwise, estimate the number of rows 1344 ** using the method described in the header comment for this function. */ 1345 if( nDiff!=1 || pUpper==0 || pLower==0 ){ 1346 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); 1347 pLoop->nOut -= nAdjust; 1348 *pbDone = 1; 1349 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", 1350 nLower, nUpper, nAdjust*-1, pLoop->nOut)); 1351 } 1352 1353 }else{ 1354 assert( *pbDone==0 ); 1355 } 1356 1357 sqlite3ValueFree(p1); 1358 sqlite3ValueFree(p2); 1359 sqlite3ValueFree(pVal); 1360 1361 return rc; 1362 } 1363 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1364 1365 /* 1366 ** This function is used to estimate the number of rows that will be visited 1367 ** by scanning an index for a range of values. The range may have an upper 1368 ** bound, a lower bound, or both. The WHERE clause terms that set the upper 1369 ** and lower bounds are represented by pLower and pUpper respectively. For 1370 ** example, assuming that index p is on t1(a): 1371 ** 1372 ** ... FROM t1 WHERE a > ? AND a < ? ... 1373 ** |_____| |_____| 1374 ** | | 1375 ** pLower pUpper 1376 ** 1377 ** If either of the upper or lower bound is not present, then NULL is passed in 1378 ** place of the corresponding WhereTerm. 1379 ** 1380 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index 1381 ** column subject to the range constraint. Or, equivalently, the number of 1382 ** equality constraints optimized by the proposed index scan. For example, 1383 ** assuming index p is on t1(a, b), and the SQL query is: 1384 ** 1385 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... 1386 ** 1387 ** then nEq is set to 1 (as the range restricted column, b, is the second 1388 ** left-most column of the index). Or, if the query is: 1389 ** 1390 ** ... FROM t1 WHERE a > ? AND a < ? ... 1391 ** 1392 ** then nEq is set to 0. 1393 ** 1394 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the 1395 ** number of rows that the index scan is expected to visit without 1396 ** considering the range constraints. If nEq is 0, then *pnOut is the number of 1397 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) 1398 ** to account for the range constraints pLower and pUpper. 1399 ** 1400 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be 1401 ** used, a single range inequality reduces the search space by a factor of 4. 1402 ** and a pair of constraints (x>? AND x<?) reduces the expected number of 1403 ** rows visited by a factor of 64. 1404 */ 1405 static int whereRangeScanEst( 1406 Parse *pParse, /* Parsing & code generating context */ 1407 WhereLoopBuilder *pBuilder, 1408 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1409 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1410 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ 1411 ){ 1412 int rc = SQLITE_OK; 1413 int nOut = pLoop->nOut; 1414 LogEst nNew; 1415 1416 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1417 Index *p = pLoop->u.btree.pIndex; 1418 int nEq = pLoop->u.btree.nEq; 1419 1420 if( p->nSample>0 && nEq<p->nSampleCol ){ 1421 if( nEq==pBuilder->nRecValid ){ 1422 UnpackedRecord *pRec = pBuilder->pRec; 1423 tRowcnt a[2]; 1424 int nBtm = pLoop->u.btree.nBtm; 1425 int nTop = pLoop->u.btree.nTop; 1426 1427 /* Variable iLower will be set to the estimate of the number of rows in 1428 ** the index that are less than the lower bound of the range query. The 1429 ** lower bound being the concatenation of $P and $L, where $P is the 1430 ** key-prefix formed by the nEq values matched against the nEq left-most 1431 ** columns of the index, and $L is the value in pLower. 1432 ** 1433 ** Or, if pLower is NULL or $L cannot be extracted from it (because it 1434 ** is not a simple variable or literal value), the lower bound of the 1435 ** range is $P. Due to a quirk in the way whereKeyStats() works, even 1436 ** if $L is available, whereKeyStats() is called for both ($P) and 1437 ** ($P:$L) and the larger of the two returned values is used. 1438 ** 1439 ** Similarly, iUpper is to be set to the estimate of the number of rows 1440 ** less than the upper bound of the range query. Where the upper bound 1441 ** is either ($P) or ($P:$U). Again, even if $U is available, both values 1442 ** of iUpper are requested of whereKeyStats() and the smaller used. 1443 ** 1444 ** The number of rows between the two bounds is then just iUpper-iLower. 1445 */ 1446 tRowcnt iLower; /* Rows less than the lower bound */ 1447 tRowcnt iUpper; /* Rows less than the upper bound */ 1448 int iLwrIdx = -2; /* aSample[] for the lower bound */ 1449 int iUprIdx = -1; /* aSample[] for the upper bound */ 1450 1451 if( pRec ){ 1452 testcase( pRec->nField!=pBuilder->nRecValid ); 1453 pRec->nField = pBuilder->nRecValid; 1454 } 1455 /* Determine iLower and iUpper using ($P) only. */ 1456 if( nEq==0 ){ 1457 iLower = 0; 1458 iUpper = p->nRowEst0; 1459 }else{ 1460 /* Note: this call could be optimized away - since the same values must 1461 ** have been requested when testing key $P in whereEqualScanEst(). */ 1462 whereKeyStats(pParse, p, pRec, 0, a); 1463 iLower = a[0]; 1464 iUpper = a[0] + a[1]; 1465 } 1466 1467 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); 1468 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); 1469 assert( p->aSortOrder!=0 ); 1470 if( p->aSortOrder[nEq] ){ 1471 /* The roles of pLower and pUpper are swapped for a DESC index */ 1472 SWAP(WhereTerm*, pLower, pUpper); 1473 SWAP(int, nBtm, nTop); 1474 } 1475 1476 /* If possible, improve on the iLower estimate using ($P:$L). */ 1477 if( pLower ){ 1478 int n; /* Values extracted from pExpr */ 1479 Expr *pExpr = pLower->pExpr->pRight; 1480 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n); 1481 if( rc==SQLITE_OK && n ){ 1482 tRowcnt iNew; 1483 u16 mask = WO_GT|WO_LE; 1484 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1485 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); 1486 iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0); 1487 if( iNew>iLower ) iLower = iNew; 1488 nOut--; 1489 pLower = 0; 1490 } 1491 } 1492 1493 /* If possible, improve on the iUpper estimate using ($P:$U). */ 1494 if( pUpper ){ 1495 int n; /* Values extracted from pExpr */ 1496 Expr *pExpr = pUpper->pExpr->pRight; 1497 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n); 1498 if( rc==SQLITE_OK && n ){ 1499 tRowcnt iNew; 1500 u16 mask = WO_GT|WO_LE; 1501 if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT); 1502 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); 1503 iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0); 1504 if( iNew<iUpper ) iUpper = iNew; 1505 nOut--; 1506 pUpper = 0; 1507 } 1508 } 1509 1510 pBuilder->pRec = pRec; 1511 if( rc==SQLITE_OK ){ 1512 if( iUpper>iLower ){ 1513 nNew = sqlite3LogEst(iUpper - iLower); 1514 /* TUNING: If both iUpper and iLower are derived from the same 1515 ** sample, then assume they are 4x more selective. This brings 1516 ** the estimated selectivity more in line with what it would be 1517 ** if estimated without the use of STAT3/4 tables. */ 1518 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) ); 1519 }else{ 1520 nNew = 10; assert( 10==sqlite3LogEst(2) ); 1521 } 1522 if( nNew<nOut ){ 1523 nOut = nNew; 1524 } 1525 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", 1526 (u32)iLower, (u32)iUpper, nOut)); 1527 } 1528 }else{ 1529 int bDone = 0; 1530 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); 1531 if( bDone ) return rc; 1532 } 1533 } 1534 #else 1535 UNUSED_PARAMETER(pParse); 1536 UNUSED_PARAMETER(pBuilder); 1537 assert( pLower || pUpper ); 1538 #endif 1539 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); 1540 nNew = whereRangeAdjust(pLower, nOut); 1541 nNew = whereRangeAdjust(pUpper, nNew); 1542 1543 /* TUNING: If there is both an upper and lower limit and neither limit 1544 ** has an application-defined likelihood(), assume the range is 1545 ** reduced by an additional 75%. This means that, by default, an open-ended 1546 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the 1547 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to 1548 ** match 1/64 of the index. */ 1549 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ 1550 nNew -= 20; 1551 } 1552 1553 nOut -= (pLower!=0) + (pUpper!=0); 1554 if( nNew<10 ) nNew = 10; 1555 if( nNew<nOut ) nOut = nNew; 1556 #if defined(WHERETRACE_ENABLED) 1557 if( pLoop->nOut>nOut ){ 1558 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", 1559 pLoop->nOut, nOut)); 1560 } 1561 #endif 1562 pLoop->nOut = (LogEst)nOut; 1563 return rc; 1564 } 1565 1566 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1567 /* 1568 ** Estimate the number of rows that will be returned based on 1569 ** an equality constraint x=VALUE and where that VALUE occurs in 1570 ** the histogram data. This only works when x is the left-most 1571 ** column of an index and sqlite_stat3 histogram data is available 1572 ** for that index. When pExpr==NULL that means the constraint is 1573 ** "x IS NULL" instead of "x=VALUE". 1574 ** 1575 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1576 ** If unable to make an estimate, leave *pnRow unchanged and return 1577 ** non-zero. 1578 ** 1579 ** This routine can fail if it is unable to load a collating sequence 1580 ** required for string comparison, or if unable to allocate memory 1581 ** for a UTF conversion required for comparison. The error is stored 1582 ** in the pParse structure. 1583 */ 1584 static int whereEqualScanEst( 1585 Parse *pParse, /* Parsing & code generating context */ 1586 WhereLoopBuilder *pBuilder, 1587 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ 1588 tRowcnt *pnRow /* Write the revised row estimate here */ 1589 ){ 1590 Index *p = pBuilder->pNew->u.btree.pIndex; 1591 int nEq = pBuilder->pNew->u.btree.nEq; 1592 UnpackedRecord *pRec = pBuilder->pRec; 1593 int rc; /* Subfunction return code */ 1594 tRowcnt a[2]; /* Statistics */ 1595 int bOk; 1596 1597 assert( nEq>=1 ); 1598 assert( nEq<=p->nColumn ); 1599 assert( p->aSample!=0 ); 1600 assert( p->nSample>0 ); 1601 assert( pBuilder->nRecValid<nEq ); 1602 1603 /* If values are not available for all fields of the index to the left 1604 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ 1605 if( pBuilder->nRecValid<(nEq-1) ){ 1606 return SQLITE_NOTFOUND; 1607 } 1608 1609 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() 1610 ** below would return the same value. */ 1611 if( nEq>=p->nColumn ){ 1612 *pnRow = 1; 1613 return SQLITE_OK; 1614 } 1615 1616 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk); 1617 pBuilder->pRec = pRec; 1618 if( rc!=SQLITE_OK ) return rc; 1619 if( bOk==0 ) return SQLITE_NOTFOUND; 1620 pBuilder->nRecValid = nEq; 1621 1622 whereKeyStats(pParse, p, pRec, 0, a); 1623 WHERETRACE(0x10,("equality scan regions %s(%d): %d\n", 1624 p->zName, nEq-1, (int)a[1])); 1625 *pnRow = a[1]; 1626 1627 return rc; 1628 } 1629 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1630 1631 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1632 /* 1633 ** Estimate the number of rows that will be returned based on 1634 ** an IN constraint where the right-hand side of the IN operator 1635 ** is a list of values. Example: 1636 ** 1637 ** WHERE x IN (1,2,3,4) 1638 ** 1639 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1640 ** If unable to make an estimate, leave *pnRow unchanged and return 1641 ** non-zero. 1642 ** 1643 ** This routine can fail if it is unable to load a collating sequence 1644 ** required for string comparison, or if unable to allocate memory 1645 ** for a UTF conversion required for comparison. The error is stored 1646 ** in the pParse structure. 1647 */ 1648 static int whereInScanEst( 1649 Parse *pParse, /* Parsing & code generating context */ 1650 WhereLoopBuilder *pBuilder, 1651 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ 1652 tRowcnt *pnRow /* Write the revised row estimate here */ 1653 ){ 1654 Index *p = pBuilder->pNew->u.btree.pIndex; 1655 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); 1656 int nRecValid = pBuilder->nRecValid; 1657 int rc = SQLITE_OK; /* Subfunction return code */ 1658 tRowcnt nEst; /* Number of rows for a single term */ 1659 tRowcnt nRowEst = 0; /* New estimate of the number of rows */ 1660 int i; /* Loop counter */ 1661 1662 assert( p->aSample!=0 ); 1663 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ 1664 nEst = nRow0; 1665 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); 1666 nRowEst += nEst; 1667 pBuilder->nRecValid = nRecValid; 1668 } 1669 1670 if( rc==SQLITE_OK ){ 1671 if( nRowEst > nRow0 ) nRowEst = nRow0; 1672 *pnRow = nRowEst; 1673 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); 1674 } 1675 assert( pBuilder->nRecValid==nRecValid ); 1676 return rc; 1677 } 1678 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1679 1680 1681 #ifdef WHERETRACE_ENABLED 1682 /* 1683 ** Print the content of a WhereTerm object 1684 */ 1685 static void whereTermPrint(WhereTerm *pTerm, int iTerm){ 1686 if( pTerm==0 ){ 1687 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); 1688 }else{ 1689 char zType[4]; 1690 char zLeft[50]; 1691 memcpy(zType, "...", 4); 1692 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; 1693 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; 1694 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L'; 1695 if( pTerm->eOperator & WO_SINGLE ){ 1696 sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}", 1697 pTerm->leftCursor, pTerm->u.leftColumn); 1698 }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){ 1699 sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%lld", 1700 pTerm->u.pOrInfo->indexable); 1701 }else{ 1702 sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor); 1703 } 1704 sqlite3DebugPrintf( 1705 "TERM-%-3d %p %s %-12s prob=%-3d op=0x%03x wtFlags=0x%04x", 1706 iTerm, pTerm, zType, zLeft, pTerm->truthProb, 1707 pTerm->eOperator, pTerm->wtFlags); 1708 if( pTerm->iField ){ 1709 sqlite3DebugPrintf(" iField=%d\n", pTerm->iField); 1710 }else{ 1711 sqlite3DebugPrintf("\n"); 1712 } 1713 sqlite3TreeViewExpr(0, pTerm->pExpr, 0); 1714 } 1715 } 1716 #endif 1717 1718 #ifdef WHERETRACE_ENABLED 1719 /* 1720 ** Show the complete content of a WhereClause 1721 */ 1722 void sqlite3WhereClausePrint(WhereClause *pWC){ 1723 int i; 1724 for(i=0; i<pWC->nTerm; i++){ 1725 whereTermPrint(&pWC->a[i], i); 1726 } 1727 } 1728 #endif 1729 1730 #ifdef WHERETRACE_ENABLED 1731 /* 1732 ** Print a WhereLoop object for debugging purposes 1733 */ 1734 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){ 1735 WhereInfo *pWInfo = pWC->pWInfo; 1736 int nb = 1+(pWInfo->pTabList->nSrc+3)/4; 1737 struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab; 1738 Table *pTab = pItem->pTab; 1739 Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1; 1740 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, 1741 p->iTab, nb, p->maskSelf, nb, p->prereq & mAll); 1742 sqlite3DebugPrintf(" %12s", 1743 pItem->zAlias ? pItem->zAlias : pTab->zName); 1744 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 1745 const char *zName; 1746 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ 1747 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ 1748 int i = sqlite3Strlen30(zName) - 1; 1749 while( zName[i]!='_' ) i--; 1750 zName += i; 1751 } 1752 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); 1753 }else{ 1754 sqlite3DebugPrintf("%20s",""); 1755 } 1756 }else{ 1757 char *z; 1758 if( p->u.vtab.idxStr ){ 1759 z = sqlite3_mprintf("(%d,\"%s\",%x)", 1760 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); 1761 }else{ 1762 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); 1763 } 1764 sqlite3DebugPrintf(" %-19s", z); 1765 sqlite3_free(z); 1766 } 1767 if( p->wsFlags & WHERE_SKIPSCAN ){ 1768 sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); 1769 }else{ 1770 sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm); 1771 } 1772 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); 1773 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ 1774 int i; 1775 for(i=0; i<p->nLTerm; i++){ 1776 whereTermPrint(p->aLTerm[i], i); 1777 } 1778 } 1779 } 1780 #endif 1781 1782 /* 1783 ** Convert bulk memory into a valid WhereLoop that can be passed 1784 ** to whereLoopClear harmlessly. 1785 */ 1786 static void whereLoopInit(WhereLoop *p){ 1787 p->aLTerm = p->aLTermSpace; 1788 p->nLTerm = 0; 1789 p->nLSlot = ArraySize(p->aLTermSpace); 1790 p->wsFlags = 0; 1791 } 1792 1793 /* 1794 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. 1795 */ 1796 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ 1797 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ 1798 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ 1799 sqlite3_free(p->u.vtab.idxStr); 1800 p->u.vtab.needFree = 0; 1801 p->u.vtab.idxStr = 0; 1802 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ 1803 sqlite3DbFree(db, p->u.btree.pIndex->zColAff); 1804 sqlite3DbFreeNN(db, p->u.btree.pIndex); 1805 p->u.btree.pIndex = 0; 1806 } 1807 } 1808 } 1809 1810 /* 1811 ** Deallocate internal memory used by a WhereLoop object 1812 */ 1813 static void whereLoopClear(sqlite3 *db, WhereLoop *p){ 1814 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm); 1815 whereLoopClearUnion(db, p); 1816 whereLoopInit(p); 1817 } 1818 1819 /* 1820 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. 1821 */ 1822 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ 1823 WhereTerm **paNew; 1824 if( p->nLSlot>=n ) return SQLITE_OK; 1825 n = (n+7)&~7; 1826 paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n); 1827 if( paNew==0 ) return SQLITE_NOMEM_BKPT; 1828 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); 1829 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm); 1830 p->aLTerm = paNew; 1831 p->nLSlot = n; 1832 return SQLITE_OK; 1833 } 1834 1835 /* 1836 ** Transfer content from the second pLoop into the first. 1837 */ 1838 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ 1839 whereLoopClearUnion(db, pTo); 1840 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){ 1841 memset(&pTo->u, 0, sizeof(pTo->u)); 1842 return SQLITE_NOMEM_BKPT; 1843 } 1844 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); 1845 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); 1846 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ 1847 pFrom->u.vtab.needFree = 0; 1848 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 1849 pFrom->u.btree.pIndex = 0; 1850 } 1851 return SQLITE_OK; 1852 } 1853 1854 /* 1855 ** Delete a WhereLoop object 1856 */ 1857 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ 1858 whereLoopClear(db, p); 1859 sqlite3DbFreeNN(db, p); 1860 } 1861 1862 /* 1863 ** Free a WhereInfo structure 1864 */ 1865 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 1866 int i; 1867 assert( pWInfo!=0 ); 1868 for(i=0; i<pWInfo->nLevel; i++){ 1869 WhereLevel *pLevel = &pWInfo->a[i]; 1870 if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){ 1871 sqlite3DbFree(db, pLevel->u.in.aInLoop); 1872 } 1873 } 1874 sqlite3WhereClauseClear(&pWInfo->sWC); 1875 while( pWInfo->pLoops ){ 1876 WhereLoop *p = pWInfo->pLoops; 1877 pWInfo->pLoops = p->pNextLoop; 1878 whereLoopDelete(db, p); 1879 } 1880 sqlite3DbFreeNN(db, pWInfo); 1881 } 1882 1883 /* 1884 ** Return TRUE if all of the following are true: 1885 ** 1886 ** (1) X has the same or lower cost that Y 1887 ** (2) X uses fewer WHERE clause terms than Y 1888 ** (3) Every WHERE clause term used by X is also used by Y 1889 ** (4) X skips at least as many columns as Y 1890 ** (5) If X is a covering index, than Y is too 1891 ** 1892 ** Conditions (2) and (3) mean that X is a "proper subset" of Y. 1893 ** If X is a proper subset of Y then Y is a better choice and ought 1894 ** to have a lower cost. This routine returns TRUE when that cost 1895 ** relationship is inverted and needs to be adjusted. Constraint (4) 1896 ** was added because if X uses skip-scan less than Y it still might 1897 ** deserve a lower cost even if it is a proper subset of Y. Constraint (5) 1898 ** was added because a covering index probably deserves to have a lower cost 1899 ** than a non-covering index even if it is a proper subset. 1900 */ 1901 static int whereLoopCheaperProperSubset( 1902 const WhereLoop *pX, /* First WhereLoop to compare */ 1903 const WhereLoop *pY /* Compare against this WhereLoop */ 1904 ){ 1905 int i, j; 1906 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ 1907 return 0; /* X is not a subset of Y */ 1908 } 1909 if( pY->nSkip > pX->nSkip ) return 0; 1910 if( pX->rRun >= pY->rRun ){ 1911 if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */ 1912 if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */ 1913 } 1914 for(i=pX->nLTerm-1; i>=0; i--){ 1915 if( pX->aLTerm[i]==0 ) continue; 1916 for(j=pY->nLTerm-1; j>=0; j--){ 1917 if( pY->aLTerm[j]==pX->aLTerm[i] ) break; 1918 } 1919 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ 1920 } 1921 if( (pX->wsFlags&WHERE_IDX_ONLY)!=0 1922 && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){ 1923 return 0; /* Constraint (5) */ 1924 } 1925 return 1; /* All conditions meet */ 1926 } 1927 1928 /* 1929 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so 1930 ** that: 1931 ** 1932 ** (1) pTemplate costs less than any other WhereLoops that are a proper 1933 ** subset of pTemplate 1934 ** 1935 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate 1936 ** is a proper subset. 1937 ** 1938 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer 1939 ** WHERE clause terms than Y and that every WHERE clause term used by X is 1940 ** also used by Y. 1941 */ 1942 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ 1943 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; 1944 for(; p; p=p->pNextLoop){ 1945 if( p->iTab!=pTemplate->iTab ) continue; 1946 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; 1947 if( whereLoopCheaperProperSubset(p, pTemplate) ){ 1948 /* Adjust pTemplate cost downward so that it is cheaper than its 1949 ** subset p. */ 1950 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 1951 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1)); 1952 pTemplate->rRun = p->rRun; 1953 pTemplate->nOut = p->nOut - 1; 1954 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ 1955 /* Adjust pTemplate cost upward so that it is costlier than p since 1956 ** pTemplate is a proper subset of p */ 1957 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 1958 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1)); 1959 pTemplate->rRun = p->rRun; 1960 pTemplate->nOut = p->nOut + 1; 1961 } 1962 } 1963 } 1964 1965 /* 1966 ** Search the list of WhereLoops in *ppPrev looking for one that can be 1967 ** replaced by pTemplate. 1968 ** 1969 ** Return NULL if pTemplate does not belong on the WhereLoop list. 1970 ** In other words if pTemplate ought to be dropped from further consideration. 1971 ** 1972 ** If pX is a WhereLoop that pTemplate can replace, then return the 1973 ** link that points to pX. 1974 ** 1975 ** If pTemplate cannot replace any existing element of the list but needs 1976 ** to be added to the list as a new entry, then return a pointer to the 1977 ** tail of the list. 1978 */ 1979 static WhereLoop **whereLoopFindLesser( 1980 WhereLoop **ppPrev, 1981 const WhereLoop *pTemplate 1982 ){ 1983 WhereLoop *p; 1984 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ 1985 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ 1986 /* If either the iTab or iSortIdx values for two WhereLoop are different 1987 ** then those WhereLoops need to be considered separately. Neither is 1988 ** a candidate to replace the other. */ 1989 continue; 1990 } 1991 /* In the current implementation, the rSetup value is either zero 1992 ** or the cost of building an automatic index (NlogN) and the NlogN 1993 ** is the same for compatible WhereLoops. */ 1994 assert( p->rSetup==0 || pTemplate->rSetup==0 1995 || p->rSetup==pTemplate->rSetup ); 1996 1997 /* whereLoopAddBtree() always generates and inserts the automatic index 1998 ** case first. Hence compatible candidate WhereLoops never have a larger 1999 ** rSetup. Call this SETUP-INVARIANT */ 2000 assert( p->rSetup>=pTemplate->rSetup ); 2001 2002 /* Any loop using an appliation-defined index (or PRIMARY KEY or 2003 ** UNIQUE constraint) with one or more == constraints is better 2004 ** than an automatic index. Unless it is a skip-scan. */ 2005 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 2006 && (pTemplate->nSkip)==0 2007 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 2008 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 2009 && (p->prereq & pTemplate->prereq)==pTemplate->prereq 2010 ){ 2011 break; 2012 } 2013 2014 /* If existing WhereLoop p is better than pTemplate, pTemplate can be 2015 ** discarded. WhereLoop p is better if: 2016 ** (1) p has no more dependencies than pTemplate, and 2017 ** (2) p has an equal or lower cost than pTemplate 2018 */ 2019 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ 2020 && p->rSetup<=pTemplate->rSetup /* (2a) */ 2021 && p->rRun<=pTemplate->rRun /* (2b) */ 2022 && p->nOut<=pTemplate->nOut /* (2c) */ 2023 ){ 2024 return 0; /* Discard pTemplate */ 2025 } 2026 2027 /* If pTemplate is always better than p, then cause p to be overwritten 2028 ** with pTemplate. pTemplate is better than p if: 2029 ** (1) pTemplate has no more dependences than p, and 2030 ** (2) pTemplate has an equal or lower cost than p. 2031 */ 2032 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ 2033 && p->rRun>=pTemplate->rRun /* (2a) */ 2034 && p->nOut>=pTemplate->nOut /* (2b) */ 2035 ){ 2036 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ 2037 break; /* Cause p to be overwritten by pTemplate */ 2038 } 2039 } 2040 return ppPrev; 2041 } 2042 2043 /* 2044 ** Insert or replace a WhereLoop entry using the template supplied. 2045 ** 2046 ** An existing WhereLoop entry might be overwritten if the new template 2047 ** is better and has fewer dependencies. Or the template will be ignored 2048 ** and no insert will occur if an existing WhereLoop is faster and has 2049 ** fewer dependencies than the template. Otherwise a new WhereLoop is 2050 ** added based on the template. 2051 ** 2052 ** If pBuilder->pOrSet is not NULL then we care about only the 2053 ** prerequisites and rRun and nOut costs of the N best loops. That 2054 ** information is gathered in the pBuilder->pOrSet object. This special 2055 ** processing mode is used only for OR clause processing. 2056 ** 2057 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we 2058 ** still might overwrite similar loops with the new template if the 2059 ** new template is better. Loops may be overwritten if the following 2060 ** conditions are met: 2061 ** 2062 ** (1) They have the same iTab. 2063 ** (2) They have the same iSortIdx. 2064 ** (3) The template has same or fewer dependencies than the current loop 2065 ** (4) The template has the same or lower cost than the current loop 2066 */ 2067 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ 2068 WhereLoop **ppPrev, *p; 2069 WhereInfo *pWInfo = pBuilder->pWInfo; 2070 sqlite3 *db = pWInfo->pParse->db; 2071 int rc; 2072 2073 /* If pBuilder->pOrSet is defined, then only keep track of the costs 2074 ** and prereqs. 2075 */ 2076 if( pBuilder->pOrSet!=0 ){ 2077 if( pTemplate->nLTerm ){ 2078 #if WHERETRACE_ENABLED 2079 u16 n = pBuilder->pOrSet->n; 2080 int x = 2081 #endif 2082 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, 2083 pTemplate->nOut); 2084 #if WHERETRACE_ENABLED /* 0x8 */ 2085 if( sqlite3WhereTrace & 0x8 ){ 2086 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); 2087 whereLoopPrint(pTemplate, pBuilder->pWC); 2088 } 2089 #endif 2090 } 2091 return SQLITE_OK; 2092 } 2093 2094 /* Look for an existing WhereLoop to replace with pTemplate 2095 */ 2096 whereLoopAdjustCost(pWInfo->pLoops, pTemplate); 2097 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); 2098 2099 if( ppPrev==0 ){ 2100 /* There already exists a WhereLoop on the list that is better 2101 ** than pTemplate, so just ignore pTemplate */ 2102 #if WHERETRACE_ENABLED /* 0x8 */ 2103 if( sqlite3WhereTrace & 0x8 ){ 2104 sqlite3DebugPrintf(" skip: "); 2105 whereLoopPrint(pTemplate, pBuilder->pWC); 2106 } 2107 #endif 2108 return SQLITE_OK; 2109 }else{ 2110 p = *ppPrev; 2111 } 2112 2113 /* If we reach this point it means that either p[] should be overwritten 2114 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new 2115 ** WhereLoop and insert it. 2116 */ 2117 #if WHERETRACE_ENABLED /* 0x8 */ 2118 if( sqlite3WhereTrace & 0x8 ){ 2119 if( p!=0 ){ 2120 sqlite3DebugPrintf("replace: "); 2121 whereLoopPrint(p, pBuilder->pWC); 2122 sqlite3DebugPrintf(" with: "); 2123 }else{ 2124 sqlite3DebugPrintf(" add: "); 2125 } 2126 whereLoopPrint(pTemplate, pBuilder->pWC); 2127 } 2128 #endif 2129 if( p==0 ){ 2130 /* Allocate a new WhereLoop to add to the end of the list */ 2131 *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop)); 2132 if( p==0 ) return SQLITE_NOMEM_BKPT; 2133 whereLoopInit(p); 2134 p->pNextLoop = 0; 2135 }else{ 2136 /* We will be overwriting WhereLoop p[]. But before we do, first 2137 ** go through the rest of the list and delete any other entries besides 2138 ** p[] that are also supplated by pTemplate */ 2139 WhereLoop **ppTail = &p->pNextLoop; 2140 WhereLoop *pToDel; 2141 while( *ppTail ){ 2142 ppTail = whereLoopFindLesser(ppTail, pTemplate); 2143 if( ppTail==0 ) break; 2144 pToDel = *ppTail; 2145 if( pToDel==0 ) break; 2146 *ppTail = pToDel->pNextLoop; 2147 #if WHERETRACE_ENABLED /* 0x8 */ 2148 if( sqlite3WhereTrace & 0x8 ){ 2149 sqlite3DebugPrintf(" delete: "); 2150 whereLoopPrint(pToDel, pBuilder->pWC); 2151 } 2152 #endif 2153 whereLoopDelete(db, pToDel); 2154 } 2155 } 2156 rc = whereLoopXfer(db, p, pTemplate); 2157 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 2158 Index *pIndex = p->u.btree.pIndex; 2159 if( pIndex && pIndex->tnum==0 ){ 2160 p->u.btree.pIndex = 0; 2161 } 2162 } 2163 return rc; 2164 } 2165 2166 /* 2167 ** Adjust the WhereLoop.nOut value downward to account for terms of the 2168 ** WHERE clause that reference the loop but which are not used by an 2169 ** index. 2170 * 2171 ** For every WHERE clause term that is not used by the index 2172 ** and which has a truth probability assigned by one of the likelihood(), 2173 ** likely(), or unlikely() SQL functions, reduce the estimated number 2174 ** of output rows by the probability specified. 2175 ** 2176 ** TUNING: For every WHERE clause term that is not used by the index 2177 ** and which does not have an assigned truth probability, heuristics 2178 ** described below are used to try to estimate the truth probability. 2179 ** TODO --> Perhaps this is something that could be improved by better 2180 ** table statistics. 2181 ** 2182 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% 2183 ** value corresponds to -1 in LogEst notation, so this means decrement 2184 ** the WhereLoop.nOut field for every such WHERE clause term. 2185 ** 2186 ** Heuristic 2: If there exists one or more WHERE clause terms of the 2187 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the 2188 ** final output row estimate is no greater than 1/4 of the total number 2189 ** of rows in the table. In other words, assume that x==EXPR will filter 2190 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the 2191 ** "x" column is boolean or else -1 or 0 or 1 is a common default value 2192 ** on the "x" column and so in that case only cap the output row estimate 2193 ** at 1/2 instead of 1/4. 2194 */ 2195 static void whereLoopOutputAdjust( 2196 WhereClause *pWC, /* The WHERE clause */ 2197 WhereLoop *pLoop, /* The loop to adjust downward */ 2198 LogEst nRow /* Number of rows in the entire table */ 2199 ){ 2200 WhereTerm *pTerm, *pX; 2201 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); 2202 int i, j, k; 2203 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ 2204 2205 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2206 for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){ 2207 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break; 2208 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; 2209 if( (pTerm->prereqAll & notAllowed)!=0 ) continue; 2210 for(j=pLoop->nLTerm-1; j>=0; j--){ 2211 pX = pLoop->aLTerm[j]; 2212 if( pX==0 ) continue; 2213 if( pX==pTerm ) break; 2214 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; 2215 } 2216 if( j<0 ){ 2217 if( pTerm->truthProb<=0 ){ 2218 /* If a truth probability is specified using the likelihood() hints, 2219 ** then use the probability provided by the application. */ 2220 pLoop->nOut += pTerm->truthProb; 2221 }else{ 2222 /* In the absence of explicit truth probabilities, use heuristics to 2223 ** guess a reasonable truth probability. */ 2224 pLoop->nOut--; 2225 if( pTerm->eOperator&(WO_EQ|WO_IS) ){ 2226 Expr *pRight = pTerm->pExpr->pRight; 2227 testcase( pTerm->pExpr->op==TK_IS ); 2228 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){ 2229 k = 10; 2230 }else{ 2231 k = 20; 2232 } 2233 if( iReduce<k ) iReduce = k; 2234 } 2235 } 2236 } 2237 } 2238 if( pLoop->nOut > nRow-iReduce ) pLoop->nOut = nRow - iReduce; 2239 } 2240 2241 /* 2242 ** Term pTerm is a vector range comparison operation. The first comparison 2243 ** in the vector can be optimized using column nEq of the index. This 2244 ** function returns the total number of vector elements that can be used 2245 ** as part of the range comparison. 2246 ** 2247 ** For example, if the query is: 2248 ** 2249 ** WHERE a = ? AND (b, c, d) > (?, ?, ?) 2250 ** 2251 ** and the index: 2252 ** 2253 ** CREATE INDEX ... ON (a, b, c, d, e) 2254 ** 2255 ** then this function would be invoked with nEq=1. The value returned in 2256 ** this case is 3. 2257 */ 2258 static int whereRangeVectorLen( 2259 Parse *pParse, /* Parsing context */ 2260 int iCur, /* Cursor open on pIdx */ 2261 Index *pIdx, /* The index to be used for a inequality constraint */ 2262 int nEq, /* Number of prior equality constraints on same index */ 2263 WhereTerm *pTerm /* The vector inequality constraint */ 2264 ){ 2265 int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft); 2266 int i; 2267 2268 nCmp = MIN(nCmp, (pIdx->nColumn - nEq)); 2269 for(i=1; i<nCmp; i++){ 2270 /* Test if comparison i of pTerm is compatible with column (i+nEq) 2271 ** of the index. If not, exit the loop. */ 2272 char aff; /* Comparison affinity */ 2273 char idxaff = 0; /* Indexed columns affinity */ 2274 CollSeq *pColl; /* Comparison collation sequence */ 2275 Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr; 2276 Expr *pRhs = pTerm->pExpr->pRight; 2277 if( pRhs->flags & EP_xIsSelect ){ 2278 pRhs = pRhs->x.pSelect->pEList->a[i].pExpr; 2279 }else{ 2280 pRhs = pRhs->x.pList->a[i].pExpr; 2281 } 2282 2283 /* Check that the LHS of the comparison is a column reference to 2284 ** the right column of the right source table. And that the sort 2285 ** order of the index column is the same as the sort order of the 2286 ** leftmost index column. */ 2287 if( pLhs->op!=TK_COLUMN 2288 || pLhs->iTable!=iCur 2289 || pLhs->iColumn!=pIdx->aiColumn[i+nEq] 2290 || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq] 2291 ){ 2292 break; 2293 } 2294 2295 testcase( pLhs->iColumn==XN_ROWID ); 2296 aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs)); 2297 idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn); 2298 if( aff!=idxaff ) break; 2299 2300 pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); 2301 if( pColl==0 ) break; 2302 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break; 2303 } 2304 return i; 2305 } 2306 2307 /* 2308 ** Adjust the cost C by the costMult facter T. This only occurs if 2309 ** compiled with -DSQLITE_ENABLE_COSTMULT 2310 */ 2311 #ifdef SQLITE_ENABLE_COSTMULT 2312 # define ApplyCostMultiplier(C,T) C += T 2313 #else 2314 # define ApplyCostMultiplier(C,T) 2315 #endif 2316 2317 /* 2318 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the 2319 ** index pIndex. Try to match one more. 2320 ** 2321 ** When this function is called, pBuilder->pNew->nOut contains the 2322 ** number of rows expected to be visited by filtering using the nEq 2323 ** terms only. If it is modified, this value is restored before this 2324 ** function returns. 2325 ** 2326 ** If pProbe->tnum==0, that means pIndex is a fake index used for the 2327 ** INTEGER PRIMARY KEY. 2328 */ 2329 static int whereLoopAddBtreeIndex( 2330 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ 2331 struct SrcList_item *pSrc, /* FROM clause term being analyzed */ 2332 Index *pProbe, /* An index on pSrc */ 2333 LogEst nInMul /* log(Number of iterations due to IN) */ 2334 ){ 2335 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ 2336 Parse *pParse = pWInfo->pParse; /* Parsing context */ 2337 sqlite3 *db = pParse->db; /* Database connection malloc context */ 2338 WhereLoop *pNew; /* Template WhereLoop under construction */ 2339 WhereTerm *pTerm; /* A WhereTerm under consideration */ 2340 int opMask; /* Valid operators for constraints */ 2341 WhereScan scan; /* Iterator for WHERE terms */ 2342 Bitmask saved_prereq; /* Original value of pNew->prereq */ 2343 u16 saved_nLTerm; /* Original value of pNew->nLTerm */ 2344 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ 2345 u16 saved_nBtm; /* Original value of pNew->u.btree.nBtm */ 2346 u16 saved_nTop; /* Original value of pNew->u.btree.nTop */ 2347 u16 saved_nSkip; /* Original value of pNew->nSkip */ 2348 u32 saved_wsFlags; /* Original value of pNew->wsFlags */ 2349 LogEst saved_nOut; /* Original value of pNew->nOut */ 2350 int rc = SQLITE_OK; /* Return code */ 2351 LogEst rSize; /* Number of rows in the table */ 2352 LogEst rLogSize; /* Logarithm of table size */ 2353 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ 2354 2355 pNew = pBuilder->pNew; 2356 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT; 2357 WHERETRACE(0x800, ("BEGIN addBtreeIdx(%s), nEq=%d\n", 2358 pProbe->zName, pNew->u.btree.nEq)); 2359 2360 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); 2361 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); 2362 if( pNew->wsFlags & WHERE_BTM_LIMIT ){ 2363 opMask = WO_LT|WO_LE; 2364 }else{ 2365 assert( pNew->u.btree.nBtm==0 ); 2366 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS; 2367 } 2368 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); 2369 2370 assert( pNew->u.btree.nEq<pProbe->nColumn ); 2371 2372 saved_nEq = pNew->u.btree.nEq; 2373 saved_nBtm = pNew->u.btree.nBtm; 2374 saved_nTop = pNew->u.btree.nTop; 2375 saved_nSkip = pNew->nSkip; 2376 saved_nLTerm = pNew->nLTerm; 2377 saved_wsFlags = pNew->wsFlags; 2378 saved_prereq = pNew->prereq; 2379 saved_nOut = pNew->nOut; 2380 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq, 2381 opMask, pProbe); 2382 pNew->rSetup = 0; 2383 rSize = pProbe->aiRowLogEst[0]; 2384 rLogSize = estLog(rSize); 2385 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ 2386 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ 2387 LogEst rCostIdx; 2388 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ 2389 int nIn = 0; 2390 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2391 int nRecValid = pBuilder->nRecValid; 2392 #endif 2393 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) 2394 && indexColumnNotNull(pProbe, saved_nEq) 2395 ){ 2396 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ 2397 } 2398 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2399 2400 /* Do not allow the upper bound of a LIKE optimization range constraint 2401 ** to mix with a lower range bound from some other source */ 2402 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; 2403 2404 /* Do not allow IS constraints from the WHERE clause to be used by the 2405 ** right table of a LEFT JOIN. Only constraints in the ON clause are 2406 ** allowed */ 2407 if( (pSrc->fg.jointype & JT_LEFT)!=0 2408 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 2409 && (eOp & (WO_IS|WO_ISNULL))!=0 2410 ){ 2411 testcase( eOp & WO_IS ); 2412 testcase( eOp & WO_ISNULL ); 2413 continue; 2414 } 2415 2416 if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){ 2417 pBuilder->bldFlags |= SQLITE_BLDF_UNIQUE; 2418 }else{ 2419 pBuilder->bldFlags |= SQLITE_BLDF_INDEXED; 2420 } 2421 pNew->wsFlags = saved_wsFlags; 2422 pNew->u.btree.nEq = saved_nEq; 2423 pNew->u.btree.nBtm = saved_nBtm; 2424 pNew->u.btree.nTop = saved_nTop; 2425 pNew->nLTerm = saved_nLTerm; 2426 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2427 pNew->aLTerm[pNew->nLTerm++] = pTerm; 2428 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; 2429 2430 assert( nInMul==0 2431 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 2432 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 2433 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 2434 ); 2435 2436 if( eOp & WO_IN ){ 2437 Expr *pExpr = pTerm->pExpr; 2438 pNew->wsFlags |= WHERE_COLUMN_IN; 2439 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2440 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ 2441 int i; 2442 nIn = 46; assert( 46==sqlite3LogEst(25) ); 2443 2444 /* The expression may actually be of the form (x, y) IN (SELECT...). 2445 ** In this case there is a separate term for each of (x) and (y). 2446 ** However, the nIn multiplier should only be applied once, not once 2447 ** for each such term. The following loop checks that pTerm is the 2448 ** first such term in use, and sets nIn back to 0 if it is not. */ 2449 for(i=0; i<pNew->nLTerm-1; i++){ 2450 if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0; 2451 } 2452 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ 2453 /* "x IN (value, value, ...)" */ 2454 nIn = sqlite3LogEst(pExpr->x.pList->nExpr); 2455 assert( nIn>0 ); /* RHS always has 2 or more terms... The parser 2456 ** changes "x IN (?)" into "x=?". */ 2457 } 2458 }else if( eOp & (WO_EQ|WO_IS) ){ 2459 int iCol = pProbe->aiColumn[saved_nEq]; 2460 pNew->wsFlags |= WHERE_COLUMN_EQ; 2461 assert( saved_nEq==pNew->u.btree.nEq ); 2462 if( iCol==XN_ROWID 2463 || (iCol>0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) 2464 ){ 2465 if( iCol>=0 && pProbe->uniqNotNull==0 ){ 2466 pNew->wsFlags |= WHERE_UNQ_WANTED; 2467 }else{ 2468 pNew->wsFlags |= WHERE_ONEROW; 2469 } 2470 } 2471 }else if( eOp & WO_ISNULL ){ 2472 pNew->wsFlags |= WHERE_COLUMN_NULL; 2473 }else if( eOp & (WO_GT|WO_GE) ){ 2474 testcase( eOp & WO_GT ); 2475 testcase( eOp & WO_GE ); 2476 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; 2477 pNew->u.btree.nBtm = whereRangeVectorLen( 2478 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2479 ); 2480 pBtm = pTerm; 2481 pTop = 0; 2482 if( pTerm->wtFlags & TERM_LIKEOPT ){ 2483 /* Range contraints that come from the LIKE optimization are 2484 ** always used in pairs. */ 2485 pTop = &pTerm[1]; 2486 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm ); 2487 assert( pTop->wtFlags & TERM_LIKEOPT ); 2488 assert( pTop->eOperator==WO_LT ); 2489 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2490 pNew->aLTerm[pNew->nLTerm++] = pTop; 2491 pNew->wsFlags |= WHERE_TOP_LIMIT; 2492 pNew->u.btree.nTop = 1; 2493 } 2494 }else{ 2495 assert( eOp & (WO_LT|WO_LE) ); 2496 testcase( eOp & WO_LT ); 2497 testcase( eOp & WO_LE ); 2498 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; 2499 pNew->u.btree.nTop = whereRangeVectorLen( 2500 pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm 2501 ); 2502 pTop = pTerm; 2503 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? 2504 pNew->aLTerm[pNew->nLTerm-2] : 0; 2505 } 2506 2507 /* At this point pNew->nOut is set to the number of rows expected to 2508 ** be visited by the index scan before considering term pTerm, or the 2509 ** values of nIn and nInMul. In other words, assuming that all 2510 ** "x IN(...)" terms are replaced with "x = ?". This block updates 2511 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ 2512 assert( pNew->nOut==saved_nOut ); 2513 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2514 /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4 2515 ** data, using some other estimate. */ 2516 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); 2517 }else{ 2518 int nEq = ++pNew->u.btree.nEq; 2519 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) ); 2520 2521 assert( pNew->nOut==saved_nOut ); 2522 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){ 2523 assert( (eOp & WO_IN) || nIn==0 ); 2524 testcase( eOp & WO_IN ); 2525 pNew->nOut += pTerm->truthProb; 2526 pNew->nOut -= nIn; 2527 }else{ 2528 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2529 tRowcnt nOut = 0; 2530 if( nInMul==0 2531 && pProbe->nSample 2532 && pNew->u.btree.nEq<=pProbe->nSampleCol 2533 && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect)) 2534 ){ 2535 Expr *pExpr = pTerm->pExpr; 2536 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){ 2537 testcase( eOp & WO_EQ ); 2538 testcase( eOp & WO_IS ); 2539 testcase( eOp & WO_ISNULL ); 2540 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); 2541 }else{ 2542 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); 2543 } 2544 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 2545 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ 2546 if( nOut ){ 2547 pNew->nOut = sqlite3LogEst(nOut); 2548 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; 2549 pNew->nOut -= nIn; 2550 } 2551 } 2552 if( nOut==0 ) 2553 #endif 2554 { 2555 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); 2556 if( eOp & WO_ISNULL ){ 2557 /* TUNING: If there is no likelihood() value, assume that a 2558 ** "col IS NULL" expression matches twice as many rows 2559 ** as (col=?). */ 2560 pNew->nOut += 10; 2561 } 2562 } 2563 } 2564 } 2565 2566 /* Set rCostIdx to the cost of visiting selected rows in index. Add 2567 ** it to pNew->rRun, which is currently set to the cost of the index 2568 ** seek only. Then, if this is a non-covering index, add the cost of 2569 ** visiting the rows in the main table. */ 2570 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; 2571 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); 2572 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ 2573 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); 2574 } 2575 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); 2576 2577 nOutUnadjusted = pNew->nOut; 2578 pNew->rRun += nInMul + nIn; 2579 pNew->nOut += nInMul + nIn; 2580 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); 2581 rc = whereLoopInsert(pBuilder, pNew); 2582 2583 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2584 pNew->nOut = saved_nOut; 2585 }else{ 2586 pNew->nOut = nOutUnadjusted; 2587 } 2588 2589 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 2590 && pNew->u.btree.nEq<pProbe->nColumn 2591 ){ 2592 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); 2593 } 2594 pNew->nOut = saved_nOut; 2595 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2596 pBuilder->nRecValid = nRecValid; 2597 #endif 2598 } 2599 pNew->prereq = saved_prereq; 2600 pNew->u.btree.nEq = saved_nEq; 2601 pNew->u.btree.nBtm = saved_nBtm; 2602 pNew->u.btree.nTop = saved_nTop; 2603 pNew->nSkip = saved_nSkip; 2604 pNew->wsFlags = saved_wsFlags; 2605 pNew->nOut = saved_nOut; 2606 pNew->nLTerm = saved_nLTerm; 2607 2608 /* Consider using a skip-scan if there are no WHERE clause constraints 2609 ** available for the left-most terms of the index, and if the average 2610 ** number of repeats in the left-most terms is at least 18. 2611 ** 2612 ** The magic number 18 is selected on the basis that scanning 17 rows 2613 ** is almost always quicker than an index seek (even though if the index 2614 ** contains fewer than 2^17 rows we assume otherwise in other parts of 2615 ** the code). And, even if it is not, it should not be too much slower. 2616 ** On the other hand, the extra seeks could end up being significantly 2617 ** more expensive. */ 2618 assert( 42==sqlite3LogEst(18) ); 2619 if( saved_nEq==saved_nSkip 2620 && saved_nEq+1<pProbe->nKeyCol 2621 && pProbe->noSkipScan==0 2622 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ 2623 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK 2624 ){ 2625 LogEst nIter; 2626 pNew->u.btree.nEq++; 2627 pNew->nSkip++; 2628 pNew->aLTerm[pNew->nLTerm++] = 0; 2629 pNew->wsFlags |= WHERE_SKIPSCAN; 2630 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; 2631 pNew->nOut -= nIter; 2632 /* TUNING: Because uncertainties in the estimates for skip-scan queries, 2633 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ 2634 nIter += 5; 2635 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); 2636 pNew->nOut = saved_nOut; 2637 pNew->u.btree.nEq = saved_nEq; 2638 pNew->nSkip = saved_nSkip; 2639 pNew->wsFlags = saved_wsFlags; 2640 } 2641 2642 WHERETRACE(0x800, ("END addBtreeIdx(%s), nEq=%d, rc=%d\n", 2643 pProbe->zName, saved_nEq, rc)); 2644 return rc; 2645 } 2646 2647 /* 2648 ** Return True if it is possible that pIndex might be useful in 2649 ** implementing the ORDER BY clause in pBuilder. 2650 ** 2651 ** Return False if pBuilder does not contain an ORDER BY clause or 2652 ** if there is no way for pIndex to be useful in implementing that 2653 ** ORDER BY clause. 2654 */ 2655 static int indexMightHelpWithOrderBy( 2656 WhereLoopBuilder *pBuilder, 2657 Index *pIndex, 2658 int iCursor 2659 ){ 2660 ExprList *pOB; 2661 ExprList *aColExpr; 2662 int ii, jj; 2663 2664 if( pIndex->bUnordered ) return 0; 2665 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; 2666 for(ii=0; ii<pOB->nExpr; ii++){ 2667 Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr); 2668 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){ 2669 if( pExpr->iColumn<0 ) return 1; 2670 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2671 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; 2672 } 2673 }else if( (aColExpr = pIndex->aColExpr)!=0 ){ 2674 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2675 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue; 2676 if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){ 2677 return 1; 2678 } 2679 } 2680 } 2681 } 2682 return 0; 2683 } 2684 2685 /* 2686 ** Return a bitmask where 1s indicate that the corresponding column of 2687 ** the table is used by an index. Only the first 63 columns are considered. 2688 */ 2689 static Bitmask columnsInIndex(Index *pIdx){ 2690 Bitmask m = 0; 2691 int j; 2692 for(j=pIdx->nColumn-1; j>=0; j--){ 2693 int x = pIdx->aiColumn[j]; 2694 if( x>=0 ){ 2695 testcase( x==BMS-1 ); 2696 testcase( x==BMS-2 ); 2697 if( x<BMS-1 ) m |= MASKBIT(x); 2698 } 2699 } 2700 return m; 2701 } 2702 2703 /* Check to see if a partial index with pPartIndexWhere can be used 2704 ** in the current query. Return true if it can be and false if not. 2705 */ 2706 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){ 2707 int i; 2708 WhereTerm *pTerm; 2709 Parse *pParse = pWC->pWInfo->pParse; 2710 while( pWhere->op==TK_AND ){ 2711 if( !whereUsablePartialIndex(iTab,pWC,pWhere->pLeft) ) return 0; 2712 pWhere = pWhere->pRight; 2713 } 2714 if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0; 2715 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 2716 Expr *pExpr = pTerm->pExpr; 2717 if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab) 2718 && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab) 2719 ){ 2720 return 1; 2721 } 2722 } 2723 return 0; 2724 } 2725 2726 /* 2727 ** Add all WhereLoop objects for a single table of the join where the table 2728 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be 2729 ** a b-tree table, not a virtual table. 2730 ** 2731 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function 2732 ** are calculated as follows: 2733 ** 2734 ** For a full scan, assuming the table (or index) contains nRow rows: 2735 ** 2736 ** cost = nRow * 3.0 // full-table scan 2737 ** cost = nRow * K // scan of covering index 2738 ** cost = nRow * (K+3.0) // scan of non-covering index 2739 ** 2740 ** where K is a value between 1.1 and 3.0 set based on the relative 2741 ** estimated average size of the index and table records. 2742 ** 2743 ** For an index scan, where nVisit is the number of index rows visited 2744 ** by the scan, and nSeek is the number of seek operations required on 2745 ** the index b-tree: 2746 ** 2747 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index 2748 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index 2749 ** 2750 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the 2751 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when 2752 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. 2753 ** 2754 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount 2755 ** of uncertainty. For this reason, scoring is designed to pick plans that 2756 ** "do the least harm" if the estimates are inaccurate. For example, a 2757 ** log(nRow) factor is omitted from a non-covering index scan in order to 2758 ** bias the scoring in favor of using an index, since the worst-case 2759 ** performance of using an index is far better than the worst-case performance 2760 ** of a full table scan. 2761 */ 2762 static int whereLoopAddBtree( 2763 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 2764 Bitmask mPrereq /* Extra prerequesites for using this table */ 2765 ){ 2766 WhereInfo *pWInfo; /* WHERE analysis context */ 2767 Index *pProbe; /* An index we are evaluating */ 2768 Index sPk; /* A fake index object for the primary key */ 2769 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ 2770 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ 2771 SrcList *pTabList; /* The FROM clause */ 2772 struct SrcList_item *pSrc; /* The FROM clause btree term to add */ 2773 WhereLoop *pNew; /* Template WhereLoop object */ 2774 int rc = SQLITE_OK; /* Return code */ 2775 int iSortIdx = 1; /* Index number */ 2776 int b; /* A boolean value */ 2777 LogEst rSize; /* number of rows in the table */ 2778 LogEst rLogSize; /* Logarithm of the number of rows in the table */ 2779 WhereClause *pWC; /* The parsed WHERE clause */ 2780 Table *pTab; /* Table being queried */ 2781 2782 pNew = pBuilder->pNew; 2783 pWInfo = pBuilder->pWInfo; 2784 pTabList = pWInfo->pTabList; 2785 pSrc = pTabList->a + pNew->iTab; 2786 pTab = pSrc->pTab; 2787 pWC = pBuilder->pWC; 2788 assert( !IsVirtual(pSrc->pTab) ); 2789 2790 if( pSrc->pIBIndex ){ 2791 /* An INDEXED BY clause specifies a particular index to use */ 2792 pProbe = pSrc->pIBIndex; 2793 }else if( !HasRowid(pTab) ){ 2794 pProbe = pTab->pIndex; 2795 }else{ 2796 /* There is no INDEXED BY clause. Create a fake Index object in local 2797 ** variable sPk to represent the rowid primary key index. Make this 2798 ** fake index the first in a chain of Index objects with all of the real 2799 ** indices to follow */ 2800 Index *pFirst; /* First of real indices on the table */ 2801 memset(&sPk, 0, sizeof(Index)); 2802 sPk.nKeyCol = 1; 2803 sPk.nColumn = 1; 2804 sPk.aiColumn = &aiColumnPk; 2805 sPk.aiRowLogEst = aiRowEstPk; 2806 sPk.onError = OE_Replace; 2807 sPk.pTable = pTab; 2808 sPk.szIdxRow = pTab->szTabRow; 2809 aiRowEstPk[0] = pTab->nRowLogEst; 2810 aiRowEstPk[1] = 0; 2811 pFirst = pSrc->pTab->pIndex; 2812 if( pSrc->fg.notIndexed==0 ){ 2813 /* The real indices of the table are only considered if the 2814 ** NOT INDEXED qualifier is omitted from the FROM clause */ 2815 sPk.pNext = pFirst; 2816 } 2817 pProbe = &sPk; 2818 } 2819 rSize = pTab->nRowLogEst; 2820 rLogSize = estLog(rSize); 2821 2822 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 2823 /* Automatic indexes */ 2824 if( !pBuilder->pOrSet /* Not part of an OR optimization */ 2825 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 2826 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 2827 && pSrc->pIBIndex==0 /* Has no INDEXED BY clause */ 2828 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */ 2829 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */ 2830 && !pSrc->fg.isCorrelated /* Not a correlated subquery */ 2831 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */ 2832 ){ 2833 /* Generate auto-index WhereLoops */ 2834 WhereTerm *pTerm; 2835 WhereTerm *pWCEnd = pWC->a + pWC->nTerm; 2836 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ 2837 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2838 if( termCanDriveIndex(pTerm, pSrc, 0) ){ 2839 pNew->u.btree.nEq = 1; 2840 pNew->nSkip = 0; 2841 pNew->u.btree.pIndex = 0; 2842 pNew->nLTerm = 1; 2843 pNew->aLTerm[0] = pTerm; 2844 /* TUNING: One-time cost for computing the automatic index is 2845 ** estimated to be X*N*log2(N) where N is the number of rows in 2846 ** the table being indexed and where X is 7 (LogEst=28) for normal 2847 ** tables or 1.375 (LogEst=4) for views and subqueries. The value 2848 ** of X is smaller for views and subqueries so that the query planner 2849 ** will be more aggressive about generating automatic indexes for 2850 ** those objects, since there is no opportunity to add schema 2851 ** indexes on subqueries and views. */ 2852 pNew->rSetup = rLogSize + rSize + 4; 2853 if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){ 2854 pNew->rSetup += 24; 2855 } 2856 ApplyCostMultiplier(pNew->rSetup, pTab->costMult); 2857 if( pNew->rSetup<0 ) pNew->rSetup = 0; 2858 /* TUNING: Each index lookup yields 20 rows in the table. This 2859 ** is more than the usual guess of 10 rows, since we have no way 2860 ** of knowing how selective the index will ultimately be. It would 2861 ** not be unreasonable to make this value much larger. */ 2862 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); 2863 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); 2864 pNew->wsFlags = WHERE_AUTO_INDEX; 2865 pNew->prereq = mPrereq | pTerm->prereqRight; 2866 rc = whereLoopInsert(pBuilder, pNew); 2867 } 2868 } 2869 } 2870 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 2871 2872 /* Loop over all indices 2873 */ 2874 for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){ 2875 if( pProbe->pPartIdxWhere!=0 2876 && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){ 2877 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ 2878 continue; /* Partial index inappropriate for this query */ 2879 } 2880 rSize = pProbe->aiRowLogEst[0]; 2881 pNew->u.btree.nEq = 0; 2882 pNew->u.btree.nBtm = 0; 2883 pNew->u.btree.nTop = 0; 2884 pNew->nSkip = 0; 2885 pNew->nLTerm = 0; 2886 pNew->iSortIdx = 0; 2887 pNew->rSetup = 0; 2888 pNew->prereq = mPrereq; 2889 pNew->nOut = rSize; 2890 pNew->u.btree.pIndex = pProbe; 2891 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); 2892 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ 2893 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); 2894 if( pProbe->tnum<=0 ){ 2895 /* Integer primary key index */ 2896 pNew->wsFlags = WHERE_IPK; 2897 2898 /* Full table scan */ 2899 pNew->iSortIdx = b ? iSortIdx : 0; 2900 /* TUNING: Cost of full table scan is (N*3.0). */ 2901 pNew->rRun = rSize + 16; 2902 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 2903 whereLoopOutputAdjust(pWC, pNew, rSize); 2904 rc = whereLoopInsert(pBuilder, pNew); 2905 pNew->nOut = rSize; 2906 if( rc ) break; 2907 }else{ 2908 Bitmask m; 2909 if( pProbe->isCovering ){ 2910 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; 2911 m = 0; 2912 }else{ 2913 m = pSrc->colUsed & ~columnsInIndex(pProbe); 2914 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; 2915 } 2916 2917 /* Full scan via index */ 2918 if( b 2919 || !HasRowid(pTab) 2920 || pProbe->pPartIdxWhere!=0 2921 || ( m==0 2922 && pProbe->bUnordered==0 2923 && (pProbe->szIdxRow<pTab->szTabRow) 2924 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 2925 && sqlite3GlobalConfig.bUseCis 2926 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) 2927 ) 2928 ){ 2929 pNew->iSortIdx = b ? iSortIdx : 0; 2930 2931 /* The cost of visiting the index rows is N*K, where K is 2932 ** between 1.1 and 3.0, depending on the relative sizes of the 2933 ** index and table rows. */ 2934 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; 2935 if( m!=0 ){ 2936 /* If this is a non-covering index scan, add in the cost of 2937 ** doing table lookups. The cost will be 3x the number of 2938 ** lookups. Take into account WHERE clause terms that can be 2939 ** satisfied using just the index, and that do not require a 2940 ** table lookup. */ 2941 LogEst nLookup = rSize + 16; /* Base cost: N*3 */ 2942 int ii; 2943 int iCur = pSrc->iCursor; 2944 WhereClause *pWC2 = &pWInfo->sWC; 2945 for(ii=0; ii<pWC2->nTerm; ii++){ 2946 WhereTerm *pTerm = &pWC2->a[ii]; 2947 if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){ 2948 break; 2949 } 2950 /* pTerm can be evaluated using just the index. So reduce 2951 ** the expected number of table lookups accordingly */ 2952 if( pTerm->truthProb<=0 ){ 2953 nLookup += pTerm->truthProb; 2954 }else{ 2955 nLookup--; 2956 if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19; 2957 } 2958 } 2959 2960 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup); 2961 } 2962 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 2963 whereLoopOutputAdjust(pWC, pNew, rSize); 2964 rc = whereLoopInsert(pBuilder, pNew); 2965 pNew->nOut = rSize; 2966 if( rc ) break; 2967 } 2968 } 2969 2970 pBuilder->bldFlags = 0; 2971 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); 2972 if( pBuilder->bldFlags==SQLITE_BLDF_INDEXED ){ 2973 /* If a non-unique index is used, or if a prefix of the key for 2974 ** unique index is used (making the index functionally non-unique) 2975 ** then the sqlite_stat1 data becomes important for scoring the 2976 ** plan */ 2977 pTab->tabFlags |= TF_StatsUsed; 2978 } 2979 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2980 sqlite3Stat4ProbeFree(pBuilder->pRec); 2981 pBuilder->nRecValid = 0; 2982 pBuilder->pRec = 0; 2983 #endif 2984 2985 /* If there was an INDEXED BY clause, then only that one index is 2986 ** considered. */ 2987 if( pSrc->pIBIndex ) break; 2988 } 2989 return rc; 2990 } 2991 2992 #ifndef SQLITE_OMIT_VIRTUALTABLE 2993 2994 /* 2995 ** Argument pIdxInfo is already populated with all constraints that may 2996 ** be used by the virtual table identified by pBuilder->pNew->iTab. This 2997 ** function marks a subset of those constraints usable, invokes the 2998 ** xBestIndex method and adds the returned plan to pBuilder. 2999 ** 3000 ** A constraint is marked usable if: 3001 ** 3002 ** * Argument mUsable indicates that its prerequisites are available, and 3003 ** 3004 ** * It is not one of the operators specified in the mExclude mask passed 3005 ** as the fourth argument (which in practice is either WO_IN or 0). 3006 ** 3007 ** Argument mPrereq is a mask of tables that must be scanned before the 3008 ** virtual table in question. These are added to the plans prerequisites 3009 ** before it is added to pBuilder. 3010 ** 3011 ** Output parameter *pbIn is set to true if the plan added to pBuilder 3012 ** uses one or more WO_IN terms, or false otherwise. 3013 */ 3014 static int whereLoopAddVirtualOne( 3015 WhereLoopBuilder *pBuilder, 3016 Bitmask mPrereq, /* Mask of tables that must be used. */ 3017 Bitmask mUsable, /* Mask of usable tables */ 3018 u16 mExclude, /* Exclude terms using these operators */ 3019 sqlite3_index_info *pIdxInfo, /* Populated object for xBestIndex */ 3020 u16 mNoOmit, /* Do not omit these constraints */ 3021 int *pbIn /* OUT: True if plan uses an IN(...) op */ 3022 ){ 3023 WhereClause *pWC = pBuilder->pWC; 3024 struct sqlite3_index_constraint *pIdxCons; 3025 struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage; 3026 int i; 3027 int mxTerm; 3028 int rc = SQLITE_OK; 3029 WhereLoop *pNew = pBuilder->pNew; 3030 Parse *pParse = pBuilder->pWInfo->pParse; 3031 struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab]; 3032 int nConstraint = pIdxInfo->nConstraint; 3033 3034 assert( (mUsable & mPrereq)==mPrereq ); 3035 *pbIn = 0; 3036 pNew->prereq = mPrereq; 3037 3038 /* Set the usable flag on the subset of constraints identified by 3039 ** arguments mUsable and mExclude. */ 3040 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3041 for(i=0; i<nConstraint; i++, pIdxCons++){ 3042 WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset]; 3043 pIdxCons->usable = 0; 3044 if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight 3045 && (pTerm->eOperator & mExclude)==0 3046 ){ 3047 pIdxCons->usable = 1; 3048 } 3049 } 3050 3051 /* Initialize the output fields of the sqlite3_index_info structure */ 3052 memset(pUsage, 0, sizeof(pUsage[0])*nConstraint); 3053 assert( pIdxInfo->needToFreeIdxStr==0 ); 3054 pIdxInfo->idxStr = 0; 3055 pIdxInfo->idxNum = 0; 3056 pIdxInfo->orderByConsumed = 0; 3057 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; 3058 pIdxInfo->estimatedRows = 25; 3059 pIdxInfo->idxFlags = 0; 3060 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed; 3061 3062 /* Invoke the virtual table xBestIndex() method */ 3063 rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo); 3064 if( rc ) return rc; 3065 3066 mxTerm = -1; 3067 assert( pNew->nLSlot>=nConstraint ); 3068 for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0; 3069 pNew->u.vtab.omitMask = 0; 3070 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 3071 for(i=0; i<nConstraint; i++, pIdxCons++){ 3072 int iTerm; 3073 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ 3074 WhereTerm *pTerm; 3075 int j = pIdxCons->iTermOffset; 3076 if( iTerm>=nConstraint 3077 || j<0 3078 || j>=pWC->nTerm 3079 || pNew->aLTerm[iTerm]!=0 3080 || pIdxCons->usable==0 3081 ){ 3082 rc = SQLITE_ERROR; 3083 sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName); 3084 return rc; 3085 } 3086 testcase( iTerm==nConstraint-1 ); 3087 testcase( j==0 ); 3088 testcase( j==pWC->nTerm-1 ); 3089 pTerm = &pWC->a[j]; 3090 pNew->prereq |= pTerm->prereqRight; 3091 assert( iTerm<pNew->nLSlot ); 3092 pNew->aLTerm[iTerm] = pTerm; 3093 if( iTerm>mxTerm ) mxTerm = iTerm; 3094 testcase( iTerm==15 ); 3095 testcase( iTerm==16 ); 3096 if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm; 3097 if( (pTerm->eOperator & WO_IN)!=0 ){ 3098 /* A virtual table that is constrained by an IN clause may not 3099 ** consume the ORDER BY clause because (1) the order of IN terms 3100 ** is not necessarily related to the order of output terms and 3101 ** (2) Multiple outputs from a single IN value will not merge 3102 ** together. */ 3103 pIdxInfo->orderByConsumed = 0; 3104 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE; 3105 *pbIn = 1; assert( (mExclude & WO_IN)==0 ); 3106 } 3107 } 3108 } 3109 pNew->u.vtab.omitMask &= ~mNoOmit; 3110 3111 pNew->nLTerm = mxTerm+1; 3112 assert( pNew->nLTerm<=pNew->nLSlot ); 3113 pNew->u.vtab.idxNum = pIdxInfo->idxNum; 3114 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; 3115 pIdxInfo->needToFreeIdxStr = 0; 3116 pNew->u.vtab.idxStr = pIdxInfo->idxStr; 3117 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? 3118 pIdxInfo->nOrderBy : 0); 3119 pNew->rSetup = 0; 3120 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); 3121 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); 3122 3123 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated 3124 ** that the scan will visit at most one row. Clear it otherwise. */ 3125 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){ 3126 pNew->wsFlags |= WHERE_ONEROW; 3127 }else{ 3128 pNew->wsFlags &= ~WHERE_ONEROW; 3129 } 3130 rc = whereLoopInsert(pBuilder, pNew); 3131 if( pNew->u.vtab.needFree ){ 3132 sqlite3_free(pNew->u.vtab.idxStr); 3133 pNew->u.vtab.needFree = 0; 3134 } 3135 WHERETRACE(0xffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n", 3136 *pbIn, (sqlite3_uint64)mPrereq, 3137 (sqlite3_uint64)(pNew->prereq & ~mPrereq))); 3138 3139 return rc; 3140 } 3141 3142 3143 /* 3144 ** Add all WhereLoop objects for a table of the join identified by 3145 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. 3146 ** 3147 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and 3148 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause 3149 ** entries that occur before the virtual table in the FROM clause and are 3150 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the 3151 ** mUnusable mask contains all FROM clause entries that occur after the 3152 ** virtual table and are separated from it by at least one LEFT or 3153 ** CROSS JOIN. 3154 ** 3155 ** For example, if the query were: 3156 ** 3157 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; 3158 ** 3159 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6). 3160 ** 3161 ** All the tables in mPrereq must be scanned before the current virtual 3162 ** table. So any terms for which all prerequisites are satisfied by 3163 ** mPrereq may be specified as "usable" in all calls to xBestIndex. 3164 ** Conversely, all tables in mUnusable must be scanned after the current 3165 ** virtual table, so any terms for which the prerequisites overlap with 3166 ** mUnusable should always be configured as "not-usable" for xBestIndex. 3167 */ 3168 static int whereLoopAddVirtual( 3169 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 3170 Bitmask mPrereq, /* Tables that must be scanned before this one */ 3171 Bitmask mUnusable /* Tables that must be scanned after this one */ 3172 ){ 3173 int rc = SQLITE_OK; /* Return code */ 3174 WhereInfo *pWInfo; /* WHERE analysis context */ 3175 Parse *pParse; /* The parsing context */ 3176 WhereClause *pWC; /* The WHERE clause */ 3177 struct SrcList_item *pSrc; /* The FROM clause term to search */ 3178 sqlite3_index_info *p; /* Object to pass to xBestIndex() */ 3179 int nConstraint; /* Number of constraints in p */ 3180 int bIn; /* True if plan uses IN(...) operator */ 3181 WhereLoop *pNew; 3182 Bitmask mBest; /* Tables used by best possible plan */ 3183 u16 mNoOmit; 3184 3185 assert( (mPrereq & mUnusable)==0 ); 3186 pWInfo = pBuilder->pWInfo; 3187 pParse = pWInfo->pParse; 3188 pWC = pBuilder->pWC; 3189 pNew = pBuilder->pNew; 3190 pSrc = &pWInfo->pTabList->a[pNew->iTab]; 3191 assert( IsVirtual(pSrc->pTab) ); 3192 p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy, 3193 &mNoOmit); 3194 if( p==0 ) return SQLITE_NOMEM_BKPT; 3195 pNew->rSetup = 0; 3196 pNew->wsFlags = WHERE_VIRTUALTABLE; 3197 pNew->nLTerm = 0; 3198 pNew->u.vtab.needFree = 0; 3199 nConstraint = p->nConstraint; 3200 if( whereLoopResize(pParse->db, pNew, nConstraint) ){ 3201 sqlite3DbFree(pParse->db, p); 3202 return SQLITE_NOMEM_BKPT; 3203 } 3204 3205 /* First call xBestIndex() with all constraints usable. */ 3206 WHERETRACE(0x40, (" VirtualOne: all usable\n")); 3207 rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn); 3208 3209 /* If the call to xBestIndex() with all terms enabled produced a plan 3210 ** that does not require any source tables (IOW: a plan with mBest==0), 3211 ** then there is no point in making any further calls to xBestIndex() 3212 ** since they will all return the same result (if the xBestIndex() 3213 ** implementation is sane). */ 3214 if( rc==SQLITE_OK && (mBest = (pNew->prereq & ~mPrereq))!=0 ){ 3215 int seenZero = 0; /* True if a plan with no prereqs seen */ 3216 int seenZeroNoIN = 0; /* Plan with no prereqs and no IN(...) seen */ 3217 Bitmask mPrev = 0; 3218 Bitmask mBestNoIn = 0; 3219 3220 /* If the plan produced by the earlier call uses an IN(...) term, call 3221 ** xBestIndex again, this time with IN(...) terms disabled. */ 3222 if( bIn ){ 3223 WHERETRACE(0x40, (" VirtualOne: all usable w/o IN\n")); 3224 rc = whereLoopAddVirtualOne( 3225 pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn); 3226 assert( bIn==0 ); 3227 mBestNoIn = pNew->prereq & ~mPrereq; 3228 if( mBestNoIn==0 ){ 3229 seenZero = 1; 3230 seenZeroNoIN = 1; 3231 } 3232 } 3233 3234 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq) 3235 ** in the set of terms that apply to the current virtual table. */ 3236 while( rc==SQLITE_OK ){ 3237 int i; 3238 Bitmask mNext = ALLBITS; 3239 assert( mNext>0 ); 3240 for(i=0; i<nConstraint; i++){ 3241 Bitmask mThis = ( 3242 pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq 3243 ); 3244 if( mThis>mPrev && mThis<mNext ) mNext = mThis; 3245 } 3246 mPrev = mNext; 3247 if( mNext==ALLBITS ) break; 3248 if( mNext==mBest || mNext==mBestNoIn ) continue; 3249 WHERETRACE(0x40, (" VirtualOne: mPrev=%04llx mNext=%04llx\n", 3250 (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext)); 3251 rc = whereLoopAddVirtualOne( 3252 pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn); 3253 if( pNew->prereq==mPrereq ){ 3254 seenZero = 1; 3255 if( bIn==0 ) seenZeroNoIN = 1; 3256 } 3257 } 3258 3259 /* If the calls to xBestIndex() in the above loop did not find a plan 3260 ** that requires no source tables at all (i.e. one guaranteed to be 3261 ** usable), make a call here with all source tables disabled */ 3262 if( rc==SQLITE_OK && seenZero==0 ){ 3263 WHERETRACE(0x40, (" VirtualOne: all disabled\n")); 3264 rc = whereLoopAddVirtualOne( 3265 pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn); 3266 if( bIn==0 ) seenZeroNoIN = 1; 3267 } 3268 3269 /* If the calls to xBestIndex() have so far failed to find a plan 3270 ** that requires no source tables at all and does not use an IN(...) 3271 ** operator, make a final call to obtain one here. */ 3272 if( rc==SQLITE_OK && seenZeroNoIN==0 ){ 3273 WHERETRACE(0x40, (" VirtualOne: all disabled and w/o IN\n")); 3274 rc = whereLoopAddVirtualOne( 3275 pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn); 3276 } 3277 } 3278 3279 if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr); 3280 sqlite3DbFreeNN(pParse->db, p); 3281 return rc; 3282 } 3283 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3284 3285 /* 3286 ** Add WhereLoop entries to handle OR terms. This works for either 3287 ** btrees or virtual tables. 3288 */ 3289 static int whereLoopAddOr( 3290 WhereLoopBuilder *pBuilder, 3291 Bitmask mPrereq, 3292 Bitmask mUnusable 3293 ){ 3294 WhereInfo *pWInfo = pBuilder->pWInfo; 3295 WhereClause *pWC; 3296 WhereLoop *pNew; 3297 WhereTerm *pTerm, *pWCEnd; 3298 int rc = SQLITE_OK; 3299 int iCur; 3300 WhereClause tempWC; 3301 WhereLoopBuilder sSubBuild; 3302 WhereOrSet sSum, sCur; 3303 struct SrcList_item *pItem; 3304 3305 pWC = pBuilder->pWC; 3306 pWCEnd = pWC->a + pWC->nTerm; 3307 pNew = pBuilder->pNew; 3308 memset(&sSum, 0, sizeof(sSum)); 3309 pItem = pWInfo->pTabList->a + pNew->iTab; 3310 iCur = pItem->iCursor; 3311 3312 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ 3313 if( (pTerm->eOperator & WO_OR)!=0 3314 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 3315 ){ 3316 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; 3317 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; 3318 WhereTerm *pOrTerm; 3319 int once = 1; 3320 int i, j; 3321 3322 sSubBuild = *pBuilder; 3323 sSubBuild.pOrderBy = 0; 3324 sSubBuild.pOrSet = &sCur; 3325 3326 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); 3327 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ 3328 if( (pOrTerm->eOperator & WO_AND)!=0 ){ 3329 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; 3330 }else if( pOrTerm->leftCursor==iCur ){ 3331 tempWC.pWInfo = pWC->pWInfo; 3332 tempWC.pOuter = pWC; 3333 tempWC.op = TK_AND; 3334 tempWC.nTerm = 1; 3335 tempWC.a = pOrTerm; 3336 sSubBuild.pWC = &tempWC; 3337 }else{ 3338 continue; 3339 } 3340 sCur.n = 0; 3341 #ifdef WHERETRACE_ENABLED 3342 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", 3343 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); 3344 if( sqlite3WhereTrace & 0x400 ){ 3345 sqlite3WhereClausePrint(sSubBuild.pWC); 3346 } 3347 #endif 3348 #ifndef SQLITE_OMIT_VIRTUALTABLE 3349 if( IsVirtual(pItem->pTab) ){ 3350 rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable); 3351 }else 3352 #endif 3353 { 3354 rc = whereLoopAddBtree(&sSubBuild, mPrereq); 3355 } 3356 if( rc==SQLITE_OK ){ 3357 rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable); 3358 } 3359 assert( rc==SQLITE_OK || sCur.n==0 ); 3360 if( sCur.n==0 ){ 3361 sSum.n = 0; 3362 break; 3363 }else if( once ){ 3364 whereOrMove(&sSum, &sCur); 3365 once = 0; 3366 }else{ 3367 WhereOrSet sPrev; 3368 whereOrMove(&sPrev, &sSum); 3369 sSum.n = 0; 3370 for(i=0; i<sPrev.n; i++){ 3371 for(j=0; j<sCur.n; j++){ 3372 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, 3373 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), 3374 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); 3375 } 3376 } 3377 } 3378 } 3379 pNew->nLTerm = 1; 3380 pNew->aLTerm[0] = pTerm; 3381 pNew->wsFlags = WHERE_MULTI_OR; 3382 pNew->rSetup = 0; 3383 pNew->iSortIdx = 0; 3384 memset(&pNew->u, 0, sizeof(pNew->u)); 3385 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ 3386 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs 3387 ** of all sub-scans required by the OR-scan. However, due to rounding 3388 ** errors, it may be that the cost of the OR-scan is equal to its 3389 ** most expensive sub-scan. Add the smallest possible penalty 3390 ** (equivalent to multiplying the cost by 1.07) to ensure that 3391 ** this does not happen. Otherwise, for WHERE clauses such as the 3392 ** following where there is an index on "y": 3393 ** 3394 ** WHERE likelihood(x=?, 0.99) OR y=? 3395 ** 3396 ** the planner may elect to "OR" together a full-table scan and an 3397 ** index lookup. And other similarly odd results. */ 3398 pNew->rRun = sSum.a[i].rRun + 1; 3399 pNew->nOut = sSum.a[i].nOut; 3400 pNew->prereq = sSum.a[i].prereq; 3401 rc = whereLoopInsert(pBuilder, pNew); 3402 } 3403 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); 3404 } 3405 } 3406 return rc; 3407 } 3408 3409 /* 3410 ** Add all WhereLoop objects for all tables 3411 */ 3412 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ 3413 WhereInfo *pWInfo = pBuilder->pWInfo; 3414 Bitmask mPrereq = 0; 3415 Bitmask mPrior = 0; 3416 int iTab; 3417 SrcList *pTabList = pWInfo->pTabList; 3418 struct SrcList_item *pItem; 3419 struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel]; 3420 sqlite3 *db = pWInfo->pParse->db; 3421 int rc = SQLITE_OK; 3422 WhereLoop *pNew; 3423 u8 priorJointype = 0; 3424 3425 /* Loop over the tables in the join, from left to right */ 3426 pNew = pBuilder->pNew; 3427 whereLoopInit(pNew); 3428 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){ 3429 Bitmask mUnusable = 0; 3430 pNew->iTab = iTab; 3431 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); 3432 if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){ 3433 /* This condition is true when pItem is the FROM clause term on the 3434 ** right-hand-side of a LEFT or CROSS JOIN. */ 3435 mPrereq = mPrior; 3436 } 3437 priorJointype = pItem->fg.jointype; 3438 #ifndef SQLITE_OMIT_VIRTUALTABLE 3439 if( IsVirtual(pItem->pTab) ){ 3440 struct SrcList_item *p; 3441 for(p=&pItem[1]; p<pEnd; p++){ 3442 if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){ 3443 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); 3444 } 3445 } 3446 rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable); 3447 }else 3448 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 3449 { 3450 rc = whereLoopAddBtree(pBuilder, mPrereq); 3451 } 3452 if( rc==SQLITE_OK ){ 3453 rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable); 3454 } 3455 mPrior |= pNew->maskSelf; 3456 if( rc || db->mallocFailed ) break; 3457 } 3458 3459 whereLoopClear(db, pNew); 3460 return rc; 3461 } 3462 3463 /* 3464 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th 3465 ** parameters) to see if it outputs rows in the requested ORDER BY 3466 ** (or GROUP BY) without requiring a separate sort operation. Return N: 3467 ** 3468 ** N>0: N terms of the ORDER BY clause are satisfied 3469 ** N==0: No terms of the ORDER BY clause are satisfied 3470 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. 3471 ** 3472 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as 3473 ** strict. With GROUP BY and DISTINCT the only requirement is that 3474 ** equivalent rows appear immediately adjacent to one another. GROUP BY 3475 ** and DISTINCT do not require rows to appear in any particular order as long 3476 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT 3477 ** the pOrderBy terms can be matched in any order. With ORDER BY, the 3478 ** pOrderBy terms must be matched in strict left-to-right order. 3479 */ 3480 static i8 wherePathSatisfiesOrderBy( 3481 WhereInfo *pWInfo, /* The WHERE clause */ 3482 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ 3483 WherePath *pPath, /* The WherePath to check */ 3484 u16 wctrlFlags, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */ 3485 u16 nLoop, /* Number of entries in pPath->aLoop[] */ 3486 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ 3487 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ 3488 ){ 3489 u8 revSet; /* True if rev is known */ 3490 u8 rev; /* Composite sort order */ 3491 u8 revIdx; /* Index sort order */ 3492 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ 3493 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ 3494 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ 3495 u16 eqOpMask; /* Allowed equality operators */ 3496 u16 nKeyCol; /* Number of key columns in pIndex */ 3497 u16 nColumn; /* Total number of ordered columns in the index */ 3498 u16 nOrderBy; /* Number terms in the ORDER BY clause */ 3499 int iLoop; /* Index of WhereLoop in pPath being processed */ 3500 int i, j; /* Loop counters */ 3501 int iCur; /* Cursor number for current WhereLoop */ 3502 int iColumn; /* A column number within table iCur */ 3503 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ 3504 WhereTerm *pTerm; /* A single term of the WHERE clause */ 3505 Expr *pOBExpr; /* An expression from the ORDER BY clause */ 3506 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ 3507 Index *pIndex; /* The index associated with pLoop */ 3508 sqlite3 *db = pWInfo->pParse->db; /* Database connection */ 3509 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ 3510 Bitmask obDone; /* Mask of all ORDER BY terms */ 3511 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ 3512 Bitmask ready; /* Mask of inner loops */ 3513 3514 /* 3515 ** We say the WhereLoop is "one-row" if it generates no more than one 3516 ** row of output. A WhereLoop is one-row if all of the following are true: 3517 ** (a) All index columns match with WHERE_COLUMN_EQ. 3518 ** (b) The index is unique 3519 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. 3520 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. 3521 ** 3522 ** We say the WhereLoop is "order-distinct" if the set of columns from 3523 ** that WhereLoop that are in the ORDER BY clause are different for every 3524 ** row of the WhereLoop. Every one-row WhereLoop is automatically 3525 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause 3526 ** is not order-distinct. To be order-distinct is not quite the same as being 3527 ** UNIQUE since a UNIQUE column or index can have multiple rows that 3528 ** are NULL and NULL values are equivalent for the purpose of order-distinct. 3529 ** To be order-distinct, the columns must be UNIQUE and NOT NULL. 3530 ** 3531 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the 3532 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is 3533 ** automatically order-distinct. 3534 */ 3535 3536 assert( pOrderBy!=0 ); 3537 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; 3538 3539 nOrderBy = pOrderBy->nExpr; 3540 testcase( nOrderBy==BMS-1 ); 3541 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ 3542 isOrderDistinct = 1; 3543 obDone = MASKBIT(nOrderBy)-1; 3544 orderDistinctMask = 0; 3545 ready = 0; 3546 eqOpMask = WO_EQ | WO_IS | WO_ISNULL; 3547 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) eqOpMask |= WO_IN; 3548 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ 3549 if( iLoop>0 ) ready |= pLoop->maskSelf; 3550 if( iLoop<nLoop ){ 3551 pLoop = pPath->aLoop[iLoop]; 3552 if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue; 3553 }else{ 3554 pLoop = pLast; 3555 } 3556 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ 3557 if( pLoop->u.vtab.isOrdered ) obSat = obDone; 3558 break; 3559 }else{ 3560 pLoop->u.btree.nIdxCol = 0; 3561 } 3562 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; 3563 3564 /* Mark off any ORDER BY term X that is a column in the table of 3565 ** the current loop for which there is term in the WHERE 3566 ** clause of the form X IS NULL or X=? that reference only outer 3567 ** loops. 3568 */ 3569 for(i=0; i<nOrderBy; i++){ 3570 if( MASKBIT(i) & obSat ) continue; 3571 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); 3572 if( pOBExpr->op!=TK_COLUMN ) continue; 3573 if( pOBExpr->iTable!=iCur ) continue; 3574 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, 3575 ~ready, eqOpMask, 0); 3576 if( pTerm==0 ) continue; 3577 if( pTerm->eOperator==WO_IN ){ 3578 /* IN terms are only valid for sorting in the ORDER BY LIMIT 3579 ** optimization, and then only if they are actually used 3580 ** by the query plan */ 3581 assert( wctrlFlags & WHERE_ORDERBY_LIMIT ); 3582 for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){} 3583 if( j>=pLoop->nLTerm ) continue; 3584 } 3585 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ 3586 if( sqlite3ExprCollSeqMatch(pWInfo->pParse, 3587 pOrderBy->a[i].pExpr, pTerm->pExpr)==0 ){ 3588 continue; 3589 } 3590 testcase( pTerm->pExpr->op==TK_IS ); 3591 } 3592 obSat |= MASKBIT(i); 3593 } 3594 3595 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ 3596 if( pLoop->wsFlags & WHERE_IPK ){ 3597 pIndex = 0; 3598 nKeyCol = 0; 3599 nColumn = 1; 3600 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ 3601 return 0; 3602 }else{ 3603 nKeyCol = pIndex->nKeyCol; 3604 nColumn = pIndex->nColumn; 3605 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); 3606 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID 3607 || !HasRowid(pIndex->pTable)); 3608 isOrderDistinct = IsUniqueIndex(pIndex); 3609 } 3610 3611 /* Loop through all columns of the index and deal with the ones 3612 ** that are not constrained by == or IN. 3613 */ 3614 rev = revSet = 0; 3615 distinctColumns = 0; 3616 for(j=0; j<nColumn; j++){ 3617 u8 bOnce = 1; /* True to run the ORDER BY search loop */ 3618 3619 assert( j>=pLoop->u.btree.nEq 3620 || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip) 3621 ); 3622 if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){ 3623 u16 eOp = pLoop->aLTerm[j]->eOperator; 3624 3625 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when 3626 ** doing WHERE_ORDERBY_LIMIT processing). 3627 ** 3628 ** If the current term is a column of an ((?,?) IN (SELECT...)) 3629 ** expression for which the SELECT returns more than one column, 3630 ** check that it is the only column used by this loop. Otherwise, 3631 ** if it is one of two or more, none of the columns can be 3632 ** considered to match an ORDER BY term. */ 3633 if( (eOp & eqOpMask)!=0 ){ 3634 if( eOp & WO_ISNULL ){ 3635 testcase( isOrderDistinct ); 3636 isOrderDistinct = 0; 3637 } 3638 continue; 3639 }else if( ALWAYS(eOp & WO_IN) ){ 3640 /* ALWAYS() justification: eOp is an equality operator due to the 3641 ** j<pLoop->u.btree.nEq constraint above. Any equality other 3642 ** than WO_IN is captured by the previous "if". So this one 3643 ** always has to be WO_IN. */ 3644 Expr *pX = pLoop->aLTerm[j]->pExpr; 3645 for(i=j+1; i<pLoop->u.btree.nEq; i++){ 3646 if( pLoop->aLTerm[i]->pExpr==pX ){ 3647 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) ); 3648 bOnce = 0; 3649 break; 3650 } 3651 } 3652 } 3653 } 3654 3655 /* Get the column number in the table (iColumn) and sort order 3656 ** (revIdx) for the j-th column of the index. 3657 */ 3658 if( pIndex ){ 3659 iColumn = pIndex->aiColumn[j]; 3660 revIdx = pIndex->aSortOrder[j]; 3661 if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID; 3662 }else{ 3663 iColumn = XN_ROWID; 3664 revIdx = 0; 3665 } 3666 3667 /* An unconstrained column that might be NULL means that this 3668 ** WhereLoop is not well-ordered 3669 */ 3670 if( isOrderDistinct 3671 && iColumn>=0 3672 && j>=pLoop->u.btree.nEq 3673 && pIndex->pTable->aCol[iColumn].notNull==0 3674 ){ 3675 isOrderDistinct = 0; 3676 } 3677 3678 /* Find the ORDER BY term that corresponds to the j-th column 3679 ** of the index and mark that ORDER BY term off 3680 */ 3681 isMatch = 0; 3682 for(i=0; bOnce && i<nOrderBy; i++){ 3683 if( MASKBIT(i) & obSat ) continue; 3684 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); 3685 testcase( wctrlFlags & WHERE_GROUPBY ); 3686 testcase( wctrlFlags & WHERE_DISTINCTBY ); 3687 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; 3688 if( iColumn>=XN_ROWID ){ 3689 if( pOBExpr->op!=TK_COLUMN ) continue; 3690 if( pOBExpr->iTable!=iCur ) continue; 3691 if( pOBExpr->iColumn!=iColumn ) continue; 3692 }else{ 3693 Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr; 3694 if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){ 3695 continue; 3696 } 3697 } 3698 if( iColumn!=XN_ROWID ){ 3699 pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 3700 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; 3701 } 3702 pLoop->u.btree.nIdxCol = j+1; 3703 isMatch = 1; 3704 break; 3705 } 3706 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ 3707 /* Make sure the sort order is compatible in an ORDER BY clause. 3708 ** Sort order is irrelevant for a GROUP BY clause. */ 3709 if( revSet ){ 3710 if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0; 3711 }else{ 3712 rev = revIdx ^ pOrderBy->a[i].sortOrder; 3713 if( rev ) *pRevMask |= MASKBIT(iLoop); 3714 revSet = 1; 3715 } 3716 } 3717 if( isMatch ){ 3718 if( iColumn==XN_ROWID ){ 3719 testcase( distinctColumns==0 ); 3720 distinctColumns = 1; 3721 } 3722 obSat |= MASKBIT(i); 3723 }else{ 3724 /* No match found */ 3725 if( j==0 || j<nKeyCol ){ 3726 testcase( isOrderDistinct!=0 ); 3727 isOrderDistinct = 0; 3728 } 3729 break; 3730 } 3731 } /* end Loop over all index columns */ 3732 if( distinctColumns ){ 3733 testcase( isOrderDistinct==0 ); 3734 isOrderDistinct = 1; 3735 } 3736 } /* end-if not one-row */ 3737 3738 /* Mark off any other ORDER BY terms that reference pLoop */ 3739 if( isOrderDistinct ){ 3740 orderDistinctMask |= pLoop->maskSelf; 3741 for(i=0; i<nOrderBy; i++){ 3742 Expr *p; 3743 Bitmask mTerm; 3744 if( MASKBIT(i) & obSat ) continue; 3745 p = pOrderBy->a[i].pExpr; 3746 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); 3747 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; 3748 if( (mTerm&~orderDistinctMask)==0 ){ 3749 obSat |= MASKBIT(i); 3750 } 3751 } 3752 } 3753 } /* End the loop over all WhereLoops from outer-most down to inner-most */ 3754 if( obSat==obDone ) return (i8)nOrderBy; 3755 if( !isOrderDistinct ){ 3756 for(i=nOrderBy-1; i>0; i--){ 3757 Bitmask m = MASKBIT(i) - 1; 3758 if( (obSat&m)==m ) return i; 3759 } 3760 return 0; 3761 } 3762 return -1; 3763 } 3764 3765 3766 /* 3767 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), 3768 ** the planner assumes that the specified pOrderBy list is actually a GROUP 3769 ** BY clause - and so any order that groups rows as required satisfies the 3770 ** request. 3771 ** 3772 ** Normally, in this case it is not possible for the caller to determine 3773 ** whether or not the rows are really being delivered in sorted order, or 3774 ** just in some other order that provides the required grouping. However, 3775 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then 3776 ** this function may be called on the returned WhereInfo object. It returns 3777 ** true if the rows really will be sorted in the specified order, or false 3778 ** otherwise. 3779 ** 3780 ** For example, assuming: 3781 ** 3782 ** CREATE INDEX i1 ON t1(x, Y); 3783 ** 3784 ** then 3785 ** 3786 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 3787 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 3788 */ 3789 int sqlite3WhereIsSorted(WhereInfo *pWInfo){ 3790 assert( pWInfo->wctrlFlags & WHERE_GROUPBY ); 3791 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); 3792 return pWInfo->sorted; 3793 } 3794 3795 #ifdef WHERETRACE_ENABLED 3796 /* For debugging use only: */ 3797 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ 3798 static char zName[65]; 3799 int i; 3800 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } 3801 if( pLast ) zName[i++] = pLast->cId; 3802 zName[i] = 0; 3803 return zName; 3804 } 3805 #endif 3806 3807 /* 3808 ** Return the cost of sorting nRow rows, assuming that the keys have 3809 ** nOrderby columns and that the first nSorted columns are already in 3810 ** order. 3811 */ 3812 static LogEst whereSortingCost( 3813 WhereInfo *pWInfo, 3814 LogEst nRow, 3815 int nOrderBy, 3816 int nSorted 3817 ){ 3818 /* TUNING: Estimated cost of a full external sort, where N is 3819 ** the number of rows to sort is: 3820 ** 3821 ** cost = (3.0 * N * log(N)). 3822 ** 3823 ** Or, if the order-by clause has X terms but only the last Y 3824 ** terms are out of order, then block-sorting will reduce the 3825 ** sorting cost to: 3826 ** 3827 ** cost = (3.0 * N * log(N)) * (Y/X) 3828 ** 3829 ** The (Y/X) term is implemented using stack variable rScale 3830 ** below. */ 3831 LogEst rScale, rSortCost; 3832 assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); 3833 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; 3834 rSortCost = nRow + rScale + 16; 3835 3836 /* Multiple by log(M) where M is the number of output rows. 3837 ** Use the LIMIT for M if it is smaller */ 3838 if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){ 3839 nRow = pWInfo->iLimit; 3840 } 3841 rSortCost += estLog(nRow); 3842 return rSortCost; 3843 } 3844 3845 /* 3846 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine 3847 ** attempts to find the lowest cost path that visits each WhereLoop 3848 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. 3849 ** 3850 ** Assume that the total number of output rows that will need to be sorted 3851 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting 3852 ** costs if nRowEst==0. 3853 ** 3854 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation 3855 ** error occurs. 3856 */ 3857 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ 3858 int mxChoice; /* Maximum number of simultaneous paths tracked */ 3859 int nLoop; /* Number of terms in the join */ 3860 Parse *pParse; /* Parsing context */ 3861 sqlite3 *db; /* The database connection */ 3862 int iLoop; /* Loop counter over the terms of the join */ 3863 int ii, jj; /* Loop counters */ 3864 int mxI = 0; /* Index of next entry to replace */ 3865 int nOrderBy; /* Number of ORDER BY clause terms */ 3866 LogEst mxCost = 0; /* Maximum cost of a set of paths */ 3867 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ 3868 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ 3869 WherePath *aFrom; /* All nFrom paths at the previous level */ 3870 WherePath *aTo; /* The nTo best paths at the current level */ 3871 WherePath *pFrom; /* An element of aFrom[] that we are working on */ 3872 WherePath *pTo; /* An element of aTo[] that we are working on */ 3873 WhereLoop *pWLoop; /* One of the WhereLoop objects */ 3874 WhereLoop **pX; /* Used to divy up the pSpace memory */ 3875 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ 3876 char *pSpace; /* Temporary memory used by this routine */ 3877 int nSpace; /* Bytes of space allocated at pSpace */ 3878 3879 pParse = pWInfo->pParse; 3880 db = pParse->db; 3881 nLoop = pWInfo->nLevel; 3882 /* TUNING: For simple queries, only the best path is tracked. 3883 ** For 2-way joins, the 5 best paths are followed. 3884 ** For joins of 3 or more tables, track the 10 best paths */ 3885 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); 3886 assert( nLoop<=pWInfo->pTabList->nSrc ); 3887 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); 3888 3889 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this 3890 ** case the purpose of this call is to estimate the number of rows returned 3891 ** by the overall query. Once this estimate has been obtained, the caller 3892 ** will invoke this function a second time, passing the estimate as the 3893 ** nRowEst parameter. */ 3894 if( pWInfo->pOrderBy==0 || nRowEst==0 ){ 3895 nOrderBy = 0; 3896 }else{ 3897 nOrderBy = pWInfo->pOrderBy->nExpr; 3898 } 3899 3900 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ 3901 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; 3902 nSpace += sizeof(LogEst) * nOrderBy; 3903 pSpace = sqlite3DbMallocRawNN(db, nSpace); 3904 if( pSpace==0 ) return SQLITE_NOMEM_BKPT; 3905 aTo = (WherePath*)pSpace; 3906 aFrom = aTo+mxChoice; 3907 memset(aFrom, 0, sizeof(aFrom[0])); 3908 pX = (WhereLoop**)(aFrom+mxChoice); 3909 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ 3910 pFrom->aLoop = pX; 3911 } 3912 if( nOrderBy ){ 3913 /* If there is an ORDER BY clause and it is not being ignored, set up 3914 ** space for the aSortCost[] array. Each element of the aSortCost array 3915 ** is either zero - meaning it has not yet been initialized - or the 3916 ** cost of sorting nRowEst rows of data where the first X terms of 3917 ** the ORDER BY clause are already in order, where X is the array 3918 ** index. */ 3919 aSortCost = (LogEst*)pX; 3920 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); 3921 } 3922 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); 3923 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); 3924 3925 /* Seed the search with a single WherePath containing zero WhereLoops. 3926 ** 3927 ** TUNING: Do not let the number of iterations go above 28. If the cost 3928 ** of computing an automatic index is not paid back within the first 28 3929 ** rows, then do not use the automatic index. */ 3930 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) ); 3931 nFrom = 1; 3932 assert( aFrom[0].isOrdered==0 ); 3933 if( nOrderBy ){ 3934 /* If nLoop is zero, then there are no FROM terms in the query. Since 3935 ** in this case the query may return a maximum of one row, the results 3936 ** are already in the requested order. Set isOrdered to nOrderBy to 3937 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to 3938 ** -1, indicating that the result set may or may not be ordered, 3939 ** depending on the loops added to the current plan. */ 3940 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; 3941 } 3942 3943 /* Compute successively longer WherePaths using the previous generation 3944 ** of WherePaths as the basis for the next. Keep track of the mxChoice 3945 ** best paths at each generation */ 3946 for(iLoop=0; iLoop<nLoop; iLoop++){ 3947 nTo = 0; 3948 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ 3949 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ 3950 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ 3951 LogEst rCost; /* Cost of path (pFrom+pWLoop) */ 3952 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ 3953 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */ 3954 Bitmask maskNew; /* Mask of src visited by (..) */ 3955 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */ 3956 3957 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; 3958 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; 3959 if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<10 ){ 3960 /* Do not use an automatic index if the this loop is expected 3961 ** to run less than 2 times. */ 3962 assert( 10==sqlite3LogEst(2) ); 3963 continue; 3964 } 3965 /* At this point, pWLoop is a candidate to be the next loop. 3966 ** Compute its cost */ 3967 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); 3968 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); 3969 nOut = pFrom->nRow + pWLoop->nOut; 3970 maskNew = pFrom->maskLoop | pWLoop->maskSelf; 3971 if( isOrdered<0 ){ 3972 isOrdered = wherePathSatisfiesOrderBy(pWInfo, 3973 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, 3974 iLoop, pWLoop, &revMask); 3975 }else{ 3976 revMask = pFrom->revLoop; 3977 } 3978 if( isOrdered>=0 && isOrdered<nOrderBy ){ 3979 if( aSortCost[isOrdered]==0 ){ 3980 aSortCost[isOrdered] = whereSortingCost( 3981 pWInfo, nRowEst, nOrderBy, isOrdered 3982 ); 3983 } 3984 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]); 3985 3986 WHERETRACE(0x002, 3987 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", 3988 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, 3989 rUnsorted, rCost)); 3990 }else{ 3991 rCost = rUnsorted; 3992 rUnsorted -= 2; /* TUNING: Slight bias in favor of no-sort plans */ 3993 } 3994 3995 /* Check to see if pWLoop should be added to the set of 3996 ** mxChoice best-so-far paths. 3997 ** 3998 ** First look for an existing path among best-so-far paths 3999 ** that covers the same set of loops and has the same isOrdered 4000 ** setting as the current path candidate. 4001 ** 4002 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent 4003 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range 4004 ** of legal values for isOrdered, -1..64. 4005 */ 4006 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ 4007 if( pTo->maskLoop==maskNew 4008 && ((pTo->isOrdered^isOrdered)&0x80)==0 4009 ){ 4010 testcase( jj==nTo-1 ); 4011 break; 4012 } 4013 } 4014 if( jj>=nTo ){ 4015 /* None of the existing best-so-far paths match the candidate. */ 4016 if( nTo>=mxChoice 4017 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) 4018 ){ 4019 /* The current candidate is no better than any of the mxChoice 4020 ** paths currently in the best-so-far buffer. So discard 4021 ** this candidate as not viable. */ 4022 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4023 if( sqlite3WhereTrace&0x4 ){ 4024 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n", 4025 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4026 isOrdered>=0 ? isOrdered+'0' : '?'); 4027 } 4028 #endif 4029 continue; 4030 } 4031 /* If we reach this points it means that the new candidate path 4032 ** needs to be added to the set of best-so-far paths. */ 4033 if( nTo<mxChoice ){ 4034 /* Increase the size of the aTo set by one */ 4035 jj = nTo++; 4036 }else{ 4037 /* New path replaces the prior worst to keep count below mxChoice */ 4038 jj = mxI; 4039 } 4040 pTo = &aTo[jj]; 4041 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4042 if( sqlite3WhereTrace&0x4 ){ 4043 sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n", 4044 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4045 isOrdered>=0 ? isOrdered+'0' : '?'); 4046 } 4047 #endif 4048 }else{ 4049 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the 4050 ** same set of loops and has the same isOrdered setting as the 4051 ** candidate path. Check to see if the candidate should replace 4052 ** pTo or if the candidate should be skipped. 4053 ** 4054 ** The conditional is an expanded vector comparison equivalent to: 4055 ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted) 4056 */ 4057 if( pTo->rCost<rCost 4058 || (pTo->rCost==rCost 4059 && (pTo->nRow<nOut 4060 || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted) 4061 ) 4062 ) 4063 ){ 4064 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4065 if( sqlite3WhereTrace&0x4 ){ 4066 sqlite3DebugPrintf( 4067 "Skip %s cost=%-3d,%3d,%3d order=%c", 4068 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4069 isOrdered>=0 ? isOrdered+'0' : '?'); 4070 sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n", 4071 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4072 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4073 } 4074 #endif 4075 /* Discard the candidate path from further consideration */ 4076 testcase( pTo->rCost==rCost ); 4077 continue; 4078 } 4079 testcase( pTo->rCost==rCost+1 ); 4080 /* Control reaches here if the candidate path is better than the 4081 ** pTo path. Replace pTo with the candidate. */ 4082 #ifdef WHERETRACE_ENABLED /* 0x4 */ 4083 if( sqlite3WhereTrace&0x4 ){ 4084 sqlite3DebugPrintf( 4085 "Update %s cost=%-3d,%3d,%3d order=%c", 4086 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted, 4087 isOrdered>=0 ? isOrdered+'0' : '?'); 4088 sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n", 4089 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4090 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 4091 } 4092 #endif 4093 } 4094 /* pWLoop is a winner. Add it to the set of best so far */ 4095 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; 4096 pTo->revLoop = revMask; 4097 pTo->nRow = nOut; 4098 pTo->rCost = rCost; 4099 pTo->rUnsorted = rUnsorted; 4100 pTo->isOrdered = isOrdered; 4101 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); 4102 pTo->aLoop[iLoop] = pWLoop; 4103 if( nTo>=mxChoice ){ 4104 mxI = 0; 4105 mxCost = aTo[0].rCost; 4106 mxUnsorted = aTo[0].nRow; 4107 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ 4108 if( pTo->rCost>mxCost 4109 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) 4110 ){ 4111 mxCost = pTo->rCost; 4112 mxUnsorted = pTo->rUnsorted; 4113 mxI = jj; 4114 } 4115 } 4116 } 4117 } 4118 } 4119 4120 #ifdef WHERETRACE_ENABLED /* >=2 */ 4121 if( sqlite3WhereTrace & 0x02 ){ 4122 sqlite3DebugPrintf("---- after round %d ----\n", iLoop); 4123 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ 4124 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", 4125 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 4126 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); 4127 if( pTo->isOrdered>0 ){ 4128 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); 4129 }else{ 4130 sqlite3DebugPrintf("\n"); 4131 } 4132 } 4133 } 4134 #endif 4135 4136 /* Swap the roles of aFrom and aTo for the next generation */ 4137 pFrom = aTo; 4138 aTo = aFrom; 4139 aFrom = pFrom; 4140 nFrom = nTo; 4141 } 4142 4143 if( nFrom==0 ){ 4144 sqlite3ErrorMsg(pParse, "no query solution"); 4145 sqlite3DbFreeNN(db, pSpace); 4146 return SQLITE_ERROR; 4147 } 4148 4149 /* Find the lowest cost path. pFrom will be left pointing to that path */ 4150 pFrom = aFrom; 4151 for(ii=1; ii<nFrom; ii++){ 4152 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; 4153 } 4154 assert( pWInfo->nLevel==nLoop ); 4155 /* Load the lowest cost path into pWInfo */ 4156 for(iLoop=0; iLoop<nLoop; iLoop++){ 4157 WhereLevel *pLevel = pWInfo->a + iLoop; 4158 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; 4159 pLevel->iFrom = pWLoop->iTab; 4160 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; 4161 } 4162 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 4163 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 4164 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP 4165 && nRowEst 4166 ){ 4167 Bitmask notUsed; 4168 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, 4169 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); 4170 if( rc==pWInfo->pResultSet->nExpr ){ 4171 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 4172 } 4173 } 4174 if( pWInfo->pOrderBy ){ 4175 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ 4176 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ 4177 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 4178 } 4179 }else{ 4180 pWInfo->nOBSat = pFrom->isOrdered; 4181 pWInfo->revMask = pFrom->revLoop; 4182 if( pWInfo->nOBSat<=0 ){ 4183 pWInfo->nOBSat = 0; 4184 if( nLoop>0 ){ 4185 u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags; 4186 if( (wsFlags & WHERE_ONEROW)==0 4187 && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN) 4188 ){ 4189 Bitmask m = 0; 4190 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom, 4191 WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m); 4192 testcase( wsFlags & WHERE_IPK ); 4193 testcase( wsFlags & WHERE_COLUMN_IN ); 4194 if( rc==pWInfo->pOrderBy->nExpr ){ 4195 pWInfo->bOrderedInnerLoop = 1; 4196 pWInfo->revMask = m; 4197 } 4198 } 4199 } 4200 } 4201 } 4202 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) 4203 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 4204 ){ 4205 Bitmask revMask = 0; 4206 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, 4207 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask 4208 ); 4209 assert( pWInfo->sorted==0 ); 4210 if( nOrder==pWInfo->pOrderBy->nExpr ){ 4211 pWInfo->sorted = 1; 4212 pWInfo->revMask = revMask; 4213 } 4214 } 4215 } 4216 4217 4218 pWInfo->nRowOut = pFrom->nRow; 4219 4220 /* Free temporary memory and return success */ 4221 sqlite3DbFreeNN(db, pSpace); 4222 return SQLITE_OK; 4223 } 4224 4225 /* 4226 ** Most queries use only a single table (they are not joins) and have 4227 ** simple == constraints against indexed fields. This routine attempts 4228 ** to plan those simple cases using much less ceremony than the 4229 ** general-purpose query planner, and thereby yield faster sqlite3_prepare() 4230 ** times for the common case. 4231 ** 4232 ** Return non-zero on success, if this query can be handled by this 4233 ** no-frills query planner. Return zero if this query needs the 4234 ** general-purpose query planner. 4235 */ 4236 static int whereShortCut(WhereLoopBuilder *pBuilder){ 4237 WhereInfo *pWInfo; 4238 struct SrcList_item *pItem; 4239 WhereClause *pWC; 4240 WhereTerm *pTerm; 4241 WhereLoop *pLoop; 4242 int iCur; 4243 int j; 4244 Table *pTab; 4245 Index *pIdx; 4246 4247 pWInfo = pBuilder->pWInfo; 4248 if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0; 4249 assert( pWInfo->pTabList->nSrc>=1 ); 4250 pItem = pWInfo->pTabList->a; 4251 pTab = pItem->pTab; 4252 if( IsVirtual(pTab) ) return 0; 4253 if( pItem->fg.isIndexedBy ) return 0; 4254 iCur = pItem->iCursor; 4255 pWC = &pWInfo->sWC; 4256 pLoop = pBuilder->pNew; 4257 pLoop->wsFlags = 0; 4258 pLoop->nSkip = 0; 4259 pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0); 4260 if( pTerm ){ 4261 testcase( pTerm->eOperator & WO_IS ); 4262 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; 4263 pLoop->aLTerm[0] = pTerm; 4264 pLoop->nLTerm = 1; 4265 pLoop->u.btree.nEq = 1; 4266 /* TUNING: Cost of a rowid lookup is 10 */ 4267 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ 4268 }else{ 4269 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 4270 int opMask; 4271 assert( pLoop->aLTermSpace==pLoop->aLTerm ); 4272 if( !IsUniqueIndex(pIdx) 4273 || pIdx->pPartIdxWhere!=0 4274 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) 4275 ) continue; 4276 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; 4277 for(j=0; j<pIdx->nKeyCol; j++){ 4278 pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx); 4279 if( pTerm==0 ) break; 4280 testcase( pTerm->eOperator & WO_IS ); 4281 pLoop->aLTerm[j] = pTerm; 4282 } 4283 if( j!=pIdx->nKeyCol ) continue; 4284 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; 4285 if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){ 4286 pLoop->wsFlags |= WHERE_IDX_ONLY; 4287 } 4288 pLoop->nLTerm = j; 4289 pLoop->u.btree.nEq = j; 4290 pLoop->u.btree.pIndex = pIdx; 4291 /* TUNING: Cost of a unique index lookup is 15 */ 4292 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ 4293 break; 4294 } 4295 } 4296 if( pLoop->wsFlags ){ 4297 pLoop->nOut = (LogEst)1; 4298 pWInfo->a[0].pWLoop = pLoop; 4299 assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] ); 4300 pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */ 4301 pWInfo->a[0].iTabCur = iCur; 4302 pWInfo->nRowOut = 1; 4303 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; 4304 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ 4305 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4306 } 4307 #ifdef SQLITE_DEBUG 4308 pLoop->cId = '0'; 4309 #endif 4310 return 1; 4311 } 4312 return 0; 4313 } 4314 4315 /* 4316 ** Helper function for exprIsDeterministic(). 4317 */ 4318 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){ 4319 if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){ 4320 pWalker->eCode = 0; 4321 return WRC_Abort; 4322 } 4323 return WRC_Continue; 4324 } 4325 4326 /* 4327 ** Return true if the expression contains no non-deterministic SQL 4328 ** functions. Do not consider non-deterministic SQL functions that are 4329 ** part of sub-select statements. 4330 */ 4331 static int exprIsDeterministic(Expr *p){ 4332 Walker w; 4333 memset(&w, 0, sizeof(w)); 4334 w.eCode = 1; 4335 w.xExprCallback = exprNodeIsDeterministic; 4336 w.xSelectCallback = sqlite3SelectWalkFail; 4337 sqlite3WalkExpr(&w, p); 4338 return w.eCode; 4339 } 4340 4341 /* 4342 ** Generate the beginning of the loop used for WHERE clause processing. 4343 ** The return value is a pointer to an opaque structure that contains 4344 ** information needed to terminate the loop. Later, the calling routine 4345 ** should invoke sqlite3WhereEnd() with the return value of this function 4346 ** in order to complete the WHERE clause processing. 4347 ** 4348 ** If an error occurs, this routine returns NULL. 4349 ** 4350 ** The basic idea is to do a nested loop, one loop for each table in 4351 ** the FROM clause of a select. (INSERT and UPDATE statements are the 4352 ** same as a SELECT with only a single table in the FROM clause.) For 4353 ** example, if the SQL is this: 4354 ** 4355 ** SELECT * FROM t1, t2, t3 WHERE ...; 4356 ** 4357 ** Then the code generated is conceptually like the following: 4358 ** 4359 ** foreach row1 in t1 do \ Code generated 4360 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 4361 ** foreach row3 in t3 do / 4362 ** ... 4363 ** end \ Code generated 4364 ** end |-- by sqlite3WhereEnd() 4365 ** end / 4366 ** 4367 ** Note that the loops might not be nested in the order in which they 4368 ** appear in the FROM clause if a different order is better able to make 4369 ** use of indices. Note also that when the IN operator appears in 4370 ** the WHERE clause, it might result in additional nested loops for 4371 ** scanning through all values on the right-hand side of the IN. 4372 ** 4373 ** There are Btree cursors associated with each table. t1 uses cursor 4374 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 4375 ** And so forth. This routine generates code to open those VDBE cursors 4376 ** and sqlite3WhereEnd() generates the code to close them. 4377 ** 4378 ** The code that sqlite3WhereBegin() generates leaves the cursors named 4379 ** in pTabList pointing at their appropriate entries. The [...] code 4380 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 4381 ** data from the various tables of the loop. 4382 ** 4383 ** If the WHERE clause is empty, the foreach loops must each scan their 4384 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 4385 ** the tables have indices and there are terms in the WHERE clause that 4386 ** refer to those indices, a complete table scan can be avoided and the 4387 ** code will run much faster. Most of the work of this routine is checking 4388 ** to see if there are indices that can be used to speed up the loop. 4389 ** 4390 ** Terms of the WHERE clause are also used to limit which rows actually 4391 ** make it to the "..." in the middle of the loop. After each "foreach", 4392 ** terms of the WHERE clause that use only terms in that loop and outer 4393 ** loops are evaluated and if false a jump is made around all subsequent 4394 ** inner loops (or around the "..." if the test occurs within the inner- 4395 ** most loop) 4396 ** 4397 ** OUTER JOINS 4398 ** 4399 ** An outer join of tables t1 and t2 is conceptally coded as follows: 4400 ** 4401 ** foreach row1 in t1 do 4402 ** flag = 0 4403 ** foreach row2 in t2 do 4404 ** start: 4405 ** ... 4406 ** flag = 1 4407 ** end 4408 ** if flag==0 then 4409 ** move the row2 cursor to a null row 4410 ** goto start 4411 ** fi 4412 ** end 4413 ** 4414 ** ORDER BY CLAUSE PROCESSING 4415 ** 4416 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause 4417 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement 4418 ** if there is one. If there is no ORDER BY clause or if this routine 4419 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. 4420 ** 4421 ** The iIdxCur parameter is the cursor number of an index. If 4422 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index 4423 ** to use for OR clause processing. The WHERE clause should use this 4424 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is 4425 ** the first cursor in an array of cursors for all indices. iIdxCur should 4426 ** be used to compute the appropriate cursor depending on which index is 4427 ** used. 4428 */ 4429 WhereInfo *sqlite3WhereBegin( 4430 Parse *pParse, /* The parser context */ 4431 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ 4432 Expr *pWhere, /* The WHERE clause */ 4433 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ 4434 ExprList *pResultSet, /* Query result set. Req'd for DISTINCT */ 4435 u16 wctrlFlags, /* The WHERE_* flags defined in sqliteInt.h */ 4436 int iAuxArg /* If WHERE_OR_SUBCLAUSE is set, index cursor number 4437 ** If WHERE_USE_LIMIT, then the limit amount */ 4438 ){ 4439 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ 4440 int nTabList; /* Number of elements in pTabList */ 4441 WhereInfo *pWInfo; /* Will become the return value of this function */ 4442 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 4443 Bitmask notReady; /* Cursors that are not yet positioned */ 4444 WhereLoopBuilder sWLB; /* The WhereLoop builder */ 4445 WhereMaskSet *pMaskSet; /* The expression mask set */ 4446 WhereLevel *pLevel; /* A single level in pWInfo->a[] */ 4447 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ 4448 int ii; /* Loop counter */ 4449 sqlite3 *db; /* Database connection */ 4450 int rc; /* Return code */ 4451 u8 bFordelete = 0; /* OPFLAG_FORDELETE or zero, as appropriate */ 4452 4453 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || ( 4454 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 4455 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 4456 )); 4457 4458 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */ 4459 assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 4460 || (wctrlFlags & WHERE_USE_LIMIT)==0 ); 4461 4462 /* Variable initialization */ 4463 db = pParse->db; 4464 memset(&sWLB, 0, sizeof(sWLB)); 4465 4466 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ 4467 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); 4468 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; 4469 sWLB.pOrderBy = pOrderBy; 4470 4471 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via 4472 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ 4473 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ 4474 wctrlFlags &= ~WHERE_WANT_DISTINCT; 4475 } 4476 4477 /* The number of tables in the FROM clause is limited by the number of 4478 ** bits in a Bitmask 4479 */ 4480 testcase( pTabList->nSrc==BMS ); 4481 if( pTabList->nSrc>BMS ){ 4482 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 4483 return 0; 4484 } 4485 4486 /* This function normally generates a nested loop for all tables in 4487 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should 4488 ** only generate code for the first table in pTabList and assume that 4489 ** any cursors associated with subsequent tables are uninitialized. 4490 */ 4491 nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc; 4492 4493 /* Allocate and initialize the WhereInfo structure that will become the 4494 ** return value. A single allocation is used to store the WhereInfo 4495 ** struct, the contents of WhereInfo.a[], the WhereClause structure 4496 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte 4497 ** field (type Bitmask) it must be aligned on an 8-byte boundary on 4498 ** some architectures. Hence the ROUND8() below. 4499 */ 4500 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); 4501 pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop)); 4502 if( db->mallocFailed ){ 4503 sqlite3DbFree(db, pWInfo); 4504 pWInfo = 0; 4505 goto whereBeginError; 4506 } 4507 pWInfo->pParse = pParse; 4508 pWInfo->pTabList = pTabList; 4509 pWInfo->pOrderBy = pOrderBy; 4510 pWInfo->pWhere = pWhere; 4511 pWInfo->pResultSet = pResultSet; 4512 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; 4513 pWInfo->nLevel = nTabList; 4514 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v); 4515 pWInfo->wctrlFlags = wctrlFlags; 4516 pWInfo->iLimit = iAuxArg; 4517 pWInfo->savedNQueryLoop = pParse->nQueryLoop; 4518 memset(&pWInfo->nOBSat, 0, 4519 offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat)); 4520 memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel)); 4521 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */ 4522 pMaskSet = &pWInfo->sMaskSet; 4523 sWLB.pWInfo = pWInfo; 4524 sWLB.pWC = &pWInfo->sWC; 4525 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); 4526 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); 4527 whereLoopInit(sWLB.pNew); 4528 #ifdef SQLITE_DEBUG 4529 sWLB.pNew->cId = '*'; 4530 #endif 4531 4532 /* Split the WHERE clause into separate subexpressions where each 4533 ** subexpression is separated by an AND operator. 4534 */ 4535 initMaskSet(pMaskSet); 4536 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); 4537 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); 4538 4539 /* Special case: No FROM clause 4540 */ 4541 if( nTabList==0 ){ 4542 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; 4543 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4544 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4545 } 4546 }else{ 4547 /* Assign a bit from the bitmask to every term in the FROM clause. 4548 ** 4549 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. 4550 ** 4551 ** The rule of the previous sentence ensures thta if X is the bitmask for 4552 ** a table T, then X-1 is the bitmask for all other tables to the left of T. 4553 ** Knowing the bitmask for all tables to the left of a left join is 4554 ** important. Ticket #3015. 4555 ** 4556 ** Note that bitmasks are created for all pTabList->nSrc tables in 4557 ** pTabList, not just the first nTabList tables. nTabList is normally 4558 ** equal to pTabList->nSrc but might be shortened to 1 if the 4559 ** WHERE_OR_SUBCLAUSE flag is set. 4560 */ 4561 ii = 0; 4562 do{ 4563 createMask(pMaskSet, pTabList->a[ii].iCursor); 4564 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC); 4565 }while( (++ii)<pTabList->nSrc ); 4566 #ifdef SQLITE_DEBUG 4567 { 4568 Bitmask mx = 0; 4569 for(ii=0; ii<pTabList->nSrc; ii++){ 4570 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); 4571 assert( m>=mx ); 4572 mx = m; 4573 } 4574 } 4575 #endif 4576 } 4577 4578 /* Analyze all of the subexpressions. */ 4579 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); 4580 if( db->mallocFailed ) goto whereBeginError; 4581 4582 /* Special case: WHERE terms that do not refer to any tables in the join 4583 ** (constant expressions). Evaluate each such term, and jump over all the 4584 ** generated code if the result is not true. 4585 ** 4586 ** Do not do this if the expression contains non-deterministic functions 4587 ** that are not within a sub-select. This is not strictly required, but 4588 ** preserves SQLite's legacy behaviour in the following two cases: 4589 ** 4590 ** FROM ... WHERE random()>0; -- eval random() once per row 4591 ** FROM ... WHERE (SELECT random())>0; -- eval random() once overall 4592 */ 4593 for(ii=0; ii<sWLB.pWC->nTerm; ii++){ 4594 WhereTerm *pT = &sWLB.pWC->a[ii]; 4595 if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){ 4596 sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL); 4597 pT->wtFlags |= TERM_CODED; 4598 } 4599 } 4600 4601 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4602 if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ 4603 /* The DISTINCT marking is pointless. Ignore it. */ 4604 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4605 }else if( pOrderBy==0 ){ 4606 /* Try to ORDER BY the result set to make distinct processing easier */ 4607 pWInfo->wctrlFlags |= WHERE_DISTINCTBY; 4608 pWInfo->pOrderBy = pResultSet; 4609 } 4610 } 4611 4612 /* Construct the WhereLoop objects */ 4613 #if defined(WHERETRACE_ENABLED) 4614 if( sqlite3WhereTrace & 0xffff ){ 4615 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags); 4616 if( wctrlFlags & WHERE_USE_LIMIT ){ 4617 sqlite3DebugPrintf(", limit: %d", iAuxArg); 4618 } 4619 sqlite3DebugPrintf(")\n"); 4620 } 4621 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 4622 sqlite3WhereClausePrint(sWLB.pWC); 4623 } 4624 #endif 4625 4626 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ 4627 rc = whereLoopAddAll(&sWLB); 4628 if( rc ) goto whereBeginError; 4629 4630 #ifdef WHERETRACE_ENABLED 4631 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ 4632 WhereLoop *p; 4633 int i; 4634 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" 4635 "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; 4636 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ 4637 p->cId = zLabel[i%(sizeof(zLabel)-1)]; 4638 whereLoopPrint(p, sWLB.pWC); 4639 } 4640 } 4641 #endif 4642 4643 wherePathSolver(pWInfo, 0); 4644 if( db->mallocFailed ) goto whereBeginError; 4645 if( pWInfo->pOrderBy ){ 4646 wherePathSolver(pWInfo, pWInfo->nRowOut+1); 4647 if( db->mallocFailed ) goto whereBeginError; 4648 } 4649 } 4650 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ 4651 pWInfo->revMask = ALLBITS; 4652 } 4653 if( pParse->nErr || NEVER(db->mallocFailed) ){ 4654 goto whereBeginError; 4655 } 4656 #ifdef WHERETRACE_ENABLED 4657 if( sqlite3WhereTrace ){ 4658 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); 4659 if( pWInfo->nOBSat>0 ){ 4660 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); 4661 } 4662 switch( pWInfo->eDistinct ){ 4663 case WHERE_DISTINCT_UNIQUE: { 4664 sqlite3DebugPrintf(" DISTINCT=unique"); 4665 break; 4666 } 4667 case WHERE_DISTINCT_ORDERED: { 4668 sqlite3DebugPrintf(" DISTINCT=ordered"); 4669 break; 4670 } 4671 case WHERE_DISTINCT_UNORDERED: { 4672 sqlite3DebugPrintf(" DISTINCT=unordered"); 4673 break; 4674 } 4675 } 4676 sqlite3DebugPrintf("\n"); 4677 for(ii=0; ii<pWInfo->nLevel; ii++){ 4678 whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); 4679 } 4680 } 4681 #endif 4682 /* Attempt to omit tables from the join that do not effect the result */ 4683 if( pWInfo->nLevel>=2 4684 && pResultSet!=0 4685 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) 4686 ){ 4687 Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet); 4688 if( sWLB.pOrderBy ){ 4689 tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy); 4690 } 4691 while( pWInfo->nLevel>=2 ){ 4692 WhereTerm *pTerm, *pEnd; 4693 pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop; 4694 if( (pWInfo->pTabList->a[pLoop->iTab].fg.jointype & JT_LEFT)==0 ) break; 4695 if( (wctrlFlags & WHERE_WANT_DISTINCT)==0 4696 && (pLoop->wsFlags & WHERE_ONEROW)==0 4697 ){ 4698 break; 4699 } 4700 if( (tabUsed & pLoop->maskSelf)!=0 ) break; 4701 pEnd = sWLB.pWC->a + sWLB.pWC->nTerm; 4702 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ 4703 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 4704 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 4705 ){ 4706 break; 4707 } 4708 } 4709 if( pTerm<pEnd ) break; 4710 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); 4711 pWInfo->nLevel--; 4712 nTabList--; 4713 } 4714 } 4715 WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); 4716 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; 4717 4718 /* If the caller is an UPDATE or DELETE statement that is requesting 4719 ** to use a one-pass algorithm, determine if this is appropriate. 4720 */ 4721 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 4722 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){ 4723 int wsFlags = pWInfo->a[0].pWLoop->wsFlags; 4724 int bOnerow = (wsFlags & WHERE_ONEROW)!=0; 4725 if( bOnerow 4726 || ((wctrlFlags & WHERE_ONEPASS_MULTIROW)!=0 4727 && 0==(wsFlags & WHERE_VIRTUALTABLE)) 4728 ){ 4729 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; 4730 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){ 4731 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){ 4732 bFordelete = OPFLAG_FORDELETE; 4733 } 4734 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY); 4735 } 4736 } 4737 } 4738 4739 /* Open all tables in the pTabList and any indices selected for 4740 ** searching those tables. 4741 */ 4742 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ 4743 Table *pTab; /* Table to open */ 4744 int iDb; /* Index of database containing table/index */ 4745 struct SrcList_item *pTabItem; 4746 4747 pTabItem = &pTabList->a[pLevel->iFrom]; 4748 pTab = pTabItem->pTab; 4749 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4750 pLoop = pLevel->pWLoop; 4751 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){ 4752 /* Do nothing */ 4753 }else 4754 #ifndef SQLITE_OMIT_VIRTUALTABLE 4755 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 4756 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 4757 int iCur = pTabItem->iCursor; 4758 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); 4759 }else if( IsVirtual(pTab) ){ 4760 /* noop */ 4761 }else 4762 #endif 4763 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 4764 && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){ 4765 int op = OP_OpenRead; 4766 if( pWInfo->eOnePass!=ONEPASS_OFF ){ 4767 op = OP_OpenWrite; 4768 pWInfo->aiCurOnePass[0] = pTabItem->iCursor; 4769 }; 4770 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 4771 assert( pTabItem->iCursor==pLevel->iTabCur ); 4772 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 ); 4773 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS ); 4774 if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){ 4775 Bitmask b = pTabItem->colUsed; 4776 int n = 0; 4777 for(; b; b=b>>1, n++){} 4778 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32); 4779 assert( n<=pTab->nCol ); 4780 } 4781 #ifdef SQLITE_ENABLE_CURSOR_HINTS 4782 if( pLoop->u.btree.pIndex!=0 ){ 4783 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete); 4784 }else 4785 #endif 4786 { 4787 sqlite3VdbeChangeP5(v, bFordelete); 4788 } 4789 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4790 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, 4791 (const u8*)&pTabItem->colUsed, P4_INT64); 4792 #endif 4793 }else{ 4794 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 4795 } 4796 if( pLoop->wsFlags & WHERE_INDEXED ){ 4797 Index *pIx = pLoop->u.btree.pIndex; 4798 int iIndexCur; 4799 int op = OP_OpenRead; 4800 /* iAuxArg is always set to a positive value if ONEPASS is possible */ 4801 assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); 4802 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) 4803 && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 4804 ){ 4805 /* This is one term of an OR-optimization using the PRIMARY KEY of a 4806 ** WITHOUT ROWID table. No need for a separate index */ 4807 iIndexCur = pLevel->iTabCur; 4808 op = 0; 4809 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){ 4810 Index *pJ = pTabItem->pTab->pIndex; 4811 iIndexCur = iAuxArg; 4812 assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); 4813 while( ALWAYS(pJ) && pJ!=pIx ){ 4814 iIndexCur++; 4815 pJ = pJ->pNext; 4816 } 4817 op = OP_OpenWrite; 4818 pWInfo->aiCurOnePass[1] = iIndexCur; 4819 }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){ 4820 iIndexCur = iAuxArg; 4821 op = OP_ReopenIdx; 4822 }else{ 4823 iIndexCur = pParse->nTab++; 4824 } 4825 pLevel->iIdxCur = iIndexCur; 4826 assert( pIx->pSchema==pTab->pSchema ); 4827 assert( iIndexCur>=0 ); 4828 if( op ){ 4829 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); 4830 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 4831 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 4832 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 4833 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 4834 && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED 4835 ){ 4836 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */ 4837 } 4838 VdbeComment((v, "%s", pIx->zName)); 4839 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4840 { 4841 u64 colUsed = 0; 4842 int ii, jj; 4843 for(ii=0; ii<pIx->nColumn; ii++){ 4844 jj = pIx->aiColumn[ii]; 4845 if( jj<0 ) continue; 4846 if( jj>63 ) jj = 63; 4847 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue; 4848 colUsed |= ((u64)1)<<(ii<63 ? ii : 63); 4849 } 4850 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, 4851 (u8*)&colUsed, P4_INT64); 4852 } 4853 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ 4854 } 4855 } 4856 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); 4857 } 4858 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 4859 if( db->mallocFailed ) goto whereBeginError; 4860 4861 /* Generate the code to do the search. Each iteration of the for 4862 ** loop below generates code for a single nested loop of the VM 4863 ** program. 4864 */ 4865 notReady = ~(Bitmask)0; 4866 for(ii=0; ii<nTabList; ii++){ 4867 int addrExplain; 4868 int wsFlags; 4869 pLevel = &pWInfo->a[ii]; 4870 wsFlags = pLevel->pWLoop->wsFlags; 4871 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 4872 if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 4873 constructAutomaticIndex(pParse, &pWInfo->sWC, 4874 &pTabList->a[pLevel->iFrom], notReady, pLevel); 4875 if( db->mallocFailed ) goto whereBeginError; 4876 } 4877 #endif 4878 addrExplain = sqlite3WhereExplainOneScan( 4879 pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags 4880 ); 4881 pLevel->addrBody = sqlite3VdbeCurrentAddr(v); 4882 notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady); 4883 pWInfo->iContinue = pLevel->addrCont; 4884 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){ 4885 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); 4886 } 4887 } 4888 4889 /* Done. */ 4890 VdbeModuleComment((v, "Begin WHERE-core")); 4891 return pWInfo; 4892 4893 /* Jump here if malloc fails */ 4894 whereBeginError: 4895 if( pWInfo ){ 4896 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 4897 whereInfoFree(db, pWInfo); 4898 } 4899 return 0; 4900 } 4901 4902 /* 4903 ** Generate the end of the WHERE loop. See comments on 4904 ** sqlite3WhereBegin() for additional information. 4905 */ 4906 void sqlite3WhereEnd(WhereInfo *pWInfo){ 4907 Parse *pParse = pWInfo->pParse; 4908 Vdbe *v = pParse->pVdbe; 4909 int i; 4910 WhereLevel *pLevel; 4911 WhereLoop *pLoop; 4912 SrcList *pTabList = pWInfo->pTabList; 4913 sqlite3 *db = pParse->db; 4914 4915 /* Generate loop termination code. 4916 */ 4917 VdbeModuleComment((v, "End WHERE-core")); 4918 sqlite3ExprCacheClear(pParse); 4919 for(i=pWInfo->nLevel-1; i>=0; i--){ 4920 int addr; 4921 pLevel = &pWInfo->a[i]; 4922 pLoop = pLevel->pWLoop; 4923 if( pLevel->op!=OP_Noop ){ 4924 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 4925 int addrSeek = 0; 4926 Index *pIdx; 4927 int n; 4928 if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED 4929 && (pLoop->wsFlags & WHERE_INDEXED)!=0 4930 && (pIdx = pLoop->u.btree.pIndex)->hasStat1 4931 && (n = pLoop->u.btree.nIdxCol)>0 4932 && pIdx->aiRowLogEst[n]>=36 4933 ){ 4934 int r1 = pParse->nMem+1; 4935 int j, op; 4936 for(j=0; j<n; j++){ 4937 sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j); 4938 } 4939 pParse->nMem += n+1; 4940 op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT; 4941 addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n); 4942 VdbeCoverageIf(v, op==OP_SeekLT); 4943 VdbeCoverageIf(v, op==OP_SeekGT); 4944 sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2); 4945 } 4946 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */ 4947 /* The common case: Advance to the next row */ 4948 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 4949 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); 4950 sqlite3VdbeChangeP5(v, pLevel->p5); 4951 VdbeCoverage(v); 4952 VdbeCoverageIf(v, pLevel->op==OP_Next); 4953 VdbeCoverageIf(v, pLevel->op==OP_Prev); 4954 VdbeCoverageIf(v, pLevel->op==OP_VNext); 4955 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT 4956 if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek); 4957 #endif 4958 }else{ 4959 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 4960 } 4961 if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ 4962 struct InLoop *pIn; 4963 int j; 4964 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 4965 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 4966 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 4967 if( pIn->eEndLoopOp!=OP_Noop ){ 4968 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); 4969 VdbeCoverage(v); 4970 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen); 4971 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen); 4972 } 4973 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 4974 } 4975 } 4976 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 4977 if( pLevel->addrSkip ){ 4978 sqlite3VdbeGoto(v, pLevel->addrSkip); 4979 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); 4980 sqlite3VdbeJumpHere(v, pLevel->addrSkip); 4981 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); 4982 } 4983 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS 4984 if( pLevel->addrLikeRep ){ 4985 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1), 4986 pLevel->addrLikeRep); 4987 VdbeCoverage(v); 4988 } 4989 #endif 4990 if( pLevel->iLeftJoin ){ 4991 int ws = pLoop->wsFlags; 4992 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); 4993 assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 ); 4994 if( (ws & WHERE_IDX_ONLY)==0 ){ 4995 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); 4996 } 4997 if( (ws & WHERE_INDEXED) 4998 || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx) 4999 ){ 5000 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 5001 } 5002 if( pLevel->op==OP_Return ){ 5003 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); 5004 }else{ 5005 sqlite3VdbeGoto(v, pLevel->addrFirst); 5006 } 5007 sqlite3VdbeJumpHere(v, addr); 5008 } 5009 VdbeModuleComment((v, "End WHERE-loop%d: %s", i, 5010 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); 5011 } 5012 5013 /* The "break" point is here, just past the end of the outer loop. 5014 ** Set it. 5015 */ 5016 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 5017 5018 assert( pWInfo->nLevel<=pTabList->nSrc ); 5019 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ 5020 int k, last; 5021 VdbeOp *pOp; 5022 Index *pIdx = 0; 5023 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 5024 Table *pTab = pTabItem->pTab; 5025 assert( pTab!=0 ); 5026 pLoop = pLevel->pWLoop; 5027 5028 /* For a co-routine, change all OP_Column references to the table of 5029 ** the co-routine into OP_Copy of result contained in a register. 5030 ** OP_Rowid becomes OP_Null. 5031 */ 5032 if( pTabItem->fg.viaCoroutine ){ 5033 testcase( pParse->db->mallocFailed ); 5034 translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur, 5035 pTabItem->regResult, 0); 5036 continue; 5037 } 5038 5039 /* If this scan uses an index, make VDBE code substitutions to read data 5040 ** from the index instead of from the table where possible. In some cases 5041 ** this optimization prevents the table from ever being read, which can 5042 ** yield a significant performance boost. 5043 ** 5044 ** Calls to the code generator in between sqlite3WhereBegin and 5045 ** sqlite3WhereEnd will have created code that references the table 5046 ** directly. This loop scans all that code looking for opcodes 5047 ** that reference the table and converts them into opcodes that 5048 ** reference the index. 5049 */ 5050 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ 5051 pIdx = pLoop->u.btree.pIndex; 5052 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ 5053 pIdx = pLevel->u.pCovidx; 5054 } 5055 if( pIdx 5056 && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable)) 5057 && !db->mallocFailed 5058 ){ 5059 last = sqlite3VdbeCurrentAddr(v); 5060 k = pLevel->addrBody; 5061 pOp = sqlite3VdbeGetOp(v, k); 5062 for(; k<last; k++, pOp++){ 5063 if( pOp->p1!=pLevel->iTabCur ) continue; 5064 if( pOp->opcode==OP_Column ){ 5065 int x = pOp->p2; 5066 assert( pIdx->pTable==pTab ); 5067 if( !HasRowid(pTab) ){ 5068 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 5069 x = pPk->aiColumn[x]; 5070 assert( x>=0 ); 5071 } 5072 x = sqlite3ColumnOfIndex(pIdx, x); 5073 if( x>=0 ){ 5074 pOp->p2 = x; 5075 pOp->p1 = pLevel->iIdxCur; 5076 } 5077 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 5078 || pWInfo->eOnePass ); 5079 }else if( pOp->opcode==OP_Rowid ){ 5080 pOp->p1 = pLevel->iIdxCur; 5081 pOp->opcode = OP_IdxRowid; 5082 }else if( pOp->opcode==OP_IfNullRow ){ 5083 pOp->p1 = pLevel->iIdxCur; 5084 } 5085 } 5086 } 5087 } 5088 5089 /* Final cleanup 5090 */ 5091 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 5092 whereInfoFree(db, pWInfo); 5093 return; 5094 } 5095