xref: /sqlite-3.40.0/src/where.c (revision 4b8035e6)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /* Forward declaration of methods */
23 static int whereLoopResize(sqlite3*, WhereLoop*, int);
24 
25 /* Test variable that can be set to enable WHERE tracing */
26 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
27 /***/ int sqlite3WhereTrace = 0;
28 #endif
29 
30 
31 /*
32 ** Return the estimated number of output rows from a WHERE clause
33 */
34 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
35   return pWInfo->nRowOut;
36 }
37 
38 /*
39 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
40 ** WHERE clause returns outputs for DISTINCT processing.
41 */
42 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
43   return pWInfo->eDistinct;
44 }
45 
46 /*
47 ** Return TRUE if the WHERE clause returns rows in ORDER BY order.
48 ** Return FALSE if the output needs to be sorted.
49 */
50 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
51   return pWInfo->nOBSat;
52 }
53 
54 /*
55 ** Return TRUE if the innermost loop of the WHERE clause implementation
56 ** returns rows in ORDER BY order for complete run of the inner loop.
57 **
58 ** Across multiple iterations of outer loops, the output rows need not be
59 ** sorted.  As long as rows are sorted for just the innermost loop, this
60 ** routine can return TRUE.
61 */
62 int sqlite3WhereOrderedInnerLoop(WhereInfo *pWInfo){
63   return pWInfo->bOrderedInnerLoop;
64 }
65 
66 /*
67 ** Return the VDBE address or label to jump to in order to continue
68 ** immediately with the next row of a WHERE clause.
69 */
70 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
71   assert( pWInfo->iContinue!=0 );
72   return pWInfo->iContinue;
73 }
74 
75 /*
76 ** Return the VDBE address or label to jump to in order to break
77 ** out of a WHERE loop.
78 */
79 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
80   return pWInfo->iBreak;
81 }
82 
83 /*
84 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
85 ** operate directly on the rowis returned by a WHERE clause.  Return
86 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
87 ** a single row is to be changed.  Return ONEPASS_MULTI (2) if the one-pass
88 ** optimization can be used on multiple
89 **
90 ** If the ONEPASS optimization is used (if this routine returns true)
91 ** then also write the indices of open cursors used by ONEPASS
92 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
93 ** table and iaCur[1] gets the cursor used by an auxiliary index.
94 ** Either value may be -1, indicating that cursor is not used.
95 ** Any cursors returned will have been opened for writing.
96 **
97 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
98 ** unable to use the ONEPASS optimization.
99 */
100 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
101   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
102 #ifdef WHERETRACE_ENABLED
103   if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
104     sqlite3DebugPrintf("%s cursors: %d %d\n",
105          pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
106          aiCur[0], aiCur[1]);
107   }
108 #endif
109   return pWInfo->eOnePass;
110 }
111 
112 /*
113 ** Move the content of pSrc into pDest
114 */
115 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
116   pDest->n = pSrc->n;
117   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
118 }
119 
120 /*
121 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
122 **
123 ** The new entry might overwrite an existing entry, or it might be
124 ** appended, or it might be discarded.  Do whatever is the right thing
125 ** so that pSet keeps the N_OR_COST best entries seen so far.
126 */
127 static int whereOrInsert(
128   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
129   Bitmask prereq,        /* Prerequisites of the new entry */
130   LogEst rRun,           /* Run-cost of the new entry */
131   LogEst nOut            /* Number of outputs for the new entry */
132 ){
133   u16 i;
134   WhereOrCost *p;
135   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
136     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
137       goto whereOrInsert_done;
138     }
139     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
140       return 0;
141     }
142   }
143   if( pSet->n<N_OR_COST ){
144     p = &pSet->a[pSet->n++];
145     p->nOut = nOut;
146   }else{
147     p = pSet->a;
148     for(i=1; i<pSet->n; i++){
149       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
150     }
151     if( p->rRun<=rRun ) return 0;
152   }
153 whereOrInsert_done:
154   p->prereq = prereq;
155   p->rRun = rRun;
156   if( p->nOut>nOut ) p->nOut = nOut;
157   return 1;
158 }
159 
160 /*
161 ** Return the bitmask for the given cursor number.  Return 0 if
162 ** iCursor is not in the set.
163 */
164 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
165   int i;
166   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
167   for(i=0; i<pMaskSet->n; i++){
168     if( pMaskSet->ix[i]==iCursor ){
169       return MASKBIT(i);
170     }
171   }
172   return 0;
173 }
174 
175 /*
176 ** Create a new mask for cursor iCursor.
177 **
178 ** There is one cursor per table in the FROM clause.  The number of
179 ** tables in the FROM clause is limited by a test early in the
180 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
181 ** array will never overflow.
182 */
183 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
184   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
185   pMaskSet->ix[pMaskSet->n++] = iCursor;
186 }
187 
188 /*
189 ** Advance to the next WhereTerm that matches according to the criteria
190 ** established when the pScan object was initialized by whereScanInit().
191 ** Return NULL if there are no more matching WhereTerms.
192 */
193 static WhereTerm *whereScanNext(WhereScan *pScan){
194   int iCur;            /* The cursor on the LHS of the term */
195   i16 iColumn;         /* The column on the LHS of the term.  -1 for IPK */
196   Expr *pX;            /* An expression being tested */
197   WhereClause *pWC;    /* Shorthand for pScan->pWC */
198   WhereTerm *pTerm;    /* The term being tested */
199   int k = pScan->k;    /* Where to start scanning */
200 
201   assert( pScan->iEquiv<=pScan->nEquiv );
202   pWC = pScan->pWC;
203   while(1){
204     iColumn = pScan->aiColumn[pScan->iEquiv-1];
205     iCur = pScan->aiCur[pScan->iEquiv-1];
206     assert( pWC!=0 );
207     do{
208       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
209         if( pTerm->leftCursor==iCur
210          && pTerm->u.leftColumn==iColumn
211          && (iColumn!=XN_EXPR
212              || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
213                                        pScan->pIdxExpr,iCur)==0)
214          && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
215         ){
216           if( (pTerm->eOperator & WO_EQUIV)!=0
217            && pScan->nEquiv<ArraySize(pScan->aiCur)
218            && (pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight))->op==TK_COLUMN
219           ){
220             int j;
221             for(j=0; j<pScan->nEquiv; j++){
222               if( pScan->aiCur[j]==pX->iTable
223                && pScan->aiColumn[j]==pX->iColumn ){
224                   break;
225               }
226             }
227             if( j==pScan->nEquiv ){
228               pScan->aiCur[j] = pX->iTable;
229               pScan->aiColumn[j] = pX->iColumn;
230               pScan->nEquiv++;
231             }
232           }
233           if( (pTerm->eOperator & pScan->opMask)!=0 ){
234             /* Verify the affinity and collating sequence match */
235             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
236               CollSeq *pColl;
237               Parse *pParse = pWC->pWInfo->pParse;
238               pX = pTerm->pExpr;
239               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
240                 continue;
241               }
242               assert(pX->pLeft);
243               pColl = sqlite3BinaryCompareCollSeq(pParse,
244                                                   pX->pLeft, pX->pRight);
245               if( pColl==0 ) pColl = pParse->db->pDfltColl;
246               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
247                 continue;
248               }
249             }
250             if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
251              && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
252              && pX->iTable==pScan->aiCur[0]
253              && pX->iColumn==pScan->aiColumn[0]
254             ){
255               testcase( pTerm->eOperator & WO_IS );
256               continue;
257             }
258             pScan->pWC = pWC;
259             pScan->k = k+1;
260             return pTerm;
261           }
262         }
263       }
264       pWC = pWC->pOuter;
265       k = 0;
266     }while( pWC!=0 );
267     if( pScan->iEquiv>=pScan->nEquiv ) break;
268     pWC = pScan->pOrigWC;
269     k = 0;
270     pScan->iEquiv++;
271   }
272   return 0;
273 }
274 
275 /*
276 ** Initialize a WHERE clause scanner object.  Return a pointer to the
277 ** first match.  Return NULL if there are no matches.
278 **
279 ** The scanner will be searching the WHERE clause pWC.  It will look
280 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
281 ** iCur.   Or if pIdx!=0 then X is column iColumn of index pIdx.  pIdx
282 ** must be one of the indexes of table iCur.
283 **
284 ** The <op> must be one of the operators described by opMask.
285 **
286 ** If the search is for X and the WHERE clause contains terms of the
287 ** form X=Y then this routine might also return terms of the form
288 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
289 ** but is enough to handle most commonly occurring SQL statements.
290 **
291 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
292 ** index pIdx.
293 */
294 static WhereTerm *whereScanInit(
295   WhereScan *pScan,       /* The WhereScan object being initialized */
296   WhereClause *pWC,       /* The WHERE clause to be scanned */
297   int iCur,               /* Cursor to scan for */
298   int iColumn,            /* Column to scan for */
299   u32 opMask,             /* Operator(s) to scan for */
300   Index *pIdx             /* Must be compatible with this index */
301 ){
302   pScan->pOrigWC = pWC;
303   pScan->pWC = pWC;
304   pScan->pIdxExpr = 0;
305   pScan->idxaff = 0;
306   pScan->zCollName = 0;
307   if( pIdx ){
308     int j = iColumn;
309     iColumn = pIdx->aiColumn[j];
310     if( iColumn==XN_EXPR ){
311       pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
312       pScan->zCollName = pIdx->azColl[j];
313     }else if( iColumn==pIdx->pTable->iPKey ){
314       iColumn = XN_ROWID;
315     }else if( iColumn>=0 ){
316       pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
317       pScan->zCollName = pIdx->azColl[j];
318     }
319   }else if( iColumn==XN_EXPR ){
320     return 0;
321   }
322   pScan->opMask = opMask;
323   pScan->k = 0;
324   pScan->aiCur[0] = iCur;
325   pScan->aiColumn[0] = iColumn;
326   pScan->nEquiv = 1;
327   pScan->iEquiv = 1;
328   return whereScanNext(pScan);
329 }
330 
331 /*
332 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
333 ** where X is a reference to the iColumn of table iCur or of index pIdx
334 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
335 ** the op parameter.  Return a pointer to the term.  Return 0 if not found.
336 **
337 ** If pIdx!=0 then it must be one of the indexes of table iCur.
338 ** Search for terms matching the iColumn-th column of pIdx
339 ** rather than the iColumn-th column of table iCur.
340 **
341 ** The term returned might by Y=<expr> if there is another constraint in
342 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
343 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
344 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
345 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
346 ** other equivalent values.  Hence a search for X will return <expr> if X=A1
347 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
348 **
349 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
350 ** then try for the one with no dependencies on <expr> - in other words where
351 ** <expr> is a constant expression of some kind.  Only return entries of
352 ** the form "X <op> Y" where Y is a column in another table if no terms of
353 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
354 ** exist, try to return a term that does not use WO_EQUIV.
355 */
356 WhereTerm *sqlite3WhereFindTerm(
357   WhereClause *pWC,     /* The WHERE clause to be searched */
358   int iCur,             /* Cursor number of LHS */
359   int iColumn,          /* Column number of LHS */
360   Bitmask notReady,     /* RHS must not overlap with this mask */
361   u32 op,               /* Mask of WO_xx values describing operator */
362   Index *pIdx           /* Must be compatible with this index, if not NULL */
363 ){
364   WhereTerm *pResult = 0;
365   WhereTerm *p;
366   WhereScan scan;
367 
368   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
369   op &= WO_EQ|WO_IS;
370   while( p ){
371     if( (p->prereqRight & notReady)==0 ){
372       if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
373         testcase( p->eOperator & WO_IS );
374         return p;
375       }
376       if( pResult==0 ) pResult = p;
377     }
378     p = whereScanNext(&scan);
379   }
380   return pResult;
381 }
382 
383 /*
384 ** This function searches pList for an entry that matches the iCol-th column
385 ** of index pIdx.
386 **
387 ** If such an expression is found, its index in pList->a[] is returned. If
388 ** no expression is found, -1 is returned.
389 */
390 static int findIndexCol(
391   Parse *pParse,                  /* Parse context */
392   ExprList *pList,                /* Expression list to search */
393   int iBase,                      /* Cursor for table associated with pIdx */
394   Index *pIdx,                    /* Index to match column of */
395   int iCol                        /* Column of index to match */
396 ){
397   int i;
398   const char *zColl = pIdx->azColl[iCol];
399 
400   for(i=0; i<pList->nExpr; i++){
401     Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr);
402     if( p->op==TK_COLUMN
403      && p->iColumn==pIdx->aiColumn[iCol]
404      && p->iTable==iBase
405     ){
406       CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
407       if( pColl && 0==sqlite3StrICmp(pColl->zName, zColl) ){
408         return i;
409       }
410     }
411   }
412 
413   return -1;
414 }
415 
416 /*
417 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
418 */
419 static int indexColumnNotNull(Index *pIdx, int iCol){
420   int j;
421   assert( pIdx!=0 );
422   assert( iCol>=0 && iCol<pIdx->nColumn );
423   j = pIdx->aiColumn[iCol];
424   if( j>=0 ){
425     return pIdx->pTable->aCol[j].notNull;
426   }else if( j==(-1) ){
427     return 1;
428   }else{
429     assert( j==(-2) );
430     return 0;  /* Assume an indexed expression can always yield a NULL */
431 
432   }
433 }
434 
435 /*
436 ** Return true if the DISTINCT expression-list passed as the third argument
437 ** is redundant.
438 **
439 ** A DISTINCT list is redundant if any subset of the columns in the
440 ** DISTINCT list are collectively unique and individually non-null.
441 */
442 static int isDistinctRedundant(
443   Parse *pParse,            /* Parsing context */
444   SrcList *pTabList,        /* The FROM clause */
445   WhereClause *pWC,         /* The WHERE clause */
446   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
447 ){
448   Table *pTab;
449   Index *pIdx;
450   int i;
451   int iBase;
452 
453   /* If there is more than one table or sub-select in the FROM clause of
454   ** this query, then it will not be possible to show that the DISTINCT
455   ** clause is redundant. */
456   if( pTabList->nSrc!=1 ) return 0;
457   iBase = pTabList->a[0].iCursor;
458   pTab = pTabList->a[0].pTab;
459 
460   /* If any of the expressions is an IPK column on table iBase, then return
461   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
462   ** current SELECT is a correlated sub-query.
463   */
464   for(i=0; i<pDistinct->nExpr; i++){
465     Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr);
466     if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1;
467   }
468 
469   /* Loop through all indices on the table, checking each to see if it makes
470   ** the DISTINCT qualifier redundant. It does so if:
471   **
472   **   1. The index is itself UNIQUE, and
473   **
474   **   2. All of the columns in the index are either part of the pDistinct
475   **      list, or else the WHERE clause contains a term of the form "col=X",
476   **      where X is a constant value. The collation sequences of the
477   **      comparison and select-list expressions must match those of the index.
478   **
479   **   3. All of those index columns for which the WHERE clause does not
480   **      contain a "col=X" term are subject to a NOT NULL constraint.
481   */
482   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
483     if( !IsUniqueIndex(pIdx) ) continue;
484     for(i=0; i<pIdx->nKeyCol; i++){
485       if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
486         if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
487         if( indexColumnNotNull(pIdx, i)==0 ) break;
488       }
489     }
490     if( i==pIdx->nKeyCol ){
491       /* This index implies that the DISTINCT qualifier is redundant. */
492       return 1;
493     }
494   }
495 
496   return 0;
497 }
498 
499 
500 /*
501 ** Estimate the logarithm of the input value to base 2.
502 */
503 static LogEst estLog(LogEst N){
504   return N<=10 ? 0 : sqlite3LogEst(N) - 33;
505 }
506 
507 /*
508 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
509 **
510 ** This routine runs over generated VDBE code and translates OP_Column
511 ** opcodes into OP_Copy when the table is being accessed via co-routine
512 ** instead of via table lookup.
513 **
514 ** If the bIncrRowid parameter is 0, then any OP_Rowid instructions on
515 ** cursor iTabCur are transformed into OP_Null. Or, if bIncrRowid is non-zero,
516 ** then each OP_Rowid is transformed into an instruction to increment the
517 ** value stored in its output register.
518 */
519 static void translateColumnToCopy(
520   Parse *pParse,      /* Parsing context */
521   int iStart,         /* Translate from this opcode to the end */
522   int iTabCur,        /* OP_Column/OP_Rowid references to this table */
523   int iRegister,      /* The first column is in this register */
524   int bIncrRowid      /* If non-zero, transform OP_rowid to OP_AddImm(1) */
525 ){
526   Vdbe *v = pParse->pVdbe;
527   VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
528   int iEnd = sqlite3VdbeCurrentAddr(v);
529   if( pParse->db->mallocFailed ) return;
530   for(; iStart<iEnd; iStart++, pOp++){
531     if( pOp->p1!=iTabCur ) continue;
532     if( pOp->opcode==OP_Column ){
533       pOp->opcode = OP_Copy;
534       pOp->p1 = pOp->p2 + iRegister;
535       pOp->p2 = pOp->p3;
536       pOp->p3 = 0;
537     }else if( pOp->opcode==OP_Rowid ){
538       if( bIncrRowid ){
539         /* Increment the value stored in the P2 operand of the OP_Rowid. */
540         pOp->opcode = OP_AddImm;
541         pOp->p1 = pOp->p2;
542         pOp->p2 = 1;
543       }else{
544         pOp->opcode = OP_Null;
545         pOp->p1 = 0;
546         pOp->p3 = 0;
547       }
548     }
549   }
550 }
551 
552 /*
553 ** Two routines for printing the content of an sqlite3_index_info
554 ** structure.  Used for testing and debugging only.  If neither
555 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
556 ** are no-ops.
557 */
558 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
559 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
560   int i;
561   if( !sqlite3WhereTrace ) return;
562   for(i=0; i<p->nConstraint; i++){
563     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
564        i,
565        p->aConstraint[i].iColumn,
566        p->aConstraint[i].iTermOffset,
567        p->aConstraint[i].op,
568        p->aConstraint[i].usable);
569   }
570   for(i=0; i<p->nOrderBy; i++){
571     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
572        i,
573        p->aOrderBy[i].iColumn,
574        p->aOrderBy[i].desc);
575   }
576 }
577 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
578   int i;
579   if( !sqlite3WhereTrace ) return;
580   for(i=0; i<p->nConstraint; i++){
581     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
582        i,
583        p->aConstraintUsage[i].argvIndex,
584        p->aConstraintUsage[i].omit);
585   }
586   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
587   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
588   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
589   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
590   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
591 }
592 #else
593 #define TRACE_IDX_INPUTS(A)
594 #define TRACE_IDX_OUTPUTS(A)
595 #endif
596 
597 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
598 /*
599 ** Return TRUE if the WHERE clause term pTerm is of a form where it
600 ** could be used with an index to access pSrc, assuming an appropriate
601 ** index existed.
602 */
603 static int termCanDriveIndex(
604   WhereTerm *pTerm,              /* WHERE clause term to check */
605   struct SrcList_item *pSrc,     /* Table we are trying to access */
606   Bitmask notReady               /* Tables in outer loops of the join */
607 ){
608   char aff;
609   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
610   if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
611   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
612   if( pTerm->u.leftColumn<0 ) return 0;
613   aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
614   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
615   testcase( pTerm->pExpr->op==TK_IS );
616   return 1;
617 }
618 #endif
619 
620 
621 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
622 /*
623 ** Generate code to construct the Index object for an automatic index
624 ** and to set up the WhereLevel object pLevel so that the code generator
625 ** makes use of the automatic index.
626 */
627 static void constructAutomaticIndex(
628   Parse *pParse,              /* The parsing context */
629   WhereClause *pWC,           /* The WHERE clause */
630   struct SrcList_item *pSrc,  /* The FROM clause term to get the next index */
631   Bitmask notReady,           /* Mask of cursors that are not available */
632   WhereLevel *pLevel          /* Write new index here */
633 ){
634   int nKeyCol;                /* Number of columns in the constructed index */
635   WhereTerm *pTerm;           /* A single term of the WHERE clause */
636   WhereTerm *pWCEnd;          /* End of pWC->a[] */
637   Index *pIdx;                /* Object describing the transient index */
638   Vdbe *v;                    /* Prepared statement under construction */
639   int addrInit;               /* Address of the initialization bypass jump */
640   Table *pTable;              /* The table being indexed */
641   int addrTop;                /* Top of the index fill loop */
642   int regRecord;              /* Register holding an index record */
643   int n;                      /* Column counter */
644   int i;                      /* Loop counter */
645   int mxBitCol;               /* Maximum column in pSrc->colUsed */
646   CollSeq *pColl;             /* Collating sequence to on a column */
647   WhereLoop *pLoop;           /* The Loop object */
648   char *zNotUsed;             /* Extra space on the end of pIdx */
649   Bitmask idxCols;            /* Bitmap of columns used for indexing */
650   Bitmask extraCols;          /* Bitmap of additional columns */
651   u8 sentWarning = 0;         /* True if a warnning has been issued */
652   Expr *pPartial = 0;         /* Partial Index Expression */
653   int iContinue = 0;          /* Jump here to skip excluded rows */
654   struct SrcList_item *pTabItem;  /* FROM clause term being indexed */
655   int addrCounter = 0;        /* Address where integer counter is initialized */
656   int regBase;                /* Array of registers where record is assembled */
657 
658   /* Generate code to skip over the creation and initialization of the
659   ** transient index on 2nd and subsequent iterations of the loop. */
660   v = pParse->pVdbe;
661   assert( v!=0 );
662   addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
663 
664   /* Count the number of columns that will be added to the index
665   ** and used to match WHERE clause constraints */
666   nKeyCol = 0;
667   pTable = pSrc->pTab;
668   pWCEnd = &pWC->a[pWC->nTerm];
669   pLoop = pLevel->pWLoop;
670   idxCols = 0;
671   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
672     Expr *pExpr = pTerm->pExpr;
673     assert( !ExprHasProperty(pExpr, EP_FromJoin)    /* prereq always non-zero */
674          || pExpr->iRightJoinTable!=pSrc->iCursor   /*   for the right-hand   */
675          || pLoop->prereq!=0 );                     /*   table of a LEFT JOIN */
676     if( pLoop->prereq==0
677      && (pTerm->wtFlags & TERM_VIRTUAL)==0
678      && !ExprHasProperty(pExpr, EP_FromJoin)
679      && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){
680       pPartial = sqlite3ExprAnd(pParse->db, pPartial,
681                                 sqlite3ExprDup(pParse->db, pExpr, 0));
682     }
683     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
684       int iCol = pTerm->u.leftColumn;
685       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
686       testcase( iCol==BMS );
687       testcase( iCol==BMS-1 );
688       if( !sentWarning ){
689         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
690             "automatic index on %s(%s)", pTable->zName,
691             pTable->aCol[iCol].zName);
692         sentWarning = 1;
693       }
694       if( (idxCols & cMask)==0 ){
695         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
696           goto end_auto_index_create;
697         }
698         pLoop->aLTerm[nKeyCol++] = pTerm;
699         idxCols |= cMask;
700       }
701     }
702   }
703   assert( nKeyCol>0 );
704   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
705   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
706                      | WHERE_AUTO_INDEX;
707 
708   /* Count the number of additional columns needed to create a
709   ** covering index.  A "covering index" is an index that contains all
710   ** columns that are needed by the query.  With a covering index, the
711   ** original table never needs to be accessed.  Automatic indices must
712   ** be a covering index because the index will not be updated if the
713   ** original table changes and the index and table cannot both be used
714   ** if they go out of sync.
715   */
716   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
717   mxBitCol = MIN(BMS-1,pTable->nCol);
718   testcase( pTable->nCol==BMS-1 );
719   testcase( pTable->nCol==BMS-2 );
720   for(i=0; i<mxBitCol; i++){
721     if( extraCols & MASKBIT(i) ) nKeyCol++;
722   }
723   if( pSrc->colUsed & MASKBIT(BMS-1) ){
724     nKeyCol += pTable->nCol - BMS + 1;
725   }
726 
727   /* Construct the Index object to describe this index */
728   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
729   if( pIdx==0 ) goto end_auto_index_create;
730   pLoop->u.btree.pIndex = pIdx;
731   pIdx->zName = "auto-index";
732   pIdx->pTable = pTable;
733   n = 0;
734   idxCols = 0;
735   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
736     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
737       int iCol = pTerm->u.leftColumn;
738       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
739       testcase( iCol==BMS-1 );
740       testcase( iCol==BMS );
741       if( (idxCols & cMask)==0 ){
742         Expr *pX = pTerm->pExpr;
743         idxCols |= cMask;
744         pIdx->aiColumn[n] = pTerm->u.leftColumn;
745         pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
746         pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
747         n++;
748       }
749     }
750   }
751   assert( (u32)n==pLoop->u.btree.nEq );
752 
753   /* Add additional columns needed to make the automatic index into
754   ** a covering index */
755   for(i=0; i<mxBitCol; i++){
756     if( extraCols & MASKBIT(i) ){
757       pIdx->aiColumn[n] = i;
758       pIdx->azColl[n] = sqlite3StrBINARY;
759       n++;
760     }
761   }
762   if( pSrc->colUsed & MASKBIT(BMS-1) ){
763     for(i=BMS-1; i<pTable->nCol; i++){
764       pIdx->aiColumn[n] = i;
765       pIdx->azColl[n] = sqlite3StrBINARY;
766       n++;
767     }
768   }
769   assert( n==nKeyCol );
770   pIdx->aiColumn[n] = XN_ROWID;
771   pIdx->azColl[n] = sqlite3StrBINARY;
772 
773   /* Create the automatic index */
774   assert( pLevel->iIdxCur>=0 );
775   pLevel->iIdxCur = pParse->nTab++;
776   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
777   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
778   VdbeComment((v, "for %s", pTable->zName));
779 
780   /* Fill the automatic index with content */
781   sqlite3ExprCachePush(pParse);
782   pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
783   if( pTabItem->fg.viaCoroutine ){
784     int regYield = pTabItem->regReturn;
785     addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
786     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
787     addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
788     VdbeCoverage(v);
789     VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
790   }else{
791     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
792   }
793   if( pPartial ){
794     iContinue = sqlite3VdbeMakeLabel(v);
795     sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
796     pLoop->wsFlags |= WHERE_PARTIALIDX;
797   }
798   regRecord = sqlite3GetTempReg(pParse);
799   regBase = sqlite3GenerateIndexKey(
800       pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
801   );
802   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
803   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
804   if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
805   if( pTabItem->fg.viaCoroutine ){
806     sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
807     testcase( pParse->db->mallocFailed );
808     translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
809                           pTabItem->regResult, 1);
810     sqlite3VdbeGoto(v, addrTop);
811     pTabItem->fg.viaCoroutine = 0;
812   }else{
813     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
814   }
815   sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
816   sqlite3VdbeJumpHere(v, addrTop);
817   sqlite3ReleaseTempReg(pParse, regRecord);
818   sqlite3ExprCachePop(pParse);
819 
820   /* Jump here when skipping the initialization */
821   sqlite3VdbeJumpHere(v, addrInit);
822 
823 end_auto_index_create:
824   sqlite3ExprDelete(pParse->db, pPartial);
825 }
826 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
827 
828 #ifndef SQLITE_OMIT_VIRTUALTABLE
829 /*
830 ** Allocate and populate an sqlite3_index_info structure. It is the
831 ** responsibility of the caller to eventually release the structure
832 ** by passing the pointer returned by this function to sqlite3_free().
833 */
834 static sqlite3_index_info *allocateIndexInfo(
835   Parse *pParse,
836   WhereClause *pWC,
837   Bitmask mUnusable,              /* Ignore terms with these prereqs */
838   struct SrcList_item *pSrc,
839   ExprList *pOrderBy,
840   u16 *pmNoOmit                   /* Mask of terms not to omit */
841 ){
842   int i, j;
843   int nTerm;
844   struct sqlite3_index_constraint *pIdxCons;
845   struct sqlite3_index_orderby *pIdxOrderBy;
846   struct sqlite3_index_constraint_usage *pUsage;
847   WhereTerm *pTerm;
848   int nOrderBy;
849   sqlite3_index_info *pIdxInfo;
850   u16 mNoOmit = 0;
851 
852   /* Count the number of possible WHERE clause constraints referring
853   ** to this virtual table */
854   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
855     if( pTerm->leftCursor != pSrc->iCursor ) continue;
856     if( pTerm->prereqRight & mUnusable ) continue;
857     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
858     testcase( pTerm->eOperator & WO_IN );
859     testcase( pTerm->eOperator & WO_ISNULL );
860     testcase( pTerm->eOperator & WO_IS );
861     testcase( pTerm->eOperator & WO_ALL );
862     if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue;
863     if( pTerm->wtFlags & TERM_VNULL ) continue;
864     assert( pTerm->u.leftColumn>=(-1) );
865     nTerm++;
866   }
867 
868   /* If the ORDER BY clause contains only columns in the current
869   ** virtual table then allocate space for the aOrderBy part of
870   ** the sqlite3_index_info structure.
871   */
872   nOrderBy = 0;
873   if( pOrderBy ){
874     int n = pOrderBy->nExpr;
875     for(i=0; i<n; i++){
876       Expr *pExpr = pOrderBy->a[i].pExpr;
877       if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
878     }
879     if( i==n){
880       nOrderBy = n;
881     }
882   }
883 
884   /* Allocate the sqlite3_index_info structure
885   */
886   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
887                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
888                            + sizeof(*pIdxOrderBy)*nOrderBy );
889   if( pIdxInfo==0 ){
890     sqlite3ErrorMsg(pParse, "out of memory");
891     return 0;
892   }
893 
894   /* Initialize the structure.  The sqlite3_index_info structure contains
895   ** many fields that are declared "const" to prevent xBestIndex from
896   ** changing them.  We have to do some funky casting in order to
897   ** initialize those fields.
898   */
899   pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
900   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
901   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
902   *(int*)&pIdxInfo->nConstraint = nTerm;
903   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
904   *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
905   *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
906   *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
907                                                                    pUsage;
908 
909   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
910     u8 op;
911     if( pTerm->leftCursor != pSrc->iCursor ) continue;
912     if( pTerm->prereqRight & mUnusable ) continue;
913     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
914     testcase( pTerm->eOperator & WO_IN );
915     testcase( pTerm->eOperator & WO_IS );
916     testcase( pTerm->eOperator & WO_ISNULL );
917     testcase( pTerm->eOperator & WO_ALL );
918     if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue;
919     if( pTerm->wtFlags & TERM_VNULL ) continue;
920     assert( pTerm->u.leftColumn>=(-1) );
921     pIdxCons[j].iColumn = pTerm->u.leftColumn;
922     pIdxCons[j].iTermOffset = i;
923     op = (u8)pTerm->eOperator & WO_ALL;
924     if( op==WO_IN ) op = WO_EQ;
925     if( op==WO_MATCH ){
926       op = pTerm->eMatchOp;
927     }
928     pIdxCons[j].op = op;
929     /* The direct assignment in the previous line is possible only because
930     ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
931     ** following asserts verify this fact. */
932     assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
933     assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
934     assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
935     assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
936     assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
937     assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
938     assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
939 
940     if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
941      && sqlite3ExprIsVector(pTerm->pExpr->pRight)
942     ){
943       if( i<16 ) mNoOmit |= (1 << i);
944       if( op==WO_LT ) pIdxCons[j].op = WO_LE;
945       if( op==WO_GT ) pIdxCons[j].op = WO_GE;
946     }
947 
948     j++;
949   }
950   for(i=0; i<nOrderBy; i++){
951     Expr *pExpr = pOrderBy->a[i].pExpr;
952     pIdxOrderBy[i].iColumn = pExpr->iColumn;
953     pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
954   }
955 
956   *pmNoOmit = mNoOmit;
957   return pIdxInfo;
958 }
959 
960 /*
961 ** The table object reference passed as the second argument to this function
962 ** must represent a virtual table. This function invokes the xBestIndex()
963 ** method of the virtual table with the sqlite3_index_info object that
964 ** comes in as the 3rd argument to this function.
965 **
966 ** If an error occurs, pParse is populated with an error message and a
967 ** non-zero value is returned. Otherwise, 0 is returned and the output
968 ** part of the sqlite3_index_info structure is left populated.
969 **
970 ** Whether or not an error is returned, it is the responsibility of the
971 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
972 ** that this is required.
973 */
974 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
975   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
976   int rc;
977 
978   TRACE_IDX_INPUTS(p);
979   rc = pVtab->pModule->xBestIndex(pVtab, p);
980   TRACE_IDX_OUTPUTS(p);
981 
982   if( rc!=SQLITE_OK ){
983     if( rc==SQLITE_NOMEM ){
984       sqlite3OomFault(pParse->db);
985     }else if( !pVtab->zErrMsg ){
986       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
987     }else{
988       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
989     }
990   }
991   sqlite3_free(pVtab->zErrMsg);
992   pVtab->zErrMsg = 0;
993 
994 #if 0
995   /* This error is now caught by the caller.
996   ** Search for "xBestIndex malfunction" below */
997   for(i=0; i<p->nConstraint; i++){
998     if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
999       sqlite3ErrorMsg(pParse,
1000           "table %s: xBestIndex returned an invalid plan", pTab->zName);
1001     }
1002   }
1003 #endif
1004 
1005   return pParse->nErr;
1006 }
1007 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1008 
1009 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1010 /*
1011 ** Estimate the location of a particular key among all keys in an
1012 ** index.  Store the results in aStat as follows:
1013 **
1014 **    aStat[0]      Est. number of rows less than pRec
1015 **    aStat[1]      Est. number of rows equal to pRec
1016 **
1017 ** Return the index of the sample that is the smallest sample that
1018 ** is greater than or equal to pRec. Note that this index is not an index
1019 ** into the aSample[] array - it is an index into a virtual set of samples
1020 ** based on the contents of aSample[] and the number of fields in record
1021 ** pRec.
1022 */
1023 static int whereKeyStats(
1024   Parse *pParse,              /* Database connection */
1025   Index *pIdx,                /* Index to consider domain of */
1026   UnpackedRecord *pRec,       /* Vector of values to consider */
1027   int roundUp,                /* Round up if true.  Round down if false */
1028   tRowcnt *aStat              /* OUT: stats written here */
1029 ){
1030   IndexSample *aSample = pIdx->aSample;
1031   int iCol;                   /* Index of required stats in anEq[] etc. */
1032   int i;                      /* Index of first sample >= pRec */
1033   int iSample;                /* Smallest sample larger than or equal to pRec */
1034   int iMin = 0;               /* Smallest sample not yet tested */
1035   int iTest;                  /* Next sample to test */
1036   int res;                    /* Result of comparison operation */
1037   int nField;                 /* Number of fields in pRec */
1038   tRowcnt iLower = 0;         /* anLt[] + anEq[] of largest sample pRec is > */
1039 
1040 #ifndef SQLITE_DEBUG
1041   UNUSED_PARAMETER( pParse );
1042 #endif
1043   assert( pRec!=0 );
1044   assert( pIdx->nSample>0 );
1045   assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
1046 
1047   /* Do a binary search to find the first sample greater than or equal
1048   ** to pRec. If pRec contains a single field, the set of samples to search
1049   ** is simply the aSample[] array. If the samples in aSample[] contain more
1050   ** than one fields, all fields following the first are ignored.
1051   **
1052   ** If pRec contains N fields, where N is more than one, then as well as the
1053   ** samples in aSample[] (truncated to N fields), the search also has to
1054   ** consider prefixes of those samples. For example, if the set of samples
1055   ** in aSample is:
1056   **
1057   **     aSample[0] = (a, 5)
1058   **     aSample[1] = (a, 10)
1059   **     aSample[2] = (b, 5)
1060   **     aSample[3] = (c, 100)
1061   **     aSample[4] = (c, 105)
1062   **
1063   ** Then the search space should ideally be the samples above and the
1064   ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1065   ** the code actually searches this set:
1066   **
1067   **     0: (a)
1068   **     1: (a, 5)
1069   **     2: (a, 10)
1070   **     3: (a, 10)
1071   **     4: (b)
1072   **     5: (b, 5)
1073   **     6: (c)
1074   **     7: (c, 100)
1075   **     8: (c, 105)
1076   **     9: (c, 105)
1077   **
1078   ** For each sample in the aSample[] array, N samples are present in the
1079   ** effective sample array. In the above, samples 0 and 1 are based on
1080   ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1081   **
1082   ** Often, sample i of each block of N effective samples has (i+1) fields.
1083   ** Except, each sample may be extended to ensure that it is greater than or
1084   ** equal to the previous sample in the array. For example, in the above,
1085   ** sample 2 is the first sample of a block of N samples, so at first it
1086   ** appears that it should be 1 field in size. However, that would make it
1087   ** smaller than sample 1, so the binary search would not work. As a result,
1088   ** it is extended to two fields. The duplicates that this creates do not
1089   ** cause any problems.
1090   */
1091   nField = pRec->nField;
1092   iCol = 0;
1093   iSample = pIdx->nSample * nField;
1094   do{
1095     int iSamp;                    /* Index in aSample[] of test sample */
1096     int n;                        /* Number of fields in test sample */
1097 
1098     iTest = (iMin+iSample)/2;
1099     iSamp = iTest / nField;
1100     if( iSamp>0 ){
1101       /* The proposed effective sample is a prefix of sample aSample[iSamp].
1102       ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1103       ** fields that is greater than the previous effective sample.  */
1104       for(n=(iTest % nField) + 1; n<nField; n++){
1105         if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1106       }
1107     }else{
1108       n = iTest + 1;
1109     }
1110 
1111     pRec->nField = n;
1112     res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1113     if( res<0 ){
1114       iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1115       iMin = iTest+1;
1116     }else if( res==0 && n<nField ){
1117       iLower = aSample[iSamp].anLt[n-1];
1118       iMin = iTest+1;
1119       res = -1;
1120     }else{
1121       iSample = iTest;
1122       iCol = n-1;
1123     }
1124   }while( res && iMin<iSample );
1125   i = iSample / nField;
1126 
1127 #ifdef SQLITE_DEBUG
1128   /* The following assert statements check that the binary search code
1129   ** above found the right answer. This block serves no purpose other
1130   ** than to invoke the asserts.  */
1131   if( pParse->db->mallocFailed==0 ){
1132     if( res==0 ){
1133       /* If (res==0) is true, then pRec must be equal to sample i. */
1134       assert( i<pIdx->nSample );
1135       assert( iCol==nField-1 );
1136       pRec->nField = nField;
1137       assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1138            || pParse->db->mallocFailed
1139       );
1140     }else{
1141       /* Unless i==pIdx->nSample, indicating that pRec is larger than
1142       ** all samples in the aSample[] array, pRec must be smaller than the
1143       ** (iCol+1) field prefix of sample i.  */
1144       assert( i<=pIdx->nSample && i>=0 );
1145       pRec->nField = iCol+1;
1146       assert( i==pIdx->nSample
1147            || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1148            || pParse->db->mallocFailed );
1149 
1150       /* if i==0 and iCol==0, then record pRec is smaller than all samples
1151       ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1152       ** be greater than or equal to the (iCol) field prefix of sample i.
1153       ** If (i>0), then pRec must also be greater than sample (i-1).  */
1154       if( iCol>0 ){
1155         pRec->nField = iCol;
1156         assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1157              || pParse->db->mallocFailed );
1158       }
1159       if( i>0 ){
1160         pRec->nField = nField;
1161         assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1162              || pParse->db->mallocFailed );
1163       }
1164     }
1165   }
1166 #endif /* ifdef SQLITE_DEBUG */
1167 
1168   if( res==0 ){
1169     /* Record pRec is equal to sample i */
1170     assert( iCol==nField-1 );
1171     aStat[0] = aSample[i].anLt[iCol];
1172     aStat[1] = aSample[i].anEq[iCol];
1173   }else{
1174     /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1175     ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1176     ** is larger than all samples in the array. */
1177     tRowcnt iUpper, iGap;
1178     if( i>=pIdx->nSample ){
1179       iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1180     }else{
1181       iUpper = aSample[i].anLt[iCol];
1182     }
1183 
1184     if( iLower>=iUpper ){
1185       iGap = 0;
1186     }else{
1187       iGap = iUpper - iLower;
1188     }
1189     if( roundUp ){
1190       iGap = (iGap*2)/3;
1191     }else{
1192       iGap = iGap/3;
1193     }
1194     aStat[0] = iLower + iGap;
1195     aStat[1] = pIdx->aAvgEq[nField-1];
1196   }
1197 
1198   /* Restore the pRec->nField value before returning.  */
1199   pRec->nField = nField;
1200   return i;
1201 }
1202 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1203 
1204 /*
1205 ** If it is not NULL, pTerm is a term that provides an upper or lower
1206 ** bound on a range scan. Without considering pTerm, it is estimated
1207 ** that the scan will visit nNew rows. This function returns the number
1208 ** estimated to be visited after taking pTerm into account.
1209 **
1210 ** If the user explicitly specified a likelihood() value for this term,
1211 ** then the return value is the likelihood multiplied by the number of
1212 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1213 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1214 */
1215 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1216   LogEst nRet = nNew;
1217   if( pTerm ){
1218     if( pTerm->truthProb<=0 ){
1219       nRet += pTerm->truthProb;
1220     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1221       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
1222     }
1223   }
1224   return nRet;
1225 }
1226 
1227 
1228 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1229 /*
1230 ** Return the affinity for a single column of an index.
1231 */
1232 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1233   assert( iCol>=0 && iCol<pIdx->nColumn );
1234   if( !pIdx->zColAff ){
1235     if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1236   }
1237   return pIdx->zColAff[iCol];
1238 }
1239 #endif
1240 
1241 
1242 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1243 /*
1244 ** This function is called to estimate the number of rows visited by a
1245 ** range-scan on a skip-scan index. For example:
1246 **
1247 **   CREATE INDEX i1 ON t1(a, b, c);
1248 **   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1249 **
1250 ** Value pLoop->nOut is currently set to the estimated number of rows
1251 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1252 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1253 ** on the stat4 data for the index. this scan will be peformed multiple
1254 ** times (once for each (a,b) combination that matches a=?) is dealt with
1255 ** by the caller.
1256 **
1257 ** It does this by scanning through all stat4 samples, comparing values
1258 ** extracted from pLower and pUpper with the corresponding column in each
1259 ** sample. If L and U are the number of samples found to be less than or
1260 ** equal to the values extracted from pLower and pUpper respectively, and
1261 ** N is the total number of samples, the pLoop->nOut value is adjusted
1262 ** as follows:
1263 **
1264 **   nOut = nOut * ( min(U - L, 1) / N )
1265 **
1266 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1267 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1268 ** U is set to N.
1269 **
1270 ** Normally, this function sets *pbDone to 1 before returning. However,
1271 ** if no value can be extracted from either pLower or pUpper (and so the
1272 ** estimate of the number of rows delivered remains unchanged), *pbDone
1273 ** is left as is.
1274 **
1275 ** If an error occurs, an SQLite error code is returned. Otherwise,
1276 ** SQLITE_OK.
1277 */
1278 static int whereRangeSkipScanEst(
1279   Parse *pParse,       /* Parsing & code generating context */
1280   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1281   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1282   WhereLoop *pLoop,    /* Update the .nOut value of this loop */
1283   int *pbDone          /* Set to true if at least one expr. value extracted */
1284 ){
1285   Index *p = pLoop->u.btree.pIndex;
1286   int nEq = pLoop->u.btree.nEq;
1287   sqlite3 *db = pParse->db;
1288   int nLower = -1;
1289   int nUpper = p->nSample+1;
1290   int rc = SQLITE_OK;
1291   u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1292   CollSeq *pColl;
1293 
1294   sqlite3_value *p1 = 0;          /* Value extracted from pLower */
1295   sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
1296   sqlite3_value *pVal = 0;        /* Value extracted from record */
1297 
1298   pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1299   if( pLower ){
1300     rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1301     nLower = 0;
1302   }
1303   if( pUpper && rc==SQLITE_OK ){
1304     rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1305     nUpper = p2 ? 0 : p->nSample;
1306   }
1307 
1308   if( p1 || p2 ){
1309     int i;
1310     int nDiff;
1311     for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1312       rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1313       if( rc==SQLITE_OK && p1 ){
1314         int res = sqlite3MemCompare(p1, pVal, pColl);
1315         if( res>=0 ) nLower++;
1316       }
1317       if( rc==SQLITE_OK && p2 ){
1318         int res = sqlite3MemCompare(p2, pVal, pColl);
1319         if( res>=0 ) nUpper++;
1320       }
1321     }
1322     nDiff = (nUpper - nLower);
1323     if( nDiff<=0 ) nDiff = 1;
1324 
1325     /* If there is both an upper and lower bound specified, and the
1326     ** comparisons indicate that they are close together, use the fallback
1327     ** method (assume that the scan visits 1/64 of the rows) for estimating
1328     ** the number of rows visited. Otherwise, estimate the number of rows
1329     ** using the method described in the header comment for this function. */
1330     if( nDiff!=1 || pUpper==0 || pLower==0 ){
1331       int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1332       pLoop->nOut -= nAdjust;
1333       *pbDone = 1;
1334       WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n",
1335                            nLower, nUpper, nAdjust*-1, pLoop->nOut));
1336     }
1337 
1338   }else{
1339     assert( *pbDone==0 );
1340   }
1341 
1342   sqlite3ValueFree(p1);
1343   sqlite3ValueFree(p2);
1344   sqlite3ValueFree(pVal);
1345 
1346   return rc;
1347 }
1348 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1349 
1350 /*
1351 ** This function is used to estimate the number of rows that will be visited
1352 ** by scanning an index for a range of values. The range may have an upper
1353 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1354 ** and lower bounds are represented by pLower and pUpper respectively. For
1355 ** example, assuming that index p is on t1(a):
1356 **
1357 **   ... FROM t1 WHERE a > ? AND a < ? ...
1358 **                    |_____|   |_____|
1359 **                       |         |
1360 **                     pLower    pUpper
1361 **
1362 ** If either of the upper or lower bound is not present, then NULL is passed in
1363 ** place of the corresponding WhereTerm.
1364 **
1365 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1366 ** column subject to the range constraint. Or, equivalently, the number of
1367 ** equality constraints optimized by the proposed index scan. For example,
1368 ** assuming index p is on t1(a, b), and the SQL query is:
1369 **
1370 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1371 **
1372 ** then nEq is set to 1 (as the range restricted column, b, is the second
1373 ** left-most column of the index). Or, if the query is:
1374 **
1375 **   ... FROM t1 WHERE a > ? AND a < ? ...
1376 **
1377 ** then nEq is set to 0.
1378 **
1379 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1380 ** number of rows that the index scan is expected to visit without
1381 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1382 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1383 ** to account for the range constraints pLower and pUpper.
1384 **
1385 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1386 ** used, a single range inequality reduces the search space by a factor of 4.
1387 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1388 ** rows visited by a factor of 64.
1389 */
1390 static int whereRangeScanEst(
1391   Parse *pParse,       /* Parsing & code generating context */
1392   WhereLoopBuilder *pBuilder,
1393   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1394   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1395   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
1396 ){
1397   int rc = SQLITE_OK;
1398   int nOut = pLoop->nOut;
1399   LogEst nNew;
1400 
1401 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1402   Index *p = pLoop->u.btree.pIndex;
1403   int nEq = pLoop->u.btree.nEq;
1404 
1405   if( p->nSample>0 && nEq<p->nSampleCol ){
1406     if( nEq==pBuilder->nRecValid ){
1407       UnpackedRecord *pRec = pBuilder->pRec;
1408       tRowcnt a[2];
1409       int nBtm = pLoop->u.btree.nBtm;
1410       int nTop = pLoop->u.btree.nTop;
1411 
1412       /* Variable iLower will be set to the estimate of the number of rows in
1413       ** the index that are less than the lower bound of the range query. The
1414       ** lower bound being the concatenation of $P and $L, where $P is the
1415       ** key-prefix formed by the nEq values matched against the nEq left-most
1416       ** columns of the index, and $L is the value in pLower.
1417       **
1418       ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1419       ** is not a simple variable or literal value), the lower bound of the
1420       ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1421       ** if $L is available, whereKeyStats() is called for both ($P) and
1422       ** ($P:$L) and the larger of the two returned values is used.
1423       **
1424       ** Similarly, iUpper is to be set to the estimate of the number of rows
1425       ** less than the upper bound of the range query. Where the upper bound
1426       ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1427       ** of iUpper are requested of whereKeyStats() and the smaller used.
1428       **
1429       ** The number of rows between the two bounds is then just iUpper-iLower.
1430       */
1431       tRowcnt iLower;     /* Rows less than the lower bound */
1432       tRowcnt iUpper;     /* Rows less than the upper bound */
1433       int iLwrIdx = -2;   /* aSample[] for the lower bound */
1434       int iUprIdx = -1;   /* aSample[] for the upper bound */
1435 
1436       if( pRec ){
1437         testcase( pRec->nField!=pBuilder->nRecValid );
1438         pRec->nField = pBuilder->nRecValid;
1439       }
1440       /* Determine iLower and iUpper using ($P) only. */
1441       if( nEq==0 ){
1442         iLower = 0;
1443         iUpper = p->nRowEst0;
1444       }else{
1445         /* Note: this call could be optimized away - since the same values must
1446         ** have been requested when testing key $P in whereEqualScanEst().  */
1447         whereKeyStats(pParse, p, pRec, 0, a);
1448         iLower = a[0];
1449         iUpper = a[0] + a[1];
1450       }
1451 
1452       assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1453       assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1454       assert( p->aSortOrder!=0 );
1455       if( p->aSortOrder[nEq] ){
1456         /* The roles of pLower and pUpper are swapped for a DESC index */
1457         SWAP(WhereTerm*, pLower, pUpper);
1458         SWAP(int, nBtm, nTop);
1459       }
1460 
1461       /* If possible, improve on the iLower estimate using ($P:$L). */
1462       if( pLower ){
1463         int n;                    /* Values extracted from pExpr */
1464         Expr *pExpr = pLower->pExpr->pRight;
1465         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1466         if( rc==SQLITE_OK && n ){
1467           tRowcnt iNew;
1468           u16 mask = WO_GT|WO_LE;
1469           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1470           iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1471           iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1472           if( iNew>iLower ) iLower = iNew;
1473           nOut--;
1474           pLower = 0;
1475         }
1476       }
1477 
1478       /* If possible, improve on the iUpper estimate using ($P:$U). */
1479       if( pUpper ){
1480         int n;                    /* Values extracted from pExpr */
1481         Expr *pExpr = pUpper->pExpr->pRight;
1482         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1483         if( rc==SQLITE_OK && n ){
1484           tRowcnt iNew;
1485           u16 mask = WO_GT|WO_LE;
1486           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1487           iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1488           iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1489           if( iNew<iUpper ) iUpper = iNew;
1490           nOut--;
1491           pUpper = 0;
1492         }
1493       }
1494 
1495       pBuilder->pRec = pRec;
1496       if( rc==SQLITE_OK ){
1497         if( iUpper>iLower ){
1498           nNew = sqlite3LogEst(iUpper - iLower);
1499           /* TUNING:  If both iUpper and iLower are derived from the same
1500           ** sample, then assume they are 4x more selective.  This brings
1501           ** the estimated selectivity more in line with what it would be
1502           ** if estimated without the use of STAT3/4 tables. */
1503           if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
1504         }else{
1505           nNew = 10;        assert( 10==sqlite3LogEst(2) );
1506         }
1507         if( nNew<nOut ){
1508           nOut = nNew;
1509         }
1510         WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
1511                            (u32)iLower, (u32)iUpper, nOut));
1512       }
1513     }else{
1514       int bDone = 0;
1515       rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1516       if( bDone ) return rc;
1517     }
1518   }
1519 #else
1520   UNUSED_PARAMETER(pParse);
1521   UNUSED_PARAMETER(pBuilder);
1522   assert( pLower || pUpper );
1523 #endif
1524   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1525   nNew = whereRangeAdjust(pLower, nOut);
1526   nNew = whereRangeAdjust(pUpper, nNew);
1527 
1528   /* TUNING: If there is both an upper and lower limit and neither limit
1529   ** has an application-defined likelihood(), assume the range is
1530   ** reduced by an additional 75%. This means that, by default, an open-ended
1531   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1532   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1533   ** match 1/64 of the index. */
1534   if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1535     nNew -= 20;
1536   }
1537 
1538   nOut -= (pLower!=0) + (pUpper!=0);
1539   if( nNew<10 ) nNew = 10;
1540   if( nNew<nOut ) nOut = nNew;
1541 #if defined(WHERETRACE_ENABLED)
1542   if( pLoop->nOut>nOut ){
1543     WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1544                     pLoop->nOut, nOut));
1545   }
1546 #endif
1547   pLoop->nOut = (LogEst)nOut;
1548   return rc;
1549 }
1550 
1551 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1552 /*
1553 ** Estimate the number of rows that will be returned based on
1554 ** an equality constraint x=VALUE and where that VALUE occurs in
1555 ** the histogram data.  This only works when x is the left-most
1556 ** column of an index and sqlite_stat3 histogram data is available
1557 ** for that index.  When pExpr==NULL that means the constraint is
1558 ** "x IS NULL" instead of "x=VALUE".
1559 **
1560 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1561 ** If unable to make an estimate, leave *pnRow unchanged and return
1562 ** non-zero.
1563 **
1564 ** This routine can fail if it is unable to load a collating sequence
1565 ** required for string comparison, or if unable to allocate memory
1566 ** for a UTF conversion required for comparison.  The error is stored
1567 ** in the pParse structure.
1568 */
1569 static int whereEqualScanEst(
1570   Parse *pParse,       /* Parsing & code generating context */
1571   WhereLoopBuilder *pBuilder,
1572   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
1573   tRowcnt *pnRow       /* Write the revised row estimate here */
1574 ){
1575   Index *p = pBuilder->pNew->u.btree.pIndex;
1576   int nEq = pBuilder->pNew->u.btree.nEq;
1577   UnpackedRecord *pRec = pBuilder->pRec;
1578   int rc;                   /* Subfunction return code */
1579   tRowcnt a[2];             /* Statistics */
1580   int bOk;
1581 
1582   assert( nEq>=1 );
1583   assert( nEq<=p->nColumn );
1584   assert( p->aSample!=0 );
1585   assert( p->nSample>0 );
1586   assert( pBuilder->nRecValid<nEq );
1587 
1588   /* If values are not available for all fields of the index to the left
1589   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1590   if( pBuilder->nRecValid<(nEq-1) ){
1591     return SQLITE_NOTFOUND;
1592   }
1593 
1594   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1595   ** below would return the same value.  */
1596   if( nEq>=p->nColumn ){
1597     *pnRow = 1;
1598     return SQLITE_OK;
1599   }
1600 
1601   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1602   pBuilder->pRec = pRec;
1603   if( rc!=SQLITE_OK ) return rc;
1604   if( bOk==0 ) return SQLITE_NOTFOUND;
1605   pBuilder->nRecValid = nEq;
1606 
1607   whereKeyStats(pParse, p, pRec, 0, a);
1608   WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1609                    p->zName, nEq-1, (int)a[1]));
1610   *pnRow = a[1];
1611 
1612   return rc;
1613 }
1614 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1615 
1616 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1617 /*
1618 ** Estimate the number of rows that will be returned based on
1619 ** an IN constraint where the right-hand side of the IN operator
1620 ** is a list of values.  Example:
1621 **
1622 **        WHERE x IN (1,2,3,4)
1623 **
1624 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1625 ** If unable to make an estimate, leave *pnRow unchanged and return
1626 ** non-zero.
1627 **
1628 ** This routine can fail if it is unable to load a collating sequence
1629 ** required for string comparison, or if unable to allocate memory
1630 ** for a UTF conversion required for comparison.  The error is stored
1631 ** in the pParse structure.
1632 */
1633 static int whereInScanEst(
1634   Parse *pParse,       /* Parsing & code generating context */
1635   WhereLoopBuilder *pBuilder,
1636   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1637   tRowcnt *pnRow       /* Write the revised row estimate here */
1638 ){
1639   Index *p = pBuilder->pNew->u.btree.pIndex;
1640   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1641   int nRecValid = pBuilder->nRecValid;
1642   int rc = SQLITE_OK;     /* Subfunction return code */
1643   tRowcnt nEst;           /* Number of rows for a single term */
1644   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
1645   int i;                  /* Loop counter */
1646 
1647   assert( p->aSample!=0 );
1648   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
1649     nEst = nRow0;
1650     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
1651     nRowEst += nEst;
1652     pBuilder->nRecValid = nRecValid;
1653   }
1654 
1655   if( rc==SQLITE_OK ){
1656     if( nRowEst > nRow0 ) nRowEst = nRow0;
1657     *pnRow = nRowEst;
1658     WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
1659   }
1660   assert( pBuilder->nRecValid==nRecValid );
1661   return rc;
1662 }
1663 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1664 
1665 
1666 #ifdef WHERETRACE_ENABLED
1667 /*
1668 ** Print the content of a WhereTerm object
1669 */
1670 static void whereTermPrint(WhereTerm *pTerm, int iTerm){
1671   if( pTerm==0 ){
1672     sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
1673   }else{
1674     char zType[4];
1675     char zLeft[50];
1676     memcpy(zType, "...", 4);
1677     if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
1678     if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
1679     if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
1680     if( pTerm->eOperator & WO_SINGLE ){
1681       sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
1682                        pTerm->leftCursor, pTerm->u.leftColumn);
1683     }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
1684       sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%lld",
1685                        pTerm->u.pOrInfo->indexable);
1686     }else{
1687       sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
1688     }
1689     sqlite3DebugPrintf(
1690        "TERM-%-3d %p %s %-12s prob=%-3d op=0x%03x wtFlags=0x%04x",
1691        iTerm, pTerm, zType, zLeft, pTerm->truthProb,
1692        pTerm->eOperator, pTerm->wtFlags);
1693     if( pTerm->iField ){
1694       sqlite3DebugPrintf(" iField=%d\n", pTerm->iField);
1695     }else{
1696       sqlite3DebugPrintf("\n");
1697     }
1698     sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
1699   }
1700 }
1701 #endif
1702 
1703 #ifdef WHERETRACE_ENABLED
1704 /*
1705 ** Show the complete content of a WhereClause
1706 */
1707 void sqlite3WhereClausePrint(WhereClause *pWC){
1708   int i;
1709   for(i=0; i<pWC->nTerm; i++){
1710     whereTermPrint(&pWC->a[i], i);
1711   }
1712 }
1713 #endif
1714 
1715 #ifdef WHERETRACE_ENABLED
1716 /*
1717 ** Print a WhereLoop object for debugging purposes
1718 */
1719 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){
1720   WhereInfo *pWInfo = pWC->pWInfo;
1721   int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
1722   struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab;
1723   Table *pTab = pItem->pTab;
1724   Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
1725   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
1726                      p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
1727   sqlite3DebugPrintf(" %12s",
1728                      pItem->zAlias ? pItem->zAlias : pTab->zName);
1729   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
1730     const char *zName;
1731     if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
1732       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
1733         int i = sqlite3Strlen30(zName) - 1;
1734         while( zName[i]!='_' ) i--;
1735         zName += i;
1736       }
1737       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
1738     }else{
1739       sqlite3DebugPrintf("%20s","");
1740     }
1741   }else{
1742     char *z;
1743     if( p->u.vtab.idxStr ){
1744       z = sqlite3_mprintf("(%d,\"%s\",%x)",
1745                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
1746     }else{
1747       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
1748     }
1749     sqlite3DebugPrintf(" %-19s", z);
1750     sqlite3_free(z);
1751   }
1752   if( p->wsFlags & WHERE_SKIPSCAN ){
1753     sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
1754   }else{
1755     sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
1756   }
1757   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
1758   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
1759     int i;
1760     for(i=0; i<p->nLTerm; i++){
1761       whereTermPrint(p->aLTerm[i], i);
1762     }
1763   }
1764 }
1765 #endif
1766 
1767 /*
1768 ** Convert bulk memory into a valid WhereLoop that can be passed
1769 ** to whereLoopClear harmlessly.
1770 */
1771 static void whereLoopInit(WhereLoop *p){
1772   p->aLTerm = p->aLTermSpace;
1773   p->nLTerm = 0;
1774   p->nLSlot = ArraySize(p->aLTermSpace);
1775   p->wsFlags = 0;
1776 }
1777 
1778 /*
1779 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
1780 */
1781 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
1782   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
1783     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
1784       sqlite3_free(p->u.vtab.idxStr);
1785       p->u.vtab.needFree = 0;
1786       p->u.vtab.idxStr = 0;
1787     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
1788       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
1789       sqlite3DbFreeNN(db, p->u.btree.pIndex);
1790       p->u.btree.pIndex = 0;
1791     }
1792   }
1793 }
1794 
1795 /*
1796 ** Deallocate internal memory used by a WhereLoop object
1797 */
1798 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
1799   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1800   whereLoopClearUnion(db, p);
1801   whereLoopInit(p);
1802 }
1803 
1804 /*
1805 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
1806 */
1807 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
1808   WhereTerm **paNew;
1809   if( p->nLSlot>=n ) return SQLITE_OK;
1810   n = (n+7)&~7;
1811   paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
1812   if( paNew==0 ) return SQLITE_NOMEM_BKPT;
1813   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
1814   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1815   p->aLTerm = paNew;
1816   p->nLSlot = n;
1817   return SQLITE_OK;
1818 }
1819 
1820 /*
1821 ** Transfer content from the second pLoop into the first.
1822 */
1823 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
1824   whereLoopClearUnion(db, pTo);
1825   if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
1826     memset(&pTo->u, 0, sizeof(pTo->u));
1827     return SQLITE_NOMEM_BKPT;
1828   }
1829   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
1830   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
1831   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
1832     pFrom->u.vtab.needFree = 0;
1833   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
1834     pFrom->u.btree.pIndex = 0;
1835   }
1836   return SQLITE_OK;
1837 }
1838 
1839 /*
1840 ** Delete a WhereLoop object
1841 */
1842 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
1843   whereLoopClear(db, p);
1844   sqlite3DbFreeNN(db, p);
1845 }
1846 
1847 /*
1848 ** Free a WhereInfo structure
1849 */
1850 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
1851   if( ALWAYS(pWInfo) ){
1852     int i;
1853     for(i=0; i<pWInfo->nLevel; i++){
1854       WhereLevel *pLevel = &pWInfo->a[i];
1855       if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){
1856         sqlite3DbFree(db, pLevel->u.in.aInLoop);
1857       }
1858     }
1859     sqlite3WhereClauseClear(&pWInfo->sWC);
1860     while( pWInfo->pLoops ){
1861       WhereLoop *p = pWInfo->pLoops;
1862       pWInfo->pLoops = p->pNextLoop;
1863       whereLoopDelete(db, p);
1864     }
1865     sqlite3DbFreeNN(db, pWInfo);
1866   }
1867 }
1868 
1869 /*
1870 ** Return TRUE if all of the following are true:
1871 **
1872 **   (1)  X has the same or lower cost that Y
1873 **   (2)  X is a proper subset of Y
1874 **   (3)  X skips at least as many columns as Y
1875 **
1876 ** By "proper subset" we mean that X uses fewer WHERE clause terms
1877 ** than Y and that every WHERE clause term used by X is also used
1878 ** by Y.
1879 **
1880 ** If X is a proper subset of Y then Y is a better choice and ought
1881 ** to have a lower cost.  This routine returns TRUE when that cost
1882 ** relationship is inverted and needs to be adjusted.  The third rule
1883 ** was added because if X uses skip-scan less than Y it still might
1884 ** deserve a lower cost even if it is a proper subset of Y.
1885 */
1886 static int whereLoopCheaperProperSubset(
1887   const WhereLoop *pX,       /* First WhereLoop to compare */
1888   const WhereLoop *pY        /* Compare against this WhereLoop */
1889 ){
1890   int i, j;
1891   if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
1892     return 0; /* X is not a subset of Y */
1893   }
1894   if( pY->nSkip > pX->nSkip ) return 0;
1895   if( pX->rRun >= pY->rRun ){
1896     if( pX->rRun > pY->rRun ) return 0;    /* X costs more than Y */
1897     if( pX->nOut > pY->nOut ) return 0;    /* X costs more than Y */
1898   }
1899   for(i=pX->nLTerm-1; i>=0; i--){
1900     if( pX->aLTerm[i]==0 ) continue;
1901     for(j=pY->nLTerm-1; j>=0; j--){
1902       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
1903     }
1904     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
1905   }
1906   return 1;  /* All conditions meet */
1907 }
1908 
1909 /*
1910 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
1911 ** that:
1912 **
1913 **   (1) pTemplate costs less than any other WhereLoops that are a proper
1914 **       subset of pTemplate
1915 **
1916 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
1917 **       is a proper subset.
1918 **
1919 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
1920 ** WHERE clause terms than Y and that every WHERE clause term used by X is
1921 ** also used by Y.
1922 */
1923 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
1924   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
1925   for(; p; p=p->pNextLoop){
1926     if( p->iTab!=pTemplate->iTab ) continue;
1927     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
1928     if( whereLoopCheaperProperSubset(p, pTemplate) ){
1929       /* Adjust pTemplate cost downward so that it is cheaper than its
1930       ** subset p. */
1931       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
1932                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1));
1933       pTemplate->rRun = p->rRun;
1934       pTemplate->nOut = p->nOut - 1;
1935     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
1936       /* Adjust pTemplate cost upward so that it is costlier than p since
1937       ** pTemplate is a proper subset of p */
1938       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
1939                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1));
1940       pTemplate->rRun = p->rRun;
1941       pTemplate->nOut = p->nOut + 1;
1942     }
1943   }
1944 }
1945 
1946 /*
1947 ** Search the list of WhereLoops in *ppPrev looking for one that can be
1948 ** replaced by pTemplate.
1949 **
1950 ** Return NULL if pTemplate does not belong on the WhereLoop list.
1951 ** In other words if pTemplate ought to be dropped from further consideration.
1952 **
1953 ** If pX is a WhereLoop that pTemplate can replace, then return the
1954 ** link that points to pX.
1955 **
1956 ** If pTemplate cannot replace any existing element of the list but needs
1957 ** to be added to the list as a new entry, then return a pointer to the
1958 ** tail of the list.
1959 */
1960 static WhereLoop **whereLoopFindLesser(
1961   WhereLoop **ppPrev,
1962   const WhereLoop *pTemplate
1963 ){
1964   WhereLoop *p;
1965   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
1966     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
1967       /* If either the iTab or iSortIdx values for two WhereLoop are different
1968       ** then those WhereLoops need to be considered separately.  Neither is
1969       ** a candidate to replace the other. */
1970       continue;
1971     }
1972     /* In the current implementation, the rSetup value is either zero
1973     ** or the cost of building an automatic index (NlogN) and the NlogN
1974     ** is the same for compatible WhereLoops. */
1975     assert( p->rSetup==0 || pTemplate->rSetup==0
1976                  || p->rSetup==pTemplate->rSetup );
1977 
1978     /* whereLoopAddBtree() always generates and inserts the automatic index
1979     ** case first.  Hence compatible candidate WhereLoops never have a larger
1980     ** rSetup. Call this SETUP-INVARIANT */
1981     assert( p->rSetup>=pTemplate->rSetup );
1982 
1983     /* Any loop using an appliation-defined index (or PRIMARY KEY or
1984     ** UNIQUE constraint) with one or more == constraints is better
1985     ** than an automatic index. Unless it is a skip-scan. */
1986     if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
1987      && (pTemplate->nSkip)==0
1988      && (pTemplate->wsFlags & WHERE_INDEXED)!=0
1989      && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
1990      && (p->prereq & pTemplate->prereq)==pTemplate->prereq
1991     ){
1992       break;
1993     }
1994 
1995     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
1996     ** discarded.  WhereLoop p is better if:
1997     **   (1)  p has no more dependencies than pTemplate, and
1998     **   (2)  p has an equal or lower cost than pTemplate
1999     */
2000     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
2001      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
2002      && p->rRun<=pTemplate->rRun                      /* (2b) */
2003      && p->nOut<=pTemplate->nOut                      /* (2c) */
2004     ){
2005       return 0;  /* Discard pTemplate */
2006     }
2007 
2008     /* If pTemplate is always better than p, then cause p to be overwritten
2009     ** with pTemplate.  pTemplate is better than p if:
2010     **   (1)  pTemplate has no more dependences than p, and
2011     **   (2)  pTemplate has an equal or lower cost than p.
2012     */
2013     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
2014      && p->rRun>=pTemplate->rRun                             /* (2a) */
2015      && p->nOut>=pTemplate->nOut                             /* (2b) */
2016     ){
2017       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2018       break;   /* Cause p to be overwritten by pTemplate */
2019     }
2020   }
2021   return ppPrev;
2022 }
2023 
2024 /*
2025 ** Insert or replace a WhereLoop entry using the template supplied.
2026 **
2027 ** An existing WhereLoop entry might be overwritten if the new template
2028 ** is better and has fewer dependencies.  Or the template will be ignored
2029 ** and no insert will occur if an existing WhereLoop is faster and has
2030 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
2031 ** added based on the template.
2032 **
2033 ** If pBuilder->pOrSet is not NULL then we care about only the
2034 ** prerequisites and rRun and nOut costs of the N best loops.  That
2035 ** information is gathered in the pBuilder->pOrSet object.  This special
2036 ** processing mode is used only for OR clause processing.
2037 **
2038 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2039 ** still might overwrite similar loops with the new template if the
2040 ** new template is better.  Loops may be overwritten if the following
2041 ** conditions are met:
2042 **
2043 **    (1)  They have the same iTab.
2044 **    (2)  They have the same iSortIdx.
2045 **    (3)  The template has same or fewer dependencies than the current loop
2046 **    (4)  The template has the same or lower cost than the current loop
2047 */
2048 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2049   WhereLoop **ppPrev, *p;
2050   WhereInfo *pWInfo = pBuilder->pWInfo;
2051   sqlite3 *db = pWInfo->pParse->db;
2052   int rc;
2053 
2054   /* If pBuilder->pOrSet is defined, then only keep track of the costs
2055   ** and prereqs.
2056   */
2057   if( pBuilder->pOrSet!=0 ){
2058     if( pTemplate->nLTerm ){
2059 #if WHERETRACE_ENABLED
2060       u16 n = pBuilder->pOrSet->n;
2061       int x =
2062 #endif
2063       whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2064                                     pTemplate->nOut);
2065 #if WHERETRACE_ENABLED /* 0x8 */
2066       if( sqlite3WhereTrace & 0x8 ){
2067         sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
2068         whereLoopPrint(pTemplate, pBuilder->pWC);
2069       }
2070 #endif
2071     }
2072     return SQLITE_OK;
2073   }
2074 
2075   /* Look for an existing WhereLoop to replace with pTemplate
2076   */
2077   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2078   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2079 
2080   if( ppPrev==0 ){
2081     /* There already exists a WhereLoop on the list that is better
2082     ** than pTemplate, so just ignore pTemplate */
2083 #if WHERETRACE_ENABLED /* 0x8 */
2084     if( sqlite3WhereTrace & 0x8 ){
2085       sqlite3DebugPrintf("   skip: ");
2086       whereLoopPrint(pTemplate, pBuilder->pWC);
2087     }
2088 #endif
2089     return SQLITE_OK;
2090   }else{
2091     p = *ppPrev;
2092   }
2093 
2094   /* If we reach this point it means that either p[] should be overwritten
2095   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2096   ** WhereLoop and insert it.
2097   */
2098 #if WHERETRACE_ENABLED /* 0x8 */
2099   if( sqlite3WhereTrace & 0x8 ){
2100     if( p!=0 ){
2101       sqlite3DebugPrintf("replace: ");
2102       whereLoopPrint(p, pBuilder->pWC);
2103       sqlite3DebugPrintf("   with: ");
2104     }else{
2105       sqlite3DebugPrintf("    add: ");
2106     }
2107     whereLoopPrint(pTemplate, pBuilder->pWC);
2108   }
2109 #endif
2110   if( p==0 ){
2111     /* Allocate a new WhereLoop to add to the end of the list */
2112     *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2113     if( p==0 ) return SQLITE_NOMEM_BKPT;
2114     whereLoopInit(p);
2115     p->pNextLoop = 0;
2116   }else{
2117     /* We will be overwriting WhereLoop p[].  But before we do, first
2118     ** go through the rest of the list and delete any other entries besides
2119     ** p[] that are also supplated by pTemplate */
2120     WhereLoop **ppTail = &p->pNextLoop;
2121     WhereLoop *pToDel;
2122     while( *ppTail ){
2123       ppTail = whereLoopFindLesser(ppTail, pTemplate);
2124       if( ppTail==0 ) break;
2125       pToDel = *ppTail;
2126       if( pToDel==0 ) break;
2127       *ppTail = pToDel->pNextLoop;
2128 #if WHERETRACE_ENABLED /* 0x8 */
2129       if( sqlite3WhereTrace & 0x8 ){
2130         sqlite3DebugPrintf(" delete: ");
2131         whereLoopPrint(pToDel, pBuilder->pWC);
2132       }
2133 #endif
2134       whereLoopDelete(db, pToDel);
2135     }
2136   }
2137   rc = whereLoopXfer(db, p, pTemplate);
2138   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2139     Index *pIndex = p->u.btree.pIndex;
2140     if( pIndex && pIndex->tnum==0 ){
2141       p->u.btree.pIndex = 0;
2142     }
2143   }
2144   return rc;
2145 }
2146 
2147 /*
2148 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2149 ** WHERE clause that reference the loop but which are not used by an
2150 ** index.
2151 *
2152 ** For every WHERE clause term that is not used by the index
2153 ** and which has a truth probability assigned by one of the likelihood(),
2154 ** likely(), or unlikely() SQL functions, reduce the estimated number
2155 ** of output rows by the probability specified.
2156 **
2157 ** TUNING:  For every WHERE clause term that is not used by the index
2158 ** and which does not have an assigned truth probability, heuristics
2159 ** described below are used to try to estimate the truth probability.
2160 ** TODO --> Perhaps this is something that could be improved by better
2161 ** table statistics.
2162 **
2163 ** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
2164 ** value corresponds to -1 in LogEst notation, so this means decrement
2165 ** the WhereLoop.nOut field for every such WHERE clause term.
2166 **
2167 ** Heuristic 2:  If there exists one or more WHERE clause terms of the
2168 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2169 ** final output row estimate is no greater than 1/4 of the total number
2170 ** of rows in the table.  In other words, assume that x==EXPR will filter
2171 ** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
2172 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2173 ** on the "x" column and so in that case only cap the output row estimate
2174 ** at 1/2 instead of 1/4.
2175 */
2176 static void whereLoopOutputAdjust(
2177   WhereClause *pWC,      /* The WHERE clause */
2178   WhereLoop *pLoop,      /* The loop to adjust downward */
2179   LogEst nRow            /* Number of rows in the entire table */
2180 ){
2181   WhereTerm *pTerm, *pX;
2182   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2183   int i, j, k;
2184   LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */
2185 
2186   assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2187   for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
2188     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
2189     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2190     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2191     for(j=pLoop->nLTerm-1; j>=0; j--){
2192       pX = pLoop->aLTerm[j];
2193       if( pX==0 ) continue;
2194       if( pX==pTerm ) break;
2195       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2196     }
2197     if( j<0 ){
2198       if( pTerm->truthProb<=0 ){
2199         /* If a truth probability is specified using the likelihood() hints,
2200         ** then use the probability provided by the application. */
2201         pLoop->nOut += pTerm->truthProb;
2202       }else{
2203         /* In the absence of explicit truth probabilities, use heuristics to
2204         ** guess a reasonable truth probability. */
2205         pLoop->nOut--;
2206         if( pTerm->eOperator&(WO_EQ|WO_IS) ){
2207           Expr *pRight = pTerm->pExpr->pRight;
2208           testcase( pTerm->pExpr->op==TK_IS );
2209           if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2210             k = 10;
2211           }else{
2212             k = 20;
2213           }
2214           if( iReduce<k ) iReduce = k;
2215         }
2216       }
2217     }
2218   }
2219   if( pLoop->nOut > nRow-iReduce )  pLoop->nOut = nRow - iReduce;
2220 }
2221 
2222 /*
2223 ** Term pTerm is a vector range comparison operation. The first comparison
2224 ** in the vector can be optimized using column nEq of the index. This
2225 ** function returns the total number of vector elements that can be used
2226 ** as part of the range comparison.
2227 **
2228 ** For example, if the query is:
2229 **
2230 **   WHERE a = ? AND (b, c, d) > (?, ?, ?)
2231 **
2232 ** and the index:
2233 **
2234 **   CREATE INDEX ... ON (a, b, c, d, e)
2235 **
2236 ** then this function would be invoked with nEq=1. The value returned in
2237 ** this case is 3.
2238 */
2239 static int whereRangeVectorLen(
2240   Parse *pParse,       /* Parsing context */
2241   int iCur,            /* Cursor open on pIdx */
2242   Index *pIdx,         /* The index to be used for a inequality constraint */
2243   int nEq,             /* Number of prior equality constraints on same index */
2244   WhereTerm *pTerm     /* The vector inequality constraint */
2245 ){
2246   int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2247   int i;
2248 
2249   nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2250   for(i=1; i<nCmp; i++){
2251     /* Test if comparison i of pTerm is compatible with column (i+nEq)
2252     ** of the index. If not, exit the loop.  */
2253     char aff;                     /* Comparison affinity */
2254     char idxaff = 0;              /* Indexed columns affinity */
2255     CollSeq *pColl;               /* Comparison collation sequence */
2256     Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2257     Expr *pRhs = pTerm->pExpr->pRight;
2258     if( pRhs->flags & EP_xIsSelect ){
2259       pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2260     }else{
2261       pRhs = pRhs->x.pList->a[i].pExpr;
2262     }
2263 
2264     /* Check that the LHS of the comparison is a column reference to
2265     ** the right column of the right source table. And that the sort
2266     ** order of the index column is the same as the sort order of the
2267     ** leftmost index column.  */
2268     if( pLhs->op!=TK_COLUMN
2269      || pLhs->iTable!=iCur
2270      || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2271      || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2272     ){
2273       break;
2274     }
2275 
2276     testcase( pLhs->iColumn==XN_ROWID );
2277     aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2278     idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2279     if( aff!=idxaff ) break;
2280 
2281     pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2282     if( pColl==0 ) break;
2283     if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2284   }
2285   return i;
2286 }
2287 
2288 /*
2289 ** Adjust the cost C by the costMult facter T.  This only occurs if
2290 ** compiled with -DSQLITE_ENABLE_COSTMULT
2291 */
2292 #ifdef SQLITE_ENABLE_COSTMULT
2293 # define ApplyCostMultiplier(C,T)  C += T
2294 #else
2295 # define ApplyCostMultiplier(C,T)
2296 #endif
2297 
2298 /*
2299 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2300 ** index pIndex. Try to match one more.
2301 **
2302 ** When this function is called, pBuilder->pNew->nOut contains the
2303 ** number of rows expected to be visited by filtering using the nEq
2304 ** terms only. If it is modified, this value is restored before this
2305 ** function returns.
2306 **
2307 ** If pProbe->tnum==0, that means pIndex is a fake index used for the
2308 ** INTEGER PRIMARY KEY.
2309 */
2310 static int whereLoopAddBtreeIndex(
2311   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
2312   struct SrcList_item *pSrc,      /* FROM clause term being analyzed */
2313   Index *pProbe,                  /* An index on pSrc */
2314   LogEst nInMul                   /* log(Number of iterations due to IN) */
2315 ){
2316   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
2317   Parse *pParse = pWInfo->pParse;        /* Parsing context */
2318   sqlite3 *db = pParse->db;       /* Database connection malloc context */
2319   WhereLoop *pNew;                /* Template WhereLoop under construction */
2320   WhereTerm *pTerm;               /* A WhereTerm under consideration */
2321   int opMask;                     /* Valid operators for constraints */
2322   WhereScan scan;                 /* Iterator for WHERE terms */
2323   Bitmask saved_prereq;           /* Original value of pNew->prereq */
2324   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
2325   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
2326   u16 saved_nBtm;                 /* Original value of pNew->u.btree.nBtm */
2327   u16 saved_nTop;                 /* Original value of pNew->u.btree.nTop */
2328   u16 saved_nSkip;                /* Original value of pNew->nSkip */
2329   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
2330   LogEst saved_nOut;              /* Original value of pNew->nOut */
2331   int rc = SQLITE_OK;             /* Return code */
2332   LogEst rSize;                   /* Number of rows in the table */
2333   LogEst rLogSize;                /* Logarithm of table size */
2334   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2335 
2336   pNew = pBuilder->pNew;
2337   if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2338   WHERETRACE(0x800, ("BEGIN addBtreeIdx(%s), nEq=%d\n",
2339                      pProbe->zName, pNew->u.btree.nEq));
2340 
2341   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2342   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2343   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2344     opMask = WO_LT|WO_LE;
2345   }else{
2346     assert( pNew->u.btree.nBtm==0 );
2347     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2348   }
2349   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2350 
2351   assert( pNew->u.btree.nEq<pProbe->nColumn );
2352 
2353   saved_nEq = pNew->u.btree.nEq;
2354   saved_nBtm = pNew->u.btree.nBtm;
2355   saved_nTop = pNew->u.btree.nTop;
2356   saved_nSkip = pNew->nSkip;
2357   saved_nLTerm = pNew->nLTerm;
2358   saved_wsFlags = pNew->wsFlags;
2359   saved_prereq = pNew->prereq;
2360   saved_nOut = pNew->nOut;
2361   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2362                         opMask, pProbe);
2363   pNew->rSetup = 0;
2364   rSize = pProbe->aiRowLogEst[0];
2365   rLogSize = estLog(rSize);
2366   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2367     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
2368     LogEst rCostIdx;
2369     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
2370     int nIn = 0;
2371 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2372     int nRecValid = pBuilder->nRecValid;
2373 #endif
2374     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2375      && indexColumnNotNull(pProbe, saved_nEq)
2376     ){
2377       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2378     }
2379     if( pTerm->prereqRight & pNew->maskSelf ) continue;
2380 
2381     /* Do not allow the upper bound of a LIKE optimization range constraint
2382     ** to mix with a lower range bound from some other source */
2383     if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2384 
2385     /* Do not allow IS constraints from the WHERE clause to be used by the
2386     ** right table of a LEFT JOIN.  Only constraints in the ON clause are
2387     ** allowed */
2388     if( (pSrc->fg.jointype & JT_LEFT)!=0
2389      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
2390      && (eOp & (WO_IS|WO_ISNULL))!=0
2391     ){
2392       testcase( eOp & WO_IS );
2393       testcase( eOp & WO_ISNULL );
2394       continue;
2395     }
2396 
2397     if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2398       pBuilder->bldFlags |= SQLITE_BLDF_UNIQUE;
2399     }else{
2400       pBuilder->bldFlags |= SQLITE_BLDF_INDEXED;
2401     }
2402     pNew->wsFlags = saved_wsFlags;
2403     pNew->u.btree.nEq = saved_nEq;
2404     pNew->u.btree.nBtm = saved_nBtm;
2405     pNew->u.btree.nTop = saved_nTop;
2406     pNew->nLTerm = saved_nLTerm;
2407     if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2408     pNew->aLTerm[pNew->nLTerm++] = pTerm;
2409     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2410 
2411     assert( nInMul==0
2412         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2413         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2414         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2415     );
2416 
2417     if( eOp & WO_IN ){
2418       Expr *pExpr = pTerm->pExpr;
2419       pNew->wsFlags |= WHERE_COLUMN_IN;
2420       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2421         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
2422         int i;
2423         nIn = 46;  assert( 46==sqlite3LogEst(25) );
2424 
2425         /* The expression may actually be of the form (x, y) IN (SELECT...).
2426         ** In this case there is a separate term for each of (x) and (y).
2427         ** However, the nIn multiplier should only be applied once, not once
2428         ** for each such term. The following loop checks that pTerm is the
2429         ** first such term in use, and sets nIn back to 0 if it is not. */
2430         for(i=0; i<pNew->nLTerm-1; i++){
2431           if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2432         }
2433       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2434         /* "x IN (value, value, ...)" */
2435         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2436         assert( nIn>0 );  /* RHS always has 2 or more terms...  The parser
2437                           ** changes "x IN (?)" into "x=?". */
2438       }
2439     }else if( eOp & (WO_EQ|WO_IS) ){
2440       int iCol = pProbe->aiColumn[saved_nEq];
2441       pNew->wsFlags |= WHERE_COLUMN_EQ;
2442       assert( saved_nEq==pNew->u.btree.nEq );
2443       if( iCol==XN_ROWID
2444        || (iCol>0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2445       ){
2446         if( iCol>=0 && pProbe->uniqNotNull==0 ){
2447           pNew->wsFlags |= WHERE_UNQ_WANTED;
2448         }else{
2449           pNew->wsFlags |= WHERE_ONEROW;
2450         }
2451       }
2452     }else if( eOp & WO_ISNULL ){
2453       pNew->wsFlags |= WHERE_COLUMN_NULL;
2454     }else if( eOp & (WO_GT|WO_GE) ){
2455       testcase( eOp & WO_GT );
2456       testcase( eOp & WO_GE );
2457       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2458       pNew->u.btree.nBtm = whereRangeVectorLen(
2459           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2460       );
2461       pBtm = pTerm;
2462       pTop = 0;
2463       if( pTerm->wtFlags & TERM_LIKEOPT ){
2464         /* Range contraints that come from the LIKE optimization are
2465         ** always used in pairs. */
2466         pTop = &pTerm[1];
2467         assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2468         assert( pTop->wtFlags & TERM_LIKEOPT );
2469         assert( pTop->eOperator==WO_LT );
2470         if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2471         pNew->aLTerm[pNew->nLTerm++] = pTop;
2472         pNew->wsFlags |= WHERE_TOP_LIMIT;
2473         pNew->u.btree.nTop = 1;
2474       }
2475     }else{
2476       assert( eOp & (WO_LT|WO_LE) );
2477       testcase( eOp & WO_LT );
2478       testcase( eOp & WO_LE );
2479       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2480       pNew->u.btree.nTop = whereRangeVectorLen(
2481           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2482       );
2483       pTop = pTerm;
2484       pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2485                      pNew->aLTerm[pNew->nLTerm-2] : 0;
2486     }
2487 
2488     /* At this point pNew->nOut is set to the number of rows expected to
2489     ** be visited by the index scan before considering term pTerm, or the
2490     ** values of nIn and nInMul. In other words, assuming that all
2491     ** "x IN(...)" terms are replaced with "x = ?". This block updates
2492     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
2493     assert( pNew->nOut==saved_nOut );
2494     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2495       /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4
2496       ** data, using some other estimate.  */
2497       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2498     }else{
2499       int nEq = ++pNew->u.btree.nEq;
2500       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2501 
2502       assert( pNew->nOut==saved_nOut );
2503       if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2504         assert( (eOp & WO_IN) || nIn==0 );
2505         testcase( eOp & WO_IN );
2506         pNew->nOut += pTerm->truthProb;
2507         pNew->nOut -= nIn;
2508       }else{
2509 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2510         tRowcnt nOut = 0;
2511         if( nInMul==0
2512          && pProbe->nSample
2513          && pNew->u.btree.nEq<=pProbe->nSampleCol
2514          && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
2515         ){
2516           Expr *pExpr = pTerm->pExpr;
2517           if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2518             testcase( eOp & WO_EQ );
2519             testcase( eOp & WO_IS );
2520             testcase( eOp & WO_ISNULL );
2521             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2522           }else{
2523             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2524           }
2525           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2526           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
2527           if( nOut ){
2528             pNew->nOut = sqlite3LogEst(nOut);
2529             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
2530             pNew->nOut -= nIn;
2531           }
2532         }
2533         if( nOut==0 )
2534 #endif
2535         {
2536           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
2537           if( eOp & WO_ISNULL ){
2538             /* TUNING: If there is no likelihood() value, assume that a
2539             ** "col IS NULL" expression matches twice as many rows
2540             ** as (col=?). */
2541             pNew->nOut += 10;
2542           }
2543         }
2544       }
2545     }
2546 
2547     /* Set rCostIdx to the cost of visiting selected rows in index. Add
2548     ** it to pNew->rRun, which is currently set to the cost of the index
2549     ** seek only. Then, if this is a non-covering index, add the cost of
2550     ** visiting the rows in the main table.  */
2551     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
2552     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
2553     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
2554       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
2555     }
2556     ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
2557 
2558     nOutUnadjusted = pNew->nOut;
2559     pNew->rRun += nInMul + nIn;
2560     pNew->nOut += nInMul + nIn;
2561     whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
2562     rc = whereLoopInsert(pBuilder, pNew);
2563 
2564     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2565       pNew->nOut = saved_nOut;
2566     }else{
2567       pNew->nOut = nOutUnadjusted;
2568     }
2569 
2570     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
2571      && pNew->u.btree.nEq<pProbe->nColumn
2572     ){
2573       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
2574     }
2575     pNew->nOut = saved_nOut;
2576 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2577     pBuilder->nRecValid = nRecValid;
2578 #endif
2579   }
2580   pNew->prereq = saved_prereq;
2581   pNew->u.btree.nEq = saved_nEq;
2582   pNew->u.btree.nBtm = saved_nBtm;
2583   pNew->u.btree.nTop = saved_nTop;
2584   pNew->nSkip = saved_nSkip;
2585   pNew->wsFlags = saved_wsFlags;
2586   pNew->nOut = saved_nOut;
2587   pNew->nLTerm = saved_nLTerm;
2588 
2589   /* Consider using a skip-scan if there are no WHERE clause constraints
2590   ** available for the left-most terms of the index, and if the average
2591   ** number of repeats in the left-most terms is at least 18.
2592   **
2593   ** The magic number 18 is selected on the basis that scanning 17 rows
2594   ** is almost always quicker than an index seek (even though if the index
2595   ** contains fewer than 2^17 rows we assume otherwise in other parts of
2596   ** the code). And, even if it is not, it should not be too much slower.
2597   ** On the other hand, the extra seeks could end up being significantly
2598   ** more expensive.  */
2599   assert( 42==sqlite3LogEst(18) );
2600   if( saved_nEq==saved_nSkip
2601    && saved_nEq+1<pProbe->nKeyCol
2602    && pProbe->noSkipScan==0
2603    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
2604    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
2605   ){
2606     LogEst nIter;
2607     pNew->u.btree.nEq++;
2608     pNew->nSkip++;
2609     pNew->aLTerm[pNew->nLTerm++] = 0;
2610     pNew->wsFlags |= WHERE_SKIPSCAN;
2611     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
2612     pNew->nOut -= nIter;
2613     /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
2614     ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
2615     nIter += 5;
2616     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
2617     pNew->nOut = saved_nOut;
2618     pNew->u.btree.nEq = saved_nEq;
2619     pNew->nSkip = saved_nSkip;
2620     pNew->wsFlags = saved_wsFlags;
2621   }
2622 
2623   WHERETRACE(0x800, ("END addBtreeIdx(%s), nEq=%d, rc=%d\n",
2624                       pProbe->zName, saved_nEq, rc));
2625   return rc;
2626 }
2627 
2628 /*
2629 ** Return True if it is possible that pIndex might be useful in
2630 ** implementing the ORDER BY clause in pBuilder.
2631 **
2632 ** Return False if pBuilder does not contain an ORDER BY clause or
2633 ** if there is no way for pIndex to be useful in implementing that
2634 ** ORDER BY clause.
2635 */
2636 static int indexMightHelpWithOrderBy(
2637   WhereLoopBuilder *pBuilder,
2638   Index *pIndex,
2639   int iCursor
2640 ){
2641   ExprList *pOB;
2642   ExprList *aColExpr;
2643   int ii, jj;
2644 
2645   if( pIndex->bUnordered ) return 0;
2646   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
2647   for(ii=0; ii<pOB->nExpr; ii++){
2648     Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr);
2649     if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
2650       if( pExpr->iColumn<0 ) return 1;
2651       for(jj=0; jj<pIndex->nKeyCol; jj++){
2652         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
2653       }
2654     }else if( (aColExpr = pIndex->aColExpr)!=0 ){
2655       for(jj=0; jj<pIndex->nKeyCol; jj++){
2656         if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
2657         if( sqlite3ExprCompare(0, pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
2658           return 1;
2659         }
2660       }
2661     }
2662   }
2663   return 0;
2664 }
2665 
2666 /*
2667 ** Return a bitmask where 1s indicate that the corresponding column of
2668 ** the table is used by an index.  Only the first 63 columns are considered.
2669 */
2670 static Bitmask columnsInIndex(Index *pIdx){
2671   Bitmask m = 0;
2672   int j;
2673   for(j=pIdx->nColumn-1; j>=0; j--){
2674     int x = pIdx->aiColumn[j];
2675     if( x>=0 ){
2676       testcase( x==BMS-1 );
2677       testcase( x==BMS-2 );
2678       if( x<BMS-1 ) m |= MASKBIT(x);
2679     }
2680   }
2681   return m;
2682 }
2683 
2684 /* Check to see if a partial index with pPartIndexWhere can be used
2685 ** in the current query.  Return true if it can be and false if not.
2686 */
2687 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){
2688   int i;
2689   WhereTerm *pTerm;
2690   Parse *pParse = pWC->pWInfo->pParse;
2691   while( pWhere->op==TK_AND ){
2692     if( !whereUsablePartialIndex(iTab,pWC,pWhere->pLeft) ) return 0;
2693     pWhere = pWhere->pRight;
2694   }
2695   if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
2696   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
2697     Expr *pExpr = pTerm->pExpr;
2698     if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
2699      && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
2700     ){
2701       return 1;
2702     }
2703   }
2704   return 0;
2705 }
2706 
2707 /*
2708 ** Add all WhereLoop objects for a single table of the join where the table
2709 ** is identified by pBuilder->pNew->iTab.  That table is guaranteed to be
2710 ** a b-tree table, not a virtual table.
2711 **
2712 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
2713 ** are calculated as follows:
2714 **
2715 ** For a full scan, assuming the table (or index) contains nRow rows:
2716 **
2717 **     cost = nRow * 3.0                    // full-table scan
2718 **     cost = nRow * K                      // scan of covering index
2719 **     cost = nRow * (K+3.0)                // scan of non-covering index
2720 **
2721 ** where K is a value between 1.1 and 3.0 set based on the relative
2722 ** estimated average size of the index and table records.
2723 **
2724 ** For an index scan, where nVisit is the number of index rows visited
2725 ** by the scan, and nSeek is the number of seek operations required on
2726 ** the index b-tree:
2727 **
2728 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
2729 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
2730 **
2731 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
2732 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
2733 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
2734 **
2735 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
2736 ** of uncertainty.  For this reason, scoring is designed to pick plans that
2737 ** "do the least harm" if the estimates are inaccurate.  For example, a
2738 ** log(nRow) factor is omitted from a non-covering index scan in order to
2739 ** bias the scoring in favor of using an index, since the worst-case
2740 ** performance of using an index is far better than the worst-case performance
2741 ** of a full table scan.
2742 */
2743 static int whereLoopAddBtree(
2744   WhereLoopBuilder *pBuilder, /* WHERE clause information */
2745   Bitmask mPrereq             /* Extra prerequesites for using this table */
2746 ){
2747   WhereInfo *pWInfo;          /* WHERE analysis context */
2748   Index *pProbe;              /* An index we are evaluating */
2749   Index sPk;                  /* A fake index object for the primary key */
2750   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
2751   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
2752   SrcList *pTabList;          /* The FROM clause */
2753   struct SrcList_item *pSrc;  /* The FROM clause btree term to add */
2754   WhereLoop *pNew;            /* Template WhereLoop object */
2755   int rc = SQLITE_OK;         /* Return code */
2756   int iSortIdx = 1;           /* Index number */
2757   int b;                      /* A boolean value */
2758   LogEst rSize;               /* number of rows in the table */
2759   LogEst rLogSize;            /* Logarithm of the number of rows in the table */
2760   WhereClause *pWC;           /* The parsed WHERE clause */
2761   Table *pTab;                /* Table being queried */
2762 
2763   pNew = pBuilder->pNew;
2764   pWInfo = pBuilder->pWInfo;
2765   pTabList = pWInfo->pTabList;
2766   pSrc = pTabList->a + pNew->iTab;
2767   pTab = pSrc->pTab;
2768   pWC = pBuilder->pWC;
2769   assert( !IsVirtual(pSrc->pTab) );
2770 
2771   if( pSrc->pIBIndex ){
2772     /* An INDEXED BY clause specifies a particular index to use */
2773     pProbe = pSrc->pIBIndex;
2774   }else if( !HasRowid(pTab) ){
2775     pProbe = pTab->pIndex;
2776   }else{
2777     /* There is no INDEXED BY clause.  Create a fake Index object in local
2778     ** variable sPk to represent the rowid primary key index.  Make this
2779     ** fake index the first in a chain of Index objects with all of the real
2780     ** indices to follow */
2781     Index *pFirst;                  /* First of real indices on the table */
2782     memset(&sPk, 0, sizeof(Index));
2783     sPk.nKeyCol = 1;
2784     sPk.nColumn = 1;
2785     sPk.aiColumn = &aiColumnPk;
2786     sPk.aiRowLogEst = aiRowEstPk;
2787     sPk.onError = OE_Replace;
2788     sPk.pTable = pTab;
2789     sPk.szIdxRow = pTab->szTabRow;
2790     aiRowEstPk[0] = pTab->nRowLogEst;
2791     aiRowEstPk[1] = 0;
2792     pFirst = pSrc->pTab->pIndex;
2793     if( pSrc->fg.notIndexed==0 ){
2794       /* The real indices of the table are only considered if the
2795       ** NOT INDEXED qualifier is omitted from the FROM clause */
2796       sPk.pNext = pFirst;
2797     }
2798     pProbe = &sPk;
2799   }
2800   rSize = pTab->nRowLogEst;
2801   rLogSize = estLog(rSize);
2802 
2803 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
2804   /* Automatic indexes */
2805   if( !pBuilder->pOrSet      /* Not part of an OR optimization */
2806    && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
2807    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
2808    && pSrc->pIBIndex==0      /* Has no INDEXED BY clause */
2809    && !pSrc->fg.notIndexed   /* Has no NOT INDEXED clause */
2810    && HasRowid(pTab)         /* Not WITHOUT ROWID table. (FIXME: Why not?) */
2811    && !pSrc->fg.isCorrelated /* Not a correlated subquery */
2812    && !pSrc->fg.isRecursive  /* Not a recursive common table expression. */
2813   ){
2814     /* Generate auto-index WhereLoops */
2815     WhereTerm *pTerm;
2816     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
2817     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
2818       if( pTerm->prereqRight & pNew->maskSelf ) continue;
2819       if( termCanDriveIndex(pTerm, pSrc, 0) ){
2820         pNew->u.btree.nEq = 1;
2821         pNew->nSkip = 0;
2822         pNew->u.btree.pIndex = 0;
2823         pNew->nLTerm = 1;
2824         pNew->aLTerm[0] = pTerm;
2825         /* TUNING: One-time cost for computing the automatic index is
2826         ** estimated to be X*N*log2(N) where N is the number of rows in
2827         ** the table being indexed and where X is 7 (LogEst=28) for normal
2828         ** tables or 1.375 (LogEst=4) for views and subqueries.  The value
2829         ** of X is smaller for views and subqueries so that the query planner
2830         ** will be more aggressive about generating automatic indexes for
2831         ** those objects, since there is no opportunity to add schema
2832         ** indexes on subqueries and views. */
2833         pNew->rSetup = rLogSize + rSize + 4;
2834         if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){
2835           pNew->rSetup += 24;
2836         }
2837         ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
2838         if( pNew->rSetup<0 ) pNew->rSetup = 0;
2839         /* TUNING: Each index lookup yields 20 rows in the table.  This
2840         ** is more than the usual guess of 10 rows, since we have no way
2841         ** of knowing how selective the index will ultimately be.  It would
2842         ** not be unreasonable to make this value much larger. */
2843         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
2844         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
2845         pNew->wsFlags = WHERE_AUTO_INDEX;
2846         pNew->prereq = mPrereq | pTerm->prereqRight;
2847         rc = whereLoopInsert(pBuilder, pNew);
2848       }
2849     }
2850   }
2851 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
2852 
2853   /* Loop over all indices
2854   */
2855   for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){
2856     if( pProbe->pPartIdxWhere!=0
2857      && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){
2858       testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
2859       continue;  /* Partial index inappropriate for this query */
2860     }
2861     rSize = pProbe->aiRowLogEst[0];
2862     pNew->u.btree.nEq = 0;
2863     pNew->u.btree.nBtm = 0;
2864     pNew->u.btree.nTop = 0;
2865     pNew->nSkip = 0;
2866     pNew->nLTerm = 0;
2867     pNew->iSortIdx = 0;
2868     pNew->rSetup = 0;
2869     pNew->prereq = mPrereq;
2870     pNew->nOut = rSize;
2871     pNew->u.btree.pIndex = pProbe;
2872     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
2873     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
2874     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
2875     if( pProbe->tnum<=0 ){
2876       /* Integer primary key index */
2877       pNew->wsFlags = WHERE_IPK;
2878 
2879       /* Full table scan */
2880       pNew->iSortIdx = b ? iSortIdx : 0;
2881       /* TUNING: Cost of full table scan is (N*3.0). */
2882       pNew->rRun = rSize + 16;
2883       ApplyCostMultiplier(pNew->rRun, pTab->costMult);
2884       whereLoopOutputAdjust(pWC, pNew, rSize);
2885       rc = whereLoopInsert(pBuilder, pNew);
2886       pNew->nOut = rSize;
2887       if( rc ) break;
2888     }else{
2889       Bitmask m;
2890       if( pProbe->isCovering ){
2891         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
2892         m = 0;
2893       }else{
2894         m = pSrc->colUsed & ~columnsInIndex(pProbe);
2895         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
2896       }
2897 
2898       /* Full scan via index */
2899       if( b
2900        || !HasRowid(pTab)
2901        || pProbe->pPartIdxWhere!=0
2902        || ( m==0
2903          && pProbe->bUnordered==0
2904          && (pProbe->szIdxRow<pTab->szTabRow)
2905          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
2906          && sqlite3GlobalConfig.bUseCis
2907          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
2908           )
2909       ){
2910         pNew->iSortIdx = b ? iSortIdx : 0;
2911 
2912         /* The cost of visiting the index rows is N*K, where K is
2913         ** between 1.1 and 3.0, depending on the relative sizes of the
2914         ** index and table rows. */
2915         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
2916         if( m!=0 ){
2917           /* If this is a non-covering index scan, add in the cost of
2918           ** doing table lookups.  The cost will be 3x the number of
2919           ** lookups.  Take into account WHERE clause terms that can be
2920           ** satisfied using just the index, and that do not require a
2921           ** table lookup. */
2922           LogEst nLookup = rSize + 16;  /* Base cost:  N*3 */
2923           int ii;
2924           int iCur = pSrc->iCursor;
2925           WhereClause *pWC2 = &pWInfo->sWC;
2926           for(ii=0; ii<pWC2->nTerm; ii++){
2927             WhereTerm *pTerm = &pWC2->a[ii];
2928             if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
2929               break;
2930             }
2931             /* pTerm can be evaluated using just the index.  So reduce
2932             ** the expected number of table lookups accordingly */
2933             if( pTerm->truthProb<=0 ){
2934               nLookup += pTerm->truthProb;
2935             }else{
2936               nLookup--;
2937               if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
2938             }
2939           }
2940 
2941           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
2942         }
2943         ApplyCostMultiplier(pNew->rRun, pTab->costMult);
2944         whereLoopOutputAdjust(pWC, pNew, rSize);
2945         rc = whereLoopInsert(pBuilder, pNew);
2946         pNew->nOut = rSize;
2947         if( rc ) break;
2948       }
2949     }
2950 
2951     pBuilder->bldFlags = 0;
2952     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
2953     if( pBuilder->bldFlags==SQLITE_BLDF_INDEXED ){
2954       /* If a non-unique index is used, or if a prefix of the key for
2955       ** unique index is used (making the index functionally non-unique)
2956       ** then the sqlite_stat1 data becomes important for scoring the
2957       ** plan */
2958       pTab->tabFlags |= TF_StatsUsed;
2959     }
2960 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2961     sqlite3Stat4ProbeFree(pBuilder->pRec);
2962     pBuilder->nRecValid = 0;
2963     pBuilder->pRec = 0;
2964 #endif
2965 
2966     /* If there was an INDEXED BY clause, then only that one index is
2967     ** considered. */
2968     if( pSrc->pIBIndex ) break;
2969   }
2970   return rc;
2971 }
2972 
2973 #ifndef SQLITE_OMIT_VIRTUALTABLE
2974 
2975 /*
2976 ** Argument pIdxInfo is already populated with all constraints that may
2977 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
2978 ** function marks a subset of those constraints usable, invokes the
2979 ** xBestIndex method and adds the returned plan to pBuilder.
2980 **
2981 ** A constraint is marked usable if:
2982 **
2983 **   * Argument mUsable indicates that its prerequisites are available, and
2984 **
2985 **   * It is not one of the operators specified in the mExclude mask passed
2986 **     as the fourth argument (which in practice is either WO_IN or 0).
2987 **
2988 ** Argument mPrereq is a mask of tables that must be scanned before the
2989 ** virtual table in question. These are added to the plans prerequisites
2990 ** before it is added to pBuilder.
2991 **
2992 ** Output parameter *pbIn is set to true if the plan added to pBuilder
2993 ** uses one or more WO_IN terms, or false otherwise.
2994 */
2995 static int whereLoopAddVirtualOne(
2996   WhereLoopBuilder *pBuilder,
2997   Bitmask mPrereq,                /* Mask of tables that must be used. */
2998   Bitmask mUsable,                /* Mask of usable tables */
2999   u16 mExclude,                   /* Exclude terms using these operators */
3000   sqlite3_index_info *pIdxInfo,   /* Populated object for xBestIndex */
3001   u16 mNoOmit,                    /* Do not omit these constraints */
3002   int *pbIn                       /* OUT: True if plan uses an IN(...) op */
3003 ){
3004   WhereClause *pWC = pBuilder->pWC;
3005   struct sqlite3_index_constraint *pIdxCons;
3006   struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3007   int i;
3008   int mxTerm;
3009   int rc = SQLITE_OK;
3010   WhereLoop *pNew = pBuilder->pNew;
3011   Parse *pParse = pBuilder->pWInfo->pParse;
3012   struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3013   int nConstraint = pIdxInfo->nConstraint;
3014 
3015   assert( (mUsable & mPrereq)==mPrereq );
3016   *pbIn = 0;
3017   pNew->prereq = mPrereq;
3018 
3019   /* Set the usable flag on the subset of constraints identified by
3020   ** arguments mUsable and mExclude. */
3021   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3022   for(i=0; i<nConstraint; i++, pIdxCons++){
3023     WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3024     pIdxCons->usable = 0;
3025     if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3026      && (pTerm->eOperator & mExclude)==0
3027     ){
3028       pIdxCons->usable = 1;
3029     }
3030   }
3031 
3032   /* Initialize the output fields of the sqlite3_index_info structure */
3033   memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3034   assert( pIdxInfo->needToFreeIdxStr==0 );
3035   pIdxInfo->idxStr = 0;
3036   pIdxInfo->idxNum = 0;
3037   pIdxInfo->orderByConsumed = 0;
3038   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3039   pIdxInfo->estimatedRows = 25;
3040   pIdxInfo->idxFlags = 0;
3041   pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3042 
3043   /* Invoke the virtual table xBestIndex() method */
3044   rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3045   if( rc ) return rc;
3046 
3047   mxTerm = -1;
3048   assert( pNew->nLSlot>=nConstraint );
3049   for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
3050   pNew->u.vtab.omitMask = 0;
3051   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3052   for(i=0; i<nConstraint; i++, pIdxCons++){
3053     int iTerm;
3054     if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3055       WhereTerm *pTerm;
3056       int j = pIdxCons->iTermOffset;
3057       if( iTerm>=nConstraint
3058        || j<0
3059        || j>=pWC->nTerm
3060        || pNew->aLTerm[iTerm]!=0
3061        || pIdxCons->usable==0
3062       ){
3063         rc = SQLITE_ERROR;
3064         sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3065         return rc;
3066       }
3067       testcase( iTerm==nConstraint-1 );
3068       testcase( j==0 );
3069       testcase( j==pWC->nTerm-1 );
3070       pTerm = &pWC->a[j];
3071       pNew->prereq |= pTerm->prereqRight;
3072       assert( iTerm<pNew->nLSlot );
3073       pNew->aLTerm[iTerm] = pTerm;
3074       if( iTerm>mxTerm ) mxTerm = iTerm;
3075       testcase( iTerm==15 );
3076       testcase( iTerm==16 );
3077       if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm;
3078       if( (pTerm->eOperator & WO_IN)!=0 ){
3079         /* A virtual table that is constrained by an IN clause may not
3080         ** consume the ORDER BY clause because (1) the order of IN terms
3081         ** is not necessarily related to the order of output terms and
3082         ** (2) Multiple outputs from a single IN value will not merge
3083         ** together.  */
3084         pIdxInfo->orderByConsumed = 0;
3085         pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3086         *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3087       }
3088     }
3089   }
3090   pNew->u.vtab.omitMask &= ~mNoOmit;
3091 
3092   pNew->nLTerm = mxTerm+1;
3093   assert( pNew->nLTerm<=pNew->nLSlot );
3094   pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3095   pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3096   pIdxInfo->needToFreeIdxStr = 0;
3097   pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3098   pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3099       pIdxInfo->nOrderBy : 0);
3100   pNew->rSetup = 0;
3101   pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3102   pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3103 
3104   /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3105   ** that the scan will visit at most one row. Clear it otherwise. */
3106   if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3107     pNew->wsFlags |= WHERE_ONEROW;
3108   }else{
3109     pNew->wsFlags &= ~WHERE_ONEROW;
3110   }
3111   rc = whereLoopInsert(pBuilder, pNew);
3112   if( pNew->u.vtab.needFree ){
3113     sqlite3_free(pNew->u.vtab.idxStr);
3114     pNew->u.vtab.needFree = 0;
3115   }
3116   WHERETRACE(0xffff, ("  bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3117                       *pbIn, (sqlite3_uint64)mPrereq,
3118                       (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3119 
3120   return rc;
3121 }
3122 
3123 
3124 /*
3125 ** Add all WhereLoop objects for a table of the join identified by
3126 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
3127 **
3128 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3129 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3130 ** entries that occur before the virtual table in the FROM clause and are
3131 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3132 ** mUnusable mask contains all FROM clause entries that occur after the
3133 ** virtual table and are separated from it by at least one LEFT or
3134 ** CROSS JOIN.
3135 **
3136 ** For example, if the query were:
3137 **
3138 **   ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3139 **
3140 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3141 **
3142 ** All the tables in mPrereq must be scanned before the current virtual
3143 ** table. So any terms for which all prerequisites are satisfied by
3144 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3145 ** Conversely, all tables in mUnusable must be scanned after the current
3146 ** virtual table, so any terms for which the prerequisites overlap with
3147 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3148 */
3149 static int whereLoopAddVirtual(
3150   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
3151   Bitmask mPrereq,             /* Tables that must be scanned before this one */
3152   Bitmask mUnusable            /* Tables that must be scanned after this one */
3153 ){
3154   int rc = SQLITE_OK;          /* Return code */
3155   WhereInfo *pWInfo;           /* WHERE analysis context */
3156   Parse *pParse;               /* The parsing context */
3157   WhereClause *pWC;            /* The WHERE clause */
3158   struct SrcList_item *pSrc;   /* The FROM clause term to search */
3159   sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
3160   int nConstraint;             /* Number of constraints in p */
3161   int bIn;                     /* True if plan uses IN(...) operator */
3162   WhereLoop *pNew;
3163   Bitmask mBest;               /* Tables used by best possible plan */
3164   u16 mNoOmit;
3165 
3166   assert( (mPrereq & mUnusable)==0 );
3167   pWInfo = pBuilder->pWInfo;
3168   pParse = pWInfo->pParse;
3169   pWC = pBuilder->pWC;
3170   pNew = pBuilder->pNew;
3171   pSrc = &pWInfo->pTabList->a[pNew->iTab];
3172   assert( IsVirtual(pSrc->pTab) );
3173   p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy,
3174       &mNoOmit);
3175   if( p==0 ) return SQLITE_NOMEM_BKPT;
3176   pNew->rSetup = 0;
3177   pNew->wsFlags = WHERE_VIRTUALTABLE;
3178   pNew->nLTerm = 0;
3179   pNew->u.vtab.needFree = 0;
3180   nConstraint = p->nConstraint;
3181   if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3182     sqlite3DbFree(pParse->db, p);
3183     return SQLITE_NOMEM_BKPT;
3184   }
3185 
3186   /* First call xBestIndex() with all constraints usable. */
3187   WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
3188   rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn);
3189 
3190   /* If the call to xBestIndex() with all terms enabled produced a plan
3191   ** that does not require any source tables (IOW: a plan with mBest==0),
3192   ** then there is no point in making any further calls to xBestIndex()
3193   ** since they will all return the same result (if the xBestIndex()
3194   ** implementation is sane). */
3195   if( rc==SQLITE_OK && (mBest = (pNew->prereq & ~mPrereq))!=0 ){
3196     int seenZero = 0;             /* True if a plan with no prereqs seen */
3197     int seenZeroNoIN = 0;         /* Plan with no prereqs and no IN(...) seen */
3198     Bitmask mPrev = 0;
3199     Bitmask mBestNoIn = 0;
3200 
3201     /* If the plan produced by the earlier call uses an IN(...) term, call
3202     ** xBestIndex again, this time with IN(...) terms disabled. */
3203     if( bIn ){
3204       WHERETRACE(0x40, ("  VirtualOne: all usable w/o IN\n"));
3205       rc = whereLoopAddVirtualOne(
3206           pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn);
3207       assert( bIn==0 );
3208       mBestNoIn = pNew->prereq & ~mPrereq;
3209       if( mBestNoIn==0 ){
3210         seenZero = 1;
3211         seenZeroNoIN = 1;
3212       }
3213     }
3214 
3215     /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3216     ** in the set of terms that apply to the current virtual table.  */
3217     while( rc==SQLITE_OK ){
3218       int i;
3219       Bitmask mNext = ALLBITS;
3220       assert( mNext>0 );
3221       for(i=0; i<nConstraint; i++){
3222         Bitmask mThis = (
3223             pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3224         );
3225         if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3226       }
3227       mPrev = mNext;
3228       if( mNext==ALLBITS ) break;
3229       if( mNext==mBest || mNext==mBestNoIn ) continue;
3230       WHERETRACE(0x40, ("  VirtualOne: mPrev=%04llx mNext=%04llx\n",
3231                        (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3232       rc = whereLoopAddVirtualOne(
3233           pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn);
3234       if( pNew->prereq==mPrereq ){
3235         seenZero = 1;
3236         if( bIn==0 ) seenZeroNoIN = 1;
3237       }
3238     }
3239 
3240     /* If the calls to xBestIndex() in the above loop did not find a plan
3241     ** that requires no source tables at all (i.e. one guaranteed to be
3242     ** usable), make a call here with all source tables disabled */
3243     if( rc==SQLITE_OK && seenZero==0 ){
3244       WHERETRACE(0x40, ("  VirtualOne: all disabled\n"));
3245       rc = whereLoopAddVirtualOne(
3246           pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn);
3247       if( bIn==0 ) seenZeroNoIN = 1;
3248     }
3249 
3250     /* If the calls to xBestIndex() have so far failed to find a plan
3251     ** that requires no source tables at all and does not use an IN(...)
3252     ** operator, make a final call to obtain one here.  */
3253     if( rc==SQLITE_OK && seenZeroNoIN==0 ){
3254       WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
3255       rc = whereLoopAddVirtualOne(
3256           pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn);
3257     }
3258   }
3259 
3260   if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
3261   sqlite3DbFreeNN(pParse->db, p);
3262   return rc;
3263 }
3264 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3265 
3266 /*
3267 ** Add WhereLoop entries to handle OR terms.  This works for either
3268 ** btrees or virtual tables.
3269 */
3270 static int whereLoopAddOr(
3271   WhereLoopBuilder *pBuilder,
3272   Bitmask mPrereq,
3273   Bitmask mUnusable
3274 ){
3275   WhereInfo *pWInfo = pBuilder->pWInfo;
3276   WhereClause *pWC;
3277   WhereLoop *pNew;
3278   WhereTerm *pTerm, *pWCEnd;
3279   int rc = SQLITE_OK;
3280   int iCur;
3281   WhereClause tempWC;
3282   WhereLoopBuilder sSubBuild;
3283   WhereOrSet sSum, sCur;
3284   struct SrcList_item *pItem;
3285 
3286   pWC = pBuilder->pWC;
3287   pWCEnd = pWC->a + pWC->nTerm;
3288   pNew = pBuilder->pNew;
3289   memset(&sSum, 0, sizeof(sSum));
3290   pItem = pWInfo->pTabList->a + pNew->iTab;
3291   iCur = pItem->iCursor;
3292 
3293   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
3294     if( (pTerm->eOperator & WO_OR)!=0
3295      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
3296     ){
3297       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
3298       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
3299       WhereTerm *pOrTerm;
3300       int once = 1;
3301       int i, j;
3302 
3303       sSubBuild = *pBuilder;
3304       sSubBuild.pOrderBy = 0;
3305       sSubBuild.pOrSet = &sCur;
3306 
3307       WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
3308       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
3309         if( (pOrTerm->eOperator & WO_AND)!=0 ){
3310           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
3311         }else if( pOrTerm->leftCursor==iCur ){
3312           tempWC.pWInfo = pWC->pWInfo;
3313           tempWC.pOuter = pWC;
3314           tempWC.op = TK_AND;
3315           tempWC.nTerm = 1;
3316           tempWC.a = pOrTerm;
3317           sSubBuild.pWC = &tempWC;
3318         }else{
3319           continue;
3320         }
3321         sCur.n = 0;
3322 #ifdef WHERETRACE_ENABLED
3323         WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3324                    (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
3325         if( sqlite3WhereTrace & 0x400 ){
3326           sqlite3WhereClausePrint(sSubBuild.pWC);
3327         }
3328 #endif
3329 #ifndef SQLITE_OMIT_VIRTUALTABLE
3330         if( IsVirtual(pItem->pTab) ){
3331           rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
3332         }else
3333 #endif
3334         {
3335           rc = whereLoopAddBtree(&sSubBuild, mPrereq);
3336         }
3337         if( rc==SQLITE_OK ){
3338           rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
3339         }
3340         assert( rc==SQLITE_OK || sCur.n==0 );
3341         if( sCur.n==0 ){
3342           sSum.n = 0;
3343           break;
3344         }else if( once ){
3345           whereOrMove(&sSum, &sCur);
3346           once = 0;
3347         }else{
3348           WhereOrSet sPrev;
3349           whereOrMove(&sPrev, &sSum);
3350           sSum.n = 0;
3351           for(i=0; i<sPrev.n; i++){
3352             for(j=0; j<sCur.n; j++){
3353               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
3354                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
3355                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
3356             }
3357           }
3358         }
3359       }
3360       pNew->nLTerm = 1;
3361       pNew->aLTerm[0] = pTerm;
3362       pNew->wsFlags = WHERE_MULTI_OR;
3363       pNew->rSetup = 0;
3364       pNew->iSortIdx = 0;
3365       memset(&pNew->u, 0, sizeof(pNew->u));
3366       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
3367         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
3368         ** of all sub-scans required by the OR-scan. However, due to rounding
3369         ** errors, it may be that the cost of the OR-scan is equal to its
3370         ** most expensive sub-scan. Add the smallest possible penalty
3371         ** (equivalent to multiplying the cost by 1.07) to ensure that
3372         ** this does not happen. Otherwise, for WHERE clauses such as the
3373         ** following where there is an index on "y":
3374         **
3375         **     WHERE likelihood(x=?, 0.99) OR y=?
3376         **
3377         ** the planner may elect to "OR" together a full-table scan and an
3378         ** index lookup. And other similarly odd results.  */
3379         pNew->rRun = sSum.a[i].rRun + 1;
3380         pNew->nOut = sSum.a[i].nOut;
3381         pNew->prereq = sSum.a[i].prereq;
3382         rc = whereLoopInsert(pBuilder, pNew);
3383       }
3384       WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
3385     }
3386   }
3387   return rc;
3388 }
3389 
3390 /*
3391 ** Add all WhereLoop objects for all tables
3392 */
3393 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
3394   WhereInfo *pWInfo = pBuilder->pWInfo;
3395   Bitmask mPrereq = 0;
3396   Bitmask mPrior = 0;
3397   int iTab;
3398   SrcList *pTabList = pWInfo->pTabList;
3399   struct SrcList_item *pItem;
3400   struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel];
3401   sqlite3 *db = pWInfo->pParse->db;
3402   int rc = SQLITE_OK;
3403   WhereLoop *pNew;
3404   u8 priorJointype = 0;
3405 
3406   /* Loop over the tables in the join, from left to right */
3407   pNew = pBuilder->pNew;
3408   whereLoopInit(pNew);
3409   for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
3410     Bitmask mUnusable = 0;
3411     pNew->iTab = iTab;
3412     pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
3413     if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){
3414       /* This condition is true when pItem is the FROM clause term on the
3415       ** right-hand-side of a LEFT or CROSS JOIN.  */
3416       mPrereq = mPrior;
3417     }
3418     priorJointype = pItem->fg.jointype;
3419 #ifndef SQLITE_OMIT_VIRTUALTABLE
3420     if( IsVirtual(pItem->pTab) ){
3421       struct SrcList_item *p;
3422       for(p=&pItem[1]; p<pEnd; p++){
3423         if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
3424           mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
3425         }
3426       }
3427       rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
3428     }else
3429 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3430     {
3431       rc = whereLoopAddBtree(pBuilder, mPrereq);
3432     }
3433     if( rc==SQLITE_OK ){
3434       rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
3435     }
3436     mPrior |= pNew->maskSelf;
3437     if( rc || db->mallocFailed ) break;
3438   }
3439 
3440   whereLoopClear(db, pNew);
3441   return rc;
3442 }
3443 
3444 /*
3445 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
3446 ** parameters) to see if it outputs rows in the requested ORDER BY
3447 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
3448 **
3449 **   N>0:   N terms of the ORDER BY clause are satisfied
3450 **   N==0:  No terms of the ORDER BY clause are satisfied
3451 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
3452 **
3453 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
3454 ** strict.  With GROUP BY and DISTINCT the only requirement is that
3455 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
3456 ** and DISTINCT do not require rows to appear in any particular order as long
3457 ** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT
3458 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
3459 ** pOrderBy terms must be matched in strict left-to-right order.
3460 */
3461 static i8 wherePathSatisfiesOrderBy(
3462   WhereInfo *pWInfo,    /* The WHERE clause */
3463   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
3464   WherePath *pPath,     /* The WherePath to check */
3465   u16 wctrlFlags,       /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
3466   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
3467   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
3468   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
3469 ){
3470   u8 revSet;            /* True if rev is known */
3471   u8 rev;               /* Composite sort order */
3472   u8 revIdx;            /* Index sort order */
3473   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
3474   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
3475   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
3476   u16 eqOpMask;         /* Allowed equality operators */
3477   u16 nKeyCol;          /* Number of key columns in pIndex */
3478   u16 nColumn;          /* Total number of ordered columns in the index */
3479   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
3480   int iLoop;            /* Index of WhereLoop in pPath being processed */
3481   int i, j;             /* Loop counters */
3482   int iCur;             /* Cursor number for current WhereLoop */
3483   int iColumn;          /* A column number within table iCur */
3484   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
3485   WhereTerm *pTerm;     /* A single term of the WHERE clause */
3486   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
3487   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
3488   Index *pIndex;        /* The index associated with pLoop */
3489   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
3490   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
3491   Bitmask obDone;       /* Mask of all ORDER BY terms */
3492   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
3493   Bitmask ready;              /* Mask of inner loops */
3494 
3495   /*
3496   ** We say the WhereLoop is "one-row" if it generates no more than one
3497   ** row of output.  A WhereLoop is one-row if all of the following are true:
3498   **  (a) All index columns match with WHERE_COLUMN_EQ.
3499   **  (b) The index is unique
3500   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
3501   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
3502   **
3503   ** We say the WhereLoop is "order-distinct" if the set of columns from
3504   ** that WhereLoop that are in the ORDER BY clause are different for every
3505   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
3506   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
3507   ** is not order-distinct. To be order-distinct is not quite the same as being
3508   ** UNIQUE since a UNIQUE column or index can have multiple rows that
3509   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
3510   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
3511   **
3512   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
3513   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
3514   ** automatically order-distinct.
3515   */
3516 
3517   assert( pOrderBy!=0 );
3518   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
3519 
3520   nOrderBy = pOrderBy->nExpr;
3521   testcase( nOrderBy==BMS-1 );
3522   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
3523   isOrderDistinct = 1;
3524   obDone = MASKBIT(nOrderBy)-1;
3525   orderDistinctMask = 0;
3526   ready = 0;
3527   eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
3528   if( wctrlFlags & WHERE_ORDERBY_LIMIT ) eqOpMask |= WO_IN;
3529   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
3530     if( iLoop>0 ) ready |= pLoop->maskSelf;
3531     if( iLoop<nLoop ){
3532       pLoop = pPath->aLoop[iLoop];
3533       if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
3534     }else{
3535       pLoop = pLast;
3536     }
3537     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
3538       if( pLoop->u.vtab.isOrdered ) obSat = obDone;
3539       break;
3540     }else{
3541       pLoop->u.btree.nIdxCol = 0;
3542     }
3543     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
3544 
3545     /* Mark off any ORDER BY term X that is a column in the table of
3546     ** the current loop for which there is term in the WHERE
3547     ** clause of the form X IS NULL or X=? that reference only outer
3548     ** loops.
3549     */
3550     for(i=0; i<nOrderBy; i++){
3551       if( MASKBIT(i) & obSat ) continue;
3552       pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
3553       if( pOBExpr->op!=TK_COLUMN ) continue;
3554       if( pOBExpr->iTable!=iCur ) continue;
3555       pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
3556                        ~ready, eqOpMask, 0);
3557       if( pTerm==0 ) continue;
3558       if( pTerm->eOperator==WO_IN ){
3559         /* IN terms are only valid for sorting in the ORDER BY LIMIT
3560         ** optimization, and then only if they are actually used
3561         ** by the query plan */
3562         assert( wctrlFlags & WHERE_ORDERBY_LIMIT );
3563         for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
3564         if( j>=pLoop->nLTerm ) continue;
3565       }
3566       if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
3567         const char *z1, *z2;
3568         pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
3569         if( !pColl ) pColl = db->pDfltColl;
3570         z1 = pColl->zName;
3571         pColl = sqlite3ExprCollSeq(pWInfo->pParse, pTerm->pExpr);
3572         if( !pColl ) pColl = db->pDfltColl;
3573         z2 = pColl->zName;
3574         if( sqlite3StrICmp(z1, z2)!=0 ) continue;
3575         testcase( pTerm->pExpr->op==TK_IS );
3576       }
3577       obSat |= MASKBIT(i);
3578     }
3579 
3580     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
3581       if( pLoop->wsFlags & WHERE_IPK ){
3582         pIndex = 0;
3583         nKeyCol = 0;
3584         nColumn = 1;
3585       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
3586         return 0;
3587       }else{
3588         nKeyCol = pIndex->nKeyCol;
3589         nColumn = pIndex->nColumn;
3590         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
3591         assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
3592                           || !HasRowid(pIndex->pTable));
3593         isOrderDistinct = IsUniqueIndex(pIndex);
3594       }
3595 
3596       /* Loop through all columns of the index and deal with the ones
3597       ** that are not constrained by == or IN.
3598       */
3599       rev = revSet = 0;
3600       distinctColumns = 0;
3601       for(j=0; j<nColumn; j++){
3602         u8 bOnce = 1; /* True to run the ORDER BY search loop */
3603 
3604         assert( j>=pLoop->u.btree.nEq
3605             || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
3606         );
3607         if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
3608           u16 eOp = pLoop->aLTerm[j]->eOperator;
3609 
3610           /* Skip over == and IS and ISNULL terms.  (Also skip IN terms when
3611           ** doing WHERE_ORDERBY_LIMIT processing).
3612           **
3613           ** If the current term is a column of an ((?,?) IN (SELECT...))
3614           ** expression for which the SELECT returns more than one column,
3615           ** check that it is the only column used by this loop. Otherwise,
3616           ** if it is one of two or more, none of the columns can be
3617           ** considered to match an ORDER BY term.  */
3618           if( (eOp & eqOpMask)!=0 ){
3619             if( eOp & WO_ISNULL ){
3620               testcase( isOrderDistinct );
3621               isOrderDistinct = 0;
3622             }
3623             continue;
3624           }else if( ALWAYS(eOp & WO_IN) ){
3625             /* ALWAYS() justification: eOp is an equality operator due to the
3626             ** j<pLoop->u.btree.nEq constraint above.  Any equality other
3627             ** than WO_IN is captured by the previous "if".  So this one
3628             ** always has to be WO_IN. */
3629             Expr *pX = pLoop->aLTerm[j]->pExpr;
3630             for(i=j+1; i<pLoop->u.btree.nEq; i++){
3631               if( pLoop->aLTerm[i]->pExpr==pX ){
3632                 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
3633                 bOnce = 0;
3634                 break;
3635               }
3636             }
3637           }
3638         }
3639 
3640         /* Get the column number in the table (iColumn) and sort order
3641         ** (revIdx) for the j-th column of the index.
3642         */
3643         if( pIndex ){
3644           iColumn = pIndex->aiColumn[j];
3645           revIdx = pIndex->aSortOrder[j];
3646           if( iColumn==pIndex->pTable->iPKey ) iColumn = -1;
3647         }else{
3648           iColumn = XN_ROWID;
3649           revIdx = 0;
3650         }
3651 
3652         /* An unconstrained column that might be NULL means that this
3653         ** WhereLoop is not well-ordered
3654         */
3655         if( isOrderDistinct
3656          && iColumn>=0
3657          && j>=pLoop->u.btree.nEq
3658          && pIndex->pTable->aCol[iColumn].notNull==0
3659         ){
3660           isOrderDistinct = 0;
3661         }
3662 
3663         /* Find the ORDER BY term that corresponds to the j-th column
3664         ** of the index and mark that ORDER BY term off
3665         */
3666         isMatch = 0;
3667         for(i=0; bOnce && i<nOrderBy; i++){
3668           if( MASKBIT(i) & obSat ) continue;
3669           pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
3670           testcase( wctrlFlags & WHERE_GROUPBY );
3671           testcase( wctrlFlags & WHERE_DISTINCTBY );
3672           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
3673           if( iColumn>=(-1) ){
3674             if( pOBExpr->op!=TK_COLUMN ) continue;
3675             if( pOBExpr->iTable!=iCur ) continue;
3676             if( pOBExpr->iColumn!=iColumn ) continue;
3677           }else{
3678             if( sqlite3ExprCompare(0,
3679                   pOBExpr,pIndex->aColExpr->a[j].pExpr,iCur) ){
3680               continue;
3681             }
3682           }
3683           if( iColumn>=0 ){
3684             pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
3685             if( !pColl ) pColl = db->pDfltColl;
3686             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
3687           }
3688           pLoop->u.btree.nIdxCol = j+1;
3689           isMatch = 1;
3690           break;
3691         }
3692         if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
3693           /* Make sure the sort order is compatible in an ORDER BY clause.
3694           ** Sort order is irrelevant for a GROUP BY clause. */
3695           if( revSet ){
3696             if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0;
3697           }else{
3698             rev = revIdx ^ pOrderBy->a[i].sortOrder;
3699             if( rev ) *pRevMask |= MASKBIT(iLoop);
3700             revSet = 1;
3701           }
3702         }
3703         if( isMatch ){
3704           if( iColumn==XN_ROWID ){
3705             testcase( distinctColumns==0 );
3706             distinctColumns = 1;
3707           }
3708           obSat |= MASKBIT(i);
3709         }else{
3710           /* No match found */
3711           if( j==0 || j<nKeyCol ){
3712             testcase( isOrderDistinct!=0 );
3713             isOrderDistinct = 0;
3714           }
3715           break;
3716         }
3717       } /* end Loop over all index columns */
3718       if( distinctColumns ){
3719         testcase( isOrderDistinct==0 );
3720         isOrderDistinct = 1;
3721       }
3722     } /* end-if not one-row */
3723 
3724     /* Mark off any other ORDER BY terms that reference pLoop */
3725     if( isOrderDistinct ){
3726       orderDistinctMask |= pLoop->maskSelf;
3727       for(i=0; i<nOrderBy; i++){
3728         Expr *p;
3729         Bitmask mTerm;
3730         if( MASKBIT(i) & obSat ) continue;
3731         p = pOrderBy->a[i].pExpr;
3732         mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
3733         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
3734         if( (mTerm&~orderDistinctMask)==0 ){
3735           obSat |= MASKBIT(i);
3736         }
3737       }
3738     }
3739   } /* End the loop over all WhereLoops from outer-most down to inner-most */
3740   if( obSat==obDone ) return (i8)nOrderBy;
3741   if( !isOrderDistinct ){
3742     for(i=nOrderBy-1; i>0; i--){
3743       Bitmask m = MASKBIT(i) - 1;
3744       if( (obSat&m)==m ) return i;
3745     }
3746     return 0;
3747   }
3748   return -1;
3749 }
3750 
3751 
3752 /*
3753 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
3754 ** the planner assumes that the specified pOrderBy list is actually a GROUP
3755 ** BY clause - and so any order that groups rows as required satisfies the
3756 ** request.
3757 **
3758 ** Normally, in this case it is not possible for the caller to determine
3759 ** whether or not the rows are really being delivered in sorted order, or
3760 ** just in some other order that provides the required grouping. However,
3761 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
3762 ** this function may be called on the returned WhereInfo object. It returns
3763 ** true if the rows really will be sorted in the specified order, or false
3764 ** otherwise.
3765 **
3766 ** For example, assuming:
3767 **
3768 **   CREATE INDEX i1 ON t1(x, Y);
3769 **
3770 ** then
3771 **
3772 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
3773 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
3774 */
3775 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
3776   assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
3777   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
3778   return pWInfo->sorted;
3779 }
3780 
3781 #ifdef WHERETRACE_ENABLED
3782 /* For debugging use only: */
3783 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
3784   static char zName[65];
3785   int i;
3786   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
3787   if( pLast ) zName[i++] = pLast->cId;
3788   zName[i] = 0;
3789   return zName;
3790 }
3791 #endif
3792 
3793 /*
3794 ** Return the cost of sorting nRow rows, assuming that the keys have
3795 ** nOrderby columns and that the first nSorted columns are already in
3796 ** order.
3797 */
3798 static LogEst whereSortingCost(
3799   WhereInfo *pWInfo,
3800   LogEst nRow,
3801   int nOrderBy,
3802   int nSorted
3803 ){
3804   /* TUNING: Estimated cost of a full external sort, where N is
3805   ** the number of rows to sort is:
3806   **
3807   **   cost = (3.0 * N * log(N)).
3808   **
3809   ** Or, if the order-by clause has X terms but only the last Y
3810   ** terms are out of order, then block-sorting will reduce the
3811   ** sorting cost to:
3812   **
3813   **   cost = (3.0 * N * log(N)) * (Y/X)
3814   **
3815   ** The (Y/X) term is implemented using stack variable rScale
3816   ** below.  */
3817   LogEst rScale, rSortCost;
3818   assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
3819   rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
3820   rSortCost = nRow + rScale + 16;
3821 
3822   /* Multiple by log(M) where M is the number of output rows.
3823   ** Use the LIMIT for M if it is smaller */
3824   if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
3825     nRow = pWInfo->iLimit;
3826   }
3827   rSortCost += estLog(nRow);
3828   return rSortCost;
3829 }
3830 
3831 /*
3832 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
3833 ** attempts to find the lowest cost path that visits each WhereLoop
3834 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
3835 **
3836 ** Assume that the total number of output rows that will need to be sorted
3837 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
3838 ** costs if nRowEst==0.
3839 **
3840 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
3841 ** error occurs.
3842 */
3843 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
3844   int mxChoice;             /* Maximum number of simultaneous paths tracked */
3845   int nLoop;                /* Number of terms in the join */
3846   Parse *pParse;            /* Parsing context */
3847   sqlite3 *db;              /* The database connection */
3848   int iLoop;                /* Loop counter over the terms of the join */
3849   int ii, jj;               /* Loop counters */
3850   int mxI = 0;              /* Index of next entry to replace */
3851   int nOrderBy;             /* Number of ORDER BY clause terms */
3852   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
3853   LogEst mxUnsorted = 0;    /* Maximum unsorted cost of a set of path */
3854   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
3855   WherePath *aFrom;         /* All nFrom paths at the previous level */
3856   WherePath *aTo;           /* The nTo best paths at the current level */
3857   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
3858   WherePath *pTo;           /* An element of aTo[] that we are working on */
3859   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
3860   WhereLoop **pX;           /* Used to divy up the pSpace memory */
3861   LogEst *aSortCost = 0;    /* Sorting and partial sorting costs */
3862   char *pSpace;             /* Temporary memory used by this routine */
3863   int nSpace;               /* Bytes of space allocated at pSpace */
3864 
3865   pParse = pWInfo->pParse;
3866   db = pParse->db;
3867   nLoop = pWInfo->nLevel;
3868   /* TUNING: For simple queries, only the best path is tracked.
3869   ** For 2-way joins, the 5 best paths are followed.
3870   ** For joins of 3 or more tables, track the 10 best paths */
3871   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
3872   assert( nLoop<=pWInfo->pTabList->nSrc );
3873   WHERETRACE(0x002, ("---- begin solver.  (nRowEst=%d)\n", nRowEst));
3874 
3875   /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
3876   ** case the purpose of this call is to estimate the number of rows returned
3877   ** by the overall query. Once this estimate has been obtained, the caller
3878   ** will invoke this function a second time, passing the estimate as the
3879   ** nRowEst parameter.  */
3880   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
3881     nOrderBy = 0;
3882   }else{
3883     nOrderBy = pWInfo->pOrderBy->nExpr;
3884   }
3885 
3886   /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
3887   nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
3888   nSpace += sizeof(LogEst) * nOrderBy;
3889   pSpace = sqlite3DbMallocRawNN(db, nSpace);
3890   if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
3891   aTo = (WherePath*)pSpace;
3892   aFrom = aTo+mxChoice;
3893   memset(aFrom, 0, sizeof(aFrom[0]));
3894   pX = (WhereLoop**)(aFrom+mxChoice);
3895   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
3896     pFrom->aLoop = pX;
3897   }
3898   if( nOrderBy ){
3899     /* If there is an ORDER BY clause and it is not being ignored, set up
3900     ** space for the aSortCost[] array. Each element of the aSortCost array
3901     ** is either zero - meaning it has not yet been initialized - or the
3902     ** cost of sorting nRowEst rows of data where the first X terms of
3903     ** the ORDER BY clause are already in order, where X is the array
3904     ** index.  */
3905     aSortCost = (LogEst*)pX;
3906     memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
3907   }
3908   assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
3909   assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
3910 
3911   /* Seed the search with a single WherePath containing zero WhereLoops.
3912   **
3913   ** TUNING: Do not let the number of iterations go above 28.  If the cost
3914   ** of computing an automatic index is not paid back within the first 28
3915   ** rows, then do not use the automatic index. */
3916   aFrom[0].nRow = MIN(pParse->nQueryLoop, 48);  assert( 48==sqlite3LogEst(28) );
3917   nFrom = 1;
3918   assert( aFrom[0].isOrdered==0 );
3919   if( nOrderBy ){
3920     /* If nLoop is zero, then there are no FROM terms in the query. Since
3921     ** in this case the query may return a maximum of one row, the results
3922     ** are already in the requested order. Set isOrdered to nOrderBy to
3923     ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
3924     ** -1, indicating that the result set may or may not be ordered,
3925     ** depending on the loops added to the current plan.  */
3926     aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
3927   }
3928 
3929   /* Compute successively longer WherePaths using the previous generation
3930   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
3931   ** best paths at each generation */
3932   for(iLoop=0; iLoop<nLoop; iLoop++){
3933     nTo = 0;
3934     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
3935       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
3936         LogEst nOut;                      /* Rows visited by (pFrom+pWLoop) */
3937         LogEst rCost;                     /* Cost of path (pFrom+pWLoop) */
3938         LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
3939         i8 isOrdered = pFrom->isOrdered;  /* isOrdered for (pFrom+pWLoop) */
3940         Bitmask maskNew;                  /* Mask of src visited by (..) */
3941         Bitmask revMask = 0;              /* Mask of rev-order loops for (..) */
3942 
3943         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
3944         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
3945         if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<10 ){
3946           /* Do not use an automatic index if the this loop is expected
3947           ** to run less than 2 times. */
3948           assert( 10==sqlite3LogEst(2) );
3949           continue;
3950         }
3951         /* At this point, pWLoop is a candidate to be the next loop.
3952         ** Compute its cost */
3953         rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
3954         rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
3955         nOut = pFrom->nRow + pWLoop->nOut;
3956         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
3957         if( isOrdered<0 ){
3958           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
3959                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
3960                        iLoop, pWLoop, &revMask);
3961         }else{
3962           revMask = pFrom->revLoop;
3963         }
3964         if( isOrdered>=0 && isOrdered<nOrderBy ){
3965           if( aSortCost[isOrdered]==0 ){
3966             aSortCost[isOrdered] = whereSortingCost(
3967                 pWInfo, nRowEst, nOrderBy, isOrdered
3968             );
3969           }
3970           rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]);
3971 
3972           WHERETRACE(0x002,
3973               ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
3974                aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
3975                rUnsorted, rCost));
3976         }else{
3977           rCost = rUnsorted;
3978           rUnsorted -= 2;  /* TUNING:  Slight bias in favor of no-sort plans */
3979         }
3980 
3981         /* Check to see if pWLoop should be added to the set of
3982         ** mxChoice best-so-far paths.
3983         **
3984         ** First look for an existing path among best-so-far paths
3985         ** that covers the same set of loops and has the same isOrdered
3986         ** setting as the current path candidate.
3987         **
3988         ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
3989         ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
3990         ** of legal values for isOrdered, -1..64.
3991         */
3992         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
3993           if( pTo->maskLoop==maskNew
3994            && ((pTo->isOrdered^isOrdered)&0x80)==0
3995           ){
3996             testcase( jj==nTo-1 );
3997             break;
3998           }
3999         }
4000         if( jj>=nTo ){
4001           /* None of the existing best-so-far paths match the candidate. */
4002           if( nTo>=mxChoice
4003            && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4004           ){
4005             /* The current candidate is no better than any of the mxChoice
4006             ** paths currently in the best-so-far buffer.  So discard
4007             ** this candidate as not viable. */
4008 #ifdef WHERETRACE_ENABLED /* 0x4 */
4009             if( sqlite3WhereTrace&0x4 ){
4010               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d,%3d order=%c\n",
4011                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4012                   isOrdered>=0 ? isOrdered+'0' : '?');
4013             }
4014 #endif
4015             continue;
4016           }
4017           /* If we reach this points it means that the new candidate path
4018           ** needs to be added to the set of best-so-far paths. */
4019           if( nTo<mxChoice ){
4020             /* Increase the size of the aTo set by one */
4021             jj = nTo++;
4022           }else{
4023             /* New path replaces the prior worst to keep count below mxChoice */
4024             jj = mxI;
4025           }
4026           pTo = &aTo[jj];
4027 #ifdef WHERETRACE_ENABLED /* 0x4 */
4028           if( sqlite3WhereTrace&0x4 ){
4029             sqlite3DebugPrintf("New    %s cost=%-3d,%3d,%3d order=%c\n",
4030                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4031                 isOrdered>=0 ? isOrdered+'0' : '?');
4032           }
4033 #endif
4034         }else{
4035           /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4036           ** same set of loops and has the same isOrdered setting as the
4037           ** candidate path.  Check to see if the candidate should replace
4038           ** pTo or if the candidate should be skipped.
4039           **
4040           ** The conditional is an expanded vector comparison equivalent to:
4041           **   (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4042           */
4043           if( pTo->rCost<rCost
4044            || (pTo->rCost==rCost
4045                && (pTo->nRow<nOut
4046                    || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4047                   )
4048               )
4049           ){
4050 #ifdef WHERETRACE_ENABLED /* 0x4 */
4051             if( sqlite3WhereTrace&0x4 ){
4052               sqlite3DebugPrintf(
4053                   "Skip   %s cost=%-3d,%3d,%3d order=%c",
4054                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4055                   isOrdered>=0 ? isOrdered+'0' : '?');
4056               sqlite3DebugPrintf("   vs %s cost=%-3d,%3d,%3d order=%c\n",
4057                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4058                   pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4059             }
4060 #endif
4061             /* Discard the candidate path from further consideration */
4062             testcase( pTo->rCost==rCost );
4063             continue;
4064           }
4065           testcase( pTo->rCost==rCost+1 );
4066           /* Control reaches here if the candidate path is better than the
4067           ** pTo path.  Replace pTo with the candidate. */
4068 #ifdef WHERETRACE_ENABLED /* 0x4 */
4069           if( sqlite3WhereTrace&0x4 ){
4070             sqlite3DebugPrintf(
4071                 "Update %s cost=%-3d,%3d,%3d order=%c",
4072                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4073                 isOrdered>=0 ? isOrdered+'0' : '?');
4074             sqlite3DebugPrintf("  was %s cost=%-3d,%3d,%3d order=%c\n",
4075                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4076                 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4077           }
4078 #endif
4079         }
4080         /* pWLoop is a winner.  Add it to the set of best so far */
4081         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4082         pTo->revLoop = revMask;
4083         pTo->nRow = nOut;
4084         pTo->rCost = rCost;
4085         pTo->rUnsorted = rUnsorted;
4086         pTo->isOrdered = isOrdered;
4087         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4088         pTo->aLoop[iLoop] = pWLoop;
4089         if( nTo>=mxChoice ){
4090           mxI = 0;
4091           mxCost = aTo[0].rCost;
4092           mxUnsorted = aTo[0].nRow;
4093           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4094             if( pTo->rCost>mxCost
4095              || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4096             ){
4097               mxCost = pTo->rCost;
4098               mxUnsorted = pTo->rUnsorted;
4099               mxI = jj;
4100             }
4101           }
4102         }
4103       }
4104     }
4105 
4106 #ifdef WHERETRACE_ENABLED  /* >=2 */
4107     if( sqlite3WhereTrace & 0x02 ){
4108       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4109       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4110         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4111            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4112            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4113         if( pTo->isOrdered>0 ){
4114           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4115         }else{
4116           sqlite3DebugPrintf("\n");
4117         }
4118       }
4119     }
4120 #endif
4121 
4122     /* Swap the roles of aFrom and aTo for the next generation */
4123     pFrom = aTo;
4124     aTo = aFrom;
4125     aFrom = pFrom;
4126     nFrom = nTo;
4127   }
4128 
4129   if( nFrom==0 ){
4130     sqlite3ErrorMsg(pParse, "no query solution");
4131     sqlite3DbFreeNN(db, pSpace);
4132     return SQLITE_ERROR;
4133   }
4134 
4135   /* Find the lowest cost path.  pFrom will be left pointing to that path */
4136   pFrom = aFrom;
4137   for(ii=1; ii<nFrom; ii++){
4138     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4139   }
4140   assert( pWInfo->nLevel==nLoop );
4141   /* Load the lowest cost path into pWInfo */
4142   for(iLoop=0; iLoop<nLoop; iLoop++){
4143     WhereLevel *pLevel = pWInfo->a + iLoop;
4144     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
4145     pLevel->iFrom = pWLoop->iTab;
4146     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
4147   }
4148   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
4149    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
4150    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
4151    && nRowEst
4152   ){
4153     Bitmask notUsed;
4154     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
4155                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
4156     if( rc==pWInfo->pResultSet->nExpr ){
4157       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4158     }
4159   }
4160   if( pWInfo->pOrderBy ){
4161     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
4162       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
4163         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4164       }
4165     }else{
4166       pWInfo->nOBSat = pFrom->isOrdered;
4167       pWInfo->revMask = pFrom->revLoop;
4168       if( pWInfo->nOBSat<=0 ){
4169         pWInfo->nOBSat = 0;
4170         if( nLoop>0 ){
4171           u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
4172           if( (wsFlags & WHERE_ONEROW)==0
4173            && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
4174           ){
4175             Bitmask m = 0;
4176             int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
4177                       WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
4178             testcase( wsFlags & WHERE_IPK );
4179             testcase( wsFlags & WHERE_COLUMN_IN );
4180             if( rc==pWInfo->pOrderBy->nExpr ){
4181               pWInfo->bOrderedInnerLoop = 1;
4182               pWInfo->revMask = m;
4183             }
4184           }
4185         }
4186       }
4187     }
4188     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
4189         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
4190     ){
4191       Bitmask revMask = 0;
4192       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
4193           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
4194       );
4195       assert( pWInfo->sorted==0 );
4196       if( nOrder==pWInfo->pOrderBy->nExpr ){
4197         pWInfo->sorted = 1;
4198         pWInfo->revMask = revMask;
4199       }
4200     }
4201   }
4202 
4203 
4204   pWInfo->nRowOut = pFrom->nRow;
4205 
4206   /* Free temporary memory and return success */
4207   sqlite3DbFreeNN(db, pSpace);
4208   return SQLITE_OK;
4209 }
4210 
4211 /*
4212 ** Most queries use only a single table (they are not joins) and have
4213 ** simple == constraints against indexed fields.  This routine attempts
4214 ** to plan those simple cases using much less ceremony than the
4215 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4216 ** times for the common case.
4217 **
4218 ** Return non-zero on success, if this query can be handled by this
4219 ** no-frills query planner.  Return zero if this query needs the
4220 ** general-purpose query planner.
4221 */
4222 static int whereShortCut(WhereLoopBuilder *pBuilder){
4223   WhereInfo *pWInfo;
4224   struct SrcList_item *pItem;
4225   WhereClause *pWC;
4226   WhereTerm *pTerm;
4227   WhereLoop *pLoop;
4228   int iCur;
4229   int j;
4230   Table *pTab;
4231   Index *pIdx;
4232 
4233   pWInfo = pBuilder->pWInfo;
4234   if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
4235   assert( pWInfo->pTabList->nSrc>=1 );
4236   pItem = pWInfo->pTabList->a;
4237   pTab = pItem->pTab;
4238   if( IsVirtual(pTab) ) return 0;
4239   if( pItem->fg.isIndexedBy ) return 0;
4240   iCur = pItem->iCursor;
4241   pWC = &pWInfo->sWC;
4242   pLoop = pBuilder->pNew;
4243   pLoop->wsFlags = 0;
4244   pLoop->nSkip = 0;
4245   pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0);
4246   if( pTerm ){
4247     testcase( pTerm->eOperator & WO_IS );
4248     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
4249     pLoop->aLTerm[0] = pTerm;
4250     pLoop->nLTerm = 1;
4251     pLoop->u.btree.nEq = 1;
4252     /* TUNING: Cost of a rowid lookup is 10 */
4253     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
4254   }else{
4255     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4256       int opMask;
4257       assert( pLoop->aLTermSpace==pLoop->aLTerm );
4258       if( !IsUniqueIndex(pIdx)
4259        || pIdx->pPartIdxWhere!=0
4260        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
4261       ) continue;
4262       opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
4263       for(j=0; j<pIdx->nKeyCol; j++){
4264         pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx);
4265         if( pTerm==0 ) break;
4266         testcase( pTerm->eOperator & WO_IS );
4267         pLoop->aLTerm[j] = pTerm;
4268       }
4269       if( j!=pIdx->nKeyCol ) continue;
4270       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
4271       if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){
4272         pLoop->wsFlags |= WHERE_IDX_ONLY;
4273       }
4274       pLoop->nLTerm = j;
4275       pLoop->u.btree.nEq = j;
4276       pLoop->u.btree.pIndex = pIdx;
4277       /* TUNING: Cost of a unique index lookup is 15 */
4278       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
4279       break;
4280     }
4281   }
4282   if( pLoop->wsFlags ){
4283     pLoop->nOut = (LogEst)1;
4284     pWInfo->a[0].pWLoop = pLoop;
4285     assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
4286     pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
4287     pWInfo->a[0].iTabCur = iCur;
4288     pWInfo->nRowOut = 1;
4289     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
4290     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
4291       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4292     }
4293 #ifdef SQLITE_DEBUG
4294     pLoop->cId = '0';
4295 #endif
4296     return 1;
4297   }
4298   return 0;
4299 }
4300 
4301 /*
4302 ** Helper function for exprIsDeterministic().
4303 */
4304 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
4305   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
4306     pWalker->eCode = 0;
4307     return WRC_Abort;
4308   }
4309   return WRC_Continue;
4310 }
4311 
4312 /*
4313 ** Return true if the expression contains no non-deterministic SQL
4314 ** functions. Do not consider non-deterministic SQL functions that are
4315 ** part of sub-select statements.
4316 */
4317 static int exprIsDeterministic(Expr *p){
4318   Walker w;
4319   memset(&w, 0, sizeof(w));
4320   w.eCode = 1;
4321   w.xExprCallback = exprNodeIsDeterministic;
4322   sqlite3WalkExpr(&w, p);
4323   return w.eCode;
4324 }
4325 
4326 /*
4327 ** Generate the beginning of the loop used for WHERE clause processing.
4328 ** The return value is a pointer to an opaque structure that contains
4329 ** information needed to terminate the loop.  Later, the calling routine
4330 ** should invoke sqlite3WhereEnd() with the return value of this function
4331 ** in order to complete the WHERE clause processing.
4332 **
4333 ** If an error occurs, this routine returns NULL.
4334 **
4335 ** The basic idea is to do a nested loop, one loop for each table in
4336 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
4337 ** same as a SELECT with only a single table in the FROM clause.)  For
4338 ** example, if the SQL is this:
4339 **
4340 **       SELECT * FROM t1, t2, t3 WHERE ...;
4341 **
4342 ** Then the code generated is conceptually like the following:
4343 **
4344 **      foreach row1 in t1 do       \    Code generated
4345 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
4346 **          foreach row3 in t3 do   /
4347 **            ...
4348 **          end                     \    Code generated
4349 **        end                        |-- by sqlite3WhereEnd()
4350 **      end                         /
4351 **
4352 ** Note that the loops might not be nested in the order in which they
4353 ** appear in the FROM clause if a different order is better able to make
4354 ** use of indices.  Note also that when the IN operator appears in
4355 ** the WHERE clause, it might result in additional nested loops for
4356 ** scanning through all values on the right-hand side of the IN.
4357 **
4358 ** There are Btree cursors associated with each table.  t1 uses cursor
4359 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
4360 ** And so forth.  This routine generates code to open those VDBE cursors
4361 ** and sqlite3WhereEnd() generates the code to close them.
4362 **
4363 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4364 ** in pTabList pointing at their appropriate entries.  The [...] code
4365 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4366 ** data from the various tables of the loop.
4367 **
4368 ** If the WHERE clause is empty, the foreach loops must each scan their
4369 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
4370 ** the tables have indices and there are terms in the WHERE clause that
4371 ** refer to those indices, a complete table scan can be avoided and the
4372 ** code will run much faster.  Most of the work of this routine is checking
4373 ** to see if there are indices that can be used to speed up the loop.
4374 **
4375 ** Terms of the WHERE clause are also used to limit which rows actually
4376 ** make it to the "..." in the middle of the loop.  After each "foreach",
4377 ** terms of the WHERE clause that use only terms in that loop and outer
4378 ** loops are evaluated and if false a jump is made around all subsequent
4379 ** inner loops (or around the "..." if the test occurs within the inner-
4380 ** most loop)
4381 **
4382 ** OUTER JOINS
4383 **
4384 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4385 **
4386 **    foreach row1 in t1 do
4387 **      flag = 0
4388 **      foreach row2 in t2 do
4389 **        start:
4390 **          ...
4391 **          flag = 1
4392 **      end
4393 **      if flag==0 then
4394 **        move the row2 cursor to a null row
4395 **        goto start
4396 **      fi
4397 **    end
4398 **
4399 ** ORDER BY CLAUSE PROCESSING
4400 **
4401 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
4402 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
4403 ** if there is one.  If there is no ORDER BY clause or if this routine
4404 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
4405 **
4406 ** The iIdxCur parameter is the cursor number of an index.  If
4407 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
4408 ** to use for OR clause processing.  The WHERE clause should use this
4409 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
4410 ** the first cursor in an array of cursors for all indices.  iIdxCur should
4411 ** be used to compute the appropriate cursor depending on which index is
4412 ** used.
4413 */
4414 WhereInfo *sqlite3WhereBegin(
4415   Parse *pParse,          /* The parser context */
4416   SrcList *pTabList,      /* FROM clause: A list of all tables to be scanned */
4417   Expr *pWhere,           /* The WHERE clause */
4418   ExprList *pOrderBy,     /* An ORDER BY (or GROUP BY) clause, or NULL */
4419   ExprList *pResultSet,   /* Query result set.  Req'd for DISTINCT */
4420   u16 wctrlFlags,         /* The WHERE_* flags defined in sqliteInt.h */
4421   int iAuxArg             /* If WHERE_OR_SUBCLAUSE is set, index cursor number
4422                           ** If WHERE_USE_LIMIT, then the limit amount */
4423 ){
4424   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
4425   int nTabList;              /* Number of elements in pTabList */
4426   WhereInfo *pWInfo;         /* Will become the return value of this function */
4427   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
4428   Bitmask notReady;          /* Cursors that are not yet positioned */
4429   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
4430   WhereMaskSet *pMaskSet;    /* The expression mask set */
4431   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
4432   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
4433   int ii;                    /* Loop counter */
4434   sqlite3 *db;               /* Database connection */
4435   int rc;                    /* Return code */
4436   u8 bFordelete = 0;         /* OPFLAG_FORDELETE or zero, as appropriate */
4437 
4438   assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
4439         (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
4440      && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4441   ));
4442 
4443   /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
4444   assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4445             || (wctrlFlags & WHERE_USE_LIMIT)==0 );
4446 
4447   /* Variable initialization */
4448   db = pParse->db;
4449   memset(&sWLB, 0, sizeof(sWLB));
4450 
4451   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
4452   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
4453   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
4454   sWLB.pOrderBy = pOrderBy;
4455 
4456   /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
4457   ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
4458   if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
4459     wctrlFlags &= ~WHERE_WANT_DISTINCT;
4460   }
4461 
4462   /* The number of tables in the FROM clause is limited by the number of
4463   ** bits in a Bitmask
4464   */
4465   testcase( pTabList->nSrc==BMS );
4466   if( pTabList->nSrc>BMS ){
4467     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
4468     return 0;
4469   }
4470 
4471   /* This function normally generates a nested loop for all tables in
4472   ** pTabList.  But if the WHERE_OR_SUBCLAUSE flag is set, then we should
4473   ** only generate code for the first table in pTabList and assume that
4474   ** any cursors associated with subsequent tables are uninitialized.
4475   */
4476   nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
4477 
4478   /* Allocate and initialize the WhereInfo structure that will become the
4479   ** return value. A single allocation is used to store the WhereInfo
4480   ** struct, the contents of WhereInfo.a[], the WhereClause structure
4481   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4482   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4483   ** some architectures. Hence the ROUND8() below.
4484   */
4485   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
4486   pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
4487   if( db->mallocFailed ){
4488     sqlite3DbFree(db, pWInfo);
4489     pWInfo = 0;
4490     goto whereBeginError;
4491   }
4492   pWInfo->pParse = pParse;
4493   pWInfo->pTabList = pTabList;
4494   pWInfo->pOrderBy = pOrderBy;
4495   pWInfo->pWhere = pWhere;
4496   pWInfo->pResultSet = pResultSet;
4497   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
4498   pWInfo->nLevel = nTabList;
4499   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v);
4500   pWInfo->wctrlFlags = wctrlFlags;
4501   pWInfo->iLimit = iAuxArg;
4502   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
4503   memset(&pWInfo->nOBSat, 0,
4504          offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
4505   memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
4506   assert( pWInfo->eOnePass==ONEPASS_OFF );  /* ONEPASS defaults to OFF */
4507   pMaskSet = &pWInfo->sMaskSet;
4508   sWLB.pWInfo = pWInfo;
4509   sWLB.pWC = &pWInfo->sWC;
4510   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
4511   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
4512   whereLoopInit(sWLB.pNew);
4513 #ifdef SQLITE_DEBUG
4514   sWLB.pNew->cId = '*';
4515 #endif
4516 
4517   /* Split the WHERE clause into separate subexpressions where each
4518   ** subexpression is separated by an AND operator.
4519   */
4520   initMaskSet(pMaskSet);
4521   sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
4522   sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
4523 
4524   /* Special case: No FROM clause
4525   */
4526   if( nTabList==0 ){
4527     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
4528     if( wctrlFlags & WHERE_WANT_DISTINCT ){
4529       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4530     }
4531   }
4532 
4533   /* Assign a bit from the bitmask to every term in the FROM clause.
4534   **
4535   ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
4536   **
4537   ** The rule of the previous sentence ensures thta if X is the bitmask for
4538   ** a table T, then X-1 is the bitmask for all other tables to the left of T.
4539   ** Knowing the bitmask for all tables to the left of a left join is
4540   ** important.  Ticket #3015.
4541   **
4542   ** Note that bitmasks are created for all pTabList->nSrc tables in
4543   ** pTabList, not just the first nTabList tables.  nTabList is normally
4544   ** equal to pTabList->nSrc but might be shortened to 1 if the
4545   ** WHERE_OR_SUBCLAUSE flag is set.
4546   */
4547   for(ii=0; ii<pTabList->nSrc; ii++){
4548     createMask(pMaskSet, pTabList->a[ii].iCursor);
4549     sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
4550   }
4551 #ifdef SQLITE_DEBUG
4552   {
4553     Bitmask mx = 0;
4554     for(ii=0; ii<pTabList->nSrc; ii++){
4555       Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
4556       assert( m>=mx );
4557       mx = m;
4558     }
4559   }
4560 #endif
4561 
4562   /* Analyze all of the subexpressions. */
4563   sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
4564   if( db->mallocFailed ) goto whereBeginError;
4565 
4566   /* Special case: WHERE terms that do not refer to any tables in the join
4567   ** (constant expressions). Evaluate each such term, and jump over all the
4568   ** generated code if the result is not true.
4569   **
4570   ** Do not do this if the expression contains non-deterministic functions
4571   ** that are not within a sub-select. This is not strictly required, but
4572   ** preserves SQLite's legacy behaviour in the following two cases:
4573   **
4574   **   FROM ... WHERE random()>0;           -- eval random() once per row
4575   **   FROM ... WHERE (SELECT random())>0;  -- eval random() once overall
4576   */
4577   for(ii=0; ii<sWLB.pWC->nTerm; ii++){
4578     WhereTerm *pT = &sWLB.pWC->a[ii];
4579     if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
4580       sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
4581       pT->wtFlags |= TERM_CODED;
4582     }
4583   }
4584 
4585   if( wctrlFlags & WHERE_WANT_DISTINCT ){
4586     if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
4587       /* The DISTINCT marking is pointless.  Ignore it. */
4588       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4589     }else if( pOrderBy==0 ){
4590       /* Try to ORDER BY the result set to make distinct processing easier */
4591       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
4592       pWInfo->pOrderBy = pResultSet;
4593     }
4594   }
4595 
4596   /* Construct the WhereLoop objects */
4597 #if defined(WHERETRACE_ENABLED)
4598   if( sqlite3WhereTrace & 0xffff ){
4599     sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
4600     if( wctrlFlags & WHERE_USE_LIMIT ){
4601       sqlite3DebugPrintf(", limit: %d", iAuxArg);
4602     }
4603     sqlite3DebugPrintf(")\n");
4604   }
4605   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
4606     sqlite3WhereClausePrint(sWLB.pWC);
4607   }
4608 #endif
4609 
4610   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
4611     rc = whereLoopAddAll(&sWLB);
4612     if( rc ) goto whereBeginError;
4613 
4614 #ifdef WHERETRACE_ENABLED
4615     if( sqlite3WhereTrace ){    /* Display all of the WhereLoop objects */
4616       WhereLoop *p;
4617       int i;
4618       static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
4619                                              "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
4620       for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
4621         p->cId = zLabel[i%(sizeof(zLabel)-1)];
4622         whereLoopPrint(p, sWLB.pWC);
4623       }
4624     }
4625 #endif
4626 
4627     wherePathSolver(pWInfo, 0);
4628     if( db->mallocFailed ) goto whereBeginError;
4629     if( pWInfo->pOrderBy ){
4630        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
4631        if( db->mallocFailed ) goto whereBeginError;
4632     }
4633   }
4634   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
4635      pWInfo->revMask = ALLBITS;
4636   }
4637   if( pParse->nErr || NEVER(db->mallocFailed) ){
4638     goto whereBeginError;
4639   }
4640 #ifdef WHERETRACE_ENABLED
4641   if( sqlite3WhereTrace ){
4642     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
4643     if( pWInfo->nOBSat>0 ){
4644       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
4645     }
4646     switch( pWInfo->eDistinct ){
4647       case WHERE_DISTINCT_UNIQUE: {
4648         sqlite3DebugPrintf("  DISTINCT=unique");
4649         break;
4650       }
4651       case WHERE_DISTINCT_ORDERED: {
4652         sqlite3DebugPrintf("  DISTINCT=ordered");
4653         break;
4654       }
4655       case WHERE_DISTINCT_UNORDERED: {
4656         sqlite3DebugPrintf("  DISTINCT=unordered");
4657         break;
4658       }
4659     }
4660     sqlite3DebugPrintf("\n");
4661     for(ii=0; ii<pWInfo->nLevel; ii++){
4662       whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
4663     }
4664   }
4665 #endif
4666   /* Attempt to omit tables from the join that do not effect the result */
4667   if( pWInfo->nLevel>=2
4668    && pResultSet!=0
4669    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
4670   ){
4671     Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet);
4672     if( sWLB.pOrderBy ){
4673       tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy);
4674     }
4675     while( pWInfo->nLevel>=2 ){
4676       WhereTerm *pTerm, *pEnd;
4677       pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop;
4678       if( (pWInfo->pTabList->a[pLoop->iTab].fg.jointype & JT_LEFT)==0 ) break;
4679       if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
4680        && (pLoop->wsFlags & WHERE_ONEROW)==0
4681       ){
4682         break;
4683       }
4684       if( (tabUsed & pLoop->maskSelf)!=0 ) break;
4685       pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
4686       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
4687         if( (pTerm->prereqAll & pLoop->maskSelf)!=0
4688          && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
4689         ){
4690           break;
4691         }
4692       }
4693       if( pTerm<pEnd ) break;
4694       WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
4695       pWInfo->nLevel--;
4696       nTabList--;
4697     }
4698   }
4699   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
4700   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
4701 
4702   /* If the caller is an UPDATE or DELETE statement that is requesting
4703   ** to use a one-pass algorithm, determine if this is appropriate.
4704   */
4705   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
4706   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
4707     int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
4708     int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
4709     if( bOnerow
4710      || ((wctrlFlags & WHERE_ONEPASS_MULTIROW)!=0
4711            && 0==(wsFlags & WHERE_VIRTUALTABLE))
4712     ){
4713       pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
4714       if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
4715         if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
4716           bFordelete = OPFLAG_FORDELETE;
4717         }
4718         pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
4719       }
4720     }
4721   }
4722 
4723   /* Open all tables in the pTabList and any indices selected for
4724   ** searching those tables.
4725   */
4726   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
4727     Table *pTab;     /* Table to open */
4728     int iDb;         /* Index of database containing table/index */
4729     struct SrcList_item *pTabItem;
4730 
4731     pTabItem = &pTabList->a[pLevel->iFrom];
4732     pTab = pTabItem->pTab;
4733     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4734     pLoop = pLevel->pWLoop;
4735     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
4736       /* Do nothing */
4737     }else
4738 #ifndef SQLITE_OMIT_VIRTUALTABLE
4739     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
4740       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
4741       int iCur = pTabItem->iCursor;
4742       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
4743     }else if( IsVirtual(pTab) ){
4744       /* noop */
4745     }else
4746 #endif
4747     if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
4748          && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
4749       int op = OP_OpenRead;
4750       if( pWInfo->eOnePass!=ONEPASS_OFF ){
4751         op = OP_OpenWrite;
4752         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
4753       };
4754       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
4755       assert( pTabItem->iCursor==pLevel->iTabCur );
4756       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
4757       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
4758       if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){
4759         Bitmask b = pTabItem->colUsed;
4760         int n = 0;
4761         for(; b; b=b>>1, n++){}
4762         sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
4763         assert( n<=pTab->nCol );
4764       }
4765 #ifdef SQLITE_ENABLE_CURSOR_HINTS
4766       if( pLoop->u.btree.pIndex!=0 ){
4767         sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
4768       }else
4769 #endif
4770       {
4771         sqlite3VdbeChangeP5(v, bFordelete);
4772       }
4773 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4774       sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
4775                             (const u8*)&pTabItem->colUsed, P4_INT64);
4776 #endif
4777     }else{
4778       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4779     }
4780     if( pLoop->wsFlags & WHERE_INDEXED ){
4781       Index *pIx = pLoop->u.btree.pIndex;
4782       int iIndexCur;
4783       int op = OP_OpenRead;
4784       /* iAuxArg is always set if to a positive value if ONEPASS is possible */
4785       assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
4786       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
4787        && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
4788       ){
4789         /* This is one term of an OR-optimization using the PRIMARY KEY of a
4790         ** WITHOUT ROWID table.  No need for a separate index */
4791         iIndexCur = pLevel->iTabCur;
4792         op = 0;
4793       }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
4794         Index *pJ = pTabItem->pTab->pIndex;
4795         iIndexCur = iAuxArg;
4796         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
4797         while( ALWAYS(pJ) && pJ!=pIx ){
4798           iIndexCur++;
4799           pJ = pJ->pNext;
4800         }
4801         op = OP_OpenWrite;
4802         pWInfo->aiCurOnePass[1] = iIndexCur;
4803       }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
4804         iIndexCur = iAuxArg;
4805         op = OP_ReopenIdx;
4806       }else{
4807         iIndexCur = pParse->nTab++;
4808       }
4809       pLevel->iIdxCur = iIndexCur;
4810       assert( pIx->pSchema==pTab->pSchema );
4811       assert( iIndexCur>=0 );
4812       if( op ){
4813         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
4814         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
4815         if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
4816          && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
4817          && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
4818          && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
4819         ){
4820           sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */
4821         }
4822         VdbeComment((v, "%s", pIx->zName));
4823 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4824         {
4825           u64 colUsed = 0;
4826           int ii, jj;
4827           for(ii=0; ii<pIx->nColumn; ii++){
4828             jj = pIx->aiColumn[ii];
4829             if( jj<0 ) continue;
4830             if( jj>63 ) jj = 63;
4831             if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
4832             colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
4833           }
4834           sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
4835                                 (u8*)&colUsed, P4_INT64);
4836         }
4837 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
4838       }
4839     }
4840     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
4841   }
4842   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
4843   if( db->mallocFailed ) goto whereBeginError;
4844 
4845   /* Generate the code to do the search.  Each iteration of the for
4846   ** loop below generates code for a single nested loop of the VM
4847   ** program.
4848   */
4849   notReady = ~(Bitmask)0;
4850   for(ii=0; ii<nTabList; ii++){
4851     int addrExplain;
4852     int wsFlags;
4853     pLevel = &pWInfo->a[ii];
4854     wsFlags = pLevel->pWLoop->wsFlags;
4855 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
4856     if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
4857       constructAutomaticIndex(pParse, &pWInfo->sWC,
4858                 &pTabList->a[pLevel->iFrom], notReady, pLevel);
4859       if( db->mallocFailed ) goto whereBeginError;
4860     }
4861 #endif
4862     addrExplain = sqlite3WhereExplainOneScan(
4863         pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags
4864     );
4865     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
4866     notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady);
4867     pWInfo->iContinue = pLevel->addrCont;
4868     if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
4869       sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
4870     }
4871   }
4872 
4873   /* Done. */
4874   VdbeModuleComment((v, "Begin WHERE-core"));
4875   return pWInfo;
4876 
4877   /* Jump here if malloc fails */
4878 whereBeginError:
4879   if( pWInfo ){
4880     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
4881     whereInfoFree(db, pWInfo);
4882   }
4883   return 0;
4884 }
4885 
4886 /*
4887 ** Generate the end of the WHERE loop.  See comments on
4888 ** sqlite3WhereBegin() for additional information.
4889 */
4890 void sqlite3WhereEnd(WhereInfo *pWInfo){
4891   Parse *pParse = pWInfo->pParse;
4892   Vdbe *v = pParse->pVdbe;
4893   int i;
4894   WhereLevel *pLevel;
4895   WhereLoop *pLoop;
4896   SrcList *pTabList = pWInfo->pTabList;
4897   sqlite3 *db = pParse->db;
4898 
4899   /* Generate loop termination code.
4900   */
4901   VdbeModuleComment((v, "End WHERE-core"));
4902   sqlite3ExprCacheClear(pParse);
4903   for(i=pWInfo->nLevel-1; i>=0; i--){
4904     int addr;
4905     pLevel = &pWInfo->a[i];
4906     pLoop = pLevel->pWLoop;
4907     if( pLevel->op!=OP_Noop ){
4908 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
4909       int addrSeek = 0;
4910       Index *pIdx;
4911       int n;
4912       if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
4913        && (pLoop->wsFlags & WHERE_INDEXED)!=0
4914        && (pIdx = pLoop->u.btree.pIndex)->hasStat1
4915        && (n = pLoop->u.btree.nIdxCol)>0
4916        && pIdx->aiRowLogEst[n]>=36
4917       ){
4918         int r1 = pParse->nMem+1;
4919         int j, op;
4920         for(j=0; j<n; j++){
4921           sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
4922         }
4923         pParse->nMem += n+1;
4924         op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
4925         addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
4926         VdbeCoverageIf(v, op==OP_SeekLT);
4927         VdbeCoverageIf(v, op==OP_SeekGT);
4928         sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
4929       }
4930 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
4931       /* The common case: Advance to the next row */
4932       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
4933       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
4934       sqlite3VdbeChangeP5(v, pLevel->p5);
4935       VdbeCoverage(v);
4936       VdbeCoverageIf(v, pLevel->op==OP_Next);
4937       VdbeCoverageIf(v, pLevel->op==OP_Prev);
4938       VdbeCoverageIf(v, pLevel->op==OP_VNext);
4939 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
4940       if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
4941 #endif
4942     }else{
4943       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
4944     }
4945     if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
4946       struct InLoop *pIn;
4947       int j;
4948       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
4949       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
4950         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
4951         if( pIn->eEndLoopOp!=OP_Noop ){
4952           sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
4953           VdbeCoverage(v);
4954           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen);
4955           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen);
4956         }
4957         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
4958       }
4959     }
4960     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
4961     if( pLevel->addrSkip ){
4962       sqlite3VdbeGoto(v, pLevel->addrSkip);
4963       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
4964       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
4965       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
4966     }
4967 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
4968     if( pLevel->addrLikeRep ){
4969       sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
4970                         pLevel->addrLikeRep);
4971       VdbeCoverage(v);
4972     }
4973 #endif
4974     if( pLevel->iLeftJoin ){
4975       int ws = pLoop->wsFlags;
4976       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
4977       assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
4978       if( (ws & WHERE_IDX_ONLY)==0 ){
4979         sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
4980       }
4981       if( (ws & WHERE_INDEXED)
4982        || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx)
4983       ){
4984         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
4985       }
4986       if( pLevel->op==OP_Return ){
4987         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
4988       }else{
4989         sqlite3VdbeGoto(v, pLevel->addrFirst);
4990       }
4991       sqlite3VdbeJumpHere(v, addr);
4992     }
4993     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
4994                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
4995   }
4996 
4997   /* The "break" point is here, just past the end of the outer loop.
4998   ** Set it.
4999   */
5000   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
5001 
5002   assert( pWInfo->nLevel<=pTabList->nSrc );
5003   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
5004     int k, last;
5005     VdbeOp *pOp;
5006     Index *pIdx = 0;
5007     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
5008     Table *pTab = pTabItem->pTab;
5009     assert( pTab!=0 );
5010     pLoop = pLevel->pWLoop;
5011 
5012     /* For a co-routine, change all OP_Column references to the table of
5013     ** the co-routine into OP_Copy of result contained in a register.
5014     ** OP_Rowid becomes OP_Null.
5015     */
5016     if( pTabItem->fg.viaCoroutine ){
5017       testcase( pParse->db->mallocFailed );
5018       translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
5019                             pTabItem->regResult, 0);
5020       continue;
5021     }
5022 
5023     /* If this scan uses an index, make VDBE code substitutions to read data
5024     ** from the index instead of from the table where possible.  In some cases
5025     ** this optimization prevents the table from ever being read, which can
5026     ** yield a significant performance boost.
5027     **
5028     ** Calls to the code generator in between sqlite3WhereBegin and
5029     ** sqlite3WhereEnd will have created code that references the table
5030     ** directly.  This loop scans all that code looking for opcodes
5031     ** that reference the table and converts them into opcodes that
5032     ** reference the index.
5033     */
5034     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
5035       pIdx = pLoop->u.btree.pIndex;
5036     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
5037       pIdx = pLevel->u.pCovidx;
5038     }
5039     if( pIdx
5040      && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable))
5041      && !db->mallocFailed
5042     ){
5043       last = sqlite3VdbeCurrentAddr(v);
5044       k = pLevel->addrBody;
5045       pOp = sqlite3VdbeGetOp(v, k);
5046       for(; k<last; k++, pOp++){
5047         if( pOp->p1!=pLevel->iTabCur ) continue;
5048         if( pOp->opcode==OP_Column ){
5049           int x = pOp->p2;
5050           assert( pIdx->pTable==pTab );
5051           if( !HasRowid(pTab) ){
5052             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
5053             x = pPk->aiColumn[x];
5054             assert( x>=0 );
5055           }
5056           x = sqlite3ColumnOfIndex(pIdx, x);
5057           if( x>=0 ){
5058             pOp->p2 = x;
5059             pOp->p1 = pLevel->iIdxCur;
5060           }
5061           assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0
5062               || pWInfo->eOnePass );
5063         }else if( pOp->opcode==OP_Rowid ){
5064           pOp->p1 = pLevel->iIdxCur;
5065           pOp->opcode = OP_IdxRowid;
5066         }else if( pOp->opcode==OP_IfNullRow ){
5067           pOp->p1 = pLevel->iIdxCur;
5068         }
5069       }
5070     }
5071   }
5072 
5073   /* Final cleanup
5074   */
5075   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5076   whereInfoFree(db, pWInfo);
5077   return;
5078 }
5079