xref: /sqlite-3.40.0/src/where.c (revision 3e846cb8)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 */
19 #include "sqliteInt.h"
20 #include "whereInt.h"
21 
22 /* Forward declaration of methods */
23 static int whereLoopResize(sqlite3*, WhereLoop*, int);
24 
25 /* Test variable that can be set to enable WHERE tracing */
26 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
27 /***/ int sqlite3WhereTrace = 0;
28 #endif
29 
30 
31 /*
32 ** Return the estimated number of output rows from a WHERE clause
33 */
34 LogEst sqlite3WhereOutputRowCount(WhereInfo *pWInfo){
35   return pWInfo->nRowOut;
36 }
37 
38 /*
39 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
40 ** WHERE clause returns outputs for DISTINCT processing.
41 */
42 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){
43   return pWInfo->eDistinct;
44 }
45 
46 /*
47 ** Return TRUE if the WHERE clause returns rows in ORDER BY order.
48 ** Return FALSE if the output needs to be sorted.
49 */
50 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){
51   return pWInfo->nOBSat;
52 }
53 
54 /*
55 ** Return TRUE if the innermost loop of the WHERE clause implementation
56 ** returns rows in ORDER BY order for complete run of the inner loop.
57 **
58 ** Across multiple iterations of outer loops, the output rows need not be
59 ** sorted.  As long as rows are sorted for just the innermost loop, this
60 ** routine can return TRUE.
61 */
62 int sqlite3WhereOrderedInnerLoop(WhereInfo *pWInfo){
63   return pWInfo->bOrderedInnerLoop;
64 }
65 
66 /*
67 ** Return the VDBE address or label to jump to in order to continue
68 ** immediately with the next row of a WHERE clause.
69 */
70 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){
71   assert( pWInfo->iContinue!=0 );
72   return pWInfo->iContinue;
73 }
74 
75 /*
76 ** Return the VDBE address or label to jump to in order to break
77 ** out of a WHERE loop.
78 */
79 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){
80   return pWInfo->iBreak;
81 }
82 
83 /*
84 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
85 ** operate directly on the rowis returned by a WHERE clause.  Return
86 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
87 ** a single row is to be changed.  Return ONEPASS_MULTI (2) if the one-pass
88 ** optimization can be used on multiple
89 **
90 ** If the ONEPASS optimization is used (if this routine returns true)
91 ** then also write the indices of open cursors used by ONEPASS
92 ** into aiCur[0] and aiCur[1].  iaCur[0] gets the cursor of the data
93 ** table and iaCur[1] gets the cursor used by an auxiliary index.
94 ** Either value may be -1, indicating that cursor is not used.
95 ** Any cursors returned will have been opened for writing.
96 **
97 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
98 ** unable to use the ONEPASS optimization.
99 */
100 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){
101   memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2);
102 #ifdef WHERETRACE_ENABLED
103   if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){
104     sqlite3DebugPrintf("%s cursors: %d %d\n",
105          pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
106          aiCur[0], aiCur[1]);
107   }
108 #endif
109   return pWInfo->eOnePass;
110 }
111 
112 /*
113 ** Move the content of pSrc into pDest
114 */
115 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){
116   pDest->n = pSrc->n;
117   memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0]));
118 }
119 
120 /*
121 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
122 **
123 ** The new entry might overwrite an existing entry, or it might be
124 ** appended, or it might be discarded.  Do whatever is the right thing
125 ** so that pSet keeps the N_OR_COST best entries seen so far.
126 */
127 static int whereOrInsert(
128   WhereOrSet *pSet,      /* The WhereOrSet to be updated */
129   Bitmask prereq,        /* Prerequisites of the new entry */
130   LogEst rRun,           /* Run-cost of the new entry */
131   LogEst nOut            /* Number of outputs for the new entry */
132 ){
133   u16 i;
134   WhereOrCost *p;
135   for(i=pSet->n, p=pSet->a; i>0; i--, p++){
136     if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){
137       goto whereOrInsert_done;
138     }
139     if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){
140       return 0;
141     }
142   }
143   if( pSet->n<N_OR_COST ){
144     p = &pSet->a[pSet->n++];
145     p->nOut = nOut;
146   }else{
147     p = pSet->a;
148     for(i=1; i<pSet->n; i++){
149       if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i;
150     }
151     if( p->rRun<=rRun ) return 0;
152   }
153 whereOrInsert_done:
154   p->prereq = prereq;
155   p->rRun = rRun;
156   if( p->nOut>nOut ) p->nOut = nOut;
157   return 1;
158 }
159 
160 /*
161 ** Return the bitmask for the given cursor number.  Return 0 if
162 ** iCursor is not in the set.
163 */
164 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){
165   int i;
166   assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 );
167   for(i=0; i<pMaskSet->n; i++){
168     if( pMaskSet->ix[i]==iCursor ){
169       return MASKBIT(i);
170     }
171   }
172   return 0;
173 }
174 
175 /*
176 ** Create a new mask for cursor iCursor.
177 **
178 ** There is one cursor per table in the FROM clause.  The number of
179 ** tables in the FROM clause is limited by a test early in the
180 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
181 ** array will never overflow.
182 */
183 static void createMask(WhereMaskSet *pMaskSet, int iCursor){
184   assert( pMaskSet->n < ArraySize(pMaskSet->ix) );
185   pMaskSet->ix[pMaskSet->n++] = iCursor;
186 }
187 
188 /*
189 ** Advance to the next WhereTerm that matches according to the criteria
190 ** established when the pScan object was initialized by whereScanInit().
191 ** Return NULL if there are no more matching WhereTerms.
192 */
193 static WhereTerm *whereScanNext(WhereScan *pScan){
194   int iCur;            /* The cursor on the LHS of the term */
195   i16 iColumn;         /* The column on the LHS of the term.  -1 for IPK */
196   Expr *pX;            /* An expression being tested */
197   WhereClause *pWC;    /* Shorthand for pScan->pWC */
198   WhereTerm *pTerm;    /* The term being tested */
199   int k = pScan->k;    /* Where to start scanning */
200 
201   assert( pScan->iEquiv<=pScan->nEquiv );
202   pWC = pScan->pWC;
203   while(1){
204     iColumn = pScan->aiColumn[pScan->iEquiv-1];
205     iCur = pScan->aiCur[pScan->iEquiv-1];
206     assert( pWC!=0 );
207     do{
208       for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){
209         if( pTerm->leftCursor==iCur
210          && pTerm->u.leftColumn==iColumn
211          && (iColumn!=XN_EXPR
212              || sqlite3ExprCompareSkip(pTerm->pExpr->pLeft,
213                                        pScan->pIdxExpr,iCur)==0)
214          && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin))
215         ){
216           if( (pTerm->eOperator & WO_EQUIV)!=0
217            && pScan->nEquiv<ArraySize(pScan->aiCur)
218            && (pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight))->op==TK_COLUMN
219           ){
220             int j;
221             for(j=0; j<pScan->nEquiv; j++){
222               if( pScan->aiCur[j]==pX->iTable
223                && pScan->aiColumn[j]==pX->iColumn ){
224                   break;
225               }
226             }
227             if( j==pScan->nEquiv ){
228               pScan->aiCur[j] = pX->iTable;
229               pScan->aiColumn[j] = pX->iColumn;
230               pScan->nEquiv++;
231             }
232           }
233           if( (pTerm->eOperator & pScan->opMask)!=0 ){
234             /* Verify the affinity and collating sequence match */
235             if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){
236               CollSeq *pColl;
237               Parse *pParse = pWC->pWInfo->pParse;
238               pX = pTerm->pExpr;
239               if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){
240                 continue;
241               }
242               assert(pX->pLeft);
243               pColl = sqlite3BinaryCompareCollSeq(pParse,
244                                                   pX->pLeft, pX->pRight);
245               if( pColl==0 ) pColl = pParse->db->pDfltColl;
246               if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){
247                 continue;
248               }
249             }
250             if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0
251              && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN
252              && pX->iTable==pScan->aiCur[0]
253              && pX->iColumn==pScan->aiColumn[0]
254             ){
255               testcase( pTerm->eOperator & WO_IS );
256               continue;
257             }
258             pScan->pWC = pWC;
259             pScan->k = k+1;
260             return pTerm;
261           }
262         }
263       }
264       pWC = pWC->pOuter;
265       k = 0;
266     }while( pWC!=0 );
267     if( pScan->iEquiv>=pScan->nEquiv ) break;
268     pWC = pScan->pOrigWC;
269     k = 0;
270     pScan->iEquiv++;
271   }
272   return 0;
273 }
274 
275 /*
276 ** Initialize a WHERE clause scanner object.  Return a pointer to the
277 ** first match.  Return NULL if there are no matches.
278 **
279 ** The scanner will be searching the WHERE clause pWC.  It will look
280 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
281 ** iCur.   Or if pIdx!=0 then X is column iColumn of index pIdx.  pIdx
282 ** must be one of the indexes of table iCur.
283 **
284 ** The <op> must be one of the operators described by opMask.
285 **
286 ** If the search is for X and the WHERE clause contains terms of the
287 ** form X=Y then this routine might also return terms of the form
288 ** "Y <op> <expr>".  The number of levels of transitivity is limited,
289 ** but is enough to handle most commonly occurring SQL statements.
290 **
291 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
292 ** index pIdx.
293 */
294 static WhereTerm *whereScanInit(
295   WhereScan *pScan,       /* The WhereScan object being initialized */
296   WhereClause *pWC,       /* The WHERE clause to be scanned */
297   int iCur,               /* Cursor to scan for */
298   int iColumn,            /* Column to scan for */
299   u32 opMask,             /* Operator(s) to scan for */
300   Index *pIdx             /* Must be compatible with this index */
301 ){
302   pScan->pOrigWC = pWC;
303   pScan->pWC = pWC;
304   pScan->pIdxExpr = 0;
305   pScan->idxaff = 0;
306   pScan->zCollName = 0;
307   if( pIdx ){
308     int j = iColumn;
309     iColumn = pIdx->aiColumn[j];
310     if( iColumn==XN_EXPR ){
311       pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr;
312       pScan->zCollName = pIdx->azColl[j];
313     }else if( iColumn==pIdx->pTable->iPKey ){
314       iColumn = XN_ROWID;
315     }else if( iColumn>=0 ){
316       pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity;
317       pScan->zCollName = pIdx->azColl[j];
318     }
319   }else if( iColumn==XN_EXPR ){
320     return 0;
321   }
322   pScan->opMask = opMask;
323   pScan->k = 0;
324   pScan->aiCur[0] = iCur;
325   pScan->aiColumn[0] = iColumn;
326   pScan->nEquiv = 1;
327   pScan->iEquiv = 1;
328   return whereScanNext(pScan);
329 }
330 
331 /*
332 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
333 ** where X is a reference to the iColumn of table iCur or of index pIdx
334 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
335 ** the op parameter.  Return a pointer to the term.  Return 0 if not found.
336 **
337 ** If pIdx!=0 then it must be one of the indexes of table iCur.
338 ** Search for terms matching the iColumn-th column of pIdx
339 ** rather than the iColumn-th column of table iCur.
340 **
341 ** The term returned might by Y=<expr> if there is another constraint in
342 ** the WHERE clause that specifies that X=Y.  Any such constraints will be
343 ** identified by the WO_EQUIV bit in the pTerm->eOperator field.  The
344 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
345 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
346 ** other equivalent values.  Hence a search for X will return <expr> if X=A1
347 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
348 **
349 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
350 ** then try for the one with no dependencies on <expr> - in other words where
351 ** <expr> is a constant expression of some kind.  Only return entries of
352 ** the form "X <op> Y" where Y is a column in another table if no terms of
353 ** the form "X <op> <const-expr>" exist.   If no terms with a constant RHS
354 ** exist, try to return a term that does not use WO_EQUIV.
355 */
356 WhereTerm *sqlite3WhereFindTerm(
357   WhereClause *pWC,     /* The WHERE clause to be searched */
358   int iCur,             /* Cursor number of LHS */
359   int iColumn,          /* Column number of LHS */
360   Bitmask notReady,     /* RHS must not overlap with this mask */
361   u32 op,               /* Mask of WO_xx values describing operator */
362   Index *pIdx           /* Must be compatible with this index, if not NULL */
363 ){
364   WhereTerm *pResult = 0;
365   WhereTerm *p;
366   WhereScan scan;
367 
368   p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx);
369   op &= WO_EQ|WO_IS;
370   while( p ){
371     if( (p->prereqRight & notReady)==0 ){
372       if( p->prereqRight==0 && (p->eOperator&op)!=0 ){
373         testcase( p->eOperator & WO_IS );
374         return p;
375       }
376       if( pResult==0 ) pResult = p;
377     }
378     p = whereScanNext(&scan);
379   }
380   return pResult;
381 }
382 
383 /*
384 ** This function searches pList for an entry that matches the iCol-th column
385 ** of index pIdx.
386 **
387 ** If such an expression is found, its index in pList->a[] is returned. If
388 ** no expression is found, -1 is returned.
389 */
390 static int findIndexCol(
391   Parse *pParse,                  /* Parse context */
392   ExprList *pList,                /* Expression list to search */
393   int iBase,                      /* Cursor for table associated with pIdx */
394   Index *pIdx,                    /* Index to match column of */
395   int iCol                        /* Column of index to match */
396 ){
397   int i;
398   const char *zColl = pIdx->azColl[iCol];
399 
400   for(i=0; i<pList->nExpr; i++){
401     Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr);
402     if( p->op==TK_COLUMN
403      && p->iColumn==pIdx->aiColumn[iCol]
404      && p->iTable==iBase
405     ){
406       CollSeq *pColl = sqlite3ExprNNCollSeq(pParse, pList->a[i].pExpr);
407       if( 0==sqlite3StrICmp(pColl->zName, zColl) ){
408         return i;
409       }
410     }
411   }
412 
413   return -1;
414 }
415 
416 /*
417 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
418 */
419 static int indexColumnNotNull(Index *pIdx, int iCol){
420   int j;
421   assert( pIdx!=0 );
422   assert( iCol>=0 && iCol<pIdx->nColumn );
423   j = pIdx->aiColumn[iCol];
424   if( j>=0 ){
425     return pIdx->pTable->aCol[j].notNull;
426   }else if( j==(-1) ){
427     return 1;
428   }else{
429     assert( j==(-2) );
430     return 0;  /* Assume an indexed expression can always yield a NULL */
431 
432   }
433 }
434 
435 /*
436 ** Return true if the DISTINCT expression-list passed as the third argument
437 ** is redundant.
438 **
439 ** A DISTINCT list is redundant if any subset of the columns in the
440 ** DISTINCT list are collectively unique and individually non-null.
441 */
442 static int isDistinctRedundant(
443   Parse *pParse,            /* Parsing context */
444   SrcList *pTabList,        /* The FROM clause */
445   WhereClause *pWC,         /* The WHERE clause */
446   ExprList *pDistinct       /* The result set that needs to be DISTINCT */
447 ){
448   Table *pTab;
449   Index *pIdx;
450   int i;
451   int iBase;
452 
453   /* If there is more than one table or sub-select in the FROM clause of
454   ** this query, then it will not be possible to show that the DISTINCT
455   ** clause is redundant. */
456   if( pTabList->nSrc!=1 ) return 0;
457   iBase = pTabList->a[0].iCursor;
458   pTab = pTabList->a[0].pTab;
459 
460   /* If any of the expressions is an IPK column on table iBase, then return
461   ** true. Note: The (p->iTable==iBase) part of this test may be false if the
462   ** current SELECT is a correlated sub-query.
463   */
464   for(i=0; i<pDistinct->nExpr; i++){
465     Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr);
466     if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1;
467   }
468 
469   /* Loop through all indices on the table, checking each to see if it makes
470   ** the DISTINCT qualifier redundant. It does so if:
471   **
472   **   1. The index is itself UNIQUE, and
473   **
474   **   2. All of the columns in the index are either part of the pDistinct
475   **      list, or else the WHERE clause contains a term of the form "col=X",
476   **      where X is a constant value. The collation sequences of the
477   **      comparison and select-list expressions must match those of the index.
478   **
479   **   3. All of those index columns for which the WHERE clause does not
480   **      contain a "col=X" term are subject to a NOT NULL constraint.
481   */
482   for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
483     if( !IsUniqueIndex(pIdx) ) continue;
484     for(i=0; i<pIdx->nKeyCol; i++){
485       if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){
486         if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break;
487         if( indexColumnNotNull(pIdx, i)==0 ) break;
488       }
489     }
490     if( i==pIdx->nKeyCol ){
491       /* This index implies that the DISTINCT qualifier is redundant. */
492       return 1;
493     }
494   }
495 
496   return 0;
497 }
498 
499 
500 /*
501 ** Estimate the logarithm of the input value to base 2.
502 */
503 static LogEst estLog(LogEst N){
504   return N<=10 ? 0 : sqlite3LogEst(N) - 33;
505 }
506 
507 /*
508 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
509 **
510 ** This routine runs over generated VDBE code and translates OP_Column
511 ** opcodes into OP_Copy when the table is being accessed via co-routine
512 ** instead of via table lookup.
513 **
514 ** If the bIncrRowid parameter is 0, then any OP_Rowid instructions on
515 ** cursor iTabCur are transformed into OP_Null. Or, if bIncrRowid is non-zero,
516 ** then each OP_Rowid is transformed into an instruction to increment the
517 ** value stored in its output register.
518 */
519 static void translateColumnToCopy(
520   Parse *pParse,      /* Parsing context */
521   int iStart,         /* Translate from this opcode to the end */
522   int iTabCur,        /* OP_Column/OP_Rowid references to this table */
523   int iRegister,      /* The first column is in this register */
524   int bIncrRowid      /* If non-zero, transform OP_rowid to OP_AddImm(1) */
525 ){
526   Vdbe *v = pParse->pVdbe;
527   VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart);
528   int iEnd = sqlite3VdbeCurrentAddr(v);
529   if( pParse->db->mallocFailed ) return;
530   for(; iStart<iEnd; iStart++, pOp++){
531     if( pOp->p1!=iTabCur ) continue;
532     if( pOp->opcode==OP_Column ){
533       pOp->opcode = OP_Copy;
534       pOp->p1 = pOp->p2 + iRegister;
535       pOp->p2 = pOp->p3;
536       pOp->p3 = 0;
537     }else if( pOp->opcode==OP_Rowid ){
538       if( bIncrRowid ){
539         /* Increment the value stored in the P2 operand of the OP_Rowid. */
540         pOp->opcode = OP_AddImm;
541         pOp->p1 = pOp->p2;
542         pOp->p2 = 1;
543       }else{
544         pOp->opcode = OP_Null;
545         pOp->p1 = 0;
546         pOp->p3 = 0;
547       }
548     }
549   }
550 }
551 
552 /*
553 ** Two routines for printing the content of an sqlite3_index_info
554 ** structure.  Used for testing and debugging only.  If neither
555 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
556 ** are no-ops.
557 */
558 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
559 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
560   int i;
561   if( !sqlite3WhereTrace ) return;
562   for(i=0; i<p->nConstraint; i++){
563     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
564        i,
565        p->aConstraint[i].iColumn,
566        p->aConstraint[i].iTermOffset,
567        p->aConstraint[i].op,
568        p->aConstraint[i].usable);
569   }
570   for(i=0; i<p->nOrderBy; i++){
571     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
572        i,
573        p->aOrderBy[i].iColumn,
574        p->aOrderBy[i].desc);
575   }
576 }
577 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
578   int i;
579   if( !sqlite3WhereTrace ) return;
580   for(i=0; i<p->nConstraint; i++){
581     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
582        i,
583        p->aConstraintUsage[i].argvIndex,
584        p->aConstraintUsage[i].omit);
585   }
586   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
587   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
588   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
589   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
590   sqlite3DebugPrintf("  estimatedRows=%lld\n", p->estimatedRows);
591 }
592 #else
593 #define TRACE_IDX_INPUTS(A)
594 #define TRACE_IDX_OUTPUTS(A)
595 #endif
596 
597 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
598 /*
599 ** Return TRUE if the WHERE clause term pTerm is of a form where it
600 ** could be used with an index to access pSrc, assuming an appropriate
601 ** index existed.
602 */
603 static int termCanDriveIndex(
604   WhereTerm *pTerm,              /* WHERE clause term to check */
605   struct SrcList_item *pSrc,     /* Table we are trying to access */
606   Bitmask notReady               /* Tables in outer loops of the join */
607 ){
608   char aff;
609   if( pTerm->leftCursor!=pSrc->iCursor ) return 0;
610   if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0;
611   if( (pSrc->fg.jointype & JT_LEFT)
612    && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
613    && (pTerm->eOperator & WO_IS)
614   ){
615     /* Cannot use an IS term from the WHERE clause as an index driver for
616     ** the RHS of a LEFT JOIN. Such a term can only be used if it is from
617     ** the ON clause.  */
618     return 0;
619   }
620   if( (pTerm->prereqRight & notReady)!=0 ) return 0;
621   if( pTerm->u.leftColumn<0 ) return 0;
622   aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity;
623   if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0;
624   testcase( pTerm->pExpr->op==TK_IS );
625   return 1;
626 }
627 #endif
628 
629 
630 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
631 /*
632 ** Generate code to construct the Index object for an automatic index
633 ** and to set up the WhereLevel object pLevel so that the code generator
634 ** makes use of the automatic index.
635 */
636 static void constructAutomaticIndex(
637   Parse *pParse,              /* The parsing context */
638   WhereClause *pWC,           /* The WHERE clause */
639   struct SrcList_item *pSrc,  /* The FROM clause term to get the next index */
640   Bitmask notReady,           /* Mask of cursors that are not available */
641   WhereLevel *pLevel          /* Write new index here */
642 ){
643   int nKeyCol;                /* Number of columns in the constructed index */
644   WhereTerm *pTerm;           /* A single term of the WHERE clause */
645   WhereTerm *pWCEnd;          /* End of pWC->a[] */
646   Index *pIdx;                /* Object describing the transient index */
647   Vdbe *v;                    /* Prepared statement under construction */
648   int addrInit;               /* Address of the initialization bypass jump */
649   Table *pTable;              /* The table being indexed */
650   int addrTop;                /* Top of the index fill loop */
651   int regRecord;              /* Register holding an index record */
652   int n;                      /* Column counter */
653   int i;                      /* Loop counter */
654   int mxBitCol;               /* Maximum column in pSrc->colUsed */
655   CollSeq *pColl;             /* Collating sequence to on a column */
656   WhereLoop *pLoop;           /* The Loop object */
657   char *zNotUsed;             /* Extra space on the end of pIdx */
658   Bitmask idxCols;            /* Bitmap of columns used for indexing */
659   Bitmask extraCols;          /* Bitmap of additional columns */
660   u8 sentWarning = 0;         /* True if a warnning has been issued */
661   Expr *pPartial = 0;         /* Partial Index Expression */
662   int iContinue = 0;          /* Jump here to skip excluded rows */
663   struct SrcList_item *pTabItem;  /* FROM clause term being indexed */
664   int addrCounter = 0;        /* Address where integer counter is initialized */
665   int regBase;                /* Array of registers where record is assembled */
666 
667   /* Generate code to skip over the creation and initialization of the
668   ** transient index on 2nd and subsequent iterations of the loop. */
669   v = pParse->pVdbe;
670   assert( v!=0 );
671   addrInit = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
672 
673   /* Count the number of columns that will be added to the index
674   ** and used to match WHERE clause constraints */
675   nKeyCol = 0;
676   pTable = pSrc->pTab;
677   pWCEnd = &pWC->a[pWC->nTerm];
678   pLoop = pLevel->pWLoop;
679   idxCols = 0;
680   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
681     Expr *pExpr = pTerm->pExpr;
682     assert( !ExprHasProperty(pExpr, EP_FromJoin)    /* prereq always non-zero */
683          || pExpr->iRightJoinTable!=pSrc->iCursor   /*   for the right-hand   */
684          || pLoop->prereq!=0 );                     /*   table of a LEFT JOIN */
685     if( pLoop->prereq==0
686      && (pTerm->wtFlags & TERM_VIRTUAL)==0
687      && !ExprHasProperty(pExpr, EP_FromJoin)
688      && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){
689       pPartial = sqlite3ExprAnd(pParse->db, pPartial,
690                                 sqlite3ExprDup(pParse->db, pExpr, 0));
691     }
692     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
693       int iCol = pTerm->u.leftColumn;
694       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
695       testcase( iCol==BMS );
696       testcase( iCol==BMS-1 );
697       if( !sentWarning ){
698         sqlite3_log(SQLITE_WARNING_AUTOINDEX,
699             "automatic index on %s(%s)", pTable->zName,
700             pTable->aCol[iCol].zName);
701         sentWarning = 1;
702       }
703       if( (idxCols & cMask)==0 ){
704         if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){
705           goto end_auto_index_create;
706         }
707         pLoop->aLTerm[nKeyCol++] = pTerm;
708         idxCols |= cMask;
709       }
710     }
711   }
712   assert( nKeyCol>0 );
713   pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol;
714   pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED
715                      | WHERE_AUTO_INDEX;
716 
717   /* Count the number of additional columns needed to create a
718   ** covering index.  A "covering index" is an index that contains all
719   ** columns that are needed by the query.  With a covering index, the
720   ** original table never needs to be accessed.  Automatic indices must
721   ** be a covering index because the index will not be updated if the
722   ** original table changes and the index and table cannot both be used
723   ** if they go out of sync.
724   */
725   extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1));
726   mxBitCol = MIN(BMS-1,pTable->nCol);
727   testcase( pTable->nCol==BMS-1 );
728   testcase( pTable->nCol==BMS-2 );
729   for(i=0; i<mxBitCol; i++){
730     if( extraCols & MASKBIT(i) ) nKeyCol++;
731   }
732   if( pSrc->colUsed & MASKBIT(BMS-1) ){
733     nKeyCol += pTable->nCol - BMS + 1;
734   }
735 
736   /* Construct the Index object to describe this index */
737   pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed);
738   if( pIdx==0 ) goto end_auto_index_create;
739   pLoop->u.btree.pIndex = pIdx;
740   pIdx->zName = "auto-index";
741   pIdx->pTable = pTable;
742   n = 0;
743   idxCols = 0;
744   for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){
745     if( termCanDriveIndex(pTerm, pSrc, notReady) ){
746       int iCol = pTerm->u.leftColumn;
747       Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol);
748       testcase( iCol==BMS-1 );
749       testcase( iCol==BMS );
750       if( (idxCols & cMask)==0 ){
751         Expr *pX = pTerm->pExpr;
752         idxCols |= cMask;
753         pIdx->aiColumn[n] = pTerm->u.leftColumn;
754         pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight);
755         pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY;
756         n++;
757       }
758     }
759   }
760   assert( (u32)n==pLoop->u.btree.nEq );
761 
762   /* Add additional columns needed to make the automatic index into
763   ** a covering index */
764   for(i=0; i<mxBitCol; i++){
765     if( extraCols & MASKBIT(i) ){
766       pIdx->aiColumn[n] = i;
767       pIdx->azColl[n] = sqlite3StrBINARY;
768       n++;
769     }
770   }
771   if( pSrc->colUsed & MASKBIT(BMS-1) ){
772     for(i=BMS-1; i<pTable->nCol; i++){
773       pIdx->aiColumn[n] = i;
774       pIdx->azColl[n] = sqlite3StrBINARY;
775       n++;
776     }
777   }
778   assert( n==nKeyCol );
779   pIdx->aiColumn[n] = XN_ROWID;
780   pIdx->azColl[n] = sqlite3StrBINARY;
781 
782   /* Create the automatic index */
783   assert( pLevel->iIdxCur>=0 );
784   pLevel->iIdxCur = pParse->nTab++;
785   sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1);
786   sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
787   VdbeComment((v, "for %s", pTable->zName));
788 
789   /* Fill the automatic index with content */
790   sqlite3ExprCachePush(pParse);
791   pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom];
792   if( pTabItem->fg.viaCoroutine ){
793     int regYield = pTabItem->regReturn;
794     addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0);
795     sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
796     addrTop =  sqlite3VdbeAddOp1(v, OP_Yield, regYield);
797     VdbeCoverage(v);
798     VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
799   }else{
800     addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v);
801   }
802   if( pPartial ){
803     iContinue = sqlite3VdbeMakeLabel(v);
804     sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL);
805     pLoop->wsFlags |= WHERE_PARTIALIDX;
806   }
807   regRecord = sqlite3GetTempReg(pParse);
808   regBase = sqlite3GenerateIndexKey(
809       pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0
810   );
811   sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord);
812   sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
813   if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue);
814   if( pTabItem->fg.viaCoroutine ){
815     sqlite3VdbeChangeP2(v, addrCounter, regBase+n);
816     testcase( pParse->db->mallocFailed );
817     translateColumnToCopy(pParse, addrTop, pLevel->iTabCur,
818                           pTabItem->regResult, 1);
819     sqlite3VdbeGoto(v, addrTop);
820     pTabItem->fg.viaCoroutine = 0;
821   }else{
822     sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v);
823   }
824   sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX);
825   sqlite3VdbeJumpHere(v, addrTop);
826   sqlite3ReleaseTempReg(pParse, regRecord);
827   sqlite3ExprCachePop(pParse);
828 
829   /* Jump here when skipping the initialization */
830   sqlite3VdbeJumpHere(v, addrInit);
831 
832 end_auto_index_create:
833   sqlite3ExprDelete(pParse->db, pPartial);
834 }
835 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
836 
837 #ifndef SQLITE_OMIT_VIRTUALTABLE
838 /*
839 ** Allocate and populate an sqlite3_index_info structure. It is the
840 ** responsibility of the caller to eventually release the structure
841 ** by passing the pointer returned by this function to sqlite3_free().
842 */
843 static sqlite3_index_info *allocateIndexInfo(
844   Parse *pParse,
845   WhereClause *pWC,
846   Bitmask mUnusable,              /* Ignore terms with these prereqs */
847   struct SrcList_item *pSrc,
848   ExprList *pOrderBy,
849   u16 *pmNoOmit                   /* Mask of terms not to omit */
850 ){
851   int i, j;
852   int nTerm;
853   struct sqlite3_index_constraint *pIdxCons;
854   struct sqlite3_index_orderby *pIdxOrderBy;
855   struct sqlite3_index_constraint_usage *pUsage;
856   WhereTerm *pTerm;
857   int nOrderBy;
858   sqlite3_index_info *pIdxInfo;
859   u16 mNoOmit = 0;
860 
861   /* Count the number of possible WHERE clause constraints referring
862   ** to this virtual table */
863   for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
864     if( pTerm->leftCursor != pSrc->iCursor ) continue;
865     if( pTerm->prereqRight & mUnusable ) continue;
866     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
867     testcase( pTerm->eOperator & WO_IN );
868     testcase( pTerm->eOperator & WO_ISNULL );
869     testcase( pTerm->eOperator & WO_IS );
870     testcase( pTerm->eOperator & WO_ALL );
871     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
872     if( pTerm->wtFlags & TERM_VNULL ) continue;
873     assert( pTerm->u.leftColumn>=(-1) );
874     nTerm++;
875   }
876 
877   /* If the ORDER BY clause contains only columns in the current
878   ** virtual table then allocate space for the aOrderBy part of
879   ** the sqlite3_index_info structure.
880   */
881   nOrderBy = 0;
882   if( pOrderBy ){
883     int n = pOrderBy->nExpr;
884     for(i=0; i<n; i++){
885       Expr *pExpr = pOrderBy->a[i].pExpr;
886       if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
887     }
888     if( i==n){
889       nOrderBy = n;
890     }
891   }
892 
893   /* Allocate the sqlite3_index_info structure
894   */
895   pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo)
896                            + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
897                            + sizeof(*pIdxOrderBy)*nOrderBy );
898   if( pIdxInfo==0 ){
899     sqlite3ErrorMsg(pParse, "out of memory");
900     return 0;
901   }
902 
903   /* Initialize the structure.  The sqlite3_index_info structure contains
904   ** many fields that are declared "const" to prevent xBestIndex from
905   ** changing them.  We have to do some funky casting in order to
906   ** initialize those fields.
907   */
908   pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
909   pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
910   pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
911   *(int*)&pIdxInfo->nConstraint = nTerm;
912   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
913   *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
914   *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
915   *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
916                                                                    pUsage;
917 
918   for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
919     u16 op;
920     if( pTerm->leftCursor != pSrc->iCursor ) continue;
921     if( pTerm->prereqRight & mUnusable ) continue;
922     assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) );
923     testcase( pTerm->eOperator & WO_IN );
924     testcase( pTerm->eOperator & WO_IS );
925     testcase( pTerm->eOperator & WO_ISNULL );
926     testcase( pTerm->eOperator & WO_ALL );
927     if( (pTerm->eOperator & ~(WO_EQUIV))==0 ) continue;
928     if( pTerm->wtFlags & TERM_VNULL ) continue;
929     assert( pTerm->u.leftColumn>=(-1) );
930     pIdxCons[j].iColumn = pTerm->u.leftColumn;
931     pIdxCons[j].iTermOffset = i;
932     op = pTerm->eOperator & WO_ALL;
933     if( op==WO_IN ) op = WO_EQ;
934     if( op==WO_AUX ){
935       pIdxCons[j].op = pTerm->eMatchOp;
936     }else if( op & (WO_ISNULL|WO_IS) ){
937       if( op==WO_ISNULL ){
938         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_ISNULL;
939       }else{
940         pIdxCons[j].op = SQLITE_INDEX_CONSTRAINT_IS;
941       }
942     }else{
943       pIdxCons[j].op = (u8)op;
944       /* The direct assignment in the previous line is possible only because
945       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
946       ** following asserts verify this fact. */
947       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
948       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
949       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
950       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
951       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
952       assert( pTerm->eOperator&(WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_AUX) );
953 
954       if( op & (WO_LT|WO_LE|WO_GT|WO_GE)
955        && sqlite3ExprIsVector(pTerm->pExpr->pRight)
956       ){
957         if( i<16 ) mNoOmit |= (1 << i);
958         if( op==WO_LT ) pIdxCons[j].op = WO_LE;
959         if( op==WO_GT ) pIdxCons[j].op = WO_GE;
960       }
961     }
962 
963     j++;
964   }
965   for(i=0; i<nOrderBy; i++){
966     Expr *pExpr = pOrderBy->a[i].pExpr;
967     pIdxOrderBy[i].iColumn = pExpr->iColumn;
968     pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
969   }
970 
971   *pmNoOmit = mNoOmit;
972   return pIdxInfo;
973 }
974 
975 /*
976 ** The table object reference passed as the second argument to this function
977 ** must represent a virtual table. This function invokes the xBestIndex()
978 ** method of the virtual table with the sqlite3_index_info object that
979 ** comes in as the 3rd argument to this function.
980 **
981 ** If an error occurs, pParse is populated with an error message and a
982 ** non-zero value is returned. Otherwise, 0 is returned and the output
983 ** part of the sqlite3_index_info structure is left populated.
984 **
985 ** Whether or not an error is returned, it is the responsibility of the
986 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
987 ** that this is required.
988 */
989 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){
990   sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab;
991   int rc;
992 
993   TRACE_IDX_INPUTS(p);
994   rc = pVtab->pModule->xBestIndex(pVtab, p);
995   TRACE_IDX_OUTPUTS(p);
996 
997   if( rc!=SQLITE_OK ){
998     if( rc==SQLITE_NOMEM ){
999       sqlite3OomFault(pParse->db);
1000     }else if( !pVtab->zErrMsg ){
1001       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1002     }else{
1003       sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg);
1004     }
1005   }
1006   sqlite3_free(pVtab->zErrMsg);
1007   pVtab->zErrMsg = 0;
1008 
1009 #if 0
1010   /* This error is now caught by the caller.
1011   ** Search for "xBestIndex malfunction" below */
1012   for(i=0; i<p->nConstraint; i++){
1013     if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){
1014       sqlite3ErrorMsg(pParse,
1015           "table %s: xBestIndex returned an invalid plan", pTab->zName);
1016     }
1017   }
1018 #endif
1019 
1020   return pParse->nErr;
1021 }
1022 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1023 
1024 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1025 /*
1026 ** Estimate the location of a particular key among all keys in an
1027 ** index.  Store the results in aStat as follows:
1028 **
1029 **    aStat[0]      Est. number of rows less than pRec
1030 **    aStat[1]      Est. number of rows equal to pRec
1031 **
1032 ** Return the index of the sample that is the smallest sample that
1033 ** is greater than or equal to pRec. Note that this index is not an index
1034 ** into the aSample[] array - it is an index into a virtual set of samples
1035 ** based on the contents of aSample[] and the number of fields in record
1036 ** pRec.
1037 */
1038 static int whereKeyStats(
1039   Parse *pParse,              /* Database connection */
1040   Index *pIdx,                /* Index to consider domain of */
1041   UnpackedRecord *pRec,       /* Vector of values to consider */
1042   int roundUp,                /* Round up if true.  Round down if false */
1043   tRowcnt *aStat              /* OUT: stats written here */
1044 ){
1045   IndexSample *aSample = pIdx->aSample;
1046   int iCol;                   /* Index of required stats in anEq[] etc. */
1047   int i;                      /* Index of first sample >= pRec */
1048   int iSample;                /* Smallest sample larger than or equal to pRec */
1049   int iMin = 0;               /* Smallest sample not yet tested */
1050   int iTest;                  /* Next sample to test */
1051   int res;                    /* Result of comparison operation */
1052   int nField;                 /* Number of fields in pRec */
1053   tRowcnt iLower = 0;         /* anLt[] + anEq[] of largest sample pRec is > */
1054 
1055 #ifndef SQLITE_DEBUG
1056   UNUSED_PARAMETER( pParse );
1057 #endif
1058   assert( pRec!=0 );
1059   assert( pIdx->nSample>0 );
1060   assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol );
1061 
1062   /* Do a binary search to find the first sample greater than or equal
1063   ** to pRec. If pRec contains a single field, the set of samples to search
1064   ** is simply the aSample[] array. If the samples in aSample[] contain more
1065   ** than one fields, all fields following the first are ignored.
1066   **
1067   ** If pRec contains N fields, where N is more than one, then as well as the
1068   ** samples in aSample[] (truncated to N fields), the search also has to
1069   ** consider prefixes of those samples. For example, if the set of samples
1070   ** in aSample is:
1071   **
1072   **     aSample[0] = (a, 5)
1073   **     aSample[1] = (a, 10)
1074   **     aSample[2] = (b, 5)
1075   **     aSample[3] = (c, 100)
1076   **     aSample[4] = (c, 105)
1077   **
1078   ** Then the search space should ideally be the samples above and the
1079   ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1080   ** the code actually searches this set:
1081   **
1082   **     0: (a)
1083   **     1: (a, 5)
1084   **     2: (a, 10)
1085   **     3: (a, 10)
1086   **     4: (b)
1087   **     5: (b, 5)
1088   **     6: (c)
1089   **     7: (c, 100)
1090   **     8: (c, 105)
1091   **     9: (c, 105)
1092   **
1093   ** For each sample in the aSample[] array, N samples are present in the
1094   ** effective sample array. In the above, samples 0 and 1 are based on
1095   ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1096   **
1097   ** Often, sample i of each block of N effective samples has (i+1) fields.
1098   ** Except, each sample may be extended to ensure that it is greater than or
1099   ** equal to the previous sample in the array. For example, in the above,
1100   ** sample 2 is the first sample of a block of N samples, so at first it
1101   ** appears that it should be 1 field in size. However, that would make it
1102   ** smaller than sample 1, so the binary search would not work. As a result,
1103   ** it is extended to two fields. The duplicates that this creates do not
1104   ** cause any problems.
1105   */
1106   nField = pRec->nField;
1107   iCol = 0;
1108   iSample = pIdx->nSample * nField;
1109   do{
1110     int iSamp;                    /* Index in aSample[] of test sample */
1111     int n;                        /* Number of fields in test sample */
1112 
1113     iTest = (iMin+iSample)/2;
1114     iSamp = iTest / nField;
1115     if( iSamp>0 ){
1116       /* The proposed effective sample is a prefix of sample aSample[iSamp].
1117       ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1118       ** fields that is greater than the previous effective sample.  */
1119       for(n=(iTest % nField) + 1; n<nField; n++){
1120         if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break;
1121       }
1122     }else{
1123       n = iTest + 1;
1124     }
1125 
1126     pRec->nField = n;
1127     res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec);
1128     if( res<0 ){
1129       iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1];
1130       iMin = iTest+1;
1131     }else if( res==0 && n<nField ){
1132       iLower = aSample[iSamp].anLt[n-1];
1133       iMin = iTest+1;
1134       res = -1;
1135     }else{
1136       iSample = iTest;
1137       iCol = n-1;
1138     }
1139   }while( res && iMin<iSample );
1140   i = iSample / nField;
1141 
1142 #ifdef SQLITE_DEBUG
1143   /* The following assert statements check that the binary search code
1144   ** above found the right answer. This block serves no purpose other
1145   ** than to invoke the asserts.  */
1146   if( pParse->db->mallocFailed==0 ){
1147     if( res==0 ){
1148       /* If (res==0) is true, then pRec must be equal to sample i. */
1149       assert( i<pIdx->nSample );
1150       assert( iCol==nField-1 );
1151       pRec->nField = nField;
1152       assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)
1153            || pParse->db->mallocFailed
1154       );
1155     }else{
1156       /* Unless i==pIdx->nSample, indicating that pRec is larger than
1157       ** all samples in the aSample[] array, pRec must be smaller than the
1158       ** (iCol+1) field prefix of sample i.  */
1159       assert( i<=pIdx->nSample && i>=0 );
1160       pRec->nField = iCol+1;
1161       assert( i==pIdx->nSample
1162            || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0
1163            || pParse->db->mallocFailed );
1164 
1165       /* if i==0 and iCol==0, then record pRec is smaller than all samples
1166       ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1167       ** be greater than or equal to the (iCol) field prefix of sample i.
1168       ** If (i>0), then pRec must also be greater than sample (i-1).  */
1169       if( iCol>0 ){
1170         pRec->nField = iCol;
1171         assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0
1172              || pParse->db->mallocFailed );
1173       }
1174       if( i>0 ){
1175         pRec->nField = nField;
1176         assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0
1177              || pParse->db->mallocFailed );
1178       }
1179     }
1180   }
1181 #endif /* ifdef SQLITE_DEBUG */
1182 
1183   if( res==0 ){
1184     /* Record pRec is equal to sample i */
1185     assert( iCol==nField-1 );
1186     aStat[0] = aSample[i].anLt[iCol];
1187     aStat[1] = aSample[i].anEq[iCol];
1188   }else{
1189     /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1190     ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1191     ** is larger than all samples in the array. */
1192     tRowcnt iUpper, iGap;
1193     if( i>=pIdx->nSample ){
1194       iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]);
1195     }else{
1196       iUpper = aSample[i].anLt[iCol];
1197     }
1198 
1199     if( iLower>=iUpper ){
1200       iGap = 0;
1201     }else{
1202       iGap = iUpper - iLower;
1203     }
1204     if( roundUp ){
1205       iGap = (iGap*2)/3;
1206     }else{
1207       iGap = iGap/3;
1208     }
1209     aStat[0] = iLower + iGap;
1210     aStat[1] = pIdx->aAvgEq[nField-1];
1211   }
1212 
1213   /* Restore the pRec->nField value before returning.  */
1214   pRec->nField = nField;
1215   return i;
1216 }
1217 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1218 
1219 /*
1220 ** If it is not NULL, pTerm is a term that provides an upper or lower
1221 ** bound on a range scan. Without considering pTerm, it is estimated
1222 ** that the scan will visit nNew rows. This function returns the number
1223 ** estimated to be visited after taking pTerm into account.
1224 **
1225 ** If the user explicitly specified a likelihood() value for this term,
1226 ** then the return value is the likelihood multiplied by the number of
1227 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1228 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1229 */
1230 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){
1231   LogEst nRet = nNew;
1232   if( pTerm ){
1233     if( pTerm->truthProb<=0 ){
1234       nRet += pTerm->truthProb;
1235     }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){
1236       nRet -= 20;        assert( 20==sqlite3LogEst(4) );
1237     }
1238   }
1239   return nRet;
1240 }
1241 
1242 
1243 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1244 /*
1245 ** Return the affinity for a single column of an index.
1246 */
1247 char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){
1248   assert( iCol>=0 && iCol<pIdx->nColumn );
1249   if( !pIdx->zColAff ){
1250     if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB;
1251   }
1252   return pIdx->zColAff[iCol];
1253 }
1254 #endif
1255 
1256 
1257 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1258 /*
1259 ** This function is called to estimate the number of rows visited by a
1260 ** range-scan on a skip-scan index. For example:
1261 **
1262 **   CREATE INDEX i1 ON t1(a, b, c);
1263 **   SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1264 **
1265 ** Value pLoop->nOut is currently set to the estimated number of rows
1266 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1267 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1268 ** on the stat4 data for the index. this scan will be peformed multiple
1269 ** times (once for each (a,b) combination that matches a=?) is dealt with
1270 ** by the caller.
1271 **
1272 ** It does this by scanning through all stat4 samples, comparing values
1273 ** extracted from pLower and pUpper with the corresponding column in each
1274 ** sample. If L and U are the number of samples found to be less than or
1275 ** equal to the values extracted from pLower and pUpper respectively, and
1276 ** N is the total number of samples, the pLoop->nOut value is adjusted
1277 ** as follows:
1278 **
1279 **   nOut = nOut * ( min(U - L, 1) / N )
1280 **
1281 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1282 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1283 ** U is set to N.
1284 **
1285 ** Normally, this function sets *pbDone to 1 before returning. However,
1286 ** if no value can be extracted from either pLower or pUpper (and so the
1287 ** estimate of the number of rows delivered remains unchanged), *pbDone
1288 ** is left as is.
1289 **
1290 ** If an error occurs, an SQLite error code is returned. Otherwise,
1291 ** SQLITE_OK.
1292 */
1293 static int whereRangeSkipScanEst(
1294   Parse *pParse,       /* Parsing & code generating context */
1295   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1296   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1297   WhereLoop *pLoop,    /* Update the .nOut value of this loop */
1298   int *pbDone          /* Set to true if at least one expr. value extracted */
1299 ){
1300   Index *p = pLoop->u.btree.pIndex;
1301   int nEq = pLoop->u.btree.nEq;
1302   sqlite3 *db = pParse->db;
1303   int nLower = -1;
1304   int nUpper = p->nSample+1;
1305   int rc = SQLITE_OK;
1306   u8 aff = sqlite3IndexColumnAffinity(db, p, nEq);
1307   CollSeq *pColl;
1308 
1309   sqlite3_value *p1 = 0;          /* Value extracted from pLower */
1310   sqlite3_value *p2 = 0;          /* Value extracted from pUpper */
1311   sqlite3_value *pVal = 0;        /* Value extracted from record */
1312 
1313   pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]);
1314   if( pLower ){
1315     rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1);
1316     nLower = 0;
1317   }
1318   if( pUpper && rc==SQLITE_OK ){
1319     rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2);
1320     nUpper = p2 ? 0 : p->nSample;
1321   }
1322 
1323   if( p1 || p2 ){
1324     int i;
1325     int nDiff;
1326     for(i=0; rc==SQLITE_OK && i<p->nSample; i++){
1327       rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal);
1328       if( rc==SQLITE_OK && p1 ){
1329         int res = sqlite3MemCompare(p1, pVal, pColl);
1330         if( res>=0 ) nLower++;
1331       }
1332       if( rc==SQLITE_OK && p2 ){
1333         int res = sqlite3MemCompare(p2, pVal, pColl);
1334         if( res>=0 ) nUpper++;
1335       }
1336     }
1337     nDiff = (nUpper - nLower);
1338     if( nDiff<=0 ) nDiff = 1;
1339 
1340     /* If there is both an upper and lower bound specified, and the
1341     ** comparisons indicate that they are close together, use the fallback
1342     ** method (assume that the scan visits 1/64 of the rows) for estimating
1343     ** the number of rows visited. Otherwise, estimate the number of rows
1344     ** using the method described in the header comment for this function. */
1345     if( nDiff!=1 || pUpper==0 || pLower==0 ){
1346       int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff));
1347       pLoop->nOut -= nAdjust;
1348       *pbDone = 1;
1349       WHERETRACE(0x10, ("range skip-scan regions: %u..%u  adjust=%d est=%d\n",
1350                            nLower, nUpper, nAdjust*-1, pLoop->nOut));
1351     }
1352 
1353   }else{
1354     assert( *pbDone==0 );
1355   }
1356 
1357   sqlite3ValueFree(p1);
1358   sqlite3ValueFree(p2);
1359   sqlite3ValueFree(pVal);
1360 
1361   return rc;
1362 }
1363 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1364 
1365 /*
1366 ** This function is used to estimate the number of rows that will be visited
1367 ** by scanning an index for a range of values. The range may have an upper
1368 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1369 ** and lower bounds are represented by pLower and pUpper respectively. For
1370 ** example, assuming that index p is on t1(a):
1371 **
1372 **   ... FROM t1 WHERE a > ? AND a < ? ...
1373 **                    |_____|   |_____|
1374 **                       |         |
1375 **                     pLower    pUpper
1376 **
1377 ** If either of the upper or lower bound is not present, then NULL is passed in
1378 ** place of the corresponding WhereTerm.
1379 **
1380 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1381 ** column subject to the range constraint. Or, equivalently, the number of
1382 ** equality constraints optimized by the proposed index scan. For example,
1383 ** assuming index p is on t1(a, b), and the SQL query is:
1384 **
1385 **   ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1386 **
1387 ** then nEq is set to 1 (as the range restricted column, b, is the second
1388 ** left-most column of the index). Or, if the query is:
1389 **
1390 **   ... FROM t1 WHERE a > ? AND a < ? ...
1391 **
1392 ** then nEq is set to 0.
1393 **
1394 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1395 ** number of rows that the index scan is expected to visit without
1396 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1397 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1398 ** to account for the range constraints pLower and pUpper.
1399 **
1400 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1401 ** used, a single range inequality reduces the search space by a factor of 4.
1402 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1403 ** rows visited by a factor of 64.
1404 */
1405 static int whereRangeScanEst(
1406   Parse *pParse,       /* Parsing & code generating context */
1407   WhereLoopBuilder *pBuilder,
1408   WhereTerm *pLower,   /* Lower bound on the range. ex: "x>123" Might be NULL */
1409   WhereTerm *pUpper,   /* Upper bound on the range. ex: "x<455" Might be NULL */
1410   WhereLoop *pLoop     /* Modify the .nOut and maybe .rRun fields */
1411 ){
1412   int rc = SQLITE_OK;
1413   int nOut = pLoop->nOut;
1414   LogEst nNew;
1415 
1416 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1417   Index *p = pLoop->u.btree.pIndex;
1418   int nEq = pLoop->u.btree.nEq;
1419 
1420   if( p->nSample>0 && nEq<p->nSampleCol ){
1421     if( nEq==pBuilder->nRecValid ){
1422       UnpackedRecord *pRec = pBuilder->pRec;
1423       tRowcnt a[2];
1424       int nBtm = pLoop->u.btree.nBtm;
1425       int nTop = pLoop->u.btree.nTop;
1426 
1427       /* Variable iLower will be set to the estimate of the number of rows in
1428       ** the index that are less than the lower bound of the range query. The
1429       ** lower bound being the concatenation of $P and $L, where $P is the
1430       ** key-prefix formed by the nEq values matched against the nEq left-most
1431       ** columns of the index, and $L is the value in pLower.
1432       **
1433       ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1434       ** is not a simple variable or literal value), the lower bound of the
1435       ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1436       ** if $L is available, whereKeyStats() is called for both ($P) and
1437       ** ($P:$L) and the larger of the two returned values is used.
1438       **
1439       ** Similarly, iUpper is to be set to the estimate of the number of rows
1440       ** less than the upper bound of the range query. Where the upper bound
1441       ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1442       ** of iUpper are requested of whereKeyStats() and the smaller used.
1443       **
1444       ** The number of rows between the two bounds is then just iUpper-iLower.
1445       */
1446       tRowcnt iLower;     /* Rows less than the lower bound */
1447       tRowcnt iUpper;     /* Rows less than the upper bound */
1448       int iLwrIdx = -2;   /* aSample[] for the lower bound */
1449       int iUprIdx = -1;   /* aSample[] for the upper bound */
1450 
1451       if( pRec ){
1452         testcase( pRec->nField!=pBuilder->nRecValid );
1453         pRec->nField = pBuilder->nRecValid;
1454       }
1455       /* Determine iLower and iUpper using ($P) only. */
1456       if( nEq==0 ){
1457         iLower = 0;
1458         iUpper = p->nRowEst0;
1459       }else{
1460         /* Note: this call could be optimized away - since the same values must
1461         ** have been requested when testing key $P in whereEqualScanEst().  */
1462         whereKeyStats(pParse, p, pRec, 0, a);
1463         iLower = a[0];
1464         iUpper = a[0] + a[1];
1465       }
1466 
1467       assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 );
1468       assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 );
1469       assert( p->aSortOrder!=0 );
1470       if( p->aSortOrder[nEq] ){
1471         /* The roles of pLower and pUpper are swapped for a DESC index */
1472         SWAP(WhereTerm*, pLower, pUpper);
1473         SWAP(int, nBtm, nTop);
1474       }
1475 
1476       /* If possible, improve on the iLower estimate using ($P:$L). */
1477       if( pLower ){
1478         int n;                    /* Values extracted from pExpr */
1479         Expr *pExpr = pLower->pExpr->pRight;
1480         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nBtm, nEq, &n);
1481         if( rc==SQLITE_OK && n ){
1482           tRowcnt iNew;
1483           u16 mask = WO_GT|WO_LE;
1484           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1485           iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a);
1486           iNew = a[0] + ((pLower->eOperator & mask) ? a[1] : 0);
1487           if( iNew>iLower ) iLower = iNew;
1488           nOut--;
1489           pLower = 0;
1490         }
1491       }
1492 
1493       /* If possible, improve on the iUpper estimate using ($P:$U). */
1494       if( pUpper ){
1495         int n;                    /* Values extracted from pExpr */
1496         Expr *pExpr = pUpper->pExpr->pRight;
1497         rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, nTop, nEq, &n);
1498         if( rc==SQLITE_OK && n ){
1499           tRowcnt iNew;
1500           u16 mask = WO_GT|WO_LE;
1501           if( sqlite3ExprVectorSize(pExpr)>n ) mask = (WO_LE|WO_LT);
1502           iUprIdx = whereKeyStats(pParse, p, pRec, 1, a);
1503           iNew = a[0] + ((pUpper->eOperator & mask) ? a[1] : 0);
1504           if( iNew<iUpper ) iUpper = iNew;
1505           nOut--;
1506           pUpper = 0;
1507         }
1508       }
1509 
1510       pBuilder->pRec = pRec;
1511       if( rc==SQLITE_OK ){
1512         if( iUpper>iLower ){
1513           nNew = sqlite3LogEst(iUpper - iLower);
1514           /* TUNING:  If both iUpper and iLower are derived from the same
1515           ** sample, then assume they are 4x more selective.  This brings
1516           ** the estimated selectivity more in line with what it would be
1517           ** if estimated without the use of STAT3/4 tables. */
1518           if( iLwrIdx==iUprIdx ) nNew -= 20;  assert( 20==sqlite3LogEst(4) );
1519         }else{
1520           nNew = 10;        assert( 10==sqlite3LogEst(2) );
1521         }
1522         if( nNew<nOut ){
1523           nOut = nNew;
1524         }
1525         WHERETRACE(0x10, ("STAT4 range scan: %u..%u  est=%d\n",
1526                            (u32)iLower, (u32)iUpper, nOut));
1527       }
1528     }else{
1529       int bDone = 0;
1530       rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone);
1531       if( bDone ) return rc;
1532     }
1533   }
1534 #else
1535   UNUSED_PARAMETER(pParse);
1536   UNUSED_PARAMETER(pBuilder);
1537   assert( pLower || pUpper );
1538 #endif
1539   assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 );
1540   nNew = whereRangeAdjust(pLower, nOut);
1541   nNew = whereRangeAdjust(pUpper, nNew);
1542 
1543   /* TUNING: If there is both an upper and lower limit and neither limit
1544   ** has an application-defined likelihood(), assume the range is
1545   ** reduced by an additional 75%. This means that, by default, an open-ended
1546   ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
1547   ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
1548   ** match 1/64 of the index. */
1549   if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){
1550     nNew -= 20;
1551   }
1552 
1553   nOut -= (pLower!=0) + (pUpper!=0);
1554   if( nNew<10 ) nNew = 10;
1555   if( nNew<nOut ) nOut = nNew;
1556 #if defined(WHERETRACE_ENABLED)
1557   if( pLoop->nOut>nOut ){
1558     WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n",
1559                     pLoop->nOut, nOut));
1560   }
1561 #endif
1562   pLoop->nOut = (LogEst)nOut;
1563   return rc;
1564 }
1565 
1566 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1567 /*
1568 ** Estimate the number of rows that will be returned based on
1569 ** an equality constraint x=VALUE and where that VALUE occurs in
1570 ** the histogram data.  This only works when x is the left-most
1571 ** column of an index and sqlite_stat3 histogram data is available
1572 ** for that index.  When pExpr==NULL that means the constraint is
1573 ** "x IS NULL" instead of "x=VALUE".
1574 **
1575 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1576 ** If unable to make an estimate, leave *pnRow unchanged and return
1577 ** non-zero.
1578 **
1579 ** This routine can fail if it is unable to load a collating sequence
1580 ** required for string comparison, or if unable to allocate memory
1581 ** for a UTF conversion required for comparison.  The error is stored
1582 ** in the pParse structure.
1583 */
1584 static int whereEqualScanEst(
1585   Parse *pParse,       /* Parsing & code generating context */
1586   WhereLoopBuilder *pBuilder,
1587   Expr *pExpr,         /* Expression for VALUE in the x=VALUE constraint */
1588   tRowcnt *pnRow       /* Write the revised row estimate here */
1589 ){
1590   Index *p = pBuilder->pNew->u.btree.pIndex;
1591   int nEq = pBuilder->pNew->u.btree.nEq;
1592   UnpackedRecord *pRec = pBuilder->pRec;
1593   int rc;                   /* Subfunction return code */
1594   tRowcnt a[2];             /* Statistics */
1595   int bOk;
1596 
1597   assert( nEq>=1 );
1598   assert( nEq<=p->nColumn );
1599   assert( p->aSample!=0 );
1600   assert( p->nSample>0 );
1601   assert( pBuilder->nRecValid<nEq );
1602 
1603   /* If values are not available for all fields of the index to the left
1604   ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
1605   if( pBuilder->nRecValid<(nEq-1) ){
1606     return SQLITE_NOTFOUND;
1607   }
1608 
1609   /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
1610   ** below would return the same value.  */
1611   if( nEq>=p->nColumn ){
1612     *pnRow = 1;
1613     return SQLITE_OK;
1614   }
1615 
1616   rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, 1, nEq-1, &bOk);
1617   pBuilder->pRec = pRec;
1618   if( rc!=SQLITE_OK ) return rc;
1619   if( bOk==0 ) return SQLITE_NOTFOUND;
1620   pBuilder->nRecValid = nEq;
1621 
1622   whereKeyStats(pParse, p, pRec, 0, a);
1623   WHERETRACE(0x10,("equality scan regions %s(%d): %d\n",
1624                    p->zName, nEq-1, (int)a[1]));
1625   *pnRow = a[1];
1626 
1627   return rc;
1628 }
1629 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1630 
1631 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
1632 /*
1633 ** Estimate the number of rows that will be returned based on
1634 ** an IN constraint where the right-hand side of the IN operator
1635 ** is a list of values.  Example:
1636 **
1637 **        WHERE x IN (1,2,3,4)
1638 **
1639 ** Write the estimated row count into *pnRow and return SQLITE_OK.
1640 ** If unable to make an estimate, leave *pnRow unchanged and return
1641 ** non-zero.
1642 **
1643 ** This routine can fail if it is unable to load a collating sequence
1644 ** required for string comparison, or if unable to allocate memory
1645 ** for a UTF conversion required for comparison.  The error is stored
1646 ** in the pParse structure.
1647 */
1648 static int whereInScanEst(
1649   Parse *pParse,       /* Parsing & code generating context */
1650   WhereLoopBuilder *pBuilder,
1651   ExprList *pList,     /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
1652   tRowcnt *pnRow       /* Write the revised row estimate here */
1653 ){
1654   Index *p = pBuilder->pNew->u.btree.pIndex;
1655   i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]);
1656   int nRecValid = pBuilder->nRecValid;
1657   int rc = SQLITE_OK;     /* Subfunction return code */
1658   tRowcnt nEst;           /* Number of rows for a single term */
1659   tRowcnt nRowEst = 0;    /* New estimate of the number of rows */
1660   int i;                  /* Loop counter */
1661 
1662   assert( p->aSample!=0 );
1663   for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){
1664     nEst = nRow0;
1665     rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst);
1666     nRowEst += nEst;
1667     pBuilder->nRecValid = nRecValid;
1668   }
1669 
1670   if( rc==SQLITE_OK ){
1671     if( nRowEst > nRow0 ) nRowEst = nRow0;
1672     *pnRow = nRowEst;
1673     WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst));
1674   }
1675   assert( pBuilder->nRecValid==nRecValid );
1676   return rc;
1677 }
1678 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */
1679 
1680 
1681 #ifdef WHERETRACE_ENABLED
1682 /*
1683 ** Print the content of a WhereTerm object
1684 */
1685 static void whereTermPrint(WhereTerm *pTerm, int iTerm){
1686   if( pTerm==0 ){
1687     sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm);
1688   }else{
1689     char zType[4];
1690     char zLeft[50];
1691     memcpy(zType, "...", 4);
1692     if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V';
1693     if( pTerm->eOperator & WO_EQUIV  ) zType[1] = 'E';
1694     if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L';
1695     if( pTerm->eOperator & WO_SINGLE ){
1696       sqlite3_snprintf(sizeof(zLeft),zLeft,"left={%d:%d}",
1697                        pTerm->leftCursor, pTerm->u.leftColumn);
1698     }else if( (pTerm->eOperator & WO_OR)!=0 && pTerm->u.pOrInfo!=0 ){
1699       sqlite3_snprintf(sizeof(zLeft),zLeft,"indexable=0x%lld",
1700                        pTerm->u.pOrInfo->indexable);
1701     }else{
1702       sqlite3_snprintf(sizeof(zLeft),zLeft,"left=%d", pTerm->leftCursor);
1703     }
1704     sqlite3DebugPrintf(
1705        "TERM-%-3d %p %s %-12s prob=%-3d op=0x%03x wtFlags=0x%04x",
1706        iTerm, pTerm, zType, zLeft, pTerm->truthProb,
1707        pTerm->eOperator, pTerm->wtFlags);
1708     if( pTerm->iField ){
1709       sqlite3DebugPrintf(" iField=%d\n", pTerm->iField);
1710     }else{
1711       sqlite3DebugPrintf("\n");
1712     }
1713     sqlite3TreeViewExpr(0, pTerm->pExpr, 0);
1714   }
1715 }
1716 #endif
1717 
1718 #ifdef WHERETRACE_ENABLED
1719 /*
1720 ** Show the complete content of a WhereClause
1721 */
1722 void sqlite3WhereClausePrint(WhereClause *pWC){
1723   int i;
1724   for(i=0; i<pWC->nTerm; i++){
1725     whereTermPrint(&pWC->a[i], i);
1726   }
1727 }
1728 #endif
1729 
1730 #ifdef WHERETRACE_ENABLED
1731 /*
1732 ** Print a WhereLoop object for debugging purposes
1733 */
1734 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){
1735   WhereInfo *pWInfo = pWC->pWInfo;
1736   int nb = 1+(pWInfo->pTabList->nSrc+3)/4;
1737   struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab;
1738   Table *pTab = pItem->pTab;
1739   Bitmask mAll = (((Bitmask)1)<<(nb*4)) - 1;
1740   sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId,
1741                      p->iTab, nb, p->maskSelf, nb, p->prereq & mAll);
1742   sqlite3DebugPrintf(" %12s",
1743                      pItem->zAlias ? pItem->zAlias : pTab->zName);
1744   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
1745     const char *zName;
1746     if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){
1747       if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){
1748         int i = sqlite3Strlen30(zName) - 1;
1749         while( zName[i]!='_' ) i--;
1750         zName += i;
1751       }
1752       sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq);
1753     }else{
1754       sqlite3DebugPrintf("%20s","");
1755     }
1756   }else{
1757     char *z;
1758     if( p->u.vtab.idxStr ){
1759       z = sqlite3_mprintf("(%d,\"%s\",%x)",
1760                 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask);
1761     }else{
1762       z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask);
1763     }
1764     sqlite3DebugPrintf(" %-19s", z);
1765     sqlite3_free(z);
1766   }
1767   if( p->wsFlags & WHERE_SKIPSCAN ){
1768     sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip);
1769   }else{
1770     sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm);
1771   }
1772   sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut);
1773   if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){
1774     int i;
1775     for(i=0; i<p->nLTerm; i++){
1776       whereTermPrint(p->aLTerm[i], i);
1777     }
1778   }
1779 }
1780 #endif
1781 
1782 /*
1783 ** Convert bulk memory into a valid WhereLoop that can be passed
1784 ** to whereLoopClear harmlessly.
1785 */
1786 static void whereLoopInit(WhereLoop *p){
1787   p->aLTerm = p->aLTermSpace;
1788   p->nLTerm = 0;
1789   p->nLSlot = ArraySize(p->aLTermSpace);
1790   p->wsFlags = 0;
1791 }
1792 
1793 /*
1794 ** Clear the WhereLoop.u union.  Leave WhereLoop.pLTerm intact.
1795 */
1796 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){
1797   if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){
1798     if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){
1799       sqlite3_free(p->u.vtab.idxStr);
1800       p->u.vtab.needFree = 0;
1801       p->u.vtab.idxStr = 0;
1802     }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){
1803       sqlite3DbFree(db, p->u.btree.pIndex->zColAff);
1804       sqlite3DbFreeNN(db, p->u.btree.pIndex);
1805       p->u.btree.pIndex = 0;
1806     }
1807   }
1808 }
1809 
1810 /*
1811 ** Deallocate internal memory used by a WhereLoop object
1812 */
1813 static void whereLoopClear(sqlite3 *db, WhereLoop *p){
1814   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1815   whereLoopClearUnion(db, p);
1816   whereLoopInit(p);
1817 }
1818 
1819 /*
1820 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
1821 */
1822 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){
1823   WhereTerm **paNew;
1824   if( p->nLSlot>=n ) return SQLITE_OK;
1825   n = (n+7)&~7;
1826   paNew = sqlite3DbMallocRawNN(db, sizeof(p->aLTerm[0])*n);
1827   if( paNew==0 ) return SQLITE_NOMEM_BKPT;
1828   memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot);
1829   if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFreeNN(db, p->aLTerm);
1830   p->aLTerm = paNew;
1831   p->nLSlot = n;
1832   return SQLITE_OK;
1833 }
1834 
1835 /*
1836 ** Transfer content from the second pLoop into the first.
1837 */
1838 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){
1839   whereLoopClearUnion(db, pTo);
1840   if( whereLoopResize(db, pTo, pFrom->nLTerm) ){
1841     memset(&pTo->u, 0, sizeof(pTo->u));
1842     return SQLITE_NOMEM_BKPT;
1843   }
1844   memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ);
1845   memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0]));
1846   if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){
1847     pFrom->u.vtab.needFree = 0;
1848   }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){
1849     pFrom->u.btree.pIndex = 0;
1850   }
1851   return SQLITE_OK;
1852 }
1853 
1854 /*
1855 ** Delete a WhereLoop object
1856 */
1857 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){
1858   whereLoopClear(db, p);
1859   sqlite3DbFreeNN(db, p);
1860 }
1861 
1862 /*
1863 ** Free a WhereInfo structure
1864 */
1865 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){
1866   int i;
1867   assert( pWInfo!=0 );
1868   for(i=0; i<pWInfo->nLevel; i++){
1869     WhereLevel *pLevel = &pWInfo->a[i];
1870     if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){
1871       sqlite3DbFree(db, pLevel->u.in.aInLoop);
1872     }
1873   }
1874   sqlite3WhereClauseClear(&pWInfo->sWC);
1875   while( pWInfo->pLoops ){
1876     WhereLoop *p = pWInfo->pLoops;
1877     pWInfo->pLoops = p->pNextLoop;
1878     whereLoopDelete(db, p);
1879   }
1880   sqlite3DbFreeNN(db, pWInfo);
1881 }
1882 
1883 /*
1884 ** Return TRUE if all of the following are true:
1885 **
1886 **   (1)  X has the same or lower cost that Y
1887 **   (2)  X uses fewer WHERE clause terms than Y
1888 **   (3)  Every WHERE clause term used by X is also used by Y
1889 **   (4)  X skips at least as many columns as Y
1890 **   (5)  If X is a covering index, than Y is too
1891 **
1892 ** Conditions (2) and (3) mean that X is a "proper subset" of Y.
1893 ** If X is a proper subset of Y then Y is a better choice and ought
1894 ** to have a lower cost.  This routine returns TRUE when that cost
1895 ** relationship is inverted and needs to be adjusted.  Constraint (4)
1896 ** was added because if X uses skip-scan less than Y it still might
1897 ** deserve a lower cost even if it is a proper subset of Y.  Constraint (5)
1898 ** was added because a covering index probably deserves to have a lower cost
1899 ** than a non-covering index even if it is a proper subset.
1900 */
1901 static int whereLoopCheaperProperSubset(
1902   const WhereLoop *pX,       /* First WhereLoop to compare */
1903   const WhereLoop *pY        /* Compare against this WhereLoop */
1904 ){
1905   int i, j;
1906   if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){
1907     return 0; /* X is not a subset of Y */
1908   }
1909   if( pY->nSkip > pX->nSkip ) return 0;
1910   if( pX->rRun >= pY->rRun ){
1911     if( pX->rRun > pY->rRun ) return 0;    /* X costs more than Y */
1912     if( pX->nOut > pY->nOut ) return 0;    /* X costs more than Y */
1913   }
1914   for(i=pX->nLTerm-1; i>=0; i--){
1915     if( pX->aLTerm[i]==0 ) continue;
1916     for(j=pY->nLTerm-1; j>=0; j--){
1917       if( pY->aLTerm[j]==pX->aLTerm[i] ) break;
1918     }
1919     if( j<0 ) return 0;  /* X not a subset of Y since term X[i] not used by Y */
1920   }
1921   if( (pX->wsFlags&WHERE_IDX_ONLY)!=0
1922    && (pY->wsFlags&WHERE_IDX_ONLY)==0 ){
1923     return 0;  /* Constraint (5) */
1924   }
1925   return 1;  /* All conditions meet */
1926 }
1927 
1928 /*
1929 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so
1930 ** that:
1931 **
1932 **   (1) pTemplate costs less than any other WhereLoops that are a proper
1933 **       subset of pTemplate
1934 **
1935 **   (2) pTemplate costs more than any other WhereLoops for which pTemplate
1936 **       is a proper subset.
1937 **
1938 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
1939 ** WHERE clause terms than Y and that every WHERE clause term used by X is
1940 ** also used by Y.
1941 */
1942 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){
1943   if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return;
1944   for(; p; p=p->pNextLoop){
1945     if( p->iTab!=pTemplate->iTab ) continue;
1946     if( (p->wsFlags & WHERE_INDEXED)==0 ) continue;
1947     if( whereLoopCheaperProperSubset(p, pTemplate) ){
1948       /* Adjust pTemplate cost downward so that it is cheaper than its
1949       ** subset p. */
1950       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
1951                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1));
1952       pTemplate->rRun = p->rRun;
1953       pTemplate->nOut = p->nOut - 1;
1954     }else if( whereLoopCheaperProperSubset(pTemplate, p) ){
1955       /* Adjust pTemplate cost upward so that it is costlier than p since
1956       ** pTemplate is a proper subset of p */
1957       WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
1958                        pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1));
1959       pTemplate->rRun = p->rRun;
1960       pTemplate->nOut = p->nOut + 1;
1961     }
1962   }
1963 }
1964 
1965 /*
1966 ** Search the list of WhereLoops in *ppPrev looking for one that can be
1967 ** replaced by pTemplate.
1968 **
1969 ** Return NULL if pTemplate does not belong on the WhereLoop list.
1970 ** In other words if pTemplate ought to be dropped from further consideration.
1971 **
1972 ** If pX is a WhereLoop that pTemplate can replace, then return the
1973 ** link that points to pX.
1974 **
1975 ** If pTemplate cannot replace any existing element of the list but needs
1976 ** to be added to the list as a new entry, then return a pointer to the
1977 ** tail of the list.
1978 */
1979 static WhereLoop **whereLoopFindLesser(
1980   WhereLoop **ppPrev,
1981   const WhereLoop *pTemplate
1982 ){
1983   WhereLoop *p;
1984   for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){
1985     if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){
1986       /* If either the iTab or iSortIdx values for two WhereLoop are different
1987       ** then those WhereLoops need to be considered separately.  Neither is
1988       ** a candidate to replace the other. */
1989       continue;
1990     }
1991     /* In the current implementation, the rSetup value is either zero
1992     ** or the cost of building an automatic index (NlogN) and the NlogN
1993     ** is the same for compatible WhereLoops. */
1994     assert( p->rSetup==0 || pTemplate->rSetup==0
1995                  || p->rSetup==pTemplate->rSetup );
1996 
1997     /* whereLoopAddBtree() always generates and inserts the automatic index
1998     ** case first.  Hence compatible candidate WhereLoops never have a larger
1999     ** rSetup. Call this SETUP-INVARIANT */
2000     assert( p->rSetup>=pTemplate->rSetup );
2001 
2002     /* Any loop using an appliation-defined index (or PRIMARY KEY or
2003     ** UNIQUE constraint) with one or more == constraints is better
2004     ** than an automatic index. Unless it is a skip-scan. */
2005     if( (p->wsFlags & WHERE_AUTO_INDEX)!=0
2006      && (pTemplate->nSkip)==0
2007      && (pTemplate->wsFlags & WHERE_INDEXED)!=0
2008      && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0
2009      && (p->prereq & pTemplate->prereq)==pTemplate->prereq
2010     ){
2011       break;
2012     }
2013 
2014     /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2015     ** discarded.  WhereLoop p is better if:
2016     **   (1)  p has no more dependencies than pTemplate, and
2017     **   (2)  p has an equal or lower cost than pTemplate
2018     */
2019     if( (p->prereq & pTemplate->prereq)==p->prereq    /* (1)  */
2020      && p->rSetup<=pTemplate->rSetup                  /* (2a) */
2021      && p->rRun<=pTemplate->rRun                      /* (2b) */
2022      && p->nOut<=pTemplate->nOut                      /* (2c) */
2023     ){
2024       return 0;  /* Discard pTemplate */
2025     }
2026 
2027     /* If pTemplate is always better than p, then cause p to be overwritten
2028     ** with pTemplate.  pTemplate is better than p if:
2029     **   (1)  pTemplate has no more dependences than p, and
2030     **   (2)  pTemplate has an equal or lower cost than p.
2031     */
2032     if( (p->prereq & pTemplate->prereq)==pTemplate->prereq   /* (1)  */
2033      && p->rRun>=pTemplate->rRun                             /* (2a) */
2034      && p->nOut>=pTemplate->nOut                             /* (2b) */
2035     ){
2036       assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */
2037       break;   /* Cause p to be overwritten by pTemplate */
2038     }
2039   }
2040   return ppPrev;
2041 }
2042 
2043 /*
2044 ** Insert or replace a WhereLoop entry using the template supplied.
2045 **
2046 ** An existing WhereLoop entry might be overwritten if the new template
2047 ** is better and has fewer dependencies.  Or the template will be ignored
2048 ** and no insert will occur if an existing WhereLoop is faster and has
2049 ** fewer dependencies than the template.  Otherwise a new WhereLoop is
2050 ** added based on the template.
2051 **
2052 ** If pBuilder->pOrSet is not NULL then we care about only the
2053 ** prerequisites and rRun and nOut costs of the N best loops.  That
2054 ** information is gathered in the pBuilder->pOrSet object.  This special
2055 ** processing mode is used only for OR clause processing.
2056 **
2057 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2058 ** still might overwrite similar loops with the new template if the
2059 ** new template is better.  Loops may be overwritten if the following
2060 ** conditions are met:
2061 **
2062 **    (1)  They have the same iTab.
2063 **    (2)  They have the same iSortIdx.
2064 **    (3)  The template has same or fewer dependencies than the current loop
2065 **    (4)  The template has the same or lower cost than the current loop
2066 */
2067 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){
2068   WhereLoop **ppPrev, *p;
2069   WhereInfo *pWInfo = pBuilder->pWInfo;
2070   sqlite3 *db = pWInfo->pParse->db;
2071   int rc;
2072 
2073   /* If pBuilder->pOrSet is defined, then only keep track of the costs
2074   ** and prereqs.
2075   */
2076   if( pBuilder->pOrSet!=0 ){
2077     if( pTemplate->nLTerm ){
2078 #if WHERETRACE_ENABLED
2079       u16 n = pBuilder->pOrSet->n;
2080       int x =
2081 #endif
2082       whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun,
2083                                     pTemplate->nOut);
2084 #if WHERETRACE_ENABLED /* 0x8 */
2085       if( sqlite3WhereTrace & 0x8 ){
2086         sqlite3DebugPrintf(x?"   or-%d:  ":"   or-X:  ", n);
2087         whereLoopPrint(pTemplate, pBuilder->pWC);
2088       }
2089 #endif
2090     }
2091     return SQLITE_OK;
2092   }
2093 
2094   /* Look for an existing WhereLoop to replace with pTemplate
2095   */
2096   whereLoopAdjustCost(pWInfo->pLoops, pTemplate);
2097   ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate);
2098 
2099   if( ppPrev==0 ){
2100     /* There already exists a WhereLoop on the list that is better
2101     ** than pTemplate, so just ignore pTemplate */
2102 #if WHERETRACE_ENABLED /* 0x8 */
2103     if( sqlite3WhereTrace & 0x8 ){
2104       sqlite3DebugPrintf("   skip: ");
2105       whereLoopPrint(pTemplate, pBuilder->pWC);
2106     }
2107 #endif
2108     return SQLITE_OK;
2109   }else{
2110     p = *ppPrev;
2111   }
2112 
2113   /* If we reach this point it means that either p[] should be overwritten
2114   ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2115   ** WhereLoop and insert it.
2116   */
2117 #if WHERETRACE_ENABLED /* 0x8 */
2118   if( sqlite3WhereTrace & 0x8 ){
2119     if( p!=0 ){
2120       sqlite3DebugPrintf("replace: ");
2121       whereLoopPrint(p, pBuilder->pWC);
2122       sqlite3DebugPrintf("   with: ");
2123     }else{
2124       sqlite3DebugPrintf("    add: ");
2125     }
2126     whereLoopPrint(pTemplate, pBuilder->pWC);
2127   }
2128 #endif
2129   if( p==0 ){
2130     /* Allocate a new WhereLoop to add to the end of the list */
2131     *ppPrev = p = sqlite3DbMallocRawNN(db, sizeof(WhereLoop));
2132     if( p==0 ) return SQLITE_NOMEM_BKPT;
2133     whereLoopInit(p);
2134     p->pNextLoop = 0;
2135   }else{
2136     /* We will be overwriting WhereLoop p[].  But before we do, first
2137     ** go through the rest of the list and delete any other entries besides
2138     ** p[] that are also supplated by pTemplate */
2139     WhereLoop **ppTail = &p->pNextLoop;
2140     WhereLoop *pToDel;
2141     while( *ppTail ){
2142       ppTail = whereLoopFindLesser(ppTail, pTemplate);
2143       if( ppTail==0 ) break;
2144       pToDel = *ppTail;
2145       if( pToDel==0 ) break;
2146       *ppTail = pToDel->pNextLoop;
2147 #if WHERETRACE_ENABLED /* 0x8 */
2148       if( sqlite3WhereTrace & 0x8 ){
2149         sqlite3DebugPrintf(" delete: ");
2150         whereLoopPrint(pToDel, pBuilder->pWC);
2151       }
2152 #endif
2153       whereLoopDelete(db, pToDel);
2154     }
2155   }
2156   rc = whereLoopXfer(db, p, pTemplate);
2157   if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){
2158     Index *pIndex = p->u.btree.pIndex;
2159     if( pIndex && pIndex->tnum==0 ){
2160       p->u.btree.pIndex = 0;
2161     }
2162   }
2163   return rc;
2164 }
2165 
2166 /*
2167 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2168 ** WHERE clause that reference the loop but which are not used by an
2169 ** index.
2170 *
2171 ** For every WHERE clause term that is not used by the index
2172 ** and which has a truth probability assigned by one of the likelihood(),
2173 ** likely(), or unlikely() SQL functions, reduce the estimated number
2174 ** of output rows by the probability specified.
2175 **
2176 ** TUNING:  For every WHERE clause term that is not used by the index
2177 ** and which does not have an assigned truth probability, heuristics
2178 ** described below are used to try to estimate the truth probability.
2179 ** TODO --> Perhaps this is something that could be improved by better
2180 ** table statistics.
2181 **
2182 ** Heuristic 1:  Estimate the truth probability as 93.75%.  The 93.75%
2183 ** value corresponds to -1 in LogEst notation, so this means decrement
2184 ** the WhereLoop.nOut field for every such WHERE clause term.
2185 **
2186 ** Heuristic 2:  If there exists one or more WHERE clause terms of the
2187 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2188 ** final output row estimate is no greater than 1/4 of the total number
2189 ** of rows in the table.  In other words, assume that x==EXPR will filter
2190 ** out at least 3 out of 4 rows.  If EXPR is -1 or 0 or 1, then maybe the
2191 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2192 ** on the "x" column and so in that case only cap the output row estimate
2193 ** at 1/2 instead of 1/4.
2194 */
2195 static void whereLoopOutputAdjust(
2196   WhereClause *pWC,      /* The WHERE clause */
2197   WhereLoop *pLoop,      /* The loop to adjust downward */
2198   LogEst nRow            /* Number of rows in the entire table */
2199 ){
2200   WhereTerm *pTerm, *pX;
2201   Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf);
2202   int i, j, k;
2203   LogEst iReduce = 0;    /* pLoop->nOut should not exceed nRow-iReduce */
2204 
2205   assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2206   for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){
2207     if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break;
2208     if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue;
2209     if( (pTerm->prereqAll & notAllowed)!=0 ) continue;
2210     for(j=pLoop->nLTerm-1; j>=0; j--){
2211       pX = pLoop->aLTerm[j];
2212       if( pX==0 ) continue;
2213       if( pX==pTerm ) break;
2214       if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break;
2215     }
2216     if( j<0 ){
2217       if( pTerm->truthProb<=0 ){
2218         /* If a truth probability is specified using the likelihood() hints,
2219         ** then use the probability provided by the application. */
2220         pLoop->nOut += pTerm->truthProb;
2221       }else{
2222         /* In the absence of explicit truth probabilities, use heuristics to
2223         ** guess a reasonable truth probability. */
2224         pLoop->nOut--;
2225         if( pTerm->eOperator&(WO_EQ|WO_IS) ){
2226           Expr *pRight = pTerm->pExpr->pRight;
2227           testcase( pTerm->pExpr->op==TK_IS );
2228           if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){
2229             k = 10;
2230           }else{
2231             k = 20;
2232           }
2233           if( iReduce<k ) iReduce = k;
2234         }
2235       }
2236     }
2237   }
2238   if( pLoop->nOut > nRow-iReduce )  pLoop->nOut = nRow - iReduce;
2239 }
2240 
2241 /*
2242 ** Term pTerm is a vector range comparison operation. The first comparison
2243 ** in the vector can be optimized using column nEq of the index. This
2244 ** function returns the total number of vector elements that can be used
2245 ** as part of the range comparison.
2246 **
2247 ** For example, if the query is:
2248 **
2249 **   WHERE a = ? AND (b, c, d) > (?, ?, ?)
2250 **
2251 ** and the index:
2252 **
2253 **   CREATE INDEX ... ON (a, b, c, d, e)
2254 **
2255 ** then this function would be invoked with nEq=1. The value returned in
2256 ** this case is 3.
2257 */
2258 static int whereRangeVectorLen(
2259   Parse *pParse,       /* Parsing context */
2260   int iCur,            /* Cursor open on pIdx */
2261   Index *pIdx,         /* The index to be used for a inequality constraint */
2262   int nEq,             /* Number of prior equality constraints on same index */
2263   WhereTerm *pTerm     /* The vector inequality constraint */
2264 ){
2265   int nCmp = sqlite3ExprVectorSize(pTerm->pExpr->pLeft);
2266   int i;
2267 
2268   nCmp = MIN(nCmp, (pIdx->nColumn - nEq));
2269   for(i=1; i<nCmp; i++){
2270     /* Test if comparison i of pTerm is compatible with column (i+nEq)
2271     ** of the index. If not, exit the loop.  */
2272     char aff;                     /* Comparison affinity */
2273     char idxaff = 0;              /* Indexed columns affinity */
2274     CollSeq *pColl;               /* Comparison collation sequence */
2275     Expr *pLhs = pTerm->pExpr->pLeft->x.pList->a[i].pExpr;
2276     Expr *pRhs = pTerm->pExpr->pRight;
2277     if( pRhs->flags & EP_xIsSelect ){
2278       pRhs = pRhs->x.pSelect->pEList->a[i].pExpr;
2279     }else{
2280       pRhs = pRhs->x.pList->a[i].pExpr;
2281     }
2282 
2283     /* Check that the LHS of the comparison is a column reference to
2284     ** the right column of the right source table. And that the sort
2285     ** order of the index column is the same as the sort order of the
2286     ** leftmost index column.  */
2287     if( pLhs->op!=TK_COLUMN
2288      || pLhs->iTable!=iCur
2289      || pLhs->iColumn!=pIdx->aiColumn[i+nEq]
2290      || pIdx->aSortOrder[i+nEq]!=pIdx->aSortOrder[nEq]
2291     ){
2292       break;
2293     }
2294 
2295     testcase( pLhs->iColumn==XN_ROWID );
2296     aff = sqlite3CompareAffinity(pRhs, sqlite3ExprAffinity(pLhs));
2297     idxaff = sqlite3TableColumnAffinity(pIdx->pTable, pLhs->iColumn);
2298     if( aff!=idxaff ) break;
2299 
2300     pColl = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs);
2301     if( pColl==0 ) break;
2302     if( sqlite3StrICmp(pColl->zName, pIdx->azColl[i+nEq]) ) break;
2303   }
2304   return i;
2305 }
2306 
2307 /*
2308 ** Adjust the cost C by the costMult facter T.  This only occurs if
2309 ** compiled with -DSQLITE_ENABLE_COSTMULT
2310 */
2311 #ifdef SQLITE_ENABLE_COSTMULT
2312 # define ApplyCostMultiplier(C,T)  C += T
2313 #else
2314 # define ApplyCostMultiplier(C,T)
2315 #endif
2316 
2317 /*
2318 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2319 ** index pIndex. Try to match one more.
2320 **
2321 ** When this function is called, pBuilder->pNew->nOut contains the
2322 ** number of rows expected to be visited by filtering using the nEq
2323 ** terms only. If it is modified, this value is restored before this
2324 ** function returns.
2325 **
2326 ** If pProbe->tnum==0, that means pIndex is a fake index used for the
2327 ** INTEGER PRIMARY KEY.
2328 */
2329 static int whereLoopAddBtreeIndex(
2330   WhereLoopBuilder *pBuilder,     /* The WhereLoop factory */
2331   struct SrcList_item *pSrc,      /* FROM clause term being analyzed */
2332   Index *pProbe,                  /* An index on pSrc */
2333   LogEst nInMul                   /* log(Number of iterations due to IN) */
2334 ){
2335   WhereInfo *pWInfo = pBuilder->pWInfo;  /* WHERE analyse context */
2336   Parse *pParse = pWInfo->pParse;        /* Parsing context */
2337   sqlite3 *db = pParse->db;       /* Database connection malloc context */
2338   WhereLoop *pNew;                /* Template WhereLoop under construction */
2339   WhereTerm *pTerm;               /* A WhereTerm under consideration */
2340   int opMask;                     /* Valid operators for constraints */
2341   WhereScan scan;                 /* Iterator for WHERE terms */
2342   Bitmask saved_prereq;           /* Original value of pNew->prereq */
2343   u16 saved_nLTerm;               /* Original value of pNew->nLTerm */
2344   u16 saved_nEq;                  /* Original value of pNew->u.btree.nEq */
2345   u16 saved_nBtm;                 /* Original value of pNew->u.btree.nBtm */
2346   u16 saved_nTop;                 /* Original value of pNew->u.btree.nTop */
2347   u16 saved_nSkip;                /* Original value of pNew->nSkip */
2348   u32 saved_wsFlags;              /* Original value of pNew->wsFlags */
2349   LogEst saved_nOut;              /* Original value of pNew->nOut */
2350   int rc = SQLITE_OK;             /* Return code */
2351   LogEst rSize;                   /* Number of rows in the table */
2352   LogEst rLogSize;                /* Logarithm of table size */
2353   WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */
2354 
2355   pNew = pBuilder->pNew;
2356   if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
2357   WHERETRACE(0x800, ("BEGIN addBtreeIdx(%s), nEq=%d\n",
2358                      pProbe->zName, pNew->u.btree.nEq));
2359 
2360   assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 );
2361   assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 );
2362   if( pNew->wsFlags & WHERE_BTM_LIMIT ){
2363     opMask = WO_LT|WO_LE;
2364   }else{
2365     assert( pNew->u.btree.nBtm==0 );
2366     opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS;
2367   }
2368   if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE);
2369 
2370   assert( pNew->u.btree.nEq<pProbe->nColumn );
2371 
2372   saved_nEq = pNew->u.btree.nEq;
2373   saved_nBtm = pNew->u.btree.nBtm;
2374   saved_nTop = pNew->u.btree.nTop;
2375   saved_nSkip = pNew->nSkip;
2376   saved_nLTerm = pNew->nLTerm;
2377   saved_wsFlags = pNew->wsFlags;
2378   saved_prereq = pNew->prereq;
2379   saved_nOut = pNew->nOut;
2380   pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq,
2381                         opMask, pProbe);
2382   pNew->rSetup = 0;
2383   rSize = pProbe->aiRowLogEst[0];
2384   rLogSize = estLog(rSize);
2385   for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){
2386     u16 eOp = pTerm->eOperator;   /* Shorthand for pTerm->eOperator */
2387     LogEst rCostIdx;
2388     LogEst nOutUnadjusted;        /* nOut before IN() and WHERE adjustments */
2389     int nIn = 0;
2390 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2391     int nRecValid = pBuilder->nRecValid;
2392 #endif
2393     if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0)
2394      && indexColumnNotNull(pProbe, saved_nEq)
2395     ){
2396       continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
2397     }
2398     if( pTerm->prereqRight & pNew->maskSelf ) continue;
2399 
2400     /* Do not allow the upper bound of a LIKE optimization range constraint
2401     ** to mix with a lower range bound from some other source */
2402     if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue;
2403 
2404     /* Do not allow IS constraints from the WHERE clause to be used by the
2405     ** right table of a LEFT JOIN.  Only constraints in the ON clause are
2406     ** allowed */
2407     if( (pSrc->fg.jointype & JT_LEFT)!=0
2408      && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
2409      && (eOp & (WO_IS|WO_ISNULL))!=0
2410     ){
2411       testcase( eOp & WO_IS );
2412       testcase( eOp & WO_ISNULL );
2413       continue;
2414     }
2415 
2416     if( IsUniqueIndex(pProbe) && saved_nEq==pProbe->nKeyCol-1 ){
2417       pBuilder->bldFlags |= SQLITE_BLDF_UNIQUE;
2418     }else{
2419       pBuilder->bldFlags |= SQLITE_BLDF_INDEXED;
2420     }
2421     pNew->wsFlags = saved_wsFlags;
2422     pNew->u.btree.nEq = saved_nEq;
2423     pNew->u.btree.nBtm = saved_nBtm;
2424     pNew->u.btree.nTop = saved_nTop;
2425     pNew->nLTerm = saved_nLTerm;
2426     if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2427     pNew->aLTerm[pNew->nLTerm++] = pTerm;
2428     pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf;
2429 
2430     assert( nInMul==0
2431         || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0
2432         || (pNew->wsFlags & WHERE_COLUMN_IN)!=0
2433         || (pNew->wsFlags & WHERE_SKIPSCAN)!=0
2434     );
2435 
2436     if( eOp & WO_IN ){
2437       Expr *pExpr = pTerm->pExpr;
2438       pNew->wsFlags |= WHERE_COLUMN_IN;
2439       if( ExprHasProperty(pExpr, EP_xIsSelect) ){
2440         /* "x IN (SELECT ...)":  TUNING: the SELECT returns 25 rows */
2441         int i;
2442         nIn = 46;  assert( 46==sqlite3LogEst(25) );
2443 
2444         /* The expression may actually be of the form (x, y) IN (SELECT...).
2445         ** In this case there is a separate term for each of (x) and (y).
2446         ** However, the nIn multiplier should only be applied once, not once
2447         ** for each such term. The following loop checks that pTerm is the
2448         ** first such term in use, and sets nIn back to 0 if it is not. */
2449         for(i=0; i<pNew->nLTerm-1; i++){
2450           if( pNew->aLTerm[i] && pNew->aLTerm[i]->pExpr==pExpr ) nIn = 0;
2451         }
2452       }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){
2453         /* "x IN (value, value, ...)" */
2454         nIn = sqlite3LogEst(pExpr->x.pList->nExpr);
2455         assert( nIn>0 );  /* RHS always has 2 or more terms...  The parser
2456                           ** changes "x IN (?)" into "x=?". */
2457       }
2458     }else if( eOp & (WO_EQ|WO_IS) ){
2459       int iCol = pProbe->aiColumn[saved_nEq];
2460       pNew->wsFlags |= WHERE_COLUMN_EQ;
2461       assert( saved_nEq==pNew->u.btree.nEq );
2462       if( iCol==XN_ROWID
2463        || (iCol>0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1)
2464       ){
2465         if( iCol>=0 && pProbe->uniqNotNull==0 ){
2466           pNew->wsFlags |= WHERE_UNQ_WANTED;
2467         }else{
2468           pNew->wsFlags |= WHERE_ONEROW;
2469         }
2470       }
2471     }else if( eOp & WO_ISNULL ){
2472       pNew->wsFlags |= WHERE_COLUMN_NULL;
2473     }else if( eOp & (WO_GT|WO_GE) ){
2474       testcase( eOp & WO_GT );
2475       testcase( eOp & WO_GE );
2476       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT;
2477       pNew->u.btree.nBtm = whereRangeVectorLen(
2478           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2479       );
2480       pBtm = pTerm;
2481       pTop = 0;
2482       if( pTerm->wtFlags & TERM_LIKEOPT ){
2483         /* Range contraints that come from the LIKE optimization are
2484         ** always used in pairs. */
2485         pTop = &pTerm[1];
2486         assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm );
2487         assert( pTop->wtFlags & TERM_LIKEOPT );
2488         assert( pTop->eOperator==WO_LT );
2489         if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */
2490         pNew->aLTerm[pNew->nLTerm++] = pTop;
2491         pNew->wsFlags |= WHERE_TOP_LIMIT;
2492         pNew->u.btree.nTop = 1;
2493       }
2494     }else{
2495       assert( eOp & (WO_LT|WO_LE) );
2496       testcase( eOp & WO_LT );
2497       testcase( eOp & WO_LE );
2498       pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT;
2499       pNew->u.btree.nTop = whereRangeVectorLen(
2500           pParse, pSrc->iCursor, pProbe, saved_nEq, pTerm
2501       );
2502       pTop = pTerm;
2503       pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ?
2504                      pNew->aLTerm[pNew->nLTerm-2] : 0;
2505     }
2506 
2507     /* At this point pNew->nOut is set to the number of rows expected to
2508     ** be visited by the index scan before considering term pTerm, or the
2509     ** values of nIn and nInMul. In other words, assuming that all
2510     ** "x IN(...)" terms are replaced with "x = ?". This block updates
2511     ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul).  */
2512     assert( pNew->nOut==saved_nOut );
2513     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2514       /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4
2515       ** data, using some other estimate.  */
2516       whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew);
2517     }else{
2518       int nEq = ++pNew->u.btree.nEq;
2519       assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) );
2520 
2521       assert( pNew->nOut==saved_nOut );
2522       if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){
2523         assert( (eOp & WO_IN) || nIn==0 );
2524         testcase( eOp & WO_IN );
2525         pNew->nOut += pTerm->truthProb;
2526         pNew->nOut -= nIn;
2527       }else{
2528 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2529         tRowcnt nOut = 0;
2530         if( nInMul==0
2531          && pProbe->nSample
2532          && pNew->u.btree.nEq<=pProbe->nSampleCol
2533          && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect))
2534         ){
2535           Expr *pExpr = pTerm->pExpr;
2536           if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){
2537             testcase( eOp & WO_EQ );
2538             testcase( eOp & WO_IS );
2539             testcase( eOp & WO_ISNULL );
2540             rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut);
2541           }else{
2542             rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut);
2543           }
2544           if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
2545           if( rc!=SQLITE_OK ) break;          /* Jump out of the pTerm loop */
2546           if( nOut ){
2547             pNew->nOut = sqlite3LogEst(nOut);
2548             if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut;
2549             pNew->nOut -= nIn;
2550           }
2551         }
2552         if( nOut==0 )
2553 #endif
2554         {
2555           pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]);
2556           if( eOp & WO_ISNULL ){
2557             /* TUNING: If there is no likelihood() value, assume that a
2558             ** "col IS NULL" expression matches twice as many rows
2559             ** as (col=?). */
2560             pNew->nOut += 10;
2561           }
2562         }
2563       }
2564     }
2565 
2566     /* Set rCostIdx to the cost of visiting selected rows in index. Add
2567     ** it to pNew->rRun, which is currently set to the cost of the index
2568     ** seek only. Then, if this is a non-covering index, add the cost of
2569     ** visiting the rows in the main table.  */
2570     rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow;
2571     pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx);
2572     if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){
2573       pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16);
2574     }
2575     ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult);
2576 
2577     nOutUnadjusted = pNew->nOut;
2578     pNew->rRun += nInMul + nIn;
2579     pNew->nOut += nInMul + nIn;
2580     whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize);
2581     rc = whereLoopInsert(pBuilder, pNew);
2582 
2583     if( pNew->wsFlags & WHERE_COLUMN_RANGE ){
2584       pNew->nOut = saved_nOut;
2585     }else{
2586       pNew->nOut = nOutUnadjusted;
2587     }
2588 
2589     if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0
2590      && pNew->u.btree.nEq<pProbe->nColumn
2591     ){
2592       whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn);
2593     }
2594     pNew->nOut = saved_nOut;
2595 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2596     pBuilder->nRecValid = nRecValid;
2597 #endif
2598   }
2599   pNew->prereq = saved_prereq;
2600   pNew->u.btree.nEq = saved_nEq;
2601   pNew->u.btree.nBtm = saved_nBtm;
2602   pNew->u.btree.nTop = saved_nTop;
2603   pNew->nSkip = saved_nSkip;
2604   pNew->wsFlags = saved_wsFlags;
2605   pNew->nOut = saved_nOut;
2606   pNew->nLTerm = saved_nLTerm;
2607 
2608   /* Consider using a skip-scan if there are no WHERE clause constraints
2609   ** available for the left-most terms of the index, and if the average
2610   ** number of repeats in the left-most terms is at least 18.
2611   **
2612   ** The magic number 18 is selected on the basis that scanning 17 rows
2613   ** is almost always quicker than an index seek (even though if the index
2614   ** contains fewer than 2^17 rows we assume otherwise in other parts of
2615   ** the code). And, even if it is not, it should not be too much slower.
2616   ** On the other hand, the extra seeks could end up being significantly
2617   ** more expensive.  */
2618   assert( 42==sqlite3LogEst(18) );
2619   if( saved_nEq==saved_nSkip
2620    && saved_nEq+1<pProbe->nKeyCol
2621    && pProbe->noSkipScan==0
2622    && pProbe->aiRowLogEst[saved_nEq+1]>=42  /* TUNING: Minimum for skip-scan */
2623    && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK
2624   ){
2625     LogEst nIter;
2626     pNew->u.btree.nEq++;
2627     pNew->nSkip++;
2628     pNew->aLTerm[pNew->nLTerm++] = 0;
2629     pNew->wsFlags |= WHERE_SKIPSCAN;
2630     nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1];
2631     pNew->nOut -= nIter;
2632     /* TUNING:  Because uncertainties in the estimates for skip-scan queries,
2633     ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
2634     nIter += 5;
2635     whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul);
2636     pNew->nOut = saved_nOut;
2637     pNew->u.btree.nEq = saved_nEq;
2638     pNew->nSkip = saved_nSkip;
2639     pNew->wsFlags = saved_wsFlags;
2640   }
2641 
2642   WHERETRACE(0x800, ("END addBtreeIdx(%s), nEq=%d, rc=%d\n",
2643                       pProbe->zName, saved_nEq, rc));
2644   return rc;
2645 }
2646 
2647 /*
2648 ** Return True if it is possible that pIndex might be useful in
2649 ** implementing the ORDER BY clause in pBuilder.
2650 **
2651 ** Return False if pBuilder does not contain an ORDER BY clause or
2652 ** if there is no way for pIndex to be useful in implementing that
2653 ** ORDER BY clause.
2654 */
2655 static int indexMightHelpWithOrderBy(
2656   WhereLoopBuilder *pBuilder,
2657   Index *pIndex,
2658   int iCursor
2659 ){
2660   ExprList *pOB;
2661   ExprList *aColExpr;
2662   int ii, jj;
2663 
2664   if( pIndex->bUnordered ) return 0;
2665   if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0;
2666   for(ii=0; ii<pOB->nExpr; ii++){
2667     Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr);
2668     if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){
2669       if( pExpr->iColumn<0 ) return 1;
2670       for(jj=0; jj<pIndex->nKeyCol; jj++){
2671         if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1;
2672       }
2673     }else if( (aColExpr = pIndex->aColExpr)!=0 ){
2674       for(jj=0; jj<pIndex->nKeyCol; jj++){
2675         if( pIndex->aiColumn[jj]!=XN_EXPR ) continue;
2676         if( sqlite3ExprCompareSkip(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){
2677           return 1;
2678         }
2679       }
2680     }
2681   }
2682   return 0;
2683 }
2684 
2685 /*
2686 ** Return a bitmask where 1s indicate that the corresponding column of
2687 ** the table is used by an index.  Only the first 63 columns are considered.
2688 */
2689 static Bitmask columnsInIndex(Index *pIdx){
2690   Bitmask m = 0;
2691   int j;
2692   for(j=pIdx->nColumn-1; j>=0; j--){
2693     int x = pIdx->aiColumn[j];
2694     if( x>=0 ){
2695       testcase( x==BMS-1 );
2696       testcase( x==BMS-2 );
2697       if( x<BMS-1 ) m |= MASKBIT(x);
2698     }
2699   }
2700   return m;
2701 }
2702 
2703 /* Check to see if a partial index with pPartIndexWhere can be used
2704 ** in the current query.  Return true if it can be and false if not.
2705 */
2706 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){
2707   int i;
2708   WhereTerm *pTerm;
2709   Parse *pParse = pWC->pWInfo->pParse;
2710   while( pWhere->op==TK_AND ){
2711     if( !whereUsablePartialIndex(iTab,pWC,pWhere->pLeft) ) return 0;
2712     pWhere = pWhere->pRight;
2713   }
2714   if( pParse->db->flags & SQLITE_EnableQPSG ) pParse = 0;
2715   for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
2716     Expr *pExpr = pTerm->pExpr;
2717     if( (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab)
2718      && sqlite3ExprImpliesExpr(pParse, pExpr, pWhere, iTab)
2719     ){
2720       return 1;
2721     }
2722   }
2723   return 0;
2724 }
2725 
2726 /*
2727 ** Add all WhereLoop objects for a single table of the join where the table
2728 ** is identified by pBuilder->pNew->iTab.  That table is guaranteed to be
2729 ** a b-tree table, not a virtual table.
2730 **
2731 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
2732 ** are calculated as follows:
2733 **
2734 ** For a full scan, assuming the table (or index) contains nRow rows:
2735 **
2736 **     cost = nRow * 3.0                    // full-table scan
2737 **     cost = nRow * K                      // scan of covering index
2738 **     cost = nRow * (K+3.0)                // scan of non-covering index
2739 **
2740 ** where K is a value between 1.1 and 3.0 set based on the relative
2741 ** estimated average size of the index and table records.
2742 **
2743 ** For an index scan, where nVisit is the number of index rows visited
2744 ** by the scan, and nSeek is the number of seek operations required on
2745 ** the index b-tree:
2746 **
2747 **     cost = nSeek * (log(nRow) + K * nVisit)          // covering index
2748 **     cost = nSeek * (log(nRow) + (K+3.0) * nVisit)    // non-covering index
2749 **
2750 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
2751 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
2752 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
2753 **
2754 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
2755 ** of uncertainty.  For this reason, scoring is designed to pick plans that
2756 ** "do the least harm" if the estimates are inaccurate.  For example, a
2757 ** log(nRow) factor is omitted from a non-covering index scan in order to
2758 ** bias the scoring in favor of using an index, since the worst-case
2759 ** performance of using an index is far better than the worst-case performance
2760 ** of a full table scan.
2761 */
2762 static int whereLoopAddBtree(
2763   WhereLoopBuilder *pBuilder, /* WHERE clause information */
2764   Bitmask mPrereq             /* Extra prerequesites for using this table */
2765 ){
2766   WhereInfo *pWInfo;          /* WHERE analysis context */
2767   Index *pProbe;              /* An index we are evaluating */
2768   Index sPk;                  /* A fake index object for the primary key */
2769   LogEst aiRowEstPk[2];       /* The aiRowLogEst[] value for the sPk index */
2770   i16 aiColumnPk = -1;        /* The aColumn[] value for the sPk index */
2771   SrcList *pTabList;          /* The FROM clause */
2772   struct SrcList_item *pSrc;  /* The FROM clause btree term to add */
2773   WhereLoop *pNew;            /* Template WhereLoop object */
2774   int rc = SQLITE_OK;         /* Return code */
2775   int iSortIdx = 1;           /* Index number */
2776   int b;                      /* A boolean value */
2777   LogEst rSize;               /* number of rows in the table */
2778   LogEst rLogSize;            /* Logarithm of the number of rows in the table */
2779   WhereClause *pWC;           /* The parsed WHERE clause */
2780   Table *pTab;                /* Table being queried */
2781 
2782   pNew = pBuilder->pNew;
2783   pWInfo = pBuilder->pWInfo;
2784   pTabList = pWInfo->pTabList;
2785   pSrc = pTabList->a + pNew->iTab;
2786   pTab = pSrc->pTab;
2787   pWC = pBuilder->pWC;
2788   assert( !IsVirtual(pSrc->pTab) );
2789 
2790   if( pSrc->pIBIndex ){
2791     /* An INDEXED BY clause specifies a particular index to use */
2792     pProbe = pSrc->pIBIndex;
2793   }else if( !HasRowid(pTab) ){
2794     pProbe = pTab->pIndex;
2795   }else{
2796     /* There is no INDEXED BY clause.  Create a fake Index object in local
2797     ** variable sPk to represent the rowid primary key index.  Make this
2798     ** fake index the first in a chain of Index objects with all of the real
2799     ** indices to follow */
2800     Index *pFirst;                  /* First of real indices on the table */
2801     memset(&sPk, 0, sizeof(Index));
2802     sPk.nKeyCol = 1;
2803     sPk.nColumn = 1;
2804     sPk.aiColumn = &aiColumnPk;
2805     sPk.aiRowLogEst = aiRowEstPk;
2806     sPk.onError = OE_Replace;
2807     sPk.pTable = pTab;
2808     sPk.szIdxRow = pTab->szTabRow;
2809     aiRowEstPk[0] = pTab->nRowLogEst;
2810     aiRowEstPk[1] = 0;
2811     pFirst = pSrc->pTab->pIndex;
2812     if( pSrc->fg.notIndexed==0 ){
2813       /* The real indices of the table are only considered if the
2814       ** NOT INDEXED qualifier is omitted from the FROM clause */
2815       sPk.pNext = pFirst;
2816     }
2817     pProbe = &sPk;
2818   }
2819   rSize = pTab->nRowLogEst;
2820   rLogSize = estLog(rSize);
2821 
2822 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
2823   /* Automatic indexes */
2824   if( !pBuilder->pOrSet      /* Not part of an OR optimization */
2825    && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0
2826    && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0
2827    && pSrc->pIBIndex==0      /* Has no INDEXED BY clause */
2828    && !pSrc->fg.notIndexed   /* Has no NOT INDEXED clause */
2829    && HasRowid(pTab)         /* Not WITHOUT ROWID table. (FIXME: Why not?) */
2830    && !pSrc->fg.isCorrelated /* Not a correlated subquery */
2831    && !pSrc->fg.isRecursive  /* Not a recursive common table expression. */
2832   ){
2833     /* Generate auto-index WhereLoops */
2834     WhereTerm *pTerm;
2835     WhereTerm *pWCEnd = pWC->a + pWC->nTerm;
2836     for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){
2837       if( pTerm->prereqRight & pNew->maskSelf ) continue;
2838       if( termCanDriveIndex(pTerm, pSrc, 0) ){
2839         pNew->u.btree.nEq = 1;
2840         pNew->nSkip = 0;
2841         pNew->u.btree.pIndex = 0;
2842         pNew->nLTerm = 1;
2843         pNew->aLTerm[0] = pTerm;
2844         /* TUNING: One-time cost for computing the automatic index is
2845         ** estimated to be X*N*log2(N) where N is the number of rows in
2846         ** the table being indexed and where X is 7 (LogEst=28) for normal
2847         ** tables or 1.375 (LogEst=4) for views and subqueries.  The value
2848         ** of X is smaller for views and subqueries so that the query planner
2849         ** will be more aggressive about generating automatic indexes for
2850         ** those objects, since there is no opportunity to add schema
2851         ** indexes on subqueries and views. */
2852         pNew->rSetup = rLogSize + rSize + 4;
2853         if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){
2854           pNew->rSetup += 24;
2855         }
2856         ApplyCostMultiplier(pNew->rSetup, pTab->costMult);
2857         if( pNew->rSetup<0 ) pNew->rSetup = 0;
2858         /* TUNING: Each index lookup yields 20 rows in the table.  This
2859         ** is more than the usual guess of 10 rows, since we have no way
2860         ** of knowing how selective the index will ultimately be.  It would
2861         ** not be unreasonable to make this value much larger. */
2862         pNew->nOut = 43;  assert( 43==sqlite3LogEst(20) );
2863         pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut);
2864         pNew->wsFlags = WHERE_AUTO_INDEX;
2865         pNew->prereq = mPrereq | pTerm->prereqRight;
2866         rc = whereLoopInsert(pBuilder, pNew);
2867       }
2868     }
2869   }
2870 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
2871 
2872   /* Loop over all indices. If there was an INDEXED BY clause, then only
2873   ** consider index pProbe.  */
2874   for(; rc==SQLITE_OK && pProbe;
2875       pProbe=(pSrc->pIBIndex ? 0 : pProbe->pNext), iSortIdx++
2876   ){
2877     if( pProbe->pPartIdxWhere!=0
2878      && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){
2879       testcase( pNew->iTab!=pSrc->iCursor );  /* See ticket [98d973b8f5] */
2880       continue;  /* Partial index inappropriate for this query */
2881     }
2882     rSize = pProbe->aiRowLogEst[0];
2883     pNew->u.btree.nEq = 0;
2884     pNew->u.btree.nBtm = 0;
2885     pNew->u.btree.nTop = 0;
2886     pNew->nSkip = 0;
2887     pNew->nLTerm = 0;
2888     pNew->iSortIdx = 0;
2889     pNew->rSetup = 0;
2890     pNew->prereq = mPrereq;
2891     pNew->nOut = rSize;
2892     pNew->u.btree.pIndex = pProbe;
2893     b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor);
2894     /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
2895     assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 );
2896     if( pProbe->tnum<=0 ){
2897       /* Integer primary key index */
2898       pNew->wsFlags = WHERE_IPK;
2899 
2900       /* Full table scan */
2901       pNew->iSortIdx = b ? iSortIdx : 0;
2902       /* TUNING: Cost of full table scan is (N*3.0). */
2903       pNew->rRun = rSize + 16;
2904       ApplyCostMultiplier(pNew->rRun, pTab->costMult);
2905       whereLoopOutputAdjust(pWC, pNew, rSize);
2906       rc = whereLoopInsert(pBuilder, pNew);
2907       pNew->nOut = rSize;
2908       if( rc ) break;
2909     }else{
2910       Bitmask m;
2911       if( pProbe->isCovering ){
2912         pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED;
2913         m = 0;
2914       }else{
2915         m = pSrc->colUsed & ~columnsInIndex(pProbe);
2916         pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED;
2917       }
2918 
2919       /* Full scan via index */
2920       if( b
2921        || !HasRowid(pTab)
2922        || pProbe->pPartIdxWhere!=0
2923        || ( m==0
2924          && pProbe->bUnordered==0
2925          && (pProbe->szIdxRow<pTab->szTabRow)
2926          && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0
2927          && sqlite3GlobalConfig.bUseCis
2928          && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan)
2929           )
2930       ){
2931         pNew->iSortIdx = b ? iSortIdx : 0;
2932 
2933         /* The cost of visiting the index rows is N*K, where K is
2934         ** between 1.1 and 3.0, depending on the relative sizes of the
2935         ** index and table rows. */
2936         pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow;
2937         if( m!=0 ){
2938           /* If this is a non-covering index scan, add in the cost of
2939           ** doing table lookups.  The cost will be 3x the number of
2940           ** lookups.  Take into account WHERE clause terms that can be
2941           ** satisfied using just the index, and that do not require a
2942           ** table lookup. */
2943           LogEst nLookup = rSize + 16;  /* Base cost:  N*3 */
2944           int ii;
2945           int iCur = pSrc->iCursor;
2946           WhereClause *pWC2 = &pWInfo->sWC;
2947           for(ii=0; ii<pWC2->nTerm; ii++){
2948             WhereTerm *pTerm = &pWC2->a[ii];
2949             if( !sqlite3ExprCoveredByIndex(pTerm->pExpr, iCur, pProbe) ){
2950               break;
2951             }
2952             /* pTerm can be evaluated using just the index.  So reduce
2953             ** the expected number of table lookups accordingly */
2954             if( pTerm->truthProb<=0 ){
2955               nLookup += pTerm->truthProb;
2956             }else{
2957               nLookup--;
2958               if( pTerm->eOperator & (WO_EQ|WO_IS) ) nLookup -= 19;
2959             }
2960           }
2961 
2962           pNew->rRun = sqlite3LogEstAdd(pNew->rRun, nLookup);
2963         }
2964         ApplyCostMultiplier(pNew->rRun, pTab->costMult);
2965         whereLoopOutputAdjust(pWC, pNew, rSize);
2966         rc = whereLoopInsert(pBuilder, pNew);
2967         pNew->nOut = rSize;
2968         if( rc ) break;
2969       }
2970     }
2971 
2972     pBuilder->bldFlags = 0;
2973     rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0);
2974     if( pBuilder->bldFlags==SQLITE_BLDF_INDEXED ){
2975       /* If a non-unique index is used, or if a prefix of the key for
2976       ** unique index is used (making the index functionally non-unique)
2977       ** then the sqlite_stat1 data becomes important for scoring the
2978       ** plan */
2979       pTab->tabFlags |= TF_StatsUsed;
2980     }
2981 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
2982     sqlite3Stat4ProbeFree(pBuilder->pRec);
2983     pBuilder->nRecValid = 0;
2984     pBuilder->pRec = 0;
2985 #endif
2986   }
2987   return rc;
2988 }
2989 
2990 #ifndef SQLITE_OMIT_VIRTUALTABLE
2991 
2992 /*
2993 ** Argument pIdxInfo is already populated with all constraints that may
2994 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
2995 ** function marks a subset of those constraints usable, invokes the
2996 ** xBestIndex method and adds the returned plan to pBuilder.
2997 **
2998 ** A constraint is marked usable if:
2999 **
3000 **   * Argument mUsable indicates that its prerequisites are available, and
3001 **
3002 **   * It is not one of the operators specified in the mExclude mask passed
3003 **     as the fourth argument (which in practice is either WO_IN or 0).
3004 **
3005 ** Argument mPrereq is a mask of tables that must be scanned before the
3006 ** virtual table in question. These are added to the plans prerequisites
3007 ** before it is added to pBuilder.
3008 **
3009 ** Output parameter *pbIn is set to true if the plan added to pBuilder
3010 ** uses one or more WO_IN terms, or false otherwise.
3011 */
3012 static int whereLoopAddVirtualOne(
3013   WhereLoopBuilder *pBuilder,
3014   Bitmask mPrereq,                /* Mask of tables that must be used. */
3015   Bitmask mUsable,                /* Mask of usable tables */
3016   u16 mExclude,                   /* Exclude terms using these operators */
3017   sqlite3_index_info *pIdxInfo,   /* Populated object for xBestIndex */
3018   u16 mNoOmit,                    /* Do not omit these constraints */
3019   int *pbIn                       /* OUT: True if plan uses an IN(...) op */
3020 ){
3021   WhereClause *pWC = pBuilder->pWC;
3022   struct sqlite3_index_constraint *pIdxCons;
3023   struct sqlite3_index_constraint_usage *pUsage = pIdxInfo->aConstraintUsage;
3024   int i;
3025   int mxTerm;
3026   int rc = SQLITE_OK;
3027   WhereLoop *pNew = pBuilder->pNew;
3028   Parse *pParse = pBuilder->pWInfo->pParse;
3029   struct SrcList_item *pSrc = &pBuilder->pWInfo->pTabList->a[pNew->iTab];
3030   int nConstraint = pIdxInfo->nConstraint;
3031 
3032   assert( (mUsable & mPrereq)==mPrereq );
3033   *pbIn = 0;
3034   pNew->prereq = mPrereq;
3035 
3036   /* Set the usable flag on the subset of constraints identified by
3037   ** arguments mUsable and mExclude. */
3038   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3039   for(i=0; i<nConstraint; i++, pIdxCons++){
3040     WhereTerm *pTerm = &pWC->a[pIdxCons->iTermOffset];
3041     pIdxCons->usable = 0;
3042     if( (pTerm->prereqRight & mUsable)==pTerm->prereqRight
3043      && (pTerm->eOperator & mExclude)==0
3044     ){
3045       pIdxCons->usable = 1;
3046     }
3047   }
3048 
3049   /* Initialize the output fields of the sqlite3_index_info structure */
3050   memset(pUsage, 0, sizeof(pUsage[0])*nConstraint);
3051   assert( pIdxInfo->needToFreeIdxStr==0 );
3052   pIdxInfo->idxStr = 0;
3053   pIdxInfo->idxNum = 0;
3054   pIdxInfo->orderByConsumed = 0;
3055   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2;
3056   pIdxInfo->estimatedRows = 25;
3057   pIdxInfo->idxFlags = 0;
3058   pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed;
3059 
3060   /* Invoke the virtual table xBestIndex() method */
3061   rc = vtabBestIndex(pParse, pSrc->pTab, pIdxInfo);
3062   if( rc ) return rc;
3063 
3064   mxTerm = -1;
3065   assert( pNew->nLSlot>=nConstraint );
3066   for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0;
3067   pNew->u.vtab.omitMask = 0;
3068   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
3069   for(i=0; i<nConstraint; i++, pIdxCons++){
3070     int iTerm;
3071     if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){
3072       WhereTerm *pTerm;
3073       int j = pIdxCons->iTermOffset;
3074       if( iTerm>=nConstraint
3075        || j<0
3076        || j>=pWC->nTerm
3077        || pNew->aLTerm[iTerm]!=0
3078        || pIdxCons->usable==0
3079       ){
3080         rc = SQLITE_ERROR;
3081         sqlite3ErrorMsg(pParse,"%s.xBestIndex malfunction",pSrc->pTab->zName);
3082         return rc;
3083       }
3084       testcase( iTerm==nConstraint-1 );
3085       testcase( j==0 );
3086       testcase( j==pWC->nTerm-1 );
3087       pTerm = &pWC->a[j];
3088       pNew->prereq |= pTerm->prereqRight;
3089       assert( iTerm<pNew->nLSlot );
3090       pNew->aLTerm[iTerm] = pTerm;
3091       if( iTerm>mxTerm ) mxTerm = iTerm;
3092       testcase( iTerm==15 );
3093       testcase( iTerm==16 );
3094       if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm;
3095       if( (pTerm->eOperator & WO_IN)!=0 ){
3096         /* A virtual table that is constrained by an IN clause may not
3097         ** consume the ORDER BY clause because (1) the order of IN terms
3098         ** is not necessarily related to the order of output terms and
3099         ** (2) Multiple outputs from a single IN value will not merge
3100         ** together.  */
3101         pIdxInfo->orderByConsumed = 0;
3102         pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE;
3103         *pbIn = 1; assert( (mExclude & WO_IN)==0 );
3104       }
3105     }
3106   }
3107   pNew->u.vtab.omitMask &= ~mNoOmit;
3108 
3109   pNew->nLTerm = mxTerm+1;
3110   assert( pNew->nLTerm<=pNew->nLSlot );
3111   pNew->u.vtab.idxNum = pIdxInfo->idxNum;
3112   pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr;
3113   pIdxInfo->needToFreeIdxStr = 0;
3114   pNew->u.vtab.idxStr = pIdxInfo->idxStr;
3115   pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ?
3116       pIdxInfo->nOrderBy : 0);
3117   pNew->rSetup = 0;
3118   pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost);
3119   pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows);
3120 
3121   /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
3122   ** that the scan will visit at most one row. Clear it otherwise. */
3123   if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){
3124     pNew->wsFlags |= WHERE_ONEROW;
3125   }else{
3126     pNew->wsFlags &= ~WHERE_ONEROW;
3127   }
3128   rc = whereLoopInsert(pBuilder, pNew);
3129   if( pNew->u.vtab.needFree ){
3130     sqlite3_free(pNew->u.vtab.idxStr);
3131     pNew->u.vtab.needFree = 0;
3132   }
3133   WHERETRACE(0xffff, ("  bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
3134                       *pbIn, (sqlite3_uint64)mPrereq,
3135                       (sqlite3_uint64)(pNew->prereq & ~mPrereq)));
3136 
3137   return rc;
3138 }
3139 
3140 
3141 /*
3142 ** Add all WhereLoop objects for a table of the join identified by
3143 ** pBuilder->pNew->iTab.  That table is guaranteed to be a virtual table.
3144 **
3145 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
3146 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
3147 ** entries that occur before the virtual table in the FROM clause and are
3148 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
3149 ** mUnusable mask contains all FROM clause entries that occur after the
3150 ** virtual table and are separated from it by at least one LEFT or
3151 ** CROSS JOIN.
3152 **
3153 ** For example, if the query were:
3154 **
3155 **   ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
3156 **
3157 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
3158 **
3159 ** All the tables in mPrereq must be scanned before the current virtual
3160 ** table. So any terms for which all prerequisites are satisfied by
3161 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
3162 ** Conversely, all tables in mUnusable must be scanned after the current
3163 ** virtual table, so any terms for which the prerequisites overlap with
3164 ** mUnusable should always be configured as "not-usable" for xBestIndex.
3165 */
3166 static int whereLoopAddVirtual(
3167   WhereLoopBuilder *pBuilder,  /* WHERE clause information */
3168   Bitmask mPrereq,             /* Tables that must be scanned before this one */
3169   Bitmask mUnusable            /* Tables that must be scanned after this one */
3170 ){
3171   int rc = SQLITE_OK;          /* Return code */
3172   WhereInfo *pWInfo;           /* WHERE analysis context */
3173   Parse *pParse;               /* The parsing context */
3174   WhereClause *pWC;            /* The WHERE clause */
3175   struct SrcList_item *pSrc;   /* The FROM clause term to search */
3176   sqlite3_index_info *p;       /* Object to pass to xBestIndex() */
3177   int nConstraint;             /* Number of constraints in p */
3178   int bIn;                     /* True if plan uses IN(...) operator */
3179   WhereLoop *pNew;
3180   Bitmask mBest;               /* Tables used by best possible plan */
3181   u16 mNoOmit;
3182 
3183   assert( (mPrereq & mUnusable)==0 );
3184   pWInfo = pBuilder->pWInfo;
3185   pParse = pWInfo->pParse;
3186   pWC = pBuilder->pWC;
3187   pNew = pBuilder->pNew;
3188   pSrc = &pWInfo->pTabList->a[pNew->iTab];
3189   assert( IsVirtual(pSrc->pTab) );
3190   p = allocateIndexInfo(pParse, pWC, mUnusable, pSrc, pBuilder->pOrderBy,
3191       &mNoOmit);
3192   if( p==0 ) return SQLITE_NOMEM_BKPT;
3193   pNew->rSetup = 0;
3194   pNew->wsFlags = WHERE_VIRTUALTABLE;
3195   pNew->nLTerm = 0;
3196   pNew->u.vtab.needFree = 0;
3197   nConstraint = p->nConstraint;
3198   if( whereLoopResize(pParse->db, pNew, nConstraint) ){
3199     sqlite3DbFree(pParse->db, p);
3200     return SQLITE_NOMEM_BKPT;
3201   }
3202 
3203   /* First call xBestIndex() with all constraints usable. */
3204   WHERETRACE(0x40, ("  VirtualOne: all usable\n"));
3205   rc = whereLoopAddVirtualOne(pBuilder, mPrereq, ALLBITS, 0, p, mNoOmit, &bIn);
3206 
3207   /* If the call to xBestIndex() with all terms enabled produced a plan
3208   ** that does not require any source tables (IOW: a plan with mBest==0),
3209   ** then there is no point in making any further calls to xBestIndex()
3210   ** since they will all return the same result (if the xBestIndex()
3211   ** implementation is sane). */
3212   if( rc==SQLITE_OK && (mBest = (pNew->prereq & ~mPrereq))!=0 ){
3213     int seenZero = 0;             /* True if a plan with no prereqs seen */
3214     int seenZeroNoIN = 0;         /* Plan with no prereqs and no IN(...) seen */
3215     Bitmask mPrev = 0;
3216     Bitmask mBestNoIn = 0;
3217 
3218     /* If the plan produced by the earlier call uses an IN(...) term, call
3219     ** xBestIndex again, this time with IN(...) terms disabled. */
3220     if( bIn ){
3221       WHERETRACE(0x40, ("  VirtualOne: all usable w/o IN\n"));
3222       rc = whereLoopAddVirtualOne(
3223           pBuilder, mPrereq, ALLBITS, WO_IN, p, mNoOmit, &bIn);
3224       assert( bIn==0 );
3225       mBestNoIn = pNew->prereq & ~mPrereq;
3226       if( mBestNoIn==0 ){
3227         seenZero = 1;
3228         seenZeroNoIN = 1;
3229       }
3230     }
3231 
3232     /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
3233     ** in the set of terms that apply to the current virtual table.  */
3234     while( rc==SQLITE_OK ){
3235       int i;
3236       Bitmask mNext = ALLBITS;
3237       assert( mNext>0 );
3238       for(i=0; i<nConstraint; i++){
3239         Bitmask mThis = (
3240             pWC->a[p->aConstraint[i].iTermOffset].prereqRight & ~mPrereq
3241         );
3242         if( mThis>mPrev && mThis<mNext ) mNext = mThis;
3243       }
3244       mPrev = mNext;
3245       if( mNext==ALLBITS ) break;
3246       if( mNext==mBest || mNext==mBestNoIn ) continue;
3247       WHERETRACE(0x40, ("  VirtualOne: mPrev=%04llx mNext=%04llx\n",
3248                        (sqlite3_uint64)mPrev, (sqlite3_uint64)mNext));
3249       rc = whereLoopAddVirtualOne(
3250           pBuilder, mPrereq, mNext|mPrereq, 0, p, mNoOmit, &bIn);
3251       if( pNew->prereq==mPrereq ){
3252         seenZero = 1;
3253         if( bIn==0 ) seenZeroNoIN = 1;
3254       }
3255     }
3256 
3257     /* If the calls to xBestIndex() in the above loop did not find a plan
3258     ** that requires no source tables at all (i.e. one guaranteed to be
3259     ** usable), make a call here with all source tables disabled */
3260     if( rc==SQLITE_OK && seenZero==0 ){
3261       WHERETRACE(0x40, ("  VirtualOne: all disabled\n"));
3262       rc = whereLoopAddVirtualOne(
3263           pBuilder, mPrereq, mPrereq, 0, p, mNoOmit, &bIn);
3264       if( bIn==0 ) seenZeroNoIN = 1;
3265     }
3266 
3267     /* If the calls to xBestIndex() have so far failed to find a plan
3268     ** that requires no source tables at all and does not use an IN(...)
3269     ** operator, make a final call to obtain one here.  */
3270     if( rc==SQLITE_OK && seenZeroNoIN==0 ){
3271       WHERETRACE(0x40, ("  VirtualOne: all disabled and w/o IN\n"));
3272       rc = whereLoopAddVirtualOne(
3273           pBuilder, mPrereq, mPrereq, WO_IN, p, mNoOmit, &bIn);
3274     }
3275   }
3276 
3277   if( p->needToFreeIdxStr ) sqlite3_free(p->idxStr);
3278   sqlite3DbFreeNN(pParse->db, p);
3279   return rc;
3280 }
3281 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3282 
3283 /*
3284 ** Add WhereLoop entries to handle OR terms.  This works for either
3285 ** btrees or virtual tables.
3286 */
3287 static int whereLoopAddOr(
3288   WhereLoopBuilder *pBuilder,
3289   Bitmask mPrereq,
3290   Bitmask mUnusable
3291 ){
3292   WhereInfo *pWInfo = pBuilder->pWInfo;
3293   WhereClause *pWC;
3294   WhereLoop *pNew;
3295   WhereTerm *pTerm, *pWCEnd;
3296   int rc = SQLITE_OK;
3297   int iCur;
3298   WhereClause tempWC;
3299   WhereLoopBuilder sSubBuild;
3300   WhereOrSet sSum, sCur;
3301   struct SrcList_item *pItem;
3302 
3303   pWC = pBuilder->pWC;
3304   pWCEnd = pWC->a + pWC->nTerm;
3305   pNew = pBuilder->pNew;
3306   memset(&sSum, 0, sizeof(sSum));
3307   pItem = pWInfo->pTabList->a + pNew->iTab;
3308   iCur = pItem->iCursor;
3309 
3310   for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){
3311     if( (pTerm->eOperator & WO_OR)!=0
3312      && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0
3313     ){
3314       WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc;
3315       WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm];
3316       WhereTerm *pOrTerm;
3317       int once = 1;
3318       int i, j;
3319 
3320       sSubBuild = *pBuilder;
3321       sSubBuild.pOrderBy = 0;
3322       sSubBuild.pOrSet = &sCur;
3323 
3324       WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm));
3325       for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){
3326         if( (pOrTerm->eOperator & WO_AND)!=0 ){
3327           sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc;
3328         }else if( pOrTerm->leftCursor==iCur ){
3329           tempWC.pWInfo = pWC->pWInfo;
3330           tempWC.pOuter = pWC;
3331           tempWC.op = TK_AND;
3332           tempWC.nTerm = 1;
3333           tempWC.a = pOrTerm;
3334           sSubBuild.pWC = &tempWC;
3335         }else{
3336           continue;
3337         }
3338         sCur.n = 0;
3339 #ifdef WHERETRACE_ENABLED
3340         WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n",
3341                    (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm));
3342         if( sqlite3WhereTrace & 0x400 ){
3343           sqlite3WhereClausePrint(sSubBuild.pWC);
3344         }
3345 #endif
3346 #ifndef SQLITE_OMIT_VIRTUALTABLE
3347         if( IsVirtual(pItem->pTab) ){
3348           rc = whereLoopAddVirtual(&sSubBuild, mPrereq, mUnusable);
3349         }else
3350 #endif
3351         {
3352           rc = whereLoopAddBtree(&sSubBuild, mPrereq);
3353         }
3354         if( rc==SQLITE_OK ){
3355           rc = whereLoopAddOr(&sSubBuild, mPrereq, mUnusable);
3356         }
3357         assert( rc==SQLITE_OK || sCur.n==0 );
3358         if( sCur.n==0 ){
3359           sSum.n = 0;
3360           break;
3361         }else if( once ){
3362           whereOrMove(&sSum, &sCur);
3363           once = 0;
3364         }else{
3365           WhereOrSet sPrev;
3366           whereOrMove(&sPrev, &sSum);
3367           sSum.n = 0;
3368           for(i=0; i<sPrev.n; i++){
3369             for(j=0; j<sCur.n; j++){
3370               whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq,
3371                             sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun),
3372                             sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut));
3373             }
3374           }
3375         }
3376       }
3377       pNew->nLTerm = 1;
3378       pNew->aLTerm[0] = pTerm;
3379       pNew->wsFlags = WHERE_MULTI_OR;
3380       pNew->rSetup = 0;
3381       pNew->iSortIdx = 0;
3382       memset(&pNew->u, 0, sizeof(pNew->u));
3383       for(i=0; rc==SQLITE_OK && i<sSum.n; i++){
3384         /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
3385         ** of all sub-scans required by the OR-scan. However, due to rounding
3386         ** errors, it may be that the cost of the OR-scan is equal to its
3387         ** most expensive sub-scan. Add the smallest possible penalty
3388         ** (equivalent to multiplying the cost by 1.07) to ensure that
3389         ** this does not happen. Otherwise, for WHERE clauses such as the
3390         ** following where there is an index on "y":
3391         **
3392         **     WHERE likelihood(x=?, 0.99) OR y=?
3393         **
3394         ** the planner may elect to "OR" together a full-table scan and an
3395         ** index lookup. And other similarly odd results.  */
3396         pNew->rRun = sSum.a[i].rRun + 1;
3397         pNew->nOut = sSum.a[i].nOut;
3398         pNew->prereq = sSum.a[i].prereq;
3399         rc = whereLoopInsert(pBuilder, pNew);
3400       }
3401       WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm));
3402     }
3403   }
3404   return rc;
3405 }
3406 
3407 /*
3408 ** Add all WhereLoop objects for all tables
3409 */
3410 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){
3411   WhereInfo *pWInfo = pBuilder->pWInfo;
3412   Bitmask mPrereq = 0;
3413   Bitmask mPrior = 0;
3414   int iTab;
3415   SrcList *pTabList = pWInfo->pTabList;
3416   struct SrcList_item *pItem;
3417   struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel];
3418   sqlite3 *db = pWInfo->pParse->db;
3419   int rc = SQLITE_OK;
3420   WhereLoop *pNew;
3421   u8 priorJointype = 0;
3422 
3423   /* Loop over the tables in the join, from left to right */
3424   pNew = pBuilder->pNew;
3425   whereLoopInit(pNew);
3426   for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){
3427     Bitmask mUnusable = 0;
3428     pNew->iTab = iTab;
3429     pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor);
3430     if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){
3431       /* This condition is true when pItem is the FROM clause term on the
3432       ** right-hand-side of a LEFT or CROSS JOIN.  */
3433       mPrereq = mPrior;
3434     }
3435     priorJointype = pItem->fg.jointype;
3436 #ifndef SQLITE_OMIT_VIRTUALTABLE
3437     if( IsVirtual(pItem->pTab) ){
3438       struct SrcList_item *p;
3439       for(p=&pItem[1]; p<pEnd; p++){
3440         if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){
3441           mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor);
3442         }
3443       }
3444       rc = whereLoopAddVirtual(pBuilder, mPrereq, mUnusable);
3445     }else
3446 #endif /* SQLITE_OMIT_VIRTUALTABLE */
3447     {
3448       rc = whereLoopAddBtree(pBuilder, mPrereq);
3449     }
3450     if( rc==SQLITE_OK ){
3451       rc = whereLoopAddOr(pBuilder, mPrereq, mUnusable);
3452     }
3453     mPrior |= pNew->maskSelf;
3454     if( rc || db->mallocFailed ) break;
3455   }
3456 
3457   whereLoopClear(db, pNew);
3458   return rc;
3459 }
3460 
3461 /*
3462 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
3463 ** parameters) to see if it outputs rows in the requested ORDER BY
3464 ** (or GROUP BY) without requiring a separate sort operation.  Return N:
3465 **
3466 **   N>0:   N terms of the ORDER BY clause are satisfied
3467 **   N==0:  No terms of the ORDER BY clause are satisfied
3468 **   N<0:   Unknown yet how many terms of ORDER BY might be satisfied.
3469 **
3470 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
3471 ** strict.  With GROUP BY and DISTINCT the only requirement is that
3472 ** equivalent rows appear immediately adjacent to one another.  GROUP BY
3473 ** and DISTINCT do not require rows to appear in any particular order as long
3474 ** as equivalent rows are grouped together.  Thus for GROUP BY and DISTINCT
3475 ** the pOrderBy terms can be matched in any order.  With ORDER BY, the
3476 ** pOrderBy terms must be matched in strict left-to-right order.
3477 */
3478 static i8 wherePathSatisfiesOrderBy(
3479   WhereInfo *pWInfo,    /* The WHERE clause */
3480   ExprList *pOrderBy,   /* ORDER BY or GROUP BY or DISTINCT clause to check */
3481   WherePath *pPath,     /* The WherePath to check */
3482   u16 wctrlFlags,       /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
3483   u16 nLoop,            /* Number of entries in pPath->aLoop[] */
3484   WhereLoop *pLast,     /* Add this WhereLoop to the end of pPath->aLoop[] */
3485   Bitmask *pRevMask     /* OUT: Mask of WhereLoops to run in reverse order */
3486 ){
3487   u8 revSet;            /* True if rev is known */
3488   u8 rev;               /* Composite sort order */
3489   u8 revIdx;            /* Index sort order */
3490   u8 isOrderDistinct;   /* All prior WhereLoops are order-distinct */
3491   u8 distinctColumns;   /* True if the loop has UNIQUE NOT NULL columns */
3492   u8 isMatch;           /* iColumn matches a term of the ORDER BY clause */
3493   u16 eqOpMask;         /* Allowed equality operators */
3494   u16 nKeyCol;          /* Number of key columns in pIndex */
3495   u16 nColumn;          /* Total number of ordered columns in the index */
3496   u16 nOrderBy;         /* Number terms in the ORDER BY clause */
3497   int iLoop;            /* Index of WhereLoop in pPath being processed */
3498   int i, j;             /* Loop counters */
3499   int iCur;             /* Cursor number for current WhereLoop */
3500   int iColumn;          /* A column number within table iCur */
3501   WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */
3502   WhereTerm *pTerm;     /* A single term of the WHERE clause */
3503   Expr *pOBExpr;        /* An expression from the ORDER BY clause */
3504   CollSeq *pColl;       /* COLLATE function from an ORDER BY clause term */
3505   Index *pIndex;        /* The index associated with pLoop */
3506   sqlite3 *db = pWInfo->pParse->db;  /* Database connection */
3507   Bitmask obSat = 0;    /* Mask of ORDER BY terms satisfied so far */
3508   Bitmask obDone;       /* Mask of all ORDER BY terms */
3509   Bitmask orderDistinctMask;  /* Mask of all well-ordered loops */
3510   Bitmask ready;              /* Mask of inner loops */
3511 
3512   /*
3513   ** We say the WhereLoop is "one-row" if it generates no more than one
3514   ** row of output.  A WhereLoop is one-row if all of the following are true:
3515   **  (a) All index columns match with WHERE_COLUMN_EQ.
3516   **  (b) The index is unique
3517   ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
3518   ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
3519   **
3520   ** We say the WhereLoop is "order-distinct" if the set of columns from
3521   ** that WhereLoop that are in the ORDER BY clause are different for every
3522   ** row of the WhereLoop.  Every one-row WhereLoop is automatically
3523   ** order-distinct.   A WhereLoop that has no columns in the ORDER BY clause
3524   ** is not order-distinct. To be order-distinct is not quite the same as being
3525   ** UNIQUE since a UNIQUE column or index can have multiple rows that
3526   ** are NULL and NULL values are equivalent for the purpose of order-distinct.
3527   ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
3528   **
3529   ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
3530   ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
3531   ** automatically order-distinct.
3532   */
3533 
3534   assert( pOrderBy!=0 );
3535   if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0;
3536 
3537   nOrderBy = pOrderBy->nExpr;
3538   testcase( nOrderBy==BMS-1 );
3539   if( nOrderBy>BMS-1 ) return 0;  /* Cannot optimize overly large ORDER BYs */
3540   isOrderDistinct = 1;
3541   obDone = MASKBIT(nOrderBy)-1;
3542   orderDistinctMask = 0;
3543   ready = 0;
3544   eqOpMask = WO_EQ | WO_IS | WO_ISNULL;
3545   if( wctrlFlags & WHERE_ORDERBY_LIMIT ) eqOpMask |= WO_IN;
3546   for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){
3547     if( iLoop>0 ) ready |= pLoop->maskSelf;
3548     if( iLoop<nLoop ){
3549       pLoop = pPath->aLoop[iLoop];
3550       if( wctrlFlags & WHERE_ORDERBY_LIMIT ) continue;
3551     }else{
3552       pLoop = pLast;
3553     }
3554     if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){
3555       if( pLoop->u.vtab.isOrdered ) obSat = obDone;
3556       break;
3557     }else{
3558       pLoop->u.btree.nIdxCol = 0;
3559     }
3560     iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor;
3561 
3562     /* Mark off any ORDER BY term X that is a column in the table of
3563     ** the current loop for which there is term in the WHERE
3564     ** clause of the form X IS NULL or X=? that reference only outer
3565     ** loops.
3566     */
3567     for(i=0; i<nOrderBy; i++){
3568       if( MASKBIT(i) & obSat ) continue;
3569       pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
3570       if( pOBExpr->op!=TK_COLUMN ) continue;
3571       if( pOBExpr->iTable!=iCur ) continue;
3572       pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn,
3573                        ~ready, eqOpMask, 0);
3574       if( pTerm==0 ) continue;
3575       if( pTerm->eOperator==WO_IN ){
3576         /* IN terms are only valid for sorting in the ORDER BY LIMIT
3577         ** optimization, and then only if they are actually used
3578         ** by the query plan */
3579         assert( wctrlFlags & WHERE_ORDERBY_LIMIT );
3580         for(j=0; j<pLoop->nLTerm && pTerm!=pLoop->aLTerm[j]; j++){}
3581         if( j>=pLoop->nLTerm ) continue;
3582       }
3583       if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){
3584         if( sqlite3ExprCollSeqMatch(pWInfo->pParse,
3585                   pOrderBy->a[i].pExpr, pTerm->pExpr)==0 ){
3586           continue;
3587         }
3588         testcase( pTerm->pExpr->op==TK_IS );
3589       }
3590       obSat |= MASKBIT(i);
3591     }
3592 
3593     if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){
3594       if( pLoop->wsFlags & WHERE_IPK ){
3595         pIndex = 0;
3596         nKeyCol = 0;
3597         nColumn = 1;
3598       }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){
3599         return 0;
3600       }else{
3601         nKeyCol = pIndex->nKeyCol;
3602         nColumn = pIndex->nColumn;
3603         assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) );
3604         assert( pIndex->aiColumn[nColumn-1]==XN_ROWID
3605                           || !HasRowid(pIndex->pTable));
3606         isOrderDistinct = IsUniqueIndex(pIndex);
3607       }
3608 
3609       /* Loop through all columns of the index and deal with the ones
3610       ** that are not constrained by == or IN.
3611       */
3612       rev = revSet = 0;
3613       distinctColumns = 0;
3614       for(j=0; j<nColumn; j++){
3615         u8 bOnce = 1; /* True to run the ORDER BY search loop */
3616 
3617         assert( j>=pLoop->u.btree.nEq
3618             || (pLoop->aLTerm[j]==0)==(j<pLoop->nSkip)
3619         );
3620         if( j<pLoop->u.btree.nEq && j>=pLoop->nSkip ){
3621           u16 eOp = pLoop->aLTerm[j]->eOperator;
3622 
3623           /* Skip over == and IS and ISNULL terms.  (Also skip IN terms when
3624           ** doing WHERE_ORDERBY_LIMIT processing).
3625           **
3626           ** If the current term is a column of an ((?,?) IN (SELECT...))
3627           ** expression for which the SELECT returns more than one column,
3628           ** check that it is the only column used by this loop. Otherwise,
3629           ** if it is one of two or more, none of the columns can be
3630           ** considered to match an ORDER BY term.  */
3631           if( (eOp & eqOpMask)!=0 ){
3632             if( eOp & WO_ISNULL ){
3633               testcase( isOrderDistinct );
3634               isOrderDistinct = 0;
3635             }
3636             continue;
3637           }else if( ALWAYS(eOp & WO_IN) ){
3638             /* ALWAYS() justification: eOp is an equality operator due to the
3639             ** j<pLoop->u.btree.nEq constraint above.  Any equality other
3640             ** than WO_IN is captured by the previous "if".  So this one
3641             ** always has to be WO_IN. */
3642             Expr *pX = pLoop->aLTerm[j]->pExpr;
3643             for(i=j+1; i<pLoop->u.btree.nEq; i++){
3644               if( pLoop->aLTerm[i]->pExpr==pX ){
3645                 assert( (pLoop->aLTerm[i]->eOperator & WO_IN) );
3646                 bOnce = 0;
3647                 break;
3648               }
3649             }
3650           }
3651         }
3652 
3653         /* Get the column number in the table (iColumn) and sort order
3654         ** (revIdx) for the j-th column of the index.
3655         */
3656         if( pIndex ){
3657           iColumn = pIndex->aiColumn[j];
3658           revIdx = pIndex->aSortOrder[j];
3659           if( iColumn==pIndex->pTable->iPKey ) iColumn = XN_ROWID;
3660         }else{
3661           iColumn = XN_ROWID;
3662           revIdx = 0;
3663         }
3664 
3665         /* An unconstrained column that might be NULL means that this
3666         ** WhereLoop is not well-ordered
3667         */
3668         if( isOrderDistinct
3669          && iColumn>=0
3670          && j>=pLoop->u.btree.nEq
3671          && pIndex->pTable->aCol[iColumn].notNull==0
3672         ){
3673           isOrderDistinct = 0;
3674         }
3675 
3676         /* Find the ORDER BY term that corresponds to the j-th column
3677         ** of the index and mark that ORDER BY term off
3678         */
3679         isMatch = 0;
3680         for(i=0; bOnce && i<nOrderBy; i++){
3681           if( MASKBIT(i) & obSat ) continue;
3682           pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr);
3683           testcase( wctrlFlags & WHERE_GROUPBY );
3684           testcase( wctrlFlags & WHERE_DISTINCTBY );
3685           if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0;
3686           if( iColumn>=XN_ROWID ){
3687             if( pOBExpr->op!=TK_COLUMN ) continue;
3688             if( pOBExpr->iTable!=iCur ) continue;
3689             if( pOBExpr->iColumn!=iColumn ) continue;
3690           }else{
3691             Expr *pIdxExpr = pIndex->aColExpr->a[j].pExpr;
3692             if( sqlite3ExprCompareSkip(pOBExpr, pIdxExpr, iCur) ){
3693               continue;
3694             }
3695           }
3696           if( iColumn!=XN_ROWID ){
3697             pColl = sqlite3ExprNNCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr);
3698             if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue;
3699           }
3700           pLoop->u.btree.nIdxCol = j+1;
3701           isMatch = 1;
3702           break;
3703         }
3704         if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){
3705           /* Make sure the sort order is compatible in an ORDER BY clause.
3706           ** Sort order is irrelevant for a GROUP BY clause. */
3707           if( revSet ){
3708             if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0;
3709           }else{
3710             rev = revIdx ^ pOrderBy->a[i].sortOrder;
3711             if( rev ) *pRevMask |= MASKBIT(iLoop);
3712             revSet = 1;
3713           }
3714         }
3715         if( isMatch ){
3716           if( iColumn==XN_ROWID ){
3717             testcase( distinctColumns==0 );
3718             distinctColumns = 1;
3719           }
3720           obSat |= MASKBIT(i);
3721         }else{
3722           /* No match found */
3723           if( j==0 || j<nKeyCol ){
3724             testcase( isOrderDistinct!=0 );
3725             isOrderDistinct = 0;
3726           }
3727           break;
3728         }
3729       } /* end Loop over all index columns */
3730       if( distinctColumns ){
3731         testcase( isOrderDistinct==0 );
3732         isOrderDistinct = 1;
3733       }
3734     } /* end-if not one-row */
3735 
3736     /* Mark off any other ORDER BY terms that reference pLoop */
3737     if( isOrderDistinct ){
3738       orderDistinctMask |= pLoop->maskSelf;
3739       for(i=0; i<nOrderBy; i++){
3740         Expr *p;
3741         Bitmask mTerm;
3742         if( MASKBIT(i) & obSat ) continue;
3743         p = pOrderBy->a[i].pExpr;
3744         mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p);
3745         if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue;
3746         if( (mTerm&~orderDistinctMask)==0 ){
3747           obSat |= MASKBIT(i);
3748         }
3749       }
3750     }
3751   } /* End the loop over all WhereLoops from outer-most down to inner-most */
3752   if( obSat==obDone ) return (i8)nOrderBy;
3753   if( !isOrderDistinct ){
3754     for(i=nOrderBy-1; i>0; i--){
3755       Bitmask m = MASKBIT(i) - 1;
3756       if( (obSat&m)==m ) return i;
3757     }
3758     return 0;
3759   }
3760   return -1;
3761 }
3762 
3763 
3764 /*
3765 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
3766 ** the planner assumes that the specified pOrderBy list is actually a GROUP
3767 ** BY clause - and so any order that groups rows as required satisfies the
3768 ** request.
3769 **
3770 ** Normally, in this case it is not possible for the caller to determine
3771 ** whether or not the rows are really being delivered in sorted order, or
3772 ** just in some other order that provides the required grouping. However,
3773 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
3774 ** this function may be called on the returned WhereInfo object. It returns
3775 ** true if the rows really will be sorted in the specified order, or false
3776 ** otherwise.
3777 **
3778 ** For example, assuming:
3779 **
3780 **   CREATE INDEX i1 ON t1(x, Y);
3781 **
3782 ** then
3783 **
3784 **   SELECT * FROM t1 GROUP BY x,y ORDER BY x,y;   -- IsSorted()==1
3785 **   SELECT * FROM t1 GROUP BY y,x ORDER BY y,x;   -- IsSorted()==0
3786 */
3787 int sqlite3WhereIsSorted(WhereInfo *pWInfo){
3788   assert( pWInfo->wctrlFlags & WHERE_GROUPBY );
3789   assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP );
3790   return pWInfo->sorted;
3791 }
3792 
3793 #ifdef WHERETRACE_ENABLED
3794 /* For debugging use only: */
3795 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){
3796   static char zName[65];
3797   int i;
3798   for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; }
3799   if( pLast ) zName[i++] = pLast->cId;
3800   zName[i] = 0;
3801   return zName;
3802 }
3803 #endif
3804 
3805 /*
3806 ** Return the cost of sorting nRow rows, assuming that the keys have
3807 ** nOrderby columns and that the first nSorted columns are already in
3808 ** order.
3809 */
3810 static LogEst whereSortingCost(
3811   WhereInfo *pWInfo,
3812   LogEst nRow,
3813   int nOrderBy,
3814   int nSorted
3815 ){
3816   /* TUNING: Estimated cost of a full external sort, where N is
3817   ** the number of rows to sort is:
3818   **
3819   **   cost = (3.0 * N * log(N)).
3820   **
3821   ** Or, if the order-by clause has X terms but only the last Y
3822   ** terms are out of order, then block-sorting will reduce the
3823   ** sorting cost to:
3824   **
3825   **   cost = (3.0 * N * log(N)) * (Y/X)
3826   **
3827   ** The (Y/X) term is implemented using stack variable rScale
3828   ** below.  */
3829   LogEst rScale, rSortCost;
3830   assert( nOrderBy>0 && 66==sqlite3LogEst(100) );
3831   rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66;
3832   rSortCost = nRow + rScale + 16;
3833 
3834   /* Multiple by log(M) where M is the number of output rows.
3835   ** Use the LIMIT for M if it is smaller */
3836   if( (pWInfo->wctrlFlags & WHERE_USE_LIMIT)!=0 && pWInfo->iLimit<nRow ){
3837     nRow = pWInfo->iLimit;
3838   }
3839   rSortCost += estLog(nRow);
3840   return rSortCost;
3841 }
3842 
3843 /*
3844 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
3845 ** attempts to find the lowest cost path that visits each WhereLoop
3846 ** once.  This path is then loaded into the pWInfo->a[].pWLoop fields.
3847 **
3848 ** Assume that the total number of output rows that will need to be sorted
3849 ** will be nRowEst (in the 10*log2 representation).  Or, ignore sorting
3850 ** costs if nRowEst==0.
3851 **
3852 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
3853 ** error occurs.
3854 */
3855 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){
3856   int mxChoice;             /* Maximum number of simultaneous paths tracked */
3857   int nLoop;                /* Number of terms in the join */
3858   Parse *pParse;            /* Parsing context */
3859   sqlite3 *db;              /* The database connection */
3860   int iLoop;                /* Loop counter over the terms of the join */
3861   int ii, jj;               /* Loop counters */
3862   int mxI = 0;              /* Index of next entry to replace */
3863   int nOrderBy;             /* Number of ORDER BY clause terms */
3864   LogEst mxCost = 0;        /* Maximum cost of a set of paths */
3865   LogEst mxUnsorted = 0;    /* Maximum unsorted cost of a set of path */
3866   int nTo, nFrom;           /* Number of valid entries in aTo[] and aFrom[] */
3867   WherePath *aFrom;         /* All nFrom paths at the previous level */
3868   WherePath *aTo;           /* The nTo best paths at the current level */
3869   WherePath *pFrom;         /* An element of aFrom[] that we are working on */
3870   WherePath *pTo;           /* An element of aTo[] that we are working on */
3871   WhereLoop *pWLoop;        /* One of the WhereLoop objects */
3872   WhereLoop **pX;           /* Used to divy up the pSpace memory */
3873   LogEst *aSortCost = 0;    /* Sorting and partial sorting costs */
3874   char *pSpace;             /* Temporary memory used by this routine */
3875   int nSpace;               /* Bytes of space allocated at pSpace */
3876 
3877   pParse = pWInfo->pParse;
3878   db = pParse->db;
3879   nLoop = pWInfo->nLevel;
3880   /* TUNING: For simple queries, only the best path is tracked.
3881   ** For 2-way joins, the 5 best paths are followed.
3882   ** For joins of 3 or more tables, track the 10 best paths */
3883   mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10);
3884   assert( nLoop<=pWInfo->pTabList->nSrc );
3885   WHERETRACE(0x002, ("---- begin solver.  (nRowEst=%d)\n", nRowEst));
3886 
3887   /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
3888   ** case the purpose of this call is to estimate the number of rows returned
3889   ** by the overall query. Once this estimate has been obtained, the caller
3890   ** will invoke this function a second time, passing the estimate as the
3891   ** nRowEst parameter.  */
3892   if( pWInfo->pOrderBy==0 || nRowEst==0 ){
3893     nOrderBy = 0;
3894   }else{
3895     nOrderBy = pWInfo->pOrderBy->nExpr;
3896   }
3897 
3898   /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
3899   nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2;
3900   nSpace += sizeof(LogEst) * nOrderBy;
3901   pSpace = sqlite3DbMallocRawNN(db, nSpace);
3902   if( pSpace==0 ) return SQLITE_NOMEM_BKPT;
3903   aTo = (WherePath*)pSpace;
3904   aFrom = aTo+mxChoice;
3905   memset(aFrom, 0, sizeof(aFrom[0]));
3906   pX = (WhereLoop**)(aFrom+mxChoice);
3907   for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){
3908     pFrom->aLoop = pX;
3909   }
3910   if( nOrderBy ){
3911     /* If there is an ORDER BY clause and it is not being ignored, set up
3912     ** space for the aSortCost[] array. Each element of the aSortCost array
3913     ** is either zero - meaning it has not yet been initialized - or the
3914     ** cost of sorting nRowEst rows of data where the first X terms of
3915     ** the ORDER BY clause are already in order, where X is the array
3916     ** index.  */
3917     aSortCost = (LogEst*)pX;
3918     memset(aSortCost, 0, sizeof(LogEst) * nOrderBy);
3919   }
3920   assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] );
3921   assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX );
3922 
3923   /* Seed the search with a single WherePath containing zero WhereLoops.
3924   **
3925   ** TUNING: Do not let the number of iterations go above 28.  If the cost
3926   ** of computing an automatic index is not paid back within the first 28
3927   ** rows, then do not use the automatic index. */
3928   aFrom[0].nRow = MIN(pParse->nQueryLoop, 48);  assert( 48==sqlite3LogEst(28) );
3929   nFrom = 1;
3930   assert( aFrom[0].isOrdered==0 );
3931   if( nOrderBy ){
3932     /* If nLoop is zero, then there are no FROM terms in the query. Since
3933     ** in this case the query may return a maximum of one row, the results
3934     ** are already in the requested order. Set isOrdered to nOrderBy to
3935     ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
3936     ** -1, indicating that the result set may or may not be ordered,
3937     ** depending on the loops added to the current plan.  */
3938     aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy;
3939   }
3940 
3941   /* Compute successively longer WherePaths using the previous generation
3942   ** of WherePaths as the basis for the next.  Keep track of the mxChoice
3943   ** best paths at each generation */
3944   for(iLoop=0; iLoop<nLoop; iLoop++){
3945     nTo = 0;
3946     for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){
3947       for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){
3948         LogEst nOut;                      /* Rows visited by (pFrom+pWLoop) */
3949         LogEst rCost;                     /* Cost of path (pFrom+pWLoop) */
3950         LogEst rUnsorted;                 /* Unsorted cost of (pFrom+pWLoop) */
3951         i8 isOrdered = pFrom->isOrdered;  /* isOrdered for (pFrom+pWLoop) */
3952         Bitmask maskNew;                  /* Mask of src visited by (..) */
3953         Bitmask revMask = 0;              /* Mask of rev-order loops for (..) */
3954 
3955         if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue;
3956         if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue;
3957         if( (pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 && pFrom->nRow<10 ){
3958           /* Do not use an automatic index if the this loop is expected
3959           ** to run less than 2 times. */
3960           assert( 10==sqlite3LogEst(2) );
3961           continue;
3962         }
3963         /* At this point, pWLoop is a candidate to be the next loop.
3964         ** Compute its cost */
3965         rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow);
3966         rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted);
3967         nOut = pFrom->nRow + pWLoop->nOut;
3968         maskNew = pFrom->maskLoop | pWLoop->maskSelf;
3969         if( isOrdered<0 ){
3970           isOrdered = wherePathSatisfiesOrderBy(pWInfo,
3971                        pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags,
3972                        iLoop, pWLoop, &revMask);
3973         }else{
3974           revMask = pFrom->revLoop;
3975         }
3976         if( isOrdered>=0 && isOrdered<nOrderBy ){
3977           if( aSortCost[isOrdered]==0 ){
3978             aSortCost[isOrdered] = whereSortingCost(
3979                 pWInfo, nRowEst, nOrderBy, isOrdered
3980             );
3981           }
3982           rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]);
3983 
3984           WHERETRACE(0x002,
3985               ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
3986                aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy,
3987                rUnsorted, rCost));
3988         }else{
3989           rCost = rUnsorted;
3990           rUnsorted -= 2;  /* TUNING:  Slight bias in favor of no-sort plans */
3991         }
3992 
3993         /* Check to see if pWLoop should be added to the set of
3994         ** mxChoice best-so-far paths.
3995         **
3996         ** First look for an existing path among best-so-far paths
3997         ** that covers the same set of loops and has the same isOrdered
3998         ** setting as the current path candidate.
3999         **
4000         ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
4001         ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
4002         ** of legal values for isOrdered, -1..64.
4003         */
4004         for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){
4005           if( pTo->maskLoop==maskNew
4006            && ((pTo->isOrdered^isOrdered)&0x80)==0
4007           ){
4008             testcase( jj==nTo-1 );
4009             break;
4010           }
4011         }
4012         if( jj>=nTo ){
4013           /* None of the existing best-so-far paths match the candidate. */
4014           if( nTo>=mxChoice
4015            && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted))
4016           ){
4017             /* The current candidate is no better than any of the mxChoice
4018             ** paths currently in the best-so-far buffer.  So discard
4019             ** this candidate as not viable. */
4020 #ifdef WHERETRACE_ENABLED /* 0x4 */
4021             if( sqlite3WhereTrace&0x4 ){
4022               sqlite3DebugPrintf("Skip   %s cost=%-3d,%3d,%3d order=%c\n",
4023                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4024                   isOrdered>=0 ? isOrdered+'0' : '?');
4025             }
4026 #endif
4027             continue;
4028           }
4029           /* If we reach this points it means that the new candidate path
4030           ** needs to be added to the set of best-so-far paths. */
4031           if( nTo<mxChoice ){
4032             /* Increase the size of the aTo set by one */
4033             jj = nTo++;
4034           }else{
4035             /* New path replaces the prior worst to keep count below mxChoice */
4036             jj = mxI;
4037           }
4038           pTo = &aTo[jj];
4039 #ifdef WHERETRACE_ENABLED /* 0x4 */
4040           if( sqlite3WhereTrace&0x4 ){
4041             sqlite3DebugPrintf("New    %s cost=%-3d,%3d,%3d order=%c\n",
4042                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4043                 isOrdered>=0 ? isOrdered+'0' : '?');
4044           }
4045 #endif
4046         }else{
4047           /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
4048           ** same set of loops and has the same isOrdered setting as the
4049           ** candidate path.  Check to see if the candidate should replace
4050           ** pTo or if the candidate should be skipped.
4051           **
4052           ** The conditional is an expanded vector comparison equivalent to:
4053           **   (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
4054           */
4055           if( pTo->rCost<rCost
4056            || (pTo->rCost==rCost
4057                && (pTo->nRow<nOut
4058                    || (pTo->nRow==nOut && pTo->rUnsorted<=rUnsorted)
4059                   )
4060               )
4061           ){
4062 #ifdef WHERETRACE_ENABLED /* 0x4 */
4063             if( sqlite3WhereTrace&0x4 ){
4064               sqlite3DebugPrintf(
4065                   "Skip   %s cost=%-3d,%3d,%3d order=%c",
4066                   wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4067                   isOrdered>=0 ? isOrdered+'0' : '?');
4068               sqlite3DebugPrintf("   vs %s cost=%-3d,%3d,%3d order=%c\n",
4069                   wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4070                   pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4071             }
4072 #endif
4073             /* Discard the candidate path from further consideration */
4074             testcase( pTo->rCost==rCost );
4075             continue;
4076           }
4077           testcase( pTo->rCost==rCost+1 );
4078           /* Control reaches here if the candidate path is better than the
4079           ** pTo path.  Replace pTo with the candidate. */
4080 #ifdef WHERETRACE_ENABLED /* 0x4 */
4081           if( sqlite3WhereTrace&0x4 ){
4082             sqlite3DebugPrintf(
4083                 "Update %s cost=%-3d,%3d,%3d order=%c",
4084                 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, rUnsorted,
4085                 isOrdered>=0 ? isOrdered+'0' : '?');
4086             sqlite3DebugPrintf("  was %s cost=%-3d,%3d,%3d order=%c\n",
4087                 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4088                 pTo->rUnsorted, pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?');
4089           }
4090 #endif
4091         }
4092         /* pWLoop is a winner.  Add it to the set of best so far */
4093         pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf;
4094         pTo->revLoop = revMask;
4095         pTo->nRow = nOut;
4096         pTo->rCost = rCost;
4097         pTo->rUnsorted = rUnsorted;
4098         pTo->isOrdered = isOrdered;
4099         memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop);
4100         pTo->aLoop[iLoop] = pWLoop;
4101         if( nTo>=mxChoice ){
4102           mxI = 0;
4103           mxCost = aTo[0].rCost;
4104           mxUnsorted = aTo[0].nRow;
4105           for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){
4106             if( pTo->rCost>mxCost
4107              || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted)
4108             ){
4109               mxCost = pTo->rCost;
4110               mxUnsorted = pTo->rUnsorted;
4111               mxI = jj;
4112             }
4113           }
4114         }
4115       }
4116     }
4117 
4118 #ifdef WHERETRACE_ENABLED  /* >=2 */
4119     if( sqlite3WhereTrace & 0x02 ){
4120       sqlite3DebugPrintf("---- after round %d ----\n", iLoop);
4121       for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){
4122         sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
4123            wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow,
4124            pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?');
4125         if( pTo->isOrdered>0 ){
4126           sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop);
4127         }else{
4128           sqlite3DebugPrintf("\n");
4129         }
4130       }
4131     }
4132 #endif
4133 
4134     /* Swap the roles of aFrom and aTo for the next generation */
4135     pFrom = aTo;
4136     aTo = aFrom;
4137     aFrom = pFrom;
4138     nFrom = nTo;
4139   }
4140 
4141   if( nFrom==0 ){
4142     sqlite3ErrorMsg(pParse, "no query solution");
4143     sqlite3DbFreeNN(db, pSpace);
4144     return SQLITE_ERROR;
4145   }
4146 
4147   /* Find the lowest cost path.  pFrom will be left pointing to that path */
4148   pFrom = aFrom;
4149   for(ii=1; ii<nFrom; ii++){
4150     if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii];
4151   }
4152   assert( pWInfo->nLevel==nLoop );
4153   /* Load the lowest cost path into pWInfo */
4154   for(iLoop=0; iLoop<nLoop; iLoop++){
4155     WhereLevel *pLevel = pWInfo->a + iLoop;
4156     pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop];
4157     pLevel->iFrom = pWLoop->iTab;
4158     pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor;
4159   }
4160   if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0
4161    && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0
4162    && pWInfo->eDistinct==WHERE_DISTINCT_NOOP
4163    && nRowEst
4164   ){
4165     Bitmask notUsed;
4166     int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom,
4167                  WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], &notUsed);
4168     if( rc==pWInfo->pResultSet->nExpr ){
4169       pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4170     }
4171   }
4172   if( pWInfo->pOrderBy ){
4173     if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){
4174       if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){
4175         pWInfo->eDistinct = WHERE_DISTINCT_ORDERED;
4176       }
4177     }else{
4178       pWInfo->nOBSat = pFrom->isOrdered;
4179       pWInfo->revMask = pFrom->revLoop;
4180       if( pWInfo->nOBSat<=0 ){
4181         pWInfo->nOBSat = 0;
4182         if( nLoop>0 ){
4183           u32 wsFlags = pFrom->aLoop[nLoop-1]->wsFlags;
4184           if( (wsFlags & WHERE_ONEROW)==0
4185            && (wsFlags&(WHERE_IPK|WHERE_COLUMN_IN))!=(WHERE_IPK|WHERE_COLUMN_IN)
4186           ){
4187             Bitmask m = 0;
4188             int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, pFrom,
4189                       WHERE_ORDERBY_LIMIT, nLoop-1, pFrom->aLoop[nLoop-1], &m);
4190             testcase( wsFlags & WHERE_IPK );
4191             testcase( wsFlags & WHERE_COLUMN_IN );
4192             if( rc==pWInfo->pOrderBy->nExpr ){
4193               pWInfo->bOrderedInnerLoop = 1;
4194               pWInfo->revMask = m;
4195             }
4196           }
4197         }
4198       }
4199     }
4200     if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP)
4201         && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0
4202     ){
4203       Bitmask revMask = 0;
4204       int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy,
4205           pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask
4206       );
4207       assert( pWInfo->sorted==0 );
4208       if( nOrder==pWInfo->pOrderBy->nExpr ){
4209         pWInfo->sorted = 1;
4210         pWInfo->revMask = revMask;
4211       }
4212     }
4213   }
4214 
4215 
4216   pWInfo->nRowOut = pFrom->nRow;
4217 
4218   /* Free temporary memory and return success */
4219   sqlite3DbFreeNN(db, pSpace);
4220   return SQLITE_OK;
4221 }
4222 
4223 /*
4224 ** Most queries use only a single table (they are not joins) and have
4225 ** simple == constraints against indexed fields.  This routine attempts
4226 ** to plan those simple cases using much less ceremony than the
4227 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
4228 ** times for the common case.
4229 **
4230 ** Return non-zero on success, if this query can be handled by this
4231 ** no-frills query planner.  Return zero if this query needs the
4232 ** general-purpose query planner.
4233 */
4234 static int whereShortCut(WhereLoopBuilder *pBuilder){
4235   WhereInfo *pWInfo;
4236   struct SrcList_item *pItem;
4237   WhereClause *pWC;
4238   WhereTerm *pTerm;
4239   WhereLoop *pLoop;
4240   int iCur;
4241   int j;
4242   Table *pTab;
4243   Index *pIdx;
4244 
4245   pWInfo = pBuilder->pWInfo;
4246   if( pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE ) return 0;
4247   assert( pWInfo->pTabList->nSrc>=1 );
4248   pItem = pWInfo->pTabList->a;
4249   pTab = pItem->pTab;
4250   if( IsVirtual(pTab) ) return 0;
4251   if( pItem->fg.isIndexedBy ) return 0;
4252   iCur = pItem->iCursor;
4253   pWC = &pWInfo->sWC;
4254   pLoop = pBuilder->pNew;
4255   pLoop->wsFlags = 0;
4256   pLoop->nSkip = 0;
4257   pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0);
4258   if( pTerm ){
4259     testcase( pTerm->eOperator & WO_IS );
4260     pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW;
4261     pLoop->aLTerm[0] = pTerm;
4262     pLoop->nLTerm = 1;
4263     pLoop->u.btree.nEq = 1;
4264     /* TUNING: Cost of a rowid lookup is 10 */
4265     pLoop->rRun = 33;  /* 33==sqlite3LogEst(10) */
4266   }else{
4267     for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4268       int opMask;
4269       assert( pLoop->aLTermSpace==pLoop->aLTerm );
4270       if( !IsUniqueIndex(pIdx)
4271        || pIdx->pPartIdxWhere!=0
4272        || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace)
4273       ) continue;
4274       opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ;
4275       for(j=0; j<pIdx->nKeyCol; j++){
4276         pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx);
4277         if( pTerm==0 ) break;
4278         testcase( pTerm->eOperator & WO_IS );
4279         pLoop->aLTerm[j] = pTerm;
4280       }
4281       if( j!=pIdx->nKeyCol ) continue;
4282       pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED;
4283       if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){
4284         pLoop->wsFlags |= WHERE_IDX_ONLY;
4285       }
4286       pLoop->nLTerm = j;
4287       pLoop->u.btree.nEq = j;
4288       pLoop->u.btree.pIndex = pIdx;
4289       /* TUNING: Cost of a unique index lookup is 15 */
4290       pLoop->rRun = 39;  /* 39==sqlite3LogEst(15) */
4291       break;
4292     }
4293   }
4294   if( pLoop->wsFlags ){
4295     pLoop->nOut = (LogEst)1;
4296     pWInfo->a[0].pWLoop = pLoop;
4297     assert( pWInfo->sMaskSet.n==1 && iCur==pWInfo->sMaskSet.ix[0] );
4298     pLoop->maskSelf = 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
4299     pWInfo->a[0].iTabCur = iCur;
4300     pWInfo->nRowOut = 1;
4301     if( pWInfo->pOrderBy ) pWInfo->nOBSat =  pWInfo->pOrderBy->nExpr;
4302     if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){
4303       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4304     }
4305 #ifdef SQLITE_DEBUG
4306     pLoop->cId = '0';
4307 #endif
4308     return 1;
4309   }
4310   return 0;
4311 }
4312 
4313 /*
4314 ** Helper function for exprIsDeterministic().
4315 */
4316 static int exprNodeIsDeterministic(Walker *pWalker, Expr *pExpr){
4317   if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_ConstFunc)==0 ){
4318     pWalker->eCode = 0;
4319     return WRC_Abort;
4320   }
4321   return WRC_Continue;
4322 }
4323 
4324 /*
4325 ** Return true if the expression contains no non-deterministic SQL
4326 ** functions. Do not consider non-deterministic SQL functions that are
4327 ** part of sub-select statements.
4328 */
4329 static int exprIsDeterministic(Expr *p){
4330   Walker w;
4331   memset(&w, 0, sizeof(w));
4332   w.eCode = 1;
4333   w.xExprCallback = exprNodeIsDeterministic;
4334   w.xSelectCallback = sqlite3SelectWalkFail;
4335   sqlite3WalkExpr(&w, p);
4336   return w.eCode;
4337 }
4338 
4339 /*
4340 ** Generate the beginning of the loop used for WHERE clause processing.
4341 ** The return value is a pointer to an opaque structure that contains
4342 ** information needed to terminate the loop.  Later, the calling routine
4343 ** should invoke sqlite3WhereEnd() with the return value of this function
4344 ** in order to complete the WHERE clause processing.
4345 **
4346 ** If an error occurs, this routine returns NULL.
4347 **
4348 ** The basic idea is to do a nested loop, one loop for each table in
4349 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
4350 ** same as a SELECT with only a single table in the FROM clause.)  For
4351 ** example, if the SQL is this:
4352 **
4353 **       SELECT * FROM t1, t2, t3 WHERE ...;
4354 **
4355 ** Then the code generated is conceptually like the following:
4356 **
4357 **      foreach row1 in t1 do       \    Code generated
4358 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
4359 **          foreach row3 in t3 do   /
4360 **            ...
4361 **          end                     \    Code generated
4362 **        end                        |-- by sqlite3WhereEnd()
4363 **      end                         /
4364 **
4365 ** Note that the loops might not be nested in the order in which they
4366 ** appear in the FROM clause if a different order is better able to make
4367 ** use of indices.  Note also that when the IN operator appears in
4368 ** the WHERE clause, it might result in additional nested loops for
4369 ** scanning through all values on the right-hand side of the IN.
4370 **
4371 ** There are Btree cursors associated with each table.  t1 uses cursor
4372 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
4373 ** And so forth.  This routine generates code to open those VDBE cursors
4374 ** and sqlite3WhereEnd() generates the code to close them.
4375 **
4376 ** The code that sqlite3WhereBegin() generates leaves the cursors named
4377 ** in pTabList pointing at their appropriate entries.  The [...] code
4378 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
4379 ** data from the various tables of the loop.
4380 **
4381 ** If the WHERE clause is empty, the foreach loops must each scan their
4382 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
4383 ** the tables have indices and there are terms in the WHERE clause that
4384 ** refer to those indices, a complete table scan can be avoided and the
4385 ** code will run much faster.  Most of the work of this routine is checking
4386 ** to see if there are indices that can be used to speed up the loop.
4387 **
4388 ** Terms of the WHERE clause are also used to limit which rows actually
4389 ** make it to the "..." in the middle of the loop.  After each "foreach",
4390 ** terms of the WHERE clause that use only terms in that loop and outer
4391 ** loops are evaluated and if false a jump is made around all subsequent
4392 ** inner loops (or around the "..." if the test occurs within the inner-
4393 ** most loop)
4394 **
4395 ** OUTER JOINS
4396 **
4397 ** An outer join of tables t1 and t2 is conceptally coded as follows:
4398 **
4399 **    foreach row1 in t1 do
4400 **      flag = 0
4401 **      foreach row2 in t2 do
4402 **        start:
4403 **          ...
4404 **          flag = 1
4405 **      end
4406 **      if flag==0 then
4407 **        move the row2 cursor to a null row
4408 **        goto start
4409 **      fi
4410 **    end
4411 **
4412 ** ORDER BY CLAUSE PROCESSING
4413 **
4414 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
4415 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
4416 ** if there is one.  If there is no ORDER BY clause or if this routine
4417 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
4418 **
4419 ** The iIdxCur parameter is the cursor number of an index.  If
4420 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
4421 ** to use for OR clause processing.  The WHERE clause should use this
4422 ** specific cursor.  If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
4423 ** the first cursor in an array of cursors for all indices.  iIdxCur should
4424 ** be used to compute the appropriate cursor depending on which index is
4425 ** used.
4426 */
4427 WhereInfo *sqlite3WhereBegin(
4428   Parse *pParse,          /* The parser context */
4429   SrcList *pTabList,      /* FROM clause: A list of all tables to be scanned */
4430   Expr *pWhere,           /* The WHERE clause */
4431   ExprList *pOrderBy,     /* An ORDER BY (or GROUP BY) clause, or NULL */
4432   ExprList *pResultSet,   /* Query result set.  Req'd for DISTINCT */
4433   u16 wctrlFlags,         /* The WHERE_* flags defined in sqliteInt.h */
4434   int iAuxArg             /* If WHERE_OR_SUBCLAUSE is set, index cursor number
4435                           ** If WHERE_USE_LIMIT, then the limit amount */
4436 ){
4437   int nByteWInfo;            /* Num. bytes allocated for WhereInfo struct */
4438   int nTabList;              /* Number of elements in pTabList */
4439   WhereInfo *pWInfo;         /* Will become the return value of this function */
4440   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
4441   Bitmask notReady;          /* Cursors that are not yet positioned */
4442   WhereLoopBuilder sWLB;     /* The WhereLoop builder */
4443   WhereMaskSet *pMaskSet;    /* The expression mask set */
4444   WhereLevel *pLevel;        /* A single level in pWInfo->a[] */
4445   WhereLoop *pLoop;          /* Pointer to a single WhereLoop object */
4446   int ii;                    /* Loop counter */
4447   sqlite3 *db;               /* Database connection */
4448   int rc;                    /* Return code */
4449   u8 bFordelete = 0;         /* OPFLAG_FORDELETE or zero, as appropriate */
4450 
4451   assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || (
4452         (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0
4453      && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4454   ));
4455 
4456   /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
4457   assert( (wctrlFlags & WHERE_OR_SUBCLAUSE)==0
4458             || (wctrlFlags & WHERE_USE_LIMIT)==0 );
4459 
4460   /* Variable initialization */
4461   db = pParse->db;
4462   memset(&sWLB, 0, sizeof(sWLB));
4463 
4464   /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
4465   testcase( pOrderBy && pOrderBy->nExpr==BMS-1 );
4466   if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0;
4467   sWLB.pOrderBy = pOrderBy;
4468 
4469   /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
4470   ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
4471   if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){
4472     wctrlFlags &= ~WHERE_WANT_DISTINCT;
4473   }
4474 
4475   /* The number of tables in the FROM clause is limited by the number of
4476   ** bits in a Bitmask
4477   */
4478   testcase( pTabList->nSrc==BMS );
4479   if( pTabList->nSrc>BMS ){
4480     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
4481     return 0;
4482   }
4483 
4484   /* This function normally generates a nested loop for all tables in
4485   ** pTabList.  But if the WHERE_OR_SUBCLAUSE flag is set, then we should
4486   ** only generate code for the first table in pTabList and assume that
4487   ** any cursors associated with subsequent tables are uninitialized.
4488   */
4489   nTabList = (wctrlFlags & WHERE_OR_SUBCLAUSE) ? 1 : pTabList->nSrc;
4490 
4491   /* Allocate and initialize the WhereInfo structure that will become the
4492   ** return value. A single allocation is used to store the WhereInfo
4493   ** struct, the contents of WhereInfo.a[], the WhereClause structure
4494   ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
4495   ** field (type Bitmask) it must be aligned on an 8-byte boundary on
4496   ** some architectures. Hence the ROUND8() below.
4497   */
4498   nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel));
4499   pWInfo = sqlite3DbMallocRawNN(db, nByteWInfo + sizeof(WhereLoop));
4500   if( db->mallocFailed ){
4501     sqlite3DbFree(db, pWInfo);
4502     pWInfo = 0;
4503     goto whereBeginError;
4504   }
4505   pWInfo->pParse = pParse;
4506   pWInfo->pTabList = pTabList;
4507   pWInfo->pOrderBy = pOrderBy;
4508   pWInfo->pWhere = pWhere;
4509   pWInfo->pResultSet = pResultSet;
4510   pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1;
4511   pWInfo->nLevel = nTabList;
4512   pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v);
4513   pWInfo->wctrlFlags = wctrlFlags;
4514   pWInfo->iLimit = iAuxArg;
4515   pWInfo->savedNQueryLoop = pParse->nQueryLoop;
4516   memset(&pWInfo->nOBSat, 0,
4517          offsetof(WhereInfo,sWC) - offsetof(WhereInfo,nOBSat));
4518   memset(&pWInfo->a[0], 0, sizeof(WhereLoop)+nTabList*sizeof(WhereLevel));
4519   assert( pWInfo->eOnePass==ONEPASS_OFF );  /* ONEPASS defaults to OFF */
4520   pMaskSet = &pWInfo->sMaskSet;
4521   sWLB.pWInfo = pWInfo;
4522   sWLB.pWC = &pWInfo->sWC;
4523   sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo);
4524   assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) );
4525   whereLoopInit(sWLB.pNew);
4526 #ifdef SQLITE_DEBUG
4527   sWLB.pNew->cId = '*';
4528 #endif
4529 
4530   /* Split the WHERE clause into separate subexpressions where each
4531   ** subexpression is separated by an AND operator.
4532   */
4533   initMaskSet(pMaskSet);
4534   sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo);
4535   sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND);
4536 
4537   /* Special case: No FROM clause
4538   */
4539   if( nTabList==0 ){
4540     if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr;
4541     if( wctrlFlags & WHERE_WANT_DISTINCT ){
4542       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4543     }
4544   }else{
4545     /* Assign a bit from the bitmask to every term in the FROM clause.
4546     **
4547     ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
4548     **
4549     ** The rule of the previous sentence ensures thta if X is the bitmask for
4550     ** a table T, then X-1 is the bitmask for all other tables to the left of T.
4551     ** Knowing the bitmask for all tables to the left of a left join is
4552     ** important.  Ticket #3015.
4553     **
4554     ** Note that bitmasks are created for all pTabList->nSrc tables in
4555     ** pTabList, not just the first nTabList tables.  nTabList is normally
4556     ** equal to pTabList->nSrc but might be shortened to 1 if the
4557     ** WHERE_OR_SUBCLAUSE flag is set.
4558     */
4559     ii = 0;
4560     do{
4561       createMask(pMaskSet, pTabList->a[ii].iCursor);
4562       sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC);
4563     }while( (++ii)<pTabList->nSrc );
4564   #ifdef SQLITE_DEBUG
4565     {
4566       Bitmask mx = 0;
4567       for(ii=0; ii<pTabList->nSrc; ii++){
4568         Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor);
4569         assert( m>=mx );
4570         mx = m;
4571       }
4572     }
4573   #endif
4574   }
4575 
4576   /* Analyze all of the subexpressions. */
4577   sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC);
4578   if( db->mallocFailed ) goto whereBeginError;
4579 
4580   /* Special case: WHERE terms that do not refer to any tables in the join
4581   ** (constant expressions). Evaluate each such term, and jump over all the
4582   ** generated code if the result is not true.
4583   **
4584   ** Do not do this if the expression contains non-deterministic functions
4585   ** that are not within a sub-select. This is not strictly required, but
4586   ** preserves SQLite's legacy behaviour in the following two cases:
4587   **
4588   **   FROM ... WHERE random()>0;           -- eval random() once per row
4589   **   FROM ... WHERE (SELECT random())>0;  -- eval random() once overall
4590   */
4591   for(ii=0; ii<sWLB.pWC->nTerm; ii++){
4592     WhereTerm *pT = &sWLB.pWC->a[ii];
4593     if( pT->prereqAll==0 && (nTabList==0 || exprIsDeterministic(pT->pExpr)) ){
4594       sqlite3ExprIfFalse(pParse, pT->pExpr, pWInfo->iBreak, SQLITE_JUMPIFNULL);
4595       pT->wtFlags |= TERM_CODED;
4596     }
4597   }
4598 
4599   if( wctrlFlags & WHERE_WANT_DISTINCT ){
4600     if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){
4601       /* The DISTINCT marking is pointless.  Ignore it. */
4602       pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE;
4603     }else if( pOrderBy==0 ){
4604       /* Try to ORDER BY the result set to make distinct processing easier */
4605       pWInfo->wctrlFlags |= WHERE_DISTINCTBY;
4606       pWInfo->pOrderBy = pResultSet;
4607     }
4608   }
4609 
4610   /* Construct the WhereLoop objects */
4611 #if defined(WHERETRACE_ENABLED)
4612   if( sqlite3WhereTrace & 0xffff ){
4613     sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags);
4614     if( wctrlFlags & WHERE_USE_LIMIT ){
4615       sqlite3DebugPrintf(", limit: %d", iAuxArg);
4616     }
4617     sqlite3DebugPrintf(")\n");
4618   }
4619   if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */
4620     sqlite3WhereClausePrint(sWLB.pWC);
4621   }
4622 #endif
4623 
4624   if( nTabList!=1 || whereShortCut(&sWLB)==0 ){
4625     rc = whereLoopAddAll(&sWLB);
4626     if( rc ) goto whereBeginError;
4627 
4628 #ifdef WHERETRACE_ENABLED
4629     if( sqlite3WhereTrace ){    /* Display all of the WhereLoop objects */
4630       WhereLoop *p;
4631       int i;
4632       static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz"
4633                                              "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
4634       for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){
4635         p->cId = zLabel[i%(sizeof(zLabel)-1)];
4636         whereLoopPrint(p, sWLB.pWC);
4637       }
4638     }
4639 #endif
4640 
4641     wherePathSolver(pWInfo, 0);
4642     if( db->mallocFailed ) goto whereBeginError;
4643     if( pWInfo->pOrderBy ){
4644        wherePathSolver(pWInfo, pWInfo->nRowOut+1);
4645        if( db->mallocFailed ) goto whereBeginError;
4646     }
4647   }
4648   if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){
4649      pWInfo->revMask = ALLBITS;
4650   }
4651   if( pParse->nErr || NEVER(db->mallocFailed) ){
4652     goto whereBeginError;
4653   }
4654 #ifdef WHERETRACE_ENABLED
4655   if( sqlite3WhereTrace ){
4656     sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut);
4657     if( pWInfo->nOBSat>0 ){
4658       sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask);
4659     }
4660     switch( pWInfo->eDistinct ){
4661       case WHERE_DISTINCT_UNIQUE: {
4662         sqlite3DebugPrintf("  DISTINCT=unique");
4663         break;
4664       }
4665       case WHERE_DISTINCT_ORDERED: {
4666         sqlite3DebugPrintf("  DISTINCT=ordered");
4667         break;
4668       }
4669       case WHERE_DISTINCT_UNORDERED: {
4670         sqlite3DebugPrintf("  DISTINCT=unordered");
4671         break;
4672       }
4673     }
4674     sqlite3DebugPrintf("\n");
4675     for(ii=0; ii<pWInfo->nLevel; ii++){
4676       whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC);
4677     }
4678   }
4679 #endif
4680   /* Attempt to omit tables from the join that do not effect the result */
4681   if( pWInfo->nLevel>=2
4682    && pResultSet!=0
4683    && OptimizationEnabled(db, SQLITE_OmitNoopJoin)
4684   ){
4685     Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet);
4686     if( sWLB.pOrderBy ){
4687       tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy);
4688     }
4689     while( pWInfo->nLevel>=2 ){
4690       WhereTerm *pTerm, *pEnd;
4691       pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop;
4692       if( (pWInfo->pTabList->a[pLoop->iTab].fg.jointype & JT_LEFT)==0 ) break;
4693       if( (wctrlFlags & WHERE_WANT_DISTINCT)==0
4694        && (pLoop->wsFlags & WHERE_ONEROW)==0
4695       ){
4696         break;
4697       }
4698       if( (tabUsed & pLoop->maskSelf)!=0 ) break;
4699       pEnd = sWLB.pWC->a + sWLB.pWC->nTerm;
4700       for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){
4701         if( (pTerm->prereqAll & pLoop->maskSelf)!=0
4702          && !ExprHasProperty(pTerm->pExpr, EP_FromJoin)
4703         ){
4704           break;
4705         }
4706       }
4707       if( pTerm<pEnd ) break;
4708       WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId));
4709       pWInfo->nLevel--;
4710       nTabList--;
4711     }
4712   }
4713   WHERETRACE(0xffff,("*** Optimizer Finished ***\n"));
4714   pWInfo->pParse->nQueryLoop += pWInfo->nRowOut;
4715 
4716   /* If the caller is an UPDATE or DELETE statement that is requesting
4717   ** to use a one-pass algorithm, determine if this is appropriate.
4718   */
4719   assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 );
4720   if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){
4721     int wsFlags = pWInfo->a[0].pWLoop->wsFlags;
4722     int bOnerow = (wsFlags & WHERE_ONEROW)!=0;
4723     if( bOnerow
4724      || ((wctrlFlags & WHERE_ONEPASS_MULTIROW)!=0
4725            && 0==(wsFlags & WHERE_VIRTUALTABLE))
4726     ){
4727       pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI;
4728       if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){
4729         if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){
4730           bFordelete = OPFLAG_FORDELETE;
4731         }
4732         pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY);
4733       }
4734     }
4735   }
4736 
4737   /* Open all tables in the pTabList and any indices selected for
4738   ** searching those tables.
4739   */
4740   for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){
4741     Table *pTab;     /* Table to open */
4742     int iDb;         /* Index of database containing table/index */
4743     struct SrcList_item *pTabItem;
4744 
4745     pTabItem = &pTabList->a[pLevel->iFrom];
4746     pTab = pTabItem->pTab;
4747     iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
4748     pLoop = pLevel->pWLoop;
4749     if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){
4750       /* Do nothing */
4751     }else
4752 #ifndef SQLITE_OMIT_VIRTUALTABLE
4753     if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
4754       const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
4755       int iCur = pTabItem->iCursor;
4756       sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB);
4757     }else if( IsVirtual(pTab) ){
4758       /* noop */
4759     }else
4760 #endif
4761     if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0
4762          && (wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
4763       int op = OP_OpenRead;
4764       if( pWInfo->eOnePass!=ONEPASS_OFF ){
4765         op = OP_OpenWrite;
4766         pWInfo->aiCurOnePass[0] = pTabItem->iCursor;
4767       };
4768       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op);
4769       assert( pTabItem->iCursor==pLevel->iTabCur );
4770       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 );
4771       testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS );
4772       if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){
4773         Bitmask b = pTabItem->colUsed;
4774         int n = 0;
4775         for(; b; b=b>>1, n++){}
4776         sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(n), P4_INT32);
4777         assert( n<=pTab->nCol );
4778       }
4779 #ifdef SQLITE_ENABLE_CURSOR_HINTS
4780       if( pLoop->u.btree.pIndex!=0 ){
4781         sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete);
4782       }else
4783 #endif
4784       {
4785         sqlite3VdbeChangeP5(v, bFordelete);
4786       }
4787 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4788       sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0,
4789                             (const u8*)&pTabItem->colUsed, P4_INT64);
4790 #endif
4791     }else{
4792       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
4793     }
4794     if( pLoop->wsFlags & WHERE_INDEXED ){
4795       Index *pIx = pLoop->u.btree.pIndex;
4796       int iIndexCur;
4797       int op = OP_OpenRead;
4798       /* iAuxArg is always set to a positive value if ONEPASS is possible */
4799       assert( iAuxArg!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 );
4800       if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx)
4801        && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0
4802       ){
4803         /* This is one term of an OR-optimization using the PRIMARY KEY of a
4804         ** WITHOUT ROWID table.  No need for a separate index */
4805         iIndexCur = pLevel->iTabCur;
4806         op = 0;
4807       }else if( pWInfo->eOnePass!=ONEPASS_OFF ){
4808         Index *pJ = pTabItem->pTab->pIndex;
4809         iIndexCur = iAuxArg;
4810         assert( wctrlFlags & WHERE_ONEPASS_DESIRED );
4811         while( ALWAYS(pJ) && pJ!=pIx ){
4812           iIndexCur++;
4813           pJ = pJ->pNext;
4814         }
4815         op = OP_OpenWrite;
4816         pWInfo->aiCurOnePass[1] = iIndexCur;
4817       }else if( iAuxArg && (wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 ){
4818         iIndexCur = iAuxArg;
4819         op = OP_ReopenIdx;
4820       }else{
4821         iIndexCur = pParse->nTab++;
4822       }
4823       pLevel->iIdxCur = iIndexCur;
4824       assert( pIx->pSchema==pTab->pSchema );
4825       assert( iIndexCur>=0 );
4826       if( op ){
4827         sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb);
4828         sqlite3VdbeSetP4KeyInfo(pParse, pIx);
4829         if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0
4830          && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0
4831          && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0
4832          && pWInfo->eDistinct!=WHERE_DISTINCT_ORDERED
4833         ){
4834           sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */
4835         }
4836         VdbeComment((v, "%s", pIx->zName));
4837 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4838         {
4839           u64 colUsed = 0;
4840           int ii, jj;
4841           for(ii=0; ii<pIx->nColumn; ii++){
4842             jj = pIx->aiColumn[ii];
4843             if( jj<0 ) continue;
4844             if( jj>63 ) jj = 63;
4845             if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue;
4846             colUsed |= ((u64)1)<<(ii<63 ? ii : 63);
4847           }
4848           sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0,
4849                                 (u8*)&colUsed, P4_INT64);
4850         }
4851 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
4852       }
4853     }
4854     if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb);
4855   }
4856   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
4857   if( db->mallocFailed ) goto whereBeginError;
4858 
4859   /* Generate the code to do the search.  Each iteration of the for
4860   ** loop below generates code for a single nested loop of the VM
4861   ** program.
4862   */
4863   notReady = ~(Bitmask)0;
4864   for(ii=0; ii<nTabList; ii++){
4865     int addrExplain;
4866     int wsFlags;
4867     pLevel = &pWInfo->a[ii];
4868     wsFlags = pLevel->pWLoop->wsFlags;
4869 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
4870     if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){
4871       constructAutomaticIndex(pParse, &pWInfo->sWC,
4872                 &pTabList->a[pLevel->iFrom], notReady, pLevel);
4873       if( db->mallocFailed ) goto whereBeginError;
4874     }
4875 #endif
4876     addrExplain = sqlite3WhereExplainOneScan(
4877         pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags
4878     );
4879     pLevel->addrBody = sqlite3VdbeCurrentAddr(v);
4880     notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady);
4881     pWInfo->iContinue = pLevel->addrCont;
4882     if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_OR_SUBCLAUSE)==0 ){
4883       sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain);
4884     }
4885   }
4886 
4887   /* Done. */
4888   VdbeModuleComment((v, "Begin WHERE-core"));
4889   return pWInfo;
4890 
4891   /* Jump here if malloc fails */
4892 whereBeginError:
4893   if( pWInfo ){
4894     pParse->nQueryLoop = pWInfo->savedNQueryLoop;
4895     whereInfoFree(db, pWInfo);
4896   }
4897   return 0;
4898 }
4899 
4900 /*
4901 ** Generate the end of the WHERE loop.  See comments on
4902 ** sqlite3WhereBegin() for additional information.
4903 */
4904 void sqlite3WhereEnd(WhereInfo *pWInfo){
4905   Parse *pParse = pWInfo->pParse;
4906   Vdbe *v = pParse->pVdbe;
4907   int i;
4908   WhereLevel *pLevel;
4909   WhereLoop *pLoop;
4910   SrcList *pTabList = pWInfo->pTabList;
4911   sqlite3 *db = pParse->db;
4912 
4913   /* Generate loop termination code.
4914   */
4915   VdbeModuleComment((v, "End WHERE-core"));
4916   sqlite3ExprCacheClear(pParse);
4917   for(i=pWInfo->nLevel-1; i>=0; i--){
4918     int addr;
4919     pLevel = &pWInfo->a[i];
4920     pLoop = pLevel->pWLoop;
4921     if( pLevel->op!=OP_Noop ){
4922 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
4923       int addrSeek = 0;
4924       Index *pIdx;
4925       int n;
4926       if( pWInfo->eDistinct==WHERE_DISTINCT_ORDERED
4927        && (pLoop->wsFlags & WHERE_INDEXED)!=0
4928        && (pIdx = pLoop->u.btree.pIndex)->hasStat1
4929        && (n = pLoop->u.btree.nIdxCol)>0
4930        && pIdx->aiRowLogEst[n]>=36
4931       ){
4932         int r1 = pParse->nMem+1;
4933         int j, op;
4934         for(j=0; j<n; j++){
4935           sqlite3VdbeAddOp3(v, OP_Column, pLevel->iIdxCur, j, r1+j);
4936         }
4937         pParse->nMem += n+1;
4938         op = pLevel->op==OP_Prev ? OP_SeekLT : OP_SeekGT;
4939         addrSeek = sqlite3VdbeAddOp4Int(v, op, pLevel->iIdxCur, 0, r1, n);
4940         VdbeCoverageIf(v, op==OP_SeekLT);
4941         VdbeCoverageIf(v, op==OP_SeekGT);
4942         sqlite3VdbeAddOp2(v, OP_Goto, 1, pLevel->p2);
4943       }
4944 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
4945       /* The common case: Advance to the next row */
4946       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
4947       sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3);
4948       sqlite3VdbeChangeP5(v, pLevel->p5);
4949       VdbeCoverage(v);
4950       VdbeCoverageIf(v, pLevel->op==OP_Next);
4951       VdbeCoverageIf(v, pLevel->op==OP_Prev);
4952       VdbeCoverageIf(v, pLevel->op==OP_VNext);
4953 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
4954       if( addrSeek ) sqlite3VdbeJumpHere(v, addrSeek);
4955 #endif
4956     }else{
4957       sqlite3VdbeResolveLabel(v, pLevel->addrCont);
4958     }
4959     if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){
4960       struct InLoop *pIn;
4961       int j;
4962       sqlite3VdbeResolveLabel(v, pLevel->addrNxt);
4963       for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){
4964         sqlite3VdbeJumpHere(v, pIn->addrInTop+1);
4965         if( pIn->eEndLoopOp!=OP_Noop ){
4966           sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop);
4967           VdbeCoverage(v);
4968           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen);
4969           VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen);
4970         }
4971         sqlite3VdbeJumpHere(v, pIn->addrInTop-1);
4972       }
4973     }
4974     sqlite3VdbeResolveLabel(v, pLevel->addrBrk);
4975     if( pLevel->addrSkip ){
4976       sqlite3VdbeGoto(v, pLevel->addrSkip);
4977       VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName));
4978       sqlite3VdbeJumpHere(v, pLevel->addrSkip);
4979       sqlite3VdbeJumpHere(v, pLevel->addrSkip-2);
4980     }
4981 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
4982     if( pLevel->addrLikeRep ){
4983       sqlite3VdbeAddOp2(v, OP_DecrJumpZero, (int)(pLevel->iLikeRepCntr>>1),
4984                         pLevel->addrLikeRep);
4985       VdbeCoverage(v);
4986     }
4987 #endif
4988     if( pLevel->iLeftJoin ){
4989       int ws = pLoop->wsFlags;
4990       addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v);
4991       assert( (ws & WHERE_IDX_ONLY)==0 || (ws & WHERE_INDEXED)!=0 );
4992       if( (ws & WHERE_IDX_ONLY)==0 ){
4993         sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor);
4994       }
4995       if( (ws & WHERE_INDEXED)
4996        || ((ws & WHERE_MULTI_OR) && pLevel->u.pCovidx)
4997       ){
4998         sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur);
4999       }
5000       if( pLevel->op==OP_Return ){
5001         sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst);
5002       }else{
5003         sqlite3VdbeGoto(v, pLevel->addrFirst);
5004       }
5005       sqlite3VdbeJumpHere(v, addr);
5006     }
5007     VdbeModuleComment((v, "End WHERE-loop%d: %s", i,
5008                      pWInfo->pTabList->a[pLevel->iFrom].pTab->zName));
5009   }
5010 
5011   /* The "break" point is here, just past the end of the outer loop.
5012   ** Set it.
5013   */
5014   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
5015 
5016   assert( pWInfo->nLevel<=pTabList->nSrc );
5017   for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){
5018     int k, last;
5019     VdbeOp *pOp;
5020     Index *pIdx = 0;
5021     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
5022     Table *pTab = pTabItem->pTab;
5023     assert( pTab!=0 );
5024     pLoop = pLevel->pWLoop;
5025 
5026     /* For a co-routine, change all OP_Column references to the table of
5027     ** the co-routine into OP_Copy of result contained in a register.
5028     ** OP_Rowid becomes OP_Null.
5029     */
5030     if( pTabItem->fg.viaCoroutine ){
5031       testcase( pParse->db->mallocFailed );
5032       translateColumnToCopy(pParse, pLevel->addrBody, pLevel->iTabCur,
5033                             pTabItem->regResult, 0);
5034       continue;
5035     }
5036 
5037     /* If this scan uses an index, make VDBE code substitutions to read data
5038     ** from the index instead of from the table where possible.  In some cases
5039     ** this optimization prevents the table from ever being read, which can
5040     ** yield a significant performance boost.
5041     **
5042     ** Calls to the code generator in between sqlite3WhereBegin and
5043     ** sqlite3WhereEnd will have created code that references the table
5044     ** directly.  This loop scans all that code looking for opcodes
5045     ** that reference the table and converts them into opcodes that
5046     ** reference the index.
5047     */
5048     if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){
5049       pIdx = pLoop->u.btree.pIndex;
5050     }else if( pLoop->wsFlags & WHERE_MULTI_OR ){
5051       pIdx = pLevel->u.pCovidx;
5052     }
5053     if( pIdx
5054      && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable))
5055      && !db->mallocFailed
5056     ){
5057       last = sqlite3VdbeCurrentAddr(v);
5058       k = pLevel->addrBody;
5059       pOp = sqlite3VdbeGetOp(v, k);
5060       for(; k<last; k++, pOp++){
5061         if( pOp->p1!=pLevel->iTabCur ) continue;
5062         if( pOp->opcode==OP_Column ){
5063           int x = pOp->p2;
5064           assert( pIdx->pTable==pTab );
5065           if( !HasRowid(pTab) ){
5066             Index *pPk = sqlite3PrimaryKeyIndex(pTab);
5067             x = pPk->aiColumn[x];
5068             assert( x>=0 );
5069           }
5070           x = sqlite3ColumnOfIndex(pIdx, x);
5071           if( x>=0 ){
5072             pOp->p2 = x;
5073             pOp->p1 = pLevel->iIdxCur;
5074           }
5075           assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0
5076               || pWInfo->eOnePass );
5077         }else if( pOp->opcode==OP_Rowid ){
5078           pOp->p1 = pLevel->iIdxCur;
5079           pOp->opcode = OP_IdxRowid;
5080         }else if( pOp->opcode==OP_IfNullRow ){
5081           pOp->p1 = pLevel->iIdxCur;
5082         }
5083       }
5084     }
5085   }
5086 
5087   /* Final cleanup
5088   */
5089   pParse->nQueryLoop = pWInfo->savedNQueryLoop;
5090   whereInfoFree(db, pWInfo);
5091   return;
5092 }
5093