1 /* 2 ** 2001 September 15 3 ** 4 ** The author disclaims copyright to this source code. In place of 5 ** a legal notice, here is a blessing: 6 ** 7 ** May you do good and not evil. 8 ** May you find forgiveness for yourself and forgive others. 9 ** May you share freely, never taking more than you give. 10 ** 11 ************************************************************************* 12 ** This module contains C code that generates VDBE code used to process 13 ** the WHERE clause of SQL statements. This module is reponsible for 14 ** generating the code that loops through a table looking for applicable 15 ** rows. Indices are selected and used to speed the search when doing 16 ** so is applicable. Because this module is responsible for selecting 17 ** indices, you might also think of this module as the "query optimizer". 18 ** 19 ** $Id: where.c,v 1.237 2007/02/06 13:26:33 drh Exp $ 20 */ 21 #include "sqliteInt.h" 22 23 /* 24 ** The number of bits in a Bitmask. "BMS" means "BitMask Size". 25 */ 26 #define BMS (sizeof(Bitmask)*8) 27 28 /* 29 ** Determine the number of elements in an array. 30 */ 31 #define ARRAYSIZE(X) (sizeof(X)/sizeof(X[0])) 32 33 /* 34 ** Trace output macros 35 */ 36 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) 37 int sqlite3_where_trace = 0; 38 # define TRACE(X) if(sqlite3_where_trace) sqlite3DebugPrintf X 39 #else 40 # define TRACE(X) 41 #endif 42 43 /* Forward reference 44 */ 45 typedef struct WhereClause WhereClause; 46 typedef struct ExprMaskSet ExprMaskSet; 47 48 /* 49 ** The query generator uses an array of instances of this structure to 50 ** help it analyze the subexpressions of the WHERE clause. Each WHERE 51 ** clause subexpression is separated from the others by an AND operator. 52 ** 53 ** All WhereTerms are collected into a single WhereClause structure. 54 ** The following identity holds: 55 ** 56 ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm 57 ** 58 ** When a term is of the form: 59 ** 60 ** X <op> <expr> 61 ** 62 ** where X is a column name and <op> is one of certain operators, 63 ** then WhereTerm.leftCursor and WhereTerm.leftColumn record the 64 ** cursor number and column number for X. WhereTerm.operator records 65 ** the <op> using a bitmask encoding defined by WO_xxx below. The 66 ** use of a bitmask encoding for the operator allows us to search 67 ** quickly for terms that match any of several different operators. 68 ** 69 ** prereqRight and prereqAll record sets of cursor numbers, 70 ** but they do so indirectly. A single ExprMaskSet structure translates 71 ** cursor number into bits and the translated bit is stored in the prereq 72 ** fields. The translation is used in order to maximize the number of 73 ** bits that will fit in a Bitmask. The VDBE cursor numbers might be 74 ** spread out over the non-negative integers. For example, the cursor 75 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The ExprMaskSet 76 ** translates these sparse cursor numbers into consecutive integers 77 ** beginning with 0 in order to make the best possible use of the available 78 ** bits in the Bitmask. So, in the example above, the cursor numbers 79 ** would be mapped into integers 0 through 7. 80 */ 81 typedef struct WhereTerm WhereTerm; 82 struct WhereTerm { 83 Expr *pExpr; /* Pointer to the subexpression */ 84 i16 iParent; /* Disable pWC->a[iParent] when this term disabled */ 85 i16 leftCursor; /* Cursor number of X in "X <op> <expr>" */ 86 i16 leftColumn; /* Column number of X in "X <op> <expr>" */ 87 u16 eOperator; /* A WO_xx value describing <op> */ 88 u8 flags; /* Bit flags. See below */ 89 u8 nChild; /* Number of children that must disable us */ 90 WhereClause *pWC; /* The clause this term is part of */ 91 Bitmask prereqRight; /* Bitmask of tables used by pRight */ 92 Bitmask prereqAll; /* Bitmask of tables referenced by p */ 93 }; 94 95 /* 96 ** Allowed values of WhereTerm.flags 97 */ 98 #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(pExpr) */ 99 #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */ 100 #define TERM_CODED 0x04 /* This term is already coded */ 101 #define TERM_COPIED 0x08 /* Has a child */ 102 #define TERM_OR_OK 0x10 /* Used during OR-clause processing */ 103 104 /* 105 ** An instance of the following structure holds all information about a 106 ** WHERE clause. Mostly this is a container for one or more WhereTerms. 107 */ 108 struct WhereClause { 109 Parse *pParse; /* The parser context */ 110 ExprMaskSet *pMaskSet; /* Mapping of table indices to bitmasks */ 111 int nTerm; /* Number of terms */ 112 int nSlot; /* Number of entries in a[] */ 113 WhereTerm *a; /* Each a[] describes a term of the WHERE cluase */ 114 WhereTerm aStatic[10]; /* Initial static space for a[] */ 115 }; 116 117 /* 118 ** An instance of the following structure keeps track of a mapping 119 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm. 120 ** 121 ** The VDBE cursor numbers are small integers contained in 122 ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE 123 ** clause, the cursor numbers might not begin with 0 and they might 124 ** contain gaps in the numbering sequence. But we want to make maximum 125 ** use of the bits in our bitmasks. This structure provides a mapping 126 ** from the sparse cursor numbers into consecutive integers beginning 127 ** with 0. 128 ** 129 ** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask 130 ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A. 131 ** 132 ** For example, if the WHERE clause expression used these VDBE 133 ** cursors: 4, 5, 8, 29, 57, 73. Then the ExprMaskSet structure 134 ** would map those cursor numbers into bits 0 through 5. 135 ** 136 ** Note that the mapping is not necessarily ordered. In the example 137 ** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0, 138 ** 57->5, 73->4. Or one of 719 other combinations might be used. It 139 ** does not really matter. What is important is that sparse cursor 140 ** numbers all get mapped into bit numbers that begin with 0 and contain 141 ** no gaps. 142 */ 143 struct ExprMaskSet { 144 int n; /* Number of assigned cursor values */ 145 int ix[sizeof(Bitmask)*8]; /* Cursor assigned to each bit */ 146 }; 147 148 149 /* 150 ** Bitmasks for the operators that indices are able to exploit. An 151 ** OR-ed combination of these values can be used when searching for 152 ** terms in the where clause. 153 */ 154 #define WO_IN 1 155 #define WO_EQ 2 156 #define WO_LT (WO_EQ<<(TK_LT-TK_EQ)) 157 #define WO_LE (WO_EQ<<(TK_LE-TK_EQ)) 158 #define WO_GT (WO_EQ<<(TK_GT-TK_EQ)) 159 #define WO_GE (WO_EQ<<(TK_GE-TK_EQ)) 160 #define WO_MATCH 64 161 #define WO_ISNULL 128 162 163 /* 164 ** Value for flags returned by bestIndex(). 165 ** 166 ** The least significant byte is reserved as a mask for WO_ values above. 167 ** The WhereLevel.flags field is usually set to WO_IN|WO_EQ|WO_ISNULL. 168 ** But if the table is the right table of a left join, WhereLevel.flags 169 ** is set to WO_IN|WO_EQ. The WhereLevel.flags field can then be used as 170 ** the "op" parameter to findTerm when we are resolving equality constraints. 171 ** ISNULL constraints will then not be used on the right table of a left 172 ** join. Tickets #2177 and #2189. 173 */ 174 #define WHERE_ROWID_EQ 0x000100 /* rowid=EXPR or rowid IN (...) */ 175 #define WHERE_ROWID_RANGE 0x000200 /* rowid<EXPR and/or rowid>EXPR */ 176 #define WHERE_COLUMN_EQ 0x001000 /* x=EXPR or x IN (...) */ 177 #define WHERE_COLUMN_RANGE 0x002000 /* x<EXPR and/or x>EXPR */ 178 #define WHERE_COLUMN_IN 0x004000 /* x IN (...) */ 179 #define WHERE_TOP_LIMIT 0x010000 /* x<EXPR or x<=EXPR constraint */ 180 #define WHERE_BTM_LIMIT 0x020000 /* x>EXPR or x>=EXPR constraint */ 181 #define WHERE_IDX_ONLY 0x080000 /* Use index only - omit table */ 182 #define WHERE_ORDERBY 0x100000 /* Output will appear in correct order */ 183 #define WHERE_REVERSE 0x200000 /* Scan in reverse order */ 184 #define WHERE_UNIQUE 0x400000 /* Selects no more than one row */ 185 #define WHERE_VIRTUALTABLE 0x800000 /* Use virtual-table processing */ 186 187 /* 188 ** Initialize a preallocated WhereClause structure. 189 */ 190 static void whereClauseInit( 191 WhereClause *pWC, /* The WhereClause to be initialized */ 192 Parse *pParse, /* The parsing context */ 193 ExprMaskSet *pMaskSet /* Mapping from table indices to bitmasks */ 194 ){ 195 pWC->pParse = pParse; 196 pWC->pMaskSet = pMaskSet; 197 pWC->nTerm = 0; 198 pWC->nSlot = ARRAYSIZE(pWC->aStatic); 199 pWC->a = pWC->aStatic; 200 } 201 202 /* 203 ** Deallocate a WhereClause structure. The WhereClause structure 204 ** itself is not freed. This routine is the inverse of whereClauseInit(). 205 */ 206 static void whereClauseClear(WhereClause *pWC){ 207 int i; 208 WhereTerm *a; 209 for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){ 210 if( a->flags & TERM_DYNAMIC ){ 211 sqlite3ExprDelete(a->pExpr); 212 } 213 } 214 if( pWC->a!=pWC->aStatic ){ 215 sqliteFree(pWC->a); 216 } 217 } 218 219 /* 220 ** Add a new entries to the WhereClause structure. Increase the allocated 221 ** space as necessary. 222 ** 223 ** WARNING: This routine might reallocate the space used to store 224 ** WhereTerms. All pointers to WhereTerms should be invalided after 225 ** calling this routine. Such pointers may be reinitialized by referencing 226 ** the pWC->a[] array. 227 */ 228 static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){ 229 WhereTerm *pTerm; 230 int idx; 231 if( pWC->nTerm>=pWC->nSlot ){ 232 WhereTerm *pOld = pWC->a; 233 pWC->a = sqliteMalloc( sizeof(pWC->a[0])*pWC->nSlot*2 ); 234 if( pWC->a==0 ) return 0; 235 memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm); 236 if( pOld!=pWC->aStatic ){ 237 sqliteFree(pOld); 238 } 239 pWC->nSlot *= 2; 240 } 241 pTerm = &pWC->a[idx = pWC->nTerm]; 242 pWC->nTerm++; 243 pTerm->pExpr = p; 244 pTerm->flags = flags; 245 pTerm->pWC = pWC; 246 pTerm->iParent = -1; 247 return idx; 248 } 249 250 /* 251 ** This routine identifies subexpressions in the WHERE clause where 252 ** each subexpression is separated by the AND operator or some other 253 ** operator specified in the op parameter. The WhereClause structure 254 ** is filled with pointers to subexpressions. For example: 255 ** 256 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22) 257 ** \________/ \_______________/ \________________/ 258 ** slot[0] slot[1] slot[2] 259 ** 260 ** The original WHERE clause in pExpr is unaltered. All this routine 261 ** does is make slot[] entries point to substructure within pExpr. 262 ** 263 ** In the previous sentence and in the diagram, "slot[]" refers to 264 ** the WhereClause.a[] array. This array grows as needed to contain 265 ** all terms of the WHERE clause. 266 */ 267 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){ 268 if( pExpr==0 ) return; 269 if( pExpr->op!=op ){ 270 whereClauseInsert(pWC, pExpr, 0); 271 }else{ 272 whereSplit(pWC, pExpr->pLeft, op); 273 whereSplit(pWC, pExpr->pRight, op); 274 } 275 } 276 277 /* 278 ** Initialize an expression mask set 279 */ 280 #define initMaskSet(P) memset(P, 0, sizeof(*P)) 281 282 /* 283 ** Return the bitmask for the given cursor number. Return 0 if 284 ** iCursor is not in the set. 285 */ 286 static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){ 287 int i; 288 for(i=0; i<pMaskSet->n; i++){ 289 if( pMaskSet->ix[i]==iCursor ){ 290 return ((Bitmask)1)<<i; 291 } 292 } 293 return 0; 294 } 295 296 /* 297 ** Create a new mask for cursor iCursor. 298 ** 299 ** There is one cursor per table in the FROM clause. The number of 300 ** tables in the FROM clause is limited by a test early in the 301 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] 302 ** array will never overflow. 303 */ 304 static void createMask(ExprMaskSet *pMaskSet, int iCursor){ 305 assert( pMaskSet->n < ARRAYSIZE(pMaskSet->ix) ); 306 pMaskSet->ix[pMaskSet->n++] = iCursor; 307 } 308 309 /* 310 ** This routine walks (recursively) an expression tree and generates 311 ** a bitmask indicating which tables are used in that expression 312 ** tree. 313 ** 314 ** In order for this routine to work, the calling function must have 315 ** previously invoked sqlite3ExprResolveNames() on the expression. See 316 ** the header comment on that routine for additional information. 317 ** The sqlite3ExprResolveNames() routines looks for column names and 318 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to 319 ** the VDBE cursor number of the table. This routine just has to 320 ** translate the cursor numbers into bitmask values and OR all 321 ** the bitmasks together. 322 */ 323 static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*); 324 static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*); 325 static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){ 326 Bitmask mask = 0; 327 if( p==0 ) return 0; 328 if( p->op==TK_COLUMN ){ 329 mask = getMask(pMaskSet, p->iTable); 330 return mask; 331 } 332 mask = exprTableUsage(pMaskSet, p->pRight); 333 mask |= exprTableUsage(pMaskSet, p->pLeft); 334 mask |= exprListTableUsage(pMaskSet, p->pList); 335 mask |= exprSelectTableUsage(pMaskSet, p->pSelect); 336 return mask; 337 } 338 static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){ 339 int i; 340 Bitmask mask = 0; 341 if( pList ){ 342 for(i=0; i<pList->nExpr; i++){ 343 mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr); 344 } 345 } 346 return mask; 347 } 348 static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){ 349 Bitmask mask; 350 if( pS==0 ){ 351 mask = 0; 352 }else{ 353 mask = exprListTableUsage(pMaskSet, pS->pEList); 354 mask |= exprListTableUsage(pMaskSet, pS->pGroupBy); 355 mask |= exprListTableUsage(pMaskSet, pS->pOrderBy); 356 mask |= exprTableUsage(pMaskSet, pS->pWhere); 357 mask |= exprTableUsage(pMaskSet, pS->pHaving); 358 } 359 return mask; 360 } 361 362 /* 363 ** Return TRUE if the given operator is one of the operators that is 364 ** allowed for an indexable WHERE clause term. The allowed operators are 365 ** "=", "<", ">", "<=", ">=", and "IN". 366 */ 367 static int allowedOp(int op){ 368 assert( TK_GT>TK_EQ && TK_GT<TK_GE ); 369 assert( TK_LT>TK_EQ && TK_LT<TK_GE ); 370 assert( TK_LE>TK_EQ && TK_LE<TK_GE ); 371 assert( TK_GE==TK_EQ+4 ); 372 return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL; 373 } 374 375 /* 376 ** Swap two objects of type T. 377 */ 378 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;} 379 380 /* 381 ** Commute a comparision operator. Expressions of the form "X op Y" 382 ** are converted into "Y op X". 383 */ 384 static void exprCommute(Expr *pExpr){ 385 assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN ); 386 SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl); 387 SWAP(Expr*,pExpr->pRight,pExpr->pLeft); 388 if( pExpr->op>=TK_GT ){ 389 assert( TK_LT==TK_GT+2 ); 390 assert( TK_GE==TK_LE+2 ); 391 assert( TK_GT>TK_EQ ); 392 assert( TK_GT<TK_LE ); 393 assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE ); 394 pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT; 395 } 396 } 397 398 /* 399 ** Translate from TK_xx operator to WO_xx bitmask. 400 */ 401 static int operatorMask(int op){ 402 int c; 403 assert( allowedOp(op) ); 404 if( op==TK_IN ){ 405 c = WO_IN; 406 }else if( op==TK_ISNULL ){ 407 c = WO_ISNULL; 408 }else{ 409 c = WO_EQ<<(op-TK_EQ); 410 } 411 assert( op!=TK_ISNULL || c==WO_ISNULL ); 412 assert( op!=TK_IN || c==WO_IN ); 413 assert( op!=TK_EQ || c==WO_EQ ); 414 assert( op!=TK_LT || c==WO_LT ); 415 assert( op!=TK_LE || c==WO_LE ); 416 assert( op!=TK_GT || c==WO_GT ); 417 assert( op!=TK_GE || c==WO_GE ); 418 return c; 419 } 420 421 /* 422 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" 423 ** where X is a reference to the iColumn of table iCur and <op> is one of 424 ** the WO_xx operator codes specified by the op parameter. 425 ** Return a pointer to the term. Return 0 if not found. 426 */ 427 static WhereTerm *findTerm( 428 WhereClause *pWC, /* The WHERE clause to be searched */ 429 int iCur, /* Cursor number of LHS */ 430 int iColumn, /* Column number of LHS */ 431 Bitmask notReady, /* RHS must not overlap with this mask */ 432 u16 op, /* Mask of WO_xx values describing operator */ 433 Index *pIdx /* Must be compatible with this index, if not NULL */ 434 ){ 435 WhereTerm *pTerm; 436 int k; 437 for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){ 438 if( pTerm->leftCursor==iCur 439 && (pTerm->prereqRight & notReady)==0 440 && pTerm->leftColumn==iColumn 441 && (pTerm->eOperator & op)!=0 442 ){ 443 if( iCur>=0 && pIdx && pTerm->eOperator!=WO_ISNULL ){ 444 Expr *pX = pTerm->pExpr; 445 CollSeq *pColl; 446 char idxaff; 447 int j; 448 Parse *pParse = pWC->pParse; 449 450 idxaff = pIdx->pTable->aCol[iColumn].affinity; 451 if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue; 452 pColl = sqlite3ExprCollSeq(pParse, pX->pLeft); 453 if( !pColl ){ 454 if( pX->pRight ){ 455 pColl = sqlite3ExprCollSeq(pParse, pX->pRight); 456 } 457 if( !pColl ){ 458 pColl = pParse->db->pDfltColl; 459 } 460 } 461 for(j=0; j<pIdx->nColumn && pIdx->aiColumn[j]!=iColumn; j++){} 462 assert( j<pIdx->nColumn ); 463 if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue; 464 } 465 return pTerm; 466 } 467 } 468 return 0; 469 } 470 471 /* Forward reference */ 472 static void exprAnalyze(SrcList*, WhereClause*, int); 473 474 /* 475 ** Call exprAnalyze on all terms in a WHERE clause. 476 ** 477 ** 478 */ 479 static void exprAnalyzeAll( 480 SrcList *pTabList, /* the FROM clause */ 481 WhereClause *pWC /* the WHERE clause to be analyzed */ 482 ){ 483 int i; 484 for(i=pWC->nTerm-1; i>=0; i--){ 485 exprAnalyze(pTabList, pWC, i); 486 } 487 } 488 489 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 490 /* 491 ** Check to see if the given expression is a LIKE or GLOB operator that 492 ** can be optimized using inequality constraints. Return TRUE if it is 493 ** so and false if not. 494 ** 495 ** In order for the operator to be optimizible, the RHS must be a string 496 ** literal that does not begin with a wildcard. 497 */ 498 static int isLikeOrGlob( 499 sqlite3 *db, /* The database */ 500 Expr *pExpr, /* Test this expression */ 501 int *pnPattern, /* Number of non-wildcard prefix characters */ 502 int *pisComplete /* True if the only wildcard is % in the last character */ 503 ){ 504 const char *z; 505 Expr *pRight, *pLeft; 506 ExprList *pList; 507 int c, cnt; 508 int noCase; 509 char wc[3]; 510 CollSeq *pColl; 511 512 if( !sqlite3IsLikeFunction(db, pExpr, &noCase, wc) ){ 513 return 0; 514 } 515 pList = pExpr->pList; 516 pRight = pList->a[0].pExpr; 517 if( pRight->op!=TK_STRING ){ 518 return 0; 519 } 520 pLeft = pList->a[1].pExpr; 521 if( pLeft->op!=TK_COLUMN ){ 522 return 0; 523 } 524 pColl = pLeft->pColl; 525 if( pColl==0 ){ 526 pColl = db->pDfltColl; 527 } 528 if( (pColl->type!=SQLITE_COLL_BINARY || noCase) && 529 (pColl->type!=SQLITE_COLL_NOCASE || !noCase) ){ 530 return 0; 531 } 532 sqlite3DequoteExpr(pRight); 533 z = (char *)pRight->token.z; 534 for(cnt=0; (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2]; cnt++){} 535 if( cnt==0 || 255==(u8)z[cnt] ){ 536 return 0; 537 } 538 *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0; 539 *pnPattern = cnt; 540 return 1; 541 } 542 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 543 544 545 #ifndef SQLITE_OMIT_VIRTUALTABLE 546 /* 547 ** Check to see if the given expression is of the form 548 ** 549 ** column MATCH expr 550 ** 551 ** If it is then return TRUE. If not, return FALSE. 552 */ 553 static int isMatchOfColumn( 554 Expr *pExpr /* Test this expression */ 555 ){ 556 ExprList *pList; 557 558 if( pExpr->op!=TK_FUNCTION ){ 559 return 0; 560 } 561 if( pExpr->token.n!=5 || 562 sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){ 563 return 0; 564 } 565 pList = pExpr->pList; 566 if( pList->nExpr!=2 ){ 567 return 0; 568 } 569 if( pList->a[1].pExpr->op != TK_COLUMN ){ 570 return 0; 571 } 572 return 1; 573 } 574 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 575 576 /* 577 ** If the pBase expression originated in the ON or USING clause of 578 ** a join, then transfer the appropriate markings over to derived. 579 */ 580 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){ 581 pDerived->flags |= pBase->flags & EP_FromJoin; 582 pDerived->iRightJoinTable = pBase->iRightJoinTable; 583 } 584 585 586 /* 587 ** The input to this routine is an WhereTerm structure with only the 588 ** "pExpr" field filled in. The job of this routine is to analyze the 589 ** subexpression and populate all the other fields of the WhereTerm 590 ** structure. 591 ** 592 ** If the expression is of the form "<expr> <op> X" it gets commuted 593 ** to the standard form of "X <op> <expr>". If the expression is of 594 ** the form "X <op> Y" where both X and Y are columns, then the original 595 ** expression is unchanged and a new virtual expression of the form 596 ** "Y <op> X" is added to the WHERE clause and analyzed separately. 597 */ 598 static void exprAnalyze( 599 SrcList *pSrc, /* the FROM clause */ 600 WhereClause *pWC, /* the WHERE clause */ 601 int idxTerm /* Index of the term to be analyzed */ 602 ){ 603 WhereTerm *pTerm = &pWC->a[idxTerm]; 604 ExprMaskSet *pMaskSet = pWC->pMaskSet; 605 Expr *pExpr = pTerm->pExpr; 606 Bitmask prereqLeft; 607 Bitmask prereqAll; 608 int nPattern; 609 int isComplete; 610 int op; 611 612 if( sqlite3MallocFailed() ) return; 613 prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft); 614 op = pExpr->op; 615 if( op==TK_IN ){ 616 assert( pExpr->pRight==0 ); 617 pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList) 618 | exprSelectTableUsage(pMaskSet, pExpr->pSelect); 619 }else if( op==TK_ISNULL ){ 620 pTerm->prereqRight = 0; 621 }else{ 622 pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight); 623 } 624 prereqAll = exprTableUsage(pMaskSet, pExpr); 625 if( ExprHasProperty(pExpr, EP_FromJoin) ){ 626 prereqAll |= getMask(pMaskSet, pExpr->iRightJoinTable); 627 } 628 pTerm->prereqAll = prereqAll; 629 pTerm->leftCursor = -1; 630 pTerm->iParent = -1; 631 pTerm->eOperator = 0; 632 if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){ 633 Expr *pLeft = pExpr->pLeft; 634 Expr *pRight = pExpr->pRight; 635 if( pLeft->op==TK_COLUMN ){ 636 pTerm->leftCursor = pLeft->iTable; 637 pTerm->leftColumn = pLeft->iColumn; 638 pTerm->eOperator = operatorMask(op); 639 } 640 if( pRight && pRight->op==TK_COLUMN ){ 641 WhereTerm *pNew; 642 Expr *pDup; 643 if( pTerm->leftCursor>=0 ){ 644 int idxNew; 645 pDup = sqlite3ExprDup(pExpr); 646 if( sqlite3MallocFailed() ){ 647 sqliteFree(pDup); 648 return; 649 } 650 idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC); 651 if( idxNew==0 ) return; 652 pNew = &pWC->a[idxNew]; 653 pNew->iParent = idxTerm; 654 pTerm = &pWC->a[idxTerm]; 655 pTerm->nChild = 1; 656 pTerm->flags |= TERM_COPIED; 657 }else{ 658 pDup = pExpr; 659 pNew = pTerm; 660 } 661 exprCommute(pDup); 662 pLeft = pDup->pLeft; 663 pNew->leftCursor = pLeft->iTable; 664 pNew->leftColumn = pLeft->iColumn; 665 pNew->prereqRight = prereqLeft; 666 pNew->prereqAll = prereqAll; 667 pNew->eOperator = operatorMask(pDup->op); 668 } 669 } 670 671 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION 672 /* If a term is the BETWEEN operator, create two new virtual terms 673 ** that define the range that the BETWEEN implements. 674 */ 675 else if( pExpr->op==TK_BETWEEN ){ 676 ExprList *pList = pExpr->pList; 677 int i; 678 static const u8 ops[] = {TK_GE, TK_LE}; 679 assert( pList!=0 ); 680 assert( pList->nExpr==2 ); 681 for(i=0; i<2; i++){ 682 Expr *pNewExpr; 683 int idxNew; 684 pNewExpr = sqlite3Expr(ops[i], sqlite3ExprDup(pExpr->pLeft), 685 sqlite3ExprDup(pList->a[i].pExpr), 0); 686 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 687 exprAnalyze(pSrc, pWC, idxNew); 688 pTerm = &pWC->a[idxTerm]; 689 pWC->a[idxNew].iParent = idxTerm; 690 } 691 pTerm->nChild = 2; 692 } 693 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */ 694 695 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY) 696 /* Attempt to convert OR-connected terms into an IN operator so that 697 ** they can make use of indices. Example: 698 ** 699 ** x = expr1 OR expr2 = x OR x = expr3 700 ** 701 ** is converted into 702 ** 703 ** x IN (expr1,expr2,expr3) 704 ** 705 ** This optimization must be omitted if OMIT_SUBQUERY is defined because 706 ** the compiler for the the IN operator is part of sub-queries. 707 */ 708 else if( pExpr->op==TK_OR ){ 709 int ok; 710 int i, j; 711 int iColumn, iCursor; 712 WhereClause sOr; 713 WhereTerm *pOrTerm; 714 715 assert( (pTerm->flags & TERM_DYNAMIC)==0 ); 716 whereClauseInit(&sOr, pWC->pParse, pMaskSet); 717 whereSplit(&sOr, pExpr, TK_OR); 718 exprAnalyzeAll(pSrc, &sOr); 719 assert( sOr.nTerm>0 ); 720 j = 0; 721 do{ 722 iColumn = sOr.a[j].leftColumn; 723 iCursor = sOr.a[j].leftCursor; 724 ok = iCursor>=0; 725 for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){ 726 if( pOrTerm->eOperator!=WO_EQ ){ 727 goto or_not_possible; 728 } 729 if( pOrTerm->leftCursor==iCursor && pOrTerm->leftColumn==iColumn ){ 730 pOrTerm->flags |= TERM_OR_OK; 731 }else if( (pOrTerm->flags & TERM_COPIED)!=0 || 732 ((pOrTerm->flags & TERM_VIRTUAL)!=0 && 733 (sOr.a[pOrTerm->iParent].flags & TERM_OR_OK)!=0) ){ 734 pOrTerm->flags &= ~TERM_OR_OK; 735 }else{ 736 ok = 0; 737 } 738 } 739 }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<sOr.nTerm ); 740 if( ok ){ 741 ExprList *pList = 0; 742 Expr *pNew, *pDup; 743 Expr *pLeft = 0; 744 for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){ 745 if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue; 746 pDup = sqlite3ExprDup(pOrTerm->pExpr->pRight); 747 pList = sqlite3ExprListAppend(pList, pDup, 0); 748 pLeft = pOrTerm->pExpr->pLeft; 749 } 750 assert( pLeft!=0 ); 751 pDup = sqlite3ExprDup(pLeft); 752 pNew = sqlite3Expr(TK_IN, pDup, 0, 0); 753 if( pNew ){ 754 int idxNew; 755 transferJoinMarkings(pNew, pExpr); 756 pNew->pList = pList; 757 idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC); 758 exprAnalyze(pSrc, pWC, idxNew); 759 pTerm = &pWC->a[idxTerm]; 760 pWC->a[idxNew].iParent = idxTerm; 761 pTerm->nChild = 1; 762 }else{ 763 sqlite3ExprListDelete(pList); 764 } 765 } 766 or_not_possible: 767 whereClauseClear(&sOr); 768 } 769 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */ 770 771 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION 772 /* Add constraints to reduce the search space on a LIKE or GLOB 773 ** operator. 774 */ 775 if( isLikeOrGlob(pWC->pParse->db, pExpr, &nPattern, &isComplete) ){ 776 Expr *pLeft, *pRight; 777 Expr *pStr1, *pStr2; 778 Expr *pNewExpr1, *pNewExpr2; 779 int idxNew1, idxNew2; 780 781 pLeft = pExpr->pList->a[1].pExpr; 782 pRight = pExpr->pList->a[0].pExpr; 783 pStr1 = sqlite3Expr(TK_STRING, 0, 0, 0); 784 if( pStr1 ){ 785 sqlite3TokenCopy(&pStr1->token, &pRight->token); 786 pStr1->token.n = nPattern; 787 } 788 pStr2 = sqlite3ExprDup(pStr1); 789 if( pStr2 ){ 790 assert( pStr2->token.dyn ); 791 ++*(u8*)&pStr2->token.z[nPattern-1]; 792 } 793 pNewExpr1 = sqlite3Expr(TK_GE, sqlite3ExprDup(pLeft), pStr1, 0); 794 idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC); 795 exprAnalyze(pSrc, pWC, idxNew1); 796 pNewExpr2 = sqlite3Expr(TK_LT, sqlite3ExprDup(pLeft), pStr2, 0); 797 idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC); 798 exprAnalyze(pSrc, pWC, idxNew2); 799 pTerm = &pWC->a[idxTerm]; 800 if( isComplete ){ 801 pWC->a[idxNew1].iParent = idxTerm; 802 pWC->a[idxNew2].iParent = idxTerm; 803 pTerm->nChild = 2; 804 } 805 } 806 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */ 807 808 #ifndef SQLITE_OMIT_VIRTUALTABLE 809 /* Add a WO_MATCH auxiliary term to the constraint set if the 810 ** current expression is of the form: column MATCH expr. 811 ** This information is used by the xBestIndex methods of 812 ** virtual tables. The native query optimizer does not attempt 813 ** to do anything with MATCH functions. 814 */ 815 if( isMatchOfColumn(pExpr) ){ 816 int idxNew; 817 Expr *pRight, *pLeft; 818 WhereTerm *pNewTerm; 819 Bitmask prereqColumn, prereqExpr; 820 821 pRight = pExpr->pList->a[0].pExpr; 822 pLeft = pExpr->pList->a[1].pExpr; 823 prereqExpr = exprTableUsage(pMaskSet, pRight); 824 prereqColumn = exprTableUsage(pMaskSet, pLeft); 825 if( (prereqExpr & prereqColumn)==0 ){ 826 Expr *pNewExpr; 827 pNewExpr = sqlite3Expr(TK_MATCH, 0, sqlite3ExprDup(pRight), 0); 828 idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC); 829 pNewTerm = &pWC->a[idxNew]; 830 pNewTerm->prereqRight = prereqExpr; 831 pNewTerm->leftCursor = pLeft->iTable; 832 pNewTerm->leftColumn = pLeft->iColumn; 833 pNewTerm->eOperator = WO_MATCH; 834 pNewTerm->iParent = idxTerm; 835 pTerm = &pWC->a[idxTerm]; 836 pTerm->nChild = 1; 837 pTerm->flags |= TERM_COPIED; 838 pNewTerm->prereqAll = pTerm->prereqAll; 839 } 840 } 841 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 842 } 843 844 /* 845 ** Return TRUE if any of the expressions in pList->a[iFirst...] contain 846 ** a reference to any table other than the iBase table. 847 */ 848 static int referencesOtherTables( 849 ExprList *pList, /* Search expressions in ths list */ 850 ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ 851 int iFirst, /* Be searching with the iFirst-th expression */ 852 int iBase /* Ignore references to this table */ 853 ){ 854 Bitmask allowed = ~getMask(pMaskSet, iBase); 855 while( iFirst<pList->nExpr ){ 856 if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){ 857 return 1; 858 } 859 } 860 return 0; 861 } 862 863 864 /* 865 ** This routine decides if pIdx can be used to satisfy the ORDER BY 866 ** clause. If it can, it returns 1. If pIdx cannot satisfy the 867 ** ORDER BY clause, this routine returns 0. 868 ** 869 ** pOrderBy is an ORDER BY clause from a SELECT statement. pTab is the 870 ** left-most table in the FROM clause of that same SELECT statement and 871 ** the table has a cursor number of "base". pIdx is an index on pTab. 872 ** 873 ** nEqCol is the number of columns of pIdx that are used as equality 874 ** constraints. Any of these columns may be missing from the ORDER BY 875 ** clause and the match can still be a success. 876 ** 877 ** All terms of the ORDER BY that match against the index must be either 878 ** ASC or DESC. (Terms of the ORDER BY clause past the end of a UNIQUE 879 ** index do not need to satisfy this constraint.) The *pbRev value is 880 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if 881 ** the ORDER BY clause is all ASC. 882 */ 883 static int isSortingIndex( 884 Parse *pParse, /* Parsing context */ 885 ExprMaskSet *pMaskSet, /* Mapping from table indices to bitmaps */ 886 Index *pIdx, /* The index we are testing */ 887 int base, /* Cursor number for the table to be sorted */ 888 ExprList *pOrderBy, /* The ORDER BY clause */ 889 int nEqCol, /* Number of index columns with == constraints */ 890 int *pbRev /* Set to 1 if ORDER BY is DESC */ 891 ){ 892 int i, j; /* Loop counters */ 893 int sortOrder = 0; /* XOR of index and ORDER BY sort direction */ 894 int nTerm; /* Number of ORDER BY terms */ 895 struct ExprList_item *pTerm; /* A term of the ORDER BY clause */ 896 sqlite3 *db = pParse->db; 897 898 assert( pOrderBy!=0 ); 899 nTerm = pOrderBy->nExpr; 900 assert( nTerm>0 ); 901 902 /* Match terms of the ORDER BY clause against columns of 903 ** the index. 904 ** 905 ** Note that indices have pIdx->nColumn regular columns plus 906 ** one additional column containing the rowid. The rowid column 907 ** of the index is also allowed to match against the ORDER BY 908 ** clause. 909 */ 910 for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){ 911 Expr *pExpr; /* The expression of the ORDER BY pTerm */ 912 CollSeq *pColl; /* The collating sequence of pExpr */ 913 int termSortOrder; /* Sort order for this term */ 914 int iColumn; /* The i-th column of the index. -1 for rowid */ 915 int iSortOrder; /* 1 for DESC, 0 for ASC on the i-th index term */ 916 const char *zColl; /* Name of the collating sequence for i-th index term */ 917 918 pExpr = pTerm->pExpr; 919 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){ 920 /* Can not use an index sort on anything that is not a column in the 921 ** left-most table of the FROM clause */ 922 break; 923 } 924 pColl = sqlite3ExprCollSeq(pParse, pExpr); 925 if( !pColl ){ 926 pColl = db->pDfltColl; 927 } 928 if( i<pIdx->nColumn ){ 929 iColumn = pIdx->aiColumn[i]; 930 if( iColumn==pIdx->pTable->iPKey ){ 931 iColumn = -1; 932 } 933 iSortOrder = pIdx->aSortOrder[i]; 934 zColl = pIdx->azColl[i]; 935 }else{ 936 iColumn = -1; 937 iSortOrder = 0; 938 zColl = pColl->zName; 939 } 940 if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){ 941 /* Term j of the ORDER BY clause does not match column i of the index */ 942 if( i<nEqCol ){ 943 /* If an index column that is constrained by == fails to match an 944 ** ORDER BY term, that is OK. Just ignore that column of the index 945 */ 946 continue; 947 }else{ 948 /* If an index column fails to match and is not constrained by == 949 ** then the index cannot satisfy the ORDER BY constraint. 950 */ 951 return 0; 952 } 953 } 954 assert( pIdx->aSortOrder!=0 ); 955 assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 ); 956 assert( iSortOrder==0 || iSortOrder==1 ); 957 termSortOrder = iSortOrder ^ pTerm->sortOrder; 958 if( i>nEqCol ){ 959 if( termSortOrder!=sortOrder ){ 960 /* Indices can only be used if all ORDER BY terms past the 961 ** equality constraints are all either DESC or ASC. */ 962 return 0; 963 } 964 }else{ 965 sortOrder = termSortOrder; 966 } 967 j++; 968 pTerm++; 969 if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ 970 /* If the indexed column is the primary key and everything matches 971 ** so far and none of the ORDER BY terms to the right reference other 972 ** tables in the join, then we are assured that the index can be used 973 ** to sort because the primary key is unique and so none of the other 974 ** columns will make any difference 975 */ 976 j = nTerm; 977 } 978 } 979 980 *pbRev = sortOrder!=0; 981 if( j>=nTerm ){ 982 /* All terms of the ORDER BY clause are covered by this index so 983 ** this index can be used for sorting. */ 984 return 1; 985 } 986 if( pIdx->onError!=OE_None && i==pIdx->nColumn 987 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){ 988 /* All terms of this index match some prefix of the ORDER BY clause 989 ** and the index is UNIQUE and no terms on the tail of the ORDER BY 990 ** clause reference other tables in a join. If this is all true then 991 ** the order by clause is superfluous. */ 992 return 1; 993 } 994 return 0; 995 } 996 997 /* 998 ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied 999 ** by sorting in order of ROWID. Return true if so and set *pbRev to be 1000 ** true for reverse ROWID and false for forward ROWID order. 1001 */ 1002 static int sortableByRowid( 1003 int base, /* Cursor number for table to be sorted */ 1004 ExprList *pOrderBy, /* The ORDER BY clause */ 1005 ExprMaskSet *pMaskSet, /* Mapping from tables to bitmaps */ 1006 int *pbRev /* Set to 1 if ORDER BY is DESC */ 1007 ){ 1008 Expr *p; 1009 1010 assert( pOrderBy!=0 ); 1011 assert( pOrderBy->nExpr>0 ); 1012 p = pOrderBy->a[0].pExpr; 1013 if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1 1014 && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){ 1015 *pbRev = pOrderBy->a[0].sortOrder; 1016 return 1; 1017 } 1018 return 0; 1019 } 1020 1021 /* 1022 ** Prepare a crude estimate of the logarithm of the input value. 1023 ** The results need not be exact. This is only used for estimating 1024 ** the total cost of performing operatings with O(logN) or O(NlogN) 1025 ** complexity. Because N is just a guess, it is no great tragedy if 1026 ** logN is a little off. 1027 */ 1028 static double estLog(double N){ 1029 double logN = 1; 1030 double x = 10; 1031 while( N>x ){ 1032 logN += 1; 1033 x *= 10; 1034 } 1035 return logN; 1036 } 1037 1038 /* 1039 ** Two routines for printing the content of an sqlite3_index_info 1040 ** structure. Used for testing and debugging only. If neither 1041 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines 1042 ** are no-ops. 1043 */ 1044 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && \ 1045 (defined(SQLITE_TEST) || defined(SQLITE_DEBUG)) 1046 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ 1047 int i; 1048 if( !sqlite3_where_trace ) return; 1049 for(i=0; i<p->nConstraint; i++){ 1050 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", 1051 i, 1052 p->aConstraint[i].iColumn, 1053 p->aConstraint[i].iTermOffset, 1054 p->aConstraint[i].op, 1055 p->aConstraint[i].usable); 1056 } 1057 for(i=0; i<p->nOrderBy; i++){ 1058 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", 1059 i, 1060 p->aOrderBy[i].iColumn, 1061 p->aOrderBy[i].desc); 1062 } 1063 } 1064 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ 1065 int i; 1066 if( !sqlite3_where_trace ) return; 1067 for(i=0; i<p->nConstraint; i++){ 1068 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", 1069 i, 1070 p->aConstraintUsage[i].argvIndex, 1071 p->aConstraintUsage[i].omit); 1072 } 1073 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); 1074 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); 1075 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); 1076 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); 1077 } 1078 #else 1079 #define TRACE_IDX_INPUTS(A) 1080 #define TRACE_IDX_OUTPUTS(A) 1081 #endif 1082 1083 #ifndef SQLITE_OMIT_VIRTUALTABLE 1084 /* 1085 ** Compute the best index for a virtual table. 1086 ** 1087 ** The best index is computed by the xBestIndex method of the virtual 1088 ** table module. This routine is really just a wrapper that sets up 1089 ** the sqlite3_index_info structure that is used to communicate with 1090 ** xBestIndex. 1091 ** 1092 ** In a join, this routine might be called multiple times for the 1093 ** same virtual table. The sqlite3_index_info structure is created 1094 ** and initialized on the first invocation and reused on all subsequent 1095 ** invocations. The sqlite3_index_info structure is also used when 1096 ** code is generated to access the virtual table. The whereInfoDelete() 1097 ** routine takes care of freeing the sqlite3_index_info structure after 1098 ** everybody has finished with it. 1099 */ 1100 static double bestVirtualIndex( 1101 Parse *pParse, /* The parsing context */ 1102 WhereClause *pWC, /* The WHERE clause */ 1103 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1104 Bitmask notReady, /* Mask of cursors that are not available */ 1105 ExprList *pOrderBy, /* The order by clause */ 1106 int orderByUsable, /* True if we can potential sort */ 1107 sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */ 1108 ){ 1109 Table *pTab = pSrc->pTab; 1110 sqlite3_index_info *pIdxInfo; 1111 struct sqlite3_index_constraint *pIdxCons; 1112 struct sqlite3_index_orderby *pIdxOrderBy; 1113 struct sqlite3_index_constraint_usage *pUsage; 1114 WhereTerm *pTerm; 1115 int i, j; 1116 int nOrderBy; 1117 int rc; 1118 1119 /* If the sqlite3_index_info structure has not been previously 1120 ** allocated and initialized for this virtual table, then allocate 1121 ** and initialize it now 1122 */ 1123 pIdxInfo = *ppIdxInfo; 1124 if( pIdxInfo==0 ){ 1125 WhereTerm *pTerm; 1126 int nTerm; 1127 TRACE(("Recomputing index info for %s...\n", pTab->zName)); 1128 1129 /* Count the number of possible WHERE clause constraints referring 1130 ** to this virtual table */ 1131 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1132 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1133 if( pTerm->eOperator==WO_IN ) continue; 1134 nTerm++; 1135 } 1136 1137 /* If the ORDER BY clause contains only columns in the current 1138 ** virtual table then allocate space for the aOrderBy part of 1139 ** the sqlite3_index_info structure. 1140 */ 1141 nOrderBy = 0; 1142 if( pOrderBy ){ 1143 for(i=0; i<pOrderBy->nExpr; i++){ 1144 Expr *pExpr = pOrderBy->a[i].pExpr; 1145 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; 1146 } 1147 if( i==pOrderBy->nExpr ){ 1148 nOrderBy = pOrderBy->nExpr; 1149 } 1150 } 1151 1152 /* Allocate the sqlite3_index_info structure 1153 */ 1154 pIdxInfo = sqliteMalloc( sizeof(*pIdxInfo) 1155 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm 1156 + sizeof(*pIdxOrderBy)*nOrderBy ); 1157 if( pIdxInfo==0 ){ 1158 sqlite3ErrorMsg(pParse, "out of memory"); 1159 return 0.0; 1160 } 1161 *ppIdxInfo = pIdxInfo; 1162 1163 /* Initialize the structure. The sqlite3_index_info structure contains 1164 ** many fields that are declared "const" to prevent xBestIndex from 1165 ** changing them. We have to do some funky casting in order to 1166 ** initialize those fields. 1167 */ 1168 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; 1169 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; 1170 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; 1171 *(int*)&pIdxInfo->nConstraint = nTerm; 1172 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 1173 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; 1174 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; 1175 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = 1176 pUsage; 1177 1178 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ 1179 if( pTerm->leftCursor != pSrc->iCursor ) continue; 1180 if( pTerm->eOperator==WO_IN ) continue; 1181 pIdxCons[j].iColumn = pTerm->leftColumn; 1182 pIdxCons[j].iTermOffset = i; 1183 pIdxCons[j].op = pTerm->eOperator; 1184 /* The direct assignment in the previous line is possible only because 1185 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The 1186 ** following asserts verify this fact. */ 1187 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); 1188 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); 1189 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); 1190 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); 1191 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); 1192 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); 1193 assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); 1194 j++; 1195 } 1196 for(i=0; i<nOrderBy; i++){ 1197 Expr *pExpr = pOrderBy->a[i].pExpr; 1198 pIdxOrderBy[i].iColumn = pExpr->iColumn; 1199 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; 1200 } 1201 } 1202 1203 /* At this point, the sqlite3_index_info structure that pIdxInfo points 1204 ** to will have been initialized, either during the current invocation or 1205 ** during some prior invocation. Now we just have to customize the 1206 ** details of pIdxInfo for the current invocation and pass it to 1207 ** xBestIndex. 1208 */ 1209 1210 /* The module name must be defined */ 1211 assert( pTab->azModuleArg && pTab->azModuleArg[0] ); 1212 if( pTab->pVtab==0 ){ 1213 sqlite3ErrorMsg(pParse, "undefined module %s for table %s", 1214 pTab->azModuleArg[0], pTab->zName); 1215 return 0.0; 1216 } 1217 1218 /* Set the aConstraint[].usable fields and initialize all 1219 ** output variables to zero. 1220 ** 1221 ** aConstraint[].usable is true for constraints where the right-hand 1222 ** side contains only references to tables to the left of the current 1223 ** table. In other words, if the constraint is of the form: 1224 ** 1225 ** column = expr 1226 ** 1227 ** and we are evaluating a join, then the constraint on column is 1228 ** only valid if all tables referenced in expr occur to the left 1229 ** of the table containing column. 1230 ** 1231 ** The aConstraints[] array contains entries for all constraints 1232 ** on the current table. That way we only have to compute it once 1233 ** even though we might try to pick the best index multiple times. 1234 ** For each attempt at picking an index, the order of tables in the 1235 ** join might be different so we have to recompute the usable flag 1236 ** each time. 1237 */ 1238 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; 1239 pUsage = pIdxInfo->aConstraintUsage; 1240 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ 1241 j = pIdxCons->iTermOffset; 1242 pTerm = &pWC->a[j]; 1243 pIdxCons->usable = (pTerm->prereqRight & notReady)==0; 1244 } 1245 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); 1246 if( pIdxInfo->needToFreeIdxStr ){ 1247 sqlite3_free(pIdxInfo->idxStr); 1248 } 1249 pIdxInfo->idxStr = 0; 1250 pIdxInfo->idxNum = 0; 1251 pIdxInfo->needToFreeIdxStr = 0; 1252 pIdxInfo->orderByConsumed = 0; 1253 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0; 1254 nOrderBy = pIdxInfo->nOrderBy; 1255 if( pIdxInfo->nOrderBy && !orderByUsable ){ 1256 *(int*)&pIdxInfo->nOrderBy = 0; 1257 } 1258 1259 sqlite3SafetyOff(pParse->db); 1260 TRACE(("xBestIndex for %s\n", pTab->zName)); 1261 TRACE_IDX_INPUTS(pIdxInfo); 1262 rc = pTab->pVtab->pModule->xBestIndex(pTab->pVtab, pIdxInfo); 1263 TRACE_IDX_OUTPUTS(pIdxInfo); 1264 if( rc!=SQLITE_OK ){ 1265 if( rc==SQLITE_NOMEM ){ 1266 sqlite3FailedMalloc(); 1267 }else { 1268 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); 1269 } 1270 sqlite3SafetyOn(pParse->db); 1271 }else{ 1272 rc = sqlite3SafetyOn(pParse->db); 1273 } 1274 *(int*)&pIdxInfo->nOrderBy = nOrderBy; 1275 return pIdxInfo->estimatedCost; 1276 } 1277 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 1278 1279 /* 1280 ** Find the best index for accessing a particular table. Return a pointer 1281 ** to the index, flags that describe how the index should be used, the 1282 ** number of equality constraints, and the "cost" for this index. 1283 ** 1284 ** The lowest cost index wins. The cost is an estimate of the amount of 1285 ** CPU and disk I/O need to process the request using the selected index. 1286 ** Factors that influence cost include: 1287 ** 1288 ** * The estimated number of rows that will be retrieved. (The 1289 ** fewer the better.) 1290 ** 1291 ** * Whether or not sorting must occur. 1292 ** 1293 ** * Whether or not there must be separate lookups in the 1294 ** index and in the main table. 1295 ** 1296 */ 1297 static double bestIndex( 1298 Parse *pParse, /* The parsing context */ 1299 WhereClause *pWC, /* The WHERE clause */ 1300 struct SrcList_item *pSrc, /* The FROM clause term to search */ 1301 Bitmask notReady, /* Mask of cursors that are not available */ 1302 ExprList *pOrderBy, /* The order by clause */ 1303 Index **ppIndex, /* Make *ppIndex point to the best index */ 1304 int *pFlags, /* Put flags describing this choice in *pFlags */ 1305 int *pnEq /* Put the number of == or IN constraints here */ 1306 ){ 1307 WhereTerm *pTerm; 1308 Index *bestIdx = 0; /* Index that gives the lowest cost */ 1309 double lowestCost; /* The cost of using bestIdx */ 1310 int bestFlags = 0; /* Flags associated with bestIdx */ 1311 int bestNEq = 0; /* Best value for nEq */ 1312 int iCur = pSrc->iCursor; /* The cursor of the table to be accessed */ 1313 Index *pProbe; /* An index we are evaluating */ 1314 int rev; /* True to scan in reverse order */ 1315 int flags; /* Flags associated with pProbe */ 1316 int nEq; /* Number of == or IN constraints */ 1317 int eqTermMask; /* Mask of valid equality operators */ 1318 double cost; /* Cost of using pProbe */ 1319 1320 TRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady)); 1321 lowestCost = SQLITE_BIG_DBL; 1322 pProbe = pSrc->pTab->pIndex; 1323 1324 /* If the table has no indices and there are no terms in the where 1325 ** clause that refer to the ROWID, then we will never be able to do 1326 ** anything other than a full table scan on this table. We might as 1327 ** well put it first in the join order. That way, perhaps it can be 1328 ** referenced by other tables in the join. 1329 */ 1330 if( pProbe==0 && 1331 findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 && 1332 (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){ 1333 *pFlags = 0; 1334 *ppIndex = 0; 1335 *pnEq = 0; 1336 return 0.0; 1337 } 1338 1339 /* Check for a rowid=EXPR or rowid IN (...) constraints 1340 */ 1341 pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0); 1342 if( pTerm ){ 1343 Expr *pExpr; 1344 *ppIndex = 0; 1345 bestFlags = WHERE_ROWID_EQ; 1346 if( pTerm->eOperator & WO_EQ ){ 1347 /* Rowid== is always the best pick. Look no further. Because only 1348 ** a single row is generated, output is always in sorted order */ 1349 *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE; 1350 *pnEq = 1; 1351 TRACE(("... best is rowid\n")); 1352 return 0.0; 1353 }else if( (pExpr = pTerm->pExpr)->pList!=0 ){ 1354 /* Rowid IN (LIST): cost is NlogN where N is the number of list 1355 ** elements. */ 1356 lowestCost = pExpr->pList->nExpr; 1357 lowestCost *= estLog(lowestCost); 1358 }else{ 1359 /* Rowid IN (SELECT): cost is NlogN where N is the number of rows 1360 ** in the result of the inner select. We have no way to estimate 1361 ** that value so make a wild guess. */ 1362 lowestCost = 200; 1363 } 1364 TRACE(("... rowid IN cost: %.9g\n", lowestCost)); 1365 } 1366 1367 /* Estimate the cost of a table scan. If we do not know how many 1368 ** entries are in the table, use 1 million as a guess. 1369 */ 1370 cost = pProbe ? pProbe->aiRowEst[0] : 1000000; 1371 TRACE(("... table scan base cost: %.9g\n", cost)); 1372 flags = WHERE_ROWID_RANGE; 1373 1374 /* Check for constraints on a range of rowids in a table scan. 1375 */ 1376 pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0); 1377 if( pTerm ){ 1378 if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){ 1379 flags |= WHERE_TOP_LIMIT; 1380 cost /= 3; /* Guess that rowid<EXPR eliminates two-thirds or rows */ 1381 } 1382 if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){ 1383 flags |= WHERE_BTM_LIMIT; 1384 cost /= 3; /* Guess that rowid>EXPR eliminates two-thirds of rows */ 1385 } 1386 TRACE(("... rowid range reduces cost to %.9g\n", cost)); 1387 }else{ 1388 flags = 0; 1389 } 1390 1391 /* If the table scan does not satisfy the ORDER BY clause, increase 1392 ** the cost by NlogN to cover the expense of sorting. */ 1393 if( pOrderBy ){ 1394 if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){ 1395 flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE; 1396 if( rev ){ 1397 flags |= WHERE_REVERSE; 1398 } 1399 }else{ 1400 cost += cost*estLog(cost); 1401 TRACE(("... sorting increases cost to %.9g\n", cost)); 1402 } 1403 } 1404 if( cost<lowestCost ){ 1405 lowestCost = cost; 1406 bestFlags = flags; 1407 } 1408 1409 /* If the pSrc table is the right table of a LEFT JOIN then we may not 1410 ** use an index to satisfy IS NULL constraints on that table. This is 1411 ** because columns might end up being NULL if the table does not match - 1412 ** a circumstance which the index cannot help us discover. Ticket #2177. 1413 */ 1414 if( (pSrc->jointype & JT_LEFT)!=0 ){ 1415 eqTermMask = WO_EQ|WO_IN; 1416 }else{ 1417 eqTermMask = WO_EQ|WO_IN|WO_ISNULL; 1418 } 1419 1420 /* Look at each index. 1421 */ 1422 for(; pProbe; pProbe=pProbe->pNext){ 1423 int i; /* Loop counter */ 1424 double inMultiplier = 1; 1425 1426 TRACE(("... index %s:\n", pProbe->zName)); 1427 1428 /* Count the number of columns in the index that are satisfied 1429 ** by x=EXPR constraints or x IN (...) constraints. 1430 */ 1431 flags = 0; 1432 for(i=0; i<pProbe->nColumn; i++){ 1433 int j = pProbe->aiColumn[i]; 1434 pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe); 1435 if( pTerm==0 ) break; 1436 flags |= WHERE_COLUMN_EQ; 1437 if( pTerm->eOperator & WO_IN ){ 1438 Expr *pExpr = pTerm->pExpr; 1439 flags |= WHERE_COLUMN_IN; 1440 if( pExpr->pSelect!=0 ){ 1441 inMultiplier *= 25; 1442 }else if( pExpr->pList!=0 ){ 1443 inMultiplier *= pExpr->pList->nExpr + 1; 1444 } 1445 } 1446 } 1447 cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier); 1448 nEq = i; 1449 if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0 1450 && nEq==pProbe->nColumn ){ 1451 flags |= WHERE_UNIQUE; 1452 } 1453 TRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n", nEq, inMultiplier, cost)); 1454 1455 /* Look for range constraints 1456 */ 1457 if( nEq<pProbe->nColumn ){ 1458 int j = pProbe->aiColumn[nEq]; 1459 pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe); 1460 if( pTerm ){ 1461 flags |= WHERE_COLUMN_RANGE; 1462 if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){ 1463 flags |= WHERE_TOP_LIMIT; 1464 cost /= 3; 1465 } 1466 if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){ 1467 flags |= WHERE_BTM_LIMIT; 1468 cost /= 3; 1469 } 1470 TRACE(("...... range reduces cost to %.9g\n", cost)); 1471 } 1472 } 1473 1474 /* Add the additional cost of sorting if that is a factor. 1475 */ 1476 if( pOrderBy ){ 1477 if( (flags & WHERE_COLUMN_IN)==0 && 1478 isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){ 1479 if( flags==0 ){ 1480 flags = WHERE_COLUMN_RANGE; 1481 } 1482 flags |= WHERE_ORDERBY; 1483 if( rev ){ 1484 flags |= WHERE_REVERSE; 1485 } 1486 }else{ 1487 cost += cost*estLog(cost); 1488 TRACE(("...... orderby increases cost to %.9g\n", cost)); 1489 } 1490 } 1491 1492 /* Check to see if we can get away with using just the index without 1493 ** ever reading the table. If that is the case, then halve the 1494 ** cost of this index. 1495 */ 1496 if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){ 1497 Bitmask m = pSrc->colUsed; 1498 int j; 1499 for(j=0; j<pProbe->nColumn; j++){ 1500 int x = pProbe->aiColumn[j]; 1501 if( x<BMS-1 ){ 1502 m &= ~(((Bitmask)1)<<x); 1503 } 1504 } 1505 if( m==0 ){ 1506 flags |= WHERE_IDX_ONLY; 1507 cost /= 2; 1508 TRACE(("...... idx-only reduces cost to %.9g\n", cost)); 1509 } 1510 } 1511 1512 /* If this index has achieved the lowest cost so far, then use it. 1513 */ 1514 if( cost < lowestCost ){ 1515 bestIdx = pProbe; 1516 lowestCost = cost; 1517 assert( flags!=0 ); 1518 bestFlags = flags; 1519 bestNEq = nEq; 1520 } 1521 } 1522 1523 /* Report the best result 1524 */ 1525 *ppIndex = bestIdx; 1526 TRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n", 1527 bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq)); 1528 *pFlags = bestFlags | eqTermMask; 1529 *pnEq = bestNEq; 1530 return lowestCost; 1531 } 1532 1533 1534 /* 1535 ** Disable a term in the WHERE clause. Except, do not disable the term 1536 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON 1537 ** or USING clause of that join. 1538 ** 1539 ** Consider the term t2.z='ok' in the following queries: 1540 ** 1541 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok' 1542 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok' 1543 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok' 1544 ** 1545 ** The t2.z='ok' is disabled in the in (2) because it originates 1546 ** in the ON clause. The term is disabled in (3) because it is not part 1547 ** of a LEFT OUTER JOIN. In (1), the term is not disabled. 1548 ** 1549 ** Disabling a term causes that term to not be tested in the inner loop 1550 ** of the join. Disabling is an optimization. When terms are satisfied 1551 ** by indices, we disable them to prevent redundant tests in the inner 1552 ** loop. We would get the correct results if nothing were ever disabled, 1553 ** but joins might run a little slower. The trick is to disable as much 1554 ** as we can without disabling too much. If we disabled in (1), we'd get 1555 ** the wrong answer. See ticket #813. 1556 */ 1557 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){ 1558 if( pTerm 1559 && (pTerm->flags & TERM_CODED)==0 1560 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin)) 1561 ){ 1562 pTerm->flags |= TERM_CODED; 1563 if( pTerm->iParent>=0 ){ 1564 WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent]; 1565 if( (--pOther->nChild)==0 ){ 1566 disableTerm(pLevel, pOther); 1567 } 1568 } 1569 } 1570 } 1571 1572 /* 1573 ** Generate code that builds a probe for an index. 1574 ** 1575 ** There should be nColumn values on the stack. The index 1576 ** to be probed is pIdx. Pop the values from the stack and 1577 ** replace them all with a single record that is the index 1578 ** problem. 1579 */ 1580 static void buildIndexProbe( 1581 Vdbe *v, /* Generate code into this VM */ 1582 int nColumn, /* The number of columns to check for NULL */ 1583 Index *pIdx /* Index that we will be searching */ 1584 ){ 1585 sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0); 1586 sqlite3IndexAffinityStr(v, pIdx); 1587 } 1588 1589 1590 /* 1591 ** Generate code for a single equality term of the WHERE clause. An equality 1592 ** term can be either X=expr or X IN (...). pTerm is the term to be 1593 ** coded. 1594 ** 1595 ** The current value for the constraint is left on the top of the stack. 1596 ** 1597 ** For a constraint of the form X=expr, the expression is evaluated and its 1598 ** result is left on the stack. For constraints of the form X IN (...) 1599 ** this routine sets up a loop that will iterate over all values of X. 1600 */ 1601 static void codeEqualityTerm( 1602 Parse *pParse, /* The parsing context */ 1603 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */ 1604 int brk, /* Jump here to abandon the loop */ 1605 WhereLevel *pLevel /* When level of the FROM clause we are working on */ 1606 ){ 1607 Expr *pX = pTerm->pExpr; 1608 Vdbe *v = pParse->pVdbe; 1609 if( pX->op==TK_EQ ){ 1610 sqlite3ExprCode(pParse, pX->pRight); 1611 }else if( pX->op==TK_ISNULL ){ 1612 sqlite3VdbeAddOp(v, OP_Null, 0, 0); 1613 #ifndef SQLITE_OMIT_SUBQUERY 1614 }else{ 1615 int iTab; 1616 int *aIn; 1617 1618 assert( pX->op==TK_IN ); 1619 sqlite3CodeSubselect(pParse, pX); 1620 iTab = pX->iTable; 1621 sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0); 1622 VdbeComment((v, "# %.*s", pX->span.n, pX->span.z)); 1623 pLevel->nIn++; 1624 sqliteReallocOrFree((void**)&pLevel->aInLoop, 1625 sizeof(pLevel->aInLoop[0])*2*pLevel->nIn); 1626 aIn = pLevel->aInLoop; 1627 if( aIn ){ 1628 aIn += pLevel->nIn*2 - 2; 1629 aIn[0] = iTab; 1630 aIn[1] = sqlite3VdbeAddOp(v, OP_Column, iTab, 0); 1631 }else{ 1632 pLevel->nIn = 0; 1633 } 1634 #endif 1635 } 1636 disableTerm(pLevel, pTerm); 1637 } 1638 1639 /* 1640 ** Generate code that will evaluate all == and IN constraints for an 1641 ** index. The values for all constraints are left on the stack. 1642 ** 1643 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c). 1644 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10 1645 ** The index has as many as three equality constraints, but in this 1646 ** example, the third "c" value is an inequality. So only two 1647 ** constraints are coded. This routine will generate code to evaluate 1648 ** a==5 and b IN (1,2,3). The current values for a and b will be left 1649 ** on the stack - a is the deepest and b the shallowest. 1650 ** 1651 ** In the example above nEq==2. But this subroutine works for any value 1652 ** of nEq including 0. If nEq==0, this routine is nearly a no-op. 1653 ** The only thing it does is allocate the pLevel->iMem memory cell. 1654 ** 1655 ** This routine always allocates at least one memory cell and puts 1656 ** the address of that memory cell in pLevel->iMem. The code that 1657 ** calls this routine will use pLevel->iMem to store the termination 1658 ** key value of the loop. If one or more IN operators appear, then 1659 ** this routine allocates an additional nEq memory cells for internal 1660 ** use. 1661 */ 1662 static void codeAllEqualityTerms( 1663 Parse *pParse, /* Parsing context */ 1664 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */ 1665 WhereClause *pWC, /* The WHERE clause */ 1666 Bitmask notReady, /* Which parts of FROM have not yet been coded */ 1667 int brk /* Jump here to end the loop */ 1668 ){ 1669 int nEq = pLevel->nEq; /* The number of == or IN constraints to code */ 1670 int termsInMem = 0; /* If true, store value in mem[] cells */ 1671 Vdbe *v = pParse->pVdbe; /* The virtual machine under construction */ 1672 Index *pIdx = pLevel->pIdx; /* The index being used for this loop */ 1673 int iCur = pLevel->iTabCur; /* The cursor of the table */ 1674 WhereTerm *pTerm; /* A single constraint term */ 1675 int j; /* Loop counter */ 1676 1677 /* Figure out how many memory cells we will need then allocate them. 1678 ** We always need at least one used to store the loop terminator 1679 ** value. If there are IN operators we'll need one for each == or 1680 ** IN constraint. 1681 */ 1682 pLevel->iMem = pParse->nMem++; 1683 if( pLevel->flags & WHERE_COLUMN_IN ){ 1684 pParse->nMem += pLevel->nEq; 1685 termsInMem = 1; 1686 } 1687 1688 /* Evaluate the equality constraints 1689 */ 1690 assert( pIdx->nColumn>=nEq ); 1691 for(j=0; j<nEq; j++){ 1692 int k = pIdx->aiColumn[j]; 1693 pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx); 1694 if( pTerm==0 ) break; 1695 assert( (pTerm->flags & TERM_CODED)==0 ); 1696 codeEqualityTerm(pParse, pTerm, brk, pLevel); 1697 if( (pTerm->eOperator & WO_ISNULL)==0 ){ 1698 sqlite3VdbeAddOp(v, OP_IsNull, termsInMem ? -1 : -(j+1), brk); 1699 } 1700 if( termsInMem ){ 1701 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem+j+1, 1); 1702 } 1703 } 1704 1705 /* Make sure all the constraint values are on the top of the stack 1706 */ 1707 if( termsInMem ){ 1708 for(j=0; j<nEq; j++){ 1709 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem+j+1, 0); 1710 } 1711 } 1712 } 1713 1714 #if defined(SQLITE_TEST) 1715 /* 1716 ** The following variable holds a text description of query plan generated 1717 ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin 1718 ** overwrites the previous. This information is used for testing and 1719 ** analysis only. 1720 */ 1721 char sqlite3_query_plan[BMS*2*40]; /* Text of the join */ 1722 static int nQPlan = 0; /* Next free slow in _query_plan[] */ 1723 1724 #endif /* SQLITE_TEST */ 1725 1726 1727 /* 1728 ** Free a WhereInfo structure 1729 */ 1730 static void whereInfoFree(WhereInfo *pWInfo){ 1731 if( pWInfo ){ 1732 int i; 1733 for(i=0; i<pWInfo->nLevel; i++){ 1734 sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo; 1735 if( pInfo ){ 1736 if( pInfo->needToFreeIdxStr ){ 1737 sqlite3_free(pInfo->idxStr); 1738 } 1739 sqliteFree(pInfo); 1740 } 1741 } 1742 sqliteFree(pWInfo); 1743 } 1744 } 1745 1746 1747 /* 1748 ** Generate the beginning of the loop used for WHERE clause processing. 1749 ** The return value is a pointer to an opaque structure that contains 1750 ** information needed to terminate the loop. Later, the calling routine 1751 ** should invoke sqlite3WhereEnd() with the return value of this function 1752 ** in order to complete the WHERE clause processing. 1753 ** 1754 ** If an error occurs, this routine returns NULL. 1755 ** 1756 ** The basic idea is to do a nested loop, one loop for each table in 1757 ** the FROM clause of a select. (INSERT and UPDATE statements are the 1758 ** same as a SELECT with only a single table in the FROM clause.) For 1759 ** example, if the SQL is this: 1760 ** 1761 ** SELECT * FROM t1, t2, t3 WHERE ...; 1762 ** 1763 ** Then the code generated is conceptually like the following: 1764 ** 1765 ** foreach row1 in t1 do \ Code generated 1766 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() 1767 ** foreach row3 in t3 do / 1768 ** ... 1769 ** end \ Code generated 1770 ** end |-- by sqlite3WhereEnd() 1771 ** end / 1772 ** 1773 ** Note that the loops might not be nested in the order in which they 1774 ** appear in the FROM clause if a different order is better able to make 1775 ** use of indices. Note also that when the IN operator appears in 1776 ** the WHERE clause, it might result in additional nested loops for 1777 ** scanning through all values on the right-hand side of the IN. 1778 ** 1779 ** There are Btree cursors associated with each table. t1 uses cursor 1780 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. 1781 ** And so forth. This routine generates code to open those VDBE cursors 1782 ** and sqlite3WhereEnd() generates the code to close them. 1783 ** 1784 ** The code that sqlite3WhereBegin() generates leaves the cursors named 1785 ** in pTabList pointing at their appropriate entries. The [...] code 1786 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract 1787 ** data from the various tables of the loop. 1788 ** 1789 ** If the WHERE clause is empty, the foreach loops must each scan their 1790 ** entire tables. Thus a three-way join is an O(N^3) operation. But if 1791 ** the tables have indices and there are terms in the WHERE clause that 1792 ** refer to those indices, a complete table scan can be avoided and the 1793 ** code will run much faster. Most of the work of this routine is checking 1794 ** to see if there are indices that can be used to speed up the loop. 1795 ** 1796 ** Terms of the WHERE clause are also used to limit which rows actually 1797 ** make it to the "..." in the middle of the loop. After each "foreach", 1798 ** terms of the WHERE clause that use only terms in that loop and outer 1799 ** loops are evaluated and if false a jump is made around all subsequent 1800 ** inner loops (or around the "..." if the test occurs within the inner- 1801 ** most loop) 1802 ** 1803 ** OUTER JOINS 1804 ** 1805 ** An outer join of tables t1 and t2 is conceptally coded as follows: 1806 ** 1807 ** foreach row1 in t1 do 1808 ** flag = 0 1809 ** foreach row2 in t2 do 1810 ** start: 1811 ** ... 1812 ** flag = 1 1813 ** end 1814 ** if flag==0 then 1815 ** move the row2 cursor to a null row 1816 ** goto start 1817 ** fi 1818 ** end 1819 ** 1820 ** ORDER BY CLAUSE PROCESSING 1821 ** 1822 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement, 1823 ** if there is one. If there is no ORDER BY clause or if this routine 1824 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL. 1825 ** 1826 ** If an index can be used so that the natural output order of the table 1827 ** scan is correct for the ORDER BY clause, then that index is used and 1828 ** *ppOrderBy is set to NULL. This is an optimization that prevents an 1829 ** unnecessary sort of the result set if an index appropriate for the 1830 ** ORDER BY clause already exists. 1831 ** 1832 ** If the where clause loops cannot be arranged to provide the correct 1833 ** output order, then the *ppOrderBy is unchanged. 1834 */ 1835 WhereInfo *sqlite3WhereBegin( 1836 Parse *pParse, /* The parser context */ 1837 SrcList *pTabList, /* A list of all tables to be scanned */ 1838 Expr *pWhere, /* The WHERE clause */ 1839 ExprList **ppOrderBy /* An ORDER BY clause, or NULL */ 1840 ){ 1841 int i; /* Loop counter */ 1842 WhereInfo *pWInfo; /* Will become the return value of this function */ 1843 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ 1844 int brk, cont = 0; /* Addresses used during code generation */ 1845 Bitmask notReady; /* Cursors that are not yet positioned */ 1846 WhereTerm *pTerm; /* A single term in the WHERE clause */ 1847 ExprMaskSet maskSet; /* The expression mask set */ 1848 WhereClause wc; /* The WHERE clause is divided into these terms */ 1849 struct SrcList_item *pTabItem; /* A single entry from pTabList */ 1850 WhereLevel *pLevel; /* A single level in the pWInfo list */ 1851 int iFrom; /* First unused FROM clause element */ 1852 int andFlags; /* AND-ed combination of all wc.a[].flags */ 1853 1854 /* The number of tables in the FROM clause is limited by the number of 1855 ** bits in a Bitmask 1856 */ 1857 if( pTabList->nSrc>BMS ){ 1858 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); 1859 return 0; 1860 } 1861 1862 /* Split the WHERE clause into separate subexpressions where each 1863 ** subexpression is separated by an AND operator. 1864 */ 1865 initMaskSet(&maskSet); 1866 whereClauseInit(&wc, pParse, &maskSet); 1867 whereSplit(&wc, pWhere, TK_AND); 1868 1869 /* Allocate and initialize the WhereInfo structure that will become the 1870 ** return value. 1871 */ 1872 pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel)); 1873 if( sqlite3MallocFailed() ){ 1874 goto whereBeginNoMem; 1875 } 1876 pWInfo->nLevel = pTabList->nSrc; 1877 pWInfo->pParse = pParse; 1878 pWInfo->pTabList = pTabList; 1879 pWInfo->iBreak = sqlite3VdbeMakeLabel(v); 1880 1881 /* Special case: a WHERE clause that is constant. Evaluate the 1882 ** expression and either jump over all of the code or fall thru. 1883 */ 1884 if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstant(pWhere)) ){ 1885 sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1); 1886 pWhere = 0; 1887 } 1888 1889 /* Analyze all of the subexpressions. Note that exprAnalyze() might 1890 ** add new virtual terms onto the end of the WHERE clause. We do not 1891 ** want to analyze these virtual terms, so start analyzing at the end 1892 ** and work forward so that the added virtual terms are never processed. 1893 */ 1894 for(i=0; i<pTabList->nSrc; i++){ 1895 createMask(&maskSet, pTabList->a[i].iCursor); 1896 } 1897 exprAnalyzeAll(pTabList, &wc); 1898 if( sqlite3MallocFailed() ){ 1899 goto whereBeginNoMem; 1900 } 1901 1902 /* Chose the best index to use for each table in the FROM clause. 1903 ** 1904 ** This loop fills in the following fields: 1905 ** 1906 ** pWInfo->a[].pIdx The index to use for this level of the loop. 1907 ** pWInfo->a[].flags WHERE_xxx flags associated with pIdx 1908 ** pWInfo->a[].nEq The number of == and IN constraints 1909 ** pWInfo->a[].iFrom When term of the FROM clause is being coded 1910 ** pWInfo->a[].iTabCur The VDBE cursor for the database table 1911 ** pWInfo->a[].iIdxCur The VDBE cursor for the index 1912 ** 1913 ** This loop also figures out the nesting order of tables in the FROM 1914 ** clause. 1915 */ 1916 notReady = ~(Bitmask)0; 1917 pTabItem = pTabList->a; 1918 pLevel = pWInfo->a; 1919 andFlags = ~0; 1920 TRACE(("*** Optimizer Start ***\n")); 1921 for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 1922 Index *pIdx; /* Index for FROM table at pTabItem */ 1923 int flags; /* Flags asssociated with pIdx */ 1924 int nEq; /* Number of == or IN constraints */ 1925 double cost; /* The cost for pIdx */ 1926 int j; /* For looping over FROM tables */ 1927 Index *pBest = 0; /* The best index seen so far */ 1928 int bestFlags = 0; /* Flags associated with pBest */ 1929 int bestNEq = 0; /* nEq associated with pBest */ 1930 double lowestCost; /* Cost of the pBest */ 1931 int bestJ = 0; /* The value of j */ 1932 Bitmask m; /* Bitmask value for j or bestJ */ 1933 int once = 0; /* True when first table is seen */ 1934 sqlite3_index_info *pIndex; /* Current virtual index */ 1935 1936 lowestCost = SQLITE_BIG_DBL; 1937 for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){ 1938 int doNotReorder; /* True if this table should not be reordered */ 1939 1940 doNotReorder = (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0; 1941 if( once && doNotReorder ) break; 1942 m = getMask(&maskSet, pTabItem->iCursor); 1943 if( (m & notReady)==0 ){ 1944 if( j==iFrom ) iFrom++; 1945 continue; 1946 } 1947 assert( pTabItem->pTab ); 1948 #ifndef SQLITE_OMIT_VIRTUALTABLE 1949 if( IsVirtual(pTabItem->pTab) ){ 1950 sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo; 1951 cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady, 1952 ppOrderBy ? *ppOrderBy : 0, i==0, 1953 ppIdxInfo); 1954 flags = WHERE_VIRTUALTABLE; 1955 pIndex = *ppIdxInfo; 1956 if( pIndex && pIndex->orderByConsumed ){ 1957 flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY; 1958 } 1959 pIdx = 0; 1960 nEq = 0; 1961 }else 1962 #endif 1963 { 1964 cost = bestIndex(pParse, &wc, pTabItem, notReady, 1965 (i==0 && ppOrderBy) ? *ppOrderBy : 0, 1966 &pIdx, &flags, &nEq); 1967 pIndex = 0; 1968 } 1969 if( cost<lowestCost ){ 1970 once = 1; 1971 lowestCost = cost; 1972 pBest = pIdx; 1973 bestFlags = flags; 1974 bestNEq = nEq; 1975 bestJ = j; 1976 pLevel->pBestIdx = pIndex; 1977 } 1978 if( doNotReorder ) break; 1979 } 1980 TRACE(("*** Optimizer choose table %d for loop %d\n", bestJ, 1981 pLevel-pWInfo->a)); 1982 if( (bestFlags & WHERE_ORDERBY)!=0 ){ 1983 *ppOrderBy = 0; 1984 } 1985 andFlags &= bestFlags; 1986 pLevel->flags = bestFlags; 1987 pLevel->pIdx = pBest; 1988 pLevel->nEq = bestNEq; 1989 pLevel->aInLoop = 0; 1990 pLevel->nIn = 0; 1991 if( pBest ){ 1992 pLevel->iIdxCur = pParse->nTab++; 1993 }else{ 1994 pLevel->iIdxCur = -1; 1995 } 1996 notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor); 1997 pLevel->iFrom = bestJ; 1998 } 1999 TRACE(("*** Optimizer Finished ***\n")); 2000 2001 /* If the total query only selects a single row, then the ORDER BY 2002 ** clause is irrelevant. 2003 */ 2004 if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){ 2005 *ppOrderBy = 0; 2006 } 2007 2008 /* Open all tables in the pTabList and any indices selected for 2009 ** searching those tables. 2010 */ 2011 sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */ 2012 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 2013 Table *pTab; /* Table to open */ 2014 Index *pIx; /* Index used to access pTab (if any) */ 2015 int iDb; /* Index of database containing table/index */ 2016 int iIdxCur = pLevel->iIdxCur; 2017 2018 #ifndef SQLITE_OMIT_EXPLAIN 2019 if( pParse->explain==2 ){ 2020 char *zMsg; 2021 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom]; 2022 zMsg = sqlite3MPrintf("TABLE %s", pItem->zName); 2023 if( pItem->zAlias ){ 2024 zMsg = sqlite3MPrintf("%z AS %s", zMsg, pItem->zAlias); 2025 } 2026 if( (pIx = pLevel->pIdx)!=0 ){ 2027 zMsg = sqlite3MPrintf("%z WITH INDEX %s", zMsg, pIx->zName); 2028 }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ 2029 zMsg = sqlite3MPrintf("%z USING PRIMARY KEY", zMsg); 2030 } 2031 #ifndef SQLITE_OMIT_VIRTUALTABLE 2032 else if( pLevel->pBestIdx ){ 2033 sqlite3_index_info *pBestIdx = pLevel->pBestIdx; 2034 zMsg = sqlite3MPrintf("%z VIRTUAL TABLE INDEX %d:%s", zMsg, 2035 pBestIdx->idxNum, pBestIdx->idxStr); 2036 } 2037 #endif 2038 if( pLevel->flags & WHERE_ORDERBY ){ 2039 zMsg = sqlite3MPrintf("%z ORDER BY", zMsg); 2040 } 2041 sqlite3VdbeOp3(v, OP_Explain, i, pLevel->iFrom, zMsg, P3_DYNAMIC); 2042 } 2043 #endif /* SQLITE_OMIT_EXPLAIN */ 2044 pTabItem = &pTabList->a[pLevel->iFrom]; 2045 pTab = pTabItem->pTab; 2046 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); 2047 if( pTab->isEphem || pTab->pSelect ) continue; 2048 #ifndef SQLITE_OMIT_VIRTUALTABLE 2049 if( pLevel->pBestIdx ){ 2050 int iCur = pTabItem->iCursor; 2051 sqlite3VdbeOp3(v, OP_VOpen, iCur, 0, (const char*)pTab->pVtab, P3_VTAB); 2052 }else 2053 #endif 2054 if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){ 2055 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, OP_OpenRead); 2056 if( pTab->nCol<(sizeof(Bitmask)*8) ){ 2057 Bitmask b = pTabItem->colUsed; 2058 int n = 0; 2059 for(; b; b=b>>1, n++){} 2060 sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-1, n); 2061 assert( n<=pTab->nCol ); 2062 } 2063 }else{ 2064 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); 2065 } 2066 pLevel->iTabCur = pTabItem->iCursor; 2067 if( (pIx = pLevel->pIdx)!=0 ){ 2068 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx); 2069 assert( pIx->pSchema==pTab->pSchema ); 2070 sqlite3VdbeAddOp(v, OP_Integer, iDb, 0); 2071 VdbeComment((v, "# %s", pIx->zName)); 2072 sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum, 2073 (char*)pKey, P3_KEYINFO_HANDOFF); 2074 } 2075 if( (pLevel->flags & (WHERE_IDX_ONLY|WHERE_COLUMN_RANGE))!=0 ){ 2076 /* Only call OP_SetNumColumns on the index if we might later use 2077 ** OP_Column on the index. */ 2078 sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1); 2079 } 2080 sqlite3CodeVerifySchema(pParse, iDb); 2081 } 2082 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); 2083 2084 /* Generate the code to do the search. Each iteration of the for 2085 ** loop below generates code for a single nested loop of the VM 2086 ** program. 2087 */ 2088 notReady = ~(Bitmask)0; 2089 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 2090 int j; 2091 int iCur = pTabItem->iCursor; /* The VDBE cursor for the table */ 2092 Index *pIdx; /* The index we will be using */ 2093 int iIdxCur; /* The VDBE cursor for the index */ 2094 int omitTable; /* True if we use the index only */ 2095 int bRev; /* True if we need to scan in reverse order */ 2096 2097 pTabItem = &pTabList->a[pLevel->iFrom]; 2098 iCur = pTabItem->iCursor; 2099 pIdx = pLevel->pIdx; 2100 iIdxCur = pLevel->iIdxCur; 2101 bRev = (pLevel->flags & WHERE_REVERSE)!=0; 2102 omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0; 2103 2104 /* Create labels for the "break" and "continue" instructions 2105 ** for the current loop. Jump to brk to break out of a loop. 2106 ** Jump to cont to go immediately to the next iteration of the 2107 ** loop. 2108 */ 2109 brk = pLevel->brk = sqlite3VdbeMakeLabel(v); 2110 cont = pLevel->cont = sqlite3VdbeMakeLabel(v); 2111 2112 /* If this is the right table of a LEFT OUTER JOIN, allocate and 2113 ** initialize a memory cell that records if this table matches any 2114 ** row of the left table of the join. 2115 */ 2116 if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){ 2117 if( !pParse->nMem ) pParse->nMem++; 2118 pLevel->iLeftJoin = pParse->nMem++; 2119 sqlite3VdbeAddOp(v, OP_MemInt, 0, pLevel->iLeftJoin); 2120 VdbeComment((v, "# init LEFT JOIN no-match flag")); 2121 } 2122 2123 #ifndef SQLITE_OMIT_VIRTUALTABLE 2124 if( pLevel->pBestIdx ){ 2125 /* Case 0: The table is a virtual-table. Use the VFilter and VNext 2126 ** to access the data. 2127 */ 2128 int j; 2129 sqlite3_index_info *pBestIdx = pLevel->pBestIdx; 2130 int nConstraint = pBestIdx->nConstraint; 2131 struct sqlite3_index_constraint_usage *aUsage = 2132 pBestIdx->aConstraintUsage; 2133 const struct sqlite3_index_constraint *aConstraint = 2134 pBestIdx->aConstraint; 2135 2136 for(j=1; j<=nConstraint; j++){ 2137 int k; 2138 for(k=0; k<nConstraint; k++){ 2139 if( aUsage[k].argvIndex==j ){ 2140 int iTerm = aConstraint[k].iTermOffset; 2141 sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight); 2142 break; 2143 } 2144 } 2145 if( k==nConstraint ) break; 2146 } 2147 sqlite3VdbeAddOp(v, OP_Integer, j-1, 0); 2148 sqlite3VdbeAddOp(v, OP_Integer, pBestIdx->idxNum, 0); 2149 sqlite3VdbeOp3(v, OP_VFilter, iCur, brk, pBestIdx->idxStr, 2150 pBestIdx->needToFreeIdxStr ? P3_MPRINTF : P3_STATIC); 2151 pBestIdx->needToFreeIdxStr = 0; 2152 for(j=0; j<pBestIdx->nConstraint; j++){ 2153 if( aUsage[j].omit ){ 2154 int iTerm = aConstraint[j].iTermOffset; 2155 disableTerm(pLevel, &wc.a[iTerm]); 2156 } 2157 } 2158 pLevel->op = OP_VNext; 2159 pLevel->p1 = iCur; 2160 pLevel->p2 = sqlite3VdbeCurrentAddr(v); 2161 }else 2162 #endif /* SQLITE_OMIT_VIRTUALTABLE */ 2163 2164 if( pLevel->flags & WHERE_ROWID_EQ ){ 2165 /* Case 1: We can directly reference a single row using an 2166 ** equality comparison against the ROWID field. Or 2167 ** we reference multiple rows using a "rowid IN (...)" 2168 ** construct. 2169 */ 2170 pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0); 2171 assert( pTerm!=0 ); 2172 assert( pTerm->pExpr!=0 ); 2173 assert( pTerm->leftCursor==iCur ); 2174 assert( omitTable==0 ); 2175 codeEqualityTerm(pParse, pTerm, brk, pLevel); 2176 sqlite3VdbeAddOp(v, OP_MustBeInt, 1, brk); 2177 sqlite3VdbeAddOp(v, OP_NotExists, iCur, brk); 2178 VdbeComment((v, "pk")); 2179 pLevel->op = OP_Noop; 2180 }else if( pLevel->flags & WHERE_ROWID_RANGE ){ 2181 /* Case 2: We have an inequality comparison against the ROWID field. 2182 */ 2183 int testOp = OP_Noop; 2184 int start; 2185 WhereTerm *pStart, *pEnd; 2186 2187 assert( omitTable==0 ); 2188 pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0); 2189 pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0); 2190 if( bRev ){ 2191 pTerm = pStart; 2192 pStart = pEnd; 2193 pEnd = pTerm; 2194 } 2195 if( pStart ){ 2196 Expr *pX; 2197 pX = pStart->pExpr; 2198 assert( pX!=0 ); 2199 assert( pStart->leftCursor==iCur ); 2200 sqlite3ExprCode(pParse, pX->pRight); 2201 sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk); 2202 sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk); 2203 VdbeComment((v, "pk")); 2204 disableTerm(pLevel, pStart); 2205 }else{ 2206 sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk); 2207 } 2208 if( pEnd ){ 2209 Expr *pX; 2210 pX = pEnd->pExpr; 2211 assert( pX!=0 ); 2212 assert( pEnd->leftCursor==iCur ); 2213 sqlite3ExprCode(pParse, pX->pRight); 2214 pLevel->iMem = pParse->nMem++; 2215 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); 2216 if( pX->op==TK_LT || pX->op==TK_GT ){ 2217 testOp = bRev ? OP_Le : OP_Ge; 2218 }else{ 2219 testOp = bRev ? OP_Lt : OP_Gt; 2220 } 2221 disableTerm(pLevel, pEnd); 2222 } 2223 start = sqlite3VdbeCurrentAddr(v); 2224 pLevel->op = bRev ? OP_Prev : OP_Next; 2225 pLevel->p1 = iCur; 2226 pLevel->p2 = start; 2227 if( testOp!=OP_Noop ){ 2228 sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0); 2229 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 2230 sqlite3VdbeAddOp(v, testOp, SQLITE_AFF_NUMERIC, brk); 2231 } 2232 }else if( pLevel->flags & WHERE_COLUMN_RANGE ){ 2233 /* Case 3: The WHERE clause term that refers to the right-most 2234 ** column of the index is an inequality. For example, if 2235 ** the index is on (x,y,z) and the WHERE clause is of the 2236 ** form "x=5 AND y<10" then this case is used. Only the 2237 ** right-most column can be an inequality - the rest must 2238 ** use the "==" and "IN" operators. 2239 ** 2240 ** This case is also used when there are no WHERE clause 2241 ** constraints but an index is selected anyway, in order 2242 ** to force the output order to conform to an ORDER BY. 2243 */ 2244 int start; 2245 int nEq = pLevel->nEq; 2246 int topEq=0; /* True if top limit uses ==. False is strictly < */ 2247 int btmEq=0; /* True if btm limit uses ==. False if strictly > */ 2248 int topOp, btmOp; /* Operators for the top and bottom search bounds */ 2249 int testOp; 2250 int topLimit = (pLevel->flags & WHERE_TOP_LIMIT)!=0; 2251 int btmLimit = (pLevel->flags & WHERE_BTM_LIMIT)!=0; 2252 2253 /* Generate code to evaluate all constraint terms using == or IN 2254 ** and level the values of those terms on the stack. 2255 */ 2256 codeAllEqualityTerms(pParse, pLevel, &wc, notReady, brk); 2257 2258 /* Duplicate the equality term values because they will all be 2259 ** used twice: once to make the termination key and once to make the 2260 ** start key. 2261 */ 2262 for(j=0; j<nEq; j++){ 2263 sqlite3VdbeAddOp(v, OP_Dup, nEq-1, 0); 2264 } 2265 2266 /* Figure out what comparison operators to use for top and bottom 2267 ** search bounds. For an ascending index, the bottom bound is a > or >= 2268 ** operator and the top bound is a < or <= operator. For a descending 2269 ** index the operators are reversed. 2270 */ 2271 if( pIdx->aSortOrder[nEq]==SQLITE_SO_ASC ){ 2272 topOp = WO_LT|WO_LE; 2273 btmOp = WO_GT|WO_GE; 2274 }else{ 2275 topOp = WO_GT|WO_GE; 2276 btmOp = WO_LT|WO_LE; 2277 SWAP(int, topLimit, btmLimit); 2278 } 2279 2280 /* Generate the termination key. This is the key value that 2281 ** will end the search. There is no termination key if there 2282 ** are no equality terms and no "X<..." term. 2283 ** 2284 ** 2002-Dec-04: On a reverse-order scan, the so-called "termination" 2285 ** key computed here really ends up being the start key. 2286 */ 2287 if( topLimit ){ 2288 Expr *pX; 2289 int k = pIdx->aiColumn[j]; 2290 pTerm = findTerm(&wc, iCur, k, notReady, topOp, pIdx); 2291 assert( pTerm!=0 ); 2292 pX = pTerm->pExpr; 2293 assert( (pTerm->flags & TERM_CODED)==0 ); 2294 sqlite3ExprCode(pParse, pX->pRight); 2295 sqlite3VdbeAddOp(v, OP_IsNull, -(nEq+1), brk); 2296 topEq = pTerm->eOperator & (WO_LE|WO_GE); 2297 disableTerm(pLevel, pTerm); 2298 testOp = OP_IdxGE; 2299 }else{ 2300 testOp = nEq>0 ? OP_IdxGE : OP_Noop; 2301 topEq = 1; 2302 } 2303 if( testOp!=OP_Noop ){ 2304 int nCol = nEq + topLimit; 2305 pLevel->iMem = pParse->nMem++; 2306 buildIndexProbe(v, nCol, pIdx); 2307 if( bRev ){ 2308 int op = topEq ? OP_MoveLe : OP_MoveLt; 2309 sqlite3VdbeAddOp(v, op, iIdxCur, brk); 2310 }else{ 2311 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); 2312 } 2313 }else if( bRev ){ 2314 sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk); 2315 } 2316 2317 /* Generate the start key. This is the key that defines the lower 2318 ** bound on the search. There is no start key if there are no 2319 ** equality terms and if there is no "X>..." term. In 2320 ** that case, generate a "Rewind" instruction in place of the 2321 ** start key search. 2322 ** 2323 ** 2002-Dec-04: In the case of a reverse-order search, the so-called 2324 ** "start" key really ends up being used as the termination key. 2325 */ 2326 if( btmLimit ){ 2327 Expr *pX; 2328 int k = pIdx->aiColumn[j]; 2329 pTerm = findTerm(&wc, iCur, k, notReady, btmOp, pIdx); 2330 assert( pTerm!=0 ); 2331 pX = pTerm->pExpr; 2332 assert( (pTerm->flags & TERM_CODED)==0 ); 2333 sqlite3ExprCode(pParse, pX->pRight); 2334 sqlite3VdbeAddOp(v, OP_IsNull, -(nEq+1), brk); 2335 btmEq = pTerm->eOperator & (WO_LE|WO_GE); 2336 disableTerm(pLevel, pTerm); 2337 }else{ 2338 btmEq = 1; 2339 } 2340 if( nEq>0 || btmLimit ){ 2341 int nCol = nEq + btmLimit; 2342 buildIndexProbe(v, nCol, pIdx); 2343 if( bRev ){ 2344 pLevel->iMem = pParse->nMem++; 2345 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1); 2346 testOp = OP_IdxLT; 2347 }else{ 2348 int op = btmEq ? OP_MoveGe : OP_MoveGt; 2349 sqlite3VdbeAddOp(v, op, iIdxCur, brk); 2350 } 2351 }else if( bRev ){ 2352 testOp = OP_Noop; 2353 }else{ 2354 sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk); 2355 } 2356 2357 /* Generate the the top of the loop. If there is a termination 2358 ** key we have to test for that key and abort at the top of the 2359 ** loop. 2360 */ 2361 start = sqlite3VdbeCurrentAddr(v); 2362 if( testOp!=OP_Noop ){ 2363 sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 2364 sqlite3VdbeAddOp(v, testOp, iIdxCur, brk); 2365 if( (topEq && !bRev) || (!btmEq && bRev) ){ 2366 sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC); 2367 } 2368 } 2369 if( topLimit | btmLimit ){ 2370 sqlite3VdbeAddOp(v, OP_Column, iIdxCur, nEq); 2371 sqlite3VdbeAddOp(v, OP_IsNull, 1, cont); 2372 } 2373 if( !omitTable ){ 2374 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0); 2375 sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); 2376 } 2377 2378 /* Record the instruction used to terminate the loop. 2379 */ 2380 pLevel->op = bRev ? OP_Prev : OP_Next; 2381 pLevel->p1 = iIdxCur; 2382 pLevel->p2 = start; 2383 }else if( pLevel->flags & WHERE_COLUMN_EQ ){ 2384 /* Case 4: There is an index and all terms of the WHERE clause that 2385 ** refer to the index using the "==" or "IN" operators. 2386 */ 2387 int start; 2388 int nEq = pLevel->nEq; 2389 2390 /* Generate code to evaluate all constraint terms using == or IN 2391 ** and leave the values of those terms on the stack. 2392 */ 2393 codeAllEqualityTerms(pParse, pLevel, &wc, notReady, brk); 2394 2395 /* Generate a single key that will be used to both start and terminate 2396 ** the search 2397 */ 2398 buildIndexProbe(v, nEq, pIdx); 2399 sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0); 2400 2401 /* Generate code (1) to move to the first matching element of the table. 2402 ** Then generate code (2) that jumps to "brk" after the cursor is past 2403 ** the last matching element of the table. The code (1) is executed 2404 ** once to initialize the search, the code (2) is executed before each 2405 ** iteration of the scan to see if the scan has finished. */ 2406 if( bRev ){ 2407 /* Scan in reverse order */ 2408 sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, brk); 2409 start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 2410 sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, brk); 2411 pLevel->op = OP_Prev; 2412 }else{ 2413 /* Scan in the forward order */ 2414 sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, brk); 2415 start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0); 2416 sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, brk, "+", P3_STATIC); 2417 pLevel->op = OP_Next; 2418 } 2419 if( !omitTable ){ 2420 sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0); 2421 sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0); 2422 } 2423 pLevel->p1 = iIdxCur; 2424 pLevel->p2 = start; 2425 }else{ 2426 /* Case 5: There is no usable index. We must do a complete 2427 ** scan of the entire table. 2428 */ 2429 assert( omitTable==0 ); 2430 assert( bRev==0 ); 2431 pLevel->op = OP_Next; 2432 pLevel->p1 = iCur; 2433 pLevel->p2 = 1 + sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk); 2434 } 2435 notReady &= ~getMask(&maskSet, iCur); 2436 2437 /* Insert code to test every subexpression that can be completely 2438 ** computed using the current set of tables. 2439 */ 2440 for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){ 2441 Expr *pE; 2442 if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2443 if( (pTerm->prereqAll & notReady)!=0 ) continue; 2444 pE = pTerm->pExpr; 2445 assert( pE!=0 ); 2446 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){ 2447 continue; 2448 } 2449 sqlite3ExprIfFalse(pParse, pE, cont, 1); 2450 pTerm->flags |= TERM_CODED; 2451 } 2452 2453 /* For a LEFT OUTER JOIN, generate code that will record the fact that 2454 ** at least one row of the right table has matched the left table. 2455 */ 2456 if( pLevel->iLeftJoin ){ 2457 pLevel->top = sqlite3VdbeCurrentAddr(v); 2458 sqlite3VdbeAddOp(v, OP_MemInt, 1, pLevel->iLeftJoin); 2459 VdbeComment((v, "# record LEFT JOIN hit")); 2460 for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){ 2461 if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue; 2462 if( (pTerm->prereqAll & notReady)!=0 ) continue; 2463 assert( pTerm->pExpr ); 2464 sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, 1); 2465 pTerm->flags |= TERM_CODED; 2466 } 2467 } 2468 } 2469 2470 #ifdef SQLITE_TEST /* For testing and debugging use only */ 2471 /* Record in the query plan information about the current table 2472 ** and the index used to access it (if any). If the table itself 2473 ** is not used, its name is just '{}'. If no index is used 2474 ** the index is listed as "{}". If the primary key is used the 2475 ** index name is '*'. 2476 */ 2477 for(i=0; i<pTabList->nSrc; i++){ 2478 char *z; 2479 int n; 2480 pLevel = &pWInfo->a[i]; 2481 pTabItem = &pTabList->a[pLevel->iFrom]; 2482 z = pTabItem->zAlias; 2483 if( z==0 ) z = pTabItem->pTab->zName; 2484 n = strlen(z); 2485 if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){ 2486 if( pLevel->flags & WHERE_IDX_ONLY ){ 2487 strcpy(&sqlite3_query_plan[nQPlan], "{}"); 2488 nQPlan += 2; 2489 }else{ 2490 strcpy(&sqlite3_query_plan[nQPlan], z); 2491 nQPlan += n; 2492 } 2493 sqlite3_query_plan[nQPlan++] = ' '; 2494 } 2495 if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){ 2496 strcpy(&sqlite3_query_plan[nQPlan], "* "); 2497 nQPlan += 2; 2498 }else if( pLevel->pIdx==0 ){ 2499 strcpy(&sqlite3_query_plan[nQPlan], "{} "); 2500 nQPlan += 3; 2501 }else{ 2502 n = strlen(pLevel->pIdx->zName); 2503 if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){ 2504 strcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName); 2505 nQPlan += n; 2506 sqlite3_query_plan[nQPlan++] = ' '; 2507 } 2508 } 2509 } 2510 while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){ 2511 sqlite3_query_plan[--nQPlan] = 0; 2512 } 2513 sqlite3_query_plan[nQPlan] = 0; 2514 nQPlan = 0; 2515 #endif /* SQLITE_TEST // Testing and debugging use only */ 2516 2517 /* Record the continuation address in the WhereInfo structure. Then 2518 ** clean up and return. 2519 */ 2520 pWInfo->iContinue = cont; 2521 whereClauseClear(&wc); 2522 return pWInfo; 2523 2524 /* Jump here if malloc fails */ 2525 whereBeginNoMem: 2526 whereClauseClear(&wc); 2527 whereInfoFree(pWInfo); 2528 return 0; 2529 } 2530 2531 /* 2532 ** Generate the end of the WHERE loop. See comments on 2533 ** sqlite3WhereBegin() for additional information. 2534 */ 2535 void sqlite3WhereEnd(WhereInfo *pWInfo){ 2536 Vdbe *v = pWInfo->pParse->pVdbe; 2537 int i; 2538 WhereLevel *pLevel; 2539 SrcList *pTabList = pWInfo->pTabList; 2540 2541 /* Generate loop termination code. 2542 */ 2543 for(i=pTabList->nSrc-1; i>=0; i--){ 2544 pLevel = &pWInfo->a[i]; 2545 sqlite3VdbeResolveLabel(v, pLevel->cont); 2546 if( pLevel->op!=OP_Noop ){ 2547 sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2); 2548 } 2549 sqlite3VdbeResolveLabel(v, pLevel->brk); 2550 if( pLevel->nIn ){ 2551 int *a; 2552 int j; 2553 for(j=pLevel->nIn, a=&pLevel->aInLoop[j*2-2]; j>0; j--, a-=2){ 2554 sqlite3VdbeAddOp(v, OP_Next, a[0], a[1]); 2555 sqlite3VdbeJumpHere(v, a[1]-1); 2556 } 2557 sqliteFree(pLevel->aInLoop); 2558 } 2559 if( pLevel->iLeftJoin ){ 2560 int addr; 2561 addr = sqlite3VdbeAddOp(v, OP_IfMemPos, pLevel->iLeftJoin, 0); 2562 sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0); 2563 if( pLevel->iIdxCur>=0 ){ 2564 sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0); 2565 } 2566 sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top); 2567 sqlite3VdbeJumpHere(v, addr); 2568 } 2569 } 2570 2571 /* The "break" point is here, just past the end of the outer loop. 2572 ** Set it. 2573 */ 2574 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); 2575 2576 /* Close all of the cursors that were opened by sqlite3WhereBegin. 2577 */ 2578 for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){ 2579 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; 2580 Table *pTab = pTabItem->pTab; 2581 assert( pTab!=0 ); 2582 if( pTab->isEphem || pTab->pSelect ) continue; 2583 if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){ 2584 sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0); 2585 } 2586 if( pLevel->pIdx!=0 ){ 2587 sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0); 2588 } 2589 2590 /* Make cursor substitutions for cases where we want to use 2591 ** just the index and never reference the table. 2592 ** 2593 ** Calls to the code generator in between sqlite3WhereBegin and 2594 ** sqlite3WhereEnd will have created code that references the table 2595 ** directly. This loop scans all that code looking for opcodes 2596 ** that reference the table and converts them into opcodes that 2597 ** reference the index. 2598 */ 2599 if( pLevel->flags & WHERE_IDX_ONLY ){ 2600 int k, j, last; 2601 VdbeOp *pOp; 2602 Index *pIdx = pLevel->pIdx; 2603 2604 assert( pIdx!=0 ); 2605 pOp = sqlite3VdbeGetOp(v, pWInfo->iTop); 2606 last = sqlite3VdbeCurrentAddr(v); 2607 for(k=pWInfo->iTop; k<last; k++, pOp++){ 2608 if( pOp->p1!=pLevel->iTabCur ) continue; 2609 if( pOp->opcode==OP_Column ){ 2610 pOp->p1 = pLevel->iIdxCur; 2611 for(j=0; j<pIdx->nColumn; j++){ 2612 if( pOp->p2==pIdx->aiColumn[j] ){ 2613 pOp->p2 = j; 2614 break; 2615 } 2616 } 2617 }else if( pOp->opcode==OP_Rowid ){ 2618 pOp->p1 = pLevel->iIdxCur; 2619 pOp->opcode = OP_IdxRowid; 2620 }else if( pOp->opcode==OP_NullRow ){ 2621 pOp->opcode = OP_Noop; 2622 } 2623 } 2624 } 2625 } 2626 2627 /* Final cleanup 2628 */ 2629 whereInfoFree(pWInfo); 2630 return; 2631 } 2632