xref: /sqlite-3.40.0/src/where.c (revision 3ad202dd)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is reponsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 **
19 ** $Id: where.c,v 1.235 2007/01/19 01:06:03 drh Exp $
20 */
21 #include "sqliteInt.h"
22 
23 /*
24 ** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
25 */
26 #define BMS  (sizeof(Bitmask)*8)
27 
28 /*
29 ** Determine the number of elements in an array.
30 */
31 #define ARRAYSIZE(X)  (sizeof(X)/sizeof(X[0]))
32 
33 /*
34 ** Trace output macros
35 */
36 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
37 int sqlite3_where_trace = 0;
38 # define TRACE(X)  if(sqlite3_where_trace) sqlite3DebugPrintf X
39 #else
40 # define TRACE(X)
41 #endif
42 
43 /* Forward reference
44 */
45 typedef struct WhereClause WhereClause;
46 
47 /*
48 ** The query generator uses an array of instances of this structure to
49 ** help it analyze the subexpressions of the WHERE clause.  Each WHERE
50 ** clause subexpression is separated from the others by an AND operator.
51 **
52 ** All WhereTerms are collected into a single WhereClause structure.
53 ** The following identity holds:
54 **
55 **        WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
56 **
57 ** When a term is of the form:
58 **
59 **              X <op> <expr>
60 **
61 ** where X is a column name and <op> is one of certain operators,
62 ** then WhereTerm.leftCursor and WhereTerm.leftColumn record the
63 ** cursor number and column number for X.  WhereTerm.operator records
64 ** the <op> using a bitmask encoding defined by WO_xxx below.  The
65 ** use of a bitmask encoding for the operator allows us to search
66 ** quickly for terms that match any of several different operators.
67 **
68 ** prereqRight and prereqAll record sets of cursor numbers,
69 ** but they do so indirectly.  A single ExprMaskSet structure translates
70 ** cursor number into bits and the translated bit is stored in the prereq
71 ** fields.  The translation is used in order to maximize the number of
72 ** bits that will fit in a Bitmask.  The VDBE cursor numbers might be
73 ** spread out over the non-negative integers.  For example, the cursor
74 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45.  The ExprMaskSet
75 ** translates these sparse cursor numbers into consecutive integers
76 ** beginning with 0 in order to make the best possible use of the available
77 ** bits in the Bitmask.  So, in the example above, the cursor numbers
78 ** would be mapped into integers 0 through 7.
79 */
80 typedef struct WhereTerm WhereTerm;
81 struct WhereTerm {
82   Expr *pExpr;            /* Pointer to the subexpression */
83   i16 iParent;            /* Disable pWC->a[iParent] when this term disabled */
84   i16 leftCursor;         /* Cursor number of X in "X <op> <expr>" */
85   i16 leftColumn;         /* Column number of X in "X <op> <expr>" */
86   u16 eOperator;          /* A WO_xx value describing <op> */
87   u8 flags;               /* Bit flags.  See below */
88   u8 nChild;              /* Number of children that must disable us */
89   WhereClause *pWC;       /* The clause this term is part of */
90   Bitmask prereqRight;    /* Bitmask of tables used by pRight */
91   Bitmask prereqAll;      /* Bitmask of tables referenced by p */
92 };
93 
94 /*
95 ** Allowed values of WhereTerm.flags
96 */
97 #define TERM_DYNAMIC    0x01   /* Need to call sqlite3ExprDelete(pExpr) */
98 #define TERM_VIRTUAL    0x02   /* Added by the optimizer.  Do not code */
99 #define TERM_CODED      0x04   /* This term is already coded */
100 #define TERM_COPIED     0x08   /* Has a child */
101 #define TERM_OR_OK      0x10   /* Used during OR-clause processing */
102 
103 /*
104 ** An instance of the following structure holds all information about a
105 ** WHERE clause.  Mostly this is a container for one or more WhereTerms.
106 */
107 struct WhereClause {
108   Parse *pParse;           /* The parser context */
109   int nTerm;               /* Number of terms */
110   int nSlot;               /* Number of entries in a[] */
111   WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
112   WhereTerm aStatic[10];   /* Initial static space for a[] */
113 };
114 
115 /*
116 ** An instance of the following structure keeps track of a mapping
117 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
118 **
119 ** The VDBE cursor numbers are small integers contained in
120 ** SrcList_item.iCursor and Expr.iTable fields.  For any given WHERE
121 ** clause, the cursor numbers might not begin with 0 and they might
122 ** contain gaps in the numbering sequence.  But we want to make maximum
123 ** use of the bits in our bitmasks.  This structure provides a mapping
124 ** from the sparse cursor numbers into consecutive integers beginning
125 ** with 0.
126 **
127 ** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
128 ** corresponds VDBE cursor number B.  The A-th bit of a bitmask is 1<<A.
129 **
130 ** For example, if the WHERE clause expression used these VDBE
131 ** cursors:  4, 5, 8, 29, 57, 73.  Then the  ExprMaskSet structure
132 ** would map those cursor numbers into bits 0 through 5.
133 **
134 ** Note that the mapping is not necessarily ordered.  In the example
135 ** above, the mapping might go like this:  4->3, 5->1, 8->2, 29->0,
136 ** 57->5, 73->4.  Or one of 719 other combinations might be used. It
137 ** does not really matter.  What is important is that sparse cursor
138 ** numbers all get mapped into bit numbers that begin with 0 and contain
139 ** no gaps.
140 */
141 typedef struct ExprMaskSet ExprMaskSet;
142 struct ExprMaskSet {
143   int n;                        /* Number of assigned cursor values */
144   int ix[sizeof(Bitmask)*8];    /* Cursor assigned to each bit */
145 };
146 
147 
148 /*
149 ** Bitmasks for the operators that indices are able to exploit.  An
150 ** OR-ed combination of these values can be used when searching for
151 ** terms in the where clause.
152 */
153 #define WO_IN     1
154 #define WO_EQ     2
155 #define WO_LT     (WO_EQ<<(TK_LT-TK_EQ))
156 #define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
157 #define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
158 #define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))
159 #define WO_MATCH  64
160 #define WO_ISNULL 128
161 
162 /*
163 ** Value for flags returned by bestIndex()
164 */
165 #define WHERE_ROWID_EQ       0x0001   /* rowid=EXPR or rowid IN (...) */
166 #define WHERE_ROWID_RANGE    0x0002   /* rowid<EXPR and/or rowid>EXPR */
167 #define WHERE_COLUMN_EQ      0x0010   /* x=EXPR or x IN (...) */
168 #define WHERE_COLUMN_RANGE   0x0020   /* x<EXPR and/or x>EXPR */
169 #define WHERE_COLUMN_IN      0x0040   /* x IN (...) */
170 #define WHERE_TOP_LIMIT      0x0100   /* x<EXPR or x<=EXPR constraint */
171 #define WHERE_BTM_LIMIT      0x0200   /* x>EXPR or x>=EXPR constraint */
172 #define WHERE_IDX_ONLY       0x0800   /* Use index only - omit table */
173 #define WHERE_ORDERBY        0x1000   /* Output will appear in correct order */
174 #define WHERE_REVERSE        0x2000   /* Scan in reverse order */
175 #define WHERE_UNIQUE         0x4000   /* Selects no more than one row */
176 #define WHERE_VIRTUALTABLE   0x8000   /* Use virtual-table processing */
177 
178 /*
179 ** Initialize a preallocated WhereClause structure.
180 */
181 static void whereClauseInit(WhereClause *pWC, Parse *pParse){
182   pWC->pParse = pParse;
183   pWC->nTerm = 0;
184   pWC->nSlot = ARRAYSIZE(pWC->aStatic);
185   pWC->a = pWC->aStatic;
186 }
187 
188 /*
189 ** Deallocate a WhereClause structure.  The WhereClause structure
190 ** itself is not freed.  This routine is the inverse of whereClauseInit().
191 */
192 static void whereClauseClear(WhereClause *pWC){
193   int i;
194   WhereTerm *a;
195   for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
196     if( a->flags & TERM_DYNAMIC ){
197       sqlite3ExprDelete(a->pExpr);
198     }
199   }
200   if( pWC->a!=pWC->aStatic ){
201     sqliteFree(pWC->a);
202   }
203 }
204 
205 /*
206 ** Add a new entries to the WhereClause structure.  Increase the allocated
207 ** space as necessary.
208 **
209 ** WARNING:  This routine might reallocate the space used to store
210 ** WhereTerms.  All pointers to WhereTerms should be invalided after
211 ** calling this routine.  Such pointers may be reinitialized by referencing
212 ** the pWC->a[] array.
213 */
214 static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){
215   WhereTerm *pTerm;
216   int idx;
217   if( pWC->nTerm>=pWC->nSlot ){
218     WhereTerm *pOld = pWC->a;
219     pWC->a = sqliteMalloc( sizeof(pWC->a[0])*pWC->nSlot*2 );
220     if( pWC->a==0 ) return 0;
221     memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
222     if( pOld!=pWC->aStatic ){
223       sqliteFree(pOld);
224     }
225     pWC->nSlot *= 2;
226   }
227   pTerm = &pWC->a[idx = pWC->nTerm];
228   pWC->nTerm++;
229   pTerm->pExpr = p;
230   pTerm->flags = flags;
231   pTerm->pWC = pWC;
232   pTerm->iParent = -1;
233   return idx;
234 }
235 
236 /*
237 ** This routine identifies subexpressions in the WHERE clause where
238 ** each subexpression is separated by the AND operator or some other
239 ** operator specified in the op parameter.  The WhereClause structure
240 ** is filled with pointers to subexpressions.  For example:
241 **
242 **    WHERE  a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
243 **           \________/     \_______________/     \________________/
244 **            slot[0]            slot[1]               slot[2]
245 **
246 ** The original WHERE clause in pExpr is unaltered.  All this routine
247 ** does is make slot[] entries point to substructure within pExpr.
248 **
249 ** In the previous sentence and in the diagram, "slot[]" refers to
250 ** the WhereClause.a[] array.  This array grows as needed to contain
251 ** all terms of the WHERE clause.
252 */
253 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
254   if( pExpr==0 ) return;
255   if( pExpr->op!=op ){
256     whereClauseInsert(pWC, pExpr, 0);
257   }else{
258     whereSplit(pWC, pExpr->pLeft, op);
259     whereSplit(pWC, pExpr->pRight, op);
260   }
261 }
262 
263 /*
264 ** Initialize an expression mask set
265 */
266 #define initMaskSet(P)  memset(P, 0, sizeof(*P))
267 
268 /*
269 ** Return the bitmask for the given cursor number.  Return 0 if
270 ** iCursor is not in the set.
271 */
272 static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){
273   int i;
274   for(i=0; i<pMaskSet->n; i++){
275     if( pMaskSet->ix[i]==iCursor ){
276       return ((Bitmask)1)<<i;
277     }
278   }
279   return 0;
280 }
281 
282 /*
283 ** Create a new mask for cursor iCursor.
284 **
285 ** There is one cursor per table in the FROM clause.  The number of
286 ** tables in the FROM clause is limited by a test early in the
287 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
288 ** array will never overflow.
289 */
290 static void createMask(ExprMaskSet *pMaskSet, int iCursor){
291   assert( pMaskSet->n < ARRAYSIZE(pMaskSet->ix) );
292   pMaskSet->ix[pMaskSet->n++] = iCursor;
293 }
294 
295 /*
296 ** This routine walks (recursively) an expression tree and generates
297 ** a bitmask indicating which tables are used in that expression
298 ** tree.
299 **
300 ** In order for this routine to work, the calling function must have
301 ** previously invoked sqlite3ExprResolveNames() on the expression.  See
302 ** the header comment on that routine for additional information.
303 ** The sqlite3ExprResolveNames() routines looks for column names and
304 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
305 ** the VDBE cursor number of the table.  This routine just has to
306 ** translate the cursor numbers into bitmask values and OR all
307 ** the bitmasks together.
308 */
309 static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*);
310 static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*);
311 static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
312   Bitmask mask = 0;
313   if( p==0 ) return 0;
314   if( p->op==TK_COLUMN ){
315     mask = getMask(pMaskSet, p->iTable);
316     return mask;
317   }
318   mask = exprTableUsage(pMaskSet, p->pRight);
319   mask |= exprTableUsage(pMaskSet, p->pLeft);
320   mask |= exprListTableUsage(pMaskSet, p->pList);
321   mask |= exprSelectTableUsage(pMaskSet, p->pSelect);
322   return mask;
323 }
324 static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){
325   int i;
326   Bitmask mask = 0;
327   if( pList ){
328     for(i=0; i<pList->nExpr; i++){
329       mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
330     }
331   }
332   return mask;
333 }
334 static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){
335   Bitmask mask;
336   if( pS==0 ){
337     mask = 0;
338   }else{
339     mask = exprListTableUsage(pMaskSet, pS->pEList);
340     mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
341     mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
342     mask |= exprTableUsage(pMaskSet, pS->pWhere);
343     mask |= exprTableUsage(pMaskSet, pS->pHaving);
344   }
345   return mask;
346 }
347 
348 /*
349 ** Return TRUE if the given operator is one of the operators that is
350 ** allowed for an indexable WHERE clause term.  The allowed operators are
351 ** "=", "<", ">", "<=", ">=", and "IN".
352 */
353 static int allowedOp(int op){
354   assert( TK_GT>TK_EQ && TK_GT<TK_GE );
355   assert( TK_LT>TK_EQ && TK_LT<TK_GE );
356   assert( TK_LE>TK_EQ && TK_LE<TK_GE );
357   assert( TK_GE==TK_EQ+4 );
358   return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
359 }
360 
361 /*
362 ** Swap two objects of type T.
363 */
364 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
365 
366 /*
367 ** Commute a comparision operator.  Expressions of the form "X op Y"
368 ** are converted into "Y op X".
369 */
370 static void exprCommute(Expr *pExpr){
371   assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
372   SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
373   SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
374   if( pExpr->op>=TK_GT ){
375     assert( TK_LT==TK_GT+2 );
376     assert( TK_GE==TK_LE+2 );
377     assert( TK_GT>TK_EQ );
378     assert( TK_GT<TK_LE );
379     assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
380     pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
381   }
382 }
383 
384 /*
385 ** Translate from TK_xx operator to WO_xx bitmask.
386 */
387 static int operatorMask(int op){
388   int c;
389   assert( allowedOp(op) );
390   if( op==TK_IN ){
391     c = WO_IN;
392   }else if( op==TK_ISNULL ){
393     c = WO_ISNULL;
394   }else{
395     c = WO_EQ<<(op-TK_EQ);
396   }
397   assert( op!=TK_ISNULL || c==WO_ISNULL );
398   assert( op!=TK_IN || c==WO_IN );
399   assert( op!=TK_EQ || c==WO_EQ );
400   assert( op!=TK_LT || c==WO_LT );
401   assert( op!=TK_LE || c==WO_LE );
402   assert( op!=TK_GT || c==WO_GT );
403   assert( op!=TK_GE || c==WO_GE );
404   return c;
405 }
406 
407 /*
408 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
409 ** where X is a reference to the iColumn of table iCur and <op> is one of
410 ** the WO_xx operator codes specified by the op parameter.
411 ** Return a pointer to the term.  Return 0 if not found.
412 */
413 static WhereTerm *findTerm(
414   WhereClause *pWC,     /* The WHERE clause to be searched */
415   int iCur,             /* Cursor number of LHS */
416   int iColumn,          /* Column number of LHS */
417   Bitmask notReady,     /* RHS must not overlap with this mask */
418   u16 op,               /* Mask of WO_xx values describing operator */
419   Index *pIdx           /* Must be compatible with this index, if not NULL */
420 ){
421   WhereTerm *pTerm;
422   int k;
423   for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
424     if( pTerm->leftCursor==iCur
425        && (pTerm->prereqRight & notReady)==0
426        && pTerm->leftColumn==iColumn
427        && (pTerm->eOperator & op)!=0
428     ){
429       if( iCur>=0 && pIdx && pTerm->eOperator!=WO_ISNULL ){
430         Expr *pX = pTerm->pExpr;
431         CollSeq *pColl;
432         char idxaff;
433         int j;
434         Parse *pParse = pWC->pParse;
435 
436         idxaff = pIdx->pTable->aCol[iColumn].affinity;
437         if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
438         pColl = sqlite3ExprCollSeq(pParse, pX->pLeft);
439         if( !pColl ){
440           if( pX->pRight ){
441             pColl = sqlite3ExprCollSeq(pParse, pX->pRight);
442           }
443           if( !pColl ){
444             pColl = pParse->db->pDfltColl;
445           }
446         }
447         for(j=0; j<pIdx->nColumn && pIdx->aiColumn[j]!=iColumn; j++){}
448         assert( j<pIdx->nColumn );
449         if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
450       }
451       return pTerm;
452     }
453   }
454   return 0;
455 }
456 
457 /* Forward reference */
458 static void exprAnalyze(SrcList*, ExprMaskSet*, WhereClause*, int);
459 
460 /*
461 ** Call exprAnalyze on all terms in a WHERE clause.
462 **
463 **
464 */
465 static void exprAnalyzeAll(
466   SrcList *pTabList,       /* the FROM clause */
467   ExprMaskSet *pMaskSet,   /* table masks */
468   WhereClause *pWC         /* the WHERE clause to be analyzed */
469 ){
470   int i;
471   for(i=pWC->nTerm-1; i>=0; i--){
472     exprAnalyze(pTabList, pMaskSet, pWC, i);
473   }
474 }
475 
476 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
477 /*
478 ** Check to see if the given expression is a LIKE or GLOB operator that
479 ** can be optimized using inequality constraints.  Return TRUE if it is
480 ** so and false if not.
481 **
482 ** In order for the operator to be optimizible, the RHS must be a string
483 ** literal that does not begin with a wildcard.
484 */
485 static int isLikeOrGlob(
486   sqlite3 *db,      /* The database */
487   Expr *pExpr,      /* Test this expression */
488   int *pnPattern,   /* Number of non-wildcard prefix characters */
489   int *pisComplete  /* True if the only wildcard is % in the last character */
490 ){
491   const char *z;
492   Expr *pRight, *pLeft;
493   ExprList *pList;
494   int c, cnt;
495   int noCase;
496   char wc[3];
497   CollSeq *pColl;
498 
499   if( !sqlite3IsLikeFunction(db, pExpr, &noCase, wc) ){
500     return 0;
501   }
502   pList = pExpr->pList;
503   pRight = pList->a[0].pExpr;
504   if( pRight->op!=TK_STRING ){
505     return 0;
506   }
507   pLeft = pList->a[1].pExpr;
508   if( pLeft->op!=TK_COLUMN ){
509     return 0;
510   }
511   pColl = pLeft->pColl;
512   if( pColl==0 ){
513     pColl = db->pDfltColl;
514   }
515   if( (pColl->type!=SQLITE_COLL_BINARY || noCase) &&
516       (pColl->type!=SQLITE_COLL_NOCASE || !noCase) ){
517     return 0;
518   }
519   sqlite3DequoteExpr(pRight);
520   z = (char *)pRight->token.z;
521   for(cnt=0; (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2]; cnt++){}
522   if( cnt==0 || 255==(u8)z[cnt] ){
523     return 0;
524   }
525   *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0;
526   *pnPattern = cnt;
527   return 1;
528 }
529 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
530 
531 
532 #ifndef SQLITE_OMIT_VIRTUALTABLE
533 /*
534 ** Check to see if the given expression is of the form
535 **
536 **         column MATCH expr
537 **
538 ** If it is then return TRUE.  If not, return FALSE.
539 */
540 static int isMatchOfColumn(
541   Expr *pExpr      /* Test this expression */
542 ){
543   ExprList *pList;
544 
545   if( pExpr->op!=TK_FUNCTION ){
546     return 0;
547   }
548   if( pExpr->token.n!=5 ||
549        sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){
550     return 0;
551   }
552   pList = pExpr->pList;
553   if( pList->nExpr!=2 ){
554     return 0;
555   }
556   if( pList->a[1].pExpr->op != TK_COLUMN ){
557     return 0;
558   }
559   return 1;
560 }
561 #endif /* SQLITE_OMIT_VIRTUALTABLE */
562 
563 /*
564 ** If the pBase expression originated in the ON or USING clause of
565 ** a join, then transfer the appropriate markings over to derived.
566 */
567 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
568   pDerived->flags |= pBase->flags & EP_FromJoin;
569   pDerived->iRightJoinTable = pBase->iRightJoinTable;
570 }
571 
572 
573 /*
574 ** The input to this routine is an WhereTerm structure with only the
575 ** "pExpr" field filled in.  The job of this routine is to analyze the
576 ** subexpression and populate all the other fields of the WhereTerm
577 ** structure.
578 **
579 ** If the expression is of the form "<expr> <op> X" it gets commuted
580 ** to the standard form of "X <op> <expr>".  If the expression is of
581 ** the form "X <op> Y" where both X and Y are columns, then the original
582 ** expression is unchanged and a new virtual expression of the form
583 ** "Y <op> X" is added to the WHERE clause and analyzed separately.
584 */
585 static void exprAnalyze(
586   SrcList *pSrc,            /* the FROM clause */
587   ExprMaskSet *pMaskSet,    /* table masks */
588   WhereClause *pWC,         /* the WHERE clause */
589   int idxTerm               /* Index of the term to be analyzed */
590 ){
591   WhereTerm *pTerm = &pWC->a[idxTerm];
592   Expr *pExpr = pTerm->pExpr;
593   Bitmask prereqLeft;
594   Bitmask prereqAll;
595   int nPattern;
596   int isComplete;
597   int op;
598 
599   if( sqlite3MallocFailed() ) return;
600   prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
601   op = pExpr->op;
602   if( op==TK_IN ){
603     assert( pExpr->pRight==0 );
604     pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList)
605                           | exprSelectTableUsage(pMaskSet, pExpr->pSelect);
606   }else if( op==TK_ISNULL ){
607     pTerm->prereqRight = 0;
608   }else{
609     pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
610   }
611   prereqAll = exprTableUsage(pMaskSet, pExpr);
612   if( ExprHasProperty(pExpr, EP_FromJoin) ){
613     prereqAll |= getMask(pMaskSet, pExpr->iRightJoinTable);
614   }
615   pTerm->prereqAll = prereqAll;
616   pTerm->leftCursor = -1;
617   pTerm->iParent = -1;
618   pTerm->eOperator = 0;
619   if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
620     Expr *pLeft = pExpr->pLeft;
621     Expr *pRight = pExpr->pRight;
622     if( pLeft->op==TK_COLUMN ){
623       pTerm->leftCursor = pLeft->iTable;
624       pTerm->leftColumn = pLeft->iColumn;
625       pTerm->eOperator = operatorMask(op);
626     }
627     if( pRight && pRight->op==TK_COLUMN ){
628       WhereTerm *pNew;
629       Expr *pDup;
630       if( pTerm->leftCursor>=0 ){
631         int idxNew;
632         pDup = sqlite3ExprDup(pExpr);
633         if( sqlite3MallocFailed() ){
634           sqliteFree(pDup);
635           return;
636         }
637         idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
638         if( idxNew==0 ) return;
639         pNew = &pWC->a[idxNew];
640         pNew->iParent = idxTerm;
641         pTerm = &pWC->a[idxTerm];
642         pTerm->nChild = 1;
643         pTerm->flags |= TERM_COPIED;
644       }else{
645         pDup = pExpr;
646         pNew = pTerm;
647       }
648       exprCommute(pDup);
649       pLeft = pDup->pLeft;
650       pNew->leftCursor = pLeft->iTable;
651       pNew->leftColumn = pLeft->iColumn;
652       pNew->prereqRight = prereqLeft;
653       pNew->prereqAll = prereqAll;
654       pNew->eOperator = operatorMask(pDup->op);
655     }
656   }
657 
658 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
659   /* If a term is the BETWEEN operator, create two new virtual terms
660   ** that define the range that the BETWEEN implements.
661   */
662   else if( pExpr->op==TK_BETWEEN ){
663     ExprList *pList = pExpr->pList;
664     int i;
665     static const u8 ops[] = {TK_GE, TK_LE};
666     assert( pList!=0 );
667     assert( pList->nExpr==2 );
668     for(i=0; i<2; i++){
669       Expr *pNewExpr;
670       int idxNew;
671       pNewExpr = sqlite3Expr(ops[i], sqlite3ExprDup(pExpr->pLeft),
672                              sqlite3ExprDup(pList->a[i].pExpr), 0);
673       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
674       exprAnalyze(pSrc, pMaskSet, pWC, idxNew);
675       pTerm = &pWC->a[idxTerm];
676       pWC->a[idxNew].iParent = idxTerm;
677     }
678     pTerm->nChild = 2;
679   }
680 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
681 
682 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
683   /* Attempt to convert OR-connected terms into an IN operator so that
684   ** they can make use of indices.  Example:
685   **
686   **      x = expr1  OR  expr2 = x  OR  x = expr3
687   **
688   ** is converted into
689   **
690   **      x IN (expr1,expr2,expr3)
691   **
692   ** This optimization must be omitted if OMIT_SUBQUERY is defined because
693   ** the compiler for the the IN operator is part of sub-queries.
694   */
695   else if( pExpr->op==TK_OR ){
696     int ok;
697     int i, j;
698     int iColumn, iCursor;
699     WhereClause sOr;
700     WhereTerm *pOrTerm;
701 
702     assert( (pTerm->flags & TERM_DYNAMIC)==0 );
703     whereClauseInit(&sOr, pWC->pParse);
704     whereSplit(&sOr, pExpr, TK_OR);
705     exprAnalyzeAll(pSrc, pMaskSet, &sOr);
706     assert( sOr.nTerm>0 );
707     j = 0;
708     do{
709       iColumn = sOr.a[j].leftColumn;
710       iCursor = sOr.a[j].leftCursor;
711       ok = iCursor>=0;
712       for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
713         if( pOrTerm->eOperator!=WO_EQ ){
714           goto or_not_possible;
715         }
716         if( pOrTerm->leftCursor==iCursor && pOrTerm->leftColumn==iColumn ){
717           pOrTerm->flags |= TERM_OR_OK;
718         }else if( (pOrTerm->flags & TERM_COPIED)!=0 ||
719                     ((pOrTerm->flags & TERM_VIRTUAL)!=0 &&
720                      (sOr.a[pOrTerm->iParent].flags & TERM_OR_OK)!=0) ){
721           pOrTerm->flags &= ~TERM_OR_OK;
722         }else{
723           ok = 0;
724         }
725       }
726     }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<sOr.nTerm );
727     if( ok ){
728       ExprList *pList = 0;
729       Expr *pNew, *pDup;
730       Expr *pLeft = 0;
731       for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
732         if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue;
733         pDup = sqlite3ExprDup(pOrTerm->pExpr->pRight);
734         pList = sqlite3ExprListAppend(pList, pDup, 0);
735         pLeft = pOrTerm->pExpr->pLeft;
736       }
737       assert( pLeft!=0 );
738       pDup = sqlite3ExprDup(pLeft);
739       pNew = sqlite3Expr(TK_IN, pDup, 0, 0);
740       if( pNew ){
741         int idxNew;
742         transferJoinMarkings(pNew, pExpr);
743         pNew->pList = pList;
744         idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
745         exprAnalyze(pSrc, pMaskSet, pWC, idxNew);
746         pTerm = &pWC->a[idxTerm];
747         pWC->a[idxNew].iParent = idxTerm;
748         pTerm->nChild = 1;
749       }else{
750         sqlite3ExprListDelete(pList);
751       }
752     }
753 or_not_possible:
754     whereClauseClear(&sOr);
755   }
756 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
757 
758 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
759   /* Add constraints to reduce the search space on a LIKE or GLOB
760   ** operator.
761   */
762   if( isLikeOrGlob(pWC->pParse->db, pExpr, &nPattern, &isComplete) ){
763     Expr *pLeft, *pRight;
764     Expr *pStr1, *pStr2;
765     Expr *pNewExpr1, *pNewExpr2;
766     int idxNew1, idxNew2;
767 
768     pLeft = pExpr->pList->a[1].pExpr;
769     pRight = pExpr->pList->a[0].pExpr;
770     pStr1 = sqlite3Expr(TK_STRING, 0, 0, 0);
771     if( pStr1 ){
772       sqlite3TokenCopy(&pStr1->token, &pRight->token);
773       pStr1->token.n = nPattern;
774     }
775     pStr2 = sqlite3ExprDup(pStr1);
776     if( pStr2 ){
777       assert( pStr2->token.dyn );
778       ++*(u8*)&pStr2->token.z[nPattern-1];
779     }
780     pNewExpr1 = sqlite3Expr(TK_GE, sqlite3ExprDup(pLeft), pStr1, 0);
781     idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
782     exprAnalyze(pSrc, pMaskSet, pWC, idxNew1);
783     pNewExpr2 = sqlite3Expr(TK_LT, sqlite3ExprDup(pLeft), pStr2, 0);
784     idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
785     exprAnalyze(pSrc, pMaskSet, pWC, idxNew2);
786     pTerm = &pWC->a[idxTerm];
787     if( isComplete ){
788       pWC->a[idxNew1].iParent = idxTerm;
789       pWC->a[idxNew2].iParent = idxTerm;
790       pTerm->nChild = 2;
791     }
792   }
793 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
794 
795 #ifndef SQLITE_OMIT_VIRTUALTABLE
796   /* Add a WO_MATCH auxiliary term to the constraint set if the
797   ** current expression is of the form:  column MATCH expr.
798   ** This information is used by the xBestIndex methods of
799   ** virtual tables.  The native query optimizer does not attempt
800   ** to do anything with MATCH functions.
801   */
802   if( isMatchOfColumn(pExpr) ){
803     int idxNew;
804     Expr *pRight, *pLeft;
805     WhereTerm *pNewTerm;
806     Bitmask prereqColumn, prereqExpr;
807 
808     pRight = pExpr->pList->a[0].pExpr;
809     pLeft = pExpr->pList->a[1].pExpr;
810     prereqExpr = exprTableUsage(pMaskSet, pRight);
811     prereqColumn = exprTableUsage(pMaskSet, pLeft);
812     if( (prereqExpr & prereqColumn)==0 ){
813       Expr *pNewExpr;
814       pNewExpr = sqlite3Expr(TK_MATCH, 0, sqlite3ExprDup(pRight), 0);
815       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
816       pNewTerm = &pWC->a[idxNew];
817       pNewTerm->prereqRight = prereqExpr;
818       pNewTerm->leftCursor = pLeft->iTable;
819       pNewTerm->leftColumn = pLeft->iColumn;
820       pNewTerm->eOperator = WO_MATCH;
821       pNewTerm->iParent = idxTerm;
822       pTerm = &pWC->a[idxTerm];
823       pTerm->nChild = 1;
824       pTerm->flags |= TERM_COPIED;
825       pNewTerm->prereqAll = pTerm->prereqAll;
826     }
827   }
828 #endif /* SQLITE_OMIT_VIRTUALTABLE */
829 }
830 
831 
832 /*
833 ** This routine decides if pIdx can be used to satisfy the ORDER BY
834 ** clause.  If it can, it returns 1.  If pIdx cannot satisfy the
835 ** ORDER BY clause, this routine returns 0.
836 **
837 ** pOrderBy is an ORDER BY clause from a SELECT statement.  pTab is the
838 ** left-most table in the FROM clause of that same SELECT statement and
839 ** the table has a cursor number of "base".  pIdx is an index on pTab.
840 **
841 ** nEqCol is the number of columns of pIdx that are used as equality
842 ** constraints.  Any of these columns may be missing from the ORDER BY
843 ** clause and the match can still be a success.
844 **
845 ** All terms of the ORDER BY that match against the index must be either
846 ** ASC or DESC.  (Terms of the ORDER BY clause past the end of a UNIQUE
847 ** index do not need to satisfy this constraint.)  The *pbRev value is
848 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
849 ** the ORDER BY clause is all ASC.
850 */
851 static int isSortingIndex(
852   Parse *pParse,          /* Parsing context */
853   Index *pIdx,            /* The index we are testing */
854   int base,               /* Cursor number for the table to be sorted */
855   ExprList *pOrderBy,     /* The ORDER BY clause */
856   int nEqCol,             /* Number of index columns with == constraints */
857   int *pbRev              /* Set to 1 if ORDER BY is DESC */
858 ){
859   int i, j;                       /* Loop counters */
860   int sortOrder = 0;              /* XOR of index and ORDER BY sort direction */
861   int nTerm;                      /* Number of ORDER BY terms */
862   struct ExprList_item *pTerm;    /* A term of the ORDER BY clause */
863   sqlite3 *db = pParse->db;
864 
865   assert( pOrderBy!=0 );
866   nTerm = pOrderBy->nExpr;
867   assert( nTerm>0 );
868 
869   /* Match terms of the ORDER BY clause against columns of
870   ** the index.
871   **
872   ** Note that indices have pIdx->nColumn regular columns plus
873   ** one additional column containing the rowid.  The rowid column
874   ** of the index is also allowed to match against the ORDER BY
875   ** clause.
876   */
877   for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
878     Expr *pExpr;       /* The expression of the ORDER BY pTerm */
879     CollSeq *pColl;    /* The collating sequence of pExpr */
880     int termSortOrder; /* Sort order for this term */
881     int iColumn;       /* The i-th column of the index.  -1 for rowid */
882     int iSortOrder;    /* 1 for DESC, 0 for ASC on the i-th index term */
883     const char *zColl; /* Name of the collating sequence for i-th index term */
884 
885     pExpr = pTerm->pExpr;
886     if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
887       /* Can not use an index sort on anything that is not a column in the
888       ** left-most table of the FROM clause */
889       return 0;
890     }
891     pColl = sqlite3ExprCollSeq(pParse, pExpr);
892     if( !pColl ){
893       pColl = db->pDfltColl;
894     }
895     if( i<pIdx->nColumn ){
896       iColumn = pIdx->aiColumn[i];
897       if( iColumn==pIdx->pTable->iPKey ){
898         iColumn = -1;
899       }
900       iSortOrder = pIdx->aSortOrder[i];
901       zColl = pIdx->azColl[i];
902     }else{
903       iColumn = -1;
904       iSortOrder = 0;
905       zColl = pColl->zName;
906     }
907     if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
908       /* Term j of the ORDER BY clause does not match column i of the index */
909       if( i<nEqCol ){
910         /* If an index column that is constrained by == fails to match an
911         ** ORDER BY term, that is OK.  Just ignore that column of the index
912         */
913         continue;
914       }else{
915         /* If an index column fails to match and is not constrained by ==
916         ** then the index cannot satisfy the ORDER BY constraint.
917         */
918         return 0;
919       }
920     }
921     assert( pIdx->aSortOrder!=0 );
922     assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
923     assert( iSortOrder==0 || iSortOrder==1 );
924     termSortOrder = iSortOrder ^ pTerm->sortOrder;
925     if( i>nEqCol ){
926       if( termSortOrder!=sortOrder ){
927         /* Indices can only be used if all ORDER BY terms past the
928         ** equality constraints are all either DESC or ASC. */
929         return 0;
930       }
931     }else{
932       sortOrder = termSortOrder;
933     }
934     j++;
935     pTerm++;
936     if( iColumn<0 ){
937       /* If the indexed column is the primary key and everything matches
938       ** so far, then we are assured that the index can be used to sort
939       ** because the primary key is unique and so none of the other columns
940       ** will make any difference
941       */
942       j = nTerm;
943     }
944   }
945 
946   *pbRev = sortOrder!=0;
947   if( j>=nTerm ){
948     /* All terms of the ORDER BY clause are covered by this index so
949     ** this index can be used for sorting. */
950     return 1;
951   }
952   if( j==pIdx->nColumn && pIdx->onError!=OE_None ){
953     /* All terms of this index match some prefix of the ORDER BY clause
954     ** and this index is UNIQUE, so this index can be used for sorting. */
955     return 1;
956   }
957   return 0;
958 }
959 
960 /*
961 ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
962 ** by sorting in order of ROWID.  Return true if so and set *pbRev to be
963 ** true for reverse ROWID and false for forward ROWID order.
964 */
965 static int sortableByRowid(
966   int base,               /* Cursor number for table to be sorted */
967   ExprList *pOrderBy,     /* The ORDER BY clause */
968   int *pbRev              /* Set to 1 if ORDER BY is DESC */
969 ){
970   Expr *p;
971 
972   assert( pOrderBy!=0 );
973   assert( pOrderBy->nExpr>0 );
974   p = pOrderBy->a[0].pExpr;
975   if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1 ){
976     *pbRev = pOrderBy->a[0].sortOrder;
977     return 1;
978   }
979   return 0;
980 }
981 
982 /*
983 ** Prepare a crude estimate of the logarithm of the input value.
984 ** The results need not be exact.  This is only used for estimating
985 ** the total cost of performing operatings with O(logN) or O(NlogN)
986 ** complexity.  Because N is just a guess, it is no great tragedy if
987 ** logN is a little off.
988 */
989 static double estLog(double N){
990   double logN = 1;
991   double x = 10;
992   while( N>x ){
993     logN += 1;
994     x *= 10;
995   }
996   return logN;
997 }
998 
999 /*
1000 ** Two routines for printing the content of an sqlite3_index_info
1001 ** structure.  Used for testing and debugging only.  If neither
1002 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
1003 ** are no-ops.
1004 */
1005 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && \
1006         (defined(SQLITE_TEST) || defined(SQLITE_DEBUG))
1007 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
1008   int i;
1009   if( !sqlite3_where_trace ) return;
1010   for(i=0; i<p->nConstraint; i++){
1011     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
1012        i,
1013        p->aConstraint[i].iColumn,
1014        p->aConstraint[i].iTermOffset,
1015        p->aConstraint[i].op,
1016        p->aConstraint[i].usable);
1017   }
1018   for(i=0; i<p->nOrderBy; i++){
1019     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
1020        i,
1021        p->aOrderBy[i].iColumn,
1022        p->aOrderBy[i].desc);
1023   }
1024 }
1025 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
1026   int i;
1027   if( !sqlite3_where_trace ) return;
1028   for(i=0; i<p->nConstraint; i++){
1029     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
1030        i,
1031        p->aConstraintUsage[i].argvIndex,
1032        p->aConstraintUsage[i].omit);
1033   }
1034   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
1035   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
1036   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
1037   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
1038 }
1039 #else
1040 #define TRACE_IDX_INPUTS(A)
1041 #define TRACE_IDX_OUTPUTS(A)
1042 #endif
1043 
1044 #ifndef SQLITE_OMIT_VIRTUALTABLE
1045 /*
1046 ** Compute the best index for a virtual table.
1047 **
1048 ** The best index is computed by the xBestIndex method of the virtual
1049 ** table module.  This routine is really just a wrapper that sets up
1050 ** the sqlite3_index_info structure that is used to communicate with
1051 ** xBestIndex.
1052 **
1053 ** In a join, this routine might be called multiple times for the
1054 ** same virtual table.  The sqlite3_index_info structure is created
1055 ** and initialized on the first invocation and reused on all subsequent
1056 ** invocations.  The sqlite3_index_info structure is also used when
1057 ** code is generated to access the virtual table.  The whereInfoDelete()
1058 ** routine takes care of freeing the sqlite3_index_info structure after
1059 ** everybody has finished with it.
1060 */
1061 static double bestVirtualIndex(
1062   Parse *pParse,                 /* The parsing context */
1063   WhereClause *pWC,              /* The WHERE clause */
1064   struct SrcList_item *pSrc,     /* The FROM clause term to search */
1065   Bitmask notReady,              /* Mask of cursors that are not available */
1066   ExprList *pOrderBy,            /* The order by clause */
1067   int orderByUsable,             /* True if we can potential sort */
1068   sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */
1069 ){
1070   Table *pTab = pSrc->pTab;
1071   sqlite3_index_info *pIdxInfo;
1072   struct sqlite3_index_constraint *pIdxCons;
1073   struct sqlite3_index_orderby *pIdxOrderBy;
1074   struct sqlite3_index_constraint_usage *pUsage;
1075   WhereTerm *pTerm;
1076   int i, j;
1077   int nOrderBy;
1078   int rc;
1079 
1080   /* If the sqlite3_index_info structure has not been previously
1081   ** allocated and initialized for this virtual table, then allocate
1082   ** and initialize it now
1083   */
1084   pIdxInfo = *ppIdxInfo;
1085   if( pIdxInfo==0 ){
1086     WhereTerm *pTerm;
1087     int nTerm;
1088     TRACE(("Recomputing index info for %s...\n", pTab->zName));
1089 
1090     /* Count the number of possible WHERE clause constraints referring
1091     ** to this virtual table */
1092     for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1093       if( pTerm->leftCursor != pSrc->iCursor ) continue;
1094       if( pTerm->eOperator==WO_IN ) continue;
1095       nTerm++;
1096     }
1097 
1098     /* If the ORDER BY clause contains only columns in the current
1099     ** virtual table then allocate space for the aOrderBy part of
1100     ** the sqlite3_index_info structure.
1101     */
1102     nOrderBy = 0;
1103     if( pOrderBy ){
1104       for(i=0; i<pOrderBy->nExpr; i++){
1105         Expr *pExpr = pOrderBy->a[i].pExpr;
1106         if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
1107       }
1108       if( i==pOrderBy->nExpr ){
1109         nOrderBy = pOrderBy->nExpr;
1110       }
1111     }
1112 
1113     /* Allocate the sqlite3_index_info structure
1114     */
1115     pIdxInfo = sqliteMalloc( sizeof(*pIdxInfo)
1116                              + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1117                              + sizeof(*pIdxOrderBy)*nOrderBy );
1118     if( pIdxInfo==0 ){
1119       sqlite3ErrorMsg(pParse, "out of memory");
1120       return 0.0;
1121     }
1122     *ppIdxInfo = pIdxInfo;
1123 
1124     /* Initialize the structure.  The sqlite3_index_info structure contains
1125     ** many fields that are declared "const" to prevent xBestIndex from
1126     ** changing them.  We have to do some funky casting in order to
1127     ** initialize those fields.
1128     */
1129     pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
1130     pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1131     pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1132     *(int*)&pIdxInfo->nConstraint = nTerm;
1133     *(int*)&pIdxInfo->nOrderBy = nOrderBy;
1134     *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
1135     *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
1136     *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
1137                                                                      pUsage;
1138 
1139     for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1140       if( pTerm->leftCursor != pSrc->iCursor ) continue;
1141       if( pTerm->eOperator==WO_IN ) continue;
1142       pIdxCons[j].iColumn = pTerm->leftColumn;
1143       pIdxCons[j].iTermOffset = i;
1144       pIdxCons[j].op = pTerm->eOperator;
1145       /* The direct assignment in the previous line is possible only because
1146       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
1147       ** following asserts verify this fact. */
1148       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1149       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1150       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1151       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1152       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1153       assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
1154       assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
1155       j++;
1156     }
1157     for(i=0; i<nOrderBy; i++){
1158       Expr *pExpr = pOrderBy->a[i].pExpr;
1159       pIdxOrderBy[i].iColumn = pExpr->iColumn;
1160       pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
1161     }
1162   }
1163 
1164   /* At this point, the sqlite3_index_info structure that pIdxInfo points
1165   ** to will have been initialized, either during the current invocation or
1166   ** during some prior invocation.  Now we just have to customize the
1167   ** details of pIdxInfo for the current invocation and pass it to
1168   ** xBestIndex.
1169   */
1170 
1171   /* The module name must be defined */
1172   assert( pTab->azModuleArg && pTab->azModuleArg[0] );
1173   if( pTab->pVtab==0 ){
1174     sqlite3ErrorMsg(pParse, "undefined module %s for table %s",
1175         pTab->azModuleArg[0], pTab->zName);
1176     return 0.0;
1177   }
1178 
1179   /* Set the aConstraint[].usable fields and initialize all
1180   ** output variables to zero.
1181   **
1182   ** aConstraint[].usable is true for constraints where the right-hand
1183   ** side contains only references to tables to the left of the current
1184   ** table.  In other words, if the constraint is of the form:
1185   **
1186   **           column = expr
1187   **
1188   ** and we are evaluating a join, then the constraint on column is
1189   ** only valid if all tables referenced in expr occur to the left
1190   ** of the table containing column.
1191   **
1192   ** The aConstraints[] array contains entries for all constraints
1193   ** on the current table.  That way we only have to compute it once
1194   ** even though we might try to pick the best index multiple times.
1195   ** For each attempt at picking an index, the order of tables in the
1196   ** join might be different so we have to recompute the usable flag
1197   ** each time.
1198   */
1199   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
1200   pUsage = pIdxInfo->aConstraintUsage;
1201   for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
1202     j = pIdxCons->iTermOffset;
1203     pTerm = &pWC->a[j];
1204     pIdxCons->usable =  (pTerm->prereqRight & notReady)==0;
1205   }
1206   memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
1207   if( pIdxInfo->needToFreeIdxStr ){
1208     sqlite3_free(pIdxInfo->idxStr);
1209   }
1210   pIdxInfo->idxStr = 0;
1211   pIdxInfo->idxNum = 0;
1212   pIdxInfo->needToFreeIdxStr = 0;
1213   pIdxInfo->orderByConsumed = 0;
1214   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0;
1215   nOrderBy = pIdxInfo->nOrderBy;
1216   if( pIdxInfo->nOrderBy && !orderByUsable ){
1217     *(int*)&pIdxInfo->nOrderBy = 0;
1218   }
1219 
1220   sqlite3SafetyOff(pParse->db);
1221   TRACE(("xBestIndex for %s\n", pTab->zName));
1222   TRACE_IDX_INPUTS(pIdxInfo);
1223   rc = pTab->pVtab->pModule->xBestIndex(pTab->pVtab, pIdxInfo);
1224   TRACE_IDX_OUTPUTS(pIdxInfo);
1225   if( rc!=SQLITE_OK ){
1226     if( rc==SQLITE_NOMEM ){
1227       sqlite3FailedMalloc();
1228     }else {
1229       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1230     }
1231     sqlite3SafetyOn(pParse->db);
1232   }else{
1233     rc = sqlite3SafetyOn(pParse->db);
1234   }
1235   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
1236   return pIdxInfo->estimatedCost;
1237 }
1238 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1239 
1240 /*
1241 ** Find the best index for accessing a particular table.  Return a pointer
1242 ** to the index, flags that describe how the index should be used, the
1243 ** number of equality constraints, and the "cost" for this index.
1244 **
1245 ** The lowest cost index wins.  The cost is an estimate of the amount of
1246 ** CPU and disk I/O need to process the request using the selected index.
1247 ** Factors that influence cost include:
1248 **
1249 **    *  The estimated number of rows that will be retrieved.  (The
1250 **       fewer the better.)
1251 **
1252 **    *  Whether or not sorting must occur.
1253 **
1254 **    *  Whether or not there must be separate lookups in the
1255 **       index and in the main table.
1256 **
1257 */
1258 static double bestIndex(
1259   Parse *pParse,              /* The parsing context */
1260   WhereClause *pWC,           /* The WHERE clause */
1261   struct SrcList_item *pSrc,  /* The FROM clause term to search */
1262   Bitmask notReady,           /* Mask of cursors that are not available */
1263   ExprList *pOrderBy,         /* The order by clause */
1264   Index **ppIndex,            /* Make *ppIndex point to the best index */
1265   int *pFlags,                /* Put flags describing this choice in *pFlags */
1266   int *pnEq                   /* Put the number of == or IN constraints here */
1267 ){
1268   WhereTerm *pTerm;
1269   Index *bestIdx = 0;         /* Index that gives the lowest cost */
1270   double lowestCost;          /* The cost of using bestIdx */
1271   int bestFlags = 0;          /* Flags associated with bestIdx */
1272   int bestNEq = 0;            /* Best value for nEq */
1273   int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
1274   Index *pProbe;              /* An index we are evaluating */
1275   int rev;                    /* True to scan in reverse order */
1276   int flags;                  /* Flags associated with pProbe */
1277   int nEq;                    /* Number of == or IN constraints */
1278   int eqTermMask;             /* Mask of valid equality operators */
1279   double cost;                /* Cost of using pProbe */
1280 
1281   TRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady));
1282   lowestCost = SQLITE_BIG_DBL;
1283   pProbe = pSrc->pTab->pIndex;
1284 
1285   /* If the table has no indices and there are no terms in the where
1286   ** clause that refer to the ROWID, then we will never be able to do
1287   ** anything other than a full table scan on this table.  We might as
1288   ** well put it first in the join order.  That way, perhaps it can be
1289   ** referenced by other tables in the join.
1290   */
1291   if( pProbe==0 &&
1292      findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 &&
1293      (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, &rev)) ){
1294     *pFlags = 0;
1295     *ppIndex = 0;
1296     *pnEq = 0;
1297     return 0.0;
1298   }
1299 
1300   /* Check for a rowid=EXPR or rowid IN (...) constraints
1301   */
1302   pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
1303   if( pTerm ){
1304     Expr *pExpr;
1305     *ppIndex = 0;
1306     bestFlags = WHERE_ROWID_EQ;
1307     if( pTerm->eOperator & WO_EQ ){
1308       /* Rowid== is always the best pick.  Look no further.  Because only
1309       ** a single row is generated, output is always in sorted order */
1310       *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE;
1311       *pnEq = 1;
1312       TRACE(("... best is rowid\n"));
1313       return 0.0;
1314     }else if( (pExpr = pTerm->pExpr)->pList!=0 ){
1315       /* Rowid IN (LIST): cost is NlogN where N is the number of list
1316       ** elements.  */
1317       lowestCost = pExpr->pList->nExpr;
1318       lowestCost *= estLog(lowestCost);
1319     }else{
1320       /* Rowid IN (SELECT): cost is NlogN where N is the number of rows
1321       ** in the result of the inner select.  We have no way to estimate
1322       ** that value so make a wild guess. */
1323       lowestCost = 200;
1324     }
1325     TRACE(("... rowid IN cost: %.9g\n", lowestCost));
1326   }
1327 
1328   /* Estimate the cost of a table scan.  If we do not know how many
1329   ** entries are in the table, use 1 million as a guess.
1330   */
1331   cost = pProbe ? pProbe->aiRowEst[0] : 1000000;
1332   TRACE(("... table scan base cost: %.9g\n", cost));
1333   flags = WHERE_ROWID_RANGE;
1334 
1335   /* Check for constraints on a range of rowids in a table scan.
1336   */
1337   pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0);
1338   if( pTerm ){
1339     if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){
1340       flags |= WHERE_TOP_LIMIT;
1341       cost /= 3;  /* Guess that rowid<EXPR eliminates two-thirds or rows */
1342     }
1343     if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){
1344       flags |= WHERE_BTM_LIMIT;
1345       cost /= 3;  /* Guess that rowid>EXPR eliminates two-thirds of rows */
1346     }
1347     TRACE(("... rowid range reduces cost to %.9g\n", cost));
1348   }else{
1349     flags = 0;
1350   }
1351 
1352   /* If the table scan does not satisfy the ORDER BY clause, increase
1353   ** the cost by NlogN to cover the expense of sorting. */
1354   if( pOrderBy ){
1355     if( sortableByRowid(iCur, pOrderBy, &rev) ){
1356       flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE;
1357       if( rev ){
1358         flags |= WHERE_REVERSE;
1359       }
1360     }else{
1361       cost += cost*estLog(cost);
1362       TRACE(("... sorting increases cost to %.9g\n", cost));
1363     }
1364   }
1365   if( cost<lowestCost ){
1366     lowestCost = cost;
1367     bestFlags = flags;
1368   }
1369 
1370   /* If the pSrc table is the right table of a LEFT JOIN then we may not
1371   ** use an index to satisfy IS NULL constraints on that table.  This is
1372   ** because columns might end up being NULL if the table does not match -
1373   ** a circumstance which the index cannot help us discover.  Ticket #2177.
1374   */
1375   if( (pSrc->jointype & JT_LEFT)!=0 ){
1376     eqTermMask = WO_EQ|WO_IN;
1377   }else{
1378     eqTermMask = WO_EQ|WO_IN|WO_ISNULL;
1379   }
1380 
1381   /* Look at each index.
1382   */
1383   for(; pProbe; pProbe=pProbe->pNext){
1384     int i;                       /* Loop counter */
1385     double inMultiplier = 1;
1386 
1387     TRACE(("... index %s:\n", pProbe->zName));
1388 
1389     /* Count the number of columns in the index that are satisfied
1390     ** by x=EXPR constraints or x IN (...) constraints.
1391     */
1392     flags = 0;
1393     for(i=0; i<pProbe->nColumn; i++){
1394       int j = pProbe->aiColumn[i];
1395       pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe);
1396       if( pTerm==0 ) break;
1397       flags |= WHERE_COLUMN_EQ;
1398       if( pTerm->eOperator & WO_IN ){
1399         Expr *pExpr = pTerm->pExpr;
1400         flags |= WHERE_COLUMN_IN;
1401         if( pExpr->pSelect!=0 ){
1402           inMultiplier *= 25;
1403         }else if( pExpr->pList!=0 ){
1404           inMultiplier *= pExpr->pList->nExpr + 1;
1405         }
1406       }
1407     }
1408     cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier);
1409     nEq = i;
1410     if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0
1411          && nEq==pProbe->nColumn ){
1412       flags |= WHERE_UNIQUE;
1413     }
1414     TRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n", nEq, inMultiplier, cost));
1415 
1416     /* Look for range constraints
1417     */
1418     if( nEq<pProbe->nColumn ){
1419       int j = pProbe->aiColumn[nEq];
1420       pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe);
1421       if( pTerm ){
1422         flags |= WHERE_COLUMN_RANGE;
1423         if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){
1424           flags |= WHERE_TOP_LIMIT;
1425           cost /= 3;
1426         }
1427         if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){
1428           flags |= WHERE_BTM_LIMIT;
1429           cost /= 3;
1430         }
1431         TRACE(("...... range reduces cost to %.9g\n", cost));
1432       }
1433     }
1434 
1435     /* Add the additional cost of sorting if that is a factor.
1436     */
1437     if( pOrderBy ){
1438       if( (flags & WHERE_COLUMN_IN)==0 &&
1439            isSortingIndex(pParse,pProbe,iCur,pOrderBy,nEq,&rev) ){
1440         if( flags==0 ){
1441           flags = WHERE_COLUMN_RANGE;
1442         }
1443         flags |= WHERE_ORDERBY;
1444         if( rev ){
1445           flags |= WHERE_REVERSE;
1446         }
1447       }else{
1448         cost += cost*estLog(cost);
1449         TRACE(("...... orderby increases cost to %.9g\n", cost));
1450       }
1451     }
1452 
1453     /* Check to see if we can get away with using just the index without
1454     ** ever reading the table.  If that is the case, then halve the
1455     ** cost of this index.
1456     */
1457     if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){
1458       Bitmask m = pSrc->colUsed;
1459       int j;
1460       for(j=0; j<pProbe->nColumn; j++){
1461         int x = pProbe->aiColumn[j];
1462         if( x<BMS-1 ){
1463           m &= ~(((Bitmask)1)<<x);
1464         }
1465       }
1466       if( m==0 ){
1467         flags |= WHERE_IDX_ONLY;
1468         cost /= 2;
1469         TRACE(("...... idx-only reduces cost to %.9g\n", cost));
1470       }
1471     }
1472 
1473     /* If this index has achieved the lowest cost so far, then use it.
1474     */
1475     if( cost < lowestCost ){
1476       bestIdx = pProbe;
1477       lowestCost = cost;
1478       assert( flags!=0 );
1479       bestFlags = flags;
1480       bestNEq = nEq;
1481     }
1482   }
1483 
1484   /* Report the best result
1485   */
1486   *ppIndex = bestIdx;
1487   TRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n",
1488         bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq));
1489   *pFlags = bestFlags;
1490   *pnEq = bestNEq;
1491   return lowestCost;
1492 }
1493 
1494 
1495 /*
1496 ** Disable a term in the WHERE clause.  Except, do not disable the term
1497 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
1498 ** or USING clause of that join.
1499 **
1500 ** Consider the term t2.z='ok' in the following queries:
1501 **
1502 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
1503 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
1504 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
1505 **
1506 ** The t2.z='ok' is disabled in the in (2) because it originates
1507 ** in the ON clause.  The term is disabled in (3) because it is not part
1508 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
1509 **
1510 ** Disabling a term causes that term to not be tested in the inner loop
1511 ** of the join.  Disabling is an optimization.  When terms are satisfied
1512 ** by indices, we disable them to prevent redundant tests in the inner
1513 ** loop.  We would get the correct results if nothing were ever disabled,
1514 ** but joins might run a little slower.  The trick is to disable as much
1515 ** as we can without disabling too much.  If we disabled in (1), we'd get
1516 ** the wrong answer.  See ticket #813.
1517 */
1518 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
1519   if( pTerm
1520       && (pTerm->flags & TERM_CODED)==0
1521       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
1522   ){
1523     pTerm->flags |= TERM_CODED;
1524     if( pTerm->iParent>=0 ){
1525       WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
1526       if( (--pOther->nChild)==0 ){
1527         disableTerm(pLevel, pOther);
1528       }
1529     }
1530   }
1531 }
1532 
1533 /*
1534 ** Generate code that builds a probe for an index.
1535 **
1536 ** There should be nColumn values on the stack.  The index
1537 ** to be probed is pIdx.  Pop the values from the stack and
1538 ** replace them all with a single record that is the index
1539 ** problem.
1540 */
1541 static void buildIndexProbe(
1542   Vdbe *v,        /* Generate code into this VM */
1543   int nColumn,    /* The number of columns to check for NULL */
1544   Index *pIdx     /* Index that we will be searching */
1545 ){
1546   sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
1547   sqlite3IndexAffinityStr(v, pIdx);
1548 }
1549 
1550 
1551 /*
1552 ** Generate code for a single equality term of the WHERE clause.  An equality
1553 ** term can be either X=expr or X IN (...).   pTerm is the term to be
1554 ** coded.
1555 **
1556 ** The current value for the constraint is left on the top of the stack.
1557 **
1558 ** For a constraint of the form X=expr, the expression is evaluated and its
1559 ** result is left on the stack.  For constraints of the form X IN (...)
1560 ** this routine sets up a loop that will iterate over all values of X.
1561 */
1562 static void codeEqualityTerm(
1563   Parse *pParse,      /* The parsing context */
1564   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
1565   int brk,            /* Jump here to abandon the loop */
1566   WhereLevel *pLevel  /* When level of the FROM clause we are working on */
1567 ){
1568   Expr *pX = pTerm->pExpr;
1569   Vdbe *v = pParse->pVdbe;
1570   if( pX->op==TK_EQ ){
1571     sqlite3ExprCode(pParse, pX->pRight);
1572   }else if( pX->op==TK_ISNULL ){
1573     sqlite3VdbeAddOp(v, OP_Null, 0, 0);
1574 #ifndef SQLITE_OMIT_SUBQUERY
1575   }else{
1576     int iTab;
1577     int *aIn;
1578 
1579     assert( pX->op==TK_IN );
1580     sqlite3CodeSubselect(pParse, pX);
1581     iTab = pX->iTable;
1582     sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0);
1583     VdbeComment((v, "# %.*s", pX->span.n, pX->span.z));
1584     pLevel->nIn++;
1585     sqliteReallocOrFree((void**)&pLevel->aInLoop,
1586                                  sizeof(pLevel->aInLoop[0])*2*pLevel->nIn);
1587     aIn = pLevel->aInLoop;
1588     if( aIn ){
1589       aIn += pLevel->nIn*2 - 2;
1590       aIn[0] = iTab;
1591       aIn[1] = sqlite3VdbeAddOp(v, OP_Column, iTab, 0);
1592     }else{
1593       pLevel->nIn = 0;
1594     }
1595 #endif
1596   }
1597   disableTerm(pLevel, pTerm);
1598 }
1599 
1600 /*
1601 ** Generate code that will evaluate all == and IN constraints for an
1602 ** index.  The values for all constraints are left on the stack.
1603 **
1604 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
1605 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
1606 ** The index has as many as three equality constraints, but in this
1607 ** example, the third "c" value is an inequality.  So only two
1608 ** constraints are coded.  This routine will generate code to evaluate
1609 ** a==5 and b IN (1,2,3).  The current values for a and b will be left
1610 ** on the stack - a is the deepest and b the shallowest.
1611 **
1612 ** In the example above nEq==2.  But this subroutine works for any value
1613 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
1614 ** The only thing it does is allocate the pLevel->iMem memory cell.
1615 **
1616 ** This routine always allocates at least one memory cell and puts
1617 ** the address of that memory cell in pLevel->iMem.  The code that
1618 ** calls this routine will use pLevel->iMem to store the termination
1619 ** key value of the loop.  If one or more IN operators appear, then
1620 ** this routine allocates an additional nEq memory cells for internal
1621 ** use.
1622 */
1623 static void codeAllEqualityTerms(
1624   Parse *pParse,        /* Parsing context */
1625   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
1626   WhereClause *pWC,     /* The WHERE clause */
1627   Bitmask notReady,     /* Which parts of FROM have not yet been coded */
1628   int brk               /* Jump here to end the loop */
1629 ){
1630   int nEq = pLevel->nEq;        /* The number of == or IN constraints to code */
1631   int termsInMem = 0;           /* If true, store value in mem[] cells */
1632   Vdbe *v = pParse->pVdbe;      /* The virtual machine under construction */
1633   Index *pIdx = pLevel->pIdx;   /* The index being used for this loop */
1634   int iCur = pLevel->iTabCur;   /* The cursor of the table */
1635   WhereTerm *pTerm;             /* A single constraint term */
1636   int j;                        /* Loop counter */
1637 
1638   /* Figure out how many memory cells we will need then allocate them.
1639   ** We always need at least one used to store the loop terminator
1640   ** value.  If there are IN operators we'll need one for each == or
1641   ** IN constraint.
1642   */
1643   pLevel->iMem = pParse->nMem++;
1644   if( pLevel->flags & WHERE_COLUMN_IN ){
1645     pParse->nMem += pLevel->nEq;
1646     termsInMem = 1;
1647   }
1648 
1649   /* Evaluate the equality constraints
1650   */
1651   assert( pIdx->nColumn>=nEq );
1652   for(j=0; j<nEq; j++){
1653     int k = pIdx->aiColumn[j];
1654     pTerm = findTerm(pWC, iCur, k, notReady, WO_EQ|WO_IN|WO_ISNULL, pIdx);
1655     if( pTerm==0 ) break;
1656     assert( (pTerm->flags & TERM_CODED)==0 );
1657     codeEqualityTerm(pParse, pTerm, brk, pLevel);
1658     if( (pTerm->eOperator & WO_ISNULL)==0 ){
1659       sqlite3VdbeAddOp(v, OP_IsNull, termsInMem ? -1 : -(j+1), brk);
1660     }
1661     if( termsInMem ){
1662       sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem+j+1, 1);
1663     }
1664   }
1665 
1666   /* Make sure all the constraint values are on the top of the stack
1667   */
1668   if( termsInMem ){
1669     for(j=0; j<nEq; j++){
1670       sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem+j+1, 0);
1671     }
1672   }
1673 }
1674 
1675 #if defined(SQLITE_TEST)
1676 /*
1677 ** The following variable holds a text description of query plan generated
1678 ** by the most recent call to sqlite3WhereBegin().  Each call to WhereBegin
1679 ** overwrites the previous.  This information is used for testing and
1680 ** analysis only.
1681 */
1682 char sqlite3_query_plan[BMS*2*40];  /* Text of the join */
1683 static int nQPlan = 0;              /* Next free slow in _query_plan[] */
1684 
1685 #endif /* SQLITE_TEST */
1686 
1687 
1688 /*
1689 ** Free a WhereInfo structure
1690 */
1691 static void whereInfoFree(WhereInfo *pWInfo){
1692   if( pWInfo ){
1693     int i;
1694     for(i=0; i<pWInfo->nLevel; i++){
1695       sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
1696       if( pInfo ){
1697         if( pInfo->needToFreeIdxStr ){
1698           sqlite3_free(pInfo->idxStr);
1699         }
1700         sqliteFree(pInfo);
1701       }
1702     }
1703     sqliteFree(pWInfo);
1704   }
1705 }
1706 
1707 
1708 /*
1709 ** Generate the beginning of the loop used for WHERE clause processing.
1710 ** The return value is a pointer to an opaque structure that contains
1711 ** information needed to terminate the loop.  Later, the calling routine
1712 ** should invoke sqlite3WhereEnd() with the return value of this function
1713 ** in order to complete the WHERE clause processing.
1714 **
1715 ** If an error occurs, this routine returns NULL.
1716 **
1717 ** The basic idea is to do a nested loop, one loop for each table in
1718 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
1719 ** same as a SELECT with only a single table in the FROM clause.)  For
1720 ** example, if the SQL is this:
1721 **
1722 **       SELECT * FROM t1, t2, t3 WHERE ...;
1723 **
1724 ** Then the code generated is conceptually like the following:
1725 **
1726 **      foreach row1 in t1 do       \    Code generated
1727 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
1728 **          foreach row3 in t3 do   /
1729 **            ...
1730 **          end                     \    Code generated
1731 **        end                        |-- by sqlite3WhereEnd()
1732 **      end                         /
1733 **
1734 ** Note that the loops might not be nested in the order in which they
1735 ** appear in the FROM clause if a different order is better able to make
1736 ** use of indices.  Note also that when the IN operator appears in
1737 ** the WHERE clause, it might result in additional nested loops for
1738 ** scanning through all values on the right-hand side of the IN.
1739 **
1740 ** There are Btree cursors associated with each table.  t1 uses cursor
1741 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
1742 ** And so forth.  This routine generates code to open those VDBE cursors
1743 ** and sqlite3WhereEnd() generates the code to close them.
1744 **
1745 ** The code that sqlite3WhereBegin() generates leaves the cursors named
1746 ** in pTabList pointing at their appropriate entries.  The [...] code
1747 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
1748 ** data from the various tables of the loop.
1749 **
1750 ** If the WHERE clause is empty, the foreach loops must each scan their
1751 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
1752 ** the tables have indices and there are terms in the WHERE clause that
1753 ** refer to those indices, a complete table scan can be avoided and the
1754 ** code will run much faster.  Most of the work of this routine is checking
1755 ** to see if there are indices that can be used to speed up the loop.
1756 **
1757 ** Terms of the WHERE clause are also used to limit which rows actually
1758 ** make it to the "..." in the middle of the loop.  After each "foreach",
1759 ** terms of the WHERE clause that use only terms in that loop and outer
1760 ** loops are evaluated and if false a jump is made around all subsequent
1761 ** inner loops (or around the "..." if the test occurs within the inner-
1762 ** most loop)
1763 **
1764 ** OUTER JOINS
1765 **
1766 ** An outer join of tables t1 and t2 is conceptally coded as follows:
1767 **
1768 **    foreach row1 in t1 do
1769 **      flag = 0
1770 **      foreach row2 in t2 do
1771 **        start:
1772 **          ...
1773 **          flag = 1
1774 **      end
1775 **      if flag==0 then
1776 **        move the row2 cursor to a null row
1777 **        goto start
1778 **      fi
1779 **    end
1780 **
1781 ** ORDER BY CLAUSE PROCESSING
1782 **
1783 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
1784 ** if there is one.  If there is no ORDER BY clause or if this routine
1785 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
1786 **
1787 ** If an index can be used so that the natural output order of the table
1788 ** scan is correct for the ORDER BY clause, then that index is used and
1789 ** *ppOrderBy is set to NULL.  This is an optimization that prevents an
1790 ** unnecessary sort of the result set if an index appropriate for the
1791 ** ORDER BY clause already exists.
1792 **
1793 ** If the where clause loops cannot be arranged to provide the correct
1794 ** output order, then the *ppOrderBy is unchanged.
1795 */
1796 WhereInfo *sqlite3WhereBegin(
1797   Parse *pParse,        /* The parser context */
1798   SrcList *pTabList,    /* A list of all tables to be scanned */
1799   Expr *pWhere,         /* The WHERE clause */
1800   ExprList **ppOrderBy  /* An ORDER BY clause, or NULL */
1801 ){
1802   int i;                     /* Loop counter */
1803   WhereInfo *pWInfo;         /* Will become the return value of this function */
1804   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
1805   int brk, cont = 0;         /* Addresses used during code generation */
1806   Bitmask notReady;          /* Cursors that are not yet positioned */
1807   WhereTerm *pTerm;          /* A single term in the WHERE clause */
1808   ExprMaskSet maskSet;       /* The expression mask set */
1809   WhereClause wc;            /* The WHERE clause is divided into these terms */
1810   struct SrcList_item *pTabItem;  /* A single entry from pTabList */
1811   WhereLevel *pLevel;             /* A single level in the pWInfo list */
1812   int iFrom;                      /* First unused FROM clause element */
1813   int andFlags;              /* AND-ed combination of all wc.a[].flags */
1814 
1815   /* The number of tables in the FROM clause is limited by the number of
1816   ** bits in a Bitmask
1817   */
1818   if( pTabList->nSrc>BMS ){
1819     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
1820     return 0;
1821   }
1822 
1823   /* Split the WHERE clause into separate subexpressions where each
1824   ** subexpression is separated by an AND operator.
1825   */
1826   initMaskSet(&maskSet);
1827   whereClauseInit(&wc, pParse);
1828   whereSplit(&wc, pWhere, TK_AND);
1829 
1830   /* Allocate and initialize the WhereInfo structure that will become the
1831   ** return value.
1832   */
1833   pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
1834   if( sqlite3MallocFailed() ){
1835     goto whereBeginNoMem;
1836   }
1837   pWInfo->nLevel = pTabList->nSrc;
1838   pWInfo->pParse = pParse;
1839   pWInfo->pTabList = pTabList;
1840   pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
1841 
1842   /* Special case: a WHERE clause that is constant.  Evaluate the
1843   ** expression and either jump over all of the code or fall thru.
1844   */
1845   if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstant(pWhere)) ){
1846     sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
1847     pWhere = 0;
1848   }
1849 
1850   /* Analyze all of the subexpressions.  Note that exprAnalyze() might
1851   ** add new virtual terms onto the end of the WHERE clause.  We do not
1852   ** want to analyze these virtual terms, so start analyzing at the end
1853   ** and work forward so that the added virtual terms are never processed.
1854   */
1855   for(i=0; i<pTabList->nSrc; i++){
1856     createMask(&maskSet, pTabList->a[i].iCursor);
1857   }
1858   exprAnalyzeAll(pTabList, &maskSet, &wc);
1859   if( sqlite3MallocFailed() ){
1860     goto whereBeginNoMem;
1861   }
1862 
1863   /* Chose the best index to use for each table in the FROM clause.
1864   **
1865   ** This loop fills in the following fields:
1866   **
1867   **   pWInfo->a[].pIdx      The index to use for this level of the loop.
1868   **   pWInfo->a[].flags     WHERE_xxx flags associated with pIdx
1869   **   pWInfo->a[].nEq       The number of == and IN constraints
1870   **   pWInfo->a[].iFrom     When term of the FROM clause is being coded
1871   **   pWInfo->a[].iTabCur   The VDBE cursor for the database table
1872   **   pWInfo->a[].iIdxCur   The VDBE cursor for the index
1873   **
1874   ** This loop also figures out the nesting order of tables in the FROM
1875   ** clause.
1876   */
1877   notReady = ~(Bitmask)0;
1878   pTabItem = pTabList->a;
1879   pLevel = pWInfo->a;
1880   andFlags = ~0;
1881   TRACE(("*** Optimizer Start ***\n"));
1882   for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
1883     Index *pIdx;                /* Index for FROM table at pTabItem */
1884     int flags;                  /* Flags asssociated with pIdx */
1885     int nEq;                    /* Number of == or IN constraints */
1886     double cost;                /* The cost for pIdx */
1887     int j;                      /* For looping over FROM tables */
1888     Index *pBest = 0;           /* The best index seen so far */
1889     int bestFlags = 0;          /* Flags associated with pBest */
1890     int bestNEq = 0;            /* nEq associated with pBest */
1891     double lowestCost;          /* Cost of the pBest */
1892     int bestJ = 0;              /* The value of j */
1893     Bitmask m;                  /* Bitmask value for j or bestJ */
1894     int once = 0;               /* True when first table is seen */
1895     sqlite3_index_info *pIndex; /* Current virtual index */
1896 
1897     lowestCost = SQLITE_BIG_DBL;
1898     for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){
1899       int doNotReorder;  /* True if this table should not be reordered */
1900 
1901       doNotReorder =  (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
1902       if( once && doNotReorder ) break;
1903       m = getMask(&maskSet, pTabItem->iCursor);
1904       if( (m & notReady)==0 ){
1905         if( j==iFrom ) iFrom++;
1906         continue;
1907       }
1908       assert( pTabItem->pTab );
1909 #ifndef SQLITE_OMIT_VIRTUALTABLE
1910       if( IsVirtual(pTabItem->pTab) ){
1911         sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo;
1912         cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady,
1913                                 ppOrderBy ? *ppOrderBy : 0, i==0,
1914                                 ppIdxInfo);
1915         flags = WHERE_VIRTUALTABLE;
1916         pIndex = *ppIdxInfo;
1917         if( pIndex && pIndex->orderByConsumed ){
1918           flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY;
1919         }
1920         pIdx = 0;
1921         nEq = 0;
1922       }else
1923 #endif
1924       {
1925         cost = bestIndex(pParse, &wc, pTabItem, notReady,
1926                          (i==0 && ppOrderBy) ? *ppOrderBy : 0,
1927                          &pIdx, &flags, &nEq);
1928         pIndex = 0;
1929       }
1930       if( cost<lowestCost ){
1931         once = 1;
1932         lowestCost = cost;
1933         pBest = pIdx;
1934         bestFlags = flags;
1935         bestNEq = nEq;
1936         bestJ = j;
1937         pLevel->pBestIdx = pIndex;
1938       }
1939       if( doNotReorder ) break;
1940     }
1941     TRACE(("*** Optimizer choose table %d for loop %d\n", bestJ,
1942            pLevel-pWInfo->a));
1943     if( (bestFlags & WHERE_ORDERBY)!=0 ){
1944       *ppOrderBy = 0;
1945     }
1946     andFlags &= bestFlags;
1947     pLevel->flags = bestFlags;
1948     pLevel->pIdx = pBest;
1949     pLevel->nEq = bestNEq;
1950     pLevel->aInLoop = 0;
1951     pLevel->nIn = 0;
1952     if( pBest ){
1953       pLevel->iIdxCur = pParse->nTab++;
1954     }else{
1955       pLevel->iIdxCur = -1;
1956     }
1957     notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor);
1958     pLevel->iFrom = bestJ;
1959   }
1960   TRACE(("*** Optimizer Finished ***\n"));
1961 
1962   /* If the total query only selects a single row, then the ORDER BY
1963   ** clause is irrelevant.
1964   */
1965   if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
1966     *ppOrderBy = 0;
1967   }
1968 
1969   /* Open all tables in the pTabList and any indices selected for
1970   ** searching those tables.
1971   */
1972   sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
1973   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
1974     Table *pTab;     /* Table to open */
1975     Index *pIx;      /* Index used to access pTab (if any) */
1976     int iDb;         /* Index of database containing table/index */
1977     int iIdxCur = pLevel->iIdxCur;
1978 
1979 #ifndef SQLITE_OMIT_EXPLAIN
1980     if( pParse->explain==2 ){
1981       char *zMsg;
1982       struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
1983       zMsg = sqlite3MPrintf("TABLE %s", pItem->zName);
1984       if( pItem->zAlias ){
1985         zMsg = sqlite3MPrintf("%z AS %s", zMsg, pItem->zAlias);
1986       }
1987       if( (pIx = pLevel->pIdx)!=0 ){
1988         zMsg = sqlite3MPrintf("%z WITH INDEX %s", zMsg, pIx->zName);
1989       }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
1990         zMsg = sqlite3MPrintf("%z USING PRIMARY KEY", zMsg);
1991       }
1992 #ifndef SQLITE_OMIT_VIRTUALTABLE
1993       else if( pLevel->pBestIdx ){
1994         sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
1995         zMsg = sqlite3MPrintf("%z VIRTUAL TABLE INDEX %d:%s", zMsg,
1996                     pBestIdx->idxNum, pBestIdx->idxStr);
1997       }
1998 #endif
1999       if( pLevel->flags & WHERE_ORDERBY ){
2000         zMsg = sqlite3MPrintf("%z ORDER BY", zMsg);
2001       }
2002       sqlite3VdbeOp3(v, OP_Explain, i, pLevel->iFrom, zMsg, P3_DYNAMIC);
2003     }
2004 #endif /* SQLITE_OMIT_EXPLAIN */
2005     pTabItem = &pTabList->a[pLevel->iFrom];
2006     pTab = pTabItem->pTab;
2007     iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2008     if( pTab->isEphem || pTab->pSelect ) continue;
2009 #ifndef SQLITE_OMIT_VIRTUALTABLE
2010     if( pLevel->pBestIdx ){
2011       int iCur = pTabItem->iCursor;
2012       sqlite3VdbeOp3(v, OP_VOpen, iCur, 0, (const char*)pTab->pVtab, P3_VTAB);
2013     }else
2014 #endif
2015     if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
2016       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, OP_OpenRead);
2017       if( pTab->nCol<(sizeof(Bitmask)*8) ){
2018         Bitmask b = pTabItem->colUsed;
2019         int n = 0;
2020         for(; b; b=b>>1, n++){}
2021         sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-1, n);
2022         assert( n<=pTab->nCol );
2023       }
2024     }else{
2025       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2026     }
2027     pLevel->iTabCur = pTabItem->iCursor;
2028     if( (pIx = pLevel->pIdx)!=0 ){
2029       KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
2030       assert( pIx->pSchema==pTab->pSchema );
2031       sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
2032       VdbeComment((v, "# %s", pIx->zName));
2033       sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum,
2034                      (char*)pKey, P3_KEYINFO_HANDOFF);
2035     }
2036     if( (pLevel->flags & (WHERE_IDX_ONLY|WHERE_COLUMN_RANGE))!=0 ){
2037       /* Only call OP_SetNumColumns on the index if we might later use
2038       ** OP_Column on the index. */
2039       sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1);
2040     }
2041     sqlite3CodeVerifySchema(pParse, iDb);
2042   }
2043   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
2044 
2045   /* Generate the code to do the search.  Each iteration of the for
2046   ** loop below generates code for a single nested loop of the VM
2047   ** program.
2048   */
2049   notReady = ~(Bitmask)0;
2050   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
2051     int j;
2052     int iCur = pTabItem->iCursor;  /* The VDBE cursor for the table */
2053     Index *pIdx;       /* The index we will be using */
2054     int iIdxCur;       /* The VDBE cursor for the index */
2055     int omitTable;     /* True if we use the index only */
2056     int bRev;          /* True if we need to scan in reverse order */
2057 
2058     pTabItem = &pTabList->a[pLevel->iFrom];
2059     iCur = pTabItem->iCursor;
2060     pIdx = pLevel->pIdx;
2061     iIdxCur = pLevel->iIdxCur;
2062     bRev = (pLevel->flags & WHERE_REVERSE)!=0;
2063     omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0;
2064 
2065     /* Create labels for the "break" and "continue" instructions
2066     ** for the current loop.  Jump to brk to break out of a loop.
2067     ** Jump to cont to go immediately to the next iteration of the
2068     ** loop.
2069     */
2070     brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
2071     cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
2072 
2073     /* If this is the right table of a LEFT OUTER JOIN, allocate and
2074     ** initialize a memory cell that records if this table matches any
2075     ** row of the left table of the join.
2076     */
2077     if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
2078       if( !pParse->nMem ) pParse->nMem++;
2079       pLevel->iLeftJoin = pParse->nMem++;
2080       sqlite3VdbeAddOp(v, OP_MemInt, 0, pLevel->iLeftJoin);
2081       VdbeComment((v, "# init LEFT JOIN no-match flag"));
2082     }
2083 
2084 #ifndef SQLITE_OMIT_VIRTUALTABLE
2085     if( pLevel->pBestIdx ){
2086       /* Case 0:  The table is a virtual-table.  Use the VFilter and VNext
2087       **          to access the data.
2088       */
2089       int j;
2090       sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
2091       int nConstraint = pBestIdx->nConstraint;
2092       struct sqlite3_index_constraint_usage *aUsage =
2093                                                   pBestIdx->aConstraintUsage;
2094       const struct sqlite3_index_constraint *aConstraint =
2095                                                   pBestIdx->aConstraint;
2096 
2097       for(j=1; j<=nConstraint; j++){
2098         int k;
2099         for(k=0; k<nConstraint; k++){
2100           if( aUsage[k].argvIndex==j ){
2101             int iTerm = aConstraint[k].iTermOffset;
2102             sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight);
2103             break;
2104           }
2105         }
2106         if( k==nConstraint ) break;
2107       }
2108       sqlite3VdbeAddOp(v, OP_Integer, j-1, 0);
2109       sqlite3VdbeAddOp(v, OP_Integer, pBestIdx->idxNum, 0);
2110       sqlite3VdbeOp3(v, OP_VFilter, iCur, brk, pBestIdx->idxStr,
2111                       pBestIdx->needToFreeIdxStr ? P3_MPRINTF : P3_STATIC);
2112       pBestIdx->needToFreeIdxStr = 0;
2113       for(j=0; j<pBestIdx->nConstraint; j++){
2114         if( aUsage[j].omit ){
2115           int iTerm = aConstraint[j].iTermOffset;
2116           disableTerm(pLevel, &wc.a[iTerm]);
2117         }
2118       }
2119       pLevel->op = OP_VNext;
2120       pLevel->p1 = iCur;
2121       pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2122     }else
2123 #endif /* SQLITE_OMIT_VIRTUALTABLE */
2124 
2125     if( pLevel->flags & WHERE_ROWID_EQ ){
2126       /* Case 1:  We can directly reference a single row using an
2127       **          equality comparison against the ROWID field.  Or
2128       **          we reference multiple rows using a "rowid IN (...)"
2129       **          construct.
2130       */
2131       pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0);
2132       assert( pTerm!=0 );
2133       assert( pTerm->pExpr!=0 );
2134       assert( pTerm->leftCursor==iCur );
2135       assert( omitTable==0 );
2136       codeEqualityTerm(pParse, pTerm, brk, pLevel);
2137       sqlite3VdbeAddOp(v, OP_MustBeInt, 1, brk);
2138       sqlite3VdbeAddOp(v, OP_NotExists, iCur, brk);
2139       VdbeComment((v, "pk"));
2140       pLevel->op = OP_Noop;
2141     }else if( pLevel->flags & WHERE_ROWID_RANGE ){
2142       /* Case 2:  We have an inequality comparison against the ROWID field.
2143       */
2144       int testOp = OP_Noop;
2145       int start;
2146       WhereTerm *pStart, *pEnd;
2147 
2148       assert( omitTable==0 );
2149       pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0);
2150       pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0);
2151       if( bRev ){
2152         pTerm = pStart;
2153         pStart = pEnd;
2154         pEnd = pTerm;
2155       }
2156       if( pStart ){
2157         Expr *pX;
2158         pX = pStart->pExpr;
2159         assert( pX!=0 );
2160         assert( pStart->leftCursor==iCur );
2161         sqlite3ExprCode(pParse, pX->pRight);
2162         sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk);
2163         sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk);
2164         VdbeComment((v, "pk"));
2165         disableTerm(pLevel, pStart);
2166       }else{
2167         sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
2168       }
2169       if( pEnd ){
2170         Expr *pX;
2171         pX = pEnd->pExpr;
2172         assert( pX!=0 );
2173         assert( pEnd->leftCursor==iCur );
2174         sqlite3ExprCode(pParse, pX->pRight);
2175         pLevel->iMem = pParse->nMem++;
2176         sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
2177         if( pX->op==TK_LT || pX->op==TK_GT ){
2178           testOp = bRev ? OP_Le : OP_Ge;
2179         }else{
2180           testOp = bRev ? OP_Lt : OP_Gt;
2181         }
2182         disableTerm(pLevel, pEnd);
2183       }
2184       start = sqlite3VdbeCurrentAddr(v);
2185       pLevel->op = bRev ? OP_Prev : OP_Next;
2186       pLevel->p1 = iCur;
2187       pLevel->p2 = start;
2188       if( testOp!=OP_Noop ){
2189         sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
2190         sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
2191         sqlite3VdbeAddOp(v, testOp, SQLITE_AFF_NUMERIC, brk);
2192       }
2193     }else if( pLevel->flags & WHERE_COLUMN_RANGE ){
2194       /* Case 3: The WHERE clause term that refers to the right-most
2195       **         column of the index is an inequality.  For example, if
2196       **         the index is on (x,y,z) and the WHERE clause is of the
2197       **         form "x=5 AND y<10" then this case is used.  Only the
2198       **         right-most column can be an inequality - the rest must
2199       **         use the "==" and "IN" operators.
2200       **
2201       **         This case is also used when there are no WHERE clause
2202       **         constraints but an index is selected anyway, in order
2203       **         to force the output order to conform to an ORDER BY.
2204       */
2205       int start;
2206       int nEq = pLevel->nEq;
2207       int topEq=0;        /* True if top limit uses ==. False is strictly < */
2208       int btmEq=0;        /* True if btm limit uses ==. False if strictly > */
2209       int topOp, btmOp;   /* Operators for the top and bottom search bounds */
2210       int testOp;
2211       int topLimit = (pLevel->flags & WHERE_TOP_LIMIT)!=0;
2212       int btmLimit = (pLevel->flags & WHERE_BTM_LIMIT)!=0;
2213 
2214       /* Generate code to evaluate all constraint terms using == or IN
2215       ** and level the values of those terms on the stack.
2216       */
2217       codeAllEqualityTerms(pParse, pLevel, &wc, notReady, brk);
2218 
2219       /* Duplicate the equality term values because they will all be
2220       ** used twice: once to make the termination key and once to make the
2221       ** start key.
2222       */
2223       for(j=0; j<nEq; j++){
2224         sqlite3VdbeAddOp(v, OP_Dup, nEq-1, 0);
2225       }
2226 
2227       /* Figure out what comparison operators to use for top and bottom
2228       ** search bounds. For an ascending index, the bottom bound is a > or >=
2229       ** operator and the top bound is a < or <= operator.  For a descending
2230       ** index the operators are reversed.
2231       */
2232       if( pIdx->aSortOrder[nEq]==SQLITE_SO_ASC ){
2233         topOp = WO_LT|WO_LE;
2234         btmOp = WO_GT|WO_GE;
2235       }else{
2236         topOp = WO_GT|WO_GE;
2237         btmOp = WO_LT|WO_LE;
2238         SWAP(int, topLimit, btmLimit);
2239       }
2240 
2241       /* Generate the termination key.  This is the key value that
2242       ** will end the search.  There is no termination key if there
2243       ** are no equality terms and no "X<..." term.
2244       **
2245       ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
2246       ** key computed here really ends up being the start key.
2247       */
2248       if( topLimit ){
2249         Expr *pX;
2250         int k = pIdx->aiColumn[j];
2251         pTerm = findTerm(&wc, iCur, k, notReady, topOp, pIdx);
2252         assert( pTerm!=0 );
2253         pX = pTerm->pExpr;
2254         assert( (pTerm->flags & TERM_CODED)==0 );
2255         sqlite3ExprCode(pParse, pX->pRight);
2256         sqlite3VdbeAddOp(v, OP_IsNull, -(nEq+1), brk);
2257         topEq = pTerm->eOperator & (WO_LE|WO_GE);
2258         disableTerm(pLevel, pTerm);
2259         testOp = OP_IdxGE;
2260       }else{
2261         testOp = nEq>0 ? OP_IdxGE : OP_Noop;
2262         topEq = 1;
2263       }
2264       if( testOp!=OP_Noop ){
2265         int nCol = nEq + topLimit;
2266         pLevel->iMem = pParse->nMem++;
2267         buildIndexProbe(v, nCol, pIdx);
2268         if( bRev ){
2269           int op = topEq ? OP_MoveLe : OP_MoveLt;
2270           sqlite3VdbeAddOp(v, op, iIdxCur, brk);
2271         }else{
2272           sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
2273         }
2274       }else if( bRev ){
2275         sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk);
2276       }
2277 
2278       /* Generate the start key.  This is the key that defines the lower
2279       ** bound on the search.  There is no start key if there are no
2280       ** equality terms and if there is no "X>..." term.  In
2281       ** that case, generate a "Rewind" instruction in place of the
2282       ** start key search.
2283       **
2284       ** 2002-Dec-04: In the case of a reverse-order search, the so-called
2285       ** "start" key really ends up being used as the termination key.
2286       */
2287       if( btmLimit ){
2288         Expr *pX;
2289         int k = pIdx->aiColumn[j];
2290         pTerm = findTerm(&wc, iCur, k, notReady, btmOp, pIdx);
2291         assert( pTerm!=0 );
2292         pX = pTerm->pExpr;
2293         assert( (pTerm->flags & TERM_CODED)==0 );
2294         sqlite3ExprCode(pParse, pX->pRight);
2295         sqlite3VdbeAddOp(v, OP_IsNull, -(nEq+1), brk);
2296         btmEq = pTerm->eOperator & (WO_LE|WO_GE);
2297         disableTerm(pLevel, pTerm);
2298       }else{
2299         btmEq = 1;
2300       }
2301       if( nEq>0 || btmLimit ){
2302         int nCol = nEq + btmLimit;
2303         buildIndexProbe(v, nCol, pIdx);
2304         if( bRev ){
2305           pLevel->iMem = pParse->nMem++;
2306           sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
2307           testOp = OP_IdxLT;
2308         }else{
2309           int op = btmEq ? OP_MoveGe : OP_MoveGt;
2310           sqlite3VdbeAddOp(v, op, iIdxCur, brk);
2311         }
2312       }else if( bRev ){
2313         testOp = OP_Noop;
2314       }else{
2315         sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk);
2316       }
2317 
2318       /* Generate the the top of the loop.  If there is a termination
2319       ** key we have to test for that key and abort at the top of the
2320       ** loop.
2321       */
2322       start = sqlite3VdbeCurrentAddr(v);
2323       if( testOp!=OP_Noop ){
2324         sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
2325         sqlite3VdbeAddOp(v, testOp, iIdxCur, brk);
2326         if( (topEq && !bRev) || (!btmEq && bRev) ){
2327           sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC);
2328         }
2329       }
2330       if( topLimit | btmLimit ){
2331         sqlite3VdbeAddOp(v, OP_Column, iIdxCur, nEq);
2332         sqlite3VdbeAddOp(v, OP_IsNull, 1, cont);
2333       }
2334       if( !omitTable ){
2335         sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
2336         sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
2337       }
2338 
2339       /* Record the instruction used to terminate the loop.
2340       */
2341       pLevel->op = bRev ? OP_Prev : OP_Next;
2342       pLevel->p1 = iIdxCur;
2343       pLevel->p2 = start;
2344     }else if( pLevel->flags & WHERE_COLUMN_EQ ){
2345       /* Case 4:  There is an index and all terms of the WHERE clause that
2346       **          refer to the index using the "==" or "IN" operators.
2347       */
2348       int start;
2349       int nEq = pLevel->nEq;
2350 
2351       /* Generate code to evaluate all constraint terms using == or IN
2352       ** and leave the values of those terms on the stack.
2353       */
2354       codeAllEqualityTerms(pParse, pLevel, &wc, notReady, brk);
2355 
2356       /* Generate a single key that will be used to both start and terminate
2357       ** the search
2358       */
2359       buildIndexProbe(v, nEq, pIdx);
2360       sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
2361 
2362       /* Generate code (1) to move to the first matching element of the table.
2363       ** Then generate code (2) that jumps to "brk" after the cursor is past
2364       ** the last matching element of the table.  The code (1) is executed
2365       ** once to initialize the search, the code (2) is executed before each
2366       ** iteration of the scan to see if the scan has finished. */
2367       if( bRev ){
2368         /* Scan in reverse order */
2369         sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, brk);
2370         start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
2371         sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, brk);
2372         pLevel->op = OP_Prev;
2373       }else{
2374         /* Scan in the forward order */
2375         sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, brk);
2376         start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
2377         sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, brk, "+", P3_STATIC);
2378         pLevel->op = OP_Next;
2379       }
2380       if( !omitTable ){
2381         sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
2382         sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
2383       }
2384       pLevel->p1 = iIdxCur;
2385       pLevel->p2 = start;
2386     }else{
2387       /* Case 5:  There is no usable index.  We must do a complete
2388       **          scan of the entire table.
2389       */
2390       assert( omitTable==0 );
2391       assert( bRev==0 );
2392       pLevel->op = OP_Next;
2393       pLevel->p1 = iCur;
2394       pLevel->p2 = 1 + sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk);
2395     }
2396     notReady &= ~getMask(&maskSet, iCur);
2397 
2398     /* Insert code to test every subexpression that can be completely
2399     ** computed using the current set of tables.
2400     */
2401     for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){
2402       Expr *pE;
2403       if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2404       if( (pTerm->prereqAll & notReady)!=0 ) continue;
2405       pE = pTerm->pExpr;
2406       assert( pE!=0 );
2407       if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
2408         continue;
2409       }
2410       sqlite3ExprIfFalse(pParse, pE, cont, 1);
2411       pTerm->flags |= TERM_CODED;
2412     }
2413 
2414     /* For a LEFT OUTER JOIN, generate code that will record the fact that
2415     ** at least one row of the right table has matched the left table.
2416     */
2417     if( pLevel->iLeftJoin ){
2418       pLevel->top = sqlite3VdbeCurrentAddr(v);
2419       sqlite3VdbeAddOp(v, OP_MemInt, 1, pLevel->iLeftJoin);
2420       VdbeComment((v, "# record LEFT JOIN hit"));
2421       for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){
2422         if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2423         if( (pTerm->prereqAll & notReady)!=0 ) continue;
2424         assert( pTerm->pExpr );
2425         sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, 1);
2426         pTerm->flags |= TERM_CODED;
2427       }
2428     }
2429   }
2430 
2431 #ifdef SQLITE_TEST  /* For testing and debugging use only */
2432   /* Record in the query plan information about the current table
2433   ** and the index used to access it (if any).  If the table itself
2434   ** is not used, its name is just '{}'.  If no index is used
2435   ** the index is listed as "{}".  If the primary key is used the
2436   ** index name is '*'.
2437   */
2438   for(i=0; i<pTabList->nSrc; i++){
2439     char *z;
2440     int n;
2441     pLevel = &pWInfo->a[i];
2442     pTabItem = &pTabList->a[pLevel->iFrom];
2443     z = pTabItem->zAlias;
2444     if( z==0 ) z = pTabItem->pTab->zName;
2445     n = strlen(z);
2446     if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
2447       if( pLevel->flags & WHERE_IDX_ONLY ){
2448         strcpy(&sqlite3_query_plan[nQPlan], "{}");
2449         nQPlan += 2;
2450       }else{
2451         strcpy(&sqlite3_query_plan[nQPlan], z);
2452         nQPlan += n;
2453       }
2454       sqlite3_query_plan[nQPlan++] = ' ';
2455     }
2456     if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
2457       strcpy(&sqlite3_query_plan[nQPlan], "* ");
2458       nQPlan += 2;
2459     }else if( pLevel->pIdx==0 ){
2460       strcpy(&sqlite3_query_plan[nQPlan], "{} ");
2461       nQPlan += 3;
2462     }else{
2463       n = strlen(pLevel->pIdx->zName);
2464       if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
2465         strcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName);
2466         nQPlan += n;
2467         sqlite3_query_plan[nQPlan++] = ' ';
2468       }
2469     }
2470   }
2471   while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
2472     sqlite3_query_plan[--nQPlan] = 0;
2473   }
2474   sqlite3_query_plan[nQPlan] = 0;
2475   nQPlan = 0;
2476 #endif /* SQLITE_TEST // Testing and debugging use only */
2477 
2478   /* Record the continuation address in the WhereInfo structure.  Then
2479   ** clean up and return.
2480   */
2481   pWInfo->iContinue = cont;
2482   whereClauseClear(&wc);
2483   return pWInfo;
2484 
2485   /* Jump here if malloc fails */
2486 whereBeginNoMem:
2487   whereClauseClear(&wc);
2488   whereInfoFree(pWInfo);
2489   return 0;
2490 }
2491 
2492 /*
2493 ** Generate the end of the WHERE loop.  See comments on
2494 ** sqlite3WhereBegin() for additional information.
2495 */
2496 void sqlite3WhereEnd(WhereInfo *pWInfo){
2497   Vdbe *v = pWInfo->pParse->pVdbe;
2498   int i;
2499   WhereLevel *pLevel;
2500   SrcList *pTabList = pWInfo->pTabList;
2501 
2502   /* Generate loop termination code.
2503   */
2504   for(i=pTabList->nSrc-1; i>=0; i--){
2505     pLevel = &pWInfo->a[i];
2506     sqlite3VdbeResolveLabel(v, pLevel->cont);
2507     if( pLevel->op!=OP_Noop ){
2508       sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
2509     }
2510     sqlite3VdbeResolveLabel(v, pLevel->brk);
2511     if( pLevel->nIn ){
2512       int *a;
2513       int j;
2514       for(j=pLevel->nIn, a=&pLevel->aInLoop[j*2-2]; j>0; j--, a-=2){
2515         sqlite3VdbeAddOp(v, OP_Next, a[0], a[1]);
2516         sqlite3VdbeJumpHere(v, a[1]-1);
2517       }
2518       sqliteFree(pLevel->aInLoop);
2519     }
2520     if( pLevel->iLeftJoin ){
2521       int addr;
2522       addr = sqlite3VdbeAddOp(v, OP_IfMemPos, pLevel->iLeftJoin, 0);
2523       sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
2524       if( pLevel->iIdxCur>=0 ){
2525         sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0);
2526       }
2527       sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top);
2528       sqlite3VdbeJumpHere(v, addr);
2529     }
2530   }
2531 
2532   /* The "break" point is here, just past the end of the outer loop.
2533   ** Set it.
2534   */
2535   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
2536 
2537   /* Close all of the cursors that were opened by sqlite3WhereBegin.
2538   */
2539   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
2540     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
2541     Table *pTab = pTabItem->pTab;
2542     assert( pTab!=0 );
2543     if( pTab->isEphem || pTab->pSelect ) continue;
2544     if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
2545       sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0);
2546     }
2547     if( pLevel->pIdx!=0 ){
2548       sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0);
2549     }
2550 
2551     /* Make cursor substitutions for cases where we want to use
2552     ** just the index and never reference the table.
2553     **
2554     ** Calls to the code generator in between sqlite3WhereBegin and
2555     ** sqlite3WhereEnd will have created code that references the table
2556     ** directly.  This loop scans all that code looking for opcodes
2557     ** that reference the table and converts them into opcodes that
2558     ** reference the index.
2559     */
2560     if( pLevel->flags & WHERE_IDX_ONLY ){
2561       int k, j, last;
2562       VdbeOp *pOp;
2563       Index *pIdx = pLevel->pIdx;
2564 
2565       assert( pIdx!=0 );
2566       pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
2567       last = sqlite3VdbeCurrentAddr(v);
2568       for(k=pWInfo->iTop; k<last; k++, pOp++){
2569         if( pOp->p1!=pLevel->iTabCur ) continue;
2570         if( pOp->opcode==OP_Column ){
2571           pOp->p1 = pLevel->iIdxCur;
2572           for(j=0; j<pIdx->nColumn; j++){
2573             if( pOp->p2==pIdx->aiColumn[j] ){
2574               pOp->p2 = j;
2575               break;
2576             }
2577           }
2578         }else if( pOp->opcode==OP_Rowid ){
2579           pOp->p1 = pLevel->iIdxCur;
2580           pOp->opcode = OP_IdxRowid;
2581         }else if( pOp->opcode==OP_NullRow ){
2582           pOp->opcode = OP_Noop;
2583         }
2584       }
2585     }
2586   }
2587 
2588   /* Final cleanup
2589   */
2590   whereInfoFree(pWInfo);
2591   return;
2592 }
2593