xref: /sqlite-3.40.0/src/where.c (revision 4dcbdbff)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is reponsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 **
19 ** $Id: where.c,v 1.159 2005/08/02 17:48:22 drh Exp $
20 */
21 #include "sqliteInt.h"
22 
23 /*
24 ** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
25 */
26 #define BMS  (sizeof(Bitmask)*8)
27 
28 /*
29 ** Determine the number of elements in an array.
30 */
31 #define ARRAYSIZE(X)  (sizeof(X)/sizeof(X[0]))
32 
33 /*
34 ** Trace output macros
35 */
36 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
37 int sqlite3_where_trace = 0;
38 # define TRACE(X)  if(sqlite3_where_trace) sqlite3DebugPrintf X
39 #else
40 # define TRACE(X)
41 #endif
42 
43 /* Forward reference
44 */
45 typedef struct WhereClause WhereClause;
46 
47 /*
48 ** The query generator uses an array of instances of this structure to
49 ** help it analyze the subexpressions of the WHERE clause.  Each WHERE
50 ** clause subexpression is separated from the others by an AND operator.
51 **
52 ** All WhereTerms are collected into a single WhereClause structure.
53 ** The following identity holds:
54 **
55 **        WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
56 **
57 ** When a term is of the form:
58 **
59 **              X <op> <expr>
60 **
61 ** where X is a column name and <op> is one of certain operators,
62 ** then WhereTerm.leftCursor and WhereTerm.leftColumn record the
63 ** cursor number and column number for X.  WhereTerm.operator records
64 ** the <op> using a bitmask encoding defined by WO_xxx below.  The
65 ** use of a bitmask encoding for the operator allows us to search
66 ** quickly for terms that match any of several different operators.
67 **
68 ** prereqRight and prereqAll record sets of cursor numbers,
69 ** but they do so indirectly.  A single ExprMaskSet structure translates
70 ** cursor number into bits and the translated bit is stored in the prereq
71 ** fields.  The translation is used in order to maximize the number of
72 ** bits that will fit in a Bitmask.  The VDBE cursor numbers might be
73 ** spread out over the non-negative integers.  For example, the cursor
74 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45.  The ExprMaskSet
75 ** translates these sparse cursor numbers into consecutive integers
76 ** beginning with 0 in order to make the best possible use of the available
77 ** bits in the Bitmask.  So, in the example above, the cursor numbers
78 ** would be mapped into integers 0 through 7.
79 */
80 typedef struct WhereTerm WhereTerm;
81 struct WhereTerm {
82   Expr *pExpr;            /* Pointer to the subexpression */
83   u16 idx;                /* Index of this term in pWC->a[] */
84   i16 iParent;            /* Disable pWC->a[iParent] when this term disabled */
85   i16 leftCursor;         /* Cursor number of X in "X <op> <expr>" */
86   i16 leftColumn;         /* Column number of X in "X <op> <expr>" */
87   u16 operator;           /* A WO_xx value describing <op> */
88   u8 flags;               /* Bit flags.  See below */
89   u8 nChild;              /* Number of children that must disable us */
90   WhereClause *pWC;       /* The clause this term is part of */
91   Bitmask prereqRight;    /* Bitmask of tables used by pRight */
92   Bitmask prereqAll;      /* Bitmask of tables referenced by p */
93 };
94 
95 /*
96 ** Allowed values of WhereTerm.flags
97 */
98 #define TERM_DYNAMIC    0x01   /* Need to call sqlite3ExprDelete(pExpr) */
99 #define TERM_VIRTUAL    0x02   /* Added by the optimizer.  Do not code */
100 #define TERM_CODED      0x04   /* This term is already coded */
101 #define TERM_COPIED     0x08   /* Has a child */
102 #define TERM_OR_OK      0x10   /* Used during OR-clause processing */
103 
104 /*
105 ** An instance of the following structure holds all information about a
106 ** WHERE clause.  Mostly this is a container for one or more WhereTerms.
107 */
108 struct WhereClause {
109   Parse *pParse;           /* The parser context */
110   int nTerm;               /* Number of terms */
111   int nSlot;               /* Number of entries in a[] */
112   WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
113   WhereTerm aStatic[10];   /* Initial static space for a[] */
114 };
115 
116 /*
117 ** An instance of the following structure keeps track of a mapping
118 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
119 **
120 ** The VDBE cursor numbers are small integers contained in
121 ** SrcList_item.iCursor and Expr.iTable fields.  For any given WHERE
122 ** clause, the cursor numbers might not begin with 0 and they might
123 ** contain gaps in the numbering sequence.  But we want to make maximum
124 ** use of the bits in our bitmasks.  This structure provides a mapping
125 ** from the sparse cursor numbers into consecutive integers beginning
126 ** with 0.
127 **
128 ** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
129 ** corresponds VDBE cursor number B.  The A-th bit of a bitmask is 1<<A.
130 **
131 ** For example, if the WHERE clause expression used these VDBE
132 ** cursors:  4, 5, 8, 29, 57, 73.  Then the  ExprMaskSet structure
133 ** would map those cursor numbers into bits 0 through 5.
134 **
135 ** Note that the mapping is not necessarily ordered.  In the example
136 ** above, the mapping might go like this:  4->3, 5->1, 8->2, 29->0,
137 ** 57->5, 73->4.  Or one of 719 other combinations might be used. It
138 ** does not really matter.  What is important is that sparse cursor
139 ** numbers all get mapped into bit numbers that begin with 0 and contain
140 ** no gaps.
141 */
142 typedef struct ExprMaskSet ExprMaskSet;
143 struct ExprMaskSet {
144   int n;                        /* Number of assigned cursor values */
145   int ix[sizeof(Bitmask)*8];    /* Cursor assigned to each bit */
146 };
147 
148 
149 /*
150 ** Bitmasks for the operators that indices are able to exploit.  An
151 ** OR-ed combination of these values can be used when searching for
152 ** terms in the where clause.
153 */
154 #define WO_IN     1
155 #define WO_EQ     2
156 #define WO_LT     (WO_EQ<<(TK_LT-TK_EQ))
157 #define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
158 #define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
159 #define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))
160 
161 /*
162 ** Value for flags returned by bestIndex()
163 */
164 #define WHERE_ROWID_EQ       0x0001   /* rowid=EXPR or rowid IN (...) */
165 #define WHERE_ROWID_RANGE    0x0002   /* rowid<EXPR and/or rowid>EXPR */
166 #define WHERE_COLUMN_EQ      0x0010   /* x=EXPR or x IN (...) */
167 #define WHERE_COLUMN_RANGE   0x0020   /* x<EXPR and/or x>EXPR */
168 #define WHERE_COLUMN_IN      0x0040   /* x IN (...) */
169 #define WHERE_TOP_LIMIT      0x0100   /* x<EXPR or x<=EXPR constraint */
170 #define WHERE_BTM_LIMIT      0x0200   /* x>EXPR or x>=EXPR constraint */
171 #define WHERE_IDX_ONLY       0x0800   /* Use index only - omit table */
172 #define WHERE_ORDERBY        0x1000   /* Output will appear in correct order */
173 #define WHERE_REVERSE        0x2000   /* Scan in reverse order */
174 #define WHERE_UNIQUE         0x4000   /* Selects no more than one row */
175 
176 /*
177 ** Initialize a preallocated WhereClause structure.
178 */
179 static void whereClauseInit(WhereClause *pWC, Parse *pParse){
180   pWC->pParse = pParse;
181   pWC->nTerm = 0;
182   pWC->nSlot = ARRAYSIZE(pWC->aStatic);
183   pWC->a = pWC->aStatic;
184 }
185 
186 /*
187 ** Deallocate a WhereClause structure.  The WhereClause structure
188 ** itself is not freed.  This routine is the inverse of whereClauseInit().
189 */
190 static void whereClauseClear(WhereClause *pWC){
191   int i;
192   WhereTerm *a;
193   for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
194     if( a->flags & TERM_DYNAMIC ){
195       sqlite3ExprDelete(a->pExpr);
196     }
197   }
198   if( pWC->a!=pWC->aStatic ){
199     sqliteFree(pWC->a);
200   }
201 }
202 
203 /*
204 ** Add a new entries to the WhereClause structure.  Increase the allocated
205 ** space as necessary.
206 */
207 static WhereTerm *whereClauseInsert(WhereClause *pWC, Expr *p, int flags){
208   WhereTerm *pTerm;
209   if( pWC->nTerm>=pWC->nSlot ){
210     WhereTerm *pOld = pWC->a;
211     pWC->a = sqliteMalloc( sizeof(pWC->a[0])*pWC->nSlot*2 );
212     if( pWC->a==0 ) return 0;
213     memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
214     if( pOld!=pWC->aStatic ){
215       sqliteFree(pOld);
216     }
217     pWC->nSlot *= 2;
218   }
219   pTerm = &pWC->a[pWC->nTerm];
220   pTerm->idx = pWC->nTerm;
221   pWC->nTerm++;
222   pTerm->pExpr = p;
223   pTerm->flags = flags;
224   pTerm->pWC = pWC;
225   pTerm->iParent = -1;
226   return pTerm;
227 }
228 
229 /*
230 ** This routine identifies subexpressions in the WHERE clause where
231 ** each subexpression is separate by the AND operator or some other
232 ** operator specified in the op parameter.  The WhereClause structure
233 ** is filled with pointers to subexpressions.  For example:
234 **
235 **    WHERE  a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
236 **           \________/     \_______________/     \________________/
237 **            slot[0]            slot[1]               slot[2]
238 **
239 ** The original WHERE clause in pExpr is unaltered.  All this routine
240 ** does is make slot[] entries point to substructure within pExpr.
241 **
242 ** In the previous sentence and in the diagram, "slot[]" refers to
243 ** the WhereClause.a[] array.  This array grows as needed to contain
244 ** all terms of the WHERE clause.
245 */
246 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
247   if( pExpr==0 ) return;
248   if( pExpr->op!=op ){
249     whereClauseInsert(pWC, pExpr, 0);
250   }else{
251     whereSplit(pWC, pExpr->pLeft, op);
252     whereSplit(pWC, pExpr->pRight, op);
253   }
254 }
255 
256 /*
257 ** Initialize an expression mask set
258 */
259 #define initMaskSet(P)  memset(P, 0, sizeof(*P))
260 
261 /*
262 ** Return the bitmask for the given cursor number.  Return 0 if
263 ** iCursor is not in the set.
264 */
265 static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){
266   int i;
267   for(i=0; i<pMaskSet->n; i++){
268     if( pMaskSet->ix[i]==iCursor ){
269       return ((Bitmask)1)<<i;
270     }
271   }
272   return 0;
273 }
274 
275 /*
276 ** Create a new mask for cursor iCursor.
277 **
278 ** There is one cursor per table in the FROM clause.  The number of
279 ** tables in the FROM clause is limited by a test early in the
280 ** sqlite3WhereBegin() routien.  So we know that the pMaskSet->ix[]
281 ** array will never overflow.
282 */
283 static void createMask(ExprMaskSet *pMaskSet, int iCursor){
284   assert( pMaskSet->n < ARRAYSIZE(pMaskSet->ix) );
285   pMaskSet->ix[pMaskSet->n++] = iCursor;
286 }
287 
288 /*
289 ** This routine walks (recursively) an expression tree and generates
290 ** a bitmask indicating which tables are used in that expression
291 ** tree.
292 **
293 ** In order for this routine to work, the calling function must have
294 ** previously invoked sqlite3ExprResolveNames() on the expression.  See
295 ** the header comment on that routine for additional information.
296 ** The sqlite3ExprResolveNames() routines looks for column names and
297 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
298 ** the VDBE cursor number of the table.  This routine just has to
299 ** translate the cursor numbers into bitmask values and OR all
300 ** the bitmasks together.
301 */
302 static Bitmask exprListTableUsage(ExprMaskSet *, ExprList *);
303 static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
304   Bitmask mask = 0;
305   if( p==0 ) return 0;
306   if( p->op==TK_COLUMN ){
307     mask = getMask(pMaskSet, p->iTable);
308     return mask;
309   }
310   mask = exprTableUsage(pMaskSet, p->pRight);
311   mask |= exprTableUsage(pMaskSet, p->pLeft);
312   mask |= exprListTableUsage(pMaskSet, p->pList);
313   if( p->pSelect ){
314     Select *pS = p->pSelect;
315     mask |= exprListTableUsage(pMaskSet, pS->pEList);
316     mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
317     mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
318     mask |= exprTableUsage(pMaskSet, pS->pWhere);
319     mask |= exprTableUsage(pMaskSet, pS->pHaving);
320   }
321   return mask;
322 }
323 static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){
324   int i;
325   Bitmask mask = 0;
326   if( pList ){
327     for(i=0; i<pList->nExpr; i++){
328       mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
329     }
330   }
331   return mask;
332 }
333 
334 /*
335 ** Return TRUE if the given operator is one of the operators that is
336 ** allowed for an indexable WHERE clause term.  The allowed operators are
337 ** "=", "<", ">", "<=", ">=", and "IN".
338 */
339 static int allowedOp(int op){
340   assert( TK_GT>TK_EQ && TK_GT<TK_GE );
341   assert( TK_LT>TK_EQ && TK_LT<TK_GE );
342   assert( TK_LE>TK_EQ && TK_LE<TK_GE );
343   assert( TK_GE==TK_EQ+4 );
344   return op==TK_IN || (op>=TK_EQ && op<=TK_GE);
345 }
346 
347 /*
348 ** Swap two objects of type T.
349 */
350 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
351 
352 /*
353 ** Commute a comparision operator.  Expressions of the form "X op Y"
354 ** are converted into "Y op X".
355 */
356 static void exprCommute(Expr *pExpr){
357   assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
358   SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
359   SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
360   if( pExpr->op>=TK_GT ){
361     assert( TK_LT==TK_GT+2 );
362     assert( TK_GE==TK_LE+2 );
363     assert( TK_GT>TK_EQ );
364     assert( TK_GT<TK_LE );
365     assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
366     pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
367   }
368 }
369 
370 /*
371 ** Translate from TK_xx operator to WO_xx bitmask.
372 */
373 static int operatorMask(int op){
374   int c;
375   assert( allowedOp(op) );
376   if( op==TK_IN ){
377     c = WO_IN;
378   }else{
379     c = WO_EQ<<(op-TK_EQ);
380   }
381   assert( op!=TK_IN || c==WO_IN );
382   assert( op!=TK_EQ || c==WO_EQ );
383   assert( op!=TK_LT || c==WO_LT );
384   assert( op!=TK_LE || c==WO_LE );
385   assert( op!=TK_GT || c==WO_GT );
386   assert( op!=TK_GE || c==WO_GE );
387   return c;
388 }
389 
390 /*
391 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
392 ** where X is a reference to the iColumn of table iCur and <op> is one of
393 ** the WO_xx operator codes specified by the op parameter.
394 ** Return a pointer to the term.  Return 0 if not found.
395 */
396 static WhereTerm *findTerm(
397   WhereClause *pWC,     /* The WHERE clause to be searched */
398   int iCur,             /* Cursor number of LHS */
399   int iColumn,          /* Column number of LHS */
400   Bitmask notReady,     /* RHS must not overlap with this mask */
401   u16 op,               /* Mask of WO_xx values describing operator */
402   Index *pIdx           /* Must be compatible with this index, if not NULL */
403 ){
404   WhereTerm *pTerm;
405   int k;
406   for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
407     if( pTerm->leftCursor==iCur
408        && (pTerm->prereqRight & notReady)==0
409        && pTerm->leftColumn==iColumn
410        && (pTerm->operator & op)!=0
411     ){
412       if( iCur>=0 && pIdx ){
413         Expr *pX = pTerm->pExpr;
414         CollSeq *pColl;
415         char idxaff;
416         int k;
417         Parse *pParse = pWC->pParse;
418 
419         idxaff = pIdx->pTable->aCol[iColumn].affinity;
420         if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
421         pColl = sqlite3ExprCollSeq(pParse, pX->pLeft);
422         if( !pColl ){
423           if( pX->pRight ){
424             pColl = sqlite3ExprCollSeq(pParse, pX->pRight);
425           }
426           if( !pColl ){
427             pColl = pParse->db->pDfltColl;
428           }
429         }
430         for(k=0; k<pIdx->nColumn && pIdx->aiColumn[k]!=iColumn; k++){}
431         assert( k<pIdx->nColumn );
432         if( pColl!=pIdx->keyInfo.aColl[k] ) continue;
433       }
434       return pTerm;
435     }
436   }
437   return 0;
438 }
439 
440 /* Forward reference */
441 static void exprAnalyze(SrcList*, ExprMaskSet*, WhereTerm*);
442 
443 /*
444 ** Call exprAnalyze on all terms in a WHERE clause.
445 **
446 **
447 */
448 static void exprAnalyzeAll(
449   SrcList *pTabList,       /* the FROM clause */
450   ExprMaskSet *pMaskSet,   /* table masks */
451   WhereClause *pWC         /* the WHERE clause to be analyzed */
452 ){
453   WhereTerm *pTerm;
454   int i;
455   for(i=pWC->nTerm-1, pTerm=pWC->a; i>=0; i--, pTerm++){
456     exprAnalyze(pTabList, pMaskSet, pTerm);
457   }
458 }
459 
460 /*
461 ** The input to this routine is an WhereTerm structure with only the
462 ** "pExpr" field filled in.  The job of this routine is to analyze the
463 ** subexpression and populate all the other fields of the WhereTerm
464 ** structure.
465 **
466 ** If the expression is of the form "<expr> <op> X" it gets commuted
467 ** to the standard form of "X <op> <expr>".  If the expression is of
468 ** the form "X <op> Y" where both X and Y are columns, then the original
469 ** expression is unchanged and a new virtual expression of the form
470 ** "Y <op> X" is added to the WHERE clause.
471 */
472 static void exprAnalyze(
473   SrcList *pSrc,            /* the FROM clause */
474   ExprMaskSet *pMaskSet,    /* table masks */
475   WhereTerm *pTerm          /* the WHERE clause term to be analyzed */
476 ){
477   Expr *pExpr = pTerm->pExpr;
478   Bitmask prereqLeft;
479   Bitmask prereqAll;
480   int idxRight;
481 
482   prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
483   pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
484   pTerm->prereqAll = prereqAll = exprTableUsage(pMaskSet, pExpr);
485   pTerm->leftCursor = -1;
486   pTerm->iParent = -1;
487   pTerm->operator = 0;
488   idxRight = -1;
489   if( allowedOp(pExpr->op) && (pTerm->prereqRight & prereqLeft)==0 ){
490     Expr *pLeft = pExpr->pLeft;
491     Expr *pRight = pExpr->pRight;
492     if( pLeft->op==TK_COLUMN ){
493       pTerm->leftCursor = pLeft->iTable;
494       pTerm->leftColumn = pLeft->iColumn;
495       pTerm->operator = operatorMask(pExpr->op);
496     }
497     if( pRight && pRight->op==TK_COLUMN ){
498       WhereTerm *pNew;
499       Expr *pDup;
500       if( pTerm->leftCursor>=0 ){
501         pDup = sqlite3ExprDup(pExpr);
502         pNew = whereClauseInsert(pTerm->pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
503         if( pNew==0 ) return;
504         pNew->iParent = pTerm->idx;
505         pTerm->nChild = 1;
506         pTerm->flags |= TERM_COPIED;
507       }else{
508         pDup = pExpr;
509         pNew = pTerm;
510       }
511       exprCommute(pDup);
512       pLeft = pDup->pLeft;
513       pNew->leftCursor = pLeft->iTable;
514       pNew->leftColumn = pLeft->iColumn;
515       pNew->prereqRight = prereqLeft;
516       pNew->prereqAll = prereqAll;
517       pNew->operator = operatorMask(pDup->op);
518     }
519   }
520 
521   /* If a term is the BETWEEN operator, create two new virtual terms
522   ** that define the range that the BETWEEN implements.
523   */
524   else if( pExpr->op==TK_BETWEEN ){
525     ExprList *pList = pExpr->pList;
526     int i;
527     static const u8 ops[] = {TK_GE, TK_LE};
528     assert( pList!=0 );
529     assert( pList->nExpr==2 );
530     for(i=0; i<2; i++){
531       Expr *pNewExpr;
532       WhereTerm *pNewTerm;
533       pNewExpr = sqlite3Expr(ops[i], sqlite3ExprDup(pExpr->pLeft),
534                              sqlite3ExprDup(pList->a[i].pExpr), 0);
535       pNewTerm = whereClauseInsert(pTerm->pWC, pNewExpr,
536                                    TERM_VIRTUAL|TERM_DYNAMIC);
537       exprAnalyze(pSrc, pMaskSet, pNewTerm);
538       pNewTerm->iParent = pTerm->idx;
539     }
540     pTerm->nChild = 2;
541   }
542 
543   /* Attempt to convert OR-connected terms into an IN operator so that
544   ** they can make use of indices.
545   */
546   else if( pExpr->op==TK_OR ){
547     int ok;
548     int i, j;
549     int iColumn, iCursor;
550     WhereClause sOr;
551     WhereTerm *pOrTerm;
552 
553     assert( (pTerm->flags & TERM_DYNAMIC)==0 );
554     whereClauseInit(&sOr, pTerm->pWC->pParse);
555     whereSplit(&sOr, pExpr, TK_OR);
556     exprAnalyzeAll(pSrc, pMaskSet, &sOr);
557     assert( sOr.nTerm>0 );
558     j = 0;
559     do{
560       iColumn = sOr.a[j].leftColumn;
561       iCursor = sOr.a[j].leftCursor;
562       ok = iCursor>=0;
563       for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
564         if( pOrTerm->operator!=WO_EQ ){
565           goto or_not_possible;
566         }
567         if( pOrTerm->leftCursor==iCursor && pOrTerm->leftColumn==iColumn ){
568           pOrTerm->flags |= TERM_OR_OK;
569         }else if( (pOrTerm->flags & TERM_COPIED)!=0 ||
570                     ((pOrTerm->flags & TERM_VIRTUAL)!=0 &&
571                      (sOr.a[pOrTerm->iParent].flags & TERM_OR_OK)!=0) ){
572           pOrTerm->flags &= ~TERM_OR_OK;
573         }else{
574           ok = 0;
575         }
576       }
577     }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<sOr.nTerm );
578     if( ok ){
579       ExprList *pList = 0;
580       Expr *pNew, *pDup;
581       for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
582         if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue;
583         pDup = sqlite3ExprDup(pOrTerm->pExpr->pRight);
584         pList = sqlite3ExprListAppend(pList, pDup, 0);
585       }
586       pDup = sqlite3Expr(TK_COLUMN, 0, 0, 0);
587       if( pDup ){
588         pDup->iTable = iCursor;
589         pDup->iColumn = iColumn;
590       }
591       pNew = sqlite3Expr(TK_IN, pDup, 0, 0);
592       if( pNew ) pNew->pList = pList;
593       pTerm->pExpr = pNew;
594       pTerm->flags |= TERM_DYNAMIC;
595       exprAnalyze(pSrc, pMaskSet, pTerm);
596     }
597 or_not_possible:
598     whereClauseClear(&sOr);
599   }
600 }
601 
602 
603 /*
604 ** This routine decides if pIdx can be used to satisfy the ORDER BY
605 ** clause.  If it can, it returns 1.  If pIdx cannot satisfy the
606 ** ORDER BY clause, this routine returns 0.
607 **
608 ** pOrderBy is an ORDER BY clause from a SELECT statement.  pTab is the
609 ** left-most table in the FROM clause of that same SELECT statement and
610 ** the table has a cursor number of "base".  pIdx is an index on pTab.
611 **
612 ** nEqCol is the number of columns of pIdx that are used as equality
613 ** constraints.  Any of these columns may be missing from the ORDER BY
614 ** clause and the match can still be a success.
615 **
616 ** If the index is UNIQUE, then the ORDER BY clause is allowed to have
617 ** additional terms past the end of the index and the match will still
618 ** be a success.
619 **
620 ** All terms of the ORDER BY that match against the index must be either
621 ** ASC or DESC.  (Terms of the ORDER BY clause past the end of a UNIQUE
622 ** index do not need to satisfy this constraint.)  The *pbRev value is
623 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
624 ** the ORDER BY clause is all ASC.
625 */
626 static int isSortingIndex(
627   Parse *pParse,          /* Parsing context */
628   Index *pIdx,            /* The index we are testing */
629   Table *pTab,            /* The table to be sorted */
630   int base,               /* Cursor number for pTab */
631   ExprList *pOrderBy,     /* The ORDER BY clause */
632   int nEqCol,             /* Number of index columns with == constraints */
633   int *pbRev              /* Set to 1 if ORDER BY is DESC */
634 ){
635   int i, j;                    /* Loop counters */
636   int sortOrder;               /* Which direction we are sorting */
637   int nTerm;                   /* Number of ORDER BY terms */
638   struct ExprList_item *pTerm; /* A term of the ORDER BY clause */
639   sqlite3 *db = pParse->db;
640 
641   assert( pOrderBy!=0 );
642   nTerm = pOrderBy->nExpr;
643   assert( nTerm>0 );
644 
645   /* Match terms of the ORDER BY clause against columns of
646   ** the index.
647   */
648   for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<pIdx->nColumn; i++){
649     Expr *pExpr;       /* The expression of the ORDER BY pTerm */
650     CollSeq *pColl;    /* The collating sequence of pExpr */
651 
652     pExpr = pTerm->pExpr;
653     if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
654       /* Can not use an index sort on anything that is not a column in the
655       ** left-most table of the FROM clause */
656       return 0;
657     }
658     pColl = sqlite3ExprCollSeq(pParse, pExpr);
659     if( !pColl ) pColl = db->pDfltColl;
660     if( pExpr->iColumn!=pIdx->aiColumn[i] || pColl!=pIdx->keyInfo.aColl[i] ){
661       /* Term j of the ORDER BY clause does not match column i of the index */
662       if( i<nEqCol ){
663         /* If an index column that is constrained by == fails to match an
664         ** ORDER BY term, that is OK.  Just ignore that column of the index
665         */
666         continue;
667       }else{
668         /* If an index column fails to match and is not constrained by ==
669         ** then the index cannot satisfy the ORDER BY constraint.
670         */
671         return 0;
672       }
673     }
674     if( i>nEqCol ){
675       if( pTerm->sortOrder!=sortOrder ){
676         /* Indices can only be used if all ORDER BY terms past the
677         ** equality constraints are all either DESC or ASC. */
678         return 0;
679       }
680     }else{
681       sortOrder = pTerm->sortOrder;
682     }
683     j++;
684     pTerm++;
685   }
686 
687   /* The index can be used for sorting if all terms of the ORDER BY clause
688   ** or covered or if we ran out of index columns and the it is a UNIQUE
689   ** index.
690   */
691   if( j>=nTerm || (i>=pIdx->nColumn && pIdx->onError!=OE_None) ){
692     *pbRev = sortOrder==SQLITE_SO_DESC;
693     return 1;
694   }
695   return 0;
696 }
697 
698 /*
699 ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
700 ** by sorting in order of ROWID.  Return true if so and set *pbRev to be
701 ** true for reverse ROWID and false for forward ROWID order.
702 */
703 static int sortableByRowid(
704   int base,               /* Cursor number for table to be sorted */
705   ExprList *pOrderBy,     /* The ORDER BY clause */
706   int *pbRev              /* Set to 1 if ORDER BY is DESC */
707 ){
708   Expr *p;
709 
710   assert( pOrderBy!=0 );
711   assert( pOrderBy->nExpr>0 );
712   p = pOrderBy->a[0].pExpr;
713   if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1 ){
714     *pbRev = pOrderBy->a[0].sortOrder;
715     return 1;
716   }
717   return 0;
718 }
719 
720 /*
721 ** Prepare a crude estimate of the logorithm of the input value.
722 ** The results need not be exact.  This is only used for estimating
723 ** the total cost of performing operatings with O(logN) or O(NlogN)
724 ** complexity.  Because N is just a guess, it is no great tragedy if
725 ** logN is a little off.
726 **
727 ** We can assume N>=1.0;
728 */
729 static double estLog(double N){
730   double logN = 1.0;
731   double x = 10.0;
732   while( N>x ){
733     logN = logN+1.0;
734     x *= 10;
735   }
736   return logN;
737 }
738 
739 /*
740 ** Find the best index for accessing a particular table.  Return a pointer
741 ** to the index, flags that describe how the index should be used, the
742 ** number of equality constraints, and the "cost" for this index.
743 **
744 ** The lowest cost index wins.  The cost is an estimate of the amount of
745 ** CPU and disk I/O need to process the request using the selected index.
746 ** Factors that influence cost include:
747 **
748 **    *  The estimated number of rows that will be retrieved.  (The
749 **       fewer the better.)
750 **
751 **    *  Whether or not sorting must occur.
752 **
753 **    *  Whether or not there must be separate lookups in the
754 **       index and in the main table.
755 **
756 */
757 static double bestIndex(
758   Parse *pParse,              /* The parsing context */
759   WhereClause *pWC,           /* The WHERE clause */
760   struct SrcList_item *pSrc,  /* The FROM clause term to search */
761   Bitmask notReady,           /* Mask of cursors that are not available */
762   ExprList *pOrderBy,         /* The order by clause */
763   Index **ppIndex,            /* Make *ppIndex point to the best index */
764   int *pFlags,                /* Put flags describing this choice in *pFlags */
765   int *pnEq                   /* Put the number of == or IN constraints here */
766 ){
767   WhereTerm *pTerm;
768   Index *bestIdx = 0;         /* Index that gives the lowest cost */
769   double lowestCost = 1.0e99; /* The cost of using bestIdx */
770   int bestFlags = 0;          /* Flags associated with bestIdx */
771   int bestNEq = 0;            /* Best value for nEq */
772   int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
773   Index *pProbe;              /* An index we are evaluating */
774   int rev;                    /* True to scan in reverse order */
775   int flags;                  /* Flags associated with pProbe */
776   int nEq;                    /* Number of == or IN constraints */
777   double cost;                /* Cost of using pProbe */
778 
779   TRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady));
780 
781   /* Check for a rowid=EXPR or rowid IN (...) constraints
782   */
783   pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
784   if( pTerm ){
785     Expr *pExpr;
786     *ppIndex = 0;
787     bestFlags = WHERE_ROWID_EQ;
788     if( pTerm->operator & WO_EQ ){
789       /* Rowid== is always the best pick.  Look no further.  Because only
790       ** a single row is generated, output is always in sorted order */
791       *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE;
792       *pnEq = 1;
793       TRACE(("... best is rowid\n"));
794       return 0.0;
795     }else if( (pExpr = pTerm->pExpr)->pList!=0 ){
796       /* Rowid IN (LIST): cost is NlogN where N is the number of list
797       ** elements.  */
798       lowestCost = pExpr->pList->nExpr;
799       lowestCost *= estLog(lowestCost);
800     }else{
801       /* Rowid IN (SELECT): cost is NlogN where N is the number of rows
802       ** in the result of the inner select.  We have no way to estimate
803       ** that value so make a wild guess. */
804       lowestCost = 200.0;
805     }
806     TRACE(("... rowid IN cost: %.9g\n", lowestCost));
807   }
808 
809   /* Estimate the cost of a table scan.  If we do not know how many
810   ** entries are in the table, use 1 million as a guess.
811   */
812   pProbe = pSrc->pTab->pIndex;
813   cost = pProbe ? pProbe->aiRowEst[0] : 1000000.0;
814   TRACE(("... table scan base cost: %.9g\n", cost));
815   flags = WHERE_ROWID_RANGE;
816 
817   /* Check for constraints on a range of rowids in a table scan.
818   */
819   pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0);
820   if( pTerm ){
821     if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){
822       flags |= WHERE_TOP_LIMIT;
823       cost *= 0.333;  /* Guess that rowid<EXPR eliminates two-thirds or rows */
824     }
825     if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){
826       flags |= WHERE_BTM_LIMIT;
827       cost *= 0.333;  /* Guess that rowid>EXPR eliminates two-thirds of rows */
828     }
829     TRACE(("... rowid range reduces cost to %.9g\n", cost));
830   }else{
831     flags = 0;
832   }
833 
834   /* If the table scan does not satisfy the ORDER BY clause, increase
835   ** the cost by NlogN to cover the expense of sorting. */
836   if( pOrderBy ){
837     if( sortableByRowid(iCur, pOrderBy, &rev) ){
838       flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE;
839       if( rev ){
840         flags |= WHERE_REVERSE;
841       }
842     }else{
843       cost += cost*estLog(cost);
844       TRACE(("... sorting increases cost to %.9g\n", cost));
845     }
846   }
847   if( cost<lowestCost ){
848     lowestCost = cost;
849     bestFlags = flags;
850   }
851 
852   /* Look at each index.
853   */
854   for(; pProbe; pProbe=pProbe->pNext){
855     int i;                       /* Loop counter */
856     double inMultiplier = 1.0;
857 
858     TRACE(("... index %s:\n", pProbe->zName));
859 
860     /* Count the number of columns in the index that are satisfied
861     ** by x=EXPR constraints or x IN (...) constraints.
862     */
863     flags = 0;
864     for(i=0; i<pProbe->nColumn; i++){
865       int j = pProbe->aiColumn[i];
866       pTerm = findTerm(pWC, iCur, j, notReady, WO_EQ|WO_IN, pProbe);
867       if( pTerm==0 ) break;
868       flags |= WHERE_COLUMN_EQ;
869       if( pTerm->operator & WO_IN ){
870         Expr *pExpr = pTerm->pExpr;
871         flags |= WHERE_COLUMN_IN;
872         if( pExpr->pSelect!=0 ){
873           inMultiplier *= 100.0;
874         }else if( pExpr->pList!=0 ){
875           inMultiplier *= pExpr->pList->nExpr + 1.0;
876         }
877       }
878     }
879     cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier);
880     nEq = i;
881     if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0
882          && nEq==pProbe->nColumn ){
883       flags |= WHERE_UNIQUE;
884     }
885     TRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n", nEq, inMultiplier, cost));
886 
887     /* Look for range constraints
888     */
889     if( nEq<pProbe->nColumn ){
890       int j = pProbe->aiColumn[nEq];
891       pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe);
892       if( pTerm ){
893         flags |= WHERE_COLUMN_RANGE;
894         if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){
895           flags |= WHERE_TOP_LIMIT;
896           cost *= 0.333;
897         }
898         if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){
899           flags |= WHERE_BTM_LIMIT;
900           cost *= 0.333;
901         }
902         TRACE(("...... range reduces cost to %.9g\n", cost));
903       }
904     }
905 
906     /* Add the additional cost of sorting if that is a factor.
907     */
908     if( pOrderBy ){
909       if( (flags & WHERE_COLUMN_IN)==0 &&
910         isSortingIndex(pParse, pProbe, pSrc->pTab, iCur, pOrderBy, nEq, &rev) ){
911         if( flags==0 ){
912           flags = WHERE_COLUMN_RANGE;
913         }
914         flags |= WHERE_ORDERBY;
915         if( rev ){
916           flags |= WHERE_REVERSE;
917         }
918       }else{
919         cost += cost*estLog(cost);
920         TRACE(("...... orderby increases cost to %.9g\n", cost));
921       }
922     }
923 
924     /* Check to see if we can get away with using just the index without
925     ** ever reading the table.  If that is the case, then halve the
926     ** cost of this index.
927     */
928     if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){
929       Bitmask m = pSrc->colUsed;
930       int j;
931       for(j=0; j<pProbe->nColumn; j++){
932         int x = pProbe->aiColumn[j];
933         if( x<BMS-1 ){
934           m &= ~(((Bitmask)1)<<x);
935         }
936       }
937       if( m==0 ){
938         flags |= WHERE_IDX_ONLY;
939         cost *= 0.5;
940         TRACE(("...... idx-only reduces cost to %.9g\n", cost));
941       }
942     }
943 
944     /* If this index has achieved the lowest cost so far, then use it.
945     */
946     if( cost < lowestCost ){
947       bestIdx = pProbe;
948       lowestCost = cost;
949       assert( flags!=0 );
950       bestFlags = flags;
951       bestNEq = nEq;
952     }
953   }
954 
955   /* Report the best result
956   */
957   *ppIndex = bestIdx;
958   TRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n",
959         bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq));
960   *pFlags = bestFlags;
961   *pnEq = bestNEq;
962   return lowestCost;
963 }
964 
965 
966 /*
967 ** Disable a term in the WHERE clause.  Except, do not disable the term
968 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
969 ** or USING clause of that join.
970 **
971 ** Consider the term t2.z='ok' in the following queries:
972 **
973 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
974 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
975 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
976 **
977 ** The t2.z='ok' is disabled in the in (2) because it originates
978 ** in the ON clause.  The term is disabled in (3) because it is not part
979 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
980 **
981 ** Disabling a term causes that term to not be tested in the inner loop
982 ** of the join.  Disabling is an optimization.  We would get the correct
983 ** results if nothing were ever disabled, but joins might run a little
984 ** slower.  The trick is to disable as much as we can without disabling
985 ** too much.  If we disabled in (1), we'd get the wrong answer.
986 ** See ticket #813.
987 */
988 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
989   if( pTerm
990       && (pTerm->flags & TERM_CODED)==0
991       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
992   ){
993     pTerm->flags |= TERM_CODED;
994     if( pTerm->iParent>=0 ){
995       WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
996       if( (--pOther->nChild)==0 ){
997         disableTerm(pLevel, pOther);
998       }
999     }
1000   }
1001 }
1002 
1003 /*
1004 ** Generate code that builds a probe for an index.  Details:
1005 **
1006 **    *  Check the top nColumn entries on the stack.  If any
1007 **       of those entries are NULL, jump immediately to brk,
1008 **       which is the loop exit, since no index entry will match
1009 **       if any part of the key is NULL.
1010 **
1011 **    *  Construct a probe entry from the top nColumn entries in
1012 **       the stack with affinities appropriate for index pIdx.
1013 */
1014 static void buildIndexProbe(Vdbe *v, int nColumn, int brk, Index *pIdx){
1015   sqlite3VdbeAddOp(v, OP_NotNull, -nColumn, sqlite3VdbeCurrentAddr(v)+3);
1016   sqlite3VdbeAddOp(v, OP_Pop, nColumn, 0);
1017   sqlite3VdbeAddOp(v, OP_Goto, 0, brk);
1018   sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
1019   sqlite3IndexAffinityStr(v, pIdx);
1020 }
1021 
1022 
1023 /*
1024 ** Generate code for a single equality term of the WHERE clause.  An equality
1025 ** term can be either X=expr or X IN (...).   pTerm is the term to be
1026 ** coded.
1027 **
1028 ** The current value for the constraint is left on the top of the stack.
1029 **
1030 ** For a constraint of the form X=expr, the expression is evaluated and its
1031 ** result is left on the stack.  For constraints of the form X IN (...)
1032 ** this routine sets up a loop that will iterate over all values of X.
1033 */
1034 static void codeEqualityTerm(
1035   Parse *pParse,      /* The parsing context */
1036   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
1037   int brk,            /* Jump here to abandon the loop */
1038   WhereLevel *pLevel  /* When level of the FROM clause we are working on */
1039 ){
1040   Expr *pX = pTerm->pExpr;
1041   if( pX->op!=TK_IN ){
1042     assert( pX->op==TK_EQ );
1043     sqlite3ExprCode(pParse, pX->pRight);
1044 #ifndef SQLITE_OMIT_SUBQUERY
1045   }else{
1046     int iTab;
1047     int *aIn;
1048     Vdbe *v = pParse->pVdbe;
1049 
1050     sqlite3CodeSubselect(pParse, pX);
1051     iTab = pX->iTable;
1052     sqlite3VdbeAddOp(v, OP_Rewind, iTab, brk);
1053     VdbeComment((v, "# %.*s", pX->span.n, pX->span.z));
1054     pLevel->nIn++;
1055     pLevel->aInLoop = aIn = sqliteRealloc(pLevel->aInLoop,
1056                                  sizeof(pLevel->aInLoop[0])*3*pLevel->nIn);
1057     if( aIn ){
1058       aIn += pLevel->nIn*3 - 3;
1059       aIn[0] = OP_Next;
1060       aIn[1] = iTab;
1061       aIn[2] = sqlite3VdbeAddOp(v, OP_Column, iTab, 0);
1062     }else{
1063       pLevel->nIn = 0;
1064     }
1065 #endif
1066   }
1067   disableTerm(pLevel, pTerm);
1068 }
1069 
1070 /*
1071 ** Generate code that will evaluate all == and IN constraints for an
1072 ** index.  The values for all constraints are left on the stack.
1073 **
1074 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
1075 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
1076 ** The index has as many as three equality constraints, but in this
1077 ** example, the third "c" value is an inequality.  So only two
1078 ** constraints are coded.  This routine will generate code to evaluate
1079 ** a==5 and b IN (1,2,3).  The current values for a and b will be left
1080 ** on the stack - a is the deepest and b the shallowest.
1081 **
1082 ** In the example above nEq==2.  But this subroutine works for any value
1083 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
1084 ** The only thing it does is allocate the pLevel->iMem memory cell.
1085 **
1086 ** This routine always allocates at least one memory cell and puts
1087 ** the address of that memory cell in pLevel->iMem.  The code that
1088 ** calls this routine will use pLevel->iMem to store the termination
1089 ** key value of the loop.  If one or more IN operators appear, then
1090 ** this routine allocates an additional nEq memory cells for internal
1091 ** use.
1092 */
1093 static void codeAllEqualityTerms(
1094   Parse *pParse,        /* Parsing context */
1095   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
1096   WhereClause *pWC,     /* The WHERE clause */
1097   Bitmask notReady,     /* Which parts of FROM have not yet been coded */
1098   int brk               /* Jump here to end the loop */
1099 ){
1100   int nEq = pLevel->nEq;        /* The number of == or IN constraints to code */
1101   int termsInMem = 0;           /* If true, store value in mem[] cells */
1102   Vdbe *v = pParse->pVdbe;      /* The virtual machine under construction */
1103   Index *pIdx = pLevel->pIdx;   /* The index being used for this loop */
1104   int iCur = pLevel->iTabCur;   /* The cursor of the table */
1105   WhereTerm *pTerm;             /* A single constraint term */
1106   int j;                        /* Loop counter */
1107 
1108   /* Figure out how many memory cells we will need then allocate them.
1109   ** We always need at least one used to store the loop terminator
1110   ** value.  If there are IN operators we'll need one for each == or
1111   ** IN constraint.
1112   */
1113   pLevel->iMem = pParse->nMem++;
1114   if( pLevel->flags & WHERE_COLUMN_IN ){
1115     pParse->nMem += pLevel->nEq;
1116     termsInMem = 1;
1117   }
1118 
1119   /* Evaluate the equality constraints
1120   */
1121   for(j=0; 1; j++){
1122     int k = pIdx->aiColumn[j];
1123     pTerm = findTerm(pWC, iCur, k, notReady, WO_EQ|WO_IN, pIdx);
1124     if( pTerm==0 ) break;
1125     assert( (pTerm->flags & TERM_CODED)==0 );
1126     codeEqualityTerm(pParse, pTerm, brk, pLevel);
1127     if( termsInMem ){
1128       sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem+j+1, 1);
1129     }
1130   }
1131   assert( j==nEq );
1132 
1133   /* Make sure all the constraint values are on the top of the stack
1134   */
1135   if( termsInMem ){
1136     for(j=0; j<nEq; j++){
1137       sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem+j+1, 0);
1138     }
1139   }
1140 }
1141 
1142 #ifdef SQLITE_TEST
1143 /*
1144 ** The following variable holds a text description of query plan generated
1145 ** by the most recent call to sqlite3WhereBegin().  Each call to WhereBegin
1146 ** overwrites the previous.  This information is used for testing and
1147 ** analysis only.
1148 */
1149 char sqlite3_query_plan[BMS*2*40];  /* Text of the join */
1150 static int nQPlan = 0;              /* Next free slow in _query_plan[] */
1151 
1152 #endif /* SQLITE_TEST */
1153 
1154 
1155 
1156 /*
1157 ** Generate the beginning of the loop used for WHERE clause processing.
1158 ** The return value is a pointer to an opaque structure that contains
1159 ** information needed to terminate the loop.  Later, the calling routine
1160 ** should invoke sqlite3WhereEnd() with the return value of this function
1161 ** in order to complete the WHERE clause processing.
1162 **
1163 ** If an error occurs, this routine returns NULL.
1164 **
1165 ** The basic idea is to do a nested loop, one loop for each table in
1166 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
1167 ** same as a SELECT with only a single table in the FROM clause.)  For
1168 ** example, if the SQL is this:
1169 **
1170 **       SELECT * FROM t1, t2, t3 WHERE ...;
1171 **
1172 ** Then the code generated is conceptually like the following:
1173 **
1174 **      foreach row1 in t1 do       \    Code generated
1175 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
1176 **          foreach row3 in t3 do   /
1177 **            ...
1178 **          end                     \    Code generated
1179 **        end                        |-- by sqlite3WhereEnd()
1180 **      end                         /
1181 **
1182 ** Note that the loops might not be nested in the order in which they
1183 ** appear in the FROM clause if a different order is better able to make
1184 ** use of indices.  Note also that when the IN operator appears in
1185 ** the WHERE clause, it might result in additional nested loops for
1186 ** scanning through all values on the right-hand side of the IN.
1187 **
1188 ** There are Btree cursors associated with each table.  t1 uses cursor
1189 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
1190 ** And so forth.  This routine generates code to open those VDBE cursors
1191 ** and sqlite3WhereEnd() generates the code to close them.
1192 **
1193 ** The code that sqlite3WhereBegin() generates leaves the cursors named
1194 ** in pTabList pointing at their appropriate entries.  The [...] code
1195 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
1196 ** data from the various tables of the loop.
1197 **
1198 ** If the WHERE clause is empty, the foreach loops must each scan their
1199 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
1200 ** the tables have indices and there are terms in the WHERE clause that
1201 ** refer to those indices, a complete table scan can be avoided and the
1202 ** code will run much faster.  Most of the work of this routine is checking
1203 ** to see if there are indices that can be used to speed up the loop.
1204 **
1205 ** Terms of the WHERE clause are also used to limit which rows actually
1206 ** make it to the "..." in the middle of the loop.  After each "foreach",
1207 ** terms of the WHERE clause that use only terms in that loop and outer
1208 ** loops are evaluated and if false a jump is made around all subsequent
1209 ** inner loops (or around the "..." if the test occurs within the inner-
1210 ** most loop)
1211 **
1212 ** OUTER JOINS
1213 **
1214 ** An outer join of tables t1 and t2 is conceptally coded as follows:
1215 **
1216 **    foreach row1 in t1 do
1217 **      flag = 0
1218 **      foreach row2 in t2 do
1219 **        start:
1220 **          ...
1221 **          flag = 1
1222 **      end
1223 **      if flag==0 then
1224 **        move the row2 cursor to a null row
1225 **        goto start
1226 **      fi
1227 **    end
1228 **
1229 ** ORDER BY CLAUSE PROCESSING
1230 **
1231 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
1232 ** if there is one.  If there is no ORDER BY clause or if this routine
1233 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
1234 **
1235 ** If an index can be used so that the natural output order of the table
1236 ** scan is correct for the ORDER BY clause, then that index is used and
1237 ** *ppOrderBy is set to NULL.  This is an optimization that prevents an
1238 ** unnecessary sort of the result set if an index appropriate for the
1239 ** ORDER BY clause already exists.
1240 **
1241 ** If the where clause loops cannot be arranged to provide the correct
1242 ** output order, then the *ppOrderBy is unchanged.
1243 */
1244 WhereInfo *sqlite3WhereBegin(
1245   Parse *pParse,        /* The parser context */
1246   SrcList *pTabList,    /* A list of all tables to be scanned */
1247   Expr *pWhere,         /* The WHERE clause */
1248   ExprList **ppOrderBy  /* An ORDER BY clause, or NULL */
1249 ){
1250   int i;                     /* Loop counter */
1251   WhereInfo *pWInfo;         /* Will become the return value of this function */
1252   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
1253   int brk, cont = 0;         /* Addresses used during code generation */
1254   Bitmask notReady;          /* Cursors that are not yet positioned */
1255   WhereTerm *pTerm;          /* A single term in the WHERE clause */
1256   ExprMaskSet maskSet;       /* The expression mask set */
1257   WhereClause wc;            /* The WHERE clause is divided into these terms */
1258   struct SrcList_item *pTabItem;  /* A single entry from pTabList */
1259   WhereLevel *pLevel;             /* A single level in the pWInfo list */
1260   int iFrom;                      /* First unused FROM clause element */
1261   int andFlags;              /* AND-ed combination of all wc.a[].flags */
1262 
1263   /* The number of tables in the FROM clause is limited by the number of
1264   ** bits in a Bitmask
1265   */
1266   if( pTabList->nSrc>BMS ){
1267     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
1268     return 0;
1269   }
1270 
1271   /* Split the WHERE clause into separate subexpressions where each
1272   ** subexpression is separated by an AND operator.
1273   */
1274   initMaskSet(&maskSet);
1275   whereClauseInit(&wc, pParse);
1276   whereSplit(&wc, pWhere, TK_AND);
1277 
1278   /* Allocate and initialize the WhereInfo structure that will become the
1279   ** return value.
1280   */
1281   pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
1282   if( sqlite3_malloc_failed ){
1283     goto whereBeginNoMem;
1284   }
1285   pWInfo->pParse = pParse;
1286   pWInfo->pTabList = pTabList;
1287   pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
1288 
1289   /* Special case: a WHERE clause that is constant.  Evaluate the
1290   ** expression and either jump over all of the code or fall thru.
1291   */
1292   if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstant(pWhere)) ){
1293     sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
1294     pWhere = 0;
1295   }
1296 
1297   /* Analyze all of the subexpressions.  Note that exprAnalyze() might
1298   ** add new virtual terms onto the end of the WHERE clause.  We do not
1299   ** want to analyze these virtual terms, so start analyzing at the end
1300   ** and work forward so that they added virtual terms are never processed.
1301   */
1302   for(i=0; i<pTabList->nSrc; i++){
1303     createMask(&maskSet, pTabList->a[i].iCursor);
1304   }
1305   exprAnalyzeAll(pTabList, &maskSet, &wc);
1306 
1307   /* Chose the best index to use for each table in the FROM clause.
1308   **
1309   ** This loop fills in the following fields:
1310   **
1311   **   pWInfo->a[].pIdx      The index to use for this level of the loop.
1312   **   pWInfo->a[].flags     WHERE_xxx flags associated with pIdx
1313   **   pWInfo->a[].nEq       The number of == and IN constraints
1314   **   pWInfo->a[].iFrom     When term of the FROM clause is being coded
1315   **   pWInfo->a[].iTabCur   The VDBE cursor for the database table
1316   **   pWInfo->a[].iIdxCur   The VDBE cursor for the index
1317   **
1318   ** This loop also figures out the nesting order of tables in the FROM
1319   ** clause.
1320   */
1321   notReady = ~(Bitmask)0;
1322   pTabItem = pTabList->a;
1323   pLevel = pWInfo->a;
1324   andFlags = ~0;
1325   for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
1326     Index *pIdx;                /* Index for FROM table at pTabItem */
1327     int flags;                  /* Flags asssociated with pIdx */
1328     int nEq;                    /* Number of == or IN constraints */
1329     double cost;                /* The cost for pIdx */
1330     int j;                      /* For looping over FROM tables */
1331     Index *pBest = 0;           /* The best index seen so far */
1332     int bestFlags = 0;          /* Flags associated with pBest */
1333     int bestNEq = 0;            /* nEq associated with pBest */
1334     double lowestCost = 1.0e99; /* Cost of the pBest */
1335     int bestJ;                  /* The value of j */
1336     Bitmask m;                  /* Bitmask value for j or bestJ */
1337 
1338     for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){
1339       m = getMask(&maskSet, pTabItem->iCursor);
1340       if( (m & notReady)==0 ){
1341         if( j==iFrom ) iFrom++;
1342         continue;
1343       }
1344       cost = bestIndex(pParse, &wc, pTabItem, notReady,
1345                        (j==0 && ppOrderBy) ? *ppOrderBy : 0,
1346                        &pIdx, &flags, &nEq);
1347       if( cost<lowestCost ){
1348         lowestCost = cost;
1349         pBest = pIdx;
1350         bestFlags = flags;
1351         bestNEq = nEq;
1352         bestJ = j;
1353       }
1354       if( (pTabItem->jointype & JT_LEFT)!=0
1355          || (j>0 && (pTabItem[-1].jointype & JT_LEFT)!=0)
1356       ){
1357         break;
1358       }
1359     }
1360     if( (bestFlags & WHERE_ORDERBY)!=0 ){
1361       *ppOrderBy = 0;
1362     }
1363     andFlags &= bestFlags;
1364     pLevel->flags = bestFlags;
1365     pLevel->pIdx = pBest;
1366     pLevel->nEq = bestNEq;
1367     pLevel->aInLoop = 0;
1368     pLevel->nIn = 0;
1369     if( pBest ){
1370       pLevel->iIdxCur = pParse->nTab++;
1371     }else{
1372       pLevel->iIdxCur = -1;
1373     }
1374     notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor);
1375     pLevel->iFrom = bestJ;
1376   }
1377 
1378   /* If the total query only selects a single row, then the ORDER BY
1379   ** clause is irrelevant.
1380   */
1381   if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
1382     *ppOrderBy = 0;
1383   }
1384 
1385   /* Open all tables in the pTabList and any indices selected for
1386   ** searching those tables.
1387   */
1388   sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
1389   pLevel = pWInfo->a;
1390   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
1391     Table *pTab;
1392     Index *pIx;
1393     int iIdxCur = pLevel->iIdxCur;
1394 
1395     pTabItem = &pTabList->a[pLevel->iFrom];
1396     pTab = pTabItem->pTab;
1397     if( pTab->isTransient || pTab->pSelect ) continue;
1398     if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
1399       sqlite3OpenTableForReading(v, pTabItem->iCursor, pTab);
1400     }
1401     pLevel->iTabCur = pTabItem->iCursor;
1402     if( (pIx = pLevel->pIdx)!=0 ){
1403       sqlite3VdbeAddOp(v, OP_Integer, pIx->iDb, 0);
1404       VdbeComment((v, "# %s", pIx->zName));
1405       sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum,
1406                      (char*)&pIx->keyInfo, P3_KEYINFO);
1407     }
1408     if( (pLevel->flags & WHERE_IDX_ONLY)!=0 ){
1409       sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1);
1410     }
1411     sqlite3CodeVerifySchema(pParse, pTab->iDb);
1412   }
1413   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
1414 
1415   /* Generate the code to do the search.  Each iteration of the for
1416   ** loop below generates code for a single nested loop of the VM
1417   ** program.
1418   */
1419   notReady = ~(Bitmask)0;
1420   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
1421     int j;
1422     int iCur = pTabItem->iCursor;  /* The VDBE cursor for the table */
1423     Index *pIdx;       /* The index we will be using */
1424     int iIdxCur;       /* The VDBE cursor for the index */
1425     int omitTable;     /* True if we use the index only */
1426     int bRev;          /* True if we need to scan in reverse order */
1427 
1428     pTabItem = &pTabList->a[pLevel->iFrom];
1429     iCur = pTabItem->iCursor;
1430     pIdx = pLevel->pIdx;
1431     iIdxCur = pLevel->iIdxCur;
1432     bRev = (pLevel->flags & WHERE_REVERSE)!=0;
1433     omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0;
1434 
1435     /* Create labels for the "break" and "continue" instructions
1436     ** for the current loop.  Jump to brk to break out of a loop.
1437     ** Jump to cont to go immediately to the next iteration of the
1438     ** loop.
1439     */
1440     brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
1441     cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
1442 
1443     /* If this is the right table of a LEFT OUTER JOIN, allocate and
1444     ** initialize a memory cell that records if this table matches any
1445     ** row of the left table of the join.
1446     */
1447     if( pLevel->iFrom>0 && (pTabItem[-1].jointype & JT_LEFT)!=0 ){
1448       if( !pParse->nMem ) pParse->nMem++;
1449       pLevel->iLeftJoin = pParse->nMem++;
1450       sqlite3VdbeAddOp(v, OP_Null, 0, 0);
1451       sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
1452       VdbeComment((v, "# init LEFT JOIN no-match flag"));
1453     }
1454 
1455     if( pLevel->flags & WHERE_ROWID_EQ ){
1456       /* Case 1:  We can directly reference a single row using an
1457       **          equality comparison against the ROWID field.  Or
1458       **          we reference multiple rows using a "rowid IN (...)"
1459       **          construct.
1460       */
1461       pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0);
1462       assert( pTerm!=0 );
1463       assert( pTerm->pExpr!=0 );
1464       assert( pTerm->leftCursor==iCur );
1465       assert( omitTable==0 );
1466       codeEqualityTerm(pParse, pTerm, brk, pLevel);
1467       sqlite3VdbeAddOp(v, OP_MustBeInt, 1, brk);
1468       sqlite3VdbeAddOp(v, OP_NotExists, iCur, brk);
1469       VdbeComment((v, "pk"));
1470       pLevel->op = OP_Noop;
1471     }else if( pLevel->flags & WHERE_ROWID_RANGE ){
1472       /* Case 2:  We have an inequality comparison against the ROWID field.
1473       */
1474       int testOp = OP_Noop;
1475       int start;
1476       WhereTerm *pStart, *pEnd;
1477 
1478       assert( omitTable==0 );
1479       pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0);
1480       pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0);
1481       if( bRev ){
1482         pTerm = pStart;
1483         pStart = pEnd;
1484         pEnd = pTerm;
1485       }
1486       if( pStart ){
1487         Expr *pX;
1488         pX = pStart->pExpr;
1489         assert( pX!=0 );
1490         assert( pStart->leftCursor==iCur );
1491         sqlite3ExprCode(pParse, pX->pRight);
1492         sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk);
1493         sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk);
1494         VdbeComment((v, "pk"));
1495         disableTerm(pLevel, pStart);
1496       }else{
1497         sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
1498       }
1499       if( pEnd ){
1500         Expr *pX;
1501         pX = pEnd->pExpr;
1502         assert( pX!=0 );
1503         assert( pEnd->leftCursor==iCur );
1504         sqlite3ExprCode(pParse, pX->pRight);
1505         pLevel->iMem = pParse->nMem++;
1506         sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
1507         if( pX->op==TK_LT || pX->op==TK_GT ){
1508           testOp = bRev ? OP_Le : OP_Ge;
1509         }else{
1510           testOp = bRev ? OP_Lt : OP_Gt;
1511         }
1512         disableTerm(pLevel, pEnd);
1513       }
1514       start = sqlite3VdbeCurrentAddr(v);
1515       pLevel->op = bRev ? OP_Prev : OP_Next;
1516       pLevel->p1 = iCur;
1517       pLevel->p2 = start;
1518       if( testOp!=OP_Noop ){
1519         sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
1520         sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
1521         sqlite3VdbeAddOp(v, testOp, 'n', brk);
1522       }
1523     }else if( pLevel->flags & WHERE_COLUMN_RANGE ){
1524       /* Case 3: The WHERE clause term that refers to the right-most
1525       **         column of the index is an inequality.  For example, if
1526       **         the index is on (x,y,z) and the WHERE clause is of the
1527       **         form "x=5 AND y<10" then this case is used.  Only the
1528       **         right-most column can be an inequality - the rest must
1529       **         use the "==" and "IN" operators.
1530       **
1531       **         This case is also used when there are no WHERE clause
1532       **         constraints but an index is selected anyway, in order
1533       **         to force the output order to conform to an ORDER BY.
1534       */
1535       int start;
1536       int nEq = pLevel->nEq;
1537       int leFlag=0, geFlag=0;
1538       int testOp;
1539       int topLimit = (pLevel->flags & WHERE_TOP_LIMIT)!=0;
1540       int btmLimit = (pLevel->flags & WHERE_BTM_LIMIT)!=0;
1541 
1542       /* Generate code to evaluate all constraint terms using == or IN
1543       ** and level the values of those terms on the stack.
1544       */
1545       codeAllEqualityTerms(pParse, pLevel, &wc, notReady, brk);
1546 
1547       /* Duplicate the equality term values because they will all be
1548       ** used twice: once to make the termination key and once to make the
1549       ** start key.
1550       */
1551       for(j=0; j<nEq; j++){
1552         sqlite3VdbeAddOp(v, OP_Dup, nEq-1, 0);
1553       }
1554 
1555       /* Generate the termination key.  This is the key value that
1556       ** will end the search.  There is no termination key if there
1557       ** are no equality terms and no "X<..." term.
1558       **
1559       ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
1560       ** key computed here really ends up being the start key.
1561       */
1562       if( topLimit ){
1563         Expr *pX;
1564         int k = pIdx->aiColumn[j];
1565         pTerm = findTerm(&wc, iCur, k, notReady, WO_LT|WO_LE, pIdx);
1566         assert( pTerm!=0 );
1567         pX = pTerm->pExpr;
1568         assert( (pTerm->flags & TERM_CODED)==0 );
1569         sqlite3ExprCode(pParse, pX->pRight);
1570         leFlag = pX->op==TK_LE;
1571         disableTerm(pLevel, pTerm);
1572         testOp = OP_IdxGE;
1573       }else{
1574         testOp = nEq>0 ? OP_IdxGE : OP_Noop;
1575         leFlag = 1;
1576       }
1577       if( testOp!=OP_Noop ){
1578         int nCol = nEq + topLimit;
1579         pLevel->iMem = pParse->nMem++;
1580         buildIndexProbe(v, nCol, brk, pIdx);
1581         if( bRev ){
1582           int op = leFlag ? OP_MoveLe : OP_MoveLt;
1583           sqlite3VdbeAddOp(v, op, iIdxCur, brk);
1584         }else{
1585           sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
1586         }
1587       }else if( bRev ){
1588         sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk);
1589       }
1590 
1591       /* Generate the start key.  This is the key that defines the lower
1592       ** bound on the search.  There is no start key if there are no
1593       ** equality terms and if there is no "X>..." term.  In
1594       ** that case, generate a "Rewind" instruction in place of the
1595       ** start key search.
1596       **
1597       ** 2002-Dec-04: In the case of a reverse-order search, the so-called
1598       ** "start" key really ends up being used as the termination key.
1599       */
1600       if( btmLimit ){
1601         Expr *pX;
1602         int k = pIdx->aiColumn[j];
1603         pTerm = findTerm(&wc, iCur, k, notReady, WO_GT|WO_GE, pIdx);
1604         assert( pTerm!=0 );
1605         pX = pTerm->pExpr;
1606         assert( (pTerm->flags & TERM_CODED)==0 );
1607         sqlite3ExprCode(pParse, pX->pRight);
1608         geFlag = pX->op==TK_GE;
1609         disableTerm(pLevel, pTerm);
1610       }else{
1611         geFlag = 1;
1612       }
1613       if( nEq>0 || btmLimit ){
1614         int nCol = nEq + btmLimit;
1615         buildIndexProbe(v, nCol, brk, pIdx);
1616         if( bRev ){
1617           pLevel->iMem = pParse->nMem++;
1618           sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
1619           testOp = OP_IdxLT;
1620         }else{
1621           int op = geFlag ? OP_MoveGe : OP_MoveGt;
1622           sqlite3VdbeAddOp(v, op, iIdxCur, brk);
1623         }
1624       }else if( bRev ){
1625         testOp = OP_Noop;
1626       }else{
1627         sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk);
1628       }
1629 
1630       /* Generate the the top of the loop.  If there is a termination
1631       ** key we have to test for that key and abort at the top of the
1632       ** loop.
1633       */
1634       start = sqlite3VdbeCurrentAddr(v);
1635       if( testOp!=OP_Noop ){
1636         sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
1637         sqlite3VdbeAddOp(v, testOp, iIdxCur, brk);
1638         if( (leFlag && !bRev) || (!geFlag && bRev) ){
1639           sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC);
1640         }
1641       }
1642       sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0);
1643       sqlite3VdbeAddOp(v, OP_IdxIsNull, nEq + topLimit, cont);
1644       if( !omitTable ){
1645         sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
1646         sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
1647       }
1648 
1649       /* Record the instruction used to terminate the loop.
1650       */
1651       pLevel->op = bRev ? OP_Prev : OP_Next;
1652       pLevel->p1 = iIdxCur;
1653       pLevel->p2 = start;
1654     }else if( pLevel->flags & WHERE_COLUMN_EQ ){
1655       /* Case 4:  There is an index and all terms of the WHERE clause that
1656       **          refer to the index using the "==" or "IN" operators.
1657       */
1658       int start;
1659       int nEq = pLevel->nEq;
1660 
1661       /* Generate code to evaluate all constraint terms using == or IN
1662       ** and level the values of those terms on the stack.
1663       */
1664       codeAllEqualityTerms(pParse, pLevel, &wc, notReady, brk);
1665 
1666       /* Generate a single key that will be used to both start and terminate
1667       ** the search
1668       */
1669       buildIndexProbe(v, nEq, brk, pIdx);
1670       sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
1671 
1672       /* Generate code (1) to move to the first matching element of the table.
1673       ** Then generate code (2) that jumps to "brk" after the cursor is past
1674       ** the last matching element of the table.  The code (1) is executed
1675       ** once to initialize the search, the code (2) is executed before each
1676       ** iteration of the scan to see if the scan has finished. */
1677       if( bRev ){
1678         /* Scan in reverse order */
1679         sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, brk);
1680         start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
1681         sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, brk);
1682         pLevel->op = OP_Prev;
1683       }else{
1684         /* Scan in the forward order */
1685         sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, brk);
1686         start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
1687         sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, brk, "+", P3_STATIC);
1688         pLevel->op = OP_Next;
1689       }
1690       sqlite3VdbeAddOp(v, OP_RowKey, iIdxCur, 0);
1691       sqlite3VdbeAddOp(v, OP_IdxIsNull, nEq, cont);
1692       if( !omitTable ){
1693         sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
1694         sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
1695       }
1696       pLevel->p1 = iIdxCur;
1697       pLevel->p2 = start;
1698     }else{
1699       /* Case 5:  There is no usable index.  We must do a complete
1700       **          scan of the entire table.
1701       */
1702       assert( omitTable==0 );
1703       assert( bRev==0 );
1704       pLevel->op = OP_Next;
1705       pLevel->p1 = iCur;
1706       pLevel->p2 = 1 + sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk);
1707     }
1708     notReady &= ~getMask(&maskSet, iCur);
1709 
1710     /* Insert code to test every subexpression that can be completely
1711     ** computed using the current set of tables.
1712     */
1713     for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){
1714       Expr *pE;
1715       if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1716       if( (pTerm->prereqAll & notReady)!=0 ) continue;
1717       pE = pTerm->pExpr;
1718       assert( pE!=0 );
1719       if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
1720         continue;
1721       }
1722       sqlite3ExprIfFalse(pParse, pE, cont, 1);
1723       pTerm->flags |= TERM_CODED;
1724     }
1725 
1726     /* For a LEFT OUTER JOIN, generate code that will record the fact that
1727     ** at least one row of the right table has matched the left table.
1728     */
1729     if( pLevel->iLeftJoin ){
1730       pLevel->top = sqlite3VdbeCurrentAddr(v);
1731       sqlite3VdbeAddOp(v, OP_Integer, 1, 0);
1732       sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iLeftJoin, 1);
1733       VdbeComment((v, "# record LEFT JOIN hit"));
1734       for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){
1735         if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1736         if( (pTerm->prereqAll & notReady)!=0 ) continue;
1737         assert( pTerm->pExpr );
1738         sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, 1);
1739         pTerm->flags |= TERM_CODED;
1740       }
1741     }
1742   }
1743 
1744 #ifdef SQLITE_TEST  /* For testing and debugging use only */
1745   /* Record in the query plan information about the current table
1746   ** and the index used to access it (if any).  If the table itself
1747   ** is not used, its name is just '{}'.  If no index is used
1748   ** the index is listed as "{}".  If the primary key is used the
1749   ** index name is '*'.
1750   */
1751   for(i=0; i<pTabList->nSrc; i++){
1752     char *z;
1753     int n;
1754     pLevel = &pWInfo->a[i];
1755     pTabItem = &pTabList->a[pLevel->iFrom];
1756     z = pTabItem->zAlias;
1757     if( z==0 ) z = pTabItem->pTab->zName;
1758     n = strlen(z);
1759     if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
1760       if( pLevel->flags & WHERE_IDX_ONLY ){
1761         strcpy(&sqlite3_query_plan[nQPlan], "{}");
1762         nQPlan += 2;
1763       }else{
1764         strcpy(&sqlite3_query_plan[nQPlan], z);
1765         nQPlan += n;
1766       }
1767       sqlite3_query_plan[nQPlan++] = ' ';
1768     }
1769     if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
1770       strcpy(&sqlite3_query_plan[nQPlan], "* ");
1771       nQPlan += 2;
1772     }else if( pLevel->pIdx==0 ){
1773       strcpy(&sqlite3_query_plan[nQPlan], "{} ");
1774       nQPlan += 3;
1775     }else{
1776       n = strlen(pLevel->pIdx->zName);
1777       if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
1778         strcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName);
1779         nQPlan += n;
1780         sqlite3_query_plan[nQPlan++] = ' ';
1781       }
1782     }
1783   }
1784   while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
1785     sqlite3_query_plan[--nQPlan] = 0;
1786   }
1787   sqlite3_query_plan[nQPlan] = 0;
1788   nQPlan = 0;
1789 #endif /* SQLITE_TEST // Testing and debugging use only */
1790 
1791   /* Record the continuation address in the WhereInfo structure.  Then
1792   ** clean up and return.
1793   */
1794   pWInfo->iContinue = cont;
1795   whereClauseClear(&wc);
1796   return pWInfo;
1797 
1798   /* Jump here if malloc fails */
1799 whereBeginNoMem:
1800   whereClauseClear(&wc);
1801   sqliteFree(pWInfo);
1802   return 0;
1803 }
1804 
1805 /*
1806 ** Generate the end of the WHERE loop.  See comments on
1807 ** sqlite3WhereBegin() for additional information.
1808 */
1809 void sqlite3WhereEnd(WhereInfo *pWInfo){
1810   Vdbe *v = pWInfo->pParse->pVdbe;
1811   int i;
1812   WhereLevel *pLevel;
1813   SrcList *pTabList = pWInfo->pTabList;
1814 
1815   /* Generate loop termination code.
1816   */
1817   for(i=pTabList->nSrc-1; i>=0; i--){
1818     pLevel = &pWInfo->a[i];
1819     sqlite3VdbeResolveLabel(v, pLevel->cont);
1820     if( pLevel->op!=OP_Noop ){
1821       sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
1822     }
1823     sqlite3VdbeResolveLabel(v, pLevel->brk);
1824     if( pLevel->nIn ){
1825       int *a;
1826       int j;
1827       for(j=pLevel->nIn, a=&pLevel->aInLoop[j*3-3]; j>0; j--, a-=3){
1828         sqlite3VdbeAddOp(v, a[0], a[1], a[2]);
1829       }
1830       sqliteFree(pLevel->aInLoop);
1831     }
1832     if( pLevel->iLeftJoin ){
1833       int addr;
1834       addr = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iLeftJoin, 0);
1835       sqlite3VdbeAddOp(v, OP_NotNull, 1, addr+4 + (pLevel->iIdxCur>=0));
1836       sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
1837       if( pLevel->iIdxCur>=0 ){
1838         sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0);
1839       }
1840       sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top);
1841     }
1842   }
1843 
1844   /* The "break" point is here, just past the end of the outer loop.
1845   ** Set it.
1846   */
1847   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
1848 
1849   /* Close all of the cursors that were opened by sqlite3WhereBegin.
1850   */
1851   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
1852     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
1853     Table *pTab = pTabItem->pTab;
1854     assert( pTab!=0 );
1855     if( pTab->isTransient || pTab->pSelect ) continue;
1856     if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
1857       sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0);
1858     }
1859     if( pLevel->pIdx!=0 ){
1860       sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0);
1861     }
1862 
1863     /* Make cursor substitutions for cases where we want to use
1864     ** just the index and never reference the table.
1865     **
1866     ** Calls to the code generator in between sqlite3WhereBegin and
1867     ** sqlite3WhereEnd will have created code that references the table
1868     ** directly.  This loop scans all that code looking for opcodes
1869     ** that reference the table and converts them into opcodes that
1870     ** reference the index.
1871     */
1872     if( pLevel->flags & WHERE_IDX_ONLY ){
1873       int i, j, last;
1874       VdbeOp *pOp;
1875       Index *pIdx = pLevel->pIdx;
1876 
1877       assert( pIdx!=0 );
1878       pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
1879       last = sqlite3VdbeCurrentAddr(v);
1880       for(i=pWInfo->iTop; i<last; i++, pOp++){
1881         if( pOp->p1!=pLevel->iTabCur ) continue;
1882         if( pOp->opcode==OP_Column ){
1883           pOp->p1 = pLevel->iIdxCur;
1884           for(j=0; j<pIdx->nColumn; j++){
1885             if( pOp->p2==pIdx->aiColumn[j] ){
1886               pOp->p2 = j;
1887               break;
1888             }
1889           }
1890         }else if( pOp->opcode==OP_Rowid ){
1891           pOp->p1 = pLevel->iIdxCur;
1892           pOp->opcode = OP_IdxRowid;
1893         }else if( pOp->opcode==OP_NullRow ){
1894           pOp->opcode = OP_Noop;
1895         }
1896       }
1897     }
1898   }
1899 
1900   /* Final cleanup
1901   */
1902   sqliteFree(pWInfo);
1903   return;
1904 }
1905