xref: /sqlite-3.40.0/src/where.c (revision 42d3d37a)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /*
23 ** Return the estimated number of output rows from a WHERE clause
24 */
25 u64 sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
26   return sqlite3LogEstToInt(pWInfo->nRowOut);
27 }
28 
29 /*
30 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
31 ** WHERE clause returns outputs for DISTINCT processing.
32 */
33 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
34   return pWInfo->eDistinct;
35 }
36 
37 /*
38 ** Return TRUE if the WHERE clause returns rows in ORDER BY order.
39 ** Return FALSE if the output needs to be sorted.
40 */
41 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
42   return pWInfo->nOBSat;
43 }
44 
45 /*
46 ** Return the VDBE address or label to jump to in order to continue
47 ** immediately with the next row of a WHERE clause.
48 */
49 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
50   assert( pWInfo->iContinue!=0 );
51   return pWInfo->iContinue;
52 }
53 
54 /*
55 ** Return the VDBE address or label to jump to in order to break
56 ** out of a WHERE loop.
57 */
58 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
59   return pWInfo->iBreak;
60 }
61 
62 /*
63 ** Return TRUE if an UPDATE or DELETE statement can operate directly on
64 ** the rowids returned by a WHERE clause.  Return FALSE if doing an
65 ** UPDATE or DELETE might change subsequent WHERE clause results.
66 **
67 ** If the ONEPASS optimization is used (if this routine returns true)
68 ** then also write the indices of open cursors used by ONEPASS
69 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
70 ** table and iaCur[1] gets the cursor used by an auxiliary index.
71 ** Either value may be -1, indicating that cursor is not used.
72 ** Any cursors returned will have been opened for writing.
73 **
74 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
75 ** unable to use the ONEPASS optimization.
76 */
77 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
78   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
79   return pWInfo->okOnePass;
80 }
81 
82 /*
83 ** Move the content of pSrc into pDest
84 */
85 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
86   pDest->n = pSrc->n;
87   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
88 }
89 
90 /*
91 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
92 **
93 ** The new entry might overwrite an existing entry, or it might be
94 ** appended, or it might be discarded.  Do whatever is the right thing
95 ** so that pSet keeps the N_OR_COST best entries seen so far.
96 */
97 static int whereOrInsert(
98   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
99   Bitmask prereq,        /* Prerequisites of the new entry */
100   LogEst rRun,           /* Run-cost of the new entry */
101   LogEst nOut            /* Number of outputs for the new entry */
102 ){
103   u16 i;
104   WhereOrCost *p;
105   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
106     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
107       goto whereOrInsert_done;
108     }
109     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
110       return 0;
111     }
112   }
113   if( pSet->n<N_OR_COST ){
114     p = &pSet->a[pSet->n++];
115     p->nOut = nOut;
116   }else{
117     p = pSet->a;
118     for(i=1; i<pSet->n; i++){
119       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
120     }
121     if( p->rRun<=rRun ) return 0;
122   }
123 whereOrInsert_done:
124   p->prereq = prereq;
125   p->rRun = rRun;
126   if( p->nOut>nOut ) p->nOut = nOut;
127   return 1;
128 }
129 
130 /*
131 ** Initialize a preallocated WhereClause structure.
132 */
133 static void whereClauseInit(
134   WhereClause *pWC,        /* The WhereClause to be initialized */
135   WhereInfo *pWInfo        /* The WHERE processing context */
136 ){
137   pWC->pWInfo = pWInfo;
138   pWC->pOuter = 0;
139   pWC->nTerm = 0;
140   pWC->nSlot = ArraySize(pWC->aStatic);
141   pWC->a = pWC->aStatic;
142 }
143 
144 /* Forward reference */
145 static void whereClauseClear(WhereClause*);
146 
147 /*
148 ** Deallocate all memory associated with a WhereOrInfo object.
149 */
150 static void whereOrInfoDelete(sqlite3 *db, WhereOrInfo *p){
151   whereClauseClear(&p->wc);
152   sqlite3DbFree(db, p);
153 }
154 
155 /*
156 ** Deallocate all memory associated with a WhereAndInfo object.
157 */
158 static void whereAndInfoDelete(sqlite3 *db, WhereAndInfo *p){
159   whereClauseClear(&p->wc);
160   sqlite3DbFree(db, p);
161 }
162 
163 /*
164 ** Deallocate a WhereClause structure.  The WhereClause structure
165 ** itself is not freed.  This routine is the inverse of whereClauseInit().
166 */
167 static void whereClauseClear(WhereClause *pWC){
168   int i;
169   WhereTerm *a;
170   sqlite3 *db = pWC->pWInfo->pParse->db;
171   for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
172     if( a->wtFlags & TERM_DYNAMIC ){
173       sqlite3ExprDelete(db, a->pExpr);
174     }
175     if( a->wtFlags & TERM_ORINFO ){
176       whereOrInfoDelete(db, a->u.pOrInfo);
177     }else if( a->wtFlags & TERM_ANDINFO ){
178       whereAndInfoDelete(db, a->u.pAndInfo);
179     }
180   }
181   if( pWC->a!=pWC->aStatic ){
182     sqlite3DbFree(db, pWC->a);
183   }
184 }
185 
186 /*
187 ** Add a single new WhereTerm entry to the WhereClause object pWC.
188 ** The new WhereTerm object is constructed from Expr p and with wtFlags.
189 ** The index in pWC->a[] of the new WhereTerm is returned on success.
190 ** 0 is returned if the new WhereTerm could not be added due to a memory
191 ** allocation error.  The memory allocation failure will be recorded in
192 ** the db->mallocFailed flag so that higher-level functions can detect it.
193 **
194 ** This routine will increase the size of the pWC->a[] array as necessary.
195 **
196 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
197 ** for freeing the expression p is assumed by the WhereClause object pWC.
198 ** This is true even if this routine fails to allocate a new WhereTerm.
199 **
200 ** WARNING:  This routine might reallocate the space used to store
201 ** WhereTerms.  All pointers to WhereTerms should be invalidated after
202 ** calling this routine.  Such pointers may be reinitialized by referencing
203 ** the pWC->a[] array.
204 */
205 static int whereClauseInsert(WhereClause *pWC, Expr *p, u8 wtFlags){
206   WhereTerm *pTerm;
207   int idx;
208   testcase( wtFlags & TERM_VIRTUAL );
209   if( pWC->nTerm>=pWC->nSlot ){
210     WhereTerm *pOld = pWC->a;
211     sqlite3 *db = pWC->pWInfo->pParse->db;
212     pWC->a = sqlite3DbMallocRaw(db, sizeof(pWC->a[0])*pWC->nSlot*2 );
213     if( pWC->a==0 ){
214       if( wtFlags & TERM_DYNAMIC ){
215         sqlite3ExprDelete(db, p);
216       }
217       pWC->a = pOld;
218       return 0;
219     }
220     memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
221     if( pOld!=pWC->aStatic ){
222       sqlite3DbFree(db, pOld);
223     }
224     pWC->nSlot = sqlite3DbMallocSize(db, pWC->a)/sizeof(pWC->a[0]);
225   }
226   pTerm = &pWC->a[idx = pWC->nTerm++];
227   if( p && ExprHasProperty(p, EP_Unlikely) ){
228     pTerm->truthProb = sqlite3LogEst(p->iTable) - 99;
229   }else{
230     pTerm->truthProb = 1;
231   }
232   pTerm->pExpr = sqlite3ExprSkipCollate(p);
233   pTerm->wtFlags = wtFlags;
234   pTerm->pWC = pWC;
235   pTerm->iParent = -1;
236   return idx;
237 }
238 
239 /*
240 ** This routine identifies subexpressions in the WHERE clause where
241 ** each subexpression is separated by the AND operator or some other
242 ** operator specified in the op parameter.  The WhereClause structure
243 ** is filled with pointers to subexpressions.  For example:
244 **
245 **    WHERE  a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
246 **           \________/     \_______________/     \________________/
247 **            slot[0]            slot[1]               slot[2]
248 **
249 ** The original WHERE clause in pExpr is unaltered.  All this routine
250 ** does is make slot[] entries point to substructure within pExpr.
251 **
252 ** In the previous sentence and in the diagram, "slot[]" refers to
253 ** the WhereClause.a[] array.  The slot[] array grows as needed to contain
254 ** all terms of the WHERE clause.
255 */
256 static void whereSplit(WhereClause *pWC, Expr *pExpr, u8 op){
257   pWC->op = op;
258   if( pExpr==0 ) return;
259   if( pExpr->op!=op ){
260     whereClauseInsert(pWC, pExpr, 0);
261   }else{
262     whereSplit(pWC, pExpr->pLeft, op);
263     whereSplit(pWC, pExpr->pRight, op);
264   }
265 }
266 
267 /*
268 ** Initialize a WhereMaskSet object
269 */
270 #define initMaskSet(P)  (P)->n=0
271 
272 /*
273 ** Return the bitmask for the given cursor number.  Return 0 if
274 ** iCursor is not in the set.
275 */
276 static Bitmask getMask(WhereMaskSet *pMaskSet, int iCursor){
277   int i;
278   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
279   for(i=0; i<pMaskSet->n; i++){
280     if( pMaskSet->ix[i]==iCursor ){
281       return MASKBIT(i);
282     }
283   }
284   return 0;
285 }
286 
287 /*
288 ** Create a new mask for cursor iCursor.
289 **
290 ** There is one cursor per table in the FROM clause.  The number of
291 ** tables in the FROM clause is limited by a test early in the
292 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
293 ** array will never overflow.
294 */
295 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
296   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
297   pMaskSet->ix[pMaskSet->n++] = iCursor;
298 }
299 
300 /*
301 ** These routines walk (recursively) an expression tree and generate
302 ** a bitmask indicating which tables are used in that expression
303 ** tree.
304 */
305 static Bitmask exprListTableUsage(WhereMaskSet*, ExprList*);
306 static Bitmask exprSelectTableUsage(WhereMaskSet*, Select*);
307 static Bitmask exprTableUsage(WhereMaskSet *pMaskSet, Expr *p){
308   Bitmask mask = 0;
309   if( p==0 ) return 0;
310   if( p->op==TK_COLUMN ){
311     mask = getMask(pMaskSet, p->iTable);
312     return mask;
313   }
314   mask = exprTableUsage(pMaskSet, p->pRight);
315   mask |= exprTableUsage(pMaskSet, p->pLeft);
316   if( ExprHasProperty(p, EP_xIsSelect) ){
317     mask |= exprSelectTableUsage(pMaskSet, p->x.pSelect);
318   }else{
319     mask |= exprListTableUsage(pMaskSet, p->x.pList);
320   }
321   return mask;
322 }
323 static Bitmask exprListTableUsage(WhereMaskSet *pMaskSet, ExprList *pList){
324   int i;
325   Bitmask mask = 0;
326   if( pList ){
327     for(i=0; i<pList->nExpr; i++){
328       mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
329     }
330   }
331   return mask;
332 }
333 static Bitmask exprSelectTableUsage(WhereMaskSet *pMaskSet, Select *pS){
334   Bitmask mask = 0;
335   while( pS ){
336     SrcList *pSrc = pS->pSrc;
337     mask |= exprListTableUsage(pMaskSet, pS->pEList);
338     mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
339     mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
340     mask |= exprTableUsage(pMaskSet, pS->pWhere);
341     mask |= exprTableUsage(pMaskSet, pS->pHaving);
342     if( ALWAYS(pSrc!=0) ){
343       int i;
344       for(i=0; i<pSrc->nSrc; i++){
345         mask |= exprSelectTableUsage(pMaskSet, pSrc->a[i].pSelect);
346         mask |= exprTableUsage(pMaskSet, pSrc->a[i].pOn);
347       }
348     }
349     pS = pS->pPrior;
350   }
351   return mask;
352 }
353 
354 /*
355 ** Return TRUE if the given operator is one of the operators that is
356 ** allowed for an indexable WHERE clause term.  The allowed operators are
357 ** "=", "<", ">", "<=", ">=", "IN", and "IS NULL"
358 */
359 static int allowedOp(int op){
360   assert( TK_GT>TK_EQ && TK_GT<TK_GE );
361   assert( TK_LT>TK_EQ && TK_LT<TK_GE );
362   assert( TK_LE>TK_EQ && TK_LE<TK_GE );
363   assert( TK_GE==TK_EQ+4 );
364   return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
365 }
366 
367 /*
368 ** Swap two objects of type TYPE.
369 */
370 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
371 
372 /*
373 ** Commute a comparison operator.  Expressions of the form "X op Y"
374 ** are converted into "Y op X".
375 **
376 ** If left/right precedence rules come into play when determining the
377 ** collating sequence, then COLLATE operators are adjusted to ensure
378 ** that the collating sequence does not change.  For example:
379 ** "Y collate NOCASE op X" becomes "X op Y" because any collation sequence on
380 ** the left hand side of a comparison overrides any collation sequence
381 ** attached to the right. For the same reason the EP_Collate flag
382 ** is not commuted.
383 */
384 static void exprCommute(Parse *pParse, Expr *pExpr){
385   u16 expRight = (pExpr->pRight->flags & EP_Collate);
386   u16 expLeft = (pExpr->pLeft->flags & EP_Collate);
387   assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
388   if( expRight==expLeft ){
389     /* Either X and Y both have COLLATE operator or neither do */
390     if( expRight ){
391       /* Both X and Y have COLLATE operators.  Make sure X is always
392       ** used by clearing the EP_Collate flag from Y. */
393       pExpr->pRight->flags &= ~EP_Collate;
394     }else if( sqlite3ExprCollSeq(pParse, pExpr->pLeft)!=0 ){
395       /* Neither X nor Y have COLLATE operators, but X has a non-default
396       ** collating sequence.  So add the EP_Collate marker on X to cause
397       ** it to be searched first. */
398       pExpr->pLeft->flags |= EP_Collate;
399     }
400   }
401   SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
402   if( pExpr->op>=TK_GT ){
403     assert( TK_LT==TK_GT+2 );
404     assert( TK_GE==TK_LE+2 );
405     assert( TK_GT>TK_EQ );
406     assert( TK_GT<TK_LE );
407     assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
408     pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
409   }
410 }
411 
412 /*
413 ** Translate from TK_xx operator to WO_xx bitmask.
414 */
415 static u16 operatorMask(int op){
416   u16 c;
417   assert( allowedOp(op) );
418   if( op==TK_IN ){
419     c = WO_IN;
420   }else if( op==TK_ISNULL ){
421     c = WO_ISNULL;
422   }else{
423     assert( (WO_EQ<<(op-TK_EQ)) < 0x7fff );
424     c = (u16)(WO_EQ<<(op-TK_EQ));
425   }
426   assert( op!=TK_ISNULL || c==WO_ISNULL );
427   assert( op!=TK_IN || c==WO_IN );
428   assert( op!=TK_EQ || c==WO_EQ );
429   assert( op!=TK_LT || c==WO_LT );
430   assert( op!=TK_LE || c==WO_LE );
431   assert( op!=TK_GT || c==WO_GT );
432   assert( op!=TK_GE || c==WO_GE );
433   return c;
434 }
435 
436 /*
437 ** Advance to the next WhereTerm that matches according to the criteria
438 ** established when the pScan object was initialized by whereScanInit().
439 ** Return NULL if there are no more matching WhereTerms.
440 */
441 static WhereTerm *whereScanNext(WhereScan *pScan){
442   int iCur;            /* The cursor on the LHS of the term */
443   int iColumn;         /* The column on the LHS of the term.  -1 for IPK */
444   Expr *pX;            /* An expression being tested */
445   WhereClause *pWC;    /* Shorthand for pScan->pWC */
446   WhereTerm *pTerm;    /* The term being tested */
447   int k = pScan->k;    /* Where to start scanning */
448 
449   while( pScan->iEquiv<=pScan->nEquiv ){
450     iCur = pScan->aEquiv[pScan->iEquiv-2];
451     iColumn = pScan->aEquiv[pScan->iEquiv-1];
452     while( (pWC = pScan->pWC)!=0 ){
453       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
454         if( pTerm->leftCursor==iCur
455          && pTerm->u.leftColumn==iColumn
456          && (pScan->iEquiv<=2 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
457         ){
458           if( (pTerm->eOperator & WO_EQUIV)!=0
459            && pScan->nEquiv<ArraySize(pScan->aEquiv)
460           ){
461             int j;
462             pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight);
463             assert( pX->op==TK_COLUMN );
464             for(j=0; j<pScan->nEquiv; j+=2){
465               if( pScan->aEquiv[j]==pX->iTable
466                && pScan->aEquiv[j+1]==pX->iColumn ){
467                   break;
468               }
469             }
470             if( j==pScan->nEquiv ){
471               pScan->aEquiv[j] = pX->iTable;
472               pScan->aEquiv[j+1] = pX->iColumn;
473               pScan->nEquiv += 2;
474             }
475           }
476           if( (pTerm->eOperator & pScan->opMask)!=0 ){
477             /* Verify the affinity and collating sequence match */
478             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
479               CollSeq *pColl;
480               Parse *pParse = pWC->pWInfo->pParse;
481               pX = pTerm->pExpr;
482               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
483                 continue;
484               }
485               assert(pX->pLeft);
486               pColl = sqlite3BinaryCompareCollSeq(pParse,
487                                                   pX->pLeft, pX->pRight);
488               if( pColl==0 ) pColl = pParse->db->pDfltColl;
489               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
490                 continue;
491               }
492             }
493             if( (pTerm->eOperator & WO_EQ)!=0
494              && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
495              && pX->iTable==pScan->aEquiv[0]
496              && pX->iColumn==pScan->aEquiv[1]
497             ){
498               continue;
499             }
500             pScan->k = k+1;
501             return pTerm;
502           }
503         }
504       }
505       pScan->pWC = pScan->pWC->pOuter;
506       k = 0;
507     }
508     pScan->pWC = pScan->pOrigWC;
509     k = 0;
510     pScan->iEquiv += 2;
511   }
512   return 0;
513 }
514 
515 /*
516 ** Initialize a WHERE clause scanner object.  Return a pointer to the
517 ** first match.  Return NULL if there are no matches.
518 **
519 ** The scanner will be searching the WHERE clause pWC.  It will look
520 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
521 ** iCur.  The <op> must be one of the operators described by opMask.
522 **
523 ** If the search is for X and the WHERE clause contains terms of the
524 ** form X=Y then this routine might also return terms of the form
525 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
526 ** but is enough to handle most commonly occurring SQL statements.
527 **
528 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
529 ** index pIdx.
530 */
531 static WhereTerm *whereScanInit(
532   WhereScan *pScan,       /* The WhereScan object being initialized */
533   WhereClause *pWC,       /* The WHERE clause to be scanned */
534   int iCur,               /* Cursor to scan for */
535   int iColumn,            /* Column to scan for */
536   u32 opMask,             /* Operator(s) to scan for */
537   Index *pIdx             /* Must be compatible with this index */
538 ){
539   int j;
540 
541   /* memset(pScan, 0, sizeof(*pScan)); */
542   pScan->pOrigWC = pWC;
543   pScan->pWC = pWC;
544   if( pIdx && iColumn>=0 ){
545     pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
546     for(j=0; pIdx->aiColumn[j]!=iColumn; j++){
547       if( NEVER(j>pIdx->nColumn) ) return 0;
548     }
549     pScan->zCollName = pIdx->azColl[j];
550   }else{
551     pScan->idxaff = 0;
552     pScan->zCollName = 0;
553   }
554   pScan->opMask = opMask;
555   pScan->k = 0;
556   pScan->aEquiv[0] = iCur;
557   pScan->aEquiv[1] = iColumn;
558   pScan->nEquiv = 2;
559   pScan->iEquiv = 2;
560   return whereScanNext(pScan);
561 }
562 
563 /*
564 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
565 ** where X is a reference to the iColumn of table iCur and <op> is one of
566 ** the WO_xx operator codes specified by the op parameter.
567 ** Return a pointer to the term.  Return 0 if not found.
568 **
569 ** The term returned might by Y=<expr> if there is another constraint in
570 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
571 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
572 ** aEquiv[] array holds X and all its equivalents, with each SQL variable
573 ** taking up two slots in aEquiv[].  The first slot is for the cursor number
574 ** and the second is for the column number.  There are 22 slots in aEquiv[]
575 ** so that means we can look for X plus up to 10 other equivalent values.
576 ** Hence a search for X will return <expr> if X=A1 and A1=A2 and A2=A3
577 ** and ... and A9=A10 and A10=<expr>.
578 **
579 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
580 ** then try for the one with no dependencies on <expr> - in other words where
581 ** <expr> is a constant expression of some kind.  Only return entries of
582 ** the form "X <op> Y" where Y is a column in another table if no terms of
583 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
584 ** exist, try to return a term that does not use WO_EQUIV.
585 */
586 static WhereTerm *findTerm(
587   WhereClause *pWC,     /* The WHERE clause to be searched */
588   int iCur,             /* Cursor number of LHS */
589   int iColumn,          /* Column number of LHS */
590   Bitmask notReady,     /* RHS must not overlap with this mask */
591   u32 op,               /* Mask of WO_xx values describing operator */
592   Index *pIdx           /* Must be compatible with this index, if not NULL */
593 ){
594   WhereTerm *pResult = 0;
595   WhereTerm *p;
596   WhereScan scan;
597 
598   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
599   while( p ){
600     if( (p->prereqRight & notReady)==0 ){
601       if( p->prereqRight==0 && (p->eOperator&WO_EQ)!=0 ){
602         return p;
603       }
604       if( pResult==0 ) pResult = p;
605     }
606     p = whereScanNext(&scan);
607   }
608   return pResult;
609 }
610 
611 /* Forward reference */
612 static void exprAnalyze(SrcList*, WhereClause*, int);
613 
614 /*
615 ** Call exprAnalyze on all terms in a WHERE clause.
616 */
617 static void exprAnalyzeAll(
618   SrcList *pTabList,       /* the FROM clause */
619   WhereClause *pWC         /* the WHERE clause to be analyzed */
620 ){
621   int i;
622   for(i=pWC->nTerm-1; i>=0; i--){
623     exprAnalyze(pTabList, pWC, i);
624   }
625 }
626 
627 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
628 /*
629 ** Check to see if the given expression is a LIKE or GLOB operator that
630 ** can be optimized using inequality constraints.  Return TRUE if it is
631 ** so and false if not.
632 **
633 ** In order for the operator to be optimizible, the RHS must be a string
634 ** literal that does not begin with a wildcard.
635 */
636 static int isLikeOrGlob(
637   Parse *pParse,    /* Parsing and code generating context */
638   Expr *pExpr,      /* Test this expression */
639   Expr **ppPrefix,  /* Pointer to TK_STRING expression with pattern prefix */
640   int *pisComplete, /* True if the only wildcard is % in the last character */
641   int *pnoCase      /* True if uppercase is equivalent to lowercase */
642 ){
643   const char *z = 0;         /* String on RHS of LIKE operator */
644   Expr *pRight, *pLeft;      /* Right and left size of LIKE operator */
645   ExprList *pList;           /* List of operands to the LIKE operator */
646   int c;                     /* One character in z[] */
647   int cnt;                   /* Number of non-wildcard prefix characters */
648   char wc[3];                /* Wildcard characters */
649   sqlite3 *db = pParse->db;  /* Database connection */
650   sqlite3_value *pVal = 0;
651   int op;                    /* Opcode of pRight */
652 
653   if( !sqlite3IsLikeFunction(db, pExpr, pnoCase, wc) ){
654     return 0;
655   }
656 #ifdef SQLITE_EBCDIC
657   if( *pnoCase ) return 0;
658 #endif
659   pList = pExpr->x.pList;
660   pLeft = pList->a[1].pExpr;
661   if( pLeft->op!=TK_COLUMN
662    || sqlite3ExprAffinity(pLeft)!=SQLITE_AFF_TEXT
663    || IsVirtual(pLeft->pTab)
664   ){
665     /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must
666     ** be the name of an indexed column with TEXT affinity. */
667     return 0;
668   }
669   assert( pLeft->iColumn!=(-1) ); /* Because IPK never has AFF_TEXT */
670 
671   pRight = sqlite3ExprSkipCollate(pList->a[0].pExpr);
672   op = pRight->op;
673   if( op==TK_VARIABLE ){
674     Vdbe *pReprepare = pParse->pReprepare;
675     int iCol = pRight->iColumn;
676     pVal = sqlite3VdbeGetBoundValue(pReprepare, iCol, SQLITE_AFF_NONE);
677     if( pVal && sqlite3_value_type(pVal)==SQLITE_TEXT ){
678       z = (char *)sqlite3_value_text(pVal);
679     }
680     sqlite3VdbeSetVarmask(pParse->pVdbe, iCol);
681     assert( pRight->op==TK_VARIABLE || pRight->op==TK_REGISTER );
682   }else if( op==TK_STRING ){
683     z = pRight->u.zToken;
684   }
685   if( z ){
686     cnt = 0;
687     while( (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2] ){
688       cnt++;
689     }
690     if( cnt!=0 && 255!=(u8)z[cnt-1] ){
691       Expr *pPrefix;
692       *pisComplete = c==wc[0] && z[cnt+1]==0;
693       pPrefix = sqlite3Expr(db, TK_STRING, z);
694       if( pPrefix ) pPrefix->u.zToken[cnt] = 0;
695       *ppPrefix = pPrefix;
696       if( op==TK_VARIABLE ){
697         Vdbe *v = pParse->pVdbe;
698         sqlite3VdbeSetVarmask(v, pRight->iColumn);
699         if( *pisComplete && pRight->u.zToken[1] ){
700           /* If the rhs of the LIKE expression is a variable, and the current
701           ** value of the variable means there is no need to invoke the LIKE
702           ** function, then no OP_Variable will be added to the program.
703           ** This causes problems for the sqlite3_bind_parameter_name()
704           ** API. To workaround them, add a dummy OP_Variable here.
705           */
706           int r1 = sqlite3GetTempReg(pParse);
707           sqlite3ExprCodeTarget(pParse, pRight, r1);
708           sqlite3VdbeChangeP3(v, sqlite3VdbeCurrentAddr(v)-1, 0);
709           sqlite3ReleaseTempReg(pParse, r1);
710         }
711       }
712     }else{
713       z = 0;
714     }
715   }
716 
717   sqlite3ValueFree(pVal);
718   return (z!=0);
719 }
720 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
721 
722 
723 #ifndef SQLITE_OMIT_VIRTUALTABLE
724 /*
725 ** Check to see if the given expression is of the form
726 **
727 **         column MATCH expr
728 **
729 ** If it is then return TRUE.  If not, return FALSE.
730 */
731 static int isMatchOfColumn(
732   Expr *pExpr      /* Test this expression */
733 ){
734   ExprList *pList;
735 
736   if( pExpr->op!=TK_FUNCTION ){
737     return 0;
738   }
739   if( sqlite3StrICmp(pExpr->u.zToken,"match")!=0 ){
740     return 0;
741   }
742   pList = pExpr->x.pList;
743   if( pList->nExpr!=2 ){
744     return 0;
745   }
746   if( pList->a[1].pExpr->op != TK_COLUMN ){
747     return 0;
748   }
749   return 1;
750 }
751 #endif /* SQLITE_OMIT_VIRTUALTABLE */
752 
753 /*
754 ** If the pBase expression originated in the ON or USING clause of
755 ** a join, then transfer the appropriate markings over to derived.
756 */
757 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
758   if( pDerived ){
759     pDerived->flags |= pBase->flags & EP_FromJoin;
760     pDerived->iRightJoinTable = pBase->iRightJoinTable;
761   }
762 }
763 
764 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
765 /*
766 ** Analyze a term that consists of two or more OR-connected
767 ** subterms.  So in:
768 **
769 **     ... WHERE  (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
770 **                          ^^^^^^^^^^^^^^^^^^^^
771 **
772 ** This routine analyzes terms such as the middle term in the above example.
773 ** A WhereOrTerm object is computed and attached to the term under
774 ** analysis, regardless of the outcome of the analysis.  Hence:
775 **
776 **     WhereTerm.wtFlags   |=  TERM_ORINFO
777 **     WhereTerm.u.pOrInfo  =  a dynamically allocated WhereOrTerm object
778 **
779 ** The term being analyzed must have two or more of OR-connected subterms.
780 ** A single subterm might be a set of AND-connected sub-subterms.
781 ** Examples of terms under analysis:
782 **
783 **     (A)     t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
784 **     (B)     x=expr1 OR expr2=x OR x=expr3
785 **     (C)     t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
786 **     (D)     x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
787 **     (E)     (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
788 **
789 ** CASE 1:
790 **
791 ** If all subterms are of the form T.C=expr for some single column of C and
792 ** a single table T (as shown in example B above) then create a new virtual
793 ** term that is an equivalent IN expression.  In other words, if the term
794 ** being analyzed is:
795 **
796 **      x = expr1  OR  expr2 = x  OR  x = expr3
797 **
798 ** then create a new virtual term like this:
799 **
800 **      x IN (expr1,expr2,expr3)
801 **
802 ** CASE 2:
803 **
804 ** If all subterms are indexable by a single table T, then set
805 **
806 **     WhereTerm.eOperator              =  WO_OR
807 **     WhereTerm.u.pOrInfo->indexable  |=  the cursor number for table T
808 **
809 ** A subterm is "indexable" if it is of the form
810 ** "T.C <op> <expr>" where C is any column of table T and
811 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
812 ** A subterm is also indexable if it is an AND of two or more
813 ** subsubterms at least one of which is indexable.  Indexable AND
814 ** subterms have their eOperator set to WO_AND and they have
815 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
816 **
817 ** From another point of view, "indexable" means that the subterm could
818 ** potentially be used with an index if an appropriate index exists.
819 ** This analysis does not consider whether or not the index exists; that
820 ** is decided elsewhere.  This analysis only looks at whether subterms
821 ** appropriate for indexing exist.
822 **
823 ** All examples A through E above satisfy case 2.  But if a term
824 ** also statisfies case 1 (such as B) we know that the optimizer will
825 ** always prefer case 1, so in that case we pretend that case 2 is not
826 ** satisfied.
827 **
828 ** It might be the case that multiple tables are indexable.  For example,
829 ** (E) above is indexable on tables P, Q, and R.
830 **
831 ** Terms that satisfy case 2 are candidates for lookup by using
832 ** separate indices to find rowids for each subterm and composing
833 ** the union of all rowids using a RowSet object.  This is similar
834 ** to "bitmap indices" in other database engines.
835 **
836 ** OTHERWISE:
837 **
838 ** If neither case 1 nor case 2 apply, then leave the eOperator set to
839 ** zero.  This term is not useful for search.
840 */
841 static void exprAnalyzeOrTerm(
842   SrcList *pSrc,            /* the FROM clause */
843   WhereClause *pWC,         /* the complete WHERE clause */
844   int idxTerm               /* Index of the OR-term to be analyzed */
845 ){
846   WhereInfo *pWInfo = pWC->pWInfo;        /* WHERE clause processing context */
847   Parse *pParse = pWInfo->pParse;         /* Parser context */
848   sqlite3 *db = pParse->db;               /* Database connection */
849   WhereTerm *pTerm = &pWC->a[idxTerm];    /* The term to be analyzed */
850   Expr *pExpr = pTerm->pExpr;             /* The expression of the term */
851   int i;                                  /* Loop counters */
852   WhereClause *pOrWc;       /* Breakup of pTerm into subterms */
853   WhereTerm *pOrTerm;       /* A Sub-term within the pOrWc */
854   WhereOrInfo *pOrInfo;     /* Additional information associated with pTerm */
855   Bitmask chngToIN;         /* Tables that might satisfy case 1 */
856   Bitmask indexable;        /* Tables that are indexable, satisfying case 2 */
857 
858   /*
859   ** Break the OR clause into its separate subterms.  The subterms are
860   ** stored in a WhereClause structure containing within the WhereOrInfo
861   ** object that is attached to the original OR clause term.
862   */
863   assert( (pTerm->wtFlags & (TERM_DYNAMIC|TERM_ORINFO|TERM_ANDINFO))==0 );
864   assert( pExpr->op==TK_OR );
865   pTerm->u.pOrInfo = pOrInfo = sqlite3DbMallocZero(db, sizeof(*pOrInfo));
866   if( pOrInfo==0 ) return;
867   pTerm->wtFlags |= TERM_ORINFO;
868   pOrWc = &pOrInfo->wc;
869   whereClauseInit(pOrWc, pWInfo);
870   whereSplit(pOrWc, pExpr, TK_OR);
871   exprAnalyzeAll(pSrc, pOrWc);
872   if( db->mallocFailed ) return;
873   assert( pOrWc->nTerm>=2 );
874 
875   /*
876   ** Compute the set of tables that might satisfy cases 1 or 2.
877   */
878   indexable = ~(Bitmask)0;
879   chngToIN = ~(Bitmask)0;
880   for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0 && indexable; i--, pOrTerm++){
881     if( (pOrTerm->eOperator & WO_SINGLE)==0 ){
882       WhereAndInfo *pAndInfo;
883       assert( (pOrTerm->wtFlags & (TERM_ANDINFO|TERM_ORINFO))==0 );
884       chngToIN = 0;
885       pAndInfo = sqlite3DbMallocRaw(db, sizeof(*pAndInfo));
886       if( pAndInfo ){
887         WhereClause *pAndWC;
888         WhereTerm *pAndTerm;
889         int j;
890         Bitmask b = 0;
891         pOrTerm->u.pAndInfo = pAndInfo;
892         pOrTerm->wtFlags |= TERM_ANDINFO;
893         pOrTerm->eOperator = WO_AND;
894         pAndWC = &pAndInfo->wc;
895         whereClauseInit(pAndWC, pWC->pWInfo);
896         whereSplit(pAndWC, pOrTerm->pExpr, TK_AND);
897         exprAnalyzeAll(pSrc, pAndWC);
898         pAndWC->pOuter = pWC;
899         testcase( db->mallocFailed );
900         if( !db->mallocFailed ){
901           for(j=0, pAndTerm=pAndWC->a; j<pAndWC->nTerm; j++, pAndTerm++){
902             assert( pAndTerm->pExpr );
903             if( allowedOp(pAndTerm->pExpr->op) ){
904               b |= getMask(&pWInfo->sMaskSet, pAndTerm->leftCursor);
905             }
906           }
907         }
908         indexable &= b;
909       }
910     }else if( pOrTerm->wtFlags & TERM_COPIED ){
911       /* Skip this term for now.  We revisit it when we process the
912       ** corresponding TERM_VIRTUAL term */
913     }else{
914       Bitmask b;
915       b = getMask(&pWInfo->sMaskSet, pOrTerm->leftCursor);
916       if( pOrTerm->wtFlags & TERM_VIRTUAL ){
917         WhereTerm *pOther = &pOrWc->a[pOrTerm->iParent];
918         b |= getMask(&pWInfo->sMaskSet, pOther->leftCursor);
919       }
920       indexable &= b;
921       if( (pOrTerm->eOperator & WO_EQ)==0 ){
922         chngToIN = 0;
923       }else{
924         chngToIN &= b;
925       }
926     }
927   }
928 
929   /*
930   ** Record the set of tables that satisfy case 2.  The set might be
931   ** empty.
932   */
933   pOrInfo->indexable = indexable;
934   pTerm->eOperator = indexable==0 ? 0 : WO_OR;
935 
936   /*
937   ** chngToIN holds a set of tables that *might* satisfy case 1.  But
938   ** we have to do some additional checking to see if case 1 really
939   ** is satisfied.
940   **
941   ** chngToIN will hold either 0, 1, or 2 bits.  The 0-bit case means
942   ** that there is no possibility of transforming the OR clause into an
943   ** IN operator because one or more terms in the OR clause contain
944   ** something other than == on a column in the single table.  The 1-bit
945   ** case means that every term of the OR clause is of the form
946   ** "table.column=expr" for some single table.  The one bit that is set
947   ** will correspond to the common table.  We still need to check to make
948   ** sure the same column is used on all terms.  The 2-bit case is when
949   ** the all terms are of the form "table1.column=table2.column".  It
950   ** might be possible to form an IN operator with either table1.column
951   ** or table2.column as the LHS if either is common to every term of
952   ** the OR clause.
953   **
954   ** Note that terms of the form "table.column1=table.column2" (the
955   ** same table on both sizes of the ==) cannot be optimized.
956   */
957   if( chngToIN ){
958     int okToChngToIN = 0;     /* True if the conversion to IN is valid */
959     int iColumn = -1;         /* Column index on lhs of IN operator */
960     int iCursor = -1;         /* Table cursor common to all terms */
961     int j = 0;                /* Loop counter */
962 
963     /* Search for a table and column that appears on one side or the
964     ** other of the == operator in every subterm.  That table and column
965     ** will be recorded in iCursor and iColumn.  There might not be any
966     ** such table and column.  Set okToChngToIN if an appropriate table
967     ** and column is found but leave okToChngToIN false if not found.
968     */
969     for(j=0; j<2 && !okToChngToIN; j++){
970       pOrTerm = pOrWc->a;
971       for(i=pOrWc->nTerm-1; i>=0; i--, pOrTerm++){
972         assert( pOrTerm->eOperator & WO_EQ );
973         pOrTerm->wtFlags &= ~TERM_OR_OK;
974         if( pOrTerm->leftCursor==iCursor ){
975           /* This is the 2-bit case and we are on the second iteration and
976           ** current term is from the first iteration.  So skip this term. */
977           assert( j==1 );
978           continue;
979         }
980         if( (chngToIN & getMask(&pWInfo->sMaskSet, pOrTerm->leftCursor))==0 ){
981           /* This term must be of the form t1.a==t2.b where t2 is in the
982           ** chngToIN set but t1 is not.  This term will be either preceeded
983           ** or follwed by an inverted copy (t2.b==t1.a).  Skip this term
984           ** and use its inversion. */
985           testcase( pOrTerm->wtFlags & TERM_COPIED );
986           testcase( pOrTerm->wtFlags & TERM_VIRTUAL );
987           assert( pOrTerm->wtFlags & (TERM_COPIED|TERM_VIRTUAL) );
988           continue;
989         }
990         iColumn = pOrTerm->u.leftColumn;
991         iCursor = pOrTerm->leftCursor;
992         break;
993       }
994       if( i<0 ){
995         /* No candidate table+column was found.  This can only occur
996         ** on the second iteration */
997         assert( j==1 );
998         assert( IsPowerOfTwo(chngToIN) );
999         assert( chngToIN==getMask(&pWInfo->sMaskSet, iCursor) );
1000         break;
1001       }
1002       testcase( j==1 );
1003 
1004       /* We have found a candidate table and column.  Check to see if that
1005       ** table and column is common to every term in the OR clause */
1006       okToChngToIN = 1;
1007       for(; i>=0 && okToChngToIN; i--, pOrTerm++){
1008         assert( pOrTerm->eOperator & WO_EQ );
1009         if( pOrTerm->leftCursor!=iCursor ){
1010           pOrTerm->wtFlags &= ~TERM_OR_OK;
1011         }else if( pOrTerm->u.leftColumn!=iColumn ){
1012           okToChngToIN = 0;
1013         }else{
1014           int affLeft, affRight;
1015           /* If the right-hand side is also a column, then the affinities
1016           ** of both right and left sides must be such that no type
1017           ** conversions are required on the right.  (Ticket #2249)
1018           */
1019           affRight = sqlite3ExprAffinity(pOrTerm->pExpr->pRight);
1020           affLeft = sqlite3ExprAffinity(pOrTerm->pExpr->pLeft);
1021           if( affRight!=0 && affRight!=affLeft ){
1022             okToChngToIN = 0;
1023           }else{
1024             pOrTerm->wtFlags |= TERM_OR_OK;
1025           }
1026         }
1027       }
1028     }
1029 
1030     /* At this point, okToChngToIN is true if original pTerm satisfies
1031     ** case 1.  In that case, construct a new virtual term that is
1032     ** pTerm converted into an IN operator.
1033     */
1034     if( okToChngToIN ){
1035       Expr *pDup;            /* A transient duplicate expression */
1036       ExprList *pList = 0;   /* The RHS of the IN operator */
1037       Expr *pLeft = 0;       /* The LHS of the IN operator */
1038       Expr *pNew;            /* The complete IN operator */
1039 
1040       for(i=pOrWc->nTerm-1, pOrTerm=pOrWc->a; i>=0; i--, pOrTerm++){
1041         if( (pOrTerm->wtFlags & TERM_OR_OK)==0 ) continue;
1042         assert( pOrTerm->eOperator & WO_EQ );
1043         assert( pOrTerm->leftCursor==iCursor );
1044         assert( pOrTerm->u.leftColumn==iColumn );
1045         pDup = sqlite3ExprDup(db, pOrTerm->pExpr->pRight, 0);
1046         pList = sqlite3ExprListAppend(pWInfo->pParse, pList, pDup);
1047         pLeft = pOrTerm->pExpr->pLeft;
1048       }
1049       assert( pLeft!=0 );
1050       pDup = sqlite3ExprDup(db, pLeft, 0);
1051       pNew = sqlite3PExpr(pParse, TK_IN, pDup, 0, 0);
1052       if( pNew ){
1053         int idxNew;
1054         transferJoinMarkings(pNew, pExpr);
1055         assert( !ExprHasProperty(pNew, EP_xIsSelect) );
1056         pNew->x.pList = pList;
1057         idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
1058         testcase( idxNew==0 );
1059         exprAnalyze(pSrc, pWC, idxNew);
1060         pTerm = &pWC->a[idxTerm];
1061         pWC->a[idxNew].iParent = idxTerm;
1062         pTerm->nChild = 1;
1063       }else{
1064         sqlite3ExprListDelete(db, pList);
1065       }
1066       pTerm->eOperator = WO_NOOP;  /* case 1 trumps case 2 */
1067     }
1068   }
1069 }
1070 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
1071 
1072 /*
1073 ** The input to this routine is an WhereTerm structure with only the
1074 ** "pExpr" field filled in.  The job of this routine is to analyze the
1075 ** subexpression and populate all the other fields of the WhereTerm
1076 ** structure.
1077 **
1078 ** If the expression is of the form "<expr> <op> X" it gets commuted
1079 ** to the standard form of "X <op> <expr>".
1080 **
1081 ** If the expression is of the form "X <op> Y" where both X and Y are
1082 ** columns, then the original expression is unchanged and a new virtual
1083 ** term of the form "Y <op> X" is added to the WHERE clause and
1084 ** analyzed separately.  The original term is marked with TERM_COPIED
1085 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr
1086 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
1087 ** is a commuted copy of a prior term.)  The original term has nChild=1
1088 ** and the copy has idxParent set to the index of the original term.
1089 */
1090 static void exprAnalyze(
1091   SrcList *pSrc,            /* the FROM clause */
1092   WhereClause *pWC,         /* the WHERE clause */
1093   int idxTerm               /* Index of the term to be analyzed */
1094 ){
1095   WhereInfo *pWInfo = pWC->pWInfo; /* WHERE clause processing context */
1096   WhereTerm *pTerm;                /* The term to be analyzed */
1097   WhereMaskSet *pMaskSet;          /* Set of table index masks */
1098   Expr *pExpr;                     /* The expression to be analyzed */
1099   Bitmask prereqLeft;              /* Prerequesites of the pExpr->pLeft */
1100   Bitmask prereqAll;               /* Prerequesites of pExpr */
1101   Bitmask extraRight = 0;          /* Extra dependencies on LEFT JOIN */
1102   Expr *pStr1 = 0;                 /* RHS of LIKE/GLOB operator */
1103   int isComplete = 0;              /* RHS of LIKE/GLOB ends with wildcard */
1104   int noCase = 0;                  /* LIKE/GLOB distinguishes case */
1105   int op;                          /* Top-level operator.  pExpr->op */
1106   Parse *pParse = pWInfo->pParse;  /* Parsing context */
1107   sqlite3 *db = pParse->db;        /* Database connection */
1108 
1109   if( db->mallocFailed ){
1110     return;
1111   }
1112   pTerm = &pWC->a[idxTerm];
1113   pMaskSet = &pWInfo->sMaskSet;
1114   pExpr = pTerm->pExpr;
1115   assert( pExpr->op!=TK_AS && pExpr->op!=TK_COLLATE );
1116   prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
1117   op = pExpr->op;
1118   if( op==TK_IN ){
1119     assert( pExpr->pRight==0 );
1120     if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1121       pTerm->prereqRight = exprSelectTableUsage(pMaskSet, pExpr->x.pSelect);
1122     }else{
1123       pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->x.pList);
1124     }
1125   }else if( op==TK_ISNULL ){
1126     pTerm->prereqRight = 0;
1127   }else{
1128     pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
1129   }
1130   prereqAll = exprTableUsage(pMaskSet, pExpr);
1131   if( ExprHasProperty(pExpr, EP_FromJoin) ){
1132     Bitmask x = getMask(pMaskSet, pExpr->iRightJoinTable);
1133     prereqAll |= x;
1134     extraRight = x-1;  /* ON clause terms may not be used with an index
1135                        ** on left table of a LEFT JOIN.  Ticket #3015 */
1136   }
1137   pTerm->prereqAll = prereqAll;
1138   pTerm->leftCursor = -1;
1139   pTerm->iParent = -1;
1140   pTerm->eOperator = 0;
1141   if( allowedOp(op) ){
1142     Expr *pLeft = sqlite3ExprSkipCollate(pExpr->pLeft);
1143     Expr *pRight = sqlite3ExprSkipCollate(pExpr->pRight);
1144     u16 opMask = (pTerm->prereqRight & prereqLeft)==0 ? WO_ALL : WO_EQUIV;
1145     if( pLeft->op==TK_COLUMN ){
1146       pTerm->leftCursor = pLeft->iTable;
1147       pTerm->u.leftColumn = pLeft->iColumn;
1148       pTerm->eOperator = operatorMask(op) & opMask;
1149     }
1150     if( pRight && pRight->op==TK_COLUMN ){
1151       WhereTerm *pNew;
1152       Expr *pDup;
1153       u16 eExtraOp = 0;        /* Extra bits for pNew->eOperator */
1154       if( pTerm->leftCursor>=0 ){
1155         int idxNew;
1156         pDup = sqlite3ExprDup(db, pExpr, 0);
1157         if( db->mallocFailed ){
1158           sqlite3ExprDelete(db, pDup);
1159           return;
1160         }
1161         idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
1162         if( idxNew==0 ) return;
1163         pNew = &pWC->a[idxNew];
1164         pNew->iParent = idxTerm;
1165         pTerm = &pWC->a[idxTerm];
1166         pTerm->nChild = 1;
1167         pTerm->wtFlags |= TERM_COPIED;
1168         if( pExpr->op==TK_EQ
1169          && !ExprHasProperty(pExpr, EP_FromJoin)
1170          && OptimizationEnabled(db, SQLITE_Transitive)
1171         ){
1172           pTerm->eOperator |= WO_EQUIV;
1173           eExtraOp = WO_EQUIV;
1174         }
1175       }else{
1176         pDup = pExpr;
1177         pNew = pTerm;
1178       }
1179       exprCommute(pParse, pDup);
1180       pLeft = sqlite3ExprSkipCollate(pDup->pLeft);
1181       pNew->leftCursor = pLeft->iTable;
1182       pNew->u.leftColumn = pLeft->iColumn;
1183       testcase( (prereqLeft | extraRight) != prereqLeft );
1184       pNew->prereqRight = prereqLeft | extraRight;
1185       pNew->prereqAll = prereqAll;
1186       pNew->eOperator = (operatorMask(pDup->op) + eExtraOp) & opMask;
1187     }
1188   }
1189 
1190 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
1191   /* If a term is the BETWEEN operator, create two new virtual terms
1192   ** that define the range that the BETWEEN implements.  For example:
1193   **
1194   **      a BETWEEN b AND c
1195   **
1196   ** is converted into:
1197   **
1198   **      (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
1199   **
1200   ** The two new terms are added onto the end of the WhereClause object.
1201   ** The new terms are "dynamic" and are children of the original BETWEEN
1202   ** term.  That means that if the BETWEEN term is coded, the children are
1203   ** skipped.  Or, if the children are satisfied by an index, the original
1204   ** BETWEEN term is skipped.
1205   */
1206   else if( pExpr->op==TK_BETWEEN && pWC->op==TK_AND ){
1207     ExprList *pList = pExpr->x.pList;
1208     int i;
1209     static const u8 ops[] = {TK_GE, TK_LE};
1210     assert( pList!=0 );
1211     assert( pList->nExpr==2 );
1212     for(i=0; i<2; i++){
1213       Expr *pNewExpr;
1214       int idxNew;
1215       pNewExpr = sqlite3PExpr(pParse, ops[i],
1216                              sqlite3ExprDup(db, pExpr->pLeft, 0),
1217                              sqlite3ExprDup(db, pList->a[i].pExpr, 0), 0);
1218       transferJoinMarkings(pNewExpr, pExpr);
1219       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
1220       testcase( idxNew==0 );
1221       exprAnalyze(pSrc, pWC, idxNew);
1222       pTerm = &pWC->a[idxTerm];
1223       pWC->a[idxNew].iParent = idxTerm;
1224     }
1225     pTerm->nChild = 2;
1226   }
1227 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
1228 
1229 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
1230   /* Analyze a term that is composed of two or more subterms connected by
1231   ** an OR operator.
1232   */
1233   else if( pExpr->op==TK_OR ){
1234     assert( pWC->op==TK_AND );
1235     exprAnalyzeOrTerm(pSrc, pWC, idxTerm);
1236     pTerm = &pWC->a[idxTerm];
1237   }
1238 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1239 
1240 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
1241   /* Add constraints to reduce the search space on a LIKE or GLOB
1242   ** operator.
1243   **
1244   ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
1245   **
1246   **          x>='abc' AND x<'abd' AND x LIKE 'abc%'
1247   **
1248   ** The last character of the prefix "abc" is incremented to form the
1249   ** termination condition "abd".
1250   */
1251   if( pWC->op==TK_AND
1252    && isLikeOrGlob(pParse, pExpr, &pStr1, &isComplete, &noCase)
1253   ){
1254     Expr *pLeft;       /* LHS of LIKE/GLOB operator */
1255     Expr *pStr2;       /* Copy of pStr1 - RHS of LIKE/GLOB operator */
1256     Expr *pNewExpr1;
1257     Expr *pNewExpr2;
1258     int idxNew1;
1259     int idxNew2;
1260     Token sCollSeqName;  /* Name of collating sequence */
1261 
1262     pLeft = pExpr->x.pList->a[1].pExpr;
1263     pStr2 = sqlite3ExprDup(db, pStr1, 0);
1264     if( !db->mallocFailed ){
1265       u8 c, *pC;       /* Last character before the first wildcard */
1266       pC = (u8*)&pStr2->u.zToken[sqlite3Strlen30(pStr2->u.zToken)-1];
1267       c = *pC;
1268       if( noCase ){
1269         /* The point is to increment the last character before the first
1270         ** wildcard.  But if we increment '@', that will push it into the
1271         ** alphabetic range where case conversions will mess up the
1272         ** inequality.  To avoid this, make sure to also run the full
1273         ** LIKE on all candidate expressions by clearing the isComplete flag
1274         */
1275         if( c=='A'-1 ) isComplete = 0;
1276         c = sqlite3UpperToLower[c];
1277       }
1278       *pC = c + 1;
1279     }
1280     sCollSeqName.z = noCase ? "NOCASE" : "BINARY";
1281     sCollSeqName.n = 6;
1282     pNewExpr1 = sqlite3ExprDup(db, pLeft, 0);
1283     pNewExpr1 = sqlite3PExpr(pParse, TK_GE,
1284            sqlite3ExprAddCollateToken(pParse,pNewExpr1,&sCollSeqName),
1285            pStr1, 0);
1286     transferJoinMarkings(pNewExpr1, pExpr);
1287     idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
1288     testcase( idxNew1==0 );
1289     exprAnalyze(pSrc, pWC, idxNew1);
1290     pNewExpr2 = sqlite3ExprDup(db, pLeft, 0);
1291     pNewExpr2 = sqlite3PExpr(pParse, TK_LT,
1292            sqlite3ExprAddCollateToken(pParse,pNewExpr2,&sCollSeqName),
1293            pStr2, 0);
1294     transferJoinMarkings(pNewExpr2, pExpr);
1295     idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
1296     testcase( idxNew2==0 );
1297     exprAnalyze(pSrc, pWC, idxNew2);
1298     pTerm = &pWC->a[idxTerm];
1299     if( isComplete ){
1300       pWC->a[idxNew1].iParent = idxTerm;
1301       pWC->a[idxNew2].iParent = idxTerm;
1302       pTerm->nChild = 2;
1303     }
1304   }
1305 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
1306 
1307 #ifndef SQLITE_OMIT_VIRTUALTABLE
1308   /* Add a WO_MATCH auxiliary term to the constraint set if the
1309   ** current expression is of the form:  column MATCH expr.
1310   ** This information is used by the xBestIndex methods of
1311   ** virtual tables.  The native query optimizer does not attempt
1312   ** to do anything with MATCH functions.
1313   */
1314   if( isMatchOfColumn(pExpr) ){
1315     int idxNew;
1316     Expr *pRight, *pLeft;
1317     WhereTerm *pNewTerm;
1318     Bitmask prereqColumn, prereqExpr;
1319 
1320     pRight = pExpr->x.pList->a[0].pExpr;
1321     pLeft = pExpr->x.pList->a[1].pExpr;
1322     prereqExpr = exprTableUsage(pMaskSet, pRight);
1323     prereqColumn = exprTableUsage(pMaskSet, pLeft);
1324     if( (prereqExpr & prereqColumn)==0 ){
1325       Expr *pNewExpr;
1326       pNewExpr = sqlite3PExpr(pParse, TK_MATCH,
1327                               0, sqlite3ExprDup(db, pRight, 0), 0);
1328       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
1329       testcase( idxNew==0 );
1330       pNewTerm = &pWC->a[idxNew];
1331       pNewTerm->prereqRight = prereqExpr;
1332       pNewTerm->leftCursor = pLeft->iTable;
1333       pNewTerm->u.leftColumn = pLeft->iColumn;
1334       pNewTerm->eOperator = WO_MATCH;
1335       pNewTerm->iParent = idxTerm;
1336       pTerm = &pWC->a[idxTerm];
1337       pTerm->nChild = 1;
1338       pTerm->wtFlags |= TERM_COPIED;
1339       pNewTerm->prereqAll = pTerm->prereqAll;
1340     }
1341   }
1342 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1343 
1344 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1345   /* When sqlite_stat3 histogram data is available an operator of the
1346   ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
1347   ** as "x>NULL" if x is not an INTEGER PRIMARY KEY.  So construct a
1348   ** virtual term of that form.
1349   **
1350   ** Note that the virtual term must be tagged with TERM_VNULL.  This
1351   ** TERM_VNULL tag will suppress the not-null check at the beginning
1352   ** of the loop.  Without the TERM_VNULL flag, the not-null check at
1353   ** the start of the loop will prevent any results from being returned.
1354   */
1355   if( pExpr->op==TK_NOTNULL
1356    && pExpr->pLeft->op==TK_COLUMN
1357    && pExpr->pLeft->iColumn>=0
1358    && OptimizationEnabled(db, SQLITE_Stat3)
1359   ){
1360     Expr *pNewExpr;
1361     Expr *pLeft = pExpr->pLeft;
1362     int idxNew;
1363     WhereTerm *pNewTerm;
1364 
1365     pNewExpr = sqlite3PExpr(pParse, TK_GT,
1366                             sqlite3ExprDup(db, pLeft, 0),
1367                             sqlite3PExpr(pParse, TK_NULL, 0, 0, 0), 0);
1368 
1369     idxNew = whereClauseInsert(pWC, pNewExpr,
1370                               TERM_VIRTUAL|TERM_DYNAMIC|TERM_VNULL);
1371     if( idxNew ){
1372       pNewTerm = &pWC->a[idxNew];
1373       pNewTerm->prereqRight = 0;
1374       pNewTerm->leftCursor = pLeft->iTable;
1375       pNewTerm->u.leftColumn = pLeft->iColumn;
1376       pNewTerm->eOperator = WO_GT;
1377       pNewTerm->iParent = idxTerm;
1378       pTerm = &pWC->a[idxTerm];
1379       pTerm->nChild = 1;
1380       pTerm->wtFlags |= TERM_COPIED;
1381       pNewTerm->prereqAll = pTerm->prereqAll;
1382     }
1383   }
1384 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1385 
1386   /* Prevent ON clause terms of a LEFT JOIN from being used to drive
1387   ** an index for tables to the left of the join.
1388   */
1389   pTerm->prereqRight |= extraRight;
1390 }
1391 
1392 /*
1393 ** This function searches pList for a entry that matches the iCol-th column
1394 ** of index pIdx.
1395 **
1396 ** If such an expression is found, its index in pList->a[] is returned. If
1397 ** no expression is found, -1 is returned.
1398 */
1399 static int findIndexCol(
1400   Parse *pParse,                  /* Parse context */
1401   ExprList *pList,                /* Expression list to search */
1402   int iBase,                      /* Cursor for table associated with pIdx */
1403   Index *pIdx,                    /* Index to match column of */
1404   int iCol                        /* Column of index to match */
1405 ){
1406   int i;
1407   const char *zColl = pIdx->azColl[iCol];
1408 
1409   for(i=0; i<pList->nExpr; i++){
1410     Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1411     if( p->op==TK_COLUMN
1412      && p->iColumn==pIdx->aiColumn[iCol]
1413      && p->iTable==iBase
1414     ){
1415       CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr);
1416       if( ALWAYS(pColl) && 0==sqlite3StrICmp(pColl->zName, zColl) ){
1417         return i;
1418       }
1419     }
1420   }
1421 
1422   return -1;
1423 }
1424 
1425 /*
1426 ** Return true if the DISTINCT expression-list passed as the third argument
1427 ** is redundant.
1428 **
1429 ** A DISTINCT list is redundant if the database contains some subset of
1430 ** columns that are unique and non-null.
1431 */
1432 static int isDistinctRedundant(
1433   Parse *pParse,            /* Parsing context */
1434   SrcList *pTabList,        /* The FROM clause */
1435   WhereClause *pWC,         /* The WHERE clause */
1436   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
1437 ){
1438   Table *pTab;
1439   Index *pIdx;
1440   int i;
1441   int iBase;
1442 
1443   /* If there is more than one table or sub-select in the FROM clause of
1444   ** this query, then it will not be possible to show that the DISTINCT
1445   ** clause is redundant. */
1446   if( pTabList->nSrc!=1 ) return 0;
1447   iBase = pTabList->a[0].iCursor;
1448   pTab = pTabList->a[0].pTab;
1449 
1450   /* If any of the expressions is an IPK column on table iBase, then return
1451   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
1452   ** current SELECT is a correlated sub-query.
1453   */
1454   for(i=0; i<pDistinct->nExpr; i++){
1455     Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr);
1456     if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1;
1457   }
1458 
1459   /* Loop through all indices on the table, checking each to see if it makes
1460   ** the DISTINCT qualifier redundant. It does so if:
1461   **
1462   **   1. The index is itself UNIQUE, and
1463   **
1464   **   2. All of the columns in the index are either part of the pDistinct
1465   **      list, or else the WHERE clause contains a term of the form "col=X",
1466   **      where X is a constant value. The collation sequences of the
1467   **      comparison and select-list expressions must match those of the index.
1468   **
1469   **   3. All of those index columns for which the WHERE clause does not
1470   **      contain a "col=X" term are subject to a NOT NULL constraint.
1471   */
1472   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1473     if( pIdx->onError==OE_None ) continue;
1474     for(i=0; i<pIdx->nKeyCol; i++){
1475       i16 iCol = pIdx->aiColumn[i];
1476       if( 0==findTerm(pWC, iBase, iCol, ~(Bitmask)0, WO_EQ, pIdx) ){
1477         int iIdxCol = findIndexCol(pParse, pDistinct, iBase, pIdx, i);
1478         if( iIdxCol<0 || pTab->aCol[iCol].notNull==0 ){
1479           break;
1480         }
1481       }
1482     }
1483     if( i==pIdx->nKeyCol ){
1484       /* This index implies that the DISTINCT qualifier is redundant. */
1485       return 1;
1486     }
1487   }
1488 
1489   return 0;
1490 }
1491 
1492 
1493 /*
1494 ** Estimate the logarithm of the input value to base 2.
1495 */
1496 static LogEst estLog(LogEst N){
1497   return N<=10 ? 0 : sqlite3LogEst(N) - 33;
1498 }
1499 
1500 /*
1501 ** Two routines for printing the content of an sqlite3_index_info
1502 ** structure.  Used for testing and debugging only.  If neither
1503 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
1504 ** are no-ops.
1505 */
1506 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
1507 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
1508   int i;
1509   if( !sqlite3WhereTrace ) return;
1510   for(i=0; i<p->nConstraint; i++){
1511     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
1512        i,
1513        p->aConstraint[i].iColumn,
1514        p->aConstraint[i].iTermOffset,
1515        p->aConstraint[i].op,
1516        p->aConstraint[i].usable);
1517   }
1518   for(i=0; i<p->nOrderBy; i++){
1519     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
1520        i,
1521        p->aOrderBy[i].iColumn,
1522        p->aOrderBy[i].desc);
1523   }
1524 }
1525 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
1526   int i;
1527   if( !sqlite3WhereTrace ) return;
1528   for(i=0; i<p->nConstraint; i++){
1529     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
1530        i,
1531        p->aConstraintUsage[i].argvIndex,
1532        p->aConstraintUsage[i].omit);
1533   }
1534   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
1535   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
1536   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
1537   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
1538   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
1539 }
1540 #else
1541 #define TRACE_IDX_INPUTS(A)
1542 #define TRACE_IDX_OUTPUTS(A)
1543 #endif
1544 
1545 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
1546 /*
1547 ** Return TRUE if the WHERE clause term pTerm is of a form where it
1548 ** could be used with an index to access pSrc, assuming an appropriate
1549 ** index existed.
1550 */
1551 static int termCanDriveIndex(
1552   WhereTerm *pTerm,              /* WHERE clause term to check */
1553   struct SrcList_item *pSrc,     /* Table we are trying to access */
1554   Bitmask notReady               /* Tables in outer loops of the join */
1555 ){
1556   char aff;
1557   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
1558   if( (pTerm->eOperator & WO_EQ)==0 ) return 0;
1559   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
1560   if( pTerm->u.leftColumn<0 ) return 0;
1561   aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
1562   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
1563   return 1;
1564 }
1565 #endif
1566 
1567 
1568 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
1569 /*
1570 ** Generate code to construct the Index object for an automatic index
1571 ** and to set up the WhereLevel object pLevel so that the code generator
1572 ** makes use of the automatic index.
1573 */
1574 static void constructAutomaticIndex(
1575   Parse *pParse,              /* The parsing context */
1576   WhereClause *pWC,           /* The WHERE clause */
1577   struct SrcList_item *pSrc,  /* The FROM clause term to get the next index */
1578   Bitmask notReady,           /* Mask of cursors that are not available */
1579   WhereLevel *pLevel          /* Write new index here */
1580 ){
1581   int nKeyCol;                /* Number of columns in the constructed index */
1582   WhereTerm *pTerm;           /* A single term of the WHERE clause */
1583   WhereTerm *pWCEnd;          /* End of pWC->a[] */
1584   Index *pIdx;                /* Object describing the transient index */
1585   Vdbe *v;                    /* Prepared statement under construction */
1586   int addrInit;               /* Address of the initialization bypass jump */
1587   Table *pTable;              /* The table being indexed */
1588   int addrTop;                /* Top of the index fill loop */
1589   int regRecord;              /* Register holding an index record */
1590   int n;                      /* Column counter */
1591   int i;                      /* Loop counter */
1592   int mxBitCol;               /* Maximum column in pSrc->colUsed */
1593   CollSeq *pColl;             /* Collating sequence to on a column */
1594   WhereLoop *pLoop;           /* The Loop object */
1595   char *zNotUsed;             /* Extra space on the end of pIdx */
1596   Bitmask idxCols;            /* Bitmap of columns used for indexing */
1597   Bitmask extraCols;          /* Bitmap of additional columns */
1598   u8 sentWarning = 0;         /* True if a warnning has been issued */
1599 
1600   /* Generate code to skip over the creation and initialization of the
1601   ** transient index on 2nd and subsequent iterations of the loop. */
1602   v = pParse->pVdbe;
1603   assert( v!=0 );
1604   addrInit = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1605 
1606   /* Count the number of columns that will be added to the index
1607   ** and used to match WHERE clause constraints */
1608   nKeyCol = 0;
1609   pTable = pSrc->pTab;
1610   pWCEnd = &pWC->a[pWC->nTerm];
1611   pLoop = pLevel->pWLoop;
1612   idxCols = 0;
1613   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
1614     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
1615       int iCol = pTerm->u.leftColumn;
1616       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
1617       testcase( iCol==BMS );
1618       testcase( iCol==BMS-1 );
1619       if( !sentWarning ){
1620         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
1621             "automatic index on %s(%s)", pTable->zName,
1622             pTable->aCol[iCol].zName);
1623         sentWarning = 1;
1624       }
1625       if( (idxCols & cMask)==0 ){
1626         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ) return;
1627         pLoop->aLTerm[nKeyCol++] = pTerm;
1628         idxCols |= cMask;
1629       }
1630     }
1631   }
1632   assert( nKeyCol>0 );
1633   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
1634   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
1635                      | WHERE_AUTO_INDEX;
1636 
1637   /* Count the number of additional columns needed to create a
1638   ** covering index.  A "covering index" is an index that contains all
1639   ** columns that are needed by the query.  With a covering index, the
1640   ** original table never needs to be accessed.  Automatic indices must
1641   ** be a covering index because the index will not be updated if the
1642   ** original table changes and the index and table cannot both be used
1643   ** if they go out of sync.
1644   */
1645   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
1646   mxBitCol = (pTable->nCol >= BMS-1) ? BMS-1 : pTable->nCol;
1647   testcase( pTable->nCol==BMS-1 );
1648   testcase( pTable->nCol==BMS-2 );
1649   for(i=0; i<mxBitCol; i++){
1650     if( extraCols & MASKBIT(i) ) nKeyCol++;
1651   }
1652   if( pSrc->colUsed & MASKBIT(BMS-1) ){
1653     nKeyCol += pTable->nCol - BMS + 1;
1654   }
1655   pLoop->wsFlags |= WHERE_COLUMN_EQ | WHERE_IDX_ONLY;
1656 
1657   /* Construct the Index object to describe this index */
1658   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
1659   if( pIdx==0 ) return;
1660   pLoop->u.btree.pIndex = pIdx;
1661   pIdx->zName = "auto-index";
1662   pIdx->pTable = pTable;
1663   n = 0;
1664   idxCols = 0;
1665   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
1666     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
1667       int iCol = pTerm->u.leftColumn;
1668       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
1669       testcase( iCol==BMS-1 );
1670       testcase( iCol==BMS );
1671       if( (idxCols & cMask)==0 ){
1672         Expr *pX = pTerm->pExpr;
1673         idxCols |= cMask;
1674         pIdx->aiColumn[n] = pTerm->u.leftColumn;
1675         pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
1676         pIdx->azColl[n] = ALWAYS(pColl) ? pColl->zName : "BINARY";
1677         n++;
1678       }
1679     }
1680   }
1681   assert( (u32)n==pLoop->u.btree.nEq );
1682 
1683   /* Add additional columns needed to make the automatic index into
1684   ** a covering index */
1685   for(i=0; i<mxBitCol; i++){
1686     if( extraCols & MASKBIT(i) ){
1687       pIdx->aiColumn[n] = i;
1688       pIdx->azColl[n] = "BINARY";
1689       n++;
1690     }
1691   }
1692   if( pSrc->colUsed & MASKBIT(BMS-1) ){
1693     for(i=BMS-1; i<pTable->nCol; i++){
1694       pIdx->aiColumn[n] = i;
1695       pIdx->azColl[n] = "BINARY";
1696       n++;
1697     }
1698   }
1699   assert( n==nKeyCol );
1700   pIdx->aiColumn[n] = -1;
1701   pIdx->azColl[n] = "BINARY";
1702 
1703   /* Create the automatic index */
1704   assert( pLevel->iIdxCur>=0 );
1705   pLevel->iIdxCur = pParse->nTab++;
1706   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
1707   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1708   VdbeComment((v, "for %s", pTable->zName));
1709 
1710   /* Fill the automatic index with content */
1711   addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
1712   regRecord = sqlite3GetTempReg(pParse);
1713   sqlite3GenerateIndexKey(pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0);
1714   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
1715   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1716   sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
1717   sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
1718   sqlite3VdbeJumpHere(v, addrTop);
1719   sqlite3ReleaseTempReg(pParse, regRecord);
1720 
1721   /* Jump here when skipping the initialization */
1722   sqlite3VdbeJumpHere(v, addrInit);
1723 }
1724 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
1725 
1726 #ifndef SQLITE_OMIT_VIRTUALTABLE
1727 /*
1728 ** Allocate and populate an sqlite3_index_info structure. It is the
1729 ** responsibility of the caller to eventually release the structure
1730 ** by passing the pointer returned by this function to sqlite3_free().
1731 */
1732 static sqlite3_index_info *allocateIndexInfo(
1733   Parse *pParse,
1734   WhereClause *pWC,
1735   struct SrcList_item *pSrc,
1736   ExprList *pOrderBy
1737 ){
1738   int i, j;
1739   int nTerm;
1740   struct sqlite3_index_constraint *pIdxCons;
1741   struct sqlite3_index_orderby *pIdxOrderBy;
1742   struct sqlite3_index_constraint_usage *pUsage;
1743   WhereTerm *pTerm;
1744   int nOrderBy;
1745   sqlite3_index_info *pIdxInfo;
1746 
1747   /* Count the number of possible WHERE clause constraints referring
1748   ** to this virtual table */
1749   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1750     if( pTerm->leftCursor != pSrc->iCursor ) continue;
1751     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
1752     testcase( pTerm->eOperator & WO_IN );
1753     testcase( pTerm->eOperator & WO_ISNULL );
1754     testcase( pTerm->eOperator & WO_ALL );
1755     if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV))==0 ) continue;
1756     if( pTerm->wtFlags & TERM_VNULL ) continue;
1757     nTerm++;
1758   }
1759 
1760   /* If the ORDER BY clause contains only columns in the current
1761   ** virtual table then allocate space for the aOrderBy part of
1762   ** the sqlite3_index_info structure.
1763   */
1764   nOrderBy = 0;
1765   if( pOrderBy ){
1766     int n = pOrderBy->nExpr;
1767     for(i=0; i<n; i++){
1768       Expr *pExpr = pOrderBy->a[i].pExpr;
1769       if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
1770     }
1771     if( i==n){
1772       nOrderBy = n;
1773     }
1774   }
1775 
1776   /* Allocate the sqlite3_index_info structure
1777   */
1778   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
1779                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1780                            + sizeof(*pIdxOrderBy)*nOrderBy );
1781   if( pIdxInfo==0 ){
1782     sqlite3ErrorMsg(pParse, "out of memory");
1783     return 0;
1784   }
1785 
1786   /* Initialize the structure.  The sqlite3_index_info structure contains
1787   ** many fields that are declared "const" to prevent xBestIndex from
1788   ** changing them.  We have to do some funky casting in order to
1789   ** initialize those fields.
1790   */
1791   pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
1792   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1793   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1794   *(int*)&pIdxInfo->nConstraint = nTerm;
1795   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
1796   *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
1797   *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
1798   *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
1799                                                                    pUsage;
1800 
1801   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1802     u8 op;
1803     if( pTerm->leftCursor != pSrc->iCursor ) continue;
1804     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
1805     testcase( pTerm->eOperator & WO_IN );
1806     testcase( pTerm->eOperator & WO_ISNULL );
1807     testcase( pTerm->eOperator & WO_ALL );
1808     if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV))==0 ) continue;
1809     if( pTerm->wtFlags & TERM_VNULL ) continue;
1810     pIdxCons[j].iColumn = pTerm->u.leftColumn;
1811     pIdxCons[j].iTermOffset = i;
1812     op = (u8)pTerm->eOperator & WO_ALL;
1813     if( op==WO_IN ) op = WO_EQ;
1814     pIdxCons[j].op = op;
1815     /* The direct assignment in the previous line is possible only because
1816     ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
1817     ** following asserts verify this fact. */
1818     assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1819     assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1820     assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1821     assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1822     assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1823     assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
1824     assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
1825     j++;
1826   }
1827   for(i=0; i<nOrderBy; i++){
1828     Expr *pExpr = pOrderBy->a[i].pExpr;
1829     pIdxOrderBy[i].iColumn = pExpr->iColumn;
1830     pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
1831   }
1832 
1833   return pIdxInfo;
1834 }
1835 
1836 /*
1837 ** The table object reference passed as the second argument to this function
1838 ** must represent a virtual table. This function invokes the xBestIndex()
1839 ** method of the virtual table with the sqlite3_index_info object that
1840 ** comes in as the 3rd argument to this function.
1841 **
1842 ** If an error occurs, pParse is populated with an error message and a
1843 ** non-zero value is returned. Otherwise, 0 is returned and the output
1844 ** part of the sqlite3_index_info structure is left populated.
1845 **
1846 ** Whether or not an error is returned, it is the responsibility of the
1847 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1848 ** that this is required.
1849 */
1850 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
1851   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
1852   int i;
1853   int rc;
1854 
1855   TRACE_IDX_INPUTS(p);
1856   rc = pVtab->pModule->xBestIndex(pVtab, p);
1857   TRACE_IDX_OUTPUTS(p);
1858 
1859   if( rc!=SQLITE_OK ){
1860     if( rc==SQLITE_NOMEM ){
1861       pParse->db->mallocFailed = 1;
1862     }else if( !pVtab->zErrMsg ){
1863       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1864     }else{
1865       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1866     }
1867   }
1868   sqlite3_free(pVtab->zErrMsg);
1869   pVtab->zErrMsg = 0;
1870 
1871   for(i=0; i<p->nConstraint; i++){
1872     if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
1873       sqlite3ErrorMsg(pParse,
1874           "table %s: xBestIndex returned an invalid plan", pTab->zName);
1875     }
1876   }
1877 
1878   return pParse->nErr;
1879 }
1880 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1881 
1882 
1883 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1884 /*
1885 ** Estimate the location of a particular key among all keys in an
1886 ** index.  Store the results in aStat as follows:
1887 **
1888 **    aStat[0]      Est. number of rows less than pVal
1889 **    aStat[1]      Est. number of rows equal to pVal
1890 **
1891 ** Return SQLITE_OK on success.
1892 */
1893 static void whereKeyStats(
1894   Parse *pParse,              /* Database connection */
1895   Index *pIdx,                /* Index to consider domain of */
1896   UnpackedRecord *pRec,       /* Vector of values to consider */
1897   int roundUp,                /* Round up if true.  Round down if false */
1898   tRowcnt *aStat              /* OUT: stats written here */
1899 ){
1900   IndexSample *aSample = pIdx->aSample;
1901   int iCol;                   /* Index of required stats in anEq[] etc. */
1902   int iMin = 0;               /* Smallest sample not yet tested */
1903   int i = pIdx->nSample;      /* Smallest sample larger than or equal to pRec */
1904   int iTest;                  /* Next sample to test */
1905   int res;                    /* Result of comparison operation */
1906 
1907 #ifndef SQLITE_DEBUG
1908   UNUSED_PARAMETER( pParse );
1909 #endif
1910   assert( pRec!=0 );
1911   iCol = pRec->nField - 1;
1912   assert( pIdx->nSample>0 );
1913   assert( pRec->nField>0 && iCol<pIdx->nSampleCol );
1914   do{
1915     iTest = (iMin+i)/2;
1916     res = sqlite3VdbeRecordCompare(aSample[iTest].n, aSample[iTest].p, pRec, 0);
1917     if( res<0 ){
1918       iMin = iTest+1;
1919     }else{
1920       i = iTest;
1921     }
1922   }while( res && iMin<i );
1923 
1924 #ifdef SQLITE_DEBUG
1925   /* The following assert statements check that the binary search code
1926   ** above found the right answer. This block serves no purpose other
1927   ** than to invoke the asserts.  */
1928   if( res==0 ){
1929     /* If (res==0) is true, then sample $i must be equal to pRec */
1930     assert( i<pIdx->nSample );
1931     assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec, 0)
1932          || pParse->db->mallocFailed );
1933   }else{
1934     /* Otherwise, pRec must be smaller than sample $i and larger than
1935     ** sample ($i-1).  */
1936     assert( i==pIdx->nSample
1937          || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec, 0)>0
1938          || pParse->db->mallocFailed );
1939     assert( i==0
1940          || sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec, 0)<0
1941          || pParse->db->mallocFailed );
1942   }
1943 #endif /* ifdef SQLITE_DEBUG */
1944 
1945   /* At this point, aSample[i] is the first sample that is greater than
1946   ** or equal to pVal.  Or if i==pIdx->nSample, then all samples are less
1947   ** than pVal.  If aSample[i]==pVal, then res==0.
1948   */
1949   if( res==0 ){
1950     aStat[0] = aSample[i].anLt[iCol];
1951     aStat[1] = aSample[i].anEq[iCol];
1952   }else{
1953     tRowcnt iLower, iUpper, iGap;
1954     if( i==0 ){
1955       iLower = 0;
1956       iUpper = aSample[0].anLt[iCol];
1957     }else{
1958       i64 nRow0 = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1959       iUpper = i>=pIdx->nSample ? nRow0 : aSample[i].anLt[iCol];
1960       iLower = aSample[i-1].anEq[iCol] + aSample[i-1].anLt[iCol];
1961     }
1962     aStat[1] = pIdx->aAvgEq[iCol];
1963     if( iLower>=iUpper ){
1964       iGap = 0;
1965     }else{
1966       iGap = iUpper - iLower;
1967     }
1968     if( roundUp ){
1969       iGap = (iGap*2)/3;
1970     }else{
1971       iGap = iGap/3;
1972     }
1973     aStat[0] = iLower + iGap;
1974   }
1975 }
1976 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1977 
1978 /*
1979 ** If it is not NULL, pTerm is a term that provides an upper or lower
1980 ** bound on a range scan. Without considering pTerm, it is estimated
1981 ** that the scan will visit nNew rows. This function returns the number
1982 ** estimated to be visited after taking pTerm into account.
1983 **
1984 ** If the user explicitly specified a likelihood() value for this term,
1985 ** then the return value is the likelihood multiplied by the number of
1986 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1987 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1988 */
1989 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1990   LogEst nRet = nNew;
1991   if( pTerm ){
1992     if( pTerm->truthProb<=0 ){
1993       nRet += pTerm->truthProb;
1994     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1995       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
1996     }
1997   }
1998   return nRet;
1999 }
2000 
2001 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2002 /*
2003 ** This function is called to estimate the number of rows visited by a
2004 ** range-scan on a skip-scan index. For example:
2005 **
2006 **   CREATE INDEX i1 ON t1(a, b, c);
2007 **   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
2008 **
2009 ** Value pLoop->nOut is currently set to the estimated number of rows
2010 ** visited for scanning (a=? AND b=?). This function reduces that estimate
2011 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
2012 ** on the stat4 data for the index. this scan will be peformed multiple
2013 ** times (once for each (a,b) combination that matches a=?) is dealt with
2014 ** by the caller.
2015 **
2016 ** It does this by scanning through all stat4 samples, comparing values
2017 ** extracted from pLower and pUpper with the corresponding column in each
2018 ** sample. If L and U are the number of samples found to be less than or
2019 ** equal to the values extracted from pLower and pUpper respectively, and
2020 ** N is the total number of samples, the pLoop->nOut value is adjusted
2021 ** as follows:
2022 **
2023 **   nOut = nOut * ( min(U - L, 1) / N )
2024 **
2025 ** If pLower is NULL, or a value cannot be extracted from the term, L is
2026 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
2027 ** U is set to N.
2028 **
2029 ** Normally, this function sets *pbDone to 1 before returning. However,
2030 ** if no value can be extracted from either pLower or pUpper (and so the
2031 ** estimate of the number of rows delivered remains unchanged), *pbDone
2032 ** is left as is.
2033 **
2034 ** If an error occurs, an SQLite error code is returned. Otherwise,
2035 ** SQLITE_OK.
2036 */
2037 static int whereRangeSkipScanEst(
2038   Parse *pParse,       /* Parsing & code generating context */
2039   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
2040   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
2041   WhereLoop *pLoop,    /* Update the .nOut value of this loop */
2042   int *pbDone          /* Set to true if at least one expr. value extracted */
2043 ){
2044   Index *p = pLoop->u.btree.pIndex;
2045   int nEq = pLoop->u.btree.nEq;
2046   sqlite3 *db = pParse->db;
2047   int nLower = -1;
2048   int nUpper = p->nSample+1;
2049   int rc = SQLITE_OK;
2050   u8 aff = p->pTable->aCol[ p->aiColumn[nEq] ].affinity;
2051   CollSeq *pColl;
2052 
2053   sqlite3_value *p1 = 0;          /* Value extracted from pLower */
2054   sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
2055   sqlite3_value *pVal = 0;        /* Value extracted from record */
2056 
2057   pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
2058   if( pLower ){
2059     rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
2060     nLower = 0;
2061   }
2062   if( pUpper && rc==SQLITE_OK ){
2063     rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
2064     nUpper = p2 ? 0 : p->nSample;
2065   }
2066 
2067   if( p1 || p2 ){
2068     int i;
2069     int nDiff;
2070     for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
2071       rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
2072       if( rc==SQLITE_OK && p1 ){
2073         int res = sqlite3MemCompare(p1, pVal, pColl);
2074         if( res>=0 ) nLower++;
2075       }
2076       if( rc==SQLITE_OK && p2 ){
2077         int res = sqlite3MemCompare(p2, pVal, pColl);
2078         if( res>=0 ) nUpper++;
2079       }
2080     }
2081     nDiff = (nUpper - nLower);
2082     if( nDiff<=0 ) nDiff = 1;
2083 
2084     /* If there is both an upper and lower bound specified, and the
2085     ** comparisons indicate that they are close together, use the fallback
2086     ** method (assume that the scan visits 1/64 of the rows) for estimating
2087     ** the number of rows visited. Otherwise, estimate the number of rows
2088     ** using the method described in the header comment for this function. */
2089     if( nDiff!=1 || pUpper==0 || pLower==0 ){
2090       int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
2091       pLoop->nOut -= nAdjust;
2092       *pbDone = 1;
2093       WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n",
2094                            nLower, nUpper, nAdjust*-1, pLoop->nOut));
2095     }
2096 
2097   }else{
2098     assert( *pbDone==0 );
2099   }
2100 
2101   sqlite3ValueFree(p1);
2102   sqlite3ValueFree(p2);
2103   sqlite3ValueFree(pVal);
2104 
2105   return rc;
2106 }
2107 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
2108 
2109 /*
2110 ** This function is used to estimate the number of rows that will be visited
2111 ** by scanning an index for a range of values. The range may have an upper
2112 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
2113 ** and lower bounds are represented by pLower and pUpper respectively. For
2114 ** example, assuming that index p is on t1(a):
2115 **
2116 **   ... FROM t1 WHERE a > ? AND a < ? ...
2117 **                    |_____|   |_____|
2118 **                       |         |
2119 **                     pLower    pUpper
2120 **
2121 ** If either of the upper or lower bound is not present, then NULL is passed in
2122 ** place of the corresponding WhereTerm.
2123 **
2124 ** The value in (pBuilder->pNew->u.btree.nEq) is the index of the index
2125 ** column subject to the range constraint. Or, equivalently, the number of
2126 ** equality constraints optimized by the proposed index scan. For example,
2127 ** assuming index p is on t1(a, b), and the SQL query is:
2128 **
2129 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
2130 **
2131 ** then nEq is set to 1 (as the range restricted column, b, is the second
2132 ** left-most column of the index). Or, if the query is:
2133 **
2134 **   ... FROM t1 WHERE a > ? AND a < ? ...
2135 **
2136 ** then nEq is set to 0.
2137 **
2138 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
2139 ** number of rows that the index scan is expected to visit without
2140 ** considering the range constraints. If nEq is 0, this is the number of
2141 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
2142 ** to account for the range contraints pLower and pUpper.
2143 **
2144 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
2145 ** used, a single range inequality reduces the search space by a factor of 4.
2146 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
2147 ** rows visited by a factor of 64.
2148 */
2149 static int whereRangeScanEst(
2150   Parse *pParse,       /* Parsing & code generating context */
2151   WhereLoopBuilder *pBuilder,
2152   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
2153   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
2154   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
2155 ){
2156   int rc = SQLITE_OK;
2157   int nOut = pLoop->nOut;
2158   LogEst nNew;
2159 
2160 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2161   Index *p = pLoop->u.btree.pIndex;
2162   int nEq = pLoop->u.btree.nEq;
2163 
2164   if( p->nSample>0
2165    && nEq<p->nSampleCol
2166    && OptimizationEnabled(pParse->db, SQLITE_Stat3)
2167   ){
2168     if( nEq==pBuilder->nRecValid ){
2169       UnpackedRecord *pRec = pBuilder->pRec;
2170       tRowcnt a[2];
2171       u8 aff;
2172 
2173       /* Variable iLower will be set to the estimate of the number of rows in
2174       ** the index that are less than the lower bound of the range query. The
2175       ** lower bound being the concatenation of $P and $L, where $P is the
2176       ** key-prefix formed by the nEq values matched against the nEq left-most
2177       ** columns of the index, and $L is the value in pLower.
2178       **
2179       ** Or, if pLower is NULL or $L cannot be extracted from it (because it
2180       ** is not a simple variable or literal value), the lower bound of the
2181       ** range is $P. Due to a quirk in the way whereKeyStats() works, even
2182       ** if $L is available, whereKeyStats() is called for both ($P) and
2183       ** ($P:$L) and the larger of the two returned values used.
2184       **
2185       ** Similarly, iUpper is to be set to the estimate of the number of rows
2186       ** less than the upper bound of the range query. Where the upper bound
2187       ** is either ($P) or ($P:$U). Again, even if $U is available, both values
2188       ** of iUpper are requested of whereKeyStats() and the smaller used.
2189       */
2190       tRowcnt iLower;
2191       tRowcnt iUpper;
2192 
2193       if( nEq==p->nKeyCol ){
2194         aff = SQLITE_AFF_INTEGER;
2195       }else{
2196         aff = p->pTable->aCol[p->aiColumn[nEq]].affinity;
2197       }
2198       /* Determine iLower and iUpper using ($P) only. */
2199       if( nEq==0 ){
2200         iLower = 0;
2201         iUpper = sqlite3LogEstToInt(p->aiRowLogEst[0]);
2202       }else{
2203         /* Note: this call could be optimized away - since the same values must
2204         ** have been requested when testing key $P in whereEqualScanEst().  */
2205         whereKeyStats(pParse, p, pRec, 0, a);
2206         iLower = a[0];
2207         iUpper = a[0] + a[1];
2208       }
2209 
2210       /* If possible, improve on the iLower estimate using ($P:$L). */
2211       if( pLower ){
2212         int bOk;                    /* True if value is extracted from pExpr */
2213         Expr *pExpr = pLower->pExpr->pRight;
2214         assert( (pLower->eOperator & (WO_GT|WO_GE))!=0 );
2215         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
2216         if( rc==SQLITE_OK && bOk ){
2217           tRowcnt iNew;
2218           whereKeyStats(pParse, p, pRec, 0, a);
2219           iNew = a[0] + ((pLower->eOperator & WO_GT) ? a[1] : 0);
2220           if( iNew>iLower ) iLower = iNew;
2221           nOut--;
2222         }
2223       }
2224 
2225       /* If possible, improve on the iUpper estimate using ($P:$U). */
2226       if( pUpper ){
2227         int bOk;                    /* True if value is extracted from pExpr */
2228         Expr *pExpr = pUpper->pExpr->pRight;
2229         assert( (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
2230         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk);
2231         if( rc==SQLITE_OK && bOk ){
2232           tRowcnt iNew;
2233           whereKeyStats(pParse, p, pRec, 1, a);
2234           iNew = a[0] + ((pUpper->eOperator & WO_LE) ? a[1] : 0);
2235           if( iNew<iUpper ) iUpper = iNew;
2236           nOut--;
2237         }
2238       }
2239 
2240       pBuilder->pRec = pRec;
2241       if( rc==SQLITE_OK ){
2242         if( iUpper>iLower ){
2243           nNew = sqlite3LogEst(iUpper - iLower);
2244         }else{
2245           nNew = 10;        assert( 10==sqlite3LogEst(2) );
2246         }
2247         if( nNew<nOut ){
2248           nOut = nNew;
2249         }
2250         pLoop->nOut = (LogEst)nOut;
2251         WHERETRACE(0x10, ("range scan regions: %u..%u  est=%d\n",
2252                            (u32)iLower, (u32)iUpper, nOut));
2253         return SQLITE_OK;
2254       }
2255     }else{
2256       int bDone = 0;
2257       rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
2258       if( bDone ) return rc;
2259     }
2260   }
2261 #else
2262   UNUSED_PARAMETER(pParse);
2263   UNUSED_PARAMETER(pBuilder);
2264 #endif
2265   assert( pLower || pUpper );
2266   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
2267   nNew = whereRangeAdjust(pLower, nOut);
2268   nNew = whereRangeAdjust(pUpper, nNew);
2269 
2270   /* TUNING: If there is both an upper and lower limit, assume the range is
2271   ** reduced by an additional 75%. This means that, by default, an open-ended
2272   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
2273   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
2274   ** match 1/64 of the index. */
2275   if( pLower && pUpper ) nNew -= 20;
2276 
2277   nOut -= (pLower!=0) + (pUpper!=0);
2278   if( nNew<10 ) nNew = 10;
2279   if( nNew<nOut ) nOut = nNew;
2280   pLoop->nOut = (LogEst)nOut;
2281   return rc;
2282 }
2283 
2284 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2285 /*
2286 ** Estimate the number of rows that will be returned based on
2287 ** an equality constraint x=VALUE and where that VALUE occurs in
2288 ** the histogram data.  This only works when x is the left-most
2289 ** column of an index and sqlite_stat3 histogram data is available
2290 ** for that index.  When pExpr==NULL that means the constraint is
2291 ** "x IS NULL" instead of "x=VALUE".
2292 **
2293 ** Write the estimated row count into *pnRow and return SQLITE_OK.
2294 ** If unable to make an estimate, leave *pnRow unchanged and return
2295 ** non-zero.
2296 **
2297 ** This routine can fail if it is unable to load a collating sequence
2298 ** required for string comparison, or if unable to allocate memory
2299 ** for a UTF conversion required for comparison.  The error is stored
2300 ** in the pParse structure.
2301 */
2302 static int whereEqualScanEst(
2303   Parse *pParse,       /* Parsing & code generating context */
2304   WhereLoopBuilder *pBuilder,
2305   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
2306   tRowcnt *pnRow       /* Write the revised row estimate here */
2307 ){
2308   Index *p = pBuilder->pNew->u.btree.pIndex;
2309   int nEq = pBuilder->pNew->u.btree.nEq;
2310   UnpackedRecord *pRec = pBuilder->pRec;
2311   u8 aff;                   /* Column affinity */
2312   int rc;                   /* Subfunction return code */
2313   tRowcnt a[2];             /* Statistics */
2314   int bOk;
2315 
2316   assert( nEq>=1 );
2317   assert( nEq<=p->nColumn );
2318   assert( p->aSample!=0 );
2319   assert( p->nSample>0 );
2320   assert( pBuilder->nRecValid<nEq );
2321 
2322   /* If values are not available for all fields of the index to the left
2323   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
2324   if( pBuilder->nRecValid<(nEq-1) ){
2325     return SQLITE_NOTFOUND;
2326   }
2327 
2328   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
2329   ** below would return the same value.  */
2330   if( nEq>=p->nColumn ){
2331     *pnRow = 1;
2332     return SQLITE_OK;
2333   }
2334 
2335   aff = p->pTable->aCol[p->aiColumn[nEq-1]].affinity;
2336   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq-1, &bOk);
2337   pBuilder->pRec = pRec;
2338   if( rc!=SQLITE_OK ) return rc;
2339   if( bOk==0 ) return SQLITE_NOTFOUND;
2340   pBuilder->nRecValid = nEq;
2341 
2342   whereKeyStats(pParse, p, pRec, 0, a);
2343   WHERETRACE(0x10,("equality scan regions: %d\n", (int)a[1]));
2344   *pnRow = a[1];
2345 
2346   return rc;
2347 }
2348 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
2349 
2350 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2351 /*
2352 ** Estimate the number of rows that will be returned based on
2353 ** an IN constraint where the right-hand side of the IN operator
2354 ** is a list of values.  Example:
2355 **
2356 **        WHERE x IN (1,2,3,4)
2357 **
2358 ** Write the estimated row count into *pnRow and return SQLITE_OK.
2359 ** If unable to make an estimate, leave *pnRow unchanged and return
2360 ** non-zero.
2361 **
2362 ** This routine can fail if it is unable to load a collating sequence
2363 ** required for string comparison, or if unable to allocate memory
2364 ** for a UTF conversion required for comparison.  The error is stored
2365 ** in the pParse structure.
2366 */
2367 static int whereInScanEst(
2368   Parse *pParse,       /* Parsing & code generating context */
2369   WhereLoopBuilder *pBuilder,
2370   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
2371   tRowcnt *pnRow       /* Write the revised row estimate here */
2372 ){
2373   Index *p = pBuilder->pNew->u.btree.pIndex;
2374   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
2375   int nRecValid = pBuilder->nRecValid;
2376   int rc = SQLITE_OK;     /* Subfunction return code */
2377   tRowcnt nEst;           /* Number of rows for a single term */
2378   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
2379   int i;                  /* Loop counter */
2380 
2381   assert( p->aSample!=0 );
2382   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
2383     nEst = nRow0;
2384     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
2385     nRowEst += nEst;
2386     pBuilder->nRecValid = nRecValid;
2387   }
2388 
2389   if( rc==SQLITE_OK ){
2390     if( nRowEst > nRow0 ) nRowEst = nRow0;
2391     *pnRow = nRowEst;
2392     WHERETRACE(0x10,("IN row estimate: est=%g\n", nRowEst));
2393   }
2394   assert( pBuilder->nRecValid==nRecValid );
2395   return rc;
2396 }
2397 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
2398 
2399 /*
2400 ** Disable a term in the WHERE clause.  Except, do not disable the term
2401 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
2402 ** or USING clause of that join.
2403 **
2404 ** Consider the term t2.z='ok' in the following queries:
2405 **
2406 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
2407 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
2408 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
2409 **
2410 ** The t2.z='ok' is disabled in the in (2) because it originates
2411 ** in the ON clause.  The term is disabled in (3) because it is not part
2412 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
2413 **
2414 ** Disabling a term causes that term to not be tested in the inner loop
2415 ** of the join.  Disabling is an optimization.  When terms are satisfied
2416 ** by indices, we disable them to prevent redundant tests in the inner
2417 ** loop.  We would get the correct results if nothing were ever disabled,
2418 ** but joins might run a little slower.  The trick is to disable as much
2419 ** as we can without disabling too much.  If we disabled in (1), we'd get
2420 ** the wrong answer.  See ticket #813.
2421 */
2422 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
2423   if( pTerm
2424       && (pTerm->wtFlags & TERM_CODED)==0
2425       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
2426       && (pLevel->notReady & pTerm->prereqAll)==0
2427   ){
2428     pTerm->wtFlags |= TERM_CODED;
2429     if( pTerm->iParent>=0 ){
2430       WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
2431       if( (--pOther->nChild)==0 ){
2432         disableTerm(pLevel, pOther);
2433       }
2434     }
2435   }
2436 }
2437 
2438 /*
2439 ** Code an OP_Affinity opcode to apply the column affinity string zAff
2440 ** to the n registers starting at base.
2441 **
2442 ** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the
2443 ** beginning and end of zAff are ignored.  If all entries in zAff are
2444 ** SQLITE_AFF_NONE, then no code gets generated.
2445 **
2446 ** This routine makes its own copy of zAff so that the caller is free
2447 ** to modify zAff after this routine returns.
2448 */
2449 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
2450   Vdbe *v = pParse->pVdbe;
2451   if( zAff==0 ){
2452     assert( pParse->db->mallocFailed );
2453     return;
2454   }
2455   assert( v!=0 );
2456 
2457   /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning
2458   ** and end of the affinity string.
2459   */
2460   while( n>0 && zAff[0]==SQLITE_AFF_NONE ){
2461     n--;
2462     base++;
2463     zAff++;
2464   }
2465   while( n>1 && zAff[n-1]==SQLITE_AFF_NONE ){
2466     n--;
2467   }
2468 
2469   /* Code the OP_Affinity opcode if there is anything left to do. */
2470   if( n>0 ){
2471     sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
2472     sqlite3VdbeChangeP4(v, -1, zAff, n);
2473     sqlite3ExprCacheAffinityChange(pParse, base, n);
2474   }
2475 }
2476 
2477 
2478 /*
2479 ** Generate code for a single equality term of the WHERE clause.  An equality
2480 ** term can be either X=expr or X IN (...).   pTerm is the term to be
2481 ** coded.
2482 **
2483 ** The current value for the constraint is left in register iReg.
2484 **
2485 ** For a constraint of the form X=expr, the expression is evaluated and its
2486 ** result is left on the stack.  For constraints of the form X IN (...)
2487 ** this routine sets up a loop that will iterate over all values of X.
2488 */
2489 static int codeEqualityTerm(
2490   Parse *pParse,      /* The parsing context */
2491   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
2492   WhereLevel *pLevel, /* The level of the FROM clause we are working on */
2493   int iEq,            /* Index of the equality term within this level */
2494   int bRev,           /* True for reverse-order IN operations */
2495   int iTarget         /* Attempt to leave results in this register */
2496 ){
2497   Expr *pX = pTerm->pExpr;
2498   Vdbe *v = pParse->pVdbe;
2499   int iReg;                  /* Register holding results */
2500 
2501   assert( iTarget>0 );
2502   if( pX->op==TK_EQ ){
2503     iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
2504   }else if( pX->op==TK_ISNULL ){
2505     iReg = iTarget;
2506     sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
2507 #ifndef SQLITE_OMIT_SUBQUERY
2508   }else{
2509     int eType;
2510     int iTab;
2511     struct InLoop *pIn;
2512     WhereLoop *pLoop = pLevel->pWLoop;
2513 
2514     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
2515       && pLoop->u.btree.pIndex!=0
2516       && pLoop->u.btree.pIndex->aSortOrder[iEq]
2517     ){
2518       testcase( iEq==0 );
2519       testcase( bRev );
2520       bRev = !bRev;
2521     }
2522     assert( pX->op==TK_IN );
2523     iReg = iTarget;
2524     eType = sqlite3FindInIndex(pParse, pX, 0);
2525     if( eType==IN_INDEX_INDEX_DESC ){
2526       testcase( bRev );
2527       bRev = !bRev;
2528     }
2529     iTab = pX->iTable;
2530     sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
2531     VdbeCoverageIf(v, bRev);
2532     VdbeCoverageIf(v, !bRev);
2533     assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
2534     pLoop->wsFlags |= WHERE_IN_ABLE;
2535     if( pLevel->u.in.nIn==0 ){
2536       pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
2537     }
2538     pLevel->u.in.nIn++;
2539     pLevel->u.in.aInLoop =
2540        sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
2541                               sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
2542     pIn = pLevel->u.in.aInLoop;
2543     if( pIn ){
2544       pIn += pLevel->u.in.nIn - 1;
2545       pIn->iCur = iTab;
2546       if( eType==IN_INDEX_ROWID ){
2547         pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
2548       }else{
2549         pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
2550       }
2551       pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen;
2552       sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v);
2553     }else{
2554       pLevel->u.in.nIn = 0;
2555     }
2556 #endif
2557   }
2558   disableTerm(pLevel, pTerm);
2559   return iReg;
2560 }
2561 
2562 /*
2563 ** Generate code that will evaluate all == and IN constraints for an
2564 ** index scan.
2565 **
2566 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
2567 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
2568 ** The index has as many as three equality constraints, but in this
2569 ** example, the third "c" value is an inequality.  So only two
2570 ** constraints are coded.  This routine will generate code to evaluate
2571 ** a==5 and b IN (1,2,3).  The current values for a and b will be stored
2572 ** in consecutive registers and the index of the first register is returned.
2573 **
2574 ** In the example above nEq==2.  But this subroutine works for any value
2575 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
2576 ** The only thing it does is allocate the pLevel->iMem memory cell and
2577 ** compute the affinity string.
2578 **
2579 ** The nExtraReg parameter is 0 or 1.  It is 0 if all WHERE clause constraints
2580 ** are == or IN and are covered by the nEq.  nExtraReg is 1 if there is
2581 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
2582 ** occurs after the nEq quality constraints.
2583 **
2584 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
2585 ** the index of the first memory cell in that range. The code that
2586 ** calls this routine will use that memory range to store keys for
2587 ** start and termination conditions of the loop.
2588 ** key value of the loop.  If one or more IN operators appear, then
2589 ** this routine allocates an additional nEq memory cells for internal
2590 ** use.
2591 **
2592 ** Before returning, *pzAff is set to point to a buffer containing a
2593 ** copy of the column affinity string of the index allocated using
2594 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
2595 ** with equality constraints that use NONE affinity are set to
2596 ** SQLITE_AFF_NONE. This is to deal with SQL such as the following:
2597 **
2598 **   CREATE TABLE t1(a TEXT PRIMARY KEY, b);
2599 **   SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
2600 **
2601 ** In the example above, the index on t1(a) has TEXT affinity. But since
2602 ** the right hand side of the equality constraint (t2.b) has NONE affinity,
2603 ** no conversion should be attempted before using a t2.b value as part of
2604 ** a key to search the index. Hence the first byte in the returned affinity
2605 ** string in this example would be set to SQLITE_AFF_NONE.
2606 */
2607 static int codeAllEqualityTerms(
2608   Parse *pParse,        /* Parsing context */
2609   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
2610   int bRev,             /* Reverse the order of IN operators */
2611   int nExtraReg,        /* Number of extra registers to allocate */
2612   char **pzAff          /* OUT: Set to point to affinity string */
2613 ){
2614   u16 nEq;                      /* The number of == or IN constraints to code */
2615   u16 nSkip;                    /* Number of left-most columns to skip */
2616   Vdbe *v = pParse->pVdbe;      /* The vm under construction */
2617   Index *pIdx;                  /* The index being used for this loop */
2618   WhereTerm *pTerm;             /* A single constraint term */
2619   WhereLoop *pLoop;             /* The WhereLoop object */
2620   int j;                        /* Loop counter */
2621   int regBase;                  /* Base register */
2622   int nReg;                     /* Number of registers to allocate */
2623   char *zAff;                   /* Affinity string to return */
2624 
2625   /* This module is only called on query plans that use an index. */
2626   pLoop = pLevel->pWLoop;
2627   assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
2628   nEq = pLoop->u.btree.nEq;
2629   nSkip = pLoop->u.btree.nSkip;
2630   pIdx = pLoop->u.btree.pIndex;
2631   assert( pIdx!=0 );
2632 
2633   /* Figure out how many memory cells we will need then allocate them.
2634   */
2635   regBase = pParse->nMem + 1;
2636   nReg = pLoop->u.btree.nEq + nExtraReg;
2637   pParse->nMem += nReg;
2638 
2639   zAff = sqlite3DbStrDup(pParse->db, sqlite3IndexAffinityStr(v, pIdx));
2640   if( !zAff ){
2641     pParse->db->mallocFailed = 1;
2642   }
2643 
2644   if( nSkip ){
2645     int iIdxCur = pLevel->iIdxCur;
2646     sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
2647     VdbeCoverageIf(v, bRev==0);
2648     VdbeCoverageIf(v, bRev!=0);
2649     VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
2650     j = sqlite3VdbeAddOp0(v, OP_Goto);
2651     pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
2652                             iIdxCur, 0, regBase, nSkip);
2653     VdbeCoverageIf(v, bRev==0);
2654     VdbeCoverageIf(v, bRev!=0);
2655     sqlite3VdbeJumpHere(v, j);
2656     for(j=0; j<nSkip; j++){
2657       sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
2658       assert( pIdx->aiColumn[j]>=0 );
2659       VdbeComment((v, "%s", pIdx->pTable->aCol[pIdx->aiColumn[j]].zName));
2660     }
2661   }
2662 
2663   /* Evaluate the equality constraints
2664   */
2665   assert( zAff==0 || (int)strlen(zAff)>=nEq );
2666   for(j=nSkip; j<nEq; j++){
2667     int r1;
2668     pTerm = pLoop->aLTerm[j];
2669     assert( pTerm!=0 );
2670     /* The following testcase is true for indices with redundant columns.
2671     ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
2672     testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
2673     testcase( pTerm->wtFlags & TERM_VIRTUAL );
2674     r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
2675     if( r1!=regBase+j ){
2676       if( nReg==1 ){
2677         sqlite3ReleaseTempReg(pParse, regBase);
2678         regBase = r1;
2679       }else{
2680         sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
2681       }
2682     }
2683     testcase( pTerm->eOperator & WO_ISNULL );
2684     testcase( pTerm->eOperator & WO_IN );
2685     if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
2686       Expr *pRight = pTerm->pExpr->pRight;
2687       if( sqlite3ExprCanBeNull(pRight) ){
2688         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
2689         VdbeCoverage(v);
2690       }
2691       if( zAff ){
2692         if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_NONE ){
2693           zAff[j] = SQLITE_AFF_NONE;
2694         }
2695         if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
2696           zAff[j] = SQLITE_AFF_NONE;
2697         }
2698       }
2699     }
2700   }
2701   *pzAff = zAff;
2702   return regBase;
2703 }
2704 
2705 #ifndef SQLITE_OMIT_EXPLAIN
2706 /*
2707 ** This routine is a helper for explainIndexRange() below
2708 **
2709 ** pStr holds the text of an expression that we are building up one term
2710 ** at a time.  This routine adds a new term to the end of the expression.
2711 ** Terms are separated by AND so add the "AND" text for second and subsequent
2712 ** terms only.
2713 */
2714 static void explainAppendTerm(
2715   StrAccum *pStr,             /* The text expression being built */
2716   int iTerm,                  /* Index of this term.  First is zero */
2717   const char *zColumn,        /* Name of the column */
2718   const char *zOp             /* Name of the operator */
2719 ){
2720   if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5);
2721   sqlite3StrAccumAppendAll(pStr, zColumn);
2722   sqlite3StrAccumAppend(pStr, zOp, 1);
2723   sqlite3StrAccumAppend(pStr, "?", 1);
2724 }
2725 
2726 /*
2727 ** Argument pLevel describes a strategy for scanning table pTab. This
2728 ** function returns a pointer to a string buffer containing a description
2729 ** of the subset of table rows scanned by the strategy in the form of an
2730 ** SQL expression. Or, if all rows are scanned, NULL is returned.
2731 **
2732 ** For example, if the query:
2733 **
2734 **   SELECT * FROM t1 WHERE a=1 AND b>2;
2735 **
2736 ** is run and there is an index on (a, b), then this function returns a
2737 ** string similar to:
2738 **
2739 **   "a=? AND b>?"
2740 **
2741 ** The returned pointer points to memory obtained from sqlite3DbMalloc().
2742 ** It is the responsibility of the caller to free the buffer when it is
2743 ** no longer required.
2744 */
2745 static char *explainIndexRange(sqlite3 *db, WhereLoop *pLoop, Table *pTab){
2746   Index *pIndex = pLoop->u.btree.pIndex;
2747   u16 nEq = pLoop->u.btree.nEq;
2748   u16 nSkip = pLoop->u.btree.nSkip;
2749   int i, j;
2750   Column *aCol = pTab->aCol;
2751   i16 *aiColumn = pIndex->aiColumn;
2752   StrAccum txt;
2753 
2754   if( nEq==0 && (pLoop->wsFlags & (WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ){
2755     return 0;
2756   }
2757   sqlite3StrAccumInit(&txt, 0, 0, SQLITE_MAX_LENGTH);
2758   txt.db = db;
2759   sqlite3StrAccumAppend(&txt, " (", 2);
2760   for(i=0; i<nEq; i++){
2761     char *z = aiColumn[i] < 0 ? "rowid" : aCol[aiColumn[i]].zName;
2762     if( i>=nSkip ){
2763       explainAppendTerm(&txt, i, z, "=");
2764     }else{
2765       if( i ) sqlite3StrAccumAppend(&txt, " AND ", 5);
2766       sqlite3StrAccumAppend(&txt, "ANY(", 4);
2767       sqlite3StrAccumAppendAll(&txt, z);
2768       sqlite3StrAccumAppend(&txt, ")", 1);
2769     }
2770   }
2771 
2772   j = i;
2773   if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
2774     char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName;
2775     explainAppendTerm(&txt, i++, z, ">");
2776   }
2777   if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
2778     char *z = aiColumn[j] < 0 ? "rowid" : aCol[aiColumn[j]].zName;
2779     explainAppendTerm(&txt, i, z, "<");
2780   }
2781   sqlite3StrAccumAppend(&txt, ")", 1);
2782   return sqlite3StrAccumFinish(&txt);
2783 }
2784 
2785 /*
2786 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
2787 ** command. If the query being compiled is an EXPLAIN QUERY PLAN, a single
2788 ** record is added to the output to describe the table scan strategy in
2789 ** pLevel.
2790 */
2791 static void explainOneScan(
2792   Parse *pParse,                  /* Parse context */
2793   SrcList *pTabList,              /* Table list this loop refers to */
2794   WhereLevel *pLevel,             /* Scan to write OP_Explain opcode for */
2795   int iLevel,                     /* Value for "level" column of output */
2796   int iFrom,                      /* Value for "from" column of output */
2797   u16 wctrlFlags                  /* Flags passed to sqlite3WhereBegin() */
2798 ){
2799 #ifndef SQLITE_DEBUG
2800   if( pParse->explain==2 )
2801 #endif
2802   {
2803     struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
2804     Vdbe *v = pParse->pVdbe;      /* VM being constructed */
2805     sqlite3 *db = pParse->db;     /* Database handle */
2806     char *zMsg;                   /* Text to add to EQP output */
2807     int iId = pParse->iSelectId;  /* Select id (left-most output column) */
2808     int isSearch;                 /* True for a SEARCH. False for SCAN. */
2809     WhereLoop *pLoop;             /* The controlling WhereLoop object */
2810     u32 flags;                    /* Flags that describe this loop */
2811 
2812     pLoop = pLevel->pWLoop;
2813     flags = pLoop->wsFlags;
2814     if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return;
2815 
2816     isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
2817             || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
2818             || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
2819 
2820     zMsg = sqlite3MPrintf(db, "%s", isSearch?"SEARCH":"SCAN");
2821     if( pItem->pSelect ){
2822       zMsg = sqlite3MAppendf(db, zMsg, "%s SUBQUERY %d", zMsg,pItem->iSelectId);
2823     }else{
2824       zMsg = sqlite3MAppendf(db, zMsg, "%s TABLE %s", zMsg, pItem->zName);
2825     }
2826 
2827     if( pItem->zAlias ){
2828       zMsg = sqlite3MAppendf(db, zMsg, "%s AS %s", zMsg, pItem->zAlias);
2829     }
2830     if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0
2831      && ALWAYS(pLoop->u.btree.pIndex!=0)
2832     ){
2833       const char *zFmt;
2834       Index *pIdx = pLoop->u.btree.pIndex;
2835       char *zWhere = explainIndexRange(db, pLoop, pItem->pTab);
2836       assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
2837       if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
2838         zFmt = zWhere ? "%s USING PRIMARY KEY%.0s%s" : "%s%.0s%s";
2839       }else if( flags & WHERE_AUTO_INDEX ){
2840         zFmt = "%s USING AUTOMATIC COVERING INDEX%.0s%s";
2841       }else if( flags & WHERE_IDX_ONLY ){
2842         zFmt = "%s USING COVERING INDEX %s%s";
2843       }else{
2844         zFmt = "%s USING INDEX %s%s";
2845       }
2846       zMsg = sqlite3MAppendf(db, zMsg, zFmt, zMsg, pIdx->zName, zWhere);
2847       sqlite3DbFree(db, zWhere);
2848     }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
2849       zMsg = sqlite3MAppendf(db, zMsg, "%s USING INTEGER PRIMARY KEY", zMsg);
2850 
2851       if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
2852         zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid=?)", zMsg);
2853       }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
2854         zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>? AND rowid<?)", zMsg);
2855       }else if( flags&WHERE_BTM_LIMIT ){
2856         zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid>?)", zMsg);
2857       }else if( ALWAYS(flags&WHERE_TOP_LIMIT) ){
2858         zMsg = sqlite3MAppendf(db, zMsg, "%s (rowid<?)", zMsg);
2859       }
2860     }
2861 #ifndef SQLITE_OMIT_VIRTUALTABLE
2862     else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
2863       zMsg = sqlite3MAppendf(db, zMsg, "%s VIRTUAL TABLE INDEX %d:%s", zMsg,
2864                   pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
2865     }
2866 #endif
2867     zMsg = sqlite3MAppendf(db, zMsg, "%s", zMsg);
2868     sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg, P4_DYNAMIC);
2869   }
2870 }
2871 #else
2872 # define explainOneScan(u,v,w,x,y,z)
2873 #endif /* SQLITE_OMIT_EXPLAIN */
2874 
2875 
2876 /*
2877 ** Generate code for the start of the iLevel-th loop in the WHERE clause
2878 ** implementation described by pWInfo.
2879 */
2880 static Bitmask codeOneLoopStart(
2881   WhereInfo *pWInfo,   /* Complete information about the WHERE clause */
2882   int iLevel,          /* Which level of pWInfo->a[] should be coded */
2883   Bitmask notReady     /* Which tables are currently available */
2884 ){
2885   int j, k;            /* Loop counters */
2886   int iCur;            /* The VDBE cursor for the table */
2887   int addrNxt;         /* Where to jump to continue with the next IN case */
2888   int omitTable;       /* True if we use the index only */
2889   int bRev;            /* True if we need to scan in reverse order */
2890   WhereLevel *pLevel;  /* The where level to be coded */
2891   WhereLoop *pLoop;    /* The WhereLoop object being coded */
2892   WhereClause *pWC;    /* Decomposition of the entire WHERE clause */
2893   WhereTerm *pTerm;               /* A WHERE clause term */
2894   Parse *pParse;                  /* Parsing context */
2895   sqlite3 *db;                    /* Database connection */
2896   Vdbe *v;                        /* The prepared stmt under constructions */
2897   struct SrcList_item *pTabItem;  /* FROM clause term being coded */
2898   int addrBrk;                    /* Jump here to break out of the loop */
2899   int addrCont;                   /* Jump here to continue with next cycle */
2900   int iRowidReg = 0;        /* Rowid is stored in this register, if not zero */
2901   int iReleaseReg = 0;      /* Temp register to free before returning */
2902 
2903   pParse = pWInfo->pParse;
2904   v = pParse->pVdbe;
2905   pWC = &pWInfo->sWC;
2906   db = pParse->db;
2907   pLevel = &pWInfo->a[iLevel];
2908   pLoop = pLevel->pWLoop;
2909   pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
2910   iCur = pTabItem->iCursor;
2911   pLevel->notReady = notReady & ~getMask(&pWInfo->sMaskSet, iCur);
2912   bRev = (pWInfo->revMask>>iLevel)&1;
2913   omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
2914            && (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)==0;
2915   VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
2916 
2917   /* Create labels for the "break" and "continue" instructions
2918   ** for the current loop.  Jump to addrBrk to break out of a loop.
2919   ** Jump to cont to go immediately to the next iteration of the
2920   ** loop.
2921   **
2922   ** When there is an IN operator, we also have a "addrNxt" label that
2923   ** means to continue with the next IN value combination.  When
2924   ** there are no IN operators in the constraints, the "addrNxt" label
2925   ** is the same as "addrBrk".
2926   */
2927   addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
2928   addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
2929 
2930   /* If this is the right table of a LEFT OUTER JOIN, allocate and
2931   ** initialize a memory cell that records if this table matches any
2932   ** row of the left table of the join.
2933   */
2934   if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
2935     pLevel->iLeftJoin = ++pParse->nMem;
2936     sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
2937     VdbeComment((v, "init LEFT JOIN no-match flag"));
2938   }
2939 
2940   /* Special case of a FROM clause subquery implemented as a co-routine */
2941   if( pTabItem->viaCoroutine ){
2942     int regYield = pTabItem->regReturn;
2943     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
2944     pLevel->p2 =  sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
2945     VdbeCoverage(v);
2946     VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
2947     pLevel->op = OP_Goto;
2948   }else
2949 
2950 #ifndef SQLITE_OMIT_VIRTUALTABLE
2951   if(  (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
2952     /* Case 1:  The table is a virtual-table.  Use the VFilter and VNext
2953     **          to access the data.
2954     */
2955     int iReg;   /* P3 Value for OP_VFilter */
2956     int addrNotFound;
2957     int nConstraint = pLoop->nLTerm;
2958 
2959     sqlite3ExprCachePush(pParse);
2960     iReg = sqlite3GetTempRange(pParse, nConstraint+2);
2961     addrNotFound = pLevel->addrBrk;
2962     for(j=0; j<nConstraint; j++){
2963       int iTarget = iReg+j+2;
2964       pTerm = pLoop->aLTerm[j];
2965       if( pTerm==0 ) continue;
2966       if( pTerm->eOperator & WO_IN ){
2967         codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
2968         addrNotFound = pLevel->addrNxt;
2969       }else{
2970         sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget);
2971       }
2972     }
2973     sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
2974     sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
2975     sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
2976                       pLoop->u.vtab.idxStr,
2977                       pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC);
2978     VdbeCoverage(v);
2979     pLoop->u.vtab.needFree = 0;
2980     for(j=0; j<nConstraint && j<16; j++){
2981       if( (pLoop->u.vtab.omitMask>>j)&1 ){
2982         disableTerm(pLevel, pLoop->aLTerm[j]);
2983       }
2984     }
2985     pLevel->op = OP_VNext;
2986     pLevel->p1 = iCur;
2987     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2988     sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
2989     sqlite3ExprCachePop(pParse);
2990   }else
2991 #endif /* SQLITE_OMIT_VIRTUALTABLE */
2992 
2993   if( (pLoop->wsFlags & WHERE_IPK)!=0
2994    && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
2995   ){
2996     /* Case 2:  We can directly reference a single row using an
2997     **          equality comparison against the ROWID field.  Or
2998     **          we reference multiple rows using a "rowid IN (...)"
2999     **          construct.
3000     */
3001     assert( pLoop->u.btree.nEq==1 );
3002     pTerm = pLoop->aLTerm[0];
3003     assert( pTerm!=0 );
3004     assert( pTerm->pExpr!=0 );
3005     assert( omitTable==0 );
3006     testcase( pTerm->wtFlags & TERM_VIRTUAL );
3007     iReleaseReg = ++pParse->nMem;
3008     iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
3009     if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
3010     addrNxt = pLevel->addrNxt;
3011     sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v);
3012     sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
3013     VdbeCoverage(v);
3014     sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1);
3015     sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
3016     VdbeComment((v, "pk"));
3017     pLevel->op = OP_Noop;
3018   }else if( (pLoop->wsFlags & WHERE_IPK)!=0
3019          && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
3020   ){
3021     /* Case 3:  We have an inequality comparison against the ROWID field.
3022     */
3023     int testOp = OP_Noop;
3024     int start;
3025     int memEndValue = 0;
3026     WhereTerm *pStart, *pEnd;
3027 
3028     assert( omitTable==0 );
3029     j = 0;
3030     pStart = pEnd = 0;
3031     if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
3032     if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
3033     assert( pStart!=0 || pEnd!=0 );
3034     if( bRev ){
3035       pTerm = pStart;
3036       pStart = pEnd;
3037       pEnd = pTerm;
3038     }
3039     if( pStart ){
3040       Expr *pX;             /* The expression that defines the start bound */
3041       int r1, rTemp;        /* Registers for holding the start boundary */
3042 
3043       /* The following constant maps TK_xx codes into corresponding
3044       ** seek opcodes.  It depends on a particular ordering of TK_xx
3045       */
3046       const u8 aMoveOp[] = {
3047            /* TK_GT */  OP_SeekGT,
3048            /* TK_LE */  OP_SeekLE,
3049            /* TK_LT */  OP_SeekLT,
3050            /* TK_GE */  OP_SeekGE
3051       };
3052       assert( TK_LE==TK_GT+1 );      /* Make sure the ordering.. */
3053       assert( TK_LT==TK_GT+2 );      /*  ... of the TK_xx values... */
3054       assert( TK_GE==TK_GT+3 );      /*  ... is correcct. */
3055 
3056       assert( (pStart->wtFlags & TERM_VNULL)==0 );
3057       testcase( pStart->wtFlags & TERM_VIRTUAL );
3058       pX = pStart->pExpr;
3059       assert( pX!=0 );
3060       testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
3061       r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
3062       sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
3063       VdbeComment((v, "pk"));
3064       VdbeCoverageIf(v, pX->op==TK_GT);
3065       VdbeCoverageIf(v, pX->op==TK_LE);
3066       VdbeCoverageIf(v, pX->op==TK_LT);
3067       VdbeCoverageIf(v, pX->op==TK_GE);
3068       sqlite3ExprCacheAffinityChange(pParse, r1, 1);
3069       sqlite3ReleaseTempReg(pParse, rTemp);
3070       disableTerm(pLevel, pStart);
3071     }else{
3072       sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
3073       VdbeCoverageIf(v, bRev==0);
3074       VdbeCoverageIf(v, bRev!=0);
3075     }
3076     if( pEnd ){
3077       Expr *pX;
3078       pX = pEnd->pExpr;
3079       assert( pX!=0 );
3080       assert( (pEnd->wtFlags & TERM_VNULL)==0 );
3081       testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
3082       testcase( pEnd->wtFlags & TERM_VIRTUAL );
3083       memEndValue = ++pParse->nMem;
3084       sqlite3ExprCode(pParse, pX->pRight, memEndValue);
3085       if( pX->op==TK_LT || pX->op==TK_GT ){
3086         testOp = bRev ? OP_Le : OP_Ge;
3087       }else{
3088         testOp = bRev ? OP_Lt : OP_Gt;
3089       }
3090       disableTerm(pLevel, pEnd);
3091     }
3092     start = sqlite3VdbeCurrentAddr(v);
3093     pLevel->op = bRev ? OP_Prev : OP_Next;
3094     pLevel->p1 = iCur;
3095     pLevel->p2 = start;
3096     assert( pLevel->p5==0 );
3097     if( testOp!=OP_Noop ){
3098       iRowidReg = ++pParse->nMem;
3099       sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
3100       sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
3101       sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
3102       VdbeCoverageIf(v, testOp==OP_Le);
3103       VdbeCoverageIf(v, testOp==OP_Lt);
3104       VdbeCoverageIf(v, testOp==OP_Ge);
3105       VdbeCoverageIf(v, testOp==OP_Gt);
3106       sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
3107     }
3108   }else if( pLoop->wsFlags & WHERE_INDEXED ){
3109     /* Case 4: A scan using an index.
3110     **
3111     **         The WHERE clause may contain zero or more equality
3112     **         terms ("==" or "IN" operators) that refer to the N
3113     **         left-most columns of the index. It may also contain
3114     **         inequality constraints (>, <, >= or <=) on the indexed
3115     **         column that immediately follows the N equalities. Only
3116     **         the right-most column can be an inequality - the rest must
3117     **         use the "==" and "IN" operators. For example, if the
3118     **         index is on (x,y,z), then the following clauses are all
3119     **         optimized:
3120     **
3121     **            x=5
3122     **            x=5 AND y=10
3123     **            x=5 AND y<10
3124     **            x=5 AND y>5 AND y<10
3125     **            x=5 AND y=5 AND z<=10
3126     **
3127     **         The z<10 term of the following cannot be used, only
3128     **         the x=5 term:
3129     **
3130     **            x=5 AND z<10
3131     **
3132     **         N may be zero if there are inequality constraints.
3133     **         If there are no inequality constraints, then N is at
3134     **         least one.
3135     **
3136     **         This case is also used when there are no WHERE clause
3137     **         constraints but an index is selected anyway, in order
3138     **         to force the output order to conform to an ORDER BY.
3139     */
3140     static const u8 aStartOp[] = {
3141       0,
3142       0,
3143       OP_Rewind,           /* 2: (!start_constraints && startEq &&  !bRev) */
3144       OP_Last,             /* 3: (!start_constraints && startEq &&   bRev) */
3145       OP_SeekGT,           /* 4: (start_constraints  && !startEq && !bRev) */
3146       OP_SeekLT,           /* 5: (start_constraints  && !startEq &&  bRev) */
3147       OP_SeekGE,           /* 6: (start_constraints  &&  startEq && !bRev) */
3148       OP_SeekLE            /* 7: (start_constraints  &&  startEq &&  bRev) */
3149     };
3150     static const u8 aEndOp[] = {
3151       OP_IdxGE,            /* 0: (end_constraints && !bRev && !endEq) */
3152       OP_IdxGT,            /* 1: (end_constraints && !bRev &&  endEq) */
3153       OP_IdxLE,            /* 2: (end_constraints &&  bRev && !endEq) */
3154       OP_IdxLT,            /* 3: (end_constraints &&  bRev &&  endEq) */
3155     };
3156     u16 nEq = pLoop->u.btree.nEq;     /* Number of == or IN terms */
3157     int regBase;                 /* Base register holding constraint values */
3158     WhereTerm *pRangeStart = 0;  /* Inequality constraint at range start */
3159     WhereTerm *pRangeEnd = 0;    /* Inequality constraint at range end */
3160     int startEq;                 /* True if range start uses ==, >= or <= */
3161     int endEq;                   /* True if range end uses ==, >= or <= */
3162     int start_constraints;       /* Start of range is constrained */
3163     int nConstraint;             /* Number of constraint terms */
3164     Index *pIdx;                 /* The index we will be using */
3165     int iIdxCur;                 /* The VDBE cursor for the index */
3166     int nExtraReg = 0;           /* Number of extra registers needed */
3167     int op;                      /* Instruction opcode */
3168     char *zStartAff;             /* Affinity for start of range constraint */
3169     char cEndAff = 0;            /* Affinity for end of range constraint */
3170     u8 bSeekPastNull = 0;        /* True to seek past initial nulls */
3171     u8 bStopAtNull = 0;          /* Add condition to terminate at NULLs */
3172 
3173     pIdx = pLoop->u.btree.pIndex;
3174     iIdxCur = pLevel->iIdxCur;
3175     assert( nEq>=pLoop->u.btree.nSkip );
3176 
3177     /* If this loop satisfies a sort order (pOrderBy) request that
3178     ** was passed to this function to implement a "SELECT min(x) ..."
3179     ** query, then the caller will only allow the loop to run for
3180     ** a single iteration. This means that the first row returned
3181     ** should not have a NULL value stored in 'x'. If column 'x' is
3182     ** the first one after the nEq equality constraints in the index,
3183     ** this requires some special handling.
3184     */
3185     assert( pWInfo->pOrderBy==0
3186          || pWInfo->pOrderBy->nExpr==1
3187          || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 );
3188     if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
3189      && pWInfo->nOBSat>0
3190      && (pIdx->nKeyCol>nEq)
3191     ){
3192       assert( pLoop->u.btree.nSkip==0 );
3193       bSeekPastNull = 1;
3194       nExtraReg = 1;
3195     }
3196 
3197     /* Find any inequality constraint terms for the start and end
3198     ** of the range.
3199     */
3200     j = nEq;
3201     if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
3202       pRangeStart = pLoop->aLTerm[j++];
3203       nExtraReg = 1;
3204     }
3205     if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
3206       pRangeEnd = pLoop->aLTerm[j++];
3207       nExtraReg = 1;
3208       if( pRangeStart==0
3209        && (j = pIdx->aiColumn[nEq])>=0
3210        && pIdx->pTable->aCol[j].notNull==0
3211       ){
3212         bSeekPastNull = 1;
3213       }
3214     }
3215     assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
3216 
3217     /* Generate code to evaluate all constraint terms using == or IN
3218     ** and store the values of those terms in an array of registers
3219     ** starting at regBase.
3220     */
3221     regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
3222     assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
3223     if( zStartAff ) cEndAff = zStartAff[nEq];
3224     addrNxt = pLevel->addrNxt;
3225 
3226     /* If we are doing a reverse order scan on an ascending index, or
3227     ** a forward order scan on a descending index, interchange the
3228     ** start and end terms (pRangeStart and pRangeEnd).
3229     */
3230     if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
3231      || (bRev && pIdx->nKeyCol==nEq)
3232     ){
3233       SWAP(WhereTerm *, pRangeEnd, pRangeStart);
3234       SWAP(u8, bSeekPastNull, bStopAtNull);
3235     }
3236 
3237     testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
3238     testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
3239     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
3240     testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
3241     startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
3242     endEq =   !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
3243     start_constraints = pRangeStart || nEq>0;
3244 
3245     /* Seek the index cursor to the start of the range. */
3246     nConstraint = nEq;
3247     if( pRangeStart ){
3248       Expr *pRight = pRangeStart->pExpr->pRight;
3249       sqlite3ExprCode(pParse, pRight, regBase+nEq);
3250       if( (pRangeStart->wtFlags & TERM_VNULL)==0
3251        && sqlite3ExprCanBeNull(pRight)
3252       ){
3253         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
3254         VdbeCoverage(v);
3255       }
3256       if( zStartAff ){
3257         if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_NONE){
3258           /* Since the comparison is to be performed with no conversions
3259           ** applied to the operands, set the affinity to apply to pRight to
3260           ** SQLITE_AFF_NONE.  */
3261           zStartAff[nEq] = SQLITE_AFF_NONE;
3262         }
3263         if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){
3264           zStartAff[nEq] = SQLITE_AFF_NONE;
3265         }
3266       }
3267       nConstraint++;
3268       testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
3269     }else if( bSeekPastNull ){
3270       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
3271       nConstraint++;
3272       startEq = 0;
3273       start_constraints = 1;
3274     }
3275     codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
3276     op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
3277     assert( op!=0 );
3278     sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
3279     VdbeCoverage(v);
3280     VdbeCoverageIf(v, op==OP_Rewind);  testcase( op==OP_Rewind );
3281     VdbeCoverageIf(v, op==OP_Last);    testcase( op==OP_Last );
3282     VdbeCoverageIf(v, op==OP_SeekGT);  testcase( op==OP_SeekGT );
3283     VdbeCoverageIf(v, op==OP_SeekGE);  testcase( op==OP_SeekGE );
3284     VdbeCoverageIf(v, op==OP_SeekLE);  testcase( op==OP_SeekLE );
3285     VdbeCoverageIf(v, op==OP_SeekLT);  testcase( op==OP_SeekLT );
3286 
3287     /* Load the value for the inequality constraint at the end of the
3288     ** range (if any).
3289     */
3290     nConstraint = nEq;
3291     if( pRangeEnd ){
3292       Expr *pRight = pRangeEnd->pExpr->pRight;
3293       sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
3294       sqlite3ExprCode(pParse, pRight, regBase+nEq);
3295       if( (pRangeEnd->wtFlags & TERM_VNULL)==0
3296        && sqlite3ExprCanBeNull(pRight)
3297       ){
3298         sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
3299         VdbeCoverage(v);
3300       }
3301       if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_NONE
3302        && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff)
3303       ){
3304         codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff);
3305       }
3306       nConstraint++;
3307       testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
3308     }else if( bStopAtNull ){
3309       sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
3310       endEq = 0;
3311       nConstraint++;
3312     }
3313     sqlite3DbFree(db, zStartAff);
3314 
3315     /* Top of the loop body */
3316     pLevel->p2 = sqlite3VdbeCurrentAddr(v);
3317 
3318     /* Check if the index cursor is past the end of the range. */
3319     if( nConstraint ){
3320       op = aEndOp[bRev*2 + endEq];
3321       sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
3322       testcase( op==OP_IdxGT );  VdbeCoverageIf(v, op==OP_IdxGT );
3323       testcase( op==OP_IdxGE );  VdbeCoverageIf(v, op==OP_IdxGE );
3324       testcase( op==OP_IdxLT );  VdbeCoverageIf(v, op==OP_IdxLT );
3325       testcase( op==OP_IdxLE );  VdbeCoverageIf(v, op==OP_IdxLE );
3326     }
3327 
3328     /* Seek the table cursor, if required */
3329     disableTerm(pLevel, pRangeStart);
3330     disableTerm(pLevel, pRangeEnd);
3331     if( omitTable ){
3332       /* pIdx is a covering index.  No need to access the main table. */
3333     }else if( HasRowid(pIdx->pTable) ){
3334       iRowidReg = ++pParse->nMem;
3335       sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
3336       sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
3337       sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg);  /* Deferred seek */
3338     }else if( iCur!=iIdxCur ){
3339       Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
3340       iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
3341       for(j=0; j<pPk->nKeyCol; j++){
3342         k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
3343         sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
3344       }
3345       sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
3346                            iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
3347     }
3348 
3349     /* Record the instruction used to terminate the loop. Disable
3350     ** WHERE clause terms made redundant by the index range scan.
3351     */
3352     if( pLoop->wsFlags & WHERE_ONEROW ){
3353       pLevel->op = OP_Noop;
3354     }else if( bRev ){
3355       pLevel->op = OP_Prev;
3356     }else{
3357       pLevel->op = OP_Next;
3358     }
3359     pLevel->p1 = iIdxCur;
3360     pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
3361     if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
3362       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
3363     }else{
3364       assert( pLevel->p5==0 );
3365     }
3366   }else
3367 
3368 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
3369   if( pLoop->wsFlags & WHERE_MULTI_OR ){
3370     /* Case 5:  Two or more separately indexed terms connected by OR
3371     **
3372     ** Example:
3373     **
3374     **   CREATE TABLE t1(a,b,c,d);
3375     **   CREATE INDEX i1 ON t1(a);
3376     **   CREATE INDEX i2 ON t1(b);
3377     **   CREATE INDEX i3 ON t1(c);
3378     **
3379     **   SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
3380     **
3381     ** In the example, there are three indexed terms connected by OR.
3382     ** The top of the loop looks like this:
3383     **
3384     **          Null       1                # Zero the rowset in reg 1
3385     **
3386     ** Then, for each indexed term, the following. The arguments to
3387     ** RowSetTest are such that the rowid of the current row is inserted
3388     ** into the RowSet. If it is already present, control skips the
3389     ** Gosub opcode and jumps straight to the code generated by WhereEnd().
3390     **
3391     **        sqlite3WhereBegin(<term>)
3392     **          RowSetTest                  # Insert rowid into rowset
3393     **          Gosub      2 A
3394     **        sqlite3WhereEnd()
3395     **
3396     ** Following the above, code to terminate the loop. Label A, the target
3397     ** of the Gosub above, jumps to the instruction right after the Goto.
3398     **
3399     **          Null       1                # Zero the rowset in reg 1
3400     **          Goto       B                # The loop is finished.
3401     **
3402     **       A: <loop body>                 # Return data, whatever.
3403     **
3404     **          Return     2                # Jump back to the Gosub
3405     **
3406     **       B: <after the loop>
3407     **
3408     ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
3409     ** use an ephermeral index instead of a RowSet to record the primary
3410     ** keys of the rows we have already seen.
3411     **
3412     */
3413     WhereClause *pOrWc;    /* The OR-clause broken out into subterms */
3414     SrcList *pOrTab;       /* Shortened table list or OR-clause generation */
3415     Index *pCov = 0;             /* Potential covering index (or NULL) */
3416     int iCovCur = pParse->nTab++;  /* Cursor used for index scans (if any) */
3417 
3418     int regReturn = ++pParse->nMem;           /* Register used with OP_Gosub */
3419     int regRowset = 0;                        /* Register for RowSet object */
3420     int regRowid = 0;                         /* Register holding rowid */
3421     int iLoopBody = sqlite3VdbeMakeLabel(v);  /* Start of loop body */
3422     int iRetInit;                             /* Address of regReturn init */
3423     int untestedTerms = 0;             /* Some terms not completely tested */
3424     int ii;                            /* Loop counter */
3425     Expr *pAndExpr = 0;                /* An ".. AND (...)" expression */
3426     Table *pTab = pTabItem->pTab;
3427 
3428     pTerm = pLoop->aLTerm[0];
3429     assert( pTerm!=0 );
3430     assert( pTerm->eOperator & WO_OR );
3431     assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
3432     pOrWc = &pTerm->u.pOrInfo->wc;
3433     pLevel->op = OP_Return;
3434     pLevel->p1 = regReturn;
3435 
3436     /* Set up a new SrcList in pOrTab containing the table being scanned
3437     ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
3438     ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
3439     */
3440     if( pWInfo->nLevel>1 ){
3441       int nNotReady;                 /* The number of notReady tables */
3442       struct SrcList_item *origSrc;     /* Original list of tables */
3443       nNotReady = pWInfo->nLevel - iLevel - 1;
3444       pOrTab = sqlite3StackAllocRaw(db,
3445                             sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
3446       if( pOrTab==0 ) return notReady;
3447       pOrTab->nAlloc = (u8)(nNotReady + 1);
3448       pOrTab->nSrc = pOrTab->nAlloc;
3449       memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
3450       origSrc = pWInfo->pTabList->a;
3451       for(k=1; k<=nNotReady; k++){
3452         memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
3453       }
3454     }else{
3455       pOrTab = pWInfo->pTabList;
3456     }
3457 
3458     /* Initialize the rowset register to contain NULL. An SQL NULL is
3459     ** equivalent to an empty rowset.  Or, create an ephermeral index
3460     ** capable of holding primary keys in the case of a WITHOUT ROWID.
3461     **
3462     ** Also initialize regReturn to contain the address of the instruction
3463     ** immediately following the OP_Return at the bottom of the loop. This
3464     ** is required in a few obscure LEFT JOIN cases where control jumps
3465     ** over the top of the loop into the body of it. In this case the
3466     ** correct response for the end-of-loop code (the OP_Return) is to
3467     ** fall through to the next instruction, just as an OP_Next does if
3468     ** called on an uninitialized cursor.
3469     */
3470     if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
3471       if( HasRowid(pTab) ){
3472         regRowset = ++pParse->nMem;
3473         sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
3474       }else{
3475         Index *pPk = sqlite3PrimaryKeyIndex(pTab);
3476         regRowset = pParse->nTab++;
3477         sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
3478         sqlite3VdbeSetP4KeyInfo(pParse, pPk);
3479       }
3480       regRowid = ++pParse->nMem;
3481     }
3482     iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
3483 
3484     /* If the original WHERE clause is z of the form:  (x1 OR x2 OR ...) AND y
3485     ** Then for every term xN, evaluate as the subexpression: xN AND z
3486     ** That way, terms in y that are factored into the disjunction will
3487     ** be picked up by the recursive calls to sqlite3WhereBegin() below.
3488     **
3489     ** Actually, each subexpression is converted to "xN AND w" where w is
3490     ** the "interesting" terms of z - terms that did not originate in the
3491     ** ON or USING clause of a LEFT JOIN, and terms that are usable as
3492     ** indices.
3493     **
3494     ** This optimization also only applies if the (x1 OR x2 OR ...) term
3495     ** is not contained in the ON clause of a LEFT JOIN.
3496     ** See ticket http://www.sqlite.org/src/info/f2369304e4
3497     */
3498     if( pWC->nTerm>1 ){
3499       int iTerm;
3500       for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
3501         Expr *pExpr = pWC->a[iTerm].pExpr;
3502         if( &pWC->a[iTerm] == pTerm ) continue;
3503         if( ExprHasProperty(pExpr, EP_FromJoin) ) continue;
3504         testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
3505         testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
3506         if( pWC->a[iTerm].wtFlags & (TERM_ORINFO|TERM_VIRTUAL) ) continue;
3507         if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
3508         pExpr = sqlite3ExprDup(db, pExpr, 0);
3509         pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
3510       }
3511       if( pAndExpr ){
3512         pAndExpr = sqlite3PExpr(pParse, TK_AND, 0, pAndExpr, 0);
3513       }
3514     }
3515 
3516     /* Run a separate WHERE clause for each term of the OR clause.  After
3517     ** eliminating duplicates from other WHERE clauses, the action for each
3518     ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
3519     */
3520     for(ii=0; ii<pOrWc->nTerm; ii++){
3521       WhereTerm *pOrTerm = &pOrWc->a[ii];
3522       if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
3523         WhereInfo *pSubWInfo;           /* Info for single OR-term scan */
3524         Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
3525         int j1 = 0;                     /* Address of jump operation */
3526         if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){
3527           pAndExpr->pLeft = pOrExpr;
3528           pOrExpr = pAndExpr;
3529         }
3530         /* Loop through table entries that match term pOrTerm. */
3531         pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
3532                         WHERE_OMIT_OPEN_CLOSE | WHERE_AND_ONLY |
3533                         WHERE_FORCE_TABLE | WHERE_ONETABLE_ONLY, iCovCur);
3534         assert( pSubWInfo || pParse->nErr || db->mallocFailed );
3535         if( pSubWInfo ){
3536           WhereLoop *pSubLoop;
3537           explainOneScan(
3538               pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
3539           );
3540           /* This is the sub-WHERE clause body.  First skip over
3541           ** duplicate rows from prior sub-WHERE clauses, and record the
3542           ** rowid (or PRIMARY KEY) for the current row so that the same
3543           ** row will be skipped in subsequent sub-WHERE clauses.
3544           */
3545           if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
3546             int r;
3547             int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
3548             if( HasRowid(pTab) ){
3549               r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0);
3550               j1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0, r,iSet);
3551               VdbeCoverage(v);
3552             }else{
3553               Index *pPk = sqlite3PrimaryKeyIndex(pTab);
3554               int nPk = pPk->nKeyCol;
3555               int iPk;
3556 
3557               /* Read the PK into an array of temp registers. */
3558               r = sqlite3GetTempRange(pParse, nPk);
3559               for(iPk=0; iPk<nPk; iPk++){
3560                 int iCol = pPk->aiColumn[iPk];
3561                 sqlite3ExprCodeGetColumn(pParse, pTab, iCol, iCur, r+iPk, 0);
3562               }
3563 
3564               /* Check if the temp table already contains this key. If so,
3565               ** the row has already been included in the result set and
3566               ** can be ignored (by jumping past the Gosub below). Otherwise,
3567               ** insert the key into the temp table and proceed with processing
3568               ** the row.
3569               **
3570               ** Use some of the same optimizations as OP_RowSetTest: If iSet
3571               ** is zero, assume that the key cannot already be present in
3572               ** the temp table. And if iSet is -1, assume that there is no
3573               ** need to insert the key into the temp table, as it will never
3574               ** be tested for.  */
3575               if( iSet ){
3576                 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
3577                 VdbeCoverage(v);
3578               }
3579               if( iSet>=0 ){
3580                 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
3581                 sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0);
3582                 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
3583               }
3584 
3585               /* Release the array of temp registers */
3586               sqlite3ReleaseTempRange(pParse, r, nPk);
3587             }
3588           }
3589 
3590           /* Invoke the main loop body as a subroutine */
3591           sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
3592 
3593           /* Jump here (skipping the main loop body subroutine) if the
3594           ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
3595           if( j1 ) sqlite3VdbeJumpHere(v, j1);
3596 
3597           /* The pSubWInfo->untestedTerms flag means that this OR term
3598           ** contained one or more AND term from a notReady table.  The
3599           ** terms from the notReady table could not be tested and will
3600           ** need to be tested later.
3601           */
3602           if( pSubWInfo->untestedTerms ) untestedTerms = 1;
3603 
3604           /* If all of the OR-connected terms are optimized using the same
3605           ** index, and the index is opened using the same cursor number
3606           ** by each call to sqlite3WhereBegin() made by this loop, it may
3607           ** be possible to use that index as a covering index.
3608           **
3609           ** If the call to sqlite3WhereBegin() above resulted in a scan that
3610           ** uses an index, and this is either the first OR-connected term
3611           ** processed or the index is the same as that used by all previous
3612           ** terms, set pCov to the candidate covering index. Otherwise, set
3613           ** pCov to NULL to indicate that no candidate covering index will
3614           ** be available.
3615           */
3616           pSubLoop = pSubWInfo->a[0].pWLoop;
3617           assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
3618           if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
3619            && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
3620            && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
3621           ){
3622             assert( pSubWInfo->a[0].iIdxCur==iCovCur );
3623             pCov = pSubLoop->u.btree.pIndex;
3624           }else{
3625             pCov = 0;
3626           }
3627 
3628           /* Finish the loop through table entries that match term pOrTerm. */
3629           sqlite3WhereEnd(pSubWInfo);
3630         }
3631       }
3632     }
3633     pLevel->u.pCovidx = pCov;
3634     if( pCov ) pLevel->iIdxCur = iCovCur;
3635     if( pAndExpr ){
3636       pAndExpr->pLeft = 0;
3637       sqlite3ExprDelete(db, pAndExpr);
3638     }
3639     sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
3640     sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrBrk);
3641     sqlite3VdbeResolveLabel(v, iLoopBody);
3642 
3643     if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab);
3644     if( !untestedTerms ) disableTerm(pLevel, pTerm);
3645   }else
3646 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
3647 
3648   {
3649     /* Case 6:  There is no usable index.  We must do a complete
3650     **          scan of the entire table.
3651     */
3652     static const u8 aStep[] = { OP_Next, OP_Prev };
3653     static const u8 aStart[] = { OP_Rewind, OP_Last };
3654     assert( bRev==0 || bRev==1 );
3655     if( pTabItem->isRecursive ){
3656       /* Tables marked isRecursive have only a single row that is stored in
3657       ** a pseudo-cursor.  No need to Rewind or Next such cursors. */
3658       pLevel->op = OP_Noop;
3659     }else{
3660       pLevel->op = aStep[bRev];
3661       pLevel->p1 = iCur;
3662       pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
3663       VdbeCoverageIf(v, bRev==0);
3664       VdbeCoverageIf(v, bRev!=0);
3665       pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
3666     }
3667   }
3668 
3669   /* Insert code to test every subexpression that can be completely
3670   ** computed using the current set of tables.
3671   */
3672   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
3673     Expr *pE;
3674     testcase( pTerm->wtFlags & TERM_VIRTUAL );
3675     testcase( pTerm->wtFlags & TERM_CODED );
3676     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
3677     if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
3678       testcase( pWInfo->untestedTerms==0
3679                && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 );
3680       pWInfo->untestedTerms = 1;
3681       continue;
3682     }
3683     pE = pTerm->pExpr;
3684     assert( pE!=0 );
3685     if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
3686       continue;
3687     }
3688     sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
3689     pTerm->wtFlags |= TERM_CODED;
3690   }
3691 
3692   /* Insert code to test for implied constraints based on transitivity
3693   ** of the "==" operator.
3694   **
3695   ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
3696   ** and we are coding the t1 loop and the t2 loop has not yet coded,
3697   ** then we cannot use the "t1.a=t2.b" constraint, but we can code
3698   ** the implied "t1.a=123" constraint.
3699   */
3700   for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
3701     Expr *pE, *pEAlt;
3702     WhereTerm *pAlt;
3703     if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
3704     if( pTerm->eOperator!=(WO_EQUIV|WO_EQ) ) continue;
3705     if( pTerm->leftCursor!=iCur ) continue;
3706     if( pLevel->iLeftJoin ) continue;
3707     pE = pTerm->pExpr;
3708     assert( !ExprHasProperty(pE, EP_FromJoin) );
3709     assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
3710     pAlt = findTerm(pWC, iCur, pTerm->u.leftColumn, notReady, WO_EQ|WO_IN, 0);
3711     if( pAlt==0 ) continue;
3712     if( pAlt->wtFlags & (TERM_CODED) ) continue;
3713     testcase( pAlt->eOperator & WO_EQ );
3714     testcase( pAlt->eOperator & WO_IN );
3715     VdbeModuleComment((v, "begin transitive constraint"));
3716     pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt));
3717     if( pEAlt ){
3718       *pEAlt = *pAlt->pExpr;
3719       pEAlt->pLeft = pE->pLeft;
3720       sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL);
3721       sqlite3StackFree(db, pEAlt);
3722     }
3723   }
3724 
3725   /* For a LEFT OUTER JOIN, generate code that will record the fact that
3726   ** at least one row of the right table has matched the left table.
3727   */
3728   if( pLevel->iLeftJoin ){
3729     pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
3730     sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
3731     VdbeComment((v, "record LEFT JOIN hit"));
3732     sqlite3ExprCacheClear(pParse);
3733     for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
3734       testcase( pTerm->wtFlags & TERM_VIRTUAL );
3735       testcase( pTerm->wtFlags & TERM_CODED );
3736       if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
3737       if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
3738         assert( pWInfo->untestedTerms );
3739         continue;
3740       }
3741       assert( pTerm->pExpr );
3742       sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
3743       pTerm->wtFlags |= TERM_CODED;
3744     }
3745   }
3746 
3747   return pLevel->notReady;
3748 }
3749 
3750 #if defined(WHERETRACE_ENABLED) && defined(SQLITE_ENABLE_TREE_EXPLAIN)
3751 /*
3752 ** Generate "Explanation" text for a WhereTerm.
3753 */
3754 static void whereExplainTerm(Vdbe *v, WhereTerm *pTerm){
3755   char zType[4];
3756   memcpy(zType, "...", 4);
3757   if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
3758   if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
3759   if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
3760   sqlite3ExplainPrintf(v, "%s ", zType);
3761   sqlite3ExplainExpr(v, pTerm->pExpr);
3762 }
3763 #endif /* WHERETRACE_ENABLED && SQLITE_ENABLE_TREE_EXPLAIN */
3764 
3765 
3766 #ifdef WHERETRACE_ENABLED
3767 /*
3768 ** Print a WhereLoop object for debugging purposes
3769 */
3770 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){
3771   WhereInfo *pWInfo = pWC->pWInfo;
3772   int nb = 1+(pWInfo->pTabList->nSrc+7)/8;
3773   struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab;
3774   Table *pTab = pItem->pTab;
3775   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
3776                      p->iTab, nb, p->maskSelf, nb, p->prereq);
3777   sqlite3DebugPrintf(" %12s",
3778                      pItem->zAlias ? pItem->zAlias : pTab->zName);
3779   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
3780      const char *zName;
3781      if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
3782       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
3783         int i = sqlite3Strlen30(zName) - 1;
3784         while( zName[i]!='_' ) i--;
3785         zName += i;
3786       }
3787       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
3788     }else{
3789       sqlite3DebugPrintf("%20s","");
3790     }
3791   }else{
3792     char *z;
3793     if( p->u.vtab.idxStr ){
3794       z = sqlite3_mprintf("(%d,\"%s\",%x)",
3795                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
3796     }else{
3797       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
3798     }
3799     sqlite3DebugPrintf(" %-19s", z);
3800     sqlite3_free(z);
3801   }
3802   sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
3803   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
3804 #ifdef SQLITE_ENABLE_TREE_EXPLAIN
3805   /* If the 0x100 bit of wheretracing is set, then show all of the constraint
3806   ** expressions in the WhereLoop.aLTerm[] array.
3807   */
3808   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){  /* WHERETRACE 0x100 */
3809     int i;
3810     Vdbe *v = pWInfo->pParse->pVdbe;
3811     sqlite3ExplainBegin(v);
3812     for(i=0; i<p->nLTerm; i++){
3813       WhereTerm *pTerm = p->aLTerm[i];
3814       if( pTerm==0 ) continue;
3815       sqlite3ExplainPrintf(v, "  (%d) #%-2d ", i+1, (int)(pTerm-pWC->a));
3816       sqlite3ExplainPush(v);
3817       whereExplainTerm(v, pTerm);
3818       sqlite3ExplainPop(v);
3819       sqlite3ExplainNL(v);
3820     }
3821     sqlite3ExplainFinish(v);
3822     sqlite3DebugPrintf("%s", sqlite3VdbeExplanation(v));
3823   }
3824 #endif
3825 }
3826 #endif
3827 
3828 /*
3829 ** Convert bulk memory into a valid WhereLoop that can be passed
3830 ** to whereLoopClear harmlessly.
3831 */
3832 static void whereLoopInit(WhereLoop *p){
3833   p->aLTerm = p->aLTermSpace;
3834   p->nLTerm = 0;
3835   p->nLSlot = ArraySize(p->aLTermSpace);
3836   p->wsFlags = 0;
3837 }
3838 
3839 /*
3840 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
3841 */
3842 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
3843   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
3844     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
3845       sqlite3_free(p->u.vtab.idxStr);
3846       p->u.vtab.needFree = 0;
3847       p->u.vtab.idxStr = 0;
3848     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
3849       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
3850       sqlite3KeyInfoUnref(p->u.btree.pIndex->pKeyInfo);
3851       sqlite3DbFree(db, p->u.btree.pIndex);
3852       p->u.btree.pIndex = 0;
3853     }
3854   }
3855 }
3856 
3857 /*
3858 ** Deallocate internal memory used by a WhereLoop object
3859 */
3860 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
3861   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm);
3862   whereLoopClearUnion(db, p);
3863   whereLoopInit(p);
3864 }
3865 
3866 /*
3867 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
3868 */
3869 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
3870   WhereTerm **paNew;
3871   if( p->nLSlot>=n ) return SQLITE_OK;
3872   n = (n+7)&~7;
3873   paNew = sqlite3DbMallocRaw(db, sizeof(p->aLTerm[0])*n);
3874   if( paNew==0 ) return SQLITE_NOMEM;
3875   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
3876   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm);
3877   p->aLTerm = paNew;
3878   p->nLSlot = n;
3879   return SQLITE_OK;
3880 }
3881 
3882 /*
3883 ** Transfer content from the second pLoop into the first.
3884 */
3885 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
3886   whereLoopClearUnion(db, pTo);
3887   if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
3888     memset(&pTo->u, 0, sizeof(pTo->u));
3889     return SQLITE_NOMEM;
3890   }
3891   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
3892   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
3893   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
3894     pFrom->u.vtab.needFree = 0;
3895   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
3896     pFrom->u.btree.pIndex = 0;
3897   }
3898   return SQLITE_OK;
3899 }
3900 
3901 /*
3902 ** Delete a WhereLoop object
3903 */
3904 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
3905   whereLoopClear(db, p);
3906   sqlite3DbFree(db, p);
3907 }
3908 
3909 /*
3910 ** Free a WhereInfo structure
3911 */
3912 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
3913   if( ALWAYS(pWInfo) ){
3914     whereClauseClear(&pWInfo->sWC);
3915     while( pWInfo->pLoops ){
3916       WhereLoop *p = pWInfo->pLoops;
3917       pWInfo->pLoops = p->pNextLoop;
3918       whereLoopDelete(db, p);
3919     }
3920     sqlite3DbFree(db, pWInfo);
3921   }
3922 }
3923 
3924 /*
3925 ** Return TRUE if both of the following are true:
3926 **
3927 **   (1)  X has the same or lower cost that Y
3928 **   (2)  X is a proper subset of Y
3929 **
3930 ** By "proper subset" we mean that X uses fewer WHERE clause terms
3931 ** than Y and that every WHERE clause term used by X is also used
3932 ** by Y.
3933 **
3934 ** If X is a proper subset of Y then Y is a better choice and ought
3935 ** to have a lower cost.  This routine returns TRUE when that cost
3936 ** relationship is inverted and needs to be adjusted.
3937 */
3938 static int whereLoopCheaperProperSubset(
3939   const WhereLoop *pX,       /* First WhereLoop to compare */
3940   const WhereLoop *pY        /* Compare against this WhereLoop */
3941 ){
3942   int i, j;
3943   if( pX->nLTerm >= pY->nLTerm ) return 0; /* X is not a subset of Y */
3944   if( pX->rRun >= pY->rRun ){
3945     if( pX->rRun > pY->rRun ) return 0;    /* X costs more than Y */
3946     if( pX->nOut > pY->nOut ) return 0;    /* X costs more than Y */
3947   }
3948   for(i=pX->nLTerm-1; i>=0; i--){
3949     for(j=pY->nLTerm-1; j>=0; j--){
3950       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
3951     }
3952     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
3953   }
3954   return 1;  /* All conditions meet */
3955 }
3956 
3957 /*
3958 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
3959 ** that:
3960 **
3961 **   (1) pTemplate costs less than any other WhereLoops that are a proper
3962 **       subset of pTemplate
3963 **
3964 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
3965 **       is a proper subset.
3966 **
3967 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
3968 ** WHERE clause terms than Y and that every WHERE clause term used by X is
3969 ** also used by Y.
3970 **
3971 ** This adjustment is omitted for SKIPSCAN loops.  In a SKIPSCAN loop, the
3972 ** WhereLoop.nLTerm field is not an accurate measure of the number of WHERE
3973 ** clause terms covered, since some of the first nLTerm entries in aLTerm[]
3974 ** will be NULL (because they are skipped).  That makes it more difficult
3975 ** to compare the loops.  We could add extra code to do the comparison, and
3976 ** perhaps we will someday.  But SKIPSCAN is sufficiently uncommon, and this
3977 ** adjustment is sufficient minor, that it is very difficult to construct
3978 ** a test case where the extra code would improve the query plan.  Better
3979 ** to avoid the added complexity and just omit cost adjustments to SKIPSCAN
3980 ** loops.
3981 */
3982 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
3983   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
3984   if( (pTemplate->wsFlags & WHERE_SKIPSCAN)!=0 ) return;
3985   for(; p; p=p->pNextLoop){
3986     if( p->iTab!=pTemplate->iTab ) continue;
3987     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
3988     if( (p->wsFlags & WHERE_SKIPSCAN)!=0 ) continue;
3989     if( whereLoopCheaperProperSubset(p, pTemplate) ){
3990       /* Adjust pTemplate cost downward so that it is cheaper than its
3991       ** subset p */
3992       pTemplate->rRun = p->rRun;
3993       pTemplate->nOut = p->nOut - 1;
3994     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
3995       /* Adjust pTemplate cost upward so that it is costlier than p since
3996       ** pTemplate is a proper subset of p */
3997       pTemplate->rRun = p->rRun;
3998       pTemplate->nOut = p->nOut + 1;
3999     }
4000   }
4001 }
4002 
4003 /*
4004 ** Search the list of WhereLoops in *ppPrev looking for one that can be
4005 ** supplanted by pTemplate.
4006 **
4007 ** Return NULL if the WhereLoop list contains an entry that can supplant
4008 ** pTemplate, in other words if pTemplate does not belong on the list.
4009 **
4010 ** If pX is a WhereLoop that pTemplate can supplant, then return the
4011 ** link that points to pX.
4012 **
4013 ** If pTemplate cannot supplant any existing element of the list but needs
4014 ** to be added to the list, then return a pointer to the tail of the list.
4015 */
4016 static WhereLoop **whereLoopFindLesser(
4017   WhereLoop **ppPrev,
4018   const WhereLoop *pTemplate
4019 ){
4020   WhereLoop *p;
4021   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
4022     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
4023       /* If either the iTab or iSortIdx values for two WhereLoop are different
4024       ** then those WhereLoops need to be considered separately.  Neither is
4025       ** a candidate to replace the other. */
4026       continue;
4027     }
4028     /* In the current implementation, the rSetup value is either zero
4029     ** or the cost of building an automatic index (NlogN) and the NlogN
4030     ** is the same for compatible WhereLoops. */
4031     assert( p->rSetup==0 || pTemplate->rSetup==0
4032                  || p->rSetup==pTemplate->rSetup );
4033 
4034     /* whereLoopAddBtree() always generates and inserts the automatic index
4035     ** case first.  Hence compatible candidate WhereLoops never have a larger
4036     ** rSetup. Call this SETUP-INVARIANT */
4037     assert( p->rSetup>=pTemplate->rSetup );
4038 
4039     /* Any loop using an appliation-defined index (or PRIMARY KEY or
4040     ** UNIQUE constraint) with one or more == constraints is better
4041     ** than an automatic index. */
4042     if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
4043      && (pTemplate->wsFlags & WHERE_INDEXED)!=0
4044      && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
4045      && (p->prereq & pTemplate->prereq)==pTemplate->prereq
4046     ){
4047       break;
4048     }
4049 
4050     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
4051     ** discarded.  WhereLoop p is better if:
4052     **   (1)  p has no more dependencies than pTemplate, and
4053     **   (2)  p has an equal or lower cost than pTemplate
4054     */
4055     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
4056      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
4057      && p->rRun<=pTemplate->rRun                      /* (2b) */
4058      && p->nOut<=pTemplate->nOut                      /* (2c) */
4059     ){
4060       return 0;  /* Discard pTemplate */
4061     }
4062 
4063     /* If pTemplate is always better than p, then cause p to be overwritten
4064     ** with pTemplate.  pTemplate is better than p if:
4065     **   (1)  pTemplate has no more dependences than p, and
4066     **   (2)  pTemplate has an equal or lower cost than p.
4067     */
4068     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
4069      && p->rRun>=pTemplate->rRun                             /* (2a) */
4070      && p->nOut>=pTemplate->nOut                             /* (2b) */
4071     ){
4072       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
4073       break;   /* Cause p to be overwritten by pTemplate */
4074     }
4075   }
4076   return ppPrev;
4077 }
4078 
4079 /*
4080 ** Insert or replace a WhereLoop entry using the template supplied.
4081 **
4082 ** An existing WhereLoop entry might be overwritten if the new template
4083 ** is better and has fewer dependencies.  Or the template will be ignored
4084 ** and no insert will occur if an existing WhereLoop is faster and has
4085 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
4086 ** added based on the template.
4087 **
4088 ** If pBuilder->pOrSet is not NULL then we care about only the
4089 ** prerequisites and rRun and nOut costs of the N best loops.  That
4090 ** information is gathered in the pBuilder->pOrSet object.  This special
4091 ** processing mode is used only for OR clause processing.
4092 **
4093 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
4094 ** still might overwrite similar loops with the new template if the
4095 ** new template is better.  Loops may be overwritten if the following
4096 ** conditions are met:
4097 **
4098 **    (1)  They have the same iTab.
4099 **    (2)  They have the same iSortIdx.
4100 **    (3)  The template has same or fewer dependencies than the current loop
4101 **    (4)  The template has the same or lower cost than the current loop
4102 */
4103 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
4104   WhereLoop **ppPrev, *p;
4105   WhereInfo *pWInfo = pBuilder->pWInfo;
4106   sqlite3 *db = pWInfo->pParse->db;
4107 
4108   /* If pBuilder->pOrSet is defined, then only keep track of the costs
4109   ** and prereqs.
4110   */
4111   if( pBuilder->pOrSet!=0 ){
4112 #if WHERETRACE_ENABLED
4113     u16 n = pBuilder->pOrSet->n;
4114     int x =
4115 #endif
4116     whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
4117                                     pTemplate->nOut);
4118 #if WHERETRACE_ENABLED /* 0x8 */
4119     if( sqlite3WhereTrace & 0x8 ){
4120       sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
4121       whereLoopPrint(pTemplate, pBuilder->pWC);
4122     }
4123 #endif
4124     return SQLITE_OK;
4125   }
4126 
4127   /* Look for an existing WhereLoop to replace with pTemplate
4128   */
4129   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
4130   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
4131 
4132   if( ppPrev==0 ){
4133     /* There already exists a WhereLoop on the list that is better
4134     ** than pTemplate, so just ignore pTemplate */
4135 #if WHERETRACE_ENABLED /* 0x8 */
4136     if( sqlite3WhereTrace & 0x8 ){
4137       sqlite3DebugPrintf("ins-noop: ");
4138       whereLoopPrint(pTemplate, pBuilder->pWC);
4139     }
4140 #endif
4141     return SQLITE_OK;
4142   }else{
4143     p = *ppPrev;
4144   }
4145 
4146   /* If we reach this point it means that either p[] should be overwritten
4147   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
4148   ** WhereLoop and insert it.
4149   */
4150 #if WHERETRACE_ENABLED /* 0x8 */
4151   if( sqlite3WhereTrace & 0x8 ){
4152     if( p!=0 ){
4153       sqlite3DebugPrintf("ins-del:  ");
4154       whereLoopPrint(p, pBuilder->pWC);
4155     }
4156     sqlite3DebugPrintf("ins-new:  ");
4157     whereLoopPrint(pTemplate, pBuilder->pWC);
4158   }
4159 #endif
4160   if( p==0 ){
4161     /* Allocate a new WhereLoop to add to the end of the list */
4162     *ppPrev = p = sqlite3DbMallocRaw(db, sizeof(WhereLoop));
4163     if( p==0 ) return SQLITE_NOMEM;
4164     whereLoopInit(p);
4165     p->pNextLoop = 0;
4166   }else{
4167     /* We will be overwriting WhereLoop p[].  But before we do, first
4168     ** go through the rest of the list and delete any other entries besides
4169     ** p[] that are also supplated by pTemplate */
4170     WhereLoop **ppTail = &p->pNextLoop;
4171     WhereLoop *pToDel;
4172     while( *ppTail ){
4173       ppTail = whereLoopFindLesser(ppTail, pTemplate);
4174       if( ppTail==0 ) break;
4175       pToDel = *ppTail;
4176       if( pToDel==0 ) break;
4177       *ppTail = pToDel->pNextLoop;
4178 #if WHERETRACE_ENABLED /* 0x8 */
4179       if( sqlite3WhereTrace & 0x8 ){
4180         sqlite3DebugPrintf("ins-del:  ");
4181         whereLoopPrint(pToDel, pBuilder->pWC);
4182       }
4183 #endif
4184       whereLoopDelete(db, pToDel);
4185     }
4186   }
4187   whereLoopXfer(db, p, pTemplate);
4188   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
4189     Index *pIndex = p->u.btree.pIndex;
4190     if( pIndex && pIndex->tnum==0 ){
4191       p->u.btree.pIndex = 0;
4192     }
4193   }
4194   return SQLITE_OK;
4195 }
4196 
4197 /*
4198 ** Adjust the WhereLoop.nOut value downward to account for terms of the
4199 ** WHERE clause that reference the loop but which are not used by an
4200 ** index.
4201 **
4202 ** In the current implementation, the first extra WHERE clause term reduces
4203 ** the number of output rows by a factor of 10 and each additional term
4204 ** reduces the number of output rows by sqrt(2).
4205 */
4206 static void whereLoopOutputAdjust(WhereClause *pWC, WhereLoop *pLoop){
4207   WhereTerm *pTerm, *pX;
4208   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
4209   int i, j;
4210 
4211   if( !OptimizationEnabled(pWC->pWInfo->pParse->db, SQLITE_AdjustOutEst) ){
4212     return;
4213   }
4214   for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
4215     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
4216     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
4217     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
4218     for(j=pLoop->nLTerm-1; j>=0; j--){
4219       pX = pLoop->aLTerm[j];
4220       if( pX==0 ) continue;
4221       if( pX==pTerm ) break;
4222       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
4223     }
4224     if( j<0 ){
4225       pLoop->nOut += (pTerm->truthProb<=0 ? pTerm->truthProb : -1);
4226     }
4227   }
4228 }
4229 
4230 /*
4231 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
4232 ** index pIndex. Try to match one more.
4233 **
4234 ** When this function is called, pBuilder->pNew->nOut contains the
4235 ** number of rows expected to be visited by filtering using the nEq
4236 ** terms only. If it is modified, this value is restored before this
4237 ** function returns.
4238 **
4239 ** If pProbe->tnum==0, that means pIndex is a fake index used for the
4240 ** INTEGER PRIMARY KEY.
4241 */
4242 static int whereLoopAddBtreeIndex(
4243   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
4244   struct SrcList_item *pSrc,      /* FROM clause term being analyzed */
4245   Index *pProbe,                  /* An index on pSrc */
4246   LogEst nInMul                   /* log(Number of iterations due to IN) */
4247 ){
4248   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
4249   Parse *pParse = pWInfo->pParse;        /* Parsing context */
4250   sqlite3 *db = pParse->db;       /* Database connection malloc context */
4251   WhereLoop *pNew;                /* Template WhereLoop under construction */
4252   WhereTerm *pTerm;               /* A WhereTerm under consideration */
4253   int opMask;                     /* Valid operators for constraints */
4254   WhereScan scan;                 /* Iterator for WHERE terms */
4255   Bitmask saved_prereq;           /* Original value of pNew->prereq */
4256   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
4257   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
4258   u16 saved_nSkip;                /* Original value of pNew->u.btree.nSkip */
4259   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
4260   LogEst saved_nOut;              /* Original value of pNew->nOut */
4261   int iCol;                       /* Index of the column in the table */
4262   int rc = SQLITE_OK;             /* Return code */
4263   LogEst rLogSize;                /* Logarithm of table size */
4264   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
4265 
4266   pNew = pBuilder->pNew;
4267   if( db->mallocFailed ) return SQLITE_NOMEM;
4268 
4269   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
4270   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
4271   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
4272     opMask = WO_LT|WO_LE;
4273   }else if( pProbe->tnum<=0 || (pSrc->jointype & JT_LEFT)!=0 ){
4274     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE;
4275   }else{
4276     opMask = WO_EQ|WO_IN|WO_ISNULL|WO_GT|WO_GE|WO_LT|WO_LE;
4277   }
4278   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
4279 
4280   assert( pNew->u.btree.nEq<pProbe->nColumn );
4281   iCol = pProbe->aiColumn[pNew->u.btree.nEq];
4282 
4283   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, iCol,
4284                         opMask, pProbe);
4285   saved_nEq = pNew->u.btree.nEq;
4286   saved_nSkip = pNew->u.btree.nSkip;
4287   saved_nLTerm = pNew->nLTerm;
4288   saved_wsFlags = pNew->wsFlags;
4289   saved_prereq = pNew->prereq;
4290   saved_nOut = pNew->nOut;
4291   pNew->rSetup = 0;
4292   rLogSize = estLog(pProbe->aiRowLogEst[0]);
4293 
4294   /* Consider using a skip-scan if there are no WHERE clause constraints
4295   ** available for the left-most terms of the index, and if the average
4296   ** number of repeats in the left-most terms is at least 18.
4297   **
4298   ** The magic number 18 is selected on the basis that scanning 17 rows
4299   ** is almost always quicker than an index seek (even though if the index
4300   ** contains fewer than 2^17 rows we assume otherwise in other parts of
4301   ** the code). And, even if it is not, it should not be too much slower.
4302   ** On the other hand, the extra seeks could end up being significantly
4303   ** more expensive.  */
4304   assert( 42==sqlite3LogEst(18) );
4305   if( pTerm==0
4306    && saved_nEq==saved_nSkip
4307    && saved_nEq+1<pProbe->nKeyCol
4308    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
4309    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
4310   ){
4311     LogEst nIter;
4312     pNew->u.btree.nEq++;
4313     pNew->u.btree.nSkip++;
4314     pNew->aLTerm[pNew->nLTerm++] = 0;
4315     pNew->wsFlags |= WHERE_SKIPSCAN;
4316     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
4317     pNew->nOut -= nIter;
4318     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
4319     pNew->nOut = saved_nOut;
4320   }
4321   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
4322     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
4323     LogEst rCostIdx;
4324     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
4325     int nIn = 0;
4326 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
4327     int nRecValid = pBuilder->nRecValid;
4328 #endif
4329     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
4330      && (iCol<0 || pSrc->pTab->aCol[iCol].notNull)
4331     ){
4332       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
4333     }
4334     if( pTerm->prereqRight & pNew->maskSelf ) continue;
4335 
4336     pNew->wsFlags = saved_wsFlags;
4337     pNew->u.btree.nEq = saved_nEq;
4338     pNew->nLTerm = saved_nLTerm;
4339     if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
4340     pNew->aLTerm[pNew->nLTerm++] = pTerm;
4341     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
4342 
4343     assert( nInMul==0
4344         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
4345         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
4346         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
4347     );
4348 
4349     if( eOp & WO_IN ){
4350       Expr *pExpr = pTerm->pExpr;
4351       pNew->wsFlags |= WHERE_COLUMN_IN;
4352       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
4353         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
4354         nIn = 46;  assert( 46==sqlite3LogEst(25) );
4355       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
4356         /* "x IN (value, value, ...)" */
4357         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
4358       }
4359       assert( nIn>0 );  /* RHS always has 2 or more terms...  The parser
4360                         ** changes "x IN (?)" into "x=?". */
4361 
4362     }else if( eOp & (WO_EQ) ){
4363       pNew->wsFlags |= WHERE_COLUMN_EQ;
4364       if( iCol<0 || (nInMul==0 && pNew->u.btree.nEq==pProbe->nKeyCol-1) ){
4365         if( iCol>=0 && pProbe->onError==OE_None ){
4366           pNew->wsFlags |= WHERE_UNQ_WANTED;
4367         }else{
4368           pNew->wsFlags |= WHERE_ONEROW;
4369         }
4370       }
4371     }else if( eOp & WO_ISNULL ){
4372       pNew->wsFlags |= WHERE_COLUMN_NULL;
4373     }else if( eOp & (WO_GT|WO_GE) ){
4374       testcase( eOp & WO_GT );
4375       testcase( eOp & WO_GE );
4376       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
4377       pBtm = pTerm;
4378       pTop = 0;
4379     }else{
4380       assert( eOp & (WO_LT|WO_LE) );
4381       testcase( eOp & WO_LT );
4382       testcase( eOp & WO_LE );
4383       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
4384       pTop = pTerm;
4385       pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
4386                      pNew->aLTerm[pNew->nLTerm-2] : 0;
4387     }
4388 
4389     /* At this point pNew->nOut is set to the number of rows expected to
4390     ** be visited by the index scan before considering term pTerm, or the
4391     ** values of nIn and nInMul. In other words, assuming that all
4392     ** "x IN(...)" terms are replaced with "x = ?". This block updates
4393     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
4394     assert( pNew->nOut==saved_nOut );
4395     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
4396       /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4
4397       ** data, using some other estimate.  */
4398       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
4399     }else{
4400       int nEq = ++pNew->u.btree.nEq;
4401       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN) );
4402 
4403       assert( pNew->nOut==saved_nOut );
4404       if( pTerm->truthProb<=0 && iCol>=0 ){
4405         assert( (eOp & WO_IN) || nIn==0 );
4406         testcase( eOp & WO_IN );
4407         pNew->nOut += pTerm->truthProb;
4408         pNew->nOut -= nIn;
4409       }else{
4410 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
4411         tRowcnt nOut = 0;
4412         if( nInMul==0
4413          && pProbe->nSample
4414          && pNew->u.btree.nEq<=pProbe->nSampleCol
4415          && OptimizationEnabled(db, SQLITE_Stat3)
4416          && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
4417         ){
4418           Expr *pExpr = pTerm->pExpr;
4419           if( (eOp & (WO_EQ|WO_ISNULL))!=0 ){
4420             testcase( eOp & WO_EQ );
4421             testcase( eOp & WO_ISNULL );
4422             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
4423           }else{
4424             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
4425           }
4426           assert( rc!=SQLITE_OK || nOut>0 );
4427           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
4428           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
4429           if( nOut ){
4430             pNew->nOut = sqlite3LogEst(nOut);
4431             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
4432             pNew->nOut -= nIn;
4433           }
4434         }
4435         if( nOut==0 )
4436 #endif
4437         {
4438           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
4439           if( eOp & WO_ISNULL ){
4440             /* TUNING: If there is no likelihood() value, assume that a
4441             ** "col IS NULL" expression matches twice as many rows
4442             ** as (col=?). */
4443             pNew->nOut += 10;
4444           }
4445         }
4446       }
4447     }
4448 
4449     /* Set rCostIdx to the cost of visiting selected rows in index. Add
4450     ** it to pNew->rRun, which is currently set to the cost of the index
4451     ** seek only. Then, if this is a non-covering index, add the cost of
4452     ** visiting the rows in the main table.  */
4453     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
4454     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
4455     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
4456       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
4457     }
4458 
4459     nOutUnadjusted = pNew->nOut;
4460     pNew->rRun += nInMul + nIn;
4461     pNew->nOut += nInMul + nIn;
4462     whereLoopOutputAdjust(pBuilder->pWC, pNew);
4463     rc = whereLoopInsert(pBuilder, pNew);
4464 
4465     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
4466       pNew->nOut = saved_nOut;
4467     }else{
4468       pNew->nOut = nOutUnadjusted;
4469     }
4470 
4471     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
4472      && pNew->u.btree.nEq<pProbe->nColumn
4473     ){
4474       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
4475     }
4476     pNew->nOut = saved_nOut;
4477 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
4478     pBuilder->nRecValid = nRecValid;
4479 #endif
4480   }
4481   pNew->prereq = saved_prereq;
4482   pNew->u.btree.nEq = saved_nEq;
4483   pNew->u.btree.nSkip = saved_nSkip;
4484   pNew->wsFlags = saved_wsFlags;
4485   pNew->nOut = saved_nOut;
4486   pNew->nLTerm = saved_nLTerm;
4487   return rc;
4488 }
4489 
4490 /*
4491 ** Return True if it is possible that pIndex might be useful in
4492 ** implementing the ORDER BY clause in pBuilder.
4493 **
4494 ** Return False if pBuilder does not contain an ORDER BY clause or
4495 ** if there is no way for pIndex to be useful in implementing that
4496 ** ORDER BY clause.
4497 */
4498 static int indexMightHelpWithOrderBy(
4499   WhereLoopBuilder *pBuilder,
4500   Index *pIndex,
4501   int iCursor
4502 ){
4503   ExprList *pOB;
4504   int ii, jj;
4505 
4506   if( pIndex->bUnordered ) return 0;
4507   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
4508   for(ii=0; ii<pOB->nExpr; ii++){
4509     Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr);
4510     if( pExpr->op!=TK_COLUMN ) return 0;
4511     if( pExpr->iTable==iCursor ){
4512       for(jj=0; jj<pIndex->nKeyCol; jj++){
4513         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
4514       }
4515     }
4516   }
4517   return 0;
4518 }
4519 
4520 /*
4521 ** Return a bitmask where 1s indicate that the corresponding column of
4522 ** the table is used by an index.  Only the first 63 columns are considered.
4523 */
4524 static Bitmask columnsInIndex(Index *pIdx){
4525   Bitmask m = 0;
4526   int j;
4527   for(j=pIdx->nColumn-1; j>=0; j--){
4528     int x = pIdx->aiColumn[j];
4529     if( x>=0 ){
4530       testcase( x==BMS-1 );
4531       testcase( x==BMS-2 );
4532       if( x<BMS-1 ) m |= MASKBIT(x);
4533     }
4534   }
4535   return m;
4536 }
4537 
4538 /* Check to see if a partial index with pPartIndexWhere can be used
4539 ** in the current query.  Return true if it can be and false if not.
4540 */
4541 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){
4542   int i;
4543   WhereTerm *pTerm;
4544   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
4545     if( sqlite3ExprImpliesExpr(pTerm->pExpr, pWhere, iTab) ) return 1;
4546   }
4547   return 0;
4548 }
4549 
4550 /*
4551 ** Add all WhereLoop objects for a single table of the join where the table
4552 ** is idenfied by pBuilder->pNew->iTab.  That table is guaranteed to be
4553 ** a b-tree table, not a virtual table.
4554 **
4555 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
4556 ** are calculated as follows:
4557 **
4558 ** For a full scan, assuming the table (or index) contains nRow rows:
4559 **
4560 **     cost = nRow * 3.0                    // full-table scan
4561 **     cost = nRow * K                      // scan of covering index
4562 **     cost = nRow * (K+3.0)                // scan of non-covering index
4563 **
4564 ** where K is a value between 1.1 and 3.0 set based on the relative
4565 ** estimated average size of the index and table records.
4566 **
4567 ** For an index scan, where nVisit is the number of index rows visited
4568 ** by the scan, and nSeek is the number of seek operations required on
4569 ** the index b-tree:
4570 **
4571 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
4572 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
4573 **
4574 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
4575 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
4576 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
4577 */
4578 static int whereLoopAddBtree(
4579   WhereLoopBuilder *pBuilder, /* WHERE clause information */
4580   Bitmask mExtra              /* Extra prerequesites for using this table */
4581 ){
4582   WhereInfo *pWInfo;          /* WHERE analysis context */
4583   Index *pProbe;              /* An index we are evaluating */
4584   Index sPk;                  /* A fake index object for the primary key */
4585   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
4586   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
4587   SrcList *pTabList;          /* The FROM clause */
4588   struct SrcList_item *pSrc;  /* The FROM clause btree term to add */
4589   WhereLoop *pNew;            /* Template WhereLoop object */
4590   int rc = SQLITE_OK;         /* Return code */
4591   int iSortIdx = 1;           /* Index number */
4592   int b;                      /* A boolean value */
4593   LogEst rSize;               /* number of rows in the table */
4594   LogEst rLogSize;            /* Logarithm of the number of rows in the table */
4595   WhereClause *pWC;           /* The parsed WHERE clause */
4596   Table *pTab;                /* Table being queried */
4597 
4598   pNew = pBuilder->pNew;
4599   pWInfo = pBuilder->pWInfo;
4600   pTabList = pWInfo->pTabList;
4601   pSrc = pTabList->a + pNew->iTab;
4602   pTab = pSrc->pTab;
4603   pWC = pBuilder->pWC;
4604   assert( !IsVirtual(pSrc->pTab) );
4605 
4606   if( pSrc->pIndex ){
4607     /* An INDEXED BY clause specifies a particular index to use */
4608     pProbe = pSrc->pIndex;
4609   }else if( !HasRowid(pTab) ){
4610     pProbe = pTab->pIndex;
4611   }else{
4612     /* There is no INDEXED BY clause.  Create a fake Index object in local
4613     ** variable sPk to represent the rowid primary key index.  Make this
4614     ** fake index the first in a chain of Index objects with all of the real
4615     ** indices to follow */
4616     Index *pFirst;                  /* First of real indices on the table */
4617     memset(&sPk, 0, sizeof(Index));
4618     sPk.nKeyCol = 1;
4619     sPk.nColumn = 1;
4620     sPk.aiColumn = &aiColumnPk;
4621     sPk.aiRowLogEst = aiRowEstPk;
4622     sPk.onError = OE_Replace;
4623     sPk.pTable = pTab;
4624     sPk.szIdxRow = pTab->szTabRow;
4625     aiRowEstPk[0] = pTab->nRowLogEst;
4626     aiRowEstPk[1] = 0;
4627     pFirst = pSrc->pTab->pIndex;
4628     if( pSrc->notIndexed==0 ){
4629       /* The real indices of the table are only considered if the
4630       ** NOT INDEXED qualifier is omitted from the FROM clause */
4631       sPk.pNext = pFirst;
4632     }
4633     pProbe = &sPk;
4634   }
4635   rSize = pTab->nRowLogEst;
4636   rLogSize = estLog(rSize);
4637 
4638 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
4639   /* Automatic indexes */
4640   if( !pBuilder->pOrSet
4641    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
4642    && pSrc->pIndex==0
4643    && !pSrc->viaCoroutine
4644    && !pSrc->notIndexed
4645    && HasRowid(pTab)
4646    && !pSrc->isCorrelated
4647    && !pSrc->isRecursive
4648   ){
4649     /* Generate auto-index WhereLoops */
4650     WhereTerm *pTerm;
4651     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
4652     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
4653       if( pTerm->prereqRight & pNew->maskSelf ) continue;
4654       if( termCanDriveIndex(pTerm, pSrc, 0) ){
4655         pNew->u.btree.nEq = 1;
4656         pNew->u.btree.nSkip = 0;
4657         pNew->u.btree.pIndex = 0;
4658         pNew->nLTerm = 1;
4659         pNew->aLTerm[0] = pTerm;
4660         /* TUNING: One-time cost for computing the automatic index is
4661         ** approximately 7*N*log2(N) where N is the number of rows in
4662         ** the table being indexed. */
4663         pNew->rSetup = rLogSize + rSize + 28;  assert( 28==sqlite3LogEst(7) );
4664         /* TUNING: Each index lookup yields 20 rows in the table.  This
4665         ** is more than the usual guess of 10 rows, since we have no way
4666         ** of knowning how selective the index will ultimately be.  It would
4667         ** not be unreasonable to make this value much larger. */
4668         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
4669         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
4670         pNew->wsFlags = WHERE_AUTO_INDEX;
4671         pNew->prereq = mExtra | pTerm->prereqRight;
4672         rc = whereLoopInsert(pBuilder, pNew);
4673       }
4674     }
4675   }
4676 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
4677 
4678   /* Loop over all indices
4679   */
4680   for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){
4681     if( pProbe->pPartIdxWhere!=0
4682      && !whereUsablePartialIndex(pNew->iTab, pWC, pProbe->pPartIdxWhere) ){
4683       continue;  /* Partial index inappropriate for this query */
4684     }
4685     rSize = pProbe->aiRowLogEst[0];
4686     pNew->u.btree.nEq = 0;
4687     pNew->u.btree.nSkip = 0;
4688     pNew->nLTerm = 0;
4689     pNew->iSortIdx = 0;
4690     pNew->rSetup = 0;
4691     pNew->prereq = mExtra;
4692     pNew->nOut = rSize;
4693     pNew->u.btree.pIndex = pProbe;
4694     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
4695     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
4696     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
4697     if( pProbe->tnum<=0 ){
4698       /* Integer primary key index */
4699       pNew->wsFlags = WHERE_IPK;
4700 
4701       /* Full table scan */
4702       pNew->iSortIdx = b ? iSortIdx : 0;
4703       /* TUNING: Cost of full table scan is (N*3.0). */
4704       pNew->rRun = rSize + 16;
4705       whereLoopOutputAdjust(pWC, pNew);
4706       rc = whereLoopInsert(pBuilder, pNew);
4707       pNew->nOut = rSize;
4708       if( rc ) break;
4709     }else{
4710       Bitmask m;
4711       if( pProbe->isCovering ){
4712         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
4713         m = 0;
4714       }else{
4715         m = pSrc->colUsed & ~columnsInIndex(pProbe);
4716         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
4717       }
4718 
4719       /* Full scan via index */
4720       if( b
4721        || !HasRowid(pTab)
4722        || ( m==0
4723          && pProbe->bUnordered==0
4724          && (pProbe->szIdxRow<pTab->szTabRow)
4725          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
4726          && sqlite3GlobalConfig.bUseCis
4727          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
4728           )
4729       ){
4730         pNew->iSortIdx = b ? iSortIdx : 0;
4731 
4732         /* The cost of visiting the index rows is N*K, where K is
4733         ** between 1.1 and 3.0, depending on the relative sizes of the
4734         ** index and table rows. If this is a non-covering index scan,
4735         ** also add the cost of visiting table rows (N*3.0).  */
4736         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
4737         if( m!=0 ){
4738           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, rSize+16);
4739         }
4740 
4741         whereLoopOutputAdjust(pWC, pNew);
4742         rc = whereLoopInsert(pBuilder, pNew);
4743         pNew->nOut = rSize;
4744         if( rc ) break;
4745       }
4746     }
4747 
4748     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
4749 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
4750     sqlite3Stat4ProbeFree(pBuilder->pRec);
4751     pBuilder->nRecValid = 0;
4752     pBuilder->pRec = 0;
4753 #endif
4754 
4755     /* If there was an INDEXED BY clause, then only that one index is
4756     ** considered. */
4757     if( pSrc->pIndex ) break;
4758   }
4759   return rc;
4760 }
4761 
4762 #ifndef SQLITE_OMIT_VIRTUALTABLE
4763 /*
4764 ** Add all WhereLoop objects for a table of the join identified by
4765 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
4766 */
4767 static int whereLoopAddVirtual(
4768   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
4769   Bitmask mExtra
4770 ){
4771   WhereInfo *pWInfo;           /* WHERE analysis context */
4772   Parse *pParse;               /* The parsing context */
4773   WhereClause *pWC;            /* The WHERE clause */
4774   struct SrcList_item *pSrc;   /* The FROM clause term to search */
4775   Table *pTab;
4776   sqlite3 *db;
4777   sqlite3_index_info *pIdxInfo;
4778   struct sqlite3_index_constraint *pIdxCons;
4779   struct sqlite3_index_constraint_usage *pUsage;
4780   WhereTerm *pTerm;
4781   int i, j;
4782   int iTerm, mxTerm;
4783   int nConstraint;
4784   int seenIn = 0;              /* True if an IN operator is seen */
4785   int seenVar = 0;             /* True if a non-constant constraint is seen */
4786   int iPhase;                  /* 0: const w/o IN, 1: const, 2: no IN,  2: IN */
4787   WhereLoop *pNew;
4788   int rc = SQLITE_OK;
4789 
4790   pWInfo = pBuilder->pWInfo;
4791   pParse = pWInfo->pParse;
4792   db = pParse->db;
4793   pWC = pBuilder->pWC;
4794   pNew = pBuilder->pNew;
4795   pSrc = &pWInfo->pTabList->a[pNew->iTab];
4796   pTab = pSrc->pTab;
4797   assert( IsVirtual(pTab) );
4798   pIdxInfo = allocateIndexInfo(pParse, pWC, pSrc, pBuilder->pOrderBy);
4799   if( pIdxInfo==0 ) return SQLITE_NOMEM;
4800   pNew->prereq = 0;
4801   pNew->rSetup = 0;
4802   pNew->wsFlags = WHERE_VIRTUALTABLE;
4803   pNew->nLTerm = 0;
4804   pNew->u.vtab.needFree = 0;
4805   pUsage = pIdxInfo->aConstraintUsage;
4806   nConstraint = pIdxInfo->nConstraint;
4807   if( whereLoopResize(db, pNew, nConstraint) ){
4808     sqlite3DbFree(db, pIdxInfo);
4809     return SQLITE_NOMEM;
4810   }
4811 
4812   for(iPhase=0; iPhase<=3; iPhase++){
4813     if( !seenIn && (iPhase&1)!=0 ){
4814       iPhase++;
4815       if( iPhase>3 ) break;
4816     }
4817     if( !seenVar && iPhase>1 ) break;
4818     pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
4819     for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
4820       j = pIdxCons->iTermOffset;
4821       pTerm = &pWC->a[j];
4822       switch( iPhase ){
4823         case 0:    /* Constants without IN operator */
4824           pIdxCons->usable = 0;
4825           if( (pTerm->eOperator & WO_IN)!=0 ){
4826             seenIn = 1;
4827           }
4828           if( pTerm->prereqRight!=0 ){
4829             seenVar = 1;
4830           }else if( (pTerm->eOperator & WO_IN)==0 ){
4831             pIdxCons->usable = 1;
4832           }
4833           break;
4834         case 1:    /* Constants with IN operators */
4835           assert( seenIn );
4836           pIdxCons->usable = (pTerm->prereqRight==0);
4837           break;
4838         case 2:    /* Variables without IN */
4839           assert( seenVar );
4840           pIdxCons->usable = (pTerm->eOperator & WO_IN)==0;
4841           break;
4842         default:   /* Variables with IN */
4843           assert( seenVar && seenIn );
4844           pIdxCons->usable = 1;
4845           break;
4846       }
4847     }
4848     memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
4849     if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr);
4850     pIdxInfo->idxStr = 0;
4851     pIdxInfo->idxNum = 0;
4852     pIdxInfo->needToFreeIdxStr = 0;
4853     pIdxInfo->orderByConsumed = 0;
4854     pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
4855     pIdxInfo->estimatedRows = 25;
4856     rc = vtabBestIndex(pParse, pTab, pIdxInfo);
4857     if( rc ) goto whereLoopAddVtab_exit;
4858     pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
4859     pNew->prereq = mExtra;
4860     mxTerm = -1;
4861     assert( pNew->nLSlot>=nConstraint );
4862     for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
4863     pNew->u.vtab.omitMask = 0;
4864     for(i=0; i<nConstraint; i++, pIdxCons++){
4865       if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
4866         j = pIdxCons->iTermOffset;
4867         if( iTerm>=nConstraint
4868          || j<0
4869          || j>=pWC->nTerm
4870          || pNew->aLTerm[iTerm]!=0
4871         ){
4872           rc = SQLITE_ERROR;
4873           sqlite3ErrorMsg(pParse, "%s.xBestIndex() malfunction", pTab->zName);
4874           goto whereLoopAddVtab_exit;
4875         }
4876         testcase( iTerm==nConstraint-1 );
4877         testcase( j==0 );
4878         testcase( j==pWC->nTerm-1 );
4879         pTerm = &pWC->a[j];
4880         pNew->prereq |= pTerm->prereqRight;
4881         assert( iTerm<pNew->nLSlot );
4882         pNew->aLTerm[iTerm] = pTerm;
4883         if( iTerm>mxTerm ) mxTerm = iTerm;
4884         testcase( iTerm==15 );
4885         testcase( iTerm==16 );
4886         if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm;
4887         if( (pTerm->eOperator & WO_IN)!=0 ){
4888           if( pUsage[i].omit==0 ){
4889             /* Do not attempt to use an IN constraint if the virtual table
4890             ** says that the equivalent EQ constraint cannot be safely omitted.
4891             ** If we do attempt to use such a constraint, some rows might be
4892             ** repeated in the output. */
4893             break;
4894           }
4895           /* A virtual table that is constrained by an IN clause may not
4896           ** consume the ORDER BY clause because (1) the order of IN terms
4897           ** is not necessarily related to the order of output terms and
4898           ** (2) Multiple outputs from a single IN value will not merge
4899           ** together.  */
4900           pIdxInfo->orderByConsumed = 0;
4901         }
4902       }
4903     }
4904     if( i>=nConstraint ){
4905       pNew->nLTerm = mxTerm+1;
4906       assert( pNew->nLTerm<=pNew->nLSlot );
4907       pNew->u.vtab.idxNum = pIdxInfo->idxNum;
4908       pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
4909       pIdxInfo->needToFreeIdxStr = 0;
4910       pNew->u.vtab.idxStr = pIdxInfo->idxStr;
4911       pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
4912                                       pIdxInfo->nOrderBy : 0);
4913       pNew->rSetup = 0;
4914       pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
4915       pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
4916       whereLoopInsert(pBuilder, pNew);
4917       if( pNew->u.vtab.needFree ){
4918         sqlite3_free(pNew->u.vtab.idxStr);
4919         pNew->u.vtab.needFree = 0;
4920       }
4921     }
4922   }
4923 
4924 whereLoopAddVtab_exit:
4925   if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr);
4926   sqlite3DbFree(db, pIdxInfo);
4927   return rc;
4928 }
4929 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4930 
4931 /*
4932 ** Add WhereLoop entries to handle OR terms.  This works for either
4933 ** btrees or virtual tables.
4934 */
4935 static int whereLoopAddOr(WhereLoopBuilder *pBuilder, Bitmask mExtra){
4936   WhereInfo *pWInfo = pBuilder->pWInfo;
4937   WhereClause *pWC;
4938   WhereLoop *pNew;
4939   WhereTerm *pTerm, *pWCEnd;
4940   int rc = SQLITE_OK;
4941   int iCur;
4942   WhereClause tempWC;
4943   WhereLoopBuilder sSubBuild;
4944   WhereOrSet sSum, sCur;
4945   struct SrcList_item *pItem;
4946 
4947   pWC = pBuilder->pWC;
4948   if( pWInfo->wctrlFlags & WHERE_AND_ONLY ) return SQLITE_OK;
4949   pWCEnd = pWC->a + pWC->nTerm;
4950   pNew = pBuilder->pNew;
4951   memset(&sSum, 0, sizeof(sSum));
4952   pItem = pWInfo->pTabList->a + pNew->iTab;
4953   iCur = pItem->iCursor;
4954 
4955   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
4956     if( (pTerm->eOperator & WO_OR)!=0
4957      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
4958     ){
4959       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
4960       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
4961       WhereTerm *pOrTerm;
4962       int once = 1;
4963       int i, j;
4964 
4965       sSubBuild = *pBuilder;
4966       sSubBuild.pOrderBy = 0;
4967       sSubBuild.pOrSet = &sCur;
4968 
4969       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
4970         if( (pOrTerm->eOperator & WO_AND)!=0 ){
4971           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
4972         }else if( pOrTerm->leftCursor==iCur ){
4973           tempWC.pWInfo = pWC->pWInfo;
4974           tempWC.pOuter = pWC;
4975           tempWC.op = TK_AND;
4976           tempWC.nTerm = 1;
4977           tempWC.a = pOrTerm;
4978           sSubBuild.pWC = &tempWC;
4979         }else{
4980           continue;
4981         }
4982         sCur.n = 0;
4983 #ifndef SQLITE_OMIT_VIRTUALTABLE
4984         if( IsVirtual(pItem->pTab) ){
4985           rc = whereLoopAddVirtual(&sSubBuild, mExtra);
4986         }else
4987 #endif
4988         {
4989           rc = whereLoopAddBtree(&sSubBuild, mExtra);
4990         }
4991         assert( rc==SQLITE_OK || sCur.n==0 );
4992         if( sCur.n==0 ){
4993           sSum.n = 0;
4994           break;
4995         }else if( once ){
4996           whereOrMove(&sSum, &sCur);
4997           once = 0;
4998         }else{
4999           WhereOrSet sPrev;
5000           whereOrMove(&sPrev, &sSum);
5001           sSum.n = 0;
5002           for(i=0; i<sPrev.n; i++){
5003             for(j=0; j<sCur.n; j++){
5004               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
5005                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
5006                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
5007             }
5008           }
5009         }
5010       }
5011       pNew->nLTerm = 1;
5012       pNew->aLTerm[0] = pTerm;
5013       pNew->wsFlags = WHERE_MULTI_OR;
5014       pNew->rSetup = 0;
5015       pNew->iSortIdx = 0;
5016       memset(&pNew->u, 0, sizeof(pNew->u));
5017       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
5018         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
5019         ** of all sub-scans required by the OR-scan. However, due to rounding
5020         ** errors, it may be that the cost of the OR-scan is equal to its
5021         ** most expensive sub-scan. Add the smallest possible penalty
5022         ** (equivalent to multiplying the cost by 1.07) to ensure that
5023         ** this does not happen. Otherwise, for WHERE clauses such as the
5024         ** following where there is an index on "y":
5025         **
5026         **     WHERE likelihood(x=?, 0.99) OR y=?
5027         **
5028         ** the planner may elect to "OR" together a full-table scan and an
5029         ** index lookup. And other similarly odd results.  */
5030         pNew->rRun = sSum.a[i].rRun + 1;
5031         pNew->nOut = sSum.a[i].nOut;
5032         pNew->prereq = sSum.a[i].prereq;
5033         rc = whereLoopInsert(pBuilder, pNew);
5034       }
5035     }
5036   }
5037   return rc;
5038 }
5039 
5040 /*
5041 ** Add all WhereLoop objects for all tables
5042 */
5043 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
5044   WhereInfo *pWInfo = pBuilder->pWInfo;
5045   Bitmask mExtra = 0;
5046   Bitmask mPrior = 0;
5047   int iTab;
5048   SrcList *pTabList = pWInfo->pTabList;
5049   struct SrcList_item *pItem;
5050   sqlite3 *db = pWInfo->pParse->db;
5051   int nTabList = pWInfo->nLevel;
5052   int rc = SQLITE_OK;
5053   u8 priorJoinType = 0;
5054   WhereLoop *pNew;
5055 
5056   /* Loop over the tables in the join, from left to right */
5057   pNew = pBuilder->pNew;
5058   whereLoopInit(pNew);
5059   for(iTab=0, pItem=pTabList->a; iTab<nTabList; iTab++, pItem++){
5060     pNew->iTab = iTab;
5061     pNew->maskSelf = getMask(&pWInfo->sMaskSet, pItem->iCursor);
5062     if( ((pItem->jointype|priorJoinType) & (JT_LEFT|JT_CROSS))!=0 ){
5063       mExtra = mPrior;
5064     }
5065     priorJoinType = pItem->jointype;
5066     if( IsVirtual(pItem->pTab) ){
5067       rc = whereLoopAddVirtual(pBuilder, mExtra);
5068     }else{
5069       rc = whereLoopAddBtree(pBuilder, mExtra);
5070     }
5071     if( rc==SQLITE_OK ){
5072       rc = whereLoopAddOr(pBuilder, mExtra);
5073     }
5074     mPrior |= pNew->maskSelf;
5075     if( rc || db->mallocFailed ) break;
5076   }
5077   whereLoopClear(db, pNew);
5078   return rc;
5079 }
5080 
5081 /*
5082 ** Examine a WherePath (with the addition of the extra WhereLoop of the 5th
5083 ** parameters) to see if it outputs rows in the requested ORDER BY
5084 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
5085 **
5086 **   N>0:   N terms of the ORDER BY clause are satisfied
5087 **   N==0:  No terms of the ORDER BY clause are satisfied
5088 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
5089 **
5090 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
5091 ** strict.  With GROUP BY and DISTINCT the only requirement is that
5092 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
5093 ** and DISTINCT do not require rows to appear in any particular order as long
5094 ** as equivelent rows are grouped together.  Thus for GROUP BY and DISTINCT
5095 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
5096 ** pOrderBy terms must be matched in strict left-to-right order.
5097 */
5098 static i8 wherePathSatisfiesOrderBy(
5099   WhereInfo *pWInfo,    /* The WHERE clause */
5100   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
5101   WherePath *pPath,     /* The WherePath to check */
5102   u16 wctrlFlags,       /* Might contain WHERE_GROUPBY or WHERE_DISTINCTBY */
5103   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
5104   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
5105   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
5106 ){
5107   u8 revSet;            /* True if rev is known */
5108   u8 rev;               /* Composite sort order */
5109   u8 revIdx;            /* Index sort order */
5110   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
5111   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
5112   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
5113   u16 nKeyCol;          /* Number of key columns in pIndex */
5114   u16 nColumn;          /* Total number of ordered columns in the index */
5115   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
5116   int iLoop;            /* Index of WhereLoop in pPath being processed */
5117   int i, j;             /* Loop counters */
5118   int iCur;             /* Cursor number for current WhereLoop */
5119   int iColumn;          /* A column number within table iCur */
5120   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
5121   WhereTerm *pTerm;     /* A single term of the WHERE clause */
5122   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
5123   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
5124   Index *pIndex;        /* The index associated with pLoop */
5125   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
5126   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
5127   Bitmask obDone;       /* Mask of all ORDER BY terms */
5128   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
5129   Bitmask ready;              /* Mask of inner loops */
5130 
5131   /*
5132   ** We say the WhereLoop is "one-row" if it generates no more than one
5133   ** row of output.  A WhereLoop is one-row if all of the following are true:
5134   **  (a) All index columns match with WHERE_COLUMN_EQ.
5135   **  (b) The index is unique
5136   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
5137   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
5138   **
5139   ** We say the WhereLoop is "order-distinct" if the set of columns from
5140   ** that WhereLoop that are in the ORDER BY clause are different for every
5141   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
5142   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
5143   ** is not order-distinct. To be order-distinct is not quite the same as being
5144   ** UNIQUE since a UNIQUE column or index can have multiple rows that
5145   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
5146   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
5147   **
5148   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
5149   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
5150   ** automatically order-distinct.
5151   */
5152 
5153   assert( pOrderBy!=0 );
5154   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
5155 
5156   nOrderBy = pOrderBy->nExpr;
5157   testcase( nOrderBy==BMS-1 );
5158   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
5159   isOrderDistinct = 1;
5160   obDone = MASKBIT(nOrderBy)-1;
5161   orderDistinctMask = 0;
5162   ready = 0;
5163   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
5164     if( iLoop>0 ) ready |= pLoop->maskSelf;
5165     pLoop = iLoop<nLoop ? pPath->aLoop[iLoop] : pLast;
5166     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
5167       if( pLoop->u.vtab.isOrdered ) obSat = obDone;
5168       break;
5169     }
5170     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
5171 
5172     /* Mark off any ORDER BY term X that is a column in the table of
5173     ** the current loop for which there is term in the WHERE
5174     ** clause of the form X IS NULL or X=? that reference only outer
5175     ** loops.
5176     */
5177     for(i=0; i<nOrderBy; i++){
5178       if( MASKBIT(i) & obSat ) continue;
5179       pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
5180       if( pOBExpr->op!=TK_COLUMN ) continue;
5181       if( pOBExpr->iTable!=iCur ) continue;
5182       pTerm = findTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
5183                        ~ready, WO_EQ|WO_ISNULL, 0);
5184       if( pTerm==0 ) continue;
5185       if( (pTerm->eOperator&WO_EQ)!=0 && pOBExpr->iColumn>=0 ){
5186         const char *z1, *z2;
5187         pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
5188         if( !pColl ) pColl = db->pDfltColl;
5189         z1 = pColl->zName;
5190         pColl = sqlite3ExprCollSeq(pWInfo->pParse, pTerm->pExpr);
5191         if( !pColl ) pColl = db->pDfltColl;
5192         z2 = pColl->zName;
5193         if( sqlite3StrICmp(z1, z2)!=0 ) continue;
5194       }
5195       obSat |= MASKBIT(i);
5196     }
5197 
5198     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
5199       if( pLoop->wsFlags & WHERE_IPK ){
5200         pIndex = 0;
5201         nKeyCol = 0;
5202         nColumn = 1;
5203       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
5204         return 0;
5205       }else{
5206         nKeyCol = pIndex->nKeyCol;
5207         nColumn = pIndex->nColumn;
5208         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
5209         assert( pIndex->aiColumn[nColumn-1]==(-1) || !HasRowid(pIndex->pTable));
5210         isOrderDistinct = pIndex->onError!=OE_None;
5211       }
5212 
5213       /* Loop through all columns of the index and deal with the ones
5214       ** that are not constrained by == or IN.
5215       */
5216       rev = revSet = 0;
5217       distinctColumns = 0;
5218       for(j=0; j<nColumn; j++){
5219         u8 bOnce;   /* True to run the ORDER BY search loop */
5220 
5221         /* Skip over == and IS NULL terms */
5222         if( j<pLoop->u.btree.nEq
5223          && pLoop->u.btree.nSkip==0
5224          && ((i = pLoop->aLTerm[j]->eOperator) & (WO_EQ|WO_ISNULL))!=0
5225         ){
5226           if( i & WO_ISNULL ){
5227             testcase( isOrderDistinct );
5228             isOrderDistinct = 0;
5229           }
5230           continue;
5231         }
5232 
5233         /* Get the column number in the table (iColumn) and sort order
5234         ** (revIdx) for the j-th column of the index.
5235         */
5236         if( pIndex ){
5237           iColumn = pIndex->aiColumn[j];
5238           revIdx = pIndex->aSortOrder[j];
5239           if( iColumn==pIndex->pTable->iPKey ) iColumn = -1;
5240         }else{
5241           iColumn = -1;
5242           revIdx = 0;
5243         }
5244 
5245         /* An unconstrained column that might be NULL means that this
5246         ** WhereLoop is not well-ordered
5247         */
5248         if( isOrderDistinct
5249          && iColumn>=0
5250          && j>=pLoop->u.btree.nEq
5251          && pIndex->pTable->aCol[iColumn].notNull==0
5252         ){
5253           isOrderDistinct = 0;
5254         }
5255 
5256         /* Find the ORDER BY term that corresponds to the j-th column
5257         ** of the index and mark that ORDER BY term off
5258         */
5259         bOnce = 1;
5260         isMatch = 0;
5261         for(i=0; bOnce && i<nOrderBy; i++){
5262           if( MASKBIT(i) & obSat ) continue;
5263           pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
5264           testcase( wctrlFlags & WHERE_GROUPBY );
5265           testcase( wctrlFlags & WHERE_DISTINCTBY );
5266           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
5267           if( pOBExpr->op!=TK_COLUMN ) continue;
5268           if( pOBExpr->iTable!=iCur ) continue;
5269           if( pOBExpr->iColumn!=iColumn ) continue;
5270           if( iColumn>=0 ){
5271             pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
5272             if( !pColl ) pColl = db->pDfltColl;
5273             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
5274           }
5275           isMatch = 1;
5276           break;
5277         }
5278         if( isMatch && (pWInfo->wctrlFlags & WHERE_GROUPBY)==0 ){
5279           /* Make sure the sort order is compatible in an ORDER BY clause.
5280           ** Sort order is irrelevant for a GROUP BY clause. */
5281           if( revSet ){
5282             if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0;
5283           }else{
5284             rev = revIdx ^ pOrderBy->a[i].sortOrder;
5285             if( rev ) *pRevMask |= MASKBIT(iLoop);
5286             revSet = 1;
5287           }
5288         }
5289         if( isMatch ){
5290           if( iColumn<0 ){
5291             testcase( distinctColumns==0 );
5292             distinctColumns = 1;
5293           }
5294           obSat |= MASKBIT(i);
5295         }else{
5296           /* No match found */
5297           if( j==0 || j<nKeyCol ){
5298             testcase( isOrderDistinct!=0 );
5299             isOrderDistinct = 0;
5300           }
5301           break;
5302         }
5303       } /* end Loop over all index columns */
5304       if( distinctColumns ){
5305         testcase( isOrderDistinct==0 );
5306         isOrderDistinct = 1;
5307       }
5308     } /* end-if not one-row */
5309 
5310     /* Mark off any other ORDER BY terms that reference pLoop */
5311     if( isOrderDistinct ){
5312       orderDistinctMask |= pLoop->maskSelf;
5313       for(i=0; i<nOrderBy; i++){
5314         Expr *p;
5315         Bitmask mTerm;
5316         if( MASKBIT(i) & obSat ) continue;
5317         p = pOrderBy->a[i].pExpr;
5318         mTerm = exprTableUsage(&pWInfo->sMaskSet,p);
5319         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
5320         if( (mTerm&~orderDistinctMask)==0 ){
5321           obSat |= MASKBIT(i);
5322         }
5323       }
5324     }
5325   } /* End the loop over all WhereLoops from outer-most down to inner-most */
5326   if( obSat==obDone ) return (i8)nOrderBy;
5327   if( !isOrderDistinct ){
5328     for(i=nOrderBy-1; i>0; i--){
5329       Bitmask m = MASKBIT(i) - 1;
5330       if( (obSat&m)==m ) return i;
5331     }
5332     return 0;
5333   }
5334   return -1;
5335 }
5336 
5337 
5338 /*
5339 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
5340 ** the planner assumes that the specified pOrderBy list is actually a GROUP
5341 ** BY clause - and so any order that groups rows as required satisfies the
5342 ** request.
5343 **
5344 ** Normally, in this case it is not possible for the caller to determine
5345 ** whether or not the rows are really being delivered in sorted order, or
5346 ** just in some other order that provides the required grouping. However,
5347 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
5348 ** this function may be called on the returned WhereInfo object. It returns
5349 ** true if the rows really will be sorted in the specified order, or false
5350 ** otherwise.
5351 **
5352 ** For example, assuming:
5353 **
5354 **   CREATE INDEX i1 ON t1(x, Y);
5355 **
5356 ** then
5357 **
5358 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
5359 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
5360 */
5361 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
5362   assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
5363   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
5364   return pWInfo->sorted;
5365 }
5366 
5367 #ifdef WHERETRACE_ENABLED
5368 /* For debugging use only: */
5369 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
5370   static char zName[65];
5371   int i;
5372   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
5373   if( pLast ) zName[i++] = pLast->cId;
5374   zName[i] = 0;
5375   return zName;
5376 }
5377 #endif
5378 
5379 /*
5380 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
5381 ** attempts to find the lowest cost path that visits each WhereLoop
5382 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
5383 **
5384 ** Assume that the total number of output rows that will need to be sorted
5385 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
5386 ** costs if nRowEst==0.
5387 **
5388 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
5389 ** error occurs.
5390 */
5391 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
5392   int mxChoice;             /* Maximum number of simultaneous paths tracked */
5393   int nLoop;                /* Number of terms in the join */
5394   Parse *pParse;            /* Parsing context */
5395   sqlite3 *db;              /* The database connection */
5396   int iLoop;                /* Loop counter over the terms of the join */
5397   int ii, jj;               /* Loop counters */
5398   int mxI = 0;              /* Index of next entry to replace */
5399   int nOrderBy;             /* Number of ORDER BY clause terms */
5400   LogEst rCost;             /* Cost of a path */
5401   LogEst nOut;              /* Number of outputs */
5402   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
5403   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
5404   WherePath *aFrom;         /* All nFrom paths at the previous level */
5405   WherePath *aTo;           /* The nTo best paths at the current level */
5406   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
5407   WherePath *pTo;           /* An element of aTo[] that we are working on */
5408   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
5409   WhereLoop **pX;           /* Used to divy up the pSpace memory */
5410   char *pSpace;             /* Temporary memory used by this routine */
5411 
5412   pParse = pWInfo->pParse;
5413   db = pParse->db;
5414   nLoop = pWInfo->nLevel;
5415   /* TUNING: For simple queries, only the best path is tracked.
5416   ** For 2-way joins, the 5 best paths are followed.
5417   ** For joins of 3 or more tables, track the 10 best paths */
5418   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
5419   assert( nLoop<=pWInfo->pTabList->nSrc );
5420   WHERETRACE(0x002, ("---- begin solver\n"));
5421 
5422   /* Allocate and initialize space for aTo and aFrom */
5423   ii = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
5424   pSpace = sqlite3DbMallocRaw(db, ii);
5425   if( pSpace==0 ) return SQLITE_NOMEM;
5426   aTo = (WherePath*)pSpace;
5427   aFrom = aTo+mxChoice;
5428   memset(aFrom, 0, sizeof(aFrom[0]));
5429   pX = (WhereLoop**)(aFrom+mxChoice);
5430   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
5431     pFrom->aLoop = pX;
5432   }
5433 
5434   /* Seed the search with a single WherePath containing zero WhereLoops.
5435   **
5436   ** TUNING: Do not let the number of iterations go above 25.  If the cost
5437   ** of computing an automatic index is not paid back within the first 25
5438   ** rows, then do not use the automatic index. */
5439   aFrom[0].nRow = MIN(pParse->nQueryLoop, 46);  assert( 46==sqlite3LogEst(25) );
5440   nFrom = 1;
5441 
5442   /* Precompute the cost of sorting the final result set, if the caller
5443   ** to sqlite3WhereBegin() was concerned about sorting */
5444   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
5445     aFrom[0].isOrdered = 0;
5446     nOrderBy = 0;
5447   }else{
5448     aFrom[0].isOrdered = nLoop>0 ? -1 : 1;
5449     nOrderBy = pWInfo->pOrderBy->nExpr;
5450   }
5451 
5452   /* Compute successively longer WherePaths using the previous generation
5453   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
5454   ** best paths at each generation */
5455   for(iLoop=0; iLoop<nLoop; iLoop++){
5456     nTo = 0;
5457     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
5458       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
5459         Bitmask maskNew;
5460         Bitmask revMask = 0;
5461         i8 isOrdered = pFrom->isOrdered;
5462         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
5463         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
5464         /* At this point, pWLoop is a candidate to be the next loop.
5465         ** Compute its cost */
5466         rCost = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
5467         rCost = sqlite3LogEstAdd(rCost, pFrom->rCost);
5468         nOut = pFrom->nRow + pWLoop->nOut;
5469         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
5470         if( isOrdered<0 ){
5471           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
5472                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
5473                        iLoop, pWLoop, &revMask);
5474           if( isOrdered>=0 && isOrdered<nOrderBy ){
5475             /* TUNING: Estimated cost of a full external sort, where N is
5476             ** the number of rows to sort is:
5477             **
5478             **   cost = (3.0 * N * log(N)).
5479             **
5480             ** Or, if the order-by clause has X terms but only the last Y
5481             ** terms are out of order, then block-sorting will reduce the
5482             ** sorting cost to:
5483             **
5484             **   cost = (3.0 * N * log(N)) * (Y/X)
5485             **
5486             ** The (Y/X) term is implemented using stack variable rScale
5487             ** below.  */
5488             LogEst rScale, rSortCost;
5489             assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
5490             rScale = sqlite3LogEst((nOrderBy-isOrdered)*100/nOrderBy) - 66;
5491             rSortCost = nRowEst + estLog(nRowEst) + rScale + 16;
5492 
5493             /* TUNING: The cost of implementing DISTINCT using a B-TREE is
5494             ** similar but with a larger constant of proportionality.
5495             ** Multiply by an additional factor of 3.0.  */
5496             if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
5497               rSortCost += 16;
5498             }
5499             WHERETRACE(0x002,
5500                ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
5501                 rSortCost, (nOrderBy-isOrdered), nOrderBy, rCost,
5502                 sqlite3LogEstAdd(rCost,rSortCost)));
5503             rCost = sqlite3LogEstAdd(rCost, rSortCost);
5504           }
5505         }else{
5506           revMask = pFrom->revLoop;
5507         }
5508         /* Check to see if pWLoop should be added to the mxChoice best so far */
5509         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
5510           if( pTo->maskLoop==maskNew
5511            && ((pTo->isOrdered^isOrdered)&80)==0
5512           ){
5513             testcase( jj==nTo-1 );
5514             break;
5515           }
5516         }
5517         if( jj>=nTo ){
5518           if( nTo>=mxChoice && rCost>=mxCost ){
5519 #ifdef WHERETRACE_ENABLED /* 0x4 */
5520             if( sqlite3WhereTrace&0x4 ){
5521               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d order=%c\n",
5522                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
5523                   isOrdered>=0 ? isOrdered+'0' : '?');
5524             }
5525 #endif
5526             continue;
5527           }
5528           /* Add a new Path to the aTo[] set */
5529           if( nTo<mxChoice ){
5530             /* Increase the size of the aTo set by one */
5531             jj = nTo++;
5532           }else{
5533             /* New path replaces the prior worst to keep count below mxChoice */
5534             jj = mxI;
5535           }
5536           pTo = &aTo[jj];
5537 #ifdef WHERETRACE_ENABLED /* 0x4 */
5538           if( sqlite3WhereTrace&0x4 ){
5539             sqlite3DebugPrintf("New    %s cost=%-3d,%3d order=%c\n",
5540                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
5541                 isOrdered>=0 ? isOrdered+'0' : '?');
5542           }
5543 #endif
5544         }else{
5545           if( pTo->rCost<=rCost ){
5546 #ifdef WHERETRACE_ENABLED /* 0x4 */
5547             if( sqlite3WhereTrace&0x4 ){
5548               sqlite3DebugPrintf(
5549                   "Skip   %s cost=%-3d,%3d order=%c",
5550                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
5551                   isOrdered>=0 ? isOrdered+'0' : '?');
5552               sqlite3DebugPrintf("   vs %s cost=%-3d,%d order=%c\n",
5553                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
5554                   pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
5555             }
5556 #endif
5557             testcase( pTo->rCost==rCost );
5558             continue;
5559           }
5560           testcase( pTo->rCost==rCost+1 );
5561           /* A new and better score for a previously created equivalent path */
5562 #ifdef WHERETRACE_ENABLED /* 0x4 */
5563           if( sqlite3WhereTrace&0x4 ){
5564             sqlite3DebugPrintf(
5565                 "Update %s cost=%-3d,%3d order=%c",
5566                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut,
5567                 isOrdered>=0 ? isOrdered+'0' : '?');
5568             sqlite3DebugPrintf("  was %s cost=%-3d,%3d order=%c\n",
5569                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
5570                 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
5571           }
5572 #endif
5573         }
5574         /* pWLoop is a winner.  Add it to the set of best so far */
5575         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
5576         pTo->revLoop = revMask;
5577         pTo->nRow = nOut;
5578         pTo->rCost = rCost;
5579         pTo->isOrdered = isOrdered;
5580         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
5581         pTo->aLoop[iLoop] = pWLoop;
5582         if( nTo>=mxChoice ){
5583           mxI = 0;
5584           mxCost = aTo[0].rCost;
5585           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
5586             if( pTo->rCost>mxCost ){
5587               mxCost = pTo->rCost;
5588               mxI = jj;
5589             }
5590           }
5591         }
5592       }
5593     }
5594 
5595 #ifdef WHERETRACE_ENABLED  /* >=2 */
5596     if( sqlite3WhereTrace>=2 ){
5597       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
5598       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
5599         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
5600            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
5601            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
5602         if( pTo->isOrdered>0 ){
5603           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
5604         }else{
5605           sqlite3DebugPrintf("\n");
5606         }
5607       }
5608     }
5609 #endif
5610 
5611     /* Swap the roles of aFrom and aTo for the next generation */
5612     pFrom = aTo;
5613     aTo = aFrom;
5614     aFrom = pFrom;
5615     nFrom = nTo;
5616   }
5617 
5618   if( nFrom==0 ){
5619     sqlite3ErrorMsg(pParse, "no query solution");
5620     sqlite3DbFree(db, pSpace);
5621     return SQLITE_ERROR;
5622   }
5623 
5624   /* Find the lowest cost path.  pFrom will be left pointing to that path */
5625   pFrom = aFrom;
5626   for(ii=1; ii<nFrom; ii++){
5627     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
5628   }
5629   assert( pWInfo->nLevel==nLoop );
5630   /* Load the lowest cost path into pWInfo */
5631   for(iLoop=0; iLoop<nLoop; iLoop++){
5632     WhereLevel *pLevel = pWInfo->a + iLoop;
5633     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
5634     pLevel->iFrom = pWLoop->iTab;
5635     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
5636   }
5637   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
5638    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
5639    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
5640    && nRowEst
5641   ){
5642     Bitmask notUsed;
5643     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
5644                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
5645     if( rc==pWInfo->pResultSet->nExpr ){
5646       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
5647     }
5648   }
5649   if( pWInfo->pOrderBy ){
5650     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
5651       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
5652         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
5653       }
5654     }else{
5655       pWInfo->nOBSat = pFrom->isOrdered;
5656       if( pWInfo->nOBSat<0 ) pWInfo->nOBSat = 0;
5657       pWInfo->revMask = pFrom->revLoop;
5658     }
5659     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
5660         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr
5661     ){
5662       Bitmask notUsed = 0;
5663       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
5664           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed
5665       );
5666       assert( pWInfo->sorted==0 );
5667       pWInfo->sorted = (nOrder==pWInfo->pOrderBy->nExpr);
5668     }
5669   }
5670 
5671 
5672   pWInfo->nRowOut = pFrom->nRow;
5673 
5674   /* Free temporary memory and return success */
5675   sqlite3DbFree(db, pSpace);
5676   return SQLITE_OK;
5677 }
5678 
5679 /*
5680 ** Most queries use only a single table (they are not joins) and have
5681 ** simple == constraints against indexed fields.  This routine attempts
5682 ** to plan those simple cases using much less ceremony than the
5683 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
5684 ** times for the common case.
5685 **
5686 ** Return non-zero on success, if this query can be handled by this
5687 ** no-frills query planner.  Return zero if this query needs the
5688 ** general-purpose query planner.
5689 */
5690 static int whereShortCut(WhereLoopBuilder *pBuilder){
5691   WhereInfo *pWInfo;
5692   struct SrcList_item *pItem;
5693   WhereClause *pWC;
5694   WhereTerm *pTerm;
5695   WhereLoop *pLoop;
5696   int iCur;
5697   int j;
5698   Table *pTab;
5699   Index *pIdx;
5700 
5701   pWInfo = pBuilder->pWInfo;
5702   if( pWInfo->wctrlFlags & WHERE_FORCE_TABLE ) return 0;
5703   assert( pWInfo->pTabList->nSrc>=1 );
5704   pItem = pWInfo->pTabList->a;
5705   pTab = pItem->pTab;
5706   if( IsVirtual(pTab) ) return 0;
5707   if( pItem->zIndex ) return 0;
5708   iCur = pItem->iCursor;
5709   pWC = &pWInfo->sWC;
5710   pLoop = pBuilder->pNew;
5711   pLoop->wsFlags = 0;
5712   pLoop->u.btree.nSkip = 0;
5713   pTerm = findTerm(pWC, iCur, -1, 0, WO_EQ, 0);
5714   if( pTerm ){
5715     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
5716     pLoop->aLTerm[0] = pTerm;
5717     pLoop->nLTerm = 1;
5718     pLoop->u.btree.nEq = 1;
5719     /* TUNING: Cost of a rowid lookup is 10 */
5720     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
5721   }else{
5722     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
5723       assert( pLoop->aLTermSpace==pLoop->aLTerm );
5724       assert( ArraySize(pLoop->aLTermSpace)==4 );
5725       if( pIdx->onError==OE_None
5726        || pIdx->pPartIdxWhere!=0
5727        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
5728       ) continue;
5729       for(j=0; j<pIdx->nKeyCol; j++){
5730         pTerm = findTerm(pWC, iCur, pIdx->aiColumn[j], 0, WO_EQ, pIdx);
5731         if( pTerm==0 ) break;
5732         pLoop->aLTerm[j] = pTerm;
5733       }
5734       if( j!=pIdx->nKeyCol ) continue;
5735       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
5736       if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){
5737         pLoop->wsFlags |= WHERE_IDX_ONLY;
5738       }
5739       pLoop->nLTerm = j;
5740       pLoop->u.btree.nEq = j;
5741       pLoop->u.btree.pIndex = pIdx;
5742       /* TUNING: Cost of a unique index lookup is 15 */
5743       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
5744       break;
5745     }
5746   }
5747   if( pLoop->wsFlags ){
5748     pLoop->nOut = (LogEst)1;
5749     pWInfo->a[0].pWLoop = pLoop;
5750     pLoop->maskSelf = getMask(&pWInfo->sMaskSet, iCur);
5751     pWInfo->a[0].iTabCur = iCur;
5752     pWInfo->nRowOut = 1;
5753     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
5754     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
5755       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
5756     }
5757 #ifdef SQLITE_DEBUG
5758     pLoop->cId = '0';
5759 #endif
5760     return 1;
5761   }
5762   return 0;
5763 }
5764 
5765 /*
5766 ** Generate the beginning of the loop used for WHERE clause processing.
5767 ** The return value is a pointer to an opaque structure that contains
5768 ** information needed to terminate the loop.  Later, the calling routine
5769 ** should invoke sqlite3WhereEnd() with the return value of this function
5770 ** in order to complete the WHERE clause processing.
5771 **
5772 ** If an error occurs, this routine returns NULL.
5773 **
5774 ** The basic idea is to do a nested loop, one loop for each table in
5775 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
5776 ** same as a SELECT with only a single table in the FROM clause.)  For
5777 ** example, if the SQL is this:
5778 **
5779 **       SELECT * FROM t1, t2, t3 WHERE ...;
5780 **
5781 ** Then the code generated is conceptually like the following:
5782 **
5783 **      foreach row1 in t1 do       \    Code generated
5784 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
5785 **          foreach row3 in t3 do   /
5786 **            ...
5787 **          end                     \    Code generated
5788 **        end                        |-- by sqlite3WhereEnd()
5789 **      end                         /
5790 **
5791 ** Note that the loops might not be nested in the order in which they
5792 ** appear in the FROM clause if a different order is better able to make
5793 ** use of indices.  Note also that when the IN operator appears in
5794 ** the WHERE clause, it might result in additional nested loops for
5795 ** scanning through all values on the right-hand side of the IN.
5796 **
5797 ** There are Btree cursors associated with each table.  t1 uses cursor
5798 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
5799 ** And so forth.  This routine generates code to open those VDBE cursors
5800 ** and sqlite3WhereEnd() generates the code to close them.
5801 **
5802 ** The code that sqlite3WhereBegin() generates leaves the cursors named
5803 ** in pTabList pointing at their appropriate entries.  The [...] code
5804 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
5805 ** data from the various tables of the loop.
5806 **
5807 ** If the WHERE clause is empty, the foreach loops must each scan their
5808 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
5809 ** the tables have indices and there are terms in the WHERE clause that
5810 ** refer to those indices, a complete table scan can be avoided and the
5811 ** code will run much faster.  Most of the work of this routine is checking
5812 ** to see if there are indices that can be used to speed up the loop.
5813 **
5814 ** Terms of the WHERE clause are also used to limit which rows actually
5815 ** make it to the "..." in the middle of the loop.  After each "foreach",
5816 ** terms of the WHERE clause that use only terms in that loop and outer
5817 ** loops are evaluated and if false a jump is made around all subsequent
5818 ** inner loops (or around the "..." if the test occurs within the inner-
5819 ** most loop)
5820 **
5821 ** OUTER JOINS
5822 **
5823 ** An outer join of tables t1 and t2 is conceptally coded as follows:
5824 **
5825 **    foreach row1 in t1 do
5826 **      flag = 0
5827 **      foreach row2 in t2 do
5828 **        start:
5829 **          ...
5830 **          flag = 1
5831 **      end
5832 **      if flag==0 then
5833 **        move the row2 cursor to a null row
5834 **        goto start
5835 **      fi
5836 **    end
5837 **
5838 ** ORDER BY CLAUSE PROCESSING
5839 **
5840 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
5841 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
5842 ** if there is one.  If there is no ORDER BY clause or if this routine
5843 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
5844 **
5845 ** The iIdxCur parameter is the cursor number of an index.  If
5846 ** WHERE_ONETABLE_ONLY is set, iIdxCur is the cursor number of an index
5847 ** to use for OR clause processing.  The WHERE clause should use this
5848 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
5849 ** the first cursor in an array of cursors for all indices.  iIdxCur should
5850 ** be used to compute the appropriate cursor depending on which index is
5851 ** used.
5852 */
5853 WhereInfo *sqlite3WhereBegin(
5854   Parse *pParse,        /* The parser context */
5855   SrcList *pTabList,    /* FROM clause: A list of all tables to be scanned */
5856   Expr *pWhere,         /* The WHERE clause */
5857   ExprList *pOrderBy,   /* An ORDER BY (or GROUP BY) clause, or NULL */
5858   ExprList *pResultSet, /* Result set of the query */
5859   u16 wctrlFlags,       /* One of the WHERE_* flags defined in sqliteInt.h */
5860   int iIdxCur           /* If WHERE_ONETABLE_ONLY is set, index cursor number */
5861 ){
5862   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
5863   int nTabList;              /* Number of elements in pTabList */
5864   WhereInfo *pWInfo;         /* Will become the return value of this function */
5865   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
5866   Bitmask notReady;          /* Cursors that are not yet positioned */
5867   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
5868   WhereMaskSet *pMaskSet;    /* The expression mask set */
5869   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
5870   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
5871   int ii;                    /* Loop counter */
5872   sqlite3 *db;               /* Database connection */
5873   int rc;                    /* Return code */
5874 
5875 
5876   /* Variable initialization */
5877   db = pParse->db;
5878   memset(&sWLB, 0, sizeof(sWLB));
5879 
5880   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
5881   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
5882   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
5883   sWLB.pOrderBy = pOrderBy;
5884 
5885   /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
5886   ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
5887   if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
5888     wctrlFlags &= ~WHERE_WANT_DISTINCT;
5889   }
5890 
5891   /* The number of tables in the FROM clause is limited by the number of
5892   ** bits in a Bitmask
5893   */
5894   testcase( pTabList->nSrc==BMS );
5895   if( pTabList->nSrc>BMS ){
5896     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
5897     return 0;
5898   }
5899 
5900   /* This function normally generates a nested loop for all tables in
5901   ** pTabList.  But if the WHERE_ONETABLE_ONLY flag is set, then we should
5902   ** only generate code for the first table in pTabList and assume that
5903   ** any cursors associated with subsequent tables are uninitialized.
5904   */
5905   nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc;
5906 
5907   /* Allocate and initialize the WhereInfo structure that will become the
5908   ** return value. A single allocation is used to store the WhereInfo
5909   ** struct, the contents of WhereInfo.a[], the WhereClause structure
5910   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
5911   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
5912   ** some architectures. Hence the ROUND8() below.
5913   */
5914   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
5915   pWInfo = sqlite3DbMallocZero(db, nByteWInfo + sizeof(WhereLoop));
5916   if( db->mallocFailed ){
5917     sqlite3DbFree(db, pWInfo);
5918     pWInfo = 0;
5919     goto whereBeginError;
5920   }
5921   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
5922   pWInfo->nLevel = nTabList;
5923   pWInfo->pParse = pParse;
5924   pWInfo->pTabList = pTabList;
5925   pWInfo->pOrderBy = pOrderBy;
5926   pWInfo->pResultSet = pResultSet;
5927   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v);
5928   pWInfo->wctrlFlags = wctrlFlags;
5929   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
5930   pMaskSet = &pWInfo->sMaskSet;
5931   sWLB.pWInfo = pWInfo;
5932   sWLB.pWC = &pWInfo->sWC;
5933   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
5934   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
5935   whereLoopInit(sWLB.pNew);
5936 #ifdef SQLITE_DEBUG
5937   sWLB.pNew->cId = '*';
5938 #endif
5939 
5940   /* Split the WHERE clause into separate subexpressions where each
5941   ** subexpression is separated by an AND operator.
5942   */
5943   initMaskSet(pMaskSet);
5944   whereClauseInit(&pWInfo->sWC, pWInfo);
5945   whereSplit(&pWInfo->sWC, pWhere, TK_AND);
5946 
5947   /* Special case: a WHERE clause that is constant.  Evaluate the
5948   ** expression and either jump over all of the code or fall thru.
5949   */
5950   for(ii=0; ii<sWLB.pWC->nTerm; ii++){
5951     if( nTabList==0 || sqlite3ExprIsConstantNotJoin(sWLB.pWC->a[ii].pExpr) ){
5952       sqlite3ExprIfFalse(pParse, sWLB.pWC->a[ii].pExpr, pWInfo->iBreak,
5953                          SQLITE_JUMPIFNULL);
5954       sWLB.pWC->a[ii].wtFlags |= TERM_CODED;
5955     }
5956   }
5957 
5958   /* Special case: No FROM clause
5959   */
5960   if( nTabList==0 ){
5961     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
5962     if( wctrlFlags & WHERE_WANT_DISTINCT ){
5963       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
5964     }
5965   }
5966 
5967   /* Assign a bit from the bitmask to every term in the FROM clause.
5968   **
5969   ** When assigning bitmask values to FROM clause cursors, it must be
5970   ** the case that if X is the bitmask for the N-th FROM clause term then
5971   ** the bitmask for all FROM clause terms to the left of the N-th term
5972   ** is (X-1).   An expression from the ON clause of a LEFT JOIN can use
5973   ** its Expr.iRightJoinTable value to find the bitmask of the right table
5974   ** of the join.  Subtracting one from the right table bitmask gives a
5975   ** bitmask for all tables to the left of the join.  Knowing the bitmask
5976   ** for all tables to the left of a left join is important.  Ticket #3015.
5977   **
5978   ** Note that bitmasks are created for all pTabList->nSrc tables in
5979   ** pTabList, not just the first nTabList tables.  nTabList is normally
5980   ** equal to pTabList->nSrc but might be shortened to 1 if the
5981   ** WHERE_ONETABLE_ONLY flag is set.
5982   */
5983   for(ii=0; ii<pTabList->nSrc; ii++){
5984     createMask(pMaskSet, pTabList->a[ii].iCursor);
5985   }
5986 #ifndef NDEBUG
5987   {
5988     Bitmask toTheLeft = 0;
5989     for(ii=0; ii<pTabList->nSrc; ii++){
5990       Bitmask m = getMask(pMaskSet, pTabList->a[ii].iCursor);
5991       assert( (m-1)==toTheLeft );
5992       toTheLeft |= m;
5993     }
5994   }
5995 #endif
5996 
5997   /* Analyze all of the subexpressions.  Note that exprAnalyze() might
5998   ** add new virtual terms onto the end of the WHERE clause.  We do not
5999   ** want to analyze these virtual terms, so start analyzing at the end
6000   ** and work forward so that the added virtual terms are never processed.
6001   */
6002   exprAnalyzeAll(pTabList, &pWInfo->sWC);
6003   if( db->mallocFailed ){
6004     goto whereBeginError;
6005   }
6006 
6007   if( wctrlFlags & WHERE_WANT_DISTINCT ){
6008     if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
6009       /* The DISTINCT marking is pointless.  Ignore it. */
6010       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
6011     }else if( pOrderBy==0 ){
6012       /* Try to ORDER BY the result set to make distinct processing easier */
6013       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
6014       pWInfo->pOrderBy = pResultSet;
6015     }
6016   }
6017 
6018   /* Construct the WhereLoop objects */
6019   WHERETRACE(0xffff,("*** Optimizer Start ***\n"));
6020   /* Display all terms of the WHERE clause */
6021 #if defined(WHERETRACE_ENABLED) && defined(SQLITE_ENABLE_TREE_EXPLAIN)
6022   if( sqlite3WhereTrace & 0x100 ){
6023     int i;
6024     Vdbe *v = pParse->pVdbe;
6025     sqlite3ExplainBegin(v);
6026     for(i=0; i<sWLB.pWC->nTerm; i++){
6027       sqlite3ExplainPrintf(v, "#%-2d ", i);
6028       sqlite3ExplainPush(v);
6029       whereExplainTerm(v, &sWLB.pWC->a[i]);
6030       sqlite3ExplainPop(v);
6031       sqlite3ExplainNL(v);
6032     }
6033     sqlite3ExplainFinish(v);
6034     sqlite3DebugPrintf("%s", sqlite3VdbeExplanation(v));
6035   }
6036 #endif
6037   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
6038     rc = whereLoopAddAll(&sWLB);
6039     if( rc ) goto whereBeginError;
6040 
6041     /* Display all of the WhereLoop objects if wheretrace is enabled */
6042 #ifdef WHERETRACE_ENABLED /* !=0 */
6043     if( sqlite3WhereTrace ){
6044       WhereLoop *p;
6045       int i;
6046       static char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
6047                                        "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
6048       for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
6049         p->cId = zLabel[i%sizeof(zLabel)];
6050         whereLoopPrint(p, sWLB.pWC);
6051       }
6052     }
6053 #endif
6054 
6055     wherePathSolver(pWInfo, 0);
6056     if( db->mallocFailed ) goto whereBeginError;
6057     if( pWInfo->pOrderBy ){
6058        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
6059        if( db->mallocFailed ) goto whereBeginError;
6060     }
6061   }
6062   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
6063      pWInfo->revMask = (Bitmask)(-1);
6064   }
6065   if( pParse->nErr || NEVER(db->mallocFailed) ){
6066     goto whereBeginError;
6067   }
6068 #ifdef WHERETRACE_ENABLED /* !=0 */
6069   if( sqlite3WhereTrace ){
6070     int ii;
6071     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
6072     if( pWInfo->nOBSat>0 ){
6073       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
6074     }
6075     switch( pWInfo->eDistinct ){
6076       case WHERE_DISTINCT_UNIQUE: {
6077         sqlite3DebugPrintf("  DISTINCT=unique");
6078         break;
6079       }
6080       case WHERE_DISTINCT_ORDERED: {
6081         sqlite3DebugPrintf("  DISTINCT=ordered");
6082         break;
6083       }
6084       case WHERE_DISTINCT_UNORDERED: {
6085         sqlite3DebugPrintf("  DISTINCT=unordered");
6086         break;
6087       }
6088     }
6089     sqlite3DebugPrintf("\n");
6090     for(ii=0; ii<pWInfo->nLevel; ii++){
6091       whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
6092     }
6093   }
6094 #endif
6095   /* Attempt to omit tables from the join that do not effect the result */
6096   if( pWInfo->nLevel>=2
6097    && pResultSet!=0
6098    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
6099   ){
6100     Bitmask tabUsed = exprListTableUsage(pMaskSet, pResultSet);
6101     if( sWLB.pOrderBy ) tabUsed |= exprListTableUsage(pMaskSet, sWLB.pOrderBy);
6102     while( pWInfo->nLevel>=2 ){
6103       WhereTerm *pTerm, *pEnd;
6104       pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop;
6105       if( (pWInfo->pTabList->a[pLoop->iTab].jointype & JT_LEFT)==0 ) break;
6106       if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
6107        && (pLoop->wsFlags & WHERE_ONEROW)==0
6108       ){
6109         break;
6110       }
6111       if( (tabUsed & pLoop->maskSelf)!=0 ) break;
6112       pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
6113       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
6114         if( (pTerm->prereqAll & pLoop->maskSelf)!=0
6115          && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
6116         ){
6117           break;
6118         }
6119       }
6120       if( pTerm<pEnd ) break;
6121       WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
6122       pWInfo->nLevel--;
6123       nTabList--;
6124     }
6125   }
6126   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
6127   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
6128 
6129   /* If the caller is an UPDATE or DELETE statement that is requesting
6130   ** to use a one-pass algorithm, determine if this is appropriate.
6131   ** The one-pass algorithm only works if the WHERE clause constrains
6132   ** the statement to update a single row.
6133   */
6134   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
6135   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
6136    && (pWInfo->a[0].pWLoop->wsFlags & WHERE_ONEROW)!=0 ){
6137     pWInfo->okOnePass = 1;
6138     if( HasRowid(pTabList->a[0].pTab) ){
6139       pWInfo->a[0].pWLoop->wsFlags &= ~WHERE_IDX_ONLY;
6140     }
6141   }
6142 
6143   /* Open all tables in the pTabList and any indices selected for
6144   ** searching those tables.
6145   */
6146   notReady = ~(Bitmask)0;
6147   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
6148     Table *pTab;     /* Table to open */
6149     int iDb;         /* Index of database containing table/index */
6150     struct SrcList_item *pTabItem;
6151 
6152     pTabItem = &pTabList->a[pLevel->iFrom];
6153     pTab = pTabItem->pTab;
6154     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
6155     pLoop = pLevel->pWLoop;
6156     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
6157       /* Do nothing */
6158     }else
6159 #ifndef SQLITE_OMIT_VIRTUALTABLE
6160     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
6161       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
6162       int iCur = pTabItem->iCursor;
6163       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
6164     }else if( IsVirtual(pTab) ){
6165       /* noop */
6166     }else
6167 #endif
6168     if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
6169          && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){
6170       int op = OP_OpenRead;
6171       if( pWInfo->okOnePass ){
6172         op = OP_OpenWrite;
6173         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
6174       };
6175       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
6176       assert( pTabItem->iCursor==pLevel->iTabCur );
6177       testcase( !pWInfo->okOnePass && pTab->nCol==BMS-1 );
6178       testcase( !pWInfo->okOnePass && pTab->nCol==BMS );
6179       if( !pWInfo->okOnePass && pTab->nCol<BMS && HasRowid(pTab) ){
6180         Bitmask b = pTabItem->colUsed;
6181         int n = 0;
6182         for(; b; b=b>>1, n++){}
6183         sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1,
6184                             SQLITE_INT_TO_PTR(n), P4_INT32);
6185         assert( n<=pTab->nCol );
6186       }
6187     }else{
6188       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
6189     }
6190     if( pLoop->wsFlags & WHERE_INDEXED ){
6191       Index *pIx = pLoop->u.btree.pIndex;
6192       int iIndexCur;
6193       int op = OP_OpenRead;
6194       /* iIdxCur is always set if to a positive value if ONEPASS is possible */
6195       assert( iIdxCur!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
6196       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
6197        && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0
6198       ){
6199         /* This is one term of an OR-optimization using the PRIMARY KEY of a
6200         ** WITHOUT ROWID table.  No need for a separate index */
6201         iIndexCur = pLevel->iTabCur;
6202         op = 0;
6203       }else if( pWInfo->okOnePass ){
6204         Index *pJ = pTabItem->pTab->pIndex;
6205         iIndexCur = iIdxCur;
6206         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
6207         while( ALWAYS(pJ) && pJ!=pIx ){
6208           iIndexCur++;
6209           pJ = pJ->pNext;
6210         }
6211         op = OP_OpenWrite;
6212         pWInfo->aiCurOnePass[1] = iIndexCur;
6213       }else if( iIdxCur && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ){
6214         iIndexCur = iIdxCur;
6215       }else{
6216         iIndexCur = pParse->nTab++;
6217       }
6218       pLevel->iIdxCur = iIndexCur;
6219       assert( pIx->pSchema==pTab->pSchema );
6220       assert( iIndexCur>=0 );
6221       if( op ){
6222         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
6223         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
6224         VdbeComment((v, "%s", pIx->zName));
6225       }
6226     }
6227     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
6228     notReady &= ~getMask(&pWInfo->sMaskSet, pTabItem->iCursor);
6229   }
6230   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
6231   if( db->mallocFailed ) goto whereBeginError;
6232 
6233   /* Generate the code to do the search.  Each iteration of the for
6234   ** loop below generates code for a single nested loop of the VM
6235   ** program.
6236   */
6237   notReady = ~(Bitmask)0;
6238   for(ii=0; ii<nTabList; ii++){
6239     pLevel = &pWInfo->a[ii];
6240 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
6241     if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
6242       constructAutomaticIndex(pParse, &pWInfo->sWC,
6243                 &pTabList->a[pLevel->iFrom], notReady, pLevel);
6244       if( db->mallocFailed ) goto whereBeginError;
6245     }
6246 #endif
6247     explainOneScan(pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags);
6248     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
6249     notReady = codeOneLoopStart(pWInfo, ii, notReady);
6250     pWInfo->iContinue = pLevel->addrCont;
6251   }
6252 
6253   /* Done. */
6254   VdbeModuleComment((v, "Begin WHERE-core"));
6255   return pWInfo;
6256 
6257   /* Jump here if malloc fails */
6258 whereBeginError:
6259   if( pWInfo ){
6260     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
6261     whereInfoFree(db, pWInfo);
6262   }
6263   return 0;
6264 }
6265 
6266 /*
6267 ** Generate the end of the WHERE loop.  See comments on
6268 ** sqlite3WhereBegin() for additional information.
6269 */
6270 void sqlite3WhereEnd(WhereInfo *pWInfo){
6271   Parse *pParse = pWInfo->pParse;
6272   Vdbe *v = pParse->pVdbe;
6273   int i;
6274   WhereLevel *pLevel;
6275   WhereLoop *pLoop;
6276   SrcList *pTabList = pWInfo->pTabList;
6277   sqlite3 *db = pParse->db;
6278 
6279   /* Generate loop termination code.
6280   */
6281   VdbeModuleComment((v, "End WHERE-core"));
6282   sqlite3ExprCacheClear(pParse);
6283   for(i=pWInfo->nLevel-1; i>=0; i--){
6284     int addr;
6285     pLevel = &pWInfo->a[i];
6286     pLoop = pLevel->pWLoop;
6287     sqlite3VdbeResolveLabel(v, pLevel->addrCont);
6288     if( pLevel->op!=OP_Noop ){
6289       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
6290       sqlite3VdbeChangeP5(v, pLevel->p5);
6291       VdbeCoverage(v);
6292       VdbeCoverageIf(v, pLevel->op==OP_Next);
6293       VdbeCoverageIf(v, pLevel->op==OP_Prev);
6294       VdbeCoverageIf(v, pLevel->op==OP_VNext);
6295     }
6296     if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
6297       struct InLoop *pIn;
6298       int j;
6299       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
6300       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
6301         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
6302         sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
6303         VdbeCoverage(v);
6304         VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen);
6305         VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen);
6306         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
6307       }
6308       sqlite3DbFree(db, pLevel->u.in.aInLoop);
6309     }
6310     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
6311     if( pLevel->addrSkip ){
6312       sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrSkip);
6313       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
6314       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
6315       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
6316     }
6317     if( pLevel->iLeftJoin ){
6318       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
6319       assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
6320            || (pLoop->wsFlags & WHERE_INDEXED)!=0 );
6321       if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){
6322         sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
6323       }
6324       if( pLoop->wsFlags & WHERE_INDEXED ){
6325         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
6326       }
6327       if( pLevel->op==OP_Return ){
6328         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
6329       }else{
6330         sqlite3VdbeAddOp2(v, OP_Goto, 0, pLevel->addrFirst);
6331       }
6332       sqlite3VdbeJumpHere(v, addr);
6333     }
6334     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
6335                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
6336   }
6337 
6338   /* The "break" point is here, just past the end of the outer loop.
6339   ** Set it.
6340   */
6341   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
6342 
6343   assert( pWInfo->nLevel<=pTabList->nSrc );
6344   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
6345     int k, last;
6346     VdbeOp *pOp;
6347     Index *pIdx = 0;
6348     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
6349     Table *pTab = pTabItem->pTab;
6350     assert( pTab!=0 );
6351     pLoop = pLevel->pWLoop;
6352 
6353     /* For a co-routine, change all OP_Column references to the table of
6354     ** the co-routine into OP_SCopy of result contained in a register.
6355     ** OP_Rowid becomes OP_Null.
6356     */
6357     if( pTabItem->viaCoroutine && !db->mallocFailed ){
6358       last = sqlite3VdbeCurrentAddr(v);
6359       k = pLevel->addrBody;
6360       pOp = sqlite3VdbeGetOp(v, k);
6361       for(; k<last; k++, pOp++){
6362         if( pOp->p1!=pLevel->iTabCur ) continue;
6363         if( pOp->opcode==OP_Column ){
6364           pOp->opcode = OP_Copy;
6365           pOp->p1 = pOp->p2 + pTabItem->regResult;
6366           pOp->p2 = pOp->p3;
6367           pOp->p3 = 0;
6368         }else if( pOp->opcode==OP_Rowid ){
6369           pOp->opcode = OP_Null;
6370           pOp->p1 = 0;
6371           pOp->p3 = 0;
6372         }
6373       }
6374       continue;
6375     }
6376 
6377     /* Close all of the cursors that were opened by sqlite3WhereBegin.
6378     ** Except, do not close cursors that will be reused by the OR optimization
6379     ** (WHERE_OMIT_OPEN_CLOSE).  And do not close the OP_OpenWrite cursors
6380     ** created for the ONEPASS optimization.
6381     */
6382     if( (pTab->tabFlags & TF_Ephemeral)==0
6383      && pTab->pSelect==0
6384      && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0
6385     ){
6386       int ws = pLoop->wsFlags;
6387       if( !pWInfo->okOnePass && (ws & WHERE_IDX_ONLY)==0 ){
6388         sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor);
6389       }
6390       if( (ws & WHERE_INDEXED)!=0
6391        && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0
6392        && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1]
6393       ){
6394         sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur);
6395       }
6396     }
6397 
6398     /* If this scan uses an index, make VDBE code substitutions to read data
6399     ** from the index instead of from the table where possible.  In some cases
6400     ** this optimization prevents the table from ever being read, which can
6401     ** yield a significant performance boost.
6402     **
6403     ** Calls to the code generator in between sqlite3WhereBegin and
6404     ** sqlite3WhereEnd will have created code that references the table
6405     ** directly.  This loop scans all that code looking for opcodes
6406     ** that reference the table and converts them into opcodes that
6407     ** reference the index.
6408     */
6409     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
6410       pIdx = pLoop->u.btree.pIndex;
6411     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
6412       pIdx = pLevel->u.pCovidx;
6413     }
6414     if( pIdx && !db->mallocFailed ){
6415       last = sqlite3VdbeCurrentAddr(v);
6416       k = pLevel->addrBody;
6417       pOp = sqlite3VdbeGetOp(v, k);
6418       for(; k<last; k++, pOp++){
6419         if( pOp->p1!=pLevel->iTabCur ) continue;
6420         if( pOp->opcode==OP_Column ){
6421           int x = pOp->p2;
6422           assert( pIdx->pTable==pTab );
6423           if( !HasRowid(pTab) ){
6424             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
6425             x = pPk->aiColumn[x];
6426           }
6427           x = sqlite3ColumnOfIndex(pIdx, x);
6428           if( x>=0 ){
6429             pOp->p2 = x;
6430             pOp->p1 = pLevel->iIdxCur;
6431           }
6432           assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 );
6433         }else if( pOp->opcode==OP_Rowid ){
6434           pOp->p1 = pLevel->iIdxCur;
6435           pOp->opcode = OP_IdxRowid;
6436         }
6437       }
6438     }
6439   }
6440 
6441   /* Final cleanup
6442   */
6443   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
6444   whereInfoFree(db, pWInfo);
6445   return;
6446 }
6447