1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is responsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 */ 19 #include "sqliteInt.h" 20 #include "whereInt.h" 21 22 /* Forward declaration of methods */ 23 static int whereLoopResize(sqlite3*, WhereLoop*, int); 24 25 /* Test variable that can be set to enable WHERE tracing */ 26 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 27 /***/ int sqlite3WhereTrace = 0; 28 #endif 29 30 31 /* 32 ** Return the estimated number of output rows from a WHERE clause 33 */ 34 u64 sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ 35 return sqlite3LogEstToInt(pWInfo->nRowOut); 36 } 37 38 /* 39 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this 40 ** WHERE clause returns outputs for DISTINCT processing. 41 */ 42 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ 43 return pWInfo->eDistinct; 44 } 45 46 /* 47 ** Return TRUE if the WHERE clause returns rows in ORDER BY order. 48 ** Return FALSE if the output needs to be sorted. 49 */ 50 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ 51 return pWInfo->nOBSat; 52 } 53 54 /* 55 ** Return the VDBE address or label to jump to in order to continue 56 ** immediately with the next row of a WHERE clause. 57 */ 58 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ 59 assert( pWInfo->iContinue!=0 ); 60 return pWInfo->iContinue; 61 } 62 63 /* 64 ** Return the VDBE address or label to jump to in order to break 65 ** out of a WHERE loop. 66 */ 67 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ 68 return pWInfo->iBreak; 69 } 70 71 /* 72 ** Return TRUE if an UPDATE or DELETE statement can operate directly on 73 ** the rowids returned by a WHERE clause. Return FALSE if doing an 74 ** UPDATE or DELETE might change subsequent WHERE clause results. 75 ** 76 ** If the ONEPASS optimization is used (if this routine returns true) 77 ** then also write the indices of open cursors used by ONEPASS 78 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data 79 ** table and iaCur[1] gets the cursor used by an auxiliary index. 80 ** Either value may be -1, indicating that cursor is not used. 81 ** Any cursors returned will have been opened for writing. 82 ** 83 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is 84 ** unable to use the ONEPASS optimization. 85 */ 86 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ 87 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); 88 return pWInfo->okOnePass; 89 } 90 91 /* 92 ** Move the content of pSrc into pDest 93 */ 94 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ 95 pDest->n = pSrc->n; 96 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); 97 } 98 99 /* 100 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. 101 ** 102 ** The new entry might overwrite an existing entry, or it might be 103 ** appended, or it might be discarded. Do whatever is the right thing 104 ** so that pSet keeps the N_OR_COST best entries seen so far. 105 */ 106 static int whereOrInsert( 107 WhereOrSet *pSet, /* The WhereOrSet to be updated */ 108 Bitmask prereq, /* Prerequisites of the new entry */ 109 LogEst rRun, /* Run-cost of the new entry */ 110 LogEst nOut /* Number of outputs for the new entry */ 111 ){ 112 u16 i; 113 WhereOrCost *p; 114 for(i=pSet->n, p=pSet->a; i>0; i--, p++){ 115 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ 116 goto whereOrInsert_done; 117 } 118 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ 119 return 0; 120 } 121 } 122 if( pSet->n<N_OR_COST ){ 123 p = &pSet->a[pSet->n++]; 124 p->nOut = nOut; 125 }else{ 126 p = pSet->a; 127 for(i=1; i<pSet->n; i++){ 128 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; 129 } 130 if( p->rRun<=rRun ) return 0; 131 } 132 whereOrInsert_done: 133 p->prereq = prereq; 134 p->rRun = rRun; 135 if( p->nOut>nOut ) p->nOut = nOut; 136 return 1; 137 } 138 139 /* 140 ** Return the bitmask for the given cursor number. Return 0 if 141 ** iCursor is not in the set. 142 */ 143 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ 144 int i; 145 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); 146 for(i=0; i<pMaskSet->n; i++){ 147 if( pMaskSet->ix[i]==iCursor ){ 148 return MASKBIT(i); 149 } 150 } 151 return 0; 152 } 153 154 /* 155 ** Create a new mask for cursor iCursor. 156 ** 157 ** There is one cursor per table in the FROM clause. The number of 158 ** tables in the FROM clause is limited by a test early in the 159 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 160 ** array will never overflow. 161 */ 162 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ 163 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); 164 pMaskSet->ix[pMaskSet->n++] = iCursor; 165 } 166 167 /* 168 ** Advance to the next WhereTerm that matches according to the criteria 169 ** established when the pScan object was initialized by whereScanInit(). 170 ** Return NULL if there are no more matching WhereTerms. 171 */ 172 static WhereTerm *whereScanNext(WhereScan *pScan){ 173 int iCur; /* The cursor on the LHS of the term */ 174 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */ 175 Expr *pX; /* An expression being tested */ 176 WhereClause *pWC; /* Shorthand for pScan->pWC */ 177 WhereTerm *pTerm; /* The term being tested */ 178 int k = pScan->k; /* Where to start scanning */ 179 180 while( pScan->iEquiv<=pScan->nEquiv ){ 181 iCur = pScan->aiCur[pScan->iEquiv-1]; 182 iColumn = pScan->aiColumn[pScan->iEquiv-1]; 183 while( (pWC = pScan->pWC)!=0 ){ 184 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ 185 if( pTerm->leftCursor==iCur 186 && pTerm->u.leftColumn==iColumn 187 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 188 ){ 189 if( (pTerm->eOperator & WO_EQUIV)!=0 190 && pScan->nEquiv<ArraySize(pScan->aiCur) 191 ){ 192 int j; 193 pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight); 194 assert( pX->op==TK_COLUMN ); 195 for(j=0; j<pScan->nEquiv; j++){ 196 if( pScan->aiCur[j]==pX->iTable 197 && pScan->aiColumn[j]==pX->iColumn ){ 198 break; 199 } 200 } 201 if( j==pScan->nEquiv ){ 202 pScan->aiCur[j] = pX->iTable; 203 pScan->aiColumn[j] = pX->iColumn; 204 pScan->nEquiv++; 205 } 206 } 207 if( (pTerm->eOperator & pScan->opMask)!=0 ){ 208 /* Verify the affinity and collating sequence match */ 209 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ 210 CollSeq *pColl; 211 Parse *pParse = pWC->pWInfo->pParse; 212 pX = pTerm->pExpr; 213 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ 214 continue; 215 } 216 assert(pX->pLeft); 217 pColl = sqlite3BinaryCompareCollSeq(pParse, 218 pX->pLeft, pX->pRight); 219 if( pColl==0 ) pColl = pParse->db->pDfltColl; 220 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ 221 continue; 222 } 223 } 224 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0 225 && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN 226 && pX->iTable==pScan->aiCur[0] 227 && pX->iColumn==pScan->aiColumn[0] 228 ){ 229 testcase( pTerm->eOperator & WO_IS ); 230 continue; 231 } 232 pScan->k = k+1; 233 return pTerm; 234 } 235 } 236 } 237 pScan->pWC = pScan->pWC->pOuter; 238 k = 0; 239 } 240 pScan->pWC = pScan->pOrigWC; 241 k = 0; 242 pScan->iEquiv++; 243 } 244 return 0; 245 } 246 247 /* 248 ** Initialize a WHERE clause scanner object. Return a pointer to the 249 ** first match. Return NULL if there are no matches. 250 ** 251 ** The scanner will be searching the WHERE clause pWC. It will look 252 ** for terms of the form "X <op> <expr>" where X is column iColumn of table 253 ** iCur. The <op> must be one of the operators described by opMask. 254 ** 255 ** If the search is for X and the WHERE clause contains terms of the 256 ** form X=Y then this routine might also return terms of the form 257 ** "Y <op> <expr>". The number of levels of transitivity is limited, 258 ** but is enough to handle most commonly occurring SQL statements. 259 ** 260 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with 261 ** index pIdx. 262 */ 263 static WhereTerm *whereScanInit( 264 WhereScan *pScan, /* The WhereScan object being initialized */ 265 WhereClause *pWC, /* The WHERE clause to be scanned */ 266 int iCur, /* Cursor to scan for */ 267 int iColumn, /* Column to scan for */ 268 u32 opMask, /* Operator(s) to scan for */ 269 Index *pIdx /* Must be compatible with this index */ 270 ){ 271 int j; 272 273 /* memset(pScan, 0, sizeof(*pScan)); */ 274 pScan->pOrigWC = pWC; 275 pScan->pWC = pWC; 276 if( pIdx && iColumn>=0 ){ 277 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; 278 for(j=0; pIdx->aiColumn[j]!=iColumn; j++){ 279 if( NEVER(j>pIdx->nColumn) ) return 0; 280 } 281 pScan->zCollName = pIdx->azColl[j]; 282 }else{ 283 pScan->idxaff = 0; 284 pScan->zCollName = 0; 285 } 286 pScan->opMask = opMask; 287 pScan->k = 0; 288 pScan->aiCur[0] = iCur; 289 pScan->aiColumn[0] = iColumn; 290 pScan->nEquiv = 1; 291 pScan->iEquiv = 1; 292 return whereScanNext(pScan); 293 } 294 295 /* 296 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 297 ** where X is a reference to the iColumn of table iCur and <op> is one of 298 ** the WO_xx operator codes specified by the op parameter. 299 ** Return a pointer to the term. Return 0 if not found. 300 ** 301 ** The term returned might by Y=<expr> if there is another constraint in 302 ** the WHERE clause that specifies that X=Y. Any such constraints will be 303 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The 304 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11 305 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10 306 ** other equivalent values. Hence a search for X will return <expr> if X=A1 307 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>. 308 ** 309 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" 310 ** then try for the one with no dependencies on <expr> - in other words where 311 ** <expr> is a constant expression of some kind. Only return entries of 312 ** the form "X <op> Y" where Y is a column in another table if no terms of 313 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS 314 ** exist, try to return a term that does not use WO_EQUIV. 315 */ 316 WhereTerm *sqlite3WhereFindTerm( 317 WhereClause *pWC, /* The WHERE clause to be searched */ 318 int iCur, /* Cursor number of LHS */ 319 int iColumn, /* Column number of LHS */ 320 Bitmask notReady, /* RHS must not overlap with this mask */ 321 u32 op, /* Mask of WO_xx values describing operator */ 322 Index *pIdx /* Must be compatible with this index, if not NULL */ 323 ){ 324 WhereTerm *pResult = 0; 325 WhereTerm *p; 326 WhereScan scan; 327 328 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); 329 op &= WO_EQ|WO_IS; 330 while( p ){ 331 if( (p->prereqRight & notReady)==0 ){ 332 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){ 333 testcase( p->eOperator & WO_IS ); 334 return p; 335 } 336 if( pResult==0 ) pResult = p; 337 } 338 p = whereScanNext(&scan); 339 } 340 return pResult; 341 } 342 343 /* 344 ** This function searches pList for an entry that matches the iCol-th column 345 ** of index pIdx. 346 ** 347 ** If such an expression is found, its index in pList->a[] is returned. If 348 ** no expression is found, -1 is returned. 349 */ 350 static int findIndexCol( 351 Parse *pParse, /* Parse context */ 352 ExprList *pList, /* Expression list to search */ 353 int iBase, /* Cursor for table associated with pIdx */ 354 Index *pIdx, /* Index to match column of */ 355 int iCol /* Column of index to match */ 356 ){ 357 int i; 358 const char *zColl = pIdx->azColl[iCol]; 359 360 for(i=0; i<pList->nExpr; i++){ 361 Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr); 362 if( p->op==TK_COLUMN 363 && p->iColumn==pIdx->aiColumn[iCol] 364 && p->iTable==iBase 365 ){ 366 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); 367 if( pColl && 0==sqlite3StrICmp(pColl->zName, zColl) ){ 368 return i; 369 } 370 } 371 } 372 373 return -1; 374 } 375 376 /* 377 ** Return true if the DISTINCT expression-list passed as the third argument 378 ** is redundant. 379 ** 380 ** A DISTINCT list is redundant if any subset of the columns in the 381 ** DISTINCT list are collectively unique and individually non-null. 382 */ 383 static int isDistinctRedundant( 384 Parse *pParse, /* Parsing context */ 385 SrcList *pTabList, /* The FROM clause */ 386 WhereClause *pWC, /* The WHERE clause */ 387 ExprList *pDistinct /* The result set that needs to be DISTINCT */ 388 ){ 389 Table *pTab; 390 Index *pIdx; 391 int i; 392 int iBase; 393 394 /* If there is more than one table or sub-select in the FROM clause of 395 ** this query, then it will not be possible to show that the DISTINCT 396 ** clause is redundant. */ 397 if( pTabList->nSrc!=1 ) return 0; 398 iBase = pTabList->a[0].iCursor; 399 pTab = pTabList->a[0].pTab; 400 401 /* If any of the expressions is an IPK column on table iBase, then return 402 ** true. Note: The (p->iTable==iBase) part of this test may be false if the 403 ** current SELECT is a correlated sub-query. 404 */ 405 for(i=0; i<pDistinct->nExpr; i++){ 406 Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr); 407 if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1; 408 } 409 410 /* Loop through all indices on the table, checking each to see if it makes 411 ** the DISTINCT qualifier redundant. It does so if: 412 ** 413 ** 1. The index is itself UNIQUE, and 414 ** 415 ** 2. All of the columns in the index are either part of the pDistinct 416 ** list, or else the WHERE clause contains a term of the form "col=X", 417 ** where X is a constant value. The collation sequences of the 418 ** comparison and select-list expressions must match those of the index. 419 ** 420 ** 3. All of those index columns for which the WHERE clause does not 421 ** contain a "col=X" term are subject to a NOT NULL constraint. 422 */ 423 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 424 if( !IsUniqueIndex(pIdx) ) continue; 425 for(i=0; i<pIdx->nKeyCol; i++){ 426 i16 iCol = pIdx->aiColumn[i]; 427 if( 0==sqlite3WhereFindTerm(pWC, iBase, iCol, ~(Bitmask)0, WO_EQ, pIdx) ){ 428 int iIdxCol = findIndexCol(pParse, pDistinct, iBase, pIdx, i); 429 if( iIdxCol<0 || pTab->aCol[iCol].notNull==0 ){ 430 break; 431 } 432 } 433 } 434 if( i==pIdx->nKeyCol ){ 435 /* This index implies that the DISTINCT qualifier is redundant. */ 436 return 1; 437 } 438 } 439 440 return 0; 441 } 442 443 444 /* 445 ** Estimate the logarithm of the input value to base 2. 446 */ 447 static LogEst estLog(LogEst N){ 448 return N<=10 ? 0 : sqlite3LogEst(N) - 33; 449 } 450 451 /* 452 ** Convert OP_Column opcodes to OP_Copy in previously generated code. 453 ** 454 ** This routine runs over generated VDBE code and translates OP_Column 455 ** opcodes into OP_Copy, and OP_Rowid into OP_Null, when the table is being 456 ** accessed via co-routine instead of via table lookup. 457 */ 458 static void translateColumnToCopy( 459 Vdbe *v, /* The VDBE containing code to translate */ 460 int iStart, /* Translate from this opcode to the end */ 461 int iTabCur, /* OP_Column/OP_Rowid references to this table */ 462 int iRegister /* The first column is in this register */ 463 ){ 464 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart); 465 int iEnd = sqlite3VdbeCurrentAddr(v); 466 for(; iStart<iEnd; iStart++, pOp++){ 467 if( pOp->p1!=iTabCur ) continue; 468 if( pOp->opcode==OP_Column ){ 469 pOp->opcode = OP_Copy; 470 pOp->p1 = pOp->p2 + iRegister; 471 pOp->p2 = pOp->p3; 472 pOp->p3 = 0; 473 }else if( pOp->opcode==OP_Rowid ){ 474 pOp->opcode = OP_Null; 475 pOp->p1 = 0; 476 pOp->p3 = 0; 477 } 478 } 479 } 480 481 /* 482 ** Two routines for printing the content of an sqlite3_index_info 483 ** structure. Used for testing and debugging only. If neither 484 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 485 ** are no-ops. 486 */ 487 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) 488 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ 489 int i; 490 if( !sqlite3WhereTrace ) return; 491 for(i=0; i<p->nConstraint; i++){ 492 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 493 i, 494 p->aConstraint[i].iColumn, 495 p->aConstraint[i].iTermOffset, 496 p->aConstraint[i].op, 497 p->aConstraint[i].usable); 498 } 499 for(i=0; i<p->nOrderBy; i++){ 500 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 501 i, 502 p->aOrderBy[i].iColumn, 503 p->aOrderBy[i].desc); 504 } 505 } 506 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ 507 int i; 508 if( !sqlite3WhereTrace ) return; 509 for(i=0; i<p->nConstraint; i++){ 510 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 511 i, 512 p->aConstraintUsage[i].argvIndex, 513 p->aConstraintUsage[i].omit); 514 } 515 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 516 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 517 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 518 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 519 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); 520 } 521 #else 522 #define TRACE_IDX_INPUTS(A) 523 #define TRACE_IDX_OUTPUTS(A) 524 #endif 525 526 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 527 /* 528 ** Return TRUE if the WHERE clause term pTerm is of a form where it 529 ** could be used with an index to access pSrc, assuming an appropriate 530 ** index existed. 531 */ 532 static int termCanDriveIndex( 533 WhereTerm *pTerm, /* WHERE clause term to check */ 534 struct SrcList_item *pSrc, /* Table we are trying to access */ 535 Bitmask notReady /* Tables in outer loops of the join */ 536 ){ 537 char aff; 538 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; 539 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0; 540 if( (pTerm->prereqRight & notReady)!=0 ) return 0; 541 if( pTerm->u.leftColumn<0 ) return 0; 542 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; 543 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; 544 testcase( pTerm->pExpr->op==TK_IS ); 545 return 1; 546 } 547 #endif 548 549 550 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 551 /* 552 ** Generate code to construct the Index object for an automatic index 553 ** and to set up the WhereLevel object pLevel so that the code generator 554 ** makes use of the automatic index. 555 */ 556 static void constructAutomaticIndex( 557 Parse *pParse, /* The parsing context */ 558 WhereClause *pWC, /* The WHERE clause */ 559 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */ 560 Bitmask notReady, /* Mask of cursors that are not available */ 561 WhereLevel *pLevel /* Write new index here */ 562 ){ 563 int nKeyCol; /* Number of columns in the constructed index */ 564 WhereTerm *pTerm; /* A single term of the WHERE clause */ 565 WhereTerm *pWCEnd; /* End of pWC->a[] */ 566 Index *pIdx; /* Object describing the transient index */ 567 Vdbe *v; /* Prepared statement under construction */ 568 int addrInit; /* Address of the initialization bypass jump */ 569 Table *pTable; /* The table being indexed */ 570 int addrTop; /* Top of the index fill loop */ 571 int regRecord; /* Register holding an index record */ 572 int n; /* Column counter */ 573 int i; /* Loop counter */ 574 int mxBitCol; /* Maximum column in pSrc->colUsed */ 575 CollSeq *pColl; /* Collating sequence to on a column */ 576 WhereLoop *pLoop; /* The Loop object */ 577 char *zNotUsed; /* Extra space on the end of pIdx */ 578 Bitmask idxCols; /* Bitmap of columns used for indexing */ 579 Bitmask extraCols; /* Bitmap of additional columns */ 580 u8 sentWarning = 0; /* True if a warnning has been issued */ 581 Expr *pPartial = 0; /* Partial Index Expression */ 582 int iContinue = 0; /* Jump here to skip excluded rows */ 583 struct SrcList_item *pTabItem; /* FROM clause term being indexed */ 584 585 /* Generate code to skip over the creation and initialization of the 586 ** transient index on 2nd and subsequent iterations of the loop. */ 587 v = pParse->pVdbe; 588 assert( v!=0 ); 589 addrInit = sqlite3CodeOnce(pParse); VdbeCoverage(v); 590 591 /* Count the number of columns that will be added to the index 592 ** and used to match WHERE clause constraints */ 593 nKeyCol = 0; 594 pTable = pSrc->pTab; 595 pWCEnd = &pWC->a[pWC->nTerm]; 596 pLoop = pLevel->pWLoop; 597 idxCols = 0; 598 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 599 Expr *pExpr = pTerm->pExpr; 600 assert( !ExprHasProperty(pExpr, EP_FromJoin) /* prereq always non-zero */ 601 || pExpr->iRightJoinTable!=pSrc->iCursor /* for the right-hand */ 602 || pLoop->prereq!=0 ); /* table of a LEFT JOIN */ 603 if( pLoop->prereq==0 604 && (pTerm->wtFlags & TERM_VIRTUAL)==0 605 && !ExprHasProperty(pExpr, EP_FromJoin) 606 && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){ 607 pPartial = sqlite3ExprAnd(pParse->db, pPartial, 608 sqlite3ExprDup(pParse->db, pExpr, 0)); 609 } 610 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 611 int iCol = pTerm->u.leftColumn; 612 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 613 testcase( iCol==BMS ); 614 testcase( iCol==BMS-1 ); 615 if( !sentWarning ){ 616 sqlite3_log(SQLITE_WARNING_AUTOINDEX, 617 "automatic index on %s(%s)", pTable->zName, 618 pTable->aCol[iCol].zName); 619 sentWarning = 1; 620 } 621 if( (idxCols & cMask)==0 ){ 622 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ 623 goto end_auto_index_create; 624 } 625 pLoop->aLTerm[nKeyCol++] = pTerm; 626 idxCols |= cMask; 627 } 628 } 629 } 630 assert( nKeyCol>0 ); 631 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; 632 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED 633 | WHERE_AUTO_INDEX; 634 635 /* Count the number of additional columns needed to create a 636 ** covering index. A "covering index" is an index that contains all 637 ** columns that are needed by the query. With a covering index, the 638 ** original table never needs to be accessed. Automatic indices must 639 ** be a covering index because the index will not be updated if the 640 ** original table changes and the index and table cannot both be used 641 ** if they go out of sync. 642 */ 643 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); 644 mxBitCol = MIN(BMS-1,pTable->nCol); 645 testcase( pTable->nCol==BMS-1 ); 646 testcase( pTable->nCol==BMS-2 ); 647 for(i=0; i<mxBitCol; i++){ 648 if( extraCols & MASKBIT(i) ) nKeyCol++; 649 } 650 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 651 nKeyCol += pTable->nCol - BMS + 1; 652 } 653 654 /* Construct the Index object to describe this index */ 655 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); 656 if( pIdx==0 ) goto end_auto_index_create; 657 pLoop->u.btree.pIndex = pIdx; 658 pIdx->zName = "auto-index"; 659 pIdx->pTable = pTable; 660 n = 0; 661 idxCols = 0; 662 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ 663 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ 664 int iCol = pTerm->u.leftColumn; 665 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); 666 testcase( iCol==BMS-1 ); 667 testcase( iCol==BMS ); 668 if( (idxCols & cMask)==0 ){ 669 Expr *pX = pTerm->pExpr; 670 idxCols |= cMask; 671 pIdx->aiColumn[n] = pTerm->u.leftColumn; 672 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); 673 pIdx->azColl[n] = pColl ? pColl->zName : "BINARY"; 674 n++; 675 } 676 } 677 } 678 assert( (u32)n==pLoop->u.btree.nEq ); 679 680 /* Add additional columns needed to make the automatic index into 681 ** a covering index */ 682 for(i=0; i<mxBitCol; i++){ 683 if( extraCols & MASKBIT(i) ){ 684 pIdx->aiColumn[n] = i; 685 pIdx->azColl[n] = "BINARY"; 686 n++; 687 } 688 } 689 if( pSrc->colUsed & MASKBIT(BMS-1) ){ 690 for(i=BMS-1; i<pTable->nCol; i++){ 691 pIdx->aiColumn[n] = i; 692 pIdx->azColl[n] = "BINARY"; 693 n++; 694 } 695 } 696 assert( n==nKeyCol ); 697 pIdx->aiColumn[n] = -1; 698 pIdx->azColl[n] = "BINARY"; 699 700 /* Create the automatic index */ 701 assert( pLevel->iIdxCur>=0 ); 702 pLevel->iIdxCur = pParse->nTab++; 703 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); 704 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); 705 VdbeComment((v, "for %s", pTable->zName)); 706 707 /* Fill the automatic index with content */ 708 sqlite3ExprCachePush(pParse); 709 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom]; 710 if( pTabItem->fg.viaCoroutine ){ 711 int regYield = pTabItem->regReturn; 712 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); 713 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); 714 VdbeCoverage(v); 715 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); 716 }else{ 717 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); 718 } 719 if( pPartial ){ 720 iContinue = sqlite3VdbeMakeLabel(v); 721 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); 722 pLoop->wsFlags |= WHERE_PARTIALIDX; 723 } 724 regRecord = sqlite3GetTempReg(pParse); 725 sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0); 726 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); 727 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); 728 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); 729 if( pTabItem->fg.viaCoroutine ){ 730 translateColumnToCopy(v, addrTop, pLevel->iTabCur, pTabItem->regResult); 731 sqlite3VdbeGoto(v, addrTop); 732 pTabItem->fg.viaCoroutine = 0; 733 }else{ 734 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); 735 } 736 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); 737 sqlite3VdbeJumpHere(v, addrTop); 738 sqlite3ReleaseTempReg(pParse, regRecord); 739 sqlite3ExprCachePop(pParse); 740 741 /* Jump here when skipping the initialization */ 742 sqlite3VdbeJumpHere(v, addrInit); 743 744 end_auto_index_create: 745 sqlite3ExprDelete(pParse->db, pPartial); 746 } 747 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 748 749 #ifndef SQLITE_OMIT_VIRTUALTABLE 750 /* 751 ** Allocate and populate an sqlite3_index_info structure. It is the 752 ** responsibility of the caller to eventually release the structure 753 ** by passing the pointer returned by this function to sqlite3_free(). 754 */ 755 static sqlite3_index_info *allocateIndexInfo( 756 Parse *pParse, 757 WhereClause *pWC, 758 Bitmask mUnusable, /* Ignore terms with these prereqs */ 759 struct SrcList_item *pSrc, 760 ExprList *pOrderBy 761 ){ 762 int i, j; 763 int nTerm; 764 struct sqlite3_index_constraint *pIdxCons; 765 struct sqlite3_index_orderby *pIdxOrderBy; 766 struct sqlite3_index_constraint_usage *pUsage; 767 WhereTerm *pTerm; 768 int nOrderBy; 769 sqlite3_index_info *pIdxInfo; 770 771 /* Count the number of possible WHERE clause constraints referring 772 ** to this virtual table */ 773 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 774 if( pTerm->leftCursor != pSrc->iCursor ) continue; 775 if( pTerm->prereqRight & mUnusable ) continue; 776 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 777 testcase( pTerm->eOperator & WO_IN ); 778 testcase( pTerm->eOperator & WO_ISNULL ); 779 testcase( pTerm->eOperator & WO_IS ); 780 testcase( pTerm->eOperator & WO_ALL ); 781 if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue; 782 if( pTerm->wtFlags & TERM_VNULL ) continue; 783 nTerm++; 784 } 785 786 /* If the ORDER BY clause contains only columns in the current 787 ** virtual table then allocate space for the aOrderBy part of 788 ** the sqlite3_index_info structure. 789 */ 790 nOrderBy = 0; 791 if( pOrderBy ){ 792 int n = pOrderBy->nExpr; 793 for(i=0; i<n; i++){ 794 Expr *pExpr = pOrderBy->a[i].pExpr; 795 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 796 } 797 if( i==n){ 798 nOrderBy = n; 799 } 800 } 801 802 /* Allocate the sqlite3_index_info structure 803 */ 804 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) 805 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 806 + sizeof(*pIdxOrderBy)*nOrderBy ); 807 if( pIdxInfo==0 ){ 808 sqlite3ErrorMsg(pParse, "out of memory"); 809 return 0; 810 } 811 812 /* Initialize the structure. The sqlite3_index_info structure contains 813 ** many fields that are declared "const" to prevent xBestIndex from 814 ** changing them. We have to do some funky casting in order to 815 ** initialize those fields. 816 */ 817 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; 818 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 819 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 820 *(int*)&pIdxInfo->nConstraint = nTerm; 821 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 822 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; 823 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; 824 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = 825 pUsage; 826 827 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 828 u8 op; 829 if( pTerm->leftCursor != pSrc->iCursor ) continue; 830 if( pTerm->prereqRight & mUnusable ) continue; 831 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); 832 testcase( pTerm->eOperator & WO_IN ); 833 testcase( pTerm->eOperator & WO_IS ); 834 testcase( pTerm->eOperator & WO_ISNULL ); 835 testcase( pTerm->eOperator & WO_ALL ); 836 if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue; 837 if( pTerm->wtFlags & TERM_VNULL ) continue; 838 pIdxCons[j].iColumn = pTerm->u.leftColumn; 839 pIdxCons[j].iTermOffset = i; 840 op = (u8)pTerm->eOperator & WO_ALL; 841 if( op==WO_IN ) op = WO_EQ; 842 pIdxCons[j].op = op; 843 /* The direct assignment in the previous line is possible only because 844 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 845 ** following asserts verify this fact. */ 846 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 847 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 848 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 849 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 850 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 851 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); 852 assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); 853 j++; 854 } 855 for(i=0; i<nOrderBy; i++){ 856 Expr *pExpr = pOrderBy->a[i].pExpr; 857 pIdxOrderBy[i].iColumn = pExpr->iColumn; 858 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; 859 } 860 861 return pIdxInfo; 862 } 863 864 /* 865 ** The table object reference passed as the second argument to this function 866 ** must represent a virtual table. This function invokes the xBestIndex() 867 ** method of the virtual table with the sqlite3_index_info object that 868 ** comes in as the 3rd argument to this function. 869 ** 870 ** If an error occurs, pParse is populated with an error message and a 871 ** non-zero value is returned. Otherwise, 0 is returned and the output 872 ** part of the sqlite3_index_info structure is left populated. 873 ** 874 ** Whether or not an error is returned, it is the responsibility of the 875 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates 876 ** that this is required. 877 */ 878 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ 879 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; 880 int i; 881 int rc; 882 883 TRACE_IDX_INPUTS(p); 884 rc = pVtab->pModule->xBestIndex(pVtab, p); 885 TRACE_IDX_OUTPUTS(p); 886 887 if( rc!=SQLITE_OK ){ 888 if( rc==SQLITE_NOMEM ){ 889 pParse->db->mallocFailed = 1; 890 }else if( !pVtab->zErrMsg ){ 891 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 892 }else{ 893 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); 894 } 895 } 896 sqlite3_free(pVtab->zErrMsg); 897 pVtab->zErrMsg = 0; 898 899 for(i=0; i<p->nConstraint; i++){ 900 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){ 901 sqlite3ErrorMsg(pParse, 902 "table %s: xBestIndex returned an invalid plan", pTab->zName); 903 } 904 } 905 906 return pParse->nErr; 907 } 908 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ 909 910 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 911 /* 912 ** Estimate the location of a particular key among all keys in an 913 ** index. Store the results in aStat as follows: 914 ** 915 ** aStat[0] Est. number of rows less than pRec 916 ** aStat[1] Est. number of rows equal to pRec 917 ** 918 ** Return the index of the sample that is the smallest sample that 919 ** is greater than or equal to pRec. Note that this index is not an index 920 ** into the aSample[] array - it is an index into a virtual set of samples 921 ** based on the contents of aSample[] and the number of fields in record 922 ** pRec. 923 */ 924 static int whereKeyStats( 925 Parse *pParse, /* Database connection */ 926 Index *pIdx, /* Index to consider domain of */ 927 UnpackedRecord *pRec, /* Vector of values to consider */ 928 int roundUp, /* Round up if true. Round down if false */ 929 tRowcnt *aStat /* OUT: stats written here */ 930 ){ 931 IndexSample *aSample = pIdx->aSample; 932 int iCol; /* Index of required stats in anEq[] etc. */ 933 int i; /* Index of first sample >= pRec */ 934 int iSample; /* Smallest sample larger than or equal to pRec */ 935 int iMin = 0; /* Smallest sample not yet tested */ 936 int iTest; /* Next sample to test */ 937 int res; /* Result of comparison operation */ 938 int nField; /* Number of fields in pRec */ 939 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ 940 941 #ifndef SQLITE_DEBUG 942 UNUSED_PARAMETER( pParse ); 943 #endif 944 assert( pRec!=0 ); 945 assert( pIdx->nSample>0 ); 946 assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol ); 947 948 /* Do a binary search to find the first sample greater than or equal 949 ** to pRec. If pRec contains a single field, the set of samples to search 950 ** is simply the aSample[] array. If the samples in aSample[] contain more 951 ** than one fields, all fields following the first are ignored. 952 ** 953 ** If pRec contains N fields, where N is more than one, then as well as the 954 ** samples in aSample[] (truncated to N fields), the search also has to 955 ** consider prefixes of those samples. For example, if the set of samples 956 ** in aSample is: 957 ** 958 ** aSample[0] = (a, 5) 959 ** aSample[1] = (a, 10) 960 ** aSample[2] = (b, 5) 961 ** aSample[3] = (c, 100) 962 ** aSample[4] = (c, 105) 963 ** 964 ** Then the search space should ideally be the samples above and the 965 ** unique prefixes [a], [b] and [c]. But since that is hard to organize, 966 ** the code actually searches this set: 967 ** 968 ** 0: (a) 969 ** 1: (a, 5) 970 ** 2: (a, 10) 971 ** 3: (a, 10) 972 ** 4: (b) 973 ** 5: (b, 5) 974 ** 6: (c) 975 ** 7: (c, 100) 976 ** 8: (c, 105) 977 ** 9: (c, 105) 978 ** 979 ** For each sample in the aSample[] array, N samples are present in the 980 ** effective sample array. In the above, samples 0 and 1 are based on 981 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. 982 ** 983 ** Often, sample i of each block of N effective samples has (i+1) fields. 984 ** Except, each sample may be extended to ensure that it is greater than or 985 ** equal to the previous sample in the array. For example, in the above, 986 ** sample 2 is the first sample of a block of N samples, so at first it 987 ** appears that it should be 1 field in size. However, that would make it 988 ** smaller than sample 1, so the binary search would not work. As a result, 989 ** it is extended to two fields. The duplicates that this creates do not 990 ** cause any problems. 991 */ 992 nField = pRec->nField; 993 iCol = 0; 994 iSample = pIdx->nSample * nField; 995 do{ 996 int iSamp; /* Index in aSample[] of test sample */ 997 int n; /* Number of fields in test sample */ 998 999 iTest = (iMin+iSample)/2; 1000 iSamp = iTest / nField; 1001 if( iSamp>0 ){ 1002 /* The proposed effective sample is a prefix of sample aSample[iSamp]. 1003 ** Specifically, the shortest prefix of at least (1 + iTest%nField) 1004 ** fields that is greater than the previous effective sample. */ 1005 for(n=(iTest % nField) + 1; n<nField; n++){ 1006 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break; 1007 } 1008 }else{ 1009 n = iTest + 1; 1010 } 1011 1012 pRec->nField = n; 1013 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); 1014 if( res<0 ){ 1015 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; 1016 iMin = iTest+1; 1017 }else if( res==0 && n<nField ){ 1018 iLower = aSample[iSamp].anLt[n-1]; 1019 iMin = iTest+1; 1020 res = -1; 1021 }else{ 1022 iSample = iTest; 1023 iCol = n-1; 1024 } 1025 }while( res && iMin<iSample ); 1026 i = iSample / nField; 1027 1028 #ifdef SQLITE_DEBUG 1029 /* The following assert statements check that the binary search code 1030 ** above found the right answer. This block serves no purpose other 1031 ** than to invoke the asserts. */ 1032 if( pParse->db->mallocFailed==0 ){ 1033 if( res==0 ){ 1034 /* If (res==0) is true, then pRec must be equal to sample i. */ 1035 assert( i<pIdx->nSample ); 1036 assert( iCol==nField-1 ); 1037 pRec->nField = nField; 1038 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) 1039 || pParse->db->mallocFailed 1040 ); 1041 }else{ 1042 /* Unless i==pIdx->nSample, indicating that pRec is larger than 1043 ** all samples in the aSample[] array, pRec must be smaller than the 1044 ** (iCol+1) field prefix of sample i. */ 1045 assert( i<=pIdx->nSample && i>=0 ); 1046 pRec->nField = iCol+1; 1047 assert( i==pIdx->nSample 1048 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 1049 || pParse->db->mallocFailed ); 1050 1051 /* if i==0 and iCol==0, then record pRec is smaller than all samples 1052 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must 1053 ** be greater than or equal to the (iCol) field prefix of sample i. 1054 ** If (i>0), then pRec must also be greater than sample (i-1). */ 1055 if( iCol>0 ){ 1056 pRec->nField = iCol; 1057 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 1058 || pParse->db->mallocFailed ); 1059 } 1060 if( i>0 ){ 1061 pRec->nField = nField; 1062 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 1063 || pParse->db->mallocFailed ); 1064 } 1065 } 1066 } 1067 #endif /* ifdef SQLITE_DEBUG */ 1068 1069 if( res==0 ){ 1070 /* Record pRec is equal to sample i */ 1071 assert( iCol==nField-1 ); 1072 aStat[0] = aSample[i].anLt[iCol]; 1073 aStat[1] = aSample[i].anEq[iCol]; 1074 }else{ 1075 /* At this point, the (iCol+1) field prefix of aSample[i] is the first 1076 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec 1077 ** is larger than all samples in the array. */ 1078 tRowcnt iUpper, iGap; 1079 if( i>=pIdx->nSample ){ 1080 iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); 1081 }else{ 1082 iUpper = aSample[i].anLt[iCol]; 1083 } 1084 1085 if( iLower>=iUpper ){ 1086 iGap = 0; 1087 }else{ 1088 iGap = iUpper - iLower; 1089 } 1090 if( roundUp ){ 1091 iGap = (iGap*2)/3; 1092 }else{ 1093 iGap = iGap/3; 1094 } 1095 aStat[0] = iLower + iGap; 1096 aStat[1] = pIdx->aAvgEq[iCol]; 1097 } 1098 1099 /* Restore the pRec->nField value before returning. */ 1100 pRec->nField = nField; 1101 return i; 1102 } 1103 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1104 1105 /* 1106 ** If it is not NULL, pTerm is a term that provides an upper or lower 1107 ** bound on a range scan. Without considering pTerm, it is estimated 1108 ** that the scan will visit nNew rows. This function returns the number 1109 ** estimated to be visited after taking pTerm into account. 1110 ** 1111 ** If the user explicitly specified a likelihood() value for this term, 1112 ** then the return value is the likelihood multiplied by the number of 1113 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term 1114 ** has a likelihood of 0.50, and any other term a likelihood of 0.25. 1115 */ 1116 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ 1117 LogEst nRet = nNew; 1118 if( pTerm ){ 1119 if( pTerm->truthProb<=0 ){ 1120 nRet += pTerm->truthProb; 1121 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ 1122 nRet -= 20; assert( 20==sqlite3LogEst(4) ); 1123 } 1124 } 1125 return nRet; 1126 } 1127 1128 1129 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1130 /* 1131 ** Return the affinity for a single column of an index. 1132 */ 1133 static char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){ 1134 if( !pIdx->zColAff ){ 1135 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB; 1136 } 1137 return pIdx->zColAff[iCol]; 1138 } 1139 #endif 1140 1141 1142 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1143 /* 1144 ** This function is called to estimate the number of rows visited by a 1145 ** range-scan on a skip-scan index. For example: 1146 ** 1147 ** CREATE INDEX i1 ON t1(a, b, c); 1148 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; 1149 ** 1150 ** Value pLoop->nOut is currently set to the estimated number of rows 1151 ** visited for scanning (a=? AND b=?). This function reduces that estimate 1152 ** by some factor to account for the (c BETWEEN ? AND ?) expression based 1153 ** on the stat4 data for the index. this scan will be peformed multiple 1154 ** times (once for each (a,b) combination that matches a=?) is dealt with 1155 ** by the caller. 1156 ** 1157 ** It does this by scanning through all stat4 samples, comparing values 1158 ** extracted from pLower and pUpper with the corresponding column in each 1159 ** sample. If L and U are the number of samples found to be less than or 1160 ** equal to the values extracted from pLower and pUpper respectively, and 1161 ** N is the total number of samples, the pLoop->nOut value is adjusted 1162 ** as follows: 1163 ** 1164 ** nOut = nOut * ( min(U - L, 1) / N ) 1165 ** 1166 ** If pLower is NULL, or a value cannot be extracted from the term, L is 1167 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, 1168 ** U is set to N. 1169 ** 1170 ** Normally, this function sets *pbDone to 1 before returning. However, 1171 ** if no value can be extracted from either pLower or pUpper (and so the 1172 ** estimate of the number of rows delivered remains unchanged), *pbDone 1173 ** is left as is. 1174 ** 1175 ** If an error occurs, an SQLite error code is returned. Otherwise, 1176 ** SQLITE_OK. 1177 */ 1178 static int whereRangeSkipScanEst( 1179 Parse *pParse, /* Parsing & code generating context */ 1180 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1181 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1182 WhereLoop *pLoop, /* Update the .nOut value of this loop */ 1183 int *pbDone /* Set to true if at least one expr. value extracted */ 1184 ){ 1185 Index *p = pLoop->u.btree.pIndex; 1186 int nEq = pLoop->u.btree.nEq; 1187 sqlite3 *db = pParse->db; 1188 int nLower = -1; 1189 int nUpper = p->nSample+1; 1190 int rc = SQLITE_OK; 1191 int iCol = p->aiColumn[nEq]; 1192 u8 aff = sqlite3IndexColumnAffinity(db, p, iCol); 1193 CollSeq *pColl; 1194 1195 sqlite3_value *p1 = 0; /* Value extracted from pLower */ 1196 sqlite3_value *p2 = 0; /* Value extracted from pUpper */ 1197 sqlite3_value *pVal = 0; /* Value extracted from record */ 1198 1199 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); 1200 if( pLower ){ 1201 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); 1202 nLower = 0; 1203 } 1204 if( pUpper && rc==SQLITE_OK ){ 1205 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); 1206 nUpper = p2 ? 0 : p->nSample; 1207 } 1208 1209 if( p1 || p2 ){ 1210 int i; 1211 int nDiff; 1212 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ 1213 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); 1214 if( rc==SQLITE_OK && p1 ){ 1215 int res = sqlite3MemCompare(p1, pVal, pColl); 1216 if( res>=0 ) nLower++; 1217 } 1218 if( rc==SQLITE_OK && p2 ){ 1219 int res = sqlite3MemCompare(p2, pVal, pColl); 1220 if( res>=0 ) nUpper++; 1221 } 1222 } 1223 nDiff = (nUpper - nLower); 1224 if( nDiff<=0 ) nDiff = 1; 1225 1226 /* If there is both an upper and lower bound specified, and the 1227 ** comparisons indicate that they are close together, use the fallback 1228 ** method (assume that the scan visits 1/64 of the rows) for estimating 1229 ** the number of rows visited. Otherwise, estimate the number of rows 1230 ** using the method described in the header comment for this function. */ 1231 if( nDiff!=1 || pUpper==0 || pLower==0 ){ 1232 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); 1233 pLoop->nOut -= nAdjust; 1234 *pbDone = 1; 1235 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", 1236 nLower, nUpper, nAdjust*-1, pLoop->nOut)); 1237 } 1238 1239 }else{ 1240 assert( *pbDone==0 ); 1241 } 1242 1243 sqlite3ValueFree(p1); 1244 sqlite3ValueFree(p2); 1245 sqlite3ValueFree(pVal); 1246 1247 return rc; 1248 } 1249 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1250 1251 /* 1252 ** This function is used to estimate the number of rows that will be visited 1253 ** by scanning an index for a range of values. The range may have an upper 1254 ** bound, a lower bound, or both. The WHERE clause terms that set the upper 1255 ** and lower bounds are represented by pLower and pUpper respectively. For 1256 ** example, assuming that index p is on t1(a): 1257 ** 1258 ** ... FROM t1 WHERE a > ? AND a < ? ... 1259 ** |_____| |_____| 1260 ** | | 1261 ** pLower pUpper 1262 ** 1263 ** If either of the upper or lower bound is not present, then NULL is passed in 1264 ** place of the corresponding WhereTerm. 1265 ** 1266 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index 1267 ** column subject to the range constraint. Or, equivalently, the number of 1268 ** equality constraints optimized by the proposed index scan. For example, 1269 ** assuming index p is on t1(a, b), and the SQL query is: 1270 ** 1271 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... 1272 ** 1273 ** then nEq is set to 1 (as the range restricted column, b, is the second 1274 ** left-most column of the index). Or, if the query is: 1275 ** 1276 ** ... FROM t1 WHERE a > ? AND a < ? ... 1277 ** 1278 ** then nEq is set to 0. 1279 ** 1280 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the 1281 ** number of rows that the index scan is expected to visit without 1282 ** considering the range constraints. If nEq is 0, then *pnOut is the number of 1283 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) 1284 ** to account for the range constraints pLower and pUpper. 1285 ** 1286 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be 1287 ** used, a single range inequality reduces the search space by a factor of 4. 1288 ** and a pair of constraints (x>? AND x<?) reduces the expected number of 1289 ** rows visited by a factor of 64. 1290 */ 1291 static int whereRangeScanEst( 1292 Parse *pParse, /* Parsing & code generating context */ 1293 WhereLoopBuilder *pBuilder, 1294 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ 1295 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ 1296 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ 1297 ){ 1298 int rc = SQLITE_OK; 1299 int nOut = pLoop->nOut; 1300 LogEst nNew; 1301 1302 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1303 Index *p = pLoop->u.btree.pIndex; 1304 int nEq = pLoop->u.btree.nEq; 1305 1306 if( p->nSample>0 && nEq<p->nSampleCol ){ 1307 if( nEq==pBuilder->nRecValid ){ 1308 UnpackedRecord *pRec = pBuilder->pRec; 1309 tRowcnt a[2]; 1310 u8 aff; 1311 1312 /* Variable iLower will be set to the estimate of the number of rows in 1313 ** the index that are less than the lower bound of the range query. The 1314 ** lower bound being the concatenation of $P and $L, where $P is the 1315 ** key-prefix formed by the nEq values matched against the nEq left-most 1316 ** columns of the index, and $L is the value in pLower. 1317 ** 1318 ** Or, if pLower is NULL or $L cannot be extracted from it (because it 1319 ** is not a simple variable or literal value), the lower bound of the 1320 ** range is $P. Due to a quirk in the way whereKeyStats() works, even 1321 ** if $L is available, whereKeyStats() is called for both ($P) and 1322 ** ($P:$L) and the larger of the two returned values is used. 1323 ** 1324 ** Similarly, iUpper is to be set to the estimate of the number of rows 1325 ** less than the upper bound of the range query. Where the upper bound 1326 ** is either ($P) or ($P:$U). Again, even if $U is available, both values 1327 ** of iUpper are requested of whereKeyStats() and the smaller used. 1328 ** 1329 ** The number of rows between the two bounds is then just iUpper-iLower. 1330 */ 1331 tRowcnt iLower; /* Rows less than the lower bound */ 1332 tRowcnt iUpper; /* Rows less than the upper bound */ 1333 int iLwrIdx = -2; /* aSample[] for the lower bound */ 1334 int iUprIdx = -1; /* aSample[] for the upper bound */ 1335 1336 if( pRec ){ 1337 testcase( pRec->nField!=pBuilder->nRecValid ); 1338 pRec->nField = pBuilder->nRecValid; 1339 } 1340 aff = sqlite3IndexColumnAffinity(pParse->db, p, nEq); 1341 assert( nEq!=p->nKeyCol || aff==SQLITE_AFF_INTEGER ); 1342 /* Determine iLower and iUpper using ($P) only. */ 1343 if( nEq==0 ){ 1344 iLower = 0; 1345 iUpper = p->nRowEst0; 1346 }else{ 1347 /* Note: this call could be optimized away - since the same values must 1348 ** have been requested when testing key $P in whereEqualScanEst(). */ 1349 whereKeyStats(pParse, p, pRec, 0, a); 1350 iLower = a[0]; 1351 iUpper = a[0] + a[1]; 1352 } 1353 1354 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); 1355 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); 1356 assert( p->aSortOrder!=0 ); 1357 if( p->aSortOrder[nEq] ){ 1358 /* The roles of pLower and pUpper are swapped for a DESC index */ 1359 SWAP(WhereTerm*, pLower, pUpper); 1360 } 1361 1362 /* If possible, improve on the iLower estimate using ($P:$L). */ 1363 if( pLower ){ 1364 int bOk; /* True if value is extracted from pExpr */ 1365 Expr *pExpr = pLower->pExpr->pRight; 1366 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk); 1367 if( rc==SQLITE_OK && bOk ){ 1368 tRowcnt iNew; 1369 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); 1370 iNew = a[0] + ((pLower->eOperator & (WO_GT|WO_LE)) ? a[1] : 0); 1371 if( iNew>iLower ) iLower = iNew; 1372 nOut--; 1373 pLower = 0; 1374 } 1375 } 1376 1377 /* If possible, improve on the iUpper estimate using ($P:$U). */ 1378 if( pUpper ){ 1379 int bOk; /* True if value is extracted from pExpr */ 1380 Expr *pExpr = pUpper->pExpr->pRight; 1381 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk); 1382 if( rc==SQLITE_OK && bOk ){ 1383 tRowcnt iNew; 1384 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); 1385 iNew = a[0] + ((pUpper->eOperator & (WO_GT|WO_LE)) ? a[1] : 0); 1386 if( iNew<iUpper ) iUpper = iNew; 1387 nOut--; 1388 pUpper = 0; 1389 } 1390 } 1391 1392 pBuilder->pRec = pRec; 1393 if( rc==SQLITE_OK ){ 1394 if( iUpper>iLower ){ 1395 nNew = sqlite3LogEst(iUpper - iLower); 1396 /* TUNING: If both iUpper and iLower are derived from the same 1397 ** sample, then assume they are 4x more selective. This brings 1398 ** the estimated selectivity more in line with what it would be 1399 ** if estimated without the use of STAT3/4 tables. */ 1400 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) ); 1401 }else{ 1402 nNew = 10; assert( 10==sqlite3LogEst(2) ); 1403 } 1404 if( nNew<nOut ){ 1405 nOut = nNew; 1406 } 1407 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", 1408 (u32)iLower, (u32)iUpper, nOut)); 1409 } 1410 }else{ 1411 int bDone = 0; 1412 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); 1413 if( bDone ) return rc; 1414 } 1415 } 1416 #else 1417 UNUSED_PARAMETER(pParse); 1418 UNUSED_PARAMETER(pBuilder); 1419 assert( pLower || pUpper ); 1420 #endif 1421 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); 1422 nNew = whereRangeAdjust(pLower, nOut); 1423 nNew = whereRangeAdjust(pUpper, nNew); 1424 1425 /* TUNING: If there is both an upper and lower limit and neither limit 1426 ** has an application-defined likelihood(), assume the range is 1427 ** reduced by an additional 75%. This means that, by default, an open-ended 1428 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the 1429 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to 1430 ** match 1/64 of the index. */ 1431 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ 1432 nNew -= 20; 1433 } 1434 1435 nOut -= (pLower!=0) + (pUpper!=0); 1436 if( nNew<10 ) nNew = 10; 1437 if( nNew<nOut ) nOut = nNew; 1438 #if defined(WHERETRACE_ENABLED) 1439 if( pLoop->nOut>nOut ){ 1440 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", 1441 pLoop->nOut, nOut)); 1442 } 1443 #endif 1444 pLoop->nOut = (LogEst)nOut; 1445 return rc; 1446 } 1447 1448 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1449 /* 1450 ** Estimate the number of rows that will be returned based on 1451 ** an equality constraint x=VALUE and where that VALUE occurs in 1452 ** the histogram data. This only works when x is the left-most 1453 ** column of an index and sqlite_stat3 histogram data is available 1454 ** for that index. When pExpr==NULL that means the constraint is 1455 ** "x IS NULL" instead of "x=VALUE". 1456 ** 1457 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1458 ** If unable to make an estimate, leave *pnRow unchanged and return 1459 ** non-zero. 1460 ** 1461 ** This routine can fail if it is unable to load a collating sequence 1462 ** required for string comparison, or if unable to allocate memory 1463 ** for a UTF conversion required for comparison. The error is stored 1464 ** in the pParse structure. 1465 */ 1466 static int whereEqualScanEst( 1467 Parse *pParse, /* Parsing & code generating context */ 1468 WhereLoopBuilder *pBuilder, 1469 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ 1470 tRowcnt *pnRow /* Write the revised row estimate here */ 1471 ){ 1472 Index *p = pBuilder->pNew->u.btree.pIndex; 1473 int nEq = pBuilder->pNew->u.btree.nEq; 1474 UnpackedRecord *pRec = pBuilder->pRec; 1475 u8 aff; /* Column affinity */ 1476 int rc; /* Subfunction return code */ 1477 tRowcnt a[2]; /* Statistics */ 1478 int bOk; 1479 1480 assert( nEq>=1 ); 1481 assert( nEq<=p->nColumn ); 1482 assert( p->aSample!=0 ); 1483 assert( p->nSample>0 ); 1484 assert( pBuilder->nRecValid<nEq ); 1485 1486 /* If values are not available for all fields of the index to the left 1487 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ 1488 if( pBuilder->nRecValid<(nEq-1) ){ 1489 return SQLITE_NOTFOUND; 1490 } 1491 1492 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() 1493 ** below would return the same value. */ 1494 if( nEq>=p->nColumn ){ 1495 *pnRow = 1; 1496 return SQLITE_OK; 1497 } 1498 1499 aff = sqlite3IndexColumnAffinity(pParse->db, p, nEq-1); 1500 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq-1, &bOk); 1501 pBuilder->pRec = pRec; 1502 if( rc!=SQLITE_OK ) return rc; 1503 if( bOk==0 ) return SQLITE_NOTFOUND; 1504 pBuilder->nRecValid = nEq; 1505 1506 whereKeyStats(pParse, p, pRec, 0, a); 1507 WHERETRACE(0x10,("equality scan regions: %d\n", (int)a[1])); 1508 *pnRow = a[1]; 1509 1510 return rc; 1511 } 1512 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1513 1514 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 1515 /* 1516 ** Estimate the number of rows that will be returned based on 1517 ** an IN constraint where the right-hand side of the IN operator 1518 ** is a list of values. Example: 1519 ** 1520 ** WHERE x IN (1,2,3,4) 1521 ** 1522 ** Write the estimated row count into *pnRow and return SQLITE_OK. 1523 ** If unable to make an estimate, leave *pnRow unchanged and return 1524 ** non-zero. 1525 ** 1526 ** This routine can fail if it is unable to load a collating sequence 1527 ** required for string comparison, or if unable to allocate memory 1528 ** for a UTF conversion required for comparison. The error is stored 1529 ** in the pParse structure. 1530 */ 1531 static int whereInScanEst( 1532 Parse *pParse, /* Parsing & code generating context */ 1533 WhereLoopBuilder *pBuilder, 1534 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ 1535 tRowcnt *pnRow /* Write the revised row estimate here */ 1536 ){ 1537 Index *p = pBuilder->pNew->u.btree.pIndex; 1538 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); 1539 int nRecValid = pBuilder->nRecValid; 1540 int rc = SQLITE_OK; /* Subfunction return code */ 1541 tRowcnt nEst; /* Number of rows for a single term */ 1542 tRowcnt nRowEst = 0; /* New estimate of the number of rows */ 1543 int i; /* Loop counter */ 1544 1545 assert( p->aSample!=0 ); 1546 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ 1547 nEst = nRow0; 1548 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); 1549 nRowEst += nEst; 1550 pBuilder->nRecValid = nRecValid; 1551 } 1552 1553 if( rc==SQLITE_OK ){ 1554 if( nRowEst > nRow0 ) nRowEst = nRow0; 1555 *pnRow = nRowEst; 1556 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); 1557 } 1558 assert( pBuilder->nRecValid==nRecValid ); 1559 return rc; 1560 } 1561 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ 1562 1563 1564 #ifdef WHERETRACE_ENABLED 1565 /* 1566 ** Print the content of a WhereTerm object 1567 */ 1568 static void whereTermPrint(WhereTerm *pTerm, int iTerm){ 1569 if( pTerm==0 ){ 1570 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); 1571 }else{ 1572 char zType[4]; 1573 memcpy(zType, "...", 4); 1574 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; 1575 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; 1576 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L'; 1577 sqlite3DebugPrintf( 1578 "TERM-%-3d %p %s cursor=%-3d prob=%-3d op=0x%03x wtFlags=0x%04x\n", 1579 iTerm, pTerm, zType, pTerm->leftCursor, pTerm->truthProb, 1580 pTerm->eOperator, pTerm->wtFlags); 1581 sqlite3TreeViewExpr(0, pTerm->pExpr, 0); 1582 } 1583 } 1584 #endif 1585 1586 #ifdef WHERETRACE_ENABLED 1587 /* 1588 ** Print a WhereLoop object for debugging purposes 1589 */ 1590 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){ 1591 WhereInfo *pWInfo = pWC->pWInfo; 1592 int nb = 1+(pWInfo->pTabList->nSrc+7)/8; 1593 struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab; 1594 Table *pTab = pItem->pTab; 1595 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, 1596 p->iTab, nb, p->maskSelf, nb, p->prereq); 1597 sqlite3DebugPrintf(" %12s", 1598 pItem->zAlias ? pItem->zAlias : pTab->zName); 1599 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 1600 const char *zName; 1601 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ 1602 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ 1603 int i = sqlite3Strlen30(zName) - 1; 1604 while( zName[i]!='_' ) i--; 1605 zName += i; 1606 } 1607 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); 1608 }else{ 1609 sqlite3DebugPrintf("%20s",""); 1610 } 1611 }else{ 1612 char *z; 1613 if( p->u.vtab.idxStr ){ 1614 z = sqlite3_mprintf("(%d,\"%s\",%x)", 1615 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); 1616 }else{ 1617 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); 1618 } 1619 sqlite3DebugPrintf(" %-19s", z); 1620 sqlite3_free(z); 1621 } 1622 if( p->wsFlags & WHERE_SKIPSCAN ){ 1623 sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); 1624 }else{ 1625 sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm); 1626 } 1627 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); 1628 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ 1629 int i; 1630 for(i=0; i<p->nLTerm; i++){ 1631 whereTermPrint(p->aLTerm[i], i); 1632 } 1633 } 1634 } 1635 #endif 1636 1637 /* 1638 ** Convert bulk memory into a valid WhereLoop that can be passed 1639 ** to whereLoopClear harmlessly. 1640 */ 1641 static void whereLoopInit(WhereLoop *p){ 1642 p->aLTerm = p->aLTermSpace; 1643 p->nLTerm = 0; 1644 p->nLSlot = ArraySize(p->aLTermSpace); 1645 p->wsFlags = 0; 1646 } 1647 1648 /* 1649 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. 1650 */ 1651 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ 1652 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ 1653 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ 1654 sqlite3_free(p->u.vtab.idxStr); 1655 p->u.vtab.needFree = 0; 1656 p->u.vtab.idxStr = 0; 1657 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ 1658 sqlite3DbFree(db, p->u.btree.pIndex->zColAff); 1659 sqlite3DbFree(db, p->u.btree.pIndex); 1660 p->u.btree.pIndex = 0; 1661 } 1662 } 1663 } 1664 1665 /* 1666 ** Deallocate internal memory used by a WhereLoop object 1667 */ 1668 static void whereLoopClear(sqlite3 *db, WhereLoop *p){ 1669 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); 1670 whereLoopClearUnion(db, p); 1671 whereLoopInit(p); 1672 } 1673 1674 /* 1675 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. 1676 */ 1677 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ 1678 WhereTerm **paNew; 1679 if( p->nLSlot>=n ) return SQLITE_OK; 1680 n = (n+7)&~7; 1681 paNew = sqlite3DbMallocRaw(db, sizeof(p->aLTerm[0])*n); 1682 if( paNew==0 ) return SQLITE_NOMEM; 1683 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); 1684 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); 1685 p->aLTerm = paNew; 1686 p->nLSlot = n; 1687 return SQLITE_OK; 1688 } 1689 1690 /* 1691 ** Transfer content from the second pLoop into the first. 1692 */ 1693 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ 1694 whereLoopClearUnion(db, pTo); 1695 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){ 1696 memset(&pTo->u, 0, sizeof(pTo->u)); 1697 return SQLITE_NOMEM; 1698 } 1699 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); 1700 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); 1701 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ 1702 pFrom->u.vtab.needFree = 0; 1703 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 1704 pFrom->u.btree.pIndex = 0; 1705 } 1706 return SQLITE_OK; 1707 } 1708 1709 /* 1710 ** Delete a WhereLoop object 1711 */ 1712 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ 1713 whereLoopClear(db, p); 1714 sqlite3DbFree(db, p); 1715 } 1716 1717 /* 1718 ** Free a WhereInfo structure 1719 */ 1720 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ 1721 if( ALWAYS(pWInfo) ){ 1722 int i; 1723 for(i=0; i<pWInfo->nLevel; i++){ 1724 WhereLevel *pLevel = &pWInfo->a[i]; 1725 if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){ 1726 sqlite3DbFree(db, pLevel->u.in.aInLoop); 1727 } 1728 } 1729 sqlite3WhereClauseClear(&pWInfo->sWC); 1730 while( pWInfo->pLoops ){ 1731 WhereLoop *p = pWInfo->pLoops; 1732 pWInfo->pLoops = p->pNextLoop; 1733 whereLoopDelete(db, p); 1734 } 1735 sqlite3DbFree(db, pWInfo); 1736 } 1737 } 1738 1739 /* 1740 ** Return TRUE if all of the following are true: 1741 ** 1742 ** (1) X has the same or lower cost that Y 1743 ** (2) X is a proper subset of Y 1744 ** (3) X skips at least as many columns as Y 1745 ** 1746 ** By "proper subset" we mean that X uses fewer WHERE clause terms 1747 ** than Y and that every WHERE clause term used by X is also used 1748 ** by Y. 1749 ** 1750 ** If X is a proper subset of Y then Y is a better choice and ought 1751 ** to have a lower cost. This routine returns TRUE when that cost 1752 ** relationship is inverted and needs to be adjusted. The third rule 1753 ** was added because if X uses skip-scan less than Y it still might 1754 ** deserve a lower cost even if it is a proper subset of Y. 1755 */ 1756 static int whereLoopCheaperProperSubset( 1757 const WhereLoop *pX, /* First WhereLoop to compare */ 1758 const WhereLoop *pY /* Compare against this WhereLoop */ 1759 ){ 1760 int i, j; 1761 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ 1762 return 0; /* X is not a subset of Y */ 1763 } 1764 if( pY->nSkip > pX->nSkip ) return 0; 1765 if( pX->rRun >= pY->rRun ){ 1766 if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */ 1767 if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */ 1768 } 1769 for(i=pX->nLTerm-1; i>=0; i--){ 1770 if( pX->aLTerm[i]==0 ) continue; 1771 for(j=pY->nLTerm-1; j>=0; j--){ 1772 if( pY->aLTerm[j]==pX->aLTerm[i] ) break; 1773 } 1774 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ 1775 } 1776 return 1; /* All conditions meet */ 1777 } 1778 1779 /* 1780 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so 1781 ** that: 1782 ** 1783 ** (1) pTemplate costs less than any other WhereLoops that are a proper 1784 ** subset of pTemplate 1785 ** 1786 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate 1787 ** is a proper subset. 1788 ** 1789 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer 1790 ** WHERE clause terms than Y and that every WHERE clause term used by X is 1791 ** also used by Y. 1792 */ 1793 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ 1794 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; 1795 for(; p; p=p->pNextLoop){ 1796 if( p->iTab!=pTemplate->iTab ) continue; 1797 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; 1798 if( whereLoopCheaperProperSubset(p, pTemplate) ){ 1799 /* Adjust pTemplate cost downward so that it is cheaper than its 1800 ** subset p. */ 1801 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 1802 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1)); 1803 pTemplate->rRun = p->rRun; 1804 pTemplate->nOut = p->nOut - 1; 1805 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ 1806 /* Adjust pTemplate cost upward so that it is costlier than p since 1807 ** pTemplate is a proper subset of p */ 1808 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", 1809 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1)); 1810 pTemplate->rRun = p->rRun; 1811 pTemplate->nOut = p->nOut + 1; 1812 } 1813 } 1814 } 1815 1816 /* 1817 ** Search the list of WhereLoops in *ppPrev looking for one that can be 1818 ** supplanted by pTemplate. 1819 ** 1820 ** Return NULL if the WhereLoop list contains an entry that can supplant 1821 ** pTemplate, in other words if pTemplate does not belong on the list. 1822 ** 1823 ** If pX is a WhereLoop that pTemplate can supplant, then return the 1824 ** link that points to pX. 1825 ** 1826 ** If pTemplate cannot supplant any existing element of the list but needs 1827 ** to be added to the list, then return a pointer to the tail of the list. 1828 */ 1829 static WhereLoop **whereLoopFindLesser( 1830 WhereLoop **ppPrev, 1831 const WhereLoop *pTemplate 1832 ){ 1833 WhereLoop *p; 1834 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ 1835 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ 1836 /* If either the iTab or iSortIdx values for two WhereLoop are different 1837 ** then those WhereLoops need to be considered separately. Neither is 1838 ** a candidate to replace the other. */ 1839 continue; 1840 } 1841 /* In the current implementation, the rSetup value is either zero 1842 ** or the cost of building an automatic index (NlogN) and the NlogN 1843 ** is the same for compatible WhereLoops. */ 1844 assert( p->rSetup==0 || pTemplate->rSetup==0 1845 || p->rSetup==pTemplate->rSetup ); 1846 1847 /* whereLoopAddBtree() always generates and inserts the automatic index 1848 ** case first. Hence compatible candidate WhereLoops never have a larger 1849 ** rSetup. Call this SETUP-INVARIANT */ 1850 assert( p->rSetup>=pTemplate->rSetup ); 1851 1852 /* Any loop using an appliation-defined index (or PRIMARY KEY or 1853 ** UNIQUE constraint) with one or more == constraints is better 1854 ** than an automatic index. Unless it is a skip-scan. */ 1855 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 1856 && (pTemplate->nSkip)==0 1857 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 1858 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 1859 && (p->prereq & pTemplate->prereq)==pTemplate->prereq 1860 ){ 1861 break; 1862 } 1863 1864 /* If existing WhereLoop p is better than pTemplate, pTemplate can be 1865 ** discarded. WhereLoop p is better if: 1866 ** (1) p has no more dependencies than pTemplate, and 1867 ** (2) p has an equal or lower cost than pTemplate 1868 */ 1869 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ 1870 && p->rSetup<=pTemplate->rSetup /* (2a) */ 1871 && p->rRun<=pTemplate->rRun /* (2b) */ 1872 && p->nOut<=pTemplate->nOut /* (2c) */ 1873 ){ 1874 return 0; /* Discard pTemplate */ 1875 } 1876 1877 /* If pTemplate is always better than p, then cause p to be overwritten 1878 ** with pTemplate. pTemplate is better than p if: 1879 ** (1) pTemplate has no more dependences than p, and 1880 ** (2) pTemplate has an equal or lower cost than p. 1881 */ 1882 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ 1883 && p->rRun>=pTemplate->rRun /* (2a) */ 1884 && p->nOut>=pTemplate->nOut /* (2b) */ 1885 ){ 1886 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ 1887 break; /* Cause p to be overwritten by pTemplate */ 1888 } 1889 } 1890 return ppPrev; 1891 } 1892 1893 /* 1894 ** Insert or replace a WhereLoop entry using the template supplied. 1895 ** 1896 ** An existing WhereLoop entry might be overwritten if the new template 1897 ** is better and has fewer dependencies. Or the template will be ignored 1898 ** and no insert will occur if an existing WhereLoop is faster and has 1899 ** fewer dependencies than the template. Otherwise a new WhereLoop is 1900 ** added based on the template. 1901 ** 1902 ** If pBuilder->pOrSet is not NULL then we care about only the 1903 ** prerequisites and rRun and nOut costs of the N best loops. That 1904 ** information is gathered in the pBuilder->pOrSet object. This special 1905 ** processing mode is used only for OR clause processing. 1906 ** 1907 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we 1908 ** still might overwrite similar loops with the new template if the 1909 ** new template is better. Loops may be overwritten if the following 1910 ** conditions are met: 1911 ** 1912 ** (1) They have the same iTab. 1913 ** (2) They have the same iSortIdx. 1914 ** (3) The template has same or fewer dependencies than the current loop 1915 ** (4) The template has the same or lower cost than the current loop 1916 */ 1917 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ 1918 WhereLoop **ppPrev, *p; 1919 WhereInfo *pWInfo = pBuilder->pWInfo; 1920 sqlite3 *db = pWInfo->pParse->db; 1921 1922 /* If pBuilder->pOrSet is defined, then only keep track of the costs 1923 ** and prereqs. 1924 */ 1925 if( pBuilder->pOrSet!=0 ){ 1926 if( pTemplate->nLTerm ){ 1927 #if WHERETRACE_ENABLED 1928 u16 n = pBuilder->pOrSet->n; 1929 int x = 1930 #endif 1931 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, 1932 pTemplate->nOut); 1933 #if WHERETRACE_ENABLED /* 0x8 */ 1934 if( sqlite3WhereTrace & 0x8 ){ 1935 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); 1936 whereLoopPrint(pTemplate, pBuilder->pWC); 1937 } 1938 #endif 1939 } 1940 return SQLITE_OK; 1941 } 1942 1943 /* Look for an existing WhereLoop to replace with pTemplate 1944 */ 1945 whereLoopAdjustCost(pWInfo->pLoops, pTemplate); 1946 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); 1947 1948 if( ppPrev==0 ){ 1949 /* There already exists a WhereLoop on the list that is better 1950 ** than pTemplate, so just ignore pTemplate */ 1951 #if WHERETRACE_ENABLED /* 0x8 */ 1952 if( sqlite3WhereTrace & 0x8 ){ 1953 sqlite3DebugPrintf(" skip: "); 1954 whereLoopPrint(pTemplate, pBuilder->pWC); 1955 } 1956 #endif 1957 return SQLITE_OK; 1958 }else{ 1959 p = *ppPrev; 1960 } 1961 1962 /* If we reach this point it means that either p[] should be overwritten 1963 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new 1964 ** WhereLoop and insert it. 1965 */ 1966 #if WHERETRACE_ENABLED /* 0x8 */ 1967 if( sqlite3WhereTrace & 0x8 ){ 1968 if( p!=0 ){ 1969 sqlite3DebugPrintf("replace: "); 1970 whereLoopPrint(p, pBuilder->pWC); 1971 } 1972 sqlite3DebugPrintf(" add: "); 1973 whereLoopPrint(pTemplate, pBuilder->pWC); 1974 } 1975 #endif 1976 if( p==0 ){ 1977 /* Allocate a new WhereLoop to add to the end of the list */ 1978 *ppPrev = p = sqlite3DbMallocRaw(db, sizeof(WhereLoop)); 1979 if( p==0 ) return SQLITE_NOMEM; 1980 whereLoopInit(p); 1981 p->pNextLoop = 0; 1982 }else{ 1983 /* We will be overwriting WhereLoop p[]. But before we do, first 1984 ** go through the rest of the list and delete any other entries besides 1985 ** p[] that are also supplated by pTemplate */ 1986 WhereLoop **ppTail = &p->pNextLoop; 1987 WhereLoop *pToDel; 1988 while( *ppTail ){ 1989 ppTail = whereLoopFindLesser(ppTail, pTemplate); 1990 if( ppTail==0 ) break; 1991 pToDel = *ppTail; 1992 if( pToDel==0 ) break; 1993 *ppTail = pToDel->pNextLoop; 1994 #if WHERETRACE_ENABLED /* 0x8 */ 1995 if( sqlite3WhereTrace & 0x8 ){ 1996 sqlite3DebugPrintf(" delete: "); 1997 whereLoopPrint(pToDel, pBuilder->pWC); 1998 } 1999 #endif 2000 whereLoopDelete(db, pToDel); 2001 } 2002 } 2003 whereLoopXfer(db, p, pTemplate); 2004 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ 2005 Index *pIndex = p->u.btree.pIndex; 2006 if( pIndex && pIndex->tnum==0 ){ 2007 p->u.btree.pIndex = 0; 2008 } 2009 } 2010 return SQLITE_OK; 2011 } 2012 2013 /* 2014 ** Adjust the WhereLoop.nOut value downward to account for terms of the 2015 ** WHERE clause that reference the loop but which are not used by an 2016 ** index. 2017 * 2018 ** For every WHERE clause term that is not used by the index 2019 ** and which has a truth probability assigned by one of the likelihood(), 2020 ** likely(), or unlikely() SQL functions, reduce the estimated number 2021 ** of output rows by the probability specified. 2022 ** 2023 ** TUNING: For every WHERE clause term that is not used by the index 2024 ** and which does not have an assigned truth probability, heuristics 2025 ** described below are used to try to estimate the truth probability. 2026 ** TODO --> Perhaps this is something that could be improved by better 2027 ** table statistics. 2028 ** 2029 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% 2030 ** value corresponds to -1 in LogEst notation, so this means decrement 2031 ** the WhereLoop.nOut field for every such WHERE clause term. 2032 ** 2033 ** Heuristic 2: If there exists one or more WHERE clause terms of the 2034 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the 2035 ** final output row estimate is no greater than 1/4 of the total number 2036 ** of rows in the table. In other words, assume that x==EXPR will filter 2037 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the 2038 ** "x" column is boolean or else -1 or 0 or 1 is a common default value 2039 ** on the "x" column and so in that case only cap the output row estimate 2040 ** at 1/2 instead of 1/4. 2041 */ 2042 static void whereLoopOutputAdjust( 2043 WhereClause *pWC, /* The WHERE clause */ 2044 WhereLoop *pLoop, /* The loop to adjust downward */ 2045 LogEst nRow /* Number of rows in the entire table */ 2046 ){ 2047 WhereTerm *pTerm, *pX; 2048 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); 2049 int i, j, k; 2050 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ 2051 2052 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); 2053 for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){ 2054 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break; 2055 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; 2056 if( (pTerm->prereqAll & notAllowed)!=0 ) continue; 2057 for(j=pLoop->nLTerm-1; j>=0; j--){ 2058 pX = pLoop->aLTerm[j]; 2059 if( pX==0 ) continue; 2060 if( pX==pTerm ) break; 2061 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; 2062 } 2063 if( j<0 ){ 2064 if( pTerm->truthProb<=0 ){ 2065 /* If a truth probability is specified using the likelihood() hints, 2066 ** then use the probability provided by the application. */ 2067 pLoop->nOut += pTerm->truthProb; 2068 }else{ 2069 /* In the absence of explicit truth probabilities, use heuristics to 2070 ** guess a reasonable truth probability. */ 2071 pLoop->nOut--; 2072 if( pTerm->eOperator&(WO_EQ|WO_IS) ){ 2073 Expr *pRight = pTerm->pExpr->pRight; 2074 testcase( pTerm->pExpr->op==TK_IS ); 2075 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){ 2076 k = 10; 2077 }else{ 2078 k = 20; 2079 } 2080 if( iReduce<k ) iReduce = k; 2081 } 2082 } 2083 } 2084 } 2085 if( pLoop->nOut > nRow-iReduce ) pLoop->nOut = nRow - iReduce; 2086 } 2087 2088 /* 2089 ** Adjust the cost C by the costMult facter T. This only occurs if 2090 ** compiled with -DSQLITE_ENABLE_COSTMULT 2091 */ 2092 #ifdef SQLITE_ENABLE_COSTMULT 2093 # define ApplyCostMultiplier(C,T) C += T 2094 #else 2095 # define ApplyCostMultiplier(C,T) 2096 #endif 2097 2098 /* 2099 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the 2100 ** index pIndex. Try to match one more. 2101 ** 2102 ** When this function is called, pBuilder->pNew->nOut contains the 2103 ** number of rows expected to be visited by filtering using the nEq 2104 ** terms only. If it is modified, this value is restored before this 2105 ** function returns. 2106 ** 2107 ** If pProbe->tnum==0, that means pIndex is a fake index used for the 2108 ** INTEGER PRIMARY KEY. 2109 */ 2110 static int whereLoopAddBtreeIndex( 2111 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ 2112 struct SrcList_item *pSrc, /* FROM clause term being analyzed */ 2113 Index *pProbe, /* An index on pSrc */ 2114 LogEst nInMul /* log(Number of iterations due to IN) */ 2115 ){ 2116 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ 2117 Parse *pParse = pWInfo->pParse; /* Parsing context */ 2118 sqlite3 *db = pParse->db; /* Database connection malloc context */ 2119 WhereLoop *pNew; /* Template WhereLoop under construction */ 2120 WhereTerm *pTerm; /* A WhereTerm under consideration */ 2121 int opMask; /* Valid operators for constraints */ 2122 WhereScan scan; /* Iterator for WHERE terms */ 2123 Bitmask saved_prereq; /* Original value of pNew->prereq */ 2124 u16 saved_nLTerm; /* Original value of pNew->nLTerm */ 2125 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ 2126 u16 saved_nSkip; /* Original value of pNew->nSkip */ 2127 u32 saved_wsFlags; /* Original value of pNew->wsFlags */ 2128 LogEst saved_nOut; /* Original value of pNew->nOut */ 2129 int iCol; /* Index of the column in the table */ 2130 int rc = SQLITE_OK; /* Return code */ 2131 LogEst rSize; /* Number of rows in the table */ 2132 LogEst rLogSize; /* Logarithm of table size */ 2133 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ 2134 2135 pNew = pBuilder->pNew; 2136 if( db->mallocFailed ) return SQLITE_NOMEM; 2137 2138 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); 2139 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); 2140 if( pNew->wsFlags & WHERE_BTM_LIMIT ){ 2141 opMask = WO_LT|WO_LE; 2142 }else if( /*pProbe->tnum<=0 ||*/ (pSrc->fg.jointype & JT_LEFT)!=0 ){ 2143 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE; 2144 }else{ 2145 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS; 2146 } 2147 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); 2148 2149 assert( pNew->u.btree.nEq<pProbe->nColumn ); 2150 iCol = pProbe->aiColumn[pNew->u.btree.nEq]; 2151 2152 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, iCol, 2153 opMask, pProbe); 2154 saved_nEq = pNew->u.btree.nEq; 2155 saved_nSkip = pNew->nSkip; 2156 saved_nLTerm = pNew->nLTerm; 2157 saved_wsFlags = pNew->wsFlags; 2158 saved_prereq = pNew->prereq; 2159 saved_nOut = pNew->nOut; 2160 pNew->rSetup = 0; 2161 rSize = pProbe->aiRowLogEst[0]; 2162 rLogSize = estLog(rSize); 2163 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ 2164 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ 2165 LogEst rCostIdx; 2166 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ 2167 int nIn = 0; 2168 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2169 int nRecValid = pBuilder->nRecValid; 2170 #endif 2171 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) 2172 && (iCol<0 || pSrc->pTab->aCol[iCol].notNull) 2173 ){ 2174 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ 2175 } 2176 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2177 2178 /* Do not allow the upper bound of a LIKE optimization range constraint 2179 ** to mix with a lower range bound from some other source */ 2180 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; 2181 2182 pNew->wsFlags = saved_wsFlags; 2183 pNew->u.btree.nEq = saved_nEq; 2184 pNew->nLTerm = saved_nLTerm; 2185 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2186 pNew->aLTerm[pNew->nLTerm++] = pTerm; 2187 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; 2188 2189 assert( nInMul==0 2190 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 2191 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 2192 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 2193 ); 2194 2195 if( eOp & WO_IN ){ 2196 Expr *pExpr = pTerm->pExpr; 2197 pNew->wsFlags |= WHERE_COLUMN_IN; 2198 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ 2199 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ 2200 nIn = 46; assert( 46==sqlite3LogEst(25) ); 2201 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ 2202 /* "x IN (value, value, ...)" */ 2203 nIn = sqlite3LogEst(pExpr->x.pList->nExpr); 2204 } 2205 assert( nIn>0 ); /* RHS always has 2 or more terms... The parser 2206 ** changes "x IN (?)" into "x=?". */ 2207 2208 }else if( eOp & (WO_EQ|WO_IS) ){ 2209 pNew->wsFlags |= WHERE_COLUMN_EQ; 2210 if( iCol<0 || (nInMul==0 && pNew->u.btree.nEq==pProbe->nKeyCol-1) ){ 2211 if( iCol>=0 && pProbe->uniqNotNull==0 ){ 2212 pNew->wsFlags |= WHERE_UNQ_WANTED; 2213 }else{ 2214 pNew->wsFlags |= WHERE_ONEROW; 2215 } 2216 } 2217 }else if( eOp & WO_ISNULL ){ 2218 pNew->wsFlags |= WHERE_COLUMN_NULL; 2219 }else if( eOp & (WO_GT|WO_GE) ){ 2220 testcase( eOp & WO_GT ); 2221 testcase( eOp & WO_GE ); 2222 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; 2223 pBtm = pTerm; 2224 pTop = 0; 2225 if( pTerm->wtFlags & TERM_LIKEOPT ){ 2226 /* Range contraints that come from the LIKE optimization are 2227 ** always used in pairs. */ 2228 pTop = &pTerm[1]; 2229 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm ); 2230 assert( pTop->wtFlags & TERM_LIKEOPT ); 2231 assert( pTop->eOperator==WO_LT ); 2232 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ 2233 pNew->aLTerm[pNew->nLTerm++] = pTop; 2234 pNew->wsFlags |= WHERE_TOP_LIMIT; 2235 } 2236 }else{ 2237 assert( eOp & (WO_LT|WO_LE) ); 2238 testcase( eOp & WO_LT ); 2239 testcase( eOp & WO_LE ); 2240 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; 2241 pTop = pTerm; 2242 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? 2243 pNew->aLTerm[pNew->nLTerm-2] : 0; 2244 } 2245 2246 /* At this point pNew->nOut is set to the number of rows expected to 2247 ** be visited by the index scan before considering term pTerm, or the 2248 ** values of nIn and nInMul. In other words, assuming that all 2249 ** "x IN(...)" terms are replaced with "x = ?". This block updates 2250 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ 2251 assert( pNew->nOut==saved_nOut ); 2252 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2253 /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4 2254 ** data, using some other estimate. */ 2255 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); 2256 }else{ 2257 int nEq = ++pNew->u.btree.nEq; 2258 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) ); 2259 2260 assert( pNew->nOut==saved_nOut ); 2261 if( pTerm->truthProb<=0 && iCol>=0 ){ 2262 assert( (eOp & WO_IN) || nIn==0 ); 2263 testcase( eOp & WO_IN ); 2264 pNew->nOut += pTerm->truthProb; 2265 pNew->nOut -= nIn; 2266 }else{ 2267 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2268 tRowcnt nOut = 0; 2269 if( nInMul==0 2270 && pProbe->nSample 2271 && pNew->u.btree.nEq<=pProbe->nSampleCol 2272 && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect)) 2273 ){ 2274 Expr *pExpr = pTerm->pExpr; 2275 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){ 2276 testcase( eOp & WO_EQ ); 2277 testcase( eOp & WO_IS ); 2278 testcase( eOp & WO_ISNULL ); 2279 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); 2280 }else{ 2281 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); 2282 } 2283 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; 2284 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ 2285 if( nOut ){ 2286 pNew->nOut = sqlite3LogEst(nOut); 2287 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; 2288 pNew->nOut -= nIn; 2289 } 2290 } 2291 if( nOut==0 ) 2292 #endif 2293 { 2294 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); 2295 if( eOp & WO_ISNULL ){ 2296 /* TUNING: If there is no likelihood() value, assume that a 2297 ** "col IS NULL" expression matches twice as many rows 2298 ** as (col=?). */ 2299 pNew->nOut += 10; 2300 } 2301 } 2302 } 2303 } 2304 2305 /* Set rCostIdx to the cost of visiting selected rows in index. Add 2306 ** it to pNew->rRun, which is currently set to the cost of the index 2307 ** seek only. Then, if this is a non-covering index, add the cost of 2308 ** visiting the rows in the main table. */ 2309 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; 2310 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); 2311 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ 2312 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); 2313 } 2314 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); 2315 2316 nOutUnadjusted = pNew->nOut; 2317 pNew->rRun += nInMul + nIn; 2318 pNew->nOut += nInMul + nIn; 2319 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); 2320 rc = whereLoopInsert(pBuilder, pNew); 2321 2322 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ 2323 pNew->nOut = saved_nOut; 2324 }else{ 2325 pNew->nOut = nOutUnadjusted; 2326 } 2327 2328 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 2329 && pNew->u.btree.nEq<pProbe->nColumn 2330 ){ 2331 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); 2332 } 2333 pNew->nOut = saved_nOut; 2334 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2335 pBuilder->nRecValid = nRecValid; 2336 #endif 2337 } 2338 pNew->prereq = saved_prereq; 2339 pNew->u.btree.nEq = saved_nEq; 2340 pNew->nSkip = saved_nSkip; 2341 pNew->wsFlags = saved_wsFlags; 2342 pNew->nOut = saved_nOut; 2343 pNew->nLTerm = saved_nLTerm; 2344 2345 /* Consider using a skip-scan if there are no WHERE clause constraints 2346 ** available for the left-most terms of the index, and if the average 2347 ** number of repeats in the left-most terms is at least 18. 2348 ** 2349 ** The magic number 18 is selected on the basis that scanning 17 rows 2350 ** is almost always quicker than an index seek (even though if the index 2351 ** contains fewer than 2^17 rows we assume otherwise in other parts of 2352 ** the code). And, even if it is not, it should not be too much slower. 2353 ** On the other hand, the extra seeks could end up being significantly 2354 ** more expensive. */ 2355 assert( 42==sqlite3LogEst(18) ); 2356 if( saved_nEq==saved_nSkip 2357 && saved_nEq+1<pProbe->nKeyCol 2358 && pProbe->noSkipScan==0 2359 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ 2360 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK 2361 ){ 2362 LogEst nIter; 2363 pNew->u.btree.nEq++; 2364 pNew->nSkip++; 2365 pNew->aLTerm[pNew->nLTerm++] = 0; 2366 pNew->wsFlags |= WHERE_SKIPSCAN; 2367 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; 2368 pNew->nOut -= nIter; 2369 /* TUNING: Because uncertainties in the estimates for skip-scan queries, 2370 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ 2371 nIter += 5; 2372 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); 2373 pNew->nOut = saved_nOut; 2374 pNew->u.btree.nEq = saved_nEq; 2375 pNew->nSkip = saved_nSkip; 2376 pNew->wsFlags = saved_wsFlags; 2377 } 2378 2379 return rc; 2380 } 2381 2382 /* 2383 ** Return True if it is possible that pIndex might be useful in 2384 ** implementing the ORDER BY clause in pBuilder. 2385 ** 2386 ** Return False if pBuilder does not contain an ORDER BY clause or 2387 ** if there is no way for pIndex to be useful in implementing that 2388 ** ORDER BY clause. 2389 */ 2390 static int indexMightHelpWithOrderBy( 2391 WhereLoopBuilder *pBuilder, 2392 Index *pIndex, 2393 int iCursor 2394 ){ 2395 ExprList *pOB; 2396 int ii, jj; 2397 2398 if( pIndex->bUnordered ) return 0; 2399 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; 2400 for(ii=0; ii<pOB->nExpr; ii++){ 2401 Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr); 2402 if( pExpr->op!=TK_COLUMN ) return 0; 2403 if( pExpr->iTable==iCursor ){ 2404 if( pExpr->iColumn<0 ) return 1; 2405 for(jj=0; jj<pIndex->nKeyCol; jj++){ 2406 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; 2407 } 2408 } 2409 } 2410 return 0; 2411 } 2412 2413 /* 2414 ** Return a bitmask where 1s indicate that the corresponding column of 2415 ** the table is used by an index. Only the first 63 columns are considered. 2416 */ 2417 static Bitmask columnsInIndex(Index *pIdx){ 2418 Bitmask m = 0; 2419 int j; 2420 for(j=pIdx->nColumn-1; j>=0; j--){ 2421 int x = pIdx->aiColumn[j]; 2422 if( x>=0 ){ 2423 testcase( x==BMS-1 ); 2424 testcase( x==BMS-2 ); 2425 if( x<BMS-1 ) m |= MASKBIT(x); 2426 } 2427 } 2428 return m; 2429 } 2430 2431 /* Check to see if a partial index with pPartIndexWhere can be used 2432 ** in the current query. Return true if it can be and false if not. 2433 */ 2434 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){ 2435 int i; 2436 WhereTerm *pTerm; 2437 while( pWhere->op==TK_AND ){ 2438 if( !whereUsablePartialIndex(iTab,pWC,pWhere->pLeft) ) return 0; 2439 pWhere = pWhere->pRight; 2440 } 2441 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 2442 Expr *pExpr = pTerm->pExpr; 2443 if( sqlite3ExprImpliesExpr(pExpr, pWhere, iTab) 2444 && (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab) 2445 ){ 2446 return 1; 2447 } 2448 } 2449 return 0; 2450 } 2451 2452 /* 2453 ** Add all WhereLoop objects for a single table of the join where the table 2454 ** is idenfied by pBuilder->pNew->iTab. That table is guaranteed to be 2455 ** a b-tree table, not a virtual table. 2456 ** 2457 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function 2458 ** are calculated as follows: 2459 ** 2460 ** For a full scan, assuming the table (or index) contains nRow rows: 2461 ** 2462 ** cost = nRow * 3.0 // full-table scan 2463 ** cost = nRow * K // scan of covering index 2464 ** cost = nRow * (K+3.0) // scan of non-covering index 2465 ** 2466 ** where K is a value between 1.1 and 3.0 set based on the relative 2467 ** estimated average size of the index and table records. 2468 ** 2469 ** For an index scan, where nVisit is the number of index rows visited 2470 ** by the scan, and nSeek is the number of seek operations required on 2471 ** the index b-tree: 2472 ** 2473 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index 2474 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index 2475 ** 2476 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the 2477 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when 2478 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. 2479 ** 2480 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount 2481 ** of uncertainty. For this reason, scoring is designed to pick plans that 2482 ** "do the least harm" if the estimates are inaccurate. For example, a 2483 ** log(nRow) factor is omitted from a non-covering index scan in order to 2484 ** bias the scoring in favor of using an index, since the worst-case 2485 ** performance of using an index is far better than the worst-case performance 2486 ** of a full table scan. 2487 */ 2488 static int whereLoopAddBtree( 2489 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 2490 Bitmask mExtra /* Extra prerequesites for using this table */ 2491 ){ 2492 WhereInfo *pWInfo; /* WHERE analysis context */ 2493 Index *pProbe; /* An index we are evaluating */ 2494 Index sPk; /* A fake index object for the primary key */ 2495 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ 2496 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ 2497 SrcList *pTabList; /* The FROM clause */ 2498 struct SrcList_item *pSrc; /* The FROM clause btree term to add */ 2499 WhereLoop *pNew; /* Template WhereLoop object */ 2500 int rc = SQLITE_OK; /* Return code */ 2501 int iSortIdx = 1; /* Index number */ 2502 int b; /* A boolean value */ 2503 LogEst rSize; /* number of rows in the table */ 2504 LogEst rLogSize; /* Logarithm of the number of rows in the table */ 2505 WhereClause *pWC; /* The parsed WHERE clause */ 2506 Table *pTab; /* Table being queried */ 2507 2508 pNew = pBuilder->pNew; 2509 pWInfo = pBuilder->pWInfo; 2510 pTabList = pWInfo->pTabList; 2511 pSrc = pTabList->a + pNew->iTab; 2512 pTab = pSrc->pTab; 2513 pWC = pBuilder->pWC; 2514 assert( !IsVirtual(pSrc->pTab) ); 2515 2516 if( pSrc->pIBIndex ){ 2517 /* An INDEXED BY clause specifies a particular index to use */ 2518 pProbe = pSrc->pIBIndex; 2519 }else if( !HasRowid(pTab) ){ 2520 pProbe = pTab->pIndex; 2521 }else{ 2522 /* There is no INDEXED BY clause. Create a fake Index object in local 2523 ** variable sPk to represent the rowid primary key index. Make this 2524 ** fake index the first in a chain of Index objects with all of the real 2525 ** indices to follow */ 2526 Index *pFirst; /* First of real indices on the table */ 2527 memset(&sPk, 0, sizeof(Index)); 2528 sPk.nKeyCol = 1; 2529 sPk.nColumn = 1; 2530 sPk.aiColumn = &aiColumnPk; 2531 sPk.aiRowLogEst = aiRowEstPk; 2532 sPk.onError = OE_Replace; 2533 sPk.pTable = pTab; 2534 sPk.szIdxRow = pTab->szTabRow; 2535 aiRowEstPk[0] = pTab->nRowLogEst; 2536 aiRowEstPk[1] = 0; 2537 pFirst = pSrc->pTab->pIndex; 2538 if( pSrc->fg.notIndexed==0 ){ 2539 /* The real indices of the table are only considered if the 2540 ** NOT INDEXED qualifier is omitted from the FROM clause */ 2541 sPk.pNext = pFirst; 2542 } 2543 pProbe = &sPk; 2544 } 2545 rSize = pTab->nRowLogEst; 2546 rLogSize = estLog(rSize); 2547 2548 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 2549 /* Automatic indexes */ 2550 if( !pBuilder->pOrSet /* Not part of an OR optimization */ 2551 && (pWInfo->wctrlFlags & WHERE_NO_AUTOINDEX)==0 2552 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 2553 && pSrc->pIBIndex==0 /* Has no INDEXED BY clause */ 2554 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */ 2555 && HasRowid(pTab) /* Is not a WITHOUT ROWID table. (FIXME: Why not?) */ 2556 && !pSrc->fg.isCorrelated /* Not a correlated subquery */ 2557 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */ 2558 ){ 2559 /* Generate auto-index WhereLoops */ 2560 WhereTerm *pTerm; 2561 WhereTerm *pWCEnd = pWC->a + pWC->nTerm; 2562 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ 2563 if( pTerm->prereqRight & pNew->maskSelf ) continue; 2564 if( termCanDriveIndex(pTerm, pSrc, 0) ){ 2565 pNew->u.btree.nEq = 1; 2566 pNew->nSkip = 0; 2567 pNew->u.btree.pIndex = 0; 2568 pNew->nLTerm = 1; 2569 pNew->aLTerm[0] = pTerm; 2570 /* TUNING: One-time cost for computing the automatic index is 2571 ** estimated to be X*N*log2(N) where N is the number of rows in 2572 ** the table being indexed and where X is 7 (LogEst=28) for normal 2573 ** tables or 1.375 (LogEst=4) for views and subqueries. The value 2574 ** of X is smaller for views and subqueries so that the query planner 2575 ** will be more aggressive about generating automatic indexes for 2576 ** those objects, since there is no opportunity to add schema 2577 ** indexes on subqueries and views. */ 2578 pNew->rSetup = rLogSize + rSize + 4; 2579 if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){ 2580 pNew->rSetup += 24; 2581 } 2582 ApplyCostMultiplier(pNew->rSetup, pTab->costMult); 2583 /* TUNING: Each index lookup yields 20 rows in the table. This 2584 ** is more than the usual guess of 10 rows, since we have no way 2585 ** of knowing how selective the index will ultimately be. It would 2586 ** not be unreasonable to make this value much larger. */ 2587 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); 2588 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); 2589 pNew->wsFlags = WHERE_AUTO_INDEX; 2590 pNew->prereq = mExtra | pTerm->prereqRight; 2591 rc = whereLoopInsert(pBuilder, pNew); 2592 } 2593 } 2594 } 2595 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ 2596 2597 /* Loop over all indices 2598 */ 2599 for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){ 2600 if( pProbe->pPartIdxWhere!=0 2601 && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){ 2602 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ 2603 continue; /* Partial index inappropriate for this query */ 2604 } 2605 rSize = pProbe->aiRowLogEst[0]; 2606 pNew->u.btree.nEq = 0; 2607 pNew->nSkip = 0; 2608 pNew->nLTerm = 0; 2609 pNew->iSortIdx = 0; 2610 pNew->rSetup = 0; 2611 pNew->prereq = mExtra; 2612 pNew->nOut = rSize; 2613 pNew->u.btree.pIndex = pProbe; 2614 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); 2615 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ 2616 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); 2617 if( pProbe->tnum<=0 ){ 2618 /* Integer primary key index */ 2619 pNew->wsFlags = WHERE_IPK; 2620 2621 /* Full table scan */ 2622 pNew->iSortIdx = b ? iSortIdx : 0; 2623 /* TUNING: Cost of full table scan is (N*3.0). */ 2624 pNew->rRun = rSize + 16; 2625 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 2626 whereLoopOutputAdjust(pWC, pNew, rSize); 2627 rc = whereLoopInsert(pBuilder, pNew); 2628 pNew->nOut = rSize; 2629 if( rc ) break; 2630 }else{ 2631 Bitmask m; 2632 if( pProbe->isCovering ){ 2633 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; 2634 m = 0; 2635 }else{ 2636 m = pSrc->colUsed & ~columnsInIndex(pProbe); 2637 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; 2638 } 2639 2640 /* Full scan via index */ 2641 if( b 2642 || !HasRowid(pTab) 2643 || ( m==0 2644 && pProbe->bUnordered==0 2645 && (pProbe->szIdxRow<pTab->szTabRow) 2646 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 2647 && sqlite3GlobalConfig.bUseCis 2648 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) 2649 ) 2650 ){ 2651 pNew->iSortIdx = b ? iSortIdx : 0; 2652 2653 /* The cost of visiting the index rows is N*K, where K is 2654 ** between 1.1 and 3.0, depending on the relative sizes of the 2655 ** index and table rows. If this is a non-covering index scan, 2656 ** also add the cost of visiting table rows (N*3.0). */ 2657 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; 2658 if( m!=0 ){ 2659 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, rSize+16); 2660 } 2661 ApplyCostMultiplier(pNew->rRun, pTab->costMult); 2662 whereLoopOutputAdjust(pWC, pNew, rSize); 2663 rc = whereLoopInsert(pBuilder, pNew); 2664 pNew->nOut = rSize; 2665 if( rc ) break; 2666 } 2667 } 2668 2669 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); 2670 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 2671 sqlite3Stat4ProbeFree(pBuilder->pRec); 2672 pBuilder->nRecValid = 0; 2673 pBuilder->pRec = 0; 2674 #endif 2675 2676 /* If there was an INDEXED BY clause, then only that one index is 2677 ** considered. */ 2678 if( pSrc->pIBIndex ) break; 2679 } 2680 return rc; 2681 } 2682 2683 #ifndef SQLITE_OMIT_VIRTUALTABLE 2684 /* 2685 ** Add all WhereLoop objects for a table of the join identified by 2686 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. 2687 ** 2688 ** If there are no LEFT or CROSS JOIN joins in the query, both mExtra and 2689 ** mUnusable are set to 0. Otherwise, mExtra is a mask of all FROM clause 2690 ** entries that occur before the virtual table in the FROM clause and are 2691 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the 2692 ** mUnusable mask contains all FROM clause entries that occur after the 2693 ** virtual table and are separated from it by at least one LEFT or 2694 ** CROSS JOIN. 2695 ** 2696 ** For example, if the query were: 2697 ** 2698 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; 2699 ** 2700 ** then mExtra corresponds to (t1, t2) and mUnusable to (t5, t6). 2701 ** 2702 ** All the tables in mExtra must be scanned before the current virtual 2703 ** table. So any terms for which all prerequisites are satisfied by 2704 ** mExtra may be specified as "usable" in all calls to xBestIndex. 2705 ** Conversely, all tables in mUnusable must be scanned after the current 2706 ** virtual table, so any terms for which the prerequisites overlap with 2707 ** mUnusable should always be configured as "not-usable" for xBestIndex. 2708 */ 2709 static int whereLoopAddVirtual( 2710 WhereLoopBuilder *pBuilder, /* WHERE clause information */ 2711 Bitmask mExtra, /* Tables that must be scanned before this one */ 2712 Bitmask mUnusable /* Tables that must be scanned after this one */ 2713 ){ 2714 WhereInfo *pWInfo; /* WHERE analysis context */ 2715 Parse *pParse; /* The parsing context */ 2716 WhereClause *pWC; /* The WHERE clause */ 2717 struct SrcList_item *pSrc; /* The FROM clause term to search */ 2718 Table *pTab; 2719 sqlite3 *db; 2720 sqlite3_index_info *pIdxInfo; 2721 struct sqlite3_index_constraint *pIdxCons; 2722 struct sqlite3_index_constraint_usage *pUsage; 2723 WhereTerm *pTerm; 2724 int i, j; 2725 int iTerm, mxTerm; 2726 int nConstraint; 2727 int seenIn = 0; /* True if an IN operator is seen */ 2728 int seenVar = 0; /* True if a non-constant constraint is seen */ 2729 int iPhase; /* 0: const w/o IN, 1: const, 2: no IN, 2: IN */ 2730 WhereLoop *pNew; 2731 int rc = SQLITE_OK; 2732 2733 assert( (mExtra & mUnusable)==0 ); 2734 pWInfo = pBuilder->pWInfo; 2735 pParse = pWInfo->pParse; 2736 db = pParse->db; 2737 pWC = pBuilder->pWC; 2738 pNew = pBuilder->pNew; 2739 pSrc = &pWInfo->pTabList->a[pNew->iTab]; 2740 pTab = pSrc->pTab; 2741 assert( IsVirtual(pTab) ); 2742 pIdxInfo = allocateIndexInfo(pParse, pWC, mUnusable, pSrc,pBuilder->pOrderBy); 2743 if( pIdxInfo==0 ) return SQLITE_NOMEM; 2744 pNew->prereq = 0; 2745 pNew->rSetup = 0; 2746 pNew->wsFlags = WHERE_VIRTUALTABLE; 2747 pNew->nLTerm = 0; 2748 pNew->u.vtab.needFree = 0; 2749 pUsage = pIdxInfo->aConstraintUsage; 2750 nConstraint = pIdxInfo->nConstraint; 2751 if( whereLoopResize(db, pNew, nConstraint) ){ 2752 sqlite3DbFree(db, pIdxInfo); 2753 return SQLITE_NOMEM; 2754 } 2755 2756 for(iPhase=0; iPhase<=3; iPhase++){ 2757 if( !seenIn && (iPhase&1)!=0 ){ 2758 iPhase++; 2759 if( iPhase>3 ) break; 2760 } 2761 if( !seenVar && iPhase>1 ) break; 2762 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 2763 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ 2764 j = pIdxCons->iTermOffset; 2765 pTerm = &pWC->a[j]; 2766 switch( iPhase ){ 2767 case 0: /* Constants without IN operator */ 2768 pIdxCons->usable = 0; 2769 if( (pTerm->eOperator & WO_IN)!=0 ){ 2770 seenIn = 1; 2771 } 2772 if( (pTerm->prereqRight & ~mExtra)!=0 ){ 2773 seenVar = 1; 2774 }else if( (pTerm->eOperator & WO_IN)==0 ){ 2775 pIdxCons->usable = 1; 2776 } 2777 break; 2778 case 1: /* Constants with IN operators */ 2779 assert( seenIn ); 2780 pIdxCons->usable = (pTerm->prereqRight & ~mExtra)==0; 2781 break; 2782 case 2: /* Variables without IN */ 2783 assert( seenVar ); 2784 pIdxCons->usable = (pTerm->eOperator & WO_IN)==0; 2785 break; 2786 default: /* Variables with IN */ 2787 assert( seenVar && seenIn ); 2788 pIdxCons->usable = 1; 2789 break; 2790 } 2791 } 2792 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); 2793 if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr); 2794 pIdxInfo->idxStr = 0; 2795 pIdxInfo->idxNum = 0; 2796 pIdxInfo->needToFreeIdxStr = 0; 2797 pIdxInfo->orderByConsumed = 0; 2798 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; 2799 pIdxInfo->estimatedRows = 25; 2800 rc = vtabBestIndex(pParse, pTab, pIdxInfo); 2801 if( rc ) goto whereLoopAddVtab_exit; 2802 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 2803 pNew->prereq = mExtra; 2804 mxTerm = -1; 2805 assert( pNew->nLSlot>=nConstraint ); 2806 for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0; 2807 pNew->u.vtab.omitMask = 0; 2808 for(i=0; i<nConstraint; i++, pIdxCons++){ 2809 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ 2810 j = pIdxCons->iTermOffset; 2811 if( iTerm>=nConstraint 2812 || j<0 2813 || j>=pWC->nTerm 2814 || pNew->aLTerm[iTerm]!=0 2815 ){ 2816 rc = SQLITE_ERROR; 2817 sqlite3ErrorMsg(pParse, "%s.xBestIndex() malfunction", pTab->zName); 2818 goto whereLoopAddVtab_exit; 2819 } 2820 testcase( iTerm==nConstraint-1 ); 2821 testcase( j==0 ); 2822 testcase( j==pWC->nTerm-1 ); 2823 pTerm = &pWC->a[j]; 2824 pNew->prereq |= pTerm->prereqRight; 2825 assert( iTerm<pNew->nLSlot ); 2826 pNew->aLTerm[iTerm] = pTerm; 2827 if( iTerm>mxTerm ) mxTerm = iTerm; 2828 testcase( iTerm==15 ); 2829 testcase( iTerm==16 ); 2830 if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm; 2831 if( (pTerm->eOperator & WO_IN)!=0 ){ 2832 if( pUsage[i].omit==0 ){ 2833 /* Do not attempt to use an IN constraint if the virtual table 2834 ** says that the equivalent EQ constraint cannot be safely omitted. 2835 ** If we do attempt to use such a constraint, some rows might be 2836 ** repeated in the output. */ 2837 break; 2838 } 2839 /* A virtual table that is constrained by an IN clause may not 2840 ** consume the ORDER BY clause because (1) the order of IN terms 2841 ** is not necessarily related to the order of output terms and 2842 ** (2) Multiple outputs from a single IN value will not merge 2843 ** together. */ 2844 pIdxInfo->orderByConsumed = 0; 2845 } 2846 } 2847 } 2848 if( i>=nConstraint ){ 2849 pNew->nLTerm = mxTerm+1; 2850 assert( pNew->nLTerm<=pNew->nLSlot ); 2851 pNew->u.vtab.idxNum = pIdxInfo->idxNum; 2852 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; 2853 pIdxInfo->needToFreeIdxStr = 0; 2854 pNew->u.vtab.idxStr = pIdxInfo->idxStr; 2855 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? 2856 pIdxInfo->nOrderBy : 0); 2857 pNew->rSetup = 0; 2858 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); 2859 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); 2860 whereLoopInsert(pBuilder, pNew); 2861 if( pNew->u.vtab.needFree ){ 2862 sqlite3_free(pNew->u.vtab.idxStr); 2863 pNew->u.vtab.needFree = 0; 2864 } 2865 } 2866 } 2867 2868 whereLoopAddVtab_exit: 2869 if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr); 2870 sqlite3DbFree(db, pIdxInfo); 2871 return rc; 2872 } 2873 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 2874 2875 /* 2876 ** Add WhereLoop entries to handle OR terms. This works for either 2877 ** btrees or virtual tables. 2878 */ 2879 static int whereLoopAddOr( 2880 WhereLoopBuilder *pBuilder, 2881 Bitmask mExtra, 2882 Bitmask mUnusable 2883 ){ 2884 WhereInfo *pWInfo = pBuilder->pWInfo; 2885 WhereClause *pWC; 2886 WhereLoop *pNew; 2887 WhereTerm *pTerm, *pWCEnd; 2888 int rc = SQLITE_OK; 2889 int iCur; 2890 WhereClause tempWC; 2891 WhereLoopBuilder sSubBuild; 2892 WhereOrSet sSum, sCur; 2893 struct SrcList_item *pItem; 2894 2895 pWC = pBuilder->pWC; 2896 pWCEnd = pWC->a + pWC->nTerm; 2897 pNew = pBuilder->pNew; 2898 memset(&sSum, 0, sizeof(sSum)); 2899 pItem = pWInfo->pTabList->a + pNew->iTab; 2900 iCur = pItem->iCursor; 2901 2902 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ 2903 if( (pTerm->eOperator & WO_OR)!=0 2904 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 2905 ){ 2906 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; 2907 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; 2908 WhereTerm *pOrTerm; 2909 int once = 1; 2910 int i, j; 2911 2912 sSubBuild = *pBuilder; 2913 sSubBuild.pOrderBy = 0; 2914 sSubBuild.pOrSet = &sCur; 2915 2916 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); 2917 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ 2918 if( (pOrTerm->eOperator & WO_AND)!=0 ){ 2919 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; 2920 }else if( pOrTerm->leftCursor==iCur ){ 2921 tempWC.pWInfo = pWC->pWInfo; 2922 tempWC.pOuter = pWC; 2923 tempWC.op = TK_AND; 2924 tempWC.nTerm = 1; 2925 tempWC.a = pOrTerm; 2926 sSubBuild.pWC = &tempWC; 2927 }else{ 2928 continue; 2929 } 2930 sCur.n = 0; 2931 #ifdef WHERETRACE_ENABLED 2932 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", 2933 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); 2934 if( sqlite3WhereTrace & 0x400 ){ 2935 for(i=0; i<sSubBuild.pWC->nTerm; i++){ 2936 whereTermPrint(&sSubBuild.pWC->a[i], i); 2937 } 2938 } 2939 #endif 2940 #ifndef SQLITE_OMIT_VIRTUALTABLE 2941 if( IsVirtual(pItem->pTab) ){ 2942 rc = whereLoopAddVirtual(&sSubBuild, mExtra, mUnusable); 2943 }else 2944 #endif 2945 { 2946 rc = whereLoopAddBtree(&sSubBuild, mExtra); 2947 } 2948 if( rc==SQLITE_OK ){ 2949 rc = whereLoopAddOr(&sSubBuild, mExtra, mUnusable); 2950 } 2951 assert( rc==SQLITE_OK || sCur.n==0 ); 2952 if( sCur.n==0 ){ 2953 sSum.n = 0; 2954 break; 2955 }else if( once ){ 2956 whereOrMove(&sSum, &sCur); 2957 once = 0; 2958 }else{ 2959 WhereOrSet sPrev; 2960 whereOrMove(&sPrev, &sSum); 2961 sSum.n = 0; 2962 for(i=0; i<sPrev.n; i++){ 2963 for(j=0; j<sCur.n; j++){ 2964 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, 2965 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), 2966 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); 2967 } 2968 } 2969 } 2970 } 2971 pNew->nLTerm = 1; 2972 pNew->aLTerm[0] = pTerm; 2973 pNew->wsFlags = WHERE_MULTI_OR; 2974 pNew->rSetup = 0; 2975 pNew->iSortIdx = 0; 2976 memset(&pNew->u, 0, sizeof(pNew->u)); 2977 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ 2978 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs 2979 ** of all sub-scans required by the OR-scan. However, due to rounding 2980 ** errors, it may be that the cost of the OR-scan is equal to its 2981 ** most expensive sub-scan. Add the smallest possible penalty 2982 ** (equivalent to multiplying the cost by 1.07) to ensure that 2983 ** this does not happen. Otherwise, for WHERE clauses such as the 2984 ** following where there is an index on "y": 2985 ** 2986 ** WHERE likelihood(x=?, 0.99) OR y=? 2987 ** 2988 ** the planner may elect to "OR" together a full-table scan and an 2989 ** index lookup. And other similarly odd results. */ 2990 pNew->rRun = sSum.a[i].rRun + 1; 2991 pNew->nOut = sSum.a[i].nOut; 2992 pNew->prereq = sSum.a[i].prereq; 2993 rc = whereLoopInsert(pBuilder, pNew); 2994 } 2995 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); 2996 } 2997 } 2998 return rc; 2999 } 3000 3001 /* 3002 ** Add all WhereLoop objects for all tables 3003 */ 3004 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ 3005 WhereInfo *pWInfo = pBuilder->pWInfo; 3006 Bitmask mExtra = 0; 3007 Bitmask mPrior = 0; 3008 int iTab; 3009 SrcList *pTabList = pWInfo->pTabList; 3010 struct SrcList_item *pItem; 3011 struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel]; 3012 sqlite3 *db = pWInfo->pParse->db; 3013 int rc = SQLITE_OK; 3014 WhereLoop *pNew; 3015 u8 priorJointype = 0; 3016 3017 /* Loop over the tables in the join, from left to right */ 3018 pNew = pBuilder->pNew; 3019 whereLoopInit(pNew); 3020 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){ 3021 Bitmask mUnusable = 0; 3022 pNew->iTab = iTab; 3023 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); 3024 if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){ 3025 /* This condition is true when pItem is the FROM clause term on the 3026 ** right-hand-side of a LEFT or CROSS JOIN. */ 3027 mExtra = mPrior; 3028 } 3029 priorJointype = pItem->fg.jointype; 3030 if( IsVirtual(pItem->pTab) ){ 3031 struct SrcList_item *p; 3032 for(p=&pItem[1]; p<pEnd; p++){ 3033 if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){ 3034 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); 3035 } 3036 } 3037 rc = whereLoopAddVirtual(pBuilder, mExtra, mUnusable); 3038 }else{ 3039 rc = whereLoopAddBtree(pBuilder, mExtra); 3040 } 3041 if( rc==SQLITE_OK ){ 3042 rc = whereLoopAddOr(pBuilder, mExtra, mUnusable); 3043 } 3044 mPrior |= pNew->maskSelf; 3045 if( rc || db->mallocFailed ) break; 3046 } 3047 3048 whereLoopClear(db, pNew); 3049 return rc; 3050 } 3051 3052 /* 3053 ** Examine a WherePath (with the addition of the extra WhereLoop of the 5th 3054 ** parameters) to see if it outputs rows in the requested ORDER BY 3055 ** (or GROUP BY) without requiring a separate sort operation. Return N: 3056 ** 3057 ** N>0: N terms of the ORDER BY clause are satisfied 3058 ** N==0: No terms of the ORDER BY clause are satisfied 3059 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. 3060 ** 3061 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as 3062 ** strict. With GROUP BY and DISTINCT the only requirement is that 3063 ** equivalent rows appear immediately adjacent to one another. GROUP BY 3064 ** and DISTINCT do not require rows to appear in any particular order as long 3065 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT 3066 ** the pOrderBy terms can be matched in any order. With ORDER BY, the 3067 ** pOrderBy terms must be matched in strict left-to-right order. 3068 */ 3069 static i8 wherePathSatisfiesOrderBy( 3070 WhereInfo *pWInfo, /* The WHERE clause */ 3071 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ 3072 WherePath *pPath, /* The WherePath to check */ 3073 u16 wctrlFlags, /* Might contain WHERE_GROUPBY or WHERE_DISTINCTBY */ 3074 u16 nLoop, /* Number of entries in pPath->aLoop[] */ 3075 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ 3076 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ 3077 ){ 3078 u8 revSet; /* True if rev is known */ 3079 u8 rev; /* Composite sort order */ 3080 u8 revIdx; /* Index sort order */ 3081 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ 3082 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ 3083 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ 3084 u16 nKeyCol; /* Number of key columns in pIndex */ 3085 u16 nColumn; /* Total number of ordered columns in the index */ 3086 u16 nOrderBy; /* Number terms in the ORDER BY clause */ 3087 int iLoop; /* Index of WhereLoop in pPath being processed */ 3088 int i, j; /* Loop counters */ 3089 int iCur; /* Cursor number for current WhereLoop */ 3090 int iColumn; /* A column number within table iCur */ 3091 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ 3092 WhereTerm *pTerm; /* A single term of the WHERE clause */ 3093 Expr *pOBExpr; /* An expression from the ORDER BY clause */ 3094 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ 3095 Index *pIndex; /* The index associated with pLoop */ 3096 sqlite3 *db = pWInfo->pParse->db; /* Database connection */ 3097 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ 3098 Bitmask obDone; /* Mask of all ORDER BY terms */ 3099 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ 3100 Bitmask ready; /* Mask of inner loops */ 3101 3102 /* 3103 ** We say the WhereLoop is "one-row" if it generates no more than one 3104 ** row of output. A WhereLoop is one-row if all of the following are true: 3105 ** (a) All index columns match with WHERE_COLUMN_EQ. 3106 ** (b) The index is unique 3107 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. 3108 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. 3109 ** 3110 ** We say the WhereLoop is "order-distinct" if the set of columns from 3111 ** that WhereLoop that are in the ORDER BY clause are different for every 3112 ** row of the WhereLoop. Every one-row WhereLoop is automatically 3113 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause 3114 ** is not order-distinct. To be order-distinct is not quite the same as being 3115 ** UNIQUE since a UNIQUE column or index can have multiple rows that 3116 ** are NULL and NULL values are equivalent for the purpose of order-distinct. 3117 ** To be order-distinct, the columns must be UNIQUE and NOT NULL. 3118 ** 3119 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the 3120 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is 3121 ** automatically order-distinct. 3122 */ 3123 3124 assert( pOrderBy!=0 ); 3125 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; 3126 3127 nOrderBy = pOrderBy->nExpr; 3128 testcase( nOrderBy==BMS-1 ); 3129 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ 3130 isOrderDistinct = 1; 3131 obDone = MASKBIT(nOrderBy)-1; 3132 orderDistinctMask = 0; 3133 ready = 0; 3134 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ 3135 if( iLoop>0 ) ready |= pLoop->maskSelf; 3136 pLoop = iLoop<nLoop ? pPath->aLoop[iLoop] : pLast; 3137 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ 3138 if( pLoop->u.vtab.isOrdered ) obSat = obDone; 3139 break; 3140 } 3141 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; 3142 3143 /* Mark off any ORDER BY term X that is a column in the table of 3144 ** the current loop for which there is term in the WHERE 3145 ** clause of the form X IS NULL or X=? that reference only outer 3146 ** loops. 3147 */ 3148 for(i=0; i<nOrderBy; i++){ 3149 if( MASKBIT(i) & obSat ) continue; 3150 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); 3151 if( pOBExpr->op!=TK_COLUMN ) continue; 3152 if( pOBExpr->iTable!=iCur ) continue; 3153 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, 3154 ~ready, WO_EQ|WO_ISNULL|WO_IS, 0); 3155 if( pTerm==0 ) continue; 3156 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ 3157 const char *z1, *z2; 3158 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 3159 if( !pColl ) pColl = db->pDfltColl; 3160 z1 = pColl->zName; 3161 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pTerm->pExpr); 3162 if( !pColl ) pColl = db->pDfltColl; 3163 z2 = pColl->zName; 3164 if( sqlite3StrICmp(z1, z2)!=0 ) continue; 3165 testcase( pTerm->pExpr->op==TK_IS ); 3166 } 3167 obSat |= MASKBIT(i); 3168 } 3169 3170 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ 3171 if( pLoop->wsFlags & WHERE_IPK ){ 3172 pIndex = 0; 3173 nKeyCol = 0; 3174 nColumn = 1; 3175 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ 3176 return 0; 3177 }else{ 3178 nKeyCol = pIndex->nKeyCol; 3179 nColumn = pIndex->nColumn; 3180 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); 3181 assert( pIndex->aiColumn[nColumn-1]==(-1) || !HasRowid(pIndex->pTable)); 3182 isOrderDistinct = IsUniqueIndex(pIndex); 3183 } 3184 3185 /* Loop through all columns of the index and deal with the ones 3186 ** that are not constrained by == or IN. 3187 */ 3188 rev = revSet = 0; 3189 distinctColumns = 0; 3190 for(j=0; j<nColumn; j++){ 3191 u8 bOnce; /* True to run the ORDER BY search loop */ 3192 3193 /* Skip over == and IS NULL terms */ 3194 if( j<pLoop->u.btree.nEq 3195 && pLoop->nSkip==0 3196 && ((i = pLoop->aLTerm[j]->eOperator) & (WO_EQ|WO_ISNULL|WO_IS))!=0 3197 ){ 3198 if( i & WO_ISNULL ){ 3199 testcase( isOrderDistinct ); 3200 isOrderDistinct = 0; 3201 } 3202 continue; 3203 } 3204 3205 /* Get the column number in the table (iColumn) and sort order 3206 ** (revIdx) for the j-th column of the index. 3207 */ 3208 if( pIndex ){ 3209 iColumn = pIndex->aiColumn[j]; 3210 revIdx = pIndex->aSortOrder[j]; 3211 if( iColumn==pIndex->pTable->iPKey ) iColumn = -1; 3212 }else{ 3213 iColumn = -1; 3214 revIdx = 0; 3215 } 3216 3217 /* An unconstrained column that might be NULL means that this 3218 ** WhereLoop is not well-ordered 3219 */ 3220 if( isOrderDistinct 3221 && iColumn>=0 3222 && j>=pLoop->u.btree.nEq 3223 && pIndex->pTable->aCol[iColumn].notNull==0 3224 ){ 3225 isOrderDistinct = 0; 3226 } 3227 3228 /* Find the ORDER BY term that corresponds to the j-th column 3229 ** of the index and mark that ORDER BY term off 3230 */ 3231 bOnce = 1; 3232 isMatch = 0; 3233 for(i=0; bOnce && i<nOrderBy; i++){ 3234 if( MASKBIT(i) & obSat ) continue; 3235 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); 3236 testcase( wctrlFlags & WHERE_GROUPBY ); 3237 testcase( wctrlFlags & WHERE_DISTINCTBY ); 3238 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; 3239 if( pOBExpr->op!=TK_COLUMN ) continue; 3240 if( pOBExpr->iTable!=iCur ) continue; 3241 if( pOBExpr->iColumn!=iColumn ) continue; 3242 if( iColumn>=0 ){ 3243 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); 3244 if( !pColl ) pColl = db->pDfltColl; 3245 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; 3246 } 3247 isMatch = 1; 3248 break; 3249 } 3250 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ 3251 /* Make sure the sort order is compatible in an ORDER BY clause. 3252 ** Sort order is irrelevant for a GROUP BY clause. */ 3253 if( revSet ){ 3254 if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0; 3255 }else{ 3256 rev = revIdx ^ pOrderBy->a[i].sortOrder; 3257 if( rev ) *pRevMask |= MASKBIT(iLoop); 3258 revSet = 1; 3259 } 3260 } 3261 if( isMatch ){ 3262 if( iColumn<0 ){ 3263 testcase( distinctColumns==0 ); 3264 distinctColumns = 1; 3265 } 3266 obSat |= MASKBIT(i); 3267 }else{ 3268 /* No match found */ 3269 if( j==0 || j<nKeyCol ){ 3270 testcase( isOrderDistinct!=0 ); 3271 isOrderDistinct = 0; 3272 } 3273 break; 3274 } 3275 } /* end Loop over all index columns */ 3276 if( distinctColumns ){ 3277 testcase( isOrderDistinct==0 ); 3278 isOrderDistinct = 1; 3279 } 3280 } /* end-if not one-row */ 3281 3282 /* Mark off any other ORDER BY terms that reference pLoop */ 3283 if( isOrderDistinct ){ 3284 orderDistinctMask |= pLoop->maskSelf; 3285 for(i=0; i<nOrderBy; i++){ 3286 Expr *p; 3287 Bitmask mTerm; 3288 if( MASKBIT(i) & obSat ) continue; 3289 p = pOrderBy->a[i].pExpr; 3290 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); 3291 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; 3292 if( (mTerm&~orderDistinctMask)==0 ){ 3293 obSat |= MASKBIT(i); 3294 } 3295 } 3296 } 3297 } /* End the loop over all WhereLoops from outer-most down to inner-most */ 3298 if( obSat==obDone ) return (i8)nOrderBy; 3299 if( !isOrderDistinct ){ 3300 for(i=nOrderBy-1; i>0; i--){ 3301 Bitmask m = MASKBIT(i) - 1; 3302 if( (obSat&m)==m ) return i; 3303 } 3304 return 0; 3305 } 3306 return -1; 3307 } 3308 3309 3310 /* 3311 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), 3312 ** the planner assumes that the specified pOrderBy list is actually a GROUP 3313 ** BY clause - and so any order that groups rows as required satisfies the 3314 ** request. 3315 ** 3316 ** Normally, in this case it is not possible for the caller to determine 3317 ** whether or not the rows are really being delivered in sorted order, or 3318 ** just in some other order that provides the required grouping. However, 3319 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then 3320 ** this function may be called on the returned WhereInfo object. It returns 3321 ** true if the rows really will be sorted in the specified order, or false 3322 ** otherwise. 3323 ** 3324 ** For example, assuming: 3325 ** 3326 ** CREATE INDEX i1 ON t1(x, Y); 3327 ** 3328 ** then 3329 ** 3330 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 3331 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 3332 */ 3333 int sqlite3WhereIsSorted(WhereInfo *pWInfo){ 3334 assert( pWInfo->wctrlFlags & WHERE_GROUPBY ); 3335 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); 3336 return pWInfo->sorted; 3337 } 3338 3339 #ifdef WHERETRACE_ENABLED 3340 /* For debugging use only: */ 3341 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ 3342 static char zName[65]; 3343 int i; 3344 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } 3345 if( pLast ) zName[i++] = pLast->cId; 3346 zName[i] = 0; 3347 return zName; 3348 } 3349 #endif 3350 3351 /* 3352 ** Return the cost of sorting nRow rows, assuming that the keys have 3353 ** nOrderby columns and that the first nSorted columns are already in 3354 ** order. 3355 */ 3356 static LogEst whereSortingCost( 3357 WhereInfo *pWInfo, 3358 LogEst nRow, 3359 int nOrderBy, 3360 int nSorted 3361 ){ 3362 /* TUNING: Estimated cost of a full external sort, where N is 3363 ** the number of rows to sort is: 3364 ** 3365 ** cost = (3.0 * N * log(N)). 3366 ** 3367 ** Or, if the order-by clause has X terms but only the last Y 3368 ** terms are out of order, then block-sorting will reduce the 3369 ** sorting cost to: 3370 ** 3371 ** cost = (3.0 * N * log(N)) * (Y/X) 3372 ** 3373 ** The (Y/X) term is implemented using stack variable rScale 3374 ** below. */ 3375 LogEst rScale, rSortCost; 3376 assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); 3377 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; 3378 rSortCost = nRow + estLog(nRow) + rScale + 16; 3379 3380 /* TUNING: The cost of implementing DISTINCT using a B-TREE is 3381 ** similar but with a larger constant of proportionality. 3382 ** Multiply by an additional factor of 3.0. */ 3383 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ 3384 rSortCost += 16; 3385 } 3386 3387 return rSortCost; 3388 } 3389 3390 /* 3391 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine 3392 ** attempts to find the lowest cost path that visits each WhereLoop 3393 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. 3394 ** 3395 ** Assume that the total number of output rows that will need to be sorted 3396 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting 3397 ** costs if nRowEst==0. 3398 ** 3399 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation 3400 ** error occurs. 3401 */ 3402 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ 3403 int mxChoice; /* Maximum number of simultaneous paths tracked */ 3404 int nLoop; /* Number of terms in the join */ 3405 Parse *pParse; /* Parsing context */ 3406 sqlite3 *db; /* The database connection */ 3407 int iLoop; /* Loop counter over the terms of the join */ 3408 int ii, jj; /* Loop counters */ 3409 int mxI = 0; /* Index of next entry to replace */ 3410 int nOrderBy; /* Number of ORDER BY clause terms */ 3411 LogEst mxCost = 0; /* Maximum cost of a set of paths */ 3412 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ 3413 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ 3414 WherePath *aFrom; /* All nFrom paths at the previous level */ 3415 WherePath *aTo; /* The nTo best paths at the current level */ 3416 WherePath *pFrom; /* An element of aFrom[] that we are working on */ 3417 WherePath *pTo; /* An element of aTo[] that we are working on */ 3418 WhereLoop *pWLoop; /* One of the WhereLoop objects */ 3419 WhereLoop **pX; /* Used to divy up the pSpace memory */ 3420 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ 3421 char *pSpace; /* Temporary memory used by this routine */ 3422 int nSpace; /* Bytes of space allocated at pSpace */ 3423 3424 pParse = pWInfo->pParse; 3425 db = pParse->db; 3426 nLoop = pWInfo->nLevel; 3427 /* TUNING: For simple queries, only the best path is tracked. 3428 ** For 2-way joins, the 5 best paths are followed. 3429 ** For joins of 3 or more tables, track the 10 best paths */ 3430 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); 3431 assert( nLoop<=pWInfo->pTabList->nSrc ); 3432 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); 3433 3434 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this 3435 ** case the purpose of this call is to estimate the number of rows returned 3436 ** by the overall query. Once this estimate has been obtained, the caller 3437 ** will invoke this function a second time, passing the estimate as the 3438 ** nRowEst parameter. */ 3439 if( pWInfo->pOrderBy==0 || nRowEst==0 ){ 3440 nOrderBy = 0; 3441 }else{ 3442 nOrderBy = pWInfo->pOrderBy->nExpr; 3443 } 3444 3445 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ 3446 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; 3447 nSpace += sizeof(LogEst) * nOrderBy; 3448 pSpace = sqlite3DbMallocRaw(db, nSpace); 3449 if( pSpace==0 ) return SQLITE_NOMEM; 3450 aTo = (WherePath*)pSpace; 3451 aFrom = aTo+mxChoice; 3452 memset(aFrom, 0, sizeof(aFrom[0])); 3453 pX = (WhereLoop**)(aFrom+mxChoice); 3454 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ 3455 pFrom->aLoop = pX; 3456 } 3457 if( nOrderBy ){ 3458 /* If there is an ORDER BY clause and it is not being ignored, set up 3459 ** space for the aSortCost[] array. Each element of the aSortCost array 3460 ** is either zero - meaning it has not yet been initialized - or the 3461 ** cost of sorting nRowEst rows of data where the first X terms of 3462 ** the ORDER BY clause are already in order, where X is the array 3463 ** index. */ 3464 aSortCost = (LogEst*)pX; 3465 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); 3466 } 3467 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); 3468 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); 3469 3470 /* Seed the search with a single WherePath containing zero WhereLoops. 3471 ** 3472 ** TUNING: Do not let the number of iterations go above 28. If the cost 3473 ** of computing an automatic index is not paid back within the first 28 3474 ** rows, then do not use the automatic index. */ 3475 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) ); 3476 nFrom = 1; 3477 assert( aFrom[0].isOrdered==0 ); 3478 if( nOrderBy ){ 3479 /* If nLoop is zero, then there are no FROM terms in the query. Since 3480 ** in this case the query may return a maximum of one row, the results 3481 ** are already in the requested order. Set isOrdered to nOrderBy to 3482 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to 3483 ** -1, indicating that the result set may or may not be ordered, 3484 ** depending on the loops added to the current plan. */ 3485 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; 3486 } 3487 3488 /* Compute successively longer WherePaths using the previous generation 3489 ** of WherePaths as the basis for the next. Keep track of the mxChoice 3490 ** best paths at each generation */ 3491 for(iLoop=0; iLoop<nLoop; iLoop++){ 3492 nTo = 0; 3493 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ 3494 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ 3495 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ 3496 LogEst rCost; /* Cost of path (pFrom+pWLoop) */ 3497 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ 3498 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */ 3499 Bitmask maskNew; /* Mask of src visited by (..) */ 3500 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */ 3501 3502 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; 3503 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; 3504 /* At this point, pWLoop is a candidate to be the next loop. 3505 ** Compute its cost */ 3506 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); 3507 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); 3508 nOut = pFrom->nRow + pWLoop->nOut; 3509 maskNew = pFrom->maskLoop | pWLoop->maskSelf; 3510 if( isOrdered<0 ){ 3511 isOrdered = wherePathSatisfiesOrderBy(pWInfo, 3512 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, 3513 iLoop, pWLoop, &revMask); 3514 }else{ 3515 revMask = pFrom->revLoop; 3516 } 3517 if( isOrdered>=0 && isOrdered<nOrderBy ){ 3518 if( aSortCost[isOrdered]==0 ){ 3519 aSortCost[isOrdered] = whereSortingCost( 3520 pWInfo, nRowEst, nOrderBy, isOrdered 3521 ); 3522 } 3523 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]); 3524 3525 WHERETRACE(0x002, 3526 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", 3527 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, 3528 rUnsorted, rCost)); 3529 }else{ 3530 rCost = rUnsorted; 3531 } 3532 3533 /* Check to see if pWLoop should be added to the set of 3534 ** mxChoice best-so-far paths. 3535 ** 3536 ** First look for an existing path among best-so-far paths 3537 ** that covers the same set of loops and has the same isOrdered 3538 ** setting as the current path candidate. 3539 ** 3540 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent 3541 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range 3542 ** of legal values for isOrdered, -1..64. 3543 */ 3544 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ 3545 if( pTo->maskLoop==maskNew 3546 && ((pTo->isOrdered^isOrdered)&0x80)==0 3547 ){ 3548 testcase( jj==nTo-1 ); 3549 break; 3550 } 3551 } 3552 if( jj>=nTo ){ 3553 /* None of the existing best-so-far paths match the candidate. */ 3554 if( nTo>=mxChoice 3555 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) 3556 ){ 3557 /* The current candidate is no better than any of the mxChoice 3558 ** paths currently in the best-so-far buffer. So discard 3559 ** this candidate as not viable. */ 3560 #ifdef WHERETRACE_ENABLED /* 0x4 */ 3561 if( sqlite3WhereTrace&0x4 ){ 3562 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d order=%c\n", 3563 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 3564 isOrdered>=0 ? isOrdered+'0' : '?'); 3565 } 3566 #endif 3567 continue; 3568 } 3569 /* If we reach this points it means that the new candidate path 3570 ** needs to be added to the set of best-so-far paths. */ 3571 if( nTo<mxChoice ){ 3572 /* Increase the size of the aTo set by one */ 3573 jj = nTo++; 3574 }else{ 3575 /* New path replaces the prior worst to keep count below mxChoice */ 3576 jj = mxI; 3577 } 3578 pTo = &aTo[jj]; 3579 #ifdef WHERETRACE_ENABLED /* 0x4 */ 3580 if( sqlite3WhereTrace&0x4 ){ 3581 sqlite3DebugPrintf("New %s cost=%-3d,%3d order=%c\n", 3582 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 3583 isOrdered>=0 ? isOrdered+'0' : '?'); 3584 } 3585 #endif 3586 }else{ 3587 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the 3588 ** same set of loops and has the sam isOrdered setting as the 3589 ** candidate path. Check to see if the candidate should replace 3590 ** pTo or if the candidate should be skipped */ 3591 if( pTo->rCost<rCost || (pTo->rCost==rCost && pTo->nRow<=nOut) ){ 3592 #ifdef WHERETRACE_ENABLED /* 0x4 */ 3593 if( sqlite3WhereTrace&0x4 ){ 3594 sqlite3DebugPrintf( 3595 "Skip %s cost=%-3d,%3d order=%c", 3596 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 3597 isOrdered>=0 ? isOrdered+'0' : '?'); 3598 sqlite3DebugPrintf(" vs %s cost=%-3d,%d order=%c\n", 3599 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 3600 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 3601 } 3602 #endif 3603 /* Discard the candidate path from further consideration */ 3604 testcase( pTo->rCost==rCost ); 3605 continue; 3606 } 3607 testcase( pTo->rCost==rCost+1 ); 3608 /* Control reaches here if the candidate path is better than the 3609 ** pTo path. Replace pTo with the candidate. */ 3610 #ifdef WHERETRACE_ENABLED /* 0x4 */ 3611 if( sqlite3WhereTrace&0x4 ){ 3612 sqlite3DebugPrintf( 3613 "Update %s cost=%-3d,%3d order=%c", 3614 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, 3615 isOrdered>=0 ? isOrdered+'0' : '?'); 3616 sqlite3DebugPrintf(" was %s cost=%-3d,%3d order=%c\n", 3617 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 3618 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); 3619 } 3620 #endif 3621 } 3622 /* pWLoop is a winner. Add it to the set of best so far */ 3623 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; 3624 pTo->revLoop = revMask; 3625 pTo->nRow = nOut; 3626 pTo->rCost = rCost; 3627 pTo->rUnsorted = rUnsorted; 3628 pTo->isOrdered = isOrdered; 3629 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); 3630 pTo->aLoop[iLoop] = pWLoop; 3631 if( nTo>=mxChoice ){ 3632 mxI = 0; 3633 mxCost = aTo[0].rCost; 3634 mxUnsorted = aTo[0].nRow; 3635 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ 3636 if( pTo->rCost>mxCost 3637 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) 3638 ){ 3639 mxCost = pTo->rCost; 3640 mxUnsorted = pTo->rUnsorted; 3641 mxI = jj; 3642 } 3643 } 3644 } 3645 } 3646 } 3647 3648 #ifdef WHERETRACE_ENABLED /* >=2 */ 3649 if( sqlite3WhereTrace & 0x02 ){ 3650 sqlite3DebugPrintf("---- after round %d ----\n", iLoop); 3651 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ 3652 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", 3653 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, 3654 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); 3655 if( pTo->isOrdered>0 ){ 3656 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); 3657 }else{ 3658 sqlite3DebugPrintf("\n"); 3659 } 3660 } 3661 } 3662 #endif 3663 3664 /* Swap the roles of aFrom and aTo for the next generation */ 3665 pFrom = aTo; 3666 aTo = aFrom; 3667 aFrom = pFrom; 3668 nFrom = nTo; 3669 } 3670 3671 if( nFrom==0 ){ 3672 sqlite3ErrorMsg(pParse, "no query solution"); 3673 sqlite3DbFree(db, pSpace); 3674 return SQLITE_ERROR; 3675 } 3676 3677 /* Find the lowest cost path. pFrom will be left pointing to that path */ 3678 pFrom = aFrom; 3679 for(ii=1; ii<nFrom; ii++){ 3680 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; 3681 } 3682 assert( pWInfo->nLevel==nLoop ); 3683 /* Load the lowest cost path into pWInfo */ 3684 for(iLoop=0; iLoop<nLoop; iLoop++){ 3685 WhereLevel *pLevel = pWInfo->a + iLoop; 3686 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; 3687 pLevel->iFrom = pWLoop->iTab; 3688 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; 3689 } 3690 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 3691 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 3692 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP 3693 && nRowEst 3694 ){ 3695 Bitmask notUsed; 3696 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, 3697 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); 3698 if( rc==pWInfo->pResultSet->nExpr ){ 3699 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 3700 } 3701 } 3702 if( pWInfo->pOrderBy ){ 3703 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ 3704 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ 3705 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; 3706 } 3707 }else{ 3708 pWInfo->nOBSat = pFrom->isOrdered; 3709 if( pWInfo->nOBSat<0 ) pWInfo->nOBSat = 0; 3710 pWInfo->revMask = pFrom->revLoop; 3711 } 3712 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) 3713 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 3714 ){ 3715 Bitmask revMask = 0; 3716 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, 3717 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask 3718 ); 3719 assert( pWInfo->sorted==0 ); 3720 if( nOrder==pWInfo->pOrderBy->nExpr ){ 3721 pWInfo->sorted = 1; 3722 pWInfo->revMask = revMask; 3723 } 3724 } 3725 } 3726 3727 3728 pWInfo->nRowOut = pFrom->nRow; 3729 3730 /* Free temporary memory and return success */ 3731 sqlite3DbFree(db, pSpace); 3732 return SQLITE_OK; 3733 } 3734 3735 /* 3736 ** Most queries use only a single table (they are not joins) and have 3737 ** simple == constraints against indexed fields. This routine attempts 3738 ** to plan those simple cases using much less ceremony than the 3739 ** general-purpose query planner, and thereby yield faster sqlite3_prepare() 3740 ** times for the common case. 3741 ** 3742 ** Return non-zero on success, if this query can be handled by this 3743 ** no-frills query planner. Return zero if this query needs the 3744 ** general-purpose query planner. 3745 */ 3746 static int whereShortCut(WhereLoopBuilder *pBuilder){ 3747 WhereInfo *pWInfo; 3748 struct SrcList_item *pItem; 3749 WhereClause *pWC; 3750 WhereTerm *pTerm; 3751 WhereLoop *pLoop; 3752 int iCur; 3753 int j; 3754 Table *pTab; 3755 Index *pIdx; 3756 3757 pWInfo = pBuilder->pWInfo; 3758 if( pWInfo->wctrlFlags & WHERE_FORCE_TABLE ) return 0; 3759 assert( pWInfo->pTabList->nSrc>=1 ); 3760 pItem = pWInfo->pTabList->a; 3761 pTab = pItem->pTab; 3762 if( IsVirtual(pTab) ) return 0; 3763 if( pItem->fg.isIndexedBy ) return 0; 3764 iCur = pItem->iCursor; 3765 pWC = &pWInfo->sWC; 3766 pLoop = pBuilder->pNew; 3767 pLoop->wsFlags = 0; 3768 pLoop->nSkip = 0; 3769 pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0); 3770 if( pTerm ){ 3771 testcase( pTerm->eOperator & WO_IS ); 3772 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; 3773 pLoop->aLTerm[0] = pTerm; 3774 pLoop->nLTerm = 1; 3775 pLoop->u.btree.nEq = 1; 3776 /* TUNING: Cost of a rowid lookup is 10 */ 3777 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ 3778 }else{ 3779 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ 3780 int opMask; 3781 assert( pLoop->aLTermSpace==pLoop->aLTerm ); 3782 if( !IsUniqueIndex(pIdx) 3783 || pIdx->pPartIdxWhere!=0 3784 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) 3785 ) continue; 3786 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; 3787 for(j=0; j<pIdx->nKeyCol; j++){ 3788 pTerm = sqlite3WhereFindTerm(pWC, iCur, pIdx->aiColumn[j], 0, opMask, pIdx); 3789 if( pTerm==0 ) break; 3790 testcase( pTerm->eOperator & WO_IS ); 3791 pLoop->aLTerm[j] = pTerm; 3792 } 3793 if( j!=pIdx->nKeyCol ) continue; 3794 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; 3795 if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){ 3796 pLoop->wsFlags |= WHERE_IDX_ONLY; 3797 } 3798 pLoop->nLTerm = j; 3799 pLoop->u.btree.nEq = j; 3800 pLoop->u.btree.pIndex = pIdx; 3801 /* TUNING: Cost of a unique index lookup is 15 */ 3802 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ 3803 break; 3804 } 3805 } 3806 if( pLoop->wsFlags ){ 3807 pLoop->nOut = (LogEst)1; 3808 pWInfo->a[0].pWLoop = pLoop; 3809 pLoop->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); 3810 pWInfo->a[0].iTabCur = iCur; 3811 pWInfo->nRowOut = 1; 3812 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; 3813 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ 3814 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 3815 } 3816 #ifdef SQLITE_DEBUG 3817 pLoop->cId = '0'; 3818 #endif 3819 return 1; 3820 } 3821 return 0; 3822 } 3823 3824 /* 3825 ** Generate the beginning of the loop used for WHERE clause processing. 3826 ** The return value is a pointer to an opaque structure that contains 3827 ** information needed to terminate the loop. Later, the calling routine 3828 ** should invoke sqlite3WhereEnd() with the return value of this function 3829 ** in order to complete the WHERE clause processing. 3830 ** 3831 ** If an error occurs, this routine returns NULL. 3832 ** 3833 ** The basic idea is to do a nested loop, one loop for each table in 3834 ** the FROM clause of a select. (INSERT and UPDATE statements are the 3835 ** same as a SELECT with only a single table in the FROM clause.) For 3836 ** example, if the SQL is this: 3837 ** 3838 ** SELECT * FROM t1, t2, t3 WHERE ...; 3839 ** 3840 ** Then the code generated is conceptually like the following: 3841 ** 3842 ** foreach row1 in t1 do \ Code generated 3843 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 3844 ** foreach row3 in t3 do / 3845 ** ... 3846 ** end \ Code generated 3847 ** end |-- by sqlite3WhereEnd() 3848 ** end / 3849 ** 3850 ** Note that the loops might not be nested in the order in which they 3851 ** appear in the FROM clause if a different order is better able to make 3852 ** use of indices. Note also that when the IN operator appears in 3853 ** the WHERE clause, it might result in additional nested loops for 3854 ** scanning through all values on the right-hand side of the IN. 3855 ** 3856 ** There are Btree cursors associated with each table. t1 uses cursor 3857 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 3858 ** And so forth. This routine generates code to open those VDBE cursors 3859 ** and sqlite3WhereEnd() generates the code to close them. 3860 ** 3861 ** The code that sqlite3WhereBegin() generates leaves the cursors named 3862 ** in pTabList pointing at their appropriate entries. The [...] code 3863 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 3864 ** data from the various tables of the loop. 3865 ** 3866 ** If the WHERE clause is empty, the foreach loops must each scan their 3867 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 3868 ** the tables have indices and there are terms in the WHERE clause that 3869 ** refer to those indices, a complete table scan can be avoided and the 3870 ** code will run much faster. Most of the work of this routine is checking 3871 ** to see if there are indices that can be used to speed up the loop. 3872 ** 3873 ** Terms of the WHERE clause are also used to limit which rows actually 3874 ** make it to the "..." in the middle of the loop. After each "foreach", 3875 ** terms of the WHERE clause that use only terms in that loop and outer 3876 ** loops are evaluated and if false a jump is made around all subsequent 3877 ** inner loops (or around the "..." if the test occurs within the inner- 3878 ** most loop) 3879 ** 3880 ** OUTER JOINS 3881 ** 3882 ** An outer join of tables t1 and t2 is conceptally coded as follows: 3883 ** 3884 ** foreach row1 in t1 do 3885 ** flag = 0 3886 ** foreach row2 in t2 do 3887 ** start: 3888 ** ... 3889 ** flag = 1 3890 ** end 3891 ** if flag==0 then 3892 ** move the row2 cursor to a null row 3893 ** goto start 3894 ** fi 3895 ** end 3896 ** 3897 ** ORDER BY CLAUSE PROCESSING 3898 ** 3899 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause 3900 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement 3901 ** if there is one. If there is no ORDER BY clause or if this routine 3902 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. 3903 ** 3904 ** The iIdxCur parameter is the cursor number of an index. If 3905 ** WHERE_ONETABLE_ONLY is set, iIdxCur is the cursor number of an index 3906 ** to use for OR clause processing. The WHERE clause should use this 3907 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is 3908 ** the first cursor in an array of cursors for all indices. iIdxCur should 3909 ** be used to compute the appropriate cursor depending on which index is 3910 ** used. 3911 */ 3912 WhereInfo *sqlite3WhereBegin( 3913 Parse *pParse, /* The parser context */ 3914 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ 3915 Expr *pWhere, /* The WHERE clause */ 3916 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ 3917 ExprList *pResultSet, /* Result set of the query */ 3918 u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */ 3919 int iIdxCur /* If WHERE_ONETABLE_ONLY is set, index cursor number */ 3920 ){ 3921 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ 3922 int nTabList; /* Number of elements in pTabList */ 3923 WhereInfo *pWInfo; /* Will become the return value of this function */ 3924 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 3925 Bitmask notReady; /* Cursors that are not yet positioned */ 3926 WhereLoopBuilder sWLB; /* The WhereLoop builder */ 3927 WhereMaskSet *pMaskSet; /* The expression mask set */ 3928 WhereLevel *pLevel; /* A single level in pWInfo->a[] */ 3929 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ 3930 int ii; /* Loop counter */ 3931 sqlite3 *db; /* Database connection */ 3932 int rc; /* Return code */ 3933 3934 3935 /* Variable initialization */ 3936 db = pParse->db; 3937 memset(&sWLB, 0, sizeof(sWLB)); 3938 3939 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ 3940 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); 3941 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; 3942 sWLB.pOrderBy = pOrderBy; 3943 3944 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via 3945 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ 3946 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ 3947 wctrlFlags &= ~WHERE_WANT_DISTINCT; 3948 } 3949 3950 /* The number of tables in the FROM clause is limited by the number of 3951 ** bits in a Bitmask 3952 */ 3953 testcase( pTabList->nSrc==BMS ); 3954 if( pTabList->nSrc>BMS ){ 3955 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 3956 return 0; 3957 } 3958 3959 /* This function normally generates a nested loop for all tables in 3960 ** pTabList. But if the WHERE_ONETABLE_ONLY flag is set, then we should 3961 ** only generate code for the first table in pTabList and assume that 3962 ** any cursors associated with subsequent tables are uninitialized. 3963 */ 3964 nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc; 3965 3966 /* Allocate and initialize the WhereInfo structure that will become the 3967 ** return value. A single allocation is used to store the WhereInfo 3968 ** struct, the contents of WhereInfo.a[], the WhereClause structure 3969 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte 3970 ** field (type Bitmask) it must be aligned on an 8-byte boundary on 3971 ** some architectures. Hence the ROUND8() below. 3972 */ 3973 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); 3974 pWInfo = sqlite3DbMallocZero(db, nByteWInfo + sizeof(WhereLoop)); 3975 if( db->mallocFailed ){ 3976 sqlite3DbFree(db, pWInfo); 3977 pWInfo = 0; 3978 goto whereBeginError; 3979 } 3980 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; 3981 pWInfo->nLevel = nTabList; 3982 pWInfo->pParse = pParse; 3983 pWInfo->pTabList = pTabList; 3984 pWInfo->pOrderBy = pOrderBy; 3985 pWInfo->pResultSet = pResultSet; 3986 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v); 3987 pWInfo->wctrlFlags = wctrlFlags; 3988 pWInfo->savedNQueryLoop = pParse->nQueryLoop; 3989 pMaskSet = &pWInfo->sMaskSet; 3990 sWLB.pWInfo = pWInfo; 3991 sWLB.pWC = &pWInfo->sWC; 3992 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); 3993 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); 3994 whereLoopInit(sWLB.pNew); 3995 #ifdef SQLITE_DEBUG 3996 sWLB.pNew->cId = '*'; 3997 #endif 3998 3999 /* Split the WHERE clause into separate subexpressions where each 4000 ** subexpression is separated by an AND operator. 4001 */ 4002 initMaskSet(pMaskSet); 4003 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); 4004 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); 4005 4006 /* Special case: a WHERE clause that is constant. Evaluate the 4007 ** expression and either jump over all of the code or fall thru. 4008 */ 4009 for(ii=0; ii<sWLB.pWC->nTerm; ii++){ 4010 if( nTabList==0 || sqlite3ExprIsConstantNotJoin(sWLB.pWC->a[ii].pExpr) ){ 4011 sqlite3ExprIfFalse(pParse, sWLB.pWC->a[ii].pExpr, pWInfo->iBreak, 4012 SQLITE_JUMPIFNULL); 4013 sWLB.pWC->a[ii].wtFlags |= TERM_CODED; 4014 } 4015 } 4016 4017 /* Special case: No FROM clause 4018 */ 4019 if( nTabList==0 ){ 4020 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; 4021 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4022 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4023 } 4024 } 4025 4026 /* Assign a bit from the bitmask to every term in the FROM clause. 4027 ** 4028 ** When assigning bitmask values to FROM clause cursors, it must be 4029 ** the case that if X is the bitmask for the N-th FROM clause term then 4030 ** the bitmask for all FROM clause terms to the left of the N-th term 4031 ** is (X-1). An expression from the ON clause of a LEFT JOIN can use 4032 ** its Expr.iRightJoinTable value to find the bitmask of the right table 4033 ** of the join. Subtracting one from the right table bitmask gives a 4034 ** bitmask for all tables to the left of the join. Knowing the bitmask 4035 ** for all tables to the left of a left join is important. Ticket #3015. 4036 ** 4037 ** Note that bitmasks are created for all pTabList->nSrc tables in 4038 ** pTabList, not just the first nTabList tables. nTabList is normally 4039 ** equal to pTabList->nSrc but might be shortened to 1 if the 4040 ** WHERE_ONETABLE_ONLY flag is set. 4041 */ 4042 for(ii=0; ii<pTabList->nSrc; ii++){ 4043 createMask(pMaskSet, pTabList->a[ii].iCursor); 4044 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC); 4045 } 4046 #ifndef NDEBUG 4047 { 4048 Bitmask toTheLeft = 0; 4049 for(ii=0; ii<pTabList->nSrc; ii++){ 4050 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); 4051 assert( (m-1)==toTheLeft ); 4052 toTheLeft |= m; 4053 } 4054 } 4055 #endif 4056 4057 /* Analyze all of the subexpressions. */ 4058 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); 4059 if( db->mallocFailed ) goto whereBeginError; 4060 4061 if( wctrlFlags & WHERE_WANT_DISTINCT ){ 4062 if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ 4063 /* The DISTINCT marking is pointless. Ignore it. */ 4064 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; 4065 }else if( pOrderBy==0 ){ 4066 /* Try to ORDER BY the result set to make distinct processing easier */ 4067 pWInfo->wctrlFlags |= WHERE_DISTINCTBY; 4068 pWInfo->pOrderBy = pResultSet; 4069 } 4070 } 4071 4072 /* Construct the WhereLoop objects */ 4073 WHERETRACE(0xffff,("*** Optimizer Start ***\n")); 4074 #if defined(WHERETRACE_ENABLED) 4075 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ 4076 int i; 4077 for(i=0; i<sWLB.pWC->nTerm; i++){ 4078 whereTermPrint(&sWLB.pWC->a[i], i); 4079 } 4080 } 4081 #endif 4082 4083 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ 4084 rc = whereLoopAddAll(&sWLB); 4085 if( rc ) goto whereBeginError; 4086 4087 #ifdef WHERETRACE_ENABLED 4088 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ 4089 WhereLoop *p; 4090 int i; 4091 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" 4092 "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; 4093 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ 4094 p->cId = zLabel[i%sizeof(zLabel)]; 4095 whereLoopPrint(p, sWLB.pWC); 4096 } 4097 } 4098 #endif 4099 4100 wherePathSolver(pWInfo, 0); 4101 if( db->mallocFailed ) goto whereBeginError; 4102 if( pWInfo->pOrderBy ){ 4103 wherePathSolver(pWInfo, pWInfo->nRowOut+1); 4104 if( db->mallocFailed ) goto whereBeginError; 4105 } 4106 } 4107 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ 4108 pWInfo->revMask = (Bitmask)(-1); 4109 } 4110 if( pParse->nErr || NEVER(db->mallocFailed) ){ 4111 goto whereBeginError; 4112 } 4113 #ifdef WHERETRACE_ENABLED 4114 if( sqlite3WhereTrace ){ 4115 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); 4116 if( pWInfo->nOBSat>0 ){ 4117 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); 4118 } 4119 switch( pWInfo->eDistinct ){ 4120 case WHERE_DISTINCT_UNIQUE: { 4121 sqlite3DebugPrintf(" DISTINCT=unique"); 4122 break; 4123 } 4124 case WHERE_DISTINCT_ORDERED: { 4125 sqlite3DebugPrintf(" DISTINCT=ordered"); 4126 break; 4127 } 4128 case WHERE_DISTINCT_UNORDERED: { 4129 sqlite3DebugPrintf(" DISTINCT=unordered"); 4130 break; 4131 } 4132 } 4133 sqlite3DebugPrintf("\n"); 4134 for(ii=0; ii<pWInfo->nLevel; ii++){ 4135 whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); 4136 } 4137 } 4138 #endif 4139 /* Attempt to omit tables from the join that do not effect the result */ 4140 if( pWInfo->nLevel>=2 4141 && pResultSet!=0 4142 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) 4143 ){ 4144 Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet); 4145 if( sWLB.pOrderBy ){ 4146 tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy); 4147 } 4148 while( pWInfo->nLevel>=2 ){ 4149 WhereTerm *pTerm, *pEnd; 4150 pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop; 4151 if( (pWInfo->pTabList->a[pLoop->iTab].fg.jointype & JT_LEFT)==0 ) break; 4152 if( (wctrlFlags & WHERE_WANT_DISTINCT)==0 4153 && (pLoop->wsFlags & WHERE_ONEROW)==0 4154 ){ 4155 break; 4156 } 4157 if( (tabUsed & pLoop->maskSelf)!=0 ) break; 4158 pEnd = sWLB.pWC->a + sWLB.pWC->nTerm; 4159 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ 4160 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 4161 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) 4162 ){ 4163 break; 4164 } 4165 } 4166 if( pTerm<pEnd ) break; 4167 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); 4168 pWInfo->nLevel--; 4169 nTabList--; 4170 } 4171 } 4172 WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); 4173 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; 4174 4175 /* If the caller is an UPDATE or DELETE statement that is requesting 4176 ** to use a one-pass algorithm, determine if this is appropriate. 4177 ** The one-pass algorithm only works if the WHERE clause constrains 4178 ** the statement to update or delete a single row. 4179 */ 4180 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); 4181 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 4182 && (pWInfo->a[0].pWLoop->wsFlags & WHERE_ONEROW)!=0 ){ 4183 pWInfo->okOnePass = 1; 4184 if( HasRowid(pTabList->a[0].pTab) ){ 4185 pWInfo->a[0].pWLoop->wsFlags &= ~WHERE_IDX_ONLY; 4186 } 4187 } 4188 4189 /* Open all tables in the pTabList and any indices selected for 4190 ** searching those tables. 4191 */ 4192 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ 4193 Table *pTab; /* Table to open */ 4194 int iDb; /* Index of database containing table/index */ 4195 struct SrcList_item *pTabItem; 4196 4197 pTabItem = &pTabList->a[pLevel->iFrom]; 4198 pTab = pTabItem->pTab; 4199 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); 4200 pLoop = pLevel->pWLoop; 4201 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){ 4202 /* Do nothing */ 4203 }else 4204 #ifndef SQLITE_OMIT_VIRTUALTABLE 4205 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ 4206 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); 4207 int iCur = pTabItem->iCursor; 4208 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); 4209 }else if( IsVirtual(pTab) ){ 4210 /* noop */ 4211 }else 4212 #endif 4213 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 4214 && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){ 4215 int op = OP_OpenRead; 4216 if( pWInfo->okOnePass ){ 4217 op = OP_OpenWrite; 4218 pWInfo->aiCurOnePass[0] = pTabItem->iCursor; 4219 }; 4220 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); 4221 assert( pTabItem->iCursor==pLevel->iTabCur ); 4222 testcase( !pWInfo->okOnePass && pTab->nCol==BMS-1 ); 4223 testcase( !pWInfo->okOnePass && pTab->nCol==BMS ); 4224 if( !pWInfo->okOnePass && pTab->nCol<BMS && HasRowid(pTab) ){ 4225 Bitmask b = pTabItem->colUsed; 4226 int n = 0; 4227 for(; b; b=b>>1, n++){} 4228 sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, 4229 SQLITE_INT_TO_PTR(n), P4_INT32); 4230 assert( n<=pTab->nCol ); 4231 } 4232 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4233 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, 4234 (const u8*)&pTabItem->colUsed, P4_INT64); 4235 #endif 4236 }else{ 4237 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 4238 } 4239 if( pLoop->wsFlags & WHERE_INDEXED ){ 4240 Index *pIx = pLoop->u.btree.pIndex; 4241 int iIndexCur; 4242 int op = OP_OpenRead; 4243 /* iIdxCur is always set if to a positive value if ONEPASS is possible */ 4244 assert( iIdxCur!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); 4245 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) 4246 && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 4247 ){ 4248 /* This is one term of an OR-optimization using the PRIMARY KEY of a 4249 ** WITHOUT ROWID table. No need for a separate index */ 4250 iIndexCur = pLevel->iTabCur; 4251 op = 0; 4252 }else if( pWInfo->okOnePass ){ 4253 Index *pJ = pTabItem->pTab->pIndex; 4254 iIndexCur = iIdxCur; 4255 assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); 4256 while( ALWAYS(pJ) && pJ!=pIx ){ 4257 iIndexCur++; 4258 pJ = pJ->pNext; 4259 } 4260 op = OP_OpenWrite; 4261 pWInfo->aiCurOnePass[1] = iIndexCur; 4262 }else if( iIdxCur && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ){ 4263 iIndexCur = iIdxCur; 4264 if( wctrlFlags & WHERE_REOPEN_IDX ) op = OP_ReopenIdx; 4265 }else{ 4266 iIndexCur = pParse->nTab++; 4267 } 4268 pLevel->iIdxCur = iIndexCur; 4269 assert( pIx->pSchema==pTab->pSchema ); 4270 assert( iIndexCur>=0 ); 4271 if( op ){ 4272 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); 4273 sqlite3VdbeSetP4KeyInfo(pParse, pIx); 4274 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 4275 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 4276 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 4277 ){ 4278 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */ 4279 } 4280 VdbeComment((v, "%s", pIx->zName)); 4281 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK 4282 { 4283 u64 colUsed = 0; 4284 int ii, jj; 4285 for(ii=0; ii<pIx->nColumn; ii++){ 4286 jj = pIx->aiColumn[ii]; 4287 if( jj<0 ) continue; 4288 if( jj>63 ) jj = 63; 4289 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue; 4290 colUsed |= ((u64)1)<<(ii<63 ? ii : 63); 4291 } 4292 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, 4293 (u8*)&colUsed, P4_INT64); 4294 } 4295 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ 4296 } 4297 } 4298 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); 4299 } 4300 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 4301 if( db->mallocFailed ) goto whereBeginError; 4302 4303 /* Generate the code to do the search. Each iteration of the for 4304 ** loop below generates code for a single nested loop of the VM 4305 ** program. 4306 */ 4307 notReady = ~(Bitmask)0; 4308 for(ii=0; ii<nTabList; ii++){ 4309 int addrExplain; 4310 int wsFlags; 4311 pLevel = &pWInfo->a[ii]; 4312 wsFlags = pLevel->pWLoop->wsFlags; 4313 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX 4314 if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ 4315 constructAutomaticIndex(pParse, &pWInfo->sWC, 4316 &pTabList->a[pLevel->iFrom], notReady, pLevel); 4317 if( db->mallocFailed ) goto whereBeginError; 4318 } 4319 #endif 4320 addrExplain = sqlite3WhereExplainOneScan( 4321 pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags 4322 ); 4323 pLevel->addrBody = sqlite3VdbeCurrentAddr(v); 4324 notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady); 4325 pWInfo->iContinue = pLevel->addrCont; 4326 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_ONETABLE_ONLY)==0 ){ 4327 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); 4328 } 4329 } 4330 4331 /* Done. */ 4332 VdbeModuleComment((v, "Begin WHERE-core")); 4333 return pWInfo; 4334 4335 /* Jump here if malloc fails */ 4336 whereBeginError: 4337 if( pWInfo ){ 4338 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 4339 whereInfoFree(db, pWInfo); 4340 } 4341 return 0; 4342 } 4343 4344 /* 4345 ** Generate the end of the WHERE loop. See comments on 4346 ** sqlite3WhereBegin() for additional information. 4347 */ 4348 void sqlite3WhereEnd(WhereInfo *pWInfo){ 4349 Parse *pParse = pWInfo->pParse; 4350 Vdbe *v = pParse->pVdbe; 4351 int i; 4352 WhereLevel *pLevel; 4353 WhereLoop *pLoop; 4354 SrcList *pTabList = pWInfo->pTabList; 4355 sqlite3 *db = pParse->db; 4356 4357 /* Generate loop termination code. 4358 */ 4359 VdbeModuleComment((v, "End WHERE-core")); 4360 sqlite3ExprCacheClear(pParse); 4361 for(i=pWInfo->nLevel-1; i>=0; i--){ 4362 int addr; 4363 pLevel = &pWInfo->a[i]; 4364 pLoop = pLevel->pWLoop; 4365 sqlite3VdbeResolveLabel(v, pLevel->addrCont); 4366 if( pLevel->op!=OP_Noop ){ 4367 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); 4368 sqlite3VdbeChangeP5(v, pLevel->p5); 4369 VdbeCoverage(v); 4370 VdbeCoverageIf(v, pLevel->op==OP_Next); 4371 VdbeCoverageIf(v, pLevel->op==OP_Prev); 4372 VdbeCoverageIf(v, pLevel->op==OP_VNext); 4373 } 4374 if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ 4375 struct InLoop *pIn; 4376 int j; 4377 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); 4378 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ 4379 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); 4380 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); 4381 VdbeCoverage(v); 4382 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen); 4383 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen); 4384 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); 4385 } 4386 } 4387 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); 4388 if( pLevel->addrSkip ){ 4389 sqlite3VdbeGoto(v, pLevel->addrSkip); 4390 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); 4391 sqlite3VdbeJumpHere(v, pLevel->addrSkip); 4392 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); 4393 } 4394 if( pLevel->addrLikeRep ){ 4395 int op; 4396 if( sqlite3VdbeGetOp(v, pLevel->addrLikeRep-1)->p1 ){ 4397 op = OP_DecrJumpZero; 4398 }else{ 4399 op = OP_JumpZeroIncr; 4400 } 4401 sqlite3VdbeAddOp2(v, op, pLevel->iLikeRepCntr, pLevel->addrLikeRep); 4402 VdbeCoverage(v); 4403 } 4404 if( pLevel->iLeftJoin ){ 4405 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); 4406 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 4407 || (pLoop->wsFlags & WHERE_INDEXED)!=0 ); 4408 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){ 4409 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); 4410 } 4411 if( pLoop->wsFlags & WHERE_INDEXED ){ 4412 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); 4413 } 4414 if( pLevel->op==OP_Return ){ 4415 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); 4416 }else{ 4417 sqlite3VdbeGoto(v, pLevel->addrFirst); 4418 } 4419 sqlite3VdbeJumpHere(v, addr); 4420 } 4421 VdbeModuleComment((v, "End WHERE-loop%d: %s", i, 4422 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); 4423 } 4424 4425 /* The "break" point is here, just past the end of the outer loop. 4426 ** Set it. 4427 */ 4428 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 4429 4430 assert( pWInfo->nLevel<=pTabList->nSrc ); 4431 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ 4432 int k, last; 4433 VdbeOp *pOp; 4434 Index *pIdx = 0; 4435 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 4436 Table *pTab = pTabItem->pTab; 4437 assert( pTab!=0 ); 4438 pLoop = pLevel->pWLoop; 4439 4440 /* For a co-routine, change all OP_Column references to the table of 4441 ** the co-routine into OP_Copy of result contained in a register. 4442 ** OP_Rowid becomes OP_Null. 4443 */ 4444 if( pTabItem->fg.viaCoroutine && !db->mallocFailed ){ 4445 translateColumnToCopy(v, pLevel->addrBody, pLevel->iTabCur, 4446 pTabItem->regResult); 4447 continue; 4448 } 4449 4450 /* Close all of the cursors that were opened by sqlite3WhereBegin. 4451 ** Except, do not close cursors that will be reused by the OR optimization 4452 ** (WHERE_OMIT_OPEN_CLOSE). And do not close the OP_OpenWrite cursors 4453 ** created for the ONEPASS optimization. 4454 */ 4455 if( (pTab->tabFlags & TF_Ephemeral)==0 4456 && pTab->pSelect==0 4457 && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 4458 ){ 4459 int ws = pLoop->wsFlags; 4460 if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){ 4461 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); 4462 } 4463 if( (ws & WHERE_INDEXED)!=0 4464 && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0 4465 && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1] 4466 ){ 4467 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); 4468 } 4469 } 4470 4471 /* If this scan uses an index, make VDBE code substitutions to read data 4472 ** from the index instead of from the table where possible. In some cases 4473 ** this optimization prevents the table from ever being read, which can 4474 ** yield a significant performance boost. 4475 ** 4476 ** Calls to the code generator in between sqlite3WhereBegin and 4477 ** sqlite3WhereEnd will have created code that references the table 4478 ** directly. This loop scans all that code looking for opcodes 4479 ** that reference the table and converts them into opcodes that 4480 ** reference the index. 4481 */ 4482 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ 4483 pIdx = pLoop->u.btree.pIndex; 4484 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ 4485 pIdx = pLevel->u.pCovidx; 4486 } 4487 if( pIdx && !db->mallocFailed ){ 4488 last = sqlite3VdbeCurrentAddr(v); 4489 k = pLevel->addrBody; 4490 pOp = sqlite3VdbeGetOp(v, k); 4491 for(; k<last; k++, pOp++){ 4492 if( pOp->p1!=pLevel->iTabCur ) continue; 4493 if( pOp->opcode==OP_Column ){ 4494 int x = pOp->p2; 4495 assert( pIdx->pTable==pTab ); 4496 if( !HasRowid(pTab) ){ 4497 Index *pPk = sqlite3PrimaryKeyIndex(pTab); 4498 x = pPk->aiColumn[x]; 4499 } 4500 x = sqlite3ColumnOfIndex(pIdx, x); 4501 if( x>=0 ){ 4502 pOp->p2 = x; 4503 pOp->p1 = pLevel->iIdxCur; 4504 } 4505 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 ); 4506 }else if( pOp->opcode==OP_Rowid ){ 4507 pOp->p1 = pLevel->iIdxCur; 4508 pOp->opcode = OP_IdxRowid; 4509 } 4510 } 4511 } 4512 } 4513 4514 /* Final cleanup 4515 */ 4516 pParse->nQueryLoop = pWInfo->savedNQueryLoop; 4517 whereInfoFree(db, pWInfo); 4518 return; 4519 } 4520