xref: /sqlite-3.40.0/src/where.c (revision 3438ea3b)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.  This module is reponsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows.  Indices are selected and used to speed the search when doing
16 ** so is applicable.  Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
18 **
19 ** $Id: where.c,v 1.237 2007/02/06 13:26:33 drh Exp $
20 */
21 #include "sqliteInt.h"
22 
23 /*
24 ** The number of bits in a Bitmask.  "BMS" means "BitMask Size".
25 */
26 #define BMS  (sizeof(Bitmask)*8)
27 
28 /*
29 ** Determine the number of elements in an array.
30 */
31 #define ARRAYSIZE(X)  (sizeof(X)/sizeof(X[0]))
32 
33 /*
34 ** Trace output macros
35 */
36 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
37 int sqlite3_where_trace = 0;
38 # define TRACE(X)  if(sqlite3_where_trace) sqlite3DebugPrintf X
39 #else
40 # define TRACE(X)
41 #endif
42 
43 /* Forward reference
44 */
45 typedef struct WhereClause WhereClause;
46 typedef struct ExprMaskSet ExprMaskSet;
47 
48 /*
49 ** The query generator uses an array of instances of this structure to
50 ** help it analyze the subexpressions of the WHERE clause.  Each WHERE
51 ** clause subexpression is separated from the others by an AND operator.
52 **
53 ** All WhereTerms are collected into a single WhereClause structure.
54 ** The following identity holds:
55 **
56 **        WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
57 **
58 ** When a term is of the form:
59 **
60 **              X <op> <expr>
61 **
62 ** where X is a column name and <op> is one of certain operators,
63 ** then WhereTerm.leftCursor and WhereTerm.leftColumn record the
64 ** cursor number and column number for X.  WhereTerm.operator records
65 ** the <op> using a bitmask encoding defined by WO_xxx below.  The
66 ** use of a bitmask encoding for the operator allows us to search
67 ** quickly for terms that match any of several different operators.
68 **
69 ** prereqRight and prereqAll record sets of cursor numbers,
70 ** but they do so indirectly.  A single ExprMaskSet structure translates
71 ** cursor number into bits and the translated bit is stored in the prereq
72 ** fields.  The translation is used in order to maximize the number of
73 ** bits that will fit in a Bitmask.  The VDBE cursor numbers might be
74 ** spread out over the non-negative integers.  For example, the cursor
75 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45.  The ExprMaskSet
76 ** translates these sparse cursor numbers into consecutive integers
77 ** beginning with 0 in order to make the best possible use of the available
78 ** bits in the Bitmask.  So, in the example above, the cursor numbers
79 ** would be mapped into integers 0 through 7.
80 */
81 typedef struct WhereTerm WhereTerm;
82 struct WhereTerm {
83   Expr *pExpr;            /* Pointer to the subexpression */
84   i16 iParent;            /* Disable pWC->a[iParent] when this term disabled */
85   i16 leftCursor;         /* Cursor number of X in "X <op> <expr>" */
86   i16 leftColumn;         /* Column number of X in "X <op> <expr>" */
87   u16 eOperator;          /* A WO_xx value describing <op> */
88   u8 flags;               /* Bit flags.  See below */
89   u8 nChild;              /* Number of children that must disable us */
90   WhereClause *pWC;       /* The clause this term is part of */
91   Bitmask prereqRight;    /* Bitmask of tables used by pRight */
92   Bitmask prereqAll;      /* Bitmask of tables referenced by p */
93 };
94 
95 /*
96 ** Allowed values of WhereTerm.flags
97 */
98 #define TERM_DYNAMIC    0x01   /* Need to call sqlite3ExprDelete(pExpr) */
99 #define TERM_VIRTUAL    0x02   /* Added by the optimizer.  Do not code */
100 #define TERM_CODED      0x04   /* This term is already coded */
101 #define TERM_COPIED     0x08   /* Has a child */
102 #define TERM_OR_OK      0x10   /* Used during OR-clause processing */
103 
104 /*
105 ** An instance of the following structure holds all information about a
106 ** WHERE clause.  Mostly this is a container for one or more WhereTerms.
107 */
108 struct WhereClause {
109   Parse *pParse;           /* The parser context */
110   ExprMaskSet *pMaskSet;   /* Mapping of table indices to bitmasks */
111   int nTerm;               /* Number of terms */
112   int nSlot;               /* Number of entries in a[] */
113   WhereTerm *a;            /* Each a[] describes a term of the WHERE cluase */
114   WhereTerm aStatic[10];   /* Initial static space for a[] */
115 };
116 
117 /*
118 ** An instance of the following structure keeps track of a mapping
119 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
120 **
121 ** The VDBE cursor numbers are small integers contained in
122 ** SrcList_item.iCursor and Expr.iTable fields.  For any given WHERE
123 ** clause, the cursor numbers might not begin with 0 and they might
124 ** contain gaps in the numbering sequence.  But we want to make maximum
125 ** use of the bits in our bitmasks.  This structure provides a mapping
126 ** from the sparse cursor numbers into consecutive integers beginning
127 ** with 0.
128 **
129 ** If ExprMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
130 ** corresponds VDBE cursor number B.  The A-th bit of a bitmask is 1<<A.
131 **
132 ** For example, if the WHERE clause expression used these VDBE
133 ** cursors:  4, 5, 8, 29, 57, 73.  Then the  ExprMaskSet structure
134 ** would map those cursor numbers into bits 0 through 5.
135 **
136 ** Note that the mapping is not necessarily ordered.  In the example
137 ** above, the mapping might go like this:  4->3, 5->1, 8->2, 29->0,
138 ** 57->5, 73->4.  Or one of 719 other combinations might be used. It
139 ** does not really matter.  What is important is that sparse cursor
140 ** numbers all get mapped into bit numbers that begin with 0 and contain
141 ** no gaps.
142 */
143 struct ExprMaskSet {
144   int n;                        /* Number of assigned cursor values */
145   int ix[sizeof(Bitmask)*8];    /* Cursor assigned to each bit */
146 };
147 
148 
149 /*
150 ** Bitmasks for the operators that indices are able to exploit.  An
151 ** OR-ed combination of these values can be used when searching for
152 ** terms in the where clause.
153 */
154 #define WO_IN     1
155 #define WO_EQ     2
156 #define WO_LT     (WO_EQ<<(TK_LT-TK_EQ))
157 #define WO_LE     (WO_EQ<<(TK_LE-TK_EQ))
158 #define WO_GT     (WO_EQ<<(TK_GT-TK_EQ))
159 #define WO_GE     (WO_EQ<<(TK_GE-TK_EQ))
160 #define WO_MATCH  64
161 #define WO_ISNULL 128
162 
163 /*
164 ** Value for flags returned by bestIndex().
165 **
166 ** The least significant byte is reserved as a mask for WO_ values above.
167 ** The WhereLevel.flags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
168 ** But if the table is the right table of a left join, WhereLevel.flags
169 ** is set to WO_IN|WO_EQ.  The WhereLevel.flags field can then be used as
170 ** the "op" parameter to findTerm when we are resolving equality constraints.
171 ** ISNULL constraints will then not be used on the right table of a left
172 ** join.  Tickets #2177 and #2189.
173 */
174 #define WHERE_ROWID_EQ     0x000100   /* rowid=EXPR or rowid IN (...) */
175 #define WHERE_ROWID_RANGE  0x000200   /* rowid<EXPR and/or rowid>EXPR */
176 #define WHERE_COLUMN_EQ    0x001000   /* x=EXPR or x IN (...) */
177 #define WHERE_COLUMN_RANGE 0x002000   /* x<EXPR and/or x>EXPR */
178 #define WHERE_COLUMN_IN    0x004000   /* x IN (...) */
179 #define WHERE_TOP_LIMIT    0x010000   /* x<EXPR or x<=EXPR constraint */
180 #define WHERE_BTM_LIMIT    0x020000   /* x>EXPR or x>=EXPR constraint */
181 #define WHERE_IDX_ONLY     0x080000   /* Use index only - omit table */
182 #define WHERE_ORDERBY      0x100000   /* Output will appear in correct order */
183 #define WHERE_REVERSE      0x200000   /* Scan in reverse order */
184 #define WHERE_UNIQUE       0x400000   /* Selects no more than one row */
185 #define WHERE_VIRTUALTABLE 0x800000   /* Use virtual-table processing */
186 
187 /*
188 ** Initialize a preallocated WhereClause structure.
189 */
190 static void whereClauseInit(
191   WhereClause *pWC,        /* The WhereClause to be initialized */
192   Parse *pParse,           /* The parsing context */
193   ExprMaskSet *pMaskSet    /* Mapping from table indices to bitmasks */
194 ){
195   pWC->pParse = pParse;
196   pWC->pMaskSet = pMaskSet;
197   pWC->nTerm = 0;
198   pWC->nSlot = ARRAYSIZE(pWC->aStatic);
199   pWC->a = pWC->aStatic;
200 }
201 
202 /*
203 ** Deallocate a WhereClause structure.  The WhereClause structure
204 ** itself is not freed.  This routine is the inverse of whereClauseInit().
205 */
206 static void whereClauseClear(WhereClause *pWC){
207   int i;
208   WhereTerm *a;
209   for(i=pWC->nTerm-1, a=pWC->a; i>=0; i--, a++){
210     if( a->flags & TERM_DYNAMIC ){
211       sqlite3ExprDelete(a->pExpr);
212     }
213   }
214   if( pWC->a!=pWC->aStatic ){
215     sqliteFree(pWC->a);
216   }
217 }
218 
219 /*
220 ** Add a new entries to the WhereClause structure.  Increase the allocated
221 ** space as necessary.
222 **
223 ** WARNING:  This routine might reallocate the space used to store
224 ** WhereTerms.  All pointers to WhereTerms should be invalided after
225 ** calling this routine.  Such pointers may be reinitialized by referencing
226 ** the pWC->a[] array.
227 */
228 static int whereClauseInsert(WhereClause *pWC, Expr *p, int flags){
229   WhereTerm *pTerm;
230   int idx;
231   if( pWC->nTerm>=pWC->nSlot ){
232     WhereTerm *pOld = pWC->a;
233     pWC->a = sqliteMalloc( sizeof(pWC->a[0])*pWC->nSlot*2 );
234     if( pWC->a==0 ) return 0;
235     memcpy(pWC->a, pOld, sizeof(pWC->a[0])*pWC->nTerm);
236     if( pOld!=pWC->aStatic ){
237       sqliteFree(pOld);
238     }
239     pWC->nSlot *= 2;
240   }
241   pTerm = &pWC->a[idx = pWC->nTerm];
242   pWC->nTerm++;
243   pTerm->pExpr = p;
244   pTerm->flags = flags;
245   pTerm->pWC = pWC;
246   pTerm->iParent = -1;
247   return idx;
248 }
249 
250 /*
251 ** This routine identifies subexpressions in the WHERE clause where
252 ** each subexpression is separated by the AND operator or some other
253 ** operator specified in the op parameter.  The WhereClause structure
254 ** is filled with pointers to subexpressions.  For example:
255 **
256 **    WHERE  a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
257 **           \________/     \_______________/     \________________/
258 **            slot[0]            slot[1]               slot[2]
259 **
260 ** The original WHERE clause in pExpr is unaltered.  All this routine
261 ** does is make slot[] entries point to substructure within pExpr.
262 **
263 ** In the previous sentence and in the diagram, "slot[]" refers to
264 ** the WhereClause.a[] array.  This array grows as needed to contain
265 ** all terms of the WHERE clause.
266 */
267 static void whereSplit(WhereClause *pWC, Expr *pExpr, int op){
268   if( pExpr==0 ) return;
269   if( pExpr->op!=op ){
270     whereClauseInsert(pWC, pExpr, 0);
271   }else{
272     whereSplit(pWC, pExpr->pLeft, op);
273     whereSplit(pWC, pExpr->pRight, op);
274   }
275 }
276 
277 /*
278 ** Initialize an expression mask set
279 */
280 #define initMaskSet(P)  memset(P, 0, sizeof(*P))
281 
282 /*
283 ** Return the bitmask for the given cursor number.  Return 0 if
284 ** iCursor is not in the set.
285 */
286 static Bitmask getMask(ExprMaskSet *pMaskSet, int iCursor){
287   int i;
288   for(i=0; i<pMaskSet->n; i++){
289     if( pMaskSet->ix[i]==iCursor ){
290       return ((Bitmask)1)<<i;
291     }
292   }
293   return 0;
294 }
295 
296 /*
297 ** Create a new mask for cursor iCursor.
298 **
299 ** There is one cursor per table in the FROM clause.  The number of
300 ** tables in the FROM clause is limited by a test early in the
301 ** sqlite3WhereBegin() routine.  So we know that the pMaskSet->ix[]
302 ** array will never overflow.
303 */
304 static void createMask(ExprMaskSet *pMaskSet, int iCursor){
305   assert( pMaskSet->n < ARRAYSIZE(pMaskSet->ix) );
306   pMaskSet->ix[pMaskSet->n++] = iCursor;
307 }
308 
309 /*
310 ** This routine walks (recursively) an expression tree and generates
311 ** a bitmask indicating which tables are used in that expression
312 ** tree.
313 **
314 ** In order for this routine to work, the calling function must have
315 ** previously invoked sqlite3ExprResolveNames() on the expression.  See
316 ** the header comment on that routine for additional information.
317 ** The sqlite3ExprResolveNames() routines looks for column names and
318 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
319 ** the VDBE cursor number of the table.  This routine just has to
320 ** translate the cursor numbers into bitmask values and OR all
321 ** the bitmasks together.
322 */
323 static Bitmask exprListTableUsage(ExprMaskSet*, ExprList*);
324 static Bitmask exprSelectTableUsage(ExprMaskSet*, Select*);
325 static Bitmask exprTableUsage(ExprMaskSet *pMaskSet, Expr *p){
326   Bitmask mask = 0;
327   if( p==0 ) return 0;
328   if( p->op==TK_COLUMN ){
329     mask = getMask(pMaskSet, p->iTable);
330     return mask;
331   }
332   mask = exprTableUsage(pMaskSet, p->pRight);
333   mask |= exprTableUsage(pMaskSet, p->pLeft);
334   mask |= exprListTableUsage(pMaskSet, p->pList);
335   mask |= exprSelectTableUsage(pMaskSet, p->pSelect);
336   return mask;
337 }
338 static Bitmask exprListTableUsage(ExprMaskSet *pMaskSet, ExprList *pList){
339   int i;
340   Bitmask mask = 0;
341   if( pList ){
342     for(i=0; i<pList->nExpr; i++){
343       mask |= exprTableUsage(pMaskSet, pList->a[i].pExpr);
344     }
345   }
346   return mask;
347 }
348 static Bitmask exprSelectTableUsage(ExprMaskSet *pMaskSet, Select *pS){
349   Bitmask mask;
350   if( pS==0 ){
351     mask = 0;
352   }else{
353     mask = exprListTableUsage(pMaskSet, pS->pEList);
354     mask |= exprListTableUsage(pMaskSet, pS->pGroupBy);
355     mask |= exprListTableUsage(pMaskSet, pS->pOrderBy);
356     mask |= exprTableUsage(pMaskSet, pS->pWhere);
357     mask |= exprTableUsage(pMaskSet, pS->pHaving);
358   }
359   return mask;
360 }
361 
362 /*
363 ** Return TRUE if the given operator is one of the operators that is
364 ** allowed for an indexable WHERE clause term.  The allowed operators are
365 ** "=", "<", ">", "<=", ">=", and "IN".
366 */
367 static int allowedOp(int op){
368   assert( TK_GT>TK_EQ && TK_GT<TK_GE );
369   assert( TK_LT>TK_EQ && TK_LT<TK_GE );
370   assert( TK_LE>TK_EQ && TK_LE<TK_GE );
371   assert( TK_GE==TK_EQ+4 );
372   return op==TK_IN || (op>=TK_EQ && op<=TK_GE) || op==TK_ISNULL;
373 }
374 
375 /*
376 ** Swap two objects of type T.
377 */
378 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
379 
380 /*
381 ** Commute a comparision operator.  Expressions of the form "X op Y"
382 ** are converted into "Y op X".
383 */
384 static void exprCommute(Expr *pExpr){
385   assert( allowedOp(pExpr->op) && pExpr->op!=TK_IN );
386   SWAP(CollSeq*,pExpr->pRight->pColl,pExpr->pLeft->pColl);
387   SWAP(Expr*,pExpr->pRight,pExpr->pLeft);
388   if( pExpr->op>=TK_GT ){
389     assert( TK_LT==TK_GT+2 );
390     assert( TK_GE==TK_LE+2 );
391     assert( TK_GT>TK_EQ );
392     assert( TK_GT<TK_LE );
393     assert( pExpr->op>=TK_GT && pExpr->op<=TK_GE );
394     pExpr->op = ((pExpr->op-TK_GT)^2)+TK_GT;
395   }
396 }
397 
398 /*
399 ** Translate from TK_xx operator to WO_xx bitmask.
400 */
401 static int operatorMask(int op){
402   int c;
403   assert( allowedOp(op) );
404   if( op==TK_IN ){
405     c = WO_IN;
406   }else if( op==TK_ISNULL ){
407     c = WO_ISNULL;
408   }else{
409     c = WO_EQ<<(op-TK_EQ);
410   }
411   assert( op!=TK_ISNULL || c==WO_ISNULL );
412   assert( op!=TK_IN || c==WO_IN );
413   assert( op!=TK_EQ || c==WO_EQ );
414   assert( op!=TK_LT || c==WO_LT );
415   assert( op!=TK_LE || c==WO_LE );
416   assert( op!=TK_GT || c==WO_GT );
417   assert( op!=TK_GE || c==WO_GE );
418   return c;
419 }
420 
421 /*
422 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
423 ** where X is a reference to the iColumn of table iCur and <op> is one of
424 ** the WO_xx operator codes specified by the op parameter.
425 ** Return a pointer to the term.  Return 0 if not found.
426 */
427 static WhereTerm *findTerm(
428   WhereClause *pWC,     /* The WHERE clause to be searched */
429   int iCur,             /* Cursor number of LHS */
430   int iColumn,          /* Column number of LHS */
431   Bitmask notReady,     /* RHS must not overlap with this mask */
432   u16 op,               /* Mask of WO_xx values describing operator */
433   Index *pIdx           /* Must be compatible with this index, if not NULL */
434 ){
435   WhereTerm *pTerm;
436   int k;
437   for(pTerm=pWC->a, k=pWC->nTerm; k; k--, pTerm++){
438     if( pTerm->leftCursor==iCur
439        && (pTerm->prereqRight & notReady)==0
440        && pTerm->leftColumn==iColumn
441        && (pTerm->eOperator & op)!=0
442     ){
443       if( iCur>=0 && pIdx && pTerm->eOperator!=WO_ISNULL ){
444         Expr *pX = pTerm->pExpr;
445         CollSeq *pColl;
446         char idxaff;
447         int j;
448         Parse *pParse = pWC->pParse;
449 
450         idxaff = pIdx->pTable->aCol[iColumn].affinity;
451         if( !sqlite3IndexAffinityOk(pX, idxaff) ) continue;
452         pColl = sqlite3ExprCollSeq(pParse, pX->pLeft);
453         if( !pColl ){
454           if( pX->pRight ){
455             pColl = sqlite3ExprCollSeq(pParse, pX->pRight);
456           }
457           if( !pColl ){
458             pColl = pParse->db->pDfltColl;
459           }
460         }
461         for(j=0; j<pIdx->nColumn && pIdx->aiColumn[j]!=iColumn; j++){}
462         assert( j<pIdx->nColumn );
463         if( sqlite3StrICmp(pColl->zName, pIdx->azColl[j]) ) continue;
464       }
465       return pTerm;
466     }
467   }
468   return 0;
469 }
470 
471 /* Forward reference */
472 static void exprAnalyze(SrcList*, WhereClause*, int);
473 
474 /*
475 ** Call exprAnalyze on all terms in a WHERE clause.
476 **
477 **
478 */
479 static void exprAnalyzeAll(
480   SrcList *pTabList,       /* the FROM clause */
481   WhereClause *pWC         /* the WHERE clause to be analyzed */
482 ){
483   int i;
484   for(i=pWC->nTerm-1; i>=0; i--){
485     exprAnalyze(pTabList, pWC, i);
486   }
487 }
488 
489 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
490 /*
491 ** Check to see if the given expression is a LIKE or GLOB operator that
492 ** can be optimized using inequality constraints.  Return TRUE if it is
493 ** so and false if not.
494 **
495 ** In order for the operator to be optimizible, the RHS must be a string
496 ** literal that does not begin with a wildcard.
497 */
498 static int isLikeOrGlob(
499   sqlite3 *db,      /* The database */
500   Expr *pExpr,      /* Test this expression */
501   int *pnPattern,   /* Number of non-wildcard prefix characters */
502   int *pisComplete  /* True if the only wildcard is % in the last character */
503 ){
504   const char *z;
505   Expr *pRight, *pLeft;
506   ExprList *pList;
507   int c, cnt;
508   int noCase;
509   char wc[3];
510   CollSeq *pColl;
511 
512   if( !sqlite3IsLikeFunction(db, pExpr, &noCase, wc) ){
513     return 0;
514   }
515   pList = pExpr->pList;
516   pRight = pList->a[0].pExpr;
517   if( pRight->op!=TK_STRING ){
518     return 0;
519   }
520   pLeft = pList->a[1].pExpr;
521   if( pLeft->op!=TK_COLUMN ){
522     return 0;
523   }
524   pColl = pLeft->pColl;
525   if( pColl==0 ){
526     pColl = db->pDfltColl;
527   }
528   if( (pColl->type!=SQLITE_COLL_BINARY || noCase) &&
529       (pColl->type!=SQLITE_COLL_NOCASE || !noCase) ){
530     return 0;
531   }
532   sqlite3DequoteExpr(pRight);
533   z = (char *)pRight->token.z;
534   for(cnt=0; (c=z[cnt])!=0 && c!=wc[0] && c!=wc[1] && c!=wc[2]; cnt++){}
535   if( cnt==0 || 255==(u8)z[cnt] ){
536     return 0;
537   }
538   *pisComplete = z[cnt]==wc[0] && z[cnt+1]==0;
539   *pnPattern = cnt;
540   return 1;
541 }
542 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
543 
544 
545 #ifndef SQLITE_OMIT_VIRTUALTABLE
546 /*
547 ** Check to see if the given expression is of the form
548 **
549 **         column MATCH expr
550 **
551 ** If it is then return TRUE.  If not, return FALSE.
552 */
553 static int isMatchOfColumn(
554   Expr *pExpr      /* Test this expression */
555 ){
556   ExprList *pList;
557 
558   if( pExpr->op!=TK_FUNCTION ){
559     return 0;
560   }
561   if( pExpr->token.n!=5 ||
562        sqlite3StrNICmp((const char*)pExpr->token.z,"match",5)!=0 ){
563     return 0;
564   }
565   pList = pExpr->pList;
566   if( pList->nExpr!=2 ){
567     return 0;
568   }
569   if( pList->a[1].pExpr->op != TK_COLUMN ){
570     return 0;
571   }
572   return 1;
573 }
574 #endif /* SQLITE_OMIT_VIRTUALTABLE */
575 
576 /*
577 ** If the pBase expression originated in the ON or USING clause of
578 ** a join, then transfer the appropriate markings over to derived.
579 */
580 static void transferJoinMarkings(Expr *pDerived, Expr *pBase){
581   pDerived->flags |= pBase->flags & EP_FromJoin;
582   pDerived->iRightJoinTable = pBase->iRightJoinTable;
583 }
584 
585 
586 /*
587 ** The input to this routine is an WhereTerm structure with only the
588 ** "pExpr" field filled in.  The job of this routine is to analyze the
589 ** subexpression and populate all the other fields of the WhereTerm
590 ** structure.
591 **
592 ** If the expression is of the form "<expr> <op> X" it gets commuted
593 ** to the standard form of "X <op> <expr>".  If the expression is of
594 ** the form "X <op> Y" where both X and Y are columns, then the original
595 ** expression is unchanged and a new virtual expression of the form
596 ** "Y <op> X" is added to the WHERE clause and analyzed separately.
597 */
598 static void exprAnalyze(
599   SrcList *pSrc,            /* the FROM clause */
600   WhereClause *pWC,         /* the WHERE clause */
601   int idxTerm               /* Index of the term to be analyzed */
602 ){
603   WhereTerm *pTerm = &pWC->a[idxTerm];
604   ExprMaskSet *pMaskSet = pWC->pMaskSet;
605   Expr *pExpr = pTerm->pExpr;
606   Bitmask prereqLeft;
607   Bitmask prereqAll;
608   int nPattern;
609   int isComplete;
610   int op;
611 
612   if( sqlite3MallocFailed() ) return;
613   prereqLeft = exprTableUsage(pMaskSet, pExpr->pLeft);
614   op = pExpr->op;
615   if( op==TK_IN ){
616     assert( pExpr->pRight==0 );
617     pTerm->prereqRight = exprListTableUsage(pMaskSet, pExpr->pList)
618                           | exprSelectTableUsage(pMaskSet, pExpr->pSelect);
619   }else if( op==TK_ISNULL ){
620     pTerm->prereqRight = 0;
621   }else{
622     pTerm->prereqRight = exprTableUsage(pMaskSet, pExpr->pRight);
623   }
624   prereqAll = exprTableUsage(pMaskSet, pExpr);
625   if( ExprHasProperty(pExpr, EP_FromJoin) ){
626     prereqAll |= getMask(pMaskSet, pExpr->iRightJoinTable);
627   }
628   pTerm->prereqAll = prereqAll;
629   pTerm->leftCursor = -1;
630   pTerm->iParent = -1;
631   pTerm->eOperator = 0;
632   if( allowedOp(op) && (pTerm->prereqRight & prereqLeft)==0 ){
633     Expr *pLeft = pExpr->pLeft;
634     Expr *pRight = pExpr->pRight;
635     if( pLeft->op==TK_COLUMN ){
636       pTerm->leftCursor = pLeft->iTable;
637       pTerm->leftColumn = pLeft->iColumn;
638       pTerm->eOperator = operatorMask(op);
639     }
640     if( pRight && pRight->op==TK_COLUMN ){
641       WhereTerm *pNew;
642       Expr *pDup;
643       if( pTerm->leftCursor>=0 ){
644         int idxNew;
645         pDup = sqlite3ExprDup(pExpr);
646         if( sqlite3MallocFailed() ){
647           sqliteFree(pDup);
648           return;
649         }
650         idxNew = whereClauseInsert(pWC, pDup, TERM_VIRTUAL|TERM_DYNAMIC);
651         if( idxNew==0 ) return;
652         pNew = &pWC->a[idxNew];
653         pNew->iParent = idxTerm;
654         pTerm = &pWC->a[idxTerm];
655         pTerm->nChild = 1;
656         pTerm->flags |= TERM_COPIED;
657       }else{
658         pDup = pExpr;
659         pNew = pTerm;
660       }
661       exprCommute(pDup);
662       pLeft = pDup->pLeft;
663       pNew->leftCursor = pLeft->iTable;
664       pNew->leftColumn = pLeft->iColumn;
665       pNew->prereqRight = prereqLeft;
666       pNew->prereqAll = prereqAll;
667       pNew->eOperator = operatorMask(pDup->op);
668     }
669   }
670 
671 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
672   /* If a term is the BETWEEN operator, create two new virtual terms
673   ** that define the range that the BETWEEN implements.
674   */
675   else if( pExpr->op==TK_BETWEEN ){
676     ExprList *pList = pExpr->pList;
677     int i;
678     static const u8 ops[] = {TK_GE, TK_LE};
679     assert( pList!=0 );
680     assert( pList->nExpr==2 );
681     for(i=0; i<2; i++){
682       Expr *pNewExpr;
683       int idxNew;
684       pNewExpr = sqlite3Expr(ops[i], sqlite3ExprDup(pExpr->pLeft),
685                              sqlite3ExprDup(pList->a[i].pExpr), 0);
686       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
687       exprAnalyze(pSrc, pWC, idxNew);
688       pTerm = &pWC->a[idxTerm];
689       pWC->a[idxNew].iParent = idxTerm;
690     }
691     pTerm->nChild = 2;
692   }
693 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
694 
695 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
696   /* Attempt to convert OR-connected terms into an IN operator so that
697   ** they can make use of indices.  Example:
698   **
699   **      x = expr1  OR  expr2 = x  OR  x = expr3
700   **
701   ** is converted into
702   **
703   **      x IN (expr1,expr2,expr3)
704   **
705   ** This optimization must be omitted if OMIT_SUBQUERY is defined because
706   ** the compiler for the the IN operator is part of sub-queries.
707   */
708   else if( pExpr->op==TK_OR ){
709     int ok;
710     int i, j;
711     int iColumn, iCursor;
712     WhereClause sOr;
713     WhereTerm *pOrTerm;
714 
715     assert( (pTerm->flags & TERM_DYNAMIC)==0 );
716     whereClauseInit(&sOr, pWC->pParse, pMaskSet);
717     whereSplit(&sOr, pExpr, TK_OR);
718     exprAnalyzeAll(pSrc, &sOr);
719     assert( sOr.nTerm>0 );
720     j = 0;
721     do{
722       iColumn = sOr.a[j].leftColumn;
723       iCursor = sOr.a[j].leftCursor;
724       ok = iCursor>=0;
725       for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
726         if( pOrTerm->eOperator!=WO_EQ ){
727           goto or_not_possible;
728         }
729         if( pOrTerm->leftCursor==iCursor && pOrTerm->leftColumn==iColumn ){
730           pOrTerm->flags |= TERM_OR_OK;
731         }else if( (pOrTerm->flags & TERM_COPIED)!=0 ||
732                     ((pOrTerm->flags & TERM_VIRTUAL)!=0 &&
733                      (sOr.a[pOrTerm->iParent].flags & TERM_OR_OK)!=0) ){
734           pOrTerm->flags &= ~TERM_OR_OK;
735         }else{
736           ok = 0;
737         }
738       }
739     }while( !ok && (sOr.a[j++].flags & TERM_COPIED)!=0 && j<sOr.nTerm );
740     if( ok ){
741       ExprList *pList = 0;
742       Expr *pNew, *pDup;
743       Expr *pLeft = 0;
744       for(i=sOr.nTerm-1, pOrTerm=sOr.a; i>=0 && ok; i--, pOrTerm++){
745         if( (pOrTerm->flags & TERM_OR_OK)==0 ) continue;
746         pDup = sqlite3ExprDup(pOrTerm->pExpr->pRight);
747         pList = sqlite3ExprListAppend(pList, pDup, 0);
748         pLeft = pOrTerm->pExpr->pLeft;
749       }
750       assert( pLeft!=0 );
751       pDup = sqlite3ExprDup(pLeft);
752       pNew = sqlite3Expr(TK_IN, pDup, 0, 0);
753       if( pNew ){
754         int idxNew;
755         transferJoinMarkings(pNew, pExpr);
756         pNew->pList = pList;
757         idxNew = whereClauseInsert(pWC, pNew, TERM_VIRTUAL|TERM_DYNAMIC);
758         exprAnalyze(pSrc, pWC, idxNew);
759         pTerm = &pWC->a[idxTerm];
760         pWC->a[idxNew].iParent = idxTerm;
761         pTerm->nChild = 1;
762       }else{
763         sqlite3ExprListDelete(pList);
764       }
765     }
766 or_not_possible:
767     whereClauseClear(&sOr);
768   }
769 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
770 
771 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
772   /* Add constraints to reduce the search space on a LIKE or GLOB
773   ** operator.
774   */
775   if( isLikeOrGlob(pWC->pParse->db, pExpr, &nPattern, &isComplete) ){
776     Expr *pLeft, *pRight;
777     Expr *pStr1, *pStr2;
778     Expr *pNewExpr1, *pNewExpr2;
779     int idxNew1, idxNew2;
780 
781     pLeft = pExpr->pList->a[1].pExpr;
782     pRight = pExpr->pList->a[0].pExpr;
783     pStr1 = sqlite3Expr(TK_STRING, 0, 0, 0);
784     if( pStr1 ){
785       sqlite3TokenCopy(&pStr1->token, &pRight->token);
786       pStr1->token.n = nPattern;
787     }
788     pStr2 = sqlite3ExprDup(pStr1);
789     if( pStr2 ){
790       assert( pStr2->token.dyn );
791       ++*(u8*)&pStr2->token.z[nPattern-1];
792     }
793     pNewExpr1 = sqlite3Expr(TK_GE, sqlite3ExprDup(pLeft), pStr1, 0);
794     idxNew1 = whereClauseInsert(pWC, pNewExpr1, TERM_VIRTUAL|TERM_DYNAMIC);
795     exprAnalyze(pSrc, pWC, idxNew1);
796     pNewExpr2 = sqlite3Expr(TK_LT, sqlite3ExprDup(pLeft), pStr2, 0);
797     idxNew2 = whereClauseInsert(pWC, pNewExpr2, TERM_VIRTUAL|TERM_DYNAMIC);
798     exprAnalyze(pSrc, pWC, idxNew2);
799     pTerm = &pWC->a[idxTerm];
800     if( isComplete ){
801       pWC->a[idxNew1].iParent = idxTerm;
802       pWC->a[idxNew2].iParent = idxTerm;
803       pTerm->nChild = 2;
804     }
805   }
806 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
807 
808 #ifndef SQLITE_OMIT_VIRTUALTABLE
809   /* Add a WO_MATCH auxiliary term to the constraint set if the
810   ** current expression is of the form:  column MATCH expr.
811   ** This information is used by the xBestIndex methods of
812   ** virtual tables.  The native query optimizer does not attempt
813   ** to do anything with MATCH functions.
814   */
815   if( isMatchOfColumn(pExpr) ){
816     int idxNew;
817     Expr *pRight, *pLeft;
818     WhereTerm *pNewTerm;
819     Bitmask prereqColumn, prereqExpr;
820 
821     pRight = pExpr->pList->a[0].pExpr;
822     pLeft = pExpr->pList->a[1].pExpr;
823     prereqExpr = exprTableUsage(pMaskSet, pRight);
824     prereqColumn = exprTableUsage(pMaskSet, pLeft);
825     if( (prereqExpr & prereqColumn)==0 ){
826       Expr *pNewExpr;
827       pNewExpr = sqlite3Expr(TK_MATCH, 0, sqlite3ExprDup(pRight), 0);
828       idxNew = whereClauseInsert(pWC, pNewExpr, TERM_VIRTUAL|TERM_DYNAMIC);
829       pNewTerm = &pWC->a[idxNew];
830       pNewTerm->prereqRight = prereqExpr;
831       pNewTerm->leftCursor = pLeft->iTable;
832       pNewTerm->leftColumn = pLeft->iColumn;
833       pNewTerm->eOperator = WO_MATCH;
834       pNewTerm->iParent = idxTerm;
835       pTerm = &pWC->a[idxTerm];
836       pTerm->nChild = 1;
837       pTerm->flags |= TERM_COPIED;
838       pNewTerm->prereqAll = pTerm->prereqAll;
839     }
840   }
841 #endif /* SQLITE_OMIT_VIRTUALTABLE */
842 }
843 
844 /*
845 ** Return TRUE if any of the expressions in pList->a[iFirst...] contain
846 ** a reference to any table other than the iBase table.
847 */
848 static int referencesOtherTables(
849   ExprList *pList,          /* Search expressions in ths list */
850   ExprMaskSet *pMaskSet,    /* Mapping from tables to bitmaps */
851   int iFirst,               /* Be searching with the iFirst-th expression */
852   int iBase                 /* Ignore references to this table */
853 ){
854   Bitmask allowed = ~getMask(pMaskSet, iBase);
855   while( iFirst<pList->nExpr ){
856     if( (exprTableUsage(pMaskSet, pList->a[iFirst++].pExpr)&allowed)!=0 ){
857       return 1;
858     }
859   }
860   return 0;
861 }
862 
863 
864 /*
865 ** This routine decides if pIdx can be used to satisfy the ORDER BY
866 ** clause.  If it can, it returns 1.  If pIdx cannot satisfy the
867 ** ORDER BY clause, this routine returns 0.
868 **
869 ** pOrderBy is an ORDER BY clause from a SELECT statement.  pTab is the
870 ** left-most table in the FROM clause of that same SELECT statement and
871 ** the table has a cursor number of "base".  pIdx is an index on pTab.
872 **
873 ** nEqCol is the number of columns of pIdx that are used as equality
874 ** constraints.  Any of these columns may be missing from the ORDER BY
875 ** clause and the match can still be a success.
876 **
877 ** All terms of the ORDER BY that match against the index must be either
878 ** ASC or DESC.  (Terms of the ORDER BY clause past the end of a UNIQUE
879 ** index do not need to satisfy this constraint.)  The *pbRev value is
880 ** set to 1 if the ORDER BY clause is all DESC and it is set to 0 if
881 ** the ORDER BY clause is all ASC.
882 */
883 static int isSortingIndex(
884   Parse *pParse,          /* Parsing context */
885   ExprMaskSet *pMaskSet,  /* Mapping from table indices to bitmaps */
886   Index *pIdx,            /* The index we are testing */
887   int base,               /* Cursor number for the table to be sorted */
888   ExprList *pOrderBy,     /* The ORDER BY clause */
889   int nEqCol,             /* Number of index columns with == constraints */
890   int *pbRev              /* Set to 1 if ORDER BY is DESC */
891 ){
892   int i, j;                       /* Loop counters */
893   int sortOrder = 0;              /* XOR of index and ORDER BY sort direction */
894   int nTerm;                      /* Number of ORDER BY terms */
895   struct ExprList_item *pTerm;    /* A term of the ORDER BY clause */
896   sqlite3 *db = pParse->db;
897 
898   assert( pOrderBy!=0 );
899   nTerm = pOrderBy->nExpr;
900   assert( nTerm>0 );
901 
902   /* Match terms of the ORDER BY clause against columns of
903   ** the index.
904   **
905   ** Note that indices have pIdx->nColumn regular columns plus
906   ** one additional column containing the rowid.  The rowid column
907   ** of the index is also allowed to match against the ORDER BY
908   ** clause.
909   */
910   for(i=j=0, pTerm=pOrderBy->a; j<nTerm && i<=pIdx->nColumn; i++){
911     Expr *pExpr;       /* The expression of the ORDER BY pTerm */
912     CollSeq *pColl;    /* The collating sequence of pExpr */
913     int termSortOrder; /* Sort order for this term */
914     int iColumn;       /* The i-th column of the index.  -1 for rowid */
915     int iSortOrder;    /* 1 for DESC, 0 for ASC on the i-th index term */
916     const char *zColl; /* Name of the collating sequence for i-th index term */
917 
918     pExpr = pTerm->pExpr;
919     if( pExpr->op!=TK_COLUMN || pExpr->iTable!=base ){
920       /* Can not use an index sort on anything that is not a column in the
921       ** left-most table of the FROM clause */
922       break;
923     }
924     pColl = sqlite3ExprCollSeq(pParse, pExpr);
925     if( !pColl ){
926       pColl = db->pDfltColl;
927     }
928     if( i<pIdx->nColumn ){
929       iColumn = pIdx->aiColumn[i];
930       if( iColumn==pIdx->pTable->iPKey ){
931         iColumn = -1;
932       }
933       iSortOrder = pIdx->aSortOrder[i];
934       zColl = pIdx->azColl[i];
935     }else{
936       iColumn = -1;
937       iSortOrder = 0;
938       zColl = pColl->zName;
939     }
940     if( pExpr->iColumn!=iColumn || sqlite3StrICmp(pColl->zName, zColl) ){
941       /* Term j of the ORDER BY clause does not match column i of the index */
942       if( i<nEqCol ){
943         /* If an index column that is constrained by == fails to match an
944         ** ORDER BY term, that is OK.  Just ignore that column of the index
945         */
946         continue;
947       }else{
948         /* If an index column fails to match and is not constrained by ==
949         ** then the index cannot satisfy the ORDER BY constraint.
950         */
951         return 0;
952       }
953     }
954     assert( pIdx->aSortOrder!=0 );
955     assert( pTerm->sortOrder==0 || pTerm->sortOrder==1 );
956     assert( iSortOrder==0 || iSortOrder==1 );
957     termSortOrder = iSortOrder ^ pTerm->sortOrder;
958     if( i>nEqCol ){
959       if( termSortOrder!=sortOrder ){
960         /* Indices can only be used if all ORDER BY terms past the
961         ** equality constraints are all either DESC or ASC. */
962         return 0;
963       }
964     }else{
965       sortOrder = termSortOrder;
966     }
967     j++;
968     pTerm++;
969     if( iColumn<0 && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
970       /* If the indexed column is the primary key and everything matches
971       ** so far and none of the ORDER BY terms to the right reference other
972       ** tables in the join, then we are assured that the index can be used
973       ** to sort because the primary key is unique and so none of the other
974       ** columns will make any difference
975       */
976       j = nTerm;
977     }
978   }
979 
980   *pbRev = sortOrder!=0;
981   if( j>=nTerm ){
982     /* All terms of the ORDER BY clause are covered by this index so
983     ** this index can be used for sorting. */
984     return 1;
985   }
986   if( pIdx->onError!=OE_None && i==pIdx->nColumn
987       && !referencesOtherTables(pOrderBy, pMaskSet, j, base) ){
988     /* All terms of this index match some prefix of the ORDER BY clause
989     ** and the index is UNIQUE and no terms on the tail of the ORDER BY
990     ** clause reference other tables in a join.  If this is all true then
991     ** the order by clause is superfluous. */
992     return 1;
993   }
994   return 0;
995 }
996 
997 /*
998 ** Check table to see if the ORDER BY clause in pOrderBy can be satisfied
999 ** by sorting in order of ROWID.  Return true if so and set *pbRev to be
1000 ** true for reverse ROWID and false for forward ROWID order.
1001 */
1002 static int sortableByRowid(
1003   int base,               /* Cursor number for table to be sorted */
1004   ExprList *pOrderBy,     /* The ORDER BY clause */
1005   ExprMaskSet *pMaskSet,  /* Mapping from tables to bitmaps */
1006   int *pbRev              /* Set to 1 if ORDER BY is DESC */
1007 ){
1008   Expr *p;
1009 
1010   assert( pOrderBy!=0 );
1011   assert( pOrderBy->nExpr>0 );
1012   p = pOrderBy->a[0].pExpr;
1013   if( p->op==TK_COLUMN && p->iTable==base && p->iColumn==-1
1014     && !referencesOtherTables(pOrderBy, pMaskSet, 1, base) ){
1015     *pbRev = pOrderBy->a[0].sortOrder;
1016     return 1;
1017   }
1018   return 0;
1019 }
1020 
1021 /*
1022 ** Prepare a crude estimate of the logarithm of the input value.
1023 ** The results need not be exact.  This is only used for estimating
1024 ** the total cost of performing operatings with O(logN) or O(NlogN)
1025 ** complexity.  Because N is just a guess, it is no great tragedy if
1026 ** logN is a little off.
1027 */
1028 static double estLog(double N){
1029   double logN = 1;
1030   double x = 10;
1031   while( N>x ){
1032     logN += 1;
1033     x *= 10;
1034   }
1035   return logN;
1036 }
1037 
1038 /*
1039 ** Two routines for printing the content of an sqlite3_index_info
1040 ** structure.  Used for testing and debugging only.  If neither
1041 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
1042 ** are no-ops.
1043 */
1044 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && \
1045         (defined(SQLITE_TEST) || defined(SQLITE_DEBUG))
1046 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){
1047   int i;
1048   if( !sqlite3_where_trace ) return;
1049   for(i=0; i<p->nConstraint; i++){
1050     sqlite3DebugPrintf("  constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
1051        i,
1052        p->aConstraint[i].iColumn,
1053        p->aConstraint[i].iTermOffset,
1054        p->aConstraint[i].op,
1055        p->aConstraint[i].usable);
1056   }
1057   for(i=0; i<p->nOrderBy; i++){
1058     sqlite3DebugPrintf("  orderby[%d]: col=%d desc=%d\n",
1059        i,
1060        p->aOrderBy[i].iColumn,
1061        p->aOrderBy[i].desc);
1062   }
1063 }
1064 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){
1065   int i;
1066   if( !sqlite3_where_trace ) return;
1067   for(i=0; i<p->nConstraint; i++){
1068     sqlite3DebugPrintf("  usage[%d]: argvIdx=%d omit=%d\n",
1069        i,
1070        p->aConstraintUsage[i].argvIndex,
1071        p->aConstraintUsage[i].omit);
1072   }
1073   sqlite3DebugPrintf("  idxNum=%d\n", p->idxNum);
1074   sqlite3DebugPrintf("  idxStr=%s\n", p->idxStr);
1075   sqlite3DebugPrintf("  orderByConsumed=%d\n", p->orderByConsumed);
1076   sqlite3DebugPrintf("  estimatedCost=%g\n", p->estimatedCost);
1077 }
1078 #else
1079 #define TRACE_IDX_INPUTS(A)
1080 #define TRACE_IDX_OUTPUTS(A)
1081 #endif
1082 
1083 #ifndef SQLITE_OMIT_VIRTUALTABLE
1084 /*
1085 ** Compute the best index for a virtual table.
1086 **
1087 ** The best index is computed by the xBestIndex method of the virtual
1088 ** table module.  This routine is really just a wrapper that sets up
1089 ** the sqlite3_index_info structure that is used to communicate with
1090 ** xBestIndex.
1091 **
1092 ** In a join, this routine might be called multiple times for the
1093 ** same virtual table.  The sqlite3_index_info structure is created
1094 ** and initialized on the first invocation and reused on all subsequent
1095 ** invocations.  The sqlite3_index_info structure is also used when
1096 ** code is generated to access the virtual table.  The whereInfoDelete()
1097 ** routine takes care of freeing the sqlite3_index_info structure after
1098 ** everybody has finished with it.
1099 */
1100 static double bestVirtualIndex(
1101   Parse *pParse,                 /* The parsing context */
1102   WhereClause *pWC,              /* The WHERE clause */
1103   struct SrcList_item *pSrc,     /* The FROM clause term to search */
1104   Bitmask notReady,              /* Mask of cursors that are not available */
1105   ExprList *pOrderBy,            /* The order by clause */
1106   int orderByUsable,             /* True if we can potential sort */
1107   sqlite3_index_info **ppIdxInfo /* Index information passed to xBestIndex */
1108 ){
1109   Table *pTab = pSrc->pTab;
1110   sqlite3_index_info *pIdxInfo;
1111   struct sqlite3_index_constraint *pIdxCons;
1112   struct sqlite3_index_orderby *pIdxOrderBy;
1113   struct sqlite3_index_constraint_usage *pUsage;
1114   WhereTerm *pTerm;
1115   int i, j;
1116   int nOrderBy;
1117   int rc;
1118 
1119   /* If the sqlite3_index_info structure has not been previously
1120   ** allocated and initialized for this virtual table, then allocate
1121   ** and initialize it now
1122   */
1123   pIdxInfo = *ppIdxInfo;
1124   if( pIdxInfo==0 ){
1125     WhereTerm *pTerm;
1126     int nTerm;
1127     TRACE(("Recomputing index info for %s...\n", pTab->zName));
1128 
1129     /* Count the number of possible WHERE clause constraints referring
1130     ** to this virtual table */
1131     for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1132       if( pTerm->leftCursor != pSrc->iCursor ) continue;
1133       if( pTerm->eOperator==WO_IN ) continue;
1134       nTerm++;
1135     }
1136 
1137     /* If the ORDER BY clause contains only columns in the current
1138     ** virtual table then allocate space for the aOrderBy part of
1139     ** the sqlite3_index_info structure.
1140     */
1141     nOrderBy = 0;
1142     if( pOrderBy ){
1143       for(i=0; i<pOrderBy->nExpr; i++){
1144         Expr *pExpr = pOrderBy->a[i].pExpr;
1145         if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break;
1146       }
1147       if( i==pOrderBy->nExpr ){
1148         nOrderBy = pOrderBy->nExpr;
1149       }
1150     }
1151 
1152     /* Allocate the sqlite3_index_info structure
1153     */
1154     pIdxInfo = sqliteMalloc( sizeof(*pIdxInfo)
1155                              + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm
1156                              + sizeof(*pIdxOrderBy)*nOrderBy );
1157     if( pIdxInfo==0 ){
1158       sqlite3ErrorMsg(pParse, "out of memory");
1159       return 0.0;
1160     }
1161     *ppIdxInfo = pIdxInfo;
1162 
1163     /* Initialize the structure.  The sqlite3_index_info structure contains
1164     ** many fields that are declared "const" to prevent xBestIndex from
1165     ** changing them.  We have to do some funky casting in order to
1166     ** initialize those fields.
1167     */
1168     pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1];
1169     pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm];
1170     pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy];
1171     *(int*)&pIdxInfo->nConstraint = nTerm;
1172     *(int*)&pIdxInfo->nOrderBy = nOrderBy;
1173     *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons;
1174     *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy;
1175     *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage =
1176                                                                      pUsage;
1177 
1178     for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1179       if( pTerm->leftCursor != pSrc->iCursor ) continue;
1180       if( pTerm->eOperator==WO_IN ) continue;
1181       pIdxCons[j].iColumn = pTerm->leftColumn;
1182       pIdxCons[j].iTermOffset = i;
1183       pIdxCons[j].op = pTerm->eOperator;
1184       /* The direct assignment in the previous line is possible only because
1185       ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical.  The
1186       ** following asserts verify this fact. */
1187       assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ );
1188       assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT );
1189       assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE );
1190       assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT );
1191       assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE );
1192       assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH );
1193       assert( pTerm->eOperator & (WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) );
1194       j++;
1195     }
1196     for(i=0; i<nOrderBy; i++){
1197       Expr *pExpr = pOrderBy->a[i].pExpr;
1198       pIdxOrderBy[i].iColumn = pExpr->iColumn;
1199       pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder;
1200     }
1201   }
1202 
1203   /* At this point, the sqlite3_index_info structure that pIdxInfo points
1204   ** to will have been initialized, either during the current invocation or
1205   ** during some prior invocation.  Now we just have to customize the
1206   ** details of pIdxInfo for the current invocation and pass it to
1207   ** xBestIndex.
1208   */
1209 
1210   /* The module name must be defined */
1211   assert( pTab->azModuleArg && pTab->azModuleArg[0] );
1212   if( pTab->pVtab==0 ){
1213     sqlite3ErrorMsg(pParse, "undefined module %s for table %s",
1214         pTab->azModuleArg[0], pTab->zName);
1215     return 0.0;
1216   }
1217 
1218   /* Set the aConstraint[].usable fields and initialize all
1219   ** output variables to zero.
1220   **
1221   ** aConstraint[].usable is true for constraints where the right-hand
1222   ** side contains only references to tables to the left of the current
1223   ** table.  In other words, if the constraint is of the form:
1224   **
1225   **           column = expr
1226   **
1227   ** and we are evaluating a join, then the constraint on column is
1228   ** only valid if all tables referenced in expr occur to the left
1229   ** of the table containing column.
1230   **
1231   ** The aConstraints[] array contains entries for all constraints
1232   ** on the current table.  That way we only have to compute it once
1233   ** even though we might try to pick the best index multiple times.
1234   ** For each attempt at picking an index, the order of tables in the
1235   ** join might be different so we have to recompute the usable flag
1236   ** each time.
1237   */
1238   pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint;
1239   pUsage = pIdxInfo->aConstraintUsage;
1240   for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){
1241     j = pIdxCons->iTermOffset;
1242     pTerm = &pWC->a[j];
1243     pIdxCons->usable =  (pTerm->prereqRight & notReady)==0;
1244   }
1245   memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint);
1246   if( pIdxInfo->needToFreeIdxStr ){
1247     sqlite3_free(pIdxInfo->idxStr);
1248   }
1249   pIdxInfo->idxStr = 0;
1250   pIdxInfo->idxNum = 0;
1251   pIdxInfo->needToFreeIdxStr = 0;
1252   pIdxInfo->orderByConsumed = 0;
1253   pIdxInfo->estimatedCost = SQLITE_BIG_DBL / 2.0;
1254   nOrderBy = pIdxInfo->nOrderBy;
1255   if( pIdxInfo->nOrderBy && !orderByUsable ){
1256     *(int*)&pIdxInfo->nOrderBy = 0;
1257   }
1258 
1259   sqlite3SafetyOff(pParse->db);
1260   TRACE(("xBestIndex for %s\n", pTab->zName));
1261   TRACE_IDX_INPUTS(pIdxInfo);
1262   rc = pTab->pVtab->pModule->xBestIndex(pTab->pVtab, pIdxInfo);
1263   TRACE_IDX_OUTPUTS(pIdxInfo);
1264   if( rc!=SQLITE_OK ){
1265     if( rc==SQLITE_NOMEM ){
1266       sqlite3FailedMalloc();
1267     }else {
1268       sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc));
1269     }
1270     sqlite3SafetyOn(pParse->db);
1271   }else{
1272     rc = sqlite3SafetyOn(pParse->db);
1273   }
1274   *(int*)&pIdxInfo->nOrderBy = nOrderBy;
1275   return pIdxInfo->estimatedCost;
1276 }
1277 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1278 
1279 /*
1280 ** Find the best index for accessing a particular table.  Return a pointer
1281 ** to the index, flags that describe how the index should be used, the
1282 ** number of equality constraints, and the "cost" for this index.
1283 **
1284 ** The lowest cost index wins.  The cost is an estimate of the amount of
1285 ** CPU and disk I/O need to process the request using the selected index.
1286 ** Factors that influence cost include:
1287 **
1288 **    *  The estimated number of rows that will be retrieved.  (The
1289 **       fewer the better.)
1290 **
1291 **    *  Whether or not sorting must occur.
1292 **
1293 **    *  Whether or not there must be separate lookups in the
1294 **       index and in the main table.
1295 **
1296 */
1297 static double bestIndex(
1298   Parse *pParse,              /* The parsing context */
1299   WhereClause *pWC,           /* The WHERE clause */
1300   struct SrcList_item *pSrc,  /* The FROM clause term to search */
1301   Bitmask notReady,           /* Mask of cursors that are not available */
1302   ExprList *pOrderBy,         /* The order by clause */
1303   Index **ppIndex,            /* Make *ppIndex point to the best index */
1304   int *pFlags,                /* Put flags describing this choice in *pFlags */
1305   int *pnEq                   /* Put the number of == or IN constraints here */
1306 ){
1307   WhereTerm *pTerm;
1308   Index *bestIdx = 0;         /* Index that gives the lowest cost */
1309   double lowestCost;          /* The cost of using bestIdx */
1310   int bestFlags = 0;          /* Flags associated with bestIdx */
1311   int bestNEq = 0;            /* Best value for nEq */
1312   int iCur = pSrc->iCursor;   /* The cursor of the table to be accessed */
1313   Index *pProbe;              /* An index we are evaluating */
1314   int rev;                    /* True to scan in reverse order */
1315   int flags;                  /* Flags associated with pProbe */
1316   int nEq;                    /* Number of == or IN constraints */
1317   int eqTermMask;             /* Mask of valid equality operators */
1318   double cost;                /* Cost of using pProbe */
1319 
1320   TRACE(("bestIndex: tbl=%s notReady=%x\n", pSrc->pTab->zName, notReady));
1321   lowestCost = SQLITE_BIG_DBL;
1322   pProbe = pSrc->pTab->pIndex;
1323 
1324   /* If the table has no indices and there are no terms in the where
1325   ** clause that refer to the ROWID, then we will never be able to do
1326   ** anything other than a full table scan on this table.  We might as
1327   ** well put it first in the join order.  That way, perhaps it can be
1328   ** referenced by other tables in the join.
1329   */
1330   if( pProbe==0 &&
1331      findTerm(pWC, iCur, -1, 0, WO_EQ|WO_IN|WO_LT|WO_LE|WO_GT|WO_GE,0)==0 &&
1332      (pOrderBy==0 || !sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev)) ){
1333     *pFlags = 0;
1334     *ppIndex = 0;
1335     *pnEq = 0;
1336     return 0.0;
1337   }
1338 
1339   /* Check for a rowid=EXPR or rowid IN (...) constraints
1340   */
1341   pTerm = findTerm(pWC, iCur, -1, notReady, WO_EQ|WO_IN, 0);
1342   if( pTerm ){
1343     Expr *pExpr;
1344     *ppIndex = 0;
1345     bestFlags = WHERE_ROWID_EQ;
1346     if( pTerm->eOperator & WO_EQ ){
1347       /* Rowid== is always the best pick.  Look no further.  Because only
1348       ** a single row is generated, output is always in sorted order */
1349       *pFlags = WHERE_ROWID_EQ | WHERE_UNIQUE;
1350       *pnEq = 1;
1351       TRACE(("... best is rowid\n"));
1352       return 0.0;
1353     }else if( (pExpr = pTerm->pExpr)->pList!=0 ){
1354       /* Rowid IN (LIST): cost is NlogN where N is the number of list
1355       ** elements.  */
1356       lowestCost = pExpr->pList->nExpr;
1357       lowestCost *= estLog(lowestCost);
1358     }else{
1359       /* Rowid IN (SELECT): cost is NlogN where N is the number of rows
1360       ** in the result of the inner select.  We have no way to estimate
1361       ** that value so make a wild guess. */
1362       lowestCost = 200;
1363     }
1364     TRACE(("... rowid IN cost: %.9g\n", lowestCost));
1365   }
1366 
1367   /* Estimate the cost of a table scan.  If we do not know how many
1368   ** entries are in the table, use 1 million as a guess.
1369   */
1370   cost = pProbe ? pProbe->aiRowEst[0] : 1000000;
1371   TRACE(("... table scan base cost: %.9g\n", cost));
1372   flags = WHERE_ROWID_RANGE;
1373 
1374   /* Check for constraints on a range of rowids in a table scan.
1375   */
1376   pTerm = findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE|WO_GT|WO_GE, 0);
1377   if( pTerm ){
1378     if( findTerm(pWC, iCur, -1, notReady, WO_LT|WO_LE, 0) ){
1379       flags |= WHERE_TOP_LIMIT;
1380       cost /= 3;  /* Guess that rowid<EXPR eliminates two-thirds or rows */
1381     }
1382     if( findTerm(pWC, iCur, -1, notReady, WO_GT|WO_GE, 0) ){
1383       flags |= WHERE_BTM_LIMIT;
1384       cost /= 3;  /* Guess that rowid>EXPR eliminates two-thirds of rows */
1385     }
1386     TRACE(("... rowid range reduces cost to %.9g\n", cost));
1387   }else{
1388     flags = 0;
1389   }
1390 
1391   /* If the table scan does not satisfy the ORDER BY clause, increase
1392   ** the cost by NlogN to cover the expense of sorting. */
1393   if( pOrderBy ){
1394     if( sortableByRowid(iCur, pOrderBy, pWC->pMaskSet, &rev) ){
1395       flags |= WHERE_ORDERBY|WHERE_ROWID_RANGE;
1396       if( rev ){
1397         flags |= WHERE_REVERSE;
1398       }
1399     }else{
1400       cost += cost*estLog(cost);
1401       TRACE(("... sorting increases cost to %.9g\n", cost));
1402     }
1403   }
1404   if( cost<lowestCost ){
1405     lowestCost = cost;
1406     bestFlags = flags;
1407   }
1408 
1409   /* If the pSrc table is the right table of a LEFT JOIN then we may not
1410   ** use an index to satisfy IS NULL constraints on that table.  This is
1411   ** because columns might end up being NULL if the table does not match -
1412   ** a circumstance which the index cannot help us discover.  Ticket #2177.
1413   */
1414   if( (pSrc->jointype & JT_LEFT)!=0 ){
1415     eqTermMask = WO_EQ|WO_IN;
1416   }else{
1417     eqTermMask = WO_EQ|WO_IN|WO_ISNULL;
1418   }
1419 
1420   /* Look at each index.
1421   */
1422   for(; pProbe; pProbe=pProbe->pNext){
1423     int i;                       /* Loop counter */
1424     double inMultiplier = 1;
1425 
1426     TRACE(("... index %s:\n", pProbe->zName));
1427 
1428     /* Count the number of columns in the index that are satisfied
1429     ** by x=EXPR constraints or x IN (...) constraints.
1430     */
1431     flags = 0;
1432     for(i=0; i<pProbe->nColumn; i++){
1433       int j = pProbe->aiColumn[i];
1434       pTerm = findTerm(pWC, iCur, j, notReady, eqTermMask, pProbe);
1435       if( pTerm==0 ) break;
1436       flags |= WHERE_COLUMN_EQ;
1437       if( pTerm->eOperator & WO_IN ){
1438         Expr *pExpr = pTerm->pExpr;
1439         flags |= WHERE_COLUMN_IN;
1440         if( pExpr->pSelect!=0 ){
1441           inMultiplier *= 25;
1442         }else if( pExpr->pList!=0 ){
1443           inMultiplier *= pExpr->pList->nExpr + 1;
1444         }
1445       }
1446     }
1447     cost = pProbe->aiRowEst[i] * inMultiplier * estLog(inMultiplier);
1448     nEq = i;
1449     if( pProbe->onError!=OE_None && (flags & WHERE_COLUMN_IN)==0
1450          && nEq==pProbe->nColumn ){
1451       flags |= WHERE_UNIQUE;
1452     }
1453     TRACE(("...... nEq=%d inMult=%.9g cost=%.9g\n", nEq, inMultiplier, cost));
1454 
1455     /* Look for range constraints
1456     */
1457     if( nEq<pProbe->nColumn ){
1458       int j = pProbe->aiColumn[nEq];
1459       pTerm = findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE|WO_GT|WO_GE, pProbe);
1460       if( pTerm ){
1461         flags |= WHERE_COLUMN_RANGE;
1462         if( findTerm(pWC, iCur, j, notReady, WO_LT|WO_LE, pProbe) ){
1463           flags |= WHERE_TOP_LIMIT;
1464           cost /= 3;
1465         }
1466         if( findTerm(pWC, iCur, j, notReady, WO_GT|WO_GE, pProbe) ){
1467           flags |= WHERE_BTM_LIMIT;
1468           cost /= 3;
1469         }
1470         TRACE(("...... range reduces cost to %.9g\n", cost));
1471       }
1472     }
1473 
1474     /* Add the additional cost of sorting if that is a factor.
1475     */
1476     if( pOrderBy ){
1477       if( (flags & WHERE_COLUMN_IN)==0 &&
1478            isSortingIndex(pParse,pWC->pMaskSet,pProbe,iCur,pOrderBy,nEq,&rev) ){
1479         if( flags==0 ){
1480           flags = WHERE_COLUMN_RANGE;
1481         }
1482         flags |= WHERE_ORDERBY;
1483         if( rev ){
1484           flags |= WHERE_REVERSE;
1485         }
1486       }else{
1487         cost += cost*estLog(cost);
1488         TRACE(("...... orderby increases cost to %.9g\n", cost));
1489       }
1490     }
1491 
1492     /* Check to see if we can get away with using just the index without
1493     ** ever reading the table.  If that is the case, then halve the
1494     ** cost of this index.
1495     */
1496     if( flags && pSrc->colUsed < (((Bitmask)1)<<(BMS-1)) ){
1497       Bitmask m = pSrc->colUsed;
1498       int j;
1499       for(j=0; j<pProbe->nColumn; j++){
1500         int x = pProbe->aiColumn[j];
1501         if( x<BMS-1 ){
1502           m &= ~(((Bitmask)1)<<x);
1503         }
1504       }
1505       if( m==0 ){
1506         flags |= WHERE_IDX_ONLY;
1507         cost /= 2;
1508         TRACE(("...... idx-only reduces cost to %.9g\n", cost));
1509       }
1510     }
1511 
1512     /* If this index has achieved the lowest cost so far, then use it.
1513     */
1514     if( cost < lowestCost ){
1515       bestIdx = pProbe;
1516       lowestCost = cost;
1517       assert( flags!=0 );
1518       bestFlags = flags;
1519       bestNEq = nEq;
1520     }
1521   }
1522 
1523   /* Report the best result
1524   */
1525   *ppIndex = bestIdx;
1526   TRACE(("best index is %s, cost=%.9g, flags=%x, nEq=%d\n",
1527         bestIdx ? bestIdx->zName : "(none)", lowestCost, bestFlags, bestNEq));
1528   *pFlags = bestFlags | eqTermMask;
1529   *pnEq = bestNEq;
1530   return lowestCost;
1531 }
1532 
1533 
1534 /*
1535 ** Disable a term in the WHERE clause.  Except, do not disable the term
1536 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
1537 ** or USING clause of that join.
1538 **
1539 ** Consider the term t2.z='ok' in the following queries:
1540 **
1541 **   (1)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
1542 **   (2)  SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
1543 **   (3)  SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
1544 **
1545 ** The t2.z='ok' is disabled in the in (2) because it originates
1546 ** in the ON clause.  The term is disabled in (3) because it is not part
1547 ** of a LEFT OUTER JOIN.  In (1), the term is not disabled.
1548 **
1549 ** Disabling a term causes that term to not be tested in the inner loop
1550 ** of the join.  Disabling is an optimization.  When terms are satisfied
1551 ** by indices, we disable them to prevent redundant tests in the inner
1552 ** loop.  We would get the correct results if nothing were ever disabled,
1553 ** but joins might run a little slower.  The trick is to disable as much
1554 ** as we can without disabling too much.  If we disabled in (1), we'd get
1555 ** the wrong answer.  See ticket #813.
1556 */
1557 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
1558   if( pTerm
1559       && (pTerm->flags & TERM_CODED)==0
1560       && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
1561   ){
1562     pTerm->flags |= TERM_CODED;
1563     if( pTerm->iParent>=0 ){
1564       WhereTerm *pOther = &pTerm->pWC->a[pTerm->iParent];
1565       if( (--pOther->nChild)==0 ){
1566         disableTerm(pLevel, pOther);
1567       }
1568     }
1569   }
1570 }
1571 
1572 /*
1573 ** Generate code that builds a probe for an index.
1574 **
1575 ** There should be nColumn values on the stack.  The index
1576 ** to be probed is pIdx.  Pop the values from the stack and
1577 ** replace them all with a single record that is the index
1578 ** problem.
1579 */
1580 static void buildIndexProbe(
1581   Vdbe *v,        /* Generate code into this VM */
1582   int nColumn,    /* The number of columns to check for NULL */
1583   Index *pIdx     /* Index that we will be searching */
1584 ){
1585   sqlite3VdbeAddOp(v, OP_MakeRecord, nColumn, 0);
1586   sqlite3IndexAffinityStr(v, pIdx);
1587 }
1588 
1589 
1590 /*
1591 ** Generate code for a single equality term of the WHERE clause.  An equality
1592 ** term can be either X=expr or X IN (...).   pTerm is the term to be
1593 ** coded.
1594 **
1595 ** The current value for the constraint is left on the top of the stack.
1596 **
1597 ** For a constraint of the form X=expr, the expression is evaluated and its
1598 ** result is left on the stack.  For constraints of the form X IN (...)
1599 ** this routine sets up a loop that will iterate over all values of X.
1600 */
1601 static void codeEqualityTerm(
1602   Parse *pParse,      /* The parsing context */
1603   WhereTerm *pTerm,   /* The term of the WHERE clause to be coded */
1604   int brk,            /* Jump here to abandon the loop */
1605   WhereLevel *pLevel  /* When level of the FROM clause we are working on */
1606 ){
1607   Expr *pX = pTerm->pExpr;
1608   Vdbe *v = pParse->pVdbe;
1609   if( pX->op==TK_EQ ){
1610     sqlite3ExprCode(pParse, pX->pRight);
1611   }else if( pX->op==TK_ISNULL ){
1612     sqlite3VdbeAddOp(v, OP_Null, 0, 0);
1613 #ifndef SQLITE_OMIT_SUBQUERY
1614   }else{
1615     int iTab;
1616     int *aIn;
1617 
1618     assert( pX->op==TK_IN );
1619     sqlite3CodeSubselect(pParse, pX);
1620     iTab = pX->iTable;
1621     sqlite3VdbeAddOp(v, OP_Rewind, iTab, 0);
1622     VdbeComment((v, "# %.*s", pX->span.n, pX->span.z));
1623     pLevel->nIn++;
1624     sqliteReallocOrFree((void**)&pLevel->aInLoop,
1625                                  sizeof(pLevel->aInLoop[0])*2*pLevel->nIn);
1626     aIn = pLevel->aInLoop;
1627     if( aIn ){
1628       aIn += pLevel->nIn*2 - 2;
1629       aIn[0] = iTab;
1630       aIn[1] = sqlite3VdbeAddOp(v, OP_Column, iTab, 0);
1631     }else{
1632       pLevel->nIn = 0;
1633     }
1634 #endif
1635   }
1636   disableTerm(pLevel, pTerm);
1637 }
1638 
1639 /*
1640 ** Generate code that will evaluate all == and IN constraints for an
1641 ** index.  The values for all constraints are left on the stack.
1642 **
1643 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
1644 ** Suppose the WHERE clause is this:  a==5 AND b IN (1,2,3) AND c>5 AND c<10
1645 ** The index has as many as three equality constraints, but in this
1646 ** example, the third "c" value is an inequality.  So only two
1647 ** constraints are coded.  This routine will generate code to evaluate
1648 ** a==5 and b IN (1,2,3).  The current values for a and b will be left
1649 ** on the stack - a is the deepest and b the shallowest.
1650 **
1651 ** In the example above nEq==2.  But this subroutine works for any value
1652 ** of nEq including 0.  If nEq==0, this routine is nearly a no-op.
1653 ** The only thing it does is allocate the pLevel->iMem memory cell.
1654 **
1655 ** This routine always allocates at least one memory cell and puts
1656 ** the address of that memory cell in pLevel->iMem.  The code that
1657 ** calls this routine will use pLevel->iMem to store the termination
1658 ** key value of the loop.  If one or more IN operators appear, then
1659 ** this routine allocates an additional nEq memory cells for internal
1660 ** use.
1661 */
1662 static void codeAllEqualityTerms(
1663   Parse *pParse,        /* Parsing context */
1664   WhereLevel *pLevel,   /* Which nested loop of the FROM we are coding */
1665   WhereClause *pWC,     /* The WHERE clause */
1666   Bitmask notReady,     /* Which parts of FROM have not yet been coded */
1667   int brk               /* Jump here to end the loop */
1668 ){
1669   int nEq = pLevel->nEq;        /* The number of == or IN constraints to code */
1670   int termsInMem = 0;           /* If true, store value in mem[] cells */
1671   Vdbe *v = pParse->pVdbe;      /* The virtual machine under construction */
1672   Index *pIdx = pLevel->pIdx;   /* The index being used for this loop */
1673   int iCur = pLevel->iTabCur;   /* The cursor of the table */
1674   WhereTerm *pTerm;             /* A single constraint term */
1675   int j;                        /* Loop counter */
1676 
1677   /* Figure out how many memory cells we will need then allocate them.
1678   ** We always need at least one used to store the loop terminator
1679   ** value.  If there are IN operators we'll need one for each == or
1680   ** IN constraint.
1681   */
1682   pLevel->iMem = pParse->nMem++;
1683   if( pLevel->flags & WHERE_COLUMN_IN ){
1684     pParse->nMem += pLevel->nEq;
1685     termsInMem = 1;
1686   }
1687 
1688   /* Evaluate the equality constraints
1689   */
1690   assert( pIdx->nColumn>=nEq );
1691   for(j=0; j<nEq; j++){
1692     int k = pIdx->aiColumn[j];
1693     pTerm = findTerm(pWC, iCur, k, notReady, pLevel->flags, pIdx);
1694     if( pTerm==0 ) break;
1695     assert( (pTerm->flags & TERM_CODED)==0 );
1696     codeEqualityTerm(pParse, pTerm, brk, pLevel);
1697     if( (pTerm->eOperator & WO_ISNULL)==0 ){
1698       sqlite3VdbeAddOp(v, OP_IsNull, termsInMem ? -1 : -(j+1), brk);
1699     }
1700     if( termsInMem ){
1701       sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem+j+1, 1);
1702     }
1703   }
1704 
1705   /* Make sure all the constraint values are on the top of the stack
1706   */
1707   if( termsInMem ){
1708     for(j=0; j<nEq; j++){
1709       sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem+j+1, 0);
1710     }
1711   }
1712 }
1713 
1714 #if defined(SQLITE_TEST)
1715 /*
1716 ** The following variable holds a text description of query plan generated
1717 ** by the most recent call to sqlite3WhereBegin().  Each call to WhereBegin
1718 ** overwrites the previous.  This information is used for testing and
1719 ** analysis only.
1720 */
1721 char sqlite3_query_plan[BMS*2*40];  /* Text of the join */
1722 static int nQPlan = 0;              /* Next free slow in _query_plan[] */
1723 
1724 #endif /* SQLITE_TEST */
1725 
1726 
1727 /*
1728 ** Free a WhereInfo structure
1729 */
1730 static void whereInfoFree(WhereInfo *pWInfo){
1731   if( pWInfo ){
1732     int i;
1733     for(i=0; i<pWInfo->nLevel; i++){
1734       sqlite3_index_info *pInfo = pWInfo->a[i].pIdxInfo;
1735       if( pInfo ){
1736         if( pInfo->needToFreeIdxStr ){
1737           sqlite3_free(pInfo->idxStr);
1738         }
1739         sqliteFree(pInfo);
1740       }
1741     }
1742     sqliteFree(pWInfo);
1743   }
1744 }
1745 
1746 
1747 /*
1748 ** Generate the beginning of the loop used for WHERE clause processing.
1749 ** The return value is a pointer to an opaque structure that contains
1750 ** information needed to terminate the loop.  Later, the calling routine
1751 ** should invoke sqlite3WhereEnd() with the return value of this function
1752 ** in order to complete the WHERE clause processing.
1753 **
1754 ** If an error occurs, this routine returns NULL.
1755 **
1756 ** The basic idea is to do a nested loop, one loop for each table in
1757 ** the FROM clause of a select.  (INSERT and UPDATE statements are the
1758 ** same as a SELECT with only a single table in the FROM clause.)  For
1759 ** example, if the SQL is this:
1760 **
1761 **       SELECT * FROM t1, t2, t3 WHERE ...;
1762 **
1763 ** Then the code generated is conceptually like the following:
1764 **
1765 **      foreach row1 in t1 do       \    Code generated
1766 **        foreach row2 in t2 do      |-- by sqlite3WhereBegin()
1767 **          foreach row3 in t3 do   /
1768 **            ...
1769 **          end                     \    Code generated
1770 **        end                        |-- by sqlite3WhereEnd()
1771 **      end                         /
1772 **
1773 ** Note that the loops might not be nested in the order in which they
1774 ** appear in the FROM clause if a different order is better able to make
1775 ** use of indices.  Note also that when the IN operator appears in
1776 ** the WHERE clause, it might result in additional nested loops for
1777 ** scanning through all values on the right-hand side of the IN.
1778 **
1779 ** There are Btree cursors associated with each table.  t1 uses cursor
1780 ** number pTabList->a[0].iCursor.  t2 uses the cursor pTabList->a[1].iCursor.
1781 ** And so forth.  This routine generates code to open those VDBE cursors
1782 ** and sqlite3WhereEnd() generates the code to close them.
1783 **
1784 ** The code that sqlite3WhereBegin() generates leaves the cursors named
1785 ** in pTabList pointing at their appropriate entries.  The [...] code
1786 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
1787 ** data from the various tables of the loop.
1788 **
1789 ** If the WHERE clause is empty, the foreach loops must each scan their
1790 ** entire tables.  Thus a three-way join is an O(N^3) operation.  But if
1791 ** the tables have indices and there are terms in the WHERE clause that
1792 ** refer to those indices, a complete table scan can be avoided and the
1793 ** code will run much faster.  Most of the work of this routine is checking
1794 ** to see if there are indices that can be used to speed up the loop.
1795 **
1796 ** Terms of the WHERE clause are also used to limit which rows actually
1797 ** make it to the "..." in the middle of the loop.  After each "foreach",
1798 ** terms of the WHERE clause that use only terms in that loop and outer
1799 ** loops are evaluated and if false a jump is made around all subsequent
1800 ** inner loops (or around the "..." if the test occurs within the inner-
1801 ** most loop)
1802 **
1803 ** OUTER JOINS
1804 **
1805 ** An outer join of tables t1 and t2 is conceptally coded as follows:
1806 **
1807 **    foreach row1 in t1 do
1808 **      flag = 0
1809 **      foreach row2 in t2 do
1810 **        start:
1811 **          ...
1812 **          flag = 1
1813 **      end
1814 **      if flag==0 then
1815 **        move the row2 cursor to a null row
1816 **        goto start
1817 **      fi
1818 **    end
1819 **
1820 ** ORDER BY CLAUSE PROCESSING
1821 **
1822 ** *ppOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
1823 ** if there is one.  If there is no ORDER BY clause or if this routine
1824 ** is called from an UPDATE or DELETE statement, then ppOrderBy is NULL.
1825 **
1826 ** If an index can be used so that the natural output order of the table
1827 ** scan is correct for the ORDER BY clause, then that index is used and
1828 ** *ppOrderBy is set to NULL.  This is an optimization that prevents an
1829 ** unnecessary sort of the result set if an index appropriate for the
1830 ** ORDER BY clause already exists.
1831 **
1832 ** If the where clause loops cannot be arranged to provide the correct
1833 ** output order, then the *ppOrderBy is unchanged.
1834 */
1835 WhereInfo *sqlite3WhereBegin(
1836   Parse *pParse,        /* The parser context */
1837   SrcList *pTabList,    /* A list of all tables to be scanned */
1838   Expr *pWhere,         /* The WHERE clause */
1839   ExprList **ppOrderBy  /* An ORDER BY clause, or NULL */
1840 ){
1841   int i;                     /* Loop counter */
1842   WhereInfo *pWInfo;         /* Will become the return value of this function */
1843   Vdbe *v = pParse->pVdbe;   /* The virtual database engine */
1844   int brk, cont = 0;         /* Addresses used during code generation */
1845   Bitmask notReady;          /* Cursors that are not yet positioned */
1846   WhereTerm *pTerm;          /* A single term in the WHERE clause */
1847   ExprMaskSet maskSet;       /* The expression mask set */
1848   WhereClause wc;            /* The WHERE clause is divided into these terms */
1849   struct SrcList_item *pTabItem;  /* A single entry from pTabList */
1850   WhereLevel *pLevel;             /* A single level in the pWInfo list */
1851   int iFrom;                      /* First unused FROM clause element */
1852   int andFlags;              /* AND-ed combination of all wc.a[].flags */
1853 
1854   /* The number of tables in the FROM clause is limited by the number of
1855   ** bits in a Bitmask
1856   */
1857   if( pTabList->nSrc>BMS ){
1858     sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS);
1859     return 0;
1860   }
1861 
1862   /* Split the WHERE clause into separate subexpressions where each
1863   ** subexpression is separated by an AND operator.
1864   */
1865   initMaskSet(&maskSet);
1866   whereClauseInit(&wc, pParse, &maskSet);
1867   whereSplit(&wc, pWhere, TK_AND);
1868 
1869   /* Allocate and initialize the WhereInfo structure that will become the
1870   ** return value.
1871   */
1872   pWInfo = sqliteMalloc( sizeof(WhereInfo) + pTabList->nSrc*sizeof(WhereLevel));
1873   if( sqlite3MallocFailed() ){
1874     goto whereBeginNoMem;
1875   }
1876   pWInfo->nLevel = pTabList->nSrc;
1877   pWInfo->pParse = pParse;
1878   pWInfo->pTabList = pTabList;
1879   pWInfo->iBreak = sqlite3VdbeMakeLabel(v);
1880 
1881   /* Special case: a WHERE clause that is constant.  Evaluate the
1882   ** expression and either jump over all of the code or fall thru.
1883   */
1884   if( pWhere && (pTabList->nSrc==0 || sqlite3ExprIsConstant(pWhere)) ){
1885     sqlite3ExprIfFalse(pParse, pWhere, pWInfo->iBreak, 1);
1886     pWhere = 0;
1887   }
1888 
1889   /* Analyze all of the subexpressions.  Note that exprAnalyze() might
1890   ** add new virtual terms onto the end of the WHERE clause.  We do not
1891   ** want to analyze these virtual terms, so start analyzing at the end
1892   ** and work forward so that the added virtual terms are never processed.
1893   */
1894   for(i=0; i<pTabList->nSrc; i++){
1895     createMask(&maskSet, pTabList->a[i].iCursor);
1896   }
1897   exprAnalyzeAll(pTabList, &wc);
1898   if( sqlite3MallocFailed() ){
1899     goto whereBeginNoMem;
1900   }
1901 
1902   /* Chose the best index to use for each table in the FROM clause.
1903   **
1904   ** This loop fills in the following fields:
1905   **
1906   **   pWInfo->a[].pIdx      The index to use for this level of the loop.
1907   **   pWInfo->a[].flags     WHERE_xxx flags associated with pIdx
1908   **   pWInfo->a[].nEq       The number of == and IN constraints
1909   **   pWInfo->a[].iFrom     When term of the FROM clause is being coded
1910   **   pWInfo->a[].iTabCur   The VDBE cursor for the database table
1911   **   pWInfo->a[].iIdxCur   The VDBE cursor for the index
1912   **
1913   ** This loop also figures out the nesting order of tables in the FROM
1914   ** clause.
1915   */
1916   notReady = ~(Bitmask)0;
1917   pTabItem = pTabList->a;
1918   pLevel = pWInfo->a;
1919   andFlags = ~0;
1920   TRACE(("*** Optimizer Start ***\n"));
1921   for(i=iFrom=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
1922     Index *pIdx;                /* Index for FROM table at pTabItem */
1923     int flags;                  /* Flags asssociated with pIdx */
1924     int nEq;                    /* Number of == or IN constraints */
1925     double cost;                /* The cost for pIdx */
1926     int j;                      /* For looping over FROM tables */
1927     Index *pBest = 0;           /* The best index seen so far */
1928     int bestFlags = 0;          /* Flags associated with pBest */
1929     int bestNEq = 0;            /* nEq associated with pBest */
1930     double lowestCost;          /* Cost of the pBest */
1931     int bestJ = 0;              /* The value of j */
1932     Bitmask m;                  /* Bitmask value for j or bestJ */
1933     int once = 0;               /* True when first table is seen */
1934     sqlite3_index_info *pIndex; /* Current virtual index */
1935 
1936     lowestCost = SQLITE_BIG_DBL;
1937     for(j=iFrom, pTabItem=&pTabList->a[j]; j<pTabList->nSrc; j++, pTabItem++){
1938       int doNotReorder;  /* True if this table should not be reordered */
1939 
1940       doNotReorder =  (pTabItem->jointype & (JT_LEFT|JT_CROSS))!=0;
1941       if( once && doNotReorder ) break;
1942       m = getMask(&maskSet, pTabItem->iCursor);
1943       if( (m & notReady)==0 ){
1944         if( j==iFrom ) iFrom++;
1945         continue;
1946       }
1947       assert( pTabItem->pTab );
1948 #ifndef SQLITE_OMIT_VIRTUALTABLE
1949       if( IsVirtual(pTabItem->pTab) ){
1950         sqlite3_index_info **ppIdxInfo = &pWInfo->a[j].pIdxInfo;
1951         cost = bestVirtualIndex(pParse, &wc, pTabItem, notReady,
1952                                 ppOrderBy ? *ppOrderBy : 0, i==0,
1953                                 ppIdxInfo);
1954         flags = WHERE_VIRTUALTABLE;
1955         pIndex = *ppIdxInfo;
1956         if( pIndex && pIndex->orderByConsumed ){
1957           flags = WHERE_VIRTUALTABLE | WHERE_ORDERBY;
1958         }
1959         pIdx = 0;
1960         nEq = 0;
1961       }else
1962 #endif
1963       {
1964         cost = bestIndex(pParse, &wc, pTabItem, notReady,
1965                          (i==0 && ppOrderBy) ? *ppOrderBy : 0,
1966                          &pIdx, &flags, &nEq);
1967         pIndex = 0;
1968       }
1969       if( cost<lowestCost ){
1970         once = 1;
1971         lowestCost = cost;
1972         pBest = pIdx;
1973         bestFlags = flags;
1974         bestNEq = nEq;
1975         bestJ = j;
1976         pLevel->pBestIdx = pIndex;
1977       }
1978       if( doNotReorder ) break;
1979     }
1980     TRACE(("*** Optimizer choose table %d for loop %d\n", bestJ,
1981            pLevel-pWInfo->a));
1982     if( (bestFlags & WHERE_ORDERBY)!=0 ){
1983       *ppOrderBy = 0;
1984     }
1985     andFlags &= bestFlags;
1986     pLevel->flags = bestFlags;
1987     pLevel->pIdx = pBest;
1988     pLevel->nEq = bestNEq;
1989     pLevel->aInLoop = 0;
1990     pLevel->nIn = 0;
1991     if( pBest ){
1992       pLevel->iIdxCur = pParse->nTab++;
1993     }else{
1994       pLevel->iIdxCur = -1;
1995     }
1996     notReady &= ~getMask(&maskSet, pTabList->a[bestJ].iCursor);
1997     pLevel->iFrom = bestJ;
1998   }
1999   TRACE(("*** Optimizer Finished ***\n"));
2000 
2001   /* If the total query only selects a single row, then the ORDER BY
2002   ** clause is irrelevant.
2003   */
2004   if( (andFlags & WHERE_UNIQUE)!=0 && ppOrderBy ){
2005     *ppOrderBy = 0;
2006   }
2007 
2008   /* Open all tables in the pTabList and any indices selected for
2009   ** searching those tables.
2010   */
2011   sqlite3CodeVerifySchema(pParse, -1); /* Insert the cookie verifier Goto */
2012   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
2013     Table *pTab;     /* Table to open */
2014     Index *pIx;      /* Index used to access pTab (if any) */
2015     int iDb;         /* Index of database containing table/index */
2016     int iIdxCur = pLevel->iIdxCur;
2017 
2018 #ifndef SQLITE_OMIT_EXPLAIN
2019     if( pParse->explain==2 ){
2020       char *zMsg;
2021       struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
2022       zMsg = sqlite3MPrintf("TABLE %s", pItem->zName);
2023       if( pItem->zAlias ){
2024         zMsg = sqlite3MPrintf("%z AS %s", zMsg, pItem->zAlias);
2025       }
2026       if( (pIx = pLevel->pIdx)!=0 ){
2027         zMsg = sqlite3MPrintf("%z WITH INDEX %s", zMsg, pIx->zName);
2028       }else if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
2029         zMsg = sqlite3MPrintf("%z USING PRIMARY KEY", zMsg);
2030       }
2031 #ifndef SQLITE_OMIT_VIRTUALTABLE
2032       else if( pLevel->pBestIdx ){
2033         sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
2034         zMsg = sqlite3MPrintf("%z VIRTUAL TABLE INDEX %d:%s", zMsg,
2035                     pBestIdx->idxNum, pBestIdx->idxStr);
2036       }
2037 #endif
2038       if( pLevel->flags & WHERE_ORDERBY ){
2039         zMsg = sqlite3MPrintf("%z ORDER BY", zMsg);
2040       }
2041       sqlite3VdbeOp3(v, OP_Explain, i, pLevel->iFrom, zMsg, P3_DYNAMIC);
2042     }
2043 #endif /* SQLITE_OMIT_EXPLAIN */
2044     pTabItem = &pTabList->a[pLevel->iFrom];
2045     pTab = pTabItem->pTab;
2046     iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2047     if( pTab->isEphem || pTab->pSelect ) continue;
2048 #ifndef SQLITE_OMIT_VIRTUALTABLE
2049     if( pLevel->pBestIdx ){
2050       int iCur = pTabItem->iCursor;
2051       sqlite3VdbeOp3(v, OP_VOpen, iCur, 0, (const char*)pTab->pVtab, P3_VTAB);
2052     }else
2053 #endif
2054     if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
2055       sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, OP_OpenRead);
2056       if( pTab->nCol<(sizeof(Bitmask)*8) ){
2057         Bitmask b = pTabItem->colUsed;
2058         int n = 0;
2059         for(; b; b=b>>1, n++){}
2060         sqlite3VdbeChangeP2(v, sqlite3VdbeCurrentAddr(v)-1, n);
2061         assert( n<=pTab->nCol );
2062       }
2063     }else{
2064       sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
2065     }
2066     pLevel->iTabCur = pTabItem->iCursor;
2067     if( (pIx = pLevel->pIdx)!=0 ){
2068       KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIx);
2069       assert( pIx->pSchema==pTab->pSchema );
2070       sqlite3VdbeAddOp(v, OP_Integer, iDb, 0);
2071       VdbeComment((v, "# %s", pIx->zName));
2072       sqlite3VdbeOp3(v, OP_OpenRead, iIdxCur, pIx->tnum,
2073                      (char*)pKey, P3_KEYINFO_HANDOFF);
2074     }
2075     if( (pLevel->flags & (WHERE_IDX_ONLY|WHERE_COLUMN_RANGE))!=0 ){
2076       /* Only call OP_SetNumColumns on the index if we might later use
2077       ** OP_Column on the index. */
2078       sqlite3VdbeAddOp(v, OP_SetNumColumns, iIdxCur, pIx->nColumn+1);
2079     }
2080     sqlite3CodeVerifySchema(pParse, iDb);
2081   }
2082   pWInfo->iTop = sqlite3VdbeCurrentAddr(v);
2083 
2084   /* Generate the code to do the search.  Each iteration of the for
2085   ** loop below generates code for a single nested loop of the VM
2086   ** program.
2087   */
2088   notReady = ~(Bitmask)0;
2089   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
2090     int j;
2091     int iCur = pTabItem->iCursor;  /* The VDBE cursor for the table */
2092     Index *pIdx;       /* The index we will be using */
2093     int iIdxCur;       /* The VDBE cursor for the index */
2094     int omitTable;     /* True if we use the index only */
2095     int bRev;          /* True if we need to scan in reverse order */
2096 
2097     pTabItem = &pTabList->a[pLevel->iFrom];
2098     iCur = pTabItem->iCursor;
2099     pIdx = pLevel->pIdx;
2100     iIdxCur = pLevel->iIdxCur;
2101     bRev = (pLevel->flags & WHERE_REVERSE)!=0;
2102     omitTable = (pLevel->flags & WHERE_IDX_ONLY)!=0;
2103 
2104     /* Create labels for the "break" and "continue" instructions
2105     ** for the current loop.  Jump to brk to break out of a loop.
2106     ** Jump to cont to go immediately to the next iteration of the
2107     ** loop.
2108     */
2109     brk = pLevel->brk = sqlite3VdbeMakeLabel(v);
2110     cont = pLevel->cont = sqlite3VdbeMakeLabel(v);
2111 
2112     /* If this is the right table of a LEFT OUTER JOIN, allocate and
2113     ** initialize a memory cell that records if this table matches any
2114     ** row of the left table of the join.
2115     */
2116     if( pLevel->iFrom>0 && (pTabItem[0].jointype & JT_LEFT)!=0 ){
2117       if( !pParse->nMem ) pParse->nMem++;
2118       pLevel->iLeftJoin = pParse->nMem++;
2119       sqlite3VdbeAddOp(v, OP_MemInt, 0, pLevel->iLeftJoin);
2120       VdbeComment((v, "# init LEFT JOIN no-match flag"));
2121     }
2122 
2123 #ifndef SQLITE_OMIT_VIRTUALTABLE
2124     if( pLevel->pBestIdx ){
2125       /* Case 0:  The table is a virtual-table.  Use the VFilter and VNext
2126       **          to access the data.
2127       */
2128       int j;
2129       sqlite3_index_info *pBestIdx = pLevel->pBestIdx;
2130       int nConstraint = pBestIdx->nConstraint;
2131       struct sqlite3_index_constraint_usage *aUsage =
2132                                                   pBestIdx->aConstraintUsage;
2133       const struct sqlite3_index_constraint *aConstraint =
2134                                                   pBestIdx->aConstraint;
2135 
2136       for(j=1; j<=nConstraint; j++){
2137         int k;
2138         for(k=0; k<nConstraint; k++){
2139           if( aUsage[k].argvIndex==j ){
2140             int iTerm = aConstraint[k].iTermOffset;
2141             sqlite3ExprCode(pParse, wc.a[iTerm].pExpr->pRight);
2142             break;
2143           }
2144         }
2145         if( k==nConstraint ) break;
2146       }
2147       sqlite3VdbeAddOp(v, OP_Integer, j-1, 0);
2148       sqlite3VdbeAddOp(v, OP_Integer, pBestIdx->idxNum, 0);
2149       sqlite3VdbeOp3(v, OP_VFilter, iCur, brk, pBestIdx->idxStr,
2150                       pBestIdx->needToFreeIdxStr ? P3_MPRINTF : P3_STATIC);
2151       pBestIdx->needToFreeIdxStr = 0;
2152       for(j=0; j<pBestIdx->nConstraint; j++){
2153         if( aUsage[j].omit ){
2154           int iTerm = aConstraint[j].iTermOffset;
2155           disableTerm(pLevel, &wc.a[iTerm]);
2156         }
2157       }
2158       pLevel->op = OP_VNext;
2159       pLevel->p1 = iCur;
2160       pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2161     }else
2162 #endif /* SQLITE_OMIT_VIRTUALTABLE */
2163 
2164     if( pLevel->flags & WHERE_ROWID_EQ ){
2165       /* Case 1:  We can directly reference a single row using an
2166       **          equality comparison against the ROWID field.  Or
2167       **          we reference multiple rows using a "rowid IN (...)"
2168       **          construct.
2169       */
2170       pTerm = findTerm(&wc, iCur, -1, notReady, WO_EQ|WO_IN, 0);
2171       assert( pTerm!=0 );
2172       assert( pTerm->pExpr!=0 );
2173       assert( pTerm->leftCursor==iCur );
2174       assert( omitTable==0 );
2175       codeEqualityTerm(pParse, pTerm, brk, pLevel);
2176       sqlite3VdbeAddOp(v, OP_MustBeInt, 1, brk);
2177       sqlite3VdbeAddOp(v, OP_NotExists, iCur, brk);
2178       VdbeComment((v, "pk"));
2179       pLevel->op = OP_Noop;
2180     }else if( pLevel->flags & WHERE_ROWID_RANGE ){
2181       /* Case 2:  We have an inequality comparison against the ROWID field.
2182       */
2183       int testOp = OP_Noop;
2184       int start;
2185       WhereTerm *pStart, *pEnd;
2186 
2187       assert( omitTable==0 );
2188       pStart = findTerm(&wc, iCur, -1, notReady, WO_GT|WO_GE, 0);
2189       pEnd = findTerm(&wc, iCur, -1, notReady, WO_LT|WO_LE, 0);
2190       if( bRev ){
2191         pTerm = pStart;
2192         pStart = pEnd;
2193         pEnd = pTerm;
2194       }
2195       if( pStart ){
2196         Expr *pX;
2197         pX = pStart->pExpr;
2198         assert( pX!=0 );
2199         assert( pStart->leftCursor==iCur );
2200         sqlite3ExprCode(pParse, pX->pRight);
2201         sqlite3VdbeAddOp(v, OP_ForceInt, pX->op==TK_LE || pX->op==TK_GT, brk);
2202         sqlite3VdbeAddOp(v, bRev ? OP_MoveLt : OP_MoveGe, iCur, brk);
2203         VdbeComment((v, "pk"));
2204         disableTerm(pLevel, pStart);
2205       }else{
2206         sqlite3VdbeAddOp(v, bRev ? OP_Last : OP_Rewind, iCur, brk);
2207       }
2208       if( pEnd ){
2209         Expr *pX;
2210         pX = pEnd->pExpr;
2211         assert( pX!=0 );
2212         assert( pEnd->leftCursor==iCur );
2213         sqlite3ExprCode(pParse, pX->pRight);
2214         pLevel->iMem = pParse->nMem++;
2215         sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
2216         if( pX->op==TK_LT || pX->op==TK_GT ){
2217           testOp = bRev ? OP_Le : OP_Ge;
2218         }else{
2219           testOp = bRev ? OP_Lt : OP_Gt;
2220         }
2221         disableTerm(pLevel, pEnd);
2222       }
2223       start = sqlite3VdbeCurrentAddr(v);
2224       pLevel->op = bRev ? OP_Prev : OP_Next;
2225       pLevel->p1 = iCur;
2226       pLevel->p2 = start;
2227       if( testOp!=OP_Noop ){
2228         sqlite3VdbeAddOp(v, OP_Rowid, iCur, 0);
2229         sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
2230         sqlite3VdbeAddOp(v, testOp, SQLITE_AFF_NUMERIC, brk);
2231       }
2232     }else if( pLevel->flags & WHERE_COLUMN_RANGE ){
2233       /* Case 3: The WHERE clause term that refers to the right-most
2234       **         column of the index is an inequality.  For example, if
2235       **         the index is on (x,y,z) and the WHERE clause is of the
2236       **         form "x=5 AND y<10" then this case is used.  Only the
2237       **         right-most column can be an inequality - the rest must
2238       **         use the "==" and "IN" operators.
2239       **
2240       **         This case is also used when there are no WHERE clause
2241       **         constraints but an index is selected anyway, in order
2242       **         to force the output order to conform to an ORDER BY.
2243       */
2244       int start;
2245       int nEq = pLevel->nEq;
2246       int topEq=0;        /* True if top limit uses ==. False is strictly < */
2247       int btmEq=0;        /* True if btm limit uses ==. False if strictly > */
2248       int topOp, btmOp;   /* Operators for the top and bottom search bounds */
2249       int testOp;
2250       int topLimit = (pLevel->flags & WHERE_TOP_LIMIT)!=0;
2251       int btmLimit = (pLevel->flags & WHERE_BTM_LIMIT)!=0;
2252 
2253       /* Generate code to evaluate all constraint terms using == or IN
2254       ** and level the values of those terms on the stack.
2255       */
2256       codeAllEqualityTerms(pParse, pLevel, &wc, notReady, brk);
2257 
2258       /* Duplicate the equality term values because they will all be
2259       ** used twice: once to make the termination key and once to make the
2260       ** start key.
2261       */
2262       for(j=0; j<nEq; j++){
2263         sqlite3VdbeAddOp(v, OP_Dup, nEq-1, 0);
2264       }
2265 
2266       /* Figure out what comparison operators to use for top and bottom
2267       ** search bounds. For an ascending index, the bottom bound is a > or >=
2268       ** operator and the top bound is a < or <= operator.  For a descending
2269       ** index the operators are reversed.
2270       */
2271       if( pIdx->aSortOrder[nEq]==SQLITE_SO_ASC ){
2272         topOp = WO_LT|WO_LE;
2273         btmOp = WO_GT|WO_GE;
2274       }else{
2275         topOp = WO_GT|WO_GE;
2276         btmOp = WO_LT|WO_LE;
2277         SWAP(int, topLimit, btmLimit);
2278       }
2279 
2280       /* Generate the termination key.  This is the key value that
2281       ** will end the search.  There is no termination key if there
2282       ** are no equality terms and no "X<..." term.
2283       **
2284       ** 2002-Dec-04: On a reverse-order scan, the so-called "termination"
2285       ** key computed here really ends up being the start key.
2286       */
2287       if( topLimit ){
2288         Expr *pX;
2289         int k = pIdx->aiColumn[j];
2290         pTerm = findTerm(&wc, iCur, k, notReady, topOp, pIdx);
2291         assert( pTerm!=0 );
2292         pX = pTerm->pExpr;
2293         assert( (pTerm->flags & TERM_CODED)==0 );
2294         sqlite3ExprCode(pParse, pX->pRight);
2295         sqlite3VdbeAddOp(v, OP_IsNull, -(nEq+1), brk);
2296         topEq = pTerm->eOperator & (WO_LE|WO_GE);
2297         disableTerm(pLevel, pTerm);
2298         testOp = OP_IdxGE;
2299       }else{
2300         testOp = nEq>0 ? OP_IdxGE : OP_Noop;
2301         topEq = 1;
2302       }
2303       if( testOp!=OP_Noop ){
2304         int nCol = nEq + topLimit;
2305         pLevel->iMem = pParse->nMem++;
2306         buildIndexProbe(v, nCol, pIdx);
2307         if( bRev ){
2308           int op = topEq ? OP_MoveLe : OP_MoveLt;
2309           sqlite3VdbeAddOp(v, op, iIdxCur, brk);
2310         }else{
2311           sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
2312         }
2313       }else if( bRev ){
2314         sqlite3VdbeAddOp(v, OP_Last, iIdxCur, brk);
2315       }
2316 
2317       /* Generate the start key.  This is the key that defines the lower
2318       ** bound on the search.  There is no start key if there are no
2319       ** equality terms and if there is no "X>..." term.  In
2320       ** that case, generate a "Rewind" instruction in place of the
2321       ** start key search.
2322       **
2323       ** 2002-Dec-04: In the case of a reverse-order search, the so-called
2324       ** "start" key really ends up being used as the termination key.
2325       */
2326       if( btmLimit ){
2327         Expr *pX;
2328         int k = pIdx->aiColumn[j];
2329         pTerm = findTerm(&wc, iCur, k, notReady, btmOp, pIdx);
2330         assert( pTerm!=0 );
2331         pX = pTerm->pExpr;
2332         assert( (pTerm->flags & TERM_CODED)==0 );
2333         sqlite3ExprCode(pParse, pX->pRight);
2334         sqlite3VdbeAddOp(v, OP_IsNull, -(nEq+1), brk);
2335         btmEq = pTerm->eOperator & (WO_LE|WO_GE);
2336         disableTerm(pLevel, pTerm);
2337       }else{
2338         btmEq = 1;
2339       }
2340       if( nEq>0 || btmLimit ){
2341         int nCol = nEq + btmLimit;
2342         buildIndexProbe(v, nCol, pIdx);
2343         if( bRev ){
2344           pLevel->iMem = pParse->nMem++;
2345           sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 1);
2346           testOp = OP_IdxLT;
2347         }else{
2348           int op = btmEq ? OP_MoveGe : OP_MoveGt;
2349           sqlite3VdbeAddOp(v, op, iIdxCur, brk);
2350         }
2351       }else if( bRev ){
2352         testOp = OP_Noop;
2353       }else{
2354         sqlite3VdbeAddOp(v, OP_Rewind, iIdxCur, brk);
2355       }
2356 
2357       /* Generate the the top of the loop.  If there is a termination
2358       ** key we have to test for that key and abort at the top of the
2359       ** loop.
2360       */
2361       start = sqlite3VdbeCurrentAddr(v);
2362       if( testOp!=OP_Noop ){
2363         sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
2364         sqlite3VdbeAddOp(v, testOp, iIdxCur, brk);
2365         if( (topEq && !bRev) || (!btmEq && bRev) ){
2366           sqlite3VdbeChangeP3(v, -1, "+", P3_STATIC);
2367         }
2368       }
2369       if( topLimit | btmLimit ){
2370         sqlite3VdbeAddOp(v, OP_Column, iIdxCur, nEq);
2371         sqlite3VdbeAddOp(v, OP_IsNull, 1, cont);
2372       }
2373       if( !omitTable ){
2374         sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
2375         sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
2376       }
2377 
2378       /* Record the instruction used to terminate the loop.
2379       */
2380       pLevel->op = bRev ? OP_Prev : OP_Next;
2381       pLevel->p1 = iIdxCur;
2382       pLevel->p2 = start;
2383     }else if( pLevel->flags & WHERE_COLUMN_EQ ){
2384       /* Case 4:  There is an index and all terms of the WHERE clause that
2385       **          refer to the index using the "==" or "IN" operators.
2386       */
2387       int start;
2388       int nEq = pLevel->nEq;
2389 
2390       /* Generate code to evaluate all constraint terms using == or IN
2391       ** and leave the values of those terms on the stack.
2392       */
2393       codeAllEqualityTerms(pParse, pLevel, &wc, notReady, brk);
2394 
2395       /* Generate a single key that will be used to both start and terminate
2396       ** the search
2397       */
2398       buildIndexProbe(v, nEq, pIdx);
2399       sqlite3VdbeAddOp(v, OP_MemStore, pLevel->iMem, 0);
2400 
2401       /* Generate code (1) to move to the first matching element of the table.
2402       ** Then generate code (2) that jumps to "brk" after the cursor is past
2403       ** the last matching element of the table.  The code (1) is executed
2404       ** once to initialize the search, the code (2) is executed before each
2405       ** iteration of the scan to see if the scan has finished. */
2406       if( bRev ){
2407         /* Scan in reverse order */
2408         sqlite3VdbeAddOp(v, OP_MoveLe, iIdxCur, brk);
2409         start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
2410         sqlite3VdbeAddOp(v, OP_IdxLT, iIdxCur, brk);
2411         pLevel->op = OP_Prev;
2412       }else{
2413         /* Scan in the forward order */
2414         sqlite3VdbeAddOp(v, OP_MoveGe, iIdxCur, brk);
2415         start = sqlite3VdbeAddOp(v, OP_MemLoad, pLevel->iMem, 0);
2416         sqlite3VdbeOp3(v, OP_IdxGE, iIdxCur, brk, "+", P3_STATIC);
2417         pLevel->op = OP_Next;
2418       }
2419       if( !omitTable ){
2420         sqlite3VdbeAddOp(v, OP_IdxRowid, iIdxCur, 0);
2421         sqlite3VdbeAddOp(v, OP_MoveGe, iCur, 0);
2422       }
2423       pLevel->p1 = iIdxCur;
2424       pLevel->p2 = start;
2425     }else{
2426       /* Case 5:  There is no usable index.  We must do a complete
2427       **          scan of the entire table.
2428       */
2429       assert( omitTable==0 );
2430       assert( bRev==0 );
2431       pLevel->op = OP_Next;
2432       pLevel->p1 = iCur;
2433       pLevel->p2 = 1 + sqlite3VdbeAddOp(v, OP_Rewind, iCur, brk);
2434     }
2435     notReady &= ~getMask(&maskSet, iCur);
2436 
2437     /* Insert code to test every subexpression that can be completely
2438     ** computed using the current set of tables.
2439     */
2440     for(pTerm=wc.a, j=wc.nTerm; j>0; j--, pTerm++){
2441       Expr *pE;
2442       if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2443       if( (pTerm->prereqAll & notReady)!=0 ) continue;
2444       pE = pTerm->pExpr;
2445       assert( pE!=0 );
2446       if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
2447         continue;
2448       }
2449       sqlite3ExprIfFalse(pParse, pE, cont, 1);
2450       pTerm->flags |= TERM_CODED;
2451     }
2452 
2453     /* For a LEFT OUTER JOIN, generate code that will record the fact that
2454     ** at least one row of the right table has matched the left table.
2455     */
2456     if( pLevel->iLeftJoin ){
2457       pLevel->top = sqlite3VdbeCurrentAddr(v);
2458       sqlite3VdbeAddOp(v, OP_MemInt, 1, pLevel->iLeftJoin);
2459       VdbeComment((v, "# record LEFT JOIN hit"));
2460       for(pTerm=wc.a, j=0; j<wc.nTerm; j++, pTerm++){
2461         if( pTerm->flags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2462         if( (pTerm->prereqAll & notReady)!=0 ) continue;
2463         assert( pTerm->pExpr );
2464         sqlite3ExprIfFalse(pParse, pTerm->pExpr, cont, 1);
2465         pTerm->flags |= TERM_CODED;
2466       }
2467     }
2468   }
2469 
2470 #ifdef SQLITE_TEST  /* For testing and debugging use only */
2471   /* Record in the query plan information about the current table
2472   ** and the index used to access it (if any).  If the table itself
2473   ** is not used, its name is just '{}'.  If no index is used
2474   ** the index is listed as "{}".  If the primary key is used the
2475   ** index name is '*'.
2476   */
2477   for(i=0; i<pTabList->nSrc; i++){
2478     char *z;
2479     int n;
2480     pLevel = &pWInfo->a[i];
2481     pTabItem = &pTabList->a[pLevel->iFrom];
2482     z = pTabItem->zAlias;
2483     if( z==0 ) z = pTabItem->pTab->zName;
2484     n = strlen(z);
2485     if( n+nQPlan < sizeof(sqlite3_query_plan)-10 ){
2486       if( pLevel->flags & WHERE_IDX_ONLY ){
2487         strcpy(&sqlite3_query_plan[nQPlan], "{}");
2488         nQPlan += 2;
2489       }else{
2490         strcpy(&sqlite3_query_plan[nQPlan], z);
2491         nQPlan += n;
2492       }
2493       sqlite3_query_plan[nQPlan++] = ' ';
2494     }
2495     if( pLevel->flags & (WHERE_ROWID_EQ|WHERE_ROWID_RANGE) ){
2496       strcpy(&sqlite3_query_plan[nQPlan], "* ");
2497       nQPlan += 2;
2498     }else if( pLevel->pIdx==0 ){
2499       strcpy(&sqlite3_query_plan[nQPlan], "{} ");
2500       nQPlan += 3;
2501     }else{
2502       n = strlen(pLevel->pIdx->zName);
2503       if( n+nQPlan < sizeof(sqlite3_query_plan)-2 ){
2504         strcpy(&sqlite3_query_plan[nQPlan], pLevel->pIdx->zName);
2505         nQPlan += n;
2506         sqlite3_query_plan[nQPlan++] = ' ';
2507       }
2508     }
2509   }
2510   while( nQPlan>0 && sqlite3_query_plan[nQPlan-1]==' ' ){
2511     sqlite3_query_plan[--nQPlan] = 0;
2512   }
2513   sqlite3_query_plan[nQPlan] = 0;
2514   nQPlan = 0;
2515 #endif /* SQLITE_TEST // Testing and debugging use only */
2516 
2517   /* Record the continuation address in the WhereInfo structure.  Then
2518   ** clean up and return.
2519   */
2520   pWInfo->iContinue = cont;
2521   whereClauseClear(&wc);
2522   return pWInfo;
2523 
2524   /* Jump here if malloc fails */
2525 whereBeginNoMem:
2526   whereClauseClear(&wc);
2527   whereInfoFree(pWInfo);
2528   return 0;
2529 }
2530 
2531 /*
2532 ** Generate the end of the WHERE loop.  See comments on
2533 ** sqlite3WhereBegin() for additional information.
2534 */
2535 void sqlite3WhereEnd(WhereInfo *pWInfo){
2536   Vdbe *v = pWInfo->pParse->pVdbe;
2537   int i;
2538   WhereLevel *pLevel;
2539   SrcList *pTabList = pWInfo->pTabList;
2540 
2541   /* Generate loop termination code.
2542   */
2543   for(i=pTabList->nSrc-1; i>=0; i--){
2544     pLevel = &pWInfo->a[i];
2545     sqlite3VdbeResolveLabel(v, pLevel->cont);
2546     if( pLevel->op!=OP_Noop ){
2547       sqlite3VdbeAddOp(v, pLevel->op, pLevel->p1, pLevel->p2);
2548     }
2549     sqlite3VdbeResolveLabel(v, pLevel->brk);
2550     if( pLevel->nIn ){
2551       int *a;
2552       int j;
2553       for(j=pLevel->nIn, a=&pLevel->aInLoop[j*2-2]; j>0; j--, a-=2){
2554         sqlite3VdbeAddOp(v, OP_Next, a[0], a[1]);
2555         sqlite3VdbeJumpHere(v, a[1]-1);
2556       }
2557       sqliteFree(pLevel->aInLoop);
2558     }
2559     if( pLevel->iLeftJoin ){
2560       int addr;
2561       addr = sqlite3VdbeAddOp(v, OP_IfMemPos, pLevel->iLeftJoin, 0);
2562       sqlite3VdbeAddOp(v, OP_NullRow, pTabList->a[i].iCursor, 0);
2563       if( pLevel->iIdxCur>=0 ){
2564         sqlite3VdbeAddOp(v, OP_NullRow, pLevel->iIdxCur, 0);
2565       }
2566       sqlite3VdbeAddOp(v, OP_Goto, 0, pLevel->top);
2567       sqlite3VdbeJumpHere(v, addr);
2568     }
2569   }
2570 
2571   /* The "break" point is here, just past the end of the outer loop.
2572   ** Set it.
2573   */
2574   sqlite3VdbeResolveLabel(v, pWInfo->iBreak);
2575 
2576   /* Close all of the cursors that were opened by sqlite3WhereBegin.
2577   */
2578   for(i=0, pLevel=pWInfo->a; i<pTabList->nSrc; i++, pLevel++){
2579     struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom];
2580     Table *pTab = pTabItem->pTab;
2581     assert( pTab!=0 );
2582     if( pTab->isEphem || pTab->pSelect ) continue;
2583     if( (pLevel->flags & WHERE_IDX_ONLY)==0 ){
2584       sqlite3VdbeAddOp(v, OP_Close, pTabItem->iCursor, 0);
2585     }
2586     if( pLevel->pIdx!=0 ){
2587       sqlite3VdbeAddOp(v, OP_Close, pLevel->iIdxCur, 0);
2588     }
2589 
2590     /* Make cursor substitutions for cases where we want to use
2591     ** just the index and never reference the table.
2592     **
2593     ** Calls to the code generator in between sqlite3WhereBegin and
2594     ** sqlite3WhereEnd will have created code that references the table
2595     ** directly.  This loop scans all that code looking for opcodes
2596     ** that reference the table and converts them into opcodes that
2597     ** reference the index.
2598     */
2599     if( pLevel->flags & WHERE_IDX_ONLY ){
2600       int k, j, last;
2601       VdbeOp *pOp;
2602       Index *pIdx = pLevel->pIdx;
2603 
2604       assert( pIdx!=0 );
2605       pOp = sqlite3VdbeGetOp(v, pWInfo->iTop);
2606       last = sqlite3VdbeCurrentAddr(v);
2607       for(k=pWInfo->iTop; k<last; k++, pOp++){
2608         if( pOp->p1!=pLevel->iTabCur ) continue;
2609         if( pOp->opcode==OP_Column ){
2610           pOp->p1 = pLevel->iIdxCur;
2611           for(j=0; j<pIdx->nColumn; j++){
2612             if( pOp->p2==pIdx->aiColumn[j] ){
2613               pOp->p2 = j;
2614               break;
2615             }
2616           }
2617         }else if( pOp->opcode==OP_Rowid ){
2618           pOp->p1 = pLevel->iIdxCur;
2619           pOp->opcode = OP_IdxRowid;
2620         }else if( pOp->opcode==OP_NullRow ){
2621           pOp->opcode = OP_Noop;
2622         }
2623       }
2624     }
2625   }
2626 
2627   /* Final cleanup
2628   */
2629   whereInfoFree(pWInfo);
2630   return;
2631 }
2632