1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is reponsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 ** 19 ** $Id: where.c,v 1.159 2005/08/02 17:48:22 drh Exp $ 20 */ 21 #include "sqliteInt.h" 22 23 /* 24 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 25 */ 26 #define BMS (sizeof(Bitmask)*8) 27 28 /* 29 ** Determine the number of elements in an array. 30 */ 31 #define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0])) 32 33 /* 34 ** Trace output macros 35 */ 36 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 37 int sqlite3_where_trace = 0; 38 # define TRACE(X) if(sqlite3_where_trace) sqlite3DebugPrintf X 39 #else 40 # define TRACE(X) 41 #endif 42 43 /* Forward reference 44 */ 45 typedef struct WhereClause WhereClause; 46 47 /* 48 ** The query generator uses an array of instances of this structure to 49 ** help it analyze the subexpressions of the WHERE clause. Each WHERE 50 ** clause subexpression is separated from the others by an AND operator. 51 ** 52 ** All WhereTerms are collected into a single WhereClause structure. 53 ** The following identity holds: 54 ** 55 ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm 56 ** 57 ** When a term is of the form: 58 ** 59 ** X <op> <expr> 60 ** 61 ** where X is a column name and <op> is one of certain operators, 62 ** then WhereTerm.leftCursor and WhereTerm.leftColumn record the 63 ** cursor number and column number for X. WhereTerm.operator records 64 ** the <op> using a bitmask encoding defined by WO_xxx below. The 65 ** use of a bitmask encoding for the operator allows us to search 66 ** quickly for terms that match any of several different operators. 67 ** 68 ** prereqRight and prereqAll record sets of cursor numbers, 69 ** but they do so indirectly. A single ExprMaskSet structure translates 70 ** cursor number into bits and the translated bit is stored in the prereq 71 ** fields. The translation is used in order to maximize the number of 72 ** bits that will fit in a Bitmask. The VDBE cursor numbers might be 73 ** spread out over the non-negative integers. For example, the cursor 74 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The ExprMaskSet 75 ** translates these sparse cursor numbers into consecutive integers 76 ** beginning with 0 in order to make the best possible use of the available 77 ** bits in the Bitmask. So, in the example above, the cursor numbers 78 ** would be mapped into integers 0 through 7. 79 */ 80 typedef struct WhereTerm WhereTerm; 81 struct WhereTerm { 82 Expr *pExpr; /* Pointer to the subexpression */ 83 u16 idx; /* Index of this term in pWC->a[] */ 84 i16 iParent; /* Disable pWC->a[iParent] when this term disabled */ 85 i16 leftCursor; /* Cursor number of X in "X <op> <expr>" */ 86 i16 leftColumn; /* Column number of X in "X <op> <expr>" */ 87 u16 operator; /* A WO_xx value describing <op> */ 88 u8 flags; /* Bit flags. See below */ 89 u8 nChild; /* Number of children that must disable us */ 90 WhereClause *pWC; /* The clause this term is part of */ 91 Bitmask prereqRight; /* Bitmask of tables used by pRight */ 92 Bitmask prereqAll; /* Bitmask of tables referenced by p */ 93 }; 94 95 /* 96 ** Allowed values of WhereTerm.flags 97 */ 98 #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(pExpr) */ 99 #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */ 100 #define TERM_CODED 0x04 /* This term is already coded */ 101 #define TERM_COPIED 0x08 /* Has a child */ 102 #define TERM_OR_OK 0x10 /* Used during OR-clause processing */ 103 104 /* 105 ** An instance of the following structure holds all information about a 106 ** WHERE clause. Mostly this is a container for one or more WhereTerms. 107 */ 108 struct WhereClause { 109 Parse *pParse; /* The parser context */ 110 int nTerm; /* Number of terms */ 111 int nSlot; /* Number of entries in a[] */ 112 WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */ 113 WhereTerm aStatic[10]; /* Initial static space for a[] */ 114 }; 115 116 /* 117 ** An instance of the following structure keeps track of a mapping 118 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm. 119 ** 120 ** The VDBE cursor numbers are small integers contained in 121 ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE 122 ** clause, the cursor numbers might not begin with 0 and they might 123 ** contain gaps in the numbering sequence. But we want to make maximum 124 ** use of the bits in our bitmasks. This structure provides a mapping 125 ** from the sparse cursor numbers into consecutive integers beginning 126 ** with 0. 127 ** 128 ** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask 129 ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A. 130 ** 131 ** For example, if the WHERE clause expression used these VDBE 132 ** cursors: 4, 5, 8, 29, 57, 73. Then the ExprMaskSet structure 133 ** would map those cursor numbers into bits 0 through 5. 134 ** 135 ** Note that the mapping is not necessarily ordered. In the example 136 ** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0, 137 ** 57->5, 73->4. Or one of 719 other combinations might be used. It 138 ** does not really matter. What is important is that sparse cursor 139 ** numbers all get mapped into bit numbers that begin with 0 and contain 140 ** no gaps. 141 */ 142 typedef struct ExprMaskSet ExprMaskSet; 143 struct ExprMaskSet { 144 int n; /* Number of assigned cursor values */ 145 int ix[sizeof(Bitmask)*8]; /* Cursor assigned to each bit */ 146 }; 147 148 149 /* 150 ** Bitmasks for the operators that indices are able to exploit. An 151 ** OR-ed combination of these values can be used when searching for 152 ** terms in the where clause. 153 */ 154 #define WO_IN 1 155 #define WO_EQ 2 156 #define WO_LT (WO_EQ<<(TK_LT-TK_EQ)) 157 #define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) 158 #define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) 159 #define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) 160 161 /* 162 ** Value for flags returned by bestIndex() 163 */ 164 #define WHERE_ROWID_EQ 0x0001 /* rowid=EXPR or rowid IN (...) */ 165 #define WHERE_ROWID_RANGE 0x0002 /* rowid<EXPR and/or rowid>EXPR */ 166 #define WHERE_COLUMN_EQ 0x0010 /* x=EXPR or x IN (...) */ 167 #define WHERE_COLUMN_RANGE 0x0020 /* x<EXPR and/or x>EXPR */ 168 #define WHERE_COLUMN_IN 0x0040 /* x IN (...) */ 169 #define WHERE_TOP_LIMIT 0x0100 /* x<EXPR or x<=EXPR constraint */ 170 #define WHERE_BTM_LIMIT 0x0200 /* x>EXPR or x>=EXPR constraint */ 171 #define WHERE_IDX_ONLY 0x0800 /* Use index only - omit table */ 172 #define WHERE_ORDERBY 0x1000 /* Output will appear in correct order */ 173 #define WHERE_REVERSE 0x2000 /* Scan in reverse order */ 174 #define WHERE_UNIQUE 0x4000 /* Selects no more than one row */ 175 176 /* 177 ** Initialize a preallocated WhereClause structure. 178 */ 179 static void whereClauseInit(WhereClause *pWC, Parse *pParse){ 180 pWC->pParse = pParse; 181 pWC->nTerm = 0; 182 pWC->nSlot = ARRAYSIZE(pWC->aStatic); 183 pWC->a = pWC->aStatic; 184 } 185 186 /* 187 ** Deallocate a WhereClause structure. The WhereClause structure 188 ** itself is not freed. This routine is the inverse of whereClauseInit(). 189 */ 190 static void whereClauseClear(WhereClause *pWC){ 191 int i; 192 WhereTerm *a; 193 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ 194 if( a->flags & TERM_DYNAMIC ){ 195 sqlite3ExprDelete(a->pExpr); 196 } 197 } 198 if( pWC->a!=pWC->aStatic ){ 199 sqliteFree(pWC->a); 200 } 201 } 202 203 /* 204 ** Add a new entries to the WhereClause structure. Increase the allocated 205 ** space as necessary. 206 */ 207 static WhereTerm *whereClauseInsert(WhereClause *pWC, Expr *p, int flags){ 208 WhereTerm *pTerm; 209 if( pWC->nTerm>=pWC->nSlot ){ 210 WhereTerm *pOld = pWC->a; 211 pWC->a = sqliteMalloc( sizeof(pWC->a[0])*pWC->nSlot*2 ); 212 if( pWC->a==0 ) return 0; 213 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); 214 if( pOld!=pWC->aStatic ){ 215 sqliteFree(pOld); 216 } 217 pWC->nSlot *= 2; 218 } 219 pTerm = &pWC->a[pWC->nTerm]; 220 pTerm->idx = pWC->nTerm; 221 pWC->nTerm++; 222 pTerm->pExpr = p; 223 pTerm->flags = flags; 224 pTerm->pWC = pWC; 225 pTerm->iParent = -1; 226 return pTerm; 227 } 228 229 /* 230 ** This routine identifies subexpressions in the WHERE clause where 231 ** each subexpression is separate by the AND operator or some other 232 ** operator specified in the op parameter. The WhereClause structure 233 ** is filled with pointers to subexpressions. For example: 234 ** 235 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) 236 ** \________/ \_______________/ \________________/ 237 ** slot[0] slot[1] slot[2] 238 ** 239 ** The original WHERE clause in pExpr is unaltered. All this routine 240 ** does is make slot[] entries point to substructure within pExpr. 241 ** 242 ** In the previous sentence and in the diagram, "slot[]" refers to 243 ** the WhereClause.a[] array. This array grows as needed to contain 244 ** all terms of the WHERE clause. 245 */ 246 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){ 247 if( pExpr==0 ) return; 248 if( pExpr->op!=op ){ 249 whereClauseInsert(pWC, pExpr, 0); 250 }else{ 251 whereSplit(pWC, pExpr->pLeft, op); 252 whereSplit(pWC, pExpr->pRight, op); 253 } 254 } 255 256 /* 257 ** Initialize an expression mask set 258 */ 259 #define initMaskSet(P) memset(P, 0, sizeof(*P)) 260 261 /* 262 ** Return the bitmask for the given cursor number. Return 0 if 263 ** iCursor is not in the set. 264 */ 265 static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){ 266 int i; 267 for(i=0; i<pMaskSet->n; i++){ 268 if( pMaskSet->ix[i]==iCursor ){ 269 return ((Bitmask)1)<<i; 270 } 271 } 272 return 0; 273 } 274 275 /* 276 ** Create a new mask for cursor iCursor. 277 ** 278 ** There is one cursor per table in the FROM clause. The number of 279 ** tables in the FROM clause is limited by a test early in the 280 ** sqlite3WhereBegin() routien. So we know that the pMaskSet->ix[] 281 ** array will never overflow. 282 */ 283 static void createMask(ExprMaskSet *pMaskSet, int iCursor){ 284 assert( pMaskSet->n < ARRAYSIZE(pMaskSet->ix) ); 285 pMaskSet->ix[pMaskSet->n++] = iCursor; 286 } 287 288 /* 289 ** This routine walks (recursively) an expression tree and generates 290 ** a bitmask indicating which tables are used in that expression 291 ** tree. 292 ** 293 ** In order for this routine to work, the calling function must have 294 ** previously invoked sqlite3ExprResolveNames() on the expression. See 295 ** the header comment on that routine for additional information. 296 ** The sqlite3ExprResolveNames() routines looks for column names and 297 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to 298 ** the VDBE cursor number of the table. This routine just has to 299 ** translate the cursor numbers into bitmask values and OR all 300 ** the bitmasks together. 301 */ 302 static Bitmask exprListTableUsage(ExprMaskSet *, ExprList *); 303 static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){ 304 Bitmask mask = 0; 305 if( p==0 ) return 0; 306 if( p->op==TK_COLUMN ){ 307 mask = getMask(pMaskSet, p->iTable); 308 return mask; 309 } 310 mask = exprTableUsage(pMaskSet, p->pRight); 311 mask |= exprTableUsage(pMaskSet, p->pLeft); 312 mask |= exprListTableUsage(pMaskSet, p->pList); 313 if( p->pSelect ){ 314 Select *pS = p->pSelect; 315 mask |= exprListTableUsage(pMaskSet, pS->pEList); 316 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); 317 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); 318 mask |= exprTableUsage(pMaskSet, pS->pWhere); 319 mask |= exprTableUsage(pMaskSet, pS->pHaving); 320 } 321 return mask; 322 } 323 static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){ 324 int i; 325 Bitmask mask = 0; 326 if( pList ){ 327 for(i=0; i<pList->nExpr; i++){ 328 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); 329 } 330 } 331 return mask; 332 } 333 334 /* 335 ** Return TRUE if the given operator is one of the operators that is 336 ** allowed for an indexable WHERE clause term. The allowed operators are 337 ** "=", "<", ">", "<=", ">=", and "IN". 338 */ 339 static int allowedOp(int op){ 340 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); 341 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); 342 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); 343 assert( TK_GE==TK_EQ+4 ); 344 return op==TK_IN || (op>=TK_EQ && op<=TK_GE); 345 } 346 347 /* 348 ** Swap two objects of type T. 349 */ 350 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 351 352 /* 353 ** Commute a comparision operator. Expressions of the form "X op Y" 354 ** are converted into "Y op X". 355 */ 356 static void exprCommute(Expr *pExpr){ 357 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); 358 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl); 359 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); 360 if( pExpr->op>=TK_GT ){ 361 assert( TK_LT==TK_GT+2 ); 362 assert( TK_GE==TK_LE+2 ); 363 assert( TK_GT>TK_EQ ); 364 assert( TK_GT<TK_LE ); 365 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); 366 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; 367 } 368 } 369 370 /* 371 ** Translate from TK_xx operator to WO_xx bitmask. 372 */ 373 static int operatorMask(int op){ 374 int c; 375 assert( allowedOp(op) ); 376 if( op==TK_IN ){ 377 c = WO_IN; 378 }else{ 379 c = WO_EQ<<(op-TK_EQ); 380 } 381 assert( op!=TK_IN || c==WO_IN ); 382 assert( op!=TK_EQ || c==WO_EQ ); 383 assert( op!=TK_LT || c==WO_LT ); 384 assert( op!=TK_LE || c==WO_LE ); 385 assert( op!=TK_GT || c==WO_GT ); 386 assert( op!=TK_GE || c==WO_GE ); 387 return c; 388 } 389 390 /* 391 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 392 ** where X is a reference to the iColumn of table iCur and <op> is one of 393 ** the WO_xx operator codes specified by the op parameter. 394 ** Return a pointer to the term. Return 0 if not found. 395 */ 396 static WhereTerm *findTerm( 397 WhereClause *pWC, /* The WHERE clause to be searched */ 398 int iCur, /* Cursor number of LHS */ 399 int iColumn, /* Column number of LHS */ 400 Bitmask notReady, /* RHS must not overlap with this mask */ 401 u16 op, /* Mask of WO_xx values describing operator */ 402 Index *pIdx /* Must be compatible with this index, if not NULL */ 403 ){ 404 WhereTerm *pTerm; 405 int k; 406 for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){ 407 if( pTerm->leftCursor==iCur 408 && (pTerm->prereqRight & notReady)==0 409 && pTerm->leftColumn==iColumn 410 && (pTerm->operator & op)!=0 411 ){ 412 if( iCur>=0 && pIdx ){ 413 Expr *pX = pTerm->pExpr; 414 CollSeq *pColl; 415 char idxaff; 416 int k; 417 Parse *pParse = pWC->pParse; 418 419 idxaff = pIdx->pTable->aCol[iColumn].affinity; 420 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue; 421 pColl = sqlite3ExprCollSeq(pParse, pX->pLeft); 422 if( !pColl ){ 423 if( pX->pRight ){ 424 pColl = sqlite3ExprCollSeq(pParse, pX->pRight); 425 } 426 if( !pColl ){ 427 pColl = pParse->db->pDfltColl; 428 } 429 } 430 for(k=0; k<pIdx->nColumn && pIdx->aiColumn[k]!=iColumn; k++){} 431 assert( k<pIdx->nColumn ); 432 if( pColl!=pIdx->keyInfo.aColl[k] ) continue; 433 } 434 return pTerm; 435 } 436 } 437 return 0; 438 } 439 440 /* Forward reference */ 441 static void exprAnalyze(SrcList*, ExprMaskSet*, WhereTerm*); 442 443 /* 444 ** Call exprAnalyze on all terms in a WHERE clause. 445 ** 446 ** 447 */ 448 static void exprAnalyzeAll( 449 SrcList *pTabList, /* the FROM clause */ 450 ExprMaskSet *pMaskSet, /* table masks */ 451 WhereClause *pWC /* the WHERE clause to be analyzed */ 452 ){ 453 WhereTerm *pTerm; 454 int i; 455 for(i=pWC->nTerm-1, pTerm=pWC->a; i>=0; i--, pTerm++){ 456 exprAnalyze(pTabList, pMaskSet, pTerm); 457 } 458 } 459 460 /* 461 ** The input to this routine is an WhereTerm structure with only the 462 ** "pExpr" field filled in. The job of this routine is to analyze the 463 ** subexpression and populate all the other fields of the WhereTerm 464 ** structure. 465 ** 466 ** If the expression is of the form "<expr> <op> X" it gets commuted 467 ** to the standard form of "X <op> <expr>". If the expression is of 468 ** the form "X <op> Y" where both X and Y are columns, then the original 469 ** expression is unchanged and a new virtual expression of the form 470 ** "Y <op> X" is added to the WHERE clause. 471 */ 472 static void exprAnalyze( 473 SrcList *pSrc, /* the FROM clause */ 474 ExprMaskSet *pMaskSet, /* table masks */ 475 WhereTerm *pTerm /* the WHERE clause term to be analyzed */ 476 ){ 477 Expr *pExpr = pTerm->pExpr; 478 Bitmask prereqLeft; 479 Bitmask prereqAll; 480 int idxRight; 481 482 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); 483 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); 484 pTerm->prereqAll = prereqAll = exprTableUsage(pMaskSet, pExpr); 485 pTerm->leftCursor = -1; 486 pTerm->iParent = -1; 487 pTerm->operator = 0; 488 idxRight = -1; 489 if( allowedOp(pExpr->op) && (pTerm->prereqRight & prereqLeft)==0 ){ 490 Expr *pLeft = pExpr->pLeft; 491 Expr *pRight = pExpr->pRight; 492 if( pLeft->op==TK_COLUMN ){ 493 pTerm->leftCursor = pLeft->iTable; 494 pTerm->leftColumn = pLeft->iColumn; 495 pTerm->operator = operatorMask(pExpr->op); 496 } 497 if( pRight && pRight->op==TK_COLUMN ){ 498 WhereTerm *pNew; 499 Expr *pDup; 500 if( pTerm->leftCursor>=0 ){ 501 pDup = sqlite3ExprDup(pExpr); 502 pNew = whereClauseInsert(pTerm->pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); 503 if( pNew==0 ) return; 504 pNew->iParent = pTerm->idx; 505 pTerm->nChild = 1; 506 pTerm->flags |= TERM_COPIED; 507 }else{ 508 pDup = pExpr; 509 pNew = pTerm; 510 } 511 exprCommute(pDup); 512 pLeft = pDup->pLeft; 513 pNew->leftCursor = pLeft->iTable; 514 pNew->leftColumn = pLeft->iColumn; 515 pNew->prereqRight = prereqLeft; 516 pNew->prereqAll = prereqAll; 517 pNew->operator = operatorMask(pDup->op); 518 } 519 } 520 521 /* If a term is the BETWEEN operator, create two new virtual terms 522 ** that define the range that the BETWEEN implements. 523 */ 524 else if( pExpr->op==TK_BETWEEN ){ 525 ExprList *pList = pExpr->pList; 526 int i; 527 static const u8 ops[] = {TK_GE, TK_LE}; 528 assert( pList!=0 ); 529 assert( pList->nExpr==2 ); 530 for(i=0; i<2; i++){ 531 Expr *pNewExpr; 532 WhereTerm *pNewTerm; 533 pNewExpr = sqlite3Expr(ops[i], sqlite3ExprDup(pExpr->pLeft), 534 sqlite3ExprDup(pList->a[i].pExpr), 0); 535 pNewTerm = whereClauseInsert(pTerm->pWC, pNewExpr, 536 TERM_VIRTUAL|TERM_DYNAMIC); 537 exprAnalyze(pSrc, pMaskSet, pNewTerm); 538 pNewTerm->iParent = pTerm->idx; 539 } 540 pTerm->nChild = 2; 541 } 542 543 /* Attempt to convert OR-connected terms into an IN operator so that 544 ** they can make use of indices. 545 */ 546 else if( pExpr->op==TK_OR ){ 547 int ok; 548 int i, j; 549 int iColumn, iCursor; 550 WhereClause sOr; 551 WhereTerm *pOrTerm; 552 553 assert( (pTerm->flags & TERM_DYNAMIC)==0 ); 554 whereClauseInit(&sOr, pTerm->pWC->pParse); 555 whereSplit(&sOr, pExpr, TK_OR); 556 exprAnalyzeAll(pSrc, pMaskSet, &sOr); 557 assert( sOr.nTerm>0 ); 558 j = 0; 559 do{ 560 iColumn = sOr.a[j].leftColumn; 561 iCursor = sOr.a[j].leftCursor; 562 ok = iCursor>=0; 563 for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){ 564 if( pOrTerm->operator!=WO_EQ ){ 565 goto or_not_possible; 566 } 567 if( pOrTerm->leftCursor==iCursor && pOrTerm->leftColumn==iColumn ){ 568 pOrTerm->flags |= TERM_OR_OK; 569 }else if( (pOrTerm->flags & TERM_COPIED)!=0 || 570 ((pOrTerm->flags & TERM_VIRTUAL)!=0 && 571 (sOr.a[pOrTerm->iParent].flags & TERM_OR_OK)!=0) ){ 572 pOrTerm->flags &= ~TERM_OR_OK; 573 }else{ 574 ok = 0; 575 } 576 } 577 }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<sOr.nTerm ); 578 if( ok ){ 579 ExprList *pList = 0; 580 Expr *pNew, *pDup; 581 for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){ 582 if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue; 583 pDup = sqlite3ExprDup(pOrTerm->pExpr->pRight); 584 pList = sqlite3ExprListAppend(pList, pDup, 0); 585 } 586 pDup = sqlite3Expr(TK_COLUMN, 0, 0, 0); 587 if( pDup ){ 588 pDup->iTable = iCursor; 589 pDup->iColumn = iColumn; 590 } 591 pNew = sqlite3Expr(TK_IN, pDup, 0, 0); 592 if( pNew ) pNew->pList = pList; 593 pTerm->pExpr = pNew; 594 pTerm->flags |= TERM_DYNAMIC; 595 exprAnalyze(pSrc, pMaskSet, pTerm); 596 } 597 or_not_possible: 598 whereClauseClear(&sOr); 599 } 600 } 601 602 603 /* 604 ** This routine decides if pIdx can be used to satisfy the ORDER BY 605 ** clause. If it can, it returns 1. If pIdx cannot satisfy the 606 ** ORDER BY clause, this routine returns 0. 607 ** 608 ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the 609 ** left-most table in the FROM clause of that same SELECT statement and 610 ** the table has a cursor number of "base". pIdx is an index on pTab. 611 ** 612 ** nEqCol is the number of columns of pIdx that are used as equality 613 ** constraints. Any of these columns may be missing from the ORDER BY 614 ** clause and the match can still be a success. 615 ** 616 ** If the index is UNIQUE, then the ORDER BY clause is allowed to have 617 ** additional terms past the end of the index and the match will still 618 ** be a success. 619 ** 620 ** All terms of the ORDER BY that match against the index must be either 621 ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE 622 ** index do not need to satisfy this constraint.) The *pbRev value is 623 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if 624 ** the ORDER BY clause is all ASC. 625 */ 626 static int isSortingIndex( 627 Parse *pParse, /* Parsing context */ 628 Index *pIdx, /* The index we are testing */ 629 Table *pTab, /* The table to be sorted */ 630 int base, /* Cursor number for pTab */ 631 ExprList *pOrderBy, /* The ORDER BY clause */ 632 int nEqCol, /* Number of index columns with == constraints */ 633 int *pbRev /* Set to 1 if ORDER BY is DESC */ 634 ){ 635 int i, j; /* Loop counters */ 636 int sortOrder; /* Which direction we are sorting */ 637 int nTerm; /* Number of ORDER BY terms */ 638 struct ExprList_item *pTerm; /* A term of the ORDER BY clause */ 639 sqlite3 *db = pParse->db; 640 641 assert( pOrderBy!=0 ); 642 nTerm = pOrderBy->nExpr; 643 assert( nTerm>0 ); 644 645 /* Match terms of the ORDER BY clause against columns of 646 ** the index. 647 */ 648 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<pIdx->nColumn; i++){ 649 Expr *pExpr; /* The expression of the ORDER BY pTerm */ 650 CollSeq *pColl; /* The collating sequence of pExpr */ 651 652 pExpr = pTerm->pExpr; 653 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){ 654 /* Can not use an index sort on anything that is not a column in the 655 ** left-most table of the FROM clause */ 656 return 0; 657 } 658 pColl = sqlite3ExprCollSeq(pParse, pExpr); 659 if( !pColl ) pColl = db->pDfltColl; 660 if( pExpr->iColumn!=pIdx->aiColumn[i] || pColl!=pIdx->keyInfo.aColl[i] ){ 661 /* Term j of the ORDER BY clause does not match column i of the index */ 662 if( i<nEqCol ){ 663 /* If an index column that is constrained by == fails to match an 664 ** ORDER BY term, that is OK. Just ignore that column of the index 665 */ 666 continue; 667 }else{ 668 /* If an index column fails to match and is not constrained by == 669 ** then the index cannot satisfy the ORDER BY constraint. 670 */ 671 return 0; 672 } 673 } 674 if( i>nEqCol ){ 675 if( pTerm->sortOrder!=sortOrder ){ 676 /* Indices can only be used if all ORDER BY terms past the 677 ** equality constraints are all either DESC or ASC. */ 678 return 0; 679 } 680 }else{ 681 sortOrder = pTerm->sortOrder; 682 } 683 j++; 684 pTerm++; 685 } 686 687 /* The index can be used for sorting if all terms of the ORDER BY clause 688 ** or covered or if we ran out of index columns and the it is a UNIQUE 689 ** index. 690 */ 691 if( j>=nTerm || (i>=pIdx->nColumn && pIdx->onError!=OE_None) ){ 692 *pbRev = sortOrder==SQLITE_SO_DESC; 693 return 1; 694 } 695 return 0; 696 } 697 698 /* 699 ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied 700 ** by sorting in order of ROWID. Return true if so and set *pbRev to be 701 ** true for reverse ROWID and false for forward ROWID order. 702 */ 703 static int sortableByRowid( 704 int base, /* Cursor number for table to be sorted */ 705 ExprList *pOrderBy, /* The ORDER BY clause */ 706 int *pbRev /* Set to 1 if ORDER BY is DESC */ 707 ){ 708 Expr *p; 709 710 assert( pOrderBy!=0 ); 711 assert( pOrderBy->nExpr>0 ); 712 p = pOrderBy->a[0].pExpr; 713 if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1 ){ 714 *pbRev = pOrderBy->a[0].sortOrder; 715 return 1; 716 } 717 return 0; 718 } 719 720 /* 721 ** Prepare a crude estimate of the logorithm of the input value. 722 ** The results need not be exact. This is only used for estimating 723 ** the total cost of performing operatings with O(logN) or O(NlogN) 724 ** complexity. Because N is just a guess, it is no great tragedy if 725 ** logN is a little off. 726 ** 727 ** We can assume N>=1.0; 728 */ 729 static double estLog(double N){ 730 double logN = 1.0; 731 double x = 10.0; 732 while( N>x ){ 733 logN = logN+1.0; 734 x *= 10; 735 } 736 return logN; 737 } 738 739 /* 740 ** Find the best index for accessing a particular table. Return a pointer 741 ** to the index, flags that describe how the index should be used, the 742 ** number of equality constraints, and the "cost" for this index. 743 ** 744 ** The lowest cost index wins. The cost is an estimate of the amount of 745 ** CPU and disk I/O need to process the request using the selected index. 746 ** Factors that influence cost include: 747 ** 748 ** * The estimated number of rows that will be retrieved. (The 749 ** fewer the better.) 750 ** 751 ** * Whether or not sorting must occur. 752 ** 753 ** * Whether or not there must be separate lookups in the 754 ** index and in the main table. 755 ** 756 */ 757 static double bestIndex( 758 Parse *pParse, /* The parsing context */ 759 WhereClause *pWC, /* The WHERE clause */ 760 struct SrcList_item *pSrc, /* The FROM clause term to search */ 761 Bitmask notReady, /* Mask of cursors that are not available */ 762 ExprList *pOrderBy, /* The order by clause */ 763 Index **ppIndex, /* Make *ppIndex point to the best index */ 764 int *pFlags, /* Put flags describing this choice in *pFlags */ 765 int *pnEq /* Put the number of == or IN constraints here */ 766 ){ 767 WhereTerm *pTerm; 768 Index *bestIdx = 0; /* Index that gives the lowest cost */ 769 double lowestCost = 1.0e99; /* The cost of using bestIdx */ 770 int bestFlags = 0; /* Flags associated with bestIdx */ 771 int bestNEq = 0; /* Best value for nEq */ 772 int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ 773 Index *pProbe; /* An index we are evaluating */ 774 int rev; /* True to scan in reverse order */ 775 int flags; /* Flags associated with pProbe */ 776 int nEq; /* Number of == or IN constraints */ 777 double cost; /* Cost of using pProbe */ 778 779 TRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady)); 780 781 /* Check for a rowid=EXPR or rowid IN (...) constraints 782 */ 783 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); 784 if( pTerm ){ 785 Expr *pExpr; 786 *ppIndex = 0; 787 bestFlags = WHERE_ROWID_EQ; 788 if( pTerm->operator & WO_EQ ){ 789 /* Rowid== is always the best pick. Look no further. Because only 790 ** a single row is generated, output is always in sorted order */ 791 *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE; 792 *pnEq = 1; 793 TRACE(("... best is rowid\n")); 794 return 0.0; 795 }else if( (pExpr = pTerm->pExpr)->pList!=0 ){ 796 /* Rowid IN (LIST): cost is NlogN where N is the number of list 797 ** elements. */ 798 lowestCost = pExpr->pList->nExpr; 799 lowestCost *= estLog(lowestCost); 800 }else{ 801 /* Rowid IN (SELECT): cost is NlogN where N is the number of rows 802 ** in the result of the inner select. We have no way to estimate 803 ** that value so make a wild guess. */ 804 lowestCost = 200.0; 805 } 806 TRACE(("... rowid IN cost: %.9g\n", lowestCost)); 807 } 808 809 /* Estimate the cost of a table scan. If we do not know how many 810 ** entries are in the table, use 1 million as a guess. 811 */ 812 pProbe = pSrc->pTab->pIndex; 813 cost = pProbe ? pProbe->aiRowEst[0] : 1000000.0; 814 TRACE(("... table scan base cost: %.9g\n", cost)); 815 flags = WHERE_ROWID_RANGE; 816 817 /* Check for constraints on a range of rowids in a table scan. 818 */ 819 pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0); 820 if( pTerm ){ 821 if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){ 822 flags |= WHERE_TOP_LIMIT; 823 cost *= 0.333; /* Guess that rowid<EXPR eliminates two-thirds or rows */ 824 } 825 if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){ 826 flags |= WHERE_BTM_LIMIT; 827 cost *= 0.333; /* Guess that rowid>EXPR eliminates two-thirds of rows */ 828 } 829 TRACE(("... rowid range reduces cost to %.9g\n", cost)); 830 }else{ 831 flags = 0; 832 } 833 834 /* If the table scan does not satisfy the ORDER BY clause, increase 835 ** the cost by NlogN to cover the expense of sorting. */ 836 if( pOrderBy ){ 837 if( sortableByRowid(iCur, pOrderBy, &rev) ){ 838 flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE; 839 if( rev ){ 840 flags |= WHERE_REVERSE; 841 } 842 }else{ 843 cost += cost*estLog(cost); 844 TRACE(("... sorting increases cost to %.9g\n", cost)); 845 } 846 } 847 if( cost<lowestCost ){ 848 lowestCost = cost; 849 bestFlags = flags; 850 } 851 852 /* Look at each index. 853 */ 854 for(; pProbe; pProbe=pProbe->pNext){ 855 int i; /* Loop counter */ 856 double inMultiplier = 1.0; 857 858 TRACE(("... index %s:\n", pProbe->zName)); 859 860 /* Count the number of columns in the index that are satisfied 861 ** by x=EXPR constraints or x IN (...) constraints. 862 */ 863 flags = 0; 864 for(i=0; i<pProbe->nColumn; i++){ 865 int j = pProbe->aiColumn[i]; 866 pTerm = findTerm(pWC, iCur, j, notReady, WO_EQ|WO_IN, pProbe); 867 if( pTerm==0 ) break; 868 flags |= WHERE_COLUMN_EQ; 869 if( pTerm->operator & WO_IN ){ 870 Expr *pExpr = pTerm->pExpr; 871 flags |= WHERE_COLUMN_IN; 872 if( pExpr->pSelect!=0 ){ 873 inMultiplier *= 100.0; 874 }else if( pExpr->pList!=0 ){ 875 inMultiplier *= pExpr->pList->nExpr + 1.0; 876 } 877 } 878 } 879 cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier); 880 nEq = i; 881 if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0 882 && nEq==pProbe->nColumn ){ 883 flags |= WHERE_UNIQUE; 884 } 885 TRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n", nEq, inMultiplier, cost)); 886 887 /* Look for range constraints 888 */ 889 if( nEq<pProbe->nColumn ){ 890 int j = pProbe->aiColumn[nEq]; 891 pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe); 892 if( pTerm ){ 893 flags |= WHERE_COLUMN_RANGE; 894 if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){ 895 flags |= WHERE_TOP_LIMIT; 896 cost *= 0.333; 897 } 898 if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){ 899 flags |= WHERE_BTM_LIMIT; 900 cost *= 0.333; 901 } 902 TRACE(("...... range reduces cost to %.9g\n", cost)); 903 } 904 } 905 906 /* Add the additional cost of sorting if that is a factor. 907 */ 908 if( pOrderBy ){ 909 if( (flags & WHERE_COLUMN_IN)==0 && 910 isSortingIndex(pParse, pProbe, pSrc->pTab, iCur, pOrderBy, nEq, &rev) ){ 911 if( flags==0 ){ 912 flags = WHERE_COLUMN_RANGE; 913 } 914 flags |= WHERE_ORDERBY; 915 if( rev ){ 916 flags |= WHERE_REVERSE; 917 } 918 }else{ 919 cost += cost*estLog(cost); 920 TRACE(("...... orderby increases cost to %.9g\n", cost)); 921 } 922 } 923 924 /* Check to see if we can get away with using just the index without 925 ** ever reading the table. If that is the case, then halve the 926 ** cost of this index. 927 */ 928 if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){ 929 Bitmask m = pSrc->colUsed; 930 int j; 931 for(j=0; j<pProbe->nColumn; j++){ 932 int x = pProbe->aiColumn[j]; 933 if( x<BMS-1 ){ 934 m &= ~(((Bitmask)1)<<x); 935 } 936 } 937 if( m==0 ){ 938 flags |= WHERE_IDX_ONLY; 939 cost *= 0.5; 940 TRACE(("...... idx-only reduces cost to %.9g\n", cost)); 941 } 942 } 943 944 /* If this index has achieved the lowest cost so far, then use it. 945 */ 946 if( cost < lowestCost ){ 947 bestIdx = pProbe; 948 lowestCost = cost; 949 assert( flags!=0 ); 950 bestFlags = flags; 951 bestNEq = nEq; 952 } 953 } 954 955 /* Report the best result 956 */ 957 *ppIndex = bestIdx; 958 TRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n", 959 bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq)); 960 *pFlags = bestFlags; 961 *pnEq = bestNEq; 962 return lowestCost; 963 } 964 965 966 /* 967 ** Disable a term in the WHERE clause. Except, do not disable the term 968 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 969 ** or USING clause of that join. 970 ** 971 ** Consider the term t2.z='ok' in the following queries: 972 ** 973 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 974 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 975 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 976 ** 977 ** The t2.z='ok' is disabled in the in (2) because it originates 978 ** in the ON clause. The term is disabled in (3) because it is not part 979 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 980 ** 981 ** Disabling a term causes that term to not be tested in the inner loop 982 ** of the join. Disabling is an optimization. We would get the correct 983 ** results if nothing were ever disabled, but joins might run a little 984 ** slower. The trick is to disable as much as we can without disabling 985 ** too much. If we disabled in (1), we'd get the wrong answer. 986 ** See ticket #813. 987 */ 988 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 989 if( pTerm 990 && (pTerm->flags & TERM_CODED)==0 991 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 992 ){ 993 pTerm->flags |= TERM_CODED; 994 if( pTerm->iParent>=0 ){ 995 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; 996 if( (--pOther->nChild)==0 ){ 997 disableTerm(pLevel, pOther); 998 } 999 } 1000 } 1001 } 1002 1003 /* 1004 ** Generate code that builds a probe for an index. Details: 1005 ** 1006 ** * Check the top nColumn entries on the stack. If any 1007 ** of those entries are NULL, jump immediately to brk, 1008 ** which is the loop exit, since no index entry will match 1009 ** if any part of the key is NULL. 1010 ** 1011 ** * Construct a probe entry from the top nColumn entries in 1012 ** the stack with affinities appropriate for index pIdx. 1013 */ 1014 static void buildIndexProbe(Vdbe *v, int nColumn, int brk, Index *pIdx){ 1015 sqlite3VdbeAddOp(v, OP_NotNull, -nColumn, sqlite3VdbeCurrentAddr(v)+3); 1016 sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0); 1017 sqlite3VdbeAddOp(v, OP_Goto, 0, brk); 1018 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 1019 sqlite3IndexAffinityStr(v, pIdx); 1020 } 1021 1022 1023 /* 1024 ** Generate code for a single equality term of the WHERE clause. An equality 1025 ** term can be either X=expr or X IN (...). pTerm is the term to be 1026 ** coded. 1027 ** 1028 ** The current value for the constraint is left on the top of the stack. 1029 ** 1030 ** For a constraint of the form X=expr, the expression is evaluated and its 1031 ** result is left on the stack. For constraints of the form X IN (...) 1032 ** this routine sets up a loop that will iterate over all values of X. 1033 */ 1034 static void codeEqualityTerm( 1035 Parse *pParse, /* The parsing context */ 1036 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 1037 int brk, /* Jump here to abandon the loop */ 1038 WhereLevel *pLevel /* When level of the FROM clause we are working on */ 1039 ){ 1040 Expr *pX = pTerm->pExpr; 1041 if( pX->op!=TK_IN ){ 1042 assert( pX->op==TK_EQ ); 1043 sqlite3ExprCode(pParse, pX->pRight); 1044 #ifndef SQLITE_OMIT_SUBQUERY 1045 }else{ 1046 int iTab; 1047 int *aIn; 1048 Vdbe *v = pParse->pVdbe; 1049 1050 sqlite3CodeSubselect(pParse, pX); 1051 iTab = pX->iTable; 1052 sqlite3VdbeAddOp(v, OP_Rewind, iTab, brk); 1053 VdbeComment((v, "# %.*s", pX->span.n, pX->span.z)); 1054 pLevel->nIn++; 1055 pLevel->aInLoop = aIn = sqliteRealloc(pLevel->aInLoop, 1056 sizeof(pLevel->aInLoop[0])*3*pLevel->nIn); 1057 if( aIn ){ 1058 aIn += pLevel->nIn*3 - 3; 1059 aIn[0] = OP_Next; 1060 aIn[1] = iTab; 1061 aIn[2] = sqlite3VdbeAddOp(v, OP_Column, iTab, 0); 1062 }else{ 1063 pLevel->nIn = 0; 1064 } 1065 #endif 1066 } 1067 disableTerm(pLevel, pTerm); 1068 } 1069 1070 /* 1071 ** Generate code that will evaluate all == and IN constraints for an 1072 ** index. The values for all constraints are left on the stack. 1073 ** 1074 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 1075 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 1076 ** The index has as many as three equality constraints, but in this 1077 ** example, the third "c" value is an inequality. So only two 1078 ** constraints are coded. This routine will generate code to evaluate 1079 ** a==5 and b IN (1,2,3). The current values for a and b will be left 1080 ** on the stack - a is the deepest and b the shallowest. 1081 ** 1082 ** In the example above nEq==2. But this subroutine works for any value 1083 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 1084 ** The only thing it does is allocate the pLevel->iMem memory cell. 1085 ** 1086 ** This routine always allocates at least one memory cell and puts 1087 ** the address of that memory cell in pLevel->iMem. The code that 1088 ** calls this routine will use pLevel->iMem to store the termination 1089 ** key value of the loop. If one or more IN operators appear, then 1090 ** this routine allocates an additional nEq memory cells for internal 1091 ** use. 1092 */ 1093 static void codeAllEqualityTerms( 1094 Parse *pParse, /* Parsing context */ 1095 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 1096 WhereClause *pWC, /* The WHERE clause */ 1097 Bitmask notReady, /* Which parts of FROM have not yet been coded */ 1098 int brk /* Jump here to end the loop */ 1099 ){ 1100 int nEq = pLevel->nEq; /* The number of == or IN constraints to code */ 1101 int termsInMem = 0; /* If true, store value in mem[] cells */ 1102 Vdbe *v = pParse->pVdbe; /* The virtual machine under construction */ 1103 Index *pIdx = pLevel->pIdx; /* The index being used for this loop */ 1104 int iCur = pLevel->iTabCur; /* The cursor of the table */ 1105 WhereTerm *pTerm; /* A single constraint term */ 1106 int j; /* Loop counter */ 1107 1108 /* Figure out how many memory cells we will need then allocate them. 1109 ** We always need at least one used to store the loop terminator 1110 ** value. If there are IN operators we'll need one for each == or 1111 ** IN constraint. 1112 */ 1113 pLevel->iMem = pParse->nMem++; 1114 if( pLevel->flags & WHERE_COLUMN_IN ){ 1115 pParse->nMem += pLevel->nEq; 1116 termsInMem = 1; 1117 } 1118 1119 /* Evaluate the equality constraints 1120 */ 1121 for(j=0; 1; j++){ 1122 int k = pIdx->aiColumn[j]; 1123 pTerm = findTerm(pWC, iCur, k, notReady, WO_EQ|WO_IN, pIdx); 1124 if( pTerm==0 ) break; 1125 assert( (pTerm->flags & TERM_CODED)==0 ); 1126 codeEqualityTerm(pParse, pTerm, brk, pLevel); 1127 if( termsInMem ){ 1128 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem+j+1, 1); 1129 } 1130 } 1131 assert( j==nEq ); 1132 1133 /* Make sure all the constraint values are on the top of the stack 1134 */ 1135 if( termsInMem ){ 1136 for(j=0; j<nEq; j++){ 1137 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem+j+1, 0); 1138 } 1139 } 1140 } 1141 1142 #ifdef SQLITE_TEST 1143 /* 1144 ** The following variable holds a text description of query plan generated 1145 ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin 1146 ** overwrites the previous. This information is used for testing and 1147 ** analysis only. 1148 */ 1149 char sqlite3_query_plan[BMS*2*40]; /* Text of the join */ 1150 static int nQPlan = 0; /* Next free slow in _query_plan[] */ 1151 1152 #endif /* SQLITE_TEST */ 1153 1154 1155 1156 /* 1157 ** Generate the beginning of the loop used for WHERE clause processing. 1158 ** The return value is a pointer to an opaque structure that contains 1159 ** information needed to terminate the loop. Later, the calling routine 1160 ** should invoke sqlite3WhereEnd() with the return value of this function 1161 ** in order to complete the WHERE clause processing. 1162 ** 1163 ** If an error occurs, this routine returns NULL. 1164 ** 1165 ** The basic idea is to do a nested loop, one loop for each table in 1166 ** the FROM clause of a select. (INSERT and UPDATE statements are the 1167 ** same as a SELECT with only a single table in the FROM clause.) For 1168 ** example, if the SQL is this: 1169 ** 1170 ** SELECT * FROM t1, t2, t3 WHERE ...; 1171 ** 1172 ** Then the code generated is conceptually like the following: 1173 ** 1174 ** foreach row1 in t1 do \ Code generated 1175 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 1176 ** foreach row3 in t3 do / 1177 ** ... 1178 ** end \ Code generated 1179 ** end |-- by sqlite3WhereEnd() 1180 ** end / 1181 ** 1182 ** Note that the loops might not be nested in the order in which they 1183 ** appear in the FROM clause if a different order is better able to make 1184 ** use of indices. Note also that when the IN operator appears in 1185 ** the WHERE clause, it might result in additional nested loops for 1186 ** scanning through all values on the right-hand side of the IN. 1187 ** 1188 ** There are Btree cursors associated with each table. t1 uses cursor 1189 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 1190 ** And so forth. This routine generates code to open those VDBE cursors 1191 ** and sqlite3WhereEnd() generates the code to close them. 1192 ** 1193 ** The code that sqlite3WhereBegin() generates leaves the cursors named 1194 ** in pTabList pointing at their appropriate entries. The [...] code 1195 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 1196 ** data from the various tables of the loop. 1197 ** 1198 ** If the WHERE clause is empty, the foreach loops must each scan their 1199 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 1200 ** the tables have indices and there are terms in the WHERE clause that 1201 ** refer to those indices, a complete table scan can be avoided and the 1202 ** code will run much faster. Most of the work of this routine is checking 1203 ** to see if there are indices that can be used to speed up the loop. 1204 ** 1205 ** Terms of the WHERE clause are also used to limit which rows actually 1206 ** make it to the "..." in the middle of the loop. After each "foreach", 1207 ** terms of the WHERE clause that use only terms in that loop and outer 1208 ** loops are evaluated and if false a jump is made around all subsequent 1209 ** inner loops (or around the "..." if the test occurs within the inner- 1210 ** most loop) 1211 ** 1212 ** OUTER JOINS 1213 ** 1214 ** An outer join of tables t1 and t2 is conceptally coded as follows: 1215 ** 1216 ** foreach row1 in t1 do 1217 ** flag = 0 1218 ** foreach row2 in t2 do 1219 ** start: 1220 ** ... 1221 ** flag = 1 1222 ** end 1223 ** if flag==0 then 1224 ** move the row2 cursor to a null row 1225 ** goto start 1226 ** fi 1227 ** end 1228 ** 1229 ** ORDER BY CLAUSE PROCESSING 1230 ** 1231 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, 1232 ** if there is one. If there is no ORDER BY clause or if this routine 1233 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. 1234 ** 1235 ** If an index can be used so that the natural output order of the table 1236 ** scan is correct for the ORDER BY clause, then that index is used and 1237 ** *ppOrderBy is set to NULL. This is an optimization that prevents an 1238 ** unnecessary sort of the result set if an index appropriate for the 1239 ** ORDER BY clause already exists. 1240 ** 1241 ** If the where clause loops cannot be arranged to provide the correct 1242 ** output order, then the *ppOrderBy is unchanged. 1243 */ 1244 WhereInfo *sqlite3WhereBegin( 1245 Parse *pParse, /* The parser context */ 1246 SrcList *pTabList, /* A list of all tables to be scanned */ 1247 Expr *pWhere, /* The WHERE clause */ 1248 ExprList **ppOrderBy /* An ORDER BY clause, or NULL */ 1249 ){ 1250 int i; /* Loop counter */ 1251 WhereInfo *pWInfo; /* Will become the return value of this function */ 1252 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 1253 int brk, cont = 0; /* Addresses used during code generation */ 1254 Bitmask notReady; /* Cursors that are not yet positioned */ 1255 WhereTerm *pTerm; /* A single term in the WHERE clause */ 1256 ExprMaskSet maskSet; /* The expression mask set */ 1257 WhereClause wc; /* The WHERE clause is divided into these terms */ 1258 struct SrcList_item *pTabItem; /* A single entry from pTabList */ 1259 WhereLevel *pLevel; /* A single level in the pWInfo list */ 1260 int iFrom; /* First unused FROM clause element */ 1261 int andFlags; /* AND-ed combination of all wc.a[].flags */ 1262 1263 /* The number of tables in the FROM clause is limited by the number of 1264 ** bits in a Bitmask 1265 */ 1266 if( pTabList->nSrc>BMS ){ 1267 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 1268 return 0; 1269 } 1270 1271 /* Split the WHERE clause into separate subexpressions where each 1272 ** subexpression is separated by an AND operator. 1273 */ 1274 initMaskSet(&maskSet); 1275 whereClauseInit(&wc, pParse); 1276 whereSplit(&wc, pWhere, TK_AND); 1277 1278 /* Allocate and initialize the WhereInfo structure that will become the 1279 ** return value. 1280 */ 1281 pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel)); 1282 if( sqlite3_malloc_failed ){ 1283 goto whereBeginNoMem; 1284 } 1285 pWInfo->pParse = pParse; 1286 pWInfo->pTabList = pTabList; 1287 pWInfo->iBreak = sqlite3VdbeMakeLabel(v); 1288 1289 /* Special case: a WHERE clause that is constant. Evaluate the 1290 ** expression and either jump over all of the code or fall thru. 1291 */ 1292 if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstant(pWhere)) ){ 1293 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1); 1294 pWhere = 0; 1295 } 1296 1297 /* Analyze all of the subexpressions. Note that exprAnalyze() might 1298 ** add new virtual terms onto the end of the WHERE clause. We do not 1299 ** want to analyze these virtual terms, so start analyzing at the end 1300 ** and work forward so that they added virtual terms are never processed. 1301 */ 1302 for(i=0; i<pTabList->nSrc; i++){ 1303 createMask(&maskSet, pTabList->a[i].iCursor); 1304 } 1305 exprAnalyzeAll(pTabList, &maskSet, &wc); 1306 1307 /* Chose the best index to use for each table in the FROM clause. 1308 ** 1309 ** This loop fills in the following fields: 1310 ** 1311 ** pWInfo->a[].pIdx The index to use for this level of the loop. 1312 ** pWInfo->a[].flags WHERE_xxx flags associated with pIdx 1313 ** pWInfo->a[].nEq The number of == and IN constraints 1314 ** pWInfo->a[].iFrom When term of the FROM clause is being coded 1315 ** pWInfo->a[].iTabCur The VDBE cursor for the database table 1316 ** pWInfo->a[].iIdxCur The VDBE cursor for the index 1317 ** 1318 ** This loop also figures out the nesting order of tables in the FROM 1319 ** clause. 1320 */ 1321 notReady = ~(Bitmask)0; 1322 pTabItem = pTabList->a; 1323 pLevel = pWInfo->a; 1324 andFlags = ~0; 1325 for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 1326 Index *pIdx; /* Index for FROM table at pTabItem */ 1327 int flags; /* Flags asssociated with pIdx */ 1328 int nEq; /* Number of == or IN constraints */ 1329 double cost; /* The cost for pIdx */ 1330 int j; /* For looping over FROM tables */ 1331 Index *pBest = 0; /* The best index seen so far */ 1332 int bestFlags = 0; /* Flags associated with pBest */ 1333 int bestNEq = 0; /* nEq associated with pBest */ 1334 double lowestCost = 1.0e99; /* Cost of the pBest */ 1335 int bestJ; /* The value of j */ 1336 Bitmask m; /* Bitmask value for j or bestJ */ 1337 1338 for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){ 1339 m = getMask(&maskSet, pTabItem->iCursor); 1340 if( (m & notReady)==0 ){ 1341 if( j==iFrom ) iFrom++; 1342 continue; 1343 } 1344 cost = bestIndex(pParse, &wc, pTabItem, notReady, 1345 (j==0 && ppOrderBy) ? *ppOrderBy : 0, 1346 &pIdx, &flags, &nEq); 1347 if( cost<lowestCost ){ 1348 lowestCost = cost; 1349 pBest = pIdx; 1350 bestFlags = flags; 1351 bestNEq = nEq; 1352 bestJ = j; 1353 } 1354 if( (pTabItem->jointype & JT_LEFT)!=0 1355 || (j>0 && (pTabItem[-1].jointype & JT_LEFT)!=0) 1356 ){ 1357 break; 1358 } 1359 } 1360 if( (bestFlags & WHERE_ORDERBY)!=0 ){ 1361 *ppOrderBy = 0; 1362 } 1363 andFlags &= bestFlags; 1364 pLevel->flags = bestFlags; 1365 pLevel->pIdx = pBest; 1366 pLevel->nEq = bestNEq; 1367 pLevel->aInLoop = 0; 1368 pLevel->nIn = 0; 1369 if( pBest ){ 1370 pLevel->iIdxCur = pParse->nTab++; 1371 }else{ 1372 pLevel->iIdxCur = -1; 1373 } 1374 notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor); 1375 pLevel->iFrom = bestJ; 1376 } 1377 1378 /* If the total query only selects a single row, then the ORDER BY 1379 ** clause is irrelevant. 1380 */ 1381 if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){ 1382 *ppOrderBy = 0; 1383 } 1384 1385 /* Open all tables in the pTabList and any indices selected for 1386 ** searching those tables. 1387 */ 1388 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ 1389 pLevel = pWInfo->a; 1390 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 1391 Table *pTab; 1392 Index *pIx; 1393 int iIdxCur = pLevel->iIdxCur; 1394 1395 pTabItem = &pTabList->a[pLevel->iFrom]; 1396 pTab = pTabItem->pTab; 1397 if( pTab->isTransient || pTab->pSelect ) continue; 1398 if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){ 1399 sqlite3OpenTableForReading(v, pTabItem->iCursor, pTab); 1400 } 1401 pLevel->iTabCur = pTabItem->iCursor; 1402 if( (pIx = pLevel->pIdx)!=0 ){ 1403 sqlite3VdbeAddOp(v, OP_Integer, pIx->iDb, 0); 1404 VdbeComment((v, "# %s", pIx->zName)); 1405 sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum, 1406 (char*)&pIx->keyInfo, P3_KEYINFO); 1407 } 1408 if( (pLevel->flags & WHERE_IDX_ONLY)!=0 ){ 1409 sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1); 1410 } 1411 sqlite3CodeVerifySchema(pParse, pTab->iDb); 1412 } 1413 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 1414 1415 /* Generate the code to do the search. Each iteration of the for 1416 ** loop below generates code for a single nested loop of the VM 1417 ** program. 1418 */ 1419 notReady = ~(Bitmask)0; 1420 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 1421 int j; 1422 int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */ 1423 Index *pIdx; /* The index we will be using */ 1424 int iIdxCur; /* The VDBE cursor for the index */ 1425 int omitTable; /* True if we use the index only */ 1426 int bRev; /* True if we need to scan in reverse order */ 1427 1428 pTabItem = &pTabList->a[pLevel->iFrom]; 1429 iCur = pTabItem->iCursor; 1430 pIdx = pLevel->pIdx; 1431 iIdxCur = pLevel->iIdxCur; 1432 bRev = (pLevel->flags & WHERE_REVERSE)!=0; 1433 omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0; 1434 1435 /* Create labels for the "break" and "continue" instructions 1436 ** for the current loop. Jump to brk to break out of a loop. 1437 ** Jump to cont to go immediately to the next iteration of the 1438 ** loop. 1439 */ 1440 brk = pLevel->brk = sqlite3VdbeMakeLabel(v); 1441 cont = pLevel->cont = sqlite3VdbeMakeLabel(v); 1442 1443 /* If this is the right table of a LEFT OUTER JOIN, allocate and 1444 ** initialize a memory cell that records if this table matches any 1445 ** row of the left table of the join. 1446 */ 1447 if( pLevel->iFrom>0 && (pTabItem[-1].jointype & JT_LEFT)!=0 ){ 1448 if( !pParse->nMem ) pParse->nMem++; 1449 pLevel->iLeftJoin = pParse->nMem++; 1450 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1451 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1); 1452 VdbeComment((v, "# init LEFT JOIN no-match flag")); 1453 } 1454 1455 if( pLevel->flags & WHERE_ROWID_EQ ){ 1456 /* Case 1: We can directly reference a single row using an 1457 ** equality comparison against the ROWID field. Or 1458 ** we reference multiple rows using a "rowid IN (...)" 1459 ** construct. 1460 */ 1461 pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0); 1462 assert( pTerm!=0 ); 1463 assert( pTerm->pExpr!=0 ); 1464 assert( pTerm->leftCursor==iCur ); 1465 assert( omitTable==0 ); 1466 codeEqualityTerm(pParse, pTerm, brk, pLevel); 1467 sqlite3VdbeAddOp(v, OP_MustBeInt, 1, brk); 1468 sqlite3VdbeAddOp(v, OP_NotExists, iCur, brk); 1469 VdbeComment((v, "pk")); 1470 pLevel->op = OP_Noop; 1471 }else if( pLevel->flags & WHERE_ROWID_RANGE ){ 1472 /* Case 2: We have an inequality comparison against the ROWID field. 1473 */ 1474 int testOp = OP_Noop; 1475 int start; 1476 WhereTerm *pStart, *pEnd; 1477 1478 assert( omitTable==0 ); 1479 pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0); 1480 pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0); 1481 if( bRev ){ 1482 pTerm = pStart; 1483 pStart = pEnd; 1484 pEnd = pTerm; 1485 } 1486 if( pStart ){ 1487 Expr *pX; 1488 pX = pStart->pExpr; 1489 assert( pX!=0 ); 1490 assert( pStart->leftCursor==iCur ); 1491 sqlite3ExprCode(pParse, pX->pRight); 1492 sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk); 1493 sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk); 1494 VdbeComment((v, "pk")); 1495 disableTerm(pLevel, pStart); 1496 }else{ 1497 sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk); 1498 } 1499 if( pEnd ){ 1500 Expr *pX; 1501 pX = pEnd->pExpr; 1502 assert( pX!=0 ); 1503 assert( pEnd->leftCursor==iCur ); 1504 sqlite3ExprCode(pParse, pX->pRight); 1505 pLevel->iMem = pParse->nMem++; 1506 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); 1507 if( pX->op==TK_LT || pX->op==TK_GT ){ 1508 testOp = bRev ? OP_Le : OP_Ge; 1509 }else{ 1510 testOp = bRev ? OP_Lt : OP_Gt; 1511 } 1512 disableTerm(pLevel, pEnd); 1513 } 1514 start = sqlite3VdbeCurrentAddr(v); 1515 pLevel->op = bRev ? OP_Prev : OP_Next; 1516 pLevel->p1 = iCur; 1517 pLevel->p2 = start; 1518 if( testOp!=OP_Noop ){ 1519 sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0); 1520 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 1521 sqlite3VdbeAddOp(v, testOp, 'n', brk); 1522 } 1523 }else if( pLevel->flags & WHERE_COLUMN_RANGE ){ 1524 /* Case 3: The WHERE clause term that refers to the right-most 1525 ** column of the index is an inequality. For example, if 1526 ** the index is on (x,y,z) and the WHERE clause is of the 1527 ** form "x=5 AND y<10" then this case is used. Only the 1528 ** right-most column can be an inequality - the rest must 1529 ** use the "==" and "IN" operators. 1530 ** 1531 ** This case is also used when there are no WHERE clause 1532 ** constraints but an index is selected anyway, in order 1533 ** to force the output order to conform to an ORDER BY. 1534 */ 1535 int start; 1536 int nEq = pLevel->nEq; 1537 int leFlag=0, geFlag=0; 1538 int testOp; 1539 int topLimit = (pLevel->flags & WHERE_TOP_LIMIT)!=0; 1540 int btmLimit = (pLevel->flags & WHERE_BTM_LIMIT)!=0; 1541 1542 /* Generate code to evaluate all constraint terms using == or IN 1543 ** and level the values of those terms on the stack. 1544 */ 1545 codeAllEqualityTerms(pParse, pLevel, &wc, notReady, brk); 1546 1547 /* Duplicate the equality term values because they will all be 1548 ** used twice: once to make the termination key and once to make the 1549 ** start key. 1550 */ 1551 for(j=0; j<nEq; j++){ 1552 sqlite3VdbeAddOp(v, OP_Dup, nEq-1, 0); 1553 } 1554 1555 /* Generate the termination key. This is the key value that 1556 ** will end the search. There is no termination key if there 1557 ** are no equality terms and no "X<..." term. 1558 ** 1559 ** 2002-Dec-04: On a reverse-order scan, the so-called "termination" 1560 ** key computed here really ends up being the start key. 1561 */ 1562 if( topLimit ){ 1563 Expr *pX; 1564 int k = pIdx->aiColumn[j]; 1565 pTerm = findTerm(&wc, iCur, k, notReady, WO_LT|WO_LE, pIdx); 1566 assert( pTerm!=0 ); 1567 pX = pTerm->pExpr; 1568 assert( (pTerm->flags & TERM_CODED)==0 ); 1569 sqlite3ExprCode(pParse, pX->pRight); 1570 leFlag = pX->op==TK_LE; 1571 disableTerm(pLevel, pTerm); 1572 testOp = OP_IdxGE; 1573 }else{ 1574 testOp = nEq>0 ? OP_IdxGE : OP_Noop; 1575 leFlag = 1; 1576 } 1577 if( testOp!=OP_Noop ){ 1578 int nCol = nEq + topLimit; 1579 pLevel->iMem = pParse->nMem++; 1580 buildIndexProbe(v, nCol, brk, pIdx); 1581 if( bRev ){ 1582 int op = leFlag ? OP_MoveLe : OP_MoveLt; 1583 sqlite3VdbeAddOp(v, op, iIdxCur, brk); 1584 }else{ 1585 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); 1586 } 1587 }else if( bRev ){ 1588 sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk); 1589 } 1590 1591 /* Generate the start key. This is the key that defines the lower 1592 ** bound on the search. There is no start key if there are no 1593 ** equality terms and if there is no "X>..." term. In 1594 ** that case, generate a "Rewind" instruction in place of the 1595 ** start key search. 1596 ** 1597 ** 2002-Dec-04: In the case of a reverse-order search, the so-called 1598 ** "start" key really ends up being used as the termination key. 1599 */ 1600 if( btmLimit ){ 1601 Expr *pX; 1602 int k = pIdx->aiColumn[j]; 1603 pTerm = findTerm(&wc, iCur, k, notReady, WO_GT|WO_GE, pIdx); 1604 assert( pTerm!=0 ); 1605 pX = pTerm->pExpr; 1606 assert( (pTerm->flags & TERM_CODED)==0 ); 1607 sqlite3ExprCode(pParse, pX->pRight); 1608 geFlag = pX->op==TK_GE; 1609 disableTerm(pLevel, pTerm); 1610 }else{ 1611 geFlag = 1; 1612 } 1613 if( nEq>0 || btmLimit ){ 1614 int nCol = nEq + btmLimit; 1615 buildIndexProbe(v, nCol, brk, pIdx); 1616 if( bRev ){ 1617 pLevel->iMem = pParse->nMem++; 1618 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); 1619 testOp = OP_IdxLT; 1620 }else{ 1621 int op = geFlag ? OP_MoveGe : OP_MoveGt; 1622 sqlite3VdbeAddOp(v, op, iIdxCur, brk); 1623 } 1624 }else if( bRev ){ 1625 testOp = OP_Noop; 1626 }else{ 1627 sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk); 1628 } 1629 1630 /* Generate the the top of the loop. If there is a termination 1631 ** key we have to test for that key and abort at the top of the 1632 ** loop. 1633 */ 1634 start = sqlite3VdbeCurrentAddr(v); 1635 if( testOp!=OP_Noop ){ 1636 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 1637 sqlite3VdbeAddOp(v, testOp, iIdxCur, brk); 1638 if( (leFlag && !bRev) || (!geFlag && bRev) ){ 1639 sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC); 1640 } 1641 } 1642 sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0); 1643 sqlite3VdbeAddOp(v, OP_IdxIsNull, nEq + topLimit, cont); 1644 if( !omitTable ){ 1645 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0); 1646 sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); 1647 } 1648 1649 /* Record the instruction used to terminate the loop. 1650 */ 1651 pLevel->op = bRev ? OP_Prev : OP_Next; 1652 pLevel->p1 = iIdxCur; 1653 pLevel->p2 = start; 1654 }else if( pLevel->flags & WHERE_COLUMN_EQ ){ 1655 /* Case 4: There is an index and all terms of the WHERE clause that 1656 ** refer to the index using the "==" or "IN" operators. 1657 */ 1658 int start; 1659 int nEq = pLevel->nEq; 1660 1661 /* Generate code to evaluate all constraint terms using == or IN 1662 ** and level the values of those terms on the stack. 1663 */ 1664 codeAllEqualityTerms(pParse, pLevel, &wc, notReady, brk); 1665 1666 /* Generate a single key that will be used to both start and terminate 1667 ** the search 1668 */ 1669 buildIndexProbe(v, nEq, brk, pIdx); 1670 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0); 1671 1672 /* Generate code (1) to move to the first matching element of the table. 1673 ** Then generate code (2) that jumps to "brk" after the cursor is past 1674 ** the last matching element of the table. The code (1) is executed 1675 ** once to initialize the search, the code (2) is executed before each 1676 ** iteration of the scan to see if the scan has finished. */ 1677 if( bRev ){ 1678 /* Scan in reverse order */ 1679 sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, brk); 1680 start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 1681 sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, brk); 1682 pLevel->op = OP_Prev; 1683 }else{ 1684 /* Scan in the forward order */ 1685 sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, brk); 1686 start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 1687 sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, brk, "+", P3_STATIC); 1688 pLevel->op = OP_Next; 1689 } 1690 sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0); 1691 sqlite3VdbeAddOp(v, OP_IdxIsNull, nEq, cont); 1692 if( !omitTable ){ 1693 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0); 1694 sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); 1695 } 1696 pLevel->p1 = iIdxCur; 1697 pLevel->p2 = start; 1698 }else{ 1699 /* Case 5: There is no usable index. We must do a complete 1700 ** scan of the entire table. 1701 */ 1702 assert( omitTable==0 ); 1703 assert( bRev==0 ); 1704 pLevel->op = OP_Next; 1705 pLevel->p1 = iCur; 1706 pLevel->p2 = 1 + sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk); 1707 } 1708 notReady &= ~getMask(&maskSet, iCur); 1709 1710 /* Insert code to test every subexpression that can be completely 1711 ** computed using the current set of tables. 1712 */ 1713 for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){ 1714 Expr *pE; 1715 if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue; 1716 if( (pTerm->prereqAll & notReady)!=0 ) continue; 1717 pE = pTerm->pExpr; 1718 assert( pE!=0 ); 1719 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ 1720 continue; 1721 } 1722 sqlite3ExprIfFalse(pParse, pE, cont, 1); 1723 pTerm->flags |= TERM_CODED; 1724 } 1725 1726 /* For a LEFT OUTER JOIN, generate code that will record the fact that 1727 ** at least one row of the right table has matched the left table. 1728 */ 1729 if( pLevel->iLeftJoin ){ 1730 pLevel->top = sqlite3VdbeCurrentAddr(v); 1731 sqlite3VdbeAddOp(v, OP_Integer, 1, 0); 1732 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1); 1733 VdbeComment((v, "# record LEFT JOIN hit")); 1734 for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){ 1735 if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue; 1736 if( (pTerm->prereqAll & notReady)!=0 ) continue; 1737 assert( pTerm->pExpr ); 1738 sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, 1); 1739 pTerm->flags |= TERM_CODED; 1740 } 1741 } 1742 } 1743 1744 #ifdef SQLITE_TEST /* For testing and debugging use only */ 1745 /* Record in the query plan information about the current table 1746 ** and the index used to access it (if any). If the table itself 1747 ** is not used, its name is just '{}'. If no index is used 1748 ** the index is listed as "{}". If the primary key is used the 1749 ** index name is '*'. 1750 */ 1751 for(i=0; i<pTabList->nSrc; i++){ 1752 char *z; 1753 int n; 1754 pLevel = &pWInfo->a[i]; 1755 pTabItem = &pTabList->a[pLevel->iFrom]; 1756 z = pTabItem->zAlias; 1757 if( z==0 ) z = pTabItem->pTab->zName; 1758 n = strlen(z); 1759 if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){ 1760 if( pLevel->flags & WHERE_IDX_ONLY ){ 1761 strcpy(&sqlite3_query_plan[nQPlan], "{}"); 1762 nQPlan += 2; 1763 }else{ 1764 strcpy(&sqlite3_query_plan[nQPlan], z); 1765 nQPlan += n; 1766 } 1767 sqlite3_query_plan[nQPlan++] = ' '; 1768 } 1769 if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ 1770 strcpy(&sqlite3_query_plan[nQPlan], "* "); 1771 nQPlan += 2; 1772 }else if( pLevel->pIdx==0 ){ 1773 strcpy(&sqlite3_query_plan[nQPlan], "{} "); 1774 nQPlan += 3; 1775 }else{ 1776 n = strlen(pLevel->pIdx->zName); 1777 if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){ 1778 strcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName); 1779 nQPlan += n; 1780 sqlite3_query_plan[nQPlan++] = ' '; 1781 } 1782 } 1783 } 1784 while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){ 1785 sqlite3_query_plan[--nQPlan] = 0; 1786 } 1787 sqlite3_query_plan[nQPlan] = 0; 1788 nQPlan = 0; 1789 #endif /* SQLITE_TEST // Testing and debugging use only */ 1790 1791 /* Record the continuation address in the WhereInfo structure. Then 1792 ** clean up and return. 1793 */ 1794 pWInfo->iContinue = cont; 1795 whereClauseClear(&wc); 1796 return pWInfo; 1797 1798 /* Jump here if malloc fails */ 1799 whereBeginNoMem: 1800 whereClauseClear(&wc); 1801 sqliteFree(pWInfo); 1802 return 0; 1803 } 1804 1805 /* 1806 ** Generate the end of the WHERE loop. See comments on 1807 ** sqlite3WhereBegin() for additional information. 1808 */ 1809 void sqlite3WhereEnd(WhereInfo *pWInfo){ 1810 Vdbe *v = pWInfo->pParse->pVdbe; 1811 int i; 1812 WhereLevel *pLevel; 1813 SrcList *pTabList = pWInfo->pTabList; 1814 1815 /* Generate loop termination code. 1816 */ 1817 for(i=pTabList->nSrc-1; i>=0; i--){ 1818 pLevel = &pWInfo->a[i]; 1819 sqlite3VdbeResolveLabel(v, pLevel->cont); 1820 if( pLevel->op!=OP_Noop ){ 1821 sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2); 1822 } 1823 sqlite3VdbeResolveLabel(v, pLevel->brk); 1824 if( pLevel->nIn ){ 1825 int *a; 1826 int j; 1827 for(j=pLevel->nIn, a=&pLevel->aInLoop[j*3-3]; j>0; j--, a-=3){ 1828 sqlite3VdbeAddOp(v, a[0], a[1], a[2]); 1829 } 1830 sqliteFree(pLevel->aInLoop); 1831 } 1832 if( pLevel->iLeftJoin ){ 1833 int addr; 1834 addr = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iLeftJoin, 0); 1835 sqlite3VdbeAddOp(v, OP_NotNull, 1, addr+4 + (pLevel->iIdxCur>=0)); 1836 sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0); 1837 if( pLevel->iIdxCur>=0 ){ 1838 sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0); 1839 } 1840 sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top); 1841 } 1842 } 1843 1844 /* The "break" point is here, just past the end of the outer loop. 1845 ** Set it. 1846 */ 1847 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 1848 1849 /* Close all of the cursors that were opened by sqlite3WhereBegin. 1850 */ 1851 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 1852 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 1853 Table *pTab = pTabItem->pTab; 1854 assert( pTab!=0 ); 1855 if( pTab->isTransient || pTab->pSelect ) continue; 1856 if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){ 1857 sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0); 1858 } 1859 if( pLevel->pIdx!=0 ){ 1860 sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0); 1861 } 1862 1863 /* Make cursor substitutions for cases where we want to use 1864 ** just the index and never reference the table. 1865 ** 1866 ** Calls to the code generator in between sqlite3WhereBegin and 1867 ** sqlite3WhereEnd will have created code that references the table 1868 ** directly. This loop scans all that code looking for opcodes 1869 ** that reference the table and converts them into opcodes that 1870 ** reference the index. 1871 */ 1872 if( pLevel->flags & WHERE_IDX_ONLY ){ 1873 int i, j, last; 1874 VdbeOp *pOp; 1875 Index *pIdx = pLevel->pIdx; 1876 1877 assert( pIdx!=0 ); 1878 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop); 1879 last = sqlite3VdbeCurrentAddr(v); 1880 for(i=pWInfo->iTop; i<last; i++, pOp++){ 1881 if( pOp->p1!=pLevel->iTabCur ) continue; 1882 if( pOp->opcode==OP_Column ){ 1883 pOp->p1 = pLevel->iIdxCur; 1884 for(j=0; j<pIdx->nColumn; j++){ 1885 if( pOp->p2==pIdx->aiColumn[j] ){ 1886 pOp->p2 = j; 1887 break; 1888 } 1889 } 1890 }else if( pOp->opcode==OP_Rowid ){ 1891 pOp->p1 = pLevel->iIdxCur; 1892 pOp->opcode = OP_IdxRowid; 1893 }else if( pOp->opcode==OP_NullRow ){ 1894 pOp->opcode = OP_Noop; 1895 } 1896 } 1897 } 1898 } 1899 1900 /* Final cleanup 1901 */ 1902 sqliteFree(pWInfo); 1903 return; 1904 } 1905