1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is reponsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 ** 19 ** $Id: where.c,v 1.235 2007/01/19 01:06:03 drh Exp $ 20 */ 21 #include "sqliteInt.h" 22 23 /* 24 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 25 */ 26 #define BMS (sizeof(Bitmask)*8) 27 28 /* 29 ** Determine the number of elements in an array. 30 */ 31 #define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0])) 32 33 /* 34 ** Trace output macros 35 */ 36 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 37 int sqlite3_where_trace = 0; 38 # define TRACE(X) if(sqlite3_where_trace) sqlite3DebugPrintf X 39 #else 40 # define TRACE(X) 41 #endif 42 43 /* Forward reference 44 */ 45 typedef struct WhereClause WhereClause; 46 47 /* 48 ** The query generator uses an array of instances of this structure to 49 ** help it analyze the subexpressions of the WHERE clause. Each WHERE 50 ** clause subexpression is separated from the others by an AND operator. 51 ** 52 ** All WhereTerms are collected into a single WhereClause structure. 53 ** The following identity holds: 54 ** 55 ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm 56 ** 57 ** When a term is of the form: 58 ** 59 ** X <op> <expr> 60 ** 61 ** where X is a column name and <op> is one of certain operators, 62 ** then WhereTerm.leftCursor and WhereTerm.leftColumn record the 63 ** cursor number and column number for X. WhereTerm.operator records 64 ** the <op> using a bitmask encoding defined by WO_xxx below. The 65 ** use of a bitmask encoding for the operator allows us to search 66 ** quickly for terms that match any of several different operators. 67 ** 68 ** prereqRight and prereqAll record sets of cursor numbers, 69 ** but they do so indirectly. A single ExprMaskSet structure translates 70 ** cursor number into bits and the translated bit is stored in the prereq 71 ** fields. The translation is used in order to maximize the number of 72 ** bits that will fit in a Bitmask. The VDBE cursor numbers might be 73 ** spread out over the non-negative integers. For example, the cursor 74 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The ExprMaskSet 75 ** translates these sparse cursor numbers into consecutive integers 76 ** beginning with 0 in order to make the best possible use of the available 77 ** bits in the Bitmask. So, in the example above, the cursor numbers 78 ** would be mapped into integers 0 through 7. 79 */ 80 typedef struct WhereTerm WhereTerm; 81 struct WhereTerm { 82 Expr *pExpr; /* Pointer to the subexpression */ 83 i16 iParent; /* Disable pWC->a[iParent] when this term disabled */ 84 i16 leftCursor; /* Cursor number of X in "X <op> <expr>" */ 85 i16 leftColumn; /* Column number of X in "X <op> <expr>" */ 86 u16 eOperator; /* A WO_xx value describing <op> */ 87 u8 flags; /* Bit flags. See below */ 88 u8 nChild; /* Number of children that must disable us */ 89 WhereClause *pWC; /* The clause this term is part of */ 90 Bitmask prereqRight; /* Bitmask of tables used by pRight */ 91 Bitmask prereqAll; /* Bitmask of tables referenced by p */ 92 }; 93 94 /* 95 ** Allowed values of WhereTerm.flags 96 */ 97 #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(pExpr) */ 98 #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */ 99 #define TERM_CODED 0x04 /* This term is already coded */ 100 #define TERM_COPIED 0x08 /* Has a child */ 101 #define TERM_OR_OK 0x10 /* Used during OR-clause processing */ 102 103 /* 104 ** An instance of the following structure holds all information about a 105 ** WHERE clause. Mostly this is a container for one or more WhereTerms. 106 */ 107 struct WhereClause { 108 Parse *pParse; /* The parser context */ 109 int nTerm; /* Number of terms */ 110 int nSlot; /* Number of entries in a[] */ 111 WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */ 112 WhereTerm aStatic[10]; /* Initial static space for a[] */ 113 }; 114 115 /* 116 ** An instance of the following structure keeps track of a mapping 117 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm. 118 ** 119 ** The VDBE cursor numbers are small integers contained in 120 ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE 121 ** clause, the cursor numbers might not begin with 0 and they might 122 ** contain gaps in the numbering sequence. But we want to make maximum 123 ** use of the bits in our bitmasks. This structure provides a mapping 124 ** from the sparse cursor numbers into consecutive integers beginning 125 ** with 0. 126 ** 127 ** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask 128 ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A. 129 ** 130 ** For example, if the WHERE clause expression used these VDBE 131 ** cursors: 4, 5, 8, 29, 57, 73. Then the ExprMaskSet structure 132 ** would map those cursor numbers into bits 0 through 5. 133 ** 134 ** Note that the mapping is not necessarily ordered. In the example 135 ** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0, 136 ** 57->5, 73->4. Or one of 719 other combinations might be used. It 137 ** does not really matter. What is important is that sparse cursor 138 ** numbers all get mapped into bit numbers that begin with 0 and contain 139 ** no gaps. 140 */ 141 typedef struct ExprMaskSet ExprMaskSet; 142 struct ExprMaskSet { 143 int n; /* Number of assigned cursor values */ 144 int ix[sizeof(Bitmask)*8]; /* Cursor assigned to each bit */ 145 }; 146 147 148 /* 149 ** Bitmasks for the operators that indices are able to exploit. An 150 ** OR-ed combination of these values can be used when searching for 151 ** terms in the where clause. 152 */ 153 #define WO_IN 1 154 #define WO_EQ 2 155 #define WO_LT (WO_EQ<<(TK_LT-TK_EQ)) 156 #define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) 157 #define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) 158 #define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) 159 #define WO_MATCH 64 160 #define WO_ISNULL 128 161 162 /* 163 ** Value for flags returned by bestIndex() 164 */ 165 #define WHERE_ROWID_EQ 0x0001 /* rowid=EXPR or rowid IN (...) */ 166 #define WHERE_ROWID_RANGE 0x0002 /* rowid<EXPR and/or rowid>EXPR */ 167 #define WHERE_COLUMN_EQ 0x0010 /* x=EXPR or x IN (...) */ 168 #define WHERE_COLUMN_RANGE 0x0020 /* x<EXPR and/or x>EXPR */ 169 #define WHERE_COLUMN_IN 0x0040 /* x IN (...) */ 170 #define WHERE_TOP_LIMIT 0x0100 /* x<EXPR or x<=EXPR constraint */ 171 #define WHERE_BTM_LIMIT 0x0200 /* x>EXPR or x>=EXPR constraint */ 172 #define WHERE_IDX_ONLY 0x0800 /* Use index only - omit table */ 173 #define WHERE_ORDERBY 0x1000 /* Output will appear in correct order */ 174 #define WHERE_REVERSE 0x2000 /* Scan in reverse order */ 175 #define WHERE_UNIQUE 0x4000 /* Selects no more than one row */ 176 #define WHERE_VIRTUALTABLE 0x8000 /* Use virtual-table processing */ 177 178 /* 179 ** Initialize a preallocated WhereClause structure. 180 */ 181 static void whereClauseInit(WhereClause *pWC, Parse *pParse){ 182 pWC->pParse = pParse; 183 pWC->nTerm = 0; 184 pWC->nSlot = ARRAYSIZE(pWC->aStatic); 185 pWC->a = pWC->aStatic; 186 } 187 188 /* 189 ** Deallocate a WhereClause structure. The WhereClause structure 190 ** itself is not freed. This routine is the inverse of whereClauseInit(). 191 */ 192 static void whereClauseClear(WhereClause *pWC){ 193 int i; 194 WhereTerm *a; 195 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ 196 if( a->flags & TERM_DYNAMIC ){ 197 sqlite3ExprDelete(a->pExpr); 198 } 199 } 200 if( pWC->a!=pWC->aStatic ){ 201 sqliteFree(pWC->a); 202 } 203 } 204 205 /* 206 ** Add a new entries to the WhereClause structure. Increase the allocated 207 ** space as necessary. 208 ** 209 ** WARNING: This routine might reallocate the space used to store 210 ** WhereTerms. All pointers to WhereTerms should be invalided after 211 ** calling this routine. Such pointers may be reinitialized by referencing 212 ** the pWC->a[] array. 213 */ 214 static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){ 215 WhereTerm *pTerm; 216 int idx; 217 if( pWC->nTerm>=pWC->nSlot ){ 218 WhereTerm *pOld = pWC->a; 219 pWC->a = sqliteMalloc( sizeof(pWC->a[0])*pWC->nSlot*2 ); 220 if( pWC->a==0 ) return 0; 221 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); 222 if( pOld!=pWC->aStatic ){ 223 sqliteFree(pOld); 224 } 225 pWC->nSlot *= 2; 226 } 227 pTerm = &pWC->a[idx = pWC->nTerm]; 228 pWC->nTerm++; 229 pTerm->pExpr = p; 230 pTerm->flags = flags; 231 pTerm->pWC = pWC; 232 pTerm->iParent = -1; 233 return idx; 234 } 235 236 /* 237 ** This routine identifies subexpressions in the WHERE clause where 238 ** each subexpression is separated by the AND operator or some other 239 ** operator specified in the op parameter. The WhereClause structure 240 ** is filled with pointers to subexpressions. For example: 241 ** 242 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) 243 ** \________/ \_______________/ \________________/ 244 ** slot[0] slot[1] slot[2] 245 ** 246 ** The original WHERE clause in pExpr is unaltered. All this routine 247 ** does is make slot[] entries point to substructure within pExpr. 248 ** 249 ** In the previous sentence and in the diagram, "slot[]" refers to 250 ** the WhereClause.a[] array. This array grows as needed to contain 251 ** all terms of the WHERE clause. 252 */ 253 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){ 254 if( pExpr==0 ) return; 255 if( pExpr->op!=op ){ 256 whereClauseInsert(pWC, pExpr, 0); 257 }else{ 258 whereSplit(pWC, pExpr->pLeft, op); 259 whereSplit(pWC, pExpr->pRight, op); 260 } 261 } 262 263 /* 264 ** Initialize an expression mask set 265 */ 266 #define initMaskSet(P) memset(P, 0, sizeof(*P)) 267 268 /* 269 ** Return the bitmask for the given cursor number. Return 0 if 270 ** iCursor is not in the set. 271 */ 272 static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){ 273 int i; 274 for(i=0; i<pMaskSet->n; i++){ 275 if( pMaskSet->ix[i]==iCursor ){ 276 return ((Bitmask)1)<<i; 277 } 278 } 279 return 0; 280 } 281 282 /* 283 ** Create a new mask for cursor iCursor. 284 ** 285 ** There is one cursor per table in the FROM clause. The number of 286 ** tables in the FROM clause is limited by a test early in the 287 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 288 ** array will never overflow. 289 */ 290 static void createMask(ExprMaskSet *pMaskSet, int iCursor){ 291 assert( pMaskSet->n < ARRAYSIZE(pMaskSet->ix) ); 292 pMaskSet->ix[pMaskSet->n++] = iCursor; 293 } 294 295 /* 296 ** This routine walks (recursively) an expression tree and generates 297 ** a bitmask indicating which tables are used in that expression 298 ** tree. 299 ** 300 ** In order for this routine to work, the calling function must have 301 ** previously invoked sqlite3ExprResolveNames() on the expression. See 302 ** the header comment on that routine for additional information. 303 ** The sqlite3ExprResolveNames() routines looks for column names and 304 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to 305 ** the VDBE cursor number of the table. This routine just has to 306 ** translate the cursor numbers into bitmask values and OR all 307 ** the bitmasks together. 308 */ 309 static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*); 310 static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*); 311 static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){ 312 Bitmask mask = 0; 313 if( p==0 ) return 0; 314 if( p->op==TK_COLUMN ){ 315 mask = getMask(pMaskSet, p->iTable); 316 return mask; 317 } 318 mask = exprTableUsage(pMaskSet, p->pRight); 319 mask |= exprTableUsage(pMaskSet, p->pLeft); 320 mask |= exprListTableUsage(pMaskSet, p->pList); 321 mask |= exprSelectTableUsage(pMaskSet, p->pSelect); 322 return mask; 323 } 324 static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){ 325 int i; 326 Bitmask mask = 0; 327 if( pList ){ 328 for(i=0; i<pList->nExpr; i++){ 329 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); 330 } 331 } 332 return mask; 333 } 334 static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){ 335 Bitmask mask; 336 if( pS==0 ){ 337 mask = 0; 338 }else{ 339 mask = exprListTableUsage(pMaskSet, pS->pEList); 340 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); 341 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); 342 mask |= exprTableUsage(pMaskSet, pS->pWhere); 343 mask |= exprTableUsage(pMaskSet, pS->pHaving); 344 } 345 return mask; 346 } 347 348 /* 349 ** Return TRUE if the given operator is one of the operators that is 350 ** allowed for an indexable WHERE clause term. The allowed operators are 351 ** "=", "<", ">", "<=", ">=", and "IN". 352 */ 353 static int allowedOp(int op){ 354 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); 355 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); 356 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); 357 assert( TK_GE==TK_EQ+4 ); 358 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; 359 } 360 361 /* 362 ** Swap two objects of type T. 363 */ 364 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 365 366 /* 367 ** Commute a comparision operator. Expressions of the form "X op Y" 368 ** are converted into "Y op X". 369 */ 370 static void exprCommute(Expr *pExpr){ 371 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); 372 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl); 373 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); 374 if( pExpr->op>=TK_GT ){ 375 assert( TK_LT==TK_GT+2 ); 376 assert( TK_GE==TK_LE+2 ); 377 assert( TK_GT>TK_EQ ); 378 assert( TK_GT<TK_LE ); 379 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); 380 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; 381 } 382 } 383 384 /* 385 ** Translate from TK_xx operator to WO_xx bitmask. 386 */ 387 static int operatorMask(int op){ 388 int c; 389 assert( allowedOp(op) ); 390 if( op==TK_IN ){ 391 c = WO_IN; 392 }else if( op==TK_ISNULL ){ 393 c = WO_ISNULL; 394 }else{ 395 c = WO_EQ<<(op-TK_EQ); 396 } 397 assert( op!=TK_ISNULL || c==WO_ISNULL ); 398 assert( op!=TK_IN || c==WO_IN ); 399 assert( op!=TK_EQ || c==WO_EQ ); 400 assert( op!=TK_LT || c==WO_LT ); 401 assert( op!=TK_LE || c==WO_LE ); 402 assert( op!=TK_GT || c==WO_GT ); 403 assert( op!=TK_GE || c==WO_GE ); 404 return c; 405 } 406 407 /* 408 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 409 ** where X is a reference to the iColumn of table iCur and <op> is one of 410 ** the WO_xx operator codes specified by the op parameter. 411 ** Return a pointer to the term. Return 0 if not found. 412 */ 413 static WhereTerm *findTerm( 414 WhereClause *pWC, /* The WHERE clause to be searched */ 415 int iCur, /* Cursor number of LHS */ 416 int iColumn, /* Column number of LHS */ 417 Bitmask notReady, /* RHS must not overlap with this mask */ 418 u16 op, /* Mask of WO_xx values describing operator */ 419 Index *pIdx /* Must be compatible with this index, if not NULL */ 420 ){ 421 WhereTerm *pTerm; 422 int k; 423 for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){ 424 if( pTerm->leftCursor==iCur 425 && (pTerm->prereqRight & notReady)==0 426 && pTerm->leftColumn==iColumn 427 && (pTerm->eOperator & op)!=0 428 ){ 429 if( iCur>=0 && pIdx && pTerm->eOperator!=WO_ISNULL ){ 430 Expr *pX = pTerm->pExpr; 431 CollSeq *pColl; 432 char idxaff; 433 int j; 434 Parse *pParse = pWC->pParse; 435 436 idxaff = pIdx->pTable->aCol[iColumn].affinity; 437 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue; 438 pColl = sqlite3ExprCollSeq(pParse, pX->pLeft); 439 if( !pColl ){ 440 if( pX->pRight ){ 441 pColl = sqlite3ExprCollSeq(pParse, pX->pRight); 442 } 443 if( !pColl ){ 444 pColl = pParse->db->pDfltColl; 445 } 446 } 447 for(j=0; j<pIdx->nColumn && pIdx->aiColumn[j]!=iColumn; j++){} 448 assert( j<pIdx->nColumn ); 449 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue; 450 } 451 return pTerm; 452 } 453 } 454 return 0; 455 } 456 457 /* Forward reference */ 458 static void exprAnalyze(SrcList*, ExprMaskSet*, WhereClause*, int); 459 460 /* 461 ** Call exprAnalyze on all terms in a WHERE clause. 462 ** 463 ** 464 */ 465 static void exprAnalyzeAll( 466 SrcList *pTabList, /* the FROM clause */ 467 ExprMaskSet *pMaskSet, /* table masks */ 468 WhereClause *pWC /* the WHERE clause to be analyzed */ 469 ){ 470 int i; 471 for(i=pWC->nTerm-1; i>=0; i--){ 472 exprAnalyze(pTabList, pMaskSet, pWC, i); 473 } 474 } 475 476 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 477 /* 478 ** Check to see if the given expression is a LIKE or GLOB operator that 479 ** can be optimized using inequality constraints. Return TRUE if it is 480 ** so and false if not. 481 ** 482 ** In order for the operator to be optimizible, the RHS must be a string 483 ** literal that does not begin with a wildcard. 484 */ 485 static int isLikeOrGlob( 486 sqlite3 *db, /* The database */ 487 Expr *pExpr, /* Test this expression */ 488 int *pnPattern, /* Number of non-wildcard prefix characters */ 489 int *pisComplete /* True if the only wildcard is % in the last character */ 490 ){ 491 const char *z; 492 Expr *pRight, *pLeft; 493 ExprList *pList; 494 int c, cnt; 495 int noCase; 496 char wc[3]; 497 CollSeq *pColl; 498 499 if( !sqlite3IsLikeFunction(db, pExpr, &noCase, wc) ){ 500 return 0; 501 } 502 pList = pExpr->pList; 503 pRight = pList->a[0].pExpr; 504 if( pRight->op!=TK_STRING ){ 505 return 0; 506 } 507 pLeft = pList->a[1].pExpr; 508 if( pLeft->op!=TK_COLUMN ){ 509 return 0; 510 } 511 pColl = pLeft->pColl; 512 if( pColl==0 ){ 513 pColl = db->pDfltColl; 514 } 515 if( (pColl->type!=SQLITE_COLL_BINARY || noCase) && 516 (pColl->type!=SQLITE_COLL_NOCASE || !noCase) ){ 517 return 0; 518 } 519 sqlite3DequoteExpr(pRight); 520 z = (char *)pRight->token.z; 521 for(cnt=0; (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2]; cnt++){} 522 if( cnt==0 || 255==(u8)z[cnt] ){ 523 return 0; 524 } 525 *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0; 526 *pnPattern = cnt; 527 return 1; 528 } 529 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 530 531 532 #ifndef SQLITE_OMIT_VIRTUALTABLE 533 /* 534 ** Check to see if the given expression is of the form 535 ** 536 ** column MATCH expr 537 ** 538 ** If it is then return TRUE. If not, return FALSE. 539 */ 540 static int isMatchOfColumn( 541 Expr *pExpr /* Test this expression */ 542 ){ 543 ExprList *pList; 544 545 if( pExpr->op!=TK_FUNCTION ){ 546 return 0; 547 } 548 if( pExpr->token.n!=5 || 549 sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){ 550 return 0; 551 } 552 pList = pExpr->pList; 553 if( pList->nExpr!=2 ){ 554 return 0; 555 } 556 if( pList->a[1].pExpr->op != TK_COLUMN ){ 557 return 0; 558 } 559 return 1; 560 } 561 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 562 563 /* 564 ** If the pBase expression originated in the ON or USING clause of 565 ** a join, then transfer the appropriate markings over to derived. 566 */ 567 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ 568 pDerived->flags |= pBase->flags & EP_FromJoin; 569 pDerived->iRightJoinTable = pBase->iRightJoinTable; 570 } 571 572 573 /* 574 ** The input to this routine is an WhereTerm structure with only the 575 ** "pExpr" field filled in. The job of this routine is to analyze the 576 ** subexpression and populate all the other fields of the WhereTerm 577 ** structure. 578 ** 579 ** If the expression is of the form "<expr> <op> X" it gets commuted 580 ** to the standard form of "X <op> <expr>". If the expression is of 581 ** the form "X <op> Y" where both X and Y are columns, then the original 582 ** expression is unchanged and a new virtual expression of the form 583 ** "Y <op> X" is added to the WHERE clause and analyzed separately. 584 */ 585 static void exprAnalyze( 586 SrcList *pSrc, /* the FROM clause */ 587 ExprMaskSet *pMaskSet, /* table masks */ 588 WhereClause *pWC, /* the WHERE clause */ 589 int idxTerm /* Index of the term to be analyzed */ 590 ){ 591 WhereTerm *pTerm = &pWC->a[idxTerm]; 592 Expr *pExpr = pTerm->pExpr; 593 Bitmask prereqLeft; 594 Bitmask prereqAll; 595 int nPattern; 596 int isComplete; 597 int op; 598 599 if( sqlite3MallocFailed() ) return; 600 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); 601 op = pExpr->op; 602 if( op==TK_IN ){ 603 assert( pExpr->pRight==0 ); 604 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList) 605 | exprSelectTableUsage(pMaskSet, pExpr->pSelect); 606 }else if( op==TK_ISNULL ){ 607 pTerm->prereqRight = 0; 608 }else{ 609 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); 610 } 611 prereqAll = exprTableUsage(pMaskSet, pExpr); 612 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 613 prereqAll |= getMask(pMaskSet, pExpr->iRightJoinTable); 614 } 615 pTerm->prereqAll = prereqAll; 616 pTerm->leftCursor = -1; 617 pTerm->iParent = -1; 618 pTerm->eOperator = 0; 619 if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){ 620 Expr *pLeft = pExpr->pLeft; 621 Expr *pRight = pExpr->pRight; 622 if( pLeft->op==TK_COLUMN ){ 623 pTerm->leftCursor = pLeft->iTable; 624 pTerm->leftColumn = pLeft->iColumn; 625 pTerm->eOperator = operatorMask(op); 626 } 627 if( pRight && pRight->op==TK_COLUMN ){ 628 WhereTerm *pNew; 629 Expr *pDup; 630 if( pTerm->leftCursor>=0 ){ 631 int idxNew; 632 pDup = sqlite3ExprDup(pExpr); 633 if( sqlite3MallocFailed() ){ 634 sqliteFree(pDup); 635 return; 636 } 637 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); 638 if( idxNew==0 ) return; 639 pNew = &pWC->a[idxNew]; 640 pNew->iParent = idxTerm; 641 pTerm = &pWC->a[idxTerm]; 642 pTerm->nChild = 1; 643 pTerm->flags |= TERM_COPIED; 644 }else{ 645 pDup = pExpr; 646 pNew = pTerm; 647 } 648 exprCommute(pDup); 649 pLeft = pDup->pLeft; 650 pNew->leftCursor = pLeft->iTable; 651 pNew->leftColumn = pLeft->iColumn; 652 pNew->prereqRight = prereqLeft; 653 pNew->prereqAll = prereqAll; 654 pNew->eOperator = operatorMask(pDup->op); 655 } 656 } 657 658 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION 659 /* If a term is the BETWEEN operator, create two new virtual terms 660 ** that define the range that the BETWEEN implements. 661 */ 662 else if( pExpr->op==TK_BETWEEN ){ 663 ExprList *pList = pExpr->pList; 664 int i; 665 static const u8 ops[] = {TK_GE, TK_LE}; 666 assert( pList!=0 ); 667 assert( pList->nExpr==2 ); 668 for(i=0; i<2; i++){ 669 Expr *pNewExpr; 670 int idxNew; 671 pNewExpr = sqlite3Expr(ops[i], sqlite3ExprDup(pExpr->pLeft), 672 sqlite3ExprDup(pList->a[i].pExpr), 0); 673 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 674 exprAnalyze(pSrc, pMaskSet, pWC, idxNew); 675 pTerm = &pWC->a[idxTerm]; 676 pWC->a[idxNew].iParent = idxTerm; 677 } 678 pTerm->nChild = 2; 679 } 680 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ 681 682 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 683 /* Attempt to convert OR-connected terms into an IN operator so that 684 ** they can make use of indices. Example: 685 ** 686 ** x = expr1 OR expr2 = x OR x = expr3 687 ** 688 ** is converted into 689 ** 690 ** x IN (expr1,expr2,expr3) 691 ** 692 ** This optimization must be omitted if OMIT_SUBQUERY is defined because 693 ** the compiler for the the IN operator is part of sub-queries. 694 */ 695 else if( pExpr->op==TK_OR ){ 696 int ok; 697 int i, j; 698 int iColumn, iCursor; 699 WhereClause sOr; 700 WhereTerm *pOrTerm; 701 702 assert( (pTerm->flags & TERM_DYNAMIC)==0 ); 703 whereClauseInit(&sOr, pWC->pParse); 704 whereSplit(&sOr, pExpr, TK_OR); 705 exprAnalyzeAll(pSrc, pMaskSet, &sOr); 706 assert( sOr.nTerm>0 ); 707 j = 0; 708 do{ 709 iColumn = sOr.a[j].leftColumn; 710 iCursor = sOr.a[j].leftCursor; 711 ok = iCursor>=0; 712 for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){ 713 if( pOrTerm->eOperator!=WO_EQ ){ 714 goto or_not_possible; 715 } 716 if( pOrTerm->leftCursor==iCursor && pOrTerm->leftColumn==iColumn ){ 717 pOrTerm->flags |= TERM_OR_OK; 718 }else if( (pOrTerm->flags & TERM_COPIED)!=0 || 719 ((pOrTerm->flags & TERM_VIRTUAL)!=0 && 720 (sOr.a[pOrTerm->iParent].flags & TERM_OR_OK)!=0) ){ 721 pOrTerm->flags &= ~TERM_OR_OK; 722 }else{ 723 ok = 0; 724 } 725 } 726 }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<sOr.nTerm ); 727 if( ok ){ 728 ExprList *pList = 0; 729 Expr *pNew, *pDup; 730 Expr *pLeft = 0; 731 for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){ 732 if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue; 733 pDup = sqlite3ExprDup(pOrTerm->pExpr->pRight); 734 pList = sqlite3ExprListAppend(pList, pDup, 0); 735 pLeft = pOrTerm->pExpr->pLeft; 736 } 737 assert( pLeft!=0 ); 738 pDup = sqlite3ExprDup(pLeft); 739 pNew = sqlite3Expr(TK_IN, pDup, 0, 0); 740 if( pNew ){ 741 int idxNew; 742 transferJoinMarkings(pNew, pExpr); 743 pNew->pList = pList; 744 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 745 exprAnalyze(pSrc, pMaskSet, pWC, idxNew); 746 pTerm = &pWC->a[idxTerm]; 747 pWC->a[idxNew].iParent = idxTerm; 748 pTerm->nChild = 1; 749 }else{ 750 sqlite3ExprListDelete(pList); 751 } 752 } 753 or_not_possible: 754 whereClauseClear(&sOr); 755 } 756 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 757 758 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 759 /* Add constraints to reduce the search space on a LIKE or GLOB 760 ** operator. 761 */ 762 if( isLikeOrGlob(pWC->pParse->db, pExpr, &nPattern, &isComplete) ){ 763 Expr *pLeft, *pRight; 764 Expr *pStr1, *pStr2; 765 Expr *pNewExpr1, *pNewExpr2; 766 int idxNew1, idxNew2; 767 768 pLeft = pExpr->pList->a[1].pExpr; 769 pRight = pExpr->pList->a[0].pExpr; 770 pStr1 = sqlite3Expr(TK_STRING, 0, 0, 0); 771 if( pStr1 ){ 772 sqlite3TokenCopy(&pStr1->token, &pRight->token); 773 pStr1->token.n = nPattern; 774 } 775 pStr2 = sqlite3ExprDup(pStr1); 776 if( pStr2 ){ 777 assert( pStr2->token.dyn ); 778 ++*(u8*)&pStr2->token.z[nPattern-1]; 779 } 780 pNewExpr1 = sqlite3Expr(TK_GE, sqlite3ExprDup(pLeft), pStr1, 0); 781 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); 782 exprAnalyze(pSrc, pMaskSet, pWC, idxNew1); 783 pNewExpr2 = sqlite3Expr(TK_LT, sqlite3ExprDup(pLeft), pStr2, 0); 784 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); 785 exprAnalyze(pSrc, pMaskSet, pWC, idxNew2); 786 pTerm = &pWC->a[idxTerm]; 787 if( isComplete ){ 788 pWC->a[idxNew1].iParent = idxTerm; 789 pWC->a[idxNew2].iParent = idxTerm; 790 pTerm->nChild = 2; 791 } 792 } 793 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 794 795 #ifndef SQLITE_OMIT_VIRTUALTABLE 796 /* Add a WO_MATCH auxiliary term to the constraint set if the 797 ** current expression is of the form: column MATCH expr. 798 ** This information is used by the xBestIndex methods of 799 ** virtual tables. The native query optimizer does not attempt 800 ** to do anything with MATCH functions. 801 */ 802 if( isMatchOfColumn(pExpr) ){ 803 int idxNew; 804 Expr *pRight, *pLeft; 805 WhereTerm *pNewTerm; 806 Bitmask prereqColumn, prereqExpr; 807 808 pRight = pExpr->pList->a[0].pExpr; 809 pLeft = pExpr->pList->a[1].pExpr; 810 prereqExpr = exprTableUsage(pMaskSet, pRight); 811 prereqColumn = exprTableUsage(pMaskSet, pLeft); 812 if( (prereqExpr & prereqColumn)==0 ){ 813 Expr *pNewExpr; 814 pNewExpr = sqlite3Expr(TK_MATCH, 0, sqlite3ExprDup(pRight), 0); 815 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 816 pNewTerm = &pWC->a[idxNew]; 817 pNewTerm->prereqRight = prereqExpr; 818 pNewTerm->leftCursor = pLeft->iTable; 819 pNewTerm->leftColumn = pLeft->iColumn; 820 pNewTerm->eOperator = WO_MATCH; 821 pNewTerm->iParent = idxTerm; 822 pTerm = &pWC->a[idxTerm]; 823 pTerm->nChild = 1; 824 pTerm->flags |= TERM_COPIED; 825 pNewTerm->prereqAll = pTerm->prereqAll; 826 } 827 } 828 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 829 } 830 831 832 /* 833 ** This routine decides if pIdx can be used to satisfy the ORDER BY 834 ** clause. If it can, it returns 1. If pIdx cannot satisfy the 835 ** ORDER BY clause, this routine returns 0. 836 ** 837 ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the 838 ** left-most table in the FROM clause of that same SELECT statement and 839 ** the table has a cursor number of "base". pIdx is an index on pTab. 840 ** 841 ** nEqCol is the number of columns of pIdx that are used as equality 842 ** constraints. Any of these columns may be missing from the ORDER BY 843 ** clause and the match can still be a success. 844 ** 845 ** All terms of the ORDER BY that match against the index must be either 846 ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE 847 ** index do not need to satisfy this constraint.) The *pbRev value is 848 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if 849 ** the ORDER BY clause is all ASC. 850 */ 851 static int isSortingIndex( 852 Parse *pParse, /* Parsing context */ 853 Index *pIdx, /* The index we are testing */ 854 int base, /* Cursor number for the table to be sorted */ 855 ExprList *pOrderBy, /* The ORDER BY clause */ 856 int nEqCol, /* Number of index columns with == constraints */ 857 int *pbRev /* Set to 1 if ORDER BY is DESC */ 858 ){ 859 int i, j; /* Loop counters */ 860 int sortOrder = 0; /* XOR of index and ORDER BY sort direction */ 861 int nTerm; /* Number of ORDER BY terms */ 862 struct ExprList_item *pTerm; /* A term of the ORDER BY clause */ 863 sqlite3 *db = pParse->db; 864 865 assert( pOrderBy!=0 ); 866 nTerm = pOrderBy->nExpr; 867 assert( nTerm>0 ); 868 869 /* Match terms of the ORDER BY clause against columns of 870 ** the index. 871 ** 872 ** Note that indices have pIdx->nColumn regular columns plus 873 ** one additional column containing the rowid. The rowid column 874 ** of the index is also allowed to match against the ORDER BY 875 ** clause. 876 */ 877 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){ 878 Expr *pExpr; /* The expression of the ORDER BY pTerm */ 879 CollSeq *pColl; /* The collating sequence of pExpr */ 880 int termSortOrder; /* Sort order for this term */ 881 int iColumn; /* The i-th column of the index. -1 for rowid */ 882 int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */ 883 const char *zColl; /* Name of the collating sequence for i-th index term */ 884 885 pExpr = pTerm->pExpr; 886 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){ 887 /* Can not use an index sort on anything that is not a column in the 888 ** left-most table of the FROM clause */ 889 return 0; 890 } 891 pColl = sqlite3ExprCollSeq(pParse, pExpr); 892 if( !pColl ){ 893 pColl = db->pDfltColl; 894 } 895 if( i<pIdx->nColumn ){ 896 iColumn = pIdx->aiColumn[i]; 897 if( iColumn==pIdx->pTable->iPKey ){ 898 iColumn = -1; 899 } 900 iSortOrder = pIdx->aSortOrder[i]; 901 zColl = pIdx->azColl[i]; 902 }else{ 903 iColumn = -1; 904 iSortOrder = 0; 905 zColl = pColl->zName; 906 } 907 if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){ 908 /* Term j of the ORDER BY clause does not match column i of the index */ 909 if( i<nEqCol ){ 910 /* If an index column that is constrained by == fails to match an 911 ** ORDER BY term, that is OK. Just ignore that column of the index 912 */ 913 continue; 914 }else{ 915 /* If an index column fails to match and is not constrained by == 916 ** then the index cannot satisfy the ORDER BY constraint. 917 */ 918 return 0; 919 } 920 } 921 assert( pIdx->aSortOrder!=0 ); 922 assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 ); 923 assert( iSortOrder==0 || iSortOrder==1 ); 924 termSortOrder = iSortOrder ^ pTerm->sortOrder; 925 if( i>nEqCol ){ 926 if( termSortOrder!=sortOrder ){ 927 /* Indices can only be used if all ORDER BY terms past the 928 ** equality constraints are all either DESC or ASC. */ 929 return 0; 930 } 931 }else{ 932 sortOrder = termSortOrder; 933 } 934 j++; 935 pTerm++; 936 if( iColumn<0 ){ 937 /* If the indexed column is the primary key and everything matches 938 ** so far, then we are assured that the index can be used to sort 939 ** because the primary key is unique and so none of the other columns 940 ** will make any difference 941 */ 942 j = nTerm; 943 } 944 } 945 946 *pbRev = sortOrder!=0; 947 if( j>=nTerm ){ 948 /* All terms of the ORDER BY clause are covered by this index so 949 ** this index can be used for sorting. */ 950 return 1; 951 } 952 if( j==pIdx->nColumn && pIdx->onError!=OE_None ){ 953 /* All terms of this index match some prefix of the ORDER BY clause 954 ** and this index is UNIQUE, so this index can be used for sorting. */ 955 return 1; 956 } 957 return 0; 958 } 959 960 /* 961 ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied 962 ** by sorting in order of ROWID. Return true if so and set *pbRev to be 963 ** true for reverse ROWID and false for forward ROWID order. 964 */ 965 static int sortableByRowid( 966 int base, /* Cursor number for table to be sorted */ 967 ExprList *pOrderBy, /* The ORDER BY clause */ 968 int *pbRev /* Set to 1 if ORDER BY is DESC */ 969 ){ 970 Expr *p; 971 972 assert( pOrderBy!=0 ); 973 assert( pOrderBy->nExpr>0 ); 974 p = pOrderBy->a[0].pExpr; 975 if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1 ){ 976 *pbRev = pOrderBy->a[0].sortOrder; 977 return 1; 978 } 979 return 0; 980 } 981 982 /* 983 ** Prepare a crude estimate of the logarithm of the input value. 984 ** The results need not be exact. This is only used for estimating 985 ** the total cost of performing operatings with O(logN) or O(NlogN) 986 ** complexity. Because N is just a guess, it is no great tragedy if 987 ** logN is a little off. 988 */ 989 static double estLog(double N){ 990 double logN = 1; 991 double x = 10; 992 while( N>x ){ 993 logN += 1; 994 x *= 10; 995 } 996 return logN; 997 } 998 999 /* 1000 ** Two routines for printing the content of an sqlite3_index_info 1001 ** structure. Used for testing and debugging only. If neither 1002 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 1003 ** are no-ops. 1004 */ 1005 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && \ 1006 (defined(SQLITE_TEST) || defined(SQLITE_DEBUG)) 1007 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ 1008 int i; 1009 if( !sqlite3_where_trace ) return; 1010 for(i=0; i<p->nConstraint; i++){ 1011 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 1012 i, 1013 p->aConstraint[i].iColumn, 1014 p->aConstraint[i].iTermOffset, 1015 p->aConstraint[i].op, 1016 p->aConstraint[i].usable); 1017 } 1018 for(i=0; i<p->nOrderBy; i++){ 1019 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 1020 i, 1021 p->aOrderBy[i].iColumn, 1022 p->aOrderBy[i].desc); 1023 } 1024 } 1025 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ 1026 int i; 1027 if( !sqlite3_where_trace ) return; 1028 for(i=0; i<p->nConstraint; i++){ 1029 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 1030 i, 1031 p->aConstraintUsage[i].argvIndex, 1032 p->aConstraintUsage[i].omit); 1033 } 1034 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 1035 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 1036 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 1037 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 1038 } 1039 #else 1040 #define TRACE_IDX_INPUTS(A) 1041 #define TRACE_IDX_OUTPUTS(A) 1042 #endif 1043 1044 #ifndef SQLITE_OMIT_VIRTUALTABLE 1045 /* 1046 ** Compute the best index for a virtual table. 1047 ** 1048 ** The best index is computed by the xBestIndex method of the virtual 1049 ** table module. This routine is really just a wrapper that sets up 1050 ** the sqlite3_index_info structure that is used to communicate with 1051 ** xBestIndex. 1052 ** 1053 ** In a join, this routine might be called multiple times for the 1054 ** same virtual table. The sqlite3_index_info structure is created 1055 ** and initialized on the first invocation and reused on all subsequent 1056 ** invocations. The sqlite3_index_info structure is also used when 1057 ** code is generated to access the virtual table. The whereInfoDelete() 1058 ** routine takes care of freeing the sqlite3_index_info structure after 1059 ** everybody has finished with it. 1060 */ 1061 static double bestVirtualIndex( 1062 Parse *pParse, /* The parsing context */ 1063 WhereClause *pWC, /* The WHERE clause */ 1064 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1065 Bitmask notReady, /* Mask of cursors that are not available */ 1066 ExprList *pOrderBy, /* The order by clause */ 1067 int orderByUsable, /* True if we can potential sort */ 1068 sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */ 1069 ){ 1070 Table *pTab = pSrc->pTab; 1071 sqlite3_index_info *pIdxInfo; 1072 struct sqlite3_index_constraint *pIdxCons; 1073 struct sqlite3_index_orderby *pIdxOrderBy; 1074 struct sqlite3_index_constraint_usage *pUsage; 1075 WhereTerm *pTerm; 1076 int i, j; 1077 int nOrderBy; 1078 int rc; 1079 1080 /* If the sqlite3_index_info structure has not been previously 1081 ** allocated and initialized for this virtual table, then allocate 1082 ** and initialize it now 1083 */ 1084 pIdxInfo = *ppIdxInfo; 1085 if( pIdxInfo==0 ){ 1086 WhereTerm *pTerm; 1087 int nTerm; 1088 TRACE(("Recomputing index info for %s...\n", pTab->zName)); 1089 1090 /* Count the number of possible WHERE clause constraints referring 1091 ** to this virtual table */ 1092 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1093 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1094 if( pTerm->eOperator==WO_IN ) continue; 1095 nTerm++; 1096 } 1097 1098 /* If the ORDER BY clause contains only columns in the current 1099 ** virtual table then allocate space for the aOrderBy part of 1100 ** the sqlite3_index_info structure. 1101 */ 1102 nOrderBy = 0; 1103 if( pOrderBy ){ 1104 for(i=0; i<pOrderBy->nExpr; i++){ 1105 Expr *pExpr = pOrderBy->a[i].pExpr; 1106 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 1107 } 1108 if( i==pOrderBy->nExpr ){ 1109 nOrderBy = pOrderBy->nExpr; 1110 } 1111 } 1112 1113 /* Allocate the sqlite3_index_info structure 1114 */ 1115 pIdxInfo = sqliteMalloc( sizeof(*pIdxInfo) 1116 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 1117 + sizeof(*pIdxOrderBy)*nOrderBy ); 1118 if( pIdxInfo==0 ){ 1119 sqlite3ErrorMsg(pParse, "out of memory"); 1120 return 0.0; 1121 } 1122 *ppIdxInfo = pIdxInfo; 1123 1124 /* Initialize the structure. The sqlite3_index_info structure contains 1125 ** many fields that are declared "const" to prevent xBestIndex from 1126 ** changing them. We have to do some funky casting in order to 1127 ** initialize those fields. 1128 */ 1129 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; 1130 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 1131 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 1132 *(int*)&pIdxInfo->nConstraint = nTerm; 1133 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 1134 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; 1135 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; 1136 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = 1137 pUsage; 1138 1139 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1140 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1141 if( pTerm->eOperator==WO_IN ) continue; 1142 pIdxCons[j].iColumn = pTerm->leftColumn; 1143 pIdxCons[j].iTermOffset = i; 1144 pIdxCons[j].op = pTerm->eOperator; 1145 /* The direct assignment in the previous line is possible only because 1146 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 1147 ** following asserts verify this fact. */ 1148 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 1149 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 1150 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 1151 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 1152 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 1153 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); 1154 assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); 1155 j++; 1156 } 1157 for(i=0; i<nOrderBy; i++){ 1158 Expr *pExpr = pOrderBy->a[i].pExpr; 1159 pIdxOrderBy[i].iColumn = pExpr->iColumn; 1160 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; 1161 } 1162 } 1163 1164 /* At this point, the sqlite3_index_info structure that pIdxInfo points 1165 ** to will have been initialized, either during the current invocation or 1166 ** during some prior invocation. Now we just have to customize the 1167 ** details of pIdxInfo for the current invocation and pass it to 1168 ** xBestIndex. 1169 */ 1170 1171 /* The module name must be defined */ 1172 assert( pTab->azModuleArg && pTab->azModuleArg[0] ); 1173 if( pTab->pVtab==0 ){ 1174 sqlite3ErrorMsg(pParse, "undefined module %s for table %s", 1175 pTab->azModuleArg[0], pTab->zName); 1176 return 0.0; 1177 } 1178 1179 /* Set the aConstraint[].usable fields and initialize all 1180 ** output variables to zero. 1181 ** 1182 ** aConstraint[].usable is true for constraints where the right-hand 1183 ** side contains only references to tables to the left of the current 1184 ** table. In other words, if the constraint is of the form: 1185 ** 1186 ** column = expr 1187 ** 1188 ** and we are evaluating a join, then the constraint on column is 1189 ** only valid if all tables referenced in expr occur to the left 1190 ** of the table containing column. 1191 ** 1192 ** The aConstraints[] array contains entries for all constraints 1193 ** on the current table. That way we only have to compute it once 1194 ** even though we might try to pick the best index multiple times. 1195 ** For each attempt at picking an index, the order of tables in the 1196 ** join might be different so we have to recompute the usable flag 1197 ** each time. 1198 */ 1199 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 1200 pUsage = pIdxInfo->aConstraintUsage; 1201 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ 1202 j = pIdxCons->iTermOffset; 1203 pTerm = &pWC->a[j]; 1204 pIdxCons->usable = (pTerm->prereqRight & notReady)==0; 1205 } 1206 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); 1207 if( pIdxInfo->needToFreeIdxStr ){ 1208 sqlite3_free(pIdxInfo->idxStr); 1209 } 1210 pIdxInfo->idxStr = 0; 1211 pIdxInfo->idxNum = 0; 1212 pIdxInfo->needToFreeIdxStr = 0; 1213 pIdxInfo->orderByConsumed = 0; 1214 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0; 1215 nOrderBy = pIdxInfo->nOrderBy; 1216 if( pIdxInfo->nOrderBy && !orderByUsable ){ 1217 *(int*)&pIdxInfo->nOrderBy = 0; 1218 } 1219 1220 sqlite3SafetyOff(pParse->db); 1221 TRACE(("xBestIndex for %s\n", pTab->zName)); 1222 TRACE_IDX_INPUTS(pIdxInfo); 1223 rc = pTab->pVtab->pModule->xBestIndex(pTab->pVtab, pIdxInfo); 1224 TRACE_IDX_OUTPUTS(pIdxInfo); 1225 if( rc!=SQLITE_OK ){ 1226 if( rc==SQLITE_NOMEM ){ 1227 sqlite3FailedMalloc(); 1228 }else { 1229 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 1230 } 1231 sqlite3SafetyOn(pParse->db); 1232 }else{ 1233 rc = sqlite3SafetyOn(pParse->db); 1234 } 1235 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 1236 return pIdxInfo->estimatedCost; 1237 } 1238 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1239 1240 /* 1241 ** Find the best index for accessing a particular table. Return a pointer 1242 ** to the index, flags that describe how the index should be used, the 1243 ** number of equality constraints, and the "cost" for this index. 1244 ** 1245 ** The lowest cost index wins. The cost is an estimate of the amount of 1246 ** CPU and disk I/O need to process the request using the selected index. 1247 ** Factors that influence cost include: 1248 ** 1249 ** * The estimated number of rows that will be retrieved. (The 1250 ** fewer the better.) 1251 ** 1252 ** * Whether or not sorting must occur. 1253 ** 1254 ** * Whether or not there must be separate lookups in the 1255 ** index and in the main table. 1256 ** 1257 */ 1258 static double bestIndex( 1259 Parse *pParse, /* The parsing context */ 1260 WhereClause *pWC, /* The WHERE clause */ 1261 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1262 Bitmask notReady, /* Mask of cursors that are not available */ 1263 ExprList *pOrderBy, /* The order by clause */ 1264 Index **ppIndex, /* Make *ppIndex point to the best index */ 1265 int *pFlags, /* Put flags describing this choice in *pFlags */ 1266 int *pnEq /* Put the number of == or IN constraints here */ 1267 ){ 1268 WhereTerm *pTerm; 1269 Index *bestIdx = 0; /* Index that gives the lowest cost */ 1270 double lowestCost; /* The cost of using bestIdx */ 1271 int bestFlags = 0; /* Flags associated with bestIdx */ 1272 int bestNEq = 0; /* Best value for nEq */ 1273 int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ 1274 Index *pProbe; /* An index we are evaluating */ 1275 int rev; /* True to scan in reverse order */ 1276 int flags; /* Flags associated with pProbe */ 1277 int nEq; /* Number of == or IN constraints */ 1278 int eqTermMask; /* Mask of valid equality operators */ 1279 double cost; /* Cost of using pProbe */ 1280 1281 TRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady)); 1282 lowestCost = SQLITE_BIG_DBL; 1283 pProbe = pSrc->pTab->pIndex; 1284 1285 /* If the table has no indices and there are no terms in the where 1286 ** clause that refer to the ROWID, then we will never be able to do 1287 ** anything other than a full table scan on this table. We might as 1288 ** well put it first in the join order. That way, perhaps it can be 1289 ** referenced by other tables in the join. 1290 */ 1291 if( pProbe==0 && 1292 findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 && 1293 (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, &rev)) ){ 1294 *pFlags = 0; 1295 *ppIndex = 0; 1296 *pnEq = 0; 1297 return 0.0; 1298 } 1299 1300 /* Check for a rowid=EXPR or rowid IN (...) constraints 1301 */ 1302 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); 1303 if( pTerm ){ 1304 Expr *pExpr; 1305 *ppIndex = 0; 1306 bestFlags = WHERE_ROWID_EQ; 1307 if( pTerm->eOperator & WO_EQ ){ 1308 /* Rowid== is always the best pick. Look no further. Because only 1309 ** a single row is generated, output is always in sorted order */ 1310 *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE; 1311 *pnEq = 1; 1312 TRACE(("... best is rowid\n")); 1313 return 0.0; 1314 }else if( (pExpr = pTerm->pExpr)->pList!=0 ){ 1315 /* Rowid IN (LIST): cost is NlogN where N is the number of list 1316 ** elements. */ 1317 lowestCost = pExpr->pList->nExpr; 1318 lowestCost *= estLog(lowestCost); 1319 }else{ 1320 /* Rowid IN (SELECT): cost is NlogN where N is the number of rows 1321 ** in the result of the inner select. We have no way to estimate 1322 ** that value so make a wild guess. */ 1323 lowestCost = 200; 1324 } 1325 TRACE(("... rowid IN cost: %.9g\n", lowestCost)); 1326 } 1327 1328 /* Estimate the cost of a table scan. If we do not know how many 1329 ** entries are in the table, use 1 million as a guess. 1330 */ 1331 cost = pProbe ? pProbe->aiRowEst[0] : 1000000; 1332 TRACE(("... table scan base cost: %.9g\n", cost)); 1333 flags = WHERE_ROWID_RANGE; 1334 1335 /* Check for constraints on a range of rowids in a table scan. 1336 */ 1337 pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0); 1338 if( pTerm ){ 1339 if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){ 1340 flags |= WHERE_TOP_LIMIT; 1341 cost /= 3; /* Guess that rowid<EXPR eliminates two-thirds or rows */ 1342 } 1343 if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){ 1344 flags |= WHERE_BTM_LIMIT; 1345 cost /= 3; /* Guess that rowid>EXPR eliminates two-thirds of rows */ 1346 } 1347 TRACE(("... rowid range reduces cost to %.9g\n", cost)); 1348 }else{ 1349 flags = 0; 1350 } 1351 1352 /* If the table scan does not satisfy the ORDER BY clause, increase 1353 ** the cost by NlogN to cover the expense of sorting. */ 1354 if( pOrderBy ){ 1355 if( sortableByRowid(iCur, pOrderBy, &rev) ){ 1356 flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE; 1357 if( rev ){ 1358 flags |= WHERE_REVERSE; 1359 } 1360 }else{ 1361 cost += cost*estLog(cost); 1362 TRACE(("... sorting increases cost to %.9g\n", cost)); 1363 } 1364 } 1365 if( cost<lowestCost ){ 1366 lowestCost = cost; 1367 bestFlags = flags; 1368 } 1369 1370 /* If the pSrc table is the right table of a LEFT JOIN then we may not 1371 ** use an index to satisfy IS NULL constraints on that table. This is 1372 ** because columns might end up being NULL if the table does not match - 1373 ** a circumstance which the index cannot help us discover. Ticket #2177. 1374 */ 1375 if( (pSrc->jointype & JT_LEFT)!=0 ){ 1376 eqTermMask = WO_EQ|WO_IN; 1377 }else{ 1378 eqTermMask = WO_EQ|WO_IN|WO_ISNULL; 1379 } 1380 1381 /* Look at each index. 1382 */ 1383 for(; pProbe; pProbe=pProbe->pNext){ 1384 int i; /* Loop counter */ 1385 double inMultiplier = 1; 1386 1387 TRACE(("... index %s:\n", pProbe->zName)); 1388 1389 /* Count the number of columns in the index that are satisfied 1390 ** by x=EXPR constraints or x IN (...) constraints. 1391 */ 1392 flags = 0; 1393 for(i=0; i<pProbe->nColumn; i++){ 1394 int j = pProbe->aiColumn[i]; 1395 pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe); 1396 if( pTerm==0 ) break; 1397 flags |= WHERE_COLUMN_EQ; 1398 if( pTerm->eOperator & WO_IN ){ 1399 Expr *pExpr = pTerm->pExpr; 1400 flags |= WHERE_COLUMN_IN; 1401 if( pExpr->pSelect!=0 ){ 1402 inMultiplier *= 25; 1403 }else if( pExpr->pList!=0 ){ 1404 inMultiplier *= pExpr->pList->nExpr + 1; 1405 } 1406 } 1407 } 1408 cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier); 1409 nEq = i; 1410 if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0 1411 && nEq==pProbe->nColumn ){ 1412 flags |= WHERE_UNIQUE; 1413 } 1414 TRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n", nEq, inMultiplier, cost)); 1415 1416 /* Look for range constraints 1417 */ 1418 if( nEq<pProbe->nColumn ){ 1419 int j = pProbe->aiColumn[nEq]; 1420 pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe); 1421 if( pTerm ){ 1422 flags |= WHERE_COLUMN_RANGE; 1423 if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){ 1424 flags |= WHERE_TOP_LIMIT; 1425 cost /= 3; 1426 } 1427 if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){ 1428 flags |= WHERE_BTM_LIMIT; 1429 cost /= 3; 1430 } 1431 TRACE(("...... range reduces cost to %.9g\n", cost)); 1432 } 1433 } 1434 1435 /* Add the additional cost of sorting if that is a factor. 1436 */ 1437 if( pOrderBy ){ 1438 if( (flags & WHERE_COLUMN_IN)==0 && 1439 isSortingIndex(pParse,pProbe,iCur,pOrderBy,nEq,&rev) ){ 1440 if( flags==0 ){ 1441 flags = WHERE_COLUMN_RANGE; 1442 } 1443 flags |= WHERE_ORDERBY; 1444 if( rev ){ 1445 flags |= WHERE_REVERSE; 1446 } 1447 }else{ 1448 cost += cost*estLog(cost); 1449 TRACE(("...... orderby increases cost to %.9g\n", cost)); 1450 } 1451 } 1452 1453 /* Check to see if we can get away with using just the index without 1454 ** ever reading the table. If that is the case, then halve the 1455 ** cost of this index. 1456 */ 1457 if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){ 1458 Bitmask m = pSrc->colUsed; 1459 int j; 1460 for(j=0; j<pProbe->nColumn; j++){ 1461 int x = pProbe->aiColumn[j]; 1462 if( x<BMS-1 ){ 1463 m &= ~(((Bitmask)1)<<x); 1464 } 1465 } 1466 if( m==0 ){ 1467 flags |= WHERE_IDX_ONLY; 1468 cost /= 2; 1469 TRACE(("...... idx-only reduces cost to %.9g\n", cost)); 1470 } 1471 } 1472 1473 /* If this index has achieved the lowest cost so far, then use it. 1474 */ 1475 if( cost < lowestCost ){ 1476 bestIdx = pProbe; 1477 lowestCost = cost; 1478 assert( flags!=0 ); 1479 bestFlags = flags; 1480 bestNEq = nEq; 1481 } 1482 } 1483 1484 /* Report the best result 1485 */ 1486 *ppIndex = bestIdx; 1487 TRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n", 1488 bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq)); 1489 *pFlags = bestFlags; 1490 *pnEq = bestNEq; 1491 return lowestCost; 1492 } 1493 1494 1495 /* 1496 ** Disable a term in the WHERE clause. Except, do not disable the term 1497 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 1498 ** or USING clause of that join. 1499 ** 1500 ** Consider the term t2.z='ok' in the following queries: 1501 ** 1502 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 1503 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 1504 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 1505 ** 1506 ** The t2.z='ok' is disabled in the in (2) because it originates 1507 ** in the ON clause. The term is disabled in (3) because it is not part 1508 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 1509 ** 1510 ** Disabling a term causes that term to not be tested in the inner loop 1511 ** of the join. Disabling is an optimization. When terms are satisfied 1512 ** by indices, we disable them to prevent redundant tests in the inner 1513 ** loop. We would get the correct results if nothing were ever disabled, 1514 ** but joins might run a little slower. The trick is to disable as much 1515 ** as we can without disabling too much. If we disabled in (1), we'd get 1516 ** the wrong answer. See ticket #813. 1517 */ 1518 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 1519 if( pTerm 1520 && (pTerm->flags & TERM_CODED)==0 1521 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 1522 ){ 1523 pTerm->flags |= TERM_CODED; 1524 if( pTerm->iParent>=0 ){ 1525 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; 1526 if( (--pOther->nChild)==0 ){ 1527 disableTerm(pLevel, pOther); 1528 } 1529 } 1530 } 1531 } 1532 1533 /* 1534 ** Generate code that builds a probe for an index. 1535 ** 1536 ** There should be nColumn values on the stack. The index 1537 ** to be probed is pIdx. Pop the values from the stack and 1538 ** replace them all with a single record that is the index 1539 ** problem. 1540 */ 1541 static void buildIndexProbe( 1542 Vdbe *v, /* Generate code into this VM */ 1543 int nColumn, /* The number of columns to check for NULL */ 1544 Index *pIdx /* Index that we will be searching */ 1545 ){ 1546 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 1547 sqlite3IndexAffinityStr(v, pIdx); 1548 } 1549 1550 1551 /* 1552 ** Generate code for a single equality term of the WHERE clause. An equality 1553 ** term can be either X=expr or X IN (...). pTerm is the term to be 1554 ** coded. 1555 ** 1556 ** The current value for the constraint is left on the top of the stack. 1557 ** 1558 ** For a constraint of the form X=expr, the expression is evaluated and its 1559 ** result is left on the stack. For constraints of the form X IN (...) 1560 ** this routine sets up a loop that will iterate over all values of X. 1561 */ 1562 static void codeEqualityTerm( 1563 Parse *pParse, /* The parsing context */ 1564 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 1565 int brk, /* Jump here to abandon the loop */ 1566 WhereLevel *pLevel /* When level of the FROM clause we are working on */ 1567 ){ 1568 Expr *pX = pTerm->pExpr; 1569 Vdbe *v = pParse->pVdbe; 1570 if( pX->op==TK_EQ ){ 1571 sqlite3ExprCode(pParse, pX->pRight); 1572 }else if( pX->op==TK_ISNULL ){ 1573 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1574 #ifndef SQLITE_OMIT_SUBQUERY 1575 }else{ 1576 int iTab; 1577 int *aIn; 1578 1579 assert( pX->op==TK_IN ); 1580 sqlite3CodeSubselect(pParse, pX); 1581 iTab = pX->iTable; 1582 sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0); 1583 VdbeComment((v, "# %.*s", pX->span.n, pX->span.z)); 1584 pLevel->nIn++; 1585 sqliteReallocOrFree((void**)&pLevel->aInLoop, 1586 sizeof(pLevel->aInLoop[0])*2*pLevel->nIn); 1587 aIn = pLevel->aInLoop; 1588 if( aIn ){ 1589 aIn += pLevel->nIn*2 - 2; 1590 aIn[0] = iTab; 1591 aIn[1] = sqlite3VdbeAddOp(v, OP_Column, iTab, 0); 1592 }else{ 1593 pLevel->nIn = 0; 1594 } 1595 #endif 1596 } 1597 disableTerm(pLevel, pTerm); 1598 } 1599 1600 /* 1601 ** Generate code that will evaluate all == and IN constraints for an 1602 ** index. The values for all constraints are left on the stack. 1603 ** 1604 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 1605 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 1606 ** The index has as many as three equality constraints, but in this 1607 ** example, the third "c" value is an inequality. So only two 1608 ** constraints are coded. This routine will generate code to evaluate 1609 ** a==5 and b IN (1,2,3). The current values for a and b will be left 1610 ** on the stack - a is the deepest and b the shallowest. 1611 ** 1612 ** In the example above nEq==2. But this subroutine works for any value 1613 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 1614 ** The only thing it does is allocate the pLevel->iMem memory cell. 1615 ** 1616 ** This routine always allocates at least one memory cell and puts 1617 ** the address of that memory cell in pLevel->iMem. The code that 1618 ** calls this routine will use pLevel->iMem to store the termination 1619 ** key value of the loop. If one or more IN operators appear, then 1620 ** this routine allocates an additional nEq memory cells for internal 1621 ** use. 1622 */ 1623 static void codeAllEqualityTerms( 1624 Parse *pParse, /* Parsing context */ 1625 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 1626 WhereClause *pWC, /* The WHERE clause */ 1627 Bitmask notReady, /* Which parts of FROM have not yet been coded */ 1628 int brk /* Jump here to end the loop */ 1629 ){ 1630 int nEq = pLevel->nEq; /* The number of == or IN constraints to code */ 1631 int termsInMem = 0; /* If true, store value in mem[] cells */ 1632 Vdbe *v = pParse->pVdbe; /* The virtual machine under construction */ 1633 Index *pIdx = pLevel->pIdx; /* The index being used for this loop */ 1634 int iCur = pLevel->iTabCur; /* The cursor of the table */ 1635 WhereTerm *pTerm; /* A single constraint term */ 1636 int j; /* Loop counter */ 1637 1638 /* Figure out how many memory cells we will need then allocate them. 1639 ** We always need at least one used to store the loop terminator 1640 ** value. If there are IN operators we'll need one for each == or 1641 ** IN constraint. 1642 */ 1643 pLevel->iMem = pParse->nMem++; 1644 if( pLevel->flags & WHERE_COLUMN_IN ){ 1645 pParse->nMem += pLevel->nEq; 1646 termsInMem = 1; 1647 } 1648 1649 /* Evaluate the equality constraints 1650 */ 1651 assert( pIdx->nColumn>=nEq ); 1652 for(j=0; j<nEq; j++){ 1653 int k = pIdx->aiColumn[j]; 1654 pTerm = findTerm(pWC, iCur, k, notReady, WO_EQ|WO_IN|WO_ISNULL, pIdx); 1655 if( pTerm==0 ) break; 1656 assert( (pTerm->flags & TERM_CODED)==0 ); 1657 codeEqualityTerm(pParse, pTerm, brk, pLevel); 1658 if( (pTerm->eOperator & WO_ISNULL)==0 ){ 1659 sqlite3VdbeAddOp(v, OP_IsNull, termsInMem ? -1 : -(j+1), brk); 1660 } 1661 if( termsInMem ){ 1662 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem+j+1, 1); 1663 } 1664 } 1665 1666 /* Make sure all the constraint values are on the top of the stack 1667 */ 1668 if( termsInMem ){ 1669 for(j=0; j<nEq; j++){ 1670 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem+j+1, 0); 1671 } 1672 } 1673 } 1674 1675 #if defined(SQLITE_TEST) 1676 /* 1677 ** The following variable holds a text description of query plan generated 1678 ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin 1679 ** overwrites the previous. This information is used for testing and 1680 ** analysis only. 1681 */ 1682 char sqlite3_query_plan[BMS*2*40]; /* Text of the join */ 1683 static int nQPlan = 0; /* Next free slow in _query_plan[] */ 1684 1685 #endif /* SQLITE_TEST */ 1686 1687 1688 /* 1689 ** Free a WhereInfo structure 1690 */ 1691 static void whereInfoFree(WhereInfo *pWInfo){ 1692 if( pWInfo ){ 1693 int i; 1694 for(i=0; i<pWInfo->nLevel; i++){ 1695 sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo; 1696 if( pInfo ){ 1697 if( pInfo->needToFreeIdxStr ){ 1698 sqlite3_free(pInfo->idxStr); 1699 } 1700 sqliteFree(pInfo); 1701 } 1702 } 1703 sqliteFree(pWInfo); 1704 } 1705 } 1706 1707 1708 /* 1709 ** Generate the beginning of the loop used for WHERE clause processing. 1710 ** The return value is a pointer to an opaque structure that contains 1711 ** information needed to terminate the loop. Later, the calling routine 1712 ** should invoke sqlite3WhereEnd() with the return value of this function 1713 ** in order to complete the WHERE clause processing. 1714 ** 1715 ** If an error occurs, this routine returns NULL. 1716 ** 1717 ** The basic idea is to do a nested loop, one loop for each table in 1718 ** the FROM clause of a select. (INSERT and UPDATE statements are the 1719 ** same as a SELECT with only a single table in the FROM clause.) For 1720 ** example, if the SQL is this: 1721 ** 1722 ** SELECT * FROM t1, t2, t3 WHERE ...; 1723 ** 1724 ** Then the code generated is conceptually like the following: 1725 ** 1726 ** foreach row1 in t1 do \ Code generated 1727 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 1728 ** foreach row3 in t3 do / 1729 ** ... 1730 ** end \ Code generated 1731 ** end |-- by sqlite3WhereEnd() 1732 ** end / 1733 ** 1734 ** Note that the loops might not be nested in the order in which they 1735 ** appear in the FROM clause if a different order is better able to make 1736 ** use of indices. Note also that when the IN operator appears in 1737 ** the WHERE clause, it might result in additional nested loops for 1738 ** scanning through all values on the right-hand side of the IN. 1739 ** 1740 ** There are Btree cursors associated with each table. t1 uses cursor 1741 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 1742 ** And so forth. This routine generates code to open those VDBE cursors 1743 ** and sqlite3WhereEnd() generates the code to close them. 1744 ** 1745 ** The code that sqlite3WhereBegin() generates leaves the cursors named 1746 ** in pTabList pointing at their appropriate entries. The [...] code 1747 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 1748 ** data from the various tables of the loop. 1749 ** 1750 ** If the WHERE clause is empty, the foreach loops must each scan their 1751 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 1752 ** the tables have indices and there are terms in the WHERE clause that 1753 ** refer to those indices, a complete table scan can be avoided and the 1754 ** code will run much faster. Most of the work of this routine is checking 1755 ** to see if there are indices that can be used to speed up the loop. 1756 ** 1757 ** Terms of the WHERE clause are also used to limit which rows actually 1758 ** make it to the "..." in the middle of the loop. After each "foreach", 1759 ** terms of the WHERE clause that use only terms in that loop and outer 1760 ** loops are evaluated and if false a jump is made around all subsequent 1761 ** inner loops (or around the "..." if the test occurs within the inner- 1762 ** most loop) 1763 ** 1764 ** OUTER JOINS 1765 ** 1766 ** An outer join of tables t1 and t2 is conceptally coded as follows: 1767 ** 1768 ** foreach row1 in t1 do 1769 ** flag = 0 1770 ** foreach row2 in t2 do 1771 ** start: 1772 ** ... 1773 ** flag = 1 1774 ** end 1775 ** if flag==0 then 1776 ** move the row2 cursor to a null row 1777 ** goto start 1778 ** fi 1779 ** end 1780 ** 1781 ** ORDER BY CLAUSE PROCESSING 1782 ** 1783 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, 1784 ** if there is one. If there is no ORDER BY clause or if this routine 1785 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. 1786 ** 1787 ** If an index can be used so that the natural output order of the table 1788 ** scan is correct for the ORDER BY clause, then that index is used and 1789 ** *ppOrderBy is set to NULL. This is an optimization that prevents an 1790 ** unnecessary sort of the result set if an index appropriate for the 1791 ** ORDER BY clause already exists. 1792 ** 1793 ** If the where clause loops cannot be arranged to provide the correct 1794 ** output order, then the *ppOrderBy is unchanged. 1795 */ 1796 WhereInfo *sqlite3WhereBegin( 1797 Parse *pParse, /* The parser context */ 1798 SrcList *pTabList, /* A list of all tables to be scanned */ 1799 Expr *pWhere, /* The WHERE clause */ 1800 ExprList **ppOrderBy /* An ORDER BY clause, or NULL */ 1801 ){ 1802 int i; /* Loop counter */ 1803 WhereInfo *pWInfo; /* Will become the return value of this function */ 1804 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 1805 int brk, cont = 0; /* Addresses used during code generation */ 1806 Bitmask notReady; /* Cursors that are not yet positioned */ 1807 WhereTerm *pTerm; /* A single term in the WHERE clause */ 1808 ExprMaskSet maskSet; /* The expression mask set */ 1809 WhereClause wc; /* The WHERE clause is divided into these terms */ 1810 struct SrcList_item *pTabItem; /* A single entry from pTabList */ 1811 WhereLevel *pLevel; /* A single level in the pWInfo list */ 1812 int iFrom; /* First unused FROM clause element */ 1813 int andFlags; /* AND-ed combination of all wc.a[].flags */ 1814 1815 /* The number of tables in the FROM clause is limited by the number of 1816 ** bits in a Bitmask 1817 */ 1818 if( pTabList->nSrc>BMS ){ 1819 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 1820 return 0; 1821 } 1822 1823 /* Split the WHERE clause into separate subexpressions where each 1824 ** subexpression is separated by an AND operator. 1825 */ 1826 initMaskSet(&maskSet); 1827 whereClauseInit(&wc, pParse); 1828 whereSplit(&wc, pWhere, TK_AND); 1829 1830 /* Allocate and initialize the WhereInfo structure that will become the 1831 ** return value. 1832 */ 1833 pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel)); 1834 if( sqlite3MallocFailed() ){ 1835 goto whereBeginNoMem; 1836 } 1837 pWInfo->nLevel = pTabList->nSrc; 1838 pWInfo->pParse = pParse; 1839 pWInfo->pTabList = pTabList; 1840 pWInfo->iBreak = sqlite3VdbeMakeLabel(v); 1841 1842 /* Special case: a WHERE clause that is constant. Evaluate the 1843 ** expression and either jump over all of the code or fall thru. 1844 */ 1845 if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstant(pWhere)) ){ 1846 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1); 1847 pWhere = 0; 1848 } 1849 1850 /* Analyze all of the subexpressions. Note that exprAnalyze() might 1851 ** add new virtual terms onto the end of the WHERE clause. We do not 1852 ** want to analyze these virtual terms, so start analyzing at the end 1853 ** and work forward so that the added virtual terms are never processed. 1854 */ 1855 for(i=0; i<pTabList->nSrc; i++){ 1856 createMask(&maskSet, pTabList->a[i].iCursor); 1857 } 1858 exprAnalyzeAll(pTabList, &maskSet, &wc); 1859 if( sqlite3MallocFailed() ){ 1860 goto whereBeginNoMem; 1861 } 1862 1863 /* Chose the best index to use for each table in the FROM clause. 1864 ** 1865 ** This loop fills in the following fields: 1866 ** 1867 ** pWInfo->a[].pIdx The index to use for this level of the loop. 1868 ** pWInfo->a[].flags WHERE_xxx flags associated with pIdx 1869 ** pWInfo->a[].nEq The number of == and IN constraints 1870 ** pWInfo->a[].iFrom When term of the FROM clause is being coded 1871 ** pWInfo->a[].iTabCur The VDBE cursor for the database table 1872 ** pWInfo->a[].iIdxCur The VDBE cursor for the index 1873 ** 1874 ** This loop also figures out the nesting order of tables in the FROM 1875 ** clause. 1876 */ 1877 notReady = ~(Bitmask)0; 1878 pTabItem = pTabList->a; 1879 pLevel = pWInfo->a; 1880 andFlags = ~0; 1881 TRACE(("*** Optimizer Start ***\n")); 1882 for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 1883 Index *pIdx; /* Index for FROM table at pTabItem */ 1884 int flags; /* Flags asssociated with pIdx */ 1885 int nEq; /* Number of == or IN constraints */ 1886 double cost; /* The cost for pIdx */ 1887 int j; /* For looping over FROM tables */ 1888 Index *pBest = 0; /* The best index seen so far */ 1889 int bestFlags = 0; /* Flags associated with pBest */ 1890 int bestNEq = 0; /* nEq associated with pBest */ 1891 double lowestCost; /* Cost of the pBest */ 1892 int bestJ = 0; /* The value of j */ 1893 Bitmask m; /* Bitmask value for j or bestJ */ 1894 int once = 0; /* True when first table is seen */ 1895 sqlite3_index_info *pIndex; /* Current virtual index */ 1896 1897 lowestCost = SQLITE_BIG_DBL; 1898 for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){ 1899 int doNotReorder; /* True if this table should not be reordered */ 1900 1901 doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0; 1902 if( once && doNotReorder ) break; 1903 m = getMask(&maskSet, pTabItem->iCursor); 1904 if( (m & notReady)==0 ){ 1905 if( j==iFrom ) iFrom++; 1906 continue; 1907 } 1908 assert( pTabItem->pTab ); 1909 #ifndef SQLITE_OMIT_VIRTUALTABLE 1910 if( IsVirtual(pTabItem->pTab) ){ 1911 sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo; 1912 cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady, 1913 ppOrderBy ? *ppOrderBy : 0, i==0, 1914 ppIdxInfo); 1915 flags = WHERE_VIRTUALTABLE; 1916 pIndex = *ppIdxInfo; 1917 if( pIndex && pIndex->orderByConsumed ){ 1918 flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY; 1919 } 1920 pIdx = 0; 1921 nEq = 0; 1922 }else 1923 #endif 1924 { 1925 cost = bestIndex(pParse, &wc, pTabItem, notReady, 1926 (i==0 && ppOrderBy) ? *ppOrderBy : 0, 1927 &pIdx, &flags, &nEq); 1928 pIndex = 0; 1929 } 1930 if( cost<lowestCost ){ 1931 once = 1; 1932 lowestCost = cost; 1933 pBest = pIdx; 1934 bestFlags = flags; 1935 bestNEq = nEq; 1936 bestJ = j; 1937 pLevel->pBestIdx = pIndex; 1938 } 1939 if( doNotReorder ) break; 1940 } 1941 TRACE(("*** Optimizer choose table %d for loop %d\n", bestJ, 1942 pLevel-pWInfo->a)); 1943 if( (bestFlags & WHERE_ORDERBY)!=0 ){ 1944 *ppOrderBy = 0; 1945 } 1946 andFlags &= bestFlags; 1947 pLevel->flags = bestFlags; 1948 pLevel->pIdx = pBest; 1949 pLevel->nEq = bestNEq; 1950 pLevel->aInLoop = 0; 1951 pLevel->nIn = 0; 1952 if( pBest ){ 1953 pLevel->iIdxCur = pParse->nTab++; 1954 }else{ 1955 pLevel->iIdxCur = -1; 1956 } 1957 notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor); 1958 pLevel->iFrom = bestJ; 1959 } 1960 TRACE(("*** Optimizer Finished ***\n")); 1961 1962 /* If the total query only selects a single row, then the ORDER BY 1963 ** clause is irrelevant. 1964 */ 1965 if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){ 1966 *ppOrderBy = 0; 1967 } 1968 1969 /* Open all tables in the pTabList and any indices selected for 1970 ** searching those tables. 1971 */ 1972 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ 1973 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 1974 Table *pTab; /* Table to open */ 1975 Index *pIx; /* Index used to access pTab (if any) */ 1976 int iDb; /* Index of database containing table/index */ 1977 int iIdxCur = pLevel->iIdxCur; 1978 1979 #ifndef SQLITE_OMIT_EXPLAIN 1980 if( pParse->explain==2 ){ 1981 char *zMsg; 1982 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 1983 zMsg = sqlite3MPrintf("TABLE %s", pItem->zName); 1984 if( pItem->zAlias ){ 1985 zMsg = sqlite3MPrintf("%z AS %s", zMsg, pItem->zAlias); 1986 } 1987 if( (pIx = pLevel->pIdx)!=0 ){ 1988 zMsg = sqlite3MPrintf("%z WITH INDEX %s", zMsg, pIx->zName); 1989 }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ 1990 zMsg = sqlite3MPrintf("%z USING PRIMARY KEY", zMsg); 1991 } 1992 #ifndef SQLITE_OMIT_VIRTUALTABLE 1993 else if( pLevel->pBestIdx ){ 1994 sqlite3_index_info *pBestIdx = pLevel->pBestIdx; 1995 zMsg = sqlite3MPrintf("%z VIRTUAL TABLE INDEX %d:%s", zMsg, 1996 pBestIdx->idxNum, pBestIdx->idxStr); 1997 } 1998 #endif 1999 if( pLevel->flags & WHERE_ORDERBY ){ 2000 zMsg = sqlite3MPrintf("%z ORDER BY", zMsg); 2001 } 2002 sqlite3VdbeOp3(v, OP_Explain, i, pLevel->iFrom, zMsg, P3_DYNAMIC); 2003 } 2004 #endif /* SQLITE_OMIT_EXPLAIN */ 2005 pTabItem = &pTabList->a[pLevel->iFrom]; 2006 pTab = pTabItem->pTab; 2007 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2008 if( pTab->isEphem || pTab->pSelect ) continue; 2009 #ifndef SQLITE_OMIT_VIRTUALTABLE 2010 if( pLevel->pBestIdx ){ 2011 int iCur = pTabItem->iCursor; 2012 sqlite3VdbeOp3(v, OP_VOpen, iCur, 0, (const char*)pTab->pVtab, P3_VTAB); 2013 }else 2014 #endif 2015 if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){ 2016 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, OP_OpenRead); 2017 if( pTab->nCol<(sizeof(Bitmask)*8) ){ 2018 Bitmask b = pTabItem->colUsed; 2019 int n = 0; 2020 for(; b; b=b>>1, n++){} 2021 sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-1, n); 2022 assert( n<=pTab->nCol ); 2023 } 2024 }else{ 2025 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2026 } 2027 pLevel->iTabCur = pTabItem->iCursor; 2028 if( (pIx = pLevel->pIdx)!=0 ){ 2029 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx); 2030 assert( pIx->pSchema==pTab->pSchema ); 2031 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); 2032 VdbeComment((v, "# %s", pIx->zName)); 2033 sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum, 2034 (char*)pKey, P3_KEYINFO_HANDOFF); 2035 } 2036 if( (pLevel->flags & (WHERE_IDX_ONLY|WHERE_COLUMN_RANGE))!=0 ){ 2037 /* Only call OP_SetNumColumns on the index if we might later use 2038 ** OP_Column on the index. */ 2039 sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1); 2040 } 2041 sqlite3CodeVerifySchema(pParse, iDb); 2042 } 2043 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 2044 2045 /* Generate the code to do the search. Each iteration of the for 2046 ** loop below generates code for a single nested loop of the VM 2047 ** program. 2048 */ 2049 notReady = ~(Bitmask)0; 2050 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 2051 int j; 2052 int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */ 2053 Index *pIdx; /* The index we will be using */ 2054 int iIdxCur; /* The VDBE cursor for the index */ 2055 int omitTable; /* True if we use the index only */ 2056 int bRev; /* True if we need to scan in reverse order */ 2057 2058 pTabItem = &pTabList->a[pLevel->iFrom]; 2059 iCur = pTabItem->iCursor; 2060 pIdx = pLevel->pIdx; 2061 iIdxCur = pLevel->iIdxCur; 2062 bRev = (pLevel->flags & WHERE_REVERSE)!=0; 2063 omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0; 2064 2065 /* Create labels for the "break" and "continue" instructions 2066 ** for the current loop. Jump to brk to break out of a loop. 2067 ** Jump to cont to go immediately to the next iteration of the 2068 ** loop. 2069 */ 2070 brk = pLevel->brk = sqlite3VdbeMakeLabel(v); 2071 cont = pLevel->cont = sqlite3VdbeMakeLabel(v); 2072 2073 /* If this is the right table of a LEFT OUTER JOIN, allocate and 2074 ** initialize a memory cell that records if this table matches any 2075 ** row of the left table of the join. 2076 */ 2077 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ 2078 if( !pParse->nMem ) pParse->nMem++; 2079 pLevel->iLeftJoin = pParse->nMem++; 2080 sqlite3VdbeAddOp(v, OP_MemInt, 0, pLevel->iLeftJoin); 2081 VdbeComment((v, "# init LEFT JOIN no-match flag")); 2082 } 2083 2084 #ifndef SQLITE_OMIT_VIRTUALTABLE 2085 if( pLevel->pBestIdx ){ 2086 /* Case 0: The table is a virtual-table. Use the VFilter and VNext 2087 ** to access the data. 2088 */ 2089 int j; 2090 sqlite3_index_info *pBestIdx = pLevel->pBestIdx; 2091 int nConstraint = pBestIdx->nConstraint; 2092 struct sqlite3_index_constraint_usage *aUsage = 2093 pBestIdx->aConstraintUsage; 2094 const struct sqlite3_index_constraint *aConstraint = 2095 pBestIdx->aConstraint; 2096 2097 for(j=1; j<=nConstraint; j++){ 2098 int k; 2099 for(k=0; k<nConstraint; k++){ 2100 if( aUsage[k].argvIndex==j ){ 2101 int iTerm = aConstraint[k].iTermOffset; 2102 sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight); 2103 break; 2104 } 2105 } 2106 if( k==nConstraint ) break; 2107 } 2108 sqlite3VdbeAddOp(v, OP_Integer, j-1, 0); 2109 sqlite3VdbeAddOp(v, OP_Integer, pBestIdx->idxNum, 0); 2110 sqlite3VdbeOp3(v, OP_VFilter, iCur, brk, pBestIdx->idxStr, 2111 pBestIdx->needToFreeIdxStr ? P3_MPRINTF : P3_STATIC); 2112 pBestIdx->needToFreeIdxStr = 0; 2113 for(j=0; j<pBestIdx->nConstraint; j++){ 2114 if( aUsage[j].omit ){ 2115 int iTerm = aConstraint[j].iTermOffset; 2116 disableTerm(pLevel, &wc.a[iTerm]); 2117 } 2118 } 2119 pLevel->op = OP_VNext; 2120 pLevel->p1 = iCur; 2121 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2122 }else 2123 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 2124 2125 if( pLevel->flags & WHERE_ROWID_EQ ){ 2126 /* Case 1: We can directly reference a single row using an 2127 ** equality comparison against the ROWID field. Or 2128 ** we reference multiple rows using a "rowid IN (...)" 2129 ** construct. 2130 */ 2131 pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0); 2132 assert( pTerm!=0 ); 2133 assert( pTerm->pExpr!=0 ); 2134 assert( pTerm->leftCursor==iCur ); 2135 assert( omitTable==0 ); 2136 codeEqualityTerm(pParse, pTerm, brk, pLevel); 2137 sqlite3VdbeAddOp(v, OP_MustBeInt, 1, brk); 2138 sqlite3VdbeAddOp(v, OP_NotExists, iCur, brk); 2139 VdbeComment((v, "pk")); 2140 pLevel->op = OP_Noop; 2141 }else if( pLevel->flags & WHERE_ROWID_RANGE ){ 2142 /* Case 2: We have an inequality comparison against the ROWID field. 2143 */ 2144 int testOp = OP_Noop; 2145 int start; 2146 WhereTerm *pStart, *pEnd; 2147 2148 assert( omitTable==0 ); 2149 pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0); 2150 pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0); 2151 if( bRev ){ 2152 pTerm = pStart; 2153 pStart = pEnd; 2154 pEnd = pTerm; 2155 } 2156 if( pStart ){ 2157 Expr *pX; 2158 pX = pStart->pExpr; 2159 assert( pX!=0 ); 2160 assert( pStart->leftCursor==iCur ); 2161 sqlite3ExprCode(pParse, pX->pRight); 2162 sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk); 2163 sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk); 2164 VdbeComment((v, "pk")); 2165 disableTerm(pLevel, pStart); 2166 }else{ 2167 sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk); 2168 } 2169 if( pEnd ){ 2170 Expr *pX; 2171 pX = pEnd->pExpr; 2172 assert( pX!=0 ); 2173 assert( pEnd->leftCursor==iCur ); 2174 sqlite3ExprCode(pParse, pX->pRight); 2175 pLevel->iMem = pParse->nMem++; 2176 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); 2177 if( pX->op==TK_LT || pX->op==TK_GT ){ 2178 testOp = bRev ? OP_Le : OP_Ge; 2179 }else{ 2180 testOp = bRev ? OP_Lt : OP_Gt; 2181 } 2182 disableTerm(pLevel, pEnd); 2183 } 2184 start = sqlite3VdbeCurrentAddr(v); 2185 pLevel->op = bRev ? OP_Prev : OP_Next; 2186 pLevel->p1 = iCur; 2187 pLevel->p2 = start; 2188 if( testOp!=OP_Noop ){ 2189 sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0); 2190 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 2191 sqlite3VdbeAddOp(v, testOp, SQLITE_AFF_NUMERIC, brk); 2192 } 2193 }else if( pLevel->flags & WHERE_COLUMN_RANGE ){ 2194 /* Case 3: The WHERE clause term that refers to the right-most 2195 ** column of the index is an inequality. For example, if 2196 ** the index is on (x,y,z) and the WHERE clause is of the 2197 ** form "x=5 AND y<10" then this case is used. Only the 2198 ** right-most column can be an inequality - the rest must 2199 ** use the "==" and "IN" operators. 2200 ** 2201 ** This case is also used when there are no WHERE clause 2202 ** constraints but an index is selected anyway, in order 2203 ** to force the output order to conform to an ORDER BY. 2204 */ 2205 int start; 2206 int nEq = pLevel->nEq; 2207 int topEq=0; /* True if top limit uses ==. False is strictly < */ 2208 int btmEq=0; /* True if btm limit uses ==. False if strictly > */ 2209 int topOp, btmOp; /* Operators for the top and bottom search bounds */ 2210 int testOp; 2211 int topLimit = (pLevel->flags & WHERE_TOP_LIMIT)!=0; 2212 int btmLimit = (pLevel->flags & WHERE_BTM_LIMIT)!=0; 2213 2214 /* Generate code to evaluate all constraint terms using == or IN 2215 ** and level the values of those terms on the stack. 2216 */ 2217 codeAllEqualityTerms(pParse, pLevel, &wc, notReady, brk); 2218 2219 /* Duplicate the equality term values because they will all be 2220 ** used twice: once to make the termination key and once to make the 2221 ** start key. 2222 */ 2223 for(j=0; j<nEq; j++){ 2224 sqlite3VdbeAddOp(v, OP_Dup, nEq-1, 0); 2225 } 2226 2227 /* Figure out what comparison operators to use for top and bottom 2228 ** search bounds. For an ascending index, the bottom bound is a > or >= 2229 ** operator and the top bound is a < or <= operator. For a descending 2230 ** index the operators are reversed. 2231 */ 2232 if( pIdx->aSortOrder[nEq]==SQLITE_SO_ASC ){ 2233 topOp = WO_LT|WO_LE; 2234 btmOp = WO_GT|WO_GE; 2235 }else{ 2236 topOp = WO_GT|WO_GE; 2237 btmOp = WO_LT|WO_LE; 2238 SWAP(int, topLimit, btmLimit); 2239 } 2240 2241 /* Generate the termination key. This is the key value that 2242 ** will end the search. There is no termination key if there 2243 ** are no equality terms and no "X<..." term. 2244 ** 2245 ** 2002-Dec-04: On a reverse-order scan, the so-called "termination" 2246 ** key computed here really ends up being the start key. 2247 */ 2248 if( topLimit ){ 2249 Expr *pX; 2250 int k = pIdx->aiColumn[j]; 2251 pTerm = findTerm(&wc, iCur, k, notReady, topOp, pIdx); 2252 assert( pTerm!=0 ); 2253 pX = pTerm->pExpr; 2254 assert( (pTerm->flags & TERM_CODED)==0 ); 2255 sqlite3ExprCode(pParse, pX->pRight); 2256 sqlite3VdbeAddOp(v, OP_IsNull, -(nEq+1), brk); 2257 topEq = pTerm->eOperator & (WO_LE|WO_GE); 2258 disableTerm(pLevel, pTerm); 2259 testOp = OP_IdxGE; 2260 }else{ 2261 testOp = nEq>0 ? OP_IdxGE : OP_Noop; 2262 topEq = 1; 2263 } 2264 if( testOp!=OP_Noop ){ 2265 int nCol = nEq + topLimit; 2266 pLevel->iMem = pParse->nMem++; 2267 buildIndexProbe(v, nCol, pIdx); 2268 if( bRev ){ 2269 int op = topEq ? OP_MoveLe : OP_MoveLt; 2270 sqlite3VdbeAddOp(v, op, iIdxCur, brk); 2271 }else{ 2272 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); 2273 } 2274 }else if( bRev ){ 2275 sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk); 2276 } 2277 2278 /* Generate the start key. This is the key that defines the lower 2279 ** bound on the search. There is no start key if there are no 2280 ** equality terms and if there is no "X>..." term. In 2281 ** that case, generate a "Rewind" instruction in place of the 2282 ** start key search. 2283 ** 2284 ** 2002-Dec-04: In the case of a reverse-order search, the so-called 2285 ** "start" key really ends up being used as the termination key. 2286 */ 2287 if( btmLimit ){ 2288 Expr *pX; 2289 int k = pIdx->aiColumn[j]; 2290 pTerm = findTerm(&wc, iCur, k, notReady, btmOp, pIdx); 2291 assert( pTerm!=0 ); 2292 pX = pTerm->pExpr; 2293 assert( (pTerm->flags & TERM_CODED)==0 ); 2294 sqlite3ExprCode(pParse, pX->pRight); 2295 sqlite3VdbeAddOp(v, OP_IsNull, -(nEq+1), brk); 2296 btmEq = pTerm->eOperator & (WO_LE|WO_GE); 2297 disableTerm(pLevel, pTerm); 2298 }else{ 2299 btmEq = 1; 2300 } 2301 if( nEq>0 || btmLimit ){ 2302 int nCol = nEq + btmLimit; 2303 buildIndexProbe(v, nCol, pIdx); 2304 if( bRev ){ 2305 pLevel->iMem = pParse->nMem++; 2306 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); 2307 testOp = OP_IdxLT; 2308 }else{ 2309 int op = btmEq ? OP_MoveGe : OP_MoveGt; 2310 sqlite3VdbeAddOp(v, op, iIdxCur, brk); 2311 } 2312 }else if( bRev ){ 2313 testOp = OP_Noop; 2314 }else{ 2315 sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk); 2316 } 2317 2318 /* Generate the the top of the loop. If there is a termination 2319 ** key we have to test for that key and abort at the top of the 2320 ** loop. 2321 */ 2322 start = sqlite3VdbeCurrentAddr(v); 2323 if( testOp!=OP_Noop ){ 2324 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 2325 sqlite3VdbeAddOp(v, testOp, iIdxCur, brk); 2326 if( (topEq && !bRev) || (!btmEq && bRev) ){ 2327 sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC); 2328 } 2329 } 2330 if( topLimit | btmLimit ){ 2331 sqlite3VdbeAddOp(v, OP_Column, iIdxCur, nEq); 2332 sqlite3VdbeAddOp(v, OP_IsNull, 1, cont); 2333 } 2334 if( !omitTable ){ 2335 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0); 2336 sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); 2337 } 2338 2339 /* Record the instruction used to terminate the loop. 2340 */ 2341 pLevel->op = bRev ? OP_Prev : OP_Next; 2342 pLevel->p1 = iIdxCur; 2343 pLevel->p2 = start; 2344 }else if( pLevel->flags & WHERE_COLUMN_EQ ){ 2345 /* Case 4: There is an index and all terms of the WHERE clause that 2346 ** refer to the index using the "==" or "IN" operators. 2347 */ 2348 int start; 2349 int nEq = pLevel->nEq; 2350 2351 /* Generate code to evaluate all constraint terms using == or IN 2352 ** and leave the values of those terms on the stack. 2353 */ 2354 codeAllEqualityTerms(pParse, pLevel, &wc, notReady, brk); 2355 2356 /* Generate a single key that will be used to both start and terminate 2357 ** the search 2358 */ 2359 buildIndexProbe(v, nEq, pIdx); 2360 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0); 2361 2362 /* Generate code (1) to move to the first matching element of the table. 2363 ** Then generate code (2) that jumps to "brk" after the cursor is past 2364 ** the last matching element of the table. The code (1) is executed 2365 ** once to initialize the search, the code (2) is executed before each 2366 ** iteration of the scan to see if the scan has finished. */ 2367 if( bRev ){ 2368 /* Scan in reverse order */ 2369 sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, brk); 2370 start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 2371 sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, brk); 2372 pLevel->op = OP_Prev; 2373 }else{ 2374 /* Scan in the forward order */ 2375 sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, brk); 2376 start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 2377 sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, brk, "+", P3_STATIC); 2378 pLevel->op = OP_Next; 2379 } 2380 if( !omitTable ){ 2381 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0); 2382 sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); 2383 } 2384 pLevel->p1 = iIdxCur; 2385 pLevel->p2 = start; 2386 }else{ 2387 /* Case 5: There is no usable index. We must do a complete 2388 ** scan of the entire table. 2389 */ 2390 assert( omitTable==0 ); 2391 assert( bRev==0 ); 2392 pLevel->op = OP_Next; 2393 pLevel->p1 = iCur; 2394 pLevel->p2 = 1 + sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk); 2395 } 2396 notReady &= ~getMask(&maskSet, iCur); 2397 2398 /* Insert code to test every subexpression that can be completely 2399 ** computed using the current set of tables. 2400 */ 2401 for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){ 2402 Expr *pE; 2403 if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2404 if( (pTerm->prereqAll & notReady)!=0 ) continue; 2405 pE = pTerm->pExpr; 2406 assert( pE!=0 ); 2407 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ 2408 continue; 2409 } 2410 sqlite3ExprIfFalse(pParse, pE, cont, 1); 2411 pTerm->flags |= TERM_CODED; 2412 } 2413 2414 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2415 ** at least one row of the right table has matched the left table. 2416 */ 2417 if( pLevel->iLeftJoin ){ 2418 pLevel->top = sqlite3VdbeCurrentAddr(v); 2419 sqlite3VdbeAddOp(v, OP_MemInt, 1, pLevel->iLeftJoin); 2420 VdbeComment((v, "# record LEFT JOIN hit")); 2421 for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){ 2422 if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2423 if( (pTerm->prereqAll & notReady)!=0 ) continue; 2424 assert( pTerm->pExpr ); 2425 sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, 1); 2426 pTerm->flags |= TERM_CODED; 2427 } 2428 } 2429 } 2430 2431 #ifdef SQLITE_TEST /* For testing and debugging use only */ 2432 /* Record in the query plan information about the current table 2433 ** and the index used to access it (if any). If the table itself 2434 ** is not used, its name is just '{}'. If no index is used 2435 ** the index is listed as "{}". If the primary key is used the 2436 ** index name is '*'. 2437 */ 2438 for(i=0; i<pTabList->nSrc; i++){ 2439 char *z; 2440 int n; 2441 pLevel = &pWInfo->a[i]; 2442 pTabItem = &pTabList->a[pLevel->iFrom]; 2443 z = pTabItem->zAlias; 2444 if( z==0 ) z = pTabItem->pTab->zName; 2445 n = strlen(z); 2446 if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){ 2447 if( pLevel->flags & WHERE_IDX_ONLY ){ 2448 strcpy(&sqlite3_query_plan[nQPlan], "{}"); 2449 nQPlan += 2; 2450 }else{ 2451 strcpy(&sqlite3_query_plan[nQPlan], z); 2452 nQPlan += n; 2453 } 2454 sqlite3_query_plan[nQPlan++] = ' '; 2455 } 2456 if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ 2457 strcpy(&sqlite3_query_plan[nQPlan], "* "); 2458 nQPlan += 2; 2459 }else if( pLevel->pIdx==0 ){ 2460 strcpy(&sqlite3_query_plan[nQPlan], "{} "); 2461 nQPlan += 3; 2462 }else{ 2463 n = strlen(pLevel->pIdx->zName); 2464 if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){ 2465 strcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName); 2466 nQPlan += n; 2467 sqlite3_query_plan[nQPlan++] = ' '; 2468 } 2469 } 2470 } 2471 while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){ 2472 sqlite3_query_plan[--nQPlan] = 0; 2473 } 2474 sqlite3_query_plan[nQPlan] = 0; 2475 nQPlan = 0; 2476 #endif /* SQLITE_TEST // Testing and debugging use only */ 2477 2478 /* Record the continuation address in the WhereInfo structure. Then 2479 ** clean up and return. 2480 */ 2481 pWInfo->iContinue = cont; 2482 whereClauseClear(&wc); 2483 return pWInfo; 2484 2485 /* Jump here if malloc fails */ 2486 whereBeginNoMem: 2487 whereClauseClear(&wc); 2488 whereInfoFree(pWInfo); 2489 return 0; 2490 } 2491 2492 /* 2493 ** Generate the end of the WHERE loop. See comments on 2494 ** sqlite3WhereBegin() for additional information. 2495 */ 2496 void sqlite3WhereEnd(WhereInfo *pWInfo){ 2497 Vdbe *v = pWInfo->pParse->pVdbe; 2498 int i; 2499 WhereLevel *pLevel; 2500 SrcList *pTabList = pWInfo->pTabList; 2501 2502 /* Generate loop termination code. 2503 */ 2504 for(i=pTabList->nSrc-1; i>=0; i--){ 2505 pLevel = &pWInfo->a[i]; 2506 sqlite3VdbeResolveLabel(v, pLevel->cont); 2507 if( pLevel->op!=OP_Noop ){ 2508 sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2); 2509 } 2510 sqlite3VdbeResolveLabel(v, pLevel->brk); 2511 if( pLevel->nIn ){ 2512 int *a; 2513 int j; 2514 for(j=pLevel->nIn, a=&pLevel->aInLoop[j*2-2]; j>0; j--, a-=2){ 2515 sqlite3VdbeAddOp(v, OP_Next, a[0], a[1]); 2516 sqlite3VdbeJumpHere(v, a[1]-1); 2517 } 2518 sqliteFree(pLevel->aInLoop); 2519 } 2520 if( pLevel->iLeftJoin ){ 2521 int addr; 2522 addr = sqlite3VdbeAddOp(v, OP_IfMemPos, pLevel->iLeftJoin, 0); 2523 sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0); 2524 if( pLevel->iIdxCur>=0 ){ 2525 sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0); 2526 } 2527 sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top); 2528 sqlite3VdbeJumpHere(v, addr); 2529 } 2530 } 2531 2532 /* The "break" point is here, just past the end of the outer loop. 2533 ** Set it. 2534 */ 2535 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 2536 2537 /* Close all of the cursors that were opened by sqlite3WhereBegin. 2538 */ 2539 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 2540 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 2541 Table *pTab = pTabItem->pTab; 2542 assert( pTab!=0 ); 2543 if( pTab->isEphem || pTab->pSelect ) continue; 2544 if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){ 2545 sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0); 2546 } 2547 if( pLevel->pIdx!=0 ){ 2548 sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0); 2549 } 2550 2551 /* Make cursor substitutions for cases where we want to use 2552 ** just the index and never reference the table. 2553 ** 2554 ** Calls to the code generator in between sqlite3WhereBegin and 2555 ** sqlite3WhereEnd will have created code that references the table 2556 ** directly. This loop scans all that code looking for opcodes 2557 ** that reference the table and converts them into opcodes that 2558 ** reference the index. 2559 */ 2560 if( pLevel->flags & WHERE_IDX_ONLY ){ 2561 int k, j, last; 2562 VdbeOp *pOp; 2563 Index *pIdx = pLevel->pIdx; 2564 2565 assert( pIdx!=0 ); 2566 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop); 2567 last = sqlite3VdbeCurrentAddr(v); 2568 for(k=pWInfo->iTop; k<last; k++, pOp++){ 2569 if( pOp->p1!=pLevel->iTabCur ) continue; 2570 if( pOp->opcode==OP_Column ){ 2571 pOp->p1 = pLevel->iIdxCur; 2572 for(j=0; j<pIdx->nColumn; j++){ 2573 if( pOp->p2==pIdx->aiColumn[j] ){ 2574 pOp->p2 = j; 2575 break; 2576 } 2577 } 2578 }else if( pOp->opcode==OP_Rowid ){ 2579 pOp->p1 = pLevel->iIdxCur; 2580 pOp->opcode = OP_IdxRowid; 2581 }else if( pOp->opcode==OP_NullRow ){ 2582 pOp->opcode = OP_Noop; 2583 } 2584 } 2585 } 2586 } 2587 2588 /* Final cleanup 2589 */ 2590 whereInfoFree(pWInfo); 2591 return; 2592 } 2593